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PREFACE 

Ten years have passed since the first edition of my book ''Cardinal *) Functions 11 

appeared, and this decade has seen a tremendous amount of activity in and 

development of the area. Thus when I was asked to prepare a new, updated 

edition of my book, I had no choice but to completely rewrite it. This new 

version now contains at least three times as much material as the old one. 

If.this is not apparent at first sight it is because the new book has no 

appendix on combinatorial set theory. Such an appendix is no longer necessary 

since a n11mber of good books and s1.1rvey articles on this subject have recent

ly appeared. In this new version I aimed at a certain kind of conpleteness 

by trying to include all the fundamental results that can be established in 

ZFC, i.e. ordinary set theory. This ''forced'' the exclusion of independence 

results, which, in my view at least, constitute the most significant advances 

of our field. Hence, in this respect, the book is certainly not complete and 

in fact it just cries out for a partner volume covering the basic indepen

dence results. 

The material of this book has been based on a two-semester cour~e that 

I gave at the University of Budapest in 1978. However, it was actually writ

ten during the second half of 1979, when I was visiting at the Mathematics 

Department of the Free University of Amsteroaro. I would like to take this 

opportunity to thank this institution, in particular Professors P.C. Baayen 

and M.A. Maurice, for making my visit possible. I would also like to thank 

my former student A. Pozsonyi, whose meticulous notes of my course meant a 

great help for me in writing this book. I am grateful to the staff of the 

Mathematical center involved in the fast and careful preparation of the manu

script, and especially to Mr. T. Jacobs, who prepared the index and the list 

of sy11rools. 

Toronto, March 1980 Istvan Juhasz 
( 

PREFACE TO THE FIRST EDITION 

General topology can be considered as a natural outgrowth of set theory; 

the simple set theoretic nature of its fundamental notions makes it an appro

priate area for the application of set theoretic methods. On the other hand, 

many set theoretic problems have their roots in topology and this makes the 

interaction between the two disciplines even more profound. The closeness of 

*) 
MCT 34, Mathematisch Cent..r:1Jm, Amsterdam 1971 
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their relationship is p,erhaps most apparP.nt in the work done by the Moscow 

school of topology in the early twenties. 

The last decade has witnessed a very rapid developnent of set theoretic 

methods and ideas, the main sources of which were, in our opinion, the fol

lowing: 1) the independence results of P. Cohen and his followers; 2) the 

results on '' large'' cardinals of A. Tarski' s school, and 3) the achievements 

of P. Erdos, R. Rado, A. Hajnal, and others in c0111bi.natorial set theory 

(e .. g., partition calculus). Not s11rprisingly, this has stirred up a renewed 

interest in the set theoretic aspects of general topology. A nu,rlber of old 

problems were settled and many new ones were raised. 

The aim of this tract is to present a variety of questions of this kind 

by centering them around the unifying concept of cardinal functions. 

Since a considerable part of the means employed in our investigations 

are relatively recent and not easily accessible in the literature, we have 

found in both convenient and timely to include an appendix entirely devoted 

to the detailed explanation of these methods and ideas of combinatorial. set 

theory. 

This tract was written during the second half of 1969, while the author 

was a guest of the Department of Pure Mathe111atics of the Mathematical Centre 

in Amsterdam. The appendix is based on a series of talks given by the author 

during the sam,a period at the Mathematical Centre under the title ''Combina

torial Set Theory•. 

At this point I wish to express my gratitude towards the Mathematical 

Centre for their kind hospitality which gave me the opportunity to write this 
• 

tract, as well as for. publishing it. I am particularly grateful to Professors 

. J. de Groot and P.C. Baayen for initiating my invitation and supporting this 

project. 

Special thanks are also due to Albert Verbeek, who took on the difficu1t 

task: of actually writing the text of the append1x 1 and did most of the work 

pe·cessat:y to turri the crude man1Jscript into print. I would also like to thank 

Nelly K.roonenherg, who added A6 to the appendix. 

Finally, I am greatly indebted to my friend and collegue A. Hajnal, 

whose help was essential in acq1Jiring the methods used in this tract. 
,,, 

• 

Budapest, December, 1970. Istv4n Juhasz 
• 



CHAPTER 0 

PRELIMINARIES 

• 

We shall use in this book the by now more or less standard ''modern'' 

set-theoretical notations, e.g. that of [DR 1974], [JE 1978], [K 1977] or 

[WI 1977]. The set of all subsets (the power set) of a set Xis denoted by 

P(X). Functions are always sets of ordered pairs (i.e. they are identified 

with their graphs). The domain of a function f is denoted by D(f) and its 

range 
A 

by R(f). Thus f: A ➔ B means that D(f) = A and R{f) c B. We shall put 

B to denote the set of all functions f: A ➔ B. If Sc A then frs s 
E: B • We 

shall often use the syrobol H (A, B) to denote the set of all finite functions 

from A to B, i.e. g E H(A,B) means that D(g) is a finite subset of A and 

R(g) c B. If B = 2 = {0,1}, then we shall write H(A) instead of H(A,2). 

Ordinals - usually denoted by greek letters - are identified with their 

sets of predecessors. Consequently, if a,8 are ordinals then a< B means 

the sam€ as a E $. A sequences of length a is a function with D{s) = a., 

hence e.g. ~ is the set of all sequences of length a of ordinals less 

th B h 11 1 °,a.,,,. { s" } f ~ an • Wes a a so putµ = u : v Ea, i.e. the members o P are 
• 

the sequences of length less than a.. 

Cardinals are the initial ordinals, K,A,µ will always denote infinite 

cardinals, w is the smallest infinite cardinal~ For any ordinal a., cf(a) 

denotes the cofinality of a that is always a regular cardinal. The cardinal

ity of a set Xis denoted by Ix!. The successor cardinal of K is denoted 
+ by K. A non-successor cardinal is called a limit cardinal. 

When indexing by all ordinals less than a given ordinal (which of 

course might be a cardinal) we shall usually use the syxr,bol E , while if we 

index by all cardinals less than a given one we always use<. Thus in 

{x: a EK} the indices run through all suitable ordinals, while in 
a. 

{pA: A< K} through all suitable (infinite) cardinals. 

For any set X and cardinal 

the collection of all p-element 

analogously. 

p (which might be finite) [x]P denotes 
<p <p . 

subsets of X; [x] and [x]- are defined 
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1 KA will have double meaning, it denotes according to 0 11r 

above convention the set of all maps from A into K, moreover it denotes 
th 

the corresponding cardinal exponentiation. The A weak power of K, denoted 

by ~ is defined as Kb, = I:{ Kll: µ < A}. The cardinal A is called strong limit 

if K < A implies 2K <Aas well. Next we collect the basic facts about car

dinal exponentiation. 

0. 1. a) 
+ A A + 

(K ) = 2 • K ; 
• 

b) if A< cf(K) and K is limit, then 

c) if cf(K) <A< K then 

A . A 
K = (I:{l,l : µ < 

d) cf(KA) > A; 

e) if {K~: ~eA} is increasing wi"th K = E{K~: t € A} then 

A 
K • 

Using these one can prove the following statement. 

02 ' h h A ••• .· .. • Suppose t at t e por,1er K is a Jump, .2.. e. 
A A 

K,A ~ W, µ < K if~< K 

and K µ < KA if µ · < A • Then A = cf ( K) • 

A set·· mapping F over a set X is any map of the form F: [x]<p -+- P (X) • 

The particular·case p = 2, in which case we usually write F: X ~ P(x) 
. 1 

i~stead of F: [X] -+ P(X), is of particular importance for us. The 

; basic' resultconcerning these is Hajnal's theorem below. A set Sc X 

is a.aid to be free for F if x,y E: S with x ,,J: y itnply x ,_ F (y) • 

0.3. If F: X-+ [X]<). where A< lxl then t:here is a free sets c X for F 

wit:h. fsl = lxf. 
Concern.ing the notion of ramification systems and the basic result on 

,them, the ramification lemma, we refer the read.a~ to [WI 1977, Ch.2.2]. 

By an r-partltion 

f: [X]r-+ Y where 

of X into p parts, where r < (l), 

IYI = p. The partition relation 

we mean a map 

K _.._ (' )r _,,.. A. means 
. \> VE:p 

that whenever f is an r-partition of 
AV 

K of the for,11 f: [1< Jr -+ p there 

is a v E p and a set a E [K] with 
.. " ~f([av]r} f = 1. The foll.owing 
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two known partition relations will be used frequently in this book. 

For anu K we have 
•· 

2 
a) K + (K, w) ; 

b) ( 2 K ) + + (.K +) 2 • 
K 

An important corollary of 0.4a) is that if < 1 and <2 are well-orderings 

with lnl = Isl such that< of the same set S then there is a D c S 
1 

and < 2 coincide on D • 

If A is a singular cardinal 

sequence of cardinals less 

with cf(:\) = K and <A : v E 1<> is a fixed 
\) 

than A with A= 'E{A : v EK}, then a family 
\.l 

{Sv: v E K} of subsets of A is said to be canonical with respect to the 

r-parti tion f: [A] r ➔ p , if the following conditions are satisfied: 

(i) lsvl = :\v; 
(ii) 

(iii) 

v E µ € K implies S 
\) 

if a,a' E [u{s: v E 
\) 

< s ; 
µ 

K}]r are such that la n S I= 
\) 

for each v EK then f(a) = f(a'). 

la' n s I 
V 

0. 5. (The canonization lemma) If A is a singular strong limit card1na.1 and 

f: [A]r ➔ p with r E wand p EA, then there is a canonical family 

with respect to f. 

A family of sets A is called a ~-system (or quasi disjoint} with root 

D if for any two A,A' EA we have An A'= D. The following is the 

basic result concerning ~-systems. 

0.6. Let A be a faml-:ly of sets with IAI = K and [Al ~ ;\ for each A € A, 

where K > w is regular and µA < K for ev~ry µ < K• Then there is a 

subset:. A• c A such t:.hat:. !A• I= !Al and A• is a ~-system. 

The following two results are easy consequences of 0.6. 

V 
O. 7. (}~i scenko • s l.e111n1a) Let H c P (X) be such that 

ord(p,H) = l{H € H: p € H}I s K 

for each p € X. Then there are at most K finit:.e minimal. covers of X 

by members of H. 

0.8. (Burke's l~roma) Let {B: a EK} and {C: 
a. a. 

of size ~A such that:. 

(i) C n B =~for each a.EK; 
a a 

a EK} be families of sets • 
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2 
(ii) can Ba+~ if {a,$}€ [K] . 

Then K ~ 2A. 

0.6 does not remain true, even for finite sets, if K is singular. 

Now if A is singular with cf(A) =Kand A= r(Av: v EK} and Av< 

for each v EK, then the family 

system if 

{A: 
\) 

v EK} is called a double~-

(i) for each v EK, IA I= A and A is a 
\) V V 

ti-system with root Dv; 

{ii) {D : 
\) 

It is not 

\) € K} is a 8-system. 

hard to deduce now the following result from 0.6 with a 

suitable thinning out procedure. 

0. 9. If A is as above and A is a fami 1 y of fini t.e sets r-Ji th J A I = A t.hen 

there are subfamilies {A: v EK} c P(A) which form a double t-.syst.em. 
\) 

our t.opological notation follows in general that of [EN 1977 J 
and is quite standard. Instead of <X,T>, where Tis a topology (i.e. 

the family of all open sets) on the set X, we usually just write X 

to denote the corresponding topological space. Thus we sometimes 

write T(X) for the topology of X. 

For X a space and Kan infinite cardinal we denote by (X) the 
K 

space with the same underlining set and K-fold intersections of open 

set (i.e. G -sets) as the base for its topology. D(K) denotes the 
K 

discrete space on the underlying set K. 

It will be convenient for us to denote the class of all topologic-
• 

a.l spaces by T and the class of · all Ti spaces ( 0 S i ;s; 5) by Ti, and 

the class of compact Ti spaces by Ci. A little deviation from standard 

usage is that, for us, regular= T3 , i.e. always includes T1 • 



CHAPTER 1 

INTRODUCTION OF THE CARDINAL FUNCTIONS 

' 

In what follows, unless otherwise stated, Xis an arbitrary topological 

space 

1.1. DEFINITION. 

o(X) = IT(X>l-

1.2. DEFINITION. B c T(X) is a base of X if every G € T(X) is a union of 

some members of B. 

w(X) = min{\BI: Bis a base of x} + w. 

w(X) is called the ~'!eight of x. 

1.3. DEFINITION. B c T(X) is a pseudo base or $-base of X if for every 

p EX we have 

{p} = n{B EB: p EB}. 

Clearly x has aw-base if and only if x E T
1

. Thus in the following 

definition X e: T 
1

. l]Jw (X) is called the pseudo t'1eight; or $-weight of X. 

$w(X) = min{ !Bl: Bis a 1'1-base of x} + w. 

1.4. DEFINITION. B c T(X)\{~} is said to bean-base of Xis for every non

empty open set G there is a BE B with B c G. 

n(X) = min{IBI: Ban-base of X} + w. 

TI(X) is called the n-~.reight; of X. 

' 
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1.5. DEFINITION. N c P(X) is said to be a net;woxk in X if every open set 

is the union of some members of N. (Thus a base is a network consist

ing of open sets.) 

nw(X) = min{INI: Na network of X} + w-

We call nw (X) the net weigl1t of X . 
• 

. 

1.6. DEFINITION. 

a {X) = min { Is I : s c X and s = x} + w, 

d(X) is called the density of X. 

1.7. DEFINITION.Cc T(X)\{¢} is called a cellular family if the members of 

Care pairwise disjoint. 

c(X) = sup{!CI: C cellular in X} + w. 

c(X) is called the cellularity of X. 

1.8. DEFINITION.Xis said to be K-compact (K-Lindelof) if every open cov

er of X has a subcover of cardinality less than K (at most K). 

• 

L (X) = min•{ K: X is K-Lindelof} + w. 

L(X) is the Lindelof-dea-ree of x .. We could of course analogously have -
defined the compactness degree of x, but we prefer to work with L • 

1.9. DEFINITION. 

s (X) = sup{} DI : D c X, as a subspace, is discrete} + w. 

We call s (X) the spread of X. 

1. 10. DEFINITION. A space S is called left (right) separated if there is a 

wel.1-ordering < of S such that every final (initial} segment of S 

under < is open. Clearly, S is left (right) separated by < if and only 

if every p € S has a neighbourhood Up such that q ¢ Up whenever q < p 



(q > p) - Such Up are called left (right) separating neighbourhoods. 

z(X) = sup{lsl: Sc Xis left separated}+ w; 

h(X) = sup{lsl: s c Xis right separated}+ w. 

·we call z(X) the width and h(X) the heiqht of X • 
• 

1. 11. DE.FINITION. 

p(X) = sup{lsl: Sc Xis closed and discrete}+ w. 

1.12. DEFINITION. S = {p: a.Ev} c Xis a free sequence of length v in X 
a. 

if for each a. e v we have 

Clearly then Sis discrete. 

F(X) = sup{K: 3 a free sequence of length Kin x} + w. 

7 

1.13. DEFINITION. We denote by RO(X) the family of all regular open sets in 
-X, i.e. GE RO(X) if G = Int G. Similarly RC(X) is the family of regu-

lar closed subs.ets of x, i.e. F E RC (X) ( ) X\F E RO (X). 

p ( X) = I RO ( X) I = I RC ( X ) I . 

1. 14. DEFINITION. If A c X a family U c -r (X} is a neighl:xJurhood base of A 

in X if for every open set G ~ A there is au EU with Ac Uc G. We 

put 

x(A,x, = min{(UI: U a neighbourhood base of A in x}, 

and call it the character of A in X. If p € X we write x(p,X) in-
• 

stead of X ( {p} ,X). 

x(x) = sup{x(p,X): p € x} 



8 

1 .. 1:5.. DBPilfITIOH. If A c:: X a Cloe.al) •-base of A in X is a family 

V c T(X) sa.tiefying A• nfl. 

♦ (A,X) • min{ I VI,: V a local lP-base of A in x}. 

Again if pi X then we write •<p,X) == tp({p},X). The pseudo character 

of X is defined for X ~ T 1 by 

~ following well-··.· · .· .·· .. fact will play an important role: If x E c2 
andF c X :is cl0116d then ♦ (F,X) • x(F,X). Consequently then tJ,(X} =x(X). 

Variations on the same theme are the following: 

!(X) • sup{ ♦ (F,X): F closed in X}; 

• If Xi 12 then every p e X is the intersection of its closed neigh-

-
& p £ nV & {p} = n{V: V € V}}, 

If X « T3 then lfe get analogous 11
' closed" 

closed in x and 

versions of \fl (P',X) for F 
C 

, (X) • sup{t (F,X): Fis closed in x}. 
C C 

Fin·&l·. 1, y·· . ·.. . '· . 
. . . if X ·t: Tl then we can define 

~•A• {<x,x:>: x « x} is the diagonal of X. •~CX) is a kind of 
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'' sy1,1111etric pseudocharacter'' as can be seen from the following (easily 

estab1ished) characterization: ~~(X) = K is the smallest cardinal 

such that to every p EX one can assign a local ~-base 

V = {v (p): a EK} 
P a 

such that, for each a EK, 

p € V (q) -~ ► q E 
a. 

V (p). 
a 

, 

1.15. If p € X a local 1r-base of pin Xis a family Uc -r(X)\{t!f} such that 

every neighbourhood of p contains a member of U. 

nx(p,X) = min{IUI: U a local 1r-base of pin x} 

is then-character of pin X. 

nx(x) = sup{1rx(p,X): p Ex} 

is the 1r-character of X. 

-1.16. Let p € x, Sc X and p ES, then 

a(p,S) = min{IMI: Mc S & p EM}, 

moreover 

-t(p,X) = sup{a(p,S): p Es c x}. 

t(p,X) is the tightness of X in p, while 

t(X) = sup{t(p,X): p Ex} 

is the tiqhtness of X. -
A set F c xis said to be K-closed ifs c F and Isl~ K imply 

-s c F. It is easy to see that t(X) ~ K holds if and only if every 

K-closed set in Xis closed. This characterization of tightness is 

useful e.g. in proving the following proposition. 
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1 .. 11.. If f: x -+ Y is a continuous and closed map of X ont:o Y then t (Y) ~ t ( X) • 

-1 SK -
closed. Indeed, if Se [f (F}] and p ES then f(S) € 

is al.so K

~K 
[F] and 

f{p) E f(S) c F, hence p e: f- 1 {F). But t(X) s K implies then that 

f-l(F) is closed, hence by the closedness off the set Fis also 

closed. 

Recall that if H c P(X) then for p e: X 

ord {p, H) = J { H e H: p e: H} l 

and 

ord(H) = sup{ord(p,H): p € x}. 

1.18. DEFINITION. If X E: Tl we put 

psw(X) = min{ord(B): Ba w-base of x}. 

1.19. DEFINITION. The cardinal K is a cali'ber of X if whenever 

{G : a E K} c T(X) \{~} there is a subset A E [K]K with n{G : a e: A} =f f2'. 
a a 

Ob1serve that we do not require Ga 4= Ge for a 4: a. Thus it is easy to 

see that if K is a calib,er of X then so is cf (K} • We sha11 put 

cal(X) = {K: K is a caliber of x}. 

It is easy to see that if cf {K) > d (X) then K c cal (X) , hence cal (X) 

is not a set. Clearly, if K E: cal (X) then there is no cellular f am:i.ly 

of size Kin x. 

1.20. DEFINITION. We say that K is a precaliber of X if {G : a c: K} c -r (X) \{S?J} 
a 

i . . K 
. aplies the existenoe of an A c [K] such that {G : a. E: A} is centered 

a 
(i.e. ha.s the finite intersection property). We again put 

precal {X) 11111 {K: K is a preoaliber o.f x}. 

• 
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Clearly, KE precal(X) implies cf(x) E precal(X). It is easy to show 

that 

cal(X) c precal(X) 

for any x, moreover if XE C2 then 

cal(X) = orecal (X) • -

1.21. DEFINITION. A cardinal function¢ is said to be monotone if Y c X 

implies ¢(Y) ~ ¢(X) (when both defined). The functions w, nw, ~w, X, 

~, t for example are monotone, whiled, n, Land nx are not. For 

any cardinal function¢ we put 

* ¢ (X) = sup{¢(Y): Y c x}, 

* ¢ is called the hereditary (or P10no~one) version of¢. Clearly¢ 

* is monotone if and only if¢=¢. 

1. 22. DEFINITION. Several of our cardinal functions have been defined as 

supra:11a e.g. c, s, z, h, etc. If ¢ is a cardinal function defined 

in this way, i.e. 

¢(X) = sup{K: K has property P¢}, 

then we put 

A 
¢(X) = min{A: A> Kif K has property P¢}. 

We always have ~(X) 

successor cardinal. 

S icx) then, while icx) = ¢(X)+ if ¢(X) • 
l.S a 



·e1···.APTB· •··· · 'n, 2 ; ·• ,· .. - ' C\. 
. - . .. .. ' 

INTERRELATIONS e:ETWEEN CARDINAL FUNCTIONS 

~. . 11 . .. . ,.,.., ~..t ~ 'ii' :J.· ·· .· · · · .• • · · lJ t.i es ,!J: IP if, "" ~ • 4, .. J;mi;.A\ , .. . .•. •· . . ..... . 

· · ··. .· . IX I nw (X) } 
(a) <r(X) ·:s; (l(J) S 11 (X) S w (X) S o (X) S min{2 , 2 ; 

., ... {.if(X) ,L(X)} s; n(X) s min{ }xi ,w(X) }; 

'i!J!'t) \~---

(d) . . 

for X C rt, tw(l) s ain{lxi,w(X)} and ixl s o(X); 

for e"fe.ry x .« x, -~{t(x,X),7rx(x,x)} s x<x,X), moreover if x E T1 

~ f(x,x) s: xCx,X); 

(e) l(X) ~ v(X) ::; txt•x.(X), a.nd for X e T 1, lp(X) S vw(X); 

(fl •1 ()t) ~ 'I (X) $ t1 (X) ·•x (X) and t (X) s l x I . -I 

{a c 8: x c B} ~ {B c 8: ye B} 

, 

i.e •. · have got a 1-t map of X into P(B}. -l 

C•I · .. ··•········· .... ~ ~·,e N .ie a ••two~k for X with lNI s nw(X). For any p E: X let VP 

· ...... 91 fei,ly ·Of •i ··· ur · , of p with I VPI s ¢, (X), and for every 

Y t 1f••·. ·pt.at •~ .• c · N $UCh that p E Mv···.·.. ~ v. 'ftten N = {NV: V e. V } has . . . .,. 'Vi . , p . p 
1 . ,,,· 

. .. . . 

. _,_u_ QQt. tSoeeding IV I ~ ♦ ·(X) , moreover nN = nv = {p}, 
. . . p . . ~ p p 

· IJ~ f 1e't P •• • ._~• fo# X with l Pt $; ;w (X) • For every open set U con

tzalt4;• ~ 11Y• point p, its 001ap1, .. 11t X\U can be covered by \ 
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' 

members of P missing pas Pis a ¢-base. But then it can also be 

covered by at most L(X\U) L(X) many such members of P. This shows 

that the complements of all unions fo:r:med by at most L(X) members 

of P constitute a network for X, which is clearly of the required 

cardinality. 

REMARK. Observe that in case (b) our proof actually yields the follow

ing stronger result: If X E T 1 and X is K-caopact then nw(X) S 1J.,w(X)~ • 

In particular, if X e.: C1 then nw (X) S $w (X). -1 

2. 4. For X e T 2 

lxl s expexp d(X). 

PROOF. Let Sc X be dense, Isl s d(X). For any p e X we put 

S = {G n S: p E G c T(X)} c P(S). 
p 

• Now p q implies S ~ S since Xis Hausdorff, hence p ➔ S 1.s a one-
p q p 

one map of X into P(P(S)), which proves our assertion. -I 

COROLLARY. If X € T2 , then 

w(X) s expexpexp d(X). ~ 
• 

2. 5. For ever!l X E T 2 1o;e have 

PROOF. Lets be dense in X with Isl s d(X), and for each p € X let U p 
be a neighbourhood base of pin X with lUPI = x(p,X) s x(X) = K. For 

every non-empty open set G we pick a point q(G) ES n G, and then put 

N = {q(G): G € u } € [S]SK for p € x. Clearly, then p € u n N for 
p p p 

every neighbourhood U of p. Consequently, as Xis T2 , we have 

{p} = n{u n N : 
p 

hence the map p + {u 

[[S]SK]SK_ -f 

u € 

n N : 
p 

u }, 
p 

u € u } 
p 

takes X in a one-one way into 

j 
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REMARK. we have actually established the following, somewhat stronger 

result: If XE T2 and K is a cardinal, then 

2.6. Let X be arbitrary wit:h S c X dense in X. Then 

• 

' 

(a) c{S) c(X); 

(b) d{X) d(S) d(X)•t(X); 
':• 

(c} w(S) T(X) and for any p € s, a (p,S) < 1rx(p,S) < 1rx(p,X); - -
(d) p (S) p (X) < -

c (X) d (X) 
min{1r(X) ,2 }. 

PROOF. 

(a) suppose first that G is a disjoint family of non-empty open subsets 
• 

of x. Clearly, then 

Gts = {G n S: G € G} 

is a cellular family of the s.aroe cardinality in S. Now, on the 

other hand, let 

{G n S: Ge: G} 

be a cellula,r family in s with G open in X for all G € G. Then 

G G' G with G :) G* implies G n G' ~, • otherwise E since I 
• 

' 

·(Go G') ns - (G n S) -' n {GI n S) would be non-empty. -I 
(b) As S is dense in x, every dense subset of S is also dense in X, 

hence d{X) :S d(S). Now let T be dense in X with IT! 

easy to see then th.at S' = U{S: p € T} is dense in 
p 

ls•J S d(X)•t(X). -I 

d(X). For 
-ES. It is 

p 
S, hence d(S) s 

(c) Let P be a {local) '1T-base for X (for p in X) • Since the members of 

Pfs = {p o S: P e 1'} are non-e11pty, as S in dense, Pis is clearly 

a {local) 1r-bat:Je for S (for p in S) , while I Pts I ~ 1 P]. -I 
-

(d) Let G (with G open) be an arbitrary reg,ular closed subset of X and 
- - ' 

consider the map G + G n S .. Since G is open and S i.s dense we have 
-G = G n S, hence 

- -- --s . . 

GnS=GnSnS=Gns, 

• 
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-i.e. G n Sis regular 

set in S has the foxrn 

closed in S. Moreover, every regular closed 
--s 
G n S for a G open in X, hence the above map 

takes RC(X) onto RC(S). Finally, if 

G, H, then either G\H #~or H\G ~ 
-
H n S, i.e. our map is also one-one. 

G and Hare open in X with 
-~, hence as s is dense , G n S 

To prove the second half of (d) first note p(X) follows 

jmmediately from what we have just proved. Next consider an-base 

P of X with IPI s n(X). For any (non-empty) open set Gin X let 

CG be a maximal disjoint family of members of P contained irr G. 

Clearly, then UCG = G, hence if G, H then CG~ CH. This shows 

that the map takes RO(X) in a - -I 

2.7. Let X € T3 and Sc X be dense in X. Then 

(a) n(S) = n(X), moreover x(p,S) = x(p,X) and nx(p,S) = nx(p,X) when

ever p € S; 

(b) w (X) S p (X) S TI {X) c (X) S 2d (X) • 

PROOF. 

(a) The ::;-parts of the equalities are obvio11s in view of 2. 6 (c) • For 

showing the ~-parts let B be a (local) n-base (at p) or a neigh

bourhood base of p in S , respectively, and use the regularity of 

X to show that {Int B: BE B} is a corresponding family in x. -I 
(b) 

c (X) d (X) • 
Only TI (X) :s; 2 needs proof. However c (X) :s; d (X) is always 

valid, and the regularity of X, in view of 2.7(a), implies 

~(X) s 2d(X)~ Compare this with the Corollary of 2.4! ~ 

2.8. Let X E T2 and p E X. T!En 

(a) lJ)w (X) s p (X) ; 

(b} 1'Jw(X) S nw(X); 

(c) ~c(p,X) ~ W(p,X) •L(X). 

PROOF. 

(a) In a Hausdorff space every point is equal to the intersection of 
,,, 

its regular closed neighbo11rhoods • 

(b) Let N be a network for X of minimal cardinality. Consider the set 
' 

M of those pairs m = <N1 ,N2 > € N x N, for which there are disjoint 

open sets G1 and G2 such that N1 c G1 and N2 c G2 • For each m EM 

base for x. Indeed, let x 1 and x 2 be distinct points of X, then 

• 
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2.9. 

they have 

choose N1 
x

2 
e: N2 c 

G (m) 
x2 € 2 

• 

disjoint neighbourhoods o1 and o2 , respectively. Let us 

and N
2 

from Nin such a way that x 1 E N1 c o 1 and 
(m) 

u2• Then m = <N1,N2> € M, hence we have x 1 E G1 and 

c X\Gim) • Since IM I ~ nw (X) , we are done. ~ 

REMARK. Observe that the $-base we have produced has the stronger pro

perty that for any pair of distinct points of X it has a member which 

contains the first but even its closure misses the second. ~ 

(c) Let Ube an arbitrary open neighbourhood of p. Since {p} is equal 

to the intersection of all closed neighbourhoods of p, their com

plements cover X\U. But L(X\U) ~ L(X), hence we can find a family 

V0 of closed neighbot1rhoods of p with I V
0 

I $ L (X) such that 

nvu Cu. Now, if u is 1'J-base at p with lUI = lJ){p,X), then put 

V = U{Vu: u € U}. Clearly {p} = nv and IVI lJ)(p,X)•L(X). -I 

The proofs of the above inequalities can be considered elementary in 

that they all boiled down to more or less straightforward counting 

arguments. To prove 011r following results, however, stronger methods 

are needed. Another unifying feat11re of them is that many of them in

volve hereditaey versions of some of the basic cardinal functions. 

