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CHAPTER 1

INTRODUCTION AND SUMMARY

Fixed point theorems are widely used in existence proofs of solutions
to nonlinear problems. Numerous applications include the existence of an
equilibrium strategy vector in noncooperative N-person games, the existence
of a price equilibrium in economic models, and the existence of a solution
to (un)constrained optimization problems and nonlinear complementarity
problems. The most famous fixed point theorems are those of Brouwer [1912]
and Kakutani [1941]. Brouwer's theorem is concerned with the existence of
‘a fixed point of a continuous funcion from a compact, convex set into
itself. Kakutani generalized Brouwer's theorem to upper semi-continuous
point to set mappings. However, the original proofs were not constructive.
It is only recently that algorithms heve been developed to compute
(approximate) fixed points. The pioneering work on fixed point algorithms
was done by Scarf [1967] (see also Scarf [1973]), who introduced a fixed
point algorithm on the unit simplex s™. His algorithm generates a path
of adjacent so-called primitive sets. This path starts in a corner of s®
and terminates as soon as a completely labelled primitive set is found
yielding an approximate fixed point. An essential part of Scarf's
algorithm is the unique replacement step by which it can be proved that
the algorithm always terminates within a finite number of steps. This
proof -is based on the work of Lemke [1965] (see also Lemke and Howson
[1964]), who developed an algorithm to compute an equilibrium strategy for
a two-person non-zero-sum game.

In 1968 Hansen improved Scarf's algorithm by developing an efficient and
simple scheme for the replacement step. About the same time Kuhn

[1968, 1969] developed two algorithms on s® using the same steps. Kuhn
pointed out that these steps describe the replacement step between two
adjacent simplices of a (regular) triangulation introduced already by

Freudenthal [1942]. Almost all recent fixed point algorithms are based on



the concept of a triangulation of a set.

The algorithms mentioned above suffer from the computational disadvantage
that the grid of the triangulation is fixed throughout the algorithm while
a start must be made outside the region of interest (see also Eaves [1971]).
A first more sophisticated method is due to Merrill [1971, 1972] later
independently found by Kuhn and MacKinnon [1975],Ldthi [1975, 1976] and
Fisher, Gould and Tolle [1977]. This algorithm known as the Sandwich-
method can start anywhere but requires the addition of an extra dimension.
Thus, as soon as for some grid size an approximate fixed point is found,
this point can be used to provide the new starting point in a new
application of the algorithm with a finer grid. By this way the accuracy
can be rapidly improved.

A second method was discovered independently and simultaneously by

Eaves [1972] on S" and by Eaves and Saigal [1972] on R". In their
algorithm the mesh of the triangulation is automatically refined. Both
algorithms have the computational disadvantage that they are always
operating with (n+1)-dimensional simplices. Moreover, the Sandwich-method
needs artificial points to avoid cycling whereas the continuous-deformation
method can only be applied for incrementation factors of at most two.
Algorithms without an extra dimension were developed by Tuy [1979] (see
also Van der Heijden [1979]) and Garcia and Gould [1976, 1979]. However,
as argued by Todd [1978b], Tuy's method needs a lot of computation time
whereas Garcia and Gould's method may fail.

Another restart algorithm without an extra dimension was developed by

Van der Laan and Talman [1979a, 1979b]. Their algorithm has the advantage
that it starts with a single point and generates a path of adjacent
simplices of variable dimension until a completely labelled simplex is
found (see also Van der Laan [1980] ). Using a geometric interpretation
of this algorithm Van der Laan and Talman [1980b] and Shamir [1979]
developed a continuous-deformation algorithm for which the factor of
incrementation can be of any size so that fast convergence can be
obtained. All these more sophisticated algorithms were developed both on
Sn and Rn.

Beside the development of new algorithms many topics closely related to
the approximation of a fixed point have been studied. Since computational
experience revealed that the computation time highly depends on the

underlying triangulation, Saigal, Solow and Wolsey [1973] developed a



rough measure for the efficiency of a triangulation of the unit cube in a
fixed point algorithm. Todd [1976b, 1978a] proposed a more sophisticated
measure. However, even within a reasonable class of regular congruent
triangulations it is not known how the optimal triangulation according

to this measure looks like.

Another important problem is to state convergence conditions for a fixed
point algorithm applied on unbounded regions. Merrill [1971, 1972], Gould
and Tolle [1975], Todd [1976a, 1978b, 19801, Saigal [1977c], Reiser [1978a,
1978b], Saigal and Todd [1978], Van der Laan [1980], and others gave
conditions for the various algorithms. It appeared that these conditions
depend both on the algorithm and the underlying triangulation.

Fixed point algorithms for specially structured problems were studied by
Kojima [1978a, 1978b] and Todd [1978c, 1978d]. Acceleration techniques to
obtain quadratic convergence were derived Ey Wolsey[1974], Saigal and
Todd [1978], Todd [1978e] and Reiser [1978a, 1978c]. When the function is
smooth, the convergence rate can be considerably improved by performing a
.Newton—step once in a while.

Finally, we mention the studies about the kind of path of simplices
generated by a fixed point algorithm. These studies were done by Lemke

and Grotzinger [1976], Eaves and Scarf [1976], Todd [1976c], Saigal[1976],
Garcia and Gould [1978], Saari and Saigal [1979], Kojira [1980] and van
der Laan [1980]. In most of these papers the orientation of a simplex
plays an important role. The orientation theory was introduced by Shapley
[1974] for bimatrix games.

Survey papers about fixed point algorithms and related topics are those of
Gould and Tolle [1974], Eaves [1976], Saigal [1977b], and Allgower and
Georg [1980]. We also refer to the books of Todd [1976a] and Lithi [1976].
In this monograph a new measure for the efficiency of a triangulation of

a convex subset is introduced. Within an attractive class of so-called
"fixed point triangulationé'of R we calculate the optimal one according
to this measure. It will appear that this triangulation of Rn is a
generalization of the equilateral triangulation of R2. Also, a new
triangulation of the affine hull of Sn is proposed having the same measure
in the above sense as the optimal triangulation of Rn. Further , a variable
dimension algorithm is developed to compute a fixed point of a continuous
function (or mapping) from the product space of unit simplices into itself.

For this purpose we need a triangulation which depends on the starting



point of the algorithm. Moreover, based on this algorithm a class of
variable dimension algorithms on Rn is developed. The two extreme cases

of this class are of considerable interest. The first one is the basic
algorithm of Van der Laan and Talman [1979b] whereas the other extreme case
has the attractive property that fast movements in all directions can be
made. The latter case can also be utilized to approximate a connected set
of fixed points. Moreover, some new convergence conditions are discussed.
Finally, three different geometric interpretations of the variable
dimension algorithms are given.

This monograph is organized as follows.

In chapter 2 some pre}iminaries are given and the fixed point theorems

of Brouwer and Kakutani are proved. Also some triangulations of R" and Sn
are discussed.

Chapter 3 is devoted to applications of fixed point theorems. The
noncooperative N-person game is treated and, after stating a sufficient
condition for the existence of a fixed point on unbounded regions, the
constrained optimization problem and the nonlinear complementarity
problem are discussed.

Chapter 4 describes the algorithms of Kuhn [1968] and Eaves [1971], and
the more sophisticated algorithms of Merrill [1971, 1972] and Van der Laan
and Talman [1979a, 1979b]. Also vector labelling is introduced in this
chapter.

Chapter 5 discusses some known measures for the efficiency of a
triangulation for use in a fixed point algorithm and introduces a new
measure. This measure is based on the ratio of the average number of grid
points per unit cube and the accuracy of an approximate fixed point yielded
by the triangulation. Within a reasonable class of triangulations of R" the
optimal one is calculated and some of its properties are derived. For the
affine hull of Sn a new triangulation is proposed having the same nice
properties. Computational results will confirm the superiority of the new
triangulations.

Chapter 6 introduces a variable dimension fixed point algorithm on the
product space S of N unit simplices. The triangulation of S will be
defined in relation to the arbitrarily chosen starting point. As with Van
der Laan and Talman's basic algorithm on Sn, the algorithm generates a
unique path of adjacent simplices of variable dimension. However, the

number of labels (equations) exceeds the dimension of S by N. Whereas all



other restart algorithms terminate when a completely labelled simplex is
found, our restart algorithm terminates as soon as some special subset of
labels is found where the algorithm's terminal simplex need not be full-
dimensional. The dimension of this simplex, however, has no influence on
the accuracy of the approximation. We will apply the algorithm to the
noncooperative N-person game.

In chapter 7 a class of variable dimension fixed point algorithms on Rn is
developed using the ideas of the algorithm presented in chapter 6, by
considering R" as the product space of N lower-dimensional Euclidean
spaces. Both for integer and vector labelling new convergence conditions
are discussed. Much attention will be paid to the extreme case N = n.

We will indicate how for integer labelling in case N = n the algorithm

can be utilized to approximate a connected set of fixed points. For vector
labelling we will prove that Merrill's condition is sufficient to
guarantee convergence in case N = n and also for the case N = 1 if the
optimal triangulation derived in chapter 5 underlies the algorithm. Further-
‘more,an application to the Borsuk-Ulam theorem is discussed, cf. Todd and
Wright [1979]. At the end of chapter 7 some computational experience is
given. Our algorithm is also compared with the method of Reiser who
recently developed for the nonlinear complementarity problem an integer
labelling algorithm closely related to our case N = n.

Finally, chapter 8 gives three different geometric interpretations of the
algorithms presented in the chapters 6 and 7. By these interpretations

the algorithms can be viewed to trace zeroes of a piecewise linear
homotopy function defined on a set being the convex hull of S (or Rn) on a

natural level and an artificial set on an additional level.



CHAPTER 2

PRELIMINARIES

2.1, INTRODUCTION.

In 1910 L.E.J. Brouwer proved that any continuous function from a non-
empty, convex, compact subset of r" into itself has at least one fixed point.
In this chapter we give a constructive broof of Brouwer's theorem by using
the famous lemma of Sperner. In most fixed point algorithms the ideas of
Sperner's result are fundamental. In Sperner's lemma we need the concept
of a triangulation of a convex set. Section 2 gives the definitions of a
triangulation and a subdivision. In section 3 both Sperner's lemma and
Brouwer's theorem are proved. Section .4 discusses the fixed point theorem
of Kakutani. This theoremgeneralizes Brouwer's theorem to upper semi-
continuous point to set mappings. Finally, special triangulations of r"

and the unit simplex are treated in the sections 5 and 6 respectively.
2.2. TRIANGULATIONS AND SUBDIVISIONS.

Throughout this monograph R™ will denote the n-dimensional Euclidean

space
R™ = {(x X )T[x real for i =1 n}
1"-'In i roeeey
endowed with the usual metric p(x,y) = ||x - y|| where
n
2
el = €z =2y,
L, i
i=1

The i-th unit vector of R® will be denoted by e(i), i = 1,...,n, and the

nonnegative orthant of R® by R:, i.e.

R} = {x ¢ R"|x = 0}.



The affine hull of an m-dimensional convex subset C of R is the set aff C
defined by
m+1 i m+1 _—
aff c = {yly = = Aix where I Ai =1 and x €C, 1 £ i < m+1}.
i=1 i=1
Note that dim aff C = dim C. In the sequel the interior and the boundary
of C, to be denoted by int C and bd C respectively, are always taken with
respect to aff C.

We say that t+1 points wl,...,wt+1 of R® are affinely independent if
t+1 i _ t+1 _ . _ . .
Zi=1 A.w" =0 and Zi=1 Ai = 0 imply Ai =0, 1i=1,...,t+1. Note that this

definition implies t < n.

Finally, the convex hull of m points wl,...,wm of Rn is the set W defined
by

m

A,w- such that I A, =1 and A, = 0, i=1,..,m}
1t i=1 * *

W = {yeRn|y =
i

=]

' 1
DEFINITION 2.2.1. If w ,...,wt+1 are t+l affinely independent points of RQ

then the convex hull of these points is called a t-simplex or t-dimensional

1 +
simplex with vertices w ,...,wt 1. Such a simplex is denoted by o or

1 t+1
O(W yaeeyW ).

DEFINITION 2.2.2. A k-simplex T is a face of a t-simplex o (kst) if all

vertices of T are vertices of o. If k = t-1 we call 1 a facet of o. If y
is the vertex of ¢ which is not a vertex of the facet T of 0,we say that 7
is the facet of o opposite the vertex y.

DEFINITION 2.2.3. Two different simplices o, and 02 are adjacent if they

1
share a common facet or if one of them is a facet of the other.

Observe that in the last definition 9, and 02 have the same dimension if
they share a common facet.

In the following C denotes an m-dimensional convex subset of R".

DEFINITION 2.2.4. A collection G of m-simplices is a triangulation of C if

i) C is the union of all simplices in G

ii) the intersection of two simplices in G is either empty or a

common face



iii) Each facet either belongs to bd C and is a facet of just one
simplex of G or does not bhelong to bd C and is a facet of

exactly two simplices of G.

The following equivalent definition is sometimes useful to prove that a

collection of simplices is a triangulation of a convex set.

DEFINITION 2.2.5. A collection G of m-simplices is a triangulation of C if

the relative interiors of the faces of all the simplices in G partition C
and if each compact subset of C contains a finite number of them.

The proof that both definitions are equivalent follows from the fact that
each simplex is partitioned by the relative interiors of its faces.
Observe that there are only m-simplices in G and that if the set C is

not closed the number of simplices in G is infinite. So, for example let

C = (0,1] and let F be the collection of simplices o(wl,wz) in R such that

! = 2_(k+1) and w2 = 2_k, k =0,1,2,... Clearly, F is a triangulation

w
of the set C. However, the union of the elements of F and the zero-
dimensional simplex OO(Wl) with w1 = 0 is not a triangulation of [0,1]
since 00 is not l-dimensional. Note that F consists indeed of an infinite
number of elements.

We are not assuming that a triangulation is locally finite in the sense
that each x € C has a neighbourhood meeting only a finite number of
simplices of G (see e.g. Todd [1976a], Bardny [1979] and Eaves [1976]). In
chapter 8 triangulations will appear which are not locally finite.

A concept more general than a triangulation into simplices is a

subdivision into polyhedra.

DEFINITION 2.2.6. A polyhedron ¢ is the convex hull of a finite number of

points of Rn. Moreover, let T be a subset of 0. If for any p € T and any
x,y € 0 such that p = Ax + (1-\)y for some A, O < A < 1, holds that
X,y € T, then T is called a face of 0. If dim T = dim o0-1 we call T a

facet of o.
Now we can define a subdivision of C.

DEFINITION 2.2.7. A collection M of m—-dimensional polyhedra is a

subdivision of C if



i) » C is the union of all polyhedra in M

ii) the intersection of two polyhedra is either empty or a common face.

and )
iii) Each facet of a polyhedron either belongs to bd C and is a facet
of just one polyhedron of M or does not belong to bd C and is a

facet of exactly two polyhedra of M.

Note that every triangulation is a subdivision. Figure 2.2.la is an
example which gives neither a subdivision nor a triangulation, figure
2.2.1b is an example which givew a subdivision but not a triangulation,

whereas figure 2.2.2 1is an example of a triangulation.

Figure 2.2.1la. Figure 2.2.1b.

The proof of the next two theorems can be found in Spanier [1966]. Let M be

a subdivision (triangulation) of an m-dimensional convex set C of Rn.

THEOREM 2.2.8. If the subdivision M is locally finite then condition

iii) follows from i) and ii).

THEOREM 2.2.9. Let D be an (m-1)-dimensional subset in the boundary of C
such that D is equal to the intersection of C and the affine hull of D.
Then D is subdivided into (m-1)-dimensional polyhedra (simplices) which

are containted in D are facets of polyhedra (simplices) in M.
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These features are illustrated in figure 2.2.2. In this figure we have that
the facet T is a facet of both % and 9, whereas the boundary-facet T,
is a facet of only 03. Moreover, let D be the convex hull of the points A
and B. Then D is triangulated (or subdivided) into three 1-dimensional

simplices Tyr Tq and Tye
To compare triangulations or subdivisions it is interesting to know what

the largest distance between two points in the same simplex (or polyhedron)

is.

Figure 2.2.2. Illustration of condition iii) and theorem 2.2.9.

DEFINITION 2.2.10. The mesh of a subdivision M of C, to be denoted by

mesh M, is defined by
mesh M = sup {diam o},
oeM

where diam 0 = max { ||x - v|| | x,v € o}.

If M is a triangulation, we have the following corollary.

COROLLARY 2.2.11. Let G1 be the set of all one-faces of the simplices of

a triangulation G of C. Then

mesh G = sup {diam t}.

T€G1
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This result follows from the fact that diam c(wl,...,wt+1) is equal to

max, j{||wl - wJH } and the fact that the convex hull of two arbitrarily
’

chosen vertices of a simplex is a one-face of that simplex. Note that

the latter is not always true for a subdivision.
2.3. BROUWER'S THEOREM AND SPERNER'S LEMMA.

In this section we give a constructive proof of Brouwer's theorem. In
this proof the lemma of Sperner [1928] plays a very crucial role.
Arguments in the proof are used in fixed point algorithms to be discussed
in the later chapters. The idea is to triangulate the compact convex set
on which we want to compute a fixed point. Then each vertex is labelled
with one of the integers 1,...,m+l where m is the dimension of the set.
This labelling is such that if the vertices of an m-simplex carry all
the labels 1,...,m+l, each point of the simplex is an approximate fixed
point. By Sperner's lemma there always exists at least one such a simplex.
If we take now a sequence of triangulations with mesh tending to zero, then
there exists at least one subsequence such that the vertices of the simplex
having all labels converge to a singleton. This point is then a fixed point
as will be proved at the end of this section. More precisely, let G be a
triangulation of the m-dimensional convex subset C of R" and assume that
each vertex of the triangulation is labelled with one of the integers of

the set Im = {1,...,m+1}. We call the set of labels of the vertices of

+1
a simplex the label setof the simplex.

DEFINITION 2.3.1. An m-simplex in G is completely labelled if the m+l

vertices of the simplex carry a different label, i.e. if the label set of

the simplex is equal to Im+1

DEFINITION 2.3.2. The n-dimensional unit simplex is the set s™ defined by

n+l1
| = X, = 1}.
i=1

n+1

n
s -—{xeR+

The i-th boundary of sn, to be denoted by S?, is the set

st = {x e s%|x, =0} i=1,...,n+l,
i i
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. n
Observe that S" is indeed a simplex and that the vertices of S are the
n .
unit vectors e(i), i ='1,...,n+l. Moreover, S? is the facet of S opposite

to e(i).

DEFINITION 2.3.3. For a given triangulation of Sn, a labelling is called

proper if any vertex belonging to S? has a label different from i,

i=1,...,n+l.

LEMMA 2.3.4. (SPERNER).Let G be some triangulation of S". Assume that S°

is properly labelled with respect to G. Then there exists an odd number of
completely labelled simplices in G and hence G has at least one completely
labelled simplex.

PROOF. We follow the proof of Todd [197éa, pp. 12 and 13]. The proof is
trivial for n = 0. By induction on n the lemma will be proved. So, assume
the lemma is true for n-1 and let the vertices of ‘a triangulation G of s"
be properly labelled. Furthermore, let F be the collection of facets of
the simplices in G whose vertices carry all the labels 1,...,n. Next, let
A be the set of completely labelled simplices in G and let B be the set of
simplices in G whose vertices carry the labels 1,...,n but not n+l. Clearly
each simplex in A has just one facet in F whereas each simplex in B has
exactly two facets in F.

If D is the set of facets of F in the boundary of Sn and E is the set of
facets of F not in the boundary of Sn, then

|a] + 2[8] = [p] + 2]&],

where [X| denotes the number of elements in the set X. To show that |A| is
odd we will show that |D| is odd. Consider now the collection G' of

(n-1) -simplices of the triangulation G that are facets of n-simplices and

lie in SE . By theorem 2.2.9 G' is a triangulation of Sg+
n-—1

Moreover
+1 o !

. n
there is a one-to-one correspondence between Sn+ and S

1°
e 1 since Xn+1 =0
for any x € Sn+1' Because of the proper labelling of the vertices of G', we
obtain from the induction hypothesis that the number of completely
labelled (n-1)-simplices in G' is odd. But this number is equal to lDl.

Hence ]A| is also odd which completes the proof. ]
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We are now ready to prove Brouwer's theorem which says that a continuous
function from a compact, convex subset of R into itself has at least one

point fixed.

n
THEOREM 2,.3.5. (BROUWER'S THEOREM). Let C be a compact, convex subset of R .

*
Then any continuous function f£: C - C has at least one point x such that

f(x*) = x*.

PROOF. Without loss of generality we can restrict ourselves to continuous
functions from Sn into itself. To prove that any continuous function from
s™ into itself has at least one fixed point, let {Gk, k=1,2,...} be a

sequence of triangulations of s” such that €, = mesh G, » 0 if k + «, Each

k k
point y in s™ receives now an integer label %(y) defined by

Ly) = min{jlfj<y) <y and y, > 0},

Clearly, with respect to any Gk this labelling rule is proper. Note that
%2(y) is independent of the triangulation G, .

k
i
X in Gk' k=1,2,... .Let y (k)

be the vertex of o with 1(yl(k)) =i, i=1,...,ntl. Then for some

subsequence {k , j =1,2,...} of indices with kj > o if j > o, we have that

By Sperner's lemma,there is

at least one completely labelled simplex o

*
the subsequence {y (k ), =1 12,000} converges to a point X in Sn. Since

+ 0 if k > o, it follows immediately that y (k ) > x if j »> =, forall i.

k
From the labelling rule we know that f (y (k )) y (k ) for all i and j.
Hence, by the continuity of the functlon £, f (x ) < x for all i. Since,
however,

n+1 * n+1 .

z fi(x ) = & X0
i=1 i=1
* * *

it follows that fi(x ) = X, for all i, i.e. x is a fixed point of f. 0

The idea of a fixed point algorithm is to generate a sequence of completely

labelled simplices ck, k=1,2,..., with diam Gk + 0 as k » o,

2.4. KAKUTANI'S THEOREM.

Before stating Kakutani's fixed point theorem, which is a

generalization of Brouwer's theorem, we need some definitions,
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cf. Berge [1966].

DEFINITION 2.4.1. Let ¢ be a point to set mapping from a set C in R to

*
the set of subsets of RP. Then ¢ is upper semi-continuous at the point x

if

*
i) ¢(x) is compact
and
*
ii) for any open set D containing ¢(x ) there exists an open

neighbourhood U of x* such that ¢(x) < D for all x € U.

The mapping ¢ is called upper semi-continuous (u.s.c.) on C if ¢ is upper

semi-continuous at any point of C.

The following result follows immediately from this definition, cf. Todd
[1976a].

COROLLARY 2.4.2. If ¢ is an u.s.c. mapping from C to the set of subsets

*
of Rp, then for any sequence {xk} in C with limit x and any sequence

{yk} in R with limit y* such that y, « ¢(xk) for all k, we have
* *
y € ¢(x ).

Clearly, upper semi-continuity of a mapping ¢ from a compact, convex set C
to the set of nonempty subsets of C is not sufficient for the existence
of a point x* in C such that x* e¢(x*). We call such a point a fixed
point of the mapping ¢. However, if ¢ (x) is convex for all x € C, then we
have the following theorem due to Kakutani [1941] (see also Von Neumann
[1937]).

THEOREM 2.4.3. (KAKUTANI). Let C be a compact,convex m-dimensional subset

n

of R* and let ¢ be an upper semi-continuous mapping from C to the set of

. *
non-empty, convex subsets of C. Then there is at least one point x in C

such that x* € ¢(x*).

To prove the theorem we need the concept of a piecewise linear

approximation to a mapping with respect to a triangulation.
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DEFINITION 2.4.4. Let G be a triangulation of a convex m-dimensional

subset C of R" and ¢ a mapping from C to the set of subsets of RP. For

any vertex w of the triangulation G choose some vector f(w) € ¢(w).

Let x be an arbitrarily chosen point of C. Then x can be represented

by
m+1 i
x= I A,w
. i
i=1
+ 1 m+1
for vertices wl,...,wm 1 of a simplex o(w ,...,w ) in G and numbers

Xi 2 0 with Z?ti Ai = 1, where Ai and w are unique for all i with Xi > 0.

Then the function f: C RP defined by
m+1

+ i
£(x) = I A,£(wh)
=1 *

1

is called a piecewise linear approximation to the mapping ¢ Wwith respect

to the triangulation G.
It is immediately verified that f is continuous.

PROOF (OF THEOREM 2.4.3). We follow here the proof of Eaves [1971].

Let C' be an m-simplex containing C,and let c be an interior point of C.
Define now the mapping $.from C' to the set of non-empty, compact, convex

subsets of C' by

P(x) = ¢(x) X € int C,

$(x) = conv (¢(x) u {c}) x € bd C
and

b(x) = {c} X € C'\C

where conv (A u B) denotes the convex hull of the sets A and B. It is not
difficult to show that $.is an u.s.c. mapping on C'.

Suppose that $'has a fixed point x*. Clearly x* e C. If x* € int C then
x e ¢(x*) and hence x  is also a fixed point of ¢. If X € bd C, then

x* = Ac + (1-A)y for some y € ¢(x*) and A, 0 £ A £ 1, Since ¢ € int C,

we have that a positive A gives the contradiction x* € int C. Hence A = 0

* * * *
and y = x so that again x € ¢(x ). Therefore if x is a fixed point of
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—_— * —_
¢, x is also a fixed point of ¢. To prove that ¢ has at least one fixed

point, let {Gk} be a sequence of triangulations of C' with mesh Gk =& + 0

as k » o, Moreover, let fk be a piecewise linear approximation to ¢ with

respect to Gk' k=1,2,....By Brouwer's theorem, fk has a fixed point, say
+

xk. Also there is at least one simplex Ok with vertices yl(k),...,ym 1(k)

k
containing xk. Hence, for unique nonnegative numbers A?""’Am+1 with sum

equal to one,

" m+1 k i
x =f (x7) = & A, £ (y (k)) k=1,2,...
=1 K

Since C' is compact there is a subsequence {kj, j=1,2,...} of integers such
k. k.
*

" 3 3j * i i . . ©
that x > x , Ai g Ai and fk.(y (kj))'+ £~ for all i e Im+1 as j » o,
* * J m+l . *
Clearly, x € C', A, 2 0 and Zi=1 Ai = 1, Because of corollary 2.4.2 we

also know that f@ e $(x*), i=1,...,m+l, Taking k = kj in the equation

above and letting j - «, we obtain
1 . i . m+1 % i -
Af  with A, 20, I X, =1 and £ € ¢(x ).
1 * =1t

. b
x = I
i=

- k., * - % . -
Therefore, since ¢(x ) is convex, x € ¢(x ), which proves that ¢ has

indeed a fixed point. 0

All algorithms computing Kakutani-fixed points are based on the technique
of piecewise linear approximation to the mapping with respect to a

sequence of triangulations with mesh tending to zero.
2.5. SPECIAL TRIANGULATIONS OF Rn.

Although Brouwer was already concerned with the existence of
triangulations, Freudenthal [1942] was the first who constructed a
triangulation of Rn. This triangulation, called the K triangulation (or
I triangulation), was rediscovered later by Tucker in 1945 (see Lefschetz
[1949, page 140]) and yields the standard triangulation of the unit cube

as given by Kuhn [1960]. In the sequel we denote by I, the set of integers

k

I = {1,...,k} k=1,2,000. .
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DEFINITION 2.5.1. The K (or standard) triangulation of R} with grid size

§ > 0 is the collection of all simplices 0(y1,ﬂ) with vertices

y1, seey yn+1 such that

i) each component of y1 is a multiple of §,
ii) ™ = (nl,...,wn) is a permutation of the elements of In'
iii) yi+1 = yi + Ge(wi) i=1,...,n.
Note that all components of yi, i=1,...,n+l, are a multiple of §. We refer
the reader to Todd [1976a] for the proof that the collection of simplices
defined above is indeed a triangulation of Rn. The collection of simplices
such that y1 =0 and § = 1 gives the standard triangulation of the unit

n . .
cube of R" in n! simplices.

