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A 

u 
n 
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NOTATIONS 

then-dimensional real space. 

the linear space of linear operators from Rn to Rn 

the euclidean norm for vectors and the spectral norm for 

matrices. 

if x,y E :JR.n then the usual inner product in 

if x,y E lR then a closed interval in lR. 

V 

for Uc JRn, are the closure and interior, respectively, of u. 

Fis a function, with order n, on an open nonempty domain 

D c JRn, F : D->- JRn (see notation 1.3). 

dx F(x). 

the levelset of F with respect to A and x (see definition 1.4). 

The class of functions F which have a continuous Frechet 

derivative on D (see definition 1.18). 

a jacobian update function from Broyden's class (see formula 

(3.17)). 

an inverse-jacobian update function from Broyden's class 

(see formula (3.18)). 

the machine precision (see notation 3. 8) 

the expression within the parentheses computed with machine 

precision c. 

the solution of the linear system Ax~ b, computed by trian

gular decomposition of A, followed by forward and backward 

substitution (see formula (1.13)). 

the generalized inverse of matrix A. 

a standard time unit of order n (see definition 7.1). 

a class of problems of solving a system of nonlinear equations, 

satisfying certain conditions (see definition 7,3), 



vi 

T(P,p) 

T 
n 

the standard time required by program P to solve problem p 

(see formula (7.1)). 

the relative efficiency of a program, for solving problems 

of order n and with function evaluation time 

evaluation time tJ (see description 7.13). 

and jacobian 

representative set of test problems of order n in C (see sub-·· 

section 7.5.1). 



INTRODUCTION 

In this monograph we treat the problem of analysis and design of methods 

for the numerical solution of systems of nonlinear equations. Solving sys

tems of nonlinear equations often arises in problems of numerical analysis, 

such as two-point boundary value problems, elliptic boundary value problems, 

integral equations, two-dimensional variational problems or optimal control 

problems. These problems motivate a detailed analysis of methods for solving 

systems of nonlinear equations. 

An analysis of systems of nonlinear equations is a prerequisite for any 

synthesis of numerical methods. Basic to this analysis are questions of 

existence and uniqueness of solutions. These topics are treated in chapter 2. 

Our method of analyzing existence and uniqueness issues is based on a theory 

given by llliEINBOLDT [1969] (see also OR'rEGA & llliEINBOLDT [1970]). The re-

sults are given in such a way that they fit the framework of the convergence 

theory presented in later chapters. 

We restrict attention to methods which can be classified as Newton-

like methods, which notion is defined in chapter 4. These methods are local 

methods, i.e. methods which require an initial estimate of a solution which 

is relatively close to an exact solution, in a sense which depends on the 

smoothness of the problem . 'rhese methods produce at most one approximation 

to a. solution. Almost all local methods currently used are Newton-like 

methods, Por these methods we present a comprehensive convergence theory in 

chapter 5. This leads, in chapter 6, to the construction of new Newton-like 

methods. As basic references for this convergence theory we mention: 

KANTOROVICH & AKILOW [1964], RHEINHOLDT [1969], ORTEGA & RHEINBOLDT [1970], 

DENNIS [1971], DENNIS & MORE [1974], DEUF'LHARD [1974a,1974b] and DEUFLHARD 

& HEINDL [1979], In fact, the theory about global convergence (section 5,2) 

is an extension of Deuflhard's theory :Eor Newton's method. The theory 

about semi-local (section 5.3) and local convergence (section 5.4) is essen

tially based on the well known Newton-Kantorovich theorem and extensions 
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of this result given by Dennis, Deuflhard and Heindl. The notion of affine 

invariancy (invariancy of the results with respect to affine transformation 

of the function), which was first introduced in this field by Deuflhard, 

plays an important role in the convergence theory. 

In the study of numerical methods we distinguish two issues. First the 

investigation of these methods from a theoretical viewpoint, This is done 

primarily by studying convergence behaviour (chapter 5). Secondly, a thor··· 

ough comparative study, based on practical tests, is performed. This study 

meets as much as possible the requirements as given in CROWDER, DEMBO & 

MULVEY [1977] about the design of computational experiments. This comparison 

will not only involve the Newton-like methods described in this thesis, but 

also the method of BROWN [1969] which is known to be competitive with cer

tain Newton-like methods. Brown's method is not a Newton-·like method accord

ing to our definition. It is based on successive linear interpolation of the 

nonlinear equations separately, while Newton-like methods handle these equa

tions simultaneously. We refer to Bro"m's paper for a description of this 

method. We also mention some efficient implement.at.ions of this method de

scribed in BROWN [1973], BRENT [1973a], GAY [1975] and MORE & COSNARD [1979]. 

The experimental design, as well as the actual experiments are discussed 

in chapter 7, Based on the experimental as well as theoretical evaluation 

of the algorithms, we present. in section 7.8 two new poly-algorithms (combi

nations of Newton-like algorithms) for solving systems of nonlinear equations. 

In this thes:i.s we use ALGOL 68 as a reference language in order to provide an 

unambiguous description of the various algorithms. For practical reasons, 

the experiments are performed in ALGOL 60. An ALGOL 60 implementation of the 

poly-algorithms of chapter 7, together wi.th a users manual is given in 

BUS [1980]. 
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CHAPTER 1 

PRELIMINARIES 

1.1. ANALYSIS 

Let x,y E Rn. With [x,y] we denote the usual innerproduct of x and y. 

Unless specified otherwise, we use the euclidean norm: 

(1.1) llxll 

With L {Rn ) we denote the space of linear operators from ]Rn to ]Rn with 

spectral norm 

{1. 2) IIAII sup II Axil /H xii , 
x;,!O 
XE:JR.n 

Let a1 E :Rn (i=1, •.. ,n). Then (a1 ,a2 , •.. ,an) denotes the nxn matrix with 

columns ai (i=l, ••. ,n). The following result is valid. 

1.1. LEMMA. Let A= (a1, ... ,an) E L(:JR.n). Then, for i = 1, •.. ,n, 

Ila.II 
l. 

IIAII , 
F 

where II , II F denotes the Frobenius norm: 

PROOF. See WILKINSON [1965, section 52 to 54]. 0 

For x E Rn and any real number o > 0, U (x, o) denotes the open 

a-neighbourhood of x: 
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( 1. 3) U(x,6) {y I y E JRn, llx-yll < 6}. 

Let U be some subset of Rn , then U denotes its closure in JRn and int (U) 

its interior. 

1. 2. DEFINI'l'ION. Let U be a subset of . 'l'hen U .i.s path-connected if for 

any x,y EU there consists a continuous mapping p: [0,1] ➔ u such that 

p(O) = x, p(1) = y. 

1 • 3. NO'I'ATION. D is a nonempty open subset of 

domain D and range i.n JRn • 

and Fa function with 

where n is said to be the order of F'. Moreover, if the Frechet-derivative 

F 1 (x) exists at x E D, then F' (x) is a linear operator from JR_n to lRn , 

which can be represented by an nxn matrix. This matrix is called the 

jacohian (matrix) of Fat x and is denoted by J(x). (J(x) equals the matrix 

of partial derivatives of Fat x.) 

In the sequel notation 1.3 is used without further comments. 

L4. DEFINITION. Let A E L(JRn) be nonsingular and x E D. Define the set 

u CD by 

U / y ED, IIAF(y)II s IIAF(x)II}. 

Then, the levelset of F with respect to A and x, denoted by (x,A), is 

defined to be that path-connected component of U which contains x. 

We shall now give some standard conditions which appear to be useful 

in the sequeL 

We say that F satisfies 

1.5. CONDITION i.f the Frechet-derivative F' (x) of F at x exists and is 

continuous for all x ED. 

Let x ED and Uc D with x Eu be given. Then F and x satisfy on TJ: 

1.6 CONDITION i.f condition 1.5 is satisfied and there is a constant 

y = y(x) ? 0 such that for ally EU: 
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IIJ(y) - J(x)II s y(xJUy-xll; 

1.7. CONDITION if condition 1.5 is satisfied, J(x) is nonsingular and there 

exists a constant w = w(x) ~ 0 such that for ally EU: 

ll(J(x)J- 1J(y) - Ills w(x)lly-xll. 

Let x E D, A E L(JRn). Then F, x and A satisfy 

l..8. CONDITION if A is nonsingular, F satisfies condition 1.5, J(z) is non

singular for all z E SF(x,A) and SF(x,A) is compact; 

1.9. CONDITION if condition 1.8 is satisfied and there exists a y ~ 0 

such that, for all z E SF(x,A), F and z satisfy condition 1.6 on SF(x,A) 

with y (z) S y; 
1.10. CONDITION if condition 1.8 is satisfied and there exists aw~ 0 

such that, for all z E SF(x,A), F and z satisfy condition 1.7 on SF(x,A) 

with w(z) S w. 

Conditions 1.7 and 1.10 are so-called affine invariant analoga of 

conditions 1.6 and 1.9, respectively. 'l'his means that, if F in conditions 

1.7 or 1.10 is affinely transformed yielding F = TF, for any nonsingular 

TE L(:JRn), then these conditions remain unchanged. This is easily shown 

by the observation 

-1 II (J(x)) J(y) - rll 

where J denotes the jacobian of F. In particular, the constant w(x) (and w) 
is independent of affine transformation of F. This is not true for y(x) 

(and y) in condition 1. 6 (and 1. 9) . The justification of conditions L 9 and 

1.10 lies in their use in the convergence theorems in chapter 5. 

As we are concerned with the numerical solution of systems of nonlinear 

equations, we are confronted with round-off errors during computation of 

function values. In order to be able to deal with this we use the following 

definitions. 

1. 11. DEFINI'l'ION. Let be given a function f : D ➔ JR , with D c JR , and a 

real number o > 0. Then f is called a-monotonous on a certain interval (a,b) 

if o < b-a and either 
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(1.4) f(t+ol ::c f(t) for all t E (a,b-6), 

or 

(LS) f(t+ol <'. f(tl for all t E (a,b-6). 

If (1.4) is satisfied then f is o-rronotone increasing. 

If (1.5) is satisfied then f is a-monotone decreasing. 

1. 12. DEF'INITION. Let F(x) denote an approximation to F(x) for all x E D. 

Let /.., (x) 2 0 be a given rea.l number for all x E D. 'rhen F is a 6-unimodal 

approximation to F if for all x c D and all d E lRn with II all = 1 the follow

ing statement holds: 

whenever T 1 and are real numbers with > T1+/..,(x) and x+td t D for 

t E (T 1' such that II F (x+td) II is monotone increasing (decreasing) for 

t E (T 1 • T 2) • then II F (x+td) II is 6(x)-monotone increasing (decreasing) on 

[Tl' J. 

The following lemmas are well known results. For proofs of these lemmas 

see ORTEGA & RHEINBOLDT [1970, sections 2.3 and 3.2]. 

1. 13. LEMMA (Perturbation lemma). Let A E L (JR11 ). Then exists if and 

only if there exists a B E L (JRn) such that exists and 

tte-AI < 1 / I. 

Moreover, J.f exists then 

(1.6) 

(1.7) 

-1 
(I - B A) 

1 II B -l II 
IIA- II <'. ----

1-11 B -l II II B-AII 

1.14. LEMMA. Let F satisfy condition 1.5 and .let 

D. '.then, for any x,y E D0 , 

II F (y) .• 1'' (x) II cc; sup 11,J (x+t (y-x) J II II 
O<t<i 

An analogous result also holds for functions F' 

be a conve,Y. subset of 

D C with n 'f m. 



1.15. LEMMA. Let D0 be a convex subset of D and x E D0 • Suppose F and x 

satisfy condition 1.6 on n0 . Then 

liF(yJ-F(x)-J(x) (y-x)II s ½y(x)Hy-xU 2 , 

for ally E DO. Moreover, an analogous result also holds for functions 

F : D c Rn -> JRm with n cl m. 

Finally we prove a lemma, which is the affine invariant analogon of 

lemma 1.15. 

1. 16. LEMMA. Let D0 be a convex subset of D and x E n 0 . Suppose F and x 

satisfy condition 1.7 on D0 . Then 

II - j 
11 (J (x)) · (F (y) -F (x) -J (x) (y-x)) II s ½w (x} lly-xll 2, 

PROOF. Define, for all z ED: 

F(z) 
-1 

(J(x)) F(z). 

Then, for z = x, we have for the jacobian J(x) of F' 

cation of lemma 1.15 yields the required result. D 

J(x) L So, appli-

7 
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1.2. ITERATIVE PROCESSES 

we use definitions which are close to those of ORTEGA & RHEINBOLDT 

[1970]. 

1. 1 7. DEFINITION. Let C (k) c JRm (k=O, 1, •.. ) for certain m > 0. Let a sequence 
(k) co 

of operators{'¥ }k=O be given such that 

k 0, l,... . 

Let c C(OJ be the set of all z0 E C(O) such that a sequence {zk};=O 

exists generated by 

k 

* Then C is the domajn of the iterative process (l.8). The iterative process 

(18) . df' db h f · t· f · {"'(k.)} 00 • 1.s e. l.ne . y t e sequence o 1. te.ra .1.on unctions r · k=O 

mis called the dimension of the process. we say that the process converges 

* for a given starting point z0 EC if there exists a E , called a limit 

* of the process, such that .lim zk 00 z , where zk is genei• a ted by ( . 8) with 

as given. The process cal.led a stationary iterative process defined 

by iteration function'¥ if 'f(k) = '¥ (k=0,1, ••. ). 

Using the terminology of OR'l'EGA & RHEINBOLDT [1.970] definition L 17 defines 

a sequential 1-step iterative process. 'rhey give a more general definition 

of an iterative process defined by iteration functions that may depend on 

several preceding iterates in any non-specified order. As we shall not con

sider such general processes in this thesis we restrict ourselves to defini

tion 1. 17. 

that 

For short we denote some sequence 

ES for all k = 0,1, .... 

by } and } c S means 

Let F be given. "rhen the problem we are concerned with is to obtain a 

solution of the equation F(x) = 0. Hence, we want to construct an iterative 

process (depending on F) such that for an arbitrary starting point the 

process converges to a li.mi t which provides us a solution of F' (x) = 0. There

fore, we look for a method to construct an iterative process for arbitrary 
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F. This leads us to the concept of iterative method. In the following def

inition we restrict attention to functions F satisfying condition 1.5. 

1.18. DEFINITION. Define 

F {F I F satisfies condition 1. 5} 

and for arbitrary positive integer m 

P(m) 

Let {M(k)} be a sequence of mappings: 

M (kl k 0, 1, 2,... , 

Suppose k~l 

If M(k) = M 

(k) 
Vk cl 0, then {II } is called an iterative method. 

(k=O, 1, 2, ... ) then we say that M is a stationary iterative 

method. 

Note that, for a given FE F, the iterative method {M(k)} gives a se

quence of iteration functions {M(k) (F)} which defines an iterative process. 