Therefore we first prove a few easy results concer11ing the hereditary 

versions of c, Land d. 

* (a) C (X) = s (X); 
• 

* (b) L (X) = h (X); 

* (c) d (X} = z (X) .. 

PROOF. 

(a) 

(b) If S is right separated in type K, where K is a regular cardinal 

then the proper initial segments of S fo1.m an open cover of S with 

no subcover of cardinality <K, hence L (S) = K. But clearly 

' 

h (X) = sup{t<::: K is regulal': and 3S c: X right separated in type K}, 

hence we obtain h(X) 

Now assume that L(S) 

subcover of size SK". 

* L (X). 
+ 

~ K , and let G be an open cover of s with no 

By transfinite induction we sel.e,ct points pt e s 



• 
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+ 
€ G for~€ K as follows. Suppose t € 

+ 
K and and open sets G~ 

for all n E ~ we have already picked p 
n 

and G • By our ass1.1mption n 
{G: n €~}does not covers, hence we can pick 

n 

S\ll{G : 
n 

n e: 

and then choose G~ €Gin such a wat that p~ ~ G~. Clearly, 

thus we also * have L {X) s; h (X} , because * either L (X) = w or 

* + + L (X) = sup{K : 3Y c X with L(Y) ~ K }. 

and 

(c) Now, if Sis left separated in type K, where K is regular, then 

obvious.ly d (S} = K, hence - similarly as in (b) - we get z (X) s 

* d (X). 

On the other hand, if d (S) = K we can select a left separated sub-

space S' of S of type K as follows. Suppose 

have chosen points 

hence we can pick 

p € 
n s. Then {p: n E ~} 

n 

~EK and for n € 

is not dense in S , 

• 

* Obviously S' 

z (X) • -I 
K} is as required. Thus we get d {X) s 

we 

2.10. (a) Tr X € T2 , then 

lJ> (X) ~ h (X). 
C 

(b) If X € T 
3 

, -then 

h(x) = ~(X)•L(X). 

PROOF. (a) Let p E X with tµ C (p, X) = K,. moreover {F;: ~ € K} be closed 

neighbourhoods of p such that 
• 
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2.11. 

By transfinite induction we define for each v EK 

and an ordinal ~v ~ K. Suppose we have 

µ e: v e K. Then 

{p} ~ n{F~: µ e v}, 
l.l 

hence we can choose 

Pv c n{F~: µ e v}\{p} 
µ 

defined p 
µ 

a point pv EX 

and~ for µ 

and tv e K such that pvt F~v· Clearly, then v #µimplies Pv ~ Pµ 

and {p: v e: K} is right separated. -I 
" (b) Since X E: T 

3
, every closed subset of X is the intersection of its 

closed neighbourhoods, hence the same proof as in (a) yields 

'I' (X) ~ h (X) , while L (X) S: h (X} is iromediate fran 2. 9 {b) , 
C 

'I' (X) • L (X) = K • 

Thus, 1.ising 2.9(b) again, it suffices to show that X is hereditary 

K-Lindel5f, which in turn follows if every open subspace of X is K

Lindelof. But by ass11mption every open set in X is the union of at 

most !'(X) ~ K closed sets, which are all K-Lindelof, hence so is 

their union. -I 
A 

~(X},.. s o(X) :S min{lxlz(x), w(X)h(X) } .. 

PROOF. First, if Sc Xis discrete, then 

0 (S} = 2 1 s I s O (X) • 

To prove the other two inequalities put z (X) = K and h (X) = A. By 

2,. 9 (c) , every closed subset F of Xis of the fc:rm F = A, where A e: [X]~K, 

hence o (X) :S l[X]~ l = lx1K. Next consider an open base B of x with 

I BI ~ w (X). In view of 2 .. 9 Cb) then every open subset of x is the union 

of at most A members of 8, hence 

Discrete subspaces play a very important role in our investigations. 

The following results Y. ield methods to deal wi'th th . em. 

• 



• 
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2.12. If Xis both right and left separated then there is an Sc X with 

Isl= lxl which is discrete. 

• 

PROOF. Suppose the well-orderings ~ 1 and ~ 2 right and left separate X, 

respectively. By the Erdos-Dushnik-Miller theorem 0.4(a) there is 

Sc X with Isl= lxl such that ~ 1 and -<2 coincide on s. But then Sis 

discrete. ~ 

2.13. Let Ube an open cover of X and assume that X has no discrete subspace 

of cardinality K. Then there are VE [UJ<K and SE [x]<K such that 

-X = UV us. 

PROOF. By transfinite induction we pick points p~ € 

as follows. Suppose we have already picked {p: n E 
n 

and 

x ~ U{u: n e ~} u {p: n E ~}. 
n n 

Then we choose 

x\ (LJ{u : 
n 

n € ~} u {p: 
n 

x and sets u~ EU 

~} and {u: n E ~} 
n 

and U with Clearly, then n ~~implies p ~ 
n 

p~, moreover 

the chosen points fo.tm a discrete subspace. Hence, by our assi1mption, 

this proced1.1re must stop before step K. -I 

2.14. If x € T
2 

contains no discrete subspace of cardinality K, then for each 

p € X either W(p,X) <Kor a(p,X\{p}) < K. 

PROOF. Let V be a raroily of closed neighbourhoods of p such that {p} = 
nV. Then {x\V: v E V} is an open cover of x\{p}, hence 2.13 implies 

the existence 

Now, -if p € A, then 

{X\A} yields a 

-we have a(p,X\{p}) < K, while if pt A, then 

w-base at p of size <K. ~ 

• 
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Now we t,11rn to the "non-elementa:ry'' results mentioned above. There have 

been three main methods of proof for these in the literature: 

1) ramification arg11ments (cf. [dG 1965] or [HJ 1967]) 

2) partition arg1.wents ( e .. g. [BJ 1969 a]) 
V 

3) ''closure'' argtlments ([SA 1972J or [PO 1974]) 

the second method beinq actually a hidden case of the others, which can 

both be used to prove the corresponding partition relations. The first 

method is perhaps the most intuitive, while the other two are in general 

much more elegant and simple in presentation. For each particular re

sult I have chosen one method of proof that to my taste was the simpl.

est and most efficient .. However, the reader is advised to try proving 

these results also by the other methods. 

2.15. (a) If X e r1, then 

PROOF (both for (a) and (b)) • Ass11me that, on the 

where K = s (X) ·$ (X) in case (a) (K = c (X) •x (X) in 

K 
contrary, lxt > 2, 

case (b)). Let~ be 

a fixed linear ordering of x. For each p € X we let {u {p): a e K} be 
a 

a .P--base ( a neighbo,1rhood base), at p. Now, if p,q E: X and p-< q we 

put 

t (p,q) = min{a e K: q ;. U (p)}, 
a 

n(p,q) =min{f3e JC: pf. u
13

(q)}, 

(or, in case {b), we pick ~{p,q} = a and11(p 1 q) =Bin such a way that 

-+ K x K defined by 

f{{p,q}) = <t{p,q),~(p,q)> 

yields a partition 

partition relation 

2 of [x] 

0.4(b): 

into K pieces, hence from lxJ > 2K and the 
.K+ +2. 
{2 ) -+ (K ) ·, we obtain the existence of 

K 

• 



• 

a pair <a., B> € K x K 

n(p,q) = 8 whenever 

and a set Y € 

2 
{p,q} € [Y] . 

G = U (p) n U0 (p). p a. µ 
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+ 
[x]K such that ~(p,q) = a and 

Let us now put for each p E Y 

It is obvious then that if p,q 

(or, in case 

E Y and p ~ q, then pi G and 
q q ¢ G p 

thus • in case 

(b) , that G n G 
p q 

(a) Y is discrete 

=~,while each G #~since p 
p 

and in case (b) {G: p E Y} is 

with Jyf > K, which is a contradiction. ~ 
p 

e: G ) ; 
p -

cellular 

REMARK. Our proof for case (b) actually yields the following stronger 

result: If XE T
2

, then 

Moreover, even here, instead of x(p,X) s A it suffices to assume that 

there is a local ll'-base B at every p such tl1at 
p 

linked, i.e. any two of its members intersect. 

IB Is 
p 

11. and B 
p 

• 1S 

Another simjlar result with basically the same proof is this: If Xis 

normal then every disjoint family of closed sets of character SA in X 

has cardinality s 2c (X) •A. 

2 16 T h I X r <_ 2h ( X) • • If X e: 2 , t en 

PROOF. Immediate from 2.15 (a) and 2.lO(a). 

2. 1 7 If X e: T 2 , then 

PROOF. Put s (X) = K and asst.1rne that z (X) > 2K. Then X contains a left-

separated subspace Y K 
with I YI > 2 . Applying 2.16 to Y we get a right-

separated subspace s c Y with Is I > k. But then s is both right and 

left separated, hence by 2.12 it contains a discrete subspace D with 

lol = Isl > K, which is a contradiction. ~ 

Next we will use a ramification arg1Jrnent to give a strengthening of 

2.lS(a) for Hausdorff spaces. For this however, it will be convenient 
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to introduce here a new cardinal function. Let us note first that (for 

T X) e Can obviously define ~11 (X) as the smallest cardinal a ·· 
1 

space w . 'I' 

K such that (X) is discrete. 
K 

2.18. DEFINITION .. Let X € Tl' then 

°'l (X) = min{K: (X) is left separated}. 
K 

Clearly, we always have tP.t(X) ~ iJl(X). 

2 .19 .. For each X E: T we have 
2 

con

tains a discrete subspace of cardinality K+ .. Now, by our assumption, 

we can fix a well-ordering~ of X and for each point p EX a family 

of open neighbo11rhoods {v t (p): t e K} such that 

+ Next we build a ra.mi fication system of height K on X. In order to have 

tra.n.sparent notation, however, we first introduce some operations on 

subsets of X. Thus let A c X with I A I ~ 2. We denote by x O (A) the first 
1 . 

and by x · (A) the second rnember of A under ~, moreover we put F (A) = 
{ 0 1 } = x (A), x (A) .. Since X is Ha11sdorff, we can choose closed sets 

a1 (A) in X for i e 2 such that 
' 

1 i O 1 
x (A} t E (A) for i e 2, and E (A) u E (A)= x. 

Finally, for any t E K and i € 2 we put 

i n E (A): 

Since i 
X (A) -{ Y for each ye A\F(A), the above definitions clearly 

imply that 

A\F{A) = U{O (A): n € K}. 
n 

• 



For the sake of completeness we put F(A) = A and n (A) =~for all 
n 
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n € K whenever IAI ~ 1. Now we define the sets S and F of our ram-
+ t t 

fication system for all sequences t E KV by transfinite induction as 

follows. We put - X - . If st has been defined then we let F = F(S), 
t t 

and for each n EK we let 

Finally, if\) E 
+ . 

K 1.S a limit ordinal and S 
u has already been defined 

for each u E 
\) 

K'-=I, then 

= n{s t : µ E 
t l.1 

we put for any t E Kv 

v}. 

It is easy to see that the conditions of the rarni fication le1r1i11a apply, 
K+ 

hence we can find a sequence t EK such that for each v EK we have 

Now, for every v E 

tion 

+ 
K we define i{v) E 2 and ~(v) EK from the rela-

and put 

= i (V) (S ) 
X t ~V • 

Clearly, there is a fixed pair <i, ~> E 2 x K such that if a = 
+ i(v) = i and ~(v) =~},then la!= K. We claim that the set 

{v e: 

{p: 
·" 

+ 
K : 

v Ea} is discrete in x. Indeed, 
• • 
l. 

for each v Ea we have p = 
\) 

l. 
X (Strv) 

E (Sttv), while pµ E for each l.1 > v, moreover 

implies that p t V~(p) for v E 
" "=- µ 

both right and left separated in 

indices. -I 

a and v <µ,hence {p: v Ea} is 
\) 

the well-ordering induced by its 
. .,' 

' 



24 

REMARK. The above proof actually yields the following somewhat stronger 
).. 

result: If X € T
2

, K is regular, lxl > I:{2 : A < K} and X has a well-

ordering ~ such that for each p € X we can choose a system of neigh

bourhoods V with l V f < K and q I. nv for each q -< p, then X has a 
p p p 

discrete subspace of cardinality K. I don't know whether the assumption 

on the regularity of K can be omitted or not. 

2.20. For each x € T there is an s c x such that 
2 

• 

, Isl s; 2s(X) and x = U{T: Te [s]Ss(X) }. 

Consequently, we have 

PROOF. Let us put s(X) = K. By a straightforward transfinite induction 

we can construct a subspace S = {pt: t E cf>} c X for some ordinal cp such 

that: 

(a) no p~ E: S is in the clos1.Jre of at most K-many previous p 's · n , 
(b) every point in X is in the clos11re of at most K-many points from s, 

- SK 
·i.e. X = U{T: T € [SJ }. Now, it suffices to show that Isl s 2K. 

Let us denote the initial segment con-

tains no discrete subspace of size K , hence 2.14 applied to s~ and 

pt, in view of (a), yields ~(p~,St) s K. 

f.e.(S} sic, hence by 2.19 Isl s 2K •. 

I l 2 s (X} . 
Now ·. X · S 2 follows easily from X = 

In other words, we have 

-I 

2.21. If Xe T2 , then o(X) ~ expexp s(X). 

PROOF. Indeed, from 2.11, 2.20 and 2.17 we obtain 

I I z (X) ,exp s (X) · 
o(X) S X s (expexps(X)) = expexps(X). -I 

· 2.22. (a} If X c: T
2

, t:hen 

' 
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(b) If X e: T 
3 

, then 

PROOF. 

(a} We claim that the family 

where Sis chosen as in 2.20 separates the points of X, hence 

{X\T: TE M} is a ~-base of X of cardinality at most 2s(X). Indeed, 

let p,q EX, p ~ q, moreover Ube a neighbourhood of p with -q (. u. Now 
- -

let Te M be such that p ET, then we also have p EU n T, but clearly 

u n Te Mand qt u n T. -I 

(b) In this case we claim that the above family Mis a network for x. 
In fact, if p EU with U open in X, then by the regularity of X we can 

take a neighbourhood V of p such that V c U. If we take again a T e: ,~ 
-

with p E T, then p e: T n V c U and T n V e: M. -I 

Next we give two rather easy results, which do not have much to do with 

the above, but they still fit best here. 

2.23. (a) If Xis hereditarily collectionwise Hausdorff, then 

c(X) = s(X). 

(b) If Xis hereditarily paracompact, then 

c(X) = h(X). 

PROOF. 
-

(a) Suppose that D c Xis discrete. Then D' = D\D is nowhere dense in 

X, since for any non-empty open set G if G n D' ~~then G n D ~ ~ 

as well, and for any p E G n D there is an open neighbourhood U 
p 

with D nu = {p}, hence either G 
p 

open subset of G which misses D'. 

n U\{p} or {p} is a non-empty 

Now, look at the subspace Y = X\D' 

of X, then Y is dense in X, moreover D c Y is closed discrete in Y. · 

But Y is collectionwise Hausdorff, hence for each p e D there is 

an open V 3 p in Y such that p-:/= q implies V n V = 0.. Therefore, 
p p q 



:26 

using 2.6(a), we have 

c(X) = c(Y) ~ 1D1- ~ 

• we have actually shown the following somewhat stronger result: ---
If Dis a discrete subspace of X then its members can be separated by 

pairwise disjoint neighbo11rhoods in X. 

(b) It suffices to show that if h(X) > K then c(X) > K as well. But if 

h{X) > K, then by 2.9 (b) we have a Y c X with L(Y) > K. Thus there 
<K 

is an open (in X) cover G of Y such that no G• E [GJ- covers Y. 

Let us put G = UG. Since G is paracompact, its open cover G has a 

a-disjoint (even a-discrete in G) refinement 

LJ = U{U: n E w}. 
n 

By 01Jr assumption then we must have I U I > K , hence 

some n E w, but U is cellular in X. 
n 

I u ! n 
> K for 

Now we leave the hereditary versions and turn to another bunch of re

sults, most of which yield upper bounds for the cardinality of spaces 

in ter111s of their Lindelof n11r1iber and some other cardinal functions. 

Of course the, by now well-konwn, celebrated theorem of Archangelskii 

is the paradigm of these results. We shall start with a set-theoretical 
. 

lert1t11a that will be crucial in what follows. 

2. 24. Let· A S K < lJ be infinite cardinals such that ~ = K, moreover 
' 

<11. SK 
G: [µ] -+ [µ] be a set mapping over ll• 

(a) There exists a set A€ [µJK which is ciosed with respect to G. 
+ 

(b) If 1,.1 =r. K and A S p S K with p a regular cardinal , t:hen for each 

t € K+ there is an n e: K+\t such that:cf(n) = p and pis closed with 

respect to G. 

PROOF. 

{a) Since we have A :s; cf (K), hence A < K if K is singu-

lar. Consequently we can always choose a regular cardinal p with 

.XS PS K. Now we define by transfinite induction sets A e: [µ]K 
K a 

for all a E P as follows. Let Ao E: [ µ J be arbi tra:ry and ass11111e 
K 

that AB e [1,.1] has been defined for each f3 € ex with a fixed a E p. 

• 



, 

If a is limit, put 

and if a= B +1, put 

A = U{G(H): H € 
a 

• 

Since p :S:: K and K'"" 

A= U{A: a E p}. 
a 

= K.we clearly have IA I= 
a. 
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K. Now put -· 

Clearly IA!= K 

G. Indeed, if H 

as well. 
<A 

€ [A] , 

We claim that A is closed with respect to 

[A ] <A then A s p = cf (p) implies that H E a 

for some a E p, hence 

G(H) c A 1 c A. ~ a+ 

(b) The proof is quite similar to that of (a), except that now we de-

fine a strictly increasing sequence of ordinals~ 
a 

of the arbitrary 

for a limit and 

sets A) such that 
a 

, 

U{G(H): HE 

Clearly, then n = U{~: a E p} will 
a 

~Q = max{~, K}, 

be as required. 

+ 
€ K 

-I 

(instead 

Next we prove a very general and strong result, which accordingly has 

a rather weird fo~mulation. Before doing that however it will be con

venient to introduce some new notation. 

2.25. DEFINITION. Let X be a T
1
-space, Y 1.ts subspace and F c X an arbitrary 

set. Then ~(FrY,X), the pseudo-character of F relative to Yin X, is 

the smallest cardinality of a family U of open sets in X such that 

F C nu and F n y =nun Y. 

Note that we always have 

, 
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2.26.Let: X E T1 and ). s K be infinite 

t{X) < K; let Y c X be such that 

cardinals such that 
<K 

for each s E [Y]-

A 
~= K, and 

• 

w cs ry ,x) -s Kand Sis A-compact. 

Then 

z(Y) SK. 

PROOF. Assume, indirectly, that z(Y) > K, hence Y contains a left 

separated subspace 0£ cardinality K+. As our condition on Y is clearly 

inherited by its subspaces, we can actually assume that Y itself is 

le£t separated in type K+, i.e. Y = {p: a€ K+} with a one-one index
a 

ing and for each a e K+ 

is closed in Y. Thus if we put 

F n Y = s • Moreover, in view a a 

• 

+ 

F 
a 

of 

-= S (closure taken in X), then a. 
our assumption about Y, we have 

for each a€ K. • Consequently we can fix a family of open sets u 
a 

such 
that I u I a 

SK, F C nu and nu n y = F n y = s. 
a. a a. a a Put for any + a € K 

clearly IV Is K as well. 
a 

Next we define a set 

ASK< K+ implies I 

.[y] <). [ ]SK <A mapping G: -+ Y • • Let I e:: [Y] , then 

<). 
{V e [V ( > J : a I 

+ 
c: Sa(I) for some a(I) e. K • Let us put WI= 

I c UV & Y\UV :/- fA}, and for each ti E Ct1
1 

pick a point 

q(V) € Y\UV. 

Now, final.ly, we can put 

• 



• 

• since A 
K\C' = K , we have 

I G (I) I s ICJJ I s K, 
I 

hence G is as desired . 
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Next we choose a regular cardinal p such that A~ p ~Kand t(X) < p. 

Such a p exists because either K is regular, and then K itself can 

serve as such a P, or K is singular, in which case A< K, as we have 

shown in the proof of 2.24{a), and then we can put 

Now our set mapping G and the cardinals Asps K satisfy the condi

tions of 2.24(b), with a little, but innocent, abuse of notation, hence 
+ we can apply it to obtain a a E K such that cf (8) = p and s

8 
is closed 

with respect to G ( the role of ~ is ir1,1naterial here) • 

Let us note that t (X) < p = cf { S) implies 

Now for each a EB we have Pe 
pick a Va E ua such that Ps I 

t F, hence by the choice 
a 

v. But F c V, hence 
a a a 

U{v : a c: B} 
a 

F = U{F: a ES}, 
8 a 

-

of 

moreover, FB = s
6 

is A-compact, therefore there is an IE 

that 

It is clear from our construction that 

V = {v: p EI} E 
a a 

' 

U we can 
a 

such 

moreover PS¢ UV, hence V E (I} • But then q(V) e: G(I) was chosen 
I 

• in 
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such a way that 

contradicting that s8 is closed with respect to G. -I 

2. 27. If X € T 
2

, t:hen 

• 

PROOF. Let us putµ= L(X) •w(X)•t(X), A=µ+, and K = 2µ; then we have 

K~ = (2µ) µ = K, X is A-compact, as being µ+-compact is the same as be

ing µ-Lindelof, and t (X) s µ < K:. Next we are going to show that for 

each s € [X]SK 

i h . [ ]SK F rs t, owever, we show that 1.f s € X then Isl :SK as well. Since 

t(X) s µ implies 

- - $µ S = U{T: T ~ (S] }, 

it suffices to show that if T e [x]sµ then l T J s K, as I [s]su I s Kir = K. 

But from 2.8(a) and 2 .. 6(d) we have 
• 

mo~eover from 2.3 we get 
• 

- -
ITI s \f,w(T)L(T)•\){T) s Kµ = K. 

-Now, :SK for an S € [X] , consider for each p e: S a local $-base 

r V I p 
:S µ, and put 

V = U{V : p e s}. 
p 

Then f V I s I S I • µ :S K, hence we have 

V with 
p 



• 

-
as well. Thus w(S,X) ~ K will follow if we can show that 

-n(JJ = s 

for 

W = {UU: U € [VJ~u & -s C UU}. 

-Consider any q E X\S, then for each p e 

V • 
p 

Since 

-L(S) ~ L{X) S µ, 

-
S there is a V £ 

p V with p 
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the open cover {v: p Es} of s has a subcover u with IUI s u. But then p 
lJU E W, while q ¢ UU, hence indeed s = nw. 
Thus we see that X together with A and K, moreover with Y = x 1 satisfy 

the conditions of 2 .. 26, consequently we have 

d(X) $; z(X) SK. 

- SK But then X = S for an SE [X] , hence lxl s K according to what we 

have shown above- -I 

COROLLARY. (Archangelskii' s theorem) • If X E T 2 , then 

V 
A.V. Archangelskii has raised the very natural problem whether lxl has 

a similar upper bound in terms of L(X)•w(x). It is easy to see that if 

X t:; T
1 

and L(X)•$(X) < K, where K is a measurable cardinal, then 

!xi < K as well .. On the other hand example 7.2 shows that if 1..1 is the 

first measureable cardinal, then for each K < 1.1 there is a T1-space X 

such that L(X)•w{X) = w, but lxl > K. Moreover, s. Shelah has recently 

proved the consistency of ''ZFC +CH+ there exists a regular space X with· 

L(X)•w(X) =wand !XI = w 2 
This, however, leaves open an eno:rmous 

w + gap between w2 (or (2) , if you 
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like) and the first measurable cardinal. 

We will no,,, present several results which can be considered as partial 

solutions of Archengelskii's problem in that they yield upper bounds 

for lxl in terms of either L(X)•$(X) plus some additional information 

about X or some "L(X} •$ (X)-like'' expression. 

2.28. If X £ T1 , then 

PI()OF. Let K = p (X) •tf, 
6 

(X), then (cf.. 1.14) we can choose for each 

p f X a system of open neighbourhoods {Ua (p): a. E K} such that 

n{u (p): a ( K} = {p}, moreover p E u (q) < ► q e: u (p) • Assume now that 
a K a. 2 a 

lxl > 2, and for each pair {p,q} E [X] put 

f({p,q}) = min{a € K : q ;_ U (p) } . 
a 

+ 
Using (2K}+ ~ (K+) 2 {cf. (0.4.b)) we obtain a homogeneous H c [X]K 

K 

for the partition f of [x]2 , 1 .. e. we have a fixed a e: K such that 

f ({p,q}) = o. whenever {p,q} e: [H]2 • Now let s => H be maximal with the 

property that f ([s] 2) = {a}, which exists by Zorn• s len:una. But then 

for each q e X we have a p E s with q e: U (p), where I u (p) n s l = 1, 
a a 

hflnce q is not an accumulation point of S, i.e. s is closed discrete 

with 

+ K , 

a. contradiction to p(X) ~ K. -1 

PROOF. (a) Let us putL(X) == A and psw(X) = K'. Then, by definition, we have 

a ♦-base 8 of X such that ord.(8) = K .. Next we shall define a set map-
. . .. ~A .. S:KA ~ A 

ping G: (X] -+ [xJ .. For any A e: [x] K put 



and 

= {U E 

Since ord (B) A A 
as well. Now for each U e: 11/,A pick a point p (U) E X\UU and put 

Then according to 011r above remarks I G (A) I A 
:;; K • 
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A 
K 

Next we define subsets 

cursive fo.i:mula: 

A of X for all a E 
Ct 

"\ + . 
I\ using the following re-

It is shown by a strajgbtforward transfinite induction then that 

Let us put 

clearly ls I 
A 

K • We claim that Sis dense in x. 
Ass11me, on 

for each p 

find a set 

the contrary, that x\s ~~,and let q € X\S. Let us choose 

Es ·a set B EB with qt B. Since L(S) :;; L(X) = A, we can 
- :s;). p p 

TE [SJ such that 

LJ = {B: p ET} 
p 

- -covers s. For each p ET we have p ES n B 
p 

-:/: {if, hence Sn 

well. But then for each p € T there is an a 
p 

e: A+ with 

A n B #- ~, 
a P p 

• 

B 
p 

hence because !Tl 
+ 

s A and the sets A are increasing, there is a fixed 
a 

• 

a E A with 
• 



• 
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' 

A n B ~ ~ (). p 

for all p € T. But then q t UU iniplies 

u € u A , 
a. 

hence 

contradicting that p{U) E: X\UU. -I 
(b) Let us use the notations from the proof of (a). Since Sis dense 

• in X every BE: B intersects it, hence using ord(B) s K, 

A 
K • -I 

(c) From 2. 3 and the above result we get 

In the following two results the cardinal function p(X) will take the 

place of L(X). Therefore we first present a result concerning p{X) that 

is of independent interest • 

• 

2. 30. If X E: Tl, then. 

s(X) S p(X) •!(X). 

PROOF. Let D c X be a discrete subspace of x. we can pick for each 

p E: D an open neighbourhood UP such that UP n D = { p} • Let 11s put 

U = U{U: p ED}. 
p 

Then U is open, hence it can be written as 

U = U{F: a e !(X)}, 
ex 

where each F is closed. We claim that the set D n F is also closed a a 

• 



• 

• 
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for any a E '¥ (X). Indeed, if p I.. D n F , then either p e: X\F or 
o. a 

PE F \D c U, hence p € U \{q} for some q ED, thus in either case p (). q 
has a neighbourhood that misses D n F. But then D n F is closed dis-

a a 
crete, therefore 

ID I s E{lonF I: 
a. a € 'I' {X) } S p (X) • '¥ (X) • - -I 

2. 31. If X E T 
1

, then 

PROOF. Applying 2.lS(a) and 2.30 we get 

In order to prove our next analogous result we again need a lemma of 

independent interest, which therefore we form~late and prove separate

ly. 

2.32. Let XE T1 and Gbe an open cover of Xsuch that p(X) SK and 

ord (G) s; K. Then G has a su'bcover V of cardinality at most K. 

PROOF. Let us consider the family 

S = {s c X: (VG e: G) (ls n GI s 1} } • 

Clearly Sis closed with respect to increasing unions of its members, 

hence using Zorr1' s le11i111a we can find a set S E S which is maximal in 

S. Now, for arbitrary p € X we have a G e: G with p E G, and I G n S I S 1 , 

hence Sis closed discrete in X, consequently Isl s K. Let us put 

V ={Ge: G: G n s ~ ~}. 

Since ord(G) s K, we have then 

we claim that V covers x. Indeed, for any p € X\S by the maximality 



of s we have a G t G with p E G and G n S :/- ~, and then G E V as 

well .. 

2. 33 If X E T 1' then 

PROOF. Let us put K = p (X) • psw {X) and 8 be a $-base of X with 

o:rd (8) ~ K. For any p e X we put 

8 • {B t 8: p € B}, 
p 

• 

then 15 I ~ K .. Since i,i(p,X) s; K, the complement of {p}, i.e. x\{p} is 
p 

the union of at most K closed sets in X, consequently we also have 

p(X\{p}) S: K .. 

