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CHAPTER 1

INTRODUCTION

Many problems in economics, nonlinear programming and other fields
can be solved by using fixed point algorithms, which should be regarded as
one of the major breakthroughs in computational methods for nonlinear
problems. Already in 1910 the Dutch mathematician L.E.J. Brouwer proved
that any continuous function f from a coméact convex set into itself has
at least one fixed point, i.e. there exists at least one point x* in the
set such that f(x*) = x*; The generalization of this theorem to upper
semi-continuous point to set mappings is due to Von Neumann "1937] and
Kakutani [1941]. However, the originial proofs of these theorems were not
concerned with computational methods. In spite of the simplification of
the proofs during the subsequent years and the widespread use of the
theorems as a mathematical tool in several fields it is only in the last
fifteen years that fixed point theorems have been embedded in a
computational setting.

The first method to compute a fixed point of a mapping from the unit
simplex s = {xeR2|22:1 X = 1} into itself was presented in the pioneering
work of Scarf 1967b], see also Scarf [1973]. He utilized an argument of
Lemke and Howson [1964] and Lemke " 1965] and the relationship of Sperner's
lemma {1928] to the Brouwer fixed point theorem. Lemke and Howson
provided a finite method for the computation of a

Nash equilibrium point in a two-person nonzero-sum game using ideas from
the pivot theory introduced by Dantzig [[1951,1963] for the solution of
linear programming problems. To prove the convergence of the method, Lemke
did not use a monotonicity property but a combinatorial argument. To solve
problems with a nonlinear character, Scarf replaced the sequence of

linear programming pivot steps by the alternative construction of
primitive sets, introduced by Scarf in an earlier paper "1967al. Scarf
proved that the algorithm generates a path of adjacent primitive sets, and

terminates within a finite number of iterations with a primitive set which



yields a good approximation of a fixed point. Unfortunately, the procedure
needs a high computer storage. A method to overcome this difficulty was
discovered by Hansen (1968]. He chose the points of the primitive sets in
a systematic way. However, then the pivot steps become identical to the
pivot steps using a regular triangulation discovered by Freudenthal [ 1942]
and made operational by XKuhn [1960]. Most of the recently developed fixed
point algorithms are based on the concept of a triangulation. The first
of them were already developed in 1968 and 1969 by Kuhn.

The algorithms mentioned above suffer from the disadvantage that the mesh
of the triangulation is fixed and that they must start outside the region
of interest. This means that when on a certain mesh an approximate fixed
point is found the information obtained is of no use to find an
approximation on a finer mesh. Fortunately, several algorithms

followed, which were able to handle this drawback. A first method is due
to Merrill [1971,1972] and was later rediscovered by Kuhn and MacKinnon
[1975]. Closely related methods can he found in Liithi [1975]and Fisher,
Gould and Tolle [1977]. This algorithm, called the Sandwich method, can
start at an arbitrary point. This opens the opportunity to use the
approximation obtained by applying the algorithm on a certain mesh as the
starting point in a subsequent application with a finer mesh. A second
method was independently and simultaneously discovered by Eaves [1972]

for mappings on Sn and generalized by Eaves and Saigal [1972] for

mappings on R™. In this method the mesh of the triangulation is
automatically refined during the course of the algorithm. In both methods
an extra dimension is used . They can be considered as methods which trace
a path from the solution of an artificial mapping to the approximation of
a solution of the original one. Algorithms without an extra dimension were
developed by Tuy [1979] and by Garcia [1975] and Garcia and Gould
[1976,1979]. However, as argued by Todd [1978b], the method of Tuy needs a
lot of computation time whereas the algorithm of Garcia and Gould may
fail to find an approximate fixed point.

Beside the development of more sophisticated algorithms many related
issues were studied. Computational experiences showed that the computation
time depends highly upon the underlying triangulation (see e.g. Saigal
[1977a] and Todd [1978al). Measures for the efficiency of a triangulation
of R were developed by Saigal, Solow and Wolsey [1975] and Todd
[1976b,1978al]. However, for these measures it is not known how the optimal

triangulation looks like. Van der Laan and Talman [1980a] suggested a new



measure which enables the calculation of the optimal triangulation within
a reasonable class. They also proposed a triangulation of the affine hull
of the unit simplex whose measure is the same as that of the optimal
triangulation of R%. An other important subject is the convergence of

fixed point algorithms on unbounded regions. Conditions that guarantee
convergence were studied by Merrill [1971,1972], Gould and Tolle "1975],
saigal [1977c], Todd [1976a,1978b,1980], Saigal and Todd [1978], Reiser
[1978a,b], Van der Laan and Talman [1980c ] and Talman {19801].

To apply fixed point algorithms the grid points of a triangulation are
labelled with an integer or vector label. The relation between convergence
and labelling rules was studied by Fisher, Gould and Tolle [1977],
MacKinnon [1977], Garcia and Gould [1976,19791 and Reiser [1978al.
Recently, Kojima [1978a] and Todd [1978c,d] developed pivot methods which
take advantage of the separability respecti&ely the linearity of a function.
Under certain conditions the convergence of a simplicial algorithm can be
improved near a solution of a smooth mapping. Acceleration techniques which
result in superlinear convergence were given by Saigal [1977c] and Saigal
and Todd [1978] for vector labelling (see also Wolsey [1974]). In these
studies the approximate Jacobian (see Todd [1978e] and also Saigal [1979b])
plays an important role. An accelerated version of an algorithm using
integer labelling was given by Reiser [1978al.

A development resulting in more insight into the simplicial fixed point
algorithms is the theory of orientations and index. This theory was
introduced by'Shapley [1974] for bimatrix games and generalized by Lemke
and Grotzinger [1976], Eaves and Scarf [1976] and Todd 1976c].

The path of simplices generated by fixed point algorithms was studied by
saigal [1976], Garcia and Gould M1978] and Saari and Saigal [1979].

Survey papers about fixed point algorithms and the related topics are those
of Gould and Tolle [1974], Eaves [1976], Saigal "1977b] and Allgower and
Georg [1980]. We refer the reader also to the monographs of Todd [1976a7]and
Lithi [1976] and to the conference proceedings edited by Karamardian [1977]
and Peitgen and Walther [1979].

In this monograph new algorithms to compute a fixed point are presented.
Also conditions to guarantee the convergence of the algorithms on
unbounded regions are stated. Most of the work is based on the papers of
Van der Laan and Talman [1979a,b, 1980b,c]-

The monograph is organized as follows. In chapter 2 we give the most



important fixed point theorems and some applications as the equilibrium
price vector in economic models and the solution of an unconstrained
optimization problem. Also the concepts of triangulation and piecewise
linear approximation to a mapping with respect to a triangulation are
given.

In chapter 3 triangulations of R" and Sn are discussed together with
measures for the efficiency of a triangulation.

Chapter 4 presents a survey of the algorithmsof Scarf, Kuhn, Merrill and
Eaves and Saigal. We show that the two algorithms of Kuhn are the two
extreme cases of a class of algorithms. It will appear that the
algorithms of Merrill and Eaves and Saigal supercede those of Scarf and
Kuhn.

In chapter 5 a new algorithm to compute fixed points on Sn and its affine
hull ™ is introduced. The method is a restart algorithm and generates a
path of simplices of variable dimension. In contrast to the algorithms

of Merrill and Eaves and Saigal no extra dimension is needed.

In chapter 6 the application of the algorithm on the unit cube and on rRY
is discussed. Conditions to guarantee the convergence of the algorithm on
Rn are given.

In chapter 7 we define an orientation of a simplex. In view of the
algorithm introduced in the chapters 5 and 6 we generalize this concept.
Some preliminary results about the number of completely labelled
simplices are also given. Also a method which gives an odd number of
completely labelled simplices is discussed.

Chapter 8 presents another new algorithm. It is a method with an automatic
refinement of the grid size. It differs from the algorithm of Eaves and

Saigal in that it allows for any factor of refinement of the grid size.



CHAPTER 2

PRELIMINARIES

2.1. INTRODUCTION .

Fixed point properties of functions or mappings are of fundamental
importance in many problems e.g. the existence of a solution to a system of
nonlinear equations or the existence of an equilibrium in an economy can be
proved by using a fixed-point theorem. The most famous fixed point theorem
is due to Brouwer [1912]. We give a proof of this theorem using a
combinatorial lemma of Sperner [1928]. We follow this approach since this
lemma is closely related to arguments which play an important role in
algorithms for computing fixed points. In particular the concept of a
triangulation of a set is of importance.

In section 2 Brouwer's theorem is stated. Moreover, a lemma of Knaster,
Kuratowski and Mazurkiewicz [1929] is given and it is proved that this lemma
implies Brouwer's fixed point theorem. In section 3 we introduce the concept
of a triangulation and some other definitions. In section 4 Sperner's lemma
is given and Brouwer's theorem is proved whereas in section 5 the
generalization of this theorem by Kakutani [1941] is discussed. Also the
crucial concept of a piecewise linear approximation of a mapping is
introduced here. In section 6 some applications of fixed point theorems are

given.

2.2. BROUWER'S THEOREM .

Let C be a nonempty set in the n-dimensional Euclidian space R endo-
wed with the standard norm ||x|| = (Z?=1xi)%. It is an important problem
whether for any continuous function f from C into itself there exists at
least one point x* in C such that f(x*)=x*, i.e. whether such a function
has at least one fixed point. Under the intuitively plausible conditions
of convexity and compactness of C this statement was first proved by

Brouwer.



THEOREM 2.2.1. (BROUWER). Let C be a compact and convex subset of R,

Then any continuous function f£: C + C has at least one fixed point.
It is easy to see that the theorem is true for n = 1. If n > 1 the proof
of the theorem is much more complicated. Without loss of generality we

can restrict ourselves to continuous functions on the unit simplex.

DEFINITION 2.2.2. The n-dimensional unit simplex s" is defined by

n n+1 nl
§ ={xeR I x, =landx, 20, i=1,...,n¢}
i=1
for i = 1,...,n+l we define the i-th boundary S? of Sn by
st = {x ¢ s"| x, = o}.
i i

Observe that the vertices of s" are the (n+1)~-dimensional unit vectors to
be denoted by e(i), i=1,...,n+l. In particular, 52 is the equilateral
triangle with the vertices e(l), e(2) and e(3).

Following Todd [1976a] we prove Brouwer's theorem by using Sperner's
lemma and the lemma of Knaster, Kuratowski and Mazurkiewicz [1929] (the

K~K-M lemma).

LEMMA 2.2.3. (K-K-M). Let {cl""'cn+1} be a collection of closed subsets
of Sn such that

n+1
a) s= u c,
=1 T ~
b) n st c U C, forany Ic {1,...,n+1}.
fer * jér
n+1
Then n Ci is norempty.
i=1

The K-K-M lemma is illustrated for n = 2 in figure 2.2.1.
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We prove the lemma in section 4. Here we show that the theorem of Brouwer

is implied by the lemma of K-K-M.
LEMMA 2.2.4. The K-K-M lemma implies Brouwer's theorem.

PROOF. Define c; to be the set {x € Sn] fi(x) < xi} for all i=1,...,n+l.

Then it can easily be verified that the sets Cl,...,Cn+1 satisfy the two
+ * +1
conditions of the K-K-M lemma. Therefore zgi Ci # @. Choose x ¢ ?Ql Ci'
From the definition of Ci we obtain that
* *
f.(x) < x, i=1,...,n+l.
i i
+ * + * *
Since Z? ! f.(x) = Z? ! x, = 1 it follows that f,(x*) =x,, i=1,...,n+1.
i=1 i i=1 i i i
Hence x is a fixed point of f. 0

To prove the K-K-M lemma, we need the fundamental concept of a triangula-

tion. This concept will be discussed in the next section.



2.3. TECHNIQUE OF TRIANGULATION.

Before defining a triangulation of a set we introduce some basic

i +
concepts. Let W € Rn for i=1,...,t+l. The t+l points wl,...~,wt ! are
+ i +
called affinely independent if Zz_i Aiwl = 0 and Zz_i Xi = 0 imply Ai =0

+
for i=1,...,t+1. The convex hull of t+1 points wl,...,wt ! is the set

t+1 .
(x e R x= uiwl with a € St}.
=1

1

The convex hull of a set'D, to be denoted by conv(D), is defined as the

. . t+1 i,
intersection of all convex sets containing D. The point x = I o,w is

i=1 i
1 t+
called an affine combination of the points w ,...,w ! if
t+
Zi_i ai = 1, The affine hull of a set D, to be denoted by aff (D), is the
set of all finite affine combinations of points of D.

Now we give the following definitions.

DEFINITION 2.3.1. A t-dimensional simplex or t-simplex, to be denoted
t+1

by 0, is the convex hull of t+1 affinely independent points wl,...,w
1 +1 1 +
of Rn. We write o = o(w ,...,wt ). The points w ,...,wt 1 are called the

vertices of o.

DEFINITION 2.3.2. Let 0 be a t-simplex in Rn. Then a k-simplex T (k < t)

is a face of o if all the vertices of 1T are vertices of o. A (t-1)-face
of 0 is called a facet of 0. The facet T of 0 is said to be opposite to

i, i, . .
the vertex w if w is a vertex of o but is not a vertex of 1, i=1,...,t+1.

Note that a t-simplex has t+1 facets and that the vertex opposite to a

facet of ¢ is uniquely determined.

DEFINITION 2.3.3. Two different simplices 01 and 02 are adjacenteither

if one of them is a facet of the other or if 01 and 02 share a common

facet.

Let C be an m-dimensional convex subset of Rn.



DEFINITION 2.3.4. A collection G of m-simplices is a triangulation of C
if

a) C is the union of all simplices in G,

b) the intersection of two simplices in G is either empty

or a common face.

This definition excludes the cases drawn in figure 2.3.1. In the first

case e.g. the intersection of 01 and 02 is neither empty nor a common

face and in the second case ¢ is not a simplex. Examples of a triangulation
are shown in figure 2.3.2.

Figure 2.3.1. Examples which are not a triangulation.

Figure 2.3.2. Examples of a triangulation.
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\
Some important properties of a triangulation are given in the following
two theorems. Their proofs can be found in Spanier [1966]. For any set
Ccc Rn, denote by bd C and int C the boundary of C respectively the
interior of C, relatively to the affine hull of C, cf. Berge [1966].

THEOREM 2.3.5. If T is a facet of a simplex of a locally finite triangula-
tion G of the m-dimensional convex subset C of Rn then either T belongs to
bd C and is a facet of just one simplex of G, or T does not belong to bd C

and is a facet of exactly two simplices of G.

THEOREM 2.3.6 Let D be an (m-1)-dimensional subset in bd C such that
C n aff(D) is contained in D. Then D is triangulated by the set of (m-1)-
simplices which are contained in D and which are facets of simplices of

the triangulation G of C.

A triangulation G of C is locally finite is each x € C has a neighborhood
meeting only a finite number of simplices of G. Although in chapter 6 a
nonlocally finite triangulation will be described, in the remaining of
this monograph we only deal with triangulations having the property of
theorem 2.3.5.

Both theorems .are illustrated by figure 2.3.3, where C is the 2-dimen-

sional unit simplex. In this figure t, does not belong to bd C and is a

1
and 02, whereas T

facet of the two simplices o belongs to bd C and is a

1
facet of just one simplex. This simplex is o

2

3° The triangulation of the

convex hull of e(2) and e(3) consists of the three one-dimensional

T, and T,.

simplices Tyr Ty 4

e(3)

e (1) e(2)

Figure 2.3.3. Illustration of the theorems 2.3.5 and 2.3.6.



We now define the mesh of a triangulation.

n
DEFINITION 2.3.7. Let C be an m-dimensional convex subset of R and

let G be a triangulation of C. The diameter of a simplex ¢ of G, to be

denoted by diam ¢, is defined by

diam 0 = max {||x-y||}.
X,y €0

The mesh of a triangulation G, to be denoted by mesh G, is defined by

mesh G = sup {diam o}.
’ oge G
s . . . 1 m+l |
Observe that the diameter of a simplex o0 with vertices w ,...,w is

equal to the maximum of the distance between two vertices, i.e.

diam c(wl,...,wm+1) = max {Hwi—wj”}-

1 <i,j < m+l

The following lemma is obvious.

LEMMA 2.3.8. Let G1 be the set of all one-faces of the simplices of G.
Then

mesh G = sup {diam t}.

T € G1

After this introduction of the concept of a triangulation of a set C, we

are able to prove the K-K-M lemma by using a lemma of Sperner.

2.4. SPERNER'S LEMMA .

Let G be a triangulation of the m-dimensional convex subset C of Rn
and assume that each vertex of the triangulation is labelled with one of
the integers 1,...,m+l, i.e. there is a labelling function & from the set

of vertices to the set {1,...,m+l}. In the following the set {1,...,n} of

11
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integers will be denoted by In'

DEFINITION 2.4.1. An m-simplex of the triangulation G is completely

1 +
labelled if all its vertices are differently labelled, i.e. o(w ,...,wm 1)

is completely labelled if Z(wl) # Z(WJ) for all i # j, j=1,...,m+l.

Otherwise stated we have that if for any j € Im+1 there exists an index

i,
ij € Im+1 such that 2(w J) = j, then o(wl, ceer wm+1) is completely
labelled.

The following lemma due to Sperner [1928] gives a condition for the
existence of a completely labelled simplex of a triangulation of the

n
unit simplex S .

LEMMA 2.4.2. (SPERNER). Let G be some triangulation of Sn. Assume that each

vertex of its n-simplices is labelled with one of the integers of the set
In+1' such that no vertex in S? has label i for all i =1,...,n+l. Then
there exists at least one completely labelled n-simplex.

The lemma is obvious for n = 1 as is illustrated in figure 2.4.1.

2 3
lemma is illustrated in figure 2.4.2.

The one-simplices 01, 0, and o, are completely labelled. For n = 2 the

e

[(]
—
N
-
-
N—wL—
[N)

Figure 2.,4.1. Illustration of Sperner's lemma for n = 1.
A proof of Sperner's lemma by induction on n can be found in Todd [1976a].
He proves a strong form of the lemma, which says that there is an odd
number of completely labelled simplices. We do not give the proof, since

the lemma follows as a corollary in chapter 4.
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e(l) e (2)
1 2 1 1 2

Figuur 2.4.2. Illustration of Sperner's lemma for n = 2.
. The following lemma completes the proof of Brouwer's theorem.
LEMMA 2.4.3. Sperner's lemma implies the lemma of K-K-M.

PROOF. Let the collection {Cl,...,C } of closed subsets of Sn be defined

n+1
as in lemma 2.2.4. Furthermore, let{Gk, k=1,2,..} be some sequence of

triangulations of s” such that € = mesh Gk + 0 if k - ». Each point y in

k
s" receives an integer label 2(y) defined by

2(y) = i, where i = min {j| vy € Cj and Yy > 0}.
b
Note that, by the definition of Cj' there exists always such an index i.
Since this labelling satisfies the condition of Sperner's lemma, there is
in G, . Let yl(k) be the vertex

k k
of o, with label i, i = 1,...,n+l. Then for some subsequence {kj,j=1,2,...}

at least one completely labelled simplex o

k
of integers with kj + o if j > «» we have that the sequence

{yl(kj),j=1,2,...} converges to a point %" in s”. since €. > 0 if k +

i *
it follows that lim yl(k.) = x for all i=1,...,n+l. Hence x* € C,,
. j_).oo j 1
n+1
i=1,...,n+l which proves that n c; # 0. ]

1

h
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In the context of Brouwer's theorem this lemma means that, roughly

speaking, any sequence of "shrinking" completely labelled simplices has

a subsequence converging to a fixed point.

2.5. KAKUTANI'S THEOREM.

In many practical problems we need a fixed point theorem more general
than the theorem of Brouwer. The theorem of Kakutani generalizes Brouwer's
theorem to point-to-set mappings (cf. Berge [1966]). For any o > 0 let

B" (x,0) be defined as the set {y e Rn| | ly-x|] < al.

DEFINITION 2.5.1. Let C be a subset of R" and let ¢ be a point-to-set

mapping from C to the set of all subsets of R'. Then ¢ is upper-semi-

continuous if
a) for all x € C, ¢(x) is compact,
b) for all x € C and for all €>0 there is a § > 0 such

that for any z € Bn(x,G) N C holds ¢(z) € Bm(w,e) for

some W € ¢(x).

An interesting property of upper-semicontinuous (u.s.c.) mappings is

stated in the following corollary (cf. Todd [1976a]).

COROLLARY 2.5.2. Let ¢ be an u.s.c. mapping from C to the set of subsets

m k *
of R . If {x } is a sequence of points in C with limit x and if {yk} is
a sequence of points in Rm with yk € ¢(xk) for all k and with limitpoint

* * *
y , theny € ¢(x ).

The following theorem gives a sufficient condition which guarantees that

* * *
an u.s.c. mapping has a fixed point, i.e. a point x such that x € ¢(x ).

THEOREM 2.5.3. (KAKUTANI)- Let C be a compact, convex nonempty m-dimensional

subset of R" and let ¢ be an u.s.c. mapping from C to the set of nonempty

* * *
convex subsets of C. Then there is a point x € C such that x € ¢(x ).
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To prove this theorem we use the concept of a piecewise linear

approximation to a mapping.

DEFINITION 2.5.4. Let G be a triangulation of a nonempty, convex

m-dimensional subset C of R" and ¢ a nonempty mapping from C to the set

of subsets of RF. For any vertex w of G let f(w) be some arbitrarily

1 t+1
chosen value of ¢(w). Furthermore, let for a point x € C, W ;... W be
the vertices of the t-simplex such that x is contained in the interior

)

of the simplex. Then there is a unique positive vector A = (xl'l2""xt+
+ + i

such that Z? ! A, =1 and x = EF ! A.w . Then a piecewise linear
i=1 "i i=1 i p

approximation to the mapping ¢ with respect to G is the function f£f: C » R

defined by

1

t+1 i
f(x) = I Aif(w ) .
i=1

COROLLARY 2.5.5. The piecewise linear approximation f is continuous.

PROOF OF THEOREM 2.5.3. We follow the proof of Eaves [1971]. ©Let C' be

an m-simplex containing C and let c be an interior point of C. Define

the mapping ¢ from C' to the set of nonempty, convex,compact subsets of

C' by

% (x)

¢ (x) if x € int C

conv (¢(x) u {c}) if xebdC

{c} if x e Cc'\C.

It is easy to see that $.is upper-semicontinuous on C'. Moreover, it is
clear that $kx) is nonempty and convex for all x € C'. Suppose that x* is
a fixed point of EL It is obvious that x* e C. If x* € int C, then

x* € ¢(x*) and x* is a fixed point of ¢. If x* € bd C, then for some

y € ¢(x*), x* = Act(1-A)y for some A, 0 £ X £ 1. Since c € int C, we have

* *
that A >0 implies that x € int C which contradicts x ¢ bd C. Hence,
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A = 0 and x* =y € ¢(x*). Therefore x* is a fixed point of ¢ if x* is a
fixed point of EZ To prove that E has indeed a fixed point on C', let
{Gk, k =1,2,...} be a sequence of triangulations of C' with

ek = mesh Gk + 0 if k » ~, and let fk be a piecewise linear approximation
to ¢ with respect to the triangulation Gk. Bij Brouwer's theorem f has

a fixed point, say xk. Moreover, by definition 2.5.4, there is a simplex

+
of Gk with vertices wl(k), ceey wm 1(k) containing xk such that for unique
) k k ) k_ .k k T m
nonnegative numbers Al, eey Am+1 with A7 = (Al, cees Am+1) € S holds
m+1 \
= F 6 = A W,
i=1

Since C' is compact, there is a subsequence k., j=1,2,... such that
k] * kj * k4 i ~1i J . . .
xJd>x,AJd >Xx and £ J(w(k.,)) > £, i=1,...,mtl, if j > =. Since
. * .
€ -+ 0, wl(k.) converges to x for all i. Because of the upper-semi-
— ~ 1 el *
continuity of ¢, £ e ¢(x ), for all i. Taking limits in the equation

+1 Kk~ * ~i - %
above, we obtain that x = ZT_i Xifl with A € Sm, while £ ¢ ¢(x ) for
- * =k

all i. Therefore, since ¢(x ) is convex, x € ¢(x ), which completes the

proof. O

Note that the property of corollary 2.5.2 1is sufficient to prove the
theorem. Algorithms to compute "Kakutani fixed points" will be based
on the technique of piecewise linear approximation to the mapping with

respect to a sequence of triangulations with mesh going to zero.

2.6. APPLICATIONS.

In this section we give some examples of Brouwer's theorem and the
theorem of Kakutani. With respect to Brouwer's theorem we discuss the
problem of the existence of an equilibrium in an exchange economy. As an
application of Kakutani's theorem we give the unconstrained optimization

problem.

EXAMPLE 2.6.1. (Exchange economy).
Let us consider an economy without production in which n+1 commodities are
exchanged. We assume that there are m consumers each having a utility

function ul(x), i=1,...,m, where x = (xl,...,x ) denotes a vector of

n+1
commodities. This function is definedfromR+_ to Rand reveals the utility

of the i-th consumer. Furthermore, we assume that each consumer has a
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vector of initial endowments el = (el,...,en+1
n+1 . A
) eR \{0} each consumer i maximizes his utility under the

). Given a price vector p =
(91,---,?n+1 T, T i i

budget constraint p x < p e . Let x (p) be the demand vector for consumer
i which maximizes his utility given the price vector p. Clearly, xi(p) is
homogeneous of degree zero in p. Therefore we can normalize the price
vector p such that p € Sn. So xi(p) is a function from s to R2+1 assuming
that xi(p) exists and that xi(p) is unique for all p. Furthermore, we
assume that xi(p) is continuous in p, for all i. The economic consequences

of these assumptions are discussed by many authors, e.g. Arrow and Hahn

[1971]. Finally, if ut (x) is a monotonlc 1ncrea51ng function of x, each

consumer spends all his income, i.e. p x (p) = p et i=1,...,m. Then we
have
m . .
pT b (xl(p) -ef)y =0
i=1

which formula is known as Walras' law. Since xi(p) is continuous for all i,
‘the excess demand function g from Sn to Rn+1 defined by

g(p) = ZT=1(xi(p)—ei) is also continuous in p. The economy is said to be in
equilibrium if there exists a price vector p* in Sn such that q(p*) < 0.

By Walras' law it is clear that in equilibrium pg =0 if gj(p*) <0,
j=1,...,m+l.

Using Brouwer's fixed point theorem we prove that an equilibrium exists
under the assumptions stated above. We define the function f from Sn into

itself by

fj(p) = [pj + max{O,gj(p)}]/c(p) j=1,...,n+1

where c(p) = 1 + Z? 1 max{O,g (p)}. Clearly, £ satlsfles the condltlons of

Brouwer's theorem. Therefore, there exists a price p such that D = F(p ).
We show that p is a fixed point of the function f if and only if p is an

equilibrium price vector. If p* is a fixed voint of f then
* * * *
Py = ij + max{O,gj(p )}1/e(®)) j=1,...,n+l.

Assume g (p ) >0 for some j. Then c(p ) > 1 and hence I (D ) >0 if
p; > 0. ThlS 1mplles that ZJ i p; (p ) > 0 which contradlcts Vlalras' law.
Consequently, g (p ) £0 j = 1,...,n+1 whlch proves that p is an

equilibrium prlce vector. Conversely, if p is such a vector then
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max{O,gj(p*)} =0, j=1,...,n+1 and hence f(p*) = p*. 0

The function f defined above is not particularly suitable for use in
algorithms for computing fixed points, since by considering the maximum
over zero and the excess demand in stead of the excess demand, information
is lost about the structure of the function. In a later chapter the
computation of an equilibrium price vector will be based on the excess
demand.

For many economic models the existence of an equilibrium was proved, e.g.
Debreu [1959], Dréze [1975], Greenberg [1977], van der Laan [1980]. In
general Brouwer's theorem is not sufficient. For instance in an economy
with linear production activities the excess demand is an upper-
semicontinuous point-to-set mapping and the existence proof and computation
of an equilibrium will be based on Kakutani's theorem (see e.g. Scarf
[1973] and Todd [1976a,1977b]) . About computational results for economic
models obtained by using fixed point algorithms we refer the reader also
to Shoven and Whalley [1973], Whalley [1975], MacKinnon [1976], Richter
[1978] and Reif [1978].

Before we discuss the example of unconstrained optimization we give a
useful extension of Kakutani's theorem. The next lemma is due to Merrill

[[1971,1972] (see also Todd [1976a] and Allgower and Georg [19801).

LEMMA 2.6.2. (Merrill's condition).
Let ¢ be an upper-semicontinuous mapping from R” to the collection of
nonempty, convex subsets of Rn. Assume that there exist w € Rn, ¥ > 0 and

§ > 0 such that for all x ¢ Bn(w,u), f(x) € ¢(x) and z € Bn(x,d) holds
T
(£(x) - x) (w-2z) > 0.

Then the mapping ¢ has a fixed point in Bn(w,u).

PROOF. Let C be the compact convex set Bn(w,2u). Note that w € int C.

Define the mapping ¢'(x) by

9" (x)

¢ (x) if x € int C
conv (¢ (x) u{w}) if x € bd C.
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Then ¢'(x) is an u.s.c. mapping from C to the collection of nonempty
convex subsets of R" such that w ¢ ¢'(x) for all x € bd C. Following
Eaves [1971] we show that ¢' has a fixed point. Clearly, since ¢' is

u.s.c. ¢'(C) is compact and hence the set C' defined by
C' = conv(C U ¢'(C))
is compact. Define the u.s.c. mapping 5' from C' into itself by

¢' (x)

o' (x) if x e C

{w} if x € C'\C.

Since E' satisfies the conditions of Kakutani's theorem there exists a
fixed point x* e C' of 5' and analogous as in the proof of theorem 2.5.3,
it follows that x* € C and that x* is a fixed point of ¢'(x*). Iif

‘x* € Bn(w,uL then x* € int C and hence x* € ¢(X*L

Therefore we prove that x* € Bn(w,u). Suppose to the contrarv that

< ¢ B™(w,u). Since x € ¢'(x*) c conv(¢(x*) v {w}), for some A, A € 0,13,

* *
and some f(x ) € ¢(x ) we have that

x* = Af(xT) + (1-Mw
so that

MEE - x7) + (1-2) (w-x") = 0.

* T *
However, (w-x ) (w-x ) > O while by the condition of the theorem
* * *

(f(x )-x )T(w—x ) > 0. So a contradiction is obtained which proves that
*
x e B (w,u). 0
Lemma 2.6.2. is used in the following example.
EXAMPLE 2.6.3. (Unconstrained optimization problem) .
Let £f: R - R be a convex and finite function. We want to compute a point
X such that f(x) < £(z) for all z € R". Let df(x) be the set of all

subgradients of f at x, i.e.

df(x) = {y € Rnlf(z) > f(k) + yT(z—x) for all z € Rn}.
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Since f is convex, the mapping df from R" to the set of nonempty, convex
subsets of R" is u.s.c. (Rockafellar [1970]). Define the u.s.c. mapping ¢
by ¢(x) = {x}-df(x), x € rR".

Assume there exists an o such that the set F(a) = {y|f(y) < a} is nonempty
and bounded. Then F(B) is bounded for all real B (Rockafeller 1970]).

For arbitrarily chosen w € r" and § > 0, let B = max{f(x)lx € Bn(w,S)}.
Then F(B) is bounded so we can choose an u > 0 such that F(B) c Bn(w,u).
Furthermore, for any x ¢ Bn(w,u), g(x) € ¢(x) and z € Bn(x,é) we have that

X - g(x) e df(x) and hence
T, T
(g(x)-x) (w-2) = (g(x)-x) {(w-z+x) -x}> -f(w-z+x)+£(x) .
By x ¢ Bn(w,u) we have f(x) > B and by w-z+x € Bn(w,d) we have
—-f (w-2z+x) > -B. Therefore (g(x)—x)T(w—z) > 0, which implies that ¢(x)
satisfies Merrill's condition. So there exists a point x* with x* € ¢(x*).

Clearly O € df(x*) and hence f(x*) < f(z) for all z € R". 0

As an illustration of this example, we want to minimize f(x) =

2 2 T
- = - ax. -
Xy + 2x2 X%, + X, + X, Then d4df (x) (2x1 x, + 1, _x2 Xy +T1) and
the function ¢(x) = (—x1 + Xy = 1, X, = 3x2 - 1)T has (-5/7,-3/7) as a

fixed point. Clearly this point minimizes f(x).
For other applications of fixed point theorems see e.g. Todd [1976al,

Saigal [[1977b,1979al], Allgower and Georg [1980 ] and Talman [1980].
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CHAPTER 3

TRIANGULATIONS AND MEASURES OF EFFICIENCY

3.1. INTRODUCTION,

In this chapter we discuss special triangulations and measures for the
efficiency of triangulations. Computational experlence has shown that the
efficiency of fixed point algorithms is very sensitive to the underlylng
triangulation (see e.g. Saigal [1977al and Todd F1978:P). Basic
triangulations of R™ used in fixed point algorithms a é the so called K and
H triangulations which are defined in section 2. Measures for the efficiency
of a triangulation of R™ were given by Saigal, Solow and Wolsey [1975],
Todd [1976b, 1978al, Van der Laan and Talman [1980a] and Talman [1980].
Whereas earlier measures do not allow the calculation of the optimal
triangulation, for their measure Van der Laan and Talman succeeded in
calculating an optimal triangulation within a reasonable subclass of
triangulations. The measures and the optimal triangulation for the measure
of Van der Laan and Talman [1980a] are given in section 3. Section 4 gives
triangulations of the unit simplex and its affine hull including one which
is comparable with the optimal triangulation of Rn. Finally in section 5 the

replacement step between two full-dimensional adjacent simplices is given.

3.2. BASIC TRIANGULATIONS OF R .

Since the accuracy of an approximation of a fixed point will depend on
the mesh of the triangulation we need triangulations without long, skinny
simplices. In other words "regular" triangulations are preferred in fixed
point algorithms (see Saigal [1977a , 1979b]). The first reqular
triangulation was constructed by Freudenthal [1942]1 and rediscovered by
Tucker in 1945 (see Lefschetz [1949, page 1401).This triangulation is
called the K triangulation and is based on the "standard" subdivision of

the unit cube (Kuhn [19601]).
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DEFINITION 3.2.1. Let z be an arbitrarily chosen point in R". Then the

K triangulation withgrid size §>0 is thecollection of all simplices

c(yl,ﬂ) with vertices yl,...,yn+1 such that

a) each comvonent of yl—z is a multiple of §
b) m= (ﬂl,...,ﬂn) is a permutation of the elements of the
set I

c) yi+1 = yi + Ge(ni) i=1l,...,n.
In general z will be chosen as the zero vector. Observe that for 6=1 the
collection of simplices [o(g,n)]n is a permutation of the elements of In}
triangulates the unit cube C = {xeRn!O < xi <1 i=1,...,n}. From the
definition it follows that the diameter of each simplex is ecual to
6||ZE=1 e(i)|| = 6/n. So, the mesh of the K triangulation with grid size §
is equal to mesh K6 = &6/n. We denote the K triangulation with grid size §
by K<S and write K(5 = K when § = 1.
A triangulation closely related to the K triangulation was used by Merrill
[1972] and RFaves and Saigal [1972]. It is called the H triangulation. For
z=0 this triangulation is built up by simplices o(yl,w) such. that the
components of y1 are again multiples of § and yi+1 = yi + Gé(ni), i=1,..,n,

where &(j) is the j-th column of the nXn matrix é defined by

— 7

-1 0. . . o0

-1 *

N 1. .
5 = : . )

.0

N R

Of course, any arbitrarily chosen point z can be made a grid point by a
. . 1 .
shift of the grid, such that the components of y -z become integer
multiples of §. Clearly for the H triangulation with grid size §, denoted
by H(H if 8=1),themesh isequal to § max | = al = s.
Scr jeS
n
More general, for any nonsingular matrix A, we can define the triangulation

AK, with grid size § as follows.

