


PJunted at: :the Mat:hemati.c.ai Cen;t,r,e., 413 KJW.,{J.,laan, Am6:tvuiam. 

The Mat:hemati.c.ai Cen;tJr.e , 6ounde.d :the. 11-.th 06 Fe.b11.uaJty 1946, ,i,6 a non­
p11.06U iw.,.t,i;tu;Uan ahning at: :the. p11.amo:ti.on 06 pWLe. mat:hemati.e1; and d6 
appLi.c.ati.on6. I.t ,i,6 -6pow.,a11.e.d by :the Ne..the.11.land6 Gove.11.nment .thl1.ou.gh .the. 
Ne..thmand6 011.ganizati.on 6a11. :the Advanc.eme.nt 06 Pu.11.e. Re1.ie.a11.c.h (Z.W.O.). 



MATHEMATICAL CENTRE TRACTS 125 

2-D SYSTEMS, 
AN ALGEBRAIC APPROACH 

R. EISING 

MATHEMATISCH CENTRUM AMSTERDAM 1980 



1980 Mathematics subject classification: 93B25 

ISBN 90 6196 198 X 



ACKNOWLEVGEMENTS 

This monograph is a slightly revised version of my doctoral dissertation 

submitted to the Eindhoven University of Technology. 

To the thesis advisors Prof.dr.ir. M.L.J. Hautus and Prof.dr.ir. J.C. 

Willems I owe many thanks for their.constructive criticism and valuable 

suggestions. 

I am indebted to Prof.dr. W. Peremans and Prof.dr.ir. J. de Graaf for their 

suggestions for improvement. 

I thank the Mathematical Centre for the opportunity to publish this mono­

graph in their series Mathematical Centre Tracts. 





CONTENTS 

I INTROVUCTION ANV SUMMARY 

II LINEAR SYSTEMS OVER PRINCIPAL IVEAL VOMAINS 

II.1. Ge.ne.Jul.l invwduc,t;.,on 

II. 2. The. ..unpulJ., e. .lr.e6pOYL6 e. 

II.3. The. 601T.ma£ powe.1r. -0e.lr.1M app.1r.oac.h 

II.4. F.lr.e.e. -0y-0tem-0 ave.It a Jr.ing 

II. 5. Re.ilization6 06 II O -0y-0te.m-0 ave.It Jr.ing-0 

III ALGORITHMS 

9 

9 

11 

12 

13 

18 

25 

III .1. Mat.lr.ic.M ave.It a p.lr.inc.ipa£ idea£ domain 25 

III.2. Re.ilization a£go.lr.Uhm-6 60.lr. an ..unpulJ.ie. .lr.Mpon6e. 29 

III.3. Re.ilization a£go.lr.Uhm-0 60.1t an I/0 -0y-0tem give.n by a 

tMYL6 6e.1t mat.Ir.ix 38 

III.4. PaJr.tia£ .1r.e.ilization6 46 

IV 2-V SYSTEMS 51 

IV .1. Invwduc,t;.,on 51 

IV • 2 • The. Jr.ing a 6 1-V t.lr.an6 6 e.lr. 6 unc,t;.,o n6 : Jl\ ( s) 5 7 

IV.3. 2-V -0y-0tem-0 M 1-V -0y-6tem-0 ave.It a p.lr.inc.ipa£ ,f.,de.a£ domain 59 

IV. 4. We.akl.y c.aU-6a£ 2-V -6 y-0te.m-6 68 

v REFINEMENT OF THE STATE SPACE MOVELS ANV PROPERTIES 79 

v. 1 . Stab-i.Li..ty 79 

v.2. The. Jr.ing 06 -0table. 1-V tMYL66e.1t 6unc,t;.,on6 81 

v. 3. Fi.!r.-6t le.ve.l .1r.e.a1-ization6 06 -0table. input/ output 

-0y-0te.m-6 and -0tab1Uzation 06 2-V -0y-0tem-0 82 

v.4. Canonic.a£ 6fut le.ve.l .1r.e.ilization6 ave.It JRc(sl and JR.a(s) 84 

V. 5. Se.pMab-i.Li..ty a 6 2-V t.lr.an6 6 e.1r. mat.lr.ic.M 88 

v .6. Inve.lr.tib-i.Li..ty 06 2-V input/ output -0y-0tem-0 93 

v. 7. Re.ac.hab-i.Li..ty and ob-0e.1tvab-i.Li..ty 06 -6e.c.ond le.ve.l 

.1r.e.ilizatio YL6 

v.8. Low o.1r.de.1r. -0e.c.ond le.ve.l .1r.e.alization6 

V • 9 • Ge.ne.lr.ic. pM pe.lr.UM 

101 

106 

112 



vr REALIZATION ALGORITHMS FOR 2-V SYSTEMS 

VI.1. 

VI.2. 

VI.3. 

APPENVIX 

REFERENCES 

NOTATIONS 

INVEX 

I nvwduc:Uo n 

Fac;totlza,Uon algol!.)_,t_hnu, 601t mabu_c.e/2 oveA JRc (s) 

A 1te.a.f.,i_za,Uon algol!.)_,t_hm 60ft 2-V .t!ta.M6eA mabu_c.e/2 

Oft JR ( s) 
a 

115 

115 

115 

122 

128 

131 

137 

139 



I INTROVUCTION ANV SUMMARY 

In recent years the field of digital processing of two-dimensional sampled 

data has attracted many researchers. The reasons for the interest in this 

field are on one side the richness in potential application areas and on 

the other side the abundance of non-trivial theoretical problems. 

Potential areas of application are digital image processing, seismic signal 

·processing, gravity and magnetic field mapping. Here a digital image can be 

thought of as a collection of digitized (photographic) data where each 

pixel (picture element) represents a gray level in the case of black and 

white photography (for instance a newspaper photograph). In color photo­

graphy in each pixel some numbers, coding the color and the color intensity, 

are given. 

Of course it is not necessary that an image is formed using visible light. 

Other ways of obtaining an image are for instance radar, infra red photo­

graphy (agricultural applications and reconnaissance), ultra sonic imaging 

and X-ray photography (medical applications) and particles such as elec­

trons may also be an intermediate between the object and the image (elec­

tron microscopic photography). 

Processing of the two-dimensional sampled data (often just called images) 

may consist of some of the following operations. Restoration of blurred 

images. Enhancement of noisy images by reduction of the noise level (noise 

filtering combined with other techniques). Feature extraction (detection of 

edges etc • ) . 

Sources of the blur may be movement of the camera or for instance atmo­

spheric turbulance. Noise sources corrupting the image may be inherent to 

the imaging system or may arise in the transmission of an image (space 

craft photography). 

As an example of image enhancement may serve the Mariner 6 and 7 pictures 

of Mars processed at the Jet Propulsion Laboratory, Pasadena, California 

(see [59]). 

For a very readable introduction see [3] and for more information concern­

ing restoration techniques and more technical aspects of image processing 

see [37], [2]. 
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The enhancement of a picture is a difficult task, partly because there are 

almost no theoretical foundations and on the other hand because there are 

very severe storage requirements. Reasons for this to be the case are be­

cause one needs a picture with say 1024 x 1024 pixels in order to obtain a 

reasonable resolution and in the case of color photography for each pixel 

one needs 24 bits to code the basic colors and the color levels. Further­

more the number of computations is enormous. This can be seen from the fol­

lowing convolution which may serve as a prototype of operation by which an 

image is processed: 

(1.1.1) y = 
kh 

Here uij denotes the pixel at position (i,j) of the original picture and 

ykh denotes the pixel at position (k,h) of the processed picture. From this 

model it is clear that there are serious computational problems and the 

number of computations involved depends strongly on the number of non-zero 

elements F of the double sequence (F ) , the so called point spread mn m,n 
function or impulse response. A convolution as described in (1.1.1) is 

called a 2-D system or a 2-D filter (2-D stands for two-dimensional). 

The main problem in the field of image processing is the design of 2-D 

filters such that the output image with pixels ykh is more satisfactory 

according to some quality criterion than the input image with pixels uij. 

Many papers appeared in this field. However, most of these present some ad 

hoc solutions to the problem and the main reason for this is the lack of a 

quantitative quality criterion. See [39], [75], [38]. 

A very important aspect of a 2-D filter is stability which means, roughly 

speaking, that small disturbances in the input only have a small effect on 

the output. Some references are [30], [37]. 

A severe restriction on the possible application of filters is the computa­

tion time, especially for serial problems (on line filtering), where there 

is only a limited processing time available for each image. Sometimes this 

problem is circumvented by taking a smaller number of pixels describing the 

image. However, this may reduce the resolution considerably. Hence there is 

a need for fast processing techniques. One of the approaches to this pro­

blem is the use of transform techniques such as the Fast Fourier Transform 

which may reduce the computational effort considerably. See for instance 

[37], [69], [14]. Recently, fast algorithms, based on polynomial trans­

forms, have been developed. See [58]. 
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Another approach to the problem of reducing the computational effort and at 

the same time decreasing the amount of memory, necessary for the image pro­

cessing problem, is the introduction of state space techniques. For 1-D 

systems which can be described by a convolution like 

(1.1.2) yk = 2 Fk. u. 
• -1. 1. 

1. 

state space models have proved to be very useful. The standard state space 

model in this case is (given some initial conditions) 

(1.1.3) 

From this model it can be seen that the convolution can be calculated very 

easily because the output yk depends only on the last input uk and the last 

state xk. Of course uk, xk, yk may be members of different vector spaces 

and A, B, c, Dare matrices with appropriate dimensions. The model (1.1.3) 

is called a realization of (1.1.2). The only condition that has to be satis­

fied is: 

0 for i < o, F0 = D 

CAi-l B for i 1, 2, 3, ••• 

Furthermore it is clear that in order to calculate yk all past inputs (uh 

for h < k) can be forgotten. All information concerning past inputs, neces­

sary to determine the output, is contained in the state xk. It will be 

clear that, besides the possible reduction of the number of computations, 

also the amount of memory may be reduced considerably. 

This idea of introducing an extra variable xk (the state) playing the role 

of a memory device, which to some extent enables us to reduce the redundancy 

in the convolution defining the 1-D system, will be introduced in the con­

text of image processing problems (2-D systems). 

However, the state space that has to be introduced in this case is generally 

infinite dimensional. See [48], [24]. The reason for this is that in the 

defining model for a 2-D system the input image and the output image have 

infinite extent. In real image processing problems the images have finite 

extent, so that the state space can be taken finite dimensional (although 

large). 
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The fact that the output can be computed recursively from the input, as is 

the case for the state space model (1.1.3) will also hold in the 2-D case 

(of course under some conditions). This recursive nature of the image pro­

cessing problem may be very advantageous. 

State space models for image processing problems, or more generally 2-D 

systems, recently appeared in the literature. See for instance [4], [24], 

[48], [16], [74]. The proposed models look quite different at first sight 

but in fact they are closely related. All papers except [16] have in common 

that the models are only local state space models. This means that they 

just give the equations for the recurrent computation of the output given 

the input (furthermore initial conditions are given). They do not have a 

real state space character in the sense that there is some variable such as 

xk above, which comprises the relevant information from the past, because 

this would presuppose an ordering of the index set. 

In this monograph a state space model together with a local state space model 

is presented and both models can be obtained from one another in an easy 

and straightforward way (see also [16]). This is the reason why the other 

models can be considered special cases of the model presented in this 

approach. 

'I'he model, describing the input/output behavior of the 2-D system we will 

be working with, is given by 

k,h 
(1.1.4) I Fk-i,h-j 

i=O, j=O 
u .. 

J.J 
k,h 0,1,2, •... 

This input/output model is used by all authors who work on (local) state 

space models for 2-D systems, although in some cases F00 is taken to be 

zero a priori. 

A figure which supports the intuition and is useful in visualizing the 

image processing problem is the following. 
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i,j 0, 1, 2, •.. is the input image, 

y (yk, h) k,h 0,1,2,.-.• is the output image, 

F (F ) m,n 0,1,2, ••. is the point spread function or m,n 
impulse response. 

The input and output image and the impulse response are thought of as hav­

ing infinite extent in the positive i, j, k, h, m and n direction. The equa­

tions by which ykh is computed from the input are given in (1.1.4). Observe 

that yk h only depends on inputs uiJ' with i :S k1 and j :S h 1 (the en-
1' 1 

circled points in Ll). 

The local state space models for such an image processing system as pre­

sented in [4], [25], [28] respectively, can be described as follows 

(1.1.5) 

(1.1.6) 

This is the last model of a series of models proposed by Fornasini­

Marchesini in [16], [23], [25]. It can be shown that the Attasi model is a 

special case of (1.1.6). 
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A third model, closely related to the model which we propose in Chapter IV 

and further on, is given by 

(1.1. 7) 

Again it can be shown that the Fornasini-Marchesini model, and therefore 

the Attasi model can be written in the form of this model, due to Roesser 

and Givone. See [28], [61], [52]. Observe that in the Roesser model (1.1.7) 

ykh depends on ukh while in the other two models this is not the case. How­

ever, this can be incorporated in the models of Attasi and Fornasini­

Marchesini as well. Furthermore observe that the Roesser model is a "first 

order" model while the other two are "second order". 

A different approach to the realization problem can be found in [53], [52]. 

The realizations described there are so called circuit realizations. This 

means that the equations of a local state space model are written in the 

form of a circuit. These circuit realizations are also closely related to 

the Roesser model and therefore to ours. 

In [48] a polynomial matrix approach to the study of 2-D systems was pre­

sented which since then attracted some attention of other researchers such 

as Fornasini and Marchesini. This method is also related to ours. This will 

be shown in Chapter v. 
The main idea of this approach is that 2-D systems can be seen as 1-D systems 

over a ring. This means that a model like (1.1.4) can be described by a 

model as (1.1.2) where the matrices and vectors now have entries in a ring. 

The state space model which we will present has the form of (1.1.3) where 

the matrices A, B, c, Dare matrices over a ring. The local state space 

model which we will derive is closely related to (1.1.7) and this model can 

be obtained from A, B, C, D quite easily. Also the state space model over 

the ring, to be defined, can be obtained from the local state space model 

in a straightforward way. This approach to 2-D systems was presented in 

[16] and simultaneously in [74]. (The results of Sontag's [74] and our [16] 

were closely related.) See also [73]. 
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The objectives of this thesis are to describe the relation of 2-D systems 

theory with 1-D systems theory over rings and show how the theory of 1-D 

systems over rings can contribute to 2-D systems theory. Another goal is to 

present the results ultimately in algorithmic form and not to give only 

existence results. Of course this is very important if application oriented 

research is being done. Some rather abstract mathematics appears in Chap­

ters II and III. The reason for this is that the results can be used as a 

tool in the construction of algorithms for the solution of some problems in 

2-D systems theory. 

As is often the case, if problems are described on a more abstract level, 

the algorithms and theory developed on that abstract level also have appli­

cations in other fields. Some examples of this will be given in Chapter III. 

We now give a survey of the monograph. 

In Chapter II we give an introduction and some results in the theory of 

systems over rings. We will indicate some differences with the theory of 

systems over a field and we also present some results common to both the 

field case and the ring case. Most parts of the chapter will be concerned 

with realization theory. 

In Chapter III realization algorithms are developed for systems over a 

principal ideal domain. These algorithms are related to some of the exist­

ing algorithms for systems over a field. Also some applications to delay 

differential systems and systems over the integers are given. 

In Chapter IV it is shown that 2-D systems can be seen as 1-D systems over 

a principal ideal domain. Some state space models and local state space 

models are developed. We also introduce some causality concepts and it is 

shown that these are closely related to recursiveness of the defining equa­

tions of the local state space models under consideration. Furthermore it 

is shown that the existing models are special cases of the models developed 

in this chapter. 

Chapter V gives various properties of the 2-D state space models. For in­

stance, it is shown that the problem of investigating the stability of a 

2-D system can be coped with if this system is viewed as a 1-D system over 

a principal ideal domain. Conditions for the existence of observers, useful 

for filtering problems in the field of image enhancement, are given and an 

algorithm in order to obtain such observers is shown to be a generalization 

of an already existing so called pole placement algorithm. Also some 

results concerning invertibility of 2-D systems are obtained. This may be 
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used in inverse filtering of images. Concepts of reachability and observa­

bility (well-known in 1-D systems theory) are defined and relations with 

other approaches are shown. Furthermore, an algorithm for constructing low 

order local state space models, which improves on the other algorithms in 

the literature, is presented. Also some results concerning generic proper­

ties are presented. 

In Chapter VI the realization algorithms, developed in Chapter III are 

modified in such a way that the specific structure of 2-D systems can be 

exploited. 

Finally, in the Appendix, definitions of a few algebraic concepts which 

arise in Chapters II and III are given. 



II LINEAR SYSTEMS OVER PRINCIPAL IVEAL VOMAINS 

II.1. Gene.Jtal. intJr,oduc:Uon 

Many dynamic discrete time phenomena can be described by means of linear 

equations of the form 

(2.1.1) hc:lZ, kc:lZ, 

where c: :nl, m d F mxp yk E lR an kh E lR • The vector ¾ is called the 

input at time h and yk is called the output at time k. Here ]RP (lRm) de-

9 

notes the vector space of real p-vectors (m-vectors) and lRmxp is the space 

of real m x p-matrices. lZ is the ring of integers. Later on we will impose a 

finiteness condition on (2.1.1) to avoid convergence problems. A large part 

of linear systems theory is implicitly or explicitly concerned with equa­

tions like (2.1.1). In most cases a so called causality assumption is made, 

i.e. it is required that the output at time k be not influenced by future 

inputs. The words "time" and "future" stem from the fact that in many ap­

plications lZ is interpreted as a time set designating the order, according 

to which the process (phenomenon), of which (2.1.1) is a model, evolves. 

This time set gives the possibility to use (2.1.1) as a model for phenomena, 

showing dynamic behavior. 

The model (2.1.1) will be called an input/output system (also I/0 system). 

The input/output system (2.1.1) will be called causal if the output at time 

k is not influenced by future inputs, i.e. if 

( 2 .1. 2) h > k. 

REMARK. Usually (2.1.1) is called a discrete time input/output system but 

we will almost exclusively consider discrete time input/output systems. 

Therefore we will omit the term "discrete time". □ 

In many cases the dynamic behavior of a process does not explicitly depend 

upon the time itself. In other words, if a sequence (¾)hElZ is related to a 

sequence (yk)kElZ through (2.1.1), then the shifted sequence (¾+nlhElZ is 

related to the corresponding (yk+n)kElZ for each n E ~- In this case, Fkh 
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only depends on the difference k - h. Henceforth we will make this assump­

tion of time invariance (also called shift invariance when?Z is not direct­

ly related to time) and we denote the input/output system (2.1.1) by 

(2.1.3) 

We will make two further assumptions concerning the input sequence (¾)hE1Z 

and the sequence (Fn)nEE' namely, we assume that the input sequences have 

finite past, i.e., there exists an h0 such that 

(2.1.4) 

for all input sequences. 

By a reindexing of the input sequences (2.1.4) can be expressed as 

(2.1.5) h < 0 • 

We will also assume that the input/output system is causal (see (2.1.2)). 

This means that 

(2.1.6) n < 0 • 

The assumptions imply that yk = 0 fork< 0. Assuming causality, time in­

variance and the finite past condition on the inputs, (2.1.1) can be writ~ 

ten as 

(2.1. 7) k 0,1,2, .•.. 

This is the standard equation (see [12]) for a causal, discrete time, time 

invariant, linear input/output system. When no confusion can arise we 

simply call (2.1.7) an input/output system. 

REMARK. It is not necessary for the time set (index set) to be a totally 

ordered set. In Chapter IV we will be concerned with systems where the 

index set is a partially ordered set. □ 
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II. 2. The ,i.,mpu1-J.i e 1LMpon1i e 

First we will introduce a generalization. In the foregoing we assumed that 

the inputs (outputs) were real p- (m-) vectors. This assumption will now be 

dropped. 

From now on R will denote a commutative integral domain with identity. 

Henceforth we will be concerned with R-modules. An R-module (see Appendix) Mis 

just a vector space where the scalars belong to a ring R. We will only con­

sider the case where Mis a finitely generated R-module. Mis finitely 

generated if there exist elements m1, ..• ,mp EM such that every element 

m EM can be written as m = A1m1 + •.• + Apmp for some A1, .•. ,Ap ER. If 

for each m EM, A1, ... ,AP are unique, then m1, .•• ,mp is a basis for M. 

A free R-module is a finitely generated R-module which has a basis. An 

example of a free R-module is RP, the set of column p-vectors with entries 

in R, with the usual (just like for a vector space) addition and scalar 

multiplication. 

It can easily be seen that every free R-module Mis isomorphic to a module 

RP where pis the number of basis elements. 

As is the case for vector spaces a linear map A: RP ➔ Rm is completely 

characterized by an m x p-matrix A with entries in R. Therefore the map A can 

be identified with the matrix A E Rmxp. 

We now generalize the concept of I/O systems to the case of free R-modules. 

Therefore we say that (2.1.7) is an input/output system over R if uh ERP, 

h = 0,1,2, ••. ; yh E Rm, h = 0,1,2, ••• ; Fi E Rmxp, i = 0,1,2, .•• ; where Rmxp 

denotes the set of m x p-matrices over R. 

In most parts of Chapter II it will not be necessary to be concerned with 

the discrete time dynamical interpretation of the input/output system 

(2.1.7). It will be sufficient to work with an abstract notion of I/O 

system. This concept will be the impulse response. 

Suppose that m = p = 1, then (2.1.7) is called a scalar I/O system. Apply-

ing an impulse to the I/O system, i.e. an input sequence such that u 0 = 1 

and uh= 0, h = 1,2,3, ••• , the response, the output sequence, will be 

(yk)k.€~, where yk = Fk, k E ~+ (the set of non-negative integers). For 

this re!son the sequence (Fn)Illi:~+ is called the impulse response (also 

called Markov sequence). 

Analogously to the scalar case the matrix sequence (Fn)nEE+ is also called 

the impulse response for the general case (2.1.7). Given the impulse 
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response and a sequence of inputs one can compute the output sequence by 

just computing the convolution in (2.1.7). Therefore, the impulse response 

completely characterizes the I/O system under consideration. The abstract 

notion of I/O system, mentioned above, will be the impulse response. There­

fore we give the following definition. 

(2.2.1) DEFINITION. An impulse response F (over the ring R) is a sequence 

of m x p-matrices over R, F = (F nl ·12: for some integers m, p. □ 
I1E + 

II.3. The 6ollmal poweJt ,t,eJue,t, a.pp!toa.c.h 

In this section another approach of I/O systems over R will be considered. 

For this purpose we need the concept of formal power series. Suppose we are 

given an R-sequence R = (r ) lZ (r E R) • 
n nc + n 

(2.3.1) DEFINITION. The formal power series r(z) in the variable 

sociated with the sequence R = (r) ~ is 
n nE"'+ 

r(z) I 
n=0 

-n r z 
n 

-1 
z as-

REMARK. In fact r(z) is just another way of writing down the sequence 
-1 (r0,r1,r2, •.. ) and z is a position marker. (We do not require "conver-

□ 

gence".) Introducing formal power series enables us to write down convolu­

tions (like (2.1.7)) as products. Formal power series can also be used when 

we are dealing with so called realization problems. This will become clear 

in the sequel. □ 

To illustrate the use of formal power series we introduce R[[z-1]], the set 

of formal power series over R. The set R[[z-1]] can be given a ring struc-

t S ( ) ( ) R[ [ Z-l]] , th h d t ( ) ( ) . ure. uppose r 1 z, r 2 z E en t e pro uc r 1 z r 2 z is 

defined by formally carrying out the multiplication of the two series and 

collecting the terms with the same power in z-1, to obtain a member of 

R[[z-1]] again. The sum of two elements r 1 (z) and r 2 (z) is defined by ad­

dition of the corresponding coefficients (of the same powers in z-1). This 

makes R[[z-1]] a ring. 



REMARK. Multiplication of two elements in the ring R[[z-1]] in fact per­

forms the convolution of the corresponding sequences. 
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□ 

The formal power series associated with a sequence can also be seen as the 

(formal) z-transform of this sequence ("formal" because no convergence is 

required). 

Analogously to the scalar case we also have a formal power series associat­

ed with a vector sequence (uh) hE:£ ,. (yk) k£7Z and also for a matrix sequence 

F. So we have + + 

00 

(2.3.2) u(z) }: -h 
~z 

h=0 

00 

(2.3.3) y(z) }: -k 

k=0 
yk z 

00 

(2.3.4) F(z) }: F -n z 
n=0 n 

where 

u(z) E R[[z-1]Jp , the free R[[z-1]] module of p-vectors, 

y(z) E R[[z-1]Jm , the free R[[z-1]] module of m-vectors, 

F(z) E R[[z-l]Jmxp, the set of m x p-matrices -1 over R[[z ]]. 

A causal, discrete time, time invariant, linear input/output system (2.1.7) 

can equivalently be described by 

(2.3. 5) y(z) = F(z)u(z) 

where y(z), F(z), u(z} should not be thought of. as functions of z. This is 

just another way of writing down (2.1.7). 

II.4. r!f.ee -6!:f-6.tem-6 ove/f. a Jung 

In this section we will explain what we mean by a free systern over a ring R. 

It will be shown that every free system gives rise to an I/O system but not 

every I/O system is related to a free system in a natural way. 

(2.4.1) DEFINITION. A finite dimensional free system E over Risa quadruple 

of R-matrices (A,B,C,D) where A E Rnxn, BE Rnxp, c E Rmxn, DE Rmxp for 
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some integers m, n, p. n is called the dimension of L. If m = p = 1 then L 

is caUed scalar. □ 

Because we will only deal with finite dimensional free systems, L will be 

called a free system. 

Parallel to the dynamic interpretation of an impulse response over R we can 

proceed.here in the following way. Again we will use an interpretation in 

terms of discrete time dynamics. 

(2.4.2) 
k 0,1,2, ••• 

Usually xk E Rn is called the state, Rn is called the state space, again 

uk ERP is the input and yk E Rm is the output. 

We can now eliminate the states xk, k E ~+ and obtain an I/0 system 

(2.4.3) 

where 

(2.4.4) 

y = k 
k o, 1, 2, .•• 

i = 1,2,3, .••• 

Thus with every free system L = (A,B,C,D) we can associate an impulse 
2 response FL= (D,CB,CAB,CA B, ••• ). FL will also be called the impulse 

response of L. 

Later on we will also deal with non-free systems. Then the name "free 

system" will be justified. Until then we will omit the word "free" and 

simply call La system. 

Now let us be given an impulse response F = (F0 ,F1,F2, ••• ). We say that the 

system L (A,B,C,D) realizes F if F = FL, i.e. if (2.4.4) holds. Lis also 

called a realization of F. 

A system L = (A,B,C,D) with the dynamical interpretation (2.4.2) is usually 

called a (discrete time) state space system. 

One of the reasons that state space systems are important is that an im­

portant class of I/0 systems can be realized, thus providing more structure 

in an input/output system which in turn is very important for the construc­

tion of regulators and observers (see [49], [71]). 
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Another important feature of state space systems is the following. Suppose 

we have an I/0 system with impulse response F. Let F = FE for some 

E = (A,B,C,D) (E realizes F). Now consider the I/0 system 

k 0,1,2, •.•• 

If we want to compute yk we have to store (u0 ,u1 , ..• ,uk) and (F0 ,F1 , •.• ,Fk) 

and yk is the convolution of the two sequences. No matter how large k is, 

we can never "forget" some of the inputs and some part of the given impulse 

response. Furthermore the evaluation of the convolution represents an ever 

increasing amount of computations. On the other hand, if yk is given by 

(2.4.5) 
k=Q,1,2, ••• , 

then in order to compute yk we just have to know the fixed matrices A, B, 

C, D, the last input uk and the last state xk. We may forget all the pre­

vious inputs and the previous states. If the dimension of Eis not too 

large, the am9unt of computations will be reduced considerably, primarily 

because the state and the output can be evaluated recursively. Furthermore 

the memory requirements may be reduced considerably. We say that the state 

contains all the relevant information from the past, that is, the state may 

be considered some kind of memory device (see also [45], [71]). 

Having motivated the study of state space systems a little bit, we will now 

be concerned with the conditions that have to be imposed on an impulse 

response F such that F can be realized by a system E. 

If F = (F0 ,F1,F 2, .•. ) is the impulse response of a system E 

then 

(2.4.6) i 1,2,3, ••• 

However, by the Cayley-Hamilton theorem we have 

(2.4. 7) n-1 
+ o.n-1 A 

(A,B,C,D), 

for some o.i ER, i = o, ... ,n-1. (The Cayl~y-Hamilton theorem holds for 

every matrix over a commutative ring, see [31]. This is where commutati­

vity becomes important.) Therefore we have 
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(2.4.8) 
n-1 
I ai F i+k , 

i=0 
k 1,2,3, •... 

Fis called recurrent. a 0 , ••• ,an-l are called recurrence parameters of 

(2.4.8). 

This recurrency condition is also sufficient for F to be realizable. 

(2.4.9) THEOREM. If F = (F0 ,F1,F2, .•. ) is recurrent with recurrence para­

meters a 0 , •.• ,an-l' then E = (A,B,C,D) realizes F where D = F 0, 

0 0 I F' 
1 

I 0 0 F' 
2 

A 
0 I 

B C' 

0 

0 0 0 F' 
n 

where all matrices I and O are p x p-matrices. 

PROOF. For a proof see [42] (straightforward computation). 

Usually, the dimension of this realization can be reduced considerably, 

unless in the case of a scalar impulse response when we have a minimal 

number of recurrence parameters. 

The fact that realizability of an impulse response Fis equivalent to re­

currency of F can also be stated in terms of the formal power series as­

sociated with F. We therefore introduce the following notation. 

R[z] denotes the ring of polynomials in the variable z with coefficients 

in R. 

R(z) denotes the field of "rational functions" in z, i.e. 