1.19. REMARK. The definition of iterative methods is such that, for given 

F of order n, the dimension m of the resulting iterative process is not 

necessarily equal ton. This is essential for our purposes. 
n +n2 

For instance, the iterates may be of the form zk = (xk,Hk) E JR , with 
n n n + 2 E D, Hk E L (JR ) and JR x L (:R ) identified with JRn n . Here the se-

quence {xk} may be interpreted as a sequence of approximations to a solution 

and {H} may be interpreted as a sequence of approximations to the inverse 
k 

jacobian 

ple with 

has the 

* and y E 

at 

m < 

form 

JRm 

n. 

* X 

to 

(k=0,1, •.. ). So in this case m > n. We can also give an exam-
.,, 

Suppose, for instance, that it is known that the solution x 

= x0 + Vy*, with x0 E D known, V a. known operat0r V , JRm ➔- JRn 

be determined. Then we may construct an iterative process 

with iterates in JRm , which for a given starting point converges to y * ~ 

L 20. DEFINITION. Let {zk} be a sequence of elements in JRm . Suppose there 

* m * * exists a z E JR such that ~~ zk = z and zk = z for at most finitely many 

indices k. Let k0 ,k1 ,k2 , ... be the sequence of indices obtained from 

* 0,1,2, ... by omitting those for which zk = z and suppose 
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(L9) II ''II 1/k. lim inf (-log Zk. --z ) J 
J 

p. 

* Then, we say that {zk} converges to z with order of convergence p. If ther~• 

* is no finite p satisfying (L9) then we say that {zk} converges to z with 

order of convergence oo. Let 

c = lim sup II z -z *11 l/i 
i ' 

then Os: cs: 1. We say that convergence is linear if O < c < 1., subl.inear 

if C and superlinear if c = O. 

In the literature one sometimes uses the term "weak order of conver

gence" where we have used the "order of convergence" (see van de GRIEND 

[1978]). Other definitions of order of convergence are possible which may 

lead to different results (see also ORTEGA & RHEINBOLDT [1970, chapter 9]). 

For our purposes definition 1.20 suffices. 

The following definition and lemmas appear to be useful in proving 

convergence of sequences of vectors 

1 • 21 . DEFINITION. Let { zk} be a sequence in JRm 'Then a sequence { tk} c [ 0, 00 ) 

is called a. majo:r:iz.ing sequence for { zk}, if 

1.22. LEMMA, Let {tk} c [0, 00 ) be a major_izing sequence for {zk} c F.m. 

* * Suppose that t < 00 exists such that lim tk = t. Then there ex.i.sts a 
* m z E IR such that 

* z ' 

k-+co 

* II z -z II 
k 

PROOF. See ORTEGA & RHEINBOLDT [1970, sect. 12.4.2]. 0 

L23. LEMMA. Let n 2 0 be some constant and Jet pi (i.=1,2,3,4) 

satisfying p. 2 0 (i.=1,2,3,4), p 1 > 0, p 2 < 1, p 3+p4 = 2p1 ancl 
J. 2 

0 s: n s (l-p2) /{4p 1). 'l'hen we can deEine a sequence {tk} by t 0 

and the difference equation 

(L10) 

be constants 

(k=i ,2, ... ). 



Ifni O then {tk} is increasing and 

(L 11) lim 
k-= 

PROOF. See ORTEGA & RHEINBOLDT [1970, section 12.6.3]. 0 

Finally, we give a theorem about existence and uniqueness of fixed 

points of iteration functions. This theorem is essentially based on 

Kantorovich lemma (see ORTEGA & RHEINBOLDT [1970, lemma 12.5.3]. 

1.24. THEOREM. Let '¥ D'l' ➔ JRm , D'P c JRm .be an iteration function which 

is differentiable on a convex set 

y > 0 

c D'P. Assume that for some constant 

and that there .is a z 0 E n0 such that II 'JI' (z0 ) II :c; 0 < L Suppose 
2 

a,= yfl/(1-0) :c; \, where fl= llz0- 1r(z0)11. Set 

( ( 1·-0) /y) ( < o-t1) /y) 0+✓1-2d) 

11 

. Then the sequence {zk} generated by the .iterative 

process with starting point z 0 remains in U(z 0 ,t) and converges to a fixed 

point z* of'!' which is un.ique in D0 n U(z0 ,t**l. 

PROOF. See ORTEGA & RHEINBOLDT [l 970, theorem 12. 5. 5 J. 0 
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1.3. NUMERICAL ALGEBRA 

1.3.1. Triangular decomposition of matrices and solution of systems of 

linear equations 

Let A be an arbitrary nonsingular nxn matrix. Then, by the process of 

triangularization (see e.g. WILKINSON [1965, sect. 4.15]), we can obtain an 

nxn lower-triangular matrix Land an nxn upper-triangular matrix R such 

that 

(L 12) LR, 

where one can choose either Lor R unit-triangular, i.e. with diagonal 

elements equal to 1, and where P 1 and P 2 are some permutation matrices. 

These permutation matrices are induced by some strategy for monitoring the 

stability of numerical computation, called pivoting. 

'l'he number of basic arithmetical operations (+ and x) required to perform 

such a triangular decomposition is ~n 3 + o . In order to solve the linear 

system 

Ax b, 

with b E , one solves subsequently 

Ly y and x 

Le. forward substitution and backward substitut.ion respectively, followed 

by a permutation. 'l'hi.s requires only O(n2 ) additional basic operations to 

obtain x. 
-1 

We like to point out that calculation of A , which is done usually by cal-

culating the triangular decomposition first, will require ~n3 + basic 

operations in addition to those required for the triangular decomposition. 

Therefore, if A-l is not explicitly needed, one should calculate the solu

tion of a linear system Ax= b by computing the triangular decomposition 

and, subsequently, performing forward and backward substitution- In order to 

avoid ambiguity we wri_te 

( 1. 13) 
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for the vector x, the solution of Ax= b, which is obtained in this way. If 

the inverse is calculated explicitly and then multiplied by the right hand 

side b to obtain the solution, then we write 

-1 
x A b. 

Note that mathematically, but not numerically, the identity A\b = A-lb holds. 

So the notation (1.13) will be used only if algorithms are described or 

numerical aspects are considered. 

1.3.2. Generalized inverse and singular value decomposition 

Let A be an arbitrary nxm matrix. Then an mxn matrix Xis said to be 

the generalized .inverse of A, if the following identities hold: 

(1. 14) AXA 
T 

(AX) 

A 

AX 

XAX 

(XA) T 

x, 

XA. 

The generalized inverse of A is uniquely det.ermi.ned by ( 1. 14) ( see PENROSE 
+ [1955]). We denote the generalized inverse of A by A. In the literature 

the term pseudo-inverse is sometimes used to denote the generalized inverse. 

We can calculate the generalized inverse A+ of A by using the so-called 

singular value decomposition of A (see GOLUB & KAHAN [1965]). For all nxm 

matrices A there exists a decomposition 

(L 15) A U l: 

where U is an nxn orthonormal matrix, Vis an mxm orthonormal matrix and i: 

is an nxm diagonal matrix: l: = diag(a 1, ••• ,CTk), with k = min(n,m) and 

?: ••• ?: ak ?: 0. The values ai (i=l, ... ,k) are called the singular 

values of A. The generalized inverse of I: i.s given by the mxn diagonal 

matri.x 

diag 

where 

+ { 1/CJ.' i.f 'f 0 
1. 

(i=1, ..• ,k). CT. 
1. 

0 if 0 CT • 
1. 
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We obtain the generalized inverse A+ of A by 

( 1.16) + 
A 

The rank of A, denoted by rank(A), is defined as the number of nonzero 

singular values of A. 

Let us ,split the matri.ces U and V such that 

(L17) u V 

where u1 and v1 consist of the first r = rank(A) columns of U and V respec

tively, corresponding to the nonzero singular values of A. Furthermore, 

write Lr for the rxr diagonal matrix Er= diag(cr 1 , ••• ,err). Then 

(1.18) A 

and consequently 

(L 19) + AA 

+ 
A 

+ 
A A 

2 
For the nxn matrix P = we have P = P and [x·-Px,Py] = 0 for all 

x,y E JRn, since u~u1 Ir (identity in L(JRr)). 'I'herefore, Pis an orthogonal 

projector in JRn, projecting on the subspace in IRn spanned by the columns 

of u1 . Si.mi.larly v 1v~ is an orthogonal projector i.n lRm, projecting on the 

subspace of Jll.m spanned by the columns of v1 . Before stating a lemma based 

on these observations we give some notational conventions. 

1.25. NOTATION. Let A be an arbitrary nxm matrix. Then we denote 

(i) the range of A: 

range(A) 

(ii) the kernel of A: 

ker(A) 

(iii) the span of A: 

{ Y I y E lRn , 3x E lRm Ax 

o}, 

span (A) = the subspace of JRn wpanned by the columns of A. 

(iv) if S c lRn, then Sc denotes. the orthogonal complement in JRn . 



15 

Note that range (A) = span(A) for all matrices. However, we use both nota

tions. Range refers to A as an operator and span refers to A as a set of 

columns which can be identified with a set of vectors in :!Rn. 

1.26. LEMMA. Let A be an arbitrary nxm matrix. Suppose its singular value 

decomposition is given by (1.15) and u1 , u2 , v1 and v2 are given by (1.17). 

Definer= raru((A). Then 

(i) + range(A) = span(u1), AA u1u~ is an orthogonal projector on 

range (A); 

(ii) (ker(A))c 

• (ker (A) ) c; 

span + 
) ; A A 

T v1v1 is an orthogonal projector on 

(iii) if b E JRn , b E range (A) , then the equation Ax = b has at least one 

solution and al.I solutions can be written in the form 

(1. 20) for arbitrary z E Rm -r; 

(iv) if b E :!Rn then II Ax-bll is minimal for x = A+ b + V 2z for arbitrary 
m-r 

z " JR 

€..13....°-9!'.: Statements (i) and (ii) follow immediately from (1.18), (1.19) and 

the obervations given after these formulas. 

To prove (iii) we observe that (L 19) yields 

+ AA b b, 

as b E range(A) = span(U1) (see (i)). Hence A+b is a solution of Ax b. 

As ker(A) = span(V2) (by (ii)) statement (iii) follows easily. 

The proof of (iv) follows immediately from (i) and (iii). As Ax is the 
+ orthogonal projection of b on span (U 1 J (= range (A)) for x = A b + V 2z, .it 

follows that the distance II Ax-bll is minimal. D 

To calculate x = A+b according to (1.18) for some vector b E JRn, we succes
T + 

sively multiply b by u1 , l:r and v1. This requires (n+m+l)r basic arithmetical 
+ operations. This is much more efficient than first computing A explicitly, 
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which requires multiplication of an mxr and an rxn matrix (mxnxr basic oper

ations). In the sequel we always assume that A+b is calculated in the econom

ical way, as sketched above. As we do not require A+ explicitly, we do not 

introduce different notations for different ways of computing, as we did in 

section 1.3.1 for the solution of a linear system by means of triangular 

decomposition followed by backward and forward substitution. 

In the next two subsections we discuss applications of the singular 

value decomposition to the problem of solving systems of nonlinear equations. 

1.3.3. Reduction of problems with linear components 

When the problem F(x) 0 can be decomposed as 

(L22) (
~x+b) 

F(x) 
0, 

where we have a linear part with p linear equations say (p < n), and a 

nonlinear part for some F : D ➔ Rn-p , then we may reduce the n-th order 

nonlinear problem of solving F(x) = 0 to an (n-p)-th order nonlinear problem 

by first solving the p-th order linear problem explicitly. 

1.27. THEOREM. Let~ be a pxn matrix (p < n) and b E JRP, both independent 

o.f x. Suppose rank(A) = p. Let be given a .function F: D ➔ . Let the 

singular value decomposition of A be given by (1.15) and U and V split 

according to (L17). Define a function G , n1 ➔ Rn-p with n1 = {z I z E :JRn-·p' 

+ A b+V2z E D} by 

(L23) G(z) - + F' (A b+V 2z) . 

Cons.icier the problem 

(L24) G(z) 0, X 

Then x .is a solution of (1.22) .i.f and only if x is a solution o.f (1.24). 

PRCJOF_, First let, for given x Eb, (1.22) be satisfied. By lemma 1.26 (iii) 

x can be written as 
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for some z E lRn-p_ 

Substitution in (1.22) yields 

(1.25) 0. 

Hence, there exists a z E D1 such that G(z) = 0. This proves the first part 

of the theorem. Now_suppose (1.24) is satisfied. Then, again (1.25) holds 

and by lemma 1.26 (iii) A+b + v2z is a solution of Ax= b. So, (1.22) is 

satisfied. D 

1.28. REMARK. Let F satisfy condition 1.5 and suppose F(x) 

to (1.22). Then F'(x) exists for all x in D. Moreover 

(1.26) G' (z) 

0 is equivalent 

So, from theorem 1.27 we see that, instead of solving the system of n 

equations (1.22) as a system of n nonlinear equations, we can calculate A+b 

and solve the system of n-p nonlinear equations G(z) = 0. 

1.3.4. Projection and a singular jacobian 

We assume that F satisfies condition 1.5. Suppose that for some x0 ED, 

J(x0) is singular and its singular value decomposition is given by 

(1. 27) 

where r = rank(J(x0)) and (1.18) is used rather than (1.15). 

Consider the function f(x) = IIF(x)ll 2 . Then the derivative (gradient) off 

at x = x0 is given by 

Substituting (1.27) yields 
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( 1. 28) 

In fact, only the projection of F(x0 ) on span(u1 ) contributes to the gradient 
T 'I' T 

as t\F(x0 ) = u 1 (u 1u1)F(x0 ) (see lemma 1.26 (i)). We are interested in calcu-

lating a solution of the equation F(x) = 0, i.e. in calculating a zero-
T 

minimum of f(x). A necessary condition for a minimum of f(x) is u 1F(x0 ) 0. 

Moreover, if we search for a new approximation to a solution of F(x) = 0 

with a technique based on exploiting only the gradient of f(x) at x = 
then a new point will be found in x 0+span(V1 ) = {x Ix E JRn, x = x0+v, 

v E span ) } . 'I'hat means that, with such methods we naturally restrict 

ourselves to searching a zero of a function F with domain in span(V1) and 

range in span(u1) defined by 

F (v) 

Choosing the columns of v1 as a basis for span(V1), we can define a function 

G : D1 ➔ by 

(L29) G(z) 

for all z E D1 [y I y E irl, x 0 +V 1 y E D}. G is called the projected func·· 

tion of F with respect to x 0 . Note that 

(1. 30) 

and 

(1. 31) 

G' (z) 

G' (0) 

* * Furthermore, if z is a solution of G(z) = 0, then, in general, x 0+v 1z 

is not a solution of F(x) = O, as all zeroes of F may lie outside the set 

x 0+span(v1). 

