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INTRODUCTION 

When trying to prove a theorem, many mathematicians proceed as follows: 

they make some more or less vague images in their mind of the concepts 

involved in the theorem, and they try to "prove", or "disprove", the 

conjectured theorem by operating with these images. Once they have convinced 

themselves of its truth, they construct a "formal" proof of the theorem. It 

is often helpful to visualize the arguments in the process of "proving" by 

drawing pictures on the blackboard or on paper, preferably on the back of 

paper already printed on the other side. For example, Venn-diagrams are 

useful when we deal with sets. 

One of the attractive features of graph theory is its inherent 

pictorial character -that is, the images and pictures we make of the 

objects we deal with can be rather precise. Sometimes we can even use 

figures in the written proof of a theorem. 

In this monograph I have included many figures to provide examples and 

to illustrate the arguments in proofs. Often the argument does not lie so 

much in the figure itself as in the process of drawing the figure. The 

reader is therefore invited to draw his own figures where necessary. 

We deal with intervals in graphs. An interval in a graph can be 

considered as an analogue of the notion of interval on the real line in the 

following way: the interval [a,b] on the real line consists of all real 

numbers "between" a and b; a vertex win a graph G is said to lie between 

two vertices u and v if w lies on a shortest path from u to v in G; the 

interval between u and v in G is the set of all vertices between u and v. 

We use this concept to study several classes of graphs. Some of these 

classes are related to algebraic structures, and some are related to other 

discrete mathematical structures (symmetric block designs, Helly hyper­

graphs). In Section 1.3 we discuss the unoriented Hasse diagrams of finite 
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modular and distributive lattices. In Chapter 2 we introduce (0,A)-graphs. 

These are connected graphs in which any two vertices have A common neigh­

bours or none at all. Such graphs are regular. Examples of (0,A) -graphs are 

then-cube and the incidence graph of a symmetric block design. When the 

diameter is at least 4, we can easily obtain a lower bound for the degree 

of a (0,A)-graph involving the diameter. The "extremal" (0,A)-graphs are 

the hypercubes and the Hadamard graphs (Sections 2.2, 2.3 and 2.4). 

In the next two chapters we consider median graphs. A median graph is 

a connected graph such that, for any three vertices u, v and w, there 

exists exactly one vertex x = x(u,v,w) lying simultaneously on a shortest 

(u,v)-path, a shortest (v,w)-path and a shortest (w,u)-path. This vertex x 

is called the median of u, v and w. There is a close relationship between 

median graphs and some algebraic structures (e.g. median semilattices and 

median algebras; see Section 3.3). One of the main theorems of this mono­

graph is the "median graph theorem", which states that any median graph can 

be obtained from a median graph with fewer vertices by an expansion 

procedure (Section 3.2). A consequence of this theorem is that a median 

graph admits a proper colouring of its edges (which is uniquely determined) 

such that any colour class is a cutset. The components with respect to 

these cutsets can be taken as the edges of a hypergraph, which turns out 

to be a maximal self-complementary Helly hypergraph (Section 4.1). Another 

consequence is that a median graph can be embedded in an n-cube as a 

distance-preserving "median-closed" subgraph (Section 3.4). 

In Chapter 5 we give a characterization of Hamming graphs (graph 

products of complete graphs), a natural generalization of then-cube. In 

the last two chapters we study quasi-median graphs, which generalize 

median graphs. We prove suitable analogues of many of the results in 

Chapter 3. For example, we prove a "quasi-median theorem" (Section 6.2), 

and we establish the relationship between quasi-median graphs and quasi­

median algebras (Chapter 7). 

To make this thesis self-contained, we add· Chapter 0 in which we list 

the relevant definitions and results from the literature. 

Then-cube plays an important role in most of the chapters. To use a 

metaphor, then-cube runs through the story like a thread. From this point 

of view the contents of this tract can be divided conveniently into five 

parts. In the first part (Section 1.1) we introduce the interval function 

of a graph as the main tool in our analysis. In the second part (Sections 



1.2 and 1.3 and Chapter 2) we discuss several classes of graphs, which all 

generalize some aspect of then-cube: interval-regular graphs, unoriented 

Hasse diagrams of finite lattices, (O,A)-graphs and Hadamard graphs. The 

third part (Chapters 3 and 4) deals with median-closed subgraphs of the 

n-cube and their relationships with other finite mathematical structures. 

In the fourth part (Chapter 5) we single out the most obvious of all 

possible generalizations of then-cube, that of the Hamming graphs, and 

in the last part (Chapters 6 and 7) we study the "quasi-median closed" 

subgraphs of these generalized hypercubes. 

As is usual in mathematics the material of this monograph was not 

developed in the way it is presented here. I have included the problem 
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from which this research "originated" as a digression in Section 4.2. Some 

years ago a colleague at the Vrije Universiteit, Jan van Mill (a topologist) 

posed to me the problem of determining an upper bound for the number of 

edges in k-Helly hypergraphs. This problem arose in the context of the 

theory of supercompact spaces in topology. We settled it fork~ 2 fairly 

easily, but the case k ~ 3 resisted our attempts. An alternative approach 

of the case k = 2 led to the so-called maximal Helly copair hypergraphs 

(see Definition 4.1.5 and Corollaries 4.1.16 and 4.1.17). 

A suggestion ~f my friend and colleague at the Mathematical Centre 

Lex Schrijver to use his notion of interval structure led to a fruitful 

collaboration (see MULDER & SCHRIJVER [MS]), the results of which form the 

contents of Section 4.1. And so the stone began to roll, gathering moss on 

its way. I still can point out the exact place in Keszthely where, on a 

walk during the Fifth Hungarian Combinatorial Colloquium, I was "struck" 

by the idea ultimately leading to the median graph theorem (Theorem 3.2.4). 

In one of the final stages of this research, Ladislav Nebesky, who 

obtained some of the results in Chapter 3 independently (see [N2]), 

visited the Vrije Universiteit. During our discussions, we came across the 

ideas which led to the results in [N3] and in Chapter 7. 

With hindsight, the original problem was not difficult, and its 

solution need not involve the graphs that grew out of it (see Corollary 

4.2.5). 
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CHAPTER 0 

BASIC CONCEPTS 

In this chapter we list those definitions and results from the 

literature that are needed in the sequel. It is intended for those 

readers who are not familiar with the basic concepts of graph theory, 

poset and lattice theory, and design theory. 

0.1. GRAPHS 

With some minor adaptations we adopt the terminology of BONDY & 

MURTY [BM] and WILSON [Wi]. Other general references for graph theory are 

BERGE [Be] and BIGGS, LLOYD & WILSON [BLW]. 

A graph G consists of a finite set V(G) of vertices together with a 

set E(G) of unordered pairs of distinct vertices called edges (so we 

consider only simple undirected finite graphs). If we use the letter G 

to indicate a graph, then we always assume that Vis its vertex-set and 

E its edge-set. We give examples of graphs in Figures 0.1 and 0.2. In 

these figures vertices are depicted as small circles, and any edge {u,v} 

(usually denoted by uv) is depicted as a line joining the ends u and v. 

If uv is an edge in G, then u is incident with uv, and we say that u and 

v are adjacent, or that u is a neighbour of v. Two edges are adjacent if 

they have a vertex (end) in common. 

The complementary graph G of G has Vas vertex-set and two distinct 

vertices are adjacent in G whenever they are not adjacent in G. 

A subgraph of G is a graph G' whose vertex-set V' is a subset of V, 

and whose edge-set E' is a subset of E such that any edge in E' joins 

two vertices in V'. If all edges of G joining two vertices in V' are in 

E', then G' is induced by V', and is denoted by G[V']. If V' consists of 

all ends of edges in E', then G' is an (edge-)induced subgraph of G, and 



is denoted by G[E']. A spanning subgraph of G is a subgraph which has V 

as its vertex-set. 

A clique in G is a set of vertices in which any two distinct vertices 

are adjacent. If Vis a clique, then G is the complete graph Kn, where 

n = jvj is the size of the set V. The graph K3 is called triangle. 
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The degree d(v) = dG(v) of a vertex v of G is the number of neighbours 

of v. If all vertices of G have the same degree d(G), then G is regular of 

degree d(G). 

A sequence of distinct vertices P = u0 + u 1 + ... + un in G such that 

any two consecutive vertices are adjacent is called a path from u0 to un 

(a (u0 ,un)-path, for short) of length n. If n ~ 2, then u1 , ..• ,un-l are 

the internal vertices of P, and P passes through these vertices. A graph 

G is connected if for any two vertices u and v of G there exists a (u,v)­

path. The distance d(u,v) = dG(u,v) between two vertices u and vis the 

length of any shortest (u,v)-path in G. The diameter diam(G) of G is the 

largest distance in G. A disconnected graph consists of the disjoint union 

of connected graphs called the components of the graph. A disconnecting 

set in a connected graph G is a set F £ E such that the graph with vertex­

set V and edge-set E \Fis disconnected. A cutset in a connected graph is 

a disconnecting set, no proper subset of which is a disconnecting set. Note 

that the deletion of a cutset from a connected graph splits the graph into 

exactly two components. 

FIGURE 0.1. FIGURE 0.2. 
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A circuit of length n in G is a sequence of vertices C = u1 + ..• + un 

+ u 1, in which u 1, ••• ,un are distinct vertices and any two consecutive 

vertices are adjacent. A tree is a connected graph without circuits. The 

graph in Figure 0.1 is a tree, whereas the graph in Figure 0.2 is not. 

A Hamiltonian graph is a graph containing a spanning circuit. 

A bipartite graph contains no odd circuits (circuits of odd length). 

In such a graph G the vertex-set can be partitioned into two sets v1 and v2 

such that any edge of G joins a vertex in v1 to a vertex in v2. By counting 

the edges twice, we get the formula 

I: d(v) I: d(v), 
V€Vl VEV2 

or the inequality 

where pis a lower bound for the degrees in v1 and q is an upper bound 

for the degrees in v2 . If all possible edges between v1 and v2 are in G, 

then G is the complete bipartite graph Kn,m' where n = lv11 and m = lv2 1. 
The graph Kl,l,m consists of an edge uv together with m vertices 

adjacent to both u and v. 

A matching in G is a set of non-adjacent edges. If \v\ is even, then 

a perfect matching in G is a matching of size ½lvl, so that any vertex of 

G is "matched" to another vertex. An edge colouring of G with k colours 

is an assignment of k colours a 1 ,a2 , ... ,ak to the edges of G such that 

edges of the same colour form a matching. We use the tE,rm colour ai to 

indicate the colour ai that is assigned to an edge, as well as to indicate 

the set of all edges assigned colour ai (that is, the colour class ai). 

A graph G is homomorphic to a graph H if there exists a homomorphism 

from G onto H -that is, a mapping f from V(G) onto V(H) such that if 

W ~ V(H) induces a connected subgraph of H, then the set f- 1[w] induces a 

connected subgraph of G (or, informally, if we can obtain H from G by 

contracting edges). The graphs G and Hare isomorphic if there exists an 

isomorphism between G and H -that is, a bijection f: V(G) + V(H) such 

that both f and f-l are homomorphisms. Usually we do not distinguish 

between isomorphic graphs. An automorphism of G is an isomorphism of G 

onto itself. The graph G is transitive if, for any two vertices u and v 



of G, there exists an automorphism f of G such that f(u) = v. We call G 

distance-transitive if, for any u, v, x and yin V with d(u,v) = d(x,y), 

there exists an automorphism f such that f(u) = x and f(v) = y. A graph 

G is homeomorphic .to a graph H if there exists a homomorphism f from G 

onto H such that f- 1 (uv) induces a path in G, for any edge uv of H. A 

graph is outerplanar if it contains no subgraph homeomorphic to K4 or K213 • 

The adjacency matrix of a graph G with vertices v 1 , ... ,vn is the 

n X n matrix A= (aij) with 

otherwise-

The product of the graphs G and His the graph G x H whose vertex-set 

is the cartesian product V(G) x V(H), in which (u,v) is adjacent to (u',v') 

if and only if either u = u' and vv' E E(H) or v = v' and uu' E E(G). 

FIGURE 0.3. 

We conclude this section with an example that plays an important role 

in this monograph. The hypercube Qn of dimension n (then-cube, for short) 

has the (0,1)-vectors of length n as vertices, two vertices being joined 
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if they differ in exactly one coordinate (this is the vector representation 
n n-1 

of Qn). Then-cube has 2 vertices and n2 edges. It is regular of degree 

n, bipartite and distance-transitive. An alternative definition of Qn is 

the following: let V be a set of size n (an n-set, for short), and let 

P(V) be the power-set of V; then Q has P(V) as its vertex-set, and two 
n 
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vertices A and Bare adjacent whenever IA n Bi= 1, where An B = 

= (A\ B) u (B \ A) is the symmetric difference of the sets A and B (this 

is the subset representation of Qn). The last definition can be translated 

into the first one by labelling any vertex A s V with its characteristic 

function. Note that we use capitals to indicate vertices represented by 

subsets of a set. The small hypercubes are the 0-cube K1 , the 1-cube K2 , 

and the 2-cube K212 . In Figure 0.3 we give Q3 and Q4 • Note that for non­

negative integers n and m we have Qn+m = Qn x ~-

0.2. POSETS AND LATTICES 

A general reference for the theory of lattices and partially ordered 

sets is BIRKHOFF [Bi]. 

A finite partially ordered set (poset) P = (V,$) consists of a finite 

set Vanda reflexive, transitive, antisymmetric relation$ on V. If u $ v 

and u 1 v, then we write u < v. If u and v are in V, then v covers u in P 

if u < v and there is now in V with u < w < v. Using the covering relation 

we can obtain a graphical representation of P, called the Hasse diagram of 

P, as follows: draw a small circle to represent each element of P, placing 

v higher than u whenever u < v; draw a straight line joining u and v 

whenever v covers u. The Figures 0.3, 0.4, 0.5 and 0.6 are Hasse diagrams 

of posets. Note that the Hasse diagram of a poset is "oriented" downwards. 

:FIGURE 0,4. FIGURE 0.5. FIGURE 0.6. 

The greatest lower bound of two elements u and v in Pis an element x 

such that x $ u and x $ v and for any yin V with y $ u and y $ v, we have 

y $ x. If such a greatest lower bound of u and v exists, then it is unique, 
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by the antisymmetry of s, and we denote it by u Av. Similarly the least 

upper bound of u and vis an element x in V such that us x and vs x and 

for any yin V with us y and vs y, we have x s y. If such a least upper 

bound exists, then it is unique, and we denote it by u v v. A universal 

lower bound of Pis an element O in V with Os u, for all u in V. Similarly 

a universal upper bound of Pis an element 1 in V such that us 1, for all 

u in V. 

A finite lattice is a finite poset Pin which any two elements have 

a greatest lower bound and a least upper bound. It follows that a finite 

lattice has a universal lower bound and a universal upper bound. Note that 

a finite poset with universal upper bound in which any two elements have 

a greatest lower bound is a lattice. 

A finite modular lattice (V,S) is a finite lattice satisfying the 

following two covering conditions, for any two elements u and v in V: 

(i) if u and v cover u Av, then u v v covers both u and v; 

(ii) if u v v covers both u and v, then u and v cover u Av. 

Figures 0.4 and 0.5 are Hasse diagrams of non-modular lattices. Figure 0.4 

satisfies covering condition (i), and Figure 0.5 satisfies covering 

condition (ii). Figure 0.6 is the Hasse diagram of a modular lattice. 

A finite distributive lattice Pis a modular lattice, which does not 

contain Figure 0.6. 

Finally, the finite Boolean lattice on 2n elements is the poset 

(P(V) ,~), where Vis an n-set. The Hasse diagrams of the Boolean lattices 

on 8 and 16 elements are depicted in Figure 0.3. Note that a Boolean 

lattice is a distributive lattice in which each element has a unique 

"complement". 

0.3. BLOCK DESIGNS 

General references for the theory of block designs are CAMERON & 

VAN LINT [CL], HALL [HJ and RYSER [Rl]. 

A block design D = (X,B) with parameters (b,v,r,k,A) consists of a 

finite v-set X of points together with a family B of k-subsets of X 

(called blocks) such that each pair of distinct points is contained in 
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exactly A blocks in B. It can be verified that any point of the design is 

contained in a fixed number of blocks (we denote this number by r). The 

number of blocks in the design is denoted by b. The following equalities 

are easily verified by simple counting arguments: 

bk vr, 

and 

r(k-1) (v-l)A. 

A block design is symmetric if b = v. Note that in this case r = k. 

Hence the parameters of a symmetric block design are (v,k,A). It can be 

verified that any two distinct blocks have A points in common (see [HJ or 

[Rl]). 

The incidence matrix of a block design D = (X,B) with x 

and B = {B1, ... ,Bb} is the bx v matrix M = (mij) such that 

Note that a symmetric block design need not have a symmetric incidence 

matrix. 

The complementary block design D of a block design D (X,B) with 

parameters (b,v,r,k,A) has point-set X and set of blocks 

B := {x \ B BE B}. The parameters of Dare (b,v,b-r,v-k,b-2r+A). 

A Hadamard matrix of order n is an n x n matrix H with entries ±1 

satisfying 

nI, 

where I is the identity matrix of order n. Changing the signs of rows and 

columns does not affect the defining equation, and using this property we 

can easily verify that n = 2 or n = 0 (mod 4). There exist several 

constructions of block designs from Hadamard matrices, one of which is 

described in Chapter 2 (see [CL] for this one and for other constructions). 
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CHAPTER 1 

INTERVALS 

In this chapter we introduce the interval function of a graph. After 

proving some elementary results on intervals in graphs, we study interval­

regular graphs, and use the interval function of a graph to characterize 

the unoriented Hasse diagrams of finite modular and distributive lattices. 

1.1. THE CONCEPT OF INTERVAL 

First a preliminary remark: if we use the letter Gin this monograph 

to denote a graph, then we always assume that Vis its vertex-set and E 

its'edge-set. We start by defining the concept that plays a central role 

in the theorems and proofs of this monograph. 

1.1.1. DEFINITION. Let G be a graph, and let P(V) be the power-set of V. 

The mapping IG: V x V + P(V) defined by 

w lies on a shortest (u,v)-path in G} 

is the interval function of G. 

Note that w lies in IG(u,v) if and only if d(u,v) = d(u,w) + d(w,v). 

Each set IG(u,v) is called an interval in G. When no confusion can arise 

we write I instead of IG. 

EXAMPLE 1. In a tree the interval I(u,v) consists of the vertices on the 

unique path from u to v. 

EXAMPLE 2. Consider then-cube Qn with its vector representation, and let 
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u = (u1 , ... ,un) and v = (v 1 , ... ,vn) be vertices of Qn. The interval I(u,v) 

consists of those vertices of Qn that have ui as i-th coordinate, for 

those values of i for which u. = v .. 
l. l. 

Figures are often used to elucidate the arguments in proofs or to 

give examples, and sometimes a figure forms an essential step in a proof. 

A shortest path from u to vis usually depicted as in Figure 1.1, and the 

interval I(u,v) as in Figure 1.2. 

V V 

0 0 

shortest (u,v)-path I (u,v) 

0 0 
u u 

FIGURE 1.1. FIGURE 1.2. 

Note that a graph G with interval function I is connected if and 

only if there are no empty intervals in G. The following properties of 

the interval function can easily be verified. 

1.1.2. PROPOSITION. Let G be a connected graph with interval function I. 

Then, for any u and v in V, 

(i) U,V E I(u,v); 

(ii) I(u,v) = I(v,u); 

(iii) if X E I(u,v), then I(u,x) s I(u,v); 

(iv) if X E I(u,v), then I(u,x) n I(x,v) = {x}; 

(v) if X E I(u,v) and y E I(u,x), then x E I(y,v). 

1.1.3. PROPOSITION. Let G be a connected graph with interval function I. 

For any three vertices u, v and w of G there exists a vertex z in 

I(u,v) n I(u,w) such that 

I(z,v) n I(z,w) {z}. 



PROOF. Let z be a vertex in I(u,v) n I(u,w) with d(u,z) as large as 

possible. Then we have 

I(z,v) n I(z,w) {z}. 

For, if not, then let x be a vertex in I(z,v) n I(z,w) distinct from z. 
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It follows from Proposition 1.1.2 (v) that z lies in I(u,x). Hence we have 

d(u,x) d(u,z) + d(z,x) > d(u,z). 

By Proposition 1.1.2 (i) and (iii), we have 

x E I(x,v) n I(x,w) s I(z,v) n I(z,w) s I(u,v) n I(u,w), 

which contradicts the maximality of d(u,z). D 

The vertex z in this proposition need not be unique as the graph in 

Figure 1.3 shows. Note that in this graph d(u,z) # d(u,z'). In Figure 1.4 

we give an example where the vertex z is unique. These two figures are 

examples by which the reader can check the arguments in the next theorem. 

u u 

FIGURE 1. 3. FIGURE 1.4. 

1.1.4. THEOREM. Let G be a connected graph with interval function I, and 

let u, v, wand z be vertices of G. Then z is the only vertex in 
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I(u,v) n I(u,w) such that 

I(z,v) n I(z,w) {z} 

if and only if 

I (u,v) n I (u,w) I (u,z). 

PROOF. First we prove the "if" part (see Figure 1.4). Let z be a vertex of 

G with I(u,v) n I(u,w) = I(u,z). Then it follows that 

z E I(u,v) n I(u,w), 

and so, by Proposition 1.1.2 (iv), we have 

I(u,z) n I(z,v) {z}, 

and 

I(u,z) n I(z,w) {z}. 

Hence I(z,v) n I(z,w) = {z}. 

Any shortest (u,z)-path forms the first part of a shortest (u,v)-path 

as well as the first part of a shortest (u,w)-path. So, for any x in I(u,z) 

distinct from z, we have 

z E I(x,v) n I(x,w). 

This shows the uniqueness of z. 

Conversely (see Figure 1.3), assume that I(z,v) n I(z,w) 

some z in I(u,v) n I(u,w), but 

I(u,z) ~I(u,v) n I(u,w). 

{z}, for 

Choose a vertex x in I(u,v) n I(u,w) \ I(u,z). Then any shortest 

(u,v)-path passing through x does not contain z. So 

z ,I: I (x,v) n I (x,w) c I (u,v) n I (u,w). 



By Proposition 1.1.3, there exists a vertex yin I(x,v) n I(x,w) with 

I(y,v) n I(y,w) {y}. 

Then y # z, and so z is not unique. D 

1.1.5. DEFINITION. Let G be a graph with interval function I. A subset W 

of Vis convex if I(u,v) s W, for any u and v in W. 
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A subgraph of a graph G induced by a convex subset of Vis called a 

convex subgraph of G. Since the intersection of any two convex sets in G 

is convex, it makes sense to talk about the smallest convex set containing 

a subset U of V. This smallest convex set containing U is called the 

convex closure of U in G. The convex closure of a subgraph Hof G is the 

subgraph of G induced by the convex closure of the vertex-set of H. 

Note that in any graph, the empty set, any single vertex, any two 

adjacent vertices, and the whole vertex-set are always convex sets. Graphs 

in which these subsets are the only convex sets have been studied by 

BHASKARA RAO & RAO HEBBARE [BR], and RAO HEBBARE [Ral], [Ra2]. 

As the graph in Figure 1.5 shows, an interval need not be convex. 

In this graph x and z are vertices in the interval I(u,v), but 

I(x,z) $ I(u,v). 

V 

X z 

u 

FIGURE 1.5. 

1.1.6. DEFINITION. A graph G is interval monotone if each interval in G 

is convex. 

Note that Qn is interval monotone, as is any tree. In this monograph 
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we shall discuss several classes of interval monotone graphs. 

An interesting problem is the characterization of interval monotone 

graphs. In particular we can look for characterizations that involve 

forbidden subgraphs. Two results of this kind are given in the next 

propositions. 

1.1.7. PROPOSITION. If G contains no induced subgraph homomorphic to K213 

or to the graph in Figure 1.5, then G is interval monotone. 

PROOF. Let u and v be vertices of G for which the interval I(u,v) is not 

convex. Choose x and yin I(u,v) with I(x,y) { I(u,v), and such that d(x,y) 

is as small as possible. Note that d(x,y) ~ 2, and that x # u # y # v # x. 

Since d(x,y) is as small as possible, there exists a shortest (x,y)­

path P = x + p + ... +yin G, which has only the vertices x and yin 

common with I(u,v). 

Let q be a neighbour of x in I(x,u), and let Q = q + ... + y be a 

path from q toy in the subgraph of G induced by I(q,u) u I(u,y) (see 

Figure 1.6; note that, if we require Q to be a shortest (q,y)-path in this 

subgraph, then u does not necessarily lie on Q). Similarly, let r be a 

neighbour of x in I(x,v), and let R r + + y be a path from r toy in 

the subgraph of G induced by I(r,v) u I(v,y). 

V 

p 

~ 
_q _/ 
····.... . ... ·· 

FIGURE 1.6. 



Since pis not in I(u,v), the vertex pis adjacent to at most one of 

the two vertices q and r. 

Let H be the subgraph of G induced by the vertices of P, Q and R. In 

H we contract the edges in the subgraph H' of H induced by the set 

V(H) \ {x,p,q,r}, thus getting a graph H with vertices x, p, q, rands, 

wheres is the homomorphic image of H'. In H the vertex sis adjacent to 

p, q and r, but not to x. Hence it follows from the choice of x, p, q and 

r that His K213 , or the graph in Figure 1.5. D 

1.1.8. PROPOSITION. If G contains no subgraph homeomorphic to K213 , then 

G is interval monotone. 

PROOF. Let the vertices u, v, x and y and the paths P, Q and R be as in 

the proof of the previous proposition. 

If there existed a vertex win I(u,x) n I(y,v), then by Proposition 

1.1.2 (v) we would have x inI(w,v) s I(y,v), and hence 

I(x,y) s I(y,v) S I(u,v). 

This contradicts the choice of x and y. So 

I (u,x) n I (y,v) ¢. 

Similarly we have 

I (u,y) n I (x,v) ¢. 

It follows that 

[I(u,x) u I(u,y)] n [I(v,x) u I(v,y)] {x,y}, 

17 

so that the paths Q and R have only the vertex yin common. This implies 

that P, Q and R form a subgraph of G homeomorphic to K213 , which completes 

the proof. D 

Although the graph in Figure 1.5 contains K213 as a subgraph, it does 

not contain an induced subgraph homeomorphic to K213 . Note that the 
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converse of this last proposition is not true. For example, Q4 is interval 

monotone, but contains many induced subgraphs homeomorphic to K213 

A consequence of Proposition 1.1.8 is that outerplanar graphs are 

interval monotone.· 

1.2. INTERVAL-REGULAR GRAPHS 

In this monograph we discuss several classes of graphs of which Qn is 

a member. One of these classes is that.of interval-regular graphs, which 

can be considered as a broad generalization of the hypercubes. First we 

introduce some terminology that is useful in studying these graphs. 

Let G be a graph, and let u and v be vertices of G. For 

i O, ••• ,d(u,v), we define 

N. (u,v) := {w e: I (u,v) 
J. 

d(u,w) il. 

The set Ni (u,v) is called the i-th level in the interval I(u,v). It follows 

immediately from the definition of I(u,v) that 

N1. (u,v) = Nd( ) . (v,u). u,v -J. 

Note that any edge in the subgraph of G induced by the interval I(u,v) 

joins either two vertices in consecutive levels in the interval or two 

vertices within the same level. See Figure 1.8 for an example of how levels 

in an interval are indicated in a figure. 

For i ~ 0, we define 

Ni (u) := {w e: V I d(u,w) i}. 

The set Ni (u) is called the i-th level of u in G. For i = 1, we write N(u) 

instead of N1 (u). Note that N(u) is the set of neighbours of u. 

1.2.1. DEFINITION. A connected graph G, with interval function I and 

distance function d, is interval-regular if 

II(u,v) n N(u) I d(u,v) or II(u,v) n N(v) I d(u,v), 



for any two vertices u and v of G. 

From the definition of Qn it follows easily that Qn is interval­

regular. Note that an interval-regular graph need not be regular. For 

example, the graphs in Figure 1.7 are interval-regular but not regular. A 

connected regular graph is generally not interval-regular. 

FIGURE 1. 7. 

The next proposition provides a useful tool for studying interval­

regular graphs. 

1.2.2. PROPOSITION. Let G be an interval-regular graph with interval 

function I. Then 

!I(u,v) n N(u)! d(u,v), 

for any two vertices u and v of G. 

PROOF. The proof is by induction on d(u,v). 

If d(u,v) s 2, the assertion is true by definition. So let 

n d(u,v) ~ 3, and assume that 

!I(u,v) n N(u) I n. 

We have to prove that !I(u,v) n N(v) I n. 

19 
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Let i be an integer such that O < i < d(u,v), and choose x in Ni (u,v). 

Then by the induction hypothesis we have 

lr(u,x) n N(x) I i, 

and 

lr(x,v) n N(x) I n-i. 

d(u,v)=n 

j 
u 

FIGURE 1.8. 

i+l 
- Ni+l (u,v) 

- N. (u,v) 
1. 

Hence, counting the number of edges between Ni-l (u,v) and Ni (u,v) 

twice, we get 

(n-i+l) IN. 1 (u,v) I 
1.-

for i 1, ... ,n-1. 

Since IN0 (u,v) \ = 1, it follows by induction on i that 

\N. (u,v) \ = (~} 
1. 1. 

for i 0,1, ... ,n-1, 

and thus n lr(u,v) n N(v) \. D 

We now show the connection between interval-regular graphs and hyper­

cubes. Note that in Qn with its vector representation the set Fi of edges 

joining vertices that differ in their i-th coordinate form a matching as 
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well as a cutset. This matching matches two (n-1)-cubes in Q in such a way 
n 

that adjacent vertices in the one (n-1)-cube are matched to adjacent 

vertices in the other. By the "set of edges between levels in an interval" 

we mean the set of edges joining vertices in consecutive levels in the 

interval. 

1.2.3. THEOREM. Let G be a connected graph with interval function I. Then 

G is interval-regular if and only if, for any two vertices u and v of G, 

the subgraph induced by the set of edges between levels in the interval 

I(u,v) is a hypercube of dimension d(u,v). 

PROOF. If the edges between levels in an interval I(u,v) induce a hyper­

cube of dimension d(u,v), then 

IN(u) n I(u,v) I d(u,v) II(u,v) n N(v) I, 

and so G is interval-regular. 

Conversely, let G be interval-regular. In the proof of Proposition 

1.2.2, we showed that, for any two vertices u and v of G, 

for i 0,1, ... ,d(u,v), 

so that I I (u,v) I = 2d(u,v). 

The proof is by induction on d(u,v). For d(u,v) ~ 2 the assertion is 

true by definition. 

Let n = d(u,v) ~ 3, and let x be a neighbour of u in I(u,v), so that 

d(x,v) = n-1. Then we have 

n-1. 

Hence there is exactly one vertex yin Nn-l (u,v) \ I(x,v). 

If there were a vertex z in I(u,y) n I(x,v), then, by Proposition 1.1.2 

(v) and (iii), we would have yin I(z,v) s I(x,v). This contradicts the fact 

that y is not in I(x,v), and so we have 

I(u,y) n I(x,v) 0. 
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Since d(u,y) d(x,v) n-1 d(u,v)-1, it follows that 

lrcu,y> I + lrcx,v> I lrcu,v> I, 

and so we have 

I(u,v) I (u,y) u I (x,v). 

Let H' be the subgraph of G induced by the set of edges between levels 

in I(u,y), and let H be the subgraph of G induced by the set of edges 

between levels in I(x,v). Then by the induction hypothesis, both Hand H' 

are (n-1)-cubes. Let F be the set of edges between Hand H' joining 

vertices in consecutive levels in I(u,v). Then E(H) u E(H') u Fis the set 

of edges between levels in I(u,v). 

