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PREFACE

Ten years have passed since the first edition of my book "Cardinal Functions"*
appeared, and this decade has seen a tremendous amount of activity in and
development of the area. Thus when I was asked to prepare a new, updated
edition of my book, I had no choice but to completely rewrite it. This new
version now contains at least three times as much material as the old one.
If this is not apparent at first sight it is because the new book has no
appendix on combinatorial set theory. Such an appendix is no longer necessary
since a number of good books and survey articles on this subject have recent-
ly appeared. In this new version I aimed at a certain kind of completeness
by trying to include all the fundamental results that can be established in
ZFC, i.e. ordinary set theory. This "forced" the exclusion of independence
results, which, in my view at least, constitute the most significant advances
of our field. Hence, in this respect, the book is certainly not complete and
in fact it just cries out for a partner volume covering the basic indepen-
dence results. '

The material of this book has been based on a two-semester course that
I gave at the University of Budapest in 1978. However, it was actually writ-
ten during the second half of 1979, when I was visiting at the Mathematics
Department of the Free University of Amsterdam. I would like to take this
opportunity to thank this institution, in particular Professors P.C. Baayen
and M.A. Maurice, for making my visit possible. I would also like to thank
my former student A. Pozsonyi, whose meticulous notes of my course meant a
great help for me in writing this book. I am grateful to the staff of the
Mathematical Center involved in the fast and careful preparation of the manu-
script, and especially to Mr. T. Jacobs, who prepared the index and the list
of symbols.

Toronto, March 1980 Istvan Juhdsz

PREFACE TO THE FIRST EDITION

General topology can be considered as a natural outgrowth of set theory;
the simple set theoretic nature of its fundamental notions makes it an appro-
priate area for the application of set theoretic methods. On the other hand,
many set theoretic problems have their roots in topology and this makes the

interaction between the two disciplines even more profound. The closeness of

)
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their relationship is perhaps most apparent in the work done by the Moscow
school of topology in the early twenties.

The last decade has witnessed a very rapid development of set theoretic
methods and ideas, the main sources of which were, in our opinion, the fol-
lowing: 1) the independence results of P. Cohen and his followers; 2) the
results on "large" cardinals of A. Tarski's school, and 3) the achievements
of P. Erdds, R. Rado, A. Hajnal, and others in combinatorial set theory
(e.g., partition calculus). Not surprisingly, this has stirred up a renewed
interest in the set theoretic aspects of general topology. A number of old
problems were settled and many new ones were raised.

The aim of this tract is to present a variety of questions of this kind
by centering them around the unifying concept of cardinal functions.

Since a considerable part of the means employed in our investigations
are relatively recent and not easily accessible in the literature, we have
found in both convenient and timely to include an appendix entirely devoted
to the detailed explanation of these methods and ideas of combinatorial set
theory.

This tract was written during the second half of 1969, while the author
was a guest of the Department of Pure Mathematics of the Mathematical Centre
in Amsterdam. The appendix is based on a series of talks given by the author
during the same period at the Mathematical Centre under the title "Combina-
torial Set Theory".

At this point I wish to express my gratitude towards the Mathematical
Centre for their kind hospitality which gave me the opportunity to write this
tract, as well as for publishing it. I am particularly grateful to Professors
J. de Groot and P.C. Baayen for initiating my invitation and supporting this
project.

Special thanks are also due to Albert Verbeek, who took on the difficult
task of actually writing the text of the appendix, and did most of the work
necessary to turn the crude manuscript into print. I would also like to thank
Nelly Kroonenberg, who added A6 to the appendix.

Finally, I am greatly indebted to my friend and collegue A. Hajnal,

whose help was essential in acquiring the methods used in this tract.



CHAPTER 0

PRELIMINARIES

We shall use in this book the by now more or less standard "modern"
set-theoretical notations, e.g. that of [DR 19741, [JE 1978], [K 1977] or
[WI 1977]. The set of all subsets (the power set) of a set X is denoted by
P(X). Functions are always sets of ordered pairs (i.e. they are identified
with their graphs). The domain of a function f is denoted by D(f) and its
range by R(f). Thus f: A > B means that D(f) = A and R(f) < B. We shall put
B® to denote the set of all functions f: A > B. If S c A then £[S € B>. We
shall often use the symbol H(A,B) to denote the set of all finite functions
from A to B, i.e. g € H(A,B) means that D(g) is a finite subset of A and
R(g) ¢ B. If B = 2 = {0,1}, then we shall write H(A) instead of H(A,2).

Ordinals - usually denoted by greek letters - are identified with their
sets of predecessors. Consequently, if a,B are ordinals then o < B means
the same as o € B. A sequence s of length o is a function with D(s) = a,
hence e.g. Sa is the set of all sequences of length o of ordinals less
than B. We shall also put Sg'= U{BV: v € a}, i.e. the members of Eg’are
the sequences of length less than a.

Cardinals are the initial ordinals, k,X,u will always denote infinite
cardinals, w is the smallest infinite cardinal: For any ordinal o, cf(a)
denotes the cofinality of o that is always a regular cardinal. The cardinal-
ity of a set X is denoted by |X|. The successor cardinal of k is denoted
by K+. A non-successor cardinal is called a limit cardinal.

When indexina by all ordinals less than a given ordinal (which of
course might be a cardinal) we shall usually use the symbol €, while if we
index by all cardinals less than a given one we always use <. Thus in
{Xa: o € k} the indices run through all suitable ordinals, while in
{pA: A < k} through all suitable (infinite) cardinals.

For any set X and cardinal p (which might be finite) rx1° denotes
the collection of all p-element subsets of X; [X]<p and [X]Sp are defined

analogously.



The symbol KA will have double meaning, it denotes according to our

above convention the set of all maps from A into k, moreover it denotes

th
the corresponding cardinal exponentiation. The A weak power of k, denoted

by EL is defined as EL = Z{Ku: B < A}. The cardinal A is called strong limit

if k

K
< A implies 2 < A as well. Next we collect the basic facts about car-

dinal exponentiation.

0.1.

0.2.

Q) (K+)A =_KA _K+

b) if A < cf(k) and « is limit, then
KA = Z{UA: U< kl;

c) if cf(k) < A < k then

et = (Z{ukz u < K})Cf(K);

ad) Cf(KX) > A;
e) if {Kg: £eA} is increasing with k = Z{Kg: £ € A} then

A

{k Ee A} =«k".

£
Using these one can prove the following statement.

) A A A
Suppose that the power Kk is a jump, i.e. K,A 2 w, 4 < Kk if p < K

and M o< KA if w < A. Then A = cf(k).

A set mapping F over a set X is any map of the form F: [X]<p -+ P(X).
The particular case p = 2, in which case we usually write F: X - P(x)
instead of F: [X]1 + P(X), is of particular importance for us. The
basic result concerning these is Hajnal's theorem below. A set S c X

is said to be free for F if x,y € S with x # y imply x ¢ F(y).

If F: X »> [x]<x where A < |X| then there is a free set S ¢ X for F

with |S]| = |x].

Concerning the notion of ramification systems and the basic result on
them, the ramification lemma, we refer the reader to [WI 1977, ch.2.2].
By an r-partition of X into p parts, where r < p, we mean a map

£: [x]¥ > Y where |Y| = p. The partition relation k - (Av)zep means
that whenever f£ is an r-partition of k of the form f: [kJ¥ » p there

Av r .
is a v € p and a set a, € (k1" with ?f([av] )] = 1. The following



two known partition relations will be used frequently in this book.

For anu K we have

a) kK > (K,w)z;

) (9% > w2

An important corollary of 0.4a) is that if <1 and <2 are well-orderings
of the same infinite set S then there is a D ¢ S with [Dl = ISI such
that <1 and <2 coincide on D.

If A is a singular cardinal with cf(A) =k and <AV: vek> is a fixed
sequence of cardinals less than A with A = E{Av: Vekl}, then a family
{Sv: Ve Kk} of subsets of A is said to be canonical with respect to the
r-partition f: [X]r-+p, if the following conditions are satisfied:

@ s | =2,
(ii) v € p € k implies Sv < S ;

(iii) if a,a' € [U{Sv: v € k}J¥ are such that |a n Svl = Ia' ns,
for each v € k then f(a) = f(a').

(The canonization lemma) If A is a singular strong limit cardinal and
£: [A1F > p with ¥ € wand p € A, then there is a canonical family
with respect to f.

A family of sets A is called a A-system (or quasi disjoint) with root
D if for any two A,A' ¢ A we have A n A' = D. The following is the

basic result concerning A-systems.

Let A be a family of sets with |A| = « and |A| < \ for each a ¢ A,
where « > w is regular and pk < k for every u < k. Then there is a
subset A' c A such that |A'| = |A] and A' is a A-system.

The following two results are easy consequenées of 0.6.

v
(Miscenko's lemma) Let H c P(X) be such that
ord(p,H) = |[{H € H: p € H}| <«

for each p € X. Then there are at most kK finite minimal covers of X

by members of H.

(Burke's lemma) Let {B : o € k} and {Ca: o € k} be families of sets
such that IBa' <A, |Ca| <A for all o € k, moreover

(i) C n B =@ for each a € «;
a o



(ii) Cu n ES + ¢ ir {a,B} € [K]z.

Then k £ 2" .

0.6 does not remain true, even for finite sets, if k is singular.
Now if A is singular with cf(}) = k and XA = Z(A,: V € k} and Ay <A
for each v € k, then the family {Av: Vv e k} is called a double A-
system if

(i) for each v ¢ k, IAvI = Av and Av is a A-system with root D
(ii) {Dv: Vv € k} is a A-system.

It is not hard to deduce now the following result from 0.6 with a

suitable thinning out procedure.

If X is as above and A is a family of finite sets with ]Al = A then

there are subfamilies {Av: Vv € k} ¢ P(A) which form a double A-system.

Our topological notation follows in general that of [EN 1977]
and is quite standard. Instead of <X,T>, where T is a topology (i.e.
the family of all open sets) on the set X, we usually just write X
to denote the corresponding topological space. Thus we sometimes
write T(X) for the topology of X.

For X a space and k an infinite cardinal we denote by (X)K the
space with the same underlining set and k-fold intersections of open
set (i.e. GK-sets) as the base for its topology. D(k) denotes the
discrete space on the underlying set k.

It will be convenient for us to denote the class of all topologic-
al spaces by T and the class of all T, spaces (0 £i<5) by Ti’ and
the class of compact Ti spaces by Ci' A little deviation from standard

usage is that, for us, regular = T i.e. always includes T

3’ 1°



CHAPTER 1

INTRODUCTION OF THE CARDINAL FUNCTIONS

In what follows, unless otherwise stated, X is an arbitrary topological

space

1.1. DEFINITION.
o(x) = |T(x)].

1.2. DEFINITION. B c T(X) is a base of X if every G € T(X) is a union of

some members of B,
w(X) = min{|B|: B is a base of X} + w.

w(X) is called the weight of X.

1.3. DEFINITION. B c 1(X) is a pseudo base or Y-base of X if for every

p € X we have

{p} = n{B € B: p € B}.

Clearly X has a y-base if and only if X € T1' Thus in the following
definition X € Tl' Yw(X) is called the pseudo weight or Y-weight of X.

Yw(X) = min{|B|: B is a y-base of X} + w.

1.4. DEFINITION. B < t(x)\{@#} is said to be a m-base of X if for every non-

empty open set G there is a B € B with B ¢ G.

m(X) = min{|B|: B a m-base of X} + w.

m(X) is called the m-weight of X;



1.5. DEFINITION. N ¢ P(X) is said to be a network in X if every open set
is the union of some members of N. (Thus a base is a network consist-

ing of open sets.)
nw(X) = min{[N|: N a network of X} + .

We call nw(X) the net weight of X.

1.6. DEFINITION.

.

d(x) = min{|S|: S ¢ X and § = X} + w,

d(X) is called the density of X.

1.7. DEFINITION. C c 1(X)\{@} is called a cellular family if the members of

C are pairwise disjoint.
c(x) = sup{|C|: C cellular in X} + w.

c(X) is called the cellularity of X.

1.8. DEFINITION. X is said to be k-compact (k-Lindeldf) if every open cov-

er of X has a subcover of cardinality less than k (at most k).
L(X) = min{k: X is k-Lindelsf} + w.

L(X) is the Lindeldf~degree of X. We could of course analogously have

defined the compactness degree of X, but we prefer to work with L.

1.9. DEFINITION.
s(X) = sup{]D|: D ©€ X, as a subspace, is discrete} + w.

We call s(X) the spread of X.

1.10. DEFINITION. A space S is called left (right) separated if there is a
well—orderiﬁg < of S such that every final (initial) segment of S
under < is open. Clearly, S is left (right) separated by < if and only
if every p € S has a neighbourhood Up such that g ¢ Up whenever g<p



(g >p). Such Up are called left (right) separating neighbourhoods.

z (X) sup{]S]: S ¢ X is left separated} + w;

[l

h(X) = sup{|S|: S ¢ X is right separated} + w.

"We call z(X) the width and h(X) the height of X.

1.11. DEFINITION.
p{X) = sup{lSl: S ¢ X is closed and discrete} + w.

1.12. DEFINITION. S = {pa: @ € v} € X is a free sequence of length v in X

if for each o € v we have

{pB: B e a} n {pB: B e vio} = @.
Clearly then S is discrete.
F(X) = sup{k: 3 a free sequence of length k in X} + w.
1.13. DEFINITION. We denote by RO(X) the family of all regular open sets in
X, i.e. G € RO(X) if G = Int G. Similarly RC(X) is the family of regu-
lar closed subsets of X, i.e. F € RC(X) <> X\F € RO(X).

p(X) = |RO(X)| = |RC(X)].

1.14. DEFINITION. If A ¢ X a family U c 1(X) is a neighbourhood base of A
in X if for every open set G ® A there is a U ¢ U with A ¢ U ¢ G. We

put

x(a,x) = min{lU[: U a neighbourhood base of A in X},

and call it the character of A in X. If p € X we write ¥(p,X) in-
stead of x({p},X).

x(X) = sup{x(p,X): p € X}



is the character of X.

1.15. DEFINITION. If A < X a (local) Y-base of A in X is a family

V ¢ 1(X) satisfying A = nV.
¥(a,%x) = min{|V|: V is a local y-base of A in X}.

Again if p € X then we write Y(p,X) = ¥({p},X). The pseudo character
of X is defined for X e T1 by

Y(X) = sup{v(p,X): p € X}.
The following well-known fact will play an important role: If X € C2
and F ¢ X is closed then Y(F,X) = X(F,X). Consequently then Y (X) =x(X).
Variations on the same theme are the following:
¥(X) = sup{V(F,X): F closed in X};

WK(X)= sup{¥(C,X): C c X compact}.

If X € T2 then every p € X is the intersection of its closed neigh-

bourhoods, hence we can define

wc(p,X) = min{lVI: Vertx) apenlea{p}= n{v: v e V33,
moreover

wc(X) = sup{wc(p,x): p € X}.

If X € T3 then we get analogous "closed" versions of wc(F,X) for F

closed in X and
WC(X) = sup{wc(F,X): F is closed in X}.
Finally if X € Tl then we can define

b (X) =y, X xX),

where A = {<x,x>: x € X} is the diagonal of X. wA(X) is a kind of



1.15.

"symmetric pseudocharacter" as can be seen from the following (easily
established) characterization: wA(x) = Kk is the smallest cardinal
such that to every p € X one can assign a local y-base

V. = {v :

b {a(p) o € k}
such that, for each a € «,

p € Vu(q) > g € Va(p).

If p € X a local m-base of p in X is a family U < 1(X)\{@#} such that

every neighbourhood of p contains a member of U.

X (p,X) = min{|U]: U a local m-base of p in X}
is the w-character of p in X.

X (X) = sup{mx{p,X): p € X}

is the T-character of X.

Let p e X, Sc X and p € E, then

a(p,s) = min{|M|: M c s & p ¢ M},
moreover
t(p,X) = supfa(p,S): p ¢ S c X}.

t(p,X) is the tightness of X in p, while
t(X) = sup{t(p,X): p € X}

is the tightness of X.

A set F c X is said to be E—Closed if S c¢ F and |s| < « imply
S c F. It is easy to see that t(X) < k holds if and only if every
k-closed set in X is closed. This characterization of tightness is

useful e.g. in proving the following proposition.
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1.17. 1f £: X > Y is a continuous and closed map of X onto Y then t(Y) <t(X).

PROOF. Let k = t(X) and F ¢ Y be k-closed, then f_i(F) is also k-
closed. Indeed, if S € [f-l(F)]SK and p € S then £(S) € [F]SK and
f(p) € ETET c F, hence p € f_l(F). But t(X) < k implies then that
f-I(F) is closed, hence by the closedness of f the set F is also

closed. 4

Recall that if H < P(X) then for p € X

ord(p,H) = |{H € H: p e H}|
and

ord(H) = suplord(p,H): p ¢ X}.
1.18. DEFINITION. If X € T1 we put
psw(X) = min{ord(B): B a y-base of X}.

1.19. DEFINITION. The cardinal Kk is a caliber of X if whenever
{Ga: a € k} © T(X)\{@#} there is a subset A € [k1* with n{Ga: o € A} 4.

Observe that we do not require Ga + G, for o # B. Thus it is easy to

B

see that if k is a caliber of X then so is cf(k). We shall put
cal(x) = {k: k is a caliber of X}.

It is easy to see that if cf(k) > d(X) then k € cal(X), hence cal(X)
is not a set. Clearly, if k € cal(X) then there is no cellular family

of size k in X.

1.20. DEFINITION. We say that k is a precaliber of X if {G : o e«} c1(X)\{g}
implies the existence of an A ¢ [k1° such that {Ga: o € A} is centered

(i.e. has the finite intersection property). We again put

precal (X) = {k: k is a precaliber of X}.



1.21.

1.22.

11

Clearly, k € precal (X) implies cf(k) € precal(X). It is easy to show

that

cal (X) c precal(X)
for any X, moreover if X € C2 then

cal (X) = precal (X).
DEFINITION. A cardinal function ¢ is said to be monotone if Y c X
implies ¢(Y) < ¢(X) (when both defined). The functions w, nw, yw, X,
Y, t for example are monotone, while d, m, L and mX are not. For
any cardinal function ¢ we put

0" (x) = sup{¢(¥): Y < X},

*
¢ is called the hereditary (or monotone) version of ¢. Clearly ¢

*
is monotone if and only if ¢ = ¢

DEFINITION. Several of our cardinal functions have been defined as
suprema e.g9. ¢, S, z, h, etc. If ¢ is a cardinal function defined
in this way, i.e.

¢ (X) = sup{k: k has property P¢},
then we put

A .
¢(X) = min{X: X > k¢ if k has property P¢}.

We always have ¢(X) < $(X) then, while $(X) = ¢(X)+ if ¢(X) is a

successor cardinal.



2.

2.

1.

3.

.If X e TO' (X € Tl)’ then |x| < 2

CHAPTER 2

INTERRELATIONS BETWEEN CARDINAL FUNCTIONS

Trivial inequalities

(a) c(X) € da(X) < m(X) £ w(X) <o(X) < min{zlxl,znw<X)};

(b) max{d(x),L(X)} < nw(X) < min{|X|,w(X)};

(c) for X € Tl’ Yw(X) < min{|x],w(X)} and |xX| < o(X);

(d) for every x e X, max{t(x,X),mx(x,X)} < x(x,X), moreover if X € T1
then ¥(x,X) < x(x,X);

(e) x(X) < w(X) < [x]+x(X), and for X € Tl’ P(X) < Yw(X);

(£) mx(X) < 7(X) € d(X)*mx(X) and t(x) < |x|. -

w (X) (x| < 2¢w(X)).
PROOF. Let B be a base (y-base) for X with |B| < w(x) (|B] < yw(x)).

Then x,y € X and x # y imply
{BeB: xe B} # {Be B:ye B}

since X is T, (Tl)’ i.e. we have got a 1-1 map of X into P(B).

Let X € T,, then
(a) Ix| < nw(X)w(X);

(b) nw(x) < ww(x)L(X) LX) -9 (x)

, hence |X| < yw(X)

PROOF.

(a) Suppose N is a network for X with |[N| < nw(X). For any p € X let Vp
be a local y-base of p with |Vp| < y(X), and for every
Ve Vp pick N, € N such that p € N, < V. Then Np = {NV: V e Vp} has
cardinality not exceeding |V | < ¢(X), moreover NN_ = an = {p},

P
<
¥ (x) is one-to-one.

hence the map p + N_ of X into [N]
(b) Let P be a y-base for X with |P| < yw(X). For every open set U con-

taining a given point p, its complement X\U can be covered by



2.4.
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members of P missing p as P is a y-base. But then it can also be
covered by at most L(X\U) < L(X) many such members of P. This shows
that the complements of all unions formed by at most L(X) members
of P constitute a network for X, which is clearly of the required

cardinality.

REMARK. Observe that in case (b) our proof actually yields the follow-
ing stronger result: If X ¢ T1 and X is k-compact then nw(X) < ww(XPS.

In particular, if X € C1 then nw(X) < yw(X). -

For X € T2
|X] < expexp d(X).

PROOF. Let S < X be dense, [S| £ d(X). For any p € X we put
SP ={GnsS:peGe T(X)} cP(S).

Now p # g implies Sp # Sq since X is Hausdorff, hence p - So is a one-

one map of X into P(P(S)), which proves our assertion. -|

COROLLARY. If X € T2, then
w(X) < expexpexp d(X). -

For every X € T2 we have

x| < ax) XX,

PROOF. Let S be dense in X with [S| < d(X), and for each p € X let Up
be a neighbourhood base of p in X with IUPI = x(p,X) < x(X) = «. For
every non-empty open set G we pick a point g(G) € S n G, and then put
Np = {q(G): G ¢ Up} e [sT* for p € X. Clearly, then p € G_E—ﬁ; for
every neighbourhood U of p. Consequently, as X is T2, we have

{pl=n{unnN:vel]},
p p

hence the map p > {U n N_: U € U } takes X in a one-one way into
<<k P b

[fs117. 4
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REMARK. We have actually established the following, somewhat stronger

result: If X € T2 and k is a cardinal, then

[{p € X: x(p,X) <k} < amx". -

2.6. Let X be arbitrary with S © X dense in X. Then

(a) c(S) = c(X);

(b) a(x) < da(s) < a(X)+t(x);

(c) m(S) < m(X) and for any p € S, a(p,S) < wx(p,S) < wx(p,X);

(@ p(8) = p(x) < minfrx)®®) 28Xy

PROO.

(a) Suppose first that G is a disjoint family of non-empty open subsets
of X. Clearly, then

Gls = {6 ns: Ge G}
is a cellular family of the same cardinality in S. Now, on the
other hand, let

{¢ ns: G e G}
be a cellular family in S with G open in X for all G € G. Then
G,G' € G with G # G' implies G n G' = {, since otherwise
(GNG')YNnS = (GnS) n (G'nS) would be non-empty. -

(b) As S is dense in X, every dense subset of S is also dense in X,
hence d(X) < d(S). Now let T be dense in X with |T| £ d4(X). For
each p € T we can choose a set Sp € [s]St(X) with p € §p' It is
easy to see then that S' = U{sp: p € T} is dense in §, hence d(S) <
Is'] < ax) t(x). -

(c) Let P be a (local) m-base for X (for p in X). Since the members of
Pls = {P n S: P € P} are non-empty, as S in dense, P|S is clearly
a (local) m-base for S (for p in 8), while |P[s] < |P]. 4

(d) Let G (with G open) be an arbitrary regular closed subset of X and

consider the map G+>GNS. Since G is open and S is dense we have

G =G n S, hence
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2.8.

Let
(a)
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i.e. G n s is regular closed in S. Moreover, every regular closed
set in S has the form E7T§S for a G open in X, hence the above map
takes RC(X) onto RC(S). Finally, if G and H are open in X with

G # H, then either G\H # @ or H\G # @, hence as S is dense, Gns #
ﬁr\S, i.e. our map is also one-one.

To prove the second half of (d) first note p(X) < Zd(x) follows
immediately from what we have just proved. Next consider a m-base
P of X with |P| < w(X). For any (non-empty) open set G in X let

CG be a maximal disjoint family of members of P contained in G.
Clearly, then UEE = G, hence if G # H then CG # CH' This shows

<
that the map G - CG takes RO(X) in a one-one way into [P]_C(X). -

X € T3 and S © X be dense in X. Then

m(S) = m(X), moreover ¥(p,S) = x(p,X) and mx(p,S) = wx(p,X) when-

ever p € S;

B wx <o < ma® < 0%

PROOF.

(a) The <-parts of the equalities are obvious in view of 2.6(c). For
showing the -parts let B be a (local) m-base (at p) or a neigh-
bourhood base of p in S, respectively, and use the regularity of
X to show that {Int B: B € B} is a corresponding family in X. -

(b) Only ﬂ(x)c(x) < 2d(x) needs proof. However c(X) < d(X) is always
valid, and the regularity of X, in view of 2.7(a), implies
1®) < 28%) | compare this with the Corollary of 2.4!

Let X € T, and p € X. Then

(a) yw(X) < p(X);

(b) Yw(X) < nw(X);

(c) wc(p,X) < P (p,X) *L(X).

PROOF.

(a) In a Hausdorff space every point is equal to the intersection of
its regular closed neighbourhoods. -

(b) Let N be a network for X of minimal cardinality. Consider the set

M of those pairs m = <Ny N> € Nx N, for which there are disjoint

2

open sets G1 and G2 such that N1 c G1 and N2 c G2. For each m ¢ M

fix such a pair <G{m),G£m)>. We claim that {G;m): me M} is a y-

base for X. Indeed, let x1 and x2 be distinct points of X, then
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2.9.

they have disjoint neighbourhoods U1 and U2’ respectively. Let us

choose N1 and N2 from N in such a way that X € N1 c U1 and
- (m)
x2 € N2 c U2. Then m = <N1,N2> € M, hence we have x1 € G1

x, € Gém) c X\G{m). since M| € nw(X), we are done.

and

REMARK. Observe that the Y-base we have produced has the stronger pro-
perty that for any pair of distinct points of X it has a member which

contains the first but even its closure misses the second. -

(c) Let U be an arbitrary open neighbourhood of p. Since {p} is equal
to the intersection of all closed neighbourhoods of p, their com-
plements cover X\U. But L(X\U) < L(X), hence we can find a family
VU of closed neighbourhoods of p with IVUI < L(X) such that

1]

an c U. Now, if U is y-base at p with |U] ¥ (p,X), then put

V= U{VU: U € U}. Clearly {p} = NV and V] < ¢(p,X)L(X). -

The proofs of the above inequalities can be considered elementary in
that they &all boiled down to more or less straightforward counting
arguments. To prove our following results, however, stronger methods
are needed. Another unifying feature of them is that many of them in-
volve hereditary versions of some of the basic cardinal functions.
Therefore we first prove a few easy results concerning the hereditary

versions of ¢, L and d.

(@) ¢ (X) = s(x);
(b) L5(X) = h(X);
() a°(x) = z(x).
PROOF.
(a) 4

(b) If S is right separated in type k, where Kk is a regular cardinal
" then the proper initial segments of S form an open cover of S with

no subcover of cardinality <k, hence L(S) = k. But clearly
h(X) = sup{k: k is regular and IS c X right separated in type «},
. *
hence we obtain h(X) < L (X).

+
Now assume that L(S) 2 k , and let G be an open cover of S with no

subcover of size <k. By transfinite induction we select points pE €S
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+ +
and open sets G,_ € G for £ € k as follows. Suppose £ € k and

g

for all n € & we have already picked pn and Gn. By our assumption

{Gn: n € £} does not cover S, hence we can pick
e S\U{G : €
Py { K £},

and then choose Gg € G in such a wat that pg € GE' Clearly,
+ +
{pgz £ € k } is a right separated subspace of S of type k , and

* *
thus we also have L (X) < h(X), because either L (X) = w or
+
L¥(X) = supf{x’: 3Y © X with L(¥) > «'}.