1.29. REMARK. Let F(x0 ) -IO and let the projected function Goff' with 

respect to x 0 , given by (1.29), satisfy G(O) = 0. Then, F(x0 ) E (span ))c 

and f' (x0 ) = 0 (see (1.28)). Hence x 0 is a stationary point of f(x). In this 

case, an analysis of the eigenvalues and eigenvectors of f"(x) is necessary 

to obtain the answer to the question whether this stationary point is a 

local maximum or minimum, or a saddle point. If some eigenvalues are equal 



to zero this analysis is not sufficient to answer this question. In such 

a case analysis of the third or higher order derivatives is necessary. 

1.3.5. Scaling of matrices 
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In this subsection we assume that A E L(JR.n) is nonsingular. Consider 

the linear system Ax= b, for some b E ]Rn. Then, the solution x = A\b is 

well defined and it is well known that the error in the computed solution 

due to round-off during the computational process, depends on the condition 

number of the matrix defined by 

(1.32) K(A) 

In fact, we may expect that this error is small if K(A) is small (about 1) 

and large if K(A) is large (see WILKINSON [1965, chapter 4]). One reason 

that K(A) may be large is that rows or columns of A are badly scaled. In 

order to remove as much as possible the negative effect of bad scaling of 

a matrix on its condition number, one often uses scaling by diagonal matri

ces. The following example shows that premultiplying and/or postmultiplying 

a matrix by diagonal matrices may improve its condition number considerably. 

1.30. EXAMPLE. Let for some constant c, 0 < c << 1: 

then 

K(A) -2 c approximately. 

Premultiplying A with n1 = diag(l,1/c) yields 

0 ) 

C 

and 

/2/c. 

Moreover, postmultiplication of.D1A with n2 diag(1,1/c) yields 
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( 0 ) 

1 ' 

with 

3+/s 
3_ 15 = 6.9, approximately. 

Based on these observations one may solve the linear system Ax b 

in the following steps: 

1. Find appropriate diagonal matrices n 1 and n2 such that row and column 

norms of the matrix D1AD2 are roughly equal to 1. 

2. Perform triangular decomposition of the scaled matrix (cf. (L 12)): 

with P1 and P2 permutation matrices. 

3. Perform forward substitution yielding y by: 

4. Perform backward substitution yielding z by: 

Rz y. 

5. Repermute and rescale 

Then the computation error depends on K(D 1AD2) if scaling is exacL 

The following results give information how the diagonal matrices D1 and 

n2 might be chosen such that row and column norms of the scaled matrix are 

roughly equal to 1. 

1. 31. LEMMA. Let A E L (JRn ) be arbitrary nonsingular. Define for i 1, 2 

( (1) (n)) with diag di , ... 

(1.33) 
(i) entier(-2logttA. tt) 2 . 1· i 1 '1 ., ~ ~ ,-TI I 

d (j) entier (---21ogll (D 1A) . II) 
j 1, "., .. ,n, (1. 34) 2 

2 "J 



where B. and B . denotes the i-th row and j-th column of a matrix B, re-
l.. • J 

spective1.y. 

Define 

(1.35) 

Then 

(1. 36) 

(1. 37) 

j 

4
1n :,; IIA. II ,, In, 

l.. 
i 

( ' ) 
PROOF. From the choice of a2J , j ~ 1, ..• ,n, we have (1.36). Moreover, the 

choices of d~i) and d~i) (i•~1, •.. ,n) imply 

( 1. 38) i 1, ... ,n, 

( 1 ,39) j 

From these inequalities it follows that 

i,j 

Hence 

i 

which proves the right hand inequality of (1.37). From the left hand in

equality of (1.38) we see that there exists a k (1$k$n) such that 

(1.40) 

Furthennore, from (1.39): 

Combining this with 

we obtain 

21 
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So with (1.40) 

□ 

It follows from lemma 1.31 that successive row and column scaling of 

matrix elements by powers of 2, to assure exact scaling, yields a matrix 

with row and column norms which are roughly equal to 1. Although we cannot 

quarantee that K(A), with A given by (1.35), is less than K(A), this is very 

likely if column norms or row norms of A vary widely (see for instance 

van der SLUIS [1969]). 

1.3.6. Scaling of systems of nonlinear equations 

Let F satisfy condition 1.5. Then we may scale the function by premul

tiplying it by some diagonal matrix D1 . We can also scale the variables 
-1 

with a diagonal matrix D2 , i.e. we choose new variables x = D2 x. So we 

may consider the function 

Then we obtain for the jacobian J(x) of F: 

This suggests choosing of o1 and D2 dependent on J(x) for some x c D, such 

that norms of rows and columns of D1J(x)D2 are roughly equal to 1. 

In fact, if x0 is an initial guess to the solution of F(x) = 0 and BO is an 

approximation to J(x0), then scaling of the function and the variables with 

diagonal matrices D1 and D2 , satisfying (1.33) and (1.34) with A replaced 

by B0 is at hand and will be used (see section 6.10). 
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EXISTENCE AND UNIQUENESS 

In this chapter we shall derive conditions for the existence of a path 

(the so-called Newton-path) going from a given starting point x0 ED to a 

solution which lies in SF(x0 ,A) for all nonsingular A E L(JRn). 'I'his path is 

independent of A and is contained in SF(x0 ,A). The solution as well as the 

Newton-path are unique in SF(x0 ,A) under the given conditi.ons. 

'l'he results given in this chapter are based on RHEINBOLDT [ 1969] and OR'I'EGA 

& RHEINBOLDT [1970]. Basic to thi.s theory is the inverse function theorem 

{theorem 2.2). 

2. 1. DEFINITION. F' is called a local homeomorphism at x E D, if their exist 

open neighbourhoods u and V of x and F(x), respectively, such that Uc D 

and the restriction of F to U is a homeomorphism of U onto V (i.e. Fis a 

one-to-one mapping from U onto V and r," and F -l are continuous on U and V, 

respectively) . 

2. 2. THEOREM {Inverse function theorem) . Let ED. Suppose that the 

Frechet-derivative of F exists at each point of some open neighbourhood of 

in D. Suppose that F' is continuous at x 0 and F' (x0 ) is nonsingula:ro 

Then, Fis a local homeomorphism at x0 • Suppose, in addition, that the 

restri.ction Fu of F to a certain open neighbourhood U of x0 is one-to-one, 

F~ ex.ists and is continuous on U and F;(x) .is nonsingular for all x EU. 

Then (F~1)' ex.ists and is continuous on an open neighbourhood V of F(x0), 

with 

(2. 1) 
-1 

(J(x)) , 

for a.LI x E U such that the argument F (x) E V. 

See OR'l'EGA & RHEINBOLDT [ 1970, section 5. 2.1]. □ 
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2.3. DEFINITION. F has the continuation property for a given continuous 

function q : [ 0, 1] ➔ ]Rn , if the existence of a continuous function 

p: [O,a) ➔ D, with a E (0,1], such that F(p(t)) = q(t) for all t E [0,a), 

implies that lim p(t) 
tta 

p(a) exists with p(a) ED and F(p(a)) q(a). 

2.4. LEMMA. Let F be a local homeomorphism at each point of some open set 

D0 c D •. rf F has the continuation property for a continuous function 

q : [0,1] ➔ Rn such that F(x0 ) = q(O) for some x 0 E D0 , then there exists 

a unique continuous function p: [0,1] ➔ D0 which satisfies p(O) = x 0 and 

l''(p(t)) = q(t) for a.Il t E [0,1]. 

PROOF. See ORTEGA & RHEINBOLDT [1970, section 5.3.2]. 0 

2.5. LEMMA. Let F be a local homeomorphism at each point of some open set 

n0 c D. Let q : [0,1] x [0,1] ➔ Jl,,t and r : [0,1] ➔ D0 be continuous func

t.ions such that F (r (s)) = q (s, OJ for all s E [O, 1 J. If, for each fixed 

s E [0,1], F has the continuation property for qs(t) = q(s,t), t E [0,1], 

then there exists a unique continuous mapp.ing p : [0,1] x [0,1] ➔ D0 such 

that p(s,O) ~0 r(s) and F(p(s,t)) = q(s,t) for s,t E [0,1]. Moreover, .if 

q(s,1) = q(O,t) = q(l,t) = y for all s,t E [0,1], then r(O) = r(l). 

PROOF. See ORTEGA & RHEINBOLDT [1970, section 5.3.4]. 0 

2.6 LEMMA. Let F be a local homeomorphism at each point of some open set 

Do CD. Let p 

lim F(p(t)) 
tta 

[O,a) ➔ D0 (a E (0,1]) be a continuous function. If 

y exists, and if there is a sequence {tk} c [O,a) w.ith 

lim tk = a such that lim p(tk) = x and x E D0 , then lim p(t) 
k➔oo k➔00 tta 

= x. 

PROOF. See ORTEGA & RHEINBOLDT [1970, section 5.3.7]. 0 

n 
2. 7. LEMMA. Let x 0 E D and A E L ( JR ) • Suppose F, x0 and A sa t.isfy condition 

.8. Then there is an open set D0 c D such that SF 

nonsingular for all x E D0 . 

,A) c D0 and J(x) is 

PROOF. Suppose x ES (x0 ,A). Then J(x) is nonsingular and there exists a 
F -1 

constant S > O such that II (J(x)) II < s. By the continuity of Jon D we 

know that. there exists a o > O such that for all z E U(x,o) c D : IIJ(z) -

J (x) II < 1/S. Then, use of lemma 1.13 yields nonsingularity of J (z) for all 

Z E U(x,o). 
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Thus, for each point x E SF(x0 ,A) c D there exists an open neighbourhood, 

Ux sa.y, on which the jacobian i.s nonsingular. Then o1 U u is an 
XESp (xo,Al X -

open set containing (x0 ,A) on which the jacobian is nonsingular. O 

We can now present the main result of this chapter. 

n 
2.8. THEOREM. Let x 0 E D and A E L(JR ) • Suppose F, x0 and A satisfy cond.i-

tion 1.8. Then, there exists a unique differentiable function p : [0,1] ➔ 

,A) satis.fying 

(2. 2) F(p (t)) 

Moreover, p satisfies 

(2. 3) p' (t) 

p(O) 

* 

t E [Q,1]. 

t € [0,1] 

Further.more, x = p(1) is a unique solution of F(x) = 0 in SF(x0 ,A). 2'he 

path {y I y = p(t), t E [0,1]} c SF(x0 ,AJ .is called the Newton-path. 

PROOF. As a solution of AF(x) = 0 i.s also a solution of F(x) = 0 and the 

conditions are also satisfied with F' replaced by AF, without loss of gener

al:i. ty we may assume that A= I. For simplicity, denote S = SF(x0 ,A). Now 

let D0 be an open set, n0 c D, such thats c D0 and J(x) is nonsingular for 

all x E (cf. Lemma 2.7). 

By condition 1.8 and theorem 2.2 we conclude that Fis a local homeo

morphism at each x E n0 

Now consider the continuous function q(t) = (1-t)F(x0J for t E [0,1]. 

We shall prove that F has the continuation property for q. Therefore, 

assume that p: [O,a)---> D0 , a€ (0,1], is a continuous function such that 

F(p(t)) = q(t) for all t E [O,a). Then p(t) ES fort E [O,a) and by theorem 

2. 2 there exist open neighbourhoods u c n0 and V c JRn of p (t) and q (t) , 

respectively, such that FU (the restriction of F to U) is a homeomorphism 
-1 ' of U onto V, (FU) exists and is continuous and 
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-1 
(J(x)) . , for all x EU. 

Hence, we conclude that pis continuously differentiable on [O,a) with 

(2.4) p' (t) 

Now let {tk} c [O,a) be a monotone increasing sequence converging to a. 

Then 

(2. 5) 

t. 
J 

f p' (t)dt 

tk 

t. 
J -I (J(p(t))) 

tk 

As (J (x) J -· l exists and is continuous on the compact set s, there exists a 

constant S such that 

II (J (xJ ) - (x0 ) II :,; S, for all x ES. 

Hence (2.5) yields 

Therefore {p(tk)} is a Cauchy-sequence in S. Thus, by the compactness of S 

we conclude that there is a z Es such that lim p(t1 ) = z. By lemma 2.6 we 
k->= c 

obtain lim p(t) = z and by the continuity of F we have F(z) = q(a). This 
tta 

proves that F has the continuation property for q. 

Application of lemma 2.4 with q as above yields existence und unique

ness of a path p : [ O, 1] ➔ n0 which satisfies p (0) = x 0 and F (p (t)) = q (t) for 

all t E [0,1]. Clearly p(t) ES fort E [0,1] and F(p(1)) = 0 by the defini

tion of q. This proves the existence of a solution in S. we proved that 

existence of a path p: [O,a) ➔ D0 satisfying (2.2) for all t e [O,a) im

plies that p satisfies (2.4) for all t E [O,a). Moreover, existence of such 

a path is proved for all a E (0,1]. Therefore, the nonsingularity of J(p(l)) 

and the continuity of p and q on [0,1] yields (2.3). 

* Finally. we have to prove that x = p(1) is a unique solution in S. 

* ** * Suppose x ,x ES and F(x) ** F(x ) = 0. As Sis path-connected there 

* ** exists a continuous function r: [0,1] ➔ S such that r(O) = x, r(1) = x 



Define q [0,1] x [0,1] ➔ JRn by 

q (s,t) (1-t)F(r(s)) for all s,t E ro,1]. 

Then, for fixed s, F has the continuation property as is proved above. 

Moreover, 

q(s,0) F(r(s)) for alls e [0,1] 

and 

q(s, ) q(O,t) q(1,t) 0, for all s,t E ro,1]. 

** 
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Hence, by lemma 2.5, r(O) 

of x * in S~ 0 

* r (1), so that x x This proves the unicity 

2.9. REMARK. The Newton-path is invari.ant under affine transformation of the 

function as follows from (2.2) and (2.3). In fact, DEUFLHARD [1974a] proves, 

wi.th notations as in theorem 2.8, 

{x J x p(t), t e [0,2H n 
Ad (JRn) 

A nonsingular 

2.10. REMARK. The compactness of SF(x0 ,A) plays an important role in theorem 

2.8. This will be illustrated by two typical examples for which compactness 

does not hold and where no solution exists in D. 

1. D c JR, D = (1,2); F(x) = x, for x e !). 

Then figure 2.1 shows that, for arbitrary x 0 e D, SF ,I) = (1,x0 J, 

which is not compact. Moreover F (x) = 0 has no solution in D. 

F (x) i 

figure 2.1 
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2. D = R ; F (x) = arctan (x) + ·rr. 

Then TT/2 < F(x) < 3TT/2 and F(x) has no solution in D. Choose x 0 = 1. 
7 -1 

Then SF(x0 ,I) = (- 00 ,l] which is not compact. Note that J(x) = (x~+1) 
-1 

which tends to zero for x going to ± 00 • Hence II (J (x)) II is not uniformly 

bounded on SF(x0 ,I). 
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CHAPTER 3 

APPROXIMATING THE JACOBIAN 

3.1. INTRODUCTION 

In the sequel we shall frequently use approximations to the jacobian 

matrix or its inverse. Therefore, we present some methods that may be used 

to obtain such approximations together with results on approximation errors. 