§
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DEFINITION 3.2.2. Let A be a nonsingular nxn matrix. Then the triangulation

AK6 is the collection of all simplices U(Ayl,...,Ayn+1) such that

c(yl,...,yn+1) is a simplex of KG'

Observe that for z=0 the triangulation AK is the collection of simplices
-1
0(y1,n) such that all components of A y1 are integers and
i+1 $ : o . .
Yl =yt + a(ﬂi) i=1,...,n, where a(j) is the j-th column of the matrix A.

If we take A equal to é we obtain the H triangulation.

To compute the mesh of an AK triangulation, observe that diam o(yl,ﬂ) is
independent of yl. So, by setting y1 = 0 the next corollary follows
immediately.

COROLLARY 3.2.3. mesh AK =max || £ a(j) | .
SCIn jes

Clearly, mesh AKG = § mesh AK. So, the mesh can be made arbitrarily small
by taking the grid size § small enough.

Another triangulation well known from the literature but not of the form
AK is the so-called "Union Jack" triangulation. It is a centrally symmetric
triangulation due to Tucker (see Lefschetz [1949, nage 140], cf. also
Whitney [1957, page 3581, Todd [1977a] and Kojima [1978b]).

3.3. MEASURES FOR THE EFFICIENCY OF TRIANGULATIONS .

A first measure used for the efficiency of a triangulation of the
unit cube is the number of simplices in which ﬁhe unit cube is
triangulated. The K and H triangulations both subdivide the n-dimensional
unit cube in n! simplices. However, Saigal [1977al experienced that in
particular for large n the K triangulation performs much better than the
H triangulation. This fact is not unexpected since the H triangulation
yields many shapes of simplices, whereas the K triangulation results in
one single shape, i.e. all simplices of this triangulation are congruent.
So, this measure is too rough and must be rejected. We mention however,
that Mara [1972] succeeded in finding a triangulation which divides the
unit cube in 5, 16 and 68 simplices for respectively n = 3, 4 and 5.

A second measure was given by Saigal, Solow and Wolsey [1975]. They

defined the measure of a triangulation. of the unit cube as its diameter
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which is the maximum of the minimal length path between any pair of
boundary facets of the triangulation. The length of a path between two
facets is the number of simplices met by the path. Saigal [1977al stated
that the diameter of the H triangulation was of the order or at least n3,
whereas the diameter of the K triangulation is equal to %n(n-1)+1.

A more sophisticated measure which can be calculated for triangulations of
Rn was introduced by Todd [1976b, 1978al. This measure is called the
average directional density and is roughly the average number of simplices
met by straight lines per unit length. Formally, for some triangulation

G of Rn denote, for x,d € Rn and t > 0, the ratio between the number of
simplices of G intersecting the line segment [x,x+td] and t by

N(G,x,d,t). Denoting by N(G,d,t) the limit for r > » of the average of
N(G,x,d,t) for x uniformly distributed in {yerR"| ||y]| < r}, the directional
density of G with direction d, to be dehoted by N(G,d), is the limit of
N(G,d,t) for t - « provided that both limits exist. Finally, the average
directional density N(G) of G is the average of N(G,d) for d uniformly
distributed on the unit ball.

In the following, A is a nonsingular nxn matrix and b(j) is the j-th

row of A—l. Todd proved the following theorem.

THEOREM 3.3.1. The average directional density of the triangulation AK6 is

j-1
b -p) [[tg,
i=1 j=li=

-1 n . n
N(aK) =8 {3 [[b@)] + =z
j= =1i=1

where g = 2T (5n) /{ (n-1) /7T (4n-%) }.
From this theorem the next corollary follows immediately.

COROLLARY 3.3.2.

]

-1
N(Kg) =6 {n + n(n—1>/vé}gn,

s

3

N(Hs)

[ e B =]

(n-3j+1)Vilg_ -
n
1
An optimal triangulation according to the average directional density is
unknown. However, Todd [1978al] gave a lower bound for the average
directional density of a triangulation of the form AK. Since the average

directional densitv depends on the mesh, we will restrict ourselves
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to triangulations with mesh equal to or less than vn.
LEMMA 3.3.3. For any triangulation AK with mesh AK < vn holds
2
N(AK) > (4n /25/5)gn.

This result was strengthened by Van der Laan and Talman [1980a] for

triangulations within a subclass A of AK triangulations.

DEFINITION 3.3.4. An AK triangulation of R belongs to the class A if for

some o > n-1, a;; = % i=1,...,n and aij =-1,1i#73.
In chapter 6 it will be motivated that elements of this subclass are very
suitable for use in fixed point algorithms,‘see also Van der Laan and
Talman [1980 a] and Talman [1980]. An element of this class with grid size §
will be denoted by A(a)Ka.
LEMMA 3.3.5. The mesh of an A(a)K triangulétion is equal to
2 2-%
mesh A(o)K = [k{a-(k-1)}" + (n-k)k“]

where

k=n if b
b if b

v

n

n-1 ana ||¥>H

P < 19

b+2
Iy

IA
v

A

1]

b+1 if b < n-1 and ||y

with b the entier of {(a+1)2/(4+4a—2n)} and where yl,...,yn+1 are the

vertices of the simplex o(0,m) with ﬂi =i 4i=1,...,n.

The proof can be found in Talman [1980]. Note that the A(oL)K6 triangulation
with grid size § = a_1 converges to the K triangulation for a - «. The
proof of the following lemma can be found in Van der Laan and Talman
[1980al and Talman [19801].

LEMMA 3.3.6. For any A(a)KG triangulation with mesh A(a)K6 < v/n holds

N(a(a)K,) > {%(n—1)+(n—1)2//8}gn.
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It is an open problem whether this lemma holds for all triangulations AK6
with mesh AKg < vn.

Van der Laan and Talman [1980a] introduced a new measure for the efficiency
of triangulations. This measure makes it possible to calculate the optimal
triangulation within the class A. The measure called the SV-measure is
based on both the total squared length of the one-faces of the simplices

and the volume of these simplices.

DEFINITION 3.3.7. The SV-measure of a triangulation G, to be denoted by

SV (G), is defined by

n n+1 S i 2% 1/
sV(@) = sw [{3 = [ly?-y* 1| “ Vi/eao) /™2
o€ G i=1 j=i+1
- 1 n+1
where Ao denotes the volume of the simplex ¢ = 0(Yy , «.u, Y ).

The numerator reflects the total squared length of all one-faces of the
simplex 0. By raising this term to the power a half and the term in the
denominator to the power 1/n, we obtain a measure which is homogeneous of
degree zero in the mesh. If the triangulation is of the form AK, each
simplex ¢ has the same volume Idet A!/n!.

Roughly speaking the SV-measure of a triangulation is a measure for the
number of grid points per unit cube with respect to the total squared
length of all one-faces of the "worst" simplex o. Clearly, for n=2, the
SV-measure is minimizea for a triangulation generating equilateral
triangles. In Van der Laan and Talman [1980a] and Talman [19807 the
following lemma's are proved.

LEMMA 3.3.8. The optimal triangulation within A according to the

* * —
SV-measure is the A(a )K triangulation with a = n+V/n+l.

LEMMA 3.3.9. The SV-measures of the K, H and A(a*)K triangulations are
‘ a) sV(K) = rn/2 ‘

b) sV(H) = rn{3n/(n+1)}% if n is even
3 .
= rn{3(n+2n2—n+2)/n(n+1)(n+2)}12 if n is odd
c) SV(A(a*)K) = rn(n+1)1/2n,
/n

where r_ = {n(n+1)(n+2)/12}lz(n!)1
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*
LEMMA 3.3.10. The mesh of the A(a )KS triangulation is equal to

L 8(1+/n+1) (n+1) if n is odd

mesh A(a*)K6

% §(1+vn+1) if n is even.

1]

: *
LEMMA 3.3.11. The average directional density of the A(a )KG triangulation

is equal to

N () Ky gn{n(n+1)/s}5(n+1) if n is odd

gn{n(n+1)/8}%{n(n+2)}% if n is even.

*
where § is taken such that mesh A(a*)KG* = v/n.

Note that N(K(a*)Ks*) converges to the lower bound gnn2//8 of lemma 3.3.6
as n + . Furthermore, the A(a*)K triangulation has the nice properties
.that the barycenter of any simplex has the same distance
{n(n+2)}%(1+/g113/2/3 to each vertex of the simplex and that for any
simplex o(yl,ﬂ), ”Yj‘Yi”=|!Yj~k - yi_k“ for all 1<k < i < j < n+l.
These properties suggesﬁ to consider this triangulation of R" as the
generalization of the equilateral triangulation of R2 in the sense

that the triangulation yields simplices which are as "round" as possible.

3.4. TRIANGULATIONS OF S~ and T".

A familiar triangulation of s is given in the following definition.

DEFINITION 3.4.1. (Standard triangulation of s").

The standard triangulation of Sn with grid size § is the collection of all

. 1 +
simplices o(yl,n) with vertices y ,...,yn 1 such that

-1 1,
a) ¢ is a positive integer m, and each component of y is a
multiple of §

b) m = (nl,...,nn) is a permutation of the elements of In

+1

c) yl =yl+5q<'ﬂ'i) i= 1:---lnr

where q(j) is the j-th column of the (n+1)xn matrix Q
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10 . . L0
_1. :
O. - ' .
Q= : . 6
. o
RN

As proved by Todd [1976a] the mesh of the standard triangulation Qwith
grid size § is equal to mesh QS = G/E:T.if n is odd and mesh QG = &/n if n
is even. The following lemma has been proved in Van der Laan and Talman
[1980a] and Talman [19801].

LEMMA 3.4.2. For the standard triangulation of S holds

/2

-1
rn/3{(n3+3n2—n+5)/(n3+3n2+2n)}%(n+1) % f n is odd

:r:n/B(n+1)"'1/2n if n is even.

sV(Q)

Other triangulations of sn include a triangulation related to the Union
Jack triangulation of R™ and the iterated barycentric subdivision (see
Todd [1976al).

We now discuss some triangulations of Tn, the affine hull of Sn.

DEFINITION 3.4.3. Let z be an arbitrarily chosen point of T". Then the

standard triangulation Q of Tn with respect to z with grid size § is the

collection of all simplices o(yl,ﬁ) with vertiées yl,...,yn+1 such that
a) y1 =z + Z?_iaiq(i) where oy is a multiple of § for all i

b) 7 = (nl,...,nn) is a permutation of the elements of In
. .
o) v 1=yl+6q(1ri) i=1,...,n.
Of course the mesh of this triangulation is equal to the mesh of the
standard triangulation of Sn. Also lemma 3.4.2 holds for this triangulation
of . Observe that SV(Q)/rn converges to V3 for n + ® as is also the case
for the H triangulation of R". Since SV(H) is much higher than the

* .
SVv-measure of the A(o )K triangulation of Rn, it seems to be worthwhile
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to look for a triangulation of T® whose SV-measure is comparable with
sv(a(a)K) .

A class of triangulations of Tn can be defined in the following way. Let
A be an (n+1)xn matrix of rank n such that E?:i aij = 0 for all j=1,...,n.
2gain, let z be an element of ", The A triangulation of " with grid size
§ is defined as the set of all simplices o(yl,w) such that

yl =z + Z?=1 uia(i) where oy is a multiple of § for all i,

T = (nl,...,ﬂn) is a permutation of the elements of In and
+ X
yl 1 = yl + éa(ﬁi), i=1,...,n. Clearly mesh A = max [! z a(j)” .
SCIn jes

In Van der Laan and Talman [1980a] and Talman [1980] the following
triangulation is proposed for use in fixed point algorithms. This

triangulation is defined by the matrix

O

1 -n . )

T = ’ e . -1
. . 1

'—n

1. L

The simplices of this triangulation have the same nice properties as the
simplices of the A(a*)K triangulation of rR%. In particular these two
triangulations have both rn(n+1)1/2nassv—measure. We return to this
triangulation of ™ in chapter 5.

To use a triangulation of ™ in algorithms to compute a fixed point on Sn
it may be necessary to extend the function or mapning from Sn into itself

n
to a mapping from ™ to s”.

3.5. REPLACEMENT STEP,

In this section we describe the replacement step between two full.
dimensional adjacent simplices. Let o and 0 be two of such simplices. Then
0 is obtained from o by replacing a vertex of 0 by a new vertex. The rule
to obtain this new vertex is quite simple when a regular triangulation is

used.
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Let P be a triangulation matrix e.g. P is an nxn matrix to triangulate rR®
or an (n+1)*n matrix to triangulate ™. Let c(yl,n) be a simplex of the
triangulation, so y1 is a grid point of the triangulation and

yi+1 = yi + Sp(wi), i=1,...,n, where § is the grid size and p(j) the
j-th column of P. Then the rule to obtain the simplex 5(§1,E) by replacing

i 1
the vertex yl of o(y ,m) is given in table 3.5.1.
TABLE 3.5.1. i is the index of the vertex to be replaced.

T becomes

!

l
i=1 y1+5P("1) { (nz,...,nn,nl)
2 <1i<n y1 ("1""'“i—z'ﬂfni—l'“i+1'"""n)
i=n+1 | y-06p(r) | (wn,wl,...,nn_l)

i- i+ +1
It is easy to see that the facet 'r(yl,...,vl 1,yl 1,...,yn ) is indeed

a common facet of c(yl,n) and 5(§1,E). For instance if i = 1

§i = yi+1, i=1,...,n whereas §n+1 = yn+1 + Gp(nl).

Although some modifications can be necessary, table 3.5.1 will be used in
the algorithms to be treated in this monograph. Triangulations in which

the replacement step can be described by table 3.5.1 are called
triangulations by reflecting since the new vertex is obtained by reflecting
the old vertex with respect to the common facet. A full description of

triangulations by reflecting can be found in Allgower and Georg [19801,
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CHAPTER 4

ALGORITHMS FOR APPROXIMATING FIXED POINTS

4.1. INTRODUCTION.

In this chapter we consider some algorithms for computing a fixed
point of a function or mapping from a set into itself where both integer
and vector labelling will be treated. A first algorithm applied on the
unit simplex was introduced in 1967 by H.E. Scarf. This algorithm is based
on the éoncept of primitive sets rather than using a simplicial
.subdivision. In 1973 Scarf described a method for using the standard
triangulation of the unit simplex. Earlier in 1968 and 1969 Kuhn developed
already two methods to compute fired points on the unit simplex which both
were based on the standard triangulation. The first method adds a layer
of artificially labelled points to s™ and starts with an (n-1)-simnlex on
the boundary, whereas the other one uses no extra points, but starts with
one of the vertices of the unit simplex. Analogous methods for computing
fixed points of a continuous function from Ri to itself can be easily
derived. Whereas all these methods were introduced at first for integer
labelling, an algorithm with vector labelling to compute a fixed point of
an upper-semicontinuous mapping from a convex compact set into itself was
developed by Hansen and Scarf in 1962. This meﬁhod was based on primitive
sets. However, Eaves [1971] develoved an algorithm using a triangulation
of a simplex containing the convex compact set.

The algorithms mentioned above all suffer from computational inefficiency
because the start is made outside the region of interest while the grid
size is kept fixed throughout the algorithm. This means that if for a given
grid size an approximation is found and one wants to restart the method
with a finer grid to obtain a better approximation, the method must be
started again outside the region of interest. So all information about the
fixed point is lost.

A number of algorithms to avoid this disadvantage were develoned during

the last decennium. One method is due to Merrill [1971,1972] and was
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independently found by Kuhn and MacKinnon [12751 (see also Lithi (1975]
and Fisher, Gould and Tolle [1977]). This algorithm can be applied both on
Sn and Rn and is called the Sandwich method. It can start anywhere. So, if
this method is applied for a decreasing sequence of grid sizes one can
choose in each stage the starting point in such a way that it is the

most appropriate one by considering the information obtained from the
approximation in the previous stage. An other method which takes advantage
of the information already obtained in the course of the algorithm was
introduced by Eaves [1972] for application on s™ and by Eaves and Saigal
[1972] for R". In this method, called the homotopy algorithm,the grid size
is automatically decreased with a factor of at most two. Both methods were
introduced with vector labelling to compute a fixed point of an u.s.c.
mapping. ‘

This chapter is organized as follows. In section 2 we discuss the concept
of integer labelling and we present some theorems about the accuracy of an
approximation. In the sections 3-7 we treat the algorithms mentioned above
for integer labelling. The algorithm of Scarf is given in section 3, the
methods of Kuhn including a unified approach of his methods are given in
section 4, the analogous methods on Rﬁ in section 5, the Sandwich method
in section 6 and the homotopy algorithm in section 7. In section 8 we
present the concept of wvector labelling. The basic algorithm of Eaves is
presented in section 9 while the Sandwich method and the homotopy
algorithm using vector labelling are described in section 10 for mappings
on R". The computation of a fixed point of a mapping on s is discussed

briefly in section 11. In section 12 we give some concluding remarks.

4.2. INTEGER LABELLING AND APPROXIMATION.

In chapter 2 it was proved that a continuous function f from s” into
itself has at least one fixed point by taking a sequence of triangulations
{Gk, k=1,2,...} with mesh Gk + 0 if k > «» and by labelling each grid point
x by an integer label #(x). Now we give a labelling rule which is more

appropriate to be wused in algorithms for computing a fixed point.

DEFINITION 4.2.1. (Standard integer labelling rule on S%).

A point x in g" receives the label 2(x) = i, if
is= mln{jeIn+1|fj(x)—x. = m?;n £, (x0)-x and x5 > 0}.

n+l
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Clearly there exists always such an index. Note that xj > 0 is not really a
restriction since if f.(x)-x. = min fm(x)—xm and x.=0 for some j, then x
J mexT J
n+1
must be a fixed point. We call a labelling rule which satisfies the
condition 2(x) # i if X, = 0 proper. By Sperner's lemma, for any
triangulation Gk’ k=1,2,... there exists a completely labelled simplex Ok

of Gk if the labelling rule is proper. Before introducing algorithms which
generate a completely‘labelled simplex, we show how close an arbitrarily

chosen point x in a completely labelled simplex is to its image f(x).

LEMMA 4.2.2. Let G be a triangulation of Sn and let €,8 > 0 be such that

for every simplex o of G

max |fi(x)—fi(y)[ < € for all x,y € ©
l€In+1
~and
max |xi-yi! < 3§ for all x,y € o.
jel
n+1

* * *
Then, for any completely labelled simplex ¢ of G and x € 0 ,

max |£, (x)-x;| < n(e+s).
1 1

J'EIn+1

i *
PROOF. Let wl be the vertexof o with label i, 1 < i < n+l. Clearly

fi(wl)—w; is nonpositive for all i. Hence, for all i,
£ (x) =% = (£, (xX)-F, (WD) +(E, (wh)—wh) +(wi-x.) < e+8.
1 1 1 1 1 1 1 1

On the other hand, since Z?:l

L (s (x*)—x’jf) = 0, we have for all i

* * * *
fi(x )=x, = - I (f,(x)-x.,) > -n(e+§).
3#i ’

Cdmbining these two inequalities we get the desired result. 0
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The lemma guarantees that a completely labelled simolex in S is indeed an
approximation of a fixed point if the stancard labelling rule is used.
Consider now a continuous function £ from R® to R" and assume that this
function has a fixed point (c.f. lemma 2.6.2). The standard integer

labelling on R? is defined as follows.

DEFINITION 4.2.3. (Standard integer labelling on RY.

For some x eRn, let i = min{jeIn|fj(x)—x. = max fm(x)-xm}. Then x receives

the label £(x) with mel

L(x) = 1 if £,(x) - x, 20
i i

n+l othexrwise.

The next lemma gives the accuracy of the approximation of a fixed point

when a éompletely labelled simplex c* is found.

LEMMA 4.2.4. Let the triangulation G of Rn be such that

*
max [xi—yil < § for all x,y € 0 and let € > 9 be such that
ieI
n
* * *
max ]fi(x)—fi(y)| < g for all x,y € 0 . Then for all x in o
iel
n

max |£, (x)-x,| < e+8.

. i i

i€l

n
. « .

PROOF. Again, let wl be the vertex of 0 with Q(Wl) =i, i=1,....,n+l.
Clearly, fi(wl)—w; 2 0 for all 1 £ i < n and fj(wn+1)—wr.\+1 < 0, je In'
Hence, for i =1,...,n

* * * i i i i *
fi(x )—xi (fi(x )-fi(w ))+(fi(w )—wi)+(wi—xi) > —(e+§)

and

1 n+1 n+1
X )+(wi

£ (xN)-x" = (£, (xN)-£, P Tha(e, ™o —x) < e+8.
1 1 1 1 1 1 1

O

So, if the standard labelling rule is used, a completely labelled simplex

n _. N . . .
in R yields an approximation of a fixed point.
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4.3. SCARF's ALGORITHM.

The original algorithm of Scarf [1967blis based on the concent of
primitive sets in stead of a triangulation of a simplex. Moreover, a
labelling rule different from that of definition 4.2.1 was used. However,
in this section we will follow Todd [1976al using the standard labelling.
To describe the algorithm we define the set st by

1

= < i
. X 1 and x, < 2, i€ In+1}'

~n n+l
s = {xeR |

i

I ™~ +

Sn is the n-simplex with vertices yl defined by yl = 2e-(2nt+l)e (i),

i=1,...,n+1, where e is the vector with e, = 1 for all 1 £ i £ n+l. Recall

+
that e(i) is the i-th unit vector of R 1,

In the next definition,let for some fixed k with k > n+l1 the points
n+?2 -k , . .n my my
vy r+++.+Y Dbe k-n-1 points in S° such that vy 2z vy for all n, ,m, > n+l,

.m, # m, and for all i € In

1 2 +1

DEFINITION 4.3.1. (Primitive sets).

For some J < I, |g] = n+1, the set of n+l points {yj|j € J} forms a
primitive set if there is no m with n+2 < m < k such that
v™ > min y3 for all i.

jed
Observe that the set {yj]j € J = In+1} of vertices of S" does not form a
primitive set. Scarf's algorithms is based on the following lemma (see
Scarf [1967Db]).

LEMMA 4.3.2. -

a) For any i € I there exists a unique index ji > n+l1, such that the

n+l’
set of points {yl|j ¢ (In+1 U {ji})\{i}} forms a primitive set.
b) If {yjlj € J} is a primitive set and m, € J is such that

{yjlj € J\{ml}} is not a subset of {y]]j € I_,.}, then there is a

. n+1
unique m, ¢ J such that {y]!j € (Ju {mz})\{ml}} forms a primitive set.

Scarf's algorithm searches for a completely labelled primitive set, i.e.

a primitive set {yjlj € J} such that all elements are differently labelled.
Observe that a completely labelled primitive set indeed provides an
approximation of a fixed point.

+1
To start the algorithm the points outside Sn, viz. yi,...,yn are
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labelled by 2(y!) = n+! and 2(y") = i-1, i=2,...,n+l. From lemma 4.3.2.a

J
n+1,y 1}. Observe that

there is a unique primitive set {yz,...,y
In = {R(yj), j=2,...,n+1}. Starting with th%f primitive set the algorithm
makes a search for label n+l. Therefore L(y ) is calculated. If

R(yjl) = n+1, the set is completely labelled and the algorithm termiqates.
Otherwise the point ym1 where m, is the index such that Z(ym%) = l(yjl) is
replaced by ymz-such that {y2,...,yml—l,ymZ,ym1+1,...,yn+1,yjl} is again a
a primitive set. Continuing by calculating the label of the new point and
replacing the point having this label the algorithm generates a path of
"adjacent" primitive sets until label n+1 is found. Scarf proved that the
method will terminate within a finite number of replacement steps since all
steps are unique and feasible whereas the number of primitive sets is
finite.

For the replacement step a search through all points yl,...,yk is

required, unless these points are chosen in a systematic way. This is
indeed possible but then there is a direct correspondence between primitive
sets and simplices of the standard triangulation of s® (see Scarf 1973,
chapter 7]). The algorithm becomes then very close to the variable

dimension algorithm of Kuhn to be discussed in the next section.

4.4. KUHN'S ALGORITHMS.

Besides the pioneering work of Scarf, two algorithms based on the

standard triangulation of Sn and using the standard labelling rule were
developed by Kuhn [1968] and [19691, (see also Todd [1976al), namely the
artificial start algorithm and the variable dimension algorithm.
Before we present these algorithms we give some definitions. Recall that
s™ is the n-dimensional unit simplex, T the affine hull of S” and S? the
i-th boundary of Sn, i=1,...,n+l. Let & be the grid size of the standard
triangulation of ™ as defined in definition 3.4.3 such that e(l) is a

grid point and 6_1 = m is a positive integer.

DEFINITION 4.4.1.

a) 8@ = {xeTn|x. >0, i eI andx > -m " }.
i n n+1

b) 5: is the i-th boundary of % i.e.

= {xegnlx, =0}, i¢€eI
i i n
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=n

S = -
el = {xes |xn m " }.

+1

o) stk = {xssn[xi =0, i=ktl,...,n+1}, k = 1,...,n+1.

Obviously, since e(l) is a grid point of the triangulation of Tn, the
-n -n
collection of simplices 0 such that onsr = 0 triangulates S . Moreover,

§2+1 is triangulated (see theorem 2.3.6) and all grid points of st

n -n
£si . . .
outside S are lying J.nvSn+1

In the following a vermutation of the elements of the set Ik is denoted by
W(Ik) = (ﬁll...,ﬂk). Sq a simplex o of the triangulations given in 3 is

denoted by o = 0(y1,ﬂ(1 )). A k-simplex o with vertices yl,...,yk+1isalso

denoted by c(yl,.......,yk+1).

The artificial start algorithm.

To apply this algorithm the points of §2+ are artificially labelled by

1

e eofa _ . =n
2(x) = min{j|x, = max xk} if x € 8 |

ke !

T
“n+l
The points of Sn are labelled according to definition 4.2.1. Clearly,

2(x) # n+l if x € §§+ and 2(x) # i if x € 5?, i=1,...,n. Kuhn assumed

1
that m is a multiple of n, say m = pn. Let To(yl,w(I 1)) be the (n-1)-
n-

simplex in §2+1 defined by (see figure 4.4.1)

1 1 X 1 -1
a) Yy (p+1) /m, v, = p/m, i=2,...,n, Y4 =0

b) “i

i i=1,...,n-1. -

-complete if the k

DEFINITION 4.4.2. For k € In+1' a (k-1)-simplex o0 is Ik

vertices of o carry all the labels 1,...,k.

—COME.ccc .-simplex is a completely labelled simplex. The
n

n+l
is a special case of lemma 4.4.8 to be proved hereafter.

Note that an In+1

next lemma follows from the labelling rule on s , defined just above. It

LEMMA 4.4.3. The (n-1)-simplex TO(Yl,W(In_l)) is the only In—complete

simplex in §2+1
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0 +1 —
By theorem 2.3.5 there exists a unique n-simplex ¢ (yl,...,yn ) of st

n+1

having TO as a facet. Clearly co(yl,...,y ) = oo(yl,n(In)) with y1 as

defined just above and m, = i, i € I_. Observe that yn+1 is the only

n

0 n+l”

The simplex 0  will be the starting simplex of the algorithm. From this

+
vertex of 00 in Sn. Moreover, yn t is the barycenter of S

simplex on a path of adjacent n-simplices 00,01,02,... is generated such
that the common (n-1)-dimensional facets are In—complete, until a
completely labelled simplex is found, i.e. the algorithm terminates if a
grid point having label n+l is generated. Remember that the replacement
step between two adjacent simplices is described in section 3.5. The
algorithm can be described as follows.
Step 0. Set 0 equal to co(yl,ﬂ(ln)) and v equal to yn+1.
Step 1. Calculate 2(y). If &(y) = n+l, ¢ is completely labelled and the
" algorithm terminates. Otherwise, there is exactly one vertex
y° # v for which 2(y°) = 2(3).
Step 2. The simplex c(yl,ﬂ(In)) is adapted according to table 3.5.1 by
replacing ys. Return to step 1 with § equal to the new vertex

of o.

We now prove that the algorithm indeed terminates. The arguments used will also
play a crucial role in the further simplicial algorithms, Firstly, from lemma
4.4.3 and the fact that (x) # i if x € 5}, it follows that T is the
only In—complete (n-1)-simplex on the boundary of g™, Therefore, all the

replacement steps are feasible, i.e. the new simplex is always a simplex
- +1

of sn, unless the algorithm returns in 00 while yn has to be replaced.

However, the algorithm can not return in an earlier generated simplex.

Suppose the contrary and let j be the index such that for some i < j,

cl = g7 and for all k,h < j, ok z oh, i.e. o

j-1

is the first simplex which

. j i
was generated earlier. Then o and ¢J = ¢ have a common In—complete

facet. Clearly, any generated simplex has only two In—complete facets.

must be equal to either ol_l or cl+1. If i 2 1 then

j=1
Hence GJ

o371 2 171 gince o® 2 o for all k,h < 3. I£ i = 0, o° has only o as

adjacent simplex such that the common facet is In—complete. So, in both
j— i+ k h

-1 =g 1. Moreover j-1 = i+l, again by that fact that ¢ # o for

all k,h < j. Hence j = i+2 and ot = cl+2, Because of step 2 this is

cases O

impossible.
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Consequently, a path of differently adjacent simplices in s" is generated.
Since the number of simplices is finite, the algorithm must terminate ‘
within a finite number of replacement steps with a completely
labelled simplex in §n. Since 2(x) # n+l if x € En U Sn

n+1 n+1’
must be a simplex in Sn. The algorithm is illustrated for the example of

this simplex

figure 2.4.2 in figure 4.4.1.

/ \ 7/ \ //o’ \ // \ ,/ \\
o N NN

1 1 1 92 2 2

Figure 4.4.1. Kuhn's artificial start algorithm.

In other algorithms to be discussed in this section the arguments to prove
non-cycling are very similar to the arguments above. Therefore, they are

not repeated each time.

Kuhn's variable dimension algorithm.
This algorithm does not start with a full-dimensional simplex but with the
single point e(1l). Recall the set Sn(k) of definition 4.4.1.c and note that

Sn(1)=e(1) and that Sn(n+1)=sn. Furthermore Sn(n)=sg+ . Clearly points x in

1
Sn(k) carry only labels of the set Ik since Xi=0 for i>k+1. By theorem

2.3.6, Sn(k) is triangulated in (k-1)-simplices. It is obvious that Sn(k)
corresponds with sk_l, for any 1<k<n+l1, whereas a proper labelling on s”
induces a proper labelling on Sn(k). So, by Sperner's lemma Sn(k) has at
least one Ik—complete simplex, k=1,...,n+1. The algorithm starts with the
{1}-complete zero-dimensional simplex {e(1)} of s"(1). As soon as for some

k, k=1,...,n, an I, —complete simplex in Sn(k) is found, the algorithm

k
continues with a path of k-simplices in Sn(k+1) having Ik-complete common
facets, until either an Ik+1—complete simplex in Sn(k+1) is found or a
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simplex having an I, ~complete facet in Sn(k) is generated. In the first

k
case the dimension is increased, whereas in the latter case the dimension

is decreased. The algorithm terminates if a completely labelled simplex is

found. Formally, the steps are as follows.

1 -
Step 0. Set k=1, y1=e(1), 0=Uo(y ,T(@)) and y=y1.

Step 1. Calculate Q(§). If 2(§)=k, an I -complete simplex in Sn(k) is

found and go to step 3. OtherwiZe, there is exactly one vertex
ys # y such that £(ys) = 2(y).

Step 2. If s=k and yt-1=0, the facet T(yl,...,yk—i) of ¢ is an Ik—l—
complete simplex in Sn(k—l) and go to step 4. Otherwise
c(yl,n(Ik_l)) is adapted according to table 4.4.2 by revplacing
ys. Return to step 1 with § equal to the new vertex of o.

Step 3. If k=n+l, a completely labelled simplex is found and the

‘ algorithm terminates. If k<n+1, n(Ik_l) becomes n(Ik) =
(ﬂ(Ik_l),k), 0 becomes 0(y1,ﬂ(I )). Then k becomes k+1 and return
to step 1 with y = yk = yk—1 + q(k-1) /m.

Step 4. Set 0 equal to T and set W(Ik_l) equal to W(Ik_z) = (nl,..,n ).

k-2
Then k becomes k-1 and return to step 2 with y® equal to the

vertex of ¢ having label k.

Table 4.4.2. s is the index of the vertex to be replaced.

l y becomes [ n(Ik_l) becomes
I
s =1 i v +q(n ) /m ' (nz,...,nk_l,ﬂl)
2 <s y (Wll-"'ﬂS—Q'NS'WS—1'“S+1'...'Wk—l)
s =k ' y —q(m )/m (m )

k-1""17"" T2

Note that table 4.4.2 is the analogon of table 3.5.1 adapted for the
fact that the variable dimension k-1 is used in stead of fixed dimension
n. By the proper labelling all replacement steps are feasible, whereas
also the increasing of the dimension in step 3 is feasible. Using
analogous arguments as above the algorithm can never return in an earlier
generated simplex. Therefore, within a finite number of iterations a
completely labelled simplex is found. A more detailed proof will be given
in chapter 5. In figure 4.4.2 the algorithm is illustrated for the

example above.
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1 1 1 2
emM\Mw)
1 2 1 1 2

Figure 4.4.2. Kuhn's variable dimension algorithm.

It is clear that from a theoretical point of view the variable dimension
algorithm can be implemented for any (not necessarily regular)
triangulation of Sn. Since always a completely labelled n-simplex will be

generated we have the following corollary, known as Sperner's lemma.

COROLLARY 4.4.4. If the vertices of a triangulation of Sn are properly

labelled, then there exists at least one completely labelled n-simplex.

We will now show that the number of completely labelled simplices is odd.
Suppose 01 is the completely labelled simplex generated by the variable
dimension algorithm and let 02(§1,F(In)) be another completely labelled
simplex (if any). Then we can apply the algorithm by a start in step 2
with k = n+l1, 0 = Oy y? = §1 and n(In) = E(In) and s equal to i if i is
the index such that l(yl) = n+l. Since the path between {e(1)} and 9, is
unique, by performing the algorithm the path of generated simplices does
not cross the path between {e(1)} and 9y and hence a new completely

labelled simplex is found, say o,. The same holds if we pick up a

3

completely labelled simplex o, etc. So we have the following corollary,

4
which is known as a stronger form of Sperner's lemma.

COROLLARY 4.4.5. If the vertices of a triangulation of Sn are properly

labelled, the number of compmletely labelled simplices is odd.
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We will return to this matter in chapter 7.

The algorithms of Kuhn have the disadvantage that they must start on the
boundary respectively in one of the corners of the unit simplex. So,
information obtained by applying the algorithm with a coarse grid cannot
be used for an application with a finer grid. The Sandwich method to be
discussed in section 6 is related to the artificially start algorithm but
can start anywhere. In chapter 5 we will introduce an algorithm related
to the variable dimension algorithm and which can also start anywhere.

It will appear that compared with the Sandwich method the latter
algorithm has the advantage that there are no artificially labelled noints
and that it generates a path of simplices of variable dimension, starting
with only one point.

