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Title of this monograph. In the present work we are exclusively concerned with 

the study of syntactical properties of A-caJ_culus ()., for short) , Combina

tory Logic (CL), Recursive Program Schemes, and in general, Term Rewriting 

Systems with bound variables; especially thos·e syntactical properties which 

concern reductions. Hence the title of this thesis; Combinatory Reduction 

Systems (CRS's) is the name by which we refer to Term Rewriting Systems 

plus bound variables. The word 'combinatory' seems justified to us since it 

captures the essential feature of these reduction systems: subterms in a 

CRS-term are manipulated in a 'combinatory way'. 

Motivation. There is ample motivation for the (in our case syntactical) • in-

vestigation of CRS's. The importance of the paradigms of CRS's, A and CL, 

is well-known in Mathematical Logic (see also our historical remarks below). 

Moreover, A and CL play an important role in the semantics of programmi.ng 

languages; we refer to the work of Scott. One can consider A-calculus as the 

prototype of a programming language; see MORRIS [68]. Furthermore, in theo

retical Computer Science, certain simple CRS's, Recursive Program Schemes, 

and more general, CRS's without substitution known as Te~m Rewriting Systems 

are studied. Then there is the AUTOMATH-project of de Bruijn, at the border

line of Computer Science and Foundations of Mathematics, which has as one 

of its aims the computer verification of mathematical proofs. Here A-cal

culus plays an important role, too; we refer to the recent work of 

VAN DAALEN [80]. 

In Proof Theory one is often interested in certain extensions of 

(typed) A-calculus, such as T 
A EB recursor R, iterator J, Pairing operators, 

etc. All these extensions are covered by the concept of a CRS. It is inter

esting that one encounters in Proof Theory also CRS's which have a variable

binding mechanism other than the usual one in A-calculus: namP.ly, in the 

normalization of Natural Deduction proofs. Finally, let us mention that 

there are recent foundational studies oy Feferman in which certain syntac

ti.cal properties of extensions of A-calculus are relevant. 

We conclude that CRS's arise in a variety of fields and that the study 
r 

of their syntactical properties is worth-wile • 

• 

• 
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Restrict:ion to syntax. Our restriction to syntactical investigations, as 

opposed to semantical considerations, is born solely from limitation and 

is not by principle. Recently, D. Scott, G. Plotkin and others have origi

nated a model theory for the A-calculus and extensions thereof; by means of 

this one can obtain in a fast and elegant way some results which require 

much labour in a syntactical treatment. E.g. the consistency of An~ Sur

jective Pairing. 

We do not feel however that the availability of the powerful modeltheo

retic methods lessens the usefullness of Church-Rosser proofs and related 

syntactical theorems. The reason is the well-known fact that the (sometimes) 
' 

tedious work of syntactical investigations yields longer proofs, but also 

more information. We mentioned a typical example above: model theory yields a 

beautiful proof of the consistency of An S.P., but the much longer proof 

which will appear in DE VRIJER Isa] yields not only consistency, but also 

conservativity of An@ S.P. over An. (Another reason is that the models of 

Plotkin and Scott, only bear on extensions of A-calculus and not on several 

other Combinatory Reduction Systems.) 

Although we have occasionally allowed ourselves a digression for com

pleteness sake, this thesis certainly does not aim to give a survey of the 

syntax of A-calculus and extensions. For such a survey we refer to 

Barendregt's forthcoming monograph 'The lambda calculus, its syntax and 

semantics•. 

Some history. We will now give a short sketch of the history of the subject; 

for a more extensive historical introduction we refer to the introduction 

in BARENDREGT [BO], to the short historical survey in SCOTT [79] and to the 

many historical con,,nents in CURRY-FEYS [58]. 

Combinatory Logic starts in 1924 with SCHONFINKEL [24]: 'Uber die Bau

steine der Mathematischen Logik'. Schonfinkel tries to reduce the num-

ber of primitive concepts in (higher order predicate) logic; in particular, 

his aim is to eliminate bound variables. His motivation: asserting e.g. 

that Vp,q -,p v (pvq) for propositions, does not say anything about p,q but 

only about-, and v. To obtain his aim he introduces •combinators' I,K,S,B,C, 

'defined' by Ix= x, Kxy = x, Sxyz = xz(yz), Cxyz = xzy and Bxyz = x(yz). 

(Sand K alone arP. sufficient, as Schonfinkel remarks.) Schonfinkel then 

proves in an informal way that every formula A(x1 , ••• ,xn), with free vari

ables~ {x1 , ••• ,xn}, in higher order predicate logic (where quantificatiqn 

over predicates and over predicates of predicates, and so on, is allowed) 



\ 

can be rewritten as a ter.1u Mx1 .... xn where M is built by application from 

the combinators and an 'incompatibility predicate' U defined by 

UPQ = Vx(7P(x) v 7Q(x)). 

Example: Let P(g,y,f) be the fo:r·mula Vx 7(fx A gxy). Then P(g,y,f) = 
= UF(Cgy) = Cu(Cgy)f = BCu(Cg)yf = B(B(CU))Cgyf. Hence every closed formula 

A can be rewritten as a term M built from combinators and U; it can even be 

written as a term NU where N contains only combinators (not U). So, omitting 

U, every sentence in Schonfinkel's higher order predicate logic can be repre

sented by a ter1n b1.1i 1 t from the basic combinators alone. 

Around 1928 the combinators were rediscovered by H.B. Curry, who tried 
' 

by means of a 'Combinatory Logic' to investigate the foundations of mathe

matics. The aim of Curry's program is to use CL to give an analysis of sub

stitution and the use of variables; and to attack the paradoxes like the 

one of Russell. CL in Curry's program is also referred to as Illative Com

binatory Logic, where the word 'illative' denotes the presence of inference 

rules as in predicate logic. Curry's program does meet certain obstacles; 

Schonfinkel's naive system was inconsistent (as demonstrated by 'Curry's 

paradox'), and some later proposed alternative systems also suffered from 

inconsistency. The foundational claims of Curry's program are not undisputed, 

cf. SCOTT [79]. 

With a different motivation, a variant of CL was developed at about 

the time of Curry's rediscovery of CL, namely 'A-calculus', by Church, 

Kleene, Rosser. Kleene was led by the study of A-terms to his First Recur

sion Theorem and other fundamental recursion theoretic results; A-definabil

ity of functions was studied and discovered to be equivalent to various 

other definitions of 'effective computable' functions (e.g. the one via 

Turing machines}. (See Kleene's eye-witness account of this period in 

CROSLEY [75].) Rosser demonstrated the close connection between A-calculus 

and CL, and established, together with Church, the consistency of A-calculus 

and CL by a syntactical argtJ.ment. (The Church-Rosser Theorem for A-calculus 

and CL.) 

The Church-Rosser theorem yields the existence of term models of A-cal

culus and CL. Ter111 models of several versions of :>i. and CL were studied in 

BARENDREGT [71]. In the last ten years there has been a break-through in 

the 'model theory' of A-calculus and CL, starting with the models D and Pw 
00 

• 

of Scott and Plotkin. These models are of great importance in the semantics 

• 
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of programming languages. 
\ 

Main results. As the main results of this thesis we consider 

(I) the introduction.of the concept CRS and the development of the basic 

syntactical theorems for CRS' s; notably the Ctturch-Rosser theorem (CR), 

the Lemma of Parallel Moves (PM) and the theorem of Finite Developments 

{FD), and 

(II) $imultaneously, the generalization of a method due to R. Nederpelt 

which enables one to reduce Strong Nonnalization proofs for certain CRS's 

to Weak Normalization proofs. This device is not only interesting in itself, 

but enabled us also to obtain the theorems FD, CR, etc.; 

(III) the negative result that CR fails for certain non-left-linear CRS's, 

e.g. 

11. (n) 

11.,CL 

A ~ 

Surjective Pairing ,~ CR 

VMM-+ M CR 

if T then X else Y X IF CR, 

if .l then X else Y y 

if z then X else X + X 

on the other hand, the positive result that e.g. 

CL ~ V(M,M) -+ M J= CR 

CL if-then-else- as above t= CR. 

(In the positive result, CL can be replaced by an arbitrary non-ambiguous 

and left-linear TRS; not so in the negative one.) 

Summary. The first part of Chapter I (AB-calculus and definable extensions, 

which include Recursive Program Schemes) is mainly devoted to the basic 

syntactical theorems of A-calculus: the Lemma of Parallel Moves, the Theorem 
-

of Finite Developments and as a consequence, the Church-Rosser Theorem. In 

the proofs of these well-known theorems we make a systematic use of labels, 

and of reduction diagrams. Since it is convenient for some applications 

later on, as well as interesting for its own sake, we not only prove the 

fore-mentioned theorems for AB-calculus but for a wider class of 'reduction 

systems', which we have called definable extensions of AS-calculus. The re

sults also hold for substructures of such extensions; e.g. Combinatory Logic 

is a substructure of a definable extension of 11.8-calculus. • 

The method of proof of 'Finite Developments• was first used in 

BARENDREGT, BERGSTRA, KLOP, VOLKRN. [76]; it lends itself easily to prove FD 

for other extensions of A-calculus (see also BARENDREGT [80]}. The use of 
• 

• 

• 
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reduction diagra,ms is new; it was independently proposed i'n HINDLEY [78'']. 

The treatment via reduction diagrams is only a slight refinement of that in 
... 

LEVY [78]; it pays off especially in Chapter IV, where ASn-calculus is con-

sidered. 

Before proving the Church-Rosser theorem, we have collected in section 

I.5 several facts, mostly well-known, which hold for 'Abstract Reduction 

Systems' and which we need later on. Typical examples are the Le1,una of 

Hindley-Rosen and ( as we call it) Newman• s Le1nma. Also a preparation is 

made for a part of Chapter II, in the fo.tm of Nederpel t' s Le1mnq, and related 

propositions. 

In I.7 we proceed to prove another classical A-calculus theorem, which 

we have called 'Church's Theorem'. It plays a key role in a new proof (in 

I.8) of Strong Normalization for typed A-calculus and some more general 

labeled A-calculi, such as 'Levy's A-calculus'. Again the theorem is proved 

not only for AI-calculus, but for 'definable extensions of AI'. 

Sections I.9 - I.10 contain two new proofs of the well-known Standardi

zation Theorem. Compared to the known proofs (see e.g. MITSCHKE [79]) these 

new proofs yield a simpler algorithm to standardize a reduction. The firs.t 

proof is used in Chapter IV to obtain as a new result standardization for 

Sn-reductions, and the second proof is used at the end of Chapter II to ob

rain Standardization for some generalizations of the reduction systems in 

Chapter I (e.g. for A$ recursor R, if one uses the 'left-normal' version 

of R). Of all these results the strong versions are proved, in the sense of 

(~vy-) equivalence ~L of reductions. (E.g. for every finite reduction~, 

there is a unique standard reduction~ t which is equivalent to~- This 
s 

strong version of the Standardization Theorem is due to J.J. L~vy.} Our 

second proof of the Standardization Theorem casts some light on the relation 

between standard reductions and equivalence of reductions. As a digression, 

using the concept 'meta-reduction' of reductions as in this second proof, 

we prove in I.10 some facts about equivalence classes of finite reductions. 

(E.g. in AI the cardinality of the equivalence class{~• jtRc:, ~•} can be any 
L 

n ~ 1, but not be infinite.) 

Chapter I is concluded by deriving in I.11 the well-known Noxmalization 

Theorem for AS (and definable extensions thereof} and by considering in I.12 

'cofinal' reductions; the main theorem about such reductions was proved 

independently bys. Micali and M. O~Donnell • 

• 
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Chapter II introduces a very general kind of reduction systems, ranging 

from Tern Rewriting Systems in Computer Science to Normalization procedures 

in Proof Theory. These reduction systems can be called 'Term Rewriting 

Systems with bound variables'; we refer to them as Combinatory Reduction 

Systems. In Chapter II we pose a severe restriction on such reduction sys

tems: they have to satisfy the well-known conditions of being 'non-ambiguous 

and left-linear•, a phrase which we will abbreviate by 'regular'. For such 

CRS's we have proved in Chapter II the main syntactical theorems, such as 

the ones mentioned above in the summary of Chapter I. (No.c1nalization and 

Standardization only for a restricted class of regular CRS's, though.) Since 

the behaviour w.r.t. substitution of CRS's can be arbitrarily complicated 

(as contrasted to that of AS), it turned out to be non-trivial to prove the 

theorem of Finite Developments, a Strong Normalization result .. This ob

stacle is overcome by a device of Nederpelt for the reduction of SN-proofs 

for regular CRS's to WN-proofs. Not only for that reason, but also since 

this method seems to have independent merits, we have generalized 

Nederpelt's method to the class of all regular CRS's. This is done by in

troducing 'reductions with memory'; nothing is 'thrown away' in such reduc

tions; they are non-erasing, like AI-calculus is. In II.5 we generalize 

Ch,.1rch' s Theorem for AI to all regular non-erasing CRS • s. Section II. 6 con

tains a generalization of the Strong Normalization theorem for AL,A-r,AHW in 

Chapter I.8, to regular CRS's for which a 'decreasing labeling' can be found 

(like the types in a typed A-calculus are decreasing labels}. This generali-

zation enables us in turn to extend Levy's method of labeling to all regular 

CRS's, and to prove the corresponding SN-result (this is only executed for 

TRS's, i.e. CRS's without substitution, though}. As a corollary we obtain 

Standardization and Nor1nalization for some 'lefft-n(?rmal • regular CRS' s. 

Whereas in Chapter I and II we considered only regular CRS's, we deal 

in Chapter III with some irregular ones, namely with some non-left-linear 

CRS's; i.e. in a reduction rule some metavariable in the LHS of a reduction 

rule occurs twice, as in Vxx-+ x. (Except for the case of 'Surjective Pair

ing' we do not consider ambiguous rules; for results about amblguous TRS's 

we ref er to HUET [ 78] and HUET-OPPEN [ 80] • ) 

Non-left-linearity (we will omit the word 'left' sometimes) of the re

duction rules turns out to be an obstacle to the CR-property: in a non-
• 

linear CRS which is 'strong enough', the CR-property fails. This is proved 

for some non-linear extensions of A-calculus (or Combinatory Logic), thus 
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answering some questions of C. Mann, R. Hindley and J. Staples negatively. 

Although the intuition behind these CR-counterexamples is easily grasped, 

the proof that they are indeed so requires several technicalities. In an 

Intermezzo we expand this intuition using the well-known 'Bohm-trees', a 

kind of infinite nor1,1al for1ns for te1:ms. 

In III.3 we have considered for these non-linear systems for which CR 

fails, other properties (which are otherwise corollaries of CR) such as 

Unici ty of No:tmal fo.r:rns (UN) , Consistency, etc. Even though CR fails, UN 

does hold for the systems considered. 

In III.4,5 we prove CR for some restricted classes of non-linear CRS's. 

Most notable is a positive answer to a question suggested in O'DONNELL [77] : 

Does CR hold when the non-linear trio of rules (*) 

if true then X else Y-+ X 

if false then X else Y-+ Y 

if X then Y else Y + Y 

is added to a regular TRS? 

This is seemingly in contradiction with our earlier CR-counterexample for 

CL$ B where Bis a constant representing the branching operation above, 

having the rules 

BTXY + x, BixY + Y, BxYY-+ Y. 

The explanation is that CL B ~ CR, but CL$ B(-,-,-) CR, where the 

notation B(-,-,-) means that B has to have three arguments (i.e. B cannot 

occur alone). In the formulation of(*) as above this is similar, and so 

O'Donnell's question can be answered positively. 

Chapter IV, finally, is not related to Chapters II, III, but considers 

A8n-calculus. Via a new concept of 'residual' for Sn-reductions (for which 
-

the lemma of Parallel Moves holds, in contrast to the case of the ordinary 

residuals) we prove the Standardization and Norraalization theorem for A8n, 
• 

thus solving some questions of Hindley. Here we profit from the concept of 

'reduction diagram' and from our first proof of the Standardization Theorem 

for A$ in I.9. Also an extension of the result in I.12 about cofinal reduc

tions is given. 

• 
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INTERDEPENDENCE OF THE SECTIONS 

The interdependence of the sections is as suggested by the following tree. 

IV.6 
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II.1 

• 
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CHAPTER I 

AS-CALCULUS AND DEFINABLE EXTENSIONS 

1 . LAMBDA TERMS 

1.1. The alphabet of the A-calculus consists of 

brackets ( ) and A. From this alphabet the set 

ductively defined as follows: 

sy1nbols v. , for all i E: JN , 
1. 

Ter(A) of A-terms is in-

( i) 

(ii) 

v . E Ter ( A ) for al 1 i E JN 
1. 

A,B E Ter(A) (AB) E Ter(A) 

(the variables) 

(application) 

(iii) A€ Ter(11.) (AV .A) E Ter (A) for all i € JN. 
1. 

( A-abstraction) 

If in (iii) the restriction is added: 1•if v. occurs as a free variable in 
1. 

A'' (see 1 .. 3 below) we get the set Ter(AI) of AI-te:r.1ns. 

Sometimes we will consider A-ter1Ilti plus a set of constants C = 
{□ ,A,B,C, ... }. In that case we change Ter(A) into Ter(AC) in the above 

clauses and add 

(0) XE Ter(AC) for all XE C. 

1.2. Some notational conventions will be employed: 

(1) the oute1.1nost brackets of a term will be omitted; 

(2) we will use a,b,c, .•. ,x,y,z as metavariables for v
0

,v
1

, ••• ; 

(3) instead of e.g. 11.x(xx) we will also use the dot notation Ax.xx, and 

instead of 11.xx or 11.xy we write 11.x.x resp. 11.x.y; 

(4) a n11rnber of brackets will be omitted under the convention of association 

to the left; that is if A1 ,A2 , ••• ,An E Ter(A) then A
1
A

2 
••• An abbreviates 

( ( ••• ( ( {A1 A2) A3) A 4) .... ) An) ; 

(5) for a multiple A-abstraction Ax1 (11.x2 ( ••• (Axn.A) •.• )) we will write 
• 

Ax 1x 2 .•. xn.A. (The xi (i = 1, .•. ,n) will be in practice pairwise dis-

tinct, although e.g. 11.xx.xx is a well-formed term. See 1.6.) 
• 
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\ 

1.3. Let x be some variable and 

the structure of Mas follows: 

ME Ter(A). Define q, (M) 
X 

by induction on 

(i) 
<PX 

(x) = X and $x(y) = y for X "/. y. 

(ii) <PX (AB) - (¢ A) (q, B) -
X X 

(iii) 
<f> X (AX.A) = AX.A and cp (>.y.A) = Ay.cp A for X F- y. 

X X 

EXAMPLE. ¢ (A.y.xx( (Ax.xx) (yx))) = Ay.xx( {Ax.xx) (yx)). So cf> underlines some 
X X 

x's in M; namP.ly the free occurrences of x in M. Let~ (M) be the set of 
X 

those occurrences, and define the set of occurrences of free variables of 

M: 

FV(M) = u 
XEVAR 

cp (M) , 
X 

where VAR is the set of variables. An occurrence of x in Mis called bound 

when it is 4 FV(M). Mis a closed term if FV(M) = 0. 

1.4. For every variable x and NE Ter(A) we have a substitution operator 

a = [x := N], a mapping from Ter(A) to Ter(A), defined inductively as folx 
lows: 

(i) (J (x) = N and cr (y) - y for X F Y -
X X 

(ii) (J (AB) - (a A) (cr B) -
X X X 

(iii) (J (AX .A) - AX.A and a ( :\y .A) - ).y.cr A for X ~ y. - -X X X 

So the mapping cr = [x:=N] substitutes N for all the free occurrences of x 
X 

in M, as is seen by looking at the parallel definition in 1.3. 

Note that our s.ubsti tution operator also yields 'dishonest' substi tu

tions like 
-

[x:=yy](ly.yx) = 1y.y(yy) 

but that is intentional; see 1.5 below. 

1.5 .. Contexts. Consider an extra constant □ and the s-et Ter(;\{ □ }J as· defined 
• • 

in 1.1. The constant o is intended to oe a 'hole'; so a ter111 e Ter ().{ □}) is a 

A.-term containing some holes·. we will only need A-terms containi:ng precisely 

one hole; they will be called contexts. We can also define them inductively 

as follows: • 



(i) □ is a context {the trivial one) 

(ii) if A E Ter(A) and Bis a context, then (AB} and (BA) are contexts 

(iii) if A is a context, then AX.A is a context. 

3 

we use the notation~[ ] for a context. If ME Ter(A), then t[M] = [ □ :=M] 

~[ ], where it is obvious how to define [ □ :=M]. Here variables, free in M, 

may become bound in ~[M]. Mis called a subterm of N = ~[M]; notation MEN. 

We will also write 's EN' for symbols s (i.e. variables or A or brackets) 

occ11rring in N. Note that y E Ax.y and y ~ Ax.y, but y E Ay.x and y i Ay.x. 

1.6. ~-reduction. Expressions which result from each other by renaming bound 
• 

variables should obviously be identified, for instance in calculus 
1 2 f0 x dx = 

let AX.A E Ter().) and y i AX.A. Then we define a-reduction > as· follows: 
a 

C[Ax.A] · ► ~[Ay.[x:=y]A] for every context t[ ]. 
Ct 

Let= denote the equivalence relation ('et-conversion') generated by ►• 
~ Ct. 

1.7. While a-reduction is a mere technicality, B-reduction ( 

are going to define now, is the basic concept of A-calculus. 

) ) s which we 

Terms of the form (Ax.A)B will be called B-redexes and in view of the 

intended interpretation of A-teLms we should like to replace such a 8-redex 

by [x:=B]A. However, consider the following sequences of such reductions 

(i.e. replacements): 

(Ax.xx)(Aab.ab) 
. ~ ~ 

' 

-

• 

Ab.(Aab.ab)b = Ab.(Aac.ac)b 
~ Ct. ~ 

?? 
• • 

A = Ab. (Ab.bb) B = Ab. (Ac • be) 

Now, if our formalism used arrows, as in the example, to denote 'binding' 

of variables x by abstractors Ax, then the terms A,B (plus arrows) are 
?? 

syntactically equal and no harm is done in the step · · ►·; but it is implicit 
• 

in the definition of 'free and bound' that a variable xis bound by the 

nea:r111ost: AX. Hence Ab. ( Ab .. bb) is to be · interpreted as Ab. (Ab .bb) 
, '"[:y 

- and 
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?? 
•• so the step-~➔ was erroneous. 

This leads us to postulating a condition on 8-redexes, for the moment 

only: 

(Ax.A)B is unsafe if some variable y(%x) is free in Band A has a sub

term Ay.C containing x as free variable . 

• 

Now we define one-step B-reduction by the clauses: 

(i) if (Ax.A)B is a safe (i.e. not unsafe) S-redex and~[ ] a context, then 

(ii} if M = M' 
a. B N' =a. N for some M', N 1

, then M -s-+·► N. 

There are several other ways to get around the a-conversion problem; in 

BARENDREGT [71] an almost similar method is used; another way is to define 

[x:=N] such that a-reduction is built in to prevent confusion of variables 

(but note that in [ □ :=NJ we intended that variables could be 'captured'~); 

a third method is to work, in one way or another, with arrows like above 

(see also DE BRUIJN [72]). 

Henceforth we will forget everything about a-reduction. Instead of= 
a 

we write just= for syn~actical equality. 

Let R = (Ax.A)B and R' = [x:=B]A. Then S C[R'] is 

called a contraction of R, and R' is· the contractum equality. 

the step tt[R] 

We will often omit the subscript e and write just M-+ N. When we want 
R to display the contracted redex R we will write M --+ N. 

The transitive reflexive closure of · ➔ is denoted by -3>> • The equality 

(equivalence relation) generated by+ is called convertibility and written 

as 

A,B: 

-
. B or • 

Note that from the definition of B ►· it follows that for all te:r:·ms 

A-->> B 

A= B 

(t[A] 

a::[A] = 
->> ct[B] 

C[B]. 

A sequence of reduction seeps is mostly denoted by~ (plus subscripts 

etc.) e.g. 

• 

=M ➔ M -+ ••• -+M. 
0 1 n 

' 

• 

- - -- - ---

' .:·. ,,_, . 
.,,- -_ 



' Although it is a slight abuse of notation we sometimes write also 

-:>> M • 
n 

1.7.1. REMARK. We will refer to the 'reduction system' AB-calculus, con-

... f3 >>, also as A-calculus or even ,\ without 

5 

sisting of the pair <Ter(A), 

more. Likewise the reduction 

ferred to as :\.I. 

system AI-calculus <Ter(AI), r> will be re-
8 

In section 5 we will consider 'abstract reduction systems' <A,+> where 

A is some set and a binary operation on A; in Chapter II we introduce 

'combinatory reduction systems', generalizing A-calculus. 

1.8. ADDITIONAL NOTATIONS 

(i) 

(ii) 

-+ Instead of Ax 1 ••• x. A we use sometimes the vector notation Ax.A; 
➔ n 

likewise MN for MN1 .•• Nn. 

In R = (Ax.A)B we call Ax.A the function part of Rand B the argument 

of R. 
➔ 

(iii) Simultaneous substitution. Let x be x
1

, ... ,x and let no x. be free 
n J. ➔ 

in B = B1 , .•. ,Bn. Then the result of then reduction steps 

-+ + 
(Ax.A)B 

can be seen as (and is in fact defined as) the simultaneous substitu-

-

Note the difference with the sequential substitution: 

--:>> 

where y. 1 , •.. ,y may be free in B. (i = 1, ••. ,n-1). 
i+ n 1. 

(iv) We often employ the usual convention of writing A(B
1

, ••• ,Bn) instead 

of [x1 , ••. ,xn := B1 , ••. ,Bn]A, after a preceding declaration of the 

variables for which one has to substitute: 
• 

• 



.. 

' 
' ' . ' ·. ' 

' ' ._,_ 

6 

''Let A = A (x
1 

, ... , xn) '', or implicitly as in: 

(A xy .A(x, y)) BC -:>> A (B ,C) • 

Note that such a declaration does not say anything about FV(A), unless ex

plicitly stated otherwise (as in 1.10). 

1 • 9 • NORMAL FORMS 

1 • 9. 1. DEFINITION. A A-te:r111 M not containing redexes is called a noz1nal 

form. (Or: M is in normal form.) 

Notation: M E NF. 

Obviously, the goal of reducing a term is to reach a nor1nal foLm, as a 

'final answer' of the computation. However, not every term can be reduced 

to a normal form. The simplest example is the terrn Q = ww where w = Ax .xx; 

then 

• 

and this is the only possible reduction. For other texm~ it depends on the 

chosen reduction whether or not the te:rn1 'normalizes•; e.g. abbreviating 

K = Axy.x and I= AX.x we have the infinite reduction 

KIQ + KIQ + .... 

but also 

• 

KIS1 ➔ +I, a no:r:n1al f o.tn1. 

1.9.2. DEFINITION. 

{i) M has a normal fo:rm • 11 > 3N e NF M -:>-> N. 

Instead of 'M has a n.f.' we will also say: 

M j.s weakly nonnalizing. Notation: M e WN. 

(iii) M is st;rongly nornzalizing • :, every reduction of M must ter1nJ nate even

tually (in a normal foxm). 

E.g. Kin€ WN - SN. 
• 

Here the question arises whether a term can have two distinct normal 

f.or1ns.. Fortunately this is not the case: if a term has a nf., then that 

I 
J 

' ' 



nf. is unique, as we will prove later. 

1 .10. COMBINATORIAL COMPLETENESS. Let A (xl, ... , xn) E: Ter (A) be a te:trn with 

free variables x 1 , ... ,xn. Then it is not hard to find an FE Ter(A) such 

that 

7 

(I) 

One simply takes F = Ax 1 ••. xn. A(x 1 , ... ,xn); then (I) holds (even with= 

replaced by -·>>). 

We say that A-calculus satisfies the principle of 'combinatorial complete

ness'. (In the system CL of the next section this principle is less trivial.) 

1.11. FIXED POINTS. Surprisingly, every A-term (when it is considered as a 

function Ter(A)/ ► Ter(A)/=) has a fixed point: 

VF 3X FX = X. 

It is even possible to find such an X in a uniform way; that is, there is 

an YE Ter{A) such that 

F(YF) = YF, 

f(Yf) = Yf 

or equivalently, 

for a variable f. 

We will describe how to construct such an Y. Let us try to find a 

containing Fas 

where the first 

construction of 

subte1.1n, such that nF 

wF is meant to 'act' and 

>> Fr2F. Suppose 

the second wF 
-

the original wF. So WFWF >> F swFwF) , 

->> F (xx). 
...... ,,, ,11, ...._ ___ ..... / 

-..... __ 
Therefore, take: wF = Ax.F(xx). Hence we can take 

that OF= WFWF, 

serves for the re-

which leads to re-

The term Y is Curry's fixed point combinator. Using a slightly different 

construction we find Turing's fixed point combinator 

nical advantage (not shared by Y) that 
• 

VF 
' 

which has the tech-



8 

For, suppose 

such that 

as above YT =ea.so aeF --~> F (80F) i 

' ... ;;?f JI 
'- ..._ - _,,,. ./ ... 

hence we try to find e 

SxF --» F(xxF). Thus take e = Axf.f(xxf) and 

YT = (11.xf .f (xxf)) (AXf .f (xxf)) .. 

In a similar way everybody can construct his own fixed point combinator r: 
by requiring r = yy •.• y (n ~ 2 times) and proceeding as above, it is not 

hard to see that every choice 

where w is an arbitrary word over the alphabet {a
1

1••·,an_1 } of length n, 

yields a fixed point combinator r .. 
Sometimes it is convenient to have a fixed point combinator with 

➔ 
parameter(s) P = P1 , ••. ,Pm; for example 

+ ➔ ➔ ➔ ➔ = (Axpf.f(xxpf)) (Axpf.f(xxpf)P. 

• 

An amusing way of deriving new f.p. combinators from old ones is men-
-tioned in BOHM [66] (or see CURRY-HINDLEY-SELDIN [72], p.156): to find a 

solution Y for Yf = f(Yf), or equivalently for Y = [Ayf.f(yf)]Y, amounts 

to the same thing as finding a fixed point of Ayf.f(yf). 

Hence: if Y1 is a f .p. combinator, then Y'' = Y' ).yf. f (yf) is a f .p. combina

tor. In this way one gets starting with {say) Curry's Y, an infinite se

quence of f.p. combinators. Notice that YT is the second one in the sequence. 

(One can prove that they are pairwise inconvertible.) 

The main application of fixed point combinators is that we can ''define'' 

a te:r:m X in an impredicative way, i.e. in te:r:ms of X itself; that is, every 

equation in X of the form X = A(X), has a solution, namely X = Y:>i.x.A(x). 

And if YT is used one has even: X --:>> A(X). 

An example of a simple application: let P and H be such that 

p -......;>> AX.P(xF) and H -->> Ay.H. Then PH-->> P(HF) --;>> PH -....;,>> ••• 

{P produces food F for the hungry H.) 

Finally, let us mention that it is straightforward to generalize this 
• 

to the case of n 'equations' in x1 , ••• ,xn as follows: 

• 



X 
n 

>> A ( X l , . . . , X ) • 
n n 

(Multiple fixed point theorem) 

9 

\ 

PROOF. For n = 2: define <M> := AZ.zM and the pairing <M,N> := AZ.zMN, where 

z is not free in M,N. Then <K> and <KI>, where K = Axy.y and I= Ax.x, are 

the corresponding unpairing operators (write <K>A =: A
0 

and <KI>A =: A
1

): 

<M,N> 
0 

<M,N>K -+>- K.MN 

<M,N> 1 --,.> <M,N> (KI) 

Now to solve 

X ---,)> A (X, Y) 

Y -->> B (X, Y) 

->> M 

KIMN ->> N. 

easily be done: take z = YTAz.<A(z
0

,z
1
), B(z

0
,z

1
)>. Finally, take X = z

0 
and Y = z 1 . D 

REMARK. For another proof, working also for AI-calculus (in contrast to this 

proof), see BARENDREGT [76]. 

REMARK. The multiple fixed point theorem also holds for an infinite system 
-

E of reduction 'equations' if Eis recursively given. This requires the 

deeper result of the representability of recursive functions in the A-cal

culus. See BARENDREGT [71]. 

1.12. DEFINABLE EXTENSIONS 

1.12.1. DEFINITION.(i) Let the alphabet of A-calculus be extended by a set 

P = {P. I i EI} of new constants and let Ter(AP) be the set of 'AP-terms• 
l. 

as defined in Definition 1.1. 

Furthermore, let Jc I and let for all i E J a reduction rule be given - • 

of the following form: 

• 
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P.x
1 
••• X .. 

1 n. 
1 

► Q.(X
1

, ••• ,X , 
l. n. 

J. 

P. , .•• ,P. > 
Jl Jmi 

for all x1,·••1X E Ter(AP). 
ni 

Here n. 2: 0, and the Q. are AP-tern1::; contain-
1. l. 

ing some of the meta-variables x
1

, ••. ,X (possibly none), but no other 
ni 

meta-variables. The x1 , ..• ,x 
ni 

must be pairwise distinct. 

Then the reduction system consisting of Ter(AP) and as reduction 

rules: S-reduction and the P.-rules (iEJ), is called a definable extension 
1 

of A-calculus. We will refer to it as 'AP-calculus'. 

(ii) Terms of the form P.x1 ... X (iEJ) are called P.-redexes; n. is the 
i n. 

l. 1 J. 

arity of the P.-redex. Constants P. where i i J are called inert constants 
l. ' l. 

{they do not exhibit any activity since there is no reduction rule for them). 

1.12 .2. REMARK. (i) In Chapter III we will consider reduction rules without 

the restriction that the meta-variables x1 , ... ,X be pairwise distinct. 
ni 

(ii) The reason for this terminology is that (if I is finite) by virtue of 

the combinatorial completeness and the (multiple) fixed point theorem, we 

can ''solve'' the set of ''reduction-equations with unknowns 
• 

can find A-terms P. and 8-reductions 
l. 

p ''. • I 
l. 

6i. =P.x
1 
... x 

i l. n. 
B ;>> Q . ( x l , . • . , x , P . , • • • , P . ) • 

i n. J1 J 
l. 1. m. 

l. 

that is we 

If I is infinite, we will in general not be able to find defining re

ductions~., but by a slight abuse of terminology we will also call such 
l. 

extensions definable (anyway, each finite part is definable). 

EXAMPLES .. 1. A-calculus+ {V,E} and EM··> VMM for all ME Ter(A{V,E}). V 

is an inert constant. 
-

2. A-calculus+ {P} and PABC + P(AC)B for all A,B,C. P can be defined by 

e.g. P = YTApabc.p (ac) b .. 

These two examples will play a role in the sequel. 

3. An arbitrarily chosen exaniple: A-calculus + { P, Q., R} and the rules 

PABC 

QA ... 

> AP(ACQ) 

-+> Ax.xAPR 

RA.BCD - >- AC (P;\x .xQ) A~ 
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1.13. REMARK. The definable extensions of A-calculus are closely related to 
,. 

Recursive Program Schemes (RPS); see LEVY-BERRY [79], MANNA [74]. In the 

theory of RPS's we have disjoint sets F = {f1 , ..• ,fm}, the basic function 

symbols, standing for 'known' functions, and~= {({) 1 , ... ,~N}, the unknown 

function symbols. Each f. and¢. has an arity p(f.), resp. p(~.) 2 O. 
l l. l l 

Now a recursive program scheme Lis a system of equations 

T. 
l. 

(i = 1 , ... , N) , 

where the T. are terms built up in the usual way from sy111bols in F, .P and 
l. 

variables 

EXAMPLE. 

---

The connection with definable extensions AP of A-calculus is evident. (Re-

place in I: '= • by •~>'.) The basic function syr1ibols f. are what we called 
l 

• in 1.11 'inert' constants P., the 
J_ 

unknown function sy1r1bols are the remaining 

P. in P. The definable extensions 
J 

are slightly more general, syntactically 

speaking, than the RPS's since in AP also A-terms occur and since in an 

RPS an n-ary syr1ibol ({) has to have n arguments: <p (t
1

, ••• , tn) , whereas in 

• 

AP for an n-ary Palso PM
1

, PM
1

M
2

, •. are well-fo~med terns (see the examples 

above). 

1.14. REMARK. Since almost everything in this Chapter will prove to hold 

for definable extensions, it will hold also for RPS's (anyway in this simple 

version, where the only operation is substitution of unknown function sym-
-bols). Almost all of these results for RPS's were obtained already in LEVY-

BERRY [79]; but in the sequel one finds some alternative proofs for some 

of these facts (FD, standardization). 

2 • COMBINATORS 

2.1. We will now introduce a system called Combinatory Logic, or CL, which 

is closely related to A-calculus. The main difference is that CL is vari

able free. The CL-terms or combinat:ors'are built up from the alphabet 



• 
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{(,),1,K,S} as follows: 

(i) 1,K,S E Ter(CL) 

(ii) A,B E Ter{CL) => (AB) E Ter{CL). 

Just as before we will admit me~a-variables A,B,C, .•. , ranging over CL

terms, in a meta-CL-term. Again, we use the convention of association to 

the left. 

2.2. Reduction in CL is generated by the rules 

(i) IA--, A 
' 

(ii) KAB --> A 

(iii) SABC --·➔ AC(BC) 

for all CL-terms A,B,C. Here 'generated' means: 

for every context C[ ]. Contexts~[] are defined as in A-calculus, see 

section 1 ; and the same for =, ->> , =. . 
Terms of the form IA, KAB, SABC are called (1-,K-,S-) redexes. Again 

a term is a no~mal form (nf) iff it contains no redexes and has a nf if it 

reduces to one. 

2.3. REMARK. One may also take S,K alone as basic combinators for CL, since 

1 can then be defined: I= SKK. For, then IA= SKKA,, > K.A(K.A) - A. For 

several other bases for CL, see CURRY, FEYS [58]. 

2.4. REMARK. Call a combinator 'flat' if it has no visible brackets (under 
-

the usual convention). E.g. S1SSST1. 

One can prove that all flat combinators built up from Sand K, have a 

normal foJ:m {moreover they are strongly normalizing}. If the combinator 1 
is included as well, this does not hold: 

.SI~t:;.SSII , ►, 

IS(SS)SII > 

S(SS)SII 
SS1(S1)1 ) 

S (SI) (I (SI)) I ""' ► 

S (S1) (SI> 1 >-

• 

• 



SIT (STT). - Jo 

1 (SII> (1 (SIT)) .. > 

S11 < T (SII)) 

2.5. INTERMEZZO. The connection between reduction in A-calculus and CL. 

This subsection, in which some terminology from the sequel is used, 

is only needed in Chapter III. 

13 

Usually one includes variables in the term-formation of CL-terms. This 

may seem a bit odd after claiming that CL is the variable free version of 

A-calculus. The reason however is that the variables are needed to demon

strate the connection between A-calculus and CL, namely to define abstrac

tion [x] as an analogon of AX. 

We will give a slightly different treatment, in order to show how far 

the correspondence between reduction in CL and reduction in A-calculus 

reaches. 

2.5.1. DEFINITION. AB+ CL is the definable extension of A-calculus obtain-

ed by adding S,K,1 plus their reduction rules (as above). By -
CL 

we denote 

the contraction of an S-, K-, T-redex. Moreover we add a reduction rule, 

called 'translation', written , defined by: 

(i) AX .. x ~ I 
T 

(ii) AX.A - .... , ..... ➔ j,,_\ Jl 4 

T 
KA if X i F'V(A) 

(iii) AX.AB .... ...,.... • ➔ 

T 
S (Ax.A) (Ax.B) if the previous rules are not applicable. 

EXAMPLE. (Ax.xx) (Ax.xx) 

S1I (SIT). 

""''r S().x.x) ().x.x) (Ax.xx) r,.,, ·> ~ SIT (Ax.xx} 
T T T 

-

It is routine to prove that ,..,,..,. > is strongly normalizing and has the 
T 

Church-Rosser property. Hence every term Min AS+ CL has a unique T-noimal 

form, called T(M). 

A more economic variant of T, called T', is obtained by changing T 

into T 1 above and inserting between (ii) and (iii) the rule 

(ii) I 'x Ax ~ ·- · ► I\ • • ¥. 

T 
A if x £ FV (A) • 

• 

A comparison: T'(Axyz.xz(yz)) = S while T(Axyz.xz(yz)) = 
S (S (KS) (S (KK) (S (KS) (S (S (KS) (S (KK) 1>} CK!)>)>} (S (S (K-~> (S (KK> 1)) (KI)) • 

' 



• 
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Unfortunately it is not so that M - 8>> N => T (M) -->> T (N). 
CL 

EXAMPLE. 

M = AX.(Ay.y) (xx) 

s 
.J. 

N ~ AX .. XX 

S (KT) {S11) = -r (M) 

"""">> SI I = T (N) • 
T 

The problem is that the reductions 

ambiguous) in the sense of Chapter 

• • .,.. . ., • ➔ and --"?" or ---' .-~..,;: •• ..!4 

T(iii) S CL 
II; for consider 

AX .. ( A y • A ( y) } B 

a 

AX .A (B) 

' 

T 
S ( 11.xy .. A ( y) ) ( AX • B) 
I 
I 

I 
- - - - ? • 

'interfere' (are 

Another source of trouble is demonstrated in the following example: 

AX.<C[KAB(x)]D ~...........,> 
'r 

CL 

S(Ax.C[KAB(x)]) {Ax.D) 

CL 

S(Ax .. C[A]) (Ax.D) 

(KCC[A]) (KD) 
AX.C[A]D .... -~ K(C[A]D) ---? 

t 

where the context c[ ] and the teLms A,B,D are arbitrary but such that x 

occurs only free in B. 

Let us remove the cause of this trouble by ~efining: 

(i) a (S- or CL-)redex R occurring in ME A8 + CL is safe iff R does not 

occur inside a subte:r:111 Ax.A of M. 

(ii) A (S- or CL-)reduction in A$+ CL is safe iff only safe redexes are 

contracted in it. 

Now we can state the following fact: 

safe 2.5.2. PROPOSITION. Let A,B,C EA$+ CL be such that A----___,;~ C and 
safe f3,cr, 

A r ..... .,.., .. ._.__.,...,>> B. Then there is a D such that B 
-r 

Likewise for T'. 
• 

----·-----» D and C S,CL 



In a diagram: 

safe 
8,CL 

A 

T 

~> f3 
I 

I 

:safe 

·->> D 
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where the dashed or dotted arrows have the usual existential meaning. 

PROOF. It is sufficient to prove the proposition for the case that A ,., -- .,.,..,....._ B JTu "';' ...... 

T 
is in fact one step. Since the proof 

it only. 

is tedious but routine, we will sketch 

In case the step A,.._,,._.._,?· Bis by clause (i), (ii) (or (ii)' for T') of 
T 

the definition of T(T'), (1) follows easily since then (say for clause (i)): 

A 

safe 
S,CL 

i' 
C 

--- safe 
S,CL 

and now (1) is a direct con

sequence of the fact that the 

right side of this ''elementary 

diagram'' does not split into 

more steps. 

In case A,.._,,,.._,,...> Bis by clause (iii), we claim: VABC3D 
T 

T(iii) 
B from which (1) also follows. 

safe 
S,CL 

T(iii) 

safe 
S,CL 

If A+ C is a CL-step, the claim is easy to prove. 

If A+ C is a 8-step, say that R is the contracted redex. Underline the 

head-A of R with - , and underline the head->.. 1 s of the 11 -r (iii)-redexes'' 

AX .FG with "' • 

Case 

Case 

(a) • 

(b) • 

The syn1bols and are disjoint. No problem. - ,...., 

Else, perfo:rm in the reduction A~► B first 

contraction of the AX.FG T( ... )-redex. 
"' 1.1.J.. 

Then we have the following situation: 

• 

• 

the T ( .•• ) -
1.1. l. 
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A= -- (Ax.FG)H--

$,safe 

... --~ --S (AX. F) ( AX .G) H-
T (iii) 

CL,safe 
T (iii) 

\ 

B 

CL,safe 

B • =-- ( AX .F) H ( ( AX .G) H) __ ,...,,...._,..,.,,..;:~B'' 

S T {iii) S ,safe 

s 
C = --F (H) (G (H)) -- = --F ( ) (G (H)) --

The completion·of the diagram as shown, gives no problems, since the two 

new a-steps are in the easy case (a) w.r.t. the ~ 
T (iii) 

-reduction from B' to 

B''. 

The safety condition is easily checked. 0 

·An example of safe reduction is head-reduction, i.e. the redex to be 

contracted occi,rs at the head of the te:tm. (Leftmost: reduction, i.e .. con

tracting the redex whose head-syn1bol is leftmost of all tile redexes, is not 

always safe however.} So e.g. the reduction 

since it is a head-reduction, into -r'(YTM) 

[S (K (S1)) (STI) J[S CK (SI)) (SII > J. 

YTM -~» M(Y M) 'translates well', 
B T 

CL ➔> T' (M (YTM)) .. Here T' (YT) :: 

From the previous proposition we conclude at once the 

' 

2.5.3. THEOREM (Combinatory completeness of CL). 

Given a 'met:a-CL-term' M (A1 , ... ,An) in which meta-variables A 1 , .•• ,An occur, 

one can find a CL-term N such that 

CL 

PROOF. Let N' € Af3 + CL be Ax
1 
••• xn.M(x

1
, .... ,xn)-. Then obviously N'Al ••• An 

· $= >> M (A1 , ••• ,An) by a head-reduction for all Al , ••• ,An E CL. 

Hence by the proposition (since head-reduction is safe): 

h I 

CL = M (A , ••• , A ) • 
1 n 

The last identity is due to the fact that Mis a (meta) CL-term, so {con

taining no A's) a T-normal form. 

Now take N = = NA1 ..• An and the result follows. D 
• 

• 



• 
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2.5.4. REMARK. (i) In the other direction, the translation is easy: let for 

a CL-term M, MA be the result of replacing I by AX.x, K by Axy.x and S by 

Axyz.xz(yz). Then obviously 
• 

M ----➔> M' 
CL 

(ii) If Mis a CL-term having a normal form, or even in nf, it does not fol

low that the A-term MA has a nf too. 

Counterexample: M = S(Kw) (Kw) where w = SI1. 

This is not due to the erasing nature of K; in the non-erasing variant 

CLI of CL (which is to CL what AI-calculus is to A-calculus) based on the 

primitive combinators {I ,S,B, C} where BXYZ · - ➔ X(YZ) and CXYZ - ➔ XZY, one 

has similar counterexamples, e.g. B(Ciw) (Cw) and S(C1(CTw)) (Cw). 

One gets a better correspondence between A-calculus and CL by consider

ing convertibility'=' instead of reduction and by adding extensionality 

('n-reduction'). Further, a still better correspondence is obtained by de

fining the so called 'strong reduction' in CL. See CURRY-FEYS [58], CURRY, 

HINDLEY, SELDIN [72], HINDLEY, LERCHER, SELDIN [72], STENLUND [72] and 

BARENDREGT [ 80] . 

3. LABELS AND DESCENDANTS 

3.0. INTRODUCTION 

There is a clear intuition of symbols being moved (multiplied, erased) 

during a reduction; so we can trace them. This gives rise to the concept 

of 'descendants' which we introduce by means of a A-calculus in which sym

bols can be marked (by some color, say) in order to be able to keep track 

of them. This is done in 3.1 - 3.3, and for definable extensions AP in 3.4 . 

Then we introduce •underlining' in 3.5. Up to there, the markers (or labels) 

do not affect the admissible reductions since they are merely a book-keeping 

device. 

This is different however in the remainder of this section: there the 

labels do affect the allowed reductions. In 3.6 we introduce 'developmen~s•, 

in 3.7 the AHW-calculus of Hyland and Wadsworth, in 3.9 the AL-calculus of 
• 

Levy. At the end of th.is section all these systems with some of their re

lations are brought together in a figur.e • 
• 
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\ 

3. 1 .. DEFINITION. Let M e Ter (A) and let A be some set of sy1r1bols, called 

labels or indexes. Then Ter(AA) is defined inductively as follows: 

(i) a 
t: Ter(11.A) for all variables x and all a E A X 

(ii) A,B E Ter (AA) => (AB) a € AA for all a E A 

(iii) a 
Ter (AA) for all and all a A. A € Ter (AA) ~ {AX .A) E X 

will sometimes by written as 
I 

M where M is the A -ter111 A term A E Ter(AA) 

obtained from A by erasing the labels and I: Sub(M) ➔ A is the indexing map 

(or labeling) corresponding to A. Here Sub(M) is the set of occurrences of 

subte:rms of M. 

EXAMPLE ( in case A = JN): 

Instead of looking at MI as a Ji.-ter·tu whose subterms are labeled, one 

can also consider I as an indexing of the symbols of M: 

MI = ( [ AX ( X X ) J ( y z ) } 
37 4 4 20 7 8 20 4 2 1 0 237 

such that matching brackets get the same label and an abstractor Ax gets 

the same label as the 'corresponding• brackets. The (psychological) advan

tage is that Sub(M) is partially ordered (by £) while Syrtib (M) , the set of 

symbol-occurrences, is linearly ordered . 
• 

If A = lN , we can identify 'label O ' with 'no label ' ; thus we obtain 

also partial indexings. 

Sometimes we will write the A-labels as superscripts, sometimes as sub

scripts. 

3.2. LABELED 8-REDUCTION. Our first use of labels will be: tracing subtezms 

(or sy11lbols} during a reduction.. Consider the 8-redex MI above which served 

as example, and view the labels as if they were firrnly attached to the sym

bols. (So we can conveniently visualize the labels as colors.) Then it is 

almost obvious what the labeled contractum of MI should be: 

( (yz) (yz)) 
20 2 1 0 2 2 1 O 2 20 

' 

• 

' 
' . 

' ' 

r 
' 



The 'almost' is because it requires a \ moment of thought to see 

oute:c·most brackets must have label 20 and not 37 or 4. 

It is now obvious how to define labeled B-reduction, notation 

a b 
( (AX. A) B} [x:=B]A 

that the 

I I > • • 

for all Ter(AA)-terms A,B. Here substitution cr = [x:=B] is defined by 

a cr(x) = B, a a 
cr(y) = Y for y 1- x 

a a 
a(Ax.A) = ().x.crA) • 
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This 'reduction system', consisting of the set of terms Ter(AA) and reduc

tion rule BA, will be called AA-calculus. 

R 
3.3. DESCENDANTS. Consider ME A and a 8-reduction step~= M -~➔ N. Let 

I: Sub (M) 

a unique way 

A be a labeling of M. Then, obviously,~ and 
* I R J the 8 A-reduction step (R = M · · > N for some 

I determine in 

labeling J of N 

(simply by contracting the 'same' redex R, but now also taking care of the 

labels). 

Now let I be an initial labeling, that is: labels of distinct subte.tm 

occurrences are distinct. (So let A be infinite.) Define for all sy11)bol oc

currences s,t EM and for all subte:cm occurrences S,T ~ M the following re

lation: 

s-.-.+t iff J(s) = J(t) 

S-.-.->-T iff J(S) = J(T). 

In case 6{ consists of several steps, ~ = M -· ➔> N, we write s-. - • ->> t resp. 

S-.-.~ T. We say thats descends tot, or that tis a descendant of s, or 

thats is an ancestor oft; likewise for Sand T. 

3 • 3 • 1 . REMARKS .. 

(i) R 
Let M _,,_ ► N. Th.en the redex R = (AX. A) B has no descendants in N. The 

sam~ holds for (Ax.A) and the x's free in A. 

(ii) Descendants of a redex are often called residuals. Note that resi-

duals are again redexes. 
• 
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\ 
(iii) Notice that if M -r N (M,NE A) and A E M, then the descendants Ti != N 

of A are mutually disjoint .. However in the case of a many step reduc

tion M » N this need not be the case: see Remark 4.4.2 below. 

(iv) Note also that if tR == M + .... ➔ M' and s' E M' (:resp. s• .:= M') then 

s' (resp.S') has a unique ancestors EM (resp. SEM}, which will in 

general depend on the actual reduction from M to M'. 

3 .. 4. DESCENDANTS FOR CL AND DEFINABLE EXTENSIONS AP 

Let AP be a definable extension of A. Again we will derive the concept 

of descendants for AP from a labeled version (J...P}A. The definition of (AP)A

ter1ns is obtained from Def. 3 .. 1 by adding to (i): Pa is a (;.P) A-term for all 

P € P, a E A. 

Now to each P-rule of AP, 

there correspond in ( ).p) A the rules 
, 

a 
n 

for all a 0 , ... ,an € A. Note that in th.e RHS of thos·e labeled P-rules no A

labels occur {i.e. only the zero label~ which is not written); except of 

course the labels which occur in the (AP)A-terms substituted for the meta

variable~ A1 , ..• ,An. 

EXAMPLE.. If PABC · · ➔ B (PAAC) is a rule in °AP, t}J.en for all a,b, c, d E A the 

rules (((_a_A)aB)bC)c ._ (P C) . (~ ) I-' - •·➔ B AA are i:n I\P A. 

• 

3 .. 4.1. DESCENDANTS .. Extend Def. 3.3 (of descendants) to definable extensions 

AP, using the above definition of (AP)A. • 

3.4.2. REMARK. From this extended definition we have at once the following 

facts: 

(i) Like B-redexes, also P-redexes leave no res:i.duals after their contrac-
• t1.on .. 

• 

(ii) In contrast with $-reduction, when P-reductions are present no't every 

subterm N' ~ M' in a reduction st~p M · · > M • has an ancestor N E M .. 
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E.g .. in Pabc -~➔ b(Paac) where a,b,c are variables 
\ 

all the subterms 

P, Pa, Paa, Paac, b(Paac) of b(Paac) have no ancestors in Pabc. But if 

N' has an ancestor, it is unique. 

A motivation for this definition of descendants will follow now; first we 

need a definition. 

3.4.3. DEFINITION. 

(i) Let PA1 ••• An 

proper if P ''acts effectively'' on all the A
1

, •.. ,An; i.e. for no 

Q'(A1 , ••• ,An_ 1 ) (not containing the metavariable An) 

E.g. PABC ➔ B(PAA)C is not a proper rule, but 

PABC.

PABC 

B (PAAC) , 

B (PAA) 

---r► BC ( PAA) C PABC are proper rules. 

(ii) AP is called proper if al its P-rules are proper. 

we have Q = Q'A. 
n 

3.4.4. REMARK. Every definable extension AP can be 'embedded' in a proper 

definable extension (AP)', as follows. If AP contains e.g. the improper rule 

PABC · ·> B (PAA) C then one replaces this rule simply by the proper rule 

PAB + B(PAA). Thus we obtain a proper version (AP)' of AP, in which we have 

the same reductions as in AP plus some more (such as Pab ➔ b(Paa), a con

traction not allowed in AP). 

3.4.5. PROPOSITION. For a proper definable extension AP of A-calculus there 

is a natural {or 'canonical') concept of descendants: namely~ every defini-
-

tion of AP into A (by means of defining reductions for the P. 
l 

• 
E P as in 

Remark 1.11.2) induces the same descendant concept in AP. 

Moreover, chis canonical concepr of descendants coincides with the 
' 

one in Def. 3.4.1. 

PROOF. Consider a rule PA1 ••• An Q and a defining reduction~= PA1 ••• An 

-» Q' for some A-term P. Then it is simple to prove (using the properness 

condition) that~ must be in fact 

--:>> ••• 

-:>> 

' 

-i>> (AX .M )A 
n n n 

' 

• 

---:;>> 

• 

-:>> Q'. 
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(So all A. 
1 

Hence 

(i = 1, .... ,n) are 'eaten'.) 

(by Rema,rk 3 .. 3 .1. (i)) none of 

has a descendant in O'. Since this holds 

the terms P,PA1 ,PA1A
2

, .•• ,PA
1 
.•• An 

for all the P.-reduction rules ,_ 
1 

{P. E P) and all defining reductions~-
i 1 

for them, the induced concept of 

descendant is therefore the same as the one in Def. 3.4.1 . □ 
• 

3.4.6. REMARK. The properness condition is necessary; for consider the im

proper rule PABC -~> PB(PAA)C and now define the A-term P such that 

PAB -::» PB(PAA) for all A,B, then in the reduction PABC ----'» PB(PAA)C we 

have PABC -.-.->> PB(PAA)C .. So the induced descendant concept does not satis-
' 

fy the property that a P-redex after its contraction leaves no residuals 

(and we will need that property later on, to prove the theorem 'Finite 

Developments• for AP). 

3.4.7. EXAMPLE. Consider in CL the rule (((SA)B)C) -+➔ ( (AC) (BC)) .. Accord-

ing to our definition 3 .. 4 .1, the subte:rrns (AC), (BC) and ( (AC.) (BC)) in the 

RHS have no ancestors in the LHS, or equivalently, the displayed brackets 

in the RHS have no ancestors in the LHS. 

The following defining reduction in fGr the S-rule shows why this is 

so: the brackets in the RH.S descend really from brackets ''hidden '1 in the S: 

• 

( ( ( 

0 1 2 

( ( 

0 1 

( 

0 

( ( ( 

0 1 2 
SA ) B 

2 
) C ) 
1 0 

( Aa { :\b ( AC ( ( ac 
3 5 6 7 8 

{ Ab ( 
5 6 

Ac ( ( Ac 
7 8 

( ,AC 
6 

( ( Ac 
7 8 

( ( AC 

7 8 

---

) ) ) ) A ) ) (be) 

8 9 9 7 6 5 3 2 

) (be) 

8 9 9 

) (Be) 

8 9 9 

) ) ) 

7 6 5 

) ) 
-7 6 

) (BC) ) 

8 9 9 7 

Hence the subterms 7, 8, 9 have no ancestors. 

3.5. UNDERLINING 

B ) C ) 
1 0 

B ) C ) 
1 0 

C ) 

0 

(i > · , A Consider AA-calculus as in Definition 3.1 and let = {0,1}. A no-

tational variant of this reduction system 

> is obtained by underlining the 

subterms having label 1 (ah8 1 ouly those). 

So instead of ( (A x ( x 
1 

x
0

) 
1 

) 
1 

(.y 
O

z 1 ) 
0 

) 
1 we write 
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( ( Ax ( xx ) ) ( y z ) ) , 

and this redex has a contractum: 

( (yz) (yz)) • 

* Let = <Ter(A), B* > be this reduction system. Note that there 

* are infinite reductions, e.g. (Ax.xx) (:\x.xx) S -reduces to itself. -- --
* (ii) Now we restrict Ter(A) to the subset of terms where only S-redexes 

may be underlined. Let the resulting reduction system be 

** = <Ter(A ) , 
• 

**) >, s 

where ** * B is the restriction of 8 ** * to Ter(:\ ) c Ter(A). -
** (iii) Moreover we add a notational simplification to A , namely 'reduced 

underlining'. Since a S-redex is determined by its head-:\, it suf

fices to underline only that 11. instead of the whole redex. 

The resulting system will be called ). = <Ter (11.), ... S ► >, 

words: underlined .A-calculus, underlined $-reduction. 

Instead of ':\(-calculus)' we will also say: '.A8(-calculus) •. 

We will not need the auxiliary systems 

An example of a reduction in:\: 

* ** A , A anymore. 

(.Aa.aa) [ (Ab .. b) (:\c.cc) J ,. .. 

s (Ac.cc) (Ac.cc), 

(:>tb.b) (.Ac.cc)[ (Ab.b) (Ac.cc)] 

a S-nor.1nal fo:rrn. 

(iv) Analogous to we define AP, the underlined version of a definable 
• 

extension AP of A. The definition is straightforward and will be left 

to the reader. Here also we may employ reduced underlining: instead 

of PABC, say, write only PABC. 

3.6. DEVELOPMENTS 

Reductions in A or AP give rise to reductions in A or AP, by erasing 

the underlinings. Reductions in 

will be called developments. 

or AP which can be obtained in this way, 
• 

In the next section ( 4) we wi 11 prove that A I= SN; or in other words, 

• 
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all developments are finite. 
\ 

3.7. HYLAND-WADSWORTH LABELS 

3. 7. 0.. Again we consider Ter ( AJN ) . But now we define a reduc·tion totally 

different from---+ 
S:N 

as introduced in 3.2; let us call it-----+ 
SHW 

. It is 
• 

introduced by HYLAND [76] and WADSWORTH [76] and can be considered as a 

syntactic counterpart of projection 

culus; but we will not go into that 

[77]). 

' 

in Scott's models D, Pw of the A-cal-
oo 

(for references, see e.g. BARENDREGT 

• 

Whereas in 3.2 the labels served merely for tracing the descendants in 

a reduction, now they play a role of their own. BHW-reduction can be con

veniently defined (as in BARENDREGT [77], but without n) by admitting sub

te.i::ms which have multiple labels, e.g. ( {Ma) b) c; possibly no label at all. 

HW 3.7.1. Ter(A ) , the set of HW A -terms, is defined by 

(i) HW x,y,z, •.. E Ter{A ) 

(ii) A,B € Ter(AHW) =+ (AB) HW 
E Ter(A ) 

(iii) A E Ter(AHW) => HW (Ax.A) E Ter(A ) 
• (iv) A E Ter (). HW) => n HW 

A € Ter (). ) for all n E lN • 

The multiple labeling is only an auxiliary device; when possible the fol

lowing simplifying rule will be applied: 

for all M HW 
E Ter(A ) and n ,m E JN • Here (n ,m) 

BHW-reduction is now defined by 

n (Ax.A) B n-1 n-1 [x := B ]A 

for all A,B E 
HW Ter(A ) and n > 0. 

= minimum {n,m}. 

Here n is called the degree of the redex on th.e LHS. Note that reduction is 

only allowed for redexes of positive degree. 

Furthermore, the substitution operator used in the previous definition, 

= [x:=A], is defined as follows: 

• 

• 

• 



(i) ax= A, cry= y for x $ y 

( ii ) a (AB) = ( a A) ( a B) 

(iii) a(>..y .. A) 

(iv) 
n 

o(A) = 
= Ay.oA 

n 
(oA) • 

Note the difference with substitution 
b a b 

there [x:=( ... )] X - ( ... ) , -
n m nm 

here [x:=( .. . ) ] X - ( ( ... ) ) ·► -

• 3.2: in 

( .... ) (n,m}. 

For an example of a SHW-reduction see the figure on p.26. 

' 

3.7.2. REMARKS. (i) In section 7 we will prove by an 'interpretation' of 
C 

A-calculus into AI-calculus that is strongly 

no.r111alizing) . 
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(Notation; we borrow the sign ' l= ' from model theory, meaning: ' .•. has the 

I I t' f' t } property.. . or: ..• sa is 1.es. • . . 

(ii) Creation of redexes. One of the key facts in the proof of (i) is that 

redexes of degree< d. a redex R of degreed can only create 

Here we say that in the step M
0 

new 
R 

M1 a redex R1 E M1 is created 
.. 

by (the contraction of} Riff no redex R0 s M
0 

descends to R
1

• In LEVY 

[74,78] it is worked out when such creations happen. There are the following 

three cases: 

I. .. ... [().x.tt[xB])(Ay.A)] ••• 
a o 

~> ... [C [(Ay.A)B ]] ••• 

I I • .. • • [ ( AX • x ) ( A y .. A) B ] • • .. ~➔ ••• [(>..y.A)B] ... 

III .••. [(Ax.Ay.A)CB] ... 
(J I 

••• [(Ay.A )B] ••• 

where cr is the substitution [x:=Ay.A], cr' is [x:=C] and t[ ], ... [ ] ... are 

arbitrary contexts. (B0
, c0

[ ] stands for o(B), cr(C[ ]) .) 

It is a matter of routine to verify that the degree of the created AY 

redex in the RHS is indeed less 

(The first occurrence of n-1 in 

than the 

(\x.A)n B 

degree of the AX redex in the LBS. 

-~► [x:=Bn-l]An-l causes this de-

creasing effect for creation of type I, II; the second for type III.) 

EXAMPLE. 

6 6 
((Ay.A) I) • 

• 

'" .. _.,,. ) 

BHW 

-....;;i>> ( (Ay.A) (8,6,9) I) (11,6,10) = 

• 



• 
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FIGURE 
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• 

• 

• 

• 

• 

·• • 

• 
' 
' 
I 
• • 

• , 

' ' < 

I 

• 
• 



(iii) On the other hand, the redexes R 1 which descend from'a redex Rina 

BHW-reduction ~ = M 

u 

.... M' 

u 
R- -- + - - ➔ R' • • • • • • • 

have the same degree as R. 

• 

For a verification of (ii) and (iii) see LEVY [78], p.29-32. 
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(iv) 

Min 

The system A in 3. 5 can also be obtained from A HW. For, consider ter111s 
HW 

Ter(A ) such that some redexes c M have label 1 and all the other -
su.bte.r:ms in M have label O; let an underlined ter1n E Ter (A) correspond to 

such M as in 3. 5.. Then SHW-reduction of such ter:n1s M corresponds precisely 

to a S-reduction of M. 

3.8. Typed A-calculus or AT-calculus is obtained as follows. The labels 

called 'types• here and the set of types Tis defined inductively by 

are 

(i) 0 E -r 

(ii) a.,$ E 't 

Now we do not work with the whole set Ter(AT) as defined in 3.1, but with a 

subset T of terms subject to the restriction rthat types must match in the 

sense of the following inductive definition: 

(i) 

(ii) 

(iii) 

. a T x E for 

A a➔S E T & 

A
8 ET 

all XE VAR and a ET 

Bet E T ~ (Aa+BBet) S e: T 

(Ax0 .AS)a➔l3 ET. 

3.9. LEVY's LABELS 

Now we turn to a labeled ).-calculus introduced in J.J. L~VY [75,78]. 

It is a common generalization of all the labeled A-calculi we have dealt 

with so far. We will refer to it L 
as A -calculus. It is closely connected 

with the concept of equivalence of reduccions (also introduced in LEVY [78]), 

a concept we will comment on later. 