(c) Now, if S is left separated in type k, where k is regular, then
obviously d(S) = k, hence - similarly as in (b) - we get z(X) <
a"x).

On the other hand, if d(S) = k we can select a left separated sub-
space S' of S of type k as follows. Suppose £ € k and for n € & we
have chosen points pn € S. Then {pn: n € £} is not dense in S,

hence we can pick
€ S : € .
Pg \{pn ne g}

*
Obviously S' = {pg: £ € k} is as required. Thus we get d (X) <
z(X).

2.10. (a) If X € T2, then
V(x) <y (X) < h(X).
(b) If X € T3, then
h(x) = ¥(X)*L(X).

PROOF. (a) Let p € X with wc(p,X)‘= k, moreover {F_: £ € k} be closed

E:
neighbourhoods of p such that

{p} = ﬂ{FE: g ekl
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2.11.

By transfinite induction we define for each v € k a point p, € X
and an ordinal Ev € K. Suppose we have defined pu and Eu for

U € v € kK. Then
{p}+ # ﬂ{FE : U e v},
u

hence we can choose

p. € n{FE : u e vI\{p}

u

Y

and gv € k such that 1 ¢ FEv7 Clearly, then v # u implies p, # pu
and {pv: Vv € k} is right separated. -

(b) Since X € T3, every closed subset of X is the intersection of its
closed neighbourhoods, hence the same proof as in (a) yields
Y(xX) < WC(X) < h(X), while L(X) < h(X) is immediate from 2.9 (b),
h(X) 2 ¥(X)*L(X) = k.
Thus, using 2.9(b) again, it suffices to show that X is hereditary
K-Lindeldf, which in turn follows if every open subspace of X is k-
Lindeldf. But by assumption every open set in X is the union of at
most ¥Y(X) < Kk closed sets, which are all k-Lindeld8f, hence so is

their union. -

A
28 ¢ %) < minl1x1%2®, wP® .

PROOF. First, if S © X is discrete, then

ots) = 218 < o xy.

To prove the other two inequalities put z(X) = « and h(X) = A. By
2.9(c), every closed subset F of X is of the form F = 5, where A ¢ [X]SK,
hence o (X) < l[X]SKI = |x|*. Next consider an open base B of X with
IBl < w(X). In view of 2.9(b) then every open subset of X is the union

of at most A members of B, hence
<
o < BT < wt. 4

Discrete subspaces play a very important rdle in our investigations.

The following results yield methods to deal with them.
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2.12. If X is both right and left separated then there is an S € X with

|s|] = |x| which is discrete.

PROOF. Suppose the well-orderings {1 and {2 right and left separate X,
respectively. By the Erdds-Dushnik-Miller theorem 0.4 (a) there is
S © X with |S] = |X| such that {1 and {2 coincide on S. But then S is

discrete. -

2.13. Let U be an open cover of X and assume that X has no discrete subspace

<
of cardinality k. Then there are V e [U] “ and s € [xT°" such that

PROOF. By transfinite induction we pick points pE € X and sets UE e U
as follows. Suppose we have already picked {pn: ne £} and {Un: neett
and
X#U{uU :ne &} u{p:ne&gl.
n n
Then we choose

J : :
P € x\(t{un neglu {pn neth

d U, e Uwith €U
an £ wi pg £

the chosen points form a discrete subspace. Hence, by our assumption,

. Clearly, then n # £ implies pn # pg, moreover

this procedure must stop before step k. -

2.14. If X € T2 contains no discrete subspace of cardinality k, then for each

p € X either y(p,X) < k or a(p,x\{p}) < k.

PROOF. Let I/ be a family of closed neighbourhoods of p such that {p} =
NV. Then {x\v: V € V} is an open cover of X\{p}, hence 2.13 implies
the existence of V0 € [V]<K and A € [X\{p}]<K such that

x\{p} < U{x\Vv: V € VO} U A.

Now, if p € A, then we have a(p,X\{p}) < k, while if p ¢ A, then
VO u {x\A} yields a y-base at p of size <k. -
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2.15.

Now we turn to the "non-elementary" results mentioned above. There have
been three main methods of proof for these in the literature:

1) ramification arguments (cf. [dG 1965] or [HJ 1967])

2) partition arguments (e.g. [HJ 1969al)

3) "closure" arguments ([éA 19721 or [PO 19741)

the second method being actually a hidden case of the others, which can
both be used to prove the corresponding partition relations. The first
method is perhaps the most intuitive, while the other two are in general
much more elegant and simple in presentation. For each particular re-
sult I have chosen one method of proof that to my taste was the simpl-
est and most efficient. However, the reader is advised to try proving
these results also by the other methods.

(a) If X € Tl’ then

x| < 25X V@)

(b) if X € T2, then

x| < 2c(X)‘X(X)

PROOF (both for (a) and (b)). Assume that, on the contrary, [X| > 2K,
where k¥ = s(X)*P(X) in case (a) (k = c(X)*Xx(X) in case (b)). Let < be
a fixed linear ordering of X. For each p € X we let {Ua(p): a € k} be
a Y-base (a neighbourhood base) at p. Now, if p,q € X and p <X g we
put

]

E(p,q) = min{a € x: q ¢ Ua(P)}’

n(p,q) = min{B € «x: p ¢ UB(q)},

(or, in case (b), we pick E£&(p,q) o and n(p,qg) = B in such a way that

2
Uu(p) n UB(q) = @#). The map f: [X] =« xk defined by

£f{p,q}) = <€(p,q),n(p,q)>

yields a partition of [X]2 into k pieces, hence from |Xx| > 2“ and the

- . + +
partition relation 0.4(b): (2K) > (k )5, we obtain the existence of
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+
a pair <a,B> € kxk and a set Y € [X]J¥ such that £(p,q) = o and

n(p,q) = B whenever {p,q} ¢ [Y]z. Let us now put for each p € Y

G

o Ua(p) n Us(p).

It is obvious then that if p,g € Y and p < g, then p ¢ Gq and q ¢ Gp
(or, in case (b), that Gp n Gq = @, while each Gp # @ since p € GD);
thus in case (a) Y is discrete and in case (b) {Gp: p € Y} is celiular

with |Y| > k, which is a contradiction. 4

REMARK. Our proof for case (b) actually yields the following stronger
result: If X € T2, then-

[{p € X: x(p,X) < A}| < 2C(X)'?

Moreover, even here, instead of x(p,X) < A it suffices to assume that
there is a local m-base Bp at every p such that IBP[ < ) and Bp is

linked, i.e. any two of its members intersect.

Another similar result with basically the same proof is this: If X is
normal then every disjoint family of closed sets of character <A in X

has cardinality S2C(X).x.

If X € T2, then |X| < B X

PROOF. Immediate from 2.15 (a) and 2.10(a). -
If X € T2, then

z(X) < ZS(X).

PROOF. Put s(X) = k and assume that z(X) > 2“. Then X contains a left-
separated subspace Y with |Y| > 2°. Applying 2.16 to Y we get a right-
separated subspace S ¢ Y with |S| > «. But then S is both right and
left separated, hence by 2.12 it contains a discrete subspace D with

ID|] = |s| > k, which is a contradiction. -

Next we will use a ramification argument to give a strengthening of

2.15(a) for Hausdorff spaces. For this however, it will be convenient
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2.18.

2.19.

to introduce here a new cardinal function. Let us note first that (for
a T1 space X) we can obviously define Y (X) as the smallest cardinal

Kk such that (X)K is discrete.

DEFINITION. Let X € T1’ then
by (X) = min{k: (X)  is left separated}.

Clearly, we always have wK(X) < P (X).
For each X € T2 we have

x| < 25 e

K

PROOF. Let Kk 2 wK(X)' It suffices to show that if |X| > 2  then X con-
+

tains a discrete subspace of cardinality k . Now, by our assumption,

we can fix a well-ordering { of X and for each point p € X a family

of open neighbourhoods {Vg(p): £ € k} such that
n{vg(p): Eex}tc{ge x: p<Lql.

Next we build a ramification system of height K+ on X. In order to have
transparent notation, however, we first introduce some operations on
subsets of X. Thus let A ¢ X with |A] = 2. We denote by xO(A) the first
and by xl(A) the second member of A under <, moreover we put F(A) =

= {XO(A), xl(A)}. Since X is Hausdorff, we can choose closed sets

ET(A) in X for i € 2 such that
i i . 0 1
x (A) ¢ E(A) for i € 2, and E (A) U E (A) = X.
Finally, for any & € Kk and i € 2 we put
i i
Qy.pyy B = {y e [AAF(®)]I n E (A): x (B) ¢ vg(y)}.

Since xl(A)-< y for each y € A\F(A), the above definitions clearly
imply that

A\F(a) = U{Qn(A): ne k.
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For the sake of completeness we put F(A) = A and Qn(A) = @ for all

n € k whenever |A| < 1. Now we define thf sets St and Ft of our ram-
fication system for all sequences t € 65/ by transfinite induction as
follows. We put S¢ = X. If St has been defined then we let Ft = F(St),

and for each n € Kk we let
sfﬁ = Qn(St).

+
Finally, if v € k 1is a limit ordinal and Su has already been defined

v
for each u € kY, then we put for any t € kV

0
]

ﬂ{st 4 e vl

Mu

It is easy to see that the conditions of the ramification lemma apply,

hence we can find a sequence t € k“ such that for each v € k we have
>
Strv # @, hence lstrvl 2.

+
Now, for every v € k we define i(v) € 2 and £(v) € k from the rela-

tion

t(V) = 2:E(V) + i(V),
and put

p, = x Vs )

+
Clearly, there is a fixed pair <i,£> € 2x«k such that if a = {v € «
+
i(v) = i and £(v) = £}, then |a] = k . We claim that the set {pv:
Vv € a} is discrete in X. Indeed, for each v € a we have pv = xl(Strv) 4

i i
E i >
(Sth)' while pu € E (Sth) for each u Vv, moreover

Pu€ Sepuet T SepiRw) T B2eeri Gepy!
implies that P, ¢ VE(pu) for v € a and v < u, hence {pv: v € a} is
both right and left separated in the well-ordering induced by its

indices. -



24

REMARK. The above proof actually yields the following somewhat stronger
result: If X € T2, k is regular, [X| > Z{ZA: A < k} and X has a well-
ordering { such that for each p € X we can choose a system of neigh-
bourhoods Vp with IVPI <k and q ¢ ﬂVp for each q < p, then X has a
discrete subspace of cardinality k. I don't know whether the assumption

on the regularity of k can be omitted or not.

2.20. For each x ¢ T2 there is an S c X such that

2s(X)

Is] < and X = U{T: T ¢ [S]SS(X)}.

Consequently, we have

s (X)
x| < 22 .

PROOF. Let us put s(X) = k. By a straightforward transfinite induction

we can construct a subspace S = {pE: £ € ¢} ¢ X for some ordinal ¢ such

that:
(a) no pg € S is in the closure of at most k-many previous pn's;

(b) every point in X is in the closure of at most k-many points from S,
. = <K .

i.e. X = U{T: T e [S] " }. Now, it suffices to show that Is| < 2.

. Then S, con-
n £ 3
tains no discrete subspace of size k , hence 2.14 applied to S, and

g

Pg' in view of (a), yields w(pE,SE) < k. In other words, we have

wﬂ(s) < k, hence by 2.19 |s| < 2K.,.
2S (X)

Let us denote the initial segment {pn: n<¢&}of Sby s

- <
Now |X| < 2 follows easily from X = U{T: T ¢ [s1°°} and 2.4. 4

2.21.If X € T2, then o(X) < expexp s(X).
PROOF. Indeed, from 2.11, 2.20 and 2.17 we obtain

lz(X) exp s (X)

o(xX) < |x < (expexp s (X)) = expexps(X). -

2.22. (a) If X € T2, then

o (x) < 25
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(b) If X € T3, then

nw (X) < ZS(X).

PROOF .
(a) We claim that the family

M= {T: e [s155%)y,

where S is chosen as in 2.20 separates the points of X, hence

{X\T: T € M} is a y-base of X of cardinality at most ZS(X). Indeed,
let p,g € X, p # q, moreover U be a neighbourhood of p with g ¢ U. Now
let T € M be such that p € 5, then we also have p € U n T, but clearly
UnTeMandgqg UnT. -

(o) In this case we claim that the above family M is a network for X.
In fact, if p € U with U open in X, then by the regularity of X we can
take a neighbourhood V of p such that V c U. If we take again a TeM

withpe T, thenpe TnvcUandTnVveM -

Next we give two rather easy results, which do not have much to do with
the above, but they still fit best here.

2.23. (a) If X is hereditarily collectionwise Hausdorff, then
c(X) = s(X).
(b) If X is hereditarily paracompact, then
c(X) = h(X).

PROOF.

(a) Suppose that D ¢ X is discrete. Then D' = D\D is nowhere dense in
X, since for any non-empty open set G if G n D' # § then G n D # ¢
as well, and for any p € G n D there is an open neighbourhood Up
with D n Up = {p}, hence either G n U\{p} or {p} is a non-empty
open subset of G which misses D'. Now, look at the subspace Y = X\D'
of X, then Y is dense in X, moreover D € Y is closed discrete in Y.
But Y is collectionwise Hausdorff, hence for each p € D there is

an open Vp 3 p in Y such that p#q implies VP n Vq = @. Therefore,
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using 2.6(a), we have
c(x) = c(¥) 2 Ipl.

REMARK. We have actually shown the following somewhat stronger result:
If D is a discrete subspace of X then its members can be separated by

pairwise disjoint neighbourhoods in X.

(b) It suffices to show that‘if h(X) > k then c(X) > k as well. But if
h(X) > k, then by 2.9(b) we have a Y ¢ X with L(Y) > k. Thus there
is an open (in X) cover G of Y such that no G' ¢ [G]SK covers Y.
Let us put G = UG. Since G is paracompact, its open cover G has a

o-disjoint (even o-discrete in G) refinement
U=uU{l : n e w}.
n

By our assumption then we must have |[U] > k, hence IUnI > k for

some n € w, but Un is cellular in X. -

Now we leave the hereditary versions and turn to another bunch of re-
sults, most of which yield upper bounds for the cardinality of spaces
in terms of their LindelSf number and some other cardinal functions.

Of course the, by now well-konwn, celebrated theorem of Archangelskii
is the paradigm of these results. We shall start with a set-theoretical

lemma that will be crucial in what follows.

: s , A
2.24.Let XA £ k < | be infinite cardinals such that K< = K, moreover
<\ <k \

G: [p] " » [u]l"" be a set mapping over .
. K . . .

(a) There exists a set A € [u]" which is closed with respect to G.
+

(b) If w =k and A £ p £ K with p a regular cardinal, then for each

+ . + . .
£ € k there is an n € x \E such thatcf(n) =p and n is closed with

respect to G.

PROCF .
. cf (k) ' . . .
(a) Since « >k = K, we have ' A< cf(k), hence A < k if k is singu-
lar. Consequently we can always choose a regular cardinal p with
A £ p £ k. Now we define by transfinite induction sets Aa € [u]K
for all a € p as follows. Let AO € [u]K be arbitrary and assume

that A8 € [u]K has been defined for each B € o with a fixed a € p.
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If o is limit, put
A =U{a;: B e al,
and if o = B +1, put

<A
a, = U{cH): H € [AB] }u Bg.

Since p < k and #L = k. we clearly have IAal = k. Now put
A= U{Aa: a € pl.

Clearly |A] = k as well. We claim that A is closed with respect to

<A
G. Indeed, if H € [A]<A, then XA <p = cf(p) implies that H € [Aa]

for some a € p, hence

G(H) <A 4 A .
(b) The proof is quite similar to that of (a), except that now we de-
fine a strictly increasing sequence of length p of ordinals
£ € K+ (instead of the arbitrary sets Aa) such that

o

EO = max{&,k}, £y = U{EB: 8 eal} for a limit and

U{G(H): H ¢ [58]<A} c Egype

Clearly, then n = U{Eu: o € p} will be as required. -

Next we prove a very general and strong result, which accordingly has
a rather weird formulation. Before doing that however it will be con-

venient to introduce some new notation.

2.25. DEFINITION. Let X be a Tl—space, Y its subspace and F © X an arbitrary
set. Then Y (F[Y,X), the pseudo-character of F relative to Y in X, is
the smallest cardinality of a family U of open sets in X such that

FcNland FnyY=nUnyY.

Note that we always have
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V(FnY,Y) < Y(FlY,X) < ¢ (F,X).

2.26.Let X € T1 and A < k be infinite cardinals such that ﬁé’= K, and
<
t(X) < k; let Y ¢ X be such that for each S € (Y]"K

w(éfY,X) <k and S is A-compact.
Then
z(Y) < k.

PROOF. Assume, indirectly, that z(Y) > k, hence Y contains a left
separated subspace of cardinality K+. As our condition on Y is clearly
inherited by its subspaces, we can actually assume that Y itself is
left separated in type K+, i.e. Y = {pa: o € K+} with a one-one index-

. +
ing and for each a € «

S, = {pB: B e a}

is closed in Y. Thus if we put Fa = §u (closure taken in X), then

Fa nys= Sa. Moreover, in view of our assumption about Y, we have
Lp(FarY,X) <K

+
for each o € k . Consequently we can fix a family of open sets Uu such

that |U] <k, F. cnl andNU nY=F nY=S . Put for any o € et
a a a a a a
Va = U{UB: B e al,

clearly IVal < k as well.

< < <
Next we define a set mapping G: [Y] A [v1™ . Let I e [Y] A, then
A<k < K+ implies I < S

<A
Ve [Vu(I)]

+
. Ww_ =
a(I) for some a(I) € k Let us put T

: I c UV & Y\UV # g}, and for each V ¢ WI pick a point
a(l) e v\uv.

Now, finally, we can put
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G(I) = {qtV): Ve WI};

. A
since K = K, we have

lc(1)] < |wI| < K,

hence G is as desired.

Next we choose a regular cardinal p such that A < p < k and t(X) < p.
Such a p exists because either k is regular, and then k itself can
serve as such a p, or Kk is singular, in which case A < k, as we have

shown in the proof of 2.24(a), and then we can put
+
p = (max{},t(xX)}H < k.

Now our set mapping G and the cardinals A < p £ k satisfy the condi-
tions of 2.24(b), with a little, but innocent, abuse of notation, hence
we can apply it to obtain a B € «* such that cf(B) = p and SB is closed
with respect to G (the role of £ is immaterial here).

Let us note that t(X) < p =cf(B) implies
=1 .
Fg J{Fa. o e B}.

Now for each o € B we have pB ¢ Fa, hence by the choice of Uu we can

pick a Vo € Ua such that Pg I'4 Vg BUt F <V, hence

UV : a e B} o F, = U{F : a € B},
o B o

- <
moreover, F, = S_ is A-compact, therefore there is an I € [SB] A such

B B
that

U{va: P, € I} o FB > I.

It is clear from our construction that

- . <A
V= {Va' p, € I} e [Va(I)] '

moreover pg ¢ U/, hence U ¢ WI. But then q(l) € G(I) was chosen in
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2.27.

such a way that
ql) e Y\UV < Y\FB = Y\SB,

contradicting that SB is closed with respect to G. -
If X € T2, then

x| s 2R V@ £

+
PROOF. Let us put p = L(X)*P(X)*t(X), A = u , and Kk = 2“; then we have

A +
= (2“)u = k, X is A-compact, as being u -compact is the same as be-

ing p-Lindeldf, and t(X) < p < k. Next we are going to show that for

each S € [X]SK
V(E,x) = p(51X,X) < k.

< -
First, however, we show that if S € [X] “ then |s| € « as well. Since

t(X) < p implies

§ = U(T: T e [sT°M),

< - <
it suffices to show that if T € [X1~" then |T] <k, as |[s] ul <M=k,

But from 2.8(a) and 2.6(d) we have

[T

Yw (T) < p(T) < 2 < M =,

moreover from 2.3 we get
L(T) +¥(T) _ u

IT| < Yw(T) <k = k.

< -
Now, for an S e [X] K, consider for each p € S a local Y-base Vp with

V < 1, and put
b—U{b : p € S)-
b

Then |V| < |S|ep € k, hence we have
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IV < &M =«
as well. Thus w(é,x) < k will follow if we can show that
ny =3
for
<u _'
W= {ul: Ue V] & S < UU}.

Consider any q € X\S, then for each p € S there is a Vp € Vp with
¢ V_. Since
d P

L(S) £ L(X) <y,

the open cover {Vp: p € S} of S has a subcover U with |U| < u. But then
Ul e W, while g ¢.UU, hence indeed S = NMY.
Thus we see that X together with A and k, moreover with Y = X, satisfy

the conditions of 2.26, consequently we have
d(X) < z(X) < k.

- <K
But then X = S for an S € [X]™, hence |X| < k according to what we

have shown above. -
COROLLARY. (Archangelskii's theorem). If X € T2, then

x| < SR (X)X (X) 4

A.V. Archanqelskiz has raised the very natural problem whether |X| has
a similar upper bound in terms of L(X) Y (X). It is easy to see that if
X € T1 and L(X)*y(X) < k, where Kk is a measurable cardinal, then

|X] < k as well. On the other hand example 7.2 shows that if u is the
first measureable cardinal, then for each k < p there is a Tl—space X
such that L(X)*¥(X) = w, but |X| > k. Moreover, S. Shelah has recently
proved the consistency of "ZFC+ CH+ there exists a regular space X with
L(X)*¥(X) = 0w and |X] = w, > w, = zw" (cf. [sH 1978], or [HJ 1980bJ).

2 1

. W+,
This, however, leaves open an enormous gap between w, (or (27) , if you

2
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2.28,

2.29.

like) and the first measurable cardinal.

We will now present several results which can be considered as partial
solutions of Archangelskii's problem in that they yield upper bounds
for |X] in terms of either L(X) ¥ (X) plus some additional information

about X or some "L(X) -} (X)-like" expression.

If X e T1' then

x| € 2P VL) L0 py (0

PROOF. Let k = p(X)'wA(X), then (cf. 1.14) we can choose for each
p € X a system of open neighbourhoods {Ua(p): a € k} such that
ﬂ{Ua(p): a € k} = {p}, moreover p € U, (@) > q € U (p). Assume now that

2
Ix| > 2, and for each pair {p,q} € [X]" put

f({p,q}) = min{a € «: q ¢ Ua(p)}.

Using (2K)+ - (K+)5 (cf. (0.4.b)) we obtain a homogeneous H € [X]K+
for the partition f of [X]z, i.e. we have a fixed a € k such that
f({p,q}) = o whenever {p,q} € [H]z. But then for each q € X we have
either Ua(q)r\H = or there is a » € H with gq € Ua(P)' where
IUa(p)rﬁHI = 1, hence g is not an accumulation point of H, i.e. H is

closed discrete with

‘Hl = K+I

a contradiction to p(X) < k. -

Let X € T1' and X non-discrete, then
(a) A(x) < psw(X)L(X);

®) w(x) < pswix)Z®);

(c) x| < Psw(X)L(X).lP(X).

PROOF. (a) Letus putL(X)=2X and psw(X) = k. Then, by definition, we have
a P-base B of X such that ord(B) = k. Next we shall define a set map-

A
<K N [x]SK

. SKA
ping G: [X] . For any A € [X] put
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B. ={Be B:Bnai#¢g},

and

W e 18,1 x\Ull # g).

W,
. A A A
Since ord(B) = k, we have IBAI < ke |A] £ «”, hence I%AI < IBAI <k

as well. Now for each U eZlA pick a point p(l) e X\UU and put

G =au {pWh: U EVLA}.
Then according to our above remarks |G(R)| < KA.
Next we define subsets Aa of X for all o € A+ using the following re-

cursive formula:
A, = G(U{AB: B e al).

It is shown by a straightforward transfinite induction then that

A +
IAaI < k" for each a € A , moreover Au c A, for o < B. Let us put

8

S = U{Aa: o € K+},

clearly |s| < ATt = KA. We claim that S is dense in X.

Assume, on the contrary, that X\S # @, and let q € X\S. Let us choose
for each p € S a set B_ ¢ B with g ¢ B_. Since L(S) £ L(X) = A, we can
find a set T ¢ [§]SA such that P

U= {Bp: pe T}

covers S. For each p € T we have p € S n Bp # @, hence S n Bp # @ as

+
well. But then for each p € T there is an ap € X with

Au n Bp @,

P

hence because |T| < A and the sets A, are increasing, there is a fixed

+
0 € A with
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Aa n BP # 0
for all p € T. But then q ¢ UU implies

U e ZZA B
o

hence

, _ _
p(l) e Ga) =2, 5 <8scscUl,

contradicting that p(l) e x\UU. 4
(b) Let us use the notations from the proof of (a). Since S is dense

in X every B € B intersects it, hence using ord(B) < k,

yw(X) < |B| < «-|s]| < KA. -

(c) From 2.3 and the above result we get

L(X) -y (x) LX) 9 (X)

[X] < Yw(X) < psw(X)

In the following two results the cardinal function p(X) will take the

place of L(X). Therefore we first present a result concerning p(X) that

is of independent interest.

2.30.If X € Tl' then
s(X) £ p(X)-¥(X).

PROOF. Let D ©¢ X be a discrete subspace of X. We can pick for each
p € D an open neighbourhood Up such that Up n D = {p}. Let us put

U = U{u_: p € D}.
o b
Then U is open, hence it can be written as
U= U{Fa: ae ¥(X) 1,

where each Fa is closed. We claim that the set D n Fa is also closed



for any o € ¥(X). Indeed, if p ¢ D n Fu’ then either p € X\Fu or
p € Fu\D c U, hence p ¢ Uq\{q} for some g € D, thus in either case p
has a neighbourhood that misses D n Fa' But then D n Fa is closed dis-

crete, therefore
Ipl < z{IpnF l: ae ¥®} <pX ¥E. -

2.31.If X € Tl,then

IXI < 2P(X) “'Y(X) .

PROOF. Applying 2.15(a) and 2.30 we get

< SV (X) P(X) - ¥(X)) ¥ (X) _ p(X)-¥(X) 4

Ix1 < (2

In order to prove our next analogous result we again need a lemma of

independent interest, which therefore we formulate and prove separate-—

ly.

2.32. Let X € Tland G be an open cover of X such that P(X) <€ K and

ord(G) < k. Then Ghas a subcover V of cardinality at most K.

PROOF. Let us consider the family

S=1{scx: (Ve G (lsngl|l <1}
Clearly S is closed with respect to increasing unions of its members,
hence using Zorn's lemma we can find a set S ¢ S which is maximal in
S. Now, for arbitrary p € X we have a G ¢ G with p € G, and |Gns] < 1,
hence S is closed discrete in X, consequently |S| < k. Let us put

V={ceG: Gns # @g}.

Since ord(G) < k, we have then

We claim that U covers X. Indeed, for any p € X\S by the maximality
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of Swe have a Ge Gwithpe Gand G n S # @, and then G € V as
well. -

2.33 If X e Ti' then

x| < 2p(X)'psw(X).

PROOF. Let us put k = p(X)+*psw(X) and B be a y-base of X with

ord(B) < k. For any p € X we put
Bp = {B € B: p € B},

then IBPI < k. Since V¥ (p,X) £ k, the complement of {p}, i.e. X\{p} is

the union of at most Kk closed sets in X, consequently we also have
p(x\{p}H < k.

Since B is a y-base we have for each p € X
\{p} = U(B\Bp);

but then ord(B\Bp) < ord(B) < k and p(X\{p}) < « imply, in view of

2.32, the existence of a
<k
C e [B\B 1™ with x\{p} = UC_.
b p b

Now we have IBpI,ICpI <k and B n Cp = (@ for each p € X, moreover if

p # g then g € B for some B € CP, hence
BeB nC .
q b # 0

But then, applying Burke's lemma, 0.8, for the family of pairs
{<Bp,CP>: p € X} we obtain that [X]| < 2. 4

Now we turn to proving a result which yields a common generalization
of the inequality 2.15(b), |X| < exp(c(X)+x(X)), and of Archangelskii's
inequality [X| < exp(L(X)-x (X)), but unfortunately only for X e T4.