We conclude this section with a class of algorithms of which the two

algorithms of Kuhn are the extreme cases.

A class of algorithms

Before presenting the algorithms we give some definitions. Recall that o
-1

is triangulated with grid size m such that e(l) is a grid point and

with m some positive integer.

DEFINITION 4.4.6.

a) §%(x) = {xeTnlxiZO, iel, xk+12—m_1, x,=0, i=k+2,...,n+1} k=1,...,n.

b) For k=1,...,n, éz(k) is the i-th boundary of §n(k), i.e.

§%(k) = {xes™(k) |x, = 0} i=1,...,k
1 1

(k) = {xe8™(K) |x ., = -m '}

gn
k+1 k+1

Note that En(n) = En. It is obvious that En(k) is triangulated in

k-simplices and that grid points of §n(k) outside s are points of
§£+1(k). For given k, the algorithm starts with a k-simplex of gn(k)
n

having an Ik K1 ot
grid point in Sn(k) (see definition 4.4.1.c). Clearly vy € S (k), since

-complete (k-1)-facet in s (k) . Therefore, let y be some

s™(x) < s™(k). Now the points of §2+1(k) are artificially labelled such
that 2(z) = i if ’
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3.

is= min{j]yj -z, = min

V. - z
hel h h
n

+1
Of course, the points of Sn are labelled according to the standard rule.

Let T(w),...,w) be the (k-1)-simplex of Sp,, (k) defined by

wk =y - g(k)/m and woo= wl+1 - q(i)/m i=k-1,...,1.

Then we have the following lemma.

LEMMA 4.4.7. The (k-1)-simplex T is the only I

=n
Sk+1(k)'

k—complete simplex in

PROOF. We first prove that 17 is L -completé. Clearly, for i = 1,...,k,

l= g 1 i = -
wy s er j # i,k+1, Wipr = Vgt

{-complete. It remains to prove the!second part of the

k i -1

m and W=y, + m ., This implies
R(Wl) =i, so T is H
" lemma. Suppose that the simplex p(ul,..,uk) is an Ik

Sp, (). If for some i,3, 1 % i, < k, ug = yj—m_l, then u? <y, for

h =1,...,k, contradicting that l(uh) = j for some h. Hence, u% > yj for

—complete simplex in

all i,j, 1 € i,j £ k. Moreover, by the definition of Sn(k) and §2+1(k) we
have that y. = u% =0 (jJ =k+2,..0yn+l; i =1,...,k), ¥y = 0 and

; J J . k+1

o Y S 1,...,%). Hence £ ut = 3K v +m Y for i =1,...,k.
Ykt 1 ’ e j=15 T "3=1 Yy reeny

It follows that for i = 1,...,k

i

-1 . . . .
u¢(i) = y¢(i) + m for some index ¢(i) with 1 < ¢(i) <k

and R

u; = vy for § # (i), k+l.

E+1(k) is induced by the standard

triangulation of'Tn. Therefore, since p is a simplex of §£+1
have that ui+1 B ui + q(ni)/m, i=1,...,k-1 for some permutation m(I
Let h be the index such that = 1. Now assume ui =Yy Then u?+1 =
Yy - m_1 which contradicts u?*l 2 yl. Consequently, ui = y1 +m  and

hence ¢(1) = 1 and ui = yi, i=2,...,k. So u = w . Moreover T must be

equal to one, implying that ug =Y, + mnl, i.e. $(2) = 2. Consequently

Recall that the triangulation of s
(k) , we must

k1) *

o(i) = M= i, i = 1,...,k-1 which proves that p = T. O
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It is obvious that lemma 4.4.7 implies lemma 4.4.3 by taking k=n and
vy = p/m j=1,...,n, ¥y 4 =0. .
We are now prepared to sketch the algorithm associated with a given k and

*
a given point y being a grid point in Sn(k ) . The method starts with the

1 *+ * 4 *
k-simplex Go(y ,...,yk 1), where yk ! = y and where yl,...,yk are the
vertices of the simplex T of lemma 4.4.7, i.e. 00 = oo(yl,n(Ik*)) with
*
"= i, i=1,...,k . By applying Kuhn's artificial start algorithm, in which

we take k* in stead of n, an I ~complete simplex p = p(vl,E(Ik*)) of

k*+1
Sn(k*+1) must be found within a finite number of steps. Then, we continue

with the variable dimension algorithm by setting in step 0, k = k*+2,

- - * 1 1
“(Ik*+1) = (ﬂf "’"k*' k +1), o(y ,n(Ik*+1)) = o(v, n(Ik*+1)) and

§ = yk*+2, Within a finite number of iterations, the algorithm either
terminates with a completely labelled simplex or generates a simplex of
sn(k*+2) having an (Ik*+1)—complete facet in sn(k*+1). In the latter case
the method proceeds again according to the artificial start method and

- *
generates simplices in Sn(k ) having I, s—-complete common facets, until

k

again an I -complete simplex of Sn(k*+1) is found etc. Again using the

k*+1
fact that all steps are feasible and that cyvcling can not occur, a

completely labelled simplex must be found within a finite number of steps.
Observe that for k* = n we have Kuhn's artificial start algorithm whereas

for k¥ = 1 the method is just like the variable dimension algorithm.

4.5. ALGORITHMS TO COMPUTE FIXED POINTS ON R?.

In this section a class of algorithms for computing a fixed point (if
any) of a continuous function f from Ri to R: ?s presented. This class is
analogous to the class of algorithms described in the previous section.

An application of these algorithms is the nonlinear complementarity
problem.

For all members of the class of algorithms, Ri is triangulated by the
Ka—triangulation. For ease of notation we take 8=1 in the discussion below.
Analogous to the class of algorithms on s™ we want to have a proper
labelling, i.e. a labelling such that 2(x) # i if X, = 0. Therefore the
standard labelling rule on R" is not appropriate and we define the

following labelling rule,
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DEFINITION 4.5.1. (Labelling rule on Ri).

For X € Rz, let i be the index such that i=min{j|f.(x)—x.=min fh(x)—xh}.
J J hel

Then n

L(x) =i if £ (x)-x, <O
i i

0 otherwise.

Note that the labelling rule is proper. In particular we have that 2(0) = 0.
Furthermore it is easy to see that a completely labelled simplex yields an
approximation of a fixed point. We call a k-simplex (IkU{O})—complete if
the k+1 vertices carry all the labels 0,1,...,k.

We give now some definitions which are analogous to definition 4.4.6 and

definition 4.4.1.cand which are helpful to describe the starting procedure.

DEFINITION 4.5.2.

a) ﬁn(k) = {xeRn{xizo, iel X 2-1 and xi=0, i=k+2,..,n} k=0,...,n-1.

k' Tk+l

b) For k=0,...,n-1, ﬁ?(k) is the i-th boundary of RO(k), i.e.

RU(k) = {xeR™(k) |x,=0}  i=1,...,k;
1 1

-n =n

Rk+1(k) = {xeR (k)lxk+1=—1}

o) RM (k) = {xeRn|xiZO,i€I and x,=0, i=k+l,...,n} k=0,...,n.

k

The K-triangulation of rR? implies that for given k=k* with 0 < k* < n-1,
ﬁn(k*) is triangulated in such a way that the grid points of ﬁn(k*) not in
Rz are points of §£*+1(k*).

Now, let y be an arbitrarily chosen grid point of Rn(k*), i.e. inO for

The algorithm associated with a given k* starts with the simplex
K*4+2 i i+l
k*+1)) w&ere y =yandy =y
i.e. vy =y - Z? :le(i) and "= i, i=1,...,k*+1. To guarantee that the
i=1 5
facet T(y ,.....,yk +1) is the only (Ik*U{O})—complete simplex of

ice Ik*'

0(y1r“(1 - e(i), i=1,...,k*+1,

§§*+1(k*) the points of §£*+1(k*) aré artificially labelled by the
following rule. Let i be the index such that

1= min{jlyj—xj—j/(k*+1) =‘Ei? *yh—xh—h/(k*+1)}.
k
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Then 2(x) =i if yi—xi—i/k*+1 < 0 and 2(x) = 0 otherwise.

Following the proof of lemma 4.4.7 it follows immediately that T is
indeed the.only (Ik*U{O})‘complete simplex of §;*+1(k*). In particular
holds: L(y") = i-1, i=1,...,k"+1.

The algorithm proceeds as follows.

*
+2

k+
L= ¥ ).

Step 0. Set k = k*+1, 0=U(y1,N(I )) and §=y

*

Step 1. Calculate £(§). If 2(§)=§,+;n (IkU{O})~complete simplex of Rn(k)
is found and go to step 3. Otherwise there is exactly one vertex
yS # § such that R(ys) = 2(?).

Step 2. If s=k+1, y§=0 and k>k*+1, the facet T(yl,...,yk) of 0 is an
(Ik_lu{O})—complete simplex of R" (k-1) and go to step 4.
Otherwise o is adapted according to table 4.5.1 by replacing ys.
Return to step 1 with § equal'to the new vertex of o.

Step 3. If k=n, a completely labelled simplex is found and the algorithm
terminates. If k<n, ﬂ(Ik) becomes m(ZI ) = (n(Ik),k+1), o

“k+1

becomes c(yl,n(I )) . Then k becomes k+1 and return to step 1

k+1
with y = yk+1 = yk + e(k).

Step 4. Set 0 equal to T and set w(Ik) equal to w(Ik_1)=(ﬂ1,...,n ).

k-1
Then k becomes k-1 and return to step 2 with y° equal to the

vertex having label k.
Observe that table 4.5.1 is analogous to table 4.4.2 and that it
represents the replacement step between two adjacent (k+1)-simplices.

Recall that Rn(k) and ﬁn(k—i) are k dimensional subspaces of R".

Table 4.5.1. s is the index of the vertex to be replaced.

l yl becomes ! ﬂ(Ik) becomes
1
s=1 y1+e(ﬂ1) (ﬂ2,...,ﬂk,ﬂ1)
2 <s <k y1 (nl""'ﬂs—z’ns’“s—l’ws+1'""ﬂk)
s=k+1 | y —e(ﬁ{) | (wk,ni,...,ﬂk_l).

The class of algorithms corresponds to the class of algorithms on Sn,
described in the previous section. In particular, the case k*=n—1
corresponds to Kuhn's artificial start algorithm on Sn, whereas the case
k*=0 is the analogon of the variable dimension method on s™. In the latter

case the algorithm starts with the point y=0 of Rn(O).
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By the proper labelling, it is easy to see that all replacement steps are
feasible. Moreover, using the same arguments as for the artificial start
algorithm of section 4, cycling cannot occur. Therefore the algorithm
either terminates with a completely labelled simplex in RE or an infinite
path of simplices going to infinity is generated. The algorithm is

illustrated in figure 4.5.1 for n=2 and k*=0 respectively k*=1.

va

2 1

2 1 0 !

0 1 ol o/ o 1

) /
AR

o/ o/ o 1 (0,0) L0 /ﬁl AL L
l /// "E/o‘ /\44// 1 ,//l 7
1= / /1 PSR V4 R A Vi VA VAl
0 (0,000 1 0 1 0 o0t 1 101 1 1

;
Figure 4.5.1.a n=2, k =0 y=(0,0) . Figure 4.5.1.b n=2, k =1, y=(2,0) .

Lithi [1976] proposed an algerithm which is closely related to the case
k*=0. This algorithm is based on the standard labelling rule on R’. It can
be viewed as a generalization of the case k*=0 in the sense that the
sequence of found labels is not predetermined. On the other hand it is a
special case of the variable dimension restart algorithm to be presented

in the chapters 5 and 6.

4.6. SANDWICH METHOD.

All the methods described in the previous sections suffer from
inefficiency, since they are characterized by a start outside the region
of interest and by a fixed grid throughout the algorithm. If we have a
small grid size the number of iterations becomes very high whereas the

approximation is bad if the grid size is large.
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A method which avoids this disadvantage is the Sandwich method introduced
for functions on S" by Kuhn and MacKinnon [1975]. The method was
discovered earlier by Merrill [1971,1972] for mappings on unbounded
regions.

The Sandwich method is a straightforward application of Kuhn's artificial
start algorithm. Suppose we want to compute a fixed point of a continuous
function f from S" into itself. Therefore S" is embedded in the (n+1)-
dimensional simplex Sn+1, which is triangulated according to definition
3.4.1. Clearly Sn+1

n+2

n+1l
element of Sn+2 iff (le"":n+1 he
standard labelling rule on S as defined in 4.2.1. Now the points of S

are labelled by %(x) defined as follows

n . T .
corresponds to S i.e. x=(x1,...,xn+1,0) is an

T 2
) is an element of s”. Let % denote the
1

2(x) = n+2 if X 4o ” 0

2(x) ) if x =0

l(xl,...,x 2

n+l

So all points with X 40 > 0 are labelled by n+2.
n+1

Let y be an arbitrarily chosen point of Sn+2. Note that in Kuhn's
algorithm y must be the barycenterof'sgié but that the extreme case k*=n
of the class of algorithms discussed in section 4 allows for an
arbitrarily chosen point y.Then starting with an(n+1)-simplex such that y
is one of its vertices and the convex hull of the other vertices is the
+1—complete simplex (see definition 4.4.2) of §2:;, the

algorithm generates a path of adjacent simplices until a completely

ique
unigq In

labelled (n+1)-simplex of Sn+1 is found. Clearly this is the case as soon

as a grid voint is generated such that x >0, i.e. if a simplex

n+2 .
1

. . 1 _ - _
n+1)) is generated Wlt2+§n+2 = 0 and "n+1 = n+ . But then Voo = 0

for i=1,...,n+1 and T(yl,...,y ) is an In+1—complete facet of o lying in
+
Si+; or analogously T is a completely labelled simplex of s® and yields an

approximation of a fixed point of f. In figure 4.6.1 the Sandwich method

0(y1,ﬂ(I

is illustrated for the example of figure 4.4.1 by drawing the

intersection of the path of simplices in §n+1 with the (n+2)-th boundary

+
52:; of Sn 1. Observe that seven function evaluations are made, whereas
-n+1
also seven points of the artificial labelled boundary Sg+2 are generated.

The generalization to R: is immediately clear from the generalization of
Kuhn's artificial start algorithm to Ri as described in section 4.5. The

extension to R can easily be made and will be discussed in section 10 for
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vector labelling in stead of integer labelling.
The advantage of this method is that y can be chosen to be any grid point

+
of Sg+;, or equivalently, of s". Therefore we may apply the algorithm for a

e (2)
1 2 1 1 2

Figure 4.6.1. The intersection of the path of simplices, generated by the
. , +1 T P T,.
Sandwich method, with S|, y=(k} %), n=2, &(i)=(e'(1),0) .

decreasing sequence of grid sizes. In any stage the approximate solution
of the previous stage can be used as the starting point. So, a seguence of

approximations is generated, until the desired accuracy is achieved.

4.7. HOMOTOPY ALGORITHM.

A second algorithm which avoids the disadvantages of the methods
discussed in the sections 3 until 5 was developed by Eaves [1972] for
mappings on S" and by Eaves and Saigal [1972] for mapvings on R’. To handle
mappings, vector labelling has to be used. Then the method traces a path
of fixed points of a homotopy function from a given linear function to
the function of interest. Therefore the method was called the homotovy
algorithm. We return to the matter of vector labelling in the following
sections. In this section we discuss the method using intéger labelling.
The algorithm is characterized by an automatically decreasing grid size.
We treat at first the simplest applicationwith the decreasing secquence
1,1/2,1/3,... to compute a fixed point of a continuous function f on Sn.
Therefore Tn+1 is triangulated by the standard triangulation with grid

size 8=1 and with e (1) a grid point of the triangulation. Now, let
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Un+1 be defined by

n+1 +1
U = {xeT" ]xl,...,xn+1 > 0 and X 1o <0}

and let Un+1(m) be defined by

n+1 _ n+1 _ _
U (m) = {xeU X 5= m+1} m=1,2,... .

. . +1 . . +1
Clearly the triangulation of Tn induces a triangulation of o .

+ .
Moreover, the induced triangulation of i 1(m) corresponds with the

standard triangulation of Sn with grid size m—l, i.e. the point

n+1

. -1 T
(xl,...,x —m+1)T of U (m) corresponds with thepoint m "(x,,...,x ) of

n+1’ 1 n+1
n
S’ in the sense that the latter point is the intersection of the line from

(xl,...,xn+1,—m+1)T to (O,...,O,l)T with Un+1(1). Consequently, the point
(Xl""'xn+1'xn+2) of Un+1 is labelled by the standard labelling rule 2(y)

on s" where v, = xi/(l—x ), i=1,...,n+l1, Obviously 2(x) # i if x, = 0 for

n+2

+1
any x € o . Furthermore an In —-complete simplex of Un+1(m) corresponds

+1
with a completely labelled simplex of the standard triangulation of &

with grid size n?,

+
Since " 1(1) corresponds with s™ it is I -complete. The algorithm starts

n+l

=
with the simplex o°(y',m(I_..)) of ™! such that y' = (1,0,...,0,1,-1),

n+1

(1) = n+l and ﬂi = i-1, i=2,...,n+1, i.e. oo(yl,n(I 1)) is the unique

n+
simplex of the triangulation of Un+1 having Un+1(1) as a facet. According
to the replacement steps of table 3.5.1 the algorithm generates a path of

+1
adjacent (n+1)-simplices of " having In -complete common facets.

+1
Clearly Un+1(1) is the only In—complete facet on the boundary of Un+1.
Therefore, since cycling cannot occur all steps are feasible and an

+
I —-complete simplex T of " 1(m) m=2,3,.... is generated within a

n+l
finite number of steps. The method is illustrated in figure 4.7.1.

Observe that it is possible that the algorithm returns to a previous level.
The algorithm can be broken down if either an a priori chosen value of m
is attained or the approximation is good enough. Observe that in the
example the vertices of the facet T between the levels 2 and 3

represent the same points as the vertices of facet p on level 6.
Therefore triangulations which allow for a faster decreasing of the grid

size are interesting.
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VAVAVAV) VAVAVAY
YAVAVAVAY/(VAVAVAY

Figure 4.7.1. Illustration of the homotopy. algorithm for n=1 with the

decreasing sequence of grid sizes 1, 1/2, 1/3,... .

. In Eaves [1972] a triangulation for a decreasing sequence of grid sizes

with a factor of two was given. Let G be the standard triangulation of the

convex hull of Un+1(1) and Un+1(2) and let G(k) be the standard

triangulation of Un+1(m), where m=2k,for k=1,2,... The grid size of G and
G(k) k=1,2,... is one. Clearly, an (n+l)-simplex o of G is characterized

1
by o=0(y ,m(I )), whereas an n-simplex T of G(k) is characterized by

T=T(y1,ﬂ(In))?+$e are now prepared to present a triangulation of Un+1 with
a factor 2 between two subsequent levels. The (n+l1)-simplices of Un+1 are
of the form TT(O) with for some n-simplex t of G(k), k=1,2,... and for
some (n+l)-simplex o of G, TT(o) defined by

T o) =5 h,. L )
where yl,...,yn+2 are the vertices of o and where for j=1,...,n+2 the h-th

component th(yj) of the vector TT(y]) is equal to

j n+1 i3
th(y ) = E W vy h=1,...,n+l
i=1
and
. n+1 .
t g =1- 1T t (y))
n+2 h=1 th

. 1 n+l .
ifu,...,u are the vertices of .
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For this triangulation the algorithm is illustrated in figure 4.7.2.

2
U (1)

Figure 4.7.2. Illustration of the homotopy algorithm for n=1 with a

factor of two between two subsequent levels.

In Eaves and Saigal [1972] the homotopy algorithm was generalized for the
computation of a fixed point of a function on rR" (i1f any). Let G(0) be the
standard triangulation of R°x{1} with grid size §. Let T be a simplex of
G(0). Then the triangulation of tx[1,») is a scaled copy of the

1

+
triangulation of Un . In their paper Eaves and Saigal showed that these

N
1 |1 42 1 Rnx{8}
N

y 1| v o1 1 2 | r"x{4}
1 1 1 2 R'x{2}

O 7
‘ R'x{1}

1 1 Y 2 2

Figure 4.7.3. Illustration of the homotopy algorithm on R" for n=1.
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triangulations of T%[1,®) can be combined to a triangulation of Rnxfl,w).
Then the algorithm is started with a simplex 00 having some grid point y

in R"x {2} as a vertex while the facet TO opposite y is a facet of RUx{1}.
To guarantee feasibility of the replacement steps the points of R x{1} are
artificially labelled in such a way that TO is the only completely labelled
n-simplex of RnX{l}. Starting with oo a path of adjacent (n+l)-simplices
having common completely labelled facets is generated. An illustration for

n=1 is given in figure 4.7.3.

4.8. VECTOR LABELLING AND APPROXIMATION.

Assume we want to compute a fixed point of an upper-semicontinuous
mapping from R into itself. Therefore we introduce the concept of vector
‘labelling.

Assume that f is a piecewise linear approximation to ¢ with respect to a
triangulation G of R (see definition 2.5.4). Then we define the

following labelling rule.

DEFINITION 4.8.1. (Vector labelling on R%).

+
Let b be a nonnegative vector in Rn ! such that bn+1 > 0. Then x € Rn

receives the (n+1)-dimensional vector label %(x) with

L.(x) = £,(x) - x, + Db, i=1,...,n,
i i i i

Qn+1(x) = bn+1'

For vector labelling we define a completely labelled simplex as follows.

+
DEFINITION 4.8.2. A simplex o(w',...,w" ') of G is completely labelled if

the set of linear equations

n+1 i

I A w') =D
. i

i=1

).

* * *
has a nonnegative solution A = (Al,...,An+1
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The following lemma states that a completely labelled simplex yields a

fixed point of f.

LEMMA 4.8.3. The piecewise linear approximation f to ¢ has a fixed point
in the simplex 0(w1,...,wn+1) if and only if 0 is completely labelled. If

*
A" is the solution of the system of linear equations, then

* n+1 . i

X = L A,w
. i
i=1

is the fixed point of f in c(wl,...,wn+1).

. i, . n+l . * _
PROOF. Clearly, since 2n+1(w ) = bn+1 for all i, we have that Zi=1 Ai = 1.
Moreover, by the definition of £ and x we have that

n+l1 * i n+1 * . n+1 . n+1 *

bo= I AR W) = % Aif_(wl) - I Aw.+b, IA =
Joa= P i=t * 3 i=t v Tt
£ (x*) x* + b j=1
= £, - X, . =l,...,n
i i 3 J=1, Ny

*
which proves that x is a fixed point of £.

Conversely, if x is a point of a(wl,..,wn+1), then there is a A € Sn, such
that x = 271 A wl. so 2(x) = 2™l vl = ™ aawh) . 155" is a
i=1 i i=1 i i=1 i

fixed point then lj(x*) fj(x*)-x§+bj=bj for j=1,...,n,which implies that

n+1

T At =b,
. i
i=1
* n+l (% i 1 n+l,
when X = Zi=1 Aiw . Hence o(w,...,w ') is completely labelled. ]

* *
Let 0 be a completely labelled simplex and let x be the fixed point of £
*
in 0. The next theorem shows the accuracy of x as approximate fixed point

of the mapping ¢.

THEOREM 4.8.4. Let €>0 be such that for all g(y) € ¢(y) there exists an
element g(x) € ¢(x) such that max |gi(y) - gi(x)! < g for all x,y € 0*.
ieI
n

* * * *
Then there is an element g(x ) € ¢(x ) such that max !gi(x ) - xi| < €.
ieI
n
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n+l [ *x i n+1 3

PROOF. We have that x* = I, Aw =1,
—_— i=1 i i=1

exists an element g(x*) € ¢(x*) such that

* i A *
Xif(w ). Since w~ € 0 there

j *
max |£, w)) - g, (x)] < e, §=1,...,n+l.
. i i
i€l
n
Hence
n+1 .
* *
max lg.(x y - x.l = max | T Af{g‘(x*) - f.(wj)}l
. i i . . 371 i
iel iel j=1
n n
n+1 . « 3
< % AL max |g,(x) - £, (w)]| < e. N
. . i i
j=1 1eIn

COROLLARY 4.8.5. Let ¢ be a continuous function from ®R™ into itself and let

*
X be the fixed point of the piecewise linear approximation £ to ¢ in the

completely labelled simplex 0. Then

max l¢,(x*) - xfl < e,
ieIl t *
n

Observe that for a continuous function ¢ from Rn into itself
mix |¢i(x*) - le is bounded by € when vector labelling is used whereas
this amount is bounded by e+§ when using integer labelling (see lermma
4.2.4), Using vector labelling to compute a fixed point of a continuous
function on Sn the upper bound becomes ¢ instead of n(e+§) in case of inte-
ger labelling (see lemma 4.2.2). The result of theorem 4.8.4 while true,
may not be at all useful. Of course, in case of a continuous function
diam o* close to zero implies that € becomes very . small. However, it can
easily be seen that there exist u.s.c. mappings such that € may be rather
large, (e.g. as large as 1), even if dianc* is arbitrarily small. Never-
theless, computing a fixed point of ¢, wehave that a sequence of triangula-
tions with mesh going to zero, the sequence of approximate fixed points
contains a subsequence converging to a fixed point of ¢ (if any, see theorem

2.5.3).

4.9. A BASIC ALGORITHM TO COMPUTE A FIXED POINT OF A MAPPING.

One of the first methods to find a completely labelled simplex using
vector labelling was developed by Eaves [ 1971}, Let ¢ be an upper-

semicontinuous mapping from an n-dimensional compact, convex subset C into
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itself and let c be an element in the interior of C. The mapping ¢ is
replaced by the u.s.c. mapping $ from an n-simplex C' containing C in its

interior to C as in the proof of theorem 2.5.3, i.e.

6 (x) = ¢(x) if x e C
= conv (¢ (x)u {c}) if x € bd C
= {c} if x e C'\C

Recall that a fixed point of 5 is a fixed point of ¢.

Let G be a triangulation of C' and let the starting point x0 be an
arbitrarily chosen point on bd C', such that x0 is in the interior of a
facet TO of the triangulation G. Let 00 be the unique simplex of G having
TO as a facet (see theorem 2.3.5) and let d be the (n+l)-dimensional
vector (xo—c)T,O)T + b.

Before describing the algorithm we introduce the concept of an almost
complete simplex.

k

1 +1
DEFINITION 4.9.1. For k=n-1 or k=n, a k-simplex o(w ,...,w ) of G is

almost complete if the system of linear equations

k+1 i
A.2(w?) + ud =b
. i
i=1
. . * * *
has a nonnegative solution (Al""'xk+1' B .

Although degeneracy can occur in fixed point algorithms we assume in the
following that it does not happen. A method to resolve the problem of
degeneracy can be found in e.g. Todd [1976a]. So assuming non degeneracy
the system of linear equations has a unique solution if o is an almost
complete (n-1)-simplex. However, if 0 is an almost complete n-simplex the
above system of linear equations has two solutions having each just one
variable equal to zero. Clearly, 0 is completely labelled if for one of
these two solutions u*=0. The algorithm searches for a simplex having such
a solution.

Since TO is a boundary facet its vertices yi ieI, are labelled by z(yi) =

n

i 0 i - . R
(c—yl)T,O)T+b. Clearly,x” = Zi uiyl for some assn 1. Since xO is in the

=1
0
interior of TO, o,>0 ieIn. So,the (n-1llsimplex T is almost complete
. * * ok * . *
with solution (Ai,...,kn,u ) where Ai = %ai lEIn and p =%. Moreover,

To is the only almost complete (n-1)-simplex on the boundary of C'
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(see Eaves [1971) or Todd [1976al]). Now the algorithm is described by the

. + . s
following steps where 00=0(y1,...,yn 1) is the unique simplexcontalnlngTO.

+1 - 0
Step 0. Set o equal to O(yl,...,yn ) and let y = yt be the vertex of ¢

not in TO. Let Ziz Aiﬁ(yl) + ud = b be the set of linear

equations induced ;y T . This system has the above mentioned
solution (AI,...,A:,u*).

Step 1. Calculate £2(v) and make a standard linear programming pivot step
by bringing R(§) in the system of linear equations to obtain a
‘new solution with one of variables equal to zero. If u becomes
zero, i.e. if d is eliminated, o is a completely labelled simplex
and the algorithm terminates. Otherwise, for some s, R(YS) is
eliminated by the pivot step.

Step 2. Adapt o by replacing ys. Let § bevthe new vertex of o and return

to step 1.

'Since non degeneracy is assumed, all the revlacement steps are unique, so
cycling cannot occur (see section 4). Moreover, all replacement steps are
feasible since TO is the only almost complete facet on the boundary of C'.
Hence the algorithm terminates within a finite number of iterations with
a completely labelled simplex. Note that the algorithm has the same
disadvantages of those discussed in the sections 3 until 5. It must start

outside C and the grid size is kept fixed.

4.10. SANDWICH AND HOMOTOPY METHODS ON Rn.

Let ¢ be an upper semi-continuous manping from Rn into itself and
suppose we want to compute a fixed point (if any). As remarked in section
6 the Sandwich method is the application of Kuhn's artificial start
algorithm on RnXR+ by adding an extra layer of points with xn+1 = -1,

From the discussion in 6 it is clear that the algorithm terminates as soon

as a point is generated with x = 1., This means that in practice only

simplices R™[-1,0] are generazzé, i.e. the algorithm starts with the
(n+1) -simplex having the unique completely labelled n-simplex in Rnx{—l}
of artificially labelled noints as a facet and terminates with an (n+1)-
simplex having a completely labelled facet in RnX{O}, whose vertices are
labelled according to the standard labelling rule induced by the

mapping ¢. Therefore we can restrict ourselves to the set Rnxr—l,O] or
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equivalently to R°x[0,1], where R™x{0} will be the level of artificially v
labelled points.
To apply the Sandwich method we define the mapping ¢ from R'x[0,1] to rR” by

$(x,t) = {ty + (1-t)v| v € ¢(x)},

where v € R" is an arbitrarily chosen point, called the starting point.
Now, a point (x*,t*) is called a fixed point of 5 if x* € E(x*,t*).
Clearly, if (x*,l) is a fixed point of 5, then x* is a fixed point of ¢.
Furthermore, it is obvious that (v,0) is the only fixed point of 5 in
R%x{0}. Let G be the triangulation of Rnxro,l]inducedby1jueAKtriangulation
of Rn+1, where A is the diagonal matrix such that aii =6, i=1,...,n and
a;; = 1 for i = n+l, i.e. the grid poipts G are either in RnX{O} or

R™{1} and the induced triangulations of R"x{0} and R°x{1} have grid size
§. We assume that (v,0) is in the interior of an n-simplex 7° of R™x{0}.

A point (x,t) receives the vector label £2(x) defined in 4.8.1, i.e.

zi(x,t) = fi(x,t)—xi+bi, i=1,...,n and 2n+1(x,t) = bn with f(x,t) a

+1
piecewise linear approximation to $ with respect to G. Since (v,0) is the
only fixed point with t=0 it follows from lemma 4.8.3 that TO is the only
completely labelled n-simplex in R'x{0}.

The algorithm proceeds as follows.

Step 0. Set 0 equal to the unique (n+1)-simplex having TO as a facet and

let vy be the vertex of 0 not in TO. Let Zf:f Ail(yl) = b be the

system of linear equations induced by TO where yl,...,yn+1 are the
vertices of TO. The solution of this system is A* = (A:,..,A:+1)
if v = ol axt, '

i=1 i

Step 1. Calculate 2(y). Make a linear programming step with 2(§) in the
system of linear equations. Let s be the index such that l(ys) is
eliminated by £(§).

Step 2. If the facet of o opposite ys lies in Rnx{l}, this facet is a
completely labelled n—simélex of R™x{1} and the algorithm
terminates. Otherwise, adapt ¢ by replacing yS and return to

step 1 with § equal to the new vertex.

Following these steps, the algorithm generates a path of adjacent
simplices such that the common facets are completely labelled. It means,

that the algorithm can be seen as a method which traces a vath of fixed
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points of the piecewise linear approximation f(x,t) to E(x,t). Using the
standard arguments the algorithm either terminates within a finite
number of steps or generates a path of simplices going to infinity.

It can be proved that the algorithm terminates if Merrill's condition
(see lemma 2.6.2) is satisfied (c.f. Merrill [1972] and also Todd
[1976a]). The approximation of the fixed point can be chosen as the
starting point v in a new application of the method with a smaller grid
size.

To apply the homotopy algorithm we define @ function $ from RHXFl,W) to R®
such that

$(x,1) = v and §(x,25 = £5(x)

where v is the starting point and fk(x) a piecewise linear approximation to
¢ with respect to the triangulation of Rnx{2k}. Rnxfl,w) is triangulated as in
section 7 such that v is in the interior of an n-simplex TO in Rnx{l}.

The points (x,t) are labelled as above with f(x,t) a piecewise linear
approximation to &(x,t). Hence TO is the only completely labelled
n-simplex in R'x{1}. Starting with the (n+l1)-simplex having 9 as a facet
the algorithm generates a sequence of adjacent simplices such that the
common facets are completely labelled. That means that a path of fixed
points of the piecewise linear approximation f(x,t) is traced.

It can easily be seen that this path converges to a fixed point of ¢(x) if
t goes to infinity. The algorithm can be terminated as soon as a
completely labelled simplex on a predetermined level t is generated. This

occurs in a finite number of steps if Merrill's condition is satisfied.

4.11. MAPPINGS FROM s” INTO S”.

To compute a fixed point of an u.s.c. mapping ¢ on s™ we define the

following labelling rule given a triangulation G of s".

DEFINITION 4.11.1. (Vector labelling on s").

A point x in s" receives the (n+1) -dimensional vector label £(x) defined by

2(x) = -f(x) + x+Db
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where f(x) is a piecewise linear approximation to ¢ with respect to G and
where b is a nonnegative vector with at least one compconent positive.

+
An n-simplex o(wl,...,wn 1) of G is called completely labelled if the

system of linear equations

n+1 .
I A 2w) =b
. i
i=1
. . * * *
has a nonnegative solution A =(A1,...,Xn+1).
LEMMA 4.11.2. The point x* = Z?ﬁ; Azwl is a fixed point of f if and only

if o, ..., w1y is completely labelled with A* = (AI,...,A;+1) the

solution of the system of linear equations.

PROOF. The proof of the lemma is analogbus to the oproof of lemma 4.8.3.
Therefore we only show that Z?:}

of linear equations. By summing up over all equations we have that

*
Ai =1 if A is the solution of the system

n+l , n+l i i n+1
X Ai I (-f.(w’) +w, +b,) = Ib,.
i=t tg=1 S
Hence E?+1 Xf = 1 since ZP+1 f.(wl) = Z?+1 w% =1 for all i. 0
i=1 i =1 7] =1 73

Analogous to the proof of theorem 4.8.4 the next corollary follows

immediately.

COROLLARY 4.11.3. Let mesh G<8 and let the mapping ¢ be such that
o(y)ed(x) + B (0,e) if yeB™(x,8). Then x ed(x’) + B (0,¢).

To approximate a fixed point of a mapping on sn we can use the Sandwich
method with a decreasing sequence of grid sizes and restarting in any

stage with the approximation of the previous stage or the homotopy

method involving an automatically decreasing grid size.