The set L of Levy-labels is defined inductively as follows. Let L' be 

an infinite set of symbols, L' = {a,b,c, ••• }. Then define 

(i) L' C L 

(ii) a,S EL 

(iii) a€ L 

etf3 E L 

c L. • 

Here a.13 is the concatenation of a. and S, without brackets . 
• 
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The definition of 
L 

A is mutatis mutandis 

as for AHW in 3.7. 

L L 
the set Ter ( A ) of A -ter1ns 

\ 

and of substitution in 

(i.e. replace HW by L and n € JN by a E L) the same 

Again we simplify multiple labelings whenever possible, now using the 

rule: 
• 

L 
for all M e: A and a., 13 € L: 

BL-reduction is defined _as 

for all L 
A,B € Ter{A ) and a EL. As before, a is called the degree of the 

displayed redex. Also as before, it is easily checked that during a reduc

tion the residuals of a redex R keep the same degree as R. (See LEVY [78].) 

There are two differences in our definition as compared to LEVY [75,78]; 

there underlining and 'overlining 1 are usedp(but later Levy remarked that 

the latter is not necessary) and secondly, our labels are the mirror image 

of those in LEVY [75,78]. 

3.9.1. EXAMPLES .. 

(1) a b C de ( ( AX. ( x I) } ( AY. A) ) dca bee 
-» ((Ay.A) - I) - (cf. the similar ex-

HW ample for A above.) 

(2) This example is taken from LEVY [75] but in our revised notation: 

' 

((1tx.((1ty.(yfzg)e)dxh)c)b(Au.(ukue)j)i)a 
~ 

f g e d k e j ibh cha ( ( AY .. (y z ) ) (AU. (u u ) ) -. ·· ) 

(( ' ( hdf g)edc)b(' ( k e j i a I\X. X - Z - AU • U U ) ) ) . 

giQhgfk ----
(z 

gi~hgfe j 
z . ) 

ihhdf edcba 
- = - -

The following remarks are also essentially due to LEVY [75,78]. 

. 

' 
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3 .9.2. REMARKS. (1) 

= A 

(as in 3 .1) • 

Namely, take L' 
L . 

and given a A -term M, erase all but the first sy111bol 

of every label a in M. It is easy to check that this procedure transforms 

BL-reductions in SL 1 -reductions in the sense of 3.1. (Cfr. the examples 

just given.) 

(2) AL is not SN, but certain restricted for111s of it are. 

Let P be a predicate on L which is bounded in the sense that the labels a 

for which P(a) holds, are bounded in height, i.e. 

3n E :IN' Va E: L ( P (a) 

• 

Here the height h(a) is defined by 

(i) h(a) = 0 for a EL' 

( ii ) h ( a f3) = max { h ( a ) , h ( S) } 

(iii) h(et) = h(a) + 1. 

h (a) ~ n) • 

Now restrict BL-reduction such that contraction of a redex with degree a is 

only allowed if P(a). Denote the resulting system by AL,P, or in case 

P(a) h(a) ~ n, simply by AL,n_ ~ 

Now we have AL,P I= ~ 

SN for bounded P. See LEVY [75,78] for a proof; • in sec-

tion 8 we give an alternative proof. 

( 3) There is also a ''homomorphism'' from AL to A HW but not as direct as the 

previous one. Let us describe it as follows. 
HW as A but now allowing also negative labels 

and dropping the restriction that only redexes of positive degree may be 

contracted. 

Secondly, let f: L .. > ~ satisfy 

(i) f (a) € N for all a E L' 

(ii) f(aS) = min{f(a),f(S)} 

(iii) f(a) = f(a) - 1 • 
• 

-

Note that h(a) and f(a) are, roughly speaking, opposite in sign: 

(*) m-h(a) :s; f(a) :$; M-h(a), where m = min {f(a.) I a. E a} and 
l. l. 

M = max{f(a.) I a. Ea}. we leave the proof of (*) to the reader. 
l. l. 

• 

(**) Now we have for every f satisfying (i), (ii), (iii) above 

from 

f(a.). 

a homomorphism 

in AL by 



30 

Moreover one easily proves: 

3 .. 9.3. PROPOSITION. The following are equivalent: 

;\HW F SN (i) 

(ii) I.n every infinite reduction in A HW a redex of 
zz HW 

degree~ 0 is contracted. 
' 

{iii) In every infinite reduction in 

redexes is unbounded from below. 

'L (iv) In every infinite reduction in I\ 

' the set l\zz; of degrees of contracted 
' 

the set {h (a.) I Cl is dearee of a -
contracted redex} is unbounded from above. 

(v) ttL,n f= SN for all n € N. 

(vi) AL,P I= SN for all bounded predicates P. 

PROOF. By using(*),(**) in the proof of (iii)<•> {iv) and noticing for 

(ii) -.. (iii) that given a the reduction tR• obtained by 

adding a in~, is again a reduction in 

The figure on p. 31 su1n1narizes this section (without definable exten

sions). 

4. FINITE DEVELOPMEN'rS 

4.0. INTRODUCTION 

□ 

AB-reduction is as we remarked in section 3, a special kind of SHW

reduction. Since BHW-reduction has the property SN (as we will prove in 

section 8), 8-reductions are therefore strongly normalizing too. This is the 

theorem of 'Finite Developments' (FD). 

However, we will give aI).Other proof of FD in this section, because: 

(a) it is much simpler than the proof of A HW != SN, 

(b) it generalizes without effort to FD for some extensions of A-calculus 

such as ASnn-calculus (see BARENDREGT, BERGSTRA, KI.OP, VOLKEN [76]), 

(c} it generalizes at once to FD for definable extensions (hence also for 

CL), and 

(d) our proof strategy is such that we need FD to prove A HW I= SN 

(see p.32): 

• 



31 

L 
). -calculus 
iL,P L 
A i- SN for bounded P 

homomorphism 'homomorphism' 
¢ (a) =first syiu. 

of a 

).A-calculus 

AA j;f SN 

efinitio 

descendants 

A={0,1} 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

* )\ -calculus 

1i. * I# SN 

only B- dexes 

underlined 

"'[ 
A -calculus 

AT I= SN 

• 

• 

HW ::\ -calculus 

::\HW F SN 

HW--labels ~ 1 

).-calculus· 

:;\ I= SN ( A I= FD 1 
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• 

FD for definable 
• extensions 

(sect. 4) 

csect.5) 

Church.Rosser 
theorem for de
finable exten
sions of A-cal
culus (sect.5) 

• 

& 

Church's theore 
for definable 
extensions of 
AI-calculus 
(sect.7) 

(sect .. 8) 

SN for AL,.!:' 

AHW,A T 

& 

\ 

• 

Interpretation 
of ).-calculus 
in AI-calculus 
(sect.8) 

4.1 .. PREI,IMINARY REMARKS 

(i) If E is a 'reduction system•, such as ).., AI, AP, or CL (in Chapter II 

we will consider a general concept of 'reduction system') then E denotes 

the corresponding underlined reduction system, as defined in 3 .5. 

(ii) we remind the reader that an essential feature of E is that in E-reduc-

tions 

= M 
0 

there is no 
RQ R1 
••. ➔ M , ➔ 

S 1 S 

-
creation of E-redexes; e.g. in a AS-reduction tR = 
•.. every contracted S-redex R~ = · { i.x .A. ) B. ( i = 0 , 1 , ••• ) 

·- l. - l. l. 

is a descendant of some S-redex in M0 • {There can be B-redexes created, 

but no S-redexes.) 

(iii) Let~ beat-reduction and~' be the corresponding L-reduction, ob

tained by erasing the underlining in cR. Then~ is called a (E-) development. 

The theorem that we will prove now, asserts that for E = A, AI, ).p, 

CL all developments are finite. 

Notation: i: I= FD .. Note that by definition, this is equivalent to: E l= SN. 

(iv) The method that is going to be used in the proof below is taken from 

BARENDREGT, BERGSTRA, KLOP, VOLI<EN [76·]. Given a development 
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tR = M > M --+ .... , to each sy111bol s E M a weight Is 1 E' 1N is asso-
0 1 0 

ciated. During the reduction <R, every syrr1bol keeps its weight unchanged. 

The assignment of weights is such that the total weight 

of the M. E ~ (i = 0,1, ... ) decreases: 
l 

IM I > IM l > •• - • 
0 1 

IM. I 
l 

(:= \ Isl) 
lsEM · 1 

Before giving the actual proof, we need some definitions. Throughout 

the proof, Eis a definable extension of A-calculus, having pas set of con

stants. 

4.1.1. DEFINITION. Let PEP have the reduction rule: 

PA - .. A 1 n 

(i) The mul tiplicit.y of A. (i 1, .... ,n) • Q, mult(A.), • the n11mber of - in lS -
l. l. 

of A, • Q .. occurrences in 
1. 

(ii) m(P) = max{mult(A.) I • 1, ... ,n}. ]. --
l 

(iii) m = max{m(P) I p E p} + 1 . • 

4.1.2. EXAMPLE. Let be A+ CL+ {PABC -~ P(AAACC)BB}. So 

P = {1,K,S,P}, m(I) = 1, m(K) = 1, m(S) = 2, m{P) = 3 and m = 4. This will 

be our working example during the proof. 

4.1.3. DEFINITION. (i) Let L be the underlined version of E. 

(In our example, E =A+ CL+ {PABC P(AAACC)BB}. The set of constants 

P of Eis {I,I,K,K,S,S,P,P} and the reduction rules are 

-

(:\.x.A(x) )B A(B) 

1A --+- A, KAB ---+-) A, SABC AC(BC) 

PABC P (AAACC) BB.) 

(ii)~ is defined as follows. 

Ter (~) is obtained from Ter (E) by adding natural n11mbers as labels to some 

of the syn1bols of E-terms. These labels will be called weights and will be 

written as superscripts. 
• 

Reduction in~ is just I-reduction where the weights are taken along, in 

the sense of Definition 3.2 (I.e. each symbols keeps its own weight during 
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\ 
the reduction and the presence of weights does not affect the allowed re-

ductions.) 

' 

4 .. 1 • 4 • EXAMPLE. 

8 ' 

p 
2 2 2 3 3 8 2 . 3 

M
3 

:: P (y y y PP) y y ( P y PPy ) • 

4.1.5. NOTATION AND DEFINITION. 

(i) is M's 

weight assignment (so I is a partial map frc:,rn sy1·ob (M) to JN ) • 

(ii) if s E M, then Is I = I (s)·, the weight of s. We put Is f = 0 if s has 

no weight (I(s) undefined). 

(iii) if W .5: M is a subword of M (i.e. a sequence of consecutive sy111bols in 

M) then 

(i) _Let R £ M be a B-redex. Then R = (Ax.A)B is called good w.r.t. I iff 

Ix! > \Bl for every occurrence of x in A. 

(ii) 

(iii) 

Let R c M be a P-redex for some PEP. Then R --
good w .. r.t. I iff lPI > mJA1 ••. An! where mis as in Definition 

4 .1 .1 {iii) • 

MI . 
1S called good if every (S- or P-)redex in Mis good w.r.t. I. 

4.1.7. EXAMPLE. In example 4.1.4, the S-redex nor the P-redex in M1 is good 

w.r.t. the displayed weight assignment. 
. · _ 24 30 18 2 3 . 

However, M4 = {).x.x x ) (P y PPy ) is good. 

4.1.8. PROPOSITION. Let M € Ter(E). Then there is a 
I 

good M 

PROOF. Let M - where- s. • the i-th sy1rtbol - sl •.. si ... s2s1s0 l.S - 1 • 

E Ter(!w)· 

from the rightr 

• 

and define the weight assignment I by I (s.) f s. l J. • o, ... ,l. - - (m+l) , for J. -- - -
l. J. 

Then, since • 
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i+1 
(m+l) -1 

(m+1) -1 
2 = 1 + (m+1)+(m+1) + ..• + 

• 

(m+1) 1 

we have 

i+l 
(m+l) > m(1+(m+l) + ... + 

• 
1. 

(m+l) ) • 

• 

So hence a fortiori 

(i) every x free in A~ (Ax.A)B is heavier than B (since m ~ 1 and Bis 

to the right of x) and 

(ii) every PEP is at least m times heavier than the total of its arguments 

Al , ••• ,An. 

4.1.9. 
IQ 

MO E 
Io 

= M 
0 

PROPOSITION. Let~ = M 
0 

Ter(Z:: ). Then there is a 
-t,lI . . 1 

-+► M ► •••• ' .. ' 1 

D 

---+-➔ M 
1 

. .. be a Z::-reduction. Let 

PROOF. It follows at once from the definitions ,that every step in Z:: can be 

'lifted' to the case where extra labels (in casu weights) are present. D 

4.1.10 .. MAIN LEMMA. 

(i) 
It . 

Then Ml J.S 

(ii) Moreover, 

good ~-term, and 

a good fw-ter1n. 

I I 

jM 0
1 

0 

let: be a 

-

Z:: -reduction -w step. 

PROOF. First the easiest 
Io 

tracted in the step M
0 

part of the ler,nna, (ii) . Let R be the redex con
I1 

M
1 

and let R' ~ M
1 

be the contractum of R. 

CASE 1. Risa S-redex. Say R = (Ax .••. x ... x ... )B. Since 
Io 

MO is good, R is 

good w.r.t. I
0

, i.e. every occurrence of xis heavier than B, so 

IR'I = 1 ••• B .... B .... 1 < !RI. 
If there is no occurrence of x, also IR'! < !RI, since B disappears. 

CASE 2. Risa P-redex PA1 •.• An. Since R is good w.r.t. I 0 , IPl > mlA1 •.. Anl. 

Moreover, the multiplying effect of Pis smaller than m. Therefore 

• 

• 
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Hence 

(i) We have to show that every B or P-redex R1 E. M1 is again good w.r.t. r
1 

-

Let the redex R0 E. M0 be the ancestor of R
1

• Clearly R
0 

is also an un-

derlined redex. We will treat only the non-trivial cases. 

As above RE M0 is the contracted redex, and R' ~ M
1 

CASE 1. RC R • 
- 0 

• 

its contract11m. 

1 .1. R0 is a 13-redex and ·the 8- or P-redex R is a subte:r:m of its arg,1ment: 

RO:: (;\x.A)~[R] 

B or P 
+-

Rl = (Ax.A)~[R'] . 

for some context~[ ]. 

Now l~[R]I > lt[R']l. Since good, for every occurrence of x in A we 

have lxf > lc[R]I. Hence in R
1 

also for every x in A: Ix! > l~[R']I. So R
1 

is good w.r.t. r
1

• 

• 
1.2. R0 is a P-redex and R is subterm of one of its arguments: 

RO :: PA1 ••• A .••• A 
,,, J n 

$ or P C[R] 

R1 = PA1 ••• A~ ••• A 
• "' ~IT J n 

<t[R']. 

A similar reasoning as in case 1.1 applies. -

RO CASE 2. C R -
2.1. RO 

• 8-redex, R • l.S a l.S a B-redex and R substitutes something in the ar-
gtnnent of: 

R = [Ay.---((Ax.A(y))B(y))---]c 
'

!!EU ..,;, - ., ~ -
B Ro .... -

R' = --- (Ax .. A (C) ) B (C) ) ---

Rl 

Now in R for ally in A(y),B(y) we nave lyf > rcJ, hence IB(y) I > fB(C) I. 
Furthex1nore, for all x in A (y) we have .f x I > f B (y) I . 

• 

' 

. 

. 

' ' " i 
i 



Hence in R
1

: Ix f > I B (C) I . 
So R1 is good w.r.t. 1

1
. 

2 .. 2. R0 is a P-redex, Risa 8-redex and R substitutes something 

more of the arg,lments of Ro: 

R = [).y.--- (PA
1 

(y) .... A (y) )---Jc 
, "- n .,, 

B 

R' = 
RO 

--- ( .. P~l (C) •• : •• _An (C,,.) ) --

R1 

fc! and.JP(> mlA1 (y) .... An(y)J. 

• 
in one or 

Here in R: !yl > 

Hence in R 1 
: I PI > m f A 1 ( C) • • • An ( C ) I . So R 

1 
is s ti 11 good w .. r . t .. I 

1 
. D 

4.1.11. THEOREM. (Finite Developments) 

Let; I be a definable extension of A-calculus. Then I J= FD (i.e. E I= SN). 

PROOF. Let <R be a I-reduction, (R = M 
0 

has a good weight assignment I 0 . By 

to a !w-reduction 

By Lemma 4.1.10 we 

IQ I1 
M · >· M 

0 1 
have 

Hence (R is finite. 0 

-~> ... By Proposition 4.1.8 

Proposition 4.1.9 ~ can be extended 
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4.1.12. REMARK. Note that the above proof yields the following bonus: Every 

development of ME Ter(A) has 

in sy11,hols. 

4.2. FAST DEVELOPMENTS 

m 
at most 2 steps, where mis the length of M 

This concept is introduced for use in Chapter II. Instead of evaluating 

(Ax 1 .... xn .A (x1 , •.• ,xn)) B1 ... Bn to A (B1 , .•. ,Bn) in n steps, we can proceed 

faster by perforn1ing such a reduction in one step. 

4.2.1. DEFINITION. A8 -calculus (m for 'many') is defined as AB-calculus, 
m 

but with the 8-reduction rule replaced by the rules (for all n ~ 1) 

• 

• 
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4.2.2. DEFINITION. A$, underlined AS -calculus, is defined like AS (un-
__;_nm1 m 

derlined AB-calculus). That is: 

(i) only S -redexes (~1) may be underlined. Notation: 
n 

R = (Ax
1 
••. xn.A)B1 ... Bn is a ~-redex. If here A= Ay1 .•• yk.A' we 

(ii) 

(iii) 

may write Ras (Ax1 ••• xny1 .•. yk.A')B1 .•. Bn. 

Only 8 -redexes (n~l) may be contracted in AS • 
~ ill . 

Reductions in A$ are called 'fast developments'. 
m 

4.2.3. EXAMPLE. (Axyz.xxzz)IIII (Az.IIzz)II is a reduction in 

a B -normal fo:r·n1. 
rn 

4.2.4. ~?l'.U~..l.',,. The extension to ASP (definable extensions of 

ASP, or , m 

m 
AP and AP for short, is straightforward. 

m ---m 

4.2.5. THEOREM. (Finite fast developments) 

).p ~ FD 
m 

( I • e • AP l= SN) .. 
-· m 

PROOF. Entirely similar to 4.1. 0 

4.3. AN ALTERNATIVE PROOF OF FD FOR AP. 

11.S ) 
m 

and 

4 .. 3. 0. The following proof of t..P ~ FD is due to HYLAND [ 73]. We include it 

here (omitting some details) in order to give some extra information about 

developments which we need in Chapter II. 

In this subsection we will omit the P of AP; the extension of the re

sults below from A to AP is entirely straightforward. 

-
4 .. 3 .1. DEFINITION. Let the 'd•isjointness property' (DP) be defined as fol-

lows: 

For every reduction tR = M -+> ••• -+> M' and every subterm s !:: M the 

descendants c M1 - (n~O) of Sare pairwise disjoint. 

4.3.2. 

( i) AB ~ DP. For, let S contain x as free variable (Stx) and consider 

M =: { AY • yy) ( AX • s ( X ) ) .. ) ( AX • s ( X ) ) ( AX • s ( X) ) --➔ S(11.x.S(x)) = M' . 

• 

(ii) Trivially CL f== DP, since there i ub t · t t · · · s nos s i u ion in CL. 
" 

• 



• 
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Next we will prove that AB I= DP, 
\ 

i.e. the disjointness property holds 

for developments~- Before we do that, we show that the finiteness of devel

opments (FD) follows almost immediately from this fact. This observation is 

due to Silvio Micali (personal communication). 

4.3.3. LEMMA (Micali). A8 I= DP~ A$ I= FD. 

PROOF. Consider ME AB • in which~,---,~ are the head-A's of the underlined 

the subscripts 0, ... ,n as 'colors'. Note that in redexes. we will refer to 

Mall colors are different. 

Now let a development 6t = M > M' -->- .... ~ ••. be given. 

the A.-occurrences In every M(k) E ~ we will attach superscripts to 
--:1. 

(i E {O, ... ,n}) as follows. Let A. be such an occurrence and let R be the 
l. 

.redex having A. as head-syinbol. Let d (=d (A.)) be the number of different 
-1 -:1. 

colors of A.'s contained in R. Then dis the superscript attached to R's 
J 

head-sy1nbol A .. 
:l. 

We will call d the 'color deqree' of A .• 
-:1. 

EXAMPLE. Let in 

in the figure, where 

-

the inclusion relations between the A.-redexes be as 
--:1. 

A1• means that the A.-redex ~ the A.-redex. 
- 1 J 

A! 
-] 

Then the color degrees are as indicated in the figure; e.g. the one 

occurrence of A
3 

has color degree 5 since the A
3
-redex contains the five 

colors 0,1,2,4,5. 

Note that by DP, 
a. 

itself, so :>i..
1 

-1 

a color cannot 
a. 

c ;,__J~a. <d .• 
- J l J 

contain 

Now assign to M(i) the multi-set (see 

Def.6.4.1. below) of the color degrees 
1 • M(k) +1 of all the A,-occurrences in , 
-1 

in the example: <6,3,3,2,1,1,1,2,1,1,1>, 

and consider the effect on this multi-

f M(k+l) h umb set of contracting, say, A
3

• Then in the multiset o ten ers 

d{A.)+l(i = 0,1,2,4,5) may increase after the contraction, but they must re-
-i 

main< 6, regardless what happens exactly with those A .. E.g. 
:1. 

the residuals 

of the ~-redex can after the contr~ction at most contain the four colors 

0, 1, 2 ,4 (not 5 itself by DP) • 

• 
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\ . 
Hence by Prop.6.4.2 after the contraction we have a lower multiset 

w.r.t. the well-ordering there defined, and so the development~ must ter

minate. 0 

Now we will turn to the proof of DP for developments. In fact we ob

tain more. 4.4.4 - 4.4.6 are due to HYLAND [73]. (We are going into some 
• 

detail, since afterwards we want to extend the results below to fast devel

opments.) 

4 - 3. 4. DEFINITION - Let M E A$. On Sub (M) 1 the set of subteI.IIl occurrences of 

M, we define the following two 

( 1) * c is defined by: 

* relations c ** and c 

(i) C C D * Cc D (c is the strict (or proper) subterm relation) 

(2) 

(ii) if C, D are subte:t:·111s of an under lined redex 

(iii) 

** 

(Ax ...•. D(x) ..•. ) {--C--) such that x E FV{D) 1 then C 

* C is transitive. 

c is defined by: 

* C D 

** cc D for some development M -~> ... -~> M' and some descen-

dants C', D' EM' of C, resp. D we have C' c D'. 

4. 3. 5. PROPOSITION. Let M E A$ and M --+> M' s . 
* * Let C' ,D' c M' be some descendants of C,D c M. Then C' C D' C C D. - -

* PROOF. If C' c D' in virtue of clause (i), 
' 

then it is easy to see that 

* Cc Din virtue of clause (i} or (ii). 

If c• 5= D' in virtue of (ii), then M' = ---(:\x.--D' (x)--) (--c'--)--

and now there are 2 cases: 

CASE 1. M = --((Ax.--D(x)--) (--c--))--: then - * C C D by clause (ii). 

CASE 2. M = --[[ AY .. -- ( ()1.x.--D (x) --) (--y--)) --J[--c--J J-

E 

* * * Then D ~ E ~ c, hence D ~ C. 

(Since x c FV(D} there are no other cases to consider.) 

Finally, the case 

with. 0 

* that C' c D' by clause (iii), is 

4. 3. 6. LEMMA (Hyland) • Let M E A$. 

(i) For all C,D EM (D~x): 

* CC D ** C C D. 

• 

• 

trivial to deal 
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(ii) 

(iii) 

* c is a strict partial ordering (p.o.) on Sub{M). 

** Likewise for c • 

* PROOF. ( i) =.>. Suppose C c D and Dis not a variable. (That Dis not allow-

ed to be a variable is because c * C xis possible, but 

an x has no descendants after a substitution for x.) 

Then in fact, say, 

* ::> 
(ii) 

* :::, 
(i) 

* ::) 

(ii) ••• * => 
(ii) 

** never Cc • x since 

for some chain of applications of clauses (i) or (ii). Now, drawing a figure 

of the term-formation tree of Mand looking for a few moments at the chain 

D, D , •.. ,C in it, it is intuitively entirely clear that there is a devel-
1 

opment at the end of which one has C' c D1 for some residuals C', D' of C,D. 

The f orrnal proof, however, is rather tedious since it involves a lot 

of checking of simple details. The proof will be given using induction to 

k, the n,1mber of 'steps' in the displayed chain from D to C. 

CASE 1. Let the first 'step', * from n0 to o1 , be a =>(ii)-application. Let 

the corresponding underlined redex. Then af-

ter contrac.tion of R the original chain n
0

, ... ,c is transfo:rmed into a 

chain 0 0, ... ,C as follows: 

* * * * 
AX 

DO ::) D1 :::> D2 ::) ::> D - C (- - > denotes -
(i) (ii) ... (ii) - • • (ii) I r: I I I the descendant • • • • 

Ax! I I • I relation w.r.t . .. • • 
V 

contraction of 
* * * * D' D' D' D' - C ::> ::> :::, :::, --0 (i} 1 (i) 2 (ii) - . . (ii) k ).,x-redex) 

where each (i)- or (ii)-step is carried over in a similar step except the 

first step; so in the latter chain n0, ... ,C there are less (ii)-steps. 

the 

CASE 2. The situation 1 x, the bound variable 

and the other steps stay similar. 

Otherwise we have: 

• 
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etcetera. 

DO 
I 

D' 
0 

* ::> 
(i) 

X 

* ::, 
(i) 

* ::::, 
(ii) 

* ::, ... 

• 

* D' ::, •.• 
2 

C 

I 
• 

I 
• 

C 

so, by induction to the number of 

through. 

* =>(ii)-steps 

\ 

* * in D => ••• :> C we are 

• 

(In order to prove the assertions in 'Case 1' and 'Case 2', one has 

to check the propositions 

AY* AX 

* A B - X and A ::> B and X "f. A :> -- (ii) (ii) 
I I I I I 
• • • • • 

B 

I 
• 

AX I AX I Ax! AX I AX I AX J 
• • • • • • 

t t AX t t t 
* 3B' A' :3B'=B A' 3B' A' ::, 
(ii) 

i.e. for all A,A',B as in the diagram, there exists B' as in the diagram.) 

This ends the proof of (i) =>. 

(i) <=: Suppose ** C C D, i.e. there is a development R: M 

~ = M' a.nd descendants C', D' s M' of c,o !:: M such that C' c D'. 

Now use induction on the number of steps in~- The basis of the induc

tion is trivial. Further, there are C'', D'' = M1 , descendants from C,D:;:. M0 , 

and having descendants C',D 1 EM' such that C' c D'. So by induction hypo-

. * * thesis C' c D'. Hence by Prop. 4.3.5 Cc D. 

(ii) :Immediately. Notice that: -

* C c D -=> the head-s·ynibol of C is to the left of the head-sytl1bol. 

of D. 

(iii} We have only to show that ** C is transitive. So let C 

Then E x, hence we can apply (i) and ** get Cc D. □ 

4 • 3 .. 7 .. COROLLARY. AS ~ DP • 

** C ** E C D. 

** PROOF .. Since c is a strict p .. o., we have for no C ,c c** c. That is: DP. O 

• 
' 

' 
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\ 
4. 3. 8 .. RErJ!ARK. In HYLAND [73] * C is written as>. Lemma 4.3.6 is used there 

to prove FD as follows. Define for each underlined redex R in M € AB the 

degree d (R) by 

d (R) = max{d (R •) I R I * ::, R} + 1 

(the R' are underlined redexes in M) and assign to M the multiset of the 

d (R) for al.1 underlined redexes R in M. This multiset is argued to decrease 

(w.r.t. the well-ordering in Prop. 6.4.2) during a development. This argu

ment, however, seems inc9mplete since there is a complication due to the 

* fact that the p.o. c need not be a tree (see figure below), like c is. 

The complication can be avoided however by using instead of d(R): 

d • ( R) = max { d ' ( R • ) l R 1 * c R} + 1. 

EXAMPLE. The p.o. 

d' (R) • 

(w.r.t. * C ) of underlined redexes R in M plus degrees 

6 

* * 

1 
1 

1 

2 2 

1 

For 'fast' developments (reductions in see 4.2) we have analogous 

definitions of * C 
m 

and ** C • • 
m 

4.3.9. DEFINITION. Let M €AS. Then for C,D ~ M: 
ill 

* {i) C C D C C D 
m 

(ii) if C, D are subte:r111s of an under lined redex 

,) ➔ 
(Axy •••• D(xi) .... )A1A 2 •• • Ai .. . An 

UI 

C 
• 

-+ 
where x = x

1
, ... ,x

0 
(some n~1), 

-+ y = y , ... ,y (some m~O), 
1 m 

ber such that 1 ~ i :S n and x. 
l. 

(iii)C * C 
m 

* E C 
m 

* D CC D. 
m 

* e: FV(D), then Cc D. 
m 

i some num-
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The definition of c** carries over immediately from D~f. 4.3.4. (ii)• 
m 

Likewise Prop. 4.3 .. 5 and Lemma 4.3.6, as the reader may check. 

Hence the following fact, needed in Ch.II: 

4 . 3 • 10 • COROLLARY. A t3 l= DP • 
----m □ 

5. ABSTRACT REDUCTION SYSTEMS • 

In this section we define some properties of 'abstract' reduct.ion 

systems (i.e. replacement systems in the sense of STAPLES [75]) and state 

some simple facts about them, for the most part well-known. This is done 

only in as far we need those definitions and facts in the sequel; we are 

not primarily interested here in abstract reduction systems and their 

properties for their own sake. For the latter I see e.g. HUET [78], STAPLES 

[75], HINDLEY [69,74]. 

Part of this section (5.16,5.17,5.18) is for use in Chapter II# the 

remark about 'conservative extensions' (5.10,5.11) is referred to in Chapter 

III. 

We start with some definitions and notations (a few of them occurred 

already above, but are repeated for the sake of completeness). 

5.1. DEFINITION. (1) An abstract reduction system (ARS) is a structure 

A::;:: <A, 

lations _.....; 
Ct 

> I consisting of some 
Ci.€ 

(aEI}, called reduction 

set A and some sequence of binary re

relations. 

(2) Mostly we will be interested in ARS's A= <A, -~->>having only one re-

duction relation. 

These are called replacement systems in STAPLES f.75] .. 

(3) > is the transitive reflexive closure of - r, 
-· --

• · .... ,,.-➔ is the reflexive closure of -+ , 

is the 'convertibility' relation (i.e. the equivalence relation) 
generated by II l q) 

• 
--Likewise .. · ►> , -· ---~ .. , = for 

a a a a • 

Identity of elements of A is denoted by =· 
(4) The converse relation of is denoted by -<•-- or by 

a 
(5) · a ·>· U ··· ~ -;. is denoted by --+ 

µ as • 

5.2. DEFINITION. (1) Let a,S be reduction 
• 

relations on A. Then a® S (a 
0011unutes weakly with S) iff 

• 



·---------: a. 
I 

' f3 
' 

·-----------~ a. 

where the dotted arrows have the usual existential meaning, • i.e.: 

Va,b,c E A 3d E A (c ~ s a 

(2) 

a 
Further, a commutes with 

The reduction relation 

is weakly self-corr:11r1uting: 

·---------; 
I 
I 
I 

---------->;> f 

Va,b,c 3d (c a 

b =I> C , » d <,< , 

a. 8 
s iff >> ® ➔>. 

B Cl 
• called 'weakly lS 

b =I> C 

(3) is called subcommutative (as in STAPLES 

--I -

= I 
-----=----➔ V 

- -- -
i.e. Va,b,c 3d(c ~, .. a - d - b) • 

b) • 

Church-Rosser' 

b) • 

[77]), notation 

(4) --·-~> has the Church-Rosser property (' is CR') iff 

• 

---------~ 

I 
I 

i.e. Va,b,c 3d (c «---a 
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(WCR) iff 

:$;1 
WCR , iff 

{5) Let A= <A, ~ , 
a. 

---~ b => C 

>. Then A PP B 
CJ, I 

(Postponement of S's after a's) 

iff for all a,a' € A: 

a--» a' ae > 3bEAa >>b --➔>a'. 
B 

5.3. PROPOSITION. Let A= <A, 

alent: 

a 

~➔ >be an ARS. Then the following are equiv-
• 



• 
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(i) 

(ii) 

(iii) 

{iv) 

(v) 

(vi) 

-~➔ is CR 

--➔> is WCR (weakly self-co1nmuting) 

• 
~➔> 1..S 

• 
--::ii➔> J..S 

pp 
➔,+ 

self-commuting 
::;1 

WCR 

------►.>• 
I 
l 
t 
I 
I 

·----------...:>>~ 

i . e • Va, b , c 3d ( c ~ · a · >> b ~ c >> d << · b) 

\ 

• 

(vii) Va,b 3c (a=b ~ a >> c <<E b} 

(= is the equivalence relation generated by -) 

PROOF. The equivalence of (i), ••• , (iv) follows at once from the definitions. 

The proof of the remaining equivalences is routine. D 

5.4. REMARK. (vi) is called 'property C' in NEWMAN [42]. Cfr. also the ''Strip 

Lemma• in BARENDREGT [ 76]. (vii) is often used as definition of the CR

property. 

In NEWMAN [42], HUET [78] a CR reduction relation is called 'confluent::• -

5.5. PROPOSITION. Let A= <A •= ➔ , ex , 8➔ >. Let CL commute with 

PROOF. It suffices to prove that -
6
~» and - >> 

CL 
can be interchanged: 

·- . CJ 
-- I,) ---a 

J. - .... 
-This follows at once from the 

hypothesis that ex commutes with 
-1 D B • 

5 .. 6. DEFINITION. Let A = <A,· > >. 

( 1 ) a € A is a normal form (w. r • t. - , ➔) if f , 3b E A a + b . b E A has a nor

mal form iff 3a A a is nf & b » a. 

(2) A F WN ( ➔ is weakly normalizing) iff every a EA has a nf. 

(3) A l= SN (· ➔ is strongly normalizing) iff every reduction in A tern1i-

nates. {In HUET [78]: >· is noetherian.) 

(4) A I= UN (unicity of nonzzal forzns) iff 

\/a,b e: A (a,b are nf & a=b a:b). 

I 

I 
I 

' 
' I 
' • 
l 
' ' l 
• 

' . 
' 

' 
' 
i 
' 

' i 
! 



( 5) A I= NF (normal form property) iff 

Va,b EA (a is nf & a=b b -➔> a). 

In the following lemma some sufficient conditions for the CR property are 
• given. 

5. 7. LEMMA. Let A I= <A,·· ··> >. Then the following implications hold: 

(1) (Newman) SN & WCR 

(2) 

(3) 

(4) 

WN & UN 
:-:;; 1 

WCR 

(Hindl.ey, Rosen) Let 

CR. 

CR. 

CR 

. ) be 
a.1 a2 

u . Suppose a. . co1m11u tes with a. . 
1 J 

for all 

CR). 

i,j E {1,2} (so in particular the a. are self-commuting, i.e. 
1 

Then --+➔ is CR .. 

(Analogously for --> = U. a .• ) 
J.EI 1 

PROOF. 

( 1) See [42]; or for a shorter proof, HUET [78]. 

( 2 ) Let reductions a ---,,➔> b and a · >> c be given . By WN b, c have normal 

forms b' resp. c 1 
• By UN b' =c' • So 

( 3) Easy. 

a---,j>> h 

,l 
I .,... 
c-----.:i➔> c ' =b • 

( 4) Easy ( see e • g • STAPLES [ 7 5] ) • 0 
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5.8. ~~~RK~- Note that WCR fo,- CR, as is shown by the ARS defined as in Figure 

1 of 5.9. Figures 2,3,4 give similar counterexamples. Now the following 

question arises. First we define for n,m ~ 1: 

A I= WCR 
n,m iff 

________ ....::::s:,. 

• 

:s;n 
where ➔> denotes a reduction of at most n steps.. (So WCR1 , 1 = WCR.) The 

above mentioned counterexamples show WCR 1 r CR. Question: WCR lo- CR 1, n,m 
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for all n,m ~ 1? Indeed one can find for every n,m ~ 1 an A such that 

A J= WCRn,m but A I;' CR. Figure 5 gives an A where WCR
2 

,
2 

is satisfied but 

not WCR1 , 3 • 

In fact, one can find all sorts of 'logically possible'· counterexamples, 
2 

in the following sense .. Call a set B c JN closed iff (n,m) E B ~ (m,n) E B 
- + 

and (n+1,m) EB• (n,m) EB. (Here JN+= JN- {O}.) Define 

WCR(A) := { (n,m} e: N
2 

f A J= WCR } ; so WCR (A) measures 'how CR' A is. 
+ n,m 

(Example: for A in figure 6 we have WCR (A) as in figure 7 of 5. 9.) Obvious-

ly WCR(A) is closed, and: 

A I= CR 

WCR(A) = 

Vn E N ( 1 , n) E WCR (A) < 11 > 
+ 

WCR(A) is infinite. 

Now let an arbitrary finite closed B c -
out proof) one can construct an A such 

2 
lN be given. Then (we claim with+ 
that WCR(A) = B. 

5.9. EXAMPLES. (In the following figures the direction of the reduction ar

rows, when not indicated, is always to the right and/or downwards.) 

1 i 4 

5 
7 8 

::lit 
2 6 

• 

Fig1,Jre 1 
• 

--- -
2 

6 

I 

4 

8 

l I 
I I 



1 

4 

Figure 2 

1 2 

5 6 

7 
8 

--- - -
4 4 4 

• 

Figure 3 

I 
I 

I 
• I 

Figure 5 

I 

I 
I 

I 
I 

3 

3 

3 

4 

---

• 

I 
'1 

Figure 

2 

l 2 

I 

4 4 

' 
I 

' I 
• 

6 

2 

' Oil 

1 

3 

3 
3 

• 

---

4 
1 

Figure 3 

3 

Figure 4 

5 0 0 0 

,,.- - .... 

(4 \ 

\ 0 0 0 
\ I \ I '----- ..... 

I ' \ 13 • • I 0 

' I I I I I 

:2 • • l 0 
\ 

I ' l 
..... _ .... 

\ 
I 
\ 2 3 4 \ 

' -~ -------------
WCR(A) 

Figure 7 
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0 

0 

0 

0 

' \ 
J 5 .I 
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5.10. DEFINITION. 

( 1) Let A = <A, "" > 
A 

>. A is consistent iff = ; Ax A, i.e. not every pair 
A 

of elements is convertible. 

( 2) Let A == < A, - > 
A 

> and B = <B,-4- >. 
B 

Then Ac B (B is an extension of A, or: A is a substructure of 8) iff 

(i) 

(ii) 

-
-

-~>·=restriction of-➔> to A, 
A B 

Va,a' EA (a-+>- a' 
B 

< > a 
A 

• 
J. .e. 

a I) " 

(iii) A is closed under 0 

B , i.e. 

Va E A (a - >· b 
B 

b EA). 

(3) Let A c B. 8 is a conservative extension of A iff -

Va,a' EA (a =Ba' <•> a== a') .. 
A 

• 

REMARK. Note that a conservative extension B of a consistent A is again 

consistent. 

The next theorem gives some important consequences of the CR property .. 

5.11. THEOREM. 

(1) Let A = <A, .. · ➔ > and let there be two distinct noz1nc1.l forms in A. Then: 

A I= CR~ A 

(2) CR 

(3) CR 

UN 

NF 

• • is consistent. 

-

(4) Let A .s B. Then: B I= CR B is a conservative extension of A. 

The proofs are very elementary and will be omitted. 

We will now make a remark about cofinality (see also §12). First some 

definitions. 

5 .12. DEFINITION. Let A = <A,--> > be an ARS and a E A. Let A = {b I a >> b} 
a 

and -----+-> be the restriction of • >- to a 

Then the reduction graph of a, 

A • 
a 

G (a), 
• 

(In STAPLES [75] G(a) is called the 'local 

• 

is the ARS <A,-- >. 
a a 

system below a•.) 
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5.13. DEFINITION. Let A= <A,-~► > be an ARS. 

(i) Let x, Y .:: A .. Then Y is cofinal in X iff Y ~ X and Vx E X 3y E y x - ➔> y. 

(ii) A I= 
G(a) 

CP ( 1 A has the cofinality property') iff in every reduction graph 

(aEA) there is a cofinal reduction sequence tR: a = a
0 

..... ► a
1 

• ►· ••• 

(finite or infinite). 
I.e.: 

Vb E G(a) 3a E ~ b 
n -➔> a • 

n 

5.14. THEOREM. Let A= <A,-+ > be a countable ARS. Then: 

A I= CP A I= CR. 

PROOF. (=>) Suppose a -➔> b and a ___,» c. By CP there is a cofinal 

--+-► a 
1 . . - in G(a). Hence b -➔> a and c -➔> a 

Say n ~ m. Then a is a common reduct of b, 
m 

n 
c. Hence CR 

m 
holds. 

for some n,m. 

(4=) Let a 0 EA and consider G(A
0
). By hypothesis, Gca

0
) is countable; say 

G(a
0

) = {anln E JN }. (The case that G{a
0

) is finite is easy.) Now define a 

sequence {bn J n E JN} .==. G(a
0
), by induction on n: 

bO = aO 

b = the first co1uc,1on reduct of b and a in the sequence 
n+1 n n+l 

{ ao I al , ... } . 

Then {bn 1 n E JN} is cofinal in G(a
0
), and yields a cofinal reduction se

quence b
0 

➔> b
1 

>> • • • (after interpolation of reduction steps between 

bk and bk+ 1 , k ~ 0) • 0 

5.15 REMARK. (i) The restriction to countable ARS's is essential for the 

implication CR CP. A counterexample for uncountable ARS's is obtained 

by taking A= <A,-~>>= <a,<> where a is an ordinal in which the ordinal 

w is not cofinal. 

(ii) Let A= <A,-~► > be an ARS and define K ~ A to be a reduction chain 

iff 

Va,b E: K (a · >>b'V b -➔> a). 

• 

Furthermore, let us call CP' the property obtained by replacing in Defini

tion 5.13 of CP 'reduction sequence' by 'reduction chain'. 
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Now it is an easy exercise to prove that for countable A, CP CPI -

Also now, however, the restriction to countable ARS's is essential for 

the implication CR ~ CP'. For, consider the following uncountable counter 

example: let A' be an uncountable set and let A = {X 5;: A' I X finite}. Then 

A == <A, ► > = <A,::> is an ARS such that A I= CR. But: for every reduction 

chain K c: A, the union U K (= U K X) is countable. Hence 'if a E A' - U K, 
- XE 

then for no X E Kone has {a} c X (i.e. {a} · ➔> X). Therefore K is not co-- . 

final in G(~) = A. 

Although the next two items are for use in Chapter II, we include them 

here since they also apply to abstract reduction systems. 

5 .. 16. DEFINITION .. Let A = <A, .. >- >. 

(1) A is inductive (as in HUET [78]) iff for every reduction a
0 

~>a 
1 

a2 + (finite or infinite) there is some a E A such that an .• >> a 

for all n. Notation: A I= Ind. 

(2) A is increasing iff there is a map I I: A --+► lN such that for all 

a,b € A: 

Notation: A I= Inc. 

( 3) A is well-founded iff there are no 'infinite descending •· ➔ - chains • 

. . " . ... ► a --·► a -+ a 
3 2 1 

--·+> =: +•·- is SN.) Notation: -1 

a 0 • (Equivalently, iff 

A I= WF. 

(4 ) . A is finitely branching iff for all a E A the set of immediate reducts 

of a, {b € A I a - b}, is finite. Notation: A I= FB. (In ·HUET [78], 

FB = 'locally finite'.) Further, we write A I= FB-l iff ---+ is FB. 
-1 

5.17 .. LEMMA. 

(1) Ind & Inc SN (Nederpel t) 

(2) Inc ... WF 

(3) WN & UN .. Ind 

{ 4) WF & FB-l ... Inc. 

PROOF,. ( 1 ) Suppose a
0 

--+r a .. > a 
1 2 

Ind there is an a such that a . ➔> 

such that 

diction .. 

n 
fa0 1 < fa 11 < Ja

2
f < .... 

• r • • • is an infinite reduction. By 
• 

a for all n. By Inc there is a norm I 
But also far< laf for all n. Contran 

• 

I 
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(2) Trivial. 

(3) A finite reduction trivially has a 'bound', namely the last element. 

So consider an infinite reduction a 
0 

normal forms a' of a for all n. By UN 
n n 

al 

all the a' 
n 

By WN there are 

are identical. Hence 

a' 
0 

(4) Let A= 
= {b I b X 

a 

<A,-~> sa~isfy WF and 

-➔> a}. 

-1 
FB • Let a EA and consider 

-1 
By Konigs Lemma, WF and FB 

all a EA: !al= card. X. By our 
a 

a · > a • then ! a I < I a ' 1 ( for , a ' 

imply that xa is 

previous remark, 

finite. Now define for 

I a I E :N • Moreover, if 

EX is impossible since then a reduction 
a 

cycle a' .. * a ---+> a' would arise, contradicting WF) • Hence A I= Inc. D 

REMARKS. Ad (1): in a less explicit for111 this proposition occurs in 

NEDERPELT [73]. In Chapter II we will extensively deal with the method in

troduced by NEDERPELT [73] to reduce the property SN to WN, for some systems. 

Ad(3), (4): in Chapter II we will prove that for certain 'Combinatory 
-1 

Reduction Systems' as defined there, one has Inc= WF and FB = NE, where 

NE is the property 'non-erasing' (like e.g. the AI-calculus). 

Finally, we will show that the property Inc entails (in the presence 

of WCR) the equivalence of SN and WN, a topic which will interest us espe

cially in Chapter II. First we will prove a more general fact. 

5.18. THEOREM. Let G(a) be as in Def. 5.12 and-suppose: 

(1) G(a) WCR, and 

(2) a has a normal form b such that the length of reductions a--» bis 

bounded (i.e. 3n E JN V~: a ~ b l~l s n, where 1~1 is the number of 

steps in <H) • 

Then: G(a) I= UN & CR & SN. 

PROOF. SN & WCR CR and CR UN, so only to prove: G (a) I= SN .. 

Suppose not so. Then there is· an infinite reduction 

o=l: a = a
0 

clearly, by 

-~>- al ,,> a2 , 

hypothesis (2), 

• 

• . • . Let X = { c e: G (a) I c --., >> b} . Then , 

must leave X eventually, i.e. 
• 
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3k E JN 'v'j ~ k a . E X. ( *). 
J 

Now define for c € X the natural number 

lei = max.{ l6tl I dt: c · >> b}. 

By hypothesis (2), lcl is indeed defined. Note that.for all c,c' EX: 

C · > C' fcl > lc'f. 

Now we will prove by (course-of-values) induction on lcl that Xis 

closed under reduction, i.e.: 

C E X & C ·' ) C 1 c' E.: X .. 

Then we have a contradiction with { *) and we are done. 

BASIS. Suppose l c I = 0. Then c is in fact the normal for1n b and ( **} is 

vacuously true. 

INDUCTION STEP. Induction hypothesis: suppose (**) is proved for all c € X 

such that lcl ~ n. 

Now consider c0 ex such that lc0 ! = n+l. (See figure below.} Let 

c € x be such that c
0 

diction} that c
0 

-~ d 

• > c ; then [ c 1 ~ n. Suppose (for a proof by contra-

for some di X. By WCR, c and d have a common reduct 

e. Since d £ X, also e £ X. Hence there are c •, e' such that c --➔> c' ) 

e' ➔> e and c 1 e: X but e' i X. Now 1 c ' I ;s; l c 1 < ·r c 0 l , so the induction 

hypothesis applies to c' and we have a contradiction. Hence (**) is proved 

for □ -



5. 19. COROLLARY. 

(i) WCR & WN & Inc 

(ii) WCR & Inc 

PROOF. 

X 

d 

b 

e 

UN&CR&SN 

a 

\ 
\ 
I 
\ 

(i) Hypothesis (2) of theorem 5 .18 is ensured by Inc. 

(ii) Trivial from (i). D 

• 

55 
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5.20. The figure below gives a survey of several of the facts treated in 

this section. 

NF 

WN & UN 

Ind & Inc 

FB-l & WF 

WCR~l 

• 

SN & WCR 

countable 

WCR 

WN 

Inc 

• 

Consistence 
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6. THE CHURCH-ROSSER THEOREM 

After the digressions in the previous section about Abstract Reduction 

Systems we will now retur11 to the main theme of this Chapter, A-calculus 

plus labels and definable extensions AP of A-calculus. Note that these 'con

crete' reduction systems are also ARS 1 s; so the definitions and propositions 

in the previous section apply to them. Often we will be able to prove re-

fined results for these systems, by considering not 

tion relations M 

only the binary reduc
R 

-~➔ N, but the ternary relation M -~➔ N obtained by speci-

fying ( the occurrence of). the contracted redex in M. 

We will prove in this section that AL, AP I= CR, i.e. the Church-Rosser 

theorem holds for Levy's A-calculus, hence for all other labeled (typed, 

underlined) A-calculi we considered in §3, and for definable extensions of 

A , hence for CL. 

Let us remind Def. 5.2.(4) of CR: if ~l = A ••• Band 

di.2 = A .. > ••• -+Care two 'divergent' reductions, one can find 'conver-

gent' reductions ~
3 

and ~
4

: 

A 

• 
B C 

✓ 

D 

An alternative formulation (easily seen to be equivalent; see also 

Prop .. 5 • 3) is : 

VB,C 3D (B = C B ---,,>> D & C · · >> D) 

• 

• 
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e.g .. 

B 

C 

' ✓ 

D 

Some important consequences of the CR theorem are mentioned in Theorem 5*1 l 

We will prove CR using FD (Theorem 4.1.11) _ In fact a strengthened 
. + . d vers.1.on CR 1.s prove; namely, there is a canonical procedure of finding 

the common reduct D of B and C _ Moreover we will obtain as corollaries th,~ 

well-known Lemma of Parallel Moves, and the commutativity of B- and 

reductions (see Def.S.2.(1)). 

p -• 
l. 

An al.most similar version of + CR for AL was. first proved by LEVY [ 78 ·! " 

not via FD however. Here we look in a slightly more detailed way to what 

happens in a 'reduction diagram', which will help us in Chapter IV to deal 

with B n-reductions. 

The method below of constructing a reduction diagram by 'tiling' was 

independently considered by Hindley (in an unpublished note). 

6.1. CONSTRUCTION OF REDUCTION DIAGRAMS 

-
Let two coinitial finite reduction sequences -~) ... M n 

and cR
2 

reduct 

= M •• m► M 1 a )• 

0 1 
of M and M' by n m 

..... M' 
m 

filling up 

be given. We want to construct a common 
' 

a diagram Das indicated in the figure, 

viz. by successively adjoining 'elementary diagrams'; these are the dia

grams which one obtains by checking that AP I= WCR (Def .. 5 .2. (2)) . 

• 

• 



M' 
m 

I 

l 

--

-·--

--

V 

iH 
1 

M 
n 
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The order in which the elementary diagrams are adjoined, is unimportant. 

It is fairly evident what is meant by 'elementary diagrams'; however since 

we will use 'empty' steps, we will now list them. 

6.1.1. For the A-calculus the elementary reduction diagrams are of the fol

lowing types. 

(i) 
Rl 

1 B B B I 

I 

B 
B > 0 times; for n 0: I -

R2 n - -- -- I 
I I ' 
• I 

I 
I 
f 

• 

B 

Here R
2 
~ Arg(R

1
), the argument of R1 , and mult(R1) = n where mult((Ax.A}B} 

is the multiplicity of x in A. 

In case n = O an 'empty' or •trivial' step is in traduced. 

(ii) 

if R
1 

~ R
2 

and not case (i) . 

• 

f3 



' 
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(iii) R 

B I 
l 

R2 I if Rl 
-

R2 -----
I 
I 
I 
I 

-- --- • 
---

(iv) R (v) ---
r· >r ' ' ' - - T B I 

I I I I 
I I I I 

- I '= =' I -- -- - -- I I I I 

I I I I 
I 

I I I 
l I ' R I I 
I • e-- - .. 

f3 ---

Further, we have all the elementary diagrams obtained from these by re

flection in the main diagonal. 

6.1.2. For definable extensions AP we have moreover the following elementary 

diagrams: 

(i) Rl 
p 8 n > 0 times, • 

R2 
• subte.r1n of in case .l.S a one -

of the arguments of Rl. R f3 B 
I 

Likewise with s and p interchanged, if 
I 

I 

R2 ~ Arg(R1). 
B Likewise with B replaced by P. 

i 1 l 1 I W 

p -

(ii) 

p 

B if not case (i) 

Likewise with B, P interchanged. 

·---=----· -w p 

• 

• 

1 • ' 

J 

' ' 

\ 
' 
' 

I 
' . 

• 
• 
• 

• 
. 

' 

' 

' J 

' . 
' • 

' 

' 

• 
I 

l 
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(iii) 
R 

{iv) 
R 

r ?j p p I 
I I I 
I I I p I R 1- _I -- - 1= - -1 I 

I I I 
I I I • 

I I I 
R I I J • )' -

" p ---

Further, all the diagrams obtained from these by reflection in the main 

diagonal. 

The---=--- steps, at which nothing happens, are called trivial or --
empty(~), and serve to keep the diagram Vin a rectangular shape. This 

enables us to have the intuition of reduction steps in a reduction diagram 

Vas objects 'moving• or 'propagating' in two directions and ~ , may 

be 'splitting' on the way or becoming absorbed (= changing in a 0-step.) 

This intuition will prove to be especially rewarding in the Sn-case, which 

is dealt with in Ch.IV. 

Note that in each case the redexes contracted in the side BD are 

A,----- B 

C D 

residuals of the one contracted in AC, likewise for CD and AB. 

6.1.3. ELEMENTARY REDUCTION DIAGRAMS WITH LABELS 

Let an elementary diagram {e.d.) Vas above be given, say 

Ml M3 
B B 

B V • M4 where M. (i --
l. 

1, .•. ,5) are unlabeled A-

Now 

has 

B 

M2 
M 

5 

let r 1 be some Levy-labeling 

to check that V extends to a 

tel.111S. 

for M
1

; 

labeled 

• 

• 

result: a 
I 

e.d. V: 

L 
A -term Then one 



• 
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Il I3 
➔ Ml SL M3 

t I4 SL M4 

we must have r 5 = I 5. This 

left to the reader. 

• 
l.S 

Since the extendability 

That • 
Ml M2 MS extends to l.S, 

ML I2 I5 
M2 MS ·' 1 

and Ml M3 M4 >- M extends to 
5 

Il I3 I4 I' 5 and Ml M - ) 
M4 - >- MS, now 

3 
-. 

tedious but routine • which will be a exercise 

I 
of e .d. 's V to labeled e .d. 's V holds for 

AL, it holds also for all'of the 'homomorphic images' of AL, that is for 

all the labeled/typed/underlined A-calculi we have encountered thus far -

except underlined AP-calculi (definable extensions of A-calculus). For the 

latter a separate routine exercise yields the same result. 

Since developments are a special case of underlined reduction in A

calculus or AP-calculus, we note in particular that for developments we 

have e. d. 1 s. 

6.1.4. DEFINITION. Elementary diagrams having two or more 'empty' steps, are 

called trivial . 

• 
6.2. NOTATION. 

(i) In the remainder of this chapter 'E' will denote a definable extension 
' 

AP of A, or a substructure of AP (w.r.t. c as defined in 5.10). So E -
refers for instance to A, AI,· AP, AIP (as defined in 7.1.). 

and CL. 

(ii) r denotes the underlined version of r, as defined in 3.5. 

-
6. 3. PROPOSITION. E I= CR. 

PROOF. By Theorem 4.1.11 we have r I= SN. By 6.1. 3 we have E I= WCR. Hence 

by Newman• s Lemma 5. 7. ( 1) , E I= CR. D 

In the next lemma the preceeding proposition will be considerably 

strengthened. For that purpose we need transfinite induction up to the or

dinal number ww. Therefore: 

6.4. INTERMEZZO. Transfinite induction up to 
Ct 

w .. 
• 

• 

• 

' 
' ' 
\ 

' 
• 

' 

1 

• 

i 

I 

I 
' 

I 

l 

'I ,, 

~ 
' • 

J 



\ 

6.4.1. DEFINITION. (i) Let a be some ordinal, and let T be the set of all 

n-tuples <S1 , •.• ,Sn> (nEJN) of ordinals less than a. Let= be the equiva

lence relation on T defined by: 

(i) 

(ii) 

<a , a > 
1 2 

t ::::'. t I 

= <a ,a > 
2 1 

t * t * 1 
notes concatenation of 

::::: t * t' 1 
tuples. 

ET. Here* de-
• 
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Further, let'lI' be the set of equivalence classes of T under=. So elements 

order of the S. 
J. 

also 'multisets'. 

of'Il" can be thought of as tuples <8 1 , ••• ,Sn> where the 

(i = 1, ••• ,n} is irrelevant. We call the elements of TI' 

(ii) Now consider the following 'reduction relation' --+> on 'II': in 

<6 1 , ... ,B., ... s > an arbitrary B. (i = 1, ... ,n) may be replaced by an ar-
i n 1 

• 

bitrarily large finite number of elements Yj 1 , ... ,yjN each less than Si. 

So 

6. 4. 2. PROPOSITION .. The reduction relation · ·· > on TI' is strongly normalizing. 
a 

In fact ►> is a well-ordering of 'Ir of order type w • 

PROOF. Group the elements of a given tuple together as follows: 

<y 1 ' y 1 ' ••• ' y 1 ' Y2, ••• ,y2, ...... , yk, ..• ,yk > 

' ✓ i 'l ~ v v - V 

nl times n2 times nk times 

such that y 1 Y1 
w •n

1 
+ •.. 

> Y? > ••• > yk. Assign to such a tuple the ordinal 
·y 

+ w k.nk (a 'Cantor normal form'). The proposition now fol-

lows by elementary ordinal arithmetic. 0 

6. 5. MAIN LEMMA. I: I= CR+, i.e. each construction of a E-reduction diagram 

(as in 6.1) terminates. 

PROOF. Consider ME Ter(E) and I:-reductions ~ 1 , ~ 2 as in figure 6.5.1. Let 

the reduction diagram V(~1 ,~2) be constructed up to the displayed stage, by 

the successive addition of elementary diagrams. Compared to Proposition 6.3, 
• 

there is now the additional problem of the trivial steps in the e.d.'s; a 

priori it would be possible that they would 
• 

make V (6t1 ,IH2 ) ''explode'', i.e. 
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that the construction-does not terminate but results in ah Escher-like 

figure, with ever decreasing tiles, as in figures 6.5.2 and 6.5.3 • 

M 
• 

A 
n 

• 

• 

stage of construction of 

V (IR1 ,<R2) 

Figure 6.5.1. 

-

Figure 6.5.2 
• 

• 

• 
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• 
A 

E 

D 

B C 

Figure 6.5.3 

(In the last two figures care has been taken of the constraint that an e.d. 

can split at one side at most; so e.g. 

is impossible. Figure 6.5.3 is the result of starting with the part bounded 

by ABCDEF, reinserting an isomorphic copy of this part in the corner CDE, 

and repeating this procedure ad infinitum whenever such a corner is formed.) 

Give Ma good weight assignment (see Definition 4.1.6). Extend <R
1

,tR
2 

and all the reductions in V(~1 ,~
2

) as far as completed, to reductions with 

weight assignments. By Le1m11a 4.1.10 the weight assignments stay good for all 

the t~ims in these reductions. 

Now assign to each construction stage of Vc~
1

,~
2

) the multiset of 

natural n1.1mbers <)A1 1 ,JA2 ], •.. ,1Anl> where the Ai are as in figure 6.5.i• 

and IA. I is the weight of A. (i = 1, ... ,n). (In fact we should write IA. 1 j 
1 l 1 

where I. is the weight assignment of A .. ) 
l 1 

Next consider what happens to this multiset after adding an e.d. If 

the e.d. is trivial, the multiset remains the same. Otherwise, suppose that 

we add, say: 
• 
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-

• 

Now all the steps are proper reduction steps, so IA6 ! 
Lemma 4.1.lO(ii). Hence the multiset corresponding to 

> I B . I , i = 1 , 2 , 3 by 
l 

this stage of the 

construction, < IA1 I, ... , IA5 
I, !B3 J, !B2 l, 1B 1 I, IA7 I, ... , I An I> is less than 

the previous one w.r.t. the well-ordering in Proposition 6.4.2. 

Therefore after some stage in the construction, no nontrivial e.d.'s 

can be added. Further it is clear that addition of trivial e.d.'s (which 

have no 'splitting' effect) must tE:!x:n1inate too. 

Finally, each diagram construction ends in the same result. This is 

evident by Lemma 5.7.(3), considering as objects: stages of construction, 

and as reduction: addition of an e.d. 0 

In fact, we can obtain more information out of the proof of Lemma 6.5. 

In order to state a refinement of this Main Letocoa, we need the following 

definition .. 

6.6. DEFINITION. (Complete developments) 

Let ME Ter(I) and let JR be the set of underlined redexes in M. Let 

6l = M · > M' -➔➔- ••• --➔ N be a maximal E-reduction; i.e. N is a E-normal 

form, hence N contains no underlining. 

* Now let~ be the r-reduction obtained from <R by erasing the under-
.o* lining syrnbols .. Then 1.11. is called a complete {E-)development w.r.t. the 

' 

set of redexes JR. 

6. 7. CONVENTION .. Let M, lR be as in Definition 6.6 and 

derlining. Henceforth we will identify: 

* M be M without un-

(maximal} r-reductions of M, and 

(complete) r-aevelopments of * M w.r.t. JR. 

6.8. REFINED MAIN LEMMA. (I) First formulation . 

Let M € Ter(E). 

be t;wo complet:e 

• 

Let JR. 
1. 

(i = 0,1) be two sets of redexes in M, and let: 

developments w.r.t. JR. 
l. 

(i = 0,1). 

(fl. 
J_ 

! 

I 
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Then the construction of the E-reduction diagram V(~
0

,~
1

) terminates (see 

following figure) and the right resp. lower side M. ➔> M is in fact a 
l 2 

complete development of lR~, the set of residuals of the redexes in JR. 
1 1 

(i = 0,1). 

(II) Second formulation. 

Let LOl be I where the head symbol of a redex may be labeled with 0,1 or 

01 and where only reduction of labeled redexes is allowed. (So r
01 

is like 

r, but now using underlining symbols of two 'colors'.) 

Let ME Ter(E 01 ) and let ~O be a r
01

-reduction of Min which only 0- or 01-

redexes are contracted; likewise in ~
1 

only 1- or 01-redexes are contracted. 

(See figure.) f1oreover, in M
0 

no label O, 01 is present, and M
1 

contains 

no label 1, 01. Then 

(i) the construction of the r
01

-reduction diagram V(~
0

,~
1

) terminates; 

(ii) in the right side M
0 

» M2 only 1-redexes are contracted and in the 

lower side only 0-redexes; 

(iii) moreover in M2 no labels are present. 

.µ 
i:: 
Q) 

M 

a fil 
0 ~ 

r--f Q) 
Q} "t:I 
:> OJ 
Q} ~ 

10 I ..... 
Cli 0 
.µ 
Q} ... 

r--f I 
P-i..-t 

6 ll--4 
0 0 

complete development 
of 0-, 01-redexes 

~ .--....---,-✓- ~ _,,,.,,... ' ,.... ~- / 
propagation 

complete development 
of 0-redexes 

• 

• 
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PROOF. Clearly (I} and (II) are equivalent formulations. We will prove (II). 

(i) There is an obvious projection E01 > E, namely replacing A0 ,A 1 ,A01 by 

A and P
0

,P
1

,P
01 

by P. So an 'exploding' r
01

-diagram would give rise to an 

exploding r-diagram, in contradiction with the Main Lemma 6.5. 

(ii) The steps in ~l are contractions of labels 1 or 01, hence for the 

propagated steps the same holds. Therefore in M0 · » M2 
only label 1 con-

• 

no labels 01. Likewise for tractions can occur since in M0 there are 

(iii) Immediate by the fact that in M1 no label 1, 01 occurs and in MO no 

label O, 01. 0 

As a first corollary of the refined Main Lemma we have 

6.9. CHURCH-ROSSER THEOREM. 
+ 

CR , i.e .. : Let IS?. = M --+-> M 
1 • • • -+N 

and ~' = M - >- M ' 1 .. - -+ N 1 be r-reductions. Then N, N' have a common 

reduct which can be 

PROOF . 

M 

M' -1 . 

N' 
1 

found by the construction of V(~1 ,~2 ). 

c.dev 

c.dev 

c.dev. 

N 

c.dev. 

Using the refined Main Lemma we can fill in block by block of the diagram 

V{~,~•). Here we use the fact that a single reduction step is trivially a 

complete development. 0 
• 

• 

• 

' 

l 
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6.10- NOTATION. (i) If &1 ,6{
2 

are two coinitial reductions, the right side 

of V(~1 ,~2 ) is denoted by <R
2

/<R
1 

and will be called the projection of ~
2 

by 

~ 1 • Likewise for the lower side: 

(ii) If <R
1 

= M 

6{ /<R 
1 2 

- . - N and iR
2 

= N 

• 

• • • is a finite or in-

finite reduction, then ~l * 6i2 denotes the concatenation M ·) ... 

N' 

(iii) If consists of one step, <R = M 
R N, we will write~= {R}. 

6.11. REMARK. Even if 6{
1 

is infinite and &2 is finite, the reduction diagram 

V(~
1

,6i
2

) and the projection ~
1
/~

2 
are defined. 

