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I. INTRODUCTION AND PRELIMINARY REMARKS 

I.1. Introduction and scope of the monograph 

This monograph deals with techniques for the solution of nonlinear 

programming problems, i.e., problems in which an objective function is to 

be minimized subject to some constraints, where at least one of the deci­

sion variables appears in a nonlinear way in the objective function or in 

one or more of the constraints. 

Hence we shall consider the following problem: 

l 
minimize F (x) 

(1.1) subject to 

Ci (X) {~} 0 i 1, .... , m 

where x € En , n-dimensional Euclidian space. The problem functions 

F(x) and ci (x), i = 1,2, .•. ,m are mappings En to E1 . 

Special cases of this general problem formulation are unconstrained non­

linear programming problems (when the constraint functions ci (xl in (1.l)are 

absent) and linearly constrained nonlinear programming problems (all 

ci(x) are linear functions of x 1, •.• , xn). 

Both these special cases of the general problem formulation (1.1) will 

play an important role in the solution techniques to be discussed. 

Our basic approach will be to look for solution procedures which reduce 

the solution of problem (1.1) to the solution of a sequence of simpler 

nonlinear programming problems, such as the unconstrained or the linearly 

constrained problems mentioned above. 

The development of techniques which apply ·unconstrained auxiliarly problems 

to solve the constrained problem (1.1) goes back to Courant (1943). He 

suggested to study the relations between the solutions of a purely equality 

constrained version of problem (1.1) and the solutions of the unconstrained 

problems 

(1. 2) 
m 

minimize F(x) + rk ~ 

i=l 

2 
c. (x) 

l 

for a sequence of positive parameters rk such that {rk} + 00 • 

Later Frisch (1954, 1955) and Carroll (1961) applied similar techniques. 

Fiacco and McCormick performed a thorough analysis resulting in the class 
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of Sequential Unconstrained Minimization Techniques (SUMT). See e.g., 

Fiacco and Mc Cormick (1963, 1964 a, b, 1966, 1968). 

They use the auxiliary problem (1.2) to develop an exterior point 

penalty function technique in which a solution x* of the original problem 

(1.1) is approached from the outside of the feasible region. The penalty 

term rkr~ 1c~(x) is intended to penalize constraint violations. These ex-
i= J. 

terior point techniques should be distinguished from the interior point 

penalty function techniques (also known as barrier function techniques) in 

which a solution is approached from the inside of the feasible region. A 

hybrid approach evolves from treating some of the constraints by means of 

an exterior point Zoss term while a barrier function is applied to the 

other constraints: mixed interior point-exterior point penalty function 

techniques. 

Lootsma investigated the boundary properties of the resulting solution 

techniques in Lootsma (1970), starting from a classification of penalty 

and barrier functions. The resulting continuity properties-in terms of the 

penalty parameter - of the trajecto;r,y of penalty function minima provides 

a sound theoretical basis for the application of extrapolation techniques 

to accelerate the convergence to the optimum. 

Some further developments were reported in Ryan (1971, 1974), who gave the 

following definition for transformation methods: 

Definition. A transformation method is a method which solves problem (1.1) 

by transforming the constrained minimization problem into one or more 

unconstrained minimization problems. 

Obviously penalty function techniques belong to the class of 

transformation methods thus defined. The development of transformation 

methods stimulated research in the field of unconstrained optimization, 

which led to efficient algorithms such as those presented in Fletcher and 

Powell (1963), and Broyden, Fletcher, Goldfarb and Shanno (see e.g., Broyden 

(1970)). 

As the auxiliary unconstrained penalty functions turn out to be increasing­

ly ill conditioned if the penalty parameter increases, the solution of the 

unconstrained optimization problems becomes more and more difficult. The 

numerical difficulties encountered, as reported in Murray (1967) and 

Lootsma (1969), stimulated further research. A way out of this difficulty 

seems to be to use some kind of scaling technique to the 



unconstrained problems. For instance the algorithms presented in Fletcher 

(1970a) Oren and Luenberger (1974) or Shanno and Phua (1978a) could be 

applied. These proposals will be discussed in more detail in chapter II. 

An alternative way is to prevent the occurrence of ill conditioned 
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problems by the introduction of auxiliary problems which do not suffer from 

this complication. This approach is followed by means of the so-called 

augmented Lagrangian functions, see e.g., Rockafellar (1974), Fletcher 

(1969) and Powell (1969b). 

Another proposal in the same category is to use quadratic linearly con­

strained auxiliary problems. It can be found in Murray (1969), Biggs (1972, 

1978), Han (1977, 1979) and Powell (1977a, 1978). Chapter III deals with 

properties of such a Recursive Quadratic Programming algorithm, which 

directly applies the results of chapter II. 

However, these last mentioned algorithms are no longer transformation 

methods, as they involve constrained auxiliary problems. That is why we 

introduce a natural extension of the class of transformation methods in the 

following definition. 

Definition. A reduction method is a method which solves problem (1.1) by 

reducing this optimization problem into one or more 'simpler' optimi­

zation problems, where 'simpler' means a decrease in the degree of 

nonlinearity of the problem functions and/or a decrease in the number 

of constraints. 

Examples of reduction methods are: all transformation methods and all other 

approximation methods that apply successive linearizations and/or quadratic 

approximations to solve problem (1.1), e.g., Kelley's cutting plane method 

(Kelley (1960)), the method of approximation programming (Griffith and 

Stewart (1967)), the method of gradient projection (Rosen (1961)), the 

generalized reduced gradient methods (Abadie and Guigou (1969) and Abadie 

and Haggag (1979)), the methods of feasible directions (Zoutendijk (1960)), 

the SOLVER algorithm (Wilson (1963)), Robinson's algorithm (1972) and its 

refinements as reported in Brauniger (1977), Best, Brauniger, Ritter and 

Robinson (1979) and Van der Hoek (1979), and, finally, the Recursive 

Quadratic Programming Algorithms mentioned above. 

The reduction methods to be considered in chapter IV use reduced problems 
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which evolve from the original problem by the linearization of the current­

ly most relevant constraints whereas a linear penalty-like term is added 

to the original objective function .. The numerical aspects of the resulting 

algorithms will be treated in chapter v. 
The last chapter, chapter VI, concerns the design of computational 

experiments to compare the reduction methods developed. A dis­

cussion of the computational results concludes this chapter. 

The appendices A-E give additional information on the test functions 

used and the implementations of the algorithms. 



I.2. Preliminary remarks 

This section concerns several basic notations and definitions. It is 

devided into two parts: I.2.1. on the set of constraints and I.2.2. on 

optimality conditions. 

I.2.1. The set of constraints 

5 

Let us assume that the inequality constraints of problem (1.l)are la­

belled by the indices i = 1, ... , p and the equality constraints PY 

i p+l, ... , m, respectively. Then, at a current iteration point xk, 

k 1, 2, the status of a constraint c. (x) will be one of the three 
]. 

following types: 

passive ci (xk) > 0 i € { 1, ... ,p} 

violated ci (xk) < 0 if i € {1, ... ,p} 

or 

C, (x) 
]. 

,f 0 if i € {p+l, ... ,m} 

active (binding): C, (x) = 
]. 

0 i € {1, ... ,m} 

The feasible region of problem (1.1) consists of all x E En which satisfy 

ci (x) ~ 0, i 1, ... ,p and ci (x) = O, i = p+l, ... ,m. A feasible point 

x E En is said to be a regular point of the constraints if at x the gra­

dient vectors of the active constraints are linearly independent. 

In the reduction methods discussed we shall distinguish at each current 

iteration point ~• k = 1,2,· ..• between more and less relevant constraints. 

The aim is to recognize as soon as possible the constraints which will be 

active at the optimum x*. The currently more relevant constraints are con­

sidered to be liable to become active at x*. Hence they are considered se­

parately. Their indices constitute the so-called active set of constraints 

at~• denoted by I(~) or Ik. These constraints will be treated as equa­

lity constraints. 

Usually such an active set contains at least the indices of the currently 

binding constraints. The decision whether some passive or some violated 

constraint will join this active set as well, depends on the design of the 

particular reduction method. E.g., different active set strategies will be 

applied in the reduction methods of chapters III and IV respectively, with 

as a common goal that I(x*) will be obtained in an early stage of the 
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iteration process. Thus, we expect that I(xk) = I(x*) fork~ K, where K 

is some acceptably small natural number. The design of an active set stra­

tegy should prevent the same constraints from entering and leaving the ac­

tive set repeatedly. This phenomenon, known as 'zigzagging', can lead to 

nonconvergence or even to convergence to the wrong point. 

I.2.2. Optimality conditions 

The well known necessary and/or sufficient optimality conditions for 

problem (1.1) use a Lagrangian function L(x,u,v), associated with pro­

blem (1.1): 

p m 
(1. 3) L(x,u,v) F(x) - ~ uici (x) - ~ vici(x) 

i=l i=p+l 

where ui, i 1, ... , p and vi, i = p+l, ... ,mare the Lagrangian multi­

pliers of the inequality and the equality constraints respectively. 

The first- and second order optimality conditions below are of course well 

known cf., for instance Fiacco and McCormick (1968) or Luenberger (1973). 

The first order necessary conditions or Kuhn-Tucker conditions can be de­

fined as follows: 

Let x* be a relative minimum point for the problem (1.1) and suppose xis 

a regular point for the constraints. Then there exist vectors u E Ep and 

v E Em-p such that 

(1.4) 'i/ L(x*,u,v) 
X 

0 

(1. 5) u.c. (x*) 0 
1. 1. 

i 1, ... , p 

(1.6) C, (x*) 
1. 

0 i p+l, ... , m 

(1. 7) C, (x*) ~ 0 
1. 

i 1, ... , p 

(1.8) u. ~ 0 i 1, •••I p 
1. 

The points z = (x ,u,v) E En+m which satisfy (1.4)-(1.8) are referred to 

as first order Kuhn-Tucker points of (1.1). The active set at z = (x,u,v) 

will sometimes be denoted by I(z). 

□ 
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If a constraint c. (x) is active at the optimum x* with u. = 0 it is called 
i i 

weakly active or degenerate as opposed to strongly active constraints 

which possess a positive Lagrangian multiplier. 

The complementarity formulated in (1.5) will be referred to as strict 

complementary slackness if (1.5) holds and at least one of its factors is 

positive. Strict complementarity for all i means that there are no weakly 

active inequality constraints at x*. The Lagrangian multipliers are unique­

ly determined if at a regular point x* the equations (1.4)-(1.6) are satis­

fied with strict complementary slackness in (1.5). 

The second order conditions are an extension of the first order necessary 

conditions in which the Hessian matrix of L(x,u,v) is required to be posi­

tive definite in the subspace orthogonal to the normals in x* of the 

equality constraints and the strongly active inequality constraints. The 

resulting second order sufficiency conditions for problem (1.1) are: 

Let all problem functions be at least twice continuously differentiable. 

Sufficient conditions that a regular point x* be a strict relative minimum 

point of (1.1) is that there exist vectors u E Ep and v E Em-p such that 

(1.4) - (1.8) are satisfied, together with: 

(1.9) 

where I (x*) 

v2 L(x*,u,v) is positive definite in the subspace M defined by 
xx 

M 

{i C, (x*) 
i 

T 
V c. (x*Jy 

i 
0 Vi E I(x*)} 

O and u. > 0, i = 1, ... ,p} u {p+l, ... ,m}. 
i 

□ 
The condition (1.9) which requires v2 L(x*,u,v) to be positive definite in 

xx 
a subspace of En will be applied in chapter III to generate a sequence of 

positive definite matrices that approximate to v!xL(x*,u,v). 

Functions, such as L(x*,u,v), with positive definite Hessian matrix, will 

be said to possess positive curvature. 
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II. A COMPUTATIONAL COl-1PARISON OF SELF SCALING VARIABLE METRIC ALGORITHMS 

11.1. Introduction 

Most algorithms for constrained or unconstrained nonlinear program­

ing have in common that along currently defined search directions a se­

quence of iteration points is generated by performing a line search. Hence 

both the search direction and the unidimensional search procedure charac­

terise and distinguish these algorithms. The importance of a suitable 

definition of search direction is• even greater as reduction methods, espe­

cially transformation methods, solve constrained nonlinear programming 

problems by solving a sequence of unconstrained nonlinear programming 

problems. The latter problems are solved efficiently by performing a 

linesearch alonq a currently defined direction of search. 

Concerning the generation of search directions, well known 

methods as steepest descent and Newton-Raphson have been improved in the 

last two decades by conjugate direction methods (e.g.,Fletcher-Reeves, 

Polak-Ribiere) and quasi-Newton or variable metric methods (e.g.,Davidon, 

Fletcher and Powell). In the last mentioned class of methods, the sub­

class of ~elf ~caling variable ~etric methods (SSVM) was introduced in 

Oren and Luenberger (1974) and Oren (1974a). These methods were further 

developed in Oren and Spedicato (1976) and in Shanno and Phua (1978a). 

These recent algorithms for unconstrained optimization focus on the 

solution of badly scaled problems. This chapter describes a uniform com­

putational comparison of these algorithms. It is performed to get better 

insight in their relative behaviour and to verify empirically their abil­

ity to solve badly scaled problems. Hence special attention is paid to 

the effect of increasingly bad scaling, the influence of the accuracy 

of the line search and of the dimension of the problem. 

A further reason to design these experiments is the fact that re­

ported numerical results in literature are based on rather different 

test batteries. Surprisingly, up to now experiments have not focused 

on the main goal of these algorithms: their ability to handle badly 

scaled problems where the spectrum of eigenvalues of the matrix R1 , which 

is a measure of the discrepancy between the current inverse Hessian 

approximation and the true inverse Hessian, does not contain the unit 

element. 

This is why a suitable battery of testproblems will be suggested. The 



description of the design of the experiments and their results are pre­

ceded by a brief presentation of the theoretical backgrounds of these 

algorithms, which can be found in more detail in the above mentioned 

references. The classical Q_avidon-E'._letcher-~owell (DFP) and ~royden­

E'._letcher-_g_oldfarb-~hanno (BFGS)~algorithms will be considered as well. 

II.2.1. Self Scaling Variable Metric algorithms 

The problem considered in this chapter is the nonlinear, uncon­

strained minimization problem 

(2 .1) min F (x} 
X 

where x E En, then-dimensional Euclidian space. The objective function 

F(x) is supposed to be a sufficiently differentiable convex function of 

XE En. 

As twice continuously differentiable convex functions F(x} can be approx­

imated in a neighbourhood of their optimum x* by the first terms of 

their Taylor series expansion, we shall only consider quadratic convex 

functions F(x) in the analysis and development of algorithms for uncon­

strained optimization. 

9 

Variable metric or quasi-Newton algorithms generate sequences of iteration 

points xk, search directions pk and approximations Hk of the inverse 

Hessian matrix of F(x} at x*, on the basis of such information 

as the previous step sk-l = xk- xk-l and the gradient difference vector 

Yk-l = gk- gk-l = VF(xk) - VF(xk_l). Furthermore let G(x) = v2F(x). 

A general, stepwise description of quasi-Newton methods is: 

Step 1. Initialization: given an arbitrary starting point x0 with 

g0 = VF(x0), a positive definite symmetric matrix H0 is chosen as 

first approximation of the inverse Hessian. 

Go to step 2. 

Step 2. At point O, 1, 2, ... define ~+las 

(2 .2) 
~+1 

where a.k > 0 is determined by a line search along the direction 
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(2. 3) pk= - Hkgk 

Go to step 3 

Step 3. Stop in case certain (to be specified) termination criteria are met. 

Otherwise continue with step 4 

Step 4. Update Hk, put k := k + 1 and go to step 2. 

For quadratic objective functions the above algorithms have in common the 

so-called quasi-Newton property: HkGp. = pi for i = 1, ... ,k and k = 1, ... ,n, 
-1 l 

which eventually leads to Hn = G 

An important theorem on the global convergence (i.e., convergence 

from any starting point x 0 ) of quasi-Newton algorithms applied to a qua­

dratic objective function originates with Luenberger: 

THEOREM 2.1 (Luenberger, 1973) 

(2 .4) 

For a positive definite quadratic objective function F(x) the quasi­

Newton algorithms converge to the unique optimum x* of F(x) for any 

initial point x 0 • 

At every step the following inequality holds: 

{
K(¾) - 1}2 

F(~+l) - F(x*) ~ ---- (F(x) - F(x*)) 
k K (¾) + 1 k 

where K(¾) is the condition number (the ratio of its largest and 
½ ½ 

its smallest eigenvalue) of the matrix¾= G HkG. D 

The matrix¾ is used as a measure of the difference between Hk and 
-1 2 -1 -1 

G = ('v F(x*)) . Clearly Bk = I means Hk = G . 

It is obvious from theorem 2.1 that convergence is accelerated if the 

{
K(¾:)-1}2 

quotients K(¾)+l , which can be viewed as 'local convergence ratios', 

form a decreasing null sequence. Thus preferably lim K(¾l = 1 should hold. 
k-+oo 

The fact that this property does not generally hold for variable metric 

algorithms was a motivation to search for a subclass of algorithms for 

which lim K(¾) = 1 is satisfied. Variable metric algorithms are known to 
k+oo 

have a number of less favourable properties and this stimulated additional 

research, such as in the direction of the influence of the accuracy of the 

applied line search on the efficiency of the algorithms, the possible sin­

gularity of the matrices Hk (McCormick and Pearson (1969), Lenard (1976), 

and Powell (1977b)) and the sensitivity to scaling of the objective 



function (Bard (1968)). However, the following favourable properties of 

variable metric algorithms should be preserved: 

(i) The matrices Hk, k = 1, 2, ••• are positive definite, provided that 

HO is chosen to be positive definite. 

(ii) If F(x) is a positive definite quadratic funqtion and H0 = In, the 

algorithm is a conjugate gradient method and thus converges in at 

most n-steps. 

(iii) If F(x) is a positive definite quadratic function and the algorithm 

requires all n steps, then Hn = G-l (follows from the quasi-Newton 

property). 

11 

The ~elf ~caling ~ariable ~etric (SSVM) algorithms, presented in Oren and 

Luenberger (1974), satisfy all the above mentioned requirements. The main 

characteristic of these algorithms is the. way in which they update the inverse 

Hessian approximation in step 4 of the stepwise description given above. 

The individual elements of the subclass arise form the choice of two para­

meters cj>k and ek in the formulae (2.5) - (2.7). All these updates are 

elements of Huang's family of upd~te formulae (Huang (1970), Osborne (1972)). 

Essentially, the results are an extension of work of Fletcher (1970a) 

who developed update formulae with guaranteed monotone convergence of the 

eigenvalues of the matrices HkG. 

The update formulae for the SSVM algorithms are: 

T T 

(2.5) 
¾+1 {¾ -

¾YkYk¾ 
+ ekvkv~} yk + 

sksk 
T T 

YkHkyk skyk 

with 

(2.6) T ~ { 9Jc ¾Yk} 
vk (ykHkyk) -T- - -T--

skyk ykHkyk 

and 

T T 

(?.. 7) 
skyk 

(1 - cj>k) + 
skgk 

. cj>k yk T . T 
Yk¾Yk gkHkyk 

Particular choices of the parameters cj>k, ek (note that yk is determined by 

cj>k and vice versa) yield: 

(i) The DFP-update where yk = 1 and ek = O for all k. 

(ii) The BFGS-update where yk = 1 and ek = 1 for all k. 
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(iii) SSVM-updates for all other combinations satisfying some restrictions 

on the values of the parameters. 

Note that the factor yk is determined by the value of ~k and the currently 

available information. It will turn out to be a scaling factor of the 

objective function. The terminology self_ scaling will be used for 

algorithms using formulae (2.5) - (2.7) if for any fixed positive definite 

quadratic function the parameters 8k and yk are automatically selected such 

that K(J\+l) ~ K(¾:l for all k. 

Before proceeding with the presentation of the theoretical background, we 

illustrate the effect of scaling the objective function by an example. 

We apply three algorithms to minimize 

(2.8) F(x) 

T 
starting from x 0 ( 1, 1) . 

The values of K(¾:) are calculated for the following algorithms. 

Algorithm 1. DFP: yk = 1 and 8k = 0 for all k. 

Algorithm 2. DFP after scaling the objective function. In this example 

a scaling factor of 40 is used which transforms the eigen-

values of RO into and 1½. 

Algorithm 3. SSVM with 8k = ~k 0 for all k. 

The next tables contain for these algorithms the iteration matrices Hk, G 

and¾: fork= O, 1, while Al and A2 are the eigenvalues of 1\ fork= 0,1. 

It will be clear from the last line of table 2.2 that the condition number 

K(H 1) = K(R1) of the inverse Hessian approximation is improved by applying 

a scaling procedure. 
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Table 2.1 Iteration matrices at the starting point 

Algorithm 1 Algorithm 2 Algorithm 3 

HO ( ~ ~ ) ( 1 

~ ) ( : ~ ) 0 

G (60 
4~) ( 1½ 

~ ) (6~ 4~) \ 0 0 

RO (60 
4~) ( 1'2 

~ ) (6~ 4~) ' 0 0 

Al 40 1 40 

A2 60 1½ 60 

K(RQ) 1½ 1'2 1½ 

K(G) 1'2 1'2 1½ 

Exact line minimization in the direction - aH0g0 and application of (2.5) -

(2.7) yields: table 2.2 

T.able 2.2 Iteration matrices after one iteration 

Algorithm 1 Algorithm 2 Algorithm 3 

Hl ( .17781 ·-.36256) ( .67923 -.02828\ C01584 .00188) 

-.36256 .84077, -.02828 1.06362/ .00188 .02773 

Rl (10.6683 21.7537) ( 1.01885 -.0424J r-94997 .11253) 

14.5025 33.6306 ,-.02828 1.063621 ,.07502 .83118, 

Al 1 1 .781165 

A2 43.298964 1.082475 1 

K (R1) 43.298964 1.082475 1.280139 

We proceed now with a brief description of the theoretical background as 

found in Oren and Luenberger (1974), without presenting proofs of the 

theorems. First we introduce a shortened notation for formulae (2.5) and 

(2.6): 
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(2.9) 
e 

H (H,y,s,y) 

with 

(2 .10) T ½ { s Hy} V = (y Hy) T - -T-
s y y Hy 

In (2.9) and (2.10) the subscripts are suppressed as we are mainly interes­

ted in the change of eigenvalues after one particular iteration. 

The following fundamental lemma concerns a scaled problem (with yH as 

Hessian): part (i). The update formula is given as a combination of two 

elementary formulae (result (ii) of the lemma, the restriction 8 E [0,1] 

will turn outtDbe necessary) and a duality relation is derived (part (iii)). 

LEMMA 2.1 

As R 

Let H8 (H,y,s,y) be defined by (2.9) and (2.10). Then for any 

symmetric non-singular matrix H, non-zero vectors s, y E En and 

scalars 8, y(f 0), 

(i) 
e e 

H (H,y,s,y) H (yH,1,s,y) 

(ii) 
e o 

H (H,Y,s,y) (1-8) H (H,y,s,y) 
1 + 8H (H,y,s,y) 

(iii) 
1 -1 0 -1 1 

[H (H,y,s,y)] = H (H ,-,y,s) 
y 

G½HG½, we expect similar relations to hold for the updating of R. 

This is expressed in the next lemma. For simplicity in notation again the 

indices k are suppressed. The indices (k+l) are replaced by an upper bar, 

hence D Dk and D = Dk+l etc. 

LEMMA 2.2 

e . 
Let H (H,y,s,y) be defined by (2.9), (2.10) and .(2.7). Let G be a 

□ 

positive definite symmetric matrix. Assume sTy > 0 and y Gs. Then 
½ ½ . 1 

for R = G HG and z = G~s the following relation holds: 

(2 .11) 
- e 
R = H (R,Y,z,z) □ 

As R is nonsingular if y f 0 and His nonsingular, lemma 2.1 applies to 

R with z = s = y and R = H, thus yielding relations for the updating of R. 
- e 

We intend to analyse the eigenvaluestructure of R = H (R,y ,z,z),. 

This will be carried out in two steps. 

First, in theorem 2.2, relations are stated between the eigenvalues of two 

general symmetric (nxn) matrices, say Sand T, that satisfy 



(2 .12) T 

with r E En, r i o. This means that Tis obtained by adding two rank 1 

matrices to the matrix S. 

Second, the results obtained are extended to H6 (R,y,z,z). 

The results of theorem 2.2 are extensions of the following lemma: 

LEMMA 2.3 (interlocking eigenvalue lemma, Loewner, 1957) 

Let A be a symmetric (nxn)-matrix with eigenvalues 

(2. 13) 

and 

(2 .14) 

A1 S A2 S •.• s An and let a E En be an arbitrary vector. 

Let the matrix B be defined by B =A+ aat, with eigenvalues 

µ1 s µ2 s ... s µn 

Then: Al S µ 1 s A2 s u2 S ... S An S µn. 

A direct application of this lemma to 

p 

T 
T 

P + rr 
T r r 

yields theorem 2.2: 

THEOREM 2.2 

Let S be a positive definite symmetric matrix with eigenvalues 

15 

□ 

0 < Al s A2 s ... s An and let r E En be a non- zero vector. Let the 

matrix T be defined by (2.12) -with 

Then there are three possibilities: 

(i) if Al "' 1, then µ1 and 

(ii) if A s 1, then µn and A. 
n l. 

i = 1,2, ... ,n-1 

s Ai-ls µi s A. for 
l. 

i 2,3, ... ,n 

s µi s Ai+l s 1 for 

(iii) if \ s S An and the index J is such that AJ S 1 S AJ+l'then 

and at least one of the two eigenvalues µJ, µJ+l equals unity. 

□ 
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In figure 2.1 we illustrate the way in which the eigenvalues (and conse­

quently the condition numbers) change in the construction of the matrix T 

from P and S. The eigenvalues of the matrices T, P and Sare denoted by 

µi, si and Ai respectively. Then the 3 possible cases of theorem 2.2 are: 

(i) 

(iii) 

-__ -__ -__ ....,,., __ .....-\-_/ ____ ,......\---,-:r,,---:r,1-->-
~c-=---------- _...,..._SJ-+-: __ - __ ----' __ _ ,._s---+V+----+-tv--,; 
0 1 µ 

Figure 2. 1 

s 
p 

T 

s 
p 

T 

s 
p 

T 

Note that in all cases the smallest eigenvalue A, of Sis transformed into 

the eig~nvalue s = 0 of P, which in turn becomes the eigenvalueµ= 1 of 

the final matrix T. 

It will be clear from theorem 2.2, especially part (iii), that in order to 

guarantee that Twill have a lower condition number than S, the interval 

spanned by the eigenvalues of S must contain the unit element. This obser­

vation forms the basis of the development of the SSVM algorithms ... 

An intermediate result relate.s the eigenvalues 

THEOREM 2.3 

Let ii.8 

e -e 
s µn (y) of R (y) 

e 
H (R,y,z,z) 

for 8 E [0,1] to the corresponding eigenvalues for 8 

e = 1. 

0 and 

e 
H (R,y,z,z) be given by (2.11) for some fixed positive 

definite matrix Rand z E En, z i 0. Then, for 8 E [0,1] and y > 0, 

(2 .15) 1 
µi (y) for i 1, 2, ... , n □ 
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The next theorem, which relates the eigenvalues of the matric5's 
-e 

Rand R (y), now follows readily, 

THEOREM 2.4 

-e e 
Let R (y) = H (R,y,z,z)be given by (2.ll)fo:t a fixedpositive definite 

n -e 
matrix Rand z EE, z i 0. Let the eigenvalues of Rand R (y) be 

e e e 
respectively A1 $ A2 $ ... $An and µ 1 (y) $ µ 2 (y) $ •·· $ µn(y). 

Then, provided that e E [0,1] and y > 0 there are three possible 

cases: 

(i) if. YAl ~ 1, then 
e 

µ1 (y) 1 and YAi-1 $ e 
µi (y) $ Y\ for 

i = 2,3, ... , n. 

(ii) if YA $ 
e 

YA. 
e 

Y\+1 1 for 1' then µn(y) 1 and $ µi (y) $ $ 
n 1. 

i = 1,2, ... , n-1 

(iii) if Y\ $ $ YA 
e n 

then YAl $ µ1 (A) 

and the 

$ YA 2 $ 
e 

index 

$ 

J is 

YAJ 

su~h that YAJ ! 1 $ YAJ+l' 

$ µJ(y) $ 1 $ µJ+l (y) $ 

$ YAJ+l $ ... $ µ (y) $ YA , and 
e e n n 

values µJ(y)' µJ+l (y) equals unity. 

at least one of the eigen-

0 

COROLLARY 1 

-e e 
With R (y), R, Ai and µi(y) as in theorem 2.4 there holds 

(2 .16) 1, 2, ... , n 

Proof 

The result is obvious from the observation that A. 
e i 

or 1 < µi(l) $ Ai for all i. D 

As a result the eigenvalues of the matrices generated successively tend 

monotonically to the unit element. This is exactly the result in Fletcher 

(1970a). 

COROLLARY 2 

With the same notation as corollary 1 and K (.) denoting to be the 

conditionnumber of a matrix, then fore E [0,1] and y > 0 there are 

three cases: 
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-e 
(i) if YAl 2 1, then YA 2 K (R (y)) 2 YAn-1, n 

YA 1/y\ 
-8 

1/yA2 , (ii) if $ 1' then 2 K (R (y)) 2 
n 

YA 1 2 Y\, 
-8 

K (R). □ (iii) if 2 then K (R (y)) $ 
n 

As we are looking for matrices~ with decreasing condition number, case 

(iii) of corollary 2 is the most interesting one. The necessity of the 

condition that 8 E [0,1] for every value of the suppressed index k follows 

from a counterexample due to Fletcher (1970a) in which both 8 $ - E and 

8 2 + E for EE (0,1) lead to a contradiction. Hence it remains to 

define factors y which satisfy yAn 2 1 2 yA 1 . As it is rather time 

consuming to evaluate the eigenvalues Al and An' we are interested in 

scaling factors y based on currently available information and which still 

satisfy YAn 2 1 2 yA 1 . Oren (1974a) introduced a convex class of scaling 

factors which meet these requirements. Let H be a nonsingular symmetric 

nxn matrix and s,y E En withs f. O, y f. 0. Then the scalar y¢(H,s,y) is 

defined by 

(2 .17) 
¢ 

y (H,s,y) 
T T 

(1 - ¢) :?,_X,_ + ¢ ~ 
T T 

Y HY g Hy 

If His positive definite, sTy > 0 and¢ E [0,1] then y¢(H,s,y) is strictly 
8 

positive. The next theorem states that y (H,s,y) as defined in (2.17) 

satisfies yAn 2 1 2 yA 1 for all¢ E [0,1] automatically. 

THEOREM 2.5 

Proof 

(2 .18) 

Let s,y E En, sf. O,y f. 0 with sTy > O. The matrices Hand Gare 

positive definite symmetric such that y = Gs while the positive 

definite matrix R is defined by R = G½HG½. Then for all¢ E [0,1] 

there holds 

1 
A 

n 

where Al and An are the smallest and the largest eigenvalue of R 

respectively. 

First we rewrite (2.17) as 

T T -1 
y¢(H,s,y) = (1 - ¢) STY + ¢ s HT s using 

y Hy s y 



(2 .19) 
T -1 

s H s 
T 

s y 
for s -a.Hg. 

As y¢(H,s,y) is defined as a convex combination of y 1 (H,s,y) and 

yO(H,s,y) it suffices to prove the theorem for y = 0 and y = 1. 

These proofs can be found in Oren (1974a) and, slightly modified, 

in Van der Hoek and Dijkshoorri ( 1979) . 
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□ 

Conclusion 

We found in lemma 2.1 (i) that 

8 8 
H (yH,1,s,y) = H (H,y,s,y) 

I.e., scaling of the objective function by multiplying the inverse Hessian 

approximation before updating by a constant~ can be implemented in SSVM 

algorithms by simply choosing y =~-Soy can be interpreted as a scaling 

factor and varying y from iteration to iteration has the effect of re­

scaling the objective function. 

The scaling factors defined by (2 .17) can be calculated from the information 

gathered in the preceding step as expressed by the vectors s,g and y and 

by the matrix H. The resulting algorithm is invariant under scaling of the 

objective function and/or the variables. The last remark is proved in the 

next theorem. 

