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I INTRODUCTION AND SUMMARY

In recent years the field of digital processing of two-dimensional sampled
data has attracted many researchers. The reasons for the interest in this
field are on one side the richness in potential application areas and on
the other side the abundance of non-trivial theoretical problems.

Potential areas of application are digital image processing, seismic signal
‘processing, gravity and magnetic field mapping. Here a digital image can be
thought of as a collection of digitized (photographic) data where each
pixel (picture element) represents a gray level in the case of black and
white photography (for instance a newspaper photograph). In color photo-
graphy in each pixel some numbers, ching the color and the color intensity,
are given.

Of course it is not necessary that an image is formed using visible light.
Other ways of obtaining an image are for instance radar, infra red photo-
graphy (agricultural applications and reconnaissance), ultra sonic imaging
and X-ray photography (medical applications) and particles such as elec-
trons may also be an intermediate between the object and the image (elec-
tron microscopic photography) .

Processing of the two-dimensional sampled data (often just called images)
may consist of some of the following operations. Restoration of blurred
images. Enhancement of noisy images by reduction of the noise level (noise
filtering combined with other techniques). Feature extraction (detection of
edges etc.).

Sources of the blur may be movement of the camera or for instance atmo-
spheric turbulance. Noise sources corrupting the image may be inherent to
the imaging system or may arise in the transmission of an image (space
craft photography) .

As an example of image enhancement may serve the Mariner 6 and 7 pictures
of Mars processed at the Jet Propulsion Laboratory, Pasadena, California
(see [59]).

For a very readable introduction see [3] and for more information concern-
ing restoration techniques and more technical aspects of image processing
see [37], [2].



The enhancement of a picture is a difficult task, partly because there are
almost no theoretical foundations and on the other hand because there are
very severe storage requirements. Reasons for this to be the case are be-
cause one needs a picture with say 1024 x 1024 pixels in order to obtain a
reasonable resolution and in the case of color photography for each pixel
one needs 24 bits to code the basic colors and the color levels. Further-
more the number of computations is enormous. This can be seen from the fol-
lowing convolution which may serve as a prototype of operation by which an

image is processed:

W10 vy = 1Fy g vy

1.3
Here uij denotes the pixel at position (i,j) of the original picture and
Yin denotes the pixel at position (k,h) of the processed picture. From this
model it is clear that there are serious computational problems and the
number of computations involved depends strongly on the number of non-zero
elements an of the double sequence (Fm,n)’ the so called point spread
function or impulse response. A convolution as described in (1.1.1) is
called a 2-D system or a 2-D filter (2-D stands for two-dimensional).
The main problem in the field of image processing is the design of 2-D
filters such that the output image with pixels Yin is more satisfactory
according to some quality criterion than the input image with pixels uij'
Many papers appeared in this field. However, most of these present some ad
hoc solutions to the problem and the main reason for this is the lack of a
quantitative quality criterion. See [39], [75], [38].
A very important aspect of a 2-D filter is stability which means, roughly
speaking, that small disturbances in the input only have a small effect on
the output. Some references are [30], [37].
A severe restriction on the possible application of filters is the computa-
tion time, especially for serial problems (on line filtering), where there
is only a limited processing time available for each image. Sometimes this
problem is circumvented by taking a smaller number of pixels describing the
image. However, this may reduce the resolution considerably. Hence there is
a need for fast processing techniques. One of the approaches to this pro-
blem is the use of transform techniques such as the Fast Fourier Transform
which may reduce the computational effort considerably. See for instance
[37]1, [69], [14]. Recently, fast algorithms, based on polynomial trans-

forms, have been developed. See [58].



Another approach to the problem of reducing the computational effort and at
the same time decreasing the amount of memory, necessary for the image pro-
cessing problem, is the introduction of state space techniques. For 1-D

systems which can be described by a convolution like

(1.1.2)  y, = ) Fi_; Uy
i

state space models have proved to be very useful. The standard state space

model in this case is (given some initial conditions)

Xppr = BXy T Buy

ka + D'l.]k

(1.1.3)

Yy
From this model it can be seen that the convolution can be calculated very

easily because the output Yy depends only on the last input u, and the last

k

state x, . Of course uk, Xk’ yk may be members of different vector spaces

k
and A, B, C, D are matrices with appropriate dimensions. The model (1.1.3)
is called a realization of (1.1.2). The only condition that has to be satis-
fied is:
= i < =
Fi 0 for i o, F0 D

F, =ca’ !B fori=1,2,3,... .

i

Furthermore it is clear that in order to calculate Yy all past inputs (uh
for h < k) can be forgotten. All information concerning past inputs, neces-
sary to determine the output, is contained in the state xk. It will be

clear that, besides the possible reduction of the number of computations,
also the amount of memory may be reduced considerably.

This idea of introducing an extra variable Xy (the state) playing the role
of a memory device, which to some extent enables us to reduce the redundancy
in the convolution defining the 1-D system, will be introduced in the con-
text of image processing problems (2-D systems).

However, the state space that has to be introduced in this case is generally
infinite dimensional. See [48], [24]. The reason for this is that in the
defining model for a 2-D system the input image and the output image have
infinite extent. In real image processing problems the images have finite
extent, so that the state space can be taken finite dimensional (although

large) .



The fact that the output can be computed recursively from the input, as is
the case for the state space model (1.1.3) will also hold in the 2-D case
(of course under some conditions). This recursive nature of the image pro-
cessing problem may be very advantageous.

State space models for image processing problems, or more generally 2-D
systems, recently appeared in the literature. See for instance [4], [24],
[48]1, [16], [74]. The proposed models look quite different at first sight
but in fact they are closely related. All papers except [16] have in common
that the models are only local state space models. This means that they
just give the equations for the recurrent computation of the output given
the input (furthermore initial conditions are given). They do not have a
real state space character in the sense that there is some variable such as
xkabove,which comprises the relevant information from the past, because
this would presuppose an ordering of the index set.

In this monograph a statespacenmdei together with a local state space model
is presented and both models can be obtained from one another in an easy
and straightforward way (see also [16]). This is the reason why the other
models can be considered special cases of the model presented in this
approach.

The model, describing the input/output behavior of the 2-D system we will
be working with, is given by

k,h
(1.1.4)

Yin Fy_i,neg Bigr keh=0,1,2,.. .

i=0,3j=0
This input/output model is used by all authors who work on (local) state
space models for 2-D systems, although in some cases FOO is taken to be
zero a priori.
A figure which supports the intuition and is useful in visualizing the

image processing problem is the following.



Figure 1
u= (ui j) ; i,3=0,1,2,... is the input image,
’
y = (yk h) i k,h =0,1,2,... is the output image,
I
F = (Fm n) ; mn=20,1,2,... is the point spread function or
’

impulse response.

The input and output image and the impulse response are thought of as hav-
ing infinite extent in the positive i, j, k, h, m and n direction. The equa-

tions by which Yih is computed from the input are given in (1.1.4). Observe

that yk1,h1 only depends on inputs uij with i < k1 and j < h1

(the en-
circled points in U). ‘
The local state space models for such an image processing system as pre-

sented in [4], [25], [28] respectively, can be described as follows
=2 Xer,n YR B ner T PR ¥e OB

xk+1,h+1 h

(1.1.5)
Ykh = cxkh ’

where AA, = A,A, (see Attasi [4]), and

=a + B

X+l ht1 - 21 Fket,n T P2 Fionet OB Ykt n B2 Y net
(1.1.6)

Ygn = CFyp ¢

This is the last model of a series of models proposed by Fornasini-
Marchesini in [16], [23], [25]. It can be shown that the Attasi model is a

special case of (1.1.6).



A third model, closely related to the model which we propose in Chapter IV

and further on, is given by

*)tt,nl (P10 B2 fkn| | |Ba
= * Ykh
%,n+1] (B3 P4 |%m| B2
(1.1.7)
FX 7
kh
Yy, = [Cy 1 Cyl N + D, -

Again it can be shown that the Fornasini-Marchesini model, and therefore
the Attasi model can be written in the form of this model, due to Roesser
and Givone. See [28], [61], [52]. Observe that in the Roesser model (1.1.7)

Yin depends on u while in the other two models this is not the case. How-

ever, this can bzhincorporated in the models of Attasi and Fornasini-
Marchesini as well. Furthermore observe that the Roesser model is a "first
order" model while the other two are "second order™.

A different approach to the realization problem can be found in [53], [52].
The realizations described there are so called circuit realizations. This
means that the equations of a local state space model are written in the
form of a circuit. These circuit realizations are also closely related to
the Roesser model and therefore to ours.

In [48] a polynomial matrix approach to the study of 2-D systems was pre-
sented which since then attracted some attention of other researchers such
as Fornasini and Marchesini. This method is also related to ours. This will
be shown in Chapter V.

The main idea of this approach is that 2-D systems can be seen as 1-D systems
over a ring. This means that a model like (1.1.4) can be described by a
model as (1.1.2) where the matrices and vectors now have entries in a ring.
The state space model which we will present has the form of (1.1.3) where
the matrices A, B, C, D are matrices over a ring. The local state space
model which we will derive is closely related to (1.1.7) and this model can
be obtained from A, B, C, D quite easily. Also the state space model over
the ring, to be defined, can be obtained from the local state space model
in a straightforward way. This approach to 2-D systems was presented in
[16] and simultaneously in [74]. (The results of Sontag's [74] and our [16]

were closely related.) See also [73].



The objectives of this thesis are to describe the relation of 2-D systems
theory with 1-D systems theory over rings and show how the theory of 1-D
systems over rings can contribute to 2-D systems theory. Another goal is to
present the results ultimately in algorithmic form and not to give only
existence results. Of course this is very important if application oriented
research is being done. Some rather abstract mathematics appears in Chap-
ters II and III. The reason for this is that the results can be used as a
tool in the construction of algorithms for the solution of some problems in
2-D systems theory.

As is often the case, if problems are described on a more abstract level,
the algorithms and theory developed on that abstract level also have appli-

cations in other fields. Some examples of this will be given in Chapter III.

We now give a survey of the monograph.

In Chapter II we give an introduction and some results in the theory of
systems over rings. We will indicate some differences with the theory of
systems over a field and we also present some results common to both the
field case and the ring case. Most parts of the chapter will be concerned
with realization theory.

In Chapter III realization algorithms are developed for systems over a
principal ideal domain. These algorithms are related to some of the exist-
ing algorithms for systems over a field. Also some applications to delay
differential systems and systems over the integers are given.

In Chapter IV it is shown that 2-D systems can be seen as 1-D systems over
a principal ideal domain. Some state space models and local state space
models are developed. We also introduce some causality concepts and it is
shown that these are closely related to recursiveness of the defining equa-
tions of the local state space models under consideration. Furthermore it
is shown that the existing models are speéial cases of the models developed
in this chapter.

Chapter V gives various properties of the 2-D state space models. For in-
stance, it is shown that the problem of investigating the stability of a
2-D system can be coped with if this system is viewed as a 1-D system over
a principal ideal domain. Conditions for the existence of observers, useful
for filtering problems in the field of image enhancement, are given and an
algorithm in order to obtain such observers is shown to be a generalization
of an already existing so called pole placement algorithm. Also some

results concerning invertibility of 2-D systems are obtained. This may be



used in inverse filtering of images. Concepts of reachability and observa-
bility (well-known in 1-D systems theory) are defined and relations with
other approaches are shown. Furthermore, an algorithm for constructing low
order local state space models, which improves on the other algorithms in
the literature, is presented. Also some results concerning generic proper-
ties are presented.

In Chapter VI the realization algorithms, developed in Chapter III are
modified in such a way that the specific structure of 2-D systems can be
exploited.

Finally, in the Appendix, definitions of a few algebraic concepts which

arise in Chapters II and III are given.



II LINEAR SYSTEMS OVER PRINCIPAL IDEAL DOMAINS

I1.1. Genenal introduction

Many dynamic discrete time phenomena can be described by means of linear

equations of the form

(2.1.1)  y, =) Fy % . heZ, kez,
h

where u € ®, Yy € ®" and Fip € RV P. The vector u, is called the
input at time h and ¥y is called the output at time k. Here rP (nfﬁ de-
notes the vector space of real p-vectors (m-vectors) and I*nxp is the space
of real m X p-matrices. Z is the ring of integers. Later on we will impose a
finiteness condition on (2.1.1) to avoid convergence problems. A large part
of linear systems theory is implicitly or explicitly concerned with equa-
tions like (2.1.1). In most cases a so called causality assumption is made,
i.e. it is required that the output at time k be not influenced by future
inputs. The words "time" and "future" stem from the fact that in many ap-
plications Z is interpreted AS a time set designating the order, according
to which the process (phenomenon), of which (2.1.1) is a model, evolves.
This time set gives the possibility to use (2.1.1) as a model for phenomena,
showing dynamic behavior.

The model (2.1.1) will be called an <mput/output system (also I/O system) .
The input/output system (2.1.1) will be called causal if the output at time

k is not influenced by future inputs, i.e. if

(2.1.2) F =0, h>k.

REMARK. Usually (2.1.1) is called a discrete time input/output system but
we will almost exclusively consider discrete time input/output systems.

Therefore we will omit the term "discrete time". 0

In many cases the dynamic behavior of a process does not explicitly depend
upon the time itself. In other words, if a sequence (uh)hdz is related to a
sequence (yk)kez through (2.1.1), then the shifted sequence (uh+n)h€z is

related to the corresponding (yk+n)kez for each n € Z. In this case, Fkh
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only depends on the difference k -h. Henceforth we will make this assump-
tion of time <nvariance (also called shift imvariance whenZ is not direct-

ly related to time) and we denote the input/output system (2.1.1) by

(2.1.3) heZ, kez.

Y = E Frh %’

We will make two further assumptions concerning the input sequence (uh)hEzz

and the sequence (Fn)nE , namely, we assume that the input sequences have

Z
finite past, i.e., there exists an h, such that

(2.1.4) w = 0, h < ho

for all input sequences.

By a reindexing of the input sequences (2.1.4) can be expressed as

(2.1.5) u, = 0, h<O0.

We will also assume that the input/output system is causal (see (2.1.2)).

This means that

(2.1.6) Fn =0, n<o0.

The assumptions imply that Y = 0 for k < 0. Assuming causality, time in-
variance and the finite past condition on the inputs, (2.1.1) can be writ-
ten as

k
(2.1.7)  y, = 20 Fp W ¢ k=0,1,2,... .

h=
This is the standard equation (see [12]) for a causal, discrete time, time
invariant, linear input/output system. When no confusion can arise we

simply call (2.1.7) an input/output system.

REMARK. It is not necessary for the time set (index set) to be a totally
ordered set. In Chapter IV we will be concerned with systems where the

index set is a partially ordered set. 0
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II.2. The Aimpulse response

First we will introduce a generalization. In the foregoing we assumed that
the inputs (outputs) were real p- (m-) vectors. This assumption will now be
dropped.