In this chapter we assume that F satisfies condition 1.5, Furthermore, B(x) 

shall denote an approximation to J(x) and H(x) an approximation to (J(x))- 1 . 

Suppose x,y E: D and x+t(y-x) E D for all t E (0,1). Consider the func

tion g (t) = F (x+t (y-x)). 'l'hen g' (0) can be approximated by using the first 

divided difference formula: 

(9(8)-g(0)) / 0, 0 E (0,1], 

For 0 = , this yields that J(x) (y-x) is approximately equal to F(y) - F(x). 

Moreover, equality holds exactly if Fis linear. 

Motivated by the above reasoning an approximation B(x) to J(x) may be 

required to satisfy 

( 3. 1) F(y) - F(x) B (x) (y-x), 

for at least one y E: D. We shall discuss two methods for approximating the 

jacobian based on (3.1), viz. the divided difference approximation and the 

approximation obtained by updating some approximation to the jacobian at 

another point. Finally, at the end of this chapter, we present two results 

when the jacobian is approximated by some fixed matrix. 
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3. 2. DIVIDED DIFF'ERENCE APPROXIMATION 

3 .1. DEFINITION. Let x E D and P E L (]:t ) be nonsingular such that 

x + Pe. E D (i=l, ... , n) , where e. is the i-th unit vector in ]Rn . Define 
l l 

Q E L (lRn) by 

(3. 2) Q(x) 

Then, B(x) defined by 

(3. 3) 
-1 

B(x) = Q(x)P 

is called the divided dif.ference approximation to J (x) defined by P. 

Note that, for given nonsingular P, B(x) is defined uniquely by (3.3) 

and B(x) satisfies (3.1) for y x + Pei (i=1, ... ,n). 

3. 2. REMARK. Let x E D and A, P E L ( JRn ) be nonsingular. Suppose x+Pe. E D 
l 

(i=l, ... ,n). Let BF(x) and BAF(x) denote the divided difference approxima-

tions to the jacobians of F and AF, respectively, defined by P. Then 

(3.4) BAF(x) AB (x). 
F 

3.3. REMARK. Consider the case where P .i.s a diagonal matrix: 

for h. E JR, h. c/- 0 (i=1, ... ,n). Then the elements of B(x) can be given 
l l 

explicitly by 

(3. 5) (B (x)) .. 
lJ 

(x+h. )-F. (x))/h. 
J J.. J 

T 
where F (x) = (F 1 (x) , ... ,F n (x)) • 

In the sequel, unless stated otherwise, the term difference approximation 

is used for a divided difference approximation defined by a diagonal matrix 

P. As the general form (3.3) is rarely used, no confusion can arise from 

this terminology. 
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We shall give two theorems on the error bounds for the divided differ

ence approximation. One is based on condition 1.6, the other on the affine 

invariant condition 1.7. 

3.4. THEOREM. Let x ED. Suppose F and x satisfy condition 1.6 on some open 

neighbourhood Uc D of x. For all nonsingular P E L(JRn) let pi Pei, 

i = 1, ... ,n, and 

(3.6) h(P) 

where II . II F denotes the Frobenius norm (see lemma 1.1). Then, there is a 

real number o > 0 such that for any nonsingular P E L(JR.n) with llpll < 15, 

B(x) can be defined by (3.3) and satisfies 

(3. 7) II B (x) -·J (x) II s ½y (x) h (P). 

Note that h (P) ➔ 0 if II PII ➔ 0 · and the Frobenius condi ti.on number of P, 

llp- 111 llpllF,remains bounded, as h(P) s ('~ llp.11 2,'2 llp-ill llpll . 
F li=1 1 F F 

PROOF. Choose o > 0 such that U(x,6) c U. Let P 

nonsingular, satisfying llpll < o. 'rhen x +Pei= x + pi E U(x,o), for 

i = 1, .•. ,n. Hence, B(x) can be defined by (3.3). Now define 

(i=l, ... ,n). 

'l'hen by lemma 1 • 15 

Hence 

s l,y(x)llp.11 2 
l 

(i.=1, .•• ,n) . 

II B (x) -J (x) II -11 II (Q(x)-J(x)P)P I 

C ) -1 
. ,.,,..nT diag(llp 111, ... ,lip II )P II 

llpn , 11 
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So that 

tte{x) - J(x)U s ½y(x)h(P). D 

3.5. THEOREM. Let x ED. Suppose F and x satisfy condition 1.7 on some open 

neighbourhood u c D of x. Then there is a real number 6 > 0 such that, for 

all nonsingular P E L(JRn) with llpl! < o and h(P) < 2/w{x) (h(P) defined .by 

(3.6)), B(x) can be defined by (3.3), is nonsingular and satisfies 

(3.8) II (B (x)) -l J (x) - rll <; w (x) h {P) 
2-w{x)h(P) 

PROOF. Define for y Eu 

~ -1 
F (y) = (J (x)) F (y) . 

Then F and x satisfy condition 1.6 on U with y(x) replaced by y(x) = w(x). 

By remark 3.2 we have for the divided difference approximation, B(y), to 

the jacobian of Fat y: 

~ -1 
B(y) = (J(x)) B(y), y EU. 

Hence application of theorem 3.4 yields the existence of a o > 0 such that 

for all nonsingular PE L(:Rn) with llpll < o, B(x) can be defined by (3.3) 

and satisfies 

(3. 9) II (,J (x)) -lB (x) - rll <; !,w (x) h (P) . 

As ½w(x)h{P) < 1 we can use the perturbation lemma {lemma 1.13). Hence 
-1 

(J(x)) B(x) is nonsingular (so B(x) is nonsingular) and using (1.6) we 

obtain 

, -1 i 
l (I - (J (x)) B (x)) II 

i=l 

<; l Ur -(J(x))-1B(x)lli • 
.i=l 

By (3.9) the result follows. D 
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For future use we also need a result in case Bis a singular approxima

tion to J. 

3.6. COROLLARY. Let the assumptions of theorem 3.4 be satisfied. Then, there 

is a real number o > 0 such that for all nonsingular PE L(JRn) with 

llpll < o, B(x) car.: be defined by (3.3) and satisfies 

(3.10) D (J (x) - B (x) ) (B (x) ) +II s !,y (x) h (P) II (B (x) ) +II . 

PROOF. This easily follows by application of (3.7). 0 

3. 7. REMARK. If P is a diagonal matrix, P = diag (h1 ,. .• ,hJ, then the expres

sion for h(P) given by (3.6) simplifies to 

(3 .11) h(P) = llpl = ( f h~ )½ 
F j=1 J 

Up to now, we have not been concerned with the effect of numerical 

computation of a divided difference approximation to the jacobian. In fact, 

if inexact computation is used, then round-off errors due to cancellation of 

significant digits may cause serious difficulties. On this issue we present 

two theorems associated with theorem 3.5 and corollary 3.6. We restrict 

attention to diagonal matrices P. 

3.8. NOTATION. Consider inexact floating point arithmetic with computational 

precision E, called the machine precision (as computation is usually done 

with a machine). With fl 8 (•) we denote the expression within the brackets 

computed with machine precision E. 

N.B. With this notation E can be defined to be the smallest representable 

number such that flE(l+E) > 1 and flE(l-E) < 1. 

3.9. THEOREM. Let the assumptions of theorem 3.5 be satisfied. Moreover, 

suppose that there are constants Erf and Eaf such that 

(3.12) 

Then, there is a real number o > 0, such that for all nonsingular P E L ( :it ) 

with llpll < o and h(P) < 2/w(x), .B(x) can be defined by (3.3). Moreover, i.f 

P =, diag(h1 , ..• ,hn) for real mimbers hi > 10E (i=1, •.. ,n) and flE (B(x)) is 

nonsingu.lar, then 
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(3. 13) II (fl (B (xl) l - 1 J (x) - Ill s: 
E: 1 (c2+c1)' 

-cl 

where 

PROOF. We have 

(3 .14) 

II (fl (B(x))) 
E: 

(x) - rll s: II (B (x)) -l J (x) - rll 

+ II (fl (B(x))),- 111 IIB(x) - fl (B(x))II II (B(x)) 
E: E: 

(x) II. 

Using t.he inequalities (see WILKINSON [1965, section 3.4]) 

!fl (a+b) - (a±p) I'S: (lal+lbl)r:, 
E: -

for a,b e: JR, 

and (3.12), some tedious calculations show 

(3 .15) (B (x)) - B (x) II S: 2 x 1. 06E:f (x) ( I 
'j=1 

-2\" 
h. I 

J .' 

(For typical examples of such calculations see WILKINSON [1965, section 

3.1 - 3.9].) Using (3.8) and (3.15) to bound the right hand side of (3.14) 

yields (3.13). D 

3.10. THEOREM. Let the assumptions of theorem 3.4 be satisfied. Suppose 

there exist constants r:rf and r:af satisfying (3.12). Then, there is a real 

number o > 0, such that for all nonsingular P c L ( JRn ) with II pl[ < o, B (x) 

can be defined by (3.3). Moreover, if P = diag(h 1 , •.• ,hn) for real numbers 

hi > 10r: (i=1, .•. ,n) then 

(3.16) II (J (x) - fl (B (x) ) ) (fl (B (x)) ) +11 :S: c +2 + 
E: E: 



where 

+-
n (x) 

PROOF. We have 

II (fl (B(x))) +11. 
£ 

)
½ 

-2 
h, , 

J , 

IIJ(x) - fl (B(x))II s IIJ(x) - B(x)II + 11B(xl - fl (B(x)JII. 
£ £ 

Using this inequality and bounding the terms on the right hand side by use 

of (3.7) and (3.15) yields the required result. D 
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+ 3.11 REMARK. Note that in (3.13) and (3.16), the values of c 1 and c 1 decrease 
+ and those of c 2 and c 2 increase, if II pll decreases. So, in practice we have 

to find for given x ED, diagonal elements h, (i=1, ••. ,n) of P such that 
+ i 

c 1 and c 2 (or and c 2 ) roughly have the same magnitude. 
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3.3. APPROXIMATION BY UPDATING 

The method of approximating J (x) by updating some approximation to ,J (y) 

(x,y ED), such that (3.1) is satisfied, is due to DAVIDON [1959]. Be sug

gested this method for approximating the second derivative of a functional 

in successive itera.tion steps of an iterative process for finding an optimum 

of this functional. Davidon called his method a variab.le metric method. 

Iterative methods for solving nonlinear systems which make use of Davidon's 

idea are usually called quasi-Newton methods (see DENNIS [1975], DENNIS & 

MORE [1977], BROYDEN [1965, 1969, 1970a,b, 1973]). However the term "quasi

Newton" is confusing since it is also used for other modifications of 

Newton's method; moreover, the prefix "quasi" is far from clear. Since the 

term "variable metric" is used only for optimization methods, we prefer the 

terms "updating methods" (see chapter 4) and "approximation by updating" 

for the methods described in this thesis. 

3.12. DEFINITION. Let F satisfy condition 1.5. Suppose Du c L(JRn) x D x D. 

Then U is a Jacobian update funct.ion for F with domain D0 if 

and 

U(B,y,x) (x-y) F (x) - F(y) 

for all (B,y,x) E D0 . 

We restrict ourselves to jacobian update functions of the form 

U(B,y,x) 
T 

B +vu, 

where v,u E depend on F, B, y and x. This restriction implies that for 
'I' 

arbitrarily chosen u such that u (x-y) ,/, O, the vector vis determined and 

given by 

V (F(x) - F(y) - B(x-y))/ (x-y)). 

In fact, we restrict attention to a class of jacobian update functions which 

can be parametrized by a vector ·u. The elements, denoted by U(u), of this 

class satisfy 



(3 .17) U(u) (B,y,x) 
T 

B + (F(x)-F(y)-B(x-y))u 
T 

u (x-y) 

for all (B,y,x) E DU(u) = { (B,y,x) IB E L<lll), x,y E D, uT (x-y) 'f' O}. 

This class is also known as "Broyden's class". 
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We may also consider updating of an approximation to the inverse 

jacobian. Analogous to definition 3.12 we can give the following definition. 

3.13 DEFINITION. Let F satisfy condition 1.5. Suppose DV E L(JRn) x D x D. 

Then Vis an inverse-jacobian update function for F with domain DV if 

and 

V D ➔ L 
V 

V(H,y,x) (F(x) - F(y)) 

for all (H,y,x) E DV. 

(x-y)' 

Analogous to the derivation of (3.17) we can define a class of inverse

jacobian update functions V(u) by 

(3. 18) V(u) (H,y,x) 
T 

H + (x-y-H(F(x)-F(y)))u H 

UTH (F (x) -F (y)) 

for all (B,y,x) E DV(u) = {(B,y,x) lee L ) , x,y E D, (F(x)-F(y)) 'f' O}. 

3.14. REMARK. Let F satisfy condition 1.5 and let BE L(lRn) be nonsingular. 
-1 

Then, for all (B,y,x) E DU(u) such that (B ,y,x) e DV(u), the matrix 

U(u) (B,y,x) is nonsingular and 

(3. 19) 
-1 

(Ll(u) (B,y,x)) -1 
V(u) (B ,y,x). 

This can easily be verified by using (3.17) and (3.18). 

3.15. REMARK. Let TE l(JRn) be arbitrary nonsingular and u e 

F satisfies condition 1.5. Denote U(u) and V(u) for F by UF and 

. Suppose 

VF, respectively, and U(u) and V(u) for TF by UTF and VTF' respectively. 

Then 
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(B,y,x) ED - (TB,y,x) E Du ' 
UF TF 

and 

-1 
(H,y,x) E DV - (HT ,y,x) E DV 

F TF' 

UTF(TB,y,x) 

(3. 20) 

for all B, H, y and x such that (B,y,x) E Du and (H,y,x) E Dv. 
F F 

In DENNIS [1971] an upper bound on the error IIU(u) (B,y,x) - J(x)II is 

given relative to the error Ila - J(y)II. These results are based on condition 

1.6. For our purpose, however, we need a similar result for functions satis

fying the affine invariant condition 1.7. 

3.16. THEOREM. Let x,y ED and HE Lo1P ). Suppose Do= {z I z 

t E [0,1]} c D and F and y satisfy condition 1.7 on D0 • Define 

(3. 21) e(y) IIHJ(y) - 1U 

and suppose e(y) < 1. Let u E ]Rn. Then, for (H,y,x) E DV(u), 

(3. 22) 

where 

II H (F (x) -F (y)) 1111 ull 

I uTH (F (x) -F (y)) I 

llx-yllllull 

PROOF. For simplicity denote 

p = x-y, q = F(x)-F(y), e(y) = e. 