It is necessary to introduce some definitions for this.
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DEFINITION. A family S of subsets of X is said to be a weak cover of X

if X = US, i.e. US is dense in X. Similarly, if A c X the family S is
said to be a weak cover of A in X if A c US. we say that X is weakly
k-Lindeldf, if every open cover of X has a weak subcover of cardinality
at most k. The weak Lindeldf number wL(X) of X is then defined as

as
wL(X) = min{k: X is weakly k-Lindeldf}.

Now wL(X) < L(X) is trivial, however we also have
wL(X) < c(X).

Indeed, let G be any open cover of X, and C be a maximal cellular fam-
ily refining G. It follows immediately from the maximality of C that
UC is dense in X. Thus if we choose for each C € C a G € G with

C c GC' then clearly

{GC: ce C}

is a weak subcover of G of cardinality at most c(X). -

The following result is again a lemma of independent interest to be

used in the proof of our above mentioned general theorem.

Let X € T4 and put wI,(X) = k. Then every X-open cover (7 of a closed

set F ¢ X has a weak subcover of F of size at most K.

PROOF. Let us put G = UG, then F c G, hence by the normality of X we

can find an open set U such that
FcUcU-CcG.

Therefore G U {X\U} is an open cover of X, and thus has a weak sub-
cover of cardinality at most k, which we can assume has the form

- < -
G' u {X\U} for some G' e [GI°F. But then, as UG' u (x\U) is dense in

X, UG' must be dense in U, i.e.

FcuclG. -
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2.36 IfX € T4, then

+
PROOF. Let us put p = wL(X)*x(X), A = u and Kk =

Ix| < 2" xX)

2“. Then @&’= K. Next

choose for each p € X a neighbourhood base Up with IUPI < x(X) , more-
over write for any A ¢ X

UA = U{Up: p € Al}.
We are going to define a set mapping

RN [x]SK

G: [x]
<A
as follows. For any A ¢ [Xx] " put
Vy = {Uc U= x\UT # g},
then for each U € VA choose a point

ph) € x\UU.

Then |UA| < |alex(X) < u implies IVAI < 2" = k, hence if we put

G@a) = {ph: Ue VA}lJA,
then, using x(X) < u and 2.5, G will be as required. Now 2.24(a) can
<
be applied to obtain a set A e [X] “ that is closed with respect to G.
We claim that A is equal to X. Assume, on the contrary, that p € X\A#0.
Let us note furthermore that since

BcG(B) cA

<
holds for each B € [A] o and t(X) £ x(X) £ u, the set A is closed in X.

Consequently, as X is regular, we can find open sets U and V such that

peU, AcV, and Un V=g,
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Let us now choose for every point q € A a basic neighbourhood Vq e U

with Vq c V. Then
{v : € A}
q q

forms an open cover of A, hence by 2.35 and the closedness of A, it
has a weak subcover of A of size at most WL(X) £ p. Thus we have a

B e [aT°Y with
Ac U{vq: g € B} ¢V c x\U.

This shows that U = {Vq: q € B} € VB’ hence
p(ll) e G(B) c &,

contradicting that
p(l) € x\UO « x\a. -

v
Our next result due to Sapirovskii is another application of the clo-
sure method we have just used. It will play a very important role in
the next chapter where the cardinal functions on special classes of

spaces will be investigated.
If X € T3 is non-discrete, then

0(x) < myx) &,

+
PROOF. Let us put c(X) = yu, Trx(x)u =k and A = 4 . Then ¢A’= Ku = K.

Note that since X is not discrete mx(X) = w, hence k is infinite.
Next, for each p € X, fix a local m-base BP, and for any set A ¢ X put
BA = U{Bp: p € Al}.

We shall now define a set mapping

G: [x]<x - [x]SK.
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<
Let A e [X] A and put
<

¢, = {UerB] M. x\UU # ¢}.

A
Clearly then ICA] < |BA|u < (IA]-nx(X))u = k, hence we can put

G = {pWh: Ue CA},
where, as usual, each p(U) is chosen from x\UU. we can apply 2.24(a)

<

to obtain a set A € [X] K that is closed with respect to G. We claim
that A is dense in X. Assume, on the contrary, that X\A # @. Since X
is regular we can find a non-empty open set U such that

U c U c x\A.

Now let U be a maximal disjoint family of members of BA disjoint from

U. Then

a c Ul,
because otherwise we could find a point

p e a\Ul,
hence also a set V € Bp with

v e x\(U0 v,
contradicting the maximality of U. But |U| < u, hence we can find a
set H € [A]Su such that U e [BH]SU, and thus U ¢ CH' Consequently we
have

pl) € G(H) < A,

contradicting that

p(lh e x\UU < x\a.
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Therefore we have

am < mx°®,

hence from 2.1(f)

m(X) £ d(X)emx(X) < wx(X)c(X)

as well, and then using 2.7 (b) we obtain

p(X) < w(X)C(X) = ﬂx(X)C(X). E

COROLLARY. If X € T3 and the set

Y = {p e X: mx(p,X) <k}

is dense in X, then p(X) < KC(X).

PROOF. Indeed, by 2.6(a), (b) and (d) and 2.37 we have

c(X)

0(X) = p(¥) < mX(Y) < &®

We shall end this chapter with a somewhat isolated but nonetheless
very interesting result of E. van Douwen, that could be best fitted

here.

If X € T2 and Aut (X) denotes the set of all autohomeomorphisms of X,
then

laut (x) | < 2" %),

In particular, if X is homogeneous, then

Ix] < 2" X,

PROOF. Let B be a m-base of X with |B| < w(X). For any h € Aut(X) we

define a map
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h*: B > p(B) \{g}
as follows. For all B € B
h*(B) = {C e B: cch@®)}.

* B
It suffices to show then that the map h + h' of Aut(X) into P(B) is

one-one, because there are only

IBI 1Bl _ ,IBl _ ,1(x)

(2 ) = 2 <
maps from B into P(B).
Thus assume ho,h1 € Aut (X) and hO # hl' Then there is a point p € X

with

hy(p) = q # h (p) = q.
Let UO and U1 be disjoint neighbourhoods of a4, and ay respectively,
and choose an open neighbourhood V of p such that hO(V) c UO and

hl(V) c U,. Now, if B € B is such that B ¢ V, and such a B exists, then

hy(8) n hi(B) = 9. But if C ¢ hj (B) then C  h, (B), which shows that
*

the members of hO(B) are disjoint from those of hl(B)' Consequently

we have h;(B) # hI(B).

The second statement now follows easily because fixing a point p of a

homogeneous space X, for each q € X there is an hq € Aut(X) such that
h (p) = 7
a P q

and therefore [X| < |Aut(X)|. -



CHAPTER 3

CARDINAL FUNCTIONS ON SPECIAL CLASSES OF SPACES

In this chapter we carry on our investigation of the interrelationships

between cardinal functions on more restricted classes than in chapter 2. Of

course it is rather arbitrary to draw a line in the hierarchy of spaces and

say those below are general, those above are special. However in our case

the results themselves help in establishing this line by their special

character on the classes TS and C2 of hereditarily normal and compact Haus-

dorff spaces, respectively.

3.1.

a) If X € T4 and D ¢ X is ¢losed discrete, then

2IDI < p(X).

p) If X ¢ T5 and D ¢ X 1s discrete, then

2Pl < oy

PROOF. &) For each A ¢ D, using the normality of X we can find an open

set U_ with
A

AcU, and UA n (D\A) = @.

But then the map A -+ ﬁA from P(D) into RC(X) is clearly one-one. -

b) As was shown in the proof of 2.23a) the set D' = D\D is nowhere
dense in X, hence Y = X\D' is dense in X while D is closed discrete
in Y. But now Y ¢ T4, hence we can apply a) to obtain, also using
2.6d), that

p(x) = p(v) > 2121,
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Now we introduce three new local cardinal functions that will play a

crucial role in the proof of our main results concerning Tg spaces.
v

They have been first studied by Sapirovskii, who proved all these

results, though our treatment is simpler than his.
DEFINITION. Let X € T3, then for each closed set H ¢ X we put
v (%) = min{|F|: F c RC(X) & H = nF}.
(Warning: the members of F do not have to be neighbourhoods of H!)

In particular, if H = {p}, then we write wp(p,X) instead of wp({p},x).

Obviously since X € T3 we always have

wp(p,x) < Y(p,X),
moreover

wp(H,x) < Y (H,X) if X € T4.
DEFINITION. For any X € T and p € X put
t (p/X) = sup{a(p,K\{p}): p € KXK' ¢ K c x}.

Observe that K' < K implies that K is closed.

3.4. Let X € T5 and p € K' ¢ K ¢ X. There is a closed set H with

peHCK and V (HX) <a(p,K\{p}) < t_(p,X)

PROOF. Put tc(p,X) = k, then by definition there is a set A ¢ [K\{p}JSK
with p € A. For each x € A we can choose a regular closed neighbourhood
F of p such that x ¢ Fx. Now M = n{Fx: x € A} is not quite the set H
we want because M does not have to be contained in K. The next trick,
that makes very essential use of X € T5 will take care of this. Consid-
er the subspace Y = X\ (XnM), then F1 = MnY and F2 = KnY are disjoint
closed sets in Y, hence we can find disjoint open (in Y and therefore
also in X) sets G, and G, with F1 c G, and F_ ¢ G,. Now let us put

1 2 1 2 2

H = Mnéz, then clearly
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wp(H,X) < K.

For every X € A we have x ¢ Fx > M, hence A c¢ K\M, and therefore

p € A c K\M = K\KNM = F; <G,

consequently p € H. On the other hand we have

H = Mné2 < M\G, < M\F, = M\(X\KNM) = KnMcK,

hence H is as required. -

DEFINITION. Let p be a non-isolated point in X. We say that the

sequence of closed sets

R = {Ka: a e k}

is a well at p if

(1) o€ B e k Implies KB c Ku;

(ii) p € K& for each o € «;
(iii) n{KO: a e k} = {p}.

Next we put
k(p,X) = min{lRl: R is a well at p}.

Note that k(p,X), when defined, is a regular cardinal as any cofinal
subsystem of a well at p is again a well at p.

Our next result shows that k(p,X) is defined if X € T3.

If X € T3 and p ¢ X i1s non-isolated, then

k(p,X) < ¥(p,X).

PROOF. Put ¥ (p,X) = k and consider a system {Uu: a € k} of open

neighbourhoods of p such that

{p} = n{ﬁa: a e K}.

Next define for each a € k
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= U.: <

K, n{UB. B < al.
We claim that {Ka: o € k} is a well at p. In fact, (i) and (iii) of
3.5 are obviously true. If for some a € k we had p ¢ K& then we could
choose a neighbourhood U of p with v

UnKu = {p},
hence we had

{p} = n{UB: £ <al nu,

i.e. ¥(p,X) £ la| < k, a contradiction. |
3.7. If X € TS and p € X is non-isolated, then
U, (prX) < k(p,X) .min{¥(p,X) ,t_(p,X)}.
PROOF. If ¢¥(p,X) < tc(p,X), then the right-hand side of our inequality
is, in view of 3.6, equal to Y (p,X), hence it is valid by our remark

in 3.2. Thus we can assume that tc(p,x) < ¥(p,X), and what we have

to prove is

wp(p,X) < k(p/X) .t _(p,X).
Let {Ku: o € k} be a well at p of minimal cardinality. Then for each
o € K we can apply 3.4 to obtain a closed set Ha with p € Ha c Ka and
wp(Ha,X) < tc(p,x). But then {p} = n{Ku: a € k} implies {p} =
n{Hu: o € k}, hence

wp(p,x) < E{wp(ﬂa.x): a e k} < k(p,X).tc(p.X). -l

3.8. Assume X € TS' p is a singular but not strong limit cardinal (i.e.

there is a A < p with ZK > p) and P(X) = p. Then for each p € X we have
le (p/X) < p.

PROOF. Let p € X be arbitrary. If y(p,X) < p, then by 3.2 we are done.
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Thus in what follows we assume Y(p,X) = p. Next we distinguish two
cases a) and b).

a) For each closed set K with p € K' we have
v(p,K) = ¥(p,X) = p.

Let us put k(p,X) = k, then by 3.6 we have Kk < p, moreover K is

always regular, hence actually k < p.

Since 2A > p, by 3.1b) we have no discrete subspace of X of cardinality
A. Thus if we take any closed set K with p € K', then using 2.14 we

get that either ¥(p,K) < X or a(p,K\{p}) < A. Now the first case can-
not happen, therefore we have a(p,K\{p}) < A for every closed set K
with p € K', hence tc(p,X) < A. But then we get from 3.7 that

wp<p,x) < k(p,X).tc(p.X) £ k.X < p.

b) There exists a closed set K with p € K' and ¥(p,K) < p. Using the
regularity of X we can then find regular closed neighbourhoods

{Fa: a € Y} of p in X, where ¥ = U(p,K), such that
n{Fa: a e ¥} n K= {p}.

Now put ¥ = X\{p} and H, = KNY, H, = n{Fa: o € Y} n Y. Then Y is

1 2

normal, moreover H1 and H2 are disjoint closed sets in Y, hence they

have disjoint open (in X) neighbourhoods G, and G2, respectively. Now

1

we have p € K\{p} < a;.on one hand and

n{Fa: a e ¥} n El_ c n{Fa: a € lP}\GZ c n{Fa: a ew}\HZ = {p}

on the other hand, hence

{p} = n{Fa: a € P} n EI,

consequently

wp(P,X) Sy <op.
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3.9. Let X ¢ T5 and 0(X) < p, a singular but not strong limit cardinal.
Then

K
1x] < & = 2(": « < p}.

PROOF. Indeed using 3.8 we can find for each p € X a family
<
F,€ [rRe)] © with

{p} = an. 4

In order to see the strength of this result we have to consider
special assumptions about the behaviour of the exponentiation func-
tion 2A. Let us denote by S(k) the following statement: 2K =p is
singular and 2A is strictly increasing for cofinally many X < p. It
is well-known that S(k) is consistent with ZFC.

S(k) implies that p is not strong limit and dB < 29. Indeed, by our

assumption there is a A with k < A < p and p =2K < ZA, moreover
68 = oM A <o) = 229 A < 0} = 202% A < p) < 2P,
But by our assumption then cf(pg) = cf(p), hence actually
0% < 2°.

3.10. Assume X € T5, p = 2% and s(x). Then

a) p(X) <p = 2X implies 1] < ﬁg< Zp;

b) d(X) < k implies |x| < dg < 22K;

c) s(X) <« implies |X| < QB < 22K.
PROOF .

a) is immediate from 3.9. -

b) follows from p(x) < 29%) < 5 anda a).

c) According to 2.20 we have a set S ¢ X with |S| < 2f = p such that
- < - <
X =u{T: T e [ST°"}. Now by b) we have |T| < ﬂe for each T ¢ [S] K,

hence
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One should compare these results with the corresponding very sharp
inequalities from 2.6d), 2.4 and 2.20 respectively.

Now we leave the study of T_ spaces and turn to the class C2 of

compact Hausdorff spaces. Tie importance of this class in general
topology cannot be overemphasized. According to one's expectations,
as it turns out from the following results the class C2 behaves in
a particularly nice way with respect to cardinal functions as well.
I venture to speculate that the study of this special class (and
perhaps of others) will become central in the investigation of

cardinality problems in topology.

a) If X € Cl' then
psw(X) = Yw(X).

b) If x € C,, then

2’
psw(X) = w(X).

PROOF'.
a) We actually prove a little more: whenever B is a pseudobase of X
we have ord(B) = |B|. Now, for each point p € X and every B € B

with p € B
X =B yu{c e B: p¢c},

hence by the compactness of X we can select a finite minimal
subcover UB from {B}u{C € B: p ¢ C}. But clearly we must have

B e UB, hence as UB is finite the map B - UB from B into the set
M(B) of all finite minimal covers of X by members of B is finite-
to-one. By Misgenko's lemma 0.7, however M(B) has cardinality

< ord(B), hence so does B. -

b) By part a) it suffices to show that Yw(X) = w(X). First observe
that by our remark made after 2.3b) we have nw(X) < Yyw(X) = K.
Thus by our remark in 2.8b) we actually have a pseudobase B of
X of cardinality k that separates the points of X in the strong
sense described there. Now take any point p € X and open set G

with p € G; since the family B' = {B ¢ B: p ¢ B} covers x\{p},
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we can find finitely many members, say Bl""'Bn' of B' such that
n
U B, UG = X.
. i
i=1
Thus if we put +
n __
c=x\ U B,,
i=1 1

then we have p € C ¢ G, hence all sets C of this form constitute

a base for X, and clearly their number is at most k. %

In the following results the tightness of compact Hausdorff spaces
will play a crucial role. The next result of Archangelskii throws

some light on this by giving a beautiful characterization of t(X)
for X € C2.

3.12. If X ¢ Cz' then
t(X) = F(X).

PROOF. Since both t(X) and F(X) are defined as suprema of certain
cardinals which agree with the suprema of the corresponding regular

or successor ordinals, it suffices to prove ther following two state-

ments:

(i) if k is regular and the length of a free sequence, then k < t(X);
fay s + . +

(ii) if t(X) 2 k then X contains a free sequence of length k

To see (i) let {pa: o € Kk} be a free sequence and put

S, = {pB: B e a}

for each a < k. Since X is compact the set SK has a complete accumula-

tion point, say p. Then for every neighbourhood U of p we have
uns =
luns | = «,

hence we have

pés



51

for each a € k, using that our sequence is free. But then, by the

- <
regularity of k, we also have p ¢ A for each A € [SK] K, hence
t(p,X) 2 a(p,SK) = K.

In order to prove (ii) we need a little lemma.

LEMMA. For any space X if A,B c X and A n B #+ @ then there is a set
C c Bwith |c| < x(a,X) and A nC % g.

PROOF OF THE LEMMA. Let U be a neighbourhood base of A in X of mini-

mal cardinality and for each U ¢ U pick a point
p(U) € U n B,

which is possible by U n B + @. Now set
c = {p(v: Uue U}

Then |c| < x(a,%X) = |U|, moreover A must intersect C, since other-

wise X\C were a neighbourhood of A, hence
p(U) € U c X\C

would hold for some U e U, contradicting that
p(U) € C c C.

+
Now to prove (ii) assume that t(p,X) = k . Thus we can find a set S

- - <
such that p € S but p ¢ T for each T ¢ [s1°°. Let us put
- <
B = u{T: T ¢ [51°%}.

< <
Now if C e [BI™®, then for each x ¢ C there is a T, € [s1°" with

X € ix' hence if we put

T = u{TX: x € C},



then we have T ¢ [S]SK, hence C ¢ T ¢ B. Clearly we also have p ¢ B
but p € B = S.

Now we define a free sequence {pa: @ ek} and a sequence of sets
{Aa: o € K+} by transfinite induction as follows. Assume f € K+ and
for each o € B we have already defined the point P, and set Au in

such a way that the following inductive hypotheses are satisfied for

all o ¢ B:
I(a): A is closed and x(Au,X) < lol + w;
s i =] ;
J(a): if v € a then AY Au
K(a): p € Aa and P, € B n Aa'

< —
Now the set S, = {pa: o ¢ B} € [BI™™, hence we have p ¢ S, © B. Since

8 B

X is regular we can find then a closed G, set HB containing p such

8

that HB n §g'= @ and put

AB = n{Ad: a e B} n HB.

Then we have by 1.15 that

x(A,,X) = w(AB,x) < |Bl +w,

B

i.e. I(R) and J(B) hold. Clearly we also have p € A_,. Now to choose

g
pB observe that p € AB n B # @, hence we can apply our lemma to ob-
tain a C c B with |c| < x(ag,x) = |B] + w < k such that Ag N C + 8.

Thus if we choose pB from A, n C then by what we have proven above

B

+
K(B) is also satisfied. Now it is easy to check that {pa: o e Kk}

+
is free. In fact, for any B € k we have

S — .
{p,: B <aex}engcHy cx\s,. -

COROLLARY. If X € C2 then

t(X) € s(X). -

v
The next result due to B. Sapirovskii is a nice strengthening of

2.17 for X € C2.
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3.13. If X € C? then

z2(X) < sx).tx)F < st

PROOF. The second inequality follows immediately from the above
corollary of 3.12. In order to prove the first we start by showing
that 4(X) < s(X).t(X)+ = k. Let Y be a dense left separated subset
of X (cf. the proof of 2.9¢c)). Then Y does not contain any right
separated subspace of cardinality K+, since otherwise by 2.12 it
would also contain a discrete subspace of size K+ > s(X) 2 s(Y).
Thus, appealing to 2.9b), we obtain that h(Y) = L*(Y) < k.

Since we are heading for an application of 2.26, next we calculate
V(S]Y,X) for S c¢ Y. As X is regular, for each p € Y\S we can select
a closed neighbourhood Fp of p in X such that Fp NS =g@. Now using
that

- *
L(Y\S) <L (Y) £k«
- <K
we can find a set T € [Y\S] such that

Y\S < U{Fp: p € T}.

But then the family U {X\Fp: p € T} has the properties
ScnlUandyns=nlny,
i.e. U establishes

v(s|y,x) < k.

Now we have every ingredient to apply 2.26 to our X, Y, k and A = w,

as a result of which we obtain
da(x) < da(y) < z(y) < k,

since Y is dense in X.

Now, our conditions on X are inherited by its closed subspaces,
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hence for any S ¢ X we can conclude that
as) < «,

hence by 2.6b)
a(s) < d(s).t(s) <«

as well, i.e.

*

z(X) = d (X) < k.

v
The next results are also due to Sapirovskii, though not their proofs
presented here. I have lumped them together because tleir proofs

really use the same basic ideas.

3.14. Let X € C2 and P € X, then
a) mx(X) < t(X);
b) mx(p,X) < t(p,X) if wx(p,X) = K is regular;

c) X contains a dense subspace Y left separated in type m(X).

PROOF .
a) In view of 3.12 it clearly suffices to show that if k is an un-

countable cardinal with
X (p,X) = K

for some p € X, then X contains a free sequence of length k. In
order to achieve this we need a little lemma that will be used

repeatedly, hence we formulate it separately.

LEMMA. For any X ¢ T (and p € X) with m(X) = 7w (mx(p,X) = m) and
family S of subsets of X with |S]| £ A < 7 such that %(S,X) < X for
each S ¢ S we have' a non-empty open set G ¢ X (a neighbourhood G of

p) such that S\G * @ for each S € S.

PROOF OF THE LEMMA. Let us choose for each S € S a neighbourhood base

uS in X with Iusl < X, then put
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u= u{US: s e S}.

Then |U] < A < 7, hence U is not a m-base of X (or a local m-base at
p), consequently there is a non-empty open set G (a neighbourhood G
of p) such that U\G # @ for each U € U. But this clearly implies

S\G # @ for each S ¢ S as well. -

Now assume that
X (p,X) 2 Kk > w

with X € C2 and construct the promised free sequence. To achieve

that we shall construct a "triangular" matrix of the form
u
{Fv: HeEKS&E&UWSV e K}

of non-empty closed subsets of X satisfying the following conditions

for each v € «:

I(v): x(Ft,X) < |vl + w whenever u < v;

n

. H
J(V): Fv

c Fp if uw £ p < v,

i.e. the rows of our matrix form a decreasing chain;
\Y
K(v): p € Fv'

Now assume that v € k and we have already defined the sets Ft, when-
ever 4 < v' < v (i.e. the columns of our matrix with index v' X v)
in such a way that I(v'), J(v') and K(v') hold for all v' < v, Let

us put for each p < v
H = n{Fu su < V' o< v}
\)'- - 7

then by the inductive hypotheses Hz + ¢ and w(HE,x) = x(Ht,x) < v+ w.
We can thus apply our lemma to the family of sets Sv:={H5 :4 € v} to
obtain a neighbourhood Gv of p from which all the HE € Sv "hang out".

Of course Gv can also be assumed to be an open Fcr as these form a
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neighbourhood basis at p. Then we put

u

F =
v

#"\G
Vv v

v
for each u < v. We still have to define Fv to complete the definition

of the vth column. For this we choose a closed GG set Zv such that
p € Zv c Gv’
and then put

\Y H
F = F~ o .
N n{ o e vlin Zv

It is easy to see that I(v), J(v) and K(v) are satisfied. Having

completed our construction we can pick for each p € k a point
i
p. € n{Fv: U<V e K}

u

We claim that {p“: U € k} is a free sequence. Indeed by our construc-

tion we have for each v € k
{pu: U e v}l c X\Gv c X\Zv’

and on the other hand

Vv
: v £ € K c F c Z .. =
{pu u } N N

COROLLARY. If X € C2 then

0 (X) < 2s(X).

PROOF. By 3.14a) and 3.12 we have mx(X) < t(X) < s(X), and obviously

c(X) < s(X), hence from 2.37 we get

o) < my( ) < S J

b) Let B be a local m-base at p of cardinality k, we can then write

B = {Bv: V € k}. (We can assume k > w as the case k = w is trivial).
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Since X is regular, we can choose for each v € k a non-empty closed
Gd—set Av c Bv' Next we define a triangular matrix of non-empty closed

sets of the form

{Ft: H<vVe k}

with the same properties I(v) and J(v) (but not K(v)!) as in the

u

proof of a) as follows. Suppose V € K and the sets Fv, have already

been defined for all 4 £ V' < v satisfying I(v') and J(v'). Let us

put again for each p < v
fiH S V'Y< V),
then w(HS’X) = x(Ht,x) < |v] +w, hence we can apply our lemma to the
point p and the family Sv = {Av}U{Hs :4 < v} to obtain an open F
neighbourhood Gv of p such that
u u
F° = H \G
v v\ v + 9
whenever u < v, and
Y
FV—AV\G\) + d.

Thus we can define our matrix column by column, and having completed

it we can again pick points

p. e n{F': u < v e k}

H v
from the intersections of its respective rows. Let us put

s={p : u e k}.

PL‘

Then p € S since by our construction

p, € F

cCc A CB
H H

for all y € k, but also for each v € «
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p¢ {pu= L e vlc X\G .

- <K
Since k is regular this implies that p ¢ A for any A € [S] ~, hence

we get
a(p,S) = x,

A
which yields even a little more than t(p,X) 2 k, namely t(p,X) > k. -

c) We can assume that m(X) = k > w, since otherwise d(X) = w, and
every countable dense subspace of X is left separated. Let B be a

T-base of X consisting of open Fc—sets with |B| = k, say
B = {Bu: o € K},

and pick for each o € Kk a non-empty closed G6—set Aa c Ba' Again we
will produce a triangular matrix

u
: < v <
{Fv u k}

consisting of non-empty closed sets and satisfying conditions I(v)
and J(v) for each v € k. The construction of the vth column {Ft:11$ v}
is now quite similar to that in case b):

Assuming that we have got the sets {Ft':u < V' < v} satisfying I(v')
and J(v') for each v' < v, we define the sets H: for w < v in the
same way and then choose av as the smallest member of k such that

for all u < v

H H
F = .
% HV\Bav + g

The existence of av is insured by our lemma. Then we put

The points {pu: W € k} are again chosen in the same way:

u
nMF : <V < KjJ.
pue{vu }
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Then Y = {pu: U € x} is left separated, as for each v ¢ k we have

€ A c c : Vi.
P, a, Bo‘v X\{pu U e v}

We claim that Y is also dense in X. Indeed for any v € k we have
v < o, by our construction, because obviously u < v implies o < a

Now if v < av then for some p < v we have

Q
j=]
Q
-
H
<
]

o, then we have

hence in any case we have YnBV + #. As this is true for all v € k,

Y is indeed dense in X. |

g
COROLLARY. If X € 02 and T(X) = k is regular then X has a dense sub-
space Y with d(Y) = k. -

REMARK. It is not known whether this corollary of 3.14c) or 3.14b)
remain valid for singular k, though this can easily be shown to be

the case under some set theoretic hypotheses like GCH.