From now on R will denote a commutative integral domain with identity.
Henceforth we will be concerned with R-modules. An R-module (see Appendix) Mis
just a vector space where the scalars belong to a ring R. We will only con-
sider the case where M is a finitely generated R-module. M is finitely
generated if there exist elements 191,...,mp € M such that every element

11
...,Ap are unique, then ml,...,mp is a basis for M.

m € M can be writtenas m = A,m, + ... + Apmp for some Al,...,AP € R. If
for each m € M, Al,
A free R-module is a finitely generated R-module which has a basis. An
example of a free R-module is Rp, the set of column p-vectors with entries
in R, with the usual (just like for a vector space) addition and scalar
multiplication.

It can easily be seen that every free R-module M is isomorphic to a module
RP where p is the number of basis elements.

As is the case for vector spaces a linear map A: RP + R" is completely
characterizedby an m x p-matrix A with entries in R. Therefore the map A can
be identified with the matrix A € Rpxp.

We now generalize the concept of I/O systems to the case of free R-modules.

Therefore we say that (2.1.7) is an input/output system over R if u, € Rp,
h=0,1,2...; y € By h=0,1,2,...; F, ¢ R™P, i =0,1,2,...; where R"°P

denotes the set of m X p-matrices over R.

In most parts of Chapter II it will not be necessary to be concerned with
the discrete time dynamical interpretation of the input/output system
(2.1.7). It will be sufficient to work with an abstract notion of I/0
system. This concept will be the impulse response.

Suppose that m = p = 1, then (2.1.7) is called a scalar I/O system. Apply-

ing an Zmpulse to the I/O system, i.e. an input sequence such that ug = 1

and u, = 0, h=1,2,3,..., the response, the output sequence, will be

, where Yy = F k € Z+ (the set of non-negative integers). For

Y e k'
this reason the sequence (Fn)nsz is called the Zmpulse response (also

+
called Markov sequence) .

Analogously to the scalar case the matrix sequence (Fn)nEz is also called

the impulse response for the general case (2.1.7). Given the impulse
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response and a sequence of inputs one can compute the output sequence by
just computing the convolution in (2.1.7). Therefore, the impulse response
completely characterizes the I/O system under consideration. The abstract
notion of I/0 system, mentioned above, will be the impulse response. There-

fore we give the following definition.

(2.2.1) DEFINITION. An <mpulse response F (over the ring R) is a sequence

of m x p-matrices over R, F = for some integers m, p. 0

(Fn).ne'z_‘.

I1.3. The formal power series approach

In this section another approach of I/0 systems over R will be considered.
For this purpose we need the concept of formal power series. Suppose we are

iv - = .
given an R-sequence R (rn)rez+_(rn € R)

(2.3.1) DEFINITION. The formal power series r(z) in the variable 2! qs-

sociated with the sequence R = (r ) 18
n’ neZ,

r(z) = 2 rnz-n. 0

REMARK. In fact r(z) is just another way of writing down the sequence
(ro,rl,rz,...) and z_1 is a position marker. (We do not require "conver-
gence".) Introducing formal power series enables us to write down convolu-
tions (like (2.1.7)) as products. Formal power series can also be used when
we are dealing with so called realization problems. This will become clear

in the sequel. a

To illustrate the use of formal power series we introduce R[[z—l]], the set
of formal power series over R. The set R[[z-l]] can be given a ring struc-
ture. Suppose II(Z)’ r2(z) € R[[z_l]], then the product rl(z)rz(z) is
defined by formally carrying out the multiplication of the two series and
collecting the terms with the same power in z—l, to obtain a member of
R[[z_l]] again. The sum of two elements rl(z) and r2(z) is defined by ad-
dition of the corresponding coefficients (of the same powers in z_l). This

makes R[[z_1]] a ring.
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REMARK. Multiplication of two elements in the ring R[[z_l]] in fact per-

forms the convolution of the corresponding sequences. O

The formal power series associated with a sequence can also be seen as the
(formal) Z-transform of this sequence ("formal" because no convergence is
required) .

Analogously to the scalar case we also have a formal power series associat-

ed with a vector sequence (uh)hsz and also for a matrix sequence

. k keZ
F. So we have

(2.3.2)  u(z) h

Lo

(2.3.3)  y(z) = § y 2"
=0

(2.3.4) F(z) = ] F oz "
n=0

where

u(z) € R[[z_ll]P , the free R[[z—llj module of p-vectors,
y(z) € R[[z_l]]m , the free R[[z_l]] module of m-vectors,
F(z) € R[[z_lljmxp, the set of m x p-matrices over R[[z—l]].
A causal, discrete time, time invariant, linear input/output system (2.1.7)
can equivalently be described by
©(2.3.5) y(2z) = F(2)u(z)

where y(2), F(z), u(z) should not be thought of: as functions of z. This is

just another way of writing down (2.1.7).

II.4. Free systems over a ing

In this section we will explain what we mean by a free system over a ring R.
It will be shown that every free system gives rise to an I/O system but not

every I/0O system is related to a free system in a natural way.

(2.4.1) DEFINITION. A finite dimensional free system L over R is a quadruple

. xn nx mxn x
of R-matrices (A,B,C,D) where A ¢ R" » BeR P, CeR , De 2P for
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some integers m, n, p. n 1§ called the dimension of . If m =p = 1 then I
78 called scalar. 0

Because we will only deal with finite dimensional free systems, I will be
called a free system.

Parallel to the dynamic interpretation of an impulse response over R we can
proceed here in the following way. Again we will use an interpretation in

terms of discrete time dynamics.

Xegp = BX F By s x5 =0,

(2.4.2)

Yy ka + Duk ’ k=0,1,2,... .
Usually Xy € Rn is called the state, rR® is called the state space, again
u, € RP is the input and vy € R" is the output.

We can now eliminate the states xk, k € Z+ and obtain an I/O system

k
(2.4.3) yo= ] Fow ., k=0,1,2,...
h=0
where
(2.4.4) Fy=D, Fi=CA"'1B, i=1,2,3,... .

Thus with every free system I = (A,B,C,D) we can associate an impulse
response FZ = (D,CB,CAB,CAzB,...). FZ will also be called the impulse
response of L.

Later on we will also deal with non-free systems. Then the name "free
system" will be justified. Until then we will omit the word "free" and
simply call I a system.

Now let us be given an impulse response F = (FO'Fl'FZ"")' We say that the

system I = (A,B,C,D) reqlizes F if F = F_, i.e. if (2.4.4) holds. I is also

’
called a realization of F. "
A system I = (A,B,C,D) with the dynamical interpretation (2.4.2) is usually
called a (discrete time) state space system.

One of the reasons that state space systems are important is that an im-
portant class of I/0 systems can be realized, thus providing more structure
in an input/output system which in turn is very important for the construc-

tion of regulators and observers (see [49], [71]).
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Another important feature of state space systems is the following. Suppose
we have an I/O system with impulse response F. Let F = Fz for some

I = (A,B,C,D) (I realizes F). Now consider the I/O system

k
v = ) FenU r k=0,1,2,....
h=0
If we want to compute Yy we have to store (uo,ul,...,uk) and (FO'FI""’Fk)
and Yy is the convolution of the two sequences. No matter how large k is,
we can never "forget" some of the inputs and some part of the given impulse
response. Furthermore the evaluation of the convolution represents an ever

increasing amount of computations. On the other hand, if Yy is given by

Axk + Buk ’ XO =0,

Yk ka + Duk ' k=20,1,2,...,

X+l
(2.4.5)

then in order to compute ¥ we just have to know the fixed matrices A, B,

C, D, the last input U, and the last state X, . We may forget all the pre-

vious inputs and the previous states. If thekdimension of I is not too
large, the amount of computations will be reduced considerably, primarily
because the state and the output can be evaluated recursively. Furthermore
the memory requirements may be reduced considerably. We say that the state
contains all the relevant information from the past, that is, the state may
be considered some kind of memory device (see also [45], [71]).

Having motivated the study of state space systems a little bit, we will now
be concerned with the conditions that have to be iﬁposed on an impulse
response F such that F can be realized by a system I.

If F = (FO'Fl’FZ"") is the impulse response of a system ¥ = (A,B,C,D),
then

(2.4.6) FO =D, Fi = CA B, i=1,2,3,... .

However, by the Cayley-Hamilton theorem we have

n _ n-1
(2.4.7) A = aOI + alA + ... + an_lA

for some ai €e R, i=0,...,n-1. (The Cayléy—Hamilton theorem holds for
every matrix over a commutative ring, see [31]. This is where commutati-

vity becomes important.) Therefore we have
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n-1
(2.4.8) F = .2 o Fip v k=1,2,3,... .

i=0
F is called recurrent. Qgres-r0 o are called recurrence parameters of
(2.4.8).

This recurrency condition is also sufficient for F to be realizable.

(2.4.9) THEOREM. If F = (FgiFysFyie..) ©8 recurrent with recurrence para-

meters o, ....0 4, then I = (A,B,C,D) realizes F where D = Fos

H o
o
.
o
Q
H
S
o H
 H

a=|0 1 . ’ : , B= |, c' =1
: 0

. 1]

L0 «ee 0 I a I 10] F

where all matrices I and O are p x p-matrices.

PROOF. For a proof see [42] (straightforward computation) . 0

Usually, the dimension of this realization can be reduced considerably,
unless in the case of a scalar impulse response when we have a minimal
number of recurrence parameters.

The fact that realizability of an impulse response F is equivalent to re-
currency of F can also be stated in terms of the formal power series as-
sociated with F. We therefore introduce the following notation.

R[z] denotes the ring of polynomials in the variable z with coefficients
in R.

R(z) denotes the field of "rational functions" in z, i.e.

R(z) = {rl(z)/rz(z) |r1(z) e R[z], r,(z) € R[z]} .

Although rl(z)/rz(z) isnot a rational function (mapping) we will use the
phrase "rational function" for a member of R(z) because the meaning is
nowhere ambiguous. In fact, R(z) is a set of equivalence classes.

A polynomial r(z) is called monic if the leading coefficient is the

n-1

identity i.e. r(z) = ry + r,z + ... + ¥ z + z". A rational function

n-1
rl(z)/rz(z) is called proper if r2(z) is monic and deg(rz(z)) 2 deg(rl(z))

where deg(ri(z)) denotes the degree (in z) of ri(z).
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The ring of proper rational functions will be called Rc(z). The "c" stands
for causal. The ring R (z) can be embedded in R[[z_lj] because an element
of Rc(z) canbe expanded in a formal power series associated with an impulse
response of a causal I/O system. A formal power series r(z) is called
rational if it is the expansion of a rational function rl(z)/rz(z) € Rc(z).
Rationality of F(z) means that every entry of F(z) is rational. Observe
that the rational power series F(z) is a member of Rc(z)mxp.

We can now state the following theorem.

(2.4.10) THEOREM. Let F = (FoiFysFyr--.) be an impulse response where

F, ¢ ROP
1

current 1ff F(z)is rational.

. Let F(z) be its assoctated formal power series. Then F is re-

PROOF. For a proof see [15]. ]

(2.4.11) DEFINITION. Let F = (FoiFy+Fyr...) be a realizable impulse response
and let F(z) be the associated formal power series. Then F(z) (which is a
proper rational matrix) is called the transfer matrix of the I/0 system with

impulse response F. 0

Now we can say that every transfer matrix F(z) has at least one realization
namely a realization of the impulse response of which F(z) is the associated
formal power series. ' .

We can also say that every system I = (A,B,C,D) has a transfer matrix F(z)
if we define F(z) to be the formal power series associated with the impulse

response F = (D,CB,CAB,...). Then we have

(2.4.12) THEOREM. For the system L = (A,B,C,D) the transfer matrix F(z) is
given by

F(z) = clzT-a] !B +D.

PROOF. Expanding C[zI--A]_1 B+D in a formal power series immediately gives
the result. O

Up to now we have obtained the following result: Every recurrent impulse
response (proper rational matrix) has a state space realization. Generally
there is. a lot of redundancy in the realization (2.4.9). Next we will try
to find a realization (given an impulse response or a transfer matrix) of
minimal dimension, a so called minimal realization. This will be the sub-

ject of the next section.
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II.5. Realizations of 1/0 systems over rhings

The main tool in this section and also in the next chapter will be the

Hankel matrix associated with an impulse response.

(2.5.1) DEFINITION. Let F = (ForFy+Fyre..) be an impulse response. Then the
Hankel matrix H(F) associated with F is defined by the following infinite

block matrixz. The (i,j)-th "element"” is Fi+j-1 for i,3 =1,2,3,... .
F2 F3 F4 cee

H(F) =

L

1
2
3 By
4

o

and H(F)z x t8 the following Hankel block

et =
Fl 2 F3 F4 cee Fk
Fyp F3 Fy .
F3 F4 .
H(F)l,k = |F, ) .
Fro- o Fpal 0

Many properties of a system over a ring can be derived if the system is

considered to be a system over the quotient field (see appendix), if it

exists. A commutative integral domain R can be embedded in its quotient

field Q(R) (see [8]). Therefore a matrix over R is, a fortiori, a matrix
over Q(R), so the rank of a matrix over R can be defined to be the rank
over Q(R). Therefore we are able to define the rank of the Hankel matrix
H(F) in (2.5.1) by

(2.5.2) rank H(F) = sup rank H(F)

’ L,k =1,2,3,...
2,k L,k

where H(F)z x are considered matrices over Q(R).
r

We can now state the following theorem.

(2.5.3) THEOREM. Suppose that rank H(F) = n, then there exists a realiza-

tion Zq = (Aq,Bq,Cq,Dq) over Q(R) with dimension n. This realization is
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minimal (minimality of a realization means that there are no realizations
having smaller dimension). Every other minimal realization Zq==(iq.§q,5q,5q)
s isomorphic to I, i.e., there exists an invertible matrix Tq over Q(R)

such that A_ =T A T—l, B =7 B, C =cT! D =D.
q 9 9 9q q qQ q q q g q q

PROOF. See [45]. 0

Observe that the condition rank H(F) < « means that F is recurrent over
Q(R) .

We will now impose some extra conditions on R such that recurrence over
Q(R) implies recurrence over R. In that case we can say that F is realiz-

able over R iff rank H(F) < ». We therefore state the following theorem.

(2.5.4) THEOREM. Let R be a Noetherian, integrally closed domain (see ap-
pendix). Let F be an impulse response over R. Suppose that F is realizable

over Q(R). Let Gprenerd be the recurrence parameters of a minimal recur—

n-1
ston for F over Q(R). Then @; € R, i=0,...,n-1.

PROOF. For a proof see [64]. 0

(2.5.5) REMARK. Using theorem (2.5.4), theorem (2.4.9) gives us a realiza-
tion which, generally, may not be expected to be minimal. However, in the
case of a scalar input/output system the realization in (2.4.9), using the
minimal recurrence in theorem (2.5.4), is minimal because it is minimal

over Q(R). ]
The following theorem may now be stated.

(2.5.6) THEOREM. Let R be a principal ideal domain (see appendix). Suppose

that rank H(F) = n. Then there exists a realization over R of dimension n.[]
A proof will be given in Chapter III.

The above theorem implies that, in the case where R is a principal ideal

domain, there exists a minimal realization over R if rank H(F) < .

