

PJunted a.:t .the Ma:thematic.al. Cen.tlte, 413 KM,u..laan, Arrv.,.teJidam.

The Ma.:thematic.al. Cen.tlte , 6oun.ded .the 11-.th 06 FeblLua,ty 1946, ,u., a. n.on.
p1Lo6U w.tU:u,U.,on a,un,i,ng a.,t .the plLOmo:tlon of, pwie ma..thematiC!i a.nd ill,
a.ppU,c.ationJ... U ,u., J..ponMILed by .the. Ne..theJr1.a.n.ci6 Gove/1.nment .th/Lough .the.
Ne.theJr1.a.n.ci6 0Jr.ga.niza;ti..on. 6 Oft .the. Adva.nc.emen.t o 6 PU11.e. Ru ea.JLc.h (Z .W. 0.) •

MATHEMATICAL CENTRE TRACTS 130

ILP
INTERMEDIATE LANGUAGE FOR PICTURES

P.J.W. ten HAGEN, T. HAGEN,

P. KLINT, H. NOOT,

H.J. SINT & A.H. VEEN

MATHEMATISCH CENTRUM AMSTERDAM 1980

1980 Mathematics subject classification: 68Ko5

ACM-Computing Reviews-category: 4.22, 4.41, 8.2

ISBN 90 6196 204 8

CONTENTS

1. INTRODUCTION •••••••••••••••••••• , , , •••• , ••• , •••••• , •••• , • , , , 3
1.1. Final version (1980) 3
1.2. The kernel of an Interactive Graphics System •••••••••••••• 4
1.3. The design of ILP .. , 5
1. 4. The description of ILP 8
1. 5. ILP and the graphics standards •••••••••••••••••••••••••• , • 9
2. AN OVERVIEW OF ILP •••••••••••••••••••••• , ••• , , , , , • , , • • • • • • • 10
2.1. Introduction ... 10
2.2. Picture elements ... 10
2.3. Attribute classes .. 12
2.4. Data structure ... 14
2.4.1. Pure pictures ••••••••••••••••••••.••••••• , •• , •••• , , , •••• 16
2.4.2. Pure attribute graphs and picture nodes •••••••••••••••• 19
2.4.3. Combining attributes into a state •••••••••••••••••••••• 22
2.5. Default attribute, matches and prefixes •••••••••••••••••• 25
2.6. Subspace •••••••••••• , ••••••••••••••••••• , •••••••• , ••••••• 27
2. 7. Miscellaneous topics • 30
3. THE SYNTAX AND SEMANTICS OF ILP • 32
3.1. Overall Structure ,. 32
3.2. Graph Structure .. 34
3.2.1. Picture nodes .. 35
3.2.2. Attribute nodes .. 36
3. 2. 3. Tr aver sing process • 37
3.2.3.1. Basic rules .. 37
3.2.3.2. Pictures and picture elements ··•·•···••·•·•···••·•··· 38
3. 3. Dimension and subspace ••••••••••••••••••••••••••••••••••• 39
3.3.1. Dimension •• 39
3.3.2. Subspaces •• 42
3.4. Attributes ••• 43
3.4.1. Decomposition of the picture tree •••••••••••••••••••••• 45
3.4.2. Attribute mixing 47
3.4.2.1. Simplification of attributes ••••••••••••••••••••••••• 47
3.4.2.2 Mixing Rule ••• 48
3.4.3 States .. 49
3.4.4. Transformations •• 49
3.4.4,1. Rotation ••• 52
3.4.4.2. Scale •• 54
3.4.4.3. Translate •• 54
3.4.4.4. Matrix ••• 54
3.4.4.5. Projection ... 55
3.4.4.6. Affine ••• 56
3.4.4. 7. Homogeneous matrix ••••••••••••••••••••••••••••••••••• 57
3.4.4.8. Window and viewport 58
3.4.4.9 Text quality · 59
3.4.4.10. Subspace and transformations •••••••••••••••••••••••• 60
3.4.5. Style functions •• 60
3,4.5.1. Introduction •··•··•·••••·••••··•·•·····•·•··•·•·••·•· 60

1

2

3.4.5.2. Linestyle .. 61
3.4.5.2.1. Period definition ••••.•••••••••••••••••••••••••••.• 62
3.4.5.2.2. Map definition 62
3.4.5.2.3. Thickness ••••••••••••••••••••••••••••••••.••••••••• 63
3.4.5.3. Typographic style 63
3.4.5.4. Point style .. 64
3.4.6. Pen functions .. 64
3.4.6.1. Contrast ... 64
3.4.6.2. Intensity .••• 65
3.4.6.3. Colour···•••··•••••••••·•···••·········•············· 66
3. 4. 7. Detection ••• , ••••••••.•• , ••••••••••.••••••••••••••••••• 66
3.4.8. Coordinate mode .. 71
3.4.9. Control .. 71
3.4.10. Visibility .. 72
3.4.11. Attribute matches ·••••·•····•••··•··••·••···•·····••·• 73
3.4.12. The default attribute 74
3. 5. Picture Elements ... 74
3.5.1. Coordinate type .. 75
3. 5.2. Text ... 78
3. 5.3. Generator ••••••••.••••••••••••••••••••••••••••••••••••• 79
3.5.3.1. Symbol ... 80
3.5.3.2. Curve and template , 81
3.5.3.2.1. Curve .•••••••••••••••••••••••.••••••••••••••••••••• 81
3.5.3.2.2. Template •••••••••••••••••••.••••••••••••••••••••••• 83
4. DESIGN GOALS AND EVALUATION 85
4.1. Design goals ••••••••••••••••••••.•••••••••••••••••••••••• 85
4. 2. Omissions ••••••••••• , ••••••••••••••••••••••••••••••.••••• 87
4.3. Evaluation ••••••••••••••••••••••••••••••••••••••.••••••• , 87
REFERENCES •••••••••••• , .••••••••••••••••••••••••• , ••••••••• , • • 89
Appendix 1 Syntax ••••••••••••. , ••••••••••••••••••••••••• , • • • • 91
Appendix 2 Lexical units 101
Appendix 3 An example of an ILP program ••••••••••••••••••••• 103
INDEX • • • . • I 08

3

1. INTRODUCTION

1.1. Final version (1980)

This second edition contains the definition of ILP [14] and as such
replaces and invalidates the definition given in the preliminary version.
As foreseen, implementing ILP and playing with the implementation
revealed deficiencies in the original design, leading to changes in the
definition. Just as we preferred not to justify the chosen constructs in
the original report, we now prefer not to explain in great detail our
reasons to change some of them. A few words_can be said here though.

Changes fall into three categories:

1. The original construct turned out to be insufficient.

2. The original construct proved to be impractical.

3. The original definition of the construct turned out to be incon
sistent with other language constructs.

Changes have been made to the following constructs, for the reasons
denoted between parentheses: LINE (2), text quality (1 and 2), pen posi
tion (3), pPojeetion (2) and the effect of the prefix ABS and of inhibit
ing attribute_matehes within subspaees (2 and 3).

Besides changing syntax and/or semantics of language constructs, we
sometimes changed our way of explaining them. Improved insight due to
experience gained during the implementation and effect of reviewing a
text after a considerable amount of time revealed the clumsiness or
inadequacy of some of our original semantic descriptions. Especially the
part on attribute mixing (formerly attribute concatenation) was
thoroughly revised and reduced to a fifth of its original length.

We will conclude this introduction with some more general remarks
about the state of our graphics work. The embedding of ILP into a high
level language (ALGOL68) was completed in 1978 [SJ. Ideas about I/0 sym
metry based on ILP as a representation language were expressed in [6 J.
An input module based on the detection mechanism is being developed; some
underlying concepts are described in [7]. We abandoned our original, too
optimistic, plan of developing a full-fledged, well documented, user
oriented graphics system. ILP itself, ALGOL68G-0, and the input module
do not yet make up such a system. Two groups of people are essential to
complete such an effort:

4

A group of people who can afford to spend the bulk of their time
writing programs (e.g. to connect other drawing machines) and docu
mentation.

A bunch of critical, non-specialist users who are willing to work
with an experimental system and to keep complaining about anything
they find hard to understand or awkward to use.

The nature of the Mathematical Centre (an institute for more or less
fundamental research without regular students) is such that none of these
groups is available. We feel however that the work done sofar has given
new insights in the design methodology of graphics systems.

1.2. The kernel of an Interactive Graphics_System

The language defined in this report is a special purpose data
description language. The restrictions implied by the term "special pur
pose" are twofold. First of all, the language is only intended for the
description of pictures*). Every construction in the language is justi
fied by the requirement that it should cover a part of this descriptive
function. Useful constructs that _might have been added because of its
function as a programming language have been omitted. The second res
triction is derived from the fact that the language is an 'intermediate'
language. This means that its second function is to fill in the gap that
exists between a picture description in the form of instructions for a
physical drawing machine on the one hand and a picture description as
part of a more sophisticated language or data structure for an applica
tion area on the other hand. The intermediate language may be a low
level language in the sense that for each feature required the most sim
ple constructions can be chosen. All these aspects are emphasized by the
name Intermediate Language for Pictures or ILP for short,

The definition and implementation of the language constitute the
design and implementation of the kernel of an interactive graphics sys
tem. The design goal of this system has been published in [4]. Although
practical limitations have restricted the scope and goals of this
research, we still believe that the basic philosophy is sound and that it
may lead to the design of better structured graphics systems. In this
philosophy, ILP plays a key role in all graphics system facilities:

*) A picture is defined as a description of some object such that a visi
ble image of that object can be obtained from this description in a uni
form way. The description may include both geometrical (shape, size) and
non-geometrical (colour, weight) properties of the object.

5

A high level graphical language is obtained by embedding ILP in an
existing high level general purpose programming language.

The control of every drawing machine in the graphics system is
defined by a conversion between ILP code and device code. This is
true for input as well as output. In principle, full symmetry
between input and output can be obtained.

A picture file system is defined and organized as a library for ILP
programs in which the latter can be stored, retrieved and classi
fied.

All other graphics facilities can be defined as transformations of
ILP programs.

All these modules (and others that might be added) greatly profit
from the conceptual uniformity provided by ILP.

1.3. The design of ILP

A further function of ILP, whi,ch as such is only implicitly present
in a graphics system, is that it provides a means of communicating about
the graphics system during the design phase, To support this communica
tion, a symbolic notation for ILP programs has been introduced, which
makes ILP look like an ordinary programming language. The success of
this symbolic code was so convincing that it was decided to use the same.
code for the definition of ILP in this report. Moreover, each module of
the system is implemented in such a way that it is able to accept and
produce symbolic ILP code. in which it communicates through symbolic ILP
code. This constitutes a very useful testing facility and also proves
that conceptual uniformity has been preserved,

In the period when the designers decided to work according to the
scheme explained above, they assumed overly optimistic that either an
existing language or a collection of features taken from existing
languages could be used for this purpose. Neither turned out to be the
case. Most existing languages suffered from the fact that they had been
forced into the frame of a so-called FORTRAN interface. Since the only
two means of expression here are subroutine identifier and simple parame
ters, designers of these packages always argue that the number of iden
tifiers and parameters should be kept small, and above all that the
interrelation between function calls must be exceedingly simple, because
each structuring function (like opening and closing brackets) requires
subroutine calls scattered throughout the application program.

The effect of this type of limitations is that everybody chooses a
subset of desired features, No two subsets have the same representation
in terms of identifiers and parameters and moreover all subsets differ
from each other, and all are declared to be the best of all possible

6

choices.

Given this state of affairs, the designers decided to adhere to the
principle that if a feature would be included it would be included com
pletely. One of the consequences is that a FORTRAN subroutine library is
most unlikely to be a suitable representation of ILP.

More interesting material was provided by graphic languages that
support data structures. In these cases efficiency of problem represen
tation plays a major role. Complicated data structures for graphics are
justified by the fact that the application program can use the same, data
structure. In this way the problem of representing graphical data struc
tures is generalized towards structuring associative data or towards
hierarchies of cyclical data. This type of languages cancels itself out
for the bulk of the moderate applications of computer graphics. From
this observation the designers drew the conclusion that it made sense to
try to characterize the complexity of purely graphical information. The
best way to do this seemed to define a complete graphical language and to
find the simplest representation for it,

The language ILP deals with four major facets of graphical informa
tion:

The elementary drawing actions.

Modifications of such drawing actions under control of state infor
mation.

Structuring (and combining) states and actions.

Specification of entry points for external references on which
interaction and association of non graphical data can be based.

As such ILP constitutes a so-called general purpose modelling system.

The elementary drawing actions must be understood as a means to
visualize elementary geometrical objects. Typical actions are to draw a
point, line, contour (closed polygon) and curve. Less typical but useful
is text. In fact the exclusive (exceptional) function of text has caused
a number of unsolved problems with respect to the orthogonality of the
design. Typical state information consists of transformations, coordi
nate mode (absolute or incremental) and style functions (line style,
typographic style for text etc.). All non-geometrical aspects have been
isolated from the actions and are controlled by independent state infor
mation. For instance, invisible moves that are used for positioning are
not considered as drawing actions. This type of information is entirely
included in the state. In so far as invisible moves can be found among
the drawing actions, they represent part of a geometrical object (e.g.
invisible line or invisible curve). Here the prefix "invisible" is state
information.

7

A second important consequence of the distinction between geometri
cal and non-geometrical information is, that an exact specification is
possible of the effect on the pen position of both actions and the state.

The state information follows two important principles, A complete
state vector can be split in a number of subvectors which are all manipu
lated independently, i.e. a change of one subvector never has conse
quences for the effect of the other subvectors. The state manipulations
are chosen in such a way that a new state can be obtained from an exist
ing one by respecifying or adjusting a minimal number of values. The
second important principle is that all independent subvectors in the
state have the same basic structure. Moreover, the same basic manipula
tions can be applied to all of them. In other words a uniform scheme has
been found that allows a large variety of properties to be associated
with geometrical information, The basic manipulations can produce the
right values as well as the right structure.

The modifying effect of state information
fied for each subvector separately, provided
obeyed which define (as far as necessary) the
subvectors must be applied.

on actions can be speci
that priority rules are

order in which the state

The simplicity of the semantic primitives and the limited ways in
which they can be combined have turned out to impose surprisingly few
restrictions on the expressive power of ILP. In order to make this clear
we have, throughout the report, put a strong emphasis on such restric
tions. Especially the criterion that only complete features should be
included was (almost) never violated.

The structuring of ILP data is obtained by grouping and combining.
Grouping means that a number of similar constructions is put together as
a unit on a higher level in the hierarchy, Combining means that two dif
ferent constructs are put together in a unit, At the level of elementary
actions, the grouping of sequences of similar actions is implicit. At
the level of complete pictures, one or more of them can be put together
for the purpose of multiple referencing (subpictures) or as a conceptual
unit (embracing). Both forms of grouping can be found in the representa
tion. Moreover, grouping itself can be specified without having elemen
tary actions. In this way, the structure skeleton of a picture can be
specified. Combining always involves state information on the one hand
and actions on the other. Combining is used for setting up the right
state.

The facilities for structuring are not allowed to produce cyclic
structures. This would introduce the need for conditions in ILP, that
break the cycle. This is an example of excluding features that are con
venient for programming but not fundamental for picture representation.

All references in ILP have the same form and are represented by a
symbolic name. All entry points for external references are represented

8

in the same way.

1.4. The description of ILP

ILP is described in chapters 2 and 3. Chapter 2 gives an introduc
tion to the basic concepts of ILP by means of simple examples. The func
tion of chapter 2 is to provide an overview of ILP before plunging into
all the syntactic and semantic details presented in chapter 3. Obviously
chapter 3 is the most important one. Here, indeed everything is brought
together that concerns the basic function of ILP: the representation of
pictures.

Two interesting subjects concerning ILP have been left out of
chapter 3. First of all the justification of most constructions of ILP
is omitted. In most cases the justification can be deduced from the fact
that it contributes to the representation of a particular construct.
Moreover, it was felt important to concentrate on a precise definition
leaving aside all matters that make the definition more complicated (like
for instance, defining alternative constructions). Secondly the role of
ILP in the various modules of the graphics system is not further
explained.

The reader of chapter 3 will notice that some constructions of ILP
have been specified in great detail and an attempt has been made to be
very precise about them. Other constructions are presented in a more or
less vague way. The detailed descriptions concern new or for ILP impor
tant constructions. The less precise definitions have been used to avoid
lengthy descriptions of what is intuitively clear (e.g. the conversion of
ILP primitives to, say, a plot file). The reason for being less precise
(or incomplete) is in most cases given in the form of remarks, which as
such are not part of the definition.

ILP can be extended in two directions. New primitive actions and
state information can be added to cover the representation of other
classes of pictures (e.g. grey scales). New constructions for structur
ing and building hierarchies of states (vectors of vectors) can be intro
duced to allow all kinds of manipulation (e.g. movies). For both type of
extensions ILP must preferably constitute the kernel. Because in that
case ILP can close the gap between "classical" and "modern" computer
graphics.

To facilitate reading of the remainder we now give an overview of
notational conventions throughout the report. Most basic concepts of ILP
are at the same time non-terminals of the syntax. They are denoted in a
special font, e.g.: non_ter'TTlinaZ. Basic concepts that are not a syntac
tical category are underlined at first (and defining) occurrence. Syn
tactic terminals are denoted in capital letters, e.g. TERMINAL. There is
an index that references the occurrences of most concepts. Footnotes and
REMARKs are used to add comments to the text in places where it is

9

important to separate the essential from the explanatory.

On the primitive level of ILP the designers have hardly attempted to
introduce new concepts in picture description, It is in the field of
structuring graphical information that a new, more uniform framework is
introduced. This framework, it is hoped, unites the large variety of
elementary constructions needed for picture description.

1.5. ILP and the graphics standards

By the end of 1976 we became acquainted with various groups working
on graphics standards. Ever since 1977 members of the ILP-team have par
ticipated in the attempts of defining an international graphics standard.
Although ILP is not a CORE-like system and although it aims at future
graphics facilities rather than adhering to current common practice there
has been some mutual influence.

First of all the ILP designers have always supported including input
functions in the standard which are more sophisticated than the five log
ical devices, for instance, as presented in the GSPC'77 proposal. Since
then a lot of discussion about input has taken place. Among other
things, IFIP WGS. 2' s graphics subcommittee has organised a workshop on
"Methodology of Interaction" [8], the so-called SeillacII workshop, On
the one hand, in current standards proposals [9] and [10] richer input
functions are included. On the other hand, we believe, it became clear at
the SeillacII workshop, that putting too high demands on a standard with
respect to interaction is still premature.

The revised version of ILP has benefitted from current standards
proposals especially with respect to the treatment of TEXT. The prelim
inary version of ILP was quite vague here. The definition of ILP TEXT in
this report is greatly influenced by GSPC's 1979 CORE.

Recently it has become clear that as part of the standardisation
effort a so-called Graphics METAFILE will have to be defined. We believe
in retrospect that ILP can be characterised as a "very high level
METAFILE".

10

2. AN OVERVIEW OF ILP

1.1. Introduction

In this chapter, ILP will be presented in an informal way. The
chapter has a tutorial character and will heavily rely on short examples,
No attempt has been made to cover the subject exhaustively, Only aspects
that are characteristic of ILP and distinguish it from other graphics
languages get attention. In particular, standard concepts from computer
graphics (linear transformations, styles etc,) will not be discussed in
their own right. For these topics, we refer to the introductory texts
[1 J and [2 J.

In all cases where the examples leave some doubt about what is pre
cisely possible in ILP and what the exact semantics of ILP constructions
are, chapter 3, which contains the formal definitions, should provide the
answers.

All drawings in this chapter where produced by the ILP system on a
HRD-1 laser display/plotter.

2.2. Picture elements

Picture elements are language primitives, used to describe basic
drawing actions. They represent lines, points and the like, drawn in
some user-selectable Euclidean space of an arbitrary dimension, called
user space. How this space can be selected, will be described in 2.6 ••
Until then, in all examples a two-dimensional space, with orthogonal
coordinate axes, is assumed.

Example 1

PICT (2) exl
WITH { VISIBLE
DRAW {

FIXED

LINE([O,O
[0.5, OJ

POINT ([0 • 2 5 ,
} .