Although r 1 (z)/r2 (z) is not a rational function (mapping) we will use the 

phrase "rational function" for a member of R(z) because the meaning is 

nowhere ambiguous. In fact, R(z) is a set of equivalence classes. 

A polynomial r (z) is called monic if the leading coefficient is the 

+ ... + r 1zn-l + zn. A rational function 
n-

□ 

identity i.e. r(z) = r 0 + r 1z 

r 1 (z) /r 2 (z) is called proper if r 2 (z) is manic and deg(r2 (z)) ~ deg(r1 (z)) 

where deg(ri(z)) denotes the degree (in z) of ri(z). 
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The ring of proper rational functions will be called R (z). The "c" stands 
-1 C 

for causal. The ring Rc(z) can be embedded in R[[z ]] because an element 

of Rc (z) can be expanded in a formal power series associated with an impulse 

response of a causal I/O system. A formal power series r(z) is called 

rational if it is the expansion of a rational function r 1 (z)/r2 (z) E Rc(z). 

Rationality of F(z) means that every entry of F(z) is rational. Observe 

that the rational power series F(z) is a member of R (z)mxp. 
C 

We can now state the following theorem. 

(2.4.10) THEOREM. Let F = (F0 ,F1,F 2, ..• ) be an impulse response where 

Fi E Rmxp. Let F(z) be its associated formal power series. Then Fis re­

current iff F(z)is rational. 

PROOF. For a proof see [15]. D 

(2.4.11) DEFINITION. Let F = (F0 ,F1,F2, •.• ) be a realizable impulse response 

and let F(z) be the associated formal power series. Then F(z) (which is a 

proper rational matrix) is called the transfer matrix of the I/0 system with 

impulse response F. D 

Now we can say that every transfer matrix F(z) has at least one realization 

namely a realization of the impulse response of which F(z) is the associated 

formal power series. 

We can also say that every system L = (A,B,C,D) has a transfer matrix F(z) 

if we define F(z) to be the formal power series associated with the impulse 

response F = (D,CB,CAB, ••• ). Then we have 

(2.4.12) THEOREM. For the system L 

given by 

-1 
F(z) = C[zI-A] B + D. 

(A,B,C,D) the transfer matrix F(z) is 

-1 PROOF. Expanding C[zI -A] B + D in a formal power series immediately gives 

the result. D 

Up to now we have obtained the following result: Every recurrent impulse 

response (proper rational matrix) has a state space realization. Generally 

there is a lot of redundancy in the realization (2.4.9). Next we will try 

to find a realization (given an impulse response or a transfer matrix) of 

minimal dimension, a so called minimal realization. This will be the sub­

ject of the next section. 
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II.5. Re.aJ.,i,za,t.,w,u, 06 1/0 1:,y1:,,tem1:, ove.11. Jting1:, 

The main tool in this section and also in the next chapter will be the 

Hankel matrix associated with an impulse response. 

(2.5.1) DEFINITION. Let F = (F 0 ,F1 ,F2, ... ) be an irrrpulse response. Then the 

Hankel matrix H(F) associated with Fis defined by the following infinite 

block matrix. The (i,j)-th "element" is F.+. 1 for i,j = 1,2,3, .... 
l. J-

Fl F2 F3 F4 

F2 F3 F4 

F3 F4 

F4 

and H(rlt,k is the following Hankel block 

Fl F2 F3 F4 Fk 

F2 F3 F4 

F3 F4 

H(r)t,k F4 

Ft+k-1 

Many properties of a system over a ring can be derived if the system is 

considered to be a system over the quotient field (see appendix), if it 

exists. A commutative integral domain R can be embedded in its quotient 

field Q(R) (see [8]). Therefore a matrix over R is, a fortiori, a matrix 

over Q(R), so the rank of a matrix over R can be defined to be the rank 

over Q(R). Therefore we are able to define the rank of the Hankel matrix 

H(F) in (2.5.1) by 

(2. 5. 2) rank H(F) = sup rank H(r)t k I 

t,k ' 
t,k 

where H(F) t,k are considered matrices over Q(R). 

We can now state the following theorem. 

1,2,3, ... 

(2.5.3) THEOREM. Suppose that rank H(r) = n, then there exists a realiza­

tion L = (A ,B ,c ,D) over Q(R) with dimension n. This realization is q q q q q 

□ 
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minimal (minimality of a realization means that there are no realizations 

having smaller dimension). Every other minimal realization I: = (A ,B ,c ,D ) q q q q q 
is isomorphic to I:, i.e., there exists an invertible matrix T over Q(R) 

- -1 1 q 
such that A = T A T , B T B , C C T - D D • 

q qqq q qq q qq' q q 

PROOF. See [45]. 

Observe that the condition rank H(F) < 00 means that Fis recurrent over 

Q(R). 

We will now impose some extra conditions on R such that recurrence over 

Q(R) implies recurrence over R. In that case we can say that Fis realiz­

able over Riff rank H(F) < 00 • We therefore state the following theorem. 

□ 

(2.5.4) THEOREM. Let R be a Noetherian, integrally closed domain (see ap­

pendix). Let F be an impulse response over R. Suppose that Fis realizable 

over Q(R). Let a 0 , ..• ,an-l be the recurrence parameters of a minimal recur­

sion for F over Q(R). Then ai ER, i = o, ... ,n-1. 

PROOF. For a proof see [64]. □ 

(2.5.5) REMARK. Using theorem (2.5.4), theorem (2.4.9) gives us a realiza­

tion which, generally, may not be expected to be minimal. However, in the 

case of a scalar input/output system the realization in (2.4.9), using the 

minimal recurrence in theorem (2.5.4), is minimal because it is minimal 

over Q(R). □ 

The following theorem may now be stated. 

(2.5.6) THEOREM. Let R be a principal ideal domain (see appendix). Suppose 

that rank H(F) = n. Then there exists a realization over R of dimension n. □ 

A proof will be given in Chapter III. 

The above theorem implies that, in the case where Risa principal ideal 

domain, there exists a minimal realization over R if rank H(F) < 00 • 

We already mentioned the role of the state of a system as some kind of 

memory. Therefore it is important that the state space is small. This is 

the reason that we are interested in minimal realizations. On the other 

hand we are interested in state space systems which contain no more infor­

mation than is already available in the I/O description. This idea is 
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closely related to the concept of Nerode equivalence classes (see [45]). 

From that point of view the state space is just the set of Nerode equi­

valence classes provided with some structure. In formalizing these ideas 

the notions reachability and observability enter. We formulate the follow­

ing definitions for the state space system E 

(2.5. 7) 
k o, 1,2, ••• 

where uk E ~, yk E Rm, xk E Rn and the matrices have appropriate dimen­

sions. 

(2.5.8) DEFINITION. Eis reaahabZe over R if the aoZwrms of the bZoak 
• [ n-1 J n matri.x B,AB, •.• ,A B generate R over R. 

(2.5.9) DEFINITION. Eis observabZe over R if ex 

impZies x = O. 

CAx 
n-1 

= CA x 0 

□ 

□ 

(2.5.10) DEFINITION. Eis aanoniaaZ over R if Eis reaahabZe and observabZe. 
□ 

These are only formal definitions. The intuitive notions of reachability 

and observability imply and are implied by these conditions (see [45]). 

When no confusion can arise we leave out "over R". 

Observe that reachability (observability) of the system Eis only concerned 

with the pair (A,B) ((C,A)). Therefore we will also be working with the 

reachable pair (A,B) and the observable pair (C,A) by which we mean that 

the conditions in (2.5.8) and (2.5.9) are satisfied respectively. 

If we have a system E (A,B,C,D), then the triple (A,B,C) will be called 

canonical if (A,B) is a reachable pair and (C,A) is an observable pair. 

(This is the same as: Eis canonical.) 

Given a realization E = (A,B,C,D) of an I/O system one might try, by some 

reduction method, similar to the one as is used for systems over a field, 

to reduce the state space until reachability and observability are obtain­

ed. However, in general, canonical (free) realizations do not exist. 

This idea motivates the introduction of a generalized notion of a realiza­

tion. 
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(2.5.11) DEFINITION. A non-free system Lis a quintuple L = (X,A,B,C,D) 

where Xis a finitely generated R-module and A, B, c, Dare R-linear maps: 

A: X + x, B: RP+ x, C: X + Rm, D: RP+ Rm for some integers m and p. D 

REMARK. Considering the state space to be the set of Nerode equivalence 

classes it can be provided with an R[z]-module structure and furthermore it 

can be shown (see [71]) that the state space is in fact isomorphic to the 

R-module XF generated by the columns of the Hankel matrix associated with 

the I/O system. D 

(2.5.12) DEFINITION. A non-free system L = (X,A,B,C,D) realizes an irrrpulse 

response F = (F0 ,F1,F 2, •.• ) if F0 = D and Fn is the following corr.position 
n-1 ofmaps:Fn=CoA oB.,n=l,2,3,.... D 

Observe that if an impulse response.can be realized by a free system 

L = (A,B,C,D), then it can, a fortiori, be realized by a non-free system 

(by taking X =Rn). The converse is also true. For if we fix a set of 

generators for X then the R-linear maps can be represented (non-uniquely) 

by matrices. 

Now we introduce reachability and observability for a non-free system 

L = (X,A,B,C,D). 

(2.5.13) DEFINITION.Lis 

i = 1, ... , p, generates x. 

n-1 reachable if the set (Bei,AoBei, .•• ,A oBei), 

Here ei denotes the i-th basis vector in RP. 

. n-1 
(2.5.14) DEFINITION. L is observable 1,f ex= CO Ax= ••• =CO A X = 0 

□ 

irrrplies x = O. D 

(2.5.15) DEFINITION.Lis canonical if Lis reachable and observable. □ 

As is the case for systems over a field, canonical non-free realizations of 

an impulse response are only unique up to isomorphism (see (2.5.3)). An 

analogous result is formulated in the realization isomorrphism theorem. 

(2.5.16) THEOREM. Suppose that F = (F0,F1,F 2, ••• ) is a realizable irrrpulse 

response and suppose that we have two canonical non-free realizations 

L = (X,A,B,C,D) and E = (X,A,B,C,D), then there exists an invertible R-
-1 -1 homomorrphism T: x + x such that A = T o A o T, B = T o B, c = c o T, D = D. 

PROOF. For a proof see [15]. □ 
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E and E are called isomorphic. 

Now suppose that F = (F0 ,F1,F2, ... ) is a realizable impulse response. Then 

there exists a canonical non-free realization where the state space is the 

above mentioned XF (for a proof see [71]) and if XF is a free R-module then 

this realization is also minimal for in this case we take a basis in XF and 

then the maps A, B, c, D can be represented by matrices, thus constituting 

a free realization. This realization is, a fortiori, a realization over 

Q(R) which is canonical and therefore is minimal (see [45]). 

In the following we will mainly be concerned with systems over a principal 

ideal domain R. In this case a canonical (non-free) realization is always 

free, for we can take XF as the state space. XF is torsion free (see appen­

dix) as a module over Rand is finitely generated. Therefore XF is free 

(see [31]). In Chapter III we give an algorithmic proof of this result. 

So, in the case of a principal ideal domain we can always work with ma­

trices, when dealing with canonical realizations. Furthermore these canon­

ical realizations have minimal dimension. It is, however, not true that 

minimal realizations are canonical as is the case for systems over a field 

(see [45]) • 

From now on we will again omit the words "free" and "non-free" when there 

cannot be any ambiguity. Unless otherwise stated we will assume R to be a 

principal ideal domain. 

Let E = (A,B,C,D) be a system of dimension n over R with state space inter­

pretation 

(2.5.17) 
k=0,1,2, ••. 

Sometimes one is interested in modifying the characteristic polynomial of 

A. In section V.5 some aspects of this are studied. In some occasions the 

stability properties of a system have to be improved by means of a regulat­

or. One of the main problems concerning regulators or observers (see [49], 

[71]) is: How can the characteristic polynomial of A (det(zI -A)) be 

modified by using feedback uk = Kxk. The next theorem is concerned with the 

question of pole assignahility. (If R is not a principal ideal domain then 

this theorem does not necessarily hold. For a counterexample see [11].) 

(2.5.18) THEOREM. Suppose that A E Rnxn and BE Rnxp. Then a necessary and 

sufficient condition for (A,B) to be a reachable pair is: For every set 
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(p1, ••. ,pn) ER there exists a matrix KE Rpxn such that det(zI-A+BK) 

= (z - P1) ••• (z - pn) • 

PROOF. For a proof see [55]. 

In the scalar case we can say more. 

(2.5.19) THEOREM. Let (A,B) be a reachable pair over R, let A E Rnxn, 

BE Rnxl (where R is not necessarily a principal ideal domain). Then for 

every polynomial p(z) with degree n there exists a row vector K such that 

det(zI-A+BK) = p(z). 

PROOF. The proof can be given using the so called standard controllable 

form (see also Chapter IV). The construction of K can also be achieved 

along the lines of a stabilization algorithm due to Ackermann [1]. 

D 

D 

Observe that in (2.5.19) everyn-th degree polynomial p(z) can be the charac­

teristic polynomial of the matrix A-BK, whereas in (2.5.18) only polynomi­

als of a special form can be obtained. The fact that every n-th degree poly­

nomial can be obtained by means of feedback is called coefficient assignabi Zi ty. 

Coefficient assignability can also be obtained in the case of a system over 

a local ring (see appendix) or even a semi local ring [71] (see appendix). 

This can be done using a generalization of Heymann's Lemma [34]. We will 

state this result only for a local ring, for this is the only case we will 

be needing. 

(2.5.20) THEOREM. Let (A,B) be a reachable pair over a local ring R, then 

there exists a matrix K and a vector u such that (A+ BK,Bu) is a reachable 

pair. 

PROOF. The proof can be given along the lines of [71] where the problem is 

reduced to a similar problem over a field in which case Heymann's Lemma can 

be applied [ 34 J. D 

The above methods for pole assignability and coefficient assignability can­

not immediately be used for the observer case. For this case one would need 

that the dual system r• (A',C',B',D') be reachable. However, reachability 

and observability are not dual properties. It is not even true that a 

minimal realization r satisfies: r or r• is canonical. 
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For example take F = (6,6,6, ••• ), a scalar impulse response over7Z. A canon­

ical realization is E1 = (1,1,6,6). A realization E2 such that E2 is canon­

ical is E2 = (1,6,1,6). A minimal realization E3, such that E3 nor Ej is 

canonical, is E3 = (1,2,3,6). 

In the case of a principal ideal domain we can also construct a realization 

E = (A,B,C,D), for an impulse response F, such that E' = (A',C',B',D'), is 

canonical. This can be achieved by constructing a canonical realization for 

the transposed impulse response F' = (F0,Fi,F2, ... ). Hence we can in fact 

use (2.5.18), (2.5.19) and (2.5.29) to construct observers. For more in­

formation on observers see [49], [79]. 
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III ALGORITHMS 

III.1. Ma.tluc.e6 oveJz. a p!Unc.-lpal ideal doma,i,n 

In this chapter we are going to construct canonical realizations for an im­

pulse response F over a principal ideal domain R. Also a recursive algo­

rithm, including some results concerning the partial realization problem, 

is presented. Furthermore it will be shown that Ho's algorithm {see [45]) 

and an algorithm due to Zeiger {see [44]) can be generalized to the ring 

case. 

We will also present an algorithm that constructs a realization given the 

transfer matrix of a system over R. This will be done by constructing first 

a realization over Q(R) and afterwards reducing this realization to a canon­

ical realization over R. For this algorithm a realization method presented 

by Kalman in [41] and a realization algorithm described in [33] by Heymann 

will be very useful. 

In all the algorithms to be presented in this chapter the existence of a 

Hermite form or a Smith form is crucial. We will need a somewhat modified 

Hermite form and also a modified Smith form will do because the usual divi­

sibility properties of the Smith form are irrelevant for our purposes. 

First of all we will introduce the Hermite form, the modified (in a certain 

sense) Hermite form and the Smith form of a matrix over a principal ideal 

domain. We start by observing that in a principal ideal domain R the Bezout 

identity holds. This means that for r 1,r2 ER a greatest common divisor d 

can be defined such that d is a linear combination of r 1 and r 2, i.e., 

there exist c 1,c2 ER such that d = c 1r 1 + c 2r 2 • This can be generalized to 

the case of n elements r 1, ••• ,rn ER. Again a greatest common divisor d can 

be defined such that d = c 1r 1 + ••• + cnrn. Furthermore it can easily be 

shown that dis a "greatest" common divisor of r 1 , •.• ,rn, i.e., a divisor 

such that every other divisor of r 1, .•• ,rn divides d (a divisor q of 

r 1, ••• ,rn is an element of R such that ri = qdi for some elements di, 

i = 1, ••• ,n). In general a greatest common divisor of r 1, ... ,rn is not 

unique for if dis a greatest common divisor, then du is a greatest common 

divisor whenever u is a unit. 
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We will use the following notation. If r 1, .•. ,rn ER, then (r1 , ... ,rn) 

denotes a greatest common divisor of r 1 , ••• ,rn. 

In the sequel we will frequently use unimodular matrices over R. 

(3.1.1) DEFINITION. A unimodular matrix over Risa square matrix 1.,Jhich has 

an inverse over R. D 

Let A be a matrix over R (not necessarily square) then the following opera­

tions are called elementary ro1.,J (column) operations: 

i) Interchanging two rows (columns); 

ii) multiplication of a row (column) by a unit of R; 

iii) Addition of r times a row (column) to another row (column), where r ER. 

It can easily be seen that each of these row (column) operations corresponds 

to the left (right) multiplication of A by a unimodular matrix. 

( 3. 1. 2) DEFINITION. Let A, B be t1.,Jo matrices over R, then A is ca Ued left 

equivalent to B if A= UB. A is called right equivalent to B if A= BV. A 

is called equivalent to B if A= UBV. Here u, v are unimodular matrices. □ 

(3 .1. 3) THEOREM. Let A be an n x m-matrix ove:r• R. Then A is right equivalent 

to a lower triangular matrix B (bij = O if j > i) 1.,Jhere bii is unique up to 

a unit if A is regular and bit is an element of the residue class modulo bii 

1.,Jhere, in case A is regular, bit is also unique up to a unit. Here t < i 

and i = 1, ... , min (m,n). 

PROOF. For a proof see [57]. D 

In order to obtain the matrix Bone only has to perform elementary column 

operations and a right multiplication with a unimodular matrix based on the 

Bezout identity, while in the case where Risa Euclidean domain (see appen­

dix) only elementary column operations are sufficient. The matrix Bin the 

above theorem is called the Hermite form of A (also called Hermite normal 

form). 

What we need is not precisely the Hermite form of A but a lower triangular 

matrix B = [B,O] such that B has full column rank over Q(R). In general 

this cannot be obtained by just right multiplying A with a unimodular 

matrix V. If we also allow multiplying with a permutation matrix IT on the 

left this special form, equivalent to A, can be obtained. We will not need 

the special properties of the diagonal elements of B, nor will we need the 

special relation of row elements and the corresponding diagonal elements. 



Every lower triangular matrix B 

over Q (R) where 

(3.1.4) B = [B,0] = IIAV 

[B,0] such that B has full column rank 

will be called a modified Hernrite form of A. We now have the following 

theorem. 
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(3 .1. 5) THEOREM. Let A be a matr-ix over- R. Then ther-e exists a per-mutation 

matr-ix II and a unimodular- matr-ix V such that B = IIAV is a modified Hernrite 

form. 

PROOF. Although the theorem is valid for a principal ideal domain, the 

proof will be given for a Euclidean domain R because this is the only case 

we will be needing. Suppose that A is a m x p matrix over a Euclidean domain 

R. If A= 0 then A is a modified Hermite form and we are finished. If A# 0, 

then there is some element a. . # 0. 'This element can be moved to the leading 
l.J 

position (1,1) by just applying row and column permutations. Hence we may 

assume that a 11 # 0. We may also assume that a 11 has the smallest cp value 

among the elements of the first row. Hence we may write 

for j = 2, ••• ,p 

and cp(r1j) < cp(a11 ) where cp is a Euclidean function for R (see appendix). 

Hence by adding appropriate multiples of the first column to the second up 

to the p-th column we can achieve that 

where v1 is a unimodular matrix. By applying a column permutation we can 

obtain that the element in the (1,1) position has smallest cp value among 

the elements in the first row. Again we can add appropriate multiples of 

the first column to the other columns and we obtain that all elements (up 

to the (1,1) element) in the first row have cp value smaller than the cp 

value of the element in position (1,1). Eventually we end up with a matrix 
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0 0 

AV 
A 

The same procedure can be applied to A and ultimately we obtain 

llAV = B = [B,0] 

where 11 is a permutation matrix which comprises all row permutations which 

occur in the described process and Vis the product of all unimodular 

matrices representing the applied elementary column operations. Furthermore 

Bis a lower triangular matrix having full column rank. □ 

REMARK. In this way not only a modified Hermite form but also the proper­

ties concerning the offdiagonal elements, mentioned in theorem (3.1.3), can 

be obtained. In addition, also the uniqueness (up to a unit) result con-

cerning the diagonal elements also holds for theorem (3.1.5). □ 

(3.1.6) THEOREM. Let A be an n x m-matrix over R. Then A is equivalent to a 

matrix D= [~~]where D=diag(d 1 , ... ,dr) and di divides di+l for i=l, .•. ,r-1. 

Here r denotes the rank of A over Q(R) and some of the aero matrices are 

possibly empty. Furthermore, di is unique up to a unit for i = 1, ... ,r. 

PROOF. For a proof see [57]. □ 

The matrix Dis called the Smith form of A (also called Smith normal form 

or Smith canonical form). Again we will not exactly need the Smith form. We 

do not need the divisibility result "di divides di+l' i = 1, ... ,r-1". We 

only need the diagonal character of D. This often simplificates the algo­

rithm to obtain D considerably. 

Every diagonal matrix D = [D 0] where D has full rank, equivalent to A Q Q I 

will be called a modified Smith form for A. 

The modified Hermite form and the modified Smith form for a certain matrix 

will be fundamental for the realization algorithms to follow. 
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III. 2. Re.aLlza.:Uon ai.goM-thm6 60JL an ,i,mpLLl6e. 1te1ipon6e. 

In this section we will derive algorithms to construct a canonical realiza­

tion (2.4.7l, (2.5.l0l of an impulse response F. 
In [63] Silverman's algorithm [68] is used to compute a realization of an 

impulse response over a principal ideal domain. The realization is obtained 

by first computing a realization over the quotient field and then applying 

a suitable state space transformation. In this section a more direct reali­

zation algorithm is proposed, which is related to an algorithm due to 

Zeiger (cf. [44]l. It is also shown that the original Zeiger algorithm and 

the Ho algorithm [45] can be extended to systems over a principal ideal 

domain, but the algorithm described in this section seems to be more appeal­

ing. Furthermore a recursive algorithm, similar to Rissanen's algorithm 

[60], is described, which to some extent can also be used for obtaining 

partial realizations (see [43]l. 

The principle objective of this thesis will be the application of the 

theory of systems over a principal ideal domain to the case of 2-D systems, 

but in this chapter we will also present some applications to the case of 

systems over the integers [63] and the case of delay differential systems 

[55], [46], [47]. 

In Chapter II it was shown that for systems over a principal ideal domain 

it is not necessary to consider non-free systems and therefore we can work 

with matrices. For this reason we will introduce some matrix language. A 

matrix A E iflxn will be called right regular if there does not exist a non­

zero vector x E Rn satisfying Ax= 0. Equivalently A is right regular if 

rank A= n. The matrix A is called right invertible if there exists a ma­

trix A+ E Rnxm such that AA+= I. Left regularity and left invertibiZity 

are defined similarly. 

Given a system E 

(3. 2. ll Q (LI kl 

(3.2.2l P (E, kl 

(A,B,C,Dl we define fork 

k-1 [B,AB, •.. ,A BJ , 

[c' ,A'C', ••• , (A'lk-lc•J' 

1,2,3, .•• 

Observe that Eis reachable (see (2.5.8ll if Q(E,nl is right invertible and 

observable (see (2.5.9ll if P(E,nl is right regular. 

In order to construct a canonical realization of a given impulse response 

F = (F0 ,F1,F2, ••• l we consider the Hankel matrix H = H(Fl (see (2.5.lll and 

Hankel blocks HR,k = H(Fl.t,k (see (2.5.lll which we write down again for 
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convenience 

Fl F2 F3 

F2 F3 

(3.2.3) HR,k = F3 

FHk-1 

Remember that rank His defined as (see (2.5.2)) rank H = sup rank HR,k" 
R.,k 

The following result is instrumental and constitutes the main theorem of 

this chapter. 

( 3. 2. 4 l THEOREM. Suppose that for a certain pair of integers R., k we have 
R,mxn nxkp nxp . 

rank HR.k = rank H = n. If matrices P. E R , Q E R , Qk E R sat1,sfy 

HR.,k+l = P[Q,Qk], 

Q is right invertible, 

Pis right regular, 

then there exists a unique canonical realization r 
that p = P(L,R.), [Q,Qk] = Q(L,k+l), viz. 

(3.2.5) A C 

(A,B,C,D) of F such 

where P0 is the matrix consisting of the first m rows of P, Qi E Rnxp is 

defined by the block decomposition Q = [Q0 ,Q1 , ••• ,Qk_1J and Q+ is a right 

inverse of Q. 

PROOF. Considering Fas an impulse response over Q(R), we find a canonical 

Q(R)-realization ~ (A,B,C,D) of F of dimension n (see [45]). Then we have 

(3.2.6) PQ 

where P := P(E,R.), Q := Q(~,k). Let P+ be a left inverse (over Q(R)) of P 

and Q+ a right inverse of Q. Then we have 

-+ -+ 
P PQQ =I. 

Thus if we define S := QQ+ E Q(R)nxn, then Sis invertible and s-1 = P+P. 

The system L = (A,B,C,D) defined by A:= SAS-l, B := SB, C := CS-l, D = D 



is also a realization of F over Q(R). Equation (3.2.6) implies 

Q =SQ, P = PS-l • 

Hence P = P(E,t), Q = Q(E,k). But then we must have c 
nxp 

B = Qo ER • In addition, 

and consequently Qk AkB. It follows that 

(3.2.7) AQ 
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and therefore we have (3.2.6), which implies A E Rnxn_ Consequently Eis a 

realization over R. Eis also a canonical system over R, for if Q = Q(E,k) 

is right invertible and ks n, then ,Q(E,n) is right invertible, 

lQ(E,k) +] 
Q (E, n) 

0 
I 

where Q(E,k) + is a right inverse of Q(E,k) and O is a (n-k)p x n matrix con­

sisting only of zeroes. If Q = Q(E,k) is right invertible and k > n then we 

have, by the Cayley-Hamilton theorem, 

i 0, .•. , k-n-1 

and therefore 

(3. 2.8) 

for some unimodular matrix V. Now suppose that Q+ is a right inverse of Q, 
-1 + Then V Q is a right inverse of [Q0 ,Q1, ••• ,Qn_1,o, ••• ,O] and therefore 

Q(E,n) is right invertible. In the same way right regularity of P(E,n) can 

be proved. Therefore Eis a canonical realization over R. □ 

(3.2.9) REMARK. In theorem (3.2.4) we did not use that Risa principal 

ideal domain. Obviously theorem (3.2.4) remains valid if R is any commuta-

tive integral domain. □ 

Some problems that remain are: How to determine n and how to choose t and k. 

Furthermore, given that Fis realizable, is it possible to obtain a factor­

ization of Ht,k+l as is required in 1 ° of theorem (3.2.4)? 
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Whether or not H has finite rank cannot be decided in general but, if the 

impulse response F stems from a transfer matrix, then we are sure that 

rank His finite. But if the I/O system is given by its transfer matrix the 

realization method using the Hankel matrix seems to be a long way around. 

For this case we will give a more direct realization algorithm in Section 

III.3. 

Let us now suppose that we know the rank of the Hankel matrix, then in 

order to find a Hankel block Htk such that rank Htk = rank H, it suffices 

to take t = k = n. This follows from the Cayley-Hamilton theorem. Again we 

are left with the problem whether or not a factorization of Ht,k+l as in 
0 

1 of theorem (3.2.4) is possible. The following result states that for 

sufficiently large k a factorization of the form 

is always possible, once the factorization 

is given. 

tmxn nxkp . o o 
(3. 2.10) THEOREM. Let P E R , Q E R sat-z.sfy the conditions 2 and 3 

of theorem (3.2.4) and assume that rank Htk = rank H 5 k. If 

then there exists a unique Qk E Rmxn suah that 

PROOF. There exists a realization of rank$ k (see [64]). By the Cayley­

Hamilton theorem the impulse response satisfies a recurrence relation of 

the form 

where ai ER. If we write W 

that 

(j 1,2,3, •.• ) 

, kpxp 
:= [a0I, ••• ,ak_1I] ER , then it follows 

Hence we may choose Qk = QW. Because Pis right regular, Qk is unique. 0 
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(3.2.12) REMARK. Also this result is valid for more general rings than 

principal ideal domains. Obviously, it suffices that F satisfies a recur­

rence relation of order$ k. This is for example the case for Noetherian 

integral domains which are integrally closed (see [64]). □ 

Now the question arises of how to compute a factorization of Hi,k+l such 

that the conditions of theorem (3.2.4) are satisfied. One way of doing this 

depends on the Smith form (see (3.1.6)). We start by factorizing Hik as 

follows. There exist unimodular matrices U and V and ,an n x n diagonal 

matrix D such that 

Some of the zero matrices in (3.2.13.) are possibly empty. The matrix D is 

regular (i.e. right regular and left regular). We do not require that the 

diagonal elements of D satisfy the divisibility properties in theorem 

(3.1.6). If we define 

(3.2.14) P := u[:] , Q 

we see that Pis right regular and QQ+ = I, so that Q is right invertible. 

In addition Hik = PQ. Now if we decompose Hi,k+l as 

it follows from theorem (3.2.10) that there exists a matrix Qk such that 

S = PQk, hence 

-1 lDQk] u s = , 
0 

i.e., the first n rows of u-1s are divisible by the corresponding diagonal 

element of D, and the remaining rows are zero. Thus we are able to deter­

mine Qk. 