Since 8 is a ♦-base we have for each p E'. X 

x\{p} • U{B\B ); 
p 

but then ord (8\8 ) :£ ord (8) s K and p (X\ {p}) s K imply, in view of 
p 

2 .. l2, the existence of a 

UC .. 
p 

..,_•have lli l,\C I ~Kand 8 n C =~for each p € x, moreover if 
p p p p 

p :rl, q then q f: B for some B E CP, hence 

aut then, applying Burke's lemma, 0.8, for the family of pairs 

( <I ,C >: p € X} we obtain that I xl :S 2K. -I 
p p 

Mow we turn to proving a result which yields a common generalization 

of tbcl inequa.l.ity 2 .. 15(b), Ix\ s: ex.p(c{X) •x(X)), and of Archangelskii 's 

1·· .·. lity Ix{ s; .xp(L(X)•X{X}), but unfortunately only for x e: T
4

• 

It is ·.· ••X'Y to intro&lice some definitions for this. 
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2.34 DEFINITION. A family S of subsets of Sis said to be a weak cover of x 

if X = US, i.e: US is dense in X. Similarly, if Ac X the fam,ily S is 

said to be a weak cover of A in X if A c US. We say that x is weakly 

K-Lindelof, if every open cover of X has a weak subcover of cardinality 

at most K. The weak Lindelof number wL{X) of Xis then defined as 

• 

as 

wL(X) = min{K: Xis weakly K-Lindelof} . 

Now wL(X) ~ L(X) is trivial, however we also have 

wL(X) ~ c(X). 

Indeed, let G be any open cover of X, and C be a maximal cellular fam

ily refining G. It follows immediately from the maximality of C that 

UC is dense in X. Thus if we choose for each C E C a Ge E G with 

Cc Ge, then clearly 

• 

is a weak subcover of G of cardinality at most c (X). -I 

The following result is again a lettaria of independent interest to be 

used in the proof of our above mentioned general theorem-
• 

2. 35 Let x € T 
4 

and put wL (X) = K. Then every x-open cover G of a closed 

set F c X has a weak subcover of F of size at most K. 

PROOF. Let 1,Js put G = UG, then F c G, hence by the n0xrnali ty of X we 

can find an open set U such that 

-F C u C u C G. 

Therefore Gu {x\u} is an open cover of x, and thus has a weak sub-

cover of cardinality at most K, 
SK G• u {x\u} for some G• E [GJ . 

x, UG• must be dense in u, i.e. 

F C u C lJ(; I • -I 

which we can ass11me has the fo:rm 
-But then, as UG' u (X\U) is dense in 
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2. 36 If X e T 4 , then 

• 

PROOF. Let us putµ= wL(X)•x(X), A= 

choose for each p e X a neighbo,lrhood 

over write for any Ac X 

U = U{U : p € A}. 
A p 

We are going to define a set mapping 

<A SK 
G: [X] -+ [X] 

as follows. For 
<A 

any A€ [x] put 

then for each U e VA choose a point 

p(U) € x\00. 

+ µ and K = 2µ. Then A K'?' = K. I-Jext 

base U with IU I s 
p p 

x(x), more-

Then I UA I s IAf •x (X) s µ implies IV A I s 2l.1 = K, hence if we put 

then, using x(X) s µ and 2.5, G will 

[x]SK 
be'applied to obtain a set A E 

' 

be as required. Now 2.24(a) can 

that is closed with respect to G. 

We claim th.at A is equal to X. Assl,lllle , on the contrary, that p e: X \A ~ ~ • 

Let \JS xiote f1Jrthermore that since 

-BC G{B) CA 

hold$ for each B € [A]sµ and t(X) s x(x) s 1,1, the.set A is closed in x. 

Consequently, as X is regular, we can find open sets U and V such that 

p € u, Ac V, and u n v = Jc). 

• 



' 

39 

Let us now choose for every point q € A a basic neighbourhood 

with V c V. Then 

V 
q 

e U 
q 

q 

{V: q EA} 
q 

fox.ins an open cover of A, hence by 2. 35 and the closedness of A, it 

has a weak subcover of A of size at most wL(X) :::;; µ. Thus we have a 

BE [A]Sµ with 

Ac U{v: 
q 

-q e B} c v c x\u. 

This shows that U = {vq: q EB} E VB, hence 

p(U) e G(B) c A, 

contradicting that 

p(U) e x\UU c x\A. ~ 

V 
Our next result due to Sapirovskii is another application of the clo-

sure method we have just used. It will play a very important role in 

the next chapter where the cardinal functions on special classes of 

spaces will be investigated. 

2.37 If Xe T3 is non-discrete, then 

PROOF. Let us put c(X) = ~, nx(X)µ =Kand A 
+ = l..l • Then K~ = K \.l = K • 

Note that since xis not discrete nx(X) ~ w, hence K is infinite. 

Next, for each p EX, fix a local 

= U{B: 
p 

p € A}. 

• We shall now define a set mapping 

,r-base B, 
p 

and for any set Ac X put 



<l 
Let A E: (X) and put 

= K, hence we can put 

where, as usual, each p{ll) is chosen from x\Dn. We can apply 2. 24 (a) 

. [ ]~" 1 d . th . to obtai,.n a set A e: X. that is c ose wi respect to G. We claJm 
-that A is dense in x. Assume, on the contrary, that X\A :r .e,. Since X 

is regular we can find a non-empty open set u such that 

u co c X\A. 

Now let U be a maximal disjoint fami.ly of members of BA disjoint from 
-o. Then 

Ac 00, 

baea,•e othet:Wise we could find a point 

p « A\00, 

and thu. ··S ,. -
µ, hence we can find a 

U E C8 • Consequently we 

• 
• 



• 

Therefore we have 

hence £ran 2.l(f) 

as well, and then using 2.7(b) we obtain 

COROI,I,ARY. If X t T 
3 

and the set 

y = {p EX: ~xcp,X) s K} 

is dense in X, then p(X) s Kc(X). 

PROOF. Indeed, by 2.6(a), (b) and (d) and 2.37 we have 

p(X) = p(Y) s nx(Y)c(X} .,,,. C (X) 
,;:::i K • -I 

We shall end this chapter with a somewhat isolated but nonetheless 

very interesting.result of E. van Douwen, that could be best fitted 

here. 
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2.38 If XE T
2 

and Aut(X) denotes the set of all aucohomeomorphisms of X, 

'then 

In particular, if Xis homogeneous, then 

1 X I ~ 2 ,r (X) • 

PROOF. Let B be a ~-base of X with )Bl s ir(X). For any h E Aut(X) we 

define a map 

• 



* h : B -+ P (B} ' 

ae follows. For all B E B 

* } h (B) = { C € B: C c h (B} • 

one-one, b,eca11se there are only 

maps from 8 into P (8) • 

Thus assume h
0

,h
1 

€ Aut (X) and h0 # h 1 • Then there is a point p e X 

with 

Let u0 and u1 be disjoint neighbourhoo,ds of q 0 and q 1 respectively, 

and choose an open neighbo11rhood V of p such that h 0 (V) c u0 and 

h1 {V) c u1• Now, if B € B is such that B c v, and such a B exists, then 

. * . * 
th• 1!Mllt;•rs of h 0 (B) are disjoint fr.01n those of h 1 (B) • Consequently 

t.. h* ( ) ..J, * ( •-• ,i,Etv·e • 0 B r h 1 · B) .. 

fte s ·•··· · · etatetaent now follows easily because fixing a point p of a 

. reneo:us space X, for each q E: X there is an h € Aut (X) such that 
q 



CHAPTER 3 

CARDINAL FUNCTIONS ON SPECIAL CLASSES OF SPACES 

• 

In this chapter we carry on our investigation of the interrelationships 

between cardinal functions on more restricted classes than in chapter 2. Of 

course it is rather arbitrary to draw a line in the hierarchy of spaces and 

say those below are general, those above are special. However in our case 

the results them~elves help in establishing this line by their special 

character on the classes T5 and C
2 

of hereditarily normal and compact Haus

dorff spaces, respectively. 

3.1. a) If XE T4 and D c Xis Closed discrete, ~hen 

21D I ::; p (X) • 

b) If x E T
5 

and D c x is discrete, then 

2 1D1 S p(X). 

PROOF. a) For each Ac D, using the normality of X we can find an open 

set UA with 

• 

and 

But then the map A~ UA from P(D) into RC(X) is clearly one-one. ~ 

-
b) As was shown in the proof of 2.23a) the set D' = D\D is nowhere 

dense in x, hence Y = X\D' is dense in X while Dis closed discrete 

in Y. But now Y ~ T
4

, hence we can apply a) to optain, also using 

2.6d), that 

p(X) = p(Y) 

• 
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Now we introduce three new local cardinal functions that will play a 

crucial role in the proof of our main results concerning T 5 spaces. 
V 

They have been first studied by Sapirovskii, who proved all these 

results, though our treatment is simpler than his . 
• 

3. 2. DEFINITION. Let X E T 3 , then for each closed set E c X we put 

• w (H,X) = min{IFI: F c RC(X) & H = nF} • 
p 

(Warning: the members of F do not have to be neighbourhoods of H!) 

In particular, if H = {p}, then we write 

Obviously since XE T
3 

we always have 

tµp {p,X) S tµ(p,X), 

moreover 

tµ (H,X) S tµ(H,X) 
p 

~ (p,X) instead of 
p 

tli ({p} ,x). 
p 

3.3. DEFINITION. For any X € T and p € X put 

t (p,X) = sup{a(p,K\{p}): p € K' c Kc x}. 
C 

Observe that K' c K implies that K is closed. 

3.4. Let XE T5 and ·p € K' c Kc x. There is a closed set H with 

pE:HcK and ~ (H,X) ~ t (p,X). 
p C 

PROOF. Putt (p,X) = K, then by definition 
C -

there is a set 

with p e: A. For each x E: A we can choose a regular closed neighbourhood 

F of p such that x ¢ F. Now M = n{F: x e A} is not quite the set H 
X X X 

we want because M does not have to be contained in K. The next trick, 

that makes very essential use of X c T
5 

will take care of this. Consid

er the subspace Y = X\(KnM), then F1 = MnY·and F2 = KnY are disjoint 

closed sets in Y, hence we can find disjoint open (in Y and therefore 

also in X) sets G1 and G2 with F1 c Gland F2 c G2. Now 1et us put 
-H = MAG2, then clearly 



• 

VJ (H,X) :s; K. p 

For every x €Awe have x t 

-

F ~ M, hence Ac K\M, and therefore 
X 

p e: Ac K\M = K\KnM = F
2 

c G
2

, 

consequently p EH. On the other hand we have 
• 

-
H = MnG2 c M\G1 c M\F1 = M\(X\KnM) = KnMcK, 

hence His as required. -I 

3. 5. DEFINITION. Let p be a non-iso.lated point in X. We say that the 

sequence of closed sets 

R ={K: a EK} 
• a 

is a well at p if 

(i) a e: 13 e: K implies Ks c Ka; 

(ii) 

(iii) 

p e: K' 
a 

n{K : et 
a 

Next we put 

for each a e: K; 
' 

E: K} = {p} • 

k(p,X) = min{IRI: Risa well at p} . 
• 

Note that k{p,X), when defined, is a regular cardinal as any cofinai 

subsystem of a well at pis again a well at p. 

Our next result shows that k(p,X) is defined if X € T
3

• 

3.6. If XE T and p Ex is non-isolated, then 
3 

k(p,X) S w(p,X). 

PROOF. Put W(p,X) =Kand consider 

neighbo11rhoods of p such that 

a system {u: 
Ct 

{p} = n{u : 
a 

a E K}. 

Next define for each a EK 

a EK} of open 
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• 

• 
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• 

We claim that {K: a€ K} is a 
a 

well at p. In fact, (i) and (iii) of 

3.5 are obviously true. If for some a e K we had p 

choose a neighbourhood U of p with 

UnK = {p}, 
a 

hence we had 

i.e. ~(p,X) s lal < K, a contradiction. -I 

K' then we could 
a 

3.7. If X € T5 and p €Xis non-isolated, then 

$ (p,X) S k(p,X).min{$(p,X) ,t (p,X)}. 
p C 

PROOF. If w(p,X) St (p,X), then the right-hand side of our inequality 
. C 

is, in view of 3. 6, equal to t.J, (p, X) , hence it is valid by our remark 

in 3.2. Thus we can ass11me that t (p,X) < w (p,X), and what we have 
C 

to prove is 

Let {K: a€ K} be a well at p of minimal cardinality. Then for each 
a • 

a EK we can apply 3.4 to obtain a closed set H with p 
a 

l/JP(Ha,X) s tc(p,X). But then {p} = n{K: a e K} implies 
a 

n{H: a e: K}, hence 
a 

' 

tµp (p,X) I{$ {B ,X): a EK} S k(p,X).t (p,X). 
p ct C 

E H 
a 

{p} = 

-I 

CK 
a 

and 

3.8. Ass,1iz;4c X E T5 , P is a singular butz not strong limit cardinal (i.e. 

there is a A< p with 2>- > p) and p(X} Sp. Then for each p € X we have 

tJ,p (p,X) < p • • 

PROOF. Let p € X be arbitrary. If lJ,(p,X) < p, then by 3.2 we are done. 
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Thus in what follows we assume ~(p,X) = p. Next we distinguish two 

cases a) and b). 

a) For each closed set K with p € K' we have 

~(p,K) = $(p,X) = p. 

Let us put k(p,X) = K, then by 3.6 we have Ks p, moreover K is 

always regular, hence actually K < p. 
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A 
Since 2 > p, by 3.1b) we have no discrete subspace of X of cardinality 

A. Thus if we take any closed set K with p EK', then using 2.14 we 

get that either $(p,K) < A or a(p,K\{p}) <A.Now the first case can

not happen, therefore we have a(p,K\{p}) < A for every closed set K 

with p € K', hence t (p,X) s A. 
C 

But then we get from 3.7 that 

~ {p,X) s k{p,X).t (p,X) ~ K.A < p. 
p C 

b) There exists a closed set K with p € K' and 'tJ>(p,K) < p. Using the 

regularity of X we can then find regular closed neighbourhoods 

{F: a€~} of pin X, where*= $(p,K), such that 
Cl 

n{F: a€$} n K = {p}. 
a 

Now put Y = X\{p} and H1 = KnY, H2 = n{Fa: a€ w} n Y. Then Y is 

normal, moreover H1 and H2 are disjoint closed sets in Y, hence they 

have disjoint open (in X) neighbourhoods G1 and G2 , respectively. Now 

we have p E K\{p} 

n{F: 
Cl 

C G 
1 

on one hand and 

c n{F: 
a 

on the other hand, hence 

{p} = n{F: 
(X. 

consequently 

n{F: 
a 

• 
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3.9. Let X c T5 and p(X) Sp, a singular but no-t strong limit cardinal. 

• 

Then 

PROOF. Indeed using 3.8 we can find for each p EX a family 

F e [RC(X)]<p with 
p 

{p} = nF. p -I 

In order to see the strength of this result we have to consider 

special ass11mptions about the behaviour of the exponentiation func

tion 2"'. Let us denote by S (K) the following statement: 2K = p is 
A singular and 2 is strictly increasing for cofinally many A< p. It 

is well-known that S(K) is consistent with ZFC. 

S (K) implies that p is not strong limit and ~ < 
p ' 

2 . Indeed, by our 
,,_ 

K ass1Jmption there is a A with K < .11. < p and p = 2 < 2, moreover 

() A ' K A 
pv:,, = 1: { p : A < p } = I: { ( 2 . ) : 

But by 011r assumption then cf ( pB) = cf ( p) , hence actually 

_..Q < p rr 2 • 

• 

' 2K 3 .10. Assume X € Ts,. P - and S (K). Then -
a) p(X) 2K • l. IX I rt< ,.,.P 

" - .1.mp ies - ~ • , 

b) d(X) s implies IX t p'9 .2K 
K < 2 ; 

c) s(X) < implie.s Ix I < 13 2K 
K < 2 • -. -

PROOF. 

a) is i romP.diate from 3. 9. -I 
b) follows from p (X) s 2d (X) s; p and a). -I 
o) According to 

x = u{T: T E: 

hence 

IX I 

2.20 we have a set Sc X with 

[s]SK}. Now by b) we have ITI 

• -I 

Isl s 2K = p such that 

r rt.Bf h [s]SK, .;::, ..,- or eac Te: 

' 



One should compare these results with the corresponding very sharp 

inequalities from 2.6d), 2.4 and 2.20 respectively. 

Now we leave the study of T
5 

spaces and turn to the class C
2 

of 

49 

compact Hausdorff spaces. The importance of this class in general 

topology cannot be overemphasized. According to one's expectations, 

as it turns out from the following results the class C
2 

behaves in 

a particularly nice way with respect to cardinal functions as well. 

I venture to speculate that the study of this special class (and 

perhaps of others) will become central in the investigation of 

cardinality problems in topology. 

3 • 11 . a) If X E C 
1 

, then 

psw (X) = 1µW (X) • 

b) If X E C2 , then 

psw(X) = w(X). 

PROOF. 

a) We actually prove a little more: whenever Bis a pseudobase of X 

we have ord(B) = IBI. Now, for each point p E X and every B E B 

withpEB 

• 

x = B u u{c E 8: p 4 c}, 

hence by the compactness of X we can select a finite minimal 

subcover UB from {B}u{c EB: pi c}. But clearly we must have 

BE UB, hence as UB is finite the map B + U8 from B into the set 

M(B) of all finite minimal covers of X by members of Bis finite-
v 

to-one. By Miscenko's lemma 0.7, however M(B) has cardinality 

s ord(B), hence so does B. -I 
b) By part a) it suffices to show that ~w(X) = w(X). First observe 

that by our remark made after 2.3b) we have nw(X) S ~w(X) = K. 

Thus by our remark in 2. Sb) we actually have a pseudobase B of 

X of cardinality K that separates the points of X in the strong 

sense described there. Now take any point pc X and open set G 

with p E G; since the family B• ={BE B: p B} covers X\{p}, 
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' 

• 

• 

we can find finitely many members, say B1 , ••• ,Bn, of B• such that 

n 
u B. U G = X. 

i=1 J.. 

Thus if we put 

C = X\ 
n 
u 

i=1 
B. I 

l. 

' 

then we have p €Cc G, hence all sets C of this form constitute 

a base for X, and clearly their number is at most K. 

In the following results the tightness of compact Hausdorff spaces 

.wil.1 play a crucial role. The next result of Archangelskii throws 

some light on this by giving a beautiful characterization of t(X) 

for X € C2 . 

3 • 12 • If X E C 
2 

, then 

t(X) = F(X). 

PROOF. Since both t(X) and F(X) are defined as suprema of certain 

cardinals which agree with the suprema of the corresponding regular 

or successor ordinals, it suffices to prove ther following two state

ments: 
• 

(i) if K is regular and the length of a free sequence, then K::;; 
' 

(ii) . if t (X) + K then X contains a free sequence of length 

To see (i) let {p: et€ K} be a free sequence and put 
Ct 

+ 
K • 

t(X); 

i 

for each a ~ K. Since X is compact the set S has a complete accumula
K 

tion point, say p. Then for every neighbourhood U of p we have 

luus I= K, 
K 

hence we have 

' . p s 
a 
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for each~€ K, using that our sequence is free. 

regularity of K, we also have p ¢ A for each A€ 

t(p,X) ~ a(p,S) = K. 
K 

In order to prove (ii) we need a little lemma. 

But then, by the 

[s J<K, hence 
K 
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LEMMA. For any space X if A,B c X and A fl B =f= ~ then there is a set 

cc B with lcf s xCA,X) and A fl c + ~-

PROOF OF THE LEMMA. Let U be a neighbourhood base of A in X of mini

mal cardinality and for each u EU pick a point 

p(U) EU n B, 

-which is possible by Un B +~-Now set 

C = {p(U): u EU}. 

-
Then lei ~ x(A,X) = IUI, moreover A must intersect C, since other-

-wise X\C were a neighbourhood of A, hence 

-p(U) EU c X\C 

would hold for some u € U, contradicting that 

-p(U) EC CC. 

+ Now to prove (ii) ass11m~ that t {p, X) ~ K • Thus we can find a set S 
:!S:K 

such that p Es but pt T for each T € [SJ • Let us put 

B = u{T: 

<K [ ]~K . h Now if c E [BJ-, then for each x EC there is a TX E S wit 
-x € T , hence if we put 

X 

T = u{T: X € c}, 
X 
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- -then we have Te: [s]5
K, hence Cc Tc B. Clearly we also have pi B 

- -but p E: B = S .. 
+ 

Now we define a free sequence {p: a€ K} and a sequence of 
a 

{A: a€ K+} by transfinite induction as follows. Assume SE 
(l 

sets 
+ 

K and 

for each a€ B we have already defined the point p and set A in 
a a 

such a way that the following inductive hypotheses are satisfied for 

all a c: B: 

I(a): A is closed and x(A ,X) 
a a ~ (al + W; 

J{a): if y Ea then A y 
::> A ; 

a 

K(a):p€ A andp EB 
ex. a n A • 

(l 

SK S} e: [BJ , hence we have p ¢ s 6 c B. Since 

Xis regular we can find then a closed G0 set HS containing p such 

that HB n s 8 =¢and put 

Then we have by 1.14 that 

i.e. I(S) and J{S) hold. Clearly we also have p E A
6

. Now to choose 

Pa observe that p € Aa n B + ~, hence we can apply our lemma to ob

tain a CC B with lcl ~ x<Ae,X) =(al+ w ~ K such that Ae n C + ~-
-Thus if we choose Pa from AB n C then by what we have proven above 

+ K(S) is also satisfied. Now it is easy to check that {p: a e K} 
+ a 

is free. In fact, for any Be: K we have 

{p: 
a 

COROLLARY. If X € C
2 

then 

t (X) s s (X) • -I 

·The next result due to B. 

2.17 for XE: C2 • 

V 
Sapirovskii is a nice strengt,hening of 
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3.13. If X € C
2 t:hen 

• 

z(X) + + 
S s(X).t(X) S s(X) . 

PROOF. The second inequality follows immediately from the above 

corollary 

that d(X) 

of 3.12. In order to prove the first we start by showing 
+ 

s s (X) • t (X) = K. Let Y be a dense left separated subset 

of X (cf. the proof of 2.9c)). Then Y does not contain any right 

separated subspace of cardinality K+, since otherwise by 2.12 it 

+ would also contains a discrete subspace of size K > s(X) ~ s(Y). 

* Thus, appealing to 2.9b), we obtain that h(Y) = L (Y) s K. 

Since we are heading for an application of 2.26, next we calculate 
-for s c Y. As Xis regular, for each p e: Y\S we can select 

a closed neighbourhood 

that 

F of pin X such 
p 

- * L(Y\S) SL (Y) SK 

we can find a set T 

-Y\S c U{F : p E T}. 
p 

such that 

that F n S = 0. Now using p 

But then the family U = {X\F: 
p 

p·E T} has the properties 

- -s c n U and Y n s = n Un Y, 

i.e. U establishes 

Now we have every ingredient to apply 2.26 to our X, Y, Kand A= w, 

as a result of which we obtain 

d(X) S d(Y) S z(Y) SK, 

since Y is dense in X. 

Now, our conditions on X are inherited by its closed subspaces, 
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hence for any Sc X we can conclude that 

-
d(S) :S K, 

hence by 2.6b) 

- -d(S) :S d(S).t(S) ~ K 

as well, i.e. 

* z(X) = d (X) :SK. 

V 
The next results are also due to Sapirovskii, though not their proofs 

presented here. I have lumped them together because ti~eir proofs 

really use the same basic ideas. 

3 • 14. Let X E C 2 and p E X, then 

a) 11'X (X) :S t (X) ; 

b) ,rx(p,X) s t(p,X) if rrx{p,X) = K is regular; 

c) X contains a dense subspace Y left separated in type 1T (X) -

PROOF .. 

a) In view of 3.12 it clearly suffices to show that if K is an un

countable cardinal with 

'R"X (p , X) t: K 

for somP. p E: x, then X contains a free sequence of length K. In 

order to achieve this we need a little l~mma that will be used 

repeatedly, hence we formulate it separately. 

LEMMA. For any X € T (and p E: XJ with ,r(X) = ,r (TX(p,X) = ,r) and 

f amilg S of subsets o:f X with IS I s < 11' such that x(S,X) SA for 

each S € S we have·a non-empty open set G c X {a neighbourhood G of 

p) such that S\G =J: ~ for ea.ch s E: S. 

PROOF OF THE LEMMA. Let us choose for each s E: S a neighbourhood base · 

U8 in X with IU6 1 ~ A,. then put 
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u = s € S}. 

Then IUI SA< n, hence U is not a TI-base of X (or a local TI-base at 

p), consequently there is a non-empty open set G (a neighbourhood G 

of p) such that U\G + 0 for each U EU. But this clearly implies 

S\G +~for each SES as well. -I 

Now assume that 

TIX(p,x) ~ K > w 

with XE C2 and construct the promised free sequence. To achieve 

that we shall construct a ''triangular'' matrix of the fa.tin 

of non-empty closed subsets of X satisfying the following conditions 

for each" EK: 

I(") : Iv!+ w wheneverµ s v; 

J (v): ifµ s 

i.e. the rows of our matrix form a decreasing chain; 

K(V) : p E 

Now ass1.1me that v E K and we have already defined the sets 

ever µ :S: v' < v (i.e. the col 11mns of our matrix with index 

in such a way that I(v'), J{"') and K("') hold for all v' < v. Let 

us put for eachµ< v 

then by the inductive hypotheses Hµ +~and $(Hµ,X) = x(Hu,X) ~ lvl+w. 
V V V 

We can thus apply our lemma to the family of sets S ={Hµ :µEv} to 
\) \) 

obtain a neighbourhood G\J of p from which all the all E S ''hang out''. 
\) \) 

Of course G can also be assumed to be an open F as these form a 
V a 
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neighbourhood basis at p. Then we put 

for eachµ< v. We still have to define 
th of the v column. For this we choose a 

p € z C G , 
V V 

and then put 

€ v} n z . 
V 

Fv to complete the definition 
V 

closed G0 set z" such that 

• 

It is easy to see that I(v), J(v) and K(v) are satisfied. Having 

completed our construction we can pick for each u e: Ka point 

We claim that {p: µEK} is a free sequence. Indeed by our construeµ 
tion we have for each"€ K 

{p: µ € v} c X\G c X\Z, 
µ V V 

• 

and on the other hand 

{p: VSµ EK} C FV c Z. ~ 
JJ V V 

COROLLARY. If X E C
2 

then 

p(X) S 2s(X). 

PROOF. By 3.14a) and 3.12 we have nx(X) ~ t(X) s s(X), and obviously 

c(X:) s s(X), hence from 2.37 we get 

b) Let B be a local ,r-base at p of cardinality K, we can then write 
" , : 

B = {Bv: " e K}. (We can ass11mP. K > w as the case K = w is trivial.) • 
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Since Xis regular, we can choose for each v e Ka non-empty closed 

G0-set Av c Bv. Next we define a triangular matrix of non-empty closed 

sets of the for1r1 

with the same properties I(v) and J(v) (but not K(v)!) as in the 

have already 

been defined for allµ~ v' < v satisfying I(v') and J{v'). 

put again for eachµ< v 

Let us 

then l]J(Hµ ,X) = x (Hµ ,X) ~ Iv I + w, hence we 
V V 

point p and the Tamily S = {A }u{Bµ 1 :µ < 
\) \) \) 

neighbourhood G of p such that 
\) 

wheneverµ< v, and 

FV =A \G :f= ~-
V V V 

can apply our lPmm~ to the 

v} to obtain an open F a 

Thus we can def~ne our matrix column by column, and having completed 
. 

it we can again pick points 

p € µ 
µ S V € K} 

from the intersections of its respective rows. Let us put 

S = {p : 1J € K}. 
µ 

-Then p € S since by our construction 

p € µ 

for allµ c K, but also for each v EK 

• 
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, 

{p: µ e v} c X\G. µ \} 

Since K is regular this implies that p 4 
we get 

- <K . 
A for any A E [SJ , hence 

a(p,S) = K, 

" which yields even a little more than t(p,X) ~ K, namely t(p,X) > K. -I 

c) we can assume that ,r(X) = K > w, since otherwise d(X) = w, and 

every countable dense subspace of Xis left separated. Let B be a 

,r-base of X consisting of open F -sets with !Bl= K, say 
cr 

B = {B: a.€ K}, 
a 

and pick for each a€ Ka non-empty 

will produce a triangular matrix 

A 
(l 

C B • 
(l 

Again we 

• 

consisting of non-empty closed sets and satisfying conditions I (v) 

and J (") for each " e K. The construction of the v th col11mn {Fµ: µ :5 v} 
\) 

is now quite similar to that in case b): 

Ass1unj_ng that we have got the 

and J (v' ) for each v' < v, we define the sets Bl-I for 1.1 < v in the 
V 

same way and then choose a as the smallest member of K such that 
V 

for allµ< v 

µ µ l. 
F = B \B T ~-

" " a \) 

The existence of av is insured by our lemma. Then we put 

= A 

. 

a 
V 

• 

The points {p: µ e K} are again chosen in the same way: µ 

, 
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3.15. 

Then Y = {p: µEK} is left separated, as for each v € K we have µ 

p E 
\) 

A 
a. 

\) 

CB C X\{p: 
a. µ 

V 

µ e \J}. 

We claim that Y is also dense in X. Indeed for any v EK we have 
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\J ~ a by our construction, because obviouslyµ< v implies a '\) µ < a . 
'\) 

Now if v < a then for someµ< \J we have 
\) 

C B , 
'\) 

and if v = a then we have 
\) 

p E A = A C B , 
\) Ct. \) \) 

\) 

hence in any case we have YnB + 0. As this 
'\) 

Y is indeed dense in x. -I 
is true for all v € K, 

. .L• 
COROLLARY. If x € C2 and 'IT(X) = K is regular then X has a dense sub-

space Y with d(Y) = K. ~ 

REMARK. It is not known whether this corollary of 3.14c) or 3.14b) 

remain valid for singular K, though this can easily be shown to be 

the case under some set theoretic hypotheses like GCH. 