COROLLARY 2.5.2. The mesh of the K triangulation with gridsize § is equal

to 6vn.
. 1 1 n+l
The result follows from the fact that diam o(y ,m) = ||y -y ” =
T
§ |le]l = 6/n for each simplex c(yl,n),-where e denotes the vector (1,..,1).

Another well-known triangulation is due to Merrill [1971,1972] and Eaves
and Saigal [1972]. It is the H triangulation and is closely related to the
K triangulation. The H triangulation with grid size § > 0 is the collection

of all simplices o(yl,ﬂ) with vertices yl,...,yn+1 such that

i) each component of y1 is a multiple of ¢,

ii) m™ = (ﬂl,...,ﬂn) is a permutation of the elements of In"
+1 i

iii) yl = yl + 6é(ﬂi) i=1,...,n,

where &(j) is the j-th column of the nxn matrix

1 0 tiiieinan. O
1 -1 E
) o 1 . E
Q= . Sl
E a1 0
L 0 eeieiin0 1 -1



18

Also for this triangulation we have that the mesh is equal to §vn. Observe
that the H triangulation can be viewed as a nonsingular transformation of
the K triangulation with transformation matrix Q. Generally, we have the

following definition.

DEFINITION 2.5.3. Let A be a nonsingular nXn matrix. Then the AK

triangulation with gridsize § > 0 is the collection of all simplices

+
c(yl,n) with vertices yl,...,yn ! such that

-11
i) each component of A 1y is a multiple of §,
ii) ™= (ﬂl,...,ﬂn) is a permutation of the elements of the set In'
+1 i

iii) vy =yl+6a(1Ti) i=1,...,n,

where a(j) is the j-th column of the matrix A,

Equivalently we can say that the AK triangulation is the collection of

all simplices o(yl,...,yn+1) such that o(Aniyl,...,A—lyn+1) is a simplex
of the K triangulation. Note that for given permutation w all simplices
c(yi,w) are congruent to each other. Therefore an AK triangulation is said
to be a regular triangulation. So, to compute the mesh of an AK
triangulation we can restrict ourselves to the simplices c(yl,ﬂ) with y1

equal to the vector 0 = (0,...,0)T.

COROLLARY 2.5.4. The mesh of the AK triangulation with grid size § is equal

to

mesh AK = § max |] r oa() .
SCIn jes

The corollary follows from the fact that

diam o(0,T) = § 'max Il ; a(ﬂ.)” .
- 1<i<k<n  §=i A
Observe that the mesh of the AK triangulation goes to zero as § goes to
zero. Moreover, by a shift of the grid any a priori chosen point z can be
made to be a grid point of the triangulation. To keep simplices c(yl,ﬂ) of
an AK triangulation in storage, we only need the first vertex y1 and the
permutation m. Because of these nice properties an AK triangulation is

often used in fixed point algorithms. In most of these algorithms a path of
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adjacent simplices is generated starting with an a priori determined
simplex and terminating with a simplex which yields an approximate fixed
point.

Therefore we need a rule giving the representation of the n-simplex
adjacent to a simplex c(yl,ﬂ) if one of the vertices of the latter, say ys,
is replaced. Note that from theorem 2.2.8 it follows that there is
exactly one such simplex. Let c(wl,yl be the representation of the new

simplex, then we have the following theorem.

1
THEOREM 2.5.5. If o, = o(y ,m) and o, are two adjacent n-simplices of the

1
AK triangulation such that T(yl,...,ys—l,ys+1,...,yn+1) is the common
facet, then g, = c(wl,Y) where
w1 = 1+-Ga(ﬂ ) and = (m ) if s=1
=Y 1 nd y = 2,...,nn,n1 if s=
w1 =yt nd = (7 m ™ m_ ) if 2<s<
=y a Y = greee Mg oeMoeM qreeerm ) i <s<n
w1 = ‘1— Sa(m ) and = (7_,m m ) if s=n+l
Y n Y = A AR AN 1 = .

1
PROOF. Obviously, o(w ,y) with w1 and y defined above is an n-simplex of
the AK triangulation. Moreover it is easy to see that for these w1 and Yy
holds that

1 1 1 s-1 s+l n+1
oW ,Y) N oy ,m = T(Y seeesyY Y seeesy )

Hence, 0, has the representation stated in the theorem. 0

2
Finally, we discuss in this section the so-called J- or "Union Jack"
triangulation, a centrally symmetric triangulation due to Tucker (cf.
also Lefschetz [1949, page 1401), Whitney [1959, page 358] and Todd

[1977]. This triangulation with grid size§ > 0 is the collection of

simplices c(yl,w,s) with vertices yl,...,yn+1 such that

i) the components of y1 are odd multiples of §,
ii) ™ is a permutation of the elements of In'

iii) s is a sign vector in Rn, i.e. s, € {1,-1},
. i+1 i .
iv) yl = yl + dsﬂ e(ni) i=1,...,n.
i
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It is easy to see that the mesh of this triangulation is also equal to
8§/n. In the same way as above we can define the AJ triangulation for non-

singular nxn matrices A. Clearly we have

mesh A7 = § max {|| T a(3) - £ a(i)|},
S,TcIl jesS ieT
n
where § is the grid size.
The K-and H triangulations are illustrated for n = 2 in the figures

2.5.1a and b respectively.

a. The K triangulation. b. The H triangulation.

Figure 2.5.1.

In chapter 5 we shall see how the efficiency of a fixed point algorithm
depends on the underlying triangulation. In the same chapter we propose
a new triangulation that is in some sense optimal within a class of

triangulations very suitable for fixed point algorithms.
2.6. TRIANGULATIONS OF S'.

In this section we triangulate the n-dimensional unit simplex Sn on
which many fixed point algorithms were developed (cf. Scarf [1967], Eaves
[1971,1972], Kuhn and MacKinnon [1975], and Van der Laan and Talman
[1979a]) . Remember that Sperner's lemma was also given on Sn. Before
discussing regular triangulations of Sn, we give the so-called iterated

barycentric subdivision most familiar to topologists. For this
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triangulation Shapley [1973] introduced a fixed point algorithm. Since the
triangulation yields long and skinny simplices, it is not very suitable
for use in fixed point algorithms (see also chapter 5).

The first barycentric subdivision of s" consists of (n+15! simplices o(y)

each associated with some permutation Y of the elements of In+1' More

precisely,o(y) is the n-simplex with vertices wl,..,wn+1 such that
i -1 i
woo=1i I el(y,) i=1,...,n+l,
=t

In each following stage an n—-simplex o(vl,...,vn+1) is again barycentrally
+ +
triangulated in (n+1)! simplices o(ylvi,...,vn 1) with vertices wl,...,wn 1

such that
i
w =i Iv i=1,...,ntl.

The first stage and partly the second stage are pictured in figure 2.6.1
for n'= 2, In this figure o is a simplex of the first stage and T a simplex

of the second stage.
e(3)

e(1) e(2)

Figure 2.6.1. The iterated barycentric subdivision.

Closely related triangulations were proposed by Zangwill [1977] and
Stynes [1979]. Also these triangulations yield long and skinny simplices
affecting the accuracy. Moreover, the replacement step of these

triangulations are complicated and difficult to program.
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Now we discuss a triangulation of S™ which is very popular in fixed point
algorithms. This triangulation is referred to as the standard or Q
triangulation of s and is closely related to the éK or H triangulation

of Rn.

DEFINITION 2.6.1. The Q (or standard) triangulation of s™ with grid size

m_1 (m is a positive integer) is the collection of all simplices o(yl,n)

with vertices yl,...,yn+1 in Sn such that

i) each component of y1 is a multiple of m_l,

ii) m™ = (nl,...,nn) is a permuation of the elements of In'
+1 i

iii) v =y o+ m-lq(ﬂi) i=1,...,n,

where g(j) is the j-th column of the (n+l)*n matrix

-1 0 . . . . 0—T
1 -1 .
0 1 -1 .

Q = - - . .

. -1 .
. 1 -1

| O . . . . 0 1

Observe that gq(i) = e(i+l) - e(i), i =1,...,n, i.e. g(i) is the difference

between two vertices of Sn. Actually, the Q triangulation can be seen as

the transformation Q of the K triangulation of Rn, restricted to the set
s". Note that the rank of 0 is n and that Z?:i qij
same way we can define the Q J triangulation with gridsize m_l, This

=0, j=1,...,n. In the

1 .
triangulation is the collection of all simplices o(y ,m,s) with vertices

vl v in s such that

n

i) y1 =e(l) +m z Aj q(j) for even nonnegative integers A
j=1

ii) m is a permutation of the elements of In'

.
J

iii) s is a sign vector in rRY,
1 i -1 .
=y + m S"iq(ﬂi)’ i=1,...,n.

. i+
iv) y



= 5 in the figures

Both triangulations are illustrated for n = 2 and m

2.6.2a respectively 2.6.2b.

In general, we obtain a regular triangulation of a k—-simplex

1 k+1 i i
V yeee,sV , if we set g(i) = vl+1 - Vl, i=1,...,k.

e(3)

e(l) e(2)

Figure 2.6.2a. The Q triangulation.

e(3)

v e(2)

e(1)¢ v

Figure 2.6.2b. The QJ triangulation.

23
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Clearly, the triangulations of s™ can be extended directly to
triangulations of the ‘affine hull of Sn. This set will be denoted by o and

is given by

n+l
ot = (x e Rn+1| Iox, o= 1}.

i=1
Of course, m need not to be an integer, whereas the grid can be shifted to
make an a priori chosen point z of Un to be a grid point of the
triangulation. Moreover, any transformation Q A of the K triangulation
gives a triangulation of Un if A is a nonsingular nXn matrix. Only in a
few cases the simplices which cover s® form a triangulation of s™. In
chapter 5 we pay more attention to this matter. Note that the matrix Q
is not anorthogonal mapping so that simplices of the K triangulation of
R" are deformed by the Q transformation to Sn. Consequently, in general

mesh QAK is not equal to mesh AK.

LEMMA 2.6.2. Let m_1 be the grid size of the triangulation.

a) mesh QAK = 0! max [z oath]
ScI jes
n
b) mesh QAT = m © max Il 2 0a(3) - = gald)] .
S,T<I jeS ieT

PROOF .

1
a) Let z" be a grid point of the triangulation. Then

mesh QAK = max max |lzl—21”
o(z ,m) iel
(z7,m ie n+1
since the triangulation is regular, where zt denotes the i-th vertex of

1 \
o(z ,m). Since z" is equal to

i -1 it
z =2z +m LI Qa(m,) i=1,...,n+1,
‘=1 3
J
we obtain
i1 -1 :
max max lz-2z"|| =m max || £ oa(i] .
o(z*,m ieIn+1 SCIn jes

1
b) Let z be a grid point such that
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1

zm = e(l) + m_1

[T =

qu(j) for even nonnegative integers Aj.

=1

Then in the same way as in part a) we obtain

mesh QAJ = max max |[zi—z1” =
c(z“,’lT,s) i€In+1
=m ! max Il £ 0a(i) - £ oa(i)] . O
S,TeI  jeS ieT

COROLLARY 2.6.3. Let m—1 be the grid size of the triangulation.

a) mesh Q = m_1 Vn+l if n is odd and mesh Q = m—l/h ifniseven.

b) mesh QJ = m"1 v4n-2.

PROOF ,
" a) Take in part a) of theorem 2.6.2 the set S equal to

[4)]
|

= {1,3,...,n} if n is odd

and

0
I

= {1,3,...,n-1} if n is even.

b) Take in part b of theorem 2.6.2 S equal to S= {1,3,5,....} and T equal
toT = {2,4,6,....}.

Observe that mesh K = mesh J but that mesh QK is unequal to mesh QJ.
Clearly, the QJ triangulation yields long and skinny simplices and is
therefore less suitable for use in fixed point algorithms on s" or Un. Even
the Q triangulation is not very attractive as will appear in chapter 5. In
that chapter we propose a new triangulation which seems to be the most
suitable triangulation of Sn or o for use in fixed point algorithms.
Finally, we remark that the replacement step for the QAK triangulation is
the same as for the AK triangulation of Rn. Before discussing algorithms
we give some applications of Brouwer's and Kakutani's fixed point theorems
and we extend the latter to mappings on unbounded regions (cf. Merrill
[1971,1972]).
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CHAPTER 3

EXTENSIONS AND APPLICATIONS OF FIXED POINT THEOREMS

3.1. INTRODUCTION.

To prove the existence of a solution to a problem in nonlinear
mathematics, fixed point theorems are of extreme importance. Applications
are numerous and include the existence of an equilibrium in economic
models and game theory and (un)constrained optimization problems. However,
in many applications the conditions of the fixed point theorem treated in
the previous chapter are too strong. Therefore we will discuss a lemma
due to Merrill that gives a weaker condition.

In section 2 we first treat the problem of the existence of an equilibrium-
strategy vector in a noncooperative N-person game. In section 3 Merrill's
condition is stated and it is proved that this condition is sufficient for
the existence of a fixed point of a mapping from Rn to the set of nonempty,
convex subsets of Rn. Finally, in the sections 4 and 5 some applications
of Merrill's condition are discussed, viz. the constrained optimization

problem and the nonlinear complementarity problem.
3.2. NONCOOPERATIVE N-PERSON GAME.

The noncooperative N-person game can be characterized by N players,
indexed by j = 1,...,N, and by mj+1 pure strategies for player j, j=1,..,N.

If the set I denotes the product of index sets I j=1,...,N, then

m.+1'
the vector k = (kl""'kN) € I means that player E j uses his kj—th pure
strategy. Therefore we call E_e I a strategy vector. Furthermore, let

aJ(E) be the loss to player j if strategy k is played. Without loss of

generality we can assume that each aJ(k) is positive, k € I, J € IN.
ms - -
Moreover, let S 7 be the strategy space of player j, i.e. the i-th

ma
component of the vector x? € s J denotes the probability that player j
uses his i-th strategy. Finally, define S by
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Then S represents the strategy space for the game. The z?—l(mj+1)—
dimensional vector x = (xl,...,xN) will denote an element of S such that

. Mo .
x] es J, j e %n' Now, the expected loss pj(x) to player j if strategy
X € S is played is given by

i

X .

1 i

==

Pl = T adm
kel i

The marginal loss to player j if he plays his h-th pure strategy and

the other players stick on strategy x, is given by

N

mx) = I alk) T x_ .
keI i=1 i
kj=h i#j
m,+1
3

Clearly, pj(x) =1 xﬂ mﬁ(x) for all j e In and x € S.

h=1

DEFINITION 3.2.1. A point X € S is an -equilibrium-strategy vector of the

game if for each player j
W@ >l ® n=t,..m.
J

We now prove that there exists indeed such an equilibrium vector (see
Owen [1976]) . Therefore we construct a continuous function £ from the
compact, convex set S into itself such that a fixed point of £ is an
equilibrium vector. Since f has at least one fixed point, we obtain the

desired result. Therefore, let for j =1,...,N
bj (x) = max (nj(X) - j(x) 0) h=1 m.+1
h L mh ’ ,--.,j .

Next we define the continuous function £ from S to S by f(x) =
. ma
(fl(x),...,fN(x)), where f£J(x) is the function from S - into itself defined
by
+1
™3

Jix) = (5 3 3 =
0 = (kg + Db (x)/(1 + kzl by (x)) ho=1,....ml.
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We will now show that if X is a fixed point of £, x is also an
equilibrium-strategy vet¢tor. Since x is a fixed point of £, we have that
mj+1
e I . B B iz
Xy = fh(x) = (xh + bh(x))/(i + I bk(x)).
k=1
Suppose now that for some player £, bﬁ(g) is positive for some h.

Then the denominator above is larger than one and hence we must have that

bﬁ(gb > 0 for any k such that ;i > 0. Thisiimplies that pl(gﬁ > m£(§3 for
all k with.zx > 0, which contradicts the fact that pj(x) is a weighted

k .
J J

h h
all h = 1,...,mj+1, which proves that x is an equilibrium-strategy vector.

average of the m; (x) with weights x7, j = 1,...,N. Hence, bﬁ(E} < 0 for

We remark that we will use another index-notation in chapter 6.

To prove the existence of an equilibrium price-vector in economic models,

a very similar function £ as above can be used, see e.g. Scarf [1973],

Todd [1976a] and Van der Laan [1980]. However, by using the above defined
functions b and f, we loose important information about the quantities

p and m. This affects the efficiency of a fixed point algorithm. Therefore,
we develop in chapter 6 a complementarity problem which is equivalent to
the noncooperative N-person game (cf. also Van der Laan and Talman
[1978b]). The general nonlinear complementarity problem is discussed in

section 5.
3.3. EXTENSIONS TO KAKUTANI'S THEOREM,

Before giving some other applications we relax the conditions of
Kakutani's theorem so that we get a fixed point theorem for mappings
on R" or R:. The first extension is due to Eaves [1970] (see also Todd

[1976al).

" LEMMA 3.3.1. Let C be a compact and convex subset of R” and let ¢ be an
upper semi-continuous mapping from C to the set of nonempty, convex,

n
compact subsets of R . Suppose that there exists some c € int C such that

* * *
c € ¢(x) for all x € bd C. Then there is an x € C such that x € ¢(x ).

PROOF. Since ¢ is upper semi-continuous and C is compact, the set
n
$(c) ={y eRrR | y € ¢(x), x € C} is compact. Hence the convex hull of the

set C U ¢(C) is compact. Extend now ¢ to $ in the same way as in the

— . *
proof of theorem 2.4.3. Then, by the same theorem, ¢ has a fixed point x .
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By repeating the second part of the proof of theorem 2.4.3, we get
* *
X € ¢(x ). 0O

The following extension is due to Merrill [1971,1972] and plays an
important role in the convergence of many fixed point algorithms on Rn.

In the sequel let B(x,p) denote the set defined by

B(x,p)={y ¢ R"| max Iyi—xi] < p} x € R, p 2 0.
i=1,...,n

LEMMA 3.3.2. (MERRILL'S CONDITION). Let ¢ be an u.s.c. mapping from R to

n n
the set of nonempty, convex subsets of R . Suppose there exist w € R,

g > 0 and p > 0 such that for all x * B(w,u), £(x) € ¢(x) and z € B(x,p)
T
(£(x) - x) (w-2) > 0.
" Then ¢ has a fixed point in B(w,u).

PROOF. Let C be the compact, convex set B(w,2u). Define E—from C to the

set of nonempty, convex subsets of Rn by

g(x) ¢ (x) if x € int C
and

% (x)

conv (¢(x) u {w}) if x € bd C.

Clearly, $ is an u.s.c. mapping such that w € Ekx) if x € bd C.

Therefore, by lemma 3.3.1, 3 has a fixed point x* in C. If x* ebB(w,u),
then x* € int C and hence x* € ¢(x*). We now prove that x* & B(w,u) gives
a contradiction. If x & B(w,u), then %" e conv(¢(x*)u {w}), i.e. for some

A, 0<A<1, and £(x) € ¢(x") we have that

x* = Afx) + (1 - Nw,
and so

Ax" - £ + (1 - D -w = o.

* * *
From the condition of the lemma we know that (x -f(x ))T(x -w) > 0. More-
* *
over, (x —w)T(x -w) > 0 so that the above equality gives a contradiction.

]
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Note that the theorem is also valid if the condition holds only for

x € bd B(w,u), but for fixed point algorithms this condit;on is not strong
enough (cf. Todd [1976a,page 63]). The next two sections are based on the
work of Merrill [1971,1972].

3.4. CONSTRAINED OPTIMIZATION.
In this section we consider the problem
(P) min {£(x) ] g; () €0, i=1,...,m}

where f and 9; are functions from Rn to R. All functions are assumed to
be convex (and finite). Furthermore, let Sh be the set of all subgradients

of a function h: Rn <+ R, i.e.
n T . n
Sh(x) = {y € R'| h(z) 2 h(x) +y (z - x) for all z in R }.

*
Note that for a convex function h, 0 e Sh(x ) if and only if x* minimizes
h(x), x € Rn. Moreover, if h is convex, then 8h is an u.s.c. mapping from
R to the set of nonempty, convex subsets of R" (Rockafellar [1970,

theorem 2.4.5.1]). Next, define the function s from Rn to R by

s(x) = max gi(x).
1 <i<m

If I(x) = {i| s(x) = gi(x)}, then 8s(x) = conv ( U 8g, (x) ).

ieI(x)
Since s and f are both convex, we have that 8s and 8f are u.s.c. mappings
from Rn to the set of nonempty,convex subsets of Rp. Next, define the

mapping ¢ by

¢ (x) {x} - 8£(x) s(x) <0

{x} - conv (8f(x) U 8s(x)) s(x)

]
o

{x} - 8s(x) s(x) > 0,
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where for any two sets A,B < Rn the set A - B is defined by
A-B={xy|xen ye Bl _ '

It is easy to see that ¢ is an u.s.c. mapping from Rn to the set of non-

empty, convex subsets of Rn.

LEMMA 3.4.1. If there exists a point X € R" with s(x) < 0, then the set of

optimal solutions to the problem (P) is the set of fixed points of ¢.

PROOF. Let x* be an optimal solution. Then x* minimizes f+A*s for some
2* > 0 such that X*s(x*) = 0 (see Rockafellar [1970, corollary 28.2.1])
if s(x) < 0 for some x. So, since 0 € Gf(x*) + A*ds(x*), there exist
ae Gf(x*) and b € 8s(x*) such that

A+ 29 s a1+ = o,

Hence, 2= 0 implies O € 6f(x*) and x* € ¢(x*). If PR 0, then

0 e conv(ﬁf(x*) v Gs(x*)) and further's(x*) = 0. Consequently, again

x* € ¢(x*).

Conversely, let x* be a fixed point of ¢. If s(x*) > 0, then 0 € Gs(x*) and
so x* minimizes s(x), X € Rn, and therefore s(x) > 0 so that the condition
of the lemma does not apply. If s(x*) < 0, then 0 € Gf(x*) and so x*

solves the problem (P).

Finally assume that s(x*) = 0. Then O € conv(éf(x*) U Gs(x*)) and hence

there exist a € 6f(x*) and b € és(x*) such that for some A*, 0 < X* <1,
a+ (1 -2%Dp =o0.

£ A" = 0, then O € GS(x*) and so x* minimizes s, i.e. s(x) 2 0 for all x.
However, if A* is positive, then a + A*—l(l - A*)b = 0 and x* minimizes
£+ 2* 11 - 2*)s. Again, by Rockafeller [1970, corollary 28.2.11, x*

solves the problem (P). 0

In the next theorem we state that Merrill's condition is satisfied if for

some o the level set {yls(y) < o} is nonempty and bounded.



32

THEOREM 3.4.2. If for some o the set {yls(y) < a} is nonempty and bounded,
then for any w € Rn and 'p > 0 there exists a § > 0 such that Merrill's

condition is satisfied for ¢.

PROOF. Since s is convex and {y|s(y) < a} is nonempty and bounded for some
o, the set {y|s(y) < v} is also bounded for each y. For given w ¢ R" and

p >0 let
B = max [0, max {s(x)|x € B(w,p)}].

Thus {yls(y) < B} is bounded. Choose p such that the latter set is
contained in B(w,u). Note that ¢(x) = {x} - 8s(x) for x * {yls(y) < B}
since B 2 0. Choose for any x * B(w,u)vsome g(x) € ¢(x) and z € B(x,p).

Then we have x - g(x) € 8s(x) and so
(G(x) - %) (w=2) = (g(x)=%) ' ((W-24x)=X) 2 s(X)-8 (W-2+%) .

Since w-2z+x € B(w,p) we have that s(w-z+x) < B. Moreover, s(x) > B.

Consequently
T
(g(x) = x) (w=2) >0
which proves the theorem. 0

In the same way the unconstrained optimization problem can be treated (see
e.g. Merrill [1971,1972], Liithi [1976], Todd [1976a] and Van der Laan
[19801).

3.5. NONLINEAR COMPLEMENTARITY PROBLEM.

Let f be continuous from Ri to Rn. The nonlinear complementarity

*
problem is to find a point x ¢ R: such that

* n *
f(x) 20 and I xifi(x ) = 0.

This problem, to be denoted by (NLCP), was first studied by Cottle [1966].

The following theorem due to Moré [1974] gives a‘sufficient condition for
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the existence of a solution. The proof makes use of Brouwer's fixed point

theorem.

THEOREM 3.5.1. Assume there exist w ¢ Rz and some p > maxiwi such that for

all x € R® with max,x, 2 p holds
+ i1

. max (xi—wi)fi(x) > 0.
i=l,...,n

) *
Then the (NLCP) has a solution x in the set Bp = {x e Rilmax.i xi < pl.

PROOF. Let h: Ri + R"be the function defined by (componentswise)
h(x) = max{0,x-£(x)}.
. »* * *
Clearly, x solves the problem if and only if h(x ) = x . So, we now prove
-that h has a fixed point in Bp. Since h is continuous,Bp u h(Bp) is compact.

Let T be such that Bp u h(Bp) is a subset of BT. Define the function
r: B > Bp by

r(x) = x X € Bp
= A(x)x + (1-A(x))w x ¢ B,

where
A(x) = min {(p—wi)/(xi—wi)lxi > pl.

Clearly, r(x) € Bp if x e BT, and both functions A and r are continuous.
Define now the continuous function g from the compact, convex set BT into
itself by g(x) = h(r(x)). By Brouwer's theorem, g has a fixed point x*.

A Of course h(x*) = x* if x* € Bp. Suppose x* & Bp. By the definition of

A(x), maxjrj(x*) = p. Let i be an index such that
* *
(ri(x )-wi)fi(r(x )) > 0.
*
If ri(x ) > W, we have

* * * * * *
xi 2 ri(x ) > LA > 0 and x, p- ri(x ) > ri(x ) - fi(r(x )).
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*
If r.(x ) < w,, we have
i i
* * * *
< < < -
0 X, ri(x ) ri(x ) fi(r(x )).
Hence, in both cases
* * *
x, #max {0, r,(x') - £ (x(x*N} = g, (x"),
i i i i
*
which contradicts the fact that x is a fixed point of g. O
Merrill [1971,1972] represented the nonlinear complementarity problem
directly as a fixed point problem and gave a sufficient condition for the
condition of lemma 3.3.2. Therefore, let us define the convex function
g: R" > R" by .

g(x) = -—mlnixi

and the mapping ¢ by

d(x) = {x - £(x)} X € int R:
= {x} - conv({f(x)} U 8g(x)) X € bd Ri
= {x} - 8g(x) x ¢ Rﬁ.

Since f and g are both convex, ¢ is an u.s.c. mapping from R to the set of

nonempty, convex subsets of Rn.
* *
LEMMA 3.5.2. The point x solves the (NLCP) iff x is a fixed point of ¢.

PROOF. Let x* € ¢(x*). If x* * R:, then 0 € Gg(x*) and x* minimizes g(x),
x € R'. This contradicts the fact that g(x) > 0 if x ¢ R: and g(x) < 0 for
X € R:. Hence, x* € R:. Of course, x* solves the (NLCP) if x* € int R?.
So, let x* € bdR:. Then it is easily seen that

Gg(x*) - conv (U {e(d)] i€ 1(x"H D,

where I(y) = {ilyi =0}, v e R". Consequently, fi(x*) = 0 for all indices

* *
i & I(x ). Moreover, fi(x ) 20 for i € I(x*). Together this proves that
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x" solves the (NLCP) .

Conversely, let x* be a solution of the nonlinear complementarity problem.
If f(x*) = 0 we must have that x* € ¢(x*). Note that f(x*) =0 if

I(x*) = . Suppose now that f(x*) > 0 and f(x*) # 0 so that I(x*) # @#. Then

a = Zifi(x*) > 0. Consequently,

£(x") = 3 £ (x)e(i) € a conv(ufe)|i e 1xN.
=1

1

Hence, -f(x*) € a6g(x*). Note that
= (o) alx® + o e Y+ (e THxToE(x M) ).

Since x* + a—lf(x*) € {x*} - Gg(x*) and x* - f(x*) € {x*} - {f(x*)}, we

obtain that x* € ¢(x*) which proves the lemma. 0

In the next theorem we give a sufficient condition for the existence of a

fixed point of the mapping ¢, where ||y|| = max |yi|.
i

THEOREM 3.5.3. Suppose there exist o,f > 0 such that

[ =]

xifi(x) >allx] . ||£x) ]| if x € Rﬁ\B(O,B).

i=1

Then for any p > 0 there exist w € Rn and 4 > 0 such that Merrill's
condition is satisfied for the mapping ¢.
PROOF. Let w be such that wi > p for all i, and let

u > max {8 + ||lw] , a—i(p + |lwll 3.