(3.2.16) REMARK. If these divisibility conditions on u-1s are not satis­

fied, this implies that F does not have a realization of rank$ k. This 
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indicates how a recursive realization algorithm could be constructed, lose­

ly speaking by increasing 1 or kin a sensible way until the conditions on 

Sare satisfied (see (3.4.5)). D 

The computation of a Smith form might be rather elaborate even if we do not 

require the diagonal elements of D to satisfy the divisibility properties. 

Therefore we will now describe a realization algorithm based on the modi­

fied Hermite form of Hlk" 

There exist a permutation matrix IT, a unimodular matrix V and a lower tri­

angular matrix G such that G has full rank and (see (3.1.5)) 

(3.2.17) Hlk = IT[G,O]V 

where the zero matrix is possibly empty. Then we define P := ITG, Q :=[I,O]V 

and we have the desired factorization. The matrix Qk in Hl,k+l P[Q,Qk] 

has to be determined from the equation PQk = S where Sis the same matrix 
-1 

as in (3.2.1). Therefore GQk = IT S. However, since [In,O]G is a regular 

matrix, Qk is uniquely determined by the n x n equation 

[I ,O]GQk = [I ,O]IT-lS n n 

where In is the n x n identity matrix and n is the rank of H lk. This equa­

tion is easy to solve because of the triangular character of [In1 0]G. It 

follows from theorem (3.2.10) that a solution exists and satisfies the 
-1 

equation GQk IT S provided that rank H s k. 

(3.2.18) REMARK. The algorithm given is closely related to Zeiger's algo­

rithm (cf [44]). In this algorithm for systems over a field the factoriza­

tion Hlk = PQ with Q right invertible and P left invertible yields the 
+ + + realization A= P (crH) lk Q , B = Q0 , c = P0 , D = F0, where P is a left 

inverse of P and (crH) 1k is the shifted Hankel block, 

F2 F3 F4 

F3 F4 

(3.2.19) (crH) 1k = F4 

F 1+1 

In the case of a system over a principal ideal domain this algorithm is not 
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directly applicable since it is usually not possible to factorize Htk in 

such a way that Pis left invertible and Q is right invertible (see also 

remark (3.2.21)). However, in our algorithm Pis right regular and there­

fore left invertible over Q(R). If one is willing to perform calculations 

in Q(R) then one can use Zeiger's algorithm since it follows from theorems 

(3.2.4) and (3.2.10) that the resulting realization is a realization over R 

because, given the factorization over R, the resulting realization is 

unique. □ 

(3.2.20) REMARK. The method of computing a factorization using the Smith 

form (3.1.6) is obviously related to Ho's algorithm (see [45]). The proper 

generalization of Ho's algorithm to the ring case is the following: start­

ing from the factorization 

where U and V are unimodular matrices and Dis a regular diagonal matrix, 

we construct E = (A,B,C,D) from 

where (aH)tk is given by (3.2.19). Then E = (A,B,C,D) is the realization of 

F corresponding to the factorization Htk = PQ where 

-1 
Q = [I,0]V • 

The solvability of the equations for A and B again follows from theorems 

(3.1.4) and (3.2.10). Again this shows that one can work with the Ho 
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algorithm if one is willing to perform calculations over Q(R). D 

Observe that one cannot apply Zeiger's algorithm or Ho's algorithm starting 

with a factorization of Htk over Q(R). One has to perform the factorization 

over Rand from that point one can work with these algorithms. 

The algorithm proposed in the foregoing, in particular if the modified 

Hermite form is used, is simpler than the algorithms which are modifica­

tions of Zeiger's of Ho's algorithm. For Zeiger's algorithm it is necessary 

to do calculations in Q(R) and inverses of both P and Q have to be calcul­

ated. For Ho's algorithm it is necessary to compute the Smith form (without 

the divisibility properties) which is more elaborate than the modified 

Hermite form. 

(3.2.21) REMARK. A realization E = (A,B,C,D) is called split if both (A,B) 

and (A',C') are reachable pairs (see [71]), for "reachable pair" see 

(2.5.8). If an impulse response F admits a split realization E, then every 

canonical realization I of Fis split, since it follows from the realiza­

tion isomorphism theorem for the case of a principal ideal domain that 

P(E,n)T = P(E,n) for some invertible matrix T. Obviously the realization 

given in theorem (3.1.6) is split iff Pis left invertible. Therefore, if 

we construct P and Q using (3.2.10), the realization is split if the in­

variant factors of Htk' i.e. the diagonal elements of the matrix Din the 

Smith form of Htk' are invertible in R. Thus we recover a result of Sontag 

[71]. 

Working with matrices (over R) the realization isomorphism theorem can be 

derived quite easily from the corresponding theorem in the field case. 

Suppose that Fis an impulse response with canonical realizations 

E = (A,B,C,D) and I= (A,B,C,D), then E and I are a fortiori realizations 

of F over Q(R). Therefore there exists a matrix T over Q(R) such that 
-1 - - -1 - -A TAT , B = TB, C = CT , D = D. Then Q(E,n) TQ(E,n) and thus 

T Q(E,n)Q(E,n)+ E Rnxn_ 

When we are interested in a realization E = (A,B,C,D) such that 

D 

E' = (A',C',B',D') is canonical, then we can also use the realization algo­

rithm based on the factorization (3.2.13). In this case we factorize 
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Hence P : = U [~] is left invertible and Q = [D, 0 ]V is left regular and the 

construction of E' is straightforward. 

The realizations based on the factorizations 

respectively, are both minimal. These two realizations are not necessarily 

isomorphic for this would imply that they were split, which generally is 

not the case. The example on the last page of Chapter II may serve to show 

this. 

(3.2.22) EXAMPLE. In [63] an example of an impulse response over R =22: is 

given 

We will compute a realization for this sequence. It is easily seen that 

rank H22 = rank H 

Hence, we obtain 

Q 

2. We compute a modified Hermite form of H22 

-1 1 

2 -1 

The matrix Q2 is determined from the equation PQ2 = S := [F3,F4]' = 0. 

Hence Q2 = 0. Consequently we find the following canonical realization 

A B C=P =[2 OJ, 
O 2 1 

D 

0 • 

0 • 

This realization is a split realization since Pis left invertible. Indeed, 
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in fact 

-1 

0 

0 

III.3. Rea,Uza,tion a.fgolu;thm6 604 an I/0 -0y-0tem g~ven by a t4an-06e4 m~x 

In many practical situation the impulse response F = (F0 ,F1 ,F2, ••. ) is not 

directly available. However, often one is given the transfer matrix of an 

I/0 system (see (2.4.11)). Let F(z) be a mx p-transfer matrix (F(z) is a 

proper rational matrix), then F(z) can be written as F(z) = M(z)/m(z) where 

M(z) E R[z]mxp and m(z) is a monic polynomial in R[z]. Indeed, 
mxp 

F(z) E Rc(z) means that all entries of F(z) are proper rational func-

tions with monic denominators. Then we can take m(z) to be a common multi­

ple of the denominators (R[z] is a unique factorization domain). The formal 

power series expansion of F(z) can be obtained by long division and then we 

could use the associated impulse response to construct a realization (exis­

tence is guaranteed because F(z) is proper rational) by means of the algo­

rithm described above. 

(3.3.1) EXAMPLE. As has been pointed out in [55], [46], delay-differential 

systems can be modeled as systems over the ring R = JR[d]. For instance, if 

we introduce the delay operator d by dy(t) = y(t- 1) in the system of equa­

tions (see [46]) 

(3 .3. 2) 

we obtain y Wu where 

[ 
2 

l 2d s 
W=---

2 3 s + ds -2d s 

-6 J 
-2s+4d 

ands denotes the differentiation operator sy 

conditions • ) 

y. (We assume zero initial 

We want to obtain a representation of the equation (3.3.2) in the form 

(3.3.3) 
x(t) A(d)x(t) + B(d)u(t) 

y(t) C(d)x(t) 



To this end, we consider W a rational matrix over m.[d] and we expand in 
-1 

powers of s 

(3.3.4) w 
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Then the matrices A(d), B(d), C(d) in (3.3.3) have to satisfy CAkB = Fk+l' 

k = O, 1, 2, ••• , or equivalently W = c[sI -A]-lB which is more appropriate 

for this example; i.e., (A,B,C,0) has to be a realization of the impulse 

response (0,F 1,F 2, ••• ) • 

We now have (by long division for example) 

[ 2d2 
_:J 

t2d3 -•J [2d4 
6d J Fl(d)= 3 , F2 (d) 

2d4 
, F3 (d) = 

-2d 6d -2d5 -6d2 

It is 2 seen that [s + ds]W = L 1 s + Lz and hence Fk+l + dFk = 0 (k =2,3, ••• ). 

Consequently rank H = rank H22 = 2. We compute a modified Hermite form of 

H22: 

2d2 0 -2d3 -6 -1 0 0 0 -2d2 0 2d3 6 

-2d3 -2 2d4 6d d -2 0 0 0 1 0 0 
(3.3.5) H22 

-2d3 2d4 -6 6d d -6 0 0 0 0 1 0 

2d4 6d -6d5 -6d2 -d2 6d 0 0 1 0 0 0 

It follows that 

0 0 -1 0 

[-:' 0 2d3 

:] I 

0 1 d -2 
Q Q+ p 

1 0 0 0 d -6 

1 
0 -d2 6d 

6 

The matrix Q2 is easily obtained from PQ2 = S := [F3,F4]' which yields 

Notice, that it is not necessary to know F4 explicitly, since Q2 is unique­

ly determined by the equation P0 Q2 = F 3 • 
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Thus we find the following realization 

C r-1 0] , D 
L d -2 

For the equation (3.3.3) we obtain 

*1 (t) -x1 (t-1) + 6x2 (t) - 2u1 (t - 2) 

*2 (t) u2 (t) 

(3. 3 .6) 

y 1 (t) - x 1 (t) 

y 2 (t) x 1 (t - 1) - 2x2 (t) 

Notice that Pis actually left invertible, because its diagonal elements 

are invertible. It follows that we have a split realization (see (3.2.21)). 

The above way of realizing a transfer matrix may be a long detour and we 

will therefore construct a canonical realization directly from the transfer 

matrix. This will be done by first constructing a minimal realization over 

Q(R) and afterwards reducing this realization to a canonical realization 

over R by means of a state space isomorphism TE Q(R)nxn where n is the 

dimension of the minimal realization (the McMiZZan degree of F(z) as a 

transfer matrix over Q(R), see [41], [33]). 

Suppose F(z) is a transfer matrix over R. Then F(z) is a fortiori a trans­

fer matrix over Q(R). Therefore F(z) has a minimal Q(R) realization 

L = (F,G,H,K), i.e., 
q 

(3 .3. 7) F(zl 
-1 

H[zI -F] G + K • 

Suppose that n is the rank of L. Then we know that rank H = rank Hnn where 

His the associated Hankel matrix and H is the Hankel block 

(3 .3. 8) H 
nn 

HG HFG 

HFG HF 2G 

HF 2G 

nn 

H 1 HF 

n-1 

~-lJ [G,FG, ... ,F G] 

HF 
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H is an R-matrix because F(z) is a transfer matrix over R. By minimality nn 
Q(Eq,n) has full rank. Therefore there exists a unimodular R-matrix U such 

that 

(3.3.9) n-1 [G,FG, ••• ,F G]U = [T,0] 

where T € Q(R)nxn and Tis regular. 

This can be achieved in the following way. Lett be a common multiple of 

the denominators of the entries of·Q(E ,n). This element t € R is well de-
q 

fined because Risa principal ideal domain and therefore a unique factori-

zation domain. Now the matrix Q(E ,n) := tQ(E ,n) is a matrix over R. For 
- q q 
Q(E ,n) we can construct a modified Hermite form q 

(3.3.10) IlQ(E ,n)U = [T,0] q 

where we can even take rr = I. 

Hence in (3.3.9) we can take T = T/t and U u. 
That Tis regular follows from the minimality of Eq. Now we have 

(3.3.11) -1 n-1 T [G,FG, ••• ,F G]U = [I,0] 

We will now prove that E = (A,B,C,D) 

realization over R. Observe that 

-1 -1 (T FT,T G,HT,K) is a canonical 

(3. 3 .12) -1 n-1 • -1 T [G,FG, ••• ,F G] = [I,O]U , 

-1 -1 n-1 therefore T G is an R-matrix, furthermore T [G,FG, ••• ,F G] is a right 

invertible R-matrix. Hence 

H 

HF 

Therefore [H' ,F'H', ••• , (Fn-l) 1H']' T is a right regular R-matrix. Hence we 

have obtained a factorization of Hnn in such a way that theorem (3.2.4) can 

be applied. We will also show how the (unique once the factorization is 

given) ring realization is related to the quotient field realization. HT is 
. -1 

an R-matrix, T FT is also an R-matrix, for 
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-1 n-1 n lu 
T [G,FG, ••• ,F G,F GJLo WI] -- [I,0] 

where W = [-a0I, ••. ,-an_ 1I] 1 and ai (ER), i = O, .•. ,n-1, are the coeffi­

cients of the characteristic polynomial of F. Therefore T-l[FG, .•. ,FnG] is 

an R-matrix and we have 

T-lFT _ ,-![ n ][ n-1 ]+ (3.3.13) - 'I FG, .•. ,F G G,FG, •.. ,F G T. 

Hence Lis a canonical R-realization of F(z). 

REMARK. The construction of a ring realization from a quotient field reali­

zation as described in (3.3.11) is based on the same technique as the reali-

zation algorithm which Rouchaleau describes in [63]. 

We can now construct a canonical R-r.ealization if we have a realization 

algorithm to construct a minimal Q(R) realization starting from the trans­

fer matrix. 

□ 

In [41] Kalman gave a realization algorithm for real transfer matrices. 

This algorithm can be generalized to the case of transfer matrices over an 

arbitrary field. The algorithm is based on the McMillan form of a proper 

rational matrix (see [41]) and gives a minimal Q(R)-realization. 

In [33] Heymann gave a realization algorithm for transfer matrices over 

an arbitrary field. The algorithm is based on a diagonal rational 

matrix, equivalent to the transfer matrix in a certain sense and this algo­

rithm also gives a minimal Q(R)-realization. 

Because this algorithm is easier to apply than the algorithm due to Kalman 

we will state this algorithm in the form of a theorem. Before we state the 

appropriate realization theorem of Heymann we introduce the following de­

finition. 

(3.3.14) DEFINITION. A rational function p(z)/q(z) E R(z) is called strict­

ly proper if q(z) is monic and deg(p(z)) < deg(q(z)). A rational matrix is 

called strictly proper if every entry is strictly proper. 

The set of strictly proper rational functions will be denoted by Rsc(z). 

Suppose that F (z) is a strictly proper rational m x p-matrix 

□ 

- mxp - -
(F(z) E Rsc(z) ), then F(z) can be written as F(z) = M(z)/m(z) where m(z) 

is a monic polynomial and deg M(z) < deg m(z) where the degree of a matrix 
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is defined as the maximum of the degrees of the entries. Again the poly­

nomial m(z) is a common multiple of the denominators of the entries of F(z). 

Every matrix F(z) E Rc(z)mxp can be written as F(z) = F(z) + F0 where 

F(z) ER (z)mxp and F0 E Rmxp. A realization E = (A,B,C,D) of a strictly 
SC 

proper rational matrix necessarily has the matrix D equal to zero. (The 

realization exists because Rsc(z) c Rc(z) .) 

Now, let F (z) = M (z) /m (z) be a strictly proper rational m x p-matrix. Then 

F(z) is a fortiori a strictly proper rational matrix with coefficients in 

Q(R), i.e., F(z) E Q(R) (z)mxp. Furthermore, we will suppose M(z) and m(z) 
SC 

to be relatively prime which means that there is no non-trivial common 

factor of m(z) and all entries of M(z). 

The matrix M(z) can be considered a matrix over the principal ideal domain 

Q(R)[z] and is therefore equivalent (see [31]) to a diagonal matrix over 

Q(R)[z], for instance one might take the modified Smith form. 

We can now state the "realization theorem" of [33]. 

(3.3.15) THEOREM. Let F(z) = F0 + F(z) = F0 + M(z)/m(z) be a transfer 

matrix with coefficients in R, where F (z) is a strict"ly proper rational, 

matrix over R (z) and therefore over Q(R) (z). Let U(z) and V(z) be uni-sc SC 

moduZar matrices over Q(R)[z] and D(z) = diag[£1/~ 1 , ••• ,£r/~r,o, ••• ,0J be a 

strictZy proper diagonal, matrix where, for each i, £i and ~i are reZativeZy 

prime poZynomiaZs and ~i is monic. Suppose that 

M(z) = U(z) (m(z)D(z) )V(z) mod(m(z)) 

where m(z) is the Zeast corrunon muZtipZe of the denominators of the entries 

of F(z). Construct a system E = (F,G,H,K) as foZZows 

0 1 0 0 0 

F. 
0 

G. 
1 1 

0 0 1 0 

-ai,O -a . 
i,ni-1 

1 

where the aij and the bij are the coefficients of ~i and £i respectiveZy. 



44 

ni 

Here ijli (z) = jlO aij zj where ai,ni = 1, and Ei (z) = 

systems will be minimal realizations of the transfer 

E:i (z) /1jJ i (z) • ) 

~i b zj • (These 
l ij 

j=0 
functions 

2° Define (F,G,H,K) to be the system F = diag[F1, ... ,Fr]; G=diag[G1, •.. ,Gr], 

H = diag[H1, •.• ,Hr], K = 0, and then augmenting, if necessary, by adding 

columns of zeroes to G and/or rows of zeroes to Hin order to make 
~ ~ -1 ~ . -
H[zI - F] G of the same size as F (z). This system will be a minimal 

realization of D(z) 

3° Let U(z) = U(z) mod(m(z)), V(z) = V(z) mod(m(z)) and let 
µ-1 ~ i ~ µ-1 i 

U(z) = l ui z , V(z) l Viz where µ = deg(m(z)). Furthermore, let 
i=0 i=0 

µ-1 µ-1 
t ~j ~~ t ~ ~~i 

F, G= l F GV., H l UiHF, K=F0 • 
j=0 J i= 

F 

Then (F,G,H,K) is a minimal realization of F(z) over Q(R). 

PROOF. For a proof see [33]. □ 

(3.3.16) REMARK. In theorem (3.3.15) one may also take as a minimal realiza­

tion (F,G,H,K) where 

- I Fj GV. - I u. aFi F = F I G H K = FO 
j J i 

l. 

where U(z) I u. z i V(z) I V. zj (see [35]). 
i l. j J 

Observe that (F,G,H,K) and (F,G,H,K) are isomorphic because they both are 

minimal realizations of the same transfer matrix F(z). 

□ 

Concerning the degree in z of the matrices U(z) and V(z) in theorem (3.3.15) 

almost nothing can be said except in the case where we are dealing with two 

equivalent matrices which both are regular (over the quotient field) and 

have degree at most one. In this case the unimodular transformations can be 

chosen z-independent (see [27]). This is the case in the following example 

(see (3.3.18)). 

In the next example we will construct a ring realization for the transfer 

matrix given in example (3.3.1) by using theorem (3.3.15) and the method 

described in (3.3.9) through (3.3.13). Again z is replaced bys because 

this transfer matrix stems from a continuous time system. 
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(3.3.17) EXAMPLE. Let F(s) = M(s)/m(s) be a strictly proper rational matrix 

given by 

-6 J 
-2s+4d 

m(s) s 2 + ds 

where R = IR[d] (see also (3.3.1)). Now we have 

,-d2 (3.3.18) L -6 i [1 
-2s+4d 0 

Using the notation as in theorem (3.3.15) we have El (s)/lji 1 (s) = 2d2/(s+d), 

E 2 (s)/iji 2 (s) - 2/s. A minimal realization over Q(R) given by theorem 

(3.3.15) is i:: = (F,G,H,K) where 

F 

Now we apply the method described in (3.3.9) - (3.3.13). In this case we 

have (see (3.3.9)) 

T :] . 

The canonical lR[d]- realization is 

(3.3.19) 

C HT 

(3.3.20) REMARK. The realizations in (3.3.17) and (3.3.1) are not the same. 

However, they are both canonical and therefore they are isomorphic by the 

realization isomorphism theorem (2.5.16). The state space isomorphism is: 

□ 
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II r. 4 • Pa.Jl.t,i,al Jte.aLi..zatio n-6 

In many situations, the total impulse response is not always immediately 

available. For this reason it is useful to have so called partial realiza­

tion algorithms, where finite impulse response sequences are processed and 

where the computational results are updated as soon as new data are avail­

able. 

(3.4.1) DEFINITION. A system r = (A,B,C,D) isan N-partial realization pf a 

f . . F ) "f d i-1 . 1 □ -in-i te sequence N = (F O, Fl, ... , F N -z, D = F O an Fi = CA B, J. = , ••• , N. 

For systems over a field such partial realization algorithms are known (see 

[45], [43], [60]) and a nice result on partial realizations is: 

(3.4.2) THEOREM. Let FN = (F0 ,F1, .... ,FN) be a finite sequence of m x p­

matrices ove1• a field. Let i and k be positive integers such that i + k N. 

Then FN has one and only one extension to an infinite impulse response 

sequence F such that 

rank H = rank Hik 

iff the following t-wo conditions are satisfied: 

(3.4.3) 

(3 .4 .4) 

rank Hik 

rank Hik 

rank Hi,k+l 

rank Hi+l,k 

PROOF. For a proof see [43]. □ 

Observe that a realization can then be found by applying theorem (3.2.4) to 

Hi,k+l. 

For systems over rings the problem of finding canonical (minimal) partial 

realizations is still unsolved even for the scalar case. 

To some extent, the following theorem gives a result on partial realization 

over a principal ideal domain. 

(3.4.5) THEOREM. Let FN = (F0 ,F1, ••• ,FN) be a finite sequence of m x p­

matrices over a principal ideal domain R. Let k and i be positive integers 

such that i + k N. Suppose that we have the factorization 

(3.4.6) 



where Pis right regular and Q is right invertible with right inverse Q+. 

If 

(3 .4. 7) rank Ht+l,k = rank Htk =: n 

and k ~ n, then there exists a unique partial realization E 

satisfying [Q,Qk] = Q{E,k+l), p = P{E,t), viz. 

B = Q , 
. 0 

{A,B,C,D) 
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where P0 E Rmxn consists of the first m rows of P and Qi E Rnxp is defined 

by the block decomposition Q = [Q0 ,Q1 , ••• ,Qk_1J. 

PROOF. Defining SE Rtmxp by the decomposition Ht,k+l = [Htk'S] we conclude 
+ from (3.2.10) that S = Htk W where W := Q Qk. If we decompose W by 

W = [Wi,···•Wk]' where Wi E Rpxp, then the sequence FN satisfies the follow­

ing recurrence relation 

(3.4.8) 

for j = 1, ••• ,t. Now let us define Fi for i > N by this recurrence relation. 

Then the result will follow from theorem (3.2.6) if we know that rank H = 

= rank Htk =: n. According to [68] it suffices to show that 

(3.4.9) rank H0 1 k . = n ,,+ I +J 

for j = 1 , 2, • • • • For j 

we have by (3.4.8) 

0 this equality follows from (3.4.7). For j ~ 0 

HH1,k+j+1 = [Ht+l,k+j 'HH1,k+j Wj] 

, R{k+j)pxp 
where Wj := [0,0, .•• ,0,Wi,···•Wk] E • 

This equation implies (3.4.9). □ 

Let us suppose that we are given an infinite sequence F = {F0 ,F1,F2, .•• ) 

and we want to compute a partial realization of {F0 ,F1, .•• ,FN) where N is a 

given positive integer. The algorithm is based on recursive construction of 

a modified Hermite form, rrtk' Vtk' Ttk' Gtk of Htk' that is, 

whose rank Gtk = n. We start constructing a modified Hermite form of 
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H11 =F1 (t=l,k 

T11 , G11 such that 

1) (see (3 .1. 4)) • Thus we obtain matrices IT 11 , V 11 , 

and G11 is right regular and lower triangular. If F1 = 0, then G11 is the 

empty matrix. 

We proceed recursively as in case a or case 8 depending upon the following 

properties (for general t, k) 

P : n :,; k , n+p :,; km , V tk 
Utk 

0 

for suitable matrices Utk' Wtk 

Case a. Property Pis satisfied: we add a block row to Htk and write 

then, if s2 = 0 we obtain a partial re~lization of (F 1 , ••• ,Fk+t) as follows: 

define 

then we write Htk = [Ht,k-l'S] and we have 

Wtk] = P[I ,0,0] 
I n 

p 

where [In,0,0] E Rnx(n+(km-n-p)+p). It follows that 

and hence Ht,k-l PQ and 

and hence S = PQk_1 • Consequently, we have the relation (3.4.6) with k 

replaced by k - 1. Also, it is clear that P is right regular and Q is right 

invertible. 



By P we have k ~ n and (3.4.7) follows from the equation s 2 

may apply theorem (3.4.5). 

0. Thus we 
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If i+k ~ N, the algorithm has terminated. If not, we notice that property P 

is still satisfied with i replaced by i + 1 and we proceed with case ex. If 

s 2 1 0 we determine a modified Hermite form of s 2 and therewith a modified 

Hermite form of Hi+l,k" Then we check again whether Pis satisfied (with i 

replaced by i + 1) • 

case S. Property Pis not satisfied. We add a block column to Hik and write 

We try to find a matrix W such that 

II H ik r ik i,k+l O 

The existence of such a W can be investigated by performing elementary 

column operations on the matrix [Gik'O,s]. Due to the special form of Gik' 

this investigation is very simple and explicit conditions for the existence 

of W can be given: 

1 ° The i-th row of S is divisible by (G1k) ii. 

2° If the appropriate multiple of the i-th column is substracted from the 

columns of S (so as to make the i-th row zero) for i = 1, ••• , n, then the 

resulting columns have to be zero. 

If we are able to construct W, then we check whether k ~ n. If so, we are 

in case ex. If not, or if W does not exist, we are again in case S. In the 

latter case, we of course have to update the modified Hermite form. 

We will now show that the procedure terminates provided H has finite rank. 

First we note that for a fixed value of i, we cannot have infinitely often 

that case S holds. Fork increases at every step and we must have k ~ n 

after a number of steps, because n ~ im. Also, condition 1° of case Scan­

not be violated infinitely often, since at every step the ideal in R gener­

ated by (G1k) ii will strictly increase unless condition 1 ° is satisfied. 
. 0 

Furthermore, condition 2 will certainly be satisfied if n = rank H and 

every time 2° is not satisfied, n will increase. Similarly in case ex, 

s 2 = 0 will hold if n = rank Hand otherwise n will increase. This shows 



50 

the finiteness of the algorithm. The algorithm given here is not a true 

algorithm for partial realization, since one needs an infinite impulse 

response in order to complete the algorithm. Of course, one can always 

extend a finite sequence such that the resulting sequence has a Hankel 

matrix of finite rank. However, it is not at all obvious how to extend a 

finite sequence such that the corresponding Hankel matrix has minimal rank 

(cf. [63]) . 

If we apply this algorithm to a scalar impulse response, the algorithm 

gives a canonical realization where the recurrence parameters of a minimal 

recurrence are in the matrix (now a vector) Wik" But in this case we do not 

have to carry out the complete algorithm, for in this case the realization 

given in theorem (2.4.9) is a canonical realization. Observe that we only 

need the recurrence parameters in the case of a scalar system. Therefore we 

can also apply the algorithm due to Rissanen [60] and perform calculations 

over Q(R). This will give the required recurrence parameters and they are 

elements of R (see [64]). 

A large part of this chapter can also be found in [21]. 



IV 2-V SYSTEMS 

IV.1. Int!toduc;Uon 

As already mentioned in Chapter II. the time set of an input/output system 

may also be a partially ordered set. In this chapter we will be concerned 

with input/output systems where the time set is zz 2 = 7Z x 7l. with a partial 

order :i defined by (using row vector notation) 

(4.1.1) (k,h) :i (m,n) iff k s m and h s n. 

In many cases when we are dealing with input/output systems in which the 

inputs and outputs depend on two "time" parameters (which may be actually 

space parameters), the dependence of the outputs on the inputs can be 

characterized by equations of the form 

(4.1.2) (k,h) 2 
E 72: (i,j) E 7Z 2 
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where u. . E lRP, ykh E lRm and Fk h . . E lRmxp for some integers m and p. 
iJ ' ,i,J 

Again (as in Chapter II) we will impose some finiteness conditions on the 

index set that insure that (4.1.2) denotes a finite sum for all k, h. The 

partial order defined in (4.1.1) enables us to define causality for a sys­

tem described by (4.1.2). In Section IV.4 we will allow a more general 

partial order on:E 2 • In fact, it can be shown that every partial order on 

7Z 2 gives rise to some causality notion. For the input/output system (4.1.2) 

causality is defined in an analogous way as in (2.1.2). 

The input/output system (4.1.2) is called causal if the output at (k,h) is 

only dependent on past inputs (u .. with is k and j sh). This means that 
iJ 

(4.1.3) i < k or j < h • 

In many cases the input/output system does not explicitly depend on (k,h). 

In other words: If a double sequence (u. . )(. . ) 2 is related to a double i,J i,J EE 

sequence (yk,h)(k,h)E7l.2 then the shifted input sequence (ui+m,j+n) (i,j)E1Z2 

gives rise to the output (yk+m,h+n) (k,h)E~2 for all (m,n) E ~ 2 • In this 

case Fk h .. only depends on the difference (k-i,h-j). 
, ,l.,J 
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This assumption of shift invariance will be made and we replace (4.1.2) by 

(4.1.4) (k,h) E 1Z 2 • 

Now the causality condition reduces to 

(4.1.5) F 
nm 

0 n < 0 or m < 0 

We will make again (as in (2.1.4)) a finite past assumption on (u .. ),. ') 2 
i, J i, J ElZ, 

i.e., 

uij = 0 if i < 0 or j < 0 • 

Then the causality condition implies that ykh = 0 fork< 0 or h < O. It 

follows that, assuming causality and time invariance, we may write the 

input/output system as 

(4.1.6) k 0,1,2, ..• , h 0,1,2, •••• 

This is the standard equation (see [16]) for a 2-D causal, discrete time 

shift invariant, linear input/output system. 

