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CHAPTER 1 

INTRODUCTION 

Many problems in economics, nonlinear progral'lllling and other fields 

can be solved by using fixed point algorithms, which should be regarded as 

one of the major breakthroughs in computational methods for nonlinear 

problems. Already in 1910 the Dutch mathematician L.E.J. Brouwer proved 

that any continuous function f from a compact convex set into itself has 

* at least one fixed point, i.e. there exists at least one point x in the 

* * set such that f(x) = x. The generalization of this theorem to upper 

semi-continuous point to set mappings is due to Von Neumann r1937J and 

Kakutani r1941J. However, the originial proofs of these theorems were not 

concerned with computational methods. In spite of the simplification of 

the proofs during the subsequent years and the widespread use of the 

~~eorems as a mathematical tool in several fields it is only in the last 

fifteen years that fixed point theorems have been embedded in a 

computational setting. 

The first method to compute 
n nl n+l 

simplex S = {xER+ Li=l xi 

work of Scarf '.1967b], see 

a fixed point of a mapping from the unit 

= 1} into itself was presented in the pioneering 

also Scarf 11973]. He utilized an argument of 

Lemke and Howson [1964] and Lemke r1965] and the relationship of Sperner's 

lemma [1928] to the Brouwer fixed point theorem. Lemke and Howson 

provided a finite method for the computation of a 

Nash equilibrium point in a two-person nonzero-sum game using ideas from 

the pivot theory introduced by Dantzig [1951,1963] for the solution of 

linear programming problems. To prove the convergence of the method, Lemke 

did not use a monotonicity property but,a combinatorial argument. To solve 

problems with a nonlinear character, Scarf replaced the sequence of 

linear programming pivot steps by the alternative construction of 

primitive sets, introduced by Scarf in an earlier paper r1967a]. Scarf 

proved that the algorithm generates a path of adjacent primitive sets, and 

terminates within a finite number of iterations with a nrimitive set which 
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yields a good approximation of a fixed point. Unfortunately, the procedure 

needs a high computer storage. A method to overcome this difficulty was 

discovered by Hansen U968]. He chose the points of the primitive sets in 

a systematic way. However, then the pivot steps become identical to the 

pivot steps using a regular triangulation discovered by Freudenthal [1942] 

and made operational by Kuhn ~ 1960]. Most of the recently developed fixed 

point algorithms are based on the concept of a triangulation. The first 

of them were already developed in 1968 and 1969 by Kuhn. 

The algorithms mentioned above suffer from the disadvantage that the mesh 

of the triangulation is fixed and that they must start outside the region 

of interest. This means that when on a certain mesh an approximate fixed 

point is found the information obtained is of no use to find an 

approximation on a finer mesh. Fortunately, several algorithms 

followed, which were able to handle this drawback. A first method is due 

to Merrill [ 1971, 1972 J and was later rediscovered by Kuhn and MacKinnon 

[1975]. Closely related methods can be found in Luthi ~1975]and Fisher, 

Gould and Tolle [1977]. This algorithm, called the Sandwich method, can 

start at an arbitrary point. This opens the opportunity to use the 

approximation obtained by applying the algorithm on a certain mesh as the 

starting point in a subsequent application with a finer mesh. A second 

method was independently and simultaneously discovered by Eaves [1972] 

for mappings on Sn and generalized by Eaves and Saigal >1972] for 

mappings on Rn. In this method the mesh of the triangulation is 

automatically refined during the course of the algorithm. In both methods 

an extra dimension is used . They can be considered as methods which trace 

a path from the solution of an artificial mapping to the approximation of 

a solution of the original one. Algorithms without an extra dimension were 

developed by Tuy [1979] and by Garcia [1975] and Garcia and Gould 

[1976,1979]. However, as argued by Todd [1978b], the method of Tuy needs a 

lot of computation time whereas the algorithm of Garcia and Gould may 

fail to find an approximate fixed point. 

Beside the development of more sophisticated algorithms many related 

issues were studied. Computational experiences showed that the computation 

time depends highly upon the underlying triangulation (see e.g. Saigal 

[ 1977a] and Todd [1978a]). Measures for the efficiency of a triangulation 

of Rn were developed by Saigal, Solow and Wolsey [ 1975 J and Todd 

[1976b,1978a]. However, for these measures it is not known how the optimal 

trii:mgulation looks like. Van der Laan and Talman [1')80 al suggested a new 



measure which enables the calculation of the optimal triangulation within 

a reasonable class. They also proposed a triangulation of the affine hull 

of the unit simplex whose measure is the same as that of the optimal 

triangulation of Rn. An other important subject is the convergence of 

fixed point algorithms on unbounded regions. Conditions that guarantee 

convergence were studied by Merrill [1971,1972], Gould and Tolle ~1975], 

Saigal [1977c], Todd [1976a,1978b,1980l, Saigal and Todd 11978], Reiser 

[ 19 78a, b J, Van der Laan and Talman [ 1980c J and Talman f 19 80] . 

To apply fixed point algorithms the grid points of a triangulation are 

labelled with an integer or vector label. The relation between convergence 

and labelling rules was studied by Fisher, Gould and Tolle [1977], 

MacKinnon [1977], Garcia and Gould 1.1976,1979] and Reiser [1978a]. 

3 

Recently, Kojima C1978a] and Todd [1978c,d] developed pivot methods which 

take advantage of the separability respectively the linearity of a function. 

Under certain conditions the convergence of a simplicial algorithm can be 

improved near a solution of a smooth mapping. Acceleration techniques which 

result in superlinear convergence were given by Saigal ~1977c] and Saigal 

and Todd [1978] for vector labelling (see also t,7olsey [1974]). In these 

studies the approximate Jacobian (see Todd [1978e] and also Saigal 11979b]) 

plays an important role. An accelerated version of an algorithm using 

integer labelling was given by Reiser [1978a]. 

A development resulting in more insight into the simplicial fixed point 

algorithms is the theory of orientations and index. This theory was 

introduced by Shapley [1974] for bimatrix games and generalized by Lemke 

and Grotzinger [1976], Eaves and Scarf [1976] and Todd r1976c]. 

The path of simplices generated by fixed point algorithms was studied by 

Saigal [1976], Garcia and Gould 1 1978] and Saari and Saigal [1979]. 

Survey papers about fixed point algorithms and the related topics are those 

of Gould and Tolle [1974], Eaves [1976], Saigal ~1977b] and Allgower and 

Georg [1980]. We refer the reader also to the monographs of Todd [1976a7and 

Luthi [1976] and to the conference proceedings edited by Karamardian [1977] 

and Pei tgen and Walther [ 19 79 J. 

In this monograph new algorithms to compute a fixed point are presented. 

Also conditions to guarantee the convergence of the algorithms on 

unbounded regions are stated. Most of the work is based on the papers of 

Van der Laan and Talman [1979a,b,1980b,c]-

The monograph is organized as follows. In chapter 2 we give the most 
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important fixed point theorems and some applications as the equilibrium 

price vector in economic models and the solution of an unconstrained 

optimization problem. Also the concepts of triangulation and piecewise 

linear approximation to a mapping with respect to a triangulation are 

given. 

In chapter 3 triangulations of Rn and Sn are discussed together with 

measures for the efficiency of a triangulation. 

Chapter 4 presents a survey of the algori tluns of Scarf, Kuhn, Merrill and 

Eaves and Saigal. We show that the two algorithms of Kuhn are the two 

extreme cases of a class.of algorithms. It will appear that the 

algorithms of Merrill and Eaves and Saigal superceae those of Scarf and 

Kuhn. 

In chapter 5 a new algorithm to compute fixed points on Sn and its affine 

hull Tn is introduced. The method is a restart algorithm and generates a 

path of simplices of variable dimension. In contrast to the algorithms 

of Merrill and Eaves and Saigal no extra dimension is needed. 

In chapter 6 the application of the algorithm on the unit cube and on Rn 

is discussed. Conditions to guarantee the convergence of the algorithm on 

Rn are given. 

In chapter 7 we define an orientation of a simplex. In view of the 

algorithm introduced in the chapters 5 and 6 we generalize this concept. 

Some preliminary results about the number of completely labelled 

simplices are also given. Also a method which gives an odd number of 

completely labelled simplices is discussed. 

Chapter 8 presents another new algorithm. It is a method with an automatic 

refinement of the grid size. It differs from the algorithm of Eaves and 

Saigal in that it allows for any factor of refinement of the grid size. 
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CHAPTER 2 

PRELIMINARIES 

2.1. INTRODUCTION. 

l!'ixed point properties of functions or mappings are of fundamental 

importance in many problems e.g. the existence of a solution to a system of 

nonlinear equations or the existence of an .equilibrium in an economy can be 

proved by using a fixed -•point theorem. The most famous fixed point theorem 

is due to Brouwer [ 1912 J • We give a proof of this theorem using a 

_combinatorial lemma of Sperner f 1928]. We follow this approach since this 

lemma is closely related to arguments which play an important role in 

algorithms for computing fixed points. In particular the concept of a 

tri.angulation of a set is of importance. 

In section 2 Brouwer's theorem is stated. Moreover, a leillllla of Knaster, 

Kuratowski and Mazurkiewicz [1929] is given and it is proved thatthi!3 lem:na 

implies Brouwer's fixed point theorem. In section 3 we introduce the concept 

of a triangulation and some other definitions. In section 4 Sperner'sleillllla 

is given and Brouwer's theorem is proved whereas in section 5 the 

generalization of this theorem by Kakutani 11941] is discussed. Also the 

crucial concept of a piecewise linear approximation of a mapping is 

introduced here. In section 6 some applications of fixed point theorems are 

given. 

2. 2. BROUWER I S THEOREM • 

Let C be a nonempty set in then-dimensional Euclidian space R~ endo

wed with the standard norm llx II = (l:~=lx~) \ It is an important problem 

whether for any continuous function f from C into itself there exists at 

least one point x* in C such that f(x*)=x*, i.e. whet.~er such a function 

has at least one fixed point. Under the intuitively plausible conditions 

of convexity and compactness of C this statement was first proved by 

Brouwer. 
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THEOREM 2.2.1. (BROUWER). Let C be a compact and convex subset of Rn 

Then any continuous function f: C ➔ Chas at least one fixed point. 

It is easy to see that the theorem is true for n = 1. If n > 1 the proof 

of the theorem is much more complicated. Without loss of generality we 

can restrict ourselves to continuous functions on the unit simplex. 

DEFINITION 2.2.2. Then-dimensional unit simplex Sn is defined by 

1 and xi ;,: 0, i 1, ••. ,n+l}; 

for i 1, ..• ,n+l we define the i-th boundary S~ of Sn by 
1 

X. 
1 

Observe that the vertices of Sn are the (n+l)-dimensional unit vectors to 

be denoted by e(i), i=l, .•• ,n+l. In particular, s2 is the equilateral 

triangle with the vertices e(l), e(2) and e(3). 

Following Todd [1976a] we prove Brouwer's theorem by using Sperner's 

lemma and the lemma of Knaster, Kuratowski and Mazurkiewicz [1929] (the 

K-K-M lemma). 

LEMMA 2.2.3. (K-K-M). Let {c1 , ••• ,cn+l} be a collection of closed subsets 

of Sn such that 

b) 

n+l 
U Ci 

i=l 

u (1 

i€I jfI 
n+l 

Then ri Ci is norempty. 
i=l 

C, 
J 

for any I c {1, .•• ,n+l}. 

The K-K-M lemma is illustrated for n 2 in figure 2.2.1. 



e(3) 

~ cl 

~ c2 

~ c3 

e ( 1) e(2) 

Figure 2.2.1. The K-K-M lemma. 

We prove the lemma in section 4. Here we show that the theorem of Brouwer 

is implied by the lemma of K-K-M. 

LEMMA 2.2.4. The K-K-M lemma implies Brouwer's theorem. 

PROOF. Define c. to be the set {x E snj 
--- J. 

Then it can easily be verified that the 

conditions of the K-K-M lemma. Therefore 

From the definition of c. we obtain that 
J. 

* f. (x ) i=l, •.• ,n+l. 
J. 

f. {x) :S: x.} for all i=l, ••• ,n+l, 
J. J. 

sets c 1 , •.• ,cn+l satisfy the two 
n+l * n+l 
i~l Ci# 0, Choose x E i~l Ci, 

Since l:n+l f ( *i l:n+l * = 1 it follows that f. (x*) 
i=l ix i=l xi J. 

* x. , i=l, ••• ,n+l. 

Hence x* is a fixed point off. D 
J. 

To prove the K-K-M lemma, we need the fundamental concept of a triangula

tion. This concept will be discussed in the next section. 

7 
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2.3. TECHNIQUE OF TRIANGULATION. 

Before defining a triangulation of a set we introduce some basic 
i n . . 1 t+l 

concepts. Let w ER for i=l, .•• ,t+l. The t+l points w , •.. ,w are 
. t+l i t+l 

called affinely independent if Li=l Aiw = 0 and Li=l Ai O imply Ai 0 

1 t+l 
for i=1, ••. ,t+1. ':"he convex hull of t+l points w , .•• ,w is the set 

t+l 
L a.wi with a E st}. 

i=l i 

The convex hull of a set D, to be denoted by conv(D), is defined as the 

intersection of all convex sets containing D. The point x Lt+l a wi is 
i=l i 

1 t+l i· f affine combination of the points w , ••• ,w called an 
t+l 

Li=l ai 1. The affine hull of a set D, to be denoted by aff(D), is the 

set of all finite affine combinations of points of D. 

Now we give the following definitions. 

DEFINITION 2.3.1. A 

by a, is the convex 

of Rn. We write cr = 

vertices of a. 

t-dimensional simplex or t-simplex, to be denoted 

hull of t+l affinely independent points w1 , .•• ,wt+l 
1 t+l . 1 t+l 

cr(w , ••. ,w ). The points w , ••. ,w are called the 

DEFINITION 2.3.2. Let cr beat-simplex in Rn Then a k-simplex T (k ~ t) 

is a face of a if all the vertices of Tare vertices of a. A (t-1)-face 

of a is called a f" acet of a • The facet T of a is said to be opposite to 

the vertex wi if wi is a vertex of a but is not a vertex of T, i=l, ••• ,t+l. 

Note that at-simplex has t+l facets and that the vertex opposite to a 

facet of a is uniquely determined. 

DEFINITION 2.3.3. Two different simplices cr 1 and cr2 are adjacentaither 

if one of them is a facet of the other or if cr 1 and cr 2 share a common 

facet. 

Let C be an m-dimensional convex subset of Rn. 



DEFINITION 2.3.4. A collection G of m-simplices is a triangulation of C 

if 

a) C is the union of all simplices in G, 

b) the intersection of two simplices in G is either empty 

or a common face. 

This definition excludes the cases drawn in figure 2.3.1. In the first 

case e.g. the intersection of cr1 and cr2 is neither empty nor a common 

9 

face and in the second case cr is not a simplex. Examples of a triangulation 

are shown in figure 2.3.2. 

Figure 2.3.1. Examples which are not a triangulation. 

Figure 2.3.2. Examples of a triangulation. 
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Some important properties of a triangulation are given in the following 

two theorems. Their proofs can be found in Spanier [1966]. For any set 

Cc Rn, denote by bd C and int C the boundary of C respectively the 

interior of C, relatively to the affine hull of C, cf. Berge [1966]. 

THEOREM 2.3.5. If Tis a facet of a simplex of a locally finite triangula

tion G of them-dimensional convex subset C of Rn then either T belongs to 

bd Candis a facet of just one simplex of G, or T does not belong to bd C 

and is a facet of exactly two simplices of G. 

THEOR..~M 2.3.6 Let D be an (m-1)-dimensional subset in bd C such that 

C n aff(D) is contained in D. Then Dis triangulated by the set of (m-1)

simplices which are contained in D and which are facets of simplices of 

the triangulation G of C. 

A triangulation G of C is locally finite is each x E c has a neighborhood 

meeting only a finite number of simplices of G. Although in chapter 6 a 

nonlocally finite triangulation will be described, in the remaining of 

this monograph we only deal with triangulations having the property of 

theorem 2.3.5. 

Both theorems.are illustrated by figure 2.3.3, where C is the 2-dimen

sional unit simplex. In this figure Tl does not belong to bd Candis a 

facet of the two simplices cr 1 and cr2 , whereas T2 belongs to bd Candis a 

facet of just one simplex. This simplex is cr3 . The triangulation of the 

convex hull of e(2) and e(3) consists of the three one-dimensional 

simplices T2 , T3 and T4 • 

e(3) 

Figure 2.3.3. Illustration of the theorems 2.3.5 and 2.3.6. 



We now define the mesh of a triangulation. 

DEFINITION 2.3.7. Let C be an m-dimensional convex subset of Rn and 

let G be a triangulation of C. The diameter of a simplex a of G, to be 

denoted by diam a, is defined by 

diam a max 
x,y Ea 

The mesh of a triangulation G, to be denoted by mesh G, is defined by 

mesh G sup {diam a}. 
a E G 

1 m+l 
Observe that the diameter of a simplex a with vertices w , ••• ,w is 

equal to the maximum of the distance between two vertices, i.e. 

. 1 m+l 
diama(w, ••• ,w ) max 

1 ~ i,j ~ m+l 

The following lemma is obvious. 

LEMMA 2.3.8. Let G1 be the set of all one-faces of the simplices of G. 

Then 

mesh G sup {diam T}. 

T € Gl 

After this introduction of the concept of a triangulation of a set c, we 

are able to prove the K-K-M lemma by using a lemma of Sperner. 

2. 4. SPERNER' S LEMMA • 

Let G be a triangulation of them-dimensional convex subset C of Rn 

and assume that each vertex of the triangulation is labelled with one of 

the integers 1, ••• ,m+l, i.e. there is a labelling function~ from the set 

of vertices to the set {1, •.. ,m+l}. In the following the set {1, ••• ,n} of 

11 
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integers will be denoted by In. 

DEFINITION 2.4.1. An m-simplex of the triangulation G is completely 
1 m+l 

labelled if all its vertices are differently labelle~ i.e. o(w , ••. ,w ) 

is completely labelled if i(wi) # i(wj) for all i # j, j=1, .•• ,m+1. 

Otherwise stated we have that if for any j E Im+l there exists an index 

i. 1 1 
ij E Im+l such that i(w J) = j, then o(w, •.• , wm+) is completely 

labelled. 

The following lemma due to Sperner [1928] gives a condition for the 

existence of a completely labelled simplex of a triangulation of the 

unit simplex Sn. 

LEMMA 2.4.2. (SPERNER). Let G be some triangulation of Sn. Assume that each 

vertex of its n-simplices is labelled with one of the integers of the set 

In+l' such that no vertex ins: has label i for all i = 1, ••. ,n+l. Then 

there exists at least one completely labelled n-simplex. 

The lemma is obvious for n = 1 as is illustrated in figure 2.4.1. 

The one-simplices o1 , o2 and o3 are completely labelled. For n = 2 the 

lemma is illustrated in figure 2.4.2. 

e(l) e(2) 

2 2 2 2 2 2 

Figure 2.4.1. Illustration of Sperner's lemma for n = 1. 

A proof of Sperner's lemma by induction on n can be found in Todd [1976a]. 

He proves a strong form of the lemma, which says that there is an odd 

number of completely labelled simplices. We do not give the proof, since 

the lemma follows as a corollary in chapter 4. 
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3 e (3) 

e ( 1) ..._ __ ...__ __ ....,._ __ __,._ __ ~e ( 2) 

1 2 1 1 2 

Figuur 2.4.2. Illustration of Sperner's lemma for n 2. 

The following lemma completes the proof of Brouwer's theorem. 

LEMMA 2.4.3. Sperner's lemma implies the lemma of K-K-M. 

PROOF. Let the collection {c1 , ..• ,c 1} of closed subsets of Sn be defined 
--- n+ 
as in lemma 2.2.4. Furthermore, let{Gk, k=l,2, •• } be some sequence of 

n triangulations of s such that £k = mesh Gk+ 0 if k + 00 • Each pointy in 

Sn receives an integer label i(y) defined by 

i(y) i, where i min 
j 

Note that, by the definition of cj, there exists always such an index i. 

Since this labelling satisfies the condition of Sperner's lemma, there is 

at least one completely labelled simplex crk in Gk. Let yi(k) be the vertex 

of crk with label i, i = 1, ••• ,n+l. Then for some subsequence {kj,j=l,2, ••• } 

of integers with k. 
1 J 

{y (k.) ,j=l,2, ..• } 
J 

it follows that lim 
j+oo 

+ 00 if j + 00 we have that the sequence 

converges to a point x* in Sn. Since £k + 
. * * yi(k.) = x for all i=l, ••• ,n+l. Hence x 

J 
n+l 

i=l, ••• ,n+l which proves that n 
i=l 

□ 

0 if k + 00 
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In the context of Brouwer's theorem this lemma means that, roughly 

speaking, any sequence of "shrinking" completely labelled simplices has 

a subsequence converging to a fixed point. 

2.5. KAKUTANI'S THEOREM. 

In many practical problems we need a fixed point theon;m more general 

than the theorem of Brouwer. The theorem of Kakutani generalizes Brouwer's 

theorem to point-to-set mappings (cf. Berge [1966]). For any a> 0 let 

Bn(x,a) be defined as the set {y E Rnl I ly-xl I $ a}. 

DEFINITION 2,5.1, Let C be a subset of Rn and let¢ be a point-to-set 

mapping from C to the set of all subsets of Rm. Then¢ is upper-semi

continuous if 

a) for all x E c, ¢(x} is compact, 

b) for all x E c and for all £ > 0 there is a o > 0 such 

that for any z E Bn(x,o) n C holds ¢(z) E Bm(w,£) for 

some w E ¢ (x) • 

An interesting property of upper-semicontinuous (u.s.c.) mappings is 

stated in the following corollary (cf. Todd [1976a]). 

COROLLARY 2.5.2. Let¢ be an u.s.c. mapping from c to the set of subsets 

of Rm. If {xk} is a sequence of points in C with limit x* and if {yk} is 

a sequence of points in Rm with yk E ¢(xk) for all k and with limitpoint 

* * * y, then y E ¢(x). 

The following theorem gives a sufficient condition which guarantees that 

an u.s.c. mapping has a fixed point, i.e. a point x* such that x* E ¢(x*). 

THEOREM 2.5.3. (KAKUTANI), Let C be a compact, convex, nonempty m-dimensional 

subset of Rn and let¢ be an u.s.c. mapping from C to the set of nonempty 

* * * convex subsets of c. Then there is a point x E c such that x E ¢(x ). 



To prove this theorem we use the concept of a piecewise linear 

approximation to a mapping. 

DEFINITION 2.5.4. Let G be a triangulation of a nonemptY, convex 

m-dimensional subset C of Rn and¢ a nonempty mapping from C to the set 

of subsets of RP. For any vertex w of G let f(w) be some arbitrarily 
1 t+1 

chosen value of ¢(w). Furthermore, let for a point x E c, w , ... ,w be 

the vertices of the t-simplex such that xis contained in the interior 
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of the simplex. Then there is a unique positive vector A= (A 1 ,A 2 , ••. At+l) 
t+1 t+l i 

such that Li=l Ai= 1 and x = Li=l Aiw. Then a piecewise linear 

approximation to the mapping ¢ wil-.h respect to G is the function f: C + RP 

defined by 

t+1 
f(x) L A,f(wi) 

i=1 1. 

COROLLARY 2.5.5. The piecewise linear approximation f is continuous. 

PROOF OF THEOREM 2.5.3. We follow the proof of Eaves [19711. Let C' be 

an m-simplex containing C and let c be an interior point of c. Define 

the mapping¢ from C' to the set of nonempty, convex,compact subsets of 

C' by 

if X E int C 

conv (¢(x) u {c}) if x E bd C 

{c} if XE C'\C. 

It is easy to see that¢ is upper-semicontinuous on C'. Moreover, it is 

* clear that ¢(x) is nonempty and convex for all x EC'. Suppose that x is 

* * a fixed point of ¢. It is obvious that x EC. If x E int c, then 

* * * * x E ¢(x) and x is a fixed point of¢. If x E bd c, then for some 

y E ¢(x*), x* = AC+(1-A)y for some A, 0 ~A~ 1. Since c E int c, we have 

* * that A > 0 implies that x E int C which contradicts x E bd c. Hence, 
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* A= 0 and x y E ¢(x*). Therefore x* is a fixed point of¢ if x* is a 

fixed point of¢. To prove that¢ has indeed a fixed point on C', let 

{Gk, k = 1,2, ••. } be a sequence of triangulations of C' with 

£k = mesh Gk+ 0 if k + 00 , and let fk be a piecewise linear approximation 

to¢ with respect to the triangulation Gk. Bij Brouwer's theorem fk has 

a fixed point, say xk. Moreover, by definition 2.5.4, there is a simplex 

· l ( ) m+l (k) t · · k h th t f . of Gk with vertices w k, •.. , w con aining x sue a or unique 
k k. k k kT m 

nonnegative numbers "l' ••• , "m+l with A = (A 1 , ••• , "m+l) Es holds 

Since 
k· 

X J + 

k 
X 

m+l 
L 

i=l 

c' is compact, there is a subsequence k., j=l,2, .•• such that 
* kj * k · i ~ i J x , A + A and f J (w (k.)) + f , i = 1, •.• ,m+l, if j + 00 • Since 

i * J £ + O, w (k.) converges to x for all i. Because of the upper-semi-
k J - ~i - * 

continuity of¢, f E ¢(x ), for all i. Taking limits in the equation 
* m+l *~ i * m ~ i - * 

above, we obtain that x = Li=l "if with A ES, while f E ¢(x) for 

- * * - * all i. Therefore, since ¢(x) is convex, x E ¢(x), which completes the 

proof. D 

Note that the property of corollary 2.5.2 is sufficient to prove the 

theorem. Algorithms to compute "Kakutani fixed points" will be based 

on the technique of piecewise linear approximation to the mapping with 

respect to a sequence of triangulations with mesh going to zero. 

2.6. APPLICATIONS. 

In this section we give some examples of Brouwer's theorem and the 

theorem of Kakutani. With respect to Brouwer's theorem we discuss the 

problem of the existence of an equilibrium in an exchange economy. As an 

application of Kakutani's theorem we give the unconstrained optimization 

.9roblem. 

EXAMPLE 2.6.1. (Exchange economyl. 

Let us consider an economy without production in which n+1 commodities are 

exchanged. We assume that there are m consumers each having a utility 

function ui(x), i=1, ••. ,m, where x = (x1 , •.. ,xn+l) denotes a vector of 

commodities. This function is definedfromRn+l to Rand reveals the utility 
+ 

of the i-th consumer. Furthermore, we assume that each consumer has a 
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f . . . 1 d ei ( i i ) T . . vector o initia en owments e 1 , .•• ,en+l • Given a price vector p = 
T n+1 

(pJ. 1 ••• ,pn+l) ER+ \{O} each consumer i maximizes his utility under the 
T T i i 

budget constraint p x ~ p e • Let x (p) be the demand vector for consumer 
i 

i which maximizes his utility given the price vector p. Clearly, x (p) is 

homogeneous of degree zero in p. Therefore we can normalize the price 
n j n n+1 . 

vector p such that p ES . So x·(p} is a function from S to R+ assuming 

that xi(p) exists and that xi(p} is unique for all p. Furthermore, we 
i assume that x (p) is continuous in p, for all j_. The economic consequences 

of these assumptions are discussed by many authors, e.g. Arrow and Hahn 

~1971]. Finally, if ui(x) is a monotonic increasing function of x, each 

d 11 . '. . T i ( } T i . l Th consumer spen s a his income, i.e. p x p = p e, i= , •.. ,m. en we 

have 

m 

·/ z 
i=l 

0 

i which formula is known as Walras' law. Since x (p) is continuous for all i, 

the excess demand function g from Sn to Rn+l defined by 

g(p) = z:=l (xi(p)-ei} is also continuous in p. The economy is said to be in 

equilibrium if there exists a price vector p* in Sn such that g(p*} ~ 0. 

* By Walras' law it is clear that in equilibrium p. 
J 

j=1, ••. ,m+l. 

* 0 if gj (p ) < 0 , 

Using Brouwer's fixed point theorem we prove that an equilibrium exists 

under the assumptions stated above. We define the function f from Sn into 

itself by 

f.(o} = [p. + max{O,g.(p)}l/c(p} J .. J J . .. j 1, ... ,n+1 

n+l 
where c(p) = 1 + Z. 1 max{O,g.(n)}. Clearly, f satisfies the conditions of 

]= J .. * * * 
Brouwer's theorem. Therefore, there exists a price p such that p = f(p). 

We show that pis a fixed point of the function f if and only if pis an 

* equilibriUI:1 price vector. If p is a fixed point off then 

j 1, ... ,n+1. 

* c(p*l * Assume gj(p l > 0 for some j. Then > 1 and hence gk (p l > 0 if 
* zn+1 * * 

pk > o. This implies that D, gj (pl > 0 which contradicts Halras' law. 

* 
j=1 -J 

* Consequently, gj (p ) ~ 0 j = 1, ••• ,n+1, which proves that p is an 

* equilibrium price vector. Conversely, if p is such a vector then 
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max{O,g. (p*)} 
. J -

o, j 1, •.. ,n+l and hence f(p*) p*. □ 

The function f defined above is not particularly suitable for use in 

algorithms for computing fixed points, since by considering the maximum 

over zero and the excess demand in stead of the excess demand,information 

is lost about the structure of the function. In a later chapter the 

computation of an equilibrium price vector will be based on the excess 

demand. 

For many economic models the existence of an equilibrium was proved, e.g. 

Debreu [1959], Dreze [1975], Greenberg [1977], van der Laan 119807. In 

general Brouwer's theorem is not sufficient. For instance in an economy 

with linear production activities the excess demand is an upper

semicontinuous point-to-set mapping and the existence proof and computation 

of an equilibrium will be based on Kakutani's theorem (see e.g,Scarf 

[1973] and Todd 11976a,1977b]). About computational results for economic 

models obtained by using fixed point algorithms we refer the reader also 

to Shaven and Whalley 11973], Whalley U975], MacKinnon ["1976], Richter 

11978] and Reif [1978]. 

Before we discuss the example of unconstrained optimization we give a 

useful extension of Kakutani's theorem. The next lemma is due to Merrill 

[1971,1972] (see also Todd [1976a] and Allgower and Georg 119807). 

LEMMA 2.6.2. (Merrill's condition). 

Let¢ be an upper-semicontinuous mapping from Rn to the collection of 

nonempty, convex subsets of Rn. Assume that there exist w E Rn,µ> 0 and 

o > 0 such that for all xi Bn(w,µ), f(x) E ¢(x) and z E Bn(x,o) holds 

(f(xl - x) T (w-z) > O. 

Then the mapping¢ has a fixed point in Bn(w,µ). 

PROOF. Let C be the compact convex set Bn(w,2µ). Note that w E int c. 
Define the mapping¢' (x) by 

¢' (x) ¢(x) 

conv(¢ (x) u{w }) 

if X E int C 

if x E bd C. 



Then¢' (x) is an u.s.c. mapping from C to the collection of nonempty 

convex subsets cf Rn such that w E ¢' (x) for all x E bd c. Following 

Eaves [1971] we show that¢' has a fixed point. Clearly, since¢' is 

u.s.c. ¢'(C) is compact and hence the set C' defined by 

C' conv(C u ¢' (C)) 

is compact. Define the u.s.c. mapping¢' from C' into itself by 

¢' (x) ¢' (~) 

{w} 

if X € C 

if x € C'\C. 

Since¢' satisfies the conditions of Kakutani's theorem there exists a 

fixed point x* EC' of¢' and analogous as in the proof of theorem 2.5.3J 

it follows that x* EC and that x* is a fixed point of ¢'(x*). If 

x* E Bn(w,µ), then x* E int c and hence x* E ¢(x*). 
. * n 
Therefore we prove that x EB (w,µ). Suppose to the contrarc7 that 
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x* i Bn(w,µ). Since x* € ¢'(x*) c conv(¢(x*) U {w}), for some A, A€ r.o,1], 

* * and some f(x) € ¢(x we have that 

so that 

* X 

However, (w-x*)T(w-x*) > 0 while by the condition of the theorem 

(f(x*>-x*)T(w-x*) > O. So a contradiction is obtained which proves that 

x* E Bn(w,µ). D 

LeIIlllla 2.6.2. is used in the following example. 

EXAMPLE 2.6.3. (Unconstrained optimization problem). 

Let f: Rn-+- R be a convex and finite function. Ne want to compute a point 

x such that f(x) ~ f(zl for all z E Rn. Let df(x) be the set of all 

subgradients off at x, i.e. 

df(x) 



20 

Since f is convex, the mapping df from Rn to the set of nonempty, convex 

subsets of Rn is u.s.c. (Rockafellar [1970]). Define the u.s.c. mapping¢ 

by ¢(x) = {x}-df(x), XE Rn. 

Assume there exists an a such that the set F(a) = {ylf(y) ,,;.a} is nonempty 

and bounded. Then F(S) is bounded for all real s (Rockafeller '1970]). 

For arbitrarily chosen w E Rn and 0 > 0, let s max{f(x) !x E Bn(w,o) }. 

Then F(Sl is bounded so we can choose an µ > 0 such that F(S) c Bn(w,µ). 

Furthermore, for any x I. Bn(w,µ), g(x) E ¢(x) and z E Bn(x,o) we have that 

x - g(x) E df(x) and hence 

(g(x)-x) T (w-z) (g(x)-x)T.r(w-z+x)-x}? -f(w-z+x)+f(x). 

By x I. Bn(w,µ) we have f(x) > Sand by w-z+x E Bn(w,o) we have 

-f(w-z+x) > -S. Therefore (g(x)-x)T(w-z) > 0, which implies that ¢(x) 

satisfies Merrill's condition. So there exists a point x* with x* E ¢(x*l. 

Clearly OE df(x*) and hence f(x*) ,,; f(z) for all z E Rn. D 

As an illustration of this 
2 2 

x 1 + 2x2 - x 1x2 + x1 + x2 . 

the function ¢(x) = (-x1 + 

example, we want to minimize f(x) 

Then df(x) 

X -
2 

fixed point. Clearly this point minimizes f(x). 

For other applications of fixed point theorems see e.g. Todd !1976a], 

Saigal [1977b,1979a], Allgower and Georg [1980] and Talman 11980]. 
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CHAPTER 3 

TRIANGULATIONS AND MEASURES OF EFFICIENCY 

3 • 1 • INTRODUCTION. 

In this chapter we discuss special triangulations and measures for the 

efficiency of triangulations. Computational experience has shown that the 

efficiency of fixed point algorithms is very sensitive to the underlying 

triangulation (see e.g. Saigal 11977a] and Todd 11978aj)). Basic 

triangulations of Rn used in fixed point algorithms a-l; the so called Kand 

H triangulations which are defined_ in section 2. Measures for the efficiency 

of a trian<JUlation of Rn were given by Saigal, Solow and Wolsey 11975], 

Todd [197Gb, 1978a], Van der Laan and Talman f1980a] and Talman 11980]. 

Whereas earlier measures do not allow the calculation of the optimal 

triangulation, for their measure Van der Laan and Talman succeeded in 

calculating an optimal triangulation within a reasonable subclass of 

triangulations. The measures and the optimal triangulation for the measure 

of Van der Laan and Talman [198Qa] are given in section 3. Section 4 gives 

triangulations of the unit simplex and its affine hull including one which 

is comparable with the optimal triangulation of Rn. Finally in section 5 the 

replacement step between two full-dimensional adjacent simplices is given. 

3.~. BASIC TRIANGULATIONS OF Rn. 

Since the accuracy of an approximation of a fixed point will depend on 

the mesh of the triangulation we need triangulations without long, skinny 

simplices. In other words "regular" triangulations are preferred in fixed 

point algorithms (see Saigal [1977a , 1979b]). The first reqular 

triangulation was constructed by Freudenthal [1942] and rediscovered by 

Tucker in 1945 (see Lefschetz [1949, page 140]).This triangulation is 

called the K triangulation and is based on the "standard" subdivision of 

the unit cube (Kuhn r1960]). 
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DEFINITION 3. 2 .1. Let z be an arbitrarily chosen point i.n Rn. Then the 

K triangulation with grid size o>O is the collection of all simplices 

( 1 ) . th . 1 n+1 h th cry ,TI wi vertices y , ..• ,y sue _at 

a) each 
1 

com~onent of y -z is a multiple of o 

b) TI= (TI 1 , ••• ,Tin) is a permutation of the elements of the 

set I 
i+1 n i 

c) y y + oe(Tii} i=l, .•. ,n. 

In general z will be chosen as the zero vector. Observe that for o=l the 

collection of simplices {cr(Q_,TI) !TI is a permutation of the elements of T} 
n 

triangulates the unit cube C = {xERnlo ~xi~ 1 i=l, ••. ,n}. From the 

definition it follows that the diameter of each simplex is e~ual to 

6 ✓n. So, the mesh of the K triangulation with grid size 6 

is equal' to mesh K0 = oln. We denote the K triangulation with grid size o 

by K0 and write K0 = K when o = 1. 

A triangulation closely related to the K triangulation was used by Merrill 

f1972] and Eaves and Saigal [1972]. It is called the H triangulation. For 

z=O this triangulation is built up by simplices cr(y1 ,TI) such that the 
1 i+l i 

components of y are again multiples of o and y = y + oq(Tii}, i=l, •. ,n, 

where q(j) is the j-th column of the nxn matrix Q defined by 

-1 

1 

!) 