Let X ¢ C2, then

a) T(X) = z(X);
b) ﬂx*(X) t(X).

]

PROOF.

a) Since d(X) < m(X) we immediately have
* *
d (x) = z(X) <1 (X),

actually for any X € T. On the other hand if Y ¢ X, then applying
3.14c) to Y we obtain a left separated Z c Y with

|z] = m(¥Y) = w(Y)
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in view of 2.6c), hence z(X) = n*(X). 4
*
b) Let us put k = mx (X). First we show t(X) < k (for arbitrary X).
Thus let p € A\{p} ¢ X. We have by 2.7a) and 2.6c) that

a(p,A) < mx(p,A u {p}H) <k,

hence as p and A were arbitrary, t(X) < k. Now for the converse
consider any Y c X, then by 2.6¢) we have mx(Y) < ﬂx(?). But
3.14a) applied to Y gives mx(Y) < t(Y¥) < t(X), hence we conclude
K < t(Xx). 4

v v
The following classical result of Cech and Pospisil is a kind of
converse to Archangelskii's theorem that compact Hausdorff spaces

of character at most k have cardinality at most 2K.

If X ¢ C2 and y(p,X) = k holds for each p ¢ X, then

PROOF. We will distinguish two cases according as K = w or K > W.

Case 1. Now k = w and we shall prove a little more than stated, namely

that X can be mapped continuously onto the interval [0,1]. To achieve
this we first define by an easy induction on n € w non-empty open

n
subsets UE of X for each finite sequence € € 2 in such a way that

(1)

(=]
o)

U c U
v Ua e’

and

ii U n u =

(ii) 9D a @

(This is where we have to use our assumption about the characters
of points in X in the form that every non-empty open set in X is

infinite.) Next we put for any (infinite) sequence s € 2
F = ”{UsPn‘ ne wk

Then Fs + @ since X is compact and (i) holds, moreover Fs n Ft =g

if s 4 t using (ii), hence the map £: F = U{F_: s ¢ 2%} > p@)"
defined by
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f(p) = s «rpe Fs
is well-defined, continuous and onto. But clearly we have

F=ulF:se2”l=n ul0:ee2,
s new €
hence F is closed in X. Now the Cantor-set can be mapped onto [0,1],

hence so can F, and using the Uryson extension theorem X as well.

Case 2. kK > w. Now we use our assumption in the form that if F c X
is closed with Y (F,X) = X(F,X) < k then |F| = 2. Next we define by
transfinite induction on the length of sequences from 2% closed sets

Fs with the following properties:

(i) if s ¢ t, then FS =] Ft;

(ii) ng n ng = @;

(iii) x(Fs) < Isl +w= |Lh(s)| + w.

Thus assume o € K and we have already defined the sets Fs' for

s' € Zgl If a is limit then we put

F_ = n{FSTS: B e al,
for each s € 2“. If o = B+1, then for any s € 2B we pick two distinct

points Py and qs in Fsrand disjoint closed G.-sets, say PS and Qs'

8
containing them and then put

=F P = .
ng s n s and EET Fs n Qs
It is easy to see that (i)-(iii) will be satisfied in both cases.

Having completed this induction we put

Ft = n{Ftra: a € K}

for each t ¢ 2K, clearly then Ft # @ as X is compact and (i) holds,
moreover s # t implies Fy + Ft' hence indeed |X| = 2. -

Now we fit here a recent result of Malyhin which is at present the
only non-trivial result concerning the (pseudo) character of compact

T1 spaces.
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3.17. If X € Cl and V(X) £ w then either |X| S wor Ix| z 2.

PROOF. Let us assume that |X| > w. We shall say that a closed set

F c X is big if |F| > w. Clearly, if we can show that any big closed

set in X contains two disjoint big closed subsets, then we are done,

because the same procedure as in the proof of the éech—Pospigil theo-
rem can be applied. The pseudo character being hereditary, this

of course reduces to showing that X contains two disjoint big closed

subsets. To establish this, let us note first that if HD is a count-

able y-base at p € X, then from X\{p} = u{x\u: U ¢ U } ;e obtain

the existence of a neighbourhood Up € Up of p such tgat the set Fp =

X\Up is big. But X is compact, hence therg exist finitely many points

Plr---.pn € X such that

X = U{Upi: i=1,...,n},

ﬂ{Fp': i=1,...,n} = g.
i
A little reflection now shows that since we have finitely many big
closed sets in X whose intersection is small, we must also hgve two
big closed sets F and G in X such that F n G is not big, i.e.
|IFnG| < w.
Now observe that for any countable (i.e. small) closed set K c X

we have Y(K,X) £ w. Indeed let us put
<w
U= {uV: Ve [u{Up: p € K}] & K < ul}.
Then |U| < w and we claim that X = nl. Indeed, if g € X\K then we
can choose a VP € UP with q ¢ Vp for each p € K, but K is compact
hence we get a set V = uV ¢ U with

g ¢ VoK.

Using this observation we take a countable family U of open neighbour-

hoods of F n G with
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But F and G are big, i.e. uncountable, hence we can find U € U and

V € U with
|F\U| > w and |G\V] > w.

Hence if we put W = UnV, then F\W and G\W are disjoint and big closed

sets. -
COROLLARY. If X € 02 and X(X) < w, then either |X| £ w or |X]| = v, -

v
The following result, due to Sapirovskii again, is a very deep and
v v
very elegant strengthening of the Cech-Pospisil theorem. In order to
|
formulate this however we need a bit of terminology. If X is a space

a k-dyadic system in X is a family
{<FO,F1>: o € k}
o' a

of pairs of closed subsets of X such that

a) Fg n F; = @ for each a € k;

b) F_ = n{rt (¥,
€ o

(We recall that H(k) denotes the set of all finite functions from «

a € D(e)} + @ for each € € H(k).

to 2.)

After the completion of this book we learned about the following

(%)

result of Gryzlov: If X € C1 then |Xx| < Zw . Consequently 3.17 can

be strengthened to the statement: If X ¢ C1 and Y (X) < w then either

%] < w or Ix| = 2%.

3.18. The following conditions are equivalent for X € C2:
(i) X can be mapped continuously onto IK;
(ii) there is a closed set F c X which can be mapped continuously
onto D(2)K;

(iii) there is a closed set F < X with
mX (PIF) 2 K

for each p € F;

(iv) there is a k-dyadic system in X.
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PROOF .
(i) + (ii) is trivial since D(2)* < 1. 4

(ii) = (iii). Suppose that

£: x> D(2)"
is a continuous onto map. Let us denote by F the family of all closed

subsets F of X such that
£(F) = D(2)%.

It follows easily from the compactness of X that F is closed under
intersections of decreasing ¢hains hence by Zorn's lemma F contains
a minimal member F. Then ffF is irreducible, i.e. no proper closed

subset of F is mapped onto D(2)K. We claim that then for each p € F
K
mx(p,F) = mx(£(p),D(2) "),

and the latter by 7.9 is equal to k. Our claim follows from the

simple observation that if U is a non-empty open set in F then
# K
£ (U) = D(2) \£(F\U) % @

as well since f is irreducible. Now if U is a local m-base at p in

F then
#
{f (U): U e U}

is a local m-base at f(p) in D(2)K, Indeed; for every open neigbour-
hood G of f£(p) there is a U € U with U c f_l(G), hence with £ (U) cG.
(iii) - (iv). This is the really significant part of our result.
Without loss of generality we can assume that F = X in (iii), i.e.
mX(p,X) 2 k for all p € X. We can also assume that Kk > w, since the
case K = w has been taken care of in case 1 of the proof of 3.16.
Indeed, it suffices to put there

Flo= u{T: e 2" & e(n-1) = i,
for all n € w and i € 2. (Note also that x(p,X) 2 w if and only if
X (P,X) 2 w.)
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Now we have to construct a k-dyadic system in X for k > w. This will

be achieved with the help of two lemmas.

LEMMA 1. If F is a family of non-empty closed Gs—sets in X with

|F| < « then we can find two closed GG sets KO and K1 such that

(a) for each F ¢ F we have K° n F + ¢ and k' nF i g;

(b) there is an F ¢ F with F n KO n K1 = g.

PROOF OF LEMMA 1. Since

Y(F,X) = x(F,X) € w <k

holds for each F ¢ F, we can apply the lemma from the proof of 3.14a)

and conclude that every point p € X has a neighbourhood Up such that
F\U_ %
b ]

whenever F ¢ F. Of course we can assume that each Up is an open Fc’

hence Cp = X\Up is a closed Gd set. As X is compact we can find
finitely many points, say Pl""'pn of X such that
vfu :i=1,...,n} =X,
Py
i.e.
nfc :i=1,...,n}=g0.

Now the sets Cp have the property required in (a), i.e. Cp_ nNF+g
. i

for F € F. Let k be the smallest integer such that there is a set

a e[n]k with n{CP :iealnF = @ for some F ¢ F. Clearly then

i
1 < k < n. Suppose that i are the indices of k such C

17k Pi’

It is easy to see that
1 .
K =¢cC and K = n{cp : 2 < j <k}

satisfy conditions (a) and (b).

LEMMA 2. Suppose KO < Ky < k where K1 is regular, and FO is a KO—

dyadic system in X composed of closed G6 sets. Then there exists a

-dyadic system F1 also composed of closed G, sets such that

K s

1
IFO\Fil < w.
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PROOF OF LEMMA 2. Let us put

01
FO = {<Fa,Fu>.a € KO}.

First we shall define by transfinite induction on a € k, a family of

1

s sets <C2,Ci> as follows. Suppose that o € Ky and

> have been defined for all B € o. Define Hu as the

pairs of closed G

1

C
B’ 7B
set of all non-empty finite intersections composed of the elements

the pairs <CO

of {F;: o€k, &ice 2}U{C;: Bea & ie 2}. Note that an element

0
of Ha can be written then in the form

with h € H(KO) and g € H(o) and is of course a closed GG set. Now
IHaI < Kk, Sk, hence lemma 1 can be applied to Ha’ then we obtain
two closed G6 sets Kg and K; which separately meet every member of
Ha’ but their intersection does not, i.e. we have ha € H(KO) and

g € H(a) such that F, n Cy; € H and
a a a

Yo,

F, nNnC_n KO n Kl = g.
h g o o
o (o}

Then we put
i .
cC  =F nc, n Ka (i€ 2);

0 1 '
clearly Ca n Ca = @, but neither Cg nor Ci is empty. Having completed
our transfinite construction of the C; we now prove a claim concern-

ing them.

Claim. If h € H(KO), g € H(Kl) and
Fp N Cg + g,

<
then there is a finite set a € EKo] “ such that for each h' e H(Ko\a)

we have

Fh'gh n cg =F,0F 0 Cy + 0

as well.
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We shall prove this claim by induction on the maximal element a of
D(g). (We can put max @ = -1 for the empty function.) The claim is

obviously true if g =@ (i.e. o = -1), since FO is k.-dyadic. Now

0
assume that it holds whenever g' € H(Kl) with max D(g') < o and let

g € H(Kl) with max D(g) = o. Writing g} = g\{<a,g(a >} we then have

g(a)
h g h g' h g [+

as well, moreover max D(g'Uga) < 0, hence by our inductive assumption
<

there is a finite set a € [KO] Y oas required in the claim for the

pair <huhu, g'ug0>. But then this same a can serve for the pair

<h,g> as well. Indeed, if h' € H(Ko\a), then we have

o M Fpp 0 cg,Ug + g,
o o
i.e. this set belongs to Ha ;, hence it meets Kg(u):
g(a) g(a)
F nF = F C (e} =
n' " “hon n Cg'Ugan o Fpr M Fy 0 Gy N CY

Fpe 0 Fp 0 Co + 0,

which was to be shown.
Now we shall "thin out" the family {<C2,C;>:<u € K1> to obtain our
family Fl' Let us consider for this purpose the function f: K KU {-1}

defined by
f(a) = max D(ga).

Then f(oa) < o for each o € k, i.e. f is regressive. Thus by Neumer's
theorem (also known as the pressing down lemma) there is a subset

B c Kk, with |B = k, and an o, € k, with £(B) = o, for each B € B.

Then gg € H(a0+1) for each such B, moreover IH(u0+1)| < Iuol W <Ky,
hence using the regqularity of K, we can take a fixed g € H(a0+1) such

that



68

|[{8 ¢ B: 9g = g}l =Ky

In the same manner of course we can further thin out this set to

K
obtain an A € [K1] ! so that for all o € A we have ha =handg =g
with fixed h € H(KO) and g € H(Kl). Since then

i i
Cy = Fh n Cg n Ka + 0

for o € A, we have in particular that F,_ n Cg + @, hence by our above

. . <w . h
claim there is an a € [Ko] with

Fh, nF 0 cg + 0

whenever h' € H(Ko\a). Now we claim that

0 _1 0
F1 = {<Fv,Fv>: Ve Ko\a}U{<Cu,C >: o e A}

1
a
is as required. IFO\Fll < w is trivial. To see that F1 (when suitably

relabeled) is k,-dyadic we only have to show that

1

Fio M Cgo + ¢

whenever h' € H(Ko\a) and g' € H(A). Let us put

D(g') ={(x1""’,ak}l

< ... < '(a,) = i..
where oy ak, moreover g (u]) 1] Then
i ik
F,nC,=F ,nC n...nCc =
h g h 1 Oy
i1 i
= F C K e .
Fh' n h n n 0t1 n n KOL

Now, since h' ¢ H(Ko\a), we have
F . NFE N cg + 4,

F
hence F . NF 0 Cg € Ha1’ consequently
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ii il
F K = F Cc
F.NF 0 cg n K e 0 o, + 0
i1
as well. But then Fh' n Ca € Ha , hence similarly as before we get
1 2

i i i i
F.nc Yak?-= BN ca1 n ca2 + 9.

% % 1 2

Continuing in this manner we shall get in k steps the required rela-

tion

F,on cg, + g.

Now we can return to proving (iii)-=(iv). In fact, if k is regular

we are already home because we can put Ky =K in lemma 2. Thus assume
from now on that k is singular, i.e. cf(k) = p < k. Let us write k in
the form

K = Z{Kv: veopl

where p < Kv < Ku < Kk whenever v € u € p and Kv is regular for each
VvV € p. We shall now define by transfinite induction a Kv—dyadic
family Fv in X for each v € p in such a way that va\Fv'I <p if

v < v'., To start with, let FO be any k_.-dyadic family in X, which

0
exists by lemma 2. If y € p and Fv has been suitably defined for

every v € U, consider the family
‘= F : < <
Fv n{ VS u}
for every v € u. By the inductive hypotheses then IFv\F¢| < p, hence
|[Fr| = |F.| = . moreover it is easy to see that F' c F', for vev'e u.
v Y v v v

Let us now put

F(U) = u{F&: v e ul.

Then IF(U)l = Z{Kv: v e u} = K(u) < Ku as Kk, is regular and
u<p< Ku, moreover F(u) is clearly K(u)—dyadic in X. Thus we can
apply lemma 2 with F(U),K<U) and Ku in place of FO' Kp and k, to

obtain an F]J which is k -dyadic in X and satisfies IF(U)\Fu| < w,

consequently |Fv\Fu] < p for each v € y. Having completed the
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construction now it is easy to deduce that for Fﬁ = n{Fv: u<v<opl

we have
IF;| = IFUI =K and Fg c F;. if v <y,

hence U{Fu: U e p} is a k-dyadic system in X. -

(iv)>(i). Let F = {<F2,Fi>; a € Kk} be k-dyadic in X. Let us put

F = FO u F1 and
o o o

F=n{F : ae«}.
a
Then F is closed in X, moreover

K
F=uU{F :se2},
s
where

F_ = n{FS 'Y e ) +0

o

for s € 2K. We also have Fs n Ft =@ if s,t € 2K and s # t, hence

the map
£: F > D(2)"
determined by the relation
f(p) = s <> pe Fs

is well-defined and onto. It is also easy to see that f is con-

. : . K
tinuous. It is well-known that D(2)!< maps continuously onto I, hence
so does F, thus by Uryson's extension theorem this map extends to a

. K
continuous map of X onto I . -

Before we give applications of this result we formulate an auxiliary

result.

3.19. Let X € C2, F c© X closed and p € F. Then
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mx(p,X) < mx(p,F).x(F,X).

PROOF. This is trivial if F is also open in X. Thus assume now that
¥x(F,X) 2 w. Let us choose a family F of non-empty closed GG—sets in
F such that |Fl = wx(p,F) and every neighbourhood of p in F contains

a member of F. Clearly we have then

whenever C € F. Thus choosing a neighbourhood base UC of minimal

cardinality for each C ¢ F we have that
u= U{UC: ce F}
is a local w-base at p in X, moreover
Ul < mx(p,F).x(F,X). -
3.20. If X € C2 does not map continuously onto IK, then

SK = {p e x: mx(p,X) < k}

is dense in X.

PROOF. The case Kk = w is easy: then every closed subset of X has an
isolated point, hence X is scattered, hence the set of its isolated
points is dense in X. If, on the other hand,.k > w, then we can apply
3.18 to conclude that every closed subset F ¢ X has a point p € F with
mx(p,F) < k,,but since every non-empty open set contains a non-empty

closed Gs—set we obtain from 3.19 that S'< is dense in X. -

+
COROLLARY., If X € Cq does not admit a continuous map onto IK , then

o(x) < «CX),

The proof of this is immediate from 3.20 and the corollary of 2.37.

v
The following deep result of Sapirovskii now follows easily.



72

3.21.

3.22.

3.22.

If X € CS then

o(x) < 2°%)

PROOF. One has to notice only that X does not admit a continuous map
w
onto I 1, since as is well-known the closed continuous image of a

w
T_ space is again T_ and I 1 ¢ Ty (because e.g. the Tychonov plank

5 5
w
embeds into I 1), and then to apply the above corollary. -

If BN does not embed into X € C2' then

0(X) < 2c(X).

PROOF. In this case we claim that X does not map continuously onto
ex
1°%PY | Indeed, if

f: X » Iewa

is an onto map then as BN embeds into Iewa

(since w(BN) = expw)

there is a closed subset F of X such that £(F) = BN and ffF is irreduc-
ible. But BN is extremally disconnected, moreover it is known that an
irreducible map of a compact Hausdorff space onto an extremally dis-
connected space is a homeomorphism, hence we get BN ~ F c X, a con-
tradiction. Thus using the corollary of 3.20 we get

o(x) < (29X _ e

Next we are going to present another very interesting result of
gapirovskii shedding some new light on the rather close ties that we
have already seen to exist between the tightness and "m-structure"

of compact Hausdorff spaces. In order to achieve a clear presentation

we have broken up the proof into three sub-results.

Let X € C2 and put ¥ = t(X). Then there exists an irreducible conti-

nuous onto map

f: X »> Y,
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where Y embeds into a I -power of I = fo,11.

PROOF. We shall define by transfinite induction on o continuous maps
o

fu: X =+ I (putting I0 = {0} a singleton space), in such a way that

if B < a then

B8

ever B € Y € 0, then we can (and must) define fu by putting

I(B,a): fB = ﬂB o fa’
where “Z denotes the natural projection of b onto IB. Now if o is
limit and £, has been defined for all B € o satisfying I(B,y) when-

fa(P)(B) (p) (B)

= fo44

for each p € X and B € 0. Clearly this will insure I(B,a) for all

B € a. If however a = B+1, then we first examine whether f_ is ir-

B
reducible onto fB(X). If it is, then we stop. Now, if it is not, then
we choose a non-empty open set GB c X such that
£_(X\G = f_(X
e (X\Gg) = £5(x),

and then a continuous function
: X =>1I
98

such that

gB(X\GB) = {0} and 1 € gB(GB)'

Then we define fa using the stipulation I(B,a) and putting for each

point p € X
£,(P)(B) = gB(p).

Observe that this implies: if y > B then G, cannot show the reduci-

B

bility of f#. Consequently we must arrive at an ordinal o such that

fa is an irreducible map of X onto its range. Hence, to conclude,

it suffices to show that in this case
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o
Y = fu(X) c ZK(I ).

(Recall that I (1%) = {£ ¢ 1%: [{B € a: £(8) 4 0}] < «}.)

Assume, indirectly, that y € fa(x)\ZK(Ia), i.e. we can find a set

of ordinals {Bp: 0 € K+} c o such that (i) Bp < Bp' if p < p', and
(ii) y(Bp) > 0 for each p € K+. Let us define now for each p < K+

the point yp € Y as follows: (we put B , = U{Bp: p e k™h
K

Y(B), if B € Sp;
yp(B) =
0, if B € a\Bp.

It follows easily from our construction that each such point yp
belongs to Y = fa(x) as y does. Now it is obvious that y|<+ is a
limit point of the set {yp: p € K+}, while it is not a limit point
of any subset of it of size at most k, consequently t(Y) 2 <t.

This however is impossible because by 1.17 the closed map fu cannot

raise the tightness. -

REMARK. The topologically initiated reader will readily recognize
that the above argument, which by the way is éapirovskii's original
approach to all of his results in this chapter, actually yields the
following stronger result: If a completely regular space of tight-
ness < k admits a perfect map onto a subspace of a ZK—power of I,
then it also admits an irreducible such map. It can be mentioned here
that every metrizablé space embeds into a Zw—power of I. In order to
formulate our next result it will be convenient to use the

following piece of notation:
msw(X) = min{ord(B): B is a m-base of X}.

This should be compared with 1.18.
3.24. If Y embeds into a.Zijower of I then wsw(Y) £ K.

PROOF. For any Y embeddable into a ZK—power of I let us put

- il A
AY = min{i: ¥ & ZK(I )},
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We shall prove our claim by induction on Ay. It holds trivially if
AY < w, thus we put AY = A > w and assume that 3.24 holds for all 2z
with AZ < A. We shall call Y good if it has the property that AG = A

Y
for each non-empty open set G ¢ Y. Clearly every non-empty open set

H in Y contains a non-empty open good subspace G, e.g. any G ¢ H with
AG minimal. Therefore if G is a maximal disjoint family of open good
subsets of Y, then UG is dense in Y, hence if each G ¢ G has a mw-base
of order <k then so does Y. Consequently it suffices to restrict our

attention to good spaces, i.e. we can also assume that Y is good.

Now let us denote by L the set of all limit ordinals in X, and for

each o € L put

]
]

{yru+w: yeYe&dnew (ylo+n) > 0)} c ZK(Ia+w).

Then AYa < Jot+w| < A, hence by our inductive hypotheses we can choose
for each o € L a m-base Ba in Y, with ord(Bd) < k. We can of course
assume that the members of each Ba are traces on Ya of elementary
open sets from Ia+w, moreover that for every B € Ba there is a

£(B) e (o+w)\a with

0 ¢ pr (B) c I.

€ (B)
For any o € L and B € Ba let us now put

. i - A -1
B' = {y € ¥: yla+w € B} (“a+w) (B)

and B' = {B': B ¢ B }, moreover
a a
B' = u{B': a € L}.
o

First we show that B' is a m-base for Y. Indeed, Let U be an elemen-

tary open set in Ix with UnY 4 @#. Since Y is good we have A = 2,

hence we can find an o € L such that (i) the support of U ignzontained
in o, and (ii) there exists a point y € UnY with yla+tw € Ya' Clearly,

then we can find a B € Ba with B c ﬂ2+w(UﬂY), hence B' ¢ UnY. Next

we show that ord(B') < k. Assume that this is false. Since ord(By) <«

+
for each o € L, then we can choose a point y € Y, a set A ¢ [L.]JX and
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3.25.

3.26.

for each o € A a member B, € Bu such that
vy en {B&: o € Al.
Let us write for each o € A

Eu = E(Ba) € atw\a.
Clearly, if o # o' belong to A then Ea + Ea" But by definition of
the ga's we have

v(E,) € pry (Ba) c 1\{0}

Q

A
whenever o € A, contradicting that y € ZK(I ). 4
If X € C2, then msw(X) < t(X)

PROOF. By 3.23 let f: X » Y be an irreducible map of
X onto Y, where Y embeds into a ZK—power of I (with k = t(X)). Using
3.24 we can choose a m-base B of Y with ord(B) < k.

Now it suffices to show that
-1
{f "(B): B ¢ B}

forms a m-base for X. Indeed, for any non-empty open U c X we have
#
f (U) = Y\f(X\U) # § and open, because f is closed and irreducible,
# -
but if B ¢ B satisfies B ¢ £ (U) then £ 1(B) cu. 4

+
COROLLARY. If X € C2 and t(X) is a caliber for X then w(X) < t(X). -

The next application of 3.25 yields an alternative and quite elegant

proof of 3.13. We first formulate an auxiliary result needed for this.

Let X € T and G be a family of non-empty open subsets of X such that
ord(p,G) < k holds for all p € X. Then there is a family {Da: o €k}
of discrete subspaces of X, whose union D = U{Du: o € Kk} is "dense"

in G, i.e. D nG# @ for all G € G.

PROOF. We shall construct by transfinite induction on o € k subfamilies
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Ga c G and sets D - Thus assume we have constructed GB and DB for

B € a. Then put Ha = G\U{GBE B € o} and define D, as a maximal sub-
set A of UHa with the property that |AnG| < 1 for all G ¢ Ha' Then
Da is clearly discrete (it is even closed discrete in UHa)' Next we

define Ga by
Ga={GeHa:GnDu+¢}.
First we show that, having completed the construction, we have
G =u{G : a e «}.
a

Assume, on the contrary that p € G € G\u {Ga: o € k}. Then by our

construction we have
H \D
peuvu a\ o

for every o € k, hence by the choice of Da we must have a Gu € Ga
with p € Ga' But then o + B implies Ga + GB contradicting that

ord(p,G) < k. Our result now follows immediately. 4

+
Now if X € C2 and we put k = t(X) , then 3.25 yields a m-base B for
X with ord(p,B) < k for each p € X, hence from 3.26 we have a family

{Du: a € Kk} of discrete subsets of X such that
D=uf{D : o € k}
o

is "dense" in B, consequently dense in X as well. But clearly

Ip| < s(x).t(X)+, from which 3.13 follows easily. -

To conclude this chapter we shall turn to a topic that might have

been studied in chapter 2 as well. This concerns the following general
question: if we have an inequality that places an upper bound on the
cardinality of certain spaces can this be strengthened to the same
upper bound for the number of all compact subsets of these spaces?
Since compact sets in many resvects play similar roles as points, this
is not an unreasonable question. The first systematic treatment of

this question was carried out by Hodel and Burke, most of the follow-
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ing results are due to them.

Now, for any X, we shall denote by K(X) the number of all compact
subsets of X. Let us note that for any X € T we have |X| < K(X) as
every singleton is compact, however if X € T2 then every compact

set in X is closed, hence K(X) < o(X). Thus from 2.21 we immediately

obtain that
K(X) < expexp s(X)
whenever X € T2, hence the required strenghtening of 2.20 is indeed

valid. However, as we shall see, it is not always that easy to prove

such strenghtenings, even if they are valid.

3.27. If X € Tl' then (cf. 2.2)

k(x) < 29X

PROOF. Let B be a pseudobase of X with |B| < yw(x) and such that B

is closed under finite unions. For any compact C ¢ X and p € X\C there

is a B € B with ¢ ¢ B ¢ X\{p}. Indeed, we can choose for every q € C
aB € Bwithqgqe B but p ¢ B . Since C is compact we can find a

finite set A € [c]<Y such that
B = U{Bq: q € A} o C.

Clearly B is as required. But then for every compact C ¢ X if we put
BC = {B € B: C ¢ B} then

nBC =c,

hence the map C + BC is one-one, i.e. K(X) < |P(B)]| < W (X)

3.28. If X« T2, then (cf. 2.4)

K(X) < expexp d(X).

PROOF. Since X € T2, the family RO(X) forms a pseudobase for X.
Consequently by 2.6d) we have
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w(x) < px) < 233,

hence from 3.27
K(X) < exp Yw(X) < expexp d(X).