<Rl 

I 

~--------------- --

The second corollary of the refined Main Lemma is: 

6.12. PARALLEL MOVES LEMMA (PM). 

(i) Let· in M some redexes be labeled with O. Let <R
0 

be a complete develop

ment (c.dev.) of the 0-redexes, and let <R be an arbitrary reduction M » N. 

(See figure .. ) 

Then <R /6{ 
0 

is a complete development of the 0-redexes in N. 

N 

(ii) As a special case of (i) we have: 

• 
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M N 

I 

(likewise for P
0 

instead of A0 ) • 

PROOF .. ( i) Induction on the length of IR. D 

Thirdly, we have at once from the refined Main Lemma: 

6.13. COROLLARY. Let Ebe (a substructure of) a definable extension 

<Ter(AP), --ll.) _.,_, ) > a , p . • 
p i 1.€J 

Then the reductions 

ti on 5 . 2 .. ( 1 ) ) • 

"" , .. ➔ B , p. > (iEJ) are pairwise commuting (see Defini-
1. 

6.14. REMARK. By 6.1.3 it is clear that the results of this section general

ize immediately to the case where L- or HW- labels or types, as in section 3, 

are present. 

6.15. EXAMPLE. In the next figure an example of a A-reduction diagram is 

given: 

. 
' 
' 
' 

' 
' 
' 

' i 
' 
. 

' . 
f: 
' j 
I 
• • 

' ' ' ' i 
t 



(Here w = AX.XX and R = Ia.) 

w(wR) 

• 

wR(wR) 

RR (wR) aR{wR) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

aR(wR) 
I 

----
aR(wR) 

w (wa) w(aa) 

• 

a{wa) (wa) aa (aa) 

I I 
I I 
I I 
I I 

I 
I I 
I I 

[ : 
I I 
I I 

t : 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

I 
_a_a_(_w_R_} ___ ,,,_a~~~~ _____ .. l ..... a_a_(_w_a_) ___ ..... ").,..~ aa ( aa) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

------~➔~~~---------- ◄•~--.. -·----·-·~>~• 
I 

)~ . -
aa (wR) aa (wa) aa (wa) aa (aa}_ 

• 

11 
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7. CHURCH's THEOREM 

A well-known theorem in CHURCH [41] (p.26, 7XXXI) states that for AI

calculus a te.t111 is weakly nor111alizing (has a normal form) iff it is strongly 

normalizing. A corollary {p.27, 7XXXII) is that a AI-term has a normal form 

iff all its subterrns do~ For A-calculus Church's Theorem fails as the term 

(Ax.I)Q (where n = (Ax.xx) (Ax.xx) and I= Ax.x) shows, since in (Ax.I) n ➔ I 

the subtern1 n is erased. Intuitively, the reason that AI satisfies Church's 

theorem is found in the fact that in AI there is no erasing possible. I.e. 

in a reduction step every redex R, ex~ept the one contracted, has at leas~ 

011e residual; in other words, a redex R cannot be ' thrown away ' , like n in 

the example above, or as in CL: KA~[R] ➔ A. {In fact, we will prove in 

Chapter II that Church's Theorem holds for all 'regular' Combinatory Reduc

tion Systems which are non-erasing.) 

In this section we will prove Church's Theorem for definable extensions 

AIP of AI-calculus. 

7.1. DEFINITION. Let P be a set of new constants, P = {P. I i EI}, and let 
l 

(as in Def.1.12.1) reduction rules be given for the P. (iEJcI) as follows: 
J. -

• 

P .A1 ... A 
J. n i?. (Al , ••• , A , p. , •.. Ip. ) 

1 n Jl Jni 

for some Q. (x1 , ... ,x ,y1 , .... ,y ) E Ter(AI) such that FV(O.) ::) {x
1

, •.. ,xn}. 
1 n n. -~i -

(So all the meta-variables A , • : • ,A occ1Jr actually in the RHS of the reduc-
1 n 

tion rule.) 

Then the reduction system AI together with P and the new reduction 

rules, is called a definable extension of AI-calculus. We will refer to it 

as ).IP-calculus. 

7.2. EXAMPLES. 

(i) AIP where P = {1,J} and with the rules IA-+ A, JABCD · · ► AB(ADC) 

a definable extension of AI. 

• lS 

(ii). The set of terms built up from 1,J as in (i) and with the same reduc-

tion rules, is the reduction system CLI (which is the non-erasing 

variant of CL, as AI is the non-erasing variant of A). 

CLI is a substructure of AIP in (i) in the sense of Def.5.10.(2). 

~ii} AI{P} with the rule PABC Mr P(AC)B is a definable extension of AI, 

which will play a role in the next section. 

. 
' 

' • 



7.3. REMARK. (i) As in the case of AP-calculi (definable extensions of A), 

it is not hard to prove that for P finite, the 

reduction rules can be defined in AI-calculus, 

new constants P. plus their 
J. 

using the multiple fixed 

point theorem for AI-calculus. Here the condition that the meta-variables 

A
1

, ••• ,An occur actually in the RHS of the reduction rule, is essential. 

(ii) Note that AIP is non-erasing. 

Church's Theorem will be a corollary of the following stronger fact: 

7.4. LEMMA. Let Ebe a substructure of a definable extension AIP of AI. 

Let~ be an infinite reduction in E and~• = M ➔ ••• ➔ Na finite reduction 

in E. 
Then~/~• is infinite. 

73 

PROOF. The proof is a consequence of FD (4.1.11), 

the fact that there is no erasure in r c AIP. 

+ CR (6.9), PM (6.12) and 

-
Clearly it suffices to consider the case that~•= M 

in another notation:~•= {R}. 

R N is one step, 

01., infinite 

-------------------
N=N 

0 
N n 

---

1 

- __ ..,__ -- - - -- - --
N 

m 
--- N 

m+l 

Suppose the lProma does not hold and ~/{R} is finite; 

empty (*). Assign to the head-A of R the label O and 

say after N it is 
n 

to all the other A's 

in M the label 1. 

PM) .. 

Then (H.1 = M 
n 

Now consider the first step in M n 

is a development of )..
0
-redexes (by 

> M 1 n+ 
--+->· ••• where a A1-redex 

is contracted, say this is M M 1 • m m+ 
(By FD such a step must exist!) 

M 
m 

» Nm is again a A0 -development. 

• 
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CLAIM. 

M 
m 

Then we have a contradiction with (*). 

• 

PROOF OF THE CLAIM. Since there is no erasure in r, there are no elementary 

diagrams of type 
F ,_ t 

1 0 or 
I 
I 

I - -----
(i.e. n > 0 in 6.1.1. (i) and 

6.1 .. 2. (i)) 

The only possibility for absorption of a step is an e.d. 

where 

Hence 

Rl 
' in 

- R2. --

R1 

R2 10 
I 

___ J 

0 

M 
m 

1 

M 
m+l 

the 0, bottom side • not • 
J..S since • M 1n 

m 

0 
the A

1
-redex '- the set of A

0
-redexes. 

So the 

~1 Q1 

bottom side is P
1 

e.d. 

--,..► pt 
1 This argument can be repeated for the next 

p2 

etc. This proves the claim. 0 

7.5. COROLLARY (Church's Theorem). 

Let L be a substructure of a definable extension of AI-calculus. Let 

ME Ter(E). Then: 

( i ) M E WN < 11 ·> M e: SN. 

In other words: if M has a no1·1c1al form N, -then every reduction o:f M 

terminates eventually (in N, by CR). 

(ii) M E WN - M' E WN 

(M has a normal fo.rm iff all its subterms have a normal form.) 

PROOF. (i) <= is trivial. =>: suppose t·l E WN but M I. SN. So there is a reduc

tion cR' = M •· ➔> N to a normal form N and there is an infinite reduction 
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• • • • 

By Lemma 7.4, ~/~' = N ••• is an infinite reduction. This contradicts 

the fact that N is a normal form. (ii) is an easy consequence of (i). D 

7.6. REMARK. In A-calculus one can ask what happens in a step P _R--. Q 

which is 'critical' in the sense that Pi SN but Q E SN. (So by Lemma 7.4 
. 

there are no critical steps in L ~ AIP.) In BARENDREGT, BERGSTRA, KLOP, 

va,~EN[76], Chapter II, it is proved that in such a step the redex R must 

be of the form (Ax.A)B where xi FV(A), i.e. R erases its argument B. This 

result is refined in BERGSTRA, KLOP [78]. 

8. STRONG NORMALIZATION OF LABELED A-CALCULI (VIA AI-CALCULUS) 

Introduction. In this section we will prove that AL,P (for bounded P) and 

its homomorphic images A HW and :\ T have the property of strong no.r1nalization 
LP Hv~ T • 

(SN), i.e. every A '-reduction (resp. A -,A-) terminates. 

(1) Such a proof can probably be given using Tait's method of (strong) com-
L HW 

putability, although we have not seen yet such a proof for A ; for A this 

is done by de Vrijer (unpublished) and for AT (and even for the much stronger 
'I system A + recursor R, also called ''Godel' s T'1

) this is done in e.g. 

TROELSTRA [73]. Metamathematically speaking the method has the drawback of 

using rather strong means, but it is amazingly slick. 

(2) Another proof for AL I= SN is by a method due to D. van Daalen; see 

LEVY [75,78]. 
T (3) For A + R there is a proof of Howard, using an ordinal assignment up 

to s
0

, but only of WN. It is complicated but constructive, as opposed to 

Tait's method. See SCHUTl'E [77] §16. (Instead of R, Schutte uses the iter

ator J.) 

(4) For AT (+ numerals and some basic arithmetical functions: successor and 

addition) 

tation in 

a proof of SN was given by Gandy (unpublished} via an interpre
T AI , typed A.I-calculus. 

(5) Here we will give a proof of SN for the stronger system 11.L also via an 

interpretation in AIL, Levy-labeled AI-calculus. Apart from the idea of an 

interpretation, there seems to be no resemblance with (41. 

(6) DE VRIJER [75] and NEDERPELT [73] prove SN for certain i-calculi (re

lated to the AUTOMATH project of de Bruijn). having 11.-t~rms as types. 

(7) After this Chapter was written, we have elaborated the idea of this 

section in a general setting; see Chapter II. There we use a method due to 

• 
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NEDERPELT [73] in an essential way. 

In fact, the result in this section is a corollary of a general theorem 

in Chapter II; nevertheless we have maintained this section 8 here since it 

provides an intuitive idea and an introduction to the part of Chapter II in 

question. 

The next 

nication) • By 

3.7; likewise 

lemma was independently proved by J.J. Levy (personal commu
HW AI we mean AI-calculus plus Hyland-Wadsworth labels as in 

for AIL,P (AI-calculus plus Levy's labels, see 3.9) and AIT 

(typed AI-calculus, see 3.8). 

8 .1. LEMMA. 

(i) AIHW r- SN 

(ii) AIL,P I= SN for bounded P 

(iii) :\IT r- SN. 

PROOF. We will prove (i); by Proposition 3.9.3 this implies {ii), which im

plies (iii) .. 

Suppose that there exists an infinite reduction~ in AIHW, starting 
• 

with M. Now consider a reduction~• of M obtained by repeatedly contracting 
n+l an innermost redex (AX.A) B. Such a contraction does not multiply exist-

ing redexes (since B contains none), and the redexes which are created by 

this contraction, have degree < n+1. (See 3. 7. 2. (ii) . ) Let <R' be 

M = M
0 

M
1 

► ••• and assign to Mi (i = 0,1, ..• } the multiset of de-

grees of redexes in M. (Def .. 6.4.1). Then, by our previous remark and by 
1 

Proposition 6 .. 4.2, we see that tR• must terminate, say in the ]\IHW-normal 

for1n M • 
n 

Now construct the 
HW 

11.I -diagram V(cR,cR 1
).. (See fig1lre.) By Lemma 7 .4 

(which holds also in the presence of labels; see Remark 6.111 it follows 

that cR/cR' is infinite. But M is a :\IHW _normal forin, hence cR/~' must be 
n 

empty. Contradiction. 

□ 

M=Mo .---------------___ .._ 

M 
n 

--------~-~----------
' 

• 
, 

'; 
• ,., ---~ , 
1 , 
, 

, . , 
• 

. ' 
' ,; ., 

,. ", 

• . ; 1 _,, . 
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8.2. INTUITION. The above simple proof suggests that it might be profitable 

to interpret XL in AIL. 
• 

Fix:s't.ly, let us simulate a given reduction 6{ = M .... in A-calculus 

by a reduction cR• in AI-calculus as follows. Replace in M every subterm 

Ax.A by Ax.[A,x] where[,] is some pairing operator to be specified later. 

Now consider e.g.: ' 

in X-calculus: cR -- (Ax.I) ABC - . ) IBC BC -+>- ••• 

in :\I-calculus: cR• = (A.x.(I,x]) ABC_..,._ [I,A] BC 

In order to be able to simulate the second step in cR, we are led to 

introduce the rule: [M,N]L ,.._,,_.._,> [ML,N]. And now the second step in cR can -

be simulated: 

[ I , A ]BC ,.._,,...,~> [ IB, A ]C ,..,,___,> [ IBC, A] [BC,A]. 

In this way we ensure that the 'dummy subterms' A which are carried along 

in [ ... ,A] do not form an obstacle to perform the 'proper' reduction steps 

which are copied from cR. 

Secondly, we have to add L-labels. Everything extends to the labeled 

case in a pleasant way; there is only one 'caveat': the intuition that in 

[A,B] the A is the proper part and Bis the dummy part, suggests that we 

add the rule for label manipulation 

a a 
[A,B] --+ [A ,BJ. 

The necessity of this rule can be illustrated by the following example: 

[A,B]ex, C > [AC,B]Cl 
not I I • 

'l'" I 

[A a. ,B] C 
I 
I 

I 

\Y 
a. 

[A C,B] [ (AC) ex, , B ] 

8.3. DEFINITION. Let AP be the definable extension of A-calculus obtained 

by adding a constant P with reduction rule 
• 

PABC ~> P(AC)B 



• 
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for all A,B,C € Ter(~P}. 

8.4. PROPOSITION. Every M E Ter(AP) has a P-normal form M', i.e. M' con-

tai ns no P-redexes and M ~ M 1 
• 

PROOF. Define the tree t(M) of M E Ter(1-.P) inductively as follows. 

(i) t(x) = and t(P) = P 

(ii) t(AB) = 

tB 

(iii) t(Ax.A) = AX 

E • g • t ( ( AX • Pxx ( yy} ) ( AX .. xy P) ) = 

So P-:teduction in tree form looks like: 

p p 

tA tB tC tA 

tC 

X 

AX 

p 
AX 

X y X 

I p 
y y 

• 

Now consider t (M) as a partial 

ordering (p.o.) of its nodes. 

Then if M ~> M', the p.o. 's 

t(M) and t(M') contain just as 

many points, but in the p.o. 

t(M') more pairs of points 

are comparable .. Hence the proposition follows, since in a p.a. of say n 

points the nl1rnber of comparable pairs is bounded (by (~) ) • D 

• 
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We will restrict the set Ter(AP) to those terms in which every Pis 

followed by at least two arguments.. (I .. e. every P occurs as the head syrnhol 

of PA1A2 •.• An for some A1 , .•• ,An and n ~ 2.) Furthe:rrnore, we will write 

[A,B] instead of PAB. 

8.5. DEFINITION. A[,] is the reduction system <Ter(A[,J), 
8 

, ~> where 

Ter(A[,J) (the set of terms indicated above) is defined inductively by the 

clauses 

(i) , (ii) , (iii) similar to Definition 1 .1 of Ter ( >.) 

d - .,. -~ ·> an ·- w' - is defined by [A,B]C ....,__,> [AC,B]. 

(I.e. the translation of the P-reduction rule in Definition 8.3.) 

A [, ]-normal form is a term in which no ,...,,.._.,...,>-step is possible. 

8.6. DEFINITION. (1) Jllllli•• ➔ 

k 
is a reduction relation on Ter(A[,]) defined by 

[A,B] • >- A 
k 

Obviously every k-reduction ends, in a unique term E Ter(A) (the k

normal form) • The unici ty follows from a simple Church-Rosser a.rgument 

(apply Lemma 5.7.(1) and Theorem 5.11. (2)). 

(2) K: Ter ( 11.[, J) · ► Ter ( A) is the map defined by 

K: M t • ., ➔· the k-no:rmal form of M. 

(Remark: K can also directly be defined: 

{i) 

(ii) 

(iii) 

(iv) 

K(X) = X 

K(AB) = (K(A)K(B)) 

K(Ax.A) = 11.x.K(A) 

K([A,B]) = K(A). 

But the propositions about Kin the sequel are easier to prove using -k~➔.) 

8.7. PROPOSITION. Let A€ Ter(A[,J) be in [,]-nf and let A -k~►- B. Then B 
• 

is in [,]-nf. 
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PROOF. routine .. 0 

8.8. PROPOSITION. Let A,B,C E Ter(Al ,]) be such that A k 

in [,]-nf. (See figure.) 

Then there is a such that A - 8+> D . ➔> C. 
k 

A in [,]-nf D 
-- --- ----::>t 

I 

k 

B s C 

B s C and A is 

PROOF. Just contract the 'same' S-redex in A as the one contracted in B. It 

is routine to check that this is indeed possible. (We need A to be in 

[,]-nf, for consider otherwise e.g.: 

A= [I,M]N 
k 

B = IN - 6·-· +➔ N ~ C.). D 

8.9. PROPOSITION. Let 

A Ir---+>· B · ·>· C. Then 
K S 

A E Ter(A[,J) be in [,]-nf and B,C E 

there is a DE Ter(A[,J) such that A 

K 

A in [,]-nf D 
•----~-:--- -)· 

B 

8 r 
I 

I 
I 
I K 
I 

I 

l 
\II 

C 

PROOF. Choose an arbitrary k-reduction from A to B: 

A·k A' ---). A'' , , . > 
k k 

• 

• • • 
• ➔• A (n) 
k 

-k-+ B . 

Ter(A) such that 

s D --+ c. 
K 

Since A is in [,J-nf, by Prop. 8.7 {i) also A is in [,]-nf (i = 1, ... ,n) • 



Now repeated application of the preceeding proposition 

yields: (see figure) 

and since C is a k-nf (because Bis) we have K(D) - C. --

A 

k 

A 

k 

A' 

A(n) 

k 

B 

8.10. PROPOSITION. (i) Let A,B,C E Ter(A[,J) be such that C 

'---k- B. (See left figure .. ) Then B -k- C or 3D C ~ D 

A B A B 

I ~ 
I 

k lk 
I 

K K 

I 
I 

-- ., .. , ~ ... ,,,,.,,. ""~ ... .. ~~.... "'~·· -
C - D C --

(ii) Let A r-.;.-.01"'~> B. Then K{A) = K(B). (See right figure.) 

PROOF. 

( i) routine. 

(ii) immediately from (i). D 

The next definition is crucial. 

• 
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D 

8 k 

o• 

k 

D'' 

8 
I I 
I I 
l I 

l 

8 
D (n) 

k 

B C 

,..__ A ........ ~ B • 
k 

8. 11. DEFINITION. Let Ter ( AI[ I]) be the set of "[, J-tern1s 

of the form AX.A the variable x E FV(A) .. 

such that in tern1s 

Now define 1: Ter(A) · > Ter{-AI[,J) inductively by 

(i) 

(ii) 

(iii} 

1(x) =: X 

1 (AB) = { l (A) l (B) ) 

1(Ax.A) =: AX.[t(A),x]. 

• 



• 
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8.11.1. REMARK. If ME Ter{A), then obviously Ko1(M) = M. 

8.12. Addition of labels. We want to reconsider 8.5-8.11, now in the pre

sence of L-labels or HW-labels. 

is an unproblematic union of the 

Reduction in A[,] is given by: 

(i) (AX.A) OB .. •· > [x:=Bo]Ao 

(ii) 

(iii) 

(iv) 

(v) 

[x:=A]xa = Aa 

(Aa)B ---➔ Acx.S 

[A,B] 0 ---+ [A0 ,B] 

[A,B]C [AC,B] 

(8.5). • 

cern the manipulation of labels, are not considered as 'proper' reductions; 

we will execute them jmmP.diately whenever possible {hence we work in fact 

with---➔ - normal forms). In this way we ensure moreover what we need in 

(v) (see the last example in 8.2), viz. that a subterm [A,B] must be un-
• 

labeled. 

Ad 8.6(1) Define: [A,B] 

Ad 8.6(2): 

---~► A for all A,B E 
kL 

Define KL similar as before. 'llle reader may convince himself that the ex

tension of the Propositions 8.7-8.10 to the labeled case is entirely 

straightforward and unproblematic. We will only present the extension of 1 

to the labeled case: 

(i) 

(ii) 

(iii} 

(iv) 

Ad 8 • 11 • Let lL : 

tL(x) = X 

L 
Ter(A) 

lL (AB) = 1L (A) 1L (B) 

1L (Ax.A) 

tL (A ex) = 

= AX .. [ lL {A) ,x] 

ex 
( lL (A) ) 

be defined by: 

Now we get the [,]-analogue of l~mma 8 .. 1: 

8.13. LEMMA. (P bounded) t= SN, likewise and 

• 

' 

< 

. 

' 
' 
' ' ' ' ' r 
' ' ' r 
f 

r r 
r 



. 
'"' 
,-J-' ,,,. 
t:.· . 

-.= j;;:lttr. _ 

PROOF. Suppose an infinite reduction~= M • • • 
• in 'IL, p . 

say I\ [ , J 1.s given. 

As before, in 8.1, we find a terminating reduction tR• of M by contraction 

of innermost redexes, where after each 8-step we take the [,]-nf: 

M 

I 
I 
I .. 

Nin 

-------------
• 

• 

Applying Church's theorem 7.5 on AI[,]' a substructure of a definable 

extension of AI, yields:~/~• is infinite. Contradiction. D 

Finally we can collect the fruits of our labor: 

8.14. THEOREM. AL,P HW T I (P bounded) , A , A = SN. 

• • • in AL,Pis given. Let 
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PROOF. Suppose an infinite reduction~= M 

N = lL(M); by Remark 8.11.1 we have KL(N) = {See figure below.) Now re-

peated application of the (according to 8.12) labeled versions of Proposi-
n , L,P . 

tions 8.9 and 8.10(ii) yields an infinite reduction u~• in AI[,] as in the 
L,P L 

figure. But this contradicts Lemma 8.13. Hence A I SN; for the other two 

reduction systems SN follows from this, as before. 

6'.l' in 

□ 

• 
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9. STANDARDIZATION 

In this section we will give the first of two new proofs of the well

known standardization Theorem for AS-calculus. This proof extends (see 9.10) 

also to definable extensions of A-calculus; but in 9.1 - 9.7 we will con

sider only AS-calculus, for notational simplicity. In Ch~pter IV the same 

method will be used to orove the Standardization Theorem for ASn-calculus. -
In fact we will prove (see 9.8.3) a strong version of the Standardi

zation Theorem, due to LEVY [78]. To this end, in 9.8 Levy's concept of 

'equivalence of reductions' will be introduced. 

9.1. DEFINITION. Standard reductions 

A reduction~= M
0 

> M1 ➔ --- (finite or infinite) is standard if the 

successive redex contractions take place from left to right. 

More precisely: let * be an auxiliary syt11bol to be attached to some 

* redex-A's: {A x.A)B, indicating that it is henceforth forbidden to contract 

this redex. Now the reduction 

inductive definition. 

is provided with markers* by the following 

Suppose up to Mn-l the markers are attached. Consider the step 
R 

M n_ > M 
1 

where R is the contracted redex. Mark 
n n+ n 

(i) • M which descends from a:\* in M every in 
n-1 n 

(ii) • M to the left of the head-A of R every in n' n 
if not yet marked by 

(i) . 

Now we define:~ is standard if no marked redex is contracted in~-

9.1.1. REMARK. (1) It is equivalent to require in (ii): every redex-A in 

M 
n 

to the left of .... and so on. 

(2) It is easy to see that this definition is equivalent to the usual one, 

as in HINDLEY [78], in terms of residuals - but we find that the use of* 

facilitates our way of speaking. 

(3) Hindley distinguishes 'weakly standard' and •strongly standard'- His 

'strongly standard' is the above concept 'standard'. Hindley proved that 

for the AS-calculus the two concepts coincide, see HINDLEY [78]. 

9.2. DEFINITION. Let~= MO --- be a finite or infinite reduc-

tion sequence. A redex R ~ M
0 

is contracted in~ if for some n E :N, 

a residual of R. 

R 
n 

= 
J.S 
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9 .. 2 . 1 . NOTATION. 

(i) lmc(tR) is the leftmost redex in M
0 

that is contracted in tR. 

(ii) p(tR) = <fl/{lmc(~)}, i.e. p(<R) is the projection of <fl by the contraction 

of the redex lmc(tR). 

(iii) If s,s' EM, thens< s' means: sis to the left of s'. 

If S, S' 5= M, then S < S ' means: the headsy111hol of s is to the left of 
• 

that of s'. 

9. 3. DEFINITION of the standardization proced11re 

Let di = --+>- M 
1 

-+) ••• -~ M be a given reduction sequence. Define by inn 
duction a reduction sequence tR as follows: 

s 

cR = M lmc («R) 
s 0 M' ---3 I 

a possibly infinite sequence. 
n 

It stops when there is 
n 

no lmc(p cR) for some 

n , i . e • when p tR = 0 . 

We will show that tR is ''the'' standard reduction for <R; that is, <fl is 
s s 

a standard reduction M
0 

> .... · > Mn which is moreover equivalent to tR in a 

sense later to be specified. 

The construction of tR is illustrated in the next figure. V is the 
s s 

corresponding ''standardization diagram''. 

V 
s 

cR 
s 

--

• I 
I 

M' 
1 

M' 
2 

M' 
3 

M' 
4 

_me (tR) 

.me (p&i) 

2 
me (p IR) 

3 
11.mc (p IR) 

I 
I 
I 

p6t --

p2tR 

p3tR 

p4tR 

• 

cR/ { lmc (Gt) } 

M 
n 

• .. 

I 
I 
I 

lmc (<R) } /d"t 
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9.4. PROPOSITION. {lmc(lR)}/~ = 0 (consists of empty steps.) 

PROOF. Immediately by the Parallel Moves Lemma 6.12; let R in the figure 

there be lmc(~). The head-A of R, A
0

, is clearly not multiplied in lR, since 

it is lmc(lR). Hence after the unique A0-contraction in lR, no AO is present, 

in particular not in M. By PM, {R}/~ must be therefore empty. D 
n 

9. 5. COROLLARY. The right side of 

9.6. LEMMA.~ is finite. 
s 

V 
s 

is em.pty. D 

PROOF. We will use the labeled AHW-calculus as introduced • in 3.7 . 

Let us recall the main properties of these labels: 

(i) every subter1n of a given A-term has a label E JN written as super

script. 

(ii) the degree 
a db r . of a redex ((Ax.A) B) is d. 

(iii) indexed reduction is defined as in 3.7; for the application here we 

need only to recall that contraction of a redex is allowed iff its 

degree is> 0. 

(iv) in an indexed reduction residuals of a redex with degreed, have 

again degreed. 

(v) Strong Normalization (SN) for indexed reduction: every indexed re-

(vi) 

duction terminates. 

every finite reduction lR = M 
0 

dexed reduction, by choosing 

• 

--7") •• ► M 
n 

sufficiently 

can be extended to an in

large indexes for M
0 

and 

'taking these along' through tR. Similarly for two finite coinitial 

lR1 ' <R2. 

Now take an indexing for <R (by vi). By (iv) lmc(tR.) has the degree of 

the residual of lmc(~) which is contracted in <R; i.e. a positive degree. 

Therefore the indexing can be extended to all of the diagram V({lmc(lR)},<R). 

Hence the bottom side of this diagram, R•, is again indexed. And so forth. 

In this way the indexing of 61. deter1nines a unique indexing of the whole 

diagram V • 
s 

Thus in particular is indexed; hence by (v) it terminates. 0 

9.6.1. REMARK.. Instead of using SN for AHW to prove 

one can alternatively use FD (the theorem of Finite 
• 

the ter1nination of tR. , 
s 

Developments, 4.1.11) ~ 

The proof using FD is somewhat longer; in outline it is as follows (for a 

complete proof see BARENDREGT [80]). 



Suppose iR is 
s 

infinite. Then for some k. the projection of tR 
s 
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by 

>- M_ 1· S • • • - k infinite (see figure), i.e. contains infinitely many non-

empty steps, while the projection of <Rs by MO 

contains only~ steps after some term B. 

• - • ➔ 

Let ~
1

,~
2

,<R
3 

be as in the figure. Now by PM(6.12), 

V 
s dt2 

B B 13 13 B 

<R <R1 <R3 s 

v• 1/! 

--

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

M._ is finite, i.e • 
k+l 

is a development. -

Furthermore, it is not hard to prove that the step {lmc(tR)} propagates to 

the right, without splitting, until it is ''absorbed'' as follows: 

I 
I 
I 
f 
f 

Using this, and the fact that <R2 is a development, one can easily show that 

also <R
1 

must be a development; hence, by FD, <R
1 

is finite. Contradiction. 

Hence tR is finite. 0 
s 

9.7. STANDARDIZATION THEOREM. Let tR be a finite reduction. Then 

standard reduction for tR, i.e. 

R 
s 

• is a 

(i) 

(ii) 

cR and 
• is 

6l have the same first and last term, and 
s 

standard. 

PROOF. (i} is almost trivial: since tR 
s 

is finite, the construction of the 

diagram V 
s 

bottom side 

definition. 

= V(<R ,IR) terminates, hence 
s 

is empty, for otherwise tR 
s 

• 

V has a bottom 
s 

would have gone 

side, tR/6{. This 
s 

fl1rther, by its 

(ii) Attach mar~ers * in iR 
s 

as described in Def.9.1. Suppose tR 
s 

is not 

• 
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standard .. Let M' 
m 

be the first terrr1 in Ol such that in the step M' 
m s 

a marked redex R is contracted. Let M' be the 
n 

(unique) ancestor R' of this redex is marked 

term in !R in which 
s 

for the first time. 

-➔ M' 
m+l 

the 

Label all 

the A's in M~ with distinct labels such that AO is the head-A of R', and 

extend this labeling throughout the diagram in the figure. 

pn!R • 

'A* Al - M' --0 L n ------- ~ 

" 
71 

I 
• 

I 
' 
I 
• 

I 
• 

I 
0 

• 

I 
• 

\V 

* 
AO 

pm61 

=M' ' ➔ ~ 
• 

m ------

Now A1, the redex contracted in M~ > M~+l' is> AO in M~, since A0 
was marked in M~ for the first time. Hence O ¢ {i 1 , ••• ,ik}, because other

n 
wise 11.0 or a A< A

0 
should have been lmc(p !R). 

m 
By the PM Lemma (6.12), the contracted labels in p ~ form a subset of 

{i1 , .•• ,ik}. Hence no AO can 

sumption that R = (AOX.A)B = 
be contracted 

m 

. fin 
in p 1.n., contradicting the as-

lmc(p <R). D 

9.7.1. REMARK. By the same method, one can also prove the 'completeness of 

inside-out reductions', as it is called in WELCH [75] and LEVY [75]. Here 

the definition of 'inside-out reduction' (not to be confused with 'inner-
' 

most' reduction) is analogous to Definition 9.1 of 'standard' reduction: 

replace in Def .. 9 .. 1 the relation < ( 1 to the left of' ) by ~ ( ' sub term of• ) • 

So instead of 'freezing' all redexes < the contracted redex by attaching 

the marker*, 

Now we have: 

we freeze all redexes c the contracted redex. 

PROPOSITION .. 

such t:hat N 

If M - 6 ➔>· 
_ _,,➔> L. 

s 

Since there 

[75] Thm.4, using 

-

N, then there is an inside-out reduction M 

short and elegant proof of the proposition in LEVY 
• 

we will give only a sketch: 

Define, analogous to the definition of 6°{ I 

s 
a reduction by repeated 



contraction of an ''innermost contracted redex'' (instead of the ''leftmost 

contracted redex'') . 

The proof that such an 6-i. 
l.. 0. 

(not 11niquely determined now, as (H. was) ter
s 

89 

minates and is an inside-out reduction indeed, is entirely analogous to the 

corresponding proofs for~. Now let V. be the reduction diagram cor-
s 1.0. 

responding to the construction of <R. ; then the bottom side is, as before, 
l.. 0. 

0. However, the right side of V. will be in general not empty. So we have 
1.0. 

M 

6l • 
l... 0. 

v . 
i.o. 

L ---- ---- L 

which proves the proposition. 0 

9.8. Equivalence of reductions. In fact we have just proved something more 

than Theorem 9. 7 as it stands. In order to fo1::1nulate this, we will introduce 

Levy's notion of 'equivalent reductions'. The notion is intuitively clear 
·L 

and ties up nicely with A. (In the next section it will be compared with 

some other notions of equivalence for reductions.) 

Suppose that <R1 , ~ 2 are finite reductions such that <R2/<R1 = 0. This 

means that in V(~
1
,~

2
) the steps coming from ~

2 
(propagating to the right) 

are ''absorbed'' by those of <R
1 

(propagating downwards). In an intuitive 

sense one can say: ~ 1 does the same things as ~2 and possibly more. There

fore: 
<R 

1 

9.8.1. DEFINITION (LEVY [78] 2.1.p.37). 

(i) <R
1 

~ tR
2 

: <1
• w> 612 /tR1 = 0. . 

( ii ) (R 1 ,..., L 6l. 2 : < =' > (ft 1 ~ <R 2 & <R 2 ~ tR 1 . 

(<R1 ,<R2 are 'Levy-equivalent') 
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• 

• 
• 
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9.8.2. REMARK. (1) It is not hard to prove that r,J Lis indeed an equivalence 

relation; the transitivity is ensured by the 'cube lemma' (see LEVY [78] 

2.2.1). 

(2) Warning: if~*~ and~ have the same first and last term, it does not 
2 3 

follow that 6l
2 

5 <R1 • The notion of diagram is essential here. counterex-

ample: 

6{1 = Q(II) · > nr, ot2 = Q(II) > rl(II), <R3 = Sl(II) -r> nr. 

For then <R
2
/~

1 
= SlI >QI~ 0-

(3) Levy uses a slightly different but equivalent definition of ~
1
;~2 and 

Now we can prove the strong version of the Standardization Theorem for 

AS-calculus: 

9.8.3. STANDARDIZATION THEOREM (Strengthened version, Levy). 

Let <R be a finite reduction sequence. 

tion for such that <R ~ ~-
s L 

Then~ is the unique standard reduc
s 

PROOF. (i) <R ,...,, 6l is a direct consequence of the definition of,...,,; for in-
s L L 

deed in the standardization diagram V both the right side and the lower 
s 

side were empty. 

(ii) Unicity. Suppose ~O 

and last ter·In as <R, such 

~~Lis transitive, we have 

Now suppose that 

Ro 

is another standard reduction with the same first 
0 

that <R rv <R. Then, because <R l"-.J 6l and because 
· L s L 

rno -- tR 
L s· 

tR • - > . -. ~+1 ,,, > ••• M 
n s 

and 

= M 
0 

Ro 
••• --+> M' ', 

n 

where¾: t ~ {as always: the occurrence of¾: F occ. of~). 

Then, testing whether V(tR0 ,~) has empty bottom and right side, we 
s 

have the following situation: 

• 

!; 

" ' 
' 

' ' 

, 

' 

' , 



MO 

~ 
~ 

~+l 

M' 
n 

0 ----------- - --
~ 

~ 
-------- ---

~+1 

0 
- - ------ ----

-
M' 

n 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

91 

+1 
n 

I 
I I 
I I 
I I 
I I I I I 

10 ~I I 
I I 
I I I 

I I I I 

lt\+1 Rk I 

n 

A I 
k A' 

k 
A I 

k 

Suppose ~ = 
~ and :Xk < Ak • 

A ' k 
where Ak, Ak are the 

follows by symmetry.) 

head-A's of¾:_ and 

(The other case 

Now it is clear, using that~ 

gates without splitting or becoming 

«R I 
s 

Rk 
.... M 

n 
is standard, that Ak propa-

absorbed. Hence the right side of 

contradiction. □ 

9.9. REMARK. All the facts in this section 9 generalize to definable ex
➔ 

tensions AP of A-calculus. In Def. 9. 1 : ''frozen'' P-redexes PA are marked 

*➔ as PA; 9.2 - 9.5 also extend immediately. At this moment, the proof of 

Lemma 9.6 does not seem to generalize to AP, since we used AHW ~ SN and 

for AP in general we have not yet a HW- or L-labeling available. However, 

in Chapter II.6.2.7.15, we will extend Theorem 8.14, stating that 

"'HW,,L,P L_ • h d f" 1 A A r SN, to a class of reduction systems containing t e e inab e 

extensions. Then also the proof of Lemma 9.6 generalizes to AP. Even now 

we have the Standardization Theorem for AP, since in LP-mroa 9.6 we could 

alternatively use FD (see Remark 9.6.1). 

The notion of Levy-equivalence, the 'cube lemma' for AP, and the strong 
• 

version of the Standardization Theorem (9.8.3) also carry over, as one 

easily checks. 

• 
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,..,_, which is ex-
-tensively studied in LEVY [78]. We mention a few points: the reduction graph 

G (MI) of a Levy-labeled te:r:m MI, is isomorphic with RED (M) /,..,_, , the set of 
L 

finite reductions of M modulo ,.._,L. The reduction graph G (M) of the unlabeled 

term M, is a homomorphic image of RED(M)/,..,.,L; that there is no isomorphism 
. 

between those structures is because there are 'syntactical accidents', as 

Levy calls them. The paradigm of such a syntactical accident is: 

I (Ix) Ix; in two, clearly not Levy-equivalent, ways I(Ix) is reduced to 

the same result. For more examples of this sort, see our Examples 10.1.1. 
-LEVY [78] gives furthermore information about RED(M)/,..._,L in terms of 

lattices; e.g. they are not complete but can be completed by taking also 

infinite reductions of Minto account. As an example consider the lattice 

(not complete} RED(M)/""L where M = (Ax.Ka(x(w
3

w3)) {Kb). Here Ka := Ax.a 

and w3 = Ax.xxx. It is isomorphic with G(M), since there are no syntactical 

accidents here. RED(M)/~L can be completed by adding two points, i.e. 

(Rl /·· ·L and tR.
2

/--L where tR1 = M · > • • • w
3

w3w3 •.• - • . . w
3

w
3

w3w3 • . . and 

tR
2 

= M -➔ Ka(Kb(w
3

w
3
)) ➔• Ka(Kb(w

3
w

3
w

3
)) >- Ka(Kb(w

3
w

3
w

3
w

3
)) .,, > ••• 

(infinite reductions). 
M 

(Ax.a) (Kb) 

a 
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10. STANDARDIZATION AND EQUIVALENCE OF REDUCTIONS 

In this section we give a second new proof of the Standardization 

Theorem, thereby demonstrating a close connection between Levy-equivalence 

of reductions as introduced in Def. 9.8.1, and standardization. we start 

with comparing in 10.1 several definitions of equivalence which have been 

proposed in the literature. In 10.2 we continue with ~Land show that it 

can be generated by a 'meta-reduction between finite reductions <R
1

, <R
2 

with fixed first and last teL1r1. <R
1 

• , > <R
2 

will mean that tR
2 

is 'more stan

dard I than <R1 . The reduction , > has the following properties: 

(1) it is strongly noLrnalizing, 

(2) it has the CR property, 

( 3) the '· > -normal forms• are exactly the standard reductions, 

(4) it generates "-JL as equivalence relation. 

Moreover, we obtain a simple proof of the Standardization Theorem. 

When writing this section, we realized that Prop. 2.2.9 in LEVY [78], 

due to Berry, is roughly the same as (4) above. A closely related idea is 

stated in BERRY-LEVY [79]; see our remark after 10.2.6. There however the 

direction in is not considered, and (hence) neither the connection with 

standardization. 

In 10.3 we make some remarks on the cardinality of an equivalence 

class 

10.1. Some definitions of equivalence between finite reduction sequences 

10.1.0. DEFINITION. 

(i) 

(ii) 

(iii) 

(iv) 

,..., 6{• < :::> <R, <R• have the same first and last term.. (HINDLEY [78 1 J 

calls such <R, tR• weakly equivalent.) 

Let --+> --· M .. 
n 

Then: oZ ,-.., tR I <:::-,. tR rv tR t & for every red ex 
R 

R ~ M
0

, the residuals of R via coincide with those of R via <R•. 

(This definition is introduced by HINDLEY [78'], who calles such 

tR, ~• strongiy equivalent.) 

cR ,.._,s 6?. 1 <, 11 > <R ,..._. tR• & for every subtenn s s. M0 
via cR coincide with those of S via <R'. (This 

the descendants of S 

definition is proposed 

by C. Wadsworth • private communication to H. Barendregt. ) in 

6{ 6{' 6{ ,..., <R• • symbol the descendants of • ....., <i> & for every s € MO s via 
s 

tR coincide with those of s via 6{ • • 
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tR _, tR• < > tR/<R• = tR. 1 /tR = 0, as in Def. 9.8.1. 
L 

(v) 

(vi) tR s=:-:1 tR•, 'pez111utation equivalence', will be defined in Definition 

10.2.2. 
... 

(vii} The following definition is given in LEVY [78] p.41 Prop.2.2.9 and is 

due to G. Berry: 

61 ~ (R• c :.:~ IR, tR• result from each other by repeated _permutation of 
B 

adjacent complete developments. 

(For a more precise definition see LEVY [78] p.41). 

10.1.1. EXAMPLES. 

(i) tR = r 1 (I
2

x) 

tinguish the 

(ii) tR = K1 (K2AB)B 

IX and o{• 
2 

r
1
x. 1, 2 serve to 

occurrences of I. This example 
,,. 

is from LEVY [78]. 

_K..,_2__.. K AB ➔ • 

1 

(iii) tR = (Ax.(Ay.A)x)B 

Here X ¢ FV(A). 

AX 
l3 (Ay.A}B 

A I i 1 n 
y ➔ (Ax.A[y:=x])B s 

(iv) Let L be such that Lx · >> L (Lx) , to be specific: 

L = [Aab.aa(aab)][Aab.aa(aab)]. 
tR 

-;:$> 
Then L(Lx) tR•» L(L{Lx))) in two different ways. 

(v) Define A, B such that 
tR 

Ax >> A(xI) and B -~ BI. 

-...;ii>> 
Then AB IH'» A (BI) in two different wavs . .... 

For all the above examples we have 6i ~L' ,f,R, ~s IR'. 

(vi) tR = I 1 

'' 

1 
fl fl 

(vii) tR = [Az.z(zx)]I _,, __ ~➔·I (Ix) 
1 2 

Now cH ~ , 
L 

fl .. > 

roJ I,..._, (Rt. 
R S 

(viii) Let A = Aab.aba. Then: 

II 

11 

4 

• 

➔ 

• 

dis-
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Now • 

di. tR•• 

tR .....,R '?S ~L 
....., 

""s !foL R 

<R• .....,R ,f.,S ;kL 
... 

(ix) · In general, let c be a cyclic reduction: c = M
0 

R • ➔ • • • ➔ Mn = M
0

• 

Let C (i) -- C (' . ) * C * ... * C i times. Here* denotes concatenation of 

reductions. 

Then ( 1) Tl. • • c(i) ¢. c(j) 
• .l J l,J L 

(2) 3. . • • & 
c(i) ....., c<j> 

l. J 
]_I] s . 

PROOF. (1) Follows directly from the definitions. 

(2) Is a direct consequence of the fact that there are only finitely many 

binary relations on the set of subterms 

a binary relation.) 0 

10.1.2. THEOREM. 

(i) ~B (1) L (2) 

u ( 3) 

,...,_, ,-.., 

s (4) s 

R 

u 

of M
0

• (and' ... descends to 

(ii) The implications under (i) are the only ones . 

.,. 
PROOF. ( i) ( 1 ) : see LEVY [ 7 8] p . 41 , 4 2 

(2) is proved in Theorem 10.2.6 below; 

• • • 

( 3) is easily proved by tracing the subterms ( or sy1ribols) in reduction 

diagrams, starting with the elementary diagrams; 

( 4} (~) follows since most of the sy.1obols in a t~rm are also su.bteLrnS 

(except A, and brackets); 

' i· s 

(+=) follows since either a subterm is a variable (hence a symboll or 

else it is compound, and hence determined by its outermost brackets. 

Then apply the hypothesis to those bracket symbols. 
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The non-nt1rnbered i.mplications are trivial. 

(ii) That no more implications hold, follows from the preceding examples 

(example (viii) suffices). D 

10.1.3. REMARK. Note that all the equivalences considered in Theorem 10.1.2 

have the following pleasant property: 

Any two coinitial reductions ending in a normal form, are equivalent. 

PROOF. Immediately, via □ 

10.2. Standard reductions and_, 
L 

10.2.1. DEFINITION. An anti-standard pair (a.s.pair) of reduction steps is 

a reduction consisting of two steps, which is not standard. 

10.2.1.1. Obviously, if~= M M' M'' is an a. s . pair, 

then M = where A1, A2 are the head-A's of B-redexes and A2 < 

10.2.2. DEFINITION. (i) RED is the set of all finite reduction sequences. 

(ii) The 

( 1) 

'meta-reduction' a:::• :0-0> on RED is defined as follows: 
Al 11.2 

If dt = M " ·- ► M • M'' is an a. s • pair, then dt = dt' , where 

GZ• is 'the• 
11.2 

&t' = M -----

standard reduction for dt: 
A1 11.1 Al 

M''' ' .... ) --- ---+- M'1 
• 

n ?:! 0 times 

(2) If tR a 11► 6{•, then 61
1 

* 
(±"ii) " , •> is the transitive reflexive closure of 

~ is the equivalence relation generated by 

equi val. ence • 

• 

o-, called permutation 

• 

10. 2 • 2. 1 . REMARK. Note the connection between • ► and the elementary diagr aros 

introduced in 6.1.1, as suggested by the following figure (where A
2 

< A1): 

M' 

, __ _ V ... , ' ,I 

n ?:! 0 times 
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10.2.2.2. PROPOSITION. (LtVY [78] 2.2.6 Prop.p.40). 

6i1 * ~2/B1 _,L tR.2 * ~1/~2 - I.e.: let~ be the right-upper reduction of a 

reduction diagram V and~' be the left-lower reduction of V; then 6{ _, 6{_ 
L 

V 

PROOF. Simply by 'folding out' V: 

<Rl 6{2/6{1 
I 

V = I 
I 

(\t2 V (61.1 ,<R2) <R2/6{1 :0 
I 
I 

0 
I 
I 

--------...! 

10. 2. 2 .. 3. REMARK. Let 61. be an a. s.. pair and let tR c::•'" ► tR 1 
•. Then tR ""='L tR• , as 

is evident from Remark 10.2.2.1 and the preceding proposition. 

10.2.2.4. PROPOSITION (LEVY [78] Prop.2.2.4). 

If~ c=L 6{•, then 6{1 * 6{ * ~2 _,L 6{1 * ~• * 6{2. 

PROOF. ~mmP.diate, by the following diagram construction: 

• 



' 

. . 

' 

, . ' , 
' , I 

' ' ,, . ' 

• 
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(Rl cR2 

• I I 
I I I 
I 

I I I 
(H1 I 10 I 

I I 
612 

I 
I I I I I I ' ------- ' 
I l 

I I 
(R I <R• I :0 • 

I 
I 

cR2 
I 

I I 
I I ------- - - -----

---- __________ ...... ______ • .411 

□ 

10.2.2.5. LEMMA. If~~ cR• then 

PROOF. If <H. • ·• tR•, then tR• follows by Remark 10.2.2.3 and Proposition 

10.2.2.4. 

From this, and the transitivity of 

lows .. D 

10. 2. 3. PROPOSITION. 1 - ► is acyclic. 

~ (LEVY [78] 2.2.3) the lemma fol
L 

PROOF. Suppose not; that is: there is a c-:: = -reduction 

<R0 • 111► tR1 • . • cR n = o=i
0

• We prove by induction on I cR0 I , the n11mber of 

steps of tR
0

, that such a -cycle cannot exist. (*). The basis step of the 

induction is trivial. 

Induction hypothesis: suppose (*) is true for fcR
0

} ~ m. Now let fcR0 I = m+1. 

Suppose for some < n the permuted a.s. pair is at the beginning of 

«R,e, as displayed below; and let l be the least such nt'lrooer. Then A1 < X0 , 

and the final reduction 6?. must begin with the contraction of a 
n 

A2 ~ 1 1 <A. Hence (R ~ cR. 
0 n 0 

If there is no such l, then erasing the first step in ~
0

, ••. ,~ yields . n 
again a• -cycle 

• 

~I 

0 where ltRol = m; contradiction. □ 

• 

• 

! 
' 1 
f, 

• 
• 

I 

. 
' 

' 
' 

' •' 

. 

' 



10 .. 2.3.1. REMARK. 

• 
• 
• 
• 

= M 

tRl - M -

• 
• 
• 
• 

\._ 

cR ===01 = M 
0 n 

Note that (RO 

-0-
tRl 

--

--

:\o 
) N 

V 

r
1 

(I
2

x) 

II 

• 

Al 
L > • ➔ ...... 

/ 

\, 

0 times 

12 I1 
I

1
x X 

Il I2 
r

2
x X 

is not a .. > -cycle, since we are considering reductions together with the 

specification of contracted redexes. Hence tR
0 

~ tR
1

• 

10.2.4. DEFINITION. Let tR = M --➔ ••• --➔ N be a finite reduction. Then 

the labeling I 

reduction MI 

of Mis adequate for tR iff 
J 

--> .... · ~·>- N , which will be 

tR can be extended 
I 

called <R. 

to a labeled 

10.2.4.1. PROPOSITION. Let = M -"'i'-➔ • .. • • > N. Then there is a labeling 

I of M which is adequate for tR. 

PROOF. Easy. □ 

10.2.5. THEOREM. (i) The reduction • ~ is strongly non11alizing (i.e. everg 

sequence tR , :,> <R • tR•• t ~ • • • te1:1zzinates) • 
• 

(ii) The '·t:=, 11 > -normal forms' are the standard reductions. 

99 
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PROOF. (i) Suppose that there is an infinite sequence ~O . ~ 1 •·· , 

let I be a labeling which is adequate for ~ 0 ; 

-➔ ••• (by Prop.10.2.4.1, I exists). 

Now it is easy to see that the labeling I of MI is also adequate for 

~l = M · ► ••• ; we have only to check that things work for an a.s. pair, 

as follows. 

Consider the figure 

B 

C 

A 

D 

Here it immediately follows (from the fact that residuals of a redex 

(Ax.P)d~ have again the same degreed) that the degrees of the redexes con

tracted from A to D to Care the same as the degrees a1 ,a2 of the redexes 

contracted from A to B to c. Further, the labeling I was adequate for ~ 0 , 

hence a
1
,a

2 
> 0. Hence I is also adequate for ~l. 

So the supposed infinite sequence extends to the infinite sequence of 

labeled reductions 
' 

<RI 
0 

• 
• 
• 
• 

I . . ) 
~I 

1 

• • 
• 
• 

• 

I > 

• • • 
• 



• 

Now by SN for labeled reduction (Theorem 8.14), every labeled reduction 

starting from MI must terminate. Hence, by Konigs Lemma, there are only 
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finitely many such reductions.. Hence the , (RI , • • • must con-

tain a cycle. Contradiction with Prop.10.2.3. 

PROOF of (ii). Suppose 1H is not standard. Claim: then <R contains an a.s. 

pair. For, let 

• • • 

- I 

where k is the least nt1mber s. t. M0 

J..·t is not hard t ht M._ o see ta k-l 

A 
k-1 

:X. 
k 

• 

-~>- _,, -➔ M ••• n 

• v-FL --k•IIIIII-U &-1 ·--✓ 

• a.s .. pair 

.... t\:+i is not standard. Then 
• • 1.s an a.s .. pair. 

From the.claim it follows immediately that the endpoints of maximal 

•-=: > -sequences are standard reductions. 0 

2.5.1. COROLLARY (Standardization theorem). 

V<R 36l' <R rJ Ot' & t'R• is standard. 

PROOF. Every • , ~ -reduction of 1H leads to a standard reduction <R' for cR, by 

theorem 10.2.5. 0 

Next we will show that every maximal a::= 11'"> -reduction of <R ends in a 

unique standard reduction <R' for <R. We can proceed in two ways: prove 

directly that • , .. > has the WCR property, by means of checking several cases: 

i.e. 
then 

Then by Newman's Lemma 5.7.(1) we have CR and hence UN (Uniqueness of Nor

mal form) for,•· >. • The other way is as follows • 

• 

10.2.6. THEOREM. 6?. RS 6{• _, (ft•. 
L 
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PROOF. (•) is Lemma 10.2.2.5. 

(•; Suppose~ ex ~•, so V(~,dt•) is like: 
. L 

I 

:~ 
I 
I 
I 

,._ ______ ..J 

• 

We will show that one can directly read off a 'conversion' , say 
• 

Remember the 'construction of diagrams' (6.1), which proceeded as in 

the figure, by adjoining elementary diagrams: 

ro 

r 

are the two given coinitia~ reductions; the 'conversion' (i.e. 

the conversion r 1 a sequence of 
0 

via r~ 
N,ow suppose we have the completed diagram V(tR

1 
,IR2 ) available, and con

sider the following procedure of again filling up the diagram; but now 

starting from the upper right corner: 

1 

2 

This 'dual• procedt1.re is 

«R4 via tR .. Th.at is, every 

either to 

• in fact a , ► -conversion of 

adjunction of an elementary 

• 

the reduction ~ 3 to 

diagram O corresponds 



( 1) a • > -reduction step, in case D is 

or (2) an -expansion1 in case Dis 

or (3) a trivial step, in case O is -• 

p~O times 

f 
I 
I 
t 
I 
I 

• 

• 

I 
I 
I 
I • 
1 
I 
I 

____ j 

p~O 
times 

- - - -

..., ____ .., 
: I 
I I 
I I 
I I 
L----~ 
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in this way yields a f > • -conversion, interlaced with 

trivial steps, of reductions which are also interlaced with trivial steps. 

Omitting all the trivial steps, one gets the desired proper• 1 > -conversion 

from ~3 = ~1 * (IR2/~1) to ~4 = ~2 * (~1/~2). 

In particular, for the IR,~• s.t. ~""' ~• we have a - > -conversion be
L 

tween them. D 

Before for1nulating the corollaries of this theorem, we need the 

10.2.7. PROPOSITION. Lee iR1 , ~ 2 be standard reductions and suppose that 

~ = (R " 
1 2 

-PROOF. This is Prop.2.3.2 in LEVY [78] p.43. We have also proved it, in 

Theorem 9.8.3. (ii) .. D 

10.2.8. COROI,I1ARY .. (i) Every~ -equivalence class contains a unique 

'· > -normal form' (i .. e. standard reduction). 

(iii) Standardization Theorem1 strenghtened version: 

For every~ there is a unique standard reduction~•~ (R. 

PROOF. (i), (iii). Consider an equivalence class[~]~={~•/~~~•}. By 

Theorem 10.2.4.(i) there is at least one '· , -normal form' in [~] • Now 
~ 

suppose there are two different • = -normal forms 6'.l
1 

,<R
2 

as in the figure 

below. 

By Theorem 10.2.S(ii), ~ ,~2 are standard. By definition of F:&, 
1 . 

~l ~ ~ 2 , and hence by Theorem 10.2.6 ~ 1 ~L ~
2

. Therefore, by Proposition 

10.2.7, ~1 = ~2· 
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,\ 
\\ 

\ \ 

,, ,, 

. tR 
2 

(ii) We have just proved the uniqueness of -normal forms (UN). Together 

with SN for 1 > (Theorem 10 .2 .5 (i)) this yields CR (by Lemma 5. 7 .. (2)). 

10.2.8.1 .. REMARK. (i) Corollary 10.2.8. (i) and (iii) are due to LEVY [78]; 

see 2 .. 3.4 Corollaire. .. 
(ii) Theorem 10.2.6 is very close to Prop.2.2.9, due to G. Berry, in LEVY 

[78] p.41, where it is proved that R:IB = ""L; or Prop .. I.2.7 p .. 25 in BERRY-
.... 

LEVY [79] where the analogous fact for 'Recursive Program Schemes' is 

proved. The theorem is even closer to a remark on p.25 of BERRY-LEVY [79]: 

''In fact, it is possible to generalize this congruence only by the pe1.n1u

tation lemma of I.1. 4 11
• This remark amounts to: for Recursive Program 

Schemes, ..... L coincides with the equivalence generated by <, >, where < > is the 

symmetric closure of • :i > for RPS' s. 

10.2.9. REMARK. Note the following correspondence between the present proof 

of the Standardization Theorem and the proof in section 9: in the latter 

proof we had the 'standardization diagram' 

V = V ca:t,<R )_ = 
s s .. " " 

I 
I 

I 
10 
I 
I 
I 

..._ __ ---- __ .J 

• 

having the property that steps moving to the right (s·ee the figure above} , 
• 

do not split. Otherwise said, case (2) in the proof of Theorem 10.2.6 does 

not apply here. Hence the above proced11re yields not only a • , > -conversion 



from <R to 1R, 
s 

but even a • > -reduction from IR to dt : 
s 

(see figure) 

• • 
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IR reduces to (R 
s 

in s1.x proper , -'> -steps. 

iR 
s 

I 
I 

' I 

I 
I 
I 
I 

' _____ ...,_,__.....,..,.... ____ -_A __ ___,. . .. . ' . ..,-.. ~ •.. •• • • • I • • • • ~. ' .. ;•.• 
~·-~ :-: ,,...,,, I 
• •• I 

• • • I •• • •• • • . ... I 

- - - - - :... ~ .. ~: ~:··.'1 -~... - - - - - - - - - - - 4 . . -' . • I . . . ' .. 
•. ' · I I l i . ·;-,; I I l 
. 'IJ,; I 

.•• ,. 1 I l 

:-:: ·:\~ +' : l 
- ---- l-- - - - .....,...._ ----- T 

I I I I I 
I I I 
I I I I I 
I I I I ' 
I I I I I ------ -. : --+-------t- - ----1 

1 1 
: I 

I l I I 
t I I I 
I I ' I ----- -""--4------. ______ j, 

From the proof of theorem 10.2.6 we obtain the following 

10 .. 2.10. COROLLARY. Let (R• ,<R'' be t:wo reduction paths in a diagram V(tR
1

,iR
2

) 

having the same begin and end poin't. Then (R I RS IR''. 

A 

B 

10.2.10.1. REMARK. By Theorem 10.1.2 hence 

B traces back to a unique father sy1rabnl in 

also tR • "'..I IR11 
• So each symbol in 

s 
A, regardless of the chosen 

path. (For ASn-reduction diagTams this property is lost, as we will see in 

Ch. IV .. ) 

10.3. The cardinality of equtval~nce classes [di] 
P.::J 

(1) 

(2) 

In this subsection we will make a few remarks on 

in the AS-calculus card. [IR]~ can be any n1.1mber ~ ~0 , in AI-calculus 

and AT-calculus (typed A-calculus) any n < ~
0

, but not ~0 • 

we will give a condition for an~ to have card. [tRJ = ~0 , and show . ~ 
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that this property of~ is not decidable. 

10.3.1. EXAMPLES. 

Notation: MI"11 := MII ... I(n times I); KI is short for Ax.I. 

(i) 

tR. = 
n-1 

lR 
n-2 

• 
• 
• 

--

n = ww; w = Ax.xx. 

"'I'l-1 
•· > KI {II ) 

'' 11 

ft II 

• 

-4-> .... KI(II) --+-> KII 

••. KI(II) ➔ I 

---KI(III) I 

This example shows that 'vn E N 3<R card [(R~ = n + 1. 

(ii) Let IR = KI.Q --r► Kin ---+-~ ••• 
n 

KIQ --+> I 

n times 

Then ( [(R
0 

]F-':1, 1 • t►) is an infinite ascending chain: 

~ C•;z I tit, < I Gt, ◄ I 0 1 2 .•• 

(iii) The next e~ample shows that also in 

finite number> 0: 

Let~ = II-n(II) 
n 

Then card [~n]~ = 

"".t1. 
--➔ II · I 

n + 2. 

AI-calculus card[~] can be any 
~ 

-·-+➔ I. 

10.3.2. PROPOSITION. There is no infinitely upwardly branching point in 

( [tRJ , , ►) , as in t:he figure: 
F:::S 

I 
I 
t 

, l I 
I I I 
I I • 

I 
I 
I 

I I 

I I 

-- - - - - - - --

PROOF. Let us distinguish two kinds. of , 111 > -steps: 

(a) those in which the ''contract\1m'1 (or p~.tmutation) of the a. s. pair con

sists of at least two -~➔ -steps: 



--- A • > B C ---. ' ., V' • .... 

--- A --·--+➔ B' -) C ---
-1 ---'"""IY • • I 

p~l times · 

(b) those in which the contractum is just one 

They can only be of the fo.:r:ru 

-·-+-· )'- -step. 

--- CC[KAB] C[KAB I J C[A] ----

--- t;[KAB] <C[A] 

where ~[ J is some context, KA := AX.A (x~FV(A)), and B - > B' .. 
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Now consider an tR• as in the above figure. Only finitely many subreductions 

of «fl• can be the contractum of an a. s. pair. (tfi'' is subreduction of 

tR' 1 > 3 tR , tR 6l. * IR 11 * 6{ = cR I ) def. 1 2 1 2 • 

In case (a) the original a.s. pair is completely determined by the con

tractum. 

In case (b) there are just as many original a .. s. pairs as B has redexes. 

Hence tR • can be reached by one -step from at most finitely many 6{''. 0 

10.3.3. DEFINITION. (i) Let ME Ter(A). Then 00 (M) will mean: Mis not SN 

(strongly normalizing), i.e. M has an infinite reduction. (Par abus de 

langage: 1 M is infinite'.) 

(ii) If tR is a finite reduction, cR will denote the unique standard reduc
s 

tion ~ cR. 

(iv) A step <C[KAB] · ➔ C[A]is called erasing. Here KA:= (Xx.A) where 

x 4 FV(A). The term Bis called the argument of the redex KAB. 

10.3.3.1. PROPOSITION. The property 00 of A-terms is undecidable. 

PROOF. Suppose 00 were decidable Then. so was the property ''M is SN'', in 

particular for AI-terms M. Hence for AI-te:r·ms M, the property ''M has a 

normal form'' would be decidable; but is a well-known fact that this is not 
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the case. (See e.g. BARENDREGT [80].) 0 

10.3.4. DEFINITION. Let~ E Ter(A). The labeling I is called strongly ade-

quate for~, iff I is adequate for every reduction --+>- ••• --+)- ©' ( see -
• 

Def • 1 0 . 2 • 4) • 

10.3 .. 4.1. PROPOSITION. Let~ E Ter(A). Then: (J2 is strongly normalizing c:•> 

f has a strongly adequate labeling. 

PROOF. (<=) Follows by SN for labeled reduction (Theorem 8.14) • 

(=>) Suppose~ E SN. Then, by Konig's Lemma, there are only finitely many 

reductions tR. = lf'l-·4-> ••• ··> ID' (J' = 1, ••• ,n). Let I. be a labeling of~ 
J 'l:'.! ~ J 

which is adequate for~- (by Proposition 10.2.4.1, I. exists). Then take 
J J 

I = max. 1 ]= I• • • I fl 
I. in the obvious sense. Now I is strongly adequate for 

J 

□ 

10.3.5. DEFINITION. Let tRI = MI 

~I is called special iff 

- > • • • _ .. ~> NJ be a labeled reduction. Then 

(i) 6t erases only strongly no1.rnalizing arguments (i.e. if 6{ contains a 

step . . . KAB ••• -~>- .•. A .•• , then BE SN). 

(ii) Whenever~ contains an erasing step as in (i) and BE SN, then the 

induced labeling of Bis strongly adequate for B. 

10.3.5.1. PROPOSITION. If~= M -➔► ••• -~> N erases only strongly normal-

izing arguments, 

(RI = MI _ > ..... 

then~ can be extended to a special labeled reduction 
J 

--..),.>- N • 

PROOF. Routine. □ 

10.3.6. LEMMA. If «R 
2 

•·, > <R and 
1 

PROOF. Suppose d't
2 

1 ,> rR.
1 

and 

Def. 10.3.5 we have 

o{I 
1 

• 

is special, then <RI 
2 

is special. 

is special. Corresponding to (i), (ii) 

(i) to show that ~
2 

does not erase infinite arguments. Suppose (R2 does 
• 

erase an infinite argument: 
• 

-+>«:[A]* <R•, where o:>{B). 

Now there are three cases. 

• 

CASE 1. The displayed erasing step is not a member of the a.s. pair of 

steps, which is 'pe:rn1uted 1 in oz2 • > (Rl • Then 6{
1 

contains the same erasing 
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step, and ~
1 

erases an infinite argument; contradicting the assumption that 

CASE 2. The displayed erasing step is the left step of the permuted a.s. 

pair of steps. There are three su.bcases. 

Case 2.1 .. Then 
K 1R

2 
= ... ~•[(AX.--KA(x)B(x)--)D] 

_11.x > (C' [ --A ( D) -- ] · > • • • and 

c' [ --A ( D) -- ] - > • • • arid now dt
1 

B(D) which is still infinite. 

Case 2.2. 

1R 
2 

-- ••• 

- . . 

AX 

K 
4:' [ (AX. P (x) ) ( --KAB--) ] 

(C'[P(--A--)] -➔ ••• and 

' ) .... AX t'[P{--KAB--)] 

ct I [P (--A-..-) J .... 

G'.'.' [ (Ax.P(x)) (--A--)] 

K K K 
> 

p~O 
, I 
times -

erases 

Here p 2: 0 is the m11l tiplici ty of the occurrence of x in P (x) . If p ~ 1, 

then ~l erases the infinite term 

finite argument (--KAB--) in the step 

B"; and if 
AX 

p = O, then ~ 1 erases the in-

• • 

Case 2.3. KAB is disjoint from the Ax-redex. Then iR1 erases B, trivial. 