Furthermore, let x & B(w,u), £ € ¢(x) and z € B(x,p). If g(x) > O then
x - £ € 8g(xX). Thus, as in the proof of theorem 3.,4.3

T
(£ -x) (w=-2) 2g(x) - glw + x - z),
which is positive since g(y) < 0 for all y € B(w,p). So, Merrill's

condition is satisfied. If g(x) < 0, then x € R: and x * B(0,B). Hence,

f = x - £(x) which implies
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(£ - x)T(w - z)

since f(x) cannot be 0.

Finally, if g(x)

= 0 we can

that Merrill's condition is

positive.

0

—E(x) | (w-2) = £(x) x+E(x) | (—w-x-+z)

v

al‘x” .I!f(x)“ - |If(x)” .AHz—x—w”

v

eeo |l @ llxll - [lwll =0 > o0,

combine both cases above to prove again

satisfied, i.e. that (f—x)T(w—z) is
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CHAPTER 4

ALGORITHMS TO FIND COMPLETELY LABELLED SIMPLICES

4.1. INTRODUCTION.

In this chapter algorithms to approximate a fixed point of a
continuous function or u.s.c. mapping from an m-dimensional convex subset
of R" into itself are discussed. Except forcharf's original method all
these algorithms take a sequence of triangulations of the set such that
the mesh of the triangulation tends to zero. Then the vertices of the
triangulations are labelled with one of the integers {1,...,m+1} (or with
an (m+l)-vector) in such a way that a completely labelled m-simplex yields
an approximate fixed point. A fixed point algorithm now tries to find a
sequence of completely labelled simplices, one for each triangulation. Then,
if the mesh goes to zero, the accuracy of the approximation increases.
Moreover, in the limit at least one subsequence of completely labelled
simplices converges to a fixed point.

To generate an approximate fixed point on the unit simplex s scarf
introduced in 1967 an algorithm based on the concept of primitive sets
rather than based on a triangulation of sn. Using Scarf's basic ideas
Kuhn developed in 1968 and 1969 two closely related algorithms on Sn
based on the standard triangulation of Sn and only for integer labelling.
In 1971 Eaves presented an algorithm for vector labelling to compute
fixed points of an u.s.c. mapping on a convex compact subset of Rn.
However, all these algorithms suffer from computational inefficiency since
they must start on the boundary of the set or outside the region of
interest. Consequently, in these algorithms an obtained approximation
cannot be used as the starting point in the next application of the
algorithm with a smaller grid size. A large number of algorithms avoidina
this disadvantage was developed during the seventies. One method is due
to Merrill [1971,1972] and was independently found by Kuhn ard MacKinnon
[19751, Liithi [1975,1976] and Fisher, Gould and Tolle "19771. This
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algorithm can start anywhere and was developed for problems on S® and R®
both for integer and vector labelling. Thus, for a decreasing sequence

of grid sizes the algorithm can be applied such that in each step
information about the approximation in the previous step éan be utilized
to determine the new grid size and the new starting point.

Another method taking advantage of available information is the homotopy-
algorithm introduced for integer and vector labelling by Eaves [1972] on
s and by Eaves and Saigal [1972] on R". In their method the grid size is
automatically refined during the algorithm. However, both the restart
method of Merrill and the homotopy-algorithm of Eaves and Saigal operate
in an (n+1)-dimensional subset and generate a path of full-dimensional
adjacent simplices of a triangulation of this set. Furthermore, in
Merrill's algorithm an extra level of artificially labelled points is
needed whereas the factor of incrementation for the homotopy-algorithm is
at most two.

Van der Laan and Talman [1979a,1979b] developed a restart algorithm on s”
and R” which avoids the introduction of an extra dimension. Moreover, their
algorithm starts with a single point and generates then a path of adjacent
simplices of variable dimension until a completely labelled n-simplex is
generated (see also Van der Laan [1980]), Further, Van der Laan and Talman
[1980b] considerably improved the homotopy-algorithms. Using ideas of their
restart method, they introduced a homotopy-algorithm on sn and Rn in which
the. factor of incrementation can be of any size.

This chapter is organized as follows. In section 2 the standard labelling
rules on S" and R" are presented both for integer and vector labelling.
Also theorems about the ‘accuracy of an approximate fixed poiﬁ£ are given.
In section 3 one of Kuhn's algorithms and Eaves' first algorithm are
discussed. Section 4 gives a short description of Merrill's algorithm.

The basic variable dimension algorithm of Van der Laan and Talman is

" discussed in section 5. Also in section 5 attention is paid. to the

centinuous - deformation algorithms.
4.2. LABELLING AND ACCURACY.

To prove that a continuous function from the unit simplex Sn into
itself has at least one fixed point, a sequence of triangulations Gk with
mesh Gk + 0 as k » @ was taken and each vertex was labelled by an integer

2(¢). In this section we redefine this labelling rule.
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n
DEFINITION 4.2.1. (STANDARD INTEGER LABELLING ON Sn). A point x € S

receives the label 2(x) ‘€ In+1 where 2(x) = i if

i = min {j]fj(x) - xj = min (fh(x) - xh)}.
hel
n+l

Clearly 2(x) # i if xi = 0, except when f(x) = x and x1 = 0. In this case
we do not assign the label 1 to x but the first index i such that X, > 0.
So, since the labelling rule is proper, we have, by Sperner's lemma, that
each triangulation G has at least one completely labelled simplex. We now
show how close an arbitrary point x in a completely labelled simplex of a

given triangulation G is to its image f(x).
LEMMA 4.2.2. Let €,8 > O be such that mesh G = 8 and

max |£,(x) - £,(y)] < € for all x,y € 0, 0 € G.
jeI J
n+1

*
Then for any X in a completely labelled simplex ¢ in G

max ]f.(x*) - x;l < n(e + 8).

. J
JeIn+1

PROOF. Let yl be the vertex of ¢ with l(yl) =i, i=1,...,n+1.

Clearly, for i ¢ In+1

* * * i i i i *
fi(x ) - X, = (fi(x ) - fi(y )) + (fi(y ) - yi) + (yi - xi).

Since l(yl) = i, the second term on the right side of this relation is

. R * i
nonpositive. Moreover, since x and y € o,

i * * i .
- < o - i=1,... .
yi xi § and fi(x ) fi(y ) < g, i=1, ,n+1

Combining these facts together, we obtain

f,(x*) - xf < e+ 6.
i i
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On the other hand, since Z?:i (fj(x*)—x;) = 0, we have for all i
£(x) - xf =~ I (£, (x")-x%) > -n(e+6),
i i . s J
I#L
and so with the previous inequality we get the desired result. 1

The lemma guarantees that a completely labelled simplex of a triangulation
of s® vields an approximation of a fixed point if the standard labelling
rule is used, where maxilfi(x*)—le can be made as small as required by
taking the mesh § small enough. Note that assigning an integer label i

to a point x means that almost all information about the vector f(x)-x is
lost. Only the fact that the i-th component of f(x)-x is smaller than the
other components is used. To overcome this loss of information we can

T
assign a whole vector to the point x. Let e be the (n+l)-vector (1,...,1) .

DEFINITION 4.2.3. (STANDARD VECTOR LABELLING ON sh.a point x € Sn

receives the (n+l)-vector 2(x) where
2(x) = -f(x) + x + e.

Analogously to the definition of a completely labelled simplex for integer

labelling we have the following definition for vector labelling.

+
DEFINITION 4.2.4. A simplex o(yl,...,yn 1) of a triangulation G of st is

completely labelled if the system of n+l linear equations

+1 i
I A ey) =e
=1 *

n
i

*

n+1)'

* *
has a nonnegative solution A = (Al,...,k
The following lemma states that a completely labelled simplex in G

yields an approximate fixed point.

LEMMA 4.2.5. The piecewise linear approximation f to the continuous function
f with respect to G has a fixed point in the simplex o if and only if o

is completely labelled. If A* is the solution of the system of eqguations
of a completely labelled simplex U(yl,...,yn+1), then the vpoint
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+1 * i
I ALY
=1 1

* n
X =
i

is a fixed point of f in o.

PROOF. Let o(yl,...,yn+1) be a completely labelled simplex with solution
A", since z;‘fi(fi (x)-x,) = 0 for x ¢ s", we find by adding up all

equations of the system that

n+1
AT = 1.
i=1 *
Hence x* = 2211 X;yl lies in o(yl,...,yn+11 and

- % n+l * i ‘4 n+l N i

-f(x') +x = L A(-£f(y) +y)= I X2y) -e=0,
. i i
i=1 i=1

which proves that x* is a fixed point of f in o.

Conversely, if x is a point in 0(y1,...,yn+1), there is a unique
nonnegative vector A = (kl,...,An) with Z:Zi Ai = 1 such that
X = Zn+1 A i Hence
i=1 "4¥ -
_ n+l i i n+l i
—f(x)+x = I A (-£(y) + v +e) —e= I A, Y) - e.
. i . i
i=1 i=1

* - -
If x is a fixed point of f in o, then f(x*) - x* = 0, which implies that

n+1 * i
A (YyT) = e,
. i
i=1
* . . * n+l, x i
where the Ai's are the unique nonnegative numbers such that x = Zi=1kiy .
Therefore, by definition, c(yl,...,yn+1) is completely labelled. ]

*
In the next theorem the accuracy of x as approximate fixed point is given.
THEOREM 4.2.6. Let €,8 > 0 be such that mesh G = § and

max If.(x)—fj(yll <€ for all x,y € 0, 0 € G.

JeIn+1

Then, if x* is defined as in lemma 4.2.5,
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max ]f.(x*) - x;] < €.
I€The

PROOF. From the proof of theorem 4.2.5 we have that
1 n+1

o
AE(yT) with Z AT =1 and A > 0 for all i.
1t i=1 % .

R
X = 'E Xiy =
i=

1 . n
1 i

+
z

Consequently, since maxj]fj(yl)—fj(x*)’ < ¢ for all i,

* * n+1 * . . n+1 *
max |£, (x )=x}| = max | £ EAC )—fj(yl))] < I Ae=ce,
JEIn+1 jeIn+1 i=1 i=1
which proves the theorem. 1

This theorem states that using vector Iabelling a much better
approximation can be obtained than for integer labelling, in particular
when the dimension of the problem is large.

To approximate a fixed point (if any) of a continuous function f from R? to
Rn, we take again a sequence of triangulations of R® with mesh tending to
zero. Now, a point in R® is in case of integer labelling again labelled by

an integer of the set I ,,.

DEFINITION 4.2.7. (STANDARD INTEGER LABELLING ON Rn). For any X € Rn let

i = min{j|f, (x)-x, = max (£ (x)-x )}.
J J heIn h xh

Then X receives the label £(x) where

]
.

2(x) i if fi(x) - X 20

and

o(x) n+l if £,(x) - x, < 0.

i i
Note that the number of labels is again equal to the number of vertices of
a full-dimensional simplex so that a completely labelled n-simplex is well
defined. The next theorem says that such a simplex yields an approximate

fixed point.
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LEMMA 4.2.8. Let €,8 > 0 be such that maxj xj - yj! < 6 and
maxj |fj(x)—f_.l (y)l < g for all x and v in a completely labelled simplex o.

*
Then for any x € O
max |£, (x%) - x;l < e+ 6.
jeIn
PROOF. Let again yl be the vertex of ¢ having label i, i = 1,...,n+l. Then,

following the arguments in the proof of lemma 4.2.2, we get for all i € In

£ -xr = (£, () -£, (y9)) + (£, (P -vD 4 wixD) > —(c + ®
1 1 1 1 1 1 1 1

and

1

* * * .
£ ) =x" = (£ M) - £, T T yTh e P k) < e s,
1 1 1 1 1 1 1 1
Together these inequalities give the result. 0

Finally, we consider vector labelling on Rn.

DEFINITION 4.2.9. (STANDARD VECTOR LABELLING ON RP). A point x € r"

receives the (n+l1)-vector 2L(x) where
li(x) = fi(x) - xi + 1 i=1,...,n
and

2n+1(x) = 1.

DEFINITION 4.2.10. An n-simplex U(yl,...,yn+1) of a triangulation G of R

is completely labelled if the system of n+l linear equations

n+1 i
AAUYT) = e
. i
Ci=1
* * *
has a nonnegative solution A = (A,,...,A ).
1 n+1

Observe that the last equation of the system is egual to Z?:i Ai = 1. Then,
following the proof of theorem 4.2.6, it can easily be seen that a

completely labelled simplex yields a good approximate fixed point.
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COROLLARY 4.2.11. Let €,8 > O be such that malexj—yj[ < 6§ and

manIfj(x)—fj(y)] < ¢ for all x and y in a completely labelled simplex

. . * +1.% i
o(yl,...,yn+1) in G. Then, with x = Yn 1A.yl, we have that

“i=1"1

*x %
max |f,(x )-x,| < e.
jeIrl .

*
Moreover, x is a fixed point of the piecewise linear approximation f to f

with respect to G.

The results of the theorems 4.2.5, 4.2.6 and 4.2.11 can be

generalized to an upper semi~continuous mapping ¢ on s" and R" respectively
(see Todd [1976al]). Note that integer labelling is not suitable for
u.s.c. mappings (see Todd [1976a, page 581). In case of vector labelling we
choose an arbitrary element f(x) € ¢(x). However, it is important that if
in the course of a fixed point algorithm f(x) must be chosen for a second
time, it will be the same choice as made before. In the next sections we
discuss algorithms which generate completely labelled simnlices of a given

triangulation of Sn or Rn.
4.3. KUHN'S AND EAVES' FIRST ALGORITHMS.

Since Scarf's original algorithm on Sn is based on primitive sets
(see Scarf [1967,1973]) we pay no attention to this method. Already in
1968 and 1969 Kuhn introduced two algorithms for integer labelling on the
unit simplex, both making a search for a completely labelled simplex
of the standard triangulation of Sn. The main ideas are however based upon
Scarf's pioneering work. In this section Kuhn's first algorithm is first
discussed. Some of the basic ideas and convergence-arguments oI this
algorithm play a very important role in other fixed point algorithms
" dicussed later. After Kuhn's algorithm a vector labelling algorithm
of Eaves [1971] is treated.
Kuhn's first algorithm on s” (see kKuhn [1968]) is an artificial start
algorithm in the sense that it needs a layer of artificially labelled

points outside s” on which the algorithm starts. Let Un denote aff Sn.
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DEFINITION 4.3.1. Let m_1 be the grid size of the standard triangulation

of Un. Then

§" = {xeu"|x, 20, ieI andx > -m—i}.
i n n+1

Moreover,

st = (x e §n|x. =0} i=1,...,n

i i
and

st = {xes"x = ly

n+l n+1 !

: =n . . sno,
i.e. Si is the i-th boundary of S, i € In+1

Clearly, st is triangulated by the standard triangulation of u" restricted

~n . . o . . o
to S . Moreover, the grid points of Sn outside Sn are all points in Sg+1.

It is easily seen that a grid point y € S§+ is a vertex of at least one

n+1 !

) such that the facet T(yl,...,yn) is a simplex of

and yn+1 = y. The idea of the algorithm is to

simplex o(yl,...,y

. . =n
the triangulation of Sn+1

1
a priori chosen grid point v € Si+

give the vertices of §2+ an artificial label in such a way that for the

1 one of these facets, say TO, is almost
completely labelled in the sense that the vertices of TO carry all the
labels 1,...,n. Also the artificial labelling will be such that TO is the
only almost completely labelled boundary-facet of g, Since TO is a
boundary-facet, there is only one n-simplex Go containing TO as a facet.
Note that TO is opposite to the vertex y of 00. This simplex will be the

starting simplex of the algorithm. Now £(y) is computed. Since y € S§+1,

2(y) # n+l. Hence 2(y) = %(y°) for a unique vertex y° of <Y, By

replacing ys we obtain a unique simplex 01 adjacent to co having a new
vertex, say §. If 2(§) = n+l, 01 is completely labelled. Otherwise we
replace the vertex of 01 having the same label as § to obtain a simplex 02
adjacent to 01, etc. So, the algorithm generates a path of adjacent
n-simplices 00,01,0 ,+.. such that two adjacent simplices have a common
almost completely labelled facet, until label n+l is found.

: . n . . ot
Formally, we choose an arbitrary point v € S which must be a grid point

n+1
of the (standard) triangulation of s”. Note ‘that Kuhn chooses

y = (n ,...,n—l,O)T and m = kn for some positive integer k. The artificial
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grid points are labelled as follows:

(4.3.1) 2(x) = min {jI yj—xj = min (yk—xk)} x € S .
keIn

n R :
Furthermore, a point x € S receives a label according to the standard

integer labelling rule on sn. Obviously, 2(x) # i if x € Sz since

. n .. n n n o,
2(x) # n+tl if x € Sn+ and 2(x) # i if x € Si or X € Sn+ n Si' i=1,...,n.

1 1
on *n _Tn n o, 0,1
Observe that si = (Si n Sn+1) u Si' i=1,...,n. Let T (y ,m) be the (n-1)-

simplex such that

n
y =y - mo I q(i) and ﬂi =i, i=1,...,n-1.
i=1

1 n 0 “n .
Clearly, the vertices y , ..., ¥y of 1 are grid points of Sn+1 since
i+ . _
yl 1 = yl + m 1q(i), ie In—l' and y € SE+1. Moreover, T is almost

completely labelled, since Z(yl) = i, i € I . Because of the linear

0
structure of the artificial labelling on Sz+1, it is easily seen that T

is the only almost completely labelled simplex in Sg+1

2(x) #1i if x € S?, S? cannot contain’'an almost completely labelled

. Further, since
slmplex, i € In' So, we have the following result.

COROLLARY 4.3.2. The (n-1)-simplex To(yl,ﬂ) is the only almost completely

labelled boundary-facet of s™.

0 .
Next, let 0 Dbe the unique n-simplex of the triangulation having TO as

facet (theorem 2.2.8). This 00 can be represented by 00

0,1
=g (y ,m) where
1 0
y is defined above and wm, = i, i € In' Note that the last vertex of o

. . +1 .
is equal to y, i.e. yn = y. The steps of the algorithm are now as

follows.

STEP O. ' Set ¢ equal to ao(yl,w) and §‘equal to yn+1.

STEP 1. calculate &(y). If 2(y) = ntl, o is completely labelled and
the algorithm terminates. Otherwise, Q(;) = E(ys) for exactly
one vertex ys # ;. The facet T(yl,...,ys_l,y5+1,...,yn+1) is
almost completely labelled.

STEP 2. The simplex 0(y1,ﬂ) is adapted according to theorem 2.5.5 by

replacing ys. Return to step 1 with ; equal to the new vertex

of o.
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We now prove that the algorithm terminates within a finite number of
steps with a completely labelled simplex. Since TO is the only almost
completely labelled simplex in the boundary of én' all steps are feasible,
i.e. each simplex generated in step 2 is a simplex of the standard

s . . 0 .
triangulation of Sn, unless the algorithm returns in ¢ while the vertex

yn+1 = y has to be replaced. However, we will prove that cycling cannot

J, i < j, be the first simplex
j-1

occur. Assume the contrary and let oi =0
in which the algorithm returns. So, the adjacent simplices o and ui
have a common almost completely labelled facet. Since oi has two adjacent
simplices sharing an almost completely labelled facet with oi ifi=21

j-1
and only one such a simplex if i = 0O (see again theorem 2.2.8) , o)

-1

i i+ 1
must be equal to o" or o" ! if i 21, and equal to o if i = 0. Since

o is the first revisited simplex, this can only occur if j-1 = i+l and
hence oi = ai+2. This gives a contradiction since according to step 1
the algorithm never goes back. Consequently, a unique path of adjacent
different n-simplices of the standard triangulation of én is generated.
Since the number of n-simplices is finite, the algorithm must terminate,
which can only occur if a completely labelled simplex is found (Lemke's
argument). Moreover this simplex lies in s" since 2(x) # n+l if

X € (;n

n+l1
Kuhn's second algorithm is a variable dimension algorithm and starts with

u Sz+1), and is therefore a good approximation of a fixed point.

the single point e(1). This algorithm is a special case of the variable
dimension algorithm of Van der Laan and Talman [1979a] to be discussed in
section 5. Both algorithms of Kuhn are characterized by a start on the
boundary of Sn and by a fixed grid size throughout the algorithm. As

argued in the introduction these features cause inefficiency. Moreo?er,
Kuhn developed his algorithms only for integer labelling. The first fixed
point algorithm based on vector labelling is due to Eaves [1971]. Also this
method is characterized by a start outside the region of interest.

To describe Eaves' algorithm, let C be a compact, convex n-dimensional
subset of Rn. Suppose we want to compute a fixed point of an u.s.c. mapping
¢ from C to the set of nonempty, convex subsets of C. First, the mapping

¢ 1is replaced by the u.s.c. mapping $.from an n—simplek S containing C in
its interior to the set of nonempty, convex subsets of S, where 3 is
defined as in the proof of theorem 2.4.3. Remember that x* is a fixed point
of ¢ if and only if x* is a fixed point of a. Let y be an arbitrarily
chosen point on the boundary of S and let G be a triangulation of S such

that y is in the interior of an (n-1)-facet TO. Note that TO is a
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boundary-facet. Furthermore, let the vector d be equal to ((y—c)T,O)T + e,
where c is the interior point of C defined in the proof of theorem 2.4.3.
Each point x € S receives the label 2(x) according to the standard
labelling rule on Rn, where f(x) is an arbitrarily chosen‘but fixed

element of ?(x). Observe that £(x) = ((c-—x)T,O)T + e if x € S\C.

1 +
DEFINITION 4.3.3. A k-simplex o(y ,...,yk 1) with k = n-1 or n is almost

completely labelled (or almost complete) if the system of n+l linear
equations
k+1 i
I AAy) +ud =e
. i
i=1
*

* *
has a nonnegative solution (Xl,...,kk+1,u ).

If the system of equations is nondegenerated, i.e. if the matrix
1 k+1
[RYT) s aeer Y ),d4]

has full rank, an almost completely labelled n-simplex has just two
solutions with exactly one variable equal to zero (see Allgower and
Georg [1980]). Clearly, an n-simplex o is completely labelled if u* =0
for one of these solutions. Since y is in the interior of TO, the latter
simplex is almost completely labelled with a positive solution
(AI,...,A:, u*). Because of the linear structure of 2(y) on bd S it

is easily seen that TO is the only almost completely labelled boundary-
facet. From this simplex on the algorithm generates now a path‘of
adjacent n-simplices such that the common facets are almost completely
labelled. As soon as u* becomes zero, a completely labelled simplex is
found. The steps of the algorithm are as follows, where 00 in step O is

the unique n-simplex having To(yl,...,yn) as facet.

0,1 +1
STEP O. Set 0 equal to o (y ,...,yn ) and s equal to n+l.
STEP 1. Calculate l(ys) and make a standard linear programming pivot
step by bringing Q(ys) in the system of linear equations
n+l i
z )\il(y ) + ud = e,
i=1
i#s
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to obtain a new feasible solution. If p becomes zero, ¢ is

completely labelled and the algorithm terminates. Otherwise,

. 1 t-1 t+1 n+1
At becomes zero for some t # s, i.e. T(Y ,..,¥Y % P )
is almost completely labelled.
t
STEP 2. Adapt 0 by replacing y . Return to step 1 with yS equal to the

new vertex of o.

Assuming nondegeneracy, all replacement and pivot steps are unique and
feasible. Hence,the algorithm can not cycle and must therefore terminate
within a finite number of iterations with a completely labelled simplex.
We remark that the problem of degeneracy can be solved by applying a
lexicographic pivot rule (see Eaves [1971], Todd [1976a] and others).

4.4, MERRILL'S ALGORITHM,

In 1971 Merrill introduced a vector labelling algorithm on R" which
can start anywhere. Like Kuhn's first algorithm, it needs a layer of
artificially labelled points. More precisely, Merrill's algorithm applied
on Sn is identical to Kuhn's algorithm on Sn+1. Therefore, we first
discuss the application of Merrill's algorithm for integer labelling to
compute a fixed point of a continuous function on Sn‘(see also Kuhn
and MacKinnon [1975] and MacKinnon [1975,1976]). For given grid size

m_l, take an arbitrarily chosen gridpoint y of the standard triangulation
n+1
T T n+2
each grid point (z ,0) of the standard triangulation of S receives the

of Sn. Note that y corresponds with the point §-= (yT,O)T in S . Now

label %(z) according to the standard integer labelling rule on Sn. A grid

n+l, n+1

point x in S \sn+2 receives the label n+2, i.e.

2(x) = n+2 if b > 0.
Note that this labelling rule is proper and that the n+l vertices of a
completely labelled (n+1)-simplex having a label not equal to nt+2, are

+
all lying in s2+1. Hence,the n-facet of a completely labelled simplex in

2
+
s” ! whose vertices carry the labels 1,...,n+l corresponds to a
completely labelled n-simplex in s™. To find a completely labelled
+
simplex in Sn ! Merrill's algorithm operates in exactly the same way as

Kuhn's first algorithm described in section 3. First an artificial layer
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S::é is added, whose vertices are labelled according to (4.3.1) with

respect to the point ;:‘Then the algorithm starts with the (n+l1)-simplex
n+2 -
oo(yl,ﬂ) such that Wi =i, i=1,...,n+l, and y = y. Again the facet

To(yl,...,yn+1) is the unique almost completely labelled boundary-facet of

Sn+1. From that simplex a path of adjacent (n+l)-simplices is generated
such that the common facets are almost completely labelled. As soon as
label n+2 is found the algorithm terminates. Following the arguments in

section 3 it is easily seen that the algorithm converges, Actually, only

“n+ +
simplices of the set conv(sz+; U SE+;) are generated and the algorithm
+1
terminates if an almost completely labelled n-simplex of Sg+2 is found.

“n+l

Therefore the set {x € S | x > 0} can be deleted. Assume now that

n+2
we want to compute a fixed point of an u.s.c. mapping from Sn to the set

n +
of nonempty, convex subsets of S . Again the set sn 1 is triangulated as

-1
described above for some grid size m *, and an arbitrary grid point

+
y € s:+;, which corresponds to y (say) in the set Sn, is chosen.

n+1 “n+l
n+2 and sn+2

receives the label 2(x) as stated in definition 4.2.3,

Now each point of S

x',0" in s

receives an (n+l)-vector label. A point

n+2

T 17T
where f(x) is an a priori chosen element of ¢(x). A point (z,-m 1) in
~n+ ~
Sn L receives label z-y+e. Clearly, the n-simplex To in Sn+1 is

n+2 0 -P+2r n
completely labelled,where T is defined as above. Points (z,8) in S

+1
with § > 0 are not labelled (since they are not generated by the algorithm).
From the simplex TO the algorithm generates in the same way as Eaves'
first algorithm a path of adjacent simplices in conv(ézig u Szié) with
common completely labelled facets, until a completely labelled facet in
SEI; is generated. Clearly this facet yields an approximate fixed point in
the corresponding n-simplex of s™. Using standard arguments the algorithm
terminates within afinite number of pivot and replacement steps with such
a facet. It is now easily seen how to apply Merrill's algorithm on R for
integer and vector labelling. First Rn+1 is triangulated according to the
KQ triangulationwith arbitrarily chosen grid size §. This induces a
triangulation of the subset R x [0,8]. Let y now be an arbitrary point

in Rn. By a shift of the grid we can always let the point §.= (yT,O)T be

a point interior in an n-simplex TO of the set R x {0}. The latter set
will be the artificial level for the algorithm. In case of integer
labelling a point X = (xT,O)T in R" x {0} receives the artificial label

2 (;) where
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L(x) = mlnfjlyj - xj = ij? (yk - xk)}.
n+1
Further, a point z = (zT,G)T in R® x {8} receives the standard label £(z).