Then 

y+t(x-y), 

* * H J - l 
T T * 

(HJ-I) + H(J*-J) + (p-Hq)u HJ+ J.f.H•lq)u H(J -J) 
T T 

and thus 

(3. 23) * * H J - I 

u Hq u Hq 

-I+ (1 +~)HJ+ 
u Hq ' 

-I). 



By (3.21) and lemma 1.13 we know that HJ is nonsingular. Substituting 

p - Hq 

in the second term of the right hand side of (3.23) we obtain: 

* * H J - I 
•r -·1 T) 

-I)H~u + (p~JT q)u HJ 

u Hq u Hq ' 

+ (r - H~uT + pTUT) HJ(J-1J-,'-r). 

u Hq u Hq' 

Hence 

(3.24) * * H J ·- I 

For the spectral norm we can verify the following equality for w,v E JRn 

with vTw = 1 (see BROYDEN [1970a, lemma 1]): 

{ llvllllwll 

0 

if n 2 2, 

if n "" 1. 

Furthermore, applying lemma 1,16 011 the convex set D0 yields 

(3. 25) IIJ 2 - pll :,; ½w (y) II pll 

and use of the perturbation lemma gives 

Hence, for n 2 2 and p 1 , p 2 as given: 

- rll 1+e 
$ p + ½w(y)(1+e) 

So that 

pll + w(y) (1+e) (p 

39 
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Finally, for n = 1, we obtain from (3.24) with 

T 
Hqu 

I - -T- = 0, 
u Hq 

Then, application of (3.25) yields 

Hence (3.22) is satisfied for all n ~ 1. D 

3.17. REMARK. The choice 

(3.26) u = H(F(x) - F(y)) 

seems natural, because then p1 = 1 and the nominator of p2 will be nonzero 

as long as H(F(x)-F(y)) is nonzero. In the literature many other choices 

are proposed. The one most frequently used is (see BROYDEN [1969]) 

(3.27) u = x-y. 

3.18. REMARK. If Fi~ linear then w(y) can be chosen equal to zero. If u is 

chosen as in (3.26) then (3.22) reduces to 

IIV(u) (H,y,x)J(x) - Ill :$ e(l+e) 
1-e 

-1 
Hence, if H = (J(y)) then e = 0 and the error in the new approximation 

equals zero too. So the bound (3.22) is sharp in the sense that, if e = 0, 

there exist functions such that (3.22) is satisfied with equality sign. 

For general nonlinear functions (3.22) guarantees that the error in 

V(u) (H,y,x) as an approximation to (J(x))- 1 will be small if llx-yll is small 
-1 

and the error in Has an approximation to (J(y)) is small. 
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3.4. FIXED APPROXIMATION 

Let y ED be given and let BE L(:Rn) be some approximation to J(y) 

with known (upper bound on the) error. Then we give two results on the error 

bounds for Bas an approximation to J(x) for arbitrary x ED. We say that B 

is a fixed approximation to J(x) for x ED. 

3.19. THEOREM. Let x,y ED and HE L(:JRn). Suppose D = {z I z ,: y+t(x-y), 
0 

t E [0,1]} c D and F and y satisfy condition 1.7 on o0 . Define e(y) by 

( 3 . 21 ) • Then 

(3. 28) II HJ (xl - Ill $ e (y) + w (yl (1+e (yl l llx-yll . 

PROOF. By the nonsingularity of J(y) we obtain 

IIHJ(xl - Ill $ IIHJ(y) - Illll(J(y)t 1J(x)II + II (J(y)) (x) - 111. 

Application of condition 1.7 in both terms of the right hand side yields 

the required result. D 

3.20. THEOREM. Let x,y E D and B E L(Rn). Suppose D = {z z = y+t(x-y), 
0 

t E [O,l]}cD and F and y satisfy condition 1.6 on n0 . Define 

Then 

(yJ +y(y)IIB+IIII 

We have 

II (J(x) - B)B+II $ II (J(y) - B)B+II + IIJ(x) - J(yJIIII 

Condition 1.6 then yields the result. D 
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[H.:SCRIPTION Of NEWTON-LIKE METHODS 

4. 1. GENERAL DEFINITION 

Throughout this chapter we assume that F satisfies condition 1.5. 

Suppose x ED. Then we can approximate F by the linear function F defined by 

(4. 1) F(y) F (x) + J (x) (y-x) , y ED. 

* If F(x) = 0 has a solution, x say, in D, then we can approximate it by the 

* solution, y say, of F(y) = O, provided it exists in D. If J(x) is nonsingu-

lar and x - (J(x)J-1F(x) ED then 

(4. 2) y * X - (J (X)) (x) • 

A well-known iterative method for solving (systems of) nonlinear equations, 

based on repeated use of (4.2) for given F, is Newton's method. This method 

defines, for each function F, a stationary iterative process which is defined 

by the iteration function '!' : D'!'-+ JRn, with D,y "' {x [ x E D, J(x) nonsingu

lar} c D, such that 

(4. 3) 
-1 

'!' (x) "" x - (J (x) ) F (x) , for all XE D'!'. 

For general nonlinear !,', the linear function F given by ( 4. 1) is a good 

approximation only for yin a small neighbourhood of x. So we can expect that 

Newton's method performs well if the starting point for the iterative process 

is close to a solution of F (x) "' 0. Moreover, convergence to a solution for 

starting points far away from this solution is unlikely. In other words, we 

expect the local behaviour of Newton's method to be good but its global 

behaviour to be uncertal,1. In order to avoid divergence, which also may 

occur in Newton's method, one often modifies this method in such a way that 
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in every iteration step a decrease of some level function is guaranteed. The 

iteration function is then given by 

(4A) 'JI (x) 
-1 

x - \ (x) (J (x)) F' (x) , 

where the scalar \(x) > 0 is chosen such that monotonicity of some level 

function IIAF(x) II (A E L(]Rn), nonsingular) is guaranteed, e.g. 

IIAF('l'(x))II < IIAF(x)II. 

It follows from a general result given in theorem 4.20 that such a \(x) 

exists. Such a method will be called a restrained Newton method; in the 

literature several other terms are used (e.g, "relaxation", "step size 

control", "damping"). A second drawback of Newton's method is the need for 

analytic expressions for the elements of the jacobian matrix. As this in

formation is often not available one uses Newton's method with J(x) in (4.3) 

or (4.4) replaced by some approximation to it. This jacobian approximation 

can depend on the previous iterate(s) or even on the jacobian approximation 

in the previous step (e.g. updating methods). Particularly, the latter 

possibility complicates the general definition of Newton-like methods as it 

forces us to consider the jacobian approximation or its inverse as part of 

the iterate. In our terminology this means that Newton-like processes gener

ate, for given starting points, sequences of iterates of the form 

{ (xk ,Hk)} c JR.n x L (lRn ) instead of sequences of iterates {xk} c JEt . Note 

that such iterative processes fit the theory about iterative processes given 

in section 1.2. 

We now present the definition of a Newton-like method. 

4.1. DEFINITION. Let F satisfy assumption LS. Let be given : D ➔ lRn 

with D('!\l c D x L(lRn), D(IJ' 2 ) -> L(JRn ), with D('l'2 ) c D x L(lRn). 

Suppose that, for all (x,H) E D(IJ' 1), '!' 1 satisfies 

(4. 5) IJ' l (x,H) X - \(x,H)HF(x)' 

with O < \(x,H) s; 1 for all (x,H) E D('l' 1). Then, the stationary iterative 

process defined by the iteratiori function IJ' , D'l' ➔ lRn x L (lRn) , 

DIJ' = D('l' 1) n D('l'2), 



45 

(4.6) '¥ (x,H) for all (x,H) e D'¥ 

is called a Newton-like process. D'l' is the domain of definition of'¥. If 

;\(x,H) = 1 for all (x,H) ED'¥ then the process is called a strict Newton

like process, otherwise the process is called a .restrained Newton-like pro

cess. ;\(x,H) is the step length factor. 

Let M be a mapping M: V c F ➔ P(n2+n) (V ~ 0) (see def. 1.18), such that, 

for FE V, M(F) defines a (strict or restrained) Newton-like process (where 

lRn x L (1Rn ) n+n2 M is identified with JR ) • Then is a (strict resp. restrained) 

Newton-like method. 

In the sequel we shall use the notation of definition 4.1 without 

comment. 

In definition 4.1, x and '¥ 1 (x,H) are the old and new approximation, 

respectively, to a solution of F(x) = O; Hand '¥2 (x,H) are the approximations 

to the inverse jacobian at x and '¥ 1 (x,H), respectively. Note that for strict 

processes (;\(x,H) = 1), '!'1 is defined by (4.5) and D('!'1) = D >< L(JRn). 

Examples of Newton-like methods that illustrate the definition are given in 

the next section. 

Let T e L(JR.n) be nonsingular. Then, clearly, a solution of the equation 

'l'.'F (x) = 0 is also a solution of the equation F (x) "" 0 and vice versa. 

However, if a particular Newton-like method yields an approximation to a 

solution of F(x) = 0, then it may be the case that an approximation to a 

different solution is found when the method is used to solve TF(x) = 0, 

even if we use the same initial guess to the solution. Moreover, it may be 

possible that, for a given initial guess, the sequence of approximations 

to the solution generated by the process for solving TF(x) = 0 converges, 

but for solving F(x) = 0 does not converge. Such events are most undesirable 

as in practice one is interested in a solution of F(x) = 0 and it does not 

matter whether this solution is obtained by applying an iterative method to 

E' or to 'I'F, Furthermore, most practical problems are scaled in a way which 

depends on the choice of dimensions, and one often is not aware of the 

effect of this choice on the iterative method for solving the problem. 

In order to obtain insight in the dependency of a Newton-like method on an 

affine transformation of the function we introduce the concept of affine 

invariancy. 
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4.2. DEFINITION. Let M be a Newton-like method with domain of definition 

V c F. Then Mis affine invariant if for all FE Vandall nonsingular 

TE L(JRn) the following conditions are satisfied: 

1. TF EV; 

2. if { (xk,f\)} is generated by M(F), for a 

M -1 
domain of (F), then (x0 ,H0 T ) lies in 

{~,~}, generated by M(TF) for starting 

satisfies ~c = ~ (fork= 1,2, •.• ). 

starting point (x0 ,H0 ) in the 

the domain of M(TF) and 

point (x0, H0) = (x0 , HQ '.I,-l) , 

4.3. REMARK. Let M be a strict Newton-like method with domain of definition 

V c F. Denote for all FE V: 

(4. 7) M(F) = \jlF = ('¥1 ,'¥2 ) • ,F ,F 

Then M is affine invariant if for all F c V and all nonsingular 'l' E L (Rn): 

(4.8) 
-1 

('¥2 (x,H) )T • 
,F 

This property follows directly from (4.5). In fact, starting from (x 0 ,H0) 
-1 -1 

and (x0 ,H0T ·) respectively, we obtai.n sequences {(xk,Hk)} and {(xk,HkT )} 

for F and TF, respectively. 

4.4. REMARK. It should be noted that we consider exact methods in this 

section. Affine invariancy of a method can be spoiled if inexact arithmetic 

is used, as numerical processes may depend on scaling of the function. For 

instance, pivoting strategies for triangularization of a matrix may depend 

on scaling of the matrix. 
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4.2. EXAMPLES OF NEWTON-LIKE METHODS 

4.2.1. Newton methods 

4.5. DEFINITION. Let M be a Newton-like method. Suppose that, for all FE V, 
'¥ = M(F) satisfies 

(4.9) 

(4.10) (J 
-1 (x,H))) , 

Then Mis a Newton method and M(F) "''¥ defines a Newton process for FE V. 

·· 1 Suppose (x0 , (J.(x0 )) ) belongs to Dq,• as given in definition 4.5. Then, 

the sequence {(xk,Hk)} generated by a Newton process for the starting point 

(x0 ,H0 ) = ,(J(x0))-l , satisfies 

(4 .11) 

k 0,1,. "°, 

-1 
where \k "' \ (xk, (J (xk)) ) (k=O, 1, •.. ) . This is the usual definition of a 

-1 
Newton method. Note that in our definition it can occur that H0 ,/ (J(x0)) 

in a Newton process. 

4.6. REMARK. The strict Newton method is affine invariant. This follows 

easily from (4.10) and remark 4.3. For restrained Newton methods, it depends 

on the choice of A(x,H) whether such a method is affine invariant. 

4.7. REMARK. Newton methods have two drawbacks. 

1. The jacobian J(x) has to be calculated in every iteration step, which may 

be difficult or even impossible for real life problems. 

2. Calculating xk+l from xk (for k=0,1, ... ) requires the computation of 

J(xk)\F (see (1.13)) which is relatively expensive in terms of basic 

arithmetical operations for high dimensional problems. Moreover, this 

computation is undefined for singular J(xk). 
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4.2.2. Difference Newton methods 

4.8. DEFINITION. Let M be a Newton-like method. Let B(x) be the difference 

approximation given by (3.5) for hi E JR, hi f O and\. dependent on x and 

F (i=l, ... ,n). Suppose that for all FE V, \jl M(F) satisfies 

(4.12) ((x,H) I (x,H) E D(\j/ 1), y = '¥ 1 (x,H) ED, 

y+hjej ED (j=l, ... ,n), B(y) nonsingular}, 

(4. 13) 

Then M is a d.ifference Newton method and M (F) 

Newton process for all FE V. 
ljl defines a difference 

-1 
Suppose (x0 , (B(x0 J) ) belongs to D'¥, as given in definition 4.8. Then 

the sequence {(xk,Hk)} generated by a difference Newton process for the 
-1 

starting point (x0 ,H0 ) = (x 0 , (B(x0 J) I, satisfies 

(4.14) 
k 0, 1, ... , 

-1 
where = :\ (xk, (B (xk) ) ) (k=O, 1, ... ) . It seems natural to choose 

(x0 , (B (x 0 )) -l) as a starting point for the difference Newton process, al-

though wi_th our definition other starting points are imaginable. 

4.9. REMARK. From (3.4), (4.13) and remark 4.3 it follows that the strict 

difference Newton method is affine invariant. 

4.10. REMARK. 

1. Difference Newt.on methods do not require the calcula.tion of the (analytic) 

jacobian at every iteration step. Note, however, that calculation of a 

difference approximation at x, requires the calculation of the function 

at n extra points around x. 

2. As for Newton methods, in every i_teration step a linear ~ystem has to be 

solved (see also remark 4.7 ad 2). 
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4.2.3. Updating Newton methods 

We distinguish methods using jacobian update functions and those using 

inverse-jacobian update functions (see definitions 3.12 and 3.13). 