THEOREM 2.6 

Proof 

Let¾' ¾' 8k and ¢k be defined as above. Suppose that the sequences 

{Hk}, {~} and {Hk}, {xk} are generated by application of the algo­

rithm to the functions F(x) and aF(8x) respectively (a> o, 8 > O). 

For the initialisation we assume Ho= OHO (o > 0) and 8xo = xo· 

Both applications use the same sequences {8k} and {¢k}. Then, for a 

twice continuously differentiable function F(x), we have that 

for all k. 

The proof follows immediately from substitution in the update 

formulae. D 
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Conclusion 

Thevariablemetric algorithms presented above generate positive definite 

matrices Hk, the condition numbers of the corresponding I\: matrices form 

a monotone decreasing sequence and the algorithms are self scaling, and 

invariant up to scaling of the objective function and the variables. In 

the course of the iterations the matrices Hk increasingly resemble the 

true inverse Hessian. This will provide a good local convergence rate even 

without performing a line search (by simply taking the Newton steplength 1). 

Thus we expect to find in our experiments good results with inexact line 

searches, as.well as a decrease in the influence of roundoff errors. 

II.2.2. Optimally Conditioned Self Scaling Algorithms 

It will be clear from chapter II.2.1. that there is still a wide variety 

of possible choices of the SSVM-parameters y(¢) and 8. A first trial to 

find preferable parameter combinations was performed by Oren. He reported 

in Oren (1974b) the results of experiments in which the 9 possible pairs 

(¢k,8k) in the set { (¢,8) 1¢,8 E {0,0.5,1}} were substituted in formulae 

(2.5) - (2.7). Besides that this study contained two devices to generate 

parameters yk and 8k from currently available information on the objective 

function. According to these rules yk is selected as close as possible to 

unity and 8k is chosen such as to offset an estimated bias in det (HkG) 

relative to unity. The main result of Oren was that he showed that a 

further improvement of the SSVM algorithms could be expected by a proper 

selection of the parameters. 

In a subsequent paper, Oren and Spedicato (1976), a theory was developed 

to obtain a sharper bound on the condition number of the positive definite 

updates Hk. A low condition number of Hk is desirable from a numerical 

point of view since it will reduce the round-off error in the determination 

of the succeeding points (formula (2.2)) and thus it will improve the 

numerical stability of the resulting algori.thm. 

As a result of their analysis Oren and Spedicato present the following 

theorem which characterizes so-called optimaZZy conditioned updates. 

THEOREM 2.7 (Oren and Spedicato, 1976) 

The matrix Hk+l is optimally conditioned if and only if either 
2 

TTT = a or 



(2.20) 8 

Here a,, and 11 

(2 .21) a 

(2.22) T = 

(2. 23) 11 = 

0(11 - yo) 
y (11T - a2) 

are defined by 

T 
s y 

T 
y Hy 

T T 
TH-1 s yg s 

s sor-T--
g Hy 
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□ 

Imposing this relation on the SSVM updates yields the one parameter class 

of Optimally Conditioned Self Scaling Updates. Following previous 

publications the resulting strategies will be called switches I-IV. 

Switch I 

(2 .24) 

(2 .25) 

(2.26) 

Switch II 

(2 .27) 

Switch III 

(2 .28) 

(2 .29) 

(2.30) 

Switch IV 

(2. 31) 

If 
11 

1, 2:. and $ choose y 
a a 

If £. ~ 1, choose y 
a 
- and 

T T 

If £. $ 1 
11 

$ I choose y 
T a 

(2:./i and 8 
1 y 

(rn) ½ T 

If 
11 
-$ 1, 
a 

If ~?;, 
T 

1, 

If 
a 
-$ $ 
T 

y =2:. and 8 
T 

1 + a2" 

2:. and choose y 
a 

choose y £_ and 
T 

2:. choose y 1 
a 

8 O; 

8 1; 

1 and 8 
a (11 - a) 

2 
11T - a 

e O; 

8 1; 

0 (T - a) 
and 8 

2 
11T - a 
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These strategies with automatically determined parameters were succeed­

ed by a paper of Shanno and Phua which will be discussed in the next 

section. 

II.2.3. Initial Scaling of BFGS 

The sequence of iteration points {xk} defined by equation (2.2) 

xk+l = ¾ - akHkgk together with (2.5)-(2.7) can be verified to be inva­

riant under the scaling F(x) = cF(x), c ER, if yi or H0 are chosen 

appropriately. Starting from this observation Shanno and Phua 

consider two possible initial scalings of HO which satisfy the invariance 

of the algorithms under scaling of the objective function. ~Dreover these 

scalings appear to improve the numerical stability of the resulting 

algorithms. 

With respect to this proposed initial scaling the following lemma can be 

proved. It states a relation between initial scaling and the application 

of an appropriate SSVM update. In this lemma initial scaling means that 

H0 = I is used to determine x1 wh'ile using a steplength a0 • After the 

determination of x1 but before updating H0 , we now scale HO by 

(2. 32) 

and then compute H1 using the BFGS update formulae and H0 . 

LEMMA 2.4 

Initial scaling of the inverse Hessian approximation by a factor a 

followed by the application of the BFGS update formulae is equivalent 

to the application of the SSVM update formulae with y = a and 8 = 1. 

Proof 

which proves the lemma. D 

The use of the steplength a0 as a scaling factor is motivated by the fact 

that if His a good approximation to the true inverse Hessian, then a 

will be equal to 1. The interpretation of the lemma is that instead of 
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scaling H by y at each step, like in SSVM algorithms, one can scale only 

the matrix HO. After this first scaling the approximate Hessian is never 

rescaled. This idea of performing a simple initial scaling was first 

suggested by Shanno and Phua (1978a). Another advantage of this approach 

is that the resulting algorithm still uses the BFGS update formulae which 

gives a robust and efficient algorithm for unconstrained optimization. 

Both computational and theoretical studies confirm this (see e.g.,Van der 

Hoek and Dijkshoorn (1979) and Nazareth (1979)). Besides the initial 

scaling as given in (2.32) Shanno and Phua combine the relation expressed 

in (2 .20) with 0 1 for BFGS, and thus obtain a second alternative for 

initial scaling of the BFGS-algorithm: 

(2.33) 0 
-H 
T 0 

Both initial scalings will be considered in the comparison of section II.3, 

where special attention will be paid to the question how the efficiency 

of the algorithms depends on the .conditioning of the problem, on the number 

of variables and on the accuracy of the applied line search. Finally, for 

the class of homogeneous functions, as introduced by Jacobson and Oksman 

(1970), BFGS algorithms, initially scaled or not, can be proved to be infe­

rior to e.g.DFP.This proof relies on a comparison of resulting step-size 

predictions and the definition of what they call a homogeneous function. 

That is a function F(x) such that 

(2. 34) F(x) 
-1 T 

S (x - x*) g(x) + F(x*), 

with x* the minimizer, S the degree of homogeneity and g(x) 17F (x) • 
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II.3 Computational experiments 

As mentioned in the introduction the computational e~periments were 

designed to verify empirically the ability of the algorithms discussed 

above to solve badly scaled problems. A detailed description of the design 

of the performed experiments, the choice of suitable testproblems, the con­

sidered algorithms etc. will be given in the remaining part of this chapter. 

A discussion of the results will lead to a choice of update formulae 

to be applied in the context of the Recursive Quadratic Programming algo­

rithms of chapter III. 

II.3.1. Algorithms implemented 

The flowchart given in figure 2. 2 gives a general representation for the 

implementation of the considered algorithms. The different algorithms are 

defined by particular choices for the line.search and the formulae for up­

dating the inverse Hessian approximation. 

We investigated implementations of the following 9 algorithms: 

1. Davidon-Fletcher and Powell. Fletcher and Powell (1963); 

2. Broyden-Fletcher-Goldfarb and Shanno. e.g.,Broyden (1970); 

3. Self Scaling Variable Metric (25 parameter choices). Oren and 

Luenberger (1974); 

4-7 Four Optimally Conditioned Self Scaling Switches. Oren and Spedicato 

(1976); 

8,9 Two devices for initial scaling of BFGS. Shanno and Phua (1978a). 

For these algorithms we varied the accuracy of the line search. Also the 

effect of the test of Goldstein and Price· (1967), to avoid line searches 

was investigated for a range of accuracies of this test. 

The experiments were performed on an IBM 370/158 computer using the 

FORTRAN-G compiler under OS/VS2 (MVS-Multiprogramming Virtual Storage), in 

double precision. The implementation consisted of a main program SSVM 

which calls the subroutines CUBIC (line search) and UPDAT (updating inverse 

Hessian approximation). 

Special remarks on the implementation: 



updating 
inverse 
Hessian 

Figure 2.2 

no 

initialise 

yes 

yes 

convergence? 

yes 

end 

25 

no 

">------'-"no~>--1 line search 



26 

SSVM: 1. The Goldstein and Price condition to test whether the Newton 

steplength '1' is acceptable or not is applied in the main program 

SSVM. This means that the following condition is checked: 

F(~ + pk) - F(~) 
CJ < ---------- < 1 - CJ for some O <CJ<½. 

2. As theoretically Hk+l need no longer be positive definite if 

sTy < 0 we test this relation before updating. If sTy < O, no up­

dating takes place: ¾+l =¾·If this happens !FAIL times during 

the execution of one test.problem the run is terminated with an 

error message. This only occurred in the execution of test pro­

blem 6, with prechosen IFAIL = 10. 

3. If the number of used function evaluations exceeds a predesigned 

number NFMAX, the execution is terminated with a message. We used 

the extremely high value NFMAX = 1000, to distinguish problems 

that are hard to solve from unsolvable ones. 

CUBIC This line search is a bracketing process followed by cubic interpo-
T lations. Because of possible nonconvexity in the problems, s y < 0 can occur, 

the line search has a built in safety in the sense that it reverses age­

nerated search direction which is not initially downhill. 

UPDAT In this subroutine the updating of the inverse Hessian approximation 

takes place. The Oren-Spedicato switches require the calculating of 

T T s y.g s 
T 

g Hy 
(Oren (1974a)). 

The latter expression is used in the computations as it is cheaper than 
2 T the first. (In the case of an exact line search we can use 11" = a g Hg or 

T 
11'" = as y) • 

IL 3. 2. The choice of test .problems, termination criteria and performance 

indicators 

The subjects to be treated in this section are motivated by the ne­

cessity of a proper design of the experiments, in order to be able to draw 

correct conclusions from the numbers that will be generated. 

Test_problems To meet our goal in the design of the numerical experiments, 

we composed a collection of 12 test problems, mentioned in appendix B. The 

testproblems, whose gradients are given analytically, are taken from the 



27 

literature. The new problems required are generated by varying parameters 

which influence the condition number of the test.problem and/or the dimen­

sion. Though the convergence properties of the developed algorithms are 

proved for convex minimization problems, usually test batteries, including 

ours, also contain nonconvex problems. For the moment we only remark that 

recent research on global minimization algorithms to minimize nonconvex 

problems, Rinnooy Kan (1979), provides an entirely different approach. The 

set of 12 test functions consists of the following problems: 

1, 2, 3, 4: Increasingly badly scaled variants of Rosenbrock's function, 

Rosenbrock (1961), Colville (1968). 

5, 6 

7, 8, 9 

10- and 30-dimensional generalizations of Rosenbrock's function. 

2-, 10- and 30-dimensional Quartic functions, Oren (1973), to 

test the behaviour on homogeneous functions of different 

dimension. 

10, 11, 12: 2-, 4- and 6-dimensional Hilbert problems, Oren (1973), to 

test the influence of increasingly extreme ill-conditioning 

on purely quadratic functions. 

Termination criteria. As a wide variety of these criteria is known and 

has been applied we had to make a choice and decided to stop iterating as 

soon as both the following conditions were met: 

We preferred this criterion consisting of two components as it guarantees 

a certain accuracy in determining both the optimal function value F* and 

the coordinates of the optimum x*. 

The linear Taylor approximation of F(x) around xk yields 

so 

Table 2.3illustrates the inaccuracy in x* which is still possible under 

our stopping rules. 

A single component criterium as I IF(xk+l) - F(xk) I I ~ 10-10 , as applied in 
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Oren (1974b), Oren and Spedicato (1976) and Shanno and Phua (1978a) locates 

x* even less accurately. 

Table 2.3 

Last iteration point (x 1 ,x2) for the two dimensional Quartic function for 

different algorithms with the applied termination criterium. 

Algorithm xl x2 F (x 1 ,x2) 

SSVM qi 1' 0 .25 .2882 10-3 .3880 10-4 .740 10-16 

qi .50,0 .25 .2885 10-3 .3841 10 
-4 

.742 10-16 

qi .75,0 .25 .2883 10-3 .3862 10-4 .741 10-16 

Switch I .2883 10-3 .3862 10-4 .741 10-16 

II .2883 10-3 .3862 10-4 . 741 10-16 

III .2883 10-3 .3862 10-4 .741 10-16 

IV .9527 10-4 - .1401 10-3 .233 10-16 

SH/PH I .9561 10-4 .2622 10-3 .215 10-15 

II .1284 10-3 -.2552 10-3 .215 10-15 

DFP .3747 10-3 - .1238 10-3 .292 10-15 

BFGS .1102 10-2 -.2708 10-3 .185 10-13 

The cubic line search terminates if the Euclidian distance of successively 

generated points along the search direction is smaller than or equal to a 

preset parameter called EPSCU. 

Performance indicators. Candidates for performance indicators are: 

number of function evaluations, number of iterations and required CPU-secs 

to solve a testproblem (an iteration consists of the generation and explo­

ration of a search direction) . These three indicators are mentioned in the 

tables in Van der Hoek and Dijkshoorn (1979). The number of required 

function evaluations was used as the main indicator. That is why only the 

results for this indicator will be given here (these results correspond 

directly to the number of iterations,as the number of function evaluations 

per iteration does not vary much).The main disadvantage of counting 

function evaluations to solve the whole set of testproblems is that diffe­

rent objective functions are equally weighed though they may differ sub­

stantially in complexity: in Van der Hoek and Dijkshoorn (1979) we men­

tioned that one evaluation of the 30-dimensional Rosenbrock-function 
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is approximately as expensive as five evaluations of the 2-dimensional 

Quartic function. This disturbing infuence is compensated for by separate 

consideration of classes of test functions, such as the higher dimensional 

ones and separate conclusions for those classes. 

The required CPU-time gives additional information on the overhead of 

computations such as matrix manipulations which the program performs. 

However, the CPU-time cannot be measured very accurately because of the 

inaccuracy of the internal clock of.the machine and, more importantly, 

because of the multip~ogramming facility. 

We found that.timesvariedup to 10% for jobs run in daytime and requiring 

less than 10 measured secs CPU-time. Because of this lack of accuracy, we 

do not present these tables here. Table 2.8 should be regarded as an 

illustration of the accuracy reached in determining F*. 

n:3.3. Design of the experiments and results 

The experiments were designed in the following way: 

Experiment I Find the three best (~,9)-combinations of the Oren-Luenberger 

SSVM-algorithms, without application of the Goldstein and Price test. The 
-1 -6 accuracy of theline search EPSCU varies from 10 to 10 • The resulting 

algorithms are called A, Band C. 

Experiment II The algorithms A, Band C which arose from experiment I and 

implementations of the four Oren-Spedicato switches are compared. The para­

meter cr of the Goldstein and Price test varies from 0.01 to 0.49 and EPSCU 

has the same range as in experiment I. 

Experiment III DFP and BFGS are implemented together with the two devices 

for initial scaling of BFGS of Shanno and' Phua (1978a). 

Under the termination criteria stated above the generalized Rosenbrock 

function with c = 106 appeared to be too hard for all algorithms. That is 

why it is not incorporated in the following tables. 

The 25 algorithms resultingfrom 5 particular choices for each of the para­

meters~ and e were generated by the loops: 

DO 10 I 1,5 

PHI= .25 * (I-1) 

DO 10 

TETTA 

10 CONTINUE 

J 1, 5 

.25 * (J-1) 
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The most relevant results are summarized in the tabless 2.4 - 2.7 using 

the following notation: 

# F 

F* 

F 

L 

number of required function evaluations 

function value reached 

failure 

column sum 

In the calculation of L, a failure will be counted as 1000 function eva­

luations. The F of failure is repeated below the corresponding value of L. 



Table 2.4: # F for 25 ($,6)-combinations. Accuracy 11.nesearch 10-l No Goldstein/Price test. 

algorithm I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2·, 

test function 

Ros (c=l) 32 29 29 28 28 29 28 28 26 25 29 28 25 25 26 28 26 25 23 22 28 25 26 22 

(c=!02) 160 102 94 91 98 102 100 101 98 Ill 93 101 108 119 119 91 98 119 126 103 98 111 119 103 1.; 

(c=104 ) 863 357 329 328 315 350 330 313 322 306 339 300 307 374 356 311 331 362 381 380 321 307 348 345 S,il, 

(n=lO) 305 211 207 210 241 193 174 I 75 183 209 171 159 162 179 195 173 157 160 159 168 166 160 170 161 lb·\ 

(n=30) F 726 F F F 588 471 527 584 655 552 391 429 486 523 525 372 391 434 466 511 362 382 4,0 41,' 

Quartic (n=2) 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 4, 

(n=!O) 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 68 70 74 72 72 69 70 71 74 [,.,, 

(n=30) 91 89 91 91 87 91 89 89 90 90 89 91 91 91 91 89 90 91 91 91 90 89 91 91 'JI 

Hilbert (n=2) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 )<, 

(n=4) 24 24 24 2f 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 ,_',I 

(n=6) 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 L2 

2626 1689 1925 1923 1944 1528 1367 1408 1478 1571 1451 [illl 1297 1449 1485 1388 [ill] 1325 1389 1405 1386 [ml 1310 1319 lStJ.\ 

F F F F B C A 

w 



Table 2.5: # F for 25 (¢,8)-combinations. Accuracy line search 10-J No Goldstein/Price test 

algorithm 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

test function 

Ros(c=l} 34 31 31 30 30 31 30 30 28 27 31 30 27 27 28 30 28 27 25 24 30 27 28 24 25 

(c=l02l 169 134 121 130 132 134 136 136 129 123 120 136 122 127 127 130 129 127 132 140 132 122 128 140 149 

(c=104 ) 882 470 436 443 429 471 443 450 447 544 436 450 530 577 433 442 447 577 441 436 429 543 433 436 434 

(n=:10) 350 262 290 293 288 235 215 230 258 266 233 205 205 235 244 234 218 207 213 233 237 204 206 220 219 

(n=30) F F F F F 715 608 674 F F 710 488 567 650 729 725 486 550 582 660 772 489 501 544 605 

Quartic (n=2) 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 

{n=10) 94 95 95 95 87 90 94 94 95 91 90 94 94 94 94 91 91 94 94 96 90 89 101 97 97 

(n=30) 134 131 130 130 131 131 132 133 131 131 131 132 132 132 130 129 133 132 132 131 129 131 133 133 13:! 

Hilbert (n=2) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 

(n=4) 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 

(n=6) 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 

2778 2238 2218 2236 2212 1922 1773 1862 2203 2297 1866 1650 1792 1957 1900 1896 1646 1329 1734 1835 1934 1720 1645 1709 1776 

F F F F F F F 

w 
"' 



Table 2.6: # F for 25 {$,8)-combinations. Accuracy linesearch 10-6 . No Goldstein/Price test. 

algorithm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

test function 

Ros (c=l) 36 33 33 32 32 33 32 32 30 29 33 32 29 29 30 32 30 29 27 26 32 29 30 26 27 

(c=10 2 ) 177 145 125 140 142 145 145 145 151 128 126 145 129 133 135 140 151 133 138 145 142 129 135 146 156 

(c=104 ) F 534 520 498 508 534 511 529 528 534 520 528 539 500 492 498 528 501 492 487 508 533 492 486 484 

(n=lO) 384 291 325 342 305 266 262 267 304 284 274 244 242 268 295 270 252 243 244 273 281 240 247 266 250 

(n=30) F F F F F F 679 803 F F F 595 684 753 F F 760 622 683 781 F 599 597 647 689 

Quartic (n=2) 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 

(n=lO) 101 106 106 106 102 101 101 106 106 106 101 100 106 106 106 194 105 105 106 105 103 102 105 105 104 

(n=30) 146 143 145 145 148 144 147 147 147 147 145 146 149 149 146 145 147 147 149 149 149 147 147 148 148 

Hilbert (n=2) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 

(n=4) 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 

(n=6J 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 

2962 2370 2372 2381 2355 2341 2015 2147 2384 2346 2317 1908 1996 2056 2322 2307 2091 1898 1957 2084 2333 1897 1871 1942 1976 

F F F F F F F F F F F F 

(.,.J 
(.,.J 
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Table 2.7: # F for algorithms A, B, C, the 4 Oren-Spedicato switches, DFP, 

BFGS and the 2 Shanno-Phua variants. 
-1 

Accuracy line search 10 . 

Goldstein/Price test with o = 10-1 . 

algorithm A B C SWI SWII SWIII SWIV DFP BFGS SH/PH I SH/PH II 

test function 

Ros(c=l) 28 22 29 21 21 21 17 22 17 15 15 

(c=10 2) 110 106 114 111 111 98 493 133 67 72 72 

(c=104 ) 346 371 347 358 350 364 F 300 227 225 228 

(n=10) 128 133 124 130 117 166 F 262 112 116 113 

(n=30) 237 264 256 225 268 312 F F 381 244 231 

Quartic (n=2) 38 38 38 38 38 38 52 60 41 58 58 

(n=l0) 47 47 47 48 47 48 F 479 128 172 172 

(n=30) 52 53 53 53 53 53 F 716 253 415 414 

Hilbert (n=2) 13 13 13 13 13 13 14 10 10 12 12 

(n=4) 28 28 28 28 28 28 18 18 30 32 32 

(n=6) 27 27 27 27 27 27 16 16 26 35 35 

l: 1054 1102 1076 1052 1073 1168 3016 1292 1396 1382 



Table 2.8: F*, obtained by algorithms A, B, C and the 4 Oren-Spedicato switches. 

Accuracy line.search 10 
-1 Goldstein/Pric·e test with cr = 10-l 

algorithm A B C SWI SWII SWIII 

test function 

Ros(c=l) .179 10-17 .528 10-17 .376 10-18 .513 10-19 .513 10-19 .513 10-t9 

(c=10 2) .453 10-16 .270 10-22 .473 10-17 .120 10-22 .120 10-22 .439 10-26 

(c=104 ) .132 10-26 .586 10-21 .596 10-20 .210 10-22 .123 10-13 .724 10-21 

(n=10) .116 10-16 .661 10-18 .720 10-18 .114 10-16 .152 10-18 .191 10-17 

(n=30) .142 10-15 .601 10-17 .432 10-16 .221 10-16 .645 10-17 .156 10-17 

Quartic (n=2) .741 10- 14 .742 10-14 .741 10-14 .741 10-14 . 741 10-14 .741 10-14 

(n=lO) .792 10- 14 .857 10- 14 .823 10-14 .295 10-14 .849 10- 14 .295 10-14 

(n=30) .316 10-13 .153 10-13 .144 10-13 .218 10-13 .148 10-13 .218 10-13 · 

Hilbert (n=2) .933 10-32 .975 10-32 .105 10-31 .887 10-32 .916 10-32 .887 10-32 

(n=4) .611 10-16 .616 10- 16 .611 10-16 .619 10-16 .616 10-16 .619 10-16 

(n=6) .303 10- 13 .303 10- 13 .303 10-13 .303 10-13 .303 10-13 .303 10-13 

SWIV 

.687 10-20 

.215 10-21 

F 

F 

F 

.233 10-14 

F 

F 

.739 10-31 

.206 10-13 

.151 10-10 

w 
U1 
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II.3.4. Discussion of the results 

Ex-periment I 

The numbers of function evaluations required by all 25 algorithms for 

EPSCU = 10-1 , 10-3 and 10-6 are given in tables 2.4, 2.5 and 2.6. We selec­

ted the seven 'best' algorithms for three cases: EPSCU = 10- 1 , EPSCU = 10-l 

and EPSCU = 10-3 and, finally for all three accuracies: 
-1 -3 -6 

EPSCU = 10 , 10 and 10 . The results-are given in table 2.9. We mention 

that obviously nontrivial values are to be preferred and that all three 

columns of table 2.9 contain the same seven parameter combinations. From 

tables 2.4, 2.5, 2.6 and figure 2.3 it can be deduced that increasing the 

accuracy makes all algorithms more expensive from which we conclude that 

EPSCU = 10-l should be used. This confirms our remarks in Ch. II.2.1. on 

inexact line searches. These arguments led to the following choice of three 

'best' parameter combinations evolving from experiment I on our set of 

testproblems: 

<P 

<P 

<P 

1. 8 

. 50, 8 

. 75, 8 

.25 

.25 

.25 

algorithm 22 

algorithm 12 

algorithm 17 . 

From now on we shall call these algorithms A, Band C respectively. 

Table 2 . 9: # F for: I EPSCU 

I 

II EPSCU 

III EPSCU 

10-1 

1 -3 
10- and 10 (cumulative) 

10-1 , 10-3 and 10-6 (cumulative) 

II III 

algorithm #F algorithm #F algorithm #F 

22 - 1227 17 - 2893 12 - 4803 

12 - 1245 12 - 2895 23 - 4826 

17 - 1247 22 - 2947 22 - 4844 

13 - 1297 23 - 2955 24 - 4970 

23 - 1310 24 - 3028 17 - 4980 

24 - 1319 13 - 3089 18 - 5052 

18 - 1325 7 - 3140 13 - 5058 

The results of experiment I are illustrated in figure 2.3. In this figure 
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Figure 2.3 Function evaluations required for the 25 parameter choices and three values 
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the points found experimentally are connected to simplify 'reading' of the 

picture.There is no intention to suggest any analytically proved continuity 

of number of function evaluations in terms of parameter combinations! 

From this figure we see that¢= 0 is unsatisfactory, while for any given 

nontrivial value of¢ the results get worse for values of 8 higher than 

e = .25. Obviously the parameter e, which is the weighing factor of the 

correction te·= vvT in (2. 5) is of more importance than the parameter ¢ 

which defines the scaling factory of the objective function! Testing 

of the sensitivity of the algorithms with respect to the accuracy of the 

line search is further continued in experiment II. 

Experiment II 

We considered implementations of the algorithms A, Band C and the four 

Oren-Spedicato switches. 

First the sensitivity with respect to the parameter a of the Goldstein 

and Price test is investigated. We tested a= 0.01, 0.10, 0.25 and 0.49. 

For a= 0.01 the Newton steplength '1' will often be accepted and no line 

search is performed. Increasing a causes more line searches, for a= 0.49 

almost all iterations use the cubic lineaearch with EPSCU = 10-1 . In our 

experirnent a= 0.10 generally yielded the best results. The final results 

are given in tables 2.7 and 2.8. Clearly switch IV is dominated by the 

other algorithms. 

Experiment III 

Implementations of DFP, BFGS and the two Shanno-Phua algorithms were run 
-1 

for a= 0.10 and EPSCU = 10 . Obviously DFP prefers (requires) an exact 

line search,which confirms known results. Table 2.7 presents the relevant 

figures. 

Our general conclusion from table 2.7 is that switches I, II and III are 

competitive with the algorithms A, Band C, which apply optimally chosen 

parameters. BFGS is slightly worse than the Shanno/Phua variants. The re­

sults of the last two variants are clearly influenced by their problems 

in solving the 3 homogeneous testfunctions. Further it should be realised 

that the algorithms A, Band C evolve from an optimization of algorithms 

with respect to the parameters¢ and 8. Thus the performance of the 

general scaling devices of the switches I, II and III and Shanno and Phua's 
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variant is really excellent! Finally the results with the algorithms A,B,C 

suggest the replacing-of 0k = 1 for all kin BFGS by 0k = .25 for all k. 

The influence of the dimension of the test problem and remarks on homoge­

neous test problems. 

Now we are only interested in those figures from table 2.7 which concern 

the 10- and 30-dimensional Rosenbrock and Quartic test functions. Clearly 

initial scaling of BFGS should not be recommended for homogeneous test pro­

blems such as the Quartics. Tnis confirms Shanno and Phua (1978b). Further­

more these figures suggest_to apply Shanno/Phua I or II or one of the 

switches I or II for higher dimensional problems. If it is known before­

hand that F(x) is homogeneous, which rarely happens in real-life problems, 

switch II is to be preferred. 

Influence of the conditioning of the test problem. 

Two effects were investigated: 

a) The ability of the algorithms to solve problems with a shifted spectrum 

of eigenvalues of R1 • We varied the parameter c of a family of Rosen­

brock-::problems c = 1, 102 , 104 , 106 . Inc.reasing .c only slightly influen-

ces the conditioning at the starting point (-1.2,1) but creates in-

creasingly extremely ill-conditioned optimal points (1,1). All algo­

rithms failed to solve the problem with c = 106 • 

b) Increasingly ill-conditioned pure quadratic problems are the Hilbert 

problems for increasing dimension. We investigated n = 2, 4, 6. 

The results on these test functions are summarized in table 2 .10. 

Cone: lusion 

From the experiments with the Rosenbrock-family we conclude that the BFGS 

algorithms (BFGS with or without initial scaling) behave better for ill­

conditioned optimal points. 

The differences on purely quadratic functions are negligible. 
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Table 2.10: # F for ill-conditioned test problems 

algorithm A B C SW I SW II SW III SW IV SH/PH SH/PH -----test function 

Ros(c=l) 28 22 29 21 21 

(c=10 2 J 110 106 114 111 111 

(c=104 J 346 371 347 358 350 

Hilbert(n=2) 13 13 13 13 13 

(n=4) 28 28 28 28 28 

(n=6) ·27 27 27 27 27 

Z 552 567 558 558 550 

Final conclusion 

21 

98 

364 

13 

28 

27 

551 

17 

493 

F 

l3 

28 

27 

1578 
F 

I II 

15 

72 

225 

12 

32 

35 

391 

15 

72 

228 

12 

32 

35 

394 

DFP BFGS 

22 17 

133 67 

300 227 

10 10 

18 30 

16 26 

499 377 

Recently developed self scaling algorithms for unconstrained minimization 

were described and compared in numerical experiments. All algorithms, ex­

cept DFP and the fourth Oren-Spedicato switch, showed a good performance 

with an inexact line.search. Generally an iteration requires about 2 ob­

jective function evaluations. For reasons of robustness (initially scaled) 

BFGS algorithms and the second Oren-Spedicato switch seem to be preferable 

in most practical situations. This establishes once more the superiority 

of the classical BFGS algorithm. This conclusion is valid even more gene­

rally: numerical comparisons by Grandinetti (1978) and Shanno and Phua 

(1978b) show that this variable metric algorithm is competitive even with 

sophisticated quasi-Newton algorithms such as those based on factorizations 

or projections of search directions. Concerning the choice for an update 

procedure in the context of the algorithms of chapter III this means that 

preferably one of the Shanno and Phua algorithms or switch II should be 

applied. 



III. RECURSIVE QUADRATIC PROGRAMMING WITH SELF SCALING 

UPDATES OF THE SECOND-ORDER INFORMATION 

III.1. Introduction 

41 

The first class of reduction methods which will be considered was de­

veloped from a proposal in Murray (1969). Biggs developed it further in 

Biggs (1972, 1974, 1978). Similar approaches were followed in Han (1977, 

1979) and Powell (1977a, 1978). 

The aim of these so-called recursive quadratic programming algorithms is 

to avoid the increasingly ill conditioned reduced problems of penalty 

function methods, reported in Murray (1967) and Lootsma (1969). Further­

more too high anaccuracy in the unconstrained minimization of the penalty 

functions in an early stage of the iteration process is avoided as well. 

It will appear to be sufficient to generate iteration points that only 

approximate the minimizing trajectory of the applied exterior penalty 

functions. The sufficiency of this approximation is based on the boundary 

properties of penalty functions as they were developed in Lootsma (1970). 

The convergence of the generated iteration points to the constrained opti­

mum x* was proved in Biggs (1978). Our presentation will be along the 

lines of Biggs'sapproach: in every reduced problem a quadratic approxima­

tion of the objective function is minimized subject to a local lineariza­

tion of the first order Kuhn-Tucker conditions of the currently defined 

exterior penalty function. The solutions of the reduced problems thus de­

fined can be proved to converge to a Kuhn-Tucker point of the original 

constrained nonlinear programming problem. As these reduced problems are 

equality constrained quadratic programming problems, their solution can be 

written down algebraically. The theorems 6n the convergence and the rate 

of convergence of the algorithms thus defined will be stated in section 

III.2. 