We already mentioned the role of the state of a system as some kind of
memory. Therefore it is important that the state space is small. This is
the reason that we are interested in minimal realizations. On the other
hand we are interested in state space systems which contain no more infor-

mation than is already available in the I/O description. This idea is
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N
closely related to the concept of Nerode equivalence classes (see [45]).
From that point of view the state space is just the set of Nerode equi-
valence classes provided with some structure. In formalizing these ideas
the notions reachability and observability enter. We formulate the follow-

ing definitions for the state space system I

X Ax, + Bu, , x, =0,

k+1 k k 0
(2.5.7)

Yy =Cx, +Du , k =0,1,2,...

¢ R" and the matrices have appropriate dimen-

m
where u € RP, Yy € R, x

k
sions.

(2.5.8) DEFINITION. I 78 reachable over R if the columns of the block

matriz [B,AB, ...,A" '] generate R" over R. 0
(2.5.9) DEFINITION. I 78 observable over R if Cx = CAX = ... = a1k = 0
implies x = 0. 0

(2.5.10) DEFINITION. I Zg canontical over R i1f I 18 reachable and observable.
O

These are only formal definitions. The intuitive notions of reachability
and observability imply and are implied by these conditions (see [45]).

When no confusion can arise we leave out "“over R".

Observe that reachability (observability) of the system I is only concerned
with the pair (A,B) ((C,A)). Therefore we will also be working with the
reachable pair (A,B) and the observable pair (C,A) by which we mean that
the conditions in (2.5.8) and (2.5.9) are satisfied respectively.

If we have a system I = (A,B,C,D), then the triple (A,B,C) will be called
canonical if (A,B) is a reachable pair and (C,A) is an observable pair.

(This is the same as: I is canonical.)

Given a realization I = (A,B,C,D) of an I/O system one might try, by some

reduction method, similar to the one as is used for systems over a field,

to reduce the state space until reachability and observability are obtain-
ed. However, in general, canonical (free) realizations do not exist.

This ideé motivates the introduction of a generalized notion of a realiza-

tion.
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(2.5.11) DEFINITION. A non—-free system I is a quintuple ¥ = (X,A,B,C,D)
where X s a finitely generated R-module and B, B, C, D are R-linear maps:
A: X > X, B: R > X, C: X > R, D: RE + R" for some integers m and p. 0

REMARK. Considering the state space to be the set of Nerode equivalence
classes it can be provided with an R[z]-module structure and furthermore it
can be shown (see [71]) that the state space is in fact isomorphic to the
R-module xF generated by the columns of the Hankel matrix associated with

the I/0 system. O

(2.5.12) DEFINITION. A non—-free system I = (X,A,B,C,D) realizes an impulse
response F = (ForFyrFore.s) if Fy =D and F_ is the following composition
of maps: F_=C oa! °B, n=1,2,3,.... O

Observe that if an impulse response can be realized by a free system

L = (A,B,C,D), then it can, a fortiori, be realized by a non-free system
(by taking X = R%) . The converse is also true. For if we fix a set of
generators for X then the R-linear maps can be represented (non-uniquely)
by matrices.

Now we introduce reachability and observability for a non-free system

L = (X,A,B,C,D).

(2.5.13) DEFINITION. I <8 reachable if the set (Bei,AoBei,...,An'loBei),

i=1,...,p, generates X. Here e denotes the i-thbasis vector in RF. O
(2.5.14) DEFINITION. I <8 observable 1f Cx = Co9Ax = ... = C oa™lx =0

implies x = 0. 0
(2.5.15) DEFINITION. I <8 canonical i1f I is reachable and observable. O

As is the case for systems over a field, canonical non-free realizations of
an impulse response are only unique up to isomorphism (see (2.5.3)). An

analogous result is formulated in the realization isomorphism theorem.

(2.5.16) THEOREM. Suppose that F = (FgrFysFpre..) 18 a realizable impulse

response and suppose that we have two canonical non—free realizations

-1

homomorphism T: X + X such that A = v ea oT, B=T B, C=CoT, D= D.

PROOF. For a proof see [15]. 0
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I and I are called isomorphic.

Now suppose that F = (Fo’Fl'F ) is a realizable impulse response. Then

PR
there exists a canonical non—éree realization where the state space is the
above mentioned XF (for a proof see [71]) and if XF is a free R-module then
this realization is also minimal for in this case we take a basis in XF and
then the maps A, B, C, D can be represented by matrices, thus constituting
a free realization. This realization is, a fortiori, a realization over
Q(R) which is canonical and therefore is minimal (see [45]).

In the following we will mainly be concerned with systems over a principal
ideal domain R. In this case a canonical (non-free) realization is always
free, for we can take xF as the state space. XF is torsion free (see appen-
dix) as a module over R and is finitely generated. Therefore XF is free
(see [31]). In Chapter III we give an algorithmic proof of this result.

So, in the case of a principal ideal domain we can always work with ma-
trices, when dealing with canonical fealizations. Furthermore these canon-
ical realizations have minimal dimension. It is, however, not true that
minimal realizations are canonical as is the case for systems over a field
(see [45]).

From now on we will again omit the words "free" and "non-free" when there
cannot be ény ambiguity. Unless otherwise stated we will assume R to be a
principal ideal domain.

Let Z = (A,B,C,D) be a system of dimension n over R with state space inter-

pretation

Ax, + Bu =0,

k+1 k k' %o

]
]

(2.5.17)

Y =Cx +Du , k=0,1,2... .

Sometimes one is interested in modifying the characteristic polynomial of
A. In section V.5 some aspects of this are studied. In some occasions the
stability properties of a system have to be improved by means of a regulat-
or. One of the main problems concerning regulators or observers (see [49],
[71]) is: How can the characteristic polynomial of A (det(zI -A)) be
modified by using feedback u = ka. The next theorem is concerned with the
question of pole assignability. (If R is not a principal ideal domain then
this theorem does not necessarily hold. For a counterexample see [11].)

n

(2.5.18) THEOREM. Suppose that A € RY™ and B ¢ RP. Then a necessary and

sufficient condition for (A,B) to be a reachable pair is: For every set
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(Pyr.+++P.) € R there exists a matrix K ¢ R such that det(zI -A +BK) =
1 n

(z-pl) (z-pn).
PROOF. For a proof see [55]. 0

In the scalar case we can say more.

(2.5.19) THEOREM. Let (A,B) be a reachable pair over R, let A € Rnxn,
B e R (where R is not necessarily a principal ideal domain). Then for
every polynomial p(z) with degree n there exists a row vector K such that

det(zI -A +BK) = p(z).

PROOF. The proof can be given using the so called standard controllable
form (see also Chapter IV). The construction of K can also be achieved

along the lines of a stabilization algorithm due to Ackermann [1]. 0

Observe that in (2.5.19) every n-th degree polynomial p(z) can be the charac-
teristic polynomial of the matrix A -BK, whereas in (2.5.18) only polynomi-
als of a special form can be obtained. The fact that every n-th degree poly-
nomial canbe obtained by means of feedback is called coefficient assignability.
Coefficient assignability can also be obtained in the case of a system over
a local ring (see appendix) or even a semi local ring [71] (see appendix) .
This can be done using a generalization of Heymann's Lemma [34]. We will
state this result only for a local ring, for this is the only case we will

be needing.

(2.5.20) THEOREM. Let (A,B) be a reachable pair over a local ring R, then
there exists a matrix K and a vector u such that (A +BK,Bu) <8 a reachable

pair.

PROOF. The proof can be given along the lines of [71] where the problem is
reduced to a similar problem over a field in which case Heymann's Lemma can

be applied [34]. 0

The above methods for pole assignability and coefficient assignability can-
not immediately be used for the observer case. For this case one would need
that the dual system &' = (A',C',B',D') be reachable. However, reachability
and observability are not dual properties. It is not even true that a

minimal realization I satisfies: I or I' is canonical.
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For example take F = (6,6,6,...), a scalar impulse response over Z. A canon-
ical realization is 21 = (1,1,6,6). A realization 22 such that Zé is canon-
ical is Zé = (1,6,1,6). A minimal realization 23, such that 23 nor Zé is
canonical, is 23 = (1,2,3,6).

In the case of a principal ideal domain we can also construct a realization
I = (A,B,C,D), for an impulse response F, such that ' = (aA',C',B',D'), is
canonical. This can be achieved by constructing a canonical realization for
the transposed impulse response F' = (Fé,Fi,F',...). Hence we can in fact
use (2.5.18), (2.5.19) and (2.5.29) to construct observers. For more in-

formation on observers see [49], [79].
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III ALGORITHMS

III.1. Matrnices over a princdpal ideal domain

In this chapter we are going to construct canonical realizations for an im-
pulse response F over a principal ideal domain R. Also a recursive algo-
rithm, including some results concerning the partial realization problem,
is presented. Furthermore it will be shown that Ho's algorithm (see [45])
and an algorithm due to Zeiger (see [44]) can be generalized to the ring
case.

We will also present an algorithm that constructs a realization given the
transfer matrix of a system over R. This will be done by constructing first
a realization over Q(R) and afterwards reducing this realization to a canon-
ical realization over R. For this algorithm a realization method presented
by Kalman in [41] and a realization algorithm described in [33] by Heymann
will be very useful.

In all the algorithms to be presented in this chapter the existence of a
Hermite form or a Smith form is crucial. We will need a somewhat modified
Hermite form and also a modified Smith form will do because the usual divi-
sibility properties of the Smith form are irrelevant for our purposes.
First of all we will introduce the Hermite form, the modified (in a certain
sense) Hermite form and the Smith form of a matrix over a principal ideal
domain. We start by observing that in a principal ideal domain R the Bezout
identity holds. This means that for Xysx, € R a greatest common divisor d

can be defined such that d is a linear combination of r1 and r i.e.,

2'

there exist Cq1C, € R such that d = ¢ r, + . This can be generalized to

1 S

the case of n elements EyreeesX € R. Again a greatest common divisor d can

n

be defined such that d = ¢y + ...+ Ch¥n- Furthermore it can easily be

shown that d is a "greatest" common divisor of rl,...,rn, i.e., a divisor
such that every other divisor of TyreeerXy divides d (a divisor q of
LyreeerX is an element of R such that r, = qd:.L for some elements di’
i=1,...,n). In general a greatest common divisor of LyreeesXy is not
unique for if d is a greatest common divisor, then du is a greatest common

divisor whenever u is a unit.
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We will use the following notation. If rl,...,rn € R, then (rl,...,rn)

denotes a greatest common divisor of r,,...,r_.
1 n

In the sequel we will frequently use unimodular matrices over R.

(3.1.1) DEFINITION. A unimodular matrix over R is a square matrix which has

an inverse over R. 0

Let A be a matrix over R (not necessarily square) then the following opera-

tions are called elementary row (column) operations:

i) Interchanging two rows (columns);
ii) multiplication of a row (column) by a unit of R;

iii) Addition of r times a row (column) to another row (column), where r € R.

It can easily be seen that each of these row (column) operations corresponds

to the left (right) multiplication of A by a unimodular matrix.

(3.1.2) DEFINITION. Let A, B be two matrices over R, then A is called left
equivalent to B if A = UB. A <8 called right equivalent to B if A = BV. A

is called equivalent to B if A = UBV. Here U, V are unimodular matrices. LU

(3.1.3) THEOREM. Let A be an n xmmatrix over R. Then A is right equivalent
to a lower triangular matrix B (bij =07f 3 > 1) where b, is unique up to
a unit 1f A s regular and bil 18 an element of the residue class modulo b,

where, in case A is regular, b,, is also unique up to a unit. Here % < i

i
and i = 1,...,min(m,n).

PROOF. For a proof see [57]. 0

In order to obtain the matrix B one only has to perform elementary column
operations and a right multiplication with a unimodular matrix based on the
Bezout identity, while in the case where R is a FEuclidean domain (see appen-
dix) only elementary column operations are sufficient. The matrix B in the
above theorem is called the Hermite form of A (also called Hermite normal
form) .

What we need is not precisely the Hermite form of A but a lower triangular
matrix B = [B,0] such that B has full column rank over Q(R). In general
this cannot be obtained by just right multiplying A with a unimodular
matrix V. If we also allow multiplying with a permutation matrix II on the
left this special form, equivalent to A, can be obtained. We will not need
the special properties of the diagonal elements of B, nor will we need the

special relation of row elements and the corresponding diagonal elements.
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Every lower triangular matrix B = [E,O] such that B has full column rank

over Q(R) where
(3.1.4) B = [B,0] = Iav

will be called a modified Hermite form of A. We now have the following

theorem.

(3.1.5) THEOREM. Let A be a matrix over R. Then there existe a permutation
matrix I and a unimodular matrix V such that B = IIAV Zg a modified Hermite

form.

PROOF. Although the theorem is valid for a principal ideal domain, the
proof will be given for a Euclidean domain R because this is the only case
we will be needing. Suppose that A is a m X p matrix over a Euclidean domain
R. If A = 0 then A is a modified Hermite form and we are finished. If A # O,
then there is some element aij # 0. This element can be moved to the leading
position (1,1) by just applying row and column permutations. Hence we may

assume that a11 # 0. We may also assume that a has the smallest ¢ value

11
among the elements of the first row. Hence we may write

a1j = qu a11 + r1j for j = 2,...,p

and m(rlj) < w(all) where ¢ is a Euclidean function for R (see appendix) .
Hence by adding appropriate multiples of the first column to the second up

to the p-th column we can achieve that

all r12 oo rlp
4
AV, = .
1 : 2,
am1

where V1 is a unimodular matrix. By applying a column permutation we can
obtain that the element in the (1,1) position has smallest ¢ value among
the elements in the first row. Again we can add appropriate~multiples of
the first column to the other columns and we obtain that all elements (up
to the (1,1) element) in the first row have ¢ value smaller than the ¢

value of the element in position (1,1). Eventually we end up with a matrix
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i

(IR

ml
The same procedure can be applied to A and ultimately we obtain
Iav = B = [B,0]

where II is a permutation matrix which comprises all row permutations which
occur in the described process and V is the product of all unimodular
matrices representing the applied elementary column operations. Furthermore

B is a lower triangular matrix having full column rank. O

REMARK. In this way not only a modified Hermite form but also the proper-
ties concerning the offdiagonal elements, mentioned in theorem (3.1.3), can
be obtained. In addition, also the uniqueness (up to a unit) result con-

cerning the diagonal elements also holds for theorem (3.1.5). 0

(3.1.6) THEOREM. Let A be an n x m-matrix over R. Then B is equivalent to a

. - o ey .. o _
matrix D-[é 6} where D-—dlag(dl,...,dr) and di divides <:'1]._+1 for i=1,...,r-1.
Here r denotes the rank of A over Q(R) and some of the zero matrices are

possibly empty. Furthermore, a, 18 unique up to a unit for i = 1,...,r.
PROOF. For a proof see [57]. 0

The matrix D is called the Smith form of A (also called Smith normal form
or Smith canonical form). Again we will not exactly need the Smith form. We

do not need the divisibility result “di divides d i=1,...,x-1". We

i+1l’
only need the diagonal character of D. This often simplificates the algo-
rithm to obtain D considerably.