As in II.2 we call the double sequence (F ) ( ) ..,2 the impulse response 
m,n m,n E""+ 

of the input/output system (4.1.6) 

As in the 1-D case (that is, the case of one time parameter) the 2-D input/ 

output system (4.1.6) can also be described via formal power series but now 

in two variables s-l and z-1 • 

(4.1.7) DEFINITION. The formal power series r(s,z) in the variables s-1 and 

z-~ associated with the double sequence (r ) 2 is 
m,n (m,n)Ei'Z+ 

r(s,z) °'f 
m=0,n=0 

r mn 
-n 

s 
-m z □ 

A formal power series r(s,z) is also called the formal 2-D z-transform of 

the double sequence (r ) ( ) .,,.2• Again the word "formal" is used because m,n m,n E.,..+ 
one does not actually want to calculate the sum; but one uses it as just an-

-1 -1 other notation for (r ) 2· As in the 1-D cases and z are only 
m, n (m, n) E7Z+ 

position markers. 

The set of formal power series in two variables with real coefficients is 

d t db [[ -l -l]J h lR[[s-l,z-1]] ' ' . h h 1 eno e y lR s , z . T e set is a ring wit t e usua 
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elements. definitions for the sum and the product of two 

Observe that JR[[s-1,z-1]] can also be written as -1 -1 
JR[ [ s J J [ [ z J J , that is 

the ring of formal power 
-1 

series in z-l where the coefficients are formal 

power series ins 

Analogously to the scalar case we also have a formal power series associated 

with a vector sequence (u .. ) (. ') '772, 
J.. I J J.. t J f:lu + 

sequence (F ) ( ) 2· Thus we have m,n m,n EiZ+ 

u (s,z) 
00 I 00 

s-j -i I u .. z 
i=O, j=O l.J 

(yk,h) (k,h)E:7Z_; and also for a matrix 

(4.1.8) y (s,z) 
00 I 00 

-h -k I ykh s z 
k=O,h=O 

00 t 00 

F (s,z) I F -n -m s z 
m=O,n=O mn 

where 

u(s,z) -1 -1 p -1 -1 
E JR[[s ,z ]] , the set of p-vectors over JR[[S ,z ]] I 

-1 -1 m -1 -1 y(s, z) E JR[[s ,z ]] , the set of m-vectors over JR[ [ s , z J J , 

E JR[ [s -1 -l]Jmxp JR[[s -1 -1 F(s,z) I Z t the set of m x p-matrices over ,z ]] 

Using formal power series, the2-D input/output system (4.1.6) can equi­

valently be described by 

(4.1.9) y(s,z) = F(s,z)u(s,z) 

In this chapter our main concern will be.the construction of a state space 

realization for a 2-D input/output system. We will give an intuitive reason­

ing why a state space will generally be infinite dimensional. Suppose we 

have a state space X such that ykh depends only on xkh and ukh for all 

(k,h) and xkh EX. Suppose further that xkh depends only on uk',h' for some 

(k',h') :5_ (k,h) and on former states (for s._ see (4.1.1)). 

Now consider figure 2: 
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@ (k,h) 

Figure 2 

Because the output at (k,h) depends on umn form,.; k, n,.; h (see (1.4.6)) 

the state xkh will depend on former states and at least will depend on 

x0 , 0 ,x0 , 1,x1, 0 ,x1, 1, ••• ,xk-l,h'xk,h-l. Because (k,h) is arbitrary it will 

be intuitively clear that the state space generaily is infinite dimensional 

because for each (k,h) the state xkh at least contains the information con­

cerning the initial conditions x010 ,x0 , 1, ••. ,x0 ,h and x 110 ,x2, 0 , •.• ,xk,O" 

REMARK. The fact that the state space is generally infinite dimensional 

follows also from considerations·using Nerode equivalence classes. See 

[24], [48]. □ 

Because we are interested in recursive state space models and, again in­

tuitively speaking, recursiveness of state space models is closely connect­

ed with rationality of transfer functions, henceforth we will mainly be 

concerned with the case where F(s,z) in (4.1.9) is a rational function ins 

and z. Therefore we introduce some notation. The field of real rational 

functions in the variables sand z will be denoted by JR(s,z). The ring of 

real polynomials ins and z will be denoted by JR[s,z]. 

REMARK. JR[s,z] can also be written as JR[s][z], i.e., every polynomial in 

two variables sand z can also be written as a polynomial in z where the 

coefficients are polynomials ins (also JR[s,z] = JR[z][s]). 
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lR(s,z) can be written as lR[s] (z), i.e., a rational function in two varia­

bles can be written as a rational function in one of the variables with, as 

coefficients, polynomials in the other variable. 

Because lR(s,z) = JR[s](z) we can divide all coefficients of an element of 

lR(s,z) by the coefficients of the leading term of the denominator of this 

element. Thereby JR(s,z) can be seen as JR(s) (z) where the denominator 

polynomial is monic. □ 

As in the 1-D case (see [45]) we will work with rational functions which 
-1 -1 

can be expanded in a formal power series in the variables s and z . In 

the 1-D case the necessary and sufficient condition for this to be possible 

is that the rational function is proper. This will now be generalized. 

Using the identifications in the above remark we will use the following 

notation. A polynomial q E JR[s,z], viewed as an element of JR[s][z], will 

be written as q. An analogous notat~on will be used for P and P where 

PE JR[s,z]mxp and PE JR[s][z]mxp, where JR[s,z]mxp and lR[s][z]mxp are the 

sets of m xp-matrices over JR[s,z] and lR[s][z], respectively. 

Let F(s,z) be an m x p-matrix over lR(s,z), then F(s,z) can be written as 

F(s,z) = P/q = P/q where P, P, q, q are as above. 

(4.1.10) DEFINITION. A rational matrix FE R(s,z)mxp is called proper if 

for some representation F = P/q 

1° The degree in z of qcz) is not Zess than the degree in z of P(z). 

2° The degree ins of the coefficient (the so called leading coefficient) 

of the highest power in z of q(z) is not less than the degree of each 

other coefficient of q(zl and the entries of P(zl. 

0 

F is called strictly proper if "not less" is replaced by "larger" in 1 

and 2° D 

It can easily be seen that a representation F P/q for a proper F, where P 
0 • 0 

and q are coprime, satisfies 1 and 2. 

Let q(s,z) E JR[s,z] and suppose the degree ins of q(s,z) ism and the 

degree in z of q(s,z) is n. Then, for q to be the denominator of a proper 

F = P/q, it is necessary and sufficient that, besides degs(P) s m and 

degz (P) s n, the coefficient of the monomial sm zn be non-zero. In this case 

this coefficient can be assumed to be one. This could be used as the defini­

tion of properness and in fact would constitute a symmetric (ins and z) 

definition. However, for our purposes definition (4.1.10) is more appropriate. 
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EXAMPLES. 
s+z and 

z + 3s 

sz + s 2 + 1 
2 

z s + s 

is proper. 

are not proper. 

(4.L11) DEFINITION. A proper rational matrix in two variables sand z is 

caZZed a 2-D transfer matrix. □ 

A transfer matrix in irreducible form and a representation where common 

factors occur in the numerators and denominators of the entries will not be 

distinguished, unless this is mentioned explicitly. 

The set of 2-D transfer matrices (mxp) will be denoted by JR (s,z)mxp. If 
C 

F(s,z) 

q (s, z) 

E JR (s,z)mxp, then 
C 

= q0 (s) + q 1 (s)z + 

F can be written as P/q, where PE JR[s][z]mxp and 

+ q (s) Zn E JR[s][z]. 
n 

We divide all coefficients of q and P by q (s) (the leading coefficient of 
n 

q(s,z)). By the properness of Fall coefficients become proper rational 

functions ins and q becomes a monic polynomial. 

Now F(s,z) can be seen as an element of R (z)mxp where R =JR (s). This is 
C C 

the key idea in the present approach to 2-D systems and it gives the possi-

bility to interpret 2-D systems as 1-D systems over rings. 
mxp The following theorem shows that JRc(s,z) can be embedded in 

JR[[s-1,z-l]Jmxp. 

(4.1.12) THEOREM. Let F(s,z) be a formal power series in JR[[s-1,z-1JJmxp_ 

If F(s,z) E JR(s,z)mxp then F(s,z) E JR (s,z)mxp. Fu:,,thermore, every 
C 

expanded in a formal power series in 

PROOF. The proof of the first part is :immediate. For the second part we 

observe that F(s,z) E JR (s) (z)mxp. Therefore F(s,z) can be expanded in a 
C C -l 

formal power series in JRc(s)[[z ]]. Then we expand all the coefficients 

in JR (s) in a formal power series in JR[[s-1]]. Therefore we have that 
C -1 -1 -1 -1 

F ( s, z) E JR[ [ s ] ] [ [ Z ] ] = JR[ [ s , Z ] ] • 0 

The proof can also be given by considering F(s,z) a complex function in two 

variables which is analytic at infinity. Then the associated formal power 

series is the series expansion (ins-land z-1) at infinity. 
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The fact that JR (s,z)mxp can be identified with JR (s) (z)mxp enables us 
C C C 

to consider a 2-D transfer matrix as a 1-D transfer matrix over the ring 

JRc (s). Also, a 2-D impulse response F = (Fk,h) (k,h)E~~ can be considered as 

a 1-D impulse response (T(s)k)kElZ+ where T(s)k is a formal power series in 

s-1 • Again we are primarily interested in the case where T(s)k is a proper 

rational matrix for each k E°IZ+ (that is, T(s)k is a 1-D transfer matrix 

for each k E 1Z+) • 

Therefore, the ring which will be of central importance here is the ring 

JRc(s) of proper rational functions in one variables (the ring of 1-D 

transfer functions). 

In order to apply the realization results of Chapter II and the algorithms 

in Chapter III it is necessary that JRc(s) be a principal ideal domain. In 

the next section we will prove that this is indeed the case and also that 

JRc(s) shows some additional structure from which we may benefit when actual­

ly performing the computations necessary for the realization algorithms. 

In this section we will prove that JRc(s) is a principal ideal domain. 

First of all we will always assume that for r 1 (s)/r2 (s) E JRc(s) we have 

that r 1 (s) and r 2 (s) are coprime, i.e., r 1 (s) and r 2 (s) have no common 

factor other than unity. Constant common factors other than unity are ruled 

out because r 2 (s) is supposed to be monic. In this way we obtain in acer­

tain sense the simplest representation for an element of JRc(s). A ring 

which will be very useful is the following 

(4. 2.1) 

Observe that in the representation r1 (s)/r2 (s) E JRc(s) we may assume that 

r2 (oJ = 1. 

One of the main tools will be the following ring isomorphism 

(4.2.2) 

defined by 

where we suppose r 2 (s) to be monic and r2 (0) = 1. 
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The fact that Sis an isomorphism follows immediately from the following 

observations. 

Let 

then 

where n ;:: m. 

Observe that lR[s] c JR (s). 
C 

JRc(s) is a ring of fractions of JR[z] with respect to Dc (see [77] or the 

appendix). Notation: JRc(s) =lR[s]Dc where the multiplicative set Dc is 

(4.2.3) D 
C 

{d(s) j d(s) E lR[s], ·d(O) ~ O} • 

Since lR[s] is a principal ideal domain (see [77]), it follows that 

JRc(s) = JR[s]Dc is also a principal ideal domain (see [8]). Therefore lRc(s) 

is a principal ideal domain. This enables us to apply the realization algo­

rithms described in Chapter III. However, in actually performing the re­

quired computations one can benefit from the finer structure of lRc(s). It 

is not difficult to see that lRc (s) is in fact a Euclidean domain. In 

fact, the required Euclidean function~ can be taken to be the degree dif­

ference of denominator and numerator, that is, for n(s)/d(s) E lRc(s) we may 

define ~(n(s)/d(s)) = deg(d(s)) - deg(n(s)). Now suppose that n2 (s)/d2 (s) 

and n1 (s)/d1 (s) be such that ~(n2 (s)/d2 (s)) 2: ~(n1 (s)/d1 (s)). Then there 

exist p(s)/q(s) E JRc(s) and r 1 (s)/r2 (s) E lRc(s) such that ~(r1 (s)/r2 (s)) < 

< ~(n1 (s)/d1 (s)) and n2 (s)/d2 (s) = (p(s)/q(s))n1 (s)/d1 (s) + r 1 (s)/r2 (s), 

for we can take p(s)/q(s) = (n2 (s)d1 (s))/(n1 (s)d2 (s)) and r 1 (s)/r 2 (s) = 0, 

where p(s)/q(s) E lRc(s) because ~(n2 (s)/d2 (s)) 2: ~(n1 (s)/d1 (s)). This shows 

that in the ring lR (s) we even have for two elements a and b that a j b or 
C 

b j a (a j b denotes a divides b) • lRc (s) is a local ring whose maximal ideal 

is generated by 1/s. This can be exploited in the realization algorithms. 
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IV.3. 2-V -6!f-6.tem-6 M 1-V -6!f-6.tem-6 ave.Jt a plWlupai -i..de.ai domain 

In this section, we will introduce state space realizations for a 2-D sys­

tem. In general, the state space associated with a 2-D input/output system 

will be infinite dimensional (see figure 2). We will give updating equa­

tions for this state space realization. 

Suppose we are given a 2-D impulse response F = (Fk,h) (k,h)€iZ¾ where 

Fkh € JRmxp. This impulse response can be identified with the 1-D impulse 

response T = (Tk(s))k£E+ over JR[[s-1]] where 

-h 
s 

Therefore we can, assuming realizability, construct a realization of F over 

JR[[s-1]]. However, we will primarily be interested in the case where 
mxp 

Tk(s) € JRc(s) fork= 0,1,2, .••• This occurs when we have obtained the 

impulse response T from a 2-D transfer matrix. The reason for us to require 

Tk(s) € JRc(s)mxp is that we will be able to construct a finite dimensional 

local state space model (this concept will be introduced later on). This 

local state space model is an effective tool in computing the output given 

the input, because the computations can be done recursively. Although the 

underlying state space model is infinite dimensional over JR, our state 

space model is finite dimensional over JRc(s). In [24] the authors state 

that it is not clear what the state space equations should look like. In 

the following it is shown that the equations of the state space realization 

over JRc(s) can in fact serve as updating equations. 

In the above, the roles played bys and z can be interchanged. This can be 

seen as follows. Suppose we have a realizable impulse response 

T = (Tk(s))k€~+ over JRc(s). This means that the associated input/output 

system has a transfer matrix T(z) € JR (s) (z)mxp for some integers m and p. 
C C 

However, JRc(s)c(z) and JRc(z)c(s) can be identified and therefore T(z) can 

be seen as a transfer matrix over JRc(z). From this transfer matrix an im­

pulse response T over JRc(z) can be constructed and we may say that T and T 
both represent the same 2-D impulse response. 

REMARK. Although the variables sand z play a completely comparable role in 

the transfer matrix description of a 2-D input/output system, they loose 

this symmetric property as soon as the 2-D transfer matrix is considered a 
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1-D transfer matrix over the ring lRc (s) or JRc:(z). These two possible 

interpretations will only be mentioned a few times in this text. □ 

In the next we will introduce state space models for a 2-D system given by 

an impulse response or a transfer matrix. If the system is given by a 

transfer matrix, then a state space model can either be obtained via the 

impulse response or directly from the transfer matrix, depending on which 

realization algorithm is preferable (cf. section III.3). 

Let F(s,z) E JR (s,z)mxp (that is, F(s,z) is a 2-D transfer matrix) and 
C 

identify F(s,z) with a transfer matrix T(z) over lRc(s). T(z) can be ex-

panded in a formal power series 

00 

(4. 3 .1) T(z) ' -k 
l Tk z 

k=0 

where Tk E lRc(s)mxp fork= 0,1,2, ••• 

To obtain a canonical realization over lRc(s) (which will also be minimal 

because lRc(s) is a principal ideal domain) we apply theorem (2.5.6) or one 

of the realization algorithms in Chapter III and obtain a canonical realiza­

tion L = (A(s),B(s) ,C(s),D{s)) over lRc(s), where 

A(s) E lR (s)nxn, B(s) E JR (s)nxp, 
C C 

(4.3.2) 

C(s) E lR (s)mxn , D(s) E JR (s)mxp 
C C 

Here we have supposed that the dimension of the realization is n. Thus we 

have 

(4.3 .3) -1 
F(s,z) = T(z) = C(s)[zI-A(s)] B(s) + D(s) 

The dynamical interpretation is given by the equations 

(4.3.4) 
k 0,1,2, ... 

Here 

00 

' -h l ukh s 
h=0 

k 0,1,2, ••• , 
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co 

(4.3.5) yk (s) I -h 
ykh s 

h=0 
k 0,1,2, ... , 

co 

xk (s) I -h 
xkh s 

h=0 
k 0,1,2, .•• , 

where ukh and ykh are the inputs and outputs to the 2-D system (4.1.6) and 

xk(s) E JR[[s-1]Jn is the state of the system. 

In this way we have obtained infinite dimensional state space equations 

(over JR) for the system (4.1.6), although they are finite dimensional over 

JRC (S) • 

A realization~= (A(s),B(s),C(s),D(s)) of F(s,z) of the form /4.3.4) will 

be called a first level realization (see also [16]). 

Because JR (s) c JR[[s-1]] the multiplications in (4.3.4) are well defined. 
C 

More details concerning the realization procedures for 2-D systems will be 

given in Chapter VI. 

As was stated in theorem (2.5.16) each pair of canonical realizations of 

F(s,z) is related by a state space isomorphism S(s) which is also a proper 

rational matrix. 

The matrices A(s), B(s), C(s}, D(s) can themselves be viewed as 1-D trans­

fer matrices. Realizing each of them we obtain minimal realizations 

(4.3.6) 

(AA,AB,AC,AD) for A(s) 

(BA,BB,BC,BD) for B(s) 

(CA,CB,CC,CD) for C(s} 

(DA,DB,DC,DD) for D(s) 

(Here all of them are single matrices, not products.) So we have 

A(s) = AC[sI -AA]-l AB+ AD 

and analogous formulas for B(s), C(s) and D(s). A state space isomorphism 

can of course be given an analogous dynamical interpretation. The sequence 

of matrices AA,AB, ..• ,DD will be called the second level realization of 

F(s,z). 

The dynamical interpretation of the second level realization is the follow­

ing. Introduce vectors bkh' akh' ckh' dkh satisfying the equations 
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bk,h+l BA bkh + •BB ukh 

(4 .3. 7) ~k+!,h] [: :]~:] + L:Jskh 
+ 

L:Jukh 
k,h+l 

ck,h+l CA ckh + CB xkh 

dk,h+l DA dkh + DB ukh 

ykh = CD xkh + CC ckh + DC dkh + DD ~h 

where the vectors have suitable dimensions and all initial conditions are 

equal to zero (see also [16]). 

Furthermore, we have (see (4.3.5)) 

"' 
xk (s} }: -h 

xkh s 
h=O 

"' 
uk(s} }: -h 

ukh s 
h=O 

"' 
yk (s) }: -h 

ykh s 
h=O 

REMARK. In (4.3.7) xkh, akh, bkh' ckh' dkh are ZocaZ states (cf. [48]) 

because we have state space systems for each k. Although the matrices are 

the same for each k, the states will generally not be the same. □ 

From (4.3.7) it is clear that the second level realization enables us to 

compute the output recursively for a given input. Note that, also in this 

respect, 2-D systems and 1-D systems differ very much, because in the 1-D 

case the state space equations are also the equations used for the recursive 

computations of the outputs, whereas in the 2-D case the equations for the 

recursive computation of the outputs (4.3.7) are finite dimensional and the 

state space equations (4.3.4) are infinite dimensional. 

A flow diagram revealing the hierarchic nature of the first and second 

level realization is shown in figure 3. 
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Figure 3. Flow diagram of a 2-D system. 
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y 

REMARK. In 1-D systems theory the blocks containing A(s), B(s), C(s) and 

D(s) only contain constant matrices. In fact, this flow diagram specializes 

to the 1-D case if we leave out the parts concerning the s-dynamics. It 

will also be clear what a flow diagram for an n-D system could look like. 

For instance, in the 3-D case, the blocks containing constant matrices in 

figure 3 will contain 1-D systems again. □ 
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We will show that the models of [61] and [24] are equivalent to our second 

level realization in the sense that a model as presented in [61] and [24] 

can be rewritten in the form of our model and vice versa. Furthermore, 

given the input sequences, the generated output sequences are the same, in­

dependently of the model chosen for the description of the underlying 2-D 

system. It suffices to show that Roesser's model [61] is equivalent to ours 

in the above sense since the Fornasini-Marchesini model is known to be 

equivalent to Roesser's model (see [48], [25]). A local state space model 

due to Attasi (see [43]) is a special case of ours since it is a special 

case of [24]. In [24], [48], [25] only local state space models are given; 

these papers do not contain equations for the (infinite dimensional) state 

space realization. Because our model combines a local state space model 

(the second level realization) and a state space model (the first level 

realization) which are related in a simple way, the other models can be 

considered special cases of our model. 

Fornasini and Marchesini work with various local state space models which 

are strongly related (cf. [23], [24], [25]). For completeness we give here 

the definition of their last local state space model which they presented 

in [25]. 

Here ~hand ykh denote the input and output and xkh is a local state. AD­

matrix such that ykh = C xkh + D ~ can be incorporated in their theory 

without causing any problems. 

In [61] the following local state space model is considered (with notation 

as in [61 ]) 

(4.3.8) 

In fact, the matrix Dis zero in [61] but it is easy to extend the model to 

the case where Dis present. 
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(4.3.9) THEOREM. The loaal state spaae model (4.3.8) aan be written in the 

fo'l'TTI (4.3.4) and (4.3.7). The aorresponding rnatriaes are 

A(s) -1 B(s) -1 
= Az(sI -A4 ] A3 + Al , = A2[sI -A4 ] B2 + Bl , 

-1 -1 C(s) = CisI -A4 ] A3 + cl , D(s) = CisI -A4 ] B2 + D 

and 

AA= A4 , AB= A3 , AC= A2 , AD= A1 , 

BA= A4 , BB= B2 , BC = A2 , BD = B1 , 

CA= A4 , CB= A3 , cc= c 2 , CD= c 1 , 

DA= A4 , DB= B2 , DC= c 2 , DD= D 

Viae versa3 the seaond level realization (4.3.7) aan~e written in the fo'l'TTI 

(4.3.8). Then the aorresponding rnatriaes and veators are 

cl= CD, c2 = [0,0,CC,DC], D =DD. 

PROOF. Suppose that u(s,z) and y(s,z) are the formal power series associat­

ed with the input and output of the system defined by (4.3.8). Then we have 

It follows from the equality 

by calculating both inverses in the right-hand side that 

y(s,z) = F(s,z)u(s,z) 

-1J-1 -Az(sI-A4] 

I 
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where 

F(s,z) 

The second part of the theorem is proved by just reorganizing (4.3.7). D 

If we insist on a model in the form (4.3.8), the matrices tend to be 

"large". This can be seen if, for instance, the method described in [48] 

(only for scalar transfer functions) is used. It can also be seen from 

(4.3.10). Our second level realization gives more matrices but they are 

"smaller". 

In [74] a method to find a local state space model of the form (4.3.8) is 

described, starting with a first level realization. This is done using 

~

A(s) 

(4.3.11) W(s) = 
C(s) 

B(s)l 
D(s) 

as a single 1-D transfer matrix. In [74] a model of the form (4.3.8) is 

obtained by partitioning a realization (F,G,H,K) of W(s) as 

(4.3.12) F 

where the matrices A1, A2, A3, A4 , B1, B2, c1 , c 2, Dare the same as in 

(4.3 .8). 

(4.3.13) REMARK. Sontag's paper [74] appeared at the same time as [16] in 

which most of this chapter is described. For more comments concerning the 

relations with other papers and the history of the 2-D realization problem 

see Chapter I. □ 

(4.3.14) EXAMPLE. Consider a scalar proper rational function (a 2-D trans­

fer function) 

n i n i I a. (s) z I ai(s)z 
i=O l. i=O F (s,z) 

n 
b. (s) zj 

n 
S. (s) zj I I 

j=O J j=O J 



where (because of properness) 

ai (s) 
b{s) E ]RC (s) 

n 
and f3. (s) 

J 
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In order to simplify the example we assume that an(s) = 0. The first level 

realization can very easily be found for scalar transfer functions because 

one can use the so called standard controllable form for a realization, see 

[9]. 

A first level realization is E (A(s) ,B(s) ,C(s) ,D(s)) where 

0 0 

A(s) 

·o 

C (s) [a0 (s) , ••• , an-l (s) J 

0 

0 

1 

-f3 n-1 (s) 

D(s) 

B (s) 

0 • 

0 

0 

1 

The second level realization gives CD, CC, CA, CB, AD, AC, AA, AB, BD; 

BC= BA= BB= 0. 

The resulting local state space equations are 

CD xkh + CC ckh, 

where AD E lRnxn, JI.A E lRnxm, CA E lRmxm and m is the degree of bn (s) • We can 

even take AA= CA. 

Two kinds of system matrices have been obtained: 

IADAB AAACJ L E lR (n+m) x (n+m) 

representing dynamics in two directions and 
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CA 

representing dynamics in one direction 

In [48] an (n + 2m) x (n + 2m) system matrix is obtained for this transfer 

function because the authors wanted system equations in Roesser's form. 

By a system matrix of a system E = (A,B,C,D) or a local state space system 

(4.3.8) is meant the matrix A or in the latter case the matrix 

In theorem (4.3.9) we have seen that the local state space system (4.3.8) 

is theoretically equivalent to the second level realization (4.3.7). The 

structure of the equations (4.3.8) is also present in (4.3.7). Although in 

(4.3.7) one usually deals with smaller matrices, which can be advantageous 

on a computational level, Roesser's equations (4.3.8) seem to be more at­

tractive theoretically because the model contains less matrices. Therefore 

we will often work with (4.3.8) when we are dealing with local state space 

models. In the next, local state space models will be called state space 

models because it will always be clear whether a first level realization or a 

second level realization is under consideration. 

IV .4. Weakly c.ac.u,al 2-V -6y-6.teYn-O 

In this section the results concerning state space realization of a causal 

2-D system, as described in the first part of Chapter IV, will be general­

ized to a larger class of 2-D systems. This will give a generalized notion 

of state space realization, for which the state, and therefore the output, 

can still be evaluated in a recursive way. These 2-D systems will be called 

weakly causal. The results also include a realization method for a class of 

Non Symmetric Half Plane filters (NSHP filters), see [22]. 

Weakly causal 2-D systems arise in a natural way when one studies inverse 

2-D systems. Generally, a causal 2-D system does not have a causal inverse, 

even not a causal inverse with inherent delay, see [20]. In Chapter V these 

new notions will become clear when inverse systems will be discussed. 

The variables z ands can be interpreted as shift operators in the follow­

ing way 



69 

Thus the local state space model (4.3.8) can be written as 

(4 .4 .1) 

k,h 0,1,2, ..• , 

where, instead of Rand S, we have taken x and a respectively, and the 

initial conditions are x0h = O, h = 0,1,2, ••• ; akO = 0, k = 0,1,2, ••.• 

In the generalized state space model for weakly causal 2-D systems, as 

defined below, the shift operators z and s will be replaced by more general 

shift operators. 

Consider the 2-D input/output system 

(4 .4. 2) 
2 (k,h) E J C 7Z • 

The index set J will be specified later on. Fij E JRmxp for (i,j) E 12: 2 and 

some integers m and p. 

The support of the impulse response F (F ) is the set m,n (m,n)E.?Z 2 

(4.4.3) {(m,n) I (m,n) E 7Z 2, F '/- O} mn • 

A cone C is a subset of JR2 (with row vector notation) such that if 

(x,y) EC, then (Ax,Ay) EC for all A~ 0. The closed first quadrant of 
]R.2 2 

will be denoted by JR+. 

(4.4.4) DEFINITION. The input/output system (4.4.2) will be called weakly 

causal if 

SF C C , J C C 

for some closed convex cone c satisfying 

1 °, C n (-C) = { 0} , 
(4.4.5) 

2 °: JR2 C C • 
+ □ 
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From now on C will always denote a closed convex cone satisfying 1° and 2°. 

In the following we will be interested in invertible mappings~ 

such that the origin is a fixed point (~(0,0) 

duce first the notion of causality cone. 

(0,0)). Therefore we intro-

(4.4.6) DEFINITION. A causaZity cone cc is the intersection of two haZf-

pZanes H and H t where p,r q, 

H { (XI y) (x,y) 
p,r 

E ]R2, px +ry ~ O} 

H q,t 
{ (x, y) (x,y) E ]R2, qx+ ty ~ O} 

where p, r, q, t are non-negative iY1,tegers satisfying 

qr-pt = - 1 . □ 

The next figure shows the causality cone based upon H110 and H211 

Figure 4 

(4.4.7) LEMMA. Every causaZity cone has the properties 1'0 and 2° in (4.4.5). 

PROOF. The proof is straightforward and will be·omitted. □ 
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REMARK. Every causality cone induces a partial order on1Z 2 in the same way 
2 as 12:+ (the causality cone for a causal system) does, see [66]. This partial 

order enables us to introduce double sequences with finite past as is done 

in the 1-D case {see (2.1.4)); see also [56]. □ 

(4.4.8) LEMMA. Suppose that c is a closed convex cone satisfying 1° and 2° 

in (4.4.5). Then there exists a causality cone cc such that cc cc. 