A further point of particular interest, to be treated in ch. III.3, is the 

incorporation of self scaling variable metric update formulae, discussed 

in ch. II, in the framework of recursive quadratic programming. A motiva­

tion to do this is that the approximated penalty functions will still be 

more and more ill conditioned. We shall compare computationally the effect 

of the use of these self scaling update formulae for the second order in­

formation, with the algorithms of chapter IV. 

The advantage of these scaling strategies is even greate4 as we found in 
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ch. II in that they allow for inexact line searches. Hence the approxi­

mative character of the recursive quadratic programming approach is com­

bined with an efficient strategy to solve ill conditioned reduced problems. 

In addition ch. III.3 will contain a discussion on the influence of a not 

yet correct active set I(¾:) on the determination of the stepsize in the 

line search. The selection of the constraints which-will constitute the 

active set and subsequently define the quadratic loss term of the exterior 

penalty function will be treated in ch. III.3 as well. The results of the 

computational experiments with this algorithm will be presented and dis­

cussed in ch. VI of thi.s monograph. 

III.2. Convergence properties of recursive quadratic programming 

We shall consider the general nonlinear programming problem 

minimize F(x) 

(3 .1) subject to 

c. (x) 
l. 

;:: 0 i 1, ... , p 

c. (x) 0 i p+l, ... , m 
l. 

The Lagrangian function associated with problem (3.1) is 

(3.2) L(x,u,v) 
p 

F(x) - L'. 

i=l 
u.c. (x) -

l. l. 

m 
L'. 

i=p+l 
v.c. (x) 

l. l. 

where ui, i = 1, .•• , p and vi, i = p+l, ... , m denote the Lagrangian 

multipliers of the inequality and the equality constraints respectively. 

All problem functions are assumed to be at least twice continuously diffe­

rentiable and a regular solution x* of (3.1) is assumed to exist. 

In the application of exterior point penalty function methods, see Fiacco 

and McCormick (1968), the penalty functions 

(3 .3) F(x) + 

F(x) + 

are minimized for a sequence {rk} + 0. 

Here the vector w w(x) is the vector of currently active constraints, 
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T T 
hence wk= w (xk) = (ci (x), ... , ci (x)) where Ik = {i1 , ..• , ik}. 

In this formulation of the penalty flkction an active set Ik is used. 

As a consequence, the reduced problems are equality constrained problems. 

Usually Ik will consist of the currently active or violated constraints, 

augmented by those constraints whose Lagrange multiplier makes them liable 

to become active or violated in the next iteration-. In Pietrzkowski (1962) 

it is shown that if P(x,rk) is strictly convex for each rk > 0 and has a 

minimum x;, the sequence{~} converges to x* if and only if {rk} is a 

monotone null sequence with rk > 0 for all k. Then the points {x;} are lo­

cated on the so-called minimizing trajectory whose properties were ex­

tensively treated in Lootsma (1970). It will appear that the solutions of 

the reduced problems of this chapter approximate the minimizing tra­

jectory for penalty functions Nhich use for I(¾): all currently violated 

constraints. The algorithm proposed in Biggs (1972) suggested to replace the 

direct unconstrained optimization of (3.3) by the solution of an equality 

constrained quadratic programming problem. This reduced problem arises from 

the requirement that the locally defined quadratic approximation to the 

objective function F(x) should be minimized, subject to the linear con­

straint that the truncated Taylor series expansion of VP(x,rk) in a neigh­

bourhood of the current iteration point¾ vanishes. From (3.3) we see, de­

noting the Jacobian matrix of w(x) at¾ by¾ and V2F(xk) by Bk that 

(3.4) 2 T 
VF(xk) + rk J\W(Xk) 

2 T 
gk + rk J\Wk 

has as truncated Taylor series expansion at xk + p: 

(3. 5) 

Note, however, that this approximation is made under the assumptions that 

I(¾) =I(¾+ pl, and that the applied linear approximation is still 

acceptable at xk+p. In Van der Hoek and Wymenga (1980) it will be proved 

that, if I(xk) I I(¾+p) and if the stepsize is limited above by '1', then 

the theoretically required stepsize will usually meet this limitation as 

well. Another benefit of this stepsize limitation is that the linear ap-­

proximation to VP(xk + p,rk) will be better. As in a neighbourhood of x* 
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the curvature of the penalty term will dominate the curvature of F(x), we 

can neglect the term Bkp in (3.5) in the treatment below, 

If xk+p is the minimum of P(x, rk), then equation (3.5) yields 

(3.6) 0 

Given a positive definite symmetric matr_ix Bk (for instance, but not ne­

cessarily, the current approximation of v2F(x*)), we can premultiply (3.6) 
-1 

by AkBk which yields: 

(3. 7) ¾P 

Now the step p can be determined, using (3.7). For instance by the minimi­

zation of a quadratic approximation to F(x) in the null space of¾ (which 

does not contain information on p). Thus we obtain as reduced problem 

(3.8) 

l minimize I s,iliject tc 

where the vector 

(3.9) 

¾P 

can be considered to be an estimate ofthe vector of Lagrange multipliers 

corresponding to the constraints of the active set (Fiacco and McCormick, 

1968). The solution of this equality cons-trained quadratic programming 

problem can be written down immediately, following Fletcher (1971), as 

(3 .10) 

An alternative reduced problem arises if Bk, the current estimate of the 

Hessian matrix of F(x) is incorporated in (3.5). Skipping the precise formu­

lation of the resulting reduced problem we proceed immediately with the 

most successful situation in which the curvature of the constraints is re­

presented as well. 

Let Wk be some approximation to the matrix 
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(3 .11) V2F(xk) + 2 L ci (xk)V 2ci (xk) 
rk iEik 

Then we obtain, instead of (3.5): 

(3 .12) 

which ultimately leads to the reduced problem 

(3.13) subject to ) 

minimize 

where 

(3.14) 

The third alternative reduced problem arises from the application of the 

approximating matrix Wk in the context of reduced problem (3.8), which 

yields 

(3.15) ) 

minimize 

subject to 

J\P 
where 

(3 .16) 

A closer examination of (3 .11) yields that, the currently defined matrix Wk 

· can be considered as an approximation to the Hessian matrix of the 

Lagrangian function (3.2). This follows from 

lim - 2 w(x) A* 
k-+oo rk k 

if lim ~ x* along the minimizing trajectory (see Fiacco and McCormick, 
k-+oo 

1968). As all the above vectors Ak, tk and Tik can be regarded as approxi-

mate Lagrange multipliers, matrices, such as 

(3 .17) 
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can be used as an approximation of the Hessian matrix of the Lagrangian 

function. In ch. III.3.4 updating strategies for these matrices will be 

discussed. 

Now that the reduced problems (3.8), (3.13) and (3.15) are known, we pro­

ceed with a concise presentation of the convergence theorems of the corres­

ponding algorithms. Basically the approach followed amounts to proving that 

the search directions p defined by these reduced problems can be used to 

locate the unconstrained minima of an augmented Lagrangian function of the 

class introduced in Fletcher (1969). In turn the unconstrained minima of 

this function can be proved to coincide with the constrained minima of 

problem (3.1). The rate of convergence will appear to be superlinear. 

The analysis will concern 'well behaved' functions, which means functions 

that are bounded below and that have bounded derivatives. 

A basic theorem, due to L.C.W. Dixon, on the unconstrained minimization of 

such a function mainly states conditions on the applied search directions 

p and the stepsizes a along those'search directions. The theorem as stated 

below is a slightly adjusted modification of the original theorem. 

Theorem 3.1. (Dixon, 1974) 

Suppose that il>(x) is a well behaved function. An iterative minimiza­

tion algorithm is applied to i!>(x) which calculates a direction of 

search p from the point x and obtains a new point x = x + ap. The 

scalar a is chosen so that i!>(x) $ i!>(x). The algorithm will find a 

point x* such that I IVi!>(x*) I I $ EO for some specified EO > 0, if for 

a regular subsequence of iterations the following conditions are met 

for some E1 , E , E which can be specified in terms of E0 : 
2 T 3 

Condition I p Vil> (x) $ -E 1 I IP I I 11 Vil> (x) I I for some E 1 > 0 

Condition II 

Condition lII ii> (x) - ii> (x) 

This theorem ensures that, in the absence of rounding error, a stationary 

point x* will be located within precision E 0 • Condition I means that 

□ 

the search directions should be significantly 'downhill', condition II 

prohibits a stepsize a which is too small while condition III ensures that 
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the reduction in function value has a non-zero upper bound. 

The application of this theorem is simplified remarkably by the following 

theorem: 

THEOREM 3.2 (Biggs, 1978) 

If a search direction p satisfies condition I of theorem 3.1 for a 

well behaved function ~(x), then a suitable value of a can be found to 

satisfy conditions II and III for any £2, £3 such that (1-£3) > £2 . 

This theorem means that once p satisfies condition I, the conditions II 

and III can be met such that (1-£3) > £2 holds for the given parameters 

□ 

£ 2 , £ 3 . That is why the following theorems concern search directions p that 

satisfy condition I. The directions p emanating from the reduced problems 

(3.8), (3.13) and (3.15) will be considered in that light. Once it has been 

proved that these directions satisfy condition I, it is justified to use 

them for the unconstrained minimi~ation of P(x,rk). 

In the next theorems no explicit use will be made of the interpretation 

of the iteration matrices Bk or Wk that occurred in (3.8), (3.13) and 

(3.15). It is only required that they both satisfy-.-the following relation: 

for all unit vectors x £lRn there exist constants m, ME lR such that 
T 

0 < m ~ x Bkx ~ M. Furthermore the Jacobian matrix A should be such 

that 0 ~ xTATAx ~ T for some TE lR. 

THEOREM 3.3 (Biggs, 1978) 

2 T Let 'vP(x,r) g + r Aw 

where r > 0 and the rows of A are linearly independent. Let p be the 

solution of any of the reduced problems (3.8), (3.13) or (3.15). Then 

there is a value~ such that for all r < ·r, pTVP(x,r) satisfies con­

dition I of theorem 3.1. 

Remark 

For reduced problem (3.13) even a stronger result can be proved: the 

rows of A need not be linearly independent, while no upper limit on r is 

required. 

□ 
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Instead of using the vectors p thus defined to minimize the penalty func­

tions P(x,rk) directly, they can be proved to be suitable for the minimi­

zation of an augmented Lagrangian function related to problem (3.1). The 

augmented Lagrangian used here is an element of the class introduced in 

Fletcher (1969), and it can be proved that under suitable conditions the 

unconstrained minimization of the function 

(3 .18) P(x,q) 

T -1 
yields a solution of the original problem (3.1). Here n(x) = (AA) AVF(x) 

and q is a scalar which should be greater than some lower bound. 

Hence the sequence of penalty function minimizations is replaced by a 

single minimization of (3.18). The applicability of the search directions 

evolving from (3.8), (3.13) and (3.15) is stated in the following theorem. 

THEOREM 3.4 (Biggs, 1978) 

Consider the objective function and constraints of problem (3.1) and 

let P(x,q) .be defined by (3.18). Suppose that at a point x the rows of 

A are linearly independent and that the approximating matrix Bis po­

sitive definite. Let p be given as the solution of one of the reduced 

problems (3.8), (3.13), (3.15). Then there exists a value of q 

such that pTVP(x,q) satisfies condition I of theorem 3.1. 

□ 
Remark 

Again if p comes from the reduced problem (3.13) the result can 

be proved without using the linear independence of the rows of A. 

Now that the convergence theorems of the recursive quadratic programming 

algorithms have been stated, the next point of interest is their rate of 

convergence to x*. 

The point x* is called a point o,f attraction of an applied algorithmic 

scheme if there exists an open neighbourhood O(x*) of x* such that for any 

starting point x0 E O(x*) the sequence {xk}, generated by the algorithm, 

converges to x*. If 

lim 
k..-

0 

the rate of convergence to x* is said to be superZinear. 
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The next theorem states the superlinear rate of convergence of the recur­

sive quadratic programming algorithms, if the search is initiated in a 

region where the active set of constraints I(¾) equals I,(x*) . 

THEOREM 3.5 (Biggs, 19?8) 

If the approximating matrix B applied at x* only differs from the 

Hessian of the Lagrangian function y2L(x*, u*, v*) in the subspace 

spanned by the normals of the active constraints at x*, there exists 

a valuer* such that the solution x* of (3.1) is a point of attraction 

of the recursive quadratic programming algorithm and the convergence 

to x* is superlinear. 

□ 
Remark 

The value of r* depends on the particular choice of reduced problem. 

The proof of the theorem consists in showing that x* is a fixed point of 

the algorithm used, i.e., a point that is its own image under the appli­

cation of the algorithm, and that the conditions for the application of 

theorem 10.1.6 of Ortega and Rheinholdt (1970) are satisfied. 

As a consequence of theorem 3.5 one can use positive definite 

matrices Bk to approximate v2L(x*, u*, v*), even if the latter matrix is 
2 indefinite. Note, however, that Bk and V L(x*, u*, v*) have to agree in 

the intersection of linearized active constraints at x*; in this subspace 

L(x,u,v) can be guaranteed to have positive curvature at the solution. 

Now that the convergence prqperties of the recursive quadratic programming 

algorithms have beendealt with,we shall proceed with a discussion of 

several algorithmic aspects of these redu_ction methods. 
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III.3. Algorithmic aspects of recursive quadratic programming 

This chapter treats some algorithmic aspects of the algorithms deve­

loped above, such as the applied active set strategy, the unidimensional 

search and the updating of the second order information. All these threedif­

ferent aspects strongly influence the robustness and the efficiency of the 

implementation of the algorithm discussed. They will be treated below in 

the order stated. 

III.3.1. Stepwise description of the ftlgorithms 

The following stepwise description of recursive quadratic programming 

algorithms gives a general framework for their implementation. Particular 

members of this class of reduction methods will result from the exact spe­

cification of their characteristics such as: the active set strategy, the 

updating of inverse Hessian information, the calculation of the search 

directions, the determination of the penalty parameter and, finally, the 

line search incorporated. These p~ints will be discussed elsewhere in this 

section. We shall start now with the steps which constitute the algorithms. 

Step 1. Initialization. Put k := 0. Choose a penalty parameter r 0 , a 

starting point x0 and some positive definite symmetric matrix H0 

as first inverse Hessian approximation. Go to step 2. 

Step 2. Determine I(xk), the current set of active constraints. I(xk) will 

contain at least all equality constraints and all currently binding 

or violated constraints. 

If k = 0, go to step 5, otherwise go to step 3. 

Step 3. Apply the stopping criterion. This means: STOP if 

(3 .19) 

(3. 20) 

and 

!, d I lxkl I + 1) for some preqiven e: > 0 

for all currently violated constraints ci (x). 

otherwise go to step 4. 

Step 4. Update Hk by applying the updating strategy chosen, for instance 

a self scaling updating can be applied. 

Go to step 5. 

Step 5. Calculate the approximate Lagrange multipliers from (3.9) 



or, alternatively, from (3.14) or (3.16). 

Go to step 6. 

Step 6. Calculate the search direction pk from (3.10): 

or, alternatively, from the reduced problems (3.13) or (3.15). 

Go to step 7. 

Step 7. Determine the new penalty parameter rk such that 

Go to step 8. 

Step 8. Find the stepsize ak along pk by minimizing P(x,rk) along pk. 

Define ¾+l := ¾ + akpk, put k := k+l and go to step 2. 
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Given the starting point x0 , both r 0 and H0 are to be defined in the ini­

tializing step 1. Mostly the choice H0 = In is made. This choice could be 

improved by the use of analytically calculated or numerically approximated 

second order information. However, H0 = In is a simple initialization 

which enables the comparison with competing algorithms. 

Concerning r 0 , Himmelblau (1972) discusses some strategies to choose this 

first penalty parameter. It is unlikely that there will be a strategy 

which yields an optimal value for all problems. The main reason for this is 

that usually at the starting point x0 the active set I* at the optimum 

will not be available. Besides the naive strategy of choosing some r 0 ER 

such as r 0 = 1, another approach could be to choose r 0 such that the norm 

of the gradient of the initial exterior penalty function is minimized with 

respect to r 0 . 

For a penalty function this means, given 

(3. 21) 

with as gradient vector 
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(3. 22) 

that 

(3.23) r = -
0 

TT 
provided that g 0A0w0 > 0. 

A simplified flowchart of the algorithms- is now presented in fig. 3.1 

(a detailed flowchart can be found in appendix E, together with a descrip­

tion of the s~broutines used). 

initialisation 

define active set of constraints --------►--,----­
~-------,------~-------+- 1---, 

I I 

update 2nd order information, 
: t 

calculate approximate Lagrange multipliers 
__ 1_...,.._L_. 

I : 

determine search direction, penalty 
parameter and stepsize 

no 

.to ... 
I I 
I I 

-----► -.J I 
I 

-- ___ .,. _____ J 

FUNCTION 
subroutine 

auxiliary 
calculation 
subroutines 

Figure 3.1 Simplified flowchart of recursive quadratic programming 
algorithms 
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III.3.2. Active set strategies 

For algorithms which use an active set strategy,_ the question 

arises whether this active set should be kept as small as possible or, 

alternatively, whether the active set should be defined more generously. 

The first situation could be realized with an active set consisting only 

of currently violated constraints and the equality constraints. It will be 

clear that this strategy will cause more changes in the active set than 

for instance a strategy which forbids the constraints to leave the active 

set within a certain number of iterations after their entrance. Both kinds 

of strategies can be supported by arguments. A strategy which maintains 

equality for a large number of constraints may waste time minimizing the 

penalty function with 'wrong' constraints. On the other hand a strategy 

which keeps the number of constraints in the active set as small as possi­

ble will inevitably waste time by repeatedly adding and dropping (perhaps 

the same) constraints. Zigzagging may occur which can lead to nonconver­

gence or even convergence to the wrong point. In Lenard (1979) and Gill 

and Murray (1974c) advantages and drawbacks of alternative active set 

strategies are discussed, especially'in the case of linearly constrained 

nonlinear programming problems. For the nonlinearly constrained nonlinear 

programming problem proposals for active set strategies can be found in 

e.g., Murray (1969), Fletcher (197Gb, 1971), Fletcher and Lill (1970), 

Lill (1972) and Biggs (1972). 

The active set strategy used in the recursive quadratic programming 

algorithms defines at the k-th iteration, k = 1,2, .•. , an active set 

I(~) consisting of: all currently violated constraints, all equality 

constraints and all constraints ci(x) with i € I(xk_ 1 ) with positive 

approximate Lagrange multiplier. 

The last mentioned constraints are added to prevent satisfied constraints 

to leave the active set too early. In this way zigzagging may be prevented. 

The removal from the active set of satisfied constraints ci (x) with 

i € I(~_ 1) and a negative approximate Lagrange multiplier is motivated 

by the interpretation of this negative multiplier as an indication that 

these constraints will not be binding at x*. The efficiency of the resul­

ting algorithm in the determination of the final active set I(x*) is 

illustrated in table 3.1. The quotients mentioned have the following 

meaning: 
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number of iterations required to detect I(x*) # IT(I(x*)) 
number of iterations required for convergence""'# IT(x*) 

The figures of table 3.1 concern the application of the implemented 

algorithm to the collection of testproblems given in appendix A. Further 

details on the computational experiments will be presented in chapter VI 

of this monograph. 

Table 3.1: Efficiency in the determination of I(x*) 

Problem # IT(I(x*)) Problem # IT(I(x*)) 
# IT(x*) # IT(x*) 

1 2 : 12 13 2 : 16 

2 0 : 4 14 2 : 30 

3 3 : 10 15 18 : 23 

4 2 : 88 16 10 : 18 

5 25 : 53 17 18 : 24 

6 5 : 7 18 36 : 38 

7 20 : 35 19 5 : 32 

8 11 : 13 20 47 :116 

9 59 : 95 21 8 : 12 

10 0 : 24 22 0 : 25 

11 3 : 5 23. 2 : 10 

12 6 : 10 24 0 : 7 

CONCLUSION. For most problems the algorithm detects I(x*) in one of the 

first iterations, especially if the number of active constraints at x* is 

small in comparison with the dimension. More iterations are required to 

detect I(x*) if the number of active constraints at x* is (almost) equal 

to the dimension. In that situation it incidentally occured that one of 

the constraints active at x* did not join I(xk) for some k, though no 

longer passive constraints at x* belonged to I(xk). 
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Possible consequences of a necessary change of the active set when moving 

from xk to xk +pare discussed in Biggs (1972). It will be evident from 

table 3.1 that the active set strategy applied in conjunction with a 

stepsize limitation (the step a has '1' as upper bound) yields an algorithm 

which is no longer sensitive to this point and determines I (x*) efficiently. 

A theoretical background of this observation will.be discussed in Van der 

Hoek and Wyrnenga (1980), especially the effect of an incorrect active set 

on the resulting stepsize. 

III.3.3. Line search -----
Though the solution pk of the reduced problem applied can be written 

down immediately algebraically, it appeared to be better to perform a line 

search along pk. Hence the predicted step pk to the optimum is explored as 

a search direction. Then the ideal case, in which all assumptions are 

satisfied, will correspond to a stepsize a= 1. Violation of the assump­

tions and local validity of the approximations may give rise to a step­

size a f 1. We may expect that in a neighbourhood of the solution x* the 

line minimizations will produce stepsizes close to 1. For this reason a 

will be required to satisfy a E [0,1]. Furthermore we know from chapter II 

that the application of the updating strategies which we discussed there al­

lows for an inexact line search. Hence an estimate a for a, produced by 

the line search will be accepted if it corresponds to a 'sufficient' 

decrease in the value of either the objective function F(x) or the penalty 

function P(x, rk). Hence a will be accepted if it satisfies either 

F(~+ a.pk) - F(xk) 
(3.24) a < < 1 - cr 

- T 
apk'vF(xk) 

or 

P(~+ apk) - P(xk) 
(3.25) a < < 1 - cr - T 

apk'vP(xk) 

for some prechosen O <a<½. This is exactly the Goldstein and Price test 

.of chapter II. The either/or character of this test reflects the opinion 

that both a decrease in F(x) and a decrease in the constraint violation 

are desirable. Note however, that the objective function in the line search 

is the penalty function P(x, rk). The succeeding estimates a of a result 

from quad.J:'atic interpolation on the interval [0,1]. For reasons of 
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robustness several safeguards are incorporated such as those suggested 

in Gill and Murray (1974b), the search direction may even be reversed and 

if all sophisticated predictions fail, a simple golden section line search 

is applied. As a result an efficient and robust line search is obtained 

which constitutes the basis of the robustness and the efficiency of the 

whole algorithm, together with the definition of pk and the updating of 

the inverse Hessian approximation. 

III.3.4. Updating of the inverse Hessian approximation 

This section deals with the question which inverse Hessian 

matrix should be updated and how this updating should be accomplished. 

Two possible choices for the Hessian matrix were mentioned in the presen­

tation of the reduced problems (3.8), (3.13) and (3.15): either [V2F(x)]-l 
2 -1 

or [V L(x,u,v)] . The main reasons for choosing the last alternative are 

that it contains information on the curvature of both the objective 

function and the constraints, it is not directly dependett onrk while it 

can use the Lagrange multiplier estimates given in (3.9), (3.14) or (3.16). 

Hence reduced problems (3.13) and (3.15) are to be preferred. 

Furthermore tneorem3.4 and the remarks at the end of chapter III.2 

suggest to use again positive definite approximating matrices, as 

they are obtained in the application of variable metric update formulae 

for unconstrained optimization. A possible strategy to prevent loss of 

this positive definiteness in the case of constrained optimization 

was suggested in Powell (1977a). It amounts to replacing the gradient 

difference vector yk by a suitable convex combination of yk and the last 

step sk before applying the BFGS formula. In the experiments, the so 

called switch II of Oren and Spedicato (discussed in chapter II) was im-

plemented by us. We did not implement the initially scaled BFGS formulae 

as suggested by Shanno and Phua, as the scaling factor is calculated in a 

neighbourhood of the starting point where we cannot expect any adequate 

information to be available on I(x*), hence on [V2L(x*,u*,v*)J-1 . 

The final discussion on the efficiency of the resulting reduction methods 

is postponed to chapter VI which discusses the design and the results of 

the computational experiments performed. 



IV. ASYMPTOTIC PROPERTIES OF REDUCTION METHODS USING 

LINEARLY EQUALITY CONSTRAINED REDUCED PROBLEMS 

IV.1. Introduction 

In this chapter the following general nonlinear programming problem 

will be considered: 

(4. 1) l min F(x) 

subject to 

ci(x) {:} 0 

The problemfunctions F(x) and -ci(x), i = 1, m, are supposed to be 

sufficiently differentiable convex real functions on En. 

In this chapter our attention focuses on reduction methods that 

are based on linearization of the restrictions. 

The idea to replace the minimization of a restricted nonlinear pro­

gramming problem by sequentially minimizing local linearizations of the 

given problem is not new. One of the first successful implementations of 

such a reduction method is the Method of !!pproximation ,!'._rogramming, the 

MAP-code of Griffith and Stewart (1961). 
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It replaces the solution procedure of (4.1) by solving the following 

sequence of problems: 

(4.2) 

i = 1, ... , m 

The functions LF(xk,x) and Lci(xk,x), i = 1, •.. ,mare the linearizations 

of F (x) and c i (x) re spec ti vely around xk:, 

T 
LF(xk,x) := F(xk) + (x-xk) VF{~) 

and 

A natural extension of Griffith and Stewarts algorithm is Wilson's method, 

Wilson (1963), in which a quadratic approximation of the Lagrangian func­

tion of problem (4.1) is minimized subject to the local linearizations of 

the constraints. 

In essence this means that Wilson defines a local linearization of 

the first order Kuhn-Tucker conditions of (4.1) which is optimized using 



58 

an algorithm for quadratic programming. 

Just as in Beale's algorithm for quadratic programming, Beale 

(1959), we need the equation of the hypersurfaces at which the partial de­

rivative of F(x) with respect to any nonbasic variable vanishes and the 

equation of the hypersurfaces at which any new con.straint becomes active. 

Beale (1967) showed that the error in both equations is o(xk+l - ~) 

as long as the active set is constant. 

The main advantages and drawbacks of linearizations in reduction me­

thods are summarized below: 

(i) Linearization methods are relatively simple to present and to imple­

ment. 

(ii) If the next iteration point ~+l happens to be infeasible, an inter­

mediate step is required to move back to the feasible region if the 

algorithm is a feasible point method. This may give rise to slow 

convergence. 

(iii) In almost all proposed methods all constraints are linearized at every 

step and no use is made of information on the status of constraints 

(active, passive) gathered in the course of the iteration process. 

Exceptions in this respect are e.g., Wolfe ( 1961) and Holtgrefe' s imple­

mentation of Kelley's cutting plane method, Holtgrefe (1975). 

(iv) The linearizations of nonlinear problem functions are only acceptable 

approximations in a neighbourhood of xk. This makes stepsize limita­

tions such as 

(4.3) 1, •.. ,n, inevitable. 

(v) A consequence of linearizations is also that poor search directions 

may be generated. 

(vi) The local validity of the linearizations prohibits the application 

of extrapolation techniques to accel.erate convergence. 

(vii) Wilson's method, which uses a second order approximation, requires 

the expensive calculation of second order derivatives. 

During the last two decades alternative, more sophisticated reduction 

methods, still using linearizations·, have been proposed which are designed 

to avoid the above mentioned drawbacks. We mention: Rosen (1960, 1961); 

Robinson (1972); Rosen and Kreuser (1972); Gruver and Engersbach (197,t,1976); 



Rosen (1977); Ballintijn, Van der Hoek and Hooykaas (1978); Van der Hoek 

(1979) and Van der Hoek and Hooykaas (1979). In those cases the reduced 

problem is defined by: 

(4 .4) 

1,2, ••. ,m 
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In (4.4) the objective function is corrected by a term $(¾ 1 x) which is 

supposed to offset by means of a corrected objective function in the re­

duced problem possible poor behaviour of the algorithm caused by the 

applied linearizations. So $(¾ 1 x) will generally depend on ci (x) and/or on 

Lei (¾ 1 x), (i = 1, 2, ... ,ml, and different reduction methods arise from 

different choices of $(¾ 1 x). For instance, Rosen and Kreuser (1972) use 

(4. 5) 

where Ai(¾), i = 1, ..• , m, are the current Lagrange multiplier estimates. 

Here $(¾ 1 x) can be viewed as a linear penalty term or as a restricted 

Lagrangian function. In Van der Hoek (1978), this reduction method is 

further simplified by merely linearizing the constraints of the active set 

I(xk) at xk. Robinson (1972) proposes to use 

(4.6) 
m 

E Ai(¾)[Lci(xk,x) - ci (x)] 
i=l 

Rosen (1977), Brauniger (1977), Ballintijn, Van der Hoek and Hooykaas 

(1978) apply modifications of (4.6) in their definition of the reduced 

problem. We shall want to take advantage of the possible presence of al­

ready linear constraints and we shall want to distinguish equality con­

straints from inequality constraints. Thus we formulate the problem (4.1) 

in another way: renumber the constraints in such a way that the indices 

i 1, ••• , m1 correspond with linear equality constraints and 

i m1+1, ..• , m2 with linear inequality constraints. Let L c En be the 

collection of all x E En satisfying the linear constraints: 

a~x {~} bi, i 1, ••. , m2 , with ai E En, bi ER. 

T 
b. 0, i 1, and} 

{x 
a.x - ... , ml, 

(4. 7) L En 1. 1. 
:= € T 

' a.x - b. 2'. 0, i m1 +1, 
1. 1. 

... , m2 
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Further, using i = m2+1, ..• , m3 and i = m3+1, ••• , m4 for the nonlinear 

equality and inequality constraints respectively, we denote by NL the col­

lection of all x E En that meet the nonlinear constraints: 

(4.8) NL := {x E 

Then (4 .1) can be stated as 

(4.9) 
min F(x) 

X E L n NL 

C. (X) 
l 

o, i 

Ci (x) ~ 0, i 

.. • . , 

Finally, the collection of all linearized nonlinear constraints, linearized 

around~' is given by LNL(~): 

(4 .10) 

Then Robinson's reduced problem is 

(4.11) min 
XELnLNL(~) 

0, i 

~ 0 I i 

c. (x)] 
l 

Clearly the linear constraints(the indices i = 1, •.• , m2) do not contri­

bute to the objective function of the reduced problem. One of the proposed 

algorithms in this chapter is to linearize merely the restrictions of the 

current active set I(xk). Then the reduced problem becomes: 

(4 .12) min 
XELnLNL(xk) 

C. (x)] 
l 

It is obvious that the active set strategy must define I(xk) in such a way 

that the indices of all equality constraints belong to the active set: 

Note that both (4.11) and (4.12) have the property that a linearly con­

strained original problem equals its reduced problem, which means that the 

solution of the original problem amounts to the solution of only one 
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reduced problem. 

·In comparison with the reduction methods mentioned above, we also investi­

gated and implemented the following new aspects: 

(i) The reduced problem is defined solely in terms of the objective 

function and the constraints of the current active set; 

(ii) The (non-)linearity of constraints is used explicitly; 

(iii) The algorithm for linearly constrained reduced problems only tests 

whether a constraint has to be dropped from the active set if: 

a. the optimum with respect to the current active set is obtained; 

b. accumulation of calculation errors forces a reinitialization of 

the current inverse Hessian approximation. 

c. changes in the active set occur. 

(iv) The coupling of the applied so called phase I, designed to provide 

us with a good starting point, and phase II (the algorithm to be 

developed in this chapter) is discussed. 

Suggestions to obtain a good starting point together with a good ini­

tial set of active constraints are discussed as well. 

(v) 'Ihe code applied for linearly constrained nonlinear programming uses 

Cholesky decompositions for the matrices Bk and N~¾Nk (see Ballin­

tijn, Van der Hoek and Hooykaas (1978)). 

(vi) The active set strategy required new updating formulae for updating 

the Cholesky factors of N~HkNk (see Ballintijn, Van der Hoek and 

Hooykaas (1978)). 

(vii) 'Iheoretical results on the convergence of the algorithm are presented. 
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IV.2. Definition and solution of linearly constrained reduced problems 

A general form for a sequence of linearly constrained reduced problems 

was given in (4.4). Once the idea of linearization of the constraints is 

accepted, the reduction method is characterized by the particular choice of 

cp(xk,x). 