Every diagonal matrix D= ED 0

0 0], where D has full rank, equivalent to A
will be called a modified Smith form for A.
The modified Hermite form and the modified Smith form for a certain matrix

will be fundamental for the realization algorithms to follow.
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III.2. Realization algornithms for an Ampulse response

In this section we will derive algorithms to construct a canonical realiza-
tion (2.4.7), (2.5.10) of an impulse response F.

In [63] Silverman's algorithm [68] is used to compute a realization of an
impulse response over a principal ideal domain. The realization is obtained
by first computing a realization over the quotient-field and then applying
a suitable state space transformation. In this section a more direct reali-
zation algorithm is proposed, whicﬁ is related to an algorithm due to
Zeiger (cf. [44]). It is also shown that the original Zeiger algorithm and
the Ho algorithm [45] can be extended to systems over a principal ideal
domain, but the algorithm described in this section seems to be more appeal-
ing. Furthermore a recursive algorithm, similar to Rissanen's algorithm
[60], is described, which to some extent can also be used for obtaining
partial realizations (see [43]).

The principle objective of this thesis will be the application of the
theory of systems over a principal ideal domain to the case of 2-D systems,
but in this chapter we will also present some applications to the case of
systems over the integers [63] and the case of delay differential systems
[551, [461, [47].

In Chapter II it was shown that for systems over a principal ideal domain
it is not necessary to consider non-free systems and therefore we can work
with matrices. For this reason we will introduce some matrix language. A
matrix A € R " will be called right regular if there does not exist a non-
zero vector x € R© satisfying Ax = 0. Equivalently A is right regular if
rank A = n. The matrix A is called right invertible if there exists a ma-
trix AT ¢ R™™ such that aa* = I. Left regularity and left invertibility
are defined similarly.

(A,B,C,D) we define for k = 1,2,3,...

Given a system I

k-1

]

(3.2.1) Q(Z,k) [B,aB,..., Bl ,

(3.2.2)  P(5k) = [c',ac',..., ) e .

Observe that I is reachable (see (2.5.8)) if Q(X,n) is right invertible and
observable (see (2.5.9)) if P(I,n) is right regular.
In order‘to construct a canonical realization of a given impulse response

F = (ForFy/F ) we consider the Hankel matrix H = H(F) (see (2.5.1)) and

oreee
Hankel blocks sz = H(F)l k (see (2.5.1)) which we write down again for
’
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convenience
- -
17‘1 F2 F3 cee Fk
2 F3 .
F .
(3.2.3) sz = 3 .
Foo @ o e F£+k_k

Remember that rank H is defined as (see (2.5.2)) rank H = sup rank H

k
2.k *
The following result is instrumental and constitutes the main theorem of

this chapter.

(3.2.4) THEOREM. Suppose that for a certain pair of integers &, k we have
mxn

rank H), = rank H = n. If matrices P. € R , Q€ Rnka, Q € RP satisfy
R R R
2 Q is right invertible,

3° P 18 right regular,

then there exists a unique canonical realization I = (A,B,C,D) of F such
that P = P(2,%), [Q,Q 1 = Q(I,k+1), viz.

+
(3.2.5) A =1[Q;s...sQ ,,Q]0 B=0,, C=P
where Py 18 the matrix consisting of the first m rows of P, Q, € RP ig

defined by the block decomposition Q = [QO’QI""'Qk-1] and Q% is a right
inverse of Q.

PROOF. Considering F as an impulse response over Q(R), we find a canonical
Q(R) -realization I = (A,B,C,D) of F of dimension n (see [45]). Then we have
(3.2.6) PQ=H, =PQ

where P := P(I,%), Q := Q(f,k). Let §+ be a left inverse (over Q(R)) of P

and §+ a right inverse of §. Then we have

Btpoot =1 .

n

Thus if we define S := Q§+ € Q(R)m< , then S is invertible and S_1 =P P

The system £ = (A,B,C,D) defined by A := SKS_I, B := SE, C := Es'l, D=D
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is also a realization of F over Q(R). Equation (3.2.6) implies

0=50, p=>pst .

mxn

Hence P = P(Z,4), Q = Q(Z,k). But then we must have C = P, € R ’

0
B = QO € Rnxp_ In addition,

Hz,k+1 = P[Q.Qk] = PQ(Z,k+1)

and consequently Qk = AkB. It follows that

(3.2.7) [Qll---le] = [AQOI---IAQk_IJ = AQ

and therefore we have (3.2.6), which implies A € RN, Consequently I is a
realization over R. I is also a canonical system over R, for if Q = Q(ZI,k)

is right invertible and k < n, then Q(I,n) is right invertible,

ozt

[
H

Q(Z,n)
0

where Q(Z,k)+ is a right inverse of Q(Z,k) and O is a (n-k)p xn matrix con-
sisting only of zeroes. If Q = Q(X,k) is right invertible and k > n then we
have, by the Cayley-Hamilton theorem,

Qn+i =a, Qi + oy Qi+1 + s.. + o1 Qn—1+i ;, 1i=0,...,k-n-1

and therefore

(3.2.8) [QolQII . -'Qn_llin . --le_1]V = [QolQll 0 --:Qn_llor ---10]

for some unimodular matrix V. Now suppose that Qt is a right inverse of Q,
Then V_19+ is a right inverse of [QO’Ql""’Qn—l’O""'OJ and therefore
Q(Z,n) is right invertible. In the same way right regularity of P(I,n) can

be proved. Therefore I is a canonical realization over R. O

(3.2.9) REMARK. In theorem (3.2.4) we did not use that R is a principal
ideal domain. Obviously theorem (3.2.4) remains valid if R is any commuta-

tive integral domain. O

Some problems that remain are: How to determine n and how to choose % and k.
Furthermore, given that F is realizable, is it possible to obtain a factor-

ization of Hz k+1 28 is required in 1° of theorem (3.2.4)?
4
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Whether or not H has finite rank cannot be decided in general but, if the
impulse response F stems from a transfer matrix, then we are sure that
rank H is finite. But if the I/O system is given by its transfer matrix the
realization method using the Hankel matrix seems to be a long way around.
For this case we will give a more direct realization algorithm in Section
III.3.

Let us now suppose that we know the rank of the Hankel matrix, then in
order to find a Hankel block Hlk such that rank Hlk = rank H, it suffices
to take £ = k = n. This follows from the Cayley-Hamilton theorem. Again we
afe left with the problem whether or not a factorization of Hk,k+1 as in

1 of theorem (3.2.4) is possible. The following result states that for

sufficiently large k a factorization of the form
By ket = PLO:Q ]

is always possible; once the factorization

Hlk = PQ

is given.

(3.2.10) THEOREM. Let P € lexn, Q € RVKP satisfy the conditions 2° and 3°

of theorem (3.2.4) and assume that rank H,, = rank H < k. If

Hop = P

Xn

then there exists a unique Q € V" such that

Hy we1 = PLQ/QT -

PROOF. There exists a realization of rank < k (see [64]). By the Cayley-
Hamilton theorem the impulse response satisfies a recurrence relation of
the form

F. +

0Fg * eee ¥ o g F gy (3= 123,000

where a; € R. If we write W := [aOI,...,ak_ll]' € Rkpo’ then it follows
that

(3.2.11) = [H, ,H, W] = p[Q,QW] .

Hy, k+1 k' Hax

Hence we may choose Q. = QW. Because P is right regular, Q. is unique. 0
k k
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(3.2.12) REMARK. Also this result is valid for more general rings than
principal ideal domains. Obviously, it suffices that F satisfies a recur-
rence relation of order < k. This is for example the case for Noetherian
integral domains which are integrally closed (see [64]). 0
Now the question arises of how to compute a factorization of Hz,k+1 such
that the conditions of theorem (3.2.4) are satisfied. One way of doing this
depends on the Smith form (see (3.}.6)). We start by factorizing Hlk as
follows. There exist unimodular matrices U and V and an nxn diagonal

matrix D such that

(3.2.13) H,,L =U v .
2k o o

Some of the zero matrices in (3.2.13) are possibly empty. The matrix D is
regular (i.e. right regular and left regular). We do not require that the
diagonal elements of D satisfy the divisibility properties in theorem
(3.1.6) . If we define

(3.2.14) P :=u| |, ¢=T[1,0v, Q :=v ,

we see that P is right regular and QQ+ = I, so that Q is right invertible.

In addition H,, = PQ. Now if we decompose H

2k as

2,k+1

(3.2.15) = [sz,s]

Hy k+1

it follows from theorem (3.2.10) that there exists a matrix Q) such that
S = PQk' hence

i.e., the first n rows of U_ls are divisible by the corresponding diagonal
element of D, and the remaining rows are zero. Thus we are able to deter-

mine Qk'

(3.2.16) REMARK. If these divisibility conditions on U-ls are not satis-
fied, this implies that F does not have a realization of rank < k. This
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indicates how a recursive realization algorithm could be constructed, lose-
ly speaking by increasing £ or k in a sensible way until the conditions on

S are satisfied (see (3.4.5)). O

The computation of a Smith form might be rather elaborate even if we do not
require the diagonal elements of D to satisfy the divisibility properties.
Therefore we will now describe a realization algorithm based on the modi-
fied Hermite form of Hlk' )

There exist a permutation matrix II, a unimodular matrix V and a lower tri-

angular matrix G such that G has full rank and (see (3.1.5))

(3.2.17) ®,, = I[G,0lv

2k

where the zero matrix is possibly empty. Then we define P := [IG, Q :=[I,0]V

gaet = P2
has to be determined from the equation PQk = S where S is the same matrix

and we have the desired factorization. The matrix Qk in H

as in (3.2.1) . Therefore GQk = n'ls. However, since [In,O]G is a regular

matrix, Qk is uniquely determined by the n X n equation

_ -1
[In,OJGQk = [In,O]l'[ s

where In is the nXxn identity matrix and n is the rank of H_ , . This equa-

2k
tion is easy to solve because of the triangular character of [In,O]G. It
follows from theorem (3.2.10) that a solution exists and satisfies the

equation GQ, = H_IS provided that rank H < k.
k

(3.2.18) REMARK. The algorithm given is closely related to Zeiger's algo-
rithm (cf [44]). In this algorithm for systems over a field the factoriza-
tion sz = PQ with Q right invertible and P left invertible yields the
realization A = P+(0H)M‘Q+, B = QO’ C = PO' D = FO’ where P+ is a left

inverse of P and (0OH) is the shifted Hankel block,

2k
F, Fy F, ... Fk+ﬂ
F4 .
(3.2.19) (oH),, =| Fa .
.2. % .
LF5L+1 . : FJL+k_

In the case of a system over a principal ideal domain this algorithm is not
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directly applicable since it is usually not possible to factorize Hkk in
such a way that P is left invertible and Q is right invertible (see also
remark (3.2.21)). However, in our algorithm P is right regular and there-
fore left invertible over Q(R). If one is willing to perform calculations
in Q(R) then one can use Zeiger's algorithm since it follows from theorems
(3.2.4) and (3.2.10) that the resulting realization is a realization over R
because, given the factorization over R, the resulting realization is

unique. . 0

(3.2.20) REMARK. The method of computing a factorization using the Smith
form (3.1.6) is obviously related to Ho's algorithm (see [45]). The proper
generalization of Ho's algorithm to the ring case is the following: start-

ing from the factorization

UH stV =

where U and V are unimodular matrices and D is a regular diagonal matrix,

we construct I = (A,B,C,D) from

I
DA = [In,O]U(OH)lk‘V
0
-Ig
DB = [In,OJU Hp
-.0.
[z
C = [Im,O]sz \'
.0-
D=F

where (0H) is given by (3.2.19). Then I = (A,B,C,D) is the realization of
2k

F corresponding to the factorization H , = PQ where

2k

D
p=u’ , o=r[1,0lv?!.
0

The solvability of the equations for A and B again follows from theorems
(3.1.4) and (3.2.10). Again this shows that one can work with the Ho
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algorithm if one is willing to perform calculations over Q(R). O

Observe that one cannot apply Zeiger's algorithm or Ho's algorithm starting
with a factorization of sz over Q(R). One has to perform the factorization
over R and from that point one can work with these algorithms.

The algorithm proposed in the foregoing, in particular if the modified
Hermite form is used, is simpler than the algorithms which are modifica-
tions of Zeiger's of Ho's algorithm. For Zeiger's algorithm it is necessary
to do calculations in Q(R) and inverses of both P and Q have to be calcul-
ated. For Ho's algorithm it is necessary to compute the Smith form (without
the divisibility properties) which is more elaborate than the modified

Hermite form.

(3.2.21) REMARK. A realization I = (a,B,C,D) is called split if both (a,B)
and (A',C') are reachable pairs (see [71]), for "reachable pair" see
(2.5.8) . If an impulse response F admits a split realization I, then every
canonical realization I of F is split, since it follows from the realiza-
tion isomorphism theorem for the case of a principal ideal domain that
P(I,n)T = P(I,n) for some invertible matrix T. Obviously the realization
given in theorem (3.1.6) is split iff P is left invertible. Therefore, if

we construct P and Q using (3.2.10), the realization is split if the in-

variant factors of Hlk' i.e. the diagonal elements of the matrix D in the
Smith form of sz, are invertible in R. Thus we recover a result of Sontag
[71]. 0

Working with matrices (over R) the realization isomorphism theorem can be
derived quite easily from the corresponding theorem in the field case.
Suppose that F is an impulse response with canonical realizations

£ = (a,B,C,D) and I= (K,E,E,E), then I and I are a fortiori realizations
of F over Q(R) . Therefore there exists a matrix T over Q(R) such that
A=mar}, =18, C=cr !, D=D. Then 9(%,n) = TQ(Z,n) and thus

o, moz,mt ¢ &P

When we are interested in a realization I = (A,B,C,D) such that

T

]

L' = (A',C',B',D') is canonical, then we can also use the realization algo-

rithm based on the factorization (3.2.13). In this case we factorize

D O I
= [DIO] .
0 0 0
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Hence P := U[g] is left invertible and Q = [D,0]V is left regular and the
construction of &' is straightforward.

The realizations based on the factorizations

D 0 D D O I
= [1,0] and = [D,0]
0 0 0 0 0 0

respectively, are both minimal. These two realizations are not necessarily
isomorphic for this would imply that they were split, which generally is
not the case. The example on the last page of Chapter II may serve to show
this.

(3.2.22) EXAMPLE. In [63] an example of an impulse response over R = Z is

given

We will compute a realization for this sequence. It is easily seen that

rank H22 = rank H = 2. We compute a modified Hermite form of H22
2 =2 2 2 2 0 0 olf{1 -1 1 1
2 0 1 1 2 1 0 0|0 2 -1 -1
H22 = =
2 0 0 2 2 0 0|0 1 0 0
1 1 0 0 1 1 0 of |0 0 o -1

Hence, we obtain

1 1 2 0
1 -1 1 1 + 0 0 2 1
Q=1[Q,Q,1= r Q= - , P =
0'*1 0 2 -1 -1 0 1 2 2
0 0 1 1

The matrix 92 is determined from the equation PQ2 =8 := [Fé,F&]' = 0.