, [0.25 , o.5 l ,
,[0,0]);
o. 25 l >

A two dimensional picture (a picture that must be drawn in a plane)
is defined, having name exl. The dimension is specified by the number
"2" surrounded by parenthesis, immediately following keyword PICT. In
general, any positive integer may be used in this place,

11

The picture consists of three line segments and a point. All ele
ments of this picture are explicitly declared visible (by VISIBLE), The
use of FIXED causes all coordinate pairs [a , b] to be interpreted as
absolute positions in user space. (The other possibility will be dealt
with in 2.3,).

The essential elements in this example are the picture elements LINE
and POINT.

The picture element LINE states, that lines have to be drawn from
the first coordinate specified to the last one, If necessary, an invisi
ble move is generated to the first coordinate.

The picture element POINT says, that a point must be drawn at
(-0. 5,-1], In general, POINT too, can "have a number of coordinates as
its arguments,

The drawing defined by the program above looks like:

12

Here, as well as in the following examples, the coordinate axes are only
added for illustrative purposes. They are not normally part of ILP out
put.

Another ILP primitive is the picture element TEXT, Its use is shown
in example 2.

Example 2

PICT (2) ex2
WITH VISIBLE
DRAW

TEXT ("A" , " triangle") •

I
I

- - -,-A -er- i: ang-l-e- -
I

Here, the string "A" and "triangle" are drawn, starting again at the
untransformed pen position,

2.3. Attribute classes

We have already encountered pieces of ILP programs, enclosed between
the "brackets" WITH and DRAW, These program parts consisted of sequences
of attribute class elements, separated by semicolons. Attributes are
instrU111ents to influence the way in which a picture element is drawn, or
to associate non graphical information with it.

All attributes together, that are relevant for a particular picture
element, determine the so-called state of that element, This state
determines, what will actually happen, when that element is drawn,
Attributes are divided in attribute classes, each corresponding to a par
t.icular type of operation on picture elements. In the following, some

13

examples will be given on the attribute classes coordinate mode,
transformation and style.

The class coordinate mode can have either the value FIXED or FREE,
It operates on the coordinates of picture elements. In the case of
FIXED, coordinates denote absolute positions in user space, as illus
trated in example 1. When FREE is used, the coordinates denote incre
ments relative to the untransformed pen position. In that case also, the
first move is invisible,

Example 3

Replace in example 1 FIXED by FREE,

The resulting drawing is:

Note in particular, that only two visible lines are shown in this draw
ing, This is so, because an increment [0 , 0] represents a line of
zero length, which coincides with the end point of the second line.

14

Example 4

PICT (2) ex4
WITH {

DRAW

FIXED ;
CALE [0.1 , 0.1];
TRANSLATE [1, 0] ;
ROTATE -45 AROUND ([1,0])
PERIOD (50 , 25 , 25) ;
MAP (0.04 CONTINUE)
}

LINE ([0, 0] , [1 , 0] , [1 , 1] ,
[0,1 l, [o,o l)

The corresponding drawing is:

/

A square is drawn, rotated clockwise through 45 degrees, around its
lower right-hand corner. This square is translated 1 unit in the x
direction and O units in they-direction, and finally scaled to one tenth
of the original size in both directions. TRANSLATE, ROTATE, and SCALE
denote transformations. (Note that the rightmost transformation is
applied first!). PERIOD and MAP denote elements of the attribute class
style, they determine line style. In this case, the style pattern,
defined by PERIOD consists of a dash, a gap and again a dash, with
respective length of SO, 25 and 25 units. MAP specifies that the actual
length of this pattern in user space is 0.04, and that the pattern con
tinues from one line (element) to the next. The scale factor serves the
additional purpose of keeping all coordinates in user space within the
prescribed bounds ([-1,-1] to [+1,+1]). In section 2.6 a more convenient
mechanism wil be presented.

2.4. Data structure

ILP can be viewed as a language to describe data structures, which
in turn correspond to drawings.

15

An ILP data structure has the form of a directed acyclic graph. The
pictures and attributes correspond to nodes of the graph, the references
to pictures and attributes correspond to arcs. The acyclicity results
from the semantic rule, that ILP programs may not be recursive. The
graph can be converted into a tree, by making copies of all multiply
referenced nodes, and creating appropriate references to these new nodes.

Example 5

Suppose, an ILP graph has the form:

3

The corresponding tree looks like:

In this tree, 2' is a copy of node 2, 3' of 3, and 4'' and 4' of node 4.

The drawing represented by the tree, can be produced by a process
called elaboration. During this process, the tree is traversed in
preorder [3], which is recursively defined by:

16

Visit the root of the tree,

Traverse its descendant sub-trees in preorder. Descendants are
traversed one by one, starting with the leftmost subtree, then
proceeding to its rightmost neighbour and so on, until the rightmost
subtree has been traversed.

The nodes of the tree in example 5 are visited in the following order:

1 2 3 4 2' 3' 4' 4'',

At every node where, according to the ILP program some action must
take place (drawing, evaluating of attributes and updating the state,
subspace selection), this action is initiated by the elaboration process
when this node is encountered, Only a.t the picture leaves (representing
picture elements), drawing actions are performed.

In sections 2.4.1. till 2.4.3. these data structure aspects of ILP
will be elucidated with the help of some examples.

2.4.1. Pure pictures

Pure pictures correspond to subtrees (graphs) of the full ILP tree
(graph), They are characterized by the property that they do not contain
attributes. A pure picture can constitute a correct and complete ILP
program in which all attributes have default values. We will ignore
attributes for the moment_ and introduce some ILP concepts using pure pic
tures as examples.

Example 6

SUBPICT (2) pyrl
LINE ([0,0],[0.5,0.8],[1,0],[0,0]).

SUBPICT (2) pyr2
LINE ([-1,0],[-1.6,1.2],[-2.4,0],[-1,0]).

PICT (2) egypt
{ pyrl; LINE ([0,0],[-1,0])

PICT (2) ex6
WITH { FIXED
DRAW egypt.

SCALE [0.1,0.1] }

pyr2 } •

The tree, defined by ex6 contains a pure picture tree, corresponding to

17

egypt, The drawing looks like:

I

Ll

This last'example illustrates that there are two kinds of named pic
tures (pictures having a name); root pictures (designated by PICT) and
sub pictures (SUBPICT). Root pictures are the only ones that may be
referred to from outside the ILP program in which they are defined. The
root of an ILP graph must correspond to a root picture or in other words,
elaboration can only start in a root picture.

Another example of a named picture, defining a pure picture graph,
is the following:

18

Example 7

SUBPICT (2) toothl
LINE ([o , 0 J , [1 , 4 J , [1 , -4 J) •

SUBPICT (2) tooth2
LINE ([0 , 0] , [-1 , -4] , [-1 , 4]) •

SUBPICT (2) teethl
{ toothl; toothl

SUBPICT (2) teeth2
{ tooth2; tooth2

PICT (2) jaws
{ teethl

teeth2
LINE (
LINE (

toothl} •

tooth2 } •

0
0

0
0

0
0

10 J) ;
-10 J) }

The picture graph defined by jaws is:

tooth!

LINE

The ILP statement:

PICT (2) ex7 WITH { FREE
DRAW jaws •

LINE

tooth2

LINE

SCALE [0.1 , 0.1] }

19

defines the drawing:

All elements of a pure picture are elaborated in the same state.
The structure of example 7 can therefore be reduced (but not compacti
fied) to a linear list of LINE' s. However in that case the logical dis
tinction between tooth and teeth is lost.

2.4.2. Pure attribute graphs and picture nodes

As with named pictures, attributes can be grouped in named units
too, called attribute packs,

20

Example 8

ATrR (2) transformpack {
ROTATE 90 AROURD ([1 , 1])
SCALE [2, 3] ;
TRANSLATE [-1 , 0.5
} .

ATrR DIHLESS stylepack {
MAP (10 CONTINUE) ;
PERIOD (10, 3, 11)
} .

ATrR (2) ex8 {
{ transformpack stylepack} THICK (10) } •

Attribute pack ex8 defines a pure attribute graph of the form:

Just as named pictures, attribute packs have a dimension, which is
specified in the same way. This dimension is obviously meaningful when
the pack contains for instance transformations. In other cases (for
instance for a style pack), the pack could be used in combination with
pictures of arbitrary dimension. Arbitrary dimension is specified by
DIHLESS

This example illustrates another property of ILP programs: by means

21

of brackets, structure can be enforced, without using explicit references
to (using names of) objects. In example 8 the attribute node labelled
"{}" is added because of the construction:

{ transformpack; stylepack

In the same way, picture nodes can be created.

As can be seen from the examples already given, the WITH ... DRAW con
struction links attributes to pictures. In the data structure, a
WITH ... DRAW node is itself a picture node, i.e. at any place in the data
structure where a reference to a pure picture graph is permissible, a
reference to a WITH ... DRAW node is allowed as well. A picture graph has
a structure similar to that of a pure picture graph, but with the extra
property, that certain picture nodes- (WITH ... DRAW nodes) have pure
attribute graphs also as descendants. In other words, a WITH ... DRAW node
of a picture graph, has a number of pure attribute graphs, as well as a
number of picture graphs as its descendants.

The data structure defined by an ILP program, is a picture graph.

Example 9

PICT (2) ex9
WITH {FREE; SCALE [0.1 , 0.1] } DRAW

teethl ;

} .

LINE ([0 , 0] , [0 , 10]) ;
WITH ROTATE 180 AROUND ([6, 10])
DRAW {

teethl
LINE ([o , o] , [o , 10]) }

22

The data structure has the form:

This data structure contains two WITH ••• DRAW nodes, labelled "WDl"
respectively "WD2". When for teeth! the subpicture defined in example 7
is taken, the drawing "jaws" results again. The lower jaw is only sub
jected to the attribute from WDl, the upper jaw comes in its anatomicatly
correct position, because it is subjected to the rotation attribute from
WD2 as well.

2.4.3. Combining attributes into a state

As shown in the previous examples, a variety of attributes (possibly
specified in different WITH ••• DRAW constructions), can influence a pic
ture element. Clearly it is necessary, to combine these various entities
in units that can be meaningfully applied to picture elements. Only ele
ments from one and the same attribute class will be mutually combined

23

(mixed), in a way that may be specific for the class to which they
belong. Next, these combinations are packed into the state. The combina
tions are applied to picture elements in some fixed order, defined by
priority rules.

Example 10

PICT (2) exlO
WITH { SCALE [1 , 2]
DRAW P.

SCALE [2 , 1] }

A scaling is an attribute of the class transformation. Transforma
tions are simply applied one after the -0ther, starting with the rightmost
one (the one, textually closest to the picture element). Hence, this
program is semantically equivalent to:

PICT (2) exlO
WITH SCALE [2 , 2 l
DRAW P.

Example 11

PICT (2) exll
WITH SCALE 1 , 2
DRAW

WITH SCALE 2 , 1 l
DRAW p •

Again this program is semantically equivalent with the previous two.

Example 12

PICT (3) exl2
WITH MAP (3 CONTINUE)
DRAW {

Pl;
WITH MAP (5 RESETLINE)
DRAW P2
} .

Pl is drawn under influence of the first map specification, P2 under
influence of both the first and the second. Clearly it is meaningless,
to apply two map specifications in succession, so they have to be

24

combined into one single map,

In general, this combining is done by mixing rules, which look like:

A <> B -> C

where A, Band Care elements from the same attribute class. The meaning
is, that A concatenated with B, gives c.

For matrix transformations, this rule reads:

A <> B -> A * B

where* denotes matrix multiplication.

In case of map, this rule reads:

A <> B -> B

showing simply, that the second map definition replaces the first.

Example 13

PICT (1) exl3
WITH { SCALE [3)
DRAW P •

MAP (2 CONTINUE) }

Here, the priority rules require, that first the transformation,
(SCALE) and then the style element (MAP) is applied. This has conse
quences, because a transformed picture element drawn with a certain
style, can look quite different from a picture element with a certain
style applied to it which is thereafter transformed, (The latter is
impossible in ILP.)

Example 14

PICT (2) exl4
WITH A1
DRAW {

WITH A2 DRAW P1
WITH A3 DRAW Pz
} .

When the corresponding data structure is traversed, first the col
lection of attributes contained in A1 is encountered, then those in A2
and finally those in A3• P2 is affected both by attributes A1 and A3 , P1

25

by A1 and A2 • Attribute combination is defined in such a way, that the
following efficient combination scheme can be employed:

Combine all attributes from A1 in a (partial) state SP1• SP1
is identical to state s1 •

at A2: Combine the attributes from A2 in a (partial) state SP2• Com-
bine s1 and SP2, this gives state s2 • s2 is applied to P1•

Combine the attributes from A3 in a (partial) state SP3• Com-
bine s1 and SP3, this gives state s3• s3 is applied to P2 •

Hence, attributes within one WITH, .. DRAW construction have to be
combined only once during elaboration. Attributes from nested WITH ... DRAW
constructions can be combined and retrieved, using a stack.

2.5. Default attribute, matches and prefixes

Every attribute class has a default element. If, during elabora
tion, a picture element is reached and the state does not contain a fully
specified element for a certain attribute class, the default element is
used. For instance, the default transformation is a unit matrix, the
default for visibility is VISIBLE. Defaults release the user of the bur
den to specify values for all attribute classes.

With most attribute classes, an attribute match is associated. Its
function is, to switch at the picture element level, between a default
value for the associated class and the value specified in the program.
This default is equal to the default valid at the root, as long as no
SUBSPACE has been entered. On subspace entry, the default is reset to the
then current value. See 2.6 for further information.

Example 15

PICT (2) ex15
WITH {FIXED; ROTATE -30 AROUND ([0.5,0]) }
DRAW
LINE ([O,O],[0.5, 0],"TF [0.5, 0.5], [0,0]).

26

The drawing is:

TF is the match for transformations • . "TF here signifies, that the second
line element must not be rotated, but subjected to the default transfor
mation (unit matrix) instead.

Matches not only can be applied to "arguments" (for instance coordi
nates) of a picture element, but also to the element as a whole. This
leads to the possibility of two levPls of matches. The one, directly
preceding an "argument", locally replaces the match of a whole element.

Example 16

PICT (2.) ex16
WITH {INVISIBLE; SCALE [0.1 , 0.1] FREE }
DRAW
LINE -vs ([0 , 0] , [1 , 0] , [0 , 1] , [1 , 0] ,
vs [o , 1 l , [1 , o l , [o , 1 l , [2 , o l ,
[o, -1 l , [1, o J , vs [o, -1 J , [1, o l ,
l 0,-1 J , l 1,0 l , [0,-1 l) .

27

The drawing is:

Visibility gets value INVISIBLE. The match "VS directly following
"LINE", replaces this class value by the default value VISIBLE, so the
line as a whole is made visible. Locally, the explicit class value
INVISIBLE is reinstalled by the match VS, causing some line segments to
become invisible.

Every attribute can be prefixed either by ABS or by REL. If no pre
fix is present (as in all our examples until here), prefix REL is
assumed. If an attribute has prefix REL, it will be combined with the
appropriate class value, contained in the current state. If it has pre
fix ABS, the attribute is combined with the current default (either the
predefined default valid at the root, or the class value on the most
recent subspace entry).

Absolute transformations are for example useful to draw some picture
at a fixed position and with a fixed size and orientation in user space,
regardless of the transformation class value on the program point from
which the picture was called. Obvious applications are drawing legendae
with maps or illustrations, and putting something in a menu during ela
boration of a complicated picture on the screen.

2.6. Subspace

The subspace construction is the mechanism to redefine the coordi
nate system of user space. It can be used to change axes, without
changing the dimension of user space and to specify proper subspaces
(i.e. with lower dimension) of an envelopping space. Hence dimension can
change in an ILP program. The dimension of subpictures, root pictures
and attribute packs is explicitly specified and determines the number of
components of coordinates, matrices etc. Hence it can be statically
checked, whether ILP statements within the scope of a subspace selection,

28

use elements of the proper dimension. A second effect of subspace selec
tion is the redefinition of all default class values to the value as
accumulated on subspace entry. In this way, a subspace serves as an
enclosed area: nothind defined in the outside world can be changed.

Example 17

PICT (3) exl7
WITH { FIXED;

SCALE [0.5, 0.4 , 0.5] ;
ROTATE 20 AROUND ([0,0,0],[1,0,0);
ROTATE -30 AROUND ([0,0,0],[0,1,0)

}
DRAW {
LINE ([0,0,0],[1,0,0],[1,1,0],[0,1,0],
[o,o,o],[0,0,1],
[0,1,1 J,[0,1,0 l) ;
SUBSPACE (2)

} .
The drawing is:

ORIGIN ([0.5,0,0],[1,0,0],[0,1,0])
WITH FREE
DRAW LINE ([0,0],[0.25,0.5],[0.25,-0.5

--CI]~ - - - ,,,,.

I ---
~ ~ I

. I

l)

resp (y,z) plane. Then
subspace. The subspace

Its x and y axes are
also the scale factor
a viewing transforma-

First, squares are drawn in the (x,y) plane,
the (x,y) plane is selected as a two dimensional
origin coincides with the point [0. 5 , 0 , 0] •
identical to those of the envelopping space. Note
and the two rotations, which conveniently specify
tion.

In general, the first "argument" of ORIGIN specifies the new origin,

29

the further "arguments" specify the new axes as vectors in the old coor
dinate system. In this subspace a triangle is drawn. The coordinates of
this triangle must be specified by two numbers instead of three.

The dimension of the root picture where elaboration starts, is
defined by that picture itself. The coordinate axes of the user space at
the root (the untransformed user space) form by default a right handed,
orthogonal coordinate system. After all transformations have been
applied to coordinates in a picture element a position in untransformed
user space results. This position must lie in the user unit cube, Le.
all its coordinate components must have absolute values less than or
equal to one. As a consequence, there seems to be a choice between
using picture elements with only small coordinate values, which is quite
impractical, or applying a scale transformation at the root. The second
possibility is also unpleasant, because it prohibits the use of "ABS"
with lower level transformations, which would switch off the scale. The
subspace mechanism provides a practical third alternative however. Sup
pose, elaboration starts in the following root picture:

PICT (2) exl8
SUBSPACE (2)

ORIGIN ([o,o] , , [0.0001,0] , [0,0.001])
"rest of root picture" •

Immediately, a new coordinate system is introduced, with its origin
and axes coincident with those of the two dimensional untransformed user
space. The length unit in this new space is 0. 001 of that of the
untransformed space however. As a consequence, the coordinate values
produced by "rest of root pict" may have absolute values <= 1000. This
transformation (and any other defined outside the subspace) can never be
switched off, as the effect of ABS and attribute matches never reaches
beyond a subspace boundary. Furthermore, the subspace transformation,
which is not an attribute cannot be switched of by "ABS".

Example 19

SUBSPACE (2)
ORIGIN ([0,0],[0.001,0],[0.001,0.001])

Now, not only coordinate values are expressed in different units,
but an additional affine transformation is introduced, because they-axes
of the new space coincide with the line y=x in the envelopping space.

30

2.7. Miscellaneous topics

In the preceding paragraphs, we have focussed attention on the
highlights of ILP and have consequently omitted other features. To make
the picture given in this overview more complete, we will very briefly
discuss them now.

The set of picture elements provided in ILP contains, apart from
points, lines and text, also contours (closed polygons) and generators
(an elaborate library facility). Only generators will be discussed here.

Whenever the elaboration process (the process that traverses the ILP
data structure, see 3.2.3.) encounters a generator, a new data structure
is obtained (in some way) and inserted in the place where the generator
occurs. Several types of generators exist, which differ in the way they
produce a new data structure: ·

symbols: correspond with a previously defined root picture, and can
hence completely be specified as ILP program.

curves: correspond with a recipe to produce picture elements
ing to a certain specification (e.g., a sinus curve). These
elements need not be giveh in the form of an ILP program,
can only produce data structures from a limited class.

accord
picture
Curves

templates: correspond with a recipe to produce any legal ILP data
structure, which may be produced in any way.

Templates form the most general library facility. However, this
generality must be paid for, since the data structures produced by tem
plates have to be checked dynamically for correctness, while the correct
ness of the data structures produced by curves and symbols can be deter
mined statically.

The set of attribute classes contains, apart from transformations
and coordinate mode, also style, pen, detection and control.