Rosen and Kreuser (1972) considered a linear-penalty term for 

cp (xk,x): 

(4.13) I: A. (xk) c. (x) 
iEI(~ 1. 1. 

Their reduction method uses an analogous function cp(xk,x) as Kelley and 

Speyer (1970) used to improve Rosen (1961). Lill (1972) also applies a 

similar function cp(xk,x). In (4.13) the index set I(xk) consists of the in­

dices of all violated nonlinear constraints; but all nonlinear constraints, 

linearized around xk, are kept (see (4.4)). In a computational study, 

Van der Hoek (1978), we investigated an implementation of this reduction 

method in which only the constraints of the current active set I(~) con­

tribute to the objective function of the reduced problem, and only those 

constraints are linearized. A further, extensive treatment of the back­

grounds of reduction methods based on the application of (4.13),their 

convergence properties and computational results can be found in Kreuser 

(1972), Rosen and Kreuser (1972) and Van der Hoek (1978). 

(4.13) 

If we compare the reduction methods based on the application of 

with Griffith and Stewarts MAP-method we see that cp(xk 1 x) should 

give a compensation in the objective function for the effect of linear­

izing the constraints. Beale (1967) summarizes the geometrical backgrounds 

as: 'the constraints are straightened out at the expense of the contours of 

constant values of the objective function. If the latter contours are drawn 

as broken lines, we must transform a problem looking as in figure 4.1. 

Figure 4 .1 

into one looking as in figure 4.2. 
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Figure 4.2 

A motivation to move nonlinearities of constraint functions to the ob­

jective function i~ thatessentiallymost algorithms for linearly con­

strained nonlinear programming apply adjusted (e,g.,projected) uncon­

strained search directions. In this.way the experience with solving uncon­

strained nonlinear programming problems is applied. Problems that can arise 

from the application of linearizations are illustrated by the following 

simple example: 

minimize x2 2x subject to O $ x $ 2. Solving this problem via successive 

linearization will always yield trial values of x at either the upper or 

the lower bound imposed by stepsize limitations, which means that in es­

sence those stepsize limitations control the convergence. Applying linear 

approximations to the same problem' formulated as 

minimize z subject to z ~ x2 - 2x, in which nonlinearities only occur in 

the constraints, again requires stepsize limitations to converge (obvious­

ly a quadratic approximation of the objective function solves the problem 

in one step) • 

Rosen (1963) showed that the geometrical transformation illustrated in 

figures 4.1 and 4.2 can be obtained algebraically using the shadowprices 

on the constraints. In that way the nonlinearities in the constraints are 

thrown into the objective function. By means of a counterexample he showed 

that the trivial case ¢(~,x) = 0 will not, in general, solve the standard 

convex nonlinear programming problem: Rosen (1977). 

A comparison of the first order Kuhn-Tucker conditions of problems 

(4.1) and (4.4) suggests to look for functions_ ¢(xk,x) with the properties 

(4.14) 0 

The reduced problems (4.11) and (4.12) possess <j>--functions which meet these 

requirements while (4.13) does not! 

The discussion so far can be summarized in the following stepwise 

description of reduction methods based on the application of (4.4), where 

¢(~,x) is still to be chosen, for instance from (4.lD or (4.12). 
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Step 1. Set k := 0. Initialize variables. 

Step 2. Arrived at xk, find a first order Kuhn-Tucker poi.nt ¾+l of 

(4 .15) min F(x) + ¢(~,x) 
XE:LnLNL(xk) 

If ~+l is not unique, choose the Kuhn-Tucker point which is clo­

sest to the preceding Kuhn-Tucker point~-

step 3. Apply convergence tests. 

In case of non-convergence set k := k+l and go to step 2. 

Remarks 

1. We shall prove in theorem 4.7 that, if the algorithm is started close 

enough to a Kuhn-Tucker point of problem (4.1), convergence is guaran­

teed and will be R-quadratic, if ¢(xk 1 x) satisfies (4.11) or (4.12). 

In this respect the algorithm possesses similar properties as the algo­

rithms of Robinson (1972) and Brauniger (1977). 

2. If the original problem is linearly constrained, the algorithm requires 

one major iteration as then the reduced problem equals the original pro­

blem. 

3. If the original problem is a convex programming problem (both F(x), 

¢(~,x) and all -ci(x) are convex functions, while the equality con­

straints are affine), the reduced problem (4.15) is a convex program­

ming problem as well, as the Lagrange multipliers A(xk) of the inequa­

lity constraints are nonnegative for all k. 

4. If Lis compact, LnNL is a closed subset of the compact set L, so LnNL 

is compact as well. Then a continuous ~unction will attain a global mi­

nimum value F 1 at some point x 1 of Land a global minimum value F2 at 

some point x 2 E: L n NL. 

If x.1 E: L n NL, the nonlinear constraints are redundant. These 

minima are unique if F(x) is convex on a convex feasible region. 

5. Linearization of concave, differentiable nonlinear constraint functions 

ci(x) enlarges the feasible region. This follows directly from the fol-, 

lowing equivalent definition of concavity (see e.g. Zangwill (1969)): 

the function ci (x), which is differentiable on En, is concave if and 

only if 



(4.16) 

This means that ci(x) is concave if and only if 

(4.17) 

n 
for all x, ~EE 

for all x, ~ E En 
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which is especially valid for all x E NL. This proves the remark. Note 

that there are no restrictions on the choice of xk. So we conclude that 

linearization of the constraints of a feasible problem yields a feasible 

reduced problem. What may happen in the case of lineariza.tion of an in­

feasible problem is illustrated in remark 7. 

6. If we drop the requirement that all ci(x) should be concave functions 

of x, linearization may yield an infeasible reduced problem from a fea­

sible nonlinearly constrained problem. This is illustrated by the fol­

lowing feasible problem with a nonconcave function ci (x). It shows that 

L n LNL(xk) =¢may occur in this situation. 

Consider the following constraint set: 

L := {x 

NL:= {x 

-2 S XS½} 

x - x3 :?: O} {x Ix s -1} u {x I Os x s 1} 

Then c(x), which defines NL is not concave on El and NL is not connected. 

The feasible region is: L n NL= {x I -2 s x s -1} u {x I Os x s \}. 

From Lc(~,x) 

Le(-½, x) :?: 0 

Then L n LNL(-½) 

3 2 
2~ - 3x~ + x, we obtain as linearized constraint 

X :?: 1. 

{x 

¢ 

-2 s x s ½} n {x Ix:?: 1} 

So linearization around this infeasible point xk (xk EL, xk i NL) 

yields an empty linearized constraint set. From a further analysis of 

this example we can see that infeasible linearized problems can arise 

both from points~ EL and~¢ L. 

7. An infeasible problem with a concave differentiable function c(x) may 

lead to both feasible and infeasible linearized constraint sets. 

This is illustrated by the following ex~ple: 

L := {x I½ s x s 10} 

NL:= {x I 1 - x2 :?: O}. Then L n NL ¢. 
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Linearization of the constraint function c(x) 

The choice xk =½leads to 

LNL(½) {x 

{x 

Le (½,x) :2: O} 

5 
XS 4 }• 

2 
1 - x yields 

We see that L n LNL(½) = ¢: linearization around an infeasible point 

that satisfies the nonlinear constraint yields an infeasible reduced 

problem. 

The choice xk 

LNL(4) 

and L n LNL(4) 

4 leads to 

{x 

{x 

Lc(4, x) :2: O} 

X S .!.?.. } 
8 • 

{x Ifs x s 1; }: a nonempty feasible region for an 

xk EL whereas L n NL=¢. 

8. Remarks 6 and 7 illustrate the necessity of the requirements of remark 

5 to guarantee feasible reduced problems. The question now arises 

what will be the best strategy for choosing the points xk. The importan­

ce of this question is even greater_when we reflect that in practi-

_cal, real-life problems the situations sketched in remarks 6 and 7 

really occur. That is why we decided to require xk EL n NL, i.e. xk is 

feasible for feasible problems. 

Then 

independent of the concavity of ci(x), so xk is feasible with respect 

to the linearized constraints as well and consequently L n LNL(xk) ~ ¢. 

Generally during the iteration process infeasible points might be ge­

nerated, so some restoration-procedure should be available to move back 

to the feasible region. Examples of such restoration procedures can be 

found in Gruver and Engersbach (1974, 1976), de Jong (1977) and Van der 

Hoek (1978). The implemented procedure is described inch. v. 
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9. As mentioned in remark 1, the starting point must be 'close enough' to 

the solution. That is why an initializing, so called 'phase I'., proce­

dure is incorporated. 

Phase I generates an acceptable starting point. It amounts to solving 

the problem 

(4.18) min F(x) + P(x) 
XEL 

where P(x) is an exterior penalty term which is defined by 

(4 .19) P(x) 

In this definition tk > 0 is a penaltyparameter whose choice will be 

discussed in section 7, while c~ (x) is defined by 
l. 

(4. 20) 

The solution of the phase I step defined by (4.18) requires the 

use of an algorithm for linearly constrained nonlinear programming 

which is required in phase II of the algorithm as well. 

With these remarks this section on the definition and solution of linearly 

constrained subproblems is completed. Our next task is to investigate the 

relations between the Kuhn-Tucker points of the original- and the reduced 

problems. 
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IV.3 Relations between the first order Kuhn-Tucker conditions of the 

original- and the reduced problems 

As the properties to be discussed in this chapter only depend on the 

fact whether a constraint is an equality or an inequality constraint, and 

not on its being linear or not, we prefer to return to the original problem 

formulation (4.1) in which we renumber the constraints in such a way that 

the indices i = 1, ... , p correspond with the inequality constraints while 

with i = p+l, m the equality constraints are meant. 

Thus we get as problem. formulation 

min F(x) 

(4. 21) 
subject to 

C, (X) 
l. 

2 0 i 1 , ... , p 

C, (X) 
l. 

0 i p+l, •••I m 

The Lagrangian function associated with problem (4. 21) is: 

(4 .22) L(x,u,v) 
p 

F(x) - I uici(x) 
i=l 

m 
I 

i=p+l 
V,C, (X) 

l. l. 

where ui, i = 1, ... , p, and vi, i = p+l, ... , m denote the Lagrangian 

multipliers of the inequality and equality constraints respectively. 

The first order Kuhn-Tucker conditions for problem (4.21) are: 

(4.23) V L(x,u,v) 
X 

0 

(4. 24) U,C, (X) 
l. l. 

0 i 1, ... , p 

(4. 25) C, (X) 
l. 

0 i p+l, •••I m 

(4.26) C, (X) 
l. 

2 0 i 1 , ... , p 

(4. 27) U, 2 0 
l. 

i 1, •••I p 

We shall denote the first order Kuhn-Tucker points of (4.21) by 

z = (x,u,v) E En+m or, at ·t t· k b ( ) En+m. i era ion , y zk = xk,uk,vk E 



In this notation the conditions (4.23) - (4.25) can be studied in 

terms of a mapping f: En+m + En+m given by the following 

DEFINITION 

(4.28) f(z} 

V F(x) -
X 

U C (X) 
pp 

cp+l (xl 

P m 
t: u.V c. (x) - t: v.V c. (x) 

i=l i Xi i=p+l i Xi 

The following lemma is clear from the definition of f(z) 

LEMMA 4.1 
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z e: En+m is a first order .Kuhn-Tucker )?Oint of (4.21) if and only if 

f(z) = 0 and (4.26) and (4.27)are satisfied. D 

This approach to the first order Kuhn-Tucker conditions by means of 

f(z) was first followed by McCormick (1971) who pointed out that 

Vzf(zk) is nonsingular and\! Vzf(zk)- 1 \1 exists if zk satisfies the second 

order sufficiency conditions of problem (4.21) with strict complementary 

slackness of ui and ci(x) for i 1, •.. , p. 

If we state the kth reduced problem in a formulation analogous to 

the original problem we get 

l 
min F(x) + <j,(xk,x) 

(4. 29) subject to 

Lei (¾ 1 x) 2: 0 i 1, .• .. ,p 

Lci(¾,;x) 0 i p+l, .... , m 

with the additional requirement (4.14): 

0 at X 
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The Lagrangian function associated with (4.29) is 

(4.30) 

m 

- L vk . Lq_(xk , x) 
i=p+l ' 1 

with as Lagrangian multipliers µk,i'i = 1, ... , p ~nd vk,i i p+l, ... , m 

for the inequality and the equality constraints respectively. 

The first order Kuhn-Tucker conditions of (4.29) are 

(4. 31) 

(4.32) 0 
'r 

µk,i {ci (xk) + ·(x-xk) V xci (xk)} = 0 

i = 1, ... , p 

(4. 33) 0 
T 

ci(xk) + (x-xk) Vxci (xk) = 0 

i = p+l, ... , m 

(4.34) ci(~) + (x-xk)TVxci (xk) ~ 0 

i = 1, ... , p 

(4. 35) i 1, ... , p 

Note that in the reduced problem (4.29) all nonlinear constraints are 

linearized. As it is our intention to linearize only the nonlinear 

constraints of the current active set, we shall only pay limited attention 

to the relations between the Kuhn-Tucker points of problems (4.21) and 

(4.29). Anticipating on the discussion below we merely mention here the 

following proposition. 

PROPOSITION 4.1 

Proof: 

If. zk = (xk,uk,vk) is a regular Kuhn-Tucker point of (4.21) and if 

strict complementary slackness holds in both (4.24) and (4.32), then 

zk is also a regular Kuhn-Tucker point of (4.29) as well. 

VxL' (x,µ,v) 
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m 
l: vk .'v Lc. (¾_,x). (4.14) gives V <j,(xk,xk) = 0 and 

i=p+l ,i X i X 

As zk is a regular Kuhn-Tucker P?int of (4.21) .under the strict 

complementarity assumption we know that the Lagrangian multipliers 

~,vk are uniquely determined.by VxL(xk,u,v) = O and (4.24) which 

means that VxL' (¾_,~,vk) = O; the validity of the remaining condi­

tions (4.32) - (4.35) follows directly from (4.24) - (4.27) , while 

the regularity of zk with respect to (4.29) is a consequence from its 

regularity with respect to (4.21). D 

For the special case that <j,(xk 1 x) is defined by (4.6) this proposition 

extends to the following theorem. 

THEOREM 4.1 (Robinson, 1972) 

Let all problem functions be differentiable. Then the following 

statements qoncerning a given point (x*,u*,v*) are equivalent: 

(i) There exist u E ii', v E Rm-p such that (x*, u*, v*) satisfies 

the Kuhn-Tucker conditions for (4.29) with xk = x*. 

(ii) (x*, u*, v*) satisfies the Kuhn-Tucker conditions for (4.21) 

(iii) For every u E RP and every v E JR.m-p, (x*, u*, v*) satisfies 

the Kuhn-Tucker conditions for (4.29) with¾_= x*. 

The proof of this theorem is clear from the definition of the 

Kuhn-Tucker conditions above. 

Proposition 4.1 and theorem 4.1 mean that as soon as the primal variables 

xk of a Kuhn-Tucker point of (4.21) are identified, there exist dual va­

riables~• vk such that zk solves the next reduced problem, independent 

of the correctness of the dual variables applied in the definition of the 

reduced problem. 

Just as in problem (4.21) , the first order Kuhn-Tucker conditions 

of (4.29) can be described in terms of a mapping d(zk 1 z) from En+m into 
n+m 

E . For an arbitrary zk = (xk,uk,vk) this mapping is defined as follows 

for z = (x,u,v): 

□ 
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DEFINITION 

(4. 36) 

\Jk Le (xk,x) ,p p 

U e (x) 
pp 

e (x) 
m 

µk Le (xk,x) ,p p 

Le 1 (xk,x) 
• p+ 

m 
u. 'ii' e. (x) - l: V. 'ii' e. (x) 

i Xi i=p+l i Xi 

+ 
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m m 
- l: v. V c. (x) + l: \/k . V c. (~) 

i=ptl i Xi i=p+l ,i Xi 

u c (x) - µk Le (xk 1 x) pp ,p p 

?p+l (x) - Lcp+l (xk,x) 

This means that 

(4. 3.7) 

where 1/!(zk,z) follows from the equation above. In the case of Robinson's­

reduction method (see e.g. (4.6)) this gives rise to 

f (z) -

u c (x) - µk Le (xk,x) pp ,p p 

:p+l (x) - Lcp+l (~,x) 

which can be interpreted as a relation expressing the difference between 

the Kuhn-Tucker condition of problems (4.21) and (4.29). 

In an analogous way as for f(z), we can formulate from the definition of 

d(zk,z) a lemma on the first order Kuhn-Tucker points of (4.29): 

LEMMA 4, 2 

z E En+m is a first order Kuhn-Tucker point_ of (4.29) if and only if 

d(zk,z) = 0 and (4.34), (4.35) are satisfied. 

We shall denote by S(zk) the collection of all first order Kuhn-Tucker 

points of (4.29). Hence S(zk) is defined by: 
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(4.39) S(zk) := {z E: Rn+m I d(zk,z) = 0 and (4.34),(4.35) are satisfied} 

The relation between the first order Kuhn-Tucker points of problems (4.21) 

and (4.29), as given in proposition 4.1 now extends as follows: 

PROPOSITION 4.2 

Proof: 

The Taylor expansions around zk = 

equal up to second order terms if 
p 

(~,uk,vk) of f(z) and d(zk,z) are 

we use Robinson's ¢(xk,x) proposal 
m 

¢ (xk,x) = L uk . (Le. (~,x) -
i=1 rl l 

c. (x)) + E vk . (Le. (xk,x) - c. (x)) 
l i=p+l ,l l l 

Clearly the proposition relates the first order Kuhn-Tucker condi­

tions of problems (4.21) and (4.29~ The reduced problem (4.29) is 

derived from (4.21) after the point zk = (xk,~'vk) is reached. 

Where necessary we shall denote the p elements of the Lagrangian 

vector¾ by uk,i and the (m-p) elements of vk by vk,i" The Lagran­

gian coefficients of the reduced problem are again denoted by µk,i 

and vk . respectively. 
,l 

From the Taylor expansions 

and 

we see that we have to prove: 

(il f(zk) = d(zk,zk) 

(ii) V2 f(zk)= V2 d(zk,zk) which means 

(iia) Vxf(zk) 

(iib) Vuf(zk) 

(iic) Vvf(zk) 

Vxd(zk,z) (zk) 

V µd (zk,z.) .(zk) 

V vd (zk, z) (zk) 

Relation (i) follows immediately from (4.38). 

For (iia) we observe: 



· of 

2 p 2 m 2 
'i/XXF(xk) - l: Uk ,'i/ C, (xk) - l: vk ,'i/ C, (xk) 

i=l ,i xx i i=p+l ,i xx i 

u. . 'i/ cl (xk) .K.,1 X 

u. 'i/ c (xk) JC,p X p 

'i/ c 1 (xk) .x p+ 

2 2 
'i/xxF(xk) + 'i/xx~(xk,x) (xk) 

1:\, l'i/xLcl (xk,x) (¾) 

Uk 'i/ Le (x. ,x) (x.) 
,p X p JC JC 

'i/ Le 1 (xk,x) (x. ) .x p+ JC 

From the definition of ~(¾ 1 x) we see 

p 2 m 2 
- l: u. . 'i/ C. (x ) - l: vk . 'i/ C. (xk) 
i=l JC,i xx J. k i=p+l ,i xx i 

which, together with \7xLci (xk,x) (¾) 

yields \7xf(zk) = 'i/xd(zk,z) (zk). 

1,.,.,m 

and 

The proof of (iib} follows directly from (4.28) and (4.36). Indeed 

-'i/xci (xk) -'i/xci (xk) 

0 0 

3d(zk,z) 

au. (zk) 0 
ilµi 

(zk) 0 
l. 

ci (xk) Lei (xk,x.) (xk) 

0 0 

0 0 

combined with Lei (xk,x.) (¾) = ci (xk) for all i. 

Finally (iic) follows from (4.28) and (4.36) again: 

75 
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COROLLARY 

Proof: 

V d(z,z) for all z E En+m 
z 

□ 

This corollary restates part (ii) of the preceding proof. Note that 

the proof is purely formal and hence independent of the fact whether 

z is a Kuhn-Tucker point or not. 

□ 
Remark 

In terms of the original problem formulation this result can be in­

terpreted as follows: For this ¢(xk,x) the quadratic approximations of the 

Lagrangian functions L(x,u,v) and L' (x,µ,v) associated with the original 

problem (4.21) and the reduced problem (4.29) respectively, are identical 
n+m 

in a neighbourhood of zk EE . 

Linearizing the first order Kuhn-Tucker conditions is also the key 

of Wilson's reduction method, Wilson (1963). It then solves those linear­

ized conditions using Dantzig's version of Wolfe's quadratic programming 

algorithm. The main disadvantage of Wilson's method is that it requires 

repeated calculation of second derivatives. This makes it less attractive. 

Robinson (1972) stated a number of properties relating f(z), d(zk,z) 

and their respective gradients in a neighbourhood of a Kuhn-Tucker point 

z* of the original problem (4.21). These we state without proof in the 

theorem below. Note that in z* we have f (z*) = 0, V f (z*) is nonsingular. 

llv f(z*J-111-
z 

We set 8 = There exists an open neighbourhood of z* in which z 
z* is the unique solution of f (z) = 0, hence z* is the locally unique Kuhn-

Tucker point of (4.21). The following shortened notation will be used from 

now on: Vzd(z 1 ,z2):= Vzd(z 1 ,z) (z 2). 
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THEOREM 4.2 (Robinson (1972)) 

If all problem functions are twice continuously dif_ferentiable in an 

open neighbourhood O(x*) of x*, there exist constants r > 0 and M > 0 

such that z* is the unique solution of f(z) = 0 in the closed ball 

B(z*, ½r) with radius ½r about z*. Moreover for any z 1 ,z 2 E B(z*,r) 

with µi as Lagrange multipliers of the reduced problem, we have 

(ii) 

(iv) ui > 0 implies µi > 0 

□ 
This theorem of Robinson will be applied in the comparison below of Kuhn­

Tucker points of the original problem and of equality constrained reduced 

problems- Xt·turns out to be a fundamental theorem. First we mention 

that a simplified problem is obtained from (4.21) if the constraint set is 

reduced to a set of equality constraints ci (x) whose index i belongs to a 

currently defined active set I(zk). Usually this active set I(zk) consists 

of all equality constraints, the currently binding inequality constraints 

and the inequality constraints that are expected to be binding at the next 

iteration point. 

For example the algorithm to be described now features an active set 

I(zk) which consists of all equality constraints and a selection of linear 

and nonlinear constraints containing at least the binding constraints. 

This means that i· ¢ I(zk) corresponds with ci~) > 0. Thus we consider the 

reduced problem 

(4.40) subject to 

The first order Kuhn-Tucker conditions of(4.40)are: 

(4 .41) V (F(x) -
X 

V ,C. (X)) 
J. J. 

0 
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(4.42) c. (x) 
l 

0 

where vi, i E I(zk) is the Lagrangian multiplier corresponding to ci (x) 

The equality constrained problem (4.40) can be solved using the reduced 

problem 

(4.43) l min F(x) + 

subject to 

Lei (xk,x) 0 for all i E I(zk) 

with the following first order Kuhn-Tucker conditions: 

(4.44) 0 

(4.45) 0 

Analogous with the definition of 'S(zk) as the collection of Kuhn-Tucker 

points of (4.29), we define S(zk, I(zk)) to be the collection of all solu­

tions of the Kuhn-Tucker conditions of problem (4.43). 

If I(zk) contains all equality constraints and all inequality constraints 

with positive estimated Lagrange multiplier (if xk is close enough to x* 

this estimate has the correct sign), then conditions (4.41) , (4.42) arise 

f1:;9m-(4._23) - (4.27). The estimated multiplier can have the wrong sign if xk 
/ 

is remote from x*. For the linearized, reduced problems similar relations 

apply for the conditions (4.44), (4.45) as compared to (4.31) - (4.35). 

Our next point of interest is to find relations between the solution sets 

S(zk) and S(zk, I(zk)). The next two lemma's contain mutual inclusion 

relations. 

LEMMA 4. 3 

Proof: 

If I(zk) := {i I ci (x*) = 0, i = 1, ... , m} with JJk,i = 0 for all 

ii I(zk) at a point zk E B(z*,r) with S(zk, I(zk)) c B(z*,r) and 

strict complementary slackness in (4.24), then S(zk,I(zk)) c S(zk). 

By definition zk+l E S(zk, I(zk)) satisfies (4.44), (4.45). These 

equations can be extended to (4.31) , (4.32) , (4.33) using JJk,i = 0 

0. 
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for all ii I(zk). To prove (4.34) we remark that, using (4.45), we 

only need to consider indices i E {1, •.• , p} - I(zk) which corres­

pond to inactive inequality constraints. Then from zk,zk+l E B(z*,r), 

ci (x*) > 0 and theorem 4.2 (iii) we know that Lci(xk 1 x) > 0, hence 

(4.34) is satisfied. 

Finally _(4.35) is true for all i i I (zk) by the definition µk,i = 0 

for these i. For i E I(zk) equation (4.45)gives Lei (xk,x) = 0, which 

implies c. (x*) = 0 (c. (x*) < 0 violates the K.T. conditions at x* and 
1. 1. 

ci (x*) > 0 contradicts Lci(xk 1 x) = 0 by theorem 4.2(iii)). 

But this means ui > 0 (strict complementary slackness in (4.24)) 

which again implies µk. > 0 (theorem 4.2(iv)). Thus (4.35)is proved 
,1. 

and hence the lemma. 

□ 
LEMMA 4.4 

If I(zk) := {i I ci(x*) = 0, i = 1, .•• , m} for a point zk E B(z*,r) 

with S(zk, I(zk)) c B(z*,r) and strict complementary slackness in 

(4.24) and (4.32), thenS(zk) cS(zk, I(zk)). 

Proof: 

We have to prove (4.44), (4.45) for zk+l satisfying (4.31)- (4.35). 

For 1 $ i $ p and ii I(zk) we have 

c.(x*) > 0 
1. 

so that Lei (xk, 

and µk,i = O 

(definition of I(zk)) 

(theorem 4.2 (iii)) 

(strict complementary slackness in (4.32)). 

Then (4.44) follows from (4.30), (4.31) and the substitution µk,i = 0 

for nonbinding inequality constraints. 

As (4.45) obviously applies for equality ~onstraints, we only need to 

consider indices 1 $ i $ p with i E I(zk). Then 

which yields 

but then 

and 

C, (x*) 0 
1. 

u'!' > 0 
1. 

µk,i > O 

Lei (xk,xk+l) 

(definition of I(zk)) 

(strict complementary slackness in (4. 24) ). 

(theorem 4.2 (iv)) 

0 (strict complementary slackness in(4.32) 

which completes the proof of (4.45) and the proof of the lemma. 

□ 
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When comparing lemmas 4.3 and 4.4 we see that beside the strict complemen­

tary slackness the definition of the correct set I(zk) is of importance. 

The lemmas can be summarized in a corollary: 

COROLLARY 

Proof: 

S(zk) = S(zk, I(zk)) if zk E B(z*,r), S(zk,I(z*)) c B(z*,r) under 

strict complementarity in (4.24) and (4.32) and 

: = { i I c . (x*) 
1. 

O, i = 1, ... , m}. 

The proof is obvious from the lemmas 4. 3 and 4. 4 .. 

How stringent or unrealistic are these conditions? 

□ 

The required strict complementary slackness means that there should be no 

weakly active constraints, a condition imposed on the problem considered, 

that can be met (in case of violation) by suitably perturbing weakly 

active constraints, though this will generally give very small values of r. 

Further zk E B(z*,r) can be realised by a preceding so-called phase I pro­

cedure which yields a starting point close enough to z*. In practice the 

correctness of I(zk) is usually obtained after a few iterations, unless 

zigzagging occurs. This means, given a phase I procedure, that the condi­

tions of lemmas 4. 3 and 4. 4 are not unrealistic. 

IV.4. Convergence of sequences of Kuhn-Tucker points 

. 3 n+m to En+m In section IV. the mappings f(z) and d(zk,z) from E were in-

troduced. A further investigation of the ~lgorithms considered requires 

properties of the operators f(z) and d(zk,z) as presented in Ortega and 

Rheinboldt (1970) and Kantorovic and Akilov (1964). In these statements 

I lzl I will denote the Euclidian norm. It is easy to see, however, that.the 

results remain valid for any norm on Rn+m_ Note that though we use point­

to-set maps below, the resulting implementations will define uniquely the 

next iteration point. Let x0 and X be subsets of En+m with x0 c x, where 

Xis assumed to be bounded. 

DEFINITION 

A mapping A: X c En+m ➔ En+m is called nonex-pansive on a set 

x0 c X if A(z) is unique for all z E x0 and 
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(4.46) 

and strictly nonexpansive on x0 if strict inequality holds in (4.46) 

whenever z 1 f z 2• 

This definition means that a nonexpansive mapping on Xis Lipschitz-conti­

nuous on x0 • 

In general A may be a nonlinear operator on X c En+m Examples are f(z) 

and d(zk 1 z), with the domain X being the feasible regions L n NL and 

L n LNL(xk) r~spectively. 

Another example of such an operator on En is provided by the algorithm 

given by (4.15) which, starting from zk = (zk, ~• vk) defines the next 

iteration point zk+l as a certain Kuhn-Tucker point of the reduced problem. 

In this example the uniqueness of zk+l is established by an additional 

requirement, which makes the mapping deterministic. Removing this addi­

tional selection rule yields a non-deteY'l'llinistic mapping, which therefore 

does not necessarily determine zk+l uniquely. 

Special points of interest are fixed points z *EX of A which are defined 

by 

(4 .47) 

(4.48) 

z* E A(z*) 

which means 

z* = A(z*) 

for a deterministic mapping. 

LEMMA 4. 5 (Banach) 

Proof: 

If A: x c En+m + En+m is deterministic and strictly nonexpansive on 

x0 c X then A has at most one fixed point. 

Let us assume that there exist two distinct fixed points zr and 

zi E x0 • 

Then: 

which is a contradiction. 

□ 
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However, Ortega and Rheinholdt (1970) show by a counterexample that strict 

nonexpansivity is not sufficient to guarantee the existence of a fixed 

point. 

That is why (4.46) is strengthened. 

DEFINITION 

(4.49) 

A mapping A: X c En+m + En+m is contractive on a set x 0 c X if 

there exist an a, O <a< 1 such that 

From (4.46) and (4.48) we see that a contractive mapping is strictly 

nonexpansive and, as a consequence, ~ipschitz continuous with at 

most one fixed point. The existence of a fixed point of a contrac­

tive mapping is given by the perhaps best known fixed point theorem: 

THEOREM 4. 3 ( Banach, contraction mapping theo1•em) 

Proof: 

If A: X c En+m + En+m is contractive on a closed set x0 c X and 

A(X0 ) c x0 then A has a unique fixed point in x0 . 

Choose z 0 E x0 arbitrarily and define the sequence {zk} by 

zk = A (zk-l) , k = 1, 2, • • • • • 

From A(XO) c x0 we know that zk E x0 for all k 1, 2, .... 

Further there exists an O <a< 1 such that 

yields 

p 

(4.50) I lzk+p - zkl I .'.:.. i:1 \ \zk+i - zk+i-111 < (ap-1+ .•. +1) I \zk+l - zk\ I 
k 

~ t'-a I I 2 1 - 2 0 11 



From (4.50) we see that {zk} is a Cauchy sequence in the closed 

set x0 , so it has a limit z* E x0 with image A(z*). Then the 

continuity of A implies lim A(zk) = A(z*) 
k➔oo 

thus z* A(z*) z* is a fixed point of A; 
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□ 
Further generalizations of the contraction mapping theorem and conditions 

to ensure A(x0) c x0 can be found in e.g., Ortega and Rheinbold (1970), 

Istratescu (Fixed Point Theory, an Introduction, 1980,to appear). 

The properties derived oul:love are necessary .to prove a proposition 

which originates from Robinson (1972) and which guarantees under weak con­

ditions that if the iteration process given by(4.15) is initiated in a 

point zk close enough to a Kuhn-Tucker point z* of (4.21) then the reduced 

problem (4.29) defined in. zk yields a unique Kuhn-Tucker point zk+l 

close to zk, hence close to z*. An extension of this proposition to a 

reduction method which applies purely equality constrained reduced 

problems will be used to prove a theorem on the convergence and the rate 

of convergence of this reduction method. The proof is a slight modification 

of Robinson's proof. 