Q 

0 

0 

-1 

1 

0 

0 

.o 1 -1 

Of course, any arbitrarily chosen point z can be made a grid point by a 

shift of the grid, such that the components of y 1-z become integer 

multiples of o. Clearly for the H triangulation with grid size o, denoted 

by H0 (H if o=1),themeshisequaltoo max II Z: 
Sc!n j ES 

q(jl II = oln. 

More general, for any nonsingular matrix A, we can define the triangulation 

AK0 with grid size o as follows. 
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DEFINITION 3.2.2. Let A be a nonsingular nxn matrix. Then the triangulation 
1 n+l AK0 is the collection of all simplices o(Ay , ... ,Ay ) such that 

( 1 n+l) . . l f a y , •.. ,y is a simp ex o K0• 

Observe 
1 o(y ,11) 

that for z=O the triahgulation AK is the collection of simplices 
-1 1 

such that all components of A y are integers and 
i+l 

y = yi + a(1r.) i=l, .•• ,n, where a(j) is the j-th column of the matrix A. 
i ~ 

If we take A equal to Q we obtain the H triangulation. 

To compute the mesh of an AK triangulation, observe that diam o(y1 ,1r) is 

independent of y 1 • So,by setting y 1 0 the next corollary follows 

immediately. 

COROLLARY 3.2.3. mesh AK max II Z: a(j) II • 
Scin jES 

Clearly, mesh AK0 = o mesh AK. So, the mesh can be made arbitrarily small 

by taking the grid size o small enough. 

Another triangulation well known from the literature but not of the form 

AK is the so-called "Union Jack" triangulation. It is a centrally symmetric 

triangulation due to Tucker (see Lefschetz [1949, page 140], cf. also 

Whitney [1957, page 358], Todd [1977a] and Kojima 11978bl). 

3.3. MEASUP-ES FOR THE EFFICIENCY OF TRIANGULATIONS • 

. A first measure used for the efficiency of a triangulation of the 

unit cube is the number of simplices in which the unit cube is 

triangulated. The Kand II triangulations both subdivide then-dimensional 

unit cube in ni simplices. However, Saigal [1977a] experienced that in 

particular for large n the K triangulation performs much better than the 

H triangulation. This fact is not unexpected since the H triangulation 

yields many shapes of simplices, whereas the K triangulation results in 

one single shape, i.e. all simplices of this triangulation are congruent. 

So, this measure is too rough and must be rejected. We mention however, 

that Mara [1972] succeeded in finding a triangulation which divides the 

unit cube in 5, 16 and 68 simplices for respectively n = 3, 4 and 5. 

A second measure was given by Saigal, Solow and Wolsey ~1975]. They 

defined the measure of a triangulation of the unit cube as its diameter 
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which is the maximum of the minimal length pat.h between any pair of 

boundary facets of the triangulation. The length of a path between two 

facets is the number of simplices met by the path. Saiqal 11977a] stated 
3 

that the diameter of the H triangulation was of the order or at least n, 

whereas the diameter of the K triangulation is equal to ½n(n-1)+1. 

A more sophisticated measure which can be calculated for triangulations of 

Rn was introduced by Todd r1976b, 1978a]. This measure is called the 

average directional density and is roughly the average number of simplices 

met by straight lines per unit length. Formally, for some triangulation 

G of Rn denote, for x,d E Rn and t > 0, the ratio between the number of 

simplices of G intersecting the line segment [x,x+td] and t by 

N(G,x,d,t). Denoting by N(G,d,t) the limit for r + 00 of the average of 

N (G, x, d, t) for x uniformly distributed in {yERn ! 11 y I! < r}, the directional 

density of G with direction d, to be denoted by N(G,d),is the limit of 

N(G,d,t)' for t + 00 provided that both limits exist. Finally, the average 

directional density N(G) of G is the average of N(G,d) ford uniformly 

distributed on the unit ball. 

In the following, A is a nonsingular nxn matrix and b(j) is the j-th 

row of A - l. Todd proved the following theorem. · 

THEOREM 3.3.1. The average directional density of the triangulation AK0 is 

where gn 

n 
N(AKO) = o- 1 { ,: l[b(j) II + 

j=1 

2f(½n)/{(n-l)ITII'(½n-½)}. 

n j-1 
,: ,: 

j=li=l 
llb(i)-b(j) II} gn, 

From this theorem the next corollary follows immediately. 

COROLLARY 3.3.2. 

-1 ✓ o {n + n(n-1) / 2}g , 
n 

n 
o-1{ ,: (n-j+l) ✓j}g 

j=l n 

An optimal triangulation according to the average directional density is 

unknown. However, Todd 11978a] gave a lower bound for the average 

directional density of a triangulation of the form AK. Since the average 

directional density depends on the mesh, we will restrict ourselves 



to triangulations with mesh equal to or less than In. 

LEMMA 3.3.3. For any triangulation AK with mesh AK$ In holds 

2 
N(AK) > (4n /25/5)g. 

n 

This result was strengthened by Van der Laan and Talman [1980a] for 

triangulations within a subclass A of AK triangulations. 

DEFINITION 3.3.4. An AK triangulation of Rn belongs to the class A if for 

some ct> n-1, a,. = ct, i=1, •.. ,n and a .. = -1, i cl j. 
ii iJ 
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In chapter 6 it will be motivated that elements of this subclass are very 

suitable for use in fixed point algorithms, see also Van der Laan and 

Talman ['1980 a] and Talman U980]. An element of this class with grid size o 
will be denoted by A(ct)K0 • 

LEMMA 3.3.5. The mesh of an A(ct)K triangulation is equal to 

where 

mesh A(ct)K 

k = n 

= b 

= b+1 

if b ;;,: n 

if b $ n-1 and 

if b $ n-1 and 

llyb+l 11 
llyb+1 I! 

<'. 11?+2 11 
< 11?+2 11 

2 1 n+l 
with b the entier of {(ct+1) /(4+4ct-2n)} and where y , ••. ,y are the 

vertices of the simplex cr(Q,TI) with Tii = i i=1, •.• ,n. 

The proof can be fa~~ in Talman [1980]. Note that the A(ct)K0 triangulation 

with grid size o = ct converges to the K triangulation for ct+ 00 • The 

proof of the following lemma can be found in Van der Laan and Talman 

[1980 a] and Talman [1980 J. 

LEMMA 3.3.6. For any A(ct)K0 triangulation with mesh A(ct)K0 $ In holds 
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It is an open problem whether this lemma holds for all triangulations AK0 

with mesh AK0 ~ In. 

Van der Laan and Talman [1980a7 introduced a new measure for the efficiency 

of. triangulations. This measure makes it possible to calculate the optimal 

triangulation within the class A. The measure called the SV-measure is 

based on both the total squared length of the one-faces of the simplices 

and the volume of these simplices. 

DEFINITION 3.3.7. The SV-measure of a triangulation G, to be denoted by 

SV(G), is defined by 

SV(G) SUP 

er E G 

n n+l 
[{ l: l: 

i=l j=i+l 

where ter denotes the volume of the simplex er 
1 n+l 

er (y , ••• , Y ) • 

The numerator reflects the total squared length of all one-faces of the 

simplex er. By raising this term to the power a half and the term in the 

denominator to the power 1/n, we obtain a measure which is homogeneous of 

degree zero in the mesh. If the triangulation is of the form AK, each 

simplex er has the same volume ldet A!/n:. 

Roughly speaking the SV-measure of a triangulation is a measure for the 

number of grid points per unit cube with respect to the total squared 

length of all one-faces of the "worst" simplex er. Clearly, for n=2, the 

SV-measure is minimized for a triangulation generating equilateral 

triangles. In Van der Laan and Talman [1980a] and Talman 119801 the 

following lemma ' s are proved. 

LF.tU1A 3.3.8. The optimal triangulation within A according to the 

SV-measure is the A(ci*)K triangulation with a* = n+ln+l. 

* LEMMA 3.3.9. The SV-measures of the K, Hand A(a )K triangulations are 

where r 
n 

a) SV(K) r /2 
n 

b) SV(H) r {3n/(n+1) }½ 
n 

3 2 ½ 
rn{3(n+2n -n+2)/n(n+l) (n+2)} 

* 1 /2n c) SV(A(a )K) = rn(n+l) , 

if n is even 

if n is odd 



* LEMMA 3,3.10. The mesh of the A(a )K0 triangulation is equal to 

* mesh A(a )K0 ½ 0(1+/n+l) (n+l) 

½ 6(1+/n+l) 

if n is odd 

if n is even. 

* 

27 

LEMMA 3.3.11. The average directional density of the A(a )K0 triangulation 

is equal to 

½ g {n(n+l) /8} (n+l) if n is odd 
n ' ½ 

g {n(n+l) /8}~ {n(n+2)} if n is even. ·n 

whereo*istakensuchthatmesh A(a*)K * In. 
a 

. * 2 
Note that N(A(a )K0*) converges to the lower bound gnn /18 of lemma 3.3.6 

* as n + 00 • Furthermore, the A. ( a ) K triangulation has the nice properties 

that the barycenter of any simplex has the same distance 
l:i --

{n(n+2)} (1+/n+l)/2 ✓3 to each vertex of the simplex and that for any 

simplex o(y1 ,11), IIYj-/11= l!Yj·-k - /-kll for all 1 :<; k < i < j :<; n+l. 

These properties suggest to consider this triangulation of Rn as the 

generalization of the equilateral triangulation of R2 in the sense 

that the triangulation yields simplices which are as "round" as possible. 

3.4. TRIANGULATIONS OF Sn and Tn. 

A familiar triangulation of Sn is given in the following definition. 

DEFINITION 3.4.1. (Standard triangulation of Sn). 

The standard triangulation of Sn with grid size o is the collection of all 

' 1 ' ( l ) ' th ' l n+ l h h t simp ices o y , 1T wi vertices y , •.. , y sue t a 

-1 1 
a) o is a positive integer m, and each component of y is a 

multiple of o 
b) 1T 0= (11 1 , ... ,11) is a permutation of the elements of I 

i+l i n n 
c) y = y + oq(11i) i = 1, ..• ,n, 

where q(j) is the j-th column of the (n+l)xn matrix Q 
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-1 0 0 

1 -1 

0 
Q 

0 

-1 

0 () 1 

As proved by Todd r 1976a:] the mesh of the standard triangulation Q with 

grid size c is equal to mesh Qc = cln+1 if n is odd and mesh Qc = cln if n 

is even. The following lemma has been proved in Van der Laan and Talman 

[1980a] and Talman [1980]. 

LEMMA 3.4.2. For the standard triangulation of Sn holds 

SV(Q) 

Other triangulations of Sn include a triangulation related to the Union 

Jack triangulation of Rn and the iterated barycentric subdivision (see 

Todd [1976a]). 

We now discuss some triangulations of Tn, the affine hull of Sn. 

DEFINITION 3.4.3. Let z be an arbitrarily chosen point of Tn. Then the 

standard triangulation Q of Tn with respect to z with grid size c is the 

1 ' f 11 ' 1 ' ( 1 ) ' th ' - 1 n+ 1 h th t col ection o a simp ices cry ,TI wi vertices y , ••• ,y sue a 

1 
a) Y 

n 
z + Ei=laiq(i) where ai is a multiple of c for all i 

b) TI= (TI 1, ••• ,Tin) is a permutation of the elements of In 

Cl i+1 i ,, ( ) . 1 y = y + uq Tii i = , ••• ,n. 

Of course the mesh of this triangulation is equal to the mesh of the 

standard triangulation of Sn. Also lemma 3.4.2 holds for this triangulation 

of Tn. Observe that SV(Q)/rn converges to 13 for n + 00 as is also the case 

for the H triangulation of Rn. Since SV(H) is much higher than the 

sv-measure of the A(a*)K triangulation of Rn, it seems to be worthwhile 



to look for a triangulation of Tn whose SV-measure is comparable with 

* SV(A(a )K). 

A class of triangulations of Tn can be defined in the following way. Let 
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n+l 
A be an (n+l)xn matrix of rank n such that ri=l aij O for all j=l, .•. ,n. 

Again, let z be an element of Tn. The A triangulation of Tn with grid size 

6 is defined as the set of all simplices cr(y1 ,TI) such that 
1 n 

y z + ri=l a,a(i) where 
J. 

is a multiple of 6 for all i, a. 
J. 

TI = ( TI 1 , ... , TI ) is a 
·+1 . n 

Yi yi + 6a(Tii), i = 1, ... ,n. 

of the elements of I and 
n 

Clearly mesh A= max II r a(j) II 
SCI jES 

n 

permutation 

In Van der Laan and Talman [1980a] and Talman [1980] the following 

triangulation is proposed for use in fixed point algorithms. This 

triangulation is defined by the matrix 

-n 1 

-n 

T 

-n 

The simplices of this triangulation have the same nice properties as the 

simplices of the A(a*)K triangulation of Rn. In particular these two 

triangulations have both r (n+1) 1/ 2nasSV-measure. We return to this 
n 

triangulation of Tn in chapter 5. 

To use a triangulation of Tn in algorithms to compute a fixed point on Sn 

it may be necessary to extend the function or map11ing from Sn into itself 

to a mapping from Tn to Sn. 

3. 5 • REPLACEMENT STEP. 

In this section we describe the replacement step between two full

dimensional adjacent simplices. Let cr and cr be two of such simplices. Then 

cr is obtained from cr by replacing a vertex of cr by a new vertex. The rule 

to obtain this new vertex is quite simple when a regular triangulation is 

used. 
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Let P be a triangulation matrix e.g. Pis an nxn matrix to triangulate Rn 
n 1 or an (n+l)xn matrix to triangulate T. Let cr(y ,TT) be a simplex of the 

triangulation,so y 1 is a grid point of the triangulation and 
i+l i 1.· y = y + op(TTi), 1, ... ,n, where o is the grid size and p(j) the 

- -1 -
j-th column of P. Then the rule to obtain the simplex cr(y ,TT) by replacing 

i 1 
the vertex y of cr(y ,TT) is given in table 3.5.1. 

TABLE 3.5.1. i is the index of the vertex to be replaced. 

-1 
y becomes TT becomes 

i 1 
1 y +op(TT l) (TT2' ••. ,TTn,TTl) 

2 !, i !s n 

i n + 1 

1 
y 

1 y - op(TTn) 
( TT 1 ' • • • 1 TT i-2' TT l TT i-1 1 TT i + 1 ' • • • 1 TT n) 

(TTn,TT1,·••tTTn-1' 

1 i-1 i+l n+l It is easy to see that the facet T(y , ••• ,y ,y , .•. ,y ) is indeed 

a common facet of 
1 - -1 -

cr(y ,TT) and cr(y ,TT). For instance if i = 1 
-i i+l . 
y = y , l. = 

-n+l n+l 1, ... ,n,whereas y = y + op(TT 1). 

Although some modifications can be necessary, table 3.5.1 will be used in 

the algorithms to be treated in this monograph. Triangulations in which 

the replacement step can be described by table 3.5.1 are called 

triangulations by reflecting since the new vertex is obtained by reflecting 

the old vertex with respect to the common facet. A full description of 

triangulations by reflecting can be found in Allgower and Georg [ 1980 l. 
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CHAPTER 4 

ALGORITHMS FOR APPROXIMATING FIXED POINTS 

4.1. INTRODUCTION. 

In this chapter we consider some algorithms for computing a fixed 

point of a function or mapping from a set into itself where both integer 

and vector labelling will be treated. A first algorithm applied on the 

unit simplex was introduced in 1967 by H.E. Scarf. This algorithm is based 

on the concept of primitive sets .rather than using a simplicial 

subdivision. In 1973 Scarf described a method for using the standard 

triangulation of the unit simplex. Earlier in 1968 and 1969 Kuhn developed 

already two methods to compute fiYed points on the unit simplex which both 

were based on the standard triangulation. The first method adds a layer 

of artificially labelled points to Sn and starts with an (n-1)-simplex on 

the boundary, whereas the other one uses no extra points, but starts with 

one of the vertices of the unit simplex. Analogous methods for computing 

fixed points of a continuous function from R: to itself can he easily 

derived. Whereas all these methods were introduced at first for integer 

labelling, an algorithm with vector labelling to compute a fixed point of 

an upper-semicontinuous mapping from a convex compact set into itself was 

developed by Hansen and Scarf in 1969. This method was based on primitive 

sets. However, Eaves fl971] develoned an algorithm using a triangulation 

of a simplex containing the convex compact set. 

The algorithms mentioned above all suffer from computational inefficiency 

because the start is made outside the region of interest while the grid 

size is kept fixed throughout the algorithm. This means that if for a aiven 

grid size an approximation is found and one wants to restart the method 

with a finer grid to obtain a better approximation, the method must be 

started again outside the rerrion of interest. So all information about the 

fixed point is lost. 

A number of algorithms to avoid this disadvantage were developed during 

the last decennium. One method j_s due to Merrill 11971,1972] and was 
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independently found by Kuhn and MacKinnon r1975J (see also Luthi r1975J 

and Fisher, Gould and Tolle [1977]). "This algorithm can be applied both on 

Sn and Rn and is called the Sandwich method. It can start an1,where. So, if 

this method is applied for a decreasing sequence of grid sizes one can 

choose in each stage the starting point in such a way that it is the 

most appropriate one by considering the information obtained from the 

approximation in the previous stage. An other method which takes advantage 

of the information already obtained in the course of the algorithm was 

introduced by Eaves f1972] for application on Sn and by Eaves and Saigal 

[1972] for Rn. In this method, called the homotopy algorithm,the grid size 

is automatically decreased with a factor of at most two. Both methods were 

introduced with vector labelling to compute a fixed point of an u.s.c. 

mapping. 

This chapter is organized as follows. In section 2 we discuss the concept 

of integer labelling and we present some theorems about the accuracy of an 

approximation. In the sections 3-7 we treat the algorithms mentioned above 

for integer labelling. The algorithm of Scarf is given in section 3, t.1-ie 

methods of Kti.~n including a unified approach of his methods are given in 

section 4, the analogous methods on R: in section 5, the Sandwich method 

in section 6 and the homotopy algorithm in section 7. In section 8 we 

present the concept of vector labelling. The basic algorithm of Eaves is 

presented in section 9 while the Sandwich method and the homotopy 

algorithm using vector labelling are described in section 10 for mappings 

on Rn. The computation of a fixed point of a mapping on Sn is discussed 

briefly in section 11. In section 12 we give some concluding remarks. 

4.2. INTEGER LABELLING AND APPROXIMATION. 

In chapter 2 it was proved that a continuous function f from sn into 

itself has at least one fixed point by taking a sequence of triangulations 

{~, k=l,2, ••• } with mesh Gk+ 0 if k + 00 and by labelling each grid point 

x by an integer label t(x). Now we give a labelling rule which is more 

appropriate to be ,used in algorithms for computing a fixed point. 

DEFINITION 4.2.1. (Standard inteqer labelling rule on Sn). 

A point x in Sn receives the label t(x) = i, if 

i = min{jEI 11f,(x)-x. = min f (x)-x and xJ. > O}. 
n+ J J m m 

mEin+l 
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Clearly there exists 

restriction since if 

always such an index. Note that x. 
J 

f.(x)-x. min f (x)-x and x.=0 
J J mET m m J 

> 0 is not really a 

for some j, then x 

-n+l 

must be a fixed point. We call a labelling rule which satisfies the 

condition t(x} ~ i if xi= 0 proper. By Sperner's lemma, for any 

triangulation Gk, k=1, 2, ... there exists a completely labelled simplex crk 

of Gk if the labelling rule is proper. Before introducing algorithms which 

generate a completely labelled simplex, we show how close an arbitrarily 

chosen point x in a completely labelled simplex is to its image f(x). 

LEMMA 4.2.2. Let G be a triangulation of Sn and let s,o > 0 be such that 

for every simplex cr of G 

max [f. (x)-f. (y) J < E 
. l. l. 
J.Ein+l 

for all x,y E cr 

and 

max J x . -y . J < o 
. l. l. 
J.Ein+l 

for all x,y E cr. 

* * * Then, for any completely labelled simplex cr of G and x E cr, 

PROOF. Let wi be the vertex of cr* with label i, 1 $; i $; n+l. Clearly 

f. (wi)-w~ is nonpositive for all i Hence for all i l. l. • , , 

* * f. (x )-x. 
l. l. 

On the other hand, since rn+l (f. (x*)-x~) 
j=l J J 

0, we have for all i·, 

* * f. (x )-x. 
l. l. 

* * r (fJ. (x )-xJ.) > -n(s+o). 
j~i 

Combining these two inequalities we get the desired result. D 
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The lemma guarantees that a completely labelled simplex in Sn is indeed an 

approximation of a fixed point if the standard labelling rule is used. 

Consider now a continuous function f from Rn to Rn and assume that this 

function has a fixed point (c.f. lemma 2.6.2). The standard integer 

labelling on Rn is defined as follows. 

DEFINITION 4. 2. 3. (Standard integer labelling on Rn) • 

For some xERn, let i = min{jEI !f.(x)-x. = max f (x)-x}. Then x receives 
n J J mEI m m 

the label t(x) with n 

t(x) i 

n+l 

if fi (x) - xi~ 0 

otherwise. 

The next lemma gives the accuracy of the approximation of a fixed point 

when a completely labelled simplex a* is found. 

LEMMA 4.2.4. Let the triangulation G of Rn be such that 

max lxi-yil < 6 for all x,y E a* and let£ >!)be such that 
iEI 

n 

max 
i<'I 

n 

lf.(x)-f.(vll <£for all x,y Ea*. Then for all x* in,/ 
l. l. -

max If. (x*)-x~J < £+6. 
iEI l. l. 

n 

PROOF. Again, let wi be the vertex of a* with t(wi) i, i=l, ...• ,n+l. 

i i f. (wn+l)-wn.+1 Clearly, fi(w )-wi ~ 0 for all 1 ~ i ~ n and J J < 0, j E In. 

Hence, for i = 1, .•• ,n 

and 

* * f. (x )-x. 
l. l. 

□ 

So, if the standard labelling rule is used, a completely labelled simplex 

in Rn yields an approximation of a fixed point. 
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4.3. SCARF'S ALGORITHM. 

The original algorithm of Scarf 11967blis based on the concept of 

primitive sets in stead of a triangulation of a simplex. Moreover, a 

labelling rule different from that of definition 4.2.1 was used. However, 

in this section we will follow Todd t1976a] using the standard labelling. 

To describe the algorithm we define the set Sn by 

-n 
s 

n+l 
{xERn+il L 

i=l 
x. 

i 

-n i i 
S is then-simplex with vertices y defined by y = 2e-(2n+l)e(i), 

i=l, •.. ,n+l, where e is the vector withe. 
n+li 

that e(i) is the i-th unit vector of R . 

1 for all 1 sis n+l. Recall 

In the next definition,let for some fixed k with k > n+l the points 
+ .., k ml m2 -· 

n '· 1 · n h 1 y , .•. ,y be k-n- points in S sue that yi ~ yi for all m1 ,m2 ~ n+, 

DEFINITION 4.3.1. (Primitive sets). 

For some Jc Ik, JJI = n+1, the set of n+l points {yjjj E J} forms a 

primitive set if there is no m with n+2 s ms k such that 

y~ > min y~ for all i. 
i jEJ i 

Observe that the set {yjjj E J = I 1} of vertices of Sn does not form a 
n+ 

primitive set. Scarf's algorithms is based on the following lemma (see 

Scarf [1967b]l. 

LEMMA 4.3.2. 

a) For any i E In+l' there exists a unique index ji > n+l, such that the 

set of points {yjlj E (I 1 u {j,})\{i}} forms a primitive set. 
. n+ i 

b) If {yJjj E J} is a primitive set and ~l E J is such that 

{yj J j E J\ {m1 }} is not a subset of {yJ I j E In+i}, then there is a 

unique m2 i J such that {yjjj E (Ju {m2 })\{m1 }} forms a primitive set. 

Scarf's algorithm searches for a completely labelled primitive set, i.e. 

a primitive set {yjjj E J} such that all elements are differently labelled. 

Observe that a completely labelled primitive set indeed provides an 

approximation of a fixed point. 

th 1 'thm h · outs·i'de Sn, 1 n+l To start ea gori t e points viz. y , ..• ,y are 
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labelled by 2(y1) = n+l and 2(yi) = i-1, i=2, •.. ,n+l. From lemma 4.3.2.a 
2 n+l h 

there is a unique primitive set {y , •.• ,y ,y }. Observe that 

I = {2(yj), j=2, .•. ,n+l}. Starting with this primitive set the algorithm 
n jl 

mak~s a search for label n+l. Therefore 2(y ) is calculated. If 
J1 

2(y ) = n+l, the set is completely labelled and the algorithm terminates. 

Otherwise the point y ml where m1 is the index such that 9, (y mi) = 9. (yj 1) is 
m2 2 m1-l m2 m1+l n+l jl} 

replaced by y · such that {y , •.. ,y ,y ,y , ••. ,y ,y is again a 

a primitive set. Continuing by calculating the label of the new point and 

replacing the point having this label the algorithm generates a path of 

"adjacent" primitive sets until label n+l is found. Scarf proved that the 

method will terminate within a finite number of replacement steps since all 

steps are unique and feasible whereas the number of primitive sets is 

finite. 

For the replacement step a search through all points y 1 , ..• ,yk is 

required, unless these points are chosen in a systematic way. This is 

indeed possible but then there is a direct correspondence between primitive 

sets and simplices of the standard triangulation of Sn (see Scarf 11973, 

chapter 7]). The algorithm becomes then very close to the variable 

dimension algorithm of Kuhn to be discussed in the next section. 

4.4. KUHN'S ALGORITHMS, 

Besides the pioneering work of Scarf, two algorithms based on the 

standard triangulation of Sn and using the standard labelling rule were 

developed by Kuhn [1968] and [1969],(see also Todd [1976al), namely the 

artificial start algorithm and the variable dimension algorithm. 

Before we present these algorithms we give some definitions. Recall that 

Sn is then-dimensional unit simplex, Tn the affine hull of Sn and S~ the 
J_ 

i-th boundary of Sn, i=l, ••. ,n+l. Leto be the grid size of the standard 

triangulation of Tn as defined in definition 3.4.3 such that e(l) is a 

grid point and o-l =mis a positive integer. 

DEFINITION 4.4.1. 

a) :;:t = {xETn[x. :c>: O, i EI and x 1 :c>: -m- 1 }. 
i n n+ 

bl s~ is the i-th boundary of Sn i.e. 
J_ 

-n s. 
J_ 

-nr {xES X. 
J_ 

O}, i E I 
n 



and 

-nl -1 {xES x 1= -m }. 
n+ 

k+l, •.. ,n+l}, k 1, ... ,n+1. 

Obviously, since e(l) is a grid point of the triangulation of Tn, the 

collection of simplices cr such that crnsn = cr triangulates Sn. Moreover, 

S~+l is triangulated (see theorem 2.3.6) and all grid points of Sn 
n -n 

outside S are lying in Sn+l 
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In the following a permutation of the elements of the set Ik is denoted by 

'ff(Ik) = (,r 1 , ••. ,,rk). So,-a simplex cr of the triangulations given in 3 is 

denoted by cr = cr(y1 ,,r(I ) ) • A k-simplex cr with vertices y 1 , ••• ,yk+lis also 
1 n k+l 

denoted by cr (y , ••••••• ,y ) . 

The artificial start algorithm. 
-n 

To apply this algorithm the points of sn+l are artificially labelled by 

.Q,(x) min{j Ix. = 
J 

-n 
max xk} if x E sn+l· 

kEin+l 

The points of Sn are labelled according to definition 4.2.1. Clearly, 

.Q,(x) ~ n+1 if x E s~+i and .Q,(x) ~ i if x E 

that mis a multiple of n, say m = pn. Let 

-n 
s., i = 1, ... ,n. Kuhn assumed 

1 o 1 
T (y ,,r (I 1)) be the (n-1)

n--n 
simplex in Sn+l defined by (see figure 4.4.1) 

1 
a) y 1 
b) ,r. 

l. 

1 1 
(p+l)/m, yi = p/m, i=2, ... ,n, Yn+l 

-1 
-m 

i i=1, ••. ,n-1. 

DEFINITION 4.4.2. Fork E In+i' a (k-1)-simplex cr is Ik-complete if the k 

vertices of cr carry all the labels 1, ••• ,k. 

Note that an In+1-comr:,;_--~~ .1-simplex is a completely labelled simplex. The 

next lemma follows from the labelling rule on Sn 1 , defined just above. It 
n+ 

is a special case of lemma 4.4.8 to be proved hereafter. 

o 1 
LEMMA 4.4.3. The (n-1)-simplex T (y ,'ff(In-i)) is the only In-complete 

simplex j_n s~+l 
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By theorem 2. 3. 5 there exists a unique n-simplex a0 (y1 , ... , yn+l) of Sn 
0 O 1 n+l O 1 . 1 

having T as a facet. Clearly a (y , •.. ,y ) = a (y ,TI(In)) with y as 

defined just above and TI.= i, i EI. Observe that yn+l is the only 
l n 

vertex of a0 in Sn. Moreover, yn+l is the barycenter of s:+l" 

The simplex a0 will be the starting simplex of the algorithm. From this 

' 1 th f d' . 1· 'l l 2 . t d h s1mp ex on a pa o a Jacent n-s1mp ices a ,a ,a, ••• is genera e sue 

that the common (n-1)-dimensional facets are In-complete, until a 

completely labelled simplex is found, i.e. the algorithm terminates if a 

grid point having label n+l is generated. Remember that the replacement 

step between two adjacent simplices is described in section 3.5. The 

algorithm can be described as follows. 

Step 0. 

Step 1. 

Step 2. 

n 1 - n+l 
Set a equal to a~(y ,TI(In)) and y equal toy 

Calculate £(y). If £(y) = n+l, a is completely labelled and the 

algorithm terminates. Otherwise, there is exactly one vertex 

ys ;t y for which £ (ys) = £ (y) . 
The simplex a(y1,TI(I )) is adapted according to table 3.5.1 by - n 
replacing ys. Return to step 1 with y equal to the new vertex 

of a. 

we now prove that the algorithm indeed terminates. The arguments used will also 

play a crucial role in the further simplicial algorithms. Firstly, from lemma 

4.4.3 and the fact that £(x) ;ti if x Es~, it follows that To is the 
l 

only In-complete (n-1)-simplex on the boundary of Sn. Therefore, all the 

replacement steps are feasible , i.e. the new simplex is always a simplex 

of Sn, unless the algorithm returns in a0 while yn+l has to be replaced. 

However, the algorithm can not return in an earlier generated simplex. 

Suppose the contrary and let j be the index such that for some i < j, 

ai = aj and for all k,h < j, ak ;t ah, i.e. aj is the first simplex which 
·-1 . i 

was generated earlier. Then aJ and aJ a have a common In-complete 

facet. Clearly, any generated simplex has only two I -complete facets. 
·+1 n j-1 i-1 

Hence a· must be equal to either a or a1 . If i ~ 1 then 
j-1 i-1 k h 

a "'a since a ;ta for all k,h 
0 1 

< j. If i = 0, a has only a as 

adjacent simplex such that the common facet is In-complete. So, in both 

cases aj-l = ai+l Moreover j-1 = i+l, again by that fact that ak ;t ah for 

all k,h < j. Hence j = i+2 and ai = ai+2 • Because of step 2 this is 

impossible. 
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Consequently, a path of differently adjacent simplices in Sn is generated. 

Since the number of simplices is finite, the algorithm must terminate 

within a finite number of replacement steps with a completely 

labelled simplex in Sn. Since JI, (x) >' n+l if x E s:+1 u s:+1' this simplex 

must be a simplex in Sn. The algorithm is illustrated for the example of 

figure 2.4.2 in figure 4.4.1. 

e(l) 1 e(2) 
1' 

/ \ / \ 'O >--,..__-'( I \ 
I \ I \ ,'rJ \ ,' \ / \ 

L -- _::.,/ _ ___ ).i_ ---~--- -~-- - ~ 

1 1 1 TO 2 2 2 

Figure 4.4.1. Kuhn's artificial start algorithm. 

In other algorithms to be discussed in this section the arguments to prove 

non-cycling are very similar to the arguments above. Therefore, they are 

not repeated each time. 

Kuhn's variable dimension algorithm. 

This algorithm does not start with a full-dimensional simplex but with the 

single point e(l). Recall the set Sn(k) of definition 4.4.1.c and note that 

Sn(l)=e(l) and that Sn(n+l)=Sn. Furthermore Sn(n)=Sn 1 • Clearly points x in 
n+ 

n 
S (k) carry only labels of the set Ik since xi=O for i~k+l. By theorem 

2.3.6, Sn(k) is triangulated in (k-1)-simplices. It is obvious that Sn(k) 
k-1 n 

corresponds with S , for any l$k$n+1, whereas a proper labelling on S 

induces a proper labelling on Sn(k). So, by Sperner's lemma Sn(k) has at 

least one Ik-complete simplex, k=l, ... ,n+l. The algorithm starts with the 

{1}-complete zero-dimensional simplex {e(l)} of Sn(l). As soon as for some 

k, k=l, ••• ,n, an Ik-complete simplex in Sn(k) is found, the algorithm 

continues with a path of k-simplices in Sn(k+l) having Ik-complete common 

facets, until either an Ik+1-complete simplex in Sn(k+l) is found or a 
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simplex having an Ik-complete facet in Sn(k) is generated. In the first 

case the dimension is increased, whereas in the latter case the dimension 

is decreased. The algorithm terminates if a completely labelled simplex is 

found. Formally, the steps are as follows. 

Step 0. 

Step 1. 

Step 2. 

Step 3. 

1 0 1 - 1 
Set k=l, y =e(l), er=er (y ,TT(0)) and y=y. 

Calculate 9,(y). If 9,(y)=k, an Ik-complete simplex in Sn(k) is 

found and go to step 3. Otherwise, there is exactly one vertex 

ys ~ y such that 9,(ys) = 9,(y). 
k-1 1 k-1 

If s=k and yk =O, the facet T (y , ..• ,y ) of er is an Ik_ 1-

complete simplex in Sn(k-1) and go to step 4. Otherwise 
1 

er(y ,TT(Ik_ 1)) is adapted according to table 4.4.2 by replacing 

ys. Return to step 1 with y equal to the new vertex of er. 

If k=n+l, a completely labelled simplex is found and the 

algorithm te=inates. If k<n+l, TT(Ik_ 1) becomes TT(Ik) = 
1 

(TT(Ik_ 1),k), er becomes er(y ,TT(Ik)). Then k becomes k+l and return 
k k-1 

to step 1 with y = y = y + q(k-1)/m. 

step 4. Set er equal to T and set TT(Ik_ 1) equal to TT(Ik_ 2) = (TT 1 , •• ,TTk_ 2). 

Then k becomes k-1 and return to step 2 wi.th ys equal to the 

vertex of er having label k. 

Table 4.4.2. sis the index of the vertex to be replaced. 

1 y becomes TT(Ik_ 1) becomes 

s = 1 (TT 2' • • • ,TTk-1 'TT 1) 

2 ~ s ~ k-1 

s = k 

(TT1,·••tTT 2'TT ,TT l'TT 1···-,TTk 1) s-·. s s- s+ -
(TTk-l'TTl, ..• ,TTk-2) 

Note that table 4.4.2 is the analogon of table 3.5.1 adapted for the 

fact that the variable dimension k-1 is used in stead of fixed dimension 

n. By the proper labelling all replacement steps are feasible, whereas 

also the increasing of the dimension in step 3 is feasible. Using 

analogous arguments as above the algorithm can never return in an earlier 

generated simplex. Therefore, within a finite number of iterations a 

completely labelled simplex is found. A more detailed proof will be given 

in chapter 5. In figure 4.4.2 the algorithm is illustrated for the 

example above. 
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e ( 1),__....__~__.,_...._ __ __.._L-......\e (2) 

2 2 

Figure 4.4.2. Kuhn's variable dimension algorithM. 

It is clear that from a theoretical point of view the variable dimension 

algorithm can be implemented for any (not necessarily regular) 

triangulation of Sn. Since always a completely labelled n-simplex will be 

generated we have the following corollary, known as Sperner's lemma. 

COROLLARY 4.4.4. If the vertices of a triangulation of Sn are properly 

labelled, then there exists at least one completely labelled n-simplex. 

We will now show that the number of completely labelled simplices is odd. 

Suppose cr 1 is the completely labelled simplex generated by the variable 

dimension algorithm and let cr 2 (y1,i(In)) be an?ther completely labelled 

simplex (if any). Then we can apply the algorithm by a start in step 2 
1 -1 -

with k = n+l, cr = cr2 , y = y and TI(In) = TI(In) ands equal to i if i is 

the index such that i(yi) = n+l. Since the path between {e(l)} and cr 1 is 

unique, by performing the algorithm the path of generated simplices does 

not cross the path between {e(l)} and cr 1 and hence a new completely 

labelled simplex is found, say cr 3 . The same holds if we pick up a 

completely labelled simplex cr 4 etc. So we have the following corollary, 

which is known as a stronger form of Sperner's lemma. 

COROLLARY 4.4.5. If the vertices of a triangulation of Sn are properly 

labelled, the number of completely labelled simplices is odd. 
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We will return to this matter in chapter 7. 