Coordinate mode deals with absolute and incremental drawing. Exam
ples were given in section 2.3 ••

Transformations have, apart from a few exceptions the meaning as
normally used in computer graphics systems ([l],[2]). An exhaustive list
of transformations is:

rotate, scale, matrix transformation, affine transformation, homo
geneous matrix transformation all with standard meaning.

31

projection, a central or parallel projection which does not reduce
the dimension of a picture.

window, viewport which resemble the usual concepts of window and
viewport, apart from some additions. It is worth mentioning that
windows may be arbitrarily nested and that the nested windows may be
rotated relative to each other.

Style determines what kind of picture elements must be produced by a
drawing machine, In the preceding paragraphs line style (i.e., a style
associated with lines) was already mentioned. A style can also be asso
ciated with points (point style: determines the symbol to be used for the
representation of points) and text (typographic style: determines bold
ness, italicity, alphabet and the like for text values).

Pen determines the reproduction method to be used for the visualiza
tion ~picture elements. Examples are colour and intensity.

Detection determines which parts of the ILP data structure can be
pointed at by devices such as lightpen and cursor. The result of such an
operation is not simply the picture element pointed at, but may be a part
of the data structure in which the picture element is contained. In this
manner ambiguities can be resolved: when pointing at a door-in-a-house,
is the door of the house intended?

In Appendix 3 a more elaborate example is given in which many ILP
features are exposed. Comment is given along with the ILP program. Note
in particular the convenient way of structuring the picture, which has the
desirable effect that only few and simple coordinate values need to be
specified.

32

3. THE SYNTAX AND SEMANTICS OF ILP

3.1. Overall Structure

The complete syntax of ILP is given in Appendices 1 and 2. In this
chapter we will use extracts from it as a guide to the discussion. No
attempt has been made to exclude all possible syntactical forms that
have no semantic meaning. This would make the syntax extremely difficult
to read. Instead we tried to keep it as simple as possible.

The syntax rules are grouped in such a way that the basic structure
of the language is reflected as much as possible, The syntax is split in
two parts: the set of units that will be produced by lexical scanning
and the so-called main syntax. Only the main syntax will be described in
this chapter, the other part is given in Appendix 2.

The semantic meaning that corresponds with each syntactical con
struction will be described by means of an interpretation process
referred to as elaboration. In the sequel no distinction will be made
between the s.emantic meaning associated with a certain syntactical con
struction and the result of the elaboration of that construction. When
the elaboration of a particular language construction is carried out,
the overall interpretation process is in some intermediate stage. This
intermediate stage can be considered as the context in which that partic
ular language construction is elaborated and will be referred to as
environment. The elaboration process is only used as a description
method and is not intended as an implementation proposal.

An ILP program (pictuPe_pPogPam) consists of three distinct sets: a
set of Poot_pictuPes, a set of subpictuPes and a set of attPibute_packs:

pictuPe_pPogPam:
pictstPuct I
pictuPe_pPogPam pictstPuct

pictstpuct: named pictuPe I
attPibute _pack

named_pictuPe: Poot_pictuPe
subpictuPe ;

33

A Poot_pictupe has two properties that distinguish it from a subpictuPe:

The only pictuPes of an ILP program, that can be referenced from
another ILP program, are its Poot_pictuPes.

The elaboration of an ILP program starts in
in a subpictuPe. SubpictuPes can only
named_pictupe in the same ILP program. The
distinct sets are:

Poot _pictuPe : PICT dimension pname
pictuPe • ;

a Poot pictuPe and not
be activated via a
elements of the three

subpictupe: SUBPICT dimension pname
pictuPe •

attribute_pack: ATTR dimension aname
attribute • ;

The only connection between a pictupe and an attPibute_pack is by means
, of the "WITH ... DRAW" construc'tion, e.g.

WITH A DRAW P

The resulting construction is again of, type pictuPe. The rules for pi(!,
tuPe and attPibute are:

pictuPe:

attribute:

basic attribute:

pname I
pictuPe element I
{ pictur,es } I
subspace pictuPe I
WITH attribute

DRAW pictuPe

ABS basic attribute
REL basic-attribute
basic attPibute

- attribute_ciass I
aname I
{ attributes } I
NIL ;

Note that a list of pictuPes between brackets is again a pictuPe and that
a list of attributes between brackets is again an attribute.

34

The result of the elaboration of a picture depends on the specifica
tion of attributes. Section 3.2. describes the global organization of
ILP programs and the relationship between pictures and attributes.

The environment contains two groups of values:

One group the so called state, changes as a result of elaborating
attributes.

The remainder changes as a result of two kinds of actions namely,
elaboration of picture _elements or external actions. The initial
environment contains unique values for the members of both groups.

With every root_picture, subpicture and attPibute_pack a dimension
is associated. It determines the mnnber of components of which coordi
nates and matrices consist, that occur in these constructions. In an
environment with a certain dimension, only constructions of the same
dimension may be referenced. The dimension can be changed by a subspace
selection. Dimension and subspace are described in detail in section
3.3 ••

Attributes are divided into classes.
order attributes from the same class are
ferent classes are mutually unrelated.
butes is given in section 3.4 ••

It sometimes matters in which
specified. Attributes from dif
A complete treatment of attn-

The language primitives for which some visual representation exists
on drawing machines are called picture _elements. Examples are points,
lines and characters. They are described in section 3.5 ••

3.2. Graph Structure

An ILP program has no block structure. All named_pictures and
attPibute_packs are on the same level. However, each ILP program can be
considered as the representation of some directed graph structure. The
terminology used for graphs is taken from KNUTH [3]. Such a graph is
formed by the statical nesting of pictures and attributes. These objects
are nested either as a result of referring to one object from inside
another or nested textually by means of brackets. Recursive calls are
explicitly forbidden, hence the graph is an oriented graph without
cycles. The graph can be expanded into a tree by replacing all multiple
referenced subgraphs (named pictures, attribute packs) by separate
copies. Inside an attribute -only other attributes may be referenced;
this gives rise to attribute nests. Attribute nests only contain att-,,i.
butes. Through the WITH ••• DRAW construction (see section 3.1.), pic
tures may contain references to both attributes (attribute nests) and
other pictures, resulting in picture nests.

In correspondence with the syntax, the graph has two types of nodes

35

namely picture nodes and attribute nodes. There are corresponding types
of arcs namely arcs pointing to a picture node (picture arcs) and arcs
pointing to an attribute node (attribute arcs), Every POot_pictuPe con
stitutes a connected (directed) subgraph, All picture nodes not con
nected to this subgraph have no meaning with respect to an elaboration of
this particular Poot_pictuPe. In the following we will restrict our
selves to such connected subgraphs, which will be called picture graphs,
If we remove the picture nodes and picture arcs from the complete graph,
then for every "WITH •• • DRAW" node we obtain an isolated attribute graph,
which contains only attribute arcs and attribute nodes.

3.2.1. Picture nodes

The alternatives in the following syntax rule are the constructions
that can represent a picture node:

pictuPe: pname I
pictuPe element I
{ pictur>es } I
subspace pictuPe I
WITH attnbute

' DRAW pictuPe

A pictuPe_element (c.f. 3.5.) is an end node (leave). The other alterna
tives of the rule are nodes (but not leaves). Note that,

pietuPe_element}

is a special case of

{ pictuPes }

which is not a leave. Because a pietuPe _element may have value NIL,
arbitrary· graph-structures can be specified, even without writing down
any other action than NIL e.g.:

SUBPICT (3) pnl
NIL;

} .
WITH { al a2}
DRAW NIL

PICT (3) pn2 {
NIL ; { NIL } ; pnl ;
WITH { a3; a4} DRAW pnl NIL

} .

36

The graph for this ILP program is:

NIL {}

3.2.2. Attribute nodes

VITH
DRAV

At tribute nodes are represented by basic_ attr>ibute s as can be seen
in the syntax rules:

attr>ibute: ABS basic attr>ibute
REL basic-attr>ibute
basic attPibute

basic attribute:
attribute __ ciass I
aname I
{ attributes } I
NIL;

37

The terminal nodes are attribute class and NIL. The other two, aname and
{ attPibutes }, are the non-terminal nodes. An aname represents a refer
ence to an attribute__yack. The prefixes ABS and REL have no influence on
the graph structure, but specify how the attribute has to be mixed with
members of the same attribute_class (see 3.4.).

3.2.3. Traversing process

3.2.3.1. Basic rules

The structure explained above plays a vital role in the semantics
of ILP programs. The description of ILP semantics proceeds in stages.

, In each stage an algorithm is used that simplifies the graph towards a
canonical form. The basic semantic rules associated with the graph are
the following:

Each (maximal) subgraph containing only attributes is converted into
one list of attributes (algorithm ETA, see 3. 4. 1.). In this list
all references to attributes (anames) are replaced by the attributes
themselves (algorithm RAP, see 3.4.2.1.). Hence references to
attPibutes are semantically equivalent with textual insertion of the
attributes referred to. After further simplification (algorithm
LIN, see 3.4.2.1.), the resulting list of attributes (called state
component, see 3.4.3.) is applied to the picture node from which the
attribute graph is a direct descendant.

A state (a combination of state components, see 3.4.3.) can only be
applied to picture nodes, in the way described by the following
application rule:

Application of a state to a picture node means one of two things:

If the picture node is a pictuPe_element then all attributes in
the state are applied as described in 3.2.3.2 ••

If the picture node is not a pictuPe_element, the state is
applied to all its direct descendants as follows: Whenever a
descendant is not a pictuPe_element, the state is combined with
the state component (if present) of that descendant into a new
state, otherwise no action takes place. Next this application

38

rule is used recursively.

As a result of this we have to define three semantic operations on
attr'ibutes:

To combine the attr'ibutes in an attribute-graph into one state com
ponent.

To combine states and state components.

To apply an attr'ibute to a picture_element.

The combination rules for attr'ibutes will be given in section 3.4 ••
The third operation is a special case of applying a state to a picture.
This will be discussed in general in the next section and for each type
of picture_element in particular in sections 3.4.4. till 3.4.10 ••

3.2.3.2. Pictures and picture elements

When the elaboration begins, an initial state is set up as part of
the initial environment. Then the traversing process starts in the ini-
tial root _picture • '

When during the traversing process a picture, which is not a
pictupe_element, is encountered, the following rules apply:

Set up a state for that node, by combining the state component (if
present) of that node and the previous (either parent or initial)
state.

Visit all descendants of the node in left-to-right order (which
corresponds to textual order in the ILP program).

Return to the parent node and restore the original state of that
node. In terms of the semantically equivalent tree (the expanded
graph), nodes are visited in preorder.

Nodes that are pictuPe _elements, represent drawing operations. If
these operations are executed by a drawing machine the following happens:

39

The mode of the drawing machine is updated according to the state.

Whenever necessary, the pietuPe element is changed into zero or more
new pietuPe_elements by applying the state to it.*)

Each resulting pietuPe __ element obtained is used to drive the drawing
machine.

Thus in addition to the combination rules for state and state com
ponent, the semantic operations needed in order to elaborate a pietuPe
are:

Restore, save and combine state(component)s.

Return from and call a pietuPe.

Elaborate pietuPe_elements.

So the general scheme is that while traversing the subgraph containing
all pietuPes the current state is either updated or applied to a
pfotuPe_element.

3.3. Dimension and subspace

Pictures considered as geometrical objects are defined in an
Euclidean space with coordinate axes and a certain dimension. The
description of a picture can be simplified by choosing a space of
minimal dimension. In many cases, for the user, the position of the pic
ture with respect to the axes is another means to simplify the descrip
tion. The ILP subspaee mechanism makes it possible to temporarily change
the dimension of the space in which a picture is being constructed. It
can re.duce the dimension in order to reflect the inherent dimension of
that picture. It can also redefine the position and orientation of the
axes, If a picture lies, for example, in a given plane then two coordi
nates are sufficient to specify a point of that picture. In this case
the given plane can be selected by subspaee and as a consequence all
redundant coordinates in the picture specification must be omitted.

*) The result of the application of the state can partly be described by
means of ILP primitives. When this method is used in the sequel, this
does not imply, that in an actual implementation the modified
pietuPe_elements must be available as ILP objects.

40

3. 3. 1. Dimension

Before we go into the details of subspace selection, some attention
must be paid to coordinate systems. The cooPdinate s in an ILP program
are expressed in user coordinates. At every point during elaboration all
relevant subspace and other transformations (see 3.4.4) concatenate into
one current transformation matrix, which defines the mapping from the
user coordinates into transforiii'ecf coordinates These transformed coordi
nates form a right handed Cartesian coordinate system of dimension equal
to the dimension of the root picture. As long as no subspace or other
transformation has been specified the current transformation matrix is
the unit matrix and the two coordinate systems coincide. In general,
coordinates can have arbitrary real values, but there is one important
restriction: C007'dinates, subjected to all relevant transformations, can
be divided into two groups: those that. pass through all windows involved
(see 3.4.4.8.) and those that lie outside at least one window. The
transformed coordinates of the first group all must lie in the unit~.
i.e. have values in the real interval [-1.0,+l.O].

Finally, there exists for each drawing machine a fixed, device
dependent mapping from the unit cube onto points in the addressing area
of that device. This mapping is established at the moment of device
selection and is parameterized outside ILP. Because the position and
orientation of this addressing area relative to the unit cube can be
chosen freely, devices with non-square (or non-cubic) addressing areas
can be handled. In this way the mapping on the physical addressing area
of an actual drawing device has to be specified for the unit cube only.

A dimensionaZ vaZue is the ILP equivalent of what is elsewhere known
as a "coordinate pair" or "coordinates". As can be seen in the syntax
rules:

dimensionaZ vaZue:
[vaZues

vaZues: vaZue I
vaZues, vaZue ;

In ILP, coo-,,dinates contain dimensionaZ vaZues as a special case. For
instance, a coo-,,dinate also specifies whether the vaZues of the
dimensionaZ vaZues are absolute or incremental. When in the sequel the
term dimens7onaZ vaZues is used some meaning must be assigned to the spe
cial properties that come with dimensionaZ vaZues only. In all other
cases the term coo-,,dinates is maintained.

The dimension of a dimensionaZ vaZue (i.e. the number of vaZues of
which the dimensionaZ vaZue consists) is not dictated by the syntax. On
the other hand, subspace (see 3. 3. 2.) fixes, among other things, the
dimension of the environment. Therefore the following semantic rule

41

(general dimension rule) is required to enforce the right dimension of
d~mens~onat values in various contexts:

In an environment of a certain dimension, the following construc
tions may only occur with the same dimension as that of the sub
space:

dimensional __ value;

reference to a subpicture and a root__yicture;

reference to an attribute_pack;

subspace selection.

To enforce this rule, a dimension is associated with each root picture,
subpicture, attribute__yack or subspace. This dimension is either expli
citly specified or assumes the default value 2. This implies, for exam
ple, that in a subpicture with dimension two, only dimensional values
consisting of two values may occur. Dimension is syntactically described
by:

dimension:

dim:

DIMLESS
dim;

(value) I
empty ;

Because some attributes {like colour and intensity) and
picture_elements (e.g. NIL) are dimension independent the dimension
specification DIMLESS exists. A DIMLESS attribute_pack, root__yicture or
subpicture may be referenced in any environment, regardless of its dimen
sion.

The mechanism just described is extended further to cater for
matrices of dimensional values:

matrix value: dimensional values

dimensional values:
dimensional value I
dimensional-values ,

dimensional_value ;

A matrix _value consists of a number of dimensional values equal to the
dimension of the current environment.

The other constructions which must fit dimension, are subspace,

42

POtate and homogeneous mat'Y'ix. The restrictions on their values are dis
cussed in 3.3,2., 3,4.4.1. and 3.4.4.7 ••

3.3.2. Subspaces

With the aid of this conceptual framework, the subspace selection
mechanism can now be explained. Syntactically a subspace is specified as
follows:

subspace:

nel.c] axes:

shift:

position:

axes:

SUBSPACE dim nel.c] axes

position (shift axes)

dimensional value

CURRENT I
ORIGIN

empty I
dimensional values

The subspace construction defines new coordinate axes with respect
to the ones, still valid during its elaboration. The origin of the sub
space follow1;1 from position and shift. In the CURRENT case, it is the
untransformed pen position (UPP, see 3,5,) shifted by the vector
corresponding to shift, otherwise it is the origin defined by the previ
ous subspace selection, shifted by the same amount.

In a subspace selection, two dimensions are involved, the dimension
of the environment in which the selection occurs, and the dimension of
the subspace being selected, specified by dim, This latter dimension
becomes the new dimension of the environment, during the elaboration of
the pictuPe which starts with the subspace. axes must contain a number
of dimensional values, equal to the value of dim. These
dimensional_values specify the direction of the coordinate axes and the
units in which coordinates are measured, in the subspace, The directions
are those of the vectors defined by dimensional values, the metric fol
lows from the rule, that those vectors have unit-length in the subspace.
It should be noted that we do not require that these axes are orthogonal,
only that they are defined by independent vectors. The default value for
axes is the first dim axes of the environment.

The general dimension rule excludes the selection of a subspace with
higher dimension than the environment in which the selection occurs.

43

The dimensionaZ._vaZ.ues required to specify such a selection would have
been of a higher dimension than the dimension of the environment and are
thus illegal.

Let the dimensional. vaZ.ues (considered as column vectors) defining
the subspaee be extended with a zero at the bottom, and the result be
denoted by the columns D1, ••• ,Dn. Let the column vector from the previ
ous origin to the new origin be extended with a one at the bottom, and be
denoted by D, Then the transformation from subspace to environment is
given by the matrix:

3.4. Attributes

The syntax rules describing the various attr>ibutes are:

attr>ibute:

basie attr>ibute:

ABS basie attr>ibute
REL basie-attr>ibute
basie attnbute

- attr>ibute_eZ.ass I
aname I

attr>ibutes:

attr>ibi:te el.ass:

{ attr>ibutes } I
NIL;

attr>ibute I
attr>ibutes; attr>ibute

tr>ansfor>mation
deteetion I
styZ.e I
eontr>oZ. I
pen I
eoor>dinate mode
visibil.ity-;

With every attr>ibute el.ass (except eontr>oZ.), corresponds an
attr>ibute_mateh, defined by the syntax rules:

44

attribute matehes:
empty I
attribute matehes

attribute mateh:

deny:

TF
DT
ST
PN
CM
VS

empty
- I
NOT;

deny attPibute mateh

Attribute matehes are part of pietuPe_elements.

An attribute elass is a terminal attribute node. The
attPibute elass vai;es can range from simple constructs to complex struc
tures, For each class, however, the format of the value is fixed. Here
we must differentiate between a complete class value (which as such is
not a syntactical category) and a contribution to such values by an indi
vidual attPibute elass element (which is a terminal production of
attribute_elass).

For some attribute_elasses (e.g. style and pen) the class value is
described as an ordered n tuple of so called atoms. An atom has the fol
lowing properties: It can have a unit value with respect to combining:

a* unit= unit* a= a

Each element of such an attribute elass specifies precisely one atom.
Hence, for a complete class value at least n attPibute elass elements
are required. A unit class value consists of then unit atom values. A
set of k < n different atom values can be expanded to a class value by
adding a unit value to each missing atom. In this sense each individual
atom can also be considered as a class value (k = 1).

Unit values cannot (and need not) be specified. They only serve to sim
plify the semantic description.

Apart from a unit value for attribute elasses there exists a default
value for each attribute elass and also for each atom. This value is
taken when an attribute_elass must be applied to a pietuPe _element and
the unit value (for a class or atom) is specified. For some classes the

45

default value can also be selected explicitly as attr>ibute_class element,

In the following, we will elucidate, how attr>ibutes act upon
pictu'Y'e elements. From a semantic point of view, two major steps are
needed in the process of applying attr>ibutes to a pictu'Y'e_element.

In the first step, the attribute structure is simplified by applying
combination rules for attr>ibutes, to the effect that attr>ibute nests and
nested "WITH ••• DRAW" constructions are removed. By this process an ILP
program can be converted into a so called basic ILP program, that con
sists of a linear list of "WITH A DRAW P" constructions, where A denotes
a linear list of attr>ibute a lass values and P a pictu-y,e element. The
linear list A contains all-attr>ibutes that have been specified for P.
The order of the pictu-y,e _elements in the basic ILP program must be the
same as in the picture tree when traversed in preorder. The important
reason for this is that each pictu-y,e element partly sets the environment
for its successors. subspaces and- pictu'Y'e elements can only be ela
borated when the environment is known. For -a given pictu-y,e_element the
major steps must be fully completed before the same steps can be taken
for its successor. The first algorithm of the first step takes care of
all environment specifications for the subspaces. From there all steps
can be carried out independent of any environment. When finally the
pictu-y,e _element itself is elab'orated, the environment is first used to
complete the pictu'Y'e element, next the attr>ibutes are applied, then the
element is drawn aiid finally the environment is updated, As already
stated, there is a correspondence between ILP programs and directed acy
clic graph structures. For convenience, we will split the description
of the first step in two parts. The first part is described as a conver
sion of graphs (section 3.4.1.), the second as a conversion of programs
(3.4.2.).