CASE 3. The displayed erasing step ~[KAB] K 
C[A] is the right step of 

the permuted a.s. pair. Let the redex contracted in the left step of the 

a.s. pair, begin with 11.x. Again there are three subcases. Let R' be the 

contractum of the 11.x-redex. 

Case 3.1. R' ~ A: then ~
1 

erases B 

Case J.2. R' c B. Then: -

n2 = \.fl ••• ¢[KA(--(11.x.P(x))~--) 
AX 

·· - -· r CC[KA (--P ((12) -- ) 
K 

CC [ A J -· --+► • • • 

and cR 
1 

-- • • • -► C[KA (-- (AX. P (x) ) Q--) ] K. > <C[A] - . > ••• 

Now since B = --P(~)-- is infinite, --(Ax.P(x))~-- is also infinite. So 

also (R1 erases an infinite argument. 

Case 3.3. Similar to case 2.3. 

So in all cases 1,2,3 the assumption 

ed. This proves (i). 

I 
that cR1 is special is contradict-
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(ii) To show: (1) I is adequate for ~
2

, and (2) if B1 , •.. ,Bm are the argu

ments erased by 61.
2 

(so by (i) B
1

, .•. ,Bm E SN) and r 1 , .•. ,Im are their in

duced labelings, then r
1

, ..• ,Im are strongly adequate for B 1 , •.• ,Bm. 

The proof of (1) is easy. (Cf. the proof of Theorem 10.2.5 in which 

the converse was proved: if dt 1 ,:> tR and I is adequate for tR2 , then I is 
2 1 

adequate for 61.
1 

.. As in that proof, it is sufficient to consider the case 

that ~
2 

is an a.s. pair. See the figure in the proof of· Theorem 10.2.5.) 

To prove (2), we distinguish two cases. 

Case (a) . The step <R
2 

,,: > dt
1 

is of type (a) , as in the proof of Proposition 

10.3.2. This is the easy case, as an inspection will show. 

Case (b). The step <R_ l > 1H, iS 
2 1 

of type (b) • I.e., the ''contractum'' of the 

a.s. pair consists of just one step: 

We 

of 

(HI= 
2 • • • 

••• 
I' 

C[KAB. ] 
l. 

steps 

<RI 
1 • 

• 

I'' 
C[KAB ~ ] 

l 

• in since the other steps -

The assumption is that the induced labeling I' • 
J.S of B. 

J. 

strongly adequate for B .• Now 
J. 

in the 

this is CJ. thing can be erased; say 
J I' 

for C, since C c B. in 
- .l. 

strongly adequate for B~, since 
J. 

I,, 
B' • J_ 

step(*) which reduces B. to B~, some-
1 .l. 

Then C is SN and J is strongly adequate 

is clear that in the step (**) I'' is 
I' 

is a reduct of B .• This proves (ii). 0 
l. 

10 .. 3. 7. THEOREM. Let tR be a finite reduction. Then: [tR]t is infinite < > cR 

erases an infinite argument. 

PROOF. (<=) Suppose tR erases an infinite argument: 

• • • CC[KAB] -+> .•• where 00 (B) • 

-+> B 
1 

B
2 

· > • • • be an infinite reduction of B. 

Define for all n € JN : 

(Rn = . . . ➔ ct [ KAB ] , ➔• «:: [ KAB l ] 

Then obviously tR = tR <-,, tR < ,, tR 

ence 1.s in 1.n1 e. 
• 

.. . . _..,._> (! [ KAB J 
n 

• • • • 
• ·-

-► «::[A] • • • 

(=>) Let us first remark that by Proposition 10.3.2 and Konig's I,emma: 

I 

' 
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is infinite<> there is an infinite 'ascending' sequence 

• • • • 

Now suppose that the implication which 

So suppose that 

is to be proved, does not hold. 

there is a sequence 

• • • I but that tR nevertheless erases only strongly no:cmalizing 

arguments. 

Then by Proposition 10.3.5.1, tH can be extended to a special labeled 

reduction !'RI. By Lemma 10.3.6 we have now an infinite sequence of special 

labeled reductions <R1 <·" ;,, (R • I < ,, 6{•1 I .. .. . -
But that is impossible, since there are only finitely many labeled reduc

tions of MI ( the first term of o:iI, tR' I, ••• ) and since 1 > is acyclic. {This 

is the same argument as at the end of the proof of Theorem 10.2.5.(i), 

but now for an 'ascending' ; > -sequence, instead of a descending one.) D 

. 

10. 3. 8. COROLLARY. Let <fl be a finit.e reduction. 

(i) [tHJ is infinite < • > tH erases an infinite argument. 
R$ s 

(ii) In AI-calculus[~] is finite, for every tR. - ~ 

T 
Similarly in A -calculus (typed A-calculus). 

(iii) The property '[~],..._, is infinite' is not decidable. ,.....,, 

PROOF .. 10.2.8, (i), (ii). Hence the result 

follows from the preceding theorem. 

(ii) At once by the preceding theorem, since in AI-calculus there is no 

erasing and in AT-calculus there are no 'infinite' te.r:ms (i.e. AT I= SN, 

Theorem 8. 14) • 

(iii) By (i) and Proposition 10.3.3.1. D 

10.3.9. EXAMPLE. (i) Let~ be (Ax.KI(xx))w -~ 

w = AX.XX. 

Then ( [tH] ,· =>) is as in the figure: 
R$ 

I I 
I I 
I I 

<R 
• 

(AX. I) w ., > I, where 
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Note that in no infinite subterm is erased, contrary to 

(ii). Let~ be a reduction from M = [Ax.KI(Iwx)]w to I. 

M KI (Iww) 

[Ax.KI{wx}Jw 
I (ww) 

• 

[Ax.KI(xx)lw KIQ 

Kift 

( AX - I) w 
I 

Then ([tR] , ,, ~) can be pict''..lred as follows (at each node there is a reduc
R:1 

tion which i:.:: indicated as a tuple in an obvious shorthand.) 

(I, w I ).XI w I K) (I,w,K,AX} 

,.Ax,w,w,K) ( I, w,.Ax,K) (I,K,AX) 

( AX , I , {I.), w , w , K) 

(K, AX) 

( AX, I , w , w I K) ( I , AX , w , K) 

().x,I,w,K (I, 11.x, K) 

(AX, I, K) 

(AX, K) 
standard reduction 



11. NORMALIZATION 

11.0. DEFINITION. (i) Let ME AP (a definable extension of A-calculus), 

and R,R' be S- or P-redexes in M. Then: Risto the left of R', notation 

R < R', if the head-sy1·obol of R ( ::\ or P) is to the left of that of R' .. 
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(ii) R ~Mis the leftmost redex in Miff R ~ R' for every redex R' in M • 
• 

The leftmost redex is also called the normal redex, for a reason that 

will be clear soon. 

(iii) A reduction~ (finite or infinite) is normal (or leftmost) if it 

proceeds by contracting in each step the leftmost redex. A leftmost step 

will be denoted as lm .. ~ • 

(iv) A reduction MO )- Ml > • - .l.S - II 

• • • quasi-normal if it is finite, or 

else if 

Vi 3j > i M. 
J lm M. 1. ]+ 

Quasi-norn1al reductions are also called eventually leftmost reductions. 

(v) A reduction is maximal if it ends in a normal form, or is infinite. 

(vi) A class C of maximal reductions is said to be normalizing if for all 

61. E C: 

tR ( 0) has a normal form ' > ~ ends in this nonnal forrn. Here tR ( 0) 

the first term of~; see the following notational convention. 

• 
.l.S 

('Par abus de langage' we will henceforth just say: 'such-and-such 

reductions are normalizing' instead of 'the class of maximal s.a.s. re-
\ 

ductions is normalizing'.) 

11.0.1. REMARK. The terminology •normalizing', 'normal redex' and 'Nor

malization Theorem' is historical (from CURRY, FEYS [58]). One should not 

confuse the property asserted by the Normalization Theorem 11.2 with the 

properties WN and SN (Weak and Strong NoLmalization), which do not hold 

for AS. 

11 • 1 • NOTATION. Let ~ = MO · · > M1 · ·· > • • • 

(i) Then write ~(n) = M for all n (for which 
n 

(ii) (6!) = M 
n n 

n (6!) = MO ►- • • . > Mn. 

So~= (~) * (~) = ~(O) 
n n 

(R ( 1) Ill t > .... 

M 
n 

is defined). 
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11.2. NORMALIZATION THEOREM 

Normal reductions are normalizing. 

PROOF. Let 15{ = M .. » N where N is in normal forrn. By the Standardization 

Theorem (9.7), there is a standard reduction~ = M » N. Moreover,~ is 
s s 

• 

a nor1nal reduction. For suppose not, then dt 'by-passes' in some step the . s 
leftmost redex. By the usual arguments, one proves easily that this by-

passed redex has a residual in N. But N is a normal form. Contradiction. 0 

Next we will prove th3.t quasi-normal reductions are normalizing too. 

For an alternative proof see BARENDREGT [80]; the reason for including an 

alternative proof here is that it lends itself to a generalization to ti.Bn

calculus {Ch.IV). 

10.3. PROPOSITION. Let~ 
qn 

- 4> ••• be a quasi-normal (qn)re-

ducti on . Then : 

(i) k (tR ) ~ ',. ~+1 
,. • reduction, - J.S a qn - . " . qn 

(ii) if 6t N ► ) MO 
• arbitrary reduction, also - , ... 

J.S an - • • • 0 
tR * 6t. - NO ~ - Ii a•->- MO )- Ml )- • - - " l.S qn. ••• • • • qn 

PROOF. Trivial from the definitions. D 

11 . 4.. DEFINITION. Let 6t = M ,, '" ► M 
0 1 ••• be a finite or infinite re-

auction and R c M 
- n some redex in <R. 

R is called secured in~ iff eventually there are no residuals of R 

left (i.e. some M k contains no residuals of R). n+ 

11.5. LEMMA. Let 6t = M 
qn 0 ~ •.. be a qn-reduction, and let RE M

0 
be the 

left:.most redex. 

Then R is secured in 6-? .. 
qn 

PROOF. Almost trivial: the first leftmost step in 

residual of R. D 

11.6. COROLLARY (Quasi-normalization Theorem). 

Quasi-normal reductions are normalizing. 

lit 
qn 

contracts the unique 

PROOF. Suppose M has a norxual for1n· N. Let (Rn = M -
1
-.;> N be the normal re-

duction to N., 

• 
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Now suppose that an infinite quasi-normal (H , 
qn 

starting with M, exists~ 

(!R ) 
qn n 

d1 
qn 

M=M 
0 

M' 
1 

M' 
2 

M' 
n -------

0 

----------- -

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

::.:N 
n 

I~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I M' 

k -- -- ------------------~ 
• • • • 

By the preceeding lemma, and the Parallel Moves Lemma (6.12} for some n 

the projection {R
0
}/(~ ) = 0. 

qn n 
By Proposition 11.3, [(!R ) /{R0 }J * (<R ) is again quasi-normal, hence 

qn n n qn 
R1 ~ M1 is secured in it. 

Repeating this argument we get a k such that 

I.fl I <<R ) = 0, 
n qn k 

and because M = N is in normal form, also n 

Hence~= 

(d't )k/61 = 0. qn n 

M 
n 

• i.e. <St 
qn 

12. COFINAL REDUCTIONS 

ends in the no:rmal forrn. 0 

The reduction graph G(M) of a tenn M, that is the structure 
• 

<{N/M -·» N}, ~>,can be quite complicated and sometimes it is very 

useful to know a cofinal reduction path dt 
C 

= M -· -➔ M' --+➔- M'' -· · > 1· n 
. . . -
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G{) · order to reduce properties of the whole graph G(M) to properties · . M , in 

of lR .. 
C 

12.1. DEFINITION. 

VN e G (M) 3n e JN 

<R is a cofinal reduction path in G(M) iff 
C 

N ➔> <R (n) .. 

/ 

I 
✓ 

C 

G(M) 

N 

,. tR ( 1 )_ 
C 

(R 
C 

'\ 
\ 

' 

In -u-~~r~REGT e.a. [77] some typical applications of cofinal reductions 

can be found. In BARENDREGT e.a. [76] (Ch.II) it is proved that a certain 

kind of reduction called Knuth-Gross reduction is cofinal (for AS as well 

as Af3n). For technical applications, sometimes one needs a refinement of 

this result. Such a refinement will be proved now. In Chapter IV the same 

is done for ABn-calculus. 

12 ... 2. DEFINITION .. lR is called secured iff every redex R in is secured in 

6{. (I.e.: iff Vn Vredex R c <R(n) R is secured in - (ol) - ) 
n 

(See also Definition 11 .. 4.) 

REMARK. Obviously, for all n: 6t is secured c > (Ot) is secured. 
n 

The next theorem is obtained independently in MICAIJ [ 78], where as 

an application a • space saving' reduction !:itrategy is given. When writing 

this section, we learned that the theorem occurs moreover in o 'DONNELL [ 77 J, 

where it is proved in an abstract setting; see Theorem 8 and 8'. our 'se

cured' reductions are called there 'complete' • 

• 

12. 3. THEOREM. Let ~ be a reduction path in G (M). Then: tR is secured · :: tR 

is cofinal. 
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PROOF. Let the secured reduction <R = M r ••• and an arbitrary reduction 

• • • N be given. We have to prove that N -~> {R(k) for some k • 

(see figure) .. Now for s01ne i , lR(i ) 
o a does not contain a 

residual of R0 • Hence by PM(6.12): {R
0
};i

0
(~) = 0. 

By the remark after 12.2 also (i· (~)/{R })*({R). 
0 Q lQ is secured. 

Hence for some ({R0 }*{R1 })/i1 (~) = 0. so for 

i.e. N 

--
M ::N ______ .,._ ____ .,____________ n 

---- ....... --
{R

0
}/. tR=0 

lQ 

0 ..-------------

R --
2 

<it (k) <R' / tR = 0 
.__ --- _ _k ______ - - - -- - ---

tR . 
' 
' 

12.3.1. REMARK. The converse implication does not hold; counterexample: 

Let M = Az.znn where n = (Ax.xx) (Ax.xx), and consider 

--.;.. M - M .•• where every time the right occurrence of Q is 

contracted. 

12.4. DEFINITION. Let M be a AP-term. Consider the set of all S-redexes and 

P-redexes in M, and let N be the result of a complete development of all 

those redexes. Then N is unique (by FD, Theorem 4.1.11 and Prop.6.3) -

NOTATION: M --➔ 
KG 

N. Here 
KG 

stands for 'Knuth-Gross'-reduction. A Knuth-

Gross reduction is a sequence of KG-'steps'. 

Knuth-Gross reduction is called the 'full computation rule' for Re

cursive Program Schemes (see MANNA [74]). 
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12.5. COROLLARY. Knuth-Gross reductions (in AP) are cofinal. 

PROOF. After each complete development of the total set of redexes of M, no 

.residuals are left of the redexes in M. And so on. Hence the KG-reduction is 

secured. D 

12.6. DEFINITION.~ is a quasi-KG-reduction if it is finite or contains in

finitely many KG-reduction 'steps'. 

12.7. COROLLARY. Quasi-KG-reductions (in AP) are cofinal. 

PROOF. Let Mo ••• M n 
be a finite reduction, and let~ 

be a quasi-KG-reduction. Let A -K-G➔ B the first KG-step in~- (See figure.) 

Now by PM(6.12) A - ➔> C is a development of the 

hence (since 
KG 

is in fact a complete development 
' 

residuals of R
0

, and 

of all the redexes in 

B) B ., · » D is the empty reduction .. Repeating this argument, we find that in

deed M · · » 61.(m) for some m. 0 
n 

A 

KG 

B 

KG 

' . . 
' . . . . . . . . ' 

' . ' . ' . ' . ' 
• • • < • • ' • 

' . • • • 
' . 

' . . . . • • ' . . ' . ., . -
' , . . 

• • • • . . .. . . . ' 
• 

C 

• • • . . . D . . . . , . . +------

• • • • • • • . . ·' ~. . 
' . . . . . . . .. . 

• • • • • • • 
• • • . ~- . ' . ' 

• • • • • • ' . ' ' . . ------ . . . .. . ----

• 

M 
n 
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CHAPTER II 

REGULAR COMBINATORY REDUCTION SYSTEMS 

In this chapter we introduce a generalization of the reduction systems 

in Chapter I (subsystems of definable extensions of AS-calculus, such as 

AI, CL, Recursive Program Schemes), which we will call 'Combinatory Reduc

tion Systems' (CRS). A CRS is in fact a TRS (Term Rewriting System) pos

sibly with bound variables. So we will consider variable-binding mechanisms 

other than the usual one in A-calculus; see Remarks 1.17, 1.18, 1.20 below 

for a general discussion and a comparison with some notions of 'reduction 

system' which occur in the literature. 

We will consider in the present chapter only CRS's with two well-known 

constraints: the reduction rules must be 'left-linear' and the 'non-ambi

guity' property must be satisfied. For reasons of economy we use the ab

breviation 

regular= left-linear & non-ambiguous. 

(In Chapter III we will consider some non-left-linear CRS's.) 

In Section 1 we introduce the concept of a regular CRS. Section 2 con

tains the definitions of 'descendant• for regular CRS's (via labels, as in 

I.3), and of 'development'. In Section 3 a proof of the Church-Rosser theo

rem for regular CRS's is given; this is done via an analysis of combinatory 

reductions into a 'term rewriting part• (as in CL) and a 'substitution 

past• (as in A). Some non-trivial technical propositions are required to 

prove even the simple property WCR for regular CRS's (Lemma 3.10). In this 
+ stage the Finite Developments theorem and its corollaries CR, PM (analogous 

to resp. Thm. I.4.1.11 and its corollaries I.6.9 and I.6.12) are not yet 

proved; to obtain FD, which is a Strong Normalization result, we introduce 

'reductions with memory• and generalize a method of R. Nederpelt to the 

class of regular CRS's. Using this method, which seems interesting for its 
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own sake, we obtain FD and hence 
+ CR, PM; now a large part of Chapter I 

generalizes at once to regular CRS's (e.g. Levy-equivalence of reductions). 

In Section 5 we investigate the property 'non-erasing' and state a 

generalization of Church's Theorem (I.7.5) for regular non-erasing CRS's. 

In Section 6 we explore further conditions which ensure Strong Normal

ization for regular CRS's; as in Section 5, an application in Proof Theory 
. HW 

is given. We prove here a generalization of Theorem I. 8 .14 ( A (= SN, etc.). 

Furthermore, Levy's method of labeling (I.3.9) is generalized to all regular 

CRS's, together with the corresponding SN result. This yields a tool to 

prove the Standardization and Normalization Theorem for a restricted class 

of regular CRS' s (viz. the 'left-norn1al' ones) . 

1 • COMBINATORY REDUCTION SYSTEMS 

In this section we will define the concept of a Combinatory Reduction 

System (CRS}. A CRS E will be a pair <Ter(L) ,{p./iEI}> where Ter(E) is 
' l. 

the 

set of terms of Land where the p. are reduction relations on Ter(t). 
J. 

So a CRS is a special kind of ARS, as in I.5. The reduction relations 

P. are generated by reduction rules r.; Red(E) = {r ./iEI} is the set of re-
l. J. l. 

duction rules of E. Ter(L) is built inductively from the alphabet of E. In 

order to define the r. (ie:I) , we will use meta-variables (written as Z plus 
l. 

sub- and superscripts) in a foLmdl way; that is, they serve to define the 

set Mter(E) of meta-terms. There will be meta-variables of 'arity 0', as 

in the definition of, say, the reduction rules for CL: 

,<;z 
1
z z 

2 3 

Kz 1z2 

•• • 

but also of arity > 0, to allow a description of reduction rules involving 

substitution, as e.g. in the rules form~ 1: 

(see I.4.2.1). Here z0 ism-air and the other meta-variables are 0-air. 

Our universe of discourse in this and the next Chapter is the class 
• 

of CRS's; this class will be closed under the formation of substructures, 

as defined for ARS's in Def.I.5.10. In fact that definition has to be 
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slightly extended, since in that case only one reduction relation is pre

sent. Therefore: 

1.0. DEFINITION. Let L = <S,{r./iEI}> and L 1 = <S 1 ,{r!/iEI'}> be ARS's. 
i 1 

Then E' ~ L (E' is a substructure of E) iff 

(i) S' c Sand I' c I, - -
(ii) for all i EI', r~ is the restriction of r. to s•, 

l 1 

(iii) S' is closed under r., for all i EI. 
]_ 

1.1. DEFINITION. The alphabet of a CRS consists of 

(i) a countably infinite set Var= {x,y,z, ... } of variables, 

(ii) the improper symbols (,,,),C,J 

(iii) some set 0 = {~/iEI} of constants 

(iv) a set of metavariables Mvar = {Z~/i,k E ]N }. 
]_ 

Herek is called the arity of k 
z . . 

J_ 

(REMARK. As in Chapter I, the metavariables • in, .. ) 

or (Ax.z0 (x))z1 · >- z 0 (z 1 ) will range over the set of terms; but here we 

will treat the metavariables in a more formal way, using valuations.) 

1.2. DEFINITION. The set Ter of terms of a CRS with the above alphabet is 

defined inductively by 

( i) Q u Var ~ Ter 

(ii) XE Var, A E Ter [x]A E Ter 

(iii) A,B E Ter (AB) E Ter 

provided A is not of the form [x]A'. 

(abstraction) 

(application) 

1. 3. REMARK.. (i) CRS • s having an alphabet and terrr1s as defined above but 

without the metavariables of positive arity, without 1.2(ii) and without 

the proviso in 1.2(iii), are known as Term Rewriting Systems (TRS•s); see 

e.g. HUET [78]. These are CRS's 'without substitution•, such as CL. 

(ii) The proviso in Definition 1.2(iii) is not really necessary, but no

tationally pleasant; see Remark 1.9 below. 

(iii) In [x]A the displayed occurrence of xis said to bind the free oc

currences of x in A. The definition of the notions 'free and bound variable' 
• 

is analogous to that in the case of A-calculus (see I.1}. There are the 

usual problems due to a-conversion (renaming of bound variables, see I.1.6), 
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but as usual they can safely be ignored (here any-way). 

We will adopt the convention that all the abstractors [x] in a te:r:m be 

different .. 

(iv) The usual notational convention of 'association to the left' (as in 

I.1.2) will be employed. Outer 

fold abstraction term [x1][x2 J 

brackets will be omitted. We write an n
➔ 

or [ :,c ]A. A terrn 
• 

➔ 
Q[x]A for some constant Q E Q will be written as 

1.4. EXAMPLE. (i) Let Ebe a CRS such that A E Q. Then (((A[x](xx)}A) 

c:: Ter (l.':}. Using the notational conventions above this te.cn1 may be written 

(Ax.xx) A. Another ~-te.r1n: (Ax.xx) [yz] (yyz). 

(In practice we won't need and will not consider such pathological 

''A-terms'', but in this stage we want to be as liberal as possible in our 

te.rm formation. ) 

{ii) Let Ebe a CRS such that {3,V,&, =} ~ Q. Then 3y. Vx. & (=xx) (=yy) 

a l:-term. 

1.5. REMARK. ACZEL [78] employs a different notation, in which every tei:m 

is denoted by an n-ary function (n~O): F(A1 , ••• ,An) instead of our FA1 .•. An. 

The two notations are practically equivalent; our notation yields more 

terrns, viz. also F ,FA
1 

,FA
2
,... are subte:r.:ms of FA

1 
••• An. (However, when 

A-te.rms are present one can use Ax1 .•• xn. F(x1 , ••. ,xn) instead of F, 

Ax
2 

••• xn.F(A
1

,x
2

, ••. ,xn) instead of FA
1

, and so on.) we have preferred our 

notation to confoLm with the notation in Chapter I. 

Instead of our set Q of constants, ACZEL [78] uses a set F = {F./iEI} 
1 

of forms, each fox.in having an arity <k
1

, ••• ,kn>, an n-tuple of natural n11m

bers (n2:0). A form of arity < > (n=O) is called there a constant, a fo.rn1 

of arity <0,0, ••. ,0> is called a simple form. Term foLmation in ACZEL [78] 

is as follows: 

(i) 

(ii) 

var c Ter -
if FE F with arity <k1 , ••. ,kn> and A1 , ..• ,A € Ter, then 

+ ➔ n 
F([x1 JA1 , ••. ,[xn]An} E Ter, where [xi] (i = 1, ••• ,n) is a string of 

k. variables. 
J. 

So e.g. 'application• .(-,-) is a simple form of arity <0,0>, and 'A-ab

straction' A([-]-) is a form of arity <1>. The recursor Risa simple foLm 

of arity <0,0,0>. An interesting non-simple form of arity <1,1,0> is. en

countered when derivations in ''Natural Deduction• are reduced to a nox.·1nal 

• 



123 

fo:r·1n; see Example 1. 12. (v) • 

t.6. DEFINITION. (1) The set Mter of meta-terms over the alphabet as in 

pef.1.1 is defined inductively as follows: 

(i), (ii), (iii) as in Def.1.2, replacing Ter by Mter 

(iv) H11•••1Hk E Mter 

(2) A meta-term His called closed, if it contains no free variables, 

if every x € Var occurring in His bound by an occurrence of [x]. 

• 
1. e. 

REMARK ad (1): So in particular 0-ary meta-variables are meta-te~ms. On the 

other hand, n+l-ary meta-variables are not in Mter. The purpose of the 

brackets in be clarified in 1.10, 1.11 below. Further-

more, note that Ter c Mter. -
As in ACZEL [ 78] , we will use H, H' , H

1
, ... as ''meta-meta-variables 11 

ranging over Mter. 

1.7. DEFINITION of formation trees corresponding to meta-terms. 

Let HE Mter. Then T(H}, the forma-tion tree of H, is defined by induction 

on the formation of Has follows. 

(i) 

(ii) 

T(X) = X, T(~) 

T([x]H) = [x] 

(iii) -r(AB) = 

T(A) 

• 

T (B) 

(k~O) 

• 
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1.8. EXAMPLE. (i) The terms in Example 1.4 have fonnation trees 

A 

I 
[xl [x] [y] 

X X [z] 

X 
X 

y [x] 

y z 
& 

-- --

X X y y 

(ii) The meta-term 
1 2 0 

(Ax.z1 (x))Z2 (y,z 3 ) has the formation tree 

[x] 

Zi (x) 

1.9. REMARK. Note that by the restriction in Def.1.2. (iii), an [x] has 

only one successor in T(H). Without this restriction, we would have forma

tion trees like 

T ( ( [ X ]A) B) = [x] 

TA TB 

X X 

suggesting that the free occurrences of x in both TA and TB are bound by 
• 

[x], which is not intended since the scope of [x] in ([x]A)B does not ex

tend to B. So the restriction in Def.1.2.(iii) yields the pleasant property 
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that the scope of a variable x equals the whole subtree below that occur

rence of x in the formation tree. 

1.10. DEFINITION. (1) A valuation pis a map Mter + Ter such that 
k 

p(Zi) = A(x 1 , ••. ,xk), i.e. p assigns to a k-ary metavariable a term plus 

a specification of k variables. 

(2) The valuation pis extended to a map Mter + Ter, also denoted by p, as 

follows: 

(i) 

(ii} 

p(x) = x, 

p ([x]H) = 
p(½_) = ~ 

[x]p(H) 

(iii) p(H
1

H2 ) = p(H
1

)p(H
2

) 

(iv) 

Here in (iv) it is meant then 
k 

P (Zi) (pH
1
,. - • ,pHk) := A(pH

1
, .•• ,pHk), i.e. the result of the simultaneous 

substitution of pH. for x. (i = 1, •.• ,k) in A. 
l l 

1. 10 .. 1. REMARK. Given a meta-te1.n1 H and a valuation p, the term pH is ob

tained by performing a nwnber of nested simultaneous substitutions. 

Hence one can ask whether the order in which these substitutions are 

performed, affects the end result- and one may even ask if there is always 

an end result. That indeed every execution of the simultaneous substitu

tions terminates in a unique result, is a consequence of A8m I= SN {Theorem 

I.4.2.5, stating that all developments are finite in AS -calculus), and of 
m 

AS F WCR (the weak Church-Rosser property for underlined AB -calculus, --m m 
which is easy to check) . 

1.10.2. EXAMPLE. Let z2
, z1 , z0 be resp. a binary, an unary, and a 0-ary 
2 2 0 0 1 0 

metavariable. Let H = Z (Z (Z ,Z ), z (Z )) and let p be a valuation such 

that: 

2 
A(x,y) where p (Z ) A -- - xyxz - -

1 
B(z) where p (Z ) B -- - xzy - -

0 
p(Z) - u. -

2 2 0 0 1 0 
Then p(H) = pZ (pZ (pZ ,pZ ),pZ (pZ )) = the 

I 

unique result of a complete 

f.3 -development of (AXy .. A(x,y}) ( (Axy.A(x,y) )uu) ( (Az.B(z) )u) = 
Dl · ----'""-

= uuuz(xuy) (uuuz)z. 
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1.11. DEFINITION. (,1) A reduction rule (in ACZEL [78 J: contraction scheme) 
• • is a pair 

•• (Hl ,H2) of meta-terms, written as H + 
1 

(i) the top of T(H1) is a constant O'i., 

H
2 

are closed, 

meta-variables in H2 
occur already in 

H
2

, such that 

• 

(ii) 

(iii) 

(iv) the meta-variables z~ in H1 occur only at end-nodes of 
l. 

in the 
k + 

form Z.(x), 
l. 

+ 
where x = x

1
, ... ,xk is a string of pairwise distinct 

variables. 

(2) If, moreover, no metavariable occurs twice in H1 , the reduction rule 

H1 + H
2 

is called left-linear. 

(3) The reduction rule a
1 
➔ H

2 
defines a reduction relation, which also will 

be denoted as~, on Ter, as follows: 

for every context~[] (defined analogously as for AS in I.1.5) and every 

valuation p • 

If r = H -+ H , then we will also write _r > for the reduction rela-
1 2 

tion defined by r. A term of the forin p (H1) for some valuation p is called 

an r-redex. 

As usual, ,~ denotes the transitive reflexive closure of ➔-

1 .. 12 • EXAMPLES • (i) ..... • )r 

[x] 0 
0 

l 
1 z0 (x) 

is the rule of 8-reduction. Henceforth we will omit the superscripts of 

meta-variables, indicating their arity, and write z, z1 , z2 , z•, Z", •.•• 

Sometimes we will write instead of a meta-term its formation tree, as 

above, since it often makes the. struct11re of the meta-terrn more apparent. 

(ii) The definition of the re cursor R yields an example of two left-linear 

reduction rules where no substitution is involved (so with only 0-ary 

meta-variables): 
• 

R z
1
z

2 
o --•--+>, z

1 
R z

1 
z

2 
(sz

3
) · )- z

2
z

3 
(Rz

1 
z

2
z

3
} 
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(iii) The reduction rules for 'Surjective Pairing', which we will consider 

in Chapter III, yield an example of a non left-linear reduction rule (the 

third one): 

V
O 

(Vz
0
z

1
) -->- z

0 
v1 (VZOZ1) · >- z1 

V(Voz) (Vlz) -•--+> z 

(iv) A pathological example: 

[x] 

I 

() -
[y] 

I 
z2 (y) 

Let us give an example of an actual reduction step induced by this reduc-
• 

tion rule. Let pZ 1 = A(x) where A= xxK and pZ
2 

= B(y) where B = yS, then 

p(z1 (x)) = xxK and p(Z 2 (y)) = yS, and we have as an instance of the reduc

tion rule the following reduction step: 

~ ( [ x ] ( xxK) ) ( [ y ] ( y S) ) 

[x:= [y:= [x:=I](xxK)](yS) ](xxK) = 
[x:= [y:= 11K ](yS)](xxK) = 
fx:= IIKS J (xxK) = 

IIKS(11KS) K. 

(v) The next example is from Proof Theory; see PRAWITZ [71], p.252. In a 

normalization procedure for derivations (in 'Natural Deduction') we have 

here the 'v-reductions' (i = 1,2): 

zo [ <P 1 J [¢2] zo 
¢. Zl z2 [ 4>. J l. 

0 l. 

cp vcp Zl -'i 
p 1 2 

• 

Here 0~, Pare •rule-constants' for the v-introduction and v-elimination 
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rule. Omitting the formulae~-,~ which function as 'types' of the deriva
i 

tions these reductions can be written linearly as follows: 

(Likewise one can consider the&-,:::,-, V-, 3- reductions in PRAWITZ [71] 

p.252,253; these 5 proper reductions together constitute a regular CRS. 

The vE-reductions induce an ambiguity however. See Def.1.14 and 1.16. for 

the concepts 'ambiguous• and 'regular'.) 

(vi) 

'S-reduction with memory'; see Section 4. 

1.13. DEFINITION. If H, H' are meta-terms, we write H c H' to indicate -er 
that the subterm H' ''occurs at place a'' in H. Here the sequence nt1mhP-rs 

cr = <n1 , •.. ,nk> {k~O) are possibly empty sequences of natural numbers, de

signating the nodes in a tree T(H) as in the figure: 

So H 

< > 

<O> <1> 

<0,0> a.=·· 0,1> <0,2> 
• • 

• 
• • 

• 
• • • 

• • 
• • 

• <O. 
,1 :r., 

• 
• 

T (H) : 

. "; 
: 0,1, ... > <0,1,3> 

• 
• 
• 
• 
• 

• 

<O, 1,-0,0> 
• 
• 
• 

• 
• • 

• 

• 
• 
• 

• 

• 
• 

• 
• 
• 

• 
• 
• 
• • 
• 
• <0,1,2,0> 

· .. · ·<O, 1, 1, 0, O> 

C H'. 
<0,1> 

• 

T (H') 
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REMARK. A shortcoming of the fox1nation trees -r (H') is that the nodes er in 

t(H') are not in bijective correspondence with the subterm occurrences in 

H', as is apparent from the figure above. (If one uses Aczel's notation as 

explained in Remark 1.5 above, and the corresponding formation trees, then 

this shortcoming is removed.) However, for our purposes the trees t{H') 

suffice. 

We illustrate the next definition by some examples. 

(i) Consider a CRS E with the set of reduction rules 

-+> B}. 

Then the fact that the r 1-redex R1 = P(Q(pZ)) contains as subterm a r 2-

redex R
2 

= Q(pZ) is undesirable if one wants to have the CR-property. 

(For R
1 

·> A and also R
1 

➔ PB and there is no common reduct of A, PB) 

(ii) A more subtle case of this kind of ''interference'' between reduction 

rules is given by 

Red(I:) = {P A 

() -

R 

Here, too, there is 'interference'; namely if R = 
for some texrns X, Y, then R --+~ A and also 

R --► FB. 

() 

R 

1 

p 

I 
Q_" 

B} 

s 
I 

X y 

(iii) A reduction rule may also interfere with itself (example of HUET 

[78]): 

if Red(!:) = {P(PZ) · ➔ A} and R = P(P(Px)), then R A and R .. ► PA. 

This leads us to: 
• 
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1.14. DEFINITION. 

(1) Let H1, H2 € Mter. Then a
1 

c; H
2 

( '1H
1 

interferes with 

{i) if H
1

; H
2

: for some p and non-terminal cr ~<>in 

pHl S:cr pH2. 

(ii) if H
1 

F H
2

: for some p and non-terminal cr in H2 , pH1 

An equivalent definition is: 

H ''} 
2 

H1 ft H
2 

iff whenever pH
1 

$ pH
2

, then pH1 S: pZ for some metavariable Zin 

H2. • 

( 2) If r l = Hi ·· · ► Hi and r 2 = H2 
the same) of a CRS, we say that r

1 

a2 are two reduction rules (possibly 

interferes with r
2 

iff H1 ~ H2 • 

(3) Let Red(t) = {r. = H. -~►- H~ l i EI} be the set of reduction rules of 
l. J. J. 

a CRS E. 

Then Red():) (or just E) is non-ambiguous iff 

(i) H. 1- H. for i ~ j, 
J_ J 

(ii) for no i,j EI, r. interferes with r .. 
J. J 

1 .. 15. EXAMPLES. 

( 1) Red (I:) = { 1 Z -~► z} is non-ambiguous, but Red(E') = 

(2) Red(E) : {(Ax.z
1 

(x))Z
2 

(Ax.xx) (11.x.xx) 

is arnbi.guous. 

> z
1 

(z
2

) ( a-reduction) , 

·· > :\x.x} 

{I(IZ) --+-> Iz} 

(3) The following example is from ACZEL [78]. Let r have the rules: 

$-reduction 

• • pairing: Vo(VZ1Z2) > z1 

V 
1 

( Vz 
1 

z 
2 

) .. --> z 
2 

definition by cases: 

iterator: 

R 01z1 ... z -~► z1 n... n , 
• I 
I f 
I 

RO z1 ... z -~➔ z 
n"'Il n n 

Joz
1 
z

2 
· ~· z

2 
J(Sz

0
}z

1
z

2 

• 

• 
J.S • 

l :: 
i 
" ~ 

l 
) 



Then Eis a non-ambiguous CRS. 

(Note that the rules for R2 above are similar to the rules: 

if true then z
1 

else z
2 

if false then z1 else z
2 

(4) Church's o-rule. See CHURCH [41] p.62. 

Let I be AS-calculus plus the rules 

oAB --+

oAB 
I if A = B and A,B are closed normal forrns 

KI if A Band A,B are closed normal forms. 

In fact one should write, as pointed out in HINDLEY [78]: 

Red{Z::) = {S} ll {oAB r[A,B closed nf's, A= B} u 

{oAB -~>- rlA,B closed nf's, A B} 
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to see that~ is a CRS. Note that the infinitely many a-reduction rules have 

no metavariables. Clearly, Eis non-ambiguous. 

(5) Red ( E) - {z1 + z2 '), z 
2 + 2 1 -

Zl + Sz
2 

' )- S(z
1
+z

2
) 

{Z1+Z2) + z3 ), z + (Z2+Z3)} ' 
1 

is ambtguous, in several ways. (Here z
1 

+ z
2 

stands for+ z
1
z

2
.) 

(6) The following very familiar CRS E has constants O (zero), S (successor), 

A (addition), M (multiplication), and E (exponentiation). 

Red(E) = {Azo 
~{zo 

Ezo 

z, Azl (Sz2) 

0, Mz
1 

(sz
2

) 

· .. ► So, Ezl (.Sz2) 

S cAz
1 
z

2
) , 

A(.,4z1 Z2) zl, 

i~ (Ezl Z2) zl}. 

The rules are non-ambiguous and left-linear. 

1.16. DEFINITION. Let Red(I) be non-ambiguous and let the reduction rules 

in Red(E) be left-linear (Def.I.11.(2)). Then is called a regular CRS. 

1.17. REMARK. The definition of CRS's • 
J.S, loosely speaking, the union of 

the definitions of 

(i) the concraction schemes in ACZEL [78], 

(ii) the Term Rewriting Systems as in e.g. HUET [78], 

(iii) the A(a)-reduccions of HINDLEY [78]. 

(See Figure 1.18.) • 
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Ad(i). Aczel's contraction schemes are less general then CRS's, since 

there in a scheme H , , >- H' , the formation tree T (H) has typically the · forn1 

F 

-- -

(I) (II) (III) (IV) (V) 

I.e. all the 'arguments' of F can only have the form (I), ••. , (V). Here (I), 

(II) are special cases of the fo.t1r1 (V) and (III) is a special case of (IV). 

So the meta-terms Hin the LHS' of contraction schemes in ACZEL [78] have 

a limited depth (viz. 4). In our definition T(H) can be arbitrarily deep, 

hence the concept of a CRS also covers that of a TRS. 

ad(iii). Hindley's A(a)-reductions generalize the class of regular (i.e. 

non-ambiguous, left-linear) TRS's. In a reduction rule H ➔ H', Hindley 

admits only 0-ary metavariables (apart from the rule 8). 

Among Hindley's A(a)-reductions are the so-called 8-rules of Church. 

These are of the form 

where the A. 
l. 

in Sc-normal 

B 

(i = 1, ••• ,n) and Bare closed terms and the A. are moreover 
l. 

form. So they are reduction 'rules' without metavariables; 

each rule has only one instance, vamely itself. Moreover the set of these 

rules has to be non-ambiguous. An example was given in 1.15(4). 



133 

A subclass of Hindley's A(a)-reductions and Aczel's contraction 

schemes was considered in STENLUND [72]. There the CR theorem is proved 

for ASncR-calculus; n refers ton-reduction which we do not consider ex-

cept in Chapter IV, refers to Church's o-reductions and R-reductions are 

a generalization of the usual rec11rsor as in Example 1.12 (ii). An inspec

tion of Stenlund's definition shows that (when n is left aside) his A8oR 

is a regular CRS. 

A note on terminology: instead of •non-ambiguous' ACZEL [78] calls 

such a E consistent, HUET [78] says that such a E (for TRS's) has no criti

cal pairs, and ROSEN [73] speaks of the non-overlapping condition. In 

HINDLEY [78] the non-ambiguity of is about the same as his (D2) & (D5) & 

{D6); (D3) is the left-linearity. 

FIGURE 1 .. 18 

Aczel's 
schema's 

.Proof Th. 
reduction 

Hindley's 

RPS 

"CL 

• R 

Te:rrn 

Church's 
a-rules 

regular 

• 11 @ S.P. 

writing Systems 

CLG>VZZ ➔ E 

irregular 

Combinatory Reduction Systems 

Venn diagram of the extensions of various notions of reduction. 

Here 'RPS' is the class of Recursive Program Schemes, as in I.1.13; 'A@S.P.' 

refers to the example in 1.12(iii); 'Proof Th. reduction' refers to the 

reduction rule in Example 1.12. (v), 'R' stands for the recursor (Example 
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1.12. (ii), and CL~Vzz ➔ E refers to a non-left-linear extension of CL which 

will be considered in Chapter III. 

In order to facilitate notation, let us define the following operation 

on CRS's. 

1.19. DEFINITION. (i) Let r
1

, r
2 

be CRS's having disjoint sets of constants. 
' 

Then the direct sum r
1

@ E
2 

is the CRS having as alphabet the union of the 

alphabets of I:
1

, r
2 

and such that Red(E 1eE 2) = Red(E 1) U 

(ii) If i:
1

, r
2 

are CRS's not satisfying the disjointness requirement in (i), 

we take 'isomorphic copies' Ei and I:2 (e.g. by replacing each constant Q 

of 

1.19.1. EXAMPLE. (i} A~ CL as in Def.I.2.5.1. 

(ii) CL EB CL has constants 1,I• ,K,K• ,s,s• and rules 1z -- > z, r•z 
likewise for K,S. 

--> Z and 

1.19.2. REMARK. Although we will not explore the properties of~ systemat-
• 

ically, we will state some observations on EB: 

(i) the class of CRS 1 s is closed under EB; likewise the class of regular 

CRS's. 

(ii) if r
1

, r
2 

are CRS's, then 

El EB I: 2 I= CR => I: l I= CR & E 2 I= CR 

but the converse does not hold, as we will see in Ch.III. If moreover E1 , 

r
2 

are regular CRS's, the converse holds trivially, by (i) and because 

every regular CRS is CR (Thm .. 3.11). 

(iii) According to Def.I.5.10.(1), a CRS Eis consistent iff not every two 

I-terms (including open E-terms, i.e. containing variables) are convertible 

by means of the reduction rules. In particular, iff :Z:: 1:# x = y for dif-

ferent variables x,y. Now we have 

Here =>is obvious, and to see "4=, let E
1 

be CL and r
2 

be the CRS having 

constants P ,Q and as only rules Pz > z and Pz ► zz. Then in E 
1 

e E
2

: 
• 
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PK1xy K!xy > 1y y 

--r KK1xy - Kxy -➔> x. 

When r 1 ,r2 are moreover regular, then the converse implication does hold, 

as a consequence of (ii). 

(iv) As for the property Strong Normalization, we remark that obviously 

E1 EB I: 2 I= SN => L 1 [= SN & r
2 

[= SN; but again not conversely. 

A counterexample is given by the regular 

stant and as only rule Kzz• 
rule P (Q.z) - zPP (Q_z) • 

TRS's Ll having K as only con

having constants P,Q and as only 

Then trivially I: 1 I= SN, and also t: 2 I= SN, since in I:
2 

no new redexes can 

be created (therefore z::
2 

= t
2

, and by Theorem 4 .. 15 below: L
2 

[= SN). 

On the other hand, I 
1 

EB [ 
2 

- tJ: SN, because P ( QK) >- KPP ( "0.K) , · > P ( Qt() • 

(Question: does the converse implication hold if r
1
,r

2 
are both RPS's?) 

1.20. REMARK. In the study of CRS's we consider, next to the Term Rewriting 

part, reductions involving general mechanisms of variable-binding. One can 

ask whether this is necessary: it might be thought that the way of variable

binding and substitution as in A-calculus ('the theory of functional ab

straction') is sufficient, especially in view of a remark in CURRY-FEYS 

[56] p.85,86 in which it is stated that ''any binding operation can in prin

ciple be defined in terms of functional abs-traction and an ordinary opera

tion'', and that '' the theory of functional abstraction is tant:amount: to the 

theory of bound variables.'' 

A similar remark is made in CHURCH [56] §06, p.41: here A is called 

the 'singulary functional abstraction operator', and it is stated that 

''all other operators can in fac"t be reduced to this one''. 

Indeed it is not hard to see that for the notation of terms, the 

operator A suffices. In CURRY, FEYS [56] examples like• (3x)X = E(Ax.X)' 

are given to that effect. 

As to reduction of terms, however, and the corresponding syntactical 

questions such as the Church-Rosser Theorem, the Parallel Moves Lemma, it 

seems to us that one cannot claim that the theory of bound variables is 

tantamount to that of A-abstraction. Let us try to make this more precise: 

DEFINITION .. Let 

B = ( :\x. z (x) ) z' 

• 

be a CRS such that Red(E) contains the rule 

z (Z') as only substituting rule, next to Ter1n Rewriting 
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rules. Then we will call I: a A-TRS. 

EXAMPLE .. :\$CL is a A-TRS; in general, if 

:\-TRS. The converse does not hold, e.g. if 

is a TRS, then:\~ Eis a 

is such that Red(E) = 

written as A$ some TRS. 
• 

REMARK. Hindley' s A (a)-reduction systems are in fact regular A-TRS • s. 

Now we can interpret the statement from CURRY-FEYS [56], cited above, 

as claiming that 'the theory of CRS' s is tantamount to the theory of 
• 

A-TRS's'. 

Indeed, it is not hard to show that for every CRS I: there is a 

* A-TRS E, having the same terms (modulo inessential notational differences) 

and such that for all tex111s A,B: 

(i) 

(ii) 

I= A > B 

I= A· >>B 

I:* I= A -➔> B, and hence also 

z:* F A 

As a typical example, let E have the rule 

r = P ( [ x ] Z 1 
( x) ) ( [ y ] Z '1 

( y) } ,. ➔ A z • Z 11 
( Z • ( z ) ) ) 

• 

(Z •, Z'' unary metavariables) then r* will have instead of r the rule 

* r = Pz 1 z2 ·- > Az.z2 (z1z) (Z
1 
,z

2 
0-ary metavariables). 

And now for terms tt:
1 
[x], <e

2
[y] we have in I:: 

in one step, while in * :E : 

• 

. . 

r* 

. Jiz. {Ay.«!
2
[y]) {(A.X.CC

1 
[x]}z) ,. ), ¢ ➔ 

S 8 

However, in general the converse implication does not hold in (ii) above: 

r* has too many reduction possibilities. So to prove e.g. the CR theorem 
• 

for E it does not help, a priori, to have CR for r*. 
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In fact, it seems to us that the theory of CRS's is a refinement of 

that for A-TRS's; essentially the refinement amounts to the fact that many 

step reductions such 

single step {in E). 

. * as in the example for L above can be dealt with as a 

Furthertnore, let us mention that reductions like r in I: above, do in-

deed in a natural way occur: namely in Proof Theory (see. Example 1.12(v)); 

we will return to that later. 

Finally: our wish to consider more general variable-binding mechanisms 

arose also in order to have maximum flexibility in defining 'odd' reduc

tions, like e.g. S[ ,] (as in Example 1·.12(vi}, (vii)). 

2. DESCENDANTS AND LABELS FOR COMBINATORY REDUCTIONS 

The following definitions are analogous to Def.I.3.1 and I.3.2. for 

~S-calculus. To each CRS Ewe assign a 'labeled' CRS EA. 

2.1. DEFINITION. Let~ be a CRS and A= {~,a,b, .•. } be a set of labels, in

cluding the empty label 0. Then M = Mter(EA), the set of meta-terms of rA, 
is defined inductively as follows: 

(i) 

(ii) 

(iii) 

(iv) 

a EA, 

a EA, 

x E Var, Q a constant of E 

XE Var, A EM (a ( [x]A)) 

(a (AB)) E 

2.2. NOTATION. 

=> (ax) , (aQ) E M 

E M 

EM (all i,k~O). 
• 

(1) Instead of (aA) we will write a 
A ; we used the notation (aA) to show 

that the labeling can be seen as 'internal', i.e .. that a labeled combinatory 

reduction is just another combinatory reduction where the labels are new 

constants. 

(2) 

(3) k 
Note that meta-te:rms Zi (A1 , .•. ,1\_) (i,k~O) do not carry labels; there 

is no need for that, since the metavariables Z will be metavariables for 

labeled terms in EA. 
(4) Analogous to Def.I.3.1, we will write !:A-meta-te:rrns also in the fo:rm 

A I where A E Mter { E) and I is a labeling of the subte1.1ns of A. 

2.3. DEFINITION. (i) To each reduction ruler E Red(E) we associate a set 

rA of reduction rules: 
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if r = B -+ B', then (HI > .. H') E r A for eve.ry labeling I• 

(ii) Red(EA) = U {rA Ir E Red(r)}. 

(1) If Sz z z -~► z z (Z z ), then rA consists of all 2.4. EXAMPLE. r = 1 2 3 1 3 2 3 

reduction rules 

• 

2 3 

for all a,b,c,d € A. 
(2) If r = a-reduction rule, then rA consists of all rules 

for all a,a',b,c EA. 
(Cf. the definition of BA-reduction in I.3.2. To get the latter, take 

a,a' =¢;so rA contains all rules 

' l 

2.5. DEFINITION. 

I labels all the 

of A if 

sub-meta-terms of A by a different label F 0-

It is now a simple matter to define the concept of descendants for 

regular CRS's. (In fact the definition applies to left-linear CRS's.) First 

we need a proposition. 

2.6. PROPOSITION. (i) Let Ebe a CRS. Then EA is a CRS. Moreover: 

Red (E) is non-ambiguous ,·> Red (!A) is non-ambiguous. 

Red {E) is left-linear · ► Red (!:A) is left-linear. 

(Hence, if Eis a regular CRS, then EA is one.) 

(ii) Let I: be a left-linear CRS. If M R ➔· M' is 
r 

there is a unique labeled rule r' E rA such that 

a reduction step in 
I RJ 

M 
r' where 

che contracted r•-redex corresponding to the r-redex R in M • 
• 

then 

• 

• 
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PROOF. (i) The main point to check is that Red(LA) is again non-ambiguous. 

Suppose not, and consider an ambiguity. Then it is not hard to see that 

erasing the labels yields an ambigt1i ty in Red (I:) • 

(ii) Routine. D 

2.6.1. REMARK .. The restriction in Proposition 2.6(ii) to left-linear CRS's 

has the is necessary. For, let E have as only ruler= Vzz -➔ Z; 

set > zl a,b EA}. Now consider M 
r 

ap:nlies to 

2.7. DEFINITION. Let L be a left-linear CRS. Consider a step M 

and a subterm N S M. ''Lift'' this reduction step to the step MI 

• >
r 

), 

r' 

M' in 
I' 

M' 

EA, where I is sorr.1e initial labeling and r' is the suitable rule E r A 

(unique by Proposition 2.6). 

• in 

Then the descendant(s) N' ~ M' of N are those subterms of M' bearing 

the same label as N. 

2.8. REMARK. ( 1) Note that since tr:e right hand side of 

is unlabeled, an r-redex p(H) has no descendants after its contraction. 

(2) Descendants of a redex will also be called residuals. 

(3) Note that, contrary to the case of AS, in general in a step M ·- ) M' 

not every subterm N' ~ M' has an ancestor N ~ M (i.e. a subterm N of which 

N' is a descendant). We remarked this already for CL in Example I.3.4.7. 

However, if N' has an ancestor N ~ M, it is unique, since I was an initial 

ln.hA l.ina in Def.~. 7 .. 

2 .. 9. To every regular CRS L we will associate an underlined version, E. 

(Cf. I.3.5 and I.3.6 where A is defined.) 

2.10. DEFINITION. Let be a regular CRS, having Q as set of constants. 

Let Q be the set {Q/Q E Q}. Now define E to be the CRS such that 

(i) the set of constants of Lis Q u Q, 
➔ 

(ii) r == ( :2:M · ➔ H 1 
) E Red ( r ) , then r = ( QM ► H ' ) . 

(Note: Q's occurring in M, H' are not underlined in r.) 

2.11. REMARK. (1) E c L{ }; or more precisely, E can be 'isomorphically 
- 0 r 1 

embedded' (in the usual sense) in~o r{O,l}· 

(Cf. the definition of A from A{O,l} in I.3.5.) 
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Hence by Proposition 2.6, Eis again a regular• CRS. (Obviously, 

i:' c i: & E is regular = , > I: 1 is regular .. ) One can also check directly that: 

i: regular > I: regular; we will omit the routine verification. 

( 2) The main feature of E is that in i:-reductions M .. ·>- • • • ~ N there is no 

creation of E -redexes; cf. the analogous case of AB. I.e. in a i: -step 

A · · >- B every -redex in B is a residual of a - - -rede~ in A. Again the 

verification of this fact is routine. 

2.12. DEFINITION. {i) Let Ebe a regular CRS and L the underlined version. 

If Ot' is a r -reduction and cR is the r-reduction obtained by erasing the 
• 

underlining (i.e. replacing.£ by Q), then we will call «Ra (L-) develop

ment. Par abus de langage, we will call sometimes also «R• a development. 

(ii) If, moreover, cR' terminates in a E-normal fo:r·m, «R will be called a 

complete (E-) development. (Note that «R does not necessaril.y end in a I:

nox:1nal form; cf. the case for AS . ) 

2 .. 13. REMARK. (i) The I disjointness property' (Def. I. 4. 3 .1) , stating that 

the descendants of a subterm are disjoint, and which was seen to hold for 

one-step reductions in AB-calculus and even for S-developments (I.4.3.7), 

fails here at once: consider e.g. a rule 
• 

O[x]z (x) - -+➔ Z (Z (I)) • 

(ii) O'DONNELL [77] states on p.89 (def.22') some axioms for 'pseudoresi

duals' and on p .. 23 {Def. 22) for residuals. These axioms require some 

well-behaviour of his pseudoresiduals. The residuals which we have intro

duced above for CRS's do not fali under the scope of O'Donnell's defini

tion, since our residuals can be very much entwined even after one step, 

(which is forbidden in O'Donnell's definition), e.g.: 

Q.([x]z
1 

(x)) ([y]z
2 

(y)) 

(iii) It is simple to see that Levy's AL-calculus (see I.3.9), typed 
HW 

A-calculus (I.3.8) and A -calculus (I.3.7) are regular CRS's. (I.e. the 
L L-labeling and the HW-labeling can be viewed as 'internal' • ) E-.g. A .: 

• 

I 
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{a(:\xz
1 

(x)))z
2 - a.Z1 (-a.Z2) 

111 (notation) Ill (notation) 

for all a. E L as defined in I. 3. 9. So the a E L and ''-'' are constants of 

'L. the CRS /\ 

3. THE CHURCH-ROSSER THEOREM FOR REGULAR COMBINATORY REDUCTIONS 

One of our aims in the next sections of this chapter is to prove for 

regular CRS's E that 

( 1) 

(2) 

}= FD , i . e • E I= SN (Finite Developments) 

l= + 
CR, i.e. the strong version of the Church-Rosser theorem, 

analogous to Theorem I.6.9 for definable extensions of AB . 

For :\(a)-reductions, a proof of (1), (2) is given 

TRS's by LEVY-HUET [79]. ACZEL [78] proves CR (not 

by HINDLEY [78 '], 

for + . 
CR) for his con-

traction schemes by a method analogous to that in the well-known proof of 

AS F CR of Tait and Martin-Lof, see e.g. BARENDREGT [80] or [77] .. 

In the proof of (1), (2) for all regular CRS's we have the problem 

that the two methods used in Chapter I to prove AS j::.: FD are not of much 

help here: Micali's proof (Lemma I.4.3.3) based on the disjointness proper

ty of AB-developments does not work here since DP does not hold for all 

regular CRS's, see Remark 2.13.(i); the proof using 'decreasing weights' 

as in I.4.1 might be extended to the present case, but such an extension 

seems very complicated. 

Therefore we will split the problem to prove FD, and hence 

two parts: reduction in a CRS can be analyzed into 

+ 
CR I into 

{a) a 'Term Rewriting part' where subterms are manipulated (multiplied, 

erased, p~rmuted) as in a TRS, and 

(b) a 'substitution part', as in :\$-calculus. 

To do that, we introduce for each CRS Ea CRS Ef {where the substi

tution part is suspended or 'frozen'} and a CRS EfS' as follows. 

3.1. DEFINITION. To each regular CRS Ewe assign a CRS Ef as follows. 

(i) The alphabet of Ef = alphabet of Eu {A,-}. 

(ii) The map f
0

: Mter(E) · · ► Mter(Ef) is defined by 

• 

• 
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f Q ( X) = X I f Q ( Q_) = Q_ 

f 0 ([x]A) = [x]f
0

(A) 

f O (AB} = fO (A_} f O (B) 

f O ( z (H 
1 

, .... , !\) ) = ( :\x 
1 
••• xk. z ( x 

1 
, ••. , xk) ) f 

O 
( H 

1 
) ••• f 

O 
( Hk) • 

(iii) fl: Red (Z:) ), Fed (t.: f) is the map assigning tor= H >- H' the rule 

f 
1 

(r) - H .... > f
0

(H'). -
(iv) Red ( I: f) - {f 

1 
(r) I r E Red ( E) } .. -

3.2. DEFINITION. LfB has the same alphabet and rules as Ef plus as extra 

rules ~-reduction for all k ~ 1: 

► z O ( Z 1 , • • • , Zk ) 

S (m for 'many') , .. m will denote the union of the ~-reductions (k~1), • as 1.n 

Def.I.4 .. 2.2 .. 

3.3. ~~:::::~~- (i) Zf and EfS are evidently again regular CRS's, since the 

LES's of the rules are unaltered. 

(ii) Obviously, if in I:: A -~ 
r 

the E-reductions are separated 

'substitution part' B. 
- m 

(iii) Note that Ef is in fact a TRS, by considering the variables x,y, •. , 

which do not play that role in Ef anymore, as new constants. (This remark 

is meant heuristically and we will not prove it.) 

3.4. EXAMPLE .. (i) 'Frozen' AB-calculus, (AS)f, has as only rule (writing 

AX for A[x] in the LHS): 

(ii) If Eis a TRS, then I:f = E. 

3. 5. DEFINITIOl.J'. Let I: be a regular CRS. Then E I= + WCR iff 
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AO R Al 
r1 I 

I 

R2 r2 r I 
21 

I 
I 

NI, 

------➔>-'i' -
A2 r 1 , A3 

A. by contraction of an r.-
1. . l. 

redex R. 
l. 

(i = 1,2), there is a coIIm1on reduct A
3

, to be found by a complete 

r.-development 
l. 

of the set s. 
l. 

of residuals in A. of R. ( i = 1, 2) . 
l. l. 

(Remark: We do not yet know that all developments of the sets s. (i = 1,2) 
l 

are finite, nor that all complete developments end in the same t~:rn1. At 

this stage, we do not know even that there is a complete development of 

Later on, in Lemma 3.9 and Theorem 4.15, all this will be proved to hold 

indeed.) 

s .. 
J_ 

Checking that E ~ + WCR (for E regular) is no longer as trivial as for 

AS-calculus, due to the possibly complicated substituting behaviour of 

CRS's. Therefore first: 

3.6. LEMMA. Let Ebe a regular CRS. Then LfB ~ + WCR. 

PROOF. This requires a consideration of the following cases: 
• • • 

(i) A B (ii) A (iii) A B 

f
1 

(r) f 
1 

(r} I 8 I I m 
f 

1 
(r' ) I 8 I 8 I 

I ~ Ill I I 
I I I 
I I I 
I ______ j ___ _. 
•n -- -- C D C D C 

and checking that indeed the co111ir1on reduct D · can be found by reduction of 

residuals of the redexes in question, 

This is just as easy as checking that 

as required 

A$ ~ WCR+ 
m 

+ by the property WCR. 

and that every TRS l= WCR + 

(in fact for that reason EfS was introduced), and we omit the actual veri

fication .. D 
• 

With the aid of the concept I:fS we wil.l now first prove a weak fo.r:m 

of FD for regular CRS 's E (namely that !: ~ WN) and get CR as a corollary • 

• 
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After introducing some more theory (the elaboration of 

due to NEDERPELT [73]) this is used to get the full FD 

a method originally 
+ and CR theorem. 

In the next few pages we will prove to that end some technical (but 

intuitively clear) propositions; the main activity thereby is 'label 

tracing' • We will allow ourselves a bit of inforr,1ali ty in the description 

of this activity (in the same spirit as when one speaks ·of 'diagram chasing• 

in e.g. category theory), since a more formal treatment would probably not 

be more perspicuous. 

The next Proposition prepares the way for the main Proposition 3.8 .. 

• 

3.7. PROPOSITION. EfS F FD. I.e. every rf8-development terminates. 

PROOF. Let ME Ter(EfS) and let an underlining of the headsymbol of some 

set lR of redexes in M be given. Furtherrnore, let 1H be a reduction of M in 

which only underlined redexes are contracted. We have to prove that~ is 

finite. 

The proof is a straightforward extension of the proof of Theorems 

I.4.1.11 and I.4.2.5, using the method of 'decreasing weights', and will 

therefore be omitted. D 

3.7.1. EXAMPLE. Let E have as only rule 

Then EfS has the two rules 

' . : ) 

Now in L every reduction starting with (Qx.xx) (Qy.yyy) is infinite; in 

I:ff3 we have the ter1ninating reduction: 

(ig<.xx) (Qy.yyy) .. · ► ()i.a.aaa) [ (Ax.xx) (O_y .. (11.y• .y'y'y' )y) J 

· » MM (MM) (MM) (where M :: Qy. yyy) , 

• 

• 
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The 'main proposition• says nothing more than that a 'separated' com--
plete development tR of a set of redexes in a I:-ter1r1 M, where 'separated' 

means that~ takes place via rfB' can be replaced by a complete development 

~• in I of the same set of redexes. 

3.8. PROPOSITION. 

complete development in Ef complete f3 --m 
+ 

of P, a set of f 1 (r)- evelopment 

redexes 
-------------..J' 

ME Ter(L)ci;:...1111; --- -------~---------» M'' E Ter (I) 

complete development in E of the 
➔ ➔ 

same set of redexes P, now r-

redexes 

Let M be.a r:-term, and P
1

, .... ,Pn be a set of resp. r 1 , ... ,rn-redexes 

in M with r 
1 

, ••• , r n E Red ( i:) • Since Ter ( E) .::: Ter ( E f) , M is also a r f -terrn; 
• 

and P
1

, ... ,Pn are resp. f 1 (r 1 ) , ... ,f1 (rn)-redexes in If. 

Now let M' E Ter(Ef) be the result of a complete development (c.dev.) 
➔ 

of the f 
1 

(r) -redexes P, and let M'' be the complete 6
1
n-development (in EfS) 

➔ 
of all the AX-redexes which have originated by the c.dev. M » M'. So 

M '' e: Ter ( E ) • 
➔ ➔ 

Then there is a c.dev. in E from M to M'' of the r-redexes P. (See 

figure above . ) 

PROOF. The proof is in five parts. 
➔ 

(1) In case n = 1 (in P = P1 , •.• ,Pn) the proposition 

from the definitions of Ef and zf8 . In the case that 

follows immediately 

the P.-redexes are 
1 

disjoint, the pr@position follows also immediately by the previous state

ment. 

(2) Reminder: B -developments have the disjointness property. (Corollary 
~ -

I.4.3.10) i.e. if MS -develops to M!, then the residuals in M' of a sub
m 

te~m N ~Mare pairwise disjoint. 
• 
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(3) 

B -dev. V 
m 

disjoint ---- -----
M'' E Ter (LfB) f 1 (r} 

I 
I 
I I B

1
il-dev. 

I 
I 

I 
I 

w, 
• 

fl3 

CLAIM. Let ME Ter(I:ff3) and M' be the result of an f 1 (r)-contraction, M'' 

of a B -development (not necessarily complete) • Then a common reduct M•11 

-m 
is found by a S -development of M' and a development of the (by (2) dis

-m 
joint) £

1 
(r)-redexes which are the residuals of the contracted f

1 
(r)-redex 

in M. (See figure above.) 

PROOF OF THE CLAIM. In Lemma 3.6, we proved that rfl3 F + WCR. So, we can 

try a successive addition of the elementary diagrams (e.d.'s) shown in the 
' 

+ proof of Lemma 3.6, like in the proof of CR in I.6.1, to find a common 

reduct. That the thus obtained reduction diagram V 'closes' indeed, follows 

from the fact that EfB F FD (Proposition 3.7) considering that all the 

reductions in V are f 1 (r)- and ~-developments. 

Finally, by the construction of V and properties of the e.d. 1 s it is 

obvious that the £ 1 (r)-development M'' -» M•' thus obtained is a development 

of residuals of the original f 1 (r)-redex in M. 