The algorithms of Kuhn have the disadvantage that they must start on the 

boundary respectively in one of the corners of the unit simplex. So, 

information obtained by applying the algorithm with a coarse grid cannot 

be used for an application with a finer gric'I .. The Sandwich method to be 

discussed in section 6 is related to the artificially start algorithm but 

can start anywhere. In chapter 5 we will introduce an algorithm related 

to the variable dimension algorithm and which can also start anywhere. 

It will appear that compared with the Sandwich method the latter 

algorithm has the advantage that there are no artificially labelled points 

and that it generates a path of simplices of variable dimension, starting 

with only one point. 

We conclude this section with a class of algorithms of which the two 

algorithms of Kuhn are the extreme cases. 

A class of algorithPi.s 

Before presenting the algorithms we give some definitions. Recall that Tn 
-1 

is triangulated with grid size m such that e(1l is a grid point and 

with m some positive integer. 

DEFINITION 4.4.6, 

b) For k=1, ..• ,n, S~(k) is the i-th boundary of Sn(k), i.e. 
l. 

O} i=1, ••• ,k 

k=1, ..• ,n. 

Note that Sn(n) Sn. It is obvious that Sn(k) is triangulated in 

k-simplices and that grid points of Sn(kl outside Sn are points of 

s~+1(k). For given k, the algorithm starts with a k-simplex of Sn(k) 
-n 

having an Ik-complete (k-1)-facet in Sk+l (k). Therefore, let y be some 

grid point in Sn(k) (see definition 4.4.1.c). Clearly y E Sn(kl, since 

Sn(k) c Sn(k). Now the points of s~+1(k) are artificially labelled such 

that 9-(z) = i if 



i = min{j\y. - z. 
J J 

min yh - zh}. 
hEin+l 

Of course, the points of Sn are labelled according to the standard rule. 
1 k -n 

Let ,(w , ••• ,w) be the (k-1)-simplex of Sk+l (k) defined by 

wk= y - q(kl/m and wi = wHl - q(il/m i=k-1, ••• , 1. 

Then we have the following lenma. 

LEMMA 4. 4. 7 • The (k-1 l -simplex T is the only Ik -complete simplex i.n 
-n 
Sk+l (kl. 

PROOF. We first prove that, is ¾-complete. Clearly, for i = 1, ••• ,k, 
-i-- j . k 1 i -1 i -1 
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wj ~ yj,· ~ i, +, wk+l = Yk+l - m and wi = yi + m • This implies 

R.(wi) = i, so , is Ik-complete. It remains to prove the:·second part of the 

lenma. Suppose that the simplex p(u1 , •• ,~kl is an Ik-complete simplex in 

S~+l (k). If for some i,j, 1 ~ i,j S k, uij = y,-m- 1 , then u~ Sy, for 
h J J iJ 

h = 1, ••• ,k, contradicting that R.(u l = j for some h. Hence, uj ~ yj for 

all i,j, 1 s i,j s k. Moreover, by the definition of Sn(k) and S~+l (kl we 

have that y. = u~ = 0 (j = k+2, ••• ,n+1; i = 1, ••• ,kl, yk 1 = 0 and 
i -1J . J k i k -1 + . 

u.+1 = -m (i = 1, ••• ,k). Hence E. 1u. = E. 1 yj+m for i = 1, ••• ,k. 
K J= J J= 

It follows that for i = 1, ••• ,k 

i -1 
u¢(i) = y¢(il + m for some index ¢(i) with 1 s ¢(i) s k 

and 

for j ~ ¢(i), k+l. 

Recall that the triangulation of S~+l (k) is induced by the standard 

triangulati~n of T~. Therefore, since pis a simplex of S~+l (kl, we must 
i+l i . have that u = u + q(Tii)/m, i = 1, ••• ,k-i for some permutation TI(¾_1l. 

. 1 h+l Leth be the index such that Tih = 1. Now assume u1 = y1 • Then u1 = 
-1 h+l 1 1 -1 y 1 - m which contradicts u1 ~ y 1 • Consequently, u1 = y + m and 

1 1 1 
hence ¢(1l = 1 and ui = yi, i=2, ••• ,k. Sou = w. Moreover TI 1 must be 

2 -1 equal to one, implying that u2 = y 2 + m , i.e. ¢(2l = 2. Consequently 

¢(i) = Tii = i, i = 1, ••• ,k-1 which proves that p = ,. D 
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It is obvious that lemma 4.4.7 implies lemma 4.4.3 by taking k=n and 

yj = p/m j=l, ... ,n, yn+l = 0. 

We are now prepared to sketch the algorithm associated with a given k* and 

a given pointy being a grid point in Sn(k*). The met.½od starts with the 
0 1 k*+l k*+l 1 k* 

k-simplex CJ (y , ..• ,y ) , where y y and where y , ..• ,y are the 

vertices of the simplex T of lemma 4.4.7, 0 0 1 
i.e. CJ = CJ (y ,TT(Ik*'' with 

* TT. = i, i=l, .•• ,k . 
i * 

By applying Kuhn's artificial start algorithm, in which 

we take k 1 -
in stead of n, an Ik*+1-complete simplex p = p(v ,TT(Ik*)) of 

Sn(k*+l) mus.t be found within a finite number of steps. Then, we continue 

* with the variable dimension algorithm by setting in step 0, k = k +2, 
- - * 1 1 
(,, •. ,TTk*' k +1), CJ(y ,TT(Ik*+l)) = CJ(v, TT(Ik*+l)) and 

Within a finite number of iterations, the algorithm either 

terminates with a completely labelled simplex or generates a simplex of 

Sn(k*+2) having an (Ik*+l)-complete facet in Sn(k*+l). In the latter case 

the method proceeds again according to the artificial start method and 
-n * generates simplices in S (k) having Ik*-complete common facets, until 

again an Ik*+1-complete simplex of Sn(k*+l) is found etc. Again using the 

fact that all steps are feasible and that cycling can not occur, a 

completely labelled simplex must be found within a finite number of steps. 

Observe that for k* n we have Kuhn's artificial start algorithm whereas 

fork*= 1 the method is just like the variable dimension algorithm. 

4.5. ALGORITHMS TO COMPUTE FIXED POINTS ON R:. 

In this section a class of algorithms for computing a fixed point (if 

) f · f · f f Rn to n · d Th' 1 · any o a continuous .. unction rom + R+ :-s presente . is c ass is 

analogous to the class of algorithms described in the previous section. 

An application of these algorithms is the nonlinear complementarity 

problem. 

For all members of the class of algorithms, Rn is triangulated by the 
+ 

K0-triangulation. For ease of notation we take o=l in the discussion below. 

Analogous to the class of algorithms on Sn we want to have a proper 

labelling, i.e. a labelling such that 2(x) ~ i if xi= O. Therefore the 

standard labelling rule on Rn is not appropriate and we define the 

following labelling rule • 
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DEFINITION 4.5.1. (Labelling rule on R:). 

For x E R:, let i be the index such that i=min{j J f. (x)-x .=min fh (xl-~} .· 
J J hEI 

Then n 

2 (xl i if .f. (x)-x. < 0 
l. l. 

0 otherwise. 

Note that the labelling rule is proper. In particular we have that i(_Q_) = 0. 

Furthermore it is easy to see that a completely labelled simplex yields an 

approximation of a fixed point. We call a k-simplex ( Ik u { 0}) -complete if 

the k+l vertices carry all the labels 0,1, •.. ,k. 

We give now some definitions which are analogous to definition 4.4.6 and 

definition 4.4.1.cand which are helpful to describe the starting procedure. 

DEFINITION 4.5.2. 

k=0, ... ,n-1. 

b) For k=0, ... ,n-1, R~(k) is the i-th boundary of Rn(k), i.e. 
l. 

i=l, ... ,k; 

-n -n 
~+l (k) = {xER (k) i~+l=-1} 

c) Rn(k) = {xERnJx,?0,iEik and x.=0, i=k+1, •.• ,n} k=0, ••. ,n. 
l. l. 

The K-triangulation of Rn implies that for given k=k* with O $ k* $ n-1, 

Rn(k*) is triangulated in such a way that the grid points of Rn(k*) not in 

n -n * 
R+ are points of ~*+l (k). 

Now, let y be an arbitrarily chosen grid point of Rn(k*), i.e. yi?0 for 

i E I *. The algorithm associated with a given k* starts with the simplex 
1 k k*+2 i i+1 . . * 

cr(y ,11(Ik*+l)) w~ere y = y and y = y - e(i), 1.=1, •.• ,k +1, 

· 1 "k +l ( ·) d · · 1 k*+1 T t th t th 1.. e. y = y - 1... _ 1 e 1. an 11. = 1., 1.= , .•• , • o guaran ee a e 
1 1.- k*+1 1. 

facet ,(y , ••..• ,}' ) is the only (Ik*u{0})-complete simplex of 

~*+l(k*) the points of ~*+l (k*) are artificially labelled by the 

following rule. Let i be the index such that 

i min{jJy.-x.-j/(k*+l) 
J J 
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Then Jl(x) i if y.-x.-i/k*+1 < 0 and Jl(x) = 0 otherwise. 
l l 

Following the proof of lemma 4.4. 7 

indeed the_only (Ik*u{O})-complete 

holds: Jl(y1 ) = i-1, i=1, ... ,k*+1. 

The algorithm proceeds as follows. 

it follows immediately that Tis 
-n * simplex of ~*+l (k). In particular 

Step 0. 

Step 1. 

Step 2. 

* * 1 - k+l k +2 
Set k = k +1, a=a (y , TI(Ik*+l)) and y=y (= Y =y). 

Calculate Jl(y). If Jl(y)=k, an (Iku{O})-complete simplex of Rn(k) 

is found and go to step 3. Otherwise 

ys ~ y suoh that 9, (ys) = fl (y) • 

there is exactly one vertex 

k . * 
If s=k+l, yk=O and k>k +1, the 1 k facet T(y , ... ,y) of a is an 

(Ik_ 1u{O})-complete simplex of Rn(k-1) and go to step 4. 

Otherwise a is adapted according to table 4.5.1 by replacing ys. 

Return to step 1 with y equal to the new vertex of a. 

Step 3. If k=n, a completely labelled simplex is found and the algorithm 

terminates. 1If k<n, TI(Ik) becomes TI(Ik+i) = (TI(Ik) ,k+l), a 

becomes a(y ,TI(Ik+i)). Then k becomes k+1 and return to step 1 

with y = yk+l = yk + e(k). 

Step 4. Set a equal to T and set TI(Ik) equal to 7T(Ik_ 1)=(7T1, ... ,7Tk-l) • 

Then k becomes k-1 and return to step 2 with ys equal to the 

vertex having label k. 

Observe that table 4.5.1 is analogous to table 4.4.2 and that it 

represents the replacement step between two adjacent (k+l)-simplices. 

Recall that Rn(k) and Rn(k-1) are k dimensional subspaces of Rn. 

Table 4.5.1. sis the index of the vertex to be replaced. 

s=l 

2 ~ s ~ k 

s = k + 1 

1 y becomes 

(7!2' ••• ,Tik,7!1) 

(1T1 1 ···,1Ts-2'7Ts'7Ts-1'7Ts+1'"""'7Tk) 

( 7T k' 7T 1 ' •.• '7T k-1) " 

The class of algorithms corresponds to the class of algorithms on Sn, 

* described in the previous section. In particular, the case k =n-1 

corresponds to Kuhn's artificial start algorithm on Sn, whereas the case 

k*=o is the analogon of the variable dimension method on Sn. In the latter 

case the algorithm starts with the point y=Q_ of Rn(O). 
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By the proper labelling, it is easy to see that all replacement steps are 

feasible. Moreover, using the same arguments as for the artificial start 

algorithm of section 4, cycling cannot occur. Therefore the algorithm 

either terminates with a completely labelled simplex in~ or an infinite 

path of simplices going to infini_ty is generated. The algorithm is 

* * illustrated in figure 4.5.1 for n=2 and k =0 respectively k =1. 

(0,0) 1<------''-"---i-=-,,<,--+--=,-<-,<'--';-"---,..,..__..,.., 

I 

- - ... - - _L/ .. - :./ .. - J 
0 (0,0) 0 0 0 0 , 1 

* T * T Figure 4.5.1.a n=2, k =0 y=(0,0) . Figure 4.5.1.b n=2, k =1, y=(2,0) . 

Luthi [1976] proposed an algorithm which is closely related to the case 

k*=o. This algorithm is based on the standard labelling rule on Jt1. It can 

* be viewed as a generalization of the case k =0 in t.~e sense that the 

sequence of found labels is not predetermined. On the other hand it is a 

special case of the variable dimension restart algorit..~m to be presented 

in the chapters 5 and 6. 

4.6. SANDWICH METHOD. 

All the methods described in the previous sections suffer from 

inefficiency, since they are characterized by a start outside the region 

of interest and by a fixed grid throughout the algorithm. If we have a 

small grid size the number of iterations becomes very high whereas the 

approximation is bad if the grid size is large. 
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.A method which avoids this disadvantage is the Sanc1wich method introduced 

for functions on Sn by Kuhn and MacKinnon [1975]. The method was 

discovered earlier by Merrill [1971,1972] for mappings on unbounded 

regions. 

The Sandwich method is a straightforward application of Kuhn's artificial 

start algorithm. Suppose we want to compute a fixed point of a continuous 

function f from Sn into itself. Therefore Sn is embedded in the (n+ll-
n+l 

dimensional simplex S , which is triangulated according to definition 

3.4.1. Clearly s~:~ corresponds to Sn i.e. x=(x1, ••. ,xn+l'0) Tis an 
n+l . T n 

element of Sn+2 iff (x1 ,,- •. ,xn+l l is an element of S •. Let 2 denote the 

standard labelling rule on Sn as defined in 4.2.1. Now the points of Sn+l 

are labelled by 2(x) defined as follows 

2(x) 

2(x) 

n+2 if xn+2 > 0 

0 

So all points with xn+2 > 0 are labelled by n+2. 

Let y be an arbitrarily chosen point of Sn+~. Note 
n+ln+ 

algorithm y must be the barycenter of Sn+2 but that 

that in Kuhn's 

* the extreme case k =n 

of the class of algorithms discussed in section 4 allows for an 

arbitrarily chosen pointy.Then starting with an(n+l)-simplex such that y 

is one of its vertices and the convex hull of the other vertices is the 
-n+l 

unique In+1-complete simplex (see definition 4.4.2) of Sn+2 , the 

algorithm generates a path of adjacent simplices until a completely 

labelled (n+l)-simplex of Sn+l is found. Clearly this is the case as soon 

as a grid point is generated such that x 2 > 0, i.e. if a simplex 
1 1 n+ · - i 

cr(y ,11(I +lll is generated with y ,, = 0 and 11n+l = n+l. But then yn+2 = 0 
n 1 ln~ 

for i=l, •.• ,n+l and T(y , ••• ,yn+) is an In+1-complete facet of cr lying in 
~1 n 

Sn+2 or analogously Tis a completely labelled simplex of S and yields an 

approximation of a fixed point off. In figure 4.6.1 the Sandwich method 

is illustrated for the example of figure 4.4.1 by drawing the 

intersection of the path of simplices in sn+l with the (n+2)-th boundary 
n+l n+l . . 

Sn+2 of S • Observe that seven function evaluations are made, whereas 
-n+1 

also seven points of the artificial labelled boundary Sn+2 are generated. 

The generalization to R: is immediately clear from the generalization of 

Kuhn's artificial start algorithm to R: as described in section 4.5. The 

extension to Rn can easily be made and will be discussed in section 10 for 
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vector labelling in stead of integer labelling. 

The advantage of this method is that y can be chosen to be any grid point 
Ml . ~ f of Sn+2 , or equivalently,of ~. Therefore we may apply the algorithm or a 

e ( ll ---~--~--~---- (2l 
1 2 1 1 2 

Figure 4.6.1. The intersection of the path of simplices, generated by the 

Sandwich method,with s::~, y=(¼,½,¼)~ n=2, e(i)=(eT(i),O)T. 

decreasing sequence of grid sizes. In any stag-e the approximate solution 

of the previous stage can be used as the starting point. So, a sequence of 

approximations is generated, until the desired accuracy is achieved. 

4.7. HOMOTOPY ALGORITHM. 

A second algorithm which avoids the disadvantages of the methods 

discussed in the sections 3 until 5 was developed by Eaves [1972] for 

mappings on Sn and by Eaves and Saigal [" 1972] for ma!)pings on Rn. To handle 

mappings, vector labelling has to be used. Then the method traces a path 

of fixed points of a homotopy function from a given linear function to 

the function of interest. Therefore the method was called the homotopy 

algorithm. We return to the matter of vector labelling in the following 

sections. In this section we discuss the method using integer labelling. 

The algorithm is characterized by an automatically decreasing grid size. 

We treat at first the simplest applicationwith the decreasing sequence 

1,1/2,1/3, .•. to compute a fixed point of a c@ntinuous function f on Sn. 

Therefore Tn+l is triangulated by the standard triangulation with grid 

size o=l and with e (1) a grid point of the triangulation. Now, let 
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n+l 
u be defined by 

n+l u 

and let Un+l(m) be defined by 

0 and xn+2 :, 0} 

n+l n+ll u (m) = {xEU x 2 n+ 
-m+l} m=l ,2, •... 

th · 1 · f n+l · d · 1 t· f un+l Clearly e triangu ation o T in uces a triangu a ion o 

Moreover, the induced tr.iangulation of Un+l (1'1) corresponds with the 

standard triangulation of Sn with grid size m- 1, i.e. the point 
T n+1 . -1 T 

(x1 , ... ,x 1,-m+1) of U (ml corresoonds withthepoint m (x1, •.• ,x 1) of 
n+ - n+ 

Sn in the sense that the latter point is the intersection of the line from 
T T . · n+1 

(x1 , .•. ,xn+l'-m+1) to (0, ... ,0,1) with U (1). Consequently, the point 

(x1, .•• ,xn+l'xn+2) of Un+l is labelled by the standard labelling rule t(y) 
n on S where y. = x./(1-x 2), i=1, .•. ,n+1. Obv~ously t(x) ~ i if xi= 0 for 

+1 i i n+ 1 
any x E ~ • Furthermore an In+1-complete simplex of Un+ (m) corresponds 

with a completely labelled simplex of the standard triangulation of Sn 

with grid size m- 1 

Since Un+l(1) corresponds with Sn it is I 1-complete. The algorithm starts 
o 1 n+1 n+ 1 T 

with the simplex cr (y ,TI(In+l)) of U such that y (1,0, ••• ,0,1,-1), 

TI(1) = n+1 and TI. = i-1, i=2, ••• ,n+1, i.e. cr0 (y1,TI(I 1)) is the unique 
i n+ 

simplex of the triangulation of Un+l having Un+l(1) as a facet. According 

to the replacement steps of table 3.5.1 

adjacent (n+l)-simplices of un+l having 

Clearly un+l(1) is the only I -comolete n -

the algorithm generates a path of 

In+1-complete common facets. 
n+1 facet on the boundary of U 

Therefore, since cycling cannot occur all steps are feasible and an 

In+1-co~plete simplex T of Un+l(m) m=2,3, •••• is generated within a 

finite number of steps. The method is illustrated in figure 4.7.1. 

Observe that it is possible that the algorithm returns to a previous level. 

The algorithm can be broken down if either an a priori chosen value of m 

is attained or the approximation is good enough. Observe that in the 

example the vertices of the facet T between the levels 2 and 3 

represent the same points as the vertices of facet p on level 6. 

Therefore triangulations which allow for a faster decreasing of the grid 

size are interesting. 



Figure 4.7.1. Illustration of the homotopy.algorithm for n=l with the 

decreasing sequence of grid sizes 1, 1/2, 1/3, .... 
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To Eaves [1972] a triangulation for a decreasing sequence of grid sizes 

with a factor of two was given. Let G be the standard triangulation of the 
n+l n+l 

convex hull of U (1) and U (2) and let G(k) be the standard 

triangulation of Un+l(m), where m=2k, for k=l,2, •. The grid size of G and 

G(k) k=l,2, ••. is one. Clearly, an (n+l)-simplex o of G is characterized 

by o=o(y1,n(I 1)), whereas an n-simplex T of G(kl is characterized by 
1 n+ 1 

T=T(y ,n(In)). We are now prepared to present a triangulation of Un+ with 

a factor 2 between two subsequent levels. The (n+l)-simplices of Un+l are 

of the form TT(o) with for some n-simplex T of G(k), k=l,2, •.• and for 

some (n+l)-sirnplex o of G, TT(cr) defined by 

T (o) 
T 

1 n+2 
where y , .•• ,y are the vertices of a and where for j=l, ••. ,n+2 the h-th 

component th(yj) of the vector TT(yj) is equal to 

th (yj) 
n+l 

i y~ z: ~ i=l l. 
h=l, •.. ,n+l 

and 

tn+2 (yj) 
n+l 

th (yj) 1 - z: 
h=l 

if 
1 n+l 

the vertices of u , ..• ,u are T. 
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For this triangulation the algorithm is illustrated in figure 4.7.2. 

Figure 4. 7.2. Illustration of the homotopy algorithm for n=l with a 

factor of two between two subsequent levels. 

In Eaves and Saigal [1972] the homotopy algorithm was generalized for the 

computation of a fixed point of a function on Rn (if any). Let G(O) be the 

standard triangulation of Rnx{l} with grid size a. Let T be a simplex of 

G(O). Then the triangulation of Txfl, 00 ) is a scaled copy of the 

triangulation of Un+l. In their paper Eaves and Saigal showed that these 

Figure 4.7.3. Illustration of the homotopy algorithm on Rn for n=l. 



triangulations of TX[l, 00 ) can be combined to a triangulation of Rnx[l, 00 ). 

Then the algorithm is started with a simplex 0° having some grid pointy 
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in Rnx {2} as a vertex while the facet TO opposite y is a facet of Rnx{l}. 

To guarantee feasibility of the replacement steps the points of RnX{l} are 

artificially labelled in such a way that TO is the only completely labelled 

n-simplex of Rnx{l}. Starting with 0° a path of adjacent (n+l)-simplices 

having common completely labelled facets is generated. An illustration for 

n=l is given in figure 4.7.3. 

4. 8. VECTOR LABELLING AND APPROXIMATION. 

Assume we want to compute a fixed point of an upper-semicontinuous 

mapping from Rn into itself. Therefore we introduce the concept of vector 

labelling. 

Assume that f is a piecewise linear approximation to¢ with respect to a 

triangulation G of Rn (see definition 2.5.4). Then we define the 

following labelling rule. 

DEFINITION 4. 8 .1. (Vector labelling on Rn) . 

b b · ' n+l h th t b 0 Th n Let ea nonnegative vector in R sue a n+l > • en x ER 

receives the (n+ll-dimensional vector label l(x) with 

2i(xl = fi(x) - xi+ bi 

2n+1 (x) = bn+l 0 

i=l, ••. ,n, 

For vector labelling we define a completely labelled simplex as follows. 

1 n+l . . 
DEFINITION 4.8.2. A simplex 0(w , ... ,w ) of G is completely labelled if 

the set of linear equations 

n+l 
L "· 2(wi) b 

i=1 i 

has a nonnegative solution A* 
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The following lemma states that a completely labelled simplex yields a 

fixed point off. 

LEMMA 4.8.3. The piecewise linear approximation f to cj> has a fixed point 
. 1 n+l . in the simplex CT(w , ••. ,w ) 1.f and only if CT is completely labelled. If 

A* is the solution of the system of linear equations, then 

* X 

1 n+l is the fixed point off in CT(w , ••. ,w ). 

PROOF. Clearly, since i 
2n+l (w l b f 11 . h h ~n+l A* n+l or a 1., we ave tat ~i=l i 

* Moreover, by the definition of f and x we have that 

b. 
J 

* f. (x ) 
J 

* 

* 

n+1 * i 
i:: A. f. (w ) 

i=1 1. J 

n+l * i n+l * 
i:: A,w. +b. i:: A, 

i=l 1. J J i=l 1. 

- x. + b. 
J J 

j=l, .•. ,n, 

which proves that x is a fixed point off. 

1. 

Conversely, if xis a point of CT(w1, •• ,wn+l), then there is a A E Sn, such 
n+l i 

that x = i::i=l Aiw 
n+l i n+l i * 

So 2(x) = 9,(i::i=l AiW ) = i::i=l \t (w ) . If x is a 
* * * fixed point then 2. (x ) f. (x ) -x. +b .=b. for j=l, ••• , n, which implies that 

J J J J J 

* when x 

n+l 
i:: 

i=l 

* i A, 2(w ) 
1. 

b, 

i::n+l * ; 1 n+l 
i=l Aiw-. Hence CT(w , •.. ,w ) is completely labelled. 

* * 

[l 

Let CT be a completely labelled simplex and let x be the fixed point off 

* * _i_n CT • The next theorem shows the accuracy of x as approximate fixed point 

of the mapping cj>. 

THEOREM 4.8.4. Let E>O be such that for all g(y) E cj>(y) there exists an 

element g(xl E cj>(x) such that max lg. (y) - g, (x) I < E for all x,y E CT* 
iEI 1. 1. 

n 

Then there is an element g(x*) E ¢(x*) such that max lg. (x*> . . 1. 
iEI 

n 

- x~I < E • 1. 



PROOF. We h h * l:n+l >,.*wi = l:n+l >,.* ( i) Since wj E o* there ave tat x = i=l i i=l if w • 
* * exists an element g(x) E ¢(x) such that 

Hence 

max 
iEI 

n 

max 
iEI 

n 

j=l, ... ,n+l. 

n+l 
s l: A: max lg. ex*) - f, (wj) I < E. □ 

j=l J iEI l l 
n 
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COROLLARY 4.8.5. Let~ be a continuous function from Rn into itself and let 

* x be the fixed point of the piecewise linear approximation f to¢ in the 

* completely labelled simplex o. Then 

max 
iEI 

n 

I * * ¢. (x ) - x. I < s. 
l l 

Observe that for a continuous function¢ from Rn into itself 

max 1¢. (x*) - x~I is bounded bys when vector labelling is used whereas 
i l l 

this amount is bounded by s+o when using integer labelling (see l~mma 

4.2.4). Using vector labelling to compute a fixed point of a continuous 

function on Sn the upper bound becomes E instead of n(s+o) in case of inte

ger labelling (see lemma 4.2.2). The result of theorem 4.8.4 while true, 

may not be at all useful. Of course, in case of a continuous function 

* diam o close to zero implies thats becomes very small. However, it can 

easily be seen that there exist u.s.c. mappings such thats may be rather 

* large, (e.g. as large as 1), even if diamo is arbitrarily small. Never-

theless, computing a fixed point ,::Jf ¢, we have that a sequence of triangula

tions with mesh going to zero, the sequence of approximate fixed points 

contains a subsequence converging to a fixed point of¢ (if any, see theorem 

2 .5. 3). 

4.9. A BASIC ALGORITHM TO COMPUTE A FIXED POINT OF A MAPPING. 

One of the first methods to find a completely labelled simplex using 

vector labelling was developed by Eaves :1971]. Let¢ be an upper

semicontinuous mapping from an n-dimensional compac4 convex subset C into 



56 

itself and let c be an element in the interior of c. The mappin<J cj, is 

replaced by the u.s.c. mapping¢ from an n-simplex C' containing C in its 

interior to C as in the proof of theorem 2.5.3, i.e. 

cj,(x) 

conv(cj,(x)u {c}l 

{c} 

if X E C 

if x E bd C 

ifXEC'\C 

Recall that a fixed point of cj, is a fixed point of cj,. 

Let G be a triangulation of C' and let the starting point x0 be an 

arbitrarily chosen point on bd C', such that x0 is in the interior of a 

facet TO of the triangulation G. Let cr0 be the unique simplex of G having 

TO as a facet (see theorem 2.3.5) and .let d be the (n+l)-dimensional 

vector (x0-cl T,O) T + b. 

Before describing the algorithm we introduce the concept of an almost 

complete simplex. 

. 1 k+l 
DEFINITION 4.9.1. For k=n-1 or k=n, a k-simplex cr(w , ... ,w ) of G is 

almost complete if the system of linear equations 

k+1 
r A,2(wi) + µd b 

i=l i 

* * * has a nonnegative solution (A 1 , •.. ,Ak+l' µ l. 

Although degeneracy can occur in fixed point algorithms we assume in the 

following that it does not happen. A method to resolve the problem of 

degeneracy can be found in e.g. Todd f1976a]. So assuming non degeneracy 

the system of linear equations has a unique solution if cr is an almost 

complete (n-1)-simplex. However, if cr is an almost complete n-simplex the 

above system of linear equations has two solutions having each just one 

variable equal to zero. Clearly, cr is completely labelled if for one of 

* these two solutionsµ =0. The algorithm searches for a simplex having such 

a solution. 

Since To is i i 
a boundary facet its vertices y iEin are labelled by 2(y l 

i T T O n i n-1 0 
(c-y ) ,0) +b. ClearlY,x = I~=l a,y- for some CJ.ES . Since x is in the 

0 ~ i 0 
interior of T, ai>0 iEin. So1 the (n-1).simplex T 

with solution (A~, •.• ,A*,µ*) where A~= ½a. iEI 

is almost complete 

andµ*=½. Moreover, 
0 i n .i i n 

T is the only almost complete (n-1)-simplex on the boundary of C' 
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(see Eaves [1971 J or Todd [1976a]l, Now the algorithm is described by the 

following stepEj. where o0 =o (y1 , ... , yn+l) is the unique simplex containing TO 

1 n+l 
and let yt be of 

0 
Step 0. Set 0 equal to o (y , .•• , y l y the vertex 0 

not in T 
0 Let l:, :\, 9-(yi) + µd = b be the set of linear 

i"'t io 
mentioned equations induced by T • This system has the above 

* * * solution (>. 1 , ... ,>.n,JJ ). 

Step 1. Calculate 9,(y) and ma.ke a standard linear programming pivot step 

by bringing 9,{y) in the system of linear equations to obtain a 

new solution with one of variables equal to zero. If JJ becomes 

zero, i.e. if d is eliminated, o is a completely labelled simplex 

and the algorithm terminates. Otherwise, for some s, 9-(ys) is 

eliminated by the pivot step. 

Step 2. Adapt o by replacing ys. Let y be the new vertex of o and return 

to step 1. 

Since non degeneracy is assumed, all the replacement steps are unique, so 

cycling cannot occur (see section 4). Moreover, all replacement steps are 

feasible since TO is the only almost complete facet on the boundary of C'. 

Hence the algorithm terminates within a finite number of iterations with 

a completely labelled simplex. Note that the algorithm has the same 

disadvantages of those discussed in the sections 3 until 5. It must start 

outside C and the grid size is kept fixed. 

4. 10. SANDWICH AND HOMOTOPY METHODS ON Rn. 

Let <P be an upper semi-continuous manping from Rn into itself and 

suppose we want to compute a fixed point (if any) . As remarked in section 

6 the Sandwich method is the application of Kuhn's arb.ficial start 

algorithm on RnXR+ by adding an extra layer of points with xn+l = -1. 

From the discussion in6 it is clear that the algorithm terminates as soon 

as a point is generated with xn+l = 1. This means that in practice only 

simplices Rnxf-1,0] are generated, i.e. the algorithm starts with the 

(n+l)-simplex having the unique completely labelled n-simplex in Rnx{-1} 

of artificially labelled points as a facet and terminates with an (n+ll-

s imp lex having a completely labelled facet in Rnx { 0}, whose vertices are 

labelled according to the standard labelling rule induced by the 

mapping¢. Therefore we can restrict ourselves to the set Rnxr-1,0] or 
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equivalently to Rnxf0,1], where Rnx{o} will be the level of artificially i 

labelled points. 

To apply the Sandwich method we define the mapping¢ from Rnxf0,1] to Rn by 

¢ (x,t) {ty + (1-t)v! y E ~(xl}, 

where v E Rn is an arbitrarily chosen point, called the starting point. 

Now, a point (x*,t*) is called a fixed point of¢ if x* E ¢(x*,t*). 

Clearly, if (x*,1) is a fj_xed point of¢, then x* is a fixed point of~

l"urthermore, it is obvio.us that (v,O) is the only fixed noint of ¢ in 

Rnx{o}. Let G be the triangulation of Rnxro, 1] induced by the AK triangulation 

of Rn+l, where A is the diagonal matrix such that aii = o, i=l, ... ,n and 

a .. = 1 for i = n+l, i.e. the grid points Gare either in Rnx{o} or 
ii . 

Rnx{l} and the induced triangulations of Rnx{o} and Rnx{1} have grid size 

o. We assume that (v,O) is in the interior of an n-simplex TO of Rnx{o}. 

A point (x,t) receives the vector label £(x) defined in 4.8.1, i.e. 

piecewise linear approximation to¢ with respect to G. Since (v,O) is the 

only fixed point with t=O it follows from lemma '1. 8. 3 that TO is the onJ.y 

completely labelled n-simplex in Rnx{o}. 

The algorithm proceeds as follows. 

Step 0. Set a equal to the unique (n+l)-simplex having TO as a facet and 
. 0 n+l £ i let y be the vertex of a not ,.n T . Let l:i=l ;\ {y ) b be the 

system of linear equations induced by TO where y 1, ••• ,yn+l are the 
0 * * * vertices of T . The solution of this system is A (A 1 , .. ,An+l) 

'f _ l:n+l A* i 
i V - i=l iy 

Step 1. Calculate £ (y) • Make a linear programming step with £ (y) in the 

system of linear equations, Lets be the index such that £{ys) is 

eliminated by £{y). 

Step 2. If the facet of a opposite ys lies in Rnx{l}, this facet is a 

completely labelled n-simplex of Rnx{1} and the algorithm 

terminates. Otherwise, adapt a by replacing ys and return to 

step 1 with y equal to the new vertex. 

Following these steps, the algorithm generates a path of adjacent 

simplices such that the common facets are completely labelled. It means, 

that the algorithm can be seen as a method which traces a path of fixed 



59 

points of the piecewise linear approximation f(x,t) to ¢(x,t). Using the 

standard arguments the algorithm either terminates within a finite 

number of steps or generates a path of simplices going to infinity. 

It can be proved that the algorithm terminates if Merrill's condition 

(see lemma 2.6.2) is satisfied (c.f. Merrill :19721 and also Todd 

L1976al). The approximation of the fixed point can be chosen as the 

starting point v in a new application of the method with a smaller grid 

size. 

To apply the homotopy algorithm we define a function~ from Rnxr1, 00 ) to Rn 

such that 

q, (x, 1) ~ k 
v and q, (x, 2 ) 

where vis the starting point and fk(x) a piecewise linear approximation to 

<j,withrespecttothetriangulationof Rnx{2k}. Rnx[l, 00 ) is triangulated as in 

section 7 such that v is in the interior of an n-simplex TO in Rnx{ 1}. 

The points (x,t) are labelled as above with f(x,t) a piecewise linear 
~ 0 

approximation to <j,(x,t). Hence T is the only completely labelled 

n-simplex in Rnx{l}. Starting with the (n+l)-simplex having TO as a facet 

the algorithm generates a sequence of adjacent simplices such that the 

common facets are completely labelled. That means tha.t a path of fixed 

points of the piecewise linear approximation f(x,t) is traced. 

It can easily be seen that this path converges to a fixed point of q,(x) if 

t goes to infinity. The algorithm can be terminated as soon as a 

completely labelled simplex on a predetermined level tis generated. This 

occurs in a finite number of steps if Merrill's condition is satisfied. 

4 .11. MAPPINGS FROM Sn INTO Sn. 

To compute a fixed point of an u.s.c. mapping q, on Sn we define the 

following labelling rule given a triangulation G of Sn. 

DEFINITION 4.11.1. (Vector labelling on Sn). 

A point x in Sn receives the (n+l)-dimensional vector label i(x) defined by 

i(x) -f(x) + x + b 
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where f(x) is a piecewise linear approximation to¢ with respect to G and 

where bis a nonnegative vector with at least one component positive. 

Ann-simplex cr(w 1, ..• ,wn+l) of G is called completely labelled if the 

system of linear equations 

n+l 
>.. t(wi) l: b 

i=1 
l. 

* * * has a nonnegative solution;\ =(>- 1 , ••. ,;\n+l) • 

· * n+l ,*.wi 1.·s a f1.'xed LEMMA 4.11.2. The point _x = l:i=l "1. point of f i.f and only 
. 1 n+l , * * * 
1.f cr(w , ..• ,w ) is completely labelled with" = (>- 1 , ... ,;\n+l) the 

solution of the system of linear equations. 

PROOF. The proof of the lemma is analogous to the proof of lemma 4.8.3. 

Therefore we only show that i:::! ;\: = 1 if >.* is the solution of the system 

of linear equations. By summing up over all equations we have that 

n+l * n+l 
(-f. (wi) i n+l 

l: ;\. l: + w. + b.) l: b .. 
i=l l. 

j=l J J J j=1 J 

l:n+l * l:n+l f. (wi) l:n+l i 
□ Hence >.. 1 since w. 1 for all i. 'i=l l. j=l J j=l J 

Analogous to the proof of theorem 4.8.4 the next corollary follows 

immediately. 

COROLLARY 4.11.3. Let mesh G<o and let the mapping¢ be such that 

¢(y)E¢(x) + Bn(O,e:) if yEBn(x,o). Then x*E¢(x*) + Bn(O,£). 

