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I. INTRODUCTION AND PRELIMINARY REMARKS

I.1. Introduction and scope of the monograph

This monograph deals with techniques for the solution of nonlinear
programming problems, i.e., problems in which an objective function is to
be minimized subject to some constraints, where at least one of the deci-
sion variables appears in a nonlinear way in the objective function or in
one or more of the constraints. (

Hence we shall consider the following problem:

minimize F(x)

(1.1) subject to
c. (x) {2}0 i=1, ..., m
i =

where x € P , n—-dimensional Euclidian space. The problem functions
F(x) and ci(x), i=1,2,...,m are mappings En to El.
Special cases of this general problem formulation are unconstrained non—
linear programming problems (when the constraint functions c, (x) in (1.1)are
absent) and linearly constrained nonlinear programming problems (all
ci(x) are linear functions of xl, ceey xn)°
Both these special cases of the general problem formulation (1.1) will
play an important role in the solution techniques to be discussed.
Our basic approach will be to look for solution procedures which reduce
the solution of problem (1.1) to the solution of a sequence of simpler
nonlinear programming problems, such as the unconstrained or the linearly
constrained problems mentioned above.
The development of techniques which apply ‘unconstrained auxiliarly problems
to solve the constrained problem (1.1) goeé back to Courant (1943). He
suggested to study the relations between the solutions of a purely equality
constrained version of problem (1.1) and the solutions of the unconstrained

problems

(1.2) minimize F(x) + rk

2
I ci(x)
i=

1
for a sequence of positive parameters r, such that {rk} >,
Later Frisch (1954, 1955) and Carroll (1961) applied similar techniques.

Fiacco and Mc Cormick performed a thorough analysis resulting in the class



of Sequential Unconstrained Minimization Techniques (SUMT). See e.g.,
Fiacco and Mc Cormick (1963, 1964 a, b, 1966, 1968).

They use the auxiliary problem (1.2) to develop an exterior point

penalty function technique in which a solution x* of the original problem
(1.1) is approached from the outside of the feasible region. The penalty

m
term r Zi_ ci(x) is intended to penalize constraint violations. These ex-

teriorkpoiit techniques should be distinguished from the Znterior point
penalty function techniques (also known as barrier function techniques) in
which a solution is approached from the inside of the feasible region. A
hybrid approach evolves from treating some of the constraints by means of
an exterior point loss term while a barrier function is applied to the
other constraints: mixed interior point—exterior point penalty function
techniques.

Lootsma investigated the boundary properties of the resulting solution
techniques in Lootsma (1970), starting from a classification of penalty
and barrier functions. The resulting continuity properties - in terms of the
penalty parameter - of the trajectory of penalty function minima provides

a sound theoretical basis for the application of extrapolation techniques
to accelerate the convergence to the optimum.

Some further developments were reported in Ryan (1971, 1974), who gave the

following definition for transformation methods:

Definition. A transformation method is a method which solves problem (1.1)

by transforming the constrained minimization problem into one or more

unconstrained minimization problems.

Obviously penalty function techniques belong to the class of
transformation methods thus defined. The development of transformation
methods stimulated research in the field of unconstrained optimization,
which led to efficient algorithms such as those presented in Fletcher and
Powell (1963), and Broyden, Fletcher, Goldfarb and Shanno (see e.g., Broyden
(1970)) .

As the auxiliary unconstrained penalty functions turn out to be increasing-
ly ill conditioned if the penalty parameter increases, the solution of the
unconstrained optimization problems becomes more and more difficult. The
numerical difficulties encountered, as reported in Murray (1967) and
Lootsma (1969), stimulated further research. A way out of this difficulty

seems to be to use some kind of scaling technique to the



unconstrained problems. For instance the algorithms presented in Fletcher
(1970a) Oren and Luenberger (1974) or Shanno and Phua (1978a) could be
applied. These proposals will be discussed in more detail in chapter II.
An alternative way is to prevent the occurrence of ill conditioned
problems by the introduction of auxiliary problems which do not suffer from
this complication. This approach is followed by means of the so-called
augmented Lagfangian functions, see e.g., Rockafellar (1974), Fletcher
(1969) and Powell (1969Db).
Another proposal in the same category is to use quadratic linearly con-
strained auxiliary problems. It can be found in Murray (1969), Biggs (1972,
1978) , Han (1977, 1979) and Péwell (1977a, 1978). Chapter III deals with
properties - of such a Recursive Quadratic Programming algorithm, which
directly applies the results of chapter II.

However, these last mentioned algorithms are no longer transformation
methods, as they involve constrained auxiliary problems. That is why we
introduce a natural extension of the class of transformation methods in the

.

following definition.

Definition. A reduction method is a method which solves problem (1.1) by
reducing this optimization problem into one or more 'simpler' optimi-
zation problems, where 'simpler' means a decrease in the degree of
nonlinearity of the problem functions and/or a decrease in the number

of constraints.

Examples of reduction methods are: all transformation methods and all other
approximation methods that apply successive linearizations and/or quadratic
approximations to solve problem (1.1), e.g., Kelley's cutting plane method
(Kelley (1960)), the method of approximation programming (Griffith and
Stewart (1967)), the method of gradient projection (Rosen (1961)), the
generalized reduced gradient methods (Abadie and Guigou (1969) and Abadie
and Haggag (1979)), the methods of feasible directions (Zoutendijk (1960)),
the SOLVER algorithm (Wilson (1963)), Robinson's algorithm (1972) and its
refinements as reported in Brauniger (1977), Best, Br&duniger, Ritter and
Robinson (1979) and Van der Hoek (1979), and, finally, the Recursive

Quadratic Programming Algorithms mentioned above.

The reduction methods to be considered in chapter IV use reduced problems



which evolve from the original problem by the linearization of the current-
ly most relevant constraints whereas a linear penalty-like term is added

to the original objective function. The numerical aspects'of the resulting
algorithms will be treated in chapter V.

The last chapter, chapter VI, concerns the design of computational
experiments to compare the reduction methods developed. A dis-

cussion of the computational results concludes this chapter.

The appendices A-E give additional information on the test functions

used and the implementations of the algorithms.



I.2. Preliminary remarks

This section concerns several basic notations and definitions. It is
devided into two parts: I.2.1. on the set of constraints and I.2.2. on

optimality conditions.

I.2.1. The set of constraints

Let us assume that the <mequality constraints of problem (l.1)are la-
belled by the indices i = 1, ..., p and the equality constraints by
i=p+l, ..., m, respectively. Then, at a current iteration point Xpr
k=1, 2, ...‘the status of a constraint ci(x) will be one of the three

following types:

passive  : c,(x) >0 ie{1,...,p}

violated : c,(x) <0 if i€ {1,...,p}
oxr

c; (x) #0 if i € {p+1,...,m}

active (binding): c;(x) =0 ie{1,...,m}

The feasible region of problem (1.1) consists of all x € E. which satisfy
ci(x) >0, i=1,...,p and ci(x) =0, i = p+l,...,m. A feasible point

x € E" is said to be a regular point of the constraints if at x the gra-
dient vectors of the active constraints are linearly independent.

In the reduction methods discussed we shall distinguish at each current
iteration point Xy k = 1,2,... between more and less relevant constraints.
The aim is to recognize as soon as possible the constraints which will be
active at the optimum x*. The currently more relevant constraints are con-
sidered to be liable to become active at x*. Hence they are considered se-
parately. Their indices constitute the so-called active set of constraints

at X denoted by I(xk) or I . These constraints will be treated as equa-

lity constraints. g
Usually such an active set contains at least the indices of the currently
binding constraints. The decision whether some passive or some violated

constraint will join this active set as well, depends on the design of the
particular reduction method. E.g., different active set strategies will be
applied in the reduction methods of chapters III and IV respectively, with

as a common goal that I(x*) will be obtained in an early stage of the



iteration process. Thus, we expect that I(xk) = I(x¥) for k 2 K, where K

is some acceptably small natural number. The design of &an active set stra-
tegy should prevent the same constraints from entering and leaving the ac-
tive set repeatedly. This phenomenon, known as 'zigzagging', can lead to

nonconvergence or even to convergence to the wrong point.

I.2.2. Optimaiity conditions

The well known necessary and/or sufficient optimality conditions for
problem (1.1) wuse a [Lagrangian function L(x,u,v), associated with pro-

blem (1.1):

P m
(1.3) L(x,u,v) = F(x) - I u,c, (x) - z v,c, (x)

. i’i .

i=1 i=p+1
mﬁm1ﬁ,i=1,.“,paMWﬁ,i=pH,.”,mam1mehmnmmm1md%—

pliers of the inequality and the equality constraints respectively.
The first- and second order optimality conditions below are of course well

known cf., for instance Fiacco and Mc Cormick (1968) or Luenberger (1973).

The first order necessary conditions or Kuhn-Tucker conditions can be de-

fined as fqllows:

Let x* be a relative minimum point for the problem (1.1) and suppose x is
a regular point for the constraints. Then there exist vectors u € Y and

v € Em—p such that

(1.4) VXL(x*,u,v) =0
(1.5) uici(x*) =0 i=1, ..., p
(1.6) ci(x*) =0 i=p+tl, ..., m
(1.7) ci(x*) >0 i=1, ..., p
(1.8) ui >0 i=1, ..., p
0
The points z = (x ,u,v) € En+m which satisfy (1.4)-(1.8) are referred to
as first order Kuhn-Tucker points of (1.1). The active set at z = (x,u,v)

will sometimes be denoted by I(z).



If a constraint ci(x) is active at the optimum x* with u, = 0 it is called
weakly active or degemerate as opposed to strongly active constraints
which possess a positive Lagrangian multiplier.

The complementarity formulated in (1.5) will be referred to as strict
complementary slackness if (1.5) holds and at least one of its factors is
positive. Strict complementarity for all i means that there are no weakly
active inequaiity constraints at x*. The Lagrangian multipliers are unique-
ly determined if at a regular point x* the equations (1.4)-(1.6) are satis-
fied with strict complementary slackness in (1.5).

The second order conditions are an extension of the first order necessary
conditions in which the Hessian matrix of L(x,u,v) is required to be posi-
tive definite in the subspace orthogonal to the normals in x* of the
equality constraints and the strongly active inequality constraints. The

resulting second order sufficiency conditions for problem (1.1) are:

Let all problem functions be at least twice continuously differentiable.
Sufficient conditions that a regular point x* be a strict relative minimum

point of (1.1) is that there exist vectors u e EP and v ¢ E* P such that

(1.4) - (1.8) are satisfied, together with:

(1.9) VixL(x*,u,v) is positive definite in the subspace M defined by
M={yeg" | VTci(x*)y =0 Vi e I(x¥)}

where I(x*) = {i : ci(x*) = 0 and u; > 0, i=1,...,p} U {p+1,...,m}.

0
The condition (1.9) which requires VixL(x*,u,v) to be positive definite in
a subspace of E” will be applied in chapter III to generate a sequence of
positive definite matrices that approximate to VixL(x*,u,v).
Functions, such as L(x*,u,v), with positive definite Hessian matrix, will

be said to possess positive curvature.



II. A COMPUTATIONAL COMPARISON OF SELF SCALING VARIABLE METRIC ALGORITHMS

II.1. Introduction

Most algorithms for constrained or unconstrained nonlinear program-
ing have in common that along currently defined search directions a se-
quence of iteration points is generated by performing a line search. Hence
both the search direction and the unidimensional search procedure charac-
terise and distinguish these algorithms. The importance of a suitable
definition of search direction is even greater as reduction methods, espe-
cially transformation methods, solve constrained nonlinear programming
problems by solving a sequence of unconstrained nonlinear programming
problems. The latter problems are solved efficiently by performing a
linesearch along a currently defined directién of search.

Concerning the generation of search directions, well known
methods as steepest descent and Newton-Raphson have been improved in the
last two decades by conjugate direction methods (e.g., Fletcher-Reeves,
Polak-Ribiére) and quasi-Newton or variable metric methods (e.g., Davidon,
Fletcher and Powell). In the last mentioned class of methods, the sub-
class of Self Scaling Variable Metric methods (SSVM) was introduced in
Oren and Luenberger (1974) and Oren (1974a). These methods were further
developed in Oren and Spedicato (1976) and in Shanno and Phua (1978a).
These recent algorithms for unconstrained optimization focus on the
solution of badly scaled problems. This chapter describes a uniform com-
putational comparison of these algorithms. It is performed to get better
insight in their relative behaviour and to verify empirically their abil-
ity to solve badly scaled problems. Hence special attention is paid to
the effect of increasingly bad scaling, the influence of the accuracy
of the line search and of the dimension of the problem.

A further reason to design these experiments is the fact that re-
ported numerical results in literature are based on rather different
test batteries. Surprisingly, up to now experiments have not focused
on the main goal of these algorithms: their ability to handle badly

scaled problems where the spectrum of eigenvalues of the matrix R,, which

1
is a measure of the discrepancy between the current inverse Hessian
approximation and the true inverse Hessian, does not contain the unit
element.

This is why a suitable battery of testproblems will be suggested. The



description of the design of the experiments and their results are pre-
ceded by a brief presentation of the theoretical backgrounds of these
algorithms, which can be found in more detail in the aBove mentioned
references. The classical Davidon-Fletcher-Powell (DFP) and Broyden-

Fletcher-Goldfarb-Shanno (BFGS)-algorithms will be considered as well.

II.2.1. Self Scaling Variable Metric algorithms

The problem considered in this chapter is the nonlinear, uncon-

strained minimization problem
(2.1) min F(x)
b4

where x € En, the n-dimensional Euclidian space. The objective function
I'(x) is supposed to be a sufficiently differentiable convex function of

x € E.

As twice continuously differentiable convex functions F(x) can be approx-
imated in a neighbourhood of their optimum x* by the first terms of

their Taylor series expansion, we shall only consider quadratic convex
functions F(x) in the analysis and development of algorithms for uncon-
strained optimization.

Variable metric or quasi-Newton algorithms generate sequences of iteration

points x search directions Py and approximations H, of the inverse

k'’ k
Hessian matrix of F(x) at x*, on the basis of such information

as the previous step s X

k-1 = %k~ *k-1

= VF(xk) - VF(xk—l)' Furthermore let G(x) = VzF(x).

and the gradient difference vector

V-1 7 % %-1
A general, stepwise description of quasi-Newton methods is:

Step 1. Initialization: given an arbitrary starting point Xg with

go = VF(xO), a positive definite symmetric matrix HO is chosen as
first approximation of the inverse Hessian.

Go to step 2.

Step 2. At point xk, k=0,1, 2, ... define X1 as

(2.2) Bt T Fx T %%

where ak > 0 is determined by a linesearch along the direction
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(2.3) P = - Hkg

Go to step 3

k

Step 3. Stop in case certain (to be specified) termination criteria are met.
Otherwise continue with step 4

Step 4. Update Hk, put k := k + 1 and go to step 2.

For quadratic objective functions the above algorithms have in common the
so-called quasi-Newton property: Hkai =P, for i =1,...,kand k =1,...,n,
which eventually leads to Hn = G_l.

An important theorem on the global convergence (i.e., convergence

from any starting point x of quasi-Newton algorithms applied to a qua-

O)
dratic objective function originates with Luenberger:

THEOREM 2.1 (Luenberger, 1973)

For a positive definite quadratic objective function F(x) the quasi-
Newton algorithms converge to the unique optimum x* of F(x) for any
initial point Xq-
At every step the following inequality holds:

K(Rk) -1

2
) - F(x*) < {——~—-—*-‘—} (F(Xk) - F(x%))

K(Rk) + 1

where K(Rk) is the condition number {(the ratio of its largest and

its smallest eigenvalue) of the matrix Rk = G%HkG%. 0

(2.4) F(xk+1

The matrix Rk is used as a measure of the difference between Hk and
G_1 = (VZF(X*))‘l. Clearly R = I means H_= G_l.

It is obvious from theorem 2.1 that convergence is accelerated if the

K(R )-142
quotients {;Tgiyxi} , which can be viewed as 'local convergence ratios',
form a decreasing null sequence. Thus preferably lim K(Rk) = 1 should hold.
k>

The fact that this property does not generally hold for variable metric
algorithms was a motivation to search for a subclass of algorithms for

which lim K(Rk) = 1 is satisfied. Variable metric algorithms are known to
k>0
have a number of less favourable properties and this stimulated additional

research, such as in the direction of the infiuence of the accuracy of the
applied line search on the efficiency of the algorithms, the possible sin-

gularity of the matrices H,_ (Mc Cormick and Pearson (1969), Lenard (1976),

. k
and Powell (1977b)) and the sensitivity to scaling of the objective



11

function (Bard (1968)). However, the following favourable properties of

variable metric algorithms should be preserved:

(1) The matrices Hk'
HO is chosen to be positive definite.

(ii) If FP(x) is a positive definite quadratic function and H

k=1, 2, ... are positive definite, provided that

0 = In, the
algorithm is a conjugate gradient method and thus converges in at
most n-steps. -

(iii) If F(x) is a positive definite quadratic function and the algorithm
requires all n steps, then H = G_1 (follows from the quasi-Newton
property) .

The Self Scaling Variable Metric (SSVM) algorithms, presented in Oren and

Luenberger (1974), satisfy all the above mentioned requirements. The main

characteristic of these algorithms is the way in which they update the inverse

Hessian approximation in step 4 of the stepwise description given above.

The individual elements of the subclass arise form the choice of two para-

meters ¢k and Sk in the formulae (2.5) - (2.7). All these updates are

elements of Huang's family of upd§te formulae (Huang (1970), Osborne (1972)).

Essentially, the results are an extension of work of Fletcher (1970a)

who developed update formulae with guaranteed monotone convergence of the

eigenvalues of the matrices H G.

k
The update formulae for the SSVM algorithms are:

Hy yTH —
~ k'K k T x°k
(2.5) Hk+1 = {Hk ——E;———-+ ekvkvk} Y * sT
Y Yy k'k
with
HY
T L Sk Kk k
(2.6) vy (YkaYk) { sTy TH }
Kk YKk
and
STY sTg
%% _ Ik v
(2.7) Y = ——TH . ¢k) + —————TH < b
VY IV

Particular choices of the parameters ¢k’ 6. (note that Yy is determined by

k
¢k and vice versa) yield:
(i) The DFP-update where Yk = 1 and ek = 0 for all k.

(ii) The BFGS-update where‘yk = 1 and Gk = 1 for all k.
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(iii) SSVM-updates for all other combinations satisfying some restrictions

on the values of the parameters.

Note that the factor Yk is determined by the value of ¢k and the currently
available information. It will turn out to be a scaling factor of the
objective function. The terminology self scaling will be used for
algorithms using formulae (2.5) - (2.7) if for any fixed positive definite
quadratic function the parameters Gk and Yk are automatically selected such

that K(Rk+1) < K(Rk) for all k.

Before proceeding with the presentation of the theoretical background , we
illustrate the effect of scaling the objective function by an example.

We apply three algorithms to minimize

(2.8) F(x) = 30xf + 20x§

starting from xg = (1, 1).
The values of K(Rk) are calculated for the following algorithms.
Algorithm 1. DFP: Yk = 1 and ek = 0 for all k.
Algorithm 2. DFP after scaling the objective function. In this example
a scaling factor of 40 is used which transforms the eigen-
values of RO into 1 and 1%.
Algorithm 3. SSVM with ek = ¢k = 0 for all k.
The next tables contain for these algorithms the iteration matrices Hk, G

and for k = 0, 1, while A, and ), are the eigenvalues of for k = 0,1.
2 Ry

1
It will be clear from the last line of table 2.2 that the condition number
K(Hl) = K(Rl) of the inverse Hessian approximation is improved by applying

a scaling procedure.



Iteration matrices at the starting point

Table 2.1
Algorithm 1 Algorithm 2 Algorithm 3
1 1 0
H0 1 0 ) ( 0 ) ( >
0 1 0 1) 0 1
G (60 0 1% 0 60 0
. 0 40 > ( 0 1 ) ( 0 40 )
RO (60 0 1% 0 60 0 )
. 0 40 ) ( o 1 ) ( 0 40
Al 40 1 40
Az 60 1% 60
K(RO) 1% 1% 1%
K (G) 1% 1% 1%
Exact line minimization in the direction - aHOgO

(2.7) yields: table 2.2

Table 2.2

Iteration matrices after one iteration

Algorithm 1

Algorithm 2

Algorithm 3

A

K(Rl)

(
(

.17781 *-.36256
-.36256 .84077)

10.6683 21.7537
14.5025 33.6306)

43.298964

43.298964

-67923 -.02828\
(—.02828 1.06362/

1.01885 -.04242\
\-.02828 1.06362)

1.082475

1.082475

-01584 00188\
<.00188 .02773)

/.94997 .11253
\.07502 .83118)

/

.781165

1.280139

We proceed now with a brief description of the theoretical background as
found in Oren and Luenberger (1974), without presenting proofs of the

theorems. First we introduce a shortened notatioh for formulae (2.5) and

(2.6):

13

and application of (2.5) -
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T T
(2.9) 5% @|,y,s,y) = {H - H—}r’i—’-ﬂ + Bvvl } Y+ S—;——
y Hy sy
with
T H
(2.10) v = (y Hy)% {Ji— - _Ez—}
sy y Hy

In (2.9) and (2.10) the subscripts are suppressed as we are mainly interes-
ted in the change of eigenvalues after one particular iteration.

The following fundamental lemma concerns a scaled problem (with YH as
Hessian): part (i). The update formula is given as a combination of two
elementary formulae (result (ii) of the lemma, the restriction 6 e [0,1]

will turn out tobe necessary) and a duality relation is derived (part (iii)).
LEMMA 2.1

6
Let H (H,Y,s,y) be defined by (2.9) and (2.10). Then for any
symmetric non-singular matrix H, non-zero vectors s, y € E" and

scalars 0, y(# 0),

. 6 0
(i) H (H,v,s,Y) H (YyH,1,s,y)

- 0 0 1
(ii) H (H,Y,s,y) (1-6) H (H,Yv,s,y) + O0H (H,Y,s,y)

-1 -11
= HO(H :;‘IYIS) D

(iii) [al (H,v,s,y)]

As R = G%HG%, we expect similar relations to hold for the updating of R.

This is expressed in the next lemma. For simplicity in notation again the
indices k are suppressed. The indices (k+1) are replaced by an upper bar,

hence D = Dk and D = Dk+1 etc.

LEMMA 2.2

]
Let H (H,Y,s,y) be defined by (2.9), (2.10) and (2.7). Let G be a
positive definite symmetric matrix. Assume sTy > 0 and y = Gs. Then

for R = GlﬁHG;i and z>= G%s the following relation holds:

(2.11) R = B(R,Y,2,2) o

As R 1is nonsingular if y # O and H is nonsingular, lemma 2.1 applies to

Rwith z = s = y and R = H, thus yielding relations for the updating of R.
We intend to analyse the eigenvaluestructure of R = He(R,Y,z,z).

This will be carried out in two steps.

First, in theorem 2.2, relations are stated between the eigenvalues of two

general symmetric (nxn) matrices, say S and T, that satisfy
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T T
Srr S + rr

T
r Sr rr

(2.12) T=28 -

with r € En, r # 0. This means that T is obtained by adding two rank 1
matrices to the matrix S.
Second, the results obtained are extended to He(R,y,z,z).

The results of theorem 2.2 are extensions of the following lemma:
LEMMA 2.3 (interlocking eigenvalue lemma, Loewner, 1957)

Let A be a symmetric (nxn)-matrix with eigenvalues

Al < AZ <...5 An and let a € En be an arbitrary vector.

