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CHAPTER 1 

INTRODUCTION 

The stepwise refinement method, _developed primarily by DIJKSTRA[13,14, 

15] and WIRTH [43,44], is nowadays an important and well-established program 

construction technique. The basic idea is that a program should be construct

ed by a sequence of refinement steps, leading from an initial specification 

to the final program. Each refinement step results in a new version of the 

program, usually improving on the previous version in some respect. It can, 

for example, make less severe assumptions about the basic operations and/or 

data types available, or it can be more efficient than the previous version. 

Stepwise refinement was originally proposed by DIJKSTRA [13] as a con

structive approach to program proving. According to this view, if each re

finement step is very carefully carried out, so that it can be seen to pre

serve the correctness of the previous version of the program, then the final 

program must be correct by construction. In practice, however, the refine

ment steps made are often far from trivial, therefore making it difficult 

to judge the correctness of a refinement step on a purely intuitive basis. 

Examples of such nontrivial refinement steps include procedure and data type 

implementations, changes made in the data or control structures of the pro

gram, as well as applications of general program transformation rules. 

We consider here the problem of how the correctness of refinement steps 

can be shown. A formal system will be presented in which correctness of re

finement steps can be proved, thus providing a rigorous foundation for the 

use of stepwise refinement as a constructive proof technique for program 

correctness. 

The approach that we will take here is best characterized by listing 

some of the more important goals that we have tried to achieve. 

(1) We wanted to stay as close as possible to the way in which stepwise re

finement is used by Dijkstra and Wirth in the references cited above. 

We especially wanted to keep the open-ended nature of their method, where 
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any kind of refinement step is allowed, as long as it can be seen to 

preserve the correctness of the preceding version. 

(2) We wanted to treat refinement in a broad sense, including not only im

plementation of procedures but also refinements concerned with data re

presentations and control structures of a program, as well as the use 

of program transformation rules. 

(3) We also wanted to keep our programming language as simple as possible. 

In particular, this meant that we did not want to introduce such compli

cated constructs as procedures or abstract data types into our language. 

(4) We wanted to reason about the correctness of a refinement step in a for

mal system, with a fixed set of axioms and proof rules, and not base our 

proofs on semantic arguments. 

(5) We did not want to invent a formal system of ouw own, but rather wanted 

to use an existing system with well-known mathematical properties. 

(6) Finally, we decided to consider only the total correctness of programs, 

leaving partial correctness and other possible correctness criteria a

side. 

These goals serve to distinguish our approach from other approaches to 

program proving. Thus the axiomatic technique by HOARE [23,24,25] agrees with 

point (2) ·above, except for program transformations (which are treated in his 

style in GERHART [20]), and also with (4) , but only partially with (1) and 

(3) and not at all with (5) and (6). HAREL and al [22] extend Hoare's techni

que in the direction we are interested in, treating also total correctness 

of programs, but otherwise the same comments hold for their system. 

On the other hand, the weakest precondition technique used by DIJKSTRA 

[15] does not agree with (2) and only partially with (4), but otherwise is 

quite close to the approach taken here. Our work is essentially an extension 

and a formalization of Dijkstra's weakest precondition technique. 

The work that has been done on program transformation systems, such as 

that by GERHART [20], BURSTALL and DARLINGTON [ 10], WEGBREIT [42] and LOVEMAN 

[33], has concentrated more on finding useful program transformation rules, 

pushing the formal aspects of the method somewhat into the background. The 

same applies to the treatment of stepwise refinement in general given in 

KNUTH [30] and CORRELL [11]. 

Program transformation systems have been considered from a more formal 

point of view in the project CIP [6,7]. The work by BROY, GNATZ and WIRSING 

[9] in this project is in some respects close to ours, although their 
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approach is much more oriented towards semantics than ours. Also, the basic 

concept of refinement used by these authors is different from the one used 

here (the work reported here was done independently of these and is based 

on the authors' thesis [1]). Another approach in the same direction as ours 

is described in MEERTENS [35]. 

Goals (4), (5) and (6) lead quite naturally to the use of the weakest 

precondition technique. It turns out that the most appropriate formal system 

for expressing the weakest preconditions of programs and reasoning about them 

is the infinitary logic Lw 1w. This is an extension of the usual first-order 

logic, in which infinite disjunction? and conjunctions over formulas are 

allowed. The infinite disjunctions are needed for expressing the weakest 

preconditions of loops. We will make extensive use of this logic in this 

tract, therefore devoting the first main chapter to an exposition of the 

syntax, semantics and axiomatization of this logic. 

Goals (2) and (3) are in potential conflict with each other. The way 

out of this dilemma is to design the language in such a way that the effect 

of operational and repres·entational abstraction in program development can 

be achieved, even if the language does not permit the explicit declaration 

of these constructs. The solution given will be quite close to the way in 

which operational and representational abstraction is used in DIJKSTRA [15], 

thus also agreeing with goal (1). 

The programming language to be used will contain a new kind of 

primitive statement called an atomic description. It can be loosely charac

terized as a nondeterministic assignment statement with an associated change 

of scope (i.e. a change of the set of variables available). The descriptions 

will be constructed out of the atomic descriptions using control structures 

such as composition, selection, iteration and nondeterministic binary choice. 

It will be possible to express both programs and their specifications in 

this language, therefore making it unnecessary to consider two different 

languages as is usually done, a specification language on the one hand and 

a programming language on the other. We will devote Chapter 3 to explaining 

the syntax and semantics of this language. 

Goal (1) and, in particular, the open-endedness of stepwise refinement 

have been achieved by introducing correctness of refinement as a binary re

lation between descriptions. Thus S ~ S' expresses the fact that the descrip

tion S' is a correct refinement of the descriptions. This refinement rela

tion will be reflexive and transitive, justifying the stepwise method of 

program construction. Thus if 
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is the sequence of program versions constructed, with s0 as the initial 

specification and Sn as the final program, such that 

i 0, 1, ... , n-1, 

then 

i.e. the final program Sn is a correct refinement of the specification 

so. 
The refinement relation will be defined in Chapter 4, where we show 

some simple properties of th{s relation. In the same chapter we also intro

duce an equivalence relation between descriptions, obtained by requiring 

mutual refinement between them. Again in Chapter 4 we give an important 

characterization of refinement using weakest preconditions, on which the 

technique for proving the correctness of a refinement step will be based. 

The general proof rule for correct refinement between descriptions will 

be given in Chapter 5. Proving S ~ S' for descriptions Sand S' will essen

tially amount to computing the weakest preconditions for these and proving 

a specific formula of Lw 1w involving the weakest preconditions. This proof 

rule will be complete in the sense that S ~ S' will hold if and only if the 

corresponding formula of Lw1w is provable. 

In Chapter 6 we go on to show how stepwise refinement can be carried 

out using descriptions. We will show how to model top-down program develop

ment, operational and representational abstraction and how to justify the 

use of program transformation rules. (For those readers who are not familiar 

with the stepwise refinement technique, we recommend a glance at Section 6.1 

of this chapter, where an example is given.) 

Descriptions describe nondeterministic state transformations of unbound

ed nondeterminism. This gives some problems in expressing weakest precondi

tions, as discussed in [15]. To avoid these problems, we will restrict our

selves to refinements between a certain kind of descriptions only, called 

program descriptions. These are not as general as descriptions, but are more 

convenient to work with. Programs and program specifications will be special 
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kinds of program descriptions. 

Finally, in Chapter 7 we give an example of formal program development 

using program description. We will give special proof rules for handling 

commonly occurring refinement steps, such as procedure implementations, in

troducing assertions into programs, handling representational abstraction 

and changing the control structure of a program. These special proof rules 

will all be derived from the general proof rule for refinement using the 

axioms and inference rules of Lw 1w, thereby showing the suitability of this 

logic for reasoning about programs and the generality of the proof rule for 

refinement. 
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CHAPTER 2 

THE INFINITARY LOGIC Lw1w 

We will choose an infinitary logic called Lwiw as the underlying logic 

for carrying out proofs of program properties. This logic is an extension of 

ordinary first-order logic, allowing disjunctions and conjunctions over a 

countably infinite number of formulas. To handle these infinite disjunctions 

and conjunctions, we need inference rules with a countably infinite number 

of premises~ which in turn forces us to accept infinitely long {but count-

. able) proofs. 

The need for infinite disjunctions arises in connection with the proof 

rule for loops. The assertion that a loop in a deterministic program termin

ates correctly, for a given set of initial states, can be expressed as an 

infinite disjunction in the following way: for every initial state in the 

given set the loop either terminates correctly without any iterations, or 

it terminates correctly after one iteration, or ••• , or it terminates cor-

rectly after n iterations, or • If the set of initial states give~ is 

infinite, then it will not, in general, be possible to give an upper bound 

N such that the loop will terminate for any initial state in the set after 

at most N iteration. Hence the disjunction must contain an infinite number 

of subassertions. 

The logic Lw 1w is a special case of a general class of infinitary logics, 

whose members are denoted Las· The logic LaBis like ordinary first-order 

logic, except that it allows disjunctions and conjunctions over fewer than 

a formulas, and universal and existential quantification over variable se

quences with fewer than B variables, where a and Bare two infinite cardinal 

numbers, B ~a.By choosing a= w1 and B = w, we get Lwiw' in which we allow 

disjunctions and conjunctions over countable sets of formulas, but quantifi

cation only over finite sequences of variables. {w is the cardinality of the 

set of natural numbers, while w1 is the next bigger cardinal number. Thus 

a< w1 means that a is a countable ordinal number, while a< w means that a 

is a finite ordinal number.) If we choose a= B = w, we get the usual first-
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order logic, in which only finite disjunction, conjunction and quantifica

tion is allowed. 

Our treatment of Lw 1w below is based on KARP [27], with some changes 

in the notation. The treatment is self-contained, except that proofs of the 

lemmas are omitted. The lemmas follow quite straightforwardly from the basic 

theorems proved by Karp. The logic Lw 1w is also treated in SCOTT [40], 

FEFERMAN [19] and KEISLER [29], just to mention a few. We have chosen KARP 

[27] as our basis because it uses a familiar Hilbert-like proof theoretic 

approach to this logic. 

2.1. THE SYNTAX OF Lw 1w 

Every Lw 1w language L has the same set of logical symbols 

I\ V ( ) 

and the same set of variables 

vo,v1,···,v1;,·••1 

A particular Lw 1w language Lis characterized by its non-logical sym

bols. These are of three kinds. We have the constant symbols 

and for each n, 0 < n < w, then-place function symbols 

n n n 
FO,Fl, ... ,F/;, ..• , 

and then-place predicate symbols 

n n n 
Go, G 1 , ••• , Gi; , ••• , 

If L and L' are two Lw 1w languages, such that each non-logical symbol 

of L is a non-logical symbol of LI, then L' is said to be an expansion of L, 

Let L be an Lw1w language. The terms of- L are defined as usual: 

{i) Each variable is a term of L. 



(ii) Each constant symbol of Lis a term of L. 

(iii) If t 1 , .•. ,~ are terms of Land Fis a k-place function symbol, then 

F(t1 , ..• ,~) is a term of L. 
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To be more precise, we should define the set of terms of Las the least 

set containing the variables and the constants of Land closed under rule 

(iii). The inductive definitions given here should be understood in this way, 

i.e. an element belongs to an inductively defined set if and only if it can 

be seen to belong to the set by the rules given for defining the set. 

The formulas of Lare defined as follows: 

(i) If t 1 and t 2 are terms of L, then t 1 t 2 is a formula of L. 

(ii) If t 1 , ... ,tk are terms of Land G is a k-place predicate symbol of L, 

then G(t1 , ... ,tk) is a formula of L. 

(iii) If AO is a formula of L, then(~ AO) is a formula of L. 

(iv) If AO and A1 are formuias of L, then (AO _. A1) is a formula of L. 

(v) If O < o < w1 and A~ is a formal of L for s < o, then (/ls<o As) is a 

formula of L. 

(vi) If vis a finite nonempty sequence of variables and AO is a formula 

of L, then (VvAO) is a formula of L. 

The formula (/1 s <o As) is a shorthand for the formula (/1 AO ... As ... ) , 

where AO ..• As•·· is a (possibly infinite) sequence of formulas As, s < o. 

In KARP [64] infinitely long sequence of this kind are given rigorous treat

ment. We will here rely on the intuitive notion of an infinite sequence of 

formulas, referring to KARP [64] for a formal definition of the concepts pre

sented here. 

The other connectives and quantifiers are introduced as abbreviations 

in the usual way: 

(i) (AO A Al) stands for (/ls<2 AS)' 
(ii) cv s<o Asl stands for <~ "s<o (~ As)) ' o < w1 , 

(iii) (AO V A1) stands for (V ~<2 As) ' 
(iv) (AO- Al) stands for ((AO_.Al) A (Al_.AO)) and 

(v) (3vAol stands for (~ Vv(~ AOJ l. 

An occurrence of a variablevsin a formula is said to be bound, if the 

occurrence is within a subformula of the form (Vv A'), where vs is one of 

the variables of v. We say that an occurrence of a variable vs in a formula 

is free, if this occurrence is not bound. The variable vs is said to be free 

in a formula, if there is a free occurrence of the variable vs in the formula. 
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Similarly, the variable vs is said to be bound in a formula, if there is a 

bound occurrence of the variable v~ in the formula. 

Let t 1 , ... ,~ be terms of L, and let x 1 , ••• ,1\: be distinct variables, 

i.e. for each i, j such that 1 s i < j s k, x. t x .. Lett be a term of L. 
l. J 

Then t[t1/x1 , ..• ,tk/xk] denotes the term of L obtained by substituting sim-

ultaneously for i = 1, ... ,k the term t. for each occurrence of X. int. 
l. l. 

If A is a formula of L and tis a term of L, then t is said to be free 

for the variable vs in A, if no free occurrence of vs in A is an occurrence 

in a subformula (VvA') of A, where v contains a variable that occurs in t. 

Let t 1 , .•. ,tk be terms of Land x 1 , ... ,1\: be distinct variables. Let A 

be a formula of L. 'l'hen A[ t 1 /x1 , ... , tk/xk] denotes the formula of L that we 

obtain by first changing the variables bound in A so that each term ti will 

be free for xi in A, and then subs ti tu ting simultaneously for i = 1, ... , k 

the term ti for each free occurrence of xi in A. The replacement of bound 

variables with new variables•is assumed to be done in a systematic fashion, 

so that the formula A[t1/x1, •.• ,tk/xk] is uniquely defined. 

A formula of L that does not contain any free variables is called a 

sentence. 

2.2. THE SEMANTICS OF Lw1w 

Let Tr be the set of truth values, Tr= {tt,ff}. Here tt stands for 

"true" and ff stands for "false". A k-place predicate on the set Dis a func
k 

tion from D to Tr, assigning a truth value to each k-tuple of D. 

A structure for the Lw 1w language Lis a pair M = <D,I>, where Dis a 

nonempty set and I is a function that assigns to each constant symbol of L 

an element in D, to each k-place function symbol of La k-place function in 

D and to each k-place predicate symbol of La k-place predicate on D. 

Let V be a nonempty set of variables. AV-assignment in Dis a function 

s: V + D. The set of all V-assignements in Dis denoted Dv. Given a V-assign

ment sin D, the distinct variables x 1 , ... ,1\: and the elements a 1 , .•• ,ak of D 

(not necessarily distinct), s<a1/x1, ..• ,ak/1\:> denotes the V'-assignment s' in 

D where V' =Vu {x1, ... ,1\:} and s'(xi) = ai for i = 1, ... ,k, while s'(vs) = 

s(vs) for each vs EV, vs t xi for i = 1, .•. ,k. 

Let M = <D,I> be a structure for L. Lett be a term of L, and let V be 

a set of variables such that any variable occurring int belongs to V. We 

define the value oft in M for the V-assignment s, denoted valM(t,s), as 

follows: 



(i) If tis the variable v~ in V, then va¾1(t,s) = s(v~). 

(ii) If tis the constant symbol c~, then valM(t,s) = I(c~). 

(iii) If tis the term F(t1, .•• ,,c), where Fis a k-place function symbol, 

then valM(t,s) = I(F)(va¾1(t1,s), .•• ,valM(,c,s)). 
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Similarly, we define the value of the formula A in M for the V-assign

ment s, when each free variable of A is in V, to be an element of Tr, denoted 

valM(A,s): 

(i) If A is t 1 = t 2 , then valM(A,s) = tt iff va1M(t1 ,s) = valM(t2 ,s). 

(ii) If A is G(t1, ••• ,,c), where G is a k-place predicate symbol, then 

va¾1(A,s) = I(G)(valM(t1 ,s), •.• ,valM(,c,s)). 

(iii) If A is (~ A0), then valM(A,s) = tt iff va1M(A0 ,s) = ff. 

(iv) If A is (A0 =>A1), then valM(A,s) = tt iff valM(A0 ,s) = ff or 

(v) 

(vi) 

valM(A1,s) = tt. 

If A is (A~<o A~), then valM(A,s) tt iff valM(A~ 1 s) = tt for each 

~ < o. 
If A is (VvA0), then val!\A,s) = tt iff valM(A0 ,s<a1/x1 , ... ,¾/~>) =tt 

for every <a1, ••• ,¾> ED, where x 1 , ... ,~ are the distinct variables 

occurring in v. 

LEMMA 2.1. Lets be a V-assignment in D and lets' be a V'-assignment in D. 

If both V and V' contain each variable occurring in the term t, and if 

s(v~) = s'(v~) for each such variable v~ int, then valM(t,s) = valM(t,s'). 

Similarly, if both V and V' contain each variable occurring free in the form

ula A, and s(v~) = s' (v~) for each such free variable v~, then valM(A,s) = 

valM(A,s'). 

PROOF. Theorems 3.5.S(i) and 9.1.5 in KARP [27]. D 

We say that the formula A holds in the structure M = <D,I>, if for some 

set V of variables containing all the variables free in A, we have 

valM(A,s) = tt for every V-assignment sin D. By the lemma above, the speci

fic choice of V does not affect the property that a formula holds in M. 

We say that a structure Mis a model for a set of formulas~. if each 

formula of~ holds in M. The formula A is said to be a semantic consequence 

of~. denoted~ FA, if A holds in every model of~- A formula A is said to 

be valid if it is a semantic consequence of the empty set of formulas. 