Hence Q, = 0. Consequently we find the following canonical realization
2

+ 1 1 1 -1 2 0
A= [Q11Q2]Q = | s B = Qo = sy C=P, = , D=20.
-1 -1 0 2 2 1

This realization is a split realization since P is left invertible. Indeed,
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in fact

III.3. Realization algorithms for an 1/0 system given by a thansfer matrix

In many practical situation the impulse response F = (FO'Fl'F ) is not

PYRRE
directly available. However, often one is given the transfer matrix of an
I/0 system (see (2.4.11)). Let F(z) be a mx p-transfer matrix (F(z) is a
proper rational matrix), then F(z) can be written as F(z) = M(z)/m(z) where
M(z) € R[zI™P and m(z) is a monic polynomial in R[z]. Indeed,

F(z) € Rc(z)mxp means that all entries of F(z) are proper rational func-
tions with monic denominators. Then we can take m(z) to be a common multi-
ple of the denominators (R[z] is a ﬁhique factorization domain). The formal
power series expansion of F(z) can be obtained by long division and then we
could use the associated impulse response to construct a realization (exis-
tence is guaranteed because F(z) is proper rational) by means of the algo-

rithm described above.

(3.3.1) EXAMPLE. As has been pointed out in [55], [46], delay-differential

systems can be modeled as systems over the ring R = IRR[d]. For instance, if
we introduce the delay operator d by dy(t) = y(t-1) in the system of equa-
tions (see [46])

¥ 0) + ¢ (e-1) = 23, (£-2) - 6uy(t)

(3.3.2) .
Y2(t) + y2(t-1) = - 2u1(t-3) - 2u2(t) + 4u2(t-1)

Wu where

we obtain y
2
1 2d%s -6
sz-+ds —2d3s -2s+44

and s denotes the differentiation operator sy = y. (We assume zero initial
conditions.)

We want to obtain a representation of the equation (3.3.2) in the form

x(t) A(d)x(t) + B(d)u(t)

]

(3.3.3)

y(t) c(d)x(t) .
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To this end, we consider W a rational matrix over RR[d] and we expand in

-1
powers of s

(3.3.4) W= Fl(d)s_l + Fz(d)s_z ol

Then the matrices A(d), B(d), C(d) in (3.3.3) have to satisfy CAkB = Fk+1'

k=0,1,2,..., or equivalently W = C[sI-—A]_lB which is more appropriate
for this example; i.e., (A,B,C,0) has to be a realization of the impulse
response (O'Fl'FZ"")'

We now have (by long division for example)

22 o0 —2a° -6 2% 6a

3 r Fpld) = 4 ¢ Fy(@ = 5 2| *

Fl(d) =
-2d -2 2d 6d -2d -6d

, 2 _ _ _
It is seen that [s“+dslw = Lls + L2 and hence Fk+1 + dFk =0 (k=2,3,...).

Consequently rank H = rank H2 = 2. We compute a modified Hermite form of

2
H22:
22 0 -248° -6 1 0 0 0][-2a% 0 24a° ¢
3 4
20 -2 28 ea a -2 0 ollo 1 o o
(3.3.5) H._ = -
22 143 6 2a8* ea a -6 0 o/lo o 1 o
22 ea -6a° -6a®| |-a> ea o0 o/l 1 o0 o o
It follows that
0 o -1 0
2a% 0 2a° € . o1 a -2
Q= y Q= , P = '
0ot o0 o0 0 o a -6
1 2
z o 4% 6a

The matrix Q2 is easily obtained from PQ, = § := [Fé,Fa]' which yields

Notice, that it is not necessary to know F4 explicitly, since Q2 is unique-

ly determined by the equation PO 92 = F3.
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Thus we find the following realization

For the equation (3.3.3) we obtain

>'<1(t) = - xi(t—l) + 6x2(t) - 2u1(t—2)
x2(t) = u2(t)
(3.3.6)
Y1(t) = - x1(t)
y2(t) = xl(t-—l) - 2x2(t) .

Notice that P is actually left invertible, because its diagonal elements

are invertible. It follows that we have a split realization (see (3.2.21)).

The above way of realizing a transfer matrix may be a long detour and we
will therefore construct a canonical realization directly from the transfer
matrix. This will be done by first constructing a minimal realization over
Q(R) and afterwards reducing this realization to a canonical realization
over R by means of a state space isomorphism T € Q(R)nxn where n is the
dimension of the minimal realization (the McMillan degree of F(z) as a
transfer matrix over Q(R), see [41], [33]).

Suppose E(z) is a transfer matrix over R. Then f(z) is a fortiori a trans-
fer matrix over Q(R). Therefore F(z) has a minimal Q(R) realization

Eq = (F,G,H,K), i.e.,

(3.3.7) F(z) = H[zI-F] 'G +K.

Suppose that n is the rank of £. Then we know that rank H = rank Hnn where
H is the associated Hankel matrix and Hnn is the Hankel block

[ He BF¢  BF2G ... R lg C "
HFG HFG . HF
2
HFG ) -
(3.3.8) H = = . lterg,...,r*!

nn . GJl.
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Hnn is an R-matrix because F(z) is a transfer matrix over R. By minimality
Q(Eq,n) has full rank. Therefore there exists a unimodular R-matrix U such
that

(3.3.9)  [G,FG,...,F* 6lu = [T,0]

where T ¢ Q(R)nxn and T is regular.

This can be achieved in the following way. Let & be a common multiple of
the denominators of the entries of‘Q(Zq,n). This element £ € R is well de-
fined because R is a principal ideal domain and therefore a unique factori-
zation domain. Now the matrix Q(Zq,n) = ZQ(Zq,n) is a matrix over R. For

Q(Zq,n) we can construct a modified Hermite form
(3.3.10) né(zq,n)ﬁ = [T,0]

where we can even take II = I.
Hence in (3.3.9) we can take T = T/% and U = U.

That T is regulér follows from the minimality of Zq. Now we have

(3.3.11) T ‘G, FG,...,F* lelu = [1,0] .

We will now prove that I = (a,B,C,D) = (T_lFT,T—lG,HT,K) is a canonical

realization over R. Observe that
(3.3.12) T le,FG,...,F* l6] = [1,007t ,

therefore T_lG is an R-matrix, furthermore T-1[G,FG,...,Fn_1G] is a right

invertible R-matrix. Hence
+
-1 n-1
. T=Hnn|:‘1‘ [G,FG,...,F G]]

Therefore [H',F'H',...,(Fn-i)'H']' T is a right regular R-matrix. Hence we
have obtained a factorization of Hnn in such a way that theorem (3.2.4) can
be applied. We will also show how the (unique once the factorization is
given) ring realization is related to the quotient field realization. HT is

-1 . .
an R-matrix, T "FT is also an R-matrix, for
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-1 n-1 n u w
T [G,FG,...,F "G,F G] = [1,0]
0 I
where W = [—aOI,...,-an_ll]' and ay (¢ R}, 1i=0,...,n-1, are the coeffi-

cients of the characteristic polynomial of F. Therefore T_l[FG,...,FnG] is

an R-matrix and we have

1

- -1 n n-1_ .t
(3.3.13) T T =17 ‘[FG,...,F GI[G,FG,...,F "G] T.

Hence I is a canonical R-realization of E(z).

REMARK. The construction of a ring realization from a quotient field reali-
zation as described in (3.3.11) is based on the same technique as the reali-

zation algorithm which Rouchaleau describes in [63]. 0

We can now construct a canonical R-realization if we have a realization
algorithm to construct a minimal Q(R) realization starting from the trans-
fer matrix.

In [41] Kalman gave a realization algorithm for real transfer matrices.
This algorithm can be generalized to the case of transfer matrices over an
arbitrary field. The algorithm is based on the McMillan form of a proper

rational matrix (see [41]) and gives a minimal Q(R)-realization.

In [33] Heymann gave a realization algorithm for transfer matrices over
an arbitrary field. The algorithm is based on a diagonal rational
matrix, equivalent to the transfer matrix in a certain sense and this algo-
rithm also gives a minimal Q(R)-realization.

Because this algorithﬁ is easier to apply than the algorithm due to Kalman
we will state this algorithm in the form of a theorem. Before we state the
appropriate realization theorem of Heymann we introduce the following de-

finition.

(3.3.14) DEFINITION. 4 rational functiom p(z)/a(z) € R(z) is called strict-
ly proper if q(z) <s monic and deg(p(z)) < deg(q(z)). A rational matrix is

called strictly proper if every entry ig strictly proper. a

The set of strictly proper rational functions will be denoted by Rsc(z).
Suppose that F(z) is a strictly proper rational m X p-matrix
(F(z) € Rsc(z)mxp), then F(z) can be written as F(z) = M(z)/m(z) where m(z)

is a monic polynomial and deg M(z) < deg m(z) where the degree of a matrix
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is defined as the maximum of the degrees of the entries. Again the poly-

nomial m(z) is a common multiple of the denominators of the entries of F(z).

Every matrix F(z) € Rc(z)mXP can be written as F(z) = ﬁ(z) + F. where

0
F(z) Rsc(z)mxp and F. ¢ R°P, A realization I = (A,B,C,D) of a strictly

proper rational matrixonecessarily has the matrix D equal to zero. (The
realization exists because Rsc(z) c Rc(z).)

Now, let F(z) = M(z)/m(z) be a strictly proper rational m X p-matrix. Then
F(z) is a fortiori a strictly proper rational matrix with coefficients in
Q(R), i.e., F(2) € Q(R)sc(z)mxp. Furthermore, we will suppose M(z) and m(z)
to be relatively prime which means that there is no non-trivial common
factor of m(z) and all entries of M(z).

The matrix M(z) can be considered a matrix over the principal ideal domain
Q(R)[z] and is therefore equivalent (see [31]) to a diagonal matrix over
Q(R)[z], for instance one might take the modified Smith form.

We can now state the "realization theorem" of [33].

(3.3.15) THEOREM. Let F(z) = F, + F(z) = F. + M(z)/m(2) be a transfer

matrix with coefficients inR, ghere F(z) ig a strictly proper rational

matrix over Rsc(z) and therefore over Q(R)Sc(z). Let U(z) and V(z) be uni-
modular matrices over Q(R)[z] and D(z) = diag[el/wl,...,er/wr,o,...,OJ'be a
strictly proper diagonal matrix where, for each i, € and b, are relatively

prime polynomials and ¥, is monic. Suppose that

M(z) = U(z) (m(z)D(2z))V(z) mod(m(z))

where m(z) 18 the least common multiple of the denominators of the entries
of F(z). Construct a system . = (F,G,H,K) as follows

1° For each i = 1,...,xr let (F,,G,,H,,0) be the system given by

0 1 0 e 0 0
FJ.= ._' . 0 ’ Gl=
0 e 0 1 0
-ai 0 coe -a; - -1 }_
— 'ni -

Hi = E)i'o,.--,bi,miyolﬁ'-lo]'

where the aij and the bij are the coefficients of by and € respectively.
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= = - b

Here wi(z) = ZO a.. z” where ai,ni =1, and si(z) = jZ b,.z” . (These
systems will be minimal realizations of the transfer functions
e;(2) /¥, (2).)

o ~

2" Define (F,G,H,K) to be the system F = diag[Fl,...,Fr], E=diag[G1,...,Gr],
H = diag[Hl,...,Hr], K = 0, and then augmenting, i1f necessary, by adding
columns of zeroes to G and/or rows of zeroes to H in order to make
H[zI -51'16 of the same size as F(z). This system will be a minimal

realization of D(z)

3 Let U(z) = ﬁ(z) mod(m(z)), V(z) = G(z) mod(m(z)) and let

~ sl oy~ -1
u(z) = z Uy zo, V(z) = E v, z" where u = deg(m(z)). Furthermore, let
i=0 i=0
- w=1 . w=1 .
F=F, G= ) FIGV,, H= ) U, HF, K=F,.
. J . i 0
]=0 i=

Then (F,G,H,K) is a minimal realization of F(z) over Q(R).

PROOF. For a proof see [33]. ]

(3.3.16) REMARK. In theorem (3.3.15) one may also take as a minimal realiza-

tion (f,@,ﬁ,i) where

F-F, =193y i
J

5 H=§UiHF + K=Fg,

where U(z) = ) u, 2t , Viz) =) vy z? (see [35]). 0
i 3

Observe that (F,G,H,K) and (F,G,H,K) are isomorphic because they both are
minimal realizations of the same transfer matrix F(z).

Concerning the degree in z of the matrices U(z) and V(z) in theorem (3.3.15)
almost nothing can be said except in the case where we are dealing with two
equivalent matrices which both are regular (over the quotient field) and
have degree at most one. In this case the unimodular transformations can be
chosen z-independent (see [27]). This is the case in the following example
(see (3.3.18)).

In the next example we will construct a ring realization for the transfer
matrix given in example (3.3.1) by using theorem (3.3.15) and the method
described in (3.3.9) through (3.3.13). Again z is replaced by s because

this transfer matrix stems from a continuous time system.
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(3.3.17) EXAMPLE. Let F(s) = M(s)/m(s) be a strictly proper rational matrix
given by

2d25 -6

M(s) = 3 , m(s) = sz+ds
-2d"s -2s+4d

where R = IR[d] (see also (3.3.1)). Now we have

~2  -3/d|[ 2a°%s % 1N -378 2a%s 0

(3.3.18) 3 =
d 1 -2d"s -2s+4d] |0 1 0 -2s-2d

Using the notation as in theorem (3.3.15) we have el(s)/wl(s) = 2d2/(s+d),

€,(8) /¥, (s)
(3.3.15) is & = (F,G,H,K) where

- 2/s. A minimal realization over Q(R) given by theorem

]

4 0 1 3783 2a% -6/d 0 o

o]
[
@
]
m
[
~
]

Now we apply the method described in (3.3.9) - (3.3.13). In this case we
have (see (3.3.9))

The canonical IR[d]- realization is

. a o o a3 1
(3.3.19) a =T 'FT = ,oB=1le=|
10 -a®/3 o
o -6 o o
C =HT = s, D=K=
-2 4d 0o 0

(3.3.20) REMARK. The realizations in (3.3.17) and (3.3.1) are not the same.
However, they are both canonical and therefore they are isomorphic by the

realization isomorphism theorem (2.5.16). The state space isomorphism is:
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III.4. Parntial realizations

In many situations, the total impulse response is not always immediately

available. For this reason it is useful to have so called partial realiza-
tion algorithms, where finite impulse response sequences are processed and
where the computational results are updated as soon as new data are avail-

able.

(3.4.1) DEFINITION. A4 system . = (A,B,C,D) Zg an N-partial realization of a

1

finite sequence F = (FoiFyr--esF) ©f D= Fyand F, = ca’™'B,i=1,...,N.0

0
For systems over a field such partial realization algorithms are known (see

[45], [43], [60]) and a nice result on partial realizations is:

(3.4.2) THEOREM. Let FN = (FprFyreeaiFy) be a finite sequence of m x p-
matrices over a field. Let % and k be positive integers such that L +k = N.
Then FN has one and only one extension to an infinite impulse response
sequence F such that

rank H = rank Hoo

1ff the following two conditions are satisfied:

(3.4.3) rank Hlk = rank Hz,k+1
(3.4.4) rank Hlk = rank H2+1,k .
PROOF. For a proof see [43]. 0

Observe that a realization can then be found by applying theorem (3.2.4) to

Hy ket

For systems over rings the problem of finding canonical (minimal) partial
realizations is still unsolved even for the scalar case.
To some extent, the following theorem gives a result on partial realization

over a principal ideal domain.