Let the matrix B be defined by B = A + aat, with eigenvalues
< ... <

My S u, LR

Then: A, < My < A, <

A direct application of this lemma to

T

(2.13) p=s-§r—;—§—,
r Sr
and
rrT
(2.14) T =P + -
rr

yields theorem 2.2:

THEOREM 2.2

Let S be a positive definite symmetric matrix with eigenvalues

0 <X SA,<...<A and letr ¢ E" be a non- zero vector. Let the

matrix T be defined by (2.12) -with eigenvalues u1 < u2 < ... n

IA
h =4

Then there are three possibilities:

. . S
(1) if Al 2 1, then ul

(ii) if A <1, theny =1and A, <y, < X < 1 for
n n i i

i=1,2,...,n-1

land 1 £ A, , £ u, < Ai for i = 2,3,...,n

(iii) 4if X, £ 1 £ A_ and the index J is such that A_ £ 1 < A_  ,then
1 n J J+1

A

.. <A
Al < u1 < 12 My < ... < AJ < uJ <1< uJ+1 < . un n

and at least one of the two eigenvalues uJ, M

IA

T+1 equals unity.

d
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In figure 2.1 we illustrate the way in which the eigenvalues (and conse-
quently the condition numbers) change in the construction of the matrix T
from P and S. The eigenvalues of the matrices T, P and S are denoted by

Ui’ ;i and Ai respectively. Then the 3 possible cases of theorem 2.2 are:

=
z
u
]
1
1
1
1
1
]
\
1
1
1
]
]
[}
]
1
1
1
\
1
]
|
\
Ay
\Q‘
\
\
\
\\§
\
\
AY
\\§
v D>
0 v

Figure 2.1

Note that in all cases the smallest eigenvalue A, of S is transformed into

the eigenvalue ¢ = 0 of P, which in turn becomes the eigenvalue U = 1 of

the final matrix T.

It will be clear from theorem 2.2, especially part (iii), that in order to

guarantee that T will have a lower condition number than S, the interval

spanned by the eigenvalues of S must contain the unit element. This obser-

vation forms the basis of the development of the SSVM algorithms.

An intermediate result relates the eigenvalues
6 8 6 =0 6
Hyo(n) o< Hy (y) £ ... < Ho (y) of R" (y) = H (R,Y,2,2)

for 6 € [0,1] to the corresponding eigenvalues for 6 = 0 and

6 = 1.

THEOREM 2.3

=) 0
Let R = H (R,Y,z,2) be given by (2.11) for some fixed positive

definite matrix R and z ¢ En, z # 0. Then, for & ¢ [0,1] and v > O,

0 6
(2.15) ui(v) Suy) < ui(v) for i = 1,2, ..., n 0
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The next theorem, which relates the eigenvalues of the matrices

R and ﬁe(y), now follows readily,

THEOREM 2.4

Let ﬁe(y) = He(R,y,z,z)be given by (2.11)for a fixed positive definite
matrix R and z ¢ En, z # 0. Let the eigenvalues of R and ﬁe(y) be
0 ¢} 6
i 1 < < < ... < .
respectively Al < Az < ... < Xn and ul(Y) < uz(y) < un(y)
Then, provided that 6 € [0,1] and y- > 0 there are three possible

cases:

]

(i) if.yAl > 1, then u?(Y)

i=2,3, ..., n.

0
<
1 and Yki—l < ui(y) < yxi for

. . ] 0
= <
(ii) if yAn < 1, then un(y) 1 and YAi < ui(y) < yxi+1 < 1 for

i=1,2, ..., n-1

J+1'

@

(iii) if yxl <1< YAn and the index J is such that YAJ <1 <y
then yxl < uf(x) < yxz < ... < ny < ug(y) <1< uJ+1(y)
< YA

6 .
J+1 vee S un(y) < YAn, and at least one of the eigen

values u_(y), u (Y) equals unity. 0

<
8
J J+1
COROLLARY 1

With ﬁe(Y), R, Ai and ug(y) as in theorem 2.4 there holds

(2.16) Iug(l) -1 s [x - 1] fori=1,2, ..., n

Proof

The result is obvious from the observation that Ai < ui(l) <1

or 1 < ug(1) < Ai for all i. 0

As a result the eigenvalues of the matrices generated successively tend
monotonically to the unit element. This is exactly the result in Fletcher

(1970a) .

COROLLARY 2

With the same notation as corollary 1 and k(.) denoting to be the
conditionnumber of a matrix, then for 6 e [0,1] and y > O there are

three cases:
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(1) if YA1 > 1, then Ykn > K(ﬁe(y)) > Ykn—l,
(i)  if yA <1, then 1/yX, =2 K(ﬁe(y)) 2 1/YA,,
(11i) if YA_ 212 yA, then B ) < k@ . 0

As we are looking for matrices Rk with decreasing gondition number, case
(iii) of corollary 2 is the most interesting one. The necessity of the
condition that 6 € [0,1] for every value of the suppressed index k follows
from a counterexample due to Fletcher (1970a5 in which both 6 < - £ and

6 2 1+ € for € ¢ (0,1) lead to a contradiction. Hence it remains to
define factors y which satisfy YAn 21 2 Ykl. As it is rather time
consuming to evaluate the eigenvalues Al and An' we are interested in
scaling factors y based on currently available information and which still
satisfy : yxn 212 Yll. Oren (1974a) introduced a convex class of scaling

factors which meet these requirements. Let H be a nonsingular symmetric

¢

nxn matrix and s,y € En with s # 0, v # 0. Then the scalar y'(H,s,y) is
defined by

6 ST ST
(2.17) vy = (-9 e

T
y HY g Hy

If H is positive definite, sTy >0 and ¢ € [0,1] then Y¢

(H,s,y) is strictly
- 8 ) .
positive. The next theorem states that y (H,s,y) as defined in (2.17)

satisfies yAn > 1 2 YA1 for all ¢ € [0,1] automatically.

THEOREM 2.5

Let s,y € En, s # 0,y # 0 with sTy > 0. The matrices H and G are
positive definite symmetric such that y =
definite matrix R is defined by R = G%HGL2
there holds

Gs while the positive

. Then for all ¢ € [0,1]

1 1
3 $Y¢(H,s,y) S !

n 1
where Al and xn are the smallest and the largest eigenvalue of R
respectively.

Proof
First we rewrite (2.17) as
T T
H .
(2.18) Vs = (-0 £ 4 g TR ging
Y Hy sy
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STH_ls sT
(2.19) T = _Eg_ for s = -aHg.
sy g Hy

As Y¢(H,s,y) is defined as a convex combination of YI(H,s,y) and
YO(H,s,y) it suffices to prove the theorem for y = 0 and vy = 1.
These proofs can be found in Oren (1974a) and,’slightly modified,
in Van der Hoek and Dijkshoorri (1979). . O

Conclusion

We found in lemma 2.1 (i) that
6 6
H (YH,1,s,y) = H (H,Y,s,Y)

I.e., scaling of the objective function by multiplying the inverse Hessian
approximation before updating by a constant £ can be implemented in SSVM
algorithms by simply choosing y = £. So y can be interpreted as a scaling
factor and varying y from iteration to i;eration has the effect of re-
scaling the objective function. .

The scaling factors defined by (2.17) can be calculated from the information
gathered in the preceding step as expressed by the vectors s,g and y and
by the matrix H. The resulting algorithm is invariant under scaling of the
objective function and/or the variables. The last remark is proved in the

next theorem.

THEOREM 2.6

Let Hk’ Xk' ek and ¢k be defined as above. Suppose that the sequences
{Hk}, {xk} and {Hk}, {ik} are generated by application of the algo-
rithm to the functions F(x) and oF (Bx) respectively (a > 0, B > 0).
For the initialisation we assume ﬁo = SHO (8§ > 0) and Bio = x4-
Both applications use the same sequences {ek} and {¢k}. Then, for a

twice continuously differentiable function F(x), we have that

mlwx

R H
Hk = —EE- and x, = for all k.
k
aB
Proof

The proof follows immediately from substitution in the update

formulae. 0
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Conclusion

The variablemetric algorithms presented above generate positive definite

matrices H the condition numbers of the corresponding Rk matrices form

!
a monotone decreasing sequence and the algorithms are self scaling, and
invariant up to scaling of the objective function- and the variables. In

the course of the iterations the matrices Hk increasingly resemble the

true inverse Hessian. This will provide a good local convergence rate even
without performing a line search (by simply taking the Newton steplength 1).
Thus we expect to find in our experiments good results with inexact line

searches, as well as a decrease in the influence of roundoff errors.

II.2.2. Optimally Conditioned Self Scaling Algorithms

It will be clear from chapter II.2.l1. that there is still a wide variety
of possible choices of the SSVM-parameters y(¢) and 6. A first trial to
find preferable parameter combinations was performed by Oren. He reported
in Oren (1974b) the results of experiments in which the 9 possible pairs
(¢k,6k) in the set {(¢,e)l¢,e e {0,0.5,1}} were substituted in formulae
(2.5) - (2.7). Besides that this study contained two devices to generate

parameters Yy and 6, from currently available information on the objective

k
function. According to these rules Yk is selected as close as possible to

unity and 6, is chosen such as to offset an estimated bias in det (HkG)

relative tokunity. The main result of Oren was that he showed that a
further improvement of the SSVM algorithms could be expected by a proper
selection of the parameters.

In a subsequent paper, Oren and Spedicato (1976), a theory was developed

to obtain a sharper bound on the condition number of the positive definite
updates Hk' A low condition number of Hk'is desirable from a numerical
point of view since it will reduce the round-off error in the determination
of the succeeding points (formula (2.2)) and thus it will improve the
numerical stability of the resulting algorithm.

As a result of their analysis Oren and Spedicato present the following

theorem which characterizes so-called optimally conditioned updates.

THEOREM 2.7 (Oren and Spedicato, 1976)

The matrix Hk+1 is optimally conditioned if and only if either
2

mt = 0 Or



(2.20) 0

Here 0,1 and

(2.21) o
(2.22) T
(2.23) m

™

1}

g(m - Yyo)
Y(mT - 02)

are defined by

T
sy
T
Y Hy
T T
T lgor S Y9 s
g Hy
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Imposing this relation on the SSVM updates yields the one parameter class

of Optimally Conditioned Self Scaling Updates. Following previous

publications the resulting strategies will be called switches I-IV.

Switch I
™
(2.24) If
(2.25) £ 2
T
(2.26) £ 2
Switch II
(2.27) y =
Switch III
™
(2.28) e =
(2.29) £ 2
T
(2.30) £ 2
T
Switch IV
(2.31) v=2

< 1, choose Y = g'and 6 = 0;
o}
= 1, choose y = ?-and 6 = 1;
<1 £ g—, choose vy = 1 and 6 = Eiﬂ—:—%l-.
T - O
L . 1 .
D ana 0 -y
1+ (=)
g2
< 1, choose vy = g-and 0 0;
> 1, choose y = %—and 0 1;
<1 < g—, choose Yy = 1 and 6 = EiI_JT%L .
T - O
and 6 = .
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These strategies with automatically determined parameters were succeed-
ed by a paper of Shanno and Phua which will be discussed in the next

section.

II.2.3. Initial Scaling of BFGS

The sequence of iteration points {Xk} defined by equation (2.2)

R Qkagk together with (2.5)-(2.7) can be verified to be inva-
riant under the scaling F(x) = cF(x), ¢ € R, if Yi or HO are chosen
appropriately. Starting from this observation Shanno and Phua

consider two possible initial scalings of H_ which satisfy the invariance

of the algorithms under scaling of the objegtive function. Moreover these
scalings appear to improve the numerical stability of the resulting
algorithms.

With respect to this proposed initial scaling the following lemma can be
proved. It states a relation between initial scaling and the application

of an appropriate SSVM update. In this lemma initial scaling means that

HO = I is used to determine X while using a steplength ao. After the
determination of 3} but before updating HO’ we now scale HO by

2 " =
(2.32) H0 aOHO

and then compute H1 using the BFGS update formulae and EO'

LEMMA 2.4

Initial scaling of the inverse Hessian approximation by a factor o
followed by the application of the BFGS update formulae is equivalent

to the application of the SSVM update formulae with y=a and 6 = 1.

Proof
Substitution of §0==aHO in formulae (2.5) - (2.7) yields
H.y yTH s s T
_ __0°0°00 T 09
H1 = HO —_?i;_—_ + VOVO o + T
Yo Ho¥o 0 Yo
which proves the lemma. 0

The use of the steplength o,  as a scaling factor is motivated by the fact

0
that if H is a good approximation to the true inverse Hessian, then o

will be equal to 1. The interpretation of the lemma is that instead of
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scaling H by y at each step, like in SSVM algorithms, one can scale only

the matrix H.. After this first scaling the approximate Hessian is never

rescaled. Thgs idea of performing a simple initial scaling was first
suggested by Shanno and Phua (1978a). Another advantage of this approach
is that the resulting algorithm still uses the BFGS update formulae which
gives a robust and efficient algorithm for unconstrained optimization.
Both computational and theoretical studies confirm this (see e.g.,Van der
Hoek and Dijkshoorn (1979) and Nazareth (1979)). Besides the initial
scaling as given in (2.32) Shanno and Phua combine the relation expressed
in (2.20) with 6 = 1 for BFGS, and thus obtain a. second alternative for

initial scaling of the BFGS-algorithm:
(2.33) Hy=-8

Both initial scalings will be considered in the comparison of section II.3,
where special attention will be paid to the question how the efficiency
of the algorithms depends on the conditioning of the problem, on the number
of variables and on the accuracy of the applied line search. Finally, for
the class of homogeneous functions, as introduced by Jacobson and Oksman
(1970), BFGS algorithms, initially scaled or not, can be proved to be infe-
rior to e.g.DFP. This proof relies on a comparison of resulting step-size

predictions and the definition of what they call a homogeneous function.

That is a function F(x) such that
-1 T
(2.34) F(x) = B " (x - x¥) g(x) + F(x*¥),

with x* the minimizer, B the degree of homogeneity and g(x) = VF(x).
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II.3 Computational experiments

As mentioned in the introduction the computational experiments were
designed to verify empirically the ability of the algorithms discussed
above to solve badly scaled problems. A detailed description of the design
of the performed experiments, the choice of suitable testproblems, the con-
sidered algorithms etc. will be given in the remaining part of this chapter.
A discussion of the results will lead to a choice of update formulae
to be applied in the context of the Recursive Quadratic Programming algo-

rithms of chapter III.

II.3.1. Algorithms implemented

The flowchart given in figure 2.2 gives a general representation for the
implementation of the considered algorithms. The different algorithms are
defined by particular choices for the line.search and the formulae for up-

dating the inverse Hessian approximation.

We investigated implementations of the following 9 algorithms:

1. Davidon-Fletcher and Powell. Fletcher and Powell (1963);

2. Broyden-Fletcher-Goldfarb and Shanno. e.g.,Broyden (1970);

3. Self Scaling Variable Metric (25 parameter choices). Oren and
Luenberger (1974);

4-7 Four Optimally Conditioned Self Scaling Switches. Oren and Spedicato
(1976) ;

8,9 Two devices for initial scaling of BFGS. Shanno and Phua (1978a).

For these algorithms we varied the accuracy of the line search. Also the
effect of the test of Goldstein and Price (1967), to avoid line searches

was investigated for a range of accuracies of this test.

The experiments were performed on an IBM 370/158 computer using the
FORTRAN-G compiler under 0S/VS2 (MVS-Multiprogramming Virtual Storage), in
double precision. The implementation consisted of a main program SSVM
which calls the subroutines CUBIC (line search) and UPDAT (updating inverse
Hessian approximation).

Special remarks on the implementation:
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SSVvM: 1. The Goldstein and Price condition to test whether the Newton
steplength 'l' is acceptable or not is applied in the main program
SSVM. This means that the following condition is checked:
F(x,_ +p ) - F(x)
g < k L3 "k <1-g¢ for some 0 < ¢ < %.
Tor (x,)
Py VE

2. As theoretically H need no longer be positive definite if

k+1
sTy < 0 we test this relation before updating. If sTy < 0, no up-

dating takes place: Hk+i = H If this happens IFAIL times during

K*
the execution of one testproblem the run is terminated with an
error message. This only occurred in the execution of test pro-

blem 6, with prechosen IFAIL = 10.

3. If the number of used function evaluations exceeds a predesigned
number NFMAX, the execution is terminated with a message. We used
the extremely high value NFMAX = 1000, to distinguish problems

that are hard to solve from unsolvable ones.

CUBIC This line search is a bracketing process followed by cubic interpo-
lations. Because of possible nonconvexity in the problems, sTy < 0 can occur,
the line search has a built in safety in the sense that it reverses a ge-

nerated search direction which is not initially downhill.

UPDAT In this subroutine the updating of the inverse Hessian approximation

takes place. The Oren-Spedicato switches require the calculating of

sTy.gTs
g'Hy

The latter expression is used in the computations as it is cheaper than

= sTH—ls which is equivalent to @' = (Oren (1974a)).

. 2
the first. (In the case of an exact line search we can use 71" = a gTHg or

T o= asTy).

IL3.2. The choice of test problems, termination criteria and performance

indicators

The subjects to be treated in this section are motivated by the ne-
cessity of a proper design of the experiments, in order to be able to draw
correct conclusions from the numbers that will be generated.

Test problems To meet our goal in the design of the numerical experiments,
we composed a collection of 12 tegt problems, mentioned in appendix B. The

test problems, whose gradients are given analytically, are taken from the
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literature. The new problems required are generated by varying parameters
which influence the condition number of the testproblem and/or the dimen-
sion. Though the convergence properties of the developed algorithms are
proved for convex minimization problems, usually test batteries, including
ours, also contain nonconvex problems. For the moment we only remark that
recent research on global minimization algorithms to minimize nonconvex
problems, Rinnooy Kan (1979), provides an entirely different approach. The

set of 12 test functions consists of the following problems:

1, 2, 3, 4: Increasingly badly scaled variants of Rosenbrock's function,

Rosenbrock (1961), Colville (1968).
5, 6 : 10- and 30-dimensional generalizations of Rosenbrock's function.

7, 8, 9 : 2-, 10- and 30-dimensional Quartic functions, Oren (1973), to
test the behaviour on homogeneous functions of different

dimension.

10, 11, 12: 2-, 4- and 6-dimensional Hilbert problems, Oren (1973), to
test the influence of increasingly extreme ill-conditioning

on purely quadratic functions.

Termination criteria. As a wide variety of these criteria is known and

has been applied we had to make a choice and decided to stop iterating as
soon as both the following conditions were met:

-6
oyl = 10

[ Iepg = el | < 2078

We preferred this criterion consisting of two components as it guarantees
a certain accuracy in determining both the optimal function value F* and
the coordinates of the optimum x*.

The linear Taylor approximation of F(x) around X yields

A

HEGg ) = Feg) < ol Tlxg, - =l

SO

[|F(x, . ) - F(xk)ll 10710 in our case.

N

k+1

Table 2.3 illustrates the inaccuracy in x* which is still possible under
our stopping rules.

A single component criterium as |[F(xk+1) - F(xk)ll < 10_10, as applied in
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Oren (1974b), Oren and Spedicato (1976) and Shanno and Phua (1978a) locates

x* even less accurately.

Table 2.3
Last iteration point (xi,x2) for the two dimensional Quartic function for

different algorithms with the applied termination criterium.

Algorithm Xy 'x2 F(xl,xz)
SSVM ¢ = 1, 6 = .25 | .2882 107> .3880 10 740 1071°
6 = .50,0 = .25 | .2885 107> .3841 1074 742 10718
6 = .75,8 = .25 | .2883 107> .3862 107° 741 107°
Switch I .2883 107> .3862 107% 741 1071®
II .2883 107° .3862 1074 741 1071®
111 .2883 107> .3862 1072 741 1071®
v L9527 1074 | -.1401 1073 .233 10716
SH/PH I .9561 1074 .2622 1073 215 10713
i1 .1284 1072 | -.2552 1073 215 10713
DFP .3747 107> | -.1238 1073 292 10710
BFGS .1102 1072 | -.2708 1073 .185 10713

The cubic linesearch terminates if the Euclidian distance of successively
generated points along the search direction is smaller than or equal to a

preset parameter called EPSCU.

Performance indicators. Candidates for performance indicators are:

number of function evaluations, number of iterations and required CPU-secs
to solve a testproblem (an iteration consists of the generation and explo-
ration of a search direction). These three indicators are mentioned in the
tables in Van der Hoek and Dijkshoorn (1979). The number of required
function evaluations was used as the main indicator. That is why only the
results for this indicator will be given here (these results correspond
directly to the number of iterations,as the number of function evaluations
per iteration does not vary much). The main disadvantage of counting
function evaluations to solve the whole set of testproblems is that diffe-
rent objective functions are equally weighed though they may differ sub-
stantially in complexity: in Van der Hoek and Dijkshoorn (1979) we men-

tioned that one evaluation of the 30-dimensional Rosenbrock-function
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is approximately as expensive as five evaluations of the 2-dimensional
Quartic function. This disturbing infuence is compensated for by separate
consideration of classes of test functions, such as the higher dimensional
ones and separate conclusions for those classes.

The required CPU-time gives additional information on the overhead of
computations such as matrix manipulations which the program performs.
However, the CPU-time cannot be measured very accurately because of the
inaccuracy of the internal clock of.the machine and, more importantly,
because of the multiprogramming facility.

We found that.timesvaried up to 10% for jobs run in daytime and requiring
less than 10 measured secs CPU-time. Because of this lack of accuracy, we
do not present these tables here. Table 2.8 should be regarded as an

illustration of the accuracy reached in determining F*.

II3.3. Design of the experiments and results
The experiments were designed in the following way:

Experiment I Find the three best (¢,8)-combinations of the Oren-Luenberger
SSVM-algorithms, without application of the Goldstein and Price test. The

1 6

accuracy of theline search EPSCU varies from 10 = to 10 ~. The resulting

algorithms are called A, B and C.

Experiment ITI The algorithms A, B and C which arose from experiment I and
implementations of the four Oren-Spedicato switches are compared. The para-
meter o of the Goldstein and Price test varies from 0.01 to 0.49 and EPSCU

has the same range as in experiment I.

Experiment IITI DFP and BFGS are implemented together with the two devices
for initial scaling of BFGS of Shanno and Phua (1978a).

Under the termination criteria stated above the generalized Rosenbrock
function with ¢ = 1O6 appeared to be too hard for all algorithms. That is
why it is not incorporated in the following tables.
The 25 algorithms resultingfrom 5 particular choices for each of the para-
meters ¢ and 6 were generated by the loops:

po10 1=1,5

PHI = .25 * (I-1)

po 10 J=1,5

TETTA = .25 * (J-1)

10 CONTINUE
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The most relevant results are summarized in the tabless 2.4 - 2.7 using

the following notation:

# F : number of required function evaluations

F* : function value reached
F : failure
b : column sum

In the calculation of I, a failure will be counted as 1000 function eva-

luations. The F of failure is repeated below the corresponding value of 3.



Table 2.4: # F for 25 (¢,6)~-combinations.

algorithm 1 2 3

test function

Ros (c=1) 32 é9 29

(c=102) 160 102 94
(c=104) 863 357 329
(n=10) 305 211 207
(n=30) F 726 F
Quartic(n=2) 47 47 47
(n=10) 72 72 72
(n=30) 91 89 91
Hilbert(n=2) 10 10 10
(n=4) 24 24 24
(n=6) 22 22 22
z 2626 1689 1925

F F

4

28
91
328
210

47
72
91

24
22

1923
F

5

28
98
315
241

47
72
87
10
24
22

1944
F

Accuracy linesearch 10~

6

29
102
350
193
588

47

72

91

24
22

1528

7

28
100
330
174
471

47

72

89

24
22

1367

8

28
101
313
175
527

47

72

89

10

24

22

1408

9

26
98
322
183
584
47
72
90
10
24
22

1478

1

10

25
111
306
209
655

47

72

90

10

24

22

1571

29
93
339
171
552
47
72
89
10
24
22

1451

28
101
300
159
391

47

72

91

10

24

22

1245]
B

No Goldstein/Price

13

25
108
307
162

429,

47
72
91
10
24
22

1297

14

25
119
374
179
486
47
72
o1
10
24
22

1449

15

26
119

1485

test.