PROOF.cc C' where C' is the intersection of two halfplanes H, , and 
p ,r 

H, t'' such that q , q'r' -p't' < 0 and p' and r' are coprime. Then there 

exist integers q1 and t 1 such that q1 r' - p' t 1 = - 1 and thus 

{q1 +np')r' - p' {t1 +nr') = -1 for all n E 12:. Because q'/t' < p'/r' we 

have for sufficiently large n0 that q'/t' < (q1 +n0p 1 )/(t1 +n0r 1 ). Now take 

p = p', r = r', q = q 1 +n0p•, t = t 1 +n0r• and Cc Hp,r n Hq,t is a 

causality cone satisfying Cc Cc. 0 

REMARK. Lemma (4.4.8) gives a result on existence of Cc. In fact, Cc is not 

unique at all. For instance, a causality cone containing Cc suffices also 

in lemma (4.4.8). □ 

(4.4.9) THEOREM. If cc is a causality cone, then there exists a map cp, one­

one and onto, 

such that 

m: C n 7.::2 +iz 2 
.,. C + 

PROOF. Suppose C = H n Hq,t' then the map q> defined by 
C p,r 

cp{k,h) = (pk+rh,qk+ht) 

is a possible one. □ 

This map q> will be used to transform a weakly causal input/output system 

into a causal input/output system, which, in turn, will be used to con­

struct a state space realization for the weakly causal input/output system. 

We will take a formal power series point of view for (4.4.2) (or apply the 

2-D z-transform to (4.4.2)). Then we obtain 

(4.4.10) y{s,z) = F(s,z)u{s,z) . 
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Observe that F(s,z) = l Fkh 
(k,h)EJ 

-h 
s 

-k z cannot be seen as a matrix over 

the ring of formal power series as is defined in (4.1.7), because positive 

powers of s or z may arise. Nevertheless we may use the word "formal power 

series" when we are dealing with the matrix F(s,z) or the vectors y(s,z) 

and u(s,z) because we have 

(4.4.11) THEOREM. For any cc H n H t the set p,r q, 

s p,r,q,t {F(s,z) there exists F 

t -h -k 
F(s,z) = l Fkh s z and SF c C } 

(k,h)E1Z 2 c 

is a ring with the usual addition and multiplication. Furthermore s 

is isomorphic to s1101011 • 

PROOF. Define the ring homomorphism 

by 

<!>: s ➔ s p,r,q,t 1,0,0,1 

<l>(F) (a,13) 
oof oo 

l F -1 
m=0,n=0 cp (n,m) 

p,r,q,t 

where cp is the same as in (4.4.9). Now the proof is just a matter of veri-

fication that <I> is indeed a ring isomorphism. □ 

For a formal power series, in the enlarged sense, rationality is, as usually, 

defined as being the quotient of polynomials. 

(4.4.12) THEOREM. Let <I> be the ring isomorphism defined in theorem (4.4.11). 

Then <l>(F) (a,13) is rational iff F(s,z) E JR(s,z). 

PROOF. The equality 

F -1 
cp (n,m) 

-m -n 
CL i3 F a-qk-ht 13-pk-rh 

k,h 

implies 

from which the result follows. □ 
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-mxR, 
The ring isomorphism can also be defined for S , the set of m x R. p,r,q,t 
matrices over§ t' because~ can be p,r,q, ~pplied to every entry of a matrix 

overs t" We will make a little abuse of notation and also 
p, r' q, 

write 

~(F) (o.,8) where F(s,z) is a matrix over S t By this we will mean that p,r,q, 
~ is applied to every entry of F(s,z) separately. Furthermore, by a rational 

matrix over S t we will mean a matrix where every entry is rational (in 
- p,r,q, 
S t) • Again, by a formal power series expansion (representation) of a p,r,q, 
matrix F(s,z) over S t we mean a matrix whose entries are formal power p,r,q, . 
series expansions (representations) of the corresponding entries of F(s,z). 

(4.4.13) DEFINITION. A rationa,l F(s,z), corresponding to a weakly causal 

input/output system, will be called a weakly causal transfer matrix. □ 

The following theorem is concerned with the uniqueness of a formal power 

series expansion, in the enlarged sense, for a weakly causal transfer ma­

trix. 

(4.4.14) THEOREM. Suppose F(s,z) is a weakly causal transfer matrix and 

tha.t 

~ -h -k 
F(s,z) = l Fkh s z 

(k,h)EIZ 2 
l G s-h 

(k,h)E1Z2 kh 

-k z 

Furthermore, suppose that SF c cc, SG c cc, where cc is a causality cone 

and F = (Fk,h) (k,h)E:tz2' G = (Gk,h) (k,h)az2• Then Fkh = Gkh for all k, h. 

PROOF. Let~ be defined as in (4.4.11). Now ~(F) (o.,8) is a causal transfer 

matrix. The formal power series expansion for ~(F) (o.,8) is unique (see 

[26]). From this the proof follows. 

Notice that a weakly causal transfer matrix may have more than one formal 

power series representation with support in a (different by (4.4.14)) 

causality cone. 

EXAMPLE. 

1 --= s -z with {(x,y) I y <! O, x <! -y} 

"' 1 1 ~ s k -- = -z l (z) with C 
s -z k=0 C 

{ (x, y) I x <! 0, y <! -x} • 

D 



74 

Starting with a weakly causal transfer matrix it is of course a long way 

around to transform it into a causal transfer matrix via the associated 

formal power series. Therefore we state the following lemma which enables 

us to construct a causal transfer matrix directly from a weakly causal one. 

(4.4.15) LEMMA. The isomorphism~, as defined in (4.4.11), can also be 

described by the substitution 

with inverse 

a = sp z -r , f3 = s -q z t . 

PROOF. The proof follows immediately from the proof of theorem (4.4.12). 

The fact that the inverse of the substitution s = at f3r, z = a q 13P also has 

integer exponents is due to qr - pt = - 1 • D 

Next we will derive a local state space realization for a weakly causal 

transfer matrix. The equations for this realization will be generaliza­

tions of (4.4.1). For this purpose we transform this weakly causal trans­

fer matrix into a causal one. Then we construct a local state space model 

for this causal transfer matrix as was done in IV.3 which will be written 

in Roesser's form (4.4.1). The ring isomorphism~ can also be defined for 

the obtained state space realization. This is done by means of lemma 

(4.4.15). The obtained state space realization is not a first order model 

anymore but the equations can still be used for recursive computation of 

the state and the output. We will now describe the procedure in more detail. 

Suppose F(s,z) is a weakly causal transfer matrix over S t· Suppose 
tr p,r,q, 

T(a,f3} = F(a f3 ,aqf3p}. Then T(a,f3) is a causal transfer matrix. Now T(a,f3} 

has a second level realization (see (4.3.7)) which can be written in the 

form (4.4.1) 

lf3 (x)kh] (4.4.16a) 
a(a}kh 

(4.4.16b) 

and 



T (a, 13) 

Since 13 -q t 
s z , Cl = Sp Z -r, equation (4.4.16a) can be written as 

[
-qt j s z (x)kh 

P -r 
s z (a)kh 

or 

[
zpt(x) kh] 

(4.4.17) 

s (a)kh 

i.e. 

xk+t,h = Al xk,h+q + A2 ak,h+q + Bl uk,h+q' th +qk <'. 0 , 
(4.4.18) 

a = A 
k,h+p 3 xk+r,h + A4 ak+r,h + B2 uk+r,h ' rh+pk <'. 0 

Instead of the initial conditions for (4.4.1) we now have the following 

X 0 -rm,pm m=0,1,2, ••• 

(4.4.19) 
a = 0 , 
tn,-qn 

n=0,1,2, ••• , 

see also figure 5. 
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(-r.p) 

(k+r.h-P) 

Figure 5 

Observe that, in order to compute the (local) state at (k,h), only the 

states in the shaded area have to be known. From this we can also see that 

the state can be evaluated in a recursive way and for every state a finite 

number of steps is necessary. 

REMARK. Because there are many ring isomorphisms transforming a weakly 

causal transfer matrix into a causal one, we may not expect uniqueness 

results. Even for equations as (4.4.1) no uniqueness results can be stated 

up to now because it is not clear how minimality or non-minimiality of 

first level realizations influences minimality or non-minimality of the 
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second level realization. Furthermore, up to now, a good definition of 

minimality of equations like (4.4.1) has not appeared in the literature. 

There is still another complication, for it is not clear what the effects 

are if we interchanges and z. 

The derived realization technique can also be applied to a class of NSHP 

filters (Non Symmetric Half Plane filters), see [22]. 

(4.4.20) DEFINITION. An NSHP filter is an input/output system with support 

in an NSHP, i.e., a subset of~2 of the foZZowing kind 

{ (k,h) I (k,h) E iz 2, k > 0 or (k 0 and h ~ O)} • 

For more details on NSHP filters we refer to [22]. Now consider an NSHP 

filter with support in a set H where q is positive integer and 
q 

(4.4.21) Hq = {(k,h) I (k,h) E iz 2 , k ~ o, h ~ -qk} • 

It is clear that H is in fact a causality cone so that the above method q 
can be applied. 

□ 

□ 

(4.4.22) REMARK. By allowing transformations like a 
-1 

s s = 
-1 

z one can 

realize transfer matrices having their support in a closed convex cone C 

containing another quadrant. C still has to satisfy C n (-C) = {0}. Also by 

interchangings and z all the results in this chapter remain valid and 

possibly other state space models are obtained. 

(4.4.23) EXAMPLE. The transfer function 

-s+(s-l)z 
F(s,z) = ----'-------

sz + s 2 

is weakly causal, for if we substitute (or apply an isomorphism~ which is 

equivalent to this substitution, see (4.4.15)) 

then 

is causal. 

s =a, z = aS 

~(F)(a,S) 
-l+(a-l)S 

a+ as 

□ 
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~(F) can be realized as follows: 

and we obtain a local state space realization of F(s,z) 

k 0,1,2, •.• ; h = -k,-k+1,-k+2, ••.. 

The initial conditions are 

X = 0 , O,h 
0 , h 0,1,2, ••• ; k = 0,1,2, •••• 
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v REFINEMENT OF THE STATE SPACE MOVELS ANV PROPERTIES 

v .1. Sta.b-i.LUy 

If a 2-D system is not only an object of theoretical study and one has 

practical applications in mind, then stability is one of the first proper­

ties the system must have. Stability of an input/output system reflects the 

idea that if a bounded (in some sense) input is applied to the system, then 

the output has to be bounded. 

Suppose we have the input/output system 

(5.1.1) (k,h) E 7.Z 2 
+ 

where again uij E JRP, ykh E JRm for some integers m, p. 

Let II II be some norm on lR1', then the norm on JRm will also be denoted by 

II II • The operator norm on JRmxp induced by II II will also be denoted by II II • 

Next we give the definition of BIBO stability (Bounded Input - Bounded 

Output stability) for the input/output system (5.1.1). 

(5.1.2) DEFINITION. The input/output system (5.1.1) is BIBO stahle if for 

aU M > O there exists an N > 0 such that, if II u .. II s M for aU (i, j), then 
l.J 

II Ykh II s N for aU (k,h). 

(5.1.3) THEOREM. The input/output system (5.1.1) is BIBO stahle iff 

cof IIFkhll<co • 
k=O,h=O 

PROOF. See [76]. 

□ 

□ 

The property of stability can also be checked if we have the transfer matrix 

of an input/output system. Suppose that F(s,z) is a 2-D transfer matrix and 

let q(s,z) be the least common multiple of the denominators of the entries 

of F(s,z). Then F(s,z) = P(s,z)/q(s,z) where P(s,z) is a polynomial matrix. 

we will assume that P(s,z) and q(s,z) are relatively prime, i.e., a common 

divisor of q(s,z) and all entries of P(s,z) is necessarily a constant. A 
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sufficient condition for an input/output system with transfer matrix F(s,z) 

to be BIBO stable can be expressed as a condition on the polynomial q(s,z). 

(5.1.4) THEOREM. The input/output system with transfer matrix F(s,z) 

= P(s,z)/q(s,z) where P(s,z) and q(s,z) are relatively prime is BIBO stahle 

if q(s,z) t 0 for lzl <= 1, Isl<= 1. 

PROOF. The proof, given in [30] for the scalar case, can easily be extended 

to the multivariable case. □ 

The condition q(s,z) f 0 for lzl <= 1, Isl <= 1 is not a necessary condition 

for BIBO stability. This is because of the possible occurrence of non-

essential singularities of the second kind on Isl = 1, I zl = 1 for the two 

variable complex function P(s,z) /q(s,z), see [30]. Thus, for a stable 2-D 

transfer matrix F (s, z) = P(s,z) /q(s,z) we have that q(s,z) t 0 for lzl ;;, 1, 

Is I ;;, 1, except possibly on Isl = 1; lz I = 1. 

For weakly causal input/output systems BIBO stability is defined in an ana­

logous way. For instance we have that the weakly causal input/output system 

is stable iff 

Furthermore we have that the weakly causal input/output system with transfer 
•mxp 

matrix F(s,z) ES tis BIBO stable iff the transformed causal input/ p,q,r, 
output system with transfer matrix ~(F) (a,S) is BIBO stable. See (4.4.2), 

(4.4.11). 

Because a different form of the above theorem is more convenient for us we 

state a theorem of Huang [36]. 

(5.1.5) THEOREM. q(s,z) f 0 for lzl :::: 1, Isl :::: 1 iff 
0 

1 q(s,0) t 0 for Isl $ 1, 
0 

2 q ( s, z) t 0 for lz I $ 1, Is I 1. 

PROOF. See [36]. 

Because we are interested in the region lzl ;;, 1, Isl ;;, 1, we state 

n . 
(5.1.6) THEOREM. q(s,z) = L q.(s)zJ t 0 for Isl<= 1., lzl <= 1 (where 

j=O J 
qn(s) is not the zero polynomial) iff 

□ 
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1° qn(s) # 0 for isl ?: 1, 

2° q(s,z) # 0 for isl = 1, izl ?: 1. 

PROOF. Consider q(¼, ¼>. Multiply with appropriate powers of s and z (in 

order to obtain a polynomial ins and z again) and then use Huang's 

theorem. □ 

Various stability tests have appeared in the literature. A good entrance to 

the "2-D stability tests" literature is [37]. 

The possible occurrence of non-essential singularities of the second kind 

can only violate condition 2° of (5.1.6). Therefore BIBO stability of 

F(s,z) implies that qn(s) # 0 for Isl?: 1. 

This motivates us to introduce a subring JR0 (s) of lRc(s): 

{
r 1 (s) 

1 
r 1 (s) . } 

( ) -(-) E JR (s), r 2 (s) # 0 for Isl ?: 1 r 2 s r 2 s c 

v.2. The. 4i.n.g 06 .6.ta.ble. 1-V .tltan..66el!. 6un.dlon..6 

Analogously to Section IV.2 we will prove in this section that JR0 (s) is a 

principal ideal domain. Because we have JR0 (s) c JRc(s) we implicitly assume 

for r 1 (s)/r2 (s) E JR0 (s) that r 1 (s) and r 2 (s) are coprime and that r 2 (s) is 

monic. 

We will also consider the following ring 

(5.2.1) for isl 

JR0 (s) is isomorphic to JR0 (s) where the ring isomorphism is the same as in 

(4.2.2). Again JR[s] c JR0 (s). The ring JR0 (s) is a ring of fractions (see 

[77] or the appendix) where the multiplicative set D0 is 

(5.2.2) D = {d(s) I d(s) € JR[s], d(s) # 0 for Isl ~ 1} a 

So JR (s) is the ring JR[s]D (see [77]). Because JR[s] is a principal 
a - a 

ideal domain, JR0 (s) is also a principal ideal domain. Therefore JR0 (s) is 

also a principal ideal domain. Actually JR0 (s) is a Euclidean domain be­

cause JR0 (s) is. This can be seen as follows. Suppose n(s)/d(s) E JR0 (s) and 

n(s) = n (s)n (s) where n (s) € D and n (s) has only zeroes for isl> 1. 
a * a a * 
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Then a possible Euclidean function~ can be defined by 

(5.2.3) 

This can be shown as follows. 

Let r 1,r2 e: JR.a(s). Then r 1 = r 1* u1, r 2 = r 2* u2 where ri* is a polynomial 

for i 1,2 and u. is a unit in :R (s) for i = 1,2. Suppose that 
i a 

~(r1) ~ ~(r2). This means that deg r 1* ~ deg r 2*. Therefore r 1* = qr2*+p 
-1 

and deg p < deg r 2*. Hence r 1 = u1 u2 q r 2 + pu1 and we have proved that 

r 1 = qr2 +p where ~(pl < ~(r2). 

v.3. Fhu.:t level 11.e.aU..za,Uon1i 06 .ti:ta.ble -lnput/ou,tpu,t .tiy.ti:tem.ti a.nd 

.ti:ta.b,lliza,Uo n o 6 2 -V .ti y.ti:tem-6 

In Section v.1 we saw that the transfer matrix of a stable 2-D system can 

be seen as a transfer matrix over JRa(s) which is a principal ideal domain. 

Therefore the realization algorithms in Chapter III allow us to obtain a 

first level realization La= (A(s),B(s),C(s),D(s)) over JRa(s). This first 

level realization can be considered to be built out of stable 1-D transfer 

functions, which is very important for practical reasons. Suppose that we 

have a, not necessarily stable, 2-D transfer matrix F(s,z) which can be 

considered a 1-D transfer matrix over JRa(s). Observe that this is only a 

condition on the polynomial qn(s) where F(s,z) = P(s,z)/q(s,z) and 
n q(s,z) = q0 (s) + q1 (s)z + ••• + qn(s)z (P(s,z) is a polynomial matrix and 

q(s,z) is the least common multiple of the denominators of the entries of 

F(s,z). Let La= (A(s),B(s),C(s),D(s)) be a canonical first level realiza­

tion of F(s,z) over JRa(s). Then 

(5.3.1) 
k = 0,1,2, •••• 

Suppose that the state xk(s) is the quantity that we want to know, but only 

the output can be measured. Then a possible approach to this problem is to 

construct an observer for this system (see [49] for the 1-D case). An ap­

proach to this 2-D observer problem can be found in [SJ. 

In the present context this comes down to the construction of an JRa(s) 

matrix W(s) such that 



-1 
[zI - A(s) + W(s)C(s)] 

is a stable 2-D transfer matrix, or equivalently 

[zI - A(s)' + C(s) 'W(s) 'J-l 
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is a stable 2-D transfer matrix, Now it will be clear that the construction 

of an observer for (A(s),B(s),C(s)) is equivalent to the construction of a 

stabilizing regulator for the dual system (A(s)' ,C(s)' ,B(s)'). Because this 

last problem can be formulated more easily we will first consider this 

regulator problem. 

If F(s,z) is unstable, then we are interested in stabilizing (5.3.1) by 

means of feedback. This means that we try to find a matrix K(s) over JR0 (s) 

such that if we choose uk(s) = - K(s)xk(s) the new transfer matrix 

( 5. 3. 2) C(s)[zI - A(s) + B(s)K(s)J-l B(s) + D(s) 

is a stable 2-D transfer matrix. We can achieve this in the following way. 

Suppose that A(s) E JR0 (s)nxn and choose p 1, ..• ,pn E JR such that 

(z-p1)(z-p2) ••• (z-pn) is a stable polynomial, i.e., 

(5.3.3) Ip i I < 1 for i = 1, 2, •.• , n • 

Now JR0 (s) is a principal ideal domain by theorem (2.5.18). Hence there 

exists a matrix K(s) such that det[zI-A(s) +B(s)K(s)] = (z-p1) ... (z-pn). 

Therefore the system (5.3.1) can be stabilized by means of a feedback 

uk(s) = - K(s)xk(s). 

The matrix K(s) can be given a dynamical interpretation by canonically 

realizing the 1-D transfer matrix K(s) as follows: 

with appropriate dimensions and zero initial conditions. 

The matrix KA is stable (has only eigenvalues A with IAI < 1) because K(s) 

is a stable transfer matrix. Observe that the feedback is composed of 

stable "building blocks". 

Of course there is an observer counterpart to this stabilization technique. 

Here one starts with a first level realization E0 (A(s) ,B(s) ,C(s) ,D(s)) 
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such that the dual system ,;; = (A(s)' ,C(s)' ,B(s)' ,D(s) ') is canonical and 

one constructs a matrix K(s) such that det[zI -A(s) +K(s)C(s))] is a stable 

polynomial, in the sense of (5.3.3). See [49] for more background informa­

tion, [80] for applications and [55] for a construction method. Although 

the construction method in [55] for a feedback matrix K(s) is for the case 

of systems over JR[s] it can be generalized to the case of systems over 

JRcr(s) in a straightforward way. 

In the next section we will consider more closely the rather restrictive 

reachability condition required in the above procedure. (Theorem (2.5.18) 

requires reachability of the pair (A(s) ,B(s)) over JRcr(s) .) 

v .4. Cano rue.al 6.uv.,.t le.vet 1te.a,Uza:UoYL6 ave.It JR (sl and JR (sl 
C a 

In this section we give rather explicit conditions for the reachability and 

observability of systems over JRc(s) and JRcr(s). Reachability of a pair 

(A(s),B(s)) whereA(s) E JR (s)nxn (JR (s)nxn) andB(s) EJR (s)nxp 
C a C 

(JR (s) nxp) is equivalent to the existence of a matrix L (s) E JR (s) npxn 
a C 

(JRcr(s)npxn) such that (see (2.5.8)) 

(5.4.1) [B(s) ,A(s)B(s), .•. ,A(s)n-lB(s) ]L(s) = I 

n-1 because the columns of [B(s) ,A(s)B(s), .•• ,A(s) B(s)] generate the stand-

ard basis vectors for JR (s)n (JR (s)n) iff (A(s) ,B(s)) is reachable. 
C a 

First we investigate the JRc(s) case. Suppose that (A(s) ,B(s)) is a reach-

able pair over JRc(s). Then we have the following theorem. 

(5.4.2) THEOREM. (A(s),B(s)) is a reaahahle pair over JRc(s) iff (AD,BD) is 

a reaahable pair over JR where AD and BD are the aonstant terms in the 

formal power series expansions of A(sl and B(s) respeatively. 

n-1 PROOF. If [B(s) ,A(s)B(s) , .•• ,A(s) B(s)]L(s) = I for some L(s), then 
n-1 n-1 [B(s),A(s)B(s), •.• ,A(s) B(s)]L(s) =[BD,ADBD, ••• ,AD BD]LD = I where LD 

is the constant term in the formal power series expansion of L(s). There­

fore (AD,BD) is a reachable pair over JR. Now suppose that (AD,BD) is a 
n-1 

reachable pair over JR and let MD be such that [BD,AD BD, ••. ,AD BD]MD = I 
n-1 • 

then [B(s),A(s)B(s), ••• ,A(s) B(s)]MD = I+M(s), where M(s) is a strictly 

proper rational matrix in JR (s)nxn_ Let M(s) have a realization 
C 

M(s) = MC[sI -MA]-l MB then I +M(s) is invertible over JR (s) and 
C 
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-1 I-MC[sI -MA+MBMc;] MB. We choose L(s) MD[I +M(s) J-1 and 

arrive at 

[B(s),A(s)B(s), ••• ,A(s)n-lB(s)]L(s) =I. 

Hence (A(s),B(s)) is a reachable pair over lRc(s). □ 

Now let A(s) and B(s) be matrices over lR (s). Then we have: 
. 0 

(5.4.3) THEOREM. (A(s),B(sll is a reaahable pair over :R0 (sl iff (A(sl,B(s)) 

is a reaahable pair over lRc(sl and (A(s),B(sl) is a reaahable pair (of 

aomplex matriaes) for eaah Isl ~ 1. 

PROOF. Reachability over :R0 (s) is equivalent to (5.4.1) where L(s) is a 

matrix over lR (s). This implies reachability over :Rc(s) and reachability 
0 • 

over «: for I s I ~ 1 • The proof of the "if" part is as follows. Suppose that 

(A(s),B(s)) is not a reachable pair over JR0 (s). Then we have that (see 

[72], [13]) the greatest common divisor g(s) of all n x n minors is not 

invertible in the ring JR0 (s). This can occur only if g(s) is not invert­

ible in lRc(s) or if there exists s 0 such that !s0 ! ~ 1 and g(s0 ) = O. In 

the former case (A(s),B(s)) is not reachable over lRc(s) and in the latter 

case all n x n minors are zero at s = s 0 , therefore (A(s0 ) ,B (s0 )) is not 

reachable over«:. □ 

The reachability of (A(s),B(s)) over JR0 (s) or lRc(s) can be characterized 

in another way in terms of polynomial matrices over lR (s) [z] or lR (s)[ z]. 
0 C 

The result will be stated in terms of matrices A(sl, B(s) over lR0 (s). An 

analogous result can be stated for matrices over :Rc(s). 

(5.4.4) THEOREM. (A(s),B(s)) is reaahable over lR (s) iff [zI-A(s),B(s)] 
0 

is right invertible over lR0 (s)[z], i.e., there exist matriaes P(zl and 

Q(z) over :R0 (s)[z] suah that [zI -A(s) ]P(z) + B(s)Q(z) = I. 

PROOF. Right invertibility of [zI -A (s) ,B (s)] over JR0 (s) [z] is equivalent 

to right invertibility of the matrix (which contains n block rows where n 

is the dimension of A(s)) 



86 

I 0 

-A(s) I 

(5.4.5) 0 -A(s) 

I 

0 -A(s) 

0 

B(s) 

B (s) 

0 

0 B (s) 

0 

see [62]. The proof in [62] is for. matrices over a field but it can be ex­

tended to the ring case in a straightforward way. Now right invertibility 

of (5.4.5) is equivalent to right invertibility of 

I 0 0 

(5.4.6) 

I , 0 0 
I n-1 

0 0 : B(s), A(s)B(s) A(s) B(s) 

The matrix (5.4.6) can be obtained from (5.4.5) by elementary row and column 

operations which proves the claimed equivalence. Finally, right invertibil­

ity of (5.4.6) is equivalent to reachability of (A(s),B(s)) over JRa(s). D 

Another way of expressing conditions for the reachability of (A(s) ,B(s)), 

which gives a more compact formulation, is by substituting¼ for sin A(s) 

and B(s) (see also [16]). Suppose A(s) and B(s) are matrices over JRa(s). 

Substitute .!. for s and multiply with appropriate powers of s to obtain 
s 

again rational matrices A(s), B(s) such that A(0) and B(O) are well defined. 

This can be achieved in a straightforward way. Then theorem (5.4.3) can be 

stated as 

(5.4.7) THEOREM. (A(s),B(s)) is a reachable pair over JRa(s) iff (A(s),B(s)) 

is reachable over~ for Isl $ 1. 

PROOF. The proof follows from the above considerations and will be omitted.□ 

Reachability of (A(s) ,B(s)) over JRa(s) can also be expressed as 

(5.4.8) THEOREM. (A(s),B(s)) is a reachable pair over JRa(s) iff 

[zI-A(s),B(s)] has full row rank for Isl$ 1 and all z E ~-

PROOF. Combining theorems (5.4.4) and (5.4.7) immediately gives the result.□ 
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Observability of a pair (C(s) ,A(s)) over JR0 (s) (see (2.5.9)) means that 

(5.4.9) C(s)x(s) = C(s)A(s)x(s) ••• = C(s)A(s)n-lx(s) = 0 

implies that x(s) = 0 (again n is the dimension of A(s)). This means that 

(5.4.10) 

C (s) 

C(s)A(s) 

n-1 
C(s)A(s) 

is right regular over JR0 (s) (see (3.2.2)). This is equivalent to right 

regularity of (5.4.10) over the quotient field of JR0 (s) which is in fact 

JR(s). 

Concerning observability of (C(s) ,Als)) over JR0 (s) we have the following 

theorem. 

(5.4.11) THEOREM. (C(s),A(s)l is an observahle pair over JR0 (sl iff there 

exists a aomplex nwnber s 0 suah that C(s0) and A(s0) are well defined and 

(C(s0),A(s0)) is an observahle pair over c. 

PROOF. Suppose that (5.4.10) is right regular over JR0 (s) and hence over 

JR(s). Then (5.4.10) is left invertible over JR(s). Thus there exists a s 0 

such that (C(s0),A(s0)) is an observable pair over c. Now suppose that 

(5.4.10) is not right regular over JR0 (s). Then it is not right regular 

over JR(s) and so we have that all n x n-minors are zero. Thus for every 

s 0 E c for which C(s0) and A(s0) are defined (C(s0),A(s0)) is not an ob­

servable pair over c. 

REMARK. If (C(s),A(s)) is observable for some s 0 , then this pair is observ­

able for almost alls EC, because the points s EC, such that C(s) and 

A(s) are well defined, where observability fails to be hold are the zeroes 

of then x n minors of (5.4.10). This is related to genericity which will 

be discussed briefly in Section V.9. 

D 

D 

Because observability of a pair (C(s),A(s)) is equivalent to right regular­

ity of (5.4.10) over JR(s) the above results concerning observability of a 

pair (C(s),A(s)) over JR0 (s) are also valid for matrices over JRc(s). 

(JR.0 (s) and JRc (s) have the same quotient field, namely JR(s) . ) 



88 

Observe that observability is very easily satisfied. Reachability over 

E.c(s) is a somewhat stronger condition while reachability over Ecr(s) is a 

very severe condition. 

(5.4.12) EXAMPLE. Consider the pair (A(s) ,B(s)) where 

A(s) ~ 1 ol 0 0 1 

.!. 1 .!. 
s s 

B(s) = [ ~ ] 
s+2 
2s+l 

This pair is reachable over E(s) as well as over Ec(s) but it is not 

reachable over JRcr(s). This can easily be seen because 

2 ( s + 2 )3 det[B(s) ,A(s)B(s),A(s) B(s)] = 25+1 

which is invertible in JR(s) and in JRc (s) but not in JRcr (s) . 