PROPOSITION 4. 3 

Proof: 

If both (4.21) and (4.29) satisfy strict complementary slackness, 

the problemfunctions are twice continuously differentiable, 

zk EB (z*, ½r) such that 4SI lf(zk) j j ::_rand z* is a Kuhn-Tucker 

point satisfying the second order sufficiency conditions for(4.21) 

then there exists a point zk+l E B(zk, ½r) such that zk+l is the 

unique Kuhn-Tucker triple of (4.29)defined at zk such that 

I jzk+l - zkl I ::_ 2sl lf(zk) 11 

First we note that B(zk,½r) c B(z*,r) 

as zk E B(z*,½r). 

Then theorem 4.2(i) gives 

I lv'zd(zk,z) - v'zd(zk,zk) 11 < (2S)-l 

for all z E B(zk,½r). 
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(4.51) 

Now we define a mapping Ton B(zk,½r) by 

Then Tis differentiable and since V2 f{z) = V2 d(z,z) 

(corollary 1 of proposition4.2) for any z we have 

Hence 

V d(z*,z*)-l [V d(z*,z*) - V d(Zk,z)] .. 
z z z· 

< B. (26)-l =½.(recall that by definition B =llv d(z*,z*)- 1 11) 
z 

Using the mean value theorem 3.2.3 of Ortega and Rheinboldt (1970) 

this implies 

hence Tis a contraction on B(zk,½r). 

and (4.51) we conclude that 

~ \r + \r = ½r for all z E B(zk,½r), 

which means that T(z) E B(zk,½r) for all z E B(zk,½r). 



Now all requirements of the contraction mapping th~orem are met, 

so T has a unique fixed point zk+l E B(zk,½r). 

For zk+l we have: 

It remains to_be proved that zk+l is the unique Kuhn-Tucker point 
of (4.29) in B(zk,½r). 

Following lemma 4.2 we have to show that (4.34) and (4.35) are met 

for all i, and d(zk,zk+l) = 0. 
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As there is a one to one correspondencebetween the fixed points of 

T(z) and the zeros of d(zk,z) uniquepess is allright and it remains 

to verify that zk+l satisfies (4.34) and (4.35). Consider ci(x). 

Then, as x* satisfies the Kuhn-Tucker conditions, either 

c, (x*) > 0 or c. (x*) = 0. 
1. 1. 

we know 

Lei (~'~+l) > 0 (theorem 4.2(iii)) 

and 

ui = µk,i = 0 (strict complementary slackness) 

If C. (x*) 
1. 

0 

we know 

u'!' > 0 
1. 

(strict complementary slackness) 

and 

µk,i > 0 (theorem 4.2(iv)) 

which yields 

Lei (~'~+l) 0 (strict complementary slackness) 



86 

Hence µk,i ~ 0 and Lei (~,xk+l) 

proved. 

~ 0 for all i and the lemma is 

□ 
This proposition guarantees the existence in B(zk,½r) of a unique Kuhn­

Tucker point of the reduced problem (4.29). The next proposition extends 

this result in that it shows that under certain conditions, this point 

zk+l E S(zk,I(z*)): to find zk+l it suffices to solve a smaller reduced 

problem, with only equality constraints. Note that propositions 4.3 and 

4.4 only concern the case that ¢(xk 1 x) is defined by (4.6). 

PROPOSITION 4.4 

Let z* be a regular point, satisfying the sufficient 2nd order Kuhn­

Tucker conditions of (4.21), under strict complementary slackness in 

(4.24) and (4.32). If zk E B(z*, ½r) with 4131 lf(zk) 11 Sr and 

I(zk) = {i ci (x*) = 0, i = 1, ... ,m}, then there exists a unique 

zk+l E B(zk, ½r) with zk+l E _s(zk) = S(zk, I(z*)) and 

I lzk+l - zkl [ S 2131 [f(zk) I I. 

Proof: 

Proposition 4.3 implies the existence of a unique zk+l E B(zk, ½r) 

such that zk+l E S(zk) and [ lzk+l - zkl I S 2131 lf(zk) I I. 
Under the conditions zk, zk+l E B(z*,r) and strict complementary 

slackness, we conclude from the proofs of lemmas 4.3, 4.4 that 

S(zk) = S(zk, I(z*)) which gives the lemma. 

□ 
The next propositions 4.5, 4.6 demonstrate that under the same assumptions 

at zk and assuming that I(z*) is known it suffices to solve the equality 

constrained reduced problem (4.43) with I(zk) = I(z*) to obtain the next 

iteration point zk+l· Thus the question remains how to recognise the set 

I(z*) = {i I ci(x*) = 0, i 1, ... ,m} at zk ~ z*? A more thorough discus­

sion on the determination of the correct active set is postponed to section 

IV.5. 

For a given arbitrary index set r0 , the following result can be proven, 

where this time ¢(xk 1 x) can be any function which is continuously different­

iable and satisfies (4.14). The proposition is an extension of a theorem 

of Brauniger (1977). 
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PROPOSITION 4.5 

If all problem functions and ¢(xk 1 x) are continuously differentiable 

and the sequence {zk}converges to z and: 

lim{ in! I lzk+1 - zk+11 '} 0 then z is a Kuhn-Tucker point 
k.._ zk+lES(zk,IO) 

of the reduced equality constrained problem (4.40) with I(Zk) I 0 . 

Proof: 

First note that the proposition is formulated in terms of an arbitra­

ry sequence {zk} with lim zk = z. Let zk+l be the element of 

S(zk, Io) defined abov~~hich realizes inf I lzk+1-zk+1 I I for 

zk+1 E S(zk,IO). Then!! zk = z and ~I lzk+1-zk+1 I I = 0 yields 

lim zk = z. Then the Kuhn-Tucker conditions (4.44) and (4.45) yield 
k+oo 

for I(zk) = IO: 

(4.52) 

and 

(4.53) 

0 for all .i. E IO 

'v (F(x) + ¢(Xk 1 x) + l: v.Lc.(xk,x))= 0 
X . l. l. 

l.EIO 

Substituting z = zk+l' and using (4.14), (4.52) and (4.53), the conti­

nuity of all functions and their gradients and the convergence of the 

sequence {zk} yields: 

(4.54) c. (xi 
l. 

O for all i E I 0 

and 

(4 .55) 'v F (x) 
X 

v.v c. <xl l. X l. 

which proves the proposition. 

□ 
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REMARK 

Braunigers theorem concerns the function $(xk,x) as-defined in (4.6). 

For the special case that $(xk,x) is defined by (4.6) propositions 4.4 and 

4.5 uniquely define a sequence converging to the point z*. This is proved 

in the next proposition. 

PROPOSITION 4.6 

If the conditions of propositions 4.4 and 4.5 are met and 

lim zk = z*, a solution of (4.21), then z* is a Kuhn-Tucker point of 

k_, the problem (4.40) with I(zk) = I(z*) viz. min F(x) subject to 

C, (x) 
J. 

Proof: 

0 for all i E I(z*). 

Starting from a z0 which meets the requirements of proposition 4.4, 

the sequence {zk} with zk+l = S(zk,I(z*)) is uniquely determined and 

satisfies I ls(zk,I(z*)) - zk+ll I = 0. Hence proposition 4.5 can be 

applied and we are done. 

The meaning of this proposition is that though in practice z* and I(z*) 

are unknown, the algorithm still generates sequences {zk} and {I(zk)} 

which can be proved to converge to a Kuhn-Tucker point z* of (4.21) and 

I(z*} respectively. 

□ 

To prove this a more general approach by means of point-to-set maps will 

be followed. It will turn out to be possible to prove that under suitable 

conditions the sequence of iteration points generated by the algorithm 

converges to a fixed point of a point-to~set mapping which characterizes 

the algorithm. This point will turn out to be a Kuhn-Tucker point of the 

considered problem. This theory will be followed by a proposition on 

Kuhn-Tucker points of the original and reduced problems. The ultimate 

convergence properties are considered in section IV.6. 

This approach to obtain an algorithm via point-to-set maps originates from 

Zangwill (1969). Later Polak (1971), Luenberger (1973), Meyer (1979) and 

others followed Zangwills approach in describing algorithms and investi­

gating their properties. 
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We need some definitions and results which are summarized in Meyer (1979). 

We assume z E En+m and that A acts on En+m 

Let X and Y be subsets of En+m_ 

DEFINITION 

A point-to-set map A from X to Y is a map which associates a subset 

A(z) c Y with each z EX. 

We shall assume that X c En+m is closed, for instance X = B(z*,r): 

the closed ball with radius r around the Kuhn-Tucker point z* of (4. 21). 

Then given a point z0 Ex, and X = Y, an algorithm is defined by any 

scheme of the following type: 

(4.56) Step 0. Set k = 0 

Step 1. Pick a point zk+l E A{zk) 

Step 2. Set k = k+l, and go to step 1. 

In this scheme no stopping Pule is included {only infinite sequences 

are generated}. This algorithm {4.56) is called non-deteT'l'rlinistic 

{zk+l may be chosen arbitrarily in A{zk)) and autonomous {A is inde­

pendent of k) . 

DEFINITION 

The characteristic set C of algorithm (4.56) is the set of all 

z EX such that scheme {4.56) admits a sequence {zk} with 

zk = z for all k larger than a certain number K. 

It is easy to verify that 

(4. 57) C {z EX I z E A{z)} 

DEFINITION 

z EX is a periodic point of A of period p if 

{i) Z E 

{ii) z / Aq(z) for all q 

From these-definitions we directly see that the characteristic set 

C of algorithm (4.56) consists of all periodic points of A of 
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period 1: the fixed points of A. 

As the algorithm generates infinite sequences we can define Pas 

the set of all limit points of all convergent sequences which can 

be genera}ed by it, and Q as the set of all cluster points of all 

sequences which can be generated by the algorithm. 

LEMMA 4.6 

Proof: 

CC p 5.. Q. 

By definition, we have P =. Q. Furthermore C =.Pas for each 

z 0 EC the algorithm ~an generate the infinite sequence {zk} with 

zk z 0 for all k. 

A further investigation of the asymptotic properties of algorithms 

requires a definition of continuity of the mapping A: 

DEFINITION 

The map A is upper semicontinuous (u.s.c.) at a point z 0 Ex if 

□ 

for every neighbourhood N(A(z0 )) of A(z0 ) there exists a neighbour­

hood N(z0 ) of z 0 ./30 that A(z 1 ) c N(A(z0 )) for every z 1 E N(z 0 ) n x. 

We say that A is u.s.c. on a subset Sc x if A is u.s.c. at every 

point in S. 

DEFINITION (ZangwiZZ, 1969) 

The map A is closed at a point z 0 EX if the fact that {zk} 

converges to zo (all zk E X) and {yk} converges to Yo with 

yk E A(zk) for all k, implies that Yo E A(z0 ). 

We call A closed on a subset Sc X if A is closed at every point 

Z ES. 

DEFINITION 

The map A is compact valued on X. if A(z) is compact for every z Ex .• 
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In, e.g., Meye~ (1979) there are some examples that closedness and 

upper semicontinuity are not equivalent. For instance he proved the 

following useful lemma: 

LEMMA 4,7 

If Xi~ bounded and A is closed on x, then A is u.s.c. and compact 

valued on X. 

With the aid of these definitions the following proposition and a 

corollary can be stated: 

PROPOSITION 4,7 

□ 

Suppose that A is u.s.c. and compact valued on X, and let {zk}be a 

specific sequence generated by the algorithm (4.56). If z* is a 

cluster point of {zk}, then for every p = 1, 2, •.. the set Ap(z*) 

contains a cluster point of, {zk}. 

□ 
COROLLARY 

If A is u.s.c. and compact valued on X, then P = C: if a sequence 

generated by algorithm (4.56) converges, it converges to a fixed 

point of A. 

□ 
After this corollary the next point of interest is to state a condition 

under which the desired convergence is guaranteed. This condition concerns 

the asymptotic behaviour of the algorithm. 

DEFINITION 

A sequence {zk} is asyrrrptotically regulgr 0. 

DEFINITION 

An algorithm is asymptotically regular if every infinite sequence it 

can generate is asymptotically regular. 

PROPOSITION 4,8 

If the map A is u.s.c. and compact valued on X-D, where D c X, and 

algorithm (4.56) is asymptotically regular, then Cc Q cc u D. 
□ 
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COROLLARY 1 

If A is u.s.c.,compact valued on X - c_and algorithm (4.56) is 

-totically regular, then P = Q = C. 

asymp-

D 

Ostrowski (1966) proved that an as.regular sequence on a bounded set X has 

either a unique cluster point or a continuum of cluster points. Hence 

COROLLARY 2 

Suppose A u.s·,c. and compact valued on X - c, X is bounded, algo­

rithm (4.56) is asymptotically regular and C contains at most a 

countable number of points, then every sequence generated by (4.56) 

converges to a point in C: a fixed point of algorithm (4.56). 

D 

In order to apply the above results to the algorithms considered, we have 

to make sure that they use mappings A which are u.s.c. and compact valued 

on X - C. 

Then according to lemma 4.7 it suffices to verify whether X-C is bounded 

and A is closed on X - c. 

As X - c c X, which is assumed to be bounded, it only remains to investi.;.. 

gate whether A is closed on X-C. Instead of investigating the general algo­

rithm, given by (4.15) with a currently defined active set I(zk), we focus 

on the special case in which the final, correct active set I(z*) = I* has 

already been found and I(zk) I(z*) is used from now on. This is 

the final stage of the general algorithm, which characterizes the conver­

gence properties. The follo~ing lemma,cf. e.g., Meyer (1979) will be used 

in the next theorem. It guarantees for any cluster point of a sequence 

{zk} the existence of a subsequence converging to this cluster point. 

LEMMA 4. 8 

Let q be the set of all cluster points of the sequence {zk}, gene­

rated by an algorithm (4.56), A u.s.c. and compact valued on x. If 

q is nonempty and bounded, then given any neighbourhood N(q) of q, 

there exists an index k, depending on N(q) suc_h that zi E N(q) for 

all i > k. 

Application of this lemma to a suitable region X such that q 

the required subsequence. 

D 
{z*} yields 
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THEOREM 4.4 

Let the sequence {zk} be defined by (4.56) with zk+l = A(zk) whP.re 

A is given by (4.43) with I(zk) = r*. Let X be bounded, and closed 

with all problem functions and ~(¾,x) continuously differentiable 

while (4.14) is satisfied. Then every cluster point z* of {zk} is a 

fixed point of A. 

The in~inite sequence {zk}, thus generated by the feasible point 

algorithm (4.56) has at least one limit point z* € x. Then there 

exists a subsequence converging to z*, which we shall denote again 

by {zk}. It follows from the definition of zk+l that (4.44) and 

(4.45)are satisfied by zk+l. The continuity of the gradients, (4.14), 

(4.44), (4.45) and lim zk = z* then· imply that 
k--

and 

Le. (x*,x*) 
J. 

0 for all i € I(z*) 

Vx(F(x*) - ~ v~Lc. (x*,x*)) = O 
iEI (z*) J. J. 

which means that z* satisfies the Kuhn-Tucker conditions of the 

reduced problem defined at z*, so z* € A(z*) : z* is a fixed point 

of A. 

PROPOSITION 4.9 

Proof: 

The deterministic algorithm definec;l in theorem 4. 4 is continuous at 

every z € X, hence is closed on x. · 

The continuity follows directly from the continuity assumptions on 

the problem functions. The closedness is an immediate consequence 

of this continuity. 

□ 
COROLLARY 

The deterministic algorithm defined in theorem4.4 is u.s.c. and 

compact valued on X. 
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Proof: 

This follows from the application of lemma 4.7. 

□ 
As a consequence, all above derived statements for u.s.c. and compact val­

ued mappings apply to the algorithms developed, for instance those using 

reduced problem formulations as (4.15), (4.29) and· (4.43) with I (zk) = I*. 

We make special mention of the corollary of proposition 4.7: 

If a sequence, generated by the algorithm (4.56) converges, it converges 

to a fixed point of A. 

and corollary 2 of proposition 4.8: 

If the applied mapping A is u.s.c. and compact valued on X - C, Xis bounded, 

algorithm (4.56) is asymptotically regular and C contains at most a 

~ountable number of points, then every sequence generated by (4.56) con­

verges to a point in C: a.fixed point of the mapping A. 

compared with theorem 4. 3 we see that the convergence to a fixed point is 

now established under conditions as asymptotic regularity, upper-semi-con­

tinui ty and compact valuedness, instead of the condition of contracti veness. 

The extra requirement that C should be countable will hopefully be met in 

most real-life problems. 

Let A be defined by (4 .15) and let z* be a fixed point of the mapping 

A. Again we assume strict complementary slackness in all occuring Kuhn­

Tucker conditions. Then we can prove the following theorem, following 

Rosen ( 1977) • 

THEOREM 4.5 

Proof: 

A fixed point z* of the mapping A is a Kuhn-Tucker point of (4. 21) 

As z* is a fixed point of A, we know that A(z*) = z*, d(z*,z*) = O 

while (4.34) and (4.35) are satisfied. (z* is a first order Kuhn­

Tucker point of (4.29) with zk = z* , hence lemma 4.2 can be applied). 

From (4.37) we see that f(z*) = d(z*,z*) = 0. Further (4.26) is 

satisfied, as ci(x*) < 0 for at least one i E {1, ... , p} would 

yield Lci{x*,x*) = ci (x*) < 0 which contradicts (4.34). Finally 

(4.27)is met as can be seen from u~ 
1. 

µi > O (use (4.35)) for 
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i = 1, ... , p. Hence lemma 4 .1 applies and z* is a first order 

Kuhn-Tucker point of (4.21). 

□ 
In the corollary of lemmas 4.3,4.4 we saw that S(zk) = S(zk, I(z*)), 

which meant that if I(z*) is known at zk, it suffices to solve the equali­

ty constrained reduced problem (4.43) with I(zk) = I(z*). In that situa­

tion we can formulate an analogous theorem for the resulting equality 

constrained reduction method. 

THEOREM 4.6 

Proof: 

If z* is a fixed point of the mapping A defined by the application 

of the reduced problem (4.43) with the correct active set 

I(zk) = I(z*) in the algorithmic scheme given by (4.56), then z* is 

a Kuhn-Tucker point of (4.21). 

The proof follows from combination of lemmas 4. 3, 4. 4 and theorem 4. 5, 

using strict complementary slackness in the Kuhn-Tucker conditions. 

□ 
An important question which should be considered now is under which condi­

tions the correct final active set I(z*) can be defined at zk ~ z*. Possi­

ble active set strategies to answer this question are treated in the next 

section. 

IV.5 Active ~ strategies 

In the preceding chapter I~4 we derived conditions under which 

S(zk) = S(zk, I(z*}) which means that the first-order Kuhn-Tucker points 

of the original problem (4.21) are first-order Kuhn-Tucker points of the 

pure equality constrained reduced problem (4.40) with I(zk) = I(z*) and 

vice versa. 

As I(z*) is not usually known beforehand, we are looking for crite­

ria by which an algorithm can recognize I(z*). That is why a current ac­

tive set I(zk) is defined, which is intended to contain the constraints 

that are most relevant, at least locally. Adjustment of I(zk) should be 

accomplished using the information gathered on the constraints, such as 

their current status: binding (ci(xk) = O, i = 1, .•. , m), violated 

(ci(~l < 0 for i e: {1, .•. , p} or ci(xk) ~ 0 for i e: {p+l, ... , m} or 
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satisfied (ci (xk) ~ 0 or ci(xk) = 0 for the respective cases). 

Constraints will be added to the active set or dropped from this set, with 

the ultimate goal that I(zk) = I(z*) holds for all k greater than or equal 

to some number K. By the application of such an 'active set strategy' all 

reduced problems are equality constrained problems in which all constraints 

with index ii I(zk) are deleted. Hence the reduced problems are simplifi­

cations of the original problem. Obviously the above approach is equally 

valid for both the original problem (4.21) and the linearized problem 

(4 .29). 

The convergence of the sequence iteration points {zk} is expected to be 

accelerated if I(z*) can be recognized in an early stage of the iteration 

process. In this section relations between I(zk) and I(z*) are derived and 

a lemma by Brauniger (1977), which states I(zk) = I(z*) for suitable zk 

and his proof of this lemma are discussed. As a consequence of this lemma 

and the proposed phase I step, sectionIV.7 can deal with the problem of 

how to link phase I and phase II such that phase I produces a good starting 

point and a good initial active set for phase II. 

The next results rely heavily on Robinson's theorem 4.2, parts (iii) and 

(iv) in which the fact is expressed that as soon as zk E B(z*,r) we have 

at all points zk+l E B(z*,r): 

(iii) if C, (X) is passive at x*, then its linearization at xk is passive 
l. 

as well. 

(iv) if C, (X) is active at x* then its linearization at xk is active 
l. 

as well. 

But first we shall consider the decision to be taken in step 2 of the al­

gorithm: if S(zk) contains more than one point, choose the Kuhn-Tucker 

point of (4.15) which is closest to zk. This means that zk+l solves 

(4.58) min 11 z-zk 11 
ZES(zk) 

The points zk+l satisfying (4.58) were characterized by Brauniger as 

summarized below in (4.59 (i)- (iii)). For the sake of simplicity of notation, 

the current iteration point zk and its successor zk+l are denoted by 

z = (x,u,v) and z = (x,u,v) respectively. 
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Then z, defined by (4.58) should be given by one of the following possibi­

lities: 

(4.59(i)) 

(4.59 (ii)) 

(4. 59 (iii)) 

(i) z = z hence z is a solution of (4.21) 

j -f i 
(ii) z 

(iii) 

j i 

for some i E {1, ••. , p}. This means a pure dual step, 

as the only difference between z and z is the value of 

the Lagrange multiplier of the i-th inequality constraint. 

Z = With X [vxu 7J 
c. (x) 

---'J"'----- 'vcJ. (x) ) 

11 'vc • ( x l 11 2 
J 

for some j E {1, .•. , p}.This is a pure primal step (x 

is projected on the linear constraint Le. (x,.) = 0). 
J 

The interpretation of this statement is as follows. It claims that once we 

have obtained a Kuhn-Tucker point z of a reduced problem (4;21) with z E 

B(z*,r), a move to a neighbouring Kuhn-Tucker point with respect to the same 

active set but with a weakly active constraint will always be shorter than 

a step to a Kuhn-Tucker point corresponding to another active set. 

Briiuniger ( 1977) pre red I (z*) I(zk) using this statement. However the 

next lemma states that it leads to a contradiction. 

LEMMA 4. 9 

If z* and z satisfy the conditions of theorem 4. 2, z ,f z*, z* being 

a regular Kuhn-Tucker point of (4.21) with strict complementary 

slackness. Then, application of (4.59(i)) - (4.59_(iii))leads to a 

contradiction. 

Proof: 

In the point z.under consideration generated by (4.59{i))-(4.59(iii)) 

at least 
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one constraint, say Le. (x, .) with j E {1, ... , p} is weakly active. 
J 

This means Lc.(x ,x) = 0 withµ,= O. 
- J J 

If Le. (x, x ) = 0 with z E B (z* ,r) we have either 
J 

c.(x*) < 0, which is impossible as z* is a Kuhn-Tucker point, or 
J 

c.(x*) > 0, which means, by theorem 4.2(iii) that 
J 

Le. (x,x) > 0, (assuming that both z and z E B(z*,r)) 
J 

which contradicts Lc.(x,x) = 0. 
J 

Hence c. (x*) = 0, but then the strict complementary slackness at z* 
J 

gives uj > 0 which, in turn, implies µj > 0 (theorem (4.2(iv)). This 

contradicts the construction of z as given by (4.59(i)) - (4.59(iii)). 

In other words Lemma 4.9 states that· it is impossible to create weakly 

active constraints in a neighbourhood of z*. The proof relies on the 

assumption that the problem functions are twice continuously differentia­

ble in an open neighbourhood of x* and that at z* no weakly active con­

straints occur. Though this means that Brauniger's proof is not correct, 

the result I(zk) = I(z*) can be proved as follows from the next two pro­

positions, using r"(z*) := {i : ci (x*) 

PROPOSITION 4 .10 

□ 

Let z* be a regular Kuhn-Tucker solution of problem (4.21) satisfying 

the conditions of theorem4.2 under strict complementary slackness. 

If zk E B(z*, ½r) with 4SI lf(zk) 11 :,; r, then I(z*) c I(zk). 

Proof: 

We know from proposition 4. 3 that 11 S (zk) - zk 11 :,; ½r. Hence for 

zk+l E S (zk) 

Now theorem 4. 2 can be applied. 

Let i E I(z*) be arbitrary. 

Then 

which gives 

u* > 0 
i 

(strict complementary slackness in z*) 

(theorem (4.2(iv)) 
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hence 0 (complementary slackness in (4.32)) 

which means 

Thus we proved 

□ 
The interpretation of proposition (4.lO)is obvious: if we are close enough 

to z*, all constraints of I(z*) belong to the current active set I(zk). 

Also a reverse statement can be proved: 

PROPOSITION 4.11 

In case of strict complementary slackness in (4.32) for all 

i E I(zk), with zk E B(z*,r) while z* and r satisfy the conditions of 

theorem 4.2, then I(zk) c I(z*). 

Proof: 

For i E I(zk) chosen arbitrary we know by assumption 

and 

which yields 

hence 

COROLLARY 

C. (x*) 
l. 

i € I(z*) 

0 

0 (complementary slackness) 

(proved in lemma 4.9) 

□ 

Under the conditions on z* and zk given in proposition 4.10 and the 

condition of strict complementary slackness in both propositions we con­

clude: I(zk) ; I(z*): the currently defined active set equals the fi­

nal active set. 

The proof is obvious. 

□ 
Remark. The earlier procedure discussed above, suggested by Brauniger (1977), 

does not satisfy µk,i > 0 for all i E I(zk) as it generates weakly 

active constraints. 



100 

Summarizing we see that I(zk) = I(z*) if zk and z* verify some reasonable 

conditions and if an appropriate active set strategy is ~pplied. 
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IV.6. Conver~ence ~ the solutions 9.!_ the reduced problems 

Insection.IV.4 conditions were discussed under which sequences of itera­

tion points {zk}, generated by the application of the reduction methods 

proposed,converge. The limit points turned out to be fixed points z* of the 

applied mapping A- These points also appeared among the first-order Kuhn­

Tucker points of the original problem (4.?.1) or among those of the reduced 

problem (4.40) with I(zk) = I(z*). 

Now that ~onditions for convergence have been established, the next 

point of interest is the rate of convergence. This means, given z*, that 

the question arises whether it is possible to derive bounds on I lzk-z*I I­

The next theorem deals with this problem. It is proved that the supremum 

(for alle sequences {zk} ➔ z* generated by the algorithm) of 

(4.60) 
-k 

lim sup I I zk -z* I I 2 
k➔oo 

is an element of (0, 1). 

This means in the terminology of Qrtega and Rheinboldt (1970) that the con­

vergence is R-quadratic. The theorem is closely related to theorems of 

R.obinson (1972) and Brauniger (1977), and the proof is a slight modifica­

tion of theirs. 

THEOREM 4.7 

Let z* be a regular Kuhn-Tucker solution of (4.21) satisfying the 

second order sufficiency conditions with strict complementary slack­

ness in (4.24), while all problem functions are at least twice con­

tinuously differentiable in an open neighbourhood of z*. 

Then there exists a o > 0 such that if z0 E B(z*,o) the algorithm 

with the active set strategy defined in section I\1.5 generates a sequence 

{zk} which converges R-quadratically to z*. In particular: 

(4.61) 

where the scalars 13,r and M were defined in th.4-.2 and n is defined as 

(4.62) n := min(½, ¼6Mr) 
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Proof: 

First we shall prove by induction a result on I Jz.-z. 1 1 I and 
. J· J-

I If (z.) 11 for j = 1, 2, ... 
J 

From f(z*) = 0 (z* is a Kuhn-Tucker point of (4.21)) and lemma 4.1 and 

the continuity of f(z) we see that there exists a o: 0 < o < ¼r such 

that for all z E B(z*,o) we have 

(4.63) 

Let z0 E B(z*,o) be the starting point of the algorithm. Then 

and 

< ¼SMr 
- SM 

< r 

(by (4.63)) 

(by (4.62)) 

Hence propositions 4.10, 4.11 now yield that I(z0) = I(z*) and propo­

sition 4.4 implies that there exists a unique point z 1 , with 

(4.64) 

hence 

::;; 4flMI lf(z0 J I 12 

4f3 2Mn 2 
5---'---~ 

(4(32M) 2 

(by theorem (4.2 (ii)) 

(by (4.63)) 



(4.65) 

(4.66) 

(4 .67) 
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We claim that inequalities analogous to (4.64) and (4.65) are valid 

for any j = 1, 2, •... Now that this statement has been proved for 

j 

j 

and 

1, it remains to be proved for j = k+l assuming the validity for 

1, -2, ••• , k. So for 1 s j s k we assume: 

Consider (4.66) for some 1 S j S k: 

I I z. - z. 1 11 s 2s I It <z. 1 > 11 
J J- J-

213 ·n 
2j-1 2j-1 

$ n =--
4132M 213M 

(by (4.67) for j-1) 

(¼i3Mr) (½) j-l 
$ --'--"--'--'-=--

2i3M (by (4.62) 

Using this we obtain 

(4.68) 

k 
11 zk - z* 11 s 11 z 0 - z* 11 + Z: 

j=l 
k . 

s ¼r + ¼r Z: (½)J 
j=l 

< ½r 

which means that zk E B(z*,½r) 

Further, inequality (4.67) for j=k gives 

11 z. - z. 1 11 
J J-
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(4.69) (by (4.62)) 

< l.ir < r 

Now that (4.68) and (4.69) are true, proposition 4.4 can be applied 

which yields the unique point zk+l = S(zk) = S(zk, I(z*)) with 

which is equivalent to (4.66) for j = k+l. 

Finally, (4.67) is true for j = k+l, as zk+l 

d(zk, zk+l) = 0 and hence 

,c:; M.413 2 1 lf(zk) I 12 

l+l 
,, _n __ 

4(3 2M 

(use theorem 4.2(ii)) 

(just proved) 

(by (4.67) for j=k) 

The sequence {zk}, thus generated by the described application of the 

algorithm is an infinite sequence in B(z*,½r) so it has at least one 

cluster point z' E B(z*, ½r). Then theorem 4.4 implies that z' is a 

fixed point of A and theorem 4.5 implies that z' is a Kuhn-Tucker 

point of (4.21). 

The uniqueness of z* in B(z*,½r) implies that necessarily z' z*. 

Finally 

(4. 70) 

COROLLARY 1 

,c:; -- i: n 
2(3M i=k 

2i 

The algorithm is asymptotically regular on B(z*, l,ir). 

□ 



105 

Proof: 

The proof is obvious from (4.70). 

□ 
COROLLARY 2 

If C contains at most a countable number of points, then every se­

quence generated by (4.56), with zk+l = A(zk), A defines the reduction 

method developed in this chapter, converges to a point in C: a fixed 

point of the algorithm which i_s a first-order Kuhn-Tucker point of 

(4. 21). 

Proof: 

The proof follows from the application of corollary 2 of proposition 

4.8. 

□ 
COROLLARY 3 

The effect of only using equality constrained reduced problems is re­

flected in the fact that I lf(z) I I for problem (4.40) is smaller than 

or equal to I lf(z) I I for problem (4.21). 

Proof: 

The proof follows from a comparison of propositions 4 .• 3 and 4.4. 

□ 
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IV.7. Coordinating phase~ and phase g 

The proofs of convergence in the preceding chapters rely heavily on 

theorem 4.2 which assumes that we succeeded in defining a starting point 

z 0 close enough to z*. As mentioned above, a first phase, called phase I, 

is used to provide us with a suitable starting point for phase II, which 

consists of the solution of reduced problems such as (4.29) or (4.43). 

In phase I an exterior point penalty function is minimized subject to the 

given linear constraints ((4.18), (4.19)).The question now is how the 

quality of the generated starting point z 0 for phase II can be improved 

and how the results of phase I can be used to define a reasonable approxi­

mation of the final active set I(z*). It may be expected that a penalty 

parameter in phase I that is too high creates an undesired ill conditioned 

reduced problem or that this early stage of the iteration process 

pays too much attention to feasibility at the expense of optimality. 