In the second major step, the attr>ibute class elements from each
"WITH ••. DRAW" construction of the basic program, are concatenated or
combined, and then applied one after the other. The general features of
this step are described in sections 3.4.2.2. and 3.4.2.3., while the
aspects that are characteristic for individual attr>ibute_classes, are
described class wise in sections 3.4.4. till 3.4.10 .•

3.4.1. Decomposition of the picture tree

There exists a unique path in the picture tree (see 3.2.) from the
root to each pictu-y,e _element, called element path. For every element
path, we will construct a new tree, called element~• as follows:

46

ilgorithm ET: construct an element tree

ETl Start with a node of the form "WITH U DRAW NIL", where "U" contains
the attr>ibute class unit value followed by a "subspace marker" one
for each class. Traverse the element path.

ET2 Every time a subspace node is encountered, generate the correspond
ing subspace transformation S (see 3.3.), using the subspace specif
ication and the value of the untransformed pen position (UPP see
3. 3. 2.), which is given in the environment. The UPP is set to the
origin. Replace in the original program the subspace by "WITH { S;
SM1; SM2 ; ••• ; S~ } DRAW (so the subspace is evaluated only once and
in the right environment). SMi are subspace markers, one for each
attribute class. They are considered to be special elements of that
class. S is considered to be an element of the transformation
class. Continue with the same node.

ET3 Every time a "WITH ••• DRAW" node is encountered,
"NIL" of the element tree by "WITH A DRAW NIL.
attr>ibute of the node at hand.

replace the last
Here "A" is the

ET4 When the pictuPe_element is reached it replaces the last NIL of the
element tree.

A picture tree with pictuPe_elements is converted by ET into a semanti
cally equivalent picture forest T1 , •.. , Tn of element trees. Tree Ti
contains pictuPe_element Pi, which is the i-th pictupe __ element encoun
tered, when the picture tree is traversed in preorder.

With every element tree Ti, corresponds an attr>ibute Ai. A descrip
tion in the form of a string of every Ai is produced by algori.thm ETA ,
and modified by algorithms RAP and LIN. In this and the following sec
tions manipulations on descriptions of picture and attribute graphs are
used. The algorithms as presented, ignore the layout characters in such
descriptions.

Algorithm ETA: compute element tree attributes

ETAl Initialize Ai with "REL{". Traverse Ti from root to leave.

ETA2 Every time a "WITH X DRAW Y" node occurs, append "X;" to the right
of Ai.

ETA3 Finally, replace the last (rightmost) ";" of Ai by "}".

The application of algorithm ETA results in an ILP program with body:

3.4.2. Attribute mixing

WITH A1 DRAW P1;
WITH A2 DRAW P 2;

WITH An DRAW P n;

47

The process of combining and simplifying attr>ibutes that will be
described in 3.4.2.1. and 3.4.2.2, is called attribute mixing. It can be
applied to any sequence of attr>ibutes, whether this sequence is derived
from an element tree or not. The result of mixing is again a construc
tion of type attr>ibute.

3.4.2.1. Simplification of attributes

Every Ai in the program produced by algorithm ETA, is simplified in
the following steps:

Algorithm RAP: remove anames, add prefix

RAPl Replace all references to attr>ibutes in Ai
every aname substitute the attr>ibute from
that aname. Repeatedly perform this step,
attr>ibutes are present (note that recursion

by their body, e.g. for
the attr>ibute_pack with

as long as references to
is not allowed).

RAP2 Prefix every not prefixed "{" or attr>ibute_cl,ass with "REL".

Finally, Ai is converted into one list without sublists of
attr>ibute cl,asses

Algorithm LIN: linearize attr>ibute

LINl Find a construction B of form ABS { attr>ibutes } or
REL { attr>ibutes } which contains only prefixed attr>ibute cZass
elements. When no such construction can be found, then, for every
attribute class, remove all subspace markers except the last one and
terminate.

LIN2 Sort the elements of B class wise, without disturbing the sub-order
in each class (result: construction B').

48

LIN3 Apply the following substitutions to adjacent elements x and y of
B', belonging to the same attribute class until no further substitu
tions are possible:

"RFL x; ABS y" -) "ABS y"
"ABS x; ABS y" -> "ABS y"

whenever xis not a subspace marker,

The effect of this substitution rule is that, within an attribute
class, all elements between an "ABS" and the previous subspace are
deleted. The result of this step is construction B''.

LIN4 Apply the following substitutions to adjacent elements of B'',
belonging to the same attribute class until no further substitutions
are possible:

"REL s; ABS y" -) "REL s; REL y"

where s is a subspace marker. As a consequence, in B" only the
leftmost element belonging to a certain attPibute_class (called
leftmost class element), c~n have prefix "ABS".

LINS If the left bracket is preceded by "ABS" then replace the prefix of
every leftmost class element by "ABS". Next remove (the only and
outermost) "ABS {" or "REL {" and "} ". The result is labelled B'".

LIN6 Finally, replace the original construction B in Ai by B'" and con
tinue at LINl.

As a result of algorithms RAP and LIN, the attributes Ai in the pro
gram produced by ETA are transformed into a simple list of prefixed
attribute class elements. It should be noted that, occurrences of prefix
"ABS" have been removed.

3.4.2.2 Mixing Rule

The description of the semantics of attributes always consists of at
least two steps:

describe the semantics of a class value

describe the semantics of combining a sequence of class elements
into a class value. For every attribut~_class there exists a mixing
rule of the form:

A <> B -> C

where<> denotes mixing, A and Care class values and Bis a class

49

element. A, B and C are all of the same attr>ibute class. During
elaboration this rule is applied repeatedly for every
atty,ibute class on the LIN list, starting with a unit class value
and working from left to right. When the subspace marker is encoun
tered, the class value is copied as the "subspace class value". The
algorithm continues untill the last element of the LIN list. The
final class value is the "current class value". This series of
class values, one pair for each attr>ibute_class, is then applied to
the picture elements. The order of application is determined by the
priority of the attr>ibute_class (from high to low):

3.4.3 States

cont'Y'ol
coo'Y'dinate mode
tmnsfor,mation

visibility
style

detect

The subspace class values for all attr>ibute classes combined define
the subspace state, while the current class values define the current
state. The attr>ibuteyatches within the pictu'Y'e_elements determine which
of these states (the selected state) is to be applied.

The elaboration process maintains a record of the Drawing Machine
State (DMS) which starts at the initial state and can be changed in com
bination with some action on the drawing machine. At appropriate points
during elaboration of a pictu'Y'e _element the DMS is compared with the
selected state and if necessary adjusted. This adjustment is usually
accompanied by some machine action. For each of these actions an inverse
action has to be defined which undoes the effect on the drawing machine.
In all cases after this process the DMS corresponds to the selected
state,

3.4.4. Transformations

From a semantic point of view, transformations are applied one after
the other, although in an actual implementation, matrix transformations
(see below), will probably be concatenated. The result of applying a
transformation T to a pictuy,e element P can be described as an ILP pro
gram P' that consists of a 1:i;ear list of transformed pictuy,e_elements.
Transformations are window definitions, quality definitions or matrix
transformations.

The semantics of matrix transformations have some general aspects
that will be discussed first.

so

When a matrix transformation is applied to a eoor,dinate_type
pietur>e element (see 3.5.1.) the resulting ILP program P' consists of one
pietur>e=element of the same category as the original pietur>e_element.

Pietur>e elements, either contain a row of eoor>dinates (e.g. line) or
generate a sequence of eoor>dinates (generutor>, text). A eoor>dinate con
tains a dimensional value which, if the dimension of the environment is
n, consists of th-; row of values [v1 , v2 , ••• , v]. With such a
dimensional_value, then corresponds a column vector nv with rrl-1 com
ponents, defined as:

In the sequel this extended form (Le. homogeneous coordinates) will be
used).

With every matrix trans'formation either a n,n-matrix, or a
(rrl-1) ,(rrl-1)-matrix can be associated, where n is again the dimension of
the environment. n,n-matrices will be extended to (rrl-1) ,(rrl-1)-matrices
by first extending every row with a rightmost element with value zero,
and then adding an extra (bottom) row of rrl-1 elements which are all zero,
except for the rightmost one, which has value one.

Hence every matrix transformation is represented by a (rrl-1), (rrl-1)
matrix A. To vector v corresponds a transformed vector w, defined by:

w = A * V

where "*" denotes ordinary matrix multiplication. Because column vectors
are used, the order of multiplication must be matrix times vector.

To vector w corresponds a dimensional value

, ... ,

which is called the transformed of dimensional_value [v1 , ••• , v]. The
result of applying a matrix transformation to a pietur>e elemenl' is now
obtained by replacing all (generated) dimensional values by their

transformed dimensionai vaiues.

where

A transformation class value consists of

{ M, W, Q }

Mis the transformation matrix
Wis the window
Q is the text quality

The unit value is

{ unit matrix, empty, LOW}

The mixing rule for transformation is:

when

B is a matrix:

Mc Ma<> B (matrix concatenation)
wc wa
QC Qa

Bis a window:

Ma
Wa <> (Ma * B)
Q
<~ is concatenation.
* is matrix-window multiplication.

51

Note that the transformed window is mixed with the class value.

Bis a text quality:

The tPansfor>rnations are listed in the following syntax rules:

52

tPansf Or'71'1ation:

-y,otate:

scale:

tPanslate:

mat-y,ix:

affine:

pPojection:

-y,otate I
scale I
tPanslate
matY'ix I
pPojection I
affine I
homogeneous_matPix
poPt
text_ quality

ROTATE value
AROUND invaY'iant

SCALE dimensional value

TRANSLATE dimensional value

MATRIX mat-y,ix value

AFFINE matPix value
dimensional value

pPojection type eye position
ON-pPojection __ space

homogeneous mat-y,ix:
- HOMMATRIX homogeneous_matY'ix_value

poPt:

text _quality:

window
window viewpo-y,t

QUALITY(quality)

3.4.4.1. Rotation

An elementary rotation in n-dimensional Euclidean space can be
specified by:

Selection of a plane Vin then-dimensional space.

Selection of a point Pin this plane.

Definition of a rotation angle phi,
The matrix R:

cos phi
-sin phi

0

0

sin phi
cos phi

0

1

0

1

53

describes this elementary rotation under the condition that a new set of
coordinate axis x1 , ••• , xn is chosen with:

The origin coincident with P.

x1 and x2 contained in v,. Let the matrix which transforms the
original coordinate axis into the set x1 , ••• , xn is given by T,
then the rotation in the untransformed coordinate system is given by

T-l * R * T

A rotation in rr-dimensional Euclidean space can be considered as
the product of a number of elementary rotations.

In ILP, an elementary rotation is syntactically specified by:

'Y'otate: ROTATE value
AROUND invaT'iant

invaT'iant: (dimensional_values) ;

The rotation angle is determined by value, while the rotation plane and
point are specified by invaT'iant. The invaT'iant contains a number of
dimensional values which is one less then the dimension of the environ
ment. The -first dimensional value specifies the rotation point P, the
following define (n-2) independent vectors orthogonal to the rotation
plane. Rotation takes place clockwise (defined with respect to the nor
mal from the origin to the plane), through a number of degrees, specified
by value.

In the two dimensional case, the set of n-2 vectors is empty, in
the three dimensional case it is the familiar axis of rotation. As a
consequence, in the two or three dimensional case a general rotation can

54

be specified by one single Potate.

REMARK

It should be clear that we are confronted with a tradeoff here:
if the dimension of the environment is less then four, it is
economical to specify a plane by its normals, if the dimension
is more then four, specifying the plane with two vectors con
tained in it is cheapest. We have chosen the first alterna
tive.

3.4.4.2. Scale

By scaling, the values of the dimensional value of a cooPdinate are
changed independently of each other. Scaling can be represented by a
diagonal matrix. The syntax rule is:

scale: SCALE dimensional_value ;

Each value in the dimensional value specifies a diagonal element of the
unextended transformation matrix'.

3.4.4.3. Translate

A translation maps all points in user space on points displaced by a
fixed amount. Translation is syntactically described by:

tPanslate: TRANSLATE dimensional_value ;

Each val~e in the dimensional value specifies the displacement along the
corresponding coordinate axis.

In an rr-dimensional environment a translation, characterized by
.dimensional value [v1 , ••• , v J, is represented by a (rrf-1) ,(rrf-1)-matrix
with diagonal elements of unif value, the rightmost element of the k-th
row (k = 1, ••• , n) with value vk, and all other elements zero.

3.4.4.4. Matrix

A matrix transformation specifies a linear transformation of the
user space. A matrix transformation is syntactically described by

matnx: MATRIX matPix __ value ;

Each dimensional value in the matpix value (see 3.3.1.) specifies a
column in the transformation matrix. As a consequence of the general

55

dimension rule (see 3.3.1.), a matrix contains a number of rows and
columns equal to the dimension of the environment.

3.4.4.5. Projection

Projection is syntactically described by:

pr>ojeetion: pr>ojeetion_type eye_position
ON pr>ojeetion_spaee

pr>ojeetion spaee:
- dimensionai vaiue I

ORIGIN dimensionai vaiue

eye _position:

pr>ojeetion_type:

dimensionai vaiue

PROJECT· 1

PROJECT PERSPECTIVE
PROJECT REVERSIBLE;

If the keyword REVERSIBLE is not used the coordinate space is pro
jec ted onto pr>ojeetion_spaee. It is a space of dimension one less than
the environment, perpendicular to the the vector specified by
dimensionai_vaiue in pr>ojeetion_spaee. Nevertheless, the projected image
has the dimension of the environment, but there exists a linear relation
between its coordinates, for instance, xn 0. If only a
dimensionai _vaiue is present in the specification of the
pr>ojeetion_spaee, the space contains the end point of the vector defined
by dimensionai_vaiue. If the keyword ORIGIN is used it contains the ori
gin of the current coordinate system.

A PROJECT PERSPECTIVE specifies a central projection with the
dimensionai _vaiue as centre. PROJECT specifies a parallel projection to
a direction defined by dimensionai_vaiue. A PROJECT REVERSIBLE specifies
a perspective distortion equivalent to the central projection. The
sequence

PROJECT [0, ••• ,1] ON ORIGIN [0, .•• ,1]; PROJECT REVERSIBLE

is equivalent with

PROJECT PERSPECTIVE

56

Let the coordinate axis of an n-dimensional Euclidean space be
x1 , ••• , xn. A projection with the point (x1 = x2 = ••• = xn-l = 0,
xn=c) as centre, on the space xn=O is given by the (n+l),(n+l)-matrix P.

1

0
0

0
0

1
0
0

a
b

0
1

For PROJECT REVERSIBLE and PROJECT PERSPECTIVE b equals -1/c where c
equals the distance from the centre to the p-r>ojection_space. Else b
equals 0. If the keyword REVERSIBLE is used a is 1 else 0. Let T1 be
the transformation that translates the projection of the eye yosi°tion
onto the projection space to the origin, T2 the transformation that
rotates the normal on this space to the direction of coordinate axis xn.
The projection is then given by the matrix:

In the following example a three dimensional environment is assumed,
with coordinate axes denoted by x, y and z.

PROJECT PERSPECTIVE 1, 1, 1 ON [o, o, 1]

defines a central projection on the plane z=l. With the point x=l, y=l,
z=l as projection centre.

PROJECT [O, O, l] ON ORIGIN [O, 0, l]

defines a projection parallel to the z-axis on the plane z=O.

Caution should be given to the sequence

{ PROJECT ... ; WINDOW • . . }

where the PROJECT is not REVERSIBLE. According to the mixing rule for
transformation the clipping is done in the pr>ojection_space itself. As a
consequence, under a non REVERSIBLE projection, some information is lost
that might be necessary to correctly decide on the visibility of all pic
ture elements.

3.4.4.6. Affine

af'f'ine: AFFINE matr>ix vaiue
dimensionai vaiue

An affine transformation is represented by a square matrix with:

57

A number of rows (columns), one more than the dimension of the
environment,

A bottom row with all elements zero, except for the rightmost, which
has value one, If the dimension of the environment is n,
matr>ix vaiue specifies a n,n-matrix A, dimensionai_vaiue a column of
n elements. The resulting affine matrix is:

<------------ n + 1 -----

matrix value

0 0

3.4.4.7. Homogeneous matrix

I I
ldiml
I I
lvall
I I

1

>

In an n-dimensional environment a homogeneous matPix transformation
is represented by a (n+l),(n+l)-matrix. Every element of this matrix is
explicitly specified with the help of the following syntactical construc
tion:

homogeneous matPix:
- HOMMATRIX homogeneous_matr>ix vaiue

homogeneous matPix vaiue:
- [homogeneous_dimensionai vaiues

homogeneous dimensionai vaiues:
- homogeneous dimensionai vaiue I

homogeneous-dimensionai-vaiues ,
homogeneous_dimensionai_vaiue

58

homogeneous dimensional value:
- [values] ;

The homogeneous mat-,,i:x; value consists of (n+l)
homogeneous dimensional values, which each specify a column of the
matrix. E.;ery homogeneous_value consists of (n+l) values, which each
specify an element of the column.

3.4.4.8. Window and viewport

The poT't transformation is syntactically described by:

window:

viewpoPt:

window
window viewpoT't

WINDOW (dimensional value ,
dimensional value) ;

VIEWPORT (dimensional value ,
dimensional_vaTue) ;

Window and viewpoT't select rectangular areas in user space.

The dimensional value pairs in both the window and viewpoT't defini
tion, determine the end points of a principal diagonal of the window and
viewpo-,,t areas. As a consequence of the general dimension rule (see
3.3.1.), the dimension of a window or viewpoT't is equal to the dimension
of the environment in which the window and viewpoT't are specified.

The selected areas are fully determined by the requirements that
they are block shaped, and that they have their edges parallel to the
coordinate axis.

When coo-,,dinate_mode (see 3.4.8.) has value FREE, the relative posi
tion of the poPts and the free coordinates may not be known from context.
The dimensional __ values in poPt denote absolute positions in the current
coordinate system. Selection of a new origin at the untransformed pen
position with the help of the SUBSPACE mechanism, solves this problem.

If the poPt tPansfoPmation does not contain a viewpoPt, only a clip
ping boundary is defined. Only those parts of the picture, that lie
inside the window, are preserved. Without going into detail, we summar
ize in the table below, for every type of pictuPe_element the possible
elements of the result set (see 3.4.2.2.), if this set is not empty.

PietuPe element result set elements

POINT
LINE
CORTOUR

zero or one POINT
zero or more LINE's
zero or more LINEs or CONTOUR

59

The pietupe element genePatoP ultimately generates elements con
tained in this table, which determines its behaviour under the poPt
transformation. The effect on TEXT depends on the value for text_quality
(see 3.4.4.9).

If the poPt contains a viewpoPt (which must be preceded by a 1,Jin
do1,J), first the matrix that maps the 1,JindQ1,J onto the vieu)pOPt is mixed
with the class value and next the 1,Jindo1,J itself is mixed.

The following observations can be made:

The effect of the application of a number of 1,JindQu)s (separated by
matrix transformations) is identical to the effect of clipping to
the intersection of the leftmost 1,Jindo1,J and the (transformed)
further 1,Jindo1,Js.

When two 1,Jindo1,J, vie1,Jp0Pt pairs are applied, the visible part of the
viewpoPt area of the second pair, is always contained in the
vieu)pOPt area of the first pair.

3.4.4.9 Text quality

text_quality: QUALITY(quality)

quality: LOW I MEDIUM I HIGH;

The value for quality determines the influence of transformations on
pietuPe_elements of type TEXT.

LOW The only influence is on the position of the first character. If
the start of the first character is outside of a window the whole
TEXT string is made invisible. Otherwise the string is not
clipped.