First we prove that Fis a matching between Hand H'. Let i be a 

positive integer with i ~ n, and let w be a vertex in Ni-l (x,v) c Ni (u,v) 

(see Figure 1.9). 

V 

r Nn_2 (x,v) - ~ y 

n-i 

j 
Ni-l (x,v) - - Ni (u,v) 

r l Ni_2 (x,v) - - Ni-l (u,v) 

i-1 

l 
i - Ni_2 (u,v) 

l 
u 

FIGURE 1.9. 
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Since y is not in I(x,v), it follows that w cannot be adjacent to a vertex 

in Ni+l (u,y) c Ni+l (u,v). Since d(x,w) = i-1 = d(u,w)-1, we have 

i-2 IN. 1 (u,w)l-1. 
1.-

This implies that w has exactly one neighbour in Ni-l (u,w) \ I(x,v), and so 

w is incident with exactly one edge of F. Similarly any vertex of H' is 

incident with exactly one edge of F, and so Fis a matching between Hand 

H'. 

Finally we prove that F matches Hand H' in the appropriate way. Let 

wz be an edge of H with win Ni-l (x,v) and z in Ni_ 2 (x,v), and let z' be 

the neighbour of z in H' with zz' in F. Then z' lies in Ni_2 (u,y) c 

c Ni_2 (u,v) (see Figure 1.9), and so 

d(w,z') 2. 

Since G is interval-regular, it follows that wand z' have exactly one 

common neighbour w' distinct from z. Note that w' lies in Ni-l (u,v). Since 

z' is a vertex of H' and Fis a matching, it follows that w' is also a 

vertex of H', so that ww' is the edge of F incident with w. This implies 

that adjacent vertices of Hare matched by F to adjacent vertices of H'. 

By the observation concerning Qn preceding this theorem, the proof is 

complete. D 

The idea of studying interval-regular graphs stems from a paper by 

FOLDES [Fl], and the following two corollaries of Theorem 1.2.3 are due 

essentially to him. In [Fl] he only considered the property 

I I (u,v) n N(u) I d(u,v) for all u,v Ev, 

which is equivalent to the notion of interval-regularity, as we have 

proved in Proposition 1.2.2. 

1.2.4. COROLLARY. Let G be a connected graph. Then the following 

assertions are equivalent: 

(i) 

(ii) 

G is interval-regular; 

IN. (u,v) I = (d(~,v)), for u,v E V and i 
1. 1. 

0, ... ,d(u,v); 
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(iii) there are exactly d(u,v)! shortest (u,v)-paths, for u,v Ev. 

PROOF. It follows directly from Theorem 1.2.3 that (i) and (ii) are 

equivalent, and that (i) implies (iii). The proof that (iii) implies (i) 

is easily done by induction on d(u,v) and is left to the reader. D 

1.2.5. COROLLARY. Let G be a connected graph. Then G is a hypercube if 

and only if G is bipartite and interval-regular. 

PROOF. A hypercube is bipartite and interval-regular. 

Conversely, let G be bipartite and interval-regular. First we prove 

that G is regular. Let u and v be two adjacent vertices in G. Since G is 

triangle-free, we have 

N(u) n N(v) 0. 

Let w be a neighbour of u distinct from v. Then it follows that d(v,w) 2, 

and so, by the interval-regularity of G, w is adjacent to exactly one 

neighbour of v distinct from u. Similarly any neighbour z of v distinct 

from u is adjacent to exactly one vertex in N(u) \ {v}. This implies that 

there exists a matching between N(u) and N(v), so that d(u) = d(v). Since 

G is connected, it follows that G is regular. 

Let u and v be vertices of G with d(u,v) = diarn(G). Since G is 

bipartite, we have N(u) c I(u,v), and it follows from Theorem 1.2.3 that 

the edges between levels in I(u,v) induce a hypercube of dimension 

IN(u) I = d(G). It follows from the regularity of G that G is this 

hypercube. D 

In Chapter 5 we discuss two classes of interval-regular graphs, in 

which each interval induces a bipartite subgraph. Here we give another 

result and an example, involving the product of two graphs. 

1.2.6. PROPOSITION. If G and Hare interval-regular graphs, then the 

product graph G x His interval-regular. 

PROOF. Let (u,v) and (u',v') be vertices of G x H, where u and u' are 

vertices of G, and v and v' are vertices of H. Then 
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where dGXH' dG and dH are the respective distance functions of G x H, G and 

H. It is easily verified by induction on the distance between (u,v) and 

(u',v') that 

IGXH ( (u,v), (u' ,v')) 

where the right-hand side of the equality is the Cartesian product of the 

sets IG(u,u') and IH(v,v'). From the definition of G x Hit follows that 

JrGXH((u,v),(u',v')) n N((u,v))j 

and so G x His interval-regular. D 

Let n and m be integers with n,m ~ 2. Since Kl,l,m is interval­

regular, as the reader can easily check, it follows from Proposition 1.2.6 

that the graph G = Kl,l,m x Kn_2 is interval-regular. Note that G is non­

bipartite and has diameter n (see Figure 1.10). 

FIGURE 1.10. 

The graph G can serve as a counterexample to many conjectures 

concerning interval-regular graphs. For example, G contains a subgraph H 
n-1 

isomorphic to Qn-l" This subgraph H has 2 vertices and has the property 
n-1 

that G-H consists of m disjoint (n-2)-cubes. Form> 2 _ it follows that 
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G is not a Hamiltonian graph. 

We conclude this section by stating an unsolved problem on interval­

regular graphs. The following conjecture is suggested by the fact that all 

interval-regular graphs known up to now are interval monotone. If the 

conjecture were true, it would make the handling of interval-regular 

graphs much easier. 

1.2.7. CONJECTURE. An interval-regular graph is interval monotone. 

1.3. THE DIAGRAPH OF A FINITE LATTICE 

For definitions and properties of partially ordered sets and lattices, 

the reader is referred to Chapter O and to BIRKHOFF [Bi]. 

Let P (V,~) be a finite partially ordered set (poset, for short). 

The diagraph G(P) of Pis the graph with Vas vertex-set, in which two 

vertices are joined by an edge whenever one of the two vertices covers 

the other in the poset. So the diagraph of a poset is the unoriented Hasse 

diagram of the poset. Various other terms are used in the literature - for 

instance, covering graph in [DR], and undirected Hasse diagram in [Fl]. 

Note that Qn is the diagraph of the Boolean lattice on 2n elements. 

Figure 1.11 gives the (oriented) Hasse diagrams of the two posets with the 

circuit of length 4 as diagraph, and Figure 1.12 those with the circuit of 

length 5 as diagraph. 

FIGURE 1.11. FIGURE 1.12. 

The characterization of those graphs that are diagraphs of some poset 

is still an open problem (cf. [DR]). A diagraph by definition must be 
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triangle-free, but this condition is not sufficient. The smallest triangle­

free graph that is not a diagraph is depicted in Figure 1.13 (it was 

mentioned to me by RIVAL [Ri]). 

FIGURE 1.13. 

A graded poset P 

such that 

(V,~) is a poset with height function h: V + lZ 

(H1) if u < v, then h(u) < h(v), 

(H2) if v covers u, then h(v) h(u)+1. 

The integer h(v) is called the height of v. 

1.3.1. PROPOSITION. A graph G is connected and bipartite if and only if G 

is the diagraph of a finite graded poset with universal lower bound. 

PROOF. If G is the diagraph of a finite graded poset with universal lower 

bound x, then G admits a bipartition, where one set consists of those 

vertices with even height and the other set consists of those vertices 
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with odd height. Furthermore, there exists a path from x to any other 

vertex of G, and so G is connected. 

Conversely, let G be bipartite and connected, and let u be a vertex 

of G. For i = 0,1, ... , we direct the edges between Ni (u) and Ni+l (u) from 

Ni+l (u) to Ni(u). Defining 

from w to v, gives a poset 

is graded with the function 

d(u,v) 

v su w whenever there exists a directed path 

(V, su)' of which G is the diagraph. This poset 

h: V ➔ ]N u {o} defined by 
u 

for VE V; 

- that is, 

have 

h (v) 
u 

i, for any vertex v in Ni (u). Since G is connected, we 

U S V 
u 

for v EV, 

and sou is the universal lower bound. D 

The ordering su on V constructed in the above proof is called the 

canonical ordering of G with respect to u. In Figure 1.14 we give an 

example of a.graph and one of its canonical orderings. 

u 
G 

FIGURE 1.14. 

In the rest of this section we use the interval function to 

characterize diagraphs of classes of finite lattices. The interval function 

seems to be useful only when we consider lattices which are graded. 



1.3.2. DEFINITION. Let G be a connected graph. Two vertices u and v of G 

are diametrical if d(u,v) = diam(G). 

If u and v are diametrical vertices in a graph, then u is said to be 

a diametrical vertex of v and vice versa. 

1.3.3. PROPOSITION. Let G be a connected graph with interval function I. 

Then G is the diagraph of a finite graded lattice if and only if G is 

bipartite and contains two diametrical vertices O and 1 such that 

(i) I(0,1) = V, 

(ii) for any u,v EV there exists a vertex z 

I(O,u) n I(O,v) = I(O,z). 

z(u,v) of G such that 
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PROOF. Let P = (V,$) be a finite graded lattice with Oas universal lower 

bound, 1 as universal upper bound, and Gas its diagraph. Since Pis 

graded, it follows that V I(0,1). Furthermore, the interval I(O,w) is 

the set of elements u in V such that u $ w. So for any u and v, we have 

I(O,u) n I(O,v) I(O,z), 

where z is the greatest lower bound of u and v. 

Conversely, let G be a bipartite graph satisfying (i) and (ii). 

Define 

U $Q V if U E I(O,v). 

Note that this ordering is the canonical ordering of G with respect to 0. 

Hence G is the diagraph of a graded poset P with height function h0 

defined by 

d(O,u) diam(G) - d(u,1). 

In this poset, 0 is the universal lower bound and 1 is the universal 

upper bound. Furthermore, it follows from Theorem 1.1.4 that the greatest 

lower bound of u and v in Pis the unique vertex z in G with 
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I(0,u) n I(0,v) = I(0,z). Since Vis finite, it follows that Pis a lattice 

graded with height function h0 . D 

In [Al] ALVAREZ has given characterizations of the diagraphs of 

finite modular and distributive lattices. In these characterizations the 

following conditions occur. 

(a) 

<Sl 

G contains two diametrical vertices x0 and x 1 such that if two 

distinct vertices u and v in N. (x.) have a common neighbour in 
i J 

N. 1 (x.), then u and v have a unique common neighbour in 
i- J 

Ni+l (xj), for j = 0,1, and i = 1, ... ,diam(G). 

If the graph in Figure 1.15 is a subgraph of G, then there 

exists a vertex u8 in G such that the graph in Figure 1.16 is 

a subgraph of G. 

FIGURE 1.15. FIGURE 1.16. 

In Figure 1.17 we exhibit a graph that satisfies (a), but not (S). 

Any even circuit of length at least six satisfies (S), but not (a). 

1.3.4. THEOREM. (ALVAREZ, 1965). Let G be a connected graph. Then G is 

the diagraph of a finite modular lattice if and only if G is bipartite and 

satisfies conditions (a) and (S). 

1.3.5. THEOREM. (ALVAREZ, 1965). Let G be a connected graph. Then G is 

the diagraph of a finite distributive lattice if and only if G is 



bipartite, does not contain K213 as a subgraph, and satisfies conditions 

(a) and (6). 

XO 

FIGURE 1.17. 

In the next two theorems we replace condition (6) by the following 

weaker condition (y). 

If the graph in Figure 1.15 is a subgraph of G and if u 1, u2 , 

u3 and u4 are in four consecutive levels of I(x0 ,x1), then the 

graph in Figure 1.16 is a subgraph of G. 
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It is easy to prove that (a) and (y) imply (6) for connected bipartite 

graphs. The advantage gained is not so much that the theorems are slightly 

stronger, but that we can use the interval function, by which we can 

simplify the proofs. 

1.3.6. THEOREM. Let G be a connected graph. Then G is the diagraph of a 

finite modular lattice if and only if G is bipartite and satisfies 

conditions (a) and (y). 

PROOF. Let G be a diagraph of a finite modular lattice with x0 as 

universal lower bound and x 1 as universal upper bound. Since a modular 

lattice is graded, it follows from Proposition 1.3.1 that G is 

bipartite. Moreover, condition (a) is the graph-theoretic 
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translation of the two covering conditions characterizing finite modular 

lattices (see Section 0.2). Condition (y) follows from the modularity of 

the lattice and from condition (a). 

Conversely, let G be a connected bipartite graph satisfying conditions 

(a) and (y). Denote x0 by O and x1 by 1. 

First let us prove that V = I(0,1). Assume the contrary. A vertex v in 

Ni(O) \ I(0,1) cannot be adjacent to a vertex win Ni+l (0,1), since 

otherwise we would have v inI(O,w) s I(0,1). Since G is bipartite, v cannot 

be adjacent to a vertex in Ni(O). Henc~ if vis joined to a vertex win 

I(0,1), then w lies in Ni-l (0,1). 

Choose a vertex v in Ni(O) \ I(0,1) joined to a vertex win Ni-l (0,1), 

such that i is as large as possible. Note that the existence of v and w is 

guaranteed by the connectedness of G. Let u be a neighbour of win I(w,1). 

Then u lies in Ni (0,1). It follows from condition (a) that there is a 

unique vertex x in Ni+l (0) that is adjacent to both u and v. Since u lies 

in Ni(0,1) and x lies in Ni+l (0), it.follows from the maximality of i that 

x lies in Ni+l (0,1) = I(0,1). Hence v lies in I(w,x) = I(0,1), which gives 

the required contradiction. So we have proved that 

V I(0,1). 

Let $0 be the canonical ordering of G with respect to O. Then (V,$0) 

is a poset with Oas universal lower bound and 1 as universal upper bound. 

From (a) we deduce the two covering conditions that characterize 

modularity in finite lattices. The proof that (V,$0) is a lattice consists 

of two steps and involves Proposition 1.3.3. 

STEP 1. We shall prove that, for any neighbour u of 0, the subgraph Hof 

G induced by the interval I(u,1) satisfies conditions (a) and (y). That H 

satisfies (y) is easily verified and is left to the reader. 

For any vertex v in I(u,1) we have I(v,1) = I(u,1). Hence, if two 

distinct vertices wand w' in Ni(u,1) have a common neighbour v in 

Ni-l (u,1), then the unique common neighbour of wand w' in Ni+2 (0) 

= Ni+2 (0,1) also lies in I(u,1). 

Assume that H does not satisfy condition (a). Let d and e be two 

distinct vertices in Ni (u,1) with a common neighbour fin Ni+l (u,1), and 

such that their (unique) common neighbour b 1 in Ni (0,1) is not a vertex 



of H. We may choose d and e such that i is as small as possible. The 

situation is now as in Figure 1.18, where the shortest paths P and Q 

possibly have internal vertices in common. Let P be the path c 1 ➔ c2 ➔ 

••• ➔ ci = u. Note that i ~ 2. 

FIGURE 1.18. 

- Ni+l (u,1) 

- N. (u,1) 
1 

- Ni-l (u,l) 

Since G satisfies condition (a), the vertices a 1 and b 1 must have a 

common neighbour a 2 in Ni-l (0,1). Note that a2 cannot lie in I(u,1), since 

b 1 is not in I(u,1). Similarly b 1 and c 1 have a common neighbour b2 in 

N1_ 1 (0,1) \ I(u,1). 

If a 2 = b2 , we get the situation in Figure 1.19. From condition (y) 
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we deduce the existence of a vertex c 0 , which is adjacent to a 1, c1 and f. 

Hence a 1 and c 1 have a common neighbour c0 in Ni(u,1) and a common neighbour 

b2 in N1 _1 (0,1) \ I(u,1). This contradicts the minimality of i. The 

situation is therefore as depicted in Figure 1.20, where the paths Rand R' 

possibly have internal vertices in common. 

Let a 3 be the common neighbour of a 2 and b2 in Ni_2 (0,1), and let b3 

be the common neighbour of b2 and c 2 in Ni_2 (0,1). Because of the minimality 

of i, it follows that a 3 and b3 are not in I(u,1). If a 3 =b3 , then condition 

(y) implies the existence of a vertex d 1 joined to a 2 , c2 and d. So d1 
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must be in I(u,1). Again this contradicts the minimality of i. Hence 

a3 ,f b3. 

1 

0 

R\_ ~ ·. cl u 

0 

FIGURE 1.19. 

1 

0 

0 

FIGURE 1. 2 0. 

Repeating this procedure, we find vertices ai-l' ai, bi-land bi as in 

Figure 1.21, where ai and bi are in N(O). Condition (y) implies the 

existence of a vertex di-l adjacent to ai, ci and ci_2 , so that di-l lies 

in I(u,ci_2) ~ I(u,1). Since i ~ 2, this again contradicts the minimality 

of i. (See next page for Figure 1. 21.) 

We conclude that H also satisfies condition (a). By using the same 

argument, we can also deduce that, for any two vertices v and won the 

same shortest (0,1)-path, the subgraph of G induced by the interval 

I(v,w) satisfies conditions (a) and (y). 

STEP 2. We shall show that, for any two vertices u and v of G, there 

exists a vertex z such that 

I(O,u) n I(O,v) I(O,z). 

We prove this assertion by induction on d(0,1). Let u and v be two 

vertices of G. If I(O,u) n I(O,v) = {o}, we take z = 0. If u lies in 



I(O,v), we take z u, and if v lies in I(O,u), we take z 

0 

FIGURE 1.21. 

v. 

- N, (u,1) 
l. 

In the remaining case let x be a neighbour of O in I(O,u) n I(O,v). 

Note that u and v are in I(x,1). By the induction hypothesis, it follows 

from the previous step of the proof that (I(x,1),s0) is a lattice, where 

s0 is the restriction of the ordering s 0 on the interval I(x,1). Hence 

there exists a vertex zx in I(x,1) such that 

I (x,u) n I (x,v) 

If xis the only neighbour of O in I(O,u) n I(O,v), then we have 

I(O,u) n I(O,v) 

and we are done. 

{O} u I(x,z) 
X 

Otherwise, let y be a neighbour of O in I(O,u) n I(O,v) distinct 
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from x. Using a similar argument as above, we deduce that there exists a 

vertex z in I(y,1) such that 
y 

I(y,u) n I(y,v) = I(y,z ). 
y 

Let p be the common neighbour of x and yin N2 (0,1). It follows from 

the previous step of the proof that pis in I(O,u) as well as in I(O,v). 

By the induction hypothesis we have 

I(p,u) n I(p,v) = I(p,z) c i(O,u) n I(O,v), 
p 

for some vertex z of G. Since plies in I(x,1), it follows from the fact 
p 

that (I(x,1) ,$0) is a lattice that zp = zx (see Figure 1.22). Similarly, 

we have z z. 
p y 

I(x,l) I(x,1) 

0 

FIGURE 1.22. 

We have therefore proved that there is a vertex z in G such that, for 

any neighbour x of O in I(O,u) n I(O,v), 

I(x,u) n I(x,v) I(x,z). 

It follows from the definition of an interval that, for this vertex z, we 

have 



I(0,u) n I(0,v) {o} u u I(x,u) n I(x,v) 
xEN1 (0,u)nN1 (0,v) 

{o} u u I(x,z) 
XENl (0,u)nNl (0,v) 

I(0,z). 

This establishes Step 2. Hence it follows from Proposition 1.3.3 that 

(v,~0 ) is a lattice, by which the proof is complete. D 

The next theorem is the analogue of Theorem 1.3.5. Its proof follows 

easily from Theorem 1.3.6. 
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1.3.7. THEOREM. Let G be a connected graph. Then G is the diagraph of a 

finite distributive lattice if and only if G is bipartite, does not contain 

K213 as a subgraph,and satisfies conditions (a) and (y). 

1.3.8. DEFINITION. A connected graph G is diametrical if each vertex of 

G has a unique diametrical vertex. 

A diametrical graph need not be regular, or even bipartite, as the 

graphs in Figure 1.23 show. 

FIGURE 1.23. 
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We conclude this chapter by stating a theorem which we can prove 

easily by using two results from Chapter 3 (Theorem 3.3.3 and Corollary 

3.4.3). The proof of the theorem is therefore postponed to the appropriate 

place in Chapter 3. 

1.3.9. THEOREM. Let G be a connected graph with diam(G) = n. Then G is 

then-cube if and only if G is diametrical and bipartite, does not contain 

K2 , 3 as a subgraph, and satisfies conditions (a) and (y). 
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CHAPTER 2 

(0 ,.A)-GRAPHS 

In this chapter we generalize the property of a hypercube that any two 

vertices have exactly two common neighbours or none at all. This leads to 

the more general class of (0,A)-graphs. These graphs can be considered as 

a generalization of symmetric block designs. It turns out that the 

extremal (0,A)-graphs are the hypercubes, the Clebsch graph, and the newly­

constructed Hadamard graphs. 

2.1. (0,A)-GRAPHS 

In then-cube Qn any two distinct vertices have exactly two common 

neighbours or none at all. 

Another class of graphs having this property (with one exception) 

consists of the halfcubes. The halfcube ½Q2n is constructed from Q2n, as 

follows: give Q2n the subset representation; take the subgraph of Q2n 

induced by {Ac {1,2, ... ,2n}J IAJ ~ n}, and identify complementary vertices 

in then-th level of¢. 

The halfcube ½Q2 is the complete graph K2 , and ½Q4 is the complete 

bipartite graph K414 • With the exception of ½Q4 , the halfcubes have the 

above property that any two distinct vertices have exactly two common 
2n-1 

neighbours or none at all. For n ~ 2, the halfcube ½Q2n has 2 vertices 
2n-1 

and n2 edges. It has degree 2n and diameter n and is distance-

transitive. For any two vertices u and v with d(u,v) = n, the interval 

I(u,v) induces a hypercube of dimension d(u,v). For any two diametrical 

vertices u and u, there are exactly (2n)! shortest (u,u)-paths (cf. 

Corollary 1.2.4). Furthermore, ½Q2n has Q2n_2 as an induced subgraph and 

Q2n-l as a spanning subgraph. 

Let us study a more general class, to which both of these graphs 
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belong. 

2.1.1. DEFINITION. Let A be an integer with A~ 2. A connected graph G is 

a (0,A)-graph if any two distinct vertices in G have exactly A common 

neighbours or none at all. 

Examples of (0,A)-graphs are the complete graphs K1 , K2 and KA+2 , 

the complete bipartite graph KA,A' and the graph KA+ 2 ,A+ 2 minus a perfect 

matching. Another example is depicted in Figure 2.1. We give more examples 

later in this section and in the last two sections of this Chapter. 

FIGURE 2.1. 

In the above definition we exclude the "degenerate" case A= 1, for 

in this case, the corresponding condition is that G does not contain a 

circuit of length four. If A~ 2, then much more can be proved. 

2.1.2. PROPOSITION. Let G be a (0,A)-graph. Then G is regular. 

PROOF. Let u and v be two neighbours in G. Colour all neighbours of u 

blue, except v. Colour all neighbours of v red, except u. Note that the 

common neighbours of u and v are coloured red as well as blue. 

Choose an arbitrary blue vertex, w say. Then wand v have u as 

common neighbour. Sow is adjacent to exactly A-1 red vertices. Similarly 
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any red vertex is adjacent to exactly A-1 blue vertices. This implies that 

there are as many red vertices as blue vertices, and so d(u) = d(v). Since 

G is connected, it follows that G is regular. D 

We denote the degree of each vertex of G by d(G) (see Section 0.1). 

2.1.3. PROPOSITION. Let G be a (0,A)-graph with interval function I. Then 

!I(u,v) n N(u) I ~ d(u,v) + A-2, 

for any two vertices u and v of G with d(u,v) ~ 2. 

PROOF. The proof is by induction on d(u,v). 

If d(u,v) = 2, then 

I(u,v) n N(u) N(u) n N(v) # ¢. 

So !I(u,v) n N(u) I = A. 

Let d(u,v) ~ 3,and let w be a neighbour of u in I(u,v). Then 

d(w,v) = d(u,v) - 1, and so 

II(w,v) n N(w) I ~ d(u,v) + A-3. 

Colour the vertices of I(w,v) n N(w) red, and colour the vertices of 

I(u,v) n N(u) \ {w} blue. Any red vertex and u have was common neighbour, 

so red vertices are adjacent to exactly A-1 blue vertices. Any blue vertex 

and w have u as common neighbour, so blue vertices are joined to at most 

A-1 red vertices (and possibly to some neighbours of w outside I(u,v)). 

Hence there are at least as many blne vertices as red vertices, and so 

!I(t:,vl n N(u) I ~ 1 + !I(w,v) n N(w) I ~ d(u,v) + A-2. 

D 

2.1.4. PROPOSITION. Let G be a (0,A)-graph. If diam(G) ~ 4, then 

d(G) ~ diam(G) + 2A-4. 
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PROOF. Let u and v be two diametrical vertices of G, and let w be a 

vertex in the interval I(u,v) such that 

d(u,w) ~ 2, and d(w,v) ~ 2. 

Then, since I(u,w) n I(w,v) = {w}, it follows from Proposition 2.1.3 that 

d(G) jN(w) J ~ I I (u,w) n N(w) I + I I (w,v) n N(w) I 

~ (d(u,w) + A-2) + (d(w,v) + A-2) d(u,v) + 2A-4 

diam(G) + 2A-4. 

In the next sections we discuss ( 0, A) -graphs G with d( G) = 

□ 

diam(G) + 2A-4. The condition "diam(G) ~ 4" in the last proposition is 

necessary as we shall see below. First we deduce some bounds for the number 

of vertices of a (0,A)-graph. In the proof of the next theorem we use the 

"counting twice principle" (see Section 0.1). 

2.1.5. THEOREM. Let G be a (0,A)-graph of degreed. Then 

1 + d(~-1) s Jvl s 1 + d + (A-1)! (d-A)! 
(d-2)! 

PROOF. Let u be a vertex of G. By definition JN1 (u) I= d. The degree of 

any vertex in the subgraph induced by N1 (u) is O or A. So any vertex in 

N1 (u) has d-1 or d~A-1 neighbours in N2 (u). Hence, by counting the edges 

between N1 (u) and N2 (u), we get 

-that is, 

( 1) 
d(d-1) 

s --A--



So 

l + d(d-1) 
-;\-

By counting the edges between Ni (u) and Ni-l (u), we get from 

Proposition 2.1.3 

(d-A-i+3) IN. 1 (u) I ~ (A+i-2) IN. (u) I, for i ~ 3. 
i- i 

It follows from (1) and the last inequality that, if i ~ 3, then 

IN. (u) I 
i 

'., d(d-1) 
-;\-

(lt-1) ! 
(d-;\+1) ... (d-2) 

d-.\-i+3 
lt+i-2 

Since Iv\= E IN. (u) I, the right-hand inequality of the theorem follows 
i 

after some computation. 0 

2.1.6. COROLLARY. Let G be a (0,2)-graph of degreed. Then 

PROOF. Put A 2 in Theorem 2.1.5. D 

The next two corollaries can be deduced from the proof of the last 

theorem. But they can also be proved directly, as the reader can easily 

check. 

2.1.7. COROLLARY. Let G be a (O,;\)-graph. Then d(G) 

G is K;i._,;i._· 

2.1.8. COROLLARY. Let G be a (O,;\)-graph. Then d(G) 

G is K;\+2 ,.\+2 minus a perfect matching, or K;\+2 . 

;\ if and only if 

;\+1 if and only if 
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For bipartite graphs the lower bound can be sharpened as follows; the 

proof is left to the reader. 

2.1.9. PROPOSITION. Let G be a bipartite (0,A)-graph of degreed. Then 

In the next section, we study the (0,A)-graphs that attain the upper 

bound. Before doing this, let us consider (0,A)-graphs with the minimum 

number of vertices. 

For the definition and the properties of block designs used in the 

sequel, the reader is referred to Section 0.3 and to [CL] and [R1]. 

Let A~ 2. Let G be a graph in which any two distinct vertices have 

exactly A common neighbours. Then it follows from the definition of a 

symmetric block design that the adjacency matrix of G is the incidence 

matrix of a symmetric block design with parameters Clvi,d(G) ,A). 

Conversely, let D be a symmetric block design with parameters (v,d,A) and 

with symmetric incidence matrix with zero diagonal. This incidence matrix 

is the adjacency matrix of a graph, in which any two distinct vertices 

have exactly A common neighbours. This fact also follows immediately from 

the definitions, as the reader can easily check. 

2.1.10. PROPOSITION. Let G be a (0,A)-graph of degreed. Then 

lvl 1 + d(~-1) 

if and only if G corresponds to a symmetric block design with parameters 

<lvl,d,A), which has a symmetric incidence matrix with zero diagonal. 

I I d(d-1) . 
PROOF. If G is a (0,A)-graph of degreed with V = 1 + --A--, then it 

follows from the proof of Theorem 2.1.5 that any two distinct vertices in 

G have exactly A common neighbours. 

The assertion now follows from the remarks preceding this proposition. 

REMARK. Graphs satisfying the conditions in the above proposition are 

strongly regular graphs with parameters <lvl,d,A,A) (cf. [CL] and [Se]). 

□ 



The incidence graph G(D) of a block design D, with point-set x and 

set of blocks B, is defined as follows: Xu Bis the vertex-set of G(D), 

and there is an edge between pin X and Bin B whenever pis an element 

of B. 

2.1.11. PROPOSITION. Let G be a regular graph of degreed. Then the 

following assertions are equivalent: 

(i) G is a bipartite (0,A)-graph with diam(G) ~ 3; 

(ii) G is a bipartite (0,A)-graph with !vi= 2 + 2 d(~-l) 
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(iii) G is the incidence graph of a symmetric block design with parameters 

(½!vi ,d,A). 

PROOF. The proof is straightforward and is left to the reader. D 

Let G be a (0,A)-graph of degreed~ A with 

!vi 1 + d(~-1) 

If A= 2, then for any vertex u of G, the set N(u) induces a subgraph 

of G consisting of the disjoint union of circuits, none of which is a 

circuit of length 4. 

Since the adjacencymatrix A of G is a symmetric (0,1)-matrix, it 

follows that 

(d-A)I + AJ, 

where I is the identity matrix of order !vi and J is the all-one matrix of 

order !vi. Using eigenvalue techniques, RYSER [R2] has given a nice one­

page proof that the above matrix equation implies the existence of a 

positive integer k such that 

Hence for given A, there exist only finitelymany (0,A)-graphs with a 

minimum number of vertices. 

For A= 2, the only possible values of dare 3 and 6. A symmetric 
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block design with A= 2 is called a biplane (see [Cl]). There are finitely 

many biplanes known. These are described in [As], [AMS] and [Cl]. There 

exists exactly one biplane when d equals 3, 4 or 5. There exist exactly 

three biplanes when d equals 6, and exactly four biplanes when d equals 

9. There are four biplanes known when d = 11, and two when d = 13. For 

other values of d with d ~ 15, there are no biplanes. 

The biplane with d = 3 has Q3 as incidence graph, and one of the three 

biplanes with d = 6 has ~Q6 as incidence graph. It is easy to see that the 

biplane with d = 3 corresponds to the (0,2)-graph on four vertices, namely 

K4 • The biplane with ~Q6 as incidence graph gives rise to exactly two non­

isomorphic (0,2)-graphs on 16 vertices. One of these is the product graph 

K4 x K4 , and the other is the Shrikhande graph (see [Sh] or [Bl]). This 

latter graph is depicted in Figure 2.2, where vertices with the same label 

should be identified. In this graph for each vertex u, the subgraph 

induced by N(u) is a circuit of length 6. 