The application of the Sandwich method can be done as follows. As discussed
in section 6, §n+1 is triangulated in ‘the standard way with grid size m_l.
Clearly, only simplices are generated in the convex hull of 52:; and S:I;.
Therefore we consider the corresponding set s”x[0,1], where s™x{o} is
triangulated with grid size (m+1)-1, whereas S"x{1} is triangulated with

grid size m_l. Now we define the mapping E(x,t) by
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o(x,t) = td(x) + (1-t){v}

where v is an arbitrarily chosen starting point such that (v,0) is in the
interior of an n-simplex of the triangulation of s™x{0}. Clearly (v,0) is a
fixed point of $(x,t). Again a path of fixed points of the piecewise

linear approximation f(x,t) to $(x,t) is traced, starting with (v,0) and
terminating with a point on level one.

To apply the homotopy method we triangulate the set Snx[l,w) in stead of
ytt, This set is triangulated by (n+l1)-simplices such that s"™x{2"} is
triangulated by the standard triangulation with grid size 2™ a path of
fixed points of the piecewise linear approximation to $(x,t) is traced with
;(x,t) a correspondence from S"x{t} to S" such that &(X,Zm)=fm(x) where
fm(x) is a piecewise linear approximation to ¢(x) with respect to the

triangulation of s™x{2™} m=0,1,... .

4.12. CONCLUDING REMARKS.

All algorithms discussed in this chapter are based on the principle of
generating a sequence of adjacent simplices (or primitive sets) until a
completely labelled simplex yielding an approximation of a fixed point is
found. An algorithm based upon the approximation of a curve by means of
numerical solution of an initial value problem was introduced by Kellogg,
Li and Yorke [1976] and has since been superceded by the so called
continuation methods (see Allgower and Georg [1980]) . The most sophisticated
simplicial algorithms are the "Sandwich" method and the homotopy algorithm.
In both methods the n-dimensional problem is embedded in an (n+1)-
dimensional one. The first one has the disadvantage that a layer of
artificially labelled points is needed. So with vector labellipg a path of
fixed points is traced starting with a fixed point of a constant function
at each restart. This can be improved by using the approximate Jacobian
(see e.g. Todd [1978a]). In the homotopy method the mapping is continuously
deformed. Moreover if corrections have to be made, e.g. if on a previous
level a completely labelled simplex has been found which corresponds to a
point which is nearly but not actually fixed, the simplices generated can
move from fine triangulations back to coarser ones. On the other hand the
grid size is reduced by a factor of at most two, whereas for the Sandwich

method this factor can be chosen arbitrarily. So, in the latter method it
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\
is possible to accelerate the convergence by taking an increasing sequence
of factors with which the grid size is reduced. In chapter 8 we present a
homotopy algorithm which allows for an arbitrary factor between two

subsequent levels.
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CHAPTER 5

VARIABLE DIMENSION RESTART ALGORITHM

5.1. INTRODUCTION.

In the previous chapter several algorithms to compute a fixed point
of a function or mapping from s into itseLf were discussed. Two efficient
methods are the restart algorithm of Merrill and Kuhn and MacKinnon, which
is referred to as the "Sandwich" method, and the continuous deformation
~algorithm of Eaves (and Saigal), called the homotopy method. In both methods
a path of (n+l)-dimensional simplices is generated.

In this chapter a restart algorithm is presented which does not use a
layer of artificially labelled points (see also Van der Laan and Talman
[1979a,1980c]. Moreover it differs from the algorithms mentioned above by the
fact that it does not generate a path of (n+l)-dimensional simplices but

a path of t-simplices, where t varies between 0 and n. More precisely,

the method starts with a zero-dimensional simplex, called the starting
point, generates a path of adjacent simplices of variable dimension and
terminates with an n-dimensional simplex yielding an‘approximation of

a fixed point. This algorithm will be referred to as the "variable
dimension restart" algorithm, since the starting point can be arbitrarily
chosen. Therefore the method can be applied for a decreasing sequence of
grid sizes using. at any stace the approximation obtained in the previous
stage as the starting point.

In section 2 a full description of the steps of the algorithm for integer
labelling is given. A geometric interpretation of the method is discussed
in section 3 and its convergence is proved in section 4. In section 5 the
algorithﬁ is put in the framework of the above mentioned methods by adding
n+1 differently labelled points on an extra level. The application of the

algorithm for vector labelling is discussed in section 6 and the
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\
generalization for computing a fixed point of a mapping on ™ is

treated in section 7. In particular we give some convergence conditions
\

in this section. Numerical results are given in section 8.

5.2. DESCRIPTION OF THE STEPS OF THE ALGORITHM.

Assume that we want to approximate a fixed point of a continuous
function £ from Sn into itself. Every point of Sn receives an integer
label based on the standard labelling rule on s™ as given in definition
4.2.1. Let s™ be triangulated in the standard way with grid size m_1
(see definition 3.4.1).. The amendments required for the T triangulation
are straightforward. In definition 3.4.1 the (n+l1)Xn matrix Q is
introduced to describe the simplices of the standard triangulation of Sn,
whereas the simplices generated by the algorithms of chapter 4 were of the
form o(yl,n(Ik)). It will appear that the (n+1)*n matrix Q is not
sufficient to describe the simplices generated by the variable dimension

restart algorithm. Therefore the matrix Q is redefined as the (n+l1)X(n+l)

matrix
— —
-1 0 . N . 0 1
1 0
0 ° ] .
Q= . . .
. . -1 -
| O . . . 0 1 iL

So the matrix is extended with the column q(n+1)=—zg=1q(j)=(1,0,..,0,—1)T.
Now each column g(i) of the matrix Q can be interpreted as corresponding
with the i-th direction, i=1,...,n+1. This means that a search in the i-th
direction involves a decrease of the i-th component and an increase of the
(i+1)-th component with i+l = 1 when i = n+l. The algorithm to be described
be;ow builds up the set of labels consecutively. If T c In+1 is the set of
labels already found a search is made in the directions i, ieT to find the
other labels. Recall that by the proper labelling 2(x) # i if x, = 0.

We define now a t-dimensional simplex O(Yl,ﬂ(T)).
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DEFINITION 5.2.1. For t < n, the t-dimensional simplex o(yl,ﬂ(T)) of the
t+1

standard triangulation of Sn is the simplex with vertices yl,...,y

such that

a) y1 is a grid point of the triangulation
b) m(T) = (Wl,...,nt) is a permutation of the elements of T,
(|T|=t)

i1 . '
c) yl = yl + q(ﬂi)/m i=1l,...,t.

Observe that any t-dimensional simplex c(yl,w(T)) has a unique
representation when t £ n-1, whereas any n-simpléx has n+l representations.
Let m(T) be a pe¥muFat%on of n ele?ents of the set In+1' Tﬁen

o(yl,ﬂ(T)) = oy, m(TH)), where T" = In+l\{ﬂi—1} and 7t (TH)

=) (ﬂi,...,wn,h,ﬂl,...,ﬂi_z), i=2,...,n+l, withh the unicue element of In+1
not in T.

We give now a generalization of definition 4.4.2.

DEFINITION 5.2.2. A (t-1)-simplex o, 1 < t < n+1,is called T-complete if
the t vertices of ¢ carry all the labels of the set T (|T|=t).

Note that T = I ,1 if t = n+l and that any zero-dimensional simplex {w} is
{2(w) }-complete. We are now ready to describe the steps of the algorithm.
In this description the (n+1)-dimensional vector R represents the
"distance" between the starting point v and the vertex y1 of the last

t+ n+1

1 1
generated simplex o(y ,...,Y 1), i.e. vy =v + Zj=1 Rj q(j)/m. The

algorithm starts with an arbitrary chosen grid point v and proceeds as

follows.

Step 0. Set t=0, y1=v, T=13, c=cO(y1,w(¢)), §=y1 and Rj=0’ j=1,...,n+l.

Step 1. Calculate £(§). If &(y) is not an element of T go to step 3.
Otherwise, there is exactly one vertex yS # § such that l(ys) =
2(y) .

Step 2. If s = t+l1 and R,,Tt =0 go to step 4. Otherwise o(ylﬂf(T)) and R
are adapted according to table 5.2.1 by replacing ys. Return to

step 1 with y equal to the new vertex of o.
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Step 3. If t=n, a completely labelled simplex is found and the algorithm
terminates. If t<n, a (Tu{2(y)})-complete simplex is found and the
dimension is increased. T becomes Tu{2(y)}, m(T) becomes
(ﬂl,...,ﬂ 2(y)), o becomes d(y ,m(T)). Then t becomes t+1 and
return to step 1 with y = yt+1.

Step 4. The dimension is decreased by deleting ys. For exactly one index

L]
s', s'<t we have that yS is the vertex of o with label M- Now T
becomes T\{ﬂt}, m(T) becomes (nl,...,ﬂt_l), o becomes c(yl,ﬂ(T)).

Then t becomes t-1 and return to step 2 with s=s'

Table 5.2.1. s is the index of the vertex to be replaced.

y becomes I m(T) becomes ! R becomes
[ | - ]
s=1 y +q(w y/m | (nz,...,wt,n ) R+e(n1)
2<s<t y ' (ﬂl,...,ﬂ 2,ﬂs,ﬂs_1,ns+1,...,ﬂt) . R
s=t+1 -q(n ) /m | ,nl,...,ﬂt_l) [ Rre(ﬂt)

The algorithm generates a path of adjacent simplices starting with the
zero-dimensional simplex {v}. First a search is made in the 2(v)-th
direction to find the missing labels, i.e. the £(v)-th component of v is
decreased whereas the (2(v)+1)-th component is increased where 2(v)+1=1 if
2(v) = n+l. So one-dimensional simplices o(yl,yz) are generated with

y1 =v +R2(V)q(2(v))/m and y2 = y1+q(l(v))/m, such that the common zero-
dimensional facet is {&(v) }-complete. The algorithm proceeds with two-—
dimensional simplices as soon as a second label is found, which must
occur since 2(x)#i if x.=0. In general if in step 1 a new label is found,
say label k, we have for certain t,subset T of T4 permutation m(T),

simplex o(y ,...,y ) and vector R generated by the algorithm that

1 n+l

a) =v + I, R.q(j)/m

y =1 Ry2()/

b) Rj =0 for j ¢ T and Rj 20 for 3 T
i+ .

c) yl - yl + q(ni)/m, i=1,...,t

d) o is (Tu{k})-complete.

Then the algorithm terminates with the completely labelled simplex

c(yl,...,yn+1) if t=n. Otherwise, the dimension is increased by setting

T=Tu{k} and t=t+1,and a search is made with the labels i, ieT in all the
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directions i, ieT, to find the other labels by generating a path of adjacent
simplices o(yl,ﬂ(T)) such that the common facets are T-complete. Doing so
we must have that within a finite number of steps either again a new label
is found or in step 2, s = t+1 and Rﬁt=0. In the latter case, by performing
a replacement step according to table 5.2.1, Ry becomes negative
indicating that the method searches in the direcgion —(ﬂt) whereas label
ﬂt already has been found. To avoid this situation the dimension is decreased
by setting T=T\{nt} and t=t-1. The last vertex is deleted and the vertex
with label Trt is removed. In the first case the algorithm terminates or the
dimension is again increased. So, the algorithm generates a path of adjacent
simplices 00,01,... of variable dimension. In section 4 we prove that a
completely labelled simplex is found within a finite number of steps.
Clearly, using this approximation the algorithm can be restarted with a
finer grid, until a given accuracy is obtained. In figure 5.2.1 the
method is illustrated for the example of figure 2.4.2. The results of the

computation of the labels are indicated in the figure.

e(1) e(2)
1 2 1 1 2

Figure 5.2.1. Illustration of the variable dimension restart method; the

starting point v = (%,%,%)T, n=2, m=4.

In this example the algorithm performs the following steps, where

1
co,c ,...,06 is the sequence of generated simplices.
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1. Step 0: t=0, u1=v=(%,%,&)T, T=0, c(yl,n(T))=c0 = c(ul) and R=(O,O,O)T.
2. Step 1: 2(ul)=1£T.

3. Step 3: T={1}, n(M=(1), o(yl,ﬂ(T))=cl=o(u1,u2) with the new vertex
w?=ulrq(1)/a=(0,%,% 7, t=1.

4. Step 1: 2(u2)=2¢T.

5. Step 3: T={1,2}, m(T)=(1,2), o(yl,w(T))f02=0(u1,u2,u3) with the new
vertex u3=u2+q(2)/4=(0,%,%)T, t=2.

6. Step 1: 2(u3)=2eT, Z(u3)=l(u2), u2=y2, i.e. s=2.

7. Step 2: the vertex'u2 is replaced, w(T)=(2,1), o(yl,w(T))=03=
=c(u1,u4,u3) with the new vertex u4=u1+q(2)/4=(%.%,%)T'
R=(0,0,0) .

8. Step 1: £(u4)=25T,£(u4)=2(u3), u3=y3, i.e. s=3.

9. Step 2: s=3=t+l and Rﬂt=R =0.

1
10. Step 4: The vertex y3=u3 is deleted, Z(u1)=n

o<1, i.e. s'=l; T={2},
m(T)=2, c(yl,n(T))=o4=c(u1,u4), t=1, s=s'=1.

11. Step 2: the vertex u1 is replaced, 7(T)=2, U(yl,n(T))=05=o(u4,u5) with
the new vertex u =u+q(2)/4=(%,0,% ", R=(0,1,0) .

12. Step 1: £(u”)=1¢T.

13. step 3: T={1,2}, n(N=(2,1), oy, m(M)=c®=0(u* u>,u®) with the new
vertex u6=u5+q(1)/4=(0,%,%)T, t=2.

14. Step 1: 2(u6)=3¢T.

15. Step 3: t=2=n, a completely labelled simplex is found and the

algorithm terminates.
The steps 1-14 are summarized in table 5.2.2.

5.3. GEOMETRIC INTERPRETATION.

In this section a geometric interpretation of the variable
dimension restart algorithm is given. Observe again that throughout the
algorithm Rj=0 if §¢T and RjZO if jeT. Therefore it is natural to define
the regions A(T) for TtIn+1’ |T|<n, by

A(T) = {xesn|x=v+ T qu(j) for nonnegative A., jeT}.

.
jeT J



Number | T (T R' o il 2(¥)
1,2 o | g (0,0,0) otuh) ORI 1
3,4 1 {1} (1) (0,0,0) oal,u?) (©,%,%) 2
5,6 2 | (1,2} (1,2) (0,0,0) oul,u?,u) (0,%,%) 2
7,8,9 | 2 | {1,2} (2,1) (0,0,0) o(ul,ut,ud) (5%, %) 2
10 1 {2} (2) (0,0,0) ol uh

11,12 1 {2} 2) (0,1,0) o, u®) (%,0,%) 1
13,14 2 {1,2} (2,1) 0,1,0) ) (0,%,%) 3

Table 5.2.2. The steps of the variable dimension restart algorithm for the example of figure 5.2.1.

69
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Note that A(#) = {v} and that any point x of S" is a proper point of just

one region A(T) where x € A(T) is called proper if x € A(T) with

A(T) = {xea(T) |x=v+ T A.q(j) for positive A., jeT}.
seT J J
je
° n
So the regions A(T) partition S .
As described in section 2, if a set T, a permutation m(T) and a vector R
are generated, the current simplex o(yl,...,yt+1) is given by
i+ 1

vl = vl Mo ylal | am)/m, i1, e since R0 if
j¢T and RjZO if jeT, the vertices yl, i=1,...,t+1, are elements of A(T),

qu(j)/m and y

t+1 i
whereas y must be a proper point of A(T). Moreover, if yl is a proper

point of A(T) then yJ

is proper for all j=i+l,...,t+l. More precisely, let
T(i) be the subset of T, such that yieg(T(i)) , i=1,...,t+1. Then

T(1) e T(2) c... cT(t+1) = T with |T(i+1)\T(i)| equal to zero or one.
The algorithm generates t-simplices inA(T) ifT is the current set of labels.

So we have the following corollaries.

COROLLARY 5.3.1. Let 0 and T he two adjacent t-simplices inA(T) generated

by the variable dimension restart algorithm. Then the common facet of ¢ and

T is T-complete.

COROLLARY 5.3.2. Let T be the current set of labels, |T| < n. Then the

variable dimension restart algorithm generates t-simplices in a

t-dimensional linear manifold, being the affine hull of A(T).

The latter corollary emphasizes that the algorithm operates actually with
full-dimensional simplices in a t-dimensional linear manifold.
The dimension is increased if a new label is found and decreased if a

point outside A(T) should be generated and T is the current set of labels.

1
COROLLARY 5.3.3. Let T be the current set of labels, |T!<n, o(y ,m(T)) a

t-simplex in A(T) generated by the algorithm and j£T a label just found.
Then 0(y1,1T(T) ) is a(Tu{j}) -complete simplex in A(T) and the dimension is

increased.

1
COROLLARY 5.3.4.Let T be the current set of labels, |T|<n, and o(y ,m(T)) a

+1 .
t-simplex in A(T) generated by the algorithm. If yt is the only vertexof ¢ in

IK (T) and yt+1 has to be removed then the facet t (y1 roese ,yt) is a T-complete (t-1)-

simplex in A(T\{k}) for some keT and the dimension is decreased.
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e(3)

VAVAVAY

Af2.3)

e(1)

e(2)

Figure 5.3.1. Geometric interpretation of the variable dimension algorithm.

e illustrate the above mentioned features and corollaries by some
examples (see figure 5.3.1). A(T) is denoted by A(il,...,if) if T =
{iil-..,it}_ If the simplex E is generated we have that R ,=R,=2 and

R3=O, i.e. y1=v+{2q(1)+2q(2)}/7 is a proper point of A(1,2). Consequently
y2=y1+q(2)/7 and y3=y2+q(1)/7 are also proper in A(1,2). Moreover either
two vertices have the same label, belonging to T={1,2}, whereas the label
of the third vertex is equal to the other element of T, or E is completely
labelled. In the first case E has two adjacent simplices such that the
common facets are T-complete.

The vertices of the simplex F are y1=v+q(3)/7, y2=y1+q(3)/7 and y3=
=y2+q(1)/7. If the l-simplex c(yl,yz) in A(3) is generated and o is {1,3}-
complete then the dimension is increased and the simplex F of A(1,3) is
geherated. Conversely if the 2-simplex F in A(1,3) is generated and y3 has
to be removed the dimension is decreased since y3 is the only

vertex of F in 5(1,3) or equivalently in step 2 we have that s=3 and
R1=Rnt=0. Then the algorithm continues with the one-simplex c(yl,y?) of
A(3) by replacing the vertex having label 1. Observe that replacing the

vertex y3 of F according to table 5.2.i implies that a simplex in
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A((Tu{2)\{1})=a(2,3) should be generated with T={1,3} the current set of
labels. To avoid this the dimension is decreased. In general the dimension
is decreased if a replacement step according to table 5.2.1 results in
generating a simplex not in A(T) but in an "adjacent" regioh
A((Tu{ijhH\{k}) for some j£T and keT. Then the algorithm continues with
simplices in A(T\{x}).

We conclude this section with some remarks about the path of simplices

generated by the algorithm. Let C(i) be defined by
. n . .
c(i) = {xes |2(x) =i} i=1,...,n+l.

Let ieIn be the index such that the starting point veC(i). Then f(v)=i

and the Zigorithm generates one-simplices in A(i) until a grid point y is
generated such that yeC(j) for some j#i. Then L(y)=j and the algorithm
continues with 2-simplices in A(i,j). Suppose that T(wl,wz) is a common
facet of two adjacent simglices. Then, fo;‘some permuta?ion (hi,hj) of the
set {1,2},w i€C(i) and w JeC(j), i.e. 2w Y)=i and 2(w J)=j. So by

definition 4.2.1 we have that

N

h, h, h. h,
1y 1 iy 1 23
fi(w ) W, fk(w ) Wy k#i

and
R e Y P
- < - Z5.
j(w ) wj k(w ) W k#j

So, roughly speaking, the simplex T(wl,wz) yieias an approximation of a

point x such that
- = - < - #1 .
fi(x) xi fj(x) xj < fk(x) xk k#i,J.

A sequence of approximations of such points is generated until either a
point in C(h), h#i,j,is generated i.e. a new label is found,or a point
outside A(i,j) should be generated by replacing a vertex according to
table 5.2.1. In general,if T is the current set of labels and r(wl,...,wt)
is a common facet of two adjacent t-simplices generated by the algorithm,

for some permutation (hj,jeT) of the elements of the set {1,...,t} we have
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© hs .
that w Jec(j), jeT. Hence T(wl,...,wt) yields an approximation of a point

x such that

fi (x)—xi = fj(x) —xj for all i,jeT
and

fi(x)-xi < fk(x)—xk for all ieT, k¢T.

Note that x is such a point if xeC(T), where C(T)=j2T6(j) with C(j) the
closure of C(Jj). Observe that it is possible that C(T)nt= @. Againa
sequence of approximations of such points is generateduntil either a point in
C(h), héT, is generated or a simplex having a T-complete facet in A(TM\{k}),
for some keT, is generated. In the first case the alcorithm continues with
simplices in A(Tu{h}) and generates a sequence of approximations of points
xeC(Tu{h})s whereas in the latter case the algorithm proceeds with simplices
in A(T\{k}), generating a sequence of approximations of points xeC(T\{k}).

. In figure 5.3.2, C(i), i=1,2,3,and the regions A(T), Ter ,, are given. The

+1r
set Sn is triangulated with grid size 1/9. Only the grid points and the

completely labelled simplex generated by the algorithm are given.

e(3)

c(1)
; C(2)
C(3)
A(1)
e(l) e(2)

A(3)
Figure 5.3.2. n=2, v=(1/3,5/9,1/9) ", m=9. The dots are the arid points
generated by the algorithm.



74

5.4. CONVERGENCE OF THE ALGORITHM.

In this section it is proved that the variable dimension restart
algorithm always succeeds in finding a completely labelled simplex by
establishing that all steps are feasible and the algorithm never returns
in a simplex visited already before.

First, it is shown that a replacement step according to table 5.2.1 is
always feasible. Clearly, if a vertex of the t-dimensional simplex
o(yl,...,yt+1) has to be replaced according to table 5.2.1, the
replacement step produces again a t-simplex of the triangulation of Sn
except when all other vertices are points on some boundary S?..Quppose for
some s, s<t+l, ys is the vertex to be replaced and assume that, for some j,
ys is the only vertex not on the j-th boundary. Then y§=0 for all i#s. If
the starting point is not on the j-th beundary, j must be an element of T,
otherxrwise the j-th component could not have been decreased. Since the
common facet of two adjacent t-simplices is T-complete, one of the vertices
yi must have label j. Because of the proper labelling Q(yi)ij, i#s. Hence
yS is the only vertex with label j and cannot be replaced. This proves
that the replacement step is feasible if the starting point is not on the
j-th boundary.

If v is an element of Sg, either j is an element of T or it is not. The
first case is identical to the case just mentioned. In the other case, s
must be equal to t+l, since otherwise 0=y§+1=y§-m_1 which is only
possible if jeT. Moreover we have that R“t¥0 since ﬂt=j-1 and y§=vj+Rj_1/m
=0. So step 4 should be performed contradicting the fact that yt+l must be
replaced according to table 5.2.1. These facts together prove that every
replacement step is feasible. Moreover, a vertex obtained in step 3 by
extending a t-dimensional simplex to a (t+1)-dimensional simplex (t<n-1)
is a point in Sn. To prove this, let c(yl,...,yt+1) be a t-dimensional
(Tu{j})-complete simplex in A(T) generated by the algorithm, where j¢7T is

the new. label. So l(ys)=j for some 1<s<t+1. Because of the proper labelling

rule y§>0. Since j is not an element of T, whzj for h=1,...,t implying that
+ +
yE 1 is also positive. Hence the j-th component of the new vertex yt 2 =

yE+1+q(j)/m is nonnegative and therefore yt+2 must be a point in s™.
Consequently, all steps in the algorithm are feasible.

Next we prove that the algorithm never generates a simplex visited already
before. Let 00,01,02,... be the sequence of simplices generated by the

. . 0 i
algorithm, so o ={v}. We prove that each generated simplex o, i>1, can
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\

be entered from just two adjacent simplices, while co can be entered
from just one adjacent simplex. Then by the standard arguments of section
4.2 the algorithm can never revisite a simplex. For given i1, let o be

a t-dimensional simplex in a region A(T). Now two cases can occur.

a) 0" has just two (t-1)-dimensional T-complete facets
b) oF is (Tu{k}) ~complete for some k£T, and o’ has exactly one

(t-1)-dimensional T-complete facet.

In the first case ci has' exactly two different adjacent simplices from
which it can be entered by the algorithm. Both simplices are simplices

in A(T) or one is a simplex in A(T\{j}) for some jeT and the other is a
simplex in A(T). In the second case Ui has_also exactly two adjacent
simplices from which it can be entered, one (t+1)-dimensional simplex in
A(Tu{k}) whereas the other one is either a simplex in A(T) or ina(T\{j}) for
~ some jeT. So in all cases, ci is entered from thesimplex ci—l and there is
just one other simplex ci+1which can be entered from Ui. Moreover 00 is a
zero-dimensional simplex which is (Tu{k})-complete with T=@ and k=4(v).
Since T=9, ° has no T-complete facet. Therefore GO can be entered from
just one other simplex being the simplex 01=c(y1,y2) with y1=v»and
2=v+q(2(v)) /m.

Since the number of t-simplices, 0<t<n, is finite the algorithm must
terminate within a finite number of steps with a completely labelled

n-simplex.

5.5. INTERPRETATION OF THE ALGORITHM IN SnX[O,lj.

The variable dimension restart algorithm can be easily put in the
framework of other restart algorithms by adding an extra level of points.
This interpretation was independently found by Barany [[1979al, Van der Laan
and Talman [1979a] and Todd [1978b]. In Van der Laan and Talman 1978a] the
variable dimension restart algorithm is applied to compute a fixed point of
a function in the product space of unit simplices. Interpretations with an
extra level of points of this more general case can be found in Van der Laan
and Talman [1979¢]. An interpretation of a closely related algorithm on rR?
(c.f. Van der Laan and Talman [1978b]) was given by Todd and Wright [1979]
and Barany [1979b] (see also Talman [19807]).
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Using an extra level of points we triangulate SnX[O,lﬁ,where the extra
level SnX{O} is not triangulated (or triangulated with grid size one) and
the natural level S™x{1} is triangulated with grid size m_l. So, the only
grid points on the zero level are the vertices é(i)=(e(i)T,O)T, i=1,...,n+l.

Now we give the triangulation ,

THEOREM 5.5.1. Let G be the collection of (n+l)-simplices obtained by
o
connecting each grid point xe€A(T) on level one with the vertices e(i)

i#T on level zero. Then.G is a triangulation of s™l0,117.

PROOF. In this proof we use the following notation. A point of SnX[O,l] is
denoted by (x,t) where xes™ and tel0,1]. The set E(T) denotes the set of
vertices e(i), ifT.

We prove now that each point (xX,t) lies in a simplex of G and that the
intersection of two simplices of G is a face of each. Since the collection
of regions R(T) partition Sn, there is for given (x,t) a unique subset

T of I such that xea(T). Moreover, for any jel there are unique numbers

uj and Aj(k), keT\{j}, and nonnegative numbers Bj(i), i¢T, such that

x =o,vt I AL(k)a(k) + I B.(i)e(di).
keT\{3} 7 1fT 3

Since x ea(T) we have that ajsl. Let T be a subset of T such that

(i) jeT if o <t

(i1) 3T if o > t. .

Clearly, the intersection of the affine hull of the elements of E(T) and
(x,t) with the region i(?) on the one level is a point, say (x,1). Let
o(yl,w(T)) be a E—simplex containing %X. Then (x,t) lies in the (n+1)-
simplex Z(d(yl,n(?))) defined as the simplex with vertices the elements of
E(T) and the vertices of ¢ on the one level. This proves the first part of
the lemma.
Next, suppose I

1

01 and 02 be the corresponding simplices on the one level, i.e.

cix{1} = zin(s“x{i}), i=1,2. Then (x,t) is contained in the face with

and I, are two simplices of G both containing (x,t). Let

*
vertices the elements of E(T ) and the vertices of Glnc? on the one-level,
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*
where T is the largest subset of T such that (i) and (ii) are satisfied.

Clearly, this face is a face of both 21 and Z?. ]

The triangulation of snx[O,lj ig illustrated for n=1, m=8, V=(3/8,5/8)T in
figure 5.5.1 and for n=2, m=3 and v=(1/3,1/3,1/3) | in figure 5.5.2.

e(1)x{1} vx{1} e(2)x{1}

e(1)x{0} : e(2)x{0}

Figure 5.5.1. Triangulation of slx[O,l], m=8, v=(3/8,5/8)T.

Figure 5.5.2. Triangulation of SZX[0,1], m=3, v=(1/3,1/3,1/3)T.
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The grid points of Snx[0,1] are labelled according to the standard
labelling on Sn, i.e. 2(&(1))=1i, i=1,...,n+l and 2((x,1))=2(x) for a point
(x,1) in s"x{1}. clearly, s™x{0} is a completely labelled n-simplex and is
afacet of just one (n+1)-simplex of the triangulation of S'x[0,17. This
simplex is the convex hull of vx{1} and s"x{0}. Starting with this simplex
a path of adjacent (n+l)-simplices is generated by replacing in every
generated simplex the vertex having the same label as the new vertex. Using
standard arguments the algorithm must terminate with a simplex having a
completely labelled facet on the boundary of S"x[0,1] and this facet cannot
be the facet s"x{0}. Because of the proper labelling there are no completely
labelled n-simplices in (bd s™)x[0,1], i.e. there is no completely labelled
n-simplex o0 such that, for some i,xi=0 for all xeo. Hence, the algorithm
terminates with an (n+1)-simplex having a completely labelled facet in
s™{1}. This facet yields a good approximation of a fixed point. The
intersection of the path of (n+l)-simplices with s"x{1} gives the

sequence of simplices of the variable dimension restart algorithm.

Observe that when in the variable dimension restart method a new label k

is found, the current simplex d(yl,...,yt+1) is extended to the simplex
c(yl,...,yt+2) with yt+2=yt+1+q(k)/m. In the interpretation with an
artificial level the vertex of S"x{0} having label k, that is the vertex
&(k), is replaced by yt+2. Also, if in the variable dimension restart

1 of a simplex c(yl,...,yt+1) should be removed

algorithm the vertex yt+
while R"t=0' the vertex yt+1 is deleted and the vertex yi, iSt£+?aving

label ﬂt is removed. In the method with the artificial level y ] on the
one-level is replaced by é(ﬂt) and in the next step the vertex yl having

label 7, is replaced since l(é(nt))=wt
Although the variable dimension restart algorithm method can be
interpreted as a method with an extra level as just described, this level
does not have an artificial influence on the path and is not needed to
prove the convergence. Moreover there are only n+l extra points, whereas
in the Sandwich method the number of extra points, which are artificially
labelled,is of the order of the number of grid points on the natural level.
This means that even if the variable dimension restart method is applied
with an extra level, the number of grid pointson this level, generated by
the algorithm, is very small (in most examples zero). Observe that
decreasing the dimension correspondé to generating a grid point on the

extra level. In the Sandwich method the number of grid pointson the extra
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level generated by the algorithm is of the same order as the number of grid
points that is generated on the natural level. In particular this is a
disadvantage if vector labelling is used since then each grid point

generated by the algorithmimplies that a linear programming step should be made.

5.6. VECTOR LABELLING.

In this section we discuss the application of the variable dimension
restart algorithm with vector labelling. Each point x of s” receives the

standard vector label of definition 4.11.1 with b=e, i.e.
L(x) = -f(x)+x+e

where f(x) is a piecewise linear approximation to the mapping ¢ with
respect to the standard triangulation of sn with grid size m—l.

with |T|=t. Then we have the following definition.

Let T be a subset of I
) n+1

DEFINITION 5.6.1. A (t-1)-simplex o with vertices w1,...,wt is called

T-complete if the system of linear equations

AAwh) + T we(h =e
1t heT

I ot

i
* *
has a nonnegative solution Ai' i=1,...,t and uh, he£T.

Observe that any zero-dimensional simplex o(w) is i -complete with i the

0 0
index such that li (w) = malej(w). The solution of the system is
* -1 * : . - . L . .
Xl—{lio(W)} and uh—l-{ﬁh(w)/lio(w)}, h#i,. The index i, is unique if
lio(w)>2j(x).j=io. If i0 is not unique there are more solutions and the

system of linear equations is degenerated. In the following we assume that

degeneracy does not occur (see also Todd [1976al).
LEMMA 5.6.2. For any T-complete simplex c(wl,...,wt) holds

(n+1) I AI + 3 u; = n+l
=1 heéT

1

* *
with Ai' i=1,...,t; Uy h¢T, the solution of the system of linear equations.
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PROOF. From definition 5.6.1 and the labelling rule we have that

AJFEh wrtee) ¢ I e = e.
1t heT

I ™t

Summing up over all components we obtain

t * n+1 i i *
T Ai[ T {-f.(w)4+w.+1} + I W, = n+l.
i=1 ‘=1 J heT
+ i +
Since, for all i, Z?=i fj(wl) = Z?=; w;=1, the lemma now follows
immediately. 0
. . . . 1 n+l, .

It is obvious that if T = Intqr @ T-complete simplex O(w ,...,w ) is

completely labelled. Then Z?+1 Af =1 en Z?+1
i=1 i i=1

a fixed point of the mapping ¢ (see lemma 4.11.2).

* i, . .
Ai w~ is an approximation of

We are now ready to describe the algorithm for vector labelling. Again the
algorithm starts with an arbitrarily chosen grid point v of the
triangulationofsn. Moreover the system of linear equations is set equal

to Iu=e with I the n+l1 identity matrix. By alternating linear programming
and replacement steps a path of adjacent simplices of variable dimension
is generated until a completely labelled simplex is found. Formally, the
algorithm is described by the following steps.

Step 0. Set t=0, y1=v, T=g, 0=60(y1,w(¢)) and Rj=0,_j=1,...,n+1.
Set p=1 and uh=1, heIn

+1
Step 1. cCalculate 2(yP). Make a linear programming step by bringing z(yP)

in the system of linear equations.

t+1 .

I OARY) + I wen) = e.
i=1 * heéT

i#p

If e(j) is eliminated for some j£T go to step 3. Otherwise l(ys)
is eliminated for just one vertex ys=yp.

Step 2. If s=t+l and Rnt=0 go to step 4. Otherwise o(yl,w(T)) and R are .
adapted according to table 5.2.1 by replacing y%. Return to step

1 with p the index of the new vertex of o.
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Step 3. If t=n, a completely labelled simplex is found and the algorithm
terminates. If t<n, a (Tu{j})-complete simplex is found and the
dimension is increased. T becomes Tu{j}, w(T) becomes

(wl,...,n +J)+ 0 becomes c(yl,ﬂ(T)). Then t becomes t+1 and return

t
to step 1 with p=t+l.
Step 4. The dimension is decreased. A linear programming step is made by

bringing e(wt) in the set of linear equations

™

i
Ail(y ) + I uhe(h) = @.

i=1 ’ heéT

Either for some j¢T, e(j) is eliminated or for some s'st, Z(ys')
is eliminated. Now T becomes (T\{nt}), m(T) becomes
(er---,ﬂt_l) and 0 becomes 0(y1,ﬁ(T)). Then t becomes t-1.
Return to step 3 if for some j, e(j) has been eliminated.

Otherwise return to step 2 with s=s'.