MEDIUM The position of each character is influenced by the transforma
tions. Clipping is done character by character. All characters
are either totally visible or totally invisible.

HIGH All coordinates generated by TEXT are fully transformed and

60

clipped. Characters can be partially visible.
details see 3.5.2 ••

For further

3.4.4.10. Subspace and transformations

The major similarity between subspaces and tr>ansfor>mations is that
the effect of any matrix tr>ansfor>mation (except homogeneous_ matr>ix or
pr>ojection), can also be achieved by a subspace transformation.

The basic differences between subspace and other tr>ansfor>mations are
the following:

A subspace can reduce the dimension.

A subpsace forms a blockstructure which cannot be penetrated by any
internal reference:

ABS and attr>ibute matches refer to the attribute class values
at the moment the last enclosing subspace was entered.

When a subspace is e!!-tered the Untransformed Pen Position and
the Picture Position are set to the origin.

3.4.5. Style functions

3.4.5.1. Introduction

Style functions describe what kind of lines, points and characters
(and in the future shades and greyscales) are to be produced by a drawing
machine. The description is as machine independent as possible. In view
of the enormous variety of drawing machines, the style-function package
has to be extendible and is inevitably incomplete.

The given functions are all specified in such a way that the same
style functions produce similar results on all drawing machines, that is,
if they are expressible in terms of the existing hardware. With the
exception of text_quality, which determines the effect transformations
have on TEXT, no functions exist in ILP to express the quality required
of the result of application of a style attT'ibute. *) When necessary an
extra software layer has to be provided to produce or approximate styles

*) It can be considered to parameterize quality outside ILP by providing
a quick-and-dirty, and a high-quality mode for the representation of the
same style.

61

for which no direct hardware functions are available. Since sty7,e has
more to do with taste and clearness of expression than with accuracy, it
will cause no trouble when sty7,e is not defined with mathematical preci
sion (as would be the case with, say, tPansfopmations).

The three classes of sty7,e functions that exist so far, e.g.
line style, point sty7,e and typogPaphic are mutually unrelated. The syn
tax -for sty7,e is:-

sty7,e: tine sty7,e I
point sty7,e I
typogPaphic;

The class value of sty7,e is a 12-tuple with atoms represented by

PERIOD, MAP, THICK,
FONT, SIZE,
ITALIC, BOLDNESS,
POINTSTYLE FONT, POINTSTYLE SIZE,
POilITSTYLE ITALIC, POINTSTYLE BOLD,
POINTSTYLE maPkeP.

Let c1 , ••• , c12 and c1', ••• , c12 ' denote sty7,e class values, Then the
mixing rules for sty7,e are:

when Bis a class element corresponding to atom Ai.

3.4.5.2. Linestyle

Line_sty7,e conforms to the syntax:

Une_styte: PERIOD (pePiod descPiption) I
MAP (va7,ue Peset) I
THICK (vaiue) ;

Line styles are applied to pictuPe_el,ements of type LINE. They are also
applied when the LINE is produced indirectly, through a contoup, or a
generotoP .

The 7,ine_sty7,e determines what will be drawn along the straight
lines that connect the successive positions of the pictuPe_el,ements.

The 7,ine_sty7,e can produce a large variety of dotted and dashed
lines. The definition of such a pattern goes in two steps.

62

3.4.5.2.1. Period definition

PERIOD describes a basic pattern which is repeatedly produced going
along the line.

pePiod descPiption:
- dash

dash:

gap:

dash
dash

DOT I
value

, gap
gap

value ;

dash

The period is defined on a straight line piece of 100 units in length,
which is filled out by:

dash2

Hence dash1 + gap1 + dash2 + gap2 = 100. Gap1 through gap2 may be omit
ted, implying that the first missing one adds up to 100. Gap2 always is
omitted. If dash has value DOT, a point is produced on the spot with has
a length of O units with respect to the peri0d. This concept DOT is the
same, as the one used in point_style, see 3.4.5.4 ••

Examples:

PERIOD (100)
PERIOD (DOT)
PERIOD (0,100)
PERIOD (50)
PERIOD (25,50)

Solid line.
One point at the beginning of each period.
Blank (invisible) line.
Dashed line with gaps equal to dashes.
Dashed line with gaps equal to dashes.
It starts however, with a half dash.

3.4.5.2.2. Map definition

The value of MAP specifies the actual length of the pattern
described by pePiod_ descPiption. This length is defined in transformed
coordinates, valid at the root. A pattern of the given actual length is
rolled along the line, to produce the style.

r"eset: RESETCOORDINATE
CONTINUE I
RESETLINE;

63

The three different values for r'eset tell, whether the periodic pattern
has to be continued from one LINE to the next (value: CONTINUE), to be
reset at the start of every new LINE (value: RESETLINE) or to be reset
whenever a new coor'dinate within a LINE is encountered (value:
RESETCOORDINATE).

Reset is one of the few attr'ibutes which influence the Drawing
Machine State (DMS see 3.4.3) directly rather than just through the
influence on pictur'e elements. One component of DMS records the state of
the period generator. If r'eset does .not have the value CONTINUE this
component is reinitialized.

3.4.5.2.3. Thickness

The value of THICK determines the linewidth, when drawing LINEs. It
is expressed in the same unit as used in the map definition for lines
tyles (see above). Thick lines ·are cylindrical. They are drawn with con
stant diameter. Thick lines are not modified by pr'ojection tr'ansfor'ma
tions, i.e. they do not become conic.

3.4.5.3. Typographic style

The typogr'aphic style is in fact nothing else than a means to
specify a given character set out of the available sets,

typogmphie : TYPFAULT
font I
size I
italic
bold;

Characters are grouped in sets of at most 256 tokens, called a basic set.

A basic set can contain tokens of any kind, up to complete pictur'es.
If text_quality has value MEDIUM or LOW their internal structure is inac
cessible and can therefore not be manipulated. If it has the value HIGH
they are subject to all transformations (including clipping) however.

A font consists of a basic set plus a description how the character
data are to be interpreted, and what the effect of size, italic and bold
is, on the individual tokens. In view of the use of typogr'aphic for
pointstyles also a default token for DOT must be given. A font is
selected by the font attr'ibute. The tokens can be modified, by

64

explicitly specifying size, italic and bold.

It is clear, that the typogr>aphic attribute, allows the specifica
tion of an unlimited collection of characters. TYPFAULT is shorthand for
selection of font, size, italic and bold. Its effect is device depen
dent. It denotes a character set, whose elements can be drawn as effi
cient as possible on the device at hand, if necessary disregarding high
quality demands (see 3.4.5.1.),

3.4.5.4. Point style

The syntax rules for point style are:

point_style: DOT I
POINTSTYLE typogr>aphic
POINTSTYLE mar>ker> ;

Mar>ker> selects a token from the font specified by POINTSTYLE font. This
token is modified by POINTSTYLE size etc. At point positions, this token
is displayed, drawn in a centered fashion. It will be drawn in the x1 ,
x2 plane of the current coordinate system, with its "bottom line" paral
lel to the x1 axis. When the alternative DOT is used, a device dependent
"point" will be displayed. DOT is shorthand for a device dependent char
acter set (typogr>aphic) and for a specific token (the point) out of this
set. When only POINTSTYLE typogr>aphic or POINTSTYLE mar>ker> is specified,
the other atom of point_style has its default value (see 3.4.12,).

3.4.6. Pen functions

Pen functions determine the reproduction method to be used when a
pictur>e element is drawn. As a consequence, pen functions influence only
the final appearance of a drawing but do not affect the structural
information contained in it. The effect of pen functions can not be
described in terms of ILP primitives. Pen is a 3-atomic attr>ibute, its
mixing rule is analogous to that of style.

The syntax for pen is:

pen: PEHFAULT
contr>ast
intens I
colour>;

Just as in the case of TYPFAULT, PEHFAULT selects device dependent values
for contr>ast, intens and colour>.

65

3.4.6.1. Contrast

The syntax of contr>ast is:

contr>ast: CONTRAST (value , value)

It is assumed, that any physical drawing device can draw with a minimal
and a maximal intensity, which are the end points of its physical inten
sity range. (The maximal intensity always represents "light", the

.minimal "dark", i.e. on a plotter, these two intensities are determined
by the reflectivity of the paper, respectively the blackness of the ink.)

For every device a mapping must be defined from the interval [0,100]
(the contrast range) to the physical intensity range. Contr>ast specifies
a subrange of the contrast range, i.e. fixes indirectly the lowest and
highest physical intensity, that can be used.

Examples:

CONTRAST (0, 100): highest possible contrast.
COIIITRAST (50 , 50): no contrast, one intensity.

3.4.6.2. Intensity

Intensity is syntactically described by:

intens: INTENS (value) ;

and determines the brightness of the registration method, Value may
have as value a real number from the interval [0,100]. The corresponding
physical intensity used by the drawing device is determined as follows.
There is a linear mapping from the intensity range [0,100], to the con
trast range [a,b] (0 <= a <= b <= 100), specified by contr>ast. So, a
value in the intensity range determines a value in the contrast range,
which determines the physical intensity, via the mapping from the con
trast range to the physical intensity range.

Examples:

INTENS(100
INTENS(0)

maximal intensity
minimal intensity

There is an important distinction between invisible lines (i.e.
lines drawn with value INVISIBLE for visibility) and lines with zero
intensity. In the former case the order in which the invisible lines are
drawn is not defined and consecutive invisible lines may even be replaced

66

by one invisible line. In the latter case the drawing order is com
pletely defined and the kind of optimizations just mentioned are not
allowed.

3.4.6.3. Co1our

On a mono colour (black/white) drawing device, aontrost and inten,
sity are sufficient for the specification of the different shades of
"grey" in the drawing.

Examples:

INTENS (100)
INTENS (50)
INTENS (0)

white.
grey.

black.

(These examples assume a contrast range with length not equal to zero.)

On a multi-colour device, the contributions of the three primary
colours (red, yellow, blue) to the total intensity, specified by aontrost
and intensity are defined by aol,ouro. CoZouro is syntactically described
by:

aol,ouro: COLOUR { val,ue, vaiue, val,ue)

The ratio between the three val,ues is the ratio between the primary
colour intensities; val,ues may denote arbitrary real numbers.

Examples:

COLOUR (100 , 0 , 0) :
red, with an intensity equal to the total intensity.

COLOUR (0 , 10 , 10):
green; Yellow and blue each have half of the total intensity.

COLOUR (1000 , 1000 , 1000):
white; Red, yellow and blue each have one third of the total
intensity.

3.4.7. Detection

In this section it will be shown how attroibutes can be used to
model the characteristics of a detection mechanism, Deteation provides
external references to parts of the piaturoe. It divides the piaturoe in
units that may be subjected to further manipulations.

REMARK

The deteetion attPibute provides the bridge between the
interactive and not interactive parts of ILP. It is clear
that this bridge should be designed carefully and that it
affects both parts of the language. At this moment, only the
not interactive part of ILP is defined. Major problems are
involved in the design of this bridge if the interactive func
tion of ILP in a computer graphics system is taken into
account:

A labelling or addressing scheme must be designed to allow
selection of any part of the ILP graph structure.

Modification operations on the ILP graph structure must be
defined, which result in a compact representation of the
modifications (design goal).

The important facility of picture manipulation must be designed
with the help of ILP primitives. We want to apply ILP to
structure this part of the graphics system just as it struc
tures the basic graphics operations. In accordance with the
overall functions of ILP, 'it is therefore required to solve
these problems in such a way, that an ILP graph structure can
be manipulated inside ILP itself. At present this is not the
case. Some manipulation on these graphs can, however, be
described in this report through the description method for the
semantics of ILP, for which an (informal) metalanguage is used.
More general manipulations, like for example edit operations,
can be described neither inside ILP, nor in the metalanguage.
One could invent another me.talanguage for that purpose. It is
far better however, to extend ILP with appropriate construc
tions to achieve i/o symmetry. The detection mechanism, only
solves the first of the four problems: An addressing scheme for
picture nodes is given.

67

Three entities are required to describe detection. A detector is an
external process (which for example can involve lightpen, tracking cross
or even some combination of these), that is used to select nodes in the
ILP data structure. A detector has a name which is part of the environ
ment when this detector is active. Nodes in the data structure must
define by which named detectors they can be selected and for each of
these, which identification string must be returned to the user if selec
tion occurs. Thus detectors with different names can be used to search
the data structure. The remaining entities are the detectant set and
possibly a detectant.

Only pietuPe elements can be pointed at. Nevertheless, all nodes on
the path from Poot pietuPe to this particular pietuPe _element must be

68

potential candidates for selection. The detectant set is a subset of
these nodes, and the detectant (if defined) is a preferred element of
this subset. They are formed by applying combination rules to the detec
tion attPibutes (see below). Whenever a node is detected, the string
associated with it (for the currently active detector) can be returned to
the user. This provides him with a facility for identification of the
various detection points. During elaboration the detectant set and
detectant are constructed, and preserved in the state. Their value can
be returned to the user or to the application program, when, during ela
boration of a pictuT'e __ element, this element is subjected to a selection
action. Initially detector and detectant are undefined and the detectant
set is empty.

The detection attT'ibute has the following syntax:

detection:

detector':

DETECT detector' pPopeT' stT'ing
SETDEL detector' pPopeT'--StT'ing
UNDETECT detector' ; -

empty
dname

The pPopeT' stT'ing is the label returned to the user when the node is
detected. -Each detector' is identified by a name (dname). There is a com
mon detector' which has no name. Switching from one detector' to another
is possible by external action which consists of selecting a new name or
the common detector'.

The class value of detection is:

where Ai (detectori, seti, detectanti)
detectori, seti, detectanti can all be empty
detectori = detectorj if and only if i = j.

The mixing rule for detection is:

A <> B => C

B consists of the following cases:

1 DETECT name string

2 SETDEL name string

3 UNDETECT name

C is given by:

if there is no i such that detectori

in cases 1 and 2:

where D = (name, string, string)

in case 3: C = A

if name detectori then

case 1:

name then

where D (name, setdi <> string, string)

case 2:

where D name, seti <> string, detectanti)

case 3:

Example:

69

Consider the following ILP graph, in which nodes 1 through 4 are
WITH.,.DRAW nodes and nodes 5 through 7 are pietuPe_element nodes.

2
ABS

UNDETECT

I
5

I
DETECT dname I
DETECT dname2

3
UNDETECT

dnamel

I
6

4
UNDETECT

dname2

Node 1 can be detected by the detectors named dname1 and dname2 • It is
impossible to detect this node by selecting pietupe_element 5, selection
of pietuPe_element 6, respectively 7, only leads to detection of node 1,

70

when the detector dname2 , respectively dname1 is active.

The nodes of this graph are visited during elaboration in the order:

1, 2, 5, 3, 6, 4, 7.

When detector "dname1" is active, the class values at these nodes are
shown in the following table:

1-------------- ---1
I node I detectant set I detectant I
1---- I- ---1- I
I 1 I emp~y I none I
I 2 I 1 I 1 I
I 5 I empty I none I
I 3 I 1 I 1 I
I 6 I empty I none I
I 4 I 1 I 1 I
I 7 I 1 I 1 I
1--------- ----1

If detector dname2 is active instead of dname1 this table is valid after
the rows for node 7 and node 6 have been interchanged.

Example:

1
DETECT dname1, DETECT dname2

I
I

2
DETECT dname1, SETDEL dname2

I
I

3
SETDEL dname1

I
I

4
ABS SETDEL dname1

I
I
5

The class value table would be:

1---I
I I dnamel I dname2 I
I node 1------------------------- ---1
I I det set I detectant I det set I detectantl
I --l-----------1-----------1------------1----------1
I 1 I empty I none I empty I none I
I 2 I 1 I 1 I 1 I 1 I
I 3 I 12 I 2 I 12 I 1 I
I 4 I 123 I 2 I 12 I 1 I
I 5 I 4 I none I empty I none I
1--------1-- --1-----------1------------1----------I

REMARK

So far we have not related the pointing action to visibility
aspects. Apart from detectable, each primitive can also be
visible or invisible. Many hardware pointing devices (e.g.
lightpen) identify detectability and visibility. We have deli
berately chosen for the separate concepts, because we can give
a meaningful interpretation for each combination of
(in) visibility and (un) detectability. For instance, in order to
change an invisible move, one must first identify it.

3.4.8. Coordinate mode

71

The cooPdinate mode attribute class is specified by the syntax rule:

cooPdinate mode:
FIXED
FREE;

When the cooPdinate_mode has value FIXED, positioning information
represented by a dimensionai_vaiue is taken to mean an absolute position.
When it has value FREE, the absolute position is found, by adding the
dimensionai_vaiue to the untransformed pen position (see 3.5.1.). The
mixing rule for coopdinate mode is:

A <> B => B

In other words, at any time during elaboration, the part of the state,
representing cooPdinate_mode, has simply the value that has last been
encountered.

72

3.4.9. Control

The syntax for contPol is:

contPol: MACHINEDEPENDENTCONTROL pPopeP_BtPing;

ContPol is an instrument for the specification of drawing machine depen
dent control information, like paper feed, clear screen and so on. In
general nothing can be said about the oddities of machine typical control
information. Hence only a, further unspecified, pPopeP_BtPing, is
transmitted to the drawing machine. The mixing rule for contPol amounts
to string concatenation.

The elaboration process compares the Drawing Machine State with this
resulting string. Certain strings will correspond to actions of the draw
ing machine.

Example:

A'ITR new_page MACHINEDEPENDENTCONTROL .. next page .. -
PICT root
{ pl;

WITH new page DRAW
{ p2;

WITH new_page DRAW p3;
p4

};
pS;
WITH new_page DRAW p6

} .

Assume that "next page" corresponds to an action of the drawing machine
that provides a new page. Then pl and p5 should appear on the first
page, p2, p4 and p6 on the second and p3 on the third. Since pl-pS are
elaborated in order, the drawing machine has to be capable of reversing
the "next page" action, to provide the desired effect. If this
"previous page" action is not provided, the DMS is nevertheless adjusted.
In that case the effect will be that the first page contains pl, the
second page contains p2, the third page contains p3, p4 and p5 and the
fourth page contains p6.

3.4.10. Visibility

The attnbute visibility has the syntax:

visibi ti ty : VISIBLE I
INVISIBLE

73

When the state of a pictur>e contains value INVISIBLE for the visibitity
attr>ibute_class, this pictur>e will not be drawn during elaboration.
Nevertheless it will be elaborated, to update the environment properly.
The current pen position (see 3.5.1.) must be updated, and the detection
attr'ibute class elements must be evaluated, since invisible pictur>es may
be detected.

The mixing rule for visibility is the same as that for
coor>dinate mode.

3.4.11. Attribute matches

How attr>ibute matches contribute to a state has formally been
described in 3.4.3.---;-

Conceptually, attr'ibute matches are a primitive form of the
WITH, •• DRAW construction, operating on the pictur>e_element level. They
inhibit or permit the effec.t of all elements of their class that lie on
the element path between the picture element and the smallest enclosing
subspace. If an inhibiting match is used, these elements are replaced by
the class value at the entrance of this last subspace. pictur>e elements
may contain two levels of attr'ibute matches. The matches of the first
level are written directly following-the pictur>e_element tag (e.g. LINE).
The matches of the second level are written directly preceding
pietur>e element values like dimensional values, cur>ve values etc. The
first level of matches apply to all p-ietur>e element- values unless a
second level match of the same class is specified. In that case only,
the pietur>e _element value directly following has the second level match
for that class. All attr>ibuteyatehes not specified on any of the two
levels are taken to be non inhibitive, i.e. those that leave the current
state unchanged. In this way, the concept of a global state with local
exceptions is also realized at the pietur>e_element level.