4.11. DEFINI'I'ION. Let M be a Newton-like method. Let u , D x L(JRn) ➔ lRn 

be given. Suppose that, for all l!' E V, '!' = M (F) satisfies 

(4.15) 

(4.16) 

{ (x,H) I (x,H) E D('l' 1), H nonsingular, y = '¥ 1 (x,H) ED, 

(y-x)Tu(x,H) # 0, (F(y)-F(x))THTu(x,H) ~ 0}, 

-1 -1 
'l'2 (x,H) = (Ll(u(x,H)) (H ,x,'!' 1 (x,H))) , for (x,H) E D'l', 

with U defined by (3.17). Then Mis an updating Newton method and M(F) = 'l' 

defines an updating Newton process for all FE V. (Note that '¥ 2 (x,H) exists 

for (x,H) E D'l' because of remark 3.14 and the definition of D,rl 

4.12. DEFINITION. Let M be a Newton-like method. Let u : D x L(lRn) -> lRn 

be given. Suppose that, for all FE V, '!' = M(F) satisfies (4.15) and 

(4.17) '!' 2 (x,H) •= V (u (x,H)) (H,x, '!' 1 (x,H)), 

with V defined by (3.18). Then Mis an inverse-updating Newton method and 

M(F) 'l' defines an inverse-updating Newton process for all FE V. 

Let (x0 ,H0 ) belong to D'l' as given in definition 4.11, then the sequence 

{(xk,Hk)} generated by this process for starting point (x0 ,n0), satisfies 

(4.18) ~ - AkHkF(xk) 

-1 
(U(uk) (Hk ,xk 

_ 1 (k=0,1, ... ), 
) ) 

u (xk ,I\l (k=0, 1, ... ) . Note that Hk+l depends on Hk. 

Similarly for an inverse-updating Newton process we obtain 

(4 .19) - AkHkF(xk) 

V(¾) (Hk,xk,xk+l). 
(k=0 1 ••• ) , 
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4.13. REMARK. From the remarks 3.15 and 4.3 it. follows that. a strict. 

(inverse-) updating Newt.on met.hod is affi.ne i.nvari.anL 

4.14. REMARK. 

1. (Inverse-) updating Newt.on met.hods neither require the calculation of the 

(analytic) jacobi.an in an iteration step, nor extra function evaluations 

to obtain an approximation to the (inverse) jacobian. 

2. Updating Newton methods store and update an a.pproximation to the jacobian 
-1 -1 

(in (4.16) and (4.18) formally denoted by H and Hk) and solve a linear 

system with this approximation to the jacobian, at. every iteration step. 

Note that. the condition (x,H) E Do/ is easily checked so that. problems of 

trespassing the domain can be avoided. 

3. Inverse-updating Newton met.hods st.ore and update approximations to the 

inverse jacobian. Thus solutions of linear systems do not have to be cal

culated in these met.hods. 

4.2.4. Fi.xed Newton methods 

4.15. DEFINITION. Let M be a Newton-like method. Suppose that., for all 

FE V, o/ = M(F) satisfies 

(4.20) 

(4. 21) H, 

'l'hen M is a fixed Newton method and M (F) 

for all FE V. 
o/ defines a fixed Newton process 

Let. ,HO) belong to Do/ as given in definition 4.15, then the sequence 

{(xk,Hk)} generated by this process for starting point (x0 satisfies 

(4. 22) 
(k=0,1, ..• ), 

with ,\ (k=0,1, ..• ). Note that depends on only. 

4.16. REMARK. It follows easily from the definition of affine invariancy 

(definition 4.2) that the strict fixed Newton method is affine invariant. 
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4.17. REMARK. 

1. Fixed Newton methods do not require calculations to obtain ~2 (x,H). 

2. Fixed Newton methods do not require the solution of a. linear system during 

the iteration steps. 
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4. 3. RESULTS FOR .RES'.i'RAINED NEWTON·-LIKE ME'.l'HODS 

In this section we assume that A E L (JRn ) is nonsingular. We restrict 

attention to the class of restrained Newton-like methods M for which, for 

all FE V, 'JI= M(F) satisfies the following monotonicity criterion 

(4. 23) liAF('Jl(x,H))II < IIAF(x)II, for all {x ,H) E 

It should be emphasized that for these methods, in general, D ('JI 1) # D x L(JRn) , 

as :\(x,H) E (0,1] satisfying (4.23) not always exists for (x,H) E nx L(JRn) 

Furthermore, if there exists a :\(x,H) E (0,1] satisfying· (4.23), it is, in 

general, not uniquely determined by (4.23). It is also important to note 

that for arbitrary nonsingular A E L (JR.n ) , restrained Newton-like methods 

satisfying (4.23) may not be affine invariant. The usual methods for choosing 

;\(x,H) yield only affine invariant methods for special choices of A. In 

particular for choices of A satisfying 

(4. 24) 

for all nonsingular T E L (JRn ) and where the subscript F expresses dependency 

on F. For instance, if we choose A equal to the inverse jacobian at some 

point x ED, er to some suitable approximation to it (difference or update 

approximation), then it satisfies (4.24). 

4.18. REMARK. Let M be a restrained Newton method. Suppose that, for all 

F' E ·v, '¥ = M (F) satisfies (4.23) for some A E L(Jft) (A nonsingular). Then 

we say that Mis an implicitly scaling restrained Newton method, with 

implicit sea.Ung mat.r.ix A. Similar terminology will be used for the other 

Newton-like methods given in section 4.2. This terminology is due to the 

fact that scaling cf the function only influences the value of :\(x,H), for 

the methods given in section 4.2 and for the usual choices of ;\(x,H) satis

fying (4.23). Solving F(x) = 0 with an implicitly scaling restrained Newton

like method with implicit scaling matrix A is equivalent to solving AF(x) = 0 

with the method with implicit scaling matrix I. 

We shall now derive sufficient conditions for existence cf a step length 

factor in the interval (0,1] such that (4.23) is satisfied. 



4.19. LEMMA. Let x ED, F(x) '/, 0 and F satisfies condition 1.5. Let 

H E L (lRn) and define 

(4. 25) e(x) IIHJ(x) .,. rll. 

Suppose that J(x) is nonsingular and define 

(4.26) K(x) = 11.i\J(x)IIII (J(x))-lF(x)II/IIAF(x)II, 

for A E L ( JRn ) nons:inqular. Denote z (t} "" x-tHF (x) and let 

that z(t) ED .for all t E [O, ). Define 

(4.27) 

Then, 

(4.28) 

i.mplies 

(4.29) 

¢(t) = IIAF(z(t))ll 2 

e (x) K (x) < 1 

¢'(0) s -2(1-K(x)e(x))IIAF(x)ll 2 < Q 

> 0 be such 
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and equality holds in (4.29) if e{x) = 0. Moreover, there exist a function F, 

a point x E D and a nonsingular matrix A E L (JR n) such that for any E: > 0 

with E:K(x) < 1 there is a matrix H = H with e(x) = E: and (4.29) is sat.is-
E: 

fied with the equality sign. 

PROOF. Using the Cauchy-Schwarz inequality we obtain 

l[A(J(x)H-I)F(x),lll"(x)]j s IIA(J(x)H-I)F(x)IIIIAF(x)II 

II AJ (x) (HJ (x) -I) (J (x)) (x) II H AF (x) II s K (x) e (x) II AF (x) II 2 , 

Differentiation of ¢(t) yields 

<j,' (t) -2[AJ (z (t) l HF (x) ,Af' (z (t))], 

Hence 

¢' (0) -2([A(J(x)H-I)F(x) ,AF(x) ]·+ [AF(x) ,AF(x) ]) 

s -2 (1-K (x) e (x)) IIAF{x) 11 2 , 

which proves (4.29). 
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If e(x) = 0, then H 

holds in (4.29). 

J(x) and ¢' (0) -2[AF(x) ,AF(x) ], so that equality 

Now consider F(x) = (E 1 , )T, for x 

and fore< 1/K(x) = 1: 

Then 

and 

H 
/ 1 
\ 
'-e 

ilHJ(x) - rll e 

¢ (0) -4(1-e) = -2(1-K(x)eJIIAF(x)l1 2 . l] 

I, X (1, l)T 

4.20. THEOREM. Let M be a restrained Newton--like method, Suppose that, for 

some nonsingular A E L(mn) and all FED, 'JI= M(F) satisfies (4.23) and 

(4.30) D('Jl 1 J = { (x,H) [ (x,H),: D x L(JRn), 

:lt1 E (O,Ll such that \ltc: (O,t 1 ): z = x-tHF(x) ED, IIAF(z) II<: IIAF(x)II}. 

Det·ine 

(4. 31) s { (x ,H) I (x ,H) E D x L (mn) ,F (xl i O ,J (x) is nonsingular, 

llnJ(x)-rll < 1/1((x)}, 

tvhere K(x) is defined by (4.26). Then Sc D('l\l-

PROOF. For (x,H) c: S, it follows from lemma 4.19 that the derivative of 

IIAF(y) 11
2 at y "' x is negat.ive in the direction -HF(x). As Dis open and non··· 

empty there exists a t 1 c (0,1] : x-tHF(x) ED fort c (O,t 1). Hence, 

(x,H) E D('¥ 1 ). □ 

4.21. COROLLARY. There exist restrained Newton-.Iike methods M, such that 

for all nonsingular A E L (mn) and all F E D for which J (x) is nonsingular 

for some x E D with F(x) i 0, '¥ = M(F) has a nonempty domain of de.finition. 

PROOF. We only have to demand that Sn D('¥ 2 ) i 0. As Si 0, this holds for 

all the examples of Newton-like methods given in section 4.2 and for a.11 

nonsingular A EL ) . [] 



55 

ALJ is shown in the next examples, the assumptions in theorem 4.20 are 

not very strong. In fact (4.30) imposes the natural condition on the strategy 

for choosing the step-length factor :\(x,H): if there exist at E (0,1] such 

that z = x-tHF(x) ED and IIAF(z)II $ IIAF(x)l1, then there exists a :\(x,H), 

i.e. if an rtppropriate :\(x,H) can be found, then the strategy is such that 

an appropriate :\(x,H) will be found. So, all restrained Newton-like processes, 

given in section 4.2, which have a "natural" restraining strategy, have non

empty domain of definition. 

4.22. EXAMPLES. 

1. The restrained Newton method M with the following restraining strategy 

for some nonsingular A E L(:JRn), for all (x,H) ED x L(JRn), 

:\(x,H) -p 
2 ' 

where pis the smallest nonnegative integer such that 

for FE V. If (x,H) E: S (cf. (4.31)) then existence of such a :\(x,H) is 

guaranteed. 

2. The restrained Newton method M with the following restraining strategy 

for some nonsingular A E: L (JR n) : for all (x,H) E D x L (JR n) : 

:\(x,H) 

with 

(x)) II s II AF (x-tHF (x)) II , 

for FE: V. Note that this strategy does not satisfy (4.30) for all FE F. 
As Dis open it might occur that IIAF(x-tHF(x)II d~es not have a minimum 

with respect tot such that x-tHF(x) E: D. Compactness of SF(x,A) is a 

sufficient condition for existence of Therefore V has to be restrict-

ed to functions satisfying such a condition for some x E Do Note that, 

in general, is also not determined uniquely with the stratr~gy. 

In practice, at* can be approximated by successive quadratic or cubic 
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interpolation (see BREN'l' [1973b]). 

Of course, restrained difference, updating or fixed Newton methods, 

with restraining strategies as above, are also examples of methods for which 

the processes for given functions in some class, have nonempty domain of 

definition. Such methods are affine invariant if the implicit scaling matrix 

satisfies (4.24) for all functions in the domain of definition of the method. 
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4.4. USE OF GENERALIZED INVERSE 

In most examples of Newton-like methods given in section 4.2 '¥ 2 (x,H) 

is defined as the inverse of an approximation to J('!' 1 (x,H)). 1'herefore, the 

domain of definition of '¥ 2 , D('¥2), is restricted to those (x,H) for which 

this inverse exists. We can avoid problems with nonsingularity of 

J('!'1 (x,H)), or an approximation to it, by using the generalized inverse. We 

obtain the following Newton-like methods: 

4.23. DEFINI'rION. Let M be a Newton-like method. Suppose that, for all FE V, 
'¥ m M(F) satisfies 

(4. 32) 

(4. 33) (J 
+ 

(x,H))) , for (x,H) E D'!', 

Then Mis a generalized Newton method and M(F) defines a generalized Newton 

process. 

4.24. DEFINIT'ICN. Let, for F satisfying condition 1.5 and x E D, B(x) be the 

difference approximation given by (3.5) for hi E JR, hi# 0, hi depending on 

x and F (i=1, ••. ,n) • Let M be a Newton-like method. Suppose, for all F E V, 

'¥ = M(F) satisfies 

(4.34) D 

(4.35) (x,H) 

{ (x,H) j (x,H) E D('l\l, (x,H) E J:l, 

+ (B('!\(x,H))), for (x,H) E D'¥. 

(x,H)) exists}, 

Then Mis a generalized difference Newton method and M(F) defines a 

generalized di.fference Newton process. 

4.25. REMARK. We shall not define "generalized updating Newton methods". 

Use of the generalized inverse of update approximations to the jacobian 

is undesirable in our opinion, as we should not allow that the update 

approximation becomes singular for the foll.owing reasons: 

1. If Bis a singular approximation to J(y), then Bv = 0 for all v E ker(B), 

H = B+. Consider the two choi·ces of u(y,H) (see remark 3.17): u(y,H) ~ 

H(F(x)-F(y)) and u(y,B) = x-y • A(y,H)HF(y), for x • (y,H). 
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Then we see that u(y,H) " (ker(B))c and therefore (u(y,H))Tv = 0. So, it 

follows easily from (3.17) that U(u(y,H)) (B,y,x) is singular. In other 

words, once an update approximation, with u as above, is singular, then 

it remains singular after updating, independent of the function. This is 

highly undesirable as the sequence of approximations to a solution then 

remains in a subset of D which may not contain a solution. 

2. It is easy to avoid nonsingularity of U(u(y,H)) (B,y,x) if Bis nonsingular. 

If (x-y)u(y,H) # 0 and (F(x)-F(y))THTu(y,H) # 0 then U(u(y,H)) (B,y,x) is 

bounded and nonsingular. Therefore, performing these a-priori checks and 

choosing another method of approximation if unboundedness or singularity 

would occur, will avoid singularity, if the other method quarantees non

singularity. An obvious choice is using fixed approximation, if Bis non

singular and the updating approximation will yield a singular matrix. 

Theorems 4.19 and 4.20 and corollary 4.21 are to restrictive for gener

alized restrained Newton-like methods, as in those results we consider only 

points in the domain of definition of processes for which the jacobian of the 

function is nonsingular (cf. definition of Sin (4.31)). In fact, the defini

ti.on of the error in H with respect to J(x), for some x E D, as given in 

(4.25) is not appropriate if His obtained as the generalized inverse of 

some approximation to J (x) . Let H = (J (x) ) + :for some x E D and suppose J (x) 

is singular. 'rhen 

HJ(x) 

where the singular value decomposition is given by J(x) 

Hence, if r < n, then 

IIHJ(x) - rll L 

So, although B i.s the best approxi1nation possible, we obtain for the error 

according to (4.25) the value l. Nevertheless, the domain of definition of 

generalized Newton-like processes is not empty. This will be shown by the 

following results. 