Let L' be an expansion of the language L, and let M = <D,I> be a struc

ture for L. A structure M' = <D,I'> for L' where I' agrees with I on the non

logical symbols of Lis said to be an expansion of M to L'. 
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KARP [27] gives the following axiom system for an Lwiw language L. The 

axioms are: 

IL (Ao .. (A1 .. Ao)> 

I2. ( (Ao .. (A1 .. A2)) .. ( (Ao .. A1) .. (Ao .. A2))) 

NL ( (~Ao .. ~A1) .. (A1 .. Ao) ) 

CL (A/;;<15 (Al5 •Al;;),. (A15 •A!;;<l5 Al;;)), 0 < 15 < (1)1 

C2. (A!;;<l5 Al;; ,. An), Tl< 15, 0 < 15 < w1 

Q1. (Vv(Ao ,. A1) ,. (Ao • VvA1)), if no variable of V is free in 

AO 
Q2. (VvA0 •A0[t1/x1, ••• ,,c/~]), where x1 , ••• ,~ are the dis

tinct variables of v 

EL tl = tl 

E2. (AiSk (ti= ti) .,. F (t0 , ... , 1c) 
E3. (AiSk (ti= ti) • G(t0 , ••• ,tk) 

The inference rules are: 

CN. 

GN. 

A0 , ... ,A!;;, ... , ,!;;<15 

A!;;<l5 Al;; 

= F(t0, ... ,~)) 
.. G(t0, ... ,tk». 

Here Ao,·••1A1;;,··· are formulas of L, to,·••1\:,to,·••1tk are terms of L, F 

a k+l-place function symbol of L, Ga k+1-place predicate symbol of Land 

vis a nonempty sequence of variables. 

A proof in L of the formula A from the set of formulas /J. is a sequence 

of formulas of L, where n < w1 , A= Bn, and for each I;;~ n, BE;; is either an 

axiom, a formula of /J. or has been obtained from previous formulas in these

quence by applying one of the inference rules. A formula A is provable from 
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~,denoted~ h A, if there is a proof of A from~- The formula A is a theo

rem, denoted~ A, if it is provable from the empty set of formulas. 

The logic Lw 1w is similar to first-order logic in that it is complete, 

in the following sense (KARP [27]): 

LEMMA 2.2. (Completeness). For any formula A of L and any countable set of 

sentences ~ of L, ~ F A if and only if ~ I- A. 

PROOF. Follows from Theorem 11.2.4 and 11.4.1 in KARP [27]. D 

The following results will be u~eful later. The proofs of these are 

straightforward consequences of the theorems proved in KARP [27]. We assume 

in the lemmas that~ is a set of sentences of L. 

LEMMA 2.3. (Deduction theorem). Let A and B be two formulas of L, where the 

free variables of A are x1 , •• ,· '¾. Let L' be the expansion of L that we get 

by adding the new constant symbols d1, •.. ,'\: to L. Then~ I- A* Bin L, if 

·~ U {A[d/x1, ••• ,'\:/¾]} h B[d/x1 , ••• ,'\:/¾] in L'. 

PROOF. Follows from the Theorems 11.2.4 and 11.3.1 of KARP [27]. D 

LEMMA 2.4. (Inference rule for disjunction). If~~ As* B for s < o, o < w1 

then~~ Vs<o As* B. 

PROOF. Follows from the definition of disjunction, using axiom C1 and Theo-

rem 11.2.3(ii) in KARP [27]. D 

LEMMA 2.5. (Axiom for disjunction).~~ An •Vs<o As, for n < o, o < w1• 

PROOF. Follows from the definition of disjunction, using axiom C2. D 

LEMMA 2.6. 

and 

provided that the variables x 1 , ... ,¾ do not occur in the terms t 1 , .. ·,\;· 
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PROOF. This is a standard result of first-order logic which also holds for 

D 

We will not give completely formal proofs of theorems in Lwiw• but will 

partly resort to informal arguments. We will, however, try to make these 

arguments correspond as closely as possible to formal constructions of proofs 

in Lwiw· Because proofs in Lwiw may be infinitely long, a completely formal 

proof by exhibiting the sequence of formulas constituting the proof cannot 

usually even be given. Instead we have to use mathematical induction, by 

which the existence of a certain proof sequence can be shown. 

The deduction theorem will be used in an informal way, by temporarily 

regarding the variables free in assumption formulas as constants. This means 

that we are not allowed to use the rule GN to universally quantify variables 

that occur free in assumption formulas. 
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CHAPTER 3 

DESCRIBING STATE TRANSFORMATIONS 

The language of descriptions will be defined in this chapter, the syn

tax in Section 3.1 and the semantics in Section 3.2. The language will be 

nondeterministic, mainly because we allow program specifications to occur as 

parts of descriptions and we do not want to require these to be determinis

tic. 

The language will contain a new kind of primitive statement called an 

atomic description. It can roughly be described as a nondeterministic assign

ment statement with an associated change of scope. In addition to this, the 

language contains the usual control structures of composition, selection and 

iteration, together with nondeterministic binary choice. 

The semantics of the descriptions will be of the denotational kind, 

making use of the approximation relation for nondeterministic state trans

formations defined in PLOTKIN [37]. We will be following DE BAKKER [12] quite 

closely, the main deviations resulting from the fact that we have to consider 

state transformations between different state spaces and that we do not re

quire the nondeterminism to be bounded. The latter has a profound effect on 

the semantics, to be discussed in the last section of the chapter. 

3.1. SYNTAX OF DESCRIPTIONS 

We will first introduce some special terminology for finite sequences 

of elements, as we are going to need this kind of construction quite often 

in the subsequent analysis. A finite sequence of elements of a set A will be 

called a list of elements of A. If xis a list, then l(x) is the length of 

the list, and the elements of the list x are x1 , ••• ,xl(x), in this order. We 

use angular brackets for lists, i.e. x = <x1 , •.• ,xl(x)>. The empty list, with 

l(x) = O, is denoted <>. The set of elements in a list x is denoted x. 

For any function f: A+ B, the extension off to a function from lists 

of elements of A to lists of elements of. B is defined by 
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where x 1 , ... ,xl(x) are elements of A. If x and y are lists of elements of A, 

then 

and if l(x) = l(y), 

and 

X y 

Let from now on L be some fixed Lw 1w language. If tis a term of L, then 

var(t) is the set of all variables occurring int. Similarly, if Q is a for

mula of L, then var(Q) is the set of all variables free in Q. 

The set of descriptions (in L) is defined by induction as follows: 

(i) If x ~nd y are lists of distinct variables,; n y = 0, and Q is a first
order formula of L, then 

x/y.Q {atomic description) 

is a description. 

(ii) If Sand S' are descriptions and Bis a first-order formula of L, then 

(S; s I) 

(S Vs I) 

(B ➔ s I S') 

(B * S) 

are descriptions. 

{ composition) 

{nondeterministic choice) 

{selection) 

{iteration) 

We use descriptions to describe state transformations. A state is essen

tially a collection of variables, together with the values assigned to these 

variables. A state transformation may change the values assigned to the vari

ables in the state, but it may also change the collection of variables in the 



17 

state, by adding some variables and removing some others. Programs will form 

a special kind of descriptions. However, descriptions are more general than 

programs, in that we can express almost any input/output relation as a de

scription (including all relations definable by a first-order formula of L). 

This generality makes it possible to also express program specifications as 

descriptions. 

The atomic description x/y.Q is the source of this generality. The 

effect of this, applied to a state with the set of variables V, is roughly 

as follows. First, the new variables in the list x, i.e. those variables not 

already in the set V, are added to the state. Then new values are assigned 

to the variables x, the values being chosen so that the condition Q will be

come true. Finally, the variables y are removed from the state. The set of 

variables in the new state will thus be (V u x) - y. If there is more than one 

assignment of values to x which makes Q true, one of these is chosen non

deterministically. If there is no such assignment, the computation is con

sidered not to terminate. 

As an example, consider the atomic description 

u,w/v. (0 $ u + w $ v + z) 

applied to an initial state with variables V = {u,v,z} (the list brackets 

are omitted in examples, i.e. we write u,w/v above instead of <u,w>/<v>). 

The new state will then have the variables W = {u,z,w}, i.e. the variable w 

has been added and v has been deleted. If initially we have that (u,v,z) = 
(1,1,1) then in the new state we have (u,z,w) = (a,1,b), where a and bare 

chosen so that the condition 0 $a+ b $ 2 is satisfied. If the values are 

chosen from the set of natural numbers, then there are only three possible 

assignements of values to the variables (u,z,w): (0,1,2), (1,1,1) and (2,1,0). 

The descriptions (S; S') , (B-+ SIS') and (B*S) provide the basic control 

structures of programming languages (we write (B-+ SIS') for if B then S else S' 

and (B*S) for while B do S). The description (S v S') is a nondeterministic 

choice between executing Sor S'. 

Let S be a description and let V be a set of variables. The set of 

variables fin(S,V) is then defined as follows. First, if V = 0 then 

fin(S,V) = 0- For nonempty V we define fin(S,V) by cases as follows: 
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(1) 

(2) 

(3) 

(4) 

(5) 

u x, if var(Q) £Vu x, y £ V 
fin(x/y.Q,V) 

otherwise 

fin(S' ;S" ,V) fin(S" ,fin(S' ,V)) 

fin(S' VS" ,V) 

fin(B+S' I S",V) 

fin (B*S' , V) r· 
flJ 

rin(S'_,V), 

flJ 

if fin(S' ,V) fin(S",V) 

otherwise 

if var(B) £ v, fin(S' ,V) = fin(S" ,V) 

otherwise 

if fin(S', V) V and var(B) £ V 

otherwise. 

Let V and W be two sets of variables, V,W t, f/J. Then Sis said to be a 

legal description from V tow, denoted S: V + w, if fin(S,V) = w. The set V 

of variables is said to be a legal initial space for the descriptions, if 

fin(S,V) t, f/J. The set Wis said to be the final space of the description S 

for the initial space V, if fin(S,V) = W. Intuitively, S: V + W says that 

the initial states of the transition S contain the variables V and the final 

states of S contain the variables w. 

If Sis a legal description from V to W, then each component descrip

tion of Swill be assigned a unique initial legal space determined by Sand 

V, and consequently also a unique final space. The initial and final spaces 

of the components of a description S: V +Ware determined as follows: 

(1) If S 

(2) If S 

(3) If S 

(4) If S 

(S' ;S"), then S': V + fin(S' ,V) and S": fin(S' ,V) + W. 

(S' VS"), then S': V +wand S": V + w. 

(B+S' IS"), then S': V +Wand S": V + w. 

(B*S'), then S': V + W. 

3.2. SEMANTICS OF DESCRIPTIONS 

We start again by fixing our terminology and introducing some notations, 

this time for relations. Let D be a nonempty set, and let R be a relation in 

D, i.e. R £DX D. Then R is said to be 



reflexive, 

transitive, 

symmetric, 

if dRd, for each d ED, 

if d Rd' and d' R d" implies d R d", for any 

d,d' ,d" E D, 

if dRd' implies d' Rd, for any d,d' ED, and 

antisymmetric, if d Rd' and d' Rd implies d = d' , for any 

d,d' E D. 
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The relation Risa preorder, if it is reflexive and transitive. It is 

a partial order, if it is also antisymmetric. If it is a preorder, and in 

addition is symmetric, then it is an equivalence relation. 

Let now V be a nonempty set of variables, and let D be some nonempty 

set. Then the state space determined by V and D, denoted VD, is defined as 

V = DV u {L D}. Here DV is as before the set of all V-assignments in D, 
D V, 

i.e. the set of all functions s: V ➔ D, while LV,D is a special element not 

belonging to Dv, which is introduced for the purpose of modeling nonter

mination. The elements in DV are called proper states, while LV,D is called 

the undefined state. The subscripts of the undefined state will be omitted 

when it is clear from the context to which state space the undefined state 

belongs. 

For the purpose of the present section, we can think of Las signalling 

the possiblity of nontermination. Thus, if A is the set of possible final 

states of a computation, we will add to A the undefined state if and only if 

there is a possibility that the computation may not terminate. In the next 

section this will be shown to be only approximately true, but for the present 

section this intuitive explanation could be helpful. 

The set of all nonempty subsets of VD will be denoted PD(V). Let W bea 

nonempty set of variables. A fnondeterministlc) state transformati()JJ. 

from VD to WD will be identified with a function f: VD ➔ PD(W), satisfying 

the condition f(LV,D) {LW,D}. For each proper states E VD, f(s) will be 

the set of all possible final states of the state transformation. We denote 

the set of all state transformations from VD to WD with FD(V,W). 

A state predicate on VD is a function f: VD ➔ Tr, satisfying the condi

tion f(LV,D) ff. The set of all state predicates on VD is denoted ED(V). 

Intuitively, a state predicate is an assertion about the values of the vari

ables in the state. 

The semantical definition of the descriptions will require some pre

liminary work, mainly necessiated by the iteration. We start by defining 
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some ways of constructing new state transformations from old ones. The 

fact that these constructions really are state transformations is easily 

verified. 

The state transformations ~V,D' AV,D in FD(V,V) are defined by 

for each s E VD. 

If f E FD(V,V') and f' E FD(V',V"), then f;f' E FD(V,V") is defined by 

(f;f')(s) U f' (s'), 
s'Ef(s) 

for each s E VD. 

If f and f' are elements in FD(V,W), then fVf' E FD(V,W) is defined by 

(fVf 1 ) (s) f(s) u f'(s), for each s E VD. 

Finally, if b E ED(V) and f, f' E FD(V,W), then (b+flf') E FD(V,W) is de

fined by 

(b+flf') (s) 

Next, we define a 

and U' are elements of 

if either .L E u and u 

r(s), 
f I (S) I 

if b(s) 

if b(s) 

tt 

ff. 

relation of approximation in PD (V) 

PD(V), the U is said to approximate 

- {1.} SU' or l. i u and U = U'. 

and FD(V,W). If u 
U', denoted U'= U', 

If f and f' are elements of FD(V,W), then f is said to approximate f', 

denoted f '= f', if f(s) '= f' {s) for every s E VD. 

LEMMA 3.1. Approximation is a partial order in PD(V) and FD(V,W). 

To get an intuitive idea of this relation, consider a nondeterministic 

computation proceeding at a certain speed, where all alternatives are simul

taneously computed (i.e. the computation branches at choice points). Consi

der two time intervals t and t', t < t'. Let Ube the set of final states 

reached at t, and U' the corresponding set at t'. If in U (or U') there is 

an unfinished computation going on, then U (or U') is also to include the 

undefined state. If now 1. i u, then all computations have been finished at 

time t. Therefore the set of final states at t' must be the same as the set 

of final states at t, i.e. U = U'. If on the other hand.LEU, then any final 
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states reached at t must be a final state at t' too, although there might 

be other final states at t', created by the unfinished computations at t. 

Thus we have that U - {.L} s U'. All in all, we have that U = U'. In general, 

U = U' means that U' could be a later result set than U for some nondeter

ministic computation. (The approximation relation is treated in more details 

in e.g. DE BAKKER [12] or PLOTKIN [37].) 

The least element in PD(V) is the element {.L} of PD(V). This follows 

from the fact that for any U E PD(V), {.L} - {.L} = ~ s U, i.e. {.L} = U. As a 

consequence of this, QV,D will be the least element of FD(V,V). 

LEMMA 3.2. If f = f' and g = g', then f;g = f';g', for any f, f', g and g' 

PROOF. Assume that f = f' and g = g'. Consider first the case when.LE f;g(s) 

for s E VD. Assume that f;g(s) # {.L} (otherwise we have directly that 

f;g(s) = f' ;g' (s)), and let s" E f;g(s), s" # .L. This means that for some 

's• E f(s), s' # .L, s" E g(s'). Thus by assumption we have thats' E f'(s) 

and also thats" E g' (s'), i.e. s" E f' ;g' (s). Therefore f;g(s) = f'g' (s). 

On the other hand, if.Li f;g(s), then.Li f(s) and for any s' E f(s) 

we must have that.Li g(s'). By the definition of f;g this then gives that 

f;g(s) = f';g' (s). Therefore, we also have in this case that f;g(s) = 
f' ;g' (s). D 

LEMMA 3 . 4. If f = f ' and g = g' , then (b + f I g) = (b + f' I g' ) , for any f, f' , 

g and g' in FD(V,V) and bin ED(V). 

PROOF. The result follows directly by considering the two cases b(s) tt 

and b (s) ff. □ 

u u 
n n<w n<w 

if.LEU for each n <wand 
n 

u u 
n n<w 

otherwise, where Uk is the first element in the sequence not containing .L. 

Obviously U Un will be an element of PD(V). n<w 
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For fi € F0 (v,v), i < w, such that f 0 s f 1 s 

Lin<w fn in F0 (V,V) by 

( LI 
n<w 

f ) (s) 
"n 

LI 
n<w 

f (s) 
n 

for each s € v0 • 

= fn = ... , we define 

(Actually Lifn is the least upper bound of the chain f 0 = f 1 = •.• = fn = ..• 
and similarly for Llun, but as this is not needed in the sequel, it will not 

be proved.) 

Let b € E0 (V) and f € F0 (V,V). We define the transformations (b*f)n in 

F0 (V,V), as follows: 

and 

(b*flo = n 
V,D 

(b*f)n+l 

We will prove that 

for n 2: 0. 

for n 2: 0. 

First, because nV,D is the least element of F0 (V,V), we have that 

Assuming that (b*f)n = (b*f)n+l, n 2: O, we have by Lemma 3.2 that 

n n+l 
f; (b*f) = f; (b*f) , 

from which we get by Leuma 3. 3 that 

i.e. we have 



The required result then follows by induction. 