Let X E c2 I then 

* z (X) ; a) 1T (X) --
* b) 'ITX (X) - t(X). -

PROOF. 

a) Since d (X} :s; 'IT (X) we i11,rr1ediately have 

* * d (X) = z{X} :s; 'IT (X), 

actually for any XE T. On the other hand if Y c X, then applying 
--3.14c) to Y we obtain a left separated Z c Y with 

-lzl = n(Y) ~ 'IT(Y) 
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* in view of 2. 6c), hence z (X) ~ 1T (X) • 

b) Let us put K = 1rx* (X). First we show t (X) s K (for arbitrary X). 

Thus let p € A\{p} c X. We have by 2.7a) and 2.6c) that 

a(p,A) S wx(p,A U {p}) SK, 

hence asp and A were arbitrary, t(X) s K. Now for the converse 
-

consider any Y c x, then by 2.6c) we have wx(Y) s 1rx(Y). But 
- -3.14a) applied to Y gives 'ITX{Y) S 

-t(Y) s t(X), hence we conclude 

KS t(X). 

V V 
The following classical result of Cech and Pospisil is a kind of 

converse to Archangelskii's theorem that compact Hausdorff spaces 

of character at most K have cardinality at 
K most 2 • 

3.16. If X € C
2 

and x(p,X) ~ K ho1ds for each p € X, then 

• 

PROOF. We will distinguish two cases according as K = w or K > w. 

Case 1. Now K =wand we shall prove a little more than stated, namely 

that X can be mapped continuously onto the interval [0,1]. To achieve 

this we first define by an easy induction on n € w non-empty open 

s,1bsets U of X for each finite sequence e: E 2n in such a way that 
€ 

(i) 

and 

(ii) uc>. nu~=¢ e:u e1 

u , 
€ 

(This is where we have to use our assumption about the characters 

of points in X in the foxm that every non-empty open set in Xis 

infinite.) Next we put for any (infinite) sequence s e 2w 

F 
5 

= n {us ~n : n c w} • 

F + 91 since Xis compact 
s and (i) holds, moreover F n F = 

s t 
Then 

ifs 4: t us,ing (ii), hence the map f: F = u{F: s € 2w} ~ D(2)w 
s 

defined by 



f(p) = F 
s 

is well-defined, continuous and onto .. But clearly we have 
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hence Fis closed in X. Now the Cantor-set can be mapped onto [0,1], 

hence so can F, and using the Uryson extension theorem X as well. 

Case 2. K > w. Now we use our assumption in the fo:r:111 that if F c X 

is closed with W(F,X) = X(F,X) < K then IFI ~ 2. Next we define by 

transfinite induction on the length of sequences from 2~closed sets 

F with the following properties: 
s 

(i) if SC t, then F :::, F • 
t' s 

(ii) FQ, n F~ - ~; -
(iii) x(F) < Is I + w - ll.h(s)I + w. --s 

Thus assume €Kand we have already defined the sets F , 
s 

for 

s' E 2-.fb. If a is limit then we put 

for 

F 
s 

--

a 
each s E 2 • 

points p and q 
S .S 

If a= 8+1, then for any s E 2S we 

F and disjoint s . 
containing them and then put 

Fr-- = F sO s n p and F✓--:1- = F fl Q. 
S S! S S 

pick two distinct 

say P and Q, 
s s 

It is easy to see that (i)-{iii) will be satisfied in both cases. 

Having completed this induction we put 

= n{F r: a€ K} t a 

for each t E 2K, clearly then Ft~~ as Xis compact and (i} holds, 

moreover s + t implies F
9 

+ Ft' hence indeed !xi~ 2K. ~ 

Now we fit here a recent result of Malyhin which is at present the 

only non-trivial result concerning the (pseudo) character of compact 

T 1 spaces. 

• 

• 
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• 

3. 17. If X e C 1 and ti> (X) s w then either IX I s w or w lxl ~ 2 • 

PROOF. Let us ass1,;une that IX J > w. We shall say that a closed set 

F c Xis big if jFI < w. Clearly, if we can show that any big closed 

set in X contains two disjoint big closed subsets, then we are done, 
v .v.l h because the same procedure as in the proof of the Cech-Posp1.s1. t eo-

rem can be applied. The pseudo character being hereditary, this 

of course reduces to showing that X contains two disjoint big closed 

• is a count-subsets. To establishes this, let us note first that if U 
p 

able ~-base at p e X, then from X\{p} = u{x\u: U EU} we obtain 
p 

the existence of a neighbourhood u EU of p such that the set F = 

X\U is big. But p Xis compact, 

p 1, ••• ,pn € X such that 

i.e. 

x = u{u : i = 1, ... ,n}, 
p. 

1. 

n{F : i = 1, •.• ,n} = ~
Pi 

p p p 
hence there exist finitely many points 

A 1ittle reflection now shows that since we have finitely many big 

closed sets in X whose intersection is small, we must also have two 

big closed sets F and Gin X such that F n G is not big, i.e .. 

fFnG[ S w. 

Now observe that for any countable (i.e. small) closed set Kc x 

we have $(K,X) S w. Indeed let us put 

U = {uV: V c [u{U : 
p 

Then !Uf ~ and we claim 

can choose a V E: U with 
p p 

<w 
p EK}] & Kc uV}. 

that K = nU. Indeed, if q € X\K then we 

q 4: V for each p e: I<, but K is compact p 
hence we get a set v = uV e U with 

q ¢ V => K. 

Using this observation we take a countable family U of open neighbour
hoods of F n G with 

F n G = nLJ. 
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But F and Gare big, i.e. uncountable, hence we can find U e: U and 

V € U with 

IF\Uf >wand IG\VI > w. 
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Hence if we put W = unv, then F\W and G\W are disjoint and big closed 

sets. -I 
• 

COROI,T,ARY. If X E c2 and X (X) s c.o, then either IX I s w or 
w lxl = 2. 

The following result, due to Sapirovskii again, is a very deep and 
V V 

very elegant streng t:llening of the Cech-Pospisil theorem. In order to 

formulate this however we need a bit of terminology. If Xis a space 

a K-dyadic system in Xis a family 

0 1 {<F ,F >: a. e: K} 
a. a. 

of pairs of closed subsets of X such that 

a} FO n F1 =~for each a.EK; 
a. a. 

b) F = n{Fe(a.): a. E D(E)} +, for each Ee: H(K). 
E a. 

(We recall that H(K) denotes the set of all finite functions from K 

to 2.) 

3.18. The following conditions are equivalent for Xe C2 : 

(i) x can be mapped continuously onto IK; 
• 

• 

(ii) there is a closed set F c X which can be mapped continuously 
K . 

onto D (2) ; 

(iii) there is a closed set F c X wit:.h 

for each p € F; 

(iv) there is a K-dyadic system in X. 

PROOF . • .. 

(i) + (ii) is trivial since 

(ii)-+ (iii). Suppose that 

K f: X + D(2) 

• 

K K 
D (2) c I • -I 

-I 

• 
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is a continuous onto map~ Let us denote by F the family of all closed 

subsets F of X such that 

f{F) = D(2)K. 

It follows easily from the compactness of X that Fis closed under 

intersections of decreasing 'chains hence by Zorn• s lemma F contains 

a minimal member F. Then ftF is irreducible, i.e. no proper closed 

subset of F is mapped onto D(2) K. We claim that then 

K wx (p, F > ~ 1rx cf Cp > , n c 2 > J , 

and the latter by 7.9 is equal to K. Our claim follows from the 

simple observation that if U is a non-empty open set in F then 

as well since f is irreducible. Now if U is a local Tr-base at pin 

F then 

. # 
{ f (U) : U E U} 

is a local ,r-base at f(p) 

hood G of f(p) there is a 

(iii)+ (iv). This is the 

K 
in D(2) .. Indeed, for every open neiqbour. # ~ 
u E U with U c f- 1 (G), hence with f (U) c G. 

really significant part of our result. 

Without loss of generality we can assume that F = X in (iii), i.e. 

'R"X (p,X) 2!: · K for all p E: X. We can also ass11me that K > w, since the 

case K = tu has been taken care of in case 1 of the proof of 3.16. 

Indeed, it suffices to put there 

• i n 
F = u{u: e E2 & e(n-1) = i}, n £ 

for all n €wand i € 2. (Note also that x(p,X) ~ w if and only if 

w.) 

Now we have to construct a K-dyadic system in X for K > w. This will 

be achieved with the help of two lemmas. 

• 



• 

• 

LEMMA 1. If F is a family of non-empty 

lfl < K then we can find two closed G0 
(a) for each FE F we have KO n F + ~ 
(b) there is an FE F with F n KO n Kl 

PROOF OF LEMMA 1. Since 

w(F,X) = x(F,X) ~ w < K 
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closed G
0
-sets in x with 

0 1 sets K and K such that 

and K1 n Ft flJ; 

= ¢. 

holds for each F € F, we can apply the len1111a from the proof of 2 .. 14a) 

and conclude that every point p EX has a neighbourhood u 
p 

F\U + y.1 p 

whenever F € F. Of course we can ass11me that each U 

hence C X\U • a closed G0 set. - l.S -
p p 

finitely many points, say P 1 , ••• ,pn 

• i.e. 

' 

u{u : i = 1, ... ,n} = x, 
pi 

n{c : i = 1, ..• ,n} = ~
Pi 

p 
As X is compact 

of X such that 

is an 

we can 

such that 

open F a' 
find 

Now the sets C have the property required in {a), i.e. Cp
1
. n F ~ ~ 

p. 
for F € F. Let Tc be the smallest integer such that there are k of 

the CPi whose intersection is disjoint from some FE f. Clearly then 

1 < k ~ n. Suppose that 

It is easy to see that 

and 

• • 1 1 , •.. ,ik are the indices of k 

n{c : 2 s j 
p. 

J. • 
J 

satisfy conditions (a) and (b) • 4 

LEMMA 2. suppose KO< Kl s K where K1 is regular, and F0 is a K0-

dyadic system in X composed of closed G0 sets. Then there exists a 

K
1
-dyadic system F

1 
also composed of ciosed G0 sets such that 

IF0 \F1 1 < w. 
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PROOF OF LEMMA 2. Let us put 

ex a 

First we sl1all define by transfinite induction on a 
0 1 pairs of closed G.1- sets <C ,c > as follows. Suppose 

€ Kl a family of 

that a E Kl and 
0 1u a a -

the pairs <Cf3,Ct3> have been defined for all S E a. Define Ha as the 

set of all non-empty finite intersections composed of the elements 

of H can be written then in the form 
a. 

Fh n C . g 

with h € H(K0) and g € H{a) and is of course a closed G0 set. Now 

I H I < K 1 S K, hence le.1u1ua 1 can be applied to H , then we obtain 
ex O 1 a 

two closed G.l' sets K and K which separately meet every member of 
u a a 

H , 
ex but their intersection does not, i.e. we have ha€ H(K0 ) and 

g E: H(a.) such 
a. 

Then we put 

Fh .n ~ n 
a a 

0 1 
clearly c n c = ~ 

a a. ' 

H 
ex 

K1 = nl 'P. a 

(i e 2); 

0 but neither C 
a. 

011r transfinite construction of the 

ing them. 

Ph n C =f: ~, . g . 

., 

then there is a finite set a€ 

we have 

as well. 

C g C 
g 

and 

. 1 
nor C is empty. Having completed • ex 

1. 
Ca we now prove a claim concern-

. 

such that for each h' e: H ( K \a) 
0 

• 

• 



• 

We shall prove this claim by induction on the maximal element a of 

D(g). (We can put max 

obviously true if g = 
= -1 for the empty function.) The claim is 

(i.e. a= -1), since F0 is K
0
-ayadic. Now 
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assume that it holds whenever g' e H(K 1 ) with max D(g') < a and let 

g e H(K 1 ) with max D(g) =a.Writing g' = g\{<a,g{a >} we then have 

C 
g 

= F 
h n c ' n g 

Now if Fh n 

FhUh 
a. 

C =f= fll then 
g 

nc =f=~ 
g'Ug 

Ct 

as well, moreover max 

there is a finite set 

g(Ct) 
n K 

CL 
• 

hence by our inductive assumption 

required in the claim for the 

pair <huh, g'ug >. But then 
() Cl. 

this same a can serve for the pair 
.. I 

<h,g> as well. Indeed, if h' E H(K
0
\a), then we have 

n Fhuh 
Cl. 

n C =f= ~, 
g' ug 

• 
J.. e. this set belongs to 

Cl. 

H , hence 
Ct 

n c , n 
g ug 

a 

which was to be shown. 

Now we shall ''thin out'' 

it meets 

a a 

C ' g 

C 
g 

family 

defined by 

Let us consider for this purpose the function f: K 1 + K 1 u { -1} 

Then f(a) < a for each a € K, i.e. f is regressive. Thus by Ne1..uner's 

theorem (also known as the pressing down le a) there is a subset 

BC Kl with IBI = Kl and an (lo€ Kt with f(S) = ao for each a€ B. 

Then gs e H(ao+1) for each such a, moreover IH(ao+l) l ~c laol + w < Kl, 

hence using the regularity of Kl we can take. a fixed g E H(a.0+1) such 

that 
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I { s E: B = g a = g·} I = Ki • 

In the same manner of course we can further thin out this set to 
K 

obtain an A e: [K] 1 so that for all a. EA we have h = h and ga - g -1 a 
with fixed h E H{KQ) and g € H(K

1
). Since then 

for a e A, we have in 

claim there is an a E 

particular that C 
g 

~~,hence by our above 

with 

whenever h' € H(1e0 \a). Now we claim that 

F = 
1 

0 1 
{ <F ,F >: 

\) \) 

0 1 KO\a}u{<C ,C >: 
Ct Ct 

a EA} 

is as required. IF O \F 1 1 < w is trivial. To see that F 
1 

(when suitably 

relabeled) is 1e1-dyadic we only have to show that 

c, 
g 

whenever h' £ H(1e
0
\a) and g' e H(A). Let us put 

where a 1< ••• <ak, moreover 

C ' g 

g'(aj) = ij. 

i 
n ••• n ck= .'\ 

Then 

n C 
g 

i1 
n K 

al 
n .... n 

NOW', since h' e: H(1e
0
\a), we have 

hence Fh' 

nFhnc :rt, . . g 

n F n c 
h g 

e fl · a , 
1 
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n F n 
h 

C 
g 
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as well. But then Fh' hence simil.arly as before we get 

Continuing in this manner we shall get ink steps the required rela

tion 

C I g 

Now we can return to proving (iii)~(iv). In fact, if K is regular 

we are already home because we can put Kl= Kin l.eTT)T[la 2. Thus assume 

from now on that K is singul.ar, i.e. c:f(K) = p < K. Let us write Kin 

the form 

where p < K < K < K whenever v E µ E p and K is regular for each 
V µ V 

v E p. We shall now define by transfinite induction a K -dyadic 
V 

family F in X for each v e pin such a way that 1F \F ,I < P if 
V V V 

v < v•. To start with, let F
0 

be any K 0-dyadic family in x, which 

exists by lemma 2. Ifµ e p and F has been suitably defined for 
V 

every v e µ, consider the family 

F' = n{F: 
V a 

s a<µ} 

for every v E µ. By the inductive hypotheses then IF \F'I 
V V 

= Kv moreover it is easy to see that F~ c F~, 

< p, hence 

for V E V I E µ • 

Let us now put 

Then IF(µ} ( = I{K: v e µ} = K(µ) < K as K is regular and 
\J ( ) µ (µ) µ 

µ < p < K, moreover F µ is clearly K -dyadic in X. Thus we can 
µ F(µ) (µ) F apply le1-o~ma 2 with ,K and Ku in place of 0 , Ko and K1 to 

obtain an F which is K -dyadic in X and satisfies IF(u)\F 1 < w, 
µ µ µ 

consequently IF \FI< p for each v E µ. Having completed the 
V µ 

• 
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• 

construction now it is easy to deduce that for 

we have 

F'' = n{f : 1.1 ::; \) < p} 
µ ·\) 

I F·· I µ 
and F11 C F1

' \) µ 
if\)<µ, 

hence u{f: µ E p} is a K-dyadic sysrem in X. -l 
µ 

(iv)+(i) . 
0 1 F = { <F ,F >: a€ K} be K-dyadic in X. Let us put 

F = FO U 
a a 

and 
(l (l 

F = n{F: a€ K}. 
a 

Then Fis closed in X, moreover 

where 

F = u{F: 
s 

F 
p 

the map 

K 
s € 2 }, 

• 

detexmlned by the relation 

f (p) = s ~ ► p € F 
s 

is well-defined and onto. 

tinuous. It is well-known 

It is also 

that D(2)K 

easy to see that f is con-

maps continuously K onto I., hence 

so does F, thu.s by Uryson' s extension theorem this map extends to a 
K 

continuous map of X onto I . -I 

Before we give applications of this result we formulate an auxiliary 

result. 

3.19. LetX € C2 , F c X closed and p € E'. Then 
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PROOF. This is trivial if Fis also open in X. Thus assume now that 

X(F,X) ~ w. Let us choose a family F of non-empty closed G -sets in 
(5 

F such that = wx(p,F) and every neighbourhood of pin F contains 

a member of F. Clearly we have then 

$CC,x) = x<c,x) ~ x<F,x) 

whenever C € F. Thus choosing a neighbourhood base UC of minimal 

cardinality for each Ce F we have that 

is a local n-base at pin x, moreover 
• 

• 

3.20. If x € C2 does not map continuously onto IK, then 

S = {p EX: nx(p,X) < K} 
K 

is dense in X. 

• 

PROOF. The case K = w is easy: ·then every closed subset of X has an 
• 

isolated point, hence Xis scattered, hence the set of its isolated 

points is dense in X. If, on the other hand, K > w, then we can apply 

3.18 to conclude that every closed subset F c X has a point p € F with 

wx(p,F) < K, but since every non-empty open set contains a non-empty 

obtain from 3.19 that S 
K 

is dense in X. 

COROLLARY. If X E: C
2 

does not ad.mi t; a continuous map onto 

p(X) S 
C (X) 

K • 

-I 

then 

The proof of this is ia,·a,,ediate from 3. 20 and the corollary of 2. 37. 

The followin; deep result of Sapirovskii now follows easily. 
• 
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3.21. If XE cs then 

PROOF. One has to notice only that X does not admit a continuous map 
W1 . f onto I , since as is well-known the closed continuous image o a 

• 
5 w1 5 

em.beds into I ) , and then to apply the above corollary - -I 

3.22. If BN does not embed into XE C2 , then 

PROOF. In this case we claim that X does not map continuously onto 

Iexpw_ Indeed, if 

is an onto map then as SN embeds into Iexpw (since w(SN) = expro) 

there is a closed subset F of X such that f(F) = SN and ftF is irreduc

ible. But SN is extreroally disconnected, moreover it is known that an 

irreducible map of a compact Hausdorff space onto an extremally dis

connected space is a homeomorphism, hence we get SN ::: F c x, a con

tradiction. Th~s using the corollary of 3.20 we get 

Next we are going to pre.sent another very interesting result of 
V 
Sapirovskii shedding some new light on the rather close ties that we 

have already seen to exist between the tightness and ''n-structure '' 

of compact Hausdorff spaces. In order to achieve a clear presentation 

we have broken up the proof into three sub-results. 

3.22 • Let: X E C2 and put. K = t (X) • Then there exist.s an ireedil.cible cont;i

nuous onto map 

f: X -+ Y, 
• 
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where Y embeds into a I.: -pot-1er of I = 
K 
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[0,1]. 

PROOF. We shall define by transfinite induction on a continuous maps 

if f3 <a.then 

I(B,a): f = 
f3 

a 
1T O f , 

B a 

where 

limit and ff3 has been defined for all B € a satisfying I(B,y) when-

ever f3 E y € a, then we can (and must) define f by putting 
a 

for each p E X and f3 e: a. Clearly this will inst.lre I ( f3, a) for all 

8 Ea. If however a= f3+1, then we first-exami.ne whether ff3 • • 
l.S ir-

reducible onto f 8 (x). If it is, then we stop. Now, if it is not, then 

we choose a non-empty open set Ga c X such that 

. 

and then a continuous function 

• 

such that 

Then we define 

point p e: X 

-+ I 

and 

f using the stipulation I(B,a) and putting for each 
a 

Observe that this . implies: if y > f3 then GB cannot show the reduci

bility off. Consequently we must arrive at an ordinal a such that . 
y 

f is an irreducible map of X onto its range. Hence, to conclude, a • 
its suffices to show that in this case 
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• 

