

Punted at .the Mathe.ma:Uc.al Cen.tlte, 413 Kle.i.l.-l6laan, Amt,.tvu:lam.

The Mathematic.al Cen.tlte , 6ou.nded .the 11-.th 06 FeblWillLy 1946, .u. a. nan
p11.06-i..t -in6;tU:u;t;,i.on a,lmlng a.:t .the pll.Omoilan 06 pUll.e. mathemati.Cli a.nd -i..t,6

• a.pp,Uc.atian6. 1.t .u. ,l;,pon6o}[.ed by .the Ne.the!Lla.n.c:u. Gove}[.nment .thMugh .the
Ne.the!Lla.tr.d6 011..ga.r,,i,zation 6M .the Adva.nc.ement 06 PMe RueMc.h (Z.W.O.).

MATHEMATICAL CENTRE TRACTS 131

CORRECTNESS PRESERVING
PROGRAM REFINEMENTS:
PROOF THEORY AND
APPLICATIONS.

R.J.R. BACK

MATHEMATISCH CENTRUM AMSTERDAM 1980

1980 Mathematics subject classification: 68B10

ACM-Computing Reviews-category: 5.21, 5.24

ISBN 90 6196 207 2

To mg parents,

with love

and admiration.

ACKNOWLEDGEMENTS

This tract is a revised version of my thesis, which originally appeared

as [1]. I have been helped by several people, to whom I want to express my

gratitude. I am most indebted to Maaret Karttunen, for the many discussions

and arguments in which the ideas of the thesis were clarified. Reino Kurki

Suonio and Jaco de Bakker gave me the encouragement and support necessary to

get, first the thesis and then this revision done. I have profited greatly

from discussions with, and the support of, Ole-Johan Dahl, Kai Koskimies,

Lambert Meertens, Juha Oikkonen, Martti Tienari, J.V. Tucker and Esko

Ukkonon. The excellent typing by Linda Brown speaks for itself.

I would particularly like to thank Lars Backstrom and the Computing

Centre of the University of Helsinki for their generosity in giving me plenty

of time to concentrate on my work, in a warm and friendly atmosphere. I am

also indebted to the Mathematical Centre, Amsterdam, for the opportunity

to work in its scientifically stimulating and pleasant environment. The fi

nancial support given by Magnus Ehrnroth Foundation and Svenska Vetenskapliga

Centralr~det is gratefully acknowledged.

Finally, I wish to thank my wife Barbro and my children Pia and Rasmus

for reminding me that there are more important things in life than writing

publications like this.

CONTENTS

1. INTRODUCTION

2. THE INFINITARY LOGIC L00100

2.1. The syntax of L00100

2.2. The semantics of L00100

2.3. Proofs in L00100

3. DESCRIBIOO STATE TRANSFORMATIONS

3.1. Syntax of descriptions

3.2. Semantics of descriptions

3.3. Strong and weak termination

4. REFINEMENT AND WEAKEST PRECONDITIONS

4.1. Refinement between descriptions

4.2. Weakest preconditions

5. PROVING REFINEMENT BETWEEN DESCRIPTIONS

5.1. Weakest preconditions of descriptions

5.2. A proof rule for refinement

5.3. Basic properties of weakest preconditions

5.4. Replacements in descriptions

6. STEPWISE REFINEMENT USIOO DESCRIPTIONS

7.

6.1. An example of the use of stepwise refinement

6.2. Correct refinement using descriptions

6.3. Program descriptions

FORMAL DEVELOPMENT OF PROGRAMS

7 .1. An example of formal program development

7.2. Proof rules for im_plementations

7.3. Transformation rules for assertions

7.4. Transformation rules for control structures

7.5. Transformation rules for abstraction

REFERENCES

INDEX OF NOTATIONS

INDEX OF TERMS

7

8

10

12

15

15

18

24

27

27

30

33

33

40

45

47

51

51

55

67

77

78

84

92

96

99

109

113

115

CHAPTER 1

INTRODUCTION

The stepwise refinement method, _developed primarily by DIJKSTRA[13,14,

15] and WIRTH [43,44], is nowadays an important and well-established program

construction technique. The basic idea is that a program should be construct

ed by a sequence of refinement steps, leading from an initial specification

to the final program. Each refinement step results in a new version of the

program, usually improving on the previous version in some respect. It can,

for example, make less severe assumptions about the basic operations and/or

data types available, or it can be more efficient than the previous version.

Stepwise refinement was originally proposed by DIJKSTRA [13] as a con

structive approach to program proving. According to this view, if each re

finement step is very carefully carried out, so that it can be seen to pre

serve the correctness of the previous version of the program, then the final

program must be correct by construction. In practice, however, the refine

ment steps made are often far from trivial, therefore making it difficult

to judge the correctness of a refinement step on a purely intuitive basis.

Examples of such nontrivial refinement steps include procedure and data type

implementations, changes made in the data or control structures of the pro

gram, as well as applications of general program transformation rules.

We consider here the problem of how the correctness of refinement steps

can be shown. A formal system will be presented in which correctness of re

finement steps can be proved, thus providing a rigorous foundation for the

use of stepwise refinement as a constructive proof technique for program

correctness.

The approach that we will take here is best characterized by listing

some of the more important goals that we have tried to achieve.

(1) We wanted to stay as close as possible to the way in which stepwise re

finement is used by Dijkstra and Wirth in the references cited above.

We especially wanted to keep the open-ended nature of their method, where

2

any kind of refinement step is allowed, as long as it can be seen to

preserve the correctness of the preceding version.

(2) We wanted to treat refinement in a broad sense, including not only im

plementation of procedures but also refinements concerned with data re

presentations and control structures of a program, as well as the use

of program transformation rules.

(3) We also wanted to keep our programming language as simple as possible.

In particular, this meant that we did not want to introduce such compli

cated constructs as procedures or abstract data types into our language.

(4) We wanted to reason about the correctness of a refinement step in a for

mal system, with a fixed set of axioms and proof rules, and not base our

proofs on semantic arguments.

(5) We did not want to invent a formal system of ouw own, but rather wanted

to use an existing system with well-known mathematical properties.

(6) Finally, we decided to consider only the total correctness of programs,

leaving partial correctness and other possible correctness criteria a

side.

These goals serve to distinguish our approach from other approaches to

program proving. Thus the axiomatic technique by HOARE [23,24,25] agrees with

point (2) ·above, except for program transformations (which are treated in his

style in GERHART [20]), and also with (4) , but only partially with (1) and

(3) and not at all with (5) and (6). HAREL and al [22] extend Hoare's techni

que in the direction we are interested in, treating also total correctness

of programs, but otherwise the same comments hold for their system.

On the other hand, the weakest precondition technique used by DIJKSTRA

[15] does not agree with (2) and only partially with (4), but otherwise is

quite close to the approach taken here. Our work is essentially an extension

and a formalization of Dijkstra's weakest precondition technique.

The work that has been done on program transformation systems, such as

that by GERHART [20], BURSTALL and DARLINGTON [10], WEGBREIT [42] and LOVEMAN

[33], has concentrated more on finding useful program transformation rules,

pushing the formal aspects of the method somewhat into the background. The

same applies to the treatment of stepwise refinement in general given in

KNUTH [30] and CORRELL [11].

Program transformation systems have been considered from a more formal

point of view in the project CIP [6,7]. The work by BROY, GNATZ and WIRSING

[9] in this project is in some respects close to ours, although their

3

approach is much more oriented towards semantics than ours. Also, the basic

concept of refinement used by these authors is different from the one used

here (the work reported here was done independently of these and is based

on the authors' thesis [1]). Another approach in the same direction as ours

is described in MEERTENS [35].

Goals (4), (5) and (6) lead quite naturally to the use of the weakest

precondition technique. It turns out that the most appropriate formal system

for expressing the weakest preconditions of programs and reasoning about them

is the infinitary logic Lw 1w. This is an extension of the usual first-order

logic, in which infinite disjunction? and conjunctions over formulas are

allowed. The infinite disjunctions are needed for expressing the weakest

preconditions of loops. We will make extensive use of this logic in this

tract, therefore devoting the first main chapter to an exposition of the

syntax, semantics and axiomatization of this logic.

Goals (2) and (3) are in potential conflict with each other. The way

out of this dilemma is to design the language in such a way that the effect

of operational and repres·entational abstraction in program development can

be achieved, even if the language does not permit the explicit declaration

of these constructs. The solution given will be quite close to the way in

which operational and representational abstraction is used in DIJKSTRA [15],

thus also agreeing with goal (1).

The programming language to be used will contain a new kind of

primitive statement called an atomic description. It can be loosely charac

terized as a nondeterministic assignment statement with an associated change

of scope (i.e. a change of the set of variables available). The descriptions

will be constructed out of the atomic descriptions using control structures

such as composition, selection, iteration and nondeterministic binary choice.

It will be possible to express both programs and their specifications in

this language, therefore making it unnecessary to consider two different

languages as is usually done, a specification language on the one hand and

a programming language on the other. We will devote Chapter 3 to explaining

the syntax and semantics of this language.

Goal (1) and, in particular, the open-endedness of stepwise refinement

have been achieved by introducing correctness of refinement as a binary re

lation between descriptions. Thus S ~ S' expresses the fact that the descrip

tion S' is a correct refinement of the descriptions. This refinement rela

tion will be reflexive and transitive, justifying the stepwise method of

program construction. Thus if

4

is the sequence of program versions constructed, with s0 as the initial

specification and Sn as the final program, such that

i 0, 1, ... , n-1,

then

i.e. the final program Sn is a correct refinement of the specification

so.
The refinement relation will be defined in Chapter 4, where we show

some simple properties of th{s relation. In the same chapter we also intro

duce an equivalence relation between descriptions, obtained by requiring

mutual refinement between them. Again in Chapter 4 we give an important

characterization of refinement using weakest preconditions, on which the

technique for proving the correctness of a refinement step will be based.

The general proof rule for correct refinement between descriptions will

be given in Chapter 5. Proving S ~ S' for descriptions Sand S' will essen

tially amount to computing the weakest preconditions for these and proving

a specific formula of Lw 1w involving the weakest preconditions. This proof

rule will be complete in the sense that S ~ S' will hold if and only if the

corresponding formula of Lw1w is provable.

In Chapter 6 we go on to show how stepwise refinement can be carried

out using descriptions. We will show how to model top-down program develop

ment, operational and representational abstraction and how to justify the

use of program transformation rules. (For those readers who are not familiar

with the stepwise refinement technique, we recommend a glance at Section 6.1

of this chapter, where an example is given.)

Descriptions describe nondeterministic state transformations of unbound

ed nondeterminism. This gives some problems in expressing weakest precondi

tions, as discussed in [15]. To avoid these problems, we will restrict our

selves to refinements between a certain kind of descriptions only, called

program descriptions. These are not as general as descriptions, but are more

convenient to work with. Programs and program specifications will be special

5

kinds of program descriptions.

Finally, in Chapter 7 we give an example of formal program development

using program description. We will give special proof rules for handling

commonly occurring refinement steps, such as procedure implementations, in

troducing assertions into programs, handling representational abstraction

and changing the control structure of a program. These special proof rules

will all be derived from the general proof rule for refinement using the

axioms and inference rules of Lw 1w, thereby showing the suitability of this

logic for reasoning about programs and the generality of the proof rule for

refinement.

7

CHAPTER 2

THE INFINITARY LOGIC Lw1w

We will choose an infinitary logic called Lwiw as the underlying logic

for carrying out proofs of program properties. This logic is an extension of

ordinary first-order logic, allowing disjunctions and conjunctions over a

countably infinite number of formulas. To handle these infinite disjunctions

and conjunctions, we need inference rules with a countably infinite number

of premises~ which in turn forces us to accept infinitely long {but count-

. able) proofs.

The need for infinite disjunctions arises in connection with the proof

rule for loops. The assertion that a loop in a deterministic program termin

ates correctly, for a given set of initial states, can be expressed as an

infinite disjunction in the following way: for every initial state in the

given set the loop either terminates correctly without any iterations, or

it terminates correctly after one iteration, or ••• , or it terminates cor-

rectly after n iterations, or • If the set of initial states give~ is

infinite, then it will not, in general, be possible to give an upper bound

N such that the loop will terminate for any initial state in the set after

at most N iteration. Hence the disjunction must contain an infinite number

of subassertions.

The logic Lw 1w is a special case of a general class of infinitary logics,

whose members are denoted Las· The logic LaBis like ordinary first-order

logic, except that it allows disjunctions and conjunctions over fewer than

a formulas, and universal and existential quantification over variable se

quences with fewer than B variables, where a and Bare two infinite cardinal

numbers, B ~a.By choosing a= w1 and B = w, we get Lwiw' in which we allow

disjunctions and conjunctions over countable sets of formulas, but quantifi

cation only over finite sequences of variables. {w is the cardinality of the

set of natural numbers, while w1 is the next bigger cardinal number. Thus

a< w1 means that a is a countable ordinal number, while a< w means that a

is a finite ordinal number.) If we choose a= B = w, we get the usual first-

8

order logic, in which only finite disjunction, conjunction and quantifica

tion is allowed.

Our treatment of Lw 1w below is based on KARP [27], with some changes

in the notation. The treatment is self-contained, except that proofs of the

lemmas are omitted. The lemmas follow quite straightforwardly from the basic

theorems proved by Karp. The logic Lw 1w is also treated in SCOTT [40],

FEFERMAN [19] and KEISLER [29], just to mention a few. We have chosen KARP

[27] as our basis because it uses a familiar Hilbert-like proof theoretic

approach to this logic.

2.1. THE SYNTAX OF Lw 1w

Every Lw 1w language L has the same set of logical symbols

I\ V ()

and the same set of variables

vo,v1,···,v1;,·••1

A particular Lw 1w language Lis characterized by its non-logical sym

bols. These are of three kinds. We have the constant symbols

and for each n, 0 < n < w, then-place function symbols

n n n
FO,Fl, ... ,F/;, ..• ,

and then-place predicate symbols

n n n
Go, G 1 , ••• , Gi; , ••• ,

If L and L' are two Lw 1w languages, such that each non-logical symbol

of L is a non-logical symbol of LI, then L' is said to be an expansion of L,

Let L be an Lw1w language. The terms of- L are defined as usual:

{i) Each variable is a term of L.

(ii) Each constant symbol of Lis a term of L.

(iii) If t 1 , .•. ,~ are terms of Land Fis a k-place function symbol, then

F(t1 , ..• ,~) is a term of L.

9

To be more precise, we should define the set of terms of Las the least

set containing the variables and the constants of Land closed under rule

(iii). The inductive definitions given here should be understood in this way,

i.e. an element belongs to an inductively defined set if and only if it can

be seen to belong to the set by the rules given for defining the set.

The formulas of Lare defined as follows:

(i) If t 1 and t 2 are terms of L, then t 1 t 2 is a formula of L.

(ii) If t 1 , ... ,tk are terms of Land G is a k-place predicate symbol of L,

then G(t1 , ... ,tk) is a formula of L.

(iii) If AO is a formula of L, then(~ AO) is a formula of L.

(iv) If AO and A1 are formuias of L, then (AO _. A1) is a formula of L.

(v) If O < o < w1 and A~ is a formal of L for s < o, then (/ls<o As) is a

formula of L.

(vi) If vis a finite nonempty sequence of variables and AO is a formula

of L, then (VvAO) is a formula of L.

The formula (/1 s <o As) is a shorthand for the formula (/1 AO ... As ...) ,

where AO ..• As•·· is a (possibly infinite) sequence of formulas As, s < o.

In KARP [64] infinitely long sequence of this kind are given rigorous treat

ment. We will here rely on the intuitive notion of an infinite sequence of

formulas, referring to KARP [64] for a formal definition of the concepts pre

sented here.

The other connectives and quantifiers are introduced as abbreviations

in the usual way:

(i) (AO A Al) stands for (/ls<2 AS)'
(ii) cv s<o Asl stands for <~ "s<o (~ As)) ' o < w1 ,

(iii) (AO V A1) stands for (V ~<2 As) '
(iv) (AO- Al) stands for ((AO_.Al) A (Al_.AO)) and

(v) (3vAol stands for (~ Vv(~ AOJ l.

An occurrence of a variablevsin a formula is said to be bound, if the

occurrence is within a subformula of the form (Vv A'), where vs is one of

the variables of v. We say that an occurrence of a variable vs in a formula

is free, if this occurrence is not bound. The variable vs is said to be free

in a formula, if there is a free occurrence of the variable vs in the formula.

10

Similarly, the variable vs is said to be bound in a formula, if there is a

bound occurrence of the variable v~ in the formula.

Let t 1 , ... ,~ be terms of L, and let x 1 , ••• ,1\: be distinct variables,

i.e. for each i, j such that 1 s i < j s k, x. t x .. Lett be a term of L.
l. J

Then t[t1/x1 , ..• ,tk/xk] denotes the term of L obtained by substituting sim-

ultaneously for i = 1, ... ,k the term t. for each occurrence of X. int.
l. l.

If A is a formula of L and tis a term of L, then t is said to be free

for the variable vs in A, if no free occurrence of vs in A is an occurrence

in a subformula (VvA') of A, where v contains a variable that occurs in t.

Let t 1 , .•. ,tk be terms of Land x 1 , ... ,1\: be distinct variables. Let A

be a formula of L. 'l'hen A[t 1 /x1 , ... , tk/xk] denotes the formula of L that we

obtain by first changing the variables bound in A so that each term ti will

be free for xi in A, and then subs ti tu ting simultaneously for i = 1, ... , k

the term ti for each free occurrence of xi in A. The replacement of bound

variables with new variables•is assumed to be done in a systematic fashion,

so that the formula A[t1/x1, •.• ,tk/xk] is uniquely defined.

A formula of L that does not contain any free variables is called a

sentence.

2.2. THE SEMANTICS OF Lw1w

Let Tr be the set of truth values, Tr= {tt,ff}. Here tt stands for

"true" and ff stands for "false". A k-place predicate on the set Dis a func
k

tion from D to Tr, assigning a truth value to each k-tuple of D.

A structure for the Lw 1w language Lis a pair M = <D,I>, where Dis a

nonempty set and I is a function that assigns to each constant symbol of L

an element in D, to each k-place function symbol of La k-place function in

D and to each k-place predicate symbol of La k-place predicate on D.

Let V be a nonempty set of variables. AV-assignment in Dis a function

s: V + D. The set of all V-assignements in Dis denoted Dv. Given a V-assign

ment sin D, the distinct variables x 1 , ... ,1\: and the elements a 1 , .•• ,ak of D

(not necessarily distinct), s<a1/x1, ..• ,ak/1\:> denotes the V'-assignment s' in

D where V' =Vu {x1, ... ,1\:} and s'(xi) = ai for i = 1, ... ,k, while s'(vs) =

s(vs) for each vs EV, vs t xi for i = 1, .•. ,k.

Let M = <D,I> be a structure for L. Lett be a term of L, and let V be

a set of variables such that any variable occurring int belongs to V. We

define the value oft in M for the V-assignment s, denoted valM(t,s), as

follows:

(i) If tis the variable v~ in V, then va¾1(t,s) = s(v~).

(ii) If tis the constant symbol c~, then valM(t,s) = I(c~).

(iii) If tis the term F(t1, .•• ,,c), where Fis a k-place function symbol,

then valM(t,s) = I(F)(va¾1(t1,s), .•• ,valM(,c,s)).

11

Similarly, we define the value of the formula A in M for the V-assign

ment s, when each free variable of A is in V, to be an element of Tr, denoted

valM(A,s):

(i) If A is t 1 = t 2 , then valM(A,s) = tt iff va1M(t1 ,s) = valM(t2 ,s).

(ii) If A is G(t1, ••• ,,c), where G is a k-place predicate symbol, then

va¾1(A,s) = I(G)(valM(t1 ,s), •.• ,valM(,c,s)).

(iii) If A is (~ A0), then valM(A,s) = tt iff va1M(A0 ,s) = ff.

(iv) If A is (A0 =>A1), then valM(A,s) = tt iff valM(A0 ,s) = ff or

(v)

(vi)

valM(A1,s) = tt.

If A is (A~<o A~), then valM(A,s) tt iff valM(A~ 1 s) = tt for each

~ < o.
If A is (VvA0), then val!\A,s) = tt iff valM(A0 ,s<a1/x1 , ... ,¾/~>) =tt

for every <a1, ••• ,¾> ED, where x 1 , ... ,~ are the distinct variables

occurring in v.

LEMMA 2.1. Lets be a V-assignment in D and lets' be a V'-assignment in D.

If both V and V' contain each variable occurring in the term t, and if

s(v~) = s'(v~) for each such variable v~ int, then valM(t,s) = valM(t,s').

Similarly, if both V and V' contain each variable occurring free in the form

ula A, and s(v~) = s' (v~) for each such free variable v~, then valM(A,s) =

valM(A,s').

PROOF. Theorems 3.5.S(i) and 9.1.5 in KARP [27]. D

We say that the formula A holds in the structure M = <D,I>, if for some

set V of variables containing all the variables free in A, we have

valM(A,s) = tt for every V-assignment sin D. By the lemma above, the speci

fic choice of V does not affect the property that a formula holds in M.

We say that a structure Mis a model for a set of formulas~. if each

formula of~ holds in M. The formula A is said to be a semantic consequence

of~. denoted~ FA, if A holds in every model of~- A formula A is said to

be valid if it is a semantic consequence of the empty set of formulas.

Let L' be an expansion of the language L, and let M = <D,I> be a struc

ture for L. A structure M' = <D,I'> for L' where I' agrees with I on the non

logical symbols of Lis said to be an expansion of M to L'.