The state transformation (b*f) in FD(V,V), where b E ED(V) and f E 

FD(V,V), can now be defined by 

Let now M = <D,I> be a structure for L. A formula Q with var(Q) ~ V, 

Va nonempty set of variables, can be interpreted as a state predicate in 

ED(V), denoted intM(Q,V), as follows: 

for each s E VD, s i ~-
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(Fors=~ we always have intM(Q,V) (s) 

dicates.) 

ff, by the definition of state pre-

Let x/y.Q:V ➔ W be.an atomic description, x = <x1, ••• ,~>, and lets 

be a state in VD. The effect of the atomic description is to compute some 

new states' in WD, where s'(x1), .•• ,s'(xk) are chosen so that the condition 

Q will be satisfied, while s'(z) = s(z) for variables z in W not occurring 

in the list x. More precisely, s' is said to be a possible choice of the 

atomic description, for initial states in VD, if 

valM(Q,s<s' (x)/x>) tt 

and 

SI (z) s (z) , for every z E W - x 

A legal description S: V ➔ W, V and W nonempty sets of variables, will 

be interpreted as a state transformation in FD(V,W), denoted intM(S,V). We 

define the interpretation by cases as follows: 

(i) 
if W(s) i i 

if W(s) = i, 
where W(s) ~ WD is the set of all possible choices of x/y.Q for initial 

states E VD, s i ~-
(ii) intM(S' ;S" ,VJ 

intM (S' vs", V) 

intM(B+S' ls",Vl 

intM(S',V); intM(S",fin(S',V)), 

intM(S',V) V intM(S",V), 

(intM (B, V) ➔ intM (S', V) I intM (S", V)), 
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3. 3. STRONG AND WEAK TERMINATION 

As explained in the previous section, the undefined state~ is used to 

indicate the possibility of nontermination. That is, for any description 

S: V +Wand any initial states E VD,~ E intM(S,V) (s) if and only if there 

is an execution of S from initial states which does not terminate. On clos

er inspection, however, it turns out that this is not really the case. More 

precisely, for some descriptions S: V +Wand some initial states s E VD we 

have that~ E intM(S,V) (s), although execution of S from initial states 

seems to be guaranteed to terminate. 

As an example, consider the following program (discussed in DIJKSTRA 

[15, p. 77]): 

S' : while x ,f O do 

if x ~ 0 then x := x-1 

else x := "any non-negative integer" fi od. 

The variable xis assumed to range over the set of integers. This pro

gram should obviously terminate for any initial value of x, be it positive, 

zero or negative. 

The program S' can be written as a description S: V + V, where V {x}: 

where 

S1: (x~O+s21S3), 

S2: x' /<>. (x' = x-1); x/x'. (x x') 

S3: x/<>. (x ~ 0). 

The description S2 corresponds to the assignment x := x-1 and S3 to the 

assignment x := "any non-negative integer". 

Choose the structure M = <D,I> to be the standard one, i.e. Dis the 

set of integers and I assigns the usual interpretation to the operations and 

relations occurring ins, S1, S2 and S3. Let us for simplicity identify a 

state s: {x} + D with s (x) , so that VD = Du { ~}. We will now compute 



intM(S,V) (-1). 

It is straightforward to verify that 

ra-1}, 
{0,1,2, ... }, 

if a 2: 0 

if a< 0. 

Let now f = intM(S,V) and let fi be the successive approximates off, i 

0,1,2, ... , as described in the previous section. We then have that 

i(-1) { .L}, 

{.L}, 

i(-1) {0,.L}, 

{0,.L}, 

Thus we get that 

f(-1) {0,.L}. 
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The result set thus contains .L. This contradicts out intuition about the be

haviour of S', which we expect to be guaranteed to terminate for the initial 

state x = -1. 

A closer look at the semantics of the iteration statement, as it was 

defined in the previous section, shows that the notion of termination cap

tured by the definition is more restrictive than the usual notion of termin

ation. The notion of termination in the definition is called strong termina

tion and is characterized as follows: A loop is said to terminate strongly 

if for any initial states there is an integer Ns such that the loop for this 

initial state is guaranteed to terminate in less than Ns iterations (DIJKSTRA 

[16]). The semantics given for the iteration statement consequently identi

fies nontermination with termination which is not strong (weak termination); 
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the result set contains~ if and only if termination of the iteration state

ment is not strong. Weak termination in the example program S' above is due to 

the statement x := "any non-negative integer". Because of this statement, 

no upper bound can be given for the number of iterations required for ter

mination in initial state x = -1. 

The problem of weak termination can be avoided, if we restrict our

selves to state transformations of bounded nondeterminacy, i.e. state trans

formations f E FD(V,W) satisfying the condition that either f(s) is finite 

or~ E f(s), for any s E VD. In this case one can safely identify~ with 

nontermination, because weak termination is then not possible. This restric

tion is made by PLOTKIN [37] and also by DE BAKKER [12]. 

We could also choose this approach. The simplest way for us to achieve 

bounded nondeterminacy would be to restrict the basic statements x/y.Q in 

such a way that for any state there would only be a finite number of pos

sible choices. We will say that the basic description is finite in the struc

ture M if this is the case. 

However, this approach is too restrictive for the purposes we have in 

mind, so we will continue to work with the general state transformations. 

We will also not change the semantics of descriptions given in the previous 

section, but accept the fact that it describes strong termination of loops 

rather than the usual notion of termination. It is possible to give a de

notational semantics for descriptions in which the right notion of termina

tion is captured (see BACK [4]), but we will not use this semantics here. 

There are essentially two reasons. First, it turns out that weak termination 

cannot be handled in the logic Lw 1w [3], but would require an essentially 

stronger logic, a step we do not want to take. Secondly, it is possible to 

define a useful sublanguage of descriptions, in which the problems with weak 

terminations are avoided, without having to restrict all basic descriptions 

to be finite. We will return to these questions in Chapters 5 and 6. 
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CHAPTER 4 

REFINEMENT AND WEAKEST PRECONDITIONS 

In this chapter we will show that the correctness of a refinement step 

can be expressed as a binary relation of refinement between descriptions. 

This relation is based on a corresponding relation of refinement between 

state transformations. Total correctness of programs can be expressed using 

the refinement relation, as well as strong equivalence of programs. 

Section 4. 1 will b,e devoted to an explication of the notion of a cor

rect refinement step. It will be shown that the refinement relation captures 

the intuitive idea of a refinement step being correct. The refinement rela

tion will be a preorder, justifying the stepwise manner of program construc

tion, as explained in the introduction. 

In Section 4.2 the weakest precondition of a state transformation is 

defined. It is shown that refinement between state transformations can be 

characterized using weakest preconditions. This is a fundamental result, 

which will be used in the next chapter to give a general proof rule for re

finement between descriptions. 

4.1. REFINEMENT BETWEEN DESCRIPTIONS 

A refinement step is considered to be correct, if it preserves the cor

rectness of the program being refined. This informal notion can be made more 

precise as follows. Let Prog be the set of programs under consideration, let 

Spec be the set of program specifications and let Spec x Prog be a relation 

of satisfaction, i.e. R sat S holds if specification R is satisfied by pro

gram S. Correct refinement is then defined as the relation ref between pro

grams Sand S' in Prog, 

S ref S' iff VR € Spec (R sat S * R sat S'). 
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In words, Sis refined by S' if and only if S' satisfies every specification 

that S satisfies. 

LEMMA 4.1. Correct refinement is a preorder in Prog. 

PROOF. Immediate consequence of the definition. D 

This refinement relation is studied in BACK [2] for different choices 

of Prog, Spec and sat. Here we will only be interested in one specific re

finement relation, the refinement relation which preserves total correctness 

of nondeterministic programs. We want to define correct refinement as a se

mantic notion, and will therefore choose Prog to be the set of state trans-· 

formations FD(V,W). The relation will thus only be defined between state 

transformations with the same initial and final space. 

To specify a nondeterministic progra~ with respect to total correctness, 

we have to state the conditiQns under which the program is required toter

minate strongly, and we have to specify the conditions which must hold upon 

termination of the prograin. For state traP-sformations in FD(V,W), this means 

that we have to give a set U !; VD for which f may not yield .L, ans we have to 

specify for each s E U the set Ws of proper final states allowed, Ws s WD-{.t}. 

This information can be given in the form of a state transformation e in 

FD(V,W), where U = {s E VD j .1 i e(s)} and Ws e(s). We can therefore also 

use FD(V,W) for Spec. The relation of satisfaction holds between e and 

fin FD(V,W) if f(s) S e(s) for any s EU. Equivalently, e sat f iff for any 

s E VD, .Li e(s) =+ f(s) S e(s). 

It is easy to verify that for this choice of Prog, Spec and sat, the 

refinement relation actually coincides with the satisfaction relation. In 

other words, we have that fore and fin FD(V,W), 

e ref f if and only if e sat f. 

To see this, assume first that e ref f holds. This means that for any 

h E FD(V,W), h sate=+ h sat f. If we choose h to bee, then we have that 

e sate=+ e sat f. Ase sate always holds, this gives us that e sat f. Con

versely assume that e sat f holds. Let U = {s E VD I.Li e(s) }. Leth E FD(V,W) 

be such that h sate, and lets be an element in U. Then we have by the 

assumptions that e(s) s h(s) and f(s) ~ e(s), i.e. f(s) S h(s). Thus hsatf 

and conseuqently e ref f. This motivates the following definition. 
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DEFINITION 4.1. Let f and f' be state transformations in FD(V,W). Then f is 

refined by f', denoted f sf', if for any s E VD, 

l. i f(s) ~ f' (s) S f(s). 

DEFINITION 4.2. Let Sand S' be two legal descriptions from V to W, and let 

M be a structure for L. We say that Sis refined by S' in M, denoted S SM S', 

if intM(S,V) s intM(S',V). We say that S s S' is a semantic consequence of 

the set 6 of sentences, denoted 6 F S s S', if S SM S' for any model M of 6. 

Thus S s S' holds if whenever S terminates strongly for an initial 

state, S' also terminates strongly for this state, and any final state of 

S' for such an initial state is a possible final state of S too for this 

initial state (more concisely and less precisely, we could say that S' is 

more defined and more deterrrq.nistic than S). 

Any program specification given in the form of an entry condition and 

an exit condition can be ,expressed as a description (the way in which this 

is done is explained in Section 6.2). In fact, the main purpose of the ato

mic description is to make this possible. This means that total correctness 

of descriptions will be a special case of refinement between descriptions, 

i.e. S S S' says that S' is totally correct with respect to S, when Sis a 

description that expresses a program specification. 

The refinement relation induces an equivalence relation in the obvious 

way. We say that the state transformations f and f' are equivalent, denoted 

f ~ f', if f Sf' and f' sf holds. Similarly, the descriptions Sand S' are 

equivalent in M, denoted S ~MS', if S SM s' and S' SM s holds. Finally, S ~ S' 

is said to be a semantic consequence of 6, denoted 6 F S ~ S', if 6 F S s S' 

and 6 F S' s S holds. 

If Sand S' are equivalent, then Sand S' will be guaranteed to termin

ate strongly for the same set of initial states, and have the same set of 

possible final states for any of these initial states. Sand S' may differ, 

however, for initial states for which they are not guaranteed to terminate 

strongly. 

For deterministic programs, S s S' reduces to the usual approximation 

relation between deterministic state transformations, i.e. for any initial 

state for which S terminates, S' will also terminate and gives the same 

final state as S. S ~ S' again reduces to strong equivalence between pro

grams (see e.g. MANNA [34]), i.e. Sand S' will terminate for the same 
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initial states and will give the same final states for these initial states. 

In SMYTH [41] a relation similar to the refinement relation above is 

defined between state transformations of bounded nondeterminacy. Smyth uses 

it to prove the existence of a certain power domain construction under weak·· 

er assumptions than those made by PLOTKIN [37]. (The refinement relation here 

has been arrived at independently of the work by Smyth, and is also used 

for an entirely different purpose.) 

4. 2. WEAKEST PRECONDITIONS 

Let f be a state transformation in FD(V,W) and let q be a predicate in 

ED(W). We define a predicate wp(f,q) in ED(V), called the weakest precondi

tion off for q, as follows: For any s E VD, s ~ ~, 

wp (f ,q) (s) tt iff for any s' E f(s), q(s') tt. 

As an immediate consequence of this definition, we see that if wp(f,q) (s) = 

tt for s E VD, then~ i f(s), because q(~) = ff, by the definition of state 

predicates. This formulation of weakest preconditions for state transforma

tions and state predicates is essentially the one given in DE BAKKER [12]. 

Let S be a description interpreted as a state transformation fin 

FD(V,W) and let Q be a condition interpreted as a predicate q in ED(V). Then 

wp(f,q) will be the set of all initial states in which Sis guaranteed to 

terminate strongly, in a final state satisfying condition Q. 

The boolean operations on truth values can be extended to state pre

dicates in the obvious way: If p and p' are two state predicates in ED(V), 

then (p A p' ) is a state predicate in ED (V) , defined by 

(p A p') (s) p(s) A p' (s), for each s E VD, s ~ ~-

Similarly for the other boolean connectives. It will be convenient to use 

the predicate p also as expressing the condition that p(s) = tt for each 

s E VD. This is done below and will also be used later. 

The following theorem shows that refinement can be characterized using 

weakest preconditions. This fact will be used in the next chapter to give a 

proof technique for the correctness of refinement steps. 
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THEOREM 4.3. Let f and f' be state transformations in FD(V,W). Then f sf' 

iff for any q in ED (W) , 

wp(f,q) •wp(f',q). 

PROOF. 

(•) Assume that f sf' and let q be a predicate in ED(W). Lets E VD be 

such that wp(f,q) (s) = tt. This means that~ i f(s), and using the assump

tion, this means that f' (s) s f(s). Let nows' E f'(s). Thens' E f(s), and 

as wp(f,q) (s) = tt, we must have that q(s') = tt. Thus we have that 

wp(f' ,q) (s) = tt. 
(<=) Assume that wp(f,q) • wp(f',q) holds for any q in ED(W). Lets E VD be 

such that~ t f(s). Define a state predicate qs in ED(W) by qs(s') tt iff 

s' E f (s), for any s' E WD, ~' 'I L This means that wp (f ,qs) (s) = tt, and by 

assumption, that wp(f','qs)(s) = tt. Thus, for any s' E f'(s), qs(s') = tt, 

i.e. for any s' E f' (s), we have thats' E f(s), which means that f' (s) S 

f(s). This shows that f s f'. D 
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CHAPTER 5 

PROVING REFINEMENT BETWEEN DESCRIPTIONS 

The general proof rule for refinement between descriptions will be de

rived in this chapter. In Section 5.1 we will give rules for computing the 

weakest preconditions of descriptions, and show that these rules are correct. 

In Section 5.2 the proof rule for refinement is derived, and a soundness 

and completeness result is proved. The proof rule is based on the use 

of weakest preconditions of descriptions. We will also give a proof rule 

for equivalence of descrivtions and present a useful induction rule for iter

ation, together with some other properties of refinement. In Section 5.3 

the properties of weakest preconditions given by DIJKSTRA [15] are discussed. 

In Section 5.4 we finally prove an important replacement property of descrip

tions, which will provide a justification for the top-down program develop

ment strategy. 

5.1. WEAKEST PRECONDITIONS OF DESCRIPTIONS 

Let S: V ➔ W be a description and Q a formula of L, var(Q) £ W. Let M 

be a structure for L. The description Swill then be interpreted as a state 

transformation f = intM(S,V) E FD(V,W), and the formula Q as a state predi

cate q = intM(Q,W) E ED(W). We may now ask for a formula P of L, var(P) £ V, 

which describes the weakest precondition off for q, i.e. we require that 

(5 .1) intM(P,V) wp(f,q). 

This formula P will then give the weakest precondition that an initial state 

must satisfy so that the execution of Sis guaranteed to terminate strongly 

in a final state that satisfies condition Q. This section will be concerned 

with showing how such a condition P can be computed for any Sand Q, and 

that the condition P computed satisfies (5.1). 
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We introduce the abbreviations true and false for sentences of Lw 1w by 

true 

and 

false 

Thus, true will hold for any proper state in any state space VD, while false 

will hold for no state in any state space VD. 

Next we introduce the abbreviations skip and abort for descriptions, 

by 

skip df <>/<>.true 

and 

abort= df <>/<>.false. 

Evidently, skip will be the identity transformation in FD(V,V) for any V, 

i.e. 

[\ 
V,D 

while abort will be the undefined state transformation in FD(V,V), i.e. 

intM (abort, V) 

Let B be a formula of L, var(B) ~ V, and let S be a description from V 

to V. Then the descriptions (B*S)n from V to v, n < w, are defined by 

abort, 

n-1 I (B + S;(B*S) skip), n > 0. 

Using induction on n, it is easily verified that 

intM ( (B*S) n, V) 
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DEFINITION 5.1. Let S be a legal description from V to W, V,W t- ~, and let 

R be a formula of L, var(R) s W. Then the weakest precondition of S for R, 

denoted WP(S,R), is defined by induction on the structure of S, as follows: 

(i) WP(x/y.Q,R) 3xQ A 'v'x ( Q • R) , 

(ii) WP(S';S",R) WP(S',WP(S",R)), 

(iii) WP(S' VS",R) WP (S' ,R) A WP(S",R), 

(iv) WP(B+S' jS",R) (B•WP(S' ,R)) A (~B•WP (S" ,R)), 

(v) WP(B*S' ,R) V WP ( (B*S ' ) n, R) . 
n<w 

We make the convention that 3xQ = Q and 'v'x ( Q • R) 

x <>. Using this convention, we get from (i) that 

WP(skip,R) 

and 

WP (abort, R) false A (false•R) - false, 

for any formula R of L. 

(Q•R) in (i), when 

LEMMA 5.1. If Sis a legal description from V to W, V,W t- ~. and R is a for

mula of L, var(R) s W, then WP(S,R) is a formula of L, with var(WP(S,R)) S V. 

PROOF. The proof goes by induction on the structure of S. We show here only 

the basis step, i.e. the case when S x/y.Q. Because var(Q) S Vu x, we 

have var(3xQ) s V, as no variable in x is free in 3xQ. Also, because var(R) £; 

W, and W = (V-y) u x s V u ~. we have var('v'x(Q•R)) S var(Q) u var(R) - i 
i.e. var('v'x(Q•R)) s V. This means that var(WP(x/y.Q,R) s V. The induction 

step, i.e. case (ii)-(v) in definition 5.1, is proved straightforwardly. D 

We are now ready for the main result of this section, i.e. that condi

tion (5.1) is satisfied by choosing WP(S,R) for P. 