On the other hand a weighing factor of the penalty term that is too low 

may yield a starting point z 0 ¢ B(z*,r). 

It seems reasonable to assert that the above sketched problem depends on 

the function F(x) to be minimized, the constraint functions ci(x), 

i = 1, ... , m and their respective gradients and Hessian. 

The concept of defining a hybrid, 2-phase algorithm in this way was first 

suggested by Rosen (1976) (who proposed one exterior penalty minimization 

as phase I). 

It gives rise to the following class algorithms. 

Step 1. Initialization: choose a starting point z 0 , a penalty parameter 

to, etc. 

Step 2. Solve one (or more) problems of the form (4.18) as phase I to ob­

tain z 1 = (x 1 , u 1 , v 1). Put z 0 := z 1 and k = 0 to initialize 

phase II. 

Step 3. Solve a reduced problem as developed in this chapter (e.g. (4.29) 

or (4.43)) as phase II, to obtain zk+l = (xk+l' uk+l' vk+l) • 

Step 4. Apply convergence criteria. In case of convergence: stop. Otherwise 

k := k+l and return to step 3. 

Concerning step 2 we remark that the theorems on the convergence of exte­

rior penalty methods (see Fiacco & McCormick (1968)) guarantee convergence 

to a Kuhn-Tucker point of the original problem under reasonable, relatively 

weak conditions. Hence theoretically we might expect a phase I step, which 
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consists of one exterior penalty step to provide us with a starting point 

z0 for phase II which satisfies z 0 € B(z*,r). However,neither z* nor r 

will be known before starting the iterations, and this is a serious com­

plication! To prevent the occurrence of the problems.sketched above, which 

can arise if phase I consists of only~ exterior penalty step (by lack 

of information t 0 might be too high or too low!), we also investigated 

the effect of a phase I consisting of more than one exterior penalty step 

(for instance t 0 = 0.05, t 1 = 100 and t 2 = 100t1). 

Beside this, we also investigate the sensitivity to the choice of t 0 if 

only one exterior penalty step is performed in phase I. The results of 

these investigations are sU11DDarized in table 5.1 of chapter v. 

Besides.the choice of the penalty parameter the coordination between the 

2 phases of the algorithm is expected to be improved by using the Lagrange 

multiplier estimates obtained from phase I to define the active set at the 

starting point z0 of phase II. 

We propose to define this active set as 

(4. 71) I(zo) := {p+l, ••• , m} u {i € {1, •.• , p} I uO,i > O} 

This means that I(z0) consists of all equality constraints and those in­

equality constraints with positive Lagrange multiplier estimates at the 

end of phase I. 

As i-th Lagrange multiplier estimate we use 

(4.72) i 1, ..• ' p 

with c;(x0) := min(O,ci(x0)) (see e.g.,Fiacco and McCormick (1968)). 

This estimate is based on the fact that in the optimum both the gradient 

of the Lagrangian function and the gradient of the penalty function (4.19) 

will vanish. 

As soon as z0 € B(z*,r) and the active set strategy satisfies µO,i > 0 for 

all i € I(z0), propositions 4.10, 4.llstate that I(z0) = I(z*) under some 

mild further conditions. 

For instance I(z0) as defined in (4.71) is intended to meet these require-

ments. As it remains difficult to check z0 € B(z*,r) we also investigated 
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some alternative active set strategies to get more insight in the sensiti­

vity of the algorithm on this point. 

We considered the active set strategy proposed by Brauniger (1977) which 

defines I(z0 J as 

(4. 73) 

Another active set strategy arises froma combination of (4.72) and (4.73) 

For the (violatedli-th constraint we estimate µO,i by ui. 

Then we obtain 

(4. 74) il. > 
l. 

Using (4.72) this yields 

from which we obtain 

(4. 75) 

(Note that c~(x0 ) ; ci(x0 J ~ O in this case.) 

From (4.75) we see that if 

(4. 76) 

then every constraint which is violated at x0 will be put into the initial 

active set of phase II. 
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Iv.a. convergence~ the composite algorithm 

Now that the 2 phases of the algorithm have been discussed we conclude 

this chapter with some closing remarks concerning the convergence of the 

composite algorithm. In essence the theorem formulated below states that 

if the penalty parameter t 0 is large enough, the convergence of the exte­

rior penalty methods (see Fiacco and Mc Cormick (1968)) assures z0 e: B(z*,r): 

the final point of phase I is close enough to z*. Assuming that all other 

conditions of the theorem on the convergence are satisfied (section IV.6) 

this means that the convergence is R-quadratic. 

THEOREM 4.8 

Consider the nonlinear programming problem (4.21) with a regular point 

z* which satisfies the second order sufficiency conditions with strict 

complementary slackness. Assume further that all problem functions 

are twice continuously differentiable in an open neighbourhood of z*. 

Then there exists a t 6 such that if we use t 0 ~ t 6 in phase I of the 

algorithm the generated sequence {zk} of iteration points converges 

R-quadratically to z*. 

Proof: 

As mentioned above there exists at~ such that for t 0 ~ t~ phase I 

provides us with a starting point z0 which meets the requirements of 

theorem 4.7 so that if the other conditions such as differentiability 

of the problem functions are satisfied and an appropriate active set 

strategy is used theorem 4.7 can be applied to prove this theorem. 

□ 
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V. ALGORITHMIC AND NUMERICAL A~PECTS OF 2-PHASE REDUCTION METHODS 

Now that some properties of reduction methods using linearly con­

strained reduced problems have been derived, we focus our attention on the 

implementation of these reduction methods. Af~er a short description of al­

ternative 2-phase algorithms, a specially adapted algorithm for linearly 

constrained nonlinear programming is described together with a simplified 

presentation of the implementation of the 2-phase algorithms. Then the LU­

and Cholesky matrix decompositions are discussed, together with known and 

new updating rules to modify the Cholesky-factors during the iteration 

process. 

V.1 Introduction 

The 2-phase algorithms developed in the preceding chapter rely heavi­

ly on the efficiency of an algorithm for the linearly constrained reduced 

problems, as both phase I and phase II require the s~lution of linearly 

constrained nonlinear programming problems. Here the literature offers an 

ample choice: for instance, algorithms proposed by Rosen (1960), Goldfarb 

(1966), Murtagh and Sargent (1969) and Gill and Murray (1974a) could be 

used. 

Usually algorithms for linearly constrained nonlinear programming 

exploit the given linearity of the constraint functions by applying pro­

jections of unconstrained search directions on the intersection of current­

ly active constraints. For instance Rosen (1960) projects the steepest des­

cent direction, in the metric defined by the Euclidean distance function. 

Murtagh and Sargent (1969) project a quasi-Newton search direction in a 

metric induced by a distance function which depends on the second order 

information of the objective function (see e.g., Householder (1964)). 

In this chapter we discuss an adapted version of Murtagh and 

Sargent's algorithm. The adaptation concerns the use of matrix factoriza­

tions (ch. V.4) and their updates (ch. V.5). Furthermore the active set 

strategy is replaced by the strategy described in ch. V.3. 

As this chapter only deals with the solution of linearly constrain­

ed nonlinear programming problems, our problem formulation can be simfli­

fied to: 
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( 5. 1) subject to 

) minimi,e F' (xi 

where the objective function F' (x) is supposed to be a sufficiently often 

differentiable convex function of (x1 , .•. ,xn). The objective function 

F' (x) of the reduced problem is defined by the algorithm in terms of F(x), 

LF(¾,x), ci (x) and Lei (¾ 1 x). The nxm matrix A has as its i-th column the 

vector ai which is the gradient of the i-th linear constraint. The mxl vec­

tor b contains the right hand side elements of the constraints. 

Furthermore the matrix N (N) will be the matrix of active constraint 
k 

normals (at step k) while Bk and Hk denote the k-th approximation of the 

Hessian and the inverse Hessian of F(x) respectively. 

V.2 Stepwise description of~ 2-phase algorithms , 

Once we accept the idea to develop an algorithm consisting ef two sep­

arate phases, various designs appear to be possible. In all cases the first 

phase is intended to provitle a good starting point for phase II, and to meet 

other initial conditions for phase II. 

We only mention Rosen (1976,1977),Maynea.nd Polak (1978), Ballintijn, 

van der Hoek and Hooykaas (1978), Best, Brauniger, Ritter and Robinson (1979) 

and Van der Hoek (1979). 

A typical design of the algorithms discussed in the present work is 

PHASE I: 

•- - --- - - - - - - I 

: Step 1 Initialization: z0 ,t0 • i 
I I 
I I 
I I 
I I l Step 2 Solve: minimize F (x) + P (x) , 
I XEL : 

: where P(x) is defined by (4.19) : 
I------------------------------------------------------------------------- I 

Define z0 , the starting point of phase II, to be equal to the solu­

tion of phase I, put k = 0 and start 
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PHASE II 

---------------------.--------------------------------------------------- I 

Step 1 At zk, find a first order Kuhn-Tucker point zk+l of the reduced ; 
I 

I 
I 

: Step 
I 
I 
I 
I 
I 
I 

problem 

min F(x) + $(~ 1 x) 
XELnLNL(xk) 

If zk+l is not unique, choose the Kuhn-Tucker point closest to 

zk. 

2 Apply convergence tests on zk+l. 

In case of convergence: stop 

Otherwise, put zk := zk+l' define the active set I(zk) and go to 

step 1 of phase II. 
'--------------------------------------------------------------------------

A simple variation of this theme is to use a phase I which consists 

of a number of exterior penalty minimizations (e.g.: 3), starting with a 

relatively 'safe' penalty parameter t 0 and multiplying it by a constant 

factor every succeeding step. In this way hybrid algorithms composed of an 

exterior penalty algorithrn and the reduction methods of ch. IV could be 

designed, in the hope that no reduced problems are created that are too 

ill-conditioned. This is neasonable as only a few penalty steps are applied. 

Table 5.1 gives the results of some preliminary experiments, per­

formed on the nonlinearly constrained test problems, mentioned in appendix 

A. The first four columns of the table correspond with the values 0.05, 0.5, 

5.0, 50.0 and 500.0 of the penalty parameter t 0 of phase I, while the sixth 

column concerns a phase I consisting of 3 succeeding exterior penalty steps 

with values 0.5, 5.0 and 50. of the penalty parameter. The last column 

gives the results for the algorithm in which the constraint values ci (x0 ) 

of the nonlinear constraints are used to define t 0 as 

(5.2) l: 
iEI 

V 

I ( ) I , where I 
Ci XO v 

concerns all violated constraints. 

This parameter is put to unity if the value thus defined is less than 

10-4 . The elements of the table are the number of objective function evalua-
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tions required for convergence of the particular test problem. (The second 

phase of the algorithms reported here is the reduction method based on the 

application of the reduced problem (4.29) with ~(xk,x) defined by (4.6)). 

Table 5.1 The influence of the penalty parameter of phase I on the conver­

gence of the 2-phase algorithm 

~ 
0.05 o.s s.o so.a soo.o o.s,s.o formula 

and SO. (5.2) b 

12 81 108 95 82 82 168 94 

13 397 417 474 541 912 696 376 

14 211 209 179 183 173 248 178 

15 260 256 253 253 212 296 255 

16 475 686 576 488 517 882 532 

17 394 394 394 394 394 555 394 

18 197 197 197 197 197 245 197 

19 392 392 392 392 392 410 392 

20 5262 5262 5262 5262 5262 5544 5262 

21 1413 F F F F F 1410 

22 1458 771 953 6739 6157 6827 1255 

23 802 634 566 708 943 1401 643 

24 908 F 390 549 940 F 365 

F = Failure 

Conclusion: Besides the observation that the penalty parameter t 0 of phase I 

should not be too high, no further conclusion about a preferred fixed penalty 

parameter can be drawn from the figures of table 5.1. We decided to use the 

value of t 0 as defined by formula (5.2) in the further experiments. Note 

that this means that t 0 is based on the constraint violations in the start­

ing point x0 • As a consequence the penalty function used is a combination 

of problem function values at x0 . Indeed it is a sum of squares of con­

straint violation amounts, weighted by a.penalty parameter which is inverse 

proportional to the constraint values in question. The resulting 'balanced' 

penalty function may prevent an undesired step in phase I. of the algorithm. 

After discussing the choice of the penalty parameter of phase I, 

chapter IV.7 continued with the presentation of different approaches to 
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improve the coupling of phase I and phase II. Again the value of the penal­

ty parameter appeared to be important, together with the definition of the 

initial active set of phase II. Different coupling mechanisms evolving from 

the definitions (4.71),(4.73) and (4.76) of this active set were discussed 

in ch. IV. 7. 

A main result of chapter IV was the proof that, once an iteration 

point is in a sufficiently small neighbourhood of a 2nd order Kuhn-Tucker 

point, it suffices to consider merely equality constrained reduced problems 

in phase II of the algorithm. This means that the linearly constrained non­

linear programming algorithm which solves the reduced problems, no longer 

applies an active set strategy; all constraints involved are equality con~ 

straints, hence elements of the active set. The active set I(zk) is chosen 

before defining the reduced problem. For this algorithm, phase II becomes 

r---------------------- ----------------------------,---------------------, 
: Step 1 Arrived at zk, find a firqt order Kuhn-Tucker point zk+l of the : 

: reduced problem 1 

I 

(5.3) lmin F(x) + 

subject to 

Lei (xk,x) 

If zk+l is not unique, choose the Kuhn-Tucker point which is 

closest to zk. 

1 Step 2 Apply convergence tests on zk+l" 

In case of convergence: stop. 
I 

: Otherwise put zk := zk+l' define the active set I(zk) and go to 

: step 1 of phase II. 

I-------------------------------------------------------------------------' 

Numerical experiments were performed on the same test set of 13 non­

linearly constrained test problems under the same circumstances as the ex­

periments reported above on two implementations of the 2-phase algorithm, 

which apply for phase II a fixed active set or an adjustable active set res-

pectively. The results of the experiments are summarized in table 5.2. 

The quotients in this table have the following meaning: 



(5. 4) 
number of major iterations required to detect I(z*) 
number of major iterations required for convergence 
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Here each major iteration involves the definition and the solution of a 

reduced problem of phase II. Column 1 concerns the algorithm in which the 

penalty parameter of phase I is defined by (5.2) and phase II redefines the 

active set if necessary. Column 2 concerns an implementation with the same 

phase I, while the active set I(:l\:) of phase II remains unchanged. The set 

I(:l\:) is defined in the feasibility step which precedes the application of 

the linearly constrained nonlinear programming algorithm which solves 

phase II. 

Table 5.2 number of major iterations required to detect I(z*) 
number of major iterations required for convergence 

~ 1 2 
e 

12 1 : 4 3 : 4 

13 0 : 4 0 : 4 

14 . 0 : 19 17 : 19 

15 2 : 7 F 

16 0 : 3 2 : 3 

17 0 : 3 0 : 3 

18 3 : 4 1 : 4 

19 0 : 3 0 : 3 

20 9 : 10 F 

21 1 : 4 1 : 4 

22 0 : 3 0 : 3 

23 4 : 7 2 : 7 

24 0 : 3 0 : 3 

F : Failure 
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Conclusion: If the convergence is obtained, then the applied definition of 

the active set does not influence the total number of required major itera­

tions. However, the application of a fixed active set in phase II gives a 

less robust algorithm: 2 failures are reported. Apparently the second im­

plementation is less flexible in adapting new information on the (in)­

activity of constraints, which is expressed by the failures and a higher 

number of major iterations required to detect I(z*). 

A further computational comparison of these two implementations is post­

poned to chapter VI. 

Another obvious hybrid algorithm arises from a combination of the 

recursive quadratic programming algorithms of ch. III and the algorithms 

of ch. IV as phase I and phase II respectively. This yields the following 

algorithm: 

PHASE I 

---------- --------------------------------------------------------------I 

I 
I 
I 
I 

I 

Step 1 Initialization: z 0 ,t0 

Step 2 solve: 

:cs.si 
I 
I 

1 where A and bare defined in ch. III. 

I------------------------------------------------------------------------- I 

Define z 0 , the starting point of phase II, to be equal to the solu­

tion of phase I and start 

Phase II. This phase can be any of the above presented phase II algorithms. 

Finally we mention the independently developed and recently reported 

2-phase algorithm of Best, Brguniger, Ritter and Robinson (1979), which also 

applies linearly equality constrained reduced problems, together with an 

active set strategy which, if necessary, redefines the penalty parameter 

to obtain global convergence. 



v.3 An adapted algorithm~ linearly constrained nonlinear programming 

~ the structure~~ 2-phase algorithm 
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As both phase I·and phase II of the algorithm reduce the solution of 

the problem to the solution of a linearly constrained nonlinear.programming 

problem, special attention must be paid to the algorithms used to solve 

these problems. We choose Murtagh and Sargent's (1969) algorithm because of 

its reported computational efficiency in Himmelblau (1972) and Lenard (1979), 

and because of the possibility to derive easily the necessary update formu­

lae for the applied Cholesky-decompositions. 

We mentioned in Ch. IV, that usually methods for linearly constrain­

ed nonlinear programming are based on the use of adapted (e.g., projected) 

unconstrained search directions. This leads to algorithms which are com­

posed of steps which define an unconstrained search direction, project it 

on the feasible set given by the active constraints, and then update the it­

eration matrices (if convergence is not yet achieved) .Murtagh an::! Sargent's 

algorithm is an implementation of the ideas originally suggested by Davidon 

(1959), and later extended by Goldfarb (1966) and Davies (1968). Convergence 

theorems which prove the convergence of the algorithm can be found in 

Murtagh and Sargen~ (1969). The modifications and extension of the algorithm 

as implemented by us concern the following points: 

1. The active set strategy. We only test whether a constraint has to be 

dropped from the set of active constraints in case of: 

(i)' convergence with respect to the current active set, 

(ii) reinitialization of the approximation of the Hessian matrix, 

because of accumulation of calculation errors, 

(iii) any other constraint enters or leaves the active set. 

2. For the criterion which constraint (if any) to delete we followed the 

suggestion of Gill and Murray (1974c) (step 7 of the algorithm). 

3. For reasons of numerical stability Bk and N~HkNk are used instead of 
T -1 T 

the matrices Hk and (Nk~Nk) • The matrices Bk and NkHkNk are stored 

in the form of their Cholesky decompositions. 

The resulting algorithm is as follows: 

Step 1. Initialization: a feasible starting point x0 is generated. Take 

B0 = In and determine I(x0), the set of active constraints at x0 
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and the corresponding matrix N0 of active constraint normals. 
T Compute the Cholesky decomposition of N0H0N0 and set k := O. 

Step 2. k := k+l. 

(5.6) 

(5. 7) 

(5.8) 

(5.9) 

Determine the search direction 

where the projection matix Pk is given by 

Find the maximum steplength, m 
along pk from ak, 

T 
m 

min 
fbi-aixk T 

< o}. ak 1 T aipk 
ii!(~) aipk 

Calculate the vector of approximate Lagrange multipliers\ as 

If II N~kll > E, where E > 0 is a small, pregi ven constant, the search 

direction is no longer parallel to the intersection of the active 

constraints, go to step 6. 

If llpkll < E or if in the preceding iteration the set of active con­

straints was changed, go to step 7. Otherwise go to step 3. 

m Step 3. Find the steplength O < ak $ ak that solves: 

(5.10) 

Go to step 4. 

Step 4. Set xk+l := xk + akpk and modify the Cholesky-factors of Bk and 
T b . T m 

NkHkNk too ta1.n Bk+l and Nk+lHk+lNk+l" If ak = ak go to step 5, 

otherwise go to step 2. 

Step 5. A new constraint, whose index was found in the solution of (5.8) 

has become active, Add its normal to Nk to obtain Nk+l and modify 

the Cholesky factors of N~HkNk accordingly. Go to step 2. 



Step 6. Reset Bk:= In and adjust N~I\Nk accordingly. Go to step 7. 

Step 7. Select the largest Lagrange multiplier, say A(j), and calculate 
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where b(j,j) is the jth diagonal element of (N~I\Nk)- 1 . 8 can be 

interpreted as the expected improvement of the objective function 

if constraint j is dropped from I(zk). Stop the algorithm if both 
T 

llpkll < e: and 8 < e:. If -gkpk::: $, drop the jth constraint from 
T 

I(zk). Update Nk and modify the Cholesky factors of Nkl\Nk accord-
T 

ingly to obtain Nk+lHk+lNk+l· If no change in I(zk) occurred, con-

tinue with step 3. Otherwise set xk := ¾+l and go to step 2. 

We saw in ch.IV that if all problem functions satisfied certain differentia­

bility and concavity conditions and if linearizations were performed around 

a feasible point xk, then xk was feasible with respect to the linearized 

constraints as well. Hence¾ can be used as a feasible starting point for 

the linearly constrained a+gorithm. We also found that as soon as the prob­

lem functions no longer satisfy the above conditions, the feasibility of 

the reduced problem could not be guaranteed. Besides that we know that the 

solution of the linearized problem will not necessarily satisfy the origin­

al nonlinear constraints. That is the reason why the application of the al­

gorithm is preceded, if necessary, by a feasibility-step, which transforms 

an infeasible initial point into a feasible starting point for the applica­

tion of the linearly constrained algorithm. 

The procedure starts with transforming the infeasible starting point into 

a point which satisfies the linear equality constraints. Then an auxiliary 

problem is solved in which the magnitude of the violations is decreased so 

that the satisfied constraints are kept as such. A stepwise description of 

this feasibility step is: 

Step 1. If the current point xk is feasible, start the linearly constrained 

algorithm; otherwise, transform xk into a solution,~• of the li­

near equality con?traints (by orthogonal projection). Go to step 2. 

Step 2. Define the index sets Iv and Is corresponding with the currently 
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violated and satisfied constraints respectively. Go to step 3. 

Step 3. Find ~+l which solves 

(5.11) ) 

min 

such 

T 2 T 
(a.x-b.) , where the a. and b. 

l. l. l. l. 
are as in 

that all constraints with i EI are met 
s 

Go to step 4. 

Step 4. Adjust Iv and Is with respect to xk+l· Go to step 5. 

(5 .1) , 

Step 5. If I =¢,enter the linearly constrained routine. Otherwise 
V 

go to step 2. 

Obviously this feasibility step provides us with a feasible point by apply­

ing the linearly constrained algorithm itself (in step 3). A similar strat­

egy was proposed earlier by Fiacco (1961) to start carrolls 'created res­

ponse surface algorithm', the first version of an interior point penalty 

algorithm. The convergence of this feasibility algorithm is based on the 

fact that the constraint violations are penalized in the objective function 

of (5.11), hence the number of elements of Iv will decrease monotonically 

until Iv ¢: a feasible point has been achieved. Of course the rate of 

convergence of this algorithm depends on the particular choice of the loss­

function in (5.11), together with the diameter of the feasible region. If 

this algorithm does not succeed in finding a feasible point, the problem 

is considered to be infeasible. 

We conclude this section with a simplified statement of the struc­

ture of the implementation of the 2-phase algorithm (a detailed description 

can be found in appendix D). 

In figure 5.1 NLPSOL is a subroutine which controls the procedure 

to solve the given nonlinear programming problem. NLPSOL applies a sub­

routine which solves a linearly constrained nonlinear programming problem 

(LINSOL) and the other subroutines mentioned. The auxiliary calculation 

subroutines concern the linearization of constraint functions, the solution 

of a system of linear equality constraints and the line search. The matrix 

decomposition subroutines calculate the necessary LU- and Cholesky decompo­

sitions and perform the updating of the Cholesky factors as discussed in 

the remaining part of this chapter. 



MAIN 

1/0 

auxiliary 
NLPSOL ----+----- calculation 

...... subroutines ............... ~ ... ,__ _____ _ 
..,,,,..,,,. ............... .,.... '--..---------, __ ...._ _ __, ... 

LINSOL ---+- --
......... ..... 

FUNCTION 
subroutines 

.............. 
----...... ----------, 

matrix decompositions 
and their updates 

Figure 5.1 Simplified flowchart of the 2-phase algorithm 

v.4 Decomposition methods for matrices 

Especially in the last decade much attention has been paid to the 

development of efficient and numerically stable solution procedures to 

solve sets of linear equations. As the 2-phase algorithms require these 

solution procedures (to find a solution to a set of linear equality con­

straints and to define the constrained search direction), we decided to 

apply appropriate matrix decompositions with the general objectives 
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(i) to perform fast calculations 

(ii) to obtain great numerical stability, especially by using permutation 

matrices to reorder diagonal elements before solving a system of 

equations 

(iii) to recognize non-positive definiteness of Bk and N~'\Nk. 

We shall now give a brief description of these LU- and Cholesky 

decompositions. The next chapter, v.s, will be concerned with updating pro­

cedures for the Cholesky-factors of the above mentioned iteration matrices. 

For a description of the used 'special' matrices, the reader should consult 

appendix C or Wilkinson (1965). 

V.4.1 LU-decomposition following Peters and Wilkinson (1970) 

This method constructs the factors Land U, which are mxn-lower 

trapezoidal and nxn-unit upper triangular matrices, of a mxn-matrix A (m~n) 

such that 

(5.12) A LU. 

The use of LU-decompositions goes back to Bartels and Golub (1969) who use 

them in the context of linear programming. A motivation to apply this de­

composition is that it replaces the solution of the nxn system Ax= b by 

the solution of the two triangular systems Ly band Ux = y. The calcula-

tion of Land U together with the solution of Ly= bis usually termed a 

forward elimination, while the solution of Ux = y is called a back substi­

tution. Every nonsingular nxn matrix A has an LU decomposition, provided 

that interchanges of rows of A are introduced if necessary, to calculate 

these factors. 

Application to our mxn matrix A, with m~n, means that we have to 

replace the lower triangular matrix L by a lower trapezoidal matrix L to 

be able to find the solution of the first n of the given m linear equations 

inn variables. We elected to use an algorithm due to Peters and Wilkinson 

which generates a sequence of pairs (L0 ,u0 ), (L1 ,u1), ... , (Ln,Un) such that 

L L and U 
n 

u 
n 

and 

A description of their algorithm is: 

A L.U, 
]. ]. 

for i 1,2, •.• ,n. 



Step 1. Initialization: L0 
Go to step 2. 

A, u0 I, hence L0u0 A. 

Step 2. Put k = 1. Form a special matrix E1 (as defined 

such that L1 = LOEl with Ll (1,j) = 0 for j > 1. 

is again such a special matrix and calculate u1 

-1 
L1U1 = LOE1E1 UO 

= A. 

Go to step 3. 

Step 3. Put k := k+1. 

Form the special matrix¾ S?,Ch that~ 

for j > i, is k. Go to step 4. 

-1 
Step 4. Calculate the special matrix Ek and define ~k 

A. Go to step 5. 
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in appendix C.6) 
-1 

Compute E1 , which 
-1 

E1 u0 • Hence 

0 

Step 5. If k = n, stop with L 

step 3. 

Ln' U = Un and A= LU. Otherwise, go to 

Note that for Uk, as defined in step 4, the following holds: 

Uk(i,i) = 1 

Uk(i,j) ~ O only for i < j and is k 

Uk (i,j) 0 else. 

For reasons .of numerical stability we do not calculate a decomposi­

tion of the matrix A itself, but of the matrix PA. 

Here Pis the permutation matrix, which is defined during the execution of 

the algorithm in the following way: 

(5.13) 
n 

P = TT Pk 
k=l 

where Pk is the permutation matrix that provides us with an adjusted matrix 

Lk-l instead of Lk~l: 

(5.14) 
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with ask-th diagonal element the absolutely largest element of the k-th 
2 1 3 2 

column. The implementation of this algorithm requires .Smn - 6 n + O(n) 

multiplications for ma~ing the LU decomposition of an mxn matrix A. 

v.4.2 Cholesky-decomposition 

A Cholesky-decomposition of a positive definite, symmetric nxn 

matrix A is the factorization 

(5.15) A 

where Lis a unit lower triangular matrix and Dis a diagonal matrix. The 

proof of the existence and uniqueness of this decomposition is by induction 

on n and follows from the construction below. For n = 1 we take L = 1, 

D ( 1, 1) A(l,1), which clearly gives the required factors. Note that 

D(l,1) > 0. 

A positive definite symmetric matrix An can be written as 

(5.16) 

where An-l is_positive definite and symmetric. Hence, by induction hypo­

thesis, An-l can be decomposed as 

(5.17) L D LT 
n-1 n-1 n-1 

where Ln-l and Dn-l are its Cholesky-factors. 

Then the Cholesky-factors for An can be constructed in the follow­

ing way. Define 

(5.18) 

and 

(5.19) D 
n 



Then 

(5.20) L D LT 
n n n 

The unknowns c(a vector) and x (a scalar) in (5.18) and (5.19) are.found 

from the requirement that (5.16) and (5.20) are equal, which means 

(5.21) 

and 

(5.22) 

b 

a nn 
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The vector c is uniquely determined by (5.21) and requires one back substi~ 

tution. The unknown xis given by (5.22). Taking determinants in A =L D LT n n n n 
further gives 

det(L )det(D )det(LT), 
n n n 

so that 

(5. 23) 

As det(Dn_1) > 0 by the induction hypothesis, we see that xis real and 

positive. 

This proof of the existence of a Cholesky decomposition gives at the 

same time a method to calculate the factors and these factors are calcula­

ted iteratively inn steps.· 

As in each step the newly determined vector c (in (5.18) and (5.21)) 

and the new element x (in (5.19) and (5.22),(5.23)) are uniquely defined 

we conclude that the Cholesky-factors of a positive definite symmetric 

matrix are unique as well. 

Concerning the implementation we remark that for reasons of numeric­

al stability the diagonal elements of A are ordered according to their 

magnitude, hence we calculate the Cholesky factors of the matrix PAP' where 

Pis a permutation matrix. The implemented subroutine requires 
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(5.24) 
1 3 2 
3 n + O(n ) 

multiplications to calculate the Cholesky-factorization of a matrix of 

order n. 

v.5 Updating of the Cholesky factors 

The two matrices Bk and N~HkNk which are stored in their Cholesky 

decompositions require different updating strategies. For Bk, the current 

approximation of the Hessian of the objective function, a rank 1 correction 

formula is applied for updating. This rank 1 formula, which is simpler than 

the rank 2 formulas treated in ch. II, has the advantage that the corres­

ponding correctioIBof the Cholesky factors of Bk are relatively simple and 

available from the literature. 

For the matrix N~HkNk updating of its Cholesky factors is necessary 

in case of a change in the active set I(zk), as both adding and deleting a 

constraint results in a new matrix Nk. Moreover the updating of the inverse 

Hessian approximation Hk has its consequences for the factors of N~HkNk. 

All the necessary updating rules will be discussed in this chapter, in the 

order in which they are meotioned above. 

v.5.1 The rank 1 correction of Bk and Hk 

We are looking for a simple correction matrix Ck for updating Bk: 

(5.25) 

such that the 'quasi-Newton property' 

(5.26) Bk+lsk = Yk, where s,y are as before in section II.2.1. 

holds. From (5.25) and (5.26) we derive 

(5. 27) 

which becomes 

(5.28) 
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with 

(5.29) 

Equation (5.28) consists of n equations, whereas a symmetric matrix ck has 

½n(n+l) elements to be determined. The simplest choice for a symmetric 

matrix Ck seems to be a rank 1 matrix 

(5.30) 

where the scalar rk and then-vector wk are still to be determined. 

Equations (5.30) and (5.28) yield 

(5.31) 

and, consequently, 

(5.32) 

with 

(5.33) 

Further (5.32) and (5.31) give rise to 

(5.34) 
2 T 

rkqkvkvksk vk 

from which we see 

(5.35) 2 1 
rkqk =--T 

vksk 

Combining these results we obtain 

(use (5.30)) 

(use (5.32)) 

(5.36) (use (5.35). 
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Formula (5.36) gives the, unique, rank 1 updating formula which originates 

from Broyden (1967). 

Analogously the corresponding rank 1 update formula for modifying the in-

verse Hessian 

(5.37) 

with 

(5.38) 

approximation Hk can be derived to be 

T 
tktk 

Hk+l Hk + -T-
tkyk 

It can be proved that if HkBk = In and these rank 1 formulae are ap­

plied to define Hk+l and Bk+l' then Hk+lBk+l = In holds as well. 