16

28
91
311

1388

26
98
331
157
372
47
70
90

24
22

25

119

362
160
391
47
74
91
10
24
22

1325

23
126
381
159
434

47

72

91

10

24

22

1389

20

22
103
380
168
466
47
72
91
10
24
22

1405

21

28
98
321
166
511
47
69
90
10
24
22

22

25
111
307
160
362

47

70

89

10

24

22

23

26
119
348
170
382

47

71

91

10

24

22

1386 1310

A

24

22
103
345
161
420

47

74

91

10

24

22

1319

3

RV
los

E
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Table 2.5: # F for

algorithm
test function

Ros (c=1)
(c=10%)
(c=104)
(n=10)
(n=30)

Quartic(n=2)
(n=10)
(n=30)

Hilbert (n=2)
(n=4)

(n=6)

1

34
169
882
350

F

59

94
134

10

24

22

2778
F

-3 .
25 (¢,6)-combinations. Accuracy line search 10 7. No Goldstein/Price test

2

31
134
470
262

59
95
131
10
24
22

2238
F

3 4 5

31 30 30
121 130 132
436 443 429
290 293 288

F F F

59 59 59
95 95 87
130 130 131
10 10 10
24 24 24
22 22 22

2218 2236 2212
F F F

6 7
31 30
154 136
471 443
235 215
715 608
59 59
90 94
131 132
10 10
24 24
22 22
1922 1773

8 9
30 28
136 129
450 447
230 258
674 F
59 59
94 95
133 131
10 10
24 24
22 22
1862 2203
F

10 11
27 31
123 120
544 436
266 233
F 710
59 59
91 90
131 131
10 10
24 24
22 22

30
136
450
205
488

59

94
132

10

24

22

2297 1866 1650

F

27
122
530
205
567

59

94
132

10

24

22

27
127
577
235
650
59
94
132
10
24
22

28
127
433
244
729

59

94
130

10

24

22

30
130
442
234
725

59

91
129

10

24

129
447
218
486
59
91
133
10
24
22

1792 1957 1900 1896 1646

27
127
577
207
550

59

94
132

10

24

22

1829

25
132
441
213
582

59

94
132

10

24

22

1734

20

140
436
233
660
59
96
131
10
24
22

1835

21

30
132
429

- 237

772
59
90

129
10
24
22

1934

22

27
122
543
204
489

59

89
131

10

24

1720

23 24
28 24
128 140
433 436
206 220
501 544
59 59
101 97
133 133
10 10
24 24
22 22
1645 1709

25

25
149
434
219
605

59

97
132

10

24

22

1776

[43



Table 2.6: # F for 25 (¢,6)-combinations. Accuracy linesearch

algorithm 1 2 3

test function

Ros (c=1) 36 33 33
(c=10%) 177 145 125
(C=104) F 534 520
(n=10) 384 291 325
(n=30) F F F

Quartic(n=2) 62 62 62

(n=10) 101 106 106
(n=30) 146 143 145
Hilbert (n=2) 10 10 16
(n=4) 24 24 24
(n=6) 22 22 22
I 2962 2370 2372

F F F

4

32
140
498
342

F

62
106
145

10

24

22

2381
F

5

32
142
508
305

F

62
102
148

10

24

22

2355
F

6

33
145
534
266
F
62
101
144
10
24
22

2341
F

7 8

32 32
145
511
262
679

62 62
101

22 22

2015 2147

9

30
151
528
304

62
106
147

10

24

22

2384
F

10

29
128
534
284

F

62
106
147

10

24

22

2346
F

1076

11

33
126
520
274

F

62
101
145

10

24

22

2317
F

. No Goldstein/Price test.

12

32
145
528
244
595

62
100
146

10

24

22

1908

13

29
129
539
242
684

62
106
149

10

24

22

1996

14 15 16 17
29 30 32 30
133 135 140 151
500 492 498 528
268 295 270 252
753 F F 760
62 62 62 62
106 106 194 105
149 146 145 147
10 10 10 10
24 24 24 24
22 22 22 22

2056 2322 2307 2091
F F

29
133
501
243
622

62
105
147

10

24

22

1898

27
138
492
244
683

62
106
149

10

24

22

1957

20 21 22
26 32 29
145 142 129
487 508 533
273 281 240
781 F 599
62 62 62
105 103 102
149 149 147
10 10 10
24 24 24
22 22 22

2084 2333 1897
F

23

30
135
492
247
597

62
105
147

10

24

22

1871

24

26
146
486
266
647

62
105
148

10

24

22

1942

25

27
156
484
250
689

62
104
148

10

24

22

1976

€€
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Table 2.7: # F for algorithms A, B, C, the 4 Oren-Spedicato switches, DFP,

BFGS and the 2 Shanno-Phua variants. Accuracy line search 10_1.

Goldstein/Price test with o = 10_1.

algorithm A B C SWI SWII SWIII SWIV DFP BFGS SH/PH I SH/PH II

test function

Ros (c=1) 28 22 29 21 21 21 17 22 17 15 15
(c=102) 110 106 114 111 111 98 493 133 67 72 72
(c=104) 346 371 347 358 350 364 F 300 227 225 228
(n=10) 128 133 124 130 117 166 F 262 112 116 113
(n=30) 237 264 256 225 268 312 F F 381 244 231

Quartic (n=2) 38 38 38 38 38 38 52 60 41 58 58
(n=10) 47 47 47 48 47 48 F 479 128 172 172
(n=30) 52 53 53 53 53 53 F 716 253 415 414

Hilbert (n=2) 13 13 13 13 13 13 14 10 10 12 12
(n=4) 28 28 28 28 28 28 18 18 30 32 32
(n=6) 27 27 27 27 '27 27 16 16 26 35 35

I 1054 1102 1076 1052 1073 1168 3016 1292 1396 1382



Table 2.8: F*, obtained by algorithms A, B, C and the 4 Oren-Spedicato switches.

-1 -
Accuracy line.search 10 ~. Goldstein/Price test with o = 10 1

algorithm A B C SWI SWII SWIII SWIV

test function

Ros (c=1) 1179 10717 528 10717 376 10718 513 10710 513 1071° U513 107Y° 87 107
(c=10%) .453 10718 270 10722 473 10717 120 10722 120 107%% .439 107%® 215 10~
(e=10%) 132 1002 586 1072 596 10720 210 107%% .123 107'® 724 1072
(n=10) 116 1078 661 10718 720 10718 114 10710 152 10718 101 107Y7
(n=30) 2142 1078 601 10717 432 10710 221 1071 Leas 10717 156 10717

Quartic(n=2) .741 107 722 107 741 107 741 1071% 741 107Y% 741 1071% 233 107
(n=10) 2792 10714 857 1071% 823 107% 205 1071 .gag 1071 .205 1071%

(n=30) 316 10723 153 10713 144 10713 218 10713 148 10713 218 10713

Hilbert(n=2) .933 10752 .975 1072 .105 107>} .887 10°°2 .916 10732 .887 107°2 .739 10~
(n=4) 611 10718 616 1071% 611 1071% 619 10710 616 1071 619 1071® .206 10~
(n=6) 2303 1071 303 10713 303 10713 303 10713 L303 10713 303 10713 151 107

20

14

13
10

S€
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II.3.4. Discussion of the results
Experiment I

The numbers of function evaluations required by all 25 algorithms for

EPSCU = 1077, 107 and 10°° are given in tables 2.4, 2.5 and 2.6. We selec-
ted the seven 'best' algorithms for three cases: EPSCU = 10_1, EPSCU = 10_1
and EPSCU = 10_3 and, finally for all three accuracies:

EPSCU = 10-1, 10—3 and 10_6. The results-are given in table 2.9. We mention

that obviously nontrivial values are to be preferred and that all three
columns of table 2.9 contain the same seven parameter combinations. From
tables 2.4, 2;5, 2.6 and figure 2.3 it can be deduced that increasing the
accuracy makes all algorithms more expensive from which we conclude that
EPSCU = 10_1 should be used. This confirms our remarks in Ch. II.2.1. on
inexact line searches. These arguments led to the following choice of three

'best' parameter combinations evolving from experiment I on our set of

testproblems:
$=1. , 06 = .25 : algorithm 22
¢ = .50, 6= .25 : algorithm 12
¢ = .75, 6 = .25 : algorithm 17.

From now on we shall call these algorithms A, B and C respectively.

Table 2.9: # F for: I EPSCU = 10 °
II EPSCU = 107! and 107> (cumulative)
III EPSCU = 10°%, 107> and 107° (cumulative)
I II ' III
algorithm #F algorithm #F algorithm  #F
22 - 1227 17 - 2893 12 - 4803
12 - 1245 12 - 2895 23 - 4826
17 - 1247 22 - 2947 22 - 4844
13 - 1297 23 - 2955 24 - 4970
23 - 1310 24 - 3028 17 - 4980
24 - 1319 13 - 3089 18 - 5052
18 - 1325 7 - 3140 13 - 5058

The results of experiment I are illustrated in figure 2.3. In this figure
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the points found experimentally are connected to simplify 'reading' of the
picture. There is no intention to suggest any analytically proved continuity
of number of function evaluations in terms of parameter combinations!

From this figure we see that ¢ = 0 is unsatisfactory, while for any given
nontrivial value of ¢ the results get worse for values of 6 higher than

6 = .25. Obviously the parameter 6, which is the weighing factor of the
correction teim va in (2.5) is of more importance than the parameter ¢
which defines the scaling factor y of the objective function! Testing

of the sensitivity of the algorithms with respect to the accuracy of the

line searchis further continued in experiment II.

Experiment IT

We considered implementations of the algorithms A, B and C and the four
Oren-Spedicato switches.

First the sensitivity with respect to the parameter ¢ of the Goldstein
and Price test is investigated. We tested o = 0.01, 0.10, 0.25 and 0.49.
For o = 0.01 the Newton steplengtﬂ '1' will often be accepted and no line
search is performed. Increasing o causes more line searches, for o = 0.49
almost all iterations use the cubic line search with EPSCU = 10_1. In our
experiment o = 0.10 generally yielded the best results. The final results
are given in tables 2.7 and 2.8. Clearly switch IV is dominated by the
other algorithms.

Experiment III

Implementations of DFP, BFGS and the two Shanno-Phua algorithms were run
-1

for o = 0.10 and EPSCU = 10 ~. Obviously DFP prefers (requires) an exact

line search, which confirms known results. Table 2.7 presents the relevant

figures.

Our general conclusion from table 2.7 is that switches I, II and III are
competitive with the algorithms A, B and C, which apply optimally chosen
parameters. BFGS is slightly worse than the Shanno/Phua variants. The re-
sults of the last two variants are clearly influenced by their problems
in solving the 3 homogeneous testfunctions. Further it should be realised
that the algorithms A, B and C evolve from an optimization of algorithms
with respect to the parameters ¢ and 6. Thus the performance of the

general scaling devices of the switches I, II and III and Shanno and Phua's
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variant is really excellent! Finally the results with the algorithms A,B,C
suggest the replacing of ek = 1 for all k in BFGS by ek = .25 for all k.
The influence of the dimension of the test problem and remarks on homoge-—

neous test problems.

Now we are only interested in those figures from table 2.7 which concern
the 10- and 30-dimensional Rosenbrock and Quartic test functions. Clearly
initial scaling of BFGS should not be recommended for homogeneous test pro-
blems such as the Quartics. Tnis confirms Shanno and Phua (1978b). Further-
more these figures suggest to apply Shanno/Phua I or II or one of the
switches I or II for higher dimensional problems. If it is known before-
hand that F(x) is homogeneous, which rarely happens in real-life problems,

switch II is to be preferred.

Influence of the conditioning of the test problem.

Two effects were investigated:
a) The ability of the algorithms to solve problems with a shifted spectrum

of eigenvalues of R,. We varied the parameter c of a family of Rosen-

brock-problems c = i, 102, 104, 106. Increasing c only slightly influen-—
ces the conditioning at the starting point (-1.2,1) but creates in-
creasingly extremely ill-conditioned optimal points (1,1). All algo-
rithms failed to solve the problem with c = 106.

b) Increasingly ill-conditioned pure quadratic problems are the Hilbert
problems for increasing dimension. We investigated n = 2, 4, 6.

The results on these test functions are summarized in table 2.10.

Conelusion

From the experiments with the Rosenbrock-family we conclude that the BFGS
algorithms (BFGS with or without initial scaling) behave better for ill-
conditioned optimal points.

The differences on purely quadratic functions are negligible.
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Table 2.10: # F for ill-conditioned test problems

algorithm A B C SW I SW II SW III SW IV SH/PH SH/PH DFP BFGS
I II

test function

Ros (c=1) 28 22 29 21 21 21 17 15 15 22 17
(c=102) 110 106 114 111 111 98 493 72 72 133 67
(C=104) 346 371 347 358 350 364 F 225 228 300 227

Hilbert (n=2) 13 13 13 13 13 i3 13 12 12 10 10
(n=4) 28 28 28 28 ’28 28 28 32 32 18 30
(n=6) 27 27 27 27 27 27 27 35 35 16 26

z 552 567 558 558 550 551 1578 391 394 499 377
F

Final conclustion

Recently developed self scaling algorithms for unconstrained minimization
were described and compared in numerical experiments. All algorithms, ex-
cept DFP and the fourth Oren-Spedicato switch, showed a good performance
with an inexact line search. Generally an iteration requires about 2 ob-
jective function evaluations. For reasons of robustness (initially scaled)
BFGS algorithms and the second Oren-Spedicato switch seem to be preferable
in most practical situations. This establishes once more the superiority
of the classical BFGS algorithm. This conclusion is valid even more gene-
rally: numerical comparisons by Grandinetti (1978) and Shanno and Phua
(1978b) show that this variable metric algorithm is competitive even with
sophisticated quasi-Newton algorithms such as those based on factorizations
or projections of search directions. Concerning the choice for an update
procedure in the context of the algorithmé of chapter III this means that
preferably one of the Shanno and Phua algorithms or switch II should be
applied.
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III. RECURSIVE QUADRATIC PROGRAMMING WITH SELF SCALING
UPDATES OF THE SECOND-ORDER INFORMATION

III.1. Introduction

The first class of reduction methods which will be considered was de-
veloped from a proposal in Murray (1969). Biggs developed it further in
Biggs (1972, 1974, 1978). Similar approaches were followed in Han (1977,
1979) and Powell (1977a, 1978). —

The aim of these so-called recursive quadratic programming algorithms is
to avoid the increasingly ill conditioned reduced problems of penalty
function methods, reported in Murray (1967) and Lootsma (1969). Further-
more too high anaccuracy in the unconstrained minimization of the penalty
functions in an early stage of the iteration process is avoided as well.
It will appear to be sufficient to generate iteration points that only
approximate the minimizing trajectory of the applied exterior penalty
functions. The sufficiency of this approximation is based on the boundary
properties of penalty functions as they were developed in Lootsma (1970).

The convergence of the generated iteration points to the constrained opti

mum x¥ was proved in Biggs (1978). Our presentation will be along the
lines of Biggs'sapproach: in every reduced problem a quadratic approxima-
tion of the objective function is minimized subject to a local lineariza-
tion of the first order Kuhn-Tucker conditions of the currently defined
exterior penalty function. The solutions of the reduced problems thus de-
fined can be proved to converge to a Kuhn-Tucker point of the original
constrained nonlinear programming problem. As these reduced problems are
equality constrained quadratic programming problems, their solution can be
written down algebraically. The theorems 6n the convergence and the rate
of convergence of the algorithms thus defined will be stated in section
III.2.

A further point of particular interest, to be treated in ch. III.3, is the
incorporation of self scaling variable metric update formulae, discussed
in ch. II, in the framework of recursive quadratic programming. A motiva-
tion to do this is that the approximated penalty functions will still be
more and more ill conditioned. We shall compare computationally the effect
of the use of these self scaling update formulae for the second order in-
formation, with the algorithms of chapter IV.

The advantage of these scaling strategies is even greater, as we found in
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ch. II in that they allow for inexact line searches. Hence the approxi-
mative character of the recursive quadratic programming approach is com-
bined with an efficient strategy to solve ill conditioned reduced problems.
In addition ch. III.3 will contain a discussion on the influence of a not
yet correct active set I(xk) on the determination of the stepsize in the
line search. The selection of the constraints which-will constitute the
active set ana subsequently define the quadratic loss term of the exterior
penalty function will be treated in ch. III.3 as well. The results of the
computational experiments with this algorithm will be presented and dis-

cussed in ch. VI of this monograph.

III.2. Convergence properties of recursive gquadratic programming

We shall consider the general nonlinear programming problem

minimize F(x)

(3.1) subject to
ci(x) >0 i=1, ..., p
ci(x) =0 i=p+tl, ..., m

.

The Lagrangian function associated with problem (3.1) is

s} m
(3.2) L(x,u,v) =F(x) - I u,c,(x) - L v,c,(x)
. ii . i
i=1 i=p+1
where ui, i=1, ..., pand Vi' i =pt+l, ..., m denote the Lagrangian

multipliers of the inequality and the equality constraints respectively.
All problem functions are assumed to be at least twice continuously diffe-

rentiable and a regular solution x* of (3.1) is assumed to exist.

In the application of exterior point penalty function methods, see Fiacco

and Mc Cormick (1968), the penalty functions

1 2
(3.3) P(x,rk) F(x) + . z ci(x)

k leIk

F(x) + r—;— iy (), (x)

are minimized for a sequence {rk} + 0.

Here the vector w = w(x) is the vector of currently active constraints,
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T T . .
hence W =W (xk) = (ci (X)) eewey c; (x)) where I = {11, vy lk}.

In this formulation of %he penalty fﬁnction an active set Ik is used.

As a consequence, the reduced problems are equality constrained problems.
Usually Ik will consist of the currently active or violated constraints,
augmented by those constraints whose Lagrange multiplier makes them liable
to become active or violated in the next iteration. In Pietrzkowski (1962)
it is shown that if P(x,rk) is strictly convex for each rk > 0 and has a

minimum x;, the sequence {x;} converges to x* if and only if {rk} is a

monotone null sequence with r. > 0 for all k. Then the points {x;} are lo-

cated on the so-called minimiZing trajectory whose properties were ex-
tensively treated in Lootsma (1970). It will appear that the solutions of
the reduced problems of this chapter approximate the minimizing tra-
jectory for penalty functions which use for I(xk): all currently violated
constraints. The algorithm proposed in Biggs (1972) suggested to replace the
direct unconstrained optimization of (3.3) by the solution of an equality
constrained quadrati¢ programming problem. This reduced problem arises from

the requirement that the locally defined quadratic approximation to the
objective function F(x) should be minimized, subject to the linear con-
straint that the truncated Taylor series expansion of VP(x,rk) in a neigh-
bourhood of the current iteration point % vanishes. From (3.3) we see, de-

noting the Jacobian matrix of w(x) at X by Ak and V2F(xk) by Bk that

2 T
(3.4) VP(xk,rk) = VF(xk) + ;;-AkW(xk)

+ 2 AT
% ", By

has as truncated Taylor series expansion at X + p:

2 T 2 T
3.5 % + = + + = £
( ) (Xk p,rk) I T ByP r, wk7+ T, ApAP
Note, however, that this approximation is made under the assumptiéns that
I(xk) = I(xk + p), and that the applied linear approximation is still

acceptable at x +p. In Van der Hoek and Wymenga (1980) it will be proved

k
that, if I(xk) # I(xk+p) and if the stepsize is limited above by 'l', then
the theoretically required stepsize will usually meet this limitation as
well. Another benefit of this stepsize limitation is that the linear ap-

proximation to VP(xk + p,rk) will be better. As in a neighbourhood of x*
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the curvature of the penalty term will dominate the curvature of F(x), we

can neglect the term B, p in (3.5) in the treatment below:

k .
If xk+p is the minimum of P(x, rk), then equation (3.5) yields

A 2 T 2 T
(3.6) 9 t T AW t T AAD S 0
k k
Given a positive definite symmetric mat;ix Bk (for instance, but not ne-
cessarily, the current approximation of V2F(x*)), we can premultiply (3.6)
-1 . . i

by AkBk which yields:

r

k -1 7 -1 -1
(3.7) AP = -5 (WBUA) AB g - W

Now the step p can be determined using (3.7). For instance by the minimi-
zation of a quadratic approximation to F(x) in the null space of Ak (which

does not contain information on p). Thus we obtain as reduced problem

s . LT T
gmlnlmlze p ka + gpp

(3.8) subject to
r
kK =
AP =5 mw
where the vector
> -1 T -1 -1
(3.9) A = (AkBk Ak) AB, g,

can be considered to be an estimate ofthe vector of Lagrange multipliers
corresponding to the constraints of the active set (Fiacco and Mc Cormick,
1968) . The solution. of this equality constrained quadratic programming
problem can be written down immediately, following Fletcher (1971), as

ST JUE T JOS T "k <
(3.10) P, = Bk (Ak(AkBk Ak) (AkBk 9 - TT'Ak - wk) - gk)
An alternative reduced problem arises if Bk’ the current estimate of the
Hessian matrix of F(x) is incorporated in (3.5). Skipping the precise formu-
lation of the resulting reduced problem we proceed immediately with the
most successful situation in which the curvature of the constraints is re-

presented as well.

Let wk be some approximation to the matrix
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2 2 2
(3.11) v F(xk) + T 'Z ci(xk)V ci(xk)
k 1€Ik

Then we obtain, instead of (3.5): -

2 T 2 T
(3.12) VP(xk + p,rk) =9, + Wkp + ;; Akwk + ;;-AkAkp
which ultimately leads to the reduced problem

minimize %pkap + g:p_

(3.13) subject to
- r,
AP =-7 T -w
where
“k -1 7)1, -1
(3.14) Tk = (TE'I + Akwk Ak) (Akwk Iy - wk)

The third alternative reduced problem arises from the application of the

approximating matrix W, in the context of reduced problem (3.8), which

k
yields

e e T T
minimize %p wp + gp
(3.15) subject to

M =

™ = W

2 'k k

where

. -1 -1 -1
(3.16) e = (AW A AW gy

A closer examination of (3.11) yields that, the currently defined matrix Wk
‘can be considered as an approximation to the Hessian matrix of the

Lagrangian function (3.2). This follows from

lim - fi-w(xk) = \¥
k-0 k

if lim X = X¥ along the minimizing trajectory (see Fiacco and Mc Cormick,
& ’
1968) . As all the above vectors ik'

and T can be regarded as approxi-

T
k k
mate Lagrange multipliers, matrices, such as

(3.17) VR - & 1 voe, ()
ieIk
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can be used as an approximation of the Hessian matrix of the Lagrangian
function. In ch. III.3.4 updating strategies for these matrices will be

discussed.

Now that the reduced problems (3.8), (3.13) and (3.15) are known, we pro-
ceed with a concise presentation of the convergence theorems of the corres-
ponding algorithms. Basically the approach followed amounts to proving that
the search directions p defined by these reduced problems can be used to
locate the unconstrained minima of an augmented Lagrangian function of the
class introduced in Fletcher (1969). In turn the unconstrained minima of
this function can be proved to coincide with the constrained minima of
problem (3.1). The rate of convergence will appear to be superlinear.

The analysis will concern 'well behaved' functions, which means functions
that are bounded below and that have bounded derivatives.

A basic theorem, due to L.C.W. Dixon, on the unconstrained minimization of
such a function mainly states conditions on the applied search directions
p and the stepsizes o along those ‘search directions. The theorem as stated

below is a slightly adjusted modification of the original theorem.