(3.4.5) THEOREM. Let FN = (Fo'Fl""’FN) be a finite sequence of m x p-
matrices over a prinecipal ideal domain R. Let k and % be positive integers
such that % +k = N. Suppose that we have the factorization

(3.4.6) Hy el = P[Q,Qk]
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where P is right regular and Q 18 right invertible with right inverse o*.
If

(3.4.7) rank H£+1,k = rank sz =:n

and k 2 n, then there exists a unique partial realization I = (A,B,C,D)
satisfying [Q'Qk] = Q(Zlk+1)l P = P(Zrl)l viz.

A= [Qll"'le]Q+ , B =YQ0 s, C=P,, D=F

0 0

nx

where P € RO® consists of the first m rows of P and Q, €R P is defined

by the block decomposition @ = [Qq:Qyr-2rQ ;1.

PROOF. Defining S € Rzme by the decomposition HZ k1
+ ’

from (3.2.10) that S = Hm<w where W := Q Qk' If we decompose W by

= [HZk'S] we conclude

W= [wi,...,wi]' where W, « RPXP, then the sequence FN satisfies the follow-

ing recurrence relation

(3.4.8) Fiaj = FyW + Fip Wy + o ¥ Fieejo1 W,

for j=1,...,%. Now let us define Fi for i > N by this recurrence relation.

Then the result will follow from theorem (3.2.6) if we know that rank H =

= rank Hy, =: n. According to [68] it suffices to show that
(3.4.9) rank H2+1,k+j =n
for j=1,2,.... For j = 0 this equality follows from (3.4.7). For j 2 0O

we have by (3.4.8)

Hotl,kej41 = l:HJL+1,k+j c B, ke wj:I
where Wj := [0,0,...,0,Wi,....wi]' € R(k+])po.
This equation implies (3.4.9). 0

Let us suppose that we are given an infinite sequence F = (FO,Fl,FZ,..J
and we want to compute a partial realization of (FO'Fl""'FN) where N is a
given positive integer. The algorithm is based on recursive construction of

a modified Hermite form, I of Hlk’ that is,

k' Vo' Tax’ Cax

Tox B Vax = Tox = LGy 0]

whose rank le = n. We start constructing a modified Hermite form of
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H11 = F1 (2 =1, k=1) (see (3.1.4)). Thus we obtain matrices I

T11' G11 such that

117 V117

Ty HyqVyq = Ty = [644,0]

and G11 is right regular and lower triangular. If Fl = 0, then G11 is the
empty matrix.
We proceed recursively as in case a or case B depending upon the following

properties (for general %, k)

P: n<k, ntp <km, V Lk Lk
2k
0 I
- b
for suitable matrices Ulk' WZk .

Case o. Property P is satisfied: we add a block row to H and write

2k
Hik 0 . v - sz 0
2+1,k gk '
0 Im _Sl S2
then, if 32 = 0 we obtain a partial redlization of (F1'°"’Fk+£) as follows:
define
P:=T1g := [1_,0lu7} := QW
=My Goe v Q3= L1000 v Qg 3= MWy s
then we write Hy = LHL,k—l's] and we have

U w
2k 2k
[Hl k_llsj[ = P[Inloloj
! 0 I
_ b

nx (n+ (km-n-p) +p)

where [In,0,0] € R . It follows that

By, k-1 Ugx = PLT,/0]
and hence Hl,k—l = PQ and
Hk,k—l Wzk +S =0

and hence S = PQk—l' Consequently, we have the relation (3.4.6) with k
replaced by k-1. Also, it is clear that P is right regular and Q is right

invertible.
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By P we have k 2 n and (3.4.7) follows from the equation §, = 0. Thus we

may apply theorem (3.4.5).
If %+k 2 N, the algorithm has terminated. If not, we notice that property P
is still satisfied with & replaced by &+ 1 and we proceed with case a. If

82 # 0 we determine a modified Hermite form of S, and therewith a modified

2

Hermite form of H2+1 x° Then we check again whether P is satisfied (with £
’

replaced by 2+1).

Case B. Property P is not satisfied. We add a block column to sz and write

Vle 0

0

I = [lerors] .

ok Be, k41
P

We try to find a matrix W such that
Vlk w

0 I
P

I = [szroroj .

ak He, k1

The existence of such a W can be investigated by performing elementary
column operations on the matrix [le,o,s]. Due to the special form of Gyyr
this investigation is very simple and explicit conditions for the existence

of W can be given:

o

1 Thei-throw of S is divisible by (G,,)

2k ii”
2° If the appropriate multiple of the i-th column is substracted from the
columns of S (so as to make the i-th row zero) for i = 1,...,n, then the

resulting columns have to be zero.

If we are able to construct W, then we check whether k 2 n. If so, we are
in case o. If not, or if W does not exist, we are again in case B. In the
latter case, we of course have to update the modified Hermite form.

We will now show that the procedure terminates provided H has finite rank.
First we note that for a fixed value of %, we cannot have infinitely often
that case B holds. For k increases at every step and we must have k 2 n
after a number of steps, because n £ m. Also, condition 1° of case B can-
not be violated infinitely often, since at every step the ideal in R gener-
ated by (le)ii will strictly increase unless condition 1° is satisfied.
Furthermbre, condition 2° will certainly be satisfied if n = rank H and
every time 2° is not satisfied, n will increase. Similarly in case a,

s2 = 0 will hold if n = rank H and otherwise n will increase. This shows
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the finiteness of the algorithm. The algorithm given here is not a true
algorithm for partial realization, since one needs an infinite impulse
response in order to complete the algorithm. Of course, one can always
extend a finite sequence such that the resulting sequence has a Hankel
matrix of finite rank. However, it is not at all obvious how to extend a
finite sequence such that the corresponding Hankel matrix has minimal rank
(c£. [63]).

If we apply this algorithm to a scalar impulse response, the algorithm
gives a canonical realization where the recurrence parameters of a minimal
recurrence are in the matrix (now a vector) Wzk' But in this case we do not
have to carry out the complete algorithm, for in this case the realization
given in theorem (2.4.9) is a canonical realization. Observe that we only
need the recurrence parameters in the case of a scalar system. Therefore we
can also apply the algorithm due to Rissanen [60] and perform calculations
over Q(R). This will give the requifed recurrence parameters and they are
elements of R (see [64]).

A large part of this chapter can also be found in [21].
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Iv 2-D SYSTEMS

1v.1. Introduction

As already mentioned in Chapter II the time set of an input/output system
may also be a partially ordered set. In this chapter we will be concerned
with input/output systems where the time set is 22 =% X Z with a partial

order j_defined by (using row vector notation)
(4.1.1)  (k,h) € (mn) iff k <mand h < n.

In many cases when we are dealing with input/output systems in which the
inputs and outputs depend on two "time" parameters (which may be actually
space parameters), the dependence of the outputs on the inputs can be

characterized by equations of the form

2 2
1. = i,
(4.1.2)  y,, _2' Foniss % (k,h) €ez°, (i,§) e
1,3
b m mxp ;
where uij € IR™, Yin € R and Fk,h,i,j € R for some integers m and p.

Again (as in Chapter II) we will impose some finiteness conditions on the
index set that insure that (4.1.2) denotes a finite sum for all k, h. The
partial order defined in (4.1.1) enables us to define causality for a sys-
tem described by (4.1.2). In Section IV.4 we will allow a more general
partial order on 22. In fact, it can be shown that every partial order on
22 gives rise to some causality notion. For the input/output system (4.1.2)
causality is defined in an analogous way as in (2.1.2).

The input/output system (4.1.2) is called causal if the output at (k,h) is

only dependent on past inputs (uij with i € k and j £ h). This means that

(4.1.3) =0, 4i<korj<h.

F .o
k,h,i,J

In many cases the input/output system does not explicitly depend on (k,h).
In other words: If a double sequence (ui,j%i,j)ézz is related to a double
sequence (Yk,h%k,h)ezz then the shifted input sequence (ui+m,%+n)(i,j)ezz
gives rise to the output (yk+m,h+n)(k,h)ezz for all (m,n) € Z“. In this

case F . . only depends on the difference (k-i,h-j).
k/h,1i,3
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This assumption of shift invariance will be made and we replace (4.1.2) by

2

(4.1.4) (k,h) ezZz” .

Y. = Z F . A
kh 2. "k-i,h-
i,5 D=3 1]

Now the causality condition reduces to

(4.1.5) F =0, n<Oorm«<2O.
nm

We will make again (as in (2.1.4)) a finite past assumption on(ui,j)(i,j)ezz

i.e.,

u,, =0 if i <O0Oor j<O0.
ij

Then the causality condition implies that Yip = 0 for k < 0 or h < 0. It
follows that, assuming causality and time invariance, we may write the

input/output system as

k,h

(4.1.6) y. F . L, k=0,1,2,..., h=20,1,2,....
kh i=0, §=0 k-i,h-j ij

This is the standard equation (see [16]) for a 2-D causal, discrete time
shift invariant, linear input/output system.

As in II.2 we call the double sequence (F

m,n) (m, n) ez2 the Zmpulse response

+
of the input/output system (4.1.6)
As in the 1-D case (that is, the case of one time parameter) the 2-D input/

output system (4.1.6) can also be described via formal power series but now

in two variables s_1 and z—l.

(4.1.7) DEFINITION. The formal power series r(s,z) in the variables s and

z ', associated with the double sequence (rm,n)(m,n)ezi i8

co,cn
r(s,z) = ) T stz ™, 0
m=0,n=0 n

A formal power series r(s,z) is also called the formal 2-D Z-transform of

the double sequence (r 2. Again the word "formal" is used because

m,n)(m,n)e]Z+

one does not actually want to calculate the sum, but one uses it as just an-

other notation for (r ) 2. As in the 1-D case s—1 and 2_1 are only
m,n’ (m,n)ezZ%

position markers.
The set of formal power series in two variables with real coefficients is

denoted by E{[s_l,z_ljj. The setim[[s_l,z_l]] is a ring with the usual
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definitions for the sum and the product of two elements.

Observe that :R[[s_l,z_ljj can also be written as ZR[[s_lj][[z-l]], that is
the ring of formal power series in z—1 where the coefficients are formal
power series in s_l.

Analogously to the scalar case we also have a formal power series associated
with a vector sequence (u, ) 2 and also for a matrix

1,3 @, nee2’ Vi) k,nez?

sequence (F . T
quence ( m,n)(m,n)ezi hus we have

0, 0

’ .
u(s,z) = ) 527
i=0,4=0 *J
e h -k
(4.1.8) yl(s,z) = Yien s 'z
k=0,h=0
oo,ov .
F(s;z) = mn s_n z_m
m=0,n=0

where

u(s,z) eiR[[s_l,z_l]]p , the set of p-vectors over :R[[s-l,z-l]],

y(s,z) e:R[[s_l,z_lj]m , the set of m-vectors over ZR[[s_l,z_l]],

F(s,z) € ]R[[s_l,z—]']]mxp , the set of m X p-matrices over JR[[s_l,z—l]] .
Using formal power series, the 2-D input/output system (4.1.6) can equi-

valently be described by

(4.1.9) y(s,z) = F(s,z)u(s,z) .

In this chapter our main concern will be the construction of a state space
realization for a 2-D input/output system. We will give an intuitive reason-
ing why a state space will generally be infinite dimensional. Suppose we
have a state space X such that Yih depends only on x and u for all

kh kh
(k,h) and x € X. Suppose further that x . depends only on u for some

kh kh
(k',h') < (k,h) and on former states (for ¥ see (4.1.1)).

k',h!

Now consider figure 2:
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@ (k, h)

Figure 2

Because the output at (k,h) depends on uo for m < k, n < h (see (1.4.6))
the state Xh will depend on former states and at least will depend on
x0,0’xO,l’xl,O’xl,l'""xk—l,h’xk,h-l' Because (k,h) is arbitrary it will
be intuitively clear that the state space generally is infinite dimensional

because for each (k,h) the state x at least contains the information con-

kh

cerning the initial conditions x0,0'xO,l""’xO,h

and xl,O'XZ,O""'Xk,O'
REMARK. The fact that the state space is generally infinite dimensional

follows also from considerations’ using Nerode equivalence classes. See

[24], [48]. O

Because we are interested in recursive state space models and, again in-
tuitively speaking, recursiveness of state space models is closely connect-
ed with rationality of transfer functions, henceforth we will mainly be
concerned with the case where F(s,z) in (4.1.9) is a rational function in s
and z. Therefore we introduce some notation. The field of real rational
functions in the variables s and z will be denoted by IR(s,z). The ring of

real polynomials in s and z will be denoted by R[s,z].

REMARK. R[s,z] can also be written as R[sl[z], i.e., every polynomial in
two variables s and z can also be written as a polynomial in z where the

coefficients are polynomials in s (also R[s,z] = R[zl[s]).
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R(s,z) can be written as R[s](z), i.e., a rational function in two varia-
bles can be written as a rational function in one of the variables with, as
coefficients, polynomials in the other variable.

Because R(s,z) = R[s](z) we can divide all coefficients of an element of
IR(s,z) by the coefficients of the leading term of the denominator of this
element. Thereby IR(s,z) can be seen as I R(s) (z) where the denominator

polynomial is monic. O

As in the 1-D case (see [45]) we will work with rational functions which
can be expanded in a formal power series in the variables 5_1 and z—l. In
the 1-D case the necessary and sufficient condition for this to be possible
is that the rational function is proper. This will now be generalized.
Using the identifications in the above remark we will use the following
notation. A polynomial q € Rls,z], viewed as an element of R[s][z], will
be written as a. An analogous notation will be used for P and P where
PeRls,zI™P and B « R[s][z]mxp, where ZR[s,z]mxp and R[s1[zT™FP are the
sets of m x p-matrices over R[s,z] and R[s][z], respectively.

Let F(s,2) be an m x p-matrix over R(s,z), then F(s,z) can be written as

F(s,z) = P/q = 5/& where P, P, q, & are as above.

(4.1.10) DEFINITION. A rational matrix F € R(s,z)" F is called proper if
for some representation F = P/q

1° The degree in z of q(z) is not less than the degree in z of P(z).
2° The degree in s of the coeffictent (the so called leading coefficient)
of the highest power in z of q(z) is not less than the degree of each

other coefficient of a(z) and the entries of P(z).

F 18 called strictly proper if "not less" is replaced by "larger" in 1°
and 2°. 0

It can easily be seen that a representation F =‘;/§ for a proper F, where b
and a are coprime, satisfies 1° and 2°.