(4) M E 

complete 
13 -deve1-ooment -m -

----- -----
M 1' E Ter (t) r 

I 
I 
!complete 8 -
I -m 
1development 
I 
I 
I 

M''' E Ter (I:) 

CLAIM. Given M.,M • ,M'' as in the figure., there is a connnon reduct M''' E Ter ( i:) 

which is the complete S -development of M' and which is obtained from ·m 

• 
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• 

M" E Ter(t} by a complete development of the r-redexes which are the resi

duals of the original f
1 

(r)-redex in M. 

PROOF OF THE CLAIM. By (3), (1) and the following figure: 

M M1 

c.8 -dev. 
iil 

M'' 

f 
1 

(r) 

disjoint 

r 

13 -dev. 
m 

c.B -dev. 
-m 

M''' E Ter (I:) 

(5} Finally we can prove the proposition. Let ME Ter(E), 

and M'' E Ter (:E) be given as in the statement to prove: 

ME Ter (L). p 

empty 
complete 
S -dev. 

m 

M 

• 

c. 
B -m 

p 

c. 
ev. B 

Ill 

------ - --------

c. 
ev. Sm dev. 

r 
n 

c. 

c.8 -dev .. 
iil 

~i '' E Ter ( :E ) 

I 
I 
I 
I 

B - ..... ev. 
I 
l 
I 
I 
I 
I 

IU 

__________ _j 
M" M'' 

Then repeated application of (4) yields the proposition, using (ad(*) in 

the figure above) that 

empty reduction (since 

the complete S -development of ME 
IIl + 

M does not contain AX) and (ad(**) 

Ter(t) is the 

in the figure 
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above) that the 

• 

• 

result of a complete S -development 
Ill 

3.9. COROLLARY. E I= WN. 

• • 1.s unique .. 0 

I.e. for every E, the corresponding underlined I: satisfies Weak Normaliza

tion. Or in other words: for every E-term M there is a terminating complete 

development of a given set of redexes in M. 

PROOF. Let ME Ter(r) and let lR be a set of redexes in M specified by 

underlining their head symbol. (So (M, IR) e: Ter (I:) .. ) Now working in I:fS, take 

a complete development M » M' E Ter(EfS), and next the complete 

opment of M': 

S -devel
r11 

M E Ter (E) ----;::. M' E Ter ( " ) ------,» M'' £ Ter (I:) • 
t.,fO Q -d· <;;;. 

µ c -~µ""" ev. 
Ill 

• 

Then apply the proposition above to get a complete development M ~>> M'' now 

taking place int. D 

3 .10. LEMMA. Let E be a regular CRS. Then I: I= + 
WCR • 

PROOF. (1) Let reductions A0 
be given .. 

+ 
··► A. (i = 1,2) as in Definition 3.5 of WCR 

1. 

(2) Perforrn the same steps but now 'separated 1 
, 

• 
1.. e .. • via • 

( 3) Complete the reduction diagrams V
O 

,V 1 ,V 
2 

,V 
3 

as in the figure below .. 

That these completions are indeed possible, is easily checked by some 

.routine arguments. (See figure on p.149.) 

Here IR2 is the set of f 1 (r
2
)-residuals of the f 1 (r2)-redex R2 in A0 ; JR2 

the set of £1 (r2)-residuals of the redexes in JR.2 , etc. 

By a label-tracing argument (color the original redexes R1 ,R2 red 
-+ 

resp. blue and correspondingly the Ax's originating from them; so we have 

red, and blue ~In -developments; since A 1 contains no red and A 2 no blue, 

~ 3 is colorless) it is obvious that A 3 E Ter(I). 

• 

• 

. 
• 

' • i 
. ! 

J 

• • 
' 
~ 
' . j 

' . . 

• 

' '• . 

' . 

'i 
i 

-; 

' 
' • 

. . 
1 
• 

• 

• 



/ 
/ 

/ 
/ 

/ 

I ]RI 

JR'' 
1 

• 

r 1 -redex R1 

B -m 

• 

B -m 

• 

a 
in 

Finally, using Proposition 3.8 yields complete developments as re

quired: 

A r
1
-redex R 1 --/ ,, 

/ ,I 
,I / 

,I ,I ,, ,, 
~✓---------------- "Al 

r -
2 

c.r1-dev. 

of lR'' = 
1 

lete 

ev. of :ffi.'' = lR 2 2 

149 

where it is routine to check that m.1 , as defined above, equals lR1 , the 

set of residuals of R
1 

after contraction of R2 , and likewise with 1,2 in-

terchanged. D 
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3.11 .. THEOREM. I: ~ CR, for every regular CRS I:. 

PROOF. 

as in the 

proof of the preceding Lemma, we can now 'fill in' block-by-block of the 

VE behind and 

MO Ml M2 M3 

vr. 
MO 

M' 
01 

M' 
1 

M' 
2 

, 
, ,, 

M01 / 

----

M1 
, 

; 
/ ,, ,, 

/ 

! 

" ,, 

/ ,, ,,, ,, 

M12 

Note that after having 'lifted' the edge M
0 

of VE to the edge 

Mo > Mo 1 - >- Ml , ·► Ml 2 ,. . ► • • • Mi 

M2 .,,," 
,, 

,, 
/ 

" ,, 

LP I ii ... ), .... 

of the auxiliary diagram VE , the construction of VE follows by 
f8 

a projection {using Proposition 3.8) of the construction of V 

M' 
1 

• 
• 

D 

:EfS 1 

as in the proof of the preceding Lennna. 

3.12. REMARK. The status of several analogues to the case of AS-calculus 

in Ch.I is not yet clear, namely: 
• 

(1) FD; if ME Ter(E), then all developments of the underlined teLm 

(M, JR ) E: Ter ( E) te:r1ninate. 

11 J t 
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(2) The Parallel Moves Lemma (cf.I.6.12). 

(3) + 
CR; the 'stepwise' diagram construction by adjunction of e.d.'s 

terminates. 

In fact it is sufficient to prove FD; for then PM and CR+ are corol

laries. That FD holds for Z:, i.e. L I= SN, will be a corollary of a general 

method to reduce SN-proofs to WN-proofs. This will be the next subject . 

• 

4. REDUCTIONS WITH MEMORY 

The difference between A-calculus-and AI-calculus is that in the 

former subterms can be erased. This is the reason that some pleasant prop

erties of the AI-calculus fail for 11.-calculus; see I. 7. We will now asso

ciate to each regular CRS Z: a regular CRS E[,J in which there is no era

sure. This will lead to a method to reduce SN-proofs to WN-proofs, de

scribed in the next section; corollaries are the theorems FD, CR+, PM for 

regular CRS • s E. 

4.1. DEFINITION. Let Q = {~ I • 1 E 

the set of constants 

I} be 

{~ I 
the set of constants of E. Then 

i E I} u { P}. 

4.2. NOTATION. (i) Instead of PAB we write [A,B]. The subterm Bis called 

the memory part of [A,B]. 

(ii) [A,B1 , ... ,Bn+l] := [[A,B1 , ••• ,Bn],Bn+l] 

(iii) If B = B1 , ••• ,Bn we will sometimes write 
+ 

~ for [A,B], when it is 

typographically more convenient; we will even employ both notations simul-

taneously in one term, as e.g. 

(iv) If HE Mter(E), 

* head s ..,.,, 1 Q by Q • 

* then HE 

in [A,Bc]. 

Mter (I:[,]) is the result of replacing H's 

4.3. INTUITION. To motivate the next definition, consider the 

TRS: r =CL~ Pairing, with constants I,K,S,V,V
0

,V1 and rules: 

rz .. · ➔ z, Kz Z -.. ~► z
1

, sz
1
z

2
z

3 1 2 

Obviously there is erasure here: in the rules for Kand V0 ,V1 • 

(i) We want to eliminate this erasure in E[,] by replacing the K-rul~ by 
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the V0-rule by 

• 

etc. I.e. the original redex is repeated as 'memory part', but 'frozen' by 

*. (But note that the redexes possibly occurring in the subterms substi-

tuted for the meta-variables 

* • ) Obviously, the resulting 

* zi, e.g. in K z
1

z
2 

above, are not affected by 

rules are_ non-erasing. Even the non-erasing 

• 

rules will be transformed in this way, so the I-rule in E becomes in i:[,J: . 

* rz -➔ [z, I zJ. 

{This is done not only for the sake of an unifor1n description, but also to 

make E[,] increasing; see Prop.4.9 below.) 

(ii) Further, w1= want to be able to imitate each reduction <Rini:: by the 

'samf=:' reduction cit• in I:[, J (necessary in the proof of Lernrria 4 .10) ; qat is, 

if in <R• the memorized parts are erased, the result is~- To be able to do 

this, we introduce in E['J the :shift rule' 

➔ ➔ 
which gives the reductions ~ · »· (AC)~; this was also done in I.8.5. Now 

consider e.g. the following cR in E: 
' 

KVoc(VAB) -+) V0 (VAB) .. ➔ A. 

Then~ will give rise to the following imitation <R 1 in r[,J (by way of il

lustration we employ the[,] - as well as the subscript notation): 

KVoc (DAB) ' , · ➔ 

* 
shift 

[Vo(VAB),K Voe]= (Vo(VAB))K*v 
* * 0C 

• 

Note how in the shift step the memorized * subterm K V0c, which is affixed 

to the head syn1bol Vo of the redex Vo(VAB), is shifted 'out of• that redex .. 

. '., .. ,.,..._,, 
' ' ' ., 

. '. 0-.· 
s· 
' 

' 

-' 
. t 

( 

' ' 
' 

< , ~ 

' . 
, '. ' 
< • :, 

" ;; 
_, ~ 

' 



(iii) But this is not yet enough, because memorized parts affixed to 

'deeper' subtezms in a redex cannot be shifted out of the redex. For, in 

order to imitate the fol lowing reduction ~ in E: 

Vo ( IKVcAB) 

Vo(KVcAB) 

V0 (VAB) 

A 

by the reduction~• 

• 

Vo ( 1KVCAB) 

* Vac[K,I K]VCAB) ,,. ··» 
shift 

* VO C [ KVcAB , I K J ) 

* * Vo([[V,K Vc]AB,I K]) 1•1 I - ➔> 

shift 

* * Vo([[VAB,K Vc],1 K]) = Vo <VAB) K*vc, r* K 

we need the rule (for the last step in~•): 

* 

• 

4 

(Note: one should not confuse Vo(VAB)c and (Vo(VAB))c.) 

This motivates the next definition: 

153 

4.4. DEFINITION. (i) On Mter(I[,J) we define the 'forgetful' reduction rule 

(as in Def.I.8.6): 

If A,B E Mter{:E[ 

So e.g. H = 
is a k-expansion 

H the subtei::m A 

AD,E(BFC)G,H,r· 

--+► z . 
1 

]) and A k » B, then A is a 'k-expansion' of B. 

(A (B CG I) is a k-expansion of (AE(BC)H)J, which 
D,E F ,H, J,K 

of the k-normal form A(BC). Moreover, we will say that in 

is k-expanded,·and likewise the subtei::ms B, BFC and 
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(ii} Further, we define on Mter(E[,J) the rule 

So a • shift-normal fo:r111' H' E Mter ( E [, J) is a term Hin which all the 

memory parts are shifted to the right as far as possible. E.g. Hin {i) 

not in shift-n.f., but H 

shift-n.f (if A,B,C are). 

!■ l IFI ➔".::>• 

shift 

4.5. DEFINITION of Red(t[,J). 

H' which is in 

• 
l..S 

( i) Let r = H l >- H 2 E Red ( E) . Then is the set of rules of the fuxm 

H' -· > 
1 

where Hi is a k-expansion of a1 such that: 

meta-variable occurs twice in {1) H' • linear (i.e . 1.S no 
1 

(2) H' • • shift-noz·inal 1.S in 
1 

H') 
1 

(3) H' • not 1.S 
1 

of the form 

form 
+ 

[H,Z], or equivalently, Hi and H1 have the same 

(4) 

head symbol Q 

the meta-variables in H' are not k-expanded. 
1 

Requirements (3) and (4) are merely technical; a motivation will follow 

soon (in 4.6.(4)). 

(ii) Now we can define 

4.6. EXAMPLES AND 

(1) Let 

rules 

r = H 

will be in 

tinct. 

1 --► H 2 

u 
re:Red (t) 

r[,J u {shift}. 

> z
1 

be a rule in Red(t) _ Then all the 

(m~O) , are pairwise dis-

(2) Let Ebe CL$ Pairing, as in 4~3. Then we have in E[,] the rules 

(among others): 



/ " 

• • • 

p 

/ 
p 

/ 

"z 1 

"' 

Z Z' 

p 

z 
n-1 

z 
n 

V 

/ 
z 

• 

/ 
z 

/ 
p 

Z' 

p 

• 
• 

• 
• 

p 

/ 
z· 

n 
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(3) Let E = AS(-calculus). Then (AB)[,] has besides 'shift' as only rule: 

where Ax.z1 (x) is written for A(~x]z 1 (x}) (In fact this is not quite true: 

due to our inductive definition of Ter (E), in this case also A and [x]z
1 

(x) 

are subterms ·of A([x]z1 (x)}. Hence we should have in (AS)[,] also a rule 

r' = \([x]z1 (x))iz
2 

-~ [z
1 

(z
2
), ••• ]. But the definition of Ter{E) can be 

easily adapted such that it conforms to the usual one for AS-terms, thus 

excluding the unnecessary ruler'.) 

(4) Given a rule, say, r 

in Red(Z[ ]) rules where 

= Kz1z2 ► z1 in E, there is no 

the meta-variables are expanded: 

need to include 

-+ I -r 
K [ Z 1 , Z J [ Z 2 , Z ' J · · ➔ [ Z 1 , ••• ] since in L [ , J 

* 
the meta-variables z1 ,z in 

Kz 1 -z2 ► [z1 ,K z1z
2

J range already over terms of the for1n 
➔ 2 

[A,B]. 
+ 

Also there is no need to include the rule [Kz 1z2 ,zJ 
since the LHS is merely a context of Kz

1
z2 • 

4.7. PROPOSITION. Let Ebe a regular CRS. Then Red(E[,J} is left-linear 

and non-ambiguous; hence E[,J is a regular CRS. 

PROOF. The left-linearity was explicitly required in the definition. As 

to the non-ambiguity, it is not hard to show that a supposed ambiguity in 

Red(E[,]} would yield one in Red(E) after erasing all the memory parts in 

the pair of interfering rules. • 
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(Note that the 'forgetful' rule k ¢ Red(r[,J); otherwise we would have aro

big,.1i ty., since e.g.. k and 'shift' interfere.) 0 

4.8. PROPOSITION. The operations 'addition of underlining•: E • > Land 

•addition of memory': E 1 > r[,J commute. I.e. for every regular CRS E: 

• 

PROOF.. We will give the proof by considering a typical example. Let I: be 

AB-calculus+ constants O (zero), S (successor) and J (iterator) • 

So 

' 

• 

(Ax.z
1 

(x))Z
2 

> z
1 

(Z
2

) 

Red(E) = JOzlz2 > z2 
J (Szo) zl z2 > z1 (JZOZ1 Z2) 

(Ax.Zl (x)) z2 ---~ zl (Z2) 

Red(E) = JOzlz2 > z2 

J (Szo) zl z2 >- zl (JZOZl Z2) • 

JOtz 1z2 
JcSzo>zz1z2 

So we have cheated a little bit in the statement of the proposition: more 

precisely, 

()* ....... , in _z::,[_ , J 
~,] and l:[, J are isomorphic, by letting correspond the sy1,tbol.s 

* to the sy1nhols Q in i:[, J (Q=>i. ,]) • [l 

In the sequel, we will refer to the properties 'increasing' (!: I= Inc) 

and 'inductive'· (E ~ Ind), defined in I. s .16 • 
• 

4. 9. PROPOSITION. L[ 
1

] ~ Inc, for all E. 



for al.l r 

M = ct[R] 

M · · > N 
r 

Then obviously 

E Red(E[ ]) , since the 'old' redex R is repeated: 
, * 

r a:[ [R • , R] J = N. I.e.. E[, J is increasing. 0 

• 

4 . 10 • LEMMA. E [ , J I= SN E F SN. 

157 

PROOF. we wil.l not spell out the details, since the situation is very much 
• 

analogous to that of I.8. Sketch of the proof: suppose E SN, and let 

tR = M 
0 

that tR 

> ••• be an infinite reduction in E. Now it is easy to see 

can be mimicked in the following sense: 

In E: --

k 

In 
r' 

0 

• 

k 

shift M' r• 
1 1 

k 

shift M' r• 
2 2 

......... ., .. 

shift 

Now we are ready to prove one of the main theorems of this chapter: 

4.11. THEOREM (Generalization of NEDERPELT [73], Th.m.3.20). 

For all regular CRS's E: 
• 

E I= SN. 

• 



158 

PROOF. First proof. 

(Thm.3.11, Prop.4.7) 

(Thm. I .5. 11 • ( 2) ) • 

(Def. I . 5 .6 ) (hypothesis) 
• 

( Lemma I • 5 .1 7 • ( 3 ) ) 

(Def.I.5 .. 16} (Prop .. 4. 9) -

( Lemma I • 5 • 17 • ( 1 ) ) 

(Lemma 4 .10) 

Alternative proof. 

WCR (Lenan1a 3 .10) 

1:[,J J= WN (hypothesis) }: 
[' J I.5.19. (i) 

SN !: I= SN. 

i: [,] 

[1 

(4.10) 

Inc (Prop.4 .. 9) 

4.12. REMARK .. The main idea in this proof is due to NEDERPELT [73], where 

(essentially) the first proof is.given for a special case, namely a 'typed' 

A-calculus which arose from the AUTOMATE-project of de Bruijn (Eindhoven). 

. ,- ' .'f-., . 

• 

! 
I 

' ' 
' 

' i 
l 
' ' 
' r 

·- ~ 

t 
: - r. 
. i 

' ' '-' l 
' 

_- ~ 
.. r; 
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The properties Inc, Ind are not explicitly mentioned there. Instead of re

ductions r[,J Nederpelt has '81-reduction• (where 'scars' of earlier re

ductions are retained, as Nederpelt puts it); in our notation (forgetting 

Nederpelts types) it would read 

Nederpelt•s 1 $2-reduction' corresponds to our k-reduction rule. Where we 

use as an increasing norm, M 1 • ► IMI, the length of the E[,J-term M, 

Nederpelt defines IMI to be the length.of a longest k-reduction path to 

the k-normal form (obviously k is a strongly normalizing reduction); in 

our notation we could, equivalently, say: }Ml := the number of pairs of 

[,]-brackets in M. 

We quote from the 'Introduction and summary' of NEDERPELT [73]: 

''In this thesis we shall show that, if in a system all tez·ms are nor1t1al

izable into a unique normal form, then each term is strongly nor111alizable. 

This will be proved for a certain lambda-calculus called A, the method 

can, however, be applied to more systems, and we suggest this as a field 

of further investigation.'' In the present chapter we have endeavo11r~d to 

follow this .suggestion .. 

4 .. 13. REMARK. There is an 

in I.8 (where we prove SN 

obvious resemblance between 
HW L P T • for A , A ' and A via an 

the method of proof 

'interpretation' in 

AI[,J-calculus) and Nederpelt's 

(Note the notational ambiguity: 

method which has led to Theorem 4.11 above. 

in the sense of I.8 is not the saroP. 

as AI[,] in the sense of Section 4 of the present Chapter.) This resem

blance can be fo:r:n1alated abstractly as follows. 

DEFINITION. Let A= <A, -~>>and B = <B, 
A 

and K: B -~>Abe maps such that 

(i) K O t = idA 

(ii) 
r s • Vp,q A Vr ------>, I l.. e. € 

B I 
I 

(r 
K 

K IK p 
I 
I 
I 
I 

• 

.P A q 

B 
> be ARS's. Lett: A-~> B 

€ B 3s € B 

K 
q) q r s· 

A B 

• 

• 
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(Reductions in A can be 'lifted' to B.) 
Then Bis called an associate of A. 

Now, both in I. 8 in Theorem 4 . 11 , the idea is to prove A f= SN by 

finding an associate B of A for which SN is easier to prove; for, obvious

ly: 

• 

PROPOSITION. If A,B are ARS's and Bis an associate of A, then 

B f= SN .. ,, ► A f= SN. 0 

In I.8, A,B are 

as in Def .. I.8 .. 6; and 

HW HW 
A resp. AI [ , ] , ·t is as defined in Def.I.8.11 and K 

M -B- N iff M -
8

__, L ----.,~ N for some L such that N 

is the [, ]-norn1al fo:cm of L. So we have a situation as in the diagram 

{where A,B are as in the definition above): 

B 

K K K 

A 

B 

Furthermore, SN for the associate HW 
AI[,] was easy to prove since 

(non-erasing; see Section I.7 and Section 5 below). 

~ NE 

In Theorem 4.11, A and Bare regular :E resp. }:[,,]' 1 is the inclusion 

map, K' is as before and M ➔· N iff M ---- L "'-..........:~ N for some 
B r[ ] 

r € Red(E) and some L such that N is the (,]-normal fo:cm of L. so the sit-

uation is as in the diagram: 

' 

K 

Here SN for the associate t J 
[, 

B 

K K 

A 

r 

• 

• 

was easy to prove since Inc. 

• 
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HW 
(In I.8, 11.I[,] Inc; on the other hand E [ J I= NE, as we will see below.) 

I. 

4.14. REMARK. (i) Note that in 4.11 we also have proved. 

'E I= WN [ , J SN, 

hence for all Z::[,] the eq1Ji valence WN -o• > SN holds. Later. on (in Section 5) 

we will generalize this equivalence to the class of all 'non-erasing' regu

lar CRS's. 

{ii) If r is a regular TRS, it is not hard to prove that 

E I= SN 

(Proof sket:ch: consider an inner111ost r-reduction tR to the normal for1n. Let 

~• be the corresponding E[,J-reduction. Then the memory parts in~• are in 

no:rtnal for111, and hence d-°i' tel'.minates, in just as many steps as IR, in a 

r[,J-norrnal form. (So I:[,] I= WN. By (i), also I:[,] I= SN.) 

Hence we have for regular TRS's r: 

I= SN 

For regular CRS's I: in general, (*) and (**) require more effort; we 

will return to this matter in Remark 6.2.5.(ii). 

(iii) Note that E I= WN 7 {,,s..1: [ , J I= WN; for otherwise by Theorem 4. 11 , we would 

have L I= WN •· ► L J= SN for all regular CRS 's, an obvious contradiction. 

The simplest exampl.e of a 'E such that E I= WN but I:[, J WN is the 

TRS with Red(L) = {Az ► B, C > AC}. Obviously every L-teLm has a 
. 

no~mal. for1u. However, in r[,] where 

Red I:r,J = {Az -+► [B,A*zJ, C --> [AC,C*J} 

the term Chas no normal form; for, the E[,J-reduction ~ (written in the 

subscript notation of 4.2(iii) .) : 
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C --> . - • 

• • • 
• • • r I ➔ 

• 

is 'cofinal' in GE (C), the set of t[,]-reducts of C as in the figure be-
[,] . 

low; hence every r[,]-reduct of C contains a redex C. 

In the next two fig11res the reduction graphs GE ( C) and GI.: ( C) are 
[, J 

depicted. In the last reduction graph the abbreviations 

* * J = [[B,A □ J,C J 

are used; moreover, 1210 denotes ~
1
[~

2
[c

1
[CJJJ, etc. The bold line corre

sponds to the cofinal reduction~-

C 

B AB A(AB) 

• 

! 
' 
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We will now state the corollaries of Theorem 4.11. 

4 .1 S THEOREM. (Fini t:e Developments) .. 

For all regular CRS • s r: E I= SN. 

In other words: r f= FD. 

PROOF. vr: I: F WN (Corollary 3. 9) 

Hence Vr : I: [ , ] 

Hence 

Therefore 

WN. 

= lc,J 
I= WN 

(Proposition 4.8). 

vr: E F SN (Theorem 4 .11) . 0 

• 

1120 

222() 

4. 16. COROLLARY (Church-Rosser Theorem; Lenaua of Parallel Moves) • 
• 

For all regular CRS's r: 
(i) r I= CR+, i .. e. every cons'truct;ion of a E-reduction diagram, by 
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successive addition of elementary diagrams (as in Def.3.5) terminates in 

the same 'closed' diagram. 

(ii) I: I= PM, as in I • 6 . 12 . 

PROOF. Entirely analogous to the proofs in I.6.9 and I.6.12. D 

4.17. NOTATION. As in I.6, Vc~
1

,~
2

) denotes the reductton diagram deter

mined by two coinitial, finite reductions~,~. Likewise we employ the 
1 2 

notation ~ 1;~2 , analogous to I.6.10. 

5. NON-ERASING REDUCTIONS 

The main properties of CRS's with memory r[,J are: non-erasure and 

Inc. We will now focus attention on these properties, especially the first 

one. 

5 .1. DEFINITION. r F NE ( 'E is non-erasing') iff for all M,N E Ter ( !:) : 

M ' ) N I ► FV {M) = FV (N) 

where FV(M) is the set of free variables occurring in M. 

5.2. PROPOSITION. The following are equivalent: 

(i) t (# NE . 

(ii) there is a non-trivial context~[ ] erasing a free variable x: 

cc[x] ---,.► M {xiFV (M)) 

(iii) 3CC[ ] 3M 'IN G:[N] - ► M A 

(iv) there is an elementary diagram of the form 

(Otherwise said: there is a non-trivial elemen

tary diagram containing an empty step.) 

5. 3. PROPOSITION. The following are equivalent: 

(i) E f= NE 

C 

B 

B 

-,,. 

(ii) for all E-terms Mand all pairs of distinct redexes ~
1

,R
2 

EM, con

traction of one leaves at-least one residual of the other. 
(1. ii) Let H + H 1 ~ Red {'t"') and let pH ~ ~ ~► pH' be some instance of this rule. 

; ~ 
'!;." ; 

' ,; 

) 

• 

' 
' i 



Let H contain the meta-variable Z; then pZ(cpH) has at least one -
descendant in pH' (except possibly when pZ E Var). 

The routine proofs of these two propositions will be left to the 

reader. 

5.4. EXAMPLES. (i) CLS,K,I (Combinatory Logic based on the combinators 

S,K,1, Ch.I.2) is erasing and so is AS-calculus. · 

(ii) CLI,J' the AI-version of CL with basic combinators 1,J and rules 

Tz , ► z, Jz 1z2z3z4 - z1z2 cz 1z4 z
3

) is NE; so is AI-calculus. 

(iii) Further, VE: E[, J I= NE. . 
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(iv) Eis a non-erasing TRS iff in each rule H > H' the same meta-variables 

occur in Hand H'. 

5 .. 5. 

(ii) 

PROPOSITION. (i) WF :,> NE (def. WF: 
-1 · -1 

FB : .. ,, ► NE (def.FB : I.5.16.(4)). 

I.5.16. (3)) 

PROOF. (i) We will prove the contraposition ,NE 7WF. So ass,1me that 

r. ~ .., NE. Then by Prop. 5. 2 for some non-trivial context er[ ] and terzn M 

we have for all N: a::[N] > M. In particular: 

..... --+-, ► CC[<t[«:[M]]J ---..> C[CC[M]] C[M] --+) M, 

i.e. E F 7WF. 

(ii) To prove -,NE > 7FB-
1 • Let E ~ 7NE, ·then again by Prop.5.2. (iii): 

-1 
Hence ,FB • 

M 

D 

5.6. DEFINITION. A CRS Eis finicely presented iff E has a finite set Q 

of constants and a finite set of reduction rules Red (:i:). 

5.7. REMARK. Almost all well-known CRS 1 s 1 one finitely presented: AB, CL, 

TRS's as defined in e.g. HUET [78], RPS's as in I.1.13. A notable excep

tion is AB@ Church's a-rules, see 1.15.(4) and 1.17 • 
• 

• 



166 

• 
5.8. THEOREM. For finitely presented regular CRS 1 s Ethe following equiv-

alences hold: 

(i) 
-1 

NE <= > FB 

(ii) WF Inc. 

PROOF. {i) is Proposition 5.5.(ii). 

=>: Let the set of constants of E and Red(E) be finite. Suppose r r= NE. 

Let M € Ter (Z:) 

finite; 
, 
i.e. 

and consider H = {NJN -~► M}. We have to prove that His 
r= FB -l. 

Suppose His infinite. Then, we claim, there must be arbitrarily long 

NE H. The claim follows at once from the fact that the NE Hare built up 

from only finitely many different syrr,bols, namely the r-constants and the 

free variables in FV(N) = FV (M) (the last equality by r I= NE) .. 

Now consider a ''very long'' N € H, relative to IM!, the length of M, 

and to the LHS's of all the closed rules E Red(E}. Here a reduction rule 

is called 'closed' if its LES contains no meta-variables (e.g. Church's 

a-rules). If the redex pH contracted in the step 

N = <r:[pH] 
r 

ct[pH'] = M 

is ''small'', then M would have the same order of length as N, contradiction. 

So our very large N contains a very large r-redex pH, where r = H -+ H' 

cannot be a closed rule since pH is very large relative to the LHS's of the 

closed rules. Hence H contains meta-variables. Now for at least one of the 
• meta-variables Zin H, pZ must be very large. (Here we use that Red(E) .l.S 

finite; hence the number of meta-variables z in His bounded.) By Proposi

tion 5.3 .. (iii), pZ has a de$cendant in pH', call it (pZ) •. It is evident 

that I pZ I ~ ! (pZ) ' I , since the only thing that can happen to p Z in the 

r-reduction step is that some variables in pZ are replaced by some tex1ns. 

But then M, containing (pZ) ', is very large-contrary to the ass11mption. 

(To make the above estimations numerical, put s = the total nt~1mber 

of symbols in Red(r). Then choose N such that !NI > 2(s+l) !Mf; now we 

have I pH I ~ ~ r N f , because IN I = I c[ JI + I pH I and IM I = I ct[ J I + I pH. I ; 
and moreover we have !PHI s sjpzj + s for some Zin H, since there are 

S s meta-variables Z in H and there are ~ s remaining syn1bols in H. 

Therefore • 

• 
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contradicting (pZ)' = M.) 

{ii) 4== is trivial. 

By 

-1 
by Proposition 5. 5. (i) , WF .,1 ► NE I so by (i) of this theorem, WF =-- FB 

-1 
Lermna I.6.10.(4), WF & FB Di Inc for all Abstract Reduction Systems, 

in particular for all CRS's r. D 

5 • 8 • 1 .. REMARK. ( i) By Lemma I • 5 . 19 • ( i) : 

• 

WCR & WN & Inc SN for ARS's. 

Hence, by Theorem 5.8.(ii) and the fact that for all regular CRS's the 

property WCR holds, we have for regular finitely presented CRS's: 

(ii) Below (in Corollary 5.9.4) we will strengthen (*) to: 

NE & WN :::119 SN , for all regular CRS's. 

That this is really a strenghtening of (*) (apart fra11 the fact that it 

• 

holds for all regular CRS's), follows frcm the fact that WF NE (Proposi-

tion 5.5), but not conversely (consider Red{E) = {Iz 
(iii) In advance, let us note the fol.lowing curious conseq11ence of the 

proposition in (ii): 
• 

PROPOSITION. Let be a regu·lar CRS and 1 et:. N be a no.1.111a.l :t·oz.111 in E. Sup-

pose there is an M such that:. M ~~ N and M has an infinite reduction 

M-- M' ---i-> M'' -~) ... 
Then 1:.here is an infinite 'inverse' reducf.:hon 

• • • N' ---+► N, as in the figure: 

M M' M'' 

-- - • 

N'' N' N 
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PROOF. Let [M] = {M' IM' =r M} and consider the restriction of E to [M]; 

call this LM. Then EM is a regular CRS (being a substructure of one); and 

since [M] (= TerEM) contains a normal form, by the CR theorem: ZM WN. 

By hypothesis Z:M ~ SN, so by the proposition in (ii} , ; NE.. Hence :EM ~ -; WF 

(Proposition 5.5.(i}). So there is an infinite 'inverse' reduction L , which 
M 

by CR leads to the normal form N. n •• 
• 

(For A,CL this proposition is trivial: consider the reduction 

.... -· ~), IIIN IIN --,.·> IN ---rr N.) 

• 

5.9. The paradigm of a regular CRS which is non-erasing, is the AI-calculus, 

which was considered in I.7 .. We have enough material now + 
(namely FD,CR, PM 

in Theorems 4 .. 15 and 4.16) to prove theorems for non-erasing CRS's in gener

al, analogous to those in I.7. The proofs will be omitted as they are en

tirely analogous to those in I.7. 

5.9.1. DEFINITION. We will say that 'the class of infinite E-reductions is 

closed under projections' (or 'infinite r-reductions are closed under pro

jections1} iff whenever R is·an infinite r-reduction and~• a finite one, 

then~/~• is again infinite. 

M 

dl' : 
• I 
I 
1 

.--; ------------·-- li, infinite 

, 

5. 9. 2. LE~i.~. Let r be a regular CRS and suppose E f NE. Then infinite 
• 

E-reductions are closed under projections. D 

5.9.3. CHURCH'S THEOREM for regular CRS's. 

Lee L be a non-erasing regular CRS. Then for all ME Ter(E), the following 

are equivalent: 

(i) Mis weakly normalizing (has a normal form) 

(ii) Mis strongly normalizing 

(iii) all subtexms of M have a normal form. ~ 

5. 9. 4. COROLLARY. For regular c~s • s : NE ...- (WN <, • SN) • 

-- ... ,.,, ::wr-.· ,• <"'.:''\-;c 

• 

,, ' 

i 
, 

, 
, 
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PROOF. The assertion is short for: 

V regular CRS 's t, I= NE =o- ( E F WN < > I: F SN) • 

This is merely the 'global' version of Church's Theorem, trivially implied 

by the 'local' version in 5.9.3. n 

5.9.4.1 .. REMARK. Let A= <A,+> be an Abstract Reduction System as in I.5.1. 

Let WCR1 mean: 

Va,b,c E A(b~c) 3d EA 

a ➔ b 
• J 
I 

• 
~ 

C 
----➔ 

d 

(c + d and b ➔ d exactly one step) and 

Va,b,c E A(b~c) 3d EA 

a ----?> b 

C 
----➔> 

~1 

'> 1 ,-
1 
I 

* d 

~1 
let WCR mean: 

{c ~ d and b ~ d consisting of at least one step) • 

Then, as NEWMAN [42] Thm.2 (essentially) remarks, WCR1 
& WN • SN. 

;':?: 1 
QUESTION: does also WCR & WN :o, SN hold for ARS's? A positive answer would 

result in an ~abstract' proof of NE & WN • SN for regular CRS's, since 
;':?: 1 

NE ◄ > WCR • 

However, the following ARS answers the question negatively: 

a a' a'' 
...._ _____ _ 

b b' 

C 

• 

• 

• 
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For regular TRS's we can strengthen Theorem 5.9.3 as follows. 

5.9.5. DEFINITION. Let Ebe a regular TRS and r = H - ► H' a rule in Red(I:) .. 

Then r is called non-erasing iff both sides H, H' contain the same meta

variables. 

If r is a non-erasing rule, an r-redex is called a non-erasing redex. 
• 

(E.g. in CL the I- and S-reduction rule are non-erasing.) 

5.9.6. THEOREM. Let Ebe a regular TRS. Let~: M > M' -+ ... be an infinite 

E-reduction, and let R ~ M be a non-erasing redex. Then~/{~} is again in

finite. 

( ''Infinite reduction.s are closed under non-erasing projections.'') 

PROOF. 

M M' M (n} 

n.e. R 
D(&"i,{R}) 

____________ __, ----- ------ ------------ - ----- tR/{R} 
N 

The proof is very similar to the one of Lemma I .. 7.2. Consider V(tR,{R}) as 
(k) 

in the figure. Suppose tR/{R} is finite; then after some N , ~/{R} con-

sists of empty steps. By the Parallel Moves Len11na (4 .16) the reduction tR(k) 

. 1 d 1 t f h (k) f . d 1 . (k) f h. is a comp ete eve opmen o t e set JR o resi ua s in M o t e 

originally contracted redex R. Note that these residuals are again non-
• erasing. 

M (n) (n+l) b h f' . n . h' h Now let for some n ~ k, ➔ M et e 1.rst step in~ 1.n w .1.c 
(k) 

a redex is contracted that is not a residual of any member of N . By 

Finite Developments (Thm.4.15) there must exist such an n. tR(n) is a com

plete development of JR(n), the set of residuals of R in M(n). Obviously, 

every redex contracted in tR(n), is non-erasing, being of the same kind as 

R was. 

We claim that the projection of this step, i.e. M(n) 

cannot be~, however. The proof of the claim is entirely similar to that in 

Lemma I.7.2. 0 

• 

• 

.. '' -"c_-,,':-:""""""""-
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l • 
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5.9.6.1. REMARK. For regular CRS's in general, Theorem 5.9.6 fails, as is 

suggested by the above proof and is shown by the fo11owing countere~ample 

from BARENDREGT e.a. [76], Ch.II.5: 

( Ax.Kix).n (:.\x.I)n (Ax.I)n 
--- 6t, infinite 

• K 

AX {R} 

• 

--------- --------
I I I 

Analogous to the preceding theorem we have 

5.9.7. THEOREM. Let Ebe a regular TRS, R: M M' . . . an inf ini t:e 

reduction, and R ~Man innermost redex (i.e. not cont:aining other reaexes). 

Then R/{R} is again infinite. 

( ''Infinite reductions are closed under innermost projections.'') 
' I 

PROOF. Analogous to the proof of 5.9.6, using the following proposition 
• 

which is easily verified: 

Let Ebe a regular TRS, Ma ;,-term containing redexes R1 ,R2 such that 

R1 t R2 and R2 is an innermost redex. Then: 

(Note that (i} 

auction. ) [1 

M R M1 

I 
I 

innern10s t R2 
I inner1nost 
I 
I 
I 

¥ ...._ _______ -~ 

is one step and (ii) M
1 

5.9.8. COROLLARY (O'Donnell). 
• 

is an innermost re-

(i) Let Ebe a reguiar TRS and let there be an innermost reduction 

cR: M · ► ••• · > N to the normal form N • 

• 



~·',tff li •. · .. 
' '-' . . ,, . 
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Then Mis strongly normalizing. 

(ii) For all regular TRS's E: 

I: ~ WIN < > SN, 

• 

where 'WIN' (Weak Innermost Normalization) is the property that every 

term has a normal form which can be reached by an innermost reduction. 

PROOF. (ii) is merely the 'global,' version of (i). 

(i) : Let lR 1 
: M , ► ••• be an infinite reduction and <R: M > ••• -➔ N be an • 

innermost reduction to the normal forr11 N. 

M 

•• 
i .m 

• 
i .m 

. N 

I 
I 
I 
I 
I 

dt', infinite 

Then by Theorem 5.9.7, ~•/~ is infinite, contradicting the fact that N is 

a normal form. Hence ME SN. Q 

5.9.8.1. REMARK. (i) Corollary 5.9.8 is a consequence of O'DONNELL [77] 

(Thm.11 p.53), as is seen by noting that for regular TRS's the residual 

concept satisfies the requirements stated there (Def.22), and by noting 

that regular TRS' s fulfill the property ''Innermost Preserving'' (Def. 35) 

defined there. 

(ii) It is easy to give a counterexample to 5.9.7 and 5.9.8 for regular 

CRS's in general, analogous to the counterexample in 5.9.6.1, since e.g. 

:.\-calculus is not ''Inne.t:1nost Preserving'' due to substitution. 

5.9.8.2. APPLICATION. (Bar recursive terms) 

TAIT [71~ considers the TRS Z:: = CLT (typed Combinatory Logic) a, {R,B,o,-6} 

where R is the Recursor having reduction rules as in Example 1.12.(ii), 

Bis the Bar recursion operator with reduction rules • 

• 

• 



• 

for each n (short 

--➔ ••••• 

n for .6 0) • 

(The precise form of the RBS is not important for us) 
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In fact there are constants S,K,R,B for each appropriate type. It is 

easy to see that is a regular TRS; also if the types are viewed as 'in-

ternal', i.e. as elements of Ter(L). 

An extension of Eis t• =.E ~ constants 6 for all functions f: JN 

and rules 

(cr,6) t(f ,n,o) 

where o is a type and t(f,n,cr} is some term depending on f,n,a of which the 

precise form is not important for us. To write these rules in our notation, 
• 

we can adopt a constant C (for 'choice sequence') and write 
• 

Ccr6 ... ,. > t(f,n,cr). 

Note that moreover E' is a regular TRS. 

Now TAIT [71] proves, in our terrnjnology, that both E and r• satisfy WIN. 

Hence by Theorem 5. 9 . 8, also r, r' I= SN. 

5.10.In the following figure we summarize some facts treated in this sec

tion, which hold for regular CRS' s. Here ''f .p'' is ''finitely presented'' 

(Def. 5. 6) 

Inc 

-1 
FB 

< ;> 
f.p 

<; > 
f.p 

WF 

NE 

Infinite reductions are 
closed under projections 
(5.9.2) 

Church's Theorem (5.9.3): 

WN l • SN 

• 



• 
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5.11. DISCUSSION. Before we proceed to prove some more theorems about 
• 

Strong Normalization of regular CRS's in the next section, let us consider 

the possibility of generalizing some theorems proved in Chapter I for 

definable extensions of A-calculus, namely those concerning: 

(1) Equivalence of reductions 

(2) Standardization 

(3) Normalization 

(4) Cofinality of Knuth-Gross reductions. 

Ad(l). The definition of 'Levy-equivalence' of reductions, and Levy's 

results thereabout, generalize at once to the present case of regular 

CRS's. 

Ad(2). Standardization, however, is much more complicated in the present 

case than for.definable extensions of A-calculus. This was pointed out by 

Hindley, for the case of A-calculus e recursor R; see some examples in 

HINDLEY [781. See also Remark 6.2.8.6.(ii). 

For regular TRS•s a Standardization theorem is proved by HUET-L~ 

[79]. It is remarked there that the theorem seems to extend to 'applicative 

rewriting systems with bound variables', i.e. to CRS 1 s. 

At the ·end of this Chapter (see 6 .2 .8) we will prove the Standardiza

tion theorem for • left-nor1nal' regular CRS • s • 

Ad(3). The Normalization Theorem (I.11.2), saying that repeated contraction 

of the leftmost redex must lead to the normal fuxm if it exists, does not 
.,. 

carry over, as observed in HUET-LEVY [79], where the following example is 

given. If Red(E) = {FzA -~► B, C C, V · > A} then the term FCV has a 

normal fo.t1n: FCV -4- FCA ----+-► B, but the leftmost reduction is infinite: 

FCV · ► FCV -~► ••• (repeated contraction of the redex C). 

In 6.2.8 we will prove the Normalization Theorem for 'left-normal' 

regular CRS's, as a corollary of the Standardization Theorem which we just 

mentioned. 
... 

In HUET-LEVY [79] the following interesting regular CRS is considered 

(the example is basically due to G. Berry): • 

Red(E) = {FABz C 
FBzA C • 

FzAB ----+,~ C} 

• 

• 

• 
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which leads to the question: 

does there exist a recursive one step norn1alizing strategy for every regu

lar CRS? (or, for every regular TRS?) 

We conjecture that the answer is negativei see for a discussion of 

the problem HUET-LEVY [791. (For a precise definition of the concepts in 

the question, see BARENDREGT [801). A likely candidate to establish the 

negative answer may be: CL~ the above mentioned E. 

Ad(4). The definition of Knuth-Gross (KG) reduction (see I.12.4) extends 

readily to the present case, and so does the theorem (I.12.5) stating that 
• 

KG-reductions are cofinal. So KG-reductions are nozmalizinq; and hence we 
" 

have a recursive • many step• nor1r1alizing reduction strategy for regular 

CRS's. 

Also the refinement (I.12.3) stating that secured reductions are co

final, generalizes without problems to the case of regular CRS 1 s. 

6. DECREASING LABELINGS AND STRONG NORMALIZATION 

. 

• 
' In this section we will prove some more theorems from which one can 

infer Strong Normalization for regular CRS's. We remark that the proof of 

SN, so obtained, does not require stronger means, metamathematically 

speaking, than the proof of WN (Weak Normalization) for the system under 

consideration. To be more specific: where a proof of WN uses transfinite 

induction to the ordinal a, the proof of SN as obtained here requires trans-

finite induction to a. 
w .. (For 'Godel's T•, see 6.1.7 below, we have 

(X. 

a= w = £ 0 .) So if a WN-proof can be formalized in Peano's Arithmetic (i.e. 

if a< E 0 ), then the SN-proof can also be fo~malized in P.A. 

6.1. For convenience we will restrict ourselves in this subsection 6.1 to 

regular TRS's; but an extension to regular CRS's does not seem to be essen

tially problematic. Fi1.st two preliminary definitions. 

6.1.1. DEFINITION. Let Ebe a regular TRS. Then~•[ l is the regular TRS 

defined analogously to E (Def.4.5}, with the only change tpat in a re-[,] 
duction rule only the erased metavariables are repeated ('Nemorized'). 

6.1.1.1. EXAMPLE. Let Ebe CL$ {J,~,o}, where CL is Combinatory Logic 
• 

based on I,K,S, and where the iterator J has reduction rules as in Example 

• 
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1.15.(3). 

Then 

= {Iz 

J (.6Z') +z Z 
Z 1 2 

--► [z,I*zJ 

(Here 2 = z01 ,z02 , ... ,z
0
m for some m ~ O, so the last two rules are in fact 

schema's for rules; see Def.4.5.). 

On the other hand, 

• 

Kz
1
z

2 
Sz

1
z

2
z

3 
-+ 

JOzz1 z2 

z 

J (.6Z ') ZZ 1 z2 

6.1.2. PROPOSITION. Theorem 4.11 holds with 

for all regular CRS 1 s I: : I: 1 
[ , J I= WN =+ i: I= 

PROOF. I: I [ , J ~ 
proof of the implication i: • [, J I= SN =o- I: I= SN 

Lemma 4.10. 0 

replaced by r•[,J· I.e. 

SN, by Coroll.5.9.4. The 

is analogous to the one in 

6.1.3. DEFINITION. Let Ebe a regular TRS and ME Ter(E'[,J). Then 

set of occurrenc.es of memorized subtern1s of M., notation Sub[, J (M) , 

fined inductively as follows: 

the 

is de-

(i) K (M) e: Sub[, J (M) • Here K (M) is the k-nor111al for1n of M (k is the 'for

getful' reduction rule defined in 4.4); so K(M) is the result of eras-
• 

ing all memorized subte1.1ns in M. 

(ii) AB= [A,B] c M =;I) K(B) € Sub[,](M). 

6.1.3.1. NOTATION. Instead of NE Su.b[,J(M), we will write also: N ~[,JM . 

• 



6.1.4. EXAMPLE and REMARK. {i) If T 

shift-n.f. 

(See Def.4.4): 

T' = (ABC) (DE) F GH I 
J,K' L' MN,O 

then Sub[,J(T) = Sub[,l(T') = {ABC,DE,F,GHI,J,K,L,MN,O}. 

having the 

(ii) It is easy to see that Sub[,l(T) is invariant under 'shift'. 
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(iii) Note that Sub[,J(T) c Ter(r) (more precisely, the terms having an oc

currence in Sub[, J (T) are E-ter111s) . 

(iv) S ~[,] T does not necessarily imply S c T; unless S is ''innermost 

w.r.t. E.g. ABC,GHI l T, but MN c Tin (i). 

6.1.5. DEFINITION. Let Ebe a regular TRS. 

(i) Let I I: Ter ( !:) ➔, ORD be an ordinal assignment (or ordinal labeling). 

Here ORD is the class of ordinals. 

Then r I= WN I I (''L is weakly normalizing w.r.t:. I I'') iff for all 

ME Ter(E) not in normal form, there is a reduction step M -~➔ M' such that 

]Ml> IM'!. 

(ii) L DL. ( ''E has a decreasing labeling'') iff there is a labeling I I : 
Ter(E) " ► ORD satisfying: 

(1) I= WN] 

(2) M ~ N 

(iii) DL' iff there is a labeling 1 ·1: Ter (E} ·· > ORD satisfying: 

(1) WNl I 
(2) Mc N ~ }MI s lNl 
(3) if R = QA1 ... A 

~ n (n~O) is a redex, then IR) > J A. ) (i = 1, .... , n} (I.e. 
l. 

a redex 1s 'heavie~• than any of its arguments.) 

(iv) E I= DL'' iff there is a labeling ] I satisfying: 

r, 

(2) Mc N ~ (Ml s IN} 

(3) A redex is heavier than any of its erasable subttims. I.e.: let 

r = H · ➔ H' be a rule in Red(E), and let Z be a metavariable occurring 

in H, but not in H'. Let p be a valuation; so pH is a redex containing 

the 'erasable' subterm pZ. Then lpH] > 1PZ1. 
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6.1.6. THEOREM. Let Ebe a regular TRS. Then the following equivalences 

hold for Z:: 

DL < 11 ·1> DL' DL'' <= > SN • 

PROOF. DL DL' => DL'' follows at once from Def.6.1.5 .. The proof of 

SN => DL is easy: suppose i: I= SN and M E Ter (1:) • Consider the reduction 

graph G (M) = {N E Ter {E) l :t-1 ... >> N}. Now define I I : Ter (I:) · >· :N by 

IM I = total number of sy1r1bols in G (M) , i . e. ENEG (M) l (N) where i (N) is the 

length of N. 

(By SN, IM I is ir1deed defined.) Then it is not hard to 

It remains to prove DL '' SN. Suppose I: I= DL ''; 

verify that E 

let I 1 be an 

I= DL. 

ordinal 

labeling such that the property DL'' holds. Now assign to M E Ter (I:' [, ]) a 

multi-set IIMII (see Def.I.6.4.1 and Pro_p.I.6.4.2) as follows: 

n Mil = < IN I I N .'.:.[ 
1 

] (M) & N i S not a nor1nal form> . 

--+>- MI CLAIM: there is a E'[, 1-reduction step M 

the sense of Proposition I.6.4.2.), unless 

such that II MIi )> II M' II (in 

Mis already 

form (equivalently: unless all N .={, l M are in Z::-nor111al 

in 1:[, J-norn1al 

foI.m) • 

If the claim is proved, we are through. 

.>-is a well-ordering by Proposition I.6.4.2; 

6.1.2. 

For then I: ' r 7 I= 
... , -1 

WN, since 

Prooosition 

PROOF OF THE CLAIM. Select 

(a) N is not a r-n.f. and 

N ::.r, JM satisfying 

hence E F SN by 
•• 

(b) N is innermost w.r.t. ~,] (see Remark 6.1.4.(iv)) such that (a) holds. 

By E I= DL '' , there R 
is a E-reduction step N --➔ N' such that IN I > IN' I . 

Now we copy in E'[,J that reduction step: 

* -··· ;- a::[N' l = M', 

where * N , * N' are such that * * K(N) ; N and K(N' ) ~N'.So if IIMH = 
= <[Nl,IPI , ... >, then either 

II M' II = < f N' I , I Q1 J , .... , ] Qm I , JP I , .... >· if N' is not yet in r-n. f. and for some 

m ~ O, subterms Q1 , .•. ,Qm not in n.f. were erased; or· 

' 

• 

• 

. i 
• 

' s .. 

' 
' ; 

' ~ 
' ' ; 
L 

t 
t ., 
I 

' . i 



179 

II M • I = < I Q l I , ... , I Qm I , I P f , ••• > if N' is in r-n . f . 

In bot.h cases the ordinal J NI in the multi set II MR 

and the Q. are as above. 
i 

is replaced by some lesser 

ordinals in IIM'H, • since I N I > l N ' I by DL fl ( 1 ) as noted above, and since 
• 

I Q . I < I R I ~ I N I by DL II 
i 

( 3) reso. DL'' - ( 2) • 

(That the multi set II MIi is otherwise not affected, i . e.. that none of 

the !Pl, ... is multiplied, follows because in the step N R_> N' subterms 
' 

which are multiplied, must be in normal form by (b) and hence do not count 

in II M' II , by the restriction in ( *) • ) 

So by Prop. I. 6. 4. 2 we have indeed II MIi ~;;- II M' II • [] 

6.1.7. APPLICATION. Consider the CRS T = CLT (typed Combinatory Logic) plus 

Iterator J and constants n for n E JN • For this regular TRS ( ''Godel I s T'') 

SCHUTTE [77] (§16) proves WN via an argument due to W. Howard. This proof 

shows that 

(1) M 
leftmost 

M' 

where [ ]
0

: Ter(T) ➔ EO is an ordinal assignment. Furthexmore, an in-

spection of the definition of [ 1
0 

and a short calculation show that 

(2) 

(3) [BJ 
0 

' 

and 

Hence (see Def .6 .1 .. 5 (iv) we have T I= DL'' .. Hence by the preceding theorem, 

T F SN. 

6.2. In this subsection we consider again all regular CRS's. We will prove 

another theorem (6.2.4) inferring SN from a 'decreasing labeling'; however, 

now the labels will not be assigned to all subterrns of the ter1ns M in 

question as in 6.1, but only to the redexes of M. Cf. the 'degrees' of 

redexes in AHW and AL,P in I.3.7.1 and I.3.9. In fact, Theorem 6.2.4 will 

generalize 

of degrees. 

Theorem I.8.14 to all regular CRS's r having a certain assignment 
L,P aw . L,P HW 

Analogously to A and A we will define E and E , and 

prove SN for those CRS's; an application is the Standardization and Norm.ali

zion Theorem for a subclass of regular CRS's • 

• 

6.2.1. DEFINITION. Let L be a regular CRS. 

(i) JR (I:) c Ter{E) is the set of redexes of t:. If M E Ter(i:), then lR (M) 

• 
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is the set of redex occurrences in M. 

(ii) Let M1 ,M2 € Ter(E). Then M1-.-.-~ M2 iff there is a E-reduction step 

ct[M
1

] , .. > IC• [M
2 

J in which M
2 

is a descendant of M
1

• 

(iii) Let R
1 

, R
2 

E JR (I:) • Then R
1 

r-w.~ ► R
2 

if f there is a r:-reduction step 

~[R1 ] -- C'[R2 ] in which the redex R1 is contracted and R2 has no 

ancestor in C[R
1
]. (''R

1 
creates R

2
'') 

6.2.2. DEFINITION. Let i: be a regular CRS. Then E 

ing redex labeling') iff there is a map# : JR (E) -

(i) 

(ii) 

R
1
-. - .... :,,. R,.. 

L. 
# (R1) ~ # (R2) 

# (Rl) > # (R2) • 

(#(R) will be called the degree of R.) 

• 

6.2.3. PROPOSITION. For all regular CRS's: DR=> WN. 

DR ( 'E has a decreas

ORD satisfying for 

PROOF. Let E be a regular CRS such that E I= DR and let M E Ter (:E) • Define 

II MIi = the mul tiset <# (R) I R E lR (M) >. Now in an inne::r::·most reduction step 

M . R N we have II Mil>- II NH , since R does not multiply already existin<;)' 1.m. 
redexes and the possibly in N created redexes have degree <#(R). Therefore 

' 

by Proposition I.6.4.2 every innermost reduction must terminate. Hence 

: I= WN. 0 

6.2.4. THEOREM. For regular CRS's: DR~ SN. 

PROOF. We claim 

L I= DR and let 

that E != DR ~ E [ , J != DR, for regular E . For, suppose 

#: lR (I:) • ► ORD be the given degree assignment of l:; we 

want to extend # to a degree assignment # [ , J: lR ( r [, J) • , ► ORD with the 

required properties as in Definition 6.2.2. To this end, define #[,l(R) = 
= #K(R} where K is the memory-parts erasing function from Definition 

4.4. (i). 

NOTATION: If Risa redex and d its degree, we write Ra. 
Now the claim follows, because if in r[,J: 

M--- M' resp. R 
M --~ M' 

U I tJ I UI UI 
Rd_ - R'd1 • • ► 

• 

d R'd' R ~ ,....._~ .. , ► ~ .. 0 

1 

• 
' 

• 

. ". . . 
~ 
' 

' 

' 
i 
' 
' ' ' ' 
' ! 
' ' 

' 
i 
' ' ' ' 
' ' ' i 
' 
i 

l 

I 
! 



181 

then it is routine to check that K (R) - . - .. •> K (R •) resp. K (R) 

So we have d ~ d• resp. d > d', which proves the claim. 

K (R') . 

Hence 

implication is justified by Proposition 6.2.3 and the last by Theorem 4.11. 

□ 

6.2.5. REMARK. (i) The converse of this theorem does not hold, as the fol

lowing simple counterexample shows: consider the fragment E of CL consist

ing of those te:rms which contain only K 1 s and the usual rule for K. Then 

obviously E f= SN since every I:-term {e.g. K(KKK) KK) will be shortened in 
• 

a reduction. But E ~ DR, since R
1 

= KKK ,.,_,,. ... -., > KKK = R
2

, i.e.. the redex 

KKK can create itself, as in the step R
1

KK = KKKKK ·, ► KKK= R
2

• 

(ii) However, it is possible to define a refined version DR' of the proper

ty DR, by specification of the context in which we have R
1 

-.-.-+ R
2 

resp. 

R
1 

r.-.....- -~ • > R2 as in Def. 6. 2. 2. The degree assignment is then to pairs (M,R) 

where R E JR (M) • Then one can prove: DR• c • SN. As in the proof of Theorem 

6 .. 2 . 4 we have E J= DR' ~ !: [ , J I= DR' .. So sN • 1: I= DR' • r [ , J I= DR• 

r f= SN, which yields a strengthening of Theorem 4 .11 to: 
[,] 

also Re-

mark 4 .14. (ii) .. ) 

6.2.6. REMARK. Note that Theorem I.8.14, stating that AHW, AT, AL,P (for 

bounded P) f= SN, is a corollary of Theorem 6. 2 .4, since as remarked in 

I.3.7 and I.3.9, these CRS's have the property DR. 

In I.10 we gave a (second) proof of the Standardization Theorem 
"\L,P L AS-calculus in which essential use was made of the fact that A F 

(Theorem I. 8 .14) or equivalently A HW I= SN. Now we would like to have 

lab 1 1 1 . f d CLHW, CLf.,,P L analogous L- e ings or HW- abe ings or CL an prove F 

for 

SN 

SN), 

in order to let this proof of the Standardization Theorem carry over to 

CL. One method to obtain such a labeling and labeled reduction, • • 1.s via 

A-calculus, since CL can be defined in A-calculus. The result is however 

a bit c1~1.mbersome (our procedure in the sequel will yield a simpler labeled 

reduction) and moreover, we would like to have a more systematic way of 

adding Levy-labels to not only CL, hut every regular CRS. We will now 

describe how Levy's labeling (or that of Hyland-Wadsworth) and the 
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corresponding SN theorem can be generalized to regular CRS's r: to each r 
L HW 

we will associate a r (or L ) and prove as a corollary of Theorem 6.2.4 

that 'EL,P F SN for bounded P (resp. EHW F SN) • This will be used in turn 

to derive the Standardization and Normalization Theorem for a large class 

of regular CRS's. 

6.2.7.1. As in I.3.9 the set L of Levy-labels is defined: there is a set 

of basic sy1nbols L' = {a,b ,c, .•• }, and from these L is built up by concate-
. 

nation and underlining, e.g. abca € L. The function h denotes the 'height' 

of et E L (i.e. the maxim11m level of unq.erlining of a.) , e.g .. 

h (abca) = 2. (See I. 3. 9.) 

In order to define the concept 'degree of a redex', analogous to the 

one in I.3.9, and to prove that a redex can only create redexes of lesser 

degree, we need several definitions. 

. 

6.2.7.2. RESTRICTION. For technical reasons (see Remark 6.2.7.6) we will 

consider in this subsection 6.2.7 only CRS's E without 'singleton redexes', 

i.e. if H > H' E Red(E), then His not a constant Q. 

6.2.7.3. DEFINITION. Let Ebe a regular CRS. 

(i) The relation c ('sub-metaterm') is defined for Mter(E) as for Ter(E) 

with the extra clause that H. c Zn(H 1 , ••. ,H ), i = 1, ..• ,n, for all 
J.. n 

H. € Mter(r) and n-ary metavariables Zn. 
1. 

(ii) The relation cl ('left subterm') on Ter(~) is defined as follows: 

(1) A cl(AB) where (AB) is an applicative term, 

(2) A 

(Note 

6.2.7.4. DEFINITION. Let L be a regular CRS and HE Mter(L). 

(i) A proper indexing (or proper labeling) for His a map assigning an 

L-label to every subterm of H except H itself and except the meta

variables Zin H. 

We will use the 
a b ab 

exponential notation: if H = Sz1z2z3 , 

is H plus a proper indexing map I. 

then e.g. 

(ii) If I is a proper indexing of H, then (I) will denote the L-label ob

tained by concatenation of 'f;he labels from left to right as they 

. HI. appear in 
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E .. g. in the example in (i) : (I) = abab. Furthermore (I) is (I) under

lined; .in our example, (I) = abab. 

(iii) If o. EL, then o. x H denotes a labeling of Hin which every sub-meta

ter111 of H bears label a. 

a binary metavariable 

z0 (1a.,Io.). 

z ( 1, 1) 

Z, then ax H = (Z(To.,To.))o.; we will also write 
• 

for 

6.2.7.5. DEFINITION. Let Ebe a regular 

follows: 

L 
CRS .. Then E is the CRS obtained as 

L 
(i) Ter(i:) = I M 

(ii) Red(EL) = 
E Ter(E), I some L-labeling of M} 

( I ) x H • I H -+ H ' E Red ( I:) & I • is some proper L-

labeling of H} .. 

It is routine to check that EL is a regular CRS 

6.2.7.16 we will mention a more 'economic' variant of 

(In Remark 

6 .. 2 .. 7 • 6 . EXAMPLE • ( i) Let E be { 1 Z ... ► Z , Vz --+ ZZ} ; then 

EL= {!0 z -~ za, Vaz-~ (Z~~)o. Io.EL}. An example of reduction in EL: 

(ii) ( P . . ) L CL e airing has the rules: 

" .... ). 

a S 

zo.B 
1 

<18yo 
' > z. , 

J. 

al3 
(Z" ... ) 

2 

• 

• 

where d = af3y 

i = 0,1, for all a,8,y,o EL. 

I o.,B EL}. If we take a empty 
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here (since the symbol A is in 'usual' A-calculus 
L 

not a subter:·n1, it should 

have no label), we find again A of I.3.9. 

6. 2 _ 7. 6 .. 1. REMARK. (i) A reason to exclude the outer111ost label a of a redex 

in the definition of labeled reduction, is that this allows us to treat the 

labels in an associative way, i.e. we can make now the identification 

(Aa)S = A08 , as in the preceding example. Otherwise labeled reduction would 

be ambiguous; consider e.g. the 

responding L-reductions: (Va.z) 8 
rule Vz. > zz then we would have as car

,. ;- za.Sz08 • However, then 

C (Vax} S) y ( a$ a.S)y 
-4-► x_;,_ x-

111 ·? U1 
CVcx.x) By aBy aBy 

-4-► X x----

(ii) For the same reason we have excluded 'singleton redexes'; because there 

the oute.r:1nost label has to be taken into account if one wants Lemma 6. 2. 7 .12. 

However, an extension of the results of this subsection to the case where 

singleton redexes are present, is possible, at the cost of the associ~tivity 

in the manipulation of labels as in (i). 

we will now define another kind of term formation tree than used so 

far (see Def. 1. 7) and which has the advantage -that th.ere is a bijection 

between the nodes of the tree T' (M) and the occurrences of subterms in the 

te.r:·1n M. 

6.2.7.7. DEFINITION. The term formation tree T' (M) of ME Ter(r} is induc

tively defined as follows: 

(i) T' (s) = s if s = z,~,x 
• 

(ii) T I (AB) = • (iii) ( [ 7 ) [ ] T X_,A = X_ 

J 
T'(A) T'(B) 

TI (A) 

• 
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EXAMPLE. T'((Ax.xxxx)yz} = 

z 

y 

Y [x] 

X 

X • 

X X 

L 
6.2.7.8. DEFINITION. Let E be an L-labeled CRS. Let H · ► H' E Red(E) and 

~► (I) x H be a rule . ~L 
in I., • Let 

_ I L 
R = p(H) be a E -redex. 

' 

Then the degree of R is (I). 

6.2.7.9. EXAMPLE. {i) The degree of {((SaA)SB)Yc) 0 

(ii) Consider in (CL e Pairing)L the term M = 

• 

is ctS.y. 

Here the S-redex has degree ack, the K-redex dh, the I-redex e, and the 

V0-redex lm.oq. In tree notation: 

TI (M) = 

q 

0 
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6.2.7.10. DEFINITION. Let L be a regular TRS and r = H ) H' E Red(r); say 

H contains the metavariables z1 , .•. ,zn. Let R = pH be an r-redex for some 

valuation p. 

( i) Then every subterm Sc pZ. (for some i = 1, ... ,n) is called an inter
- 1. 

nal subter1n of R. Notation: S c. R. All other subterrr1s S • of R are exter
-1. 

nal. Notation: S' C 
-e 

R.We will separate internal and external subterms in 

T' (R} by a bar; e.g. 

0 ·-o 

as in T' (M) above. 

-... 
'\ 

\ 
\ 

.'----~I 
I I 
I 

n 
--3 

I I 
I I () 
I I --4 I 
I I / 

I 
I 

I 
I 
f 
I 
t 
\ 
\ 
\ 
\ 
\ 
I 

J 
I 

I 

I 

I \ / n \ , / --~ 
2 \ ,.., _ _. ..... 

~ _.., 

I 

I 
I 

✓ 
✓ 

bar 

• (Here l = T' ( pZ. ) • ) 
l 

(ii) If pH is labeled, then the label of an internal (external) subterm 

will be called an internal (external) label of pH. E.g. in T' (M) above, 

a,c,k,s are the external labels. 

6.2.7.11 PROPOSITION. Let R = pH be a redex. Then: 

(i) B £e R < ~ B has a constant occurring in Has head symbol. 