12

KARP [27] gives the following axiom system for an Lwiw language L. The

axioms are:

IL (Ao .. (A1 .. Ao)>

I2. ((Ao .. (A1 .. A2)) .. ((Ao .. A1) .. (Ao .. A2)))

NL ((~Ao .. ~A1) .. (A1 .. Ao))

CL (A/;;<15 (Al5 •Al;;),. (A15 •A!;;<l5 Al;;)), 0 < 15 < (1)1

C2. (A!;;<l5 Al;; ,. An), Tl< 15, 0 < 15 < w1

Q1. (Vv(Ao ,. A1) ,. (Ao • VvA1)), if no variable of V is free in

AO
Q2. (VvA0 •A0[t1/x1, ••• ,,c/~]), where x1 , ••• ,~ are the dis

tinct variables of v

EL tl = tl

E2. (AiSk (ti= ti) .,. F (t0 , ... , 1c)
E3. (AiSk (ti= ti) • G(t0 , ••• ,tk)

The inference rules are:

CN.

GN.

A0 , ... ,A!;;, ... , ,!;;<15

A!;;<l5 Al;;

= F(t0, ... ,~))
.. G(t0, ... ,tk».

Here Ao,·••1A1;;,··· are formulas of L, to,·••1\:,to,·••1tk are terms of L, F

a k+l-place function symbol of L, Ga k+1-place predicate symbol of Land

vis a nonempty sequence of variables.

A proof in L of the formula A from the set of formulas /J. is a sequence

of formulas of L, where n < w1 , A= Bn, and for each I;;~ n, BE;; is either an

axiom, a formula of /J. or has been obtained from previous formulas in these

quence by applying one of the inference rules. A formula A is provable from

13

~,denoted~ h A, if there is a proof of A from~- The formula A is a theo

rem, denoted~ A, if it is provable from the empty set of formulas.

The logic Lw 1w is similar to first-order logic in that it is complete,

in the following sense (KARP [27]):

LEMMA 2.2. (Completeness). For any formula A of L and any countable set of

sentences ~ of L, ~ F A if and only if ~ I- A.

PROOF. Follows from Theorem 11.2.4 and 11.4.1 in KARP [27]. D

The following results will be u~eful later. The proofs of these are

straightforward consequences of the theorems proved in KARP [27]. We assume

in the lemmas that~ is a set of sentences of L.

LEMMA 2.3. (Deduction theorem). Let A and B be two formulas of L, where the

free variables of A are x1 , •• ,· '¾. Let L' be the expansion of L that we get

by adding the new constant symbols d1, •.. ,'\: to L. Then~ I- A* Bin L, if

·~ U {A[d/x1, ••• ,'\:/¾]} h B[d/x1 , ••• ,'\:/¾] in L'.

PROOF. Follows from the Theorems 11.2.4 and 11.3.1 of KARP [27]. D

LEMMA 2.4. (Inference rule for disjunction). If~~ As* B for s < o, o < w1

then~~ Vs<o As* B.

PROOF. Follows from the definition of disjunction, using axiom C1 and Theo-

rem 11.2.3(ii) in KARP [27]. D

LEMMA 2.5. (Axiom for disjunction).~~ An •Vs<o As, for n < o, o < w1•

PROOF. Follows from the definition of disjunction, using axiom C2. D

LEMMA 2.6.

and

provided that the variables x 1 , ... ,¾ do not occur in the terms t 1 , .. ·,\;·

14

PROOF. This is a standard result of first-order logic which also holds for

D

We will not give completely formal proofs of theorems in Lwiw• but will

partly resort to informal arguments. We will, however, try to make these

arguments correspond as closely as possible to formal constructions of proofs

in Lwiw· Because proofs in Lwiw may be infinitely long, a completely formal

proof by exhibiting the sequence of formulas constituting the proof cannot

usually even be given. Instead we have to use mathematical induction, by

which the existence of a certain proof sequence can be shown.

The deduction theorem will be used in an informal way, by temporarily

regarding the variables free in assumption formulas as constants. This means

that we are not allowed to use the rule GN to universally quantify variables

that occur free in assumption formulas.

15

CHAPTER 3

DESCRIBING STATE TRANSFORMATIONS

The language of descriptions will be defined in this chapter, the syn

tax in Section 3.1 and the semantics in Section 3.2. The language will be

nondeterministic, mainly because we allow program specifications to occur as

parts of descriptions and we do not want to require these to be determinis

tic.

The language will contain a new kind of primitive statement called an

atomic description. It can roughly be described as a nondeterministic assign

ment statement with an associated change of scope. In addition to this, the

language contains the usual control structures of composition, selection and

iteration, together with nondeterministic binary choice.

The semantics of the descriptions will be of the denotational kind,

making use of the approximation relation for nondeterministic state trans

formations defined in PLOTKIN [37]. We will be following DE BAKKER [12] quite

closely, the main deviations resulting from the fact that we have to consider

state transformations between different state spaces and that we do not re

quire the nondeterminism to be bounded. The latter has a profound effect on

the semantics, to be discussed in the last section of the chapter.

3.1. SYNTAX OF DESCRIPTIONS

We will first introduce some special terminology for finite sequences

of elements, as we are going to need this kind of construction quite often

in the subsequent analysis. A finite sequence of elements of a set A will be

called a list of elements of A. If xis a list, then l(x) is the length of

the list, and the elements of the list x are x1 , ••• ,xl(x), in this order. We

use angular brackets for lists, i.e. x = <x1 , •.• ,xl(x)>. The empty list, with

l(x) = O, is denoted <>. The set of elements in a list x is denoted x.

For any function f: A+ B, the extension off to a function from lists

of elements of A to lists of elements of. B is defined by

16

where x 1 , ... ,xl(x) are elements of A. If x and y are lists of elements of A,

then

and if l(x) = l(y),

and

X y

Let from now on L be some fixed Lw 1w language. If tis a term of L, then

var(t) is the set of all variables occurring int. Similarly, if Q is a for

mula of L, then var(Q) is the set of all variables free in Q.

The set of descriptions (in L) is defined by induction as follows:

(i) If x ~nd y are lists of distinct variables,; n y = 0, and Q is a first
order formula of L, then

x/y.Q {atomic description)

is a description.

(ii) If Sand S' are descriptions and Bis a first-order formula of L, then

(S; s I)

(S Vs I)

(B ➔ s I S')

(B * S)

are descriptions.

{ composition)

{nondeterministic choice)

{selection)

{iteration)

We use descriptions to describe state transformations. A state is essen

tially a collection of variables, together with the values assigned to these

variables. A state transformation may change the values assigned to the vari

ables in the state, but it may also change the collection of variables in the

17

state, by adding some variables and removing some others. Programs will form

a special kind of descriptions. However, descriptions are more general than

programs, in that we can express almost any input/output relation as a de

scription (including all relations definable by a first-order formula of L).

This generality makes it possible to also express program specifications as

descriptions.

The atomic description x/y.Q is the source of this generality. The

effect of this, applied to a state with the set of variables V, is roughly

as follows. First, the new variables in the list x, i.e. those variables not

already in the set V, are added to the state. Then new values are assigned

to the variables x, the values being chosen so that the condition Q will be

come true. Finally, the variables y are removed from the state. The set of

variables in the new state will thus be (V u x) - y. If there is more than one

assignment of values to x which makes Q true, one of these is chosen non

deterministically. If there is no such assignment, the computation is con

sidered not to terminate.

As an example, consider the atomic description

u,w/v. (0 $ u + w $ v + z)

applied to an initial state with variables V = {u,v,z} (the list brackets

are omitted in examples, i.e. we write u,w/v above instead of <u,w>/<v>).

The new state will then have the variables W = {u,z,w}, i.e. the variable w

has been added and v has been deleted. If initially we have that (u,v,z) =
(1,1,1) then in the new state we have (u,z,w) = (a,1,b), where a and bare

chosen so that the condition 0 $a+ b $ 2 is satisfied. If the values are

chosen from the set of natural numbers, then there are only three possible

assignements of values to the variables (u,z,w): (0,1,2), (1,1,1) and (2,1,0).

The descriptions (S; S') , (B-+ SIS') and (B*S) provide the basic control

structures of programming languages (we write (B-+ SIS') for if B then S else S'

and (B*S) for while B do S). The description (S v S') is a nondeterministic

choice between executing Sor S'.

Let S be a description and let V be a set of variables. The set of

variables fin(S,V) is then defined as follows. First, if V = 0 then

fin(S,V) = 0- For nonempty V we define fin(S,V) by cases as follows:

18

(1)

(2)

(3)

(4)

(5)

u x, if var(Q) £Vu x, y £ V
fin(x/y.Q,V)

otherwise

fin(S' ;S" ,V) fin(S" ,fin(S' ,V))

fin(S' VS" ,V)

fin(B+S' I S",V)

fin (B*S' , V) r·
flJ

rin(S'_,V),

flJ

if fin(S' ,V) fin(S",V)

otherwise

if var(B) £ v, fin(S' ,V) = fin(S" ,V)

otherwise

if fin(S', V) V and var(B) £ V

otherwise.

Let V and W be two sets of variables, V,W t, f/J. Then Sis said to be a

legal description from V tow, denoted S: V + w, if fin(S,V) = w. The set V

of variables is said to be a legal initial space for the descriptions, if

fin(S,V) t, f/J. The set Wis said to be the final space of the description S

for the initial space V, if fin(S,V) = W. Intuitively, S: V + W says that

the initial states of the transition S contain the variables V and the final

states of S contain the variables w.

If Sis a legal description from V to W, then each component descrip

tion of Swill be assigned a unique initial legal space determined by Sand

V, and consequently also a unique final space. The initial and final spaces

of the components of a description S: V +Ware determined as follows:

(1) If S

(2) If S

(3) If S

(4) If S

(S' ;S"), then S': V + fin(S' ,V) and S": fin(S' ,V) + W.

(S' VS"), then S': V +wand S": V + w.

(B+S' IS"), then S': V +Wand S": V + w.

(B*S'), then S': V + W.

3.2. SEMANTICS OF DESCRIPTIONS

We start again by fixing our terminology and introducing some notations,

this time for relations. Let D be a nonempty set, and let R be a relation in

D, i.e. R £DX D. Then R is said to be

reflexive,

transitive,

symmetric,

if dRd, for each d ED,

if d Rd' and d' R d" implies d R d", for any

d,d' ,d" E D,

if dRd' implies d' Rd, for any d,d' ED, and

antisymmetric, if d Rd' and d' Rd implies d = d' , for any

d,d' E D.

19

The relation Risa preorder, if it is reflexive and transitive. It is

a partial order, if it is also antisymmetric. If it is a preorder, and in

addition is symmetric, then it is an equivalence relation.

Let now V be a nonempty set of variables, and let D be some nonempty

set. Then the state space determined by V and D, denoted VD, is defined as

V = DV u {L D}. Here DV is as before the set of all V-assignments in D,
D V,

i.e. the set of all functions s: V ➔ D, while LV,D is a special element not

belonging to Dv, which is introduced for the purpose of modeling nonter

mination. The elements in DV are called proper states, while LV,D is called

the undefined state. The subscripts of the undefined state will be omitted

when it is clear from the context to which state space the undefined state

belongs.

For the purpose of the present section, we can think of Las signalling

the possiblity of nontermination. Thus, if A is the set of possible final

states of a computation, we will add to A the undefined state if and only if

there is a possibility that the computation may not terminate. In the next

section this will be shown to be only approximately true, but for the present

section this intuitive explanation could be helpful.

The set of all nonempty subsets of VD will be denoted PD(V). Let W bea

nonempty set of variables. A fnondeterministlc) state transformati()JJ.

from VD to WD will be identified with a function f: VD ➔ PD(W), satisfying

the condition f(LV,D) {LW,D}. For each proper states E VD, f(s) will be

the set of all possible final states of the state transformation. We denote

the set of all state transformations from VD to WD with FD(V,W).

A state predicate on VD is a function f: VD ➔ Tr, satisfying the condi

tion f(LV,D) ff. The set of all state predicates on VD is denoted ED(V).

Intuitively, a state predicate is an assertion about the values of the vari

ables in the state.

The semantical definition of the descriptions will require some pre

liminary work, mainly necessiated by the iteration. We start by defining

20

some ways of constructing new state transformations from old ones. The

fact that these constructions really are state transformations is easily

verified.

The state transformations ~V,D' AV,D in FD(V,V) are defined by

for each s E VD.

If f E FD(V,V') and f' E FD(V',V"), then f;f' E FD(V,V") is defined by

(f;f')(s) U f' (s'),
s'Ef(s)

for each s E VD.

If f and f' are elements in FD(V,W), then fVf' E FD(V,W) is defined by

(fVf 1) (s) f(s) u f'(s), for each s E VD.

Finally, if b E ED(V) and f, f' E FD(V,W), then (b+flf') E FD(V,W) is de

fined by

(b+flf') (s)

Next, we define a

and U' are elements of

if either .L E u and u

r(s),
f I (S) I

if b(s)

if b(s)

tt

ff.

relation of approximation in PD (V)

PD(V), the U is said to approximate

- {1.} SU' or l. i u and U = U'.

and FD(V,W). If u
U', denoted U'= U',

If f and f' are elements of FD(V,W), then f is said to approximate f',

denoted f '= f', if f(s) '= f' {s) for every s E VD.

LEMMA 3.1. Approximation is a partial order in PD(V) and FD(V,W).

To get an intuitive idea of this relation, consider a nondeterministic

computation proceeding at a certain speed, where all alternatives are simul

taneously computed (i.e. the computation branches at choice points). Consi

der two time intervals t and t', t < t'. Let Ube the set of final states

reached at t, and U' the corresponding set at t'. If in U (or U') there is

an unfinished computation going on, then U (or U') is also to include the

undefined state. If now 1. i u, then all computations have been finished at

time t. Therefore the set of final states at t' must be the same as the set

of final states at t, i.e. U = U'. If on the other hand.LEU, then any final

21

states reached at t must be a final state at t' too, although there might

be other final states at t', created by the unfinished computations at t.

Thus we have that U - {.L} s U'. All in all, we have that U = U'. In general,

U = U' means that U' could be a later result set than U for some nondeter

ministic computation. (The approximation relation is treated in more details

in e.g. DE BAKKER [12] or PLOTKIN [37].)

The least element in PD(V) is the element {.L} of PD(V). This follows

from the fact that for any U E PD(V), {.L} - {.L} = ~ s U, i.e. {.L} = U. As a

consequence of this, QV,D will be the least element of FD(V,V).

LEMMA 3.2. If f = f' and g = g', then f;g = f';g', for any f, f', g and g'

PROOF. Assume that f = f' and g = g'. Consider first the case when.LE f;g(s)

for s E VD. Assume that f;g(s) # {.L} (otherwise we have directly that

f;g(s) = f' ;g' (s)), and let s" E f;g(s), s" # .L. This means that for some

's• E f(s), s' # .L, s" E g(s'). Thus by assumption we have thats' E f'(s)

and also thats" E g' (s'), i.e. s" E f' ;g' (s). Therefore f;g(s) = f'g' (s).

On the other hand, if.Li f;g(s), then.Li f(s) and for any s' E f(s)

we must have that.Li g(s'). By the definition of f;g this then gives that

f;g(s) = f';g' (s). Therefore, we also have in this case that f;g(s) =
f' ;g' (s). D

LEMMA 3 . 4. If f = f ' and g = g' , then (b + f I g) = (b + f' I g') , for any f, f' ,

g and g' in FD(V,V) and bin ED(V).

PROOF. The result follows directly by considering the two cases b(s) tt

and b (s) ff. □

u u
n n<w n<w

if.LEU for each n <wand
n

u u
n n<w

otherwise, where Uk is the first element in the sequence not containing .L.

Obviously U Un will be an element of PD(V). n<w

22

For fi € F0 (v,v), i < w, such that f 0 s f 1 s

Lin<w fn in F0 (V,V) by

(LI
n<w

f) (s)
"n

LI
n<w

f (s)
n

for each s € v0 •

= fn = ... , we define

(Actually Lifn is the least upper bound of the chain f 0 = f 1 = •.• = fn = ..•
and similarly for Llun, but as this is not needed in the sequel, it will not

be proved.)

Let b € E0 (V) and f € F0 (V,V). We define the transformations (b*f)n in

F0 (V,V), as follows:

and

(b*flo = n
V,D

(b*f)n+l

We will prove that

for n 2: 0.

for n 2: 0.

First, because nV,D is the least element of F0 (V,V), we have that

Assuming that (b*f)n = (b*f)n+l, n 2: O, we have by Lemma 3.2 that

n n+l
f; (b*f) = f; (b*f) ,

from which we get by Leuma 3. 3 that

i.e. we have

The required result then follows by induction.

The state transformation (b*f) in FD(V,V), where b E ED(V) and f E

FD(V,V), can now be defined by

Let now M = <D,I> be a structure for L. A formula Q with var(Q) ~ V,

Va nonempty set of variables, can be interpreted as a state predicate in

ED(V), denoted intM(Q,V), as follows:

for each s E VD, s i ~-

23

(Fors=~ we always have intM(Q,V) (s)

dicates.)

ff, by the definition of state pre-

Let x/y.Q:V ➔ W be.an atomic description, x = <x1, ••• ,~>, and lets

be a state in VD. The effect of the atomic description is to compute some

new states' in WD, where s'(x1), .•• ,s'(xk) are chosen so that the condition

Q will be satisfied, while s'(z) = s(z) for variables z in W not occurring

in the list x. More precisely, s' is said to be a possible choice of the

atomic description, for initial states in VD, if

valM(Q,s<s' (x)/x>) tt

and

SI (z) s (z) , for every z E W - x

A legal description S: V ➔ W, V and W nonempty sets of variables, will

be interpreted as a state transformation in FD(V,W), denoted intM(S,V). We

define the interpretation by cases as follows:

(i)
if W(s) i i

if W(s) = i,
where W(s) ~ WD is the set of all possible choices of x/y.Q for initial

states E VD, s i ~-
(ii) intM(S' ;S" ,VJ

intM (S' vs", V)

intM(B+S' ls",Vl

intM(S',V); intM(S",fin(S',V)),

intM(S',V) V intM(S",V),

(intM (B, V) ➔ intM (S', V) I intM (S", V)),

24

3. 3. STRONG AND WEAK TERMINATION

As explained in the previous section, the undefined state~ is used to

indicate the possibility of nontermination. That is, for any description

S: V +Wand any initial states E VD,~ E intM(S,V) (s) if and only if there

is an execution of S from initial states which does not terminate. On clos

er inspection, however, it turns out that this is not really the case. More

precisely, for some descriptions S: V +Wand some initial states s E VD we

have that~ E intM(S,V) (s), although execution of S from initial states

seems to be guaranteed to terminate.

As an example, consider the following program (discussed in DIJKSTRA

[15, p. 77]):

S' : while x ,f O do

if x ~ 0 then x := x-1

else x := "any non-negative integer" fi od.

The variable xis assumed to range over the set of integers. This pro

gram should obviously terminate for any initial value of x, be it positive,

zero or negative.

The program S' can be written as a description S: V + V, where V {x}:

where

S1: (x~O+s21S3),

S2: x' /<>. (x' = x-1); x/x'. (x x')

S3: x/<>. (x ~ 0).

The description S2 corresponds to the assignment x := x-1 and S3 to the

assignment x := "any non-negative integer".

Choose the structure M = <D,I> to be the standard one, i.e. Dis the

set of integers and I assigns the usual interpretation to the operations and

relations occurring ins, S1, S2 and S3. Let us for simplicity identify a

state s: {x} + D with s (x) , so that VD = Du { ~}. We will now compute

intM(S,V) (-1).

It is straightforward to verify that

ra-1},
{0,1,2, ... },

if a 2: 0

if a< 0.

Let now f = intM(S,V) and let fi be the successive approximates off, i

0,1,2, ... , as described in the previous section. We then have that

i(-1) { .L},

{.L},

i(-1) {0,.L},

{0,.L},

Thus we get that

f(-1) {0,.L}.

25

The result set thus contains .L. This contradicts out intuition about the be

haviour of S', which we expect to be guaranteed to terminate for the initial

state x = -1.

A closer look at the semantics of the iteration statement, as it was

defined in the previous section, shows that the notion of termination cap

tured by the definition is more restrictive than the usual notion of termin

ation. The notion of termination in the definition is called strong termina

tion and is characterized as follows: A loop is said to terminate strongly

if for any initial states there is an integer Ns such that the loop for this

initial state is guaranteed to terminate in less than Ns iterations (DIJKSTRA

[16]). The semantics given for the iteration statement consequently identi

fies nontermination with termination which is not strong (weak termination);

26

the result set contains~ if and only if termination of the iteration state

ment is not strong. Weak termination in the example program S' above is due to

the statement x := "any non-negative integer". Because of this statement,

no upper bound can be given for the number of iterations required for ter

mination in initial state x = -1.

The problem of weak termination can be avoided, if we restrict our

selves to state transformations of bounded nondeterminacy, i.e. state trans

formations f E FD(V,W) satisfying the condition that either f(s) is finite

or~ E f(s), for any s E VD. In this case one can safely identify~ with

nontermination, because weak termination is then not possible. This restric

tion is made by PLOTKIN [37] and also by DE BAKKER [12].

We could also choose this approach. The simplest way for us to achieve

bounded nondeterminacy would be to restrict the basic statements x/y.Q in

such a way that for any state there would only be a finite number of pos

sible choices. We will say that the basic description is finite in the struc

ture M if this is the case.

However, this approach is too restrictive for the purposes we have in

mind, so we will continue to work with the general state transformations.