Y = f (X) 
a 

a 
c I: (I ) • 

K 

(Recall that! (Ia)= {f € Ia.: l{s € a: f(B) + o}I ~ K}.) 
K 

that y E 

+ of ordinals{$: p € K} ca. such that (i) 8 < S , if P < P', and 
p + p p + 

(ii) y(S) > O for each p EK. Let us define now for each PS K 
p . + 

the point y E Y as follows: (we put f3 + = u{ Br.: P E: K } ) 
p K ~ 

y(B), if f3 € 

o, if e € 

B ; 
p 

a\f3 • p 

It follows easily from our construction that each such pointy 
p 

belongs to Y = f (X) as y does. Now it is obvious that y + is a 
a K 

limit point of the set {y: p € K+}, while it is not a limit point 
p + 

of any subset of it of size at most K, consequently t(Y) ~ K • 

This however is impossible because by 1.17 the closed map f cannot a. 
raise the tightness. -I 

~~~·· .• The topologically initiated reader will readily recognize 
V 

that the above argument, which by the way is Sapirovskii's original 

approach to all of his results in this chapter, actually yields the 

following stronger result: If a completely regular space of tight-

ness s K admits. a perfect map onto a subspace of a I: -power of I, 
K 

then it also admits an irreducible such map. It can be mentioned here 

that every metrizable space embeds into at -power of I. In order to 
(Jl 

formulate our next result it will be convenient to use the 

following piece of notation: 

nsw(X) = min{ord(B): Bis a 1r-base of x}. 

This should be compared with 1.18. 
• 

3. 24. If Y embeds into a. I: "'P<!)Wer of I then rrsw (Y) 
K 

K. 

PROOF .. For any Y embeddable into a :EK-power of I let us put 
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We shall prove 011r claim by induction on ). • It holds trivially if 
' y 

Ay s w, thus we put "-y = A > w and ass,1me that 3. 24 holds for all z 

with AZ< A. We shall call Y good if it has the property that AG= Ay 

for each non-empty open set G c Y. Clearly every non-empty open set 

Hin Y contains a non-empty open good subspace G, e.g. any G c H with 

AG minimal. Therefore if G is a maximal disjoint family of open good 

subsets of Y, then uG is dense in Y, hence if each G € G has an-base 

of order SK then so does Y. Consequently it suffices to restrict our 

attention to good spaces, i.e. we can also ass,1me that Y is good. 

Now let us denote by L the set of all limit ordinals in A, and for 

each a E: L put 

Then Ay 
a 

for each 

s la+wl < A, hence by our inductive hypotheses we can choose 

a EL an-base B in Y with ord(B.) ~ K. We can of course 
a a a 

• 

ass11me that the members of each B are traces on Y of elementary a a 
a+w B open sets from I , moreover that for every B E there is a 

a 
~ (B) E (a+w) \a with 

0 ~ prt(B) (B) CI. 

For any a EL and BE 

' 

• 

B let us now put 
a 

and B• = {B': BE B }, moreover 
a a 

• 

8 1 = u{B 1
: a E L}. 

a 

First we show 

tary open set 

that B• is an-base 
A 

for Y. Indeed, Let Ube an elemen-

in I with unY + ,. Since Y is good we have 

hence we can find an a EL such that (i) the support of U 

in a, and (ii) there eixsts a pointy E unY with yfa+w E 

"-unY = A, 
is contained 

Y. Clearly, 
a 

then we can find a BE B 
A 

with B cw (UnY), hence B' a+w 
c unY. Next 

a 
we show that ord ( B' ) K. Asfl11me that this 

for each a€ L, then we can choose a point 

is false. Since ord (B~) s K 

+ y E: Y, a set A E: [L]K and 

• 
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for each a e A a member 

{B': 
a 

ex € A}. 

E B 
ex 

Let us write for each a e A 

such that 

1 J...f a .l. rv• Clear y, -r ..... belong to A then ~a+ ~a•· But by definition of 

the t 's we have 
a 

y(~) € prt' (B) c I\{O} 
a (,, a 

a 

whenever a€ A, contradicting that y € 

3 .. 25. If XE: C2 , then rrsw(X) ~ t(X) 

PROOF. By 3.23 let f: X + Y be an 1rreducible map of 

X onto Y, where Y embeds into a I -power of I (with K = t(X)). Using 
K 

3.24 we can choose a ,r-base B of Y with ord(B) ::;; K. 

Now it suffices to show that 

{f-l(B): Be: B} 

forms 
# 

air-base for x. Indeed, for any non-empty open Uc X we have 
• 

f (U) = Y\f(X\U) +~and open, because f is closed and irreducible, 
t# -1 

but if Be B satisfies B cf (U) then f (B) cu. 

caliber for X then ,r (X) ~ t (X). -l 

The next application of 3.25 yields an alternative and quite elegant 

proof of 3.13. We first formulate an auxiliary result needed for this. 

3. 26. Let: X € T and G be a family of non-empty open subsets of X such that 

€ K} ord {p, G) < K holds for all p € X.. Then there is a 

o:f discrete subspaces of X, 

in G, i.e. D n G:f: ~ for all 

whose union D = 
G E: G. 

u{D: 
a 

family 

Ct EK} 

{D: a 
a 

is ''dense'' 
• 

PROOF. We shall construct by transfinite induction on a EK subfamjlies 
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G 
ct a S 

8 € a. Then put H = G\u{G0 : 8 Ea} and define D as a maximal sub-
a µ a 

set A of uH with the property that IAnGI ~ 1 for all 
a 

D is clearly 
ct 

discrete (it is even closed discrete in 

define G by 
a. 

G = {G € H: G n D + ~}. a a a J 

G € H. Then 
a 

uH ) • Next we 
Ct. 

First we show that, having completed the construction, we have 

G = u{G: a EK}. 
a. 

Assume, on the contrary that p EGE G\u 

construction we have 

{G: 
a 

a.EK}. Then by our 

p E U H \D a. a 

for every a EK, hence by the choice of D we must have a 
a 

with p E G0 • But then a.+ S implies Ga+ GS contradicting 

ord(p,G) < K. Our result now follows immediately. ~ 

G € G 
a a 

that 

Now if X E c2 and we put K = + t(X) , then 3.25 yields a ,r-base B for 

X with ord(p,B) < K for each p € x, hence from 3.26 we have a family 

{D • a. • a. 
€ K} of discrete 

D = U{D: a.€ K} 
a 

subsets of X such that 

is ''dense'' in B, consequently dense in X as well. But clearly 

lnl ~ s(X).t(X)+, from which 3.13 follows easily. -I 

To conclude this chapter we shall turn to a topic that mjght have 

been studied in chapter 2 as well. This concerns the following general 

question: if we have an inequality that places an upper bound on the 

cardinality of certain spaces can this be strengthened to the same 

upper bound for the nt1rober of all compact subsets of these spaces? 

Since compact sets in many respect pl.ay similar roles as points, this. 

is not an unreasonable question. The first systematic treatment of 
> 

this question was carried out by Hodel and B,irke, most of the follow-
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ing results are due to them. 

Now, for any x, we shall denote by K(X) the number of all compact 

s.ubsets of X. Let us note that for any X E T we have IX I ::; K (X) as 

every singleton is compact, however if Xe:: T
2 

then every compact 

set in Xis closed, hence K(X) s o(X). Thus from 2 .. 21 we immediately 

obtain that 

K(X) s; expexp s(X) 

whenever Xe: T2 , hence· the required strenghtening of 2.20 is indeed 

valid. However, as we shall see, it is not always that easy to prove 

such strenghtenings, even if they are valid. 

3. 27. If X e T 1 , then {cf. 2. 2) 

K(X) S 21'Jw(X). 

PROOF. Let B be a pseudobase of x with IBI s; lJM(x) and such that B 

is closed under finite unions. For any compact Cc X and p e: X\C there 

is a B € B with C c B c X\{p}. Indeed, we can choose for every q e C 
a B 

q e: B with q e: B but p ¢ B. Since C is compact we can find a q q 
finite set A e: [c]<oo such that 

Cl,~arly B is as required. But then for every compact c c x if we put 

Be= {Be B: Cc B} then 
• 

hence the map C + BC is one-one, i.e. K(X) s; I P(B) I s 2l/Jw(X}. -I 

3. 28 • If .X e: T 2 , then {cf. 2 • 4) 

K(X) ~ expexp d{X). 

PROOF. Since Xe T, the . . . 2 family RO(X} form1::; a pseudobase for X. 
Consequently by 2.6d) we ' 

have 

• 



nence from 3.27 

K(X} ~ exp ww(X) ~ expexp d(X). 

3.29. If Xe T2 then (cf. 2.16) 

PROOF. Let us fix a linear order< on X and for any 
2 

{p,q} E'. [xJ 
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with p 

ively. 

< q choose disjoint open neighbourhoods u and V respect-p,q p,q 
Denote by B the family of all finite intersections formed by 

sets of the form V . Then, by 2. 16, p,q 

Now if Cc Xis compact and pt C we can find a finite set A€ [c]<w 

with 

hence 

CC u{u : XE A}, 
xp 

p € n{v ·:XE A}= B C X\C. 
xp p 

In other words we have 

X\C = u{B: 
p 

p E X\C}, 

hence using 
~(X) 

L(X\C) s h(X) we can find a set SE [X\C] such that 

X\C = u{B: 
p 

P E s}. 

Consequently we have 

-I 
• 



80 

REMARt<. Since 2.16 was an in11nediate consequence of 2 .. 15a) it is 

natural to ask whether the latter has the corresponding strenghtening. 

In fact this is still an open problem, even if X itself is assumed 

to be in c
2

. However from 3.13 we obtain that if X € T 2 and Cc Xis 

compact then 

+ + 
d (C) :s s (C) S s {X) , 

hence, using 2 .. 15a) 

+ 
K(X) s J~x]ss(X) I 

+ = 2,P{X).s(X) , 

which is just slightly weaker than what one would expect. 

The next result due to Burke and Hodel approaches the desired strength

ening of 2 .. 15a) from another angle in that instead of lJ)(X) it uses the 

''compact pseudocharacter'' 'I' K (X) defined as follows: 

VK(X) = sup{lfJ(C,X): CCX is compact}. 

3 .. 30 .. Let X e T
2

, then 

K(X) S 
lfK(X).s(X) 

2 • 

__ . _ .. • Put K = 'PK (X) • s (X) , then from ,P (X} s '1' (X) and 2. 1 Sa) we get 
K K 

lxl. S 2 • Now, in exactly the same way as in the proof of 3.29, we 

c,en obtain a family of open sets B with IBI s fxl s 2K such that for 

every oompact set C c X and p € X\C th.ere is a B € B satisfying 

Pf£ B c X\C. Consider a compact set C and a closed set F c X\C. For 

each P c F we can select a B e B with p e B c X\C, hence 
p p 

G == {B: p € F} 
p 

is an open cover of F .. Since s(F) ~ s(X) 

g.et 

~K ~ 
S ~ [P] and C ~ (G]~K 

K,- applying 2.13 to G we 

• 



such that 

-F cs u uC = A(S,C) c x\c. 

Now recall that W(C,X) SK, hence 

X\C = u{F: a.€ K}, 
(X. 

where each F 
a. 

is ciosed, consequently X\C can be written as 
• 

X\C = u{A(S ,c): a€ K}. 
a o. 

K 
2, we have at most 2K sets of the 
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But as both lxl and 1B1 are~ 

form A(S,C), and thus at most 2K unions fo1.1ned by at most K sets of 

the form A (S, C). -I 

REMARK. I do not know whether T2 could be replaced by T1 here as in 

2.15a). 

3.31. If X € T
2

, then (cf. 2.31) 

' 
PROOF. From 2.30 we get s(X) $; p(X).'P(X), moreover as Xis Hausdorff 

• 

~K(X) ~ ~(X) hoids as weli. Consequently, by 3.30 we have 

Before giving the corresponding strengthening of 2.28 we prove an 

auxiliary result, which generalizes for higher cardinals the well

known fact that compact T2 spaces with G0 diagonals are metrizable. 

3.32. If Xe C2 , then 

w
6

CX) = w(X). 

PROOF. Of course only w(X) s ~6 (x) = K needs proof. But now 

1/J (X) = tlJ (Ii, X x X) = x (A, X x X) , hence we have a neighbourhood base 
A . 
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U for A in xxx with JUI= K. Using the compactness of X it is easy 

to find for each U EU a finite open cover Vu of X such that 

We claim that 

is a base for X. Since IVI s K is trivial this will give what we 

want. 

Thus let p e X and F C X be closed with p ¢ F. Then F X {p} is 

closed in xxx and (Fx{p}) n tJ. =¢,hence there is a U e: U with 

(Fx{p}) n u = ~ as well. Now if V e V
0 

is such that p e: V, then 

VX{p} C VXV CUC XXX\Fx{p} 1 

i.e. p E: V c X\F and V is indeed a base for x. -I 

3 • 3 3 • If X € T 
2 

, then (cf.. 2 • 2 8) 

PROOF. Now if Cc Xis compact, then C € C2 , hence 3.32 implies 

d(C) S w(C) = tf,~(C) s 1P1::,.(X). Consequently using 2.28 we get 

K(X) S 
1P I::,. (X) 

IX I . 
p(X).$~(X) w

8
(X} 

s (2 ) 

3. 34. If X e T 1 then (cf. 2. 33) 

K(X) s 2p(X) .psw(X). 

p(X).ll,
8

(X) 
::;:: 2 • -I 

PROOF. Let us put p(X).psw{X) =Kand choose a $-base B for X with 

ord(8) :S K. Since 2.33 implies (xi s 2K we cle.arly also have 
K V 

IBI s 2 . Now by Miscenko's 1.eRirna, 0. 7, we know that for any compact 

Cc X the collection He of al.1 finite minimal covers of c by members 

of 8 has cardinality;:; ic::. We claim that 



C a B € B with 
X 
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Indeed, if p E X\C we can choose for each x E 

x EB c X\{p}, hence by the compactness of C 
X 

we have a finite cover 

of C of the f oxm 

where of course V can be assumed to be a minimal cover of c, i.e. 

tie He. But clearly p, uV. Thus we have 

• 

• 
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CHAPTER 4 

THE SUP= MAX PROBLEM 

• 

• 

The functions c,s,h,z have the common feature of having been defined 

as the supre11:1um. of cardinalities of certain sets. Sometimes these sets are 

referred to as the ''defining sets'' of the corresponding cardinal functions. 

It is natural to ask under what conditions is this supremum actually a 

:maxim,1111, or in other words using the notation introduced in 1. 22, if is 
A 

one of the these functions, when do we have q>(X) < q,(X). This is what we 

briefly call the sup= max problem. Obviously if ~(X) is a successor cardi-
A + nal then qi (X) = ~ (X) , i.e. 01,1r problem is trivial. The interesting cases 

are therefore those in which the function values are limit cardinals. 

4 .1 .. For ang X e T if c (X) = 11. is singular then 

A + 
C (X) = )., , . 

i.e. X has a cellular family of cardinali~y A • 
• 

" 

PROOF. Let us call an open non-empty set G c X good if c(H) = c{G) 

whenever H is a non-e11ipty open subset of G. Now every non-empty open 

set in "'X has a good subset, e.g. one of minimal cellularity. There

fore if H•is a maximal disjoint family of good sets in x then uH is 

dense in x. If IHI= A, then we are done, hence we may assume that 

IHI = 1( < A. 

Next we show that 

sup{c(H): He H} = A. 

Indeed, let p < A be any regular card~nal with i<: < p ,; Then from 

• 



• 

c(X) =A> p we have a cellular family Vin X with IVI = p. Sinqe 

p>K is regular and uH is dense, we conclude that some memb,er H of 

H intersects p members of V, hence c(H) ~ p. Let us write 

=I:{).: a E µ}, 
a 
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where µ = cf().) and each A • regular. To end the proof it clearly l.S 
a 

suffices find a cellular family {G µ} to .. a E: such that c (G ) > A.a • a a 
for each Ct € ll • If there is an H € H with c(H) ). , then any cellular 

family of size ll < A taken in H will do as His good. If on the other 

hand c(H) < A for each HEH, then we can easily select from H itself 

such a family, using that sup{c(H): B € H} = A. 

REMARK. The question remains what happens if c(X) = A is a regular 

limit, i.e. weakly inaccessible ca.rdinal. We shall see (cf. 7 .6) that 
A 

for such a). already c(X) = A can occur •. 

4.2. Xf A is a singt1..l-ar str,ong limit:. cardinal and· X e: T2 with lxl ~ A, 
A 

t:b.en s (X) > A, i.e. X contains a discrete subspace of cardinality A. 

PROOF. 

x --< y choose disjoint neighbourhoods U 
. 3 xy 

we define a partition of ~x] into fo11r parts 

and V respectively. 
xy 

as follows: if 

Then 

. 3 
{x,y ,z} e [X] with x -< y --< z, then put 

• 
• 

according to the following stipulations 

o, if XE: u o, if z € V 
xy yz 

el - e = - 2 

1, otherwise, 1, otherwise. 

Now we can apply the canonization le11,u11a, 0.5, to this partition f to 

find an B c x with lal =). and a decomposition 

• 

H = u{B: 
a 

= f {).)} 
• 

of a such that the conditions of that lextl111a hold. suppose that a e: µ 

• 
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and y E: B, moreover y has an immediate <-predecessor x and an immediate 
a 

<-successor 2 in H • 
a 

We claim that y is isolated in H. In fact, let 

N = V nu n H. xy yz 

Evidently x,z ¢ N. Now if p e Hand p ~ x, then p € V xy 
hence f({p,x,y}) = <1,€2> by the definition off. Since 

then we also have f({p,y,z}) = <1,e 2>, consequently P tf 

implies pi U , xy 
His canonical 

u 
yz 

:-, N. But 

if pt V then p • N again. We can quite 
xy 

sirojlarly show that if 

z ~ q e H then q ( N as well, hence NnH = {y} indeed. But obviously 

there are altogether A such points yin H, hence they form a discrete 

subspace of size A in X. -I 

COROLLARY. I:f ¢, E: {s,h, z} and X € T 
2 

with cp (X) = :\, a strong limit 

si.ngulax cardinal, then 

A + 
<P (X) = A • -I 

In our subsequent results the class Hof the so-called strongly 

Hausdorff spaces will play an important role. Now, by definition, 

X E: H if and only if it is Hausdorff and has the following property: 

from every infinite subset Ac X we can choose a sequence of points 

, {p: new} such that the p have pairwise disjoint neighbourhoods n n 

4. 3 .. 

in X. It can be shown that H::, r3 , in fact every Uryson space (i.e. 

one in which two distinct points have disjoint closed neighbourhoods) 

is strongly Hausdorff. 

Let A be a singular cardinal with cf("-)·= w. 

a) If XE: T2 and h(X) = A then *(X) = :>..+. 

h) If XE Hand ♦ £ {s,z} then ~(X) = A implies A + 
<P(X) =A. 

PROOF. We shall prove all these three sup= max results simultaneously. 

Let us put 

where w < 1,c < :>..k+l and :>..k is regular for each kc w. We can choose 

for each k a defining set Dk c X with I Dk I = Ak and then ass11me that 

' 
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since then ~(X) = A will remain valid. Note that this implies that 

whenever Sc X satisfies fsl ~ K > w, where K < A is a regular cardinal, 

then S contains a defining set of cardinality K. We can also assume 

that every p EX has a neighbourhood of cardinality less than A. In

deed let Y be the union of all open subsets G of X with IG! <A.If 

IY( = A then we can simply replace X by Y. If IYI < A then clearly 

every non-empty open set in the subspace X\Y has cardinality A. Now 
' 

be an infinite cellular family in X\Y, which exists in 

every infinite Hausdorff space. But then for each k € w we have a 

defining set¾ c Gk with l¾I ~ Ak' and then clearly R = u{¾::k € w} 

is a defining set with IRI = A and we are done. 

Let us denote by X the set of those points p € X which have a neigh
K 

K < A, then we can apply Hajnal's theorem, 0.3, to the set mapping 

F (p) = u 
p 

n X 
K 

over X and find a set D c X with to!= A which is free for F. But 
K K 

clearly then Dis a discrete subspace, hence a defining set for~ of 

cardinality A. Therefore we can assume from now on that Ix I < A for 
K 

each K <A.But then we can define by an easy induction a sequence 

{pk: k € w} of distinct points of X such that every neighbourhood of 
. 

pk has cardinaiity at least Ak· 

Now in case a) let us just choose for every k E: w an open neigh- .. , 

bourhood of such that 

If we pass to a suitable subsequence we can also assume that 

!Gk!< Ak+i· For each k e w put 

then clearly !ski= IGkl ~ Ak, hence we can choose a right separated 

set 1\: c Sk with 11i.cl ~ Ak as well. Since 
• 

• 
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• 

it is obvious that 

is also right separated and of cardinality A. In case b) using XE: H 

and passing to a suitable subsequence we can ass11me that the points 

pk have pairwise disjoint neighbourhoods Gk. Then we can choose again 

in each Gk a defining set¾ for~ with 1¾1 ~ Ak' and clearly 

is the required defining set of size A. 

A 
COROLLARY. If XE T2 and s(X) = s(X) = A wit;h cf().) = w < A, then 'there 

is a Y c X with z {Y) = .~ {Y) = 11.. Hence if sup = max fails at; a singular 

A of countable cofinality for sin T
2

, then it fails for z as well. 

PROOF. Let us put 

A 
where Dk c Xis discrete with Joki~ 11.k. Then z(Y) ~ z(Y) = A is 

• 

trivial. Now if Z c Y with lzl ~ 11., then clearly s(Z) = h(Z) = 11., 

whence by 4.3a) there is a right separated set R c z with jRJ =A.But 

then R (and thus Z) cannot be left separated, since otherwise by 2.12 

it would contain a discrete subspace of cardinality A • --1 

····· Of course the above corollary is a:ff use only if sup = max does fail for 

sin T2 with a singular A of cofinality w. The following beautiful 

characterization of just when this might happen is due to K. Kunen 

and J. Roitman. In it we use C to denote the Cantor set, more precesily 

tC = D(2)ro. 

4.4. Let A be a singular cardinal with cf(A) = w. Then the following two 

statements P (A) and Q (A) are equivalent;:.-

P (:\.): IE X € 

Q().): If Y € [t]A then t;here is a set B c Y 



• 

with !Bl = IYI = A such that B is meager (i.e. of first cat;egory) 

C. 
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PROOF. As the proof is rather lenghty and complicated we shall start 

with a few easy lemmas concerning nowhere dense and meager subsets of 

C. First we fix some notation. For any h € H(w) we put 

Nh = {f € C: h € f}, 

the elementary open set in C defined by h. Moreover we shall write 

NWD instead of nowhere dense and SD instead of somewhere dense= not 

nowhere dense .. 

LEMMA 1. A c {: is NWD if and only for each n € w there is an h € H (w\n) 

with Nh n A = ¢. 

PROOF OF LEMMA 1. Suppose Ac c is NWD and let n € w. We enumerate the 

collection of all 0-1 sequences of length n in a sequence {k.: i < 2n}. 
l. 

Using that A is NWD in C we can easily define a sequence {h1 : i < 2n} c 

H(W\n) in such a way that h 0 c h 1 c .•• chic .•• and AnNk.uh. = ¢ 
l. l. 

for each i < 2n. Now put 

= u{h.: 
l. 

then h € H(w\n) and for every f € Nb we have 
• 

k. 
l. 

. 2n, hence for some J. < 

f E Nk. Uh C 

l. 

On the other hand, 

sider any p € H(w) 

Nk h C C\A. . u . 
1. 1. 

l.et A satisfy the condition of the le111rr1a and con

with D(p) c n. If h E: H(w\n) in such that AnNh = ~, 

with AnN h = ~, pU 
hence A is NWD in~-

d f ever,1 "'" < ' t:here is a K • < ;\ such LEMMA 2. If Q(A) hol s then or ~ ~ ~ 

that every A E: [c]K' contains a NWD subset B wit:h IBI > K. 

• 
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• 

• 

, 

PROOF OF A= E{A: n € w} with A < A for each 
n n 

n e: ro , and as s1..une , 

find for every n E 

indirectly 

w a set A e [c]An such that if B 
n 

a: then IBI s K. Let us put 

A= u{A: n e: w}. n 

C A 
n 

Then A 
A e: [c] , hence by Q (A) we can find a BE [AJA which 

• i.e. 

B = u{B: me: w}, 
m 

where each B is NWD. Consequently we have 
m 

IB nA Is K m n 

for every pair <m,n> e: wxw, which implies 

• 

IBI = lu{B nA: <m,n> E wxw}I s K, m n 

a contradiction. 

is NWD in 

• is meager, 

3. I£ X € 
A A 

[c] and no Y e [x] is meager in C then there is a ----
K < A such that every A e: [x]K is SD in a:. 

neooaNWD set A E: n 

no such K existed 
An 

[x] • But then 

A= u{A: n E w} n 
• 

would be a meager subset of X with 

then we could find for each 

- '\ - I\. 

A 
P(l)-+ Q(:\.). Ass11mP. Q{)i.) fails, i.e. there is an XE [c] such that 

no YE'. [x]A is meager; we shall construct a Hausdorff topology -r on 
A 

X such that s(X,T) - s(X,T) = A. Since for any f E: c there are only 

countably many g e satisfying 

• 

f{n E w: f(n) + g(n)}I < w 

1 

• 



we can assume that if f,g € X and f # g then 

I { n E w: f (n) ~ g (n) } I = w. 

Next write A= E{A :n E w}, where each A is less than A, and 
n n 

accordingly let 

x = u{x :n € w} 
n 

be a disjoint decomposition (i.e. x n 
n 

X =¢if n + m) of X with 
m 

lxnl = An_ for n € w. Now if f E X 
n 

and k E W put 

= { f} u { g E m<n X: Vj < k(g(n+j) 
m 

= f (n+j)) }. 

Clearly if k < l 
with m < n then 

< w then Uk(f):::, U,e_(f), moreover if g E Uk(f) h X 
m 

hence we have determjned a topology -r on X with {uk(f) :k E w} as a 

't neighbourhood base off for any f e: X. To see that -r is Hausdorff 

take f EX, g EX with m ~ n and f # g. We can find then a j € w 
n m 

with f(n+j) f g{n+j), consequently, as is easy to see, 

if k > n + j. 

Since, for any f € X, we have u
0

{£) n X = {f}, the set X is dis-
n n n 

crete in (X,-r), consequently s(X) = A holds. Finally we show that 

no YE [x]A is discrete in (X,T). Let us put Y = Y n X for n E w, n n 
clearly there is a fixed m E w such that jy 1 > K, where K is as in 

m 
lemma 3, consequently Y is SD in~- Thus by lemma 1 we can find an 

m 
n € w such that Ym n Nh T ~ whenever h E H(w \ n); it can of course 

be assumed that n > m and Y =f= ~- Let then f E Y, k E w and put n n 

h = f~{n+j: j < k} € H(w\n). 

According to the above we have 
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y n N T yl, 
m h 

as well. But this shows that f is an acc,Jm11lation point of 

hence Y is indeed not discrete. 

y 
m 

CY, 

Q(A) + P(A). Let us ass11me that Q(:l.) holds and X E T
2 

with s(X) =. A. 

Repeating what we have done in the proof of 4.3 (and using the same 
• 

notation as there) we can assume that X satisfies the following 

properties (i) - (iii): 

(i) ifs€ [X]K where K < A is regular then S contains a discrete 

subset of cardinality K; 

{ii) every p e: 

(iii) if K < 11. 

at most K} has 

point p e S 

X has a neighbourhood U 
p of cardinality less than A; 

then X 
K 

= {p e: X: p has a neighbo11rhood of cardinality 

cardinality< A. Let us write for any space Sand 

q, (p,S) = mi .. n{ I U I :p e: U and u is open in s}, 

thus (ii) is equivalent to q,(p,X} <). for all p € x, while (iii) can 

be rewritten as follows: if K < 11. then 
• 

' 

Let us put for any set u c X and K < :\. 

E {U) = {q EX: q,(q,Uu{4}) < K}. 
K 

We shall say that O is K-good if fuf ~Kand JE {U) I < A. 
. K 

• 

CJ,AIM. If X also satisfies condition (iv) -below, then it contains a 

discrete subset of cardinality:\., i.e. ~(X) = ).+_ 

(iv) There exists a cardinal. 8 <). such that if e < K <). is a 

regular cardinal and p e X satisfies q,(p,X) ;;;:: K, then every open 

set containing pis K-good. 

• 
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In order to prove 011r cl.aim we shall define by induction a strictly 

increasing sequence of regular cardinals K < A and pairs of disjoint 

Kn-good open sets u0 and u1 with u
0 

u u 1 < A as follows .. Let KO 

be (using (iii)) 

distinct points of x with $(p9,x) ~ KO for i € 2 
0 

1 
0 open neighbourhoods of p

0 
and p 1 respectively, such that . 

1 

<A.Cl.early, by (iv), both u~ are Ko - good. Suppose now that n € w 

and we have already suitably defined Km' u~ and u~ for every m n. 

Then we can choose a regular Kn+l < A such that An+l s Kn+l' 

moreover 

R n 

< K 
n+1 

(i e: 2), 

jR I < K 1 , where 
n n+ 

-- U {E 
K 

m 

m 
(U. ) : 

l. 
m ~ n and i € 2}. 

This is possible because by the inductive hypothesis every U~ is Km

good. We can also assume, using lemma 2, that every A e [ct]Kn+l has 

a NWD subset of size 

e: X with 

K • n 
Then we choose distinct points 

n+l 
p 

0 

and 
n+l 

u 0 
n+1 

, U 1 as disjoint open neighbourhoods of them with 

K n+l 
< A. 

n+l 
, p 1 

Having completed this inductive procedu.re let us put for any h e: H (w) 

We claim that if n = min D{h) then 

I U ! ~ Kn • h• 

This can be proved by induction on I h I • If I h I = 1 this just says 

I u1: l ~ Next aSSllIOe that I h 1 - Io (h) 1 = k+1 and we have already 
K -• 

l. n 
I h • 1 established our sub-claim for h' € H (ro) with s k. Put 
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n = min D (h) and h ' = h \ { < n, h ( n) >} 

Then 

K , ~ K > R , 
m1n 

hence we can choose a point 
n 

q € u \R. In particular then q ! 
h' n 

BKn(Uh(n)), consequently 

Now let us assign to every point x EX an 

stipulations: 

f (n) = x· 

o, if X € 

1 otherwise. 

:2:: K • n 

f E ~ by the following 
X 

Cle.a:rly, for any h E: H {w}, x e: Uh implies fx € Nh. 

Next we do one more inductive procedure to define for i Ewa finite 

f,in.ction h e H(u>) with -1 = n. min D(h.) > max D(h. 1) for i > O, . i . l. J. 1.-

and sets w. c z. c X such that {f: x e w.} is NWD in~-
1 l. X J. 

Let us 
1 

= Uo, 

put 

and h 0 = t < 1,0 >} (i .. e. D(h
0

} = {1} and h0 (1) = O), z0 = uh 
0 "o C Zo be such that I Wol ~ Ko and {fx:. X € WO} is NWD in ct. Now if 

everything has been suitably defined for O s j ~ i, then the set 

~ 
j=O w.} 

J 

is NWD in · «:, h ~nee by l eroma 1 we can choose hi+l E H(w \ 

=~.Then we put n. 1 1.+ 

(m.+2)), where 
l. 

m 
i 

and 

that N 
hi+l 

Z - 0 \ 1+1 - . h•+1 .. . . l. 

n s. 
l. = min D(hi+l)-1 

because }uh I < K 1 s K 
j ~+ 0 i+1 

find a subset Wi+l ~ Zi+l with 

. ' 
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such that {f: x e: w. 1} is NWD int::. This ct"\mtl"\letes 
X J.+ --r 

the induction. Let us now choose for every i e: w (in view of (i)) 

a di.screte subset o1 c wi Observe that if j < i, then 

uh. n w. = 
J J. 

as well because {fx: x e: wj} n Nhi =~-But this implies then that 

D == u {Di: i e: w} is discrete in X while ID I = X .. Thus our claim 

is proven. 

Consequently we can ass,1me that, if Y c X and I Y ( = A, Y does not 

satisfy (iv). Indeed, otherwise, as it inherits properties (i) and 

(ii) from X, Y would contain a discrete subspace of cardin.ality A, 

either because of our claim, if it also satisfies (iii), or using 

the same reasoning as in the proof of 4.3, if it does not satisfy (iii). 

Thus it remains to show ~(X} = A+ under the following additional assumption: 

(v) For every YE [x]A and e < A there exist a regular e < K < A, 

a point p e: Y with ¢(p,Y) ~Kand an open neighbourhood U of p 

in X such that U is not K-good in Y., i.e. j{y E: Y: cp(y,{O n Y)u{y})<K}f 

= A. • 

A 
We shall now use (v) to define by induction on n e: w sets Yn E: [X] , 

' 

regular cardinals K < A, points p e: Y and open (in X) neighbollrhoods 
n n n 

U of p such that Y +l c Y , A < K < K. 1 , cf> (p , Y ) ~ K , I U I < X n n n n n n n+- n n n n · 
and u is not K -good in Y. For n = 0 we simply put Y0 = X., and 

n n n 
KO> A

0
, p

0
, U

0 
are chosen by using (v). If we have .. already suitably 

defined everything with indices up ton, then we first put 

Yn+1 = {y 

• 

e: Y : q> (y, (U n Y ) u{y}} 
n n n 

< K }\U, n n 

A hence Yn+l e [Y
0

] .. Next we use {v) again to get a regular Kn+t > 

max{Kn,An}, a point pn+l E: Yn+l with cp(pn+l'Yn+l) ~ Kn+-l and an open 

set u 3 p which is .not K -good in Y 1 and satisfies I U +l l < A 
n+l n+l n+l n+ n 

and ju nu n y J<K for every k :Sn, the latter being possible because 
n+1 · k k k 

for each k ~ n. After having ~ompleted the induction, put 
k+l 

for each n E 

z = u n Y \ u{u: n < m < w}. 
n n n m 

Since by our construction n < m implies 

lu nu n YI < K , 
m n n n 

and K. > w is regular we have 
n 

lz I = tu n YI~ cf>(p ,Y > n n n n n 
K • n 

• 
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• 

Moreover, if m < n then 

u n Y =~,hence U n z m n m n 

by ot1r construction um n Ym+l = ~ and thus 

=~as well, consequently z n U = ~ n m 
for every m + n. But then if Dn c Z is a discrete subset of Z with 

n n 
ID· ·1 :?! K , which exists by (i) , then clearly D = u{D :new} is discrete 

n n n 
in X with lo)= A, as was required. 

COROLLARY 1 • If 

" 
> 200 with cf().)= wand Xe T2 sacisfies s(X) = A, 

then s(X) = A+ • 

COROLLARY 2. If Martin's axiom holds and A < 2w with cf (A} = w, then 

PROOF. Indeed it is well-known that under Martin's axiom every set 
<2W 

Ye: [a:] is meager in a:, hence Q().) holds. 

~~. It is well known that the natural map of a: onto I= [0,1], -~--
which assigns to every f E ~ the member of I with dyadic expansion f, 

takes (non-)meager subsets of a: onto (non-)meager subsets of I, 

hence in 4.4 one could replace a: by I. It is also known that if one 

adds A Cohen reals to a model of ZFC then, in the resulting model, I 

(or C) has a subset of cardinality no uncountable subset of which 

is meager. This shows-. that sup-max might actually fail for sand thus 

for z in T2 at a singular A of countable cofinality. 

In the rest of this chapter I shall give appl.ications of our above 

results to the problem about the nature of o(X) for x 
• 

E: T
2

• As we 

shall see this problem is quite closely related to the sup-mdX problem 

for s,h and z. 

4. 5. f..f A is a singular st;rong limit cardinal then A + o (X) fo:1: every 

Xe: T
2

• 

PROOF. If lxl < )., then as A is strong limit. If on 
• 

the other hand A S IX} , then by 4. 2 there is a discrete D c X with 

jxr = A, hence by 2.11 

' 

). 
A < 2 s o(X). 

4. 6. Let 1 be a limit; but not: s-t.rong lim.i t cardinal, and assume t;hat 2K is 

strictly increasing for co:Einally many K < A. If x e: T 
2 

is such t:hat 

• 



• 

then 

o(X) ~ = 2 I 

hence in particular o{X) is singular with 

PROOF. 
A z(X) = 

cf(o(X)) = cf( ) = cf(A) ~A< o(X). 

~ o· (X) follows immediately from 2. 11 • On the other hand 

implies d(Y) < A for every Y c x, hence clearly 

But A is not strong limit, hence there is a K < A with 2K > A, and 

thus -¥>-'= ~ -{ 
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REMARK. As was indicated in the remark made after 4.4 it is consistent 

to have an XE T2 with Ix{= ~(X) = ~(X) = A, where cf())= w (e.g. 

A=~). It is also easy to see that it is consistent to assume that 
w 

at the same time the 2K function is strictly increasing. Consequently 

by 4.6 we have then cf(o(X)) = w. 

It is shown by our next result however that for the class fl of 
• • 

strongly Hausdorff spaces the situation is quite different in that 

it is in some sense ''almost hopeless'' to find an X E H with cf (o (X)) = to, 

0r even with o(x) 00 + o(X). 

4.7. Let K be a cardinal such that o(X) = K for some infinite X € ff and 

K < Kw. Then there is a cardinal a with the :following properties 

(i) - (iv) : 

(i) w < cf(8) - y < e; -
(ii) (Va < 6) (ay < f3) ; 

(iii) t3Y > e(w) (= the w 
th 

o:f 8}; successor 

(iv) K ~ S(W). 
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• 

PROOF. Let)., be the smallest cardinal such that Aw>~~. Since 
(J.) 

>i. S t; · , the power A is clearly a j1nnp, hence by O. 2 we have w = cf(A}. 

Moreover K = o (X) > 2
00 implies > {l). 

For any p € X let us put 

a(p,x) = min{o(U): p € U, u open in x} 

and 

a = a(X) = sup{a{p,X): p e: x}. 

Since Xe: H there can only be finitely many points p EX such that 

a(p,X) ~ :>i., for otherwise X would contain a disjoint 

of open sets with o(U) ~ n 

w 
O•(X) ~ A > K = 0 (X) 

for all n e: w, and thus 

family {U: n n 
e w} 

would follow. On the other hand, throwing away finitely many points 

from X will clearly not change o (X), hence we can ass11me that a (p,X) < 

A for each p e X. 

Now we claim that in fact a< A must be valid. Assume, on the contrary, 

that a· = :\. Since A can be written as = E{J.. : n e: w}, where A < A n n 
for n e: w, then we can pick for n € (l) distinct points p e: X such n 
that a (p ,X) > A , moreover using X e H we can ass1une that each 

n n 
• 

pn ~as a neighbourhood Un so that the family {Un: n e: w} is di$joint. 

However this implies, by 1.2 c), 

o(X) ~ II{ o(U ) : n 

; 

a contradiction. 

A 
n 

w = >.. > K, 

Next we show that lxl s a+. Indeed, every p e: X has an 

hood U(p) such that lu(p)I s o(U(p)) s a. Hence if !xi 
• 

open 
+ 

> a 

neighbour

were 

true then U(p) would be a set-mapping which satisfies the conditions 

of Hajnal' s theo~9:ltt, O .3, hence a free set ·n c X with I ol = l x I would 

exist for U( ). However this subspace Dis clearly discrete, consequently 

w -- o(X) -- 2 xi, hich i f N. w: · s o · course 

Now consider the above defined open 

impossible. 

cover U = {u (p) : p ex} of x, then 
+ . s CJ. Let T denote the smallest cardinal. for which x does not; 

contain a discrete subspace of cardinality T; i.e. T = ~(X). As is 

, 



• 

• 

• 

shown in 2.13, then every closed subset F c X can be obtained in 

the following form 

-u s , 
F 

<-r 
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where E [U] · and <"[' 
E [xJ . An easy calculation shows then th.at 

Since X ~ H, 4.3 implies cf(T) > w. From this and cf(A) =wit follows 

then that there is a cardinal p < 'T with (a+) P > A. Let y be the small

est cardinal with (cr+)y > A and then B be smallest such that eY > A. 
+ 

Then 8 s cr < A, hence y > w by the choice of A. Moreover y < T, 

hence X contains a discrete subspace of size y, consequently o(X) 

2Y = yy and thus Sy~ Aw> o(X) implies 8 > y. In particular 8 and 

Y are infinite, hence the power f3 y is a jt1rr1p and therefore y = cf (8) .. 

Now it is obvious that f3 satisfies conditions (i) - (iv). 1 
As an immediate corollary we obtain that if X e: H and O'(X} < w w1+w 
then o(X)w = o(X). Indeed, this is obvious since 

cardinal which satisfies (i). However our result 

WW 
1 

is the smallest 

says much more than 

this. Indeed, the consistency of the existence of a cardinal satis

fying (i) - (iii) has only been established by M. Magidor with the 

help of some enoxmously large (so called strongly compact) cardinals. 

Moreover by some .very recent results of Jensen & TQdd,the existenqe of 

such a implies that measurable cardinals exist in some inner models 

of set theory. This shows that constructing a ''counterexample'' would 

require some very sophisticated new method in axiomatic set theory. 

It is natural to ask now whether a more definitive result than 4.7 

could be obtained for more special classes of Hausdorff spaces. Our 

next two results are of this form. Let P denote the class of all 

hereditarily paracompact T
3 

spaces. 

4. 8. If X € P and I xi ::?= 
w 

w, then o(X) = o(X) • 

PROOF. Suppose, on the contrary, that K = o(X) < Kw. Similarly a,s 
th 

in the proof of 4. 7 we let A be the smallest cardinal whose oo power 

exceeds K. Then cf (A) = w < ). :s; K.. we can of course ass1Jme that for 

all y c x with d (Y) = K we have cr (Y) = o (X). Since P c H, and the class 
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• 

• 

4.9 

P is hereditary I the same argu111ent as in the proof of 4 • 7 yields 

that cr = a (X). < A. Put p = min {a:aa > A}. By the choice of A then 

p > w. The following claim is the crux of the proof. 

Cl:,AIM. Let 

for every 

~ € p> be a sequence of cardinals such that K~ < a 

Then there is a disjoint family {G~:~ E p} of sets 

open in X such that K~ < 

R {K ~: t € p} S o (X) = K • 

o( G ) for each t e p • In particular 

' 

PROOF OF THE CI.A.IM. Clearly we have a locally finite open cover U 
-of X for which o (U) s er for every U € U. Now we define by trans-

finite induction 

Gt c: ut. Suppose 

Then 

for~€ p open sets G; c: X 

that n E: p and Gt' u~ have 

and U EU such that 
s 

been defined for~€ n. 

o(U s crlnl < ). S K, 

hence for Y = X\U{U;: t € n} we have o·(Y) = K. Since U is locally 

finite Y is open, moreover o (Y) = er by our ass11mption • Thus there 

is p e Y for which cr(p,Y) = o(p,X) > K. Now pick U € U such that n n 
p e U , and put G = Y n u • Then p e: G implies o·(G ) ~ a (p ,X) > K , n n n n n n 
and clearly t e: n jmplies G~ n Gn = {t1. The claim is thus proven. 

An in1T1Jediate consequence of this claim is that T < a implies TP s K, 

and thus Tp <Aas well (indeed, Tp ~ A would imply Tp ~Aw> K). 

Consequently the.power crp is a jump, hence p = cf(cr) by 0.2. Now 
• • 

write o = I{Kt:t c p}, where Kt< a for each t E: p. Applying the claim 

to the sequence <K~: ~ E: p> we get a d,isjoint open f'ami l.y {G~: ~ < p} 

such that o(Gt) > Kf; for t < p. But then by O .1 

while clearly op>). implies ap 

01lY proof. . -I 
:>i.

00
, a contradiction,, which completes 

Now let G be the class of a.11 T 2 topological groups • 

Let G E: G, lGI ~ w. Then o{G) = o(G) tu. 
• 



• 

PROOF. Let e denote the unit element of G, V be the neighbourhood 

filter of e in G, and put cr = a(e,G) = a(G). We have to distinguish 

two cases: 

Case a. There is VE V such that o(V) = cr and finitely many 
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left translates of V cover G, i.e. there is a finite set Ac G for · 

which G = u{av: a EA}. Clearly then o(G) s Il{o(a.V): a€ A}= o, 

while G contains an infinite disjoint family 

open sets, hence 

o(G) = o(G)w. 

by o (H ) 
n 

~ cr we have o(G) ~ 

{H: n E w} of non-empty n 
w a and consequently 

Case b. There is no V E V as in case a. Let u E V be arbitrary with 
2 

o (U) = a and pick a syxn,netric neighbourhood V t:: V such that V c U. 

Consider A c G such that {av: a t:: A} fo.t·ms a maximal disjoint family 

of left translates of v. We claim that u{aU: a EA}= G. Indeed for 

any x € G there is a€ A with (xV)u{aV) ~~,hence there are 
-1 -1 v 1 ,v2 € V such that xv1 = av2 . Then x· = av2v 1 , and v 2v 1 EU 

implies x € au. 

Thus by our ass1Jmption I A I = a ~ w, and obviously 

o (G) 

on one hand and 

o (G) ~ TI{o(aV): a€ A} 

• 

' 

a = a 

a = 0 

on the other. But then o(G) = a 
cr 

.!.:!:::::!~~- It is a very intriguing open question whether the above 

results are valid for compact Hausdorff spaces, i.e. whether Xe C2 
and IX I ~ w imply o•(X) w = o (X). 

• 
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R 5 

CARDINAL FUNCTIONS ON PRODUCTS 

• 

The aim of th:is chapter is to investigate the following problem: assume 

cf> is a cardinal function and 

R = x{R
1
:i E: I}; 

how can we evaluate ,CR) in 

the index set, Ir!? 
ter,11s of the values· <f, (R.) 

l. 
and the cardinality of 

In order to exclude some trivial difficulties we assi1me throughout 

that no Ri in(*) is indiscrete, hence it contains two points p. and q. 
l. l. 

such tha.t pi /. {qi}". If we denote by F the two-point T0-space in which 

exactly one of the singletons is closed, then our convention obviously impl

ies 

• 

• 

. · depending on whether l {i€I:qi i {pi}} I = K or not. We 

7.9 and 7 .10 that the following relations hold for FK 
• 

5.1 a) I£ 4> E {w,nw,e,h,z,,r,,rX,t,X} then 

K 
♦ (D (2) ) == K; 

b) 

shall show later in 
K and D(2) • 

It will be convenient to use the following notation for a product of 

the form(*) and a cardinal function ·4>·def'ined for.all i EI: 

• 



• 

= sup{t1>(R.): i EI}. 
l. 

103 

5. 2 a) For every cardinal function t1> we have considered 

• 

b) If t1> is as • 
in 5. la) then 

PROOF. a} It is routine to check that this holds either using 

R. c:::+ R or that R. is a continuous open image of R via the projection 
1. l. 

map pr .• -1 
l. 

b) Except for cp = 'ITX or <I> = 'IT this follows jmmediately from 5.1a), 

our conventions, and the monotonicity of 4>. Next, as ,r(R) ~ ~x(R), it 

suffices to show 1rx(R) ~ !rl. Let G. be a non-empty open proper subset 
1 

of R. and 
l. 

p € X{G. : i 
l. 

e I}, 

moreover ass11me that P is a local ,r-base at pin R. For each i EI 

exists a P. 
1 

e P with P. 
l. 

-1 p c pr. (G.), hence clearly for every P € · 
l. l. 

• 

I = {i EI: P. = P} 
p l. 

there 

is finite. Consequently we have IPI ~ Ir! (assuming of course that I 

is infinite, the only case we really care about here), and thus 

irx(R) ~III.~ 

5. 3 a) If t1> E { w, nw, ,r, 1rx, x} then 

• 

b) if in addition every Ri € T1 then 
• 
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• 

• 

PROOF. a) Let 81 be a base (network, resp. 1r-base) in 

cardinality. It is obvious that all sets of the form 

where J E 

and thus 

R. 
1 

of minimal 

whenever cp E {w,nw,1r}. A complet.ely analogous ''localized'' version•of 

this argument works for 1rx and X· In view of 5.2 however we actually 

must have equality everywhere. 1 

b) First 
I I 1 . moreover The 

rest is as in a). 7 

We need the following result to obtain est-imates for the density funct

ion. 

5.4 'If K ~ w 'then 

• • 

• 
• 

PROOF. Consider the space X = D (2) K E C·
2 

of which we know that 

Let us write X in the form X = {pt:~ E exp K} and fix a base B 

with l Bl = K. We shall put 

... 
B ={CE [BJ<w: C is disjoint}, 

• 

• 

and 

-
V = {d E H(B,ic): D(d) EB}, 

w{X) = K. 

of X 

-
i.e. the members of 1) are finite functions whose do1i1ains are in B and 

values are taken from K. Clearl.y 

we define a point fa e D(ic)exp K 

-IVI = (Bt = .K'. 

as follows: 

• 

Now for any d E V 



• 
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d(B), if o €BE D(d) 

• 

0 otherwise. 

We claim thats 
d = {f : d EV} . d . D(K)exp K. is ense .1.n Indeed, the 

elementary open sets in this space of the form 

• 

where h E H (exp K , K), constitute a base. Since D {h) is finite we can 

pick for every~ E D(h) a neighbourhood BE; E. 8 o: p~ in X such that 

t # n implies B~ n Bn =~-Then {Bt:t E D(h)} EB and if we put 

for~ E D(h) then d EV. But obviously then 

hence Sis indeed dense. 1 

5. 5. a) 
• 

b) if each R. contains two disjoint non-empty open sets then 
]. 

PROOF. a) Let us put log 

a dense set 

g. : 
]. 

$ C 
i 

R. 
l. 

with 

Then the continuous map 
' ' 

III. dI(R) = K. Then for each i EI there is 

!s1 1 ~ K, hence 'a (continuous) map 

• 
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• 

5 .. 6 

g = ~ x{s.: i EI}= s 
1 

maps D(K)I onto the dense subset S of R, where (II s; exp Kin view of 

log lrl s K, hence we obviously have from 5.4 that 

d(R) d(S) 
I 

S d(D(K) ) S K. 

open sets in R1 and let us put 

for every h E: H(I) 

i E: D(h}}, 

clearly¾ is a non-empty open set in R. Let now S be an arbitrary 

dense subset of R, then for each h € H(I) we can pick Ph ES n Gh. 
"" I 

Now, for any p ES we define a point p E D(2) as follows: 

0 if p(i) € 

-
p(i) = 

1 otherwise. 

- .... . 

we claim thats= {p: p es} is dense in 
... 

to see that for any h e B (I) we have ph => 

d(D(2)I) = log 111 showing that . 
• 

d{R) ~ log 111. 

D(2) 1 • Indeed, it is easy 

h. But by 5.1b) we have 

But d (R) 2:: d
1 

(R) 

log III. dI(R}. 

is always true according to 5.2a) and thus d(R) ~ 

-I 

Next we t11rn to the study of cellularity, where we find the interesting 

phenomenon that c(R) is in a sense independent of lrl. 

• 

PROOF. Of course only the second inequality needs proof in view of 

5.2a). Let us first consider the case in which I is finite, e.g. 
n 

R = X Ri, and put te = CI (R) = max { c (R ) : i=1 , ••• , n} • ASS'l11De, 
i=l i 

• 



• 

reasoning indirectly, that c(X) > 2K, hence there is a cellular 

family Gin X with !GI > 2K. We can of course assume that for each 

G E G 

G = x.{pr. (G) : i=l, ••• ,n}. 
l. 

Then with every pair {G,H} E [GJ 2 we can associate an index 

j=j({G,H}} EI such that 

pr. (G) n pr. (H) = ~. 
J J 

Then j:[GJ2 ➔ I is a partition for 

0.4 6), may be a applied to obtain 

which the Erdos-Rado theorem, 
, K+ 

a j 0 EI and a G E [G] with 
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But then 

which is 

{pr. (G) : G 
Jo 

impossible. 

E G•} is a cellular ramily of size K+ in R. , 
Jo 

The general result now follows from the following: 

c (R) 

PROOF OF THf: LEMMA. We can 

regular cardin~l and 

sets in R, i.e. 

{G : a. 
ex 

ass11me that c (R) > 

e K} be a cellular 

w. Let K be an uncountable 

raro1ly of elementary open 

-1 
G = n {pr. (G . ) : i € I } , 

a 1. a,1. a 

[I] <w 
where I € and G . is open in 

ex a.,1. 
we can assi1me that the family { I : a 

a 
is a J E [I]<w with 

I n I = J 
a B 

R .• 
l. 

e: K} 

By the ~-system lemma, 0.6, 

is a 6-system, i.e. there 

whenever {a,S} E [K] 2 • It is obvious then that • 
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i 11 1 f il · R h s (R) As c(R) is the sup of s ace u ar am yin J' ence K c J. 

all such K, this means that we are done. -f 

S. 7 If <P € {h,z} t:hen 

c/> ( R) 

PROOF. Because of 5.2 it again suffices to prove the second inequality. 

Let u.s put ♦1 (R) = K and distinguish two cases (i) and (ii). 

(i) IIJ s K. Assume indirectly that c/>(R) > 2K, then R has a subset S 
• K + which is left (or right) separated in type {2) , e.g. S = 

{p :a e (2K)+} and 
a 

u = n 
a 

-1 
{pr. {U . ) : 

1 a.,1. 

is a left {right) 

i E I } 
a 

K + of p for each a€ (2) , 
a 

where of co11rse 

separating neighbourhood 
<W 

I € [I] and U i is open in a. a, R .• Thus if B < a then 
1. 

there is an i E I 
a 

with 

pri (p0 ) i U . (pr. (p ) f u
6 

. ) • 
µ a,i i a ,1 

Let K + us choose for any {B,a} € [(2) ] with S < a such an i = i({f3,a}), 

then I I K + + 2 
I s Kand (2) ➔ (K) implies the existence of an i

0 
€ I and 

+ + K 
E [ (2K) ']K such that an a 

But clearly then {pr. (p ) : 
1 0 a 

which is impossible. 

) 

a€ a} is left (right) separated in 

(ii) I I I > K. Ass1me that we have a left (right) separated set s c R, 

with 

where S = {p :a E A} and 
a 

u = n a 
-1 

{pr. (U 
1

) : 
1 a, i E: I } 

a 

• 
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are the left 

a e: A .. Since 

(right) separating neighbourhoods of p for each 

for every a e: A. But clearly then 

separated subspace of R of type 
J 

what we have proven in (i). 

I = J a 
{prJ(pa): a€ A} is a left (right) 

A> 2K, which however contradicts 

REMARK. 5.7 is no longer valid in full generality (i.e. for all topo

logical spaces) if we put q> = s. However for Hausdorff spaces we can 

prove the following much stronger result. 

5.8 If each Ri e: T
2 

'then 

s (R) s; z (R) • 

PROOF. Case 1: I is finite, e.g. I= {1,2, •.. ,n}. We shall prove our 
• 

result in this case by induction on lrl = n. If n = 1 then 5.8 reduces 

to 2. 17. Thus ass11me n > 1 and that 5. 8 has already been established 

for n-1. Let us put K = max{s(R.): i = 1, ••• ,n} and suppose that Sc R 
J.. K + 

is left separated by a well-ordering~ in type A= (2) . We 

can take for each p e: Sa left separating neighbourhood 

foz:m 

u of the 
p 

u = x{u . : i e: r}, 
p p,J.. 

hence if q -,( p then q f 

pr. (q) 
1. 

= q(i) f u . 
p,1. 

u , 
p 

• J.. .e. 

for some i € I. We claim that we can ass11me p ( i) + 
distinct p,q e: Sandi€ I. Indeed, we cannot have 

a j e: I such that 

I pr. (T) I = 1 
J 

because then 

~ 
prI\{j}(T) =T 

q(i) for any two 
A 

a Te: [s] and 

• 

• 
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• 

' 

i 

would clearly be a left separated sUbset of X{R.:i e I\ {j} } , 
1 

contradic~ing our inductive hypothesis. Hence for any j € I and 

x c R. we have 
J 

I -1 
S n pr. 

J 
(fx}> I 

with the help of which we can select from s, using a straightforward 

transfinite induction, a subset of cardinality A that already satisfies 

the above claim. For simplicity's sake we shall also ass11me that 

R. = pr. (S) for each i € I. 
l. J. 

Finally it can be ass11roP.d that, for every i € I, either h (R.) ~ 2K 
1 

or R. is 
l. 

right separated, because if h(R.) = A then we can just pass to 
l. 

a subset S' of s with IS'f = Isl = A and pr. (S') right separated, and 
J. 

do this (finitely many times as I is 

particular, we may ass11me that h (R. ) 
1 

finite) 

S 2K if 

for each i EI. In 

isl. and R. 
1 

is right 

separated if l. < i Sn. Using 2.10 we have then 

whenever isl., hence we can choose for every p €Sandi s la ramily 

of neighbourhoods of p(i) • in with 
• 

n V . = {p(i)}. 
p, J. 

OUr aim is to define a rami, fication system on S, and the following 

operations 

Let .a e 2K 

r,,. Next if 

F and Q on subsets 
a of Sare introduced to facilitate that. 

and Ac s. If !Al s K 2 we simply 

IAI =Isl= A, then consider the 

put F(A) = {p} and then let the map 
, 

be defined as follows: if q c A\ {p} then 

' 

put F(A) = A and O (A)= 
a 

~ - first member p of A, 

• 



if and only if i is the first member of I with 

p (i) f u . , 
q,i 

moreover, for each j $ ~, 

q (j) ~ V .(~.). 
p, J J 

~. is the first ordinal in 2K with 
J 

Let : n E 2K} be an enumeration of Ix (2 K) ~ 

2K and then put 

for each K 
E 2 • 
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in type 

Now we can define the ramification system 

If vis limit and St has been defined for 

as follows. Put s
0 

K~ all t E (2) then 

= s. 
put for 

(2 K) 'V any SE 

s 
s 

• 

Final.ly if 

and 

K µ 
St has been defined for all t € (2) then put Ft= F(St) 

s g 

for every a E 2K. It is obvious that the conditions of the rami.fication 
+ 

lemma are then satisfied, hence there is a sequence t E (2K)K such 

that 

+ (V) 
whenever v E K • Let us denote by p the ..( - first member of 

. (v) 

VE K+ a j(v) E 

= Ftj • By our construction then we have for_each 

+ wheneverµ EK 

P (v} (j {v)) 

I 

\ (v+l), hence in particular 

f U (µ) . (V) p , J 
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• 

• + K+ + index • I Clea.rly there • [K J and an E if\) e lJ € K 1S a set a e J • 

j (V) = j for all v E and then T {p (v) (j): a} • left with a, - \) E 1S -
(in ).) . We claim however that this set T • also right separated type l.S 

separated. Indeed, if j > l then this is inmediate as R. itself is 
J 

right separated, while on the other hand if j :;; .l then for each 
+ v e µ € K we have 

p 'J 

Thus Tis both right and left separated, hence by 2.12 it contains 

a discrete subspace D with !ol = !Tl= K+ > s{R.), a contradiction. 
J 

Case 2 : I I I ~ w • Let us put 

• 

{ ( ) [IJ <w) 
K = sup s RJ : J € 

and 
K S (R) 

show that z (R} S I I I . 2 ~ I I J . 2 I • 

Ass1Dne on the contrary that s c R is left separated by < in type 
K + A · = ( f I I • 2 ) and 

u 
p (I 

p 
<W 

E [I] ) 

are the left separ::iting neighbourhoods. It can be assumed now that 

I = J for all p. € S because l[r.]<wf = lrf < A. But then pr (S) is 
p K S(~-) J 

clearly left separated in type A> 2 ~ 2 ·~ which is impossible by 

what we have proven in case 1. ~ 