(ii) A .5:.t R. 

PROOF. (i) Routine; (ii) immediately from (i). [] 

6.2.7.12. LEMMA. (i) Let M = ► 
1 

regular TRS. Let Rl c M1, R2 c 

Then: 

(1) R1 -.-.-➔ R2 
(2) R

1 
.,. _ _..,..,'"" ... + R

2 
=> 

d1 = d2 

h(d
1

) < h(d
2

) 

be a reduction step in EL 

be redexes having degrees 

where Lis a 

(descendants have the same degree) 
' 

(created redexes have lesser degree). 

(ii) P.s (i) , for I: = :\ (I) E', where L • is a regular TRS. 
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PROOF. (i) The proof of (1) is routine. 
C 

Proof of (2): let R1 be the contractum of R1 in M2 . We distinguish two 

cases. 

CASE 1. T' (R
2

) as in 

and M in the remainder of this proof .. ) 

the figure. (We will identify T' (M) 

bar 
• • • • 

• • . .. .. . . . 
• • 

• 
• • . . . ' , . . . . . . C .• .... 

• • • • .......... , 'R .... . .. . . . . . . .. '~ . 1' ~·· ~ . .. ~ .. . . . . 
• 

• • • • 
• • 

• • • • • • . . . 
• • 

Here all internal subterms of R
2 

are below the bar. We claim that cannot 

be below the bar. For, if it was, then the upper part (above the bar) of R2 
would clearly be unaffected by the reduction step M1 

➔ M
2

, so R
2 

would be 

the assumption that a descendant of a redex in with 

created in the step 

M
1

, in contradiction 
C 

Ml ➔ M2 • Hence R1 ~e R
2 

as in the next figure: 

• • • 
• 

' . 
• 

. --:· RC • • . . 1 .. .. . . . 
~ . .. .. 

.. . . -

• •• • 
• 

• • • • • 

C 
Now consider the label a of the nop node of R1 : this is an external label 

of R
2

• Now a= (I) where (I) is the degree of R1 , by Def.6 .. 2.7.5 of labeled 

reduction. So the degree of R
2 

(the concatenation of all external labels 

except that of the top node) contains (I), whence the result follows; except 

possibly in the case that the tops of R 2 and R~ coincide, 

Suppose this is the case. By restriction 6.2.7.2, R2 

' R - Re i.e. 2 = 1· 

is not a constant 

- hence R2 = is an applicative term AB. By Proposition 6.2.7.11.(ii), 

• 
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A ~e R
2

• The label of A is again (I), and this is an external 

below the top node. Hence the result follows as above. 

label of R
2 

C CASE 2. R
2 

c R
1

• Let R
1 

be an r-redex where r = H + H'; say R1 = pH for a 

valuation p. Evidently, there is a submetaterm Jc H' such that R2 = pJ. 

I must be applicative; for J = () = - - R
2 

is impossible by the restriction to 

non-singleton redexes, and J = Z is impossible since then R
2 

would not be 

a created redex. So J = J
1

J
2

; by definition of labeled reduction, pJ1 has 

label {I) where (I) is the degree of R 1 . By Proposition 6.2.7.11. (i) this 

label is external for R
2 

and obvious~y it is not the top label of R2 . So 

again the degree of R2 contains (IL 

(ii) When A is included, we can distinguish four cases: 

1 • R1 ,R2 are both 6-redexes 

2. R1,R2 are both TRS-redexes 

3. only Rl 
·• S-redex l.S a 

4. only R2 
• S-redex. l.S a 

Case 1 is already considered in I.3.9; case 2 is considered in (i) and that 

the lemma holds for cases 3,4 follows by a reasoning very similar to that 

in Ci). D 
• 

6.2.7.13. Let I: be a regular CRS. Then 

is defined similar to AL,P in I.3.9. 

L p 
E' , where Pis a predicate on L, 

Also as in I.3.7 and I.3.9 we can define rHW, a 'homomorphic image' 

HW 
E.g. CL has the rules: 

where l 
So 

= min (n,m,k) , for all n ,m,k E lN • 
aw for L: , Le1i1tna 6. 2. 7 .12 says that descendants keep the same degree 

as their ancestor redex, and created redexes have a degree less than that 

of the creator redex • 
• 

6.2.7.14. EXAMPLE. In (CL~ Pairing)HW, consider the step 

7 2 
+ v

0 
cv AB) , 

• 

• 
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where all unmentioned labels are high (>7). Then the redex KVI of degree 

min (5,3) has created the V
0

-redex of degree min (7,2). 

6.2.7.15. COROLLARY. If tis a regular TRS, or E = A e E 1 where E' • 
1.S a 

L P HW 
regular TRS, then: E ' ( for P bounded) f= SN and I: f= SN. 

PROOF. Irmnediate by Lemma 6.2.7.12 and Theorem 6.2.4. Q 

6.2.7.16. REMARK. (i) The preceding corollary can be generalized to the 

class of all regular CRS's. It is rather tedious to generalize Lemma 

6.2.7.12 1 however. 

{ii) It is possible to use a more economic version of rL and EHW, in which 

in ax Hnot every subterm of H bears the label a, but only the 'initial' 

subterms in some sense. We will not elaborate this possibility, but merely 

mention this more economic versi·on for CL (cf .6. 2. 7 .13) : (CL HW) ' has the 

rules 

-+ zmin(n,m) 
1 

where l = min(n,m,k) 

It is not HW ' hard to check Lemma 6.2.7.12 for (CL ) • 

6.2.8. As an application of the preceding corollary, we will derive the 

Standardization and Normalization theorem for a restricted class of (A$) 

regular TRS's, which will be defined now. 

6.2 .. 8.1. DEFINITION .. Let Ebe a regu)ar CRS and r E Red(!:); r = H + H'. 

(i) The rule r is called lef-t.-nor111al iff in H all constants Q_ precede 

the metavariables z. 
(ii} Eis called left-normal iff all its rules are left-normal .. 

6.2.8.2. EXAMPLE. (i) A, CL and all definable extensions of A are left

norma.l. 

(ii) $Pairing$ Definition by cases$ Iterator as in Example 1.15.(3) 

is left-normal. 

(iii) The •proof-theoretic' reduction rule in Example 1.12.(v) is left-

normal. 

• 
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(iv} The rules for the recursor Ras in Example 1.12(ii) are not left-noxmal 

However, the (proof-theoretically equivalent) rules for Ras follows: 

(v) Church's generalized c-rules are left-normal (trivially) • 

(vi) The rules for the combinator Fin 5.11. Ad(3) are typically non-left

norxnal. 

Our definition of 'standard reduction' for a regular CRS is analogous 

to the one for A (and definable extensions), see Def.I.9.1. This definition 
_. 

deviates from the definition of 'standard• for regular 'l'RS I s in LEVY-HUET 

• 

[79], where Standardization is proved for all regular TRS's. Below we will · 

prove Standardization and Nor1nalization for ( A@) regular left-norrnal TRS' s; 

and on the intersection of those classes our definition is equivalent with 

the one of Levy and Huet (we will not prove this). 

regular CRS's 

For left-normal CRS's the definition of 'standard' and of the standardiza

tion procedure is very simple. Just as in I.10, all we have to do is to 

pexmute adjacent reduction steps which form an 'anti-standard pair• . 
•• 

6.2.8.3. DEFINITION. (i) Let~= MO 
R1 

-------~► ••• be a E-reduction, 

where Eis a regular 

In the step M. 
J. 

marker* to all the 

CRS. 
R· l. 

Mi+l (i ~ 0 as far as defined), 

redex-head-sy1rtbols Q to the left of the 

attach a 

head-sy111.bol 

of R .• These markers arepersistent,once they are attached {i.e. descen-
1 

dants keep the marker). 

Then R is scandard, iff no marked redex is contracted. 

(ii) An anci-standara pair of reduction steps is a reduction of two steps 

which is not standard. 

(iii) If IR= M 
0 

''meta-reduction 11 

·~ > M1 ·· ➔ M2 is an anti-standard pair, we define the 

tR • 1 ► cR' analogous to Def. 1 O • 2 • 1 . 



---+·> V
0

cV11) E.g. if tR = V
0

(V(KTI)1) 
6t, > tR• = V

0 
(VCK11> 1) -➔> K11 - ► 1 

--► 1 (not standard) then 

(standard) . 
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6.2.8.4. REMARK. The difference with (definable extensions of) A is that 

now redexes can be created whose head-symbol is to the left of that of the 

creator redex; e.g. as in V
O 

( IVAB) · ► V
O 

(VAB) • 

6.2.8.5. LEMMA. Let r be a regular TRS or let r = A er• where r• • is a 

regular TRS. Then the meta-reduction • 1> of r.-reductions is a-cyclic and 

moreover SN. 
• 

PROOF. Analogous to the proofs of Proposition I.10.2.3 and Theorem 

I.10.2.4.(i), using Corollary 6.2.7.15. n 

6.2.8.6. REMARK. (i) So every r-reduction IH, for Las in the lemma, has a 

• > -normal · forrr1; however, 6t mav have more than one - -normal fo.rzn. Example: 

= {PzQ~ - zz, R > .S, Iz --► z}, 

and 

= PR(10) - PR()-➔ PSO ....... .._ .ss. 
• 

Now~ contains two anti-standard pairs, and 

1H PR. ( 1 Q) · · + PRQ_ · > RR - SS = IH1 
• 

> PR ( IQ) ~> PS ( 1 Q_) PSQ , ► SS = tR
2 

where tR
1 

,tR
2 

are both , > -normal forms. 

(ii) Moreover, an , > -normal form is not necessarily a standard reduction; 

e.g. <R
1 

is not standard. If the last step of di:
1 

is omitted, we have a re

duction which is not standard and for which there is no standard reduction 

at all. I.e. for regular CRS's in general, the Standardization Theorem 

fails. This observation is due to HINDLEY [78], who gives essentially the 

same counterexample for $ Recursor ~, where the rules for~ are the 

non-left-normal ones (see Example 6.2.8.2.(iv)). 

However: 

6.2.8.7. LEMMA. For lefc-normal regular CRS's E: the I-reduction~ is 



192 

standard < > tR is a -normal form. 

PROOF. Claim. Let I be a left-normal regular CRS. Then the following can 

not happen. 

N = 

n 
{) 

n n* 
--2 -0 

M --: N is a E-reduction step, Q-0, n_
1 

E M are redex-head syrnbols such that 

Q-0 < ()_1 (~ is to the left of 0_1 ) .. After contraction of 0_
1 

(i .. e. the redex 

* headed by 0~), 0--0 is marked as 0~ in N (as in Def.6.2.8.3 of 'standard') 

Moreover, the Q
1
-contraction has created a redex headed by~ such that 

* n < o . 
""2 ---0 

So what we claim is that no redex to the left of a marked redex can 

be 'activated' (created). (Note however that in Remark 6.2.8.6 this does 

happen, in the step PR (I()_) -"7'> PRO. Here .. = I, 

Proof of the claim. Obviously the step M .. ➔ N must have the form 

M: --
-

where 

() () ➔ is an r-redex, such that the LHS of the rule r is ( .. 
2 

.... z ... ( .. _
3

H) .•. ) • 
*' ),, 

That ~A must be in fact a subterm of pZ, follows from the non-ambiguity 

of the rules, in casu r(see also Def.1.14). However, a left-normal CRS 

cannot have a ruler as displayed, since should precede the meta-

variable z. This proves the claim. 

Now we can prove the assertion in the lemma, by induction on J tRJ , the 

number of steps in~- Here (=>) is trivial. (<=): 

Basis. f~J = 2: trivial. 

• 



Induction step. Suppose for l~I = n the assertion is proved. Now let 

~=M 
0 

.. . . M be a reduction of n+1 steps, and suppose~ is a n+1 
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, > -normal form, but nevertheless not standard. By induction hypothesis we 

know LI ) 

• • • -~> M and 
n 

M 
1 

• • • > M 1 are standard. So~ n+ 
must be of the following form: 

0 .. 1 

Ml ---
Q2 

• 
• • 

M ---n 

Qo 

M n+1 

() 
·-2 

() () 
1) ·-1 

n* 
{) 

' 

f)* 
--0 

' 

In M 
n 

M 1 for the . n+ first time a marked redex n* 
-0 

is contracted (other-

wise MO --r> . - . -•~➔- M 
n 

was not standard). 

The ancestor of this redex must have been marked already by the first step 

in lR; otherwise IIIJL ) ..... Mn+! was not standard. So in M0 
redex Q1 > ~ is contracted, marking O • Now in M ► M a redex 

V ~ 1 2 
0 * . must have been contracted, for if ."2 > 0--0 then Q~ marks~ again and 

➔ M 1 would be not standard. 
n+ 

Now O must have been created by .'2 
otherwise it was marked by ~

1
, and M

0 --► ... -

But that is the situation which cannot occur, 

Hence cR is standard and the lerr1111a is proved. n 

So by the preceding two lemma's we have now: 

--+- M 
n 

was not standard. 

according to the claim. 

6.2.8.8. THEOREM (Standardization for left-normal regular TRS 1 s). 

Let r be a left-normal regular TRS, or let i: = 
normal regular TRS. Then for every r.-reduct;ion 

is a st;andard reduction IR 
st 

' 

--> •... • ➔ M. 
n 

r• where r• is a left-

= M _ .. --+-➔ • • • - - > M 'there 
0 n 

□ 

• 

' 
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We conclude this Chapter with a corollary of the Standardization 

Theorem. The proof is entirely analogous to that of Theorem I.11.2: 

6.2.8.9. THEOREM (Normalization for left-normal regular TRS's) 

Let Ebe as in 6 .. 2.8.8. Then repeated contraction of the leftmost redex in 

a r-term leads to the normal form, if it exists. D 

6.2.8.10. REMARK. (i) It is possible to extend these results to the class 

of all regular left-norrna.l CRS 's. {Cf. remark 6. 2. 7. 16. (i) . ) 

{ii) Also we expect that one can prove moreover the strong version of the 

Standardization Theorem for regular left-normal CRS's, analogous to Theorem 

I .. 10.2.8. (iii}. 

• 

• 

. 
; 

, 

. 
i 

' 
' ' 
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CHAPTER III 

IRREGULAR COMBINATORY REDUCTION SYSTEMS 

After having occupied ourselves- in Chapters I and II exlusively with 

regular CRS's, where 'regular' is short for 'left-linear and non-ambiguous' 

(Def.II.1.11, II.1.14), we will consider some irregular CRS's now. We will 

mainly study the effect of dropping the left-linearity condition; only in 

one instance (viz. A~ Surjective Pairing) an ambiguous CRS will be con

sidered here. (For results about ambiguous TRS's, see e.g. HUET [78].) 

In section 1 we will prove that the CR property fails for some non

left-linear CRS's. In section 2 an 'intuitive' explanation of this failure 

is given, with the aid of 'infinite expansions' of terms (Bohm trees). 

Finally some positive results about the CRS's in question are given. 

1. COUNTEREXAMPLES TO THE CHURCH-ROSSER PROPERTY 

1.1. Consider A-calculus~ constants V,V
0

,V
1 

and reduction rules 

r 1 : V
1 

(Vz
0
z

1
)----+ z

1 

r: V(V
0

z) (V1z) --4- z. 

The 'meaning' of the constants is that they constitute a Surject:ive Pair

ing (SP}: from the pair Vz 0z1 one obtains the first resp. second coordinate 

by applying V
0 

resp. V1 ; the third rule gives the surjectivity, in the 

sense that w.r.t. the equality=, generated by 

A = V (V 0A) (V l A) • 

• • _,_>, every term is a pair: 

It was asked by Colin Mann (1972) (see BARENDREGT [74]) whether this 

CRS, A e SP, has the CR property. Note that A e SP is non-left-linear (in 

ruler) as well as ambiguous: there are the interferences r 

Def.II.1.14) as shown by the term V
0

(V(V0A) (V 1A)), likewise r ~ r 1 , and 

• 

• 
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moreover r 0 ,r1 ~ r as shown by V(V0 (VAB)) (V1 (VAB)). 

These ambiguities, however, do not spoil the property WCR: 

V(V
0

(VAB)) (V1 CVAB)) 

VA (V l (VAB)) 

v cv cv A> cV1A> > 
0 0 

r 

0 

rl 
• 

r 

0 

I 
I 

:0 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I --------- . 

VAB 

VAB 

Likewise the lack of left-linearity is no obstacle to WCR: 

R 

<C[R] 
R 

!J(V
0
(t[R' l) (V

1
tt[Rl) 

( *) R 

r 

<C[R' J 

Here the 'disturbance' of the r-redex by the contraction of redex R to R' 

is compensated by the 'mirrored' contraction of R in the step (*). 

In attempts to prove that:>.. SP I= CR, it seems that the essential 

problem is the non-left-linearity, rather than the ambiguity of the rules. 

Therefore R. Hindley considered A e the constant Vh with the reduction 

• 

• 

• 
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V zz · .. , z 
h 

and posed the question whether A e Vh I= CR holds (cf. the problem list 

BARENDREGT [751). A further simplification of the question was made by 

STAPLES [75], who considered A@ the constant V with the rule 

V zz · ➔ E 
s 

s 

where Eis some 'inert' constant. In the sequel we will consider yet an

other variant, namely A e Vk and the rule 

_,. Ez 
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with a similar E as before. The CR-problem for this CRS is so to speak in

termediate between the last two, and moreover the use of A e Vk will prove 

to have certain technical advantages. 

G. Huet and J.J. Cevy remarked (personal communication) that one en

counters a similar CR-problem when considering Recursive Program Schemes 

{see I.1.13) with the branching operation 'if P then A else B' and apart 

from the usual rules for this operation also the rule 

if P then Z else Z --rr z. 

The same CR-problem was posed in the list of ''Further Research' topics in 

O'DONNELL [77]. 

Finally, we mention that the CR-problem for non-left-linear extensions 

of A-calculus is also encountered in foundational studies, see FEFERMAN [80]. 

1.2. Before describing the underlying 'intuition' in the next subsection, 

we will first prove that CR fails for the CRS's mentioned in 1.1. 

1.2.1. As an introductory example, 

constants A,C,V ,E and the rules 
s 

consider the TRS E consisting of the 
s 

• 



198 

Vzz )- E 

Cz •➔ Vz (CZ) 

A w )· CA 

(we will drop the subscript in 

Now we have the following 

A .. . > CA VA(CA> 

C (CA) 

C (VA (CA)) 

C (V ( CA) ( CA) ) 

CE 

V sometimes). 
s 

reductions: 

--►- V(CA) (CA) 

• 

E 

So in order to have E I= CR, the terrns CE and E must have a connnon reduct. 
s 

First some, notation: 

1.2.1.1. NOTATION. Let M,N E Ter(r) for some CRS L. Then M N will mean: 

3L M ➔> L << N. 

Now obviously, CE 

CE is: 

E iff CE » E. However, the only reduction of 
• 

CE · ➔ VE (CE) --,..), VE (PE C CE) ) ---+ VE(VE(VE(CE))) .. > ••• , hence CE ·-P E. 

Therefore E (# CR. 
s 

1.2.2. For the TRS rk consisting of constants A,B,Vk ,E and rules 

V zz , +· Ez 
k 

Cz . ) Vz (CZ) 

we have an analogous counterexample to CR: 

• 

• 

,, 

• 

' 
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A CA --r> VA(CA) __., V (CA) (CA) 

C(E(CA)) 

(where the downward reduction is again the horizontal one preceded by C) 

and now E(CA) C(E(CA)), as some calculations make plausible and as will 

be proved later on. 

1.2.3. The counterexamples to CR for the above TRS's r
5

,Ek carry over al

most immediately to A e Vs and A e Vk, as follows. 

For A~ Vs resp. A e Vk, let Ebe either a new constant or some free 

variable, or put E = (Ax.xx) (Ax.xx). Let 

C = YTAcz.Vsz(cz) resp. YTAcz.Vkz(cz) 

A= YTC 

where YT =(Aab.b(aab)) (Aab.b(aab)) is Turing's fixed point combinator as 

introduced in I.1.11 (Here we prefer YT to Curry's fixed point combinator 

Y = Aa.((Ab.a(bb)) (Ab.a(bb)) since YTM -» M(YTM) for all M but not 

YM -» M ();M) • ) 

Now as in 1.2.1 and 1.2.2 we have in both cases: 

CM » VM (CM) 

A· ➔> CA 

and hence as above: 

A-»CA-»E 

y 

CE 

resp. A ►> CA · - ;t,. E (CA) 

C(E(CA)) 

1.2.4. Before proving that CE E resp. C(E(CA)) # E-(CA), i.e. that 

Vs I# CR resp. 11. e Vk ~ CR, we will state CR-counterexamples for 

Vk zz ➔ z and A e Surjective Pairing. 

Note here that for A e Vh it does not work to define A,C such that 

• 
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CM >> 'VM(CM) 

A >> CA 

since now the reductions analogous to the ones above: 

A >> CA >> VA (CA) ----;:>> V ( CA) ( CA) --+ CA 

C(CA) 

do not provide a CR-counterexample.· 

The following heuristic consideration shows how one can proceed. There 

are between the CRS's A@ Vk,Vs,Vh, SP 1 interdefinabilities 1 as in the 

figure: 

r 
l 
I 
I 
I 

Vk .. - l • - I 

I 
I 
I 
I 
I 
I 
\.. 

A e Surjective 
Pairing 

:>,.xy.Vh<x><y>(KE) 

A EB V zz 
s 

E 

AXy.V xyy 
s 

--- 'I 
I 
I 
I 
I 
I 
I 
l 
I 
! 
I 
I 
I 
I 
IV := 
lk 
I 
I 
I 
I 
I 
I 
I 

t 

Ez ________ .) 

Here we used the notation <M> = Az.zM (ziFV(M)) and KM= Az.M. 

(Remark: it does not seem possible to reverse any of these----~ arrows.) 

> Z we can define the constant Vk as Axy.E(Vhxy); for 

then we have for all ter1ns ~1: 

->· EM. 

' 

• 

• 

. 
• 



201 

Now the (claimed) CR-counterexample for A e V can easily be rewritten, to 
k 

yield (claimed) CR-counterexamples for the systems which are higher in the 

above figure. E.g. the terms C,A in A e Vk such that CM 

A » CA as in 1.2.3 can be defined also in A e Vh: 

C'M ' >> E (V M (CI M) ) 
h 

A' ____;;:,➔> C I A ' • 

In fact, let us define in A e Vh: 

then we have (somewhat more directly than C',A'): 

CM ➔> E (VhM (CM)) for all M 

A --· · » CA 

and now 

--:ii!►> E(CA) 

C ( E (CA)) 

is again the (claimed) CR-counterexample for A e Dh. 

Simjlarly we find for A e SP: 

for all M 

A-» CA 

and reductions 
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C ( E { CA) ) • 

1.2.5. REMARK. (i) Using the interdefinabilities scheme above, one can find 

some alternative CR-counterexamples, e.g. for A ~ Vh, 

CM » V <M><CM>(KE) and A---.» CA. of V in 
s h 

using the definability 

(ii) Our original construction in KLOP [77] was based on the TRS ~ consist-

ing of constants A,B,C,V,E and rules 

• 

Vzz ,. • > Ez 

Cz ), Vz (CZ) 

A VAB 
B --+r C (VAB> 

Using the abbreviations~:= VAB and □ := V6(C6), we have reductions 

E□ 

V(E□ ) (C{E□)) 

and now E□ ¥ V(E□) (C(E□)), as is made plausible by considering that 

(i) E□ + V(E□)(C(Ea)) => Eo + C(Eo) 

(ii) C(E□) ► V(Ea)(C(E□)). 

This TRS can be defined then in A$ Vk by means of the multiple fixed 

point theorem in I.1.11 (necessary since A,B are defined in terms of each 

other). 

H.P. Barendregt remarked that this construction could be simplified 

as in 1.2.2 above, thus requiring for its definition only a single fixed 

paint construction. 

We will now prove that the claimed CR-counterexamples are indeed 

counterexamples. 

' 

• 
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s h 
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(i) We will call a finite r-reduction tR special if tR = ~B * tR
0 

where tRS 

is a standard S-reduction and tR
0 

is a sequence of V-steps (i.e. V
5

,Vh, 
Vk or V,V0 ,V1-steps). Here* denotes concatenation of reduction se

quences. 

(ii) A '£.-conversion r is a finite sequence r = M
0 • • • M (for 

n 
some n ~ 0) where each - is either -· > or .. A conversion r which 

is not a reduction, is called special if it con~ists of two converging 
IR1 M2 

special reductions tR1 ,tR2 ; • 
l.. e. r = M --•--,>>N<-< L for some M,N ,L and 

special tR
1 

,tR
2 

.. 

Notation: r = tR 
1 

• 

(iii) l«Rl denotes the total nlimber of sy1r1bols in the reduction dt; i.e. if 

tR = M 
0 

.... M then l«Rl = }:;1: 
0 

1 M. I where l M. l is the length of n 1= l 1 

M .• 
1 

If r = iR1 * 

1.2.7. PROPOSITION. 

(i) 

(ii) 

"(B (V zz 
s 

-1 
(R2 , then frl 

Ez) F PPB V 
, k 

(I.e. the D-steps can be postponed; see Def.1.5.2. (5) .) 

PROOF. (i) Let r be the rule V ZZ -~ E. Define M ---s -1 
r_1 

According to Proposition I.5.5: if B commutes with r , 

Now it is easily checked that 

VA,,B,C3D A C 
B- I 

-1 -1 Ir r 
I 

______ j 
B 8 D 

N iff N --~ M. 
r 

then PPB holds. ,r 

Note that here B -
8
- Dis one step; hence it follows easily that Band 

-1 
r are indeed • co1n1,iut1ng. 

(ii) The converse of the ruler= Vzz 

A= A$ r- 1 is evidently a regular CRS. 

Ez is 
-1 r = Ez -+ VZZ; and 

In fact, A is a definable extension 

• 
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of A-calculus. Therefore, by Corollary I.6.13, S commutes with 

as in (i) , A @ r I= PPB, v · n 

1.2.8. THEOREM. A @ (V ZZ .. ► E) ~ CR. 
s 

-1 
r . Hence 

PROOF. Consider the reductions A ·-· ➔> CA ➔> 7£ as defined in 1. 2 .3. 

cE 

We claim that cE -+-E, or equivalently (since E is a normal form), that 

cE +> E. For, suppose that cE -» E, then, by Proposition 1. 2. 7 (i) and the 

Standardization Theorem for A, there is a special reduction~ from Ct to E. · 
Suppose moreover that~ is a minimal special reduction from cE to E, in the 

sense of ! I, as in Def.1.2.6. (iii). 

Since~ is special, it is easy to see that IR must be of the form 

• 

~:CE= YT{Acz.Vsz(cz))E 

l.m 

(Ab.b(YTb)) (Acz.Vsz(cz))E 

l.m 
. 

(Acz.V z(cz))CE 
s 

l.m 
l.m 

V E (CE) 
s 

S standard 

VEE 
s 

Vs 

E 

(Here l denotes a 'leftmost' reduction step; • m. 
is the leftmost redex of the term.) 

, 

• i.e • the contracted redex 

However, the reduction tR•, indicated above, contains in an evident 

sense a reduction Oi'': cE · ➔> E, which is moreover a special reduction. 

Furthermore I «R'' J < l tR r , con tr adi cting the minimality of IR .. 

Hence CE /» E. D 

------------------

• 

I 
' ' ' 
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cZ) ~ CR. 

PROOF. Consider the reductions 

A--.>> CA --➔> E(CA) 

C (E (CA)) 

as defined in 1.2.3. We claim that E(CA). C(E(CA)). Suppose not. Then there 

as follows: 

E(CA) 

r 
standard standar 

k 

EL 

for some term L. Here we may suppose that ~
1

,~
2 

are special reductions 

(Def.1.2~6), as in the proof of Theorem 1.2.8; so r is a special conversion. 

Now let r be moreover a minimal (w.r.t. I I, cf. Def.1.2.6.(iii)) special 

conversion between E(CA) and C(E(CA)). Analogous to the proof of 1.2.8, 

~
2 

must be of the form 

C(E(CA)) 

B l.m. 
V(E (CA)) (C (E (CA))) 

S standard 

L'L' 
k 

EL' 

EL 
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But then the above indicated reduction~• contains clearly a reduction 

E (CA) ~~ L • and a reduction <R2: C ( E (CA)) · » L' • That is, <R• contains a 

conversion r• = «H 1 * <R,-l between the two terms in question. Also it is ob-
1 2 

vious that Ir' I < l<R2 1 ~ !rl and that f' is special, contradicting the 

minimality of r .. D 

1 • 2 - 1 0 .. THEOREM. 

(i) 

(ii) SP ~ CR. • 

PROOF. For the present CRS's we do not have PPB,V (Postponement of V-steps) 

as before. (E.g. consider VhIII V;. II -
8 

> I .. ) However, locally the si

tuation is the same; to be more precise: G (CA) f= PPs,v· Here CA is the 

term defined in 1.2.4 and the 'reduction graph' G(CA) is the restriction of 

the CRS in question to the set of reducts of CA. 

For (i) as well as (ii}, we will prove that G (CA) j# CR using the 

previous theorem and an isomorphism arg11IDent. 

(i) Let ck'¾ be the terms C,A as defined in 1.2.3 for A e Vk, and ch, 

the terrns c ,A as defined in 1.2 .4 for A e Vh: 

Note that in G (Ck~) every V k appears in the form • • . (VkPQ) .•. , and that 

in G(ch¾) everyVh appears in the form ••. (E(VhPQ)) •••• (The proof is a 

routine exercise.) 

Now define a map €:: G (Ck¾) --+- G (Ch¾) as follows: if M E G (Ck¾), 

then s (M) = the result of replacing every subterm VkPQ c M by E {VhPQ) .• 

(To be more precise: Eis inductively defined by 

s(x) = x, e(Vk) = Vk, e(f) = E 

e::(Ax.A) = AX.E(A) 

€: ( V k PQ) = E ( V h E ( p) € ( Q) ) 

£(AB) = EA(EB} if AB is not 

• 

• 
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Then one easily verifies that Eis an isomorphism between O(Ck¾) and 

G(Ck¾) and G(ch¾) in the sense that 

1) e:(Ck¾) = Ch¾ 

2) e: is a bijection between Ter G(ck~) and Ter G(ch¾) 

3) for all M,M' E G(ck~): 

M --+ M' 
B 

M ----v_,.> M , 

k 

< > e: (M) - -..+,,) E (MI) 

e: (M) V ), e:(M'). 

h 

Hence the proof in 1 .. 2 .. 9 that G(ck~) ~ CR carries over immediately to 

G (Ch Ah) ~ CR, via e:. 

Alternative proof. Since in G(ChAh) every Vh occurs in a context 

---E (VhPQ)---, a Vh -reduction step in G (Ch¾} must have the forn1 

---E(VhPP)-- - ➔ --EP--. This means that Vh-reduction in G(Ch~) can be 

thought of as the converse of the reduction given by the rule 

* r = EP 

and A$ r ·is obviously a regular CRS, hence CR. Therefore (as in Prop. 

1.2.7) by Corollary I.6.13 and Proposition I.5.5, we have 

~ PPB V • 
, h 

The remainder of the proof is then entirely similar to that of the pre

vious theorem. 
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(ii) A similar argument as in (i): let 

for A EB SP: 

C ,A be C,A as defined in 1.2.4 
sp sp 

c = Y Acz.E(V(V0z) (V1 (cz)) and A = YTC • sp T sp sp 

Now l;: G (CkAk) 

subterm V PQ c k -

---+--) G {C A ) , 
sp sp 

M by 

defined by: r;;(M) = result of replacing each 

is an isomorphism betwe.en the tw.o .. reduction . graphs., analogous to · the case 

• 
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• in ( i) • (Note that in G(C A ) 
sp sp 

no V
0
-,V

1
-steps are possible, only S-,V-

steps.) 

Hence the result follows as in (i). 

Alternative proof. Analogous to the alternative proof above, we have 

G ( c A ) I= PPS , V sp sp 

* since V-reduction in 

where 

G(c A ) 
sp sp 

is in fact the converse of r -reduction, 

* r = EP 

The remainder of the oroof is then again similar to the precedino cases. 
-

1.2.11. We will now prove that there are similar CR-counterexamples for some 

other non-left-linear CRS's, namely: 

(i) 

(ii) 

For the TRS's • as in 1.2.1 and 1.2.2. The proofs that the terms 

CA as defined there yield indeed CR-counterexamples, are merely sim

plified versions of the ones for A~ V
8

,Vk. 
Likewise for the TRS 1 s 

A e Vh and A SP. 

and I corresponding 
sp 

in the same manner to 

(iii) For CL e V
8

,Vk there are CR-counterexamples similar to the ones above, 

bearing in mind that CL allows the analogous fixed point construc

tions (see I.2) and that the same necessary theorems {Standardization, 

PPCL,V) hold. 

(iv) For CL e Vh, SP there are also similar counterexamples; but in the 

proof that they are indeed so, there is a technical obstacle. We will 

deal with these ,CR-proofs below. 

{v) For several other non-left-linear extensions of A and CL there are 

analogous CR-counterexamples. We will give three examples: 

(1) A e V
3 

where the constant V
3 

has the reduction rule V3zzz ➔ Z. Now 

Vh can be defined in A e V
3 

as Axy.V3xyy, and a CR-counterexample for 

A~ V
3 

is easily found by rewriting the one for A e Vh. (Instead of Vhxy 

take V 
3
xxy .. ) 

(2) Let r be the TRS with constants O,+,- and rules O + z ➔ z 

(Z 1 +Z2) +Z3 .. -i-- zl + (Z2 +Z3) 

(-Z) + Z · ➔· 0 
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(Instead of + AB we have used the infix-notation A+ B.) Then ~ i: r# CR. 

- -For, the counterexample for :\ ~ V can be rewrj_tten: take E - 0 and V xy . -- . -
s s 

(-x) + y. (Note, however, that L i= CR by Newman's Lemma.) 

(3) Let I=:\ if x then y else z be A plus a branching operation defined 

by: if T then z 1 else z
2 

if i then z 1 else z 2 

if z
0 

t he:i z
1 

else z 
1 

" >- z 
1 

-..;.➔ z 
1 

Then L CR. For, writing B(x,y,z) instead of if x then y else z, we can 

define Vh as follows: Vh := Aab.B(I,a,b). 

(It should be noted here that it does not matter whether one extends 

A by B(x,y,z) or by B1 the difference being that B(x,y,z) has always three 

argi1ments, while B can occur 'alone', as e.g. in (Ax.x)B. 

For CL however, there is a crucial difference: CL B ~ CR, analogous 
' 

CR (see below), but CL e B(x,y,z) t== CR! This will be proved 

at the end of this chanter.) -

(vi) For An e Vh,V
5

,Vk, SP the CR-counterexamples are the same as for A. 

The proof that they 'work' requires several technicalities however; 

see 1 . 3 be low • 

1. 2 .. 12. THEOREM. CL e Vh ~ CR. 

PROOF. Translation (by means of T' as in I.2.5.1) of the CR-counterexample 

for A e Vh, viz. 

yields: T' (CA) = nny(nn(nny)) where n = T' (Aab.b{aab)) and 

y = -r' (Acx.E(Vx(cx))) = S(K(S(KE))) (SV). 

CLAIM 1. In GCL,V(CA) a subterm VPQ can only occur in a context 

(i) ••• E (VPQ) ••• or 

(ii) ••• KEB (VPQ) • • • for some B. 

(If (ii) were not the case, postponement of V-steps in GCL, V (CA) would 

follow immAdiately, by an argument as in Proposition 1.2.7.) 
• 
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Proof of the claim 

In G V (CA) the sy1nbol V can only occur in the following subterms: 
CL,· 

M 
1 

= y = S ( K ( S ( KE) ) ) ( SV) , 

M2 = K(S(KE))X(SVx), for some X (the head reduct of M1X), 

M3 = S(KE) (SVX) for some x, 

M4 = KEY(SVXY) for some X,Y (the head reduct of M3Y), 

Ms= E(SVXY) I Ms 

M6 = E(VY(XY)). 

= KEY(VY(XY)), 

• 

Therefore claim 1 follows. 

CLAIM 2. Let r be CL extended with constants V,E and the reduction rules 

Ez -7)- E(VZZ) ( 'E-reduction 1 
) 

( 
1 KE-reduction') 

(so Eis ambiguous). 

Let• (K)E-reduction' be 1 E- or KE-reduction'. 

Then (K)E-reduction commutes with CL-reduction (i.e. 1-, K-, S-reduc

tion). 

Proof of the claim 

That (K)E- and CL-reduction commute weakly, is easily checked; the most 

noteworthy case is: 

KE 

11111 

E 
>-

KEA(VBB) 

K 

E ('VBB) 

The proof that they also commute is not immediately obvious (since (K)E
reduction is duplicating) and requires some argument, e.g. the following. 

Let us introduce underlining of redexes in E; only the head symbols 

of E-, 1-, K-, S-redexes may be underlined and of a KE-redex the two head

symbols may be underlined. The rules for underlined E-reduction are: 



211 · 

Iz > z, Kz
1 
z

2 

Ez ,, ► E cVzz) , KEzlz2 -"•--➔ KEz1 (VZ2Z2), 

.. ► KEz ( Vz z ) 1 2 2 . 

Now underlined reductions are also weakly commuting; again the most note

worthy case is: 

KEAB , KEA(VBB) 

K K 

EB E E(VBB) 

To prove that I 1= SN (i.e.. 'Finite developments• for i:) we can employ the 

method of weights as in I.4. 

Every constant ( say K) in a ~-ter111 will have a weight ( I Kl ) attached 

to it; during a I-reduction the descendants of a constant keep the same 

weight, with one exception. 

Here the concept of descendant· is ·for· the CL- and E-re1ductions the 

usual one (note that CL e E-reduction is a regular TRS, for which we have 

defined a 'canonical' concept of descendant); for KE-reduction it is de

fined as follows: 

KEAB 
I I I "" 
i i i ·,, 
i i i \ 0\ 

tit t ~-:ii. 

KEA(VBB) 

If ME Ter(t), a weight assignment for Mis called 'good' iff: 

111 = IKI = 1, for all 1, Kin M; 

111 = lKI = ISi = JV)= ]El= O, for not underlined constants; 

in each SABC c M, IS] > 2 ]cl (where )cl is the sum of all the weights in 

C); in each EB, JE] > 2 ]Bl; in each KEAB or KE.AB -- CM, - IK] = 1 and ]El > 

2 I BI . 

Reduction of L-terms plus weights is as usual (descendants keep their 

weight) with the following exception: 

• 
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AB 

AB - t 

i.e. the E loses its weight. 
-

(Several other definitions work just as well.) 

Now it is a matter of simple com9utations to check that 

(a) the weight of a redex > the weight of its contractum, 

(b) a 'good' weight assignment remains so during reduction, 

(c) terms lose weight during reducti~n, 

(d) every r-term can be given initially a 'good' weight assignment. 

(Cf. the proof of Theorem I.4.1.11.) 

Hence !: ~ SN. Therefore, by the usual arguments, r I= CR, and • since 

(K)E- and CL-reduction steps 'propagate' as similar steps, we have proved 

that (K) E- and CL-reduction commute. Hence by Proposition I. 5. 5 the ''con

verse ( K) E-steps '', i.e. the V-steps, can be postponed. So we have 

F PP V' and the remainder of the proof that CA yields a CR
CL, 

counterexample is similar to previous cases. 0 ' 

1. 2 .13. REMARK. The proof that CL @ SP j;& CR is similar and is left to the 

reader. 

1.3. In this subsection we want to extend the above negative CR results 

from A to An (or A8n-calculus; see Chapter IV). We will do this by showing 

that the term CA, as in the CR-counterexamples above, has no n-redexes in 

its SD-reduction graph Gev(CA) (hence Gsv(CA) = GBnV(CA) and we are done). 

To establish this fact requires some technical considerations; as a pre

paration to the first technical proposition, but also for its own sake, we 

will describe a method of proving a property P for all 8-reducts of some 

term M (i.e. GS (M) ~ P, or GS (M) }= 'vN P (N) )_ . Such a method is desirable, 

since often G
8

(M) is very complicated. One method is mentioned already in 

I.12: there a cofinal reduction~ in G
6

(M) is used. Instead of proving 

GS (M) I= P, it suffices to prove P for the terms of IR. But this method 

works only if the property-,P is invariant under S-reduction; the typical 

example is: P (N) < > N contains the free variable x. This 1 cofinali ty method' 

is not applicable for our purpose below. 

We will now describe another (somewhat heuristical) method to prove 

GS (M) I= P, which is based on the Standardization Theorem. 

• 

• 
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1.3.1. DEFINITION. (i) Mis in head-normal form (h.n.f.), w.r.t. B-reduc
➔ 

tion, if M is not of the for1n RS for a 8-redex R and some 
➔ 

R is called the head-redex of RS. (See remark (*) p.214.) 

(ii) Head-reduction is the contraction of the head-redex, if present. 

Notation: M . h ►· N. 

(iii) Let N C M. N • called derived subterm of notation l.S a M, M ·>- N, ----der 
iff N • subterrn of M, not • h.n.f., which maximal • that l.S a proper • in l.S in 

respect. Otherwise said: iff (1) N f- M, {2) N not in h.n.f., (3) N' f_ N & 

N' not in h.n.f. - N' = M. If M -der-➔ N, then N is said to be obtained by 

derivation of M. 
-

(iv) Let A
1

, ••• ,An (n~O) be the derived subter10s of M. Then we will write 

M = ~h[A1 , ... ,An] where ~h[ , ... , J is a n-ary context, called the head

context of M. 

1.3.2. DEFINITION. The 

is the least structure containing Mand closed under head-reduction and 

derivation. 

1.3.3. NOTATION. (i) If N c N' € G (M), we write Ne G (M). Here 
p p 

P = 13,Sn,SnV. 
(iii) In the remainder of this subsection, V will stand for Vh. 

(iv) CA is the te:r:rn as in the CR-counterexample for A '9 Vh, 

CA= Ty(T(Ty)), where T =YT= (Aab.b(aab)) (Aab.b(aab)), and 

• J.. e. : 

y = Acx.E(Vx(cx)). FurtheYmore, T' = Ab.b(Tb), the head-reduct of T. 

1.3.4. PROPOSITION. (i) If (Ay.P)Q E GS(CA), then either Q is a variabie x 

or Q is a closed term. 

(ii) if VMN E Gav(CA), then M = X or Mis a closed term. 

PROOF. Define the property P by: P{M) ~ every argument B of a 8-redex 

(Ax.A)B in Mis either a variable x or a closed subterm. So we wish to 

prove: G
8 

(CA) I= P .. 

CLAIM. P =#> GB ( CA) I= P • 

If the claim is proved, we are done; for, it is easy to check for the finite 

(shown on p.215) that P holds for every texm. (Remark: the reverse 

implication(+=) can be easily proved.) 

• 

• 
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Proof of the claim. Suppose there is a reduct M of CA such that 1P(M). We 
C 

have to show that there is some N E G
6 

(CA) such that ~P (N). 

Let~ be a standard reduction from CA to such an M; suppose~ is of 

minimal length. Say IR is CA = M
0 

- ➔• M1 - > ••• --+ Mn = M. 6{ starts with 

a (maybe empty) head-reduction: M0 h • • • h >- ~ = «:h [A1 , ••• ,AP J for some 

k. Here ~h[ , .•. , ] is the head-context of~ and A1 , .•• ,Ap are the derived 

subterms of Mk. Note that M
0

, ••• ,Mk, A1 , .•• ,AP are by definition elements 
C 

of GS(CA). If k = n we are done, therefore. Otherwise: due to the special 

nature of P and to the minimality of~, the remainder of~ will proceed 

entirely inside one of the A
1

, ••. ,A, say A .. 
p - J 

sibly empty) head-reduction of A.: A. h >- ••• 
J J 

So~ will proceed by a (pos

h> P = ~h[B1 , .•. ,Bq], for 

some P having B
1

, ••• ,Bq as derived terms. Here we suppress the context 

~h[A1 , •.• ,A. 1 ,a,A. 1 , ... ,A] of the terms A., ... ,P. Again the remainder of 
J- J+ p J 

~ proceeds entirely inside one of the B1 , •.. ,Bq, say Bs. In this way~ gives 

rise to a path CA = M · · ➔ ••• --+ Mk -----+ A > • • • > P -----➔ B 
0 h h der j h h der s 

-» ----➔ ➔> h der h ..• Nin to some N(~ Mn). By the special nature of the 

property P and in view of the head-contexts which have been removed along 

this path, it is evident that 7P(N) (after a careful consideration of 
C G
8

(cA)). 

(ii) From (i) we know that every 'substituted subtexm' in G
6

(CA) is either 

a variable x or a closed term. Hence (ii) follows for GS(CA). For GSV(CA) 

the proposition follows easily now, using Postponement of V-steps. D 

(*) (Added in print) Definition 1.3.1 of h.n.f. is not quite correct, cf. 

BARENDP.EGT [80], but will do for our purpose here. 

-

• 
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1.3.5. DEFINITION. AI{-calculus) is the substructure of A where in every 

(sub)te~m Ax.A(x) the variable x occurs at least once in A(x). Likewise 

AII is defined: the x in Ax.A(x) occurs at least twice in A(x). 

Obviously, Ter()..II) is closed under S-reduction. 

1.3.6. PROPOSITION. Vxx t GSV(CA). 
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PROOF. Suppose not, and let~ be a minimal special (see Def.1.2.6) SD-re

duction from CA leading to a subterm Vxx. 
So~= CA --------;9 M _, __ -· ~v=·--~» N ~ Vxx. 

S: standard 
Now we must have a Vxx c M, i.e. by the minimality of~, M -» N is the 

empty reduction. For, a Vxx can only be created by a V-step as follows: 

Vx ( Vxx) -· , >- Vxx or V ( Vxx) x - Vxx. But then we have an 'earlier' Vxx; con-

tradiction with the minimality of~-

Hence Vxx £ GB (CA) . However, this cannot be the case, as an inspection of 

Gc(CA) (preceding figure) shows. (Alternative argument: s 
Vxx e: GS (CA) => I :: :\x .x £ GB (CA) , otherwise Vx (ex) c CA cannot have Vxx as 

descendant. But CA E AII e V, hence G
8

(CA) c AII e V; however Ii AII $ V.) 

0 

PROOF. We have to prove that if R = AX.Mx (x¢FV(M)) is an n-redex, then 

R i GSV(CA). Suppose there 

Since CA E :\II e V and >.II 

P - r Q such that P E 11.II 

is such an Rs GSV(CA). Note that R i AII e V. 
Vis closed under S, there must be a V-step 

V V and Q ~ AII $ V. Therefore the V-redex con-

tracted in this step, must be of the form VA(x)A(x) ,where x has one free 

occurrence'in A(x). But then by Proposition 1.3.4.(ii), A(x) = x. However, 

this is impossible by Proposition 1.3.6. Q 

1.3 .8. COROLLARY. An fB Vh Ii CR. 0 

1.3.9. REMARK. In likewise fashion one can prove that An e Vk,Vs, S.P. 

~ CR. The proofs are very much similar to the proof of 1.3.B and will be 

left to the reader. 

2.. INTERMEZZO.. An intuitive explanation via Bohm trees·. 

In order to ~xplairr the failure of CR for the non-left-linear CRS's 

which we considered above, it is convenient to use the concept of Bohm tree 

(BT) of a term M; notation BT(M). This BT(M) coincides with what is called 

the value of Min e.g. BERRY-LEVY [791. We will not give a precise defin1-

tion of BT(M) here; see BARENDREGT [80] for such a definition (for the 

case of A-calculus) or the paper just cited (for RPS's). Let us merely in-

traduce the concept by an example. Consider the regular part of E 
s 

• as in 

• 

;-,_":_-
-.--,-,__-

' " 

' 
-{, 

·'-· 
' 
't ',_ ' 

' 

' 
'{,: 
' 

·1" , 

' ·;,o-
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1 • 2. 1 , i.e. the TRS with the rules Cz · , > 1)z ( Cz) , A -➔►·CA.Then one can 

develop an ''expansion'' (cf. the decimal expansion of numbers) of say the 

teLill CA, in an attempt to find a normal forrn, as follows: 

VACCA) - · > V(CA) (CA) · ~ V(VA(CA>) (VA(CA)) 

or, • in tree notation, where PQ1 ... Qn is written as p 

01. - .Q ~ -n 

CA ) V ➔ V >- ➔ V ·) 

A/ "c v/ V 
I 1 I 

A/ "'c A/ "c A A A 
I l 
A A 

In this way we find, as the 'infinite nonnal forrn • of CA, the tree 
---

and this is BT(CA}. 

V 
'-........_ V 

/"-. 
V V 
I\ I\ 

.. . . . . . . . • • • • 

• • • 

' 
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The same expansion is possible in A-calculus, CL, or other regu1ar CRS's. 

(Note that we restrict ourselves to regular CRS's in computing BT's; for 

then we are assured of the unicity of the BT, regardless of the particular 

computation. In fact, one can prove the CR theorem for infinitary reduc

tions of infinitary term$, i.e. trees, if the reduction rules are combina

tory and regular in the sense of Chapter II and this Chapter. The BT's are 

then the unique normal forms.) 

Now consider again BT(CA) =~-We will now extend the non-1eft-linear 

V-reductions to trees (say for V ) : 
s 

E , for arbitrary trees T. 

T T 

• 
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E.g. we have the reductions: 

V 
/\ 

E V 
/ \ 

E V 

---

/ \ 
E A 

E 

• 

It is still possible now to find a common reduct, namely by ''compensating'' 
• 

the ''balance-disturbing'' V-steps in the vertical reduction: 

V 
/ \ 

E E 

E 

Ho1.,rever, if we had executed infinitely many V-contractions in the vertical 

reduction, as in the next figure, we would have lost the possibility of 

'compensating' : 

= V 

/ \. 
A V 
l A/ \V 
! /" 
! 
• • 
• • 

• • • • • 

• • ♦ ... 

E 

• 

' ' 

I 
i 
' 
' 
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because here the trees E and£= V have obviously no common reduct. 

Now this is precisely what happens in the CR-counterexamples above: 

• 
• 
• 
• 

• • • • • 

• • • • • 

E 

{Here the intermittent arrows 

suggest where the V and E 

settle down in the BT.l 

That is, the (finite) reduction CA-» CE has had the same effect, in the 

corresponding BT's, as the infinite vertical sequence of infinitely many 

V-steps. 

That it is indeed plausible that E CE follows from the particular 

state of their BT's in view of the following facts, -which we will not prove 

(since this is only an intuitive explanation): 

(1) the BT of term • invariant under 8-reductions; a l.S 

{2) w 
where 

w • if M . v· -► N then BT(M) V » BT (N) , >> 1.S V a possibly infinite 

sequence of V-steps 

For Vk the BT's corresponding to the texms in the CR-counterexa.~ple 

in 1.2.2, 1.2.3 are: 

6 E 
,i., I 
i ~ • 
• 
• • 

e - /v, - V - -- -
/" 

E e E V 
I I /" 

ti a E V 
I /" a ••••• 

• 

• 
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and for Vh: 

BT (CA) = = E 

• 
• 
• 
• 
• 

BT(C(ECCA))) 

I 
V 
/" 

-- --

E 
I 
z; 

E --
I 

q> E 
I 

E 
I 
V 

E 
I 
V 

E 
I 

E E E 
I I I 

/V, V V 
/ ' / """ / " E E E E E E 

I l I I I I 
V V V V V V 

I I I I 
V V V V 

I \ I \ !.~ I\ 
E E E -· --
1 I I 
V V V V 
!\ I\ I\ /\ 4. - ,.,..... .... .. ..• -· .. 

and the same intuitive reasoning applies. 

E 
I 
V 

E = BT(E(CA)) 
I 

t; 

E 
l 

/v 

I I 
E V 
I / '--
V E E 

/ \ I I 
- - -- E V 

I / \. 

VE 'E 
_(\. ~ ~ 

l /".. 
-- E E 

I I -- --

As a final remark to this intuitive intermezzo, let us conclude that 

the above examples show that also when dealing with infinite ''term-trees'' 

and infinite 'combinatory' reductions (of ordinal length) of them, the 

left-linearity of the reduction rules is a necessary condition for the 

CR property. 

· The CR-property failing for the above discussed CRS's 

(or CL) ~ Vh,Vs,Vk,SP, some other questions arise about them: namely 

whether they are consistent, whether the property UN (Uniqueness of Norn1al 

forn1s, see Def.I.5.6) holds, whether the property NF (Def.I.5.6) holds, and 

whether these CRS 1 s are conservative extensions of A (or CL). In the 

• 

• 

'. _.., 
!; 

' ,, 
' • 
' ' 

,_;;' u 
-",·: 

' 
' ' 
' 

' 
' 

' ' .,,, . ' 

_,' 

' • 

' ' 
1\. . 

• ,, ' 

' / 

' 
' 

1 
-' . ,, 
.+-

' 

' ' 
' 
' 

' ' ' ,a _\ 

--, -;; 
_:;: t ,,, 
>, ·-· • . . t 
,I/· -;, 
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presence of CR, all these properties would have been corollaries, as re

marked in Theorem I.5.11. 

In order to answer (most of) these questions, we will need some pre

paration: a technical lemma and a theorem which is of independent interest. 

The lemma, which follows now, is a partial CR result. It says that given 

a term A ar1d two divergent reductions A ---->> C, A · » B, a common reduct can 

still be found, if one of the two reductions is free of V-steps. Note that 

this is consonant with the above CR-counterexamples, where in both reduc

tions a V-step occurred. 

3.1. LEMMA. Let Ebe A e Vs,Vh,Vk,SP. Then 8-reductions commute with ar

bitrary reductions, i.e.: 

VA,B,C 3D A------=--~ 
BV 

C 

B 

B 

• 

I 
1 
I 

e: 
1 
I 
I 

. I 

--- -----»1 
SV D 

(Here· SV > is a 8-s~ep or V-step.) 

Similar in case t = ~• e Vs,Vh,Vk 1 SP, where r,• is a regular TRS. 

PROOF. A simple argument shows that the statement in the lemma is equiv

alent to the case where the reduction A· » C consists of one V-step: 
• 

VA,B,C 3D A C 

I 
I 
I 
I 

Bl 
I 
I 
I 

---- --=----~1 
B f3V B 

and similarly for r'. Let us first deal with the sjmpler case of E'; say 

I:' = CL. So suppose that A r, > C and A -CL» B; say A = ~[VPP] where VPP 

is the V-redex contracted in the step A - · > C. (The case of SP is similar.) 

So C = ~[EJ, resp. ~[EPl, resp. €[Pl depending on which CRS we are con

sidering; say this is CL e Vh, then C = ~[P]. (The other cases are similar.) 

Now under line in cR: A - iie> B the redex VPP in A and al 1 its 
CL 
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descendants in lR. So B contains underlined subterms VQ 1R1 , ••• ,VQlRl for 

some l 2:: 0 ( '1unbalanced'1 descendants of the ''balanced'' V-redex VPP) .. Ob

viously all these underlined subterms are disjoint, since~ is a CL-reduc

tion. 

can be separated into an '' internal '1 part and an ''external 11 part 

w .. r.t .. the underlined subterms, by calling a step in 1R internal if it takes 

place inside an underlined VQR, external otherwise. Let tR t be the reduc-ex 
tion obtained from lR by replacing every VQR in it by some variable x. Let 

tR* : C .. · ► • • • · > D' be lR where x is everywhere replaced by P. So now 
ext ext 

we have 

and 

D' = --- p --- --- p ---• • • • 

Furthermore, we note that the internal reduction part of tR consists of 

''unbalancing'r reductions P ➔> Q and P 
CL i 

CR for CL, we 

Now let 

and 

can find common CL-reducts Q. 
-1. 

D = --- , 

then we have 

A C 

V 

CL 

C 
» R. for 

L l. 
i = 1 , . . . , l . So by 

R. ( i = 1 , .•• , l) . 
l. 

-➔➔> s. <<--
1. 

CL D' 

L 

CL V 
B B' D 
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Likewise for CL e Vs,Vk. Note that we proved more than necessary: instead 

of B V » D even B m » .. , >> D {This is only non-trivial for CL EB vh CL, CL V • 
since there PPCL,V does not hold.) 

For A-calculus instead of CL, the proof is complicated by the fact 

that B may contain nested underlining (i.e. the descendants of VPP c A may 

be substituted in each other). The complications can be circumvented, how

ever, by means of Lemma I.4.3.7, which says that in a S-development no such 

nestings can occur. So if A· B »Bis a development, the VQ.R. {i = 1, •.• ,l) 
1. 1. 

are disjoint; and then the above proof for CL carries over without change. 

I . e • , we have 

A C 

B 

dev 8 D' 

B B' V D 

' 

Furthermore, it is not hard to see that here B » B 1 and C -»Dare again 

developments. Using this, it is routine to prove that a V-step can be 

''pushed through'' an arbitrary $-reduction, being a sequence of f3-develop

ments, as suggested by the following f igu.re: 

dev 

dev 

dev 

dev 

dev 

V 

dev 

dev V 

dev dev 

de 

----
dev 

dev 

V 

dev 

dev V 

• 
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The closure of this diagram is ensured by the fact that the ''dev-steps'' do 

not split, in their propagation to the right. 0 

The next theorem is a slight generalization of Theorem 1.4 in 

MITSCHKE [77]. 

3.2. DEFINITION. Lett be some reduction system, and let P be an n-ary 

predicate on Ter(r). Then 

(i) p • closed under (L'.-) reduction if: whenever A. >> A: (i - 1 , • • • In) I 1S -

(ii) 

l. l. 

then P(A
1

, ... ,An ) ~ P (Al., .... , A~) • 

p • 
l.S 

where 

closed under substitution 

CJ A. denotes [x := 
1. 

B] A. , 
l. 

if: 

the result of some substitution into 

3.3. THEOREM (G. Mitschke) ('Reduction by cases 1
, first version). 

A .• 
l 

Let AV (or CLV) be the reduction system obtained by adding to A(CL) a con

stant V and rules (for n,k~l): 

• 
• 
• 

VA
1 
••• A 

n 

_..,...➔ M 

• 

• 

1 
if 

if 

• 
• -

where the M. are closed AV (or CLV)-terms and the P. (i = 1, ... ,k) are n-
i l 

ary predicates on Ter(AV) (resp. Ter(CLV)) satisfying: 

(i} the P. are pairwise disjoint, 
]_ 

(ii) the P, are closed under reduction (including V-reduction) 
l. 

(iii) the P. are closed under substitution (in case of AV). 
1. 

The~ AV(CLV) CR. 

PROOF. As in MITSCHKE [77], we can prove by inspection of cases that 

V V V V 
I I I I 

vl sl 1 
_1 V V V - I -1 -- I - I I 

I ! 1 
l I I I 

= I ! ~ 

---fr-)'l -----,»'::I --,,. --»'i ---v-- V 

( 1) (2} (3) (4) 

s 

I 

• 
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---(Here is O or 1 step; i.e. the reflexive closure of --►-. ) So V- , B-

reductions are self-commuting and commute with each other (see Def.I.5.2); 

hence by the Lemma of Hindley-Rosen (I.5.7.(4)) CR follows for AV. Likewise 

for CLV. n 

3.3.1. REMARK. (i) In the formulation of MITSCHKE [77], n = k = 2 and the 

conditions on P. are more restrictive (the 
l. 

A. have to be closed). 
l. 

(ii) For some applications of the theorem, see MITSCHKE [77]. One of them 
• is: 

• 

A <e VAB 

. 

• 

-~r Kif A,B are closed normal 

fo:r1ns and A = B 

KI '' '' and A f B 

is CR. This is I Chur.ch 1 s a-reduction• , see also 1 . 15. ( 4) . 

(iii) Also 1 Church's generalized o-rules 1 (as in 1.17) fall under the scope 

of this theorem. 

We will now give a strengthening of Mitschke's theorem, both for use 

in the sequel and for its own interest. 

3.4. THEOREM. ('Reduction by cases', second version.) 

Let AV (or CLV) be as in the previous theorem, where M. is replaced by 
1. 

M. 
l 

(Al, ••• ,An); i.e. 
➔ 

the M. may contain the metavariables A now. 

Then AV (CLV) 
+ l. 

CR (the CR property in the strong version as e.g. 

in Theorem I.6.9). 

PROOF. The proof of 3.3 does not carry over to the present case, since the 

assertions expressed in the diagrams (1), (3) there are no longer true 

((2) and (4) stay true, as we will see), since now also V-reductions may 

have multiplicative effect. AV(CLV) is not a CRS, but resembles one in the 

following sense. Let Ai (and likewise cLi; we will refer only to A in the 

remainder of this proof) be A-calculus augmented by constants V,V1 , ••. ,Vk 

and rules 

v1 A1 ..... An ► Ml (Al, •• - ,An ) 

• • 
• • 
• • 
• • 

Vk A1. • .An > ~ (A1, ••• ,An ) . 

• 



226 

Vis now an inert constant. Then, obviously, AV is a regular CRS and even a 

definable extension of ).-calculus. Hence 11.V J= FD, CR+ as we proved in 

Chapter I (Theorems I.4.1.11 and I.6.9) using the method of developments, 

decreasing weights, and reduction diagrams. 

Now, in order to make the resemblance between AV and AV closer, let us 

attach a subscript i to V where P. (A
1

, .... , A ) .. Note 
l. n 

that these subscripts are 'persistent' during a reduction, due to the re

quirements (i), (ii), (iii) in the theorem. (The resemblance is not com-

plete since in AV we may have e.g. 
➔ ➔ 

(Ax.--xA--xB--)V 
➔ ➔ ➔ --,.)- --V A-..:0 B-- if" p (A) 

1 2 1 
and hold,.) 

Now the point is that all the definitions (elementary diagram, under

lining, development, weights) and theorems there-about used in proving 

)...1) I= FD, CR+, carry over without effort to >-.V. For, a development in 11.V 

is in fact nothing else than a development in AV. To be more precise: let 

M E Ter (AV) and underline some 13-redexes and ''V. 11 -redexes. Let tR be some 
l. 

development of these underlined redexes. Then~ is also a development of 

M € Ter(AV), but for one thing: in Ra V may become a V. (see the example 
l. 

above) which is of course not possible in the regular CRS 11.V. In completing 

a diagram V these subscripts, which appear out of the blue, do not bother 

us however·; ignoring them the whole diagram construction can be thought of 

as taking place in AV, so it terminates indeed. So now we have CR+·for 

AV-developments; to obtain CR+ for arbitrary reductions is then a small 

step. 0 
M :>..V 

development 

:>..V V 
devel ment 

I 
I 
I 
I 
I 
l 
l 
I 

------ --- - - -~ 

3.4 .. 1. REMARK. (i) Note that the predicate P(A,B) <="'>A= Bis not closed 

under reduction. Otherwise the previous theorem would yield that 

). e (VAB -+> A if A = B) , • 1 .e .. 

(ii) An example: E = A Q) VIA 

VKA 
> A is CR, by the previous theorem 

--+➔ AA 

' 

where P 1 (A1 ,A2) < > A1 = I and P 2 (A1 ,A2) A1 = K clearly satisfy the three 

requirements. However, r is also a regular CRS, so this application is only 

" 

• 
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illustrative and not essential. 

(iii) The same as in (ii) can be said for Aczel's 'Definition by cases', as 

in Example 1.15.(3). 

(iv) An inspection of the proof shows that instad of A, CL any definable 

extension of A-calculus (or substructure thereof) can be taken. We expect 

moreover that the theorem holds for an arbitrary regular CRS E instead of 

A, CL, but did not ~ork out the details. (For regular TRS's r it is easy.) 

We will now answer several of the questions posed at the beginning of 

this section, in the following table, and give the proofs afterwar1js. (We 

will only mention A, but everything holds for CL as well.) 

• 

CR 
consis- conserva-

UN NF 
tency tivity 

A EB SP - + + ? -• 

A fB Vhzz z - + + + -

A EB V zz m ➔ E - + + + -s 

A EB Vkzz 
• Ez + + + + • -

3.5. Conservativity and consistency. The consistency of the CRSts is an 

immediate corollary of the conservativity of these extensions over A; see 

I.5.10. 

To establish the conservativit1, of A e SP is a difficult matter; this 

is done in DE VRIJER [80]. The consistency alone can also be proved by 

elegant model theoretic means as in DE VRIJER [80], using the Graph Model 

Pw; or in SCOTT [77], using an even faster construction. 

For the remaining three CRS's the conservativity over is easily 
• 

established: 

3.5.1. THEOREM. 

PROOF. Let V be V
6

,Vk,Vh, and now consider next to 

* where V is a new constant with the reduction rule 

* A e V, the CRS A e V, 

• 
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so :>i. e, v* is a regular CRS, hence CR, and hence (see I.5.11) conservative 

over A. That is, given a conversion r* in 

can find a common 6-reduct C: 

* 1i. EB V between A-terms A,B, we 

A 
• 
in 

s 

* r 

A EB V* 

C 

B 

Now if r is a conversion between A,B E Ter(A) in A e V, then 

* * placing each V by V we have a conversion r as above in A EB 

result follows. 0 

after re

* V. Hence the 

* 3.5.1.1. REMARK. The replacement of V by V, i.e. dropping the non-left-

linearity of the V-rule, yields a regular CRS in the proof above. Such an 

attempt to 

consider 

''regularization'' fails however for A EB SP 

* e (V ,V
0

,V
1

) and rules 

z. (i = 0,1) 
J_ 

Then the rules are left-linear indeed, but they remain ambiguous. Moreover 

they are inconsistent: 

* x = V l (V Ax) = * V
1 

(V By) = y. 

This may illustrate the difficulty of the syntactical treatment of A~ SP. 

3. 6. '.J'.~~. _Normal !.?r~. J?r;=>;p~!_t:z,:, (NF~ • The failure of CR for A EB SP, Vh, V 
5

, Vk 

entails also the failure of NF (see Def.I.5.6) for the first three CRS's, 

as we shall show; surprisingly, for A e Vk we do have NF. 