Clearly, the simplex To

is the unique completely labelled simplex in

R" x {0} in the sense that all vertices of ° are differently labelled.
From this boundary-facet on, the algorithm generates in the same way as
described above a path of adjacent (n+l)-simplices with completely labelled
common facets until a facet is found in R" x {8} corresponding to a
completely labelled simplex in R”. Since the number of simplices is finite
in each compact region of Rn x 0,81, either the algorithm terminates
within a finite number of steps or an infinite path to infinity is
generated. A convergence condition can be found in Todd [1976a, page 911.
This condition is such that every point outside some bounded region has

a neighbourhood of radius & in which at least one integer label is
excluded, which implies that outside that region never completely

labelled simplices can be generated.

In case of vector labelling we take the same triangulation and label a
point x = (xT,O)T in R® x {0} artificially by 2(x) =y - X + e. Of course,
a point z = (zT,G)T in R" x {8} receives the standard label %(z). Again

7° will be the only completely labelled n-simplex in R x {0}. From this
boundary-facet the algorithm generates by pivot and replacement steps

as described for Eaves' first algorithm a path of adjacent (n+1)- )
simplices having common completely labelled facets. As soon as a facet in
R" x {8} is generated, the algorithm terminates. A convergence condition
(Merrill's condition) is given in the next theorem. The proof of tﬁis

theorem can be found in Merrill [1971, 1972].

THEOREM 4.4.1. Suppose there exist w € Rn, p >0 and u > 0 such that

whenever x ¢ B(w,u), £ € ¢(x) and z € B(x,p)
(f-x)"(w-2) >0.

Then the algorithm terminates if the grid size of the triangulation is

small enough.

Note that Merrill's algorithm can be seen to trace zeroes of a piecewise

linear approximation to h with respect to the triangulation of R® x ro,81,
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where h is the homotopy function on RY x [0,87 defined by
-1 -1 n
h(x,t) = t6§ "(£(x) - x) + (§ = t)§ " (v - x) 0<t<§, x € R .

Observe that when a completely labelled n-simplex o on R® x {8} is found,
the algorithm can be restarted for a smaller § and with the point

vy = Z?Zi AI yi, where the yi's are the (corresponding) vertices of ¢ on R
and the Ai's,ieIn+1, are the solution of the linear system of equations
with respect to o. Of course, the same holds for the algorithm on s” and
for integer labelling. In the latter case the barycenter is a good choice

* -
to be the next starting point, i.e. take Ai = (n+1) 1.

4.5. VAN DER LAAN AND TALMAN'S BASIC ALGORITHM.

As argued in Van der Laan and Talman [1979a,1979%] and Van der Laan
[1980], Merrill's algorithm has the disadvantage that it operates with
artificially labelled points influencing the path of generated simplices,
in particular if simplices are generated far away from the starting point.
Moreover, Merrill's algorithm generates (n+1)-dimensional simplices.
So, if a long path is generated, the algorithm needs many iterations. Also,
if a path is generated such that all components have to be decreased with
the same amount, many steps have to be performed.

Both for integer and vector labelling Van der Laan and Talman proposed an
algorithm which starts with a single point, i.e. a zero-dimensional
simplex. This point is an arbitrarily chosen grid point of the (standard)
triangulation of s” (or Rn). From that point on,a path of adjacenf
simplices of variable dimension is generated, until a completely labelled
n-simplex is found. As soon as a new label is found the dimension of the
current simplex is increased by adding a new vertex to it. Sometimes the
dimension is decreased by deleting a label and a vertex. This is to
guarantee' non-cycling.

First we discuss the method for integer labelling on s™. Assume s" is
triangulated in the standard way with grid size m_1 and let y be an
arbitrary grid point, which will be the starting point. As usual a point
X € s™ receives a label according to the standard labelling rule.

DEFINITION 4.5.1. Let T be a proper subset of I and let IT[ = t.

+1
A (t-1)-simplex ¢ is T-complete if the t vertices of o carry allithe labels
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of the set T.
Note that the starting point v is {2(y) }-complete. Next, let for iEIn q(i)
be the i-th column of the standard triangulation matrix ) of st be

defined as in section 2.6 and let

q(n+1) q(i).

1]
1
=]

i=1
Furthermore, w(T) = (ﬂl,...,ﬂt) denotes a permutation of the t elements
of T. Moreover, 0(y1,n(T)) is the simplex o(yl,...,yt+1) such that

i+ . _

yl 1. yl +m 1q(vri) i=1,...,t.
Note that o(yl,w(TD is a t-face of the standard triangulation of sn if yl
is a grid point and if all vertices lie in s”.
Now the algorithm proceeds as follows:
1 1 - 1

STEP 0. Set t=0, T=@,n(T) = @, y =y, 0 =o(y ,n(T)), y =y and
R, =0, i€e1I

n

i +1
STEP 1. Calculate &(y). If 2(y) % T, a new label is found and go to step 3.

Otherwise 2(7) = #(yS) for exactly one vertex y° # y. The facet
T(yl,...,ys—l,ys+1,...,yt+1) is T-complete.

STEP 2. If s = t+1 and th = 0, go to step 4. Otherwise o(yl,ﬂ(T))and Rare
adapted according to table 4.5.1 by replacing the vertex ys.
Return to step 1 with vy equal to the new vertex of o.

STEP 3. If t = n, 0 is completely labelled and the algorithm terminates.
Otherwise increase the dimension. Set T = T U {2(5)},

(T(T) ,2(¥)), o = o(y1,m(T)) and t = t+1. Return to step 1

with 3 = yoo L,

m('T)

STEP 4. Decrease the dimension. Set T = T/{ﬂt}, m(T) = (nl,...,ﬂt_l),
0 = o(yl,w(T)) and t = t-1. Return to step 2 with v being the

vertex of o with label equal to the deleted integer,
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I y1 becomes [ T (T) becomes | R becomes
s =1 y1+m—1q(ﬂ1) l (ﬂz,...,ﬂt,ﬂl) | R+e(n1)
1
<s <t y1 B (ﬂl""'ns—Z'ﬂs'ﬂs—l'“s+1’""“t) R
s=t+1|y-m (vt) (ﬂt,nl,...,nt_l) [ R—e(ﬂt)

Table 4.5.1. s is the index of the vertex to be replaced.

Note that a replacement step of table 4.5.1 corresponds to the standard
replacement step in Rt (theorem 2.5.5). The vector R of nonnegative

integers is such that Ri =0, i & T, and

(4.5.1) v =y+m I Ra().

JeT
Observe that the vector R is only used to test in step 2 whether a
label has to be deleted (step 4) or not. As soon as Ri threatens to
become negative, which can only occur if the last vertex of ¢ must be
replaced and RTT =0, label i is deleted and the dimension is ddcreased.
So, in view of (4.5.1) it is natural to define for T being a »roper set of

I the region A(T),where

n+1

A(T) = {xes"|x = y+ I XA.q(j) for nonnegative A., i € T}.
jeT J J
Clearly, the region A(T) is triangulated by the collection of t-simplices
0(y1,ﬂ(T)) in s™ such that y1 satisfies (4.5.1) for nonnegative integers
Rj’ j € T. Note that dim A(T) is indeed equal to t. Hence, the algorithm
generates a path of adjacent simplices of variable dimension such that two
adjacent t-simplices share a T-complete facet, are of the form c(yl,ﬂ(T))

and lie in A(T) for some T € In . If two adjacent simplices have not the

+1
same dimension, i.e. if one of them is a facet of the other, then the (say)
T-complete facet is of the form T(yl,n(T/{j}» and lies in A(T/{j}) for
some j € T, whereas the simplex is of the form c(yl,ﬂ(T)) and lies in
A(T). Note that in the latter case Rj = 0 and that yt+1 = yt + m_lq(j)

is the vertex of o opposite to the facet T. Roughly speaking, A(T) is

the region of s™ which lies between the starting point y and the
boundaries s? where label i does not occur, i € T. So, if a new label j¢ T
(say) is found, a search is made in A(Tu{j}) in the direction of the

j-th boundary and still close to the other boundaries. In this area of s"
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one may expect to find labels not in the set T. By this proverty it can
easily be seen that simplices outside sn cannot be generated. If, however,
the generated path of simplices moves away from some boundary S:, iemT,
then label i is deleted as soon as a (t-1)-simplex in A(T\{i}) is o
generated. Note that this simplex is T-complete. By replacing the vertex
of T with label i, the algorithm continues in A(T\{i}), etc. By the proper
labelling rule it is easy to see that all other steps are also feasible.
Moreover, all steps are unique (see Van der Laan and Talman r1979al) sothat
cycling cannot occur. Since the number of simplices in s" is finite, the
algorithm must terminate within a finite number of iterations with a
completely labelled n-simplex yielding an approximate fixed point. Of
course, the algorithm can now be restarted with a larger m and close to

the approximation to obtain a better accuracy.

To compute a fixed point of a mapping ¢ from Sn into itself, each point x
is labelled according to the standard labelling rule whereas s” is again
triangulated in the standard way for some m.

DEFINITION 4.5.2. Let T be a proper subset of I _, with 7] = t. & (t-1)-

+1
simplex o(yl,...,yt) is called T-complete if the system of n+l linear
equations
) t i
(4.5.2) L Ail(y ) + I uhe(h) =e
i=1 h¢T
* * * * * -
has a nonnegative solution (A ,u ) = (Al,...,xt,uj, 3 # T).
Starting with T = @ and with the system Z;:i uhe(h) = e, the algorithm
generates from an arbitrarily chosen grid point y by pivot and

replacement steps a path of adjacent simplices of variable dimension such
that two adjacent t-simplices whose common facet is T-complete are

* simplices of the form c(yl,w(T)) and are lying- in A(T). As soon as by a
pivot step a unit vector e(j), j 4 T, (say) is eliminated (i.e. when “j
becomes zero), the dimension of the current simplex is increased and a
search is made with (t+1)-simplices in A(Tu{3j}) having (Tu{j})-complete
common facets. If, however, the dimension has to be decreased since for
some i € T the region A(T/{il}) is met, the unit vector e(i) is

reintroduced in the system, etc. Thus the algorithm proceeds as follows.
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STEP 0.

STEP 1.

STEP 2.

STEP 3.

STEP 4.

Sett =0, T=4g¢g, m(T) =0, y1 =y, 0= o(yl,ﬂ(T)), s = 1 and

R, =0, i€ I__, .
i n+1
Calculate 2(yS). Perform a pivot step by bringing l(ys) in the

system
t+1 )
z )\il(yl) + I e =e.
i=1 héT
i#s

If W = 0 for all h, a completely labelled simplex is found and
the algorithm terminates. Otherwise, either e(j) for some j ¢ T
is eliminated and go to step 3, or E(yk) is eliminated for

Vk—1 k+1 yt+1

’ reecey )

exactly one vertex yk # yS. The facet T(yl,...t
is T-complete.
If k = t+1 and Rnt =0, go to étep 4. Otherwise c(ylén(T)) and R
are adapted according to table 4.5.1 by replacing y . Return to
step 1 with s equal to the index of the new vertex of o.
Increase the dimension. Set T = Tu{j}, m(T) = (W (T), j ),
o = o(yl,n(T)) and t = t+l. Return to step 1 with s = t+1.
Decrease the dimension. Set T = T\{nt}, m(T) = (nl,...,nt_l),
o = c(yl,w(T)), t = t-1 and perform a pivot step by .bringing
e(r) 1in the system of linear equations (r isthe deleted index)
t+1 .
T A,Jl(yl) + I p, e(h) = e.
i=t 1t ngr O
h#r
If for some j ¢ T e(j) is eliminated, go to step 3. Otherwise
return to step 2 with k equal to the index of the vertex whose

label Z(yk) is eliminated.

Assuming nondegeneracy, the algorithm terminates within a finite number of

steps if all steps are feasible. In Van der Laan[1980] it is shown that

both the ieplacement, pivot and extension steps are feasible. These

properties will also be shown in a more general framework in chapter 6.

Thus, a completely labelled simplex will be found by the above algorithm.

Clearly, the algorithm can be applied by using other triangulation

matrices than Q. In chapter 5 we return to this matter. The algorithm

on S" is illustrated for integer labelling in figure 4.5.1 for n = 2,

m=9andy = (3,5,1)/9.
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AVAVA
L. YA
v////YA
VAV

e(l) e(2)

Figure 4.5.1. Van der Laan and Talman's basic algorithm on s”

The application of Van der Laan and Talman's basic algorithm oh Rn is
straightforward and will not be discussed here (see Van der Laan and
Talman [1979b] and Van der Laan [[1980]). In chapter 7 a class of variable
dimension algorithms on rR® is presented. It will appear that the basic
algorithm is one of the two extreme cases of this class. Also (new)
convergence results are given in chapter 7. )

In 1972 Eaves and Eaves and Saigal introduced a hoﬁotopy algorithm to
compute a Kakutani-fixed point on Sn and Rn respectively. In their method
they use a triangulation of s" x [1,o) (and R? x [0,»)) with continuous
refinement of the grid size with a factor of incrementation of (at most)
two. In this kind of algorithms the mapping ¢ is deformed from a linear
function ¢° on the first level to a piecewise linear approximation ¢k to ¢
with respect to the triangulation of s™ (™) on level k. On level k the
grid size is (at most) two times smaller than on level k-1, k=2,3,... .
For k goes to infinity fixed points of ¢k converge to fixed points of ¢.
The triangulation of the set g™ x [1,) (8" x [0,*)) is such that it is
built up from triangulations between two levels so that there are only

grid points on the levels. The grid points on the first level are
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artificially labelled as in Merrill's algorithm, whereas grid points on
the other levels are labelled in the standard way. Starting now with the
unique completely labelled simplex on the first level, the algorithm
generates by pivot and replacement steps a path of adjacent (n+1)-
simplices of the triangulation such that two adjacent simplices have
common completely labelled n-facets. Since on st the labelling is proper
it can easily be seen that simplices outside Sn x [1,o) cannot be
generated. Moreover, since all steps are unique, cycling cannot occur.
Therefore the algorithm finds within a finite number of iterations a
completely labelled n-simplex on each level k, k = 1,2,... If the
homotopy-algorithm is applied on =% x [n,»), either we have the above
situation or a path going tc¢ infinity is generated. Convergence
conditions can be found in Eaves and Saigal [1972]. However, these methods
have the disadvantage that the factor of incrementation is at most two
whereas a restart algorithm can take any factor. Van der Laan and
Talman [1980b], Van der Heyden [1979] and Shamir [1979] independently
introduced a homotopy algorithm such that the factor of incrementation can
be of any size (see also Van der Laan [1980]). The basic idea for
triangulating s™ x [1,#) or R x [0,) with a general factor was obtained
from an interpretation of Van der Laan and Talman's basic algorithm with
an artificial level of n+l points. This interpretation was independently
found by Van der Laan and Talman [1979a], Todd [1978b] and B&rany

[private communication] (see also chapter 8).
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CHAPTER 5

THE EFFICIENCY OF TRIANGULATIONS

5.1. INTRODUCTION.

Computational experience with several fixed point algorithms has
shown that the efficiency of an algorithm is very sensitive to the
underlying triangulation (see e.g. Saigal [1977a] and Todd [1978al).

In this chapter several measures for the efficiency of a triangulation
~are discussed and compared.
In section 2 an intuitively attractive class of so called "fixed point
triangulations" of Rn is introduced. Section 3 discusses two crude measures
for triangulations ofthe unit cube. In'section 4 the average directional
density of a triangulation is treated. This measure was introduced by Todd
to compare triangulations of Rn. The SV-measure developed by Van der Laan
and Talman [1980a] is presented in section 5. This measure is based on the
ratio of the sum of the squared lengths of the one-faces and the volume
of the simplices of the triangulation. The measure is closely related
to the DV-measure independently found by Todd. For both measures the
(same) optimal triangulation within the class of fixed point triangulations
of R will be calculated. Also some of the properties of the optimal
triangulation are discussed in éegtion 5. It will appear that this
triangulation is a generalization of the equilateral triangulation of R2.
In section 6 the average directional density and the SV-measure are
calculated for several interesting triangulations. Finally, section 7
presents a new triangulation of the affine hull of Sn having the same nice
properties as the optimal triangulation of R”. In the last two sections
also some computational experience is given.

This chapter is based on the work of Van der Laan and Talman [1980a].
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5.2. FIXED POINT TRIANGULATIONS OF Rq

If a triangulation induces many shapes of long and skinny simplices,
a fixed point algorithm suffers from inefficiency (on thé average) since
the accuracy of an approximation depends on the distance between the
vertices of the triangulation while the number of iterations to find comple-
tely labelled simplices depends on the number of simplices per unit cube.
Therefore it is in the first place worthwile to consider regular, congruent

triangulations.

DEFINITION 5.2.1. A triangulation is congruent if all its simplices are

congruent to each other.

Observe that the K triangulation defined in section 2.5 is congruent but
that the H triangulation is not (n 2 3). Since for a congruent triangula-
tion it is in general sufficient to derive properties of the simplices for
only a single simplex, we make often use of a special simplex having the
simplest representation. This simplex makes however only sense if the
triangulation is regular, i.e. if the .triangulation is of the form AK where

A is a nonsingular nxn matrix.

DEFINITION 5, 2.2. For a congruent AK triangulation of R” the standard

1
simplex, to be denoted by s, or s(yl, ceey yn+1), is the n-simplex o(y ,m)

such that y1 is the zero-vector and "i =i, i=1,...,n.

Note that the ith vertex of s(yl, coey yn+1) is equal to yi = Zi;i'a(j),
i=2,...,n+l.

Although each simplex of a congruent regular triangulation has the same
properties, not each such a triahgulation is suitable for use in a fixed
point algorithm. In view of Merrill's condition,.we clearly have that if
a point has label i there is an indication that the i-th componeht must
be strictly increased whereas the other components must be decreased or
remain the same, i € In' Intuitively, these amounts must be the same for
all i. So, we can represent the i-th column of a suitable triangulation

matrix by the n-vector

;(i) = (By eoer Br o, By «eey B)T
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for some positive o and nonpositive B, where a is on the i-th place, i € In'
So, let A be the matrix with i-th column equal to ;Xi). Then we have the

following property which follows immediately from the structure of I

LEMMA 5.2.3. For an nxn matrix A with a >0 and <0 holds that the AK
triangulation is congruent.

+ 1 1 +
Next consider the vector yn L. y of an arbitrary simplex o(y , ..., yn 1)
of an AK triangulation. All components of this vector are equal to

o + (n-1)B since yn+1 - y1 = Z:=1a(i). But, in case a + (n-1)B > 0, the

vector y1 - yn+1 = -{a + (n-1)B}e can be used to represent the direction
to make a search if label n+l is found since decreasing all components
with: the same amount corresponds to a search for other labels if a point
is found carrying label n+l (see Van der Léan and Talman [1980a] and
Van der Laan [1980]). Therefore we now have a class of triangulations

which seems to be suitable for use in a fixed point algorithm.

DEFINITION 5.2.4. The class A of (a,B)-triangulations is the subclass of

2K triangulations such that
B<oO and o + (n-1)B > O.

Note that if B = 0, we obtain the K triangulation with grid size a.

If B < 0, the mesh of the (a,B)~-triangulation is |B| times the mesh of

the (u/|B|),—1)—triangulation. So, to compute the mesh of an arbitrary
(o,B)-triangulation, we can restrict ourselves to the class of (a,;l)—’
triangulations. An element of this class will be denoted by a-triangulation.
Note that o > n-1,

To compute the mesh of an a-triangulation, let the number b be equal to
2
b = | (d+1)“/(4+4a-2n) |,

where [xj denotes the largest integer smaller than or equal to x.

Since a > n-1, b is positive.



62

THEOREM 5.2.5. The mesh of an oa-triangulation, to be denoted by mesh A(a), is

mesh A(a) = [k{a

(k-1)}2 + (n—k)k2]%

where
n if bz2n
k={P if bsn-l and Y22 19542
b+l if b < n-1 and ||yb+1|| < |be+2||
where yj is the j-th vertex of the standard simplex s(yl, ooy yn+1) of

the a~triangulation.

PROOF. Since an o~triangulation is congruent, we have that

mesh A(a) = diam s(yl, ceer yn+1).

Morepver, because of the special structure of the triangulation matrix

it is easily seen that

1 +1 i+1
diam S(Y , eeey Yn ) = max ||Yl [].
iel
n
i+
Clearly, y; ! =0qa - (i-1) for j=1,...,i,and y;+1 = -i for j =i+l,...,n.

Therefore, for i = 1,...,n

HyE 12 = ife - -1 + (-1)i% = (a+1)%i - (2042-n)1°.

The theorem now follows immediately by determining the index k for which

+ 1
||yk 1|| is maximal. Remember that y~ is the zero-vector. 0

Note that when a - «, the mesh of the (1,-a_1)—triangulation converges to
mesh vn of the K triangulation.
Finally, we give some properties of the triangulation matrix of an

(0,B)-triangulation. These properties will be used in the next sections.
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LEMMA 5.2.6. Let A(0,B) be the triangulation matrix of the (a,B)-triangu-

lation and let B = (bi ) be the inverse of A(a,B). Then

3
det A(a,B) = {o + (n-1)8} (ot—B)n—1

and

{o + (n-2)B8}/[(a-B){a + (n-1)B}] i=1,...,n

o
]

ii

b, .
ij

-8/[ (a-B){a + (n-1)8}] j# i.

Before we introduce a measure to determine the optimal triangulation
within the class of o-triangulations we discuss some crude measures

earlier studied in the literature.

' 5.3. CRUDE MEASURES.

The first measure for the efficiency of a triangulation was to count
the number of simplices in which the unit cube is triangulated given that
the mesh of the triangulation is equal to /. However, both the K-, H- and
J triangulations subdivide the unit cube in n! Simplices, i.e. this
measure does not distinguish between these triangulations. Saigal [1977a]
experienced that in particular for large n the K triangulation performs
much better than the H triangulation in the sense that the number of
iterations for the K triangulation is much lower than for the H triangula-
tion if the same algorithm is applied and the same grid size is used. This
fact is not unexpected since the H triangulation gives many shapes of
simplices whereas the K triangulation is coﬂgruent and is an element of
the class A. Therefore, the above measure is too rough and must be rejected.
Before introducing a more sophisticated measure we mention the interesting
problem of finding the triangulation of the unit cube into the fewest
number of simplices. This is still an open problem. However for n = 3, 4
and 5, Mara [1972] discovered triangulations of the unit cube producing
5, 16 and 68 simplices respectively.
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A second measure was given by Saigal, Solow and Wolsey [1975]. Also this
measure can only be used to compare triangulations of the unit cube. While
the number of simplices of the unit cube is an "n-dimensional" measure,
the measure of Saigal et al. is an "l-dimensional"” one predicting better
the number of iterations of an algorithm. Roughly speaking, the measure

estimates the effort (number of iterations) to proceed through the unit

cube. To discuss this measure, let 01, Ogr weer Uk be a sequence of
distinct n-simplices such that o, and 0,41 are adjacent for i = 1,...,k-1.
Let TO be a facet of %_ such that To # 01 n 02 and let Tk be a facet of ok
such that Tk # ok_1 n ok. Then we call 01, cesy Uk a path from TO to Tk

having length k. In general let p(T,;3 be the minimal path-length between
two facets Tt and 1. For a triangulation G of the unit cube, Saigal et al.
[1975] defined the following so-called diameter measure, to be denoted by
dia G.

' DEFINTION 5.3.1. The diameter of a triangulation G of the unit cube C'

is the maximum of the minimal path-length between any pair of boundary-

facets of G, i.e.

dia G = _max p(T,?3.
T,Tebd C'

saigal [1977a] stated that dia H 2 O(n3) and dia K = %n(n-1)+1.

His compuational experiences with Merrill's algorithm confirmed the
theoretical superiority of the K triangulation over the H triangulation.

As argued by Todd [1976b] the diameter of a triangulation (of the unit
cube) is a "worst best case" measure. Moreover, the measure can be only
applied to triangulations of the unit cube. Therefore, a more sophisticated
measure, called the average directional density of a triangulation,was

proposed by Todd [1976a, 1976b and 1978al.

5.4. AVERAGE DIRECTIONAL DENSITY.

Before defining the average directional density (a.d.d.) of a
triangulation G of Rn, to be denoted by N(G), we formulate the
directional density of G for a given direction d. Roughly said, the

directional density of a triangulation is the number of simplices met
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per unit length by a straight line into the direction d. An important fact
is that the directional density is not restricted to a triangulation of
the unit cube. Observe that the value of the directional density
corresponding to the worst direction is again a "worst best case" measure.
By averaging the directional density over all directions we obtain the
a.d.d..

Formally, let G be a triangulation of Rn. Then, for x,d € Rn and t 2 0,
define the ratio N(G,x,d,t) as the number of simplices of G intersecting
the line segment [x,x+td] divided by the number t. Now, denote by N(G,d,t)
the limit as r-+« of the average of N(G,x,d,t) for x uniformly distributed
in {yeRn| |[yli < r}, provided this limit exists. Finally, the directional
density with direction d, to be denoted by N(G,d), is the limit of N(G,d,t)
for t + », provided it exists. Observe that by averaging x lying in a
large ball we eliminate the effects of the4starting point and that by
letting t - «» any effects of the ending point are eliminated. Todd [1976b]

proved the following theorem.

THEOREM 5.4.1. For the K-and J triangulations (with grid size 1) holds

that all limits exist. Moreover,

n n j-1
N(K,d) = I |da. |+ £ I la, -a.]
4=1 7 3=1 i=1 * 7
and n n -1
NW@,d = I |a |+ £ zx{la, +4a,]|+]|a, -4}
=t =t i=1  * I )

. -1 .
It can easily be seen that N(AG,d) = N(G,A "d) for every non-singular
matrix A. Hence, the directional density of an AK~- or AJ triangulation

can be obtained directly from this theorem.

DEFINITION 5.4.2. The average directional density N(G) of a triangulation

G of R” is the average of N(G,d) for d uniformly distributed on the unit
n
vall {y e R'| ||y|| = 1}.



66

THEOREM 5.4.3. For both the K- and J triangulation holds that
N(K) = N@) = o + n(-1¥v2}g_,

where g = 2T (4n)/{(n-1) /aT(%(n-1)) }.

Moreover, let A be a nonsingular nxn matrix and let b(j) be the j-th row

of the inverse B of A. Then,

n n j-
Nak) = {2 [[pd |+ £ T [[b@-b3) ][]},
3=1 3=1 i=1
and
n n j-1
Nad = { b+ £ u(p@()I|+|lo@ v ) g .
3=1 j=1 1=l n

The proof of this theorem can be found in Todd [1976b, 1978al.

n
Remember that the H triangulation is identical to the QK triangulation as

stated in section 2.5.

COROLLARY 5.4.4.

n
N@EH) ={ I (n-j+1)# }g_.
5=1 ?

Using lemma 5.2.6 we can also easily calculate the a.d.d. of an

(0, B) -triangulation, to be denoted by N(a,B).

COROLLARY 5.4.5.

N(a,B) = gn[n{a2 + 2(n-2)aB + (n3—3n+3)82}12 +

n(n-1){a + (n-1)8}/v21 / [ (a-B){a+(n-1)8}1.

Clearly, given the mesh, a triangulation having a low a.d.d. seems to be
suitable for use in a fixed point algorithm. For a given AK (or AJ)
triangulation it is not hard to calculate N(AK) (or N(AJ)).

However, to find a triangulation which minimizes the a.d.d. seems to be a



difficult problem since the a.d.d. depends on the mesh, i.e. to compare
different triangulations wehave to normalize them such that they have the
same mesh. But the mesh of an arbitrary triangulation is hard to handle,
also if we restrict ourselves to AK triangulations. Thus, an optimal
triangulation according to the a.d.d. measure is not known, even not in
the subclass of (a,B)-triangulations. However, Todd [1978a] gave a lower

bound for the a.d.d. of an AK triangulation.
THEOREM 5.4.6. For any nonsingular matrix A
N(AK) > (4n2/25/3')gn if mesh AK = /&,

This result was improved by Van der Laan and Talman [1978al for the class

A of (a,B)-triangulations.
THEOREM 5.4.7. For any (a,B)-triangulation having mesh equal to /n holds
2
N(a,8) > {4(n-1) + (n-1)"//Blg_.