We will also not change the semantics of descriptions given in the previous

section, but accept the fact that it describes strong termination of loops

rather than the usual notion of termination. It is possible to give a de

notational semantics for descriptions in which the right notion of termina

tion is captured (see BACK [4]), but we will not use this semantics here.

There are essentially two reasons. First, it turns out that weak termination

cannot be handled in the logic Lw 1w [3], but would require an essentially

stronger logic, a step we do not want to take. Secondly, it is possible to

define a useful sublanguage of descriptions, in which the problems with weak

terminations are avoided, without having to restrict all basic descriptions

to be finite. We will return to these questions in Chapters 5 and 6.

27

CHAPTER 4

REFINEMENT AND WEAKEST PRECONDITIONS

In this chapter we will show that the correctness of a refinement step

can be expressed as a binary relation of refinement between descriptions.

This relation is based on a corresponding relation of refinement between

state transformations. Total correctness of programs can be expressed using

the refinement relation, as well as strong equivalence of programs.

Section 4. 1 will b,e devoted to an explication of the notion of a cor

rect refinement step. It will be shown that the refinement relation captures

the intuitive idea of a refinement step being correct. The refinement rela

tion will be a preorder, justifying the stepwise manner of program construc

tion, as explained in the introduction.

In Section 4.2 the weakest precondition of a state transformation is

defined. It is shown that refinement between state transformations can be

characterized using weakest preconditions. This is a fundamental result,

which will be used in the next chapter to give a general proof rule for re

finement between descriptions.

4.1. REFINEMENT BETWEEN DESCRIPTIONS

A refinement step is considered to be correct, if it preserves the cor

rectness of the program being refined. This informal notion can be made more

precise as follows. Let Prog be the set of programs under consideration, let

Spec be the set of program specifications and let Spec x Prog be a relation

of satisfaction, i.e. R sat S holds if specification R is satisfied by pro

gram S. Correct refinement is then defined as the relation ref between pro

grams Sand S' in Prog,

S ref S' iff VR € Spec (R sat S * R sat S').

28

In words, Sis refined by S' if and only if S' satisfies every specification

that S satisfies.

LEMMA 4.1. Correct refinement is a preorder in Prog.

PROOF. Immediate consequence of the definition. D

This refinement relation is studied in BACK [2] for different choices

of Prog, Spec and sat. Here we will only be interested in one specific re

finement relation, the refinement relation which preserves total correctness

of nondeterministic programs. We want to define correct refinement as a se

mantic notion, and will therefore choose Prog to be the set of state trans-·

formations FD(V,W). The relation will thus only be defined between state

transformations with the same initial and final space.

To specify a nondeterministic progra~ with respect to total correctness,

we have to state the conditiQns under which the program is required toter

minate strongly, and we have to specify the conditions which must hold upon

termination of the prograin. For state traP-sformations in FD(V,W), this means

that we have to give a set U !; VD for which f may not yield .L, ans we have to

specify for each s E U the set Ws of proper final states allowed, Ws s WD-{.t}.

This information can be given in the form of a state transformation e in

FD(V,W), where U = {s E VD j .1 i e(s)} and Ws e(s). We can therefore also

use FD(V,W) for Spec. The relation of satisfaction holds between e and

fin FD(V,W) if f(s) S e(s) for any s EU. Equivalently, e sat f iff for any

s E VD, .Li e(s) =+ f(s) S e(s).

It is easy to verify that for this choice of Prog, Spec and sat, the

refinement relation actually coincides with the satisfaction relation. In

other words, we have that fore and fin FD(V,W),

e ref f if and only if e sat f.

To see this, assume first that e ref f holds. This means that for any

h E FD(V,W), h sate=+ h sat f. If we choose h to bee, then we have that

e sate=+ e sat f. Ase sate always holds, this gives us that e sat f. Con

versely assume that e sat f holds. Let U = {s E VD I.Li e(s) }. Leth E FD(V,W)

be such that h sate, and lets be an element in U. Then we have by the

assumptions that e(s) s h(s) and f(s) ~ e(s), i.e. f(s) S h(s). Thus hsatf

and conseuqently e ref f. This motivates the following definition.

29

DEFINITION 4.1. Let f and f' be state transformations in FD(V,W). Then f is

refined by f', denoted f sf', if for any s E VD,

l. i f(s) ~ f' (s) S f(s).

DEFINITION 4.2. Let Sand S' be two legal descriptions from V to W, and let

M be a structure for L. We say that Sis refined by S' in M, denoted S SM S',

if intM(S,V) s intM(S',V). We say that S s S' is a semantic consequence of

the set 6 of sentences, denoted 6 F S s S', if S SM S' for any model M of 6.

Thus S s S' holds if whenever S terminates strongly for an initial

state, S' also terminates strongly for this state, and any final state of

S' for such an initial state is a possible final state of S too for this

initial state (more concisely and less precisely, we could say that S' is

more defined and more deterrrq.nistic than S).

Any program specification given in the form of an entry condition and

an exit condition can be ,expressed as a description (the way in which this

is done is explained in Section 6.2). In fact, the main purpose of the ato

mic description is to make this possible. This means that total correctness

of descriptions will be a special case of refinement between descriptions,

i.e. S S S' says that S' is totally correct with respect to S, when Sis a

description that expresses a program specification.

The refinement relation induces an equivalence relation in the obvious

way. We say that the state transformations f and f' are equivalent, denoted

f ~ f', if f Sf' and f' sf holds. Similarly, the descriptions Sand S' are

equivalent in M, denoted S ~MS', if S SM s' and S' SM s holds. Finally, S ~ S'

is said to be a semantic consequence of 6, denoted 6 F S ~ S', if 6 F S s S'

and 6 F S' s S holds.

If Sand S' are equivalent, then Sand S' will be guaranteed to termin

ate strongly for the same set of initial states, and have the same set of

possible final states for any of these initial states. Sand S' may differ,

however, for initial states for which they are not guaranteed to terminate

strongly.

For deterministic programs, S s S' reduces to the usual approximation

relation between deterministic state transformations, i.e. for any initial

state for which S terminates, S' will also terminate and gives the same

final state as S. S ~ S' again reduces to strong equivalence between pro

grams (see e.g. MANNA [34]), i.e. Sand S' will terminate for the same

30

initial states and will give the same final states for these initial states.

In SMYTH [41] a relation similar to the refinement relation above is

defined between state transformations of bounded nondeterminacy. Smyth uses

it to prove the existence of a certain power domain construction under weak··

er assumptions than those made by PLOTKIN [37]. (The refinement relation here

has been arrived at independently of the work by Smyth, and is also used

for an entirely different purpose.)

4. 2. WEAKEST PRECONDITIONS

Let f be a state transformation in FD(V,W) and let q be a predicate in

ED(W). We define a predicate wp(f,q) in ED(V), called the weakest precondi

tion off for q, as follows: For any s E VD, s ~ ~,

wp (f ,q) (s) tt iff for any s' E f(s), q(s') tt.

As an immediate consequence of this definition, we see that if wp(f,q) (s) =

tt for s E VD, then~ i f(s), because q(~) = ff, by the definition of state

predicates. This formulation of weakest preconditions for state transforma

tions and state predicates is essentially the one given in DE BAKKER [12].

Let S be a description interpreted as a state transformation fin

FD(V,W) and let Q be a condition interpreted as a predicate q in ED(V). Then

wp(f,q) will be the set of all initial states in which Sis guaranteed to

terminate strongly, in a final state satisfying condition Q.

The boolean operations on truth values can be extended to state pre

dicates in the obvious way: If p and p' are two state predicates in ED(V),

then (p A p') is a state predicate in ED (V) , defined by

(p A p') (s) p(s) A p' (s), for each s E VD, s ~ ~-

Similarly for the other boolean connectives. It will be convenient to use

the predicate p also as expressing the condition that p(s) = tt for each

s E VD. This is done below and will also be used later.

The following theorem shows that refinement can be characterized using

weakest preconditions. This fact will be used in the next chapter to give a

proof technique for the correctness of refinement steps.

31

THEOREM 4.3. Let f and f' be state transformations in FD(V,W). Then f sf'

iff for any q in ED (W) ,

wp(f,q) •wp(f',q).

PROOF.

(•) Assume that f sf' and let q be a predicate in ED(W). Lets E VD be

such that wp(f,q) (s) = tt. This means that~ i f(s), and using the assump

tion, this means that f' (s) s f(s). Let nows' E f'(s). Thens' E f(s), and

as wp(f,q) (s) = tt, we must have that q(s') = tt. Thus we have that

wp(f' ,q) (s) = tt.
(<=) Assume that wp(f,q) • wp(f',q) holds for any q in ED(W). Lets E VD be

such that~ t f(s). Define a state predicate qs in ED(W) by qs(s') tt iff

s' E f (s), for any s' E WD, ~' 'I L This means that wp (f ,qs) (s) = tt, and by

assumption, that wp(f','qs)(s) = tt. Thus, for any s' E f'(s), qs(s') = tt,

i.e. for any s' E f' (s), we have thats' E f(s), which means that f' (s) S

f(s). This shows that f s f'. D

33

CHAPTER 5

PROVING REFINEMENT BETWEEN DESCRIPTIONS

The general proof rule for refinement between descriptions will be de

rived in this chapter. In Section 5.1 we will give rules for computing the

weakest preconditions of descriptions, and show that these rules are correct.

In Section 5.2 the proof rule for refinement is derived, and a soundness

and completeness result is proved. The proof rule is based on the use

of weakest preconditions of descriptions. We will also give a proof rule

for equivalence of descrivtions and present a useful induction rule for iter

ation, together with some other properties of refinement. In Section 5.3

the properties of weakest preconditions given by DIJKSTRA [15] are discussed.

In Section 5.4 we finally prove an important replacement property of descrip

tions, which will provide a justification for the top-down program develop

ment strategy.

5.1. WEAKEST PRECONDITIONS OF DESCRIPTIONS

Let S: V ➔ W be a description and Q a formula of L, var(Q) £ W. Let M

be a structure for L. The description Swill then be interpreted as a state

transformation f = intM(S,V) E FD(V,W), and the formula Q as a state predi

cate q = intM(Q,W) E ED(W). We may now ask for a formula P of L, var(P) £ V,

which describes the weakest precondition off for q, i.e. we require that

(5 .1) intM(P,V) wp(f,q).

This formula P will then give the weakest precondition that an initial state

must satisfy so that the execution of Sis guaranteed to terminate strongly

in a final state that satisfies condition Q. This section will be concerned

with showing how such a condition P can be computed for any Sand Q, and

that the condition P computed satisfies (5.1).

34

We introduce the abbreviations true and false for sentences of Lw 1w by

true

and

false

Thus, true will hold for any proper state in any state space VD, while false

will hold for no state in any state space VD.

Next we introduce the abbreviations skip and abort for descriptions,

by

skip df <>/<>.true

and

abort= df <>/<>.false.

Evidently, skip will be the identity transformation in FD(V,V) for any V,

i.e.

[\
V,D

while abort will be the undefined state transformation in FD(V,V), i.e.

intM (abort, V)

Let B be a formula of L, var(B) ~ V, and let S be a description from V

to V. Then the descriptions (B*S)n from V to v, n < w, are defined by

abort,

n-1 I (B + S;(B*S) skip), n > 0.

Using induction on n, it is easily verified that

intM ((B*S) n, V)

35

DEFINITION 5.1. Let S be a legal description from V to W, V,W t- ~, and let

R be a formula of L, var(R) s W. Then the weakest precondition of S for R,

denoted WP(S,R), is defined by induction on the structure of S, as follows:

(i) WP(x/y.Q,R) 3xQ A 'v'x (Q • R) ,

(ii) WP(S';S",R) WP(S',WP(S",R)),

(iii) WP(S' VS",R) WP (S' ,R) A WP(S",R),

(iv) WP(B+S' jS",R) (B•WP(S' ,R)) A (~B•WP (S" ,R)),

(v) WP(B*S' ,R) V WP ((B*S ') n, R) .
n<w

We make the convention that 3xQ = Q and 'v'x (Q • R)

x <>. Using this convention, we get from (i) that

WP(skip,R)

and

WP (abort, R) false A (false•R) - false,

for any formula R of L.

(Q•R) in (i), when

LEMMA 5.1. If Sis a legal description from V to W, V,W t- ~. and R is a for

mula of L, var(R) s W, then WP(S,R) is a formula of L, with var(WP(S,R)) S V.

PROOF. The proof goes by induction on the structure of S. We show here only

the basis step, i.e. the case when S x/y.Q. Because var(Q) S Vu x, we

have var(3xQ) s V, as no variable in x is free in 3xQ. Also, because var(R) £;

W, and W = (V-y) u x s V u ~. we have var('v'x(Q•R)) S var(Q) u var(R) - i
i.e. var('v'x(Q•R)) s V. This means that var(WP(x/y.Q,R) s V. The induction

step, i.e. case (ii)-(v) in definition 5.1, is proved straightforwardly. D

We are now ready for the main result of this section, i.e. that condi

tion (5.1) is satisfied by choosing WP(S,R) for P.

THEOREM 5.2. Let S be a legal description from V to W, V,W t- ~, and let R

be a formula of L, var(R) s w. Then, for any structure M of L, we have that

36

PROOF. The proof will go by induction on the structure of S. Let M

be a structure for L. Let

and

We have to prove that

wp(f,r).

<D,I>

(i) S is x/y.Q. In this case we have that f(s) = W(s), if W(s) ,f (J, and

f(s) {J.}, if W(s) = (J, where W(s) is the set of choices of x/y.Q for s,

i.e.

s' e W(s) iff val (Q,s<s' (x)/x>) tt
. M

and

s (z) s' (z) for each z e W - x.

(.,.) Lets e VD such that intM(WP(S,R),V) (s) tt. This means that

tt and tt,

using the definition of WP for the atomic description, and the definition

of the interpretation of formulas.

Now valM(3xQ,s) = tt iff valM(Q,s<d/x>) = tt for some list d of elements

in D. If we chooses' e WD bys' (xi) = di, for i = 1, ... ,l(x), ands' (z) =

s(z) for z e W - x, we have that valM(Q,s<s' (x)/x>) = tt, i.e. s' E W(s).

Therefore W(s) ,f (J, and we have that f(s) = W(s).

Assume now thats' e W(s), which implies thats ,f J.. Thens' (z) s(z)

for z E W - x, and valM(Q,s<s' (x)/x>) = tt. By assumption,

37

valM(Vx(Q,.R) ,s) = tt, i.e. valM(Q,.R,s<d/x>) = tt for any list d of ele

ments in D. This means that valM(R,s<s' (x)/x>) = tt, by choosing d = s' (x)

and using modus ponens. Because s<s' (x)/x>(z) = s' (z) for any z E W, and

var(R) ~ W, this means that valM(R,s') = tt, i.e. intM(R,W) (s') tt. Thus

we have r(s') = tt and wp(f,r) (s) = tt, ass' was an arbitrarily chosen ele

ment of f(s).

(<=) Lets E VD such that wp(f,r) (s) tt. This means that for any s' E f(s),

r(s') = tt. Therefore we have that~¢ f(s), because r(~) =ff.Thus W(s) #

~, i.e. there is ans' E WD such that valM(Q,s<s'(x)/x>) = tt and s'(z) =

s(z) for z E W - x. Thus valM(3xQ,s)·= tt.

Assume that valM(Q,s<d/x>) = tt. Defines' E WD bys' (z) = s(z) for

z E W - x, and s'(xi) = di for i 1, .•• ,l(x). Thens' E f(s), which implies

that r(s') = tt, i.e. valM(R,s') tt. Because var(R) ~Wand s<d/x>(z)

s'(z) for z E W, we have from this that valM(R,s<d/x>) = tt. This gives

valM(Q,.R,s<d/x>) = tt, i.e. we have that valM(Vx(Q,.R) ,s) = tt, as d was

arbitrarily chosen. Thus we have proved that intM(WP(S,R),V) (s) = tt.

(ii) Sis S' ;S", where S': V + V' and S": V' + W. Define f' = intM(S' ,V) and

f" = intM(S",V'). Then

intM(WP(S' ;S" ,R) ,V) intM(WP(S' ,WP(S" ,R)) ,V)

wp (f' ,intM (WP(S" ,R), V')) (by induction hyp.)

wp(f' ,wp(f" ,r)) (by inductionhyp. again).

Let s E VD. We then have that wp(f' ,wp(f" ,r)) (s) tt iff for each s' E

f'(s), wp(f",r)(s') = tt, iff for each s' E f'(s), s" E f"(s'), r(s") tt,

iff for each s" E f';f"(s), r(s") = tt, iff wp(f';f",r) (s) = tt. Thus we get

that wp(f',wp(f",r)(s) = wp(f';f",r)(s), i.e. intM(WP(S,R),V) = wp(f,r).

(iii) Sis (B*S'). Let intM(S',V) = f' and intM(B,V) = b. We first prove

that for each n < w,

(5.2)

by induction on n.

38

For n 0 0 we have (B*S') =abort.Lets E VD. We have that

ff.

On the other hand, we have

ff.

Thus, for n = 0 we have that (5.2) holds.

Assume that (5.2) holds for n ~ O. Then

I

intM((B .. WP(S'; (B*S')n,R)) A (~B .. R) ,V)

(induction hyp.)

n+l wp((b*f') ,r).

Thus (5.2) holds for any n < w.

To prove this case, we have to show that int (WP(B*S' ,R) ,V) =wp(b*f' ,r),
M

where

WP (B*S' ,R)

First lets E VD be such that intM(WP(B*S',R) ,V) (s) = tt. This means

that intM(WP((B*S')n,R),V) (s) = tt for some n ~ O. Therefore, by the pre

vious result, we must have that wp((b*f')n,r) (s) tt. More particularly,

this means that~ i (b*f')n(s) and thus that

(b*f') (s)

39

by the definition of (b*f'). Thus we get that wp(b*f',r) (s) tt.

On the other hand, assume thats E VD is such that

intM(WP(B*S' ,R),V) (s) ff. This·means that intM(WP((B*S')n,R),V) (s) = ff

for every n < !JJ, i.e. wp((b*f')n,r) (s) = ff for every n < w. Assume first

that~ E (b*f')n(s) for every n < w. In this case we have that

and thus~ E (b*f') (s). Therefore wp(b*f',r) (s)

~ i (b*f')n(s) for some n, then we have

ff. If, on the other hand,

In this case again, we have that wp(b*f',r) (s) = wp((b*f')n,r) (s) = ff.

Thus we conclude that intM(WP(B*S',R) ,V) (s) = wp(b*f',r) (s) for each

s E VD, which proves this case.

The proofs of the remaining two cases, (S'VS") and (B+SIS"), do not

present any greater difficulties and are therefore omitted. D

A similar theorem is proved in DE BAKKER [12]. However, the situation

considered.here is sufficiently different from the one considered by

de Bakker to motivate a new proof of this central theorem. De Bakker proves

the result for a programming language with assignment statement and recur

sion, and uses a model in which bounded nondeterminacy is assumed, whereas

our language contains the atomic description and only a simple loop, and we

do not assume bounded nondeterminacy. Also, by using an infinitary logic, we

get a more natural expression of the weakest preconditions for loops.

Theorem 5.2 shows that the weakest preconditions of descriptions are

expressible in the logic Lwiw· The definition of weakest preconditions used

here requires strong termination of a description. A natural question is

whether it would be possible to express the weakest precondition with re

spect to general termination (strong or weak) in Lwiw· However, as shown in

BACK [3], this is not possible. To get expressibility, one has to use an

essentially stronger logic, such as the logic LwlWl' in which quantification

over infinite sequences of variables is allowed. Another possibility, using

disjunction over the class of all ordinals, is described by BOOM [8]. In

either case, one looses the advantages of working in Lwiw' i.e. completeness

of the logic and the simple characterization of the weakest precondition of

40

loops. This is the most important reason why we choose to work with strong

termination rather than with termination in general.

The use of Lw 1w in connection with program correctness has been pioneer

ed by ENGELER [17,18]. His approach has been further developed by SALWICKI

[39] and the group in Warschau working on algorithmic logic [SJ. In these

approaches a new programming logic is designed, in which infinitary proof

rules are used to handle total correctness of loops. The approach we take is

different, in that we stay in the logic Lw 1w, translating total correctness

assertions into formulas of this logic, rather than inventing a special logic

for these correctness assertions. Weakest preconditions are studied in more

detail by DE BAKKER [12], HOARE [26] and HAREL [21], the last mentioned in

the context of dynamic logic [38].

5.2. A PROOF RULE FOR REFINEMENT

Let Sand S' be legal descriptions from V to W, where V and Ware

assumed to be nonempty fini'te sets of variables. Let M = <D, I> be a struc

ture for L. By definition 4.2, we have that S SM S' iff

By Theorem 4.3 we have that this again holds iff

(5.3)

Let G be a new k-place predicate symbol, where k is the number of variables

in W, and let w be a list of distinct variables such that w = W. Let L' be

the expansion of L that we get by adding G to the nonlogical symbols of L.

Then G(w) is a formula of L'. For any choice of q E E0 (W), we can define an

expansion M' of M to L', such that intM, (G(w),W) = q. We achieve this by

defining I' (G) (a1 , .•• ,ak) = tt iff q(s) = tt, where s(wi) = ai, for i

1, ••• ,k. Then for any proper s E w0 , intM' (G(w) ,W) (s) = valM' (G (w) ,s)

I' (G) (s(w1), ••• ,s(wk)) = q(s). Conversely, in any expansion M' of M to L',

the interpretation in M' of G(w) will be some predicate in E0 (W). Therefore

we have that (5.3) is equivalent to

wp(intM' (S,V) ,intM, (G(w) ,W)) -. wp(intM, (S' ,V) ,intM' (G(w) ,W))

for any expansion M' of M to L'.