PROOF. For Vh. Let □, □' , □ 11 be the terms CA. E(CA), C(E(CA)) as in the CR-

counterexample in 1. 2. 4. So □ , ➔> □', □•• and □ • □''. Let 

• 
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<M> := Az.zM and KM:= AZ.M (zJFV(M}l. (For CL, ~M> := SI(l<M1 as is seen 

using I.2.5.1~) Now consider the reductions: 

Vh <□><□> (KI) -~~ <□> (KI) · > KIO ---+> I. 

Here the last term cannot reduce to the no.r::mal form I= Ax.x since □' 

Hence NF fai.ls. 

□'' • 

For V. 
s 

Let □, □ 1 
, □'' be as in the CR-counterexample for A e V in 1.2.3. Con-

sider: 

V □□ ·s 

--

E, a normal form 

V □' □'1 and now V □ • □''. ~,-..,,:.. E since □' 
s s 

For SP. Analogous to the case of Vh: 

• 

-» I 

V(V <□ '>(V <□''>(KI) 
0 1 

□ 

3 • 6 .. 2 • THEOREM. J.. 6' V k ~ NF. 

s 

□'' • 

PROOF. Let N be a normal form • Vk and suppose M • convertible to N. in l.S 

So there • • N - NO N1 N - M where suppose l.S a conv:ersion - -- • • • -
Ill 

• ), l.S or • We have to prove M· » N. Suppose t » N, and let 

Nk+l be the first term in the conversion such that Nk+l -,t- » N. Then we 

have the situation 

each 

• 
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V 

N 

For, the step Nk Nk+i in the conversion cannot be 

also ----» N, contrary to the assumption; so 

cannot be a S-step by Lemma 3.1. 

----

N < .. 
k 

N = M. 
m 

since then 

> Nk+!. Moreover, this 

Applying Postponement of V-steps in Nk 

Le11nna 3 .1, we have: 

-» N (Prop.1.2.7) and again 

s 

L 

V 

p . 

s V Q 

Nin normal form. 

Now, since N is a normal forn1 and L -;i.> N consists of V k -steps, it is easy 

to see that L cannot contain B-redexes. (Note that for V the proof would 
s 

break down at this point; for Vh even earlier, since then PPBV fails.) 

Hence L = P. Since V-reductions alone are CR (by Ne'Willan's Lemma 

I.5.7.(1): V-reductions have the WCR-property and SN is obvious), we have 

therefore: 

B 

L 0 
•• 

V V 

-----------
N N 

• 
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(the bottom V-reduction being 0 because N is a normal form) 

But this contradicts our assumption Nk+l 

i.e. NF holds. n 
N • Hence N = M >> N, 

m 

3.7. The Unicity of Normal forms (UN, see Def.I .. 5.6). 

That Vk f UN follows inn11ediately by the previous theorem and the fol-

lowing general fact, whose proof is trivial: 

3.7.1. PROPOSITION. For all ARS's: NF=> UN. n . ' 

For the CRS's A e V
5

,Vh the property UN turns out to hold also, but 

the proof is more complicated. For A e SP the question is open; we conjec

ture that A e SP I= UN. 

UN. 

PROOF. The proof is based on an idea of R. de Vrijer and an application of 

Theorem 3.4. 

Let Ebe).. e Vhzz-+ z. (The proof for Vs 

For Vk the proof works also, by the way.) Let 

the rule 

iff 

similar to the one for Vh. 
* * L be A ea constant V and 

• 
lS 

* where¢: Ter(A~V) Ter(AeV) is the operation of erasing every*, and 

=r denotes convertibility in r. (E.g. 

* * V (V II)I * V II • since 

but not 

I • since 

To simplify notation, we will suppress¢ from now on. 

We claim that the predicate P(A,B) = Bis 
i: 

* closed under I: -re-

duction and under substitution. The closure under substitution is trivial. 

To check the closure under reduction: let 

* A,B E Ter()..eV), and A -
r* 

A I. 

• 

• 
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So to prove is A' =r B. The only noteworthy case is that A .. >- A' is a 

* * V -step: A= ~[V PQ] ·*> <C[P] = A', where it is given that P =~ Q. (*) V - L. 

So we have 

A' = C[Pl * +---A= ~[V PO] AAAAAAAAA~AAAAAAAAAA B ~- conversion in r v* 

and using (*) we can obtain from this: 

A' = ct[P] ""-- ct[VPPl AAAA A= cr:[VPQl AAAAAA B, 
Z: _ E 

which is a r-conversion between A1 ,B. This proves the claim. Hence by 

Theorem 3. 4, r* I= CR. 

Now suppose UN fails for ~. I.e .. there are nor1nal forms N1 , N2 such 

that N
1 

$ N
2 

but N
1 

=r N
2

. Suppose N1 , N2 are moreover chosen such that 

1 N
1 

l + 1 N
2

1 (the sum of the l.engths} is minimal. 

(**) Then N
1

, N
2 

contain no subterm VAB such that A =LB. For, suppose say 

N
1 

contains such a VAB. Then obviously A,B are in normal form (since N1 is), 

A$ B (since N
1 

contains no V-redex) and IA! + lB! < lN1 1. This would con

tradict the minimality of N1 , N2 . 

Since,N
1 

= N, we have at-conversion r: N
1 

AAAA ~ 2 . After replacing 
* E 2 * * * * * * each V by V, this yields a E -conversion r : N1 AAAA N2 . Now N1 and N2 

* * are also ~ -norn1a.l forms; that there are no V -redexes was remarked in 

* * (**). Moreover, N1 $ N2 since N1 $ N2 . 

So r:* ~ UN. But this contradicts 011r earlier remark that r* I= CR 

( since CR => UN) . Hence L'. ~ UN. Q 

4. SOME POSITIVE CR-RESULTS FOR NON-LEFT-LINEAR CRS's 

If r is a non-left-linear, but strongly normalizing CRS, then CR holds 

(provided EI= WCR) by Newman's Lemma. However, consider the TRS r with 

constants w, V and rules wz > . ZZ and Vzz > z. Then :E j# SN; e.g. ww or 

w (Vww) reduce to themselves. Yet r: seems clearly CR; but even for this 

simple TRS the proof is problematic. 

In this subsection we give some positive information on the CR-property 

for non-left-linear CRS's; this will also cast more light on the previous 

CR-counterexamples. One of these results (5.6(iii) and 5.7(i)) answers a 

question {or rather, suggestion) in O'DONNELL [77] ('Further Research' 

• 
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p .. 10 3, ( 2) (b) • ) 

4. 1. DEFINITION. Let i: be a CRS and let M E Ter (t) . Then CR(M), '1 M is CR'', 

iff VA,B3C 

M A 
I 
I 
I 
I 
I 
I 
I 
~ ------~ 

B C 

{So CR{M) says that the CR-property holds locally, at M.) 

4.2. NOTATION. Let ~k be the CRS with constants Vk,f and rules 

Vkzz--; Ez. Likewise~ has the constants V ,E and the rule V zz---' E; 
s s s 

and¾ has the constant Vh and the rule Vhzz--; z. {Sometimes we will 

revert to our previous 'abus de language' of writing L ~ V. {i = k,s,h) 
J. 

where I et:,,_ is meant.) 
J. 

4.3. DEFINITION. Lett be a CRS and consider t $~-where i = h,k,s. 

(i) A V-preredex ~ is t.-term of the form 
l. 

1 

of V. AB. A chain of V
i 

preredexes· (of length n), or V-chain, in a term Mis a sequence 

for some n. 

R' 
D 

(ii) !Ml
0 

:= the maximal length of chains of V-preredexes in M. 

HMll
0 

:= max{lN1
0 

I M » N}~ possibly RMll 0 = 00 • Here ) is reduction in 

E <B ~. • we call II Mil the • V-norm' of M. 
l. D 

4.3.1. EXAMPLE. In CL e ~i' let M1 = 1V(V11) (V(V11)1) and M2 = CA as in the 

CR-counterexample for CL e 

Then l M
1 

JO = 2 , II M1 II 0 

t:,,. above. 
l.. 

= 3, J M2J D = 

4 • 3 • 2 • REMARK. ( i) M ·» N ~ R MR ~ II NII • D D 
(ii) If ff MIi D is finite, then: M ➔> q;[VPQ] ==> 11 pll D, II QB D < 

4.4. THEOREM. Let Ebe a regular TRS. Then: 

(i) for all Me: Ter(t e bk), IIMll 0 < 00 ~CR(M) 

(ii) likewise for L ~ ~ . 
s 

II MIi .. 
D 

• 

• 
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PROOF. (i) The proof is by induction on II MIi D. 

The basis step, IIMII = 0 => CR(M), follows easily from I:: I= CR. 
D 

Induction step. Induction hypothesis: IIMP.D-< n => CR(M). 

Now let M be a term such that II MIi = n+ 1 . 
D 

Let two reductions of M, ~land ~
2

, be given; see figure . 

M M' f1 II 

• 

N 

Suppose we have already found a common reduct N' of N and M'. If the next 

step in 6t M' 
1' -► M'', is a E-reduction step, we can find a common reduct 

of N' and M'' by Lemma 3 .. 1. 

The other case is as in the next figure: M' > M'' is a Vk -step. By 

Proposition 1.2.7(ii), which evidently holds also with replaced by r (it 

is easy to verify that an analogon of Cor.I.6.13 as used there, holds for 

CRS's), we can postpone the V-steps in M' -»N'. 

M II = «:[ EP 7 

L L' L'' 

N 

Now underline the Vk-redex VkPP which is contracted in the step M' -->- M'', 
and also the descendants of that redex in the reduction M' ---..>> L -➔> L'. 

(Since this is a r-reduction, this makes sense: the concept 'descendant' 

is defined for reguJ ar CRS' s. Underline moreover the con tractum EP in M'' 

and all its descendants in M'' --► L ''; here L 11 and L '' are found as in the 

proof of Lemma 3.1. So the E-reduction steps in L - -» L' take place inside 

underlined subterms, and we have: 
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for some m-ary context~[, ..• ,] and terms as displayed. (An m-ary context 

is a context having m 'holes', e.g. oS(T□a) is a ternary context.) 

Now consider in Lall V-preredexes (underlined or not) which are going 

to be contracted in the reduction L -~ N' . To be precise: the V-preredexes 

having a descendant which is contracted in L --;.» N'. (In fact, we have not 

defined 'descendants' for irregular CRS's; but we can use for the purpose 

of this proof the following definition. 

* Let L\k be the * regular CRS with constants Vk, 

* 
➔ Ez1 • 

Then for E e ~k descendants are defined; and now the concept of descendants 

in i: e tik is induced in the obvious way.) 

We will mark those V-preredexes, which will be contracted in L ---;;» N', 

by an underlining------------. Next, consider the underlined V-preredexes (by 

as well as --...._..._) which are maximal w .r. t. c. Then 

----- -----

for some 1-ary context~•; here---- is or -- . , or 

Note that the --- underlined V-preredexes are pairwise disjoint, trivially. 

Since L --;i» L' is a ~-reduction taking place inside -underlined V-prere---
dexes and in L' ---..>> L'' only -underlined V-redexes are contracted, and --

• since---- covers , the context ~' [ , ••. , 7 remains unchanged in L '' • ---
Therefore we can write 

where D . = Vu . v . , 
J J J -----

L'' for some F . , 
J 

for some D' 
j 

( j = 1 , ..• ,£.) • 

Hence it is sufficient to prove that D~ F. (j = 1, •.. ,l). We may suppose 
- J J 

that the descendants of the D. (j = 1, •.. ,l) are the last ones to be con
J 

tracted in L » N'. (The proof is easy: replace if necessary the 

• 
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1.-eduction 

Vu .v. 
J J 

however .. 

o. = Vu.v. --->- 7M.w. ---+-> Ew • 
J J J J J 

Vw.w. - Vw~w~ Ew~ = 
J J J J J 

J 
D ~' 

J 

-➔► Ew~ = D~ by the reduction 
J J 

etc.) This is not an essential step, 

Now, according to the relative position in 

derlining, we disting11i sh the following cases. 

D. of the 
J 

and ----- un-

CASE 1. D. = VP.O .• So the reductions 
J J ·-] 

• 

L ---» L'' 

N' 

contain the following reductions of D. : 
J 

L D. - VP.Q. ~ VR.R. r ER. - F. C L'' :::, - --· I: V -J J J J J J J 

}V nr 
L' 

Vss 
V 

D' = Es c N' • 
J 

Since llp j 11 0 5 n by Remark 4 .. 3. 2, the induction hypothesis yields a common 

reduct of Sand R. as follows: 
J 

P. 

s R. 
J 

T. 
J 

Hence also D I = . -
J 

Es and F = • 
1. 

ER. have a common reduct. 
J 

CASE 2. D. = DP.o.; P. and Q. may contain~- Now we have the situation: 
J J~J J J 

L :::, D. - VP.o. --- J J #-J 

V 

N • :::, D ! = Vss ' 
- J 

>> 
}: VR.R. > ER. - F. L'' v - C -J J J J -

r,1 
L' 

• 

• 
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Again, since the V-norms of the involved ter111s are ::s; n, we can construct 

by the induction hypothesis a common reduct T. as follows: 

P. 

s 

Hence D~ = Vss• 
J 

---->> Vr.T. 

CASE 3. D. 
J 

= Vu.v.i 
J J 
~ 

J J 

Vu.v. 
J J 

p 

T. 
J 

J 

S' 

ET . and F . = ER . 
J J J 

-➔> ET .• 
J 

is not_-underlined, but U. ,V. 
J J 

(i'1bte that Vu-. V. is 
J J 

not a proper subterm of a VP.Q. for 
1 l. 

may contain • -
some i, by the 

maximality condition for the D .• ) 
J 

So we have the following situation: 

L => D. = Vu.v. 
- J J J 

----___.;» Vu~V~ = F. 

V 

Vss 

N' => D' • 
J - = Es. 

Now we can find again a common reduct 

u. 

u• • 
J 

s 

T. 
J 

J J J 

T.: 
J 

v~ 
J 

C L''. -

• 



238 

Vu~v~ Vr.T. ET. and D' - Es >> ET .• So • all three Hence F. - . -» ;:::,. - in - -• - J J J J J J J J 
cases we have F. + D! (j - 1, . ... ,l>; hence L'' + N' • -

J J 
(ii) For r (B h. the proof • entirely similar to ( i) . n l.S 

s 

4.5. REMARK. Note that indeed the terms in the previous CR-counterexamples 

have an infinite V-norm. 

4.6. REMARK. In fact we have proved the following stronger proposition, as 

follows easily by inspection of the proof of Theorem 4.4: 

4 .6. 1. PROPOSITION. Let L be a regular TRS and let t-1 E Ter(t:EB~.) (i = k,s) 
1 

be such that for all N,A,B: M .. ►> N ~ VAB implies CR (A) ,CR (B) • Then CR (M) • 

4.7. REMARK. (i) Let Ebe CL extended with Vk, E and the reduction rule: 

Vkm -- .. r EM if M is strongly normalizing (SN), w.r.t. CL - as well as 

V-reduction. Then CR. 

To see this, note that M E SN ~ CR(M) by Newrodn' s Lemma; then the 

proof of Theorem 4.4 applies without change. Likewise 

(ii) A similar proposition holds when the restriction 

placed by: 

for V. 
s 

in (i) on Mis re-

11 if M does not contain the constant Vk '' (resp. 

at once, since CL ~ CR. 

V > . For, then we have CR(M) 
s 

In order to state the following corollary of Theorem 4.4, first a 

definition .. 

4.8. DEFINITION. (i) If H E Mter(E), then d(H) (the depth of H) is the 

maximal length of branches of T(H), the term formation tree of Has in 1.7. 

(Par abus de langage, we will write d(H) = d(TH) .) E.g. 

and 

Z )= 2. 

"-z 
2 

I 

• 

• 
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(ii) Call a reduction rule H H 1 diminishing if d(H) ~ d(H') and call 

the CRS diminishing if all its reduction rules are. 

4.9. COROLLARY of Theorem 4.4. 

Let r be a diminishing regular TRS. Then r@ ~. I= CR (i = k, s) • 
J. 

PROOF. Note that the rules for V. (i = k,s) are diminishing: 
1. 

> - d( E ) and 

I 
d( V ) > / s, 

z z 
d (E) .. 

z 

Hence Ee~. (i = k,s} is diminishing. Therefore, no ME Ter(Ee~.) can have 
1- 1. 

an infinite V-norm. D 

4.10. EXAMPLES. 

and Vzz 
(ii) Let 

(i) Let E have constants w, V, E and the rules wz --➔ zz 
Then L f= CR. 

* CL have constants K, 

Then CL* EB b. . I= CR 
1. 

and 

* S and rules 

( · .. ) t ** h 1.1.1 Le CL ave 

(i = k,s). 

constants K, S** . , 0 and rules .... 

Kz1z
2 and 

** Then CL e b.. 
1.. 

CR (i = k,s). 

4.11. DEFINITION. Let Ebe a regular TRS. Then L 

denote the substructure of r EB~- where 
.l. 

dex (i.e. every V. has two arguments) . 
.l. 

every v. 
1. 

e ~ (2) 
• 
J. 

is the 

(i = k,s,h) will 

head of a V-prere-

E.g. if r is CL, then SK(V11) and V(V11SK)KK are re (2) 
6.. -terms, 

1. 
but 

SK(V1) or SKV are not. 

(Alternative, inductive definition of T 

(1) Ter(i:) c T, (2) A,B E T => AB, VAB ET .. ) -

4.12. COROLLARY of Theorem 4.4. 

Leer be a regular TRS. Then i: e I= CR ( i = k , s) • 

• 

• 
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PROOF. If M ---=>--> N for M,N E Ter(1:eli: 2>) 
1 

(i = k , s) , then II M II 
D 

~ II NII 
D 

as one 

easily verifies. Hence JMJ 0 = IIMH < 00 • 

D □ 

4.13. REMARK. Consider a regular TRS as in HUET [78], where a TRS is written 

in 'function notation'; e .. g. instead of 

HUET [781 would read P(z1 ,z2) 

as only rule Vk (Z ,Z) · · > f (Z) 

/J.f 
k 

and 8 for the TRS with 
s 

Corollary 4.12 is equivalent to the proposition that 

z 1 the notation in 

for the TRS having 

the rule V (Z,Z)~ E, 
s 

for every regular TRS 

f f f L r as in HUET [78], we haver EB~- 1 CR (i = k,s). (Below we will general
J. 

ize Corollary 4.12 to the case i = h.) 
• 

This might seem somewhat paradoxical in view of e.g. CL EB llk 11' CR; 
f 

version (CL~ ~k) cannot the explanation is that the 'function-notation' 

be written as a 'direct 

A(A(A(S,z
1

) ,z
2

) ,z
3

) ~ ➔- A(A(z
1 
,z

3
), A(z

2
,z

3
)) 

A(A(K,z
1

) ,z
2

) · > z
1 

f 
CL: 

where A stands for application .. Now 

two preceding rules plus A(A(V,Z) ,Z) 

f 
(CL!B/ik) would be the TRS having the 

= ,E(Z). 

' 

We will now generalize some of the preceding results to ~h and SP .. This 

will be done via a lemma which may be of independent interest. 

5 • THE 'BLACK BOX' LEMMA 

Consider an extension t of CL by some new constants and some new re

duction rules. The rules need not to be regular, and may be quite 'patho

logical' .. Now consider a L'.-term M = ~[ □ 1 , .... , □n J where <e[, ••. ,] is an 

n-ary CL-context (i.e. a CL-term with n 'holes') and where the □. 
J_ 

(i = 1, .... ,n) are E-terms, possibly containing new constants. Suppose we 

are not interested in the precise content of the □. 
l. 

(so they are 'black 

boxes'), but know already that CR( □.) and moreover, suppose that a black 
l. 

box can only be ''opened'' (and hence interact with its context) when its 

content is a CL-term (not containing new constants). 

Then, we claim, CR(M) holds. 

A refinement, which we will prove and use below, of this claim is 

that a black box, when openetl, may yield a CL-context of other black boxes -

but only when the latter are of lesser 'order' (a natural number) than the 

• 
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former. 

(i) CL□ is an extension of CL with a set of constants 5.1. DEFINITION. 

{ □~ I n , i E JN } ; 
J.. 

here n is called the 'order' of (and i can be thought 
n of as the 'internal state' of □.). 
J.. 

(ii) Next to CL-reduction we have the following kinds of reduction: 

(a) 

(b) 

□~ 
l. 

n 
□ • 

J.. 
• 
J.S 

n 

n 
a k-ary CL-context. 

is required that n 2 m. 

for some n,i,k,m1 ,j 1 , •.• ,Il\,jk. 

It is required that m1 , •.• ,~ < 

Here q:: [ , • • • , J 

n. 

A step of kind {a) is called 'internal'; furthermore we say that after 

a (b)-step the black 

kind may occur in an 

b n . 
OX □. l.S 

1 
'opened'. As always, reduction steps of any 

arbitrary context, i.e. A-~ 

Sometimes we will omit the subscript in .. , , n 
(iii) Reduction of kind (a), 

. f C 1,1 . 
(b) is required to be CR: internal reduction 

must sat1.s y WR , i.e.: 

n 
(a) □. 

J. 

(a) 

n 
□. ' ( a) 

J 

and furthermore we require 

(a) 

m 
□. 

J 

I 
I 
I 
I 

□1:1 
J 

I 
I 
I 
I (a) 
I 
I 
I 
I 

m'' 
□. '' J 

ICL (a) (b) 
I 
I 

I 
I 
I 

P 1 P,t _ 
~•[oh , .•. , □h 7 = P 

1 l 

• 
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(b) 

ml ~ 
~[ □. I ••• , □ . l - M --

I Jl Jk 

I 
I 
I 

(b) I CL(a) (b) I 
I 
I 
I 
I 
I 

L(a) (b) 
p ...,,.------.. 1 Pl . 

P = <t ' [ □h , • . .. , oh J 
1 t 

j 

-- q qs 
<C'' [ a 1 ' - .. ,□ J - Q --

r1 r 
s 

• 

(iv) CL□n is the restriction of CID to terms containing only constants □~ 
1 

write 

M ~ N and call M an · • -redex. (Warning: ~ · =f; • ) 
n n n n 

(v) M ·~ N => <t[M J • (t[N], where (tr.> ] is now a CLO-context. (Note that 
n n 

C[M] will be in general not an • redex, which is E Ter(CL□n) .) 
n 

5.2. LEMMA. Let CL□ be an extension of CL as in the preceding definition. 

Then CL□ l= CR. 

PROOF. We will prove by induction on n that· • has the CR-property. Then 
n 

obviously arbitrary CL (a) (b) -reduction (= U JN "') is also CR. 
nE n 

Basis. Follows since Cto
0 = CL f CR. 

Induction step. Induction hypothesis: 

B 

n I 

n 

C 

I 
,n 
I 
I 
I 

------~D 
n 

Now consider CLO-ter1ns A ,B ,c such that A ' • 
n+1 

C. These 'steps' 

consist in fact of CL-steps, 
n 

now examjne the elementary 

B, A-
(a) (b) n+1 

-steps, and...;_.;.....;.....;.._~ -steps {mSn). 
m 

We will diagrams which arise when these steps 

are 'confronted'. (We will not explicitly consider the trivial cases in 

which the two confronted redexes are disjoint.) 

CASE I. A CL-step versus a CL-step. Trivial. 



CASE II. An (a) {b)-step versus an (a) (b)-step. There are three subcases. 

(1) (a) vs. (a): 

(2) 
n 

o . ..,_ __ _...,b:.::...~--.....: 
.l. 

n (a) 

{b) 

□. m ~ n 
J 

n 

M 

n 

p 

n' ~ n 

( 3) 

m'' 
□ . '' J 

{b) 

p 

b M 

n 

n 

n 

Here P, Q, Mare as in the diagrams in Def.5.1. 

CASE III. An • - step versus an · • - step. This case is covered by the n n 
induction hypothesis: see the.diagram there. 

( a) (b) CASE IV. An-•• - step versus an 
n m -step (m~n). 

(1). If m < n, then the latter step is also an-•• - step and we are in 
n 

the preceding case. So we have then 

n 

m => n 

n 

. 

(2). If m = n, these two steps involve 

redex (a CLcn-term) cannot contain an '' 
n 

□.) by definition. So we have 
J. 

n 

disjoint redexes, since an-•• -
n 

(i.e. a constant .... "' ) 

n - redex'', 

243 • 

• 
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n 

n n 

n 

(a) (b) 
CASE v. A CL-step versus an - step (m~n). This case is easily 

m 
analyzed; the elementary diagrams which arise are of the for·m: 

CL • 

m m 

CL 

(Here 
CL 

is an S-,K-, or I-step.) 

CASE VI. A CL-step versus an-•• -
n 

Three subcases arise. Let R be the 

(1) Rn R' =¢:trivial 

step. 

CL-redex and R' the__,. - redex. n 

{2) R c R'. Then R is also a - - • , 

n - redex. Hence, by the induction hypothesis: 

n 

CL n n 

n 

(3) If R ~ R', we distinguish the following sub-subcases. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

R = SABC, 

'' 
II 

'' 
11 

• 

R = KAB, 
If 

'' 

R = IA I 

R' C A -
R' CB -
R' C C -
R' = 
R' C A -
R' C B -
R' CA. -

•• 

• 



We consider the two most noteworthy cases: (i) and (v). 

(i) (v) 

SABc ______ ---: AC (BC) SABC 

s 
n 

n 
n A'C(BC) 

n 

SA'B'C s 'C(B'C) 
SABC' 

s 

s 

AC(BC) 

n 

AC' (BC) 

n 

AC' (BC') 
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The other seven cases are even simpler: they involve no splitting of steps. 

The conclusion is that the CL-steps ( in fact only the ~~-steps) are the 

only ones who have the power to split the other arrow in an elementary 

diagram. So by a routine argument and an appeal on the lemma of Hindley-

Rosen (I.5.7), reductions involving CL-, 

I.e. we have proved 

n+l 

Hence CL□ F CR. 0 

n+l I 
I 

l n+ 1 
l 
I 

, ,, -n , m 
(m~n)-steps are CR. 

5.3. REMARK. It is not hard to check that the 'black box' lemma 5.2 also 

holds for A instead of CL, or for other regular CRS's in general. 

5.4. EXAMPLE. (i) A simple application of the black box lemma for A is the 

well-known result (obtained by MITSCHKE in an unpublished note and indepen

dently by us) that 11. ta (s-2 -+ M) F CR, where n = ( 11.x .xx) (Ax.xx) and M is an 

arbitrary fixed term. (Cf. BAETEN-BOERBOOM [78].) (Just put n in a box, 

which can only be opened after its reduction to M; the CR-requirements for 

the boxes hold trivially.) This example is only meant as an illustration1 

since it is easy to give a more straightforward CR-proof. 

Before stating some corollaries of Lemma 5.21 some notation: 

• 
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5.5. NOTATION and DEFINITION. 

notational variant CL~ Vh(,) is obtained by defininq the set T of terms 

inductively as follows: 

(1) I,K,S e: T, (2) A,B ET~ AB, 

is the rule Vh(A,A) + A. 

T. Next to CL-reduction there 

A,B to be closed. So the set T of terms is 

where in every VhAB one requires 

defined by 

(1) x. € T (2) A,B E 
J_ 

(Notational variant: 

T => AB, AX .A € T 
cl Vh (A,B) instead 

(3) A,B ET 
cl 

of Vh AB.) 

and Vcl 
closed=> h AB ET. 

(iii) 

and A 

(if .. then •. else .• ), or its notational variant A@ B( , , ), 

Bare already defined in 1.2 .11. (v) (3) .. Likewise for CL. 

(iv) Analogous to A e cl . cl 
Vh we define A e B • 

Now we have the following situation: 

5 • 6 • THEOREM • ( i) CL EB V h ( , ) l== CR 

(ii) 

(iii) CL EB B ( , I ) f CR 

cl L (iv) A e B { , , ) r CR • 

V V (2) 
PROOF. (i) .consider CL e h ( , ) or its notational equivalent CL e h . 

of the form VAB {a 

maximal V-preredex) in boxes and let n = 1VABt
0 

(see Def.4.3) be the order 

of such a box • ~ AB I n • A box is opened when VAB n >> j Vee f · ➔ C • Ob-
• 

viously fcl 0 < n, i.e. C is a CL-context possibly containing boxes of 

order< n. We have to prove the CR-requirements for the boxes, as stated 

in Def.5.1.(iii). This will be done by induction on the order n. 

Basis. n = 1: follows by a simple argument from CL ~ CR, since then A ,B 

in [.1'AI? f 1 
are CL-terms . 

Induction step. Induction hypothesis: the restriction E of CL e 
n 

to 

terms M such that JMlD < n (cf. CL□n in Def.5.1), is CR. 

for 

Now let M contain a IVABfn. Then CR(VAB) by the same argument as used 

the basis step, now using i:n f== CR and noting 

Hence all the boxes are CR. The remainder of 

that A,B E Ter(r). 
n 

the proof follows by 

analogy from the proof of the black box lemma. 

(ii) must be closed, is essential 

(for this method of proof}; otherwise by substitution the V-norm (i.e. the 

• 
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order of the 'black boxes') could increase, as is indeed the case in the 

previous CR-counterexamples. (See also Remark 5.7.) 

(iii) Muta tis mutandis (e .g - the definition of I I B instead of r ID) the 

proof is similar to that of (i). The ambiguity involved in the reductions 

Bl. AA ➔ A (by two clauses of the definition of the rules for B) is harm

less. 

{iv) As (iii). n 

5.7. REMARK. {i) Theorem 5.6 holds for any regular CRS instead of A, CL. 

(ii) We expect that analogous results can be given for SP instead of Vh. 
( . . . ) N h d b t V ( 2 ) · c d Ve l · " d d . f 111 ate t e correspon ence e ween h in Lan h in A. In ee, 1 

T ( or T' ) is the 
cl 

T ( .... Vh AB .... ) = 

are open; cf. our 
•• 

(iv) Warning: 

translation from A to CL as in I.2. then 

previous CR-counterexample T(CA) 

Del L 
h r CR does not mear1 that~ e 

case for VhAB 

for CL$ Vh. 
(VhAA + A if 

where A,B 

A is closed) 

F CR. For, the previous CR-counterexample is also a CR-counterexample for 

the latter restricted system: the two V-contractions in that counterexample, 

V(CA) (CA) + CA, involved closed terms. 

(v) We expect that Theorem 5.6 can be sharpened to yield a result analogous 

to Theorem 4 • 4. 

5.8. REMARK. The Fixed Point Theorem (cf.I.1.11) for A and CL can be stated 

in the following equivalent ways: 

( FP) VF 3X X · ►> FX 

(FP' ) Vee[ ] 3X X 

Note that for the extensions of A and CL in Theorem 5.6, (FP) stays valid, 

~[ J: Vh( □ ,I) and note hut (FP') fails. (E.g. • CL Vh ( ) , consider in I 

that IMlv cannot • • reduction of M.) increase in a 

In fact, the failure of (FP I) is due to the failure of 'Combinatory 

Completeness' (cf. I~l.10 and I.2.5.3; this property can be phrased as: 

(CC) V<t[ , .... , J 3c cx
1 
.... xn ·· ➔> <t[x 1 , ... ,xn]) since CC~ {FP FP'), as 

one easily verifies. 

5.9. REMARK. For AT@ SP (typed A-calculus plus Surjective Pairing), CR is 

proved in POTTINGER [79]. 
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CHAPTER IV 

).Sn-CALCULUS 

In. tr1is chaJ?ter v1e will derive the main syntactical theorems for J.811-

calculus. As it turns out, the addition of the so simple n-reduction rule 

complicates syntactical matters considerably. After the Church-Rosser 

theorem, which is easily obtained from that for AS and is presented via 

Sn-reduction diagrams, we introduce A-residuals, which have a more pleasant 

behaviour than the ordinary residuals in Sn-reductions. For instance, we 

will show that the Parallel Moves Lemma fails for residuals, but holds for 

A-residuals. We maJ~e an essential use of A-residuals and the PM Lemma in 

this chapter. 

By the same method as used for \Bin Section 1.9, the Standardization 

Theorem for A8n is proved. Then the Normalization Theorem and Quasi-normali

zation Theorem are proved for ASn. These last two theorems require an extra

ordinary long proof, compared to the AS-case; nevertheless we felt the ef

fort was worthwhile since firstly the Normalization Theorem is a very 

'natural' theorem, and secondly since some of the lemma's used in the proof, 

seem to be of independent interest. 

This chapter was inspired by work of R. Hindley. It answers some open 

problems mentioned in HINDLEY [78], namely whether the Standardization 

Theorem (there called: Strong Standardization) and the (Quasi-) Normaliza

tion theorem hold for ASn. 

1. THE CHURCH-ROSSER THEOREM FOR ASn-CALCULUS 

1.1. DEFINITION. Let the set of A-terms, Ter(\), as in Def. I.1.1. be given. 

In addition to S-reduction we define n-reduction, as follows: 

--'r <t[A] 
n 

• 
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for all A E Ter(A) such that x ¢ FV(A), and all contexts C[ J. 

A term of the form Ax.Ax where xi FV(A) is called an n-redex. The 

transitive reflexive clos11re of > is - >>. By • ABn-calculus' we mean the 
n n 

reduction system 

J. Sn = <Te r ( A ) , -
B 

) , >. 
n 

The union ' > u 
B 

-~➔ is written as 
n Sn 

or just 

1.2. CONSTRUCTION OF Sn-REDUCTION DIAGRAMS 

Let coinitial Sn-reductions tR1 = A --~► •• --► B and &l = A 
2 

a,), • }, ... C be 

given. As in I.6.1 we will try to find a common Sn-reduct D of B, C by con

structing the reduction diagram V(~1 ,tR2). In most cases it is obvious how 

the diagram construction for S-reductions in I.6.1 is to be extended to in

clude n-reductions. We will mention therefore only the two noteworthy cases: 

(I) 

(II) 

Ax n 

('.[ AB J 
f 

(trivial or 'empty' step) 
I 

' I 
t[AE~] ------------- C[AB] 

tr[ AX. ( Ay .A (y) ) x] 

Ax n 
l 

I 
I 

I 

t[Ay.A(y)] ------------- ~[>-.x.A(x)] 

Here in (I), (II} xi FV(A). In the sequel we will often omit this condition 

and assume it tacitly. Note that in (II) we identify the a-equivalent te1.1ns 

).y.A(y) and AX.A(x). 

So in Sn-reduction diagrams we encounter the following types of ele

mentary diagrams: the ones which are already mentioned for AS (see I.6.1.1), 

plus 
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n s 
I 
I 
t n n n n n2l l n I 
I 

times I 
I 

n I 

n s 8 

erasure 

n B 
I I I 
I I l n I n I 

(II) I 
I n l I (I) I I I I I 

I I I 
I I I 

I I - --- - -• -------- --------4 

coincidence absorptio_n 

Here (I), {II) in the e.d. 1 s of the absor9tion type refer to (I), (II) above .. 

It is now easy to extend the strong version of the Ch1Jrch-Rosser theorem 

CR+ (Theorem I.6.9) to the present case: 

1.3. THEOREM (Church-Rosser). 

Every diagram construction in ASn terminates. 

PROOF. Consider a square which is determined by one step in ~l resp. ~
2

: 

{H_ 

I 
I 

1 ------

...____ __ - - -

'----+---+----i------
' I I 

' 
I 
I 

Since S-steps propagate as $-steps (or 0-steps) and similarly for n
steps, t{' consists entirely of S-steps + possibly 0-steps, or entirely of 

n-steps + possibly 0-steps. Similarly for IR''. 

In all 4 resulting cases it is easy to show that the construction of 

V (IR' <R••) terminates, using in one case the termination of $-diagrams 
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· (Thm.I.6.9) and in the other 3 cases that n-reductions have no 'splitting 

effect': 

A B .-----~ 

n 

n 

n 

C 

I.e. VA,B,C3D[A 

n 

---
D 

• >- B & A ~>> C ==> B ➔> 
8 n n 

This fact follows at once by inspection 

D & (C::D V C 
B 

B) l. 

of the e.d. 'sin 1.2. [1 

1.3.1. REMARK. Just as for the case of AS, one can prove that if~• consists 

of 8-steps, it is a complete $-development (Def.I.6.6). This is proved in 

Propositions 5.1 and 5.3(i) below. 

2. RESIDUALS 

2.1. The definition of residuals for ASn is as in CURRY-FEYS [58] p.117,118. 

We repeat the 'critical cases' of this definition • 
• 

R 
Let M ·· > M' where R E M is a B- or n-redex, and let S £ M be a redex 

whose residuals in M' we want to define. It is i1nrnediately clear what the 

residuals of Sin M' should be, except in the following cases. 

( I) i .. R = ( AX • Ax) B , 
C l' ' 

X Ef FV(A) 

s 

ii. as i. with R,S interchanged 

( II) i. S = Ax • ( Ay • A) x, . .. • 'y 
X 4 FV(A) 

R 

• • 
ii. as i. with R,S interchanged. 

In these four cases contraction of R leaves S without residuals. For most 

A,B this definition is clear, bearing in mind that the residuals of a$

resp. n-redex·should be again S-resp. n-redexes; but it is somewhat sur

prising in case (I)ii if A= >.y.A' and in case (II)i if A= A'y (yiFV(A')). 

Here (I), {II) refer to (I), (II) in 1.2 above. 

• 

• 



Redexes R,S in the positions (I) or (II) are suggestively called in 

HINDLEY [77] ''too close together''. 
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In the sequel (Lemma 4.9) we will need the following proposition. The 

proof follows immediately by an inspection of the definitions. 

2.2. PROPOSITION. Let R = (Ax.A)B and H = Ay.Cy be a S-redex resp. an n
redex in a term M. Then: 

(i) R and H are ''too close together'' < ·,> 

• 

M R 

S l 
I 

H n I 
I 
I 
I ------.--. 

i.e. the elementary diagram V({R},{H}) is of the type I- or II-absorp

tion. 

(ii) if R and H are not ''too close together'', then (a) R n H = 0 or {b) 

R c C or (c) H c A or (d) H c B. D - - -

2.3. REMARK. Analogous to AS-calculus, if 

A B 

C D 

• 

is an elementary diagram, the redexes contracted in B ~»Dare residuals 

of the redex contracted in A .. > C and likewise for the bottom side. This 

could suggest that the Parallel Moves Lemma (I.6.12) for AS carries over to 

A8n. The PM Lemma says that if~ ----+► M 
n = M 

0 
,. > .... is a finite reduction, 

R c M a 
- 0 

redex (S- or n- in this case), then the projection {R}/~ consists 

of contractions of residuals R' • 
1 

R 

of R: 

R' • 
1 

L. 
1 

• 

• 



1 

,;_:ai _,,, 
-' ,.,_ 

. ·- ·'· .... 

, l - • 

' ' . 

" . . ' 
. -~ 

. ' . ":-a 

';': -t '\ 
i ' , 

' . 

. , , S ~I•-
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To be more precise, every R' • residual • the reduction l.S a via • 
1. 

MO LO > L. ; not just • (H' MO > ➔ ► • " )-r ,,) via some -" ' - • • • • • • • • 
1. 

• :\8 this soecification • • there • in the figure. For J.S unnecessary1 since in -
diagram descendants and residuals are independent of the reduction path 

(see Corollary I.10.2.10); not so for ASn, as the next example shows. 

L. 
1. 

a 

2.3.1. COUNTEREXAMPLE. The Parallel Moves Lemma fails in ASn for ordinary 

residuals (as in Def. 2.1). 

A similar counterexample is given independently by R. Hindley in un-
• 

published notes. See p.255. 

In the diagram below the labels 0 1 1 are introduced to be able to in-

dicate which redexes are contracted. R in is an n-redex Ay.ziy. This n-

as 

redex is doubled (A0y and A1y) and one of those residuals is substituted in 

the other (A0y in A1y). Now AoY turns out to be the head- A of a B-redex 

as well, and A
0

y is contracted as B-redex. Thereby the other residual A1Y 

destroyed - that is, it ceases to be a residual of the original n-redex. 

But precisely that redex A1y is contracted in {R}/~. So the PM Lemm.a does 

not hold for the usual residual concept. 

is 

(Note, however1 that the final n-redex 
• 

n-redex in M0 via M0 --► M 1 
-➔ MI 

1 
--> M' 

2 

a residual of the original 

-+> M .) 
5 

Although in a Sn-reduction the notion of a residual is not without 

complications, there is nothing problematic about the descendant relation 

for symbols. We will use this obvious possibility of 'tracing' sy111bols in 

a Sn-reduction to introduce an alternative concept of residual for which 

the PM Lemma does hold. 

2.4. DEFINITION. Let~= M -~ -➔ M 
0 1 

R0 a redex in M0 
from that o~ R0 . 

and ~ a redex in ~ such 

... be a Sn-reduction, 

that the head-A of 1\ descends 

Then, regardless whether R0 , 1\ are S- or n-redexes, ~ is called a 

A-residual of R
0 

via~-

2.4.1. REMARKS AND EXAMPLES. 

(i) It is easily checked that in the notation of Def. 2.4: 

is residual of R0 => 1\ is A-residual of R
0

• 

But not the converse; for, consider (on p.256): 

• 

' 
' 

' 

' ' 

' 
' 
' 



(Aa(Ab.ba)a)[Az(Ay.ziy)] ~ MO 

(Ab.b[A
0

z().
0
y.ziy) ])[A1z(~1y.ziy)] = M1 

[AlZ(Aly.ziy)][AOZ(AoY-Ziy)] = M2 

A
1
y.[).

0
z(A

0
y.ziy)]Iy = M3 

A
1
y. (tt

0
y.IIy)y = M4 

A1y.IIy = MS 

B !Aa 

AoY 
n 

B IAb 

AOy 

n 

B IA1 z 

-;..
0

y 

T) 

8 l AOZ 

A
0

y 

n 

B I ;\
0

y 

>..y 

n 

M' 
1 

B l1i.b 

M' 
2 

B IA1Z 

M' 
3 

B I>.. 
0

z 

5 

I 
I 
I 
I 

I 
I 
I 

~5 
----------' ' 

Aly 

n 

"1 y 

n 

;\1 y 

n 

>i 1y 

n 

n 

NO= (Aa(Ab.ba)a)[Az.zI] 

8 l:\a 

I 
N1 = (Ab.b[A0z.zI])[A 1z.zI] . 

B IAb 

N
2 

= [:\
1
z.zI][).

0
z.zI] 

B I:\ z 
1 

-

N3 = f>. 0z.zI]I 

B I AOZ 

I 

I 

I 

I 

I 

I 

I 

I 

' 
I 

.JL. 

N = II 
4 

I-1
4 

~ II 

• 

t'.J 
U1 
U1 
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( AZ • ZN) ( AX • ( :.\ y .. M) X 
I 

• 
I 

Ji. 
(AZ. zN) ( i\y .. M) 

/ ., 
/ 

AZ 

B 

Ax 
n 

and now~ is a A-residual, but not an ordinary residual, of R
0

. Likewise 

in the following example: 

= AX • ( A y • Kiyy) X 
I 
• 
I 

-It 

AX.Kixx 
I 
• 
I 

\V 
Ax.Ix= 

- ➔> 
B 

"-Y ;,. 
B 

This example shows an undesirable characteristic of the ordinary concept of 

residuals: by an internal reduction an n-redex can stop being one and a 

moment later reappear as ''the same'' n-redex; but the latter is not a resi

dual of the forrner. It is however a A-residual of the former .. 

(ii) For AS-calculus the two residual notions coincide. 

(iii) Note that in the Counterexample 2.3.1 the final n-redex is a ).-resi

dual of the original one. 

(iv) The theorem of Finite Developments does not hold for A-residuals: 

left Al 

••• 

an infinite reduction in which all the contracted redexes are A

residuals of redexes in M
0

. 

On the other hand, FD does hold for ordinary residuals; see 

BARENDREGT, BERGSTRA, KLOP, VOLKEN [76], Ch.II. The proof there uses the 

method of decreasing weights as in I.4. 

• 



3. TRACING IN DIAGRAMS 

To keep track of events in a reduction diagram, we will stick labels 

on the A's and follow them by means of these labels. In the S-case this 

works very well, but in the Sn-case there is a complication, since in the 

type II e.d. 1 s (see 1 .. 2) there is sometimes a ''confusion'' of A's'': 

AX 

Ay 
" 

B 

n 

\. 

I 
I 

I 
I 
I 

I 

I 

I -------------------J 

(Note that the two terms on the right are syntactically equal modulo ex.

equivalence, renaming of bound variables.) 

257 

Now it is not clear whether the label? in C[).?y.A] should be O or 1. There-
• 

fore we put?= {0,1}. In general: 

3.1. DEFINITION. Let us admit as labels for A's (not only redex-A's) in a 

Sn-reduction diagram finite sets of natural numbers, denoted by a
0

,a1 , .•. 

In every e.d. except type II it is clear how to carry along these 

labels. For a type II e.d. the labels are carried along as indicated in the 

figure above, where 0,1 are replaced by cx.
0

,a1 and?= a
0 

u a
1

. 

NOTATION. Instead of 11.{n} we write 

for A0 just A. 

A ; 
n instead of A{O,l} we write A01 and 

3.2. As we said before, we can visualize reduction steps in a diagram as 

objects moving to the right or downwards, thereby possibly splitting or 

becoming trivial (empty). This gives rise to what we will call propagation 

paths, indicated by ,..,,,..,_,,....,,....,....,,...,"4, see the figure below. They should be dis

tinguished from the reduction paths in the diagram, which are ordinary re

duction sequences of terms - except that empty steps may occur in them. 

Thirdly, we will distinguish in a reduction path the paths which we get by 

tracing a single syx1ibol, in casu a A. These are A-paths. 
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reduction path 

propaga ion path 

The notion of 'A-path' seems sufficiently clear to make further illu

stration of it superfluous. 

Note that if A,B are terms on a reduction path and AO is in B, then 

AO can be traced to a unique 'father' A in A. Even in the Sn-case there is 

no ambigu.i ty. Now note the difference between $-diagrams VB and Sn-dia.grams 

VSn: if A,B are terms in V8, B 'later' then A (see next figure) then a AO 

in B traces back to a unique A in A, regardless of the reduction path be

tween A and B which one chooses to trace back. But in v
8
n the father in A 

of AO in B depends on the chosen reduction path. This is caused by the con

fusion of A's which we observed earlier and which caused us to introduce 

growing labels a, C . -J_ 
]N. 

• 

• 
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. - -

A 
' 7 

• 
' 

l 
B = 

• 
• 
• 

Aa, 
3.3. DEFINITION. Let M ---+ N be a 8- or n-reduction steo, where A is 

- Ct 

the head-A of the contracted redex. Par 

'the contracted redex-A' of this step. 

abus de langage, Aa. will be called 

Before formulating the properties of the labels a.. which make them 
]. 

useful, we will give an example illustrating these properties. 

3.4. EXAMPLE. 

(A x.xx)I 
( )._ x. (;._,_y. (). z.zz)y)x)I a. 

a ~ Y -------r----7----------~->~r----~----~ 

:\ 
a, 

:\ 
a n 

I 
I 
I 
I 
I 
i 

( A $1 _ ( A y z • z z) y) I t:-------y.!...----,- - - - - - - - - - - - -
1
...-----

1 ! 
I I 
I l 
I t 
I I 
I I 
I I 
I I 
I 

n 

yy)I 

X 
au B 

A 
I ------~l.----------~-_.._ ------

au Buy 
• 

(:\ z.zz)I 
Y (A z.zz)I (Aa,.;Bu_y.yy)I 

Buy ~ -Y 
I __:I\ '-• - . - . - . - . - . - . - . - . - . - , '· - . - . - ; - . - ~ - . - . - ' - . - ' - . - . 

------------

A-path 

II 

l 
I 
l 
I 
! 
I 
I 
I 

II 

I 
l 
I 
I 
l 
I 
I 
l 

.,. II 
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Note that in a propagation path 

A - .. - • -> A - • - • ~ • • • the labels 

A~ ... as well as in a A-path 

3.5. LEMMA. Let 

M 

612 

i-------r 

V 

IR /tR 
1 2 

be a completed Bn-diagram. 

• can increase .. 

• 

Let all the A's in M have a label and carry along these labels throughout V. 
Let Ind{~1} be the union of labels of A's contracted in tR

1
, and similarly 

for the reductions iR
2

, <R1 /d'.t2 and 6?.
2

/tR
1 

.. Then the following holds: 

(i) Ind(~1/tR2 ) U Ind(~2/tR
1

) ~ Ind(~1 ) u Ind(tR2 ) 

(ii) the label of a A is weakly monotonically increasing along a A-path in 

V, i.e .. if A-.-.-;>> Aa then a c S, 
a µ -

(iii) similarly for the label of the contracted A along a propagation path 

11.
8 

then a c S . 

. 

Before giving the actual proof, let us make the following remark. 

That the lemma is not entirely trivial is due to the fact that in ~ 1 , 

«R2 iabels of A's occur which are not~ Ind(~
1

) u Ind(~
2
). What we have to 

prove is that those labels do not play a role, as label of a contracted\, 

further in the diagram. 

PROOF. Let a labeling of all the ).'sin M be given such that the i-th oc

currence of A in M has label a.. • It is not required that a.. -:/ a. 
i i J 

the a. are entirely 
i 

arbitrary. Without loss of generality we may 

for i :f j; 

suppose 

a . = { i} ; replacing afterwards {i} by arbitrary a., 
i 

(i}, (ii), (iii) ob-
1 -

viously remain valid. 

tJow we will prove (i), (ii), (iii) simultaneously by induction on a 

construction of V. 
Suppose that in our inductive proof a construction stage V' of Vis 

reached: 

• 
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M <R 
1 

V• 

., ~ ,. 
' 

~ new elementary 
= 

square to be adjoined 

and assume the following induction hypothesis: 

(a) if a contracted A in V• has label a then a c Ind(~) u Ind(~) 
- 1 2 

(b) if a A in V• has a non-singleton label a, then a~ Ind(~
1

) u Ind(~
2
). 

The induction hypothesis is clearly fulfilled in stage O of the construc

tion. 

The remainder of the proof consists of checking the e.d. 1 s plus what 

happens in them with the labels. Without comment we will only mention the 

critical cases. Note that the label of a A in a A-path can only increase in 

a trivial step, and that the label of the contracted 

path can only increase in the first e.d. below: 

A A 
A -•-S-•-•-·-·-· ➔ A a 

I a f >i I Cl r------, ,a.us 
I I I I . 

• I • . 
I I I I I I I 

' I 
• • I I I I I 1 I I I • I • • 

I I I I 
I I I I ' I • 

I 
• 

,J, I I I I I • 

1 '---- -- --1. >• • 

A -..t, -v 
a.us A 

au$ A ·-·-·-·-· ➔ A 
auSuy auy 

in a propagation 

AS 
A---·---~-•- .. ➔ A 
a Ct 

I 
AS 

I 
I • • 

I I I • 

I • I l I • 

I • 
I I • I I 

• 

Jt ----- - _J • 

~ 

A -·-----,-·-·-~ ). l s c.uB 

It is only a matter of patience to verify that (a) and (b) again hold 

for V1 + O. We will omit this verification here. If the diagram is com9leted, 

then (a) of the ind .. hyp. entails (i) of the Lennna. Part (b) of the ind.hyp. 

serves to prove {a) in the case of adjunction of the first e.d. above. n 

3.6. COROLLARY. Let R c M be a redex of which no A-residual is contracted -
in ~ 1 nor in ~

2 
(see figure). Let S ~ N be a A-residual of R. 
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Then no A-residual of S is contracted in 

M 

V 

N 

6l /6t • 
1 2 

PROOF. Let the A of R have label 0, all other A's label 1. Then by the hy-

pothesis of the corollary, 0 

vious lemma, 0 ¢ Ind(6t1/~2). 

Hence by (i) of the pre-

3.7. PARALLEL MOVES LEMMA, for A$n w.r.t. A-residuals. Let 

~ = M 
0 
--➔ ··• ➔ M • • • and let R be a redex in M. Then in V(~,{R}) the pro-

n 
jection {R}/IR consists of contractions of A-residuals of R, via the reduc-

1 . 
''l.O 

-~,- M • • • n 
In other words: the ~•s of the redexes contracted in {R}/~ can be 

traced back via M to the A of R. 
n 

• 

PROOF. The following argument is typical for the notions of diagram con-

struction and tracing of A's by means of growing labels. 

Label the A of R with 0, all other A's in M
0 

with 1. So the Aij in 

{R}/R have label O or 01 by Lemma 3.5.(i). If a Ai· has label Owe are done, 
J 

for such Aij can only be traced back to AO by Lemma 3.5.(iii). But if it 

has label 01, it might be the case that such a A traces back via Mn to a Al 

in M
0

, what we don't want. 

Let us suppose this is the case (*). First we note that in M no mul-
n 

tiple labels (01) can occur, since in a A-path the label can only increase 

after an empty step (see the e.d.'s in the proof of 3.5) and does not con

tain~ steps. Hence, if a A01 in {R}/~ traces back via M to a A in M, 
n 1 0 

this trace must be via a A1 in Mn. This implies that in {R}/~ a 0-step must 

occur, in which this label 1 grows to 01: 

• 
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• 
• 

I >..1 
I 

{R}/(f{ I • 

I I • 

I ii 

>..01 
• 
• 

Let us call such a situation a 'vertical 1-adjunction•. 

Now consider an arbitrary construction of the diagram V({R},(f{) and in this 

construction the first addition of an e.d. in which a vertical 1-adjunction 

occurs. This e.d. must have one of the two following forms: 

AO Al -·-·-·-~-~---~-·► Al 
}.01 

A ___ .,_ ... _·-·-· ➔ ;\1 1 
I 

AO /\01 I I • I I I I • • 
I I I I • 

• I 
I I • • I 

Al I I 
• 

• l I 
I I • • Al I I I I • 
• • I 
I • l I I I • 
• I I 

I • 

I 
• 

I I 
• 

I I I • • • 

w -.!; ~ ! • 

I ..l, 
---------'A 

_________ _l 

AO 01 AOl 
'\ 

11.01 ·-·-·-·-·-·-·-~ 7 -·-·-·- .. - .. ---~➔ 

However, in both cases we have a vertical A1-contraction, in contradiction 

with Lemma 3.5.(ii) which states that for every vertical A -contraction we a 

must have OE a (since we started with a vertical A0-contraction). 

So we have proved that(*) is not the case, i.e. also the A01 in {R}/~ 

trace back to AO in M0 . n 

4. STANDARDIZATION OF Sn-REDUCTIONS 
• 

As in I.9 for AS, we will employ a marker to help us remember which 

(residuals of) redexes are not allowed to be contracted in a standard re-

duction. In fact we need two markers: *sand * , for S- resp. n-redexes. 
n 

4.1. DEFINITION. Every time when in a reduction a B- or n-redex with head-A 

(say) AO is contracted, we attach to all the S-redex-A 1 s < 

(if not already present) and to all the n-redex-A's < AO a 

;.0 a marker *s 
marker * (if 

n 
not already present). Note that it may happen that one A bears both markers: 

*B*n A . These markers are carried along in a reduction as follows: 

• 
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1) 

2) 

all the residuals of 

all the residuals of 

,., 
* t' * (~ ·x.A)B will be marked by 8 

A*nx.Ax (x4FV(A)) will be marked by * n. 

Now a standard Rn-reduction is a reduction in which no redex is con

tracted whose head-A is marked. 

4.2. REMARK. This definition is equivalent with the definition of strongly 

standard 8n-redt1ction in HINDIJEY [ 78 J. 

It turns out to be convenient for the oroof below to work with a -
st1.~onger notion of standardness, which is al so easier to formulat-.e (with 

the terminology of markers). 

4.3. DEFINITION. 

(i) Every time when a B- or n-redex with head-A (say) AO is contracted, 

we mark all the red ex-A's ( B- or r1-) to the left of AO with *, if not 

yet marked. 

(ii) These markers are carried along in the reduction as follows. All the 

* A' s WJ.'lii clJ. descend from a A , will also be r:1arked - regardless whether 

they are redex-A's or not. 

(iii) tJow a >,.-s't.andard Sn-reduction is one in which no redex is contracted 

whose A is marked. 

4.4. REMARK. 

(i) A-standa.rd = standard w.r.t. ;..-residuals. 

(ii)~ is a \-standard Sn-reduction•~ is a standard Sn-reduction. 

Cf. 2.4.1. (i). Here also, the converse does not hold. 

4.5. THE STANDARDIZATION PROCEDURE FOR ASn 

First we will extend the relation ''< 11 (to the left of) for >..'s in a 

term to redexes. 

4.5 .. 1. DEFINITION. Let M be a A-term and R.,S two redexes in M. Then 

Here AR, AS are the head-A's of R,S. 
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4.5.2. REMARK. So if R,S are in position (I) (Def.2.1), R = (Ax.Ax)B = SB, 

then the B-redex Risto the left of the n-redex s. 

4.5.3. DEFINITION. Let 6{ = ... be a (finite or infinite) re-

auction. 

(i) In M0 we select a redex, called lmc(~), as follows. lmc(~) := the left-

most redex in MO of which a A-residual is contracted in~-

(ii) As in I.7 for AS, define 

p(~) := 61/{lmc(~) }. 

4.5.4. DEFINITION OF THE STANDARDIZATION PROCEDURE FOR ASn 

Let ol = M 
0 

... be given. Then the (possibly infinite} re-

duction ~ is obtained as follows: 
s 

6{ 
s 

lmc (Ot) ~ M, 
1 

lmc CeR) >-

Cf. I.9.3; see also the figure there. 

2 
M, lmc (p 61) 

2 • • • 

Before we prove that~ is 
s 

A-standard, hence standard, and that if~ 

and 6-t end in the same term, we will give some examples and state some tech
s 

nical lemmas. 

4.6. EXAMPLES. Example 1 shows why we introduced A-residuals in the defini

tion of the standardization procedure. For, the straightforward generaliza

tion of the method for AS-calculus would have used *s, * (see 4.1), i.e. n . 
standardness w.r.t. the usual residual concept, and as lmc(~) we would have 

taken: the leftmost redex in M
0 

which has a residual (in the usual sense) 

contracted in <R.. 

But this generalization fails: as this example shows the result of the 

procedure need not be standard. (This was pointed out to me by Gerd Mitschke.) 

As usual, the dotted lines in the reduction diagram below denote empty 

steps .. 

• 
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(Ax. (:\y.yR) (Ix) }X (Ax. ().y .. yR)x)X 
Ix 

( :\y. yR) X 
XR XR' 

8 

8 

(.:\x.IxR)X 

f3 

. 

IXR 

XR --

XR' 

n 

(>..x.xR)X 

I 
t 
I 
I 
I 
I 
I 
I 

B 

XR 
--

iXR 

-- -

B 

l 
I 
I 
I 
t 
I (AX. xR) X 

I 
I 
I 
I 
I 

s 

XR 
-

-- , .. , .. 
I 

' I 
I 
I 
I 
I 
I 
, 1xR 
I 
I 
I 

I 
I 

lxR 
-1 

I 
I 
I 

I 
l 

B 

f3 

B 

I 
I 

I 
I 
I 

I 
l 

I 
I 
I 
I 
I 

XR' 

lxR • 
I 

I 
I 
I 

l 
--- lxR XR XR 1 ---- ------=~-----+ 

s 

XR' XR' 

s 

R' 

I 
I 

- - - - - - - - - - - - -- -- - -I 

I 
___ !XR' 

Example 2 shows how application of the A-standardization method does produce 

a A-standard (and hence standard) reduction for~, the same reduction as in 

Example 1. 

In the diagram below, the A's of redexes which have a A-residual con

tracted in tR· are indicated by t. Similarly for p (61) , p 2 (61) , ••• 

Note that contains an n-step while~ does not. This is because in 
s 

the definition of 1 lmc' we have built in a preference for B-steps over 

n-steps: if a A is a 8-redex A as well as an n-redex >.., the S-redex is to 

the left of the n-redex (Def. 4.5.1) 

• 



(AX. ( ;\y. yR) ( Ix) ) X 

t t t t 

<R 
s 

AX 

(Ay.yR) (IX 

t + + 

::CXR 
t + 

XR 
t 

XR' 

s 

B 

s 

s 

s n 

8 

(;\y.yR)X 

f3 

B 

XR 

s I 
I 
I 
I 
I 

I 
I 

I 

(Ay.yR)X 

I f3 

I 
l 
l 
I 
1 I{ Ay. yR) X 

-
a 

B 
• 

I 

I 
I 

I 
I 
I 
I 

I 

XR 
I B 
l 

I 

I 
l 

1XR 

l B 
I 

t 
I 
I 
l 
I 

I 
l 

I 

I 
I 

I 

I 
I 
I 
I 

l 
I 
I 

• 
I 

I 
I 
1 

I 

I 
• 
' 
I 

I 
I 

I 
I 

I 
I 
I 
I 
I 

I 
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XR' 

XR' 

EXAMPLE 3. In the reduction diagram below, the upper reduction~ contains 

a 8-step (Ay), which is in a remarkable way transformed by the standardi-

zation procedure into an n-step (Ay) in cR • 
s 

• 
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}.X. ( A.y. Kiyy) X 

t t t 

>..y.Kiyy 
t 

).y.Iy 
t 

n 

K B 

n 

Ax.Kixx 
~,. 'Y I ~ I K 

l 
I 
I 

I 

I 

I 

I AY. Kiyy 
S,K 

11.y.Iy 
- -

n 

I 
. 

AX.IX 

I n 
I 

I 
l 
l 
I 
l 

I AY .. I·v 

n 
( 

l 
I 

L 
t 
L 
l J..y. Iy 

n 

n 

I 
. 

I 

I 
I 
I 

I 

I 

I 

I 

I 
I 
I 
I 
_II 
I 
I 
I 
I 
I 
I 

II 
I 

EXAMPLE 4. Here, as in example 2, an n-step in~ is transformed into a S
step in~ .. 

s 

{Az.zN) (:\x. (Ay .. M)x) 
t t + 

(AX.(Ay.M)x)N 

+ t 

().y.M)N 

t 

M(N) 

,,. 
~ 

B 

B 

(AZ.ZN) (Ay.M) 

n B 

f3 

(:>,.y.M)N 

n I 
l 
l 
I 
I 
I, 

I 
I 

I --- - - -- - -

s 

- -

(Ay.M)N 
' 

I s 
I 
I 
I 
I 

l(Ay.M)N 
- -1 

I s 
I 
I 
I 
I 

• 

B 

B 

- - -

I 
I 
I 

M (N) 

I 
I 
J M(N) 

I 
I 

l 
I 
I 
I 

I 

l 
I 

I 
I 

1 -



EXAMPLE 5. 

( AX. w ( Ix) ) M 

t + + 

w (IM) 

IM(IM) 

t t 

M(IM) 

t 

MM 

{Ax.wx)M WM MM 

I 
I 

B B I 
I 
, 

I 
WM 

------~ - - - - -
jLilM 

- - -
8 

8 B 13 

B 

B 

I 

l 
I 
l 

l 
I • 
I 

I 
l 
t 

I 

I 
I 

MM 

M(IM) MM MM I 
----;B~---:,~----....1 - - - - - - - -- ,...._ I MM -------- . 

t I I I 

B 
l I I 
I I I I 

: \ I 

I 

I 
I 

l M ( IM) 1------ t 

8 1---------7--- I - - - -

B B 

--- J.- - --

I 
i 

MM MM 

1 

I 

l 
I 
I 
' --- - --- --

MM 

I 

I 
I 

I 

l 
l -- ;--- --

M?-1 
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4.6.1. REMARK. Without the trivial steps the diagrams would be much simpler; 

in example 5 we would have 

(Ax.wx)M n wM MM 

( AX • w ( Ix) ) M 
B 

8 

W (IM) M(IM} 

(IM) (IM) 

But in this way we loose all intuition for the standardization procedure .. 
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In a standard reduction in AS-calculus the 'action' is literally going 

from left to right in a term. In a standard Sn-reduction this is not so; 

sometimes there is a leftward jump, as in the following examples: 

AX. (a:Xy .xy) 
n 

11.x .. ax a 
n 

or 

AX. a ( Ix) 
8 

Ax.ax a 
n 

or 

\x.(11.z.a)xx 
f3 

\x.ax 
n 

It is clear that such a leftward jump in a Sn-standard reduction occurs on

ly to contract an n-redex. (We will not prove this fact.) The next lemma 

states that our standard reduction in spe, iR, 
s 

indeed satisfies this require-

ment. Then we prove, using this property, that~ 
s 

is A-standard. 

4.7. LEMMA. If in iR 
s 

* a A is contracted to the left of a A , chen this must 

be an n-contraction. And hence, by the definition oflmc (with its built-in 

preference for $-reductions if there is choice} it is a contraction of a 

pa:ssi ve n-redex. 

PROOF. Suppose the lemma is false: let M' l n+m+ 
(see figure) be the first 

term in~ in which a A(say 
s * 

(say ).l) 

A
0

) as S-redex is going to be contracted with 
,* * a A to its right. Let M~ be the term in which this Al got its 

? 
meant the A which is going to be contracted, by A. that marker. By A is 

t 
this A possibly bears a marker* (in the situation above this is in fact 

not possible). 

Now it is not hard 

in the same position 

to see that A
0

,A
1 

in M' 
1 

trace back 
n+m+ 

M' 
n 

M', .... ,M' 
n n+m 

such that 

Moreover, by the 

AO< A1 • (*). This is so because every A in 
t 

our hypothesis. ~ < t. 0 ,A 1 is an 

same hypothesis, 

n-redex-A by 

M' 
n 

already a 8-redex-A. 

Here we use also the following fact: 

in 

• 



• 

I 
• 

I 
• 

? ? :\ . 
3 

A • 
0 

t I 
• 

I 
• 

{, 
). ? 