Analogously to the integer labelling case, a search is made in the
directions i if the vectors e(i) are eliminated. More precisely if for
a certain subset T of I, ,q @ unit vector e(j), j#T, is eliminated in step 1,
we have that for thé permutation m(T) and the simplex o(yl,W(T)) generated
by the algorithm the conditions a-d of section 2 are satisfied. Then, if
t<n, T is set equal to (Tu{j}) and a search is made in the directions i,
ieT, by generating a path of simplices in A(T) with T-complete common
facets until either again a unit vector is eliminated or a simplex having
a T-complete facet in A(T\{k}) is generated for some keT. In the latter
caée a linear programming step is made with e(k). Note that a unit vector
can be eliminated by another one, implying that the algorithm continues
with simplices in an "adjacent" equal-dimensional region, which

behaviour is not possible in case of integer labelling.

We prove now that the algorithm must find a completely labelled simplex.
First we show that the algorithm never returns to a simplex generated
algeady before. Let Gi' izl be a t-dimensional simplex of the~sequence Oyr

Oor e e of generated simplices in the region A(T), T#f. Then either

a) oi has just two (t-1)-dimensional T-complete facets
or
b) o, has just one (t-1) -dimensional T-complete facet and oy

is (Tu{k})-complete for some k not in T.
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As in the case of integer labelling, in both cases Oi can be entered from
only two adjacent simplices. Moreover the starting simplex o(v) can be
entered from only one adjacent simplex being c(yl,yz) where y1=v and
y2=v+q(i0)/m if e(io) is eliminated by 2(v) in step 1.Together these
observations prove that the algorithm can never return to a previously
generated simplex.

Next we prove that all steps are feasible. Clearly, all linear programming
steps are feasible. Next we show that a replacement step according to
table 5.2.1. is feasible. Let c(yl,...,yt+1) be a simplex generated by

the algorithm and let ys, 1<s<t+1, be the vertex to be replaced. This step
is feasible unless for some jeIn+1,yl,...,ys_l,ys+1,...,yt+1 are elements

of S? and y%>0.
J J

+ .
THEOREM 5.6.3. Let o(yl,...,yt 1) be a t-dimensional simplex such that

for some j y;=0 for i#s. If Vj=0 the system of linear equations

t+1 .

TOARY) + I we =e
i=1 * heT

i#zs

has no feasible solution.

PROOF. If the system of linear equations has a feasible (nondegenerated)

* *
solution Ai, i#s,and uh, hiT, we have from the proof of lemma 5.6.2 that

t+1 * N
(n+1) I Ai + I B = n+l ,
i=1 heéT
i#s
*
implying that I Ai<1. Since the starting point v is not on the j-th
i#s

boundary of Sn, j must be an element of T, i.e. e(j) is eliminated already.

So, the j-th equation of the system yields

t+1 . t+1 .
* i * 1 1
z Aik.(y ) = L Ai(—f.(y Y+y +1) = 1.
i=1 i=1 J ]
izs i#s

Since y;=0 and fj(yl)ZO, this implies that I A;21 which gives a

Y s i#s
contradiction. 0

The theorem proves that a vertex has not to be replaced if all other

vertices are on a same boundary given that the starting point is not
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on this boundary. If, however, v.=0 either jeT or j£T. The first case

is identical to the case just diicussed. As shown for integer labelling
the latter case implies that s=t+1 and R“t=0, so that yt+1 has to be
deleted and a linear programming step has to be made with e(ﬂt). Hence all
replacement steps according to table 5.2.1 are feasible. Finally we prove
that the extension to a higher dimensional simplex is always feasible.
Let for some j£T, o(yl,...,yt+1) be a t-dimensional (Tu{j})-complete

simplex of A(T). Since j¢T, w _#j, h=1,...,t. Hence if y§+1=0, y;=0 for alli.

h
Then analogous to the proof of theorem 5.6.3, e(j) could not have been

t+2=yt+1+q(j)/m is a grid

eliminated. Hence, y§+120 and the new vertex y
point of Sn. Consequently, all steps are feasible.

By the fact that all steps are feasible and that the algorithm can never
return to a previously generated simplex, a completely labelled simplex
must be found, since the number of simpliées is finite.

The variable dimension algorithm applied with vector labelling generates a
path of simplices of variable dimension such that if a simplex of A(T) is
generated we have that the unit vectors e(j), jeT, have been eliminated.
This means that the common facet of two adjacent simplices in A(T),
generated by the algorithm,is T-complete. Let T(wl,...,wt) be such a common
facet of two adjacent simplices in A(T). Since T is T-complete we have that
the system of linear equations

(5.6.1) Aowh) 3 we = e

1t heT

I ™ ct

i
has a nonnegative solution A; i=1,...,t, u*, h¢T. From lemma 5.6.2 we
have that Z§=1 XI<1. Define a=(1—Z§_1XI)/Z§_1AI and define
T _ %, t * t 3 _ -

Ai_xi/zi=1xi' Clearly o>0 and Zi=1xi_1'
From (5.6.1) it follows that for jeT holds
t t

5 A;l.(wl) = IANT{-£, (wh) +wiel} = 1
i=1 J =1t J J

or equivalently

I ™t

ii{-f.(wl)+w%} = a.
i=1 J J

Since f is a piecewise linear approximation to the—mapping ¢ we have that
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5.6.2 £.(x) - x, = -0 jeT
( ) 3 ) j J
with x = Z§=1Xiwl. For h¢T the h-th equation of (5.6.1) can be rewritten as

T i i * ,_t *
. Xi{—fh(w )+wh} = a-uh/2i=1>\i.

I ot

i

Since uh>0 it follows that
(5.6.3) fh(x)—xh > —a  hgT.

So by generating a sequence 01,02,... of simplices in A(T) the variable
dimension restart algorithm traces a path of points xeA(T)such that for some
a(x) (5.6.2) and (5.6.3) hold, until fh(k)-xh becomes equal to o(x) for some
h¢T, i.e. e(h) is eliminated, or the path crosses a region A(T\{k}) for some
keT in which case a linear programming step is made with e(k). Recall from
the end of section 3 that there is an analogous behaviour in case of
integer labelling.

The interpretation with an extra level with n+l grid points is straight-
forward if the vertex &(i) of s"x{0} is labelled with the vector e(i)
i=1,...,n+1. Then the method starts with the (n+l)-simplex being the

convex hull of S'x{0} and vx{1}. The facet s"x{0} of this simplex is
completely labelled with u;=1, j=1,...,n+l, as the solution of the system
of linear equations. By alternating linear programming and replacement
steps a sequence of (n+l)-simplices is generated such that the common
facets are completely labelled. This sequence terminates with an (n+1)-
simplex having a completely labelled facet in S"x{1}. In Van der Laan and
Talman [1979c] and Talman [1980] it is proved that the method can be seen
as a method which traces a path of zeroes of a piecewise linear
approximation f(x,t) to a mapping $(x,t) with respect to the triangulation
of SnX[O,l],where E(x,t) is such that

§(x,0) = {(n+1)x - e} and §(x,1) = {x}-(x).

It is not necessary to initiate the variable dimension restart algorithm
with the system of linear equations Ip=e. Another possibility is to
start the algorithm with the system of linear equations Au=e where

a(i)=2(e(i))=e(i)—%(e(i))+e and £ is a linear approximation to the
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mapping ¢ with respect to the standard triangulation with grid size 1.
Clearly this system has a unique solution since % has a fixed point on Sn

(see lemma 4.11.2).

5.7. CONVERGENCE CONDITIONS FOR MAPPINGS ON Tn.

In the previous sections we discussed the variable dimension restart
algorithm to approximate a fixed point of a function or mapping from the
compact convex unit simplex into itself. The generalization of the method
to compute a fixed point.of a function or mapping from b to itself can
easily be done. Of course T can be triangulated by the standard
triangulation as defined in definition 3.4.3. However, here we use the
T. triangulation given in section 3.4 which seems to be much more appropriate
to be used in fixed point algorithms. So Tn is triangulated according to
the T triangulation with grid size § for some positive number § and with
respect to some point zeTn. In the following z will be taken as the

’ starting point v, which can be arbitrarily chosen. Analogously -to

section 2 we redefine the matrix T as the (n+1)x(n+l) matrix

E; 1 . . . ET
1 -n .
T = .
. . 1
1 . . . 1 -n

The algorithm starts in v and operates exactly in the same way as the
variable dimension restart method on s” does, except that g(i) is changed
into t(i), i=1,...,n+l. So, a path of adjacent simplices of variable
dimension is generated such that the common facet of two adjacent
t-simplices 01 and o, generated by the algorithm is T-complete if 01 and

2
g, are two simplices in A(T). The regions A(T), TCIn+1,are redefined by

A(T) = {xeTn|x=v+ I A.t(j) for nonnegative A., jeT}.
jeT J
Observe that the regions A(T) depend on the underlying triangulation.
Again the dimension is increased if a (Tu{j})-complete simplex in A(T) is

generated and the dimension is decreased if a simplex in A(T) is generated
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having a T-complete facet in A(T\{k}) for some keT . Of course

all steps are feasible. Moreover a simplex can only be visited once. Hence
the sequence of simplices either terminates with a completely labelled
simplex or goes to infinity. First we give sufficient conditions to
guarantee that the algorithm terminates in case of integer labelling.

Define for p < 1/(n+1), B (u) by

B"(n) = {xeT”| min xi=u}.
lEIn+1

THEQOREM 5.7.1. Let f be a continuous function on T and let v be the

starting point. Assume there exist numbers u<minivi and €>0 such that for

all xeﬁn(u) there exists an index ieIn+1 such that

(5.7.1) x,.<v, and f, (x)-x.<f, (x)-x,-¢€
i i 3j j i i

for at least one index jeIn+1, j#i. Then the variable dimension restart
algorithm applied with integer labelling and using the T-triangulation
terminates with a completely labelled simplex if the grid size is small

enough.
PROOF. Let the grid size be so small that

(5.7.2) sup max lfi(x)-xi—fi(y)+yi| < k¢
X,VE€C ieIn+1
. =n 1 t+1

for every simplex ¢ such that onB (u)#@. For some T, let o(w ,...,w ) be a

t-dimensional simplex in A(T) having points in common with ﬁn(u). Then for

t

any point xeﬁn(u)na(wl,..,w +1) there is an index i such that (5.7.1) is

satisfied for some index j#i. Hence with (5.7.2) it follows that
k, k k, k _
fj(w )—wj < fi(w )-wi k=1,...,t+1.

So Q(wk)zi for all k. Moreover, since xi<vi we must have that ieT.
Consequently the simplex 0 cannot be generated by the algorithm since if so,
ieT implies that at least one vertex wk must have label i. Hence the
algorithm can only generate simplices in the interior of conv(En(u)). Since
this set is compact, the number of simplices meeting this set is finite,

which proves the theorem. 0
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Observe that since the T triangulation is used, x, < v, implies i € T.

In general this holds for any triangulation such ihat the diagonal
elements of the triangulation matrix are neéative and the off-diagonal
elements are nonnegative.

The condition of theorem 5.7.1 depends on the starting point v. Hence it is
not sure that the condition is again satisfied if the algorithm is
restarted with the last found approximation as the new starting point.
Conditions to guarantee that at any stage a completely labelled simplex

is found are given in the next theorem.

THEOREM 5.7.2. Let f be a continuous function on Tn. Assume there exist
numbers u<i/n+1) and €>0 such that for all xsﬁn(u) we have that for at

least one index i with X, =U,
- < - -
fj(x) xj fi(x) xi €

for at least one index j#i. Then, £6r any starting voint v in the interior of
conv(ﬁn(u)),the variable dimension restart algorithm applied with integer

labelling and using the T triangulation terminates with a completely
labelled simplex if the grid size is small encugh.

PROOF. Let the grid size be so small that

sup max Ifi(x)—xi-fi(y)+yi| < ke

X, V€O lEIn+1

for every simplex ¢ such that onﬁn(u) is nonempty. Then the proof of
theorem 5.7.1 holds by noting that the condition of theorem 5.7.1. is
implied by the condition of theorem 5.7.2. 0

Clearly if theorem 5.7.2 holds the algorithm terminates at any stage if
a) the grid size in the first stage is small enough and the
sequence of grid sizes is decreasing
b) the starting point in the first stage is chosen in the
interior of the convex hull of En(u)
c) the starting point in any other stage is chosen within the

completely labelled simplex found in the previous stage.
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In the next theorem a condition is given such that the algorithm

converges for every grid size and for any starting point.

THEOREM 5.7.3. Let f be a continuous function on T". Assume that there
exists a number u<¥(n+1) such that for all x with xi<u for at least one
index ieIn+1, there exists an index j¢£K such that

fj(x)—xj < fh(x)—xh for all hek,

where K is the set of indices i with xi<u. Then the variable dimension
restart algorithm applied with integer labelling and using the T
triangulation terminates with a completely labelled simplex for every grid

size and for any starting point.
PROOF. Let B be the mesh of the triangulation. Define u' by

¢' = min(y, min v,) -28
lEIn+1

Let c(wl,...,wt+1) be a t-simplex of A(T) meeting B™(u'). Then there is an
index h such that thu'+B for all xeo. Hence wisu'+8<u f?r all i=1,...,t+1.
Consequently, using the assumptions of the theorem, l(wl)=h for all i.
Moreover we have that thu'+B<vh for all xeo which implies that heT.
Therefore the simplex 0 cannot be generated by the algorithm, which proves

that only simplices in the interior of conv(ﬁn(u')) are generated. 0

Analogous theorems can be given if vector labelling is used. We only give a
theorem analogously to theorem 5.7.1. Theorems similar to the theorems

5.7.2 and 5.7.3 can be easily formulated.

THEOREM 5.7.4. Let f be a continuous function on T and let v be the
starting point. Then the algorithm applied with vector labelling terminates

under the same conditions as formulated in theorem 5.7.1.
PROOF. Let the grid size be so small that

(5.7.3). sup, max |, (x)-x,-f (v)+y,| < ke

X,YEO leIn+1



89

for every simplex o such that ongn(u)za. .
+ —

For some T, let o(wi,...,wt 1) be a simplex in A(T) such that ann(u)¢¢.

Let xeﬁn(u)nc. Then from (5.7.1) and (5.7.3) it follows that there exists

an index i and an index j#i such that x,<v, and
—  k_k—  k_k
-w, < - =1,...
fj(w ) wj fi(w ) W, k=1, L+l

+ —
t 1), where f is the

Hence ?;(y)—yi > fﬁ(y)—yj for all yec(wl,...,w
Piecewise linear approximation to £ with respect to the triangulation.
As argued in the previous section the algorithm traces a path of points

y such that for some a(y)

fh (v) Ty, = o (y) if heT
and

fh(y)—yh > —a(y) if hfT.

So if o(wl,...,wt+1) is generated by the algorithm we must have that if]
since f;(y)—yi>fa(y)—yj for all yeo. On the other hand we have xi<vi
implying that ieT. Hence a contradiction is obtained and consequently ¢

cannot be generated, which proves the theorem. 0

As argued in section 4.8, condition (5.7.3) cannot be guaranteed for any
grid size if we deal with an u.s.c. mapping ¢ instead of a function.
Then we need e.g. that, for some y < mini vi and some 0 < § < mini vi—u,

21 (%,6) and for any £(y) € 6(y).

(5.7.1) holds for any y € ™ 0B
Then the algorithm converges if the mesh of the T triangulation is less
than §.

In the next theorema condition to guarantee the convergence of the algorithm in
case of an u.s.c. mapping is stated, which is comparable with Merrill's
condition given in lemma 2.6.2. Recall that in the theorems 5.7.1-5.7.4
there was a weak dependency of the proof on the underlying triangulation.
In the proof of the next theorem this dependency is much stronger. In
particular it will appear that the proof is not valid if the standard

triangulation is used.
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THEOREM 5.7.5. Let ¢ be an u.s.c. mapping on Tn. For some §>0,let there

exist weTn and p<ln+1) such that for all x ¢ ot with min x.,<p and
iel
all z € ™ n Bn+1(x,6) holds et

(x-h(x))  (w-z) < 0O

for all h(x)e¢(x). Then the variable dimension restart algorithm applied
with vector labelling and using the T triangulation terminates with a
completely labelled simplex if the mesh of the triangulation is less then
S.

PROOF. Let v be an arbitrarily chosen starting point. Define u' by

u'=min{y-§, min v, + min n(v,-w)}.
iel ieT h

n+1 +1

t

+
For some T, let c(wl,...,w 1) be a t-simplex in A(T) such that for some

y€eo, min yi<u'. We prove that the system of linear equations
lEIn+1
t+1 i
z Ail(w ) + Zye) =e
i=t néT B

* *
does not have a nonnegative solution Ai' i=1,...,t+1 and Wy h¢T. Suppose
there exists such a solution. Then

t+1

(5.7.4) (n+1) £ AY + I u; = n+l.
i=1 Y ngT

Furthermore, we have that

£+l .
(5.7.5) [T A awh)+ s u;e(h)]T(w-y) = e (w-y) =0
i=1 * neéT

since w,yeTn. We obtain a contradiction to (5.7.3) by proving that
Z(wi)T(w—y)<0 for all i and e(h)T(w~y)<O for all h¢T since by (5.7.4) at
least one A; or u; is positive. Let fbe the piecew?'.se lir}ear approximation to ¢
with respect to the triangulation. Clearly f(wl)e¢(wl), i=1,...,t+l. Let k

be the index such that v = min v,- Then W;Syk+6<u'+65u, which implies that
ieI
n+1
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2 (w) T (wmy) = (W= (W) 4e) T (wey) = (Wi —f (WD) ) | (w-y) <0  i=1,...,t+1.

It remains to prove that w. —yh<0 for all h¢T. First note that

h
min (vi—wi)SO.Henceyk= min y.,<p'< min v,+ min n(vi—wi)Svkimplyingthat
i€l el el l€In+1

keT by the structure of the T triangulation. Moreover it follows that
yk<vk+n(vh—wh) for all h¢T
whereas, again by the structure of the T triangulation

(5.7.6) >v. +n"1(vk—yk) for all heT.

Y35V

Both inequalities together give
yh>vh--(vh-wh)=wh for all h¢T,

and a contradiction to (5.7.5) is obtained. Hence the algorithm can only

generate simplices in conv(ﬁn(u')). 0

Observe that (5.7.6) does not hold if the standard triangulation is used.
Only in the case that v=w we cbtain immediately thWh, h¢T, which is
sufficient to obtain a contradiction to (5.7.5). On the other hand the
theorem can be proved for any triangulation such that the diagonal

elements of the matrix are negativé and the off diagonal elements positive,
by taking u' large enough. )

Clearly the condition “for some 8" can be strengthened to "for all 6". Then

the algorithm converges for every grid size.

5.8. COMPUTATIONAL RESULTS.

The variable dimension restart algorithm is applied for vector
labelling to three examples in which the equilibrium price vector in a
pure exchange economy has to be computed. The data of these problems can
be found in Scarf [1967b]l. The algorithm is applied with the standard

triangulation as well as the T triangulation. However, in stead of the
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matrix Q (T) we use the matrix -Q(-T). In addition, a point x outside the
interior of Sn receives the label e(i) with i the smallest index such that

xiSO, whereas a point xeint st receives the label 2(x) defined by
L.(x) = g.(x)/a, j=1, ..., n+],
i g] / i J=1, ' ’

where gj(x) is the total demand of good j, given that x is the price
vector, and aj is the total supply of good j. It can easily be seen that
a completely labelled simplex yields a good approximation of a fixed point.

*
Let w (m) be the approximate fixed point in stage m, i.e.

* n+1 o i
w (m) = I A, w (m)
. i
i=1

where wl(m),...,wn+1(m) are the verticeé of the completely labelled
simplex generated by the algorithm in stage m and AT,...,A:+1 the

corresponding solution to the system of linear equations. Then the
*
starting point in stage m+l is w (m), whereas the starting point in the

* * -
first stage is w (0) defined by wi(0)=(n+1) 1, ieIn Finally we have to

+1°
make a remark about the sequence of grid sizes. Let hm be defined by

hy = max (v, (m-w (m-1))  m=1,2,...
ieI +
n+l

and let 5m and Gm be the grid size and the triangulation in stage m. Then

s = h & /n+tl/mesh G_ifh_<(mesh G )/2V/n+1
m+1 m m m m m
6m+1 = %Gm 1fhm2(mesh Gm)/2/n+1.

The results are given in the tables 5.8.1-5.8.3. In all examples the number
of function evaluations is equal to the number of linear programming steps,

i.e. the dimension is never decreased.
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Table 5.8.1. Pure exchange economy, n=4, M=(mesh Gm)/2¢n+1, N is the

cumulative number of iterations, E= max |(gi—ai)/ai|.

ieIn+1
T-triangulation Standard triangulation
Stage M N E M N E
1 .051 7 | 1.02 .093 8| 1)
2 .026 13 .18 .047 16 | .21
3 .013 18 .09 .023 26 | .15
4 .006 24 .04 .012 31| .05
5 1.2103 | 30| 21073 | 5.41073 | 36 | 1072
6 6.110% | 36| 810 [ 1.01073 | 47| 4107
7 3.8107° |43 | 2107/ 2.21074 | 54| 3107®
8 1.5 10 | 50 | 3107"" | 8.4 107 | 63 | 107°

1) w*(1)#int s .

Table 5.8.2. Pure exchange economy, n=7, M=(mesh Gm)/ZVn+1, N is the

cumulative number of iterations, E= max I(gi—ai)/ai],

ieIn+1
T-triangulation Standard triangulation

Stage | M N E M N E

1 .032 11| 1.32 .055 9 | .89

2 .016 20| .22 .019 38 | .26

3 .008 28| .12 .009 49 | .09

4 3.2 1073 42| .03 4.2 1073 66 | .02

5 1.6 1073 | s9]s5103 | 1.21073] 79 | 1073

6 4.1 104 ] 79|210% | 2.7107%] 95 | 2107

7 7.2 107 | 100 |2 107 1.8 1072|111 | 3 1078

8 3.210°° | 121181071 | 3.2 1077 127 | < 10713
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Table 5.8.3. Pure exchange economy, n=9, M=(mesh Gm)/ZVn+ , N is the

cumulative number of iterations, E= max I(gi-ai)/ail'
iel

T triangulation Standard triangu?Zéion
Stage | M N E M N E

1 .025 12 | .30 .045 10 | .59
2 .013 2 | .18 .011 65 | .04
3 .006 a2 | .06 .006 84 | .01
4 .003 58 | .01 8.7 10°% | 110 | 3 107*
5 8.710% | 75 8107 | 2.1 107 | 136 | 4 107°
6 2.1 104 | o1 | 1070 6.310°° | 160 | 107°
7 1.410°% | 108 | 21078 |7.01078 | 205 | < 10713
8 2.5 1077 | 124 | < 10713
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CHAPTER 6

VARIABLE DIMENSION RESTART ALGORITHM ON Rn

6.1. INTRODUCTION.

In this chapter we discuss the application of the variable dimension
restart algorithm to compute a fixed point of a function or mapping from
R into itself. This chapter is based onVan der Laan and Talman [1979b,1980c].
Again the algorithm starts with a zero-dimensional simplex and generates a
path of adjacent t-dimensional simplices, 0st<n. This path either terminates
With an n-dimensional simplex yielding a good approximation of a fixed
point or goes to infinity. Before we treat the application on the
unbounded region Rn,we first describe in section 2 the application of the
algorithm on the unit cube.

Conditions for the convergence of the method on R® are given in section 3.
Further research aboutAthe variable dimension algorithm is summarized in

section 4. Computational results are given in section 5.

6.2. THE UNIT CUBE.

To approximate a fixed point of a function or mapping on the
n-dimensional unit cube C'={xeRrR", OSxi51, i=1,...,n}, this set is
triangulated by the K triangulation with grid size m_l, where m is a
positive integer, and z=0 (see definition 3.2.1). We first describe the
algorithm for integer labelling. We call a labelling rule proper if
L(x)#i if xi=1 and %(x)#n+l if xi=0 for some index isIn+1. The standard
inﬁeger labelling on Rn defined in definition 4.2.3 induces a labelling
on Cn. We now take this labelling rule and assume it is a proper labelling
rule as is the case when f is a function from C" into the interior of c".
The triangulation matrix corresponding to the K triangulation is the nxn
identity matrix. To apply the variable dimension restart algorithm we

define the nx(n+l) matrix U by U=(I,-e). So u(i)=e(i), i=1,...,n and
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u(n+1)=—e=-22_1u(i), where u(i) is the i-th column of U. As in section 5.2
u(i) corresponds to the i-th direction in which a search is to be made if

label i has been found. For a given subset T of I |T|sn, the t-simplex

n+l’ i 1
t+1 such that y~ is a grid

c(yl,n(T)) is the simplex with vertices yl,...,y
point, w(T) a permutation of the elements of T and yi+1=yi+u(i)/m,
i=1,...,t. Observe that such a simplex is indeed a face of a simplex of the
K triangulation. Again a (t-1)~simplex ¢ is called T-complete if the t
vertices of 0 carry all the labels of the set T.

Let the grid point v be an arbitrarily chosen starting point. Then the
variable dimension restart algorithm starts with the zero dimensional
simplex {v} and proceeds according to the steps 0-4 of section 5.2 except
that the columns of the matrix Q in table 5.2.1 must be changed into the
columns of U. Again ﬁe can give an interpretation of the method by

defining the region A(T) as

a(T) = {xecn|x=v+ I A,u(j) for nonnegative Aj’ jeT},
jeT

where T is a proper subset of I Then we have that a path of simplices

of variable dimension is generazzé such that the common facet of two
adjacent t-simplices in A(T) is T-complete. Moreover, the diﬁension is
increased ifs for some j¢Tra (Tu{j})-complete simplex in A(T) is generated
whereas the dimension is decreased ifs for some keT, a simplex in a(m

is generated having a T-complete facet in A(T\{k}). In the first case the
algorithm continues with a simplex in A(Tu{j}), whereas in the latter case
the method proceeds with a simplex in A(T\{k}). The algorithm is
illustrated in figure 6.2.1 for n=2 and m=7. In this example we have that
T, is a {1,2}-complete one-simplex of A(1). So the dimension is increased

1

and the label of the new vertex u is calculated. The one-simplex T, is an

{1,2}-complete facet of 9y in A({1,27N {1}). The dimension is decreased and

the vertex w having label 1 is replaced. The simplex T, is a {2,3}-complete

3
facet in A(2) and the dimension is again increased. Then the algorithm
continues with 2-simplices in A(2,3) until the completely labelled simplex

02 is found.
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A(2)
3 / 3
(1,2)
20/
1 2 2 04 2 2
.
1 1 2
A(:Zla)
1 2
v A(1)
1 1T1 2
A(1,3)
A(3)

Figure 6.2.1. Illustration of the variable dimension restart algorithm on

c®, n=2, m=7, v=(3/7,2/7) .

The proof that the algorithm can never return in a simplex is identical
to the proof given in section 5.4. Therefore the algofithm finds always
a completely labelled simplex if all steps are feasible. First we show
that a replacement step is always feasible. Let o(yl,...,yt+1) be a
t-simplex in A(T) generated by the algorithm and let yS be the vertex of
0 to be replaced. Clearly this replacement step is feasible except when
for some j (1<j<n) either y§=m—1 and y§=0, i#s, or y§=1—-m_1 and y§=1r i#zs .
Suppose the first case is true. If vj>0, we must have that n+l is an
element of T otherwise the j-th component could not have been decreased.
However by the proper labelling l(yi)¢n+1 for all i#s, whereas ys has to be
replaced iff the facet with vertices yi, i#s, is T-complete. So a
contradiction is obtained. This proves that if yS hass to be replaced
there exists an index j, i#s, such that y§>0. Hence the replacement step is
feasible.

If Vj=0 then either n+1eT which is identical to the case just mentioned, or
n+1¢T. Then, however, s=t+1 and R“t=0 implying that the dimension should be
decreased and contradicting the fact that yS must be replaced according to
table 5.2.1.

Suppose now that y§=1 for all i#s. If vj<1 we must have jeT. Again because

of the proper labelling Q(yl)ﬁj for all i#s. Hence, if ys has to be
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replaced there exists an index i such that y%<1 implying éhat the
replacement st?p is feasible. vaj=1, either jeT and then there is an
index i with y;<1,or j#T again implying that the dimension should be
decreased. So all replacement steps are feasible.

Next we prove that the extension from a t to a (t+1)-simplex,occurring when
a new label is found,is also feasible. So, let G(Yl,ﬂ(T)) be a (Tu{j}h-
complete simplex in A(T), generated by the algorithm. Since j¢T we have that
nitj, i=1,...,t. Moreover we have that for some vertex ys, Q(ys)=j. If
j=n+1 Fhen because of the proper labelling inm_1 for all h. Hence for all
izs, y}J;Zm-1 for all h,since 7 #n+l1 for all i. Consequently, OSY;+2=YE+1-
m—lsl for all h, i.e. yt+2 is a point in Cn. If j#n+l then again because of the

- + - L
proper labelling yssl-m { This "implies that y? 1Sl—m { since 7,#j, i2s.

Hence 12y§+2=y§+1+;_120. Moreover y§+2=yﬁ+1forjall h#j, so tha_tlyt+2 is a
pointin CP. Consequently all steps of the algorithm are feasible.

We now discuss for vector labelling the application of the algorithm to
approximate a fixed point of an u.s.c. mapping ¢. Each point x of "t
receives a vector label £(x) based on the rule given in definition 4.8.1.

Taking b=e, % is a function from Cn to Rn-"1 with

li(x) = fi(X)_xi+1 i=1l,...,n
and

JLn+1(x) =L
where f£(x) is a piecewise linear approximation to the mapping ¢ with
respect to the triangulation of ™. Analogously to theorem 5.6.1 a
(t-1)-simplex oiwl,...,wt) is called T-complete if the system of n+l

linear equations

t .
) Ail(wl)+ Zwe() =e
i=1 heéT
* *
has a nonnegative solution Ai’ i=1,...,t and uh, h£T. In the following we
assume that degeneracy does not occur. The next corollary follows
immediately by considering the (n+1)-th equation of the system of linear

equations.

COROLLARY 6.2.1. For some T, let o(wl,...,wt) be a T-complete simplex with

* *
Ai, i=1,...,t and uh, h¢T the solution of the system of linear equations.

If n+1£T, then
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; A*+ * =1
. i un+1 oo
i=1

If n+1eT, then
t
A= 1.
i

* 1
From thiscorollary it follows immediately that z?fixi=1 if o(w ,...,wn+1)

is completely labelled,i.e. if o is an In -complete simplex. Then

* _n+l +1

X =Zi=1 AI wh is a good approximation of a fixed point (see lemma 4.8.3).

The steps of the algorithm are identical to those of section 5.6 except that
the matrix U must be used in stead of the matrix Q. So, starting with an
arbitrarily chosen grid point veCn, the algorithm generates a path of
adjacent simplices. As in section 5.6 a simplex can never be revisited,
.so a completely labelled n-simplex must be found provided that the steps
are feasible. Since C is bounded, all linear programmiﬁg steps are
feasible. Concerning the other steps we first prove that the

extension to a higher dimensional simplex is always feasible. For some T,
let 0(y1,n(T) be a (Tu{h})-simplex in A(T) generated by the algorithm.
First consider the case where h=n+l1. Then e(n+l) is eliminated by the last
linear programming step and it follows from corollary 6.2.1 that

ZE:%AZ=1. We shall now verify that y§+1>0 for all j. To do this, suppose to
the contrary that y§+1=0 for some j. Since n+1¢T, we have that ﬁi=tn+1,
i=1,...,t. Hence y§=0 for all i, implying that nixj, 1<i<t. So j¢T and the

j-th equation of the system of linear equations is
t+1

* i *

AL (y ) +u,=1

) y UJ

+
z
i=

1

. . 1% .
with uf>0. Since y%=0, l.(yl)zl for all i. Consequently Z§=1Ai<1 which
J t+l, t+1 2

t+
contradicts that I, ,X,=1. Hence, if h=n+l, yj >0 for all j and soy =

t+1 t+1 i=14
y +u(n+l) /m=y -e/m20.

I

Next we prove that the extension is feasible if h#n+l1. Now we verify that
+
y§+1<1. Again we supposeto the contrary that yg 1=1. Since hgT, wiih for
i=1,...,t implying that y;=1 for all i and therefore n+1¢7. So from
. t+l % *
corollary 6.2.1 we obtain that Zi=1xi_1 un+1
(Tu{h})-complete, e(h) is eliminated and the h-th equation is

<1. However, since 0 is
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t+1

L x*z (v = 1.
i=1
X i n t+1
Since f(y )eC, 2 (y )<1, i=1,...,t+1l. Hence 2 A -1, contradlctlng the
t+1 SLiotio el
assumption that y;+1—1. Consequently vy <1 and soy =y +e(h)/m is a

. n
point in C .

To prove that all replacement steps are feasible we assume that
piecewise linear approximation f to ¢ is a continuous funétion from c” into
the interior of ¢". For some T, let 0(y1,...,yt+1) be a t-simplex in A(T)
generated by the algorithm and let ys be the vertex to be replaced
according to table 5.2.1. This step is feasible unless either

a) for some j, y§=0 for all i#s and y§=m_1
or.

b) for some j, y;=1 for all i#s and y§=1—m_1.

We prove that in both cases the system of linear equations

(6.2.1) DAy I we = e

izs he¢T
has no feasible solution. Suppose to the contrary that the system has a
feasible solution AI, i#s and u;, h¢T. Consider case a) with Vj>0. Then
n+leT and so by corollary 6.2.1 Zixslz=1. The j-th equation of the system
(6.2.1) is given by

(6.2.2) z A;Rj(yi)+ﬁj =1

i#s
with ﬁj—uj if 34T and u =0 if jeT Slnce £ 1s a function from C into the
interior of C" we have that 2 (y ) f (Y )‘Yj+1>1. Hence from (6.2.2) it
follows that Z. A <1 which contradlcts I, skz=1. So there is no feasible
solution if vj>0. Con51der now the case w1th vj=0. If n+1eT, we can repeat
the above arguments. If n+l1¢T it follows that s=t+1 and w =j. Hence
R“t—RJ y; v.=0, implying that step 4 should be performed.
In case b) we distinguish between vj<1 and vj~1. If vj<1 we have that jeT.

Hence the j-th equation of (6.2.1) is
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AL (yh) =1
i#s 3

with Qj(yi)<1 for all i#s implying that zixsxz>1.

However from corollary 6.2.1 it follows that zizsxis1, which again gives a
contradiction. Finally if vj=1 we have that, either jeT and we can

repeat the arguments as for vj<1,or s=t+1 and R“t=0, implying that step 4
should be performed. Hence,if f is a function from c” into the interior of
C{ all replacement steps are feasible and the algorithm terminates with

a completely labelled simplex within a finite number of iterations.

6.3. CONVERGENCE CONDITIONS ON Rn,

In this section the variable dimension restart algorithm is applied
to compute a fixed point of a function or mapping on Rn. Conditions are
given to guarantee that the algorithm converges. For some positive §, Rn is
triangulated by AK5 where A is a triangulation matrix (c.f. section 3.3),
such that the arbitrarily or by priory information chosen starting point v
is a grid point of the triangulation. It seems to be adequate to use an
element of the subclass A of AX triangulations in fixed point algorithms.
Adding the i-th column of a matrix of the form A(o) to a point y of r®
means that only the i-th component of y is increased, whereas all other
components are affected by the same amount. So in going from y1 to yn+1
where y% i=1,...,n+l,are the vertices of a simplex o(yl,ﬂ(In)) of the
triangulation, all components have been increased by the same amount.