~~~-. It is nat.11ral to ask whether z (R) could be replaced by h (R) 

in 5.8 .. While this is known to fail for Hausdorff spaces, it is easy 

to see tha.t it holds if each R1 e T 3 • Indeed then by 2. 22b) we have 

hence, using 5.3, 

• 

5. 9. XE each R
1 

e: C
2 

·then 
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PROOF. By 5.2 it suffices to show that t(R) s lrl .tI(R}. We shall 

first consider the case Jr! = 2, more precisely we prove the following 

lemma. 

LEMMA. If X € T1 and Ye C2 , then 

t(X X Y) S t(X) .t(Y) = K. 

PROOF OF THE LEMMA. What we have to show then is that every K-closed 
-set H c Xx Y is closed. Thus suppose <p,q> EH and show that 

<p,q> EH. Now {p} x Y c Xx Y is closed, therefore T = H n ({p} x Y) 

is K-closed, but t({p} x Y) = t(Y) s K, hence Tis actually closed, 

and it suffices to protJe that q € pry(T). Assume on the contrary that 

qi pry{T), then as the closedness of Tin {p} x Y implies that the 

projection pry(T) is closed in Y, we can choose a closed neighbourhood 

V of q in Y such that V n pry(T) = 0. Then Xx Vis a neighbourhood 

of the point <p,q> in Xx Y, hence 

<p,q> E (Xx V) n H. 

Now, just like above, the closedness of Xx V and the K-closedness of 

H implies that (Xx V) n His K-closed in Xx Y. But the compactness 
• 

of Y implies ~at prx: Xx Y ➔ Xis a closed map, and therefore s = 
prx((X x V) n H) is K-closed in x, consequently, in view of t(X) s K, 

it is also closed. By the continuity of prx however we have then 

-p Es= s = prx(X XV) n H), 

hence there is a point re V with <p,r> e H, contradicting that 

({p} XV) n H = ({p} XV) n T = ¢. 

From this len1111a we obtain by a simple induction that t (R) s t
1 

(R) 

whenever I is finite. Let us now turn to the case in which I is 

infinite. Put K = (rl. tI(R), consider any K-closed set Ac R, and 
- [I]<~ let p €A.According to our previous result for any J € we 

• 
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• 

have t(RJ) s K, moreover as the projection prJ is now a closed map, 

prJ(A) is K-closed and therefore closed in ;RJ. Consequently prJ(p) e: 

pr J (A) , hence there is a point qJ e: A such that 

consider the set 

then Be [A]SK since l[r]<wl = III s K, hence we clearly have 

by the definition of Band the K-closedness of A. 

Next in this chapter we shall investigate calibers of spaces and their 

relations to products of the form(*). A classical result of this sort 

is the following theorem 
V 

of Sanin. 

5. 10 Suppose K > w is a regular cardinal and K 

Then Ke cal(R) as well. 

e: cal(R.) 
l. 

for every i EI. 

PROOF. Let us first consider the case in which I is finite, say I= 

{1, ••• ,n}. Now if {G :a E: K} 
a is a family of non-emvty elementary 

' 

open sets in R of the form 
• • 

G = x{G 1 : i € I}, 
a a., 

then put a 0 = K and if for some 

then using KE cal(Rj+l) choose 

Obviously then 

as we11., hence K e: cal (R). 

j < n we have already defined 

a. 1 € [a.JK such that 
J+ J 

• 



' 

5.11 

Next we consider the case of arbitrary I. Again let us start with 

a family {G :a€ 
et 

K} of elementary open sets in R, where 

-1 
G = n {pr. (G .. ) : i E I } 

a 1. a.,i a 

<w 
E [I] for each a E with I 

CL 

we can pick an a E [K]K such 

K. Applying the ti.-system le1r1111a, 0. 6, 

that {I :a.Ea} is a 6-system, e.g. we 
a 
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have I = J 
a ct the family {J :a Ea} is disjoint. 

Ct 
u J for each a. € a and 

In view of what we 

exists ab E [a]K 

have established 

such that 

n {pr (G) :a.Eb}+~J a 

But obviously then we also have 

n {G :a Eb}+ 0. a. 

COROLLARY. 

Indeed, d 1 (R)+ is clearly a caliber of each 

hence there 

R .• 
l. 

-I 

Although 5.10 do~s not remain valid for singular cardinals, the 

following result makes it possible to conclude just that in certain 

particular cases • 

• 

Let w < K = cf (11.) < A and d(R.) < K for eaah i € I. Then A E cal(R). 
J.. 

PROOF. Let us choose for each i EI a dense sets. c R. with lsil < K, 
1. J. 

moreover write A in the form A= E{11.a:a EK}, where K < Aa < AS if 

a ESE Kand each 11. is regular. Next consider a family {G :v EA} 
a " 

of elementary open sets in R , where 

G = n 
\) 

-1 . { pr . ( G . ) : J. E I } 
1. v,1 v 

for any v E 11.. Now applying 0.9 we can find a subfamily J of 

{I :v EA} which forms a double ti.-system, more precisely it can be 
" 

ass1Jmed to have the form 

• 
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• 

J = {I 0 : ex e: K & f3 e: A}, 
a.~ CL 

where I B = J u J u J B , I O n I B , = J u J for S =f= B • and a a a ap a a 
I B n I • = J for a f ex• • (Accordingly, we shall write Gaf3 instead 

a a y 
of G .) For any fixed a EK we can find a point p(a) € s 

V JUJa 

= x { s. : i e: J u J } (which is dense in 
(a) 1 Aa a 

a e: [A ] such that 
a. 

and a set 

(a) 
P e: n (G ) : S E a ( a) } , 

a8 

because with 
JUJa a a 

IS I < K, hence we can also select a set a E[K]K and a point p e: SJ 
J (a.) 

such that p = p tJ for all a Ea. Now it is easy to see however that 

COROI,I,ARY. I£ each R. is separable then every cardinal of uncount:ahl.e 
l. 

cofinali t:g is a cali'ber for R •. In part:icular we have 

We shall now present a few results concerning precalibers, which of 

course, using 1.20, yield corresponding results about calibers of 
• • 

compact Hausdorff spaces. They are based on the following general 
• 

combinatorial result prior to whose formulation we need some defini-! 

tions. Let~ be a reflexive and transitive binary relation on thesetx. 

We shall write I (X) = {y e X: y s x} for the set of s - predecessors 

of x. Two members x and x' of X are said to be compat;ible if · 

I (x) n I (x • ) + f6 and incompat;ible otherwise. A c X is called an 

ant:ichain if any two members of A are incompatible, and (X,S) is 

said to satisfy the K-anticha1n condit:ion if every antichain in it 

has cardinality less than K. Finally, Y c Xis said to be K-good if 

I <K l Y = K and for every y E Y and C e [ I (y) ]. there exists a Y' 

such that c and y' are compatible whenever c e C and y' e Y'. 

K 
E [Y] 

If K and A are carriin.als, we shall write K << A to denote that K < A 

and K' A'< A holds whenever K' < K and A' < A. 
I 
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5 .12 Let; s be a transicive binary relation on x satisfying the 

• 

y -anti chain condition., and K be a regular cardinal with y << K. 

Then for every YE [x]K there is a z E [Y]K which is K-good. 

PROOF. Suppose that Y € [x]K but no z E [y]K is K-good. Then we can 

choose an x(Z) €Zand a set C(Z) E [I(x(Z))]<K such that if we put 

F(Z) = {y E Z: y is compatible with every c € C(Z)}, 

then IF(Z) I < K. We shall put A(Z) = fc(Z) I, write C(Z) 

and for each a€ A(Z) set 

S (Z) 
a 

= {y E Z: y is incompatible with 

Obviously we have 

Z = F(Z) u u {S (Z): ct€ A(Z)}. 
ct 

We shall now define a ramification system of height y over z. Thus let 

us puts~= z. If st has been defined for some t E SEQ
0 

with o < y 
then we put n(t) = 0 and Ft= St if fst! < K, moreover n(t) = A(St) 

and Ft= F(St) otherwise. Then, as usual, we set for each a€ A(St) = 
n (t) 

, 

Finally, if cr e y is a limit ordinal t e SEQ and S t has been 
er t p 

defined for each p € o, then we put St= n{strp:p € 6}. First we show 

by induction on cr E y that KO' = IN n SEQ
0

1 < K, where of course 

N = {t E SEQ: st is defined}. Indeed, if (J is limit and KP< K holds 

whenever pea, then clearly 

K ~ Il{K: p Ea}, 
cr P 

moreover the regularity of K implies the existence of a K' < K 

K SK' for all p E o. But then 
p 

< K, 

with 
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as y << K and f cr f < y • Next if a = p + 1, then clearly 

Ko= !{A(S ): t € N n SEQ & (st1 = K} < K 
t p 

again by the regularity of Kand the inductive hypothesis. It is 

also clear from here that 

n(tfp) S K 1 p+ 

holds whenever t e: N and p < y , hence the conditions of the ramific-

ation lemma are satisfied. Thus we can find a sequence t e: 

with 

(a} 
X 

moreover 

(a) 
C 

= K for all o. € y • Let us put 

SEQ 
y 

f 11 f · c(a) ~ x(o.) but c(a) 1·s It o· ows rom our construction then that .:::: 

inc0111patible with x ( e) whenever a e: (3 e: y. But then the tr ansi ti vi ty 

of~ implies that any two members of the set {c(a): a e: y} are· 

incompatible, contradicting that~ satisfies the y-antichain con

dition. 