41

We have here used the fact that intM 1 (S,V) = intM(S,V) and the same for

S', as G is a new symbol that cannot occur in Sor S'.

Using Theorem 5.2, we finally get that (5.3) is equivalent to

intM 1 (WP(S,G(w)),V) * intM 1 (WP(S 1 ,G(w)),V),

for any expansion M' of M to L'.

We formulate this result as a theorem.

THEOREM 5.3. Lets and S' be legal descriptions from V to W, where V and W

are finite nonempty sets of variables. Let L' be an expansion of L that we

get by adding a new k-place predicate symbol G to the nonlogical symbols of

L, where k is the number of variables in W. Let w be a list of distinct

variables, such that w = W. Then S :,;M S' iff

WP(S,G(w)) ,. WP(S' ,G(w))

holds in any expansion M' of M to L'.

(5. 4)

Now, let 6 be a set of sentenGes of L. Then 6 F S:,; S' iff

for any model M of 6.

This is, by Theorem 5.3, the case iff

the assertion WP(S,G(w)) *WP(S',G(w)) holds in any expansion

M' of M to L, for any model M of 6.

Because 6 is a set of sentences of L, we have that if M' is the expan

sion of M to L', and Mis a model of 6, then M' will also be a model of 6,

now considered as a set of sentences in L' (not containing the predicate

symbol G). On the other hand, any structure M' for L' that is a model of 6

will be an expansion of some structure M for L, where Mis a model for 6.

Therefore, the set of expansions of models in L for 6 is the same as the set

of models in L' for 6. Using this fact, we get that (5.4) is equivalent to

(5. 5) the assertion WP(S,G(w)) *WP(S',G(w)) holds in any model M' of

6, M' a structure for L'.

42

This is finally the same as the fact that WP (S,G(w)) => WP(S' ,G(w)) is

a logical consequence of 6, i.e. (5.5) is equivalent to

6 != WP(S,G(w)) => WP(S' ,G(w)).

This gives us the main theorem, on which proofs of refinement between

descriptions will rest.

THEOREM 5.4. Let Sand S' be legal descriptions from V to W, where V and W

are finite nonempty sets of variables. Let L' be an expansion of L that we

get by adding a new k-place predicate· symbol G to the nonlogical symbols of

L, where k is the cardinality of W. Let w be a list of variables such that

w = w. Then for any set 6 of sentences of L, we have that

6 F S s S' iff 6 != WP(S,G(w)) => WP(S' ,G(w)).

COROLLARY S.S. (Proof rule for refinement). Let Sand S', V and W, G and w

be as in Theorem 5.4. Then for any countable set 6 of sentences of L.

6 F S s S' iff 6 f- WP(S,G(w)) => WP(S' ,G(w)).

PROOF. By Theorem 5.4 and the completeness of Lwiw (Lemma 2.2). n

We sat that S S S' is provable from 6, denoted 6 f- S S S', if we from

6 can prove WP(S,G(w)) => WP(S',G(w)), where G and ware as in Theorem 5.4.

Corollary 5.5 then says that 6 != S S S' iff 6 f- S S S'.

COROLLARY 5.6. (Proof rule for equivalence). Let Sand S', V and W, G and w

be as in Theorem 5.4. Then for any countable set 6 of sentences of L,

6 F S :::: S' iff 6 f- WP(S,G(w)) - WP(S',G(w)).

Theorem 5.4 together with its corollaries ~rovides us with a technique

for proving refinement between descriptions. This technique is complete,

i.e. if S s S' is a semantic consequence of the countable set of sentences 6,

then there is a proof of S s S' from 6. (The completeness is of a rather weak

kind, however, as the proofs that exist may be infinitely long.) The proof

technique is also sound, i.e. if we succeed in proving S S S' from 6, then

43

s s S' will indeed be a semantic consequence of 6.

Another consequence of Theorem 4. 3 and 5. 2 is the following.

THEOREM 5.7. Let Sand S' be legal descriptions from V to W, V and W finite

nonempty sets of variables. Let M be a structure for L, and let Q be any

formula of L, var(Q) £ W. If S SM S', then

WP(S,Q) • WP(S' ,Q)

holds in M.

PROOF. Let M <D,I>. Assume that S SM S'. By Theorem 4.3 we have that

Because intM(Q,W) E E0 (W), we therefore get that

and using Theorem 5.2, we thus have that

WP(S,Q) • WP(S',Q)

holds in M. 0

COROLLARY 5.8. Let Sand S', V and Wand Q be as in Theorem 5.7, and let A

be a set of sentences of L. If 6 F S s S', then

AF WP(S,Q) .. WP(S',Q).

PROOF. Directly by Theorem 5. 7 • D

COROLLARY 5.9. Let Sand S', V and Wand Q be as in Theorem 5.7, and let A

be a countable set of sentences of L. If 6 ~ S s S', then

A~ WP(S,Q) • WP(S',Q).

PROOF. Follows from Corollary 5.8, by the completeness of Lwiw and Corollary

S.S. 0

44

Finally, we prove a sinple induction rule for iteration, which will be

very useful later on.

LEMMA 5.10. Let 6 be a countable set of sentences of L. Let V be a finite

nonempty set of variables. Let Sand S' be legal descriptions from V to V,

and let B be a formula of L, var(B) !::_ V. Then the following holds:

(i) If 6 ~ (B*S)n ~ S' for n < w, then 6 ~ (B*S) ~ S'.

(ii) 6 ~ (B*S)n ~ (B*S), for any n < w.

PROOF.

(i) Assume that

for any n < w.

Let L' be an expansion o~ L with a new predicate symbol G with k places,

where k is the number of variables in V, and let v be a list of dis

tinct variables, v = V. The assumption then implies that

for n < w.

Using the inference rule for infinite disjunction, Lemma 2.4, this gives

us that

i.e.

6 ~ V WP((B*S)n,G(v)).,. WP(S',G(v)),
n<w

6 ~ WP(B*S,G(v)).,. WP(S',G(v)),

by the definition of WP, thus giving

6 ~ (B*S) !5: S' ,

as required.

(ii) Let L', G and v be as above. We have by the axiom for infinite disjunc

tion, Lemma 2.5, that

n i
6 ~ WP ((B*S) ,G(v)) .,. i~w WP ((B*S) ,G (v)), for any n < w.

45

'J.'hus we have that

for any n < w,

giving the required result

for any n < w. D

5.3. BASIC PROPERI'IES OF WEAKEST PRECONDITIONS

DIJKSTRA [15] gives five basic properties of weakest preconditions for

his guarded commands. If we let S: V -+- W be a legal description, and let w

be a list of distinct variables,;= W, then the corresponding properties

for descriptions are (var(Q},var(Q') s W}:

(1) WP(S,false) - false

(2) Vw(Q•Q'),. (WP(S,Q) • WP(S,Q')}

(3) WP(S,QAQ'} -WP(S,Q} A WP(S,Q')

(4) WP (S,Q} v WP (S,Q') • WP (S,Q v Q'} and

(5) If Qi• Qi+1 for i = 0,1, ••• , where Q0 ,Q1, •.• are formulas of L,

var(Qi) SW for i < w, then

The first four properties will hold for any description Sin a given

structure M, while the fifth property (continuity) in general only holds

for descriptions of bounded nondeterminacy. A sufficient condition guarantee

ing that the nondeterminacy of a description is bounded is that each basic

description occurring in the description is finite. The basic description

x/y.Q is finite in the structure M if MF finite(x,Q), where finite(x,Q)

is the formula

..
The basic description x/y.Q is finite in the set of sentences~ if~ F
finite(x,Q). Thus property(5) will holds for a description Sin~ if each

basic description occurring in Sis finite in~-

46

We will need slightly more general versions of properties (2) - (4).

First we need to make a preliminary definition (used for property (2)). Let

S be a legal description from V to W. We say that the variable z is constant

in S if z belongs to both V and W, and in addition:

(i) if Sis x/y.Q, then z does not belong to x, and

(ii) if Sis either (S';S"), (S'VS"), (B ➔ S'!S") or (B*S'), then z is con

stant in S' and S".

LEMMA 5.11. Let S: V ➔ W be a legal description. Let Qn be formulas of L,

var(Qn) SW, for n < w. Then

(i) 'v'x(Q0 ~Q1) ~ (WP(S,Q0) ~ WP(S,Q 1)), provided every variable in w - x
is constant in S,

(iii) Vn<a WP(S,Qn) ~ WP(S,Vn<a Qn), a< w1

hold in any structure M of L.

PROOF. Properties (ii) and (iii) are obvious generalizations of (3) and (4)

above and will not be proved here. To prove property (i), let M = <D,I>, and

let f = intM(S,V) E FD(V,W). It is straightforward to prove by induction on

the structure of S, that if the variable z is constant ins, then the follow

ing holds: for any proper states s E VD ands' E WD, ifs' E intM(S,V) (s),

then s (z) = s' (z).

Now choose a proper states E VD such that

(1) valM('v'x(Q0 ~Q1) ,s) tt and

(2) valM(WP(S,Qo) ,s) = tt.

By Theorem 5.2, we get from (2) that

Thus for any s' E f(s), we have that intM(Q0 ,w) (s') = tt, i.e. va1M(Q0 ,s•) =
tt. By assumption (1), valM(Q0 ,s<d/x>) = tt implies valM(Q1 ,s<d/x>) = tt for

any list d of elements in D, l(d) = l(x). Because var(Q0) ~Wand s(z) =

s'(z) for z E w - x, we have that valM(Q0 ,s•) = valM(Q0 ,s<s'(x)/x>) = tt,
giving valM(Q1 ,s<s' (x)/x>) = tt, and thus that va1M(Q1 ,s 1) = tt. From this

we then conclude that wp(f,intM(Q1 ,w)) (s) = tt, ass' was arbitrarily chosen,

and using Theorem 5.2 again, we then have that valM(WP(S,Q1),s) = tt, which

47

proves this case. D

5.4. REPLACEMENTS IN DESCRIPTIONS

We will here show that the refinement relation has a replacement pro

perty needed for top-down development of programs. The property in question

is that replacing a subdescription of a description with a refinement will

result in a refinement of the description as a whole. Top-down program

development will be further discussed in the next chapter.

First let s1 and Si be legal descriptions from v1 to v2 , and let s2 and

s2 be legal descriptions from v2 to v3 , where v1, v2 and v3 are finite non

empty sets of variables. Let~ be countable, and assume that

(5.6)

and

(5.7)

Let _G be a new predicate letter of k places, and let L' be the expansion

of L that we get by adding G to the nonlogical symbols of L. The number of

~ariables in v3 is assumed to be k. Let v be a list of distinct variables,

v = v3 • From (5.7) we get that

Using the inference rule GN in Lwiw (Section 2.3), we then get that

where v' is a list of distinct variables, v = v2 • By the Lemma 5.1, v' con

tains each variable free in the formula quantified. We may therefore use

Le11D11a 5.11(i), which gives us

On the other hand, using Corollary ·5.9, noting that~ is also a set of sen

tences in L', and the assumption (5.6), we get

48

Combining these last two results, we have

i.e.,

which is the result we sought.

In a similar way we prove that

and

implies

and

The analogous result for iteration is derived as follows. Let V be a

finite nonempty set of variables, and let Sand S' be legal descriptions

from V to V. Let B be a formula of L, var(B) ~ V. Assume that

t.f-SSS'.

We first show that

(5.8)

holds for any n < w. For n = 0 the situation is clear, as both descriptions

are identical in this case(= abort). Assume that (5.8) holds for n, n < w.

By the previous result, we will then have that

49

using the assumption and the induction hypothesis. This then gives

ti f- •(B+S;(B*S)n I skip):,; (B+S';(B*S')n I skip),

i.e. we get that

holds. This shows that (5.8) holds for every n < w.

We now apply Lemma 5.10(ii) to get

for any n < w.

Combining this with (5.8), and using the fact that refinement is transitive,

we get

for any n < w.

We can now use Lelllllla 5.10(i) to get from this that

which is the required result.

We summarize these results in the following theorem.

THEOREM 5.12. (Replacement). Let S: V ➔ W be a legal description, contain

ing the subdescription T: V' ➔ W'. Let T': V' ➔ W' be a legal description,

and let S': V ➔ W be the description that results from S, when Tin Sis

replaced with T'. For any countable set ti of sentences, we then have that

ti f- T :,; T'

implies

ti f- S :,; SI•

PROOF. The result follows by induction on the structure of S, using the re

sults proved above. 0

CHAPTER 6

STEPWISE REFINEMENT USING DESCRIPTIONS

In this chapter we want to show·how to use descriptions in program

development by stepwise refinement. We start by giving an example of the

informal use of the technique in section 6.1. This example is taken from

DIJKSTRA [15], with some small changes.

51

In Section 6.2 we then outline the way in which the informal technique

of stepwise refinement can be' turned into a formal one, based on the use of

descriptions. Having a formal development of a program makes it possible to

use the proof rule for refinement to establish the correctness of the refine

ment steps. This in turn will give us a formal proof of the correctness of

the final program. In this section we will show how to achieve top-down

development and operational and representational abstraction and how to

justify the use of program transformations when developing a program using

descriptions.

In Section 6.3 we will introduce restricted forms of descriptions,

program descriptions and abstractions, which are better suited for program

development. We will compute the weakest preconditions for these using the

rules for computing weakest preconditions for descriptions. Programs will

be special kinds of program descriptions (essentially the guarded commands

of DIJKSTRA [15]).

6.1. AN EXAMPLE OF THE USE OF STEPWISE REFINEMENT

To make things more concrete, and to show the kinds of refinement steps

possible, we will first give an example of program construction using step

wise refinement. The example is taken from DIJKSTRA [15], pp. 65-67. We fol

low Dijkstra's treatment quite closely, but will carry the refinement pro

cess one step further in order to include an important kind of refinement

step not used by Dijkstra in this example. We will later use this example

again to show how our formalism of stepwise refinement works in practice.

52

The problem considered by Dijkstra is the following: let X and Y be

integers, X > 1 and Y ~ 0. We are to construct a program that will establish

the condition

without using the exponentiation operation in our program. Here z is an inte

ger variable.

The first refinement made by Dijkstra makes use of an "abstract" vari

able h. The condition

P: h•z

will be kept invariant in the loop of the following program:

s1 : h,z := XY,1; {P has been established}

doh~ 1 + squeeze h under invariance of Pod

{R has been established}.

Here h,z := XY,1 is a simultaneous assignment statement, i.e. his assigned

the value XY and z is assigned the value 1 simultaneously. The

doh~ 1 + ••• od construction is a loop; the statement .•• is repeated as

long as the condition h ~ 1 is true. The statement "squeeze h under invari

ance of P" specifies what remains to be done; we have to give a piece of

program meeting this specification, i.e. a program that will decrease the

value of the variable h in such a way that condition P remains true.

We have to check that this solution is correct, i.e. that s1 really

does establish the condition R. If the loop terminates, then P must hold,

and as the loop only can terminate when h = 1, this means that R must hold

upon termination (because PA h=l,.. R). To show that the loop really does

terminate, we note that h ~ 1 holds initially, and will also hold after each

iteration of the loop. On the other hand, as each iteration will decrease

the value of h, the situation h = 1 must sooner or later occur, terminating

the loop.

In the next step, the exponentiation operation is removed. Dijkstra

introduces two new variables x and y, which are used to represent the value

of h by the condition

53

Instead of manipulating the variable h directly, the program will mani

pulate the variables x and y that represent the value of h. Observing that

when h = xy and x > 1, we have

h f 1 iff y f 0,

we get the next refinement:

s2 : x,y,z := X,Y,1; {P has been established}

do y f 0 + y,z := y-1,z•x {P has not been destroyed} od

{R has been established}.

Essential use has here ~een made of the fact that P always holds prior

to the execution of the statement in the loop. Finally, Dijkstra observes

that the statement

do 2ly + x,y := x•x,y/2 od

will not change the value h represented by the variables x and y, and may

therefore be inserted before the statement y,z := y-1,z•x, without affect

ing the correctness of the program (2ly tests whether y is divisible by 2).

This gives the refinement

s3 : x,y,z := X,Y,1;

do y f 0 + do 2ly + x,y := x•x,y/2 od;

y,z := y-1,z•x

yielding a considerable speed up of the program, as compared to s2 •

We will make an additional refinement of this, by noting that after each

execution of the statement in the inner loop, the condition y f 0 must hold,

if it was true on entry to the inner loop. Therefore the two nested loops

may be fused into one, giving the last refinement

54

S4: x,y,z := X, Y, 1;

do y t- 0 + if 2ly + x,y := x•x,y/2

o ~2ly + y,z ·= y-1,z•x fi

od.

Here if .•. fi is a conditional statement, selecting to execute the

statement for which the test is true. This last refinement is simpler in

that it only contains a single loop, as compared to s3 , which contains two

nested loops. It is, however, less efficient than s3 , because in some situa

tions the testy t- 0 is performed unnecessarily.

As can be seen from the example, stepwise refinement combines two dif

ferent principles of program development: top-down development and optimiz

ing transformations. Top-down development of programs proceeds by implement

ing specifications, i.e. giving algorithms that meet stated criteria. This

is the case in the example for the first refinement s1 , which is required

to satisfy the specification given, i.e. to establish the condition R. As

another example, the statement "y,z := y-1,z•x" is required to satisfy the

specification "squeeze h under invariance of P", given the representation

of h by x and y, and the fact that P holds prior to this specification in

The refinement of s 1 to s2 is an example of the use of representational

abstraction, i.e. the data structure (the variable h) used in s1 is an ab

straction of the data structure (the variables x and y) used in s2 . The re

finement of s2 to s3 exploits the fact that this representation of h by x

and y is not unique. Finally the refinement of s3 to s4 can be seen as an

application of a special program transformation rule (as noted above this

is not strictly speaking an optimizing transformation).

The application of both top-down development and optimizing transfor

mations makes stepwise refinement very flexible as a programming technique.

The top-down approach allows a programmer to move from a higher to a lower

level of abstraction in constructing the program, and to concentrate on only

part of the program when making a refinement step. Optimizing transformations

are again useful in removing inefficiencies introduced by the top-down ap

proach when the interaction between different program parts could not be

considered.

55

6.2. CORRECT REFINEMENTS USING DESCRIPTIONS

In this section we will discuss principles for developing programs in

such a way that the correctness of the final program can be formally proved.

We will try to stay as close as possible to the informal technique for pro

gram development shown in the preceding section, while still staying in

the framework of refinement between descriptions developed in the preceding

chapter.

6.2.1. Top-down development

The fact that the transitivity of refinement justifies a stepwise con

struction of the final program was already noted in the introduction. Thus,

if we have the development sequence

where sO is the initial specification and Sn is the final program, and if

each refinement step in this sequence is correct, i.e. if

holds for i O,1, .•. ,n-1, then transitivity gives us that

i.e. Sn satisfies specification sO•

Stepwise refinement is, however, more than this. It also makes use of

the idea of top-down development, i.e. the idea that one can concentrate on

a subcomponent of the program, refining this independently from the rest of

the program and then finally replace the subcomponent with its refinement.

The fact that this is allowed with descriptions too is given by Theorem

5.12. Let S be a description with an occurrence of the subdescription T, i.e.

S ••• T •••

and assume that we have a refinement T' of T, i.e.

T ~ T'.

56

Let S' be the description S with T replaced by T', i.e.

S' = ••• T' ••••

By Theorem 5.12, this means that

S ~ S',

i.e. the replacement of T with T' in Sis a correct refinement step.

6.2.2. The assignment statement

The assignment statement is usually chosen as the basic construct in

programming languages. Although the language of descriptions does not con

tain assignment statements, the effect of an assignment statement is easily

achieved. Consider e.g. the apsignment statement

X := x+y.

The same effect can be achieved with the description

z/<>. (z = x+y);

x/z. (x= z),

where z is a new variable, not occurring in the context where the assignment

statement is used. Multiple assignments can be handled in the same way. A

partial assignment statement such as

X := x/y

would again be expressed by the description

z/<>. (z = x/y A y,<!O);

x/z.(x=z).

This description will not terminate when y

termination as an indication of an error.

0 initially, i.e. we use non-

57

Note that it would not have been correct to express the first assignment

statement as

x/<>.x x+y,

because this would have the effect of setting x to some value satisfying the

equation x = x+y. For y f O this equation has no solution x, while for y = 0

any value of x would do. This is thus an example of a description which

is both partial and nondeterministic, and where the nondeterminism is in fact

unbounded.

In the next section we will show that not only the assignment statement

but also the if ••• fi and the do ••• od constructions are expressible using

descriptions, i.e. the programs in the previous section can be expressed as

descriptions.

6.2.3. Replacements in •context

The top-down property of descriptions guarantees that certain kinds of

replacements are always allowed. There ar.e, however, replacements that lead

to refinements of the original description, but which cannot be justified

by the top-down property alone. Consider the following example. Let S be the

description

S (x 2!: 0 + x := lxl + 11 x := X*X).

We want to replace the assignment statement 'x:=lxl+l' with the

statement 'x:=x+l'. This replacement is obviously correct, because the first

assignment statement will only be executed when x 2!: O, in which case the

assignment statement 'x:=x+1' has the same effect. However,

x := lxl+1 :5 x := x+l

does not hold, because for x < 0 they give different results. What we have

here is a replacement that is correct in the context that it occurs, but

which is not generally correct, i.e. it is not correct in every context.