The correspondence between attr'ibute matches and attr'ibute classes
is given in the following table:

match

TF
DT
ST
PN
CM
vs

class

transformation
detection
style
pen
coordinate mode
visibility

74

3.4.12. The default attribute

With every att'Y'ibute_class corresponds a default element, according
to the following table:

class

tr>ansfor>mation
detection
contr>ol

pen
coor>dinate mode
style line_style

style typogr>aphic
style point style
visibility -

default value

unit matrix transformation
UNDETKCT, i.e. undetectable
MACHINEDEPENDENTCONTROL
i.e. the empty string
PENFAULT
FIXED, i.e. abs. positioning
PERIOD (100),i.e. solid line
MAP (1., RESETCOORDINATK)
THICK(thickfault)
TYPFAULT
.DOT
VISIBLE

Apart from style values, the defaults are self explanatory. The defaults
for style are as follows. Default linestyle is a solid line, when how
ever the pePiod is specified explicitly, default map is such, that the
pattern is reset for every new LINE. Thickfault stands for the most con
venient thickness, available on the device, on which the drawing defined
by the ILP program is to be drawn. Hence, thickfault is device depen
dent. The default value for typogruphic is TYPFAULT which is discussed
in 3.4.5.3 •• However, typogpaphic has the atoms font, size, italic and
bold. When certain atoms are specified, but others not, the latter again
take device dependent values. The default for point style is DOT, which
denotes a device dependent spot. The default value for POINTSTYLE typo
gPaphic is the same as for ordinary typogPaphic, The default POINTSTYLE
token depends on the selected font, but will be a 'point' when the font
contains one. The default for pen is PENFAULT (see 3.4.6.). If only one
atom of pen is specified, the other again assumes a device dependent
value.

3.5. Picture Elements

A pictupe element is a language primitive of ILP. Each !LP-program
eventually specifies a list of pictuPe elements (end nodes of the graph
represented by the ILP program). A pictuPe _element is syntactically
described by:

pictuPe element:
- cooPdinate_type

text I
genePatoP
NIL;

We will now discuss the various pictuPe_elements.

3.5.1. Coordinate type

The syntax rules for cooPdinate_type pictuPe_elements are:

eooPdinate_type:
type attPibute matehes

(coo-rdinates)

75

Such a pictuPe_element consists of a type, attribute_matehes and cooPdi
nates, in conformity with the syntax rules:

type:

cooPdinates:

cooPdinate:

POINT. I
LINE I
CONTOUR

cooPdinate I
cooPdinates

• cooPdinate

attribute matches
COOPdinate_value I

attribute matches
(-cooPdinate values)

cooPdinate values:
cooPdinate value I
COOPdinate-values ,

eooPdinate value

cooPdinate value:
dimensional value
PP I
EP ;

76

The attribute matches in the syntax rule for cooPdinate type are the
first level match~s. Those in the rule for cooPdinate a~ the second
level matches.

Whenever during elaboration of a picture element a coordinate is
generated the last generated user coordinate is stored in the environment
as the Untransformed Pen Position UPP. This corresponds to a penposition
in the transformed coordinate system TPP. If CTM is the Current
Transformation Matrix, then TPP can be found through

TPP CTM * UPP

When, e.g. through a new transformation, the CTM has changed the UPP
stays invariant but the TPP changes and an invisible move to this new TPP
is generated.

With the help of the untransformed pen position, two special cooPdi
nates are defined: EP and PP. EP is mnemonic for element position, PP
for picture position. During elaboration of a p~ctuPe_eZement, EP
denotes the value of the untransformed pen position just prior to the
elaboration of this element. PP denotes the value of the untransformed
pen position at the start of the elaboration of the smallest
named_pictuPe or subspace enclosing the pictuPe _element in which PP is
referenced. So, in the case of subspace it refers to its origin.

At the start of the elaboration of a Poot pictuPe or subspace the
UPP is set to the origin of the user coordinate system. For a subspace
the old UPP is stored in the environment to be restored upon exit of the
subspace. PP allows among other things the specification of subpictuPes
that leave the pen position where it was at the start, by adding a pic
tuPe like

WITH INVISIBLE DRAW POINT PP

as the last element to the subpictuPe.

Upon return from subspace pictuPe,
from the environment. EP needs not to
be used inside pictuPe_elements. Hence,
recent untransformed pen position
pictuPe_element.

the UPP and the PP are restored
be restored at all. It can only
it will be copied from the most
at the beginning of that

The primitive action embodied by a cooPdinate type pictuPe element
can be described as follows. First of all the row ~f cooPdinate-;, speci
fies a series of positions. The positions are found in either of two
ways, depending on the value of the cooPdinate mode (see 3.4.8.):

77

In the FIXED-state, the coor>dinate_values are absolute values with
respect to the current origin.

In the FREE-state, the coor>dinate values are offsets from the
untransformed pen position (incremental mode).

This series of positions is the same for all types. The type is used
to specify a "polygon", that contains these positions as vertices. The
last vertex of the polygon however is different for different types. Let
the series of positions be represented by c1 , c2 , ••• , en. Then the
polygon to be drawn is:

In case of type POINT and LINE: c1-cz- ••• -en.

In case of type CONTOUR: c1-cz- ••• en-cl.

The poss~bility UPP-c1- ••• -en-UPP, can be obtained by ad.ding the
special coor>d~nate denoted as EP to the head of the row of coor>d~nates of
type CONTOUR. This produces a closed polygon with the original pen posi
tion as the first (and last) value, e.g.:

WITH FREE DRAW CONTOUR CM (EP,(O, l],[l, O],(O, -1])

specifies a square that begins and ends in the untransformed pen posi
tion, valid at the start of the elaboration of this pictur>e. If we
negate CM in this example, we also get a closed polygon which starts and
ends in the pen position. However, we cannot say what the shape will be
until we know the pen position.

Next all tr>ansfoT'mations of the current state are applied to the
dimensional_values of the coor>dinates. This establishes which positions
the pen will visit while a POINT, LINE or CONTOUR is elaborated. What
is actually drawn, and what route is actually taken, going from one posi
tion to the next, depends on the type and the attr>ibutes. The
attribute _class visibility, and its match VS specify, whether anything
will be drawn at all. In the state INVISIBLE, the route is followed as a
sequence of invisible moves. In the state VISIBLE, it depends on the
value of the attr>ibute _classes style and pen, and their matches ST and
PN, how the moves will actually be drawn.

There is a fundamental difference between POINTs and LINEs. For
LINEs the route between successive positions defined by the coor>dinates
is always a straight line, which will be drawn according to the current
style functions. The route between POINT positions is undefined. For
this reason it is impossible to apply any line_ style function to the
route between these points. It is not defined in which order the posi
tions have to be visited, with the exception of the last one. Hence the
only style functions for POINTs are those which specify by which symbol
(centered around the "point" position), the POINT will be represented.
On the other hand, it is possible to specify a line_style for LINEs which

78

shows the positions as points. With respect to styZe functions the
CONTOUR behaves in a LINE-like manner.

In the next example the same row of eoor>dinates is drawn as LINE,
EP-CONTOUR and POINT respectively. In each case the initial pen posi
tion, marked as O is the same.

LINE EP-CONTOUR POINT

3.5.2. Text

Objects with type TEXT enable the production of texts as part of a
pietur>e. The syntax rules are:

text:

str>ings:

str>ing:

TEXT attr>ibute matehes
(str>ings) ;

str>ing I
str>ings , str>ing

attr>ibute matehes pr>oper> str>ing
attr>ibute-matehes -

(-pr>oper>_str>ings) ;

pr>oper>_str>ings: pr>oper> str>ing I
pr>oper>=str>ings , pr>oper>_str>ing

The value of text is a row of str>ings, which are build up from tokens.
Tokens are selected from fonts. Each font contains at most 256 tokens.
If the size of the character set of some device is smaller than 256, a
device dependent escape mechanism is required to provide token values in

79

the range (0-255]. Change of font is possible by means of the typo
gPaphic styZe attPibute. In principle an unlimited set of fonts can be
used in an ILP program.

An important aspect of text values is the way they are positioned,
since nowhere in a text value, a cooPdinate can be specified, the posi
tion must be deduced from the current environment. No explicit page or
layout attPibute exists. text values are always positioned relative to
the pen position. No limit is set to the maximal size of text values.
Layout characters have a meaning, relative to the pen position (EP) of
the current text value or relative to the current line of text. If text
and other pictupe _eZements are mixed, layout characters cannot have a
meaning, relative to previous text values.

Dependent on the current values of the FONT, SIZE, ITALIC and BOLD
atoms, each character of a text string generates a series of dimensional
values, which defines a series of visible and invisible moves. The last
of this series of moves is always an invisible one from the pen position
before the drawing of the character to the final pen position. This move
is called the character spacing move.

The effects of attribute classes on TEXT picture elements are the
same as on coordinate type elements' except for:

Une styZe and point styZe have no effect, typogPaphic styZ e deter
mine-; the dimensionaf_vaZues generated by the TEXT stri-;;g.

cooPdinate mode is always FREE.

tpansfopmation:

text_quaUty:

quaUty:

QUALITY(quaZity)

LOW I MEDIUM I HIGH

QUALITY(LOW) no effect; clipping is on string level

QUALITY(MEDIUM) for the character spacing move the normal
effect, for all other moves no effect; clipping is on character
level

QUALITY(HIGH) for all moves the normal effect; clipping is on
coordinate level

80

3.5.3. Generator

So far we have encountered primitives with explicit values. The
remaining three types are generators of values.

A genePatoP is syntactically described by:

genePatoP: symbol I
cupve I
template

The semantics of a pictuPe_element of type genePatoP are defined as
follows.

Each genePatoP contains a mnnber of gname s. When a genePatoP is
encountered by the elaboration process, this process activates some
external mechanism for every gname of the genePatoP. Each mechanism gen
erates an ILP graph, corresponding to a pictuPe, whereafter these graphs
are combined into a new graph of the same type. This graph replaces the
picture node corresponding to the genePatoP, after which the elaboration
process continues with the subgraph just inserted. The pictuPe gen
erated, however, is considered as one indivisible action. This means
that manipulations can only be defined for that pictuPe as a whole. In
particular detection of parts of the elaborated pictuPe is impossible.

To guarantee, that the result of the replacement is again a correct
graph, two demands must be met:

The generated ILP graph must be complete, i.e. it may not contain
references to undefined nodes. To facilitate statical checking of
this property, the following rule must be obeyed. The pictuPe
corresponding to the graph may not contain pnames or anames of
objects, defined in the pictuPe_ypogPam that contains the genePatoP,
unless these references (pname s or aname s) are passed as
template_yapametePs (see 3.5.3.2.2.).

In the pictupe describing the generated graph, all generated
dimensional_values, matPix values etc. must have dimensions in
accordance with that of the environment and eventually generated
subspaces.

GenepatoPs provide a library facility. Because the nature of the
library elements is not defined inside ILP, they are implementation, and
application dependent. Nevertheless, the interface between the library
and ILP (the gener>atoP) is defined inside ILP, and hence does not depend
on a specific implementation.

81

3.5.3.1. Symbol

The syntax for symbol is:

symbol: SYMBOL gnames

gnames: gname I
gnames , gname

Every gname of a symbol corresponds with a -root_pictu-re in a previ
ously defined ILP program. In this case, the picture graph is generated
as follows.

Every gname represents a picture graph, as defined in 3.2 •• If the
symbol contains more then one gname, all picture graphs are combined into
one, by creating a picture node, having all these graphs as direct des
cendants. The (left-right) order of the descendants corresponds to the
textual order of the gnames. In this case it is necessary, that all
gnames correspond to -root_pictu-res of the same dimension.

3.5.3.2. Curve and template

The generation mechanism activated by a cu-rve or template can be of
arbitrary nature, as long as it produces picture graphs of the correct
kind. The only demand is, that the mechanism is a program that can be
invoked by the elaboration process and generates an ILP picture graph
accessible to it. The distinction between cu-rve s and templates lies in
the structure of the picture graphs they produce.

3.5.3.2.1. Curve

The syntax for eu-rve is:

cu-rve: CURVE type att-ribute matches
(cu-rVe_f!enePato-rs)

eu-rve_gene-rato-rs:
cu-rve gene-rato-r I
cu-rve=gene-rato-rs cu-rve__gene-rato-r

82

cu1'Ve genemto1':
- attr>ibute matches

CU1'Ve dete1'Tninato1'
attr>ibute matches

(-CU1'Ve dete1'Tninato1's)

cu1'Ve dete1'Tninato1's:
cu1'Ve dete1'111inato1' I
cu1'Ve-dete1'Tniruzto1's

CU1'Ve dete1'Tninato1'

CU1'Ve dete1'Tninato1':
gname I

inte1'Val:

gname (inte1'Val ,
cu1'veyammete1's)

gname (cu1've_pammete1's)

UNIT I
(value value)

cu1'Ve_pammete1's:

cu1'Ve _pammete1':

cu1'Ve _pammete1'
cu1've_pammete1's

, cu1'Ve_pammete1'

value I
dimensional value

The semantics of CU1'Ves will be described in terms of elements from
ILP programs rather then in terms of the corresponding graphs. This will
lead to a clearer description. In case of a CU1'Ve , an object of type
dimensional _values corresponds to every gname. In other words, every
gname represents a mechanism for the generation of dimensional_values.
These dimensional values, together with the attr>ibute matches of the
CU1'Ve_dete1'111inato1'-containing the gname can be combined into an object of
type coo1'dinate. Then, using the attr>ibute_matches (if present) of the
CU1'Ve a pictu1'e _element of type type can be formed out of these coo1'di
nates. The order of the coo1'dinates in the pictu1'e_element corresponds
to the textual order of the gnames. The pictu1'e element thus con
structed, is equivalent with the generated picture graph, that will
replace the genemto1' node.

83

The parameters of a curve can be (at most) one intePVal, and a
number of values or dimensional values. If there is an intePVal, we have
a parameter curve. The intewal is the domain of a parameter t. The
dimensional _values of the generated pictu-Pe _element, correspond to dif
ferent values oft, when t steps through the interval. The stepsize can
be calculated by the cu-y,ve itself, can depend on a given device, or can
be a parameter to the curve (a value). The other parameters
(cu-Pve_papameteps) are either values or dimensional_values. Their number
and meaning is specific for each particular gname. Dimensional values
could for instance be used, to define some fixed points on--, or tangents
to the curve.

3.5.3.2.2. Template

The syntax for template is:

template: TEMPLATE (template~genePatOPS)

template genePatoPs:
- template gene-y,ato-y, I

template'gene-Patops
- template_genePatoP

template_genePatoP:
gname I
gname (template _pa-Pamete-y,s)

template pa-y,amete-Ps:
- template_paPameteP

template pa-Pamete-y,s

template_papameteP:
value

- template_paPameteP

dimensional value
pname I
aname I
dname

A template genepatop may produce an ILP picture graph of arbitrary
structure. Because of the fact, that this picture graph not necessarily
represents a pictu-Pe _element, the syntax rules for template do not con
tain attr'ibute matches.

84

Each gname identifying a generation mechanism has its own specific
set of parameters, described by template gene-,,ato-,,. pnames or anames
used as parameters must correspond to 7'0ot_pietu7'es, sub_pietu-,,es or
att'T'ibute_paeks defined in the ILP program containing the template.
These parameters specify the references corresponding to pnames and
anames, allowed in the generated graph. Name conflicts must be avoided
by using unique names.

The picture graphs generated, (one for every gname) are combined in
one single picture graph, in the same way as is done for symbols.

85

4. DESIGN GOALS AND EVALUATION

In this chapter, the design criteria of ILP are considered and an
analysis is given, to show whether and if so, how, the stated goals are
achieved.

4.1. Design goals

ways:

Five major design goals can be distinguished:

Compactness of picture representations, to reduce the enormous
amounts of data which are normally required for the representation
of pictures.

Mutual independence of attributes, to isolate the effects of indivi
dual attributes and forbid side effects caused by attributes from
one class on attributes from another class.

Symmetry of input and output, which obviates the need for separate
languages for input and output descriptions.

Embedding, which allows the incorporation of ILP in other (high
level) programming languages.

Self modification of ILP programs, which allows the description of
changes in a picture in ILP itself.

Compactness of picture representations can be achieved in several

Multiple occurrences of the same subpicture are included only once
in the data structure.

Only necessary coordinate values need to be specified, i.e. in a
two dimensional space two numbers are sufficient to determine a
coordinate value.

Coordinate values are packed, i.e. a priori knowledge of the range
in which coordinate values lie is used to determine the most compact
representation of coordinate values.

In ILP only the first two methods are used explicitly. The first is
realized via the subpicture, root picture and attribute pack mechanisms.
The second is realized with the subspace mechanism. Note that the dimen
sion of each coordinate value can be determined statically. The third

86

method can be applied by an optimizing compiler.

Apart from the influence of these explicit methods, the ILP attri
bute mechanism has the beneficial effect of factoring out common subpic
tures, since the same subpicture can be drawn in contexts with completely
different attribute values.

Independence of attributes restricts the ways in which attributes
can influence each other. This restriction has several advantages:

The semantics of individual attributes can be studied in isolation,
thus obviating the need to consider complex interactions between
attributes.

The attributes are easily extensible, since new attribute can (by
definition) not influence the already existing attributes.

The restriction of attribute independence seems to be justified, if the
already considerable complexity of the semantics of independent attri
butes is taken into account. On the other hand certain useful applica
tions of attribute interaction are forbidden by this restriction. Line
style that adapts itself to transformations is an example.

Symmetry of input and output, means that the same intermediate
representation is used both for drawing and reading pictures. The advan
tage of this method is obvious: only one intermediate representation is
required. Although this scheme is simple to explain, it is difficult to
implement. Especially on the input side, a completely new organization
is required, since input can only be provided in the form of ILP primi
tives like picture elements, primitive attributes or references to pic
tures.

Embedding means incorporation of ILP in existing programming
languages. In other words, ILP can be used as a model for a graphics
system, which can be incorporated in an existing programming language.
Although the embedding methods may be different, the various user inter
faces and the underlying model graphics system remain the same. ALGOL
68G is an example of such an embedding, in which ALGOL 68 serves a's a
host language. A major consequence of this embedding strategy is that
many features (variables, loop constructions) need not be included in ILP
since the host language provides such facilities.

Self modification means that, with the help of a local editor for
building and changing ILP constructions, elaborate edit operations can be
described in ILP itself. Not only the resulting picture, but also the
way it was constructed can be remembered, if necessary.

For both editing and modifying, a sophisticated reference mechanism
is required. It is felt that the attribute mechanism can be used to
model such a reference scheme. The detection mechanism is the first (and

87

sofar the only) step in this direction.

4.2. Omissions

Several features and concepts are not incorporated in ILP. Some are
not yet understood well enough (time, modifications), others are omitted
as a consequence of the embedding strategy. Some of the omitted features
are:

Variables, recursion, loop constructions. The host language already
provides these facilities.

Subpictures with parameters, which could be used to further compress
the picture data,

Modifications of pictures. It is not yet clear how modification
operations on the ILP data structure must be described in ILP itself
and how selective modifications (changing one line in a subpicture)
must be realized.

Time and moving pictures. The problems are comparable to those for
picture modifications.

Surfaces. The present contours can be used to delimit a surface,
but better tools are needed.

Surface style, the equivalent of line style and point style. Grey
scale forms an example.

Association of non graphical information with a picture.

4.3. Evaluation

Some of the lessons that can be learned from the design of ILP are:

The level of intermediate representation as provided by ILP seems
adequate. Attention is focussed on a restricted problem area and
many problems related to high level graphics languages and machine
dependent issues can be (partly) ignored. However, ILP presents the
designer with similar problems as other intermediate languages do.
How does one decide at which level (above or below the intermediate
language) a certain feature belongs? For example, should primitives
for hidden line removal be part of the intermediate language or not?
In the former case only very general algorithms can be used which
can not use problem specific properties, while in the latter case
simple and efficient algorithms, which use low level information,
are ruled out.

88

A careful description of the semantics of drawing operations and
attributes reveal problems which were not recognized before. Such
an analysis required a considerably greater effort, than was antici
pated.

ILP provides a uniform interface, during the design phase of a
graphics system. This implies that every modification of ILP must
be reflected in all interfaces between system modules. Note that
only the interface is fully specified and that implementation tech
niques may differ from module to module.

In 1979 ILP was implemented on a PDP 11/45. The implementation consists
of a compiler and an interpreter. The compiler checks for syntactical
correctness and produces an efficient encoding of the programs. The
interpreter executes these encoded programs and thus forms a realization
of an ILP machine. Some interesting conclusions drawn from this imple
mentation are:

The considerable effort spent during the design phase to produce a
detailed and consistent semantic description was not waisted. This
report shows that remarkably few modifications were needed to keep
the language consistent and ,complete.

Implementing ILP is a software project of easily manageable complex
ity. The detailed description of the semantics of the language made
cooperation in the team which produced the necessary software easy.
Four programmers spent three months each writing the compiler and
the interpreter which amounted to some 150 page code in the program
ming language C. The code of the interpreter occupies about 60
Kbytes on the PDP 11.