Other biplanes do not have a symmetric incidence matrix with zero 

diagonal. 

2 3 4 

FIGURE 2.2. 

We saw in Proposition 2.1.4 that if G is a (0,A)-graph with 

diam(G) ~ 4, then 

d(G) ~ diam(G) + 2A-4. 



We now give examples to show that this need not be satisfied for (O,A)­

graphs G with diam(G) s 3. 

2.1.12. PROPOSITION. Let G be a (0,A)-graph with diam(G) 

K2 , or KA+2• 

1. Then G is 

Clearly G does not satisfy inequality(*) when G is K2 (A~ 3), or 

when G is KA+2 (A~ 5). 

2.1.13. PROPOSITION. Let G be a (0,A)-graph with diam(G) 

or if G is bipartite, then G is KA,A" 

2. Ifd(G) 

Clearly KA,A does not satisfy inequality(*) for A~ 3. 

2.1.14. THEOREM. Let G be a (O,A)-graph with diam(G) = 2. If 
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A< d(G) s 2A-1, then any two distinct vertices of G have exactly A common 

neighbours. 

PROOF. Let u be a vertex of G. Then 

Let W be the set of vertices distinct from u that have no common neighbour 

with u. Since each vertex in N2 (u) has common neighbours with u, we have 

W ~ N(u). 

Assume that W i 0, and let w be a vertex in W. Then 

Let v be a vertex in N2 (u), and let d d(G). Since 

IN(v) \ N(u) I IN(v) I - JN(v) n N(u) I 

d - A s A-1, 

it follows that v has no common neighbour with w. Hence 
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and so 

Furthermore, it follows that w lies in N(v). Since w is an arbitrary vertex 

of W, we have 

W s N(v) n N(u). 

u 

FIGURE 2.3. 

Since d > A, there exists a vertex x in N(u) \ N(v). Then xis not in 

W, so x has A common neighbours with u. This implies that 

N(x) n W N(x) n N(u) n W 

and so 

!wl ~ !N(u) \ (N(x) u {x}) I d-A-1. 

Counting the number of edges between N(u) and N2 (u) in two ways, we 

get 

(d-1) lwl + (d-\-1) (d-lwl l \IN2 (u) I 

AIN2 (u) \ N(v) I + A!N(v) \ N(u) 1-



From this we get 

lwl I I 1 _ (d-A) (d-A-1) 
N2 (u) \ N(v) + A 

> d _ (d-A) (d-A-1) > d _ A(A-1) 
- A --A-

d - A+ 1 ~ lwl + 2, 

which is a contradiction. So W = 0, and u has exactly A common neighbours 

with any other vertex of G. Since u is• an arbitrary vertex of G, the 

theorem follows. D 
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2.1.15. THEOREM. Let G be a (0,A)-graph with diam(G) 

then G is bipartite. 

3. If d(G) s 2A-1, 

PROOF. By Proposition 2.1.3,we have 

d(G) ~ diam(G) + A - 2 A + 1. 

Since diam(G) = 3, it follows that if G has odd circuits then a smallest 

odd circuit in G must be of length 3, 5 or 7. 

Let O and 1 be two diametrical vertices of G. 

First assume that there exists a vertex yin N(O) \ N2 (1). Then y lies 

in N3 (1), soy and 1 have no common neighbours (see Figure 2.4). For any 

vertex x in N2 (1) n N(O), we have 

jN(x) n N(l) I A. 

Hence 

jN(x) n N(y) I s d(G) - jN(x) n N(l) I s 2A - 1 - A A - ·1. 

This implies that x and y cannot have any common neighbour, which 

contradicts the fact that x and y both are neighbours of 0. So we have 

proved that 

(a) if u,v EV with d(u,v) 



so 

It follows from {a) that a smallest odd circuit in G cannot have 

length 7. 

y 0 

FIGURE 2.4. FIGURE 2.5. 

Let x be a neighbour of O. By {a) we have XinN2 {1), so x and 1 have 

exactly A common neighbours, and 

IN{x) n N{O) I $ d{G) - IN{x) n N{l) I d{G) - A:,; A - 1. 

Thus we have proved that 

{b) if u,v EV with d{u,v) = 3, then any neighbour of u has no 

common neighbours with u. 

Let x be a vertex in N2 {0) \ N{l) {see Figure 2.5). Then x and O have 

A common neighbours, so 

IN{x) n N{l) I :,; d{G) - IN{x) n N{O) I d{G) - A:,; A - 1. 

Hence x has no common neighbours with 1. Since xis not adjacent to 1, it 

follows that d{x,1) = 3. So we have proved that 

{c) if u,v EV with d{u,v) 
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Let x be a neighbour of O (see Figure 2.6). By (a), we have d(x,1) = 2, 

so x and 1 have exactly A common neighbours. Since d(G) ~ A+l, there exists 

a neighbour y of 1, which is not adjacent to x. By (b), a common neighbour 

of x and y has distance 2 from O and 1. But this contradicts (c). So 

d(x,y) = 3. Since G is connected, this implies that 

(d) any vertex of G has a diametrical vertex. 

Combining (b) and (d), we conclude that G is triangle-free. 

Finally, assume that G contains a circuit of length 5. By (d), we may 

assume that O is on a circuit of length 5, say O ➔ u 1 ➔ u2 ➔ u3 ➔ u4 ➔ 0. 

Then u1 and u4 are adjacent to 0. Furthermore, since G is triangle-free, 

it follows that u2 and u3 lie in N2 (0). Since u2 and u 3 are adjacent, it 

follows from (b) and (c) that u2 and u3 lie in N3 (1) (see Figure 2.7). 

FIGURE 2.6. FIGURE 2.7. 

By (a), we have 

We also have 



52 

So there exists a common neighbour u of u 1 and 1, which is not adjacent 

to u4 . As in the proof of (d), it follows that u and u4 are diametrical. 

As can be checked in Figure 2.7, we have d(u2 ,u) = 2 = d(u2 ,u4). This 

establishes a contradiction with (c). So G does not contain a circuit of 

length 5, which completes the proof. D 

We conclude this section by exhibiting an infinite sequence of (0,A)­

graphs with diameter 3, which do not satisfy inequality(*). 

Let n be a prime power. A finite projective plane of order n is a 

symmetric block design D with parameters (n 2 +n+1, n+l, 1), see [R1]. The 

complementary block design Dis a symmetric block design with parameters 

(n 2+n+1, n 2 , n 2 -n). The incidence graph G(D) of the block design Dis a 

(0,A)-graph with diameter 3, such that A= n 2 -n and d(G(D)) = n 2 • For 

n ~ 3, we have A< d(G(D)) < 2\-1. 

2.2. THE n-CUBE AS A (0,2)-GRAPH 

In Section 1.2 we characterized a hypercube as a bipartite interval­

regular graph; this was slightly stronger than the characterization of 

FOLDES [Fl]. We can now weaken the condition of interval-regularity and 

obtain an even stronger characterization. 

2.2.1. THEOREM. Let G be a bipartite (0,2)-graph with diam(G) 

let O and O be two diametrical vertices of G. If 

n, and 

lr(O,u) n N(u) I d(O,u), and lr(u,O) n N(u) I d(u,O) 

for any vertex u of G, then G is Qn. 

PROOF. Since G is bipartite, it follows that N(O) ~ I(O,O). Hence we have 

d(G) IN(O) I I I (0,5) n N(O) I diam(G) n. 

Furthermore, it follows for any vertex u of G that 

d(G) :?: lr(O,u) n N(u) I + lr(u,6) n N(u) I d(O,u) + d(u,O) 

:?: diam(G) d(G), 



and so 

N(u) (I(O,u) n N(u)) u (I(u,O) n N(u)). 

This implies that V = I(O,O). 

Counting the edges between N. 1 (0,0) and N. (0,0) in two ways, we get 
1.- l. 

ijN, (0,0) I 
l. 

for i 1, ... ,n. 

Since jN0 (0,0) J = 1, it follows by induction on i that 

jN, (0,6) j 
l. 

for i 0,1, ..• ,n. 

Let Gj be the subgraph of G induced by Ui=o Ni (0,0). By induction on 

j we prove that G. is isomorphic to the subgraph of Q induced by 
J n 

{A~ N(O) I jAj S j}, where any vertex u of Gj corresponds to the set 

I(O,u) n N(O). 

For j = 0 or 1 the assertion is clearly true, so let j > 1. By the 

induction hypothesis the vertices of N. 1 (0,0) are represented by the 
J-

(j-1)-subset.s of N1 (0). Let A and B represent two distinct vertices in 

N. 1 (0,5). It follows that if jA n Bj # j-2, then A and B have no common 
J-

neighbour in N. 2 (0,0). Furthermore, if jA n Bj = j-2, then A and B have 
J-

exactly one common neighbour (represented by An B) in N. 2 (0,0). In the 
J-

latter case the other common neighbour of A and B must lie in N.(0,0). 
J 
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The number of pairs of distinct vertices in N. 1 (0,5) having a common 
J-

neighbour in N. 2 (0,0) equals the number of pairs of edges between 
J-

N. 2 (0,0) and N. 1 (0,5) having a vertex in N. 2 (0,0) in common. This 
J- J- J-

equals 

The right-hand side of this equality equals the number of pairs of distinct 

vertices in N. 1 (0,0) having a common neighbour 
J-

in N.(0,0). Hence two 
J 

distinct vertices in N. 1 (0,0) have a 
J-

(unique) common neighbour in N.(0,0) 
J 

if and only if they have a (unique) common neighbour in N. 2 (0,6). This 
J-

implies that two distinct vertices in N.(0,0) have at most one common 
J 

neighbour in N. 1 (0,0). 
J-
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Finally we prove that the vertices in N.(0,0) can be represented 
J 

by the j-subsets of N(O) in the required way. Let w be a vertex in 

N. (0,0), and let A1 , ... ,A. be the neighbours of win N. 1 (0,0). Then 
J J J-

IA1 I = ... = IAj \ = j-1, and As and At have a common neighbour in Nj_ 2 (0,0), 

for any two integers sand t with 1 s s <ts j. Hence 

j-2 for s,t with 1 S s < t S j. 

This implies that A=~ As is a j-subset of N(O), and that A1 , ... ,Aj 

the (j-1)-subsets of A. Furthermore, it follows that 

A N(O) n I(O,w). 

Sow can be represented by the set A. 

are 

Distinct vertices in N.(0,0) are thus represented by distinct j-subsets 
J 

of N(O). Since IN. (0,0) \ = (~), it follows that all j-subsets of N(O) are 
J J 

used as representatives. So Gj is isomorphic to the "bottom j+l levels" 

of 0 in Qn. This completes the proof. D 

In Figure 2.8 we give an example that shows the necessity of the 

condition that G is a (0,2)-graph in the above theorem. (For a result 

resembling the above result see Theorem 5.10 in [c2].) 

FIGURE 2.8. 

We are now in a position to study those (0,A)-graphs that attain the 

upper bound for the number of vertices derived in Propositions 2.1.5 and 

2.1.6. 



2.2.2. PROPOSITION. Let G be a (0,2)-graph of degreed. Then lvl 2d 

if and only if G is Qd. 
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PROOF. If G is Qd, then G is a (0,2)-graph of degreed with lvl = 2d. 

Let G be a (0,2)-graph of degreed with lvl = 2d, and let u be a 

vertex of G. It follows from the proof of Proposition 2.1.5 that each 

vertex in Ni (u) has i neighbours in Ni-l (u), and d-i neighbours in Ni+l (u), 

for i = 1, ..• ,d. Hence G is bipartite and there exists a vertex v in G 

such that {v} = Nd(u). Furthermore, Ni (u) = Nd-i(v) for i 0 , 1 , •.• , d. So G 

satisfies the conditions of Theorem 2.2.1 with u as O and v as 6, and G is 

the d-cube Qd. D 

REMARK. LABORDE [La] has given a characterization of the d-cube, which is 

a corollary of the last proposition. It turns out that the conditions in 

Proposition 2.2.2 are included in the conditions involved in the 

characterization in [La]. For other characterizations of Qd see McFALL 

[Mfl], [Mf2]. Some of these characterizations can be deduced from the above 

results. 

2.2.3. THEOREM. Let G be a (0,A)-graph of degreed ::2: A+2. If 

lvl 1 + d + (A-l)!(d-A)! 
(d-2) ! 

then A 2 and G is Qd. 

L 
i::2:0 

PROOF. Let u be a vertex of G. It follows from Proposition 2.1.5 that any 

vertex in N(u) has d-1 neighbours in N2 (u). Furthermore, it follows for 

i = 2, ... ,d-A+2, that each vertex in Ni (u) has A+ i - 2 neighbours in 

Ni-l (u), and d - A - i + 2 neighbours in Ni+l (u). Hence G has diameter 

d - A+ 2. Moreover, there are no edges within the levels of u, so G is 

bipartite. 

Since d ::2: A+ 2, we have 

diam(G) d - A+ 2 ::2: 4, 

and it follows from Proposition 2.1.4 that 
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d ~ diam(G) + 2A - 4 ~ 2A. 

If d =A+ 2, it follows that d = 4 and A 2. Let d ~A+ 3, and let 

v be an arbitrary vertex in N3 (u). Then I(u,v) \ {u,v} induces a regular 

bipartite subgraph of G of degree A. So 

\I(u,v) n N(u) \ A + 1; 

-that is, I(u,v) \ {u,v} induces a KA+l,A+l minus a perfect matching in G. 

Represent each vertex win N2 (u) u N3 (u) by the set I(u,w) n N(u). 

Let the set A represent a vertex in N3 (u). Then A is a (A+l)-subset of 

N(u), and the A+l neighbours of A in N2 (u) are represented by the A-sets 

A \ {a}, a in A. Since A + 1 ~ 3, it follows that distinct vertices of 

N3 (u) are represented by distinct (A+l)-subsets of N(u). 

Let x and y be two distinct vertices in N(u). Then x and y have A-1 

common neighbours in N2 (u). Let Pc N(u) represent a common neighbour of x 

and yin N2 (u). Note that Pis a A-set. 

u 

FIGURE 2.9. 

Let Pu {as}' s = 1, .•. ,d-A, be the neighbours of Pin N3 (u) (see 

Figure 2.9). Then, for 1 ~ s < t ~ d - A, we have as# at. Furthermore, 

P u {as} and P u {at} have only P as common neighbour in N2 (u). Since x and y 

are inP,it follows that, apart from P, A - 2 of the neighbours of Pu {a} 
s 



in N2 (u) are common neighbours of x and y. 

Hence, since d ~ 2A, we have 

A~ (d-A) (A-2) + 2 ~ A(A-2) + 2 

~ (A-1) + 1 A. 

This implies that A= 2. 

Using the previous proposition, we conclude that G is Qd. D 

We conclude this section with an observation inspired by the last 

proof. Let G be a (0,A)-graph, and let u be a vertex of G such that there 

are no edges within the first and the second levels of u. It then 

follows from the proof of the last theorem that if any vertex in N3 (u) has 

exactly A+ 1 neighbours in N2 (u), then A= 2. 

2. 3. HADAMARD GRAPHS 

In this section we construct a class of (0,A)-graphs with diameter 4 

from Hadamard matrices. 
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Let H be a Hadamard matrix of order 4t (see Chapter O or [Rl]). We 

shall assume that His "normalized", so that each entry in the first row 

is +1. Any other row has 2t entries +1 and 2t entries -1. Such a row 

determines two sets of 2t columns, one corresponding to the +1 entries and 

the other corresponding to the -1 entries. The 8t - 2 sets of 2t columns 

so obtained form the blocks of a self-complementary block design DH with 

parameters (8t-2, 4t, 4t-1, 2t, 2t-1). Any two non-complementary blocks in 

DH intersect int points. Since any 3-set of columns is contained in 

exactly t-1 blocks, such a block design is called a Hadamard 3-design of 

order 4t. This construction is reversible: from a self-complementary block 

design with parameters (8t-2, 4t, 4t-1, 2t, 2t-1), in which any two non­

complementary blocks intersect int points, we get a Hadamard matrix of 

order 4t. 

2.3.1. DEFINITION. Let DH be a Hadamard 3-design of order 2A, and let 

{1,2, ••• ,2A} be the set of points of DH. The Hadamard graph GH 

corresponding to the Hadamard matrix His constructed from DH as follows: 
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(i) take as vertices of GH the blocks of DH together with the sets 

0, {1}, •.. ,{211.},{l}c, ... ,{2::\.}c,{l, ... ,211.}, where 

{ i} C = { 1 , .•. , 211.} \ {i} ; 

(ii) join two distinct vertices A and B by an edge whenever Ac B 

and IB \ Al ~ ::\.-1. 

The smallest Hadamard graph is Q4 , which corresponds to the following 

Hadamard matrix: 

l-~- 1 1 1 

\ : 
1 -1 -1 

-1 1 -1 

-1 -1 1 

It follows easily from the properties of DH that GH is a bipartite 

(0,::\.)-graph of degree 2::\. with diameter 4, such that 

Furthermore, GH is diametrical -that is, any vertex in GH has a unique 

diametrical vertex (see Definition 1.3.8). 

REMARK. A Hadamard graph is also the incidence graph of a transversal 

design with group size 2 and block size 2::\. (see HANAN! [Ha]). 

2.3.2. THEOREM. Let G be a (0,::\.)-graph with diam(G) 

then G is a Hadamard graph. 

4. If d(G) 

PROOF. Let O and 6 be two diametrical vertices of G. To avoid unnecessary 

repetition we make use of a step in the proof of Theorem 2.4.2. There we 

shall deduce that under the above conditions G is bipartite and V = I(O,O). 

Then it follows that 6 is the unique diametrical vertex of 0. Furthermore, 

lr(u,6) n N(u) I 2A. - 1 for u E N1 (0,0), 

and 

lr(O,u) n N(u) I ::\. lr(u,6) n N(u) I for u E N2 (0,0), 

and 



II(O,u) n N(ull 2A - 1 for u € N3 (0,0). 

Let u be a vertex in N3 (0,0). Then I(O,u) \ {O,u} induces a regular 

bipartite subgraph of degree A, and so 

II(O,u) n N(O) I II(O,u) n N(ull 2A - 1 for u € N3 (0,0). 

Similarly, we have 

II(v,6) n N(O) I II(v,O) n N(v) I 2A - 1 for v € N1 (0,0). 
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From these two equations we deduce that if two distinct vertices in N2 (0,0) 

have common neighbours, then they have at least one common neighbour in 

N1 (0,0) as well as in N3 (0,0), and so they have at most A-1 common 

neighbours in N1 (0,0). 

Label the neighbours of Oby 1,2, .•. ,2A, respectively. Represent each 

vertex u of G by the set I(O,u) n N(O). Then any neighbour j of O has as 

unique diametrical vertex the vertex in N3 (0,0) represented by {1, .•• ,2A} \ 

\ {j} (that is, the vertex of N3 (0,0), which is not in I(j,O) n N3 (0,0)). 

Since G is connected, it follows that any vertex in G has a unique 

diametrical vertex. 

The above observations imply that distinct vertices in N2 (0,6) are 

represented by distinct A-subsets of N(O), and that if Ac N(O) represents 

a vertex u in N2 (0,0), then N(O) \ A represents the diametrical vertex of 

u (which lies in N2 (0,0)). So the A-sets representing the vertices of 

N2 (0,0) form the blocks of a self-complementary block design D with 

parameters (4A-2, 2A, 2A-1, A, A-1). 

Finally, let A and B represent two distinct non-diametrical vertices 

in N2 (0,0). Then A and Bare two non-disjoint A-subsets of N(O). 

Furthermore, the A common neighbours of A and Bare the vertices 

represented by {j}, for j in An B, and by {j}c, for j in {1, ... ,2A} \ (AuB). 

Hence 

A IA n Bi+ i{1, ••• ,2A} \ (Au Bl I 

So A is even, and A and B intersect in ½A points; that is, Dis a Hadamard 

3-design, and so G is a Hadamard graph. 0 
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2.4. EXTREMAL (0,A)-GRAPHS 

In this section we discuss (0,;\.)-graphs G satisfying 

d(G) diam(G) + 2A - 4. 

The only complete graphs that satisfy this equation are K1 and K~, with 

A= 2, and K6 , with A= 4. 

Another graph satisfying this equation is the Clebsch graph, 

introduced by SEIDEL [Se]. The Clebsch graph is a (0,6)-graph of degree 10, 

and has 16 vertices. Its vertex-set is {Ac {1, ••• ,5} IAI ~ 2}, and two 

vertices A and Bare adjacent whenever 2 ~ IA~ Bl ~ 3. This graph has very 

nice properties. For instance, it is distance-transitive, and for any 

vertex u, the subgraph induced by N(u) is the complement of the Petersen 

graph. The complementary graph of the Clebsch graph is the Greenwood­

Gleason graph E3 described in Chapter 5 (for a picture see Figure 5.7). 

2.4.1. PROPOSITION. Let G be a (0,;\.)-graph with diam(G) 

d(G) = 2A - 2, then G is Q2 or the·c1ebsch graph. 

2. If 

PROOF. If A= 2, then d(G) = 2 = A, and so G is K212 , which equals Q2 

(see Corollary 2.1.7). 

Let A~ 3. Then 2;\. - 1 > d(G) = 2;\. - 2 > A, and so any two distinct 

vertices in G have exactly A common neighbours (see Theorem 2.1.14). It 

follows from the proof of Theorem 2.1.5 that 

lvl 1 + d(d;\.-ll 

and so 

;\.(lvl-ll (2;\.-2) (2;\.-3). 

Hence A divides 6 -that is, A equals 3 or 6. 

If A= 3, then lvl = 5, which would imply that G is K5 , contradicting 

the fact that diam(G) 2. So A= 6, and hence d(G) 10 and lvl = 16. It 

is left to the reader to verify that G is the Clebsch graph. D 



We are now ready to prove the main theorem of this chapter, which 

contains another characterization of 2n· 

2.4.2. THEOREM. Let G be a {0,A)-graph. If d{G) diam{G) + 2A - 4, then 

A 4 and G is K6 , 

or A 6 and G is the Clebsch graph, 

or G is a Hadamard graph of degree 2A, 

or G is 2n, where n = diam(G). 
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PROOF. If diam{G) s 2, then it follows from Proposition 2.4.1 and from the 

observations preceding this proposition that G is one of the graphs 20 , 21 , 

22 , K6 , or the Clebsch graph. 

If diam{G) = 3, then by Theorem 2.1.15 it follows that G is bipartite. 

By Proposition 2.1.11 we have lvl is even and 

2 + 2{2A-1) {2A-2l 
A 

So A= 2 and d{G) = 3, which implies that G is 23• 

Let n = diam{G) ~ 4, and let 0 and 1 be two diametrical vertices of G. 

The main part of the proof is to show that V = I{0,1), and that G is 

bipartite. 

Let i be an integer with 1 < i < n-1, and let v be a vertex in Ni(0,1). 

Then by Proposition 2.1.3 we have 

n + 2A - 4 IN(v) I ~ !Ni-l (0,1) n N{v) I + !Ni+l (0,1) n N(v) I 

!I(O,v) n N(v) I + !I(v,1) n N(v) I 

~ d(0,v) + A - 2 + d(v,1) + A - 2 

n + 2A - 4. 

Hence N{v) ~ Ni-l {0,1) u Ni+l(0,1), and 

II{O,v) n N{v) I i + A - 2, 

and 
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\ I (v, 1) n N (v) \ n - i + >.. - 2. 

It follows that there are no edges within Ni(0,1), for 1 < i < n-1. 

Assume that there is a vertex u in N(O) \ N1 (0,1). Then 

so d(u, 1) 

we have 

n 2c d(u, 1) 2c d(O, 1) n, 

n. Let x be a neighbour of O in I(0,1). By Proposition 2.1.3, 

\N(x) \ I(x,1) I n + 2A - 4 - \N(x) n I(x,1)\ 

~ n + 2A - 4 - (n + A - 3) >.. - 1. 

Hence \N(u) n N(x) \ ~ A - 1 -that is, u and x have no common neighbours, 

contradicting the fact that O is a common neighbour of u and x. So we have 

proved that N(O) c I(0,1). Similarly, N(l) c I(O,l). 

Let u be a neighbour of O. By Proposition 2.1.3, we have 

\N(u) n N(O) \ ~ n + 2A - 4 - \N(u) n I(u,1) I 

~ n + 2A - 4 - (n + A - 3) 

>.. - 1, 

and sou has no common neighbour with O -that is, there are no edges within 

N(O). 

Assume that u has a neighbour v outside I(0,1) (see Figure 2.10). Then 

d(v,1) 2c d(u,1) n - 1. 

Since u is a common neighbour of v and O, it follows that v and O have exactly 

A common neighbours. Let w be an arbitrary neighbour of u in N2 (0,1). Then 

v and w have u as common neighbour, and so v and w have A common neighbours. 

Since N{w) = (N(w) n N(O)) u (N(w) n N3 (0,l)), it follows that 

N(w) n N(v) N(w) n N(O) N(v) n N(O). 
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I (0, 1) 

\ 

FIGURE 2.10. 

Let x be a common neighbour of O and v distinct from u. Then we have 

and so 

jN(x) n N(u) J ~ 2 + n + A - 3 ~A+ 3, 

which is impossible. Hence we have proved that 

for u E N(O), 

and similarly, 

N(u) ~ {1} u Nn-2(0,1) for u E N(l). 

Summarizing, we have proved that V I(0,1), and, since there are no 

edges within the levels in I(0,1), that G is bipartite. So if diam(G) = 4, 

then by Theorem 2.3.2,G is a Hadamard graph of degree 2A. If diam(G) ~ 5, 

then it follows from the observation following Theorem 2.2.3 that A= 2. 

By Theorem 2.2.1,G is then-cube. This concludes the proof. D 
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CHAPTER 3 

MEDIAN GRAPHS 

In this chapter we consider median graphs. These are graphs in which 

jI(u,v) n I(v,w) n I(w,u) I = 1, for any three vertices u, v and w. All 

trees and all hypercubes satisfy this condition. We give several 

characterizations of median graphs involving the interval function. Every 

median graph can be obtained from a median graph with fewer vertices by an 

expansion procedure, and this characterization provides a tool for 

embedding a median graph in a hypercube, and for the study of the relation 

of median graphs with "median-like" algebraic structures. 

3.0. INTRODUCTION 

The central notion of this chapter is that of a median graph. This 

notion has been introduced independently by AVANN [Av] (who used the term 

unique ternary distance graph) and by NEBESKY [N2]. They studied the 

relation of median graphs with certain algebraic structures. (A. Schrijver 

and the author studied the relationship between median graphs and Helly 

hypergraphs, which is the theme of Chapter 4.) 

The algebraic structures related to median graphs are those of median 

semilattices, median segments, and median betweenness introduced by 

SHOLANDER [s1], [S2], [S3]. A median semilattice can be defined in terms of 

a binary operation, with matching partial order (see Definition 3.3.2), or 

in terms of a ternary operation. The last variant has been introduced 

independently by NEBESKY [Nl] in the setting of graphic algebras, under the 

name of simple graphic algebras. It follows from results in [s2], and also 

from results in Chapter 7, that the notion of a normal graphic algebra 

(also introduced by NEBESKY [Nl], see Definition 3.3.1) coincides with that 

of a simple graphic algebra. 



65 

We explore the relationship between median graphs and median semi­

lattices in Section 3.3. There we give new, graph-theoretical proofs of the 

results first obtained by AVANN [Av] and NEBESKY [N2] using the structural 

characterization of median graphs obtained in Section 3.2. We study the 

relationship between median graphs and median segments (in our terminology 

median interval structures) in Theorems 3.1.4 and 3.1.5. 

3.1. MEDIANS AND INTERVALS 

We start with some notation. Let I be a mapping of the Cartesian 

product Xx X into the power-set P(X) of x. Then, for any three elements 

x, y and z of X, we write 

I(x,y,z) := I(x,y) n I(y,z) n I(z,x). 

For three vertices u, v and w of a graph G with interval function I, 

the set I(u,v,w) can be of any size. This is illustrated by the graphs in 

Figure 3.1. 

w' 

v' 

V 

I(u,v,w) = {x} 
I(u',v',w') = /ll 

FIGURE 3.1. 

u w 

V 

II(u,v,w) I = n 

3.1.1. PROPOSITION. Let G be a graph with interval function I such that 

I(u,v,w) ~ /ll, for any three vertices u, v and w of G. Then G is connected 

and bipartite. 
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PROOF. Since any interval in G must be non-empty, G is connected. 

Assume that G is not bipartite, and let u0 + u 1 + .•• + u2k + u0 be 

an odd circuit of smallest length. Then 

Hence ~+l is not in I(u0 ,~), and~ is not in I(u0 ,uk+l), so that 

I(u0 ,uk,uk+l) =~'which is impossible -that is, G is bipartite. D 

In the sequel we focus on graphs in which the set I(u,v,w) is a 

singleton for any three vertices u, v and w. 

3.1.2. DEFINITION. A graph G with interval function I is a median graph if 

II(u,v,w) I= 1 for any three vertices u, v and w of G. 

An alternative formulation of this definition is the following: 

let G be a connected graph with distance function d; then G is a median 

graph if, for any three vertices u, v and w of G, there exists a unique 

vertex x = x(u,v,w) such that 

d(u,x) + d(x,v) d(u,v), 

d(v,x) + d(x,w) d(v,w), 

and 

d(w,x) + d(x,u) d(w,u). 

The vertex x in the above definition, denoted by x 

median of u, v and w. 

<u,v,w>, is called the 

We give an example of a median graph in Figure 3.2. All trees and all 

hypercubes are median graphs. In then-cube with its vector representation 

we can determine the median x = (x1 , ... ,xn) of the vertices u = (u1 , ••• ,un)' 

v = (v1, ••• ,vn) and w = (w1, ... ,wn) as follows: to fix xi the vertices u, v 

and w have elections and cast their i-th coordinate as their vote; of 

course, the majority wins. For example, in Q4 the median of (0,0,1,1), 

(0,1,0,1) and (1,1,1,0) is (0,1,1,1). Note that a convex subgraph of a 

median graph is a median graph. 
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In this section we give a number of characterizations of median graphs 

using the interval function. 

FIGURE 3.2. 

IN [BS] SCHRIJVER introduced the following concept. 

3.1.3. DEFINITION. Let X be a finite set. A mapping I: Xx X ➔ P(X) is an 

interval structure on X if I satisfies 

(Il) x,y € I(u,v) if and only if I(x,y) s I(u,v), for x,y,u,v € x, 

(I2) I(u,v,w) ~ ~ for all u,v,w € X. 

It follows from (Il) that I(u,v) I(v,u) for any two elements u and v 

of x. 
Let I be an interval structure on the set X. Each set I(u,v) is called 

an interval in X. A subset Y of Xis I-convex if, for any two elements u 

and v of Y, the interval I(u,v) is contained in Y. It follows from (Il) 

that each interval in Xis I-convex. 

If (X,S) is a lattice, then we can obtain an example of an interval 

structure on X by taking 

I(u,v) := {w € X U AV SW SUV v}. 
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If the mapping I: Xx X ➔ P(X) satisfies condition (Il) and also 

(I2') !I(u,v,w) I for all u,v,w EX, 

then I is called a median interval structure on X (see MULDER & SCHRIJVER 

[MS]; SHOLANDER [S2] used the term median segments). An interval structure 

obtained from a lattice in the above way is a median interval structure if 

and only if the lattice is distributive. Further examples of median 

interval structures can be obtained from median graphs, as we show now. 