To approximate a fixed point of a mapping on Sn we can use the Sandwich 

method with a decreasing sequence of grid sizes and restarting in any 

stage with the approximation of the previous stage or the homotopy 

method involving an automatically decreasing grid size. 

The application of the Sandwich method can be done as follows. As discussed 

in section 6, Sn+l is triangulated in'the standard way with grid size m-l 
-n+l n+l 

Clearly, only simplices are generated in the convex hull of Sn+2 and Sn+2 . 

Therefore we consider the corresponding set snxro,1], where snx{o} is 

triangulated with grid size (u+l)-1 , whereas snx{l} is triangulated with 

grid size m- 1 . Now we define the mapping ~(x,t) by 
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~(x,t) t¢(x) + (1-t){v} 

where vis an arbitrarily chosen starting point such that (v,0) is in the 

interior of an n-simplex of the triangulation of snx{O}. Clearly (v,0) is a 

fixed point of ~(x,t). Again a path of fixed points of the piecewise 

linear approximation f(x,t) to ~(x,t) is traced, starting with (v,0) and 

terminating with a point on level one. 

To apply the homotopy method we triangulate the set snx[l, 00 ) in stead of 

Un+l_ This set is triangulated by (n+l)-simplices such that snx{2m} is 

triangulated by the standard triangulation with grid size 2-m. A path of 

fixed points of the piecewise linear approximation to ¢(x,t) is traced with 
n n ~ m m 

¢(x,t) a correspondence from S x{t} to S such that ¢(x,2 )=f (x) where 

fm(x) is a piecewise linear approximation to ¢(x) with respect to the 

triangulation of snx{2m} m=0,1, .••. 

4.12. CONCLUDING REMARKS. 

All algorithms discussed in this chapter are based on the principle of 

generating a sequence of adjacent simplices (or primitive sets) until a 

completely labelled simplex yielding an approximation of a fixed point is 

found. An algorithm based upon the approximation of a curve by means of 

numerical solution of an initial value problem was introduced by Kellogg, 

Li and Yorke [1976] and has since been superceded by the so called 

continuation methods (see Allgower and Georg [1980]). The most sophisticated 

simplicial algorithms are the "Sandwich" method and the homotopy algorithm. 

In both methods then-dimensional problem is embedded in an (n+l)

dimensional one. The first one has the disadvantage that a layer of 

artificially labelled points is needed. So with vector labelling a path of 

fixed points is traced starting with a fixed point of a constant function 

at each restart. This can be improved by using the approximate Jacobian 

(see e.g. Todd [1978a]). In the homotopy method the mapping is continuously 

deformed. Moreover if corrections have to be made, e.g. if on a previous 

level a completely labelled simplex has been found which corresponds to a 

point which is nearly but not actually fixed, the simplices generated can 

move from fine triangulations back to coarser ones. On the other hand the 

grid size is reduced by a factor of at most two, whereas for the Sandwich 

method this factor can be chosen arbitrarily. So, in the latter method it 
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is possible to accelerate the convergence by taking an increasing sequence 

of factors with which the grid size is reduced. In chapter 8 we present a 

homotopy algorithm which allows for an arbitrary factor between two 

subsequent levels. 
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CHAPTER 5 

VARIABLE DIMENSION RESTART ALGORITHM 

5.1. INTRODUCTION. 

In the previous chapter several algorithms to compute a fixed point 

of a function or mapping from Sn into itself were discussed. Two efficient 

methods are the restart algorithm of Merrill and Kuhn and MacKinnon, which 

is referred to as the "Sandwich" method, and the continuous deformation 

, algorithm of Eaves (and Saigal), called the homotopy method. In both methods 

a path of (n+1)-dimensional simplices is generated. 

In this chapter a restart algorithm is presented which does not use a 

layer of artificially labelled points (see also Van der Laan and Talman 

[1979a, 198Oc]. Moreov~r it differs from the algorithms mentioned above by the 

fact that it does not generate a path of (n+l)-dimensional simplices but 

a path of t-simplices, where t varies between O and n. More precisely, 

the me.thod starts with a zero-dimensional simplex, called the starting 

point, generates a path of adjacent simplices of variable dimensi,on and 

terminates with an n-dimensional simplex yielding an approximation of 

a fixed point. This algorithm will be referred to as the "variable 

dimension restart" algorithm, since the starting point can be arbitrarily 

chosen. Therefore the method can be applied for a decreasing sequence of 

grid sizes using.at any stage the approximation obtained in the previous 

stage as the starting point.. 

In section 2 a full description of the steps of the algorithm for integer 

labelling is given. A geometric interpretation of the method is discussed 

in section 3 and its convergence is proved in section 4. In section 5 the 

algorithm is put in the framework of the above mentioned methods by adding 

n+1 differently labelled points on an extra level. The application of the 

algorithm for vector labelling is discussed in section 6 and the 
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generalization for computing a fixed point of a mapping on Tn is 

treated in section 7\ In particular we give some convergence conditions 

in this section. Numerical results are given in section 8. 

5.2. DESCRIPTION OF THE STEPS OF THE ALGORITHM. 

Assume that we want to approximate a fixed point of a continuous 

function f from Sn into itself. Every point of Sn receives an integer 

label based on the standard labelling rule on Sn as given in definition 

4.2.1. Let Sn be triangulated in the standard way with grid size m- 1 

(see definition 3.4.1). The amendments required for the T triangulation 

are straightforward. In definition 3.4.1 the (n+1)xn matrix Q is 

introduced to describe the simplices of the standard triangulation of 
n s , 

whereas the simplices generated by the algorithms of chapter 4 were of the 

form cr(y1,TI(Ik)). It will appear that the (n+l)xn matrix Q is not 

sufficient to describe the simplices generated by the variable dimension 

restart algorithm. Therefore the matrix Q is redefined as the (n+1)x(n+1) 

matrix 

Q 

-1 0 

1 

0 

0 

0 1 

0 

-1 

0 1 -1 

- n . T So the matrix is extended with the column q(n+l)=-L. 1q(J)=(1,0, •• ,0,-1) • 
J= 

Now each column q(i) of the matrix Q can be interpreted as corresponding 

with the i-th direction,i=1, ••• ,n+1. This means that a search in the i-th 

direction involves a decrease of the i-th component and an increase of the 

(i+l)-th component with i+1 = 1 when i = n+1. The algorithm to be described 

below builds up the set of labels consecutively. If Tc In+l is the set of 

labels already found a search is made in the directions i, iET to find the 

other labels. Recall that by the proper labelling .Q, (x) ;t i if xi = 0. 

We define now at-dimensional simplex cr(y1,TI(T)). 
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DEFINITION 5.2.1. Fort$ n, the t-dimensional simplex cr(y1,TI(T)) of the 

standard triangulation of Sn is the simplex with vertices y 1, ••• ,yt+l 

such that 

a) y 1 is a grid point of the triangulation 

b) TI(T) = (TI1 , ••• ,Tit) is a permutation of the elements of T, 
( IT\=t) 

i=l, ••• ,t. 

Observe that any t-dimensional simplex cr(y1,TI(T)) has a unique 

representation when t $ n-1, whereas any n-simplexhas n+l representations. 

Let TI(T) be a permutation of n elements of the set I 1• Then 
1 . . . . n+ . . 

cr(y ,TI(T)) = cr(yi,Tii(Ti)), where Ti= I 1\{TI. 1} and Tii(Ti) = 
n+ · i-
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= (TI i, ••• , Tin,h,TI 1 , .•• , Tii_2), i=2, ••• ,n+l, wi.th h the unique element of In+l 

not in T. 

We give now a generalization of definition 4.4.2. 

DEFINITION 5.2.2. A (t-1)-simplex cr, 1 $ t $ n+1,is called T-complete if 

the t vertices of cr carry all the labels of the set T ( lT I =t) • 

Note that T = I 1 if t = n+l and that any zero-dimensional simplex {w} is n+ 
{£(w)}-complete. We are now ready to describe the steps of the algorithm. 

In this description the (n+1)-dimensional vector R represents the 

"distance" between the starting point v and the vertex 
1 y of the last 

. 1 t+1 . 1 n+1 
generated simplex cr(y , ••• ,y ) , i.e. y = v + Ej=l R. q(j)/m. The 

J 
algorithm starts with an arbitrary chosen grid point v and proceeds as 

follows. 

Step 0. 

Step 1. 

Step 2. 

1 0 1 - 1 
Set t=0, y =v, T = 0, cr=cr (y ,TI (0)), y=y and R .=0, j=1, •.. ,n+l. 

J 
Calculate £(y). If £(y) is not an element of T go to step 3. 

Otherwise,there is exactly one vertex ys ~ y such that £(ys) 

£(y). 

Ifs= t+1 and Rn = 0 go to step 4. Otherwise cr(y1 ,TI(T)) and R 
t 

are adapted according to table 5.2.1 by replacing ys. Return to 

step 1 with y equal to the new vertex of cr. 
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Step 3. If t=n, a completely labelled simplex is found and the algorithm 

terminates. If t<n, a (Tu{£(y)})-complete simplex is found and the 

dimension is increased. T becomes Tu{£(y)}, TT(T) becomes 

Step 4. 

- 1 (TT 1, ••. ,TTt,£(y)), o becomes o(y ,TT(T)). Then t becomes t+l and 
- t+l 

return to step 1 with y = y 

The dimension is decreased by deleting ys. For exactly one index 
s' 

s', s'~t we have that y is 

becomes T\{TTt}, TT(T) becomes 

the vertex of o with label TT t. Now T 
1 

(TT 1 , •.. ,TTt_ 1), o becomes o(y ,TT(T)). 

Then t becomes t-1 and return to step 2 with s=s'. 

Table 5.2.1. sis the index of the vertex to be replaced. 

1 
y becomes 

s=l 

s=t+l 

TT(T) becomes 

(·rr2, ••• ,TTt,TTl) 

(TTl'"""'TTs-2'TTs,TTs-l'TTs+l'"""'TTt) 

( TT t I TT 1 1 • • • 1 TT t-1 ) 

R becomes 

The algorithm generates a path of adjacent simplices starting with the 

zero-dimensional simplex {v}. First a search is made in the £(v)-th 

direction to find the missing labels, i.e. the £ (v)-th component of v is 

decreased whereas the (£(v)+l)-th component is increased where £(v)+l=l if 

£ (v) n+l. So one-dimensional simpli.ces o (y1 ,y2) are generated with 
1 2 1 

y v +R£(v)q(£(v))/m and y = y +q(£(v))/m, such that the common zero-

dimensional facet is {£(v) }-complete. The algorithm proceeds with two

dimensional simplices as soon as a second label is found, which must 

occur since £(x)~i if xi=0. In general if in step 1 a new label is found, 

say label k, we have for certain t, subset T of -In+l' permutation TT (T), 
1 t+l 

simplex o(y , ... ,y ) and vector R generated by the algorithm that 

a) 
1 l:n+l R,q(j)/m y V + 

j=l J 

b) R, 
J 

0 for j I- T and R. <'. 0 for j E T 
J 

cl 
i+l i 

y = y + q(TTi)/m, i=l, ••. , t 

d) 0 is (Tu{k})-complete. 

Then the algorithm terminates with the completely labelled simplex 

( l n+l) · f· th ' th d' ' ' ' db tt' o y , •.. ,y i t=n. O erwise, e imension is increase y se ing 

T=Tu{k} and t=t+l,and a search is made with the labels i, iET in all the 
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directions i, iET, to find the other labels by generating a path of adjacent 

simplices a(y1,11(T)) such that the common facets are T-complete. Doing so 

we must have that within a finite number of steps either again a new label 

is found or in step 2, s t+1 and R11 =O. In the latter case, by performing 
t 

a replacement step according to table 5.2.1, R11 becomes negative 
t 

indicating that the method searches in the direction -(TTt) whereas label 

TTt already has been found. To avoid this situation the dimension is decreased 

by setting T=T\{11t} and t=t-1. The last vertex is deleted and the vertex 

with label TTt is removed. In the first case the algorithm terminates or the 

dimension is again increased. So, the algorithm generates a path of adjacent 

simplices a0 ,a1 , ••• of variable dimension. In section 4 we prove that a 

completely labelled simplex is found within a finite number of steps. 

Clearly, using this approximation the algorithm can be restarted with a 

finer grid, until a given accuracy is obtained. In figure 5.2.1 the 

method is illustrated for the example of figure 2.4.2. The results of the 

computation of the labels are indicated in the figure. 

e ( 1 l "--------"---__y_ __ ___,,_ __ ___,. e ( 2) 

1 2 1 2 

Figure 5.2.1. Illustration of the variable dimension restart method; the 

starting point v = (¼,½,¼)T, n=2, m=4. 

In this example the algorithm performs the following steps,where 
0 1 6 a ,a , ... ,a is the sequence of generated simplices. 
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1. Step 0: 
1 T 1 0 

t=O, u =v=(¼,½,lal , T=<;o, a(y ,11(T))=a 
1 T 

cr(u) and R=(0,0,0) . 

2 St 1 °(u1)=1/.f. . ep : ,, 

3. Step 3: 

4. Step 1: 

5. Step 3: 

6. Step 1: 

7. Step 2: 

8. Step 1: 

9. Step 2: 

10. Step 4: 

11. Step 2: 

12. Step 1: 

13. Step 3: 

14. Step 1: 

15. Step 3: 

1 1 1 2 
T={l}, 11(T)=(1), a(y ,11(T))=a =cr(u ,u) with the new vertex 

u2=u1+q(1)/4=(0,%,¼) T, t=l. 

£(u2J=UT. 

1 2 1 2 3 
T={l,2}, 11(T)=(1,2), a(y ,11(T))=a =cr(u ,u ,u) with the new 

3 2 T . 
vertex u =u +q(2)/4=(0,\,½) , t=2. 

9-(u3)=2ET, 2(u3)=9-(u2), u2=y2 , i.e. s=2. 
. 2 T 1 T 3 the vertex u is replaced, 11( )=(2,1), cr(y ,11( ))=a = 

143 41 1 T 
=cr(u ,u ,u ) with the new vertex u =u +q(2)/4=(1:i,"I,½) , 

R=(0,0,0) T• 

9-(u4)=2ET,t(u4)=2(u3), u3=y3 , i.e. s=3. 

s=3=t+1 and R11 t=R1=0. 

The vertex y 3=u3 is deleted, 2(u1)=112=1, i.e. s'=l; T={2}, 
1 4 1 4 11(T)=2, a(y ,11(T))=a =cr(u ,u), t=l, s=s'=l. 

1 . 1 5 4 5 the vertex u is replaced, 11(T)=2, a(y ,11(T))=a =cr(u ,u) with 
5 4 3 T T 

the new vertex u =u +q(2)/4=(¼,0,"ll , R=(0,1,0) • 

l(u5J=1/T. 

T={l,2}, 11(T)=(2,1), cr(y1 ,11(T))=cr6=cr(u4,u5 ,u6i with the new 
6 5 T 

vertex u =u +q(l)/4=(0,1:i,%) , t=2. 

i (u6 ) =3/T. 

t=2=n, a completely labelled simplex is found and the 

algorithm terminates. 

The steps 1-14 are stllllDlarized in table 5.2.2. 

5.3. GEOMETRIC INTERPRETATION. 

In this section a geometric interpretation of the variable 

dimension restart algorithm is given. Observe again that throughout the 

algorithm R.=O if j/T and R.~0 if jET. Therefore it is natural to define 
J J 

the regions A(T) for TcI 1, ITl~n, by 
n+ 



Number T 11 (Tl 
T -T 

9,(y) s' 1:. R cr y s 

1,2 0 0 (0,0,0) cr (u1 l (¼,½,lir) 

I 
1 

3,4 1 {1} (1) (0,0,0) 
1 2 

(0,';;,¾:) 2 cr(u ,u) 
1 2 3 

5,6 2 { 1,2} (1,2) (0,0,0) 

I 
cr(u ,u ,u ) (0,½,~) 

I 
2 2 

{ 1,2} (2, 1) (0,0,0) 
1 4 3 (¼,\,½) 2 3 7,8,9 2 cr(u ,u ,u ) 
1 4 

10 1 {2} (2) (0,0,0) 

I 

cr (u ,u ) 1 1 

11,12 1 {2} (2) (0, 1,0) 4 5 
(¼,0,%) 1 cr(u ,u ) 

13,14 { 1,2} (2, 1) (0, 1,0) 4 5 6 
(O,¼,¾) 3 2 cr(u ,u ,u l 

Table 5.2.2. The steps of the variable dimension restart algorithm for the example of figure 5.2.1. 

O'I 
\.0 
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Note that A(0) = {v} and that any point x of sn is a proper point of just 

one region A(T) where x E A(T) is called proper if x E A(T) with 

A(T) = {xEA(T) !x=v+ l: A,q(j) for positive A,, jET}. 
jET J J 

So the regions A(T) partition Sn. 

As described in section 2, if a set T, a permutation rr(T) and a vector R 

are generated, the current simplex cr(y 1, ••• ,yt+l) is given by 
1 n+l . i+l 1 i . . 

y = v+l:j=l Rjq(J)/m and y y +~j=l q(rrj)/m, i=l, .•• ,t. Since 

ji{Tand R,<'.0 if jET, the. vertices yi, i=l, ... ,t+l, are elements of 

R.=O if 
J 
A(T), 

Jt+l . i . 
whereas y must be a proper point of A(T). Moreover, if y is a proper 

point of A(T) then yj is proper for all j=i+1, ••. ,t+1. More precisely, let 

T(i) be the subset of T, such that yiEA(T(i)), i=1, ..• ,t+1. Then 

T(l) c T(2) ~-·· ~T(t+l) = T with jT(i+l)\T(i) j equal to zero or one. 

The algorithm generates t-simplices in A (T) if Tis the current set of labels. 

So we have the following corollaries. 

COROLLARY 5. 3 .1. Let a and T J:fJe two adjacent t-simplices in A (T) generated 

by the variable dimension restart algorithm. Then the common facet of a and 

T is T-complete. 

COROLLARY 5.3.2. Let T be the current set of labels, !Tl ~ n. Then the 

variable dimension restart algorithm generates t-simplices in a 

t-dimensional linear manifold, being the affine hull of A(T). 

The latter corollary emphasizes that the algorithm operates actually with 

full-dimensional simplices in at-dimensional rinear manifold. 

The dimension is increased if a new label is found and decreased if a 

point outside A(T) should be generated and Tis the current set of labels. 

COROLLARY 5.3.3. Let T be the current set of labels, jTj<n, cr(y1 ,rr(T)) a 

t-simplex in A(T) generated by the algorithm and j/T a label just found. 
1 Then cr(y ,rr(T)) is a(Tu{j })-complete simplex in A(T) and the dimension is 

increased. 

COROLLARY 5. 3 .4. Let T be the current set of labels, I Tl ~n, and a (y1 ,rr (T)) a 

t-simplex in A (T) generated by the algorithm. If yt+l is the only vertex of a in 
o t+l 1 t . 
A ( T) and y has to be removed then the facet T (y , ••. , y ) is a T-complete ( t-1) -

simplex in A(T\{k}) for some kET and the dimension is decreased. 
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e (3) 

e ( 1) e(2) 

Figure 5.3.1. Geometric interpretation of the variable dimension algorithm. 

t·7e illustrate the above mentioned features and corollaries by some 

examples (see figure 5.3.1). A(T} is denoted by A(i1 , ... ,it-) if T = 

{i1, ••. ,it}· If the simplex Eis generated we have that R1=R,.=2 and 

R3=o, i.e. y 1=v+{2q(1)+2q(2)}/7 is a proper point of A(1,2). Consequently 
1 3 2 y2==y +q(2)/7 and y =y +q(1)/7 are also proper in A(1,2). Moreover either 

two vertices have the same label, belonging to T={1,2}, whereas the label 

of the third vertex is equal to the other element of T, or Eis completely 

labelled. In the first case E has two adjacent simplices such that the 

common facets are T-complete. 

The vertices of the simplex F are y 1=v+q (3) /7, y 2==y 1 +q (3) /7 and y 3= 

==y2+q(1)/7. If the 1-simplex cr(y1,y2) in A(3) is generated and cr is {1,3}

complete then the dimension is increased and the simplex F of A(1,3) is 
3 

generated. Conversely if the 2-simplex Fin A(1,3) is generated and y has 

to be removed the dimension is decreased since y 3 is the only 

vertex of Fin A(1,3) or equivalently in step 2 we have that s=3 and 

R1=R.rrt=0. Then the algorithm continues with the one-simplex cr(y1 ,y2) of 

A(3) by replacing the vertex having label 1. Observe that replacing the 

vertex y 3 of F according to table 5.2.1 implies that a simplex in 
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A((Tu{2})\{1})=A(2,3) should be generated with T={l,3} the current set of 

labels. To avoid this the dimension is decreased. In general the dimension 

is decreased if a replacement step according to table 5.2.1 results in 

generating a simplex not in A(T) but in an "adjacent" region 

A((Tu{j})\{k}) for some jiT and kET. Then the algorithm continues with 

simplices in A(T\{k}). 

We conclude this section with some remarks about the path of simplices 

generated by the algorithm. Let C(i) be defined by 

i=l, •.. ,n+l. 

Let iEin+l be the index such that the starting point vEC(i). Then t(v)=i 

and the algorithm generates one-simplices in A(i) until a grid pointy is 

generated such that yEC(j) for some j~i. Then t(y)=j and the algorithm 
1 2 

continues with 2-simplices in A(i,j). Suppose that T(w ,w) is a common 

facet of two adjacent simplices. Then, for some permutation (h.,h.) of the 
h. h• h• h, 1. J 

set {1,2},w 1.EC(i) and w JEC(j), i.e. t(w 1.)=i and t(w J)=j. So by 

definition 4.2.1 we have that 

h• h. h- h. 
f. (w 1.)-w.1. ~ f (w 1.)-w 1. k~i 

1. 1. k k 

and 

h• h. 
f. (w JJ-w .J 

J J 

So, roughly speaking, the simplex T(w1,w2) yields an approximation of a 

point x such that 

A sequence of approximations of such points is generated until either a 

point in C(h), h~i,j,is generated i.e. a new label is found,or a point 

outside A(i,j) should be generated by replacing a vertex according to 

table 5.2.1. In general,if Tis the current set of labels and T(w1 , •.• ,wt) 

is a common facet of two adjacent t-simplices generated by the algorithm, 

for some permutation (h.,jET) of the elements of the set {1, ..• ,t} we have 
J . 



that whjEC(j), jET. Hence T(w 1, .•. ,wt) yields an approximation of a point 

x such that 

f. (x)-x. 
l l 

for all i, jE T 

and 

for all iET, kiT. 

Note that xis such a point if XEC(T),where c(T)=.n...C(j) with C(j) the 
JE I -

closure of C ( j) • Observe that it is possible that C (T) n T = 0. Again a 
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sequence of approximations of such points is generated until either a point in 

C(h), hiT,is generated or a simplex having a T-complete facet in A(T\{k}), 

for some kET, is generated. In the first case the algorithm continues with 

simplices in A(Tu{h}) and generates a sequence of approximations of points 

xEC(Tu{h}), whereas in the latter case the algorithm proceeds with simplices 

in A(T\{k}), generating a sequence of approximations of points xEC(T\{k}). 

In figure 5.3.2, C(i), i=l,2,3,and the regions A(T), Tcr 1, are given. The 
n+ 

set Sn is triangulated with grid size 1/9. Only the grid points and the 

completely labelled simplex gE,nerated by the algorithm are given. 

e(3) 

[[]Ill c ( 2 > 

gc,3) 

A(3) 

Figure 5.3.2. n=2, v=(1/3,5/9,1/9)T, m=9. The dots are the grid points 

generated by the algorithm. 
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5.4. CONVERGENCE OF THE ALGORITHM. 

In this section it is proved that the variable dimension restart 

algorithm always succeeds in finding a completely labelled simplex by 

establishing that all steps are feasible and the algorithm never returns 

in a simplex visited already before. 

First, it is shown that a replacement step according to table 5.2.1 is 

always feasible. Clearly, if a vertex of the t-dimensional simplex 
1 t+i . o(y , .•. ,y ) has to be replaced according to table 5.2.1, the 

replacement step produces again at-simplex of the triangulation of Sn 

except when all other vertices are points on some boundary S~. Suppose for 
J 

some s, s$t+l, ys is the vertex to be replaced and assume that, for some j, 
s i y is the only vertex not on the j-th boundary. Then y,=0 for all i;<s. If 

J 
the starting point is not on the j-th boundary, j must be an element of T, 
otherwise the j-th component could not have been decreased. Since the 

common facet of two adjacent t-simplices is T-complete, one of the vertices 

yi must have label j. Because of the proper labellin(J ,Q, (yi) >'j, i;<s. Hence 
s y is the only vertex with label j and cannot be replaced. This proves 

that the replacement step is feasible if the starting point is not on the 

j-th boundary. 

If vis an element of S~, either j is an element of Tor it is not. The 
J 

first case is identical to the case just mentioned. In the other case, s 
s+l s -1 . must be equal to t+l, since otherwise 0=y, =y.-m which is only 
J' J 1 

possible if jET. Moreover we have that P"IT =0 since 7f =j-1 and y .=v .+R. 1/m 
t t J J J-

=0. So step 4 should be performed contradicting the fact that yt+l must be 

replaced according to table 5.2.1. These facts together prove t~at every 

replacement step is feasible. Moreover, a vert~x obtained in step 3 by 

extending at-dimensional simplex to a (t+l)-dimensional simplex (t$n-1) 

is a point in Sn. To prove this, let er(y1, •.• ,yt+l) beat-dimensional 

(Tu{j})-complete simplex in A(T) generated by the algorithm,where jiT is 

the new label. So ,Q,(ys)=j for some l$s$t+l. Because of the proper labelli~g 

rule y~>O. Since j is not an element of T, 7rh>'j for h=l, ... ,t implying that 
t+l t+2 

Y; is also positive. Hence the j-th component of the new vertex y 

yt+l+q(j)/m is nonnegative and therefore yt+2 must be a point in Sn. 

Consequently, all steps in the algorithm are feasible. 

Next we prove that the algorithm never generates a simplex visited already 
0 1 2 be fore. Let er , er , er , . . . be the sequence of simplices 9enera ted by the 

algorithm, so a0 ={ v}. We prove that each generated simplex eri, i21, can 
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be entered from just two adjacent simplices, while 0° can be entered 

from just one adjacent simplex. Then by the standard arguments of section 

4.2 the algorithm can never revisite a simplex. For given i~1, let 0i be 

at-dimensional simplex in a region A(T). Now two cases can occur. 

i a) a has just two (t-1)-dimensional T-complete facets 

b) 0i is (Tu{k})-complete for some kiT,and ai has exactly one 

(t-1)-dimensional T-complete facet. 

In the first case 0i has exactly two different adjacent simplices from 

which it can be entered by the algorithm. Both simplices are simplices 

in A(T) or one is a simplex in A(T\{j}) for some jET and the other is a 

simplex in A(T). In the second case ai has also exactly two adjacent 

simplices from which it can be entered, one (t+1)-dimensional simplex in 

A(Tu{k}) whereas the other one is either a simplex in A(T) or in l\.(T\{j }) for 

some jET. So in all cases, ai is entered from thesimplex 0i-i and there is 

. th . 1 i+i · d f i O · Just one o er simp ex a which can be entere rom a • Moreover 0 is a 

zero-dimensional simplex which is (Tu{k})-complete with T=0 and k=i(v). 

Since T=0·, 0° has no T-complete facet. Therefore a0 can be entered from 

just one other simplex being the simplex 01=a(y1,y2) with y 1=v and 

y 2=v+q(i(v))/m. 

Since the number of t-simplices, OStSn, is finite the algorithm must 

terminate within a finite number of steps with a completely labelled 

n-simplex. 

5. 5. INTERPRETATION OF THE ALGORITHM IN Snx [ 0, 1 J • 

The variable dimension restart algorithm can be easily put in the 

framework of other restart algorithms by adding an extra level of points. 

This interpretation was independently found by Barany [ 1979a], Van der Laan 

and Talman [1979a] and Todd [1978b]. In Van der Laan and Talman f1978a] the 

variable dimension restart algorithm is applied to compute a fixed point of 

a function in the product space of unit simplices. Interpretations with an 

extra level of points of this more general case can be found in Van der Laan 

and Talman [1979c]. An interpretation of a closely related algorithm on Rn 

(c.f. Van der Laan and Talman [1978b]) was given by Todd and T•!right ,1979] 

and Barany [1979b] (see also Talman [1980]). 
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Using an extra level of points we triangulate snxro,17,where the extra 

level snx{o} is not triangulated (or triangulated with grid size one) and 

the natural level snx{l} is triangulated with grid size m- 1 . So, the only 

grid points on the zero level are the vertices e(i)=(e(i) T,O) T, i=l, .•. ,n+l. 

Now we give the triangulation . 

THEOREM 5.5.1. Let G be the collection of (n+l)-simplices obtained by 

connecting each grid point XEA(T) on level one with the vertices e(i) 

iiT on level zero. Then.G is a triangulation of snxro,1]. 

PROOF. In this proof we use the following notation. A point of snx[0,1] is 

denoted by (x,t) where xESn and tE[0,1]. The set E(T) den~tes the set of 

vertices ;(i), iiT. 
We prove now that each point (x,t) lies in a simplex of G and that the 

intersection of two simplices of G is a face of each. Since the collection 

of regions A(T) partition Sn, there is for given (x,t) a unique subset 

T of In+l' such that xEA(T). Moreover, for any jET there are unique numbers 

aj and Aj(k), kET\{j}, and nonnegative numbers Sj(i), iiT, such that 

x a.v+ Z: A,(k)q(k) + Z: S.(i)e(i). 
J kET\{j} J i/T J 

Since x E;. (T) we have that a.$ l. Let T be a subset of T such that 
J 

(i) 

(ii) jii if a. > t. 
J 

Clearly, the intersection of the affine hull of the elements of E(T) and 

(x,t) with the region A(i} on the one level is a point, say (x,1). Let 

cr(y1,TI(T)) beat-simplex containing x. Then (x,t) lies in the (n+l)-
1 -

simplex Z:(cr(y ,TI(T))) defined as the simplex with vertices the elements of 

E(i} and the vertices of cr on the one level. This proves the first part of 

the lemma. 

Next, suppose z: 1 and E2 are two simplices of G both containing (x,t). Let 

cr 1 and cr2 be the corresponding simplices on the one level, i.e. 

cr.x{l} Z:,n(snx{l}), i=l,2. Then (x,t) is contained in the face with 
l. l. 

vertices the elements of E(T*) and the vertices of cr 1ncr 2 on the one-level, 
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where T* is the largest subset of T such that (i) and (ii) are satisfied. 

Clearly, this face is a face of both t 1 and t 2 • D 

The triangulation of snx[0,1] is illustrated for n=l, m=8, v=(3/8,5/8)T in 

figure 5.5.1 and for n=2, m=3 and v=(l/3,1/3,1/3) Tin figure 5.5.2. 

e(l)x{Q} e(2)x{O} 

Figure 5.5.1. Triangulation of s 1x[0,1], m=8, v=(3/8,5/8) T. 

I 
I 

I 
I 

Figure 5.5.2. Triangulation of s 2x[0,1], m=3, v=(1/3,1/3,1/3)T. 
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The grid points of snx[0,1] are labelled according to the standard 

labelling on Sn, i.e. £(e(i))=i, i=1, ••• ,n+1 and £((x,1))=£(x) for a point 

(x,1) in snx{1}. Clearly, snx{O} is a completely labelled n-simplex and is 

a facet of just one (n+1)-simplex of the triangulation of snxro, 1 l. This 

simplex is the convex hull of vx{1} and snx{o}. Starting with this simplex 

a path of adjacent (n+1)-simplices is generated by replacing in every 

generated simplex the vertex having the same label as the new vertex. Using 

standard arguments the algorithm must terminate with a simplex having a 

completely labelled facet on the boundary of snxro,1] and this facet cannot 

be the facet snx{O}. Because of the proper labelling there are no completely 

labelled n-simplices in (bd Sn)x[0,1], i.e. there is no completely labelled 

n-simplex a such that,for some i,xi=0 for all xEcr. Hence, the algorithm 

terminates with an (n+1)-simplex having_ a completely labelled facet in 

snx{1}. This facet yields a good approximation of a fixed point. The 

intersection of the path of (n+1)-simplices with snx{1} gives the 

sequence of simplices of the variable dimension restart algorithm. 

Observe that when in the variable dimension restart method a new label k 

is found, the current simplex cr(y1, ••• ,yt+i) is extended to the simplex 

cr(y1, ••• ,yt+2) with yt+2=yt+i+q(k)/m. In the interpretation with an 

artificial level the vertex of snx{O} having label k, that is the vertex 

e(k), is replaced by yt+2 • Also, if in the variable dimension restart 
t+1 1 t+1 algorithm the vertex y of a simplex cr(y , ••• ,y ) should be removed 

t+1 i while Rrr =0, the vertex y is deleted and the vertex y, i~t, having 
t tt1 

label nt is removed. In the method with the artificial level y on the 

one-level is replaced by e(nt) and in the next step the vertex yi having 

label nt is replaced since £(e(nt))=nt. 

Although the variable dimension restart algorithm method can be 

interpreted as a method with an extra level as just described, this level 

does not have an artificial influence on the path and is not needed to 

prove the convergence. Moreover there are only n+1 extra points, whereas 

in the Sandwich method the number of extra points, which are artificially 

labelled, is of the order of the number of grid points on the natural level. 

This means that even if the variable dimension restart method is applied 

with an extra level,the number of gridpointson this level,generated by 

the algorithm, is very small (in most examples zero). Observe that 

decreasing the dimension corresponds to generating a grid point on the 

extra level. In the Sandwich method the number of grid pointson the extra 
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level generated by the algorithm is of the same order as tne number of grid 

points that is generated on the natural level. In particular this is a 

disadvantage if vector labelling is used since then each grid point 

generated by the algorithm implies that a linear programming step should be made. 

5.6. VECTOR LABELLING. 

In this section we discuss the application of the variable dimension 

restart algorithm with vector labelling. Each point x of Sn receives the 

standard vector label of,definition 4.11.1 with b=e, i.e. 

9- (x) -f (x) +x+e 

where f(x) is a piecewise linear approximation to the mapping~ with 

respect to the standard triangulation of Sn with grid size m-l 

Let T be a subset of I 1 with ITJ=t. Then we have the following definition. 
n+ 

DEFINITION 5.6.1. A (t-1)-simplex cr with vertices w1, •.. ,wt is called 

T-complete if the system of linear equations 

t . 
r: A. 9-(wi) + 

i=l i 
= e 

* * has a nonnegative solution Ai' i=l, •.. ,t and µh, h/T. 

Observe that any zero-dimensional simplex cr(w) is i 0-complete with i 0 the 

index such that ii (w) = max.R-.(w). The solution of the system is 
* -1 o* J J -

A1={R-i0 (w)} and µh=1-{R-h(w)/R-i 0 (w)}, h~i0 . The index i 0 is unique if 

ii0 (w)>R-j(x), j~i0 . If i 0 is not unique there are more solutions and the 

system of linear equations is degenerated. In the following we assume that 

degeneracy does not occur (see also Todd [1976a]). 

1 t 
LEMMA 5 • 6. 2. !?or any T-complete simplex cr (w , .•• , w ) holds 

(n+l) 
t 
L 

i=l 
* * A.+ r: µ 
i hiT h 

n+l 

* * with Ai' i=l, ••• ,t; µh, hiT,the solution of the system of linearequations. 
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PROOF. From definition 5.6.1 and the labelling rule we have that 

t * i i * 
L A.(-f(w )+w +e) + L µhe(h) e. 

i=l i hiT 

Summing up over all components we obtain 

t 
L 

i=l 
n+l. 

Since, for all 

immediately. 

Ln+l w~=l, the lemma now follows 
j=l J 

It is obvious that if T = In+l' a 

completely labelled. Then L~~i A: 

T 1 . 1 ( 1 n+ 1 ) . -compete simp ex aw , ... ,w is 
n+l * i 1 en Li=l Ai w is an approximation of 

a fixed point of the mapping$ (see lemma 4. 11. 2) • 

We are now ready to describe the algorithm for vector labelling. Again the 

algorithm starts with an arbitrarily chosen grid point v of the 

triangulation of Sn. tloreover the system of linear equations is set equal 

to Iµ=e with I the n+l identity matrix. By alternating linear programming 

and replacement steps a path of adjacent simplices of variable dimension 

is generated until a completely labelled simplex is found. Formally, the 

algorithm is described by the following steps. 

Step 0. 

Step 1. 

Step 2. 

1 0 1 
Set t=O, y =v, T=0, a=a (y ,rr(0)) and R.=0, j=l, ••• ,n+l. 

J . 

Set p=l and µh=l, hEin+l· 

Calculate £(yP). Make a linear programming step by bringing £(yP) 

in the system of linear equations. 

t+l 
i 

L \£(y ) + L µhe(h) e. 
i=l hiT 
i>'p 

If e(j) is eliminated for some jiT go to step 3. Otherwise £(ys) 

is eliminated for just one vertex ys>'~. 

If s=t+l and Rrr =O go to step 4. Otherwise a(y1,rr(T)) and Rare 
t 

adapted according to table 5.2.1 by replacing y~. Return to step 

1 with p the index of the new vertex of a. 