Now the following two results due to Argyros and Tsarpalias follow 

easj.ly. It will be useful for us to use the following definition here: 

a family G of op.en sets in a space X is called K-nice if I G J = K and 

for every G e: G and centered family S of open subsets of G if I S I < K 

then there is a G• € [G]K such that S u G' is centered. 

S .13 If ~ (X) s y << K and K is regular then every family of open sets G 

of oardinality K contains a 1<:-niae subfamilg, thus in particular 

K e: precal {X) • 

PROOF. We can apply 5.12 to the transitive relation c on the set 

X = {G c X: G ~ 0 and open} since ~ (X) s y just means that the y

entichain condition is satisfied. Let now G c: [X]K be arbitrary and 

[G]K be !.(-good with respect to the relation con X. We claim 

• 
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that then G• is also K-nice. Indeed, if GE G• and Sis a centered 

family of open subsets of G with ISi < K we let Cc G• be a maximal 

subcollection of G• for which Cu Sis centered. We show that !Cl = K. 

In fact, if !Cl 
C 1 € [CJ<w & S 1 

< K held, then the K-goodness of G• 
<w <K 

E [SJ \{0} E [I(G)] would imply 

j{G E G•: {G} u Cu Sis centered}! = K, 

and { nC' n nS' : 

which is clearly impossible if C is maximal and !Cl < K. 

5.14. Suppose K = cf(A) K 
< A and µ < A hold for all. µ < A, moreover K E 

precal(X). Then A€ precal(X) as well. 

PROOF. Let us write A= t{µa:a EK} with K < µ
0 

<µ$for a EBE K, and 

then put 

Clearly then we have ~. (X) :S K << A < A for every a E K. Let us now 
a 

consider a 

u{a (a) :a e: 

family {G :V € 
\) 

11.} of open subsets of x, write A= 

K} where la I = A 
a a 

for every a e: K, and put 

1 1 . th G (a) · f d · 1 · '\ d th We can c ear y ass11me at every 1.s o car 1.na 1 ty A an en, 
a 

using 5.13, that G{a) is actually A -nice. Let us pick for each a EK 
a 

a member G(a) e: G(a), since Ke: precal(X) we might also assumP. that 

the family {G(a): a e: K} is centered. Let us put 

existence 

centered. 

(0) 
of a H E 

We can continue this procedure by transfinite induction as follows. 

Suppose that a EK and for every f3 e: a we have defined already the 

centered family S(S) such 

y E f3. Let US put then 
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' 

I ca> I clearly R. . < A 
a 

and, because 

(a) {G n O v: 

is centered. Thus by the 

(G(a)] A for which 
a. 

A -niceness 
Cl 

S (O) R(a) -·1 e: c , the fa cni Y 

( a) 
of G there • is an 

is centered. But it is easy to see then that 

is a centered subfamjly of G with IHI= A. -l 

if and only if cf (A) E cal (X). 

Now we turn to a result, due to J. Gerlits, which concerns maps 

defined on products of the fozm (*). It is customary to say that a 

map 
< 

f:R = i € I} ➔ Y 

depends only on J c I if for eve:r:y two points p,q E R with Pt J = qt J 

we have f (p) = f (q) • Moreover, f is said to depend· on less t;han K 

aooxdinates if there is a J c [I]<K such that f depends only on J. 

Before presenting the main result we need an auxiliary lemma. But 

first some notation: Let p,q E R and 

of I, • i.e. s n s = S if t I= µ t 1J 

R(S;p,q) =.{~ER: 

and 

' 

S = {St:~ E ic:} be a partition 
' ' 

u{st:t E ic:} = I; we shall put 

5 .. 1'5. if R is as above, p,q E R and Ritz T 1 with p(i) + q(i) for every i ·€" I, 

< 
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• 

PROOF. 

x.{D.:i 
1 

Let us put o
1 

I 
€ I} :::: D(2) , 

= {p(i),q(i)}, then clearly R(S;p,q) c D = 
moreover R(S;p,q) is also closed in D, because 

if r € D \ R(S;p,q), then there exist an st€ Sand i,j e St w;th 
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r(i) = p(i) and r(j) = q(j) and the set of points of D satisfying this 

is open an,;;1 disjoint from R(S;p,q) .. Consequently R(S-;p,q) is compact • 

Let us now consider the map 

K F:R(S;p,q) + D(2) 

defined as follows: 

O, if rs~= 

F(r) (t) = 

1, if rrs 

It is easy to see that Fis a one-one and onto map. But Fis also 

continuous, because for any 

e:(t) = i} in D(2)K we have 

subbasic open 

(with po= p 

set ct" . = 
1 t::.,l. 

and p = q) 

= {r € 

• 

0 1 
R(S;p ,p ) : 

K 
{e: € D(2) : 

that is clearly open in 0 ·1 
R(S;p ,p ). But then Factually is a homeo-

morphism. 

5.16. Let 

f:R = x{R.: i € I} + Y 
l. 

be a continuous map, where Ri € T2 for all i € I and Y € T
2

, moreover 
K 

assume that K > w is a caliber for R, while D{2) is not embeddable 

into Y. Then f depends on less than K coordinates only. 

PROOF. Let us assume indirectly that for no Jc [I]<K depends f on 

J only. We shall then define by transfinite induction elementary open 
0 1 

sets ut, u~ in R of the form 

• 
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• 

• 
l. u = 
E; 

• J e: 

[IJ<w f h with I c as follows. I we ave 
~. 

net e K, then put 

u1 for all 
Tl 

p0 t J = p 1 t J, but yo= f(po) ~ y 1 = f(p 1). Since Y is Hausdorff, 
t t t t t ; ~ 0 t 1 o 1 

we can find disjoint open neighbourhoods Vt and Vt; of Yt;; and Yt' 
as 

. . th O Ul rt. we may also ass,:une that for every J € I l:' ei er U t" •. n t . = JU or 
0 1 <, <.:,,] ,J 

Ut' . = u ., using that each R. € T2 • Let us put Sr: = {j € If;: 
.,,,J .,J J O 1<, 

uO nu -' = ~} c It", then St- t ~ because Ur:- n Uc- = ¢. Moreover 
t,j t,.;1 \p ';, <, ', 

n · < t jmplies Sn n St = ~, because for any j € Sn we have j E Jt, 

hence 

Therefore every It 

put for any t e K 

0 
€ Ur . .,,,J 

1 
n u c- • .,,,J 

intersects only finitely many 

n s + ~}, 
n 

s , 
n 

hence if we 

then 
<ro 

F: K -+ [K] • But then K > oo implies in view of Hajnal's theorem, 

0.3, that there is a fre•e set of size K for F, hence in what follows 

we may actually assume that Ir n S =~if .,, n n. Let us now put 

Es}. 

Finally fix a point q ·€ R
5 

j € s. 
Since K is a ca1ibe.r for R we can ass,1me that n{Uf;: t € K} ¢, and 

0 then we oan choose a point p e· n{ut: f; e K}. Now, if j 

to conclude that 

€ St CS, 

can apply 

then 

5.15 



Let us now put 

R** = {r ER: rfs € 
* 

R &rr(I\S) 

then clearly R** ~ R* 
K 

~ 0(2) as well. Next we show that f is one-

one on R**. Indeed if r ,r' € R** and r + r' · then there is a ~· e: K 

• J E hence we 

f (r) E 
1 

VF; 

\Sand 

,J ~, j 
consequently 
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if 

and thus f(r) + f(r'). But then frR** is actually a homeomorphism, 

which contradicts our ass11mption that D (2) K does not embed into Y. -f · 

COROLLARY. Suppose f: R ➔ Y, where all t:he R. and Y are Hausdorff, 
l. 

d{R.) < cf{K) for each i EI and ~(Y) < K, where¢ is a monotone 
l. 

cardinal function such that ¢(D(2)K) = K. Then f depends only on 

less that K coordinates.. -I 



CHAPTER 6 
-• 

CARDINAL FUNCTIONS ON UNIONS OF CHAINS 

In this chapter we are going to study the following problem. Given a 

space X as the union of an increasing chain of subspaces, i.e. 

x = u{x: a€ K} 
a 

with Xa c x
8 

if a€ Be K, and knowing the values of some cardinal functions 

on the Xa, what can be said about X? This problem has just recently become 
- V 

the object of systematic study by M.G. TKACENKO [TK 1978] and by [HJ 1981], 

and therefore it might have a less final character than the previous chap

ters. Clearly there is no loss of generality in ass1.llD.;.ng that in ( *) K is 
C 

a reg,q.lar car,dinal and that a € B e: K imply Xa ;= x
8

, hence we shall ass1.1me 

this throughout. 

6.1. If If> E {c,s,h,z} and cp(X) < A for all a E: K then cp(X) SA; if in 
a 

addition K > A then 4>(X) < A. 

PROOF. Let us first consider the case 

family Gin X and put for each a c K 

• 

G ={GE: G: G n X + ~}. a a 

= c. Thus consider a cellular 

Clearly then 

al:ld finally 

I G I s C (X ) a a < A, moreover a € a e: K implies Ga c G8, 

G = u{G: a€ K} 
a. 

Consequently we must have I GI s A. Now if A ·< K then choose for each 

a 0. € K with a (G) s a0 for each G E: G, consequently G = G and there-
- a 

0 

• 
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IGI s c(X ) < X. If Xis a successor cardinal then this immediately ao 
implies c(X) < A. If on the other hand A is a limit cardinal and 

c(X): X would hold, we could choose for every cardinalµ< A a 

cellular family G(µ) in X with IG(µ) I=µ and then find, as we have 

shown above, an a < K with G(µ) = G, i.e. 
µ Ctµ 

VG E (G n X 
a 

µ 

But then again we had an ordinal a EK such that a ~ a for each 
µ 

µ<A, which is impossible as this would imply c(X) ~ X. 
a 

Now let¢ E {s,h,z}, we shall give a joint proof using defining 

sets in the sense of chapter 4. If Sis a defining set for¢ in X 

and a EK, then S n X is a defining 
a 

set in x, hence jsnx I< X. But a a 
again if a< 8 < 

If A< K then by 

K then S n x c s n 
a 

the regularity of K 

x8 , hence Isl :SA, i.e. ¢(X) :SA. 

this implies Sc X for some 
a 

a EK, hence Isl :S ~(X) <:>...This implies ¢(X) < 
a 

:>.. if A • is a succes-

sor. If A is a limit cardinal then ¢(X) = A would imply the existence 

of a defining sets(µ) c X with Is{µ) I=µ for every cardinal u < X 

and thus the existence of an a EK with S(µ) c X • 
µ CLµ 

But there is an a EK with a ~ a for eachµ< X, contradicting 
µ 

<f,(X ) < A. 
(l 

(i) If nw(X a) < for all a E K then nw(X) :S K. A. -
(ii) If X E r1 and 1l,w(X) :S K for a E K, then 1l,w {X) s K.A. • a 
(iii) If X E T 1' p E X and IV (p,Xa) s; whenever p E X , then 

CL 

tp(p,X) ~ K.A. 

PROOF. 

(i) 

(ii) 

Clearly if N is a network in X a a 
network in X = u{x: a€ K} with 

a 

then N = u{N: a€ K} is a 
a 

INI :SK.A. Observe that in 

this case the fact that {x: a EK} is a chain is not used. -I 
a 

Let B 
a 

be a family of open subsets of x such that {BnX : Be: B } a a 
is a llJ-base for X and IB I ~ ~w(X) ~A.We clajm that 

a a a 
B: u{B: a. E 

a. 
then there is 

K} is a tlJ-base for X. Indeed, if p,q € X with p =f: q, 

an a EK with p,q EX, but then if BE B is such a a 
that p e: B n X . and q 4 B n X then p E B and q ~ B hold as well. 

CL Cl 

Thus we have 
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-I 

{iii) The proof in this case is quite similar to that of (ii). ~ 

6. 3. If X E: T
2 

and h(X) 
Ci 

s ,._ for each a e: K then 

a A A + ,+ . 
if Ks 2. But if K > 2 ~ A then from 6.1 we get h{X) <A, i.e. 

h(X) s :l, hence by 2.16 again we get Ix I s 2A. -I 

6.4. Let Xe: T2, moreover h(X) 
a 

s A and z (X ) 
a 

<).. for every a e: K. Then 

6.5. 

• 

PROOF. By 6.3 we have lxl s 2).. and by 6.1 z(X) s "-· Therefore using 

2.11 we conclude 

o(X) s lxl z{X) 

COROLLARY. If XE: T2 and nw(X
0

) < A for all a e: K, t;hen 

If XE: T2 

(i) z(X) 

• 

and s(X) 
). a. 

s 2 ; 

o{x) s exp2A; 

"1w(X) S 2).; 

$ A for all a E:. K, .then 

(ii) 

(iii) 

(iv) if, in addition, Xe T3 'then 

nw(X) s 2A. 

PROOF. + If K > ). then by 6.1 we have s {X) s A and therefore (1)- (iv) 

follow i11r1111ediately fxom 2.17, 2.21 and 2.22, resp,ectively. Thus in 
' 

what follows we ass,,m~ that K s ). + (S 2)..). 

(i) Assume, indirectly, that z(X) 

separated subset S with I S I = 
X contains a left 

But then we must have 

• 
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A + fsns I= (2) for some a EK as a well, which contradicts 2 .17. -I 
By 2.20 we have Ix I 

a 
fxf S exp2:\ as well. 

o(X) :S IX I Z(X) s 

follows. -I 

• 

< ' f h h < ,+. 1· - exp2 A or eac a EK~ ence K _ A imp ies 

But then in view of (i) and 2.11 

= exp A ·2 

(i i i) Using 2. 20 choose for each a e: K an s 
a 

such that 

X 
x = u{T a: Te: 

Ct 

and put S = 
every point 

u{s: 
a 

p € X 

most A. But then 

e: K}. Then Isl s K.2A = 2A, and clearly 

is in the closure of a subset of S of size at 

yields a $-base of X with the same arg11ment as in the proof of 

2. 22a) .. -I 
{iv) If Xe: T3 then the family M defined in (iii) is a network of X 

with the same argu111ent as in the proof of 2. 22b). -I 

6.6. If Xe: T2 

even p (X) 

and p(X) < A for all et e: K then ww(X) SA, and for A< K 
a, 

<A.I~ in addition X € T
3 

chen nw(X) s A. 

PROOF. Let us first consider the case A~ K. Since by 2.8 ~w(X) s 
a. 

p(X} (or even w{X) s p(X) 
a a a if X e: T 3 ) we itl'ltnediately conclude then 

from 6.2 that ww(X) SK.A= A (or nw (X) :S K.). = A) • Now assi:une that 
• 

A< Kand show that p(X) <A.If, on the contrary, p(X) ~ A then choose 

a famtly G C RO(X) with IGI =A.If G,H € G and G ~ H then G ~ a as 
-

well, hence either G\H +~or E\G + ~-
G\H +~and find an ordinal a= a(G,H) 

Bnx +~-Clearly then we have 
a 

X 
GnX l3 

B 

X 
+ -Hn-X S a 

Assume , by sy1n111etry, that 

in K such that (G\H) n x f: ~ and 
Cl 

for every ordinal 8 € K\a. By A< Kand the regularity of K we can 

then find a fixed a 0 e: K such that a (G,.H) ~ a
0 

for every pair 

• 
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. :. 

{ } [G]2 , h th G,H e hence we ave en 

x,.,, 
+ -Hn-x ..... o 

ao 

for any G,B € G with G + H. But this would mean that Xa0 contains 
. Xa.o . 

contradicts p(Xa,
0

) < >i.. Thus we have v,w(X) :s; p(X) < A, and if XE T3 

then nw{X) s p (X) < A. ~ 

PROOF. If K s exp
2

A then this follows i1111c1ediately 

for all a EK (cf. 2.4). If on the other hand K > 

that 

p(X) 
a. 

:s; exp d(X} 
a 

for each a. e: Kand 6.6 to conclude that 

A + 
p (X} < (2 ) , 

a.nd therefore 

-I 

< K 

from Ix I 
a 

exp2A use 

s; exp2>. 

the fact 

• 

The following result that we think is quite remarkable in itself will 

be 'Q.Sed as an auxil.iary result later; that explains its different 

charao·ter .. 

K is an arbitrary.cardinal, 

Chen w(X) < K as well. 

and w (Y) < K holds for each 

PROOF. Let us assume first that K is regular. The proof is then based 
' 

· on the foll.owing lemma .. 

Let X e T with ~ (X) s K, where K ·is regular. If {Y: 
a 

an increasing chain of subspaces of x with Y = u{Y : a e K} 
a ' 

fl#Bilyof O,Pel'l sets i11 X such t:hat: for.each a. e: K 

a. e K} is 

and Bis a. 



• 

BtY = {BnY: B € B} a a. 

is a base of Y, then Bty is a base of Y. 
a 
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PROOF OF THE LEMMA .. Ass11me, on the contrary, that B ty is a not a base 

of Y. Then there is a pointy e Y and an open set G containing y such 

that if Be Bandy EB then (BnY)\G i ~- We shall now define by trans-

finite induction a sequence of ordinals {v: a EK} c Kand a sequence 
a 

{y : a. E K} of points of Y with y € Y,, as follows. Let " e: K be 
a o. va. o 

such that y E Yv0 , then by assumption there is a BO e B with 

YE BO n Y"O c GnYvo• We then choose Yo€ (B0 nY)\G. If a€ Kand we 

have chosen already {v8 : BE a} and {y
8

: Be a}, choose "a e Kin such 

a way that v 6 < "a if B < a, this is possible because K is regular. 

Then, by our assumption again, we have a B e: B such that y E B nYv c 
a a a 

GnYv, moreover we can 
a choose y E (B nY)\G. It is easy to see then a. a. 

that for B <awe have YB t Ba because y B tl GnYva, but that is impos-
sible as then {y: 

" a z (X) 

a EK} would be a left separated subset of X of 

type K, while K. -I 

Now if X has the property w(Y) < K for each YE [x]K then c1early X 
A does not contain a left separated subset of type K, i.e. z(X) $ K. 

We shall now define for a. e K sets Y € [x]<K and families of open 
(l 

sets 8
0 

with 1B
0

( < K as follows. Put Y0 =~and B
0 

=~-If 

and {88 : a Ea} have been defined then put first za = u{Y
8

: 
• 

Since K is regular we have lz I< K, hence 
. a 

by assumption we can find a 
' 

family of open sets Ba~ u{B
8

: BE a} such that IB I <Kand B tz is a a a 
a base of z. Now, if B is a base for X we 

a a are done hence we stop our 

construction. If not, then 

containing p 
a 

such that if 

there is a point pa e X and an open set Ga 

p EBE B then B\G +¢.Put a a a 
C ={BE B: p E 

a a a B} and for each Be C pick a point p(B) € B\G. 
a a 

Then we let 

Y = Z u{p } u {p {B) : B e: C } , 
a a a a 

clearly IY I < K. a 
Ass,Jme that this construction goes through for all a E K (if it 

does not we have established w (X) < K) • Then we can apply our le11m1a to 

x, the sequence {Y: a e: K} and the famjly B = u{B: a EK} because 
a a 

• 



130 

• 

trivially 8 1 tY 
a+ a 

is a base of· Y • Consequently B ~Y is a base of Y, 
CL 

where clearly IYI s Kand therefore w(Y) < K. But it is well-known that 

every base of a space Y contains a subfamily whose cardinality is the 

weight of Y and which is also a base of Y. Using this and the regular

ity of K again we get that there is an a e: K for which B lY is a base a 
of Y. This however is impossible because p e: Y and by the choice of 

a 
B , p and G for no B E: B do we have p c B n Y c G n Y, since if 

a a a a a a 
p c Be: 8 then p(B) e Y n (B\G). This completes the proof in case 

a a a 
K is regular .. 

Let us now assume that K is singular, in particular then K is a limit 

cardinal. We first show that we actually have a A < K such that w (Y) < A 

h Y [x]SK _ d d · f h " < K ld i t th ld w:. enever e: ~ In ee 1. no sue I\ wou ex s en we cou 

[x]SK ( } " choose for each A< Ka subspace YA c with w YA ~A.But then 

for Y = u{YA: A < K} we had IYI :s; K and w(Y) ~ K (since w(Y) ~w(YA) ~ A 

for every A< Kand K is limit), 

A< Kand observe that then w(Y) 

in view of the 
+ get w(X) < A 

first part of our 

< K • 

a contradiction. Thus choose such a 
+ . <"-+ 

< A holds for all Y € [x]- , hence 
+ proof and the regularity of). we 

.;..;...;.;...;;;.;;.;;.;.;.;;.• It is easy to see that the first half of the above proof 

(including the le1111na), i.e. the case of regular K, goes through if 

the weight is replaced by the ,r-weight. For the second part however 

this is no more true because the ~-weight is not necessarily monotone. 

In fact 6.8 is false if K is singular and w is replaced by~ in it, 

as is shown by ·7 .13. 

Baving done most of the work in 6.8 now we get the following result on 

chain.s rather easily. 

6.9. ~f w(Xa) < A for eaah a E K then nw(X} s )., moreover if A < K then 

even w (X) · < A. 

PRQOF. If K :s; l. then as nw(Xa) S w(Xa.) < l. we get j11onediately from 6.2 

that nw(X) SK.A= A. If on the other hand A< K then, as K is regular, 
. S). 

eve.ry Y E: [X] is contained in 

s .... · uentiy 6. 8 can be applied to 

and s(X ). 
a 

"Ix l s 2 • 

~•• (X ) S l. 
lfl a. 

some X, 
a 

conclude 

hence w{Y) s w(X) 
a 

that w(X) < A. 1 

;far ea,ah. a. E: K then 

< A. Con-

• 
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A 
PROOF. Since by 2.15a) we have Ix I s 2 for all a EK it suffices to 

A a. A 
show that Ks 2 • To see this assume indirectly that K < 2 , let us 

pick for each a.€ Ka point p EX 1 \x and consider the subspace 
a. a.+ a. 

Y = {pa.: a EK}. Note that for any a EK then $(p
0

, {p
6

: S ~ a}) s 
S $(p, X 1) 

a a+ 
s(Y) s s(X) s 

s A, hence clearly $i(Y) 

in view of 6. 1 and A+ s 

a contradiction. -I 

s A. But we also have 
>.. 

2 < K, hence 2 .19 implies 

REMARK. I don't know whether 6.10 remains valid if we only assume 

X € T1 (compare this with 2.15a)). 

6.11. If X € T2 and for all a€ K we have 

L(X ).~(X ).t(X) S 
a a a 

then 

A 
PROOF. From 2.27 we get Ix I s 2 for each a€ K, hence our result 

Cl 

1,,,,nediately follows if K s 2).. Thus in what follows we ass1.1me that 

K > 2A (which ~s clearly equivalent to K = (2A)+) and strive to 

obtain a contradiction. Let us start with a le1u1na that will be used 

repeatedly in the proof. 

LEMMA. If XE! T
2

, Y is a subspace of X wit;h L(Y) SA and p € Y, then 

for every open set U in X containing p there is a family R of regular 

closed neighbourhoods of pin X such t:hat JRI s X and 

u n Y => n R " Y. 

PROOF OF THE I,EMMA. S-1:-nce x E T 2 the intersection of all regular 

closed neighbourhoods of pis {p}, therefore their complements cover 
• 

X\{p} ~ Y\U. But L(Y\U) s L(Y) s A, and as these complements are open. 

we clearly have a famlly R of regular ciosed neighbourhoods of pin 

X with )RI s X such that 
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' 

• 

Y\U c u{X\R: Re R}, 

i.e. 

unY => n R n Y. 

). 
As a first consequence of this we prove that p(X) > 2. Assuae, on 

the contrary, that p(X) s 2.X and consider any point p EX where •·CJ· 
p € X00 • Now for any a E: ac:\a0 we have p E xa and 

we can choose a family of open neighbo11rhoods U 
a 

• 

~(p,X) ~ A, hence 
a 

of pin X with 

IU Is). and nU n X = {p}. Since L(X) s). we obtain from our a a a a 
lt=r11,11et. for each O E U a f ami 1 y of regular closed neighbo,1rlioods · 

a 
of pin X such that n n X 

a 
CU n X • 

a 
Consequently if we put 

R
0 

= u{R
0

: u E Ua} then 

But if 

of an 

nR n x == {p}. a a 

p(X) • IRC(X) JS 2A 
S). 

E [RC(X)] and a 

then :from 1e < 2A we obtain the existence 

set a E [K]K such that R = R for every 
a P 

a Ea. Then we have 

is only possible if 

that 

nR 
p n X = 

a 
{p} for cofinally many a EK, which 

nR = p 
{p}. Since p was arbitrary we obtain then 

lxl s [Rc(x)Js). 
• 

• 

• 
• 

a contradiction. 

We shall call a set Y c X bounded if there is an 

Y c:: X (clearly this is equivalent to IYI s 2). if K > 
a 

a E'. K with 
A 

2 ) • Nov if 

Pc Xis closed and unbounded then taking F = FnX we have I.(F) s a a a 
:s: L(X) s A, hence the above resu.lt cl•arly applies to Fas well, i.e. 

a A . 
p(F) > 2 • Comparing this with 2.6d) we get the following important 

obse~ation: for any set A € [X]S).. i ta clos11re A is bounded. Indeed, 
then p (A) s · 2 I A I s 2 A. . 

The rest of the proof is divided into two parts according to whether 

·t11(X) s "- or v,(X) >)..In the first case the proof ia quite sim1lar to 

that of 2.27 with a few extra inqredients. Let us observe firat of all. 

that if Y c: Xis bounded (i.e. IYf. s 2).) and p e Y then there ia an 
• • 

a e: ac with{p} u Y c Xa, hence t(X0 ) ~ A implies~• exiatence of a 
• 



• 

• 

Y = u{T: 

X 
E T (l 
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-c T. In other words 

Since we have already shown that !Tl s 2A if ITI s A, this implies then 
A 

2 • Thus we get that the closure of a bounded set is bounded, in 
- -particular Y c X implies L(Y) 

Ct 
~ L(X) S: 

Ct 
A. Now if w(X) s A then just 

as in the proof of 2.27 we can show that - A ~(Y,X) s 2, because if V 
p 

is a $-base of pin X with 

then 

IV I ~ A for each p E Y and V = u{ V : p € Y} 
p p 

-
Y c uV•} 

-is aw-base of yin X with IUI s = 2A. Now it is easy to see 

that in the proof of 2.26 we have· not used the full assumption t{X) <K 

but only the existence of a cardinal t < K such that a(p,S) s; -r if Jsl s; K 

-and p E S (with the notations used there) which as we have just shown 
-above is satisfied here: a(p,Y) s A if IYI ~ 2A and p € Y. Consequently 

we see that every condition of (this modified) 2.26 is satisfied, con

sequently 

which is a contradiction as th.en X should be bounded. 

Now consider the second case in which there is a point p € X with 

$(p,X) > A, we can assume without loss of generality that p € x0 . 

Next we define by transfinite induction ordinals a"€ K, points 

p € X\{p} and families V of regular closed neighbourhoods of pin 
\) \) + 

X with IV"J s; A as follows. Supposeµ EA and we have defined al-

ready a , p and V for v e µ. Then '"""{_p_:_v_e:_µ_J is bounded, hence 
'\) \) \) \) 

we can choose a EK such that 

{p : \) € 
\) 

µ 

µ} C X 
a. 

µ 
• 

Next we choose V as a family of regular closed neighbourhoods of p 
µ 

satisfying IV ( S: A and µ 

nV n x = {p}. 
µ ll.µ 
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• 

This is possible because by lf, (p, Xa ) :s; A there is a family U of open 
µ 

neighbourh.oods of p in X with n U n Xaµ = {p} and I U 1 :s; A, and then 

for each U e: U there is by our le111:1,1.-it a farni ly of regular closed 

neighbourhoods of p in X with 

,, 

n n x cu n 
a µ 

and then we can put 

X , 
a µ 

V = u{ : u E U}. 
µ 

Since ,cp,X) > A, however, we must have 

' 

hence we can 

observe that 
+ 

choose p € F \ {p}. Having defined S = {p : v e: 
µ µ " 

s is ''almost11 a free sequence in the sense that for any 

ll E: X 

{p : 
\) 

v E µ} n {p : µ 
'\) 

+ :s; \) < A } C {p} , 
• 

because 

{p : \) € µ·} C 
\) 

• 

and clearly 

F 
µ 

n x c nV 
a µ 

µ 
n X = {p}. 

a 
l.l 

But Isl + A i.e. Sis a bounded 

a e: K. 

which 

Now as W(p,X) :s; A, there 
a 

(S\UI + = A , 

ti 

or in other words we have an a e: 

F µ· 

set, consequently Sc X 
a. 

is an open neighbourhood 

• 

for some 

U of p for 



• 

= {p : 
\) 

v ea} c X \U. 
a. 
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But then p ¢ s0 , hence clearly s0 is a free sequence in X of length 
+ a 

!al= X. But L(Xa) s X implies the existence of a complete accumula-

tion point q of s0 in x
0 

which clearly is impossible as t(X
0

) s X. 