To handle this kind of replacement, we use a special class of descrip

tions called assertions. An assertion {R} denotes the description

<>/<>.R,

58

where R is some formula. It acts as a partial skip statement, i.e. if the

initial state satisfies R, then the assertion has no effect, but if the

initial state does not satisfy R, it acts as an abort statement, i.e. the

statement will not terminate.

Returning to the example, what we can prove is that 'x:=x+l' is a re

finement of 'x:=lxl+l' for initial states satisfying x ~ 0, i.e. we can prove

that

{x ~ O}; x := Jxl + 1 $ x := x + 1

holds. Therefore we should first prove that

S $ (x ~ 0 + {x ~ O}; x := lxl + 1 Ix := x*x)

holds, and then use the replacement Theorem 5.12 to get that

(x ~ 0 + {x ~ O}; x:=]xi + 1 Ix:= x*x)

$ (x ~ 0 + x := x + 1 Ix:= X*x).

Transitivity then gives the required result, i.e.

s $ (x ~ 0 + x := x + 1 Ix·= x*x).

The general situation is as follows. We have a description S with an

occurrence of the description Tin it, i.e.

S ••• T • • • •

We want to replace T with T'. If T $ T' holds, this can be done immediately

by Theorem 5.12. Otherwise we try to find an assertion {R} such that

S $ S',

where

S' •.• {R}; T •••.

59

If we can prove that

{R}; T:, T',

we have by Theorem 5.12 that

S' :5 S",

where

S 11 ••• T'

Transitivity then gives the desired result, i.e.

S :,; S".

6.2.4. Program transformation rules

A program transformation rule will in general give for each description

Sofa certain form a transformed description T(S). If certain assumptions

about Sare satisfied, then the transformation will be correct, i.e.

S :,; T (S)

will hold.

In the previous example, we could have used the program transformation

rule

to justify the introduction of the assertion {x 2' O} into the program.

Another simple transformation is

which holds if R~ B.

60

Program transformation rules correspond to derived rules of inference

in the logic Lwiw· 1'hey are of the general form

q>

S:S, (S) '

where 4> is the set of assumptions made. The soundness of such a rule can be

shown by deriving S $,(S) in Lw1w from the assumptions 4>. Program transfor

mation rules of this kind will be treated extensively in Chapter 7, where

their correctness will be shown in the manner suggested. These program trans

formations will be concerned with the introduction of assertions into de

scriptions (Section 7.3), changing control structures in a description (Sec

tion 7.4) and the use of representational abstraction (Section 7.5).

6.2.5. Operational abstraction

The way in which the assignment statement was expressed using a de

scription can be generalized to a nondeterministic assignment. An example

of a nondeterministic assignment is

2 x := x'. (Ix -x'I < e).

The intended effect of this is that the variable xis assigned some new

value x' such that

2 Ix - x' I < e

will hold, without changing the values of the other variables. Thus the

effect is roughly to perform the operation x := x2 with precision e. The

operation is both nondeterministic (any value x' in.the range x 2-e < x' <

x2+e will do) and partial (it is not defined fore$ 0).

This nondeterministic assignment can be expressed by the description

z/<>.(lx2-zl < e);

x/z.(x=z),

where z as before is a new variable, not used in the context where the non

deterministic assignment occurs.

61

A procedure is usually specified by giving its entry and exit condi

tions. Thus a procedure for squaring x with precision e would have the entry

condition

e > 0,

and the exit condition

2 Ix - x' I < e,

with x' denoting the new value of x, while x itself stands for the initial

value of x. In addition, we would like to state that only x may be changed

by the procedure (thus e.g. forbidding the procedure to change e). The

fact that the description S satisfies these entry and exit conditions can

be expressed by

(6.1)

This states that Swill compute the square of x with precision e for initial

states in which e > 0 holds.

Operational abstraction is thus achieved by using the procedure speci

fication

{e>0}; x := x'.(lx2-x• I< e)

as such in a certain stage of the program development. At a later stage an

implementation S satisfying this specification, i.e. satisfying (6.1) above,

can be given. Replacing the specification with Sis then allowed by Theorem

5.12. This scheme allows us to use parameterless procedures in program devel

opment, without having to introduce names for these procedures. (Recursive

procedures cannot, of course, be handled in this manner.)

In the next chapter (Section 7.2) we will give special proof rules for

proving the correctness of procedure implementations, i.e. for proving re

finements of the type in (6.1). We will there also show that these special

proof rules are derivable from .the general proof rule for refinement.

62

6.2.6. Representational abstraction

An example of representational abstraction was already given in the

preceding section, in the transition from program s 1 to program s2 . Another

example is the following.

Consider a program which uses a set V of variables. Let A be a variable

of S which only takes small sets of integers as values (small means here

that the sets have at most 100 elements). We want to represent the variable

A by the new variables Band k, where Bis to be an integer array with in

dices running from 1 to 100 and k a~ integer in the range from Oto 100.

In order to specify the way in which the variables Band k are to re

present the variable A, we first have to indicate those value combinations

of Band k that are meaningful, i.e. which represent some small set of in

tegers. This is done by giv~ng a condition I that Band k must satisfy if

they are to represent anything. In this case we give the condition

I(B,k): Bis an integer array [1 •• 100] and

k is an integer in range 0 •• 100.

We also have to indicate what small set of integers Band k represent

when they satisfy the condition I(B,k). This is done by giving a function

t, which assigns to each value combination Band k the set of integers

represented by Band k. In this case we give

t(B,k) {B[i] I 1 ~ i ~ k} •

Here the function tis the abstraction function and the condition I the con

crete invariant, introduced in HOARE [25] as an aid to proving the correct

ness of data representation. The-example here is also taken from this refer

ence, although Hoare uses a stronger concrete invariant then the one given

here.

We now have two different data spaces, the "abstract" data space Vin

which the variable A occurs, and the "concrete" data space W = (V- {A}) u

{B,k}, in which A is replaced by the variables Band k. The transition from

the concrete data space to the abstract data space can be given by a de

scription

a = A/B,k.(A t(B,k) A I(B,k)).

63

This transition is defined when Band k satisfy the condition I, and it will

assign to the variable A the value represented by the variables Band k. On

the other hand, the transition from the abstract data space to the concrete

data space can be given by the description S: V + W, defined by

s B,k/A. (A t(B,k) A I(B,k)).

This will assign to the variables Band k some values which represent the

value of A. It will be defined if A has a representation using Band k, i.e.

if the value of A is some small set of integers.

The descriptions a and S are each others inverses. Note that descrip

tion a is deterministic while description S is not. This means that there

is more than one way to represent a given small set using Band k, but that

each Band k satisfying the condition I will represent a unique small set

(in fact, there are ~nfinitely many different ways of representing a small

set with less than 100 elements, because the choice of B[i] for i > k does

not matter) .

Consider now the problem of finding a refinement of S where the vari

able A is represented by the variable Band k. This can be expressed as fol

lows: find a description S' : W + Iv such that

(6 .2) {R}; S $ S; S'; a

holds. Here Risa condition that guarantees that A has a value that can be

represented by Band k. In this case we would have

R(A): A is a small set of integers.

The assertion {R} is necessary to restrict the refinement to those ini

tial states for which S is defined. It is possible that S could also be de

fined for initial states that do not satisfy R (e.g. S could be defined for

any sets of integers, and not only for small sets).

The refinement (6.2) can be operationally interpreted as follows: for

initial states satisfying R, the effect of Scan be achieved by first find

ing some representation of A using Band k, then using S' to get a final

state by manipulating the variables Band k, and then setting A to the value

represented by the final values of Band k.

64

An S' satisfying {6.2) can now be constructed in the following way. We

may either simply invent an S' satisfying {6.2), and then the problem is

solved. Or ifs is of the form {s1;s2), {s1 v s 2), {B + s 1 1s2) or (B*S1),

where s 1,s2: V + V, we can reduce the problem to the corresponding subprob

lems for s 1 and s 2 • Consider as an example the case

As a first step we prove that

using some transformation rules for introducing the assertions. Then we

solve the subproblems of finding S' and S' that satisfy
1 2

and

Using the replacement property (Theorem 5.12), we then have that

Finally, it can be shown that the transformation rule

(6.3)

is always correct, provided cv. and 13 satisfy certain properties (to be given

later, in Section 7.5). Transitivity of refinement then gives us the desired

result, i.e.

{ R}; s s a ; s, ; cv.,

where

65

The other cases can be treated in a similar way. Transformation rules

of the form (6.3) will be the subject of Section 7.5 in the next chapter.

An important special case occurs when the program S uses the variable

A as a "temporary" variable, i.e. S will initialize the variable A to some

value, and it does not depend on the initial value of A. In this case we

introduce the description sO: V-->- W, defined by

S O B,k/A. true.

This description will assign arbitrary values to Band k. The require

ment to be put on S': W-->- W is now that

holds. The restriction R can ,be dropped here because sO is always defined.

An S' can be found by the same technique as above. If we assume that

S s1;s2 , we first prove that

Then we solve the problems of finding Si and s2 satisfying

and

By replacement we again get that

Finally we use a program transformation rule that gives

By transitivity, we then have the desired result, i.e.

66

where S'

6.2.7. Safe program development

The refinement relation is based on strong termination rather than on

the natural notion of termination, which includes both strong and weak ter

mination. We would like to restrict the refinement relation to cases where

weak termination cannot occur. In such cases the natural notion of termina

tion coincides with strong termination, and one does not have to bother

about the distinction between these two. We refer to program development

where the problems of weak termination can be ignored as safe program devel

opment.

The obvious way to exclude weak termination would be to restrict all

basic descriptions to be finite, thus guaranteeing that all descriptions

are of bounded nondeterminacy. This would, however, restrict the technique

for changing data representation to only allow finite transitions between

abstract and concrete data spaces. More precisely, an abstract value could

only be represented by a finite number of different concrete values. This

seems to be unnecessarily restrictive (the abstraction function t(B,k) above

does not e .. g. satisfy this restriction) . We will therefore choose a slightly

less restrictive way of guaranteeing safe program development.

We will in the next section define a subset of descriptions which are

guaranteed to be of bounded nondeterminacy. A special notation will be intro

duced for descriptions in this subset, making them look very much like ordin

ary program statements. We will call these descriptions program descriptions.

They will essentially be the guarded commands of Dijkstra, extended with

operational abstraction, assertions and a simple block structure, allowing

the introduction of local variables. Weak termination will be excluded by

requiring the nondeterministic assignment statements to make their choices

from a finite set of possibilities only, and by requiring that local vari

ables in blocks are properly initialized.

Besides program descriptions, we also will have abstractions of program

descriptions. These are descriptions of the form B; S;a where B and a are

transitions between abstract and concrete state spaces of the kind described

above, and Sia a program description. Weak termination cannot occur for

descriptions of this form either, although the descriptions can be of un

bounded nondeterminacy (the transitions a and Bare not required to be

finite).

67

We will further restrict ourselves to only consider refinements of the

form S ~ S', where Sis a program description and S' is either a program

description or an abstraction of a program description. In the next chapter

we will give a number of inference rules by which such refinements can be

derived. The correctness of these inference rules will be shown using the

general proof rule for refinement. We will also show how the example program

of Section 6.1 can be derived with the aid of these rules of inference.

6.2.8. Related work

The approach to stepwise refinement presented above is new, as far as

we know. Related ideas have, however, been presented before. Thus KATZ and

MANNA [28] contains a similar technique of using assertions to collect infor

mation about the context of a program part. The nondeterministic assignment

has been used previously in HAREL et al. [22] in the extension given for

Hoare's axiomatic system, atld more extensively in BAUER [6]. The formalism

of representational abstraction given here is clearly inspired by the ab

stract data type facility first discussed in HOARE [25], and provided in a

number of new programming languages (see e.g. WULF et al. [46], WIRTH [45],

LAMPSON et al. [31] and LISKOV et al. [32]). Representational abstraction

is, however., a more general (and less structured) concept than the abstract

data types, permitting e.g. two or more abstract variables to share the same

concrete variables for representation. The way in which representational ab

straction is handled here is somewhat similar to the handling of abstraction

in BURSTALL and DARLINGTON [10] or the concept of simulation between pro

grams defined in MILNER [36].

6.3. PROGRAM DESCRIPTIONS

We define the set Vr of program variables by

Vr = {v In
n

2k for some k < w}.

The set of marked variables Vr' is defined by

Vr' {v In
n

2k+l for some k < w}.

For each variable vn in Vr, v~ denotes the corresponding marked variable

vn+l in Vr'. For any set U (list x) of program variables, U' (x') is the set

(list) of corresponding marked variables.

68

Let V be a finite nonempty set of program variables. The program de

scriptions in V form a subset of the legal descriptions from V to V. We de

fine them below, at the same time giving a notation for them. We assume

throughout that a language Land a set of axioms~ has been fixed.

6.3.1. Assertions

Let Q be a formula of L, var(Q) ~ V. Then the assertion

is a program description in V. As special cases of assertions we have the

skip statement

skip df {true}

and abort statement

abort df {false}.

The skip and abort statement have the same meaning here as they have

in DIJKSTRA [15] and in Section 5.1 above.

The weakest preconditions for these constructs are as follows:

WP({Q},R) =>QA R,

WP(skip,R) => R,

WP(abort,R) => false.

This follows directly by computation. We have

WP ({Q} ,R) WP(<>/<>.Q,R)

Q A (Q=> R)

- Q A R.

69

We then have that

WP(skip,R) - true AR - R

and

WP(abort,R) - false AR - false.

The effect of the assertion was already explained in the previous sec-

tion.

6.3.2. Assignment

Let Q be a formula of Land x a list of distinct variables in V, where

var(Q) ~Vu x'. Assume that 6 ~ finite(x',Q). Then the (finite nondetermin

istic) assignment

X := X 1 .Q df x'/<>.Q; x/x'. (x=x')

is a program description in V. The effect of the assignment statement is to

assign new values to the variables in the list x, so that condition Q be

comes true. The marked variables x' in Q stand for the new values assigned

to x, while x itself stand for the old values. No other variables are affect

ed by this statement.

A special case of the assignment is the assignment statement

X := t df x := x'. (x'=t).

where xis a list of variables of V and tis a list of terms of L, £.(x)

£.(t) and var(t.) ~ V for i = 1, •.. ,£.(t).
J.

The weakest precondition for the assignment and the assignment state-

ment will be

WP(x:=x' .Q,R) - 3x'Q A Vx' (Q~R[x' /x])

and

WP(x:=t,R) - R[t/x].

For the assigrur,ent, the weakest precondition is computed as follows:

70

WP(x:=x' .Q,R) WP(x'/<>.Q, WP(x/x' .x=x',R)).

We have

WP(x/x' .x=x' ,R) 3x(x=x') A Vx(x=x' -+R)

.,. true A R[x'/x] (by Lenuna 2.6)

~ R[x' /x].

Thus

WP(x:=x' .Q,R) - WP(x' /x.Q,R[x' /x])

- :ilx'Q A Vx' (Q-+R[x' /x]).

For the assignment statement we have

WP(x:=t,R) WP(x:=x' .x'=t,R)

3x' (x'=t) A Vx' (x'=t-+R[x' /x])

++ true II R[t/x]

* R[t/x].

The angular brackets for lists will usually be dropped in assigrunents

and assignment statements in examples. However, we will still write<> for

the empty list of variables.

6.3.3. Composition

We have composition for program descriptions in the same way as for

descriptions. Parenthesis may be dropped, by agreeing that s1;s2; ••. ;Sn_1 ;Sn

stands for (s1; (s2; (.•• ; (Sn_ 1;sn) •..))) •

71

6.3.4. Nondeterministic selection

Let s 1 , ••• ,sn be program descriptions in V, and let B1, ••• ,Bn be for

mules of L, such that var(Bi) ~ V for i = 1, ••• ,n, n ~ 1. The nondeterminis

tic selection

is then a program description in v. It is defined as follows:

if Bl + s1 0 ... 0 B + S fi n n-

for n > 2.

A reasonable amount of computation will show that the weakest precondi

tion for the nondeterministic selection is

WP(if Bl+ s 1 □ ... □ B + S fi, R) - n n-

V B, A /\ (B. • WP(S. ,R)).
1:s;i:s;n i 1:s;i:s;n 1 i ·

72

6.3.5. Nondeterministic iteration

Let s1 , .•• ,Sn be program descriptions in V, and let B1, ... ,Bn be for

mulas of L, such that var(Bi) s V for i = 1, ..• ,n, n ~ 1. Then the nondeter

ministic iteration

is a program description in V.

The weakest precondition for nondeterministic iteration is

where

Noting that

we find that

and

S od, R)
n-

V WP(do Bl ➔ s1 □ ... □ Bn + Sn odn, R)
n<w

for n ~ 0.

abort

n
do Bl + S l O ... 0 B + S od - n n

0 -BB+ skip

for n > 0.

where BB denotes the condition B1 v ••• v Bn:

6.3.6. Blocks

Let S be a program description in Vu x, x n V

beg x: Send df x/<>.true;S;<>/x.true

73

0. Then the block

is a program description in V. The weakest precondition for this is easily

computed to be

WP (beg x: S end), R) \fxWP(S,R).

The purpose of the block construct is to allow the introduction of

local variables. It is more restrictive than the usual block construct, in

that redeclaration of local variables is not allowed.

We will require that all local variables of a block are properly ini

tialized before their values are referred to. We will not, however, give any

specific schemes according to which this condition is to be guaranteed. The

simplest way would of course be to require that each block begins with an

explicit assignment of values to the local variables, but this could be too

restrictive. Other possibilities have been discussed by DIJKSTRA [15] and

by DE BAKKER [12].

If the use of uninitialized variables was allowed in blocks, one could

simulate nondeterministic assignments which are not finite. For instance,

the following block would have the effect of setting x to any value:

74

beg y: x := y end

Thus proper initialization of local variables is required to prevent weak

termination from occurring.

The program descriptions are now the descriptions generated by the con

structs above. The programs are generated by these same constructs, when re

stricted so that we only allow the skip and abort statement, the assignment

statement, composition, selection and iteration with boolean expressions as

guards and blocks. Programs are thus the guarded commands of DIJKSTRA [15],

plus the block construction. The weakest preconditions for programs are also

the same as those given by Dijkstra, except for the weakest precondition for

the nondeterministic iteration, which, however, is equivalent to the weakest

precondition given by Dijkstra.

Program specifications are special kinds of program descriptions. A

program specification, giving the entry condition P and the exit condition

Q and allowing only the variables in x to be changed, is expressed as the

program description

{P}; X := x'.Q.

or, equivalently,

if P + x:=x' .Q fi.

No special notation will be introduced for program specifications.

NOTE: The burden of checking condition 6 ~ finite(x' ,Q) for assignments

x := x'.Q in program descriptions can be greatly reduced, if we assume that

we have available a set of standard formulas which are finite in 6, i.e.

formulas B which satisfy condition 6 ~ finite(x' ,B). With these we could re

strict ourselves to assignments of the form x := x'. (BA Q), where Bis some

standard finite formula. The finiteness of this assignment does not have to

be separately verified, as it is a consequence of the finiteness of B. We

could even introduce a special notation for these, e.g.

X := x'(B).Q -df X := x'.{BAQ),

In the domain of integers, the finite subranges would be typical examples

of standard finite formulas, E.g. the assignment

u :=u'{l:5:u':5:v).Q(u,u',v)

75

will be finite, no matter what Q is.

Finally we will define abstractions of program descriptions, to be used

when changing the data representation of a program description.

6.3.7. Abstraction

Let x/y.Q be an atomic description from V to W, where x n V =~-Let Q

be the formula y = t A I where tis a list of terms in Land I is a formula

of L, var(ti) s W for i = 1, ... ,l(t), var(I) s Wand l(t) = l(y). Let S be

a program description in W. Then

rep x/y.Q: S per =df x/y.Q; S; y/x.Q

and

beg x/y.Q: S per ~df x/y.true; S; y/x.Q

are abstractions in V of the program description Sin w.
The weakest preconditions for these are:

WP (rep x/y. Q: S per, R)

.,. 3x(y=tAI) A Vx(y=tAI ~ WP(S,IAR[t/y]))

and

WP(beg x/y.Q: S per, R) - VxWP(S,I A R[t/y]).

The computation of these goes as follows. We compute first

WP (y/x.y=t A I,R) 3y(y=t A I) A Vy(y=t A I~ R).

We have by Lemma 2.6 that

3y(y=tA I) - I[t/y] - I,

because y is not free in I. On the other hand, by axiom Ql and Lemma 2.6,

Vy(y=t A I~ R) - Vy(I~ (y=t ~ R)) - I~ Vy(y=t ~ R)

- I~ R[t/y],

76

for the same reason. Thus we get that

WP(y/x.y=tAI,R) - I A (I~R[t/y]) - IAR[t/y].

Thus the result will follow by computing

WP(rep x/y.y=tA I: S per, R)

-wP(x/y.y=tA I, \1P(S,IAR[t/y]))

and

WP (~ x/y. y=t A I: S per, R)

- WP(x/y. true, WP (S, I AR[t/y])) .

The purpose of an abstraction is to allow the state space to be changed.

The abstraction T of sin W, Tan abstraction in V,

T 2:;:p_ x/y.y=tA I: S per

will change the state space by replacing the variables yin V with new vari

ables x that represent y by the equation

for i 1 , .•. ,l (y l •

Here ti are terms whose values depend on the variables in x and possibly on

some other variables in W. There may be more than one choice of values for

the variables in x that will represent y. The values chosen for x must, how

ever, satisfy the condition I. After this the description Sis executed.