V. 5. SepaJtab-lUty 06 2-V .tJr.a.M oell mo.:t'Uc.e6 

In this section we will be concerned with transfer matrices whose denomina­

tor polynomial is separable, i.e., is the product of a polynomial ins and 

a polynomial in z. 

(5.5.1) DEFINITION. A transfer matrix F(s,z) = P(s,z)/q(s,z), where P(s,z) 

and q(s,z) are ooprime, will be oalled separable iff q(s,z) oan be written 

as a produot q(s,z) = q 1 (s)q2 (z) with q 1 (s) and q 2 (z) polynomials. □ 

(5.5.2) LEMMA. A transfer matrix F(s,z) is separable iff there exists a 

first level realization rs= (A,B(s),C(s),D(s)) where A is a oonstant 

matrix. 

PROOF. Suppose that F(s,z) 

as 

P(s,z)/q1 (s)q2 (z). Now P(s,z) can be written 

This fact is an immediate generalization of the scalar case, for suppose 

that p(s,z) is a two variable polynomial. Then p(s,z) can be written as 
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[
P21 (z)l 

p(s,z) = [p11 (s), ••• ,p1r(s) J : 

P2r(z) 

where r is the rank of the matrix of coefficients of p(s,z). From this the 

proof of the lemma follows immediately. D 

From lemma (5.5.2) it is clear that a separable F(s,z) can be realized as a 

cascade connection of two 1-D systems with dynamics in different directions 

because 

(5.5.3) DEFINITION. Two systems E1 (A1 (s),B1(s),c1 (s),D1 (s)) and 

E2 = (A2 (s),B2 (s),c2 (sl,D2 (sll ai:>e feedback equivalent if there exists a 

state space isomorphism T(sl and a feedback matrix K(sl suah that (see [10]) 

0 = T(s) -l [A2 (s) -B2 (s) K(s) ]T (s) 1 Al (s) 
0 -1 

2 Bl (s) = T(s) B2 (s) 

0 

3 c 1 (sl = c 2 (s)T(s) , 
0 

4 Dl (s) = D2 (s) D 

(5.5.4) DEFINITION. Two transfer matrices F1 (s,z) and F2 (s,z) ai:>e called 

feedback equivalent if F1 (s,zl and F2(s,z) have first level realizations E1 
and E2 respectively, which ai:>e feedback equivalent in the sense of 
(5.5.3). D 

We will now derive a result on feedback equivalence. 

(5.5.5) THEOREM. Every reachahle system E1 = (A1 (s),B1 (s) ,c1 (s),D1 (s)) over 

JRc(sl is feedback equivalent to a system E2 = (A2,B2(s),c2 (s),D2(s)) where 

A2 is a matrix over JR. 

PROOF. B.ecause JRc(s) is a local ring we can apply theorem (2.5.21), a 

generalization of Heymann's Lemma, and obtain a matrix K(s) and a vector 

u(s) such that (A(s) -B(s)K(s), B(s)u(s)) is a reachable pair. This K(s) 

and u(s) are very easily found if one notes that (A1 (s),B1 (s)) is a 
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reachable pair over JRc(s) iff (see (5.4.2)) (AD1 ,Bo1) is a reachable pair 

over IR. Therefore there exist a matrix Kand a vector u over JR such that 

(AD1 -BD1K, BD1u) is reachable. Such a Kand u can be constructed using the 

algorithm in [34]. Now, again by theorem (5.4.2) (A1 (s) -B1 (s)K, B1 (s)u) is 

reachable over JRc(s) and can therefore be transformed into control canon­

ical form. Thus there exists a state space isomorphism T(s) such that (see 

[18 ]) 

-1 . 
T(s) [Al (s) -Bl (s)K]T(s) 

is a companion matrix, thus has the form 

0 0 0 

0 

where ai(s) E JRc(s) for i = O, ••. ,n-1, and n is the dimension of r1, and 

It is clear that there exists a row vector k(s) 

E JR ( s) lxn such that 
C 

(5.5.6) -1 -1 
T{s) [Al (s) -B1 (s)K]T(s) - T(s) Bl (s)u k(s) 

is a matrix having entries in IR. The matrices, required for feedback 

equivalence, are T(s) and K(s) = K + uk(s)T(s)-1 • The matrix A2 in r 2 is 

given by (5.5.6). This proves the theorem. □ 

REMARK. An algorithm to determine the state space isomorphism can be given 

analogous to the 1-D case, see for instance [ 12] • 

A transfer matrix F1 (s,z) can be transformed into a separable transfer 

matrix F2 (s,z) by just applying state feedback to a reachable realization 

of F1 (s,z). For if (A1 (s),B1 (s) ,c1 (s),D1 (s)) is a reachable realization of 

□ 
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F1 (s,z), then there exists a matrix K(s) such that [A1 (s) -B1 (s)K(s)] has a 

characteristic polynomial which does not depend on s. This can be achieved 

because a reachable system is pole assignable (see (2.5.18)). In the case 

of a system over JRc(s) this can be achieved by the method described in the 

proof of theorem (5.5.5) and in the case of a system over JRcr(s) the con­

struction method in [55] gives the result. In the JRcr(s}-case F2 (s,z) can­

not be guaranteed to have a realization (A2,B2 (s),c2 (s},D2 (s)) where A2 is 

a matrix over lR and has the same dimension as A1 (s), whereas in the JRc(s) 

case this can be achieved, as is obvious from theorem (5.5.5). We then have 

the following theorem. 

(5.5. 7) THEOREM. Every 2-D transfer matrix is feedback equivalent to a 

separable 2-D transfer matrix. 

PROOF. This follows immediately from the foregoing considerations. □ 

REMARK. Because separable transfer matrices possess a somewhat simpler 

structure the above results may be useful in designing regulators and 

observers. The separability of transfer matrices may be advantageous in the 

construction of second level realizations (see also Section V.8). □ 

EXAMPLE. Consider the transfer matrix 

2 2 2 F(s,z) = [s+s, -1+(1+s)z]/(1-s(s+l)z+(s -1)z) 

A first level canonical realization is 

s: 1J , [ 0, 1 J, 0) 

s-1 

AD1 [: :] , BD1 

If we take· 

K 
L1 ~J . u [:] 0 -1 

then 
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and 

which is a reachable pair. Now using the same construction as for systems 

over a field we get 

T(s) • ~:
21 :J 

ls-1 
T(s)-l 

and 

-1 -1 
(T(s) [Al (s) -Bl (s)K]T(s), T(s) Bl (s)u) 

If we choose 

k (s) e~ ~] 
2 ' s - 1 

- 1 

then 

and F(s,z) is feedback equivalent to a separable transfer matrix 

C(s)[zI -AJ-1 B(s) + D(s), where 

B (s) 

C(s) D (s) 0 
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v .6. InveJ!ilb-ii.,U;y on 2-V J..npu;t/ ou;tpu;t ,!,!J,!,:t,em,!, 

In this section we will be concerned with invertibility of scalar weakly 

causal 2-D input/output systems (see also [20]). The concept of inverse 

system becomes important if one wants to know the input of a system in the 

case where the output is available. Applications of inverse 2-D systems can 

be found for instance in [70], [38], where they were used for the restora­

tion of degraded images. Most of the theorems will be given in terms of 

transfer functions. The associated impulse response, or equivalently the 

formal power series expansion of the transfer function, will be very help­

ful in proving the theorems. 

(5.6.1) DEFINITION. Suppose F(s,z) is a weakZy causal, tmnsfer function. 

Then a weakZy causal, tmnsfer function G(s,z) is an inverse of F(s,z) if 

1° There exists a causaZity cone c~ such that SF c cc, sG c cc. 
0 

2 G(s,z)F(s,z) = 1. 

-1 Usually this inverse G(s,z) is denoted by F(s,z) • 
0 

Condition 1 is part of the definition in order to be able to define the 
0 

multiplication in 2 properly. 

(5.6.2) THEOREM. Suppose that F(s,z) e: S • Then p,q,r,t 

F(s,z) has a weakZy causal, inverse iff F00 'IO. 

□ 

-1 -1 If F(s,z) has a '/JJeakZy causal, inverse F(s,z) then F(s,z) e: S • p,q,r,t 

PROOF. S tis isomorphic to s1 0 0 1, the isomorphism being t, as p,q,r, , , , 
defined in the proof of (4.4.11). Now t(F) (a,S) is invertible iff F00 'IO 

(see [81]). From this 1° and 2° follow immediately. 

If a sec·ond level realization for an invertible transfer function F (s,z) 

(F00 -,; 0) is given, then one can immediately write down a second level 

realization for F(s,z)-1• 

Suppose that a second level realization is given in the form (4.4.1), 

(4.4.16) 

□ 
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Then D F00 and a second level realization for the inverse system is 

(5.6.3) 

rs (x) khl 
Lcx(a) kJ 

Theorem (5.6.2) gives a positive result only if F00 # 0. In that case a 

weakly causal inverse exists. If th~s condition is not satisfied it is 

possible to introduce a generalized notion of inverse system (compare [51], 

[67]) which still can be given a useful interpretation. The idea is the 

following. If one is interested in the input of a system, given the output, 

but the system is not invertible then one might be satisfied if one could 

obtain a shifted (in some direction) version of the input. If one has ap­

plications in mind in the field of image restoration (see [70]), then this 

may be a satisfactory solution. 

By a shifted version of the input (uk,h) we mean (uk+m,h+n) for some in­

tegers m, n. In terms of formal power series representations this is 

translated into: 

By a shifted version of u(s,z) we mean 
-m -n z s u(s,z) for some integers m, 

n. 

For these reasons we will now consider inverses with inherent delay (short 

w.i.d.). See also [51], [67]. 

(5.6.4) DEFINITION. Suppose that F(s,z) is a weakly causal tPansfer func­

tion. Then a weakly causal tPansfeP function G(s,z) is said to be an in­

VePse with inhePent delay (M,N) if 

1° thePe exists a causality cone cc such that SF c cc, s0 c cc, (M,N) E cc, 

2° G(s,z)F(s,z) -M -N 
z s D 

0 

(5.6.5) REMARK. The condition 2 is an immediate generalization of the 1-D 

counterpart, while 1° is incorporated in the definition because otherwise 



95 

the product G(s,z)F(s,z) cannot be well defined (in such a way that it 

still represents the convolution of the impulse responses G and F associat-
1 ed with G(s,z) and F(s,z)). For instance, take F(s,z) = ;-=z and 

1 G(s,z) = s+z as representations for the formal power series 

1 z z2 
F(s,z) = s+ 2+ 3+ 

s s 

2 
G(s,z) = .!. - ~ + ~ -z 2 3 z z 

Here the product of the two formal power series (they do not share a 

common causality cone) cannot be well defined whereas - 1- -+1 = - 2 1 2 • D s-z s z 
s - z 

Now we have (for~ and~, see (4.4.11), (4.4.8) respectively) 

(5.6.6) THEOREM. Suppose that F(s,z) is a weakly aausal t:roansfer funation 

and that ~(F) (a,S) = T(a,S) is a aausal tronsfer funation. If U(a,S) is a 
-1 weakly aausal inverse of T(a,S) w.i.d. (M' ,N'), then~ (U) (s,z) is a 

weakly aausal inverse of F(s,z) w.i.d. (M,N) = ~-1 (M',N'). 

PROOF. Suppose that 

U(a,S)T(a,S) -M' -N' a a 

then 

-1 -M -N 
~ (UT) (s,z). z s 

or 

-1 -1 -M -N 
~ (U)(s,z)~ (T)(s,z) z s □ 

By the above theorem it is clear that, for the construction of inverses 

w.i.d. for weakly causal systems, we can restrict ourselves to causal 

systems. Now, one might expect (as in the 1-D case) every non-zero causal 

transfer function to have a causal inverse w.i.d. However, this is not the 

case. A condition for this to be true is as follows. 

(5.6.7) THEOREM. Suppose that F(s,z) is a aausal transfer funation, so that 
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F(s,z) 
+ p {s)zm 

m 

pm(s) 1 O, qn{s) is mania, thus# O. Furthermore by causality n ~ m and 

~ deg{p. (s)) , 
J 

i 

j 

o, ... ,n-1, 

0, •.. ,m 

Then F(s,z) has a causal inverse w.i.d. iff 

deg(p (s)) ~ deg(p.{s)), 
m J 

j = 0, ••• ,m-1 

PROOF. Let M = n-m and N = deg{qn{s)) -deg{pm{s)). Then F(s,z)zMsN is 

invertible and the inverse is causal. Therefore F{s,z) has a causal in­

verse w.i.d. {M,N). Conversely, sup]20Se that G(s,z) is a causal inverse 

w.i.d. (M,N). Then M ~ 0 and N ~ 0. Now G(s,z)F{s,z) z-M s-N which im­

plies deg (pm (s}} ~ deg {pj (s}} , j = 0, ••• ,m-1. D 

Observe that for every {M1,N1) such that M1 ~Mand N1 ~ N there exists a 

causal transfer function which can serve as an inverse w.i.d. {M1,N1). Here 

{M,N) is the inherent delay in the proof of theorem (5.6.7). 

Furthermore the inverse w.i.d. {M,N) is invertible (without delay). By 

theorem (5.6.7) not every non-zero causal transfer function has a causal 

inverse w.i.d., but we will show in the next that every causal transfer 

function does have a weakly causal inverse w.i.d., which itself is invert­

ible without delay. 
2 Suppose that F{s,z) is a causal transfer function. Let SF c lR+ be its 

support and define conv+ SF by 

(5.6.8) + = conv S + R 2 conv SF F + 

where conv SF denotes the convex hull of SF {the intersection of all convex 

sets containing SF) and again we use row vector notation for R~. 

Furthermore, let {M,N) be an extremal point of conv+ SF {a point such that 

conv+ SF\_ (M,N) is still convex) • Then it is clear that {M,N) E SF {see 

also [6]). 

Furthermore, H(s,z) = F{s,z)zM sN is a weakly causal transfer function and 

H00 # O. Hence, by theorem (5.6.2), H{s,z) has a weakly causal inverse. 
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Therefore F(s,z) has a weakly causal inverse w.i.d. (M,N) which itself has 
-1 an inverse (without delay) namely H(s,z) • 

Summarizing we have 

(5.6.9) THEOREM. Suppose that F(s,z) is a causal transfer function. Let 

(M,N) be an extremal point of conv+ SF. Then there exists an inverse w.i.d. 

(M,N) which itself is an invertible weakly causal transfer function. □ 

Some geometrical insight is provided by figure 6. 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

Figure 6 

...... 

+ The shaded area denotes conv SF, the dotted lines correspond to a possible 

shifted cone giving rise to the required causality cone. 

In fact the above theorem says the following. Look for a point (M,N) in SF 
such that there exists a causality cone (a closed convex cone satisfying 

(4.4.5) will also suffice because of lemma (4.4.8)) with the property that 

if we shift it in a way such that the origin (0,0) becomes (M,N) the sup­

port SF is still contained in the shifted causality cone. Then (M,N) is a 

possible candidate for the inherent delay. Furthermore, this holds for all 

extremal points of conv+ SF. 
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(5.6.10) REMARK. The extremal points of conv+ SF are the analogues of the 

minimal delay in the 1-D case, because they give rise to inverse transfer 

functions which are invertible without delay. D 

In the 1-D case every delay larger than the minimal delay may serve as an 

inherent delay for some inverse (which is not necessarily invertible with­

out delay). Because of the lack of a natural order in the 2-D case an in­

verse with minimal delay is not well defined. Therefore we will character­

ize all the possible delays corresponding to weakly causal inverses of some 

causal transfer function. The construction of possible inverses with in­

herent delay will be based on theorem (5.6.9). The following theorem en­

ables us to construct more inverses w.i.d. whenever one inverse w.i.d. 

(which is itself invertible), based on an extremal point of conv+ SF, is 

known. 

(5.6.11) THEOREM. Suppose that G(s,z) is a weakly causal invertible trans­

fer function. Let SG cc where c is a closed convex cone satisfying (4.4.5). 
2 \ 2 -M -N • kl Let (M,N) E 72: (-C n ?Z ) • Then G(s,z)z s 1,s a wea y causal transfer 

function. 

If M !, O and N !, O, (M,N) ,f. (O,O), then G(s,z)z-M s-N is not weakly causal. 

PROOF. If G(s,z) is invertible then G00 ,f. O. This means that for every 

(M,N) E 1.1: 2\(-C n .z2) there exists a causality co:ne such that if we shift it to 
-M -N 

(M,N) it still contains SG. Therefore G(s,z)z s is weakly causal. The 

second assertion follows from G00 ,f. 0. D 

Now consider a causal transfer function F(s,z). 

Let Mand N denote the sets 

(5.6.12) 
M 

N 

{M 

{N 

+ (M,N) E conv SF for some integer N} 

+ (M,N) E conv SF for some integer M} 

Let Mand N be defined by 

(5.6.13l M min M , N 
MEM 

min N. 
NEN 

We can now characterize the set of possible inherent delays corresponding 

to some causal transfer function. 
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(5.6.14) THEOREM. Suppose that F(s,z) is a causal transfer function. Let M, 

N be defined as in (5.6.13), Then we have 

1° If M >Mor N > N there exists a weakly causal inverse GM,N(s,z) w.i.d. 

(M,N) • 

If Ms Mand N s N and (M,N) f (M,N) there does not exist a weakly 

causal inverse w.i.d. (M,N). 

2° GM N(s,z) is invertible (without delay) iff (M,N) is an extremal point 
, + 

of conv S,=· 
3° GM,N(s,z) is causal iff (M,N) E conv+ S,= and M ~ M, N ~ N. 

M N PROOF. Applying theorem ( 5. 6 .11) to F ( s, z) z s for every extremal point 

(M,N) of conv+ S,= gives the proof of 1°. The proof of 2° follows from 
0 

theorem (5.6.9). The proof of 3 follows from theorem (5.6.7). □ 

(5.6.15) EXAMPLE. Suppose we have a causal input/output system with trans­
s + z fer function F(s,z) = 2 • Observe that F(s,z) does not satis-

- sz + (s - 1) z 
fy the conditions of theorem (5.6.7) so that F(s,z) does not have a causal 

inverse. Now consider figure 7. 

s-2 

s-1 

Figure 7 
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Conv+ SF is the double shaded area, (M,N) = (1,0). The extremal points of 
+ conv SF are (2,0) and (1.1). By theorem (5.6.14) there exists a weakly 

causal inverse w.i.d. (0,1). Indeed, if we take 

-sz+(s-l)z2 

2 sz + s 

-1 
then GO,l (s,z)F(s,z) = s and G011 (s,z) is weakly causal, for if we sub-

stitute (see lemma (4.4.15)) 

then 

2 
s = as ' z = s' 

- aS + aS 2 - 1 

aS + a 2s2 

which is a causal transfer function. 

By theorem (5.6.14) there exists a weakly causal inverse w.i.d. (1,1) which 

is invertible itself without delay. Theweakly causal inverse w.i.d. (1,1) is 

-s+(s-l)z 
2 sz + s 

Gl,l (s,z) is weakly causal, for if we substitute 

s =a, z = aS, 

then 

which is causal and invertible. 

The shaded area in figure 7 denotes the causality cone of Gl,l (s,z). 

A second level realization of this transfer function can be found in 

(4.4.23). 

Observe that SF c iZ~ c SG • At first stage ykh is defined for 
1,1 

2 
(k,h) E ;z+· 

We have to add zeroes in the sense that ykh = 0 for (k,h) E 
2 

SG \ 7.Z • 
1, 1 + 

Again one should bear in mind that in an expression like y(s,z) = 

= F(s,z)'u(s,z) the product is only defined in the case where y(s,z), 

F(s,z), u(s,z) have their support in the same causality cone (belong to the 

same ring). See also (5.6.5). 
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(5.6.16) REMARK. In this section it was shown that weakly causal 2-D systems 

arise in a natural way if one is interested in inverse systems. This is one 

of the reasons to study weakly causal systems and the generalized state 

space equations associated with them. □ 

The transformation of a weakly causal input/output system, to obtain a 

causal one, can be seen as a unimodular transformation of an integer 

lattice (compare [SO]). This observation may be useful if one is interested 

in further generalization. 

The results of this section concerning inverses and inverses w.i.d. can be 

generalized to the multivariable case (m outputs and p inputs) if one sup­

poses D = F 00 to be left invertible (which also requires m :2: p) • In the 

case of an inverse w.i.d. the results can be generalized if FMN is sup­

posed to be left invertible, where (M,N) denotes an extremal point of 
+ 

conv SF. 

To the author's knowledge the more general case has not yet been solved. 

v. 7. Rea.c.ha.b-i.LUy and ob-0vwab-i.LUy 06 Jee.and level 1te.aUzaV.on-0 

In the literature some attempts have been made to give useful definitions 

of reachability and observability of local state space models which appear 

as second level realizations of 2-D systems. See for instance [61], [48], 

[24]. In [48] polynomial matrices in two variables are used to give defini­

tions for these notions where the local state space model is taken to be 

Roesser's model (see 4.3.8). 

In this section we will indicate some connections between [48] and the 

approach to 2-D systems as is developed in this thesis (see also [17]). 

The local state space model will be Roesser's which is equivalent to our 

second level realization (4.3.6). We will write down the equations for this 

model again for convenience: 

(5.7.1) 
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In [48] the concepts of modal controllability and modal observability are 

defined for (5.7.1). The concepts are also related to "minimality" of the 

local state space model which will be a topic in the next section. To state 

these definitions we need the notion of coprimeness of polynomial matrices 

in two variables. 

(5.7.2) DEFINITION. Two matrices P(s,z) and Q(s,z) over :R[s,z] with the 

same nwnber of rows are caUed left coprime with respect to (C[s,z] if for 

every left common factor D(s,z) such that P(s,z) = D(s,z)P(s,z) and 

Q(s,z) = D(s,z)Q(s,z) where D(s,z), P(s,z) and Q(s,z) are matrices over 

(C[s,z] and D(s,z) is a square matrix, we necessarily have that det(D(s,z)) 

is a complex number d ¥ O. D 

In this definition we have to work with polynomials with complex coeffi­

cients because the field, where the.coefficients belong to, has to be 

algebraically closed. Right coprimeness is defined analogously (see [54]). 

Now we can state the definitions of modal controllability and modal observ­

ability. 

(5.7.3) DEFINITION. The system (5.7.1) is modally controllable if 

are left coprime with respect to (C[s,z]. 

(5.7.4) DEFINITION. The system (5.7.1) is modally observable if 

are right coprime with respect to (C[s,z]. 

Furthermore we need the following definition where we suppose that K is a 

field. 

□ 

□ 

(5.7.5) -DEFINITION. Two matrices P(z) and Q(z) over K[z] with the same 

number of rows are called left coprime with respect to K[z] if for every 

left common factor D(z) such that P(z) = D(z)P(z) and Q(z) = D(z)Q(z) where 
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D(z), P(z) and Q(z) are matrices over K[z] and D(z) is a square matrix, we 

necessarily have that det(D(z)) is a unit in K[z]. 

In [54] the following theorem is obtained. 

(5.7.6) THEOREM. The matrices 

are left coprime with respect to c[s,z] iff they are left coprime with 

□ 

respect to C(s)[z] and also with respect to C(z)[s]. D 

It can easily be seen that if A1, A2, A3, A4 , B1, B2 are real matrices, 

which will always be presupposed whenever we are dealing with the system 

(5.7.1), we may take JR(s)[z] and JR(z)[s] instead of C(s)[z] and C(z)[s] 

respectively in theorem (5.7.6). 

Theorem (5.7.6) gives a result which is related to modal controllability of 

(5.7.1). An analogous result can be stated for modal observability. 

Theorem (5.7.6) will enable us to relate modal controllability and modal 

observability of (5.7.1) to reachability and observability respectively of 

a first level realization for the transfer matrix of (5.7.1). A possible 

first level realization over JRc(s) (see 4.3.9)) for the transfer matrix 

F(s,z) of (5.7.1) isl:= (A(s),B(s),C(s),D(s)), where 

A(s) Al + AisI -A4] 
-1 

A3 

B (s) -1 
Bl + AisI-A4] B2 

(5. 7. 7) 

C(s) cl + CisI-A4] 
-1 

A3 

D (s) D + CisI -A4] 
-1 

B2 • 

Recall that this means that 

By interchanging the role of sand z we can construct another first level 

realization. A possible first level realization over JRc(z) is then 



104 

:i: (A(z) ,B(z) ,C(z) ,D(z)), where 

A(zl A4 + AizI -A1] 
-1 

A2 

FiczJ 
-1 

B2 + AizI -A1] Bl 
(5. 7 .8) 

cczJ c2 + cl [zI -Al J 
-1 

A2 

i5cz> D + cl[zI-Al] 
-1 

Bl . 

Now, using theorem (5.7.6) and the first level realizations (5.7.7), 

(5.7.8), we can state a theorem which links the approach to 2-D systems of 

[61] and ours. 

(5.7.9) THEOREM. The system (5.7.1) is modally controllable iff 

0 -1 -1 . a reachable pair over lR(s) 1 (Al +AisI -A4] A3, Bl +AisI -A4] B2) -z..s 

and 
0 -1 -1 - . 

2 (A4+AizI-A1] A2,B2+AizI-A1] Bl)i.s a reachable pair over lR(z) . 

PROOF. 

0 

I 

where A(s) and B(s) are defined as in (5.7.7). If (A(s) ,B(s)) is not a 

reachable pair over JR(s) then [zI -A(s) ,B(s) J is not right invertible over 

JR(s)[z] (see theorem (5.4.4), this theorem is stated for systems over 

:R0 (s) but is also true for systems over JR(s)). Because JR(s)[z] is a 

principal ideal domain (or, equivalently, because JR(s) is a field) this 

means that zI -A(s) and B(s) have a non-unimodular left common factor 

D(s,z), see [78]. This means that D(s,z) is a square matrix over JR(s)[z] 

and furthermore degz[det(D(s,z))] ~ 1. By the above factorization it is 

clear that 

and [::] 

also have a non-unimodular left common factor, namely 
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which implies that they are not left coprime with respect to ~(s)[z]. 

By theorem (5.7.6) the system (5.7.1) is not modally controllable. Failure 
0 

of 2 gives the same result in an analogous way and therefore necessity has 

been proven. 

The condition 1° together with 2° is also sufficient. Suppose that 1° is 

true. Then [zI -A(s) ,B(s)] is right invertible. Therefore there exist 

matrices Land Q over lR(s)[z] such that 

[zI -A(s) ]L + B(s)Q = I • 

Now it is straightforward to verify that 

This implies left coprimeness of 

with respect to ~(s)[z]. In the same way 2° implies left coprimeness with 

respect to ~(z)[s] and therefore modal controllability of (5.7.1) has been 

proven. □ 

By duality an analogous result can be proven for modal observability. 

(5.7.10) THEOREM. The system (5.7.1) is modally observable iff 

0 -1 -1 . 
1 (c1 +CisI -A4 J A3 , A1 +AisI -A4] A3) -z,s an observable pair over lR(s) 

and 

0 -1 -1 . 
2 (c2 + c1 [zI -A1 J A2, A4 + AizI -A1 J A2) -z,s an observable pair over lR(s) • 

□ 
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v .8. Low oJtdeJt .t.e.c.ond level Jte.aLi.za.:ti.on6 

While minimality of a first level realization of a 2-D input/output system 

is a well defined concept, for second level realizations it is not clear 

how this notion should be defined. For first level realizations we have 

that a system is minimal if the dimension of the state space is minimal. 

This property is satisfied if one deals with a canonical realization. 

Therefore one can test a first level realization for minimality by checking 

whether or not it is reachable and observable. This idea was used in [24], 

[48], [61] to obtain minimal second level realizations, in the sense that 

the authors defined reachability and observability for the models they used 

but these notions did not imply the intuitive property of minimality. Of 

course one would expect the notion of minimality of a second level realiza­

tion to agree with "smallest possible number of equations that define the 

model". However, up to now, conditions on a second level realization which 

imply this kind of minimality have not appeared in the literature. 

In [48] the authors defined minimality of a local state space system by 

requiring the model to have the properties of modal controllability and 

modal observability. However, this definition does not agree with the in­

tuitive notion of minimality. In an important special case, the case of a 

transfer function with separable numerator or separable denominator, the 

intuitive notion of minimality and the concept of minimality as defined in 

[48] coincide. The reason for this is that if a local state space model of 

the form (5.7.1) realizing a transfer function has the properties of modal 

controllability and modal observability, then we must have that A1 is an 

n x n matrix and A4 is an m x m matrix where n is the degree in z of the 

denominator polynomial and mis the degree ins of the denominator poly­

nomial of the transfer function. In the case where the numerator or the 

denominator of the transfer function is separable it is indeed possible to 

construct a local state space model where A1 is an n x n matrix and A4 is an 

m x m matrix (n and m have the same meaning as above) . For the more general 

case (not requiring the numerator or the denominator to be separable) it is 

not known whether or not there exists a realization (second level) with 

n + m states. For this reason there has been a search for low order second 

level realizations. In [48] and [74] it was shown that a transfer function 

F(s,z) = p(s,z)/q(s,z) with degz(q(s,z)) = n and degs(q(s,z)) = m could be 

(second level) realized in the form of a Roesser model (5.7.1), where 
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is a matrix with dimension:= min(n+2m,m+2n). In [19] an improvement on 

this result was published, which we wi.11 explain here in more detail. Con­

sider therefore a 2-D causal transfer function F(s,z) 

(5.8.1) F (s,z) 
~ __ P_o_<_s_) _+_P_1 _( s_>_z_+_._._._+_P_n_C_s_) _zn_ 

q(s,z) - ( ) ( ) ( ) n q0 s + q 1 s z + ••• + qn s z 

Here p(s,z) and q(s,z) are coprime two variable real polynomials, pi(s), 

qi(s) are polynomials ins for i 0 I •••In. 