THEOREM 5.2. Let S be a legal description from V to W, V,W t- ~, and let R 

be a formula of L, var(R) s w. Then, for any structure M of L, we have that 
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PROOF. The proof will go by induction on the structure of S. Let M 

be a structure for L. Let 

and 

We have to prove that 

wp(f,r). 

<D,I> 

(i) S is x/y.Q. In this case we have that f(s) = W(s), if W(s) ,f (J, and 

f(s) {J.}, if W(s) = (J, where W(s) is the set of choices of x/y.Q for s, 

i.e. 

s' e W(s) iff val (Q,s<s' (x)/x>) tt 
. M 

and 

s (z) s' (z) for each z e W - x. 

(.,.) Lets e VD such that intM(WP(S,R),V) (s) tt. This means that 

tt and tt, 

using the definition of WP for the atomic description, and the definition 

of the interpretation of formulas. 

Now valM(3xQ,s) = tt iff valM(Q,s<d/x>) = tt for some list d of elements 

in D. If we chooses' e WD bys' (xi) = di, for i = 1, ... ,l(x), ands' (z) = 

s(z) for z e W - x, we have that valM(Q,s<s' (x)/x>) = tt, i.e. s' E W(s). 

Therefore W(s) ,f (J, and we have that f(s) = W(s). 

Assume now thats' e W(s), which implies thats ,f J.. Thens' (z) s(z) 

for z E W - x, and valM(Q,s<s' (x)/x>) = tt. By assumption, 
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valM(Vx(Q,.R) ,s) = tt, i.e. valM(Q,.R,s<d/x>) = tt for any list d of ele

ments in D. This means that valM(R,s<s' (x)/x>) = tt, by choosing d = s' (x) 

and using modus ponens. Because s<s' (x)/x>(z) = s' (z) for any z E W, and 

var(R) ~ W, this means that valM(R,s') = tt, i.e. intM(R,W) (s') tt. Thus 

we have r(s') = tt and wp(f,r) (s) = tt, ass' was an arbitrarily chosen ele

ment of f(s). 

(<=) Lets E VD such that wp(f,r) (s) tt. This means that for any s' E f(s), 

r(s') = tt. Therefore we have that~¢ f(s), because r(~) =ff.Thus W(s) # 

~, i.e. there is ans' E WD such that valM(Q,s<s'(x)/x>) = tt and s'(z) = 

s(z) for z E W - x. Thus valM(3xQ,s)·= tt. 

Assume that valM(Q,s<d/x>) = tt. Defines' E WD bys' (z) = s(z) for 

z E W - x, and s'(xi) = di for i 1, .•• ,l(x). Thens' E f(s), which implies 

that r(s') = tt, i.e. valM(R,s') tt. Because var(R) ~Wand s<d/x>(z) 

s'(z) for z E W, we have from this that valM(R,s<d/x>) = tt. This gives 

valM(Q,.R,s<d/x>) = tt, i.e. we have that valM(Vx(Q,.R) ,s) = tt, as d was 

arbitrarily chosen. Thus we have proved that intM(WP(S,R),V) (s) = tt. 

(ii) Sis S' ;S", where S': V + V' and S": V' + W. Define f' = intM(S' ,V) and 

f" = intM(S",V'). Then 

intM(WP(S' ;S" ,R) ,V) intM(WP(S' ,WP(S" ,R)) ,V) 

wp (f' ,intM (WP(S" ,R), V')) (by induction hyp.) 

wp(f' ,wp(f" ,r)) (by inductionhyp. again). 

Let s E VD. We then have that wp(f' ,wp(f" ,r)) (s) tt iff for each s' E 

f'(s), wp(f",r)(s') = tt, iff for each s' E f'(s), s" E f"(s'), r(s") tt, 

iff for each s" E f';f"(s), r(s") = tt, iff wp(f';f",r) (s) = tt. Thus we get 

that wp(f',wp(f",r)(s) = wp(f';f",r)(s), i.e. intM(WP(S,R),V) = wp(f,r). 

(iii) Sis (B*S'). Let intM(S',V) = f' and intM(B,V) = b. We first prove 

that for each n < w, 

(5.2) 

by induction on n. 
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For n 0 0 we have (B*S') =abort.Lets E VD. We have that 

ff. 

On the other hand, we have 

ff. 

Thus, for n = 0 we have that (5.2) holds. 

Assume that (5.2) holds for n ~ O. Then 

I 

intM( (B .. WP(S'; (B*S' )n,R)) A (~B .. R) ,V) 

(induction hyp.) 

n+l wp((b*f') ,r). 

Thus (5.2) holds for any n < w. 

To prove this case, we have to show that int (WP(B*S' ,R) ,V) =wp(b*f' ,r), 
M 

where 

WP (B*S' ,R) 

First lets E VD be such that intM(WP(B*S',R) ,V) (s) = tt. This means 

that intM(WP((B*S')n,R),V) (s) = tt for some n ~ O. Therefore, by the pre

vious result, we must have that wp((b*f')n,r) (s) tt. More particularly, 

this means that~ i (b*f')n(s) and thus that 

(b*f') (s) 
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by the definition of (b*f'). Thus we get that wp(b*f',r) (s) tt. 

On the other hand, assume thats E VD is such that 

intM(WP(B*S' ,R),V) (s) ff. This·means that intM(WP((B*S')n,R),V) (s) = ff 

for every n < !JJ, i.e. wp((b*f')n,r) (s) = ff for every n < w. Assume first 

that~ E (b*f')n(s) for every n < w. In this case we have that 

and thus~ E (b*f') (s). Therefore wp(b*f',r) (s) 

~ i (b*f')n(s) for some n, then we have 

ff. If, on the other hand, 

In this case again, we have that wp(b*f',r) (s) = wp((b*f')n,r) (s) = ff. 

Thus we conclude that intM(WP(B*S',R) ,V) (s) = wp(b*f',r) (s) for each 

s E VD, which proves this case. 

The proofs of the remaining two cases, (S'VS") and (B+SIS"), do not 

present any greater difficulties and are therefore omitted. D 

A similar theorem is proved in DE BAKKER [12]. However, the situation 

considered.here is sufficiently different from the one considered by 

de Bakker to motivate a new proof of this central theorem. De Bakker proves 

the result for a programming language with assignment statement and recur

sion, and uses a model in which bounded nondeterminacy is assumed, whereas 

our language contains the atomic description and only a simple loop, and we 

do not assume bounded nondeterminacy. Also, by using an infinitary logic, we 

get a more natural expression of the weakest preconditions for loops. 

Theorem 5.2 shows that the weakest preconditions of descriptions are 

expressible in the logic Lwiw· The definition of weakest preconditions used 

here requires strong termination of a description. A natural question is 

whether it would be possible to express the weakest precondition with re

spect to general termination (strong or weak) in Lwiw· However, as shown in 

BACK [3], this is not possible. To get expressibility, one has to use an 

essentially stronger logic, such as the logic LwlWl' in which quantification 

over infinite sequences of variables is allowed. Another possibility, using 

disjunction over the class of all ordinals, is described by BOOM [8]. In 

either case, one looses the advantages of working in Lwiw' i.e. completeness 

of the logic and the simple characterization of the weakest precondition of 
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loops. This is the most important reason why we choose to work with strong 

termination rather than with termination in general. 

The use of Lw 1w in connection with program correctness has been pioneer

ed by ENGELER [17,18]. His approach has been further developed by SALWICKI 

[39] and the group in Warschau working on algorithmic logic [SJ. In these 

approaches a new programming logic is designed, in which infinitary proof 

rules are used to handle total correctness of loops. The approach we take is 

different, in that we stay in the logic Lw 1w, translating total correctness 

assertions into formulas of this logic, rather than inventing a special logic 

for these correctness assertions. Weakest preconditions are studied in more 

detail by DE BAKKER [12], HOARE [26] and HAREL [21], the last mentioned in 

the context of dynamic logic [38]. 

5.2. A PROOF RULE FOR REFINEMENT 

Let Sand S' be legal descriptions from V to W, where V and Ware 

assumed to be nonempty fini'te sets of variables. Let M = <D, I> be a struc

ture for L. By definition 4.2, we have that S SM S' iff 

By Theorem 4.3 we have that this again holds iff 

(5.3) 

Let G be a new k-place predicate symbol, where k is the number of variables 

in W, and let w be a list of distinct variables such that w = W. Let L' be 

the expansion of L that we get by adding G to the nonlogical symbols of L. 

Then G(w) is a formula of L'. For any choice of q E E0 (W), we can define an 

expansion M' of M to L', such that intM, (G(w),W) = q. We achieve this by 

defining I' (G) (a1 , .•• ,ak) = tt iff q(s) = tt, where s(wi) = ai, for i 

1, ••• ,k. Then for any proper s E w0 , intM' (G(w) ,W) (s) = valM' (G (w) ,s) 

I' (G) (s(w1), ••• ,s(wk)) = q(s). Conversely, in any expansion M' of M to L', 

the interpretation in M' of G(w) will be some predicate in E0 (W). Therefore 

we have that (5.3) is equivalent to 

wp(intM' (S,V) ,intM, (G(w) ,W)) -. wp(intM, (S' ,V) ,intM' (G(w) ,W)) 

for any expansion M' of M to L'. 
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We have here used the fact that intM 1 (S,V) = intM(S,V) and the same for 

S', as G is a new symbol that cannot occur in Sor S'. 

Using Theorem 5.2, we finally get that (5.3) is equivalent to 

intM 1 (WP(S,G(w)),V) * intM 1 (WP(S 1 ,G(w)),V), 

for any expansion M' of M to L'. 

We formulate this result as a theorem. 

THEOREM 5.3. Lets and S' be legal descriptions from V to W, where V and W 

are finite nonempty sets of variables. Let L' be an expansion of L that we 

get by adding a new k-place predicate symbol G to the nonlogical symbols of 

L, where k is the number of variables in W. Let w be a list of distinct 

variables, such that w = W. Then S :,;M S' iff 

WP(S,G(w)) ,. WP(S' ,G(w)) 

holds in any expansion M' of M to L'. 

(5. 4) 

Now, let 6 be a set of sentenGes of L. Then 6 F S:,; S' iff 

for any model M of 6. 

This is, by Theorem 5.3, the case iff 

the assertion WP(S,G(w)) *WP(S',G(w)) holds in any expansion 

M' of M to L, for any model M of 6. 

Because 6 is a set of sentences of L, we have that if M' is the expan

sion of M to L', and Mis a model of 6, then M' will also be a model of 6, 

now considered as a set of sentences in L' (not containing the predicate 

symbol G). On the other hand, any structure M' for L' that is a model of 6 

will be an expansion of some structure M for L, where Mis a model for 6. 

Therefore, the set of expansions of models in L for 6 is the same as the set 

of models in L' for 6. Using this fact, we get that (5.4) is equivalent to 

(5. 5) the assertion WP(S,G(w)) *WP(S',G(w)) holds in any model M' of 

6, M' a structure for L'. 
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This is finally the same as the fact that WP (S,G(w)) => WP(S' ,G(w)) is 

a logical consequence of 6, i.e. (5.5) is equivalent to 

6 != WP(S,G(w)) => WP(S' ,G(w)). 

This gives us the main theorem, on which proofs of refinement between 

descriptions will rest. 

THEOREM 5.4. Let Sand S' be legal descriptions from V to W, where V and W 

are finite nonempty sets of variables. Let L' be an expansion of L that we 

get by adding a new k-place predicate· symbol G to the nonlogical symbols of 

L, where k is the cardinality of W. Let w be a list of variables such that 

w = w. Then for any set 6 of sentences of L, we have that 

6 F S s S' iff 6 != WP(S,G(w)) => WP(S' ,G(w)). 

COROLLARY S.S. (Proof rule for refinement). Let Sand S', V and W, G and w 

be as in Theorem 5.4. Then for any countable set 6 of sentences of L. 

6 F S s S' iff 6 f- WP(S,G(w)) => WP(S' ,G(w)). 

PROOF. By Theorem 5.4 and the completeness of Lwiw (Lemma 2.2). n 

We sat that S S S' is provable from 6, denoted 6 f- S S S', if we from 

6 can prove WP(S,G(w)) => WP(S',G(w)), where G and ware as in Theorem 5.4. 

Corollary 5.5 then says that 6 != S S S' iff 6 f- S S S'. 

COROLLARY 5.6. (Proof rule for equivalence). Let Sand S', V and W, G and w 

be as in Theorem 5.4. Then for any countable set 6 of sentences of L, 

6 F S :::: S' iff 6 f- WP(S,G(w)) - WP(S',G(w)). 

Theorem 5.4 together with its corollaries ~rovides us with a technique 

for proving refinement between descriptions. This technique is complete, 

i.e. if S s S' is a semantic consequence of the countable set of sentences 6, 

then there is a proof of S s S' from 6. (The completeness is of a rather weak 

kind, however, as the proofs that exist may be infinitely long.) The proof 

technique is also sound, i.e. if we succeed in proving S S S' from 6, then 
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s s S' will indeed be a semantic consequence of 6. 

Another consequence of Theorem 4. 3 and 5. 2 is the following. 

THEOREM 5.7. Let Sand S' be legal descriptions from V to W, V and W finite 

nonempty sets of variables. Let M be a structure for L, and let Q be any 

formula of L, var(Q) £ W. If S SM S', then 

WP(S,Q) • WP(S' ,Q) 

holds in M. 

PROOF. Let M <D,I>. Assume that S SM S'. By Theorem 4.3 we have that 

Because intM(Q,W) E E0 (W), we therefore get that 

and using Theorem 5.2, we thus have that 

WP(S,Q) • WP(S',Q) 

holds in M. 0 

COROLLARY 5.8. Let Sand S', V and Wand Q be as in Theorem 5.7, and let A 

be a set of sentences of L. If 6 F S s S', then 

AF WP(S,Q) .. WP(S',Q). 

PROOF. Directly by Theorem 5. 7 • D 

COROLLARY 5.9. Let Sand S', V and Wand Q be as in Theorem 5.7, and let A 

be a countable set of sentences of L. If 6 ~ S s S', then 

A~ WP(S,Q) • WP(S',Q). 

PROOF. Follows from Corollary 5.8, by the completeness of Lwiw and Corollary 

S.S. 0 
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Finally, we prove a sinple induction rule for iteration, which will be 

very useful later on. 

LEMMA 5.10. Let 6 be a countable set of sentences of L. Let V be a finite 

nonempty set of variables. Let Sand S' be legal descriptions from V to V, 

and let B be a formula of L, var(B) !::_ V. Then the following holds: 

(i) If 6 ~ (B*S)n ~ S' for n < w, then 6 ~ (B*S) ~ S'. 

(ii) 6 ~ (B*S)n ~ (B*S), for any n < w. 

PROOF. 

(i) Assume that 

for any n < w. 

Let L' be an expansion o~ L with a new predicate symbol G with k places, 

where k is the number of variables in V, and let v be a list of dis

tinct variables, v = V. The assumption then implies that 

for n < w. 

Using the inference rule for infinite disjunction, Lemma 2.4, this gives 

us that 

i.e. 

6 ~ V WP((B*S)n,G(v)).,. WP(S',G(v)), 
n<w 

6 ~ WP(B*S,G(v)).,. WP(S',G(v)), 

by the definition of WP, thus giving 

6 ~ (B*S) !5: S' , 

as required. 

(ii) Let L', G and v be as above. We have by the axiom for infinite disjunc

tion, Lemma 2.5, that 

n i 
6 ~ WP ( (B*S) ,G(v)) .,. i~w WP ( (B*S) ,G (v)), for any n < w. 
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'J.'hus we have that 

for any n < w, 

giving the required result 

for any n < w. D 

5.3. BASIC PROPERI'IES OF WEAKEST PRECONDITIONS 

DIJKSTRA [15] gives five basic properties of weakest preconditions for 

his guarded commands. If we let S: V -+- W be a legal description, and let w 

be a list of distinct variables,;= W, then the corresponding properties 

for descriptions are (var(Q},var(Q') s W}: 

(1) WP(S,false) - false 

(2) Vw(Q•Q'),. (WP(S,Q) • WP(S,Q')} 

(3) WP(S,QAQ'} -WP(S,Q} A WP(S,Q') 

(4) WP (S,Q} v WP (S,Q') • WP (S,Q v Q'} and 

(5) If Qi• Qi+1 for i = 0,1, ••• , where Q0 ,Q1, •.• are formulas of L, 

var(Qi) SW for i < w, then 

The first four properties will hold for any description Sin a given 

structure M, while the fifth property (continuity) in general only holds 

for descriptions of bounded nondeterminacy. A sufficient condition guarantee

ing that the nondeterminacy of a description is bounded is that each basic 

description occurring in the description is finite. The basic description 

x/y.Q is finite in the structure M if MF finite(x,Q), where finite(x,Q) 

is the formula 

.. 
The basic description x/y.Q is finite in the set of sentences~ if~ F 
finite(x,Q). Thus property(5) will holds for a description Sin~ if each 

basic description occurring in Sis finite in~-
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We will need slightly more general versions of properties (2) - (4). 

First we need to make a preliminary definition (used for property (2)). Let 

S be a legal description from V to W. We say that the variable z is constant 

in S if z belongs to both V and W, and in addition: 

(i) if Sis x/y.Q, then z does not belong to x, and 

(ii) if Sis either (S';S"), (S'VS"), (B ➔ S'!S") or (B*S'), then z is con

stant in S' and S". 

LEMMA 5.11. Let S: V ➔ W be a legal description. Let Qn be formulas of L, 

var(Qn) SW, for n < w. Then 

(i) 'v'x(Q0 ~Q1) ~ (WP(S,Q0 ) ~ WP(S,Q 1)), provided every variable in w - x 
is constant in S, 

(iii) Vn<a WP(S,Qn) ~ WP(S,Vn<a Qn), a< w1 

hold in any structure M of L. 

PROOF. Properties (ii) and (iii) are obvious generalizations of (3) and (4) 

above and will not be proved here. To prove property (i), let M = <D,I>, and 

let f = intM(S,V) E FD(V,W). It is straightforward to prove by induction on 

the structure of S, that if the variable z is constant ins, then the follow

ing holds: for any proper states s E VD ands' E WD, ifs' E intM(S,V) (s), 

then s (z) = s' (z). 