Note that in all the algorithms discussed in chapter 4 only the columns

of the triangulation matrix (if AK is the underlying triangulation) appear
in the rules for the replacement steps. However, the variable dimension
restart algorithm uses the extra column a(n+1)=—22=1a(i). So using an
A(ot)K(S triangulation a search in the i-th direction, i<n, means that the
i-th component is increased and all other components are decreased

with the same amount, whereas a search in the (n+1)-th direction means that
all components are decreased with the same amount. In section 3.3 we
summarized some nice properties of the A(n+/;:T3K5 triangulation. These
properties suggested that it is preferable to use this element of the
subclass A. The application of the variable dimension restart algorithm
provides an extra argument. Recall that the regions A(T) depend on the

underlying triangulation. So, using the A(n+vn+l1)Kg triangulation the
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\

n-dimensional real space R® is subdivided in subsets A(T), TCIn and

+1
|T|Sn, defined by

A(T)={xeRnIx=v+ b Aja(j) for nonnegative A

. jET}r
. J
jeT

where a(i) is the i-th column of the nx(n+1) matrixA(n+Vn+1) defined by

n+/n+l -1 . . . -1 -1-Vn+1
-1 . .
A(n+V/n+l) = . .
. -1 .
| -1 . . . =1 n+vVn+l -1-vn+l

Consider the n-dimensional subsets A(Tk) with Tk=In+1\{k}, k=1,...,n+l.
Then the A(n+J;IT)K6 triangulation has the property that it divides R" in
n+l n-dimensional subsets A(Tk) of "equal size". With subsets of equal size
we mean the following. Recall that Bn(v,u) is a ball with v as centre point
and y as length of the radius. Then for any (positive) u the volume of the

intersection of Bn(v,u) and A(Tk) is equal for all keI . This property

n+l
follows immediately from the fact that, as pointed out by Todd [1978f],

the angle between two half lines v+la(k), A20, is equal for any two indices
kl'kz' So within a ball with the starting point v as centre point the

number of n simplices in A(Tk) is roughly the same for all kEIn+1. This is
illustrated in figure 6.3.1 for n=2. In general we have that for all p the
number of t-simplices in B™(v,u)nA(T) is the same for every T with |T|=t.
To apply the variable dimension algorithm, in case of integer labelling any
point x receives the standard label of definition 4.2.3, whereas in case of
vector labelling each point receives a label as defined in definition 4.8.1
with b equal to e. The algorithm is started in v and proceeds in the same
way as on Tn with in the replacement steps the n+l1 columns of the

matrix defined above in stead of the columns of T. A path of adjacent
simplices is generated such that the common facet of two adjacent simplices
in a region A(T) is T-complete. Using standard arguments we have that the
path of simplices either terminates with a completely labelled simplex or
goes to infinity. Before we give some convergence theorems we consider the

behaviour of the path. We restrict ourselves to vector labelling.
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Figure 6.3.1. Illustration of the properties of the A(n+/n+1)K6

triangulation, n=2, u=26§.

For some T, let T(wl,...,wt) be the common facet of two adjacent simplices
generated by the algorithm. Then we have that T is T-complete and so the

system of linear equations

t .
IALW+ I pe =e
i=1 h¢T

*
has a nonnegative solution AI, i=1,...,t and uh, h¢T. First suppose that
n+1¢T. Then it follows from corollary 6.2.1 that Z§=1X:<1. Following the

arguments of section 5.6 we have that

(6.3.1) fj ()—c)—;cj=oz jeT
and
(6.3.2) fh(x)—xh<a heT

P S I -t oz i s kot Lx .
wherve a=(1 zi=1li)/zi=1xi and x-Zi=1Aiw with Ai Ai/Zi=1Ai. Hence if n+1¢T

the variable dimension restart algorithm traces a path of points xeaA(T)
such that for some a(x) (6.3.1) and (6.3.2) hold. Observe that the number
of equations of (6.3.1) is equal to lTl=t, whereas o depends on X.

. *
Suppose now that n+1eT. Then we have that Z§= Ai=1. Hence for jeT, j#n+l we

1
have that
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t . .
I A(E, (W) -wi}=0
i=t * J
or
* *
(6.3.3) fj(x )—xj=0 jeT\{n+1}
. * _t * i
with x =Zi=1xf” R Moreover for h¢T it follows that
r ALE ) et bt
LA UE, (W) wy b, =0
i=1
or
* %
(6.3.4) fh(x )—xh<0 heT.

So a path of points xeA(T) is traced such that (6.3.3) and (6.3.4) hold.
Observe that for each x the right hand side of (6.3.3) is equal to zero,
but that the number of equations in (6.3.3) is equal to |T|-1=t-1.

We give now some theorems concerning the convergence of the algorithm on

R". First we consider integer labelling. Define 8" (n) by

Bn(u) = {XERnl maxlyi‘=u} .
iel
n
THEOREM 6.3.1. Let f be a continuous function on R" and let vbe the
starting point. Assume there exist numbers u>maxi|viland e>0 such that for
all xeB”(p) holds
a) eTk<eTv and there is at least one index j such that
f.(x)-x.>¢
J J
or
b) there exists an index ieIn such that xi>vi, and we have that
(i) fj(x)—xj>fi(x)—xi+e for at least one index jeIn, j#i

or (ii) f.(x)-x.<-e for all jeI_.
(i 3 4 Jer

Then the variable dimension restart algorithmapplied with integer labelling
terminates with a completely labelled simplex for any triangulation A(a)K6

if § is small enough.
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PROOF. Let the grid size be so small that

(6.3.5) sup max Ifi(x)—xi—fi(y)+yii<%a
X,Y€EO 1eIn

for every simplex 0 such that onén(u)¢¢. For some T, let o(wl,...,wt+1) be
a simplex in A(T) such tha£ ongn(u)=¢. Then for any point xeén(u)na holds
at least ohe of the conditions a) and b). If a) holds we must have that
n+leT since eIx<eTv. So if 0 is generated by the algorithm Z(wi)=n+1 for at
least one index i=1,...,t+l. However, there is at least one index j such

that £, (x)-x,>¢. So with (6.3.5) it follows that
fj(wk) - w? >0 - k=1,...,t+l,

implying that Z(Wk)=n+1 for all k. So a contradiction is obtained. If b)
holds we must have that ieT since xi>vi. If there exists an index Jj#i such

"that fj(x)-xj>fi(x)—xi+s it follows from (6.3.5) that
k k k k
fj(w )—wj>fi(w )-—wi k=1,...,t+1,

implying that R(Wk)ﬁi for all k. If for all jeIn, fj(x)—xj<—s then we have
that

fj(wk)-w?<o K=1,...,t+1,

t+1) cannot be

implying that %(wk)=n+1 for all k. In both cases G(wl,...,w
generated by the algorithm. Therefore the algorithm generates only

simplices in the interior of conv(ﬁn(u)). This proves the theorem. ]

Theorem 6.3.1 is the analogon of theorem 5.7.1. Theorems analogous to the
theorems 5.7.2 and 5.7.3 can easily be given for any element of the
subclass A . Here we give only the analogon of theorem 5.7.2. Moreover we
restrict ourselves to the KG triangulation.

THEOREM 6.3.2. Let f be a continuous function on R". Assume there exist

numbers p>0 and €>0 such that for all xeﬁn(u) holds that
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a) For some i, xi=—u and there exists at least one index jeIn
such that fj(x)-xj>e.
or
b) For some i, xi=u and fj(x)—xj>fi(x)-xi+e for at least one

. . i2 ey 2o . .
index jEIn, j#i, or fj(x) xj e for all jGIn

Then the variable dimension restart algorithm applied with integer
labelling and using the KG triangulation terminates with a completely
labelled simplex for any starting point v in the interior of conv(ﬁn(u)) if

§ is small enough.

PROOF. For some T, let c(wl, ...,wt+1) be a simplex in A(T) and onB™ (u)#g. It
can easily be seen that, if the grid size.is small enough, there exists an index
ieT such that Q(Wk)ii, k=1,...,t+1. Hence only simplices in the interior of
conv(B™ (1)) can be generated. ]

We conclude this chapter with two convergence theorems on R" when vector
labelling is used. They are analogous to the theorems 5.7.4 and 5.7.5

. n
concerning the convergence on T .

THEOREM 6.3.3. Let £ be a continuous function on R" and let v be the
starting point. Then the algorithm applied with vector labelling terminates

under the same conditions as formulated in theorem 6.3.1.

PROOF. Let the grid size be so small that

(6.3.6) sup max |fi(x)—xi—fi(y)+yi[<%e

(x,y) eo l€In+1

for every simplex ¢ such that cngn(u)=¢. For some T, let o(wl,...,wt+1) be
a simplex in A(T) such that onﬁn(u)zg. Let x be a point such that
xeén(u)no. If a) holds we have that n+l €T. Moreover with (6.3.6) it
follows that fj(wk)—w§>0, k=1,...,t+1. Hence ?5(y)—yj>0 for all yeo, where
f is the piecewise linear approximation to f with respect to the triangu-

lation. Therefore, by (6.3.3) or (6.3.4) o cannot be generated by the
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algorithm. If b) holds we have that ieT. If bi) holds it follows that
§S(y)—yj55i(y)—yi for all yeo and by (6.3.1) or (6.3.2), ¢cannot be
generated. If bii) holds it follézs that for all yeg, fj(y)-yj<0 for all
jeIn. In particular we have that fi(y)—yi<0 and by (6.3.1) (if n+1¢T) or
(6.3.3) (if n+1eT) it follows again that ¢ cannot be generated. Hence only

simplices in the interior of conv(ﬁn(u)) are generated. 1

As in the previous chapter we have again that in case of an upper-semi-
continuous mapping (5.7.5) possibly does not hold for any 6 > 0. Therefore
we need a stronger condition to prove convergence, e.g. in case a)
fj(x)--xj > € has to be replaced by fj(z)—zj > 0 for all z € Bn(x,S) and
f(z) € ¢(z) for some 0 < § < u-max, |vi[. Then for a triangulation with
grid size less than § it can easily be seen that if a) holds for some

X € én(u), ES(Wk)—wg > 0 for all vertices wl,...,wt+1 of the simplex o
containing x, implying that n+1 % T. The same adaptions have to be made

. for the condition b).

Another sufficient condition to prove convergence in case of a mapping is

Merrill's condition, as is stated in the next theorem.

THEOREM 6.3.4. Let ¢ be an u.s.c. mapping on R". For some §>0, let there
exist werR™ and §>0 such that for all x,zeR" with x¢B" (w,n) and zeB"(x,8)

holds
(h(x)-%) | (w-2)>0

for all h(x)e¢(x). Then the variable dimension restart algorithm applied
with vector labelling and using the A(0)K triangulation with A(a)e€A
terminates with a completely labelled simplex if the mesh of the

triangulation is less than 6.

PROOF. Let p>0 be such that for all xeBn(w,ﬂ) holds maxi!xi|<u. So for all
x with maxilinZu we have that x¢B"(w,J). Let v be the starting point and

define u' by

u'=max[u+6,max lvil+max{max a[vi-wil,u(a—n+1)_1|Z(wi—vi)ID.
ieIn ieIn i
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For some T, let c(yi,n(T» be a t-simplex in A(T) such that for some yeo,
maxi|yi|>u'. We prove that the system of linear equations
t+1

i
I X 2w )+ I y,e(h)=e
i=1 * heT B

* *
does not have a feasible solution Ai' i=1,...,t+1 and Uy h¢T, implying
that 0 cannot be generated by the algorithm. Suppose there exists such a
solution. Then we have that
t+1

[z Ajnwh)+ 2 b 17T w=y) 7,01 =e T (w-y) 7,03
i=1 heT

T

*
n+1
approximation to ¢

or by defining u =0 if n+1eT and letting f be the piecewise linear

t+1 * i i\T * * n
(6.3.7) LA {fw)=w} (w=y)+ I u_(w, -y, )-u T (w.-y.)=0
. i h' "h “h n+l | i“i
i=1 héT i=1
. * _, GtHlox
using the fact that un+1_1—2i=1xi (c.f. corollary 6.2.1).

Since maxi|yi]>u' we have that maxi|w§|>u'—62u. Hence
(6.3.8) (£} (w-y)>0  k=l,...,t+l.

Now we prove that wh—yh>0 for all h¢T. We first consider the case wheres for

some k, yk=maxi|yi]. Hence
>u'> -
¥, H vk+ot(vh wh) heT.
Moreover, by the structure of the A(a)K triangulation we have that

-1
thVh-d (yk-vk) he£T.

Combining both inequalities we obtain that

(6.3.9a) yh<v - (v —wh)=w héT.

h "'h h

In the case where, for some k, —yk=maxi]yi| we again find by the structure

of A(a)
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yh=vh+(yh—vh)Svh+(yk—vk) he¢T.

Together with —yk>u'2—vk+a[vh—wh|2—vk+vh—wh this again implies that

(6.3.9b) Y, < W

h heT.

*
n+1
implying that there is no feasible solution to the system of linear

If u =0, i.e. n+1eT, then (6.3.8) and (6.3.9a,b) contradict (6.3.7),

equations. It remains to prove that Zi(wi—yi)<0 if (n+1)¢T. In the case

where for some k, yk=maxi|yi|, it follows again by A(a) that

-1
Ly, 2 Zv,-(n-1)o (y -v,)-.
ik i 17k i k 'k

Moreover yk>vk and

n
-1
1] - -
(6.3.10) yk>u ka+a(a n+1) .Z (wi vi).
i=1
Hence
n n -1
'Z (wi—yi)S‘Z (wi—vi)+(n—1)a (yk—vk)
i=1 i=1
and with (6.3.10)
n
iil(wi-yi)<0.

Finally, in the case where for some k, -vV.

k=maxi|yi[ we have that

n
E (w,=v,) |

1
|
i=1

- 1> - -
yk>u 2 vk+a(u n+1) .

1

n
>- - - -
> vk+(a n+1) i (wi Vi)'

1

1

Again from the structure of A(a) it follows that

L (y,-v,)2(a-n+2) (v, -y, ).
jzp L1 'k "k
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Hence

1(wi—yi)<0.

[ =]

i
So there does not exist a feasible solution to the system of linear

equations. Hence only simplices can be generated in the bounded set

conv(én(u')). 0

Observe that in the proof of the theorem p'2 max a|vi-wi!. Hence, if o~<,
lEIn+1
p' is unbounded unless v=w. Therefore the theorem is not true if the K

triangulation is used, except in the case where v=w.
Finally, we note that the condition "for some §>0" can be changed into the
strong condition of Merrill "for all §>0". In this case the algorithm

converges for every grid size.

6.4. RECENT DEVELOPMENTS.

As on S" the variable dimension restart algorithm can be interpreted
with n+l1 points on an extra level (c.f. Todd [1978b1, Barany [1979a],
Van der Laan and Talman [1979c,1980c]). Therefore, let R'x{1} be the natural
level and R"x{0} the artificial level. Now we choose n+1 points u(i) er™

such that
03 o . .
u(l)eA(In+1\{l}) i=1,...,n+1.

Let the n-simplex 0 be the convex hull of the points u(i) and let G be the
collection of (n+l)-simplices obtained by connecting each grid point xei(T)
on level one with the vertices u(i), if¢T, on level zero. Then we have that
G triangulates the set (ox{0})u(R"x(0,1]). The proof of this proposition
can be found in Todd [1978b]. Observe that this triangulation is not
locally finite, but still satisfies the property of theorem 2.3.5. We
present now briefly the research of Todd [1978b] about the variable
dimension restart algorithm of Van der Laan and Talman [1979a,b] .

Let f be a continuous function on R® and let the points u(i) be defined by



u(i) = 8(e-(n+l)e(i)+w) i=1,...,n

u(n+l) = S(etw),

where § is the grid size of the K (or Jl) triangulation of R™x{1} and w is
the n-dimensional vector such that wj=(2n—2j+1)/2n, j=1,...,n. Using vector
labelling the system of linear equations is initiated with Bu=b where
b=(0,...,0,1) " and B is the matrix with b(j)=((8w-u()) ,1)" . modd
proves that the algorithm traces a path of zeroes of the piecewise linear

approximation tothe function
h(x,t)=(1-t) (Sw-x)+t (£(x) -x) .

Using this fact it is proved that Merrill's condition is sufficient to
guarantee that the algorithm converges. So the condition is sufficient with
~ K the underlying triangulation. However, observe that the system of linear
equations is not initiated with Ip=e as in the previous section. Starting
with Ip=e has the advantage that when the dimension of the simplex is small,
the basis matrix is sparse, which yields that efficient linear programming
steps can be made.

Todd gives also a technique to accelerate the algorithm. Therefore he uses
the set-up of the accelerated algorithms in Saigal [1977] and Saigal and
Todd [1978]. He proves that in the limit an approximation in a certain
stage can be obtained in n+l1 iterations and that the algorithm converges
O-quadratically, when the function is continuously differentiable with a
Lipschitz continuous derivative.

A note about the path of the variable dimension restart algorithm was
written by Kojima [1980 ]. He showed that the same path can be obtained by
utilizing the differential equations approach when the function is
continuously differentiable.

In Van der Laan and Talman [1980b] the triangulation of S"x[0,1] as given
in section 5.5 is used to construct a triangulation of Sn*[l,w) which
allows for any factor of grid refinement between two successive levels.

We treat this matter in chapter 8.

The variable dimension restart algorithm is generalized in Van der Laan and
Talman [1978a,b]. In the first paper an algorithm is given which can be
applied to compute a fixed point of a,function on the product space of unit

simplices. The second paper is closely related and presents a class of
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algorithms on R™. One of the extreme cases of this class is the algorithm
presented in this chapter. The other extreme case is an algorithm with

2n labels when integer labelling is used and a system of 2n linear
equations when vector labelling is used. In addition, starting with a point
v, a search in 2n directions can be made. The class of algorithms is
treated in full detail by Talman [1980]. An interpretation of the "2n-case"
with points on an extra level can be found in Todd and Wright [1979] and
Todd [1980]. Interpretations with extra points for any element of the class
are given by Van der Laan and Talman [1979c] (see also Talman [1980]). In
Todd and Wright [1979] it is showed that the 2n-case is very appropriate to
be used for antipodal fixed point algorithms. Finally we mention a paper
of Wright [1979]. He generalized the variable dimension restart algorithm
to an algorithm with 2" directions. As argued by Wright the algorithm can

be éonsidered to be dual to the 2n—case;

6.5. COMPUTATIONAL RESULTS.

To test the algorithm the three pure exchange economy problems of
Scarf [1967b] were again solved. The problems were converted to problems in
Ri by setting the price of one of thé commodities equal to one. The
algorithm was applied with vector labelling and the K triangulation. A point
X outside int R? received the label e(i) with i the smallest index with
xiSO, whereas a point xeint RZ received the same label as in section 5.8.
In the first stage the starting point was the point x with xi=1,
i=1,...,n and the mesh was (n+1)(n+2)_1/h. The approximate fixed point w*(m)
on stage m was chosen to be the starting point at stage m+l, m=1,2,... .

The grid size 6m+ at stage m+l is defined by

1
1= %5m if hmz%ém and 6m+1 = hmfif hm<%6m

s m+

with hm as defined in section 5.8. The results are given in table 6.5.1.
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Table 6.5.1. Three pure exchange economy models, n=4, 7 and 9, M=mesh Gm//n,

N is the total number of iterations, E= max I(g.—a.)/a.‘.
iel 1 .
n+1
Dimension M N

4 6.107> 47 107>
107> 69 10712
7 7.1073 72 1078
9 107° 80 2 1077
9 3 1073 102 1070
1074 123 10710

In the three problems above the number of function evaluations is equal to
the number of linear programming steps. The algorithm was also applied on
‘the first production economy problem of Scarf [1973].

To achieve an accuracy of less than 5.10_3 the algorithm needed 176 function
evaluations and 184 linear programming steps, i.e. 8 times step 4 was
performed, bringing a unit vector in the system of linear equations. A
comparison of the number of iterations with the results as reported by
Todd [1978a] shows that the variable dimension restart algorithm takes
significantly fewer iterations than the algorithm of Merrill and the method
of Eaves and Saigal. Even in the case that quasi-Newton steps were used our
results are better or comparable. Of course, taking quasi-Newton steps can
also be implemented in our algorithm.

The algorithm was also applied on the problems 1 and 2 of Saigal [1977c].
Problem 1 is a 4-dimensional unconstrained optimization problem, originally
due to Colville [1968]. Problem 2 is a 20-dimensional version of a problem
considered by Kellogg, Li and Yorke[1976]. For both problems the grid size
in stage 1 is set equal to 2, whereas 6m+1=%6m for all m21. The starting
point was (-3,—1,—3,—1)T for problem 1, and the zero point for problem 2.

The results are given in table 6.5.2.
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Table 6.5.2. Problem 1, unconstrained optimization, E= max éfiil * ;
ieI i 'x=w (m)
n
Problem 2, 20-dimensional fixed point problem,
* *
E=max |f£w (m»—wi(m)],
iex
n
N is the total number of iterations.
Problem m N E
1 5 51 2.6
89 .037
9 107 2 107%
2 1 37 .38
3 90 1073
5 136 1077

Compared with the results of Saigal [1977c¢] it follows that the variable
dimension algorithm again takes much fewer iterations than the homotopy
algorithm. Especially, the number of iterations is very small in the first
stage. Finally we remark that for both problems the K triangulation was
used. For the impact of the A(a*)K triangulation we refer the reader to

Talman [1980].
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CHAPTER 7

THE ORIENTATION OF SIMPLICES

7.1. INTRODUCTION.

In this chapter we consider the concept of the orientation of
simplices. Each completely labelled simplex receives an index being an
element of the set {+1,-1}. It is discussed by several authors that this
index is closely related to the Brouwer'degree of a mapping (c.f. Charnes,

Garcia and Lemke [1977], Priifer [1977], Garcia and Zangwill [1°278],
/ Peitgen and Priifer [1979] and Priifer and Siegberg [1979]). The history
of the Brouwer degree can be found in Siegberg [19801].
An orientation or index theory for bimatrix games is introduced by
Shapley [1974] and is generalized by Lémke and Grotzinger [1976]. Deeper
and more abstract discussions can be found in Eaves and Scarf [1976] and
Todd [1976c]. In this chapter we discuss the relationship between oriented
simplices and fixed point algorithms. We restrict ourselves to integer
labelling. Thegeneralization to vector labelling can easily be made.
In section 2 we give some definitions and lemmas and we prove the well-
known result that the sum of the indices of the completely labelled
simplices in s is equal to one if the labelling rule satisfies the
conditions of Sperner's lemma. We will also simplify the definition of the
orientation of a completely labelled simplex. In section 3 this
simplification is used to define the orientation of a (Tu{j})-complete
simplex of a region A(T). We give a lower bound on the number of completely
labelled simplices by considering all (Tu{j})-complete simplices in A(T)
with |T|=n—1. In section 4 we prove that the variable dimension algorithm
always generates a positive oriented completely labelled simplex.
Conditions for the existence of at least k completely labelled simplices
for some odd number k are given. Using the concept of orientation it is
shown that under these conditions the variable dimension restart algorithm

can be used to generate at least k completely labelled simplices.
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7.2. ORIENTATION.

-1
Let Sn be triangulated in the standard way with grid sizem = and let o=
c(yl,ﬂ(In)) be a completely labelled simplex. Then we define the

orientation of 0, to be denoted by or o, as follows.

DEFINITION 7.2.1. The orientation of a completely labelled simplex

o(yl,n(ln)) is defined by

J Iy J

or ¢ = sign det [y ! vy ...y n+11
ji
where ji is the index such that 2(y 7) =i, i=1,...,n+l.
We also define the orientation of an In-complete (n-1)-facet T of a

simplex c(yl,ﬂ(In)) where either ¢ is completely labelled or ¢ has two

In—complete facets.

j ]
DEFINITION 7.2.2. Let T(y 1,...,y n) be an In—complete facet of a simplex

c(yl,n(In)) and let the vertices be ordered in such a way that yJi has
Jn+1

label i, i=1l,...,n. Let y n be the vertex of ¢ oppposite to T.‘Then
the orientation of T with respect to 0, to be denoted by orcT, is defined
by

i, 3 B

. 1 2

or T = sign det [y " v . .v v

1
COROLLARY 7.2.3. Let o(y ,H(In)) be a completely labelled simplex and T be

the In—complete facet of o. Then
or 0 = or_T.
[¢;

Both the definitions7.2.1 and 7.2.2 hold for any triangulation of s™.
Utilizing the structure of the standard triangulation of s™ we rewrite
tﬁe definitions in another notation. It will appear that using this
notation the definitions can easily be generalized to (Tulj}) -complete

t-simplices and T-complete (t-1)-simplices in A(T), T c I and ‘T! < n.

+1
Recall that gq(j) is the j-th column of the (n+1)X(n+l1) triangulation
matrix Q as defined in chapter 5. Then for each vertex w of the given

triangulation of s there exist nonnegative integers al(w),...,un(w)
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such that

n
w=-e(l) + I 8a.(waq(i)
. =1 3

with 6 = m_l.

In the following, for a simplex c(yl,ﬂ(ln)) of the triangulation, let ot
be the n-dimensional vector (a?,...,a;ﬂ; i=1,...,n+l, with u;=a (yl),

3

j=1,...,n.

LEMMA 7.2.4. For any simplex c(yl,n(In)) holds

n+1]

1 [1 PO |
detly . . .y = § det Lal 0‘n+1].

1

PROOF. Since yl = e(1) + Z§= Ga;q(j) we have that yl = (1—6&?,6&?—6&1,...
...,Su;_l—éu:,éa;{r. So adding successively the i-th row to the (i-1)-th

row, i=n+l,n,...,2, we obtain

1 ... 1. .. 1
det[yl. . .yn+1] = det [6 1 n+1] = §" get [ 1 n+1].
a a a o

fa™. ..o
. 1 i+l i .
PROOF. Since 0 = o (y ,n(In)) we have that y =y +6q(ni), i=1,...,n.
(+ .
Hence al Lo o = e(ni), i=1,...,n and therefore

1... 1 1 0 ... o0
det [al.. .an+1] det{ 12 1 n+1 xJ =
QA O =0 oo O -0

1 0 ... 0 ]

det [u1e<n1>... a(m)
n

The lemmas 7.2.4 and 7.2.5 allow for the alternative definitions of or o

and oroT, given in the next corollary.

COROLLARY 7.2.6. a) Let o(yl,v(In)) be a completely labelled simplex in Sn
3
and let ji be the index such that 2(v ?) =i, i=1,...,n+l. Then
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1 ... 1
or 0 = det 34 Ine1] -
o0 .. .0
jl ]n 1
b) Let 1(y ,...,¥ ) be an In—complgte facet of a simplex o(y ,w(In)) such
3 In+
that 2(y Ly = i, i=1,...,n and let y ntl be the vertex of o opposite to T.
Then
1 ...1
or T = det ; ;
g I . ujn+1

o
In the next sections we combine the orientation theory with the variable
dimension restart algorithm treated in the chapters 5 and 6. Here we use
the variable dimension algorithm of Kuhn, discussed in chapter 4, to prove
that the sum of the orientations of the completely labelled simplices in
Sn is equal to one if the labelling rule is proper. Remember that Kuhn's
algorithm is a special case éf the algorithm presented in chapter 5.
Analogously it will appear that the definition of the orientation of lower-
dimensional simplices to be given below is a special case of a more general
definition to be given in section 3.

Consider the sets Sn(k) as defined in definition 4.4.1.c, i.e. Sn(k) =
{xesn|xi=0, i=k+1,...,n+1k k=1,...,n+1. Recall that s"(n+1) = s” and

s(n) = s . Let w be a vertex of the triangulation of s™ in s (k). Since

n
n+1
w, = 0, i=k+1,...,n+l,it follows that there exist nonnegative integers aj,

j=1,...,k-1, such that

k-1
w=-e(l) + I 6Sa.q(j).
=1 7

In the following, for a (k-1)-simplex o(yl,ﬂ(Ik_l)) of the triangulation of
Sn(k), let o be the (k-1) -dimensional vector of nonnegative integers

. i .
ai,...,a corresponding to y% i=1,...,k.

k-1

1

DEFINITION 7.2.7. Let o(y ,W(Ik_l)) be an Ik—gomplete (k-1)-simplex in
j .

s (k) and let j; be the index such that &(y'%) =i, i=1,...,k. Then

or 0 = det 5 jk
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3 3

1 -
DEFINITION 7.2.8. Let T(Yy ,...,¥Y ) be an I -complete facet of a

k-1
(k-1) -simplex c(yl,ﬂ(Ik_1)) in_sn(k) and let ji be the index such that

Js .
gy Y =1, i=1,...,k-1. Let yjk be the vertex of ¢ opposite to T. Then

or T = det j
o

Of course, it follows again that,if o is I -complete and T is the I

k k-1
complete facet of o, or ¢ = oroT. Moreover we have that the determinant
is equal to + 1.

We prove now some lemmas (see also Allgower and Georg [19801).

LEMMA 7.2.9. Let o(yl,ﬂ(Ik_l)) be a (k-1)-simplex in Sn(k) having two

Ik_l—complete facets T and 1 . Then
1 2
or T = -or T .
o o
t t

PROOF., Let y 1 and y 2 be the two vertices having the same label and let
7" be the facet with vertices yJ, J=lr..osty bt 41,000k, B # 4, i=1,2.

Let ji, i=1,...,k_be the permutation of the elements of Ik such that

t :
yjk =y 2 and l(y]l) =i, i=1,...,k-1. Let seIk 1 be the index such that
t, 3 -
y 1=y s' Then
1 1 ... 1 1 1 ... 1 1
or T" = det iy js—l ty JS+1 Jp-1 Eo
o t. ..0 a o . . .0 o
and
2 T ... 1 1 1 ... 1 1
or T = det 31 jg-1 t2 js+1 jk—l t1 °
. ..0 o o .« e .0 o
Clearly or T1 = -or 12 ]
Y oty o °

LEMMA 7.2.10. Let T be an Ik_l—complete common facet of two (k-1)-

. . 1 =1 = .
simplices cl(y ,ﬁ(Ik_l)) and dz(y ,ﬂ(Ik_l)) in s7(k). Then

oxr T = -0r_ T.
g
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\
1 with vertices yi,...,yl_l,yl+1,...,yk.
Then 02 is obtained from 01 by replacing yl. It can easily be verified
that the vertex of 9, opposite to T is equal to §l = yl_1+yl+1—yl where

PROOF. Let T be the facet of o

i-1 = k if i=1 and i+l =1 if i=k. Let j1,...,jk be the permutation of the
Jx j

elements of Ik such that y = yl and R(yﬁl) =h, h € Ik—l' Then
1 ...1 1 ... 1 1
or_ T = det : 2 = -det| - . R AT R
J J J J J J J
01 ol. ..k ol okl g k +0 k -a k

—det]| 4
J
o 1.

- - - T, -i_ k=1 = .
where a = (al,...,ak_l) is such that y— = e(1) + Zj=1 Sajq(j). 1

LEMMA 7.2.11. For k < n, let T(yl,ﬂ(Ik_l)) be an I -complete simplex in

k
Sn(k). Let o(yl,ﬁ(Ik)) be the k-simplex of Sn(k+1) having T as a facet.

Then

or T = OX T.
g

PROOF. Tn (k) we have that y' = e(1) + Ii_| salq(3), i=1,...,k. In

s®(k+1) we have that yo = e(1) + x§=1 635 a(3), i=1,...,k vith

o =« 3=1,...,k-1
j

-1

a. =0 j=k.
y j

Moreover, the vertex of o opposite to T is equal to

yk+1 =e(l) + Z?—l 6&§+1q(j) with a§+1 = a?, j=1,...,k-1 and &k+1 = 1.
- s N
Let j, be the index such that %(y 1)=i, i=1,...,k and y ktl_ kel

Hence

[ | 1 1 1
1 ... 1 sttt
- - J1 Ik k| _
or T = det jl ikl = det o ". . .0 o =
(& - ee 0 ...0 1
1 ...1 1
= det| s : ; = or T. r
ajl &Jk —Jp+1 o
R
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The following theorem states that the sum of the orientafions of the Ik-

complete simplices in Sn(k) is equal to 1.

THEOREM 7.2.12. Let O(k) be the set of Ik—complete simplices in Sn(k) and

let the labelling rule be such that the conditions of Sperner's lemma are

satisfied. Then

z or ¢ =1 k=1,...,n+l.
geO (k)

PROOF. We prove this theorem by induction on k. Clearly, for k=1 we have

that e(l) is the only I,-complete zero-simplex of Sn(l) and

1
or{e(1)} = det 1 = 1. Let the theorem be true for k=j. By applying the
steps of Kuhn's variable dimension algorithm, paths of j-simplices in

Sn(j+1) will be generated such that the common facets of two adjacent

simplices are Ij—complete. Three different types of paths can occur.

a) Starting with a j-simplex in Sn(j+1) having an Ij-complete (i-1)-

simplex T in Sn(j) as a facet, the algorithm generates an I —-complete

j+1
simplex o in Sn(j+1),or conversely. By applying the lemmas 7.2.9,

7.2.10, 7.2.11 and corollary 7.2.3 we have that or T = or o.

b) Starting with a j-simplex inSn(j+1) having an I, -complete (j-1)-

3

simplex Ty in Sn(j) as a facet, the algorithm generates a j-simplex in
Sn(j+1) having an Ij—complete (j=1)-simplex T, in Sn(j) as a facet.
From the lemmas 7.2.9, 7.2.10 and 7.2.11 it follows that

or T, = -O0r T,.
1 2

c) Starting with an Ij+1 1

j-simplex 9y in Sn(j+1) is generated. From corollary 7.2.3 and the

-complete j-simplex 9 in Sn(j+1) an Ij+ -complete

lemmas 7.2.9 and 7.2.10 it follows that or 01=— or 02.

By the same arguments as in section 4.4 we have that two different paths

are disjunct. So, combining these three cases we conclude Zoeo(j+1)or g =
ZTeO(j)or T, which proves that Zoeo(k)or o=1, k=1,...,n+l.
The proof of the theorem is illustrated in figure 7.2.1. The path of Ty to

9 is of type 1, or 0, =orT = 1; the path between Ty and T4 is of type 2,
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or T, = -or T, = -1iand the paths between 02 and 03 respectively 04 and 05

are of type 3 with or 02 = -or 03 = -1 and or 04 = -or 05 = -1, Observe

that it is impossible to generate a path between two simplices with the

same orientation.

e(3)

e(2)

2

Figure 7.2.1. Illustration of theorem 7.2.12; or{e(l)}= 1;

or T, =or 1, =1, 0r 1, =-l; or g, =or o =oro. =1,

2 1 3
or 0, = or 04 = =1.

In particular theorem 7.2.12 holds if k=n and k=n+l. Since we have a
proper labelling there are no In—complete simplices in S?, i#zn+l. So we
have that the sum of the orientatipns of the completely labelled simplices
of s" is equal to the sum of the orientations of the In—complete simplices

in bd Sn. A more general result can be found in Priifer and Siegberg [1979].

7.3. THE VARIABLE DIMENSION RESTART ALGORITHM.

In this section we apply the concept of orientation to the variable
dimension algorithm treated in chapter 5.
Let the arbitrarily chosen grid point v be the starting point of the

variable dimension algorithm. Recall that for any TeIn 1 |T|<n,the

+
regions A(T) are defined by
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a(T) = [xesnlx = v+ I A.q(j) for nonnegative numbers Aj’ jeT}.
jel

For any grid point we A(T), |T| = t, there is a unique t-dimensional
vector & of nonnegative integers aj, j € T, such that
W=V + ZjeTGajq(j). In the following, for a simplex c(yl,ﬂ(T)) in A(T), let

ot be the t-dimensional vector (a; ,...,a; ﬂ-such that
1 t
yl =v + %, Sa- q(s.),
s, j
sjeT 3j

where (sl,...,st) is the permutation of the elements of T such that

<

si Si+1' i=1,...,t-1.