PROOF. Let yi be the vertices of the standard simplex s, of an‘(a,B)—
triangulation having mesh equal to /u. We first show that o <2. Assume
to the contrary that a > 2. Distinguish now between the cases

028> -1 and -(n-1)7?

—am-1)"1 < B since o+(n-1)B > 0. If 0 2 B > -(n—1)'1, then a+(n-1)8 > 1

> B > —a(n—l)-l. Note that we have
which implies that
n+1
mesh AK = diam s 2 [ly" || = {a + (n-1)8}n > /n

contradicting the fact that mesh AK = /n. In the other case there exists
‘an integer k, 1 < k £ n-1, such that kf < -1 and (k-1)g > -1. Hence,
o + (k-1)B > 1 and -kB =2 1 so that

k+1
I

mesh AK = diam s_ 2 [y = [k{a+(k-1)s}2+(n;kncze?]12 > /n

again contradicting the fact that mesh AK = /n. Hence o < 2. From lemma

5.2.5 we have for the i-th row b(i) of A_l, ie In,that,
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[16(1) 1% = [{a+(n-2) 83+ (n-1) 8°1/L (a-8) *{a+ (n-1) 8}°]
-2 2
= (a-B) “[1+B{B-a-(a+(n-1)B)}/{o+(n-1)B}"]
> (a-8) 2
since B £ 0, o > 0, 0 < o+(n-1)B < 1.
Therefore, | [b(1) || = (a-B) ™! for all i. clearly, ||b(1)-b(i) || = (a-8) V2
for all i # j. So, from theorem 5.4.3
N(a,8) 2 g_(n+ (;)V2)/(a-B).
Finally, o+(n-1)8 > 0 and 0 < o < 2 imply
@ - B < no/(n-1) < 2n/(n-1).
Hence,

N(@,8) > (5(-1) + (a-1)°//B)g_,

which proves the theorem. 0

COROLLARY 5.4.8. Within the class A the lower bound of the a.d.d.

converges to gnnz//§ as n > o,

It is still an open problem whether theorem 6.4.8 holds for all (regular)
triangulations. Since an (o,B)-triangulation yields congruent simplices,
one would expect that an optimal triangulation is an (o,B)-triangulation.
In the next section we present a measure for which it is indeed possible
to calculate the optimal triangulation within the class A. Moreover, we
can prove that for n - «» the a.d.d. of this triangulation converges to the

lower bound of corollary 5.4.8.
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5.5. MEASURES BASED ON MINIMIZING THE NUMBER OF GRID POINTS.

In this section a measure is presented which is insensitive for the
mesh of a triangulation. Within the class A of fixed point triangulations
it will be rather easy to calculate the optimal triangulation. However,
before defining this measure, we make some introductory remarks.
Intuitively it is obvious that the most efficient fixed point triangulation
of R2 is the equilateral oa-triangulation, i.e. with a = 2+/3. Note
that the 3 one-faces of any simplex of this triangulation have the same
length. Unfortunately, for n 2 3 there exists no (congruent) triangulation
of R® such that all one-faces of the simplices have the same length.
Nevertheless given some accuracy we want to minimize the number of grid
points per unit cube (on the average) since in that case one may expect
that the number of iterations to find a completely labelled n-simplex is
minimized. Since the class A is very suitable for use in fixed point
. algorithms we restrict ourselves for the moment to (a,B)-triangulations.

The number of grid points per unit cube is on the average equal to one

over the volume of n! simplices. Note that the latter is equal to

(det A(a,B))_a where A(a,B) is the triangulation matrix of the (a,B)-
triangulation. The accuracy of a triangulation corresponds to the total
(squared) lengths of the one-faces of a simplex .,

The diameter seems to be a too rough estimate for the accuracy. For example,
let o(yl,yz,ya) be a-triangle in R2 and let diam o= l‘yl—yzll. If we move
y3 closer to the line segment [yl,yzj,the accuracy improves but the diameter
remains the same. The total length of the one-faces decreases howeyer,
whereas also the volume of o decreases. If we move y3 away from [yl,yz]

the accuracy becomes worser whereas the diameter does not change as long

as the distance between y1 and y2 is more than the distance between y3 and
y1 and y3 and y2. Now the total length of the one-faces increases. The

same reasoning can be given for n 2 3. So, the sum of the squared lengths
of the one-faces divided by the volume of a simplex seems to be a good
measure to characterize the efficiency of a triangulation for use in a

fixed point algorithm. In general we have the following definition.
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DEFINITION 5.5.1. For a triangulation G of an m-dimensional convex subset

C of Rn, the Sum of the squared edge lengths-Volume-measure (SV-measure),
to be denoted by SV(G), is defined by

1/n

svV(G) = sup {( I diam2 1)%/(volume o) }

g€ G T

where the sum is taken over all one-faces T of 0.

The term of the numerator between brackets reflects the sum of the

squared lengths of all one-faces of o, whereas the term of the denominator
is the volume of o. By raising the first to the power a half and the
latter to the power n_l, we obtain a measure being homogeneous of degree
zero in the grid size. So, the SV-measure of a triangulation can be seen
as a measure for the number of grid points per unit cube relatively to the
accuracy of the triangulation. Obviously, if n = 2 the SV-measure is
minimized for the equilateral triangulation. Before we calculate the
optimal triangulation for n 2 3, we compute the SV-measure of an (o,-1)-
triangulation, to be denoted by SV(o). Observe that the SV-measure of an

(a',B)-triangulation is equal to
‘sv(a',B) = sv(a)
where o = o'/|8].

THEOREM 5.5.2.

SV(a) = rn(nz—n—Zun+2a+2a2)%/{(u—n+1)(u+1)n_1}1/n

where r, = {n(n+1)(n+2)/12}%(n!)1/n.

Further
SV(K) = rn/i.

PROOF. Since an o-triangulation is regular and congruent, the SV-measure
simplifies to

(5.5.1) SV(a) = dian? 1) %/ (|det a(a) |/nn) /™

T
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where the sum is taken over all one-faces of the standard simplex

s(yl, ey yn+1) and where A(n) is the triangulation matrix of the
a-triangulation. From lemma 5.2.6 we have that det A(a) = (a—n+1)(a+1)n_1.
Moreover, to calculate the numerator of the right side of (5.5.1)

observe that

' k-j+1
S - |1 = [1¥797H] 1 <3<k < n+l

IA
o

s T4
since yj ! = 0=-(j-1) for i < j and yi !

i 1 n+l D kel
Hence, the number of one-faces of s(y ,...,¥Y ) having lengthl[y ”

==j for i > 3j, je I,
is equal to n-k+1, k € In' So the total squared lengths of the one-faces
of Sy is equal to

3 diam® T = % (n—k+1){k(a—k+1)2 + (n—k)kz}

T k=1

) 2
n(n+1l) (n+2) (n —n-2an+2u+2u2)/12.
Taking the above expressions together we get the desired result. The
result for the K triangulation follows' from the fact that (5.5.1) also

holds for this triangulation. O

COROLLARY 5.5.3.

lim SV(a) = SV(K).
a > ®

THEOREM 5.5.4.

SV(n+/aFl) = min SV(a) = rn(n+1)1/2n.

o>n-1

PROOF. Let C(o,n) be (SV(d)/rn)z. Then

dsv(a)
do,

-%» dc(a,n)

= %rnc(a,n) 3

D(o,n) [ (2a+1-n) (a-n+1) (a+1) -

(n2—n—2an+2a2+2a){a+1+(a—n+1)(n—1)}/n],



72

- - (n+2 -(3n-2
where D(a,n) = {C{a,n)} l!rn(ot—n+1) (n )/n(a”) (3n )/n.
Certainly, D(a,n) is positive for a > n-1, n=1,2,.... Putting now

dsv(a) /da equal to zero we obtain
2 2
a -o n+2an2—2un—n3+2n2—1=0
which implies

= n+V/n+l.
a1’2 n n
Since 0 must be greater than n-1, it follows that n# n+l is the only
feasible solution, yielding a minimum of SV (o) as can easily be seen.
Clearly, this minimum is less than SV(K) as follows from theorem 5.5.2.

To calculate SV(n+vn+l) we obtain from lemma 5.5.2 that
SV(n#n+l) = rn{nz-n—Zn(nﬂ/n+1) + 2(n¥ n+l) + 2(nﬁ/n+1)2}%/

(117D (nr1w D) 1 /m,

After simple calculations we get that the numerator is equal to
/n+I(1+/n+1)r_ and the denominator to (1w/nrD) ¢ P/

R _2 S —_— J—
Notice that n+2+2/n+l = (1ﬂ/n+1) and n+l+/n+l = /n+1(1ﬁ/n+1). Hence,

SV(n+#/n+l) = rn(n+1)1/2n-

*
We now give some interesting properties of the o -triangulation where

*
a = n+vn+l.

*
THEOREM 5.5.5. The barycentre of a simplex of the a -triangulation has
the same distance to each vertex of the simplex. Moreover, this

distance is equal to {n(n+2)}5(1+/n+1)/2/".

n+1

1 + i
PROOF. Let b be the barycenter of s(y ,...,yn 1). Since b = Zi=1 y /(n+1)

it can easily be seen that

by = {(n+1)a -jo -5 (n-1)-j+1}/(n-1) 3§ = 1,...,n.
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j+1
The distance dj between b and the vertex yJ is equal to

5 n
{b,-0 +3-1}" + &

i -

1 i=j+1

a, = [

2% L
. (bi+3) ] j=0,...,m.

n ~Mu.

i
After simple calculations we obtain that dj is independent of j for all

j and is equal to
1 e
[ lb=y~|| = {n(n+2)}?(1+/n+1) /273,
which proves the theorem since the a*—triangulation is congruent. 0

The theorem says that the simplices of the optimal a -triangulation are

as "round" as possible.

+
THEOREM 5.5.6. Let s(yl,...,yn 1) be the standard simplex of the

*
~ o -triangulation. Then

1 -
W I = 1R Xk =1,...,n,
(i1) mesh A(a”) = |[y%(“+3)l| = L (1+/p+1) (n+1), n odd
= |lY5(n+2)[| = ||y%(n+4)|| = L (1+/n+1){ n(n+2)}% , n even.
PROOF. Since, for k € In' y§+1 = n+/n+l -(k-1) if i £ k, and
y§+1 = -k if i > k, we have that
|!yk+1!|2 = k(n+/nFl-k+1) 2 + (n-k)k°
and

[19%7%%2]12 = (n-k+1) (/oo 2 + (k1) (n-k+1) 2,

which proves part a.
To prove part b, recall from the proof of lemma 5.5.2 that
||yk—yj|| = |!yk_3+1‘| for 1< j < k £ n+l. Therefore

mesh A(a*) = diam s, = max |tykl| =

keIn+1
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2
= max {k(n+¢n+1-k+1)2 + (n-k)k }%,
kel
n
which also follows from theorem 5.2.5.
It is now easy to see that the maximum is attained for k = %(n+3) if

n is odd and for k = %(n+2) and k = %(n+4) if n is even. gd

Theorem 5.5.6 implies that the distance between yn+1 and y1 is equal to the
distance between yi and yi+1, i=1,...,n. The a*—triangulation is the

only triangulation in A having this property. Moreover, for the optimal

o -triangulation the distance between yn+1 and yi is equal to the distance
between y1 and yi+1, i=2,3,...,n. Of course, these results apply to any
simplex. In the following theorem due to Todd [private communication] let
a*(i) be the i-th column of A(a*), ieIn, and let a*(n+1) = - E?= a*(i),

1
i.e. a*(n+1) = y1 - yn+1 = (-1-v/n+l)e. In the sequel we call the matrix

[a*(l) ..... a*(n) a*(n+1)3
the extended A(a*) matrix.

* . *
THEOREM 5.5.7. The angle between any two pair vectors a (i) and a (j) is

-1
the same, i # j. Moreover, this angle is equal to arccos n .

+
Finally, let T, be the facet of a simplex o(yl, cees yn 1) of the
% .
o -triangulation opposite the vertex yl, i=1, ...,n+l.

THEOREM 5.5.8. The volume of Ti is independent of i, i € In+1
The proof follows from the fact that in view of theorem 5.5.6 all facets

are congruent to each other.

Summarizing we have the following properties for the a*—triangulation:
1. the barycentre of a simplex has the same distance to all the
vertices of the simplex
2. the columns of the (extended) A(a*) matrix have the same length
3. .the columns of the (extended) A(a*) matrix make the same angle to
each other ‘

4, all facets have the same volume.
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Therefore, we can conclude that the (n+/E:T)—triangulation is the most
suitable regular triangulation for use in a fixed point algorithm. Note
that this triangulation of Rn is a straightforward generalization of the
equilateral (2+v3) -triangulation of R2.

For n = 3 the standard simplex of the (n+/;:I3-triangulation is drawn in
figure 5.5.1. Note that p(yl,y2) = p(y2,y") = ply ,y) = p(y ,y') = 3/3
and o(y1,y3) = p(y2,y4) = 6.

Figure 5.5.1. The standard simplex of the optimal a-triangulation

if n = 3.

A measure closely related to the SV-measure was independently developed by
Todd [private communication]. This measure, called the diameter-volume
measure and to be denoted by DV(G), is based on the ratio of the diameter

and the volume of a simplex.

DEFINITION 5.5.9. The diameter-volume measure of a triangulation G is

defined by

DV(G) = sup {diam o/ (volume c)l/n}.

0eG

For an a-triangulation this measure simplifies to

DV(a) = diam sn/(ldet A(a)l/n!)l/n.
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Note that this measure is also homogeneous of degree zero in the grid size.
To calculate the optimal o-triangulation according to this measure, observe
that diam s, = maxj Ilyjll is not a differentiable function of a. Therefore,

diam s, is smoothened by setting it equal to

diam s A~ max {x(oz—x+1)2 + (n—x)xz}lz.

<

Hence, 0<x<n
) 2 %
diam s ~ % (a+1) "/ (2+2a-n) °.
Recall that det A(a) = (a-n+1) (a+1)™"1,

Todd stated that DV(a) for a > n-1 was minimized by o = %(3+/§)n-1.
However, he made an error in his calculations. In fact the DV-measure is
minimized for a* = n+/;IT, yielding the same optimal a-triangulation as
for the SV-measure as could be expected. However, to compare in general
the efficiency of triangulations for use in fixed point algorithms, it
seems more natural to use the total squared length of the one-faces of a

simplex rather that its diameter (see also Todd and Acar [1978, page 3]).

5.6. COMPARISON OF SEVERAL TRIANGULATIONS OF Rn.

*
To compare the o ~triangulation with the K- and H triangulations, we
shall calculate both their :average directional density and their SV-measure.

Together corollary 5.4.5 and theorem 5.5.6 imply

1]

N(a"K) {n(n+1)/8}%(n+1)gn if n is oad

]

{n(n+1)/8}lz{n(n+2)}lzgn if n is even,

* *
where A is the matrix of the optimal o -triangulation with grid size such

*
that mesh (A'K) = vn. Consequently, we have (cf. Corollary 5.4.8).

COROLLARY 5.6.1. The average directional density of the optimal

2
o-triangulation having mesh equal to /o is of the order gnn //5 for n large

enough.
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Recall from theorem 5.4.3 and corollary 5.4.4 that

N (K)

{n+n(n—1)/|/§-}gn
and

N(H) = {

(n=3+1)/3}g_.
b

1

[ =]

Table 5.6.1. gives N(G)/gn for several values of n for the H-, K- and

*
A K triangulations.

From theorem 5.5.4 we know that

SV(A*K) = sv(u*) = rn(n+1)1/2n

and from theorem 5.5.2
SV(K) = r V2.
n
Finally, to calculate SV(H) we have to compute
L2
(5.6.1) max (ZT diam 1),

oeH

where the sum is taken over all one-faces of o0, since the H-triangulation
is not congruent. Note that volume ¢ = 1 for any simplex 0. Since H is a
regular triangulation,we can restrict ourselves to simplices c(g,ﬂ). It is

then easy to see that the maximum in (5.6.1) is attained for

(¢, 3, 5, eeey n, 2, 4, ..., n-1) if n is odd

3
]

(2, 4, 6, «eo., n, 1, 3, ..., n-1) if n is even.

Hence, the sum of the squared lengths of the edges of this simplex is
equal to (n3+2n2—n+2)/4 if n is odd and to (n3+2n2)/4 if n is even.

So, the SV-measure of the H-triangulation is equal to

SV (H)

rn{3(n3+2n2—h+2)/n(n+1)(n+2)}% if n is odd

rn{3n/(n+1)}12 if n is even.
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Observe that

*
lim SV(H) = r /5, lim SV(K) = ¢ /2 and lim SvV(a ) = rn.
n > © n n > © n n > «©

Table 5.6.2 gives SV(G)/rn for the same values of n for the H-, K-, and

*
o -triangulations.

c m|t 2 3 4 5 9 15 20 30 50 100 n

i 5/2
H 1 3.4 7.6 13.7 22.1 82.0 269.4 534 1420 4942 27316 ~4n~’ “/15
K 1 3.4 7.2 12.5 19.1 59.9 163.5 289 645 1782 7100 mnz//f

A K 12.44.9 7.7 11.6 33.5 87.6 152 334 910 3553 mnz//g

) *
Table 5.6.1. The a.d.d. of the H-, K-, and A K triangulations (mesh is
equal to /E).

n 1 2 3 4 5 9 15 20 30 50 100 n

G

H 1.41 1.41 1.48 1.55 1.57 1.64 1.67 1.69 1.70 1.71 1.72 ~1.73
K 1.41 . . o o oo o oo .. 141 L0 0 .. 4d
A*K 1.41 1.32 1.26 1.22 1.20 1.14 1.10 1.08 1.06 1.04 1.02 ~1

*
Table 5.6.2. The SV-measure of the H-, K-, and A K triangulations.

Both for the K- and A*K triangulation the basic algorithm of Van der Laan
and Talman was applied to a ten-dimensional variant of a problem

considered by Kellog, Li and Yorke [1976]. In table 5.6.3 the number of
iterations is given for various starting points. For the K triangulation
the grid size was equal to .05 whereas the A*K triangulation was normalized
such that its mesh was equal to .05 /10. The accuracy of the approximate

fixed point is of the order of 1074,
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Starting points Number of iterations
K A*K

0000000000 62 99
1111111111 76 83
1010101010 161 132
1110000000 255 153
0000000001 280 148
1001001111 170 144
0110011010 212 153
1001011011 196 153
1110111011 119 117
1001001001 229 155
0100101101 270 - 171
1011110111 119 115
0011001100 165 127
0001111111 149 136
Total number

of iterations 2463 1886
Average number

of iterations 176 135

*
Table 5.6.3. Comparison of the K- and A K triangulations.

As appears from the table the version with the a*—triangulation performs
considerably better than the (usually taken) K triangulation. Observe
that the K triangulation is very appropriate for the firs£ two starting
points because the path generated by the algorithm is along the direction
e respectively -e. However, for many other starting points the algorithm
needs for the K triangulation much more iterations than for the A*K
triangulation, since for the first one a path is generated in a direction
which is inappropriate for this triangulation. Moreover, since the

A*K triangulation has as "round" simplices as possible, the number of
iterations does not vary so much as for the K triangulation. Therefore,
one can expect that the average number of iterations for the A*K triangu-
lation is lower than for the K triangulation (see also the computational

results in chapter 7).
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n
5.7. A GOOD TRIANGULATION OF THE AFFINE HULL OF S .

In this section a new triangulation of the affine hull Un of Sn is
proposed. We shall prove that this triangulation has the same SV-measure
as the optimal a-triangulation of Rn. Also we will compare its SV-measure
with the SV-measure of the standard triangulation of Sn.

To motivate the new triangulation, observe that under the standard
labelling rule on Un with the condition on the function f as stated by
Van der Laan and Talman [1980c] and Van der Laan [1980], there is an
incentive to decrease the i-th component if label i is found, i.e. to

move in the direction wheie label i is missing, i € In+1. Then for the
standard triangulation of u" the (i+1)-th component is increased with the
same amount whereas the other n-1 components remain the same (i+l1 = 1 if

i = n+l). However, there is no reason fo increase only a special component
quite a lot and the other components not at all. On the contrary, it seems
to be natural to increase all other components (except the i-th one) with
the same amount, which then must be equal to a fraction n_1 of the

amount with which the i-th component is decreased. Therefore we propose

the following triangulation, to be called the U triangulation.

-1
DEFINITION 5.7.1. The U triangulation of Un with grid size m " (m > 0) is

1 +1
the collection of simplices o(y ,T) with vertices yl, ceer yn such that

e =]

(1) y1 = (n+1)-1e + m Aju(j) for integers Aj' j € I

j=1
(ii) m = (ﬂl, ceey ﬂn) is a permutation of the elements of In'

i+1 i -1
(1i1) v =y +m a(m), i=1, ..., n,

where u(j) is the j-th column of the (n+l)xn matrix U defined by

1 -n .
u= . R
1 . . 1-n
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Moreover, let u(n+l) = - Zg 1 u(j), i.e.

u(n+l) = (1, -.., 1, -n) .

Indeed, if label n+l1 is found, we decrease the last component with nm_1

; . -1
and increase the other components with m .

THEOREM 5.7.2.

SV(U) = r_(nt+1) 1/2n

PROOF. Since the SV-measure is homogeneous, SV(U) is independent of the

grid size. Define now the (n+l)x(n+l) matrix B.by (cf. Todd [1978a])

11 . . . . 1
-n 1 .
0 . .
D =diag (8,, --er 8 _..) |- . o
1 n+1 —(n-i+1)
K . ; . o -1 1]

where diag(el,...,en+2is the (n+1)-diagonal matrix with i-th element

equal to
%

(n+1) i=1

<]
]

and

8 {(n—i+2)(n—i+3)}'Lz i

i

2, «.., n+l.

Let D be the nx(n+l) matrix consisting of the last n rows of E,then D

maps Un into Rn orthogonally so that the distance between any two points
under this mapping is preserved. Note that the matrix Q defined in

section 2.6 is not orthogonal. Therefore, the matrix D makes it possible
to calculate the volume of a simplex of the (congruent) U triangulation
since the volume of such a simplex is now equal to the volume of a simplex
of the DTK triangulation of R". But the latter is equal to |det DT[/n!.
Clearly, the nxn matrix DT is uppertriangular with i-th diagonal element

equal to
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. 1 )
(n+1) {(n+1-1) /(n+2-1)} i=1,...,n

so that det DT = (n+1)n_%. Moreover, the sum of the squared lengths of the

edges of a simplex of the U triangulation is equal to

n 2 2 3
I (n+1-k){k(n+1-k) “+(n+1-k)k"} = n(n+l)” (n+2)/12.
k=1

Therefore,

1/2n

SV(U) = {n(n+1)> m+2123 %/ { (n+1) 2 7/}t /P 2 r_(n+l) O

From this theorem it follows that the U-triangulation of Un has the same
SV-measure as the(xttriangulation of Rn. Moreover, it is easy to prove
that the triangulation has the same nice properties as stated in section
5.4 for the a*-triangulation. Note, however, that the simplices of the

U triangulation of o meeting s" do not all lie in Sn. So, to approximate
a fixed point of an u.s.c. mapping from Sn to the set of nonempty, convex
subsets of Sn, it is necessary to extend the mapping to an u.s.c. mapping
$ on Un such that Ekx) = ¢(x) if x € Sﬂ and x* € Ekx*) implies x* € Sn.
This can be achieved by mapping all points outside Sn (and on the
boundary of Sn) to the point e(n+1)_1 or to the starting point y.

Next we compute the SV-measure of the Q triangulation of Sn.

THEOREM 5.7.3.

-1/2
/2n if n is even

SV (Q) rn/i(n+1)

“1/20 4 4 is odd.

rn/g{(n3+3n2—n+5)/(n3+3n2+2n)}%(n+1)

PROOF. Let D be again the nx(n+l) matrix defined in the proof of theorem
5.7.2, then the nxn matrix DQ is lower-triangular with i-th diagonal

element equal to

{(n—i+2)/(n—i+1)}!i i=1,...,n.

L

Hence, det DQ = (n+l) °, i.e. the volume of any simplex of the standard

triangulation is equal to (n+1)%/n!. Fﬁrthermore, it can be rather easily
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seen that the maximum of the sum of the squared lengths of the edges of

. . . 1 .
the simplices is attained for the simplices o(y ,m) having T equal to

™= 2, 4, ..., n, 1, 3, ..., n-1) if n is even

(2k-1,2k+1,2k-3,2k+3, ..., 1,n,2k,2k-2,2k+2, ...,2,n-1)

if n = 4k-1, k =1,2,...
(2k-1,2k+1,2k-3, ..., n,1,2k,2k-2,2k+2, ..., n-1,2)

if n = 4k-3, k=1,2,...

For these simplices we have that the sum of the squared edge-lengths is
3 2 2
equal to %(n +3n"+2n) if n is even and to %(n3+3n -n+5) if n is odd.

Consequently,

Sv(Q) = (x(n*+3n420) 1Y/ ((a+1) /1y /P = £ Bnen) T/ 20
if n is even

(e (n4302-045) 1/ { (a+1) T/n 13 /P <

rn/i{(n3+3n2—n+5)/(n3+3n2+2n)} ;2(n+1)'1/2n if n is odd.

O

From the theorems 5.7.2 and 5.7.3 we can draw the conclusion that

lim sv(u) = r and lim SV(Q) = r 3,

n > o n >
which agrees with the limits for the a*—triangulation and the H triangula-
tion of R" respectively.
Note, however, that for n = (1 and) 2 both triangulations have the same
SV-measure. For n = 2 equilateral triangles are generated. But even in
this case the U triangulation will converge faster than the standard
triangulation since the first one is more natural as argued above.
In table 5.7.1 SV(G)/rn is given for several values of n for the

Q- and U triangulations.
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nl 1 2 3 4 10 20 50 100 n
0 1.41 1.32 1.33 1.42 1.50 1.60 1.67 1.70 ~1.73
U 1.41 1.32 1.26 1.22 1.14 1.08 1.04 1.02 ol

Table 5.7.1. The SV-measure of the Q- and U triangulations.

The basic algorithm of Van der Laan and Talman was applied to the three
economic problems of Scarf [1973] for both the Q-and U triangulation to
compare them. As could be expected, the U triangulation performs much

better than the Q triangulation. About the same results were obtained
for the homotopy-algorithm of Van der Laan and Talman. Todd [private
communication] compared also both triangulations and had the same
experience. Finally, in table 5.7.2 the computational experience is given.
All runs were done with and without acceleration. In the latter case the
factor £ of incrementation was always equal to 2. In the case of
acceleration the new grid size was set equal to the maximal absolute

- difference between the components of the last and the previous
approximation unless this number was larger than a half of the previous
grid size. Then the grid size was halfed. The accuracy of the last

approximate fixed point was less than 10_10.

n =4 n =7 n =29

acc. f =2 acc. f = 2 acc. f =2

Homotopy 0 68 108 144 199 155 217
algorithm U 59 102 93 166 146 210
Basic Q 63 85 127 197 205 255
algorithm U 50 66 121 182 124 188

Table 5.7.2. Computational results.
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CHAPTER 6

VARIABLE DIMENSION FIXED POINT ALGORITHM ON
THE PRODUCT SPACE S OF UNIT SIMPLICES

6.1. INTRODUCTION.

Let S be the product space of N unit simplices Smj, j=1,...,N.
+
Observe that S is an M-dimensional subset of RM ﬁ where M is equal to
z?_l mj. In this chapter we develop a variable dimension restart algorithm

to approximate a fixed point of a continuous function £ (or an u.s.c.
-mapping) from S into itself. One possible approach is to consider S as a
subset of the set S(N) = {x ¢ RT+Ni I; X, = N}. By extending then the
function (or mapping) to a mapping E'from StN5 into itself in the same
way as described in chapter 3, the algorithms discussed in chapter 4 can be
directly applied. Clearly, the disadvantage of doing so is that the
dimension of the problem is increased with N-1. Moreover, a completely
labelled simplex of S(N) contains at least N-1 artificially labelled
vertices which affects the accuracy. Garcia, Lemke and Lithi [1973]
developed in asimilar way an algorithm which is very close to Kuhn's
variable dimension algorithm on Sn.