Now choose a proper states E VD such that 

(1) valM('v'x(Q0 ~Q1) ,s) tt and 

(2) valM(WP(S,Qo) ,s) = tt. 

By Theorem 5.2, we get from (2) that 

Thus for any s' E f(s), we have that intM(Q0 ,w) (s') = tt, i.e. va1M(Q0 ,s•) = 
tt. By assumption (1), valM(Q0 ,s<d/x>) = tt implies valM(Q1 ,s<d/x>) = tt for 

any list d of elements in D, l(d) = l(x). Because var(Q0 ) ~Wand s(z) = 

s'(z) for z E w - x, we have that valM(Q0 ,s•) = valM(Q0 ,s<s'(x)/x>) = tt, 
giving valM(Q1 ,s<s' (x)/x>) = tt, and thus that va1M(Q1 ,s 1 ) = tt. From this 

we then conclude that wp(f,intM(Q1 ,w)) (s) = tt, ass' was arbitrarily chosen, 

and using Theorem 5.2 again, we then have that valM(WP(S,Q1),s) = tt, which 
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proves this case. D 

5.4. REPLACEMENTS IN DESCRIPTIONS 

We will here show that the refinement relation has a replacement pro

perty needed for top-down development of programs. The property in question 

is that replacing a subdescription of a description with a refinement will 

result in a refinement of the description as a whole. Top-down program 

development will be further discussed in the next chapter. 

First let s1 and Si be legal descriptions from v1 to v2 , and let s2 and 

s2 be legal descriptions from v2 to v3 , where v1, v2 and v3 are finite non

empty sets of variables. Let~ be countable, and assume that 

(5.6) 

and 

(5.7) 

Let _G be a new predicate letter of k places, and let L' be the expansion 

of L that we get by adding G to the nonlogical symbols of L. The number of 

~ariables in v3 is assumed to be k. Let v be a list of distinct variables, 

v = v3 • From (5.7) we get that 

Using the inference rule GN in Lwiw (Section 2.3), we then get that 

where v' is a list of distinct variables, v = v2 • By the Lemma 5.1, v' con

tains each variable free in the formula quantified. We may therefore use 

Le11D11a 5.11(i), which gives us 

On the other hand, using Corollary ·5.9, noting that~ is also a set of sen

tences in L', and the assumption (5.6), we get 
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Combining these last two results, we have 

i.e., 

which is the result we sought. 

In a similar way we prove that 

and 

implies 

and 

The analogous result for iteration is derived as follows. Let V be a 

finite nonempty set of variables, and let Sand S' be legal descriptions 

from V to V. Let B be a formula of L, var(B) ~ V. Assume that 

t.f-SSS'. 

We first show that 

(5.8) 

holds for any n < w. For n = 0 the situation is clear, as both descriptions 

are identical in this case(= abort). Assume that (5.8) holds for n, n < w. 

By the previous result, we will then have that 
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using the assumption and the induction hypothesis. This then gives 

ti f- •(B+S;(B*S)n I skip):,; (B+S';(B*S')n I skip), 

i.e. we get that 

holds. This shows that (5.8) holds for every n < w. 

We now apply Lemma 5.10(ii) to get 

for any n < w. 

Combining this with (5.8), and using the fact that refinement is transitive, 

we get 

for any n < w. 

We can now use Lelllllla 5.10(i) to get from this that 

which is the required result. 

We summarize these results in the following theorem. 

THEOREM 5.12. (Replacement). Let S: V ➔ W be a legal description, contain

ing the subdescription T: V' ➔ W'. Let T': V' ➔ W' be a legal description, 

and let S': V ➔ W be the description that results from S, when Tin Sis 

replaced with T'. For any countable set ti of sentences, we then have that 

ti f- T :,; T' 

implies 

ti f- S :,; SI• 

PROOF. The result follows by induction on the structure of S, using the re

sults proved above. 0 





CHAPTER 6 

STEPWISE REFINEMENT USING DESCRIPTIONS 

In this chapter we want to show·how to use descriptions in program 

development by stepwise refinement. We start by giving an example of the 

informal use of the technique in section 6.1. This example is taken from 

DIJKSTRA [15], with some small changes. 
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In Section 6.2 we then outline the way in which the informal technique 

of stepwise refinement can be' turned into a formal one, based on the use of 

descriptions. Having a formal development of a program makes it possible to 

use the proof rule for refinement to establish the correctness of the refine

ment steps. This in turn will give us a formal proof of the correctness of 

the final program. In this section we will show how to achieve top-down 

development and operational and representational abstraction and how to 

justify the use of program transformations when developing a program using 

descriptions. 

In Section 6.3 we will introduce restricted forms of descriptions, 

program descriptions and abstractions, which are better suited for program 

development. We will compute the weakest preconditions for these using the 

rules for computing weakest preconditions for descriptions. Programs will 

be special kinds of program descriptions (essentially the guarded commands 

of DIJKSTRA [15]). 

6.1. AN EXAMPLE OF THE USE OF STEPWISE REFINEMENT 

To make things more concrete, and to show the kinds of refinement steps 

possible, we will first give an example of program construction using step

wise refinement. The example is taken from DIJKSTRA [15], pp. 65-67. We fol

low Dijkstra's treatment quite closely, but will carry the refinement pro

cess one step further in order to include an important kind of refinement 

step not used by Dijkstra in this example. We will later use this example 

again to show how our formalism of stepwise refinement works in practice. 
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The problem considered by Dijkstra is the following: let X and Y be 

integers, X > 1 and Y ~ 0. We are to construct a program that will establish 

the condition 

without using the exponentiation operation in our program. Here z is an inte

ger variable. 

The first refinement made by Dijkstra makes use of an "abstract" vari

able h. The condition 

P: h•z 

will be kept invariant in the loop of the following program: 

s1 : h,z := XY,1; {P has been established} 

doh~ 1 + squeeze h under invariance of Pod 

{R has been established}. 

Here h,z := XY,1 is a simultaneous assignment statement, i.e. his assigned 

the value XY and z is assigned the value 1 simultaneously. The 

doh~ 1 + ••• od construction is a loop; the statement .•• is repeated as 

long as the condition h ~ 1 is true. The statement "squeeze h under invari

ance of P" specifies what remains to be done; we have to give a piece of 

program meeting this specification, i.e. a program that will decrease the 

value of the variable h in such a way that condition P remains true. 

We have to check that this solution is correct, i.e. that s1 really 

does establish the condition R. If the loop terminates, then P must hold, 

and as the loop only can terminate when h = 1, this means that R must hold 

upon termination (because PA h=l,.. R). To show that the loop really does 

terminate, we note that h ~ 1 holds initially, and will also hold after each 

iteration of the loop. On the other hand, as each iteration will decrease 

the value of h, the situation h = 1 must sooner or later occur, terminating 

the loop. 

In the next step, the exponentiation operation is removed. Dijkstra 

introduces two new variables x and y, which are used to represent the value 

of h by the condition 
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Instead of manipulating the variable h directly, the program will mani

pulate the variables x and y that represent the value of h. Observing that 

when h = xy and x > 1, we have 

h f 1 iff y f 0, 

we get the next refinement: 

s2 : x,y,z := X,Y,1; {P has been established} 

do y f 0 + y,z := y-1,z•x {P has not been destroyed} od 

{R has been established}. 

Essential use has here ~een made of the fact that P always holds prior 

to the execution of the statement in the loop. Finally, Dijkstra observes 

that the statement 

do 2ly + x,y := x•x,y/2 od 

will not change the value h represented by the variables x and y, and may 

therefore be inserted before the statement y,z := y-1,z•x, without affect

ing the correctness of the program (2ly tests whether y is divisible by 2). 

This gives the refinement 

s3 : x,y,z := X,Y,1; 

do y f 0 + do 2ly + x,y := x•x,y/2 od; 

y,z := y-1,z•x 

yielding a considerable speed up of the program, as compared to s2 • 

We will make an additional refinement of this, by noting that after each 

execution of the statement in the inner loop, the condition y f 0 must hold, 

if it was true on entry to the inner loop. Therefore the two nested loops 

may be fused into one, giving the last refinement 
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S4: x,y,z := X, Y, 1; 

do y t- 0 + if 2ly + x,y := x•x,y/2 

o ~2ly + y,z ·= y-1,z•x fi 

od. 

Here if .•. fi is a conditional statement, selecting to execute the 

statement for which the test is true. This last refinement is simpler in 

that it only contains a single loop, as compared to s3 , which contains two 

nested loops. It is, however, less efficient than s3 , because in some situa

tions the testy t- 0 is performed unnecessarily. 

As can be seen from the example, stepwise refinement combines two dif

ferent principles of program development: top-down development and optimiz

ing transformations. Top-down development of programs proceeds by implement

ing specifications, i.e. giving algorithms that meet stated criteria. This 

is the case in the example for the first refinement s1 , which is required 

to satisfy the specification given, i.e. to establish the condition R. As 

another example, the statement "y,z := y-1,z•x" is required to satisfy the 

specification "squeeze h under invariance of P", given the representation 

of h by x and y, and the fact that P holds prior to this specification in 

The refinement of s 1 to s2 is an example of the use of representational 

abstraction, i.e. the data structure (the variable h) used in s1 is an ab

straction of the data structure (the variables x and y) used in s2 . The re

finement of s2 to s3 exploits the fact that this representation of h by x 

and y is not unique. Finally the refinement of s3 to s4 can be seen as an 

application of a special program transformation rule (as noted above this 

is not strictly speaking an optimizing transformation). 

The application of both top-down development and optimizing transfor

mations makes stepwise refinement very flexible as a programming technique. 

The top-down approach allows a programmer to move from a higher to a lower 

level of abstraction in constructing the program, and to concentrate on only 

part of the program when making a refinement step. Optimizing transformations 

are again useful in removing inefficiencies introduced by the top-down ap

proach when the interaction between different program parts could not be 

considered. 
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6.2. CORRECT REFINEMENTS USING DESCRIPTIONS 

In this section we will discuss principles for developing programs in 

such a way that the correctness of the final program can be formally proved. 

We will try to stay as close as possible to the informal technique for pro

gram development shown in the preceding section, while still staying in 

the framework of refinement between descriptions developed in the preceding 

chapter. 

6.2.1. Top-down development 

The fact that the transitivity of refinement justifies a stepwise con

struction of the final program was already noted in the introduction. Thus, 

if we have the development sequence 

where sO is the initial specification and Sn is the final program, and if 

each refinement step in this sequence is correct, i.e. if 

holds for i O,1, .•. ,n-1, then transitivity gives us that 

i.e. Sn satisfies specification sO• 

Stepwise refinement is, however, more than this. It also makes use of 

the idea of top-down development, i.e. the idea that one can concentrate on 

a subcomponent of the program, refining this independently from the rest of 

the program and then finally replace the subcomponent with its refinement. 

The fact that this is allowed with descriptions too is given by Theorem 

5.12. Let S be a description with an occurrence of the subdescription T, i.e. 

S ••• T ••• 

and assume that we have a refinement T' of T, i.e. 

T ~ T'. 
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Let S' be the description S with T replaced by T', i.e. 

S' = ••• T' •••• 

By Theorem 5.12, this means that 

S ~ S', 

i.e. the replacement of T with T' in Sis a correct refinement step. 

6.2.2. The assignment statement 

The assignment statement is usually chosen as the basic construct in 

programming languages. Although the language of descriptions does not con

tain assignment statements, the effect of an assignment statement is easily 

achieved. Consider e.g. the apsignment statement 

X := x+y. 

The same effect can be achieved with the description 

z/<>. (z = x+y); 

x/z. (x= z), 

where z is a new variable, not occurring in the context where the assignment 

statement is used. Multiple assignments can be handled in the same way. A 

partial assignment statement such as 

X := x/y 

would again be expressed by the description 

z/<>. (z = x/y A y,<!O); 

x/z.(x=z). 

This description will not terminate when y 

termination as an indication of an error. 

0 initially, i.e. we use non-
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Note that it would not have been correct to express the first assignment 

statement as 

x/<>.x x+y, 

because this would have the effect of setting x to some value satisfying the 

equation x = x+y. For y f O this equation has no solution x, while for y = 0 

any value of x would do. This is thus an example of a description which 

is both partial and nondeterministic, and where the nondeterminism is in fact 

unbounded. 

In the next section we will show that not only the assignment statement 

but also the if ••• fi and the do ••• od constructions are expressible using 

descriptions, i.e. the programs in the previous section can be expressed as 

descriptions. 

6.2.3. Replacements in •context 

The top-down property of descriptions guarantees that certain kinds of 

replacements are always allowed. There ar.e, however, replacements that lead 

to refinements of the original description, but which cannot be justified 

by the top-down property alone. Consider the following example. Let S be the 

description 

S (x 2!: 0 + x := lxl + 11 x := X*X). 

We want to replace the assignment statement 'x:=lxl+l' with the 

statement 'x:=x+l'. This replacement is obviously correct, because the first 

assignment statement will only be executed when x 2!: O, in which case the 

assignment statement 'x:=x+1' has the same effect. However, 

x := lxl+1 :5 x := x+l 

does not hold, because for x < 0 they give different results. What we have 

here is a replacement that is correct in the context that it occurs, but 

which is not generally correct, i.e. it is not correct in every context. 

To handle this kind of replacement, we use a special class of descrip

tions called assertions. An assertion {R} denotes the description 

<>/<>.R, 
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where R is some formula. It acts as a partial skip statement, i.e. if the 

initial state satisfies R, then the assertion has no effect, but if the 

initial state does not satisfy R, it acts as an abort statement, i.e. the 

statement will not terminate. 

Returning to the example, what we can prove is that 'x:=x+l' is a re

finement of 'x:=lxl+l' for initial states satisfying x ~ 0, i.e. we can prove 

that 

{x ~ O}; x := Jxl + 1 $ x := x + 1 

holds. Therefore we should first prove that 

S $ (x ~ 0 + {x ~ O}; x := lxl + 1 Ix := x*x) 

holds, and then use the replacement Theorem 5.12 to get that 

(x ~ 0 + {x ~ O}; x:= ]xi + 1 Ix:= x*x) 

$ (x ~ 0 + x := x + 1 Ix:= X*x). 

Transitivity then gives the required result, i.e. 

s $ (x ~ 0 + x := x + 1 Ix·= x*x). 

The general situation is as follows. We have a description S with an 

occurrence of the description Tin it, i.e. 

S ••• T • • • • 

We want to replace T with T'. If T $ T' holds, this can be done immediately 

by Theorem 5.12. Otherwise we try to find an assertion {R} such that 

S $ S', 

where 

S' •.• {R}; T •••. 
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If we can prove that 

{R}; T:, T', 

we have by Theorem 5.12 that 

S' :5 S", 

where 

S 11 ••• T' ..... 

Transitivity then gives the desired result, i.e. 

S :,; S". 

6.2.4. Program transformation rules 

A program transformation rule will in general give for each description 

Sofa certain form a transformed description T(S). If certain assumptions 

about Sare satisfied, then the transformation will be correct, i.e. 

S :,; T (S) 

will hold. 

In the previous example, we could have used the program transformation 

rule 

to justify the introduction of the assertion {x 2' O} into the program. 

Another simple transformation is 

which holds if R~ B. 
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Program transformation rules correspond to derived rules of inference 

in the logic Lwiw· 1'hey are of the general form 

q> 

S:S, (S) ' 

where 4> is the set of assumptions made. The soundness of such a rule can be 

shown by deriving S $ ,(S) in Lw1w from the assumptions 4>. Program transfor

mation rules of this kind will be treated extensively in Chapter 7, where 

their correctness will be shown in the manner suggested. These program trans

formations will be concerned with the introduction of assertions into de

scriptions (Section 7.3), changing control structures in a description (Sec

tion 7.4) and the use of representational abstraction (Section 7.5). 

6.2.5. Operational abstraction 

The way in which the assignment statement was expressed using a de

scription can be generalized to a nondeterministic assignment. An example 

of a nondeterministic assignment is 

2 x := x'. (Ix -x'I < e). 

The intended effect of this is that the variable xis assigned some new 

value x' such that 

2 Ix - x' I < e 

will hold, without changing the values of the other variables. Thus the 

effect is roughly to perform the operation x := x2 with precision e. The 

operation is both nondeterministic (any value x' in.the range x 2-e < x' < 

x2+e will do) and partial (it is not defined fore$ 0). 

This nondeterministic assignment can be expressed by the description 

z/<>.(lx2-zl < e); 

x/z.(x=z), 

where z as before is a new variable, not used in the context where the non

deterministic assignment occurs. 
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A procedure is usually specified by giving its entry and exit condi

tions. Thus a procedure for squaring x with precision e would have the entry 

condition 

e > 0, 

and the exit condition 

2 Ix - x' I < e, 

with x' denoting the new value of x, while x itself stands for the initial 

value of x. In addition, we would like to state that only x may be changed 

by the procedure (thus e.g. forbidding the procedure to change e). The 

fact that the description S satisfies these entry and exit conditions can 

be expressed by 

(6.1) 

This states that Swill compute the square of x with precision e for initial 

states in which e > 0 holds. 

Operational abstraction is thus achieved by using the procedure speci

fication 

{e>0}; x := x'.(lx2-x• I< e) 

as such in a certain stage of the program development. At a later stage an 

implementation S satisfying this specification, i.e. satisfying (6.1) above, 

can be given. Replacing the specification with Sis then allowed by Theorem 

5.12. This scheme allows us to use parameterless procedures in program devel

opment, without having to introduce names for these procedures. (Recursive 

procedures cannot, of course, be handled in this manner.) 

In the next chapter (Section 7.2) we will give special proof rules for 

proving the correctness of procedure implementations, i.e. for proving re

finements of the type in (6.1). We will there also show that these special 

proof rules are derivable from .the general proof rule for refinement. 
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6.2.6. Representational abstraction 

An example of representational abstraction was already given in the 

preceding section, in the transition from program s 1 to program s2 . Another 

example is the following. 

Consider a program which uses a set V of variables. Let A be a variable 

of S which only takes small sets of integers as values (small means here 

that the sets have at most 100 elements). We want to represent the variable 

A by the new variables Band k, where Bis to be an integer array with in

dices running from 1 to 100 and k a~ integer in the range from Oto 100. 