Step 3. If t=n, a completely labelled simplex is found and the algorithm 

terminates. If t<n, a (Tu{j})-complete simplex is found and the 

dimension is increased. T becomes Tu{j}, TI(T) becomes 
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1 
(TI 1, •.. ,Tit,j), o becomes o(y ,TI(T)). Then t becomes t+l and return 

to step 1 with p=t+l. 

Step 4. The dimension is decreased. A linear programming step is made by 

bringing e(Tit) in the set of linear equations 

Either for some j/T, e(j) is eliminated or for some s•~t, 2(ys 1
) 

is eliminated. Now T becomes (T\{Tit}), TI(T) becomes 
1 

(TI 1 , •.. ,Tit_ 1) and o becomes o(y ,TI(T)). Then t becomes t-1. 

Return to step 3 if for some j, e(j) has been eliminated. 

Otherwise return to step 2 with s=s'. 

Analogously to the integer labelling case, a search is made in the 

directions i if the vectors e(i) are eliminated. More precisely if for 

a certain subset T of In+l a unit vector e(j),j/T,is eliminated in step 1, 

we have that for the permutation TI(T) and the simplex o(y 1 ,TI(T)) generated 

by the algorithm the conditions a-d of section 2 are satisfied. Then, if 

t<n, Tis set equal to (Tu{j}) and a search is made in the directions i, 

iET, by generating a path of simplices in A(T) with T-complete common 

facets until either again a unit vector is eliminated or a simplex having 

a T-complete facet in A(T\{k}) is generated for some kET. In \he latter 

case a linear programming step is made with e(k). Note that a unit vector 

can be eliminated by another one, implying that the algorithm continues 

with simplices in an "adjacent" equal-dimensional region, which 

behaviour is not possible in case of integer labelling. 

We prove now that the algorithm must find a completely labelled simplex. 

First we show that the algorithm never returns to a simplex generated 

already before. Leto., i~l beat-dimensional simplex of the ·sequence o1 , 
i -

0 2, ••• of generated simplices in the region A(T), r~0. Then either 

or 

a) oi has just two (t-1)-dimensional T-complete facets 

b) oi has just one (t-1)-dimensional T-complete facet and oi 

is (Tu{k})-complete for some knot in T. 
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As in the case of integer labelling, in both cases cri can be entered from 

only two adjacent simplices. Moreover the starting simplex cr(v) can be 

entered from only one adjacent simplex being cr(y1,y2) where y 1=v and 

y 2=v+q(i0)/m if e(i0) is eliminated by l(v) in step 1.Together these 

observations prove that the algorithm can never return to a previously 

generated simplex. 

Next we prove that all steps are feasible. Clearly, all linear programming 

steps are feasible. Next we show that a replacement step according to 
1 t+l . 

table 5.2.1 is feasible. Let cr(y , •.• ,y ) be a simplex generated by 

the algorithm and let ys, 1 :'>S:'>t+ 1, be the vertex to be replaced. This step 
. 1 s-1 s+l t+l 

is feasible unless for some JEin+l'y , ••• ,y ,y , ••• ,y are elements 

of s~ and y~>O. 
J J 

1 t+l 
THEOREM 5.6.3. Let cr(y , ••• ,y ) beat-dimensional simplex such that 

i for some j y.=0 for i~s. If v.~0 the system of linear equations 
J J 

t+l i 
L Ail(y) + r µhe(h) = e 

i=l h/T 
i~s 

has no feasible solution. 

PROOF. If the system of linear equations has a feasible (nondegenerated) 

* * solution Ai' i~s,and µh, h/T, we have from the proof of lemma 5.6.2 that 

(n+l) 
t+l 
r 

i=l 
i~s 

* 

* A. + 
l 

n+l , 

implying that r Ai<l. Since the starting point vis not on the j-th 
i~s 

boundary of Sn, j must be an element of T, i.e. e(j) is eliminated already. 

So, the j-th equation of the system yields 

t+l 
* i 

t+l * i i r Ai lj (y ) r A.(-f.(y )+y.+1) 1. 
i=l i=l l J J 

i~s i~s 

i 
f.(i)<!O, * Since y.=0 and this implies that r A. <!l which gives a 

J J i~s l 

contradiction. □ 

The theorem proves that a vertex has not to be replaced if all other 

vertices are on a same boundary given that the starting point is not 



on this boundary. If, however, vj=O either jET or jiT. The first case 

is identical to the case just discussed. As shown for integer labelling 

the latter case implies that s=t+l and RTI =O, so that 
t 

t+l y has to be 
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deleted and a linear programming step has to be made with e(Tit). Hence all 

replacement steps according to table 5.2.1 are feasible. Finally we prove 

that the extension to a higher dimensional simplex is always feasible. 
. 1 t+l Let for some JiT, cr(y , •.. ,y ) beat-dimensional (Tu{j})-complete 

. t+l i simplex of A(T). Since jiT, Tih~j, h=l, •.. ,t. Hence if y, =O, y,=O for alli. 
J J 

Then analogous to the proof of theorem 5.6.3, e(j) could not have been 

eliminated. Hence, y~+l>O and the new vertex yt+2=yt+l+q(j)/m is a grid 
J 

point of Sn. Consequently, all steps are feasible. 

By the fact that all steps are feasible and that the algorithm can never 

return to a previously generated simplex, a completely labelled simplex 

must be found, since the number of simplices is finite. 

The variable dimension algorithm applied with vector labelling generates a 

path of simplices of variable dimension such that if a simplex of A(T) is 

generated we have that the unit vectors e(j), jET, have been eliminated. 

This means that the common facet of two adjacent simplices in A(T), 

generated by the algorithm,is T-complete. Let T(w1, ••• ,wt) be such a common 

facet of two adjacent simplices in A(T). Since Tis T-complete we have that 

the system of linear equations 

(5.6.1) 
t . 
l: A. 9-(wi) + 

i=l 1. 

* * has a nonnegative solution A,, i=l, .•. ,t, µh, hiT. From lemma 5.6.2 we 
t * l. t * t * 

have that l:i=l Ai<l. Define a=(l-l:i=l"i)/l:i=l"i and define 
- * t * t -Ai=Ai/l:i=l"i" Clearly a>O and l:i=l"i=l. 

From (5.6.1) it follows that for jET holds 

or equivalently 

t 
,: 

i=l 

t * i i 
n.{-f.(w )+w.+1} 

i=l 1. J J 

a. 

Since f is a piecewise linear approximation to the mapping~ we have that 
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(5.6.2) f. (xi - x. 
J J 

-a 

with x 
t - i 

Li=lAiw. For hiT the h-th equation of (5.6.1) can be rewritten as 

Since µh>O it follows that 

(5.6.3) hiT. 

So by generating a sequence o1,o2, ••• of simplices in A(T) the variable 

dimension restart algorithm traces a path of points xEA(T) such that for some 

a(x) (5.n.2) and (5.6.3) hold,until fh(x)-¾ becomes equal to a(x) for some 

hiT, i.e. e(h) is eliminated,or the path crosses a region A(T\{k}) for some 

kET in which case a linear programming step is made with e(k). Recall from 

the end of section 3 that there is an analogous behaviour in case of 

integer labelling. 

The interpretation with an extra level with n+1 grid points is straight

forward if the vertex e(i) of snx{O} is labelled with the vector e(i) 

i=l, ••• ,n+l. Then the method starts with the (n+l)-simplexbeing the 

convex hull of snx{O} and vx{l}. The facet snx{o} of this simplex is 

* completely labelled with µ,=1, j=1, ••• ,n+1,as the solution of the system 
J 

of linear equations. By alternating linear programming and replacement 

steps a sequence of (n+l)-simplices is generated such that the common 

facets are completely labelled. This sequence terminates with an (n+l)

simplex having a completely labelled facet in snx{l}. In Van der Laan and 

Talman [1979c] and Talman [1980] it is proved that the method can be seen 

as a method which traces a path of zeroes of a piecewise linear 

approximation f(x,t) to a mapping ~(x,t) with respect to the triangulation 

of snx[0,1],where ~(x,t) is such that 

~(x,O) {(n+l)x - e} and ~(x,1) {x}-c!>(x). 

It is not necessary to initiate the variable dimension restart algorithm 

with the system of linear equations Iµ=e. Another possibility is to 

start the algorithm with the system of linear equations Aµ=e where 

a(i)=i(e(i))=e(i)-f(e(i))+e and f is a linear approximation to the 
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mapping$ with respect to the standard triangulation with grid size 1. 

Clearly this system has a unique solution since f has a fixed point on Sn 

(see lemma 4 .11. 2) • 

5.7. CONVERGENCE CONDITIONS FOR MAPPINGS ON Tn. 

In the previous sections we discussed the variable dimension restart 

algorithm to approximate a fixed point of a function or mapping from the 

compact convex unit simplex into itself. The generalization of the method 

to compute a fixed point.of a function or mapping from Tn to itself can 

easily be done. Of course Tn can be triangulated by the standard 

triangulation as defined in definition 3.4.3. However, here we use the 

T.triangulation given in section 3.4 which seems to be much more appropriate 

to be used in fixed point algorithms. So Trt is triangulated according to 

the T triangulation with grid size o for some positive number o and with 

respect to some point zETn. In the following z will be taken as the 

starting point v, which can be arbitrarily chosen. Analogously ·to 

section 2 we redefine the matrix T as the (n+1)x(n+1) matrix 

-n 1 

1 -n 

T 

1 

1 

1 -n 

The algorithm starts in v and operates exactly ln the same way as the 

variable dimension restart method on Sn does, except that q(i) is changed 

into t(i), i=1, .•. ,n+1. So, a path of adjacent simplices of variable 

dimension is generated such that the common facet of two adjacent 

t-simplices a 1 and a 2 generated by the algorithm is T-complete if a 1 and 

a2 are two simplices in A(T). 'I'he regions A(T), Tcrn+l' are redefined by 

A(T) {xETnlx=v+ r \.t(j) for nonnegative \j' jET}. 
jET J 

Observe that the regions A(T) depend on th~ underlying triangulation. 

Again the dimension is increased if a (Tu{j})-complete simplex in A(T) is 

generated and the dimension is decreased if a simplex in A(T) is generated 
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having a T-complete facet in A(T\{k}) for some kET. Of course 

all steps are feasible. Moreover a simplex can only be visited once. Hence 

the sequence of simplices either terminates with a completely labelled 

simplex or goes to infinity. First we give sufficient conditions to 

guarantee that the algorithm terminates in case of integer labelling. 

Define for µ < 1/(n+l), s1'1(µ) by 

Bn(µ) = {xETnl min 

iE!n+l 

x,=µ}. 
1. 

THEOREM 5.7.1. Let f be a continuous function on Tn and let v be the 

starting point. Assume there exist numbers µ<minivi and £>0 such that for 

all XEBn(µ) there exists an index iEI 1 such that 
n+ 

(5.7.1) x.<v. and f. (x)-x.<f. (x)-x.-E 
1.1. J Jl. 1. 

for at least one index jEin+l' j~i. Then the variable dimension restart 

algorithm applied with integer labelling and using the T-triangulation 

terminates with a completely labelled simplex if the grid size is small 

enough. 

PROOF. Let the grid size be so small that 

(5. 7. 2) sup max jfi(x)-xi-fi(y)+yil < ½£ 
x,yE0 iEin+l 

-n 1 t+1 
for every simplex a such that crnB (µ) ~0. For some T, let cr(w , .•• ,w ) be a 

t-dimensional simplex in A(T) having points in common with Bn(µ). Then for 
-n 1 t+1 . any point xEB (µ)ncr(w , •• ,w ) there 1.s an index i such that (5.7.1) is 

satisfied for some index j~i. Hence with (5.7.2) it follows that 

k=1, ••• ,t+1. 

So 2(wk)~i for all k. Moreover, since x.<v. we must have that iET. 
1. 1. 

Consequently the simplex a cannot be generated by the algorithm since if so, 

iET implies that at least one vertex wk must have label i. Hence the 

algorithm can only generate simplices in the interior of conv(Bn(µ)). Since 

this set is compact, the number of simplices meeting this set is finite, 

which proves the theorem. D 



Observe that since the T triangulation is used, x. < v. implies i ET. 
1 1 

In general this holds for any triangulation such that the diagonal 

elements of the triangulation matrix are negative and the off-diagonal 

elements are nonnegative. 
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The condition of theorem 5.7.1 depends on the starting point v. Hence it is 

not sure that the condition is again satisfied if the algorithm is 

restarted with the last found approximation as the new starting point. 

Conditions to guarantee that at any stage a completely labelled simplex 

is found are given in the next theorem. 

THEOREM 5.7.2. Let f be a continuous function on Tn. Assume there exist 

numbers µ<V(n+l) and E>0 such that for all xEBn(µ) we have that for at 

least one index i with xi~µ, 

for at least one index j~i. ~hen, f6r any starting point v in the interior of 

conv(Bn(µ)),the variable dimension restart algorithm applied with integer 

labelling and using the T triangulation terminates with a completely 

labelled simplex if the grid size is small enough. 

PROOF. Let the grid size be so small that 

sup max 
x,yECT iEin+l 

\f. (x)-x.-f. (y)+y, I < ½E 
1 1 1 1 

for every simplex cr such that crnBn(µ) is nonempty. Then the proof of 

theorem 5.7.1 holds by noting that the condition of theorem 5.7.1. is 

implied by the condition of theorem 5.7.2. D 

Clearly if theorem 5.7.2 holds the algorithm terminates at any stage if 

a) the grid size in the first stage is small enough and the 

sequence of grid sizes is decreasing 

b) the starting point in the first stage is chosen in the 

interior of the convex hull of Bn(µ) 

c) the starting point in any other stage is chosen within the 

completely labelled simplex found in the previous stage. 
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In the next theorem a condition is given such that the algorithm 

converges for every grid size and for any starting point. 

THEOREM 5.7.3. Let f be a continuous function on Tn. Assume that there 

exists a number µ<:v'(n+1) such that for all x with xi<µ for at least one 

index iEin+l' there exists an index j/K such that 

where K is the set of indices i with xi<µ. Then the variable dimension 

restart algorithm applied with integer labelling and using the T 

triangulation terminates with a completely labelled simplex for every grid 

size and for any starting point. 

PROOF. Let S be the mesh of the triangulation. Defineµ• by 

µ' = min(µ, min v.) -2S 
. I J. 
J.€ n+1 

1 t+1 , -n Let cr(w , ••• ,w ) beat-simplex of A(T) meeting B (µ'). Then there is an 

index h such that ¾Sµ'+S for all X€cr. Hence w~Sµ'+S<µ f~r all i=1, ••• ,t+1. 

Consequently, using the assumptions of the theorem, i(wJ.)~h for all i. 

Moreover we have that ¾Sµ'+S<vh for all X€cr which implies that h€T. 

Therefore the simplex cr cannot be generated by the algorithm, which proves 

that only simplices in the interior of conv(Bn(µ')) are generated. D 

Analogous theorems can be given if vector labelling is used. We only give a 

theorem analogously to theorem 5.7.1. Theorems similar to the theorems 

5.7.2 and 5.7.3 can be easily formulated. 

THEOREM 5.7.4. Let f be a continuous function on Tn and let v be the 

starting point. Then the algorithm applied with vector labelling terminates 

under the same conditions as formulated in theorem 5.7.1. 

PROOF. Let the grid size be so small that 

(5. 7,3) sup, _maxI lfi(x)-xi-fi(y)+yil < ½E 
x,yEcr J.€ n+1 



for 
-n 

every simplex cr such that crnB (µ)~. 

For some T, let cr(w 
1 t+l , ••. ,w ) be a simplex in A(T) such that 

-n 
crnB (µ)"0• 

Let 
-n 

xEB (µ) ncr. Then from (5. 7 .1) and (5. 7 .3) it follows that there exists 

an index i and an index j"i such that xi<vi and 

k=l, .•• ,t+l 

- - 1 t+l Hence fi(y)-yi > fj(y)-yj for all yEcr(w , .•• ,w ), where f is the 

piecewise linear approximation to f with respect to the triangulation. 

As argued in the previous section the algorithm traces a path of points 

y such that for some a(y) 

-a(y) if hET 

and 

So if cr (w1 , ... ,wt+l) is generated by the algorithm we must have that iil 

since f, (y) -y. > f. (y) -y. for all yEcr. On the other hand we have x. <v. 
1. 1. J J 1. 1. 

implying that iET. Hence a contradiction is obtained and consequently cr 

cannot be generated, which proves the theorem. D 

As argued in section 4.8, condition (5.7.31 cannot be guaranteed for any 

grid size if we deal with an u.s.c. mapping¢ instead of a function. 

Then we need e.g. that, for someµ< min. v. and some O < o < min vi.-µ, 
n n+l 1. 1. i 

(5.7.1) holds for any y € T n B (x,o) and for any f(y) E ¢{y). 

Then the algorithm converges if the mesh of th~ T triangulation is less 

than o. 
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In the next theorem a condition to guarantee the convergence of the algorithm in 

case of an u.s.c. mapping is stated, which is comparable with Merrill's 

condition given in lemma 2.6.2. Recall that in the theorems 5.7.1-5.7.4 

there was a weak dependency of the proof on the underlying triangulation. 

In the proof of the next theorem this dependency is much stronger. In 

particular it will appear that the proof is not valid if the standard 

triangulation is used. 
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THEOREM 5.7.5. Let¢ be an u.s.c. mapping on Tn. For some o>0,let there 

exist WETn and µ<1/(n+l) such that for all x E Tn with 

nll 7, E Tn n Bn+l(x,o) holds 

(x-h(x)) T(w-z) < 0 

min x.<µ and 
. l. 
l.Ein+l 

for all h(x)E¢(x). Then the variable dimension restart algorithm applied 

with vector labelling and using the T triangulation terminates with a 

completely labelled simplex if the mesh of the triangulation is less then 

0. 

PROOF. Let v be an arbitrarily chosen starting point. Defineµ' by 

µ'=min{p-o, min v. + min ri(v1.·-w;)}. 
. l. . -
l.Ein+l 1.ein+l 

1 t+l For some T, let cr(w , .•• ,w ) beat-simplex in A(T) such that for some 

yEcr, min y i <µ'. We prove that the system of linear equations 
iEin+l 

t+l 
l: A • .e, (wi) + 

i=l 1. 
l: µ e(h) 

hiT h 
= e 

* * does not have a nonnegative solution "i' i=1, ••• ,t+1 and µh, hiT. Suppose 

there exists such a solution. Then 

(5.7.4) 
t+l 

(n+ 1) l: 
i=l 

n+l. 

Furthermore, we have that 

(5.7.5) 
t+l * i * T 

[ l: A.2(w )+ l: µhe(h)] (w-y) 
i=l 1. hiT 

e T (w-y) 0 

since w,yETn. We obtain a contradiction to (5.7.5) by proving that 
i T T 

Q, (w ) (w-y) <0 for all i and e (h) (w-y) <0 for all hiT since by ( 5. 7 .4) at 

* * least one "i or µhis positive. Let fbe the piecewise linear approximation to ¢ 

with respect to the triangulation. Clearly f(wi)E¢(wi), i=1, •.• ,t+1. Let k 
i 

be the index such that yk=.min yi. Then wk~yk+o<µ'+o~µ, which implies that 
1.Ein+l 
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i T i i T i i T 
l(w) (w-y)=(w -f(w )+e) (w-y)=(w -f(w)) (w-y)<0 i=l, .•. ,t+l. 

It remains to prove that wh-yh<0 for all hiT. First note that 

. min (v i-w i) c;;o. Hence yk =. min y i <µ' s_ min vi+. min n (v i-w i) svk implying that 
l.Ein+l l.Ein+l l.Ein+l l.Ein+l 

kET by the structure of the T triangulation. Moreover it follows that 

for all hiT 

whereas, again by the structure of the T triangulation 

(5. 7 .6) 

Both inequalities together give 

for all hiT, 

and a contradiction to (5.7.5) is obtained. Hence the algorithm can only 

generate simplices in conv (Bn ( µ •) ). . D 

Observe that (5.7.6) does not hold if the standard triangulation is used. 

Only in the case that v=:w we obtain immediately yh~h, hiT, which is 

sufficient to obtain a contradiction to (5.7.5). On the other hand the 

theorem can be proved for any triangulation such that the diagonal 

elements of the matrix are negative and the off diagonal elements positive, 

by takingµ' large enough. 

Clearly the condition "for some ci" can be strengthened to "for all o". Then 

the algorithm converges for every grid size. 

5.8. COMPUTATIONAL RESULTS. 

The variable dimension restart algorithm is applied for vector 

labelling to three examples in which the equilibrium price vector in a 

pure exchange economy has to be. computed. The data of these problems can 

be found in Scarf [1967b].The algorithm is applied with the standard 

triangulation as well as the T triangulation. However, in stead of the 
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matrix Q (T) we use the matrix -Q(-T). In addition, a point x outside the 

interior of Sn receives the label e(i) with i the smallest index such that 

x.~O, whereas a point xEint Sn receives the label t(x) defined by 
1. 

j =1, ... , n+ 1, 

where g. (x) is the total demand of good j, given that xis the price 
J 

vector, and a. is the total supply of good j. It can easily be seen that 
J 

a completely labelled simplex yields a good approximation of a fixed point. 

* Let w (m) be the approximate fixed point in stage m, i.e. 

* w (m) 
n+l 

l.: :>-".1 wi(m) 
i=l 1. 

1 n+l 
where w (m), •.. ,w (m) are the vertices of the completely labelled 

m m 
simplex generated by the algorithm in stage m and :>- 1, ••• ,"n+l the 

corresponding solution to the system of linear equations. Then the 

* starting point in stage m+l is w (ml, whereas the starting point in the 

first stage is w*(o) defined by w~(O)=(n+l)-1 , iEI 1 . Finally we have to 
1. n+ 

make a remark about the sequence of grid sizes. Let hm be defined by 

max 

iEin+l 

* * (w. (m)-w. (m-1)) 
1. 1. 

m=l,2, .•. 

and let om and Gm be the grid size and the triangulation in stage m. Then 

o = h o /n+1/mesh G if h < (mesh G ) /2/n+I 
m+1 mm m m m 

ifh 2!(mesh G )/2 ✓n+l. 
m m 

The results are given in the tables 5.8.1-5.8.3. In all examples the number 

of function evaluations is equal to the number of linear programming steps, 

i.e. the dimension is never decreased. 
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Table 5.8.1. Pure exchange economy, n=4, M=(mesh 

cumulative number of iterations, E= 

G )/2/n+l, N is the 
m 

max I ( g . -a . l / a . \ . 
. i i i 
iEin+l 

T-triangulation Standard triangulation 

Stage M N E M N E 

1 .051 7 1.02 .093 8 1) 

2 .026 13 .18 .047 16 .21 

I 3 .013 18 .09 .023 26 

I 
.15 

4 .006 24 .04 .012 31 .05 

I 5 1.2 10- 3 30 · 2 10-3 5.4 10-3 36 

I 
10-2 

6 6.1 10-4 36 8 10-5 1.0 10-3 47 4 10-4 

I 7 3.8 10-5 43 2 10-7 2.2 10-4 54 

I 
3 10-6 

8 1.5 10-6 50 3 10-11 8.4 10-6 63 10-9 I 
I 

Table 5.8.2. Pure exchange economy, n=7, M=(mesh G )/2/n+l, N is the 
m 

cumulative number of iterations, E= max J (g.-a.)/a. J. . i i i 
iEin+l 

I T-triangulation I Standard trianqulation 

I Stage M N E I M N E 

I 

I 

1 .032 11 1.32 .055 9 

I 
.89 

2 .016 20 .22 .019 38 .26 

3 .008 28 .12 .009 49 .09 

4 3.2 10-3 42 .03 4.2 10-3 66 .02 

5 1.6 10-3 59 5 10-3 1.2 10-3 79 10-3 

6 4.1 10-4 79 2 10-4 2.7 10-4 95 2 10-5 

7 7.2 10-5 100 2 10-6 1.8 10-5 111 3 10-8 

8 3.2 10-6 121 8 10-10 3.2 10-7 127 < 10-13 

93 



94 

Table 5.8.3. Pure exchange economy, n=9, M=(mesh G )/21n+l, N is the 
m 

cumulative number of iterations, E= max I (g.-a.)/a. I• 
, l l l 
iEin+l 

I T triangulation Standard triangulation 

Stage I M N I E M N E 

1 .025 12 .30 .045 10 .59 

2 .013 26 .18 .011 65 .04 

3 

I 
.006 42 .06 .006 84 .01 

4 .003 58 .01 8.7 10-4 110 3 10-4 

5 

I 

8.7 10-4 75 · 8 10-4 2.1 10-4 136 4 10-6 

6 2.1 10-4 91 10-5 6.3 10-6 169 10-9 

I 
7 1.4 10-5 108 2 10-8 7.0 10-8 205 < 10-13 

8 2.5 10-7 124 < 10-13 
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CHAPTER 6 

VARIABLE DIMENSION RESTART ALGORITHM ON Rn 

6.1. INTRODUCTION. 

In this chapter we discuss the application of the variable dimension 

restart algorithm to compute a fixed point of a function or mapping from 

R11 into itself. This chapter is based on Van der Laan and Talman [ 1979b, 1980c]. 

Again the algorithm starts with a zero-dimensional simplex and generates a 

path of adjacent t-dimensional simplices,0stsn. This path either terminates 

with an n-dimensional simplex yielding a good approximation of a fixed 

point or goes to infinity. Before we treat the application on the 

unbounded region Rn,we first describe in section 2 the application of the 

algorithm on the unit cube. 

Conditions for the convergence of the method on Rn are given in section 3. 

Further research about the variable dimension algorithm is summarized in 

section 4. Computational results are given in section 5. 

6.2. THE UNIT CUBE. 

To approximate a fixed point of a function-or mapping on the 

n-dimensional unit cube Cn={xERn, osx,sl, i=l, ..• ,n},this set is 
l. 

triangulated by the K triangulation with grid size m- 1 , where mis a 

positive integer, and z=0 (see definition 3.2.1). we first describe the 

algorithm for integer labelling. We call a labelling rule proper if 

i(x)~i if xi=l and i(x)~n+l if xi=0 for some index iEin+l" The standard 

integer labelling on Rn defined in definition 4.2.3 induces a labelling 

on en. We now take this labelling rule and assume it is a proper labelling 

rule as is the case when f is a function from en into the interior of en. 

The triangulation matrix corresponding to the K triangulation is the nxn 

identity matrix. To apply the variable dimension restart algorithm we 

define the nx(n+l) matrix U by U=(I,-e). So u(i)=e(i), i=l, ... ,n and 
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u(n+1)=-e=-r.:=1u(i), where u(i) is the i-th column of u. As in section 5.2 

u(i) corresponds to the i-th direction in which a search is to be made if 

label i has been found. For a given subset T of In+l' IT!sn, the t-simplex 

o(y1,u(T)) is the simplex with vertices y 1, ••• ,yt+l such th~t y 1 is a grid 

T i+1 i . point, u(T) a permutation of the elements of and y =y +u(i)/m, 

i=1, ••• ,t. Observe that such a simplex is indeed a face of a simplex of the 

K triangulation. Again a (t-1)-simplex o is called T-complete if the t 

vertices of o carry all the labels of the set T. 
Let the grid point v be an arbitrarily chosen starting point. Then the 

variable dimension restart algorithm starts with the zero dimensional 

simplex {v} and proceeds according to the steps 0-4 of section 5.2 except 

that the columns of the matrix Qin table 5.2.1 must be changed into the 

columns of u. Again we can give an interpretation of the method by 

defining the region A(T) as 

A(T) {xe:cnlx=v+ E A .u(j) for nonnegative A., je:T}, 
je:T J J 

where Tis a proper subset of In+l" Then we have that a path of simplices 

of variable dimension is generated such that the common facet of two 

adjacent t-simplices in A(T) is T-complete. Moreover, the dimension is 

increased if, for some jiT,a (Tu{j})-complete simplex in A(T) is generated 

whereas the dimension is decreased if, for some ke:T, a simplex in A(T) 

is generated having a T-complete facet in A(1\{k}). In the first case the 

algorithm continues with a simplex in A(Tu{j}), whereas in the latter case 

the method proceeds with a simplex in A(T\{k}). The algorithm is 

illustrated in figure 6.2.1 for n=2 and m=7. In this example we have that 

T 1 is a {1,2}-complete one-simplex of A(1). So the dimension is increased 

and the label of the new vertex u is calculated. The one-simplex T 2 is an 

{1,2}-complete facet of o1 in A({1,2}\{1}). The dimension is decreased and 

the vertex w having label 1 is replaced. The simplex T 3 is a {2,3}-complete 

facet in A(2) and the dimension is again increased. Then the algorithm 

continues with 2-simplices in A(2,3) until the completely labelled simplex 

o2 is found. 



A(3) 

Figure 6.2.1. Illustration of the variable dimension restart algorithm on 

en, n=2, m=7, v=(3/7,2/7l T_ 

The proof that the algorithm can never return in a simplex is identical 

to the proof given in section 5.4. Therefore the algorithm finds always 

a completely labelled simplex if all steps are feasible. First we show 
. . 1 t+l that a replacement step is always feasible. Let cr(y , •.• ,y ) be a 

t-simplex in A(T) generated by the algorithm and let ys be the vertex of 

cr to be replaced. Clearly this replacement step is feasible except when 
s -1 i s -1 i 

for some j (l~j~n) either y -m and y -O i~s,or y =1-m and y =1 i~s j- j- , j j , 
Suppose the first case is true. If v.>O, we must have that n+l is an 

J 
element of T otherwise the j-th component could not have been decreased. 
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i s However by the proper labelling i(y )~n+l for all i~s,whereas y has to be 

replaced iffthe facet with vertices yi, i~s,is T-complete. So a 

contradiction is obtained. This proves that if ys has• to be replaced 
i 

there exists an index i, i~s, such that y,>O. Hence the replacement step is 
J 

feasible. 

If v.=0 then either n+lET which is identical to the case just mentioned,or 
J 

n+liT. Then, however, s=t+l and RTit=O implying that the dimension should be 

decreased and contradicting the fact that ys must be replaced according to 

table 5.2.1. 

Suppose now that y~=l for all i~s. If v.<1 we must have jET. Again because 
J . J 

of the proper labelling i(yi)~j for all i~s. Hence, if ys has to be 
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replaced there exists an index i such that y1<1 implying that the 
J 

replacement step is feasible. Ifv.=1, either jET and then there is an 
. J 

index i with y:<1,or jiT again implying that the dimension should be 
J 

decreased. So all replacement steps are feasible. 

Next we prove that the extension from at to a (t+1)-simplex,occurring when 

a new label is found,is also feasible. So, let cr(y1,TI(T)) be a (Tu{j})

complete simplex in A(T), generated by the algorithm. Since jiT we have that 

Tii~j, i=l, ..• ,t. Moreover we have that for some vertex ys, ~(ys)=j. If 
s -1 

j=n+1 then because of the proper labelling yh<'.!11 for all h. Hence for all 

i~s, y~<'.!11-l for all h,sirce Tii~n+1 for all i. Consequently, O~y~+2=y~+l 

m- 1~1 for all h, i.e. yt+2 is a point in en. If j~n+1thenagainbecauseofthe 
s -1 t+1<1 -1 proper labelling y. ~1-m • This implies that y. - -m , since TI i~j, i~s. 

t+2 t+1 J_1 t+2 t+1 J ll h . h t+2 . Hence 1qj =yj +m ~0. Moreover yh =yh for a ~J, sot at y is a 

point in en. Consequently all steps of the algorithm are feasible. 

We now discuss for vector labelling the application of the algorithm to 

approximate a fixed point af an u.s.c. mapping~- Each point x of en 

receives a vector label ~(x) based on the rule given in definition 4.8.1. 

Taking b=e, ~ is a function from en to Rn+l with 

and 

~. (x) 
J. 

f.(x)-x,+1 
J. 1, 

i=1, ••• ,n 

where f(x) is a piecewise linear approximation to the mapping~ with 

respect to the triangulation of en. Analogously to theorem 5.6.1 a 

(t-1)-simplex cr(w 1, .•• ,wt) is called T-complete if the system of n+1 

linear equations 

* * has a nonnegative solution Ai, i=1, ..• ,t and µh, hiT. In the following we 

assume that degeneracy does not occur. The next corollary follows 

immediately by considering the (n+l)-th equation of the system of linear 

equations. 

COROLLARY 6.2.1. For some T, let cr(w1, ••• ,wt) be a T-complete simplex with 

* * Ai' i=1, ••. ,t and µh, hiT the solution of the system of linear equations. 

If n+1iT, then 



t * * l: A.+µ 1. 
i=l i n+l 

If n+lET, then 

t * 
l: ". 1. 

i=l 1. 

n+l * . 1 n+l 
From thiscorollary it follows i!llillediately that l:i=l "i=l 1.f o(w , •.. ,w ) 

is completely labelled,i.e. if O' is an I 1-complete simplex. Then 
* +1 . n+ 

x =l:~ 1 A~ wl. is a good aporoximation of a fixed point (see lemma 4.8.3). 1.= l. -
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The steps of the algorithm are identical to those of section 5. 6 except that 

the matrix U must be used in stead of the matrix Q. So, starting with an 

arbitrarily chosen grid point VECn, the algorithm generates a path of 

adjacent simplices. As in section 5.6 a simplex can never be revisited, 

.so a completely labelled n-simplex must be found provided that the steps 

are feasible. Since C is bounded,all linear programming steps are 

feasible. Concerning the other steps we first prove that the 

extension to a higher dimensional simplex is always feasible. For some T, 
let o(y1 ,TT(T) be a (Tu{h})-simplex in A(T) generated by the algorithm. 

First consider the case where h=n+l. Then e(n+l) is eliminated by the last 

linear programming 
t+l * 

l:i=lAi=1. We shall 

step and it follows from corollary 6.2.1 that 

now verify that y~+l>O for all j. To do this, suppose to 

the contrary 
t+l J 

that y. =0 for some j. Since n+liT, we have that TT i ;t n+l, 
iJ 

i=l, •.. ,t. Hence yj=O for all i, implying that TTi;tj, l~i~t. So jiT and the 

j-th equation of the system of linear equations is 

t+l * for all i. Consequently l:i=l),_i<l which 
t+l O . t+2 Hence, if h=n+l, yj > for all J and soy 

Next we prove that the extension is feasible if h;tn+l. Now we verify that 
t+l l . t+l l yh <. Again we supposet? the contrary that yh =. 

i=l, .•. ,t implying that yl.=1 for all i and therefore 

Since hiT, TTi;th fo~ 

n+liT. So from 
h t+1 * * 

corollary 6.2.1 we obtain that l:i=lAi=l-µn+l<l. However, since o is 

(Tu{h})-complete,e(h) is eliminated and the h-th equation is 
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i n 
Since f(y l E:C , i=l, .•• ,t+l. Hence E~+!A*~1, contradicting the 

t+l i= i t+2 t+l . 
assumption that 

point in en. 

yh <1 and soy =y +e(h)/m is a 

To prove that all replacement steps are feasible weassum~ that 

piecewise linear approximation f to~ is a continuous function from en into 
n · 1 t+l 

the interior of C. For some~ let cr(y , •.. ,y ) beat-simplex in A(T) 

generated by the algorithm and let ys be the vertex to be replaced 

according to table 5.2.1. This step is feasible unless either 

a) for some j, l=o for all i"'s and s -1 
y.=m 

J J 
or 

b) for some j, i for all and 
s -1 

y.=1 i"'s y,=1-m 
J J 

We prove that in both cases the system of linear equations 

(6.2.1) i E A.t(y )+ E µhe(h) = e 
io!s i h/T 

has no feasible solution. Suppose to the contrary that the system has a 

* feasible solution A., io!s 
l 

n+1E:T and so by corollary 

(6.2.1) is given by 

(6.2.2) * i -E A. t. (y ) +µ. 
io!s l J J 

* and µh, h/T. Consider case a) with v.>O. 
* J 

6.2.1 Ei"'sAi=l. The j-th equation of the 

Then 

system 

with µj=µ; if j/T and µj=O if jE:T. Since f is a function from en into the 
n i i i interior of C we have that t.(y )=f.(y )-y.+1>1. Hence from (6.2.2) it 

* J J J * 
follows that Ei_,sAi<l which contradicts Ei_,sAi=l. So there is no feasible 

solution if v.>O. Consider now the case with v.=O. If n+1E:T, we can repeat 
J J 

the above arguments. If n+1¢T it follows that s=t+l and TTt=j. Hence 
1 R =R.=y.-v.=O, implying that step 4 should be performed. 

TTt J J J 
In case b) we distinguish between v j < 1 and v j =1. If v j < 1 we have that j E:'r. 

Hence the j-th equation of (6.2.1) is 
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i l: :\,£. (y )=1 
i>'s J. J 

i * with .Q,j(y )<1 for all i>'s implying that l:i>'s"i>l. 

* However from corollary 6.2.1 it follows that l:i>'s"i~l, which again gives a 

contradiction. Finally if v.=1 we have that,either jET and we can 
J 

repeat the arguments as for v.<1,or s=t+l and Rrr =O, implying that step 4 
J t 

should be performed. Hence,if f is a function from en into the interior of 

C~ all replacement steps are feasible and the algorithm terminates with 

a completely labelled simplex within a finite number of iterations. 