Theorem 3.1. (Dixon, 1974)

Suppose that ®(x) is a well behaved function. An iterative minimiza-
tion algorithm is applied to ¢(x) which calculates a direction of
search p from the point x and obtains a new point X =x+ op. The
scalar o is chosen so that ®(x) < &(x). The algorithm will find a

point x* such that ||V¢(x*)|| < EO for some specified e, > 0, if for

0
a regular subsequence of iterations the following conditions are met

for some €1' 82, €. which can be specified in terms of €yt

Condition I pTV¢(x) < —81||p[| ||ve(x) || £for some € > 0

s = T, T
Condition II I@(x) - ®(x) - ap V@(x)l > 82|ap V@(x)] for some €5 >0
Condition 1II &(x) - &(x) < e3apTV¢(x) for some €3 >0

g
This theorem ensures that, in the absence of rounding error, a stationary

point x* will be located within precision g Condition I means that

the search directions should be significantly 'downhill', condition II

prohibits a stepsize a which is too small while condition III ensures that
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the reduction in function value has a non-zero upper bound.
The application of this theorem is simplified remarkably by the following

theorem:

THEOREM 3.2 (Biggs, 1978)

If a search direction p satisfies condition I of theorem 3.1 for a

i

well behaved function ¢(x), then a suitable value of o can be found to

satisfy conditions II and III for any € €, such that (1-53) > 92.

g

2" 73

This theorem means that once p satisfies condition I, the conditions II

and III can be met such that (1—83) > €, holds for the given parameters

€yr €3¢ That is why the following theorzms concern search directions p that
satisfy condition I. The directions p emanating from the reduced problems
(3.8), (3.13) and (3.15) will be considered in that light. Once it has been
proved that these directions satisfy condition I, it is justified to use
them for the unconstrained minimi%ation of P(x,rk).
In the next theorems no explicit use will be made of the interpretation
of the iteration matrices Bk or Wk that occurred in (3.8), (3.13) and
(3.15). It is only required that they both satisfy-the following relation:
for all unit vectors x E'FF there exist constants m, M € R such that
0 <m¢<s xTB x £ M. Furthermore the Jacobian matrix A should be such

k
T
that 0 < xTA Ax < T for some T € R.

THEOREM 3.3 (Biggs, 1978)

Let VP(x,r) =g + %'ATW

where r > 0 and the rows of A are linearly independent. Let p be the
solution of any of the reduced problems (3.8), (3.13) or (3.15). Then
there is a value r such that for all r < E, pTVP(x,r) satisfies con-

dition I of theorem 3.1.

Remark

For reduced problem (3.13) even a stronger result can be proved: the

rows of A need not be linearly independent, while no upper limit on r is

required.



48

Instead of using the vectors p thus defined to minimize the penalty func-
tions P(x,rk) directly, they can be proved to be suitable for the minimi-
zation of an augmented Lagrangian function related to problem (3.1). The
augmented Lagrangian used here is an element of the class introduced in
Fletcher (1969), and it can be proved that under suitable conditions the

unconstrained minimization of the function

T - T
(3.18) P(x,q) = F(x) - w(x) m(x) + qw(x) w(x)
T. -
yields a solution of the original problem (3.1). Here m(x) = (AA") 1AVF(X)
and q is a scalar which should be greater than some lower bound.
Hence the sequence of penalty function minimizations is replaced by a
single minimization of (3.18). The applicability of the search directions

evolving from (3.8), (3.13) and (3.15) is stated in the following theorem.

THEOREM 3.4 (Biggs, 1978)

Consider the objective function and constraints of problem (3.1) and
let P(x,q) bé defined by (3.18). Suppose that at a point x the rows of
A are linearly independent and that the approximating matrix B is po-
sitive definite. Let p be given as the solution of one of the reduced
problems (3.8), (3.13), (3.15). Then there exists a value of g

such that pTVP(x,q) satisfies condition I of theorem 3.1.

Remark

Again if p comes from the reduced problem (3.13) the result can
be proved without using the linear independence of the rows of A.
Now that the convergence theorems of the fecursive quadratic programming
algorithms have been stated, the next point of interest is their rate of
convergence to x*.
The point x* is called a point of attraction of an ' applied algorithmic
scheme if there exists an open neighbourhood O(x*) of x* such that for any
starting point x

0

€ O(x*) the sequence {xk}, generated by the algorithm,
converges to x*. If )

[[x* - x
lim =0
koo | k

the rate of convergence to x* is said to be superlinear.
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The next theorem states the superlinear rate of convergence of the recur-
sive quadratic programming algorithms, if the search is initiated in a

region where the active set of constraints I(xk) equals I(x*).

THEOREM 3.5 (Biggs, 1978)

If the approximating matrix B applied at x* only differs from the
Hessian of the Lagrangian function VZL(x*, u*, v¥) in the subspace
spanned by the normals of the active constraints at x*, there exists

a value r* such that the solution x* of (3.1) is a point of attraction
of the recursive quadratic programming algorithm and the convergence

to x* is superlinear.

Remark

The value of r* depends on the particular choice of reduced problem.
The proof of the theorem consists in showing that x* is a fized point of
the algorithm used, i.e., a point that is its own image under the appli-
cation of the algorithm, and that the conditions for the application of
theorem 10.1.6 of Ortega and Rheinboldt (1970) are satisfied.
As a consequence of theorem 3.5 one can use positive definite’
matrices B, to approximate V2L(x*, u*, v¥), even if the latter matrix is

k
indefinite. Note, however, that B, and VZL(x*, u*, v*) have to agree in

k
the intersection of linearized active constraints at x*; in this subspace
L(x,u,v) can be guaranteed to have positive curvature at the solution.
Now that the convergence properties of the recursive quadratic programming
algorithms have been dealt with, we shall proceed with a discussion of

several algorithmic aspects of these reduction methods.
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III.3. Algorithmic aspects of recursive quadratic programming

This chapter treats some algorithmic aspects of the algorithms deve-
loped above, such as the applied active set strategy, the unidimensional
search and the updating of the second order information. All these threedif-
ferent aspects strongly influence the robustness and the efficiency of the
implementation of the algorithm discussed. They will be treated below in
the order stated.

III.3.1. Stepwise description of ‘the algorithms

The following stepwise déscription of recursive quadratic programming
algorithms gives a general framework for their implementation. Particular
members of this class of reduction methods will result from the exact spe-
cification of their characteristics such as: the active set strategy, the
updating of inverse Hessian information, the calculation of the search
directions, the determination of the penalty parameter and, finally, the
line search incorporated. These points will be discussed elsewhere in this
.section. We shall start now with the steps which constitute the algorithms.

Step 1. Initialization. Put k := 0. Choose a penalty parameter r a

Ol

starting point x. and some positive definite symmetric matrix H

0
as first inverse Hessian approximation. Go to step 2.

0

Step 2. Determine I(xk), the current set of active constraints. I(xk) will
contain at least all equality constraints and all currently binding
or violated constraints.

If k = 0, go to step 5, otherwise go to step 3.

Step 3. Apply the stopping criterion. This means: STOP if

(3.19) ]lxk - xk_1|| < e(||xk|[ + 1) for some pregiven.e > 0
and
(3.20) ]ci(xk)l < s(]lxkll + 1) for some pregiven.e > 0O
for all currently violated constraints ci(x).

Otherwise go to step 4.

Step 4. Update Hk by applying the updating strategy chosen, for instance
a self scaling updating can be applied.

Go to step 5.

Step 5. Calculate the approximate Lagrange multipliers from (3.9)
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< 1r -1 -1
M = BB A TAB g

or, alternatively, from (3.14) or (3.16).
Go to step 6.

Step 6. Calculate the search direction P from (3.10):

. X
-1, T, -1T-1, -1 K <
py =B (A (AB A T(AB g - 5 A - W) - gy)

or, alternatively, from the reduced problems (3.13) or (3.15).
Go to step 7.

Step 7. Determine the new penalty parameter Ty such that

pEVP(xk'rk) < 0 (see condition I of theorem 3.1)

Go to step 8.

Step 8. Find the stepsize o, along Py by minimizing P(x,rk) along Py -

k
Define Xepr 5% + akpk, put k := k+1 and go to step 2.

Given the starting point Xy both r, and HO are to be defined in the ini-

tializing step 1. Mostly the choice H, = In is made. This choice could be

improved by the use of analytically cglculated or numerically approximated
second order information. However, Ho = In is a simple initialization
which enables the comparison with competing algorithms.

Concerning ro, Himmelblau (1972) discusses some strategies to choose this
first penalty parameter. It is unlikely that there will be a strategy
which yields an optimal value for all problems. The main reason for this is

that usually at the starting point x. the active set I* at the optimum

0
will not be available. Besides the naive strategy of choosing some r, € R
such as Iy = 1, another approach could be to choose ro such that the norm

of the gradient of the initial exterior penalty function is minimized with
respect to ro.
For a penalty function this means, given

)Tw (xo)

1
(3.21) P(xo, ro) = F(xo) + ;E-W(xo

with as gradient vector
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2 T
(3.22) VP(xO, ro) = 99 + o AO wo

that

T T T
2 (Aowo) (AOwo)

(3.23) ro = - -——T——T—-———‘— ’

90”0"0
rovided that TATw >0
p 90%0"0 :
A simplified flowchart of the algorithms is now presented in fig. 3.1
(a detailed flowchart can be found in appendix E, together with a descrip-

tion of the sgbroutines used) .

initialisation

L 4
. . . FUNCTION
define active set of constraints |-——————- P qm———- b .
_______ Iy P subroutine
i |

date 2nd o ct information i Y auxiliary
zzlculafe a rro;i::qf; La Ircxr; e multipliers | > T calculation
i grans P subroutines

! 1
A A A
! i
| i
determine search direction, penalty [-—----- :
parameter and stepsize =~ = |----- p--—-- 4

gonvergence
?

Figure 3.1 Simplified flowchart of recursive quadratic programming
algorithms
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III.3.2. Active set strategies

For algorithms which use an active set strategy,;the question
arises whether this active set should be kept as small as possible or,
alternatively, whether the active set should be defined more generously.
The first situation could be realized with an active set consisting only
of currently violated constraints and the equality constraints. It will be
clear that this strategy will cause more changes in the active set than
for instance a strategy which forbids the constraints to leave the active
set within a certain number of iterations after their entrance. Both kinds
of strategies can be supported by arguments. A strategy which maintains
equality for a large number of constraints may waste time minimizing the
penalty function with 'wrong' constraints. On the other hand a strategy
which keeps the number of constraints in the active set as small as possi-
ble will inevitably waste time by repeatedly adding and dropping (perhaps
the same) constraints. Zigzagging may occur which can lead to nonconver-
gence or even convergence to the wrong point. In Lenard (1979) and Gill
and Murray (1974c) advantages and drawbacks of alternative active set
strategies are discussed, especially'in the case of linearly constrained
nonlinear programming problems. For the nonlinearly constrained nonlinear
programming problem proposals for active set strategies can be found in
e.g., Murray (1969), Fletcher (1970b, 1971), Fletcher and Lill (1970),
Lill (1972) and Biggs (1972).

The active set strategy wused in the recursive quadratic programming
algorithms defines at the k-th iteration, k = 1,2, ... , an active set
I(xk) consisting of: all currently violated constraints, all equality
constraints and all constraints ci(x) with i € I(xk-l) with positive
approximate Lagrange multiplier.

The last mentioned constraints are added to prevent satisfied constraints
to leave the active set too early. In this way zigzagging may be prevented.
The removal from the active set of satisfied constraints ci(x) with

ie I(xk—l) and a negative approximate Lagrange multiplier is motivated
by the interpretation of this negative multiplier as an indication that
these constraints will not be binding at x*. The efficiency of the resul-
ting algorithm in the determination of the final active set I(x*) is
illustrated in table 3.1. The quotients mentionea have the following

meaning:
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number of iterations required to detect I(x*),= # IT(I(x*))
number of iterations required for convergence # IT(x%)

The figures of table 3.1 concern the application of the implemented
algorithm to the collection of testproblems given in appendix A. Further
details on the computational experiments will be presented in chapter VI

of this monograph.

Table 3.1: Efficiency in the determination of I (x*)

Problem # IT(I(x*)) : Problem #_IT(I(x*))]
# IT (x*) # IT (x¥)
1 2 : 12 13 2 : 16
2 0: 4 14 2 : 30
3 3 : 10 15 18 : 23
4 2 : 88 16 10 : 18
5 25 : 53 17 18 : 24
6 5: 7 . 18 36 : 38
7 20 : 35 19 5 : 32
8 11 : 13 20 47 :116
9 59 : 95 21 8 : 12
10 0 : 24 22 0 : 25
11 3: 5 23 2 : 10
12 6 : 10 24 0: 7

CONCLUSION. For most problems the algorithm detects I(x*) in one of the
first iterations, especially if the number of active constraints at x* is
small in comparison with the dimension. More iterations are required to
detect I(x*) if the number of active constraints at x* is (almost) equal
to the dimension. In that situation it incidentally occured that one of
the constraints active at x* did not join I(xk) for some k, though no

llonger passive constraints at x* belonged to I(xk).
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Possible consequences of a necessary change of the active set when moving
from X to Xy + p are discussed in Biggs (1972). It will be evident from
table 3.1 that the active set strategy applied in conjunction with a
stepsize limitation (the step o has 'l' as upper bound) yields an algorithm
which is no longer sensitive to this point and determines I(x¥) efficiently.
A theoretical background of this observation will.be discussed in Van der
Hoek and Wyménga (1980) , especially the effect of an incorrect active set

on the resulting stepsize.

III.3.3. Line search

Though the solution pk of the reduced problem applied can be written
down immediately algebraically, it appeared to be better to perform a line
search along pk. Hence the predicted step Py to the optimum is explored as
a gearch direction. Then the ideal case, in which all assumptions are
satisfied, will correspond to a stepsize a = 1. Violation of the assump-
tions and local validity of the approximations may give rise to a step-
size o # 1. We may expect that in'a neighbourhood of the solution x* the
line minimizations will produce stepsizes close to 1. For this reason o
will be required to satisfy a € [0,1]. Furthermore we know from chapter II
that the application of the updating strategies which we discussed there al-
lows for an Znexact line search. Hence an estimate a for o, produced by
the line search will be accepted if it corresponds to a 'sufficient'
decrease in the value of either the objective function F(x) or the penalty
function P(x, rk). Hence o will be accepted if it satisfies either
3.24) . < Flx + onpk) Fx,) 1o

3PV (x. )
k k

or

P(x + ap ) - P(x,) -
(3.25) o < xﬁ T k k <1-o0
0thVP(xk)

for some prechosen 0 < 0 < %. This is exactly the Goldstein and Price test
.of chapter II. The either/or character of this test reflects the opinion
that both a decrease in F(x) and a decrease in the constraint violation
are desirable. Note however, that the objective function in the line search

is the penalty function P(x, r The succeeding estimates o of o result

).
k
from quadratic interpolation on the interval [0,1]. For reasons of
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robustness several safeguards are incorporated such as those suggested
in Gill and Murray (1974b), the search direction may even be reversed and
if all sophisticated predictions fail, a simple golden section line search
is applied. As a result an efficient and robust line search is obtained
which constitutes the basis of the robustness and the efficiency of the
whole algorithm, together with the definition of P and the updating of

the inverse Hessian approximation.

III.3.4. Updating of the inverse Hessian approximation

This section deals with the question which inverse Hessian
matrix should be updated and how this updating should be accomplished.
Two possible choices for the Hessian matrix were mentioned in the presen-
tation of the reduced problems (3.8), (3.13) and (3.15): either [VZF(x)]_1
or [VZL(x,u,v)]_l. The main reasons for choosing the last alternative are
that it contains information on the curvature of both the objective
function and the constraints, it is not directly dependernt onrk while it
can use the Lagrange multiplier estimates given in (3.9), (3.14) or (3.16).
Hence reduced problems (3.13) and (3.15) are to be preferred.
Furthermore theorem 3.4 and the remarks at the end of chapter III.2.
suggest to use again positive definite approximating matrices, as
they are obtained in the application of variable metric update formulae
for unconstrained optimization. A possible strategy to prevent loss of
this positive definiteness in the case of constrained optimization
was suggested in Powell (1977a). It amounts to replacing the gradient
difference vector Yy by a Suitable convex combination of yk and the last
step sk before applying the BFGS formula. In the experiments, the so
called switch II of Oren and Spedicato (discussed in chap£er II) was im-
plemented by us. We did not implement the initially scaled BFGS formulae
as suggested by Shanno and Phua, as the scaling factor is calculated in a
neighbourhood of the starting point where we cannot expect any adequate
information to be available on I(x*), hence on [V2L(x*,u*,v*)]_1.
The final discussion on the efficiency of the resulting reduction methods
is postponed to chapter VI which discusses the design and the results of

the computational experiments performed.



IV. ASYMPTOTIC PROPERTIES OF REDUCTION METHODS USING
LINEARLY EQUALITY CONSTRAINED REDUCED PROBLEMS

Iv.1. Introduction

In this chapter the following general nonlinear programming problem

will be considered:

min F(x)
(4.1) subject to
>
c, (x) { } 0 i=1,2, .., m
i = -
The problemfunctions F(x) and —ci(x), i=1, ..., m, are supposed to be

sufficiently differentiable convex real functions on En.

In this chapter our attention focuses on reduction methods that
are based on linearization of the restrictions.

The idea to replace the minimization of a restricted nonlinear pro-
gramming problem by sequentially minimizing local linearizations of the
given problem is not new. One of the first successful implementations of
such a reduction method is the Method of Approximation Programming, the
MAP-code of Griffith and Stewart (1961).

It replaces the solution procedure of (4.1) by solving the following

sequence of problems:

min LF(xk,x)

(4.2) subject to
2 .
Lci(xk,x) - 0 i=1, ..., m
The functions LF(xk,x) and Lci(xk,x), i=1, ..., mare the linearizations
of F(x) and ci(x) respectively around xk:
_ _ T
LF(xk,x) = F(x) + (x-x)) VF(xk)
and T
Lci(xk,x) = ci(xk) + (x—xk) Vci(xk)

A natural extension of Griffith and Stewarts algorithm is Wilson's method,
Wilson (1963), in which a quadratic approximation of the Lagrangian func-
tion of problem (4.1) is minimized subject to the local linearizations of
the constraints.

In essence this means that Wilson defines a local linearization of

the first order Kuhn-Tucker conditions of (4.1) which is optimized using
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an algorithm for quadratic programming.

Just as in Beale's algorithm for gquadratic programming, Beale

(1959) , we need the equation of the hypersurfaces at which the partial de-

rivative of F(x) with respect to any nonbasic variable vanishes and the

equation of the hypersurfaces at which any new constraint becomes active.

Beale (1967) showed that the error in both equations is o(xk+1— xk)

as long as the active set is constant.

thods

(1)

(ii)

(iii)

(iv)

(4.3)

(v)

(vi)

(vii)

The main advantages and drawbacks of linearizations in reduction me-

are summarized below:

Linearization methods are relatively simple to present and to imple-
ment.

If the next iteration point X1 happens to be infeasible, an inter-
mediate step is required to move back to the feasible region if the
algorithm is a feasible point method. This may give rise to slow
convergence.

In almost all proposed methods all constraints are linearized at every
step and no use is made of information on the status of constraints
(active, passive) gathered in the course of the iteration process.
Exceptions in this respect are e.qg.,Wolfe (1961) and Holtgrefe's imple-
mentation of Kelley's cutting plane method, Holtgrefe (1975).

The linearizations of nonlinear problem functions are only acceptable

approximations in a neighbourhood of x, . This makes stepsize limita-

k
tions such as

| (%, - xk+1)j| S 8yyr 8y > 00 3= 1,..yn, inevitable,
A consequence of linearizations is also that poor search directions
may be generated. -
The local validity of the linearizations prohibits the application
of extrapolation techniques to accelerate convergence.

Wilson's method, which uses a second order approximation, requires

the expensive calculation of second order derivatives.

During the last two decades alternative, more sophisticated reduction

methods, still using linearizations, have been proposed which are designed

to avoid the above mentioned drawbacks. We mention: Rosen (1960, 1961) ;

Robinson (1972); Rosen and Kreuser (1972); Gruver and Engersbach (1374,1976);
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Rosen (1977); Ballintijn, Van der Hoek and Hooykaas (1978); Van der Hoek
(1979) and Van der Hoek and Hooykaas (1979). In those cases the reduced

problem is defined by:

min F(x) + ¢(xk,x)
(4.4) subject to
. s o
Lci(xk,x) =} 0 i=1,2, ..., m

Iq (4.4) the objective function is corrected by a term ¢(xk,x) which is
supposed to offset by means of a corrected objective function in the re-
duced problem possible poor behaviour of the algorithm caused by the
applied linearizations. So ¢(xk,x) will generally depend on ci(x) and/or on
Lci(xk,x), (i=1, 2, ..., m), and different reduction methods arise from

different choices of ¢(xk,x). For instance, Rosen and Kreuser (1972) use

(4.5) ¢(xk,x) = A:io Ai(xk)?i(x)

where Ai(xk), i=1, ..., m, are the current Lagrange multiplier estimates.
Here ¢(xk,x) can be viewed as a linear penalty term or as a restricted
Lagrangian function. In Van der Hoek (1978), this reduction method is
further simplified by merely linearizing the constraints of the active set

I(xk) at x, . Robinson (1972) proposes to use

k

m
(4.6) ¢(:ﬁ(,X) = I

1

. Ai(xk)[Lci(xk,x) - ci(x)]

Rosen (1977), Brduniger (1977), Ballintijn, Van der Hoek and Hooykaas
(1978) apply modifications of (4.6) in their definition of the reduced
problem. We shall want to take advantage of the possible presence of al-
ready linear constraints and we shall want to distinguish equality con-
straints from inequality constraints. Thus we kormulate the problem (4.1)
in another way: renumber the constraints in such a way that the indices

i=1, ..., m correspond with linear equality constraints and

1

i =m1+1, ey m2

. n . . . .
collection of all x € E satisfying the linear constraints:

atx {Ztb,, i=1 ith E’, b, ¢ R
¥ o[ Pyri=1, -eos my, with a, € » b, €R.

with linear inequality constraints. Let L c En be the

T
a,x-b,=0,4i=1, ..., m,, and
(4.7) L := {x € o ; * 1 }
N a;x - bi >0, i= m1+1, el My
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2+1, ooy Mg and i = m3+1, ceer My for the nonlinear

equality and inequality constraints respectively, we denote by NL the col-

Further, using i = m

lection of all x € E" that meet the nonlinear constraints:

ci(x) 0, i-= m2+1, eeer I

3 and }
0, 1= m3+1, ceer My

(4.8) NL := {x € E

v

ci(X)

Then (4.1) - can be stated as

4.9) min F(x)

x € L n NL

Finally, the collection of all linearized nonlinear constraints, linearized

around X is given by LNL(xk):

Lc.(xk, x) =0, i=m+1, ..., m , and
2 3
(4.10) LNL (x,) := {x e EV + }
Lci(xk, X) 20, 1= m3+1, esey m4
Then Robinson's reduced problem is
My
(4.11) min F(x) + . bX Ai(xk)[Lci(xk,x) - ci(x)]
xeLnLNL(xk) 1=m2+1

Clearly the linear constraints (the indices i =1, ..., m2) do not contri-
bute to the objective function of the reduced problem. One of the proposed
algorithms in this chapter is to linearize merely the restrictions of the

current active set I(xk). Then the reduced problem becomes:

(4.12) min F(x) + b A,(x y[Le, (%, ,%) - c, (x)]
xeLnLNL(xk) ieI(xk) 17k 7% *

It is obvious that the active set strategy must define I(xk) in such a way

that the indices of all equality constraints belong to the active set:
{1, ..., ml} U {m2+1, ceey m3} c I(xk)
Note that both (4.11) and (4.12) have the property that a linearly con-

strained original problem equals its reduced problem, which means that the

solution of the original problem amounts to the solution of only one



61

reduced problem.

'In comparison with the reduction methods mentioned above, we also investi-

gated and implemented the following new aspects:

(1)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

The reduced problem is defined solely in terms of the objective

function and the constraints of the current active set;

The (non-)linearity of constraints is used explicitly;

The algorithm for linearly constrained reduced problems only tests

whether a constraint has to be droéped from the active set if:

a. the optimum with respect to the current active set is obtained;

b. accumulation of calculation errors forces a reinitialization of
the current inverse Hessian approximation.

c. changes in the active set occur.

The coupling of the applied so called phase I, designed to provide

us with a good starting point, and phase II (the algorithm to be

developed in this chapter) is discussed.

Suggestions to obtain a good starting point together with a good ini-

tial set of active constraints are discussed as well.