If X € T2 then (cf. 2.16)

k(x) < 22,

2
PROOF. Let us fix a linear order < on X and for any {p,q} € [x]

with p < g choose disjoint open neighbourhoods Up q and Vp q respect-
’ ’

ively. Denote by B the family of all finite intersections formed by

4

sets of the form Vp . Then, by 2.16,

1Bl < |x| < 2"%%),

<
Now if C ©¢ X is compact and p ¢ C we can find a finite set A ¢ [C] v

with
c cu{u _: x e nl},
Xp
hence
e n{v_ : x e A} = B_ c X\C.
P Xp p
In other words we have
x\c = U{BP: p € X\cl,
. . <h (X)
hence using L(X\C) £ h(X) we can find a set S e¢ [X\C] such that
x\C = u{B_: p € s}.
b
Consequently we have

k(x) < |[BIPX) | ¢ hX)yh) _ b0
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3.30.

REMARK. Since 2.16 was an immediate consequence of 2.15a) it is
natural to ask whether the latter has the corresponding strenghtening.
In fact this is still an open problem, even if X itself is assumed

to be in Cz. However from 3.13 we obtain that if X € T2 and C c X is

compact then
+ +
d(c) < s(C) = s(x) ,

hence, using 2.15a)

s(x)*

s s, s’

K(X) < [ZX] < (2
which is just slightly weaker than what one would expect.

The next result due to Burke and Hodel approaches the desired strength-
ening of 2.15a) from another angle in that instead of Y(X) it uses the
"compact pseudocharacter" WK(X) defined as follows:

If X € Tl' then
VK(X) = sup{¥(C,X): C ¢ X is compact}.

Let X € T2, then

Y_(X).s(X)
kx) <2 ¥ )

PROOF. Put k = WK(X).S(X), then from Y (X) < WK(X) and 2.15a) we get
x| < 2. Now, in exactly the same way as in the proof of 3.29, we
can obtain a family of open sets B with |B| < [X]| < 2¥ such that for
every compact set C ¢ X and p € X\C there is a B € B satisfying

P € B c X\C. Consider a compact set C and a closed set F c X\C. For

each p € F we can select a Bp € B with p € Bp < X\C, hence
G={B : € F}
b p

is an open cover of F. Since s(F) < s(X) < k, applying 2.13 to G we

get

S € [F]SK and C ¢ [G]SK
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such that
FcsvuuC=a(s,C cx\c.
Now recall that Y(C,X) < k, hence
x\c = U{Fa: a € K},
where each Fa is glosed, consequently X\C can be written as
x\c = U{A(Sa,ca): a e kl.

K
But as both |X| and |B] are < 2, we have at most 2° sets of the
form A(S,C), and thus at most 2K unions formed by at most k sets of

the form A(s,C). |

REMARK. I do not know whether T2 could be replaced by T1 here as in
2.15a).

If X € T2, then (cf. 2.31)

K(X) < zp(x).w(x)_

PROOF. From 2.30 we get s(X) < p(X).¥(X), moreover as X is Hausdorff
WK(X) < ¥(X) holds as well. Consequently, by 3.30 we have

K(X) < 2S(x).‘!’K(x) < 2p(x)-W(X)_ 4
Before giving the corresponding strengthening of 2.28 we prove an
auxiliary result, which generalizes for higher cardinals the well-

known fact that compact T, spaces with G6 diagonals are metrizable.

2

If X € C2, then
wA(X) = w(X).

PROOF. Of course only w(X) < WA(X) = Kk needs proof. But now
wA(X) = P(A, Xx X) = x(A, Xx¥X), hence we have a neighbourhood base
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U for A in XxX with |U| = k. Using the compactness of X it is easy

to find for each U ¢ U a finite open cover VU of X such that

A c u{vxv: V € VU} c U.
We claim that

= : u

% U{VU U e U}
is a base for X. Since |V| < k is trivial this will give what we
want.
Thus let p € X and F ¢ X be closed with p ¢ F. Then F x {p} is
closed in XxX and (Fx{p}) n A = @, hence there is a U € U with
(Fx{p}) n U = @ as well. Now if V ¢ VU is such that p € V, then

vx{p} c VxvV c Uc XxX\Fx{p},

i.e. p € V c X\F and !/ is indeed a base for X. -

3.33. If X € T2, then (cf. 2.28)

k(x) < 22X VX

PROOF. Now if C ¢ X is compact, then C € C2, hence 3.32 implies
da(c) < w(c) = ¢A(C).S wA(X). Consequently using 2.28 we get

P, (X) p(xX).¢y, (X) ¥, (X) p(X) .Y, (X)
K(x)SIXIA < (2 A )A = 2 A

3.34. If X € T1 then (cf. 2.33)

K(X) < 2p(x).pSW(X).

PROOF. Let us put p(X).psw(X) = k and choose a y-base B for X with
ord(B) < k. Since 2.33 implies |X| < 2* we clearly can assume

|B] < 2%, Now by Misgenko's lemma, 0.7, we know that for any compact
C c X the collection HC of all finite minimal covers of C by members

of B has cardinality < k. We claim that
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c=n{uvV: Ve Hc}.

Indeed, if p € X\C we can choose for each x € C a Bx e B with

X € Bx < X\{p}, hence by the compactness of C we have a finite cover

of C of the form

V= {Bx reeesB 1,
1 n

where of course V can be assumed to be a minimal cover of C, i.e.

Ve HC' But clearly p ¢ ul. Thus we have

K(X) s[[EB]“"]SK] < (29 = 25, 4



CHAPTER 4

THE SUP = MAX PROBLEM

The functions c¢,s,h,z have the common feature of having been defined
as the supremum of cardinalities of certain sets. Sometimes these sets are
referred to as the "defining sets" of the corresponding cardinal functioms.
It is natural to ask under what conditions is this supremum actually a
maximum, or in other words using the notation introduced in 1.22, if ¢ is
one of the these functions, when do we have ¢(X) < $(x). This is what we
briefly call the sup = max problem. Obviously if ¢ (X) is a successor cardi-
nal then $(X) = ¢(X)+, i.e. our problem is trivial. The interesting cases

are therefore those in which the function values are limit cardinals.

4.1. For any X ¢ T if c(X) = A I1s singular then
A
c(X) = A,

i.e. X has a cellular family of cardinality M.

PROOF. Let us call an -open non-empty set G ¢ X good if c(H) = c(G)

whenever H is a non-empty open subset of G. Now every non-empty open

set in X has a good subset, e.g. one of minimal cellularity. There-

fore if H is a maximal disjoint family of good sets in X then uH is

dense in X. If |H| = A, then we are done, hence we may assume that
[H] =k < A,

Next we show that

sup{c(H): H € H} = A.

Indeed, let p < X be any regular cardinal with Kk < p. Then from
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c(X) =1 > p we have a cellular family D in X with D] = p. since
p>k is regular and uH is dense, we conclude that some member ‘H of

H intersects p members of U, hence c(H) = p. Let us write

>
]

Z{Aa: a € ul,

where 4 = cf(A) and each Aa'is regular. To end the proof it clearly
suffices to find a 'cellular family {Ga: a € ul} such that C(Ga) > Aa
for each a..€ p.:If there is an'H € H with c(H) = A, then any cellular
family of size p < A taken in H will do as H is good. If on the other
hand c(H) <. Xifor each H e'H, then we can easily select from H ‘itself
such a family, using that sup{c(H): H ¢ H} =A.

REMARK. The: quéstion remainskwhat happens - if e¢(X) =X is a regular
limit, i.e. weakly inaccessible cardinal. ‘We shall see-(cf. 7.6) that

A
for such a A already c(X) = A can occur.

4.2. If X is a singular strong limit cardinal and X € T2 with |XI

A . , .
theg‘ s (X) }»A,17ejr gﬁgogta;ngﬁafd;gcrete‘sub;pacevof,cardinality A.

PROOF Let-<:be a well—orderlng of X and for ‘each’ {x,y}e [X] w1th

x= Ve “choose d15301nt nelghbourhoods U and v ; respectlvely Then
Ve’ defiﬁé'a'partition’of X] lnto four parts as follows ff
. i S L AN I

{x,y,z} €Ly ] w1th ' =< y &g, then put

[ i N SERIEE B

i ”“f‘<‘{s'<,a}‘,z}’>i =

it seadd s dtherwige s oF

Now we can apply the canonization lemma, 0.5, to this partition f to

find an H ¢ X with ]HI A and a decompositionl ];:f* -

arooin s ==‘LU {Hd o ol @ 'c.f:f’( X)if}.)_i:‘;/_‘etf‘_ wk b DR _;{: o 2usiw

of H such that the conditions of that lemma hold. Suppose that a € u



86

and y € Hu’ moreover y has an immediate <-predecessor x and an immediate

<-successor z in Ha' We claim that y is isolated in H. In fact, let

Evidently x,z ¢ N. Now if p ¢ H and p € x, then p € ny implies p ¢ ny,

hence f({p,x,y}) = <1,e.> by the definition of f. Since H is canonical

2

then we also have f({p,y,z}) = <1,e.>, consequently p ¢ Uyz > N. But

2
if p ¢ ny then p ¢ N again. We can quite similarly show that if

z4 g e Hthen g ¢ N as well, hence NnH = {y} indeed. But obviously
there are altogether A such points y in H, hence they form a discrete

subspace of size A in X. -

COROLLARY. If ¢ € {s,h,z} and X € T2 with ¢(X) = A, a strong limit

singular cardinal, then
A
o(X) = A . -

In our subsequent results the class H of the so-called strongly
Hausdorff spaces will play an important role. Now, by definition,

X € H if and only if it is Hausdorff and has the following property:
from every infinite subset A ¢ X we can choose a sequence of points
{pn: n € w} such that the P, have pairwise disjoint neighbourhoods
in X. It can be shown that H o T3, in fact every Uryson space (i.e.
one in which two distinct points have disjoint closed neighbourhoods)

is strongly Hausdorff.

Let A be a singular cardinal with cf(\) = w.'
a) If X € T, and h(x) = A then h(x) = 2",
b) If X € H and ¢ € {s,z} then ¢(X) +

A implies 9(x) = AT,

PROOF. We shall prove all these three sup = max results simultaneously.

Let us put
A=z{d ko€ wl,

where w < Ak < Xk+ and Ak is regular for each k € w. We can choose

1

for each k a defining set D € X with ]Dkl = Ak and then assume that
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X = U{Dk: k € wl,

since then ¢(X) = A will remain valid. Note that this implies that
whenever S ¢ X satisfies |S| 2 k > w, where k < XA is a regular cardinal,
then S contains a defining set of cardihality K. We can also assume
that every p € X has a neighbourhood of cardinality less than A. In-
deed let Y be the union of all open subsets G of X with [G| < A, If

|Y| = X then we can simply replace X by Y. If IY! < X then clearly
every non-empty open set in the subspace X\Y has cardinality A. Now

let {Gk: k € w} be an infinite cellular family in X\Y, which exists in
every infinite Hausdorff space. But then for each k € w we have a

defining set R < G with |Rk[ > A , and then clearly R = U{Rk:k € w}

k
is a defining set with |R| = A and we are done.

Let us denote by XK the set of those points p € X which have a neigh-
bourhood Up of cardinality less than k. If we have |XK[ = A for some

K < A, then we can apply Hajnal's theorem, 0.3, to the set mapping

F(p) = Up n X
over X and find a set D < X, with TD| = A which is free for F. But
clearly then D is a discrete subspace, hence a defining set for ¢ of
cardinality A. Therefore we can assume from now on that IXKI < X for
each k < A. But then we can define by an easy induction a sequence
{pk: k € w} of distinct points of X such that every neighbourhood of
Py has cardinality at least Ak.

Now in case a) let us just choose for every k € w an open neigh-
bourhood Gk of pk such that

kl < A

If we pass to a suitable subsequence we can also assume that

< .
|Gk| Ak+1 For each k € w put

Sy = Gk\U{GK: £ < kx},

then clearly ISkI = IGkI P Ak, hence we can choose & right separated
. S .
set R < 5 with [R | 2 A as well. Since
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U{RL: £ <k} c U{GE: £ <k} c X\Ry
it is obvious that
R = U{Rk: k € w}

is also right separated and of cardinality A. In case b) using X € H
and passing to a suitable subsequence we can assume that the points
P, have pairwise disjoint neighbourhoods G, . Then we can choose again

k

in each G a defining set R for ¢ with IRkl > A

" K’ and clearly

R = U{Rk: k € w}

is the required defining set of size A. 4

A .

COROLLARY. If X € T2 and s(X) = s(X) = A with ¢f(\) = w < A, then there
A

is a Yc X with z(Y) = z(Y) = A. Hence if sup = max fails at a singular

A of countable cofinality for s in T2, then it fails for z as well.
PROOF. Let us put
Y = u{Dk: k € w},
A
where D, © X is discrete with IDkI > Ak. Then z(Y) = z(Y) = ) is

k
trivial. Now if 2 < Y with |Z| = A, then clearly s(z) = h(2) A,
hence by 4.3a) there is a right separated set R ¢ Z with lRl = A. But

then R (and thus Z) cannot be left separated, since otherwise by 2.12

it would contain a discrete subspace of cardinality A. -

Of course the above corollary is of use only if sup = max does fail for
s in T2 with a singular A of cofinality w. The following beautiful
characterization of just when this might happen is due to K. Kunen

and J. Roitman. In it we use C to denote the Cantor set, more precisely
c =02,

Let X be a singular cardinal with cf())

w. Then the following two

statements P()A) and Q(A) are equivalent:

P(A\): If X € T2 with s(X) = A then Q(X) =X .
Q(\): If Y € [c]x then there is a set B ¢ Y
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with |B| = |Y| = A\ such that B is meager (i.e. of first category) in
c.

PROOF. As the proof is rather lengthy and complicated we shall start
with a few easy lemmas concerning nowhere dense and meager subsets of

€. First we fix some notation. For any h € H(w) we put

Nh ={f e €: h cf},

the elementary open set in € defined by h. Moreover we shall write
NWD instead of nowhere dense and SD instead of somewhere dense = not

nowhere dense.

LEMMA 1. A c € is NWD if and only for each n € w there is an h e H(w\n)
with Nh naA=g.

PROOF OF LEMMA 1. Suppose A ©¢ € is NWD and let n € w. We enumerate the

collection of all 0-1 sequences of length n in a sequence {ki: i< 2n}.

Using that A is NWD in € we can easily define a sequence {hi: i< 2n} c

H(W\n) in such a way that h, < h1 €...ch ... and AnNkiuhi =g
for each i < 2n. Now put
h=h = uln: 1 < 2",

2"-1

then h € H(w\n) and for every f e N, we have

frn = ki
. n
for some i < 2, hence

£eN S M un, © OB
i i
On the other hand, let A satisfy the condition of the lemma and con-
sider any p € H(w) with D(p) € n. If h € H(w\n) is such that AnN_ = @,

h

then NAN. =N . © N_with AN . = @, hence A is NWD in C.
p h puh P puh

LEMMA 2. If Q()X) holds then for every k < )\ there is a k' < X such

'
that every A e [€1° contains a NWD subset B with |B| > «.
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PROOF OF LEMMA 2. Let us write A = Z{An: n € w} with An < A for each

n € w, and assume, indirectly, that we can
find for every n € w a set A_ € [€¢] ™ such that if B c A is NWD in
€ then |B| < k. Let us put

A= U{An: n e wl.

Then A € [c]x, hence by Q(A) we can find a B € [A]A which is meager,

i.e.
B = U{Bm: me wl,

where each Bm is NWD. Consequently we have
IanAn! <k

for every pair <m,n> € wXw, which implies
IB| = |U{anAn: <m,n> € wxw}| < k,

a contradiction.

LEMMA 3. If X € [C]A and no Y € [X]x is meager in C then there is a

Kk < X such that every A ¢ [x]* is sp in C.

PROOF OF LEMMA 3. If no such k existed then we could find for each

A
n € w a NWD set A e [x] ™. But then
A=u{A_: n e w}
n

would be a meager subset of X with ]A| = A.

A
P(A) » Q()\). Assume Q(A) fails, i.e. there is an X € [€¢] such that

no Y € [X]x is meager; we shall construct a Hausdorff topology T on
A -
X such that s(X,T) = s(X,T) = A. Since for any f € € there are only

countably many g € € satisfying

[{n € w: £(n) § g} < o



we can assume that if f,g € X and f # g then
[{ne w: £(n) # gn)}]| = w.

Next write A = Z{An:n € w}, where each-kn is less than A, and

accordingly let
X = U{X_:n € w}
n

be a disjoint decomposition (i.e. Xn flxm =@ if n ¥ m) of X with

= for . i t
[xnl M for n € w. Now if f € Xn and k € w pu

Uk(f) = {f} v {ge U Xm: Vi < k(g(n+j) = £(n+3))}.
m<n
Clearly if k < £ < w then U, (£) > Ui(f)’ moreover if g € Uk(f) nx

with m < n then

Um_k(g) c Uk(f) ’

hence we have determined a topology T on X with {Uk(f):k € w} as a
T neighbourhood base of f for any f € X. To see that T is Hausdorff
take f € Xn' g € Xm withm £ n and f # g. We can find then a j € w

with f(n+j) # g(n+j), consequently, as is easy to see,
U (5 nU (9 =0

if k > n + j.

Since, for any f € xn' we have Uo(f) n Xn = {f}, the set Xn is dis-
crete in (X,T), consequently s(X) = X holds. Finally we show that
noY e [X]A is discrete in (X,T). Let us put Yn =Y n xn for n € w,
clearly there is a fixed m € w such that IYmI > k, where k is as in
lemma 3, consequently Ym is SD in €. Thus by lemma 1 we can find an
n € w such that Ym n Nh f @ whenever h € H(w \ n); it can of course

be assumed that n > m and Y $ @. Let then f ¢ Y k € w and put
h = £Mn+j: j < k} € H(w\n).

According to the above we have
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1 ’
m n k()’

Y nvV (f
URACINE N
as well. But this shows that f is an accumulation point of Ym cy,

hence Y is indeed not discrete.

Q(\) > P()\). Let us assume that Q(A) holds and X € T2 with s(X) = A.
Repeating what we have done in the proof of 4.3 (and using the same
notation as tﬂere) we can assume that X satisfies the following
properties (i) - (iii):

(i) if s e [X]K where k < A is regular then S contains a discrete
subset of cardinality k;

(ii) every p € X has a neighbourhood Up of cardinality less than A;
(iii) if k < X then XK = {p € X: p has a neighbourhood of cardinality
at most k} has cardinality < A. Let us write for any space S and

point p € S
¢(p,S) = min{|U|:p € U and U is open in S},

thus (ii) is equivalent to ¢(p,X) < A for all p € X, while (iii) can

be rewritten as follows: if k < X then
[{p e x: ¢(p,X)'s Kk} < A.

Let us put for any set U € X and k < A
E _(U) = {q € X: ¢(q,Uu{g}) < «}.

We shall say that U is k-good if ]Ek(U)l < Al

CLAIM. If X also satisfies condition (iv) below, then it contains a
discrete subset of cardinality A, i.e. é(x) = A+.

(iv) There exists a cardinal 6 < A such that if 6 < k < A is a
regular cardinal and p € X satisfies ¢(p,X) = k, then every open

set containing p is k-good.
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In order to prove our claim we shall define by induction a strictly

increasing sequence of regular cardinals Kn < X and pairs of disjoint

Kn—good open sets Ug and U? with |Ug UUn1| < XA as follows. Let Ko
be regular with max{e,ko} <Ky < A, pg and p? be (using (iii))
distinct points of X with ¢(p2,x) 2 KO for i € 2 and Ug, U? be disjoint

open neighbourhoods of pg and Py respectively, such that |Ug| = ¢(pg,X)
< A. Clearly, by (iv), both Ug are kg - good. Suppose now that n € w

m m
and U, for every m < n.

and we have already suitably defined Kn' UO 1

Then we can choose a regular k

a <
el < X such that An+1 Knet?
n
< < i
Ky < |Ug] Koot (ie2),
<
moreover an] K 417 Where
m .
R_= U{E (U,): m<nandie 2}.
n ki

m

This is possible because by the inductive hypothesis every UT is Km—

K
good. We can also assume, using lemma 2, that every A ¢ [C] n+1 has

n+1 n+1
a NWD subset of size K- Then we choose distinct points p o 'P

1
€ X with
n+1
2>

¢p i’ x) 2 “n+1

+ +
and Uno1 ’ Un11 as disjoint open neighbourhoods of them with

n+1 ’ n+1 .
< =
Kpey S 10U [ =0 X0 <A

Having completed this inductive procedure let us put for any h € H(w)

- i
U, = n{Uh(j). j e D(h)}.

We claim that if n = min D(h) then

s
Uyt 2k .
This can be proved by induction on Ihl. If ]h[ = 1 this just says
IUgl 2 K- Next assume that ]h] = ]D(h)l = k+1 and we have already

established our sub-claim for h' € H(w) with [h'] < k. Put
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n = min D(h) and h' = h \ {<n,h(n) >}

Then

>
10 2 <t by

hence we can choose a point q € Uh'\Rn' In particular then q ¢

n
EKn(Uh(n))' consequently

n n
ol = Tu, nup o] > etaup ulah 2 k.

Now let us assign to every point x € X an fX € € by the following

stipulations:

. n
0, 1if x ¢ UO

£f (n) =
X

1 otherwise.

Clearly, for any h € H(w), x € U_ implies fx € N .

h h
Next we do one more inductive procedure to define for i € w a finite

function h, € H(W) with n; = min D(hi) -1 > max D(Hi—l) for i > 0.
i
and sets Wi c Zi c X such that {fx: X € Wi} is NWD in €. Let us put
i . _ _ _ R
hy = {<1,0>} (i.e. D(h,) = {1} and h (1) =0, 2z, = Uho = Uy , and

W, < Z, be such that [Wy| = k_ and {f£:xew } is NWD in €. Now if

0 0 0 0
everything has been suitably defined for 0 < j < i, then the set
i
s, ={f:xe Y w}
i X =0 j

is NWD in €, hence by lemma 1 we can choose hi+1 € H(w \ (mi+2)), where

m, = max D(hi)’ so that Nhi+1 n Si = @#. Then we put n,,, = min D(hi+1)—1
and
_ 25 < i),
2,1 Uniat \ U{Uhj. j < i}
.
Clearl Z, = |U NS because |U < K < K
vo | 1+1l | hi+1| ny e ,l h-’ m:+1 n;4q

holds for every j < i, hence we can find.a subset Wj4q © Zj.q with
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LY R

the induction. Let us now choose for every i € w (in view of (i))

such that {fx: X € wi+1} is NWD in €. This completes

a discrete subset D, © Wi with lDi[ = Kk, . Observe that if j < i, then

n,
Uhj n Wi = @ because even Uhj n Zi =g, éoreover Wj n Uhi = @ holds

as well because {fx: X € Wj} n Nhi = @. But this implies then that

D = U{Di: i € w} is discrete in X while iD| = A . Thus our claim

is proven.

Consequently we can assume that, if Y € X and [Y[ = A, Y does not

satisfy (iv) . Indeed, otherwise, as it inherits properties (i) and

(ii) from X, Y would contain a discrete subspace of cardinality A,

either because of our claim, if it also satisfies (iii), or using

the same reasoning as in the proof of 4.3, if it does not satisfy (iii).
Thus it remains to show Q(X) = A+ under the following additional assumption:
(v) For every Y € [X]A and 6 < A there exist a regular 0 < k < A,

a point p € Y with ¢(p,¥Y) = k and an open neighbourhood U of p

in X such that U is not k-good in ¥, i.e. |{y € ¥: ¢(y,(U n Y)U{y})<K}l

= A.

We shall now use (v) to define by induction on n € w sets Yn € [X]A,

regular cardinals Kn < X, points P € Yn and open (in X) neighbourhoods

+1 n+1’ ¢(pn'Yn) 2 “n’ II:n{ <A

and Un is not Kn—good in Yn' For n = 0 we simply put YO = X, and

U_ of p_ such that Y cY , A <k <K
n n n n n n

Ko > AO, Py UO are chosen by using (v). If we have .already suitably

defined everything with indices up to n, then we first put

Yoo =y ey oy, nv)ulyh) <« Nu,
A . .
hence Yn+1 e[Yn] . Next we use (v) again to ggt a regular Koe1 >
. . >
max{Kn,An}, a point p_., € Yn+1 with ¢(pn+1,Yn+1) 2 Ko and an open

. : _ . Cf <
set U which is not k., good in ¥ ., and satisfies lUn+1l A

+1 2 Pyt +1

and |Un+1 n Uk n Yk <Kk for every k £ n, the latter being possible because

€Y for each k £ n. After having completed the induction, put

Pni1 € T x4t
for each n € w

Z =U nY \Nu{U:n<m¢«< w}.
n n n m

Since by our construction n < m implies

l[u nu_ nYy | <k ,
m n n n

and K > w is regular we have

|z | = |u_ny

> > .
n n| ¢(pn’Yn) Kn
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4.6.

Moreover, if m < n then by our construction Um ny = @ and thus

m+1
ny = nz = 11 (o) tly 2 n U =
Um n @, hence Um n @ as well, consequently n n [0}

for every m + n. But then if Dn c Zn is a discrete subset of Zn with

IDnl > Kn, which exists by (i), then clearly D = U{Dn:n € w} is discrete

in X with IDI = \, as was required. ) 4

COROLLARY 1. If A > 2% with cf(M\)= w and X « T, satisfies s(X) = 1,

A
. then s(x) = A*. -l

COROLLARY 2. If Martin's axiom holds and X < 2w with cf()) = w, then

, A +
X € T2 with s(X) = X\ implies s(X) = A .

PROOF. Indeed it is well-known that under Martin's axiom every set

<2Ww ,
Y e [e] is meager in €, hence Q(A) holds. -

REMARKS. It is well known that the natural map of € onto I = [0,1],
which assigns to every f € € the member of I with dyadic expansion f,
takes (non-)meager subsets of € onto (non-)meager subsets of I,

hence in 4.4 one could replace € by I. It is also known that if one
adds A Cohen reals to a model of ZFC then, in the resulting model, I
(or €) has a subset of cardinality X no uncountable subset of which
is meager. This shows: that sup=max might actually fail for s and thus
for z in T2 at a singular A of countable cofinality.

In the rest of this chapter I shall give applications of our above
results to the problem about the nature of o(X) for X € T2. As we
shall see this problem is quite closely related to the sup=max problem

for s,h and z.

If ) is a singular strong limit cardinal then )\ + o(X) for every

X € T2'

pROOF. Tf [x| < A, then o(x) < 2/

< A as A is strong limit. If on
the other hand A < |X|, then by 4.2 there is a discrete D c© X with
|X| = A, hence by 2.11

A< 2A < o(X). 4

Let ) be a limit but not strong limit cardinal, and assume that 2X is
strictly increasing for cofinally many ¢ < ). If X ¢ T2 is such that

g
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then

A
o(x) = 2,

hence in particular o(X) is singular with
cf(o(X)) = cf(§A3 = cf()) £ X < ofX).

PROOF . QL/S 0'(X) follows immediately from 2.11. On the other hand

Q(X) = A implies d(Y) < A for every Y c X, hence clearly
o) < [[xI%Y] =

. - . . K
But A is not strong limit, hence there is a ¥k < A with 2 > A, and

thus 22\/= 7\’2\/. "{

REMARK. As was indicated in the remark made after 4.4 it is consistent
to have an X € T2 with |X| = Q(X) = Q(X) = A, where cf(}) = w (e.q.

A= Nw). It is also easy to see that it is consistent to assume that

at the same time the 2K function is strictly increasing. Consequently

by 4.6 we have then cf(o(X)) = w.

It is shown by our next result however that for the class H of

strongly Hausdorff spaces the situation is quite different in that

it is in some sense "almost hopeless" to find an X € H with cf(o(X)) = w,

or even with o(x)® + o(X).