6.3. CONVERGENCE CONDITIONS ON Rn. 

In this section the variable dimension restart algorithm is applied 

to compute a fixed point of a function or mapping on Rn. Conditions are 

given to guarantee that the algorithm converges. For some positive o, Rn is 

triangulated by AK0 where A is a triangulation matrix (c.f. section 3.3), 

such that the arbitrarily or by priory information chosen starting point v 

is a grid point of the triangulation. It seems to be adequate to use an 

element of the subclass A of AK triangulations in fixed point algorithms. 

Adding the i-th column of a matrix of the form A(a) to a pointy of Rn 

means that only the i-th component of y is increased, whereas all other 

components are affected by the same amount. So in going from y 1 to yn+l 
i 1 where y, i=l, .•. ,n+l,are the vertices of a simplex cr(y ,rr(In)) of the 

triangulation, all components have been increased by the same amount. 

Note that in all the algorithms discussed in chapter 4 only the columns 

of the triangulation matrix (if AK is the underiying triangulation) appear 

in the rules for the replacement steps. However, the variable dimension 

restart algorithm uses the extra column a(n+l)=-l::=1a(i). So using an 

A(a)K0 triangulation a search in the i-th direction, i~n, means that the 

i-th component is increased and all other components are decreased 

with the same amount, whereas a search in the (n+l)-th direction means that 

all components are decreased with the same amount. In section 3. 3 we 

summarized some nice properties of the A(n+✓n+1)K0 triangulation. These 

properties suggested that it is preferable to use this element of the 

subclass A. The application of the variable dimension restart algorithm 

provides an extra argument. Recall that the regions A(T) depend on the 

underlying triangulation. So, using the A(n+✓n+1)K0 triangulation the 



102 

n-dimensional real space Rn is subdivided in subsets A(T), Tcr and 
n+l 

1 r 1~ n, defined by 

A(T)={xERnJx=v+ L A.a(j) for nonnegative A., jET}, 
jET J J 

where a(i) is the i-th columnofthenx(n+l) matrixA(n+ln+l) defined by 

-1 -1 

-1 

-1 

-1 -1 n+ln+l -1-ln+l 

Consider then-dimensional subsets A(Tk) with Tk=In+l\{k}, k=1, .•. ,n+1. 

Then the A(n+ln+1)K0 triangulation has the property that it divides Rn in 

n+l n-dimensional subsets A(Tk) of "equal size". With subsets of equal size 

we mean the following. Recall that Bn(v,µ) is a ball with v as centre point 

andµ as length of the radius. Then for any (positive) µ the volume of the 

intersection of Bn(v,µ) and A(Tk) is equal for all kEin+l. This property 

follows immediately from the fact that, as pointed out by Todd [1978f], 

the angle between two half lines v+Aa(k), A~O, is equal for any two indices 

k 1,k2• So within a ball with the starting point v as centre point the 

number of n simplices in A(Tk) is roughly the same for all kEin+l" This is 

illustrated in figure 6.3.1 for n=2. In general we have that for allµ the 

number of t-simplices in Bn(v,µ)nA(T) is the same for every T with JTJ=t. 

To apply the variable dimension algorithm, in case of integer labelling any 

point x receives the standard label of definition 4.2.3, whereas in case of 

vector labelling each point receives a label as defined in definition 4.8.1 

with b equal toe. The algorithm is started in v and proceeds in the same 

way as on Tn with in the replacement steps the n+l columns of the 

matrix defined above in stead of the columns of T. A path of adjacent 

simplices is generated such that the common facet of two adjacent simplices 

in a region A(T) is T-complete. Using standard arguments we have that the 

path of simplices either terminates with a completely labelled simplex or 

goes to infinity. Before we give some convergence theorems we consider the 

behaviour of the path. We restrict ourselves to vector labelling. 
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A(2) 

A(l) 

Figure 6.3.1. Illustration of the properties of the A(n+/n+l)K0 
triangulation, n=2, µ=2o. 

1 t 
For some T,let T(w , •.• ,w) be the common facet of two adjacent simplices 

generated by the algorithm. Then we have that Tis T-complete and so the 

system of linear equations 

* * has a nonnegative solution Ai' i=l, ••• ,t and µh, h/T. First suppose that 
t * n+l/T. Then it follows from corollary 6.2.1 that ri=lAi<l. Following the 

arguments of section 5.6 we have that 

(6.3.1) 

and 

(6.3.2) 

f. (x)-x.=a 
J J 

h/T 

t * t * - t - i . - * t * whe:i:rea=(1-r1.·-_1A,)/LJ.. __ 1A. and x=r. 1A,W with A,=A./L, 1A .. Hence if n+l/T l. l. J.= l. l. l. l.= l. 
the variable dimension restart algorithm traces a path of points XEA(T) 

such that for some a(x) (6.3.1) and (6.3.2) hold. Observe that the number 

of equations of (6.3.1) is equal to jT\=t, whereas a depends on x. 
t * Suppose now that n+1ET. Then we have that ri=lAi=l. Hence for jET, j~n+l we 

have that 
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or 

(6.3.3) 

or 

(6.3.4) 

t * i i 
!: \. { f. (w ) -w . }=O 

i=l i J J 

* * f.(x )-x.=0 
J J 

jET\{n+l} 

Moreover for h/T it follows that 

hiT. 

So a path of points xEA(T) is traced such that (6.3.3) and (6.3.4) hold. 

Observe that for each x the right hand side of (6.3.3) is equal to zero, 

but that the number of equations in (6.3.3) is equal to ITl-l=t-1. 

We give now some theorems concerning the convergence of the algorithm on 

Rn. First we consider integer labelling. Define Bn(µ) by 

THEOREM 6. 3. 1. Let f be a continuous function on Rn and let v be the 

starting point. Assume there exist numbers µ>max. Iv, !and £>0 such that for - ]. ]. 

all XEBn(µ) holds 

or 

a) eTx<eTv and there is at least one index j such that 

f. (x)-x. >£ 
J J 

b) there exists an index iEI such that x.>v,, and we have that 
n l. l. 

(i) f. (x)-x.>f, (x)-x.+£ for at least one index jEin' j~i 
J J ]. ]. 

or (ii) f. (x)-x.<-£ for all jEI . 
J J n 

Then the variable dimension restart algorithm applied with integer labelling 

terminates with a completely labelled. simplex for any triangulation A(a)K0 

if o is small enough. 
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PROOF. Let the grid size be so small that 

(6.3.5) sup max Jf. (x)-x.-f. (y)+y. J<½E 
x,yEcr iEI i i i i 

n 

-n 1 t+1 for every simplex cr such that crnB (µ)~0. For some T, let cr(w , ..• ,w ) be 
· -n -n 

a simplex in A(T) such that crnB (µ)~0. Then for any point XEB (µ)ncr holds 

at least ohe of the conditions a) and b). If al holds we must have that 

n+1ET since eJx<eTv. So if cr is generated by the algorithm i(wi)=n+1 for at 

least one index i=1, •.• ,t+1. However, there is at least one index j such 

that f.(x)-x.>E. So with (6.3.5) it follows that 
J J 

k=1, ••• ,t+1, 

implying that i(wk)~n+l for all k. So a contradiction is obtained. If b) 

holds we must have that iET since xi>vi. If there exists an index j~i such 

that f.(x)-x.>f, (x)-x.+E it follows from (6.3.5) that 
J J i i 

implying that i(wk)~i 

that 

k=l, .•• ,t+l, 

for all k. If for all jEin' f, (x)-x.<-E then we have 
J J 

k=1, ... ,t+1, 

that "(wk)=n+l 1 t+1 implying ~ for all k. In both cases o(w , •.• ,w ) cannot be 

generated by the algorithm. Therefore the algorithm generates only 

simplices in the interior of conv(Bn(µ)). This proves the theorem. D 

Theorem 6.3.1 is the analogon of theorem 5.7.1. Theorems analogous to the 

theorems 5.7.2 and 5.7.3 can easily be given for any element of the 

subclass A • Here we give only the analogon of theorem 5. 7. 2. Moreover we 

restrict ourselves to the K0 triangulation. 

THEOREM 6.3.2. Let f be a continuous function on Rn. Assume there exist 
-n 

numbers µ>O and E>O such that for all xEB (µ) holds that 
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or 

a) For some i, xi=-µ and there exists at least one index jEin 

such that f. (x) -x. >E:. 
J J 

b) For some i, x,=µ and fJ.{x)-x.>f. (x)-x.+E: for at least one 
J. JJ. J. 

index jEin, j;ti, or f.(x)-x.<-E: for all jEI • 
J J n 

Then the variable dimension restart algorithm applied with integer 

labelling and using the K0 triangulation terminates with a completely 

labelled simplex for any starting point v in the interior of conv(Bn(µ)) if 

o is small enough. 

PROOF. For some T, let cr(w1, •.• ,wt+l) be a simplex in A(T) and crnBn(µ) "IL It 

can easily be seen that, if the grid size is small enough, there exists an index 

iETsuchthat 9,(wk)"i, k=l, ... ,t+l. Hence only simplices in the interior of 

conv(Bn(µ)) can be generated. n 
We conclude this chapter with two convergence theorems on Rn when vector 

labelling is used. They are analogous to the theorems 5.7.4 and 5.7.5 

concerning the convergence on Tn. 

THEOREM 6.3.3. Let f be a continuous function on R11 and let v be the 

starting point. Then the algorithm applied with vector labelling terminates 

under the same conditions as formulated in theorem 6.3.1. 

PROOF. Let the grid size be so small that 

(6.3.6) sup max jf.(x)-x.-f.(y)+y.l<½E . J. J. J. J. 
(x,y)Ecr J.Ein+l 

-n 1 t+l 
for every simplex cr such that crnB (µ);<0. For some T, let cr(w , ... ,w ) be 

-n 
a simplex in A(T) such that crnB (µ)"0• Let x be a point such that 

~n 
XEB (µ)ncr. If a) holds we have that n+l ET. Moreover with (6.3.6) it 

k k -
follows that f. (w )-w. >O, k=l, •.. , t+1. Hence f. (y) -y. >O for all yEcr, where 
- J J J J 
f is the piecewise linear approximation to f with respect to the triangu-

lation. Therefore, by (6.3.3) or (6.3.4) cr cannot be generated by the 
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algorithm. If b) holds we have that iET. If bi) holds it follows that 

f.(y)-y.>f. (y)-y. for all yrn and by (6.3.1) or (6.3.2), a cannot be 
J J i i -

generated. If bii) holds it follows that for all YE~ f.(y)-y.<O for all 
- J J 

jEin. In particular we have that fi(y)-yi<O and by (6.3.1) (if n+liT) or 

(6.3.3) (if n+lET) it follows again that cr cannot be generated. Hence only 

simplices in the interior of conv(Bn(µ)) are generated. ~ 

As in the previous chapter we have again that in case of an upper-semi

continuous mapping (5.7.5) possibly does not hold for any o>O. Therefore 

we need a stronger condition to prove convergence, e.g. in case a) 

f.(x)-x. > E has to be replaced 
J J 

by f.(z)-z. > O for all z E Bn(x,o) and 
J J 

f(z) E ¢(z) for some O < o < 

grid size less than o it can 
~n - k k 

x EB(µ), f.(w )-w. > 0 for 
. J J 

µ-max. Jv. 1- Then for a triangulation with 
i i 

easily be seen that if a) holds for some 
. 1 t+l 

all vertices w , ••• ,w of the simplex cr 

containing x, implying that n+l 4 T. The same adaptions have to be made 

for the condition b). 

Another sufficient condition to prove convergence in case of a mapping is 

Merrill's condition, as is stated in the next theorem. 

THEOREM 6.3.4. Let¢ be an u.s.c. mapping on Rn. For some o>O, let there 

exist wERn and µ>Osuch that for all x,zERn with xiBn(w,µ) and zEBn(x,o) 

holds 

(h(x)-x) T(w-z)>O 

for all h(x)E¢(x). Then the variable dimension _restart algorithm applied 

with vector labelling and using the A(a)K triangulation with A(a)EA 

terminates with a completely labelled simplex if the mesh of the 

triangulation is less than o. 

PROOF. Let µ>O be such that for all XEBn(w,µ) holds max. Ix. I<µ. So for all 
i i 

x with max. Ix. I~µ we have that xiBn(w,µ). Let v be the starting point and 
i i 

define µ' by 

µ'=max[µ+o,max Iv. l+max{max a!v.-w. !,a(a-n+1)-1 li:(w.-v.) J}J. 
iEI i iEI i i i i i 

n n 
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1 
For some T, let cr(y ,1T(T)) be a t-simplex in A(T) such that for some yEcr, 

max, \y, I>µ'. We prove that the system of linear equations 
J. J. 

t+1 i 
E A,l(w )+ E µhe(h)=e 

i=1 i h/T 

* * does not have a feasible solution Ai' i=1, ... ,t+1 and µh, h/T, implying 

that er cannot be generated by the algorithm. Suppose there exists such a 

solution. 'I'hen we have that 

t+l * i * T T T T T - T 
[ E A.l(w )+ E µhe(h)] [(w-y) ,OJ =e [(w-y) ,OJ 

i=1 J. h/T 

or by definingµ* =O if n+1ET and letting f be the piecewise linear 
n+1 

approximation to¢ 

(6.3.7) 

* t+1 * 
using the fact that µn+l=1-Ei=lAi (c.f. corollary 6.2.1). 

Since max. IY. I>µ' we have that max. lw~l>µ'-o;>:µ. Hence 
J. J. J. J. 

(6.3.8) 
k k T 

{f (w )-w } (w-y) >O k=1, ..• ,t+1. 

Now we prove that wh-yh>O for all h/T. We first 9onsider the case where, for 

some k, yk=inaxi\yij. Hence 

Moreover, by the structure of the A(a)K triangulation we have that 

Combining both inequalities we obtain that 

(6.3.9a) h/T. 

In the case where,for some k, -yk=max. jy, \ we again find by the structure 
J. J. 

of A(a) 



(6.3.9b) h/T. 

* If µn+l=0, i.e. n+1ET,then (6.3.8) and (6.3.9a,b) contradict (6.3.7), 

implying that there is no feasible solution to the system of linear 

equations. It remains to prove that E. (wi-y.)<0 if (n+l)/T. In the case 
l. l. 

where for some k, yk=maxilyij, it follows again by A(a) that 

(6.3.10) 

Hence 

n n _1 
E (w.-y.)S E (w.-v.)+(n-l)a (yk-vk) 

i=l 1. 1. i=l 1. 1. 

and with (6.3.10) 

n 
E (w.-y.)<0. 

i=l 1. 1. 

Finally, in the case where for some k, -yk=max~!Yil we have that 

1 n 
-y >µ•~-v +a(a-n+l)- I E (w.-v.) I 

k k i=l i i 

-1 n 
~-v +(a-n+l) E (w.-v.). 

k i=l 1. 1. 

Again from the structure of A(a) it follows that 

E (y. -v.) ~ (a-n+2) (vk-yk) . 
i;tk 1. 1. 
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Hence 

n 
E (w.-y.)<0. 

i=l 1 1 

So there does not exist a feasible solution to the system of linear 

equations. Hence only simplices can be generated in the bounded set 
~n 

conv(B (µ')). D 

Observe that in the proof of the theoremµ•~ max aiv.-w. I. Hence, if a-;.oo, 
. I 1. 1. 
1.E n+l 

µ' is unbounded unless v=w. Therefore the theorem is not true if the K 

triangulation is used, except in the case where v=w. 

Finally, we note that the condition "for some o>0" can be changed into the 

strong condition of Merrill "for all o>0". In this case the algorithm 

converges for every grid size. 

6.4. RECENT DEVELOPMENTS. 

As on Sn the variable dimension restart algorithm can be interpreted 

with n+l points an an extra level (c.f. Todd [1978bl, Barany [1979a], 

Van der Laan and Talman [1979c,1980c]). Therefore, let Rnx{l} be the natural 

level and Rnx{O} the artificial level. Now we choose n+l points u(i)ERn 

such that 

u(i) EA(I 1\{i}) 
n+ 

i=1, •.• ,n+1. 

Let then-simplex cr be the convex hull of the points u(i) and let G be the 

collection of (n+l)-simplices obtained by connecting each grid point xEA(T) 

on level one with the vertices u(i), iiT,on level zero. Then we have that 

G triangulates the set (crx{O})u(Rnx(0,1]). The proof of this proposition 

can be found in Todd [1978b]. Observe that this triangulation is not 

locally finite, but still satisfies the property of theorem 2.3.5. We 

present now briefly the research of Todd [1978b] about the variable 

dimension restart algorithm of Van der Laan and Talman [1979a,b]. 

Let f be a continuous function on Rn and let the points u(i) be defined by 



u(i) = o(e-(n+1)e(i)+w) 

u(n+1)_= o(e+w), 

i=1, ••• ,n 
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where o is the grid size of the K (or J 1) triangulation of Rnx{1} and w is 

then-dimensional vector such that wj=(2n-2j+1)/2n, j=1, ••• ,n. Using vector 

labelling the system of linear equations is initiated with Bµ=b where 

b=(0, ••• ,0,1) T and Bis the matrix with b(j)=((ow-u(j)/ ;1)T. Todd 

proves that the algorithm traces a path of zeroes of the piecewise linear 

approximation tothe fun~tion 

h(x,t)=(1-t) (ow-x)+t(f(x)-x). 

Using this fact it is proved that Merrill's condition is sufficient to 

guarantee that the algorithm converges. So the condition is sufficient with 

. K the underlying triangulation. However, observe that the system of linear 

equations is not inttiated with Iµ=e as in the previous section. Starting 

with Iµ=e has the advantage that when the dimension of the simplex is small, 

the basis matrix is sparse, which yields that efficient linear programming 

steps can be made. 

Todd gives also a technique to accelerate the algorithm. Therefore he uses 

the set-up of the accelerated algorithms in Saigal [1977] and Saigal and 

Todd [1978]. He proves that in the limit an approximation in a certain 

stage can be obtained in n+1 iterations and that the algorithm converges 

Q-quadratically, when the function is continuously differentiable with a 

Lipschitz continuous derivative. 

A note about the path of the variable dimension restart algorithm was 

written by Kojima [1980]. He showed that the same path can be obtained by 

utilizing the differential equations approach when the function is 

continuously differentiable. 

In Van der Laan and Talman [1980b] the triangulation of snx[0,1] as given 

in section 5.5 is used to construct a triangulation of snx[1,=) which 

allows for any factor of grid refinement between two successive levels. 

We treat this matter in chapter 8. 

The variable dimension restart algorithm is generalized in Van der Laan and 

Talman [197&,b]. In the first paper an algorithm is given which can be 

applied to compute a fixed point of a function on the product space of unit 

simplices. The second paper is closely related and presents a class of 
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algorithms on Rn. One of the extreme cases of this class is the algorithm 

presented in this chapter. The other extreme case is an algorithm with 

2n labels when integer labelling is used and a system of 2n linear 

equations when vector labelling is used. In addition, starting with a point 

v, a search in 2n directions can be made. The class of algorithms is 

treated in full detail by Talman [ 1980]. An interpretation of the "2n-case" 

with points on an extra level can be found in Todd and Wright [1979] and 

Todd [ 1980] • Interpretations with extra points for any element of the class 

are given by Van der Laan and Talman [1979c] (see also Talman [1980]). In 

Todd and Wright [1979] i,t is showed that the 2n-case is very appropriate to 

be used for antipodal fixed point algorithms. Finally we mention a paper 

of Wright [1979]. He generalized the variable dimension restart algorithm 

to an algorithm with 2n directions. As argued by Wright the algorithm can 

be considered to be dual to the 2n-case. 

6.5. COMPUTATIONAL RESULTS. 

To test the algorithm the three pure exchange economy problems of 

Scarf [1967b] were again solved. The problems were converted to problems in 

R~ by setting the price of one of the commodities equal to one. The 

algorithm was applied with vector labelling and the K triangulation. A point 

x outside int R~ received the label e(i) with i the smallest index with 

xi~O, whereas a point xEint R~ received the same label as in section 5.8. 

In the first stage the starting point was the point x with xi=1, 

i=1, ••• ,n and the mesh was (n+1) (n+2J-1/n. The approximate fixed point w*(m) 

on stage m was chosen to be the starting point at stage m+1, m=1,2, ••• 

The gri:d size om+l at stage m+1 is defined by · 

h if h <½o m m m 

with hm as defined in section 5.8. The results are given in table 6.5.1. 
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Table 6.5.1. Three pure exchange economy models, n=4, 7 and 9,M=mesh G /✓n, 
m 

N is the total number of iteration~ E= max I (g,-a.)/a, I 
. i i i 
iEin+1 

Dimension m M N E 

4 5 6.10-3 47 2 10-5 

7 10-5 69 < 10-12 

7 5 7.10-3 72 6 10-6 

6 9 10-5 80 2 10-9 

9 5 3 10-3 102 10-6 

6 10-4 123 2 10-10 

In the three problems above the number of function evaluations is equal to 

the number of linear programming steps. The algorithm was also applied on 

the first production economy problem of Scarf [1973]. 
-3 To achieve an accuracy of less than 5.10 the algorithm needed 176 function 

evaluations and 184 linear programming steps, i.e. 8 times step 4 was 

performed, bringing a unit vector in the system of linear equations. A 

comparison of the number of iterations with the results as reported by 

Todd [1978a] shows that the variable dimension restart algorithm takes 

significantly fewer iterations than the algorithm of Merrill and the method 

of Eaves and Saigal. Even in the case that quasi-Newton steps were used our 

results are better or comparable. Of course, taking quasi-Newton steps can 

also be implemented in our algorithm. 

The algorithm was also applied on the problems land 2 of Saigal [1977c]. 

Problem 1 is a 4-dimensional unconstrained optimization problem, originally 

due to Colville [1968]. Problem 2 is a 20-dimensional version of a problem 

considered by Kellogg, Li and Yorke[1976]. For both problems the grid size 

in stage 1 is set equal to 2, whereas om+l=~om for all m~1. The starting 

point was (-3,-1,-3,-1) T for problem 1, and the zero point for problem 2. 

The results are given in table 6.5.2. 
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Table 6.5.2. Problem 1, unconstrained optimization, E~_max la!~~) I * 
l.Eln i x=w (m) 

Problem 2, 20-dimensional fixed point problem, 

* * l E=ax I f !w (m))-w. (m) , 
iEI l. l. 

n 

N is the total number of iterations. 

Problem m N E 

5 51 2.6 

7 89 .037 

9 107 2 10-4 

2 1 37 .38 

3 90 10-3 

5 136 10-7 

Compared with the results of Saigal [1977c] it follows that the variable 

dimension algorithm again takes much fewer iterations than the homotopy 

algorithm. Especially, the number of iterations is very small in the first 

stage. Finally we remark that for both problems the K triangulation was 

* used. For the impact of the A(a )K triangulation we refer the reader to 

Talman [1980]. 
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CHAPTER 7 

THE ORIENTATION OF SIMPLICES 

7.1. INTRODUCTION. 

In this chapter we consider the concept of the orientation of 

simplices. Each completely labelled simplex receives an index being an 

element of the set {+1,-1}. It is discussed by several authors that this 

index is closely related to the Brouwer degree of a mapping (c.f. Charnes, 

Garcia and Lemke [1977], Prufer [1977], Garcia and Zangwill [1978], 

Peitgen and Prufer [1979] and Prufer and Siegberg [1979]). The history 

of the Brouwer degree can be found in Siegberg [1980]. 

An orientation or index theory for bimatrix games is introduced by 

Shapley [1974] and is generalized by Lemke and Grotzinger [1976.]. Deeper 

and more abstract discussions can be found in Eaves and Scarf [1976] and 

Todd [1976c]. In this chapter we discuss the relationship between oriented 

simplices and fixed point algorithms. We restrict ourselves to integer 

labelling. The generalization to vector labelling can easily be made. 

In section 2 we give some definitions and lemmas and we prove the well

known result that the sum of the indices of the completely labelled 

simplices in Sn is equal to one if the labelling rule satisfies the 

conditions of Sperner's lemma. We will also simplify the definition of the 

orientation of a completely labelled simplex. In section 3 this 

simplification is used to define the orientation of a (Tu{j})-complete 

simplex of a region A(T). We give a lower bound on the number of completely 

labelled si~plices by considering all (Tu{j})-complete simplices in A(T) 

with ITl=n-1. In section 4 we prove that the variable dimension algorithm 

always generates a positive oriented completely labelled simplex. 

Conditions for the existence of at least k completely labelled simplices 

for some odd number k are given. Using the concept of orientation it is 

shown that under these conditions the variable dimension restart algorithm 

can be used to generate at least k completely labelled simplices. 
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7.2. ORIENTATION. 

-1 
be triangulated in the standard way with grid size m and let a= 

be a completely labelled simplex. Then we define the 

orientation of a, to be denoted by or a, as follows. 

DEFINITION 7.2.1. The orientation of a completely labelled simplex 
1 

cr(y ,TT(In)) is defined by 

or a 
\ j2 

sign det [y y 

j, 
where ji is the index such that !l(y 1.) i, i=l, ... , n+ 1. 

We also define the orientation of an In-complete (n-1)-facet T of a 

simplex cr(y1 ,TT(I )) where either a is completely labelled or a has two 
n 

In-complete facets. 

j 1 jn 
DEFINITION 7.2.2. Let ,(y , ... ,y ) be an In-complete facet of~ simplex 

1 
cr(y ,TT(In)) 

J· 
and let the vertices be ordered in such a way thaty 1. has 
. jn+1 · 

label i, 1.=l, ••• ,n. Let y be the vertex of a oppposite to,. Then 

the orientation of T with respect to a, to be denoted by or0 ,, is defined 

by 

or T a 
j1 j2 

sign det [y y 

1 
COROLLARY 7.2.3. Let cr(y ,TT(In)) be a completely labelled simplex and T be 

the In-complete facet of a. Then 

or a or , . 
a 

Both the definitions7.2.1 and 7.2.2 hold for any triangulation of Sn. 

Utilizing the structure of the standard triangulation of Sn we rewrite 

the definitions in another notation. It will appear that using this 

notation the definitions can easily be generalized to (Tu{j})-complete 

t-simplices and T-complete (t-1)-simplices in A(T), Tc I 1 and JTI ~ n. 
n+ 

Recall that q(j) is the j-th column of the (n+l)x(n+l) triangulation 

matrix Q as defined in chapter 5. Then for each vertex w of the given 

triangulation of Sn there exist nonnegative integers a 1 (w), ••• ,an(w) 
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such that 

with o 
-1 

m 

w 
n 

e(1) + E 
j=1 

oa.(w)q(j) J .. 

1 i In the following, for a simplex cr(y ,n(I )) of the triangulation, let a 
. . n . . 
::. l.)T• J. ( J.) be then-dimensional vector (a1, ••• ,an, i=1, ••. ,n+1, with aj=aj y , 

j=l, ••• ,n. 

1 LEMMA 7.2.4. For any simplex cr(y ,n(In)) holds 

1 
det[y. n+ J ,,n 1 1 [

1 ••• 1 ] 
.y = u det 1 n+ • a ... a 

i n 
PROOF. Since y = e(l) + Ej=l 

o i o i o i)T c, ddi •··• an_ 1- an' an • oo a ng 

i . i i i i oajq(J) we have that y = (1-oa1,oa1-oa2 , ••• 

successively the i-th row to the (i-1)-th 

row, i=n+l,n, ••• ,2, we obtain 

[ 1 n+l] det y ••• y [ 
1 • 

det oal. 
[ 

1 • 
on det 1 

a • 
• 1 ] 

n+l .a 

□ 
1 n 

LEMMA 7.2.5. Let cr(y ,n(In)) be a simplex of the triangulation of S. Then 

r 1. •. 1 ] 
det 1 n+l 

~a ..• a = + 1. 

PROOF. Since cr = cr(y1,n(I )) we have that yi+l = yi+oq(ni), i=l, ••• ,n. 
i+l i n 

Hence a - a e(ni), i=l, ••• ,n and therefore 

[ 
1 • 

det 1 a . 
• 1 ] 

n+l 
• (!, 

□ 

The lemmas 7_.2.4 and 7._2.5 allow f.or the alternative definitions of or cr 

and or0 ,, given in the next corollary. 

COROLLARY 7.2.fi. a) Let cr(y1,n(I )) be a completel,y labelled simplex in Sn 
n j, 

and let jibe the index such that icy J.) = i, i=1, ••• ,n+1. Then 
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Then 

or CJ = det 

or T CJ 
det 

[ J~l • 
ct • 

facet of a simplex CJ(y1,n(I )) such 
n 

be the vertex of CJ opposite to T. 

In the next sections we combine the orientation theory with the variable 

dimension restart algorithm treated in the chapters 5 and 6. Here we use 

the variable dimension algorithm of Kuhn, discussed in chapter 4, to prove 

that the sum of the orientations of the completely labelled simplices in 

Sn is equal to one if the labelling rule is proper. Remember that Kuhn's 

algorithm is a special case of the algorithm presented in chapter 5. 

Analogously it will appear that the definition of the orientation of lower

dimensional simplices to be given below is a special case of a more general 

definition to be given in section 3. 

Consider the sets Sn(k) as defined in definition 4.4.1.c, i.e. Sn(k) 

{x€Snlx.=O, i=k+1, ••• ,n+11 k=l, ••• ,n+l. Recall that Sn(n+1) = Sn and 
J. 

Sn(n) = Sn 1• Let w be a vertex of the triangulation of Sn in Sn(k). Since 
n+ 

wi = 0, i=k+l, •.• ,n+l,it follows that there exist nonnegative integers aj' 

j=l, ••. ,k-1, such that 

w 
k-1 

e(l) + E oajq(j). 
j=l 

In the following, for a (k-1)-simplex CJ(y1,n(Ik_ 1)) of the triangulation of 

Sn(k), let ai be the (k-1)-dimensional vector of nonnegative integers 
i i d' i a 1, ••• , ak-l correspon ing to y , i=l, ••• ,k. 

1 
DEFINITION 7.2.7. Let CJ(y ,n(Ik-1)) be an Ik-9omplete (k-1)-simplex in 

J, 
Sn(k) and let jibe the index such that t(y 1 ) = i, i=l, .•• ,k. Then 

cir CJ [
1 • 

det ; 
~1 

ct • 
. j~J 
• ct . 
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DEFINITION 7. 2. 8 •. Let -r (y , ••• , y ) be an Ik-1-complete facet of a 

(k-!)-simplex cr(y1,n(Ik_ 1)) in_Sn(k) and let jibe the index such that 

t(yJi) = i, i=1, ••• ,k-1. Let yJk be the vertex of cr o~posite to -r. Then 

or -r 
cr det 

Of course, it follows again that,if cr is Ik-complete and -r is the Ik_1-

complete facet of cr, or cr = or0 -r. Moreover we have that the determinant 

is equal to + 1 • 

We prove now some lemmas (see also Allgower and Georg [1980]). 

LEMMA 7.2.9. Let cr(y1,n(Ik_ 1)) be a (k-1)-simplex in Sn(k) having two 
1 2 

Ik_ 1-complete facets -r and -r. Then 

1 or -r 
cr 

2 -or -r cr 

t1 t2 
PROOF. Let y and y be the two vertices having the same label and let 
-i-- j 
-r be the facet with vertices y, j=1, ••• ,~-1,~+1, ••• ,k, h >! i, i=1,2. 

Let ji, i=1, ••• ,k be the permutation of the elements of Ik such that 
jk t2 j. 

y =.Y and t(y i) = i, i=l, ••• ,k-1. Let SEik-l be the index such that 
t1 JS 

y =y • Then 

1 or -r cr ~
1 • 

det j 
a 1. 

and 

1 Clearly or0 -r 
2 

-or -r 
cr □ 

LEMMA 7.2.10. Let -r be an ~-1-complete common facet of two (k-1)-
1 -1 - n 

simplices cr 1 (y ,n(Ik_ 1)) and cr2(y ,n(Ik_ 1)) in S (k). Then 

119 



120 

1 i-1 i+l k 
PROOF. Let T be the facet of o 1 with vertices y , ... ,y ,y , •.. ,y. 

Then o2 is obtained from o 1 by replacing yi. It can easily be verified 
-i i-1 i+l i 

that the vertex of o 2 opposite to Tis equal to y = y +y -y where 

i-1 =kif i=l and i+l = l_if i=k. Let j 1,:--,jk be the permutation of the 

elements of Ik such that yJk Yi and Jl (y:Ji.) = h, h E Ik-l. Then 

[ 1 . • 1 J ~1 • • . 1 
J,-1 \,+1 j~ or T det j -det • · 

01 a 1 . Jk J1 Jk-1 . a a .•• a a +a -a 

I, 1 . 
1 l -det j jk-1 -or T 

a 1 . • a 02 

k-1 -
e(l) + l:. l oa,q(j). 

J= J □ 

1 
LEMMA 7.2.11. Fork$ n, let ,(y ,rr(Ik_ 1)) be an Ik-complete simplex in 

n 1 n 
S (k). Let o(y ,rr(Ik)) be the k-simplex of S (k+l) having T as a facet. 

Then 

or T or T. 
o 

PROOF. In Sn(k) we have 
n i 

thati =e(l) + l:~-ll oiq(j), i=l, •.. ,k. In 
. J= J 

= e(l) + l:~ l oa: q(j), i=l, .•• ,k,with S (k+l) we have that y 
J= J 

-i i 
j=l, ... ,k-1 Cl, Cl, 

J J 

-i 
0 j=k. a. 

J 

Moreover, the vertex of o opposite to Tis equal to 
k+l (l) ,.k 0-k+l ( ') . h -k+l k . 1 k l d -k+l y = e + ,, . _ 1 a. q J wit, a. a., J= , •.. , :-- an a.k 

J- J J · J J Jk+1 k+l 
Let jibe the index such that Jl(y 1.)=i, i=l, ... ,k and y =y 

Hence 

~1 • • j~ [· 
. 1 

;J jl jk 
or , det jl det . • Ci. 

. . a 
0 • • 0 

~1 . 
.. 1 -LJ det jl _jk or,. [] 

o . • a a .. 

1. 
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\ 

The following theorem states that the sum of the orientations of the Ik-

complete simplices in Sn(k) is equal to 1. 

THEOREM 7.2.12. Let O(k) be the set of Ik-complete simplices in Sn(k) and 

let the labelling rule be such that the conditions of Sperner's lemma are 

satisfied. Then 

r, 
OEO(k) 

or o k=1, ••. ,n+1. 

PROOF. We prove this theorem by induction on k. Clearly, for k=1 we have 

that e(1) is the only r 1-complete zero-simplex of Sn(1) and 

or{e(1)} = det 1 = 1. Let the theorem be true for k=j. By applying the 

steps of Kuhn's variable dimension algorithm,paths of j-simplices in 

Sn(j+1) will be generated such that the common facets of two adjacent 

simplices are I.-complete. Three different types of paths can occur. 
J 

a) Starting with a j-simplex in Sn(j+1) having an Ij-complete (j-1)

simplex Tin Sn(j) as a facet, the algorithm generates an I. 1-complete 
J+ 

simplex o in Sn(j+1),or conversely. By applying the lemmas 7.2.9, 

7.2.10, 7.2.11 and corollary 7.2.3 we have that or T = or o. 

b) Starting with a j-simplex inSn(j+1) having an I.-complete (j-1)-
J 

simplex , 1 in Sn(j) as a facet,the algorithm generates a j-simplex in 

Sn(j+1) having an Ij-complete (j-1)-simplex , 2 in Sn(j) as a facet. 

From the lemmas 7.2.9, 7.2.10 and 7.2.11 it follows that 

or T 1 = -or T 2 • 

c) Starting with an Ij+1-complete j-simplex o1 in Sn(j+l) an Ij+1-complete 

j-simplex o2 in Sn(j+1) is generated. From corollary 7.2.3 and the 

lemmas 7.2.9 and 7.2.10 it follows that or o 1=- or o2 • 

By the same arguments as in section 4.4 we have that two different p_aths 

are disjunct. So, combining these three cases we conclude r.oe:O(j+l)or o = 

r.,EO(j)or ,, which proves that r,oe:O(k)or o = 1, k=l, ••. ,n+1. D 

The proof of the theorem is illustrated in figure 7.2.1. The path of , 1 to 

a 1 is of type 1, or o 1 = or T 1 = 1; the path between T 2 and T 3 is of type 2, 
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or T2 = -or T3 = -1;and the paths between o2 and o3 respectively o4 and o5 
are of type 3 with or o2 = -or o3 -1 and or o4 = -or o5 = -1. Observe 

that it is impossible to generate a path between two simplices with the 

same orientation. 

e(3) 

e ( 1) ,__ __ ..__.a....._.,.___....__.,._ __ ~--e (2) 

1 1 Tl 2 T2 1 1 T3 2 

Figure 7.2.1. Illustration of theorem 7.2.12; or{e(1)}= 1; 

or Tl= or T3 = 1, or T2 = -1; or o1 = or o3 
or o2 = or o4 -1. 

or o5 

In particular theorem 7.2.12 holds if k=n and k=n+1. Since we have a 

1, 

proper labelling there are no In-complete simplices ins~, i~n+1. So we 

have that the sum of the orientations of the completely labelled simplices 

of Sn is equal to the sum of the orientations ~f the In-complete simplices 

in bd Sn. A more general result can be found in Prufer and Siegberg [1979]. 