The code applied for linearly constrained nonlinear programming uses

Cholesky decompositions for the matrices Bk and NEHka (see Ballin-

tijn, Van der Hoek and Hooykaas (1978)).

The active set strategy required new updating formulae for updating

the Cholesky factors of N (see Ballintijn, Van der Hoek and

T
ki
Hooykaas (1978)).

Theoretical results on the convergence of the algorithm are presented.
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IV.2. Definition and solution of linearly constrained reduced problems

A general formfor a sequence of linearly constrained reduced problems
was given in (4.4) . Once the idea of linearization of the constraints is

accepted, the reduction method is characterized by the particular choice of

¢ (% /%) .

Rosen and Kreuser (1972) considered a linear penalty term for
¢ (%, /%) :
(4.13) Pxy,x) = L A (x)c;(x)

ielmﬁ

Their reduction method uses an analogous function ¢(xk,x) as Kelley and
Speyer (1970) used to improve Rosen (1961). Lill (1972) also applies a
similar function ¢(xk,x). In (4.13) the index set I(xk) consists of the in-
dices of all violated nonlinear constraints; but all nonlinear constraints,
linearized around Xy are kept (see (4.4)). In a computational study,
Van der Hoek (1978), we investigated an implementation of this reduction
method in which only the constraints of the current active set I(xk) con-
tribute to the objective function of the reduced problem, and only those
constraints are linearized. A further, extensive treatment of the back-
grounds of reduction methods based on the application of (4.13), their
convergence properties and computational results can be found in Kreuser
(1972) , Rosen and Kreuser (1972) and Van der Hoek (1978).

If we compare the reduction methods based on the application of
(4.13) with Griffith and Stewarts MAP-method we see that ¢(xk,x) should
give a compensation in the objective function for the effect of linear-
izing the constraints. Beale (1967) summarizes the geometrical backgrounds
as: 'the constraints are straightened out at the expense of the contours of
constant values of the objective function. If the latter contours are drawn

as broken lines, we must transform a problem looking as in figure 4.1.

Figure 4.1

into one looking as in figure 4.2.
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A motivation to move nonlinearities of constraint functions to the ob-
jective function is that essentiallymost algorithms for linearly con-
strained nonlinear programming apply adjusted (e.g., projected) uncon-
strained search directions. In this'way the experience with solving uncon-
strained nonlinear programming problems is applied. Problems that can arise
from the application of linearizations are illustrated by the following
simple example:
minimize x2 ~ 2x subject to 0 £ x £ 2. Solving this problem via successive
linearization - will always yield trial values of x at either the upper or
the lower bound imposed by stepsize limitations, which means that in es-
sence those stepsize limitations control the convergence. Applying linear
approximations to the same problem formulated as
minimize z subject to z 2 x2 - 2x, in which nonlinearities only occur in
the constraints, again requires stepsize limitations to converge (obvious-
ly a quadratic approximation of the objective function solves the problem
in one step).
Rosen (1963) showed that the geometrical transfdrmation illustrated in
figures 4.1 and 4.2 can be obtained algebraically using the shadowprices
on the constraints. In that way the nonlinearities in the constraints are
thrown into the objective function. By means of a counterexample he showed
that the trivial case ¢(kk,x) = 0 will not, in general, solve the standard
convex nonlinear programming problem: Rosen (1977).

A comparison of the first order Kuhn-Tucker conditions of problems

(4.1) and (4.4) suggests to look for functions ¢(xk,x) with the properties
(4.14) ¢(xk,xk) = 0 and Vx¢(gk,x)(xk) =0

The reduced problems (4.11) and (4.12) possess ¢-functions which meet these
requirements. while (4.13) does not!

The discussion so farcan be summarized in the following stepwise
description of reduction methods based on the application of (4.4), where

¢(xk,x) is still to be chosen, for instance from (4.11) or (4.12).
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Step 1. Set k := 0, Initialize variables.

Step 2. Arrived at x

(4

! find a first order Kuhn-Tucker point X of

.15) min F(x) + ¢(xk,X)

stnLNL(xk)

If X is not unique, choose the Kuhn-Tucker point which is clo-

sest to the preceding Kuhn-Tucker pointvxk.

Step 3. Apply convergence tests.

In case of non-convergence set k := k+1 and go to step 2.

Remarks

1.

We shall prove in theorem 4.7 that, if the algorithm is started close
enough to a Kuhn-Tucker point of problem (4.1), convergence is guaran-—
teed and will be R-quadratic, if ¢(xk,x) satisfies (4.11) or (4.12).

In this respect the algorithm possesses similar properties as the algo-
rithms of Robinson (1972) and Bré&uniger (1977).

If the original problem is linearly constrained, the algorithm requires
one major iteration as then the reduced problem equals the original pro-
blem.

If the original problem is a convex programming problem (both F(x),
¢(xk,x) and all —ci(x) are convex functions, while the equality con-
straints are affine), the reduced problem (4.15) is a convex program-
ming problem as well, as the Lagrange multipliers X(xk) of the inequa-
lity constraints are nonnegative for all k.

If L is compact, LNNL is a closed subset of the compact set L, so LNNL
is compact as well. Then a continuous function will attain a global mi-
nimum value F1 at some point x
5 € L N NL.

If Xy € L N NL, the nonlinear constraints are redundant. These

of L and a global minimum value F, at

1 2

some point x

minima are unique if F(x) is convex on a convex feasible region.
Linearization of concave, differentiable nonlinear constraint functions
ci(x) enlarges the feasible region. This follows directly from the fol--
lowing equivalent definition of concavity (see e.g. Zangwill (1969)):
the function ci(x), which is differentiable on‘En, is concave if and

only if
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16) < (x-x.) Ve, (x,) for all n
Ci(x) < Ci(xk) + X i By or all x, x € E
This means that ci(x) is concave if and only if
n
17) ci(x) < Lci(xk,x) for all x, X, €E

which is especially valid for all x € NL. This proves the remark. Note
that there are no restrictions on the choice of X . So we conclude that
linearization of the constraints of a feasible problem yields a feasible
reduced problem. What may happen in the case of linearization of an in-
feasible problem is illustrated in remark 7.

If we drop the requirement that all ci(x) should be concave functions

of x, linearization may yield an infeasible reduced problem from a fea-
sible nonlinearly constrained problem. This is illustrated by the fol-
lowing feasible problem with a nonconcave function ci(x). It shows that
LN LNL(xk) = ¢ may occur in this situation.

Consider the following constraint set:

< %}
x-x 20} ={x|x<-1}uix]o

IA

x <1}

&
i

Lam) ~

X X
1
N
IN

=
=
i

Then c(x), which defines NL is not concave on E1 and NL is not connected.
The feasible region is: LN NL = {x | -2 < x < -1} u {x | 0 < x < %},
From Lc(xk,x) = 2xi - 3xx§ + X, we obtain as linearized constraint
Le(-%, x) 20 : x 21,

x| -2<x<un{x]|x21}

=¢

So linearization around this infeasible point x

Then L N LNL(-%)

(x, € L, Xy ¢ NL)

yields an empty linearized constraint set. Fromka ftrther analysis of
this example we can see that infeasible linearized problems can arise
both from points X €L and X, ¢ L.

An infeasible problem with a concave differentiable function c(x) may
lead to both feasible and infeasible linearized constraint sets,

This is illustrated by the following example:
L o= {x | 22xs10)

2
NL := {x | 1 - x* 2 0}, Then L n NL = ¢.
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2 .
Linearization of the constraint function c(x) = 1 - x yields

2
Lc(xk,x) = —2xkx + xk + 1

The choice X, = % leads to
INL(%) = {x | Lc(q,x) 2 0}
5
= < = .
{x | x< 7}
We see that L n LNL(%) = ¢: linearization around an infeasible point

that satisfies the nonlinear constraint yields an infeasible reduced

problem.
The choice X = 4 leads to
LNL(4) = {x | Lc(4, x) 2 0}
17
= {X | X = —8—
3 17 . .
and L n LNL(4) = {x I 5 < x < 5 }: a nonempty feasible region for an

X € L whereas L N NL
Remarks 6 and 7 illustrate the necessity of the requirements of remark
5 to guarantee feasible reduced problems. The question now arises

what will be the best strategy for choosing the points Xy . The importan-
ce of this question is even greater when we reflect that in practi-

cal, real-life problems the situations sketched in remarks 6 and 7

is

really occur. That is why we decided to require X € L NNKL, i.e. Xy

feasible for feasible problems.

Then

=g > i
Lci(Xk,xk) ci(xk) 0 for all i,

independent of the concavity of ci(x), so xp is feasible with respect
to the linearized constraints as well and consequently L N LNL(xk) # ¢.
Generally during the iteration process infeasible points might be ge-
nerated, so some restoration-procedure should be available to move back
to the feasible region. Examples of such restoration procedures can be
found in Gruver and Engersbach (1974, 1976), de Jong (1977) and Van der

Hoek (1978) . The implemented procedure is described inch. V.
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9. As mentioned in remark 1, the starting point must be 'close enough' to
the solution. That is why an initializing, so called 'phase I', proce-

dure is incorporated.

Phase I generates an acceptable starting point. It amounts to solving

the problem

(4.18) min F(x) + P(x)
XeL

where P(x) is an exterior penalty term which is defined by

m m
3 : 2 4 _ 2
(4.19) P(x) = tk[ T [ci (x)1° + = [ci(x)] ]
i=m2+1 i=m3+1

In this definition tk > 0 is a penaltyparameter whose choice will be

discussed in section 7, while c;(x) is defined by

3

(4.20) c;(x) = min[ci(x), 0], for all x, i = m,+1, ..., m,

The solution of the phase I step defined by (4.18) requires the
use of an algorithm for linearly constrained nonlinear programming

which is required in phase II of the algorithm as well.

With these remarks this section on the definition and solution of linearly
constrained subproblems is completed. Our next task is to investigate the

relations between the Kuhn-Tucker points of the original- and the reduced

problems.
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IV.3 Relations between the first order Kuhn-Tucker conditions of the

original- and the reduced problems

As the properties to be discussed in this chapter only depend on the
fact whether a constraint is an equality or an inequality constraint, and
not on its being linear or not, we prefer to return to the original problem
formulation (4.1) in which we renumber the constraints in such a way that
the indices i = 1, ..., p correspond with the inequality constraints while
with i = p+l, ..., m the equality constraints are meant.

Thus we get as problem formulation

min F(x)
bject t
(4.21) subjec o
ci(x) 20 i=1, ..., p
ci(x)=0 i=p+l, ..., m

The Lagrangian function associated with problem (4.21) is:

p m
(4.22) L(x,u,v) = F(x) - L u,ci(x) - I v.c, (x)

i=1 * i=p+1
where ui, i=1, ..., p, and Vi' i =p+l, ..., m denote the Lagrangian

multipliers of the inequality and equality constraints respectively.

The first order Kuhn-Tucker conditions for problem (4.21) are:

(4.23) VxL(x,u,v) =0

(4.24) uici(x) =0 i=1, ..., p
(4.25) ci(x) =0 i=p+l, ..., m
(4.26) ci(x) 20 i=1, ..., p
(4.27) u, 20 i=1, ..., p

We shall denote the first order Kuhn-Tucker points of (4.21) by

n-+m . . +m.
z = (x,u,v) € E or, at iteration k, by z = (xk,u ,vk) € En n

k k
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In this notation the conditions (4.23) - (4.25) can be studied in

+ +
terms of a mapping f : g?® 5 g given by the following

- p : m —
DEFINITION VF(x) - Z uVe,.(x) -ZL v,V c.(x)
X . ixi . x i
i=1 i=p+1
ulcl(x)
£ 2 =
(4.28) £(z) upcp(x)
cp+1(x)
L cm(X) -

The following lemma is clear from the definition of £f(z)

LEMMA 4.1
+
z e V" is a first order Kuhn-Tucker point of (4.21) if and only if

f(z) = 0 and (4.26) and (4.27) are satisfied. 0

This approach to the first order Kuhn-Tucker conditions by means of
f(z) was first followed by Mc Cormick (1971) who pointed out that
sz(zk) is nonsingular and I!sz(zk)—ll‘exists if 2, satisfies the second
order sufficiency conditions of problem (4.21) with strict complementary
slackness of ui and ci(x) fori=1, ..., p.

If we state the kth reduced problem in a formulation analogous to

the original problem we get

min F(x) + ¢(xk,x)

(4.29) subject to
Lci(xk,x) 20 i=1, ...,p
Lci(xk,x) = i=p+tl, ..., m

with the additional requirement (4.14):

¢(xk,x) = 0 and Vx¢(xk,x) =0 at x = xk.'
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The Lagrangian function associated with (4.29) is

p
(4.30) L' (xeuyv) = F(x) + ¢(x.,%x) - .Z ukliLci(xk,x) +
m i=1
T z vk,iLqﬂxk,x)
i=p+1

with as Lagrangian multipliers i i,i =1, ..., pand v i = p+l,
’

k,i
for the inequality and the equality constraints respectively.

The first order Kuhn-Tucker conditions of (4.29) are

(4.31) v L' (x,u,v) =0
e T _
(4.32) uk,iLci(xk,x) =0 : uk,i{ci(xk) + (x=x)) chi(xk)} 0
i=1, ..., p
(x-x )V c. (x,) = 0
(4.33) Lci(xk,x) =0 ci(xk) + (x-x Xci %) =
i=p+tl, ...,
(4.34) Le, (x,x) 2 0 s e (x) + (xx )TV e, (x) =0
: Gy Eprx) = 2oy tE k) VxS T
i= 1l «eer P
(4.35) U, 20 i=1, ..., p

Note that in the reduced problem (4.29) all nonlinear constraints are

linearized. As it is our intention to linearize only the nonlinear

ey I

constraints of the current active set, we shall only pay limited attention

to the relations between the Kuhn-Tucker points of problems (4.21) and

(4.29) . Anticipating on the discussion below we merely mention here the

following proposition.

PROPOSITION 4.1 )

If z, = (x

k kK’

vk) is a regular Kuhn-Tucker point of (4.21) and if

strict complementary slackness holds in both (4.24) and (4.32), then

zy is also a regular Kuhn-Tucker point of (4.29) as well.

Proof:

VXL'(x,u,v)‘= VEE + VX¢(xk,x) - I u

. iVXLci,(xk,x) +
i=1 -
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m

- ._§+1 vk,iVXLci(xk,x). (4.14) gives VX¢(xk,xk) = 0 and

- 3 L}
Vchi(xk,x) = chi(xk) hence it follows that VXL (xk,u,v)

P m
=V FG) - Lo Ve ) Doy V0 000 = VL0 ).
i=1 i=p+1 v

As Zy is a regular Kuhn-Tucker point of (4.21) under the strict
complementarity assumption we know that the Lagrangian multipliers
uk,vk are uniquely determined by VXL(xk,u,v) = 0 and (4.24) which
means that VXL'(xk,uk,vk) = 0; the validity of the remaining condi-
tions (4.32) - (4.35) follows directly from (4.24) - (4.27) , while

the regularity of z, with respect to (4.29) is a consequence from its

k
regularity with respect to (4.21). O

For the special case that ¢(xk,x) is defined by (4.6) this proposition

extends to the following theorem.

THEOREM 4.1 (Robinson, 1972)

Let all problem functions be differentiable. Then the following
statements concerning a given point (x*,u*,v*¥) are equivalent:
(1) There exist u € BP, v ¢ B P such that (x*, u*, v*¥) satisfies

the Kuhn-Tucker conditions for (4.29) with X = x¥,

(ii) (x*, u*, v¥) satisfies the Kuhn-Tucker conditions for (4.21)

(iii) For every u € ®F and every v € RQ_P, (x*, u*, v¥*) satisfies

the Kuhn-Tucker conditions for (4.29) with x, = x*,
The proof of this theorem is clear from the definition of the
Kuhn-Tucker conditions above. 0
Proposition 4.1 and theorem 4.1 mean that as soon as the primal variables
X of a Kuhn-Tucker point of (4.21) are identified, there exist dual va-
riables uk, Vk such thgt zk
of the correctness of the dual variables applied in the definition of the

solved the next reauCed problem, independent

reduced problem.

Just as in problem (4.21) , the first order Kuhn-Tucker conditions
+
of (4.29) can be described in terms of a mapping d(zk,z) from En n into
+
ET®, For an arbitrary'zk = (xk,uk,vk) this mapping is defined as follows

for z = (x,u,v):
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DEFINITION VXL| (x,u,V,)
Hk,chl(Xk’X)
(4.36) d(zk.z) = uk,chP(xk,x)
I:Cpﬂ(xk,X)
i Lcm(xk,x) |
r b
VXF(x) + VX¢(xk,x) - iil uk’iVchéxk,x)
My, 156 (X rX)
= uk’Pch(xk,x)
ey (e
I Lcm(xk,x)
- o n
VXF(X) - .Z uichi(x) - -Z v,VXc,(x)
i=1 i=p+1
ugcy(x)
= c
uP P(X)
cp+1(X)
c_ (x)
L m

i=p+1




—Vx¢(xk,x) - 'g uichi(x) + .g uk'ichi(xk) + ]
i=1 i=1
m ‘ m
- iip+1 vichi(x) + iip+1\)k,ivxci(xk)
) upCq (x) =y Loy ()
;pcp(x) - uk'chp(xk,x)

Cprt (X = Ley (g rx)

ém(x) - Lo, (%, ,%)

This means that
(4.37) a(z ,z) = £(z) - ¥(z) ,2)

where W(zk,z) follows from the equation above. In the case of Robinson's -

reduction method (see e.g. (4.6)) this gives rise to

p : m 7
I gmudVoe, Gg) o+ Ty =y Ve ()
i=1 i=p+1
ujey () = B Loy (% ,%)

(4.38) d(z,,2) = £(2) -] :
upcp(x) - uk'chp(Xk,x)

St (9 7 Ty Gy )

cm(x) - Lcm(xk,x)

which can be interpreted as a relation expressing the difference between
the Kuhn-Tucker condition of problems (4.21) and (4.29).
In an analogous way as for f£(z), we can formulate from the definition of

d(zk,z) a lemma on the first order Kuhn-Tucker points of (4.29):

LEMMA 4,2

z € En+m is a first order Kuhn-Tucker point of (4.29) if and only if
d(zk,z) = 0 and (4.34), (4.35) are satisfied.

We shall denote by S(zk) the collection of all first order Kuhn-Tucker
points of (4.29). Hence S(zk) is defined by:

73.
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(4.39) S(zk) := {z € Rn+m [ d(zk,z) = 0 and (4.34),(4.35) are satisfied}

The relation between the first order Kuhn-Tucker points of problems (4.21)

and (4.29), as given in proposition 4.1 now extends as follows:

PROPOSITION 4.2

The Taylor expansions around z, = (xk,uk,vk) of f£(z) and d(zk,z) are

equal up to second order terms if we use Robinson's ¢(xk,x) proposal
b m
¢ (x, /%) = iil uk’i(Lci(xk,X) -c;x) + L

. (Le, (x, ,x) - ¢, (x))
i=pt+1 ik i

vk,l
Proof:

Clearly . the proposition relates the first order Kuhn-Tucker condi-

tions of problems (4.21) and (4.29). The reduced problem (4.29) is
i 4.2 i = i

derived from ( 1) after the point 2z (xk,uk,vk) is reached.

Where necessary we shall denote the p elements of the Lagrangian

vector uk by uk,i and the (m-p) elements of v, by v, it The Lagran-

k
gian coefficients of the reduced problem are again denoted by uk i
r

v .
and K, i respectively.

From the Taylor expansions
T .
f(z) = f(zk) + (z—zk) sz(zk) + ...

and
_ T
d(zk,z) = d(zk,zk) + (z zk) Vzd(zk,z)(zk) + ..
we see that we have to prove:

(1) f(Zk) = d(Zk,Zk)
(ii) sz(zk)= Vzd(zk,zk) which means

(iia) fo(zk) = de(zk,z) (zk)
(iib) Vuf(zk) = Vud(zk,Zszk)

(iic) va(zk)

Vvd(zk,z)(zk)

Relation (i) follows immediately from (4.38).

For (iia) we oObserve:



fo(zk)

de(zk,z)(zk) =

-

72 F(x) Y w vle )
xx Tk . ki xxi Pk
i=1
Y, 1 V%% %)
v
uk,p xcp(xk)
Yxcp+1(xk)
_chm(xk)

2 2
v F(x ) +V X¢(xk,X)(xk)

uk v, ke (xk,X)(xk)

V Lc

P X (xk,x)(xk)

VECpr1 Ky r¥) (%)

u

_Vchm(xk,x)(xk)

.

From the definition of ¢(xk,x) we see

2
Vxx¢ixk,X)(xk)

which, together with Vchi(xk,x)(xk)

yields fo

p .2
_121 Y, i xxCi %k

(z,) = de(zk.Z)(zk).

m 5 T

z v, .V c. (x )

. k,ixx i
i=p+1

and

m

z k lVchl(x )

i=p+1

= chi(xk) for i =1,...,m

The proof of (iib) follows directly from (4.28) and .(4.36). Indeed

“f
u, (zk)
1

combined with Lci(xk,xJ(xk)

V.05 0]

ad(zk,z)

O +se 0O

qu,
i
ci(xk)

OO

(zk)

VS (%)

OO

(xk,x)(x )

oo B

= ci(xk) for all i.

Finally (iic) follows from (4.28) and (4.36) again:

75
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—chi(xk) —chi(xk)
9 od(z, ,2z) 9
of (z.) = - k" (z.) = .
Bvi k 0 avi k 0
0
COROLLARY
sz(z) = Vzd(z,z) for all z € En+m.
Proof:

This corollary restates part (ii) of the preceding proof. Note that
the proof is purely formal and hence independent of the fact whether

z is a Kuhn-Tucker point or not.

Remark

In terms of the original problem formulation this result can be in-
terpreted as follows: For this ¢(xk,x) the quadratic approximations of the
Lagrangian functions L(x,u,v) and L' (x,u,v) associated with the original
problem (4.21) and the reduced problem (4.29) respectively, are identical
in a neighbourhood of 2y € En+m_

Linearizing the first order Kuhn-Tucker conditions is also the key
of Wilson's reduction method, Wilson (1963). It then solves those linear-
ized conditions using Dantzig's version of Wolfe's quadratic programming
algorithm. The main disadvantage of Wilson's method is that it requires

repeated calculation of second derivatives. This makes it less attractive.

Robinson (1972) stated a number of properties relating f(z), d(zk,z)
and their respective gradients in a neighbourhood of a Kuhn-Tucker point
z* of the original problem (4.21). These we state without proof in the
theorem below. Note that in z* we have f(z*) = 0, sz(z*) is nonsingular.
We set B = ||sz(z*)_1||. There exists an open neighbourhood of z* in which
z* is the unique solution of £(z) = 0, hence z*¥ is tbe locally unigue Kuhn-
Tucker point of (4.21). The following shortened notation will be used from

now on: Vzd(zl,z2)== Vzd(zllz)(zz)-
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THEOREM 4.2 (Robinson (1972))

If all problem functions are twice continuously differentiable in an
open neighbourhood 0 (x*) of x*, there exist constants r > 0 and M > 0
such that z* is the unique solution of £(z) = O in the closed ball

B(z*, %r) with radius %r about z*. Moreover for any 2,12, € B(z*,r)

2
with u; as Lagrange multipliers of the reduced problem, we have

@ |1v,a(z,,2,) - Va9 |] < a7

s 2
i) |[fzy) - alz,z) || < M|z, - 2]

cas * . .
(iii) ci(x ) > 0 implies Lci(xl’XZ) >0

(iv) uz > 0 implies My >0
a

This theorem of Robinson will be applied in the comparison below of Kuhn-
Tucker points of the original problem and of equality constrained reduced
problems. It-turns out to be a fundamental theorem. First we mention
that a simplified problem is obtained from (4.21) if the constraint set is
reduced to a set of equality constraints ci(x) whose index i belongs to a
currently defined active set I(zk). Usually this active set I(zk) consists
of all equality constraints, the currently binding inequality constraints
and the inequality constraints that are expected to be binding at the next
iteration point.