3.1.4. THEOREM. Let G be a median graph with interval function I. 

Then I is a median interval structure on V. 

PROOF. We have only to verify the interval monotonicity of I. 

Assume the contrary, and let I(u,v) be a non-convex interval in G. Let 

x and y be two vertices in I(u,v) such that I(x,y) $ I(u,v) with d(x,y) as 

small as possible. Note that d(x,y) ~ 2. Then there exists a shortest (x,y)­

path P such that all internal vertices of P lie outside I(u,v). Let z be an 

internal vertex of P. 

It follows from the minimality of d(x,y) that I(u,v) n I(x,z) {x}. 

Hence 

I(u,x) n I(x,z) {x}. 

Since I(u,x,z) # 0, it follows that x lies in I(u,z). Similarly, x lies in 

I(v,z), and so 

x E I(u,v,z), 

-that is, xis the median of u, v and z. In the same way it follows that y 

is also the median of u, v and z. Sox= y, contradicting the fact that 

d(x,y) ~ 2. □ 

A converse of this theorem also holds. 

3.1.5. THEOREM. Let I be a median interval structure on the finite set v. 
Let GI be the graph with vertex-set V, in which two distinct vertices u and 

v are adjacent whenever I(u,v) = {u,v}. Then GI is a median graph with I as 
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its interval function. 

PROOF. We prove that GI is connected and that the interval function IG of 
I 

GI is identical with I. It then follows that GI is a median graph. 

First observe that for u, v and win V, we have 

w E I(u,v) if and only if I(u,w) n I(w,v) {w}. 

We use this continually in the sequel without mention. For example, for 

win I(u,v) \ {u,v}, we have 

u t I(w,v) c I(u,v), 

and 

v t I(u,w) c I(u,v}. 

Using this, we can easily verify by induction on lr(u,v) I that I(u,v) 

induces a connected subgraph of GI, for all u and v in V. Hence GI is 

connected. 

To prove that I(u,v) = I (u,v) for all u and v in V, we use induction 
GI 

on d(u,v), where dis the distance function of GI. 

of 

and 

and 

By definition, we have I(u,v) = I (u,v) for any two vertices u and v 
GI 

GI with d(u,v) !, 1. So let u and v be vertices with d(u,v) > 1. 

Let w be a vertex in IG (u,v) \ {u,v}. It follows that d(u,w) < d(u,v) 
I 

d(w,v) < d(u,v), and so by the induction hypothesis, we have 

IG (u,w) I(u,w), 
I 

I 
GI 

(w,v) I(w,v). 

Since IG (u,w) n IG (w,v) 
I I 

{w}, it follows that w lies in I(u,v), and so 

IG (u,v) = I(u,v). 
I 

Assume that there exists a vertex win I(u,v) \ I (u,v). Then 
GI 

I(u,w) n I(w,v) {w}. 
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For any vertex w' in I(u,w), we have 

w E I(w' ,w) n I(w,v) ~ I(u,w) n I(w,v) {w}. 

Hence I(w',w) n I(w,v) = {w} -that is, w lies in I(w',v). So, if there 

exists a vertex w' in I(u,w) n IG (u,v) distinct from u, then it follows 
I 

from the preceding observation and the induction hypothesis that 

WEI(w',v) I (w' ,v) c I (u,v). 
GI GI 

This contradicts the choice of w. So 

I (u,w) n I (u,v) {u}, 

and 
GI 

I (w,v) n I 
GI 

(w,v) {v}. 

Since I(u,w) and I(w,v) induce connected subgraphs of GI, there exists 

a path P from u to v passing through w, all of whose internal vertices lie 

in I(u,v) \ IG (u,v). Then Pis not a shortest (u,v)-path, and so the 
I 

length of P exceeds d(u,v). Since d(u,v) ~ 2, it follows that we can find 

an internal vertex x of P distinct from w, and that we can find a vertex y 

in I (u,v) \ {u,v}. 
GI 

I(u,v) 

FIGURE 3.3. 



By the induction hypothesis we have 

I(u,y) 

and 

I(y,v) 

IG (u,y), 
I 

IG (y,v). 
I 

It follows that 

u E I(u,y) n I(u,w) IG (u,y) n I(u,w) 
I 

£ IG (u,v) n I(u,w) {u}. 
I 

This implies that u lies in I(y,w). Similarly v lies in I(y,w), and so by 

(Ill , 

I(u,v) s I(y,w) = I(u,v). 

Similarly, I(u,v) I(y,x). This implies that 

w,x E I (w,x) I(u,v) n I(w,x) 

I(y,w) n I(w,x) n I(x,y), 

contradicting the fact that I is a median interval structure. So we have 

proved that I(u,v) = IG (u,v), which completes the proof. D 
I 

In this proof we saw that IG = I for a median interval structure I. 
I 

Furthermore, it follows from Theorems 3.1.4 and 3.1.5 that, if G is a 

median graph with interval function I, then GI = G. This establishes a 
G 

one-to-one correspondence between the median interval structures on the 

(finite) set V and the median graphs with Vas vertex-set (see also 

Theorem 4.1.13). 

3.1.6. THEOREM. Let G be a graph with interval function I. If I is an 

interval structure on V, then G is a median graph. 
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PROOF. Assume the contrary, and let u, v and w be vertices of G such that 
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Jrcu,v,w) J ~ 2. Then, since G is interval monotone, we can choose two 

adjacent vertices x and yin I(u,v,w). 

By Proposition 3.1.1 we know that G is bipartite. Hence d(u,x) and 

d(u,y) differ by exactly 1, say 

d(u,y) d(u,x) + 1. 

Since x and y lie in I(u,v) n I(u,w), it follows that 

d(y,v) d(x,v) - 1, 

and 

d(y,w) d(x,w) - 1. 

Hence, since x and y lie in I(v,w), we have 

d(v,w) d(v,y) + d(y,w) d(v,x) + d(x,w) - 2 

d(v,w) - 2, 

which is impossible. D 

Note that the interval monotonicity in Theorem 3.1.6 is necessary, as 

the graph in Figure 3.4 shows. In this graph we have I(u,v,w) = {x,y}. 

y 

u w 

X 

FIGURE 3.4. 

This example shows also that the interval monotonicity of G is necessary in 

the next theorem. 



3.1.7. THEOREM. Let G be a connected graph with interval function I. 

Then G is a median graph if and only if G is interval monotone and I 

satisfies the following condition: 

.if I(u,v) n I(v,w) {v}, then d(u,w) d(u,v) + d(v,w) 

for u,v,w e: V. 

PROOF. The "only if" part of the theorem follows from Theorem 3.1.4 

and the fact that, if I(u,v) n I(v,w) {v}, then vis the median of u, 

v and w. 

Conversely, in view of Theorem 3.1.6 it suffices to prove that 

I(u,v,w) r ~ for any three vertices u, v and w of G. 

Let u, v and w be arbitrary vertices of G, and let z in 

I(u,v) n I(v,w) be such that 

I(u,z) n I(z,w) {z}. 

Then d(u,w) = d(u,z) + d(z,w) -that is, z lies in I(u,w), and so z is 

in I(u,v,w). D 

In Propositions 5.1.3, 5.1.4 and 5.1.5 we discuss variations of the 

condition on I in the above theorem. 

The aim at the minimality of conditions in definitions and theorems 

is often contrary to the aim of elegance of formulation and arguments. 

My position in this is that I prefer elegance. Then, if possible, I give 

a theorem in which the minimality of conditions is explored. The next 

theorem serves this purpose with respect to median graphs. 

3.1.8. THEOREM. Let G be a connected triangle-free graph. If 
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lr(u,v,w)j = 1 for any three vertices u, v and w of G such that d(u,v) 2, 

then G is a median graph. 

PROOF. Note that K213 is not a subgraph of G. 

First we prove that G is bipartite. Assume the contrary, and let 

u = u0 + u1 + ••• + u2k + u (k ~ 2) be an odd circuit in G of smallest 

length. Then d(u,¾) = k, d(¾•¾+2) = 2 and d(u,¾+2) = k-1. Sou,¾ and 
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uk+2 have a median x in G. It follows that x equals neither uk' nor ~+2 . 

Hence xis a common neighbour of~ and uk+2 . This implies that 

k-1 d(u,x) + 1 k, 

which is impossible. So G is bipartite. 

We deduce from this that if u and v are adjacent vertices, and w is 

any other vertex in G, then either u or vis the median of u, v and w. 

The proof that any three vertices in G have a median consists of 

two steps. 

STEP 1: I(u,v,w) i 0 for any three vertices u, v and w of G. 

Assume the contrary, and let u, v and w be vertices such that 

I(u,w,v) = 0 and d(u,v) + d(v,w) + d(w,u) is as small as possible. 

Furthermore, let d(u,v) be as small as possible under these conditions. 

We may assume without loss of generality that d(v,w) 2 d(u,w). So we 

have the following situation: 

d(v,w) 2 d(u,w) 2 d(u,v) 2 3. 

It follows from the minimality of d(u,v) + d(v,w) + d(w,u) that 

I(u,v) n I(u,w) {u}, 

and 

I(u,v) n I(v,w) {v}. 

Let u' be a neighbour of u in I(u,v). Since G is bipartite and u' is 

not in I(u,w), we have 

d(u',w) 1 + d(u,w). 

Then u', v and ware vertices with 

d(u' ,v) + d(v,w) + d(w,u') d(u,v) + d(v,w) + d(w,u). 

Since d(u',v) = d(u,v) - 1, it follows from the minimality of d(u,v) 

that I(u' ,v,w) i 0. Since 
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v E: I(u',v) n I(v,w) s; I(u,v) n I(v,w) {v}, 

it follows that v lies in I(u',w). Hence 

1 + d(u,w) d(u' ,w) d(u',v) +d(v,w) 

d(u,v) - 1 + d(v,w) ~ d(v,w) + 2, 

which contradicts the fact that d(v,w) ~ d(u,w). So for any three vertices 

u, v and w of G, we have I(u,v,w) f 0-

STEP 2: lr(u,v,w) I ~ 1 for any three vertices u, v and w of G. 

Again assume the contrary, and let u, v and w be such that 

lr(u,v,w) I ~2 and d(u,v) + d(v,w) + d(w,u) is as small as possible. 

Let x and y be two distinct vertices in I(u,v,w). It follows from the 

minimality of d(u,v) + d(v,w) + d(w,u) that 

I(u,x) n I(u,y) {u}. 

Choose a neighbour ux of u in I(u,x) and a neighbour uy of u in I(u,y). 

Then, since G is triangle-free, we have d(u ,u) = 2 (see Figure 3.5). 
X y 

w 

.. ·············.-.::P 

··o· .. ·· 
Z; . 

.... ;. .. • 

V 

FIGURE 3.5. 
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Let m be the median of u, u and v, and let m' be the median of ux' 
X y 

u and w. If m # m', then the vertices u, m, m', u and u would induce y X y 
a K213 in G, which is forbidden. Som= m'. 

It follows from Step 1 that I(m,v,w) #~-Choose a vertex z from 

I(m,v,w). Then z cannot equal both x and y, so suppose z # x. It follows 

that z and x lie in I(ux,v,w) (see Figure 3.5). Furthermore, 

d(u,v) + d(v,w) + d(w,u) - 2, 

contradicting the choice of u, v and w. This concludes the proof. D 

3.2. THE STRUCTURE OF MEDIAN GRAPHS 

Let us now try to get a deeper insight into the structure of median 

graphs. Unfortunately we have to prepare the ground a little bit before 

undertaking our enquiry. Some of the possible surprise about its outcome 

is thus taken away. 

3.2.1. DEFINITION. A cutset colouring of a connected graph is an edge 

colouring of the graph such that, for any colour i, the set of edges 

assigned colour i is a cutset. 

It can be shown that a connected graph G has a cutset colouring only 

if G is a simple bipartite graph that does not contain K213 as a subgraph. 

In Figure 3.6 we give a graph with two distinct cutset colourings. 

FIGURE 3.6. 



3.2.2. DEFINITION. A connected graph is uniquely cutset colourable if it 

admits exactly one cutset colouring up to the labelling of the colours. 

In a tree any cutset consists of a single edge, and so all trees are 

uniquely cutset colourable. Note that if we want to establish a cutset 

colouring of a connected graph, we are forced to assign the same colours 

to non-adjacent edges in any circuit of length four. Hence the graphs in 

Figure 3.7 are all uniquely cutset colourable. Likewise all hypercubes 

are uniquely cutset colourable. To each coordinate in the vector 

representation of Qn there corresponds a cutset of the cutset colouring: 

the i-th cutset joins the vertices of the (n-1)-cube induced by the 

vertices with Oas the i-th coordinate to the vertices of the (n-1)-cube 

induced by the vertices with 1 as the i-th coordinate. 

~ 
✓ A~ 

II 

FIGURE 3.7. 

For subsets Sand T of the vertex-set of a graph, [S,T] denotes the 

set of edges with one end in Sand the other in T. 

3. 2. 3. DEFINITION. Let G be a connected graph, and let W a.nd W 1 

be two subsets of V such that Wu W' = V and W n W' f 0 and 

[W \ W', W'\ W] = 0. The expansion of G with respect to Wand W' is the 

graph G' constructed as follows from G: 
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(i) replace each vertex v E: W n W' by two vertices uv and u~, which are 

joined by an edge; 

(ii) join uv to all neighbours of v in W \ W' and join u' to all 
V 
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neighbours of v in W' \ W; 

(iii) if v,w E W n W' are adjacent in G, then join uv to uw and u~ to u~. 

If Wand W' are convex sets in G, then G' is called a convex 

expansion of G. We illustrate this construction in Figure 3.8. 

> 

w w 

G G' 

FIGURE 3.8. 

In the next few pages we study median graphs in further detail. We 

reverse the order of theorem and proof -that is, we first give the 

"proof", and then we state the outcome of our enquiry in Theorem 3.2.4. 

The line of reasoning below is split into a number of steps. 

Let G be a median graph. Recall that G is bipartite, and that we 

denote the median of u, v and w by <u,v,w>. For any two adjacent vertices 

u and v of G, we let 

w u 
:= {w EV d(u,w) + 1 d(v,w) }, 

w := {w EV d(u,w) d(v,w) + 1}, 
V 

F := [W ,W ], 
UV U V 

u := {w E w w is an end of an edge in F }, 
u u UV 



U := {w E W 
V V 

w is an end of an edge in F }. 
UV 

Fix an edge e = ab, and write F = Fab" Note that Wais the set of all 

vertices nearer to a than to b, and Wb is Lhe set of all vertices nearer 

to b than to a (see Figure 3.9). 

(1) 

d(w,a) < d(w,b) 

w 
a 

a 

u 

d(w,a) > d(w,b) 

V 

F 

FIGURE 3.9. 

If two vertices u and v of Gare adjacent, then <u,v,w> equals 

either u or v for any vertex w of G. 
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PROOF. The assertion follows immediately from the definition of median. D 

(2) Let u and v be two adjacent vertices of G. Then 

w 
u 

and W 
V 

{w EV 

{w EV 

<u,w,v> 

<u,w,v> 

u}, 

v}. 

PROOF. Use (1). 0 

(3) Let u and v be two adjacent vertices of G. Then Wv 

PROOF. Use (1) and (2). 0 

(4) I(v,a) ~ Wa for any vertex v in Wa, 

V \ W . 
u 
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and I(v,b) s Wb for any vertex v in Wb. 

PROOF. The assertion follows immediately from the definition of Wa and 

Wb. 0 

(5) Fis a cutset. 

PROOF. It follows from (3) that Fis a disconnecting set. It follows 

from (4) that Wa and Wb induce connected subgraphs of G, and so Fis a 

cutset. D 

(6) If uv is an edge in F with u in Va and v in Vb, then 

d(u,a) = d(v,b). 

PROOF. Since uv is in F, we have 

(7) 

d(u,a) d(u,b) - 1 $ d(v,b) d(v,a) - 1 $ d(u,a). 

I(u,a) ~ Va for any vertex u in Va' 

and I(u,b) s Vb for any vertex u in Vb. 

PROOF. We prove only the first assertion by induction on d(a,u). 

Let v be a neighbour of u in Vb, and let w be a neighbour of u in 

I(u,a) s Wa. Then, since G is bipartite, we have d(w,v) = 2. It follows 

from (6) that 

d(v,b) d(u,a) d(w,a) + 1 d(w,b), 

and so <v,w,b> is a common neighbour of v and w lying in I(b,v) s Wb 

-that is w has a neighbour in Wb, and sow lies in Va. By the induction 

hypothesis we have I(a,w) s Va, and so it follows that I(a,u) s Va. D 

(8) Wa = Wu and wb 

in Vb. 

Wv for any edge uv in F with u in Va and v 

PROOF. First let u be a neighbour of a, so that, by (6), vis a neighbour 

□ 



of b. By (3) it suffices to prove that Was Wu and Wb S Wv. 

Choose a vertex win Wa' and let d(w,a) = k. Then d(w,b) k + 1. 

CASE 1: <a,u,w> = u. 

Note that d(u,w) d(a,w) - 1 k - 1. Then we have 

d(u,w) + 1 ~ d(v,w) ~ d(b,w) - 1 k + 1 - 1 k > d(u,w), 

and so d(v,w) d(u,w) + 1 -that is, w lies in W. 
u 

CASE 2: <a,u,w> = a. 

Note that d(u,w) = d(a,w) + 1 = d(b,w) = k + 1. Hence <u,w,b> = a. 

Since G is bipartite, it follows that d(v,w) equals either k or k + 2. 

If d(v,w) = k, then we would have v = <u,w,b> = a, which is impossible. 

Hence 

d(v,w) k + 2 

-that is, w lies in W. 
u 

d(u,w) + 1 

Similarly it follows that Wb S Wv. 

Using (7), we deduce the general case d(u,a) ~ 1 by induction on 

d(u,a). D 

(9) ua and ub are convex sets in G. 
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PROOF. Let u and u' be two vertices in Ua' and let v' be a neighbour of 

u' in ub. By (8) we have Wa = Wu' and Wb = Wv•' and so it follows that 

u 
a 

Hence, if we replace a by u', it follows from (7) that I(u,u') ~ Uu' 

So Ua is convex. Likewise, Ub is convex. D 

(10) Wa and Wb are convex sets in G. 

PROOF. The convexity of Wa and Wb follows from the convexity of Ua and 

Ub and the fact that 

u . 
a 
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□ 

(11) F is a matching between Ua and Ub. 

PROOF. Assume the contrary, and assume that u in Ua has two distinct 

neighbours v and v' in Ub. Since G is bipartite, v and v' are not adjacent, 

so that u is in I(v,v'). It follows from the convexity of Ub that u lies 

in ub, contradicting the choice of u. D 

(12) The mapping f: Ua + Ub, defined by f(u) = v whenever uv E F, 

induces an isomorphism between G[Ua] and G[Ub]. 

PROOF. Since Fis a matching between Ua and Ub, the mapping f is 

bijective. 

Let u and u' be two vertices in Ua. By (8), the result of (6) still 

holds, when we replace a by u' and b by f(u'), and so 

d(u,u') d(f(u), f(u')). 

It follows that u and u' are adjacent if and only if f(u) and f(u') are 

adjacent. D 

(13) G is uniquely cutset colourable. 

PROOF. Let uv be an edge 

F = [w ,w J 
U V 

F 
UV 

So, if 

G by 

wx R yz if 

in F with 

we define 

WX E F 
yz 

u in ua and v in ub. By (8) we have 

the relation Ron the edge-set E of 

for wx,yz EE, 

then this relation R is an equivalence relation on E. The equivalence 

classes of Rare of the form [W ,w ], where xy is an edge in G. Hence the 
X y 

equivalence classes are matchings as well as cutsets, and so they form a 

cutset colouring of G. 

+up= u be a path from a to u in G[Ua]. Such 

a path exists, since Ua is convex. Then it follows from (12) that 



b = f(u0) + ••• + f(up) =vis a path from b to v in G[ub]. As observed 

above, non-adjacent edges in a circuit of length four in G must be 

assigned the same colours in any cutset colouring of G. So the edges 
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ab= u0f(u0), u 1f(u1), ••• , upf(up) = uv are to be assigned the same 

colour in any cutset colouring. This implies that Fis the set of edges 

with the same colour as ab in any cutset colouring of G, and so the cutset 

colouring defined above is unique. D 

(14) The mapping f, defined in (12), is colour-preserving. 

PROOF. Let uu' be an edge in G[Ua]. Then u + f(u) + f(u') + u' + u is a 

circuit of length four in G, and so uu' and f(u)f(u') have the same 

colour in the cutset colouring of G. D 

(15) G can be obtained as a convex expansion from a median graph 

with fewer vertices, unless G is K1• 

PROOF. Construct the graph G' from G[V \ Ub] by joining each vertex u in 

Ua to all the neighbours of f(u) in Wb \ ub. So G' is obtained from G by 

"contracting" F. 

Let wb := (Wb \ Ubl u ua. 

Then we have (if G and Hare isomorphic graphs, we write Gel H) 

and 

Using (9) and (10), we deduce from these equalities and isomorphisms that 

ua, Wa and Wb are convex sets in G', the verification of which is left to 

the reader. It follows from the construction of G and Definition 3.2.3 that 

G is the convex expansion of G' with respect to Wa and Wb. 

It remains to prove that G' is a median graph. Let u, v and w be three 

vertices in wa. Since Wais convex in G, it follows that u, v and w have a 

median in G. Since G[Wa] = G'[Wa] and Wais convex in G', this median of 

u, v and win G is also the median of u, v and win G'. Similarly, any 
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three vertices in Wb have a median in G'. 

Let u and v be vertices in Wa' and let w be a vertex in Wb \ Wa. Then 

u, v and w have.a median x = <u,v,w> in G. Note that by (10) x lies in wa. 

Let P be a shortest (w,u)-path in G. It follows from the convexity of Ua 

and ub that P passes through exactly one edge f(u )u in F. p p 

u 
a 

u 1 f(u 1) I~--- l"····~·-······ ········Ow 
Pl 

F 

FIGURE 3.10. 

Let f(u1) be the first vertex of P from w that lies in ub. Since ub is 

convex in G, it follows that Pis of the form P1 + f(u 1) + f(u2) + .•• + 

➔ f(up) ➔ up ➔ P2 , where f(u 1) + ••• ➔ f(up) is a shortest path from f(u 1) 

to f(up) in ub (see Figure 3.10). 

Let Q be the path P1 + f(u 1) + u 1 ➔ ••• +up + P2• Then Q is also a 

shortest (w,u)-path in G. Furthermore, Q contains exactly one vertex in 

Ub. It is clear that in determining the median of u, v and win G, we can 

confine ourselves to paths of the same form as Q (that is, paths 

containing exactly one vertex in Ub). When we contract F, we obtain from 

Q a shortest (w,u)-path Q' in G', where Q' = P1 + u1 + ••• +up+ P2 • Any 

shortest (w,u)-path in G' can be obtained in this way from a shortest 

(w,u)-path in G of "type Q". It follows from these observations that xis 

the unique median of u, v and win G'. 



Similarly, we prove that any two vertices u and v in Wb and any 

vertex win Wa have a unique median in G'. So G' is a median graph, and 

the proof is complete. D 

Before stating the outcome of our enquiry in Theorem 3.2.4, we prove 

a converse of (15). 

(16) Let G be a median graph, and let G' be a convex expansion of G 

with respect to the convex sets Wand W' in G. Then G' is a 

median graph. 

PROOF. Write 

u := {u V E: w n W'}, 
V 

and 

U' := {u' V E: w n W'}, 
V 

where u and u' are as in Definition 3.2.3, and let 
V V 

z := (W \ W') u u, 
and 

Z' := (W' \ W) u U'. 

Then Z u Z' is the vertex-set of G'. It follows from the definition of 

expansion· that 

G'[Z] ~ G[W], 

G'[Z'] ~ G[W'], 

and 

G'[U] ~ G'[U']. 
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FUrthermore, it follows that Zand Z' are convex sets in G'. Since G[W] 

and G[W'] are median graphs, as convex subgraphs of the median graph G, it 

follows that any three vertices in Z (or in Z') have a unique median in z 

(or in z'). 

Let u, v and w be vertices in G' not all in Z or all in Z'. Assume 
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that u and v lie in z and w lies in Z'. Let x be the median of the 

vertices of G corresponding to u, v and w. Any shortest path P' in G' 

between a vertex in Zand a vertex in Z' can be obtained from a shortest 

path Pin G between the corresponding vertices by "adding" an edge between 

U and U' to the path P. Since Z is convex in G', the interval IG' (u,v) is 

contained in Z. Hence the vertex of G' in z corresponding to xis the 

(uniquely determined) median of u, v and win G'. 

The case that u and v lie in Z' and w lies in z is treated similarly. 

Hence G' is a median graph. D 

Using the above results, we deduce the following characterization of 

median graphs. 

3.2.4. THEOREM. A graph G is a median graph if and only if G can be 

obtained from K1 by a sequence of convex expansions. 

In proving this theorem we have obtained several properties of median 

graphs that are interesting in their own right. We can also deduce these 

properties directly from the theorem. For convenience we state them as 

corollaries. 

3.2.5. COROLLARY. A median graph is uniquely cutset colourable. 

In Chapter 4 we discuss the family of sets W such that [W, V \ W] 

is a colour class in the cutset colouring of a median graph G. 

3.2.6. COROLLARY. Let G be a median graph, and let F [w, V \ W] be a 

colour class in the cutset colouring of G. Let U = {u E W u is an end 

of an edge in F} and U' = {u EV\ W 

Then 

u is an end of an edge in F}. 

(i) G[U], G[U'], G[W] and G[V \ W] are convex subgraphs of G, and hence 

median graphs; 

(ii) the mapping f: U ➔ U', defined by 

f(u) u' whenever uu' E F and u EU, 
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induces a colour-preserving isomorphism between G[U] and G[U']. 

Note that not all uniquely cutset colourable graphs are median graphs. 

For example, two of the three uniquely cutset colourable graphs in Figure 

3.7 are not median graphs. Furthermore, when we delete a k-cube from Qn' 

with 0 ~ k ~ n-3, we get a uniquely cutset colourable graph, which is not 

a median graph. 

From the theorem we can deduce that we can embed every median graph 

in a hypercube -that is, the hypercube contains an induced subgraph G', 

which is isomorphic to G. 

A distance-preserving subgraph G' of a graph G is a subgraph of G 

such that for any two vertices u and v of G' we have dG' (u,v) = dG(u,v). 

Note that a distance-preserving subgraph is an induced subgraph. 

3.2.7. THEOREM. A graph G is a median graph if and only if G is a 

distance-preserving subgraph of a hypercube Q such that the median in Q 

of any three vertices of G is also a vertex of G. 

PROOF. If G is a subgraph of a hypercube Q as described in the theorem, 

then it follows that G is connected and for any three vertices of G their 

median in Q is also their (unique) median in G. So G is a median graph. 

Conversely, let G be a median graph that is not K1. Then by Theorem 

3.2.4, G is the convex expansion of a median graph H with fewer vertices, 

with respect to (say) w1 and w2 . 

The proof is by induction on the number of vertices -that is, we may 

assume that His a distance-preserving "median-closed" subgraph of an 

n-cube Q with vertex-set X. 

We give a sketch of the proof. We double Q by a convex expansion 

with respect to X and X' (= X). Thereby we obtain an (n+l)-cube Q, of 

which Q is a "half" with respect to the newly-introduced colour class 

[X,X'] in the cutset colouring of Q. The other "half" is then-cube Q' 

induced by x' . 
In doubling Q we have doubled also H, say, to H with "halves" Hin Q 

and H' in Q'. Let Wi u w2 be the vertex-set of H', where w1 corresponds to 

Wi in H (i = 1,2). Then G is the subgraph of H induced by w1 u w2. It 

follows easily from the properties of the expansion procedure that G is 

a distance-preserving median-closed subgraph of H, and so is of Q. D 
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We can sharpen this characterization of median graphs. 

3.2.8. THEOREM. A graph G is a median graph if and only if G is a 

connected induced subgraph of a hypercube Q such that the median in Q 

of any three vertices of G is also a vertex of G. 

PROOF. By the previous theorem it suffices to prove that a connected 

induced "median-closed" subgraph G of a hypercube Q is distance-preserving. 

Assume the contrary, and let u and v be vertices of G with 

dG(u,v) is as small as possible. Since G 

is an induced subgraph of Q, it follows that 

k. 

Hence, since u and v are distinct, we have k ~ 2. 

If k = 2, then we would have 1 s dQ(u,v) < 2, and sou and v would 

be adjacent in Q. This would imply that u and v are also adjacent in G, 

which contradicts k ~ 2. So we have k ~ 3. 

Let x be a neighbour of v in G with dG(u,x) 

from the minimality of k that 

k - 1 

k - 1. Then it follows 

Hence dQ(u,v) ~ k - 2. Since Q is bipartite, it follows that 

dQ(u,v) = k - 2. 

k - 2 in G 

k - 2 in Q 

X 

b 
u 

FIGURE 3.11. 

k - 2 in Q 



Let w be a neighbour of x in G with dG(u,w) = k - 2. Then dQ(u,w) = 

= k - 2, and dG(w,v) = dQ(w,v) = 2. Let z be the median of u, v and win 

Q. Then z is a common neighbour of wand v in Q, and 

Since G is median-closed, it follows that z is a vertex in G. Since G is 

an induced subgraph, it follows that z is a common neighbour of v and w 

in G. Hence 

k - 1. 

By the minimality of k we have 

k - 3, 

and so 

k k - 2, 

which is absurd. This gives the required contradiction. D 

Let G be a median graph with n colours in its cutset colouring. The 

smallest hypercube in which G can be embedded in the above sense is Qn• 

If G is embedded in Qm with m ~ n, then G is a subgraph of the 

n-dimensional subcube of~ induced by the colour classes of~ 

corresponding to the colours of G. 

3.3. MEDIAN GRAPHS AND MEDIAN SEMILATTICES 
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One of the algebraic structures introduced by SHOLANDER ([Sl], [S3]) 

is that of a median semilattice. M. Sholander has given two definitions of 

a median semilattice, one involving a binary operation with matching 

partial ordering (see Definition 3.3.2), and the other involving a ternary 

operation. In the latter case we use the term median algebra instead of 

median semilattice (see Definition 3.3.1). The axioms of the ternary 
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operation in Definition 3.3.1 are that of a normal graphic algebra, 

introduced by NEBESKY [Nl]. 

3.3.1. DEFINITION. A median algebra (V,m) consists of a finite set V and 

a ternary operation m: V x V x V + V satisfying the following conditions: 

(ml) m(u,v,u) u for u,v Ev, 

(m2) m(u,v,w) m(w,v,u) m(v,u,w) for u,v,w Ev, 

(m3) m(m{u,v,w),w,x) m(u,m(v,w,x) ,w) for u,v,w,x EV. 

The relationship between median algebras and median graphs has been 

established independently by AVANN [Av] and NEBESKY [N2], and follows from 

results in Chapter 7. 

Here we study the relationship between median graphs and median semi­

lattices in the sense of Definition 3.3.2. 

A semilattice (V,S) is a finite poset in which any two elements u and 

v have a unique greatest lower bound, denoted by u Av. Since Vis finite, 

it follows that a semilattice contains a universal lower bound, usually 

denoted by 0. 

For u and v in V, let us denote 

[u,v] := {w EV u s w s v}. 

Such a set [u,v] is called an order interval in the semilattice. Since V 

is finite, any non-empty order interval [u,v] is a lattice with respect 

to the orderings. 

A semilattice is called distributive if each order interval [0,u] is 

a distributive lattice. In Figure 3.12 we give the Hasse diagrams of three 

distributive semilattices. 