7.3. THE VARIABLE DIMENSION RESTART ALGORITHM. 

In this section we apply the concept of orientation to the variable 

dimension algorithm treated in chapter 5. 

Let the arbitrarily chosen grid point v be the starting point of the 

variable dimension algorithm. Recall that for any TEI· 1 , !Tl~n,the . n+ 
regions A (T) are defined by 
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A(T) v+ E A,q(j) for nonnegative numbers AJ,, jET}. 
jET J 

For any grid point wE A(T), ITI = t, there is a unique t-dimensional 

vector a of nonnegative integers aj, j ET, such that 

w = v + E. ylia.q(j). In the following, for a simplex cr(y1,11(T)) in A(T), let 
i JE J i i T 

a be the t-dimensional vector (a , ... ,a ) such that 

i 
y 

sl st 

i 
v + E, lia q(s.), 

s.ET sj J 
J 

where (s 1, .•• ,st) is the permutation of the elements of T such that 

si < si+l' i=l, ..• ,t-1. 

1 
DEFINITION 7.3.1. Let cr(y ,11(T)) be a (Tu{j})-complete t-simplex in A(T), 

j I. T and let 

that R-(yjt+l) 

cr(/,11(T) is 

j 1 , •.. ,jt+l ~ea permutation of the elements of It+l' such 

= j and R-(yJi) = s., i=l, ••• ,t. Then the orientation of 
J. 

or cr det [~,: 

Observe that this definition is a straightforwardgeneralization of 
n definition 7.2.7. In particular if v = e(l) we have that S (t+l) = A(It), 

whereas an (Itu{j})-complete simplex of Sn(t+l) must be It+1-complete. 

Of course, or cr = + 1. Definition 7. 3, 1 is illustrated in figure 7. 3 .1. 

Remark that the orientation as given in definition ·7.3.1 depends on the 

starting point v. In general we have that if the orientation of a 

(Tu{j})-complete simplex is defined for some v, it is not defined for a 

starting point w -' v. For example in the figure, T 1 i's a ( { 1, 2}) -complete 

. 1 ( 1 ) "'I 'f th ' t (3 2 2)T' h th simp ex in A • ~ owever J. e poin w = 7, 7, 7 is c osen as e 

starting point, Tl is a facet of a simplex in A( 1,3) and or Tl is not 

defined. Of course the orientation of a completely labelled simplex is 

always defined by definition 7.3.1 since for any v there exist a j such 

that cr is a completely lahelled simplex of A(In+l\{j}). We prove that 

the orientation of a completely labelled simplex as defined in 7.3.1. is 

independent of the starting point v. 
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e (3) 

Figure 7. 3 .1. { v} is a {1 }-complete simplex in A ( !Ii) ,or { v} = 1; 

, 1 is a { 1, 2 }-complete simplex in A ( 1) ·, or 

, 2 is a {2,3}-complete simplex in A(2), or 

cr is a {1,2,3}-complete simplex in A(2,3), 

'1 

'2 
or cr 

1; 

-1; 

= -1 

THEOREM 7.3.2. The orientation of a completely labelled simplex as 

defined in 7.3.1 is consistent with the orientation as defined in 7.2.1. 

1 
PROOF. Let cr(y ,~(T)) be a completely labelled simplex in A(T) with 

T = I 1\{k} for some 
j, 

k € I 1 • Let j. be the index such that £(y 1 ) i, 
n+ i 

i=1, ••• ,n+1. Let a 
i n+ i 1 i i T 

(a1 , .•.• ,ak-l' ~+1, .•.• ,an+l) be then-vector such 

that 

(7. 3 .1) 
i 

y 

Then by definition 7.3.1, 

(7 .3.2) or cr Cl . 
det j 

1. 

We Prove that definition 7.2.1 is eauivalent with (7.3.2). From 

(7.3.1) it follows that for i = 1,; .•. ,n+l, 
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i 
oo¢i + 

i k+l yh V. - oC\i-1 h ;,, k, 
h 

i i 
yh vh + oC\i-1 h k 

i i 
yh V. - oah h k+l 

h 

with the convention that h-1 = n+l if h=l and k+l = 1 if k=n+l. So the h-th 
r j 1 jn+l element of the i-th column of the matrix .._y •.. y l becomes 

\ ji 
1 vl - oa1 + oah-1 h 

j, ji 
V. - oC\i i + oC\i-1 h 2, ••• ,k-1 
h 

vk + 
ji 

o°x:-1 h k 

j, 

vk+l - o<\:~1 h = k+l 

j, j, 
0 C\i]. ]. 

= k+2, ••. ,n+l. V. - + oah-1 h 
h 

By adding successively the h-th row to the (h-1)-th row, h = k,k-1, ... ,2, 

the first row to the last row and then successively the i-th row to the 

(i-1)-th row,i = n+1,n, ••. ,k+2,we obtain that or cr is equal to the sign 

of the determinant of the matrix with the h-th element of the i-th row 

equal to 

k oa 
ji 

l., ••• ,k i::j=h V, + h 
J h-1 

i::n+l V, 1 h k+l 
j=l J 

h k+2, .•• ,n+l. 

It follows now immediately that the orientation of cr as defined in 

definition 7.2.1 becomes 
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\ jn+l 
an+l . an+l 

jl jn+l 
al • al 

j1 jn+l 
ak-1 ak-1 

or cr sign lipdet 
1 1 ,, 

jl jn+l 
°k+1 ak+1 

j1 jn+l 
a • a n n 

b:,· 1 1 1 :jJ det jk-1 jk+1 jn+1 . a , a a □ 

Besides the orientation of a (Tu{j})-complete simplex in A(T) we also 

define the orientation of a T-complete facet of a simplex in A(T). 

j 1 jt 
DEFINITION 7.3.3. Let T(y , .•• ,y ) be a T-complete facet of a simplex 

cr(y1,TI(T)) in A(T) and let the vertices be ordered in such a way that 
ji jt+l 

i(y ) = si, i=l, ••. ,t and y is the vertex of cr opposite to T. Then 

the orientation of T with respect to cr is defined by 

0. 
det l 

. 
COROLLARY 7.3.4. If Tis the T-complete facet of a (Tu{j})-complete 

simplex cr in A(T) then orcrT = or cr. 

The following two lemmas are a straightforward generalization of the 

lemmas 7.2.9 and 7.2.10. Therefore we omit the proofs of the lemmas. 

1 LEMMA 7.3.5. Let cr(y ,TI(T)) be a simplex in A(T) havj_ng two T-complete 

facets Tl and T2 • Then 

1 or T 
(1 

2 
- or T 

(1 
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LE~~lA 7.3.6. Let, be a T-complete common facet of two simplices o 1 and ~2 

in A(T). Then 

The next lemma is a straightforward generalization of lemma 7.2.11. The 

proof however has to be adapted since the vertices have to be reordered, if 

a (Tu{j})-complete simplex in A(T) is extended to a Simplex in A(Tu{j}). 

LEMMA 7.3.7. For \Tl S n-1, let ,(y1 ,TI(T)) be a (Tu{j})-complete simplex in 

A(T). Let o(y1,TI(Tu{j})) be the simplex in A(Tu{j}) having, as a facet. 

Then 

or , or0 , .• 

i PROOF. We have that y = v + ~ 
ShET 

oc/ q(sh), i=l, ..• ,t+l, whereas the 
sh 

to yt+2 yt+l + oq(j). Let ji be the vertex of o opposite to, is equal 
n (yjt+l) ji 

index such that R. (y ) = s i' i=l, ..• ,t and~ = j. Then 

or, 
11 ... 

detbj 1 ••• 

Let i, 0 s i s t, be the index such that Si < j < 5i+1 with the convention 

that s. < j if i=t and j < 51 if i=O. Then, by definition 7.3.3, or T 
l. a 

1 1 1 1 1 1 

jl ji-1 jt+l c?i+l jt t+2 
a • a a • a a 
.s1 .s1 .s1 .sl .s1 • 51 

jl ji-1 jt+l ciji+l jt t+2 
a .• a a • a a 
s. s. s. Si s. S, 

det l. l. l. l. l. 
0 . 0 0 0 0 1 
jl ji-1 ajt+l aji+l jt t+2 

a • • a • a a 
5i+1 5i+l 5i+l 5i+1 5i+l 5i+1 

"j1 "ji-1 "jt+l ~ji+l "jt t+2 a . a a . a a 
st st st st st st 

The lemma follows now immediately. □ 
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We give now some resultsi which can be viewed as a generaliation of theorem 

7.2.12. The next theorem states that the sum of the orientations of the 

(Tu{j })-complete simplices in A(I) is equal to the sum of the orientations of the 

I-complete simplices in ukEIA(I\{k}). For a fixed v, let H(I) be the set of 

(Iu{j})-complete simplices in A(I) (jiI), and let H(I) be the set of 

I-complete simplices in ukE,-A(I\{k}). 

THEOREM 7.3.8. Let the labelling rule be such that the conditions of 

Sperner's lemma are satisfied. Then 

L or a 
CTEH (T) 

L or T. 
TEH(T) 

PROOF. The proof of this theorem runs along the lines of the proof of 

theorem 7.2.12. By applying the variable dimension restart algorithm paths 

of simplices in A(I) are generated having I-complete common facets. Again 

three cases can happen. 

a) Starting with at-simplex in A(I) having a I-complete facet Tin 

A(T\{k}) for some k EI, a (Iu{j})-complete simplex cr in A(I) is 

generated,or conversely. By corollary 7.3.4 and the lemmas 7.3.5, 

7.3.6 and 7.3.7 we have that or T = or a. 

b) Starting with a simplex in A(I) having a I-complete facet Tl in 

A(T\{k 1}) for some k 1 E I,a simplex in A(I) is generated having a 

I-complete facet T2 in A(I\{k2}) for some k 2 EI. By the lemmas 

7.3.5 -7.3.7 we have that or T1 = -or T2 • 

c) Starting with a (Iu{j 1})-complete simplex cr 1 in A(I) with jl i I,a 

(Iu{j 2})-complete simplex cr2 in A(I) is generated (j 2 i I) and from 

corollary 7.3.4 and the lemmas 7.3.5 and 7.3.6 it follows that 

or cr 1 = -or cr2 . 

~e theorem follows now immediately. D 
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Observe that bd A(T)={bd(Sn)nA(T))U(UkEyA(T\{k})). Since the labelling 

rule is proper there are no T-complete (t-1)-simplices in bd (Sn)nA(T). So 

theorem 7.3.8 states that the SUI!! of the orientations of the T-complete 

simplices in bd A(T) is equal to the sum of the orientations of the 

(Tu{j})-complete simplices in A(T) if the labelling rule is proper. Assume 

now that the labelling rule is not proper and let H(T) be the set of the 

T-complete simplices in bd A(T). Let, be an element of H(T). If, for some 

k € T, , is in A(T\{k}), or, is defined by definition 7.3.1. If, is in 
n bd(S )nA(T)J let cr be the simplex in A(T) such that, is a facet of cr and 

define or, by or,= or~, (see definition 7.3.3). Then we have the 

following corollary,whose proof is analogous to the proof of theorem 

7.3.8. 

COROLLARY 7.3.9. E or cr E or T. 

0€H(T) HH(T) 

THEOREM 7.3.10. Let T(k) be the collection of sets Tc I 1 such that 
n+ 

\T\ = k, k ~ n. If the labelling rule satisfies the conditions of Sperner's 

lemma, then 

E 
TET(kl 

E or cr 
crEH(T) 

1 for k=1, ••• ,n. 

PROOF. Again the proof follows by induction on k. For k=0 we have that 

{ v} is the only { i(v) }-complete simplex of A ( 0) and 0 is the only element 

of T (0) • Moreover, or { v} = det [ 1] = 1. Hence 

E or cr 
crEH (T) 

E or cr 
crEH( 0) 

or {v} 1. 

Let the statement be true for k=j. We prove that it also holds fork j+l. 

From theorem 7.3.8 it follows that 

Moreover we have that 

E or, 
HH(T) 

E or cr 
crEH(TJ 

E 
TET(j+ll 

E or T. 

,EH(TJ 

E or cr • 
crEA(T\{h}) 
cr is T -complete 
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Hence 

l: or o 
OEH(T) 

l: l: or o 
hET OEA(T\{h}) 

o is T-complete 

L L or o = 
iiT OEA(T) 

o is (Tu{i})-complete 

l: or o = 1. □ 
OEH(T) 

By taking v = e(l) we have that T = Ik is the only feasible element of 

T(k), i.e. A(T) = 0 for all TE T(k), T ~ Ik. Hence theorem 7.2.12 is a 

special case of theorem 7.3.10. 

THEOREM 7. 3 .11. Let N (Sn) be the number of completely labelled simplices 

in Sn. Then 

where d. 
J 

n+l 
N(Sn) 2: l: Id. I 

j=l J 

l: or o. 
OEH(In+l\{j}) 

PROOF. Hith corollary 7. 3. 9 it follows that l: or o 
OEH(In+l \{j}) 

l: or T 

TEH(In+l\{j}) 
dj. Moreover, if OEH(In+l\{j}), then o is 

completely labelled. Hence the number of completely labelled simplices in 

A(In+l\{j}) is at least equal to ldjl• The theorem follows by adding over 

all j E In+l. 0 

7 . 4 . A SF.ARCH TO AN ODD NUIIBER OF COtlPLETEL Y LABELLED SIMPLICES. 

In the previous section we defined the orientation of a (Tu{j})

complete simplex in A(T). However we restricted ourselves to the standard 

triangulation of Sn. In this section wegeneralize the definitions 7.3.1 

and 7.3.3 for simplices of a PK0 triangulation of Rn.Pis an nx(n+l) 

triangulation matrix,i.e. p(n+l) = -l:;~1 p(j) and the nxn matrix consisting 



of the first n columns of P is nonsingular. A possible choice is P = U 

( c. f. section 6 . 2l • Recall that the regions A ( T) depend on P and are 

defined by 
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v + L A.p(j) for nonnegative numbers A,, jET} 
jET J J 

where the grid point vis the starting point of the variable dimension 

restart algorith~. 

Let T be a subset of In+l' IT! ~ n, and (s 1, ••• ,st) the permutation of 

the elements of T such thats. < s. 1, j=l, ••• ,t-1. Then the orientation 
J J+ 

of a (Tu{j})-complete simplex cr(y1,TI(T)) in A(T) and the orientation of a 

T-complete simplex T with respect to cr where Tis a facet of the simplex 

cr(y1,TI(T)) in A(T), are defined as in the definitions 7.3.1 and 7.3.3 
' i i T 

respectively,with ai (a , ••• ,a ) the t-vector such that 
sl st 

i y i .Sa p(s .) 
sj J 

i=l, ... ,t+l. 

* I * i * THEOREM 7.4.1. For some T c In+l' TI= n, let cr(y ,TI(T )) be a 

completely labelled simplex in A(T*) generated by the variable dimension 

restart algorithm. Then or cr = 1. 

PROOF. The proof is in fact constructive. Observe that the algorithm starts 

with the zero-dimensional simplex {v} and that or{v} = 1. For some h, let 

T1, ••• ,Th with T1 = {i(v)} and Th= T* be the sequence of subsets of In+l 

such that the algorithm generates t-simplices (t~l) in successively 

A(T1), A(T2), ••• ,A(Th). Define ,-0 = i1J and Th+l = In+l • For any i, 

1 ~ i ~ h, we have one of the following cases 

a) Ti-l c Tic Ti+l. Then the dimension is increased by changing from 

Ti-l to Ti and from Ti to Ti+l. Starting with a simplex in A(Ti) 
i i-1 i+l having a T -complete facet T in A (T ) , a T -complete sim:9lex cr of 

A(Ti) is generated. By corollary 7.3.4 and the lemmas 7.3.5, 7.3.6 

and 7. 3. 7, we have that or T = or cr (If i=h, the dimension·is not increased). 

b) Ti-l c Ti and Ti+l c Ti. Then the dimension is 

from Ti-l to Ti and decreased by ·changing from 

increased by changing 
i i+l . 

T to T • Starting 

with a simplex in A(Ti) having a Ti-complete facet T1 in 

simplex in A(Ti) is generated having a Ti-complete facet 

i-1 A(T ) , a 

. (Ti+l) T 2 in A • 
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By the lemmas 7.3.5.-7.3.7, we have that or , 2 -or T 1 . 

c) yi+l c Tic yi-l_ The dimension is decreased by changing from yi-l to Ti 

and from Ti to yi+l_ This case is the reverse of case a. Starting with 

a yi-l_complete simplex cr in A(Ti) a simplex in A(Ti) is generated 

h · yi 1 f · (Ti+l) · h th aving a -compete acet Tin A . Again we ave at or cr =or,. 

d) Tic yi-l and Tic yi+l. The dimension is decreased by changing from 

yi-l to Ti and increased by changing from Ti to yi+l. Starting with a 
i-1 i i+1 . i T -complete simplex cr 1 in A(T ), a T -complete simplex cr2 in A(T) 

is generated. From corollary 7.3.4 and the lemmas 7.3.5 and 7.3.6, it 

follows that or cr2 = -or cr 1 . 

Observe that the orientation changes in the cases b and d. Let i 1 , ••• ,ir with 
. < ij 

Then 

ij+l' j=1, ... ,r-~ be the sequence of indices for which case b occurs. 

we must have a sequence of indices h 1 , ••• ,h with i. < h. < i. 1, 
r J J J+ 

j=1, ... ,r-1 and hr> ir for which cased occurs. By these arguments it 

follows that or cr = or{v} = 1. D 

Let P1 and P2 be two nx(n+1) triangulation matrices such that for some i 1 
and i 2 holds 

(7.4.1) 

where ph(j) is the j-th column of Ph, h=1,2. 

So P2 is obtained from P1 by interchanging the columns i 1 and i 2 • Clearly, 

each simplex of the P1K0 triangulation is a simplex of the P2K0 

triangulation and conversely. The next theorem states that the sign of the 

orientation of a completely labelled simplex changes if two columns of the 

triangulation matrix are interchanged. 

THEOREM 7.4.2. Let P1 and P2 be two nx(n+1) triangulation matrices such 

that (7.4.1) holds. Let cr be a completely labelled simplex and let orhcr 

be the orientation of cr if Ph is the triangulation matrix, h=1,2. Then 



1 
or CJ 

2 
-or CJ. 
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PROOF. In theorem 7.3.2 it was proved that the orientation of a completely 

labelled simplex, as defined in definition 7.3.1, of the standard 

triangulation of Sn is independent of v. It can be easily verified that 

this theorem also holds for a completely labelled simplex of a PK0 

triangulation of 
n 

R • Therefore we can choose v such that CJ is in some 

region A(T) (jTI = n) with i 1 and i 2 both an element of T. For some vertex 
i 

y of CJ let hi 
Cl 

i 
y 

hi hi T 
(a , .••.• ,a ) be the vector such 

51 Sn 

V + h=l,2. 

Cl 1 f 11 ' ' 1 +1 a ~i=C! ~i for all j"'i ear y, or a i, ic , ••• ,n , J J 

that 

li .'2i 
1,i2 whereas a. =a. 

i1 i2 
and Hence a 2i is obtained from a 1i 

ji 
that i(y )=si, 

by interchanging two elements. 

So, 1 ~ i ~ n and t(yjn+l)=h, hiT, 

1 
or CJ det L 1 • 

-det [ 
1 • 2 -or CJ. 

ljl 
Cl • 

2j1 
Cl • 

Now we have a tool to generate more completely labelled simplices (if 

exist) by using two matrices P1 and P2 such that (7.4.1) holds. Assume 

that the variable dimension restart algorithm generates a completely 

labelled simplex CJl with P1K0 the underlying triangulation. Clearly by 
1 1 theorem 7.4.2 2 -1. theorem 7.4.1 we have that or CJ 1 = and by or CJ 1 = 

Let the variable dimension restart algorithm now be applied with P2K0 as 

underlying triangulation, Then either a path of simplices going to 

□ 

infinity is generated or a path which terminates with a completely labelled 
2 

simplex CJ 2 . Clearly or CJ2 = 1 and hence CJ 2 "'CJ1 • Moreover, a search 
h 

a third completely labelled simplex can be made. Therefore, let T. 
-h ...1-i h J 

<lijj = n) be the set of indices such that CJj E A(/j) if P K0 is the 

underlying triangulation, h=l,2. So 

for 
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2 
Now using the P K0 triangulation and starting with the completely labelled 

simplex cr 1 by replacing the vertex with the label k, kiTf, the algorithm 

generates a sequence of simplices of variable dimension such that the 

common facet of two adjacent simplices in A(T) is T-complete. Clearly, by 

theorem 7.4.1 this sequence of simplices cannot terminate with the 

zero-dimensional simplex {v} since or2cr 1 = -1. Hence either a sequence of 

simplices going to infinity is generated or the algorithm terminates with 

a completely labelled simplex cr 3 ~ cr 1 • Using analogous arguments as in the 

proof of theorem 7.4.1, it follows that or2cr 3 = -or2cr 1 = 1. However using 

the standard arguments, cr 3 ~ cr2 ,since there exists a path of simplices 

which starts with {v} and terminates with cr2 . Therefore three completely 

labelled simplices are generated. The method is illustrated in the 

figures 7. 4.1 and 7.4.2. We have that 

1 {: 0 -J p2 [: 1 -J p and 
1 -1 0 -1 

Por i=l,2, we define Ai(T) by 

In figure 7.4.1 the regions A1 (T) are given. Starting in v and using the. 

P1K triangulation the completely labelled sim<:>lex cr 1 is generated. Observe 
1 2 - 2 

that T1 = {1,3}. Hence T1 = {1,3}u{2}/{1} = {2,3}. Using the PK 

triangulation and starting with cr 1 by replacing the vertex having label 1, 

the algorithm generates the completely labelled simplex cr 3, as is 

illustrated in figure 7.4.2. Moreover, starting from v the completely 

labelled simplex cr 2 is generated. 

We give now a condition for the existence of at least k completely labelled 

simplices, k=l,3,5, •... 

THEOREM 7.4.3. Let f be a continuous function on Rn. Assume that for some 

integer r there exists an increasing sequence of positive numbers 
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Figure 7.4.1. Using the P1K triangulation o1 is generated. 

Figure 7.4.2. Using the P2K triangulation o2 and o 3 are generated. 
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µ1,µ 2 , ••• ,µr and that there exist a number E>O and two indices i 1,i2, such 
~n 

that for all x EB (µh), h=1,2, .•• ,r,holds that 

or 

a) For some i, xi=-~ and fj(x)-xj > E for at least one index 

j E In 

b) For some i, xi µhand we have that 

or 

(ii) there exists at least one index j, j~s,with 

f.(x)-x. > f (x)-x + E, where s=i in the case that h 
J J s s 

is odd and., if h is_ eve~ s=i when i ~ i 1 ,i2, 

s=i2 when i=i 1 and s=i 1 when i=i2 • 

Let Rn be triangulated by K0 • Then, if o is small enough,at least 2h-1 
. -n completely labelled simplices in conv(B (µh)), h=1,2, ••• ,r,can be generated 

by applying the variable dimension restart algorithm. 

PROOF. Let P1 be the nx(n+1) matrix with p 1 (i) = e(i), iEI and 
--- n 
p 1 (n+1) = -e and P2 the nx(n+1) matrix with p2 (i) = p 1 (i) for i~i1,i2 , 

p2 (i 1) = p 1 (i2) and p 2 (i2) = p 1 (i 1). Clearly,both matrices induce the K 

triangulation of Rn. Let the grid size o be so small that 

sup 
(x,y)EO 

for every simplex a such that a n Bn(µh) ~ 0 for some hEir. Clearly, if h is 

odd, the conditions of theorem 6.3.2 are satisfied. So with P1K0 as 

underlying triangulation and starting in conv(Bn (µh)) the algorithm generates 
~n 

a completely labelled simplex in conv(B (µh)), h=1,3,5, ••• ,r(or r-1). 

However recall, that the convergence proof is based on the fact that if 

a(w1, ••• ,wt+i) is a simplex in A(T) and an Bn(µh) ~ 0, there exists an 

index i ET such that ~(wk) ~ i, k=1, ••• ,t+1. It can be easily verified 

that this argument also holds if h_is even with P2K0 the underlying 
~n i · triangulation. Hence, starting in conv(B (µh)) and with P K0 the underlying 

triangulation, where i=2-h(mod 2), the· algorithm generates a 
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~n completely labelling simplex in conv(B (µh)). Now the theorem follows by 
~n 

induction on h. Starting in a grid point v in conv(B (µ 1)) and using the 

P1K0 triangulation the algorithm generates a completely labelled simplex cr 1 

in conv(Bn(µ 1)). Clearly v and cr 1 are in conv(Bn(µ 2)). Hence using the P2K0 

triangulation and starting with v respectively cr 1 the algorithm generates 
~n 

completely labelled simplices o2 and o3 in conv(B (µ 2)Jwith, as arqued 

above, CJ, ~ cr. if i ~ j. 
l. J 

Now,let cr2k_2 and cr2k-l be the completely labelled simplices in 
~n 

conv(~1 (~)) found by the algor~thm. Clearly o2k_2 and o2k-l are in 

conv(B (µk+l)). Now using the Pl.K0 triangulation where i=k(mod 2)+1, and 

starting with cr2k_2 respectively cr 2k-l as described above,the algorithm 
~n 

generates two completely labelled simplices cr2k and cr 2k+l in conv(B (µk+l)l. 

If k+l is odd we have that there exist paths of simplices between {v} and 

o 1, o4h_ 2 and o4h, h=l, ••• ,½k-1, and o4h-l and o4h+l' h=l, ••. ,½k-1. Hence 

cr2k ~ cri, i < 2k,and cr 2k+l ~ cri, i < 2k+l. If k+l is even we have that 

there exist paths of simplices between {v} and cr2 , o4h and o4h+2 , 

h=l, ••• ,½(k-3) and o4h_3 and o4h-l' h=l, .•. ,½(k-1), which again implies 

that cr 2k ~ cri, i < 2k,and cr2k+l ~ oi, i < 2k+l. Hence, for h=l, ..• ,r, at 

least 2h-1 completely labelled simplices can be generated in 
~n 

conv(B (µh)). D 

COROLLARY 7.4.4. If the conditions of theorem 7.4.3 are satisfied there 
~n 

exist at least 2h-1 completely labelled simplices in conv(B (µh)l,h=l, •. ,r. 

Note that the conditions of theorem 7.4.3 can be easily modified. For 

example the theorem is also true if in b(ii) the condition for his even 

and his odd interchanged. Approximating fixed points, it is worthwile 

to investigate if the function satisfies conditions similar to those of 

theorem 7.4.3. Finally, we remark that a condition for the existence of 

two fixed points is given by Allgower and Georq [1980]. They present also a 

simplicial algorithm, to approximate both points. The algorithm is based 

on an idea of Jeppson [1972]. 
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CHAPTER 8 

A CONTINUOUS DEFORMATION ALGORITHM WITH ARBITRARY 
REFINEMENT FACTORS 

8.1. INTRODUCTION. 

139 

In chapter 4 we discussed the continuous deformation algorithm 

developed by Eaves [1977] and Eaves and Saigal [1972], to compute a fixed 

point of a function or mapping. These authors constructed a triangulation 

of snx[1, 00 ) respectively Rnx[l, 00). Restricting ourselves to the first set, 
n -1 

S x{dk} was triangulated with grid size dk by the standard triangulation, 

where dO,d1, •.. is an increasing sequence of integers with dO=1. Then for 

each i, i=O,1, •.• ,snx[d.,d. 1] was triangulated by .(n+1)-simplices such 
1. 1.+ 

that the vertices of these simplices are grid points in snx{di} or 

snx{d. 1}. Until recently, only triangulations were known such that 
J.+ 

di+l/di~2 for all i (see Todd [1976a]). This restriction is a serious 

drawback in comparison with restart methods. 

In this chapter,which is based on Van der Laan and Talman [198Obl we 

present a continuous deformation algorithm which allows for an 

arbitrarily chosen factor of incrementation ki~di+l/di, i~O. In 

chapter 5 we showed how the variable dimension restart algorithm can be 

interpreted as an algorithm with n+l points on an extra level. In this 

interpretation snx{o} is triangulated with grid size one, snx{l} with an 

arbitrarily chosen grid size m-l and snx[0,1] is triangulated by n+l 

simplices such that all vertices are grid points in snx{O} or snx{1}. 

Van der Laan and Talman used this triangulation of snxf0,1] to construct 

a triangulation of snxU, 00 ; such that the factorsdi+l/di, i=O,1, ..• , are 

arbitrary integers larger than one. Using this triangulation in a fixed 

point algorithm the levels di can be chosen throughout the algorithm, i.e. 

dm+l is chosen as soon as a completely labelled simplex am on level dm is 

found. Moreover we have that the grid point on leveldm+l connected with 

the vertices of a on level d. is an arbitrarily chosen grid point v(a) of 
m m . m 
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crmx{dm+l}. Of course, the choices of dm+l and v(crm) are done on ground of 

the information obtained from the completely labelled simplex cr x{d }. As 
m m 

soon as they are chosen, the triangulation of snx[dm,dm+l] is fixed 

throughout the remaining of the algorithm. 

In section 2 the triangulation of snx[l, 00 ) is described. In section 3 we 

give a concise description of the algorithm, whereas the replacement 

steps are given in section 4. In section 5 we discuss the application on 

Rn. In section 6 some remarks are made and some numerical results are 

presented.. 

8.2. TRIANGULATION OF Snx[1,oo). 

Let d0 ,d1, ... be a sequence of increasing integers such that d0=1 

and di+l=kidi, i=0,1, .•. , with ki an arbitrary integer larger than 1. In 

the following we triangulate, for some m, the set snx[d ,d 1] such that 
m m+ 

all grid points are points of snx{d } or snx{d 1}. Combining the 
m m+ 

triangulations of snx[di,di+l] over all pairs (di,di+l) we obtain a 

triangulation of snx[l, 00). For i=0,1, ... let G. be the standard 
J. 

triangulation of Sn with grid size d~ 1 . So, by the definitions 3.4.1 and 
J. 

n-simplices cr(/ ,TI(T)) (Tc I 1 ,\TJ=n) 5.2.1, Gm is the collection of 
' h t' l n+l h h wit ver ices y , •.. ,y sue tat 

a) the components of y 1 are a multiple of d-l 
m 

n+ 

b) TI(T)=(TI1 , ... ,TI) is a permutation of the elements of T 
i+l i n . 

c) y =y +q(Tii)/dm 1.=l, ... ,n, 

where q(j) is the j-th column of the (n+1)x(n+1) matrix defined in section 
1 n+1 . 

5.2. Observe that y =y +q(TI 1)/d where TI 1 1.s the element of I 1 not 
n+ m n+ _ 1 n+ 

in T. Therefore, in the following an n-simplex cr(y ,TI(T)) is also denoted 

by cr(y1,TI(I 1)} where TI(I +l)=(TI(T) ,TI 1) with {TI 1}=I 1\T. As pointed 
n+ n n+ n+ n+ 

out in section 5.2 we have that every simplex has n+l representations, 

since each vertex can be chosen to be y 1. However, it will appear that it 

is more appropriate to represent an n-simplex in a unique way. This can be 

done as follows (see also Eaves and Saigal f1972]). For a given grid point 
T 

w of Gm,let a(w)=(a1 (w), ... ,an(w)) be then-vector with 

h 
ah(w)=(1- l: w.)d , 

j=l J m 
h=1, ..• ,n. 

Clearly, every ah(w) is an integer. Now we define a "labelling function" 

s from the set of grid points of Gm to the set In+l by 



n 
s(w)=1+( L ah(w))mod(n+1). 

h=l 
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1 
LEMMA 8.2.1. Let a(y ,TI(In+l)) be an n-simplex,of Gm. Then, for all 

J, 
iEin+l' there exists an index ji such that s(y i)=i. 

PROOF. We prove that for each j, j=l, .•. ,n, 

(8.2.1) 

Then the lemma follows immediately. For some j, let 
j+l j j+l j -1 

that Tij~n+l. Then yh =yh, h~Tij' Tij+l, yh =yh-dm' h=Tij and 

·+1 ' ·+1 ' 
h=Tij+1. Hence ah(yJ )=ah(yJ)for h~Tij and ah(yJ )=ah(yJ)+lfor h=Tij. 

n j+l n j . 
Therefore Lh=lah(y )=1+Lh=l¾(Y ), which proves that (8.2.1) holds. If 

j+1 j j+1 j -1 
Tij=n+l we have that yh =yh, h~l,n+l, y 1 =y1+dm 

·+1 . 
Hence ah(yJ )=ah(yJ)-1, h=1, ••. ,n, and therefore 

n j 
=Lh=lah(y )+1-(n+l), which again proves that (8.2.1) holds. □ 

The lemma means that each simplex is "completely labelled" with respect to 

the function s(w). Moreover if s(y1)=1 we have that s(yj)=j, j=1, •.. ,n+l. 

In the following we assume that every n-simplex a(y1 ,TI(I 1)) of G is 
1 n+ m 

represented in such a way that s(y )=1. This representation is called the 

s-representation of a simplex a. Let a 1 (y1,TI(In+l)) have the 

s-representation and let a2 (y1,;(I . 1)) be the adjacent simplex, obtained 
. n+ . 

from a 1 by replacing yi. Then a2 has also the s-representation if yi is 

replaced according to table 8.2.1. This can easily be seen by observing 
-h -h h -i i that y =y h~i. Hence s(y )=s(y ), h~i and therefore also s(y )=s(y). 

'l'able 8. 2. 1. s is the index of the vertex to be replaced. 

1 
y becomes 

s=l 

TI (In+l) becomes 

( Tin+l 'TI2' .•• ,Tin,Til) 

(TI1,··· 1 Tis-2'Tis'Tis-l'Tis+l'···•Tin+1l 
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We are now ready to triangulate snxrd ,d 1] for some given m. First we 
m m+ 

take a particular simplex a (u1,B(I +l)) of the triangulation G, called 
m n 1 m 

the starting simplex on level dm' with u and B(In+l) chosen in such a way 

that we have the s-representation of am. Then we choose nonnegative 

integers A7, ... ,A:+l with sum equal to km=dm+l/dm and we call the point 

v(a ) 
m 

the centrepoint of am. Observe that v(am) is a grid point of Gm+l· 

Applying the continuous deformation algorithm to approximate a fixed 

point of a function or mapping, am is the first completely labelled 

n-simplex generated by the algorithm on level dm and A:, 0~i~n+l,are 

chosen such that v(a) is the grid point of Gm+l nearest to the 
m * 

approximate fixed point x in am. Moreover, in practice we have that km is 

not predetermined but that km is chosen as soon as am is generated. It will 

appear that the triangulation of snx[d ,d 1] is determined by the numbers 
l ID m+ 

A7, ... ,A:+l· Let T(y ,TI(In+l)) be an arbitrarily chosen simplex of Gm with 

s(y1)=1, i.e. T has the s-representation. To triangulate snx[d ,d 1 ] 
1 ID ~ 

we first triangulate T(y ,TI(In+t')x[dm,dm+l] and then we prove that 

the union of the triangulations of TX[dm,dm+t over all n-simplices T of Gm 

is a triangulation of snx[d ,d 1J. In the sequel we call the grid point 
n+l -l mi m_ m+ 1 

v(T) =Ei=?m \Y the centrepointof the simplex T (y ,TI(In+l)). The 

triangulation of snx[d ,d 1J will be such that, for all T of Gm' 
ID m+ 

the (n+1)-simplex which is the convex hull of Tx{d} and v(T)x{d 1} is an 
ID m+ 

(n+1)-simplex of this triangulation. So, in particular we have that the 

(n+1)-simplexljJm' being the convex hull of a x{d }andv(a )x{d 1 } is a m m m m+ 
simplex of the triangulation. 

To triangulate the set T(y1 ,TI(I 1))x[d ,d 1J we define for any proper 
n+ m m+ 

OT 
subset T of I 1 the regions A (T) by 

n+ 

AT(T)={xETlx=v(T)+ E µ.q(TI.) for positive numbersµ., jET} 
j ET J J ' J 

Now a triangulation of TX[dm,dm+l] is obtained by connecting all the grid 

points x of Gm+l in AT(T) on level dm+l with the vertices yi, i/T, on 

level dm. The proof that TX[dm,dm+l] is indeed triangulated is analogous 

to the proof of theorem 5. 5 .1. In fact, the triangulation of -rx[d ,d 1 J is 
m m+ 

analogous to the triangulation of snx[o, 1], as described in section· 5. 5. In 

comparison with the definition of the regions A.(T) in section 5.3, the regions 
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A' (T) are adapted for the fact that for the simplex ,(y1, 1f (In+l)), 1r (In+l) is an 

arbitrary permutation of the elements of I 1,whereas sn can be considered 
n+ 

as the simplex cr(e(l),n(I 1)) of Go with TI.=i, i=l, •.• ,n+l. For a simplex 
1 ~ 1 

cr(y ,lf(I 1)) with TT(I 1)=(1,3,2) the regions A'(T) (the closure of 
n+ n+ 

A'(T) in,) are given in figure 8.2.1. 