For example the algorithm to be described now features an active set
I(zk) which consists of all equality constraints and a selection of linear
and nonlinear constraints containing at least the binding constraints.
This means that i ¢ I(zk) corresponds with Céﬁk) > 0. Thus we consider the

reduced problem
min F(x)
(4.40) subject to
ci(x) =0 for all i € I(zk)

The first order Kuhn-Tucker conditions of(4.40)are:

(4.41) V(F(x) - v.c,(x)) =0
X . i’i
l€I(Zk)
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(4.42) ci(x) =0 ie I(zk)

where Vi ie I(zk) is the Lagrangian multiplier corresponding to ci(x) = 0.
The equality constrained problem (4.40) can be solved using the reduced

problem

min F(x) + § (x, 1 %)
(4.43) subject to

Lci(xk,x) =0 for all i ¢ I(zk)
with the following first order Kuhn-Tucker conditions:

(4.44) VX(F(X) + ¢(xk,X) - 'Z Vk,iLci(xk,x)) =0
l€I(Zk)

(4.45) Lci(xk,x) =0 ie I(zk)

Analogous with the definition of's(zk) as the collection of Kuhn-Tucker
points of (4.29), we define S(zk, I(zk)) to be the collection of all solu-
tions of the Kuhn-Tucker conditions of problem (4.43).

If I(zk) contains all equality constraints and all inequality constraints

with positive estimated Lagrange multiplier (if x_ is close enough to x*

this estimate has the correct sign), then conditigns (4.41) , (4.42) arise

f£9m44.23)-(4.27).1he estimated multiplier can have the wrong sign if X
is remote from x*. For the linearized, reduced problems similar relations

apply for the conditions (4.44), (4.45) as compared to (4.31) - (4.35).

Our next point of interest is to find relations between the solution sets

S(zk) and S(zk, I(zk)). The next two lemma's contain mutual inclusion

relations.

LEMMA 4.3

= {4 ¥) =0, i = ; -
If I(Zk) := {i | ci(x ) 0, i 1, ..., m} with uk,i 0 for all

id I(zk) at a point z_ € B(z*,r) with S(zk, I(zk)) c B(z*,r) and

k
strict complementary slackness in (4.24) , then S(zk,I(zk)) S S(zk).

Proof':

By definition Zpaq € S(zk, I(zk)) satisfies (4.44), (4.45) - These

equations can be extended to (4.31) , (4.32) , (4.33) using W ; =0
4
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for all i ¢ I(zk). To prove (4.34) we remark that, using (4.45), we
only need to consider indices i ¢ {1, ..., p} - I(zk) which corres-
pond to inactive inequality constraints. Then from Zp 124 € B(z*,r),

ci(x*) > 0 and theorem 4.2 (iii) we know that Lci(x ) > 0, hence

KX
(4.34) is satisfied.

Finally (4.35) is true for all i ¢ I(zk) by the definition uk,i =0
for these i. For i € I(zk) equation (4.45)gives Lci(xk,x) = 0, which
implies ci(x*) =0 (ci(x*) < 0 violates the K.T. conditions at x* and
ci(x*) > 0 contradicts Lci(xk,x) = 0 by theorem 4.2 (iii)).

But this means u; > 0 (strict complementary slackness in (4.24))
which again implies uk,i > 0 (theorem 4.2 (iv)). Thus (4.35) is proved
and hence the lemma.

]
LEMMA 4.4

If I(zk) .= {i | ci(x*) =0, i=1, ..., m} for a point z, € B(z*¥,r)

with S(z I(zk)) c B(z*,r) and strict complementary slackness in

k'
(4.24) and (4.32) , then S(zk)"c S(zk, I(Zk))-

Proof:
We have to prove (4.44), (4.45) for zk+1 satisfying (4.31)- (4.35).
For 1 <i <pand i ¢ I(zk) we have
ci(x*) >0 (definition of I(z,))

so that Lci(xk, X ) >0 (theorem 4.2 (iii))

k+1

and =0 (strict complementary slackness in (4.32)).

M, i

Then (4.44) follows from (4.30), (4.31) and the substitution Me i = 0
r

for nonbinding inequality constraints.

As (4.45) obviously applies for equality constraints, we only need to

consider indices 1 < i < p with i € I(zk). Then

ci(x*) =0 (definition of I(z,))
which yields uz >0 (strict complementary slackness in (4.24)).
but then uk,i >0 (theorem 4.2 (iv))
and chi(xk'xk+1) = 0 (strict complementary slackness in (4.32)

which completes the proof of (4.45) and the proof of the lemma.
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When comparing lemmas 4.3 and 4.4 we see that beside the strict complemen-
tary slackness the definition of the correct set I(zk) is of importance.

The lemmas can be summarized in a corollary:

COROLLARY

S(Zk) = S(zk, I(zk)) if z, € B(z*,xr), S(zk,I(z*)) c B(z*,r) under

k
strict complementarity in (4.24) and (4.32) and

I(z) :={i | c;(x*) =0, §= 1, ..., m}.

Proof:

The proof is obvious from the lemmas 4.3 and 4.4.

How stringent or unrealistic are these conditions?
The required strict complementary slackness means that there should be no
weakly active constraints, a condition imposed on the problem considered,
that can be met (in case of violation) by suitably perturbing weakly
active constraints, though this will generally give very small values ofr.
Further z, € B(z*,r) can be realised by a preceding so-called phase I pro-
cedure which yields a starting point close enough to z*. In practice the
correctness of I(zk) is usually obtained after a few iterations, unless
zigzagging occurs. This means, given a phase I procedure, that the condi-

tions of lemmas 4.3 and 4.4 are not unrealistic.

IV.4. Convergence of sequences of Kuhn-Tucker points

+m n-+m .
to E were in-

In section IV.3 the mappings f(z) and d(zk,z) from E"
troduced. A further investigation of the algorithms considered requires
properties of the operators f(z) and d(zk,z) as presented in Ortega and
Rheinboldt (1970) and Kantorovic and Akilov (1964). In these statements
J[z]l will denote the Euclidian norm. It is easy to see, however, that.the
results remain valid for any norm on Rp+m. Note that though we use point-

to-set maps below, the resulting implementations will define uniquely the

+
next iteration point. Let X  and X be subsets of En o with X < X, where

0 - 0
X is assumed to be bounded.
DEFINITION
. + + .
A mapping A : X © En oo En n is called nonexpansive on a set

XO € X if A(z) is unique for all z ¢ XO and
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(4.46) ||A(zl) - A(22)|| < ||z1 - Zzll for all Zi12, € XO

and strictly nonexpansive on X, if strict inequality holds in (4.46)

0
whenever zy # z,e

This definition means that a nonexpansive mapping on X is Lipschitz-conti-

nuous on XO.

In general A may be a nonlinear operator on X c En+m. Examples are f(z)
and d(zk,z), with the domain X being the feasible regions L n NL and
Ln LNL(xk) respectively.

Another example of such an operator on E” is provided by the algorithm
given by (4.15) which, starting from zk = (zk, u vk) defines the next

iteration point z as a certain Kuhn-Tucker point of the reduced problem.

k+1

In this example the uniqueness of z is established by an additional

k+1
requirement, which makes the mapping deterministic. Removing this addi-

tional selection rule yields a non-deterministic mapping, which therefore

does not necessarily determine z uniquely.

k+1
Special points of interest are fiwxed points z * € X of A which are defined

by

(4.47) z¥ € A(z¥)
which means

(4.48) z¥ = p(z¥)

for a deterministic mapping.

LEMMA 4.5 (Banach)

+m +m P " .
If A: XCEn - En is deterministic and strictly nonexpansive on

Xg © X then A has at most one fixed point.

Proof':

Let us assume that there exist two distinct fixed points zT and

*
22 € XO.

Then:

[zt - 22 1] = laen - aepl] < |2 - 22|

which is a contradiction.
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However, Ortega and Rheinboldt (1970) show by a counterexample that strict

nonexpansivity is not sufficient to guarantee the existence of a fixed

point.

That is why (4.46) is strengthened.

DEFINITION

(4.49)

+m n+m . .
> E is contractive on a set X. c X if

A mapping A : X C E" 0

there exist an a, 0 < o <-'1 such that

z, € X

llA(Zl) - A(zz)ll <a ||z - z2l| for all z,.0 2, 0

1
From (4.46) and (4.48) we see that a contractive mapping is strictly
nonexpansive and, as a consequence, Lipschitz continuous with at
most one fixed point. The existence of a fixed point of a contrac-

tive mapping is given by the perhaps best known fixed point theorem:

THEOREM 4.3 (Banach, contraction mapping theorem)

Proof:

(4.50)

+ +
IfA: Xc En R En m is contractive on a closed set XO c X and
A(XO) c XO then A has a unique fixed point in XO'

Choose z, € X, arbitrarily and define the sequence {zk} by

0 0
Zk=A(zk—1) s k=1,2, ... .
From A(XO) c XO we know that zk € XO for all k=1, 2, ....

Further there exists an 0 < a < 1 such that

llzk+1 - zkll = ||A(zk) - A(zk—l)ll j_a}lzk - zk—1||’ which
yields

. -1
sz+p Szll s oz, gl s @® ot [z -z ]

i=1

ilaTa,Hzl - 2|
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From (4.50) we see that {zk} is a Cauchy sequence in the closed

set X , so it has a limit z* € X with image A(z*). Then the

0’ 0
continuity of A implies lim A(zk) = A(z¥)
K>
thus z*¥ = A(z*) : z* is a fixed point of A:

O
Further generalizations of the contraction mapping theorem and conditions

to ensure A(XO) © X, can be found in e.g., Ortega and Rheinbold (1970),

Istratescu (Fixed Pgint Theory, an Introduction,1980,to appear),

The properties derivedvabeve are necessary to prove a proposition
which originates from Robinson (1972) and which guarantees under weak con-
ditions that if the iteration process given by (4.15) is initiated in a

point z_ close enough to a Kuhn-Tucker point z* of (4.21) then the reduced

k

problem (4.29) defined in z,_ yields a unique Kuhn-Tucker point z

+
close to Zk' hence close fokz*. An extepsion of this propositionkté a
reduction method which applies purely equality constrained reduced

problems will be used to prove a theorem on the convergence and the rate

of convergence of this reduction method. The proof is a slight modification
of Robinson's proof.

PROPOSITION 4.3

If both (4.21) and (4.29) satisfy strict complementary slackness,
the problemfunctions are twice continuously differentiable,

z_ € B (2%, L%r) such that 4B||f(zk)|| < r and z* is a Kuhn-Tucker

k
point satisfying the second order sufficiency conditions for (4.21)

then there exists a point =z € B(zk, Lr) such that z is the

k+1 k+1
unique Kuhn-Tucker triple of (4.29)defined at z, such that
Nz, - 2] < 28] 1£(z0 ||

Proof':

First we note that E(zkl%r) c B(z*,r)
as z, e B(z*,%r) .
Then theorem 4.2 (i) gives

-1
||Vzd(zk,z) - vzd(zk,zk)ll < (2B)

for all z € E(zk,%r)o
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Now we define a mapping T on ﬁ(zk,%r) by
T(z) s =z -V £(z%) " dlz, ,z).
z k

Then T is differentiable and since sz(z) = Vzd(Z:Z)

(corollary 1 of proposition4.2) for any z we have
V,T(z) = I - vzd(z*,z*)’1 v,z ,2)
= Vzd(z*,z*)—1 [Vzde*.Z*) - Vzg(zk’Z)]"
Hence

v, 2@ || < |]7,a0%297"

|Vzd(zk,zk) - Vzd(zk,z)ll

< 8.2 " =% (recall that by definition B =||vzd(ztzﬁ)"1”)

Using the mean value theorem 3.2.3 of Ortega and Rheinboldt (1970)

this implies

(4.51) IIT(zl) - T(zz)ll < %Ilzl - 22|| for all z, 6,2z, € g(zk,%r).

1'%2

hence T is a contraction on ﬁ(zk,%r).

-1
From llT(zk) - zk|l =. [{—sz(x*) d(zk,zk)ll

IA

8 1z |

r_
B i hr

IA

and (4.51) we conclude that

T2y =z | < [lT) - ) || +]]T(z) - 2]

<3 llz - zkl| + Y4r
SLkr + 4 = %r for all z e ﬁ(zk,%r).

which means that T(z) € ﬁ(zk,%r) for all z € ﬁ(zk,%r).
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Now all requirements of the contraction mapping theorem are met,

so T has a unique fixed point z € ﬁ(zk,%r).

k+1

For zk+1 we have:

‘ -1
ey - 2l | = mez) - 2 l] 5 110,60 a2 =

IA

8) If(zk') |l < 28] |£(z) ]

It remains to be proved that z

_ is the unique Kuhn-Tucker point
of (4.29) in B(zk,%r).

k+1

Following lemma 4.2 we have to show that (4.34) and (4.35) are met
for all i, and d(zk,zk+1) = 0.

As there is a one to one correspondence between the fixed points of
T(z) and the zeros of d(zk,z) uniqueness is allright and it remains

to verify that =z satisfies (4.34) and (4.35). Consider ci(x).

k+1
Then, as x¥ satisfies the Kuhn-Tucker conditions, either

c.(x*) > 0 or c, (x¥) = 0.
1 1

Iif ci(x*) > 0,

we know
Lci(xk,xk+1) >0 (theorem 4.2 (iii))
and
ui = uk ;= 0 - (strict complementary slackness)
’

we know

u: >0 (strict complementary slackness)
and

uk,i >0 (theorem 4.2(iv))

which yields

Lci(xk,xk+1) =0 (strict complementary slackness)
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Hence uk,i > 0 and Lci(xk,xk+1) > 0 for all i and the lemma is

proved.

This proposition guarantees the existence in ﬁ(zk,%r) of a unique Kuhn-
Tucker point of the reduced problem (4.29). The next proposition extends
this result ;n that it shows that under certain conditions, this point
zk+1 € S(zk,I(z*)): to find zk+1 it suffices to solve(a smaller reduced
problem, with only equality constraints. Note that propositions 4.3 and
4.4 only concern the case that ¢(xk,x) is defined by (4.6).

'

PROPOSITION 4.4

Let z* be a regular point, satisfying the sufficient 2nd order Kuhn-
Tucker conditions of (4.21), under strict complementary slackness in

(4.24) and (4.32). If z_ € B(z*, %r) with 4B||f(zk)|| < r and

k
I(z,) = {i | ci(x*) =0, i=1,...,m}, then there exists a unique

; - *
zk+1 € B(Zk' Lr) with zk+1 € S(zk) = S(zk, I(z*)) and

gy - 7 M1 s 28l |ez ]

Proof:
Proposition 4.3 implies the existence of a unique Zp4q € B(Zk' Lr)
- <
such that Z 1 € S(zk) and ||zk+1 zkll < 2B|lf(zk)|f.
Under the conditions Zk’ zk+1 € B(z¥,r) and strict complementary

slackness, we conclude from the proofs of lemmas 4.3, 4.4 that
s(zk) = S(z,, I(z*)) which gives the lemma.
0
The next propositions 4.5, 4.6 demonstrate that under the same assumptions

at z, and assuming that I(z*) is known it suffices to solve the equality

k
constrained reduced problem (4.43) with I(zk) = I(z*¥) to obtain the next
iteration point 2y Thus the question remains how to recognise the set
I(z*¥) = {i l ci(x*) =0, i=1,...,m} at zk # z¥? A more thorough discus-

sion on the determination of the correct active set is postponed to section
Iv.5.

For a given arbitrary index set I, , the following result can be proven,

0
where this time ¢(xk,x) can be any function which is continuously different-
iable and satisfies (4.14). The proposition is an extension of a theorem

of Brauniger (1977).
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PROPOSITION 4.5

If all problem functions and ¢(xk,x) are continuously differentiable
and the sequence {Ek}converges to z and:

iiﬂ{z e;?g . )|lzk+1 - Ek+1||} = 0 then z is a Kuhn-Tucker point
k+1. k70

of the reduced equality constrained problem (4.40) with I(Ek) = IO'

Proof:

First note that the proposition is formulated in terms of an arbitra-

ry sequence {Ek} with lim Ek =2z . Let Zp be the element of
= s ko . =
S i i -
(zk, IO)_deflned above which rfallzes 1TTl|zk+1 sz1|l for
z € S(z,,I.). Then lim z,_ = z and lim| |z, .-z = 0 yields
+
'kpl —k 0 Kreo k Jereo . k+1 “k+1
lim zk = z. Then the Kuhn-Tucker conditions (4.44) and (4.45) yield
ko
for z = :
or I(Zk) Io
(4.52) Lci(xk,x) = 0 for all i € IO
and
(4.53) Vx(F(x) + ¢(xk,x) + 'Z viLci(xk,x))= 0
1610

Substituting z = Zk+1' and using (4.14), (4.52) and (4.53), the conti-
nuity of all functions and their gradients and the convergence of the

sequence {zk} yields:

(4.54) c,(x) =0 for all i € I
i 0
and
(4.55) VF(X) = % V.V c,(x)
X . 1 X 1
1610

which proves the proposition.
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REMARK

Brdunigers theorem concerns the function ¢(xk,x) as-defined in (4.6).
For the special case that ¢(xk,x) is defined by (4.6) propositions 4.4 and
4.5 uniquely define a sequence converging to the point z*¥. This is proved

in the next proposition.

PROPOSITION 4.6

If the conditions of propositions 4.4 and 4.5 are met and

lim zk = z*, a solution of (4.21), then z* is a Kuhn-Tucker point of
k>* the problem (4.40) with I(z,) = I(z%) viz. min F(x) subject to
ci(x) =0 for all i e I(z*).

Proof:

Starting from a z. which meets the requirements of proposition 4.4,

0

the sequence {zk} with z = S(zk,I(z*)) is uniquely determined and

k+1

satisfies ||S(zk,I(z*)) = 0. Hence proposition 4.5 can be

= 2|
applied and we are done.

The meaning of this proposition is that though in practice z* and I(z¥*)
are unknown, the algorithm still generates sequences {zk} and {I(zk)}
which can be proved to converge to a Kuhn-Tucker point z¥* of (4.21) and
I(z*) respectively.

To prove this a more general approach by means of point-to-set maps will
be followed. It will turn out to be possible to prove that under suitable
conditions the sequence of iteration points generated by the algorithm
converges to a fixed point of a point-to-set mapping which characterizes
the algorithm. This point will turn out to be a Kuhn-Tucker point of the
considered problem. This theory will be followed by a proposition on
Kuhn-Tucker points of the original and reduced problems. The ultimate

convergence properties are considered in section IV.6.

This approach to obtain an algorithm via point-to-set maps originates from
Zangwill (1969). Later Polak (1971), Luenberger (1973), Meyer (1979) and
others followed Zangwills approach in describing'algorithms and investi-

gating their properties.
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We need some definitions and results which are summarized in Meyer (1979).

+ n+m
We assume z € En o and that A acts on E .

+
Let X and Y be subsets of ER m.

DEFINITION

A point—-to—set map A from X to Y is a map which associates a subset

A(z) c Y with each z ¢ X.

+ -
We shall assume that X c En n is closed, for instance X = B(z¥,r):
the closed ball with radius r around the Kuhn-Tucker point z* of (4.2).

Then given a point z. € X, and X = ¥, an algorithm is defined by any

0
scheme of the following type:

(4.56) Step 0. Set k = 0

Step 1. Pick a point z € A(zk)

k+1
Step 2. Set k = k+1, and go to step 1.

In this scheme no stopping rule is included (only infinite sequences

are generated). This algorithm (4.56) is called non-deterministic

(Zyq
pendent of k).

may be chosen arbitrarily in A(zk))and autonomous (A is inde-

DEFINITION

The characteristic set C of algorithm (4.56) is the set of all
z € X such that scheme (4.56) admits a sequence {zk} with
z =z for all k larger than a certain number K.

It is easy to verify that

(4.57) cC={ze x| zen(z}

DEFINITION

z ¢ X is a pertodic point of A of period p if

(1) z e aP(z)
(i) z ¢ a%(z) for all g =1, 2, ..., p-1

From these. definitions we directly see that the characteristic set

C of algorithm (4.56) consists of all periodic points of A of
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period 1: the fixed points of A.

As the algorithm generates infinite sequences we can define P as
the set of all limit points of all convergent sequences which can
be generaEed by it, and Q as the set of all cluster points of all

sequences‘which can be generated by the algorithm.

LEMMA 4.6

Proof:

By definition, we have P ¢ Q. Furthermore C ¢ P as for each
zy e C the algorithm can generate the infinite sequence {zk} with

zk = z0 for all k.

A further investigation of the asymptotic properties of algorithms

requires a definition of continuity of the mapping A:

DEFINITION

The map A is upper semicontinuous (u.s.c.) at a point z, € X if

for every neighbourhood N(A(zo)) of A(zo) there exists a neighbour-

hood N(zo) of z_ so that A(zl) c N(A(zo)) for every z, € N(zo) n X.

0 1

We say that A is u.s.c. on a subset S ¢ X if A is u.s.c. at every

point in S.

DEFINITION (Zangwill, 1969)

The map A is closed at a point z. € X if the fact that {zk}

0

converges to z_ (all z_ € X) and {yk} converges to y, with

0 k

Yy, € A(zk) for all k, implies that yo e‘A(zO).

k

We call A closed on a subset S ¢ X if A is closed at every point

zZ € S.

DEFINITION

The map A is compact valued on X.if A(z) is compact for every z e X.
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In, e.g., Meyer (1979) there are some examples that closedness and
upper semicontinuity are not equivalent. For instance he proved the

following useful lemma:

LEMMA 4.7

If X is bounded and A is closed on X, then A is u.s.c. and compact

valued on X.

With the aid of these definitions the following proposition and a

corollary can be stated:

PROPOSITION 4.7

Suppose that A is u.s.c. and compact valued on X, and let {zk}be a
specific sequence generated by the algorithm (4.56). If z* is a
cluster point of {zk}, then for every p =1, 2, ... the set Ap(z*)

contains a cluster point of,{zk}.

COROLLARY

If A is u.s.c. and compact valued on X, then P = C : if a sequence
generated by algorithm (4.56) converges, it converges to a fixed
point of A. '
0
After this corollary the next point of interest is to state a condition
under which the desired convergence is guaranteed. This condition concerns

the asymptotic behaviour of the algorithm.

DEFINITION

A sequence {z,} is asymptotically regular if lim||z, , - zkll = 0.
T e

k+1

DEFINITION

An algorithm is asymptotically regular if every infinite sequence it

can generate is asymptotically regular.

PROPOSITION 4.8

If the map A is u.s.c. and compact valued on X-D, where D c X, and

algorithm (4.56) is asymptotically regular, then C € Q c C U D. 0
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COROLLARY 1

If A is u.s.c.,compact valued on X - C.and algorithm (4.56) is asymp-

totically regular, then P = Q = C. 0

Ostrowski (1966) proved that an as.regular sequence on a bounded set X has

either a unique cluster point or a comtinuum of cluster points. Hence
COROLLARY 2

Suppose A u.sic. and compact valued on X - C, X is bounded, algo-
rithm (4.56) is asymptotically regular and C contains at most a
countabie number of points, then every sequence generated by (4.56)
converges to a point in C : a fixed point of algorithm (4.56).
’ 0
In order to apply the above results to the algorithms considered, we have
to make sure that they use mappings A which are u.s.c. and compact valued
on X - C.
Then according to lemma 4.7 it suffices to verify whether X-C is bounded
and A is closed on X - C.
As X - C © X, which is assumed to be bounded, it only remains to investi~-
gate whether A is closed on X-C. Instead of investigating the general algo~-
rithm, given by (4.15) with a currently defined active set I(zk), we focus
on the special case in which the final, correct active set I(z*) = I* has
already been found and I(zk) = I(z¥*) is used from now on. This is
the final stage of the general algorithm, which characterizes the conver-
gence properties. The following lemma,cf. e.g., Meyer (1979) will be used
in the next theorem. It guarantees for any cluster point of a sequence

{zk} the existence of a subsequence converging to this cluster point.