DEFINITION 7.3.1. Let c(yl,n(T)) be a (Tu{j})-complete t-simplex in A(T),

3 £ T and let j1,...,j

be a permutation of the elements of It+1' such
Jt+1

t+1 5

that 2(y ) =3j and 2(y i) = sy i=1,...,t. Then the orientation of
o(yinr(T) is -
1 .. .1 1
or 0 = det . . . .
aj e .. It ujt+1

Observe that this definition is a straightforwardgeneralization of
definition 7.2.7. In particular if v = e(l) we have that sT(t+1) = A(It),

whereas an (Itu{j})-complete simplex of S"(t+1) must be I, —complete.

t+1
Of course,or ¢ = + 1. Definition 7.3.1 is illustrated in figure 7.3.1.
Remark that the orientation as given in definition 7.3.1 depends on the
starting point v. In general we have that if the orientation of a

(Tu{j}) -complete simplex is defined for some v, it is not defined for a

starting point w # v. For example in the figure, t; is a ({1,2})-complete

simplex inA( 1-). However if the point w = (%q %n %OTis chosen as the
stérting point, Tl is a facet of a simplex in A( 1,3 ) and or 11 is not

defined. Of course the orientation of a completely labelled simplex is
always defined by definition 7.3.1 since for any v there exist a j such
that 0 is a completely lahelled simplex of A(In+1\{j}). We prove that
the orientation of a completely labelled simplex as defined in 7.3.1. is

independent of the starting point v.
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e(3)

e(l) e(2)

Figure 7.3.1. {v} is a {1}-complete simplex in A(@),or {v} = 1;

T, is a {1,2}-complete simplex in A(1), or =L
12 is a {2,3}-complete simplex in A(2), or 12 = -1,
o is a {1,2,3}-complete simplex in A(2,3), or ¢ = -1,

THEOREM 7.3.2. The orientation of a completely labelled simplex as

defined in 7.3.1 is consistent with the orientation as defined in 7.2.1.

PROOF. Let o(yl,ﬂ(T)) be a completely labelled simplex jn A(T) with

T = In+1\{k} for some k € I 1e Let ji be the index such that Q(yji) =i,

. . +1 X
. i_ i i i i T _
i=1,...,n+l. Let o (al,....,ak_l, ak+1,....,an+1) be the n-vector such
that B
(7.3.1) Yy = v+ I Sartq(d).

j#k

Then by definition 7.3.1,
1 ... 1 1 ... 1 1

j j
. a3n+1 a k

(7.3.2) or 0 = det

ujl. . .ajk—l ajk+1

. .

We prove that definition 7.2.1 is eaquivalent with (7.3.2). From
(7.3.1) it follows that for i = 1,....,n+1,
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i i i

Yy =V, T Gah + Gah_l h 2 k, k+1
i i _

yh = vh + Gah_l h =k
i i

Yy =Y, T Gah h = k+l1

with the convention that h-1 = n+1 if h=1 and k+1 = 1 if k=n+l. So the h-th

element of the i-th column of the matrix [yjl. . yjn+1] becomes

v, - Gail + 6@1{1 h=1
vh-dail+6a::1 h=2,...,k1

ji
Vi + Gotk_l h =k

ji

Virr T %y h =kl

ji ji
vh - 6dh + dah_1 h = k+2,...,n+l.

By adding successively the h-th row to the (h-1)-th row, h = k,k-1,...,2,
the first row to the last row and then successively the i-th row to the
(i-1)-th row,i = n+l,n,...,k+2,we obtain that or o is equal to the sign

of the determinant of the matrix with the h-th element of the i-th row

equal to
]
ZE v, + So i h=1,...,k
J= J h-1
R ST h = kl
j=1 7j

3.
k n+1 i
I, .+ I .+ 8 = k+2,... .
j=1 vj j=h vj ah—l h k+2, yn+l

It follows now immediately that the orientation of ¢ as defined in

definition 7.2.1 becomes
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J1 Jn+1
0tn-l-l ° ¢ ' “n+il
I ajn+1
.. ey
j1 ujn+1
Oy e e ey
. n
or 0 = sign ¢ det 1 1 =
ol In+1
k+1 ° ot Tk
g n+l
o . . . .o
Lo no__|
1 ... 1 1 ... 1 1
= det . . . N . .
Jge— J J J
ajl. Lokl gkl el Tk 0

Besides the orientation of a (Tu{j})-complete simplex in A(T) we also

define the orientation of a T-complete facet of a simplex in A(T).

J |
DEFINITION 7.3.3. Let T(y 1,...,y t) be a T-complete facet of a simplex

o(y%,ﬂ(T)) in A(T) and let the vertices be ordered in such a way that
Jj J
2(y H = si, i=l,...,t and y t+l is the vertex of o opposite to 1. Then

the orientation of T with respect to 0 is defined by
1 ... 1

or T = det j1
o . . .

T+t
a

COROLLARY 7.3.4. If T is the T-complete facet of a (Tu{j})-complete

simplex o in A(T) then or T = or o.

The following two lemmas are a straightforward generalization of the

lemmas 7.2.9 and 7.2.10. Therefore we omit the proofs of the lemmas.

LEMMA 7.3.5. Let U(yl,ﬂ(T)) be a simplex in A(T) having two T-complete

facets Tl and Tz. Then

1 2
or TO = - or T .
o
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LEMMA 7.3.6. Let T be a T-complete common facet of two simplices ©

1 and o
in A(T). Then

2

The next lemma is a straightforward generalization of lemma 7.2.11. The
proof however has to be adapted since the vertices have to be reordered, if

a (Tu{j})-complete simplex in A(T) is extended to a simplex in A(Tu{jl).

LEMMA 7.3.7. For IT| < n-1, let T(yl,ﬂ(T)) be a (Tu{j})-complete simplex in
A(T). Let U(yl,ﬂ(TU{j})) be the simplex in A(Tu{j}) having T as a facet.
Then

oY T = Or T.
g

~ PROOF. We have that yl = v + ZS T Gu; q(sh), i=1,...,t+1, whereas the

h h

vertex of o opposite to T is equal to yt+2 = y?+1 + 8q(j). Let %_ be the

Ji J
index such that 2(y l) =Sy i=1,...,t and 2(y t+1) = j. Then

1. .1 1
% P | .1 i1 Jetl 42
or T = det| j 3j = det|o e e .0 o .
1 t t+1
o c . .0 o o ... 0 1

Let i, 0 £ i £ t, be the index such that s, < j < si with the convention

i +1
that s < j if i=t and j < Sy if i=0. Then, by definition 7.3.3, or T =

1 ... 1 1 1 .. .1 1]
ajl aji'1 ajt+1 IR s ujt 2
'51 .Sl- .Sl .51 .Sl ‘51
Otj 1 OLj i-1 aj t+1 aj i+1 etjt 0tt+2
s; e s; s; si c ot s; si
det 0 ...0 0 0 ...0 1 .
O Pimt Fewt ik Je B2
Si+1 Sivt Siv1 Sint i+t Si4t
.-St St St St St St—

The lemma follows now immediately. - 0
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We give now some results, which can be viewed as a generaliation of theorem
7.2.12. The next theorem states that the sum of the orientations of the
(Tu{3})-complete simplices in A(T) is equal to the sum of the orientations of the
T-complete simplices in UkeTA(T\{k})' For a fixed v, let H(T) be the set of
(Tu{j})-complete simplices in A(T) (j¢T), and let H(T) be the set of
T-complete simplices in UkeTA(T\{k})'

THEOREM 7.3.8. Let the labelling rule be such that the conditions of

Sperner's lemma are satisfied. Then

z or 0 = Z or T.
oeH(T) teH(T)

PROOF. The proof of this theorem runs along the lines of the proof of
theorem 7.2.12. By applying the variable dimension restart algorithm paths
of simplices in A(T) are generated having T-complete common facets. Again

three cases can happen.

a) Starting with a t-simplex in A(T) having a T-complete facet T in
A(T\{k}) for some k ¢ T, a (Tu{j})-complete simplex o in A(T) is
generated,or conversely. By corollary 7.3.4 and the lemmas 7.3.5,

7.3.6 and 7.3.7 we have that or T = or O.

b) Starting with a simplex in A(T) having a T-complete facet T in

A(T\{kl}) for some k, € T,a simplex in A(T) is generated having a

T-complete facet T, in A(T\{kz}) for some k, € T. By the lemmas

2

7.3.5 =7.3.7 we have that or Ty = 70T T,.

2

c) Starting with a (Tu{j,})-complete simplex o, in A(T) with j, ¢ T,a
1 1

1
(TU{jz})-complete simplex 9, in A(T) is generated (j2 £ T) and from
corollary 7.3.4 and the lemmas 7.3.5 and 7.3.6 it follows that

or g, = -or o,.

The theorem follows now immediately. 0
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Observe that bd A(T)=(bd(sn)nA(T))U(UkeTA(T\{k}H. Since the labelling
rule is proper there are no T-complete (t-1)-simplices in bd(sn)nA(T). So
theorem 7.3.8 states that the sum of the orientations of the T-complete
simplices in bd A(T) is equal to the sum of the orientations of the
(Tu{j})-complete simplices in A(T) if the labelling rule is proper. Assume
now that the labelling rule is not proper and let H(T) be the set of the
T-complete simplices in bd A(T). Let T be an element of H(T). If, for some
k €T, v is in A(T\{k}), or 1 is defined by definition 7.3.1. If T is in
bd(Sn)nA(T)l let o be the simplex in A(T) such that t is a facet of ¢ and
define or T by or 1 = orér (see definition 7.3.3). Then we have the
following corollary, whose proof is analogous to the proof of theorem
7.3.8.

COROLLARY 7.3.9. I or 0 = § or T.
oeH(T) teH(T)

'THEOREM 7.3.10. Let T(k) be the collection of sets T ¢ I_ , such that
ITI =k, k € n. If the labelling rule satisfies the conditions of Sperner's

lemma, then

z z or 0 =1 for k=1,...,n.
TeT (k) oeH(T)

PROOF. Again the proof follows by induction on k. For k=0 we have that
{v} is the only {#v)}-complete simplex of A(¥) and @ is the only element

of T(0). Moreover, or {v} = det [1] = 1. Hence

b I oro= L oro=or {v}=1.
TeT(0) oeH(T) oeH (@)

Let the statement be true for k=j. We prove that it also holds for k = j+1.
From theorem 7.3.8 it follows that

I z or 0 = z z or T.
TeT(3+1) oeH(T) TeT(3+1) 1eB(T)

Moreover we have that
% or T = I z or O .

el (T) heT ocea(T\{h})
o is T-complete
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Hence

z z or 0 =

2 ) z % or ¢ =
TeT(3+1) oeH(T)

z X
TeT(§+1) heT gea(T\({h})
o is T-complete

z X z or 0 =
TeT(3) ifT oen(T)
o is (Tu{i})-complete

b z oro=1. O
TeT(3) oer(T)

By taking v = e(l) we have that T = Ik is the only feasible element of

T(k), i.e. A(T) =@ for all T e T(k), T = I, . Hence theorem 7.2.12 is a

special case of theorem 7.3.10.

THEOREM 7.3.11. Let N(S") be the number of completely labelled simplices

in Sn. Then

n n+1
N(s™ =z a,]
j=1
where d, = . z or o.
csH(In+1\{j})
PROOF. With corollary 7.3.9 it follows that z or ¢ =
oeH(In+1\{3})
= b or T = d,. Moreover, if oeH(I ,\{j}), then o is
ot . Jj n+l
T€H(In+1\{]})

completely labelled. Hence the number of completely labelled simplices in

A(In+1\{j}) is at least equal to |dj . The theorem follows by adding over

all j eI . 0
n

+1

7.4. A SFARCH TO AN ODD NUMBER OF COMPLETELY LABELLED SIMPLICES.

In the previous section we defined the orientation of a (Tu{j})-
complete simplex in A(T). However we restricted ourselves to the standard
triangulation of Sn. In this section wegeneralize the definitions 7.3.1

and 7.3.3 for simplices of a PK, triangulation of R". P is an nx(n+1)

§
triangulation matrixsi.e. p(nt+l) = —2?51 p(j) and the nxn matrix consisting
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of the first n columns of P is nonsingular. A possible choice is P = U
(c.f. section 6.2). Recall that the regions A(T) depend on P and are
defined by

a(l) = {xeRn|x =v + I A.p(j) for nonnegative numbers A., jeT}
jeT J J
where the grid point v is the starting point of the variable dimension
restart algorithm.

Let T be a subset of In+1' lTl < n, and (51:---,st) the permutation of

the elements of T such that s, < s, .,
j j+1

of a (Tu{j})-complete simplex o(yl,ﬂ(T)) in A(T) and the orientation of a

j=1,...,t-1. Then the orientation

T-complete simplex T with respect to 0 where T is a facet of the simplex

G(yl,w(T)) in A(T), are defined as in the definitions 7.3.1 and 7.3.3
. X [T
respectively,with o = (u; ,...,a: )  the t-vector such that
1 t
yl =v+ 1 6o p(s.) i=1,...,t+1.
S, J
sjeT j

* * *
THEOREM 7.4.1. For some T ¢ |T"| = n, let o(yl,W(T )) be a

I '
n+l1
completely labelled simplex in A(T*) generated by the variable dimension

restart algorithm. Then or ¢ = 1.

PROOF. The proof is in fact constructive. Observe that the algorithm starts
with the zero-dimensional simplex {v} and that or{v} = 1. For some h, let
Tl,...,Th with Tt o {2(v)} and R be the sequence of subsets of L
such that the algorithm generates t—-simplices (t21) in successively

A(Tl)' A(TZ)I---,A(Th) . Define T0 = @ and Th+1 =

-

. P ‘any i
n+l or < Ly

1 <4i<h, we have one of the following cases

a) Tj'_1 cThc Ti+1. Then the dimension is increased by changing from
7i-t to Tt and from T- to Ti+1. Starting with a simplex in A(Ti)

having a Ti-complete facet T in A(Ti_i), a Ti+1—compiete simplex o of

A(Ti) is generated. By corollary 7.3.4 and the lemmas 7.3.5,7.3.6

and 7.3.7, we have that or 1 = or o (If i=h, the dimensionis not increased).

b) Tl—1 c T and Tl+1 c T*. Then the dimension is increased by changing
from 7i-t to T and decreased by changing from T~ to Tl+1. Starting
in A(Tl_l), a

. 1
. ) "
simplex in A(TY) is generated having a Tl—complete facet 1, in AT 1).

with a simplex in A(Tl) having a Tl—complete facet T
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By the lemmas 7.3.5.-7.3.7r we have that or T, = -or T,.

Tl+1 cTH e Tl_l. The dimension is decreased by changing from Tl_1 to TH
i+1
i+

c)

i .
and from T~ to . This case is the reverse of case a. Starting with

a Tl_l—complete simplex ¢ in A(T") a simplex in A(TY) is generated

. " .
having a Tl—complete facet T in A(Tl 1). Again we have that or o = or T.

. -1 . "
QT T ana T < T**'. The dimension is decreased by changing from

i+1
i+

7i-t to T and increased by changing from T- to . Starting with a

i1 . . -
T -complete simplex o, in A(TY), a Tl+1—complete simplex o, in A(TY)

1 2
is generated. From corollary 7.3.4 and the lemmas 7.3.5 and 7.3.6, it
follows that or o, = -or o,.

Observe that the orientation changes in the cases b and d. Leti1,...,ir,with

C o< s

T3 S Ty
i i .o i ‘.< .<..

Then we must have a sequence of indices hl' ’hr with l] h] 1j+1,

j=1,...,x-1 and hr > ir for which case d occurs. By these arguments it

j=1,...,r-1, be the sequence of indices for which case b occurs.

follows that or ¢ = or{v} = 1. 0

2 .
Let P1 and P~ be two nx{n+l) triangulation matrices such that for some i

and i2 holds

1

1.0 2. . .
p (3) =p (3) Jo# iy,
(7.4.1)
1, _ 2 1. _ 2.
p (11) =p (12) and p (12) =p (11)
h .. . . h
where p (j) is the j-th column of P, h=1,2.

So P2 is obtained from P1 by interchanging the columns i, and i2. Clearly,

1
each simplex of the PlKG triangulation is a simplex of the P KG

triangulation and conversely. The next theorem states that the sign of the
orientation of a completely labelled simplex changes if two columns of the

triangulation matrix are interchanged.

THEOREM 7.4.2. Let P1 and P2 be two nX(n+1) triangulation matrices such
that (7.4.1) holds. Let 0 be a completely labelled simplex and let orhc

be the orientation of o if Ph is the triangulation matrix, h=1,2. Then
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1 2
or g = -or o.

PROOF. In theorem 7.3.2 it was proved that the orientation of a completely
labelled simplex, as defined in definition 7.3.1, of the standard
triangulation of Sn is independent of v. It can be easily verified that
this theorem also holds for a completely labelled simplex of a PK

§
. . n fo s
triangulation of R . Therefore we can choose v such that o is in some

region A(T) (|T| = n) with i, and i, both an element of T. For some vertex
yl of o let ahl = (ugl,,....,ahl)Tbe the vector such that
1 sn
yl =v+ I Gahl ph(s.) h=1,2.
T S j
S.€ 3j
J
. . L o
Clearly, for all i, i=1,...,n+l, a}l=a?l for all jzil,i2 whereas uil=a£l
L s . . 1 2
and u§l=afl. Hence ol is obtained from all by interchanging two elements.
2 1 ) j

J-
So, with j,,...,3_,, such that (y Y)=s,, 1 < i < n and 2y 0+ ly=n, neT,

Now we have a tool to generate more completely labelled simplices (if
exist) by using two matrices P1 and P2 such that (7.4.1) holds. Assume
that the variable dimension restart algorithm generates a completely

labelled simplex 01 with PIKG

theorem 7.4.1 we have that orlo1 = 1 and by theorem 7.4.2 orzc1 = -1,

Let the variable dimension restart algorithmnow be applied with PZK(S as

the underlying triangulation. Clearly by

underlying triangulation. Then either a path of simplices going to

infinity is generated or a path which terminates with a completely labelled
2" Clearly or202 = 1 and hence 02 # 01. Moreover, a search for

a third completely labelled simplex can be made. Therefore, let Th

simplex o

(IT?| = n) be the set of indices such that cj € A(T?) if PhK6 is the
underlying triangulation, h=1,2. So

1, _ . . 1
Tj if iyri, e Tj

1 .. . ce 1
(TjU{lz})\{ll} if 12.1 Tj

-
e o N
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2 1 .. . ce s 1
Tj = (TjU{ll})\{lz} if i, # Tj-

2
Now using the P K6 triangulation and starting with the completely labelled

simplex o, by replacing the vertex with the label k, k¢Tf, the algorithm

generatesla sequence of simplices of variable dimension such that the
common facet of two adjacent simplices in A(T) is T-complete. Clearly, by
theorem 7.4.1 this sequence of simplices cannot terminate with the
zero-dimensional simplex {v} since or201 = -1. Hence either a sequence of
simplices going to infinity is generated or the algorithm terminates with
a completely labelled siﬁplex 03 # Oy Using analogous arguments as in the
proof of theorem 7.4.1, it follows that or203 = —orzc1 = 1. However using

the standard arguments, o, z dz,since there exists a path of simplices

which starts with {v} and terminates with 02. Therefore three completely
labelled simplices are generated. The method is illustrated in the

figures 7.4.1 and 7.4.2. We have that

For i=1,2, we define A" (T) by

At (M = {xeRn|x=v+ % A.pl(j) for nonnegativenumbers Aj' jeT}.
jeT

In figure 7.4.1 the regions Al(T) are given. Starting in v and using the
PIK triangulation the completely labelled simplex 01 is generated. Observe
that Ti = {1,3}. Hence Tf = {1,3}u{2}/{1} = {2,3}. Using the P2K

triangulation and starting with o, by replacing the vertex having label 1,

1
the algorithm generates the completely labelled simplex O3r as is
illustrated in figure 7.4.2. Moreover, starting from v the completely

labelled simplex 0, is generated.

2

We give now a condition for the existence of at least k completely labelled

simplices, k=1,3,5,....

THEOREM 7.4.3. Let f be a continuous function on R'. Assume that for some

integer r there exists an increasing sequence of positive numbers



al(3)

A" (1,2)

A" (2,3)

al(

1
(11,/3)

Figure 7.4.1. Using the P1K triangulation o4 is generated.

aZ (1)
‘ 2 /3
(¢} 2
1|7]3 A" (1,2) %
g
1,1 2|, 13
2 4 !
A (1,3) v L 1 3/2 $ A2(2)
1 31/ /
L
2 2
A2(3) 9
a%(2,3)
V4
A A

Figure 7.4.2. Using the P2K triangulation o

2

and o, are generated.
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v

ul,uz,...,ur and that there exist a number €>0 and two indices ii,ig, such

that for all x e én(uh), h=1,2,...,r,holds that

a) For some i, xi=—uh and fj(x)-xj > ¢ for at least one index
J € In
b) For some i, xi = uh and we have that
(1) f.(x) - x, < -e for all j € I
J J S n
or
(ii) there exists at least one index j, j#s,with
fj(x)—xj > fs(x)—xs + €, where s=i in the case that h
is odd and,if h is even, s=i when i # il'i7'

s=12 when 1=11 and s=11 when 1=12.

Let R® be triangulated by K.. Then, if § is small enough,at least 2h-1

§
completely labelled simplices in conv(ﬁn(uh)), h=1,2,...,r,can be generated

by applying the variable dimension restart algorithm.

PROOF. Let P1 be the nx(n+l) matrix with pl(i) = e(i), ieIn and
pl(n+1) = —-e and P2 the nx(n+l) matrix with pz(i) = pl(i) for i¢i1,i2,
p2(i1) = pl(iz) and p2(i2) = pl(il). Clearly, both matrices induce the K

triangulation of R®. Let the grid size § be so small that

sup  max [fi(x)—xi—fi(y)+yi|_< he
(x,y) €0 1eIn

for every simplex o such that o n ﬁn(uh) # ¢ for some heIr. Clearly, if h is

odd, the conditions of theorem 6.3.2 are satisfied. So with PlK(S as

underlying triangulation and starting in conv(ﬁn(uh))the algorithm generates
a completely labelled simplex in conv(ﬁn(uh)), h=1,3,5,...,r(or r-1).
However recall, that the convergence proof is based on the fact that if
0(w1,...,wt+1) is a simplex in A(T) and o n én(uh) # ¢, there exists an
index i € T such that E(Wk) z i, k=1,...,t+l. It can be easily verified

that this argument also holds if h is even with P2K the underlying

y ,
triangulation. Hence, starting in conv(Bn(uh)) and with PlK6 the underlying

triangulation, where i=2-h(mod 2),the'algorithm generates a
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completely labelling simplex in conv(ﬁn(uh)). Now the theorem follows by
induction on h. Starting in a grid point v in conv(ﬁn(ul)) and using the
1
i K6 ~n “n 2 !
in conv (B (ul)). Clearly v and 01 are in conv (B (u2)). Hence using the P Ké

triangulation the algorithm generates a completely labelled simplex o

triangulation and starting with v respectively oithe algorithmgenerates

completely labelled simplices 0, and ¢, in conv(ﬁn(uz))with, as argued

3
above, o, # 0o, if i # j.

1 J
Now, let 02k—2 and G2k-1 be the completely labelled simplices in

~n . .
conv(? (uk)) found by the algorithm. Clearly 02k—2 and Opg-1 2¥e in

conv(Bl(u )) . Now using the PlKG triangulation where i=k(mod 2)+1, and

k+1

starting with o respectively o as described above, the algorithm

2k-2 2k-1

. . . ~n
generates two completely labelled simplices Tox and Oopesq i1 conv (B (uk+1».

If k+1 is odd we have that there exist paths of simplices between {v} and
Ogr Oppp @nd Oy, h=1,...,%-1, and Opp—g 304 Opp ge h=1,...,%-1. Hence

UZk #z o, 1 < 2k,and 02k+1 # Ui' i < 2k+1. If k+1 is even we have that

there exist paths of simplices between {v} and Oyr Ty and O g4’

h=1,...,%(k-3) and O ph-3 and T ppn1" h=1,...,%(k-1), which again implies

" .
that 02k oi, i < 2k,and 02k+1

least 2h-1 completely labelled simplices can be generated in
conv(én(uh)). 0

# oi, i < 2k+1. Hence, for h=1,...,r, at

COROLLARY 7.4.4. If the conditions of theorem 7.4.3 are satisfied there

exist at least 2h-1 completely labelled simplices in conv(ﬁn(uh)):h=1.--,r.

Note that the conditions of theorem 7.4.3 can be easily modified. For
example the theorem is also true if in b(ii) the condition for h is even
and h is odd interchanged. Approximating fixed éoints, it is worthwile

to investigate if the function satisfies conditions similar to those of
theorem 7.4.3. Finally, we remark that a condition for the existence of

two fixed points is given‘by Allgower and Georg [1980]. They present also a
simplicial algorithm to approximate both points. The algorithm is based

on an idea of Jeppson [1972].
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CHAPTER 8

A CONTINUOUS DEFORMATION ALGORITHM WITH ARBITRARY
REFINEMENT FACTORS

8.1. INTRODUCTION.

In chapter 4 we discussed the continuous deformation algorithm
developed by Eaves [1972] and Eaves and Saigal [1972], to compute a fixed
point of a function or mapping. These authors constructed a triangulation
of Snxfl,m) respectively Rnxrl,W). Restricting ourselves to the first set,
Snx{dk} was triangulated with grid size d;l by the standard triangulation,
where dO’dl"" is an increasing sequence of integers with do=1. Then for
each i, i=0,1,...,SnX[di,di+1] was triangulated by .(n+1)-simplices such
that the vertices of these simplices are grid points in Snx{di} or
Snx{di+1}. Until recently, only triangulations were known such that
di+1ﬁiis2 for all i (see Todd [[1976al). This restriction is a serious
drawback in comparison with restart methods.

In this chapter, which is based on Van der Laan and Talman [1980b1l we
present a continuous deformation algorithm which allows for an
arbitrarily chosen factor of incrementation ki=di+1/di, i20. In

chapter 5 we showed how the variable dimension restart algorithm can be
interpreted as an algorithm with n+l points on an extra level. In this
interpretation S"x{0} is triangulated with grid size one, S"x{1} with an
arbitrarily chosen grid size m-_1 and Snx[0,1] is triangulated by n+l
simplices such that all vertices are grid points in S"x{0} or s™x{1}.

Van der Laan and Talman used this triangulation of SnXFO,l] to construct
a triangulation of Snxfl,m) such that the factors di+1/di' i=0,1,..., are
arbitrary integers larger than one. Using this triangulation in a fixed
point algorithm the levels di can be chosen throughout the algorithm, i.e.
d is chosen as soon as a completely labelled simplex om on level dm is

m+1

found. Moreover we have that the grid point on level d connected with

mt+1
the vertices of cm on level dm is an arbitrarily chosen grid point v(om) of
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o x{d }. Of course, the choices of d and v(0 ) are done on ground of
m m+1 m+ m

the information obtained from the compleéely labelled simplex cmx{dm}. As
soon as they are chosen, the triangulation of SnX[dm,dm+1] is fixed
throughout the remaining of the algorithm.

In section 2 the triangulation of Snx[l,w) is described. In section 3 we
give a concise description of the algorithm, whereas the replacement
steps are given in section 4. In section 5 we discuss the application on

n . .
R'. In section 6 some remarks are made and some numerical results are

presented.

8.2. TRIANGULATION OF S'x[1,w).

Let dO'dl"" be a sequence of igcreasing integers such that d0=1
and di+1=kidi’ i=0,1,..., with ki an arbitrary integer larger than 1. In
the following we triangulate, for some m, the set Snx[dm,dm+1] such that
all grid points arepoints of Snx{dm}or-snx{dm+1L Combining the
triangulations of SnX[di,di+1] over all pairs (di,di+1) we obtain a
trianqulation of s™x[1,%). For i=0,1,... let G, be the standard
triangulation of Sn with grid size d;}. So, by the definitions 3.4.1 and
5.2.1, G is the collection of n-simplices c(yl,n(T)) (TtIh+1,|T]=n)
with vertices y1,...,yn+1 such that

a) the components of y1 are a multiple of d;l

b) W(T)=(w1,...,ﬂn) is a permutation of the elements of T

c) yi+1=yi+q(1ri)/dm i=1,...,n,
where g(j) is the j-th column of the (n+1)X(n+l1) matrix defined in section

1

n+l \
5.2. Observe that y =y +q(1rn+1)/dm where ﬂn is the element of In not

+1 +1
in T. Therefore, in the following an n—simplex‘b(yl,w(T)) is also denoted
1, . _ .
by o(y”,m{I_ ) where w(In+1)—(n(T),nn+1) with {ﬂn+1}—1n+1\T. As pointed
out in section 5.2 we have that every simplex has n+l representations,
since each vertex can be chosen to be y{ However, it will appear that it
is more appropriate to represent an n-simplex in a unique way. This can be
done as follows (see also Eaves and Saigal [1972]). For a given grid point
T

w of Gm,let u(w)=(a1(w),...,an(w)) be the n-vector with

h

ah(w)=(1—.2 wj)dm, h=1,...,n.

j=1

Clearly, every ah(w) is an integer. Now we define a "labelling function"

s from the set of grid points of Gp to the set I .y by
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n
s(w)=1+( & oy (w) )mod (n+1) .
h=1

LEMMA 8.2.1. Let U(yl,n(I )) be an n-simplex of Gm. Then, for all

n+1 I
ieIn+1, there exists an index ji such that s(y Hy=i.

PROOF. We prove that for each j, j=1,...,n,
(8.2.1) s(y3 ) =s (v mod (n+1) + 1.

Then the lemma follows immediately. For some j, let s(y])=i. First suppose

j+1_ 3 j+1_ 3 1 J+1_ 3 1
#n+ = Z = - = = +i
that j n+1. Then y] y] ’ h j, j+1 y] y] d ' h "j and y] y] d ’

h=nj+1. Hence ah(y3+1)=a (yJ)for h=ﬂj and op (yj+1)=a (y])+1for h=ﬂj.
j+1
Therefore Zh 1 h(y )= 1+Zh 1 h(y ), which proves that (8.2.1) holds. If
_ j+1_ 3 j+1 3, -1 j+l_ 3 -1
j—n+1 we have that yh =y~ , h#l,n+1, y1 -y1+d and yn+1— el dm .
Hence a (yJ+1)=a (y3)-1, h=1,...,n, and therefore zh 1o (¥ vty
= (y )+1-(n+1), which again proves that (8.2.1) holds. 0

h=1%

The lemma means that each simplex is "completely labelled" with respect to
the function s(w). Moreover if s(y1)=1 we have that s(yJ)=j, j=1,...,n+l.

In the following we assume that every n-simplex o(yl,w(I )) of G is

n+1
represented in such a way that s(y )=1. Thls representation is called the
s-representation of a simplex o. Let o (y ,W(I )) have the

s—-representation and let ¢ (yl,w(I )) be the adjacent simplex, obtalned

2
from 01 by replacing yl. Then 02 has also the s—-representation if y is
replaced according to table 8.2.1. This can easily be seen by observing

that §h=y h#i. Hence s(§h)=s(yh), h#i and therefore also s(y )=s(y).

Table 8.2.1. s is the index of the vertex to be replaced.

1
l y  becomes L, ﬂ(In+1)becomes
n+1
s=1 , y1 +q(1r1)/dm (m +1,w P ,np
2<s<n+1 y (m ""'"s 2,ﬂ ,ws 1’“s+1""’“n+ﬂ
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We are now ready to triangulate Snxﬁdm,dm+1] for some given m. First we
take a particular simplex om(u1,8(1n+1)) of the triangulation Gm, called
the starting simplex on level dm' with u” and B(In+1) chosen in such a way

that we have the s-representation of Gm' Then we choose nonnegative

. m m . _ .
integers Al""'kn+1 with sum equal to km—dm+1/dm and we call the point
i mi
v(io ) = T k A,u
m g m i

i=1

the centrepoint of O Observe that v(cm) is a grid point of G

m+1°
Applying the continuous 'deformation algorithm to approximate a fixed

point of a function or mapping, Um is the first completely labelled
n-simplex generated by the algorithm on level dm and Ag; 0<i<n+l1, are

chosen such that v(cm) is the grid point of Gm+1 nearest to the

*
approximate fixed point x in om. Moreover, in practice we have that km is
not predetermined but that k is chosen as soon as om is generated. It will

appear that the trlangulatlon of S de ,d ] is determined by the numbers
AT A"
1""' n+1 n+1

s(y )=1, i.e. T has the s-representation. To triangulate SnX[dm,dm+1]

1
we first triangulate T(y ,W(I f)x[d ,d ] and then we prove that

. Let T(y (I )) be an arbltrarily chosen simplex of Gm with

the union of the trlangulatlons of TX[d ,d ]over all n-simplices T of G

is a trlangulatlon of S er d +1] In the sequel we call, the grid point
n+l -1 . 1
v(T) Z 1km Aiy thecentrep01ntofthe simplex T(y ,ﬂ(In+1)). The

triangulatlon of Snx[dm,dm+1] will be such that, for all T of G_,
the (n+1)-simplex which is the convex hull of TX{dm} and V(T)X{dm+1} is an
(n+1) -simplex of this triangulation. So, in particular we have that the

(n+1)—51mplex1pm, being the convex hull of omx{ém}and'v(cm)X{dm+1} is a

simplex of the triangulation.

To triangulate the set T(yl,ﬂ(In+1))X[dm a +1] we define for any proper

ot
subset T of I 41 the regions A (T) by

ot
A (T)={X€TIX=V(T)+ I u.q(m,) for positive numbers u., jeT}
seT ] J J
je
Now a triangulation of TX[dm,d ] is obtained by connectlng all the grid
points x of Gm in 8%(T) on level d

+1 m+1
level d . The proof that TX[d ,d ] is indeed triangulated is analogous

with the vertices y , 1T, on

totheproofof theorem 5.5.1. In fact, the triangulation of TXFd d ]is
analogous to the triangulation of S XrO 1],aS(iescrlbedajxsectlon 5. 5 In

comparisonwiththedefinitionoftheregionsA(T)insection 5.3, the regions
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l‘;T (T) are adapted for the fact that for the simplex 1'(y1 ,ﬂ(In+1) ), 1r(In+

arbitrary permutation of the elements of In+1,whereas s can be considered

1) is an

as the simplex 0(e(1),§(In+1)) of G0 with Ei=i, i=1,...,n+l. For a simplex

1 . _ . T :
o(y ,v(In+1)) with W(In+1)—(1,3,2) the regions A (T) (the closure of

ot
A (T) in 1) are given in figure 8.2.1.

1 2" (3) 2

a'(1,3)
\/

Figure 8.2.1. The regions A" (T) where T(yl,ﬂ(I
1)=(1,3,2).

n+1)) is a simplex with

T (In+

Observe that v(r)x{dm+1} is connected with all the vertices yl, ieIn

+1
Hence,conv(v(r)x{dm+1}urx{dm}) is indeed a simplex of the triangulation.