As already mentioned our main rationale for choosing the rank 1 up­

date was that it allows the possibility to apply Cholesky decompositions 

in a simple way. Besides that a number of advantages and disadvantages are 

known (see e.g., Powell (1969), Himmelblau (1972), Gill and Murray (1974c)), 

such as: 

(i) no exact line ·search is required, though this might lead to a singular 

updated matrix. This advantage is even greater as we are concerned 

with a feasible point algorithm for linearly constrained reduced prob­

lems, where the unconstrained minimum along a search direction need 

not be feasible. 

(ii) positive definiteness might be lost, in which case no updating should 

be performed, as the subsequent search direction will not be initially 

downhill. This phenomenon can be recognized easily from the Cholesky 

factors. 

V.5.2 Updating of the Cholesky factors of Bk and Hk after a rank 1 

correction 

The algorithms to modify the Cholesky factors of a symmetric positive 

definite matrix A after a rank 1 correction come from the theory present-

ed in Gill, Golub, Murray and Saunders (1974) and Gill, Murray and Saunders 

(1975). We only provide a brief description of their algorithms. 

The question is how to calculate in a fast and numerically stable 

manner the Cholesky factors of a positive definite symmetric matrix, say 

~+l defined by 
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(5.39) 

where wk is a non-trivial n-vector. We shall assume that both 1\+i and 1\ 
are positive definite with Cholesky decompositions Lk+lDk+lL~+l and 

LkDkL~ respectively. After appropriate scaling of wk .(thus obtaining vk) 

and distinguishing between rk > 0 and rk < 0 we have to consider the fol­

lowing two cases: 

(i) 

(ii) L D LT 
k+l k+l k+l 

(i) Choose p, such that Lkp = vk. Then case (i) is: 

(5. 40) 

Now lemma A3 of Gill, Murray and Saunders can be applied to give the 
T 

Cholesky factors of Dk+ pp as 

(5. 41) . 

where Mand Dare special matrices, defined in loc.cit. 

From (5.40) and (5.41) and using the known structure of Mand D, we 

get: 

(5.42) 

hence 

(5.43) and 

where Lk+l is a unit lower triangular matrix and Dk+l is a diagonal 

matrix. For further details and suggestions for an efficient implemen­

tation we refer to the paper cited above. 
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(ii) Again using Lkp vk in the second case 

(5.44) 

L D LT 
k+1 k+l k+l 

T Considering the quantity a= 1-p Dkp in conjunction with (5.44) gives 

which means, using that Lk is unit triangular, 

det(Ak+l) 
T 

det(Dk - pp) 

5.45) 

As Ak+l and Dk are assumed to be positive 

det(Dk) are positive hence a is positive. 

and Saunders can be applied to obtain the 

5.46) 

definite, det(Ak+l) and 

Now lemma A4 of Gill, Murray 

factorization 

where Mand Dare special matrices defined in loc.cit. Analogously to 

the preceding case the Cholesky factors ~+land Dk+l of ~+l can now 

be given in terms of Lk, Mand D. 

In the implementation a problem can arise after calculation of 
T -1 . = 1 - p D p. This calculation is to be followed by a test on the sign 

,f this quantity. In case of a~ 0 we decided to set Ak+l = Ak, which means 

:hat no updating takes place. Another approach could be to replace a nega­

:ive a by a small positive number e.g., the machine precision, in order to 

,e able to continue with the updating. For further details and suggestions 

or an efficient implementation we refer to the paper cited above. 
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V.5.3 Updating of the Cholesky factors of NkHkNk 
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During the iteration process both Hk and Nk change ftom time to time 

and the matrix N~HkNk and its Cholesky factors should be adjusted accord­

ingly. We preferred to update the available factors, .instead of performing 

a complete recalculation of the decomposition after every change of ¾ or Nk. 

In that way the information gathered in the past is used to accelerate con­

vergence. Necessary updating strategies for the cases treated in V.5.3.1 

and V.5.3.3 were discussed earlier, e.g., in Gill and Murray (1974a) and 

Goldfarb (1975). In case v.5.3.2 the strategy developed in Ballintijn, Van 

der Hoek and Hooykaas (1978) was implemented. 

Updating of N~¾Nk and its factors is necessary if: 

v.5.3.1 a constraint is added to I(zk), the current active set of con­

straints. 

V.5.3.2 a constriant is dropped from I(zk) 

v.5.3,3 the rank 1 correction is a~plied to Hk. 

The following strategies were applied in these cases. 

V.5.3.1 A constraint is added to I(zk) 

T 
If I(zk) consists of~ constraints, this means that the matrix Nk 

is augmented by a row vector, say n~, which is the gradient vector of 

the added constraint. 

Then 

(5.47) 

T T 
Equation (5.47) means that Nk+lHkNk+l arises from its predecessor NkHkNk by 

adding one row and one column to it, which means that the new Cholesky fac­

tors are obtained by simply taking one more step in the calculation of the 

Cholesky factors, this requires~+ ½n2 + O(n) multiplications. 
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v.5.3.2 A constraint is deleted from I(zk) 

T 
Let the Cholesky decomposition of the matrix NkHkNk be given by 

LkDkL~. Deletion of the ith constraint from the active set means that its 

gradient vector is to be deleted from Nk, yielding Nk+l" Then the ith row 

and the ith column of N~HkNk is to be deleted. If we drop the ith row in 

Lk we obtain Lk and the relation 

(5.48) 

still holds, but Lk is no longer a unit lower triangular matrix, hence 

(5.48) does not represent the Cholesky decomposition of N~+lHkNk+l ., The 

matrix Lk has the following structure: 

(5.49) 

In (5.49) we partitioned the right hand side matrix into: 

~11 : (i-l)x(i-1) unit lower triangular matrix 

~21 : (~ -i) x (i-1) matrix 

L22 : (~-i)x(~-i+l) matrix. 

In a similar way the matrix Dk can be partitioned into: 

D11 : (i-l)X(i-1) diagonal matrix 

D22 : (~-i+l)x(~-i+l) diagonal matrix. 

T 
Application of these partitions to Nk+lHkNk+l gives 

0 
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(5. 50) 

T 
on the other hand the Cholesky decomposition of l\+l l\Nk+l is 

(5. 51) 

Partitioning of the (1\:-l)x(~-1) matrices Lk+l and Dk+l in a similar way 

as Lk and Dk leads to 

(5.52) 

Combining (5.50),(5.51) and (5.52) with the uniqueness of the Cholesky 

decomposition we conclude that 

(5.53) Lll Lll 

(5.54) L21 = L21 

(5.55) Dll Dll 

(5.56) .. T 
L22D22L22 

,,..., ,.., .-vT 
L22D22L22 

Relations (5.53)-(5.55) express that the first (i-1) columns of Lk and Dk 

remain unchanged. Equation (5.56) means that as soon as the Cholesky de­

composition of t 22n22½2 is known, which takes½ (1\:-i) 3 + O((1\:-i) 2) multi­

plications, the required Cholesky decomposition (5.51) of N~+lHkNk+l is 

given by the factors 

(5. 57) 
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(5.58) 

v.5.3.3 A rank 1 correction is applied to I\ 

The rank 1 correction of Hk given by 

(5.59) 

T 
means that NkHkNk should be replaced by 

which gives 

(5.60) 

The interpretation of (5.60) is that the rank 1 correction of Hk using vk 

yields a rank 1 correction· of N~HkNk using N~v k. Hence the theory of section 

v.5.2 on the modification of Cholesky factors in case of a rank 1 correc­

tion applies and one and the same algorithm can be used for the correction 
T 

of the Cholesky factor of Hk and of NkHkNk. 



CHAPTER VI. A COMPUTATIONAL COMPARISON OF 2-PHASE ALGORITHMS AND 

RECURSIVE QUADRATIC PROGRAMMING ALGORITHMS 

VI.1. The design of computational experiments-and the selection of test 

problems 
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Theoretically the performance of a general nonlinear programming al­

gorithm can be described in terms of convergence and rate of convergence. 

Then for suitably chosen problems the guaranteed convergence and/or bounds 

on the rate of convergence can be ealculated.See, e.g., the theory developed 

in chapter III and chapter IV of this monograph. 

However, it is not advisable to compare general algorithms solely on a 

theoretical basis, as the actual convergence behaviour is clearly problem 

dependent. In practical problems convergence is obtained frequently under 

violation of theoretically imposed conditions, such as convexity or diffe­

rentiability of the problem functions. Besides that up to now no single 

nonlinear programming algorithm has proved to be superior to all other non­

linear programming algorithms for every testproblem and for every required 

accuracy. For instance algorithms based on penalty functions do not use 

explicitly the given linearity of constraints, hence we expect them to be 

inferior to projection-like methods in case of application to linearly 

constrained problems. On the other hand penalty function like methods are 

expected to behave better on problems which contain (high) nonlinearities. 

The comparison of the algorithms of chapters III and IV is still less 

simple: the recursive quadratic programming algorithms apply linearizations 

of the first order conditions of penalty functions, while the 2-phase al­

gorithms apply a quadratic loss function in phase I and a linear penalty­

like term together with linearizations in phase II. 

We argue that a theoretical comparison of algorithms should be supple­

mented by a corrrputationaZ corrrparison: the algorithms are applied to a set 

of carefully chosen representative test problems and the efficiency of 

various methods in solving these testproblems is measured in terms of some 

performance indicators. The representativity of the set of test problems 

means that both theoretical and practical problems are considered; there 

should bea significant difference in degree of nonlinearity, dimension, 

number of constraints and number of active constraints at x*. To meet all 

these requirements, we selected a number of test problems from the standard 

literature such as Himmelblau (1972), Colville (1968), Bus (1976), Cornwell, 
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Hutchison, Minkoff and Schulz (1978) and Hock and Schittkowski (1979). The 

main advantage of such a test battery is that a comparison with computa­

tional experiments of other researchers is possible at acceptable costs, 

which seems not to be realizable with randomly generated test problems 

(Schittkowski (1978a), Rosen-Suzuki (1965), Hillstrom (1977)). 

Besides that a drawback of generating test problems randomly is that the 

resulting 'random' problems can have special properties. This means that 

the randomly generated problems may not be as random as they are supposed 

to be. Recently Van Dam and Telgen (1979) reported on this phenomenon for 

the case of randomly generated polytopes. 

The set of test problems selected can be found in appendix A. It is divided 

into 2 classes: 11 linearly constrained nonlinear programming problems 

(class LC) and 13 nonlinearly constrained nonlinear programming problems 

(class NLC). The class LC represents the majority of programming problems 

evolving from business applications while the class NLC especially corres­

ponds to programming problems in research, development and engineering. 

See e.g., Bracken and McCormick (1968), Beale (1968) and Lootsma (1976). 

Within the classes LC and NLC the problems vary in degree of difficulty 

with respect.to the criteria mentioned above. The results obtained illus­

trate that it is not trivial to predict the influence of these problem 

characteristics on the performance of algorithms: a few highly nonlinear 

constraints may cause more difficulties than many active (almost) linear 

constraints at x*. 

Each of the test problems in appendix A is supplemented with some additio­

nal information: a classification number (in accordance with the proposal 

in Bus (1977)), source reference, number of variables, number of (non) 

linear constraints, statement of the problem, initial and final value of 

x and F(x) respectively and special properties of the problem. This infor­

mation is summarized in tables 6.1 and 6.2. 
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Table 6.1. Characteristics of the linearly constrained test problems 

Problem Classification # var. # NL # LIN # active 

number number constr. constr. constr. at 

1 GLR-TLl-1 3 0 7 1 

2 GLR-T0-2 10 0 20 0 

3 QLR-T0-1 4 0 7 2 

4 SLR-T0-1 2 0 2 0 

5 QLR-T0-2 5 0 5 1 

6 QLR-T0-3 4 0 10 4 

7 GLR-P0-1 5 0 15 4 

8 GLR-T0-3 2 0 5 2 

9 GLR-P0-2 10 0 13 3 

10 SLR-T0-2 5 0 3 3 

11 GLR-T0-4 6 0 14 6 

Table 6.2. Characteristics of the nonlinearly constrained test 

problems 

Problem Classification # var. # NL # LIN # active 

number number constr. constr. constr. at 

u SNR-P0-1 2 1 1 2 

13 GNR-T0-1 3 1 3 1 

14 LNR-T0-1 2 1 2 2 

'15 QNR-P0-1 5 6 10 5 

16 GNI-P0-1 3 14 6 2 

17 SNR-T0-1 2 1 0 0 

18 QNR-P0-2 5 2 9 5 

19 SNR-P0-2 4 1 3 0 

20 GNR-P0-1 15 5 15 11 

21 SNR-P0-3 9 12 6 6 

22 SNR-P0-4 9 6 0 6 

23 QNR-T0-1 4 3 0 2 

24 GNR-T0-2 5 3 10 3 

x* 

x* 
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VI.2. Termination criteria 

In order to compare the robustness and the efficiency of competetive 

algorithms for constrained nonlinear programming, we have to apply the 

same termination criteria to all those algorithms. Then convergence to the 

same point x* has the same meaning, for instance that the algorithms loca­

ted x* with the same relative accuracy. As a consequence of this require­

ment we cannot apply algorithm dependent termination criteria, such as the 

norm of the gradient of a penalty function. A choice remains to be made 

from the following general criteria: 

i (relative) objective function improvement 

ii (relative) stepsize 

iii acceptable constraint violation 

iv satisfaction of the first- or second order Kuhn-Tucker conditions 

v satisfaction of the Jacobian uniqueness conditions. 

The criteria i and ii directly concern the iteratively generated sequence 

{xk} and the corresponding function values. As these criteria are closely 

related for the problem functions considered, we decided to apply ii, 

together with iii. The latter criterion is self-evident and especially 

concerns possible constraint violations in the iteration points of the 

recursive quadratic programming algorithms. Conditions iv and v are theore­

tical criteria. For well-behaved problem functions these criteria will be 

met ½O within a certain precision as soon as ii and iii are satisfied. 

Hence we decided to apply ii and iii as termination criteria, which means 

that x* is located with a prescribed relative accuracy and that the con­

straint violations, if any, do not exceed a predesigned bound. 

This means for the implementation that we shall define an algorithm to be 

convergentif both the following criteria are satisfied: 

ii 

and 

iii 

for some pregiven precision parameter El> 0 

constraints and for some pregivenprecision parameter E > 0 
2 
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The precision parameters used are El= E2 = 10-5 . The application 

of iii is preferred as it expresses the accepted violation per constraint. 

An alternative criterion could be [ ~ le. (xk+l) 12 J½:,; E3 , which, 
iEI (xk+l) J. 

however, allows for different violations of constraints and is only an 

acceptable criterion if the Lagrange multipliers of the active constraints 

at x* are of the same order of magnitude. 

As overall convergence is a result of convergence of the algorithms 

t.hai; solve the reduced problems generated, we have to augment the cri­

teria mentioned above by termination criteria for the line search, for the 

algorithm which solves a linearly constrained reduced problem etc. 

The line search in the recursive quadratic programming approach is termina­

ted as soon as the Goldstein and Price test of formulae (3.24), (3.25) is 

satisfied with cr 0.01 or if the distance of the successively generated 

iteration points along the line is smaller than or equal to E4 , with 
-2 

E 4 = 10 • 

This last criterion is also applied in the line search of the 2-phase algo­

rithms, with E4 = 10-4 . No~e that in that case the Goldstein and Price 

test cannot easily be applied, as the algorithm requires feasible itera­

tion points. 

As mentioned in chapter V, the linearly constrained algorithm which solves 

the reduced problems of the 2-phase algorithm, is terminated if the norm 

of the search direction pk, which is a projection of ~F(xk), is small 

enough: I I pk 11 :,; E 5 , with E 5 = 10 - 4 and at the same time the expected im­

provement if a constraint is dropped is less than E5 . 
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VI.3. Performance indicators 

The computational experiments with the algorithms were performed on the 

DEC 2050 of the Erasmus University Rotterdam, using the FORTRAN-20, version 

5 compiler under the operating system TOPS 20, version 3. 

However, the computational comparison should be based on generally appli­

cable, .. preferably machine independent performance indicators. 

The general applicability means that indicators such as the number of ite­

rations of the 2-phase algorithms or the number of line searches applied 

in a recursive quadratic programming algorithm are not suited for our pur­

pose, as they are based on the special structure of a group of closely 

related algorithms. Furthermore,the required machine independence is pur­

sued to simplify comparison with experiments on other computers. A prere­

quisity is that all successful computer runs terminate on reaching the 

same degree of precision, as discussed in section VI.2. Another disturbing 

factor in the measurement of the indicators is the use of prior information 

which is not included in the statement of the problem, such as an initial 

value of the penalty parameter, the initialization of the inverse Hessian 

approximation etc. We excluded these undesirable influences by using the 

same parameter values for all test problems, except 1 very unfavourable 

case. This means that all results concern one and the same implementation 

where no attempt is made to 'optimize' the parameter choices with respect 

to a particular problem. The parameters actually used derive from 

preliminary experiments on a larger testset than mentioned in appendix A. 

The obtained parameter choices are 'safe', in the sense that both the 

efficiency and the robustness of the resulting implementation are satis­

factory with respect to the problems investigated. 

Possible performance indicators are: 

i "Ease of use" of the algorithm. 

ii Number of failed runs or robustness of the algorithm. 

iii The (standardized) number of CPU-secs, needed to solve problems. 

iv The number of problem function evaluations needed to solve problems. 

The first mentioned indicator"ease of use" , could be measured in terms 

of: preparation time for executing a problem, the difficulties met in diag­

nostic work to find the causes of failures, the possibility of human errors 

(e.g., in analytically supplied derivatives). Though these aspects should 



be reweighted in comparing algorithms, they are really programmer depen­

dent as well, hence we consider them to be qualitative indicators which 

are hard to measure objectively. 
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The second indicator, the nwribeP of failed l'UnS, is indicated by simply 

marking those runs by the character Fin the corresponding position of 

the tables of results. Footnotes are supplied to explain the nature of the 

failures. 

The (standaPdized) nwribeP of CPU-secs can be regarded as an indicator of 

the 'total effort' to solve a problem. A part of this effort will be re­

flected in the number of problem function evaluations, the remaining part 

mainly concerns all kindsof calculations performed during the execution 

of the program. Usually the time required for I/O-generation is excluded 

from these figures. 

The rationale for using sto:ndaPdized CPU-times was to eliminate machine 

dependent and environment dependent influences such as access to memory 

and multiprogramming facilities. Usually the standardization of CPU-time 

is performed by dividing by the number of CPU-secs required for the exe­

cution of Colville's standard timing program. This program consists of 

10 times inverting a given 40x4Q matrix (Colville (1968)). Recent research 

shows that the desired machine independence of the resulting figures is 

not realized in this way, mainly because of factors such as the workload 

of the machine, methods of timing and the use of optimizing compilers 

(Eason (1977) and Hoffmann (1979)). Moreover Himmelblau (1972) points out 

that Colville's program is not representative as a 'meaningful standard 

timing program would be one that somehow takes into account the poly­

morphic factors of the arithmetic logic, access to memory, storage capaci­

ty, allocation of central processing vs. peripheral processing times'. 

As a result we decided to apply as performance indicator the nwribeP of 

pPoblem function evaluations. 

Obviously the execution of an algorithm requires the computation of the 

value of both the objective function F(x) and the constraint functions 

ci(x) at intermediate points. These computations constitute the main 

costs of solving practical nonlinear programming problems, as these problem 

function evaluations tend to be expensive compared with the o~her calcula­

tions performed during the execution of the program. Instead of presenting 

all counted problem function evaluations separately, we shall present the 

number of equivalent objective function evaluations, as suggested in 
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Staha (1973). This means that all constraint function evaluations are to 

be converted into objective function evaluations. This conversion is real­

ised using the estimated ratios of the costs of the constraint function 

evaluations and the concerning objective function evaluation at the point 

xT = (1, ... , 1). These estimated ratios evolve from the comparison of the 

required number of CPU-secs. to perform 106 function evaluations. 

Hence to each successful run a unique number of equivalent objective func­

tion evaluations can be assigned. The evaluations of the linear constraints 

will not be counted at all, as they are much simpler to perform (as 

an inner product) than the nonlinear constraints. 

Hence the ratios needed will only concern the nonlinearly constrained 

problems 12-24 of appendix A. Table 6.3 contains the estimated ratios. 

Table 6.3. Estimated ratios to convert constraint function 

evaluations into equivalent objective function 

evaluations. 

Problem Constraint 

1 2 3 4 5 6 

12 .393 

13 2.870 

14 7.517 

15 1.200 1.200 1.249 1. 249 1.244 1.244 

16 .958 .958 .958 .958 .958 etc. 

17 .418 

18 .969 .969 

19 .001 

20 .281 .285 .295 .286 .284 

21 2.674 2.723 2.663 2.656 2.845 2.894 

22 ;2.674 2. 723 2.663 2.656 2.845 2.894 

23 .697 .784 .701 

24 .263 .128 .158 

Note: Restrictions of the form ii cc; ci (x) cc; ui are implemented as 

ci (x) - ii~ 0 and ui - ci (x) ~ 0 respectively. The calculation of 

the latter expression requires one extra multiplication as compared 

to the first. We mentioned in the table the arithmetic mean of the 

ratio's. 



VI.4. Results and conclusions 

The computational experiments concern the following algorithms: 

I Recursive Quadratic Programming with the Oren-Spedicato 

switch II update formulae 

II 2-Phase algorithm with complete linearization 

III 2-Phase algorithm with restricted linearization 

The Recursive Quadratic Programming implementation applied numerical 

jifferentiation using forward difference quotients with step size 
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£i = 10-8 (jxil + 0.001) for i = 1, •.. , n. The 2-Phase implementations 

behaved better with central difference quotients with£.= 10-4 • The results 
1 

obtained are mentioned in table 6.4, in the columns indicated by I - III. 

The columns indicated by COMET, Lootsma, GREG and GPMNLC are taken from 

Staha (1973) who used Himmelblau's set of testproblems. Our problems 2, 7, 

9, 12, 15, 16, 18, 19 and 20 are the same as problems 17, 10, 4, 24, 11-1, 

7, 13, 9 and 18-1 respectively of"Himmelblau's collection. Staha's figures 

concern experiments with numerical derivatives as well. The COMET algoritm 

was proposed in Staha (19~3). It is a penalty function algorithm which 

applies moving truncations of the constraint set to control the convergence 

towards the optimum. Lootsma's implementation concerns a mixed interior 

point-exterior point penalty function algorithm which applies extrapola­

tions to accelerate the convergence towards the optimum. GREG denotes 

the Generalized Reduced Gradient algorithm of Abadie and Guigou (1969).It 

is based on linearizations using constrained derivatives to project conju­

gate directions on the feasible set defined by the linearized constraints. 

Newton iterationsareusedas a restoration procedure. GPMNLC is an implemen­

tation of Rosen's Generalized Projection Method for Nonlinear Constraints. 

It applies Goldfarb's projection formulae for linear constraints with a 

quadratic loss penalty function for the nonlinear constraints. The compu­

tational results of Staha are mentioned to get more insight in the relative 

behaviour, the weaknesses and strengths of the algorithms mentioned. 
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Table 6.4 

Numbers of equivalent objective function evaluations 

Algorithm I II III 

Test problep 

1 53 62 62 

2 58 92 92 

3 51 73 73 

4 319 269 269 

5 353 186 186 

6 38 42 42 

7 255 109 109 

8 41 29 29 

9 525 727 727 

10 159 350 350 

11 38d 43 43 

12 61 130 127 

13 282 1444 1371 

14 
'i 

1150 1501 1598 
I 

15 i 982 1463 a 

16 11755g 7016 6958 

17 112e 541 545 

18 578 463 392 

19 162 392 392 

20 5759 10630 a 

21 2621f 44475 43968 

22 4930 21609 21609 

23 210 1846 1660 

24 76 561 561 

Explanation of the abbreviations used 

a: no solution reached 

b terminated at infeasible point 

C argument of exponent too large 

d local ( 1 , 2 1 o, 1 convergence to 13, 3' 3' 
e local convergence to (-.4536, 0.2105) 

COMET Lootsma 

338 130 

7235 2496 

9732 2861 

1326 959 

13482 7347 

3733 12614 

b 3865 

388 a 

110775 46120 

1 ~) 
3 

GREG 

39 

148 

350 

314 

159 

699 

285 

1656 

2876 

f 

g 

local convergence to (428.9, -31.1, -.47, 28.7, 149.5, o.o, 
no Goldstein/Price test used because of discontinuities 

in problem functions. 

GPMNLC 

46 

20 

134 

599 

7098 

8368 

12462 

C 

12251 

11. 5, 
38.6, 0.0) 
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Discussion of the corrrputational results 

The results summarized in table 6.4 are an indication of the robust­

ness and the efficiency of the implementations of the algorithms. 

The RQP-algorithm seems to have more difficulties to solve the test set in 

a satisfactory way: two less attractive local solutions were reached 

(problems 11 and 21). However,it succeeded in determining in problem 17 

a local solution that is overlooked by most algorithms. Probably this 

behaviour of RQP is due to the fact that it allows for infeasible iteration 

points. On the other hand, RQP is more efficient, both for the linearly 

constrained and the nonlinearly constrained problems. This result is rather 

surprising as far as the linearly constrained problems are concerned. It 

might be caused by the linearization of the first order .condit~ons 

of the exterior penalty function, which forms the basis of this algorithm. 

For the special case of testproblems with (almost) n active constraints 

at x* (problems 3, 7, 8, 10, 11, 12, 14, 15, 16, 18, 20, 22 and 24) 

RQP clearly improves on the 2-phase algorithms. 

The 2-phase algorithm II, which linearizes all non linear constraints 

at every major iteration of phase II, is more robust than RQP. This can be 

explained by the fact that it only uses feasible iteration points. The 

efficiency of this 2-phase algorithm is clearly improved if only the con­

straints of the current active set contribute to the definition of the 

linearly constrained reduced problem of phase II. This can be seen from the 

2nd and 3rd column, especially for problems 13, 16, 18, 21 and 23. However, 

the use of such a simplified reduced problem gives rise to failures on 

problems 15 and 20. An explanation of this phenomenon is that now the 

reduced problem has a fixed active set. Hence it is not possible to use 

collected information on the status of the linearized constraints to adjust 

the active set of the reduced problem. 

We recall from the conclusion of table 5.2 that if convergence is obtained, 

then algorithm III needs the same number of major iterations as algorithm 

II in which all nonlinear constraints are linearized. Algorithm III re­

quires more major iterations to detect I(x*) but once it obtains 

I(¾)= I(z*) its convergence is faster. This is in accordance with 

corollary 3 of theorem 4.7. This observation provides additional motivation 

to look for a phase I which ends up with I(z*) as an active set. 

The next point of interest is to compare the results of algorithms 

I, II and III with those given in Staha (1973). When comparing our results 
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with his numbers, we should be aware of some small differences in the 

definition of equivalent objective function evaluations. The ratios which 

Staha uses to convert constraint function evaluations into objective 

function evaluations concern groups of constraints (e.g., all nonlinear 

constraints) whereas we calculated the ratios for individual constraints. 

Another disturbing effect is that Staha's ratios are based on the compar­

ison of 1000 problem function evaluations. This leads to less accurate 

ratios (in our experiments with 1000 evaluations the ratios varied up to 

10%). More stable ratios are obtained by using 106 problem function eval­

uations. A last difference is that we did not count the evaluations of 

linear constraints. 

As a result we have to be careful in drawing conclusions from a compari­

son with Staha's numbers. But it still seems to be justified to state 

that algorithms I, II and III, developed and discussed in chapters II - V, 

behave very well in comparison with COMET, Lootsma and GPMNLC. This con­

clusion seems not to be valid as far as GREG is con~erned. Certainly for 

this case the relative results a~e disturbed by one more factor: 

algorithms I, II and III use one fixed set of parameter values to solve 

the whole test set whereas Staha reports that extended diagnostic work 

was required to prevent failures for GREG. He reports that sometimes an 

artificial constraint, such as £ x. ~ - 1.0 x 10 10 had to be added or 
i=l l 

that the bounds in the problem formulation had to be narrowed. 

Hence our general conclusion is that both the Recursive Quadratic Program­

ming algorithm with Self Scaling Update's for the 2nd order information 

and the two 2-phase algorithms are robust and efficient algorithms with 

respect to the test set used. 

Final remarks 

Some final experiments were performed to get better insight in the effect 

of the suggestion made in Powell (1977) to force positive definiteness of 

the approximating Hessian matrices, see section III.3.4. Table 6.5 gives 

some results in terms of numbers of major iterations required to solve 

some test problems. The test problems selected are expected to be illustra­

tive because of their non convex nature. The intuitive idea behind these 

experiments is, that it may not be profitable to force positive definite -

ness in the earlier iterations, when I(x*) is not yet determined. 



Table 6.5 

Iterations required to detect I(x*) 

algorithai Powell OR-SPED 

Problem A B B-A A B B-A 

1 3 11 8 3 12 9 

3 11 14 3 3 10 7 

4 6 34 28 2 88 86 

7 49 00 00 23 35 12 

9 80 139 59 40 42 2 

13 12 22 10 2 16 14 

15 4 8 4 19 23 4 

19 7 00 00 5 32 27 

A # of iterations required 

to detect I(x*) 

B : # of iterations required 

to obtain convergence 

The following tentative conclusions can be drawn from table 6.5. We com­

pare the use of Powell's update with the use of the self scaling update 

(Oren-Spedicato, switch II) in the context of RQP. 
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(i) Powell's update necessitates more iterations to detect the active set 

I(x*) (this emerges from the results with test problems 3, 4, 7, 9, 

13 and 19,the numbers under the heading A); 

(ii) Once I(x*) is known, use of Powell's update gives faster convergence 

(numbers under B-A for test problems 1, 3, 4 and 13); 

(iii) Failures can occur if the use of Powell's update forces the algorithm 

to keep a wrong active set (test problems 7 and 19, where 19 has an 

unconstrained solution); 

(iv) Powell's update should be used as soon as it may be expected that the 

algorithm detected I(x*), for instance if I(xk+l) =I(¾). 
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Appendix A CONSTRAINED NONLINEAR TEST PROBLEMS 

This appendix contains the test problems, divided into two classes: 

11 linearly constrained nonlinear programming problems of class LC (test 

problems 1-11) and 13 nonlinearly constrained nonlinear programming prob­

lems constituting class NLC (test problems 12-24). 

The list of test problems is preceded by a short description con­

cerning the assignment of classification numbers. The classification num­

bers are in accordance with Bus (1977). Generally, the classification num­

ber of a problem has the following form: 

0 CD - KI - s, 

where the symbols have the following meaning: 

0 - reflects properties of the objective function. 

O S: the objective function is a sum of squares 

L: 

Q: 

G: 

is linear 

is quadratic 

is nonlinear, nonquadratic and no sum of 

squares. 

C - reflects the properties of the constraints. 

C U: •unconstrained problem 

L: linear constraints 

N: at least one nonlinear constraint 

D - reflects the differentiability of the problem functions. 

D R: the problem is "regular" in the sense that at least the first and 

second derivatives of the problem functions exist in the feasible 

region. 

I: the problem is "irregular": there are points in the feasible region 

where the first and (or) second derivative of one of the problem 

functions do (does) not exist. 

K - reflects the nature of the problem. 

K T: a "theoretical" and well-analysed problem; the solutions are given. 
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P: a "practical" problem; this means a problem that does not belong to 

the class categorised by K = T. 

I - reflects the highest order of analytically calculated derivatives. 

I 2: first and second order partial derivatives are calculated analytic­

ally 

1: first order partial derivatives are calculated analytically 

0: no partial derivatives are calculated analytically. 

s - gives a serial number within the class of test problems identified 

by OCD-KI. 

Test problem ·1 Classification number: GLR-T0-1 

Source: Box ( 1966) 

Number of variables: 3 

Number of nonlinear constraints: 0 

Number of linear constraints: 7 

Number of active constraints at * 1 X : 

Special properties: a nonconvex objective function F(x) 

Starting point: x~ = (10,10,10) with F(x0) = - 1000. 

Solution: x*T = (24,12,12) with F(x*) = - 3456. 

Statement of the problem 

minimize F(x) - x1x2x3 
subject to 

42 ~ X, ;;: 0 i 1,2,3 
l. 