If two elements u and v of a semilattice have a least upper bound, 

then this least upper bound is unique (and is denoted by u v v). For, 

assume that u and v have two distinct least upper bounds x and y. Note 

that in this case we have x # x A y # y. Then it follows that 

u,v S x A y < x,y -that is, neither x nor y is a least upper bound. 



FIGURE 3 .12. 

A semilattice is said to have the coronation property if for any 

three elements u, v and w of the semilattice such that the three least 

upper bounds u v v, v v wand w vu exist, there exists a common least 

upper bound u v v v w. Of the three semilattices in Figure 3.12 the 

middle one does not have the coro~ation property. 

3.3.2. DEFINITION. A median semilattice is a finite distributive semi­

lattice wi_th the coronation property. 

On a median semilattice (V,~) we can define a ternary operation 

<u,v,w> (u Av) v (v Aw) v (w Au), as is shown below in the proof of 
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Theorem 3.3.3. It follows from results of SHOLANDER [S3], and also from 

results in Chapter 7, that this ternary operation defines a median algebra 

on v. 

3.3.3. THEOREM. A graph G is a median graph if and only if G is the 

diagraph of a median semilattice. 

PROOF. Let G be a median graph with interval function I, and embed Gin 

a hypercube Q as in Theorem 3.2.7. Fix a vertex 0 of G, and let Q be the 

Hasse diagram of the Boolean lattice Bon 2n elements with Oas universal 

lower bound. The orientation of Q induces an orientation of G, by which G 

is the Hasse diagram of a poset (V,~) with Oas universal lower bound. 

Note that this ordering of V can also be defined as follows: 
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u $ v whenever u E I(O,v) for u,v EV. 

Let u and v be two vertices of G. Since the greatest lower bound of 

u and v in Bis the median of u, v and O in Q, it follows that u and v 

have this median as their unique greatest lower bound in the poset (V,$). 

So (V,$) is a semilattice. 

It follows from Theorem 1.3.6 and the properties of median graphs 

that each order interval [O,u] in (V,$) is a distributive lattice. The 

coronation property of (V,$) follows from the fact that, for any three 

vertices u, v and win Q, the median-of u v v, v v wand w vu is 

precisely u v v v w. So (V,$) is a median semilattice with Gas its 

diagraph. 

Conversely, let G be the diagraph of a median semilattice (V,$), and 

let d be the (graph-theoretical) distance function of G. Note that a 

distributive semilattice is a graded poset. Hence the ordering$ is the 

canonical ordering of G with respect to the universal lower bound O of 

the semilattice (see Proposition 1.3.1). 

First we prove by induction on d(u,v) that 

d(u,v) d(u,u Av) + d(u A v,v) for u,v EV. 

If u $ v or v $ u, then the assertion is clear. So let u and v be such 

that u Av< u and u Av< v, and let d(u,v) k. Note that k ~ 2. 

Let w be a neighbour of v with d(u,w) = k - 1. 

CASE 1: w < v. 

Assume that u Aw f u Av. Then, since [O,v] is a distributive 

lattice and v covers w, it follows that u Av covers u Av Aw= 

= u A (v Aw) = u Aw (see Figure 3.13). 

By the induction hypothesis we have 

d(u,v) d(u,w) + 1 d(u,u Aw) + d(u A w,w) + 1 

d(u,u Av) + 1 + d(u A v,v) + 1 

~ d(u,v) + 2, 



which is a contradiction. Hence, it follows that u Aw 

By the induction hypothesis we have 

U AV. 

d(u,v) d(u,w) + 1 d(u,u Aw) + d(u A w,w) + 1 
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d(u,u Av)+ d(u A v,w) + 1 d(u,u Av)+ d(u A v,v). 

u V 

0. 

FIGURE 3 .13. 

CASE2: w>v. 

By the induction hypothesis we can find a neighbour w' of w with 

d(u,w') d(u,w) - 1 k - 2, 

such that w' < w. Let v' = w' Aw. Since w covers both v and w' in the 

distributive lattice [0,w], it follows that w' and v both cover v'. Hence 

we have 

d(u,v) - 1 ~ d(u,v') ~ d(u,w') + 1 d(u,w) d(u,v) - 1, 

and so d(u,v') = k - 1. With this we have reduced Case 2 to Case 1. 

By analogous reasoning we can prove that if u and v have a least 
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upper bound u v v, then 

d(u,v) d(u,u v v) + d(u v v,v). 

In the proof we have to use the fact that [O,u v v] is a distributive 

lattice containing u and v. 

From these results we deduce that, if two vertices u and v have a 

least upper bound u v v, then 

I(u,v) {w u Av s w·s u v v} [u Av, u v v], 

where I is the interval function of G. Then, for any two vertices u and 

v of G, we have 

I(u,v) U [x A y, XV y], 

where the union is taken over all pairs of vertices x and y such that x 

lies in [u A v,u], y lies in [u A v,v] and xv y exists. Hence 

I(u,v) u 
x,yEI(u,v) 
xvy exists 

[x A y, XV y]. 

This implies that G is interval monotone. 

Finally, let u, v and w be vertices of G, and let x = u Av, 

y = u Aw and z = v Aw. Then x and y lie in [O,u], and so xv y exists. 

Similarly, it follows that xv z and y v z exist. Hence it follows from 

the coronation property of (V,S) that xv y v z exists in (V,S). Since 

X V y V Z (u Av) v (u Aw) v (v Aw), 

it follows from the above derived properties of I that 

XV y V z E I(u,v,w). 

Hence I is an interval structure on V, and so, by Theorem 3.1.6, G is 

a median graph. D 



The next two theorems follow directly from the proof of the last 

theorem. Theorem 3.3.5 is due to SHOLANDER [S3]. 

3.3.4. THEOREM. Let V be a finite set. There exists a one-to-one 

correspondence between the median semilattices with Vas set of elements 

and the ordered pairs (G,O), where G is a median graph with vertex-set V 

and O is a vertex of G. 

3.3.5. THEOREM. Let (V,S) be a median semilattice, and let a be an 

element in V. Define the ordering sa_of V by u Sa v whenever u ~ a Av 

and u = (a Au) v (u Av). Then (V,Sa) is a median semilattice with a 

as universal lower bound. 

3.4. THE n-CUBE AS A MEDIAN GRAPH 

We conclude this chapter by deducing some new characterizations of 

Q from Theorem 3.2.7 (see [M3]). · 
n 

3.4.1. THEOREM. A graph G is (isomorphic to) Qn if and only if G is a 

median graph with maximum degree n such that G contains two diametrical 

vertices, at least one of which has degree n. 

PROOF. The "only if" part of the proof follows immediately from the 

properties of Qn. 

Let G be a median graph, and let O and 6 be two diametrical vertices 

with d(O) = n. Embed Gin a hypercube Q with its subset representation 
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(as in Theorem 3.2.7) so that the vertex¢ of Q corresponds to 0. Let {1}, 

{2}, ••. ,{n} represent the neighbours of O in G. Note that the distance 

functions of G and Q coincide on the vertex-set of G. 

We prove that all subsets of {1,2, ..• ,n} are precisely the vertices 

of G, and so G is Qn. This is accomplished by induction on the cardinality 

of the subsets of {1,2, ... ,n}. 

Since O and 6 are diametrical, it follows that N(O) c I(O,O), where 

I is the interval function of G. 

Let i ~ 1, and assume that all sets As {1, ... ,n} with IAI Si are 

vertices of G and that 
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d(A,0) diam(G) - IAI, 

for all such sets A. 

Choose a set A£ {1, •.• ,n} with IAI 

distinct i-subsets of A. Then 

i + 1, and let Band C be two 

BU C A, 

and 

IB n cl i - 1. 

Furthermore, the common neighbours of Band c in Qare A and B n C. By the 

induction hypothesis, B, C and B n Care vertices of G. Moreover, we have 

d(B n c,5) d(B,B) + 1 d(C,0) + 1. 

Since d(B,0) d(C,0) and d(B,C) = 2, it follows that the median of B, C 

and 6 in Q is a common neighbour of Band c that has smaller distance from 

6 than B or C. So A has to be the median of B, C and 6 in Q. This implies 

that A is in G and 

d(A,0) d(B,0) - 1 diam(G) - IBI - 1 diam(G) - IAI. 

This completes the proof. D 

3.4.2. COROLLARY. A graph G is Qn if and only if G is a regular median 

graph of degree n. 

3.4.3. COROLLARY. A graph G is Qn if and only if G is a diametrical 

median graph of diameter n. 

Since by Theorem 3.3.3 the diagraph of a distributive lattice is a 

median graph, Theorem 1.3.9 follows from this last corollary. It is of 

course not necessary to use these heavy results for the proof of Theorem 

1.3.9. But since we have them, why not use them? 
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CHAPTER 4 

HELLY HYPERGRAPHS 

In this chapter we discuss the relationship between median graphs and 

yet another mathematical structure: Helly hypergraphs. As a digression we 

derive an upper bound for the number of edges in a k-Helly hypergraph. 

4.1. MEDIAN GRAPHS AND HELLY HYPERGRAPHS 

The results in this section have been obtained in collaboration with 

A. Schrijver (see MULDER & SCHRIJVER [MS]). 

Besides the algebraic structures mentioned in Chapter 3, there is 

another mathematical structure related to median graphs. This is a 

special class of Helly hypergraphs. 

First we introduce some terminology. A hypergraph H = (V,E) consists 

of a finite vertex-set Vanda family E c P(V) of non-empty subsets of V, 

the members of which are called edges. Note that in BERGE's terminology 

this is a simple hypergraph (see [Be]). Occasionally we write E instead 

of (V,E). For any two elements u and v in v, we write 

u and v lie in B}. 

4.1.1. DEFINITION. The underlying graph GE of a hypergraph (V,E) has V 

as vertex-set, and two distinct vertices u and v are joined by an edge 

in GE whenever +E(u,v) = {u,v}. 

A hypergraph (V,E) is a Helly hypergraph if it has the Helly property 

-that is, each subfamily of E, any two members of which meet, has a non-
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empty intersection. The underlying graph of a Helly hypergraph is triangle­

free. Helly hypergraphs have been studied in particular by BERGE and 

DUCHET (see e.g. [Be], [BD] and [Du]). A characterization of Helly hyper­

graphs by GILMORE (see [Gi], or [Be, p. 396]) can be formulated as follows. 

4.1.2. THEOREM. A hypergraph (V,E) has the Helly property if and only if 

IE is an interval structure on v. 

4.1.3. COROLLARY. Let I be an interval structure on V. Then any family E 

of non-empty I-convex subsets of V has the Helly property. 

For any subset B of V, the family {B,V \ B} is called a copair of V; 

the copair {~,v} is the trivial copair of V. 

4.1.4. DEFINITION. A hypergraph (V,E) is a copair hypergraph if V \Bis 

an edge for any edge B of E. A Helly copair hypergraph is a copair hyper­

graph with the Helly property. 

4.1.5. DEFINITION. A maximal Helly copair hypergraph (V,E) is a Helly 

copair hyp.ergraph such that, if {A,V \ A} is a non-trivial copair of V 

and Eu {A,V \ A} has the Helly property, then A and V \ A are edges of E. 

In Figure 4.1 we give two examples of maximal Helly copair hyper­

graphs on six vertices (if a copair contains a singleton, we draw only 

the singleton in the figure). The corresponding underlying graphs are 

drawn in Figure 4.2. 

0 0 0 0 

FIGURE 4.1. 



FIGURE 4.2. 

4.1.6. DEFINITION. A hypergraph (V,E} separates vertices if for any two 

distinct vertices u and v in v, there exists an edge A in E such that u 

is in A and vis not. 

Note that a hypergraph (V,E) separates vertices if and only if 

IE(v,v} = {v} for any vertex v in v. 

4.1.7. THEOREM. Let (V,E} be a Helly hypergraph. Then Eis maximal if 

and only if. E separates vertices. 

PROOF. Assume that E does not separate vertices, and let v be a vertex 

such that jIE(v,v)j ~ 2. Then the copair hypergraph Eu { {v}, V \ {v}} 

has the Belly property, the verification of which is left to the reader. 

So Eis not maximal. 

Let E separate vertices, and let {A,V \ A} be a non-trivial copair 

of V not in E. Choose a vertex u in A and a vertex v in V \ A such that 

jIE(u,v} I is as small as possible. 

First we prove that 
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Assume the contrary, and let w be a vertex in IE(u,v) n A distinct from u. 

Since E separates vertices, there exists a copair {c,v \ c} in E with w 

in C and u in V \ C. Since w lies in IE(u,v), it follows that v lies in 

C. This implies that u is not in IE(w,v} c IE(u,v}, contradicting the 

minimality of IE(u,v}. 
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Likewise we have 

Hence we have proved that 

{u,v}. 

Let {B,V \ B} be a copair in E with v in Band u in V \ B. Since A is 

not in E, and so A is not in {B,V \ B}, it follows that An B / 0 or 

(V \ A) n (V \ B) I¢. Without loss of generality, let An BI¢. Then A 

and B, together with the set of edges containing both u and v, form a 

family of subsets of V, any two members of which meet. The intersection 

of this family is 

{u,v} n An B 

Hence Eu {A,V \ A} is not a Helly hypergraph, from which the maximality 

of E follows. D 

We can obtain from this theorem a lower bound for the number of edges 

in a maximal Helly copair hypergraph. It follows from Theorem 4.1.12 that 

this lower bound is best possible. 

4.1.8. COROLLARY. Let (V,E) be a maximal Helly copair hypergraph. Then 

where the logarithm is taken to base 2. 

PROOF. Fix a vertex u in V. For any vertex v we define 

E 
V 

{B € E u,v EE}. 

Clearly Ev s Eu for each vertex v. Since E separates vertices, it follows 

that E IE for any two distinct vertices v and win V. Hence 
V W 



lvl 
IE I 

~ 2 u 

The required inequality follows by taking logarithms. D 

In the next theorems we discuss the relationship between maximal 

Helly copair hypergraphs and median interval structures. 

4.1.9. THEOREM. Let (V,E) be a maximal Helly copair hypergraph. Then IE 

is a median interval structure on V. 

PROOF. It follows from the definition of a Helly hypergraph that IE is 

an interval structure. 

Assume that there exist vertices u, v and w such that 

for two distinct vertices x and y. By Theorem 4.1.7 there is a copair 

{B,V \ B} in E with x in Bandy in V \ B. It follows that one of the 

edges Band V \ B must contain at least two of the three vertices u, v 

and w. Without loss of generality, let u and v be in B. Then y is not in 

IE(u,v), contradicting the choice of u, v and w. D 

4.1.10. THEOREM. Let I be a median interval structure on a finite set 

V, and let 

0 # B # V, and Band V \Bare I-convex}. 

Then (V,EI) is a maximal Helly copair hypergraph. 

PROOF. It follows from Corollary 4.1.3 that EI is a Helly copair hyper­

graph. Hence by Theorem 4.1.7 it suffices to show that EI separates 

vertices. 

Assume the contrary, and let u and v be two distinct vertices, for 

which there is no separating copair in EI, and such that !I(u,v) I is as 

small as possible. 
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First we prove that I(u,v) = {u,v}. Assume that there exists a vertex 

win I(u,v) distinct from u and v. Since vis not in I(u,w) c I(u,v), it 
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follows from the minimality of I(u,v) that there exists an edge A with u 

in A and w not in A. Since u and v cannot be separated, we have v in A. 

By definition A is an I-convex set in v, and sow lies in I(u,v) c A, 

contradicting the fact that w is not in A. Hence 

I(u,v) {u,v}. 

Let 

B := {z € V v ~ I(u,z)_}. 

Since I is a median interval structure, it follows that I(u,z) n I(z,v) n 

n {u,v} is a singleton. This implies that 

V \ B {z EV u ~ I(z,v)}. 

Then {B,V \ B} is a copair which separates u and v. So if Band V \Bare 

I-convex, then the required contradiction is established. 

We now prove that Bis I-convex. Since each interval in Vis 

I-convex (condition (Ill in Definition 3.1.3), it follows from the 

definition of B that 

I(u,z) s B for z € B. 

Let x and y be two vertices in B. It follows from the definition of B that 

u lies in I(v,x) as well as in I(v,y), and so 

I(u,x) = I(v,x), 

and 

I(u,y) s I(v,y). 

Hence there exists a vertex z in B such that 

{z} I(u,x) n I(x,y) n I(y,u) I(v,x) n I(x,y) n I(y,v). 

Assume that I(x,y) $ B, and let w be a vertex in I(x,y) \ B. Then 

it follows from the fact that z lies in I(v,x) n I(y,v) that 



{z} = I(z,w) n I(z,v) s I(x,y) n I(z,v) 

s I(x,y) n I(x,v) n I(y,v) {z}, 

and so I(w,z) n I(z,v) = {z}. Since I is a median interval structure, it 

follows that z lies in I(w,v), and so 

I (z,v) = I (w,v). 
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Since w is not in B, it follows that I(w,v) s V \ B, and so z is in V \ B, 

contradicting the fact that z lies in B. So we have proved that Bis 

I-convex. The I-convexity of V \Bis treated similarly. This completes 

the proof. D 

From these two theorems we deduce the following result. 

4.1.11. COROLLARY. Let I be a median interval structure on the set V. 

Then 

I. 

Let (V,E) be a maximal Helly copair hypergraph. Then 

By these theorems we have established a relationship between median 

graphs and maximal Helly copair hypergraphs. The direct relationship 

between these mathematical structures is given in the next theorem. 

Let G be a median graph. Any cutset from the cutset colouring of G 

induces a copair of V: the deletion of the cutset from G splits the graph 

into two components, the vertex-sets of which form the complementary 

subsets of a copair. Let us call the copairs of V induced by the cutset 

colouring of G the canonical copairs of G. 

4.1.12. THEOREM. A hypergraph (V,E) is a maximal Helly copair hypergraph 
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if and only if E consists of the canonical copairs of a median graph with 

vertex-set V. 

PROOF. Let G be a median graph with vertex-set V and interval function I, 

and let EG c P(V) be the family consisting of the canonical copairs of G. 

Then EG consists of I-convex subsets of V. Furthermore, EG separates 

vertices, and so EG is a maximal Helly copair hypergraph. Note that two 

distinct vertices of Gare adjacent if and only if 

u,v EB} {u,v}, 

Conversely, let (V,E) be a maximal Helly copair hypergraph, and let 

GE be its underlying graph. By Theorems 4.1.9 and 3.1.5 it follows that 

GE is a median graph. It follows from Corollary 4.1.11 that each edge B 

in Eis IG -convex. Hence, for any copair {B,V \ B} in E, the set 
E 

[B,V \ B] must be a cutset in the cutset colouring of GE. So E consists of 

canonical copairs of GE. From the first part of the proof we conclude that 

E consists of all the canonical copairs of GE. D 

We recapitulate the above results and Theorems 3.1.4 and 3.1.5 in the 

next theorem, which is the main result of MULDER & SCHRIJVER [MS]. 

4.1.13. THEOREM. Let V be a finite set. Then there exist one-to-one 

correspondences between the median interval structures on V, the maximal 

Helly copair hypergraphs with vertex-set V, and the median graphs with 

vertex-set Vas follows: 

(i) let I be a median interval structure on V; then 

(V,E) is a maximal Helly copair hypergraph, where E consists of 

the I-convex copairs of V; 

- G is a median graph, where two distinct vertices u and 

v are adjacent whenever I(u,v) {u,v}; 

(ii) let (V,E) be a maximal Helly copair hypergraph; then 

- I is a median interval structure, where 

I(u,v) = n{B e E u,v e B}, for u,v e V; 



- G is a median graph, where G is the underlying graph of E; 

(iii) let G be a median graph; then 

- I is a median interval structure, where I is the interval 

function of G; 

(V,E) is a maximal Helly copair hypergraph, where E consists of 

the canonical copairs of G. 

This theorem can be summarized in the following diagram. 

I median interval 
structure on V 

E {w c v I [w,v \ wJ 
is a cutset in the 
cutset colouring of G} 
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G median 
graph 

(V,E) maximal Helly 
copair hypergraph 

UV EE¢> u ~ V and 
n {BEE j u,v EB}= {u,v} 

Since the number of edges in a maximal Helly copair hypergraph (V,E) 

equals twice the number of colours in the cutset colouring of its under­

lying graph, it follows from Theorem 3.2.8 that the lower bound for the 

number of edges derived in Corollary 4.1.8 is best possible. 

In the rest of this section we derive an upper bound for the number 

of edges in a maximal Helly copair hypergraph. 

Let G be a connected graph with n vertices admitting a cutset 

colouring. Since each cutset contains edges of a spanning tree, the 

number of colours in the cutset colouring of G is at most n - 1. 



106 

4.1.14. PROPOSITION. Let G be a connected graph with n vertices admitting 

a cutset colouring. Then the number of colours in the cutset colouring of 

G is n - 1 if and only if G is a tree. 

PROOF. If G is a tree, then any cutset in G consists of a single edge, 

and so G is uniquely cutset colourable with n - 1 colours. 

Conversely, let T be a spanning tree of G. Then T has n - 1 edges, 

so the edges of Tall have different colours. Hence every edge of T 

determines exactly one cutset of the cutset colouring -that is, if e is 

an edge of T and T[W] and T[V \ W] are the components of T - e, then 

[W,V \ W] is the cutset in the cutset colouring of G containing e. 

Assume that there is an edge joining u and v in G that is not in T. 

Then the (u,v)-path in T contains at least two distinct edges f 1 and f 2 . 

So the edge uv is in the colour class determined by f 1 as well as in the 

colour class determined by f 2 . This is impossible, and so G equals T. D 

We use the term maximum to mean: "with a maximal number of edges". 

The next theorem follows immediately from Theorem 4.1.12 and the last 

proposition. 

4.1.15. THEOREM. A hypergraph (V,E) is a maximum Belly copair hypergraph 

if and only if E consists of the canonical copairs of a tree with vertex­

set V. 

4.1.16. COROLLARY. Let (V,E) be a Belly copair hypergraph. Then 

IEI 5: 2(lvl - 1). 

An upper bound for the number of edges in a Helly hypergraph follows 

easily from this corollary and is due to MILNER (see [Er]). 

4.1.17. COROLLARY. Let (V,E) be a Belly hypergraph. Then 

PROOF. In P(V) there are 2lvl-l copairs. Of at most lvl - 1 of these 



copairs both complementary sets are inf. D 

This upper bound is attained by those hypergraphs (V,E) in which 

there exists a vertex v such that E consists of all subsets of V 

containing v. In other words, E consists of the canonical copairs of 

the star Kl,n-l' with v as vertex of degree n - 1, together with all 

possible non-empty intersections of members of these copairs. This 

observation can be established by direct verification. It follows also 

from Theorem 4.2.6. 

4.2. DIGRESSION: THE NUMBER OF EDGES IN A k-HELLY HYPERGRAPH 

In this section we give extensions of the last inequality of the 

previous section, and some related results. 

4.2.1. DEFINITION. A hypergraph f is k-linked if any k members, not 

necessarily distinct, have a non-empty intersection. 

Note that every hypergraph is both 0-linked and 1-linked. 

4.2.2. DEFINITION. A hypergraph f is a k-Helly hypergraph if any k­

linked subhypergraph f's E has a non-empty intersection. 

A 2-Helly hypergraph is just a Helly hypergraph in the usual sense. 
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A hypergraph (V,f) is a 1-Helly hypergraph (and simultaneously a 0-Helly 

hypergraph) if and only if nE f 0. It is easily verified that, fork~ 2, 

any subset of V of size less thank can be added to a k-Helly hypergraph 

without destroying the "k-Helly" property. 

A k-uniform hypergraph has all its edges of size k. By Pk(V) we 

denote the family of all k-subsets of V. Forv in V, the family of subsets 

of V containing vis denoted by {v}t. 

Before deriving an upper bound for the number of edges in a k-Helly 

hypergraph we prove another result. 

4.2.3. DEFINITION. Let f be a hypergraph. A pointer of an edge Bin f is 

a subset of B of size IBI - 1, which is not contained in any other edge 

of E. 
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4.2.4. THEOREM. Let p be an integer with p ~ 2, and let (V,EJ be a 

p-uniform hypergraph with lvl = n. If each edge of E has a pointer, then 

Furthermore, equality holds if and only if there exists a vertex v in V 

such that 

E {v}t n P (VJ. 
p 

PROOF. For each edge B of Ewe fix a preferred pointer B' in P 1 (V). 
p-

Let B be the family of preferred pointers. We define a bipartite graph 

Gas follows: Eu (P 1 (V) \ BJ is the vertex-set of G and there is an 
p-

edge between Bin E and A in P 1 (V) \ B whenever A is contained in B. 
p-

Then each vertex Bin E has degree p - 1 in G, and each vertex A in 

P 1 (V) \ B has degree at most n - p + 
p-

in G. 

By counting the edges in G between E and P 1 (V) \ B twice, we get 
p-

(n-p+1J((n1J - IEIJ, 
p-

from which the upper bound follows. 

If equality holds, then each vertex A in P 1 (VJ \ B must have degree 
p-

exactly n - p + 1 in G, and so Au {u} is an edge in E for each u in V \ A. 

Furthermore, any edge Bin E has exactly one pointer: its preferred 

pointer. 

Let B be an edge in E, and let B' = B \ {v} be its pointer. Then we 

have to prove that any k-subset of V containing vis in E. Let A= B \ {w} 

be a (p-lJ-subset of B containing v. Then A is not a pointer and has 

degree n - p + 1 in G. Let u be an arbitrary vertex in V \ B. Then 

C =Au {u} is in E. 
If C \ {v} is not the pointer of C, then (C \ {v}) u {w} would be an 

edge in E. Since 

B' B n ((C \ {v}) u {w}), 



this contradicts the fact that B' is the pointer of B. Hence C \ {v} 

is the pointer of C. 

So we have proved that any p-subset C of V containing v with 

IB 6 cl= 2 is an edge of E. 
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Applying the preceding argument on any edge containing v, we get the 

required result. D 

4.2.5. COROLLARY. Let (V,E) be a p-uniform k-Helly hypergraph with 

lvl = n. If p > k, then 

Furthermore, equality holds if and only if there exists a vertex v in V 

such that 

E t { V} n p (V). 
p 

PROOF. If k $ 1, then nE #~.and the assertion follows immediately. 

If k ~ 2, then it follows from the fact that p > k that each edge in 

E must have a pointer. Hence the result follows from the previous 

theorem. D 

4.2.6. THEOREM. Let (V,E) be a k-Helly hypergraph with lvJ n. Then 

Furthermore, equality holds if and only if there exists a vertex v in V 

such that 

E t {v} u 
k-1 
u 

i=l 
P. (V). 

1 

PROOF. Write Ei E n Pi (V). Then 

IE.I$(~) 
1 1 

Furthermore, by Corollary 4.2.5 we have 

for i 1, .•• , k-1. 
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for i k+2, ... ,n. 

Consider Ek u Ek+l" Each edge in Ek+l must have a pointer that is 

not an edge in Ek. Let A be the family of non-edge pointers of edges in 

Ek+l" Then we have 

Combining the three inequalities we get the upper bound for IEI. 

To get a maximum k-Helly hypergraph we must have equality in all of 

the above inequalities (if possible). So 

E. for i 1, ... ,k-1. 
l. 

Moreover, there must exist a vertex vi in V such that 

for i k+2, .•. ,n. 

Finally, we have 

If k ~ n - 1, then the assertion is easily verified, and is left to 

the reader. If k $ n - 2, then it follows that v = vk+2 = = vn' for 

some vertex v in V. Furthermore, every edge in Ek u Ek+l must contain v, 

and so we have 

t {v} n P. (V) 
l. 

for i k,k+l. 

A maximum 1-uniform 1-Helly hypergraph E consists of a unique 

singleton. A maximum 2-uniform 2-Helly hypergraph is just a triangle-free 

graph with the maximum number of edges -that is, a complete bipartite 

graph Kl½nJ,r½nl" (This follows from the famous theorem of P. Turan 

concerning K -free graphs with a maximum number of edges -see, for 
p 

□ 
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example, [Be]; the special case of K3-free graphs used here has already 

been proved in 1907 by WYTHOFF [Wy].) 

We give a preliminary result concerning the number of edges in 

maximum k-uniform k-Helly hypergraphs. 

4.2.7. PROPOSITION. Let fk(n) be the number of edges in a maximum 

k-uniform k-Helly hypergraph with n vertices. Then 

for n;;:: k. 

PROOF. Let (V,E) be a maximum k-uniform k-Helly hypergraph with !vi n+l. 

Then, for each vertex v in V, we have 

Hence 

L I E n P (V \ { v} l I s 
VEV 

(n+l) fk (n). 

On the left-hand side of this inequality the edges of E are each counted 

with multiplicity (n-k+l), and so the left-hand side equals (n-k+l)fk(n+l). 

The above mentioned theorem of Wythoff follows from this proposition 

by direct verification. We conclude this section by stating a conjecture 

on 3-uniform 3-Helly hypergraphs. 

□ 

4.2.8. CONJECTURE. A 3-uniform 3-Helly hypergraph (V,E) is maximum if and 

only if there exists a partition A0 , A1 , A2 of v with 

for O $ i < j $ 2 

such that E consists of the following 3-subsets of V: 

1 for i 0,1,2; 

(ii) BE P3 (V) such that !B n Ail= 2 

is taken modulo 3, for i = 0,1,2; 

and !BnA. 1 1 
1.+ 

1, where i + 1 
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With the use of Proposition 4.2.7, it can be verified that the 

conjecture is true for lvl $ 12. 
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CHAPTER 5 

HAMMING GRAPHS 

In this chapter we study another generalization of hypercubes: the 

Hamming graphs (graph products of complete graphs). This generalization 

is more restricted than those in Chapters 1 and 2, and paves the way 

for the study of quasi-median graphs in the next chapter. We characterize 

Hamming graphs using the interval function, and introduce the extended 

odd graphs as a class of graphs that shows the scope of some properties 

involved in characterizations derived in this Chapter and Chapter 1. 

5.1. A CHARACTERIZATION OF HAMMING GRAPHS 

Let a 1 , •.. ,an be positive integers, and let V be the Cartesian 

product IT~ 1{0,1, •.. ,a.-1}. In coding theory the following terms are used: 
1.= l. 

the Hamming distance of two vectors in Vis the number of coordinates in 

which they differ, and the weight of a vector is the number of its non­

zero coordinates (see [CL]). The following definition gives a natural 

generalization of hypercubes with their vector representation. 

5.1.1. DEFINITION. Let a 1 , •.. ,an be positive integers. The Hamming graph 

H is the graph with vertex-set IT~ 1{0,1, ..• ,a.-1}, in which two 
al, ... ,an i= l. 

vertices are joined by an edge if and only if the corresponding vectors 

differ in exactly one coordinate. 

For example, Q is the . n 

The Hamming graphs H412 and 

Hamming graph H 
al' .•. ,an 

H313 are given in Figure 5.1. 

a 
n 

2. 
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21 

02 

10 

00 

FIGURE 5.1. 

Note that a Hamming graph H is the graph with vertex-set 
al, ... ,an 

V = IT~ 1{0,1, ... ,a.-1} such that the Hamming distance and the distance 
i= i 

function of the graph coincide. It follows from Definition 5.1.1 and the 

definition of the product of graphs that 

X ••• X K 
a 

n 

This graph is regular of degree L a,-1. Furthermore, for any two vertices 
i ~ 

u and v in v, the interval I(u,v) induces a hypercube of dimension d(u,v). 