Another way to compute fixed points on S is to change both the
triangulation matrix and labelling rule of chapter 4 in such a way that we
can apply the algorithms, discussed in chapter 4 for Sn, to S. Since
dim S = M, we need an (M+N) x M triangulation matrix P (say), and M+1
labels in case of integer labelling. Note that the number of variables is
equal to M+N. We can prove that a regular PK triangulation of S is obtained

if the matrix P is a block matrix defined by

P1 0 . . 0
P2 .
P=|. . .
. . P
_9 ° NI
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me.
where Pj is the standard triangulation matrix of S J, j =1,...,N

-1
(see chapter 2), i.e. the PK triangulation of S having grid size m (m > 0)

1 . 1 M+1
is the set of simplices o(y ,m) with vertices y ,...,¥ such that
. 1 . -1
(i) the components of y are a multiple of m ,
(ii) m is a permutation of the elements of IM,
i+1 i -1
(1i1) y =y +m o p(m)  i=1,...M

Concerning the labellingvrula however, we encounter some difficulties.
Recall that the number of variables is M+N whereas we can only assign M+l
labels in case of integer labelling. Thus (if N > 1) we have to combine
(or delete) some components of the (M+N)-vector f(x)-x to determine the
label of the point x. This can be done by deleting for j = 1,...,N the
{Zi=1 (mi+1))—th component of f(x)-x and assign label M+1 to x if the
remaining components are all positive. Otherwise, the standard labelling
rule is used. However, this seems not very natural since some components
are "discriminated". In case of vector labelling we have the same
difficulties. In that case we can not assign the vector -f(x)+x+e to the
grid point x since the sytem of linear equations consists of only M+l
columns (unknowns). Again we can delete N-1 rows without affecting the
system but it seems not to be very natural.

To avoid these problems we introduce in this chapter an algorithm based
on ideas of Van der Laan and Talman's basic algorithm on SVIi as described
in section 4.5. Therefore we need a special triangulation of S which will
be defined in relation to an arbitrarily chosen starting point y. To each
point x € S we assign in case of integer labelling an integer of the set
IM+N and in case of vector labelling the (M+N)-vector -f(x)+x+e. Starting
with the zero-dimension simplex {y} the algorithm generates by pivot and
replacement steps a sequence of adjacent simplices of the triangulation

of variable dimension until a simplex is found which yields an approximate
fixed point. In general, if a new label is found (or a unit vector is
eliminated), the dimension of the current simplex is increased. Sometimes
the dimension is decreased. We will prove that an approximate fixed

point is found if some special set of labels is found (or if a special set
of unit vectors has been eliminated). In total there are N of such sets.

Moreover we will show that if M+1 different labels have been found, i.e.
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if all vertices of a full-dimensional simplex of S are differently
labelled, the labelset contains at least one of these sets. We also prove
that the algorithm terminates within a finite number of iterations with
such a set. It will appear that the algorithm can stbp with a lower-
dimensional simplex without affecting the accuracy of the approximation.
In section 2 the triangulation of S is introduced. For integer labelling
section 3 gives the (proper) labelling rule and proves that the algorithm's
terminal simplex provides an approximate fixed point. Section 4 presents
the algorithm. In the same section the convergence is proved. The extension
of the algorithm for vector labelling is described in section 5. Finally,
computational experience is given in section 6. In that section we
approximate equilibrium strategies of the noncooperative N person game
discussed in section 3.2.

This chapter is based on the work of Van der Laan and Talman [1978a].

6.2. TRIANGULATION OF S.

Roughly speaking, the triangulation of S is obtained by first taking
in a proper way the product of the (standard) triangulations of'Smj for
given grid sizes d;l (dj being a positive integer), j = 1,...,N. This
product triangulation produces cells of the fg%mtﬁl X 02 X ... GN,where
Oj is an mj—simplex of the triangulation of S J. Note that these cells

are full-dimensional . Clearly, each cell has H§= (mj+1) vertices.

1

These cells are illustrated in figure 6.2.l1a for N = 2, my =m, = 1,

d1 = d2 =4, énd in figure 6.2.1b for N = 2, m1 = 2, m2 = 1 and d1 = d2 = 2.
In these figures u(i,j) is the (M+N)-vector having ones on the i-th and
(m1+j+1)—th places and zeroes elsewhere. Recall that M = Z?=1 mj.

Each cell is now triangulated with respect to the arbitrarily chosen
starting point into M!/n?=1 mj! simplices in such a way that the collection
of all these simplices constitutes a triangulation of S. Basically, however,
each cell is triangulated in the same way. For example the squares in
figure 6.2.1la are triangulated by taking one of the diagonals as is
illustrated in figure 6.2.2a, whereas the cells in figure 6.2.1b are
triangulated by subdividing the (three) facets being a square into two

triangles. This is illustrated in figure 6.2.2b.
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Figure 6.2.la. Product triangulation Figure 6.2.1b. Product triangulation

of S if N=2, m1= 2=1, d1=d2=4. of S if N=2, m1=2, m2=1, d1=d2=2.
Figure 6.2.2 a. Triangulation of a Figure 6.2.2b. Triangulation of a
cell if N=2, m1=m2=1. cell if N=2, m1=2, m2=1.

The triangulation needed in the algorithm will now be described in full
detail without reference to the product triangulation. First we define

the set of grid points of S. Let d cees dN be N positive integers and

1I
let SmJ(dj) be the set of grid points of the standard triangulation of
m. _1 m. m.

s J with grid size dj , i.e. S J(dj) is the set of points X € s J such
that each component of xj is a nonnegative multiple of d;i, j=1,...,N.

Let d = (d ,dn), then the set S(d) of grid points of S is the product

)T

AR

m .
of the sets S J(d.), j e IN' i.e. y = (yI, ceey y; is an element of S(d)

me.
if and only if yj € § J(dj) for all j. Next, let I(M) be the set of
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m,
indices U?—l {(j,l),...,(j,mj+1)} and denote the k-th component of xj es]

3-1 '
. - € S d t .
by Xj,k So, the (k + Zi=1 (mi+1)) th component of x is denoted by X],k’
k=1,...,m,+1, i.e.
J
= ( X X X X X )T
T A T LA Lom +17%2,177 70 %5 001 e+

Further, let the block diagonal (triangulation) matrix Q (of S) be defined
by

_QlO . . . 0]
o o, .
A
. .0
[0 . . . 0 g

-where Qj is the (mj+1)x(mj+1) extended standard triangulation matrix of

s™ defined in section 2.6, j € I The (k + 21;1
of Q will be denoted by g(j,k), k = 1,...,mj+1, j e IN. Note that the

(mi+1))—th column

rank of Q is equal to M,which is the dimension of S.
Using this matrix Q we can define regions A(T) for T ¢ I(M) in the same
way as described in section 4.5. Recall that in that section A(T) was

only defined for T being a proper subset of I and that A(T) was

n+1
triangulated by the standard triangulation of S™-Also, for proper T c In

+
the rank of the matrix with columns q(i), i € T, was equal to |TI. :
In this chapter we will have the same situation except that a priori a’
triangulation of S is not available and that T must be restricted to
special subsets of I(M). The main idea is to take only subsets T such
that the matrix with columns q(j,k), (j,k) € T, has full rank |T|. Then we
show that S is the union of these A(T). Finally, we triangulate each A(T)
in the standard way by using only the columns q(j,k), (j,k) € T. We will
prove that the union of these triangulations triangulates the set S.

Since each A(T) is triangulated in a different way the triangulation of S
looks very complicated. However, after explaining the algorithm it will
become clear that, given the starting point, the triangulation of S is
very natural.

First we take an arbitrary grid point y € S(d). This point will be the

starting point of the algorithm. Next we define the regions A(T) for
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"proper" T.

DEFINITION 6.2.1. Let Z be the collection of subsets T of I(M) such that

for all j € IN there is at least one element (j,k) not in T. Then for

T ¢ Z the region A(T) of S is defined by

A(T) = {x € S| x =y + T A, ,q(j,k) for
(3,k) e 7%
nonnegative numbers Aj,k}'
Clearly, T € Z if and only if the rank of the matrix with columns q(j, k),
(3,k) € T, is equal to |T|. We call a point x proper in the region A(T)
if xj,k > Oofor all (j,k) € T. The set'of proper poi?ts of A(T) will be
denoted by A(T). Note that int A(T) is not equal to A(T). Clearly, each
point x is a proper point of exactly one region A(T), i.e. the subsets
i(T), T € Z,partition S. Moreover, since the matrix [q(j,k), (j,k) € T]

‘has full rank, the A, ,'s are unique. For N=2, m,=m.,=1, d1=4 and d2=6,

ik 172
the regions A(T), T € Z,are illustrated in figure 6.2.3, such that

y = (3/4,1/4,2/3,1/3) 7. Recall that A(g) = A(§) = {y}.

A(2,1)

A((1,2) 4(2,1)) A((1,1),(2,1))

a(1,2) A(1,1)

A((1,2)4(2,2)) a((1,1),(2,2))

A(2,2)

Figure 6.2.3. The regions A(T), T € Z,if N=2, m1=m2=1, d,=4, d.,=6,
T
y = (3/4,1/4,2/3,1/3) .

1 2
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]
COROLLARY 6.2.2. The sets A(T) partition S, T € Z. Moreover for all T1 and

T2 € 2

A(Tl) n A(Tz) = A(T1 n Tz).
Now we first triangulate those A(T) with i(T) # @. Note that if i(T) =g

there is a unique subset T, of T such that A(Tl) = A(T) and R(Tl) # 0.

1

DEFINITION 6.2.3. For T ¢ Z with |T| = t such that A(T) # #, G(T) is the

collection of t-simplices o(yl,ﬂ(T)) with vertices yl,...,yt+1 in S such

that

(i) y1 =y + I dflu. q(j,k) for nonnegative integers u., .,
. rk ],k

(j,k)eT
(ii) m(T) = (“1' ey nt) is a permutation of the elements of T,
C i+1 i .
(iii) y =y + Dq(ﬂi) i=1,...,t,

where D is the (M+N)-diagonal matrix with (j,k)-th diagonal element equal
1—simplices
is the unique subset of T such that

to d;l, j € IN. If i(T) = @ define G(T) as the collection of t
: | =
of G(Tl)'where Tl‘w1th ‘Til =t

A(T) = A(T,) and z‘i(Tl) % 0.

1

Observe that Dq(ﬂ ) = d q(j,k) if "= (j,k). Hence, all vertices of

o(y ,m(T)) deflned above are elements of s(d).

THEOREM 6.2.4. For any T € Z with A(T) # @, the collection G(T) of

t-simplices o(y ,m(T)) triangulates A(T).

1
PROOF. Since uj Xk > 0 for all (j,k) € T, vy € A(T). Because of (ii) and

7
(iii) we have also that yl € A(T), i =2 2. Hence, o(yl,n(T)) is a simplex

of A(T).
Conversely, let x be an arbitrary point in A(T). So, there are unique

nonnegative numbers Aj (j,k) € T, such that

k!

X =y + z AL kq(j,k).
(3,k)eT

1 -
Let y =y + 2 djluj kq(j,k) such that y, is the greatest integer less
14

j.k
than dej x I1f Aj is equal to zero, we take u = 0. Clearly y1 € A(T).
’ r

k 3.k
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Define now
z(j,k) = d.A, - M,
(3,k) 206 7 M50k
and let m(T) be a permutation of the elements of T such that both
> > >
z(wl) > z(ﬂz) 2 ... 2 z(nt)
. i+l i . , .
and the vertices y =y + Dq(wi), i=1,...,t, are points in A(T).

Since x € S there exists at least one such permutation if X(T) is nonempty.

Furthermore, let

81 =1 - z(wl)
Bi = z(ﬂi_l) - z(ﬂi) i=2,...,t
and
Bepg = 2(My)-
t+1 X
Clearly, Zi=1 Bi =1, Bi 2 0 for all i, and
t+1 . 1 t+1 i1 1 t+1 i T
I By =y + I B(y-y) =y + I 8{I vy’ )}
i=1 i=2 i=2 j=2
1 t+1 -t t+1
=y + I -y (I 8
. . i
j=2 i=j
1 t+1
=y + ! Dqg(m, . )z(m, ,)
j=2 j-1 j-1
-1 .
=y + z M, kdj q(j,k) +
(3.k)er I

-1
X 4 j, AL
. a3 k){dj 3, )}

.
k k
(3,k) €T r

-1
y + X d,a, ,d.qg(j,k) = x.
(§,k)eT 3 J.k73
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Hence, X € 0(y1,ﬂ(T)) while 0 € G(T). Moreover x lies in the (unique)

face of ¢ whose vertices are the yi ;s with positive Bi. Therefore the open
faces of the simplices of G(T) cover A(T). It remains to prove that there
is exactly one open face containing x. For each number y e (0,1] let w(y)
be the t-vector defined by

(y) = Lde 'kj‘+ 1 if  daL - Ldjxj'kj >y

wjlk J J.

= Ldjxj kJ otherwise.
’

Clearly, each vertex yl of a simplex in G(T) containing x and having a

positive weigth Bi is of the form (cf. Todd [1976a, page 311 )

v = y+ I ow, (y)dflq(j,k) for some y € (0,11.
(3,k) e J.k J

 Moreover, the number of different w(y)'s for y € (0,1] is equal to the
number of positive Bi's. Since the vector w(y) is determined without
reference to y1 and m(T), the point x must lie in exactly one open face.

This proves that the open faces partition A(T). O

Let Z1 c 7 be such that dim A(T) =M iff T € Z1. We now prove that S

is triangulated by the union of the triangulations of A(T), T € Zl.

Recall from corollary 6.2.2 that S is the union of the regions A(T), T € Z.
Hence, since A(Tl) < A(TZ) if T1 c T_, the union of the simplices of the

2
triangulations of A(T), T € Z2°, is equal to S. So, it remains to prove
that the intersection of two M-simplices 01 and 02 is a common face or

1
empty. If both oy and o, are simplices of A(T) for some T € Z , then the

result follows from theorem 6.2.4. To prove that % no, is a common face

(or is empty) if o, € G(Tl) and 0, € G(Tz),it is sufficient to show that

1 2
the triangulations of A(Tl) and A(TZ) are consistent on there intersection:
A(Tl) n A(Tz) = A(T1 n T2). In particular, we will prove that G(Tl) and
G(T2) induce the same triangulation G(T1 n T2) of A(T1 n T2). Of course,

ifT 0T, = a3, A(T, n T,) = VAR
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THEOREM 6.2.5. Let T1 be a proper subset of T

triangulation of A(Tl) induced by G(T2).

5 € 21. Then G(Tl) is the

PROOF. Let o(yl,n(Tz)) be a simplex of G(T2) such that o n A(Tl) # 0.

We prove that o n A(T

M+1 !

) is a face of both G(Tl) and G(T2).
1
Let ¥y eeer ¥ be the vertices of o. For unique nonnegative integers

uj'k, (3,k) € T2, we have

1 -1 .
y =y+ L dj My a(dek) .
(3,k)eT e
2
Moreover, i
yl+1 = y1 + I Dg(m,) i=1, ..., M.
=t

Therefore, yl é A(Tl) implies yJ ¢ A(Ti) for j = i, and yl € A(Tl) implies
yJ € A(Tl) for j < i. So, y € A(Tl) and there exist an integer h with

1 < h < M+l such that

1 h h+1 M+1
Yo eeer ¥y €AT) and y o, ...,y ¢ A(T,) .

In other words,o n A(Tl) is the face T(yl,...,yh) of 0 in G(Tz).
Observe that h < t, < t, = M where t, = |T.

1 h 1 2 i i
(Y s...,yY ) is also a face of the triangulation G(Tl) of A(Tl)' Since

1
Yy ,---,Yh € A(Tl)' we have that

, i=1,2. Finally we prove that

uj,k = 0 for (j,k) ¢ T1’ and ™€ T1 for i = 1,...,h.
Consequently,
1 -1 . )
y =y+ I a, u. kq(],k) for (the same) nonnegative
(3,k)eT, e _
integers u, k
and Jr
i+ .
Yyt pamy) i=1,...,h-1

*
for the permutation m = (ﬂll...,ﬂ ) which must be a permutation of h-1

h-1
elements of Tl' Therefore 1(y ,...,y ) is a face of any simplex c(yl,ﬂ*(Tl))
* % *
of G(Tl) such thatn*(T1)= (m ,nh,...,ﬂt ) is a permutation of the t1

1

elements of Tl' Hence T is also a face of the triangulation G(Tl) of A(Tl)'
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This completes the proof. O

COROLLARY 6.2.6. The product space S is triangulated by the union of

triangulations G(T) of A(T), T € Z1.

The triangulation of S is illustrated in figure 6.2.4 for N = 2,
m =m, = 1, dl = 4, dz =6 and y = (3/4,1/4,2/3,1/3)T, in figure 6.2.5a
for N=2,m =2, m=1,d =1,d,=2ady-= (1,0,0,%,% ', and in

=2, m, =1,4

figure 6.2.5b for N = 2, m 2

Yy = (!21!1!01110)1‘-

=2, d, =1 and

1 1 2

Figure 6.2.4. Triangulation of SifN=2, m, =m,=1,d, =4, d, =6,
T .
y = (3/4,1/4,2/3,1/3) .

Figure 6.2.5a. Triangulation of S if N=2, m, =2, m, =1, 4, =1, 4, = 2,
y = (1,0,0,%,4% .
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Figure 6.2.5b. Triangulation of S if N = 2, m o=2,m =14 =2,4,=1,
T
Yy = (151151011/0) .

Observe that if mi = 1 for all i € In’ S corresponds to the unit cube of
RN. The triangulation is then similar to the K' triangulation of RN
proposed by Todd [1978a] (see also Van der Laan and Talman [1978b]).

An efficient restart algorithm in R" based on the K' triangulation is
developed in chapter 7. Notice the dependence of the triangulation

of S on the (starting) point y. In the next section we assign to each point
a label being an element of the set I(M). Then the path of adjacent
simplices generated by the algorithm (to be described in section 4) is
such that the common facets are T-complete (in the sense of section 4.5)
when simplices are generated of the triangulation G(T) of A(T), T € Z.

As soon as a label (j,k) is found such that the new label set

Tu {(j,k)} é Z, the algorithm terminates with an approximate fixed point.

6.3. INTEGER LABELLING AND APPROXIMATION,

Assume we want to compute a fixed point of a continuous function £
from S into itself. Therefore S is triangulated as described in the

previous section and each (grid) point is labelled as follows.
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DEFINITION 6.3.1. (STANDARD INTEGER LABELLING ON S). A point x € S

receives the integer label 2(x) where

)}

2(x) = lexicomin {(j,k) | fj KK =%, o= min  (f

(x)-x,
Ik et '

ih i,h

where lexicomin means the lexicographic smallest index.

Observe that x,. = 0 implies 2(x) # (j,k) except in the case that x is a
’

ik

fixed point and x = 0. Then we assign to x the least index (1,k) such

that x > 0. Recall that (j,k) means k + Z?_l
1,k i=1

M-dimensional, we now have M+N different labels. Note that it can occur

1,1
(mi+1). Although S'is

that no (grid) point has label (j,k) for certain (j,k) € I(M).

DEFINITION 6.3.2. A (t-1) simplex ¢ is T-complete, T < I(M), if the vertices

of 0 carry all the labels which are elements of T (|T| =t).

As mentioned in the introduction it makes no sense to define a completely
labelled simplex since the number of labels is greater than the number of
vertices of a full-dimensional simplex (except if N = 1). However, to
recognize simplices yielding an approximate fixed point we give the

following definition.

DEFINITION 6.3.3. A simplex ¢ is a j-stopping simplex for some j € IN,

when (j,k) is an element of the label set of ¢ for all k.

Observe that a simplex 0 can be a j-stopping simplex for several j's.

If 0 is a j-stopping simplex, then mj < dim 0 £ M.

COROLLARY 6.3.4. A T-complete simplex 0 is a stopping simplex if and only
if T & Z.

In the next theorem we prove that a j-stopping simplex is a good approxi-
mation of a fixed point of f. Let G be the triangulation defined in the

previous section.
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THEOREM 6.3.5. Let ¢,8 > 0 be such that max, < § and
2HEURLE 0.2 ,

3ok %57

max lf, k(x)-f. k(y)| < e for all x,y € 0, 0 € G.
(Gokerqwy 77 e

Then for any x in a j-stopping simplex o in G

max If. k(x)_xj,kl < (e+6) (m.+1)max m, .

(G,k)er(m) I’ i3

) k
PROOF. Let wk be the vertex of ¢ with 2(w ) = (j,k), k = 1,...,mj+1.

Since for any y € S

m,+1
J .
I £, -y. ) =0
o (J,k(y) Y5k ’
we have
k k

- < =

fj'k(w ) Wik < 0 k 1,...,mj+1.

Let x be an arbitrary point in o.

. k k
Since xj,k - wj,kl < § and |fj,k(x) - fj,k(w )| < e, we get
k k k
fj,k(x) - xj,k = (fj,k(x) - fj,k(w )) + <fj,k(w ) - wj,k) +
P o x, ) <e+ 8 k=1, ..m+l
3.k 3.k € reeemetls
Moreover,
m,+1
J
6.3.1 £, X) - x, =- I £, X) - X, > -m,(e + §
( ) ],k( ) 3,k - ( ],h( ) j,h) J( )
h#k
k=1,...,m,+1.
J
All this together implies
e 5, =35 o < e+ my < (e a)(m.+1)$:§ m, .
. mj+1 J

In particular, inequality (6.3.1) holds for x = wl. Hence,

indices (i,h), i # j,

we have for all
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1 1 1 1
- -3 -
fi,h(w ) W, £ '1(w ) wj

. > -m, (e + §).
i,h 3j ]( )

1

Since both x and w1 lie in o, we get

- - - - + = - +1 + .
fi,h(x) xi,h> e -6 mj(e 8) (mj ) (e + &)
On the other side we obtain
m,+1
i

Eon®) —x = 21 (£

k#h

i,k(X) - xi,k) < mi(mj+1)(e + 8).

Combining the last two inequalities we get

max |f.

i,h
heIm'+1
i

(x) - xi’hl < (e + 8) (my+ Lmy,
which proves the theorem. 2]

The theorem says that a T-complete simplex o for T é Z yields an
approximate fixed point. In the following sectién an algorithm is

presented that will always generate such a simplex and can start anywhere

in S.

6.4. THE VARIABLE DIMENSION ALGORITHM ON S.

The algorithm to be described in this section is a modification of
Van der Laan and Talman's basic algorithm on Sn. Let S be triangulated
as described in section 6.2 for given grid vector 4 and grid point
y € S(d). Then the algorithm proceeds as follows wheren, is the number

of labels (j,k), k € Im , already found. Each point x € S is labelled

+1
J

according to -definition 6.3.1.
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1 1 - 1
STEP 0..Sett=O,T=¢, m(T) =¢:y =Y U=U(y ,TT(T))I Y=Y,nj=0

for all j e IN,and Rj,k = 0 for all (j,k) € I(M).

STEP 1. calculate &(y). If 2(y) # T, a (T u {2(y)})-complete simplex is
found and go to step 3. Otherwise 2(;5 = l(ys) for exactly one
vertex ys # §'of 0. The facet opposite ys is T-complete.

1
STEP 2. If s = t+1 and R1T = 0, go to step 4. Otherwise o(y ,m(T)) and R
t

are adapted according to table 6.4.1 by replacing ys. Return to
step 1 with ;'equal to the new vertex of o.

STEP 3. Let 2(;5 = (j,k). If nj = mj, a j-stopping simplex is found and
the algorithm terminates. Otherwise, set T = T U {(j,k)},
m(T) = (v (T),(3,k)), 0 = c(yl,ﬂ(T)), nj = nj+ 1 and t = t+1.
Return to step 1 with y equal to the new vertex
vyt s dglq(j,k) of o.

STEP 4. Let m_ = (i,h). Label (i,h) is deleted. Set T = T\{(i,h)} ,

1

m(T) = (ﬂl, cees nt_l),sc =o(y ,m(T)), n, =n,- 1 and t = t-1.

Return to step 2 with y equal to the vertex of o having label

(i,h).

y1 becomes | m(T) becomes R becomes
s =1 1+ Dg(m,) (m m T, ) R +:e(m,)
= Y1 Ty of e Ter Ty s 1
< s < .
2 <s <t y1 (nl, csey Ws—Z’ ws, Ws—l’ ns+1, P nt) R

s =t+tl |y - Dq(nt) (wt, Tyr weer ﬂt—l) R - e(nt)

Table 6.4.1. s is the index of the vertex to be replaced.

1
Clearly, each simplex generated by the algorithm is of the form o(y ,m(T))

for some T ¢ Z such that

1 -1
(i) y =y + z d. R. ,qg(j,k) with nonnegative integers R, ,,
. J T3k J.k
(3 ,k)eT
(ii) m(T) = (nl, oot wt) is a permutation of the elements of T,
i+1

(iii) v+ Dq(m,) i=1, ..., t.

Therefore, if ¢ is a simplex in S, it satisfies the condition (i)-(iii) of
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section 6.2, i.e. 0 is a simplex of the triangulation G(T) of A(T).
Moreover, either ¢ has two T-complete facets or ¢ is (T U {(j,k)})-complete
in which case it has exactly one T-complete facet 1. In the first case o
has two vertices with the same label. One of these two vertices is the new
vertex while the other one must be removed yielding a simplex adjacent to
0 as stated in step 2. In the other case either a new label is found so
that a test is made whether to terminate the algorithm or to increase the
dimension (step 3), or ¢ is a t-dimensional facet of a (t+1)-simplex §

of G(Tu{(j,k)}), while the only vertex of ¢ in ZQPU{(j,k)}) has

to be removed. Then step‘4 has to be performed, i.e. (j,k) is

deleted and the dimension is decreased. Note that as soon as label

(j,k) (say) is found a search for the other labels is made by moving to
the (j,k)-th boundary of S where label (j,k) is missing. In other words,
the (j,k)-th component is forced to decrease if label (j,k) is found since
in that direction new labels can be found. If, however, the path of
. simplices moves too far away from the (j,k)-th boundary of S, label (j,k)
is deleted from the current label set. Consequently, the algorithm gene-
rates a path of adjacent simplices of variable dimension of the
triangulation G of S such that two adjacent t-simplices whose common

facet is T-complete are both of the form c(yl,n(T)) and are lyihg in A(T).
If two adjacent simplices have not the same dimension so that one of them
is a facet of the other, then the T-complete (say) facet is of the form
T(yl,n(T')) and lies in A(T') where T' = T\{(j,k)} for some (j,k) € T,
whereas the simplex is of the form o(yl,ﬂ(T))y and lies in A(T). Recall

+ —
that in the latter case Rj k= 0 and y = yt + djlq(j,k) whereas T is
’
+
the facet of 0 opposite to yt 1.

We now prove that the algorithm terminates within a finite number of
iterations with a j-stopping simplex for some j € IN. Remember that A(T)

is only defined for T € Z. However,as soon as T is not longer an element
of Z, the algorithm terminates since then a j-stopping simplex is found
for some j(according to corollary 6.3.4), To show that all replacement Steps

+
are feasible, let o(yl, ceey yt 1) be a simplex of the triangulation G(T)

of A(T) such that the facet T(yl, csey ys-l, ys+1, ceer yt+1) is on the
(j,k)-th boundary of S for some (j,k) € I(M) and y§,k > (0. Suppose thatT is
T-complete. We now prove that ys can be only removed if s = t+1,

T = (j,k-1) and Rj,k—l =0 (k-1 = m_,+1 ii+? = 1) so that the algorithm
performs step 4 (by deleting the vertex y and label (j,k-1)). Since T

is T-complete and the labelling rule is proper, (j,k) é T. However, s < t+1
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implies ys+1 = yS + d;lq(j,k) and so ﬂs = (j,k) € T, which gives a
-1 -1 . . . .
contradiction. Hence s = t+1 and ys = ys + dj g(j,k-1) which implies
. . 1 _ .
T = (j,k-1). Moreover, since yj,k = 0 and (j,k) * T, Rj,k-l must be equal

to zero (and yj k also). This proves the feasibility of the replacement
’
step in step 2.