4.7. Let k be a cardinal such that o(X) = k for some infinite X € H and
k < k. Then there is a cardinal B with the following properties

(1) - (iv):

(1) © < cf(B) =y < B;
(11) (Yo < B) (o' < B);
(111) g¥ > g™

(iv) x> 8@,

th
(= the w  successor of B);
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PROOF. Let A be the smallest cardinal such that A" > k. Since
A <K, the power A0 is clearly a jump, hence by 0.2 we have w = cf(A).
Moreover K = o(X) > 2“ implies A > w.

For any p € X let us put

o(p,x) = min{o(U): p € U, U open in X}
and

0 = o(X) = sup{o(p,X): p € X}.

Since X ¢ H there can only be finitely many points p € X such that
o(p,X) =2 A, for otherwise X would contain a disjoint family {Un: n e w}
of open sets with o(Un) 2 A for all n € w, and thus

o(x) = A > k= o(x)

would follow. On the other hand, throwing away finitely many points
from X will clearly not change o(X), hence we can assume that o(p,X) <
A for each p € X.

Now we claim that in fact ¢ < A must be valid. Assume, on the contrary,
that o = A. Since A can be written as A = Z{An: n € w}, where An <A
for n € w, then we can pick for n € w distinct points P, € X such

that c(pn,x) > An, moreover using X e H we can assume that each

P has a neighbourhood U, so that the family {Un: n € w} is disjoint.

However this implies, by 1.2 ¢),

olX) = H{o(Un): ne w}l 2 ngw An =X >k,
a contradiction.
Next we show that ]X[ < c+. Indeed, every p € X has an open neighbour-
hood U(p) such that |U(p)| < o(U(p)) < 0. Hence if [xl > o' were
true then U(p) would be a set-mapping which satisfies the conditions
of Hajnal's theorem, 0.3, hence a free set D c X with |D| = |X| would
exist for U(T). However this subspace D is clearly discrete, consequently

€= o) = 2%

, which is of course impossible.

Now consider the above defined open cover U = {U(p): p € X} of X, then
+

[Ul £ 0 . Let T denote the smallest cardinal for which X does not

. . . . . A .
contain a discrete subspace of cardinality T, i.e. T = s(X). As is
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shown in 2.13, then every closed subset F ¢ X can be obtained in

the following form
F=(Fn (UUF)) U S
<T <T .
where UF e (U] ana Sp € [Xx] ". An easy celculation shows then that
+
X< ox) < 0%

Since X € H, 4.3 implies cf(t) > w. From this and cf(A) = w it follows
then that there is a cardinal p < T with (cr+)p > A. Let y be the small-
est cardinal with (0+)Y > X and then B be smallest such that BY > A
Then B < c+-< A, hence y > w by the choice of A. Moreover y < T,

hence X contains a discrete subspace of size Yy, consequently o (X) 2

2Y = YY and thus BY 2 Aw > o(X) implies B > y. In particular B and

Y are infinite, hence the power BY is a jump and therefore y = cf(B).
Now it is obvious that B satisfies conditions (i) ~ (iv). 4

As an immediate corollary we obtain that if X e€ H and o/(X) < ww1+w
then o(X)w = 0(X). Indeed, this is obvious since Wy, is the smallest
cardinal which satisfies (i). However our result says much more than
this. Indeed, the consistency of the existence of a cardinal satis-
fying (i) - (iii) has only been established by M. Magidor with the
help of some enormously large (so called strongly compact) cardinals.
Moreover by some very recent results of Jensen & Todd. the existence of
such a B implies that measurable cardinals exist in some inner models
of set theory. This shows that constructing a "counterexample" would
require some very sophisticated new method in axiomatic set theory.

It is natural to ask now whether a more definitive result than 4.7
could be obtained for more special classes of Hausdorff spaces. Our
next two results are of this form. Let P denote the class of all

hereditarily paracompact T._ spaces.

3

If X € P and |X| = w, then o(x) = o(x)*.

PROOF. Suppose, on the contrary, that x = o(X) < Kw. Similarly as

. ’ t]

in the proof of 4.7 we let X be the smallest cardinal whose W h power
exceeds K. Then cf(A\) = w < A < k. We can of course assume that for

all Y © X with o(Y) = k we have o(Y) = o(X). Since P ¢ H, and the class
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P is hereditary, the same argument as in the proof of 4.7 yields
that 0 = 0(X) < A. Put p = min {a:oa > A}. By the choice of A then

p > w. The following claim is the crux of the proof.

CLAIM. Let <K€ : £ e p> be a sequence of cardinals such that |<g <0
for every £ € p. Then there is a disjoint family {GE:E € p} of sets
open in X such that K. < 0«%) for each £ ¢ p. In particular

[
H{ngi epl £ o(X) = k.

PROOF OF THE CLAIM. Clearly we have a locally finite open cover u

of X for which o(ﬁ) < o for every U € U. Now we define by trans-

finite induction for £ ¢ p open sets G, ¢ X and UE € U such that

g

G, c UE' Suppose that n € p and G, UE have been defined for & € 7.

g

Then

£

o(u {GE:E e n}) < clnl < X <K,

hence for Y = X\U{ﬁE:E e n} we have o(Y) = K. Since U is locally

finite Y is open, moreover o(Y) = o by our assumption. Thus there

is p € Y for which o(p,Y) = o(p,X) > Kn. Now pick Un € U such that
€U and put G_ = Y n U_. Then € G_ implies o(G >0 X) > K

P nl p n n p n 19} ( n) (Pl ) nl

and clearly & € n implies G, n Gn = @. The claim is thus proven.

g€

An immediate consequence of this claim is that T < o implies Tp < K,

P < X as well (indeed, t° > A would imply t° > A* > «).

p

and thus T

Consequently the power ¢ is a jump, hence p = cf(o) by 0.2. Now

write 0 = I{K_:& ¢ p}, where K

£ €

to the sequence <KE:£ € p> we get a disjoint open family {c

for & < p. But then by 0.1

< ¢ for each £ € p. Applying the claim

E:E < p}

such that O(GF) > KE

o = I{k,:E ¢ p} < MoG): £ e p} S0 = K <2,

while clearly cp > X implies op > Aw, a contradiction, which completes

our proof. 4

Now let G be the class of all T2 topological groups.

Let G € G, |G| = w. Then o(G) = o(G)".
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PROOF. Let e denote the unit element of G, V be the neighbourhood
filter of e in G, and put ¢ = o(e,G) = 0(G) . We have to distinguish
two cases:

Case a. There is V € V' such that o (V) = ¢ and finitely many

left translates of V cover G, i.e. there is a finite set A <« G for
which G = u{aVv: a ¢ A}. Clearly then o(G) < N{o(a.V): a € A} = o,
while G contains an infinite disjoint family {Hn: n € w} of non-empty
open sets, hence by o(Hn) > 0 we have o(G) 2 ow and consequently
o(G) = o(G)w.

Case b. There is no V € |/ as in case a. Let U € V be arbitrary with
o(U) = o and pick a symmetric neighbourhood V € I/ such that V2 c u.
Consider A c G such that {aV: a € A} forms a maximal disjoint family
of left translates of V. We claim that u{aU: a € A} = G. Indeed for

any x € G there is a € A with (xV)u(aVv) # @, hence there are
1 1

vl,v2 € V such that xv1 = av2. Then x = av2v1 , and v2v1 € U
implies x € aU.
Thus by our assumption IA! = o 2 w, and obviously
o
0(G) £ M{o(al): a € A} =0
on one hand and
o
o(G) 2 M{o(av): a € A} = ¢
on the other. But then o(G) = oa = (oa)w. 4

REMARK. It is a very intriguing open question whether the above
results are valid for compact Hausdorff spaces, i.e. whether X € C2

and |X| 2 w imply o(x)* = o(x).



CHAPTER 5

CARDINAL FUNCTIONS ON PRODUCTS

The aim of this chapter is to investigate the following problem: assume

¢ is a cardinal function and
R = X{Ri:i e 1}; (*)

how can we evaluate ¢(R) in terms of the values ¢(Ri) and the cardinality of
the index set, [I[?

In order to exclude some trivial difficulties we assume throughout
that no Ri in (*) is indiscrete, hence it contains two points pi and qi
such that pi 4 {qi}. If we denote by F the two-point To—space in which
exactly one of the singletons is closed, then our convention obviously impl-
ies

K

F & Ror D(2)° & R (x%)

depending on whether |[{ieI:q, {p.}}| = « or not. We shall show later in
i i

7.9 and 7.10 that the following relations hold for FK and D(2)K.
5.1 a) 1f ¢ € {w,nw,s,h,z,m,mx,t,x} then
O(F) = o)) = «;
b)
K
d(b(2) ) = log k.

It will be convenient to use the following notation for a product of

the form (*) and a cardinal function ¢ defined for all i e I:
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¢I(R) = sup{¢(Ri): ie I}
a) For every cardinal function ¢ we have considered
$(R) 2 ¢I(R).

b) If ¢ is as in 5.1a) then

¢(R) 2 |I].
PROOF. a) It is routine to check that this holds either using
Ric* R or that Ri is a continuous open image of R via the projection

map pr, . 4

b) Except for ¢ = mx or ¢ = 7 this follows immediately from 5.1a),
our conventions, and the monotonicity of ¢. Next, as m(R) = wx(R), it
suffices to show mwx(R) 2= [I]. Let Gi be a non-empty open proper subset

of R, and
i
p € X{Gi:i e I},

moreover assume that P is a local m-base at p in R. For each i € I there

exists a P, € P with Pi c przl(Gi), and clearly for every P € P
I ={ieI: P, =P}
P i

is finite. Consequently we have |P| 2 |1] (assuming of course that I
is infinite, the only case we really care about here), and thus
TR 2 [I].

a) 1f ¢ € {w,nw,m,mx,x} then

$(R) = |1]. ¢ (R);

b) if in addition every R, € T1 then

Y(R) = |I]. v, (R).
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PROOF. a) Let Bi be a base (network, resp. m-base) in Ri of minimal

cardinality. It is obvious that the family B of all sets of the form
-1 .
n{pr, (B.): i € J},
i i

<
where J € [I] ® and Bi € Biconstitutes a base (network, m-base) in R,

and thus
$(R) < |B] < |1] ¢ (R)

whenever ¢ € {w,nw,m}. A completely analogous "localized" versién of
this argument works for mx and x. In view of 5.2 however we actually

must have equality everywhere. 4

I
b) First observe that if each R, € Tl then we have D(2)| l

& R,
i
moreover w(D(Z)III) = X(D(2)|I]) = |I|, thus 5.2 is valid for Y. The

rest is as in a). ﬂ

We need the following result to obtain estimates for the density funct-

ion.

If x 2 w then
a(p (k)

PROOF. Consider the space X = D(2)K € C2 of which we know that w(X) = k.

Let us write X in the form X = {pgzi € exp k} and fix a base B of X
with |B| = . We shall put

[o5]
]

{C € [B]<w : C is disjoint},

and

D
]

{a € H(B,k): D(A) ¢ B}, 7

i.e. the members of D are finite functions whose domains are in B and

values are taken from k. Clearly |D| = |B| = . Now for any d € D

exp Kk

we define a point fd € D(k) as follows:
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d(B), if py, € B € D(d);
fd(a) =

0 otherwise.

We claim that S = {£%: d e D} is dense in D(x)**P X, Indeed, the
elementary open sets in this space of the form
exp K

u_ = {f € D(x)

h : h ¢ f},

where h € H(exp Kk, k), constitute a base. Since D(h) is finite we can

pick for every £ € D(h) a neighbourhood B, ¢ B of pE in X such that

g

£ # n implies BE n Bn = ¢. Then {BE:E € D(h)} € B and if we put

d(BE) = h(&)

for £ € D(h) then d ¢ D. But obviously then

d
f e Uh'

hence S is indeed dense. 4

5.5. a)
d(R) < log |1| . 4 (R);
b) if each Ri contains two disjoint non-empty open sets then
a(R) = log |1]. a_(R).

PROOF. a) Let us put log |I]. d_(R) = k. Then for each i € I there is

a dense set Si c Ri with lsil < k, hence a (continuous) map

g.: D3P 5, .
1 1

Then the continuous map
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g = X{gi:i € I}: D(»<)I - x{si: ieI}=s

maps D(K)I onto the dense subset S of R, where lI] < exp Kk in view of

log |I] < k, hence we obviously have from 5.4 that
a(R) <d(s) <ddD <k. 4

b) Let Ug ' Ui be disjoint non-empty open sets in Ri and let us put

for every h € H(I)

1 U?(i)): i € D(h)},

Gh = n{pri (

clearly Gh is a non-empty open set in R. Let now S be an arbitrary

dense subset of R, then for each h € H(I) we can pick Py €Sn Gh.

Now, for any p € S we define a point ﬁ € D(2)I as follows:
0 if p(i) € U?
i
p(i) =
1 otherwise.
We claim that S = {§ : p € S} is dense in D(2)I. Indeed, it is easy

to see that for any h € H(I) we have ﬁh > h. But by 5.1b) we have
d(D(Z)I) = log |I| showing that

d(R) 2 log III.

But d(R) = dI(R) is always true according to 5.2a) and thus d(R) 2
log |1I]f. d (®). -

Next we turn to the study of cellularity, where we find the interesting

phenomenon that c(R) is in a sense independent of III.

cg(R)
CI(R) < c(R) £ 2

PROOF. Of course only the second inequality needs proof in view of

-5.2a). Let us first consider the case in which I is finite, e.g.

n
R =X Ri' and put k = cI(R) = max {c(Ri): i=1,...,n}. Assume,
i=1
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reasoning indirectly, that c(X) > 2K, hence there is a cellular
family G in X with |G| > 2°. We can of course assume that for each

GeG
G = x{pri(G): i=1,...,n}.

Then with every pair {G,H} ¢ [G]2 we can associate an index

j=j ({G,H}) € I such that
. (G .(H) = @.
prj() nprj() /)

9 .
Then j:[G]™ » I is a partition for which the Erdbs-Rado theorem,

+
0.4 6), may be a applied to obtain a jO € Iand a G' ¢ [GIC with
. 112 .
j(G'17) = {JO}-

+
But then {prj (G): G e G'} is a cellular family of size k in Rj ,

0 0
which is impossible. The general result now follows from the following:

LEMMA. Put, for any J ¢ I, Ry = X{Rj:j € J}, then

c(R) = sup{c(RJ):J € [IJ<w}.

PROOF OF THE LEMMA. We can assume that c(R) > w. Let Kk be an uncountable

regular cardinal and {Ga:a € Kk} be a cellular family of elementary open

sets in R, i.e.

-1
= s i I
G, n{pri (Gu i) ie a}'

’

<
where I, [r1°" and G, is open in R . By the A-system lemma, 0.6,
’
we can assume that the family {Ia:a € k} is a A-system, i.e. there

<
isa Je [11°% with

whenever {a,B} € [K]2. It is obvious then that

{prJ(Ga): o € k}
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5.7

is a cellular family in RJ, hence k < c(RJ). As c(R) is the sup of

all such k, this means that we are done. 4
If ¢ € {h,z} then
|I|.¢I(R) < $(R) < |1].2 .

PROOF. Because of 5.2 it again suffices to prove the second inequality.
Let us put ¢I(R) = k and distinguish two cases (i) and (ii). .
(i) |I| < k. Assume indirectly that ¢(R) > 2%, then R has a subset S
which is left (or right) separated in type (2K)+, e.g. S =

{pu:u e (2%} ana

-1 .
U, =N {pri (Uu,i)' ie Ia}

+
is a left (right) separating neighbourhood of P, for each o € (2K) B

<w
where of course I ¢ [I] and U
a o,i

is open in Ri' Thus if B < o then
’

there is an i € Ia with
pry(pg) ¢ U, (pry(p) ¢ U, ).
+
Let us choose for any {B,al} € [(2)7] with B < o such an i = i({B,a}),
+
then 'I[ < k and (2K) > (K+)i implies the existence of an iO € I and
+
an a e [(25)"1% such that
2
i(fal™) = {i_}.
0
But clearly then {pri (Pa): a € a} is left (right) separated in Ri ’
0
which is impossible.
(ii) |I| > k. Assume that we have a left (right) separated set S ¢ R,
with
[s| > |1].2%,

where S = {pa:a € A} and

-1 .
U =n {pri (Ua,i): ie Ia}
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are the left (right) separating neighbourhoods of P, for each

a e A. Since |s| > |1| = ![I]<w|, we can actually assume that I =J
for every o € A. But clearly then {prJ(pa): a € A} is a left (right)
separated subspace of RJ of type A > 2X, which however contradicts

what we have proven in (i). 4

REMARK. 5.7 is no longer valid in full generality (i.e. for all topo-
logical spaces) if we put ¢ = s. However for Hausdorff spaces we can

prove the following much stronger result.

If each R, € T, then
i 2

sI(R)
s(R) < z(R) < |1].2 .

PROOF. Case 1: I is finite, e.g. I = {1,2,...,n}. We shall prove our
result in this case by induction on |I| =n. If n = 1 then 5.8 reduces
to 2.17. Thus assume n > 1 and that 5.8 has already been established
for n-1. Let us put k = max{s(Ri): i=1,...,n} and suppose that S ¢ R
is left separated by a well-ordering 4 in type A = (2K)+. We

can take for eachvp € S a left separating neighbourhood Up of the

form

u =x{u_,:1ie 1},
p p,i

14

hence if q 4 p then q ¢ Up’ i.e.

pr (@ = q(i) ¢ Ui

for some i € I. We claim that we can assume p(i) # g(i) for any two
distinct p,g € S and i € I. Indeed, we cannot have a T ¢ [S]A and

a j € I such that
r. ()| =1
|prym |

because then

Prnggy® = T
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would clearly be a left separated subset of X{Ri:i e I\ {5} 1},
contradicting our inductive hypothesis. Hence for any j € I and

X € Rj we have
-1 K
S n pry {xh] < 2" <1,

with the help of which we can select from S, using a straightforward
transfinite induction, a subset of cardinality A that already satisfies
the above claim. For simplicity's sake we shall also assume that

Ri = pri(S) for each i € I.

Finally it can be assumed that, for every i € I, either h(Ri) < 28

or Ri is right separated, because if h(Ri) = A then we can just pass to
a subset S' of S with |8'| = |S| = A and pr, (S') right separated, and
do this (finitely many times as I is finite) for each i € I. In
particular, we may assume that h(Ri) < 2 if i £ £ and Ri is right

separated if £ <i < n. Using 2.10 we have then

IA
N

V(R;)
whenever i < £, hence we can choose for every p € S and i < £ a family

—_ . K
Vp,i = {Vp’i(E). £Ee 2}

of neighbourhoods of p(i) in Ri with

n Vp,i = {p(i)}.
Our aim is to define a ramification system on S, and the following
operations F and Qa on subsets of S are introduced to facilitate that.
Let a € ZK and A « S. If |A| < 2f we simply put F(A) = A and Qa(A) =
g. Next if |a| = |S| = A, then consider the <4 - first member p of A,
put F(A) = {p} and then let the map

£, A\ {p} > 1 x(2

be defined as follows: if g € A \ {p} then

fA(q) = <i, £1""’E£> = <i,E>



if and only if i is the first member of I with

p(i) ¢Uq’i,

: K
moreover, for each j < Z, Ej is the first ordinal in 2 with

j v_ .(E)).
a(i) ¢ 0,55
- 4@
Let {< i(a), E(a)> : Q€ 2K} be an enumeration of I X (2K) in type
2K and then put

o @) =<1, T sy

for each a € 2K.
Now we can define the ramification system as follows. Put S, = S.
Y
If v is limit and St has been defined for all t € (ZKY“ ;hen put for

any s € (ZK)V
Ss =n {St[u: H e v}

n
Finally if St has been defined for all t € (2K) then put Ft = F(St)

and

St = WSy

K . s .

for every a € 2 . It is obvious that the conditions of the ramification
. . . K

lemma are then satisfied, hence there is a sequence t ¢ (2K) such

that

s # @ and therefore ]S = A

ety el

+
whenever Vv € Kk . Let us denote by p(v) the € - first member of

. By our construction then we have for each
el kL
)

. (v)y _
St[v'+l'e' {p"'}=F
vek aij(v) eIand §&(v) € (2

with fs (™) = < 5, EW)>

tr\)

+
whenever u € ¥k \ (v+1), hence in particular

(v) .
p G ¢ Up(U),j(\))
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+
+ +.,K
if v € p € k . Clearly there is a set a € [k ] and an index j € I

(v)(j): v € a} is left

with j(v) = j for all v € a, and then T = {p
separated (in type A). We claim however that this set T is also right
separated. Indeed, if j > £ then this is immediate as Rj itself is
right separated, while on the other hand if j < £ then for each

V € U € K+ we have

(W) .
p () ¢Vp(\,) .(Ej(v>)~.

r]

Thus T is both right and left separated, hence by 2.12 it contains
+
a discrete subspace D with ID| = lTl =Kk > s(Rj), a contradiction.

Case 2: |I| 2 w. Let us put

K = sup {s(RJ) : J € [I]<w)

@ s1(R)
and show that z(R) < |I].2" < |I].2 .

Assume on the contrary that S ¢ R is left separated by < in type
+
A= (111.297 ana

-1
U = n{pri (U

. ):ie 1} (1 € (1%

p,i
are the left separating neighbourhoods. It can be assumed now that

<w
Ip = J for all p € S because |[[I] | = |I] < A. But then pr_(s) is
clearly left separated in type A > X > ZS(RJ) which is impossible by

what we have proven in case 1. 4

REMARK. It is natural to ask whether z(R) could be replaced by h(R)
in 5.8. While this is known to fail for Hausdorff spaces, it is easy

to see that it holds if each Ri € T3. Indeed then by 2.22b) we have

nw(r,) < 25Ri)
1

hence, using 5.3,

s1(R)
h(®) < mw@® = [1]. nw (R) < [1].2 .

5.9. If each R, € C2 ‘then
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t(R) = |1

. tI(R).
PROOF. By 5.2 it suffices to show that t(R) < [II.tI(R). We shall

first consider the case II! = 2, more precisely we prove the following

lemma.

LEMMA. If X € T1 and Y € C2, then
t(X X ¥) £ t(X).t(Y) = k.

PROOF OF THE LEMMA. What we have to show then is that every k-closed

set H € X X Y is closed. Thus suppose <p,q> € H and show that

<p,q> € H . Now {p} x Y ¢ X x Y is closed, therefore T = H n ({p} x ¥)
is k-closed, but t({p} x Y) = t(¥Y) < k, hence T is actually closed,
and it suffices to prowe that q € er(T). Assume on the contrary that
q¢ pry(T), then as the closedness of T in {p} x Y implies that the
projection er(T) is closed in Y, we can choose a closed neighbourhood
V of g in Y such that v n er(T) = @#. Then X X V is a neighbourhood

of the point <p,g> in X X Y, hence
<p,q> € (X X V) n H.

Now, just like above, the closedness of X X V and the k-closedness of
H implies that (X X V) n H is k-closed in X X Y. But the compactness
of Y implies that prx: X X Y > X is a closed map, and therefore S =
er((X x V) n H) is k-closed in X, consequently, in view of t(X) < k,

it is also closed. By the continuity of pry however we have then

e}
m
0l

]
0
]

er(X x V) n H),

hence there is a point r € V with <p,r> € H, contradicting that
({p} x V) nE = ({p} x V) nT = 4.

From this lemma we obtain by a simple induction that t(R) < tI(R)

whenever I is finite. Let us now turn to the case in which I is

infinite. Put k = [II. tI(R), consider any k-closed set A ¢ R, and

- . . <w
let p € A. According to our previous result for any J € [I] we
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have t(RJ) < k, moreover as the projection prJ is now a closed map,
prJ(A) is k-closed and therefore closed in RJ. Consequently prJ(p) €

prJ(A), hence there is a point q; € A such that
= J.
pls = qf
Consider the set
<w
B = {qJ:J e [1177},

E <w
then B € [A]"" since |[[1] | = |I| < k, hence we clearly have

by the definition of B and the k-closedness of A.
Next in this chapter we shall investigate calibers of spaces and their
relations to products of the form (*). A classical result of this sort

v
is the following theorem of Sanin.

5.10 Suppose k > w is a regular cardinal and Kk € cal(Ri) for every i € I.

Then k € cal(R) as well.

PROOF. Let us first consider the case in which I is finite, say I =
{1,...,n}. Now if {Gq:a € k} is a family of non-empty elementary

open sets in R of the form

G = XG ,: i I
o { wif 1€ 1,

4

K
then put ag = K and if for some j <n we have already defined a5 e [k]

then using k € cal(Rj+1) choose a,

K
41 € [aj] such that

n {G Y+ g.

a,3+1°% € 3441
Obviously then
n{G, :a e an} g

as well, hence k € cal(R).
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Next we consider the case of arbitrary I. Again let us start with
a family {Ga:a € k} of elementary open sets in R, where

G =n {pr?l(G J:ieI }
o i a,d o

'
with I, € (11 for each a e «. Applying the A-system lemma, 0.6,

we can pick an a € (k1 such that {Ia:u € a}l is a A-system, e.g. we
haveila = Ja uJd for éach o € a and the family {Ja:a € a}l is disjoint.
In view of what we have established above k € cal(RJ), hence there

exists a b ¢ [al® such that
n {prJ(Ga):u € b} $ g.
But obviously then we also have
n {Ga:a € b} + 4. -
COROLLARY.
c(R) < dI(R);

+
Indeed, dI(R) is clearly a caliber of each Ri' -

Although 5.10 does not remain valid for singular'cardinals, the
following result makes it possible to conclude just that in certain

particular cases.
Iet w < k = c£(A) < X and d(Ri) < k for each i € I. Then X € cal(R).

PROOF. Let us choose for each i € I a dense set Si < Ri with ]Sil < Ky
moreover write A in the form ) = Z{Aa:a € Kk}, where k < Aa < AB if
o € B € k and each Aa is regular. Next consider a family {Gv:v e A}

of elementary open sets in R, where

-1 . <w
=N .
G, {pr, @, j)iie 1} (r, e (117
for any v € A. Now applying 0.9 we can find a subfamily J of

{Iv:v € A} which forms a double A-system, more precisely it can be

assumed to have the form
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J = {IaB: o€k &BEe Aa}’

where I , =J uUJ_ UJ =g uJg_ for B $ B' and
o a a a

8 8" Tag " Tap:

IaB n Iu’y = J for o + o'. (Accordingly, we shall write GaB instead
()

of Gv') For any fixed o € k we can find a point p € SJUJ

a
=x {s,:ieJu Ja} (which is dense in Ry - ) and a set
o
a(a) € [Aajla such that
(a)

P e n {pr (G

a(a)}
J u Ja oB

) : B e

(o) r

<k < . . .
because TSJUJ I K Aa and Au is regular. Then p Jes; with

a
]SJ| < k, hence we can also select a set a e[k]“ and a point p € S

(a)r J

such that p = p J for all o € a. Now it is easy to see however that

n {GaB:a € as&?Be a(a)} + g . 4

COROLLARY. If each Ri is separable then every cardinal of uncountable

cofinality is a caliber for R. In particular we have
cal((2)’) = (: c£E() # w).

We shall now present a few results concerning precalibers, which of
course, using 1.20, yield corresponding results about calibers of
compact Hausdorff spaces. They are based on the following general
combinatorial result prior to whose formulation we need some defini-
tions. Let < be a reflexive and transitive binary relation on the setX.
We shall write I(x) = {y € X: y € x} for the set of < - predecessors
of x. Two members x and x' of X are said to be compatible if

I(x) n I(x') # @ and incompatible otherwise. A ¢ X is called an
antichain if any two members of A are incompatible, and (X,<) is

said to satisfy the k-antichain condition if every antichain in it
has cardinality less than k. Finally, Y € X is said to be k-good if
|¥| = « and for every y € Y and C € [I(y)]<K there exists a ¥' e [¥]"
such that c and y' are compatible whenever c € C and y' € Y'.

If k and X are cardinals, we shall write k << A to denote that k < A

1 .
and K'A < X holds whenever k' < k and A' < A.