This follows easily from Definition 5.1.1 and immediately from 

Proposition 1.2.6. So a Hamming graph is interval-regular. Moreover, K4-e 

is not an induced subgraph of a Hamming graph (see Figure 1.7). For any 

vertex u of H , the subgraph induced by N(u) consists of the 
al, .•. ,an 

disjoint union of complete graphs of sizes a 1-1, ... ,an-1. 

The automorphism group of H is generated by those 
al, ..• ,an 

automorphisms of the following types: 

(i) renumbering the elements of a coordinate-set; 

(ii) interchanging two coordinate-sets of the same size. 



115 

Hence a Hamming graph is vertex-transitive -that is, any vertex can be 

taken as the zero vector. Furthermore, H is distance-
al, ... ,an 

transitive if and only if a 1 an. Coordinate-sets of size 1 do not 

influence the structure of a Hamming graph and are therefore not 

considered in the sequel. The problem of characterizing Hamming graphs was 

posed by FOLDES [F2]. One other term before we study Hamming graphs in 

more detail: the j-th level of a Hamming graph consists of all vertices 

of weight j. 

5.1.2. THEOREM. Let G be a connected graph with interval function I. 

Then G is a Hamming graph if and only if G is interval-regular and does 

not contain K4-e as an induced subgraph and I satisfies the following 

condition: 

I(u,v) n I(v,w) {v} => d(u,w) <'= max{d(u,v) ,d(v,w)}, 

for any three vertices u, v and w of G. 

PROOF. To prove the "only if" part, let u, v and w be vertices of a 

Hamming graph with I(u,v) n I(v,w) = {v}. Without loss of generality, we 

may assume that v corresponds to the zero vector. Then u has exactly 

d(u,v) non-zero coordinates, and w has exactly d(v,w) non-zero coordinates. 

Furthermore, u and w have no equal non-zero coordinates. Hence u and w 

differ in at least max{d(u,v),d(v,w)} coordinates. The other conditions on 

G have already been checked in the remarks preceding the theorem. 

The "if" part of the proof requires two preliminary steps. 

First assume that G contains an induced circuit of length 5, 

u + v + w + x + y + u say. Then we have d(u,w) = d(u,x) = 2, and 

d(w,x) = 1. Hence I(u,w) n I(u,x) contains a vertex p, which is adjacent 

to u, wand x (see Figure 5.2). Since K4-e does not occur in G, it follows 

that pis not adjacent toy or to v. Similarly, there is a vertex q 

adjacent to x, u and v, but not toy or w. Soy, p and q are three 

distinct common neighbours of u and x, contradicting the interval­

regularity of G. Hence each circuit of length 5 in G contains a diagonal. 

The next step is to prove that, for any two vertices u and v of G, 

the interval I(u,v) induces a hypercube of dimension d(u,v). By Theorem 
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1.2.3, it suffices to prove that there are no edges joining two vertices 

within the same level in I(u,v). 

y V 

u 

FIGURE 5.2. 

Assume the contrary, and let x and y be two neighbours in the i-th 

level in I(u,v). Choose a vertex z in I(u,x) n I(u,y) such that d(z,x) = 

= d(z,y) is minimal. Then we have 

I(z,x) n I(z,y) {z}, 

and so 

1 d(x,y) ~ max{d(z,x),d(z,y)} ~ 1. 

Hence z is adjacent to x and y, and z lies in Ni-l (u,v). Similarly there 

is a vertex win Ni+l (u,v), which is adjacent to x and y. Thus x, y, z and 

w induce a K4-e in G, which is forbidden. So each interval in G induces a 

hypercube. 

Let us now prove that G is a Hamming graph. Fix a vertex u of G. 

Since K4-e does not occur in G, it follows that the subgraph induced by 

N(u) is the disjoint union of complete graphs. Let A1, ..• ,An be the 

maximal cliques in N(u). Since I(u,v) induces a hypercube for any vertex 

v of G, we have 

Jrcu,v) n A. J ~ 1 
l. 

Let JA. J 
l. 

for i 1, ... ,n, and for v EV. 

1, ••. ,n, and label the vertices of clique Ai 
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with 1, ... ,ai. By induction on j we prove that Ui=o Ni(u) is isomorphic to 

the subgraph of H induced by the bottom j+l levels. We do this 
a 1+1, ... ,an+1 

by representing each vertex v of G by a vector (v1 , ... ,vn) in 

IT~ 1{0,1, ... ,a.}, where 
1.= 1. 

= 0 

and 

I (u,v) n A. 
1. 

if I(u,v) n A. 
1. fll, 

if I(u,v) n Ai f fll. 

Note that u is represented by the zero vector, and any vertex in the i-th 

level is represented by a vector of weight i. 

For j ~ 1 the assertion is clear, so let j > 1, and assume that the 
j-1 

set U1.'=0 Ni(u) induces the bottom j levels of H 1 . 
a 1+1, ... ,an+ 

Choose a vertex v in N.(u). Since the interval I(u,v) induces a 
J 

j-cube Q. in G, it follows that vis adjacent to a vertex x in N. 1 (u) if 
J J-

ana only if the Hamming distance between v and xis 1. Let x and y be two 

distinct neighbours of v in N. 1 (u). Then it follows that d(x,y) 
J-

that x and y have a unique common neighbour in N. 2 (u). Since G is 
)-

2, and 

interval-regular, it follows that x and y have no common neighbour other 

than v in N.(u). This implies that two distinct vertices in N.(u) have 
J J 

at most one common neighbour in N. 1 (u). Hence it follows from the 
J-

induction hypothesis that distinct vertices in N.(u) are represented by 
J 

distinct vectors of weight j. 

Choose a vector of weight j, (v1 , ... ,vj,0, ... ,0), say. By the 

induction hypothesis the vertices in Nj-l (u) represented by (v 1 , ... ,vj-l' 

0, •.• ,0) and (0,v2 , ... ,vj,0, •.. ,0) have a unique common neighbour in 

N. 2 (u) and no common neighbour in N. 1 (u). So their second common 
J- ]-

neighbour lies in N. (u), and this common neighbour must be represented 
J 

by (v1 , ... ,vj,0, ... ,0). Hence all vectors of weight j are used as 

representatives of vertices in N. (u). 
J 

Finally, the edges joining two vertices in N.(u) have to be checked. 
J 

First let v and v' be two distinct vertices in N. (u) with Hamming 
J 

distance 1 -say, v = (v 1,v2 , ... ,vj,0, ... ,0) 

v' = (vi,v2 , .•. ,vj,o, ..• ,0) with v 1 # vi· In 

circuit of length 5 containing v and v'. The 

and 

Figure 5.3 we depict a 

only diagonal possible in 

this circuit is vv'. So by the first step in the proof v and v' are 

adjacent. 
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FIGURE 5.3. 

Let v and w be two vertices in N.(u) with Hamming distance at least 2. 
J 

Let z be a vertex in I(u,v) n I(u,w) with I(z,v) n I(z,w) = {z}. If 

d(v,z) ~ 2, or if d(z,w) ~ 2, then v and ware not adjacent. So assume 

that d(v,z) = d(z,w) = 1 (see Figure 5.4). 

ov2 ... v . 1 Ov . 1 J- J+ 

FIGURE 5.4. 

If v and w were joined by an edge, then a circuit of length 5 without 

diagonals would be formed. Hence v and ware not adjacent. 

So we have proved that Ui=o Ni(u) induces a subgraph of G, on which 

the Hamming distance and the graph distance coincide. This completes 

the proof. D 

We conclude this section with some easy results concerning graphs G 



with interval function I satisfying 

I(u,v) n I(v,w) {v} • d(u,w) ~ max{d(u,v),d(v,w)}, 

for any three vertices u, v and w of G. In the next section we give an 

example of a graph showing that this condition on I is necessary in the 

foregoing theorem. 
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5.1.3. PROPOSITION. If G is a triangle-free graph with interval function 

I such that 

I(u,v) n I(v,w) {v} • d(u,w) ~ max{d(u,v),d(v,w)}, 

for any three vertices u, v and w of G, then G is bipartite. 

PROOF. The argument is the same as in the step of the proof of Theorem 

5.1.2, where we verified that each interval induces a hypercube. 0 

5.1.4. PROPOSITION. Let G be a connected graph with interval function I. 

Then G is complete if and only if 

I(u,v) n I(v,w) {v} • d(u,w) max{d(u,v) ,d(v,w)}, 

for any three distinct vertices u, v and w of G. 

PROOF. If G is complete, then for any three distinct vertices u, v and 

w of G, 

I(u,v) n I(v,w) {v}, 

and 

d(u,v) d(v,w) d(w,u) 1. 

Conversely, assume that G is not complete. Let u and w be vertices 

of G with d(u,w) = 2, and let v be a common neighbour of u and w. Then 

we have 

I(u,v) n I(v,w) {v}, 
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and 

d(u,w) 2 > 1 d(u,v) d(v,w). 

5.1.5. PROPOSITION. Let G be a connected graph with interval function I. 

Then I(u,v,w) f 0 for any three vertices u, v and w of G if and only if 

I(u,v) n I(v,w) {v} ~ d(u,w) > max{d(u,v),d(v,w)}, 

for any three distinct vertices u, v and w of G. 

PROOF. First we prove the "if" part. Assume the contrary, and let u, v 

and w be three distinct vertices of G such that I(u,v,w) = 0 and 

d(u,v) + d(v,w) + d(w,u) is as small as possible. Then we have 

I(u,v) n I(v,w) {v}, 

and 

I(v,w) n I(w,u) {w}. 

It follows that 

d(u,w) > d(v,w) > d(u,w), 

which is impossible. 

Conversely, let u, v and w be distinct vertices of G with 

I(u,v) n I(v,w) = {v}. Since I(u,v,w) f 0, it follows that v lies in 

I(u,w). So v lies on a shortest (u,w)-path, and vis distinct from u and 

w. This implies that d(u,w) > max{d(u,v),d(v,w)}. D 

5.2. EXTENDED ODD GRAPHS 

D 

We might wonder whether, for a connected graph G, the condition 

"I(u,v) induces a d(u,v)-dimensional hypercube for any two vertices u and 

v of G" implies that G is a Hamming graph. That this is not the case is 

shown by the example below. 

Let k be an integer with k ~ 2. The odd graph Ok has the (k-1)­

subsets of {1, ... ,2k-1} as vertices and two vertices are adjacent if their 



corresponding subsets are disjoint (see [Ko], [BFB], and [B2]). The graph 

Ok (k ~ 2) is a distance-transitive graph which is regular of degree k. 

The small odd graphs are the triangle K3, and the Petersen graph (see 

Figure 5.5). Fork~ 4, the smallest circuit in Ok has length 6. 

25 

2 3 

14 

The Petersen graph o3 

FIGURE 5.5. 
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5.2.1. DEFINITION. Let k be an integer with k ~ 2. The extended odd graph 

Ek has {Ac {1, ••. ,2k-1} IAJ $ k-1} as vertex-set, and two vertices A 

and Bare joined by an edge whenever 

1, or jA ~ Bj 2k-2. 

The small extended odd graphs are the complete graph K4 , and the 

Greenwood-Gleason graph (see Figure 5.6). This graph was introduced by 

GREENWOOD & GLEASON [GG] in order to construct a colouring of the edges of 

K16 with three colours and without monochromatic triangles. KALBFLEISCH & 

STANTON [KS] have proved that each colour class in such a colouring of K16 
induces a graph isomorphic to_ the Greenwood-Gleason graph. This graph is 

the complement of the Clebsch graph (see Section 2.4), and it contains the 

graph in Figure 1.13, so that it is not the diagraph of a poset. 
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1/23 

E =K 
2 4 

3/12 

The Greenwood-Gleason graph E3 

FIGURE 5.6. 

The graph Ek is regular of degree 2k-1. It consists of the "lower 

half" of Q2k-l with the odd graph Ok on the (k-l)th level. Let I be the 

interval function of Ek. Then for any vertex A of Ek, the interval I(0,A) 

is just the power set P(A) of A. Hence if A and Bare two disjoint (k-1)­

subsets of {1, ... ,2k-1}, then 

I(0,A) n I(0,B) {0}, 

and 

d(0,A) d(0,B) k-1 2c 1 d(A,B). 

So, fork 2c 3, the graph Ek does not satisfy the condition on I in 

Theorem 5.1.2. Note that Ek is not a Hamming graph, fork 2c 3. 

The extended odd graphs and the halfcubes introduced in Section 2.1 

can be brought under a "common" definition involving the concept of copair 

(see Section 4.1). Let n be a positive integer, and let V be a set of size 

n. The graph Gn has the copairs of Vas vertices, and two vertices 

{A,V \ A} and {B,V \ B} are joined by an edge whenever 
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For n = 2k, the graph Gn is the halfcube ~Q2k, whereas for n 

graph Gn is the extended odd graph Ek (k ~ 2). 

5.2.2. PROPOSITION. The graph Ek is distance-transitive. 
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2k-l, the 

PROOF. If A and Bare vertices of Ek with d(¢,A) = d(¢,B), then IAI = IBI. 

Let f be a permutation of the set {1, ••• ,2k-1} which maps A onto B. Then f 

induces an automorphism of Ek which maps¢ onto¢ and A onto B. 

Let {j} be a neighbour of¢. Then 

A~ AU {j} if j t A and IAI < k-1, 

A.~ A\ {j} if j € A, 

A~ {1, ••• ,2k-l} \ (AU {j}) if j t A and IAI = k-1, 

defines an automorphism of Ek. 

The automorphisms of Ek of this type generate the automorphism group 

of Ek. Hence Ek is distance-transitive. D 

5.2.3. COROLLARY. For any two vertices A and B of Ek, the subgraph 

induced by I(A,B) is a hypercube of dimension d(A,B). 

PROOF. It follows from the definition of Ek that I(¢,A) induces a hyper­

cube of dimension IAI, for any vertex A of Ek. Since Ek is distance­

transitive, the assertion follows for any two vertices of Ek. D 

5.2.4. COROLLARY. The smallest odd circuit in Ek has length 2k-1. 

PROOF. Let C be an odd circuit in Ek. Since Ek is distance-transitive, we 

may assume that¢ is a vertex of c. Hence it follows from the definition 

of Ek that C must contain an edge joining two vertices within the (k-l)th 

level. D 

The extended odd graph Ek shows that in Corollary 1.2.5 the condition 

that G is bipartite cannot be weakened to "G does not·contain odd circuits 
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of length less than 2k-l". This answers a question of FOLDES [Fl] in the 

negative. Using Seidel's eigenvalue techniques (see [Se], or [CL]), 

J.A. Bondy had already exhibited a sequence of graphs, the first of 

which is E3' showing that the condition "G is triangle-free" is not 

sufficient ([F2]). 
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CHAPTER 6 

QUASI-MEDIAN GRAPHS 

In this chapter we deal with quasi-median graphs, which are a 

generalization of median graphs analogous to the generalization of the 

hypercubes to the Hamming graphs. We characterize quasi-median graphs using 

the interval function, and also by an expansion procedure. 

6.1. PSEUDO-MEDIANS AND QUASI-MEDIANS 

Then-cube Qn is a median graph, whereas its generalization the 

Hamming graph H is usually not a median graph. A natural 
. a1, ••• ,an 

generalization of a median of three vertices in a graph can be given 

analogous to the generalization of Qn to H • 
a1, ••• ,an 

6.1.1. DEFINITION. Let G be a graph, and let (u,v,w) be an ordered triple 

of vertices of G. An ordered triple (x,y,z) of vertices of G is a pseudo­

median of the triple (u,v,w) if it satisfies the following conditions: 

(Pl) there is a shortest (u,v)-path in G on which both x and y lie, 

(P2) 

there is a shortest (v,w)-path in G on which bothy and z lie, 

and there is a shortest (w,u)-path in G on which both z and x lie; 

d(x,y) d(y,z) = d(z,x); 

(P3) d(x,y) is minimal under the conditions (P1) and (P2). 

The distance d(x,y) is the size of the pseudo-median (x,y,z). 

An alternative formulation of condition (P1) is the following: 
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d(u,x) + d(x,y) + d(y,v) d(u,v), 

d(v,y) + d(y,z) + d(z,w) d(v,w), 

and 

d(w,z) + d(z,x) + d(x,u) d(w,u). 

The triple (u,v,w) in the graph of Figure 6.1 has two pseudo-medians of 

size 1, and in Figure 6.2, the triple (u,v,w) has a unique pseudo-median. 

u 

V V 

FIGURE 6.1. FIGURE 6.2. 

6.1.2. DEFINITION. Let G be a graph, and let (u,v,w) be an ordered triple 

of vertices of G. An ordered triple (x,y,z) of vertices of G is the quasi­

median of the triple (u,v,w) if it is a pseudo-median of (u,v,w), and if 

(u,v,w) has no pseudo-median distinct from (x,y,z). 

The triple (u,v,w) in Figure 6.2 has a quasi-median. In accordance 

with the terminology developed in Chapter 3, a quasi-median of size O is 

called a median. 

Let u = (u1 , .•• ,un), v = (v1 , •.. ,vn) and w = (w1, ... ,wn) be vertices 

in the Hamming graph H . Then the triple (u,v,w) has a quasi-median 
al, ... ,an 

(x,y,z). This quasi-median can be determined as follows: if ui' vi and wi 

are all distinct, then x has ui as i-th coordinate, y has vi as i-th 

coordinate, and z has wi as i-th coordinate; if ui, vi and wi are not all 

distinct, then x, y and z all have pi as i-th coordinate, where pi is the 

integer occurring at least twice among ui' vi and wi. The size of the 

quasi-median is the number of coordinates in which u, v and ware all 

distinct. 
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Let G be a graph, and let u, v and w be vertices of G. Let (x,y,z) be 

a pseudo-median of (u,v,w). Then (x,y,z) is the quasi-median of the triple 

(x,y,z), or (more informally) the triple (x,y,z) is its own quasi-median. 

The vertices x, y and z satisfy the following condition: 

(P1') x € I(u,v) n I(u,w), 

y € I(v,u) n I(v,w), 

and z € I(w,u) n I(w,v). 

Let (P3') be condition (P3), where (P1) is replaced by (P1'). The 

conditions (Pl'), (P2) and (P3') do not imply that (x,y,z) is a pseudo­

median of (u,v,w) -see, for example, Figure 6.3, where x, y and z satisfy 

(P1'), (P2) and (P3'). In this graph x, y and z have pas median, whereas 

pis not in I(u,v,w). 

V 

FIGURE 6.3. 

It follows from the definition of pseudo-median that if the vertices 

u, v, w, x, y and z of a graph G satisfy condition (Pl), then a pseudo­

median of (x,y,z) is also a pseudo-median of (u,v,w). The next result 

follows easily from this observation. 

6.1.3. PROPOSITION. Let G be a graph in which each ordered triple of 

vertices has a pseudo-median. Then 

I(x,y) n I(x,z) {x}, 
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I(y,x) n I(y,z) {y}, 

and 

I(z,x) n I(z,y) {z}, 

for any pseudo-median (x,y,z) in G. 

The graph in Figure 6.4 shows the necessity of the condition "each 

ordered triple has a pseudo-median" in the above proposition. 

z 

y 

FIGURE 6.4. 

6.2. THE STRUCTURE OF QUASI~.MEDIAN GRAPHS 

The following definition gives the right generalization of the concept of 

median graph. Although at first sight it seems rather odd, the reason for 

choosing this definition will become clear as this section progresses. We 

denote a circuit of length n by en. 

6.2.1. DEFINITION. A connected graph G is a quasi-median graph if it 

satisfies the following conditions: 

(Ql) each ordered triple of vertices of G has a quasi-median; 

(Q2) K4-e is not an induced subgraph of G; 

(Q3) each induced c6 in G has Q3 or H313 as convex closure. 

In Figure 6.5 we give the graphs occuring in this definition (for an 

alternative picture of H313 see Figure 5.1). All median graphs and all 
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Hamming graphs are quasi-median graphs (see the observations following 

Definition 6.1.2). In Figure 6.6 we give another example of a quasi-median 

graph. 

FIGURE 6.5. 

In the above definition we can replace condition (Q3) by the weaker 

but less elegant condition 

(Q3') if u 1 + ••. + u6 + u 1 is an induced c6 in G with d(u1,u4) = 3, 

then there exist vertices u 7 and u8 in G such that {u1 , ... ,u8} 

induces a Q3 in G. 

Essential steps in the proof that (Ql), (Q2) and (Q3') imply (Q3) are 

(i) K213 is not an induced subgraph of G, 

(ii) c5 is not an induced subgraph of G. 

It is left to the reader to complete the proof of this assertion. 
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FIGURE 6.6. 

The three conditions (Q1), (Q2) and (Q3) in Definition 6.2.1 are 

independent. For example, c6 satisfies the first two conditions, and the 

same holds for the graph in Figure 6.7. The graphs c 5 and K213 satisfy the 

last two conditions. The w~eel on six vertices (see Figure 6.8) and K4-e 

satisfy conditions {Ql) and (Q3). 

V 

y 

X 

u 

FIGURE 6.7. FIGURE 6.8. 

6.2.2. THEOREM. If G is a quasi-median graph with interval function I, 

then G is interval monotone, and I satisfies the following condition: 

(Q4) if I(u,v) n I(v,w) = {v}, then d(u,w) ~ max{d(u,v),d(v,w)}, 

for any three vertices u, v and w of G. 
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PROOF. In order to prove that I satisfies condition (Q4), let u, v and w 

be vertices of G with I(u,v) n I(v,w) = {v}. Then it follows that there 

are vertices x and z in G such that (x,v,z) is the quasi-median of (u,v,w). 

It follows from (Pl) that 

d(u,w) d(u,x) + d(x,z) + d(z,w) 

d(u,v) + d(z,w) 

d(u,x) + d(v,w). 

Hence I satisfies condition (Q4). 

The proof that G is interval monotone is more tedious. First we prove 

that each interval in G induces a bipartite subgraph. 

Let u and v be two vertices, and assume that there exist two adjacent 

vertices x and y within the i-th level in I(u,v). Then there is a vertex w 

such that (w,x,y) is the quasi-median of (u,x,y). Since x and y are 

adjacent, w is joined to both x and y. Moreover, we have d(u,w) d(u,x)-1, 

and sow lies in the (i-l)th level in I(u,v). Similarly, there is a vertex 

z in the (i+l)th level in I(u,v) adjacent to x and y. Then w, x, y and z 

induce a K4-e in G, which is not allowed. Hence I(u,v) induces a bipartite 

graph. 

Assume that G is not interval monotone. Choose vertices u, v, x and y 

in G such that 

x,y E I(u,v), and I(x,y) { I(u,v) 

with d(u,x) as small as possible. Note that x # u, and d(x,y) ~ 2. We 

write k = d(x,y). 

Since I(x,y) $ I(u,v), there exists a shortest (x,y)-path 

x = x0 + x 1 + ... + xk-l + ~ = y, of which at least one internal vertex 

does not lie in I(u,v). Let y 1 be a neighbour of x in I(u,x). Then we have 

d(u,x) - 1. 

Hence it follows from the minimality of d(u,x) that 
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Since x and y 1 are adjacent, we have 

1 + d(x,y) ~ d(y1,y) ~ d(x,y) - 1. 

If d(y1,y) = 1 + d(x,y), then x lies on a shortest (y1 ,y)-path, and so 

I(x,y) c I(y1 ,y) ~ I(u,v). This contradicts the choice of u, v, x and y. 

If d(y1 ,y) = d(x,y), then the quasi-median of (x,y1 ,y) is of size 1, and 

so a triangle would be introduced in I.(x,y 1) u I (y 1 ,y) s I (u,v), contra­

dicting the fact that I(u,v) induces a bipartite subgraph in G. So 

d(x,y) - 1 k - 1 

from which it follows that y 1 lies in I(x,y) n I(u,x) (see Figure 6.9). 

x ~-(} xk>y 
~~------------------------------

Y1\ 

FIGURE 6.9. 

Since I(x,y) induces a bipartite subgraph, it follows that x1 and y 1 

are not adjacent, and so d(x1,y1) 2. Consider the quasi-median of 

(x1,y1 ,y). If it has size 1, then a triangle would be induced in 

I(x1,y) U I(y1 ,y) c I(x,y), which is forbidden. 

Assume that is has size 2, and let (x1,y1 ,z) be the quasi-median of 

(x1,y1 ,y). Then x, x 1, y1 and z must be contained in a c6 , which is 
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induced in G. Since 

d(z,y) d(x1,y) - 2 d(x,y) - 3, 

it follows that d(z,x) = 3. By (Q3) the convex closure of this c6 in G is 

a 3-cube. This implies that x 1 , y 1 and z have a median which is also a 

median of x 1 , y1 and y, contradicting the assumption that the quasi-median 

of (x1 ,y1 ,y) has size 2. 

So we have proved that xl, Y1 and y have a median y2 , which is 

adjacent to xl and Y1, and which lies in I (y 1 ,y) '= I(u,v). Note that 

x + x 1 + Y2 + Y1 + x is an induced c4 in G (see Figure 6.10). 

X X X X X X 
x 1 x2 k-l 1 ~-- ..... ~-1 .. ·····~-~1 

y y yl Y2 yp Yp+l 
1 2 

FIGURE 6.10 FIGURE 6. 11 . 

Repeating the preceding argument, if necessary, we can find a number 

p, with 1 Sp s k-1, and vertices yp and yp+l' such that 

and 

x l'y ,y +1 E I(u,v) n I(x,y), p- p p 

X E I(x,y) \ I(u,v), 
p 

as in Figure 6.11, where xp-l + xp + yp+l + yp + xp-l is an induced c4 in 

G. This leads to a contradiction as the following argument shows. 

Since y and y 1 are adjacent vertices in I(u,v), we have 
p p+ 

d(u,yp) # d(u,yp+l). Assume that 

d(u,y 1) > d(u,y ). 
p+ p 
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The case 

Let 

d(u,y 1) < d(u,y) can be treated similarly. 
p+ p 

y 1 be in the (j+l)th level in I(u,v), and let 
p+ 

yp be in the j-th 

level in I (u,v). Then it follows that x 1 is either in the (j+l)th level 
p-

in I(u,v), or in the (j-l)th level in I(u,v). In the latter case we have 

x E I(x 1•Y 1) ~ I(u,y 1) ~ I(u,v), p p- p+ p+ 

contradicting the choice of x. Sox 1 lies in N. 1 (u,v). 
p p- J+ 

Using the above argument concerning the existence of y 2 , we deduce 

that xp-l' yp+l and v have a median z_in G. If z # xp' then xp-l' xp, yp, 

yp+l and z would induce a K213 in G, which contradicts the fact that G 

satisfies (Ql). Hence z x contradicting the choice of x, which was p' p 
such that x lies in I(x,y) \ I(u,v). This completes the proof. D 

p 

The condition (Q3) is necessary in the above theorem as the graph in 

Figure 6.7 shows. This graph satisfies conditions (Ql) and (Q2), but is 

not interval monotone. 

In the next pages we study quasi-median graphs in further detail. 

Our enquiry is split into quite a number of steps, some of which are 

natural analogues of those in the proof of the median graph theorem (Theorem 

3.2.4). Unfortunately the technical details are more involved than in the 

case of median graphs, but the payoff of the enquiry below is worth the 

trouble. We state the outcome of the enquiry in Theorem 6.2.4. 

In the following pages G is a connected graph with interval function 

I satisfying the following conditions: 

(Q2) K4-e is not an induced subgraph of G; 

(Q3) the convex closure of an induced c6 in G is Q3 or H313 ; 

(Q4) if I(u,v) n I(v,w) = {v}, then d(u,w) ~ max{d(u,v),d(v,w)}, for 

any three vertices u, v and w of G; 

(QS) G is interval monotone. 



Note that, as in the case of Definition 6.2.1, the condition (Q3) 

can be replaced by condition (Q3'). 
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We note first that these four conditions are independent. For example, 

the graph in Figure 6.12 satisfies the last three conditions only. Note 

that in this graph the triple (u,v,w) has two pseudo-medians of size 1. 

The circuit c5 fails to satisfy (Q4), and c6 fails to satisfy (Q3). 

Finally, K213 satisfies all conditions except the last. 

u w 

V 

FIGURE 6.12. 

We now introduce some·terminology, which corresponds to that on 

page 78. For any two adjacent vertices u and v of G, we denote 

A := {w E: 
UV 

V d(w,u) d(w,v)}, 

wuv := 
u 

{w E: V d(w,u) < d(w,v)}, 

wuv 
V 

:= {w E: V d(w,u) > d(w,v)}, 

uuv := {w E: wuv w has a neighbour in Wuv} 
u u V , 

uuv := {w E: wuv w has a neighbour in wuv}, 
V V u 

F := [wuv 1 wuv]. 
UV u V 

Fix an edge e = ab of G, and write A= Aab, Wa = w::r', Wb = w:, 

Ua u:1', Ub = u:, F = Fab. Note that A, Wa and Wb partition v. In 

Figure 6.13 the terminology is visualized. 

The reader is invited to draw pictures when reading the proofs below. 

It is helpful in understanding what is going on. In some cases, when the 
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arguments are rather technical, we have included the appropriate figures. 

l+d(w,a)=d(w,b) 

w 
a 

I a 

u 

A 

d(w,a)=d(w,b) 

b 

d(w,a)=l+d(w,b) 

V 

FIGURE 6.13. 

(1) Any ordered triple (u,v,w) of vertices in G has a pseudo-median. 

PROOF. Let x be a vertex in I(u,v) n I(u,w) with 

I(x,v) n I(x,w) {x}, 

and let y be a vertex in I(v,x) n I(v,w) with 

I(y,x) n I(y,w) {y}, 

and lastly, let z be a vertex in I(w,x) n I(w,y) with 

I(z,x) n I(z,y) {z}. 

By (Q4) it follows that d(x,y) = d(y,z) = d(z,x). Hence (x,y,z) is an 

ordered triple in G satisfying (Pl) and (P2), and so (u,v,w) has a pseudo­

median. D 



(2) Each interval I(u,v) in G induces a bipartite subgraph. 

PROOF. The proof is similar to that of the biparticity of G[I(u,v)] in 

the proof of Theorem 6.2.2. D 

(3) II(u,v,w) I$ 1 for any three vertices u, v and w of G. 

PROOF. The proof is similar to that of Theorem 3.1.6. D 

(4) G does not contain c5 as an induced subgraph. 

PROOF. Assume the contrary, and let u1 ➔ ••• ➔ u5 ➔ u 1 be an induced c5 

in G. Then we have 
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Since u3 and u4 are adjacent, it follows that there exists a vertex x 

in G, adjacent to u 1 , u3 and u4 , such that (x,u3 ,u4) is a pseudo-median of 

(u1 ,u3 ,u4). Since K4-e does not occur in G, x cannot be adjacent to u 1 or 

u4. 

Similarly there is a vertex y adjacent to u 1 , u 2 and u4 , but not to 

u3 or u 5 . Note that x and y cannot be adjacent, for otherwise u 1 , x, y and 

u4 would induce a K4-e in G. Hence u 1 , u4 , u5 , x and y induce a K2 , 3 in G, 

which contradicts the fact that II(u5 ,x,y) Is 1. D 

(5) Let u and v be vertices of G, and let x and y be two distinct 

neighbours of u in I(u,v). Then x, y and v have a median. 

PROOF. By (3), we have only to prove that (x,y,v) has a pseudo-median 

of size 0. 

Assume the contrary. Since I(u,v) induces a bipartite subgraph, x 

and y are not adjacent, and so d(x,y) = 2. If (x,y,v) has a pseudo-median 

of size 1, then this pseudo-median would introduce a triangle in 

I(v,x) u I(v,y) c I(u,v). Hence a pseudo-median of (x,y,v) must have size 

2. Let (x,y,z) be a pseudo-median of (x,y,v). Then u, x, y and z are 

contained in an induced c6 in G (see Figure 6.14). 