Finally, the variables in y are assigned the values represented by the new

values of x (and possibly by some other variables in W). All in all, the

effect of the abstraction Tis to manipulate the variables in y by manipul

ating a representation x of these variables.

The abstraction

beg x/y .y=t A I: S per

is used to initialize the variables y by initializing the variables x which

represent the variables y.

77

CHAPTER 7

FORMAL DEVELOPMENT OF PROGRAMS

In this final chapter we show how programs can be formally derived us

ing the machinery developed above. The use of program descriptions makes for-.

mal proofs of the correctness of derivations possible. The general proof

rule for refinement can in principle be used for establishing the correct

ness of the individual refinement steps in the derivation. In practice, how

ever, this ·is not very convenient and we need stronger proof rules for handl

ing the different kinds of refinement steps commonly occurring in program

development.

In Section 7.1 we show how to derive the example program of Section

6.1 in a formal way using program descriptions. This derivation makes use

of a number of stronger proof rules by which the correctness of the refine

ment steps can be proved. These proof rules will be formulated in the fol

lowing sections. Thus Section 7.2 gives proof rules for proving the correct

ness of precedure implementations. Section 7.3 will give examples of trans

formation rules by which assertions can be introduced into descriptions.

Section 7.4 gives an example of a transformation rule by which the control

structure of a program description can be changed. Finally, in Section 7.5

we show how to change the data representation in program descriptions.

The soundness of the stronger proof rules will be shown by deriving

them from the general proof rule for refinement. The derivations will essen

tially be carried out in Lw1w, using the axioms and inference rules of this

logic. One of the main purposes of this chapter is in fact to illustrate the

power of the general proof rule for refinement and the suitability of Lw 1w

as a formal system in which to reason about program properties.

Refinements will be restricted to be of the form S s S', where Sis a

program description and S' is either a program description or an abstraction

of a program description. The proof rules to be presented here can therefore all

be used in the safe development of programs. The proof rules are not intended

to form in any sense a complete set of rules for deriving programs, but are

78

mainly given as examples if important kinds of rules which can be expressed

and proved correct in our framework.

7 • 1 • AN EXAMPLE OF FORMAL PROGRAM DEVELOPMENT

We will here show how the example of Section 6.1 can be formally devel

oped using program descriptions and the principles laid down in Section 6.2.

The problem specification can be expressed as the program description

where V = {X,Y,z}. Thus the problem is to construct a program description S

such that A0 s S. The solution Sis constrained by requiring that the expo

nentiation operation is not used. The variable sets (like V above) will be

omitted in the sequel.

We will introduce the abbreviation

for future convenience. Thus A0 is

We will assume that the variables take only integers as values. This

means that we postulate a set 6 of sentences (the axioms) which give the

operations used in the program descriptions the properties expected of the

usual integer operations. This set 6 will not be mentioned explicitly in

the example below, (S s S' is to be understood as stating that S s S' is a

logical consequence of 6).

As the first refinement step we introduce some assertions into A0 . Let

'rhe fact that A0 s A1 holds follows by a transformation rule for introducing

assertions (the rule is given in example 7.7(i), Section 7.3).

We now try to find a refinement S' of the specification

y
X •

If we find such a refinement, i.e. an S' satisfying

then the replacement theorem implies that

thus giving us the required solution.

The following is a refinement of B0 :

Bl: {Rl};

beg h:

end

h,z := xy l; {R2};

do h 'f 1 -+ h , z : = h ' , z ' . (1 s: h ' < h II R') •
2 '

od

We use the abbreviations

and

'l'he assignment

is obviously finite on integers, and has the effect described in Section

6.1 by

"squeeze h under invariance of P".

79

The way to prove that B0 s: B1 holds is given in example 7 .1, Section 7. 2.

80

The invariant R2 in B1 is a byproduct we get when showing the correct

ness of the implementation by the invariant technique, loosely described in

Section 6.1 and more thoroughly treated in DIJKSTRA [15]. It comes in very

handy when preparing for a replacement in context.

Our next step is to get rid of the abstract variable h using the vari

ables x and y to represent the value of h. This constituted the second step

in Section 6.1. It will, however, take us more than one refinement step to

make this passage.

We prepare for this step by collecting some necessary information in

the form of assertions in the program description. This gives us the refine

ment B2 of B1 :

B2: {Rl};

beg h:

end.

y
{ Rl}; h ,' Z : = X , 1 ; { R2 };

do h "/ 1 ➔ { R2 A h "/ 1 } ;

h, z : = h ' , z ' . (1 :,; h ' < h A R2) ; { R2 }

ad

The fact that B1 s B2 holds can be shown by using the appropriate trans

formation rules for introducing assertions into program descriptions. We

would need the transformation rules of example 7.8 and 7.9(v) to get from

Bl to B2 •

We will now consider the following two components of B2 :

and

'l'he program description c0 will be implemented with the description

c 1 : beg x,y/h .Q:

x,y,z := X,Y,1

where Q is

81

Q: h

The effect of c1 is to initialize the variables hand z to XY and 1, as

required, by first computing appropriate values for x, y and z, and then

assigning to h the value represented by x and y. The form beg ... per is used

here, because the initial value of his not needed to compute the value re

quired. The way in which cO ~ c1 is to be proved is discussed in example 7.2

of Section 7.2.

The program description DO will again be implemented with the descrip

tion

D1 : rep x,y/h.Q:

y,z := y-1,z•x

.Because the initial value of his referred to in DO, we use the form

~ •.• per. The way in which DO ~ D1 is to be proved is discussed in exam

ple 7.3 of Section 7.2.

The proof rules for abstraction (Section 7.5) can now be used to change

the data representation in B2 • From cO ~ c1 and DO ~ D1, together with the

fact that h I 1 iffy f O when Q holds, we first get that

doh f 1 + DO od ~ rep x,y/h.Q:

do y f O + D1 od

per.

This together with cO ~ c1 can then be used to get

cO; doh f 1 + DO od ~ beg x,y/h.Q:

c 1 ; do y f O + D 1 od

From this we finally get

82

beg h: CO; beg x,y: cl;

doh 'F 1 ➔ DO od $ do y 'F 0 ➔ D1 od

end end

Substituting the right hand side for the left hand side in B2 will now

give us a refinement of B0 . The component B0 of A1 can therefore be replaced

with this, giving solution A2 below (this corresponds to step s2 in Section

6.1):

A2: if X > 1 A y 2: 0 ➔

beg x,y:

x,y,z := X, Y,1;

do y 'f 0 ➔ y,z := y-1,z •x od
end

fi

To get step s3 in Section 6.1, we backtrack to the program description

B2 , and give the refinement B3 of it instead:

B3: {Rl};

beg h:

end

y
{R1}; h,z := X , 1; {R2 };

doh 'f 1 ➔ {R2 Ah'/ l}; skip;

{R2 Ah 'f 1};

h , z : = h I , z I • (1 $ h I < h A R2) ; { R2}

od

It is quite obvious that B3 s B3, as the skip statement does not affect

the values of any program variables. We then consider the components c0 and

D0 of B3, which are the same as the components c0 and D0 of B3 , and implement

these as before with c1 and D1 . We will also consider the component

of B3. This component will be implemented by

83

E1 : rep x,y/h.Q:

do 2jy + x,y := x•x,y/2 od

The way in which E0 ~ E1 is to be proved is shown in example 7.4 of Section

7.2.

We then proceed to change the data representation in B3, in a similar

manner as above. After having done this, we get the program description

B4: beg x,y:

x,y,z := X,Y,1;

do y ,f O + do 2jy + x,y := x•x,y/2 od;

y,z := y-1,z•x

od

where B3 ~ B4. By replacing B0 in A1 with B4, we then get the program de

scription A2, which corresponds to the step s3 in Section 6.1:

.A2: if X > 1 A Y ~ 0 +

beg x,y:

end

fi.

x,y,z := X,Y,1;

do y ,f O + do 2jy + x,y := x•x,y/2 od;

YI Z ! = y-1 I Z • X

od

We now subject our program to a last refinement. It does not make the

program more efficient, on the contrary, but it makes it structurally sim

pler, by fusing the two nested loops of the program into one single loop.

This transformation is not done by Dijkstra, for obvious reasons. Our pur

pose here is to show how the control structure of programs can be changed.

We consider the following component F0 in A2:

F0 : do y ,f O + do 2jy + x,y := x•x,y/2 od;

YI Z ! = y-1 I Z O X

od.

84

Using a program transformation on loops, to be proved correct in exam

ple 7.10 of Section 7.4, we get the refinement F1 of F0 :

Fl: do y 'F O + if 2 IY + x,y := x•x,y/2

□ ~2jy + y,z := y-1,z•x fi

od

The program description F1 will be less efficient than F0 because the

condition Y'FO is tested at each iteration, wheras this test is not perform

ed in F0 while iterating in the inner loop.

Replacing F0 by F1 in A2 gives us the solution A3 to the programming

problem, where A3 is

A'. 3. if X > 1 A y <! 0 +

beg x,y:

x,y,z := x, Y, 1;

do y 'F 0 + if 2jy + x,y := x•x,y/2

□ ~2jy + y,z := y-1,z •x fi

od

end

fi

7.2. PROOF RULES FOR IMPLEMENTATION

We will give here a general proof rule by which the correctness of an

implementation, i.e. of a refinement of the form

{P}; X := x'.Q ~ S

can be shown. For this purpose, we need to prove a technical lemma first.

LEMMA 7.1. For any set~ of sentences, we have

(7 .1) ~ f- v'x' (Q-. R[x' /x])

iff

(7. 2)

85

when var(Q) =Vu x' and var(R) = V, x0 and y0 do not contain variables of

V or x or y, x n y =~and x0 n y0 =~and y s V.

PROOF. By Lenma 2.6, (7.2) is equivalent to

By changing the bound variables x and y, this gives us

thus making x0 and y0 free for x and y. Because x0 and y0 do not occur free

in R[x'/x,y'/y] andy0 does not occur free in Q[x0/x,y'/y], performing the

substitution gives us the result

Vx'y'(Q[y'/y] A y'=y • R[x'/x,y'/y]).

This is again equivalent to

Vx'y'(y=y' • (Q[y'/y] • R[x'/x,y'/y])),

giving the equivalent form

Vx'(Q,.. R[x'/x]),

by using Lenma 2.6 again. This is the desired result, so the lemma is prov

ed. □

The general proof rule for establishing the correctness of an implement

ation is now given by the following theorem.

THEOREM 7.2. Let~ be a countable set of sentences of L. Let V be a finite

nonempty set of program variables, and let S be a program description or an

abstraction in V. Let y be a list of those variable& in V - x that are not

constant in S. Let x0 and y0 be lists of distinct program variables not

occurring in Sor belonging to V. If

86

then

8 ~ {P}; X := x'.Q S S.

PROOF. Let k be the number of variables in v, and let v be a list of dis

tinct variables, v = V. Let G be a new k-place predicate symbol. By Cor. 5.5,

it is sufficient to show that

8 ~ WP({P}; x := x'.Q, G(v)),. WP(S,G(v)).

Take therefore WP({P}; x := x'.Q,G(v)) as an assumption, i.e. we assume that ·

(7.3) PA 3x'.Q A Vx' (Q • G(v)[x'/x]).

Note that the assumption may'contain free variables of v, over which we are

not allowed to quantify. By Lenma 7.1, the third term in the assumption im

plies that we have

Using axiom Q2, this gives us that

Let us now further assume that

(7.4)

By modus ponens we get that

Vxy(Q[x0/x,x/x'] A y=y0 • G(v)).

Because all variables of V not belonging to x or y are constant ins, we

may apply LeDllla 5.11(i), getting the result

Because of the assumptions and the premise, we have that

and thus we may infer by modus ponens that

WP(S,G(v)).

We still have to get rid of the assumptions that we made in the course of

developing the proof. By the deduction theorem, we first get that

x=x0 11 y=y0 .. WP(S 1G(v)) ,.

87

thus getting rid of assumption (7.4). As x0 and y0 are not free in assump

tion (7.3), we may use the rule GN on this,.getting

which then gives us

by Lenma 2.6 i.e.

WP(S,G(v)),

by noting that x0 and y0 are not free in WP(S,G(v)) (Lemma 5.1). Using the

deduction theoren once again, we eliminate assumption (7.3), getting the

desired result

WP({P}; X := x'.Q, G(v)) .. WP(S,G(v)). □

COROLLARY 7.3. Let the assumptions be as in Theorem 7.2. We then have that

implies

f- X := X 1 .Q S S.

88

PROOF. By noting that x := x' .Q"' {3x' .Q}; x := x' .Q. D

COROLLARY 7.4. Let the assumption be as in Theorem 7.2. Then for the assign

ment statement x :=tin V, we have that

implies

~ {P}; X := t ~ S.

PROOF. Immediate. 0

We will now show how the implementation steps in Section 7.1 can be

proved correct, using the proof rules for implementations.

EXAMPLE 7.1. The first implementation step was the refinement of B0 to B1 .

Thus we have to prove that B0 ~ B1, where

We apply here Corollary 7.4. Using the notation of this corollary, we have

in this case that y =<>,because B1 only affects the variable z. Also, the

assignment performed is an initialization, i.e. the variable x does not

occur int (here: the variable z does not occur in XY). In this case, the

premise in Corollary 7.4 simplifies to

P • WP(S,x=t).

Thus we have to prove that

We will not prove this here. An informal argument was given in Section 6.1.

A more formal proof can also be given, based on the "fundamental invariance

theorem" in DIJKSTRA [15].

EXAMPLE 7.2. The second implementation was the implementation of c0 with

c1, where

89

and

This is again an initializing assignment not affecting variables other than

those indicated, so we can use the same proof rule as in example 7.1. Thus

we have to prove that

X > 1 A Y ~ 0.,. WP(C 1, h=Xy A z=l).

The weakest precondition for c1 can be calculated using the formula for

weakest preconditions of abstraction in Section 6.3, which is

WP(beg x/y.y=t A I,: S per, R) ~ VxWP(S,I A R[t/y]).

(Here x and y are variable lists, and should not be confused with x and y

in the example.) Using it in the present example means that we have to prove

X > 1 A Y ~ 0 .,. VxyWP (x,y ,z := x, Y, 1, (x > 1 A xy = xy A z=l)) •

Using the rule for computing the weakest precondition of an assignment state

ment, also given in Section 6.3, the premise to be proved becomes

X > 1 A Y ~ 0 .,. Vxy (X > 1 A xy = xy A 1 = 1),

i.e., we have to prove that

X > 1 A Y ~ 0 .,. X > 1 A xy = xy A 1=1,

which obviously holds. Thus we conclude that c 0 ~ c 1•

EXAMPLE 7.3. The third implementation was the implementation of D0 with D1,

where

and

90

o 1: rep x,y/h. (h =~Ax> 1): y,z := y-1,z•x per

Here

and

We use Theorem 7.2 here. Because y

the form

<>, the premise in 7.2 takes

Thus in the present case, we ,have to prove that

The weakest precondition for the abstraction o1 is given by the formula

WP (rep x/y .y=t A I: S per, R)

- 3x(y=t A I) A

'v'x(y=t A I* WP(S,I A R[t/x])).

Thus, in order to establish that o0 $ o 1, we have to prove here that

R2 A hil A h=hO A z=z0

• 3xy(h=xy Ax> 1)

A 'v'xy (h=xy Ax> 1 • WP(y,z := y-1,z•x, (x > 1 A 1 $ xy < ho A Rixy /h]))).

The first term of the conjunction is clearly implied by the left hand

side, by taking x=h, y= 1. This together with some other simplifications

gives us the formula

h•z=Xy Ah> 1 A h=h A h=xy Ax> 1
0

y-1 y-1 Y y-1 • X > 1 A 1 $ X < hQ AX •z•x=X AX ~ 1.

Using the properties of integer arithmetic, this formula can be seen

to hold.

EXAMPLE 7.4. The last implementation that we performed in Section 7.1 was

the implementation of E0 with E1, where

and

El: rep x,y/h. (h=xy Ax> 1):

do 2ly ➔ x,y := x•x,y/2 od

To prove that E0 ~ E1, we can still use the Theorem 7.2, because

skip~ <>:=<>.true,

In this case the premise of Theorem 7.2 takes the form

because Q true. Thus we have to prove that

Computing the weakest precondition gives us the formula

where

91

where we omitted the conjunct 3xy (h=xy A x > 1) because it was already proved

to follow from the assumptions given (in example 7.3). This can be proved by

the usual invariant technique, referred to in example 7.1, by taking the con

dition

92

as the loop invariant. The loop will terminate because each turn around the

loop will decrease the number of factors 2 in y, while ~2ly will hold if and

only if the number of factors 2 in y is zero.

7.3. TRANSFORMATION RULES FOR ASSERI'IONS

As shown in Chapter 6.2, assertions play an important part in program

development by stepwise refinement, as formalized in this tract. Therefore,

proof rules are needed by which assertions can be introduced at various

places in program descriptions. The assertions introduced give information

about the context in which they appear, thereby making it easier to find a

correct replacement for a component.

We will not present a complete list of assertion rules to be used in

program development, but will restrict ourselves to only give examples of

such rules. The examples are 'partly chosen to show the correctness of the

refinement steps made in Section 7.1 and partly for later use.

Before going into the examples, we will, however, prove another form

of the result in Lemma 5.10(i), which gave the induction rule for loops.

LE~JMA 7.5. Let 6 be a countable set of sentences of L. If

6 f- {P}; do B1 -->- s1 □ ... □ Bn -->- s
n

odn ~ s, for n < w,

then

6 1- {P}; do Bl -->- s1 □ ... □ Bn -->- s od ~ s.
n

PROOF.Let the program descriptions above all be program descriptions in V,

where Vis a finite nonempty set of program variables. Let v = V and G be as

usual. Using the abbreviations

and

we have to prove that

(7 .4) WP({P}; DOn,G(v)) ~ WP(S,G(v)) for n < w

implies

(7. 5) WP({P}; DO,G(v)) .. WP(S,G(v)).

The assumption (7.4) gives us that

PA WP(DOn,G(v)),. WP(S,G(v)), for n < w,

or equivalently

P,. (WP(DOn,G(v)),. WP(S,G(v))), for n < w.

Make the assumption P. We then have that

WP(DOn,G(v)),. WP(S,G(v)), for n < w,

and using the inference rule for infinite disjunction, we get that

i.e.

V WP(DOn,G(v)),. WP(S,G(v)),
n<w

WP(DO,G(v)),. WP(S,G(v)).

Using the deduction theorem, we get from this that

P,. (WP(DO,G(v)),. WP(S,G(v))),

i.e.

PA WP(DO,G(v)),. WP(S,G(v)),

which gives the final result (7.5). D

93

EXAMPLE 7 • 5. If 11 f- P ,. P' then 11 f- { P} ~ { P' } • This is obvious, by consider

ing

WP({P},G(v)),. WP({P'},G(v)),

i.e.

p A G(v) .. P' A G(v).

94

Because 6 ~ P => true for any P, we have 6 ~ {p} S skip for any P, remember

ing that skip= {true}. Therefore, an assertion may always be replaced with

the skip statement, and the resulting description will be a refinement of

the original description. Thus we are always allowed to remove an assertion

without affecting the correctness of the program description.

EXAMPLE 7.6. If 6 ~ P => WP(S,Q), then 6 ~ {P}; S S {P}; S; {Q}. This is also

easily seen, because

WP({P}; S,G(v)) - PA WP(S,G(v))

and

p" WP(S,G(v)) => p" WP(S,Q) "WP(S,G(v))

=>PA WP(S,QAG(v)) (Lemma 5.11(i))

- WP({p}; S; {Q} ,G(v)).

Thus, using the previous example, we have that 6 ~ P => WP(S,Q) implies that

6 ~ {P};S ~ {P};S;{Q}.

EXAMPLE 7.7. The facts that

(i)

and

::::: if B1 + s1; {Q} □ ... OB + S; {Q} fi
- n n -

also follow directly, by analyzing the corresponding weakest preconditions.

EXAMPLE 7.8. We use the previous examples and Lemma 7.5 to show that

s1 ;{P} 0 ••. OB + S ;{P} od
n n -

95

Denote the left hand side by {P};DO and the right hnad side by {P};DO'. By

example 7.5, we only need to show that {P};DO s {P};DO'. Using the Lemma 7.5,

to show this, it is sufficient to show that

{P} ;DOn S {p} ;DO', for n < w.

Because DO'n s DO' for every n < w, it will be sufficient to show that

for n < w.

We prove it by induction on n. For n = 0 this result is obvious, as

{P};DOO ~abort.Assume that the refinement holds for n, n < w.

By the definition of DOn, we then have that

{P}; if BB ➔ if Bl ➔ s1;{P}0 ••. □ Bn

□ ~BB ➔ skip fi

➔ S ;{P} fi; DOn
n

S {P}; if BB ➔ {P}; if Bl ➔ s1;{P} 0 .•. □ Bn ➔ Sn;{P} fi; DOn

□ ~BB ➔ skip fi

S {P}; if BB ➔ if B1 ➔

0 B ➔
n

0 ~BB ➔ skip fi

S {P} ;DO'n+l.

{PAB1};S1 ;{P}. ••

{PAB };S ;{p} fi; {P};DOn
n n

In the first refinement above, we used example 7.7(i) and 7.5 (the lat

ter e.g. when replacing P A BB with P, because P A BB * P) . In the second re

finement we used example 7.7(i) and (ii), as well as example 7.5. The last

refinement used the induction hypothesis, and the definition of DO'n.

EXAMPLE 7.9. Finally we have an assertion rule concerned with blocks (the

soundness of this rule can be checked by considering the corresponding weak

est preconditions, as was done in the preceding examples):

96

!). f- {P}; beg x: s end; {Q}

~ {P}; beg x: {P};S;{Q} end; {Q}.