Let q(s,z) € R[s,z] and suppose the degree in s of q(s,z) is m and the
degree in z of g(s,z) is n. Then, for q to be the denominator of a proper

F = P/q, it is necessary and sufficient that, besides degs(P) < m and
degz(P) < n, the coefficient of the monomial smzn be non-zero. In this case
this coefficient can be assumed to be one. This could be used as the defini-
tion of properness and in fact would constitute a symmetric (in s and z)

definition. However, for our purposes definition (4.1.10) is more appropriate.
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( sz-+sz~+1
EXAMPLES . S+2z and ————— are not proper.
zZ s+s
z+ 3s .
is proper.

2
z' s+zs+1

(4.1.11) DEFINITION. A proper rational matrix in two variables s and z 18

called a 2-D transfer matrix. 0

A transfer matrix in irreducible form and a representation where common
factors occur in the numerators and denominators of the entries will not be

distinguished, unless this is mentioned explicitly.

The set of 2-D transfer matrices (mxp) will be denoted by ZRc(s,z)mxp. If
F(s,z) eZRc(s,z)mxp, then F can be written as 5/&, where P eiR[s][z]me and
q(s,z) = qy(s) + qy(s)z + ... + qn(s')zn e Rls][z].

We divide all coefficients of g and P by qn(s) (the leading coefficient of
g(s,z)) . By the properness of F all coefficients become proper rational
functions in s and i becomes a monic polynomial.

Now F(s,z) can be seen as an element of Rc(z)mxp where R =2Rc(s). This is
the key idea in the present approach to 2-D systems and it gives the possi-
bility to interpret 2-D systems as 1-D systems over rings.

The following theorem shows that :ch(s,z)mxp can be embedded in

RI[s™h, 27131,

(4.1.12) THEOREM. Let F(s,z) be a formal power series in R[[s_l,z_lllme.
If F(s,z) € R(s,2)™F then F(s,z) ¢ JRC(s,z)me. Furthermore, every
F(s,z) eimc(s,z)mxp can be expanded in a formal power series in

RI[s 1,z 131™P,

PROOF. The proof of the first part is immediate. For the second part we
observe that F(s,z) € K%(s)c(z)mxp. Therefore F(s,z) can be expanded in a
formal power series in Imb(s)[[z_llj. Then we expand all the coefficients
in R_(s) in a formal power series in ZR[[sal]]. Therefore we have that
F(s,2z) ¢ RI[s 11100z 11 = RI[s™", 27111, 0

The proof can also be given by considering F(s,z) a complex function in two
variables which is analytic at infinity. Then the associated formal power

series is the series expansion (in s_1 and z—l) at infinity.
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mx X
The fact that ZIRc(s,z) p can be identified with ZIRc(s)C(z)m P enables us
to consider a 2-D transfer matrix as a 1-D transfer matrix over the ring

R _(s). Also, a 2-D impulse response F = (F,_ .) 2 can be considered as
[¢] k;h zi

(k,h)e
a 1-D impulse response (T(s),) where T(s)k is a formal power series in

€
5—1. Again we are primarily };ntef';sted in the case where T(s)k is a proper
rational matrix for each k e?Z+ (that is, T(s)k is a 1-D transfer matrix
for each k € E+) .
Therefore, the ring which will be of central importance here is the ring
]Rc(s) of proper rational functions in one variable s (the ring of 1-D

transfer functions).

In order to apply the realization results of Chapter II and the algorithms
in Chapter III it is necessary that ]Rc(s) be a principal ideal domain. In
the next section we will prove that this is indeed the case and also that
JRc(s) shows some additional structure from which we may benefit when actual-

ly performing the computations necessary for the realization algorithms.

Iv.2. The ning of 1-D transfer functions: R, (s)

In this section we will prove that ]Rc(s) is a principal ideal domain.
First of all we will always assume that for rl(s) /r2(s) € JRc(s) we have
that rl(s) and r2(s) are coprime, i.e., rl(s) and r2(s) have no common
factor other than unity. Constant common factors other than unity are ruled
out because rz(s) is supposed to be monic. In this way we obtain in a cer-
tain sense the simplest representation for an element of JRc(s) . A ring

which will be very useful is the following
(4.2.1) R_(s) = {ri(s)/rz(s) € R(s) | r,(0) # o} .

Observe that in the representation El(s)/fz(s) € ]ﬁc(s) we may assume that
r2(0) = 1.

One of the main tools will be the following ring isomorphism
(4.2.2) S:]Rc(s) +JRC(S)

defined by

S(xy(s)/x,(s)) =, (1/8) /x,(1/s) =: X (s)/x,(s)

where we suppose r2(s) to be monic and §2(0) = 1.
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The fact that S is an isomorphism follows immediately from the following

observations.
Let
= m n-1 n
ry(8)/ry(s) = (ryp+ryys+...tr, s)/(ryg+rys+... *Iy S tS)
then
= - _ n n-1 n-m n n-1
rl(s)/rz(s) = (rlos +ros to.tr, s )/(rzos +r,s +...+r2’n_1s+1) ,

where n 2 m.

Observe that R[s] c Jﬁc(s) .

R_(s) is a ring of fractions of Rzl with respect to D, (see [77] or the
appendix) . Notation: ]ﬁc(s) = ]R[s]D where the multiplicative set D, is
C

(4.2.3) D = {d(s) | d(s) € R[s], d(0) # O} .

Since R[s] is a principal ideal domain (see [77]), it follows that

Jﬁc(s) = ]R[s]D is also a principal ideal domain (see [8]) . Therefore IRc(s)
is a principal ideal domain. This enables us to apply the realization algo-
rithms described in Chapter III. However, in actually performing the re-
quired computations one can benefit from the finer structure of JRC(s) . It
is not difficult to see that ]Rc(s) is in fact a Euclidean domain. In
fact, the required Euclidean function ¢ can be taken to be the degree dif-
ference of denominator and numerator, that is, for n(s)/d(s) € JRc(s) we may
define ¢(n(s)/d(s)) = deg(d(s)) - deg(n(s)). Now suppose that n2(s) /dz(s)
and nl(s) /dl(S) be such that (p(nz(s)/dz(s)) > q;(nl(s)/dl(s)) . Then there
exist p(s)/q(s) € ]Rc(s) and rl(s)/rz(s) € ]Rc(s) such that cp(rl(s)/rz(s)) <
< 9(n;(s)/d,(s)) and n,(s)/d,(s) = (p(s)/a(s))n,(s)/d;(s) + xr,(s)/x,(s),
for we can take p(s)/q(s) = (nz(s)dl(s))/(nl(s)dz(s)) and rl(s)/rz(s) =0,
where p(s)/q(s) € JRc(s) because tp(nz(s) /dz(s)) > (p(nl(s) /dl(s)) . This shows
that in the ring ]Rc(s) we even have for two elements a and b that a |b or
b I a (a | b denotes a divides b). JRc(s) is a local ring whose maximal ideal

is generated by 1/s. This can be exploited in the realization algorithms.
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1v.3. 2-D systems as 1-D systems overn a principal ideal domain

In this section, we will introduce state space realizations for a 2-D sys-
tem. In general, the state space associated with a 2-D input/output system
will be infinite dimensional (see figure 2). We will give updating equa-
tions for this state space realization.

Suppose we are given a 2-D impulse response F = (F ) Z% where

k,h’ (k,h)e

X
Fkh e R P, This impulse response can be identified with the 1-D impulse

-1
response T = (Tk(S))k£Z+ over R[[s ~]] where

©

Tk(s) = z Fkh s-h .

h=0

Therefore we can, assuming realizability, construct a realization of F over
m[[s—l]]. However, we will primarily be interested in the case where
Tk(s) EZch(s)mXp for k = 0,1,2,... .‘This occurs when we have obtained the
impulse response T from a 2-D transfer matrix. The reason for us to require
Tk(s) € JR.c(s)mXp is that we will be able to construct a finite dimensional
local state space model (this concept will be introduced later on). This
local state space model is an effective tool in computing the output given
the input, because the computations can be done recursively. Although the
underlying state space model is infinite dimensional over IR, our state
space model is finite dimensional over‘iRc(s). In [24] the authors state
that it is not clear what the state space equations should look like. In
the following it is shown that the equations of the state space realization
over Eb(s) can in fact serve as updating equations.
In the above, the roles played by s and z can be interchanged. This can be
seen as follows. Suppose we have a realizable impulse response

T = (Tk(s)) over :Rc(s). This means that the associated input/output

system has ﬁfi;ansfer matrix T(z) e:JRc(s)c(z)mxp for some integers m and p.
However, I%Js)c(z) and ZRC(z)c(s) can be identified and therefore T(z) can
be seen as a transfer matrix over ZRc(z). From this transfer matrix an im-

pulse response T over ZRc(z) can be constructed and we may say that T and T

both represent the same 2-D impulse response.

REMARK. Although the variables s and z play a completely comparable role in
the transfer matrix description of a 2-D input/output system, they loose

this symmetric property as soon as the 2-D transfer matrix is considered a
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1-D transfer matrix over the ring :Rc(s) or :Rc(z). These two possible

interpretations will only be mentioned a few times in this text. i

In the next we will introduce state space models for a 2-D system given by
an impulse response or a transfer matrix. If the system is given by a
transfer matrix, then a state space model can either be obtained via the
impulse response or directly from the transfer matrix, depending on which
realization algorithm is preferable (cf. section III.3).

Let F(s,2) € ]R.c(s,z)mxp (that is, f(s,z) is a 2-D transfer matrix) and
identify F(s,z) with a transfer matrix T(z) over :Rc(s). T(z) can be ex-

panded in a formal power series

(4.3.1) T(2) = ] Tz

where Tk e:ch(s)mXp for k = 0,1,2,.:..
To obtain a canonical realization over E%(s) (which will also be minimal

because :Rc(s) is a principal ideal domain) we apply theorem (2.5.6) or one
of the realization algorithms in Chapter III and obtain a canonical realiza-

tion & = (A(s),B(s),C(s),D(s)) over ZRC(S), where

A(s) € mc(s)“x“ , B(s) € JRC(s)nXP ,
(4.3.2)
c(s) e mc(s)mx“ , D(s) € :Rc(s)m"P )

Here we have supposed that the dimension of the realization is n. Thus we

have

(4.3.3) F(s,z) = T(z) = c(s)[zI -a(s) 17 B(s) + D(s) .

The dynamical interpretation is given by the equations

x .,(s) =A(s)x, (s) + B(s)u (s) , X,(s) =0,
w1 k Y 0

(4.3.4)

{zk(s) c(s)?ck(s) +D(s)ﬁk(s) , k=0,1,2,... .

Here
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- *® _h -
(4.3.5)  y,(s) = ) Yen § ¢+ k=0,1,2,...,
h=0

- ps _h
X, (s) Y x. s, k=0,1,2,...,
k Lo Tkn

where Uy and Yyp are the inputs and outputs to the 2-D system (4.1.6) and
ik(s) e R[[s~111" is the state of the system.

In this way we have obtained infinite dimensional state space equations
(over R) for the system (4.1.6), although they are finite dimensional over
ch(s) .

A realization I = (A(s),B(s),C(s),D(s)) of F(s,z) of the form (4.3.4) will
be called a first level realization (see also [16]).

Because ZRc(s) CSR[[s-l]] the multiplications in (4.3.4) are well defined.
More details concerning the realization procedures for 2-D systems will be
given in Chapter VI.

As was stated in theorem (2.5.16) each pair of canonical realizations of
F(s,z) 1is related by a state space isomorphism S(s) which is also a proper
rational matrix.

The matrices A(s), B(s), C(s), D(s) can themselves be viewed as 1-D trans-

fer matrices. Realizing each of them we obtain minimal realizations

(aAn,AB,AC,AD) for A(s)

(BA, BB, BC, BD) for B(s)
(4.3.6)
(ca,cB,CcC,CD) for C(s)

(pA,DB,DC,DD) for D(s) .
(Here all of them are single matrices, not products.) So we have

a(s) = acls-aa]"! aB + ap

and analogous formulas for B(s), C(s) and D(s). A state space isomorphism
can of course be given an analogous dynamical interpretation. The sequence
of matrices AA,AB,...,DD will be called the second level realization of
F(s,z).

The dynamical interpretation of the second level realization is the follow-
, a

ing. Introduce vectors bk satisfying the equations

n’ ®kn’ Skn’ Y%n
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by ht+1 = BA Dyy +0BB w,
EX, ap  ac][x, BC BD
(4.3.7) = + b + u
a AB  aall|a ol ¥ o] ¥R
K, h+1 kh|
ck,h+1 = CA ckh + CB xkh
Qe et = DB Ay + DB uy

Ykh = CD xkh + CC ckh + DC dkh + DD ukh

where the vectors have suitable dimensions and all initial conditions are
equal to zero (see also [16]).

Furthermore, we have (see (4.3.5))

-h

% (s) Z X s
k h=0 kh

©
= -h
u, (s) Z u. s
k h=o Kb

- b -h
y, (s) = 2 Y. S .
k h=0 kh

REMARK. In (4.3.7) Xn' 3’ Pen’ Skn’ Yn 2T local states (cf. [481])
because we have state space systems for each k. Although the matrices are

the same for each k, the states will generally not be the same. 0

From (4.3.7) it is clear that the second level realization enables us to
compute the output recursively for a given input. Note that, also in this
respect, 2-D systems and 1-D systems differ very much, because in the 1-D
case the state space equations are also the equations used for the recursive
computations of the outputs, whereas in the 2-D case the equations for the
recursive computation of the outputs (4.3.7) are finite dimensional and the
state space equations (4.3.4) are infinite dimensional.

A flow diagram revealing the hierarchic nature of the first and second

level realization is shown in figure 3.
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DA

A\

Figure 3. Flow diagram of a 2-D system.

REMARK. In 1-D systems theory the blocks containing A(s), B(s), C(s) and
D(s) only contain constant matrices. In fact, this flow diagram specializes
to the 1-D case if we leave out the parts concerning the s-dynamics. It
will also be clear what a flow diagram for an n-D system could look like.
For instance, in the 3-D case, the blocks containing constant matrices in

figure 3 will contain 1-D systems again. 0
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We will show that the models of [61] and [24] are equivalent to our second
level realization in the sense that a model as presented in [61] and [24]
can be rewritten in the form of our model and vice versa. Furthermore,
given the input sequences, the generated output sequences are the same, in-
dependently of the model chosen for the description of the underlying 2-D
system. It suffices to show that Roesser's model [61] is equivalent to ours
in the above sense since the Fornasini-Marchesini model is known to be
equivalent to Roesser's model (see [48], [25]). A local state space model
due to Attasi (see [43]) is a special case of ours since it is a special
case of [24]. In [24], [48], [25] only local state space models are given;
these papers do not contain equations for the (infinite dimensional) state
space realization. Because our model combines a local state space model
(the second level realization) and a state space model (the first level
realization) which are related in a simple way, the other models can be
considered special cases of our modél.

Fornasini and Marchesini work with various local state space models which
are strongly related (cf. [23], [24], [25]). For completeness we give here
the definition of their last local state space model which they presented
in [25].