Moreover, we have that for m=0 G0 consists of only one simplexsbeing Sn
itself. It can easily be seen that s(e(i))=i, i61n+1. So it follows
immediately that the triangulation of Snx[do,dl] is identical to the

triangulation of s™x[0,1] (section 5.5).

]

m’ m+1

THEOREM 8.2.2. The union of the triangulations of T(yl,n(I +1))X[d
. . 1, . n

over all n-simplices T(y ,n\In+1)) of Gm triangulates S X[dm,dm+1].

PROOF. The triangulation of Tx[dm,dm+1] is well-defined for any simplex Tt

of Gm' Let T1 and T2 be two adjacent n-simplices of Gm and let x be a grid

point of Gm+1 in the common facet. Then it is sufficient to prove that,if

in the triangulation of le[dm;dm+1],x is connected with a vertex y of

jlnrz, x is also connected with y in the triangulation of TZXEdm'dm+1]'
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1
Let Ty be T1(V ,Y(In+1)) and let T, +1

simplices the s-representation. Since T and T, are adjacent, there exists

a unique index j such that v =w', i#j and v;=8, i#j-1,j with the

be T2(w1,6(In )). We have for both

convention that j-1=n+1 if j=1. Moreover 6j—1=yj and 6j=Yj-1
vertices y in Tlnrz have the same index, i.e. if for some index i y=vl we

have that y=wl for the same index i. Therefore we only have to prove that

. So all the

. oTq o 0Ty
1 in TNT,, xeA (T) implies that xeA <(T).

Since x is a grid point of Gm+1 in the facet of L3 opposite to vJ, there

exist unique integers Oi, i#j-1,3j,such that

for any grid point x of Gm+

j+1
(8.2.1) x=v= .z _Oiq(Yi)/dm+1
i#j-1,3
A T

o1
with the convention that . if j=n+1. Since xe€A ~(T) for just one T,

there exist also unique integers N with uh>0, heT and uh=0, h¢T,such that

n+l
(8.2.2) x=v(T )+ I uhq(yh)/dm+1
h=1
or n+1 o h
x=hi1Ahv /km+uj_1q(vj_1)/dm+1+ujq(vj)/dm+1 +
+ I waly)/d
h#j-1,5 h h m+1
Jj m. a1 n+1 h-1
=DV I oa(y)/d+ T aly)/d Mk o+
h=1 i=j+1 i=1
n+1 m, j+1 h-1
+ I A{v 7+ T aly,)/d Mk +u. .aly., ,)/d +
h=j+1 i=j+1 i m " m Tj-1 =177 "m+1
+u.qly.)/d .+ I  wpaqly)/d
3 3j m+1 h#i-1, § h h m+1
. 3j n+1 j=-1 h-1
+1
=Tz AN : aly;)/d )+ I kﬁq(yi)/dm+1 +
h=1 i=j+1 h=1 i=1
-2 o n n+l  h-l
+ I Aq(y,)/d . +r.aly, ,)/d .+ I T xaly))/a .+
j=1 i7" m+l ) j-1 m+1 hej+l i=9+1 h i7" "m+1

+u, qly,_)/da . +u. (- T aly,))/d .+ I waly)Aa .-
j-1 j-1 m+l " J 17 i m+1 h#i-1, 5 h hH'  m+1
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Defining Oi to be the coefficient of q(Yi), i#j-1,j, we obtain that

_ J+1 ' m _
(8.2.3) x=v +i=j§1 joiq(vi)/dm+1+(xj+uj_1 uj)q(Yj_l)/dm+1.
, A

Comparing (8.2.3) with (8.2.1) we obtain that Oi=ei, i#j-1,j and

m
(8.2.4) A +u. ,—u.=0.
37H3-17Hy

Moreover from (8.2.2) it follows that

_ m_h m, j-1
x-hijxhv /km+xj(v +q(yj_1)/dm)/km+uj_1q(Yj_

)/4

+
m+1

1

+u.aly,)/d .+ I waly)/d ..
j 3j m+1 h#j-1, § h*" 'h" " "m+l

. i i . s .
Hence, since v =w , i#j, Yi=6i’ i#j-1,73, Yj—

=6, and y.=60, we obtain
173 Y37%5-17
that

_ m h m, j-1 s
x-hzjxhw /km+Aj(w +q(6j)/dm)/km+uj_1q(5j)/dm+1 +

m
+”jq(6j—1)/dm+1+hzj§1 juhq(éh)/dm+1+qu(6j_1)/dm+1 -
14

)/dm+1

-ATq (s, .
Ja(s,_,

m m
From (8.2.4) it follows that u.-A.=u, and u, ,+A.=u.. Consequentl
U] i ”3—1 U]_l 3 11] q! Y

n+l

x=v(T2)+hi1 uhq(Gh)/dm+1

T
with Yy the same coefficients as in (8.2.2). Hence xei 2(T) which proves

the theorem. O

From the proof of theorem 8.2.2 we obtain the following corollary.

COROLLARY 8.2.3. If a grid point x of Gm+1 belongs to two adjacent

. . 1 .
simplices rl(v ,Y(In+1)) and 12(w '6(In+1» of Gm and if, for some T,

x=v(t )+ I uhq(Yh)/dm+1.
heT
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then, for the same coefficients “h'

x=v(r2)+ b) uhq(<5h)/c1m+1
heT

This important fact will be frequently used in the replacement steps of
the algorithm.
Theorem 8.2.2 is illustrated in figure 8.2.2 for n=2, d,=4, d —16 and

1
X =(2,1,1). So the grid size of the triangulation on level 1 is 1/4 and

the grid size of the triangulation on level d, is 1/16. Let 9y (u BT L))

n+1
with u1=(%,%,%)T and B(I n+l )—(1 3,2) be the starting simplex on level d1
L is vio))= zn+: Aiul = (7/16,3/8,3/16) |. For the
L with y' = (0,4,%) " an

arbitrarily chosen simplex T(y ,W(I )) of G
) = (2,3,1) we have that the centrepoxnt v is v(t1)=(1/16,3/8, 9/16)

Then the centrepoint u of ¢

"(In+1

In the figure the triangulation G, on level d; is pictured. Furthermore, the

2
vertices of G1 are drawn heavily. For any simplex T of G1 the regions AT(T)

are indicated by the heavy lines. Observe that for any two simplices Tl and

Ty of G1 we have that

"1 T2
(rlnrz)nA (T)=(T1nT2)ﬂA (M.

As is illustrated for the simplices T and p with t as ﬁhe simplex
defined above and p =p(§1,§(1n+1) with ¥'=(%,0,% and M, )=(1,3,2), the
region AT(1,2) adjoins in a consistent way to the region -aP (1,2), The
grid points of AT(1,2) and A°(1,2) on level d, are connected with the

2

heavily drawn vertex (%,%,%)T on level di'



AVAVAVAVA % INONONININ/NEN
AVAVAVAVAVA AVAVAVAVAVAV#V%

147

e(3)
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ad. \/\/\/\/\/\/\/\AAAMAAA.M

Figure 8.2.2.

n=2, d,=16, A'=(2,1,1),0=0,(u ,B(I_,)) with u'=(s %)
and B(In+1)=(1,3,2), u=v(01), v=v (1) where T=T(y1,ﬂ(I

with v =(0,%,%) | and (I .)=(2,3,1); a'=a"(1,2) and

n+1))

n+1

Ap=AD(1,2). The vertices of G1 -are drawn heavily. The grid

points of G2 on level d2 within or on the boundary of a

region surrounded by heavy lines are connected with the

grid point of G1 in the middle of it on level dl'

8.3. THE ALGORITHM.

Suppose that we want to compute a fixed point of a continuous function

£ from s” into itself by applying the continuous deformation algorithm

with a triangulation of snX[l,w) as described in the previous section.

. . . . T .
Using integer labelling, each point (xT,di) of Snx{di},1=0,1,...,

receives the standard integer label 2(x) as defined in definition 4.1.1.
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For some arbitrarily chosen grid point v of Gl' e.g. v is the grid point

nearest to the barycenter (1/n+1,...,1/n+1)T, Snx[do,d1] is triangulated

as described in the previous section with UO=Sn and v=v(oo)=ZZ:iA2e(i)

the centrepoint of o,.. The algorithm starts with the simplex ¢O, being the

0

convex hull of the vertices of S” on level do and the point v on level d

and proceeds along a path of adjacent (n+l)-simplices in s™x[d

1'
0,d1] such

that the common facets are completely labelled. Note that Sn><{do} is a
completely labelled facet of wo. Clearly, since the labelling rule is proper,
there are no completely labelled facets in (bd Sn)x[do,dl]. Therefore all
replacement steps are feasible and the algorithm generates within a finite
number of steps a simplex inSnX[do,dl] having a completely labelled facet in

Snx{dl}, say Gl(ul,B(I )) . Note that the intersection of the path of

n+l
adjacent simplices with Snx{dl} is the path of adjacent t-simplices

(0<t<n) of G, generated by the variable dimension restart algorithm as

1

described in chapter 5. Now an integer k,22 is chosen and SnX[dl,dZJ is

1

triangulated as described in the previous section with 01 as the starting
+ X

simplex and an arbitrary grid point u=Z?_iAiul/k1 of G2 in 01 as the centre

point v(cl) of o Then the algorithm continues the path of adjacent

simplices with cimpletely labelled common facets by replacing the vertex
of Snx{do} connected with the vertices of le{dl} by v(ol)X{dz} and
computing R(V(ol)). Simplices in Snx[dl,dz] are generated until a simplex
is found having either a completely labelled facet, say Tl,in Snx{dl} or a

completely labelled facet in'SnX{dz}. In the latter case k, and

2

Ai""'ki+1 are chosen and the algorithm continues with simplices in
n
s'xla

2,d3]. In the first case the vertex v(Tl)X{dz},which is connected
with the vertices of Tl,iS replaced by the vertex of s™ on level do

connected with the vertices of Tl,and the algorithm proceeds with a path
of adjacent simplices of the triangulation of Snxfdo,dl], until again a

simplex having a completely labelled facet, say T2(y1,W(I )), in

n+1
Snx{dl} is generated. Then the algorithm continues with simplices in

s“x[dl,dzj by replacing the vertex in s“x{do} by v(t,)x{d,}, where
n+l,1 i, . . -
v(T2)—Zi=1Aiy /k1 is the centrepoint of Tye
Within a finite number of steps the algorithm generates a simplex having a
completely labelled facet in SnX{d2}, since the replacement steps are
unique and feasible and the number of simplices of the triangulation of

Snx[do,dz] is finite. Then k. and Ai, ieIn+1,are chosen and the algorithm

2
proceeds along a path of simplices in Snx[do,d3] etc. The algorithm can be
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terminated if it generates a simplex of Gm with grid size d;l small enough.
Clearly, within a finite number of steps the algorithm finds a completely
labelled simplex of Gm.

Using vector labelling a vertex e(h) of s” on level do is labelled by
e(h), h=1,...,n+l, and a point x on level di’ i21, is labelled by 2(x)=
x-f(x)+e. The algorithm starts with the same simplex wo by introducing the
vector 2(v(00)) in the system of n+1 linear equations Iu=e. To compute a
fixed po%nt of a mapping ¢, a point x on level di' i21, is labelled by
2(x)=x—fl(x)+e, where fl(x) is a piecewise linear approximation to ¢ with
respect to Gi' The algorithm can be seen as tracing a path of zeroes of
the piecewise linear function f(x,t) obtained by taking the functions

Ekxldi), i 2 1, defined by

%(x,1) = (n+1)x - e and $(x,di) —x- £ 121

. n
and extending them linearly on each simplex of the triangulation of S x [1,®).

8.4. THE REPLACEMENT STEPS.

To give the replacement steps it is more appropriate to describe the

triangulation of the set T(yl,ﬂ(I ))XEdm,dm+1] as follows. For any

n+l
subset T of In+1' let the regions RT(T) be redefined by

ot
A (T)={xer|x=v(r)+ T ujq(j) for positive numbers u., jeT}.
jeT J
Then Tx[dm,dm+1] is triangulated by connecting all the grid points x of
G in A'(T) on level 4
m+

m+1 1
that nitT. It can easily be verified that this triangulation of

with every vertex yl of T on level dm, such

Tx[dm,dm+1] is identical to the triangulation given in section 2. However
we remark the following. In section 2 a grid point x in iT(T) on level

dm+1 is connected with the vertex yl of T on level dIn if ig¢T. By this

T T
definition XeT,NT, and xeA 1(T) implies xeh 2(T) as proved in theorem

8.2.2. Now we have that x in XT(T) is connected with yl if nidT. So, for
1 and T, and let T1 and T2

some s, let yJ
T, .
such that xeA i(TYy, i=1,2. Thens with the convention

j#ss be the common vertices of T

be the subsets of I
n+l

that s-1=n+1 if s=1,
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T2 = T1 if ﬂs_l,wszl or ns_l,nseTl
T - (Tlu{ns})\{ws_l} if ns_leT1 and ns£T1
T2 = (Tlu{ﬂs_l})\{ﬁs} if ﬂs_lﬁTl and ﬂseTl.

Moreover, let Myreeorl g with uh>0 if heT1 and uh=0 if thl be the numbers
such that
n+l
x=v(rl)+hfluhq(h)/dm+1-

Then, by corollary 8.2.3,

n+1
x—v(r )+ I uhq(h)/d
h=1
3 1= 2z 1=
with uh uh, h#s-1,s, us 1 us and us us—l'

Now for some m, let ¥ be a simplex in Snx[d ,d ] generated by the
algorithm. Since ¥ 1s a simplex of the trlangulatlon of S de ,d l there
exist a simplex T(V ,Y(I )) of S X{d } with v(t)= En+1kmvl as 1ts
centrepoint, a subset T of t elements of In+1' a permutatlon m(T) and a
nonnegative vector (Rl""’Rn+1)T of integers such that the following
conditions hold:

1. The 1ntersectlon of Y and S X{d } is the convex hull of the
n+l-t vertices v of T such that Y £T. This set of vertices
is called the set of active vertices of 1, whereas the
other vertices are called inactive,

2. The intersection of ¥ and Snx{dm+ } is the t-simplex

o(y ,m(T)) with vertices yl,....,yt +1 in Tx{dm+1} such that

n+1

a) yl—v(T)+Z 1Ry q(])/d

i+l .
b) y© "=y +q(1ri)/dm+1 i=1,...,ts

3. Rj=0 for j¢T and RjZO for jeT.

Observe that the conditions 2a,b and 3 are analogous to respectively a,c
and b on page 66. In particular the conditions 1-3 are satisfied for the
starting simplex of the algorithm given by the convex hull of S X{do} and

V(O )X{d }. So the algorithm is initiated with T(v ,Y(I ))_Oo(e(l)'Y(In+B)
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with «?i=i, i€l ., T=#, m(M)=(P) and R;=0, i€l ..

Now any replacement step can be described by adapting T(vl,Y(In+1)), the
subset T, the permutation m(T) and the vector R. Recall that T has always
the s-representation.
As described in the previous section two facets of y are completely
labelled. So, only two vertices of y have the same label and one of them
is the last vertex generated by the algorithm. Then the other one must be
replaced. Two cases can occur,
A) the vertex to be replaced is an active vertex of
T(V PY (I ’1)), say vlo,

j
B) the vertex to be replaced is a vertex of o(yl,n(T)),say y 0,

We consider now these two cases.

Case A. i
1€, Suppose that v 0 is the only active vertex of T(vl,Y(In+1)). Then

|T|=n and o(yl,ﬂ(T)) is a completely labelled n-simplex of s™ on level
dm+1. Now the simplex ¢ is written in the s-representation and Tis set
equal to 0, R is set equal to zero and T becomes the empty set. The !

algorithm continues by computing the label of the centrepoint
+1. m+
v(t)= Zn :AT 14 of the new simplex t. If it is the first time that a
completely labelled simplex is found onleveldm+f this simplex is the
m+1

starting simplex cm+1on level dm+1 and the integers )xi , i=1,...,n+1,can

be chosen arbitrarily.

i

2-. The vertex v 0 is not the only active vertex of T(VlyY(I )).

n+1

First suppose that

m
2 . - LE s o
Ai 0 or Yy _1eT (with ig 1=n+1 if i 1).
0 0

%o +1
Since v is active we have that Yl #T and therefore y is not on the

ig t+2  t+l

facet of T opposite to v V. Hence the point y =y +q(Yl )/d is a

grid point of Gm+1 in t. Now v "0 becomes an inactive vertex of 1t and

is replaced by yt+2,

i.e. T is set equal to TU{YiO} and m(T) becomes
(nl,...,ﬂt,Yi ), whereas the simplex T and the vector R do not change.

If both
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m
}\i =0 and 'Yi _1ﬁl

0
then yl,...,yt+1 are points on the facet of T opposite to vlo and the point
yt+1+q(Y )/dm+1 is a grid point of G, ROt in T. Now T is adapted
according to table 8.2.1 by replacing vlo. Let 1, be the new simplex

1
-1 +
on level d and let v O be the new vertex of T,. Since yl,...,yt 1 are on

the common facet of T and Tl, it follows from ihe proof of theorem 8.2.2
that again a 31mp1ex of the triangulation is obtained if v X{d } is
replaced by v X{d }. By corollary 8.2.3 and the fact that YlO and YlO_l
are both not in T it follows that T, n(T) and R do not change. Hence T
becomes T, and ;lox{dm} is the new vertex.

Case B.

Suppose that t>0. Then we consider the following cases,

(1) 3p=1
(1) 2sjgst

(iidi) j0=t+1.
In case (i) we first suppose that

Y €T (with r-1=n+1 if r=1) or R +1<A",
r-1 Y, r

where r is the index such that ﬂ1=Yr. Then yt+1 is not on the facet of t

opposite vF and therefore yt+1+q(w1)/dm+1 is a grid point of Gm+1

A" (T). Now 7(T) and R are adapted according to table 5.2.1, i.e. y1 is

in

replaced by yt+1+q(ﬂl)/dm+1
If both

m
Y _1¢T and RYr+1—Ar,

then y2,...,yt+1 are on the facet of T opposite vr and yt+1+q(w1)/dmis not in
T. Let T(;l’;(1n+1» be the simplex obtained from T(vl,y(In+1)) by replacing
the inactive vertex Vr(Y =1 ET) according to table 8.2.1. Now T becomes

(TU{Y })\{Y 1, RY and Ry , are interchanged, m, becomes y __, and T is
r—

1 -1
set equal to T(vl, (I +1)), implying that y1 is replaced by the new
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vertex y{ defined by v(T)+Z?iiqu(j) for the new T and R.

In case (ii) suppose that

. _ . _ _ m
nj -1¢Yr—1 (with r-1=n+1 if r=1) or RY RY <A,

r
r r-1

where r is the index such that ﬂj0=Yr. Then w(T) and R are adapted

] -1
according to table 5.2.1,i.e. y 0 is replaced by on +q(1rj )/dm*1 which is
0

a grid point in AT(T).

If both
m
T. _,=Y__, and R_-R =X
3o 1 'r-1 Ye Ypoq ¥
i ' Jp~t
then y, i=j0, is on the facet of T opposite v and y +q(1r:.l )/dm+1 is
not in 1. Now m(T) is adapted according to table 5.2.1, R andoRY are
) r r-1

. interchanged and T(vl,Y(In+1)) is adapted according to table 8.2.1 by
J
rgplacing the inactive vertex vr, i.e. y 0 is replaced by the new vertex
=]
vy 0 gefined by the new 7, R and 7n(T). Observe that T does not change

since Y. and Yr— are both an element of T.

1 .

In case (iii) suppose that R; 21. Then yt+1 is replaced by the grid point

y1--q('rrt)/dm+1 in: AT(T), i.e. m(T) and R are adapted according to table

5.2.1. 1f R, =0, yl—q(ﬂ y/d is not in AT(T). Now yt+1 must be replaced
t t m+1

by the inactive vertex v© of T(v ,Y(In 1)), where r is the index with

+
Y _=m,. So m(T) becomes (wl,...,vt_l) and T becomes T\{ﬂt}.

\rt

Finally we consider the case t=0. Then T=@ and the only vertex y1 of the

zero-dimensional simplex o(yl,n(T)) has to be réplaced. Since T=§, Rj=0

jeIn+1 and y1 is the centrepoint v(t) of T(vl,y(In+1)), which is connected

with all vertices of 1. So, all these vertices are active and T is a
completely labelled simplex of Gm' Hence y1 has to be replaced by a grid

point of Gm— on level dm— . Therefore we have to compute both the

simplex B(Elté(ln+1)) of S%X{dm_l} such that ?ll vertices of T are grid
points of Gm in p, and the vertex of 5, say z 0, which is connected with
all the vertices of T. To do so, we choose an arbitrary. interior point of
T, say X, and we calculate the vector o(x) as described in section 2 with
di=dm_1. Since x is not a grid point of Gm—l' 0(x) is not a vector of

integers. Let &i be the entier of ai(x), i=1,...,n, and let z1 be the grid
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. 1_ n = . . . . .
point of Gm—l such_that 4 _f(1)+2i=1aiq(l)/dm—1' Since x is an interior
. e _ sEa
point of T, ai(x) o aj(x) aj for all i#j, j=1,...,n. Let B(In+1) be the

permutation of the elements of In+1 such that

o >...>0, (X)-a

B B

2 n n

(x)—&B >ag (x)-a

81 1 2

B

and Bn+1=n+1. Then x is an interior point of the simplex p(zl,B(I )) of

n+l
G_ ,.Therefore all vertices of T(VI,Y(I )) are points of p and we set

m-1 n+1

E(EI,E(In+1)) equal to p(zl,B(In+1)) in such a way that p has the
s-representation. It remains to find z O. Let v(B):Egtil?—lgl/dm be the

centrepoint of p. It can be easily seen that

1 _ n
v =v(p)+ I e.q(j)/dm
j=1 7
. 3 = 1 i .
with Oj—2i=1(vi(p) vi), j=1,...,n. Set On+1 equal to zero and define
(8.4.1) 0.=0.- min 0, j=1,...,n+1.
i3 iel t
n+l

Since Z?:iq(i)=0, we obtain that v1=v(5)+2

i=1,...,n+1, el=(e;,...,@;+ ) by

nl-= . .
j=1qu(j)/dm. Define for

1

j@;=5j+1 if there exists an index he{l,...,i-1} with Yh=j

(8.4.2)
=§j otherwise.
. i1 . i-1 :
Since v =v +Zj_1q(yj)/dm it follows that
I n+l i
v=v(p)+ I 0.q(j)/d i=1,...,n+1.
i1 ] m
j=1
By (8.4.1) and (8.4.2) we have that @;ZO for all i,j. Let H(Vl) be the set
of indices {j|6%=0},1=1,...,n+1. By definition, |E(v) |21, |E(™1)|<1 and
[H(v1)|—|H(Vl+1)| is equal to zero or one. So there exists at least one

index h such that

e | = 1.
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Let s be the index such that {s}=H(vh) for some h with [H(vh){=1. Since

i+l, . i . . . . .
H(vl 1)EH(vl), s is unique. Let i, be the index such that Yi =g. Define

0 0

M=y g Yo qrYyreaen Yy g

0 0
i+ i+t

2.=0° - min eio §=1,...,n+1.

l€In+1

It can easily be seen that R,=0 for j=Yi , i.e. §j=0 for jéT. Moreover
i0+1

- = 0
Rjzo, jeT. Define y1 to be v . Then T(vl,y(I 1))can be written as

i IR n+
gy ,m(T). Since

1 i +1 _ n+1_
y =v =v(p)+ I R.q(j)/4
5=t 7 "

it follows that o is in AO(T). So, finally we have that T becomes
- -1 =
p(z ,B(In+1

only vertex y~ of ¢ on level dm+

)), T becomes T, m(T) becomes 7(T) and R becomes i( i.e. the

. | -
is replaced by the vertex z 0 of p on

1
level dm 1’ where jo is the index such that éj =s. The zero-dimensional
- 0

simplex 0 on level dm+ becomes the n-dimensional simplex o on level dm.

1

8.5. THE APPLICATION ON R".

Let do,d be a sequence of increasing positive numbers such that

17°°"
d, =kidi’ i=0,1,... with ki an arbitrary integer larger than 1. For some

+
ninitriangulation matrix A, RpX{dm} is triangula%ed by the AK triangulation
with grid size d;l. On each level we choose 2z=0 to be a grid point. Doing
so, the grid points of the triangulation on level dﬁ are also a grid point
on level di, i>m. With a(n+1)=—2?=1a(j) we obtain again that each n-simplex

o has n+l1 representations o(y ,m(I )). As in section 2 each simplex is

n+l1
given in the s-representation. Therefore we have to define the function

s(w). So, let w be a grid point on level dm. Then we define a(w) by
-1
a(w)=d A "w
m

and s(w) by s(w)=1+(I_ o (w))mod(n+1).



156

Now we triangulate RnX[dm,dm+1] for ‘some m20. Combining tﬁese
triangulations for all pairs [di,di+1],i=0,1,... we obtain the
triangulation of RnX[dO,w). The triangulation of RnX[dm,dm+1] is done in
the same way as described in section 2 for SnX[dm,dm+1]. So, let

1 . .
om(u ,B(In+1)) be the starting simplex on level dm, and let

ntl -1m i
v(o )= I k_"X,u
m m i
i=1

r such that 22:1

be its centrepoint for arbitrarily chosen Agﬁiel 1

m
n+1 Ai_km'

To triangulate T(yl,v(I ))X[dm,dm+1], with T given in the

n+1

s-representation we define again for any proper subset T of I the

n+l’
o
regions AT(T) as in section 2, and connect all grid points x on level d

+
in region XT(T) with the vertices yi of T on level dm with igT. Combinirrrllg1
the triangulations Tx[dm,dm+1] over all simplices T, we get a consistent
triangulation of Rnx[dm,dm+1].

We now discuss the use of this triangulation of Rnx[do,M) in a fixed
point algorithm. Assume we want to compute a fixed point of a mapping ¢.
Let fi be a piecewise linear approximation to ¢ with respect to the
triangulation of R" on level 4, . Then a point x of Rnx{di} receives the
vector label as defined in definition 4.8.1 with b=e and f=fi, i=0,1,... .
Assume that Merrill's condition is satisfied and that Rnx{di} is
triangulated by A(u)Kgi with 6i=d;1, i=0,1,... . Let 00 be a completely

labelled simplex on level d.. Then, starting with the simplex having'oO

0

as a facet, a sequence of simplices of the triangulation of RnX[d ©) is

'
generated, such that the common facets are completely labelled.ByoMerrill's
condition this sequence cannot diverge if 60 is small enough. If, for some
m large enough, a completely labelled simplex of RHX{dm} is generated, a
good approximation of a fixed point is found and the algorithm terminates.

It remains to consider the following questions:

1. How to find a completely labelled simplex co in Rnx{do}?
2%. How to continue the algorithm if, starting from the simplex having 00
as a facet, a simplex of Rnxfdo,dl] is generated having a completely

1 . n >
labelled facet o(y ,n(1n+1)) in R x{do}.

Both problems can be solved by applying the variable dimension restart
T
algorithm. Starting in an arbitrarily chosen grid point (vT,dO) in

RnX{dO},this algorithm generates a sequence of simplices of variable
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dimension on level dO. By theorem 6.3.4 this sequence terminates with a
completely labelled simplex co in RnX{do}. To solve the second question,

observe that, for some ieIn c(yl,n(I

1’ )) is in the region

n+1l

A(T)={xeRn|x=v+2Aja(j) for nonnegative numbers Aj' jeT}

with T=In+1/{i}’ Then the variable dimension restart algorithm can again be
applied. Starting with cand reintroducing the i-th unit column, a sequence
of simplices of variable dimension in level dO is generated until again a
completely labelled simplex is found. Then the algorithm continues again

with simplices of the triangulation of RnX[d ). In fact we can use the

,®
interpretation of the variable dimension restgrt algorithm with n+l1 points
on an extra level, as discussed in section-6.4, to triangulate for some o
(OX{O})U(RnX(O,dOJ). Then, starting with the simplex being the convex hull
of the vertices of ¢ on level 0 and (VT.do)T.a sequence of n+l-simplices

- having completely labelled common facets is generated.

8.6. SOME REMARKS AND NUMERICAL RESULTS.

In the algorithm of Eaves [1972] and Eaves and Saigal [1972] the
factor of grid refinement is (at most) equal to two. So, their algorithm
cannot be used to obtain quadratic convergence. Using a restart method in
a continuous deformation algorithm, Saigal [1977c] and Saigal and Todd
[1978] developed an acceleration technique to achieve
quadratic convergence when the underlying function is continuously
differentiable and the derivative is Lipschitz continuous. Using the
triangulation presented in this chapter, quadraiic convergence can be
obtained without the necessity of making restarts. Saigal and Todd also
proved that, using the information obtained from the last found
approximation, a completely labelled simplex on the new level can be
generated in n+l pivots. It is worthwile to investigate whetherdthe same
result can be proved for the continuous deformation algoriéhm with an
arbitrary factor of grid refinement.

In the triangulations of SnX[l,W) and RnX[dO,m),described in section 2
respectively 5, the starting point on a new level can be chosen on

basis of information obtained earlier. So, for vector labelling one
could choose the grid point nearest to the approximation obtained from the

last found completely labelled simplex. Therefore, even when
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the factor of incrementation is two, the triangulation is more general

than that of Eaves and Saigal. This is illustrated in the figures 8.6.1.a
and 8.6.1.b for n=1. In 8.6.1. a,r(y 'Y )er 2d ] is trlangulated according
to the triangulation of Eaves and Saigal. Observe that y X{d }, i=1,2, must
be connected with vx{Zd }. 1In 8. 6 1 b,r(y 'y )X[d 2a ] is trlangulated by
connecting y X{d }, i=1,2 with y ><{2d }, and y X{d } w1th the other two
grid points of Tx {2d }. Observe however that the vertices y X{d }, i=1,2,

can be connected with any grid point of 'r><{2dm}.

v
2dm 2c]m
d
1 2 m 1 2 m
y T y Y T Yy
Figure 8.6.1.a Eaves-Saigal's Figure 8.6.1.b. Example of a
triangulation of TX[dm,de] triangulation of TXde,2dm] as given

in section 2.

Tuy [1979] presented a restart method to approximate a fixed point of a
function, using primitive sets (see also Todd [1978bJ]). Although his
approach is different, Van der Heyden [1979b]presented a similar method.
He introduced also a geometric interpretation of the algorithm. Using this
interpretation he constructed a triangulationof Sn><[ 1,) permitting an
arbitrary factor of grid refinement between two successive levels. However,
this is achieved at the expense of an asirmmetry in the roles played by the
different coordinates. More precisely, T (y1 PR ,yn+1) X‘—.dm,dm_‘_l] is triangulated
as in section 2, butwith the restriction that, for some i, v=y5L . Although a
partial remedy is given, this feature makes the triangulation less attractive.
The difference Between Van der Heyden's triangulation and the triangulation
introduced in section 2 is illustrated in the figures 8.6.2.a,b. Finally we
mention a paper of Shamir [1979]. Independently of Van der Laan and Talman
[1980b] he constructed the same triangulation of S”x[1,®) using also the

interpretation of the variable dimension restart algorithmwith an extra level.
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4 v
v m+1 A1
a a
1 2
y1 T y2 v T y

Figure 8.6.2.a. Van der Heyden's Figure 8.6.2.b. Example of a

. . _ . . r .
trlangulaflon of TX[dm,dm+1], n=1, +triangulation of Txudm,dm+1] as given
km=6' v=y or vy . in section 2, n=1, km=6, v is an

arbitrary grid point on level dm+1
We conclude this section with some computational results. We applied the
algorithm for vector labelling to the three examples of section‘5.8. In
all runs the T triangulation is used with again -T in stead of T. The
labelling rule is the same as in section 5.8. The starting point on level
dm+1 is chosen as the grid point nearest to w*(m) with w*(m) the
approximate fixed point on level dm. The algorithm is applied with
di+1/di=2 for all i, and with a variable factor of grid refinement. In the

-1 . . .
latter case § d is chosen analogously as in section 5.8. However to

m+1” Cm+1

guarantee that dm+1 is a multiple of dm' 6m+1 is defined by 6m+1=6m/km with
k =2, if h 2(mesh G )/2vVn+1
m m m

k_ = Entier (hm/n+1/mesh Gm)—l if h <(mesh Gm)/z/n+1

The results are given in the tables 8.6.1-8.6.3. Comparing the columns
3 and 7 it turns out that the algorithm is considerably improved by using
a variable factor of grid refinements. Moreover a comparison with the
tables 5.8.1-5.8.3 learns that for di+1/di=ki the number of iterations of
the continuous - deformation algorithm is of the same order as the number

of iterations of the variable dimension. restart algorithm. More
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computational experience is needed to decide which algorithm is

superior. We remark the following:

1.

2.

The variable dimension restart algorithm is easier to implement on the
computer.

In each stage the restart algorithm is initiated with Ip=e. This is a
drawback, since the deformation algorithm continues with the current
system of linear equations. However in the acceleration technique of
Todd [1978b] the system of linear equations corresponding to the
completely labelled simplex is used to initiate the system in the next
stage. This technique should be used when the restart algorithm is
compared with the deformation algorithm.

The examples are very nice. In particular, the deformation algorithm
never returns to a previous level. Both algorithms should be tested on

more complicated problems.

Table 8.6.1. Pure exchange economy, n=4, M=(mesh Gm)/ZVn+1, N is the

cumulative number of iterations, E= max ](gi—ai)/ai[.
ieI

n+1
d,,4/4;=2 4,179k

m M | N E m M N E

1| .ost 7 1.02 1! .05t 71 1.02

3| .o013 20 .05 2| .02 13 .29

5 | .003 33 g 1073 3! .o13 20 .05

7] 8107 43 2 1074 4| .006 26 .03

9 2 1074 55 2.5 107> 5 271073 31 3 1073
11| 5107 69 2 107° 6| 1073 8| 1073
13| 1.2107° | 81 31078 71 810° | 45| 4 107°
15 | 3107 91 5 107° 8| 410 | 52| 2107°
17 | 8 107’ 102 4 10710 9! 6108 | 50! <1070
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Table 8.6.2. Pure exchange economy, n=7, M=(mesh Gm)/ZVn+1, N is the
cumulative number of iterations, E= max I(gi_ai)/aii'
iel
n+1
;417442 44179,k
m M N ] E m M N E
1 .032 11 1.32 1 .032 11 1.32
3 .008 36 .05 2 .016 27 .23
5 .002 59 5 1073 3 .008 36 .05
7 5 1074 83’ 2 1074 4 3.8 1073 46 .02
-4 -5 -4 -4
9 1.2 10 102 10 ° 5 5.6 10 62 2 10
11| 3107 118 107° 6 | 2.810%] 70| 5107°
-6 -8 -6 -8
13 8 10 142 8 10 7 3.2 10 80 2 10
15 2 107 166 4107 8 1.6 10°° 93 4 107°

Table 8.6.3. Pure exchange economy, n=9, M=(mesh Gm)/2Vn+1, N is the

cumulative number of iterations, E= max l(gi--ai)/ai

-

ieIn+1
d;,4/43=2 417457k

m M N E m M N E

1 .025 12 .30 1 .025 12 .30

3 .006 43 .03 2 .013 32 .08

5 1.5 1073 83 2 1073 3 .006 43 .03

7 a 107% 112 1074 4 .002 67 31073
9 | 107* 142 610° |5 710 | 78 3 1074
11 | 2.5 107> | 166 4107 |6 | 5107° | 102 1078
13 6 107° 193 31078 7 6107 | 120 3 1078
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