In the refinements of Section 7.1, rules for assertions were needed in

the refinements of A0 to A1 and of a1 to B2 • In the first case, the fact that

A0 S A1 can be justified using the rule in example 7.7(i), while the fact

that B1 S B2 holds can be justified using the rules in example 7.8 and exam

ple 7.9.

7.4. TRANSFORMATION RULES FOR CONTROL STRUCTURES

We next outline the technique for showing the correctness of program

transformations involving control structures. We will not be as formal here

as in the preceding chapters; and feel free to use some obvious, but un

proven results. We use the refinement of F0 to F1 in the example of Section

7.1 to illustrate the technique.

The refinement of F0 to F1 can be justified by the following rule for

loops.

EXAMPLE 7.10. Let

and

DO = do B ➔ DO' ;S od,

DO'= do B' ➔ S' od

DO" do B-+ if B'-+ S' □ ~B'-+ S fi od.

Assume that {BAB'};S' $ {BAB'};S';{B}. Then DO$ DO".

We first show that

(7.7) {B} ;DO'n;S;DO $ {B} ;DO", for n < w.

For n = 0 this is obvious, as {B};DO'O;S;DO ~abort.Assume that (7.7) holds

for n, n < w. We have that

{B};DO'n+l;S;DO {B}; if B'-+ S' ;DO'n O ~B' ➔ skip fi; S;DO.

97

Consider now separately the two cases BAB' and BA ~B'.

(i) B A B'. We have that

n+l {BAB'} ;DO' ;S;DO S {BAB'} ;S' ;DO'n;S;DO

because the alternative B' must in this case be chosen in DO'n+l. Using

the induction hypothesis, this gives us that

n+l
{BAB'};DO' ;S;DO S {BAB'};S';DO".

Because of the condition BAB', we have

{BAB'} ;S' ;00" s {BAB'}; if B -+ if B' -+ S' ;DO"

□ ~B' -+ S;DO" fi

□ ~B-+ skip fi

s {BAB'}; if B -+ if B' -+ S' □ ~B' -+ s fi;

DO"

□ ~B-+ skip fi

s {BAB'};DO".

Thus we have that

{BAB'};DO'n+l;S;DO S {BAB'};DO".

(ii) B A ~B' • We have that

n+l {BA ~B'};DO' ;S;DO S {BA ~B'};S;DO,

as the loop will not be entered when B' is false. For the same reason,

we have that

{BA ~B'};S;DO S {BA ~B'};{B};DO'n;S;DO

S {BA ~B'};DO",

98

by use of the induction hypothesis. Thus we have that

n+l
{B II ~B'};DO' ;S;OO ~ {B II ~B'};OO".

Putting these two cases together gives the required result, i.e. we get

that

n+l
{B};DO' ;S;OO $; {B};DO",

which proves that (7.12) holds for every n < w. From this we infer that

{B};OO' ;S;DO ~ {B};DO".

This inference can be proved correct with a similar argument as was used

in the proof of Lemma 7.5.

We now turn to our main task, i.e. to proving that DO ~ DO". We show

this by showing that

(7 .8) for n < w.

For n = 0 this is immediate, as usual. Assume that (7.8) holds for n, n < w.

We then have that

DOn+l = if B ➔ DO';S;DOn O ~B ➔ skip fi

~ if B ➔ {B};DO';S;DO □ ~B ➔ skip fi

~ if B + {B};DO" □ ~B + skip fi

~ if B ➔ if B' + S' 0 ~B' ➔ S fi; DO"

□ ~B + skip fi

~ DO".

In these steps we have made use of the fact that

DO"::::: if B ➔ if B' + S' □ ~B' + S fi; DO"

□ ~B + skip fi.

99

The derivation shows that (7.8) holds, thus proving the desired results.

7.5. TRANSFORMATION RULES FOR ABSTRACTIONS

In this final section we give some rules for handling abstractions in

refinements. The purpose of these rules is to enable one to change the data

representation in a program. As in the previous sections of this chapter, we

do not aim at a complete set of rules, but will be content with giving the

most basic ones, mainly in order to show the correctness of the program

transformation rules used in developing the example program in Section 7.1.

The rules given will also not always be in the most general form possible.

For the formulation of the lemmas below, let us fix a countable set fi

of sentences of L. Let v and w be two sets of program variables, let

Si: W ➔ W be program descriptions, i = 1, ... ,n, and let

(7. 9)

for i 1, ..• ,n, where

fl x/y. (y=t A I),

var(t) s Wand var(I) s W.

LEMMA 7.6. If fi I- P,. 3x(y=tAI), then

fi I- {P}; skip ::; rep fl skip per.

PROOF. The case here is similar to the case in example 7.4, and we have to

prove that

(7.10)

Computing the weakest precondition, this gives us the formula

p" y=yo .. Vx(y=tA I .. t=yo" I)

where we have used the assumption that P ,. 3x (y=t A I) to eliminate the for

mula 3x(y=tA I) on the right hand side of (7.10).

100

Let us assume that

P A y=y O A y=t A I .

This gives the result that

and by the deduction theorem, we have that

y=t A I,. t=y0 A I,

under the assumption P" y=y0 • As xis not free in this assumption, we get

Vx(y=t/\ I .. t=yo "'I),

and another application of the deduction theorem will then give the desired

result. D

LEMMA 7.7. Assume that S. and S' are as in (7.9), i
1. i

1, ... ,n. Then

PROOF. We prove the case for n = 2, the general case follows by induction

on n. For the proof, let k be the number of variables in V, and let v be a

list of distinct va.riables, v = V. Let G be a new k-place predicate symbol.

By Theorem 5.4, we have to prove that

First, we have that

WP(S2 ,G(v)) -3x(y=tAI) /\ Vx(y=tAI,.WP(S2,IAG(v)[t/y])).

Denote the first conjunct of the right hand side P1 and the second P2 . Then

101

We concentrate on the formula P2[t/y]. Changing the bound variable x

to a fresh variable x' gives

p2 - Vx' (y=t[x' /x] A I[x' /x] .. WP(S2,I A G(v) [t/y]) [x' /x]),

thus making t free for yin the formµla P2 • Thus we have that

Pit/y] - Vx' (t=t[x' /x] A I[x' /x] .. WP(S2, 1 A G(v) [t/y]) [x' /x])

By substituting x for x' in P2[t/y], we get that

or equivalently,

Using this result, we have that

and using the generalization rule, this gives us that

where w is a list of distinct variables, w = w. We may therefore use Lemma

5.ll(i), and get

Thus we have that

102

as required. 0

LEMMA 7.8. Assume that Si and Si are as in (7.9), i 1, ... ,n. Denote

s = if s1 + s1 D ••• D s + s fi
. - n n-

.s• = if B' + s• D ••• Os• + s• fi.
- 1 1, n n-

Assume further that

ti. I- P • 3x (y=t I\ I)
and

for i 1, ••• ,n.

Then

ti. I- {P};S S rep f3: S' per.

PROOF. Let v and G be as in the Proof of 7.7, and assume that

WP({P};S,G(v)),

i.e. writing BB for s 1 v ••• v Bn' we have the assumption

(7 .11) PI\ BB I\ A (B.,. WP(S.,G(v))).
lSiSn i i

We have to prove that WP(rep a : S' per, G(v)) holds, i.e. that

3x(y=t/\I) I\ Vx(y=t/\I • WP(S',IAG(v)[t/y])).

103

The first conjunct is implied by (7.11) because of the assumption, so we

only need to prove that the second conjunct also is implied. Assume there

fore that

(7 .12) y=t A I.

Then Bi• Bi by the assumption, for i 1, ••• ,n, so we get from (7.11) that

B' V ••• VB'.
1 n

Now, let i be an integer, 1 $ i $ n, and assume that Bi. By the assumption

of the lemma, this means that Bi holds. By (7.11), this will again give that

WP(Si,G(v)) holds, i.e. we have that

3x(y=t A I) A Vx(y=;t A I• WP(Si ,I A G(v) [t/y]) l.

Thus, by assumption (7.9); we have that

WP(S! ,I A G(v)[t/y]).
l.

Removing the assumption that Bi holds, this means that

and as i was arbitrarily chosen, 1 $ i $ n, we have that

A (Bi• WP(Si,IAG(v)[t/y]).
l$iSn

This, together with the fact that Bi v ••• v B~ holds, means that

WP(S', I A G(v) [t/y]) •

Eliminating assumption (7.12) gives

y=t A I• WP(S',IAG(v)[t/y]),

and as xis not free in assumption (7.11), we have

104

Vx(y=t A I .. WP(S' ,I A G(v) [t/y])),

thus concluding the proof. D

LEMMA 7.9. Assume that Si, Si are as in (7.9), i = 1, ••• ,n. Denote

DO= do B1 -+ s1;{P} 0 ••• OB -+ S ;{P} od,
- n n

P' = P[t/y] A I.

Assume further that

A f- P ,. 3x(y=t A I)
and

A f- P A y=t A I ,. (B, - B ~) ,
].].

for i 1, •.• ,n.

Then

A f- {P} ;DO S rep S DO' per.

PROOF. Let DOn and DO'n have their usual meaning. We will prove that

(7 .13) n n
{P} ;DO s rep S : DO' per, for n < w.

Because DO'n s DO', this will give us that

n {P};DO S rep S : DO' per, for n < w,

from which the desired result then follows using Lemma 7.5.

For n = O, (7.13) obviously holds, as DOO =abort.Assume that (7.13)

holds for n, n ~ 0. We have that

{P};DOn+l = {P}; if BB-+ if Bl-+ s1;{P}0 ••• 0B -+ S ;{P} fi;
- - n n

Don

0 ~BB -+ skip fi

S {P}; if BB-+ {P}; if Bl-+ s1;{P}0 •••

D B -+ S ;{P} fi; {P};DOn
n n

0 ~BB-+ {P}; skip fi,

using the rules for assertions of Section 7.2.

By Lemma 7.6, we have

(7.14) {P}; skip s: ~ fl skip per.

Actually we have the stronger result that

{P}; skip S: rep ll {P'}; skip per.

This means that

{P} s: rep ll {P'} per,

because {P}; skip~ {P} for any P.

Now, using Lemma 7. 7 we ,get that

for i 1, ... ,n.

And using Lemma 7.8, we get from this that

+S1 ;{P}O ••• OB +S;{P}fi
n n -

Finally, using induction hypothesis (7.13), result (7.14), Lemma 7.7 and

Lemma 7.8 again, we get the result

thus proving that (7.13) holds for each n < w. 0

105

LEMMA 7.10. Let V be V' u y', V' n y' ~, for some list y' of program vari-

ables and some nonempty set V' of program variables. Assume that y Sy'.

Then

where y" y'-y, S: W+Wand ll x/y. (y=t A I) : V + W as before.

106

PROOF. Let k be the number of variables in V', and let v' be a list of dis

tinct variables, v' = V'. Let G beak-place predicate symbol. Let s1 de

note the left hand side of the above and s2 the right hand side. We have to

prove that

Assume therefore that

WP (S 1 ,G{v')).

The assumption gives us, by definition of WP, that

Vy'WP{beg fl S per, G(v')),

which again is equivalent to

Vy' xWP (s, I A G { v') [t/y J) •

Now, because y n V' =~,as y ~ y', y cannot occur free in G(v'), so

G{v')[t/y] = G{v'). Thus we have that

Vw { I A G { v') [t/y J .,. G { v')) ,

and using Lemma 5.ll{i), this gives us that

WP (s, I A G {VI) [t/y J) ... WP (s, G {VI) l ,

i.e. the assumption gives us that

Vy'xWP{S,G(v')).

As y cannot occur free in WP{S,G{v')), because S: W + W, and y n W

is again equivalent to

\>'y"xWP{S,G(v')),

~, this

107

which, from the definition of WP, is

WP(beg y" ,x: S end, G(v')).

This proves the lemma. D

The example program can now be handled by the following rules of infer

ence. The soundness of these rules are immediate consequences of the lemmas

proved above (8 and Si, •.• ,s~ are assumed to be as in (7 .9), while s 1 , ...

.•. ,Sn are any program descriptions in V).

1. Composition

(i)

(ii)

sl s E!:P_ B: Si ~· s2 s E!:P_ B:· Si ~
s1;s2 S rep 8: Si;Si ~

sl s ~ B: Si~· s2 S ~ B: Si~
s 1;s2 S beg B: Si;Si per

2. Selection

where

and

SiS~B:Si~' i=1, .•• ,n,H1,H2

{P}; if B1 + s 1 □ ... OB + S fi
- n n-

s rep B:

if Bi+ sio ... □ B~ + s; fi

~·

Hl: P • 3x (y=t A I)

i 1, ... ,n.

108

3. Iteration

Si:,;~ 8: Si~, i = 1, ••• ,n, H1 , H2
{P}; do B1 + s 1;{P}[] •.• OB + S ;{P} od

- n n
:,; rep 8:

do Bi + Si □ ... □ B~ + s~ od

where H1 and H2 are as above

4. Blocks

S:,; ~ 8: S' ~

beg y,z: send

:,; beg x, z : s ' end. ,

The transition steps by which the data representation of version B2 in

Section 7.1 is changed can be done with these proof rules. In order to apply

them we need to prove the conditions

and

xy A x > 1 _,. (hfl - yfO) .

Writing R2 explicitly, we get the formulas

h•z = XY II h;;: 1 .,.3x,y.(h=~Ax>1)

and

h•z xy II h;;: 1 11 h=xy II x > 1 _,. (hfl - y;i!O).

These are readily seen to be true.

109

REFERENCES

[1] BACK, R.J.R., On the correctness refinement steps in program develop

ment, Report A-1978-4, Dept. of Computer Science, Univ. of

Helsinki, 1978.

[2] BACK, R.J.R., On the notion of correct refinement of programs, in Proc.

5th Scandinavian Logic Symposium (F.V. Jansen, B.H. Mayoh and

K.K. M¢ller, eds.), Aalborg University Press, 1979, (to appear

in Journal of Computer and System Sciences).

[3] BACK, R.J.R., Proving total correctness of nondeterministic programs in

infinitary logic, to appear in Acta Informatica.

[4] BACK, R.J.R., Semantics of unbounded nondeterminism, in Proc. 7th Coll.

Automata, Languages and Programming, (J.W. de Bakker and J. van

Leeuwen, eds)·, Lecture Notes in Computer Science 85, Springer, 1980.

[5] BANACHOWSKI, L., A. KRECZMAR, G. MIRKOWSKA, H. RASIOWA & A. SALWICKI,

An introduction to algorithmic logic; metamathematical investi

gations in the theory of programs, in Mathematical Foundations

of Computer Science, Banach Center Publications, (A. Mazurkiewicz

and Z. Pawlak, eds.), pp. 7-99, Warsaw, 1977.

[6] BAUER, F.L., Program development by stepwise transformations - The pro

ject GIP, in Program Construction, (F.L. Bauer and M. Broy, eds.),

pp. 237-272, Lecture Notes in Computer Science 69, Springer, 1979.

[7] BAUER, F.L., M. BROY, H. PARTSCH, P. PEPPER & H. WOSSNER, Systematics

of transformation rules, in Program Construction, (F.L. Bauer and

M. Broy, eds.), pp. 273-289, Lecture Notes in Computer Science 69,

Springer, 1979.

[8] BOOM, H.J., A weaker precondition for loops, Report IW 104/78, Mathe

matisch Centrum, 1978.

[9] BROY, M., R. GNATZ & M. WIRSING, Semantics of nondeterministic and non

continuous constructs, in Program Construction, (F.L. Bauer and

M. Broy, eds.), pp. 553-592, Lecture Notes in Computer Science

69, Springer, 1979.

[10] BURSTALL, R.M. & J. DARLINGI'ON, Some transformations for developing

recursive programs, Journal of ACM 24, 1, pp. 44-67, 1977.

110

[11] CORRELL, C.H., Proving programs correct through refinement, Acta Inform

atica 9, pp. 121-132, 1978.

[12] DE BAKKER, J.W., Mathematical Theory of Program Correctness, Prentice

Hall, 1980.

[13] DIJKSTRA, E.W., A constructive approach to the problem of program cor

rectness, BIT 8, pp. 174-186, 1968.

[14] DIJKSTRA, E.W., Notes on structured programming, in Dahl, O.J.,

E.W. Dijkstra and C.A.R. Hoare: Structured Programming, Academic

Press, 1971.

[15] DIJKSTRA, E.W., A Discipline of Programming, Prentice-Hall, 1976.

[16] DIJKSTRA, E.W., Private communication, 1978.

[17] ENGELER, E., Remarks on the theory of geometrical constructions, in:

The Syntax and Semantics of Infinitary Languages, (J. Barwise,

ed.), Lecture Notes in Mathematics 72, Springer, 1968.

[18] ENGELER, E., Algorithmic Logic, in: Foundations of Computer Science,

(J.W. de Bakker, ed.), pp. 57-85, Mathematical Centre Tracts 63,

Mathematisch Centrum, 1975.

[19] FEFERMAN, S., Lectures in Proof Theory, in Proc. Summer School in Mathe

matical Logic, (M.H. Lob, ed.), pp. 1-108, Springer, 1968.

[20] GERHARI', S.L., Correctness preserving program transformations, in Proc.

Second ACM Conference on Principles of Programming Languages, pp.

54-66, 1975.

[21] HAREL, D., First-Order Dynamic Logic, Lecture Notes in Computer Science

68, Springer, 1979.

[22] HAREL, D., A. PNUELI & J. STAVI, A complete axiomatic system for prov

ing deductions about recursive programs, in Proc. 9th Annual ACM

Symp. on the Theory of Computing, 1977.

[23] HOARE, C.A.R., An axiomatic basis for computer programming, Communica

tions ACM 12, 10, pp. 576-580, 1969.

[24] HOARE, C.A.R., Procedures and parameters: An axiomatic approach, in

Symposium on Semantics and Algorithmic Languages, (E. Engeler,

ed.), pp. 102-116, Lecture Notes in Mathematics 188, Springer,

1971.

111

[25] HOARE, C.A.R., Proof of correctness of data representation, Acta Inform

atica 1, 4, pp. 271-281, 1972.

[26] HOARE, C.A.R., Some properties of predicate transformers, Journal of

ACM, 25, 3, July 1978.

[27] KARP, C.R., Languages with Expressions of Infinite Length, North

Holland, 1964.

[28] KATZ, S.M. & Z. MANNA, Logical analysis of programs, Communications of

ACM 19, 4, pp. 188-206, 1976.

[29] KEISLER, H.J., Model Theory for·Infinitary Logic, North-Holland, 1971.

[30] KNUTH, D.E., Structured programming with the goto statement, Computing

Surveys 6, 4, pp. 261-301, 1974.

[31] LAMPSON, B.W., J.J. HORNING, R.L. LONDON, J.G. MITCHELL & J. POPEK,

Report on the programming language Euclid, Sigplan Notices 12,

2, 1977.

[32] LISKOV, B.H., A. SNYDER, R. ATKINSON & C. SCHAFFERT, Abstraction mech

anism in CLU, Communications of ACJ4 20, 8, pp. 564-576, 1977.

[33] LOVEMAN, D.B., Program improvement by source-to-source transformations,

Journal of ACM 24, 1, pp. 121-145, 1977.

[34] MANNA, Z., Mathematical Theory of Computing, McGraw-Hill, 1974.

[35] MEERTENS, L.G.L.T., Abstracto 84: The next generation, Report IW 120/79,

Mathematisch Centrum, 1979.

[36] MILNER, R., An algebraic definition of simulation between programs,

Report CS 205, Dept. of Comp. Science, Stanford Univ., 1971.

[37] PLOTKIN, G.D., A power-domain construction, SIAM Journal of Computing

5, 3, pp. 452-487, 1976.

[38] PRATT, V.R., Semantic considerations of Floyd-Hoare logic, in Proc.

17th IEEE" Symp. on Foundations of Computer Science, pp. 109-121,

1976.

[39] SALWICKI, A., Formalized algorithmic languages, Bull. Acad. Polon. Sci.,

Ser. Math. 18, pp. 227-232, 1970.

[40] SCOTT, D., Logic with denumerably long formulas and finite strings of

quantifiers, In Symp. on the Theory of Models, (J. Addison,

L. Henkin and A. Tarski, eds.), pp. 329-341, North-Holland, 1965.

112

[41] SMYTH, M.B., Power domains, Journal of Computer and System Sciences 16,

pp. 23-36, 1978.

[42] WEGBREIT, B., Goal directed program transformations, IEEE Trans. on

Software Engineering SE-2, 2, pp. 69-80, 1967.

[43] WIRTH, N., Program development by stepwise refinement, Communications

of ACM 14, 4, pp. 221-227, 1971.

[44] WIRTH, N., Systematic Programming, Prentice-Hall, 1973.

[45] WIRTH, N., Modula, a language for modular multiprogramming, Software

Practice and Experience 7, 1, 1977.

[46] WULFF, W.A., R.L. LONDON & M. SHAW, An introduction to the construc

tion and verification of Alphard programs, IEEE Trans. on Soft

ware Engineering se-2, 4, pp. 253-265, 1976.

113

INDEX OF NOTATIONS

Laf3 7 El 12

Lw1w 7 E2 12

Lw1w1 39 E3 12

8 GN 12 .. 8 I1 12

" 8 I2 12

V 8 MP 12

v~ 8 ~1 12

c. 8 N2 12
l.

F':1 8 Ql 12
l.

G~ 8 Q2 12
l.