In order to specify the way in which the variables Band k are to re

present the variable A, we first have to indicate those value combinations 

of Band k that are meaningful, i.e. which represent some small set of in

tegers. This is done by giv~ng a condition I that Band k must satisfy if 

they are to represent anything. In this case we give the condition 

I(B,k): Bis an integer array [1 •• 100] and 

k is an integer in range 0 •• 100. 

We also have to indicate what small set of integers Band k represent 

when they satisfy the condition I(B,k). This is done by giving a function 

t, which assigns to each value combination Band k the set of integers 

represented by Band k. In this case we give 

t(B,k) {B[i] I 1 ~ i ~ k} • 

Here the function tis the abstraction function and the condition I the con

crete invariant, introduced in HOARE [25] as an aid to proving the correct

ness of data representation. The-example here is also taken from this refer

ence, although Hoare uses a stronger concrete invariant then the one given 

here. 

We now have two different data spaces, the "abstract" data space Vin 

which the variable A occurs, and the "concrete" data space W = (V- {A}) u 

{B,k}, in which A is replaced by the variables Band k. The transition from 

the concrete data space to the abstract data space can be given by a de

scription 

a = A/B,k.(A t(B,k) A I(B,k)). 
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This transition is defined when Band k satisfy the condition I, and it will 

assign to the variable A the value represented by the variables Band k. On 

the other hand, the transition from the abstract data space to the concrete 

data space can be given by the description S: V + W, defined by 

s B,k/A. (A t(B,k) A I(B,k)). 

This will assign to the variables Band k some values which represent the 

value of A. It will be defined if A has a representation using Band k, i.e. 

if the value of A is some small set of integers. 

The descriptions a and S are each others inverses. Note that descrip

tion a is deterministic while description S is not. This means that there 

is more than one way to represent a given small set using Band k, but that 

each Band k satisfying the condition I will represent a unique small set 

(in fact, there are ~nfinitely many different ways of representing a small 

set with less than 100 elements, because the choice of B[i] for i > k does 

not matter) . 

Consider now the problem of finding a refinement of S where the vari

able A is represented by the variable Band k. This can be expressed as fol

lows: find a description S' : W + Iv such that 

(6 .2) {R}; S $ S; S'; a 

holds. Here Risa condition that guarantees that A has a value that can be 

represented by Band k. In this case we would have 

R(A): A is a small set of integers. 

The assertion {R} is necessary to restrict the refinement to those ini

tial states for which S is defined. It is possible that S could also be de

fined for initial states that do not satisfy R (e.g. S could be defined for 

any sets of integers, and not only for small sets). 

The refinement (6.2) can be operationally interpreted as follows: for 

initial states satisfying R, the effect of Scan be achieved by first find

ing some representation of A using Band k, then using S' to get a final 

state by manipulating the variables Band k, and then setting A to the value 

represented by the final values of Band k. 
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An S' satisfying {6.2) can now be constructed in the following way. We 

may either simply invent an S' satisfying {6.2), and then the problem is 

solved. Or ifs is of the form {s1;s2), {s1 v s 2), {B + s 1 1s2) or (B*S1), 

where s 1,s2: V + V, we can reduce the problem to the corresponding subprob

lems for s 1 and s 2 • Consider as an example the case 

As a first step we prove that 

using some transformation rules for introducing the assertions. Then we 

solve the subproblems of finding S' and S' that satisfy 
1 2 

and 

Using the replacement property (Theorem 5.12), we then have that 

Finally, it can be shown that the transformation rule 

(6.3) 

is always correct, provided cv. and 13 satisfy certain properties (to be given 

later, in Section 7.5). Transitivity of refinement then gives us the desired 

result, i.e. 

{ R}; s s a ; s, ; cv., 

where 
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The other cases can be treated in a similar way. Transformation rules 

of the form (6.3) will be the subject of Section 7.5 in the next chapter. 

An important special case occurs when the program S uses the variable 

A as a "temporary" variable, i.e. S will initialize the variable A to some 

value, and it does not depend on the initial value of A. In this case we 

introduce the description sO: V-->- W, defined by 

S O B,k/A. true. 

This description will assign arbitrary values to Band k. The require

ment to be put on S': W-->- W is now that 

holds. The restriction R can ,be dropped here because sO is always defined. 

An S' can be found by the same technique as above. If we assume that 

S s1;s2 , we first prove that 

Then we solve the problems of finding Si and s2 satisfying 

and 

By replacement we again get that 

Finally we use a program transformation rule that gives 

By transitivity, we then have the desired result, i.e. 
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where S' 

6.2.7. Safe program development 

The refinement relation is based on strong termination rather than on 

the natural notion of termination, which includes both strong and weak ter

mination. We would like to restrict the refinement relation to cases where 

weak termination cannot occur. In such cases the natural notion of termina

tion coincides with strong termination, and one does not have to bother 

about the distinction between these two. We refer to program development 

where the problems of weak termination can be ignored as safe program devel

opment. 

The obvious way to exclude weak termination would be to restrict all 

basic descriptions to be finite, thus guaranteeing that all descriptions 

are of bounded nondeterminacy. This would, however, restrict the technique 

for changing data representation to only allow finite transitions between 

abstract and concrete data spaces. More precisely, an abstract value could 

only be represented by a finite number of different concrete values. This 

seems to be unnecessarily restrictive (the abstraction function t(B,k) above 

does not e .. g. satisfy this restriction) . We will therefore choose a slightly 

less restrictive way of guaranteeing safe program development. 

We will in the next section define a subset of descriptions which are 

guaranteed to be of bounded nondeterminacy. A special notation will be intro

duced for descriptions in this subset, making them look very much like ordin

ary program statements. We will call these descriptions program descriptions. 

They will essentially be the guarded commands of Dijkstra, extended with 

operational abstraction, assertions and a simple block structure, allowing 

the introduction of local variables. Weak termination will be excluded by 

requiring the nondeterministic assignment statements to make their choices 

from a finite set of possibilities only, and by requiring that local vari

ables in blocks are properly initialized. 

Besides program descriptions, we also will have abstractions of program 

descriptions. These are descriptions of the form B; S;a where B and a are 

transitions between abstract and concrete state spaces of the kind described 

above, and Sia a program description. Weak termination cannot occur for 

descriptions of this form either, although the descriptions can be of un

bounded nondeterminacy (the transitions a and Bare not required to be 

finite). 
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We will further restrict ourselves to only consider refinements of the 

form S ~ S', where Sis a program description and S' is either a program 

description or an abstraction of a program description. In the next chapter 

we will give a number of inference rules by which such refinements can be 

derived. The correctness of these inference rules will be shown using the 

general proof rule for refinement. We will also show how the example program 

of Section 6.1 can be derived with the aid of these rules of inference. 

6.2.8. Related work 

The approach to stepwise refinement presented above is new, as far as 

we know. Related ideas have, however, been presented before. Thus KATZ and 

MANNA [28] contains a similar technique of using assertions to collect infor

mation about the context of a program part. The nondeterministic assignment 

has been used previously in HAREL et al. [22] in the extension given for 

Hoare's axiomatic system, atld more extensively in BAUER [6]. The formalism 

of representational abstraction given here is clearly inspired by the ab

stract data type facility first discussed in HOARE [25], and provided in a 

number of new programming languages (see e.g. WULF et al. [46], WIRTH [45], 

LAMPSON et al. [31] and LISKOV et al. [32]). Representational abstraction 

is, however., a more general (and less structured) concept than the abstract 

data types, permitting e.g. two or more abstract variables to share the same 

concrete variables for representation. The way in which representational ab

straction is handled here is somewhat similar to the handling of abstraction 

in BURSTALL and DARLINGTON [10] or the concept of simulation between pro

grams defined in MILNER [36]. 

6.3. PROGRAM DESCRIPTIONS 

We define the set Vr of program variables by 

Vr = {v In 
n 

2k for some k < w}. 

The set of marked variables Vr' is defined by 

Vr' {v In 
n 

2k+l for some k < w}. 

For each variable vn in Vr, v~ denotes the corresponding marked variable 

vn+l in Vr'. For any set U (list x) of program variables, U' (x') is the set 

(list) of corresponding marked variables. 
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Let V be a finite nonempty set of program variables. The program de

scriptions in V form a subset of the legal descriptions from V to V. We de

fine them below, at the same time giving a notation for them. We assume 

throughout that a language Land a set of axioms~ has been fixed. 

6.3.1. Assertions 

Let Q be a formula of L, var(Q) ~ V. Then the assertion 

is a program description in V. As special cases of assertions we have the 

skip statement 

skip df {true} 

and abort statement 

abort df {false}. 

The skip and abort statement have the same meaning here as they have 

in DIJKSTRA [15] and in Section 5.1 above. 

The weakest preconditions for these constructs are as follows: 

WP({Q},R) =>QA R, 

WP(skip,R) => R, 

WP(abort,R) => false. 

This follows directly by computation. We have 

WP ({Q} ,R) WP(<>/<>.Q,R) 

# Q A (Q=> R) 

- Q A R. 



69 

We then have that 

WP(skip,R) - true AR - R 

and 

WP(abort,R) - false AR - false. 

The effect of the assertion was already explained in the previous sec-

tion. 

6.3.2. Assignment 

Let Q be a formula of Land x a list of distinct variables in V, where 

var(Q) ~Vu x'. Assume that 6 ~ finite(x',Q). Then the (finite nondetermin

istic) assignment 

X := X 1 .Q df x'/<>.Q; x/x'. (x=x') 

is a program description in V. The effect of the assignment statement is to 

assign new values to the variables in the list x, so that condition Q be

comes true. The marked variables x' in Q stand for the new values assigned 

to x, while x itself stand for the old values. No other variables are affect

ed by this statement. 

A special case of the assignment is the assignment statement 

X := t df x := x'. (x'=t). 

where xis a list of variables of V and tis a list of terms of L, £.(x) 

£.(t) and var(t.) ~ V for i = 1, •.. ,£.(t). 
J. 

The weakest precondition for the assignment and the assignment state-

ment will be 

WP(x:=x' .Q,R) - 3x'Q A Vx' (Q~R[x' /x]) 

and 

WP(x:=t,R) - R[t/x]. 

For the assigrur,ent, the weakest precondition is computed as follows: 



70 

WP(x:=x' .Q,R) WP(x'/<>.Q, WP(x/x' .x=x',R)). 

We have 

WP(x/x' .x=x' ,R) 3x(x=x') A Vx(x=x' -+R) 

.,. true A R[x'/x] (by Lenuna 2.6) 

~ R[x' /x]. 

Thus 

WP(x:=x' .Q,R) - WP(x' /x.Q,R[x' /x]) 

- :ilx'Q A Vx' (Q-+R[x' /x]). 

For the assignment statement we have 

WP(x:=t,R) WP(x:=x' .x'=t,R) 

# 3x' (x'=t) A Vx' (x'=t-+R[x' /x]) 

++ true II R[t/x] 

* R[t/x]. 

The angular brackets for lists will usually be dropped in assigrunents 

and assignment statements in examples. However, we will still write<> for 

the empty list of variables. 

6.3.3. Composition 

We have composition for program descriptions in the same way as for 

descriptions. Parenthesis may be dropped, by agreeing that s1;s2; ••. ;Sn_1 ;Sn 

stands for (s1; (s2; ( .•• ; (Sn_ 1;sn) •.. ))) • 
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6.3.4. Nondeterministic selection 

Let s 1 , ••• ,sn be program descriptions in V, and let B1, ••• ,Bn be for

mules of L, such that var(Bi) ~ V for i = 1, ••• ,n, n ~ 1. The nondeterminis

tic selection 

is then a program description in v. It is defined as follows: 

if Bl + s1 0 ... 0 B + S fi n n-

for n > 2. 

A reasonable amount of computation will show that the weakest precondi

tion for the nondeterministic selection is 

WP(if Bl+ s 1 □ ... □ B + S fi, R) - n n-

V B, A /\ (B. • WP(S. ,R)). 
1:s;i:s;n i 1:s;i:s;n 1 i · 
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6.3.5. Nondeterministic iteration 

Let s1 , .•• ,Sn be program descriptions in V, and let B1, ... ,Bn be for

mulas of L, such that var(Bi) s V for i = 1, ..• ,n, n ~ 1. Then the nondeter

ministic iteration 

is a program description in V. 

The weakest precondition for nondeterministic iteration is 

where 

Noting that 

we find that 

and 

S od, R) 
n-

V WP(do Bl ➔ s1 □ ... □ Bn + Sn odn, R) 
n<w 

for n ~ 0. 

abort 



n 
do Bl + S l O ... 0 B + S od - n n 

0 -BB+ skip 

for n > 0. 

where BB denotes the condition B1 v ••• v Bn: 

6.3.6. Blocks 

Let S be a program description in Vu x, x n V 

beg x: Send df x/<>.true;S;<>/x.true 
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0. Then the block 

is a program description in V. The weakest precondition for this is easily 

computed to be 

WP (beg x: S end), R) \fxWP(S,R). 

The purpose of the block construct is to allow the introduction of 

local variables. It is more restrictive than the usual block construct, in 

that redeclaration of local variables is not allowed. 

We will require that all local variables of a block are properly ini

tialized before their values are referred to. We will not, however, give any 

specific schemes according to which this condition is to be guaranteed. The 

simplest way would of course be to require that each block begins with an 

explicit assignment of values to the local variables, but this could be too 

restrictive. Other possibilities have been discussed by DIJKSTRA [15] and 

by DE BAKKER [12]. 

If the use of uninitialized variables was allowed in blocks, one could 

simulate nondeterministic assignments which are not finite. For instance, 

the following block would have the effect of setting x to any value: 
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beg y: x := y end 

Thus proper initialization of local variables is required to prevent weak 

termination from occurring. 

The program descriptions are now the descriptions generated by the con

structs above. The programs are generated by these same constructs, when re

stricted so that we only allow the skip and abort statement, the assignment 

statement, composition, selection and iteration with boolean expressions as 

guards and blocks. Programs are thus the guarded commands of DIJKSTRA [15], 

plus the block construction. The weakest preconditions for programs are also 

the same as those given by Dijkstra, except for the weakest precondition for 

the nondeterministic iteration, which, however, is equivalent to the weakest 

precondition given by Dijkstra. 

Program specifications are special kinds of program descriptions. A 

program specification, giving the entry condition P and the exit condition 

Q and allowing only the variables in x to be changed, is expressed as the 

program description 

{P}; X := x'.Q. 

or, equivalently, 

if P + x:=x' .Q fi. 

No special notation will be introduced for program specifications. 

NOTE: The burden of checking condition 6 ~ finite(x' ,Q) for assignments 

x := x'.Q in program descriptions can be greatly reduced, if we assume that 

we have available a set of standard formulas which are finite in 6, i.e. 

formulas B which satisfy condition 6 ~ finite(x' ,B). With these we could re

strict ourselves to assignments of the form x := x'. (BA Q), where Bis some 

standard finite formula. The finiteness of this assignment does not have to 

be separately verified, as it is a consequence of the finiteness of B. We 

could even introduce a special notation for these, e.g. 

X := x'(B).Q -df X := x'.{BAQ), 

In the domain of integers, the finite subranges would be typical examples 

of standard finite formulas, E.g. the assignment 

u :=u'{l:5:u':5:v).Q(u,u',v) 
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will be finite, no matter what Q is. 

Finally we will define abstractions of program descriptions, to be used 

when changing the data representation of a program description. 

6.3.7. Abstraction 

Let x/y.Q be an atomic description from V to W, where x n V =~-Let Q 

be the formula y = t A I where tis a list of terms in Land I is a formula 

of L, var(ti) s W for i = 1, ... ,l(t), var(I) s Wand l(t) = l(y). Let S be 

a program description in W. Then 

rep x/y.Q: S per =df x/y.Q; S; y/x.Q 

and 

beg x/y.Q: S per ~df x/y.true; S; y/x.Q 

are abstractions in V of the program description Sin w. 
The weakest preconditions for these are: 

WP (rep x/y. Q: S per, R) 

.,. 3x(y=tAI) A Vx(y=tAI ~ WP(S,IAR[t/y])) 

and 

WP(beg x/y.Q: S per, R) - VxWP(S,I A R[t/y]). 

The computation of these goes as follows. We compute first 

WP (y/x.y=t A I,R) 3y(y=t A I) A Vy(y=t A I~ R). 

We have by Lemma 2.6 that 

3y(y=tA I) - I[t/y] - I, 

because y is not free in I. On the other hand, by axiom Ql and Lemma 2.6, 

Vy(y=t A I~ R) - Vy(I~ (y=t ~ R)) - I~ Vy(y=t ~ R) 

- I~ R[t/y], 
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for the same reason. Thus we get that 

WP(y/x.y=tAI,R) - I A (I~R[t/y]) - IAR[t/y]. 

Thus the result will follow by computing 

WP(rep x/y.y=tA I: S per, R) 

-wP(x/y.y=tA I, \1P(S,IAR[t/y])) 

and 

WP (~ x/y. y=t A I: S per, R) 

- WP(x/y. true, WP (S, I AR[ t/y ]) ) . 

The purpose of an abstraction is to allow the state space to be changed. 

The abstraction T of sin W, Tan abstraction in V, 

T 2:;:p_ x/y.y=tA I: S per 

will change the state space by replacing the variables yin V with new vari

ables x that represent y by the equation 

for i 1 , .•. ,l (y l • 

Here ti are terms whose values depend on the variables in x and possibly on 

some other variables in W. There may be more than one choice of values for 

the variables in x that will represent y. The values chosen for x must, how

ever, satisfy the condition I. After this the description Sis executed. 

Finally, the variables in y are assigned the values represented by the new 

values of x (and possibly by some other variables in W). All in all, the 

effect of the abstraction Tis to manipulate the variables in y by manipul

ating a representation x of these variables. 

The abstraction 

beg x/y .y=t A I: S per 

is used to initialize the variables y by initializing the variables x which 

represent the variables y. 
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CHAPTER 7 

FORMAL DEVELOPMENT OF PROGRAMS 

In this final chapter we show how programs can be formally derived us

ing the machinery developed above. The use of program descriptions makes for-. 

mal proofs of the correctness of derivations possible. The general proof 

rule for refinement can in principle be used for establishing the correct

ness of the individual refinement steps in the derivation. In practice, how

ever, this ·is not very convenient and we need stronger proof rules for handl

ing the different kinds of refinement steps commonly occurring in program 

development. 