4.26. LEMMA. Let x E D, F(x) I O and A E L(:!1,~n) be nonsingular and .let F 

satisfy condition L5. Define B E L(:ir{) : 



(4.36) II (J (x) -B) B +II 
' 

(4.37) [ABB+ F (x) ,AF (x) ]/II AF (x) 11 2 . 

Denote z(t) = x-tB+F(x) and let t 1 > O be such that z(t) ED for all 

t E [O,t1). Suppose that 

(4.38) 

2 
Then <j, (t) = IIAF (z (t)) II satisfies 

(4.39) <j,' (0) :S -2(;;; (x) (x)IIAIIII II )IIAF(x) II 2 • 
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Furthermore, if B is nonsingulaz· then ;;; (x) = 1 and equality may hold as in 

1.emma 4. 19. Moreover, there exist a function F, a point x and a nonsingular 

matrix A, such that for all e+ < 1/IIAIIIIA-111, there is a singular ma.tr.ix B 

sa-tisfy.ing the conditions with e+(x) = e+, such that equality holds in (4.39). 

PROOF'. 

<j,' (t) 
+ -2[AJ(z(t))B F(x), AF(z(t))], 

fort E [O, ). Hence 

:S -2(1;,(x) (x)IIAIIII II J IIAF(x) 11 2 • 

For 

F(x) 
'£ T (l,O)T, A (f; 1 ,-e:f;2) ' X = (f; 1 ,s 2> I 

and 
-1 

0 cl-e:) ) B 

0 0 

equality holds in (4.39). D 

4. 27. '£HEOREM. Let M be a generalized restrained Newton-like method. 

Suppose that for some nonsingular A E L (l1l ) and all F E V, 'I' = M (F) sat.is

.fies (4.~3) and (4.30). Define, for l;(x) given by (4.37), 
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(4.40) s {(x,H) [ (x,H) ED x L(]Rn), F(x) ¥ 0, H B+ for some 

II < 1; (xl}. 

PROOF. For (x,H) ES it follows from lemma 4.26 that the derivative of 
-- 2 
II AF {y) II at y = x is negative in the direct.ion -HF (x). As D is open and non-

empty, there exists a t 1 E (0,1]: x-tHF(x) ED fort E (0, ). '1'herefore 

(x,H) E D('¥ 1). D 

4.28. REMARK. Similar to corollary 4.21 there exists generalized restrained 

Newton-like methods M, such that for all nonsingular A E L (:JRn) and all 

F' E V for which F (x) f O for some x E D, 'l' = M (F) has a nonempty domain of 

definition. The generalized restrained Newton or difference Newton methods 

with restraining strategies as given in example 4.22 generate such processes 

with nonempty domains of definitions. 

Finally we state some specific results for generalized Newton-like 

methods. 

4.29. LEMMA. The generalized strict Newton method is not: affine invariant. 

'1'his follows from the following example. 

2 0.5 0 ( s1 

+ 1 ) ' ( ) ' ( ) . F(x) 
s2 

XO T 
\ 0 1 

2 
Then 

( 21;;1 

2:) 
( 

0.25 \ J(x) F(x0) ) 
0 1 2 

Hence 

( 
0 \ ( 

0 

) + 
J(xo) 

0 0 
) ' (J(xo)) 

0 0 

and 

( 
0.25 ) . (,J i\•(x ) 

0 
0 



However, 

( 
1;2 

'l'F (x) 1 

1;2 1;2 + 1 2 

and 

'rJ(xo) = ( 
1 0 

1 0 

With 

0.25 ( ) 
L25 

we obtain 

\ ( TJ(x) ' ' I 
I 

+ 1 

) I (TJ (x0 )) + ( 

0.75 

( 
0 

0.25) 

0 
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21;1 0 \ 
J 

2i; 21; ' . 1 2 

0.5 0.5 
) 

0 0 

□ 

4.30. REMARK. The reason that the strict generalized Newton method is not 

affine invariant is that projection (which is in fact induced i.f the gener

alized inverse of a singular jacobian is used, see subsection 1.3.4) and 

affine transformation do not commute. Of course, similar counterexamples 

can be constructed to prove that the strict generalized difference Newton 

method and the usual restrained versions of these methods are not affine 

invariant. 

4.31. THEOREM. Let F satisfy condition 1.5, x ED and F(x) i 0. Suppose 

(4. 41) [J (x) (,T (x) ) + F (x) , F (x) ] o. 

Then, the function f, defined by f (y) 

point at y = x. 

IIF(y)ll 2 for y ED, has a stationary 

Suppose the singular value decomposition of J(x) i.s given by 

(cf. (L18)) 

J (x) 

with r the rank of J(x). By 

It follows from (4.41) that 

lemma 1.26 we see that J(x) (J(x))+ 
T . u1F(x) ~, 0. Therefore, 
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f' (x) 2JT(x)F(x) 0. 

So f has a stationary point at y x. □ 

4.32. REMARK. It should be noted that [AJ(x) (J(x))+F(x), AF(x)] = 0, for 

arbitrary nonsingular A <" L (JR.n ) , does not necessarily imply that II AF (y) II 

or II F (y) II have a stationary point at y = x. This is also due to the fact 

that projection and affine transformation do not commute. 

4.33. REMARK. In section 4.3 we introduced the matrix A (see (4.23)) in order 

to be able to construct affine invariant. restrained Newton-like met.hods. 

It appears from lemma 4.29 and remark 4.30 that restrained Newton-like 

methods using the generalized inverse are, in general, not affine invariant.. 

Therefore, in such methods we have lost our motivation for choosing Aun

equal I. The choice A"" I will simplify lemma 4.26 and theorem 4.27 consider

ably, as in that case /i;(xJ in (4.37) is the ratio of the norm of the pro

jection of F(x) on the range of Band the norm of F(x) itself. 
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4.5. FINAL REMARKS 

In this chapter we have described most of the well-known Newton-like 

methods in a formal way. Of course, other methods may be designed by mixing 

the methods given here. For example, one may use fixed Newton or updating 

Newton methods in the last steps, if the approximate solution, obtained 

after some steps with a difference Newton method, is known to be close to a 

true solution. Furthermore, one may perform a fixed Newton step if updating 

is undefined in some step of an updating Newton method, or a step with gener-

alized inversion if classical. inversion is undefined. In fact one may create 

many different combinations. 

The most important examples of the strict Newton-like methods of sec

tion 4.2 are affine invariant. For restrained Newton-like methods it depends 

on the restraining strategy whether these methods are affine invariant. 

Strategies satisfying the monotonicity condition (4.23) with A chosen ap

propriately (satisfying (4,24)) will sometimes do. For example, the bisection 

and interpolation strategy described·in examples 4.22. If generalized .in

version is used then affine .invariancy can be lost for functions having a 

singular jacob.ian (approximation) at some iteration point. We think that 

affine invariancy .is a desirable property for Newton-like methods, as one 

may expect, at least theoretically, that such methods do not suffer from bad 

scaling of the function. On the other hand, one often has to deal with 

singular jacobian approximations in practice. Such matrices can be handled 

elegantly by use of the generalized .inverse. Therefore we shall not restrict 

attention to affine inva.riant methods. 
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CHAPTER 5 

CONVERGENCE Of NEWTON-llKE METHODS 

5.1. INTRODUCTION 

In this chapter we shall present convergence results for Newton-like 

methods as defined in section 4.1. Convergence results for iterative methods 

may be divided into three classes (cf. RHEINBOLDT [1974]). 

(i) Global convergence theorems. These theorems state existence of a 

unique solution in the domain of the function or at least in a large 

part of it. Moreover, one has convergence to this solution from an 

arbitrary starting point in this (part of the) domain. 

(ii) Semi-local convergence theorems. In these theorems existence and 

uniqueness of a solution in a neighbourhood of the starting point, 

as well as convergence to this solution, are guaranteed, provided some, 

usually stringent, conditions are satisfied at the starting point and 

in its neighbourhood. 

(iii) Local convergence theorems. Theorems in this class state that, assum-

* * ing a solution x exists, there is a neighb.ourhood U of x such that 

* for all starting points in u, the iterative process converges to x. 

Furthermore, results about the order of convergence of sequences 

generated by the process are considered to be local convergence re

sults. 

We shall treat these three classes of convergence results for Newton-like 

methods in the next three sections. 

Throughout this chapter we use the following notation. 
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5.1. NOTATION. Let F be given, (x,H) ED x L(:Rn) and A E L(JR.n). If F, x 

and .A satisfy condition 1.10, with w > 0, and F(x) ;e 0, then we denote 

-1 
(5 .1) S(xl = sup II (J(y)) F(x) II, 

yESF(x,A) 

(5.2) a: (x) wS (x), 

(5. 3) K (x) II AJ (x) 1111 (J (x)) -lF (x) II /II AF' (x) II, 

(5.4) e(x) IIHJ(x) - rll, 

(5.5) v0 (x) l:!K (x) ( 1+e (x) ) , 

(5.6) v 1 (x) (1+2e(x)+2(e(x)) 2 )/(1+e(x)), 

(5.7) v2 (x) = (1-e (x) K (x) J /v0 (x), 

(5.8) c(x) (t) = 1 + v0 (x)t((o:(x)t) 2 + v1 (x)o:(x)t - v2 (x) ), 

(5.9) 1;(x) (--v 1 (x) + ~v1 (x)) 2+4v 2 (x;) /(2o:(x)), 

(5.10) P (x) (-v1 (x) + ~v1 (x)) 2+3v 2 (x)') / (3a: (x)). 

For simplicity, we omit the dependence on H (e.g. in e(x)), since H always 

appears together with x, as an approximation to (J(x))- 1 • If (xk,Hk) E: 

D x L ( ]Rn ) for some k, then we denote for short: 

ek = e (xk) , Sk = S (xk) , ctk = ct (xk) , Kk = K (xk) , 

,k = vi (xk) (i=0,1,2), ck= c(xk), 1;k = i:;(xk), pk p(xk), 

Jk ~, J(xk)' Fk = F(xk). 

5.2. REMARK. S(x) is finite by the existence and continuity of (J(y))-l 

(y E: SF(x,A)) and the compactness of S (x,A). As II (J(x))·-l11 is bounded 
1 F 

and IIAF(x)II :s; IIAJ(x)ll11 (.:r(x))- F(x)ll we have 

--· 1 
1 :S K (x) :S II AcT (x) II II (AJ (x) ) II < 00 



For every x € D, c(x) (t) is a cubic function oft. If v2 (x) > 0 then 1,;(x) 

is the real positive zero of the equation c(x)(t) - 1 = O, and µ(x) is the 

point between O and 1,;(x) where c(x) (t) - 1 attains its minimum. 
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The following condition wll be frequently used in this chapter and its 

notations will be used throughout. 

5.3. CONDITION. Let.A E L(:JRn), W define a Newton-like process for F and 

(x0 ,H0) € o,. Suppose 

(i) 

(ii) 

(iii} 

(iv) 

F, x0 and A satisfy condition 1.10 with w > 0, 

D(W 1) ::, { (x,H) J (x,H) E SF(x0 ,A) x L(:JRn}, 

3t1 E (0,1] sucf-i that Vt€ (O,t1)1z-... x-tHF(x?'i£D, flAF(z)ll:$11-AF(x)U}. 

D (W 2 ) ::, { (x,H) I (x,H) E D x L (:JRn), W 1 (x,H) E SF (x0 ,A)}, 
N 

W generates for starting point (x0 ,H0) a sequence {{¾•¾)}k=O' where 

N is the largest integer such that (xk'¾l E DW, for all k ~ N (note 

that usually N = oo), 

(v) F(¾) # 0 for all k $ N, 

(vi) there exists a constant 8 > 1 such that for all k :$ N: 

In the next sections we give results about the convergence of Newton

like processes with starting points satisfying condition 5.3. 
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5.2. GLOBAL CONVERGENCE 

5.2.1. Theoretical results 

The results given in this section are generalizations of results 

given by DEUFLHARD [1974a, 1974b] about Newton methods. 

The following theorem provides the basis for the global convergence 

results. 

5.4. THEOREM. Let be given F, (x,H) E D x L(JR n) and A E L(JR n). Suppose 

F(x) f O and F,x and A satisfy condition 1.10 with w > 0. Moreover, suppose 

that there exists a constant 8 > 1 such that 

(5 .11) 8e(x) < 1/K(x). 

Denote fort E [0,1] z(t) x -· tHF (x). Then, for all t satisfying 

(5 .12) 0 st s min(l,~(x)), 

we have z (t) E S (x,A) and 
F 

(5.13) IIAF(z(t))II Sc(x) (t)IIAF(x)II. 

5.5. REMARK. From the definition of c(x) (t) (see (5.8)) we see that 

C (x) (0) -2(1-K(x)e(x)). 

Comparing this with (4.29) in lemma 4.19 we see that the value of the deriv

ative of (c(x) (t)) 2 at r = O equals the upper bound on the derivative of 

IIAF(z(t))ll 2 /IIAF(x)l1 2 • Moreover, this bound is sharp according to lemma 4.19. 

Thus, theorem 5.4 states that IIAF(z(t))II/IIAF(x)II can be bounded above by a 

cubic function c(x) (t) which is equal to 1 fort= 0 and has "the best pos

sible" derivative at t = O. Therefore, (5.13) gives a good upper bound for 

small e(x) and t. 

PROOF of theorem 5.4. 

For short we denote S (x,A). By theorem 2.8 there exists a unique con-

tinuous function p: [0,1] ➔ S satisfying, fort E [0,1], 



(5.14) 

and 

(5 .15) F(p(t)) 

p(O) = X 

(1-t) (x). 

Define, fort E [0,1], s E [0,1]: 

(5.16) 

and 

(5 .17) 

w(t,s) = p(t) + s(z(t) - p(t)) 

o (t) sup{sls E [0,1]; w(t,s') ES for alls' E [O,s]}. 
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For all t E [0,1], we have o(t) I- O. This follows fort E (0,1] from (5.15) 

and the continuity of F. If t = 0 then w(O,s) = x for alls E [0,1] and 

therefore 6 (0) ,~ 1. Now define 

(5 .18) s0 = {xlx=w(t,s), t E [0,1], s E [O,o(t)]}. 

By (5.17) w{t,s) ES for all t E [0,1] ands E [O,o(t)L Therefore, the com

pactness of s yields w(t,o(t)l ES for all t E [0,1 and hence s0 cs. 

Now choose t E [0,1]. As J(x) is continuous on s0 we can apply the mean 

value theorem for s E (0,6(t)] yielding: 

s 

F(w(t,s)) F(p(t)) + ! ( f J(w(t,s'))ds')(w(t,s)- p(t)). 

0 

Using (5.15) and (5.16) yields 

s 

AF(w(t,s)) = (1-t)AF(x)+AJ(x)( f (J(x)) 

0 

(1-t)AF(x) + sAJ(x) (w(t,s)-p(t)) 

s 

(w(t,s'))ds')(w(t,s)-p(t)) 

+ A..1(x) f ((J(x))- (w(t,s')) - I) (w(t,s) - p(t))ds'. 