5.12 Let <be a transitive binary relation on X satisfying the
vy -antichain condition, and x be a regular cardinal with Yy << k.

Then for every Y € [x1* there is a z ¢ [Y]" which is g-good.

PROOF. Suppose that Y e [x1° but no z e [Y1® is k-good. Then we can

<
choose an x(2Z) € 2 and a set C(Z) e [I(x(2))] < such that if we put

F(zZ) = {y € 2: y is compatible with every c e C(2)},

then |F(Z)| < k. We shall put A(2) = |C(Z)]|, write C(Z) = {ci:

and for each o € A(2Z) set
Sa(Z) = {y € Z: y is incompatible with ci }.
Obviously we have

Z =F(2) uu {sa(z): a e A(2)}.

a e A(2)}

We shall now define a ramification system of height y over Z. Thus let

us put S¢ =2z. If St has been defined for some t e SEQ0 with o
then we put n(t) = 0 and Ft = St if ]Stl < k, moreover n(t) = A
and Ft = F(st) otherwise. Then, as usual, we set for each a € A

n(t)

SEE = Sa(st)'
Finally, if 0 € Y is a limit ordinal t € SEQU.and St[p has been
defined for each p € o, then we put S

t
by induction on ¢ €y that Ko = IN n SEQ0| < k, where of course

<y
(St)
(St) =

= n{S,_ } :p € 6}. First we show
tlo P

N = {t € SEQ: St is defined}. Indeed, if ¢ is limit and Kp < k holds

whenever p € o0, then clearly
kK < ﬂ{Kp: p e ol,

moreover the regularity of k implies the existence of a k' < k

Kp < k' for all p € g. But then

Ky S (K')lol <K,

with
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as vy << k and |o| < y. Next if 0 = p + 1, then clearly
- . = : Nn SEQ & |S,| =«k}<«k
Kk, =Z{n(t): t eNnSEQp} z{x(st) t e R | t]

again by the regularity of k and the inductive hypothesis. It is

also clear from here that

o]
n(t[p) < Kp+1 < Kp+1 <K

holds whenever t € N and p < vy , hence the conditions of the ramific-
ation lemma are satisfied. Thus we can find a sequence t € SEQ

with Stfa + @, hence Istrql = k for all @ € Y . Let us put

(a)

X = X(st[a)'
moreover
c(ot) - cstra
t(a) °
It follows from our construction then that c(a) < x(a) but c(a) is

(B) whenever o € B € y. But then the transitivity

(o)

incompatible with x
of < implies that any two members of the set {c' ': a € Y} are
incompatible, contradicting that < satisfies the y-antichain con-

dition.

Now the following two results due to Argyros and Tsarpalias follow
easily. It will be useful for us to use the following definition here:
a family G of open sets in a space X is called k-nice if !G] = k and
for every G € G and centered family S of open subsets of G if |S| < Kk
then there is a G' e [G]° such that S u G' is centered.

If é(X) < y << k and k is regular then every family of open sets G
of cardinality x contains a k-nice subfamily, thus in particular

K € precal(X).

PROOF. We can apply 5.12 to the transitive relation c on the set
X=1{G c X: G # # and open} since &(X) < Y just means that the y-
antichain condition is satisfied. Let now G ¢ [XI* be arbitrary and

G' € [61° be k-good with respect to the relation ¢ on X. We claim



that then G' is also k-nice. Indeed, if G € G' and S is a centered
family of open subsets of G with !S| < k we let C ¢ G' be a maximal
subcollection of G' for which C u S is centered. We show that |C| = k.
In fact, if |C| < k held, then the k-goodness of G' and {nC'nnS':

C' e [C1™ & 8" e [ST™\{@} ¢ [1(6)1"" would imply

|[{G € G': {G} u C u S is centered}| = «,

which is clearly impossible if C is maximal and [C| < k. -

5.14. Suppose k = cf(A) < X and pK < XA hold for all u < )\, moreover K €
precal(X). Then A € precal(X) as well.

PROOF. Let us write A = Z{ua:a € Kk} with k < My <y for a € B € k, and

B
then put

K, +
Aa = (ua) .

Clearly then we have A(x) <k << Xa < X for every a € k. Let us now

consider a family {Gv:v € A} of open subsets of X, write A =

(a)

u{a'"’:a € k} where |aa| = A, for every a € x, and put

) (@)

= 1G_:
{ yiv € a

We can clearly assume that every G(u) is of cardinality Aa and then,

using 5.13, that G(a)'is actually Aa-nice. Let us pick for each a € k
(a) c ¢l

(a)

a member G , since k € precal(X) we might also assume that

the family {G : a € k} is centered. Let us put

5(0) ={n {G(a): a € v}ln G(O): v € [K]<m},

H(O)

then the A_-niceness of G(O) implies the existence of a
A
[G(O)] 0 such that 3(1) = H(O) U S(O)

€
is centered.

We can continue this procedure by transfinite induction as follows.
Suppose that a € k and for every B € o we have defined already the
centered family S®) such that [S(B)’ = AB ana $(Y) ¢ s® ¢

Y € B. Let us put then '



120

R(a) = U{S(B):B € (!},

(@) (0 _ (0 _ pla)

clearly |R(a)l < Aa and, because G G , the family

€@anv: v e RV

is centered. Thus by the Au—niceness of G(a) there is an H(a) €

r6{® 1 A, for which

gl@) _ yla) pla)

is centered. But it is easy to see then that
H=u {H(a): a € x}
is a centered subfamily of G with |H| = A.

COROLLARY. If A if a strong limit cardinal and X € C2 then A € cal(X)
if and only if cf()A) € cal(X).

Now we turn to a result, due to J. Gerlits, which concerns maps
defined on products of the form (x). It is customary to say that a

map
f:R = X{Ri: ie I} »>vY

depends only on J ¢ I if for every two points p,q € R with p[J = qu
we have f(p) = £(q). Moreover, f is said to depend on less than k
coordinates if there is a J ¢ [11°" such that £ depends only on J.
Before presenting the main result we need an auxiliary lemma. But
first some notation: Let p,g € R and S = {SE:E € k} be a partition
of I, i.e. S_. n Su =@ if £ # 1 and U{SE:E € k} = I; we shall put

€
then

R(S;p,q) = {£ € R: VE ¢ K(rrsg = p[SE or r[sE = qfsg)} .

5.15. If R is as above, p,q € R and Rie T1 with p(i) + q(i) for every i ¢ I,

moreover S = {SE:E e k} ¢ [I]<w\{¢} is a partition of I, then



5.16.

121

R(S;p,q) = D(2)".

PROOF. Let us put D, = {p(i),q(i)}, then clearly R(S;p,q) < D =
X{Di:i € I} = D(2)I, moreover R(S;p,q) is also closed in D, because

if r € D \ R(S;p,q), then there exist an SE € Sand i,j € Sg with
r(i) = p(i) and r(j) = q(j) and the set of points of D satisfying this
is open and disjoint from R(S;p,q). Consequently R(S;p,q) is compact.

Let us now consider the map
K
F:R(S;p,q) -+ D(2)

defined as follows:

0, if rfSE = p[SE,

F(r)(§) =

]

1, if r[S q[SE.
It is easy to see that F is a one-one and onto map. But F is also

K
continuous, because for any subbasic open set C = {e € D(2) :

£,1
€(g) =i} in D(2)K we have (with po =pand p = q)

-1

F (C, .,) ={re R(S;po,pl): rls

_ i
£,1 =plsg)

€

that is clearly open in R(S;po,pl). But then F actually is a homeo-

morphism. 4

Let
f:R = x{Ri: ieI}> Y

be a continuous map, where Ri € T2 for all i ¢ I and Y € T2, moreover
. . K
assume that K > w is a caliber for R, while D(2) is not embeddable

into Y. Then £ depends on less than x coordinates only,

<
PROOF. Let us assume indirectly that for no J € [I] < depends f on
J only. We shall then define by transfinite induction elementary open

0
sets UE' Ué in R of the form
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(=]
]

-1, i .
£ n{prj (UE,j)' j e IE}

<
with I, € [11°% as follows. If we have defined Ug' U; for all

n € £ € Kk, then put

J. =u{I :n e E}.
€ n
: . . 0 1
As |J€| < Kk, we have, by assumption, two points pE ,pE € R such that
Pzr JE = Pé | JE' but yg = f(pg) # yé = f(pé). Since Y is Hausdorff,
we can find disjoint open neighbourhoods Vg and Vé of yg and yé,

respectively. We can then choose Ug and Ué of the above form as

elementary open neighbourhoods of po and p1 such that

13 13
i i
f(U cVv, .
( E) £
We may also assume that for every j € IE either Ug 3 n Ué 3 =@ or
O 1 ’ ’
U_ . =U, ., using that each R, ¢ T.. Let us put S, = {j € I,:
EEN X g j < 2 CorET Y
U nu: ,=@}c1,, then S because U, n U, = @. Moreover
I R gt9 g "=

n < & implies Spy N SE = @, because for any j € Sn we have j € JE’

hence

0,.. _ 1. 0 1
pg(d) = pp(3) € Up 50U 4+ 0.

Therefore every I_ intersects only finitely many sn, hence if we

g

put for any & € «

F(g) = {nex: 1, ns + g},

€
<

then F: « » [«k] ". But then k > w implies in view of Hajnal's theorem,

0.3, that there is a free set of size k for F, hence in what follows

we may actually assume that Ig n Sn =@ if g + n. Let us now put

S = {SE:E € x} and S = uS, moreover Ry = pr(R) = ><{Rj:j € St.

Since K is a caliber for R we can assume that n{ng Eekl#0 #

h{Ué: & € k}, hence we can choose points p € n{U%: £ € x} and
q € h{Ué: £ € k}. Now, if j € SE c S, then p(j) # q(j) since Ug 5
’

and U1 . are disjoint, hence we can apply 5.15 to conclude that

[ 2%
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R = RS(S;p[s,qIS) = p(2)~.

Let us now put

R* = {r ¢ R: z[S ¢ R & r](1\8) = p(1\S)],

then clearly R** = R* = p(2)" as well. Next we show that f is one-
one on R**., Indeed if r,r' € R** and r ¢ r' then there is a £ € «
with e.g. r|S,_ = p|S, and r'[S, = gq|{S,.. But I,\ S, < I \ S and

13
thus rr(IE \ SE) =r [(IE \ SE)
joe I_\ SE' hence we have r € U

£

pf(I \ S,), moreover U =ul  if

3 51 €,7 E/3

£

2 and r' € U,, consequently

f(r) € VO and f(r') € V1
€ £
and thus £(r) # £(r'). But then £[R** is actually a homeomorphism,

which contradicts our assumption that D(2)" does not embed into Y. ﬂ

COROLLARY. Suppose f:R = Y, where all the Ri and Y are Hausdorff,
d(Ri) < cf(k) for each i € I and ¢(Y) < k, where ¢ is a monotone
cardinal function such that ¢(D(2)K) = k. Then £ depends only on

less that k coordinates. 4



CHAPTER 6

CARDINAL FUNCTIONS ON UNIONS OF CHAINS

In this chapter we are going to study the following problem. Given a

space X as the union of an increasing chain of subspaces, i.e.
X = u{xa: o € K} ()

with Xa c X, if a € B ¢ k, and knowing the values of some cardinal functions

on the Xa’ 5hat can be said about X? This sroblem has just recently become
the object of systematic study by M.G. TKACENKO [TK 1978] and by [HJ 19811,
and therefore it might have a less final character than the previous chap-
ters. Clearly there is no loss of generality in assuming that in (%) k is

C
a regular cardinal and that a € B € k imply XOL % X ., hence we shall assume

B
this throughout.

6.1. If ¢ ¢ {c,s,h,z} and ¢(xu) < A for all o € « then ¢(X) < A; if in
addition k > X then ¢(X) < A.

PROOF. Let us first consider the case ¢ = c. Thus consider a cellular

family G in X and put for each a € k
Ga ={GeG: Gn X, + g}.

Clearly then lGaI < c(Xa) < A, moreaver o ¢ B ¢ K implies Ga c GB'

and finally
G = u{Ga: o € k}

Consequently we must have |G| < A. Now if A < k then choose for each

G e G a(G) € k such that G ¢ Ga(G); Since Kk is regular we have an

for each G € G, consequently G = Ga and there-
0

o. € K with a(G) £ a

0 0



125

Gl < c(X, ) < X. If X is a successor cardinal then this immediately
implies c(X) < A. If on the other hand A is a limit cardinal and
c(X) = X would hold, we could choose for every cardinal u < A a

G(u)

cellular family in X with ]G(U)] = W and then find, as we have

shown above, an au < K with G;U) = G, i;e.
i

ve e 6M (g n X, $ 9.
u .

But then again we had an ordinal o € k such that au < o for each
U < A, which is impossible as this would imply C(Xa) > AL
Now let ¢ € {s,h,z}, we shall give a joint proof using defining

sets in the sense of chapter 4. If S is a defining set for ¢ in X

and o € Kk, then S n Xa is a defining set in X, hence !Snxa| < A. But
again if o < B < k then S n Xa cSn XB' hence [S] < A, i.e. ¢(X) < A.
If X < k then by the regularity of k this implies S c Xu for some

o € k, hence |S| < ¢(xu) < A. This implies ¢(X) < A if X is a succes-
sor. If A is a limit cardinal then ¢(X) = X would imply the existence

(W) c X with |S(u)| = u for every cardinal u < A

(u)cx
_

of a defining set S
and thus the existence of an au € kK with S

But there is an a € k with au < a for each p < X, contradicting

o(x) <A A

(i) If nw(xu) < X for all o € x then nw(X) < K.A.

(ii) If X € Tl and ww(xa) < A for o € ¥, then Yw(X) =< K.A.

(iii) If X € Tl' p € X and w(p,xu) < A whenever p € Xa,'then
v(p,X) < k..

PROOF.
(i) Clearly if Na is a network in X, then N = U{Na: o e k} is a
network in X = U{Xa: a € k} with |[N] < k.)A. Observe that in
this case the fact that {xa: a € k} is a chain is not used. -
(ii) Let Ba be a family of open subsets of X such that {ana: B eBa}
is a Y-base for X, and lBal < ¢w(xa) < A. We claim that
B = U{Ba: & € k} is a Y-base for X. Indeed, if p,q € X with p # q,
then there is an o € k with p,q € Xa' but then if B € Bu is such
that p € Bn Xd and g ¢ B n Xa Fhen p € Band g ¢ B hold as well.

Thus we have
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Yw(x) < |B] < k.. -

(iii) The proof in this case is quite similar to that of (ii). -
6.3. If X € T2 and h(Xa) < )\ for each o ¢ k then

x| < 2)‘.

A A
PROOF. By 2.16 we have Ixal < 2" for a € k, hence |X| < 2" follows
if k < 2", But if k > 2" > A" then from 6.1 we get h(X) < A, i.e.

h(X) < A, hence by 2.16 again we get [X| < 2". |
6.4, Let X € T2, moreover h(xa) < )\ and Z(Xa) < X for every a € k. Then

o(X) < 2A.

PROOF. By 6.3 we have [X]| < ZA and by 6.1 z(X) £ A. Therefore using

2.11 we conclude

COROLLARY. If X € T2 and nw(Xa) < A for all o € k, then

o(X) < 2r, 4

6.5. If X € T2 and S(Xa) < )\ for all a € k, then
W) zx) < 2%
(ii) o(X) < exp.A;
12
(iii) Yw(x) < 27;
(iv) if, in addition, X € T3 then

nw(X) < 21.

PROOF. If k > A" then by 6.1 we have s(X) < A and therefore (i)-(iv)
follow immediately from 2.17, 2.21 and 2.22, respectively. Thus in
what follows we assume that k < A+ (< 2A).

(i) Assume, indirectly, that z(X) ; ZA, i.e. X contains a left

separated subset S with IS! = (2}‘)+ > k. But then we must have
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ISnSuI = (2>‘)+ for some o € Kk as well, which contradicts 2.17. -
’ +
(ii) By 2.20 we have lxal < expzk for each a € k, hence k £ X implies

x| < expzk as well. But then in view of (i) and 2.11

IXIZ(X) < expAi -

o(X) < < (expzl) expzk
follows. - N

<2
(iii) Using 2.20 choose for each a € k an Sa € [Xa] such that

X
= <A
x =u{T % Tels 1"},
o o
‘ A A
and put S = U{sa: @ € k}. Then |S| < k.2" = 2", and clearly
every point p € X is in the closure of a subset of S of size at
most A. But then
- <
M= {F: T e [T
yields a y-base of X with the same argument as in the proof of
2.22a). -
(iv) If X € T3 then the family M defined in (iii) is a network of X

with the same argument as in the proof of 2.22b). -

If X € T2 and p(xa) < A for all o e k then Yyw(X) < A, and for A < K
even p(X) < A. If in addition X € T3 then nw(X) < A.

PROOF. Let us first consider the case X 2 k. Since by 2.8 ww(xa) <
p(Xa) (or even W(Xa) < p(xa) if X e T3) we immediately conclude then
from 6.2 that Yyw(X) < k.A = X (or nw(X) < k.A = A). Now assume that

A < k and show that p(X) < A. If, on the contrary, p(X) =2 XA then choose
a family G ¢ RO(X) with |G| = A\. If G,H e G and G + H then G % H as
well, hence either G\H % @ or H\G + @#. Assume, by symmetry, that

G\H # ¢ and find an ordinal o = ¢(G,H) in k such that (G\ﬁ)rwxa # ¢ and
HOX 4+ @#. Clearly then we have

X X
== B L == 8
GnX, + HAX,

for every ordinal B € k\o. By A < k and the regularity of k we can

then find a fixed a. € k such that o(G,H) <

0 for every pair

%
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2
{G,H} ¢ [G]”, hence we have then
X X
) — "o
enx 0 4 HOX 0
0 0
for any G,H € G with G % H. But this would mean that Xag contains A
—Xa
different regular closed sets, namely the ana oforG e G, which

contradicts p(Xy,) < A. Thus we have yw(X) < p(X) < X, and if X € T
then nw(X) < p(X) < A. -

6.7. If X € T2 and d(Xa) < X for each a € k then |X| < expzk.

PROOF. If k < exp2A then this follows immediately from Ixal < expzA
for all a € k (cf. 2.4). If on the other hand k > expzk use the fact
that

p(xa) < exp d(Xa) < ZA < (2>\)+ < exp2k < K

for each a € k and 6.6 to conclude that
A+
p(X) < (27) ,

and therefore

|x] < Zp(X) < exp2k. -

The following result that we think is quite remarkable in itself will
be used as an auxiliary result later; that explains its different

character.

6.8. 1f X € T, Kk is an arbitrary cardinal, and w(Y) < k holds for each

<
Y € [X17° then w(X) < k as well.

PROOF. Let us assume first that k is regular. The proof is then based

on the following lemma.

A ,
LEMMA. Let X ¢ T with z(X) < k, where « ‘is regular. If {Ya: o€ Kk} is
an increasing chain of subspaces of X with Y = U{Ya: o € k} and B is a

family of open sets in X such that for each o € Kk
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Bly = {BnY : B ¢ B}
o o

is a base of Ya' then BlY is a base of Y.

PROOF OF THE LEMMA. Assume, on the contrary, that BTY is a not a base

of Y. Then there is a point y € Y and an open set G containing y such
that if B € B and y € B then (BnY)\G # #. We shall now define by trans-
finite induction a sequence of ordinals {va: o € k} © k and a sequence
{ya: o € Kk} of points of Y with ya € YVa as follows. Let v, € K be

0

such that y € YVO' then by assumption there is a B0 € B with

y € B, nY We then choose Y, € (BOnY)\G. If o € k and we

0 Vo vo*
have chosen already {v

c GNnY
gt B € a} and {yB: B € a}, choose v, €K in such
a way that vB < va if B < a, this is possible because k is regular.
Then, by our assumption again, we have a B, € B such that y € BanY\,u c
Gana, moreover we can choose ya € (BanY)\G. It is easy to see then
that for B < a we have Yg ¢ B, because Yg ¢ Gana, but that is impos-
sible as then {ya: a € k} would be a left separated subset of X of

A
type k, while z(X) < k. {

Now if X has the property w(Y) < k for each Y € [x1° then clearly X
does not contain a left separated subset of type k, i.e. Q(X) < K.

We shall now define for a € k sets Y, € [X]<K and families of open
sets Bu with IBaI < k as follows. Put Y, = @ and BO = g. If {YB: Beal}
and {BB: B € a} have been defined then put first z, = U{YB: B e al}.
Since k is regular we have |Zu| < Kk, hence by assumption we can find a
family of open sets Ba > U{BB: B € o} such that IBaI < k and BarzOL is
a base of za. Now, if Bu is a base for X we a;e done hence we stop our
construction. If not, then there is a point pa € X and an open set Ga
containing p such that if p ¢ B € Ba then B\Gu + @. pPut

Ca = {B ¢ Ba: p, € B} and for each B ¢ Ca pick a point p(B) € B\Ga'
Then we let

v =2z, U{pa} u{p(B): B ¢ Ca},

clearly lYal < K.
Assume that this construction goes through for all o € k (if it
does not we have established w(X) < k). Then we can apply our lemma to

X, the sequence {Ya: o € k} and the family B = U{Ba: o € k} because
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trivially Ba+1rYa is a base of Y- Consequently Bly is a base of v,
where clearly |Y| < k and therefore w(Y) < k. But it is well-known that
every base of a space Y contains a subfamily whose cardinality is the
weight of Y and which is also a base of Y. Using this and the regular-
ity of k again we get that there is an d € k for which BarY is a base
of Y. This however is impossible because pa € Y and by the choice of
Ba' P, and Ga for no B € Ba do we have p, € BnyYc Ga n Y, since if
p, € B e Ba then p(B) € Ya n (B\G). This completes the proof in case

K is regular.

Let us now assume that k is singular, in particular then k is a limit
cardinal. We first show that we actually have a A < k such that w(Y)< A
whenever Y ¢ [XJSK. Indeed if no such A < k would exist then we could
choose for each A < k a subspace Y, € [X]SK with W(YA) > A. But then
for ¥ = U{YA: A < k} we had |Y| < k and w(Y) = k (since w(Y) Zw(YA) > A
for every A < k and k is 1limit), a contradiction. Thus choose such a

A < k and observe that then w(Y) < A+ holds for all Y € [X]SA+, hence
in view of the first part of our proof and the regularity of A+ we

get w(X) < o<k, 4

REMARK. It is easy to see that the first half of the above proof
(including the lemma), i.e. the case of regular k, goes through if

the weight is replaced by the m-weight. For the second part however
this is no more true because the m-weight is not necessarily monotone.
In fact 6.8 is false if k is singular and w is replaced by ™ in it,

as is shown by 7.13.

Having done most of the work in 6.8 now we get the following result on

chains rather easily.

If W(Xa) < A for each o € k then nw(X) < A, moreover if A < g then

even w(X) < A.

PROOF. If k < A then as nw(xa) < W(Xa) < A we get immediately from 6.2

that nw(X) < k.A = A. If on the other hand A < k then, as k is regular,
<
every Y e [x] A is contained in some xu, hence w(Y) < w(xa) < A. Con-

sequently 6.8 can be applied to conclude that w(X) < A. %

6.10. If X € T2 and s(xa). w(xu) < )\ for.each o € k then
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PROOF. Since by 2.15a) we have lXa[ < ZA for all o € k it suffices to
show that k < 2A. To see this assume indirectly that k > 2A, let us
pick for each a € k¥ a point pa € Xa+1\xa and consider the subspace
Kk then w(pa, {pB: B <al}l) <

) < A, hence clearly wl(Y)-S A. But we also have

Y = {pu: o € k}. Note that for any o €
<
< 'J)(pu, Xt

A
s(Y) £ s(X) £ A in view of 6.1 and A+s 2 <k, hence 2.19 implies

ly] <25 -¥e () oA

a contradiction. |

REMARK. I don't know whether 6.10 remains valid if we only assume

X € Tl (compare this with 2.15a)).

If X € T2 and for all o € k we have

L(xa).w(xa).t(xa) <A

then

PROOF. From 2.27 we get IXal < ZA for each o € k, hence our result
immediately follows if k < 2A. Thus in what follows we assume that
K > 2A (which is clearly equivalent to Kk = (2A)+) and strive to

obtain a contradiction. Let us start with a lemma that will be used

repeatedly in the proof.

LEMMA. If X € T2, Y is a subspace of X with L(Y) < XA and p € Y, then
for every open set U in X containing p there is a family R of regular
closed neighbourhoods of p in X such that |R| < \ and

UnyY>s>nRny.

PROOF OF THE LEMMA. Since X € Té the intersection of all regular

closed neighbourhoods of p is {p}, therefore their complements cover
x\{p} > Y\U.vBut L(Y\U) £ L(Y) £ XA, and as these complements are open
we clearly have a family R of regular closed neighbourhoods of p in

X with |R] £ X such that
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Y\U < u{X\R: R ¢ R},

unY > nRnvy.

As a first consequence of this we prove that p(X) > 21. Assume, on
the contrary, that p(X) < 2A and consider any point p € X where e.g.
p € Xao. Now for any o € K\do we have p € Xa and w(p,xa) < XA, hence
we can choose a family of open neighbourhoods Uu of p in X with

u al < A and nua n Xa = {p}. Since L(Xa) < X we obtain from our
lemma for each U ¢ ua a family RU of regular closed neighbourhoods
of p in X such that nRU n xa cuUn Xa' Consequently if we put

Ra = U{RU: U e Ua} then

nRa nx, = {p}.
But if p(X) = |RC(X)]| < ZA then from k > ZA we obtain the existence
<
of an RP € [RC(X)]—A and a set a € [k]< such that Ra = Rp for every
a € a. Then we have nR_ n X, = {p} for cofinally many o € k, which
is only possible if an = {p}. Since p was arbitrary we obtain then
that
A

x| < [RC(X)]SA < (ZA) = 2A < K,

[\1)

contradiction.
We shall call a set Y ¢ X bounded if there is an o € Kk with
<X, (clearly this is equivalent to |Y| < ZA if k > 2A). Now if

Y
F c X is closed and unbounded then taking Fu = ana we have L(Fu) <

A

L(Xa) < X, hence the above result clearly applies to F as well, i.e.
p(F) > 2. Comparing this with 2.6d) we get the following important
observation: for any set A € [X]SA its closure A is bounded. Indeed,
then p (A) < 2121 < oA

The rest of the proof is divided into two parts according to whether
P(X) < X or P(X) > A. In the first case the proof is quite similar to
that of 2.27 with a few extra ingredients. Let us observe first of all
that if ¥ ¢ X is bounded (i.e. IYI-S 2A) and p € Y then there is an

a € k with {p} U Y c X,r hence t(Xa) < XA implies the existence of a
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set T € [Y]™" with p € T ~ c T. In other words

%= u{T: T e [¥I).

A if |T| £ A, this implies then

Since we have already shown that |T| < 2
I?I < ZA. Thus we get that the closure of a bounded set is bounded, in
particular Y c Xu implies L(Y) < L(xa) < X. Now if Y(X) < X then just
as in the proof of 2.27 we can show that w(?,x) < 2A, because if V

is a y-base of p in X with IVPI < A for each p € Y and V = U{Vp: pe Y}

then
U={uVr: Ve VTS & T c wr}

is a y-base of ¥ in X with |U] < (2A)A = 21. Now it is easy to see

that in the proof of 2.26 we have not used the full assumption t(X) <k
but only the existence of a cardinal T < k such that a(p,S) <t if |S| <«
and p € S (with the notations used there) which as we have just shown
above is satisfied here: a(p,¥Y) < A if |y| < ZX and p € Y. Consequently
we see that every condition of (this modified) 2.26 is satisfied, con-

sequently
d(x) < z(x) < 27,

which is a contradiction as then X should be bounded.

Now consider the second case in which there is a point p € X with
P(p,X) > A, we can assume without loss of generality that p € XO.
Next we define by transfinite induction ordinals o, € K, points

p, € X\{p} and families Vv of regular closed neighbourhoods of p in
X with |Vv| < X as follows. Suppose U € A+ and we have defined al-
ready av, pv and Vv for v € u. Then TE;?~;_E_ET is bounded, hence

we can choose uu € Kk such that

{pv: Ve urc Xau.