This contradiction completes the proof. -I 

COROLLARY. 

txl s 2)... 

x and x<x) 
a 

s X for all a e K then 

-PROOF. Clearly it suffices to prove that x(x) s X holds for each 
a 

a.€ K because then 
-

if p € X choose B 
a. 

to the chain {X: a EK}. But 
a 

C Xe, then using the regularity 

6.11 can be applied 

€ K with {p} U X 
a 

of X and 2.7a) we get 

It is not surprising that if one ass11mes that X in ( *) is compact 

Hausdorff then a lot more can be said about its ''cardinality behaviour''. 

In the rest of this chapter we are going to study just this situation. 

6.12. If XE C2 and nw(Xa) < A for each a.€ K then 

(nw(X) =)w(X) S X. 

• • 

If, in addition, 

2 
PROOF. Clearly X = 

< K then even w(X) < A. 

xxx is the union of the 
2 2 over h(X) s nw(X) < A holds for every a€ 

. { 2 } chain X: a.€ K, more-
a 

K. Thus by 6.1 we have 
2 a. a 2 

h(X) s A and even h(X) < A if A < K. But from 2.10b) and 3.32 we 

obtain 

w(X) 

and our claims follow. -I 

6.13. If X € 

if A< K. 

and t(X) < A for a€ K then t(X) 
a 

~ A, and even t(X) < A • 
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• 

PROOF. Let us assume first that Ks A. Then by 3.12 it suffices to 

show that X does not contain a free sequence of length 
+ A = µ. Ass11me 

on the contrary that s = {p: a E µ} is such 
0: 

a free sequence. Since 

K < µ = + A we can actually ass11me that S is bounded because other-

wise we could just take an appropriate subsequence. For any v E µ 

let us put 

F = {p: VS a<µ} 
V ex 

and 

F = n{F: V € µ} 
V 

Then F +~because Xis compact hence we can choose a p E F. Since 

Sis free we clearly have 

pi {p: a€ v} 
(X. 

-for every" E µ, while p € S hence a(p,S) ~µ.This shows that if 

a e K is chosen in such a way that {p} u S c Xa then 

µ ~ a(p,S) S 

a contradiction. 

t(p,X) < A, 
a 

Now assume A< Kand for each regular cardinalµ s A such that X 
• 

• 

contains a free sequence of lengl:h µ choose one, say S • Observe that 
µ 

µ s A< K implies thats 
µ 

is then bounded. Let us select then a point 

p
11 

to sµ similarly asp was 

such that for every re,gular 

S U {p} c X. 
µ µ 0: 

selected to S above. Now we have an a e K 

µ s A in question 

According to our above observations then we have 

µ S t(p ,X) S t(X) 
µ ex. a 

for any suchµ, consequently, as t(X) is the sup of all theseµ, we 

have t(X) S t(X) < A. 
a. 

• 

• 
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We shall prove a similar result for the character but first we need 

an auxiliary result, which again is of independent interest. 

6 • 14 • a) For any X E T and P € X if X (p,X) = A then there is a Y e .[x]s;:x 

such that p € y and x(p,Y) = A. 

• 

b) If X < A and x(p,X) ~ A then there is S). 
a Y € [X] with 

P € Y and X(p,Y) ~ A • 

PROOF. 

a) Let {u: a€ A} be a neighbourhood base of pin X and put for each 
a 2 

pair <a,13> € A 

P<a,13> = 

p otherwise. 

Put Y = {p 
O 

: <a,$> 
<a µ> 

!YI~ A. We claim that 

2 
€ A } , 

x(p,Y) 

then p = p € 
<a,a> 

=A.Since X(P,Y) 

Y, and trivially 

~ A is obvious we 

only have to show that x (p, Y) < A is impossible. Assi1me, on the 

contrary that x(p,Y) =µ<A and let {v: v €µ}be neighbourhoods 
'\) 

of pin X such that {YnV: v e: µ} is a neighbourhood base of pin Y. 
\) 

For every v €µwe can choose an a.(v) e: A such that 

u C V • 
a(v) :v 

• 

Then {Ua(v): v €µ}is not a neighbourhood base of pin X, consequent-

ly there is an a€ A such that U ( )\U ~~for a v a all v e: µ. But then 

for every v e: µ, consequently Yn(V \U) + ¢, 
v a 

every v E µ, contradicting {YnV : v E: µ} is a 
\) 

p in Y. -I 

i.e. YnV q: YnU for 
" a 

neighbourhood base of 

[ - <A b) If there is an S € X] such that p e: Sand x(p,S) ~ 

~ [X]<A are done, hence we assume in what follows that S <;;. 

).. then we 

and p E: S 
• 

imply x (p, S) < A. We also restrict our attention to the case in which • 

A is regular, for the case of a singular A will easily reduce tp it. 

Also observe that x(p,X) ~).. > t(X) jmplies A> w .. 
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• 

' 

Now we define by transfinite induction points pa€ X and families Ba of 

open neighbourhoods of p in X with I Ba I < A as follows. Put Po = P and · 

8
0 

= 0. If a E A\{O} and p
8

, Bf3 have been defined for all SE a then 

put S = {p 0 : S E a} and observe that 
a P 

-
x(p,Sa) = X(P,Sa) < A. 

Consequently we can choose a family of open neighbourhoods of Pin X, 

say B , such that (0) nB n S = {p}, (i) jB I< A, (ii) u{B 0 : SE a} c B • 
a a a ct P a 

Using that w <Awe may also assume that (iii) B is closed under 
a. 

finite intersections, and (iv) for every U € Ba there is a VE Ba 
with V c u (in other words, (iii) and (iv) together say that Ba is a 

regular filter base). Since llJ(p,X) = x(p,X) ~A> IB I we have 
Ct 

{p} + n B, hence we can choose a point p € n B \{p}. a o. a 
ed the induction for all a e A put Y = {p: a EA} and 

a 

Having complet

B = u{B: a El}; 
a 

clearly Bis a regular filter base in x .. 

The r~gu1arity of A and t(X) < A imply that 

- -Y = u{s: a EA}, 
a 

showing that since nB n 
a 

But then Bty = {BnY: BE 

s = {p} for each a 
a 

B} is a $-base of p 
•. -

a regular filter base in Y, which in view of 

j_mplies that Bt.Y is actually a neighbourhood 

€ A, we have nBnY = {p}. 
-in Y and at the same time 

Y € C
2 

then clearly 
-base of pin Y. This 

- -shows x (p, Y) =:= x (p, Y) ~ A but we claim that x (p, Y) = A. Ass11roe on the 

contrary that x(p,Y) <A.Since BJY is a neighbourhood base of pin 

Y then we can actually select a subfamily C c B with IC I = x (p, Y) < 

such that nCnY = {p}. By the regularity of A however then there is an 

a€ A with Cc B, consequently we have p E: n B \{p} and therefore a a a 
Pae n C n Y\{p} as well, a contradiction. This completes the proof 

for A regular. 

Now if A is singular then we can appl.y the first part of our 

proof to obtain for every regular cardinal 1J with t{X) <µ<A a 

[ JSµ . 
subspace YlJ E: • X · such that x(p,Yµ) ~µ.Thus if we put 

then fYI s .A and x(p,Y) ~· A because 

• 



x<p,Y) ~ x<p,Y > ~ µ 
µ 

for every regular < A. 
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6.15. If XE c2 and x(Xet) < A for every a EK then x(x) $ A, moreover if 

K > A then even x(x) < A. 

• 

PROOF. If K $ A then from 6.2 (iii) we get 

Now, if K > A then first of all t(X) ~ x<x) < A for all a e A 
a a 

implies by 6.13 that t(X) < 1. If x(X) < A failed, then for every 

successor cardinalµ with t(X) < µ s A there would exist a point 

p € X with x (p ,X) ;?: ll, hence using 6 .14 a set Y E: [X]sµ as well 
µ µ µ 

such that already x(p ,Y);?: µ. By K > A then there is an a~ K such µ µ 
that {p} u Y c X for everyµ in question. But then we have 

µ l.1 a 

x<x > ~ x<P ,Y > ~ µ a µ µ 

for every suchµ, that clearly implies x<x > 
CL 

~ A, a contradiction. -I 

6.16. If X € C2 and t(X ).c(X) s X for each CL€ K ~hen w(X) 
a. a 

PROOF. Let us first consider the case in + which K > A • Then from 

6.13 and 6.1 we get t(X) $ A and c(X) s X, hence as XE C2 , by 

3.14a), ~x(x) $Aas well. Then we get from 2.37 

Now assume that K $ 
+ A. Then 6.13 yields us t(X) + s A , consequently 

- -
for a e: K, since X € c2. From 2.6a) we get c(X a) - c(X) < ). , thus - -a a -applying 2.37 to X we obtain 

a 
• 

-- - - irx ex > c cxa> 2A. nw(X) - w(X ) < p(X) < < - - - -a a a a. 

• 
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-But then applying 6.2 {i) to the chain {x: 
a 

a E: K} we have 

' 

• 

• 
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CHAPTER 7 

EXAMPLES 

• 

• 

In this chapter we present examples that establish the sharpness of 

some of our earlier results. Since we have c011u:11i tted ourselves in this book 

not to use any tools going beyond the usual axioms of set.theory, this 

chapter is necessarily very incomplete because, as it has turned out during 

the past decade, most of the interesting examples require just these kinds· 

of metamathematical tools. Also the presentation of our examples is less 
., 

self contained than that of the earlier chapters. 

7.1. For any sets let us denote by F(S) the set of all non-principal 

ultrafilters on s. Fix an infinite cardinal K, for any n € w put Pn-=== 

. F ('~ x {n}), moreover P = u {P :n e: w}. It is well-known that I Pl = 
n 

( P 1 = A = exp K. Now, by a result of B. Pospi~il (cf [P 1939]) there is 
n 2 A 

for each n € w, an u 
n 

filter u 
n 

has no base 

E FcP ) 
n 

of size 

such that x(u) = 2 , i.e. the ultra
). n 

less than 2 • Finally let u be a member 

of f (w). We can then define an ultrafilter v on Pas follows: 
• 

• 

v ={Pc P: {n E w: P n P e: u } € u}. 
n n 

It is easy to see then that x(v) = 2"- holds too (for the details 

see [JK 1973]). Now put 

• 

X = (K X w) up u {v} 

and define a topology on X as follows: every member of K x is 

isolated; if p E P then all sets of the fo:i:::m {p} u A where A E: P 

fo:tm a neighbo11rhood base of p; all sets of the foi:m 

{v} u P uu{f(p): p € P} 

• 
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• 

constitute a neighbourhood base of v, where P € v and f is any 

choice function on P. It is easy to check that this gives a Hausdorff 

topology on X, K x 

moreover x(v) = 2A 

w is dense in x, Pis a discrete subspace of X, 
A 

clearly implies x(v,X) = 2 . Consequently we have, 

for any K, an X € T
2 

such that d(X) = K, but 

moreover 

-I 

1.2. Let K be an arbitrary cardinal less than the first measurable 

cardinal µ (that is if it exists) . We define the sets X for n e w n 
by induction as follows: x0 = K, Xn+l == F (Xn) • Finally we put 

x ~ u{x: new}. 
n 

Our aim is to define a topology on X but to do that we have to 

establish certain facts about ultrafilters. 

(i) If f is a choice f1.lJlction on F (S) then there are finitely many 

m ers u 1 , .... ,ul of f{S) such that 
' " 

< #,\ W• 

In1deed, if this was not the case then the :family {s \ f (u) : u € F (S)} 

oou.ld be extended to a non-principal ultrafilter v e 

.· ,ssible beca1·1se this would imply (S \ f (v) ) e v. 

(ii) Let u E F(f(S)) and put 

u' = u{nP: Pe: u}. 

~1IC\t:Cl. u' E f(S). 

Let tlS put f · A c: S 

-
A• {p ~ f(S}: AC p}. 

F(S), which is 

• 
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Clearly u' can also be defined as 

.... 
u' ={Ac S: A€ u}. 

That u' is an ultrafilter follows from the relationships 
•• 

.... -
A n B = A n B 

and 

-S \A= F(S) \ A. 

That u' is non-principal is implied by the fact that ifs ES then 

s \ { s} = F (S) • 

Now, for any u e: 

as follows: 
n+ EX 1 . for is n by induction n+ -.1. 

This is possible using (ii). We now define a topology on X as follows: 

All points of x0 =Kare isolated. 

form • 

n 
V = {u} U U A(i), 

i=O 

If u EX 1 then all sets of the 
n+ 

(.) (i) 
where A 

1 
Eu for Os i ~ n, constitute a neighbourhood base of 

u. Clearly these form a filter, moreover if we put 

then, by the definition of the operation u', we have B (i) E u (i) and 

• 
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• 

V' ={u} 

is a neighbourhood of u such that Vis a neighbourhood of every 

p EV'. This shows that we have indeed defined a topology Ton 

X. It is easy to see using (i) that from every T-open cover of Xn+l 

we can choose finitely many members such that they cover all but 

finitely many members of X • 
n From this it follows easily that Xis 

-Lindelof, i.e. L(X) = w. 

It is easy to see that (X,T) is T1 , but in fact we show that ~(X) = 
w. Sinceµ {if exists) is inaccessible, we get from lx

0
j = K < µ 

that Ix I <µas well. Consequently every member p of X 
1 

= F(x ), 
n n+ n 

as an ultrafilter, is not a-complete. 

for every i < n+l a family 

C U 
(i) 

such that 

Let us put 

• 

then we have 

t 

showing that w(u,X) = w. 

Thus if u € X 1 we can choose 
n+ 

• 

7.3. Put 1* =Ix {0,1} (where I= [0,1]) and consider the lexicographic 

order -< on I* (in other words r* is obtained from I by. "splitting'' 

each point of I into two). Now I* provided with the order topology 

dete:r:1oj ned by ..c( is a compact ordered space which, as is easy to see, 

satisfies h(I*) = z(I*) = s(I*) = w. Now it is also easy to see that 

the set • 

• 
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is discrete in r* x I*= X. Thus Xis a compact Hausdorff space such 

that d(X) = X(X) = w but 

From 2.11 we now conclude 

K(X) = o(X) = 

Let A be a singular cardinal withµ= cf(A) 

2K ~ A (hence A is not strong limit). Let X 

!xi= A and write X as a disjoint union 

x = u{x : a€µ} 
a 

>Kand suppose that 
K 

be a subset of 0(2) with 

where Ix I = A <µfor every a€µ. Let us consider the topology 
a a 

Ton X for which sets of the form 

{p} u u \ u{x : a E a} 
a 

constitute a neighbourhood base of p E: X, where U is open in the 

. D(2)K) and r l<w subspace topology of X (inherited from a € . µ_ • Since 

Tis finer than this subspace topology on X we have (X,T) £ H. Clearly 

every X 
a 

is discrete in~, hence 

s(X) = sup{A :a E µ}=A, 
a 

and consequently h(X) = z(X) =Aas well. 
A 

Next we show that q>(X) = ).·for ct>€ {s,h,z}, hence X establishes 

sup+ max for~ on H. It clearly suffices to show for this that 

every subset Y of X with IYI = A is neither right 

Clearly if Y € [x]A then there is a Y' E [y]~ with 

each a E µ.Puts= {a€ µ:fY' n XI= 1} and for a . 

nor left 

IY' n x a 

separated. 

J ~ 1 for 

a E: s let Y' n s = 

{y }. If Y' were e.g. right separated then we had open sets U" and 
a a <w . 

finite sets a e [µ] such that 
a 

• 
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• 

7.5. 

V = {y} U U \ u {X 0 :8 €a} 
a. a. Ct µ (l 

is a right separating 1'-neighbourhood of y. Applying Hajnal's 
a. < 

theorem, 0.3, for the set mapping a•) a n s E [sl 00 we may assume 
ex 

that Sis also free with respect to this set mapping. Clearly then 

Ya€ V
0 

iff Ya e Uet for a,B € S, hence {y
0

:a. € S} is also right 

separated in D(2)K, which is clearly impossible. 

Now let us assume, in addition, that 2° is strictly increasing for 

cofinally many o <A.In this case we have cf( = cf(A) =~-By 2.11 

while on the other hand 

o (X) 

A 
~ Ix z(x) = 

A 
z(X) = A 

• 

and 2K ~ A imply 

Thus we have o(X) =~while cf(o(X)) =µimplies 

o (X) ~ > o (X) • 

Let R be an arbitrary space and a well-ordering of R. We define 
l u two spaces R and R on the same underlying set Ras follows: 

. l u .1 u 
A basis for R (R) consists of all sets of the form G-(G), where G 

X 

--is open 
9 X · X ,(.. l< u u o P P . )u G n· G z € G n G) implies {G n H)~ c ~ n G"" ((GnH c 
X y X y Z X y Z 

Since z e: 

both are indeed bases of some spaces whose topologies Gun Gu), 
X y 

are obviously finer than that of R, hence in particular T
2 

if R is so. 

PROPOSITION 
. a -

h(Rl) z (Rf..) (i) - l RI and - z (R) - -
• 

(ii) u I RI 
u h (R). z(R) - and h(R ) -- -

PROOF. 
. .l 

(i) h(R) = }R} is trivial as-<: right separates Rl. To show z(rf) = 
.. £ 

z (R) , let S c R be left separated by a well-ordering <l , say. Just 

like in the proof of theorem 2.12, there is a subset T c S with 

f Tl =. I SI such that the two well-orderings --< and ~ coincide on T. 
' . 

But then Tis obviously also left separated in the original space R, 

hence !Tl = l SI S z (R), which was to be shown. 
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The proof of (ii) is completely analogous. 

Thus as we can have T2-spaces R with (Rl = exp h(R), we then have 

z(Ru) = exp(h(Ru)), and as we can have ones with fRf = exp exp z(X), 
l l 

then we have h (R ) = expexp z (R ) • 1 

7.6. Let e be a weakly inaccessible cardinal (i.e. regular and limit) 

and consider the product space 

• 

7.7. 

X = x(D(K) :K < 8}. 

By 5.10 we have e E cal(X), consequently 

A 
c(X) ~ 0. 

But for each K < e the family G(K) = 
in X with IG(K) { = K, hence 

-1 {pr ({a}) :a€ K} is cellular 
K 

A 
c(X) = c(X) = 8, 

showing that in this case sup + max for c on X. -I 

Let us denote by E (A) 
K 

the 

E (A) = 
K 

). 
{ f e: D (2) : 

E -power of 0(2), 
K 

• i.e. 

f{v e: A: f(v) = 1}! s K}. 

PROPOSITION. A cardinal a is not a caliber of E ().) if and onlg if 
K 

(i) cf {a) = w 

or 

(ii) K <a~ 

or 

{iii)K < cf(a) s A • 

PROOF. Recalling that a e: cal(X) implies cf(a) € cal(X) and oo 

cal(E (A)) as this space is Hausdorff, the if part follows if we· 
K . 

• 

show that (ii) implies at cal(t (A)). But for this consider the 
K 

:family 
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clearly IGI = a but for every a E [a)a 

E ( A) 
K 

n n -1 
{pr ( { 1}) : 

\) 
v e: a} = 

since a> K. Thus a i cal ( r ( A) ) • 
K 

Now assume that a does not satisfy either of the conditions (i)-(iii) 

and show that a e cal(E (A)). If A 
K 

< cf(a) then 

w ( I: CA)) 
K 

=A< cf(a) and a€ cal(I: (A)) follows 
K 

we have d(L (A)) ~ 
K 

immediately. 

If w1 s cf(a) s as K then a E 

a that, by 5 • 11 , a e: cal ( D ( 2 ) ) • 

E (A) easily follows from the fact 
K 

Finally it remains to check the case w
1 

s cf(cx) SK S). <a.Now we 

can write 

a= E{a :v e cf(a)}, 
\) 

where a < a if v E µ € cf(a) and \) µ each a is a regular cardinal, 
\) 

av> A. Let {G 6:B ea} be a family of elementary open sets in 

r (A). Since there are only A many elementary open sets in 
K A 

(or 0(2) ) , for each v E cf(a) there is a fixed elementary 
(v) 

G such that 

I { e = a . 
\} 

I: ( A) 
K 

open set 

Since by our earlier results 

be[cf(a)]cf(a) such that 

cf(a) E cal(I: (A)), we have a set 
K 

(v) . 
n{G :v e: b} + 0. 

Now if we put a= u{{B e: 

clearly n{G8:B e: a}+ f8, 

,.,...,t . •. .· t ~·. us now pu·· 

and 

' 

( \)) 
a\.>: GS= G }: v e: b}, then Jal= a and 

hence a. e: cal(I: (A)). . K' . -l 

. ' . . ·: :, ,. :),"· . 
. \. ,' 

, I 

I i 
I ' 
I • 

) 

I 
l 
l 
' 

• 
i 
• 

• 

• :. C ',. 

,.· ' . 

. . . _ ... ' 
. . . . . '' . . . ·f • -· • • " ', . . 

,._ ,; ,-·,,,·,,,,:_·:.,--,, .. ', .,., --
• - ·-·Y1 ,,._,. . ' .. -, _, ,_.,,-__ , -:· ' 

.- . -_;:.' ·.. . .,·.,- . ·--_:·i:-'.:'? 1)~::;:~:·: 



7.8. 

• 

Then w e: cal(R) for each v € w1 by our above proposition. On the 
w1 " 

other hand if we consider the family 

{p € R: p(V) (µ) = 

then for any a€ [u{{v} x w: 
\) 

a fixed v e: w1 such that 

b c {v} x w, 
V 

and clearly then 

\) e: 

• 

w } 
" 

Lt.) 

there is ab€ [aJ 2 and 
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• 

This shows that w001 is not·a caliber of R. Consequently we see that 

in 5.10 the condition on the regularity of A cannot be removed. More

over since w1 E cal(Rv) ·for each v e: w1 we get from 5.10 that 

w1 e: cal(R) showing that in general cf(A) e: cal(X) does not imply 

A E cal(X). 1 

Let F = {0,1} with the T topology in which O is isolated but 1 
0 

• 

is not. Looking at the elementary open sets in FK it is obvious 
• 

• 

K that W{F ) S K. On the other hand 

then 

0 , if ll = t 

1 , if ll + t I 

K} is clearly K a discrete subspace of F, 

k k K K 
W(F) = h(F) = z(F) = S(F) = K . 

hence we get 

( using the same method as in the proof of 5. 2b) • It is easy to see 

that if q e: FK is such that q(µ) = 0 
K 

for eachµ e: K then nx(q,F) = K, 

hence x(q,FK) =Kand therefore ~(FK) = K holds as well. ~ 
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7.9. Similarly as in 7.8 we can show that 

• 

K K K K) 
s(D(2) ) = z(D(2) ) = h(D(2) ) = x(D(2) 

and from this and from 5.2b we also get 

K = 1rx(D(2) ) = K • 

Finally, as D(2)K € T
3 

we obtain using 2.7b) that 

K 
d ( D { 2) ) ~ 1og K • 

Now this together with 5.5a} then implies 

7.10. Let us put 

+ 
X = !: (c ), 

C 

where c = 2w. It is easy to see that d(X) 

X can be written as the union of a chain 

+ = c, but we claim that 

X = u{X :a 
a 

• 

+ 
€ C } 

such that 
+ 

d(X) = 
Cl. 

w for each ex E. 
+ 

C • Indeed, we can just write for 

(l E C 

X = {f € X: Vv €(C+ \ ex) (f(v) = O)} 
a 

then clearly X 
a 

is homeomorphic to D (2) a, hence by 7.9. 

7.11. For any K let p be a uniform ultrafilter on K with K 
x(p} = 2 and let 

X be the space on Ku {p} for which every a e: K is isolated and sets 

of the form 

• 



• 
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{p} U A 

with A € p are the neighbourhoods 

2K, but if we put for a EK 

of p. Clearly X ~ T5 , w(X) = X(X) = 

X = a U {p} 
a 

then Xis the union of the increasing chain {X :a e K} while x is 
a a 

discrete, hence x(X ) = 1 and w(X } = lal < K. 
a a 

7. 12. Let K be an 11ncountable cardinal and 

{h :a E K} 
Cl 

be an enumeration of H(K). By an easy induction one can define then 
w ' 

a sequence of sets Sa€ [K] for a€ K such that S
0 

n s
8 

= 0 if 

a f 8 ands n D(h) = 0. 
a a 

Let us now define the points pa E D(2)K by 

h (v), if V € D(h ); 
a a 

1 , 

0, 

if V € 

if" E: 

s 
a 

K \(S U D(h )) 
a a 

Then p ~ h for all a EK 
a a 

D(2)K, consequently by 2.6a) 

implies that X = 

and 5.10 we have 

{p :a EK} is dense in ·a 
K c(X) = c(D(2) ) = oo. 

• 

It is also clear that X c: I: (K), which easily implies t(X) ~ oo. Finally, 
uJ 

we claim that lj, (X) = w holds as well. Clearly it suffices to show , 

for this that, for any a€ K, if B + a then there is av€ Sa with 

= 0 f 1 = f (v). 
a 

But this is trivial since Sac: K\SS and outside s8 the function 

f takes up the value 1 in at most finitely many places. We note·· that 
B w + . 
if K = {2) , with some extra care we could construct X with the 

additional property that it be the union of an increasing chain 

{X :a e: (2w)+} with d(X ) = w· ~or each a E: (200 )+. ·~ 
a a 
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+ ·•·· 7 .13. Let K be a singular cardinal and -r the topology on K consisting of 

• 

the sets 

+ 
K \ (aUF) , 

+ <w 
whereas Kand F € [K] • Clearly -r is a T1 topology. Put X = <K,-r>, 

+ we claim that ,r(X) = K but ,r(Y) < K whenever Y c X and fYf ~ K. In-

deed, let the order type of Y (as a set of ordinals) be A+n, where 

is limit and n Eu>. Now if F denotes the set of then last members of 

Y and Y' = Y\F, then t (Y') = A with 1:XI s K, hence there is a cofinal 
p 

subset z of Y' with 1z1 = cf{A) < K. But clearly then the family 

B = {Y\(auF): o: € z}·uP(F) is a ,r-base of Y with IBI = lzl < K. That 
+ + ir(X) = K, and even d(X) = K, on the other hand is obvious. This ex-

arr.tple shows that for K singular we can not replace the weight by ,r

weight in 6.8. 

• 

• 

• 
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NOTES 

• 

ChaEter _1. The reader should be warned that the notation of cardinal func-
• $ 

tions in the l.i terat11re is not ''standardized'', the Russian authors especial

ly use a system of notations different frotn ours: they denote e.g. by s(X) 

- * the density of X and use ~~(X) or ~(X) where we use~ (X). There are dif-

ferences with the notations of [EN 1977] as well, where Tis used instead 
• 

oft to denote the tightness and h~(X) is used instead of * OlJr <f> (X) • 

C~~}2ter _2. 2.7(b) is due to B. Efimov [EF 1968]. 
V V V 

2.13 was proved independently by Sapirovskii [SA 1972] and Hajnal and 

Juhasz [HJ 1973]. 

For 2 .15 see [HJ 1967]; proofs using the ''cl.osure" method were given in 

[po 1974] for (b) and in [HO 1976] for (a). 

The second half of 2.20 was proved in [HJ 1967], the first half in 
V 

[SA 1972]. 

2.27 was proved in 
V 

[SA 

theorem first appeared 

1974] in an entirely different way. 

in [AR 1969]. 

2.28 was proved in [GW 1977]. 

2.29 appeared in [CB 1977]. 

2.30 is due to [ST 1972]. 

2.31 and 2.33 were proved by [BH 1976]. 

2.36 was proved in [BGW 1978]. 
V 

2.37 is from [SA 1974]. 

V 
Archangelskii's 

2.38 was first proved by van Douwen [vD 1978], but the simple proof given 

here is from [FR 1979]. 

Chapter 

3.11 is 

3.12 is 

3. The material in 
V 

3.1 to 3.10 is based on [SA 1975] 
' 

due to [MI 1962]. 

from [AR 1971]. 
V 

3.13 was proved in [SA 1974]. 

The results of 3.14 were proven, as is mentioned in the main text, by 

Sapirovskir, using a different method, see [SA 1976]. 
V 

3.16 was published in [CP 1938]. 

The method of proof of 3.18 given here is due to Gerlits and Nagy. 

The results concerning K(X) are mainly from [BB 1976], except 3.33, 

which is from [GW 1977]. 
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C}:lapt~~,-~· 4.1 is a ••classical•• result of Erdos and Tarski, [ET 1943]. 

4.2 is proved in (HJ 1969a]. 

4.3 is ftall (BJ 1969b]. 

4.4 is proved in [KR 1977]. 

4. 7-4. 9 are taken fra1, [J 1977 J. 

~P1?E:.;- ?· S.Sa.} is due to Hewitt [BE 1946] and Pondiczery [PN 1944]. 

5,.6 was proved in [KU 1959] for I finite. The lem:ir,a there is folklore. 

5.8 is taken from [HJ 1972]. 

5.9 is p by [MA 1972]. 

5.10 is due to ~,a.nin, [.SN 1948]. 

5 .. 13 and 14 were announced in [AT 1978]. 

5.16 has prec11,rsors in [IS 1964), [EN 1966] and [MI 1966]. The strong 

ve.rs,ion that we present here is due to Gerli ts. 

Cbaeter 6. 6.7 is due to Szentmj~lossy. 
i Ml I I , I Q, 

6. 8 is to SP,. _ in [ BJ 1980a] ; the special case of X E: T 
3 

is proved in 

(TK 1978]. 

Gh~~t.er ,?, .. Example 7. 4 is from [ RO 19 7 5 J • 
· iimp1,e 7. 7 is due to Gerlits. 

7 .. 13 was noticed by van Douwen. 

• 
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