Figure 8.2.1. The regions A'(T)where ,(/,TT(In+l)) is a simplex with 

lf(In+l)=(l,3,2). 

i 
Observe that v(,)x{dm+l} is connected with all the vertices y, iEin+l" 

Hence,conv(v(,)x{d 1}u,x{d }) is indeed a simplex of the triangulation. 
m+ m 

Moreover, we have that for m=O G0 consists of only one simplex,being Sn 

itself. It can easily be seen that s(e(i))=i, ~Ein+l· So it follows 

immediately that the triangulation of snx[d0 ,d1] is identical to the 

triangulation of snx[0,1] (section 5.5). 

THEOREM 8.2.2. The union of the triangulations of ,(y1,TT(I 1))x[d ,d 1J 
1 n+ m m+ 

over all n-simplices ,(y ,TT(I 1)) of G triangulates snx[d ,d 1]. 
n+ m m m+ 

PROOF. The triangulation of ,x[d ,d 1] is well-defined for any simplex , 
m m+ 

of Gm. Let , 1 and , 2 be two adjacent n-simplices of Gm and let x be a grid 

point of Gm+l in the common facet. Then it is sufficient to prove that,if 

in the triangulation of , 1x[dm;dm+1],x is connected with a vertex y of 

, 1n,2, xis also connected with yin the triangulation of , 2x[dm,dm+l]. 
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1 1 
Let Tl be T1 (v ,y(In+l)) and let T2 be T2 (w ,o(In+l)). We have for both 

simplices the s-representation. Since Tl and T2 are adjacent,there exists 

a unique index j such that vi=wi, i~j and yi=oi i~j-1,j with the 

convention that j-l=n+l if j=l. Moreover o. 1=y, and o.=y. 1 . So all the 
J- J J J- . 

vertices yin T1nT 2 have the same index, i.e. if for some index i y=vi we 

have that y=wi for the same index i. Therefore we only have to prove that 
oTl oT2 

for any grid point x of Gm+l in T1nT 2 , xEA (T) implies that XEA (T). 

Since xis a grid point of Gm+l in the facet of Tl opposite to vj, there 

exist unique integers 0i, i~j-1,j,such that 

(8.2 .1) 
j+l 

x=v + E 0.q(y.)/d l 
i~j-l,j i i m+ 

with the convention that )+1=v1 if j=n+l. Since x EAT 1 (T) for just one T, 

there exist also unique integers µh with µh>O, hET and µh=O, h/T,such that 

(8.2.2) 

or 

n+l 

x=v(Tl)+h:l¾q(yh)/dm+l 

n+l m h 
x= E Ahv /k +µ, lq(y, 1)/d 1+µ,q(y,)/d l + 

h=l m J- J- m+ J J m+ 

+ E µhq(yh)/d 1 
h~j-1,j m+ 

j m j+l n+l h-1 
=EA {v + E q(y,)/d + E 

h=l h i=j+l i m i=l 
q(y.)/d }/k + 

i m m 

h-1 n+l m J·+1 
+ E A b + 
h=j+l h 

E q(y,)/d -}/k +µ. 1q(y, 1)/d +l + 
i=j+l i m m J- J- m 

. 1 j m n+l j-1 
=vJ+ +( E Ah) ( E q(y,)/d 1)+ E 

h=l i=j+l i m+ h=l 

j-2 m m 
+ E A,q(y,)/d 1+AJ,q(y. l 
i=l J i m+ J-

n+l h-1 
m 

)/d 1+ E E \q(y,)/d 1+ 
m+ h=j+l i=j+l i m+ 



Defining 0i to be the coefficient of q(yi), i~j-1,j, we obtain that 

(8.2.3) 

Comparing (8.2.3) with (8.2.1) we obtain that 0i=0i, i~j-1,j and 

(8.2.4) m A.+µ. 1-µ .=O. 
J J- J 

Moreover from (8.2.2) it follows that 

m h m j-1 
x= E Ahv /k +A,{v +q(y. 1)/d )/k +µJ--lq(y. 1)/d l + 

h~j m J J- m m J- m+ 

i i 
Hence, since v =w, i~j, yi=oi, i~j-1,j, yj_1=oj and yj=oj-l' we obtain 

that 

m h m j-1 
x= E Ahw /k +A.(w +q(o.1/d )/k +µ, 1q(o,)/d l + 

h~j m J J m m J- J m+ 

m 
+µ,q(o. 1)/d 1+ E µhq(oh)/d l+A,q(o. 1)/d 1 -

J J- m+ h~j-l,j m+ J J- m+ 

m m From (8.2.4) it follows that µ,-A,=µ, 1 andµ, 1+A,=µ,. Consequently, 
J J J- J- J J 

n+l 
x=v(,2)+ E µhq(oh)/dm+l 

h=l 

0'2 
with µh the same coefficients as in (8.2.2). Hence XEA (T) which proves 

the theorem. D 

From the proof of theorem 8.2.2 we obtain the following corollary. 

COROLLARY 8.2.3. If a grid point x of G 1 belongs to two adjacent 
1 1 m+ 

simplices , 1 (v ,y(I 1)) and , 2 (w ,o(I 1n of G and if, for some T, 
n+ . n+ m 
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then, for the same coefficients µh, 

This important fact will be frequently used in the replacement steps of 

the algorithm. 

Theorem 8.2.2 is illustrated in figure 8.2.2 for n=2, d 1=4, d2=16 and 

A1=(2,1,1). So the grid size of the triangulation on level 1 is 1/4 and 
1 

the grid size of the tri~ngulation on level d2 is 1/16. Let a 1 (u ,S(In+l)) 

with u 1=(½,\,\) T and S(I 1)=(1,3,2) be the starting simplex on level d 1 • 
n+ 1 1 · 

Then the centrepoint u of a 1 is v(a1)=~::1 Aiui = (7/16,3/8,3/16) T_ For the 

arbitrarily chosen simplex T(y1,TI(In+l)) of G1 with y 1 = (O,½,½) T and 
. T 

TI(In+l) = (2,3,1) we have that the centrepoint vis v(T)=(l/16,3/8,9/16) • 

In the figure the triangulation G2 on level d2 is pictured. Furthermore, the 

vertices of G1 are drawn heavily. For any simplex T of G1 the regions AT(T) 

are indicated by the heavy lines. Observe that for any two simplices T1 and 

T2 of G1 we have that 

As is illustrated for the simplices T and p with T as the simplex 
-1 - -1 

defined above and p =p(y ,TI(In+l) with y =(\,0,%) and TT(In+l)=(l,3,2), the 

region AT (1,2) adjoins in a consistent way to the region ·AP (1,2), The 

grid points of AT ( 1, 2) and AP ( 1, 2) on level d2 are connected with the 

heavily drawn vertex (\,\,½)Ton level d1 • 



147 

Figure 8.2.2. 1 1 , 1 T 
n=2, d 2=16, A =(2,1,1) ,cr=cr 1(u ,S(In+l)) with u =i½,¼,¼) 
and S(I 1)=(1,3,2), u=v(cr 1), v=v(T) where T=T(y ,TT(I 1)) 

1n+ n+ 
with y =(0,½,½)T and TT(I 1)=(2,3,1); AT=AT(l,2) and 

n+ 
AP=Ap(l,2). The vertices of G1 -are drawn heavily. The grid 

points of G2 on level d2 within or on the boundary of a 

region surrounded by heavy lines are connected with the 

grid point of G1 in the middle of it on level d1 . 

8. 3. THE ALGORITHM. 

Suppose that we want to compute a fixed point of a continuous function 

f from Sn into itself by applying the continuous deforJ!lation algorithm 

with a triangulation of snx[l, 00 ) as 

Using integer labelling, each point 

receives the standard integer label 

described in the previous section. 

(xT,d_)T of snx{d.},i=0,1, .•. , 
i i 

i(x) as defined in definition 4.1.1. 
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For some arbitrarily chosen grid point v of G1 , e.g. vis the grid point 

nearest to the barycenter (l/n+l, ... ,1/n+l)T, snx[a0 ,d1J is triangulated 

as described in the previous section with 00=sn and v=v(00 )=r::i"~e(i) 

the centrepoint of 00. The algorithm starts with the simplex 1t0 , being the 

convex hull of the vertices of Sn on level a 0 and the point v on level a 1 , 

and proceeds along a path of adjacent (n+1)-simplices in snx[d0 ,d1] such 

that the common facets are completely labelled. Note that snx{a0 } is a 

completely labelled facet of \/Jo. Clearly, since the labelling rule is proper,· 

there are no completely labelled facets in (bd Sn)x[d0 ,d1]. Therefore all 

replacement steps are feasible and the algorithm generates within a finite 

nUlllber of steps a simplex insnx[d0 ,d1 J having a completely labelled facet in 

snx{d1 }, say 0 1 (u1,S(In+l)). Note that the intersection of the path of 

adjacent simplices with snx{d1} is the path of adjacent t-simplices 

(O~t~n) of G1 generated by the variable dimension restart algorithm as 

described in chapter 5. Now an integer k 1~2 is chosen and snx[a1 ,a2 J is 

triangulated as described in the previous section with 0 1 as the starting 

. 1 d b . . d . ..,n+ l, l i/k f . th simp ex an an ar itrary gri point u=~i=lAiU 1 o G2 in cr 1 as e centre 

point v(cr 1) of cr 1 . Then the algorithm continues the path of adjacent 

simplices with completely labelled common facets by replacing the vertex 

of snx{d0 } connected with the vertices of cr 1x{d1} by v(cr 1)x{d2 } and 

computing .Q,(v(cr 1)). Simplices in snx[d1 ,a2J are generated until a simplex 

is found having either a completely labelled facet, say T1,in snx{a 1} or a 

completely labelled facet in snx{d2 }. In the latter case k2 and 

A~,---,"~+l are chosen and the algorithm continues with simplices in 

snx[d2 ,a3J. In the first case the vertex v(T 1)x{d2},which is connected 

with the vertices of T1,is replaced by the vertex of Sn on level a 0 

connected with the vertices of T1,and the algorithm proceeds with a path 

of adjacent simplices of the triangulation of snx,d0 ,a1J, until again a 

simplex having a completely labelled facet, say T2 (y1,1r(In+l)), in 

snx{d1} is generated. Then the algorithm continues with simplices in 

snx[d1,a2 J by replacing the vertex in snx{d0 } by v(-r 1)x{a2}, where 

v(~ 2)=r::i"~Yi/k1 is the centrepoint of T2 . 

Within a finite nUlllber of steps the algorithm generates a simplex having a 

completely labelled facet in snx{d2}, since the replacement steps are 

unique and feasible 
n 

and the nUlllber of 

S x[d0 ,d2 ] is finite. 2 
Then k 2 and "i' 

proceeds along a path of simplices in 

simplices of the triangulation of 

iEin+l'are chosen and the algorithm 

snx[d0 ,d3 ] etc. The algorithm can be 
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terminated if it generates a simplex of Gm with grid size d~1 small enough. 

Clearly, within a finite number of steps the algorithm finds a completely 

labelled simplex of Gm. 

Using vector labelling a vertex e(h) of Sn on level do is labelled by 

e (h), h=l, ••. ,n+l, and a point x on level di, i<!l, is labelled by J!, (x) = 

x-f(x)+e. The algorithm starts with the same simplex w0 by introducing the 

vector J!,(v(cr0 )) in the system of n+l linear equations Iµ=e. To compute a 

fixed point of a mapping$, a point x on level di' i<!l, is labelled by 

i(x)=x-fi(x)+e, where fi(x) is a piecewise linear approximation to$ with 

respect to Gi. The algorithm can be seen as tracing a path of zeroes of 

the piecewise linear function f(x,t) obtained by taking the functions 

¢(x,di), i <! 1, defined by 

¢(x,1) = (n+l)x - e and = X - i <! 1 

n 
and extending them linearly on each simplex of the triangulation of S x [ 1, 00 ) • 

8.4. THE REPLACEMENT STEPS. 

To give the replacement steps it is more appropriate to describe the 

triangulation of the set T(y1,u(I 1J)x[d ,d 1J as follows. For any 
n+ m m+ 

subset T of In+l' let the regions AT(T) be redefined by 

AT(T)={xETlx=v(T)+ E µ,q(j) for positive numbersµ,, jET}. 
jET J J 

Then Tx[dm,dm+l] is triangulated by connecting all the grid points x of 

Gm+l in AT (T) on level dm+l with every vertex yi of T on level dm, such 

that u.iT. It can easily be verified that this triangulation of 
l. 

TX[dm,dm+l] is identical to the triangulation given in section 2. However 

we remark the following. In section 2 a grid point x in AT(T) on level 

dm+l is connected with the vertex yi of Ton level d if iiT. By this 
oTl oT m 

definition XET 1nT 2 and XEA (T) implies xEA 2 (T) as proved in theorem 

8.2.2. Now we have that x in AT(T) is connected with yi if TI. iT. So, for 
• J. 1 2 

some s, let yJ, j~s,be the common vertices of T1 and T2 and let T and T 
0 T. i 

be the subsets of In+l such that XEA l.(T ),i=l,2. Then,with the convention 

that s-l=n+l if s=l, 
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T2 T1 if 
1 1 

TT 1 ,TT iT or 1Ts-1'1TsET s- s 

T2 (T1u{ TT }J \ { TT } 1 TT /Tl if 1Ts_ 1ET and 
s s-1 s 

T2 (T 1u {TT 1 })\{TT } 
1 

1T E T1• if 1Ts-1'T and 
s- s s 

Moreover, let µ 1 , •.. ,µn+l with µh>0 if hET1 and µh=0 if h/T1 be the numbers 

such that 

n+l 
x=v(T 1)+ L µhq(h)/d 1• 

h=l m+ 

Then, by corollary 8.2.3, 

n+l 
x=v(T 2 )+ L µh'q(h)/d l 

h=l m+ 

with µh=µh' h~s-1,s, µ~_ 1=µs and µ~=µs-l" 

Now for some m, let t be a simplex in snx[d ,d 1] generated by the 
m m+ 

algorithm. Since tis a simplex of the triangulation of snx[d ,d 1], there 
1 +1 . m m+ 

exist a simplex T(v ,y(I 1)) of snx{d} with v(T)=L~ 1A~vi as its 
n+ m i= i 

centrepoint, a subset Toft elements of I 1 , a permutation TT(T) and a 
T n+ 

nonnegative vector (R1, ..• ,Rn+l) of integers such that the following 

conditions hold: 

1. The intersection oft and snx{d} is the convex hull of the 
. m 

n+l-t vertices vi of T such that y_/T. This set of vertices 
i 

is called the set of active vertices of T, whereas the 

other vertices are called inactive, 

2. The intersection oft and snx{d - 1 } is the t-simplex 
1 . . 1 m+ t+l 

a(y ,TT(T)) with vertices y , .... ,y in TX{d 1} such that 
m+ 

1 n+l . 
a) y =v(T)+L. 1R.q(J)/d l 

J= J m+ 
i+l i 

b) y =y +q(TTi)/dm+l i=l, •.. ,t, 

3. R =0 for j/T and R.~0 for jET. 
j J 

Observe that the conditions 2a,.b and 3 are analogous to respectively a,c 

and b on page 66. In particular the conditions 1-3 are satisfied for the 

starting simplex of the algorithm given by the 

v(a0 Jx{d 1 }. So the algorithm is initiated with 

convex hull of snx{d0 } and 
1 . -

T(v ,y(In+l))=a0 (e(i) ,y(In+l)) 
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1 
Now any replacement step can be described by adapting T(v ,y(In+l)), the 

subset T, the permutation TI(T) and the vector R. Recall that T has always 

the s-representation. 

As described in the previous section two facets of¢ are completely 

labelled. So, only two vertices of¢ have the same label and one of them 

is the last vertex generated by the algorithm. Then the other one must be 

replaced. Two cases can occur, 

A) the vertex to be replaced is an active vertex of 
1 · io 

T(V ,y(In+1)), say v , 
1 jo 

B) the vertex to be replaced is a vertex of cr(y ,TI(T)),say y 

We consider now these two cases. 

Case A. 
io 1 

le. Suppose that v is the only active vertex of T(v ,y(In+l)). Then 

\T\=n and cr(y1,TI(T)) is a completely labelled n-simplex of Sn on level 

dm+l. Now the simplex a is written in the s-representation and Tis set 

equal to a, R is set equal to zero and T becomes the empty set. The ' 

algorithm continues by computing the label of the centrepoint 

v{T)=L~+1
1,~+lvi of the new simplex T. If it is the first time that a 

J.= ]. 

completely labelled simplex is found onleveldm+f this simplex is the 

starting simplex a 1on level d 1 and the integers \~+l, i=l, •.• ,n+l, can 
~ ~ ]. 

be chosen arbitrarily. 

io. 1 
2e. The vertex v is not the only active vertex of T(v ,y(In+l)). 

First suppose that 

A~ ~o or y, 1ET (with io-1=n+1 if io=1). 
io io-

i 
Since v O is active we have that Yi IT and therefore 

i 0 ° t+2 t+1 facet of T opposite to v . Hence the pointy =y 
i 

yt+l is not on the 

+q(yi )/d 1 is a 
0 m+ 

grid point of G 1 in T. Now v O becomes 
m+ 

an inactive vertex of T and 

is replaced by yt+2, i.e. Tis set equal to Tu{yi} and TI(T) becomes 
0 

( TI 1 , •.. , TI t, y io) , whereas ttie simplex T and the vector R do not change. 

If both 
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1 t+l iO 
then y , ... ,y are points on the facet of T opposite to v and the point 

yt+l+q(y. )/d 1 is a grid point of G 1 not in T. Now Tis adapted 
io m+ m+ i 

according to table 8.?.1 by replacing v 0 . Let Tl be the new simplex 

on level d 
m 

_io 
and let v be the new vertex of Tl. 

. 1 t+l 
Since y , ••. ,y are on 

the common facet of T and T1, it follows from the proof of.theorem 8.2.2 
i 

that again a simplex of the triangulation is obtained if v 0x{d} is 
. m 

replaced by viOx{d }. By corollary 8.2.3 and the fact that Yi and Yi -1 
m O O 

are both not in Tit follows that T, rr(T) and R do not change. Hence T 

becomes Tl and vi0 x{dm} is the new vertex. 

Case B. 

Suppose that t>O. Then we consider the following cases, 

(i) jo=l 

(iil 2s:j 0 s:t 

(iii) j 0=t+1. 

In case (i) we first suppose that 

Yr_ 1ET (with r-l=n+l if r=l) or Ry +l<A;, 
r 

where r is the index such that rr 1=yr. Then yt+l is not on the facet of T 

opposite vr and therefore yt+l+q(rr 1)/dm+l is a grid point of Gm+l in 

AT (T). Now rr(T) and Rare adapted according to.table 5.2.1, i.e. y 1 is 
t+l 

replaced by y +q(rr 1)/dm+l" 

If both 

yr_ 1iT and Ry +l=A;, 
r 

then y2 , ••• ,yt+l are on the facet of T opposite vr and yt+l+q(rr 1)/dmisnotin 

T. Let T(v1,y(I 1)) be the simplex obtained from T(v1,y(I 1)) by replacing 
n+ n+ 

the inactive vertex vr(yr=rr1ET) according to table 8.2.1. Now T becomes 

(Tu{y _1})\{y }, R.. and Ry are interchanged, rr 1 becomes y _ 1 and Tis 
r r _1·rr_ r-1 1 r 

set equal to T(v, y(In+l)), implying that y is replaced by the new 



vertex y~defined by v(T)+E~:iRjq(j) for the new T and R. 

In case (ii) suppose that 
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where r is the index such that 1TJ, =y. Then 1T(T) and Rare adapted 
j O r j -1 

according to table 5. 2. 1, i.e. y O is replaced by y O +q ( 'I!" • ) / d 1 which is 
J m+ 

a grid point in AT (T) • O 

If both 

1T -y and R -R =Am 
jo-1- r-1 Yr Yr-1 r 

i r jo-1 
then y , i;tjO' is on the facet of T opposite v and y +q(1T. ) /d 1 is 

Jo m+ 
not in T. Now 1T(T) is adapted according to table 5.2.1, R and R are 

yr Yr-1 
, interchanged and T(v1,y(I 1)) is adapted according to table 8.2.1 by n+ . 

r Jo replacing the inactive vertex v, i.e. y is replaced by the new vertex 
_jo 
y defined by the new T, Rand 1T(T). Observe that T does not change 

since yr and yr-l are both an element of T. 
In case (iii) supposethat R1T ~1. Then yt+l is replaced by the grid point 

y1-q(1Tt)/dm+l in; AT(T), i.e.t1T(T) and Rare adapted according to table 
1 , T t+1 

5.2.1. If R1T =O, y -q(1Tt)/d 1 is not in A (T). Now y must be replaced 
t m+ 1 

by the inactive vertex vr of T(v ,y(In+l)), where r is the index with 

"'yr=1Tt. So 1T(T) becomes (1T 1, ••• ,1Tt_1) and T becomes T\{1Tt}. 

1 Finally we consider the case t=O. Then T=¢ and the only vertex y of the 
1 -

zero-dimensional simplex cr(y ,1T(T)) has to be replaced. Since T=¢, R.=O 
1 1 J 

jEin+l and y is the centrepoint v(T) of T(v ,y(In+l)), which is connected 

with all vertices of T. So, all these vertices are active and Tis a 
1 completely labelled simplex of Gm. Hence y has to be replaced by a grid 

point of Gm-l on level dm-l" Therefore we have to compute both the 

simplex p(zl,B(I 1)) of snx{d 1} such that all vertices of Tare grid 
- n+ m- i 

points of G in p, and the vertex of p, say z 0 , which is connected with 
m 

all the vertices of T. To do so, we choose an arbitrary interior point of 

T, say x, and we calculate the vector a(x) as described in section 2 with 

di=dm-l" Since xis not a grid point of Gm-l' a(x) is not a vector of 

integers. Let a i be the en tier of a i ( x) _, i=l, ••• , n, and let z 1 be the grid 
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1 n -
point of Gm-l such that z =e(l)+Li=laiq(i)/dm_ 1 • Since xis an interior 

point of T, a. (x)-a.~a.(x)-a. for all i~j, j=l, ... ,n. Let S(In+l) be the 
l l J J 

permutation of the elements of In+l such that 

and B 1=n+l. Then xis an interior point of the simplex p(z 1,S(I 1)) of 
n+ 1 n+ 

Gm-rTherefore all vertices of T(v ,y(In+l)) are points of p and we set 

p(z1 ,S(I 1)) equal to p(z 1,S(I 1)) in such a way that p has the 
n+ . n+ _i 1 1 

s-representation. It remains to find z O_ Let v(p)=L~+ 1,~- zi/d be the 
l= l m 

centrepoint of p. It can be easily seen that 

1 - n 
v =v(p)+ L 0.q(j)/d 

j=l J m 

j - 1 
with 0j=Li=l (vi(p)-vi), j=l, ... ,n. Set 0n+l equal to zero and define 

(8.4.1) 0.=0.- min 0. 
J J l 

iEin+l 

j=l, ... ,n+1. 

Since L~:iq(i)~O, ~e obta~n that v 1=v(p)+L;:~0jq(j)/dm. Define for 

i=l, ... ,n+1, 0l=(0~, ••. ,0~+l) by 

if there exists an index hE{l, ... ,i-1} with yh=j 

(8.4.2) 

otherwise. 

i 1 i-1 i' t Since v =v +Lj=lq(yj)/dm follows that 

. n+1 . 
vl=v(p)+ L 0~q(j)/d i=l, ••• ,n+l. 

j=l J m 

By (8.4.1) and (8.4.2) we have that 0~~0 for all i,j. Let H(vi) be the set 
J 

of indices {jl0~=0},i=1, ••• ,n+1. By definition, IH(v1) l~l, IH(vn+l) l:,;1 and 

I i I i+l J I . H(v) -IH(v ) is equal to zero or one. So there exists at least one 

index h such that 
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Let s be the index such that {s}=H(vh) for some h with JH(vh) 1=1. Since 
i+l . i H(v )cH(v), sis unique. Let i 0 be the index such that y, =s. Define 

io 

T=I 1\ {y. } 
n+ l.o 

It can easily be seen that R.=O for j=y, , i.e. R.=0 for jiT. Moreover 
1 Ji +1 1 0 1 J 

~j~~•-j~T. Define 

d (y , 11 (T)). Since 

y to be v O . Then t(v ,y(I 1))can be written as 
n+ 

1 i 0+1 _ n+l_ 
y =v =v(p)+ E R.q(j)/d 

j=1 J m 

it follows that cr is in Ap(T). So, finally we have that t becomes 
- -1 -
p(z,13(I+l)), 

n 1 
only vertex y 

T becomes T, 11(T) becomes TT(T) and R becomes R, i.e. the 
_jo -

of cr on level dm+l is replaced by the vertex z of p on 

level dm-l' where jO is the index such that Sj 0=s. The zer~dimensional 

simplex cr on level dm+l becomes then-dimensional simplex cr on level dm. 

8.5. THE APPLICATION ON Rn. 

Let d0 ,d1, ••• be a sequence of increasing positive numbers such that 

di+l=kidi, i=0,1, ••• with ki an arbitrary integer larger than 1. For some 

nxn-triangulation matrix A, Rnx{d} is triangulated by the AK triangulation 
m 

with grid size d- l. On each level we choose z=O to be a grid point. Doing 
m 

so, the grid points of the triangulation on level dm are also a grid point 

on level d., i>m. With a(n+l)=-E~ 1a(j) we obtain again that each n-simplex 
J. J= 

cr has n+l representations cr(y1 ,11(I 1)). As in section 2 each simplex is 
n+ 

given in the s-representation. Therefore we have to define the function 

s(w). So, let w be a grid point on level dm. Then we define a(w) by 

-1 
a(w)=d A w 

m 

n 
and s(w) by s(w)=1+(Eh=l~(w))mod(n+1). 
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\ 

Now we triangulate Rnx[d ,d 1 J for some m~O. Combining these 
m m+ 

triangulations for all pairs [di,di+l], i=0,1, ... we obtain the 

triangulation of Rnx[d0 , 00). The triangulation of Rnx[d ,d 1 ] is 
m m+ 

the same way as described in section 2 
n 

for S x[dm,dm+l]. So, let 
1 

crm(u ,B(In+l)) be the starting simplex on level dm' and let 

n+l -1 mi 
v(cr )= L k A,U 

m i=l m i 

done in 

be 

To 

its centrepoint for arbitrarily chosen A~ iEI 1, such that L~+lA~=k. 
i n+ i=l i m 

triangulate ,(y1,TI(I 1))x[d ,d 1], with T given in the 
n+ m m+ 

s-representation we define again for any proper subset T of In+l' the 

regions A'(T) as in section 2, and connect all grid points x on level dm+l 

in region A'(T) with the vertices Yi of Ton level d with iiT. Combining 
m 

the triangulations ,x[dm,dm+l] over all simplices ,, we get a consistent 

triangulation of Rnx[d ,d 1]. 
m m+ 

We now discuss the use of this triangulation of Rnx[d01 00 ) in a fixed 

point algorithm. Assume we want to compute a fixed point of a mapping¢. 

with respect to the Let fi be a piecewise linear approximation to¢ 

triangulation of Rn on level di. Then a point x 

vector label as defined in definition 4.8.1 with 

Assume that Merrill's condition is satisfied and 

triangulated by A(a)K 0 with o.=d~ 1 , i=0,1, .... ·~i i i 

of Rnx{d.} receives the 
i . 

b=e and f~fi, i=0,1, .•. 

that Rnx{d.} is 
0 i 

Let a be a 

labelled simplex on level d 0 . Then,starting with the simplex 

completely 

having· a0 

as a facet, a sequence of simplices of the triangulation of Rnx,d01 00 ) is 

generated, such that the common facets are completely labelled.By Merrill's 

condition this sequence cannot diverge if o0 is small enough. If, for some 

m large enough, a completely labelled simplex of Rnx{d} is generated, a 
m 

good approximation of a fixed point is found and the algorithm terminates. 

It remains to consider the following questions: 

l e. 0 n { } How to find a completely labelled simplex a in Rx d 0 ? 

2e. How to continue the algorithm if, starting from the simplex having a0 

as a facet, a simplex of RnX~d0 ,d1 ] is generated having a completely 

labelled facet cr(y1 ,n(In+l)) in RnX{do}? 

Both problems can be solved by applying the variable dimension restart 

algorithm. Starting in an arbitrarily chosen grid point (vT 1d 0 ) Tin 

Rnx{d0 },this algorithm generates a sequence of simplices of variable 



dimension on level d0 • By theorem 6.3.4 this sequence terminates with a 

completely labelled simplex cr0 in Rnx{d0 }. To solve the second question, 

observe that,for some iEI 1, cr(y1,TI(I 1)) is in the region 
n+ n+ 
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with T=I 1/{i}. Then the variable dimension restart algorithm can again be 
n+ 

applied. Starting with crand reintroducing the i-th unit column, a sequence 

of simplices of variable dimension in level d0 is generated until again a 

completely labelled simplex is found. Then the algorithm continues again 

with simplices of the triangulation of Rnx[d0 , 00). In fact we can use the 

interpretation of the variable dimension restart algorithm with n+l points 

on an extra level, as discussed in section 6.4, to triangulate for some cr 

(crx{Q})U(Rnx(o,d0 ]). Then, starting with the simplex being the convex hull 
T T 

of the vertices of cr on level O and (v ,d0 ) ,a sequence of n+l-simplices 

having completely labelled common facets is generated. 

8.6. SOME REMARKS AND NUMERICAL RESULTS. 

In the algorithm of Eaves [1972] and Eaves and Saigal [1972] the 

factor of grid refinement is (at most) equal to two. So, their algorithm 

cannot be used to obtain quadratic convergence. Using a restart method in 

a continuous deformation algorithm, Saigal [1977c] and Saigal and Todd 

[1978] developed an acceleration technique to achieve 

quadratic convergence when the underlying function is continuously 

differentiable and the derivative is Lipschitz continuous. Using the 

triangulation presented in this chapter, quadratic convergence can be 

obtained without the necessity of making restarts. Saigal and Todd also 

proved that, using the information obtained from the last found 

approximation, a completely labelled simplex on the new level can be 

generated in n+l pivots. It is worthwile to investigate whet1!er_, the same 

result can be proved for the continuous deformation algorithm with an 

arbitrary factor of grid refinement. 

In the triangulations of snx[l, 00 ) and Rnx[d0 , 00),described in section 2 

respectively S, the starting point on a new level can be chosen on 

basis of information obtained ·earlier. So, for vector labelling one 

could choose the grid point nearest to the approximation obtained from the 

last found completely labelled simplex. Therefore, even when 
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the factor of incrementation is two, the triangulation is more general 

than that of Eaves and Saigal. This is illustrated in the figures 8.6.1.a 
1 2 

and 8.6.1.b for n=l. In 8.6.1.a,T(y ,y )x[d ,2d] is triangulated according 
m m . 

to the triangulation of Eaves and Saigal. Observe that yix{d }, i=l,2, must 
m 

be connected with vx{2d }. In 8.6.l.b,T(y1 ,y2)x[d ,2d] is triangulated by 

connecting yix{d }, i=l:2 with y 1x{2d }, and y 2x{:} :ith the other two 
m m m 

grid points of TX{2dm}. Observe however that the vertices yix{dm}, i=l,2, 

can be connected with any grid point of TX{2dm} . 

.-----~v.------,2d 
m 

"-----------"d 
1 2 m 

y T y 

Figure 8.6.1.a Eaves-Saigal's 

triangulation of TX[dm,2dm] 

Figure 8.6.1.b. Example of a 

triangulation of TX[d ,2d J as given 
m m 

in section 2. 

Tuy [1979] presented a restart method to approximate a fixed point of a 

function, using primitive sets (see also Todd [1978b]). Although his 

approach is dif_fe1;~n_!:, Van der Heyden [ 1979b] presented a similar method. 

He introduced also a geometric interpretation of t_he algorithm. Using this 

interpretation he constructed a triangulation of snx[ 1, 00 ) permitting an 

arbitrary factor of grid refinement between two successive levels. However, 

this is achieved at the expense of an asymmetry in the roles played by the 

different coordinates. More precisely, T(y1 , •.. ,yn+l) x[d ,d 1 ] is triangulated 
m m+ 

as in section 2, but with the restriction that, for some i, v=yi. Al though a 

partial remedy is given, this feature makes the triangulation less attractive. 

The difference 1,etween Van der Heyden' s triangulation and the triangulation 

introduced in section 2 is illustrated in the figures 8.6.2 .a,b. Finally we 

mention a paper of Shamir [ 1979 J. Independently of Van der Laan and Talman 

[1980b] he constructed the same t~iangulation of snxU , 00 ) using also the 

interpretation of the variable dimension restart algorithm with an extra level. 
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Figure 8.6.2.a. Van der Heyden's 

triangulation of ,x[d ,d 1J, n=l, 
1 2 m m+ 

km=6, v=y or y. 

Figure·8.6.2.b. Example of a 

triangulation of ,x[dm,dm+l] as given 

in section 2, n=l, km=6, vis an 

arbitrary grid point on level dm+i· 

We conclude this section with some computational results. We applied the 

algorithm for vector labelling to the three examples of section 5.8. In 

all runs the T triangulation is used with again-Tin stead of T. The 

labelling rule is the same as in section 5.8. The starting point on level 

dm+1 is chosen as the grid point nearest * to w (m) * with w (m) the 

approximate fixed point on level d . The algorithm is applied with 
m 

d.+1/d.=2 for all i,and with a variable factor of grid refinement. In the 
i i -1 

latter case cm+l=dm+l is chosen analogously as in section 5.8. However to 

guarantee that dm+l is a multiple of dm' cm+l is defined by cm+l=cm/km with 

k 
m 

2, if h ~(mesh G )/2rn+i 
m m 

k Entier (h rn+i:/mesh G )-l if h <(mesh G )/2rn+i: 
m m m m m 

The results are given in the tables 8.6.1-8.6.3. Comparing the columns 

3 and 7 it turns out that the algorithm is considerably improved by using 

a variable factor of grid refinements. Moreover a comparison with the 

tables 5.8.1-5.8.3 learns that for di+l/di=ki the number of iterations of 

the continuous deformation algorithm is of the same order as the number 

of iterations of the variable dimension restart algorithm. More 
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computational experience is needed to decide which algorithm is 

superior. We remark the following: 

1. The variable dimension restart algorithm is easier to implement on the 

computer. 

2. In each stage the restart algorithm is initiated with Iµ=e. This is a 

drawback, since the deformation algorithm continues with the current 

system of linear equations. However in the acceleration technique of 

Todd [1978b] the system of linear equations corresponding to the 

completely labelled simplex is used to initiate the system in the next 

stage. This technique should be used when the restart algorithm is 

compared with the deformation algorithm. 

3. The examples are very nice. In particular,the deformation algorithm 

never returns to a previous level. Both algorithms should be tested on 

more complicated problems. 

Table 8.6.1. Pure exchange economy, n=4, M=(mesh G )/2;;:;::i1, N is the 
m 

cumulative number of iterations, E= max I (g.-a.)/a. 1-
. l l l 
iEin+l 

i+l 
= 

i+l 
= 

i i i 
d /d 2 d /d k 

m M I N E m M N E 

1 .051 7 1.02 1 

I 
.051 7 1.02 

3 .013 20 .OS 
I 

2 .026 13 .29 

5 .003 33 8 10-3 3 .013 20 .OS 

7 8 10-4 43 2 10-4 4 .006 26 .03 

9 2 10-4 55 2.5 10-s 5 2-10-3 31 3 10-3 

11 5 10-s 69 2 10-6 6 10-3 38 10-3 

13 1.2 10-s 81 3 10-8 7 8 10-s 45 4 10-6 

15 3 10-6 91 5 10-9 8 4 10-s 52 2 10-6 

17 8 10-7 102 4 10-10 9 6 10-8 59 < 10-10 



Table 8.6.2. Pure exchange economy, n=7, M=(mesh G )/2/n+I, N is the 
m 

m 

1 

3 

5 

7 

9 

11 

13 

15 

cumulative number of iterations, E= max l<gi-ai)/ail• 
iEin+l 

i+l i = i+l = i i 
d /d 2 d /d k 

M N I E m M N E 

.032 11 1.32 1 .032 11 1.32 

.008 36 .OS 2 .016 27 .23 

.002 59 5 10-3 3 .008 36 .OS 

5 10-4 83 2 10-4 4 3.8 10-3 46 .02 

1.2 10-4 102 10-s 5 5.6 10-4 62 2 10-4 

3 10-s 118 10-6 6 2.8 10-4 70 5 10-s 

8 10-6 142 8 10-8 7 3.2 10-6 80 2 10-8 

2 10-6 166 4 10-9 8 1.6 10-6 93 4 10-9 

Table 8.6.3. Pure exchange economy, n=9, M=(mesh G )/2i/n+1, N is the 
m 

cumulative number of iterations, E= max l(gi-a.)/a. I• 
• 1 1 
1€In+1 

di+ildi=2 d.+1/d.=k. 1 1 1 

m M N E m M N E 

1 .025 12 .30 1 .025 12 .30 

3 .006 43 .03 2 .013 32 .08 

5 1.5 10-3 83 2 10-3 3 .006 43 .03 

7 4 10-4 112 10-4 4 .002 67 3 10-3 

9 10-4 142 6 10-6 5 7 10-4 78 3 10-4 

11 2.5 10-s 166 4 10-1 6 5 10-s 102 10-6 

13 6 10-6 193 3 10-8 7 6 10-6 120 3 10-8 
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