Recall that causality means that qn(s) is a monic polynomial (thus f 0) and 

that the following degree conditions are satisfied 

deg(qn(s)) ~ deg(qi(s)) 

deg(qn(s)) ~ deg(pi(s)) 

Let us assume that 

i 

i 

o, ... ,n-1 

0, ... ,n • 

We will now explicitly describe the construction of a local state space 

model for F(s,z) in the form of the model as in (5.7.1). As in Chapter IV 

section 3 a first level realization will be an intermediate step in this 

construction. 

Let ~(s) be a greatest common divisor of p0 (s), •.• ,pn(s). Let deg(~(s)) :=t. 

This factor is called the content of p(s,z) and p(s,z), defined by 

p(s,z) = ~(s)p(s,z), is called the primitive part of p(s,z). See also [77]. 

We factorize qn(s) as follows 

(5.8.2) 

I 

such that ~l (s) and ~2 (s) are monic polynomials satisfying 

(5.8.3) deg(~ 2 (s)) ~ deg(~ (s)) , deg(~ 1 (s)) ~ max deg(p.(s)) -t 
i J. 

If a factorization as in (5.8.2) satisfying (5.8.3) does not exist such 

that ~2 (s) is a real polynomial, we proceed as follows (observe that this 

can happen only in the case where ~(s) is a polynomial with odd degree). 



108 

Let ~(s) be a common factor of p0 (s), .•• ,pn(s) such that deg(~(s)l R, -1. 

Now a factorization as in (5.8.2) in real polynomials such that 

deg(~2 (s)) = deg(~(s)) does exist and we can ~se ~(s) instead of cp(s) in 

the following. 

Let pi(s) = Ql(s)pi(s), i 

where 

o, ••• ,n. It is clear that r= (A(s),B(s),C(s),D(s)) 

0 1 0 

A(s) 
0 0 

-qo(sl 

qTsf 
(5.8.4) n 

C(s) 

is a first level realization of F(s,z). 

We will use the notation 

ACsl t-qo (s) -qn-1 (s)j 
q (s) '· · ., q (sl 

n _n 

ccsl 

0 

0 B(s) 
1 

-qn-1 (s) 

q (s) n 

B(s) cp (s) 
= ~2(s) , 

P (s) 
D(s) - _n __ 

- ~1 (s) 

0 

0 

cp(sl 
~2(s) 

We can realize these 1-D transfer matrices and obtain the following realiza­

tions 

(AA,AB,AC,AD) for A(s) 

(BA,BB,BC,BD) for B (s) 

(CA,CB,CC,CD) for ccsl 

(DA,DB,DC,DD) for i:icsl 

(DA,DB,DC,DD) for D(s) 

It is clear that we can do this in a way such that 



AA= BA= DA, CA= DA, 
(5.8.5) 

AC= BC= DC cc 

This can be seen as follows. 

A 1-D transfer function 

T (s) 

DC 

has a realization L (A,B,C,D) where 

0 0 0 

A 0 

0 0 1 

-ao -a n-1 

C = [ bO bn-1 J 
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0 

B 

0 

1 

, D 0 

Hence L' = (A',C",B',D') is also a realization. This shows that the matrix 

B' can be chosen independent from the coefficients of the numerator poly­

nomial and A' depends only on the coefficients of the denominator poly­

nomial. This can be generalized to single output systems and henceforth 

(5.8.5) is possible. 

To obtain (5.8.5) we can also use the so called standard observable realiza­

tion (see [9]). 

These realizations can be "tied together" to form a realization of the type 

(5.7.1) in the following way 

0 1 0 0 0 . . . 0 0 ... 0 

0 

Al 
0 

A2 

0 0 0 1 0 0 

AD 
(n~,<n) AC 0 ... O (nx (2m-.O) 

(5.8.6) 

~B = +J ((2m-tJ-n) ~B~C J ((2m-tl•(2m-tll 
A3 A4 



110 

[CD+ DD AD](lxn) [DD AC, cc] (lx (2m-J1,)) 

DD. 

Again AA, AB, DD etc. are single matrices, not products of matrices. (In 

particular D = DD should not be read as D = D2 .) 

Observe that if p(s,z) is a primitive polynomial, then the construction 

gives a realization with dimension n + 2m (see also [48], [74]) and in the 

case p(s,z) = ~(s)~1 {z) (separable numerator) we obtain a realization of 

dimension n + m. 

It is a matter of straightforward verification that 

A(s) Al +AisI-A4 ] 
-1 

A3 B{s) Bl + AisI -A4 ] 
-1 

B2 

C(s) = Cl + CisI -A4] 
-1 

A3 , D(s) D + CisI -A4] 
-1 

B2 , 

as is required. See (4.3.9). 

Summarizing we have 

(5.8.7) THEOREM. Let F(s,z) = p(s,z)/q(s,z) be a causaZ 2-D transfer func­

tion. Suppose that ~(s) is the content of p(s,z) and deg(~(s)) = JI,, Then 

there exists a realization of the form (5. 7 .1) with dimension n + 2m - JI,. 

This reaZization is possibZy in corrrpZex numbers (depending upon the factor­

ization (5.8.2))but there exists aZways a reaZ reaZization with dimension 

n + 2m - JI, + 1 where JI, ;::: 1 • 

(5.8.8) REMARK. By interchangings and z the same kind of result can be 

obtained and one can take the minimum of the two for the dimension of a 

local state.space realization. 

We will now derive an analogous result for the denominator case. Suppose 

that w(s) is the content of q(s,z) and let the degree of W(s) be r. Let 

q. (s) = W(s)q. (s) for i = 0, ••• ,n. A first level realization of F(s,z) is 
J. . J. 

then r = (A(s),B(s) ,C(s) ,D(s)) where 

□ 

□ 
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A(s) 

C (s) 

D (s) 

Let 

~ A(s) 

C(s) 

0 1 0 

0 
-qo ( s) 

q (s) n 

Go (s) Pn-1 (slj 
q ( s) ' • • ·' q ( s) 

n n 

P (s) 
n 

qn (s) 

0 

t-qo (s) -qn-1 Cs)j 
qn(s) , .•• , qn(s) 

=[:~::: .... , Pn (s) ] 
qn (s) 

0 

0 

1 
-qn-1 (s) 

q (s) 
n 

B (s) 

i3 csl 

B (s) 

1 , 

pn(s) 

qn (s) 

0 

0 

1 

We can now proceed in completely the same way as in (5.8.6) and obtain an 

analogous result. 

Observe that the realization we obtain in this way is always real. 

Hence we have 

(5.8.9) THEOREM. Let F(s,z) = p(s,z)/q(s,z) be a causal 2-D transfer func­

tion. Suppose tha.t ~(s) is the content of q(s,z) and deg(~(s)) = r. Then 

there exists a real realization of the fo!'171 (5.7.1) with dimension 

n+2m-r. 

This is a generalization of the separable denominator result. 

□ 

(5.8.10) REMARK. Again, by interchangings and z, the same kind of result 

can be obtained and the minimum of the two can be taken as the dimension of 

a local state space realization. 

Summarizing, we can state that the dimension of a local state space model 

which is a second level realization of a causal 2-D transfer function can 

be taken the minimum of the numbers given by theorems (5.8.7) and (5.8.9) 

and the remarks (5.8.8) and (5.8.10). 

□ 
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V.9. GeneJUc p~opviilM 

In many cases one is interested in questions like: Is some property E easily 

satisfied? This is especially the case if Eis one of the conditions for a 

theorem to be true or a condition such that an algorithm can be executed. 

We will be concerned with properties which can be viewed as a mapping 

E: -JEt + {"true","false"} where N is the number of parameters which are 
a 

used to describe the situation on which the property Eis to be tested. 

Thenonelooks for the set K(Ea) = {x E JRN I Ea(x) = "false"}. If K(Ea) is 

small in some sense, then the property Eis said to be generically satis­

fied. This ideas will now be presented in a rigorous way. 

(5.9.1) DEFINITION. A subset Kc JRN is said to be Zariski closed if there 

exists a real polynomial pin N variables such that (x1, ••• ,xN)' E K -iff 

p(x1, ••• ,xN) = O. The complement of·K is called a Zariski open subset of 

~- □ 

By using this definition of Zariski open and zariski closed sets we can 

define a topology for JRN, the so called Zariski topology (see [32]), which 

is a powerful tool in algebraic geometry. 

It can be proved that Zariski closed sets i-JEt have Lebesgue measure zero 

and may therefore be considered "small". 

Consider JRN for some positive number N. Let Ebe a property that a point 

in JRN may have. In other words, consider the mapping 

E : JRN + {"true", "false"} 
a 

defined by 

"true" if (x1, ••• ,~)' has property E, 

Ea ( (x 1, ••• , xN) ' ) = "false" otherwise. 

We will now define.the concept of generic property. 

(5.9.2) DEFINITION. A property Eis called a generic property if K(Ea) is 

contained in a Zariski closed set #JRN, where K(Ea) is defined as above. □ 

Intuitively this means that if Eis a generic property, then E will be 

satisfied for almost every point (x1 , ••• ,~) 1 EJRN. Furthermore, for almost 

every point (x1, ••• ,~)' E JRN there exists an open set U (in the standard 
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topology on :i1l) containing (x1, ..• ,~) ' such that E is satisfied for all 

points in U. 

We will now prove that reachability of a pair (A(s),B(s)) over JRc(s) is a 

generic property. We will suppose that A ( s) = A ( s) /a ( s) where deg (a ( s) ) ~ da, 

deg(A(s)) ~ d, d > 0 (A(s) is a polynomial matrix and a(s) is a monic a a 
polynomial) and B(s) = B(s)/b(s) where deg(b(s)) ~ ~• deg(B(s)) $ db, 

~ > 0 (B(s) is a polynomial matrix and b(s) is a monic polynomial). There­
Nl 

fore (A(s),B(s)) is specified by a point in JR where 

(5.9.3) REMARK. If we do not suppose (A(s),B(s)) to be given in the form 

(A(s)/a(s) ,B(s)/b(s)), we can also deal with the case where we suppose that 

for every entry ai. (s) /a .. (s) we have that deg (a .. (s)) $ o , deg (a .. (s)) $ o , 
J J.J . J.J a J.J a 

oa > 0 for all i and j, and for every entry b .. (s)/8 .. (s) we suppose that 
l.J l.J 

deg(bij(s)) $ ob, deg(Bij(s)) ~ ob, ob> O for all i and j. In this case 

the number N2 , the dimension of the parameter space, has to be chosen as 

(5.9.4) THEOREM. Let A(s) E JRc(s)nxn and B(s) E JRc(s)nxp be given. Then 

reachabiZity over JRc(s) of the pair (A(s),B(s)) is a generic property if 
p ;:,, 1. 

□ 

PROOF. By theorem (5.4.2) reachability of (A(s),B(s)) over JRc(s) is equi­

valent to reachability of (AD,BD) over JR where AD= limA(s), BD limB(s). 
s+<x> s--

Reachability of (AD,BD) over JR only fails if all n x n minors of 
n-1 [BD,AD BD, .•• ,AD BD] are zero. This corresponds to a zariski closed set 

No Kt in JR where N0 = n (n + m) • The set K0 is also a Zariski closed set in 

JR 1 and also in JRN2 where N1 arid N2 are defined above. Furthermore, 
N 

K0 ~E. O because there exist reachable pairs. This proves the theorem. D 

(5.9.5) THEOREM. Let A(s) E JR (s)nxn, B(s) E JR (s)nxp be given. Then 
C C 

reachabiZity over JR(s) of the pair (A(s),B(s)) is a generic property if 

p~1. 

PROOF. By (5.9.4) we have that reachability over JRc(s) is a generic 

property. Hence reachability over JR(s) is a generic property because 

JRc (s) c JR(s) • □ 
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Observe that theorem (5.9.5) can also be proved by using the fact that 

reachability over JR.c(s) is a stronger property than reachability over 

lR(s). 

By duality it is clear that observability is also a generic property (again 

m ~ 1). 

We will now show that modal controllability and modal observability for a 

local state space model as given in (5.7.1) are generic properties. 

(5.9.6) THEOREM. Consider a local state space model given by the equations 

(5.7.1). Then modal controllability of the pair 

and modal observability of the pair · 

are generic properties if p ~ 1 and m ~ 1, respectively. 

PROOF. combining theorem (5.9.5) and theorem (5.7.9) immediately gives the 

result. By duality the result concerning modal observability is also 

clear. D 

Summarizing we may say that the properties of reachability over JR.c(s), 

reachability over JR.(s), observability over lRc(s) (which is the same as 

observability over JR.(s)), observability over JR.(s), modal controllability 

over lR, modal observability over lR are easily satisfied. 



115 

VI REALIZATION ALGORITHMS FOR 2-V SYSTEMS 

VI.1. Intltoduc.ilon 

In Chapter III we developed some realization algorithms for systems over a 

principal ideal domain. These algorithms can be applied to 2-D systems 

which can be viewed as systems over a principal ideal domain. This was 

shown in Chapter IV. One of the most important steps in the algorithms was 

the factorization of a matrix over a principal ideal domain to obtain a 

modified Smith form or a modified Hermite form for such a matrix. In sec­

tion IV.2 we showed that lRc(s) is in fact a Euclidean domain and in sec­

tion .V.2 we showed that JR0 (s) is also a Euclidean domain. Because lRc(s) 

and JR0 (s) occur as coefficient rings for 2-D systems the factorization of 

matrices which occur in realization problems for 2-D systems can be obtain­

ed by just applying elementary column operations and elementary row opera­

tions (see (3.1.3)). However, the factorization of a matrix by means of 

elementary column operations and elementary row operations is a rather 

complicated process. The~efore we will make use of some special properties 

of lRc(s) and JR0 (s) which simplify the factorization problem considerably. 

VI.2. Fa.ctolt.1za:ti..on algo-Uthm-6 fiO!L ma,tJuc.v., oveJt JR (sl OIL JR (sl 
C cr 

First we will be concerned with the factorization of matrices over JRc(s). 

The ring JRc(s) is a local ring (see [8]) whose maximal ideal is generated 
1 

by 5 . Therefore we have that, for two elements a and b in JRc (s), a I b or 

b I a where a J b means that a divides b. 

Let cp: lRc (s) ➔ lZ+ be the Euclidean function defined by 

cp(n(s)/d(s)) = deg(d(s)) - deg(n(s)) • 

This is the same function as is used in section IV.2. 

Consider an n x p matrix M(s) over JRc (s) 
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M(s) 

we will describe a series of elementary column operations and elementary 

row operations that reduces M(s) to a modified Smith form (see (3 .1.6)) • 

Suppose that M(s) 1 0 (otherwise M(s) is already a modified Smith form). 

Then we may assume m11 (s) 10 for a non-zero entry of M(s) can be brought to 

the left upper most position by row and column permutations. Furthermore it 

can be assumed that m11 (s) has minimal~ value among the entries of the 

first row and first column. Therefore we have that m11 (s) Jm1j(s) for 

j = 2, ••• ,p and m11 (s) Jmil (s) for i = 2, ••• ,n. By adding suitable multi-

ples of the first column to the oth~r columns and by adding suitable multi-

ples of the first row to the other rows one can obtain a matrix M1 (s), 

equivalent to M(s), which has the form 

mll (s) 0 0 

0 iii22(s) iii2P(s) 
[m1~ (s) 

M(os] 
(6.2.1) M1 (s) 

0 iiin2(s) iii (s) 
np 

The described procedure can be repeated by performing elementary row and 

elementary column operations on M(s). Eventually this gives a matrix D(s) 

(two sided) equivalent to M(s), which can be written as 

ID(s) 

D(s) = L 0 

where D(s) is a regular diagonal matrix and some of the zero matrices are 

possibly empty. D(s) is a modified Smith form for M(s). 

It is clear that we can obtain a modified Hermite form in an analogous way 

(see (3.1.5)). 

The above shows that the determination of a modified Smith form or a 

modified Hermite form, necessary for applying the realization algorithms of 

Chapter III, can be done rather easily for a matrix over JR.c(s) (at least 

compared to the general case of a matrix over a Euclidean domain) by ex­

ploiting the fact that JR.c(s) is a local ring. The matrix D(s), (two sided) 



117 

equivalent to M(s), can be obtained almost as easily as if lRc(s) were a 

field. The difference is that in this case the element with the lowest~ 

value in the first column and the first row of M(s) has to be transferred 

to the (1,1) position. Afterwards one can proceed as in the field case in 

order to obtain (6.2.1) etc. 

We will now describe how to obtain a modified Smith form for a polynomial 

matrix P(s) € JR[z]nxm. This will be needed in order to construct a modified 

Smith form for a matrix over JR0 (s) .• Consider 

P(s) 

Because JR[s] is a Euclidean domain.we can obtain a modified Smith form by 

just applying elementary column operations and elementary row operations. 

Of course the Euclidean function is the degree function. We proceed as 

follows. 

If P(s} = O, then we already have a modified Smith form. If P(s) ~ O, we 

may assume p 11 (s) ~ 0 for a non-zero entry of P(s) can be brought to the 

left upper most position by applying row and column permutations. Further­

more we may assume that p11 (s) has lowest degree among the entries of the 

first row and the first column, for this can also be obtained by means of 

row and column permutations. Then we have 

where deg(r1j(s)) < deg(p11 cs)) and deg(ri1 (s}) < deg(p11 (s)). 

Now, by adding suitable multiples of the first column to the other columns 

and by adding suitable multiples of the first row to the other rows one can 

obtain a matrix P(s), equivalent to P(s), 

p11 (s) r12(s) rlm (s) 

r21 (s) P22<s> ii2m<s> 

PCs> = 

rnl (s) Pn2(s) Pnm (s) 

Again we can obtain, by applying suitable row and column permutations, that 

in the left upper most position we have an entry, unequal to zero, which 
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has lowest degree among the entries in the first row and the first column. 

Now we can apply elementary row and elementary column operations just like 

we did fqr P(s) and this process can be repeated. Furthermore, this process 

will end for eventually we end up with a situation where all entries in the 

first column and the first row are zero except for the entry in the (1,1) 

place, because every cycle of this process will give entries in the first 

row and the first column that have a degree less than the degree of the 

entry in position (1,1). Hence we end up with a matrix P1 (s) where 

P11 <sl 0 0 

0 P22<sl P2m<sl l': ,,, ;; co,,] (6.2.2) Pl (s) 

0 pn2(s) P (s) 
nm 

We can continue the algorithm by replacing P(s) by P(s) and eventually we 

end up with a matrix Q(s), equivalent to P(s), which can be written as 

fQ<s> 
Q(s) = L o 

where Q(s) is a regular diagonal matrix and some of the zero matrices are 

possibly empty. Q(s) is a modified Smith form for P(s). 

Again, it is clear that we can obtain a modified Hermite form in an ana­

logous way ( see ( 3. 1. 5)) • 

This diagonalization algorithm can be executed somewhat easier than an 

algorithm to obtain the Smith form of a matrix because we are not interest­

ed in the usual divisibility properties of the diagonal elements of Q(s) 

(see [57]). 

Henceforth we will be concerned with matrices over JR.0 (s) and we will 

describe a factorization algorithm that constructs a modified Smith form 

for this kind of matrices. 

Of course we can obtain a modified Smith form for a matrix over JR.0 (s) by 

applying elementary row operations and elementary column operations ana­

logous to the case of a polynomial matrix as is described above. In this 

case the Euclidean function, defined in section v.2, plays the role of the 

degree function in the factorization algorithm above. However, this ap­

proach to the factorization of a matrix over JR.0 (s) is very involved and 



computationally unattractive. Therefore we will reduce the factorization 

problem for a matrix over JR0 (s) to the case of a polynomial matrix. Let 

M(s) bean xp matrix over JR0 (s). As in IV.2 let the ring isomorphism 

S: R (s) + JR (s) be defined by a a 

r(s) = S(r(s)) = r(l/s) 

See (4.2.1) for the definition of JR0 (s). 
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Let M(s) be the matrix over JR (s) obtained by applying S to each entry of a 
M(s). Suppose that m(s) is the least common multiple of the denominators of 

the entries of M(s). Let P(s) := m(s)M(s), then P(s) is a polynomial matrix. 

Using the method described above for computing a modified Smith form for a 

polynomial matrix we obtain unimodular matrices (over lR[s]) U(s) and V(s), 

stemming from the elementary row operations and elementary column opera­

tions, and a modified Smith form Q(s) such that 

(6.2.3) P(s) = U(s) Q(s) V(s) • 

If we define Q(s) := Q(s)/m(s), then we have 

(6.2.4) M(s) = U(s) Q(s) V(s) • 

U(s) and V(s) are unimodular matrices over lR[z]. Therefore they also are 

unimodular over JR (s) because JR[s] c JR (s) (see V.2). Hence Q(s) is a a a 
modified Smith form of M(s). To obtain a modified Smith form of M(s) we 

apply s-1 to all entries of u(s), Q(s) and V(s). This gives U(s) = U(l/s), 

V(s) = V(l/s), Q(s) = Q(l/s) and 

(6.2.5) M(s) = U(s) Q(s) V(s) • 

Hence we have obtained a modified Smith form by just performing calcula­

tions over JR[s], which seems to be more attractive than doing calculations 

over :R0 (s) • 

Completely similarly, we can reduce the computation of a modified Hermite 

form over :R0 (s) to the :R[s]-case. 

We will not consider numerical aspects of these factorization algorithms 

and problems of storage of intermediate results. This will be a topic for 

further.investigation. The use of residue class computations is another 

topic which seems to be promising. 
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With the aid of the above described factorization algorithms we can compute 

a first level realization for a 2-D input/output system given by its im­

pulse response. If the 2-D system is given by its transfer matrix, then we 

can compute the impulse response and apply a realization algorithm as if 

the impulse response were given. Alternatively we can first compute a real­

ization over the quotient field and afterwards reduce it to a ring realiza­

tion. This procedure also involves the determination of a modified Hermite 

form or a modified Smith form {see (3.3.10)). Here we can also benefit from 

the algorithms described in this chapter. If we want to compute a ring 

realization, starting with the transfer matrix, via the Hankel matrix ap­

proach, then it is desirable to know a bound on the dimensions of the 

Hankel block on which the realization will be based. Such a bound can in­

deed be given. Suppose that F(s,z) E lR (s,z)mxp. Then F(s,z) can be written 
C 

as F{s,z) = M(s,z)/m(s,z), where M(s,z) and m(s,z) are coprime {the great-

est common divisor of m{s,z) and all entries of M{s,z) is 1). 

We can also view F(s,z) as a matrix over lRc{s)c{z) by dividing all coef­

ficients of M{s,z) and m(s,z) by the coefficient {a polynomial ins) of the 

highest power in z which occurs in m{s,z). In this way we obtain 

F{s,z) = M(s,z)/m{s,z) where m(s,z) is a monic polynomial in JR.c{s)[z] and 

M{s,z) is a matrix over JR.c(s)[z]. It can be shown (cf. [63]) that m(s,z) 

is the minimal polynomial of the matrix A{s) in a canonical realization 

E = {A(s),B{s),C(s),D(s)) of F{s,z) over lRc(s). Hence, for the Hankel 

block Htk (see (3.2.3)) on which the realization algorithm is based, we can 

take Hnn where n = degz m{s,z). If JR.c(s) is replaced by JR0 (s), an ana­

logous bound on Htk can be obtained. 

REMARK. The fact that m(s,z) is the minimal polynomial of A(s) in a canon­

ical realization can also be exploited in investigating internal stability. 

Results can be found in the author's paper in the Proc. European Signal 

Processing Conf.; Lausanne, 1980. See also [25]. □ 

We can even compute the dimension of a canonical realization beforehand. 

This can be done because the dimension of a canonical realization equals 

the dimension of a minimal realization over the quotient field. The dimen­

sion of a minimal realization over R{s) of F{s,z) (the quotient field), 

which is by definition equal to the McMillan degree of F{s,z), as a matrix 

over JR.(s)c{z) can be found using theorem (3.3.15). The McMillan degree 

equals the sum of the degrees of the polynomials ~1, ••• ,~r (see (3.3.15)). 

To avoid this rather complicated way of determining the McMillan degree of 
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F(s,z) as a matrix over JR(s)c(z) we will now prove that the McMillan 

degree of F(s,z) as a matrix over JR(s)c(z) is generically equal to the 

McMillan degree of F(s0 ,z) as a matrix over JRc(z). Here s 0 is a real 

number such that F(s0 ,z) is well defined. This genericity result should be 

understood as follows. 

For a fixed transfer matrix F(s,z) the set of real numbers s 0 such that 

F(s0 ,z) is well defined and the McMillan degree of F(s,z) (as a matrix over 

JR(s)c(z)) is equal to the McMillan degree of F(s0 ,z) (as a matrix over 

:Rc(z)) is a Zariski open set in lR. 

Consider the matrix D(z) in theorem (3.3.15). In this case Q(R) = JR(s). 

(6. 2.6) D(z) 0 

0 0 

where some of the zero matrices are possibly empty. 

E1, ••• ,Er are polynomials over JR(s)[z]; ~1, ••• ,~r are monic polynomials 

over JR(s)[z]. Furthermore, Ei and ~i are relatively prime polynomials for 

i=l, ... ,r. 

Now choose s 0 such that E1, ••• ,Er' ~1, ••• ,~r are well defined. First we 

observe that the McMillan degree of F(s0 ,z) is less than or equal to the 

McMillan degree of F(s,z) as a matrix over JR(s)c(z). The McMillan degree 

of F(s0,z) will be smaller than the McMillan degree of F(s,z) if for at 

least one of the pairs (E.,~i), i = 1, ••• ,r, say (E.,~.), we have that 
J. J J 

Ej(s0 ,z) and ~j(s0 ,z) are not relatively prime as polynomials over JR[z]. 

Using the resultant (see [77]) of Ej(s0 ,z) and ~j(s0 ,z) the failure of the 

coprimeness implies that a polynomial in the variables, where the coef­

ficients are (polynomial) functions of the defining parameters of F(s,z), 

will have a zero at s 0 • Hence we may conclude that failure of coprimeness 

of the corresponding numerator and denominator polynomials in D(z) can 

occur only at isolated points s 0 • The number of points s 0 where F.(s0 ,z) is 

not well defined is also finite. Therefore the genericity result concerning 

F(s,z) and F(s0 ,z) is proved. (Zariski closed sets in lR are just isolated 

point se.ts.) 

Summarizing we may say (see section V.9) that by picking s 0 such that 

F(s0,z) is well defined the property 
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"McMillan degree of F(s,z) 

is easily satisfied. 

McMillan degree of F(s0 ,z)" 

vr.3. A ll.e.aLi.za.tion algow.hm 6M 2-V .tl!.a.n.66e.JL ma;tJuc.e.1, 

Finally we will put together the elements for a possible realization algo­

rithm and outline in a rather detailed way the steps which have to be made 

in order to construct a realization algorithm for a 2-D transfer matrix 

which can be considered a 1-D transfer matrix over JR0 (s). 

Let F(s,z) be a 1-D transfer matrix over JR0 (s) (a transfer matrix of a 2-D 

system) with m outputs and p inputs. 

Step 1. Determine M(s,z) and m(s,z) such that F(s,z) = M(s,z)/m(s,z) and 

M(s,z) and m(s,z) are copr_ime. M(s,z) (m(s,z)) is a polynomial 

matrix (polynomial) over JRc(s)[z]. 

This can be obtained by applying the algorithm described in [7] and, 

afterwards, dividing each coefficient by the coefficient of the 

leading term of the denominator. Recall that m(s,z) is the minimal 

polynomial of the matrix A(s) of a first level canonical realiza­

tion. The matrix M(s,z) need not be computed explicitly. Its occur­

rence here is for notational convenience. The important part in 

step 1 is the determination of m(s,z). 

Step 2. Suppose that the degree in z of m(s,z) is p. 

Determine the first p + 1 matrix coefficients (matrices over JR0 {s)) 

M0 (s),M1 (s), ••• ,MP(s) of the formal power series expansion 

F(s,z) 

COMMENI'. The coprimeness condition of M(s,z) and m(s,z) is not necessary 

because the rest of the algorithm works also for every common multiple of 

the denominators of the entries of F(s,z). If M(s,z) and m(s,z) are not 

taken to be coprime, then a larger number of matrix coefficients of the 

formal power series expansion of F(s,z) has to be determined in order to 

make the algorithm work. However, generically m(s,z) (such that M(s,z) and 

m(s,z) are coprime) is just the product of the denominators of the entries 

of F(s,z). Therefore, if F(s,z) is given by practical data, the determina-
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tion of m(s,z) can generically be done rather easily without doing super­

fluous work. 

This can be obtained by long division. 

D 

p-1 p 
Let m(s,z) = m0 (s) + m1 (s)z + ••• + mp-l (s)z + z. Construct the 

matrices Mp+l (s) , ••• ,M2p-l (s) by means of the recurrence 

MP+J.(s) = -m 1 (s)M . 1 (s) -m 2 (s)M+. 2 (s) - ••• -m0 (s)M.(s) p- P+J- p- p J- J 

for j = 1, ••• ,p-1. 

(These matrices (over JR0 (s)) are the next p - 1 matrix coefficients 

of the formal power series expansion of F(s,z)). 

Step 3. Build the Hankel block 

H pp 

M (s) 
p 

pmxn 
Construct a factorization Hpp = P(s)Q(s) where P(s) E JR0 (s) , 

Q(s) E JR~(s)nxpp. Here n is the rank of H This can be obtained 
V pp 

by constructing a modified Hermite form for H 
pp 

H = Il[D(s) , O]V(s) • pp 

Here IT is a pm x pm permutation matrix, i5 ( s) is pm x n lower triangular 

matrix with full rank and V(s) is a pp x pp unimodular matrix over 

:R0 (s). Such a modified Hermite form can be constructed as described 

in (3.1.5) by exploiting the fact that JR0 (s) is a Euclidean domain. 

Another way of obtaining a modified Hermite form for H is pp 
described in this chapter (substitution of s by 1/s and application 

of an algorithm to construct a modified Hermite form for a poly­

nomial matrix). 