In Section 7.1 we show how to derive the example program of Section 

6.1 in a formal way using program descriptions. This derivation makes use 

of a number of stronger proof rules by which the correctness of the refine

ment steps can be proved. These proof rules will be formulated in the fol

lowing sections. Thus Section 7.2 gives proof rules for proving the correct

ness of precedure implementations. Section 7.3 will give examples of trans

formation rules by which assertions can be introduced into descriptions. 

Section 7.4 gives an example of a transformation rule by which the control 

structure of a program description can be changed. Finally, in Section 7.5 

we show how to change the data representation in program descriptions. 

The soundness of the stronger proof rules will be shown by deriving 

them from the general proof rule for refinement. The derivations will essen

tially be carried out in Lw1w, using the axioms and inference rules of this 

logic. One of the main purposes of this chapter is in fact to illustrate the 

power of the general proof rule for refinement and the suitability of Lw 1w 

as a formal system in which to reason about program properties. 

Refinements will be restricted to be of the form S s S', where Sis a 

program description and S' is either a program description or an abstraction 

of a program description. The proof rules to be presented here can therefore all 

be used in the safe development of programs. The proof rules are not intended 

to form in any sense a complete set of rules for deriving programs, but are 
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mainly given as examples if important kinds of rules which can be expressed 

and proved correct in our framework. 

7 • 1 • AN EXAMPLE OF FORMAL PROGRAM DEVELOPMENT 

We will here show how the example of Section 6.1 can be formally devel

oped using program descriptions and the principles laid down in Section 6.2. 

The problem specification can be expressed as the program description 

where V = {X,Y,z}. Thus the problem is to construct a program description S 

such that A0 s S. The solution Sis constrained by requiring that the expo

nentiation operation is not used. The variable sets (like V above) will be 

omitted in the sequel. 

We will introduce the abbreviation 

for future convenience. Thus A0 is 

We will assume that the variables take only integers as values. This 

means that we postulate a set 6 of sentences (the axioms) which give the 

operations used in the program descriptions the properties expected of the 

usual integer operations. This set 6 will not be mentioned explicitly in 

the example below, (S s S' is to be understood as stating that S s S' is a 

logical consequence of 6). 

As the first refinement step we introduce some assertions into A0 . Let 

'rhe fact that A0 s A1 holds follows by a transformation rule for introducing 

assertions (the rule is given in example 7.7(i), Section 7.3). 

We now try to find a refinement S' of the specification 



y 
X • 

If we find such a refinement, i.e. an S' satisfying 

then the replacement theorem implies that 

thus giving us the required solution. 

The following is a refinement of B0 : 

Bl: {Rl}; 

beg h: 

end 

h,z := xy l; {R2}; 

do h 'f 1 -+ h , z : = h ' , z ' . ( 1 s: h ' < h II R' ) • 
2 ' 

od 

We use the abbreviations 

and 

'l'he assignment 

is obviously finite on integers, and has the effect described in Section 

6.1 by 

"squeeze h under invariance of P". 
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The way to prove that B0 s: B1 holds is given in example 7 .1, Section 7. 2. 
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The invariant R2 in B1 is a byproduct we get when showing the correct

ness of the implementation by the invariant technique, loosely described in 

Section 6.1 and more thoroughly treated in DIJKSTRA [15]. It comes in very 

handy when preparing for a replacement in context. 

Our next step is to get rid of the abstract variable h using the vari

ables x and y to represent the value of h. This constituted the second step 

in Section 6.1. It will, however, take us more than one refinement step to 

make this passage. 

We prepare for this step by collecting some necessary information in 

the form of assertions in the program description. This gives us the refine

ment B2 of B1 : 

B2: {Rl}; 

beg h: 

end. 

y 
{ Rl}; h ,' Z : = X , 1 ; { R2 }; 

do h "/ 1 ➔ { R2 A h "/ 1 } ; 

h, z : = h ' , z ' . ( 1 :,; h ' < h A R2 ) ; { R2 } 

ad 

The fact that B1 s B2 holds can be shown by using the appropriate trans

formation rules for introducing assertions into program descriptions. We 

would need the transformation rules of example 7.8 and 7.9(v) to get from 

Bl to B2 • 

We will now consider the following two components of B2 : 

and 

'l'he program description c0 will be implemented with the description 

c 1 : beg x,y/h .Q: 

x,y,z := X,Y,1 

where Q is 
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Q: h 

The effect of c1 is to initialize the variables hand z to XY and 1, as 

required, by first computing appropriate values for x, y and z, and then 

assigning to h the value represented by x and y. The form beg ... per is used 

here, because the initial value of his not needed to compute the value re

quired. The way in which cO ~ c1 is to be proved is discussed in example 7.2 

of Section 7.2. 

The program description DO will again be implemented with the descrip

tion 

D1 : rep x,y/h.Q: 

y,z := y-1,z•x 

.Because the initial value of his referred to in DO, we use the form 

~ •.• per. The way in which DO ~ D1 is to be proved is discussed in exam

ple 7.3 of Section 7.2. 

The proof rules for abstraction (Section 7.5) can now be used to change 

the data representation in B2 • From cO ~ c1 and DO ~ D1, together with the 

fact that h I 1 iffy f O when Q holds, we first get that 

doh f 1 + DO od ~ rep x,y/h.Q: 

do y f O + D1 od 

per. 

This together with cO ~ c1 can then be used to get 

cO; doh f 1 + DO od ~ beg x,y/h.Q: 

c 1 ; do y f O + D 1 od 

From this we finally get 
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beg h: CO; beg x,y: cl; 

doh 'F 1 ➔ DO od $ do y 'F 0 ➔ D1 od 

end end 

Substituting the right hand side for the left hand side in B2 will now 

give us a refinement of B0 . The component B0 of A1 can therefore be replaced 

with this, giving solution A2 below (this corresponds to step s2 in Section 

6.1): 

A2: if X > 1 A y 2: 0 ➔ 

beg x,y: 

x,y,z := X, Y,1; 

do y 'f 0 ➔ y,z := y-1,z •x od 
end 

fi 

To get step s3 in Section 6.1, we backtrack to the program description 

B2 , and give the refinement B3 of it instead: 

B3: {Rl}; 

beg h: 

end 

y 
{R1}; h,z := X , 1; {R2 }; 

doh 'f 1 ➔ {R2 Ah'/ l}; skip; 

{R2 Ah 'f 1}; 

h , z : = h I , z I • ( 1 $ h I < h A R2) ; { R2} 

od 

It is quite obvious that B3 s B3, as the skip statement does not affect 

the values of any program variables. We then consider the components c0 and 

D0 of B3, which are the same as the components c0 and D0 of B3 , and implement 

these as before with c1 and D1 . We will also consider the component 

of B3. This component will be implemented by 
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E1 : rep x,y/h.Q: 

do 2jy + x,y := x•x,y/2 od 

The way in which E0 ~ E1 is to be proved is shown in example 7.4 of Section 

7.2. 

We then proceed to change the data representation in B3, in a similar 

manner as above. After having done this, we get the program description 

B4: beg x,y: 

x,y,z := X,Y,1; 

do y ,f O + do 2jy + x,y := x•x,y/2 od; 

y,z := y-1,z•x 

od 

where B3 ~ B4. By replacing B0 in A1 with B4, we then get the program de

scription A2, which corresponds to the step s3 in Section 6.1: 

.A2: if X > 1 A Y ~ 0 + 

beg x,y: 

end 

fi. 

x,y,z := X,Y,1; 

do y ,f O + do 2jy + x,y := x•x,y/2 od; 

YI Z ! = y-1 I Z • X 

od 

We now subject our program to a last refinement. It does not make the 

program more efficient, on the contrary, but it makes it structurally sim

pler, by fusing the two nested loops of the program into one single loop. 

This transformation is not done by Dijkstra, for obvious reasons. Our pur

pose here is to show how the control structure of programs can be changed. 

We consider the following component F0 in A2: 

F0 : do y ,f O + do 2jy + x,y := x•x,y/2 od; 

YI Z ! = y-1 I Z O X 

od. 
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Using a program transformation on loops, to be proved correct in exam

ple 7.10 of Section 7.4, we get the refinement F1 of F0 : 

Fl: do y 'F O + if 2 IY + x,y := x•x,y/2 

□ ~2jy + y,z := y-1,z•x fi 

od 

The program description F1 will be less efficient than F0 because the 

condition Y'FO is tested at each iteration, wheras this test is not perform

ed in F0 while iterating in the inner loop. 

Replacing F0 by F1 in A2 gives us the solution A3 to the programming 

problem, where A3 is 

A'. 3. if X > 1 A y <! 0 + 

beg x,y: 

x,y,z := x, Y, 1; 

do y 'F 0 + if 2jy + x,y := x•x,y/2 

□ ~2jy + y,z := y-1,z •x fi 

od 

end 

fi 

7.2. PROOF RULES FOR IMPLEMENTATION 

We will give here a general proof rule by which the correctness of an 

implementation, i.e. of a refinement of the form 

{P}; X := x'.Q ~ S 

can be shown. For this purpose, we need to prove a technical lemma first. 

LEMMA 7.1. For any set~ of sentences, we have 

( 7 .1) ~ f- v'x' (Q-. R[x' /x]) 

iff 

(7. 2) 
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when var(Q) =Vu x' and var(R) = V, x0 and y0 do not contain variables of 

V or x or y, x n y =~and x0 n y0 =~and y s V. 

PROOF. By Lenma 2.6, (7.2) is equivalent to 

By changing the bound variables x and y, this gives us 

thus making x0 and y0 free for x and y. Because x0 and y0 do not occur free 

in R[x'/x,y'/y] andy0 does not occur free in Q[x0/x,y'/y], performing the 

substitution gives us the result 

Vx'y'(Q[y'/y] A y'=y • R[x'/x,y'/y]). 

This is again equivalent to 

Vx'y'(y=y' • (Q[y'/y] • R[x'/x,y'/y])), 

giving the equivalent form 

Vx'(Q,.. R[x'/x]), 

by using Lenma 2.6 again. This is the desired result, so the lemma is prov

ed. □ 

The general proof rule for establishing the correctness of an implement

ation is now given by the following theorem. 

THEOREM 7.2. Let~ be a countable set of sentences of L. Let V be a finite 

nonempty set of program variables, and let S be a program description or an 

abstraction in V. Let y be a list of those variable& in V - x that are not 

constant in S. Let x0 and y0 be lists of distinct program variables not 

occurring in Sor belonging to V. If 
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then 

8 ~ {P}; X := x'.Q S S. 

PROOF. Let k be the number of variables in v, and let v be a list of dis

tinct variables, v = V. Let G be a new k-place predicate symbol. By Cor. 5.5, 

it is sufficient to show that 

8 ~ WP({P}; x := x'.Q, G(v)),. WP(S,G(v)). 

Take therefore WP({P}; x := x'.Q,G(v)) as an assumption, i.e. we assume that · 

(7.3) PA 3x'.Q A Vx' (Q • G(v)[x'/x]). 

Note that the assumption may'contain free variables of v, over which we are 

not allowed to quantify. By Lenma 7.1, the third term in the assumption im

plies that we have 

Using axiom Q2, this gives us that 

Let us now further assume that 

(7.4) 

By modus ponens we get that 

Vxy(Q[x0/x,x/x'] A y=y0 • G(v)). 

Because all variables of V not belonging to x or y are constant ins, we 

may apply LeDllla 5.11(i), getting the result 

Because of the assumptions and the premise, we have that 



and thus we may infer by modus ponens that 

WP(S,G(v)). 

We still have to get rid of the assumptions that we made in the course of 

developing the proof. By the deduction theorem, we first get that 

x=x0 11 y=y0 .. WP(S 1G(v)) ,. 
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thus getting rid of assumption (7.4). As x0 and y0 are not free in assump

tion (7.3), we may use the rule GN on this,.getting 

which then gives us 

by Lenma 2.6 i.e. 

WP(S,G(v)), 

by noting that x0 and y0 are not free in WP(S,G(v)) (Lemma 5.1). Using the 

deduction theoren once again, we eliminate assumption (7.3), getting the 

desired result 

WP({P}; X := x'.Q, G(v)) .. WP(S,G(v)). □ 

COROLLARY 7.3. Let the assumptions be as in Theorem 7.2. We then have that 

implies 

f- X := X 1 .Q S S. 
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PROOF. By noting that x := x' .Q"' {3x' .Q}; x := x' .Q. D 

COROLLARY 7.4. Let the assumption be as in Theorem 7.2. Then for the assign

ment statement x :=tin V, we have that 

implies 

~ {P}; X := t ~ S. 

PROOF. Immediate. 0 

We will now show how the implementation steps in Section 7.1 can be 

proved correct, using the proof rules for implementations. 

EXAMPLE 7.1. The first implementation step was the refinement of B0 to B1 . 

Thus we have to prove that B0 ~ B1, where 

We apply here Corollary 7.4. Using the notation of this corollary, we have 

in this case that y =<>,because B1 only affects the variable z. Also, the 

assignment performed is an initialization, i.e. the variable x does not 

occur int (here: the variable z does not occur in XY). In this case, the 

premise in Corollary 7.4 simplifies to 

P • WP(S,x=t). 

Thus we have to prove that 

We will not prove this here. An informal argument was given in Section 6.1. 

A more formal proof can also be given, based on the "fundamental invariance 

theorem" in DIJKSTRA [15]. 

EXAMPLE 7.2. The second implementation was the implementation of c0 with 

c1, where 
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and 

This is again an initializing assignment not affecting variables other than 

those indicated, so we can use the same proof rule as in example 7.1. Thus 

we have to prove that 

X > 1 A Y ~ 0.,. WP(C 1, h=Xy A z=l). 

The weakest precondition for c1 can be calculated using the formula for 

weakest preconditions of abstraction in Section 6.3, which is 

WP(beg x/y.y=t A I,: S per, R) ~ VxWP(S,I A R[t/y]). 

(Here x and y are variable lists, and should not be confused with x and y 

in the example.) Using it in the present example means that we have to prove 

X > 1 A Y ~ 0 .,. VxyWP (x,y ,z := x, Y, 1, (x > 1 A xy = xy A z=l)) • 

Using the rule for computing the weakest precondition of an assignment state

ment, also given in Section 6.3, the premise to be proved becomes 

X > 1 A Y ~ 0 .,. Vxy (X > 1 A xy = xy A 1 = 1), 

i.e., we have to prove that 

X > 1 A Y ~ 0 .,. X > 1 A xy = xy A 1=1, 

which obviously holds. Thus we conclude that c 0 ~ c 1• 

EXAMPLE 7.3. The third implementation was the implementation of D0 with D1, 

where 

and 
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o 1: rep x,y/h. (h =~Ax> 1): y,z := y-1,z•x per 

Here 

and 

We use Theorem 7.2 here. Because y 

the form 

<>, the premise in 7.2 takes 

Thus in the present case, we ,have to prove that 

The weakest precondition for the abstraction o1 is given by the formula 

WP (rep x/y .y=t A I: S per, R) 

- 3x(y=t A I) A 

'v'x(y=t A I* WP(S,I A R[t/x])). 

Thus, in order to establish that o0 $ o 1, we have to prove here that 

R2 A hil A h=hO A z=z0 

• 3xy(h=xy Ax> 1) 

A 'v'xy (h=xy Ax> 1 • WP(y,z := y-1,z•x, (x > 1 A 1 $ xy < ho A Rixy /h]))). 

The first term of the conjunction is clearly implied by the left hand 

side, by taking x=h, y= 1. This together with some other simplifications 

gives us the formula 

h•z=Xy Ah> 1 A h=h A h=xy Ax> 1 
0 

y-1 y-1 Y y-1 • X > 1 A 1 $ X < hQ AX •z•x=X AX ~ 1. 



Using the properties of integer arithmetic, this formula can be seen 

to hold. 

EXAMPLE 7.4. The last implementation that we performed in Section 7.1 was 

the implementation of E0 with E1, where 

and 

El: rep x,y/h. (h=xy Ax> 1): 

do 2ly ➔ x,y := x•x,y/2 od 

To prove that E0 ~ E1, we can still use the Theorem 7.2, because 

skip~ <>:=<>.true, 

In this case the premise of Theorem 7.2 takes the form 

because Q true. Thus we have to prove that 

Computing the weakest precondition gives us the formula 

where 
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where we omitted the conjunct 3xy (h=xy A x > 1) because it was already proved 

to follow from the assumptions given (in example 7.3). This can be proved by 

the usual invariant technique, referred to in example 7.1, by taking the con

dition 
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as the loop invariant. The loop will terminate because each turn around the 

loop will decrease the number of factors 2 in y, while ~2ly will hold if and 

only if the number of factors 2 in y is zero. 

7.3. TRANSFORMATION RULES FOR ASSERI'IONS 

As shown in Chapter 6.2, assertions play an important part in program 

development by stepwise refinement, as formalized in this tract. Therefore, 

proof rules are needed by which assertions can be introduced at various 

places in program descriptions. The assertions introduced give information 

about the context in which they appear, thereby making it easier to find a 

correct replacement for a component. 

We will not present a complete list of assertion rules to be used in 

program development, but will restrict ourselves to only give examples of 

such rules. The examples are 'partly chosen to show the correctness of the 

refinement steps made in Section 7.1 and partly for later use. 

Before going into the examples, we will, however, prove another form 

of the result in Lemma 5.10(i), which gave the induction rule for loops. 

LE~JMA 7.5. Let 6 be a countable set of sentences of L. If 

6 f- {P}; do B1 -->- s1 □ ... □ Bn -->- s 
n 

odn ~ s, for n < w, 

then 

6 1- {P}; do Bl -->- s1 □ ... □ Bn -->- s od ~ s. 
n 

PROOF.Let the program descriptions above all be program descriptions in V, 

where Vis a finite nonempty set of program variables. Let v = V and G be as 

usual. Using the abbreviations 

and 

we have to prove that 

(7 .4) WP({P}; DOn,G(v)) ~ WP(S,G(v)) for n < w 



implies 

(7. 5) WP({P}; DO,G(v)) .. WP(S,G(v)). 