72 - xl - 2x2 - 2x3 ;;: o. 
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Test problem 2 Classification number: GLR-T0-2 

Source: Paviani (1969) 

Number of variables: 10 

Number of nonlinear constraints: 0 

Number of linear constraints: 20 
* Number of active constraints at X : 0 

Special properties: objective function undefined outside feasible 

region, free optimum 

Starting point: x0 (i) = 9.0, i = 1, .•• ,10 with F(x0 ) = - 43.134 

Solution: x*(i) = 9.351, i = 1, ... ,10 with F(x*) = - 45.778. 

Statement of the problem: 

minimize: F (x) 
10 2 2 10 0 2 
Z: Uln(x. -2)] +[ln(10-x.)] }- ( TT x.) · 

i=l l l i=l l 

subject to: 

2. QQ 1 < X, < 9. 999 ' i 
l 

1, ... , 10 

Test problem 3 Classification number: QLR-T0-1 

Source: Murtagh and Sargent (1969) 

Number of variables: 4 

Number of nonlinear constraints: 0 

Number of linear constraint-s: 7 

Number of active constraints at * X : 2 

Special properties: a nonconvex objective function F(x) 
T 

Starting point: x 0 = (0.5,0.5,0.5,0.5) with F(x0 ) = - 1.25 

Solution: x*T = (0.272,2.090,0.000,0.545) with F(x*) = - 4.682 

Statement of the problem: 

minimize F(x) 

subject to: 

X, 2". 0, i = 1, .•. ,4 
l 

- x 1 - 2x2 - x 3 - x 4 + 5 2". O 

-3x1 - x 2 - 2x3 + x4 + 4 2". O 

x 2 + 4x3 - 1.5 2". O. 
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Test problem 4 Classification number: SLR-T0-1 

Source: Schweigman (1974) 

Number of variables: 2 

Number of nonlinear constraints: 0 

Number of linear constraints: 2 

* Number of active constraints at X : 0 

Special properties: this is a linearly constrained version of the 

well-known Rosenbrock problem 
T 

Starting point: x 0 = (-1.2,1.0) with F(x0) = 24.2 
*T * Solution: x = (1.0,1.0) with F(x) = 0.0 

Statement of the problem: 

minimize F(x) 
2 2 

100(x2 -x1) 
2 

+ (1 - x1) 

subject to: 

1 
x2 <! 

1 
3 x1 + 10 

1 
<! 

1 
- 3 xl + x2 .- 10 
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Test problem 5 Classification number: QLR-T0-2 

Source: Stoer ( 1971) 

Number of variables: 5 

Number of nonlinear constraints: 0 

Number of linear constraints: 5 

* 1 Number of active constraint:s at X : 

Special properties: -

Starting point: x~ = (1,1,1,1,1) with F(x0 ) = 12048 
*T * Solution: x (1,2,-1,3,-4) with F(x) = 0 

Statement of the problem: 

minimize: F(x) 

subject to: 

xl + x2 + x3 + x4 + x 5 :". 5, 

10x1 + 10x2 - 3x3 + Sx4 + 4x5 

8x1 - x2 + 2x3 + Sx4 - 3x5 $ 

8x1 - x 2 + 2x3 + Sx4 - 3x5 2 

4x 1 + 2x 2 - 3x3 + Sx4 - XS $ 

where D and dare given as 

(.74 80 18 -11 

14 -69 21 28 

66 -72 - 5 7 
D 

-12 66 -30 -23 

3 8 - 7 - 4 

4 -12 4 4 

2 20, 

40, 

11 , 

30, 

-4 

0 

3 

1 

0 

/_51 

, 61 

/ -56 I 

d I 
I 69 

\ 10 

\12 
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Test problem 6 Classification number: QLR-T0-3 

Source: Konno (1976) 

Number of variables: 4 

Number of nonlinear constraints: 0 

Number of linear constraints: 10 

* Number of active constraints at x: 4 

* Special properties: 4 active constraints at x, nonconvex 

objective function 
T 

Starting point: x0 = (0,0,0,0) with F(x0) = 0 
*T * Solution: x = (0,3,0,4) with F(x) = -15. 

Statement of the problem: 

minimize F (x) = x 1 - x2 - x3 - x1 x3 + x2x3 - x2x4 + x1 x4 
subject to: 

8 - x 1 - 2x2 2: 0 

12 - 4x1 - x2 2: 0 

12 - 3x1 - 4x2 2: 0 

8 - zx3 - x4 2: 0 

8 - x3 - 2x4 2: 0 

5 - x3 - x4 2: 0 

X, 2: 0 i 1,2,3,4. 
l. 
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Test problem 7 Classification number: GLR-P0-1 

Source: Shell Development Co., cited in Colville (1968) 

Number of variables: 5 

Number of nonlinear constraints: 0 

Number of linear constraints: 15 

* Number of active constraints at x: 4 

Special properties: -

Starting point: x~ = (0.0,0.0,0.0,0.0,1.0) with F(x0 ) = 20.000 
*T * Solution: x (0.3000, 0.3335,0.4000,0.4285,0.224) with F(x) 

Statement of the problem: 

minimize F (x) 

subject to: 

5 
l: a . . x. <'. b. 

j=l l.J J l. 

X. <'. 0 
J 

5 
l: 

j=l 
e.x. + 

J J 

5 5 
l: l: 

j=1 i=l 

i,= 1, •.. ,10 

j 1, ... , 5. 

C, .X.X. + 
l.J l. J 

The coefficients are given in the next tables 

j 1 2 3 4 5 

ei -15 -27 -36 -18 -12 

c .. 1 30 -20 -10 32 -10 
l.J 

2 -20 39 -6 -31 32 

3 -10 -6 10 -6 -10 

4 32 -31 -6 39 -20 

5 -10 32 -10 -20 30 

d. 4 8 10 6 2 
J 

5 
l: 

j=l 

- 32.349 

d.x~ 
J J 
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aij 1 -16 2 0 1 0 -40 

2 0 -2 0 0.4 2 -2 

3 -3.5 0 2 0 0 -.25 
-

4 0 -2 0 -4 -1 -4 

5 0 -9 -2 1 -2.8 -4 

6 2 0 -4 0 0 -1 

7 -1 -1 -1 -1 -1 -40 

8 -1 -2 -3 -2 -1 -60 

9 1 2 3 4 5 5 

10 1 1 1 1 1 1 

Test problem 8 Classification number: GLR-T0-3 

Source: Betts (1977) 

Number of variables: 2 

Number of nonlinear constraints: 0 

Number of linear constraints: 5 

* Number of active constrai~ts at x: 2 

Special properties: nonconvex objective function 

Starting point: x~ = (1,0.5) with F(x0) -0.01336459 

Solution: x*T = (3,/:3) with F(x*) = - 1. 

Statement of the problem: 

minimize F(x) 

subject to: 

x1 
1:3 - x2 2: 0 

x1 + x21:3 ;:: O 

-X - X /:3 + 6 2: 0 1 2 



156 

Test problem 9 Classification number: GLR-P0-2 

Source: Bracken and McCormick (1968) 

Number of variables: 10 

Number of nonlinear constraints: 0 

Number of linear constraints: 13 

Number of active constraints * at X : 3 

Special properties: this is a problem in the chemical equilibrium at 

constant temperature and pressure, infeasible starting 

point 

Starting point: x0 (i) = 0.1 i = 1, ... ,10 

with F(x0 ) - 20.961 

Solution: [0.0406 0.1477 0.7832 0.0014 

0.0007 0.0274 0.0180 0.0375 

with F(x*) = - 47.761 

0.4853 

o.o969l 

Statement of the problem 

minimize: F(x) 10 ( L X, C, + 
i=l 1 1 

x, ) ln ~ 

subject to: 

x 1 + 2x2 + 2x3 + x6 + x 10 - 2 0 

x 4 + 2x5 + x 6 + x 7 - 1 = O 

x 3 + x 7 + x8 + 2x9 + x 10 - 1 0 

X, 2 0 i = 1, ... ,10 
]. 

where 

cl -6.089 c2 -17.164 

cs -24. 721 co -14.986 

cg -26.662 c 10 = -22.179 

L X. 
j=l J 

c3 -34.054 

c7 -24.100 

c4 -5.914 

cs -10.708 
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Test problem 10 Classification number: SLR-T0-2 

Source: Huang and Aggerwal ( 1975) 

Number of variables: 5 

Number of nonlinear constraints: 0 

Number of linear constraints: 3 
* Number of active constraints at X : 3 

Special properties: -

Starting point: xT0 = (35,-31,11,5,-5) with F(x) 7516 
T * 0 Solution: x* = (1,1,1,1,1) with F(x) = 0 

Statement of the problem: 

minimize F (x) 

subject to: 

x 1 + 2x2 + 3x3 - 6 O 

x 2 + 2x3 + 3x4 - 6 O 

x3 + 2x4 + 3x5 - 6 O 
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Test problem 11 

Source: Hsia (1975) 

Number of variables: 6 

Number of nonlinear constraints: 0 

Number of linear constraints: 14 

Number of active constraints at X 
* 

Special properties: one constraint 

Starting point: 

Solution: x*T = 

T 
x0 = (1, 2, 0, 0, 0, 2) 

4 5 2 1 
(O, 3' 3' l, 3' 3) 

Statement of the problem: 

minimize F(x) 

subject to: 

xl + 2x2 + 5x5 - 6 

xl + x2 + x3 - 3 

x4 + x5 + x6 - 2 

xl + x4 - 1 

x2 + X -
5 

2 

x3 + x6 - 2 

xl :,; 1 

x4 :,; 1 

: 

Classification number: GLR-T0-4 

6 

is redundant 

with F (x0 ) 

with F (x*) 

0 

0 

0 

0 

0 

0 

6 
19 
3 

x. 2 0 i 1, .•• , 6. 
l. 
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Test problem 12 Classification number: SNR-P0-1 

Source: Bracken and McCormick {1968) 

Number of variables: 2 

Number of nonlinear constraints: 1 

Number of linear constraints: 1 

* Number of active constraints at X : 2 

Special properties: -

Starting point: x~ = {2,2) {infeasible) with F(x0) 1 
*T * Solution: x = {1,1) with F(x) = 1 

Statement of the problem: 

minimize F(x) 

subject to: 
2 - x1 + x2 ;;: O 

- x 1 - x2 + 2;;: 0 

Test problem 13 

Source: Davies (1968) 

Number of variables: 3 

Number of nonlinear constraints: 

Number of linear constraints: 3 

Number of active constraints at 

1 

* X : 

Classification number: GNR-T0-1 

1 

Special properties: a nonconvex objective function F{x) 

Starting point: x~ = {1,1,1) with F(x0 ) - 1. 
*T * Solution: x = {4.00, 2.828, 2.0) with F(x) = - 22.627 

Statement of the problem: 

minimize F(x) = - x1x2x3 
subject to: 

xi;;: 0 i = 1,2,3 
2 2 2 48 - x1 - 2x2 4x3 ;;: 0, 
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Test problem 14 Classification number: LNR-T0-1 

Source: Fiacco and McCormick (1968) 

Number of variables: 2 

Number of nonlinear constraints: 1 

Number of linear constraints: 2 

* Number of active constraints at X : 2 

* Special properties: x is an irregular point of the feasible region 
T 

Starting point: x 0 = (0.25,0.25) with F(x0 ) 0.25 

Solution: x*T (1,0) with F(x*) = - 1. 

Statement of the problem: 

minimize F(x) - xl 

subject to: 

xl :2: 0 

x2 :2: 0 
3 

(1-xl) - x2 :2: 0. 



Test problem 15 Classification number: QNR-P0-1 

Source: Proctor and Gamble Co., cited in Colville (1968) 

Number of variables: 5 

Number of nonlinear constraints: 6 

Number of linear constraints: 10 

* Number of active constraints at x: 5 

Special properties: singular Hessian matrix of F(x) 
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Starting point: x~ = (78.62,33.44, 31.07,44.18,35.22) with F(x0 ) = - 30367 

Solution: x*T = (78.000,33,000,29.995,45.000,36.776) with F(x*) = - 30665.5 

Statement of the problem: 

minimize F(x) 5.3578547x~ + 0.8356891x1x5 
+ 37.293239x1 - 40,92.141 

subject to: 

92 

110 

25 

78 

33 

27 

27 

27 

<?: 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 - 0.0022053x3x5 <?: 0 
2 

<?: 80. 51249 + 0.0071317x2x5 + 0 .002995Sx1x2 + 0.0021813x3 <?: 90 

~ 9.300961 +0.0047026x3x5 +0.0012547x1x3 +0.001908Sx3x4 ~20 

:"' x1 s 102 

$ x2 $ 45 

$ x3 $ 45 

$ x4 $ 45 

$ XS $ 45 
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Test problem 16 Classification number: GNI-P0-1 

Source: Colville (1968) 

Number of variables: 3 

Number of nonlinear constraints: 14 

Number of linear constraints: 6 

* Number of active constraints at x: 2 

Special properties: a test problem in which functions are described 

by a self-contained cc~puter subroutine. 

Starting point: 

Solution: x*T 

x~ = (1745,12000,110) with F(x0) = 868.6458 

(1728.37,16000,98.13} with F(x*) = 1162.036 

Statement of the problem: 

maximize F (x} 0.063y2y5 - 5.04x1 - 3.36y3 - 0.035x2 -

subject to: 

0 $ xl $ 2000 

0 $ x2 $ 16,000 

0 $ x3 $ 120 

0 $ Y2 $ 5000 

0 $ Y3 $ 2000 

85 $ Y4 $ 93 

90 $ Y5 < 95 

3 $ y6 $ 12 

0.01 $ Y7 $ 4 

145 $ Y3 $ 162 

10x3 



The variables y 2 to y8 are calculated in the following subroutine: 

Y(2) 

10 Y(3) 

Y(6) 

l.6*X(1) 

1.22*Y(2) - X(l) 

(X ( 2) + Y ( 3) ) /X ( 1) 

Y(2)CALC = X(1)*(112. + 13.167*Y(6) - 0.6667*Y(6)**2)/100. 

IF(ABS(Y2CALC - Y(2)) - 0.001)30,30,20 

20 Y(2) = Y2CALC 

GO TO 10 

30 CONTINUE 

93. 
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Y(4) 

100 Y(5) 

Y(8) 

Y(7) 

86.35 + 1.098*Y(6) - 0.038*Y(6)**2 + 0.325*(Y(4) - 89.) 

-133. + 3.*Y(5) 

35.82 - 0.222*Y(8) 

Y4CALC = 98000.*X(3)/Y(2)*Y(7) + X(3)*1000.) 

IF(ABS(Y4CALC - Y(4)) - 0.0001)300,300,200 

200 Y(4) = Y4CALC 

GO TO 100 

300 CONTINUE 

Test problem 1 7 

Source: Schweigman (1974) 

Number of variables: 2 

Number of nonlinear constraints: 1 

Number of linear constraints: 0 

* Number of active constraints at x: O 

Classification number: SNR-T0-1 

Special properties: this test problem is a nonlinearly constrained 

Rosenbrock function with a local minimum and a free 

global minimum 

Starting point: x~ = (-1.2,1.) with F(x0) 24.2 

Solution: x*T (1.0,1.0) with F(x*) = 0.0 

Statement of the problem: 

minimize F(x) 

subject to: 

x~ + x; 2': 0.25 
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Test problem 18 Classification number: QNR-P0-2 

Source: Box (1965) 

Number of variables: 5 

Number of nonlinear constraints: 2 

Number of linear constraints: 9 

* Number of active constraints at X : 5 

Special properties: this is an example of determining parameters in highly 

nonlinear differential equations from experimental data. 

The objective function was the sum of squared residuals 

between experimental data and numerically integrated 

solutions of the differential equatio.ns. 
T . Starting point: x0 = (2.52,2.,37.5,9.25,6.8) with F(x0 ) = 2,351,243.5 

Solution: x*T = (4.538,2.400,60.000,9.300,7.000) with F(x*> = 5,280,254 

Statement of the problem: 

maximize F(x) 

subject to: 

0 :s; y :s; 277,200 

y (c6 + C7X2 + c8x3 + c9x4 + clOxS)xl 

0 :s; xl 
1.2 :s; x2 :s; 2.4 

20 :s; x3 :s; 60 

9 :s; x4 :s; 9. 3 

6. 5 :s; x5 :s; 7 

Calculation of the C. 1 S: i 

cl -8,720,288.849 

c2 150,512.5253 

c3 -156.6950325 

c4 476,470.3222 

cs 729,482.8271 

c6 -326,669.5104 

C7 7,390.68412 

ca -27.8986976 

cg 16,643.076 

c10 30,988.146 
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Test problem 19 Classification number: SNR-P0-2 

Source: Himmelblau and Yates (1968) 

Number of variables: 4-

Number of nonlinear constraints: 1 

Number of linear constraints: 3 

Number of active constraints at x*: 0 

Special properties: the constraint x3 ~ 0 is added, free optimum 

Starting point: x~ = (2. ,4. ,0.04,2._) with F(x0 ) = 0.9819 
T * Solution: x* = (12.277,4.632,0.313,2.029) with F(x) = 0.0075 

Statement of the problem: 

minimize: F (x) = 

Yi,cal 

+ 
1 +-1-

12x1 

where B = x3 + (1 - x3 )x4 . (Note: The ci and Yi,obs are given 

in the accompanying table). 

subject to: 

x3 + (1 - x3)x4 ~ 0 

x 4 ~ 0 

Os x3 s 1 

cl.. and y, b for Test Problem 19 
J.10 S 

i C 

1 0.1 0.00189 
2 1 0.1038 
3 2 0.268 
4 3 0.506 
5 4 0.577 
6 5 0.604 
7 6 0.725 
8 7 0.898 
9 8 0.947 

10 9 0.845 

, i C Yi obs 

11 10 0.702 
12 11 0.528 
13 12 0.385 
14 13 0.257 
15 14 0.159 
16 15 0.0869 
17 16 0.0453 
18 17 0.01509 
19 18 0.00189 
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Test problem 20 Classification number: GNR-P0-1 

Source: Shell Development Co., cited in Colville (1968) 

Number of variables: 15 

Number of constraints: 5 

Number of linear constraints: 15 

Number of active constraints * at X : 11 

Special properties: this problem is the dual of problem 7 

Starting point: XO (i) 

XO (7) 

F(x0 J 

0.0001 i = 1, ... ,15, ii 7 

60 

Solution: 

2400.01 

(0.0000,0.0000,5.1740,0.0000,3.0611,11.8395,0.0000,0.0000, 

0.1039,0.0000,0.3000,0.3335,0.4000,0.4283,0.2240) with 

* F(x) = 32.386 

Statement of the problem: 

minimize F(x) 

subject to: 

2 

X, 2 0, 
]. 

i 

10 5 5 5 3 
- r, b,x. + r, r, c .. x 10 .x10 . +2 r. d.x10 . 
i=l 1. 1. j=l i=l 1.J +1. +J j=l J +J 

1, .•. ,15 

a .. x. 2 O, 
l.J ]. 

j 1, ... , 5 

The coefficients e. ,c .. ,d. ,a .. and b. are given in problem 7. 
J l.J J l.J J 
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Test problem 21 Classification number: SNR-P0-3 

Source: Ballintijn, van der Hoek and Hooykaas (1978) 

Number of variables: 9 

Number of nonlinear constraints: 12 

Number of linear constraints: 6 

* Number of active constraints at x: 6 

Special properties: singular Hessian matrix, infeasible starting point 
T 

Starting point: x0 = (300.,-100.,-.1997,-127.,-151.,379.,421.,460.,426.) 

with F(x0) = 752,888.0 

Solution: x*T (523.3,-156.9,-.1997,29.60,86.61,47.32,26.23,22.91,39.47) 
* with F(x) = 13,390.1 

Statement of the problem: 

9 2 
minimize F(x) i:: x. 

i=4 1. 

subject to: 

x. ;:: o, i 4, •.. ,9 
1. 

x1 + x2 exp(.-Sx3) + x4 - 127 ;:: 0 

x1 + x2 exp(-3x3) + XS - 151 ;:: 0 

xl + x2 exp(- x3) + x6 - 379 ;:: 0 

xl + x2 exp( x3) + x7 - 421 ;:: 0 

xl + x2 exp( 3x3) + XS - 460 ;:: 0 

x1 + x2 exp( sx3) + x9 - 426 ;:: 0 

-xl - x2 exp(-5x3) + x4 + 127 ;:: 0 

-xl - x2 exp(-3x3) +XS+ 151 ;:: 0 

-xl - x2 exp( -x3) + x6 + 379 ;:: 0 

-xl - x2 exp( x3) + x7 + 421 ;:: 0 

-xl - x2 exp( 3x3) +XS+ 460 ;:: 0 

-x1 - x2 exp( Sx3) + x9 + 426 ;:: 0 
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Test problem 22 Classification number: SNR-P0-4 

Source: Ballintijn, van der Hoek and Hooykaas (1978) 

Number of variables: 9 

Number of nonlinear constraints: 6 

Number of linear constraints: O 

* Number of active constraints at x: 6 

Special properties: the same problem statement as problem 21, now without 

bounds and with the first six constraints as equality 

constraints 
T Starting point: x 0 (300. ,-100. ,-.1997 ,-127. ,-151. ,379. ,421. ,460.,426.) 

with F(x0) = 752,888.0 

(523.3,-156.9,-.1997,29.60,-86.61,47.32,26.23,22.91,-39.47) Solution: 

* with F(x) = 13,390.1 

Statement of the problem: 

9 
2 minimize F(x) L X, 

i=4 
]. 

subject to: 

xl + x2 exp (-Sx3) + x4 - 127 0 

xl + x2 exp(-3x3) + XS - 151 0 

x1 + x2 exp(- x3) + x6 - 379 0 

x1 + x2 exp( x3) + x7 - 421 0 

x1 + x2 exp( 3x3) + XS - 460 0 

x1 + x2 exp( Sx3) + x9 - 426 0 
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Test problem 23 Classification number: QNR-T0-1 

Source: Betts (1977) 

Number of variables: 4 

Number of nonlinear constraints: 3 

Number of linear constraints: 0 
* Number of active constraints at X : 2 

Special properties: feasible starting point 

Starting point: x~ = (0,0,0,0) with F(x0) = 0 

Solution: x*T (0,1,2,-1) with F(x*) = -44. 

Statement of the problem: 

· minimize F (x) 

Test problem 24 Classification number: GNR-T0-2 

Source: Powell (1978) 

Number of variables: 5 

Number of nonlinear constraints: 3 

Number.of linear constraints: 10 

Number of active constraints at x*: 3 

Special properties: infeasible starting point 

Starting point: x~ = (-2,2,2,-1,-1) with F(x0 ) = - 0.49966 

Solution: x*T = (-1.7171,1.5957,1.8272,-0.7636,-0.7636) with 

Statement of the problem: 

minimize F(x) 

subject to: 
2 2 2 

xl + x2 + x3 

x2x3 - 5x4x5 
x3 + 3 + 1 1 x2 
-2.3 ~ x. ~ 

]. 

-3.2 

2.3 

3.2 

i 

i 

1,2 

3,4,5. 

0 

* F(x ) = 0.053976 
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Appendix B UNCONSTRAINED NONLINEAR TEST PROBLEMS 

Test problems for ch. II: A computational comparison of self scaling 

variable metric algorithms. 

Problem 1,2,3,4 Classification number: SUR-Tl-la,b,c,d 

Source: Rosenbrock (1961) (a family of Rosenbrock functions) 

Number of variables: 2 

Number of nonlinear constraints: 0 

Number of linear constraints: 0 

Special properties: nonconvex, ill conditioned at x* c = 1,102 ,104 ,106 

Starting point: x~ = (-1.2,1) with F(x0 ) = .1936c + 4.84 

Solution: x*T (1,1) with F(x*) = 0 

Statement of the problem: 

minimize F(x) 

Problem 5,6 Classification number: SUR-Tl-2a,b 

Source: Rosenbrock (1961) (multidimensional banana functions) 

Number of variables: n 

Number of nonlinear constraints: 0 

Number of linear constraints: 0 

Special properties: nonconvex, high dimensional, n 
T 

Starting point: x 0 = (-l.2,1,-1.2,1, .•. ,-1.2,1) 

Solution: x*T (1,1, ... ,1) with F(x*) = 0 

Statement of the problem: 

minimize F (x) 

10,30 
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Problem 7,8,9 Classification number: GUR-Tl-la,b,c 

Source: Oren (1973) (Oren's quartic function) 

Number of variables: n 

Number of nonlinear constraints: 0 

Number of linear constraints: 0 

Special properties: convex, various dimensions, n = 2,10,30 
T 2 2 

Starting point: x0 = (1,1, ... ,1) with F(x0) = ¼n (n+l) 

Solution: x*T (0,0, ••• ,0) with F(x*) = 0. 

Statement of the problem: 

minimize F(x) 

with 

A 

Problem 10,11,12 

T 2 
(x Ax) 

Classification number: QUR-Tl-la,b,c 

Source: Oren (1973) (Hilbert problems) 

Number of variables: n 

Number of nonlinear constraints: 0 

Number of linear constraints: 0 

Special properties: convex, quadratic, ill-conditioned, n = 2,4,6 
-4 

Starting point: x0 (k) = k' k = 1, .•. ,n 

Solution: x*T (0,0, .•• ,0) with F(x*) = 0 

Statement of the problem: 

minimize F(x) 

with 

T 
X AX 

n 

i,j = 1, ... ,n. 

The matrix A is an nxn segment of the Hilbert matrix, whose condition 

number increases rapidly with n. 
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Appendix C SPECIAL MATRICES 

1. A lower trapezoidal matrix Lis a mxn (m2n) matrix l(i,j), for which 

the following relation holds: 

l(i,j) = 0 for j = i+l ton, and i = 1 ton. 

2. A lower triangular matrix Lis a nxn matrix l(i,j) for which the fol­

lowing relation holds: 

l(i,j) = 0 for j = i+l ton, and i = 1 ton. 

3. An upper triangular matrix is a transposed lower triangular matrix. 

4. A unit lower (or upper) triangular matrix is a lower (or upper) tri­

angular matrix with all diagonal elements equal to 1. 

5. A special triangular matix M(r,~,~) is a triangular matrix m(i,j) for 

which the following relation holds: 

m(i,j) 

m(i,j) 

m(i,j) 

0 for j = i+l ton, and i = 1 ton 

c(i) for j = i, and i ton 

p(i)b(j) for j = 1 to i-1, and i 1 ton. 

6. A special matrix Ek is a nxn triangular matrix e (i,j), with as only non-

zero off diagonal elements e(i,k), i k+l to n. Hence: 

e(i,j) for j i, and i = 1 ton 

e(i,j) 0 for j i+l to n, and i 1 to n 

e(i,j) 0 for i j+l to n, and j 1 to k-1 

e(i,j) 0 for i j+l to n, and j k+l ton. 

7. A diagonal matrix D is a nxn square matrix d(i,j), for which the fol-

lowing relation holds: 

d(i,j) 0 for j ii, and i,j = 1 ton. 

The unit matrix I or I is a nxn diagonal matrix with all diagonal elements 
n 

equal to 1. 

8. A permutation matrix Pis a nxn matrix p(i,j), with p(i,j) E {0,1} and 

precisely one 1 in every row and column. Hence: 

n 
l: p(i,j) = 1 

i=l 
n 
l: p(i,j) = 1 

j=l 

p(i,j) 0 or 1. 

j = 1 ton 

i 1 ton 
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Appendix D 

STRUCTURE OF THE IMPLEMENTATION OF THE 2-PHASE ALGORITHM 

This appendix contains a detailed description of the last phase in 

the development of algorithms: the implementation as a computer code. 

Point of departure for the implementation of the discussed 2-phase 

algorithms was the VANOP-code, presented in Ballintijn, Van der Hoek and 

Hooykaas (1978), which was further developed and adjusted in accordance 

with the theory of Ch. IV and Ch. V. Figure D.1 gives a flowchart of the 

implementation, followed by a description of the subroutines mentioned. 

MAIN 

CHOL 

Figure D.1 Structure of the computer program for 2-phase algorithms 



174 

Description of the subroutines 

NLPINP - reads the input: information on functions, names of constraints 

and variables, precision parameters_ 

NLPPRI - prints the data that are read by NLPINP 

NLPSOL - controls the algorithm. First it finds a feasible point with 

respect to the linear constraints, then phase I and phase II as 

described in Ch. IV are executed 

LINSOL - solves the linearly constrained nonlinear reduced problems 

NLPREP - prints intermediate and final reports of the problem statistics 

NLPFAS - performs the calculations for phase I 

LINEAR - linearizes nonlinear constraints 

CON 

SUMT 

- function subroutine containing the nonlinear constraints 

function subroutine in which the penalty function of phase I is 

calculated 

FPLUS - function subroutine that calculates the objective function of the 

phase II - reduced problems 

PLACE - recognizes the names of the variables and constraints of the 

input subroutine 

BISECT - a bisection-like linesearch subroutine 

F - function subroutine to calculate the objective function 

G - function subroutine that evaluates function - values along the 

GRAD 

CHOL 

ADDCH 

REMCH 

search direction 

- calculates derivatives numerically 

- determines the Cholesky decomposition of a positive definite 

matrix 
T 

- updates the Cholesky-factors of the matrix NkHkNk if a constraint 

is added to the active set 
T 

updates the Cholesky-factors of NkHkNk if a constraint is removed 

from the active set 

UPCHK - updates the Cholesky-factors of a matrix if a rank 1 matrix of 

the form vvT is added or substracted 

BACK solves x from the linear system Lx = b where Lis triangular 

FEAS - constructs the penaly function of (5.11) 

EQUAL - projects a point in the intersection of a set of equality con­

straints, using LU-decomposition 

LUFAC - calculates the LU-factors of a matrix 



Appendix E 

STOP 

STRUCTURE OF THE IMPLEMENTATION OF THE 

RECURSIVE QUADRATIC PROGRAMMING ALGORITHM 

LEES 

SALi 

GOLD 

Figure E. l Flowchart of the Recursive Quadratic Programming implementation 
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Description of the subroutines mentioned in the flowchart. 

LEES - reads input 

INIT - initializes parameters/variables which are not given as input 

AKTRE - determines the set of. active constraints and its Jacobian matrix 

STPCR - applies the stopping criteria 

RRANK - determines the row rank of a matrix 

UPDAT - updates the inverse Hessian approximation 

LAMB - calculates the approximating Lagrange multipliers 

ZOEK - calculates the search direction 

PENPA - determines the penalty parameter 

LISE - determines the steplength along the search direction, calls for 

SALI and GOLD 

SALI - safeguarded line search 

GOLD - golden section line search 

GRAN contains analytic expressions of the gradients of the problem 

functions 

GRAD - calculates numerical derivatives 

GRAD! - gives the gradients, calls for GRAN or GRAD 

RESTR - function subroutine in which both the problem function- and the 

penalty function values are calculated. 



LIST OF SYMBOLS 

Symbols that are used only locally, will be defined locally. 

We shall consider the problem 

)

minimize 

subject to 

F(x) 

i 1, 2, ... , m 

where x E En, then-dimensional Euclidian space. The problem functions 

F(x) and c. (x), i 
l. 

1, ... , m, are functions of xT 

the minimization is performed with respect to x. 

c(x) is the mxl vector of constraint functions 

g(x) is the nxl gradient vector of F(x) 

G(x) is the nxn Hessian matrix of F(x) 

a. (x) is the nxl gradient vector of C, (x) 
l. l. 

A is the nxm matrix with a. (x) 
l. 

as i-th column. 
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In the special case that all c. (x) are linear functions of x, the con-
1. T 

straints c(x) ;;: Oare denoted by Ax - b;;: 0, where bis an mxl vector of 

given scalars. 

xk is the k-th approximation to x*, a solution of our problem. 

Fk F(xk) 

gk g(xk) 

yk gk+l - gk 

sk xk+l - xk = akpk, where ak E R and pk is a search direction. 

Bk is an nxn matrix that is a k-th approximation to some Hessian matrix. 

Hk is an nxn matrix that is a k-th approximation to some inverse Hessian 

matrix. 

I(x) = I is the index set of active constraints at x 

L(x,u,v) 

P(x,r) 

l lxl I 

p m 

F(x) - E uici (x) - E v.c. (x) is the Lagrangian function 
i=l i=p+l 1. 1. 

associated with the problem considered. The scalars ui, 

i = 1,, .. ,p and vi, i = p+l, ... ,m denote the Lagrangian multi­

pliers of the inequality and equality constraints respectively. 

is a penalty function with parameter r 

is some, locally defined, norm of x. 
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