We can now take 

P(s) IT D(s) , Q(s) = [I, O]V(s) • 

Here I is the n x n identity matrix. 
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Step 4. Q(s) = [Q1 (s), ••• ,Q (s)] where Q.(s) E JR (s)nxp. 
p i cr 

Compute Qp+l(s) = - (m0 (s)Q1 (s) + ••• + mp_1 (s)QP(s)). 

Compute a right inverse Q(s)+ of Q(s). This can be done easily for 

if Q(s) [I O]V(s), then Q(s)+ = V(s)-1 [~]- Because V(s) is a 

product of elementary matrices, which have been built in the 

factorization process, the matrix V(s)-l can easily be computed as 

the product (in reversed order) of the inverse elementary matrices 

(which can be written down immediately). 

Step 5. Define 

where P1 (s) is the matrix consisting of the first m rows of P(s). 

Define 

B(s) = Q1 (s) + and A(s) = [Q2 (s), ... ,Qp+l (s)]Q(s) . 

Then E = (A(s),B(s),C(s),D(s)) is a canonical (first level) realiza­

tion of F(s,z). 

Step 6. A(s), B(s), C(s), D(s) are proper rational matrices which can be 

realized by means of some realization algorithm for 1-D transfer 

matrices (see for instance [40]) and a second level realization of 

F(s,z) can be constructed via the method (which will not be repeat­

ed here) described in Chapter IV (see (4.3.7)). Furthermore, a 

Roesser realization can be composed as in (4.3.9). 

In this algorithm one can take short-cuts but the present form has been 

chosen to facilitate the readability. 

EXAMPLE. 

F(s,z) [ 

2s 
(1 + 2s) (2sz - 1) 

4s 
1+4s 

Step 1. In this case the polynomial m(s,z) 

D 
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Step 2. Thus p = 2 and m0 (s) 1 
0 and m1 (s) = - 2s 

Step 3. 

1 s 1 
0 

1 + 2s 1 - 2s (1 + 2s) 2s 

H22 
0 1 0 0 

1 1 
(1 + 2s) 2s 0 (1 + 2s) 4s2 0 

0 0 0 0 

The matrices IT, D(s), V(s) for a modified Hermite form are (obtain­

ed as described in (3.1.5)) 

0 1 0 0 1 0 

1 0 0 0 
s 1 

rr o(sl T"=2s 1 + 2s 
1 

0 0 1 0 0 ( 1 + 2s) 2s 

0 0 0 1 0 0 

0 1 0 0 

1 0 
1 

0 
V(s) 2s 

0 0 1 0 

0 0 0 1 

and P(s) and Q(s) can be chosen as 

s 1 
1 - 2s 1 + 2s 

1 0 

~ 
1 0 

~-P(s) 
1 Q(s) 

1 
0 (1 + 2s) 2s 

0 
2s 

0 0 
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Step 4. 

Step 5. 

(Frequently it occurs that a factorization H = P(s)Q(s) can be 
pp 

written down before a modified Hermite form has been obtained in 

the factorization process and, of course, in this case one takes 

this short-cut. Furthermore it is clear that only the first two 

rows of P(s) have to be computed. However, in the present example 

we have chosen to follow the lines of the algorithm described 

above.) 

Q3 (s) - m1 (s) Q2 (s) [.:, :] ' 

Q(s) + ~ ~j . 
D(s) ~ 0 :] ' 

['~2s ,:,1 4s C(s) 

1 + 4s 

B(s) ~ :] A(s) 
a~ l 2s 

Step 6. Realizing A(s), B(s), C(s), D(s) one can obtain a second level 

realization in Roesser's form via (4.3.9) where 

0 0 ' 0 I 0 0 ' 0 
' r~. 0. °J 

0 0 
I 
~ I 0 0 I 0 I 

t :~ - - -' - - - - - - - - - - -- - - - - -, - - - - - - - - - - - - -
~- : _AA_ ' _ 0 _' _O 0 1 I 0 I 0 0 I 0 

' 
CB:0°CA 1 0 

I 

~ 1 0 ' 0 ' 0 I 0 
--t--1--t- ' 
0 1 0,0,DA 0 1 ; 0 ' 0 -~ I 0 

I 
I 

1-J..i 0 0 : 0 I 0 0 



0 1 

rn 
1 0 

~-:] 0 0 
D DD= [: :] , 0 0 

0 0 

1 0 

0 0. -¼ 
[CD : 0 CC : DC] 

0 0 · 0 

Observe that BA, BB and BC do not occur because 

REMARK. The above realization could have been obtained faster because 

rank H11 = rank H = 2. 
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APPENVIX 

!Ung a 6 6Jz.a.clio n.6 

Let R be a commutative ring with identity (unit element). Lets be a subset 

of R which is closed under multiplication and contains the identity. Such a 

set Sis called a multiplicative set (also multiplicatively closed set). 

Consider the equivalence relation ~ on Rx s, defined as follows: 

(r,s) ~ (r1,s1) iff there exists an element s 2 ES such that 

s 2 (rs1 -r1s) = O. Here r,r1 E Rand s,s1 E s. Let RS denote the set of 

equivalence classes. The equivalence class determined by (r,s) will be 

denoted by r/s. 

Rs can be given a ring structure by defining 

rl/sl + r2/s2 

rl/sl • r2/s2 

(rl s2 + r2s1) /sl s2 

rlr2/s1s2. 

Rs is called the ring of fractions of R with respect to s. 

Quotie.YLt 6ie.ld 

Let R be an integral domain (which is non-zero, commutative and has an 

identity) • Let S = R \ 0 (which is a multiplicative set) • Then RS is called 

the field of fractions of R. This field is also called the quotient field 

of Rand will be denoted by Q(R). 

Noethvuan doma,i.n 

An integral domain such that every ideal is finitely generated is called a 

Noetherian domain. 



Integwl.y clo4ed domain 

An integral domain R is called an integrally closed domain if for any 

q E Q(R) (the quotient field of R) such that 

n n-1 
q + an-1 q + ••• + ao = 0 
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for some non-negative integer n and elements a 0 , ••• ,an-l ER we have that 

q ER. 

P,uncipal. .ldeal. domain 

An integral domain such that every ideal is generated by one element is 

called a principal ideal domain. 

Eu.cl.ldean domain 

A Euclidean domain is an integral domain R together with a map 

<p: {R \ O}-+ 721+ (lZ+ denotes the set of non-negative integers) such that 

1° If a lb (a divides b) then <p(a) ~ <p(b) for a,b ER. 

2° For a E R and b E {R \ O} there exist q,r E R such that a 

either r = 0 or <p(r) < <p(b). 

bq+r and 

The map <pis called the Euclidean function. 

Sem.l lac.al. tlng 

A commutative ring with identity is called a semi local ring if it has only 

finitely many maximal ideals. 

Lo c.a1. /Ung 

A semi local ring is called a local ring if it has a unique maximal ideal. 

Module 

Let R be a commutative ring with identity 1. A module over the ring R, also 

called R-module, is an Abelian group M (almost invariably written additive­

ly) together with a map (r ,m) 1+ rm from Rx M to M satisfying the following 
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conditions 

r(m1 +m2) =1 + =2 

(r1 + r 2)m r 1m + r 2m 

(r1r 2)m r 1 (r2m) 

lm m 

Sometimes the R-module, just defined, is called a left R-module. There is a 

similar definition of a right R-module in which the elements of Rare 

written on the right. We will consider only left R-modules and simply call 

them R-modules. 

ToM-i..on 6Jz.ee module 

Let R be an integral domain. An R-mddule Mis called a torsion free module 

if rm= 0 (r ER, m EM) implies that r = 0 or m = 0. 
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NOTATIONS 

7Z 

R[z] 

R(z) 

R[s,z] 

JRcr (s) 

JR(s,z) 

-1 -1 JR[[s ,z ]] 

(Xj)jEJ 

(x . . ) (i ') J J.,J ,J E 

the set of real numbers. 

the set of non-negative real numbers. 

the set of complex numbers. 

the set of integers. 

the set of non-negative integers. 

the set of polynomials in the variable z with coeffi-

cients in R. 

the set of rational functions in the variable z with 

coefficients in R. 
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the set of proper rational functions in the variable z 

with coefficients in R. 

the set of strictly proper rational functions in the 

variable z with coefficients in R. 

the set of formal power series in the variable z-l with 

coefficients in R. 

the set of polynomials in the variables sand z with 

coefficients in R. 

the set of stable real transfer functions. 

the set of real rational functions in the variables s 

and z. 

the set of proper real rational functions in the 

variables sand z. 

the set of real formal power series in the variables 

s-1 and z-l 

sequence with index set J (elements are denoted by x.). 
J 

double sequence with index set J (elements are denoted 

by x1.J. and also by x .. ) • 
J.,J 

the set 

tion is 

m.2 and 

of column n-vectors over R (row vector nota­

used for E 2 and E 2 and in IV .4 and V .6 also for 
2 + 

JR+). 
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(x1, ••• ,xn)' 

Rmxp 

A' 

(A) ij 

det(A) 

deg(p) 

H(rl 

conv S,= 

+ conv S,= 

C 
C 

§ 
p,r,q,t 

Q.(R) 

lxl 

column n-vector. 

the set of m x p-matrices over R. 

the transpose of a matrix A (in the scalar case or in 

the case where A is not a matrix the "prime" is used 

just to discern A and A'). 

the (i,j)-th entry of the matrix A. 

the determinant of the matrix A. 

diagonal n x n-matrix. 

the degree ins of the polynomial p (in the case of 

more than one variable). 

the degree of the polynomial p (in the case of one 

variable). 

the Hankel matrix associated with the 1-D impulse 

response F. 

the support of the 2-D impulse response F. 

the convex hull of S,=· 

2 the sum of conv S,= and :R +. 

causality cone. 

the set of 2-D transfer functions with support in a 

causality cone described by the parameters p, r, q and 

t. 

the quotient field of the integral domain R. 

the absolute value of x. 
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basis of a module 

Bezout identity 

canonical 

realization 

system 

Cayley-Hamilton theorem 
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coefficient assignability 

content of a polynomial 

convolution 

delay 

differential system 

inherent 

dimension 

of a system 

of a realization 

discrete time 

dynamics 

system 

domain 

integral 

integrally closed 

Noetherian 

principal ideal 
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equivalent matrices 

left ••• 

right ••• 

Euclidean domain 

factorization algorithm 

23 

5 

11 

25,26 

30,84 

20 

15 

9,52 

70, 71 

23 

107 

3 

94 

38 

94,96 

14 

30 

9 

14 

10,14 

19 

19, 129 

19,128 

19,129 

26,49,116 

26,116 

26, 28 

26 

26 

27, 58 

115 

feedback 

••• equivalence 

finite past 

first level realization 

formal power series 

Fornasini-Marchesini model 

generic property 

Hankel block 

Hankel matrix 

Hermite form 

139 

22,83 

89,91 

10,52 

61 

12,52 

5,64 

112 

18 

18 

26 

modified ••• 

Heymann's Lemma 

Ho's algorithm 

impulse 

27,47,118,119 

23,89 

35 

••. response 

realizable 

input 

response 

input/output (I/0) system 

inverse 

system 

with inherent delay 

invertibility 

left ••• 

right ••• 

local ring 
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recursive 

state space 
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torsion free 

monic polynomial 

76 

3,60 

4,64 

11,129 

11,21 

11, 13 

22,130 

16 

Noetherian integrally closed domain 19 

Nerode equivalence class 

Non Symmetric Half Plane 
(NSHP) filter 

observability 

genericity of 

observable 

pair 

system 

observer 

output 

partial realization 

pixel 

pole assignability 

20, 21 

68, 77 

20 

114 

20,87 

20,21 

82 

3,9,51,61 

46,47 

1 

22 

primitive part of a polynomial 107 

principal ideal domain 19,129 

proper 16,55 

strictly 42,55 

quotient field 18,128 

rational function 16 

proper 16 

strictly proper 42 

rational matrix 17 

proper 17,55 

strictly proper 

reachability 

genericity of ... 

reachable 

..• pair 

42,55 

20,101 

113 

20,84,86 

reachable system 

realizable impulse response 

realization 

canonical 

first level 

minimal ... 
observable . .. 
partial ... 
reachable ... 

algorithm 

isomorphism theorem 

second level 

split 

state space 

recurrence parameters 

recurrent sequence 

regular matrix 

left ... 

right .•• 

regulator 

Roesser model 

second level realization 

20, 21 

16 

3,14 

30,84 

61 

17,19,43 

101 

46,47 

101 

29, 38,122 

21 

61 

36,37 

59 

16 

16, 19 

29 

29,30 

22 

6,64 

61 

semi local ring 23,129 

separability 88,106 

separable transfer matrix 88 

shift invariant system 10,52 

Smith form 28 

modified 28,118,119 

stability 22,79 

BIBO 79,81 

state 3,14,61 

local 62 

local space model 

space 

space system 

space model 

64,65,69 

14 

support of an impulse response 

14,20 

3,59 

69 



system 

canonical 

causal ..• 

discrete time 

dual •.• 

free ••. 

input/output 

inverse ..• 

isomorphic systems 

linear ••• 

local state space 

non-free ••• 

observable 

1-D .•. 

reachable 

scalar ••• 

shift invariant 

state space .•• 

time invariant ••• 

20,21 

9,52 

10,14 

23 

13 

9,10,51 

93 

22 

10 

68 

21 

20,21 

·3 

20,21 

14 

10,52 

14, 20 

93 

141 

2-D ... 2,52 

weakly causal 2-D ... 68,69 

time invariance 10 

time set 9 

transfer function 57 
(see also transfer matrix) 

causal 2-D ... 93,107 

weakly causal 2-D 93 

transfer matrix 17 

separable 88 

2-D ... 56 

weakly causal 73 

unimodular matrix 26 

weakly causal 

transfer function 93 

transfer matrix 73 

2-D system 68,69 

Zariski topology 112 

Zeiger's algorithm 25,34 

z-transform 13,52 





OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS 

A leaflet containing an order-form and abstracts of all publications men­
tioned below is available at the Mathematisch Centrum, Kruislaan 413, Am­
sterdam 1098SJ, The Netherlands. Orders should be sent to the same address. 

MCT 1 T. VAN DER WALT, Fixed and almost fixed points, 1963. ISBN 90 6196 
002 9. 

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 90 6196 003 7. 

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model 
and method, 1964. ISBN 90 6196 004 5. 

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II: Pro­
babilistic background, 1964. ISBN 90 6196 005 3. 

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision 
processes, Applications, 1970. ISBN 90 6196 051 7. 

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1. 

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964. 
ISBN 90 6196 007 X. 

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964. ISBN 90 6196 
008 8. 

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6. 

MCT 10 E.M. DE JAGER, Applications of distributions in mathematical physics, 
1964. ISBN 90 6196 010 X. 

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964. ISBN 90 6196 
011 8. 

MCT 12 J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MoKKEN & A. VAN 
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965. 
ISBN 90 6196 013 4. 

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced 
by MCT 54 and 67. 

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics, 1966. 
ISBN 90 6196 020 7. 

MCT 15 R. DoORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5. 

MCT 16 J.W. DE BAKKER, Formal definition of programming languages with an 
application to the definition of ALGOL 60, 1967. ISBN 90 6196 
022 3. 

MCT 17 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 1, 1968. 
ISBN 90 6196 025 8. 

MCT 18 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 2, 1968. 
ISBN 90 6196 038 X. 

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968. 
ISBN 90 6196 026 6. 

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial 
differential equations, 1968. ISBN 90 6196 027 4. 



MCT 21 E. WATTEL, The compactness operator in set theory and topology, 
1968. ISBN 90 6196 028 2. 

MCT 22 T.J. DEKKER, ALGOL 60 procedures in numerical algebra, part 1, 1968. 
ISBN 90 6196 029 0. 

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedut>es in numerical algebra, 
part 2, 1968. ISBN 90 6196 030 4. 

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6. 

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective 
geometry, 1969. ISBN 90 6196 039 8. 

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968. 
ISBN 90 6196 031 2. 

MCT 27 EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969. 
ISBN 90 6196 040 1. 

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969. 
ISBN 90 6196 041 X. 

MCT 29 J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8. 

MCT 30 H. BRANDT CORSTIUS, Excercises in computational linguistics, 1970. 
ISBN 90 6196 052 5. 

MCT 31 W. M::>LENAAR, Approximations to the Poisson, binomial and hypergeo­
metric distribution functions, 1970. ISBN 90 6196 053 3. 

MCT 32 L. DE HAAN, On regular variation and its application to the weak 
convergence of sample extremes, 1970. ISBN 90 6196 054 1. 

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing 
and related topics, 1970. ISBN 90 6196 061 4. 

MCT 34 I. JUHASZ, A. VERBEEK & N.S. KROONENBERG, Cardinal functions in 
topology, 1971. ISBN 90 6196 062 2. 

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 0. 

MCT 36 J. GRASMAN, On the birth of boundary layers, 1971. ISBN 90 6196064 9. 

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DuIJVESTIJN, E.W. DIJKSTRA, 
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN 
ARETZ, W.L. VANDERPOEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES & 

G. ZOUTENDIJK, MC-25 Informatica Symposium, 1971. 
ISBN 90 6196 065 7. 

MCT 38 W.A. VERLOREN VAN THEMAAT, Automatic analysis of Dutch compound words, 
1971. ISBN 90 6196 073 8. 

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6. 

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972. ISBN 90 6196 075 4. 

MCT 41 A. VERBEEK, Superextensions of topological spaces, 1972. ISBN 90 
6196 076 2. 

MCT 42 W. VERVAAT, Success epochs in Bernoulli trials (with applications in 
number theory), 1972. ISBN 90 6196 077 O. 

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence, 
1973. ISBN 90 6196 081 9. 

MCT 44 H. BART, Meromorphic operator valued functions, 1973. ,ISBN 906196 082 7. 



MCT 45 A.A. BALKEMA, Monotone tr-ansfomiations and limit la.1J)s, 1973. 
ISBN 90 6196 083 5. 

MCT 46 R.P. VAN DE RIET, ABC ALGOI,, A por-table language for> fo1'rTTUla manipu­
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3. 

MCT 47 R.P. VAN DE RIET, ABC ALGOL, A por-table language for> fo1'rTTUZa manipu­
lation systems, part 2: The aompiZer-, 1973. ISBN 90 6196 085 1. 

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL 
60 aompiZ.er- in ALGOL 60, Text of the MC-aompiZer- for trie 
EL-XB, 1973. ISBN 90 6196 086 X. 

MCT 49 H. KOK, Conneated or-der-able' spaaes, 1974. ISBN 90 6196 088 6. 

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J .E.L. PECK, C.H.A. KOSTER, 
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERI'ENS & R.G. FISKER 
{Eds), Revised r-eport on the algor-ithmie language ALGOL 68, 
.1976. ISBN 90 6196. 089 4. 

MCT 51 A. HORDIJK, Dynamia pr-ogramming and Markov potential theocy, 1974. 
ISBN 90 6196 095 9. 

MCT 52 P.C. BAA.YEN {ed.), Topologiaal str-uatu'l'es, 1974. ISBN 90 6196096 7. 

MCT 53 M.J. FABER, Metr-izability in gener-alized or-der-ed spaaes, 1974. 
ISBN 90 6196 097 5. 

MCT 54 H.A. LAUWERIER, Asymptotia analysis, part 1, 1974. ISBN90 6196 098 3. 

~T 55 M. HALL JR. & J.H. VAN LINT {Eds), Combinatorias, part 1: Theocy 
of designs, finite geometr-y and aoding theor-y, 1974. 
ISBN 90 6196 099 1. 

MCT 56 M. HALL JR. & J.H. VAN LINT {Eds), Combinator>ias, part 2: graph 
theocy, foundations, partitions and aombinatorial geometry, 
1974. ISBN 90 6196 100 9. 

MCT 57 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorias, part 3: Combina­
tor-ial group theor-y, 1974. ISBN 90 6196 101 7. 

MCT 58 W. ALBERS, Asyrrrptotia expansions and the defiaienay aonaept in sta­
tistias, 1975. ISBN 90 6196 102 5. 

MCT 59 J.L. MIJNHEER, Sample path pr-oper-ties of stable pr-oaesses, 1975. 
ISBN 90 61·96 107 6. 

MCT 60 F. GoBEL, Queueing models involving buffer-s, 1975. ISBN 90 6196 108 4. 

* MCT 61 P. VAN EMDE BoAS, Abstr-aat r-esour-ae-bound alasses, part 1. 
ISBN 90 6196 109 2. 

* ~T 62 P. VAN EMDE BoAS, Abstr-aat r-esourae-bound alasses, par>t 2. 
ISBN 90 6196 110 6. 

MCT 63 J.W. DE BAKKER (ed.), Founda,tions of aomputer saienae, 1975. 
ISBN 90 6196 111 4. 

MCT 64 W.J. DE SCHIPPER, Symmetr-ia alosed aategories, 1975. ISBN90 6196 
112 2. 

MCT 65 J. DE VRIES, Topologiaal transfor-mation gr-oups 1 A aategoriaal ap­
pr-oaah, 1975. ISBN 90 6196 113 o. 

MCT 66 H.G.J. PIJLS, Loaally aonvex algebr-as in speatr-al theocy and eigen­
funation expansions, 1976. ISBN 90 6196 114 9. 



* MCT 67 H.A. LAUWERIER, Asymptotic analysis, part 2. 
ISBN 90 6196 119 X. 

MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of 
second order, 1976. ISBN 90 6196 120 3. 

MCT 69 J.K. LENSTRA, Sequencing by enumerative methods, 1977. 
ISBN 90 6196 125 4. 

MCT 70 W.P. DE RoEVER JR., Recursive program schemes: semantics and proof 
theory, 1976. ISBN 90 6196 127 O. 

MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976. 
ISBN 90 6196 129 7. 

MCT 72 J.K.M. JANSEN, Sirrrple periodic and nonperiodic Lame functions and 
their applications in the theory of conical waveguides,1977. 
ISBN 90 6196 130 0. 

MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic logic, 1979. 
ISBN 90 6196 122 x. 

MCT 74 H.J.J. TE RIELE, A theoretical and corrrputational study of general­
ized aliquot sequences, 1976. ISBN 90 6196 131 9. 

MCT 75 A.E. BROUWER, Treelike spaces and related connected topological 
spaces, 1977. ISBN 90 6196 132 7. 

MCT 76 M. REM, Associons and the closure statement, 1976. ISBN 90 6196 135 1. 

MCT 77 W.C.M. KALLENBERG, Asyrrrptotic optimality of ZikeZihood ratio tests in 
exponential families, 1977 ISBN 90 6196 134 3. 

MCT 78 E. DEJONGE, A.C.M. VAN RooIJ, Introduction to Riesz spaces, 1977. 
ISBN 90 6196 133 5. 

MCT 79 M.C.A. VAN ZUIJLEN, Errrpirical distributions and rankstatistics, 1977. 
ISBN 90 6196 145 9. 

MCT 80 P.W. HEMKER, A numerical study of stiff two-point boundary problems, 
1977. ISBN 90 6196 146 7. 

MCT 81 K.R. APT & J.W. DE BAKKER (Eds), Foundations of corrrputer science 
part 1, 1976. ISBN 90 6196 140 8. 

MCT 82 K.R. APT & J.W. DE BAKKER (Eds), Foundations o.f computer science 
part 2, 1976. ISBN 90 6196 141 6. 

MCT 83 L.S. VAN BENTEM JuTTING, Checking Landau's "Grundlagen" in the 
AUTOMATH system, 1979 ISBN 90 6196 147 5. 

II, 

II, 

MCT 84 H.L.L. BUSARD, The translation of the elements of Euclid from the 
Arabic into Latin by Hermann of Carinthia (?) books vii-xii, 1977. 
ISBN 90 6196 148 3. 

MCT 85 J. VAN MILL, Supercorrrpactness and Wallman spaces, 1977. 
ISBN 90 6196 151 3. 

MCT 86 S.G. VAN DER MEULEN & M. VELDHORST, Torrix I, 1978. 
ISBN 90 6196 152 1. 

* MCT 87 S.G. VANDERMEULEN & M. VELDHORST, Torrix II, 
ISBN 90 6196 153 x. 

MCT 88 A. SCHRIJVER, Matroids and linking systems, 1977. 
ISBN 90 6196 154 8. 



MCT 89 J.W. DE RoEVER, Complex Four>ier transfo!'ITlation and analytic 
functionals with unbounded carriers, 1978. 
ISBN 90 6196 155 6. 

*MCT 90 L.P.J. GROENEWEGEN, Characterization of optimal strategies in dy-
namic games, . ISBN 90 6196 156 4. 

MCT 91 J.M. GEYSEL, Transcendence in fields of positive characteristic, 
1979. ISBN 90 6196 157 2. 

MCT 92 P.J. WEEDA, Finite generalized Markov prograrruning,1979. 
ISBN 90 6196 158 O. 

MCT 93 H.C. TIJMS (ed.) & J. WESSELS (ed.), Narkm1 decision theory, 1977. 
ISBN 90 6196 160 2. 

MCT 94 A. BIJLSMA, Simultaneous approximations in transcendental number 
theory, 1978. ISBN 90 6196 162 9. 

MCT 95 K.M. VAN HEE, Bayesian control of Markov chains, 1978. 
ISBN 90 6196 163 7. 

* MCT 96 P.M.B. VITANYI, Lindenmayer systems: structure, languages, and 
growth functions, • ISBN 90 6196 164 5. 

* MCT 97 A. FEDERGRUEN, Markovian control problems; functional equations 
and algorithms, . ISBN 90 6196 165 3. 

MCT 98 R. GEEL, Singular perturbations of hyperbolic type, 1978. 
ISBN 90 6196 166 1 

MCT 99 J.K. LENSTRA, A.H.G. RINNOOY KAN & P. VAN EMDE BOAS, Interfaces 
between computer science and operations research, 1978. 
ISBN 90 6196 170 X. 

MCT 100 P.C. BAAYEN, D. VAN DULST & J. ClOSTERHOFF (Eds), Proceedings bicenten­
nial congress of the Wiskundig Genootschap, part 1,1979. 
ISBN 90 6196 168 8. 

MCT 101 P.C. BAAYEN, D. VAN DULST & J. ClOSTERHOFF (Eds), Proceedings bicenten­
nial congress of the Wiskundig Genootschap, part 2,1979. 
ISBN 90 9196 169 6. 

MCT 102 D. VAN DULST, Reflexive and superreflexive Banach spaces, 1978. 
ISBN 90 6196 171 8. 

MCT 103 K. VAN HARN, Classifying infinitely divisible distributions by 
functional equations,1978. ISBN 90 6196 172 6. 

MCT 104 J.M. VAN WOUWE, Go-spaces and generalizations of metrizability,1979. 
ISBN 90 6196 173 4. 

* MCT 105 R. HELMERS, Edgeworth ex-pansions for Unear combinations of order 
statistics, . ISBN 90 6196 174 2. 

MCT 106 A. ScHRIJVER (Ed.), Packing and covering in combinatorics, 1979. 
ISBN 90 6196 180 7. 

MCT 107 C. DEN HEIJER, The numerical solution of nonlinear operator 
equations by imbedding methods, 1979. ISBN 90 6196 175 O. 

MCT 108 J.W. DE BAKKER & J. VAN LEEUWEN (Eds), Foundations of computer 
science III, part 1, 1979. ISBN 90 6196 176 9. 



MCT 109 J.W. DE BAKKER & J. VAN LEEUWEN (Eds), Foundations of computer 
science III, part 2, 1979. ISBN 90 6196 177 7. 

MCT 110 J.C. VAN VLIET, ALGOL 68 transrut, part I: Historical Review and 
Discussion of the Implementation Model, 1979. ISBN 90 6196 1785. 

MCT 111 J.C. VAN VLIET, ALGOL 68 transput, part II: An implementation model, 
1979. ISBN 90 6196 179 3. 

MCT 112 H.C.P. BERBEE, Random walks with stationary increments and Renewal 
theory, 1979. ISBN 90 6196 i82 3. 

MCT 113 T.A.B. SNIJDERS, Asymptotic optimality theory for testing problems 
with restricted alternatives, 1979. ISBN 90 6196 183 1. 

MCT 114 A.J.E.M. JANSSEN, Application of the Wigner distribution to harmonic 
analysis of generalized stochastic processes, 1979. 
ISBN 90 6196 184 x. 

MCT 115 P.C. BAAYEN & J. VAN MILL (Eds), Topological Structures II, part 1, 
1979- ISBN 90 6196 185 5. 

MCT 116 P.C. BAAYEN & J. VAN MILL (Eds), Topological Structures II, part 2, 
1979. ISBN 90 6196 186 6. 

MCT 117 P.J.M. KALLENBERG, Branching processes Iuith continuous state space, 
1979. ISBN 90 6196 188 2. 

MCT 118 P. GROENEBOOM, Large deviations and Asymptotic efficiencies, 1980. 
ISBN 90 6196 190 4. 

MCT 119 F. PETERS, Sparse matrices and substructures, 1980. ISBN 90 6196 
192 o. 

MCT 120 W.P.M. DE RUYTER, On the Asymptotic Analysis of Large Scale Ocean 
Circulation, 1980. ISBN 90 6196 192 9. 

MCT 121 W.H. HAEMERS, Eigenvalue techniques in design and graph theory, 
1980. ISBN 90 6196 194 7. 

MCT 122 ,T.C.P. Bus, Numerical solution of systems of nonlinear equations, 
1980. ISBN 90 6196 195 5. 

MCT 123 I. YUHASZ, Cardinal functions intopology - ten years later, 1980. 
ISBN 90 6196 196 3. 

MCT 124 R.D. GILL, Censoring and Stochastic Integrals, 1980. ISBN 90 6196 
197 1. 

MCT 125 R. EISING, 2-D Systems, an algebaric approach, 1980. ISBN 90 6196 
198 x. 

MCT 126 G. VAN DER HOEK, Reduction methods in nonlinear programming, 1980. 
ISBN 90 6196 199 8. 

AN ASTERISK BEFORE THE NUMBER MP.ANS "TO APPEAR" 