It follows that d(u,z) 3. Hence by (Q3), the convex closure of the 

circuit C is a Q3 , and this implies that x, y and z have a median. This 
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median is also a pseudo-median of size O for (x,y,v), contrary to the 

assumption that (x,y,v) has no median. This completes the proof. 

(6) 

and 

PROOF. The 

and A. □ 

(7) 

u 

FIGURE 6.14. 

I(w,a) !: w for any vertex w in wa, a 
I(w,b) !: Wb for any vertex w in Wb. 

inclusions foliow immediately from the definition of Wa' 

If uv is an edge in F withu in Ua and v in ub, then 

d(u,a) = d(v,b). 

PROOF. Since u and v are adjacent, we have 

(8) 

d(v,a) s d(u,a) + 1 d(u,b) s d(v,b) + 1 

I(u,a) = Ua for any vertex u in Ua' 

and I(v,b) !: ub for any vertex v in ub. 

d(v,a). 

PROOF. We prove the first inclusion by induction on d(u,a). 

Wb 

Let v be a neighbour of u in Ub, and let u' be a neighbour of u in 

W such that 
a 

d(a,u') d(a,u) - 1. 

□ 

□ 



Then (7) implies that 

d(b,v) d(a,u) d(a,u') + 1 d(b,u') d(b,u) - 1. 

Hence v and u' are neighbours of u in I (u,b), and so by (5), the vertices 

b, v and u' have a median v' in I(b,v) ~ wb. Furthermore, it follows that 

v' is adjacent to u' -that is, u' lies in ua. 

The second inclusion follows in the same way. D 

(9) If uv is an edge in F with u in Ua and v in ub, then W~v 

F = F. 
UV 

PROOF. If we prove that wuv 
u 

W and Wuv 
a V 

Wb, then the other equalities 

follow immediately. 
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First let u be adjacent to a, so that by (7), vis adjacent to b. It 

follows from the definition of Ua and Ub that a, b, v and u induce a c4 in 
UV 

G. we prove that Was Wu. 

Let w be a vertex in W Note that 
a 

d(w,u) + 1 ~ d(w,v) ~ d(w,b) - 1 d(w,a). 

To show that w lies in Wuv, it suffices to prove that d(w,v) ~ d(w,u) + 1. 
u 

CASE 1: d(w,u) = d(w,a) - 1. 

Then we have d(w,v) ~ d(w,a) d(w,u) + 1. 

CASE 2: d(w,u) = d(w,a). 

In this case a pseudo-median of (w,u,a) must have size 1. Let (x,u,a) 

be such a pseudo-median (see Figure 6.15). 

w 
a 

wO························~ 

FIGURE 6.15. 
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Since K4-e does not occur in G, it follows that xis not adjacent to 

b or v, and so we have 

d(x,b) 2 d(x,v). 

Hence a pseudo-median of (x,b,v) has size 1. Let (y,b,v) be such a pseudo­

median. Then y is adjacent to x, and so 

d(w,y) $ d(w,x) + 1 d(w,a) d(w,b) - 1 $ d(w,y). 

If d(w,v) 

So d(w,v) 

d(w,y) 

d(w,b) 

d(w,b) 1, then a triangle would occur in I(b,w). 

d(w,a) + 1 = d(w,u) + 1. 

CASE 3: d(w,u) = d(w,a) + 1 d(w,b). 

In this case the vertex a, is the median of w, u and b. If d(w,v) 

d(w,a), then v would be also a median of w, u and b, and so we have 

d(w,v) ~ d(w,a) + 1 = d(w,u). 

Assume that k = d(w,v) 

(w,b,v) (see Figure 6.16). 

d(w,u). Let (x,b,v) be a pseudo-median of 

k 

<?-----k-1 

w O·· ............. ½:::? ..... ·····'-J""--

k-1 

k 

FIGURE 6.16. 

V 

> 

b 

Then a and x are two distinct neighbours of b in I (b,w), and so by (5), the 

vertices x, a and w have a median yin I(w,a) ~ wa. 

By (4), the circuit y + a + u + v + x + y must have a diagonal. The 

only possible diagonal is that between u and y, but, as indicated in 

Figure 6.16, we have d(w,y) = d(w,u) - 2. This establishes a contradiction, 

and so our assumption that d(w,v) = d(w,u) is incorrect -that is, 



d(w,v) ~ d(w,u) + 1. This settles Case 3. 

So we have proved that Wa 

and so we have W 

UV 
S Wu. The same line of thought shows that 

wuv w 
u S a' a 

Wuv_ Using a similar method we prove that 
u 

wb = w~v, completing the proof in the case that u is adjacent to a. The 

general case follows by induction on d(a,u), using (8). □ 

(10) Ua and Ub are convex sets in G. 

PROOF. Combining (8) and (9), we deduce the convexity of Ua and Ub. D 

(11) Fis a matching between ua and ub. 

PROOF. Assume the contrary, and assume that u in Ua has two distinct 

neighbours v and v' in Ub. By (7), we have 

d(v,b) d(u,a) d(u,b) - 1 d(v',b), 
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and so v and v' are two distinct neighbours of u in I(u,b). Hence d(v,v') 

= 2, so that by the convexity of Ub we have 

u E I(v,v') = ub, 

contradicting the fact that u is in Ua. D 

(12) The mapping f: Ua + Ub' defined by f(u) is v whenever uv is an 

edge in F with u in Ua, induces an isomorphism between G[Ua] 

and G[Ub]. 

PROOF. Since Fis a matching, it follows that f is bijective. 

Let u and u' be vertices in Ua. By (9), the result of (7) still holds, 

when we replace a by u' and b by f(u') -that is, 

d(u,u') d (f (u) , f (u')) • 

Hence u and u' are adjacent if and only if f(u) and f(u') are adjacent. D 
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(13) If two vertices of a triangle are in Ua, then the third vertex 

of the triangle is also in Ua. The same holds for Ub. 

PROOF. Let u + u' + u" + u be a triangle in G with u and u' in ua, and let 

v = f{u) and v' = f{u'). Then u + v + v' + u' + u is an induced c4 in G. 

Since K4-e does not occur in G, neither v nor v' is adjacent to u" -that 

is, 

d{u",v) d{u",v') 2. 

It follows that u" lies in W~v = wa. Let (v,v' ,v") be a pseudo-median of 

(v,v' ,u"). Then v" is adjacent to u", v and v', but not to u (otherwise 

K4-e would be induced in G). This implies that v" lies in w~v = wb, and 

sou" lies in ua and v" lies in ub. 

The asse·rtion for ub follows in the same way. D 

(14) If a vertex x in A has a neighbour in u u Ub, then there is a 
edge UV in F with u in u such that a 

N(x) n U = {u},.and N(x) nub = {v}. a 

PROOF. Assume that xis adjacent to a vertex u in Ua' and let v be the 

neighbour of u in Ub. By (9) the vertex x lies in A= Auv' and so xis 

adjacent to v. 

an 

Since Ua is convex and xis not in ua, it follows that every neighbour 

of x in ua is adjacent to u. If xis adjacent to a neighbour u' of u in Ua' 

then u', x, u and v would induce K4-e in G {since Fis a matching, u' and v 

are not adjacent). 

Sox has no neighbours in Ua besides u, and similarly, x has no 

neighbours in Ub besides v. D 

(15) Let B := {w € A w has a neighbour in Ua and in ub}, and let 

IN (a) n N (b) I k - 2. Then there exists an isomorphism <P 

between G[Ua u Ub u B] and G[Ua] x ~, and there exists a 

vertex p of~ such that <j)(u) = (u,p) for any vertex u in ua. 

PROOF. The first step of the proof is visualized in Figure 6.17: if the 

graph H consisting of a complete graph Kn that has an edge in common with 
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c4 occurs in G, then the convex closure of H_in G is H2,n. The verification 

of this property of G is left to the reader (recall that by (3) K213 does 

not occur in G). 

H 

FIGURE 6.17. 

Let uv and u'v' be edges in F with u and u' in ua such that u and u' 

are adjacent (and so v and v' are also adjacent). Then by (14) and the 

above observation we have 

IN(u) n N(v)I IN(u') n N(v'>I-

Since G[Ua] is connected (being a convex subgraph of G), it follows that 

for any edge uv in F, 

IN(u) n N(v) I= k - 2. 

It follows from the above observations and (10), (12) and (13) that 

G[Ua u Ub u B] contains a spanning subgraph G0 isomorphic to G[Ua] x ~­

In Figure 6.18 we give an example to visualize the argument. 

It follows from (14) that all edges between Band Ua u ub in Gare 

in G0 , and from the first step of the proof and the convexity of Ua that 

all edges in G between vertices in Bare in G0 • This concludes the 

proof. 
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N(a)nN(b) 

(16) 

FIGURE 6.18. 

If c is a common neighbour of a and b, then Wac= W 
a a 

u . 
a 

and 

PROOF. Let c be a common neighbour of a and b, so that c lies in A. For 

any vertex win Wa' we have 

d(w,a) d(w,b) - 1 ~ d(w,c) ~ d(w,a) + 1 d(w,b). 

If d(w,c) = d(w,a), then a, band c would induce a triangle in I(w,b), 

and so we have 

d(w,c) = d(w,b) d(w,a) + 1. 

Hence w lies in Wac_ So we have proved that W S Wac_ In a similar way it 
a a a 

follows that Wac c W -that is, a - a 

Wac W • 
a a 

It follows from (15) and the convexity of ua that ua s u:c 

□ 



Interchanging the role of the edges ab and ac in the foregoing 

argument, we deduce that u:c ~ Ua, and so 

uac u. 
a a 

(17) 

PROOF. Choose a vertex x in A. Since d(x,a) = d(x,b), a pseudo-median of 

(a,b,x) must be of the form (a,b,c), ~here c is a common neighbour of a 
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□ 

and b (so that c is in A). It follows that x lies in Wac. Sox is adjacent 
C 

to a vertex w in w = Wac only if w lies in Oac 
u Hence there are no 

a a a a 
edges between A and wa \ ua. 

It follows similarly that [Wb \ Ub,A] 0. □ 

(18) Wa and Wb are convex sets in G. 

PROOF. The convexity of Wa and Wb follows from (15) and (17) and the 

convexity of ua and ub. D 

FIRST INTERMISSION 

Before proceeding, let us summarize what we have 

any vertex c in N(a) n N(b), we write W = Wac and U 
C C C 

maximal clique in G to which both a and b belong, and 

that C = (N(a) n N(b)) u {a,b}. 

proved so far. For 

= uac Let C be the 
C 

let jcj = k. Note 

Since the choice of the edge ab was arbitrary, it follows that what 

we have proved so far still holds when we replace the edge ab by any other 

edge in G[C] and adapt the assertions accordingly. So we have established 

the following features of G (see Figure 6.19): 

[W \ U ,w J = 0 for any two distinct vertices x and yin C; 
X X y 

for any subset C' of C with jcj =hand for any yin C, the graphs 

G[UxEC' ux] and G[Uy] x ~ are isomorphic; 
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for any x in C the sets Wx and Ux are convex in G; 

if two vertices of a clique lie in Ux (respectively Wx), then the 

whole clique is in Ux (respectively Wx), for any vertex x in C; 

for any subset C' of C the set UxEC' Wx is convex in G. 

w 
C 

w a 

b 

u Ub a 

G view from above 

w 
C 

w 
a 

Wb 

FIGURE 6.19. 

u Ub a 

G[Ua]xl\ 

G front view 

It follows from (9) that for any two edges g and g' of G, we have 

g' E F if and only if F Fg,· g g 

So we can define an equivalence relation on Eby calling two edges g and 

g' equivalent if Fg = Fg•· Each of the equivalence classes is a matching, 

as was proved in (11). Hence the partition of E induced by this equivalence 

relation is a proper edge colouring of G. This edge colouring is called 

the canonical edge colouring of G. 

In the sequel, each edge of G is assigned its canonical colour. 

Wb 
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Each Hamming graph is also endowed with its canonical colouring. By the 

"colours occuring in the set W s V" we mean the colours of the edges in 

the subgraph of G induced by w. 

Let us resume our study of the properties of G. 

END OF FIRST INTERMISSION 

(19) The mapping f: Ua + Ub defined in (12) induces a colour­

preserving isomorphism between G[Ua] and G[Ub]. 

PROOF. In an induced c4 in G, non-adjacent edges are assigned the same 

colours. Combining this observation with (12), we get the required result. 

(20) For any two vertices u and v of G, the edges on a shortest 

(u,v)-path all have different colours. 

PROOF. This follows immediately from the convexity of the sets w:Y, where 

x and y are two adjacent vertices in G. D 

(21) If u and v are vertices of G, then on two shortest (u,v)-paths 

the same colours occur. 

PROOF. 

p = u + 

If a shortest (u,v)-path P contains an edge xy, 

+ x + y + ... + v, then u lies in ~y and v 
X 

Since Wxy u Wxy is convex, it follows 
X y 

contains an edge in [Wxy ~YJ 
X , y F 

xy 

that any shortest 

□ 

say 

lies in wxy_ 
y 

(u,v)-path 

(22) Let u and v be vertices of G. If a colour occurs in I(u,v), 

then the edges of that colour in G[I(u,v)] form a cutset in 

G[I(u,v)]. 

PROOF. Use (20) and (21). 0 

(23) Let u, v and w be vertices of G. Then I(u,v) n I(u,w) = {u} if 

and only if there is no colour occurring in I(u,v) and I(u,w) 

simultaneously. 

□ 
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PROOF. If I(u,v) n I(u,w) ~ {u}, then there is a colour occurring in 

I(u,v) n I(u,w), proving the "if" part of the assertion. 

Let I(u,v) n I(u,w) = {u}, and assume that the colour of the colour 

class F occurs in both I(u,v) and I(u,w). Without loss of generality we 

may assume that u lies in wa. Choose vertices p and r in Ua such that 

p,f(p) E I(u,v), 

and 

r,f(r) e: I(u,w). 

Since ua is convex, it follows that I(p,r) s ua. 

Let q in I(u,v) n I(p,r) be such that 

I(u,v) n I(q,r) {q}, 

and lets in I(u,w) n I(q,r) be such that 

I(u,w) n I(q,s) {s}. 

It follows from (Q4) that d(u,q) = d(q,s) = d(s,u). Since G is interval 

monotone, it follows from the convexity of Ua and the fact that G[Ua u ub] 

is isomorphic to G[Ua] x K2 that 

f(q) e: I(q,f(p)) ~ I(u,v), 

and 

f(s) e: I(s,f(r)) s I(u,w). 

Note that by (12), the graphs G[I(q,s)] and G[I(f(q),f(s))] are isomorphic. 

Hence we have 

d(u,q) d(q,s) d(f(q) ,f(s)). 

Since I(u,v) n I(q,s) {q}, it follows that 

I(u,v) n I(f(q),f(s)) {f (q)}. 

Similarly we have 



149 

I(u,w) n I(f(q),f(s)) {f(s)}. 

By (Q4) this implies that 

d(f(q) ,f(s)) d(u,f(q)) d(u,q) + 1 d(q,s) + 1 

d(f(q) ,f(s)) + 1, 

which is a contradiction. Hence the colour F does not occur in both I(u,v) 

and I(u,w). Since Fis an arbitrary colour class in the canonical 

colouring of G, the proof is complete. D 

(24) Let u, v and w be vertices of G, and let (x,y,z) be a pseudo-

median of (u,v,w). If u and v lie in W for some pin C, then 
p 

x, y and z lie in W. 
p 

PROOF. We deduce from the convexity of W 
p 

lies in W for some q (# p) inc, then the 
q 

and I(y,z), and so by (23) we have jI(x,z) 

that x and y lie in W. If z 
p 

colour F occurs in both I(x,z) 

n I(y,z)r~ 2. This contradicts 

the fact that I(x,z) n I(y,z) = {z}, which follows from (1) and 

Proposition 6.1.3. D 

(25) Let u, v and w be vertices of G such that (u,v,w) is its own 

quasi-median, and let k = d(u,v). Then the convex closure of 

{u,v,w} is isomorphic to K~. 

PROOF. The proof is by induction on k. Fork~ 1, the assertion is 

evident. Fork= 2, it follows from (Q3). 

Let k ~ 3. For convenience we rename the vertices and start with a 

triple (u,v',w") that is its own quasi-median of size k. 

Let a 1 ,a2 , ... ,ak be the colours in I(u,v'), let S1 ,S2 , .•. ,Sk be the 

colours in I(v',w") and let y 1 ,y2 , ... ,yk be those in I(w",u). Then by (23) 

and (24) the colours a 1,a2 , ••. ,ak, S1 ,S2 , ... ,Sk, y 1 ,y2 , .•. ,yk are all 

different. 

Let w be a neighbour of u in I(u,w"), and let y 1 , say, be the colour 

of the edge uw. Note that 

d{w,v') ~ d(u,v') + 1 k + 1. 



150 

Since y 1 does not occur in I(u,v'), it follows that w is not in I(u,v'), 

and so d(w,v') ~ k. 

If d(w,v') = k + 1, then u lies in I(w,v'), and so y 1 ,a1,a2 , •.. ,ak 

are the colours in I(w,v') and y 2 , ... ,yk are those in I(w,w"). Hence by 

(23) we have I(w,v') n I(w,w") = {w}, and so k = d(v',w") ~ d(w,v') = k + 

which is impossible. So we have proved that 

d(v' ,w) d(v' ,u) k. 

Let (u,v,w) be a pseudo-median of. (u,v' ,w). Then v is a common 

neighbour of u and w. Furthermore, v lies in I(u,v'), which implies that 

the colour of the edge uv must be one of a 1 ,a2 , .•• ,ak. Without loss of 

generality, let it be a 1• The situation we have arrived at is depicted in 

Figure 6.20. Leto be the colour of the edge vw, so that the colours in 

I(v',w) are o,a2 , ••• ,ak. 

v' 

FIGURE 6.20. 

Consider a pseudo-median of (w, v' , w") . Since y 2 , •.. , y k are the 

colours in I(w,w"), and f\,13 2 , ... ,Sk are those in I(v',w"), this pseudo­

median must have size k - 1. So there is a neighbour w' of v' in 

I (v' ,w") n I (v' ,w) such that (w,w' ,w") is this pseudo-median of size 

k - 1. 

Since w' lies in I(v',w"), the colour of the edge v'w' must be one 

1, 
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of S1,s2,·••1Sk. Let it be sl. We know that w' lies in I(v' ,w), and so sl 

is one of the colours o,a2 , ... ,ak. This implies that S1 and o are the same 

colour. Note that a 2 , ... ,ak are the colours in I(w,w'). 

In the same way as we have deduced that d(v',w) = k, it follows that 

d(u,w') d(u,v') k. 

Hence w lies in I(u,w'), and y1,a2 , ... ,ak are the colours in I(u,w'). 

Let (u',v',w') be a pseudo-median of (u,v',w'), so that u' is a common 

neighbour of v' and w' in I(u,v') n I(u,w'). Then d(u,u') = k - 1, and so 

the colours in I(u,u') are a 2 , ... ,ak -that is, the common colours in 

I(u,v') and I(u,w'). It follows that y 1 is the colour of the edge u'w', 

and a 1 is the colour of the edge u'v' (see Figure 6.21). 

u 

w Y2 , ••• ,yk • · ...................................... ow 

v' 

FIGURE 6.21. 

In the same way as we found the vertex w', we can find a neighbour u" 

of w" in I(u,w") n I(u' ,w") such that (u,u' ,u") is a pseudo-median of size 

k - 1 of (u,u' ,w") and y1 is the colour of the edge u"w". 

Finally we can find a neighbour v" of w" in I(v,w") such that 

(u" ,v" ,w") is a pseudo-median of (u" ,v' ,w"). As before, it follows that 

S1 is the colour of the edge v"w" and a 1 is the colour of the edge u"v". 

It follows from the above observations that the situation is as 
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depicted in Figure 6.22, where (u,u',u") is its own quasi-median of size 

k - 1, as are (v,v' ,v") and (w,w' ,w"). 

w········:.~:.".:.".~:\~ ........... w" 

u =.:···· .. ··············.. . ..... 8 
·. .· u" : 1 

•••• 1111 .... • .... • 

·····:···········:··········· ... ··· v" • .. V.... . . .' . 

v' 

FIGURE 6.22. 

It follows that 

u,u' ,u 11 € uuv uuw 
u U I 

v,v' ,v" € 
uuv uvw 

V V , 

and 

w,w',w" € uuw uvw. 
w w 

Note that Fuv is the colour a 1, Fvw is the colour 81 , and Fuw is the 

colour y 1 • 

Let X u 
be the convex closure of {u,u' ,u"}. Since (u,u' ,u") is its 

own quasi-median of size k - 1, it follows from the induction hypothesis 
k-1 

that Xu induces a K3 in G with a 2 , ••• ,ak, 82 , ••• ,8k, y2 , ••. ,yk as its 

canonical colours. Since Uuv is convex, it follows that X s Uuv_ 
u u u 

X 
w 

Similarly the convex closure X of { v, v' , v"} and the convex closure 
V 

of {w,w',w"} both induce a K~-l in G with the colours a2 , ••• ,ak, 

82 , ••• ,$k, y2 , ••• ,yk as their canonical colours. Furthermore, we have 

X s uuv and x s uuw. 
V V W W 

By (19) each of colours a 1, 81 and y1 induces a colour-preserving 

isomorphism between the two graphs that are matched by that colour. So 



X = X U X 
U V 

k 
u Xw induces a K3 in G with a 1,a2 , ... ,ak, B1,B2 , ... ,Bk, 

y 1 'Y 2 ' • • • 'Y k as 
Using (20) 

its canonical colours. 
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and (21), we conclude that, for any two vertices x and y 
k in X, all shortest (x,y)-paths lie entirely in the K3 . So Xis the convex 

closure of {u,u',u 11 ,v,v',v11 ,w,w',w 11 }, and hence of {u,v',w 11 }. D 

SECOND INTERMISSION 

In this intermission we construct a new graph G' from G. Recall that 

in (12) we introduced the mapping f: Ua + ub, defined by 

f(u) v whenever uv E F and u E Ua. 

Let us construct the graph G' from G by "contracting" the colour F 

-that is, we obtain G' from the subgraph G[V \ ub] of G by joining each 

vertex u in Ua to all neighbours of f(u) in Wb \ Ub. In this construction 

we have "identified" the colour Fbc with the colour Fae' for each vertex 

C in N(a) n N(b). 

We write 

{:-l(v) 

for V E V \ Ub 
v' 

for V E Ub, 

Z' {v' VE: z} for Z ~ V 

In what follows, any set Z' refers to a set of vertices in G'. Note that 

V' = V \ ub, and Wb = (Wb \ Ub) u ua. In Figure 6.23 we give the figures 

of G' analogous to those of Gin Figure 6.19. 

Let I' be the interval function of G', and let d' be the distance 

function of G'. In the next few steps we prove that G' also satisfies the 

conditions (Q2), (Q3), (Q4) and (QS). 
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a 

Ju =-U' a b 

G' 

d C 

view from above 

W' 
b 

w 
C 

w 
a 

FIGURE 6.23. 

END OF SECOND INTERMISSION 

(26) The mapping g: V + V', defined by 

V, induces an isomorphism between 

one between G[Wb u A] and G' [Wb u 

U =U' 
a b 

w 
C 

G' [U ]xK_ 
a k-1 

G' front view 

W' 
b 

g(v) v' for any vertex v in 

G[W 
a u A] and G'[Wa U A], and 

A]. 

PROOF. The two isomorphisms follow immediately from the structure of G 

and the construction of G'. D 

(27) If u and v are vertices of G such that the colour F does not 

occur in I(u,v), then the mapping g, defined in (26), induces 

an isomorphism between G[I(u,v)] and G'[I'{u',v')]. 

PROOF. Note that, for any vertex c in N{a) n N(b), at most one of the 

colours Fae and Fbc occurs in I(u,v). The assertion follows immediately 
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from (26). D 

(28) If u is a vertex in Wa and vis a vertex in Wb, then 

I' (u,v') = I(u,v) \ ub. 

PROOF. It follows from the convexity of Wa u Wb that, for any vertex c in 

N(a) n N(b), the colours Fae and Fbc do not occur in I(u,v). Hence in G' 

the colour Fae does not occur in I' (u,v'), for any vertex c in N(a) n N(b) '· 

With this in mind we deduce the assertion from the construction of G'. D 

(29) In G' the sets Wa, Wb, Wa u Wb, A, Wa u A and Wb u A are convex. 

PROOF. Use (27) and (28). 0 

(30) For any two vertices u' and v' of G', the interval I' (u',v') 

induces a bipartite graph in G'. 

PROOF. By (26) and (27) it suffices to prove the assertion for u in Wa 

and v in Wb. From (22) we know that the edges of Fin G[I(u,v)] form a 

cutset. Hence in each circuit of G[I(u,v)] there are an even number of 

edges from F. Since we obtain G'[I'(u',v')] from G[I(u,v)] by contracting 

F, it follows from (2) that I'(u',v') induces a bipartite graph in G'. D 

(31) 

PROOF. The equalities follow immediately from the structure of G and 

the contruction of G'. D 

(32) Let u', v' and w' be vertices of G'. Then the triple (u',v',w') 

has a pseudo-median (x',y' ,z') in G', and the convex closure 
h of {x',y',z'} induces a K3 , where his the size of (x',y',z'). 

PROOF. First let (u,v,w) be its own quasi-median in G, and let k be the 

size of (u,v,w). 

If the colour F does not occur in one of the intervals I(u,v), I(v,w) 

and I(w,u), then by (26) and (29) the triple (u',v',w') must be its own 

quasi-median in G', and the convex closure of {u' ,v' ,w'} in G' induces 
k 

a K3 • 
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So let F be one of the colours in I(v,w), say. By (24) the convex 

closure X of {u,v,w} induces a K~ in G with Fas one of its canonical 

colours. Hence u lies in B ~ A, and v lies in Ua' say, and w lies in ub. 
, . . , b h . h' k-1 Note that x induces in G a su grap isomorp ic to K 3 x K 2 • 

Let x and f(x) be the neighbours of u in X such that the edge xf(x) 

is in F. If we contract F, then in G' we have 

I'(u,v) n I'(u,w') {u,x}. 

Furthermore, (x,v,w') is the quasi-median of (u,v,w') in G', and the 

convex closure of {x,v,w'} induces a subgraph in G' isomorphic to K~- 1 . 

To prove the general case, let u, v and w be vertices of G, and let 

(x,y,z) be a pseudo-median (u,v,w) of size k. If the colour F does not 

occur in one of the intervals I(u,v), I(v,w) and I(w,u), then it follows 

from (26) and (29) that (x',y',z') is a pseudo-median of (u',v',w') in G' 

with size k. Furthermore, we deduce from (25) and (26) that the convex 

closure of {x' ,y' ,z'} in G' induces a K~. 

If F does occur in two of the three intervals, then (23), (26) and 

(27) imply that (x',y',z') is a pseudo-median of size k of (u',v',w') in 

G'. Furthermore, using (25) we deduce that the convex closure of {x',y' ,z'} 
. d k . I in uces a K3 in G. 

If F does occur in exactly one of the three intervals, then Fis one 
, k 

of the colours of the K3 induced by the convex closure of {x,y,z} in G. 

Then (27) and (28) imply that a pseudo-median of (x',y',z') in G' is also 

a pseudo-median of (u' ,v' ,w') in G'. The assertion follows by the first 

step of the proof. 

Since jr(u,v,w) I ~ 1, it follows from (23) that the colour F does not 

occur in all three intervals, by which the proof is complete. D 

(33) G' is interval monotone. 

PROOF. This follows immediately from (27), (28) and the interval 

monotonicity of G. D 

(34) G' satisfies condition (Q4). 

PROOF. Use (32). 0 
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(35) G' does not have K4-e as an induced subgraph. 

PROOF. If K4-e does occur in a graph, then the vertices of this K4-e all 

lie in the interval between the two non-adjacent vertices of the K4-e. 

Hence, by (30), K4-e does not occur in G'. D 

(36) G' satisfies condition (Q3). 

PROOF. Let u 1 + u2 + .•. + u6 + u 1 be an induced c6 in G'. 

If d' (u 1 ,u4) 3, then u 1 , ... ,u6 lie in I'(u1 ,u4). In this case the 

triple (u1 ,u3 ,u5) cannot have a pseudo-median of size 1 or 2, for this 

would introduce a triangle in I' (u1,u4). Hence (u 1 ,u3 ,u5) has a pseudo­

median of size 0. Similarly (u2 ,u4 ,u6 ) has a pseudo-median of size 0. 

Since G' is interval monotone (by (33)), K2 , 3 does not occur in G', and 

so the convex closure of the circuit is Q3 . 

If there is no pair of vertices with distance 3 in the circuit, then 

(u1 ,u3 ,u5 ) must be its own quasi-median. For let (v,u3 ,u4 ) be a pseudo­

median of size 1 of the triple (u1 ,u3 ,u4). Then vis a common neighbour of 

u 1 , u3 and u4 . Since K2 , 3 does not occur in G', it follows that 

Since K4-e does not occur in G', the vertex vis not adjacent to u5 . 

Hence I'(u1,u3) n I' (u3 ,u5) = {u3}. From this we can deduce that (u 1 ,u3 ,u5) 

is its own quasi-median. By (32), the convex closure of the circuit is 
2 

K3 H3,3" □ 

Finally our study of the properties of the graph G satisfying 

conditions (Q2), (Q3), (Q4) and (QS) has come to an end. Before stating 

the outcome of it in Theorem 6.2.4, we give a definition. 

6.2.3. DEFINITION. Let G be a connected graph, and let U, W, W', A and B 

be subsets of V such that 

- U W n W' # 0, 
- A V \ (WU W'), 

- B {x E A x has a neighbour in u}, 

- [W \ u, W' \ u] = [w \ u, A]= [W" \ u, A] 0, 
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- Wand W' are convex sets in G, 

if two vertices of a triangle lie in U, then the third lies also in u, 
- there exists an isomorphism¢ between G[U u B] and G[U] x ¾:' for some 

positive integer k, and there exists a vertex p of¾: such that ¢(u) = 
(u,p) for any vertex u in U. 

The quasi-median expansion of G with respect to Wand W' is the graph G' 

constructed as follows: 

(i) replace each vertex V in U by two vertices u and u' which are 
V V 

joined by an edge; 

(ii) join u 
V 

to all neighbours of V in V \ W', and join u' to all neigh-
V 

bours of v in V \ W; 

(iii) if v and ware two adjacent vertices in U, join uv to uw and u~ to 

u'. w 

Note that in the above definition, it follows from the structure of G 

that U, Wu W', Wu A, W' u A and A are also convex in G. If Bis empty, so 

that A is empty and k = 1, and U is triangle-free, then the quasi-median 

expansion is just the convex expansion introduced in Chapter 3. In Figure 

6.24 we give an example of two succesive quasi-median expansions leading 

to the graph in Figure 6.6. 

w 

see next page 



FIGURE 6.24. 

The tour-de-force that has been performed in the last twenty-five 

pages is condensed in the following theorem. 

6.2.4. THEOREM. Let G be a connected graph with interval function I 

satisfying the following conditions: 

(Q2) K4-e is not an induced subgraph of G; 

(Q3) the convex closure of an induced c6 in G is Q3 or H313 ; 

(Q4) if I(u,v) n I(v,w) = {v}, then d(u,w) ~ max{d(u,v) ,d(v,w)}, 

for any three vertices u, v and w of G; 

(QS) G is interval monotone. 

Then G can be obtained from K1 by a sequence of quasi-median expansions. 

Recall that in the above theorem, condition (Q3) can be replaced by 

the weaker condition (Q3') (see the remark following Definition 6.2.1). 