F(t1, ••• ,1c) 9 ll 1- A 13

t1=t2 9 !-A 13

~A . 0 9 l (x) 15

AOmoAl 9 <xl, ••• ,xn> 15

A~<oA~ 9 <> 15

VvA0 9 X 15

v~<oA~ 9 <x,y> 16

A0AAl 9 <x/y> 16

Ao•.,P.1 9 x=y 16

3vAO 9 var(t) 16

t[t1/x1 , ••• ,1c/~J 10 var(A) 16

A[t1/x1, .•• ,1c/~] 10 (Sl;S2) 16

Tr 10 (S 1vs2) 16

tt 10 (B+S1 1s2) 16

ff 10 (BXS) 16

M 10 x/y-Q 16

<D,I> 10 fin(S,V) 17,18
DV 10 VD 19

s<a1/x1, •.• ,¾/~> 10 J.V,D 19

va~ (t,s) 10 FD(V,W) 19

valM(A,s) 11 E0 (V) 19

M=A 11 S\r,o 20

Cl 12 I\ V,D 20

C2 12 (f; f') 20

CN 12 (fVf') 20

114

(b+flf'l 20 abort 34,68

U=U' 20 (B*S)n 34

f=f' 20 WP(S,Q) 35

u f 21 A f-- S$S' 42
n<w n

(b*f)n 22 finite(x,Q) 45

(b*f) 23 Vr 67

in\i(Q,V) 23 Vr' 67

in~(S,V) 23 v' 67 n
S rel S' 27 x' 67

f$f' 29 U' 67

S$MS' 29 {Q} 68

A!= S$S' 29 x:=x' .Q 69

fi=:lf 1 29 x:=t 69

Sr::!.MS' 29 S1; ... ;Sn 70

Al= S"15' 29 if B 1+s 1□ ... OB -+S fi 71
- n n-

wp(f,q) 30 do B1-+S1□ ... 0B -+S od 72 - n n-
pAp' 30 beg x:S end 73

~· 30 x:=x' (B) .Q 74

true 34 rep x/y.Q:S per 75

false 34 beg x/y.Q:S per 75

skip 34,68

Abort statement

abstract data space

abstract data type

abstract vari.able

abstraction

abstraction function

inference rules

operational

representational

transformation rules

algorithmic logic

antisymmetric

approximation

assertion

transformation rules

assignment

assignment statement

finite nondeterministic

assignment

V-assignment

atomic description

axiom of disjunction

•axioms of Lw 1w

Block

bound occurrence

bound variable

bounded nondeterminism

Choice

nondeterministic

possible

completeness

of Lw1w

of refinement rule

component of description

INDEX OF TERMS

68

62

67

52,80

75

62

107

60

54,62

99

40

19

20

57,68

92

69

56,69

69

10

16

13

12

73

9

10

26

16

23

13

42

18

composition

concrete invariant

constant symbol

constant variable

continuity of weakest

preconditions

control structure

of descriptions

of program descriptions

of state transformations

·transformation rules

correctness

of implementation

of refinement

of transformation rules

total

corresponding marked variable

Data space

abstract

concrete

data type

deduction theorem

description

atomic

components

finite

legal

program descriptions

replacements

semantics

syntax

disjunction

axiom

inference rule

distinct variables

115

16,70

62

8

46

45

16

70

20

96

84

27

59

28

67

62

62

67

13,14

16

18

26,45

18

67

47

18

16

13

13

10

116

dynamic logic

Empty list

entry condition

equivalence

in a structure

proof rule

relation

strong

errors

exit condition

expansion

of language

of structure

expressibility of weakest

preconditions

extension of function

Final space

finite description

finite in /:,

finite nondeterministic

assignment

formula

holds in structure

syntax

value of

free

for variable

occurrence of variable

variable

function symbol

Guarded commands

Implementation

initial space

40

15

61

29

42

19

29

56

61

8

11

39

15

18

26,45

45

69

11

9

11

10

9

9

8

74

84

18

infinitary logic Lw 1w

axioms

completeness

inference rules

language

proofs

validity

invariant

program invariant

concrete invariant

iteration

in descriptions

in program descriptions

induction rule

nondeterministic

Legal description

legal initial space

list

local variables

logical symbols

Marked variable

model

Nondeterminism

bounded

nondeterministic

assignment

choice

iteration

programs

selection

non-logical symbols

Operational abstraction

optimizing transformations

7

12

13

12

8

12,14

11

52,86

62

16

72

44

72

18

18

15

73

8

67

11

19

26

69

16

72

28

71

8

60

54

Partial order

possible choice

predicate

on set

state predicate

symbol

pre-order

program

description

specification

transformation rule

transfonnation system

variable

proper state

provable

Refinement

correct refinement

proof rule

step

stepwise refinement

reflexive

replacement

in context

in descriptions

theorem

representational

19

23

10

19

8

19

74

67

74

59

2

67

19

12

27

42

1

1

19

57

47

49

abstraction 54,62

Safe program development 66

selection 16

semantic consequence 11

sentence 10

simulation between programs 67

skip statement 68

state 16

proper state 19

predicate 19

space

transfonnation

undefined state

strong equivalence

strong termination

structure

symmetric

Tenn

value of

termination

strong

weak

theorem

top-down development

total correctness

transformation rules

for abstractions

for assertions

for control structures

transitive

truth value

Undefined state

V-assignment

valid

value

of tenn

of fonnula

variable

abstract

bound

distinct variables

free

free for variable

is constant

marked

117

19

16,19

19

29

24,25

10

19

8

10

24

24

13

54

28

99

92

96

19

10

19

10

11

10

10

8

52,80

10

10

9

10

46

67

118

Weakest preconditions

properties

weak termination

30,35

45

24

TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

(An asterisk before the MCT number indicates that the tract is under prep
aration).

A leaflet containing an order form and abstracts of all publications men
tioned below is available at the Mathematisch Centrum, Kruislaan 413,
1098 SJ Amsterdam, The Netherlands. Orders should be sent to the same
address.

MCT T. VAN DER WALT, Fixed and almost fixed points, 1963.
ISBN 90 6196 002 9.

MCT 2 A. R. BLOEMENA, Sa:mp ling from a graph, 1964. ISBN 90 61 96 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generaliz~d Markovian decision processes, part II:
Probabilistic background, 1964. ISBN 90 6196 005 3.

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision
processes, Applications, 1970. ISBN 90 6196 051 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1.

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964.
ISBN 90 6196 007 X.

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964.
ISBN 90 6196 008 8.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.

MCT 10 E.M. DE JAGER, Applications of distrubutions in mathematical physics,
1964. ISBN 90 6196 010 X.

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964.
ISBN 90 6196 Oil 8.

MCT 12 J .A.Th.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965.
ISBN 90 6196 013 4.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced
by MCT 54.

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics,
1966. ISBN 90 6196 020 7.

MCT 15 R. DOORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

MCT 16 J.W. DE BAKKER, Formal definition of programming languages with an
application to the definition of ALGOL 60, 1967.
ISBN 90 6196 022 3.

MCT 17 R.P. VANDERIET, Forrrrula manipulation in ALGOL 60, part lj·l968.
ISBN 90 6196 025 8.

MCT 18 R.P. VANDERIET, Forrrrula manipulation in ALGOL 60, part 2, 1968.
ISBN 90 6196 038 X.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial
differential equations, 1968. ISBN 90 6196 027 4.

MCT 21 E. WATTEL, The compactness operator in set theory and topology, 1968.
ISBN 90 6196 028 2.

MCT 22 T.J. DEKKER, ALGOL 60 procedures in numerical algebra, part 1, 1968.
ISBN 90 6196 029 O. -

MCT 23 T. J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in numerical algebra,
part 2, 1968. ISBN 90 6196 _030 4.

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6.

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective
.geometry, 1969. I?BN 90 6196 039 8.

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968.
ISBN 90 6196 031 2.

MCT 27 EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969.
ISBN 90 6196 040 I.

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969.
ISBN 90 6196 041 X.

MCT 29 J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8.

MCT 30 H. BRANDT CORSTIUS, Exercises in computational linguistics, 1970.
ISBN 90 6196 052 5,

MCT 31 W. MOLENAAR, Approximations to the Poisson, binomial and hypergeometric
distribution functions, 1970. ISBN 90 6196 053 3.

MCT 32 L. DE HAAN, On regular variation and its application to the weak con
vergence of sample extremes, 1970. ISBN 90 6196 054 I.

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing and
related topics, 1970. ISBN 90 6196 061 4.

MCT 34 I. JUHASZ, A. VERBEEK & N.S. KROONENBERG, Cardinal functions in
topology, 1971. ISBN 90 6196 062 2.

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 O.

MCT 36 J. GRASMAN, On the birth of boundary layers, 197 I. ISBN 90 6196 064 9.

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DUIJVESTIJN, E.W. DIJKSTRA,
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
ARETZ, W.L. VANDERPOEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES &
G. ZOUTENDIJK, MC-25 Informatica Symposium 1971.
ISBN 90 6196 065 7.

MCT 38 W.A. VERLOREN VAN THEMAAT, Automatic analysis of Dutch compound
words, 1971. ISBN 90 6196 073 8.

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6.

MCT 40 H.C. TIJMS, Analysis of (s,SJ inventory models, 1972.
ISBN 90 6196 075 4.

MCT 41 A. VERBEEK, Superextensions of topological spaces, 1972.
ISBN 90 6196 076 2.

MCT 42 W. VERVAAT, Success epochs in Bernoulli trials (with applications in
number theory), 1972. ISBN 90 6196 077 O.

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence,
1973. ISBN 90 6196 081 9.

MCT 44 H. BART, Meromorphic operator ·valued functions, 1973.
ISBN 90 6196 082 7.

MCT 45 A.A. BALKEMA, Monotone transformations and limit laws 1973.
ISBN 90 6196 083 5.

MCT 46 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipu
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3.

MCT 47 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipu
lation systems, part 2: The compiler, 1973. ISBN 90 6196 085 I.

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL
60 compiler in ALGOL 60, Text of the MC-compiler for the
EL-XB, 1973. ISBN 90 6196 086 X.

MCT 49 H. KOK, Connected orderable spaces, 1974. ISBN 90 6196 088 6.

MCT 50 A. VAN WIJNGAARDEN, B,J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER,
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER
(Eds), Revised report on the algorithmic language ALGOL 68,
1976. ISBN 90 6196 089 4.

MCT 51 A. HORDIJK, Dynamic programming and Markov potential theory, 1974.
ISBN 90 6196 095 9.

MCT 52 P.C. BAAYEN (ed.), Topological structures, 1974. ISBN 90 6196 096 7.

MCT 53 M.J. FABER, Metrizability in generalized ordered spaces, 1974.
ISBN 90 6196 097 5.

MCT 54 H.A. LAUWERIER, Asymptotic analysis, part 1, 1974. ISBN 90 6196 098 3.

MCT 55 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 1: Theory of
designs, finite geometry and coding theory, 1974.
ISBN 90 6196 099 I.

MCT 56 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 2: Graph
theory, foundations, partitions and combinatorial geometry,
1974. ISBN 90 6196 100 9.

MCT 57 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 3: Combina
torial group theory, 1974. ISBN 90 6196 101 7.

MCT 58 W. ALBERS, Asymptotic expansions and the defiaienay aonaept in sta
tistics, 1975. ISBN 90 6196 102 5.

MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

MCT 60 F. GOBEL, Queueing models involving buffers, 1975. ISBN 90 6 I 96 I 08 4.

*MCT 61 P. VAN EMDE BOAS, Abstract resource-bound classes, part 1,
ISBN 90 6196 109 2.

*MCT 62 P. VAN EMDE BOAS, Abstract resource-bound classes, part 2,
ISBN 90 6196 110 6.

MCT 63 J.W. DE BAKKER (ed.), Foundations of computer saienae, 1975.
ISBN 90 6196 111 4.

MCT 64 W.J. DE SCHIPPER, Symmetric closed categories, 1975. ISBN 90 6196 112 2.

MCT 65 J. DE VRIES, Topological transformation groups 1 A aategoriaal approach~
1975. ISBN 90 6196 113 0.

MCT 66 H.G.J. PIJLS, Locally convex algebras in spectral theory and eigen
function expansions, 1976. ISBN 90 6196 114 9.

*MCT 67 H.A. LAUWERIER, Asymptptia analysis, part 2, ISBN 90 6196 119 X.

MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of
second order, 1976. ISBN 90 6196 120 3.

MCT 69 J.K. LENSTRA, Sequencing by enumerative methods, 1977.
ISBN 90 6196 125 4.

MCT 70 W.P. DE ROEVER JR., Recursive program schemes: Semantics and proof
theory, 1976. ISBN 90 6196 127 O.

MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976.
ISBN 90 6196 129 7.

MCT 72 J.K.M. JANSEN, Simple periodic and nonperiodia Lame functions and
their applications in the theory of aoniaal waveguides, 1977.
ISBN 90 6196 130 0.

MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistia logia, 1979.
ISBN 90 6196 122 X.

HCT 74 H.J.J. TE RIELE, A theoretiaal and computational study of generalized
aliquot sequences, 1976. ISBN 90 6196 131 9.

MCT 75 A.E. BROUWER, Treelike spaces and related aonneated topological
spaces, 1977. ISBN 90 6196 132 7.

MCT 76 M. REM, Associations and the closure statement, 1976.
ISBN 90 6196 135 1.

MCT 77 W.C.M. KALLENBERG, Asymptotic optimality of likelihood ratio tests
in exponential families, 1977. ISBN 90 6196 134 3.

MCT 78 E. DEJONGE & A.C.M. VAN ROOIJ, Introduction to Riesz spaces, 1977.
ISBN 90 6196 133 5.

MCT 79 M.C.A. VAN ZUIJLEN, Empirical distributions and rank statistics,
1977. ISBN 90 6196 145 9.

MCT 80 P.W. HEMKER, A numerical study of stiff two-point bounda.ry problems,
1977. ISBN 90 6196 146 7.

MCT 81 K.R. APT & J.W. DE BAKKER (Eds), Foundations of computer science II,
part 1, 1976. ISBN 90 6196 140 8.

MCT 82 K.R. APT & J.W. DE BAKKER (Eds), Foundations of computer science II,
part 2, 1976. ISBN 90 6196 141 6.

MCT 83 L. S. BENTHEM JUTTING, Cheeking Landau's "GPUndlagen" in the
AUTOMATH system, 1979. ISBN 90 6196 147 5.

MCT 84 H.L.L. BUSARD, The translation of the elements of Euclid from the
Arabie into Latin by Hewzann of Carinthia (?) books vii-xii,
1977, ISBN 90 6196 148 3.

MCT 85 J. VAN MILL, Supereompaetness and Wallman spaces, 1977.
ISBN 90 6196 151 3.

MCT 86 S.G. VANDERMEULEN & M. VELDHORST,Torrix I, A programming system
for operations on vectors and matrices over aPbitrary fields
and of variable size. 1978. ISBN 90 6196 152 1.

*MCT 87 S.G. VAN DER MEULEN & M. VELDHORST, Torri:i: II,
ISBN 90 6196 153 X.

MCT 88 A. SCHRIJVER, Matroids and linking systems, 1977.
ISBN 90 6196 154 8.

MCT 89 J.W. DE ROEVER, Complex Fourier transfo!'mation and analytic functionals
with unbounded ea!'riers, 1978. ISBN 90 6196 155 6.

*MCT 90 L,P.J. GROENEWEGEN, Cha!'aeterization of optimal strategies in dynamic
games, • ISBN 90 6196 156 4.

MCT 91 J.M. GEYSEL, Transcendence in fields of positive eharaeteristie,
1979, ISBN 90 6196 157 2.

MCT 92 P.J. WEEDA, Finite generalized MaPkov programming, 1979.
ISBN 90 6196 158 0.

MCT 93 H.C. TIJMS & J. WESSELS (eds), MaPkov decision theocy, 1977.
ISBN 90 6196 160 2.

MCT 94 A. BIJLSMA, Simultaneous approximations in transcendental number
theocy, 1978. ISBN 90 6196 162 9,

MCT 95 K.M. VAN HEE, Bayesian control of MaPkov chains, 1978.
ISBN 90 6196 163 7.

MCT 96 P.M.B. VITANYI, Lindenmayer systems: StX'Ueture, languages, and
growth functions, 1980. ISBN 90 6196 164 5.

*MCT 97 A. FEDERGRUEN, MaPkovian control problems; functional equations
and algorithms, . ISBN 90 6196 165 3.

MCT 98 R. GEEL, SingulaP pertUPbations of hyperbolic type, 1978.
ISBN 90 6196 166 I.

MCT 99 J.K. LENSTRA, A.H.G. RINNOOY KAN & P. VAN EMDE BOAS, Interfaees
between eomputer seience and operations research, 1978.
ISBN 90 6196 170 X.

MCT 100 P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (Eds), Proceedings
bicentennial congress of the Wiskundig Genootsehap, part 1, 1979.
ISBN 90 6196 168 8.

MCT 101 P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (Eds), Proceedings
bicentennial congress of the Wiskundig Genootschap, part 2, 1979.
ISBN 90 6196 169 6.

MCT 102 D. VAN DULST, Reflexive and superreflexive Banach spaces, 1978.
ISBN 90 6196 171 8.

MCT 103 K. VAN HARN, Classifying infinitely divisible distributions by
functional equations, 1978. ISBN 90 6196 172 6.

MCT 104 J.M. VAN WOUWE, Go-spaees and generalizations of metrizability, 1979. ·
ISBN 90 6196 173 4.

*MCT 105 R. HELMERS, Edgeworth expansions.for linear eombinations of order
statistics, . ISBN 90 6196 174 2.

MCT 106 A. SCHRIJVER (Ed.), Packing and covering in combinatorics, 1979.
ISBN 90 6196 180 7.

MCT 107 c. DEN HEIJER, The numerical solution of nonlinear operator
equations by imbedding methods, 1979. ISBN 90 6196 175 0.

MCT 108 J.W. DE BAKKER & J. VAN LEEUWEN (Eds), Foundations of eomputer
science III, part I, 1979. ISBN 90 6196 176 9.

MCT 109 J.W. DE BAKKER & J. VAN LEEUWEN (Eds), Foundations of computer
science III, part 2, 1979. ISBN 90 6196 177 7.

MCT 110 J.C. VAN VLIET, ALGOL 68 transput, part I: Historieal review and
discussion of the implementation model, 1979. ISBN 90 6196 178 5.

MCT 111 J.C. VAN VLIET, ALGOL 68 transput, part II: An implementation model,
1979. ISBN 90 6196 179 3.

MCT 112 H.C.P. BERBEE, Random walks with stationary inerements and renewal
theory, 1979. ISBN 90 6196 182 3,

HCT 113 T.A.B. SNIJDERS, Asymptotic optimality theory for testing problems
with restricted alternatives, 1979. ISBN 90 6196 183 I.

MCT 114 A.J.E.M. JANSSEN, Application of the Wigner distribution to harmonic
analysis of generalized stoehastic proeesses, 1979.
ISBN 90 6196 184 X.

MCT 115 P.C. BAAYEN & J. VAN MILL (Eds), Topologieal Struetures II, part I,
1979. ISBN 90 6196 185 5.

MCT 116 P.C. BAAYEN & J. VAN MILL (Eds), Topologieal Struetures II, part 2,
1979. ISBN 90 6196 186 6.

1·1CT 117 P.J .M. KALLENBERG, Branehing proeesses with continuous state spaee,
1979. ISBN 90 6196 188 2.

MCT 118 P. GROENEllOOM, Large deviations and asymptotic efficiencies, 1980.
ISBN 90 6196 190 4.

MCT 119 F.J. PETERS, Sparse matrices and substructures, with a novel imple
mentation of finite element algorithms, 1980. ISBN 90 6196 192 O.

MCT 120 W.P.M. DE RUYTER, On the asymptotic analysis of large-scale ocean
circulation, 1980. ISBN 90 6196 192 9.

MCT 121 W.H. HAEMERS, Eigenvalue techniques in design and graph theory, 1980.
ISBN 90 6196 194 7.

MCT 122 J.C.P. BUS, Numerical solution of systems of nonlinear equations,
1980. ISBN 90 6196 195 5.

MCT 123 I. YUHASZ, Cardinal functions in topology - ten years later, 1980.
ISBN 90 6196 196 3.

MCT 124 R.D. GILL, Censoring and stochastic integrals, 1980.
ISBN 90 6196 197 1.

MCT 125 R. EISING, 2-D systems, an algebraic approach, 1980.
ISBN 90 6196 198 X. .

MCT 126 G. VAN DER HOEK, Reduction methods in nonlinear prograll'D'fling, 1980.
ISBN 90 6196 199 8.

MCT 127 J.W. KLOP, Combinatory reduction systems, 1980. ISBN 90 6196 200 5.

HCT 128 A.J.J. TALMAN, Variable dimension fixed point algorithms and
triangulations, 1980. ISBN 90 6196 201 3.

MCT 129 G. VANDERLAAN, Simplicial fixed point algorithms, 1980.
ISBN 90 6196 202 1.

MCT 130 P.J.W. TAN HAGEN et al., ILP Intermediate language for pictures,
1980. ISBN-90 6196 204 8.

MCT I 3 I R. J. R. BACK, Correctness preserving progrcun i•efinements:
Proof theory and applications, 1980. ISBN 90 6196 207 2.

MCT 132 H.M. MULDER, The interval function of a graph, 1980.
ISBN 90 6196 208 O.

MCT 133 C.A.J. KLASSEN, Statistical performance of location estimators, 1981.
ISBN 90 6196 209 9.

(