= A + B

Xeat, bl - P Fket,h T P2 Fonkt T OB Yet,n B2 Yk, net

Yyn = C¥kn

Here Uen and Yin denote the input and output and Xn is a local state. A D-

matrix such that ykh = kah + Dukh can be incorporated in their theory
without causing any problems.
In [61] the following local state space model is considered (with notation

as in [61])

Ry+1,n a0 ml[Rg]  [B
= * Y
Skonet| (B3 B |Skn] P2
(4.3.8)
Yip = [cl ' c2] Fxn +Du, .
[Sicn]

In fact, the matrix D is zero in [61] but it is easy to extend the model to

the case where D is present.
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(4.3.9) THEOREM. The local state space model (4.3.8) can be written in the

form (4.3.4) and (4.3.7). The corresponding matrices are

MQ=AJ§-%T1%+A1,B@)=%BL¢H4B2+%,

c(s) = 02[51-A4]'1 Ay +C,, D(s) = c2[s1--A4]'1 B, + D
and

AA=a,, MAB=A;, AC=R,, AD=A ,

BA=A, , BB + BC=Aa,, BD=B ,

CA=a,, CB » CC=C,, CD=Cf,

DA =2, , DB » DC=c, DD=D .

Vice versa, the second level

realization (4.3.7) can be written in the form

(4.3.8). Then the corresponding matrices and vectors are

Ry =X, + A =BAD, A,= [ac,BC,0,0] , B, = BD ,
ay AB AA 0 0 O 0
BB
(4.3.10) s, = Pyl , A, = o, a, = 0 B 0 0} B, =
c CB 0 0 ca o0 0
kh
ap 0 0 O 0 bpa DB
¢, =cp, c¢,=[0,0,cCc,Dc]l, D=DD .

2

PROOF. Suppose that u(s,z) and y(s,z) are the formal power series associat-

ed with the input and output of the system defined by (4.3.8). Then we have

-1

zI-A; -3, B,
y(s,z) = {[01,02] + D} u(s,z)
—A3 sI—A4 82
It follows from the equality
-a, -a, ]! I 0 17 z1-a,-a[s1-2,1 la -a_[sI-a, 1" -1
a=hy 2 _ ZLTATRLSITRL S A3 2 4
-A;  sI-a, Ay sI-a, 0 I

by calculating both inverses in the right-hand side that

y(s,2z) = F(s,z)u(s,z)
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where

_ -1 -1 =1 -1
F(s,z) = {cl-+c2[sI—A4] A3}{zI-A1-A2[sI—A4] A3} {Bl-bAz[sI—A4] B2} +

-1
+ Cz[sI-A4] B, +D .

2

The second part of the theorem is proved by just reorganizing (4.3.7). ]

If we insist on a model in the form (4.3.8), the matrices tend to be
"large". This can be seen if, for instance, the method described in [48]
(only for scalar transfer functions) is used. It can also be seen from
(4.3.10) . Our second level realization gives more matrices but they are
"smaller".

In [74] a method to find a local state space model of the form (4.3.8) is

described, starting with a first level realization. This is done using

A(s) B(s)
(4.3.11) W(s) =
C(s) D(s)

‘

as a single 1-D transfer matrix. In [74] a model of the form (4.3.8) is
obtained by partitioning a realization (F,G,H,K) of W(s) as
A A B

(4.3.12) F=2a,, G= [A3,B2] , H= 2 ¢ K= !

4 C
2

where the matrices Al’ A2, A3, A4, B1, B2, cl, C2, D are the same as in
(4.3.8) .

(4.3.13) REMARK. Sontag's paper [74] appeared at the same time as [16] in
which most of this chapter is described. For more comments concerning the
relations with other papers and the history of the 2-D realization problem

see Chapter I. O

(4.3.14) EXAMPLE. Consider a scalar proper rational function (a 2-D trans-

fer function)

n i n i
'Z ai(s)z .E ai(s)z
i=0 i=0

F(s,z) = o = '

. n .
Y b.(s)zd ) B.(s)2]
j=0 j=0
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where (because of properness)

a, (s) b. (s)
ai(s) = B—T;T-e I%(s) and Sj(s) =59 sIRc(s) .
n n
In order to simplify the example we assume that an(s) = 0. The first level

realization can very easily be found for scalar transfer functions because
one can use the so called standard controllable form for a realization, see
[9].

A first level realization is I = (A(s),B(s),C(s),D(s)) where

o 1 0o ... o ] [o]

A(s) = : . . . 0 , B(s) =|"| .,
0 . ‘0 1 0
By(s) e -8__, ()] _1J

C(s)

Lag(s) ve-wva 4 (s)] ., D(s) =0 .

The second level realization gives CD, CC, CA, CB, AD, AC, AA, AB, BD;
BC = BA = BB = 0.

The resulting local state space equations are

Xk+1,h AD AC xkh BD
= + Ugn !
2, h+l AB  AA[lay, 0
Sk,htl = OB Cpp ¥ OB Xy
ykh = CD xkh + CC ckh P

where AD € ]Rnxn, AA € Rnxg’ CA € R™ and m is the degree of bn(s) . We can

even take AA = CA.
Two kinds of system matrices have been obtained:

AD Ac €:R(n+m)x(n+m)

AB AA

representing dynamics in two directions and
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CA

representing dynamics in one direction

In [48] an (n+2m) x (n+2m) system matrix is obtained for this transfer
function because the authors wanted system equations in Roesser's form.

By a system matrix of a system I = (A,B,C,D) or a local state space system

(4.3.8) is meant the matrix A or in the latter case the matrix

In theorem (4.3.9) we have seen that the local state space system (4.3.8)
is theoretically equivalent to the second level realization (4.3.7). The
structure of the equations (4.3.8) is also present in (4.3.7). Although in
(4.3.7) one usually deals with smaller matrices, which can be advantageous
on a computational level, Roesser's equations (4.3.8) seem to be more at-
tractive theoretically because the model contains less matrices. Therefore
we will often work with (4.3.8) when we are dealing with local state space
models. In the next, local state space models will be called state space
models because itwill always be clear whether a first level realization or a

second level realization is under consideration.

IV.4. Weakly causal 2-D systems

In this section the results concerning state space realization of a causal
2-D system, as described in the first part of Chapter IV, will be general-
ized to a larger class of 2-D systems. This will give a generalized notion
of state space realization, for which the state, and therefore the output,
can still be evaluated in a recursive way. These 2-D systems will be called
weakly causal. The results also include a realization method for a class of
Non Symmetric Half Plane filters (NSHP filters), see [22].

Weakly causal 2-D systems arise in a natural way when one studies inverse
2-D systems. Generally, a causal 2-D system does not have a causal inverse,
even not a causal inverse with inherent delay, see [20]. In Chapter V these

new notions will become clear when inverse systems will be discussed.

The variables z and s can be interpreted as shift operators in the follow-

ing way
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z(x) s(a)

kh = *k+1,h * kh - %k,h+1 °

Thus the local state space model (4.3.8) can be written as

z (x)

ka| _ M B2 M| P2 w
- ’
s(@)yy A3 B4||%n By
(4.4.1)

X
kh

ykhslicl.cz] +Du, . k,h = 0,1,2,...,
3%h

where, instead of R and S, we have taken x and a respectively, and the
initial conditions are xOh =0, h=0,1,2,...; ako =0, k=0,1,2,... .

In the generalized state space model for weakly causal 2-D systems, as
defined below, the shift operators z and s will be replaced by more general
shift operators.

Consider the 2-D input/output system

(4.4.2) (k,h) € J <z .

y F,__. Lu, Ly
k! - -
h (i,3) g k-i,h-j "ij
. . c e mxXp Lo 2
The index set J will be specified later on. Fi' € R for (i,j) € Z” and
some integers m and p.

The support of the impulse response F = (F

is th t
m,n’ (m,n)ez2 1S the se

2
(4.4.3)  sp={(mn) | mn ez% F_#0}.
A cone C is a subset of :R2 (with row vector notation) such that if

(x,y) € C, then (Ax,\y) € C for all X 2 0. The closed first quadrant of

]R2 will be denoted by R_f.

(4.4.4) DEFINITION. The imput/output system (4.4.2) will be called weakly
causal if

SF cCc, JccC

for some closed convex cone C satisfying

1°: cn (-0) = {0},

2:JRiCC. 0

(4.4.5)
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From now on C will always denote a closed convex cone satisfying 1° ana 2°.

In the following we will be interested in invertible mappings ¢
¢: Cn 22 -*Zf

such that the origin is a fixed point (¢(0,0) = (0,0)). Therefore we intro-

duce first the notion of causality cone.

(4.4.6) DEFINITION. A causality cone C. 18 the intersection of two half-

planes H and H where
P a,t

= {(x,y) | (x,y) € Rz, px+ry =2 0} ,

m
|

b,

H {(x,9) | (x0y) € JR2, gx+ty = 0},

q-t
where p, r, q, t are non-negative integers satisfying

qr-pt = -1. 0

The next figure shows the causality cone based upon H and H

Figure 4

PY

®
[ ]

(4.4.7) LEMMA. Every causality cone has the properties 1° and 2° in (4.4.5).

PROOF. The proof is straightforward and will beomitted. O
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REMARK. Every causality cone induces a partial orxder on Zz in the same way
2 . . .

as E+ (the causality cone for a causal system) does, see [66]. This partial

order enables us to introduce double sequences with finite past as is done

in the 1-D case (see (2.1.4)); see also [56]. 0

(4.4.8) LEMMA. Suppose that C 18 a closed convex cone satisfying 1° and 2°

in (4.4.5). Then there exists a causality cone Co such that C c C.-

PROOF. C c C' where C' is the inteisection of two halfplanes Hp',r' and
Hq',t" such that gq'r' -p't' < 0 and p' and r' are coprime. Then there
exist integers q and t1 such that qlr' —p't1 = -1 and thus

(q1-+np')r' - p'(tl-Fnr') = -1 for all n € Z. Because q'/t' < p'/r' we
have for sufficiently large n, that q'/t' < (ql +nop')/(t:l +nor') . Now take
p=p',yr=1r', q= qli-nop', t = tl-fnor' and CC = Hp,r n Hq,t is a
causality cone satisfying C < C_. ) O

REMARK. Lemma (4.4.8) gives a result on existence of Cc' In fact, Cc is not
unique at all. For instance, a causality cone containing Cc suffices also
in lemma (4.4.8). a

(4.4.9) THEOREM. If C. 18 a causality cone, then there exists a map ¢, one-

one and onto,
9 Cc nZz—*Zi
such that

@(k1+k2,h1+h2) = o(k;shy) + ¢ (kyshy) .

PROOF. Suppose CC = Hp,r n Hq,t' then the map ¢ defined by

¢ (k,h) = (pk+rh,gk+ht)

is a possible one. O

This map ¢ will be used to transform a weakly causal input/output system
into a causal input/output system, which, in turn, will be used to con-
struct a state space realization for the weakly causal input/output system.
We will take a formal power series point of view for (4.4.2) (or apply the
2-D Z-transform to (4.4.2)). Then we obtain

(4.4.10) vy(s,z) = F(s,z)u(s,z) .
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Observe that F(s,z) = 2 F s_h z_k cannot be seen as a matrix over

(k,h)ed kh
the ring of formal power series as is defined in (4.1.7), because positive

powers of s or z may arise. Nevertheless we may use the word "formal power
series" when we are dealing with the matrix F(s,z) or the vectors y(s,z)

and u(s,z) because we have

(4.4.11) THEOREM. For any C H nH the set
[e} q,t

b,
Sp,r,q,t = {F(s,2) I there exists F = (Fk,h)(k,h)ezz such that
F(s,z) = Fkh s-'h 2 K and Sp < cc}
(k,h)ezz

i8 a ring with the usual addition and multiplication. Furthermore S
P,x,q,t

ig isomorphic to §1 0.0.1°
r’ r ’

PROOF. Define the ring homomorphism
¢: S -8
prx.q,t 1,0,0,1
by

Q,m
-m -
®(F) (a,8) = ) F _, o g
m=0,n=0 ¢ ~(n,m)
where ¢ is the same as in (4.4.9). Now the proof is just a matter of veri-

fication that ¢ is indeed a ring isomorphism. 0

For a formal power series, in the enlarged sense, rationality is, as usually,

defined as being the quotient of polynomials.

(4.4.12) THEOREM. Let & be the ring isomorphism defined in theorem (4.4.11).
Then ¢(F) (a,B) s rational iff F(s,z) € R(s,z).

PROOF. The equality

-n _ -gk-ht
F o B = Fk,h o

) -pk-rh - t,r —h(anP)_k
¢ " (n,m)

B Fiple®)

implies

8(F) (a,8) = F(at8Y,0%pP)

from which the result follows. O
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The ring isomorphism can also be defined for §Exi at’ the set of mx &
4 ’ 4

matrices over ép roqet’ because ¢ can be applied to every entry of a matrix
I 14 7

over §p reat We will make a little abuse of notation and also write
’ ’ r

& (F) (0,B) where F(s,z) is a matrix over ép gt By this we will mean that
’ ’ ’

$ is applied to every entry of F(s,z) separately. Furthermore, by a rational
matrix over ép fhat we will mean a matrix where every entry is rational (in
’ ’ 1

ép £q t).Again,by a formal power series expansion (representation) -of a
’ ’ ’

matrix F(s,z) over éP £hqrt we mean a matrix whose entries are formal power
’ r ’

series expansions (representations) of the corresponding entries of F(s,z).

(4.4.13) DEFINITION. 4 rational F(s,z), corresponding to a weakly causal
input/output system, will be called a weakly causal transfer matrix. O

The following theorem is concerned with the uniqueness of a formal power
series expansion, in the enlarged sense, for a weakly causal transfer ma-

trix.

(4.4.14) THEOREM. Suppose F(s,z) 18 a weakly causal transfer matrix and
that

-h -k -h -k

4 = G, s z .
(k,h)ez2 B

F(s,z) = z F.. s
(k,njez2 P

Furthermore, suppose that SF < Cg, SG € C., where Ce 18 a causality cone

and F = ( ) G=(G Then Fy, = G, for all k, h.

Fr.n’ (k,h)ez?? koh (k,h)ez2® Xh

PROOF. Let ¢ be defined as in (4.4.11). Now ¢(F) (o,B) is a causal transfer
matrix. The formal power series expansion for & (F) (a,B) is unique (see

[26]). From this the proof follows. 0

Notice that a weakly causal transfer matrix may have more than one formal
power series representation with support in a (different by (4.4.14))

causality cone.
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Starting with a weakly causal transfer matrix it is of course a long way
around to transform it into a causal transfer matrix via the associated
formal power series. Therefore we state the following lemma which enables

us to construct a causal transfer matrix directly from a weakly causal one.

(4.4.15) LEMMA. The isomorphism ¢, as defined in (4.4.11), can also be
described by the substitution

s = atsr, z = aqﬁp

with inverse

PROOF. The proof follows immediately from the proof of theorem (4.4.12).
The fact that the inverse of the substitution s = atﬁr, z = anp also has

integer exponents is due to gr -pt = -1. a

Next we will derive a local state space realization for a weakly causal
transfer matrix. The equations for this realization will be generaliza-
tions of (4.4.1). For this purpose we transform this weakly causal trans-
fer matrix into a causal one. Then we construct a local state space model
for this causal transfer matrix as was done in IV.3 which will be written
in Roesser's form (4.4.1)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>