LEMMA 4.8

Let g be the set of all cluster points of the sequence {zk}, gene-
rated by an algorithm (4.56), A u.s.c. and compact valued on X. If
q is nonempty and bounded, then given any neighbourhood N(q) of q,
there exists an index k, depending on N(gq) such that Zi € N(q) for
all i > k.
O
Application of this lemma to a suitable region X such that g = {z*} yields

the required subsequence.
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THEOREM 4.4

k+1
A is given by (4.43) with I(zk) = I*., Let X be bounded, and closed

Let the sequence {zk} be defined by (4.56) with z = A(Zk) where
with all problem functions and ¢(xk,x) continuously differentiable
while (4.14) is satisfied. Then every cluster point z* of {zk} is a

fixed point of A.

Proof':

The infinite sequence {zk}, thus generated by the feasible point
algorithm (4.56) has at least one limit point z* € X. Then there
exists a subsequence converging to z*, which we shall denote again

by {zk}. It follows from the definition of z that (4.44) and

k+1

(4.45)are satisfied by z . The continuity of the gradients, (4.14),

k+1
(4.44), (4.45) and lim z = z* then imply that
koo
Lci(x*,x*) =0 for all i € I(z¥*)
and
Vx(F(x*) - X v¥Le, (x*,x¥)) = 0
ieI(z%*)

which means that z* satisfies the Kuhn-Tucker conditions of the
reduced problem defined at z*, so z* € A(z*) : z* is a fixed point

of A.

PROPOSITION 4.9

The deterministic algorithm defined in theorem4.4 is continuous at

every z € X, hence is closed on X. -

Proof':

The continuity follows directly from the continuity assumptions on
the problem functions. The closedness is an immediate consequence

of this continuity.

COROLLARY

The deterministic algorithm defined in theorem4.4 is u.s.c. and

compact valued on X.
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Proof:

This follows from the application of lemma 4.7.
]
As a consequence, all above derived statements for u.s.c. and compact val-
ued mappings apply to the algorithms developed, for instance those using
reduced problem formulations as (4.15), (4.29) and (4.43) with I(zk) = I%,
We make special mention of the corollary of proposition 4.7:

If a sequence, generated by the algorithm (4.56) converges, it converges

to a fixed point of A.

and corollary 2 of proposition 4.8:

If the applied mapping A is u.s.c. and compact valued on X - C, X is bounded,

algorithm (4.56) is asymptotically regular and- C contains at most a

countable number of points, then every sequence generated by (4.56) con-

verges to a point in C: a_fixed point of the mapping A.

Compared with theorem 4.3 we see that the convergence to a fixed point is
now established under conditions as asymptotic regularity, upper-semi-con-
tinuity and compact valuedness, instead of the condition of contractiveness.
The extra requirement that C should be countable will hopefully be met in
most real-life problems.

Let A be defined by (4.15) and let z*¥ be a fixed point of the mapping

A. Again we assume strict complementary slackness in all occuring Kuhn-
Tucker conditions. Then we can prove the following theorem, following

Rosen (1977).

THEOREM 4.5

A fixed point z* of the mapping A is a Kuhn-Tucker point of (4.21)

Proof:

As z*¥ is a fixed point of A, we know that A(z*) = z* , d(z*,z*) =0
while (4.34) and (4.35) are satisfied. (z* is a first order Kuhn-
Tucker point of (4.29) with z, = z* , hence lemma 4.2 can be applied).
From (4.37) we see that £(z*) = d(z*,z*) = 0. Further (4.26) is
satisfied, as ci(x*) < 0 for at least one i € {1, ..., p} would
yield Lci(x*,x*) = ci(x*) < 0 which contradicts (4.34). Finally

(4.27)is met as can be seen from uI = uI > 0 (use (4.35)) for
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i=1, ..., p. Hence lemma 4.1 applies and z* is a first order

Kuhn-Tucker point of (4.21).

In the corollary of lemmas 4.3,4.4 we saw that S(zk) = S(Zk’ I(z*)),

which meant that if I(z*) is known at z it suffices to solve the equali-

kl
ty constrained reduced problem (4.43) with I(zk) = I(z¥). In that situa-
tion we can formulate an analogous theorem for the resulting equality

constrained reduction method.

THEOREM 4.6

If z* is a fixed point of the mapping A defined by the application
of the reduced problem (4.43) with the correct active set

I(zk) = I(z*) in the algorithmic scheme given by (4.56), then z* is
a Kuhn-Tucker point of (4.21).

Proof':

The proof follows from combination of lemmas 4.3,4.4 and theorem4.5
using strict complementary slackness in the Kuhn-Tucker conditions.
0
An important question which should be considered now is under which condi-
tions the correct final active set I(z*) can be defined at z, # z¥, Possi-

ble active set strategies to answer this question are treated in the next
section.

IV.5 Active set strategies

In the preceding chapter IV4 we derived conditions under which
S(zk) = S(Zk' I(z*)) which means that the first-order Kuhn-Tucker points
of the original problem (4.21) are first—ordey Kuhn-Tucker points of the
pure equality constrained reduced problem (4.40) with I(zk) = I(z¥) and
vice versa.

As I(z¥). is not usually known beforehand, we are looking for crite-
ria by which an algorithm can recognize I(z*). That is why a current ac-
tive set I(zk) is defined, which is intended to contain the constraints
that are most relevant, at least locally. Adjustment of I(zk) should be
accomplished using the information gathered on the constraints, such as
their current status: binding (ci(xk) =0, i=1, ..., m), violated

(ci(xkl <0 for i ¢ {1, ..., p} or ci(xk) # 0 for i € {p+l, ..., m} or



96

satisfied (ci(xk) > 0 or Ci(xk) = 0 for the respective cases).

Constraints will be added to the active set or dropped f;om this set, with
the ultimate goal that I(zk) = I(z*) holds for all k greater than or equal
to some number K. By the application of such an 'active set strategy' all
reduced problems are equality constrained problems. in which all constraints
with index i ¢ I(zk) are deleted. Hence the reduced problems are simplifi-
cations of the original problem. Obviously the above approach is equally
valid for both the original problem (4.21) and the linearized problem
(4.29).

The convergence of the sequence iteration points {zk} is expected to be
accelerated if I(z*) can be recognized in an early stage of the iteration
process. In this section relations between I(zk) and I(z*) are derived and

a lemma by Br&uniger (1977), which states I(zk) = I(z*¥) for suitable zk

and his proof of this lemma are discussed. As a consequence of this lemma
and the proposed phase I step, sectioniv.7 can deal with the problem of
how to link phase I and phase II such that phase I produces a good starting

%

point and a good initial active set for phase II.

The next results rely heavily on Robinson's theorem 4.2, parts (iii) and

(iv) in which the fact is expressed that as soon as z, € B(z*,r) we have

k
. * .
at all points zk+1 € B(z%,xr):

(iii) if ci(x) is passive at x¥, then its linearization at x, is passive

k
as well.
(iv) if ci(x) is active at x* then its linearization at xk is active
as well.

But first we shall consider the decision fo be taken in step 2 of the al-

gorithm: if S(zk) contains more than one point, choose the Kuhn-Tucker

point of (4.15) which is closest to 2z - This means that Zy4q solves
(4.58) min | [z—zk[ |
zeS (2, )
k
The points 2y 41 satisfying (4.58) were characterized by Br&uniger as
summarized below in (4.59(i)-(iii)). For the sake of simplicity of notation,
the current iteration point Zy and its successor Z) 4 are denoted by

z = (x,u,v) and z = (x,u,v) respectively.
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Then z, defined by (4.58) should be given by one of the following possibi-

lities:

NI
]

(4.59(1)) (i) z hence z 1is a solution of (4.21)
x sy j#i
(4.59(ii)) (ii) =z =|u | with u,={
Il j=1i
v

for some i € {1, ..., p}. This means a pure dual step,
as the only difference between z and z is the value of

the Lagrange multiplier of the i-th inequality constraint.

x 7 .
_ _ c. (x)
(4.59(iii)) (iii) z =|u with x = (x - ————2~—————E-ch(x) )
v : [1vey x|}

for some j € {1, ..., p}.This is a pure primal step (x

is projected on the linear constraint Lcj(x,. ) =0).

The interpretation of this statement is as follows. It claims that once we
have obtained a Kuhn-Tucker point z of a reduced problem. (4.21) with z €
B(z*,r), a move to a neighbouring Kuhn-Tucker point with respect to the same
active set but with a weakly‘active constraint will always be shorter than
a step to a Kuhn-Tucker point corresponding to another active set.
Brduniger (1977) prcred I(z¥) = I(zk) usigg this statement. However the

next lemma states that it leads to a contradiction.

LEMMA 4.9

If z* and z satisfy the conditions of theorem4.2, z # z*, z* being
a regular Kuhn-Tucker point of (4.21) with strict complementary
slackness..Then, application of (4.59(i)) - (4.59(iii))leads to a

contradiction.

Proof:
In the point z. under consideration generated by (4.59(i))-(4.59(iii))

at least
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one constraint, say Lcj(x , .) with j € {1, ..., p} is weakly active.
This means Lcj(x ,x) = 0 with uj = Of
If Lcj(x,x ) = 0 with z € B(z*,r) we have either
cj(x*) < 0, which is impossible as z* is a Kuhn-Tucker point, or
cj(x*) > 0, which ?eans, by theorem 4.2 (iii) . that )
Lcj(x,x) > 0, (assuming that both z and z € B(z¥,r))
which contradicts Lcj(x,x ) = 0.
Hence cj(x*) = 0, but then the strict complementary slackness at z*
gives ﬁj > 0 which, in turn; implies uj > 0 (theorem (4.2 (iv)). This
contradicts the construction of Z as given by (4.59(i)) - (4.59(iii)).
g
In other words Lemma 4.9 states that it is impossible to create weakly
active constraints in a neighbourhood of z¥*. The proof relies on the
assumption that the problem functions are twice continuously differentia-
ble in an open neighbourhood of x* and that at z* no weakly active con-
straints occur. Though this means that Brduniger's proof is not correct,
the result I(zk) = I(z¥) can be proved as follows from the next two pro-

positions, using I(z¥):= {i : ci(x*) = 0} and I(zk):= {i : Lci(xk,x) = 0}.

PROPOSITION 4.10

Let z* be a regular Kuhn-Tucker solution of problem (4.21) satisfying
the conditions of theorem 4.2 under strict complementary slackness.
If z, e B(z¥, %) with 48|[£(z) || < r, then I(z¥) < I(z)).

Proof:

We know from proposition 4.3 that IlS(zk) -z < Lr. Hence for

I

z € S(zk)

k+1

ey = 211 < ez, -z |+ [z - 2] < x
Now theorem 4.2 can be applied.
Let i € I(z*) be arbitrary.
Then

uz >0 (strict complementary slackness in z¥)
which gives

“k,i >0 (theorem (4.2 (iv))
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hence Lci(xk, X ) = 0 (complementary slackness in (4.32))

k+1
which means
ie I(zk).
Thus we proved
£ 3
I(z*) c I(zk).
O
The interpretation of proposition (4.10)is obvious: if we are close enough
to z*¥*, all constraints of I(z¥) belong to the current active set I(zk).

Also a reverse statement can be proved:

PROPOSITION 4.11

In case of strict complementary slackness in (4.32) for all
ie I(zk), with z, € B(z*,r) while z* and r satisfy the conditions of

theorem 4.2, then I(z) < I(z¥).

Proof:

For i € I(zk) chosen arbitrary we know by assumption
K,1
and
Lci(xk,x) = 0 (complementary slackness)
which yields
ci(x*) =0 (proved in lemma 4.9)
hence

i € I(z¥%)

COROLLARY

Under the conditions on z* and zk given in proposition 4.10 and the
condition of strict complementary slackness in both propositions we con-
clude: I(zk) = I(z*¥): the currently defined active set equals the fi-

nal active set.

The proof is obvious.
a
Remark. The earlier procedure discussed above, suggested by Brduniger (1977),
does not satiéfy uk,i > 0 for all i € I(zk) as it generates weakly

active constraints.
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Summarizing we see that I(zk) = I(z*) if z, and z* verify some reasonable

conditions and if an appropriate active set strategy is applied.
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IV.6. Convergence of the solutions of the reduced problems

InsectionIV.4 conditions were discussed under which sequences of itera-
tion points {zk}, generated by the application of the reduction methods
proposed, converge. The limit points turned out to be fixed points z* of the
applied mapping A. These points also appeared among the first-order Kuhn-
Tucker points of the original problem (4.21) or among those of the reduced
problem (4.40) with I(z) = I(z¥). ]

Now that eonditions for convergence have been established, the next

point of interest is the rate of convergence. This means, given z¥, that
the question arises whether it is possible to derive bounds on ||zk-z*|l.
The next theorem deals with this problem. It is proved that the supremum

(for alle sequences {Zk}‘+ z* generated by the algorithm) of

2—k
(4.60) lim supllzk—z*ll
koo
is an element of (0, 1).
This means in the terminology of QOrtega and Rheinboldt (1970) that the con-
vergence is R-quadratic. The theorem is closely related to theorems of
Robinson (1972) and Br&uniger (1977), and the proof is a slight modifica-

tion of theirs.

THEOREM 4.7

Let z* be a regular Kuhn-Tucker solution of (4.21) satisfying the
second order sufficiency conditions with strict complementary slack-
ness in (4.24), while all problem functions are at least twice con-

tinuously differentiable in an open neighboufhood of z¥.

Then there exists a § > 0 such that if zy € B(z*,8) the algorithm
with the active set strategy defined in section IV.5 generates a sequence
{zk} which converges R-quadratically to z*. In particular:

© o 3 kp o« J
- _ 1 27 1 2 2
(a.61) ez 1< 3 1z, 2] € 5 202 s 5o [_EO(*:) ]

j=k j=k 3

where the scalars B,r and M were defined in th.4.2 and n is defined as

(4.62) N := min(}%, %BMr)
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Proof:

First we §hall prove by induction a result on ]]zjfzj_lll and
|[f(zj)[| for j =1,2,...

From f(z*¥) = 0 (z¥ is a Kuhn-Tucker point of (4.21)) and lemma 4.1 and
the continuity of £(z) we see that there exists a §: 0 < & < %r such

that for all z e B(z*,8) we have

n

2
48'M

(4.63) [[£) ] =

Let zg € B(z*,8) be the starting point of the algorithm. Then

[lzo—z*|| < § < &r R

and
48| [£(z) || = BLM * (by (4.63))
%BMr
= “Bm (by (4.62))
< 4r
< r

Hence propositions 4.10, 4.11 now yield that I(ZO) = I(z*) and propo-
sition 4.4 implies that there exists a unique point zl, with

- — * .
z1 = S(zo) = S(zo, I(z™)) with

(4.64) Hzl—on < 28| |£(zp) ||

From 21 = S(zo) we see that d(zo,zl) = 0 hence

e || = [|£z) - azgz)]]

IA

u| |z, -2, | E (by theorem (4.2 (ii))

IN

48] |£(zg) | |®
48°%un°
(482w 2

IA

(by (4.63))

hence
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2
(4.65) [eEz)]] < 2 .
! ag’m  4p®m

1]

We claim that inequalities analogous to (4.64) and (4.65) are valid
for any j = 1, A2, .... Now that this statement has been proved for
j =1, it remains to be proved for j = k+1 assuming the validity for

j=1, 2, ..., k. So for 1 £ j £ k we assume:

(4.66) l|zj - zj_1|| < 26|1f(zj_1)||
and
n2j
(4.67) ||f(zj)|| < PN

Consider (4.66) for some 1 £ j < k:

|Izj - zj—lll S 28|'f(zj_1)|i
PEREIY
< 25'2 =1 (by (4.67) for j-1)
48°M 28M
n.nd!
Then sz - zj—l” < T
(agtr) () 372 .
< BT v hr (%) (by (4.62)
Using this we obtain
k
lHzy = 2*[[ = |lzg - 2*[[ + =[]z, - zj_1||
j=1
k .
(4.68) Shr + hr I ()7
j=1
< Lr

which means that z, € B(z*,%r)
Further, inequality (4.67) for j=k gives

k k

a8l|sz) || = 4gn® _ non’ !
k - 482 N oM
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k
(4.69) < WMr | 27-1

(4.62))
aM (by

< 4r < r

Now that (4.68) and (4.69) are true, proposition 4.4 can be applied

: 3 x . = = * : -
which yields the unique point Z) 41 S(zk) S(zk, I(z*)) with

- 2

|Izk+1 ES 2BIIf(Zk)||, )

1l
which is equivalent to (4.66) for j = k+1.

Finally, (4.67) is true for j = k+l1, as z = S(zk) yields

k+1
d(zk, Zk+1) = 0 and hence
e Il = 1le, ) - az, 2,0
< Mllzk+1 - Zk||2 (use theorem 4.2(ii))
2 2 .
< M.4B ||f(zk)[| (just proved)
2k+1
s (by (4.67) for j=k)
48°M

The sequence {zk}, thus generated by the described application of the
algorithm is an infinite sequence in B(z*,%r) so it has at least one
cluster point z' € B(z*, %r). Then theorem 4.4 implies that z' is a
fixed point of A and theorem 4.5 implies that z' is a Kuhn-Tucker
point of (4.21).

(4.70)

The uniqueness of z* in B(z*,%r) implies that necessarily z' = z*.
Finally
oo o i
lzy - 2*ll < 2 llzyy -2yl < 55 2 0
z z < z, z, < n
k ik i+l i 28M ik
kp i-
1 2 2
5= (%) [ I (%) }
26M i=0

COROLLARY 1

The algorithm is asymptotically regular on B(z*, %r).
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Proof:

The proof is obvious from (4.70).

COROLLARY 2

If C contains at most a countable number of points, then every se-
quence generated by (4.56), with zk+1 = A(zk), A defines the reduction
method developed in this chapter, converges to a point in C: a fixed

point of the algorithm which is a first-order Kuhn-Tucker point of

(4.21).

Proof':
The proof follows from the application of corollary 2 of proposition

4.8.

COROLLARY 3

The effect of only using equality constrained reduced problems is re-
flected in the fact that ||f(z)|| for problem (4.40) is smaller than
or equal to ||£(z)|]| for problem (4.21).

Proof:

The proof follows from a comparison of propositions 4.3 and 4.4.
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IV.7. Coordinating phase I and phase II

The proofs of convergence in the preceding chapters rely heavily on
theorem 4.2 which assumes that we succeeded in defining a starting point
Zg close enough to z*. As mentioned above, a first phase, called phase I,
is used to provide us with a suitable starting point for phase II, which
consists of the solution of reduced problems such as (4.29) or (4.43).
In phase I an exterior point penalty function is minimized subject to the
given linear constraints ((4.18), (4.19)).The gquestion now is how the

quality of the generated starting point z. for phase II can be improved

and how the results of phase I can be useg to define a reasonable approxi-
mation of the final active set I(z*). It may be expected that a penalty
parameter in phase I that is too high creates an undesired ill conditioned
reduced problem or that this early stage of the iteration process

pays too much attention to feasibility at the expense of optimality.

On the other hand a weighing factor of the penalty term that is too low
may yield a starting point z, ¢ B(z*,r).

It seems reasonable to assert that the above sketched problem depends on
the function F(x) to be minimized, the constraint functions ci(x),

i=1, ..., m and their respective gradients and Hessian.

The concept of defining a hybrid, 2-phase algorithm in this way was first
suggested by Rosen (1976) (who proposed one exterior penalty minimization
as phase I).

It gives rise to the following class algorithms.

Step 1. Initialization: choose a starting point Zyr @ penalty parameter

to, etc.
Step 2. Solve one (or more) problems of the form (4.18) as phase I to ob-
. - . .= - {nitiali
tain z1 (Xl' ul, Vl) Put zO z1 and k 0 to initialize
phase II.

Step 3. Solve a reduced problem as developed in this chapter (e.g. (4.29)

kel = Ferrr Bkerr Vit
Step 4. Apply convergence criteria. In case of convergence: stop. Otherwise

or (4.43)) as phase II, to obtain z

k := k+l1 and return to step 3.

Concerning step 2 we remark that the theorems on the convergence of exte-
rior penalty methods (see Fiacco & Mc Cormick (1968)) guarantee convergence
to a Kuhn-Tucker point of the original problem under reasonable, relatively

weak conditions. Hence theoretically we might expect a phase I step, which
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consists of one exterior penalty step to provide us with a starting point

z_ for phase II which satisfies z. e B(z*,r). However,neither 2z* nor r

0 0
will be known before starting the iterations, and this is a serious com-

plication! To prevent the occurrence of the problems sketched above, which
can arise if phase I consists of only one exterior penalty step (by lack

of information t, might be too high or too low!), we also investigated

0
the effect of a phase I consisting of more than one exterior penalty step
0= 0.05, t1 = 100 and t2 = 100t1).

Beside this, we also investigate the sensitivity to the choice of to if

only one exterior penalty step is performed in phase I. The results of

(for instance t

these investigations are summarized in table 5.1 of chapter V.

Besides the choice of the penalty parameter the coordination between the
2 phases of the algorithm is expected to be improved by using the Lagrange
multiplier estimates obtained from phase I to define the active set at the

starting point z. of phase II.

0
We propose to define this active set as

(4.71) I(z.) := {p*1, ..., m} u {i e {1, ..., p} | u, . > 0}

0 0,1i
This means that I(zo) consists of all equality constraints and those in-
equality constraints with positive Lagrange multiplier estimates at the
end of phase I.

As i-th Lagrange multiplier estimate we use
(4.72) ui B —2t0ci(x0) i=1, ..., p

with c;(xo) = min(O,ci(xo)) (see e.g., Fiacco and Mc Cormick (1968)).

This estimate is based on the fact that in the optimum both the gradient
of the Lagrangian function and the gradient of the penalty function (4.19)
will vanish.

As soon as zg € B(z¥*,r) and the active set strategy satisfies uO,i > 0 for
all i e I(zo), propositions 4.10, 4.11 state that I(ZO) = I(z¥%) under some
mild further conditions.

For instance I(zo).as defined in (4.71) is intended to meet these require-

ments. As it remains difficult to check ZO € B(z*,r) we also investigated



108

some alternative active set- strategies to get more insight in the sensiti-
vity of the algorithm on this point.
We considered the active set strategy proposed by Brduniger (1977) which

defines I(zo) as

|ci(x0)|
(4.73) I(ZO) = {p+1, e.., M} U {il]_lo'i > ﬂvc—i(xo—)-ﬂ’, i=1,...,p}

Another active set strategy arises froma combination of (4.72) and (4.73)

For the (violated) i-th constraint we estimate “0 i by ﬁi.
r

Then we obtain

' |c.(x )[
(4.74) ﬁi > sz?{)_ﬂ-
i70
Using (4.72) this yields
le, (x.) |
- i70
"2t00; (o) 7 7 Ve, (xg)

from which we obtain

1

(4.75) t, > _TT—_———__—TT
0 2 Vci(xo)

(Note that c. (x.) = c.(x.). S 0 in this case.)
i'"”o i'"™o
From (4.75) we see that if

(4.76): ty > max{2 vCl(x 3 i=1,...,p with c, (x;) < 0}
i ico

then every constraint which is violated at x,. will be put into the initial

0
active set of phase II.
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IvV.8. Convergence of the composite algorithm

Now that the 2 phases of the algorithm have been discussed we conclude
this chapter with some closing remarks concerning the convergence of the
composite algorithm. In essence the theorem formulated below states that

if the penalty parameter t. is large enough, the convergence of the exte-

0

rior penalty methods (see Fiacco and Mc Cormick (1968)) assures z, € B(z*,r):

0
the final point of phase I is close enough to z*. Assuming that all other
conditions of the theorem on the convergence are satisfied (section IV.6)

this means that the convergence is R-quadratic.