0 

t 

(\t 
s 

).. * 
1 

• 

I 
• 

I 
• 

I 
• 

I 
V 

* Al 

I 
• 

I 
• 

I 
• 

'+" 
* A 

I 
I 

t 

---

---

M' 
1 

M' 
n 

M' 
n+m 

M' 
n+mr-1 

lmc (!H) 

lmc (p1t) 

• • • • 

• • • 

• • • 

• • • 

• • • 

n 
lmc (p dt) 

ondZ ... 

pn+mtR 

pn+m+161 

• • • -
• • • 

• • • 

• • • 

g 
• 
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if a A is not a S-redex-A, then the same is true after an n-reduction. 

{Another formulation of this fact is: 

n-reductions do not create new B-redexes w.r.t. A-residuals.) 

Note that this is not true w.r.t. ordinary residuals; cf.: 

[ Ax • ( A Y. M) x ] N · · :r ( ).. y . M) N , 
n 

where (Ay.M)N is a newly created B-redex.) 

* Now ~2 in M~ is to the right of A1 , because A1 was marked for the 

first time in M~. Therefore (by (*)) al.so ~2 > AO in M~. By the definition 

of lmc, this means that AO in M~ has no contracted A-residual in pn~. 

Also AO in M~ has no contracted A-residual in the reduction 

• • • ---- -?· M 1 

1 . Here we use that 11.
0 

is not multiplied in this reduc-
n+m+ 

(this could only be done by a B-redex to the left of AO and hence of 

but according to the hypothesis such redexes cannot be contracted in 
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this reduction.) 

Hence, by Caroll. 3.6, ~ in M' has no contracted A-residual 
1 0 n+m+1 

n+m+ 
p 61. But then, contrary to what we s11pposed, in M~+m+l: 

Contradiction. 

It is now easy to prove: 

4.8. LEMMA.~ is a A-standard reduction sequence. 
s 

PROOF. Consider the following enlargement of the above figure: 

* AO Al --
l -

+ • 

I 
I 

I 
• 

I 
• 
I 
i 
* AO 

---
t 

M' 
n 

M' 

6t 
s 

n+m 

• • • • 

• • • • 

• • • • 

pn<R 
•••• 

Pn+m61 
•••• 

Let us first note as an immediate consequence of the preceeding lemma, 

* that no A in~ can be multiplied. 
s 

Now suppose that 6l. 
s is not 1-standard. Then there is M' 

n 
which 

gets a* there for the first time, and descending to a A-residual in say 

· M' which is lmc(pn+m6l.). The (redex whose head-A 
n+m is) A0 in M~ 

Al (displayed there) 

has no A-

residual contracted in pn~, otherwise the would not 
n have been lmc(p ~). And 

* M' -~->- .... · ➔·M'+, AO n nm 

* since A in M' is 
0 n 

not multiplied in the reduction 

has no A-residual contracted in that reduction. 

Hence, by Corollary 3.6, A0 in M' has no A-residual contracted in 
n+m 

n+mn d. . O p in. Co.ntra 1ct1on. . 

• >- M 
1 

• >- ••• be an infinite Sn-reduction sequence 4.9. LEMMA. Lee~= Mo 
and H ~ M0 an n-redex. Then the projection of·~ by H is again infinite. 
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PROOF. Suppose not. Then every step after 

the following figure, in particular every 

sav M - n 
B-step 

has an empty projection in 

after M .. 

M 
n 

M 
n+l .----_;: .... ___ ......;:,---------,..-----":-------

H n 

M' 
0 

n 

M' 
1 

M' 
2 

n 

M' 
r 

---

n 

Ml -

n+ 1 = • • • 

n 

We will now see how such a 8-step, which has an empty projection for 

some projecting n-reduction, looks like; and then conclude that it is im-

possible for an infinite reduction sequence, in casu M 
n 

to contain next ton-steps only $-steps of that kind. 

by then-reduction 

--+), • ••I 

✓ 

-➔> 
n 

N be 
m 

So let the projection of 

empty, as in the next figure. 

NO S ► NO 
Note that the $-step does not split in its 

propagation, until it vanishes (becomes 0) after some step say Nk n> Nk+t· 

Write R. = (Ax.A.)B. (O~i::;J.c). From Proposition 2.2 it follows immediate-
1 l l 

ly that then-reduction 

>> 
n 

is 'separable' as follows: 

( c) . >> 
n 

• 

corresponding to (a), (b), (c), (d) in Prop. 2.2(ii). 

(Remark ad (a): in fact n-reduction is not defined for contexts C[ ]; but 

considering a context as a term in which some special free variable □ may 

occur once, it is clear what n-reduction of contexts is. E.g. AX.y□zx is 

• 
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a context n-redex.) 

N 
m 

• 
• 
, 

n 

B 

B 

n 

• 

• 

r-----------7i 
8 

• 
• 
• 

---- - - - --

-------- -

I 

l 
I 

l 

I 
I _ _; 
I 

I 

• 

I - -
• 
• 
• 

I 
I 
I 

"L"--- - --- - -- - J 

So R
0 

n »· ¾, and the 8-redex ~ and the n-redex Hk are ''too close together''. 

Now there are two cases:~ and Hk I-absorb or II-absorb each other. 

CASE (i). 1\ is II-absorbed by Hk {see 1.2). 

Then Nk = ~k[Rk] = ~k[(AX-¾)Bk] = ~k[Ay.(Ax.Ak)y] = ~~[Hk], 

Hk = )y.E\ and Bk= y and y J FV(Ak). So by (*), 

• i.e. 

where we have used the notation~ for an n-expansion of M. (I.e.~-.» M) n 



CASE (ii).~ is I-absorbed by Hk. 

Then Nk = ~k[l\J = ~k[(Ax.¾)Bk] = ~k[(AX.Akx)Bk] where x l FV(Ak), 

Hk 
- AX.Akx .. --

So AO ➔> Ak X, hence AO 
-

~X-
--n 

So 

---------------------------------· 

Now we have proved that the infinite reduction M - ➔· M 
n n+l 

contains only 

(a) n-steps 

(b) 8-steps of type (i) 

(c) B-steps of type (ii). 

••• 

However, this is imoossible: such a reduction cannot be infinite. For let 
~ 
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m (M) be the n1.unber of multiplying A's in M (not only redex-A 's) where >.. in 

AX.A is called multiplying iff x occurs more than once as a free variable 

in A. Now type (a) and (c) steps diminish the length l(M) of a term M, while 

keeping m(M) constant, and type (b) steps may increase l(M) but only at the 

cost of diminishing m(M). Hence the ordinal number <m(M),l(M)> = w•m(M)+l(M) 

decreases in a strictly monotonic way along the reduction 

Contradiction. 0 

4.10. PROPOSITION. 

lmc (<R) 

I 
l 
I 
I 
I 
I 

M n 

I 
I 
I 
I 
I 

-➔> M 
n+l 

__________ ...._ __ ---,\ ---------------
tR • 

In V(~,{lmc(~)}) the reduction step lmc(~) propagates to the right, without 

splitting, until it vanishes (in the indicated square) by 'coincidence' or 

'I- or II-absorption• (not erasure). 

PROOF. Let AO be the head-A of lmc(~). Using the same kind of argument as 

in the proof that~ is A-standard, one shows easily that if somewhere in 
s 

ol a A is contracted to the left of (a descendant of) A0 , then this A must 

be an n-redex-A(*), in fact even a passive n-redex. 

From this it follows directly that lmc(~) does not split and that A0 

" 
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is not multiplied in~-

From this last fact it is clear that if ~me(~) propagates until the 

(unique) step in~ in which AO is contracted, then the indicated square 

must be of one of the following forrns: 

AO AO AO AO 
t 

, 
" 1· 

B B n I n I 
I 

.\0 
I 

AO 
I 

AO AO (3 I n n I I I I I I I 
I t _J: -- -1 - --- - --

coincidence I-absorption 

Otherwise the lmc(~) contraction had already vanished before it reach

ed the A
0
-contraction in~; and this can only have happened by II-absorp

tion (not erasure, by(*).) D 

4.11. PROPOSITION. Let~, AO be as in the preceding proposition. Let the 

step in~ in which AO is contracted, be a S-step. Then l.rnc(~) is a B-redex 

(and {lmc (<R)} a S-step.) 

PROOF. (Note that the analogue for n does not hold; see pR and lmc(pf{) • in 

Example 4.6.4.) Suppose the proposition is false. Then lrnc(~) is a passive 

n-redex. But since to the left of AO in~ only ~-reductions take place 

(see proof of preceding proposition), this passive n-redex cannot be acti

vated, in contradiction with the fact that AO in <H was a S-redex A. D 

Finally we can combine all these lemmas and propositions: 

4.12. THEOREM.~ is a A-standard (hence standard) reduction sequence for 
s 

PROOF. 



MO 

V 
s 

<R 
s 

s 

• • • • 

In 4.8 it is proved that~ 
s 

that the right side of V is 0. 
s 

277 

Mk+l M 
n 

(3 
I 
I 
I 
I 
I 

A 612 B I 
I 

'0 
I 
I 
I 

0\ 0\ =0 I 
1 3 I 

I 
I 

I 
I 

I I 
I l I 'ii 

I 
I 
I 
I 

• • • • • • • • 

is A-standard. Proposition 4.10 states 

Now suppose, for a proof by contradiction, that tR is infinite. Then 
s 

there is a k such that ~
5

/M
0 

Let V• be 

► ~+l is finite 

the subdiagram as 

•.. >~is infinite and 

(i.e. contains after some B only 0-steps.) 

in the figure above. 

From Lemma 4. 9 we know that the ''critical 11 step M.. ➔ M.. cannot be 
k k+l 

an n-step (otherwise tRs/M
0 

--+ ••• ,, · ►· l\.+i was still infinite.) Hence <R
2 

is a S-reduction, since S-steps propagate as S-steps or 0-steps. (In fact 

tR
2 

is a complete 8-development, as is proved in Propositions 5.1 and 5.3(i) ,.,). 

Now let us look at the ''critical'' subdiagram V•. By Prop. 4.11 all the 

non-empty steps in tR
1 

and S-steps. 

By exactly the same argument as in I.9.6, using the Hyland-Wadsworth 

labels (I.3.7) and SN for 1.abeled reduction (I.8), it is clear that tR1 must 

be finite. Contradiction, hence <St 
s 

is finite .. 

• 

• 
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It remains to prove that the lower side of 

This is trivial, for if not, then <R would have 
s 

V , i . e . <R/<R , 
s s 

continued. 

• 
1.s empty. 

Hence <Rand~ end in the same term M. n 
s n 

4.12.1. REMARK. Using the fact that <R
2 

is a 8-development, once can replace 

the use of SN for HW-labeled terms by the use of FD for AB. 

4.13. REMARK. There are two well-known technical lemmas concerning the re

lation between B- and n-reductions: 

,~,,h, 

4.13.1. LEMMA. (Postponement of n-reductions) 

If M Sn» N then 3L M ---➔> L ➔> N. 
S n 

4 .. 13 .. 2. LEMMA. M has a Sn-normal form < ) M has a $-normal form. 

It is interesting to note that these lemmas (and in fact, a strengthered 

version of the first) follow easily using the method of the preceding proof. 

PROOF of 4.13.1. Note that Prop. 4.10 remains valid when instead of £me(~) 

we take lmc
8

(~), that is: the leftmost B-redex in M
0 

having a A-residual 

contracted in 61. 

Now define (instead of~) 
s 

the reduction <R 
S,s by replacing in the de-

finition of <R, 
s 

lmc by tmc
8

• 

Checking the proofs above, we see that 

the same way as for 

After <R 
B,s 

has 

~. 
s 

stopped (that is, after 

steps) the following situation has arisen: 

M d1 N 
( 

' 
tR B 

V 
'0 B,s I 
( 
I 
f 

L N 
n 

(For, if L · >> N was not yet an n-reduction, 

This proves lemma 4.13.1. Now it can be 

also <Ra is finite, 
µ,S 

in exactly 

we have 'exhausted' the lmcS-

~ would have continued.) S,s 
easily checked that something 

more is proved: all then-reductions in L » N are passive (an n-reduction 

' ' ' ' 

' ' l 
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A AX.~~ B is n passive when :\x.Cx is a passive subterm of A, i.e. not occur-

ing in ( (Ax .. Cx)D) for some D .. ) 

For if not,~ would have gone further due to its definition and the B,s 
definition of A-residual. D 

PROOF of 4 - 13 .. /.. <= .is almost trivial. 

=>: By Lemma 4.13.1 then-steps in~ can be postponed, so we have a reduction 

M -· -B~>> L >> N. Now L has a 8-normal fonn; for suppose not, then there is n 
an infinite S-reduction ~• = L LI ' ) L ,, ... So by Lemma 4.9 the 

projection <fl'' == 6t' /L -~>~ N must be infinite: 
n 

M 

B 

L 

• I 
I 

L' 

n 

contradicting the fact that N is a Bn-normal form. 0 

5. THE NORMALIZATION THEOREM FOR A8n-CALCULUS 

t 

• • 

.. 

N 

In this section we will generalize the No1.n1alization Theorem (I .11. 2) 

and the Quasi-nor.1nalization Theorem ( I .11. 6) ( in other words: 11 (ever1tually) 

leftmost reductions are normalizing'') from 11.8 to J..Sn. 

In AS the adjectives 'normal' and 'leftmost' for redexes and reductions 

were used as synonyms. In ASn the leftmost redex-J.. may belong to two redexes, 

e.g. in the ter1n (Ax. ax) b; in such a case Definition 4. 5. 1 says that the 

S-redex is the leftmost redex. 

DEFINITION. 

(i) Let R c M be a 8- or n-redex such that R's head-A is the leftmost -
redex-A. Then R is called a normal redex of M. 
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{ii) A normal reduction is a reduction in which only normal redexes are 

contracted. Likewise for the leftmost reduction. 

So e.g. the term M = (Ax.ax)b has two normal redexes, Ax.ax and M. 

Note that there is now no unique normal reduction, though the difference 

between two coinitial normal reductions is inessential. The leftmost reduc

tion is unique; it is that normal reduction having the most B-steps in it. 

In AB there is only one standard reduction from a given term M to its 

normal form, namely the leftmost (or: normal) reduction. This is no longer 

true in the ASn-calculus. There a A-standard reduction ending in a Sn-normal 

form may by-pass the normal redex(es): 

EXAMPLE 1 .. Let - Ay.yy, w --

cH1 ;\x.Iwx I 
AX.WX 

w 
AX.XX. - * > -

8 s 
6i - Ax.Iwx . .. .. ➔ Iw ➔ w. -

2 n B 

EXAMPLE 2. 
I 

o11 11.x.w(Ix) AX .. WX - >- w. - s n 
lfi2 AX.w(Ix) 

w 
AX. Ix (Ix) -- B 

In all three cases, both 

a leftmost reduction. 

15 
AX. X { Ix) 

and 61 
2 

are 

B 
AX.XX. 

A-standard while • is moreover 

We will now proceed to the Normalization theorem for ABn-calculus. As 

observed in the preceding remark, the proof of I.11.2 does not carry over 

to ABn, since A-standard reductions may by-pass the nor1nal redex(es} and 

still reach a Sn-nor1nal form. 

We have tried to construct a proof as follows: consider an arbitrary 

A-standard reduction to the Bn-normal forn1, and try to amend this into a 

normal reduction - but this seemed too messy. Therefore we will follow 

another proof strategy, in which no use is made of the A-standardization 

theorem. 

Since the proof involves some technical lemmas and a lot of details, 

we will begin by exhibiting the dependence of the elements of the proof 

in the following figure. 

• 

• 
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Here the following terminology is used. If A and Bare two classes of re

ductions, B containing only finite reductions, we will say: A is closed 

under B-projections iff for all tR, ~•: 

6l E A, tR' E B, at and tR' coini tial ~ tR/tR' E A. 

E.g. if A is the class of complete S-developments, B the class of all 

finite n-reductions, we wi 11 say for short: ''compl e-te B-developmen-ts are 

closed under n-projec"tions. '' When B is the class of all finite Sn-reductions, 

we will just say that ''complete B-developments are closed under project::.ions''. 

• 
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5.0. PRELIMINARIES 

5. 0.1. Let M be a A-term and lR a set of 6-redexes in M. As is well-known, 

al 1 complete 8-developments ''relative to lR '' end in the same result (FD!) ,. 

Instead of JR we will employ a different but equivalent terminology, see 

also BARENDREGT e .. a. [76] Ch.II; instead of the pair (M,JR) we take M plus 

an underlining of every A in M which is the .:\ of a redex in JR ; example: 

Such an enriched M will be written as (M,v); some·times we will identify M 

and (M,v) if it is clear what vis meant. v can be seen as a set of 8-redex-

:.\'s in M. 

Reduction relative to JR is now called underlined S-reduccion, or $-reduc-

tion: 

(M, v) 

NOTATION. if v, v' are underlinings of M, such that v ~ v', we write 

(M,v) => (M,v'). -

5 .. 0.2. DEFINITION. By (FD), we can define a norm II (M,8) II as the length 

(i.e. number of steps) of the longest B-reduction ~ starting from (M,v). 

Minimal underlining corresponding to a complete 8-development 

A complete $-development~ does not determine uniquely a corresponding 

underlining, since we work in AK-calculus. But~= M --➔ M' ----"">- .... does 

determine uniquely a minimal underlining v. , corresponding to it; namely, 
m1.n 

the set of all A's of 6-redexes in M of which a residual is contracted in 

6i. 

5.0.3. DEFINITION. Now we define for a complete $-development 

6l = M -➔>- M' . )- . . ,. -. 

II tRll = II { M, v . ) II • 
min 

• 

• 



In the sequel we will need the following obvious facts: 

5.0.4. PROPOSITION. 
, 

(i) If (M,v) 
B 

(M' , v') , then II (M, v) II > ll(M',v')II .. 

(ii) If (M,v) .=: ( M, v ' ) , then II ( M, v) II 2: II ( M., v' ) II • n 

5.0.5. Sn-terms and their reductions. We borrow a method from BARENDREGT -~ 
e.a. [76] Ch.II: Introduce two formal synibols - and,,...,, to be placed under 

the A of a B-redex resp. of an n-redex: 

(Ax.A)B resp. Ax.ex. ,...,, 
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RESTRICTION: coincidence of-, 

formed term in our system. 

is not allowed, so (Ax.Ax)B is not a well-

The symbols-,....., are introduced to formalize the usual concept of Sn-resi-

dual. Reduction for such Sn-terms is defined as follows: ....... 

(1) only underlined redexes, i.e. (Ax.A)B or AX.Ax, may be contracted, ,.._, 

(2) all residuals (in the usual sense) of (Ax.A)B begin again with A; simi

larly for Ax.Ax. Residuals of non-underlined terms are again non-under-...., 

lined. 

EXAMPLE. 

(Ax. (~.Ay)x)B (Ay .. Ay)B ,..., 

A 
'' '" ), ( Ax • Ax) B 

n 

A 
(Ax. (Ay.Ay)x)B ,.., 

,..,. 

n 
(Ay.Ay)B 

'' (:\x.Ax)B 

Now it is a routine matter to verify that the construction of diagrams im

mediately extends to the present case. (This is verified in BARENDREGT e.a. 
A 

[76] Ch.II, however without ~-steps.) Here it is essential that - cannot oc-

cur. For otherwise we are in trouble: 

• 
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(AX. ( 11.y. By) x) C 
B 
AY 

(Ax.Bx)C ~ -------

(Ax.Bx)C 
I 
I 
I 

I 

I 

1 

? 
• 

and now it is not clear whether? should begin with A, A, A. (Remark: it is ,...,, - ,-..., 

_.possible to find a remedy such that A is allowed while we retain the ''weak 
,..,, 

CR-property" (i.e. CR for the elementary diaryrams) and even (FD) - but at 

the cost of some complications.) 

5.1. PROPOSITION. Complete B-developments are closed under S-projections. 

PROOF .. Let 6¾ = M 
0 

• • -➔➔ M be a complete $-development and 
n 

R c M a B-redex. We must prove 
- 0 

that~'=~/{~} is again a complete S-devel-

opment. 

B R 

M' 
0 

B 

M 
n 

M' 
n 

Take the u. corresponding with~ and label the A's Eu . with 0. 
min min 

By the usual argument (tracing of labels in 8-diagrams) we see that 

every step in~• is also a A -step· 0 , moreover all A in M' have disappeared 
0 n ·· 

since Mn contains no A
0

• 

Hence~• is a complete 8-development, namely of the set of S-redexes 

in MO with AO as head-A. 0 

5. 2. PROPOSITION. Let, as in the above proof, 6-l = M0 · > Ml >- • • • - Mn 

be a complet;e B-development, R ;:, MO be a f3-redex and cfl 1 = <R/ { R} • Sup,-r;,ose 

moreover 'that 

(i) R is the leftmost 8-redex, and 

(ii) {R}/cfl = ~. 

Then : II <RII > II a?.' II • 

PROOF. Let u . be as above. Since R is the leftmost S-redex, it is clear min 
that 

{R}/!R = < > the head-A of R is E u . • 
min 

• 



Hence the head-A of R is underlined. Hence we have 

R 
(M

0
,u . ) 

0 min µ 
(M' u') · 0 I f 

and therefore by Prop. 5.04(i): 
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5.3. PROPOSITION. Let~ be a complete B-development and~• a one-step n-pro

jection of~- Then: 

(i) ~• is again a complete S-development, and 

(ii) 11~11 ~ lltR•II. 

PROOF. 

M N 

n ::\x.Ax 
V 

M' N' 

Let (M,u) be the minimal underlining of M corresponding to~- We dis

tinguish 2 cases: 

CASE 1. The head-::\ of AX.Ax is in u. 

Label all the A's in u with 0, except the A of Ax.Ax (which is also a S

redex-::\); this A gets label 01. The remaining A's get label 2. 

So every step in the reductions {Ax.Ax}, tR is a contraction of a ::\
0 

or 

::\01 . The same is therefore true in ifl 1
• by Lemma 3.5. 

Furthermore: every contracted A in tR' can be traced back to a A in M', 

which must have label 0. This follows from the preceding remark plus Lemma 

3.5 and the fact that 1 does no longer occur in labels in M'. 

(*) Now it is easily checked that every AO in M' is a B-redex-A, since 

Ax.Ax is active in the present case. (The critical case to check is: ,. 

M = 
>..01 n 

.. • • ( ( AO l x • (' :\ Qy ~ ~ ~ x) C) .... 
► 

A 

r--1' = ••. ( (A
0
y.B) C)... • ) 
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Further we note that~• is a S-reduction, 

propagate as B-steps or 0-steps. 

• since is so and B-steps 

So the situation is that some 8-redex-\'s in M' have label 0, the other 

A's in M' have label 2, and that in~• only 6-steps occur with label con

taining 0. Therefore~• is a S-development. 

To see that~• is complete, note that there can only be fusion of A0 
and A01 (not of AO and A2 , or AOl and A2) (**) This follows from the proof 

of Lemma 3.5: in a diagram, Aa and AS can only fuse to AauB if 'before' this 

fusion we have a Aa- and a A
8
-contraction in the diagram. 

Furthermore, since~ is complete, only \
2

1 s occur in N. Hence, since 

by (**) the label 2 cannot grow, only \ 2
1 s occur in N'.Hence~• is a com

plete 8-reduction of all the B-redexes in M' starting with A0 . 

It remains to be shown that ll<RII ~ ll<R. 1 II .. Let us again consider two 

cases: there is a second A Eu such that this A and the n-redex A01 x.Ax 

are ''too close together'', or not. (The first A E u is the head-A of A01 x.Ax 

itself.) 

( a) 

(b) 

M l =- AC . . . . -. 

Let u, u' be the set of A
0

, A01 in M resp. M'. Then for both cases 

(a) , (b) we have 

(M, U) s (M' , u' } • 

Hence by Prop.5.0.4(i): 

( 1) 11 CM , u) 11 > 11 , M, , u , > n • 

Maybe u' is not the minimal underlining 

does not matter, since we have 

u' • min 
corres_ponding to IR 1

, but that 

• 



(MI I u ' ) => (M',u'. ), 
- min 

hence by Prop.5.0.4(ii): 

(2) II ( M ' I lJ ' ) II ~ ll(M',u'. )II. 
min 

Combining (1) and (2) we have 

This proves the proposition for case 1. 
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CASE 2. The head-A of AX.Ax is not in u. Now the proof above breaks down at 

at point (*), see p.285. 

We will use the method of 8n-terms. So 
--"' 

let us underline in M the A's 

* in u as A, and the A of Ax.Ax as A. Result: ,..._, a Sn-term __,.._, M. Extend the under-

* lining to V. Result: a Sn-diagram V. -. 4 .. 

* It is clear that~• is a complete $-development, since every step in 

* in it is a A-contraction (for this is so in~, and A-steps propagate as 

A-steps or 0-steps), and 

* 

* since no A occurs in N' (because no A occurs in 

N • ) 

Moreover, it is readily seen that we are in one of the two following 

cases (this is a similar distinction of cases as above; but here it is more 

essential): 

• 

(a) * M = -• . AX .. ( AY .. B) X .... ,..._, 

* MI = . . . Ay. B ••• 

* ~.AX (b) M --- • • • --. 
(A i Ay.B; it • allowed that l.S 

* M' - A -- . -. • • • 

The difference between (a) and (b) is that in (a) one symbol 

* * lost. Let (M,u) and (M 1 ,u 1 ) be M resp. M' , where,..._, is erased. 

Then in case (a): 

{M, u) 
};y 

s (M',u'), due to a-conversion. 

A - Ay .B) --

t t • ' • 
J..S 

• 
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So by the same argument as in case 1, 

In case (l)), we claim: II (M, u) II == II (M', u') II. 

f1ence 

ff{M,u)ll ~ ll(M',v'. )II, 
min 

• 
l.. e. II <R II 

Proof of the claim. The set of $-reductions of (M,v) is trivially seen to 

be ''isomorphic'' to that of (M' ,u'). Namely, underline Ax.Ax in M and re

place all occurrences of AX.A'x in a B-reduction of (M,u) by A'; result: 

a 8-reduction of (M',u'). And so on. 

This proves the proposition for case 2. 0 

Before stating Prop. 5.5 and combining Prop. 5.2, 5.3 into proposition 

5.6 we need a definition. 

5. 4. DEFINITION. Let o1 = Mo ► Ml - > • • • be a finite or 
~ duction. tH is called B-norn1al if in every S-step M > 

n S 

infinite Bn-re-

M l in <R, lR n+ n 
• lS 

the leftmost 8-redex in M. 
n 

5. 4 .1. REMARK. Obviously, if dt is norn1al, then it is S-normal.. The reason 

to introduce this weaker property 'B-normal' is that S-normal reductions 

are closed under projections (prop.5.5), while normal reductions are not, 

as the following example shows: 

(S1 = {).y.yy)(Ay.yy)). 

M = Ax.n[(Aa.I)x]x _n----+-
8 

M 

Aa 8 

M 1 = AX. S1Ix 
B 

M' 

B 

n 
8 

M 

M' 

Sl 

B 

Sl 

B 

• 

. . -

••• 

~ is normal, but~• not, since it should start with the contraction of 
the n-redex M' . 
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5.5. PROPOSITION. B-normal reductions are closed under projections. 

PROOF. Consider the elementary diagram: 

A leftmost B 

s 
nor B 

I 

C D 

One easily checks that C -- Dis an empty step, or again a leftmost B-con-

traction. (Since a S- or n-step cannot create 8-redexes to 'its' left.) 

From this it follows immediately that if d?. is 6-normal and lit' is a 

projection, then every 8-step in tR• is a leftmost 8-contraction, i.e.~• 

is B-normal. D 

5.6. PROPOSITION. One step projections of infinite B-normal reductions are 

infinite. 

PROOF. Let 6t be 6-normal and infinite. We have to prove 

(i) one step n-projections of tR are infinite, and 

(ii) one step S-projections of tR are infinite. 

(i) is Lemma 4.9 (we do not need 'S-no:c111ality 1 here.) 

Proof of (ii). 

M' 
0 

tR 
1 

~, $-normal and infinite 

M 
n 

M' 
n 

n 

M 
n+l 

M 
n+2 

tR 1H 
n+l n+2 

- - . , . 
• 

Suppose (ii) does not hold: then let tR• be 0 after say M~- By Prop. 

5. 1 and 5. 3 (i} , the reductions tR
0

, o:i
1

, tR
2

, ... are comr-:,lete S-developrnents. 

By 5.2 and 5.3{ii), we have lllfl II ~ lltR II 2: ll<R 
2

11 2: ••• where ~ is > 
n n+1 n+ 

every time that Mn -- Mn+l is a S-step. 

But since~ is infinite, it contains infinitely many $-steps. Contra

diction. D 

' 
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5.7. COROLLARY. Infinite B-normal reductions are closed under projection~. 

PROOF. Immediate, by 5. 5 and 5. 6. 0 • 

5.8. THEOREM (Normalization for ABn-calculus). 

Normal reductions are normalizing. 

PROOF. Let r,1 have the Sn-nor1r1al form N, and let (R be a reduction from M to 

N. 

M 
tR 

n -----------------···· 

•••• 1--------,---=---------
N, Bn-n. f. <fi /tR == 

n 

Suppose 

finite. Then 

that tR, a maximal normal reduction starting with M, is in
n 

(since (R is also 8-normal) by the previous Corollaryr the 
n 

projection of tR 
n 

by a is still infinite. 

But since N is a Sn-nor:n1al for1n, this projection is empty. Contradic-

tion, 

which 

hence~ is finite. Hence by definition of 
n 

must be N by CR. 0 

61 , 
n 

it ends in a Sn-n.f. 

Now we come to the Quasi-normalization Theorem for ASn. First we need 

a definition, analogous to Def. I.11.4: 

5.9. DEFINITION. Let tR = M -~ Ml ➔· ••• be a finite or infinite Sn-re-. 0 

duction and R c M some redex in~. 
- n 

R is called (A-) secured in~ iff eventually there are no (A-) residuals 

of R left, i.e. 3m Ym' ~ m M contains no (A-) residuals of R. 
m 

The proof of the Quasi-norrr1alization theorem is a generalization ·of 

that for AS (I.11.6), but not entirely straightforward. For, the analogue 

of Lemma I .11. 5 (with 'secured' replaced by 'A-secured') does not hold for 

ABn r as the follov1ing example shows. 

5.10. EXAMPLE. Let D = Azxy. zzyx (See also Example 6.2.) Let 

- R -- -- -
redex is 

A0x.DDyx. ~ is the reduction in which each time the leftmost 8-qn 
contracted (so in AS,~ is the normal reduction); it is a quasi

qn 
normal reduction in ASn. 



291 

However, the normal n-redex R c M
0 

is not A-secured in~ , for 11.
0 - qn 

stays alive. Yet, our requirement for the proof of the Quasi-normalization 

theorem is fulfilled: 3n {R}/ (~ ) = 0. (~denotes the initial segment of 
n qn n 

length n of~; see Notation I.11.1) 

D 

AO X • ( A 1 X t y I • D Dy 1 X I ) ~rx 

Ax• 
1. 

>. y• 
2 

D 

• 
• • • 

--------

6l 
qn 

' ' ' 

DDy 

B 

Therefore we have to make the following distinction between two con-

cepts, which are identical in AB, but separate in A8n. One is ''R c M is 
- 0 

A-secured in~= --+) ••• ti. The other is given by the 

5.11. DEFINITION. The redex R c is absorbed in~= 

3n {R}/ ~ = 0-
n 

M 
n 

• I 
I 

-

tfi/{R} 
n 
' 

-------

••• if 

Note that in the example above the normal redex R, although not A-

secured in (R. , 
qn 

is absorbed by 

RA-secured in 

d1 • So we have in 11.Sn: 
qn 

R absorbed in tR. 

(Proof of=>: immediately by the PM Lemma 3.7.) 
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Now the analogue of Lemma I.11.5 becomes: 

5.12. LEMMA. Let~ = M -· --~➔ M 
qn O 1 

•• ➔ • • • be a quasi-normal reduc'tion in :\Sn 

and R c M a 
- 0 

normal (S- or n.) redex. Then: 

R is absorbed in IR • 
qn 

PROOF. CASE 1. Risa 8-redex. Let AO be the head-A of R. 

During the 

< A
0

, by erasure 

x E FV(A) in H: 

reduction~ , new n-redexes can be created whose A's are 
qn 

of ''obstructing variables'', i.e. variable occurrences 

AX.Ax, obstructing H to be an n-redex. Note that it is im-

possible that new 8-redexes are created whose A's are< A0 • 

In~ there can only be finitely many steps in which such a newly 
qn 

created n-redex is contracted, since there are only finitely many syrnbols 

< AO and contraction of an A-redex < R diminishes their number. 

These n-steps may demolish the 8-redex R, by erasure of the argument 

of R, essentially as in the following example: 

- _,, 
✓- .... 

~ 
qn 

-- >-z. (~
0
x. { "A.y. I) z) z,,. ( ''obstructing ·variable'') 

y' 

(newly created n
redex-A to the left 
of AO) 

Ay 8 R 

A z. ( 

:\z n 

As soon as this happens (*), we are through by the PM Lemma for A

residuals (3.7); for, taking the projection of {R} the PM Lemma says that 

this projection must consist of S-steps whose A's trace back to A • But as 
0 ' 

there are no A0
1 s in$- redex-position at moment(*), this projection must 

be empty. I.e. R is absorbed in~ . 
qn 

If this demolition of R does not happen, then after finitely many nor-

mal steps in tR it will be again R's turn to be a norrnal redex and to be 
qn 

contracted in the next normal step. 

CASE 2. R is an n-redex. A similar argument as for case 1. D 

• 



5.13. COROLLARY (Quasi-normalization theorem for ASn). 

Quasi-normal reductions are normalizing. 

PROOF. Analogous to the proof for AB. 0 

6. COFINAL Sn-REDUCTIONS 

6.1. DEFINITION. Let tR be a finite or infinite Sn-reduction. Then 

called (A-)secured iff every redex in~ is (A-)secured (Def.5.9) • 

• 

6.2. REMARK.~ is A-secured ~ is secured; but not conversely: 

EXAMPLE. 

Then 

(i) Let D = AZXy.zzyx and C = 
6i = 1-x.Cyx 

1.x.Cxy 

AX.Cyx 

• • • 

- ➔> s . 
s ➔> 

---,,i>> 
B 

. 

DD (see Example 5.10). 
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• 
l.S 

is secured but not A-secured because the n-redex Ax.Cyx is not A-secured in 

<R. Note the flip-flop effect: off-and-on the term appears and disappears as 

n-redex. 
• 

EXAMPLE. (ii) A more subtle example of a secured but not A-secured reduction 

is given in 6.4; there the A-redex stays an n-redex 1 but looses again and 

again its quality as residual. 

6.3. THEOREM. Let a be a reduction path in G(M), the reduction graph of M. 

Then: 

is A-secured ==·= a is cofinal. 

PROOF. Analogous to the proof of Theorem I.12.3 for the $-case, now using 

the Parallel Moves Lemma 3.7 for A-residuals. 0 

Even though the PM Lemma fails for ordinary residuals, one could hope 

to prove the stronger theorem ''secured ' , cofinal '' in a different way. But 

also here residuals behave badly: we will now give an example of a secured 

but not cofinal reduction. It is similar to the countere~ample 2.3.1 to the 

PM lemma, but iterated by means of a fixed point construction. 
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• 

6.4. EXAMPLE of a secured but not cofinal reduction. 

Let D = Axy.xx(Az.y(yz)) and E = DD. 

i = Aab.ab (Church's numeral.) 

Now consider the infinite S-reduction a: 

Ei = E(Aa.Ab.ab) 

I 
• 

right 

l 
V 

E[ Az. ( Aa. Ab. ab) (Ab. zb) ] 
left Aa 

• 

I s 
• 

J! 
E [ A z • Ab • ( Ab ' • zb ' ) b J 11.b' 

/3 
I 
• 

,J, 
E[Az.Ab.zb] --- etc. 

s 

The intuition behind this example is the same as for the counterex

ample to the PM lemmai only, here it is arranged so that we get an infinite 

reduction (which is necessary if one wants a non:-cofinal reduction; a 

finite, maximal reduction is cofinal by CR.) The crucial step is B, de-

straying then-residual Ab.(A.b'.zb 1 )b of Ab.ab. The 

a is not A-secured. 

- -• • trace shows that 

is easily checked 

For, 1 = A.a.Ab.ab 

that ct is secured. However, a is not cofinal in 

n 
EI 

Aa.a = I, and now consider Ei EI. We 
11 

claim that no Sn-reduct of contains 1 as subterm. From this claim it 

follows that a cannot be cofinal in G(E1), because 1 
• 

keeps occurring in a. 

PROOF of the claim. The proof consists of an application of the standardi

zation theorem for Sn-reductions, and an amusing ad hoc argument. 

Abbreviations: (i) AoB = Az.A(Bz) 

(ii) E(O) = E 

E ( n+ 1 ) = A y • E ( n) (yo y) 

( So E _...,,. E ( 1 ) . , . ~ E ( 2 ) --+ ) 
B> B n> ••• 
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(iii) I[O] = I 
I[n+l] = I[n] o I[nJ_ 

Now suppose EI Sn» c[1J, for some context~[ ]. By the Standardiza

tion theorem, we may suppose that this reduction is standard. Hence it 

proceeds as follows: 

EI ' >> 
B 

• ➔> s --➔> c[1J, 
Sn 

h d · ff ( · ) (n) where t e latter re uction » does not a ect operate in E , 
Sn 

cause the whole reduction is standard; and because E(n) contains no 

subterm (as can easily be checked), we can write 

So we must have Sn ➔> c'[tJ. 

This is however impossible. To show this, we need first a 

DEFINITION.Mis simple iff 

~ M FV(N) has at most one element. 

Now 1 = Azx.zx is not simple, whereas for all m, I[m] is simple. 

be-

1 as 

Further it is a matter of routine to prove that the set of simp:be terms is 

closed under Sn-reductions. 

Hence (*) is impossible. This proves the claim. 0 

6.4.1. REMARK .. The use of the Standardization theorem is not essential here; 

it could be replaced by 'Postponement of n-reductions' (Lemmn. 4.13.1) and 
• 

Standardization for AB. 

6.5. KNUTH-GROSS-REDUCTIONS IN A8n-CALCULUS? 

While the definition of Knuth-Gross reduction in AS-calculus (in I.12) 

is perfectly natural, it is no longer so in ASn-calculus. For consider the 

following naive definition: 

''Let <R = M ,... M ) M be a reduction such that q I ' ••• 0 1 n 
(i) • step a residual (in the usual sense) of f3-or n-redex • in every a in 

• contracted, and J..S 

(ii) <R is maximal with this property, i.e. M contains no residual of a n 

MO 

• 

• 

• 
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redex R in M
0

• 

Then we say M --~ 
G/3n 

N, in words: 

N is the Knuth-Gross reduct of M .. '' 

However, N is not uniquely determined now. Example: 

~ 1 = AX.(Ay.ay)x "-y ► AX • ax AX 
11 11 

a 

~
2 

= AX.(Xy.ay)x 
11.y 

_...._,_, -+-> Ax.ax. 
n 

• 

Both 011 ,01.2 are complete Sn-developments of the total set of redexes of 

AX. ( >.y. ay) x. 

It is possible, using Sn-terms (see 5.05), to define Knuth-Gross-re-
.. r,.• 

duction for ABn-calculus with the required properties. But the definition 

is not entirely straightforward; it is not immediately clear what, in that 

treatment, the 'total set of redexes of Mo' (= 'total Sn-underlining of 

MO) is. This is worked out in BARENDREGT, BERGSTRA, KLOP, VOLKEN [76] 

Chapter II. 

Turning to A-residuals does not help here, since FD fails for them, 

as shown in 2.4.1. (iv). 

Therefore we will not consider Knuth-Gross-reductions in A8n-calculus 

here. We will however consider an alternative concept, which might be just 

as useful. 

6.5.1. DEFINITION. 

(i) M N iff N • the Knuth-Gross reduct (w. r. t. ;\$) of M. 
GB 

1S 

(ii) M N iff N • the n-normal form of M. 
G 

1S 

·n • 

(iii) M N iff 3L M L N. 
Gf3n GS G 

n 

REMARK. In (ii), N is uniquely determined, by CR for n-reductions. 

Now we will prove the following theorem; before giving the proof an 

immediate Corollary is mentioned. 

6.5.2. THEOREM. Let~ be an infinite Sn-reduction in which infinitely many 

G - •steps• occur and infinitely man!J 

f3 Then tR is cof inal. 

·c; -➔ - 'steps'. 
n· 



6.5.3. COROLLARY. (i} Let (R = MO 

Then IR is cofinal. 

(ii) Quasi-GBn reductions, 

steps occur, are cofinal .. 

• :r. • e. 
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..... 

reductions in which infinitely many Gen-
• 

PROOF of theorem 6.5.2. Let a:?. be as in the theorem. Note that replacing an 

initial segment of~ by an arbitrary reduction, yields a similar reduction. 

(*) 

Let R c M be a 8- or 
- 0 n-redex. We claim that R is absorbed in~ (see 

def. 5.11, or the figure.) 

M R 

s 

M S S B 

M 
n+k 

• 
• 
• 
• 

• 

CASE 1. Risa 8-redex. Let M M k = M 0 > M l a ••• 0 > M k 
n Gs n+ n µ n+ µ µ n+ 

be the first G
8
-•step' in~- Then ~

1 
= {R}/M

0 
) ... ➔ Mn is a complete 

8-development, by Propositions 5.1 and 5.3.(i); and it is a well-known fact 

~1/Mn G Mn+k = ~- · 
(For a p;!3oof of this fact see BARENDREGT, BERGSTRA, KLOP, VOLKEN [76]., 

Chapter II.) 

CASE 2. R is an n-rede.x. Replace B by n in the figure above. Now 

because Mn+k is an n-normal form by definition of 

This proves the claim. 

tR = 
2 

The remainder of the proof follows from(*) and is similar to the 

proof of Theorem I.12.3. 

□ 

• 

• 
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LIST OF NarATIONS 

The list of notations is divided in 

(2) No .. , 

(2.1) 

(2.2) 

(2.3) 

(2 .. 4) 

(2.5 

(2.6) 

(2.7) 

(2.8) 

(2 .. 9) 

..,,v n.6 c.o n.c.ettnlng te.tun6 

VaMablu and mexa.vaJL.la.ble1> 

Co n.ot:an:t6 
Fflequ.en:tty 

Symbou 

o c.c.UJVtlng c.o n1.> .ta.nt.6 

TeJtmo 

F 1e.equ.e.n;tty oc.c.UJVtln.g .teJtm& 

Con.-text:.6 

Su.b.tVtm6 

Rede.xu 

La.be.lo 

T!teU 

• 

{2.10) 'Notun-0' 

( 3) No_........., :.o.u c.o_nc.e.,:,i,n}.n~_ ·ne.~~ · _, .. , · M .. 

(3 .1) Red""-'-' . OM 

Re.du....-- .....,n aJVLaw.o 

( 3 • 2) R educ..tlo n .o y.ot emo 
IL ~ e.d .to ).. and CL 

1tda:t.ed .to CRS • -6 

ARS 

CL 

CP, CP' 

CR 
+ CR 

CRS 

DL, DL 1 
, DL '' 

DP 

DR 

, 
On.6 

Abstract Reduction Systems 

Combinatory Logic 

Cofinality property 

Church-Ros·ser property ( or TneoremI 

strong version of CR 

Combinatory Reduction Systems 

Decreasing labels (and versions) 

Disjointness property 

Decreasing redexes 

44 

11 

51 

45,150 

63,68,163,225, 

251 

120 

177 

38 

180 



FB 

FD 

f.p. 

Inc 

Ind 

NE 

NF 

n.f. 

PM 

pp Q 
Ci, I I,) 

RPS 

SN 

TRS 

UN 

iiCR 
+ WCR 

WCR
1 

~1 
WCR 

$1 
WCR 

WCR 
n,m 

WF 

WIN 

WN 

Finitely branching 

(Theorem of) Finite Developments 

finitely presented 

Increasing 

Inductive 

Non-erasing 

Normal Form property 
-Set of noxmal forms 

normal form 

(Lemma of) Parallel Moves 

Postponement of B-steps after a-steps 

Recursive Program Schemes 

Strong NOL'Inalization 

Term Rewriting System 

Unicity of Normal fo.t1ns 

Weak Church-Rosser property 

strong version of WCR 

restricted variant of WCR 

restricted variant of WCR 

Subco1·a1nutati ve 

restricted variant of WCR 

Well-foundedness property 

Weak Inner-most Nor:rna lization 

Weak No~malization 

Weak Normalization w.r.t. JI 

( 2) No . , Of!!, co_n~Vi~;l,-· 1',ViJrl!, 
( 2 • 1 ) VaJUa.b.tu and me:t.a. vaJU..a.bf. u 

v.,a,b,c, ••• ,x,y,z 
J. 

Var 

A,B,C, ••• ,M,N, ••• , 

X,Y,Z 

Zn 
• 

J. 

Mvar 

[x] 

FV(M) 

variables 

set of variables 

(informal) metavariaoles, ranging 

over set of ter 111s 

formal metavariables 

set of metavariables 

abstraction of variable x 

set of occurrences of free variables of 

M 

305 

52 

30,32,37,38,144 

165 

52 

52 

164,170 

47 

6 

6,46 

69,163,254,262 

45 

11 

6,46 

121,131,133 

46 

45 

142 

169 

169 

45 

47 

52 

172 

6,46 

178 

1 

1,121 

1 

121 

121 

121 

164 

• 

• 
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[x := N] 

( 2. 2) Co rt6 ✓tanu 

A,B,C,V, ••• ,P,P. I 
J. 

Q,R,S 

substitution of N for x 

vary over meta-te:r111s 

constants 

2 

123 

1 

F!Le.qu.e.nfty OCCt..u '".,,.·_ g C.0 YL-6tan:t6 : 

P. 
,{, 

T,K,S 
p 

[,] 

~ 
R 

J 
() ,s 

V 

Vh,Vk,Vs 
(V,V

0
,V

1
) 

E 

constants in definable extensions of A 9,10 

basic combinators in CL 12 

pairing constant 79 

pairing operation 77,79,151 

constants in CRS's 121 

recursor 126 

iterator 130 

zero, successor 126,130 

Church's a-rules 

used for non-left-linear rules 

versions of non-left-linear constants 

(Surjective) Pairing 

inert constant 

131,132 

197 

197 

127,130,195 

if .• then •• else •• branching operation 

198 

131,197,210,248 

172 B 

8,8(-,-,-) 

A * 
Q* 
* H 

* 

(2.3} Symbol-6 

s € M 

SYJrlh (M) 

s,t 

s -.-.➔ t 

s < t 

[ J 

Bar recursion operator 

branching operation 

head-A of frozen redex 

head-constant of frozen redex 

H with marked head-constant 

marker denoting frozen redex 

1 s occurs in ter 111 M 

set of syrribols occurring in M 

vary over sy1nbol occurrences 

descendant relation for S7II.i~ 

sis to the left oft 

abstraction brackets 

ls· 

209,248 

84 

151 

151 

264 

3 

18 

19 

19 

88,113,264 

121 



(2.4) TeJ'lm6 

Ter (A) , Ter (AI) 

Ter (E) 

Mter(:E) 

➔ 

MN 

~ 
MI 

oo (M) 

CR(M) 

Fnequenil.y oc.c 

y 

YT 

w 

I 

K 

KM 

<M> 

<M,N> 
• 

{2. 5) 

ct[ J 

ct[M] 

Cont ex.tl:, 

a 

«:[, ••• ' J 
«:h[ , ••• , J 

(2.6) Sub.tetun6 

H C B' -
M N 

M:: N 

M C N -cr 

M E[, JN 

M E,e_ N 

MC N -e 

set of A-ter1ns., AI-terms 

set of :E-terms 

set of meta-terms of 

MN ••• N (n times N) 
➔ 

MN1 ••• N (for N = N
1 
••• N} 

➔ m m 
[M,N] 

term M plus labeling I 

M has an infinite reduction 

M is CR • 

Curry's fixed point combinator 

Turing's fixed point combinator 

AX.XX 

WW 

11.x.x 

)i.xy .x 

Ay .M (ytFV (M) ) 

AX.xM (x¢FV(M}) 

Ax.xr1N (x,FV (MN)) 

context having one 'hole' □ 

result of substituting Min □ 

trivial context 

n-ary context (i.e. having n holes) 

the head-context of a texm 

Mis a subterm of N 

His a submetaterm of H' 

M is a proper sunterm of N 

(i.e. Mc N & M ~ NJ -
syntactical equality 

M occurs at place • 
~ in N 

M E Sub[,](NJ 

M • a left subterm of N l.S 

M 
~ an exterior subtexm of N l.S 

1 

121 

123 

106 

1 

151 

18 

107 

233 

7 

7 

6 

6 

6 

6 

107 

200 

9 

3 

3 

2 

213,240 

213 

3 

182 

213 

4 

128 

176 

182 

186 
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MC N 
-i 

H1 <; H2 

Sub (r.1) 

Sub[ I] (M) 

s1 -.-.+ s2 

s1 < s2 

Me: G8 (N) 

(2. 7) Redexu 

R,R',R
1

, ••• ,S 

R 

Arg(R) 

IR, JR (M) 

lmc (lR) 

lmcS (<R) 

p {H) 

R -.-.+ R' 

>-
# 

(I) 

a x H 

A (ac:N) 
Ct -

Ind {dt) 

( 2 .. 9) TJr..e.U 

t (M) 

1" (M) , 1" I (M) 

Mis an interior subteim of N 

a
1 

interferes with H2 
set of subterm occurrences in M 

set of memorized subterms of M 

descendant relation for subter111s 

the headsymbol of s1 is to the left of 

that of s2 
Mis a subterm of a $-reduct of N 

redexes 

contraction of redex R 

argument of redex R 

set of redex occ,1rrences ( in M) 

leftmost contracted redex in~ 

leftmost contracted B-redex in~ 

r-redex, if r = H + H' and pis some 

valuation 

descendant relation for redexes 

(R' is a residual of R) 

R' is created by the contraction of R 

tel:Ill M plus labeling I 

multiset of ordinals 

labeled reduction MI + ..... 

well-ordering of multisets 

ordinal labeling 

concatenation of all labels in I 

(degree of redex p(HI)) 

Hin which every subtezm has label a 

labeled A in Sn-diagram 

union of labels of A's contracted in 

tex.m f or1nation tree of M 

alternative term formation trees of M 

(not to be confused with the -r-(or T'-} 

translation of M) 

186 

130 

18 

176 

19 

113 
• 

213 

4, 252 

4 

59 

66, 1 79 

85, 265 

278 

126 

180 

180 

18 

63 

99 

178 

180 

183 

183 

257 

260 

78 

123 I 184 
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BT·(M) 

C 2 • 1 o ) ' N o/tm.6 ' 

IM f 

ll Mil 

l(M} 

I iR I 
lrl 

!MID 
II Mil D 
d(H) 

II iRII 

Bohm Tree of M 

---

weight of ME Ter(E ) 
-w 

ordinal assigned to M 

length of M 

multiset assigned to M 

length of M 
• 

total n11mber of syn>bols 

total n11mher of syrubols 

max. length of V-chains 

V-norm of M 

depth of H 

• in 
• r l.n 

• M in 

216 

34 

177 

203 

178 

179 

203 

203 

233 

233 

238 

282 

< 3) No · ' . YL6 c.o nc.elt~!lfI- Jte.du ...,,.· 

( 3 • 1 ) Reduc;t,i.o n.6 

cR 

cR cR 
s' st 

p (tR) 

tRl "'L lR2 

cRl ,.., tR2 

cR
1 

RS tR
2 

,..., ,.., ,..., 
s' S 1 R' 

RED(M) 
B 

reduction (i .. e. finite or infinite 

sequence of reduction steps) 

empty reduction 

reduction diagram 

reduction diagram dete:rr11i ned by 

cR1 ,cR2 

concatenation of (appropriate) reduc-

tions 

projection of tR
1 

by cR
2 

4 

61 

58 

63 

69 

69 

reduction consisting of the contraction 69 

of redex R 

standard reduction for tR 
. 

cR/{lmc(tR)} 

are L~vy-equivalent 

as, 265 

85, 265 

89 

have the s-ame first and last tt!:rm 93 

are pern1utation equivalent 

other equivalences between reductions 

s·et of finite reductions starting 

with. M 

93 

93,94 

92 
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IRI 

f (A/\/\A/\A) 

cR (n) 

n 
(IR) 

(IR) 
n 

Red(}:) 

r 

G(a) 

G8 cM> 

Gr (M) 

GS (M) 

Reduet.i..on aJUz.ow.6 

- -- -- ,-a 

--s 
»· 

---- .. - ) 

R 
I F b SI ) 

CL 
-- • ., r r , .._ - . ...,, . ...., ¥--~"-' 
~ --11 •, 7 .4 4.-1, -"" --r 

T 1 T 1 

T (M) , TI (M} 

- - + • • 

'meta-reduction' of reductions 93, 190 

{6-l• /6-l• I ' J?> <R} 107 

labeled reduction 
I 

99 M + • • • 

conversion 102,203,232 

n-th term in 

initial segment (of length n) 

tR-n 
(~) 

set of reduction rules of E 

reduction rule 

labeled versions of r 

underlined version of r 

r plus memory 

converse of r 

reduction graph of a 

S-reduction graph of M 

E-reduction graph of M 

of IR 

condensed $-reduction graph of M 

et-reduction 

syntactical equality 

$-reduction 

8-convertibility 

transitive reflexive 

reflexive closure of 

contraction of redex 

closre 

R 

reduction in CL 

translation from to CL 

of 

T-, T'-normal form of M (i.e. 

T-, T'-translation of M) 

113 

113 

113 

120 

126 

138 

139 

154 

203 

50,115 

115 

162 

213 

3 

3, 4 

3 

4 

4, 

44 

4 

13 

13 

13 

44 

• 

descendant relation 19,139,180 

labeled $-reduction 19 

underlined 8-reduction 23 

Hyland-Wadsworth labeled $-reduction 24 

Levy-labeled 8-reduction 28 

n-ary $-reduction ( 'fast' 8:--reductionl 3 7 



-1 
a 

or 

---➔ ----.>> , 

----

k 
K (M) 

KG 

---➔ • 1.m. 

h 
-----➔ 

der 

n 

n 

Sn 

, 

shift 

. ; 
n 

converse of 
Ct 

in a diagram: existential meaning 

empty step in a diagram 

k-reduction ('forgetful' reduction) 

k-normal fOLlU of M 

shift reduction 

meta-reduction 

leftmost reduction 

Knuth-Gross reduction 

creation of redexes 

innezmost reduction 

M,N have a common reduct 

head reduction 

derivation 

reductions in CL□ 

n-reduction 

Sn-reduction 

44 

45 

61 

79,153 

79,176 

79,152,154 

93,190 

113,204 

117 

180 

180 

198 

213 

213 

241,242 

249 

249 

propagation of reduction steps in a 257 

diagram 

Knuth-Gross reductions • ;>,.f3n 
GB 

I G 
, in 

Gsn n 

(3.2) Red Yl .& y;.,.tem.6 

A, B Abstract Reduction Systems 

Ac B A is a substructure of B -
~i...4A~ed .to :\ a.n.d CL 

A 1 AB A- (or AB-) calculus 

AI 

AP 

CL 

AA 
11., AB 
AP 

AHW 

AL 

AT 
11.L,P 

AI-calculus 

definable extension of A 

Combinatory Logic 

indexed (or labeled) A-calculus 

underlined A-calculus 

underlined AP-calculus 

Byland-Wadsworth A-calculus 

Levy's A-calculus 

typed A-calculus 

restricted AL 

296 

44 

50 

5 

5 

10 

11 

18 

23 

23 

24 

27 

27 

29 

• 
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Ji.B 
m 

Ji.B 
m 

Ji.IP 

A[, J 

AI[,] 
CLT 

CL□ 

An, Ji.Sn 

ABn 
............. e.d :to CRS ' s 

I= p 

!:1 C E2 -
!:1 E2 

!:A 

I:f 

rf 

!:fS 

r[,J 
E' [ , J 
T 

/J.. (i = k,s,h) 
l.. 

IJ.~ 2 ) (i = k,s,h) 
l.. 

fast AB-calculus 

underlined version of AB 
m 

definable extension of AI 

A-calculus plus pairing 

AI-calculus plus pairing 

typed er .. 

CL plus black boxes 

:>i.n- (or ABn-} calculus 

double underlined version of ABn 
• 

E has the property P 

(P is true in :E} 

underlined version of E 

E plus underlining and weights 

Combinatory Reduction System 

El is a substructure of r
2 

direct s1.1m of CRS' s I:1,1:2 

labeled version of!: 

I: where substitution • 'frozen' l.S 

• version of I in function • notation 

I:f plus fast 8-reduction 

E plus memory 
• 

variant of t[,J 
Godel 's T 

non-left-linear CRS's 

binary versions of~. (i = k,s,h) 
l. 

37 

38 

72 

79 

81 

172 

241 

250 

283 

25 

32,139 

33 

120 

121 

134 

138 

142 

240 

142 

151 

175 

179 

233 

239 
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Absorbed 291 closed 

absorption 251 diagram 164 

Abstract Reduction System (ARS) 44 meta-ter1n 123 

abstraction (A-) 1 rule 166 

abstractor 3 term 2 

adequate labeling 99 under projections 168, 281 

alphabet of CRS 121 under reduction, substitution 224 

a-conversion 3 cofinal 51, 293 

ancestor 19, 139 cofinality property (CP) 51 

anti standard pair 96, 190 coincidence 251 

a-reduction 3 color degree 39 

application 1, 121 colors 39 

a~gumP.nt 5 Combinatorial Completeness (CC) 

ar i ty 10 , 12 0 , 12 1 7 , 16 , 2 4 7 

associate 160 combinators 11 

association to the left 1 Combinatory Logic (CL} 11 

Combinatory Reduction Systems (CRS) 
Bar recursion operator 172 

bar recursive terms 172 

BA-reduction 19 

B -reduction 24 
HW 

BL-reduction 28 

B-norrnal 288 

branching operation 197, 209, 246 

B-redex 3 

S-reduction 3 

black box 240 

Bohm tree 216 

119, 120, 121 

comm11 tes 4 5 

commutes weakly 44 

complete development (c. dev.) 

66, 140, 252 

concatenation 69 

condensed reduction graph 213, 215 

confluent 46 

conservative extension 50, 220 

consistent 50 

constants 1, 126 

313 

bound 2 
. L bounded predicate P (for A) 29 

construction of reduction diagrams 58 

context 2 

Church-Rosser property 45 

Church-Rosser Theorem 57, 68, 150, 

"163,.224, 225, 251 

Church-Rosser, weakly (WCR} 45 

contracted in~ 84 

contraction 4 

contractum 4 

contraction scheme 126, 131, 132 



314 

convertibility 4 

conversion 102, 203 

( a.-) 3 

creation of redexes 25, 140 

creator redex 188, 191 

curry's fixed point combinator (Y) 

V-chain 233 

decreasing labeling (DL) 177 

decreasing redex labeling (DR) 180 

definable extensions 9 

definable extension of AI 72 

definition by cases 130 

degree 180, 185 

of BHW-redex 24 

of SL-redex 28 

a-rules of Church 131, 132 

depth 238 

derived ter111S 213 

descendant 19, 139 
• 

developments 

complete 66 

fast 37 

Finite 30, 37, 39, 163, 256 

in CRS 140 

in A, AP 23 

diminishing 239 

direct sum$ 134 

V-no1:1n 233 

V-preredex 233 

Elementary diagram {e.d.) 59 

empty step 59 

equivalence of reductions 89, 93 

erasing step 107 

erasure 72, 251 

expansion 274 

extension 50 

external label 186 

external subter1n 186 

Fast development 38 

7Finite Developments 30, 37, 39, 163, 256 

finitely branching (FB) 52 

finitely presented (f.p.) 165 

fixed points 7 

fixed point combinator 

Curry's 7 

Turing's 7 

with parameters 8 

Fixed Point Theorem 7, 224 

multiple 9 

flat combinator 12 

forgetful reduction rule 153 

formation tree 78 

t(M) 78 

T(M) 123 

T' (M) 184 

free variables 2 

frozen 91, 152 

function notation 122, 240 

function part 5 

FV(M) 2 

·FV(M) 164 

God.el ' s T 7 5 , 1 79 

good 34 

graph, reduction - 50 

Head normal form (h.n.f.) 213 

head reduction 16, 213 

height of Levy-label 29 

Hindley-Rosen 

homomorphisms 

Lemma 47 
L from)._ 29 

• 

• 
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Increasing (Inc) 52 

index(ing) 18 

induced concept of descendant 22 

inductive (Ind) 52 

inert 10 

infinite texm 107 

initial labeling 19, 138 

innermost redex 76 

inside-out reduction 88 

interdefinabilities 200 

interference 129, 130 

internal label 186 

internal labeling 140, 141 

internal subterm 186 

Iterator {]) 130, 179 

k-expansion 153 

k-normal form 79 

Knuth-Gross reduction 117, 295 

k-reduction 79 

labeling 18 

adequate 99 

initial 138 

strongly adequate 108 

labeled B-reduction 18 

labeled CRS 13 7 

labels 18 

Hyland-Wadsworth {HW) 24 

Levy- 27, 182 

multiple 24 

left-linear 119, 126 

left.most redex 16, 113 

left-normal 189 

Levy-equivalent 89 

leftmost contracted redex 

(lmc) 85, 265 

L~vy' s- ).-calculus (AL} 27 

L-labeled CRS 183 

lmc(tR) 85, 265 

A-abstraction 1 

A(a)-reductions 131, 132, 133, 136 

A-(or AS-) calculus 5 

A-(or AB-) calculus 23 

AII-calculus 215 

AI-terms 1 

AL-calculus 27 

:>i.-:-path 257, 258 

AP-calculus 10 

AP-calculus 23 

:\.-residuals 254 

A-secured 290 

A-standard 264 
T 

A -calculus 27 

Marker* 84 

memory part 151 

meta-metavariables 123 

meta-reduction 96, 190 

meta-terms 123 

metavariables 12, 120 

multiple fixed point theorem 9 

multiplicity 33 

multiset 63 

Nederpelt's Lemma 52 

Newman's Lennna 47 

noetherian 46 • 

non-ambiguous 119, 130 

non-erasing 164, 170 

normal forn1 (n. f.) 6 

normal form property (NF) 220, 228 

no~mal redex 113, 279 

norx·11al reduction 113, 280 

Normalization Theorem 114, 194, 290 

no:r:malizing 
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weakly 6, 46 

strongly 6, 46 

Pairing 130 

S1J.rjective 127, 133, 195 

Parallel Moves Lemma (PM) 69, 163 

for Af3n 254, 262 

pe.:r:·mutation equivalence 96 

P.-redexes 10 
J. 

Postponement of S after a(PP 0 l 45 a,µ 
P-norm.al form 78 

Postponement of n-reductions 278 

projection 69 

Proof Theory 127, 133 

propagation 61, 257 

proper indexing 182 

proper rule 21 

Quasi-Knuth-Gross reduction 118 

quasi-no.:r:mal reduction 113 

Quasi-normalization Theorem (ASnl 

293 

Recursive Program Schemes (RPS) 

11, 133 

recursor (R) 75, 122, 126, 133 

redex 

f3- 3 

contracted in~ 84 

creation of 25 

frozen 91 

head 213 

1-, K-, S- 12 

leftmost 113 

no:rmal 113 

P - 10 • 
.1. 

safe 14 

secured 114 

reduction 

a- 3 

B- 3 

B- 23 

SA- 19 

B - 24 
HW 

SL - 28 

equivalence of 89 

eventually leftmost 113 

head 16 

inside-out 88 

k- 79 

Knuth-Gross 117 

labeled B- 18 

leftmost 16 

maximal 113 

normal 113 

quasi-normal 113 

secured 115 

special 108 

standard 84 

reduction by cases 224, 225 

reduction diagram 58 

reduction graph 50 

reduction relation 126 

reduction rule 120, 126 

regular 129, 131, 133, 

replacement system 44 

residuals 19, 139 

for ABn 252 

A- 254 

Safe S-redex 4 

safe 

redex 14 

reduction 14 

secured 



redex 114, 290 

reduction 115, 290 

shift normal fo1:1n 154 

shift rule 152 

simultaneous substitution 5 

singleton redex 182 

special 203 

special reduction 108 

standard reduction 84, 190, 264 

standardization diagram 85 

Standardization Theorem 87, 90, 

103, 193, 276 

strongly normalizing (SN) 6 

subcornmutative (WCR~1 ) 45 

Sub(M) 18 

Sub[,J(M) 176 

submetate:r.:m 182 

substitution operator 2 

substructure 50 

subte:r:m 3 

subword 34 

trivial e.d. 62 

trivial step 59 

Turing's fixed point combinator {YT) 

7 

typed A-calculus 27 

tracing subterms 18, 257 

Underlined reduction system 32 

Underlining 22 

reduced 23 

101 ,unicity of no1:mal forms (UN) 46, 

231, 220 

Variables 1 

Valuation 125 

Weak Inne1:most Normalization 

(WIN) 172 

weakly Church-Rosser (WCR) 45 

weakly normalizing (WN) 6 

weakly nor1nalizing w.r. t. I I 
177 

Surjective Pairing (SP) 127, 133, 

195 

(WNl l) 
weight 33 

syntactical accident 92 

syntactical equality 4 

Te.tm formation tree t(M) 78 

T(M) 123 

T 1 (M) 184 

Term Rewriting Systems (TRS) 121, 131, 

133 

''too close together'' 253 

tracing in diagrams 258 

tracing subterxns 18, 257 

transfinite induction 62 

translation T, T' 13 

tree 78, 184, 123, 216 

trivial context 3 · 
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