Next we choose I as a family of regular closed neighbourhoods of p

satisfying IVul < X and

nVu n xOcu = {p}.
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This is possible because by w(p,xau) < ) there is a family U of open
neighbourhoods of p in X with nlUn X“U = {p} and |U| < A, and then
for each U ¢ U there is by our lemma a family RU of regular closed

neighbourhoods of p in X with
nRU nx <cunx ,
u u

and then we can put

vV = : .

" U{RU U e U}
Since Y(p,X) > A, however, we must have

F = n{u{V_ : v < ul} $ {p},
u v
+

hence we can choose P, € Fu\{p}. Having defined S = {pv: veail

observe that S is "almost" a free sequence in the sense that for any
+
Hoe A

{pv: v e ul} n{pv: wsv<ahy c{pl},

because

+
{pv: v e ulc X, {pv: Hu<v<rl}ec Fu

i
and clearly
F nX cnal nx = {p}.
) a
" H M H
+ .
But |S| = A i.e. S is a bounded set, consequently S c xa for some

o € K. Now as w(p,xa) < A, there is an open neighbourhood U of p for

which

Is\ul =¥,

+

+.A
" or in other words we have an a € [A ]° with
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SO = {pv: v e al c Xa\U.

But then p ¢ EB} hence clearly S, is a free sequence in xu of length

0
+
Ia[ = A . But L(Xa) < X implies the existence of a complete accumula-

tion point g of S, in Xa which clearly'is impossible as t(xa) < Al

0
This contradiction completes the proof. -

COROLLARY. If X € T,, L(X) < X and x(X ) < X for all a € k then
A

x| < 2%,
PROOF. Clearly it suffices to prove that x(ia) < A holds for each
0 € K because then 6.11 can be applied to the chain {i;} o € k}. But

if p € ia choose B € Kk with {p} U Xa c X,, then using the regularity

B
of X and 2.7a) we get

X(2:X) < x(p,Xg) = x(p,Xg) <A o

It is not surprising that if one assumes that X in (*) is compact
Hausdorff then a lot more can be said about its "cardinality behaviour".

In the rest of this chapter we are going to study just this situation.

6.12. If X € C2 and nw(xa) < A for each o € Kk then
(nw(X) =)w(X) < A.

If, in addition, X < k then even w(X) < A.

PROOF. Clearly x2 = XxX is the union of the chain {Xi: o € K}, more-
over h(XZ) < nw(Xi) < A holds for every o € k. Thus by 6.1 we have
h(X2) < A and even h(Xz) < A if A < k. But from 2.10b) and 3.32 we
obtain

w(x) = b, (X) = $(4,x)) < h(xD),

A
and our claims follow. -

6.13. If X € C2 and t(Xa) < X for o € Kk then t(X) < A, and even t(X) < A

if A < K.
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PROOF. Let us assume first that « < A. Then by 3.12 it suffices to
show that X does not contain a free sequence of length A+ = u. Assume
on the contrary that S = {pa: @ € u} is such a free sequence. Since

K < u= A+ we can actually assume that S is bounded because other-
wise we could just take an appropriate subsequence. For any Vv € u

let us put

and

F = F : vV
n{v € ul

Then F 4 @ because X is compact hence we can choose a p € F. Since

S is free we clearly have
p ¢ {pa: a e v}

for every v € U, while p € S hence a(p,S) =2 u. This shows that if
a € k is chosen in such a way that {p} usSc X then

W= uw<aps) < £p,X) <A,

a contradiction.

Now assume A < k and for each regular cardinal u < X such that X
contains a free sequence of length p choose one, say Su. Observe that
U < A < Kk implies that Su is then bounded. Let us select then a point
pu to Su similarly as p was selected to S above. Now we have an a € K

such that for every regular u < A in question
s ulp ltex.
u Py a
According to our above observations then we have
< <
v = t(pulxa) = t(x(!)

for any such u, consequently, as t(X) is the sup of all these u, we
have t(X) < t(x) <A. A
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We shall prove a similar result for the character but first we need

an auxiliary result, which again is of independent interest.

<A
a) For any X € T and p € X if X(p,X) = X then there is a Y € [X]

such that p € Y and ¥ (p,Y) = A.
<
b) If X € C2, t(X) < A and x(p,X) 2 XA then there is a Y € [X]_k with
P € Y and Xx(p,Y) 2 A.

PROOF.

a) Let {Uu: a € A} be a neighbourhood base of p in X and put for each

pair <a,B> € 12

a member of Ua\UB if Uu\UB + a3,
P<0L,B> =
p otherwise.

2 -
Py s’ <a,B> € A“}, then p = Pey,a> © Y, and trivially

|Y] £ A. We claim that ¥(p,Y¥) = A. Since X(p,¥) < A is obvious we

Put ¥ = {

only have to show that Xx(p,Y) < A is impossible. Assume, on the
contrary that ¥x(p,¥) = p < A and let {Vv: v € u} be neighbourhoods
of p in X such that {anv: vV € u} is a neighbourhood base of p in Y.

For every V € | we can choose an a(v) € A such that

8) c V.
o(v) v

Then {U : v e ul is not a neighbourhood base of p in X, consequent-

o (V)
ly there is an o € A such that Ua(v)\ua + @ for all v € u. But then

p<a(\)),0c> €Y n(Ua(v)\Ua) + 0

for every v € u, consequently Yn(Vv\Ua) + @, i.e. Yov, ¢ ¥ny = for
every Vv € U, contradicting {anv: Vv € u} is a neighbourhood base of

p in Y. -

b) If there is an S € [x]<A such that p € S and x(p,S) = A then we
are done, hence we assume in what follows that S € [X]<x and p € S
imply x(p,S) < A. We also restrict our attention to the case in which
A is regular, for the case of a siﬁgular A will easily reduce to it.

Also observe that x(p,X) = A > t(X) implies X > w.
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Now we define by transfinite induction points pa € X and families Ba of
open neighbourhoods of p in X with IBu] < X as follows. Put p, = p and
B. =@. If o € A\{0} and pB, B

0 B
put Sa=:{p6: B € o} and observe that

have been defined for all B € a then

x(p,Sa) = X(p,Sa) < A

Consequently we can choose a family of open neighbourhoods of p in X,
say B , such that (0) nB_ néa = {p}, (i) |Bu»| <A, (1) u{Bg: Be alc B .
Using that w < A we may also assume that (iii) Ba is closed under
finite intersections, and (iv) for every U € Ba there is a V ¢ Ba

with V ¢ U (in other words, (iii) and (iv) together say that Ba is a
regular filter base). Since ¥(p,X) = X(p,X) = A > IBaI we have

{p} #+ n Ba' hence we can choose a point P, €N Bu\{p}. Having complet-—
ed the induction for all o € A put Y = {pu: a € A} and B = U{Ba: a € Ak;
clearly B is a regular filter base in X.

The regularity of X and t(X) < A imply that
¥ =u{s : ael,
o

showing that since nBa n §a = {p} for each o € A, we have nBnY¥ = {p}.
But then BIY = {Bn¥: B ¢ B} is a y-base of p in Y and at the same time
a regular filter base in ?, which in view of Y ¢ C2 then clearly
implies that BIY is actually a neighbourhood base of p in Y. This
shows ¥ (p,Y) = x(p,?) < A but we claim that X(p,?) = A. Assume on the
contrary that X(p,?) < A. Since BlY is a neighbourhood base of p in
Y then we can actually select a subfamily C < B with |C| = y(p,¥) < A
such that nCnY = {p}. By the regularity of A however then there is an
a e A with C c Ba, consequently we have p € n Bu\{p} and therefore
p, €N C n ¥Y\{p} as well, a contradiction. This completes the proof
for X regular.

Now if A is singular then we can apply the first part of our
proof to obtain for every regular cardinal p with t(X) < pu < X a

<
subspace Yu e [x1°" such that X(p,Yu) > u. Thus if we put
Y = U{Yu: U= cfn) & t(X) <u < A}

then IYI < X and X(p,Y) 2 A because
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x(p,Y) 2 x(p,Yu) 2

for every regular u < A. 4

If X € C2 and X(xa) < A for every o € k then x(X) < A, moreover if
K > A then even y(X) < A.

PROOF. If k < A then from 6.2 (iii) we get
X(X) = P(X) < k.A = A

Now, if k > A then first of all t(Xa) < X(Xa) < XA for all o € A
implies by 6.13 that t(X) < A. If x(X) < A failed, then for every
successor cardinal p with t(X) < p < A there would exist a point
puE X with X(PU'X) > 1, hence using 6.14 a set Yu € [X]Su as well
such that already X(pu,Yu) 2 u. By k > X then there is an o € Kk such

that {pu} u Yu c Xa for every u in question. But then we have
> >
x(xa) > X(pu'yu) u

for every such u, that clearly implies X(Xa) > A, a contradiction. -|

If X € C2 and t(Xa).c(Xa) < )X for each a € Kk then w(X) < ZA-
PROOF. Let us first consider the case in which k > A+. Then from
6.13 and 6.1 we get t(X) < A and c(X) < A, hence as X € C2, by
3.14a), wx(X) < X as well. Then we get from 2.37

wx) < ox) < mxx)S¥E) < A,

+ +

Now assume that ¥ < A . Then 6.13 yields us t(X) < A , consequently
X) < £(X) < <

wx(xa) < t(xa) < t(X) €A

for a € Kk, since ia € C2' From 2.6a) we get c(§a) = C(Xa) < A, thus

applying 2.37 to ia we obtain
c(Xy) _ A

nw(ia) = w(ﬁa) < p(ia) < Wx(ia) 2
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But then applying 6.2 (i) to the chain {}—{a: o € Kk} we have

w(x) = nw(x) < k.2t = 2, 1



CHAPTER 7

EXAMPLES

In this chapter we present examples that establish the sharpness of
some of our earlier results. Since we have committed ourselves in this book
not to use any tools going beyond the usual axioms of set theory, this
chapter is necessarily very incomplete because, as it has turned out during
the past decade, most of the interesting examples require just these kinds
of metamathematical tools. Also the presentation of our examples is less

self contained than that of the earlier chapters.

7.1. For any set S let us denote by F(S) the set of all non-principal
ultrafilters on S. Fix an infinite cardinal k, for any n € w put P, =
F(x x {n}), moreover P = U{Pn:n € w}. It is well-known that |P| =
{Pnl = A= exp, K. Now, by a result of B. Pospigil (cf [P 19391) there is
for each n € w, an un € F(Pn) such that X(un) = ZA, i.e. the ultra-
filter u has no base of size less than 2 . Finally let u be a member

of F(w). We can then define an ultrafilter v on P as follows:
v={PcP: {new:PnP €uleul.
n n

It is easy to see then that x(v) = 2A holds too (for the details
see [JK 1973]). Now put

X=(k xw) UPuU {v}
and define a topology on X as follows: every member of k X w is
isolated; if p € P then all sets of the form {p} U A where A € p

form a neighbourhood base of p; all sets of the form

{v} u P uu{f(p): p € P}
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constitute a neighbourhood base of v, where P € v and f is any

choice function on P. It is easy to check that this gives a Hausdorff
topology on X, kK X w is dense in X, P is a discrete subspace of X,
moreover X(v) = 2A clearly implies x(v,X) = 2A. Consequently we have,

for any k, an X € T2 such that d(X) = k, but

[X] = s(x) = exXp K,
moreover
X(X) = w(x) = eXp,K. 4

7.2. Let k be an arbitrary cardinal less than the first measurable
cardinal p (that is if it exists). We define the sets Xn for n € w
by induction as follows: XO = K, Xn+1 = F(Xn). Finally we put

X = U{X : n e w}.
n

Our aim is to define a topology on X but to do that we have to
establish certain facts about ultrafilters.

(i) If £ is a choice function on F(S) then there are finitely many
members Uise.sup of F(S) such that

[s \

I ces

fu)| < w.
J

j=1

Indeed, if this was not the case then the family {S \ f(u): u e F(3S)}
could be extended to a non-principal ultrafilter v e F(S), which is
impossible because this would imply (S \ £(v)) € v.

(ii) Let u € F(F(S)) and put
u' = u{nP: P € u}.

Then u' € F(S).

Let us put for A ¢ S

A= {p e F(S): A € p}.
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Clearly u' can also be defined as

u' = {A cs:Aceul

That u' is an ultrafilter follows from the relationships

and

E/;\A F(s) \ A.

That u' is non-principal is implied by the fact that if s € S then

—
s \ {s} = F(9).

() n by induction

we define u € X . for i <
n+l-i

Now, for any u € Xn+1

as follows:

) _ (i+1) _ , (1),"
u =u, u. = (u )

’

This is possible using (ii). We now define a topology on X as follows:

All points of XO = k are isolated. If u € Xn+1 then all sets of the

form
n .
v=1{atuu at),
i=0
(1) (i) . . .
where A € u for 0 < i £ n, constitute a neighbourhood base of

u. Clearly these form a filter, moreover if we put

gt A fpex _.: aFh) ¢ pl,

then, by the definition of the operation u', we have B(l) € u(l) and
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n

. (1)
v' ={u} uig B

0

is a neighbourhood of u such that V is a neighbourhood of every

p € V'. This shows that we have indeed defined a topology T on

X. It is easy to see using (i) that from every t-open cover of xn

+1

we can choose finitely many members such that they cover all but

finitely many members of Xn' From this it follows easily that X is

Lindelof, i.e. L(X) = w.

It is easy to see that (X,T) is Tl’ but in fact we show that Y(X) =

w. Since u (if exists ) is inaccessible, we get from |X0| =K < U

that Ixn[ < u as well. Consequently every member p of X

as an ultrafilter, is not O-complete. Thus if u € Xn

for every i < n+l a family

{Aﬁi): k € w} c u(i)

such that

(i) ~
n{Ak : ke w} =g,

Let us put
n (1)
v, = {u} uYy A
then we have

n{vk: k € w} = {u},

showing that ¥ (u,X) = w.

+1

n+l F(Xn)'

we can choose

put I* = I x {0,1} (where I = [0,1] ) and consider the lexicographic

order 4< on I* (in other words I* is obtained from I by . "splitting"

each point of I into two). Now I* provided with the order topology

determined by < is a compact ordered space which, as is easy to see,

satisfies h(I*) = z(I*) = s(I*) = w. Now it is also easy to see that

the set
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{{<x,0>, <x,1>;> : x e I}

is discrete in I* x I*¥ = X. Thus X is a compact Hausdorff space such
that d(X) = x(X) = w but

s(x) = 2",

From 2.11 we now conclude

2(1)
K(X) = o(X) = 2° . -

Let A be a singular cardinal with p = cf(A) > k and suppose that
K .
2% = (hence X is not strong limit). Let X be a subset of D(2) with

]X[ = A and write X as a disjoint union
X = U{Xa: a € u}

where ]Xal = Aa < u for every o € u. Let us consider the topology

T on X for which sets of the form

{p} v U\ U{Xa’a € al

constitute a neighbourhood base of p € X, where U is open in the
<
subspace topology of X (inherited from D(Z)K) and a € Myl w. Since
T is finer than this subspace topology on X we have (X,T) e H. Clearly

every Xa is discrete in T, hence
s(X) = sup{Aa:a € ul =1,

and consequently h(X) = z(X) = A as well.

Next we show that $(X) = X for ¢ € {s,h,z}, hence X establishes

sup + max for ¢ on H. It clearly suffices to show for this that
every subset Y of X with !Yl = A is neither right nor left separated.
Clearly if ¥ ¢ [X]" then there is a ¥' e [¥]¥ with |¥' n x, | <1 for
each a € u. Put S = {a € u:lY' n xal =1} and for oo € S let Y' n S =
{Yu}' If Y' were e.g. right separaﬁed then we had open sets Ud and

P <w
finite sets a, € [ul such that
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v, = {ya} uu, \ v {XB:B € aa}
is a right separating Tt-neighbourhood of Y- Applying Hajnal's
theorem, 0.3, for the set mapping a#+=>a n S ¢ [s1% we may assume
that S is also free with respect to this set mapping. Clearly then
yB € Va iff yB € Ua for a,B € S, hence {ya:a € S} is also right
separated in D(2)K, which is clearly impossible.

Now let us assume, in addition, that 26 is strictly increasing for

A
cofinally many § < A. In this case we have cf(2%) = cf(A) = p. By 2.11
o(X) 2 222 = 2%

A .
while on the other hand z(X) = A and 25 > A imply

A
o(X) < |xk§£§) = A = ZAﬁ

A . .
Thus we have o(X) = 2, while cf(o(X)) = u implies

ox)¥ > o(x).

7.5. Let R be an arbitrary space and < a well-ordering of R. We define

£
two spaces R and R” on the same underlying set R as follows:

A basis for R (Ru) consists of all sets of the form Gﬁ(Gi), where G

is open in R, X € G and Gﬁ= {y € G: yix} (G:= {yeG:xéy}).

Since z € GZ n Gz(z e 6% n Y implies (¢ n B} < GK n GK ((enE)Y <
x y x y z x v z

G: n G;), both are indeed bases of some spaces whose topologies

are obviously finer than that of R, hence in'particular T2 if R is so.

PROPOSITION

(i) h(R) = |R| ana z(RI’) = z(R)

(11) z@®Y = |R| and h(RY) = h(R).

PROOF .

; L (s trivi ; a £
(1) h(R) = IR| is trivial as < right separates R . To show z(RK") =

z(R), let S c Re be left separated by a well-ordering <j , say. Just
like in the proof of theorem 2.12, there is a subset T ¢ S with

'TI = ISI such that the two well-orderings < and &) coincide on T.
But then T is obviously also left separated in the original space R,

hence |T| = || < z(R), which was to be shown.
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The proof of (ii) is completely analogous.

Thus as we can have T,-spaces R with !R{ = exp h(R), we then have

z(Ru) = exp(h(Ru)), and as we can have ones with IRI = exp exp z(X),

then we have h(Rﬂ) = expexp z(RK). 4

Let 6 be a weakly inaccessible cardinal (i.e. regular and limit)

and consider the product space
X = x{D(x):k < 0}.

By 5.10 we have 6 € cal(X), consequently
A
c(X) < 8.

But for each k < 0 the family G(K) = {prgl({a}):a € k} is cellular

in X with [G(K)] = k, hence
A
C(X) = C(X) = 0,

showing that in this case sup + max for c on X. 4

Let us denote by EK(A) the Ath ZK—power of D(2), i.e.
£ = {fe D)+ [{v e A: £(v) = 1} < «}.
PROPOSITION. A cardinal o is not a caliber of ZK(X) if and only if

(1) cf(a) = w

or

A
>

(ii) k < a <

or

(iii)k < cf(a) < A.

PROOF. Recalling that o € cal(xi implies cf(a) € cal(X) and w %
cal(ZK(A)) as this space is Hausdorff, the if part follows if we®

show that (ii) implies o ¢ cal(ZK(X)). But for this consider the
family
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= {pr;l({l}):v € al,
clearly |G| = a but for every a € [a1®
-1
I a0 {pr "({1h: v e al =

since a > k. Thus a * cal(ZK(A)).

Now assume that o does not satisfy either of the conditions (i)-(iii)
and show that a € cal(ZK(A)). If A < cf(a) then we have d(ZK(A)) <
w(ZK(A)) = A < cf(o) and o € cal(EK(A)) follows immediately.

If W, < cf(a) £ a £ k then o € ZK(A) easily follows from the fact
that, by 5.11, a € cal(D(2)%).

Finally it remains to check the case w, < cf(a) £ k £ A < a. Now we

1
can write

= Z{uv:v € cf(a)},

where av < uu if v € u € cf(a) and each uv is a regular cardinal,

a, > A. Let {G_:B € a} be a family of elementary open sets in

B

Z (A . Slnce there are only A many elementary open sets in E (X)
(or D(2) ), for each v € cf(o) there is a fixed elementary open set

¢ such that

[ {8 € o, Gy = G(V)H

Since by our earlier results cf(a) € cal(Z (X)), we have a set

belcf () 1€ £(a) such that

nic™ v e b} £ 0.

(v)},

Now if we put a = u{{B ¢ a G, =G : v e b}, then |a| = o and

B
clearly n{GB:B € al + @, hence a € cal(Z (). 4

Let us now put for v € w1

and
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= X .
R {Rv.v € ml}.

Then w,, € cal(Rv) for each v € Ch by our above proposition. On the

other hand if we consider the family
_ (v) _ _
G = {Gu = {p € R: p(v)(n) = 1}:v € W, & We mv}

: ‘ w
then for any a e [u{{v} x ws Ve wl}wz there is a b ¢ [al 2 and

a fixed v € wl such that
c x
b c {v} W,
and clearly then
n{G(:):< v u>eb}l=4d.

This shows that mwl is not a caliber of R. Consequently we see that
in 5.10 the condition on the regularity of A cannot be removed. More-

over since wy € cal(Rv)-for each v € w, we get from 5.10 that

1
m1 € cal(R) showing that in general cf()) € cal(X) does not imply

A € cal(X). 4

Let F = {0,1} with the T_ topology in which 0 is isolated but 1
K
is not. Looking at the elementary open sets in F it is obvious

that w(FK) < k. On the other hand if pE e F* is defined by

jO, if]_l:g
pE(u) =

l 1, ifuteg ,

then {pE:E € k} is clearly a discrete subspace of FK, hence we get
w(Ekk) = h(FS) = 2(F%) = s(F%) = «.

It is easy to see (using the same method as in the proof of 5.2b)

that if q € F is such that q(u) = 0 for each M € k then wx(q,FK) = K,

hence X(q,FK) = g and therefore ﬂ(FK) = k holds as well. -
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7.9. Similarly as in 7.8 we can show that
K K Ky _ Ky _ 2)K) -«
s(D(2) ) = z(D(2) ) = h(D(2) ) = x(D(2) ) = w(D( ’
and from this and from 5.2b we also get
(2 = @@ = «.
Finally, as D(2)° e T3 we obtain using 2.7b) that
K
d(D(2) ) = log k.
Now this together with 5.5a) then implies
K
d(p(2) ) = log k. e
7.10. Let us put
+
X =2 (c),
c

+ .
where ¢ = 2w. It is easy to see that d(X) = ¢ , but we claim that

X can be written as the union of a chain
+
X = U{Xa:a € c}

+
such that d(Xa) = w for each a € ¢ . Indeed, we can just write for

+
o € C

+
Xu = {f e X: Vo e(c \ a)(f(v) = 0)}
then clearly Xa is homeomorphic to D(Z)a, hence by 7.9.
d(x,)) =am2" =uw + logla| = w. 4

7.11. For any k let p be a uniform ultrafilter on with x(p) = 2 and let

X be the space on « U {p} for which every 0 € k is isolated and sets
of the form
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{p} ua

with A € p are the neighbourhoods of p. Clearly X € TS' w(X) = x(X) =

2K, but if we put for a € k
X, =au {p}

then X is the union of the increasing chain {Xa:a € k} while Xa is

discrete, hence X(Xa) =1 and W(Xa) = Ja| < k.
7.12. Let k be an uncountable cardinal and
h :
{ LS K}

be an enumeration of H(k). By an easy induction one can define then
a sequence of sets Sa e Tkl” for o € k such that Sa n SB =@ if

n = @.
o £ 8 and S, D<hu) 1}

Let us now define the points pa € D(2)K by

ha(v), if v € D(hu);

pa(V) = 1, if v e S,
0, if v e x \(S_ U D(h))
a o

Then p > h ~for all o € x implies that X = {pa:a € k} is dense in
D(2)K, consequently by 2.6a) and 5.10 we have c(X) = c(D(Z)K) = W.

It is also clear that X ¢ Zm(K), which easily implies t(X) < w. Finally,
we claim that Y(X) = w holds as well. Clearly it suffices to show

for this that, for any a € x, if B + o then there is a v € Sa with

£4(v) =0 1= £,(V).

But this is trivial since Sa c K\SB and outside S, the function

B
fB takes up the value 1 in at most finitely many places. We note that
. wot ) .
if k = (27) , with some extra care we could construct X with the

additional property that it be the union of an increasing chain

{x s e (2*)") with Ax ) = w for each a e (&), 1
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7.13. Let k be a singular cardinal and T the topology on K+ consisting of

the sets
+
Kk \ (aUF),

+.<
where o < k and F ¢ [k 1%, Clearly T is a T, topology. Put X = <k,T>,

we claim that w(X) = et but w(Y) < kK whenevei Y ¢ X and |Y| € k. In-
deed, let the order type of Y (as a set of ordinals) be A+n, where A
is limit and n € w. Now if F denotes the set of the n last members of
Y and Y' = Y\F, then tp(Y') = X with |A|] £ k, hence there is a cofinal
subset Z of Y' with 1Z] = c¢f()) < k. But clearly then the family

B = {Y\(aUF): a € 2} UP(F) is a m-base of Y with |B| = |z| < k. That
mT(X) = K+, and even d(X) = K+, on the other hand is obvious. This ex-
ample shows that for k singular we can not replace the weight by m-

weight in 6.8.
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NOTES

Chaéter 1. The reader should be warned that the notation of cardinal func-
tions in the literature is not "standardized", the Russian authors especial-
ly use a system of notations different from ours: they denote e.g. by s(X)
the density of X and use ¢¢(X) or E(X) where we use ¢*(X). There are dif-
ferences with the notations of [EN 1977] as well, where T is used instead

of t to denote the tightness and h¢(X) is used instead of our ¢*(X).

Chapter 2. 2.7(b) is due to B. Efimov [EF 19681].

2.13 was proved independently by éapirovskig [éA 1972] and Hajnal and
Juhasz [HJ 1973].

For 2.15 see [HJ 1967]; proofs using the "closure" method were given in
[PO 1974] for (b) and in [HO 1976] for (a).

The second half of 2.20 was proved in [HJ 1967], the first half in

[8a 1972].

2.27 was proved in [gA 1974] in an entirely different way. Archangelskig's
theorem first appeared in [AR 1969].

2.28 was proved in [GW 1977].

2.29 appeared in [CH 1977].

2.30 is due to [ST 1972].

2.31 and 2.33 were proved by [BH 1976].

2.36 was proved in [BGW 1978].

2.37 is from EEA 1974].

2.38 was first proved by van Douwen [vD 1978], but the simple proof given
here is from [FR 1979].

Chapter 3. The material in 3.1 to 3.10 is based on [éA 1975]

3.11 is due to [MI 1962].

3.12 is from [AR 1971].

3.13 was proved in [éA 1974].

The results of 3.14 were proven, as is mentioned in the main text, by
éapirovskix, using a different method, see [gA 1976].

3.16 was published in [CP 1938]. -

The method of proof of 3.18 given here is due to Gerlits and Nagy.
The results concerning K(X) are mainly from [BH 1976], except 3.33,
which is from [GW 1977].
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Chapter 4. 4.1 is a "classical" result of Erdos and Tarski, [ET 1943].
4.2 is proved in [HJ 1969al.

4.3 is from [HJ 1969b].

4.4 is proved in [KR 1977].

4.7-4.9 are taken from [J 1977].

Chapter 5. 5.5a) is due to Hewitt [HE 1946] and Pondiczery [PN 1944].
5.6 was proved in [KU 1959] for I finite. The lemma there is folklore.
5.8 is taken from [HJ 1972].

5.9 is proved by [MA 1972].

5.10 is due to Sanin, [SN 1948].

5.13 and 14 were announced in [AT 1978].

5.16 has precursors in [IS 1964], [EN 1966] and [MI 1966]. The strong

version that we present here is due to Gerlits.

Chapter 6. 6.7 is due to Szentmiklossy.
6.8 is to appear in [HJ 1980al; the special case of X € T3 is proved in
[Tk 1978].

Chapter 7. Example 7.4 is from [RO 1975].
Example 7.7 is due to Gerlits.

7.13 was noticed by van Douwen.
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