Next we prove that step 3 is always feasible. If y? = 0 and Q(ys) = (j,k)

k
!
is a new label, the extension step cannot be performed. However, since (j,k)

is the new label, we have 7, # (j,k), i = 1,...,t-1 (and Rj is equal to
’

i k
1 t .
zero). Consequently, since y ,...,y are vertices of S and L # (3,k),

0 < y% < t

< ve. £y, = 0.
J.k lek

This implies that y%
ik

Finally we prove that the algorithm can never return in a previously

= 0 for all i and hence label (j,k) cannot occur.

0 1 . . .
generated simplex. Let 0 , 0, ... be the path of adjacent simplices
generated by the algorithm. Then, as mentioned above, for some T € Z

i

i-1 i
g and o

g o(yl,ﬂ(T)) and either cl shares T-complete facets with

+1 -1

or ci is a (T u {(3j,k)})-complete facet of oi
(or ai+1) and shares a T-complete facet with oi+1 (oxr oi_l), i=1,2,.0. .
To prove that the algorithm cannot cycle, we now show that co has exactly
one adjacent simplex with one of these two properties and that ci, i=1,
has exactly two such adjacent simplices. If so, then a simplex ci can
never be revisited as is easily seen from the érguments used in section
4.3 to prove noncycling for Kuhn's artificial start algorithm.

Clearly c(yl,n(T)) with y1 =y and T = {2(y)} is the only simplex of G(T)
adjacent to 00 = {y} having one of the two properties. If i > 0, let ci

have two T-complete facets T, and T,. Obviously, simplices adjacent to ot

1 2

i
and not sharing T, or T2 with o0 cannot have one of the two properties

. . i,
since their intersection with o~ is not T-complete. If T, (or 12)

1
is not in the boundary of A(T), there is a unique simplex o adjacent to

i
0~ sharing the facet 7, (or 1,) such that chas one of the two properties,

1 2
n
viz. the t-simplex c(y,%(T)) obtained from table 6.4.1 by replacing

the vertex of o= opposite to Ty (or T2). If rl(or T2) is in the boundary

of A(T), Tl(or 12) is a T-complete (t-1)-simplex of A(T\{(j,k)}) for some

+1

. . i . t
(j+k) € T such that 1, (or T,) is the facet of o opposite to y . In that
: 2

1
case rl(or 12) is of the form t(yl,ﬂ(T\{(j,k)}))and is a simplex of
G(T\{(j,k)}) so that this simplex is adjacent to 0" and has one of the

two properties. Clearly, there is no other simplex adjacent to Ul sharing
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Tl(or T2) and having one of these properties.

If oi (i >0) is a (T u {(3,k)})-complete simplex o(yl,ﬂ(T)) of G(T), then
Oi is a facet of exactly one (t+1)-simplex c(yl,n(T')) of G(T') where

T =T U {(j,k)} (see theorem 2.2.8) , Hence, since ci is a T'-complete
facet of o, the latter simplex satisfies one of the two properties ahove
(depending on what the label of the new vertex yt+2 of ¢ is). Further, let
T be the facet of oi which is T-complete. Then there is,following the
arguments above,only one adjacent simplex p of ci sharing T with oi such
that p has one of the two properties. Obviously there are no other
simplices adjacent to Ui‘having one of these properties.

Combining these results together, we find that the algorithm generates a
unique feasible path of adjacent simplices of G of variable dimension.
Since the number of simplices in S is finité,the algorithm must terminate,
which can only occur if for some j a j-stopping simplex is found.

The algorithm is illustrated in figure 6.,4.1 for N= 2, m, =m, = 1,

1 2
d1 = 4, d2 = 6 and Yy = (3/4'1/412/311/3)T-
(o] €
iy i
aj
1
% 9
k J

Figure 6.4.1. 1Illustration of the algorithm on S. N = 2, m1 = m2 =1,

a, = 4,4, =6,y = (3/4,1/4,2/3,1/3)".
In this example &(y) = %£(a) = 2(d) = (g) = (2,1),
2(b) = &(c) = L(e) = L(f) = &(h) = (1,1), &(1i) = 2(J) = (2,2) and
2(k) = (1,2) or (2,1). The simplex with vertices h,j,k is a stopping
simplex for the algorithm. Note that if f2(a) = (2,2) the simplex o(y,a) is
a one-dimensional 2-stopping simplex. We emphasize that it is possible
that if S is two-dimensional, four labels are assigned whereas the

algorithm terminates with a one-dimensional (at most two-dimensional)
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simplex. Observe that fast movements can be made into all directions while
this cannot be done for the "standard" triangulation of S.

Finally, we make some remarks about the path of simplices generated by the
algorithm. Let c(yl,n(T)) be a t-simplex of the path. Then for all

(j,k) € T there exists a vertex w(j,k) of o such that
. _ . < . N .
fj,k(w(J’k)) wj,k(J’k) < fi,h(W(J'k)) wi,h(j’k)
for all (i,h)

since o has at least one T-complete facet. Hence, if x € 0 and T € Z,
the (j,k)-th components of f(x)-x are very close to each other for all
(j,k) € T whereas the other componenté of f(x)-x are larger (or equal).

So, let C(T) be the set of points z in A(T) such that

fj,k<z) T Zy, = min {fi'h(z)—zi'h} if (j,k) € T
(i,h)

and

> min {f,
i

£, (2) - z, (z)-z, .} if (3,k) & T.
Jj.k j.k (i,h) +h i,h

Observe that C(T) is not defined for T é Z.Roughly speaking, if the
algorithm generates simplices of the triangulation G(T) of A(T), a curve
in C(T) is followed until either £, . (x) - x,
ik J.k
minimum for some (j,k) * T or the boundary of A(T) is met. In the first

becomes equal to the

case a new label is found and an adjacent curve in C(T U {(j,k)})is
followed with (t+1)-simplices. In the other case the point on the
boundary of A(T) lies either in bd S or lies in A(T\{(i,h)}) for some
(i,h) € T. If ‘the point lies in bd S it must be a fixed point and the
algorithm terminates with a simplex close to that point. Otherwise, as
soon as the algorithm generates a T-complete facet in A(T\{(i,h)}), the
algorithm continues by following the adjacent curve in C(T\{(i,h)}) with
(t-1)-simplices of G(T\{(i,h)}). If T becomes an element not in 2, i.e.
if a simplex is generated which is a j-stopping simplex for some j, then

it approximates a point z such that
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fj,k(z) - zj,k = min {fi,h(z) - zi,h} for all k.
(i,h)

Clearly, this can only happen if z is a fixed point of f since

Zk (fj,k(z) - zj,k) = 0. Note that the algorithm terminates as soon as
T becomes an element not of Z. It can easily be seen that for some
given starting point y the path of simplices converges to a chain of
adjacent curves in C(T), T € Z, if the mesh goes to zero. This curve

starts with the point y and ends with a fixed point of f.

6.5. VECTOR LABELLING ,
Let ¢ be an u.s.c. mapping from S to the set of nonempty, convex sets
of S and let S be triangulated as described in section 2. for some given

grid vector d and starting point y.

DEFINITION 6.5.1. (STANDARD VECTOR LABELLING ON S). A point x € S

receives the (M+N)-vector label £(x) where
2(x) = -£(x) + x +e
where f(x) is an a priori chosen element of ¢(x).

t
DEFINITION 6.5.2. A (t-1)-simplex O(wl,...,w ) is T-complete with IT] =t

and T ¢ I(M), if the system of M+N linear equations

< i
oA L) ¢ %
1

e(j,k) =e
i=1 (3,k) &T

My
. * *

has anonnegative solution )‘i’ i=1,...,t and uj k' (i,k) & T.
’

Observe that T-completeness is only defined if t < M+1.
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LEMMA 6.5.3. If o(wl,...,wt) is a T-complete simplex, then
t

* *
(M+N) Z A, + I . = M+N.
k
i=t Y (g,xér

PROOF. Summing up all equations we get

m,+1
L, N i0i *
T xi{ LI (~f, k(w )+wj k+1)}+ ) T K = M.
i=1t t§=1 k=1 3’ ’ G.x)yér 27
m,+1 mj+1
Since I w- _ = I f. (w) =1 for all j € I and for all i,
_ Jj.k _ .k N
k=1 k=1
we immediately get the desired result. O

Again we define a j-stopping simplex for j € IN. Note, however, that this

definition makes only sense if o is T-complete for some T.

1 t
DEFINITION 6.5.4. A T-complete simplex o(w ,...,w ) is called a j-stopping

simplex if (j,k) € T for all k = 1,...,mj+1.

LEMMA 6.5.5. A j-stopping simplex ¢ is a completely labelled simplex, i.e.
* .

My p = 0 for all (i,h) ¢ T.

PROOF. Since (j,k) € T for all k, we obtain by summing up all equations

(j,k) over k that

By summing up all equations (h,k) over k for some h # j, we get

+
mh 1

t

* *

) TOADH D= e
(h,k) 4T

*
which can only be the case if all u are equal to zero. ]

h,k

COROLLARY 6.5.6. A T-complete simplex is completely labelled if T * Z.




Following the proofs of lemma 4.2.5 and theorem 4.2.6 we obtain the
result that a completely labelled simplex indeed approximates a fixed

point. Let ¢ be a continuous function f.
THEOREM 6.5.7. Let €,8 > 0 be such that mesh G = § and

max |£, ,(x) - £, k(y)| < ¢ for all x,y € 0,0 € G.
(k) ern) I’ I

1 t
Then for a completely labelled simplex o(w ,...,w ) with solution

* * * * * i
A= (Al,...,kt) and x = Zi Aiw holds

* *
max |£, k(x ) = oxy
(G,k)er(m) I’ I

< €.
* : ) 3 : Ky Y . s
Moreover, x is a fixed point of the piecewise linear approximation

f to £ with respect to G.

If ¢ is an u.s.c. mapping,we get an analoguous result (see Todd [1976al)
We now give a short description how to apply the algorithm for vector
labelling. Starting in an arbitrarily chosen grid point y the algorithm
calculates 2 (y) and makes a pivot step by bringing 2(y) in the system

of linear equations

b)
(3,%)

uj’ke(J,k) =e,

where the sum is over all indices (j,k). If the (i,h)-th unit column is
eliminated, the simplex d(yl,w(T)) with y1 =yand T = {(i,h)} is

generated and l(yz) is calculated. Then a pivot step is made with 2(y2).
In general, if a unit column e(j,k) (say) is eliminated by a pivot step,
the dimension is increased by adding the vertex yt+2 = yt+1 + d;lq(j,k)

to the current simplex c(yl,n(T)) of G(T). Note that o is (T v {(3,k)})-
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complete. If, however, a vector Z(ys) is eliminated by a pivot step, then

the facet opposite to yS is T-complete so that ys is removed. If s = t+1
+
and R1T = 0, the last vertex yt ! of 0 is deleted and the dimension of
t
0 is decreased. Now a pivot step is made by bringing e(nt) back in the

current system of linear equations. Note that the facet of o opposite
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t+1 . . . \ \
y is a T-complete simplex of the triangulation G(T\{ﬂt}) of A(T\{ﬂt}).

If not both s = t+1 and RTr = 0, the standard replacement step is
t

performed by replacing ys according to table 6.4.1. This step yields a

new vertex ; and a pivot step is made with 1(55, etc. Hence, as long as

all steps are unique and feasible, the algorithm generates a unique .

path of adjacent simplices of variable dimension such that for some

T € Z a simplex ¢ is of the form o(yl,ﬂ(T)) € G(T) and either has Jjust two
different T-complete facets or is (T u {(j,k)})-complete for some (j,k) % T.
The algorithm terminates as soon as all uf'k are equal to zero, as will be
the case when T U {(j,k)} % Z. Note that if |T| > M, T cannot be an element
of Z, i.e. if full-dimensional simplices are generated and one of the

*
remaining N wunit columns is eliminated, then all u.

become equal to
jik q

zero so that a completely labelled simplex is foéund.

Next we prove that the algorithm indeed terminates within a finite number
of steps with a completely labelled simplex. Clearly, since the set of all
feasible solutions of the system of linear equations is bounded

(see lemma 6.5.3) the pivot steps can always be carried out. Moreover,
assuming that by a pivot step only one column is eliminated, the pivot
steps are unique. Note that the solution is completely degenerated if

a completely labelled simplex is found (N > 1). Hence, the pivot steps

are unique and feasible. Now we show that the replacement steps as well as

the extension steps are feasible. Clearly, they are all unique.

THEOREM 6.5.8. Let c(yl, ceey yt+1) be a t-simplex of the triangulation
G(T) of A(T) such that the facet T(yl,...,ys—l,y5+1,...,yt+1) is on the
(j,k)-th boundary of S for some (j,k) whereas ys is not on that boundary.
If t is T-complete then :

(i) 1 is completely labelled

or

(ii) s = t+1, m_ = (j,k-1) and R = 0, where k-1=m.+1 if k=1.
t ﬂt j

PROOF. Suppose that T is T-complete but not completely labelled.

If s = t+1, we have
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t+1 t -1 .
y =y + dj q(j,k-1)

+
since yt lies in the (j,k)-th boundary of S and yt 1 does not. Hence

ﬂt = (j,k-1) and so (j,k-1) € T. Moreover, (j,k) % T and consequently
RTT = Rj k-1 = 0, which implies (ii). If s £ t, then we must have that
t ! )
+ -1 .
YS . ys + dj q(3,k)

and so “s = (j,k) € T. Consequently, e(j,k) has already been eliminated.
Consider now the (j,k)-th equation of the system of linear equations

corresponding to T,

t+1 i i
T X, (-F, + vy, +1) =1.
. l( :1,k(y ) yJ,k )
i=1
i#s

Since y; k is equal to zero for all i # s, this equation simplifies to
’

t+1 i t+1

- % OAE, (y) 4 T A =1L
i=mp 13K i=1 *
i#s i#s

* * *
S—l'xs+1'-'.'xt+1)'

then Zi XI 2 1 as follows from the latter equation since the first term

*
If the total system has a feasible solution-(kl,...,k

*
on the left side is nonpositive. If Ei Ai = 1, T must be completely
*
labelled (see lemma 6.5.3). If, however, Zi Ai > 1, then by the same
lemma the system has no feasible solution implying that T is not

T-complete.

The theorem says that if such a o is generated by the algorithm while Q(ys)
is eliminated the facet 1 is completely labelled (in which case the
algorithm terminates) or step 4 has to be performed. Hence, the
replacement'step is always feasible. Following the same arguments it

can be easily proved that an extension step is also always feasible.

Therefore we can conlude that all steps are unique and feasible so that
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the algorithm must terminate,which can only occur if a completely
labelled simplex is found. Note again that the algorithm can terminate
with lower-dimensional simplices. Assuming nondegeneracy, this will only
happen for a boundary facet (ca§e (1) of theorem 6.5.8).

Finally, we give an interpretation of the path followed by the algorithm.
Let f be the piecewise-linear approximation to ¢ with respect to the

triangulation G, such that f(x) = £(x) if x is a grid point of S.

1
THEOREM 6.5.9. For T € 2 let T(w ,...,wt) be a T-complete simplex generated
* * *
by the algorithm, and let A = (Al,...,At) be the solution of the system

of equations with respect to T. Then

- * * *
fj,k(w ) - Wik T a(X) , (3,k) e T

and (assuming nondegeneracy)

- * * * .
£y ) —wy > e (3,%) ¢ T,

where w' = I, A*wi/I. AY and a(A") = =1 - £, A¥)/5. 2¥ (if t=0 then
1 1 1 1 1 1 1 1

a(l) = —w).

PROOF. Consider first the (j,k)-th equations of the system, (j,k) € T.

Since e(j,k) has been eliminated, we obtain

t s . t
K —
LA E, L W) —wy )+ E x: =1 (3,k) € T.
i=1 e I i=1
— * t o, ;v .
Since f ig linear in ¢ and lettingw = I Aiw / xi, we get
i=1 i=1
-— * * t * t * *
£, ow) —w, . ==-(1 - £ XD/ I XA, = a(r) (3,k) € T.
jik ik i’ i
i=1 i=1
For (j,k) & T we have in the same way
DONE b et 04 5 AT et o1 wenu >0
(=L, . . . . > .
PP S Y 1) S I3 Tk



Hence,

£ (w*) - wf = a(k*) + u

t
. . /A% s a0 (3.%) ¢ T.
’ ’ p—

*
Ikt

t * . .
Observe that Zi-l Xi is always positive since otherwise the (j,k)-th
equations give a contradiction for (j,k) € T.

0

Clearly, a(k*) = minj (£. (w*) - w; k) < 0. The theorem implies that
’

the point w* lies in téz-sei'E(T) defined in section 4 but now with
respect to f. Whereas in case of integer labelling the algorithm generates
points (simplices) which roughly follow a curve of C(T) defined with
respect to the real function f, for vector labelling the algorithm
generates points which are elements of C(T) defined with respect to a
piecewise linear approximation f to ¢. Observe that E'changes if the mesh
becomes smaller. If T becomes an element not of 2, then Z§=1 A: =1

and w* = Z:=1 A:wi must be a fixed point of E} cf. corollary 6.5.6.
Further, for some T € Z let 0 be a generated simplex having two T-complete
facets with solutions A*(l) and A*(2) respectively and let w(l) and w(2) be
the corresponding solution-points. Then for each point x = Ew(l) + (1-§)w(2)

with 0 £ £ £ 1 we have
f, - X, = a' j,kK) € T
j,k(X) 5 a (3,k)
and

Esrk(x) - xj,k > a' (3.,k) % T
where o' = Ea(x*(l)) + (1-£)a(A*(2)). We get the same result if o is a
generated simplex of G(T) such that o is T u {(i,h) }-complete for some
(i,h) * T. Consequently, the algorithm generates a connected chain of

line segments lying in C(T). So, the algorithm actually generates a
piecewise linear curve in S starting from y and ending with a fixed point
of E} the latter being an approximate fixed point of ¢. If the mesh goes

to zero, this point converges to a fixed point of ¢. If the mapping ¢ is a
continuous function, the curve converges to the limiting path mentioned in

section 4.
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It is clear that in case of vector labelling the algorithm has the disposal
of more information to decide which direction must be chosen to find an
approximate fixed point than in case of integer labelling. So, we may
expect that the algorithm converges much faster for vector labelling,

in particular if the algorithm is restarted many times to improve the
approximation. However, vector labelling requires much storage and involves
many computational operations since an (M+N)-matrix is adapted by every
pivot step and must be stored. Note however that many of the columns are
unit columns. It can easily be seen that a unit column remains the same

by pivoting so that only‘the t columns Q(yi) need to be stored. As soon

as a unit column is eliminated t increases with one, and when a unit

column is reintroduced t decreases with one. Observe that except for

Van der Laan and Talman's algorithm discussed in section 4.5 and the
algorithm described here no other algorithm has this nice property.

To decide whether integer labelling or vector labelling will be used,
therefore depends on the computation time of a function evaluation and on
the desired accuracy, e.g. if a function evaluation consumes much time itis
better to use vector labelling. In the next section we give some

computational experience.

6.6. COMPUTATIONAL EXPERIENCE.

As discussed in section 3.2 the computation of an equilibrium
Strategy of an N-person game,where the j-th player has mj+1 strategies, can
be considered as the computation of a fixed point of a continuous function
f from S into itself. As argued in that section the function f is not very
suitable since much information is lost by taking the maximum of O and
pj(x) - mi(x) for all (j,k) € I(M). Therefore we will not apply the
algorithm to the function f. We relabel the points such that a j-stopping
simplex (or a completely labelled simplex) is still a good approximation
of an equilibrium strategy. To do so, we formulate the N-person game
problem as a nonlinear ' complementarity problem (cf. Garcia, Lemke and
Lithi [1973]). The equilibrium condition of the N-person game is
equivalent to the NLCP

xj'k[mi(x)-vj(x)] = 0 where vj(x) = kE?in mi(x)
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such that x € S. Observe that m;(x) 2 vj(x) for all (j,k) € I(M) and
X € S. In case of integer labelling a point x € S receives the label £(x)
where

_ . . . b P i,y i
L(x) = lex1com1n{(j,k)! xj' > 0 and mk(x) v- (x) = mh(x) v (%)

k

for all (i,h) € I(M) such that X 0> 0}.
14

In case of vector labelling a point x € S receives the (M+N)-vector label

2(x) where

m.i(x) — v (x) + 1 if x, . >0

=
x
]

We applied the algorithm for both labelling rules to two noncooperative
.three-person games each player having three strategies. For the first
game the data of Jame 2 in Garcia, Lemke and Liithi [1973] were used.

The data of the other game are given in table 6.6.1.

(1,1 (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
(1,1) 2 3 4 2 3 3 4 1 5
(1,2) 1 1 4 3 4 1 6 8 2
(1,3) 4 7 2 4 5 5 3 6 4
(2,1) 5 6 7 4 8 9 3 5 1
(2,2) 1 1 3 3 2 1 2 2 4
(2,3) 2 3 6 5 3 6 7 5 8
(3,1) 1 3 5 1 6 2 1 2 4
(3,2) 2 6 5 3 3 7 8 5 5
(3,3) 5 2 2 4 6 5 8 1 3

Table 6.6.1. The number in the (j,k)-th row and the (ik ,ik )-th column
1 2

is the loss of player j if he uses his k-th pure strategy and

if for h = 1,2 player kh uses his ik -th pure strategy
h

where kl,k2 # j and k1 < k2.
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Instead of the standard triangulation matrix Qj on the blockdiagonal of Q
we used the matrix U proposed in chapter 5 with-mj on the diagonal. A
point outside S received then the label of its projection (per player) on
the boundary of S. For both examples the algorithm was started in the
barycenter (1/3, ..., 1/3)T with dj equal to 3 for all j = 1,2,3, except
for the first game when vector labelling was used in which case we have
chosen dj = 6 for all j. The factor of incrementation waslset equal to two
for all applications whereas the final grid size was 384 . This is equal
to a grid size of 665_1 in Garcia, Lemke and Lithi's algorithm. Since their
algorithm must start in a corner of S, it requires hundred and hundreds

of iterations for this grid size. For integer labelling the new starting
point was set equal to the barycenter of the j-stopping simplex whereas

in case of vector labelling we choose.

if o(wl,...,wt) was the generated completely labelled simplex with solution

A* = (AI, ey Az). Note that Zi Az + 1 if the mesh goes to zero. The
results are shown in the tabels 6.6.2 and 6.6.3. The accuracy is defined
by
max (¥ e - V)
3ok Tk

(3,k)eT (M)

*
where x 1is the approximate fixed point.

-1
Grid size Integer labelling Vector labelling

Iterations Accuracy Iterations Accuracy

6 68 .025 43 .18
24 191 .075 150 0
96 275 .012 - -

384 322 .003 - -

Table 6.6.2. Game 1.
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The last approximate fixed point was equal to
x* = (.3904, .2959, .3138; .3889, .2970, .3141; .9690, .0310, O) in case

*
of integer labelling and equal to x = u(!,2,2) in case of vector labelling.

Grid size_1 Integer labelling Vector labelling

Iterations Accuracy Iterations Accuracy

6 27 .2 40 .06
24 53 .07 55 .005
96 84 .02 71 .001

384 113 ' .004 87 .0005
Table 6.6.3. Game 2.

The last approximate fixed point was equal to

x* = (.4286, .5714, 0; 0, 1, 0; .6650, .3350) in case of integer labelling
‘and equal to

x* = (.4284, .5716, 0; 0, 1, 0; 0, .6667, .3333) in case of vector
labelling.
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CHAPTER 7

n
CLASS OF VARIABLE DIMENSION FIXED POINT ALGORITHMS ON R

7.1. INTRODUCTION.

Using the ideas of the previous chapter in which an algorithm was
developed to compute a fixed point of a continuous function (or u.s.c.
mapping) from the product space of unit simplices into itself, we now
develop a class of algorithms on Rn by considering Rn as the product space

of lower-dimensional Euclidean spaces. More precisely, let for some N with

N
1 <NZ<n~n, ml,...,mN be given positive integers such that Zi—l m, = n.
N . .
Then we can write R = Hj—l R™. after triangulating each R"J in the

standard way we construct a triangulation of Rn again defined in relation
to an arbitrarily chosen point. This point will be the starting point of
the algorithm. Each point is labelled with one of the n+N elements of a

set related to the set I(M) defined in the previous chapter. In case of
vector labelling a point receives an (n+N)-vectér label. From the starting
point the algorithm generates in the standard way a path of adjacent
simplices of the triangulation of variable dimension until some special
label set is found. Then an approximate fixed point has been found and the
algorithm can be restarted. The steps of the algorithm are almost identical
to those of chapter 6. It will appear that from the starting point fast
movements can be made in all directions if N is large. In particular the
extreme case N = n is of considerable interest since then the efficient

K' triangulation (cf. also Todd [1978al]) underlies the algorithm. Moreover
we will indicate how for N = n in case of integer labelling the algorithm
can be utilized to approximate a connected set of fixed points. An
algorithm closely related to the case N = n was independently developed by
Reiser [1978a, 1978b] to approximate a solution of the NLCP (see chapter 3).
However, his algorithm is based on the K triangulation and was only

presented for integer labelling. For integer labelling we will prove that



in particular when N is large, the algorithm can terminate with lower-
dimensional simplices without affecting the accuracy. However, for the
extreme case N = 1 only full-dimensional simplices yielding an approxima-
tion exist. The case N = 1 is closely related to Van der Laan and
Talman's basic algorithm on Rn. Only the labelling rule is different. For
vector labelling the algorithm generally terminates with a full-dimensional
simplex for any N. For both the integer and vector labelling rule new
convergence conditions will be given. It will also appear that Merrill's
condition is sufficient for both extreme cases.

In section 2 the triangulation of R" is described for given integers

m ..., m_. In section 3 the integer labelling rule is given and it is

’
pioved thai the algorithm's terminal simplex indeed yields an approximate
fixed point. Section 4 presents the algorithm. Also convergence conditions
are discussed. The generalization to vectoi labelling is described in
section 5. Section 6 treats the two extreme cases and indicates how the
algorithm can be utilized to approximate a connected set of fixed points
'if N is equal to n. An application to the Borsuk-Ulam theorem discussed
by Todd and Wright [1979] is also presented in section 6. Finally

computational experience is given in section 7.

This chapter is based on the work of Van der Laan and Talman [1978b].

7.2. TRIANGULATION OF Rn FOR GIVEN POSITIVE INTEGERS SUMMING UP TO n.

Let ml,...,mN be N positive integers with sum n. Then we can

n .
consider R  as the product space of R J, j = 1,...,N, i.e.

In the same way as described in section 6.2, we obtain a triangulation of
Rn by first triangulating each ij in the standard way. So, let Pj be an
extended mj X (mj+1) triangulation matrix of ij, i.e. let ij be
triangulated according to the PjK triangulation. If mj is equal to one for
some mj, we write for ease of notation Pj = [1,-1]. Furthermore, let

d = (dl""’dN) be a vector of (positive) grid sizes, and let Dj be the
diagonal mj—matrix with dj on the diagonal. Then the matrix Dij (or dej)

induces the PjK triangulation with grid size d,. Next, define the

j
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n X (n+N) block-matrix p by

— ) ) O_
P1 0
0 P2 . .
P = . . . .
_ 0 . . . PN ]

Similarly, let the nxn-matrix D denote the diagonal matrix whose

j-1
+
e+ 5

j I.. F
and J € N or k € Im

mi)-th diagonal element is equal to dj for k = 1,...,mj

1’ the (j,k)-th column of the matrix DP and P is
3 .
denoted by Dp(j,k) and p(j,k) respectively. Also, e(j,k) denotes the

j-1 . . +
(k + Zz_l (mi+1))-th unit vector in R°TN whereas xj " denotes the
= ’

(k + g3}
i=1 n
we first "subdivide" R~ in regions A(T) for special index sets T such that

mi)—th component of X € Rn. Following the analysis in chapter 6,

the rank of the matrix with columns gq(j,k), (j,k) € T, is equal to ITI.
So, let I(m) be defined by

I(m) =

e =

{(jll)l coay (jlmj+1)}l

=1

and let Z be the collection of subsets T of I(m) such that for each j € In
at least one index (j,k) is not in T. Then we have the following definition,

where y is an a priori chosen starting point for the algorithm.