The assumption (7.4) gives us that 

PA WP(DOn,G(v)),. WP(S,G(v)), for n < w, 

or equivalently 

P,. (WP(DOn,G(v)),. WP(S,G(v))), for n < w. 

Make the assumption P. We then have that 

WP(DOn,G(v)),. WP(S,G(v)), for n < w, 

and using the inference rule for infinite disjunction, we get that 

i.e. 

V WP(DOn,G(v)),. WP(S,G(v)), 
n<w 

WP(DO,G(v)),. WP(S,G(v)). 

Using the deduction theorem, we get from this that 

P,. (WP(DO,G(v)),. WP(S,G(v))), 

i.e. 

PA WP(DO,G(v)),. WP(S,G(v)), 

which gives the final result (7.5). D 
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EXAMPLE 7 • 5. If 11 f- P ,. P' then 11 f- { P} ~ { P' } • This is obvious, by consider

ing 

WP({P},G(v)),. WP({P'},G(v)), 

i.e. 

p A G(v) .. P' A G(v). 
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Because 6 ~ P => true for any P, we have 6 ~ {p} S skip for any P, remember

ing that skip= {true}. Therefore, an assertion may always be replaced with 

the skip statement, and the resulting description will be a refinement of 

the original description. Thus we are always allowed to remove an assertion 

without affecting the correctness of the program description. 

EXAMPLE 7.6. If 6 ~ P => WP(S,Q), then 6 ~ {P}; S S {P}; S; {Q}. This is also 

easily seen, because 

WP({P}; S,G(v)) - PA WP(S,G(v)) 

and 

p" WP(S,G(v)) => p" WP(S,Q) "WP(S,G(v)) 

=>PA WP(S,QAG(v)) (Lemma 5.11(i)) 

- WP({p}; S; {Q} ,G(v)). 

Thus, using the previous example, we have that 6 ~ P => WP(S,Q) implies that 

6 ~ {P};S ~ {P};S;{Q}. 

EXAMPLE 7.7. The facts that 

(i) 

and 

::::: if B1 + s1; {Q} □ ... OB + S; {Q} fi 
- n n -

also follow directly, by analyzing the corresponding weakest preconditions. 

EXAMPLE 7.8. We use the previous examples and Lemma 7.5 to show that 

s1 ;{P} 0 ••. OB + S ;{P} od 
n n -
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Denote the left hand side by {P};DO and the right hnad side by {P};DO'. By 

example 7.5, we only need to show that {P};DO s {P};DO'. Using the Lemma 7.5, 

to show this, it is sufficient to show that 

{P} ;DOn S {p} ;DO', for n < w. 

Because DO'n s DO' for every n < w, it will be sufficient to show that 

for n < w. 

We prove it by induction on n. For n = 0 this result is obvious, as 

{P};DOO ~abort.Assume that the refinement holds for n, n < w. 

By the definition of DOn, we then have that 

{P}; if BB ➔ if Bl ➔ s1;{P}0 ••. □ Bn 

□ ~BB ➔ skip fi 

➔ S ;{P} fi; DOn 
n 

S {P}; if BB ➔ {P}; if Bl ➔ s1;{P} 0 .•. □ Bn ➔ Sn;{P} fi; DOn 

□ ~BB ➔ skip fi 

S {P}; if BB ➔ if B1 ➔ 

0 B ➔ 
n 

0 ~BB ➔ skip fi 

S {P} ;DO'n+l. 

{PAB1};S1 ;{P}. •• 

{PAB };S ;{p} fi; {P};DOn 
n n 

In the first refinement above, we used example 7.7(i) and 7.5 (the lat

ter e.g. when replacing P A BB with P, because P A BB * P) . In the second re

finement we used example 7.7(i) and (ii), as well as example 7.5. The last 

refinement used the induction hypothesis, and the definition of DO'n. 

EXAMPLE 7.9. Finally we have an assertion rule concerned with blocks (the 

soundness of this rule can be checked by considering the corresponding weak

est preconditions, as was done in the preceding examples): 



96 

!). f- {P}; beg x: s end; {Q} 

~ {P}; beg x: {P};S;{Q} end; {Q}. 

In the refinements of Section 7.1, rules for assertions were needed in 

the refinements of A0 to A1 and of a1 to B2 • In the first case, the fact that 

A0 S A1 can be justified using the rule in example 7.7(i), while the fact 

that B1 S B2 holds can be justified using the rules in example 7.8 and exam

ple 7.9. 

7.4. TRANSFORMATION RULES FOR CONTROL STRUCTURES 

We next outline the technique for showing the correctness of program 

transformations involving control structures. We will not be as formal here 

as in the preceding chapters; and feel free to use some obvious, but un

proven results. We use the refinement of F0 to F1 in the example of Section 

7.1 to illustrate the technique. 

The refinement of F0 to F1 can be justified by the following rule for 

loops. 

EXAMPLE 7.10. Let 

and 

DO = do B ➔ DO' ;S od, 

DO'= do B' ➔ S' od 

DO" do B-+ if B'-+ S' □ ~B'-+ S fi od. 

Assume that {BAB'};S' $ {BAB'};S';{B}. Then DO$ DO". 

We first show that 

(7.7) {B} ;DO'n;S;DO $ {B} ;DO", for n < w. 

For n = 0 this is obvious, as {B};DO'O;S;DO ~abort.Assume that (7.7) holds 

for n, n < w. We have that 

{B};DO'n+l;S;DO {B}; if B'-+ S' ;DO'n O ~B' ➔ skip fi; S;DO. 
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Consider now separately the two cases BAB' and BA ~B'. 

(i) B A B'. We have that 

n+l {BAB'} ;DO' ;S;DO S {BAB'} ;S' ;DO'n;S;DO 

because the alternative B' must in this case be chosen in DO'n+l. Using 

the induction hypothesis, this gives us that 

n+l 
{BAB'};DO' ;S;DO S {BAB'};S';DO". 

Because of the condition BAB', we have 

{BAB'} ;S' ;00" s {BAB'}; if B -+ if B' -+ S' ;DO" 

□ ~B' -+ S;DO" fi 

□ ~B-+ skip fi 

s {BAB'}; if B -+ if B' -+ S' □ ~B' -+ s fi; 

DO" 

□ ~B-+ skip fi 

s {BAB'};DO". 

Thus we have that 

{BAB'};DO'n+l;S;DO S {BAB'};DO". 

(ii) B A ~B' • We have that 

n+l {BA ~B'};DO' ;S;DO S {BA ~B'};S;DO, 

as the loop will not be entered when B' is false. For the same reason, 

we have that 

{BA ~B'};S;DO S {BA ~B'};{B};DO'n;S;DO 

S {BA ~B'};DO", 
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by use of the induction hypothesis. Thus we have that 

n+l 
{B II ~B'};DO' ;S;OO ~ {B II ~B'};OO". 

Putting these two cases together gives the required result, i.e. we get 

that 

n+l 
{B};DO' ;S;OO $; {B};DO", 

which proves that (7.12) holds for every n < w. From this we infer that 

{B};OO' ;S;DO ~ {B};DO". 

This inference can be proved correct with a similar argument as was used 

in the proof of Lemma 7.5. 

We now turn to our main task, i.e. to proving that DO ~ DO". We show 

this by showing that 

(7 .8) for n < w. 

For n = 0 this is immediate, as usual. Assume that (7.8) holds for n, n < w. 

We then have that 

DOn+l = if B ➔ DO';S;DOn O ~B ➔ skip fi 

~ if B ➔ {B};DO';S;DO □ ~B ➔ skip fi 

~ if B + {B};DO" □ ~B + skip fi 

~ if B ➔ if B' + S' 0 ~B' ➔ S fi; DO" 

□ ~B + skip fi 

~ DO". 

In these steps we have made use of the fact that 

DO"::::: if B ➔ if B' + S' □ ~B' + S fi; DO" 

□ ~B + skip fi. 
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The derivation shows that (7.8) holds, thus proving the desired results. 

7.5. TRANSFORMATION RULES FOR ABSTRACTIONS 

In this final section we give some rules for handling abstractions in 

refinements. The purpose of these rules is to enable one to change the data 

representation in a program. As in the previous sections of this chapter, we 

do not aim at a complete set of rules, but will be content with giving the 

most basic ones, mainly in order to show the correctness of the program 

transformation rules used in developing the example program in Section 7.1. 

The rules given will also not always be in the most general form possible. 

For the formulation of the lemmas below, let us fix a countable set fi 

of sentences of L. Let v and w be two sets of program variables, let 

Si: W ➔ W be program descriptions, i = 1, ... ,n, and let 

(7. 9) 

for i 1, ..• ,n, where 

fl x/y. (y=t A I), 

var(t) s Wand var(I) s W. 

LEMMA 7.6. If fi I- P,. 3x(y=tAI), then 

fi I- {P}; skip ::; rep fl skip per. 

PROOF. The case here is similar to the case in example 7.4, and we have to 

prove that 

(7.10) 

Computing the weakest precondition, this gives us the formula 

p" y=yo .. Vx(y=tA I .. t=yo" I) 

where we have used the assumption that P ,. 3x (y=t A I) to eliminate the for

mula 3x(y=tA I) on the right hand side of (7.10). 
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Let us assume that 

P A y=y O A y=t A I . 

This gives the result that 

and by the deduction theorem, we have that 

y=t A I,. t=y0 A I, 

under the assumption P" y=y0 • As xis not free in this assumption, we get 

Vx(y=t/\ I .. t=yo "'I), 

and another application of the deduction theorem will then give the desired 

result. D 

LEMMA 7.7. Assume that S. and S' are as in (7.9), i 
1. i 

1, ... ,n. Then 

PROOF. We prove the case for n = 2, the general case follows by induction 

on n. For the proof, let k be the number of variables in V, and let v be a 

list of distinct va.riables, v = V. Let G be a new k-place predicate symbol. 

By Theorem 5.4, we have to prove that 

First, we have that 

WP(S2 ,G(v)) -3x(y=tAI) /\ Vx(y=tAI,.WP(S2,IAG(v)[t/y])). 

Denote the first conjunct of the right hand side P1 and the second P2 . Then 
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We concentrate on the formula P2[t/y]. Changing the bound variable x 

to a fresh variable x' gives 

p2 - Vx' (y=t[x' /x] A I[x' /x] .. WP(S2,I A G(v) [t/y]) [x' /x]), 

thus making t free for yin the formµla P2 • Thus we have that 

Pit/y] - Vx' (t=t[x' /x] A I[x' /x] .. WP(S2, 1 A G(v) [t/y]) [x' /x]) 

By substituting x for x' in P2[t/y], we get that 

or equivalently, 

Using this result, we have that 

and using the generalization rule, this gives us that 

where w is a list of distinct variables, w = w. We may therefore use Lemma 

5.ll(i), and get 

Thus we have that 
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as required. 0 

LEMMA 7.8. Assume that Si and Si are as in (7.9), i 1, ... ,n. Denote 

s = if s1 + s1 D ••• D s + s fi 
. - n n-

.s• = if B' + s• D ••• Os• + s• fi. 
- 1 1, n n-

Assume further that 

ti. I- P • 3x (y=t I\ I) 
and 

for i 1, ••• ,n. 

Then 

ti. I- {P};S S rep f3: S' per. 

PROOF. Let v and G be as in the Proof of 7.7, and assume that 

WP({P};S,G(v)), 

i.e. writing BB for s 1 v ••• v Bn' we have the assumption 

(7 .11) PI\ BB I\ A (B.,. WP(S.,G(v))). 
lSiSn i i 

We have to prove that WP(rep a : S' per, G(v)) holds, i.e. that 

3x(y=t/\I) I\ Vx(y=t/\I • WP(S',IAG(v)[t/y])). 
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The first conjunct is implied by (7.11) because of the assumption, so we 

only need to prove that the second conjunct also is implied. Assume there

fore that 

(7 .12) y=t A I. 

Then Bi• Bi by the assumption, for i 1, ••• ,n, so we get from (7.11) that 

B' V ••• VB'. 
1 n 

Now, let i be an integer, 1 $ i $ n, and assume that Bi. By the assumption 

of the lemma, this means that Bi holds. By (7.11), this will again give that 

WP(Si,G(v)) holds, i.e. we have that 

3x(y=t A I) A Vx(y=;t A I• WP(Si ,I A G(v) [t/y]) l. 

Thus, by assumption (7.9); we have that 

WP(S! ,I A G(v)[t/y]). 
l. 

Removing the assumption that Bi holds, this means that 

and as i was arbitrarily chosen, 1 $ i $ n, we have that 

A (Bi• WP(Si,IAG(v)[t/y]). 
l$iSn 

This, together with the fact that Bi v ••• v B~ holds, means that 

WP(S', I A G(v) [t/y ]) • 

Eliminating assumption (7.12) gives 

y=t A I• WP(S',IAG(v)[t/y]), 

and as xis not free in assumption (7.11), we have 
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Vx(y=t A I .. WP(S' ,I A G(v) [t/y])), 

thus concluding the proof. D 

LEMMA 7.9. Assume that Si, Si are as in (7.9), i = 1, ••• ,n. Denote 

DO= do B1 -+ s1;{P} 0 ••• OB -+ S ;{P} od, 
- n n 

P' = P[t/y] A I. 

Assume further that 

A f- P ,. 3x(y=t A I) 
and 

A f- P A y=t A I ,. (B, - B ~) , 
]. ]. 

for i 1, •.• ,n. 

Then 

A f- {P} ;DO S rep S DO' per. 

PROOF. Let DOn and DO'n have their usual meaning. We will prove that 

(7 .13) n n 
{P} ;DO s rep S : DO' per, for n < w. 

Because DO'n s DO', this will give us that 

n {P};DO S rep S : DO' per, for n < w, 

from which the desired result then follows using Lemma 7.5. 

For n = O, (7.13) obviously holds, as DOO =abort.Assume that (7.13) 

holds for n, n ~ 0. We have that 

{P};DOn+l = {P}; if BB-+ if Bl-+ s1;{P}0 ••• 0B -+ S ;{P} fi; 
- - n n 

Don 

0 ~BB -+ skip fi 

S {P}; if BB-+ {P}; if Bl-+ s1;{P}0 ••• 

D B -+ S ;{P} fi; {P};DOn 
n n 

0 ~BB-+ {P}; skip fi, 



using the rules for assertions of Section 7.2. 

By Lemma 7.6, we have 

(7.14) {P}; skip s: ~ fl skip per. 

Actually we have the stronger result that 

{P}; skip S: rep ll {P'}; skip per. 

This means that 

{P} s: rep ll {P'} per, 

because {P}; skip~ {P} for any P. 

Now, using Lemma 7. 7 we ,get that 

for i 1, ... ,n. 

And using Lemma 7.8, we get from this that 

+S1 ;{P}O ••• OB +S;{P}fi 
n n -

Finally, using induction hypothesis (7.13), result (7.14), Lemma 7.7 and 

Lemma 7.8 again, we get the result 

thus proving that (7.13) holds for each n < w. 0 
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LEMMA 7.10. Let V be V' u y', V' n y' ~, for some list y' of program vari-

ables and some nonempty set V' of program variables. Assume that y Sy'. 

Then 

where y" y'-y, S: W+Wand ll x/y. (y=t A I) : V + W as before. 
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PROOF. Let k be the number of variables in V', and let v' be a list of dis

tinct variables, v' = V'. Let G beak-place predicate symbol. Let s1 de

note the left hand side of the above and s2 the right hand side. We have to 

prove that 

Assume therefore that 

WP (S 1 ,G{v')). 

The assumption gives us, by definition of WP, that 

Vy'WP{beg fl S per, G(v')), 

which again is equivalent to 

Vy' xWP ( s, I A G { v' ) [ t/y J) • 

Now, because y n V' =~,as y ~ y', y cannot occur free in G(v'), so 

G{v')[t/y] = G{v'). Thus we have that 

Vw { I A G { v' ) [ t/y J .,. G { v' ) ) , 

and using Lemma 5.ll{i), this gives us that 

WP ( s, I A G {VI ) [ t/y J) ... WP ( s, G {VI ) l , 

i.e. the assumption gives us that 

Vy'xWP{S,G(v')). 

As y cannot occur free in WP{S,G{v')), because S: W + W, and y n W 

is again equivalent to 

\>'y"xWP{S,G(v')), 

~, this 
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which, from the definition of WP, is 

WP(beg y" ,x: S end, G(v')). 

This proves the lemma. D 

The example program can now be handled by the following rules of infer

ence. The soundness of these rules are immediate consequences of the lemmas 

proved above (8 and Si, •.• ,s~ are assumed to be as in (7 .9), while s 1 , ... 

.•. ,Sn are any program descriptions in V). 

1. Composition 

(i) 

(ii) 

sl s E!:P_ B: Si ~· s2 s E!:P_ B:· Si ~ 
s1;s2 S rep 8: Si;Si ~ 

sl s ~ B: Si~· s2 S ~ B: Si~ 
s 1;s2 S beg B: Si;Si per 

2. Selection 

where 

and 

SiS~B:Si~' i=1, .•• ,n,H1,H2 

{P}; if B1 + s 1 □ ... OB + S fi 
- n n-

s rep B: 

if Bi+ sio ... □ B~ + s; fi 

~· 

Hl: P • 3x (y=t A I) 

i 1, ... ,n. 
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3. Iteration 

Si:,;~ 8: Si~, i = 1, ••• ,n, H1 , H2 
{P}; do B1 + s 1;{P}[] •.• OB + S ;{P} od 

- n n 
:,; rep 8: 

do Bi + Si □ ... □ B~ + s~ od 

where H1 and H2 are as above 

4. Blocks 

S:,; ~ 8: S' ~ 

beg y,z: send 

:,; beg x, z : s ' end. , 

The transition steps by which the data representation of version B2 in 

Section 7.1 is changed can be done with these proof rules. In order to apply 

them we need to prove the conditions 

and 

xy A x > 1 _,. (hfl - yfO) . 

Writing R2 explicitly, we get the formulas 

h•z = XY II h;;: 1 .,.3x,y.(h=~Ax>1) 

and 

h•z xy II h;;: 1 11 h=xy II x > 1 _,. (hfl - y;i!O). 

These are readily seen to be true. 
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