The interpreter drives a drawing machine with rather sophisticated
and sometimes baroque hardware capabilities. The interpreter
attempts to use these capabilities whenever this would lead to
higher efficiency. This turned out to be possible to a great extent
which indicates that the level of ILP primitives is sufficiently
high to make it possible to use a wide range of drawing devices
efficiently.

A serious drawback of a highly structured and recursively defined
language like ILP could be that interpreting a program written in
such a language consumes much more computing time than executing a
more conventional low level display file. However, measurements of
the behaviour of the interpreter show that, even for a highly struc
tured picture like example 20 in chapter 2, the time consumed by
typical ILP algorithms like state administration and attribute mix
ing consume less than 15 % of the total computing time, while stan
dard graphics algortihms like transformation and clipping take more
than 50 %.

REFERENCES

[I] NEWMAN, W.M. & R.F. SPROULL, Principtes of Interactive Computer

Graphics, McGraw-Hill, 1973.

[2] ENCARNA~AO, Jose L., Computer Graphics, Progrannnierung und Anwen

<lung von Graphischen Systemeu, R. Oldenburg Verlag, 1975.

[3] KNUTH, Donald E., The Art of Computer Programming, Vol. I/Funda

mental Algorithms, Addison-Wesley, 1968, 305-357.

89

[4] TEN HAGEN, P.J.W., P. KLINT, H. NOOT & T. HAGEN, Design of an inter

active graphics system, Report IW 36/75, Mathematical

Centre, Amsterdam, 1975.

[5] SINT, H.J., Design of an ALGOL 68 Extension for Graphics, Computer

Graphics, Vol. 13-4, Siggraph-ACM, 1980, 332-354.

[6] KLINT, P. & H.J. SINT, A framework for the interface be-tween

graphics and pattern recognition, Methodology of Interaction,

Proc. IFIP WG5.2 Workshop, North-Holland, 1980.

[7] TEN HAGEN, P.J.W., A conceptuai basis for graphicai input and inter

action, Methodology of Interaction, Proc. IFIP WG 5.2 Work

shop, North-Holland, 1980.

GS] GUEDJ, Richard A. (ed.), Methodotogy of Interaction, Proc. IFIP

WG 5.2 Workshop, North-Holland, 1980.

[9] SIGGRAPH-ACM (GSPC), Status of the Graphics Standards PLanning

Comrrrittee, Computer Graphics, Vol. 13-3, Siggraph-ACM, 1979.

[10] DIN, Graphical Kernel Systems (GKS), Functionai Description,

Din 00 66 252, 1979.

90

[II] DEHNERT, E., G. ERNST & H. WETZEL, GRAPHEX 68, Graphical Language

Featu:res in ALGOL 68, Report T.U. Berlin, August 1974.

[12] HURWITZ, A., J.P. CITRON & J.B. YEATON, GRAF: Graphic Addition to

Fortran, Proc. AFIPS' SJCC 1967, 553-557.

[13] SMITH, D.N., GPL/I, APL/I Extension for Computer Graphics, SJCC

1971, AFIPS Press, Montreal, New York, p. 511.

[14] HAGEN, T., P.J.W. TEN HAGEN, P. KLINT & H. NOOT, ILP, Intermediate Lan

guage for Pictu:Pes, Preliminary Report IW 68/77, Mathematical

Centre, Amsterdam.

[15] HAGEN, T., P.J.W. TEN HAGEN, P. KLINT & H. NOOT, ILP, Intermediate Lan

guage for Pictu:Pes, Proc. IFIP conference 1977, North Holland

1977.

91

Appendix l Syntax

The syntax rules are given in BNF. Non-terminals are denoted in the
form non ter'l7linaZ. The syntax is context free. The non-terminal that is
defined in a rule is separated by a colon (:). Alternatives are
separated by a bar (I). The end of a rule is marked with the symbol;.
Terminal symbols are either special single characters from the following
list:

or they are delimeters denoted in bold capitals e.g. TERMINAL. The non
terminals not defined in this syntax are all defined in Appendix 2. They
constitute the so called lexical units,

The syntax as presented is directly fed into the parser generator
for ILP. For this reason usual notational conventions to make the syntax
look more compact, have been omitted.

pietuPe_ppogPam:

pietstPuet:

named_pietuPe:

POOt_pietuPe:

dimension:

dim:

subpietuPe:

pietstPuet I
pietuPe_pPogPam pietstPuet

named pietupe I
attribute yack ;

Poot pietuPe
subp""IctuPe ;

PICT dimension pname
pictuPe • ;

DIMLESS
dim ;

(vaZue) I
empty;

SUBPICT dimension pname
pictuPe •

92

attl"ibute_pack: AITR dimension aname
attl"ibute • ;

pictu-,,e:

pictu-,,es:

pictu-,,e element:

pname I
pictu'Y'e element I
{ pictur-es } I
subspace pictu-y,e I
WITH att-,,ibute

DRAW pictu-y,e

pictu-y,e I
pictu-,,es picture

- coo-,,dinate_type
text I

coo-,,dinate type:

gene Pat or'
NIL;

-- type att-,,ibute matches

coo-,,dinates:

coo-,,dinate:

(cooidinates)

coo-,,dinate I
coo-,,dinates

'cooroinate

attl"ibute matches
coo'Y'dinate_value I

att-,,ibute matches
(-coo-,,dinate values)

coo-,,dinate values:
coo-,,dinate value I
coo-,,dinate-values ,

cooPdinate value

cooPdinate value:
dimensional value
PP I
EP ;

dimensional value:
[values

dimensional values:

matnx value:

values:

type:

subspace:

shift:

position:

axes:

gener>atoP:

dimensional value I
dimensional-values ,

dimensional value

dimensional values

value I
values , vp,lue

POINT I
LINE I
CONTOUR

SUBSPACE dim new =es

position (shift =es)

dimensional value

CURRENT I
ORIGIN;

empty I
dimensional values

symbol I
cuPVe I
template

93

94

symboZ:

gnames:

CU1"Ve:

SYMBOL gnames

gname I
gnames , gname

CURVE type attribute matches
(CU1"Ve_genePato1"B)

cu1"Ve_gene1"ato1"s:
CU1"Ve_gene1"ato1" I
CU1"Ve_gene1"ato1"s cu1"Ve_gene1"ato1"

CU1"Ve gene1"ato1":
- attribute matches

CU1"Ve dete'ffl!inato1"
attribute matches

C, cul"Ve _ dete'ffllinatol"s)

cul"ve dete'ffl!inatol"s:
CU1"Ve dete'ffllinato1" I
CU1"Ve-dete'ffllinato1"s

CU1"Ve dete'ffl!inato1"

CU1"Ve dete'ffl!inato1":
gname I

intel"vaZ:

gname (inte1"va7, ,
cu1"Ve_ya1"amete1"s)

gname (CU1"Ve_pa1"amete1"s)

UNIT I
(vaZue, vaZue)

CU1"Ve_pa1"amete1"s:
CU1"Ve _yar>amete1"
CU1"Ve _ya1"amete1"s

, cu1"Ve_ya1"amete1"

cur>ve _par>ameter>:
vaZue I
dimensiona7, vaZue

template: TEMPLATE (tempZate_gener>ator>s)

tempZate gener>ator>s:
- tempZate gener>ator> I

tempZate-gener>ator>s
- temp7,ate_gener>ator>

tempZate_gener>ator>:
gname I
gname (tempZate_par>ameter>s)

tempZate par>ameter>s:
- tempZate_par>ameter>

tempZate paPameter>s
-:- temp7,ate_par>ameter>

tempZate_par>ameter>:

text:

vaZue I
dimensiona7, vaZue
pname I
aname I
dname

TEXT attr'ibute matches
(str'ings) ;

str'ing
str'ings , str'ing

attr'ibute matches pr>oper> str>ing
attr'ibute-matches -

(-pr>oper>_str'ings) ;

pr>oper>_str'ings: pr>oper> st7'ing I
pr>oper>=st7'ings pr>oper>_str'ing

95

96

attr>ibute matches:
empty I
attr>ibute matches

deny:

attPibute match:

attPibute:

basic attr>ibute:

attPibutes:

attPibute class:

empty
- I
NOT;

TF
DT
ST
PN
CM
VS

aeny attPibute match

ABS basic attr>ibute
REL basic-attPibute
basic attPibute

attr>ibute_class I
aname I
{ attr>ibutes } I
NIL;

attr>ibute I
attr>ibutes; attr>ibute

tPansfopmation
detection I
style I
contml I
pen I
cooPdinate mode
visibility-;

t-ransfor>mation: riotate I
sca7,e I
t-rans1,ate
matn:r: I
priojection I
affine I
homogeneous matn:r:
porit -
text_ quaU ty

riotate: ROTATE va7,ue
AROURD invanant

invanant: (dimensionaZ_vaZues)

scaZe: SCALE dimensionaZ_vaZue

t-ransZate: TRABSLATE'dimensiona1, vaZue

matn:r:: MATRIX matm va1,ue

affine: AFFINE matm vaZue
dimensional, vaZue

priojection: priojection _ type eye _yosi tion
ON priojection_space;

priojection space:
- dimensional, va1,ue I

ORIGIN dimensional, va1,ue

priojection_type:
PROJECT
PROJECT PERSPECTIVE
PROJECT REVERSIBLE;

eye _yosition: dimensional, vaZue

97

98

homogeneous matPix:
- HOMMATRIX homogeneous_matPix_value

homogeneous matPix value:
- [homogeneous_dimensional values

homogeneous dimensional values:
- homogeneous dimensional value I

homogeneousdimensional-values ,
homogeneous_dimensional_value

homogeneous dimensional value:
- [values] ;

window:

viewpoPt:

style:

Zine_style:

pen:

window
window viewpoPt

WINDOW (dimensional value ,
dimensional value) ;

VIEWPORT (dimensional value ,
dimensional vaTue) ;

Zine style I
point style I
typogr>aphic ;

PERIOD (pePiod desePiption) I
MAP (value peset) I
THICK (value) ;

PENFAULT
eontrost
intens I
eoZouP ;

period deseription:
- dash

dash
dash

dash: DOT I
value

gap: value

' gap
gap dash

r'eset: RESETCOORDINATE
CONTINUE I
RESETLINE

eontrust: CONTRAST (value , value)

intens: INTERS (value)

eolour': COLOUR (value , value , value)

text_quality: QUALITY(quality)

quality: LOW I MEDIUM I HIGH

typogPaphie: TYPFADLT
font I
size I
itaUe
bold;

font: FONT (value)

size: SIZE (value)

italie: ITALIC (value)

99

boZd:

point_styZe:

contr>oZ:

coor>dinate mode:

visibiZity:

detection:

detector>:

empty:

BOLD (vaZue)

DOT I
POINTSTYLE typogr>aphic
POINTSTYLE mar>ker>;

MACHINEDEPENDENTCONTROL pr>oper>_Btr'ing

FIXED
FREE;

VISIBLE I
INVISIBLE

DETECT detector> pr>oper> str>ing
SETDEL detector> pr>oper>-Btr>ing
URDETECT detector> ; -

empty
dname

Appendix 2 Lexical units

vaiue: unsigned vaiue I
+ unsigned va'lue
- unsigned=va'lue

unsigned_vaiue: unsigned integeP
decima'l [ruction
unsigned integeP exponent_paPt
decima'l_fruction exponent_paPt

decimai fruction:
- unsigned_integeP unsigned_integeP

exponent _paPt : e + unsigned integep
e - unsigne~integeP

unsigned integeP:

aname:

pname:

gname:

dname:

name:

- digit I
unsigned_integeP digit

name

name

name

name

'letteP I
name iettep I
name digit ;

pPopeP_stPing: "any_sequence_of_symbo'ls_not_containing_" "

I 01

I 02

letter-: a I b I C I d I e I f I g I
h I i I j I k I 1 I m I n I
o I p I q I r I s I t I u I
V I w I X I y I z I
A I B I C I D I E I F I G
H I I I J IK I L I M I N
o I p I Q I R I s I T I u
V I w I X I y I z

digit: 1 I 2 I 3 4 I s 6 I 7 I s I 9 I o

ma-,,ker-: " any_symbol,_except_" " ;

Appendix 3 An example of an ILP program r 1

ffil - -

-

THIS IS A COMMENT#
This ILP program tests a majority of the attributes

and picture elements#

THE ROOT PICTURES#
One for direct viewing and

one for recording on diazo film#

PICT(3) root WITH {scale; rotate; center}
DRAW house,

PICT (3) diazo
WITH { diazostart; diazofeed; THICK(0,004) }

DRAW root,

THE VIEWING ATTRIBUTE PACKS#
#Three-dimensional transformations#

ATIR(3) scale SCALE[0,1,0.08,0.l].

ATIR(3) rotate
{ ROTATE 20 AROUND ([O,O,O],[l,O,O]);

ROTATE -30 AROUND ([O,O,O],[O,l,O])
} .

103

104

ATTR(3) center TRANSLATE (-3,-4,6].

THE DIAZO PART## HRD-DEPENDENT CONTROL#

ATTR DIMLESS diazostart
MACHINEDEPENDENTCONTROL "HRD: d ia zo".

ATTR DIMLESS diazofeed
MACHINEDEPENDENTCONTROL "HRD: feed".

BUILDING THE HOUSE#
three-dimensional subspaces#

SUBPICT (3) house
{ SUBSPACE ORIGIN((O,O,O])

} .

II default axes II
frontwall;

WITH dotted DRAW
{ SUBSPACE ORIGIN([0,0,0],[0,0,~1],[0,1,0])

leftwall;
SUBSPACE ORIGIN((0,0,-12])

backwall;
} ; '

WITH TRANSLATE (0,8,0] DRAW roof;
SUBSPACE ORIGIN([6,0,0],[0,0,-1],[0,1,0])

rightwall;

SUBPICT frontwall
{ shortwall;

} .

WITH TRANSLATE[0.3,3] DRAW sign;
WITH { TRANSLATE [1,0] ; SCALE [0.9,0.8]}

DRAW door;
WITH { TRANSLATE [3.5,4]; SCALE [0.5,1] }

DRAW window

SUBPICT shortwall
CONTOUR([0,0],[6,0],[6,8],[0,8]).

SUBPICT sign # Text and quality#
{ LINE((0,0]);

} .
WITH { SIZE(0.2); QUALITY(HIGH)}

DRAW TEXT("ILP")

SUBPICT door # Pointstyle #
LINE ([0 , 0] , [2 , 0] , [2 , 6] , [0 , 6] ,

[0,0.1],[2,0.1],(2,3],(0,3]);
WITH {POINTSTYLE "o" ; POINTSTYLE SIZE(0.5) }

DRAW POINT([l.7,3.5])

} .
SUBPICT window# two-dimensional nested transformations#
{ hline;

WITH TRANSLATE [0,1] DRAW hline;
WITH TRANSLATE [O, 2] DRAW hline;
WITH TRANSLATE [0,2] DRAW vline;
WITH TRANSLATE [1,2] DRAW vline;
WITH TRANSLATE [2,2] DRAW vline;
WITH TRANSLATE [3,2] DRAW vline;
WITH TRANSLATE [0,0,1.8] DRAW curtain

} .
SUBPICT hline LINE([0,0], [3,0]).

SUBPICT vline WITH { rot90; SCALE [0.66666,1]}
DRAW hline.

ATTR rot90 ROTATE -90 AROUND ([0,0]),

SUBPICT curtain
{ LINE([O,O]); ,

} .
WITH {SIZE(0.2); QUALITY(HIGH)} DRAW

TEXT ("$ $$$$$$$$$$$$$$")

SUBPICT (3) roof # one-dimensional subspace#

} .

LINE(EP, [3,3,0], [6,0,0], [3,3,0], [3,3,-10.68]);
WITH dotted DRAW LINE(EP, [3,3,-12]);
SUBSPACE (1) CURRENT ([0,0,0],[3,-3,0])

WITH dotted
DRAW LINE(EP, [0.28], ~sT [l]);

WITH dotted DRAW LINE(EP,[0,0,-12]);
LINE([S,1,-9]); chimney

SUBPICT (3) chimney # attribute matches#
WITH { dotted; FREE DRAW

LINE([O,O,O], ~sT[O,O,-l],[-1,1,0],[0,0, l],
~sT[l ,-1,0],
~sT([0,5,0],[0,0,-l],[-1,0,0],[0,0,l]),
~sT([l,O,O],[O,O,-l],[0,-5,0]),[-l,l,O],
[0,4,0J, ~sT[0,0,11, ~sT[0,-4,0J).

SUBPICT backwall
{ shortwall;

} .
WITH { TRANSLATE[l.5,4]

DRAW window
SCALE [0.5,1] }

105

106

SUBPICT sidewall
CONTOUR([0,0],[12,0],[12,8],[0,8]).

SUBPICT leftwall
{ sidewall;

} .
WITH TRANSLATE[2,4] DRAW window;
WITH TRANSLATE[7,4] DRAW window

SUBPICT rightwall
{ sidewall;

} .

CONTOUR([2,3],[10,3],[10,6],[2,6]);
WITH WINDOW([2,3],[10,6]) DRAW
WITH TRANSLATE[5.5,2.5] DRAW plant

to simulate hidden lines# # Linestyle #

ATTR DIMLESS dotted { PERIOD(50);
MAP (0. 03 RESETCOORDINATE) } .

SUBPICT plant # Coordinate mode#
LINE ((0,0]);
WITH { FREE; SCALE [1,1.25]} DRAW pyth5

} .
A pythagoras tree with recursion depth 5 #
Nested subspaces#

SUBPICT pyth5
{ LINE([O,O],[O,l],(l,OJ);

} .

SUBSPACE CURRENT ([-l,0],[0.5,0.5],[-0.5,0.5])
pyth4;

SUBSPACE CURRENT ([-0.5,0.5],[0.5,-0.5],[0.5,0.5])
pyth4;

LINE([0,0],[0,-1],[-l,O])

SUBPICT pyth4
{ LINE([0,0],[0,1],[l,OJ);

}.

SUBSPACE CURRENT ([-l,0],[0.5,0.5],[-0.5,0.5])
pyth3;

SUBSPACE CURRENT ([-0.5,0.5],[0.5,-0.5],[0.5,0.5])
pyth3;

LINE([O,O], [0,-1], (-1,0J)

SUBPICT pyth3
{ LINE([O,O],[O,l],[l,OJ);

SUBSPACE CURRENT ([-l,0],[0.5,0.5],[-0.5,0.5])

} .

pyth2;
SUBSPACE CURRENT ([-0.5,0.5[0.5,-0.5],[0.5,0.5])

pyth2;
LINE([O,O],[O,-l],[-1,0])

SUBPICT pyth2
{ LINE([O,O],[O,l],[1,0]);

} .