THEOREM 4.8

Consider the nonlinear programming problem (4.21) with a regular point
z* which satisfies the second order sufficiency conditions with strict
complementary slackness. Assume further that all problem functions

are twice continuously differentiable in an open neighbourhood of z*.
Then there exists a tg such that if we use tO 2 tg in phase I of the
algorithm the generated sequence {zk} of iteration points converges

R-quadratically to z*.

Proof:

As mentioned above there exists a tg such that for to 4 t; phase I

provides us with a starting point z_, which meets the requirements of

0
theorem 4.7 so that if the other conditions such as differentiability
of the problem functions are satisfied and an appropriate active set

strategy is used theorem 4.7 can be applied to prove this theorem.
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V. ALGORITHMIC AND NUMERICAL ASPECTS OF 2-PHASE REDUCTION METHODS

Now that some properties of reduction methods using linearly con-
strained reduced problems have been derived, we focus our attention on the
implementation of these reduction methods. After a short description of al-
ternative 2-phase algorithms, a specially adapted algorithm for linearly
constrained nonlinear programming is described together with a simplified
presentation of the implementation of the 2-phase algorithms. Then the LU-
and Cholesky matrix decompositions are discussed, together with known and
new upéating rules to modify the Cholesky-factors during the iteration

process.

V.1l Introduction

The 2-phase algorithms developed in the preceding chapter rely heavi-
ly on the efficiency of an algorithm for the linearly constrained reduced
problems, as both phase I and phase II require the solution of linearly
constrained nonlinear programming problems. Here the literature offers an
ample choice: for instance, algorithms proposed by Rosen (1960), Goldfarb
(1966) , Murtagh and Sargent (1969) and Gill and Murray (1974a) could be
used. '

Usually algorithms for linearly constrained nonlinear programming
exploit the given linearity of the constraint functions by applying pro-
jections of unconstrained search directions on the intersection of current-
ly active constraints. For instance Rosen (1960) projects the steepest des-
cent direction, in the metric defined by the Euclidean distance function.
Murtagh and Sargent (1969) project a quasi-Newton search direction in a
metric induced by a distance function which depends on the second order
information of the objective function (see e.g., Householder (1964)).

In this chapter we discuss an adapted version of Murtagh and
Sargent's algorithm. The adaptation concerns the use of matrix factoriza-
tions (ch. V.4) and their updates (ch. V.5). Furthermore the active set
strategy is replaced by the strategy described in ch. V.3.

As this chapter only deals with the solution of linearly constrain-
ed nonlinear programming problems, our problem formulation can be simfli-

fied to:
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minimize F'(x)

(5.1) subject to

v

ATx b
where the objective function F'(x) is supposed to be a sufficiently often
differentiable convex function of (xl,...,xn). The objective function
F'(x) of the reduced problem is defined by the algorithm-in terms of F(x),
LF(xk,x), ci(x) and Lci(xk,x). The nxm matrix A has as its i-th column the
vector ai which is the gradient of the i-th linear constraint. The mX1 vec-
tor b contains the right hand side elements of the constraints.

Furthermore the matrix N(Nk)will be the mafrix of active constraiﬁt
normals (at step k) while B

k
Hessian and the inverse Hessian of F(x) respectively.

and Hk denote the k-th approximation of the

V.2 Stepwise description of some 2-phase algorithms

Once we accept the idea to develop an algorithm consisting ef two sep-
arate phases, various designs appear to be possible. In all cases the first
phase is intended to provide a good starting point for phase II, and to meet
other initial conditions for phase II.

We only mention Rosen (1976,1977) , Mayne and Polak (1978), Ballintijn,
van der Hoek and Hooykaas (1978), Best,‘Brguniger, Ritter and Robinson (1979)
and Van der Hoek (1979).

A typical design of the algorithms discussed in the present work is

PHASE I:

Step 1 Initialization: z_,t .

00

Step 2 Solve: miniﬁfze F(x) + P(x)
X€

where P(x) is defined by (4.19)

Define ZO’ the starting point of phase II, to be equal to the solu-

tion of phase I, put k = 0 and start
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PHASE II
Step 1 At Zy 1 find a first order Kuhn-Tucker point Zyp i1 of the reduced
problem
min F(x) + ¢(xk,x)
xeLnLNL(xk)
If Z141 is not unique, choose the Kuhn-Tucker point closest to
Z .

k

Step 2 Apply convergence tests on Zk+1'

In case of convergence: stop

Otherwise, put zk = zk+1

step 1 of phase II.

, define the active set I(zk) and go to

A simple variation of this theme is to use a phase I which consists
of a number of exterior penalty minimizations (e.g.: 3), starting with a

relatively 'safe' penalty parameter t_  and multiplying it by a constant

factor every succeeding step. In thisoway hybrid algorithms composed of an
exterior penalty algorithm and the reduction methods of ch. IV could be
designed, in the hope that no reduced problems are created that are too
ill-conditioned. This is peasonable as only a few penalty steps are applied.
Table 5.1 gives the results of some preliminary experiments, per-
formed on the nonlinearly constrained test problems, mentioned in appendix
A. The first four columns of the table correspond with the values 0.05, 0.5,

5.0, 50.0 and 500.0 of the penalty parameter t_  of phase I, while the sixth

0
column concerns a phase I consisting of 3 succeeding exterior penalty steps

with values 0.5, 5.0 and 50. of the penalty parameter. The last column

gives the results for the algorithm in which the constraint values ci(xo)

of the nonlinear constraints are used to define to as

1
(5.2) t, = z ———
0 , lci(xo)l

; where Iv concerns all violated constraints.
ieT
v

This parameter is put to unity if the value thus defined is less than

-4
10 7. The elements of the table are the number of objective function evalua-



tions required for convergence of the particular test problem. (The second
phase of the algorithms reported here is the reduction method based on the

application of the reduced problem (4.29) with ¢(xk,x) defined by (4.6)).

Table 5.1 The influence of the penalty parameter of phase I on the conver-

gence of the 2-phase algorithm

nalty parametey 0.05 0.5 5.0 50.0 500.0 {0.5,5.0formula

i:;:\EESBIEm\\ﬂ and 50.| (5.2)
12 81 108 95 82 82 168 94
13 397 417 474 |+ 541 912 696 | 376
14 211 | 209 |- 179 183 173| 248 | 178
15 . 260 256 253 253 212| 296 | 255
16 475 686 576 488 | 517| 882 | 532
17 _ 394 394 394 394 394| 555 | 394
18 197 197 197 197 197| 245 197
19 392 392 392 392 392 410 | 392
20 5262 | 5262 | 5262 | 5262 | 5262| 5544 | 5262
21 1413 F F F F F | 1410
22 : 1458 771 953 | 6739 | 6157 6827 | 1255
23 802 634 566 708 943| 1401 | 643
24 9208 F 390 549 940 F 365
F = Failure

Conclusion: Besides the observation that the penalty parameter t. of phase I

0
should not be too high, no further conclusion about a preferred fixed penalty

parameter can be drawn from the figures of table 5.1. We decided to use the

value of to as defined by formula (5.2) in the further experiments. Note

that this means that t0 is based on the constraint violations in the start-

ing point x_ . As a consequence the penalty function used is a combination

0

of problem function values at x.. Indeed it is a sum of squares of con-

0
straint violation amounts, weighted@ by a.penalty parameter which is inverse
proportional to the constraint values in question. The resulting 'balanced’
penalty function may prevent an undesired step in phase I of the algorithm.
After discussing the choice of the penalty parameter of phase I,

chapter IV.7 continued with the presentation of different approaches to
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improve the coupling of phase I and phase II. Again the value of the penal-
ty parameter appeared to be important, together with the definition of the

initial active set of phase II. Different coupling mechanisms evolving from
the definitions (4.71),(4.73) and (4.76) of this active set were discussed

in ch. IV.7.

A main result of chapter IV was the proof that, once an iteration
point is in a sufficiently small neighbourhood of a 2nd order Kuhn-Tucker
point, it suffices to consider merely equality constrainéd reduced problems
in phase II of the algorithm. This means that the linearly constrained non-
linear programming algorithm which solves the reduced problems, no longer
applies an active set strategy; all constraints involved are equality con-
straints, hence elements of the active set. The active set I(zk) is chosen

before defining the reduced problem. For this algorithm, phase II becomes

find a first order Kuhn-Tucker point z of the

Step 1 Arrived at z K+

kl
reduced problem

min F(x) + ¢(xk,x')
(5.3) subject to

Lci(xk,x) =0 for all i € I(zk)
If zk+1 is not unique, choose the Kuhn-Tucker point which is
closest to Zy -

Step 2 Apply convergence tests on zk+1.

In case of convergence: stop.

Otherwise put Zy = zk+1

step 1 of phase II.

, define the active set I(zk) and go to

e e e e — )

Numerical experiments were performed on the same test set of 13 non-
linearly constrained test problems under the same circumstances as the ex-
periments reported above on two implementations of the 2-phase algorithm,
which apply for phase II a fixed active set or an adjustable active set res-
pectively. The. results of the experiments are summarized in table 5.2.

The quotients in this table have the following meaning:
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number of major iterations required to detect I(z¥*) .
number of major iterations required for convergence

(5.4)

Here each major iteration involves the definition and the solution of a
reduced problem of phase II. Column 1 concerns the algorithm in which the
penalty parameter of phase I is defined by (5.2) and phase II redefines the
active set if necessary. Column 2 concerns an implementation with the same
phase I, while the active set I(xk) of phase II remains unchanged. The set
I(xk) is defined in the feasibility'step which precedes the application of
the linearly constrained nonlinear programming algorithm which solves

phase II.

number of major iterations required to detect I(z*)
number of major iterations required for convergence

Table 5.2

lgorithm
\JL-~\\\\\\7H\\\ 1 2

test proble
12 1 : 4 3:4
13 0: 4 0
14 .0 : 19 17 : 19
15 2 :7 F
16 0:3 2 :3
17 0:3 0:3
18 3 :4 1 : 4
19 0: 3 0:3
20 9 : 10 F
21 1 : 4 1 : 4
22 0 :3 0: 3
23 4 : 7 2 7
24 0:3 0:3

F : Failure
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Conclusion: If the convergence is obtained, then the applied definition of
the active set does not influence the total number of required major itera-
tions. However, the application of a fixed active set in phase II gives a
less robust algorithm; 2 failures are reported. Apparently the‘second im-
plementation is less flexible in adapting new information on the (in)-
activity of constraints, which is expressed by the failures and a higher
number of major iterations required to detect I(z*%).

A further computational comparison of these two implementations is post-

poned to chapter VI. ) 5

Another obvious hybrid algorithm arises from a combination of the
recursive quadratic programming algorithms of ch. III and the algorithms
of ch. IV as phase I and phase II respectively. This yields the foilowing
algorithm: '

PHASE I

Step 1 Initialization: z_,t
Step 2 solve:

. T _2 T
min %(x—xo) v F(xk)(x—xo) + (x—xo) VF(xk) + F(xk)

X
(5.5) subject to
ATx =Db

|
I
I
[
|
|
I
I
I
|
i
I
I
i
|
|
|
|
|
|
|

where A and b are defined in ch. III.

Define Zgr the starting point of phase II, to be equal to the solu-

tion of phase I and start

Phase II. This phase can be any of the above presented phase II algorithms.

Finally we mention the independently developed and recently reported
2-phase algorithm of Best, Br&uniger, Ritter and Robinson (1979), which also
applies linearly equality constrained reduced problems, together with an

active set strategy which, if necessary, redefines the penalty parameter

to obtain global convergence.
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V.3 An adapted algorithm for linearly constrained nonlinear programming

As both phase I and phase II of the algorithm reduce the solution of
the problem to the solution of a linearly constrained nonlinear programming
problem, special attention must be paid to the algorithms used to solve
these problems. We choose Murtagh and Sargent's (1969) algorithm because of
its reported computational efficiency in Himmelblau (1972) and Lenard (1979),
and because of the possibility to derive easily the necessary update formu-
lae for the applied Cholesky-decompositions. o

We mentioned in Ch. IV, that usually mgthods for linearly constrain-
ed nonlinear programming are based on the use of adapted (e.g., projected)
unconstrained search directions. This.leads to algorithms‘whichlare com-
posed of steps which define an unconstrained search direction, pfoject it
on the feasible set given by the active constraints, and then update the it-
eration matrices (if convergence is not yet achieved).Murtagh and Sargent's
algorithm is an implementation of the ideas originally suggested by Davidon
(1959), and later extended by Goldfarb (1966) and Davies (1968). Convergence
theorems which prove the convergence of the algorithm can be found in

Murtagh and Sargent (1969) . The modifications and extension of the algorithm

as implemented by us céncern the following points:

1. The active set strategy. We only test whether a constraint has to be
dropped from the set of active constraints in case of:
(i) ° convergence with respect to the current active set,
(ii) reinitialization of the approximation of the Hessian matrix,
because of accumulation of calculation errors,
(iii) any other constraint enters or leaves the active set.
2. For the criterion which constraint (if any) to delete we followed the
suggestion of Gill and Murray (1974c) (step 7 of the algorithm).
and{NTH N, are used instead of

k ‘k'kk

. T -1 .
the matrices Hk and (NkaNk) . The matrices Bk and NkaNk are stored

in the form of their Cholesky decompositions.

3. For reasons of numerical stability B

The resulting algorithm is as follows:

Step 1. Initialization: a feasible starting point x. is generated. Take

0

B0 = In and determine I(xo), the set of active constraints at XO



Step 2.

(5.6)

'~ where the projection matix P

(5.7)

(5.8)

(5.9)

Step 3.

(5.10)

Step 4.

Step 5.

and the corresponding matrix NO of active constraint normals.

Compute the Cholesky decomposition of NgHONO and set k := 0.

k := k+1.

Determine the search direction
pk = -—Pka VF(xk)

k is given by
P = I-H N (NH N ) N
k = TN (N EN) N,

Find the maximum steplength, am

X’ along Py from
T
b, -a. x
am= min f——l———l;—]f— ar:.['p < O¢.
kit U oal ik
X iPx

Calculate the vector of approximate Lagrange multipliers Ak as

T -1.T
Ak = (NkaNk) 'Nka.VF(xk).
If "szk" > ¢, where € > 0 is a small, pregiven constant, the search
direction is no longer parallel to the intersection of the active
constraints, go to step 6.
If "pk" < ¢ or if in the preceding iteration the set of active con-

straints was changed, go to step 7. Otherwise go to step 3.

Find the steplength 0 < oy < ai that solves:

min F(x
m k

+ap, ) .
k

<

O<a_ak

Go to step 4.

Set X X + akpk and m;dlfy the Cholesky—fac;ors of Bk and
NkaNk to obtain Bk+1 and Nk+1Hk+1Nk+1' If oy = 0y go to step 5,

otherwise go to step 2.

A new constraint, whose index was found in the solution of (5.8)
has become active, Add its normal to Nk to obtain Nk+1 and modify

the Cholesky factors of NinNk accordingly. Go to step 2.



Step 6. Reset B, := In and adjust Niﬂka accordingly. Go to step 7.

k
Step 7. Select the largest Lagrange multiplier, say A(j), and calculate

2 .
g = A0
(3,9)

where b(j,j) is the jth diagonal element of (NszNk)_l. B can be
interpreted as the expected improvement of the objective function
if constraint j is dropped from I(zk). Stop the algorithm if both
“pk“ <gand B < e. If —gipk < B, drop the jth constraint from
I(zk). Update Nk and modify the Cholesky factors of NEHka accord-
ingly to obtain NE+1Hk+1Nk+1'
tinue with step 3. Otherwise set xk =X and go to step 2.

If no change in I(zk) occurred, con-

We saw in ch.IV that if all problem functions satisfied certain differentia-
bility and concavity conditions and if linearizations were performed around

a feasible point Xyt then x. was féasible with respect to the linearized

constraints as well. Hence :k can be used as a feasible starting point for
the linearly constrained algorithm. We also found that as soon as the prob-
lem functions no longer satisfy the above conditions, the feasibility of
the reduced problem could not be guaranteed. Besides that we know that the
solution of the linearized prbblem will not necéssarily satisfy the origin-
al nonlinear constraints. That is the reason why the application of the al-
gorithm is preceded, if necessary, by a feasibility-step, which transforms
an infeasible initial point into a feasible starting point for the applica-

tion of the linearly constrained algorithm.

The procedure starts with transforming the infeasible starting point into
a point which satisfies the linear equality constraints. Then an auxiliary
problem is solved in which the magnitude of the violations is decreased so
that the satisfied constraints are kept as such. A stepwise description of

this feasibility step is:

Step 1. If the current point xk is feasible, start the linearly constrained
algorithm; otherwise, transform X into a solution, xé, of the 1li-

near equality constraints (by otthogonal projection). Go to step 2.

Step 2. Define the index sets IV and IS corresponding with the currently
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violated and satisfied constraints respectively. Go to step 3.

Step 3. Find x!' which solves
*k+1

min I (arirx—bi)2 , where the af and bi are as in (5.1),

(5.11) iel,
such that all constraints with i € Is are met
Go to step 4.
Step 4. Adjust Iv and Is with respect to x£+1. Go to step 5.

Step 5. If IV = ¢, enter the linearly constrained routine. Otherwise

go to step 2.

Obviously this feasibility step provides us with a feasible point by apply-
ing the linearly constrained algorithm itself (in step 3). A similar strat-
egy was proposed earlier by Fiacco (1961) to start Carrolls 'created res-
ponse surface algorithm', the first version of an interior point penalty
algorithm. The convergence of this feasibility algorithm is based on the
fact that the constraint violations are penalized in the objective function
of (5.11), hence the number of elements of Iv will decrease monotonically
until Iv = ¢: a feasible point has been achieved. Of course the rate of
convergence of this algorithm depends on the particular choice of the loss-
functiqn in (5.11), together with the diameter of the feasible region. If
this algorithm does not succeed in finding a feasible point, the problem

is considered to be infeasible.

We conclude this section with a simplified statement of the struc-
ture of the implementation of the 2-phase algorithm (a detailed description
can be found in appendix D).

In figure 5.1 NLPSOL is a subroutine which controls the procedure
to solve the given nonlinear programming problem. NLPSOL applies a sub-
routine which solves a linearly constrained nonlinear programming problem
(LINSOL) and the other subroutines mentioned. The auxiliary calculation
subroutines concern the linearization of constraint functions, the solution
of a system of linear equality constraints and the line search. The matrix
decomposition subroutines calculate the necessary LU- and Cholesky decompo-
sitions and perform the updating of the Cholesky factors as discussed in

the remaining part of this chapter.
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A
Y
auxiliary
NLPSOL |---- - ———- calculation
~o | subroutines
v \:5,(1"
/A’ =
LINSOL bz e pm = — FUNCTI'ON
: subroutines.
L R
matrix decompositions
and their updates

Figure 5.1 Simplified flowchart of the 2-phase algorithm

V.4 Decomposition methods for matrices

Especially in the last decade much attention has been paid to the
development of efficient and numerically stable solution procedures to
solve sets of linear equations. As the 2-phase algorithms require these
solution pfocedures (to find a solution to a set of linear equality con-
straints and to define the constrained search direction), we decided to

apply appropriate matrix decompositions with the general objectives

121
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(1) to perform fast calculations

(ii) to obtain great numerical stability, especially by using permutation
matrices to reorder diagonal elements before solving a system of
equations -

(iii) to recognize non-positive definiteness of Bk and NinNk'

We shall now give a brief description of these LU- and Cholesky
decompositions. The next chapter, V.5, will be concerned with updating pro-
cedures for the Cholesky-factors of the above mentioned iteration matrices.
For a description of the used 'special' matrices, the reader should consult

appendix C or Wilkinson (1965).

V.4.1 LU-decomposition following Peters and Wilkinson (1970)

This method constructs the factors L and U, which are mxn-lower
trapezoidal and nxn-unit upper triangular matrices, of a mxn-matrix A (m=n)

such that
(5.12) A = LU.

The use of LU-decompositions goes back to Bartels and Golub (1969) who use
them in the context of linear programming. A motivation to apply this de-
composition is that it replaces the solution of the nxn system Ax = b by
the solution of the two triangular systems Ly = b and Ux = y. The calcula-
tion of L and U together with the solution of Ly = b is usually termed a
forward elimination, while the solution of Ux = y is called a back substi-
tution. Every nonsingular nXn matrix A has an LU decomposition, provided
that interchanges of rows of A are introduced if necessary, to calculate
these factors.

Application to our mxn matrix A, with m>n, means that we have to
replace the lower triangular matrix L by a lower trapezoidal matrix L to
be able to find the solution of the first n of the given m linear equations
in n variables. We elected to use an algorithm due to Peters and Wilkinson

which generates a sequence of pairs (LO,UO), (Ll'Ul)""’(Ln'Un) such that
L=L and U = U and A =1L,U, for i =1,2,...,n.
n n ii

A description of their algorithm is:
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Step 1. Initialization: LO = A, U0 = I, hence LOUO = A.

Go to step 2.

Step 2. Put k = 1, Form a special matrix E, (as defined in appendix C.6)

1

such that L, = LE, with L, (1,3) =0 for j > 1. Compute EI

is again such a special matrix and calculate U1 = E;1UO. Hence

, which

LUy = LoBiEy Uy

= A.

Go to step 3.

Step 3. Put k := k+1.
Form the special matrlx.Ek such that Lk = Lk—lEk and Lk(i,j) =0
for j > i, i £ k. Go to step 4. )

k

1
=

Step 4. Calculate the special matrix E and define U _1U . Then

k T Yk k-1
= A. Go to step 5.

.

LUk
Step 5. If k = n, stop with L = Ln' U= Un and A = LU. Otherwise, go to
step 3.

Note that for Uk, as defined in step 4, the following holds:

Uk(i,i) 1
Uk(i,j) # O only for i < j and i <k

0 else.

U, (1,3)

For reasons of numerical stability we do not calculate a decomposi-
tion of the matrix A itself, but of the matrix PA.
Here P is the permutation matrix, which is defined during the execution of

the algorithm in the following way:

n
(5.13) P=T Pk
k=1
where Pk is the permutation matrix that provides us with an adjusted matrix
1 3 -
Lk_1 instead of Lkrl'
(5.14) L' =P .P «...P,.L_ .E _.E_...E

k-1 k Tk-1 177012 k-1
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with as k-th diagonal element the absolutely largest element of the k-th
i 2 1 3 2
column. The implementation of this algorithm requires .5mn - gﬂl + O(n")

multiplications for making the LU decomposition of an mxn matrix A.

V.4.2 Cholesky-decomposition

A Cholesky-decomposition of a positive definite, symmetric nXn

matrix A is the factorization
T
(5.15) A = LDL

where L is a unit lower triangular matrix and D is a diagonal matrix. The
proof of the existence and uniqueness of this decompositibn is by induction
on n and follows from the construction below. For n = 1 we take L = 1,
D(1,1) = A(1,1), which clearly gives the required factors. Note that

D(1,1) > 0.

A positive definite symmetric matrix An can be written as

(5.16) B, = e

where An—l is positive definite and symmetric. Hence, by induction hypo-

thesis, An_1 can be decomposed as
T
(5-17 Pa-1 7 Pno1Pno1non
where Ln—l and Dn—l are its Cholesky-factors.

Then the Cholesky-factors for An can be constructed in the follow-

ing way. Define

Ln—l fo
(5.18) L = f—————b—
n T '
[e] ' 1.
and
l}
: D11 O
(5.19) D = I
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Then
T,
o |M-tPn-1fnmt -1t ]
(5.20) L D1l = . .
nnn T T : J
c Dn_1 n-1 ; [o} Dn_lc + X

The unknowns c(a vector) and x (a scalar) in (5.18) and (5.19) are found

from the requirement that (5.16) and (5.20) are equal, which means

(5.21) Ln—an—lc =Db
and
T,
(5.22) c D c+x=a _.
n-1 nn

The vector c is uniquely determined by (5.21) and requires one back substi=-

T
tution. The unknown x is given by (5.22). Taking determinants in An==LanLn

further gives
. T
0 < det(An) = det(Ln)det(Dn)det(Ln),

so that

(5.23) det(a) = x d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>