DEFINITION 7.2.1. For T € Z the region A(T) is defined by

A(T) = {x ¢ R?| x = v + T AL kp(j,k) for
(3. k)er I’

nonnegative numbers Aj k}'
!’

Since the matrix with columns p(j,k), (j,k) € T, has full rank,the

k'sare unique. A point x € R" is called a proper point of

(positive) Aj
14
> 0 for all (j,k) € T. The set of proper points will be

A(T) if A,
J'k . i o

again denoted by A(T). Observe that int A(T) = A(T), independently of the

starting point. Moreover, we have the property that dim A(T) = |T|, T € Z.

Also, if T is the empty set, then A(f) = A(g) = {y}.
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n
LEMMA 7.2.2. The sets i(T) partition R, T € Z. Moreover, for all T1 and

T2 in Z holds

A(T1 n T2) = A(Tl) n A(Tz)’

DEFINITION 7.2.3. For T ¢ Z with |T| = t the set G(T) is the collection

t+1
of t-simplices o(yl,ﬂ(T)) with vertices y ', ..., ¥ in R such that
. 1 . . .
(1) y =y + b3 d.u. .p(j,k) for nonnegative integers u. .,
. j ik j.k
(3 (k) €eT
(ii) @ (T) = (nl, ooy nt) is a permutation of the elements of T,
s i i+l i .
(iii) y =y + Dp(ﬂi) i=1, ..., t.

Following the proof of theorem 6.2.4 we easily obtain that G(T) is a
1
triangulation of A(T). Next let Z be the subset of Z such that
‘dim A(T) = n, then we have the following result. The proof is identical

to the combined proofs of theorem 6.2.5 and corollary 6.2.6.

THEOREM 7.2.4. R" is triangulated by the union of triangulations G(T) of

A(T), T € Zl. Moreover, let T, be a proper subset of T

1
the triangulation of A(Tl) induced by G(T2).

5 € Z. Then G(Tl) is

IfN=1, Rn is triangulated according to the P,K triangulation. Note that

in this case each A(T), T € Zl, is triangulatedlin the same way (see also
section 4.5). However, if N > 1, each region A(T) is differently triangu-
lated. In particular, for N = n we obtain the K' trianaqulation

proposed by Todd [1978a, page 162]. He proved that the average directional
density of the K' triangulation of R" given the starting point y is of the
order of n. As argued by Todd [1978a, page 163] this result must be viewed
with caution. Clearly, mesh K' = mesh K and SV(K') = SV(K). The computation
of the mesh, the SV measure and the average directional density, defined
in chapter 5,0f the triangulation is for the case 1 < N < n rather techni-
cal and is therefore omitted. Of course, these quantities depend on the
structure of the P, matrices and the numbers mj, j=1,...,N. Recall that
Pj = [1,-1] if mj = 1. In the next section we assign to each (grid)point

of R an integer label being an element of the set I(m).
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7.3. INTEGER LABELLING AND APPROXIMATION.

Suppose we want to compute a fixed point of a continuous function £

j-1
from Rn to Rn. As mentioned above, we denote the (k + Ez=1 mi)—th
T T
component of f(x) = (fl(x), ceey fn(x)) and x = (xl' ooy xn) by fj,k(x)
and xj,k respectively (k = 1,...,mj and j € IN) where ml,...,mN are the

given integers with sum n. To utilize the triangulation described in the
. . +N
previous section we define the function g(x) from Rn to Rn as follows.

For j=1,...,N,

. = ‘ - h=1,...,m,
Iy,n () = £5 () - x4 A

and

m,
(x) = - he g (x) .

g, .
h=t 0

m, +1
Jr i

Observe that for N = 1, Iy, = fh(x) - % h=1,...,n, and
n
gl,n+1(x) == Zi=1 (fi(x)-xi). Moreover, for N = n we have that
9% 1) = fj(x)—xj and 95 H(x) = -fj(x)+xj for j = 1,...,n. Based upon
4 '

the function g, the integer labelling rule is defined as follows.

DEFINITION 7.3.1. A point x € R receives the integer label 2(x) € I(m)

where

2(x) = lexicomin {(j,k) | 9y %) = 9;,n®

for all indices (i,h) € I(m)}.

Since the total number of different labels is n+N, we have N-1 more labels
than in the standard algorithms on R discussed in chapter 4. Note that
for N = 1 the labelling is different from the standard labelling. It will
be shown below that the standard labelling yieldsiabetter accuracy to an

approximate fixed point.

DEFINITION 7.3.2. For T € I(m) with ITI = t, a (t-1)-simplex is T-complete

if the t vertices of ¢ carry all the labels which are elements of T.

DEFINITION 7.3.3. A simplex o is a j-stopping simplex, j € IN, if (j,k) is

an element of the label set of ¢ for all k.
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Observe that mj < dim ¢ < n if ¢ is a j-stopping simplex. Moreover, in the

same way as in section 6.3 we have the following corollary.

COROLLARY 7.3.4. A T-complete ¢ is a stopping simplex if and only if T & Z.

In the next theorem we prove that a j-stopping simplex yields a good

approximation of a fixed point of £f.

THEOREM 7.3.5. Let €,8 > 0 be such that max |xs~y5{ < § and
max Ifs(x)—fs(y)] < g for all x and y in a j-stopping simplex o. Then

for any x € ¢

max [fs(x) - xs| < % (n+1) (e+8). ifN=1
sel
n
and
max |£_(x) - x_| < {1 + %(m,+1)max m_} (e+§) if N 2 2.
s s P §
seIn i#3

PROOF. Let w(k) be the vertex of ¢ such that &(w(k)) = (j,k), k=1,...,mj+1.
+1

m=
Si J
ince Zk=1

gj k(y) = 0, it follows from definition 7.3.1 that
’
> = .
gj,k(w(k)) >0 for k 1,...,mj+1
Hence, for k = 1,...,mj and for an arbitrarily chosen point x € o,
£, X) - X, = (f, x)-£. k + . w(k
j,k( ) 3.k ( J,k( ) j,k(w( ))) gj,k( (k))

+ (wj,k(k) - xj,k) > = (e+6).

Moreover, for k = 1,...,m,

J
o3
gj,k(w(mj+1)) < gj'm.+1(w(mj+1)) = - E gj,h(W(mj+1))'
J h=1
and so
o3
gj,k(W(mj+1)) < =k hil gj'h(w(mj+1)) < %(mj—l)(s+6).

h#k
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Therefore,
£, - X. < g. w(m,+1)) +e + § <%(m.+1) (e+6)
],k(x) Xj,k gjlk( (mJ )) +e 3
for k =1,...,m..
J
Consequently,
(7.3.1) max  |f. 1 (%) =% W < EmorD) (e48) .
keI s Je J
m,
J
For N =1 (m1 = n) we obtain
max |£_(x)-x_| < %(n+l) (e+6),
s s
seIn

which proves the first part of the theorem.

For N2 2 and i # j we have that for h = 1,...,mi+1
gi,h(w(l)) s gj,i(w(l)) < %(mj+1)(e+6).

Hence, for h = 1,...,mi,

mi+1
gi,h(W(l)) = - kil gi’k(w(l)) > —%mi(mj+1)(e+6),
k#h

and so

{1+%(m.+1) }(e+8) > £, . (X)-x. > ={1+%m, (m,+1) } (e+68).
J i,h i, i 3

h

Combining the last two inequalities with inequality (7.3.1) we obtain

max {fs(x)—x | < {1 + %(m,+1) max m_ }(e + &)
s i
sel i#j
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COROLLARY 7.3.6. For N = n (mj= 1) we have for every x in a j-stopping

simplex

max |£_(x)-x_| < 2(e+6).
s s
SeIn

Observe that for all N the inaccuracy of the approximation is higher than
the inaccuracy obtained for the standard labelling rule, even in case

N = 1. This is caused by the fact that label n+l is assigned as soon as

- ZZ=1 (fs(x)-xs) is larger than fj(x)-xj for all j, whereas in the bas}c
algorithm label n+l1 is only assigned if fs(x)—xs < 0 for all s. Hence, a
completely labelled simplex gives a better approximation in case of
standard labelling. Note that for the other extreme case N = n, the
inaccuracy is two times higher than in case of the standard labelling rule
(for N=1). In section 6 we propose a labelling rule for the case N = n
which will improve the accuracy. Finally, we remark that the accuracy of
- the approximation obtained from a j-stopping simplex o depends not on the
number of vertices of 0. Of course, it depends on m,. For instance, if

n =10, N = 2, m1 =1 and m2 = 9, the inaccuracy is 10(e+d) if a
l-stopping simplex o(w ,...,w ) is found (2 < t £ 11) and the inaccuracy

1
is 6(e+8) if a 2-stopping simplex o(w ,...,wt) is found (10 < t < 11).

7.4. THE VARIABLE DIMENSION ALGORITHM ON Rn.

Let R® be triangulated for given y as described in section 2 and
let each point x in R" be labelled according to definition 7.3.1 for
given ml,...,mN with sum n. To generate for some j € IN a Jj-stopping
simplex of the triangulation, we apply the algorithm described in
section 6.4 by performing the steps 0-4, starting with the arbitrarily
chosen point y. Of course, columns of the matrix Q must be changed into
the same columns of the matrix P. Hence, performing the algorithm, a path
of adjacent simplices o of the triangulation of variable dimension is
generated such that when ¢ is a generated t-simplex o(yl,w(T)) of G(T),

T € Z, either ¢ has two T-complete facets or ¢ is (T u {(j,k)})-complete
for some (j,k) ¢ T. In the latter case the algorithm terminates with

the j-stopping simplex o(yl,n(T)) if Tu {(3,kK)} & Z, whereas

the dimension is increased if o was entered via the T-complete facet of o,

and the dimension is decreased if o was entered from the (t+1)-simplex
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Ekyl,(ﬂ(T),(j,k))). In the latter case the last vertex of T is deleted

and the vertex having label (j,k) is removed. In both cases ¢ has exactly
two adjacent simplices with one of the just mentioned properties. If ¢ has
two T-complete facets, 0 was entered via one of them whereas the algorithm
leaves ovia the other one. Also in this case ¢ has exactly two edjacent
simplices with one of the properties. However, only the zero-dimensional
starting simplex {y} has just one adjacent simplex o(yl,ﬂ(T)) of G(T)
which has either two T-complete facets or is (T u {(j,k)})-complete, viz.
for y1 =y and T= {2(y) }. So, the algorithm can never return in a previously
generated simplex. Consequently, either the algorithm terminates with a
stopping simplex, or a path of simplices going to infinity is generated.

The next theorem gives a condition to guarantee convergence.

THEOREM 7.4.1. Let f be a continuous function from R* to R” and let y be
the starting point. Assume there exist numbers u > max lyS] and € > 0
such that for any x € B(u) = {z € r® max_ Izsl = p} at least one of the

following conditions holds:

(i) there is an index s with x >y such that £ (x) - x_+ e <g (x)
s s s s r,h

for some index (r,h) € I(m),

ma ’
s . . s 3 _
(ii) there is an index j with 2h=1(yj,h xj,h) > 0 such that

=

J'mj+1(x) + e < gr,h(x) for some index (r,h) € I(m).

Then the algorithm terminates within a finite number of iterations if
Pj is the mj X (m,+1) triangulation matrix corresponding to an (aj,Bj)—
triangulation of R (with Bj < 0 and aj + (mj—l)Bj > 0) and if the mesh

of the triangulation is small enough.
PROOF. Let the grid be so fine that

1 2 -1
max |fi(x1)— x, - fi(x ) + xi| < ke min m
ieIn pe IN

: 1 2, . . .
for every two points x~ and x~ in a simplex ¢ of the triangulation meeting

1
B(u). Let for some T € Z, o(y ,m(T)) be a simplex of G(T) such that
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o n B{u) # #. We will prove that ¢ has no T-complete facets and therefore
cannot be generated by the algorithm. Let x be an arbitrarily chosen point
in the intersection of o and B(u). If (i) holds for some s, then (j,k) € T,

where s = k + Z?_l m,, since x_ > y . Moreover, (x) > £ (x)-x +e for at
i=1 i s s . ] s

gr,h

least one index (r,h). Since 9, h(x) <gi h(yl) + ke minP m; m for all
7 1

vertices yl of o, it follows that for all i
£ (y") - y5 < £ (0 - x_ + ke min_m_*
sy Yg s s P P

. -1
< - € +
‘gr'h(x) e + ke mJ.np mp

i -1
- i +
< gr,h(y ) e + ke m:Lnp mp (mr 1)

i
<
- gr,h(y ).

Consequently, no vertex of c(yl,n(T)) carries label (j,k) which implies
that ¢ has no T-complete facets since (j,k) e T.

On the other hand if (ii) holds for some index j, then (j,mj+1) e T and

N .
gr’h(x) gj’m'+1(x) + ¢ for at least one index (r,h).
Using the same arguments as above we obtain that for all i

(yi) (x) + %e min mplm.

<
95,m,+1 %3,m,+1 P p 3
J J
<g (x) - € + %€ min m_lm
r,h P p J
< (y0) - € + %€ min m—l(m +m)
grrhy P P j r
i
<
- gr,h(y )

Hence, no vertex of o carries label (j,mj+1) which again implies that o
has no T-complete facets since (j,mj+1) € T. Therefore, starting with the
zero-dimensional simplex {y} no simplex meeting B(pu) can be generated by
the algorithm. This proves the theorem since the number of simplices in

conv (B(u)) is-finite. []

Note that for N =n the condition of the theorem can be simplified.
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COROLLARRY 7.4.2. Let f be a continuous function from Rn to R" and let

y be the starting point. Assume there exist numbers u > maxj ]yjl and

€ > 0 such that for any x € B(n) thereexists an index s with xs # yS and
- - + < |f, - X,
(f,(x) - x) sgnix_-y ) + ¢ | J(x) le

for at least one index j € IN. Then the algorithm terminates if the grid

size is fine enough and if N = n.

Remark that theorem 7.4.1 is not always valid if other triangulation
matrices Pj underly the algorithm. Conditions for other matrices can
easily be derived . They must state that for x € A(T) "far enough away"
some label (j,k) € T does not occur ip the neighbourhood of x.

We now give a condition which is independent of the starting point and

the grid size vector.

THEOREM 7.4.3. Let f be a continuous function from Rn to Rn. Assume there

exists a yu > 0 such that x,

3,k > u implies
’

fj,k(x) - Xj,k -<gr’h(x) for some index (r,h),
and such that Xj k < -y implies
’
(x) <g (x) for some index (r,h).

gj,mj+1 r,h

Then the algorithm converges for every starting point and for every

vector of grid sizes if Pj is of the (aj,Bj)—form.

PROOF. Let mesh G be equal to § and let y be an arbitrarily chosen starting
point in Rn. Moreover, let u' > maxs Iysl + u + §, and define the set
E(YIU') by

E(y,u') = {x € Rn| -u! < x, < u' for all (j,k) € I(m)}
where u3 = yu' max(l,mj—l).
For some T € 2 let o(yl,ﬂ(T)) be a simplex of the triangulation G(T) of

A(T) such that ¢ n bd Eky,u') # @#. We will prove that ¢ has no T-complete

facets. Let x € 0 n bdqg(y,u'),then there is some index (j,k) such that
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ith . - Vy. = ' or x. -y, = -u'. If x, - v. = u', then
either x;,k yj,k o 3,k yj,k uj 3,k yj,k u'y,
N . > L
since xj,k > yj,k (j,k) € T since %5k Yy k! and %k > maxs|ysl>u-+5

Consequently, y; > u for all vertices yL of 0,and so for each i there
4

k
exists an index (r,h) such that

W -y <g D
3ok Y T ¥y S e

f

Hence, no vertex of o carries label (j,k). Therefore,c has no T-complete
facets. Observe that (r,h) need not to be the same for all yl. Suppose
now that x, - Y. =
j.k y]rk
For mj= 1 the proof is obvious. If m, » 1 then, because of the structure

—ué. We first show that this implies (j,mj+1) e T.

of Pj’ there exists an index (j,h) when (j,mj+1) & T such that

m,-2

J -1
ey > -y, -k, ) = ulmeD T =
Xjrh y]lh ( mj'l)(y]rk erk) uj(m] ) H

‘which contradicts the fact that x, < p' for all (i,h). Hence
’

i,h " ¥i,n

(j,mj+1) ¢ T. Moreover, x implies

- = e '

ik T Y3 T N i
— ' El | bl — 1
Xj,k < max_ |ys| u' < -u=-§, and so yj,k < -y for all vertices y of o.
Hence, for all i there is an index (r,h) such that
wh <o
gj,mj+1 Y Ir,n'Y

which implies that no vertex of ¢ carries labell(j,mj+1). Consequently,
0 has no T-completely facets. So, no simplices outside Efy,u') can be
generated by the algorithm and hence, since the number of simplices

meeting B(y,u') is finite, the algorithm converges. ]

COROLLARY 7.4.4. Let f be a continuous function from Rn to Rn. Assume

there existsa p > 0 such that lxs| > u implies

sgn xs(fs(x) - xs) < max |fi(x)—xi|.
iel
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Then for N = n the algorithm converges always.

Observe that for the other extreme case N = 1 the condition differs from
the convergence-condition stated by Van der Laan [1980] for the standard
labelling rule. Recall that the standard labelling rule should be preferred
since it performs better. Convergence-conditions for other triangulation
matrices can be easily derived.

Concerning the local path followed by the sequence of generated simplices
we can make the same remarks as made in section 6.4. Note, however, that
the path is now defined with respect to the function g and not with

respect to f. We do not further discuss this matter and continue with

vector labelling.

7.5. VECTOR LABELLING .

To apply the algorithm described in the previous section for the
computation of a fixed point of an u.s.c. mapping ¢ from Rn to the set of
nonempty, convex subsets of Rn, we consider again the triangulation of
R" as defined in section 2 for given positive integers Myyoeeey My with
sum n and some starting point y. Now each point x in R receives the
(n + N)-vector label 2(x) = g(x) + e where g(x) is defined as in section

3 with respect to a piecewise linear approximation T to ¢.

1 t
DEFINITION 7.5.1. A (t-1)-simplex o(w ,...,w ) is T-complete, for some

T € I(m) with ‘T| = t, if the system of n + N linear equations
t i
I A (w) + I u..e(j,k) =e
i=t t (35,0 ¢ Ik

* *
has a nonnegative solution Ai’ i=1,...,t, and “j K’ (3,k) 4 T.
’

Clearly, if G(wl,...,wt) is a T-complete simplex, then

t

* *
(n + N) I Ai + z . =n+ N
i=1 (j,k)éT

*
and with u. = 0 when (j,h) € T
’

j.h
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€ m, +1

* J
(7.5.1) (1 +mj) L oA, + I

=1+ m, j=1,...,N.
i=t © k=1 J

DEFINITION 7.5.2. A T-complete simplex is a j-stopping face if (j,k) € T

for all k = 1,...,mj+1-

*

DEFINITION 7.5.3. A T-complete simplex is completely labelled if uj x = 0
’

for all (j,k).

Obviously, if a T-complete simplex is a j-stopping face, it is also
completely labelled. In the next theorem, which can be easily generalized
to u.s.c. mappings, we state that for a continuous function ¢ = £ a

completely labelled simplex yields an approximate fixed point.

COROLLARY 7.5.4. Let €,§ > 0 be such that max_ ]xs—ysl < § and

maxs |fs(x) - fs(y)l < e for all x and y in a completely labelled t-simplex

t+1

" % * i
(Y 4eeery ). Then, with x = Zi Aiyl, we have that

* ok
max |£_(x)-x_| < e.
s s
sel
n

*
Moreover, x is a fixed point of f.

Observe, that equality (7.5.1) implies Zi A: = 1 and that the accuracy of
the approximation is the same as that of a completely labelled simplex
for the standard labelling rule (N = 1). So, the mj's have no influence
on the inaccuracy.

To generate a completely labelled simplex, the algorithm operates as
described in section 6.5 starting with the arbitrarily chosen zero-dimen-

sional simplex {y} and the system of linear equations

I, . . .e(d.k) =e

(3.x) Y3,% (3 k)

where the sum is again over all indices (j,k). Following now the steps
discussed in section 6.5 (only adapted for the matrix P) a path of
adjacent simplices of the triangulation of variable dimension is generated

such that a generated t-simplex 0 either has two T-complete facets or is
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(T u {(3,k)})-complete for some (j,k) ¢ T, with T € Z. Inboth caseso is a
simplex of the form o(yl,ﬂ(T)) of the triangulation G(T) of A(T). As soon
as by a pivot step all uz’h's become equal to zero, the algorithm
terminates. This will be always the case if ¢ is (T u {(j,k)})-complete
for some (j,k) ¢ T such that T u {(j,k)} ¢ Z. So, using the standard
arguments, the algorithm either terminates with a completely labelled
simplex or it generates a path going to infinity. To guarantee that the
algorithm converges we can give analoguous conditions as in the case of

integer labelling.

‘ n
THEOREM 7.5.5. Let f be a continuous function from R to R and let y be
the starting point. Then the algorithm terminates under the same

conditions as formulated in theorem 7.4.1.
PROOF. Let the grid be so fine that

1 1 2 2 -1
max [fi(x ) - X, - fi(x ) + xi| < % min m
ieT el
n - N
for every two points x1 and x2 in the same simplex 0 in G meeting B(u).
1
Let x be an element of o(y ,m(T)) n B(u) # @ for some T € Z2. If (i)

holds, then there is an index (r,h) such that for all vertices yl of o
i i i
- <
£.007) -y gr,h(y )

as follows from the proof of theorem 7.4.1. Since Y >V the correspon-
ding unit column e(j,k) has already been eliminated so that the (j,k)-th
equation of the linear system with respect to ¢ is equal to

t+1

- + = .

1

Clearly, at least one Ai is positive. Subtracting now the (r,h)-th

equation gives

e i i i
z ME W -y - 9y nl¥ )} - Hep =0
i=1
where u = 0 if (r,h) € T. Since for all i the term between the main

r,h
brackets is negative and since ur h is nonnegative, the system has no
’ .

feasible solution. Consequently c(yl,ﬂ(T)) has no T-complete facets.
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If on the other hand (ii) holds, then also by the proof of theorem 7.4.1

there exists an index (r,h) such that for all vertices yl of ¢

i i
gj,mj+1(y ) <9 ).

Moreover, since Zk y__j,k > Zk Xj,k’ the (j,mj+1)—th unit column has already

been eliminated so that the corresponding equation is equal to

(v + 1} =1,

t .
5 Ai{gj,mj+1

i=1
Wthh again implies that ¢ has no T-complete facets. Hence, no simplices
c(y ,T(T)) meeting B(u) are generated by the algorithm whlch proves that
the algorithm'converges since the number of simplices within the convex

hull of B(u) is finite. ]

If N = n we obtain the analogon of corollary 7.4.2. Of course, the theorem
can be easily generalized for other triangulation matrices. Finally, we
give a condition which is independent of the starting point and the grid
size. However the condition differs somewhat from the one stated in
theorem 7.4.3. This is caused by the fact that in case of integer
labelling the leaving vertex is determined only by the label of the new
vertex. For vector labelling however, all labels together determine which

vertex has to be removed.

n n
THEOREM 7.5.6. Let f be a continuous function from R to R . Assume

there exists a p > 0 such that x.

3.k > u implies
14

k(x) - Xj,k <0

and xj,k < -y implies

m,

3

33 (£, -x,.) > 0.
h=1 (Eynt) =%y 0

Then the algorithm converges for every starting point and for every vector

of grid sizes if Pj is of the (aj,B ) -form.

j
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PROOF. Let §be the mesh of the triangulation and let y be the arbitrarily
chosen starting point. Let p' and E(y,u’) be defined as in the proof of
theorem 7.4.3. Furthermore, take for some T € Z a simplex c(yl,ﬂ(T)) of
G(T) such that o n Eky,u') # f. Let x be an arbitrary point in this

intersection. If x, - Y. =

Jlk yjlki

element of T, whereas fj k(y )
’

u' for some (j,k) this index must be an

- yj " <0 for all vertices yl of o, as
’
follows from the proof of theorem 7.4.3. Since (j,k) € T the (j,k)-th

equation of the system of linear equations with respect to ¢ is equal to

t+1 i i
z Ai(f. LY) -y

+1) =1
i=1 J.K j.k )

which implies that Zi Ai > 1. According to equality (7.5.1),if Zi Ai > 1
the system has no feasible solution. Hence ¢ has no T-complete facets.

ow that x_ - Y. =
Suppose now a lek yj'k
of theorem 7.4.3 we obtain that (j,mj+1) € T and g

—uj. Then in the same way as in the proof

(yl) < 0 for all

i j,m,+1
vertices y of o. Hence, J
t+l i
L A (g, (y') +1) =1
+
i=1 i J,mj 1

implying that Z, A, > 1. From (7.5.1) we obtain again that o has no
i i

T-complete facets which proves the theorem. ]

The same condition for all £(x) € ¢(x), x € Rn, guarantees convergence for
an u.s.c. mapping ¢. Analoguous conditions for other triangulation
matrices Pj can belagain easily derived. These conditions must be such
that a simplex o(y ,m(T)) of the triangulation G(T) of A(T) has no
T-complete facets when this simplex is "far away". For N = n we have the

following corollary.

COROLLARY 7.5.7. Let f be a continuous function from Rn to Rn. Assume

there exists a u > 0 such that ]xsl > u implies
(fS(x) - xs)sgn X < 0.

Then the algorithm converges for every starting point y and for every

vector d of grid sizes.
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Note that this is a "symmetric" condition and can not be applied if N < n.
Moreover, the condition is easy to verify. In the next section we will
prove that Merrill's 'condition is sufficient for both N = 1 and N = n.

For other values of N it is not clear whether Merrill's condition can be
used. However, the intermediate cases (1 <N < n) are not so interesting
except when the function is linear in some components or separable (see
Kojima [1978a,1978b]). Therefore we pay no further attention to the

cases 1 <N < n.
7.6. THE TWO EXTREME CASES N = 1 2ND N = n.

As mentioned above the case N = 1 gives an algorithm which is almost
identical to Van der Laan and Talman's basic algorithm discussed in
section 4.5. The only difference is the labelling rule. It is not
clear which of the two vector labelling rules isbetter. Recall that in
case of integer labelling the standard rule is better. Concerning the
convergence of the algorithm one can easily construct examples such
that the algorithm converges for the standard labelling rule but diverges
for the rule defined in this chapter and reversely. However, Merrill's
condition is sufficient for both (vector) labelling rules if the (a,B)-
triangulation underlies the algorithm for B <0. The proof for the standard
labelling rule can be found in Van der Laan [1980, chapter 6] and
Van der Laan and Talman [1980c]. For the 1abelling rule of this chapter
the result is proved in the next theorem where for ease of notation the

index (1,h) is denoted by h, h € I_,1- Recall that N = 1.

+1

THEOREM 7.6.1. Suppose that for some § > 0 there exist w € R and p>0

such that for all x,z € R" with max, |xi‘ > p and max, Ixi—zil < § holds
(E(x) - %) (w-2) >0 (for all £(x) € ¢(x)).

Then the algorithm converges if the mesh of the triangulation is small

enough and if the (n + /n+1)—triangulation underlies the algorithm.

PROOF. Let the mesh of the triangulation be less than § and let y be the
starting point of the algorithm. Define p' by
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p' = max [p+68, max IYiI + (n+1)(nﬁ/3113m:xi ]yi—wi] +
(n+/n+1) | T (w.-y.)|].
jop 3

Moreover, let c(yl,n(T)), T € Z, be a t-simplex of the triangulation G(T)
of A(T) such that max, |xi| > p' for some x € 0. We prove that o has no
T-complete facets.

In the following let u = 0 if n+l € T. By multiplying the system of

n+l
linear equations with respect to o by ((w—x)T,O) , we obtain

t+1

(7.6.1) I Ai(f(yi)v- yi + e)T(w - x) + z uh(wh - xh) =
i=1 heIn\T

n
= 21 (wj - xj).
Moreover, from (7.5.1) we have

t+1

(n+ 1) 2 XA, + I u_ = n+l.
i=t ¥ pér 0

Hence,

t+1

Do) - vWHTw-x + I W n = x) -
i=1 heI \T
n
1 n
(n+ 1) "% % L (w. - x.) = 0.
hér * 4=1
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