Before we close the circle, by which we shall obtain a number of 

characterizations of quasi-median graphs, one further step is required. 

(For the definition of a distance-preserving subgraph see page 87.) 
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6.2.5. THEOREM. Let G be a connected distance-preserving subgraph of a 

Hamming graph H such that the quasi-median in Hof any ordered triple of 

vertices of G consists of vertices of G. Then G is a quasi-median graph. 

PROOF. Since G is distance-preserving, the quasi-median in Hof any triple 

of vertices in G is also the quasi-median of this triple in G. The 

conditions (Q2) and (Q3) follow immediately. 0 

Finally we can close the circle. 

6.2.6. THEOREM. Let G be a graph obtained from K1 by a sequence of quasi­

median expansions. Then G is a connected distance-preserving subgraph of a 

Hamming graph H such that the quasi-median in Hof any ordered triple of 

vertices of G consists of·vertices of G. 

PROOF. The proof is by induction on the number of vertices of G. So let G 

be a connected distance-preserving "quasi-median closed" subgraph of a 

Hamming graph H, and let Wand W' be convex sets in G with U = W n W' # 0. 
Write A= V \ (WU W') and B = {x EA x has a neighbour in u}. Assume 

that u, w, W', A and B satisfy the conditions in Definition 6.2.3, and let 

G' be the quasi-median expansion of G with respect to Wand W'. Then we have 

to prove that G' is embeddable in a Hamming graph in the prescribed way. 

Fix a vertex pin U. Since His transitive, we may assume that pis 

the zero vector. 

If A= 0, then k = 1. Let us assume in this case that all vertices of 

H have zero as first coordinate -that is, that H = K1 x H' for some 

Hamming graph H'. If necessary, this can be attained by adding a dummy 

first coordinate. 

If A# 0, then we may assume that (1,0, ... ,0),(2,0, .•. ,0), ... 

•.. ,(k-1,0, ... ,0) are the neighbours of pin B, and thus are in A. Since 

[W \ U,A] = [W' \ U,A] = 0, all neighbours of pin Wu W' have Oas first 

coordinate. If there is a vertex z in G with first coordinate h > 0, then 

the quasi-median of (p,(1,0, .•. ,0),z) in His (p,(1,0, ..• ,0),(h,O, ... ,O)), 

where (h,0, ... ,0) is a vertex of G. Hence we have O < h ~ k-1, and so it 

follows from the convexity of Wu W' that z lies in A. So again all 

vertices in Wu W' have first coordinate 0, and we may assume that 



for some Hamming graph H'. 

Let 

H X H'. 

For win W', let w be the vertex of H obtained from w by replacing the 

first coordinate of w, which is 0, by k. Write W = {w w is in W'}. 

It follows from the construction of G' that G' is (isomorphic to) the 

subgraph of H induced by the set Wu Wu A. Note that H[W u A] is 

isomorphic to H[W' u A], which equals H[W' u A]. Since G is a distance­

preserving subgraph of H, it follows that G' is a distance-preserving 

subgraph of H. 

161 

It remains to prove that G' is "quasi-median closed" in H. Let u, v 

and w be vertices of G'. If either all three vertices lie in Wu A, or all 

three vertices lie in Wu A, then it is clear that the quasi-median of 

(u,v,w) in H lies also in G'. 

Choose u in W, v in A and win W'. Then the vertices of the quasi­

median (x,y,z) of (u,v,w) in Hall have zero as first coordinate. It 

follows from the convexity of Wu A that x lies in w. Similarly z lies in 

W'. Since y lies in (Wu A) n (W' u A) n (Wu W'), it follows that y lies 

in u. From the structure of G[U u B] we know that y has a unique neighbour 

y' in An IH(v,y). So (x,y',z} is the quasi-median of (u,v,w) in H, and x, 

y' and z lie in Wu Wu A. 

For the final case that u, v and w lie in Wu W', we first deduce 

some properties of G. 

By Theorem 6.2.5 we know that G is a quasi-median graph. Hence (25) 

in the proof of Theorem 6.2.4 holds also for G -that is, if (x,y,z) is its 

own quasi-median 
k induces a K3 . It 

of size kin G, then the convex closure in G of {x,y,z} 

is clear that this is also the K~ induced by the convex 

closure of {x,y,z} in H. 

Let x, y and z be vertices of G with x and yin U such that (x,y,z) 

is its own quasi-median. Since with any two vertices in U of a triangle the 

third vertex of the triangle lies also in u, it follows that the convex 

closure of {u,v,w} lies entirely in u, so that w lies in U. 

Let u, v and w be vertices of G with u and v in Wand win W', and 

let (x,y,z) be the quasi-median of (u,v,w). Then it follows from the 

convexity of W that x and y lie in w. Assume that z is in W'. Choose a 
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vertex x' in IG(x,z) nu, and a vertex y' in IG(y,z) nu. Note that such 

vertices exist because of the fact that Wu W' is convex and [W \ U,W' \ U] 

= ~- Let (x" ,y" ,z) be the quasi-median of (x' ,y' ,z). Since U is convex, x" 

and y" lie in u, and so by the previous observation z lies in U. So we have 

proved that x, y and z lie in w. 
Similarly, if u, v and ware vertices of G with u in Wand v and win 

W', and if (x,y,z) is the quasi-median of (u,v,w), then x, y and z lie in 

W'. 

Now we know enough of G to finish the proof that G' is "quasi-median 

closed" in H. Let u, v and w be vertices with u and v in Wand win W', and 

let (x,y,z) be the quasi-median of (u,v,w) in G. Then, as established above, 

x, y and z lie in w, and it follows that (x,y,z) is the quasi-median in H 
of (u,v,w). 

Finally, let u, v and w be vertices with u in Wand v and win W', and 

let (x,y,z) be the quasi-median of (u,v,w) in G. Then, as established above, 

x, y and z lie in W', and so (x,y,z) is the quasi-median of (u,v,w) in H. 
By definition x, y and z lie in w. This completes the proof of the theorem. 

□ 

In the theorems proved up to now in this section, we have given three 

characterizations of quasi-median graphs. We close this section with one 

further characterization (the appropriate generalization of Theorem 3.2.8), 

the proof of which is straightforward and left to the reader. 

6.2.7. THEOREM. A graph G is a quasi-median graph if and only if G is a 

connected induced subgraph of a Hamming graph H such that the quasi-median 

in Hof any ordered triple of vertices of G consists of vertices of G. 

6.3. HAMMING GRAPHS AS QUASI-MEDIAN GRAPHS 

As might be expected, a regular quasi-median graph is a Hamming graph. 

We devote the last section of this chapter to the proof of this fact. 

6.3.1. THEOREM. A graph G is a Hamming graph if and only if it is a quasi­

median graph containing two diametrical vertices, at least one of which 

has maximum degree. 



PROOF. The "only if" part of the proof is evident. So let G be a quasi­

median graph, and let u and v be diametrical vertices such that u has 

maximum degree. Embed Gin a Hamming graph Has in Theorem 6.2.6. It 

follows from the results in the foregoing section that if (x,y,z) is its 

own quasi-median of size kin G, then the convex closure of {x,y,z} in H 

is the convex closure of {x,y,z} in G, and so induces a K~ in G. 

Without loss of generality, we may assume that u is the zero vector 
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and vis a (0,1)-vector of weight diam(G). Let (1,0, ... ,0), ... ,(a1 ,o, ... ,0), 

(0, 1,0, ..• ,0), ... , (0,a2 ,o, ... ,0), ... , (0, ... ,0,ak,0, ... ,0) be the neighbours 

of u in G, so that NG(u) induces the disjoint union of K , K , ... ,K in 
al a2 ak 

G. Since G is quasi-median closed in H, the interval IG(u,v) contains 

exactly one vertex of each clique in NG(u). The other vertices in NG(u) 

all have distance diam(G) at v. Hence 

{(1,0, ... ,0) 1••• I (01••• ,0,1,0, .•. ,0) }. 
t 
k 

As in the proof of Theorem 3.4.1, it follows that if pi 

i = 1, ... ,k, then (p 1 , ... ,pk,0, ... ,0) is a vertex of G. 

Without loss of generality, we may assume that 

If a 1 = 1, then G is Qk, and we are done. 

0,1, for 

So let a 1 ~ 2. We first prove that the vertex (2,0, ... ,0) of G, which 

has distance diam(G) at v, has (2,1,0, ... ,0), ... ,(2,a2 ,o,. . .,Q), ••• , 

(2,0, ... ,0,ak,0, ... ,0) as neighbours in G, so that the degree of (2,0, ... ,0) 

equals d(u), the maximum degree in G. Since the vertex (2,1,0, ... ,0) is the 

median of v, (2,0, ... ,0) and (0,1,0, ... ,0), this vertex is a vertex of G. 

If, for a~ 2, the vertex (0,a,0, ... ,0) is in G, then the vertex 

(2,a,0, ... ,0) is also in G. For (2,a,0, •.. ,0) lies in the convex closure 

of { ( 2, 0, ... , 0) , ( 0, a, 0, ... , 0) , ( 1 , 1 , 0, ... , 0) } , and ( ( 2, 0, ... , 0) , 

(0,a,0, ... ,0),(1,1,0, ... ,0)) is the quasi-median of ((2,0, ... ,0), 

(0,a,0, ... ,0),v) in H, and so is in G. We can similarly determine all 

above-mentioned neighbours of (2,0, ... ,0). From this we deduce that the 

vertices (p 1 , ... ,pk,0, ... ,0) with p 1 = 0,1,2, and pi= 0,1, for i = 2, ... ,k, 

are all vertices of G. 

By a similar argument we conclude that all vertices 
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1, ... ,k, 

are in G. Since the maximum degree in G equals dG (u) , which is a 1 + ... + ak, 

it follows that G is the Hamming graph H 1 1 . 
al+ , ... ,ak+ □ 

6.3.2. COROLLARY. A graph G is a Hamming graph if and only if G is a 

regular quasi-median graph. 

6.3.3. COROLLARY. A graph G is a Hamming graph if and only if G is a 

quasi-median graph in which each vertex of G has at least one diametrical 

vertex. 
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CHAPTER 7 

QUASI-MEDIAN ALGEBRAS 

In this final chapter we deal with an algebraic structure related to 

quasi-median graphs. As a consequence of our results we establish the 

relationship between median graphs and median algebras. 

7.1. NEBESKY ALGEBRAS 

The results of this section are due to NEBESKY [N3]. He used these 

results to study the algebraic properties of Husimi trees (connected graphs 

in which the convex closure of any circuit is a complete graph). 

7.1. DEFINITION. A Nebesky algebra A= (V,q) consists of a finite set V 

and a ternary operation q: V x V x V ➔ V satisfying the following 

conditions, for any u, v, wand x in V (for convenience we write uvw 

instead of q(u,v,w)): 

(ql) uvu u; 

(q2) uvw wvu; 

(q3) uv(uvw) uvw; 

(q4) u(uvw)w uvw; 

(qS) (uvw)wx u(vwx)w. 

We use (ql) and (q2) in the sequel without mention. 
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7.1.2. PROPOSITION. If A (V,q) is a Nebesky algebra, then, for any u, v, 

wand x in V: 

(nl) uuv = u; 

(n2) if uvx = x, then vux x; 

(n3) vu(uvw) uvw; 

(n4) u(uvw)v uvw; 

(nS) if uvw vuw, then uvw uwv; 

(n6) if uvx uwx, then vuw vxw. 

PROOF. (nl) By (q5), we have uuv = (uvu)uv 

(n2) If uvx = x, then by (q5) we have 

u(vuv)u 

(qS) 
vux xuv (uvx)uv (xvu)uv 

x(vuv)u xvu uvx x. 

(n3) The equality follows from (q3) and (n2). 

(n4) By (qS) and (nl), we have u(uvw)v = (uuv)vw uvw. 

(n5) Let uvw = vuw. Then we have 

(n3) 
uvw wvu vw(wvu) = (wvu)wv 

(qS) 
(uvw)wv = (vuw)wv v(uwv)w 

(n4) 
v(vwu)w vwu 

uwv. 

(n6) Let uvx = uwx. Then we have 

(nl) (q3) 
vuw (vuw) (vuw) x (vu(vuw)) (vuw)x 

(q5) 
v(u(vuw)x) (vuw) v(x(vuw)u) (vuw) 

(q5) 
v ( (xvu) uw) (vuw) v( (uvx)uw) (vuw) 

v ( (uwx) uw) (vuw) v(wu(uwx)) (vuw) 

uvu u. 



(n3) (q5) 
v(uwx) (vuw) = (vuw) (uvx)v ((vuw)uv)vx 

(q3) 
(vu(vuw))vx (vuw)vx (wuv)vx 

(q5) 
w(uvx)v. 

Interchanging the roles of u and x and of v and win the above 

computation we get 

vxw wxv v(xwu)w = w(uwx)v w(uvx)v vuw. 

If A is a Nebesky algebra, then, for u and v in v, we let 

[u,v] := {w E V uvw w}, 

and 

[u,vJ* := {w E V uwv w}. 

7.1.3. PROPOSITION. Let A be a Nebesky algebra. Then, for u and v in V: 

(n7) u,v E [u,v]; 

(nB) [u,v] 

(n9) [u,u] 

[v,u]; 

{u}; 

(nl0) if x E [u,v], then [u,x] S [u,v]; 

(nll) if x E [u,v] and y E [u,x], then x E [y,v]; 

(n12) [u,v] £ [u,v]*. 

PROOF. (n7), (nB) and (n9) follow easily from (ql), (q2), (nl) and (n2). 

(nl0) Let x be in [u,v] and y be in [u,x]. Then by (n2), we have 

vux = x and yxu uxy y. 

By (q5), we have 

vuy yuv (yxu)uv y(xuv)u yxu y, 

and so by (n2), it follows that y lies in [u,v]. 
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□ 
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(nll) Let x be in [u,v] and y be in [u,x]. By (nl0), we have 

y E [u,x] s [u,v], 

and so uxy uvy. By (n6) and (n2), we have 

vyx vux x. 

(n12) Let x be in [u,v]. Then by (n2), we have 

UVX X = VUX. 

It follows from (nS) that 

X = UVX UXV, 

so that x lies in [u,v]*. D 

7.1.4. PROPOSITION. Let A be a Nebesky algebra. Then, for u, v and win V, 

[u,v] n [v,w] n [u,w]* {uvw}. 

PROOF. Denote X 

we have 

[u,v] n [v,w] n [u,w]*. By (q3), (q4) and (n3), 

uvw uv(uvw) u(uvw)w vw(uvw), 

and so uvw lies in X. 

Choose x in X, so that x 

that 

uvw uxw x, 

which completes the proof. D 

vux vwx uxw. Then it follows from (n6) 

7.1.5. PROPOSITION. Let A be a Nebesky algebra. Then, for u and v in v, 

{x EV [u,x] n [x,v] {x} }. 



PROOF. First let x be in [u,v]*, so that uxv x. It follows from (nl) 

that x lies in [u,x] n [x,v]. Choose a vertex yin [u,x] n [x,v]. Then 

by definition, uxy = xvy = y. By (q5) we have 

y uxy ux(xvy) (yvx)xu y(vxu)x yxx x, 

which tells us that [u,x] n [x,v] = {x}. 
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Conversely, let x in V be such that [u,x] n [x,v] 

and (n3), we have 

{x}. Then by (q3) 

ux(uxv) xv(uxv) uxv, 

and so uxv lies in [u,x] as well as in [x,v] -that is, uxv 

definition, x lies in [u,v]*. D 

x. So by 

7.1.6. DEFINITION. Let A= (V,q) be a Nebesky algebra. The underlying 

graph GA of A has Vas vertex-set, and two distinct vertices u and v are 

joined by an edge, whenever [u,v] = {u,v}. 

7.1.7. PROPOSITION. Let A be a Nebesky algebra. Then the set [u,v] induces 

a connected subgraph of GA, for any two vertices u and v of GA. 

PROOF. The proof is by induction on i[u,vJI. 

If i[u,vJI $ 2, then the assertion is true by definition. So let 

i[u,vJI ~ 3, and choose a vertex x in [u,v] distinct from u and v. By (n12) 

and Proposition 7.1.5, we have 

[u,x] n [x,v] {x}, 

and so v does not lie in [u,x], and u does not lie in [x,v]. It follows 

from (n10) that 

i[u,xJI < i[u,vJI, and i[x,vJI < l[u,vJI. 

So by the induction hypothesis, [u,x] and [x,v] induce connected subgraphs 

of GA. Hence, by (nl0), there exist a (u,x)-path and an (x,v)-path in the 

subgraph induced by [u,v]. D 
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Note that by this proposition the underlying graph of a Nebesky 

algebra is connected. An example of a Nebesky algebra A is the following: 

A has K4-e as underlying graph (see Figure 7.1), and [u,w] = {u,v,w}. It 

is left to the reader to check that this description defines a Nebesky 

algebra on the set {u,v,w,x}. Note that I (u,w) i [u,w]. 
K4-e 

V 

u w 

X 

FIGURE 7.1. 

7.2. QUASI-MEDIAN GRAPHS AND QUASI-MEDIAN ALGEBRAS 

In this final section we discuss an algebraic structure associated 

with quasi-median graphs. 

7.2.1. DEFINITION. A quasi-median algebra A= (V,q) is a Nebesky algebra 

satisfying the following condition, for any u, v and win V: 

(q6) if uvw v and [u,w] {u,w}, then [u,v] {u,v}. 

Note that condition (q6) can also be formulated in terms of the 

underlying graph GA of A: if uw is an edge in GA, and if uvw = v, for 

a vertex v distinct from u and w, then vis adjacent to u (and so is 

also adjacent tow). 

In the sequel we prove that the underlying graph of a quasi-median 

algebra is a quasi-median graph. Once more we reverse the order of 

theorem and proof, and once more the proof is split into a number of 

steps. For the conditions (Ql), (Q2) and (Q3'), which characterize 

quasi-median graphs, see pages 128 and 129. 



Let A be a quasi-median algebra with underlying graph G, and let I 

be the interval function of G. 

(1) I(u,v) [u,v] for u,v € v. 
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PROOF. The proof is by induction on d(u,v). For d(u,v) $ 1, the assertion 

is true by definition. 

Let n d(u,v) ~ 2. First we prove that I(u,v) s [u,v]. Let w be a 

neighbour of u in I(u,v). Then d(w,v) = n - 1, and so by the induction 

hypothesis, 

[w,v] I(w,v). 

Assume that w is not in [u,v], so that uvw # w. By Proposition 7.1.4 

we have 

uvw € [v,w] I(w,v), 

and so uvw # u. By (q3), we have uvw = u(uvw)w, and so (q6) implies that 

uvw is a common neighbour of u and win [w,v] = I(w,v). It follows that 

d(u,v) $ d(uvw,v) + 1 d(w,v) d(u,v) - 1, 

which is a contradiction. So we have 

I(x,y) ~ [x,y], 

for any two vertices x and yin G with d(x,y) $ n. 

The proof that [u,v] ~ I(u,v) is more tedious. Assume the contrary. 

We first prove that, for any vertex pin [u,v] \ I(u,v) and any 

vertex q in I(u,v) \ {u,v}, we have 

[u,p] n [u,q] {u}, 

and [v,p] n [v,q] {v}. 

We prove only the first equality. Assume that there exists a vertex r in 
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[u,p] n [u,q] distinct from u. Note that r # v. Then by (n11), plies in 

[r,v]. By the induction hypothesis, we have [u,q] = I(u,q), and so r lies 

in I(u,q) c I(u,v). So by the induction hypothesis, we have I(r,v) [r,v], 

from which it follows that plies in I(r,v) c I(u,v). This contradicts the 

choice of p. This proves (*). 

It follows from(*) and Proposition 7.1.7 that we may choose a vertex 

win [u,v] \ I(u,v) adjacent to v. Note that 

d(u,w) ~ d(u,v) = n ~ 2. 

Let z be a neighbour of u in I(u,v). Then d(z,v) = n - 1 ~ 1, and so by 

the induction hypothesis [z,v] = I(z,v) c I(u,v). Since w does not lie in 

I(u,v), it follows that 

n - 1 d(z,v) s d(z,w) s d(z,v) + 1 n. 

u V 

I(u,v) 

FIGURE 7.2. 

CASE 1: d(z,w) = d(z,v) = n - 1 (see Figure 7.2). 

By the induction hypothesis, [z,w] = I(z,w), and so 

v,w i I(z,w) n I(z,v) [z,w] n [z,v]. 

Hence (q6) implies that wzv, which lies in [z,w] n [z,v], is a common 

neighbour of v and win I(z,v) c I(u,v). It follows that 



d(u,w) = n and wzv E N1 (w,u). 

Using the first part of the proof, we get 

u ~ wzv E I(u,w) n I(u,wzv) I(u,w) n [u,wzv] 

S [u,w] n [u,wzv]. 

This contradicts (*), settling Case 1. 

CASE 2: d(z,w) = d(z,v) + 1 = n. 

Then v lies in I(z,w), and by the first part of the proof we have 

I(z,w) ~ [z,w]. Hence 

vwz v. 

Since d(u,w) ~ d(u,v) = n ~ 2, we may choose a vertex yin [u,w] distinct 

from u, which is adjacent tow but not to v. (Note that it may be 

necessary to change our choice of w.) Note that by(*), y lies in 

[u,v] \ I(u,v) (see Figure 7.3). 

.... 

[u,v] 

········ ······· ········ 

FIGURE 7.3. 

y 

Assume that u is not in [z,w]. Then wuz lies in [u,z] \ [z,w] = {u}, 

and so wuz = u. Since wand z lie in [u,v], it follows from (q5) and (*) 
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that 

z = wzu w(vuz)u (wvu)uz wuz u, 

which is a contradiction. So 

u E [z,w]. 

This implies that y lies in [u,w] ~ [z,w], so that 

wzy y. 

It follows from(**) and (qS) that 

zyv vyz v(wzy)z (vwz) zy 

Using (nS) and(*), we deduce that 

zyv zvy v, 

so that v lies in [z,y]. Since d(v,y) 

part of the proof that 

w E I(v,y) £ [v,y] £ [z,y]. 

vzy yzv. 

2 $ n, it follows from the first 

Hence wzy = w, which contradicts (***). This settles Case 2, and so 

[u,v] £ I(u,v). D 

(2) K4-e does not occur in G. 

PROOF. Assume the contrary, and let u, v, wand x induce a K4-e in G such 

that u and ware the non-adjacent vertices. By (1) we have 

v,x E I(u,w) [u,w], 

and so by (qS), 

w vwx (vuw)wx v(uwx)w vxw x, 



which establishes the required contradiction. D 

(3) I(u,v) induces a bipartite subgraph in G for any u and v in V. 

PROOF. Assume the contrary, and let x and y be two adjacent vertices in 

the j-th level of the interval I(u,v). Then by (1), 

xuy E [u,x] n [u,y] I(u,x) n I(u,y), 

and so xuy is distinct from x and y. By (q6), the vertex xuy is a common 

neighbour of x and yin the (j-1)th level, and similarly, xvy is a common 

neighbour of x and yin the (j+1)th level. Hence x, y, xuy and xvy induce 

a K4-e in G, contradicting (2). D 

(4) If x and y are two distinct neighbours of v in I(u,v), then 

xuy is a common neighbour of x and y, for any u and v in V. 

PROOF. Note that z = xuy lies in I(u,x) n I(u,y). Since I(u,v) induces a 

bipartite subgraph, it follows that 

d(x,y) 2. 

Assume that z is not a common neighbour of x and y, so that z is not 

in I(x,y) = [x,y]. It follows from (1), Proposition 7.1.5, and the fact 

that x and y are neighbours of v, that 

I(z,x) n I(z,y) {z}, 

I(x,z) n I(x,y) {x}, 

and 

I(y,x) n I(y,z) {y}; 

- that is, xzy = z, zxy = x and xyz = y. 

Since x and y lie in I(z,v), we have 

xvz x, and vzy y. 

Hence by (q5), we have 
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z = xzy (xvz) zy x(vzy)z xyz y, 

which establishes the required contradiction. D 

(5) G satisfies condition (Q3'). 

PROOF. Let u1 + ••• + u6 + u 1 be an induced c6 in G with d(u1 ,u4) 3. 

Then u 1 , .•. ,u6 lie in I(u1 ,u4). Hence by (4), the vertex u3u 1u5 is a 

common neighbour of u3 and u5 in I(u1,u3 ) n I(u1 ,u5), so that u3u 1u5 is 

also adjacent to u 1 , and similarly, the vertex u2u4u6 is a common 

neighbour of u2 , u4 and u6 . 

Since I(u1,u4) induces a bipartite subgraph of G, the eight vertices 

obtained above induce a Q3 in G. D 

(6) Let u, v and w be vertices of G with I(u,v) n I(u,w) = {u}, 

I(v,u) n I(v,w) 

d(u,v) d(v,w) 

{v} and I(w,u) n I(w,v) = {w}. Then 

d(w,u). 

PROOF. By (1) and Proposition 7.1.5, we have 

[x,y]* {z EV I(x,z) n I(z,y) {z} }, 

for any two vertices x and y of G. 

Assume the contrary, and let u, v and w be such that 

- u E [v,w]*, v E [u,w]*, and w E [u,v]*; 

- d(u,v) ~ d(v,w) ~ d(w,u); 

- d(u,v) > d(w,u); 

- d(u,v) + d(v,w) + d(w,u) is minimal under these three conditions; 

- d(w,u) is minimal under these four conditions. 

Note that by (q6), we have d(u,w) ~ 2. 

Let x be a neighbour of win I(w,u). Since I(x,u) ~ I(w,u), it 

follows that 

u E [x,vJ*. 

Furthermore, 
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d(v,w) ~ d(v,x) ~ d(v,w) + 1. 

CASE 1: d(v,x) = d(v,w) + 1. 

Then d(u,v) + d(v,w) + d(w,u) = d(u,v) + d(v,x) + d(x,u). If there is 

a neighbour y of x in I(x,u) n I(x,v), then by (4) the vertex wvy is a 

common neighbour of wand yin I(v,w) n I(w,y) £ I(v,w) n I(w,u), which 

contradicts the fact that w is in [u,vJ*. Hence 

x E [u,v]*. 

If v lies in [u,x]*, then this contradicts the minimality of d(u,w) 

in our choice of u, v and w. Hence there exists a neighbour z of v in 

I(v,x) n I(v,u). Since z is not in I(v,w), it follows from (4) that the 

situation is as depicted in Figure 7.4, where Pis a shortest path from 

z toxin I(v,x) \ I(v,w), which is "matched" to a shortest (v,w)-path Q. 

V 

FIGURE 7.4. 

If z lies in [u,xJ*, then it follows from the minimality of 

d(u,v) + d(v,w) + d(w,u) that 

d(u,v) - 1 d(u,z) d(u,x) d(u,w) - 1, 



178 

contradicting the fact that d(u,v) > d(u,w). 

Hence there is a neighbour y of z in I(z,u) n I(z,x). We deduce from 

(4) that the situation must be as in Figure 7.5, for some vertices p, q 

and r, and a shortest (y,q)-path "matched" to the first part of the (z,x)­

path P. 

u~3/········.·.51·x 
·. : w . . . . . 

V V 

FIGURE 7.5. FIGURE 7.6. 

Property (5) implies the existence of a common neighbours of p, q 

and r in I(v,x). Note thats lies in I(p,r) ~ I(v,w). Hence q has a 

neighbour in I(v,w). By applying (5) a number of times, we conclude that 

the situation is as depicted in Figure 7.6. 

Sot is a neighbour of v in I(v,u) n I(v,w), contradicting the fact 

that vis in [u,w]*. This settles Case 1. 

CASE 2: d(v,x) = d(v,w). 

By (q6), the vertex w' = wvx is a common neighbour of wand x in 

I(v,w) n I(v,x). It follows from the minimality of d(u,v) + d(v,w) + d(w,u) 

that the situation is as in Figure 7.7, for some non-negative integers 

k, 1 and m, where d(v,x) = k + 1 + m. 

Then we have 

k + 1 d(u,v) ~ d(v,w) d(v,x) k + 1 + m, 
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so that m 0. Furthermore, we have 

k + 1 d(u,v) > d(u,w) 1 + 1, 

so that k ~ 2. 

1 uq•························· 

FIGURE 7.7. 

Using a similar argument as in Case 1, we deduce a contradiction. D 

(7) Each ordered triple (u,v,w) of vertices in G has a quasi-median. 

PROOF. The assertion follows immediately from (1) and (6) and Propositions 

7.1.4 and 7.1.5. D 

Combining (2), (5) and (7), we have the proof of the following 

theorem. 

7.2.2. THEOREM. Let G be the underlying graph of a quasi-median algebra. 

Then G is a quasi-median graph. 

We can associate a quasi-median algebra with a quasi-median graph, by 

which we establish a converse of the above theorem. 
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7.2.3. THEOREM. Let G be a quasi-median graph with interval function I. 

Define the mapping q: V x V x V ➔ V by q(u,v,w) x, whenever x lies in 

I(u,v) n I(v,w) and I(u,x) n I(x,w) = {x}. Then A= (V,q) is a quasi-median 

algebra with Gas its underlying graph. 

PROOF. As above we write uvw instead of q(u,v,w). Note that q is a well­

defined mapping, and that for any three vertices u, v and w of G, the 

quasi-median of (u,v,w) is the triple (wuv,uvw,vwu). The conditions 

(ql) - (q4) and (q6) follow easily from the properties of G. 

To prove that q satisfies condition (qS) embed Gin a Hamming graph 

H as in Theorem 6.2.5, so that each vertex u of G is labelled by 
al, ... ,an 

a vector (u 1 , ... ,u) in rr1: 1 {0,1, ... ,a.-1}. Let u, v, wand x be vertices 
n i= i 

of G, and let i be an integer with 1 sis n. It follows that if wi is one 

of ui, vi and xi, then the i-th coordinates of (uvw)wx and u(vwx)w both 

equal wi. If wi is distinct from ui, vi and xi, it follows that vi is the 

i-th coordinate of uvw, and so the i-th coordinate of (uvw)wx equals the 

i-th coordinate of vwx. Furthermore, it follows that the i-th coordinate 

of u(vwx)w equals the i-th coordinate of vwx. We have therefore proved 

that (uvw)wx = u(vwx)w. D 

We conclude this section by establishing the relationship between 

median graphs and median algebras. Note that a median algebra (V,m) is 

a Nebesky algebra, so that it makes sense to speak about the underlying 

graph of a median algebra. 

7.2.4. COROLLARY. The underlying graph G of a median algebra (V,m) is a 

median graph. 

PROOF. It is easily verified that a median algebra is a quasi-median 

algebra such that 

uvw vuw vwu, 

for any u, v and win v. This implies that G is a quasi-median graph in 

which any quasi-median has size O -that is, G is a median graph. D 
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7.2.5. COROLLARY. Let G be a median graph with interval function I. Define 

the mapping m: V x V x V + V by I(u,v,w) = {m(u,v,w)}, for any three 

vertices u, v and w of G. Then (V,m) is a median algebra. 

PROOF. By Theorem 7.2.3, (V,m) is a quasi-median algebra with uvw = vuw 

= vwu for any u, v and win V, and so (V,m) is a median algebra. D 

We have come to the end of this monograph. We have occupied ourselves 

with studying a number of classes of graphs, all more or less remotely 

related to then-cube. As the main to9l of our analysis we have used the 

interval function of a graph. The topic of intervals in graphs is of 

course far from exhausted. The reader will certainly have thought of 

questions related to the results presented here. There are also other 

problems where the interval function could be used. It is the hope of the 

author that such questions will stimulate further research on this topic. 
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