SUBSPACE CURRENT ([-1,0],[0.5,0.5],[-0.5,0.5])
pythl;

SUBSPACE CURRENT ([-0.5,0.5],[0.5,-0.5],[0.5,0.5])
pythl;

LINE([O,O],[O,-l],[-1,0])

SUBPICT pythl
{ LINE([0,0],[0,1],,[l,O],

} .
[-0.5,0.5],[-0.5,-0.5]);

LINE([O,O], [1,0], [0,-1], [-1,0])

107

108

INDEX

ABS, 27
a/fine, 52,56,57,96
AFFINE, 57
ALGOL, 86
algorithm TE, 45
algorithm ET, 46
algorithm LI, 47
algorithm RA, 47
aname, 100,37
AROUND, 53
atom, 44
attribute, 33,36,43,95
attribute arc, 35
attribute independence, 85
attribute mixing, 47
attribute node, 35,36
attPibute_eZass, 43,95
attP'ibute_mateh, 25,43,44,95
attPibute_matehes, 43,73,95
attPibute_paek, 19,32,33,90
attPibutes, 43,95
=es, 42,92
basic ILP program, 45
basie_attP'ibute, 33,36,43,95
boZd, 63,98
COLOUR, 66
eoZouP, 66, 98
compactness, 85
CONTINUE, 63
eontrust , 65, 98
eontPoZ , 72, 99
eooPdinate, 40,75,76,91
coordinate pair, 40
eooPdinate_mode, 30,71,99
eoopdinates, 75,91
eoopdinate type, 75,91
eooPdinate-vaZue, 75,76,91
eooPdinate=vaZues, 75,91
cs, 73
CURRENT, 42
current transformation matrix, 40
eupve, 30,81,93
CURVE, 81
euPve_detePminatoP, 82,93
eupve_detePminatoPs, 82,93

eupve genePatoP, 81,82,93
eupve=genepatoPs, 81,93
euPVe_paPametep, 82, 93
euPve __ paPametePs, 82, 93
dash, 61,62,98
deeimaZ_fruetion, 100
default element, 25,74
default value, 44
deny, 44,95
DETECT, 68
detectant, 67
detectant set, 67
deteetion, 31,66,68,99
detector, 67
deteetoP, 68,99
di9it, 101
dim, 41, 90
dimension, 34,41,90
dimension, 20,34,39
dimensionaZ vaZue, 40,92
dimensionaZ-vaZues, 41,92
DIMLESS, 20-;-41
DH, 49
dname, 100,69
DOT, 61,64
drawing machine state, 49
DT, 73
elaboration, 15,32
element path, 45
element position, 76
element tree, 45
embedding, 85
empty, 99
environment, 32
EP, 76
exponent_paPt, 100
eye_position, 55,96
FIXED, 13, 71
font, 98
FREE, 13, 71
gap, 61, 62, 98
general dimension rule, 41
genePatoP, 30,80,92
gname, 100, 81
gnames, 81,93

graph structure, 34
HOMMATRIX, 57
homogeneous_dimensional_value,

57,97
homogeneous_dimensional_values,

57,97
homogeneous_matpix, 52,57,96
homogeneous_matPix_value, 57,97
ILP house, 102
intens, 65,98
intePval, 82,93
invaPiant, 53,96
INVISIBLE, 2 7, 72
italic, 63, 98
lettep, 100
library, 30
LINE, 11, 76
line_style, 61,97
MAP, 14,62
mapkeP, 101
matnx, 52,54,96
MATRIX, 54

-matnx_value, 41,92
mixing rule, 48
mixing rules, 24
name, 100
named_pictuPe, 17,32,33,90
new_=es, 42,92
NIL, 35
ORIGIN, 28,42,55
pen, 31,64,97
PENFAULT, 64
PERIOD, 14,61
pePiod_desePiption, 62,97
PICT, 17
pietstPuct, 32,90
pictuPe, 33,35,91
picture arc, 35
picture element, 10
picture graph, 35
picture node, 35
picture position, 76
pictuPe_element, 35,74,91
pietupe_pPogPam, 32,90
pictuPes, 91
PN, 73
pname, 100
POINT, 11, 76
point_style, 64,99
poPt, 52, 58, 97

position, 42,92
PP, 76
preorder, 15
PROJECT, 56
pPojection, 52,55
projection, 55
pPojection, 96
pPojection space, 55,96
pPojection-type, 55,96
pPopeP_StPing, 100,68,78
pPopeP_stpings, 78,94
quality, 59,79,98
references, 89
REL, 27
Peset, 62,63,98
RESETCOORDINATE, 63
RESETLINE, 63
Poot_pictuPe, 32,33,90
ROTlTE, 14,53
Potate, 52,53,96
rotation, 52
SCALE, 14,23, 54
scale, 52,54,96
self modification, 85
SETEL, 68
shift, 42,92
size, 63, 98
ST, 73
state, 12,37
state component, 37
states, 49
stPing, 78, 94
stPings, 78,94
style, 31
style, 60
style, 61,97
SUBPICT, 17
subpictuPe, 32,33,90
SUBSPACE, 25,42
subspace, 27,39,42,60,92
symbol, 30,81,93
SYMBOL, 81
symmetric i/o, 85
syntax, 90
syntax denotation, 8
template, 30,81,83,94
TEMPLATE, 83
template_genePatoP, 83,94
template_genePatoPs, 83,94
template_paPameteP, 83,94

109

110

template_yaPametePs, 83,94
TEXT, 12, 78
text, 78,94
text quality, 59
text quality, 52,59,79,98
TF, 73
THICK, 63
TP, 76
tPansfoPmation, 30,51,95
transformation, 49
transformed coordinates, 40
TRANSLATE , 14, 54
tPanslate, 52,54,96
traversing process, 37
type, 75,76,92
TYPFAULT, 64
typogPaphie, 63,98
ONDETECT, 68
UNIT, 82
unit cube, 29,40
unit value, 44
unsigned integeP, 100
unsigned-value, 100
UP, 76 -
user coordinates, 40
user space, 10,29
user unit cube, 29
value, 100
values, 40,92
viewpoPt, 58,97
visibility, 72,99
VISIBLE , 2 7 , 72
window, 58, 97
WITH, 21

TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

(An asterisk before the MCT number indicates that the tract is under prep
aration),

A leaflet containing an order form and abstracts of all publications men
tioned below is available at the Mathematisch Centrum, Kruislaan 413,
1098 SJ Amsterdam, The Netherlands. Orders should be sent to the same
address.

MCT T. VAN DER WALT, Fixed and almost fixed points, 1963.
ISBN 90 6196 002 9.

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964, ISBN 90 6196 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II:
Probabilistic background, 1964. ISBN 90 6196 005 3.

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision
processes, Applications, 1970. ISBN 90 6196 051 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 I.

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964.
ISBN 90 6196 007 X.

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964.
ISBN 90 6196 008 8.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.

MCT 10 E.M. DE JAGER, Applications of distrubutions in mathematical physics,
1964. ISBN 90 6196 010 X.

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964.
ISBN 90 6196 011 8.

MCT 12 J.A.Th.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965.
ISBN 90 6196 013 4.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced
by MCT 54,

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics,
1966. ISBN 90 6196 020 7.

MCT 15 R. DOORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

MCT 16 J.W. DE BAKKER, Formal definition of programming languages with an
application to the definition of ALGOL 60, 1967.
ISBN 90 6196 022 3.

MCT 17 R.P. VANDERIET, Forrrrula manipulation in A.LGOL 60, pa:,nt 1; 1968.
ISBN 90 6196 025 8.

MCT 18 R.P. VANDERIET, Forrrrula manipulation in ALGOL 60, part 2, 1968.
ISBN 90 6196 038 X.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial
differential equations, 1968. ISBN 90 6196 027 4.

MCT 21 E. WATTEL, The compactness operator in set theory and topology, 1968.
ISBN 90 6196 028 2.

MCT 22 T .J. DEKKER, ALGOL 60 procedures in nume1°ical algebra, part 1, 1968.
ISBN 90 6196 029 O.

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in numerical algebra,
part 2, 1968. ISBN 90 6196 030 4.

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6.

MCT 25 E.R. PA.ERL, Representations of the Lorentz group and projective
geometry, 1 969. I,SBN 90 61 96 039 8.

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968.
ISBN 90 6196 031 2.

MCT 27 EUROPEAN MEETING 1968, Selected staUstical papers, part II, 1969.
ISBN 90 6196 040 1.

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969.
ISBN 90 6196 041 X.

MCT 29 J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8.

MCT 30 H. BRANDT CORSTIUS, Exercises in computational linguistics, 1970.
ISBN 90 6196 052 5.

MCT 31 W. MOLENAAR, Approximations to the Poisson, binomial and hypergeometric
distribution functions, 1970. ISBN 90 6196 053 3.

MCT 32 L. DE HAAN, On regular variation and its application to the weak con
vergence of sample extremes, 1970. ISBN 90 6196 054 1.

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing and
related topics, 1970. ISBN 90 6196 061 4.

MCT 34 I. JUHASZ, A. VERBEEK & N.S. KROONENBERG, Cardinal functions in
topology, 1971. ISBN 90 6196 062 2.

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 0.

MCT 36 J. GRASMAN, On the birth of boundary layers, I 971 . ISBN 90 6196 064 9.

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DUIJVESTIJN, E.W. DIJKSTRA,
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
ARETZ, W.L. VANDERPOEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES &
G. ZOUTENDIJK, MC-25 Informatica Symposium 1971.
ISBN 90 6196 065 7.

MCT 38 W.A. VERLOREN VAN THEMAAT, Automatic analysis of Dutch compound
words, 1971. ISBN 90 6196 073 8.

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6.

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972.
ISBN 90 6196 075 4.

MCT 41 A. VERBEEK, Superextensions of topological spaces, 1972.
ISBN 90 6196 076 2.

HCT 42 W. VERVAAT, Success epochs in Bernoulli trials (with applications in
number theory), 1972. ISBN 90 6196 077 0.

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence,
1973. ISBN 90 6196 081 9.

MCT 44 H. BART, Meromorphic operator valued functions, 1973.
ISBN 90 6196 082 7.

MCT 45 A.A. BALKEMA, Monotone transformations and limit laws 1973.
ISBN 90 6196 083 5.

MCT 46 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipu
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3.

MCT 47 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipu
lation systems, part 2: The compiler, 1973. ISBN 90 6196 085 !.

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL
60 compiler in ALGOL 60, Text of the MC-compiler for the
EL-XB, 1973. ISBN 90 6196 086 X.

MCT 49 H. KOK, Connected orderable spaces, 1974. ISBN 90 6196 088 6.

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER,
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER
(Eds), Revised report on the algorithmic language ALGOL 68,
1976. ISBN 90 6196 089 4.

MCT 51 A. HORDIJK, Dynamic programming and Markov potential theory, 1974.
ISBN 90 6196 095 9.

MCT 52 P.C. BAAYEN (ed.), Topological structures, 1974. ISBN 90 6196 096 7.

MCT 53 M.J. FABER, Metrizability in generalized ordered spaces, 1974.
ISBN 90 6196 097 5.

MCT 54 H.A. LAUWERIER, Asymptotic analysis, part 1, 1974. ISBN 90 6196 098 3.

MCT 55 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 1: Theory of
designs, finite geometry and coding theory, 1974.
ISBN 90 6196 099 1.

MCT 56 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 2: Graph
theory, foundations, partitions and combinatorial geometry,
1974. ISBN 90 6196 100 9.

MCT 57 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 3: Combina
torial group theory, 1974. ISBN 90 6196 101 7.

MCT 58 W. ALBERS, Asymptotic expansions and the deficiency concept in sta
tistics, 1975. ISBN 90 6196 102 5.

MCT 59 J .L. MIJNHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

MCT 60 F. GOBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108

*MCT 61 P. VAN EMDE BOAS, Abstract resource-bound classes, part 1,
ISBN 90 6196 109 2.

*MCT 62 P. VAN EMDE BOAS, Abstract resource-bound classes, part 2,
ISBN 90 6196 110 6.

MCT 63 J.W. DE BAKKER (ed.), Foundations of computer science, 1975.
ISBN 90 6196 Ill 4.

4.

MCT 64 W.J. DE SCHIPPER, Syrronetric closed categories, 1975. ISBN 90 6196 112 2.

MCT 65 J. DE VRIES, Topological transfoT'lllation groups 1 A categorical approach,
1975. ISBN 90 6196 113 0.

MCT 66 H.G.J. PIJLS, Locally convex algebras in spectral theory and eigen
function expansions, 1976. ISBN 90 6196 114 9.

*MCT 67 H.A. LAUWERIER, Asymptotic analysis, part 2, ISBN 90 6196 119 X.

MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of
second order, 1976. ISBN 90 6196 120 3.

MCT 69 J.K. LENSTRA, Sequencing by enumerative methods, 1977.
ISBN 90 6196 125 4.

MCT 70 W.P. DE ROEVER JR., Recursive program schemes: Semantics and proof
theory, 1976. ISBN 90 6196 127 0.

MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976.
ISBN 90 6196 129 7.

MCT 72 J.K.M. JANSEN, Simple periodic and nonperiodic Lame functions and
their applications in the theory of conical ~aveguides, 1977.
ISBN 90 6196 130 O.

MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic logic, 1979.
ISBN 90 6196 122 X.

HCT 74 H.J.J. TE RIELE, A theoretical and computational study of generalized
aliquot sequences, 1976. ISBN 90 6196 131 9.

MCT 75 A.E. BROUWER, Treelike spaces and related connected topological
spaces, 1977. ISBN 90 6196 132 7.

MCT 76 M. REM, Associations and the closure statement, 1976.
ISBN 90 6196 135 I.

MCT 77 W.C.M. KALLENBERG, Asymptotic optimality of likelihood ratio tests
in exponential families, 1977. ISBN 90 6196 134 3.

MCT 78 E. DEJONGE & A.C.M. VAN ROOIJ, Introduction to Riesz spaces, 1977.
ISBN 90 6196 133 5.

MCT 79 M.C.A. VAN ZUIJLEN, Empirical distributions and rank statistics,
1977. ISBN 90 6196 145 9.

MCT 80 P.W. HEMKER, A nwnerical study of stiff -two-point boundary problems,
1977. ISBN 90 6196 146 7.

MCT 81 K.R. APT & J.W. DE BAKKER (Eds), Foundations of computer science II,
part I, 1976. ISBN 90 6196 140 8.

MCT 82 K.R. APT & J.W. DE BAKKER (Eds), Foundations of computer science II,
part 2, 1976. ISBN 90 6196 141 6.

MCT 83 L. S. BENTREM JUTTING, Checkin,g Landau's "Grundlagen" in the
AUTOMATH system, 1979. ISBN 90 6196 147 5.

MCT 84 H.L.L. BUSARD, The translation of the elements of Euclid from the
Arabic into Latin by Hermann of Carinthia (?} books vii-xii,
1977. ISBN 90 6196 148 3.

MCT 85 J. VAN MILL, Supercompactness and Wallman spaces, 1977.
ISBN 90 6196 151 3.

MCT 86 S.G. VAN DER MEDLEN & M. VELDHORST, Torrix I, A prograrnmin,g system
for operations on vectors and matrices over arbitrary fields
and of variable size. 1978. ISBN 90 6196 152 I.

*MCT 87 S.G. VAN DER MEDLEN & M. VELDHORST, Torrix II,
ISBN 90 6196 153 X.

MCT 88 A. SCHRIJVER, Matroids and linkin,g systems, 1977.
ISBN 90 6196 154 8.

MCT 89 J.W. DE ROEVER, Complex Fourier transformation and analytic functionals
. with unbounded carriers, 1978. ISBN 90 6196 155 6.

*MCT 90 L.P.J. GROENEWEGEN, Characterization of optimal strategies in dynamic
games, , ISBN 90 6196 156 4.

MCT 91 J.M. GEYSEL, Transcendence in fields of positive characteristic,
1979. ISBN 90 6196 157 2.

MCT 92 P.J. WEEDA, Finite generalized Markov programming, 1979.
ISBN 90 6196 158 O.

MCT 93 H.C. TIJMS & J. WESSELS (eds), Markov decision theory, 1977.
ISBN 90 6196 160 2.

MCT 94 A. BIJLSMA, Simultaneous approximations 1:n transcendental nwnber
theory, 1978. ISBN 90 6196 162 9.

MCT 95 K.M. VAN HEE, Bayesian control of Markov chains, 1978.
ISBN 90 6196 163 7.

MCT 96 P.M.B. VITANYI, Lindenmayer systems: Structure, lan,guages, and
growth functions, 1980. ISBN 90 6196 164 5.

*MCT 97 A. FEDERGRUEN, Markovian control problems; functional equations
and algorithms, • ISBN 90 6196 165 3.

MCT 98 R. GEEL, Singular perturbations of hyperbolic type, 1978.
ISBN 90 6196 166 1.

MCT 99 J.K. LENSTRA, A.II.G. RINNOOY KAN & P. VAN EMDE BOAS, Interfaces
be-tween computer science and operations research, 1978.
ISBN 90 6196 170 X.

MCT JOO P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (Eds), Proceedings
bicentennial congress of the Wiskundig Genootschap, part 1, 1979.
ISBN 90 6196 168 8.

MCT 101 P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (Eds), Proceedings
bicentennial congress of the Wiskundig Genootschap, part 2, 1979.
ISBN 90 6196 169 6.

MCT 102 D. VAN DULST, Reflexive and superreflexive Banach spaces, 1978.
ISBN 90 6196 171 8.

MCT 103 K. VAN HARN, Classifying infinitely divisible distributions by
functional equations, 1978. ISBN 90 6196 172 6.

MCT 104 J.M. VAN WOUWE, Go-spaces and generalizations of metrizability, 1979.
ISBN 90 6196 173 4.

*MCT I 05 R. HELMERS, Edgeworth expansions for linear combinations of order
statistics, . ISBN 90 6 I 96 I 7 4 2.

MCT 106 A. SCHRIJVER (Ed.), Packing and covering in combinatorics, 1979.
ISBN 90 6196 180 1.

MCT 107 c. DEN HEIJER, The numerical solution of nonlinear operator
equations by imbedding methods, 197 9. ISBN 90 6 I 96 I 7 5 0.

MCT 108 J.W. DE BAKKER & J. VAN LEEUWEN (Eds), Foundations of computer
science III, part I, 1979. ISBN 90 6196 176 9.

MCT 109 J.W. DE BAKKER & J. VAN LEEUWEN (Eds), Foundations of computer
science III, part 2, 1979. ISBN 90 6196 177 7.

MCT 110 J.C. VAN VLIET, ALGOL 68 transput, part I: Historical review and
discussion of the implementation model, 1979. ISBN 90 6196 178 5.

MCT Ill J.C. VAN VLIET, ALGOL 68 transput, part II: An implementation model,
1979. ISBN 90 6196 179 3.

HCT 112 H.C.P. BERBEE, Random walks with stationary increments and renewal
theory, 1979. ISBN 90 6196 182 3.

HCT I 13 T.A.B. SNIJDERS, Asymptotic optimality theory for testing pmblems
with restricted alternatives, 1979. ISBN 90 6196 183 I.

MCT 114 A.J.E.M. JANSSEN, Application of the Wigner distribution to harmonic
analysis of generalized stochastic processes, 1979.
ISBN 90 6196 184 x.

MCT I I 5 P.C. BAAYEN & J. VAN MILL (Eds), Topological Structures II, part I '
1979. ISBN 90 6196 185 5.

MCT 116 P.C. BAAYEN & J. VAN MILL (Eds), Topological Structures II, part 2,
1979. ISBN 90 6196 186 6.

~,CT 117 P.J.M. KALLENBERG, Branching processes with continuous state space,
1979. ISBN 90 6196 188 2.

MCT 118 P. GROENEFOOM, Large deviations and asymptotic efficiencies, 1980.
ISBN 90 6196 190 4.

MCT 119 F.J. PETERS, Sparse matrices and substructures, with a novel imple
mentation of finite element algorithms, 1980. ISBN 90 6196 192 O.

MCT 120 W.P.M. DE RUYTER, On the asymptotic analysis of large-scale ocean
circulation, 1980. ISBN 90 6196 192 9.

MCT 121 W.H. HAEMERS, Eigenvalue techniques in design and graph theory, 1980.
ISBN 90 6196 194 7.

MCT 122 J.C.P. BUS, Numerical solution of systems of nonlinear equations,
1980. ISBN 90 6196 195 5.

MCT 123 I. YUHASZ, Cardinal functions in topology - ten years later, 1980.
ISBN 90 6196 196 3.

MCT 124 R.D. GILL, Censoring and stochastic integrals, 1980.
ISBN 90 6196 197 1.

MCT 125 R. EISING, 2-D systems, an algebraic approach, 1980.
ISBN 90 6196 198 X.

MCT 126 G. VAN DER HOEK, Reduction methods in nonlinear programming, 1980.
ISBN 90 6196 199 8.

MCT 127 J.W. KLOP, Combinatory reduction systems, 1980. ISBN 90 6196 200 5.

MCT 128 A.J.J. TALMAN, Variable dimension fixed point algorithms and
triangulations, 1980. ISBN 90 6196 201 3.

MCT 129 G. VANDERLAAN, Simplicial fixed point algorithms, 1980.
ISBN 90 6196 202 1.

MCT 130 P.J.W. TAN HAGEN et al., ILP Intermediate language for pictures,
1980. ISBN 90 6196 204 8.

MCT 131 R.J.R. BACK, Correctness preserving program refinements:
Proof theory and applications, 1980. ISBN 90 6196 207 2.

MCT 132 H.M. MULDER, The interval function of a graph, 1980.
ISBN 90 6196 208 0.

MCT 133 C.A.J. KLASSEN, Statistical performance of location estimators, 1981.
ISBN 90 6196 209 9.