0 

Hence, taking norms on both sides and using the triangle inequality gives 

(5.19) 

IIAF(w(t,s))II ~ (1-t)IIAF(x)II + IIAJ(x)llllw(t,sl-p(t)II 

s 

+ fiAJ(x) II f II ( (J(xl J 

0 

(w(t,s'))-I) (w(t,s)-p(t))llds'. 
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We can use condition 1.10 to bound the integrand, so that for s E (O,o(t)J: 

(5.20) IIAF(w(t,s))II s (1-t)IIAF(x)II + 

s 

i1AJ(x)ll(1 + ~ f llw(t,s')-xllds') llw(t,s)-p(t)II. 

0 

We shall prove that for alls E (O,o(t)]: 

(5. 21) 

and 

(5.22) 

-1 
llw(t,s)-p(t)U s ts(l:ia(x)t+e(x))li(J(x)) F(x)II 

s 

f Uw(t,s') - xDds' s sf3(x) (l+e(x))t. 

0 

Then, using s S 1, it follows easily from (5.20) that 

(5.23) IIAF(w(t,s))II s c(x)(t)HAF(x)II. 

a. PROOF of (5.21). 

Condition 1.10 and (5.14) yield fort E [0,1]: 

(5.24) -1 -1 I llp'(t)-p'(O)II s ll{(J{p(t))) J(p(O))-I)(J(p(O))) F(x)I 

s wllp(t)-p(O)U 11 (J(x) )-lF(x) II. 

Use of lemma 1.14 and (5.1) gives 

(5.25) llp(t)-p(O)H s tf3(x). 

Hence 

lip• (t)-p' (O)II s a(x)tH (J(x))- 1F(x)II. 

So lemma 1.15 can be applied to function p(t) yielding 

(5.26) llp(t)-p(O)-tp' (O)II s l:ia(x)II (J(x))-lF(x)llt2 

for all t E [0,1]. Fors E (O,o(t)] we have 

(5.27) w(t,s)-p(t) 
''-..1 

-s (p (t) -p (0)-tp' (0) ) +ts ( (J (x)) - -H)F (x). 

Tnem (5.21) follows from (5.27) by using (5.26) and (5.4). 
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b. PROOF of (5.22). 

By the definition of w (cf. (5.16)) we have 

w(t,s)-x 
-1 -1 

(1-s) (p(t)··p(O))-st(J(x)l F(x)-st(H-(J(x)) n~(x). 

Use of (5.25), (5.1) and (5.4) yields for s E (O,o(t)]: 

llw(t,s)-xll ~ B(x)(l+se(x))t s S(x)(i+e(x) t. 

So that (5.22) follows easily. 

Hence (5.23) holds fort E [0,1] ands E [O,o(t)]. As ,, 2 (x) is positive 

because of (5.11), l,;(x) is the positive zero of the equation c(x) (t)-1 = 0. 

So we only have to prove yet, that t5(t) 1 fort E [O,min(1,l,;(x))], so 

that we can chooses= 1 in (5.23), which then reduces to (5.13). Therefore, 

suppose 8 

by (5.23) 

< 1 for some t* E (0,1) with t* < l,;(x). Then, c(x) 

IIAF(w(t*,s))II < IIAF(x)II 

< 1 and 

Consequently, w ,o(t*)) E int(S). By theorem 2.2 and condition 1.8, Fis a 

local homeomorphism at each point of int(S). Hence, there exists an open 

nei.ghbourhood U (w (t *, o (t·k)), 6) (6 ~ 1) such that II AF (z) II < II AF (x) II (thus 

z ES), for all z E U(w(t*,o<t*)) ,6). Therefore w(t*,s) E int(S) for all 

s < 8 

o (t) ~ 

+il, but this contradicts the definition of IS (t) in (5.17). Hence 

for all t E (0, 1) with t. < 1; (x). As w(t, 1) E S for O < t.< min(/,; (x) ,1) 

and S is compact, we have o (t) = 1 for t E [O ,min(l., 1; (x)) J. D 

5.6. REMARK, Condition LlO is, in fact, too strong, This condition states 

that the Lipschitz condition 

II (J (z)) 

has to be satisfied for all z E (x,A) and ally ED. As appears from 

(5.19) and (5.24) we need the condition that an w(x) > 0 exists such that 

(5. 28) 

and 

(5.29) 

II ((J(x))- 1J(w(t,s)) - I) (z(t)-p(t))II ~ w(x)llx-w(t,s)llllz(t)-p(t)II 

II ( (J(p(t)) )- (x) - I) (J(x)) (x)U ~ ~(x)llp(t)-xllll(J(x)) (x) II. 
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In fact an w(x) ? 0 has to exist such that 

li((J(y))- 1J(z) - I)ull s: w(x)lly-zllllull, 

-1 
with y,z E s 0 (see (5.18)) and u = (J(x)) F(x) or u = x - tHF(x) ·· p(tl. 

For clarity of exposition we use condition 1.10. However, as will be shown 

in chapter 6, the formulas (5.28) and (5.29) are of practical importance in 

computing an estimate of the value of w(x), which in turn is used to esti

mate a(x), ~(x) etc. 

5. 7. 'I'HEOREM. Let the conditions of" theorem 5. 4 be satisf"ied and, moreover, 

let T satisfy 

(5.30) 0 < T 
0-1 

5 min(l, 4a(x) (1+0K(x)) ) · 

Denote fort E [0,1] 

t with 

z(tl = x-tHF(x). Then TS: min(1,~(x)-T), and Ear all 

(5. 31) 

we have z(t) E (x,A) and 

(5.32) 
2 

IIAF(z(t))II s: (1 - ~ (1-1/8))11AF(x)II. 

PROOF. 

1. We first prove that -r s: min (1, 1;: (x)-1:). Therefore observe that K (x) ? 1 

(remark 5.2) and by (5.11) 

2 (0-1) $ 

1+0K (x) 
2 

K(X) 

Furthermore we use the inequality 

-b + /b2+x' ? -~ 
2b+vx' 

so as to get 

for b,x > 0, 



As v1 (x) is increasing as a function of e(x) on the interval [0,1] we 

have v1 (x) $ 5/2. Hence 

So 

(5. 33) 
v2(x) e-1 

i;; (x) ?: 4ot (x) ?: 2ot (x) (1+0K (x)) 

Hence, by (5.30), i;(x)-T ?: T and T $ min(1,1;(x)-T). 

2. To prove (5.32) we show that 

2 
(5.34) c(x)(t) $ (l -¾-- (1-1/8)), 

so that application of theorem 5.4 yields the result. 

Let I; "" min ( 1, r; (x)-,) and define 

'I'hen q(I; (x)) = 0 and q(t) is increasing and negative for 

0 st< min(1,z;(x)). Therefore, fort E [T,~], 

(5. 35) 

We shall prove 

(5.36) 

so that (5.34) follows from (5.35) by using (5.36) and 

= (1-eK(X))?: (1-1/6)(by (5,11)). 

PROOF of (5.36). 

Observe that, with/'; and using q ( r,(x)) 0, 
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(5. 37) a (x) 6. (a (x) 6.-cr). 

We distinguish between two cases. 

a. ~ < 1. 

b. 

Then 

thus 

Furthermore, from 1; (x) 

of 1; (x): 

-
1;+T $ 2, we obtain from the definition 

Using these inequalities to bound the right hand side of (5.37) 

q(~) 
T 2 2 

$ -16 (cr --(v 1 (x)) ) 

-So (5.36) is proven for I; < L 

I; L 

The definition of l;(x) yields 

So 

a (x) 6, 

Consequently 

(x) +cr) • 

Since t/ (1+t) is isotone for t E [0, 00). 

We also have 

Using these inequalities to bound the right hand side of (5.37) yields 



75 

- T 2 2 
q (,;;) ,,; 4 (1 +T) ( ( v 1 ( x) ) -cr ) -V (x)-T-

2 1+T 

So 

which proves (5.36) for 1; "" 1. 

Therefore (5.36) holds, which completes the proof of the theorem. 0 

Using theorem 5.7 we can give the following global convergence theorem 

for Newton-like methods. 

5.8. THEOREM. Suppose that condition 5. 3 is satisfied. Let T b.e a constant 

satisfying for all k,,; N 

(5.38) 

Suppose that I satisfies, for all k,,; N, 

(5.39) 

Then (xk,Hk) is defined fork= 0,1,2, ••. (N = 00), {xk} c SF ,A) and {xk} 

* * converges to a un.ique point x E SF(it0 ,A) w.ith F(x) = 0. Moreover, there 

ex.ists an integer K ~ 0 such that A (¾,Hk) = 1 sat.isfies (5.39) for a.11 k ~ K. 

PROOF. Suppose is defined for some k and¾ E 

fork= 0). Then SF(¾,A) c SF(x0 ,A). Moreover, SF(xk,A) is compact by 

definition and the compactness of SF(x0 ,A). Hence F,xk and A satisfy con

dition .10 and we can apply theorem 5.7 yielding 

(5.40) 

'fort such that T ::'. t,,; min(l,l;;k-T). Therefore, by condition 5.3 (ii), 

(xk,Hk) E D ) . By the choice of A Hk) (cf. (5.39)) we conclude that 

(5.40) holds for t = A(¾,Hk), so that xk+l E {xk,A). Use of conditlon 

5.3(iii) yields (Y'k,Hk) ED . Therefore, (¾+i'Hk+i) is defined and 

xk+l E (x0 ,A). So, by induction (xk,Hk) is well-defined and "SF(x0 ,AJ 

for all k '" 0,1,2, .•• (N = 00), Substituting t. = ;\(xk,Hk) in (5.40) yields 
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(5.41) IIAF II 
k+l 

Therefore, as T and 8 are independent of k, 

lim II AF (xk) II O. 
k➔oo 

By the compactness of SF(x0 ,A) there exists a subsequence of which 
* * * converges to a limit x say, with x E SF(x0 ,A) and F(x) = 0. Application 

* * of theorem 2.8 proves the uniqueness of x. Therefore, lim xk = x 
k➔oo . 

Finally, to prove the last statement note that c\. and Kk are bounded 

for all k. Moreover, as {xk} converges to a solution of F (x) "'· 0 we have 

(5.42) lim ak s: w lim Sk 
k➔oo k➔oo 

0. 

Hence, there is a K? 0 such that for all k? K 

as the expression between the parentheses is bounded away from zero (see 

inequalities at start of proof of theorem 5.7 and note that Kk? 1 and Kk 

is bounded for all k). Hence, for all k? K, 1;k-,? 1 and therefore 

A(xk,~l = 1 satisfies (5.39). D 

5.9. REMARK. The cubic function c(x) (t) achieves its minimum for t=µ(x) on 

[0,1;(x)]. Therefore, by (5.13) we see that the choice 

gives the best upper bound on the ratio IIAF(xk+l)II/IIAF(~)II. 

Such a choice of A(x,H) yields a proper iterative process as is shown 

by the following theorem 

5.10. '£HEOREM. Suppose that condition 5.3 (i), (i.ii), (iv), (v) and (vi) 

are satisfied. Let '1\ be such that A (x,H) = min(1,µ (x)), for (x,H) ED x L(JRn). 

Then (xk ,Hk) is def'ined for k = 0, 1, 2,... (N=00 ) , {xk} c SF (x0 ,A) and {xk} 

converges to a unique point,/ E SF(x0 ,A) with F(x*) = 0. Moreover, there 

exists an integer K 2c Osuch that A(~,1,<l = 1, for all k 2 K. 
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PROOE'. If (x,H) E: s (xO,A) x L(JR.n) and there exists at E (0,1] such that 
--- F 
z = x-tHF(x) E: D and IIAE'(z)II s llAF(x)ll,then:>-.(x,H) ""min(l,µ(x)) is well-

defined and hence (x,H) E D('!\l. Therefore, condition 5.3 (ii) is satisfied 

for this choice of A. 

From the definition of z;k and µk we obtain forks N 

Using (5.33) yields 

As cxk and Kk are bounded fork :C: N by ex and K say, we have 

2: 0-1 
6a(1+8i<) 

Therefore, the choice 

T = min(l, B-l ) 
6tt(1+8i<) 

satisfies (5.38) and (5.39) for ).(xk,Hk) = µk. So we can apply theorem 5.8 

yielding well-definedness of {(xk,Hk)} and convergence of {xk} to a unique 

solution in SF(xO,A). 'rhe definition of µk and (5.42) yields the last state

ment: of the theorem. D 

5.11. REMARK. ( 5. 41.) shows that { II Al\11 } converges at least linearly. More

over, in each step we have a decrease with a factor which is less than or 
,2 1 

equal to (1 - 4 (1-1/8)). If ek (the error in Hk as an approximation to - ) 

is relatively large so that we find a constant 8 close to 1 with 

s 1/ (k=O,1, •.. ), then we can only quarantee a small decrease in 

II AF (x) II, However, if ek ,., 0 (Newton method), then we can choose 0 arbitrar

ily large, so that the decreasing factor becomes 1 - , 2/4, with T satisfying 

5,12. REMARK. Let M be a Newton-like method. Suppose that for all FE V, 
'¥ = M(F) satisfies condition 5.3 with A(x,H) "'min(1,JJ(x)), Moreover, sup

pose A in condition !L3 satisfies (4.24) and '¥ 2 satisfies (4,8). Then M is 

affine invarianL This follows from the affine invariancy of the quantities 
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given in notation 5.1 under the conditions. Note that, if A does not satisfy 

(4.24), then the quantities K(x) and S(x) are not invariant under affine 

transformation of the function. 

5.2.2. Applications 

In this subsection we shall give applications o:E the convergence results 

from the last subsection. In particular corollaries of theorem 5.8 for the 

methods given in section 4.2 shall be given. 

A. Newton methods 

5.13. COROLLARY. Let, for given F, 'l' define a Newton process. Suppose condi

tion 5.3 (i), (ii), (iv) and (v) is sat.isfied. Let i: be a constant satisfying 

for all k o; N 

(5.43) 0 < 1 

Suppose H0 
-1 

(J(x0)) and o/ satisfies for all ks N 

(5.44) 

'I'hen is defined fork= 0,1,2, .•• (N=00 ), {xk} c (x0 ,A) and {xk} 

* * converges to a un.ique point x E SF' (x0 ,A) with F (x ) = 0. Moreover, there 

exists an integer K 2 0 such that A (~,Hk) = 1 satisfies (5.44) for all k 2 K. 

PROOF. Condition 5.3 (iii) is satisfied by a Newton process as J(x) is non

singular for x E SF(x0 ,A). Furthermore, the choice of 'l'2 and H0 yields 

ek = 0 :forks N. Hence condition 5.3 (vi) is satisfied for all 8, 1 < 8 < 00 

Therefore we can apply theorem 5.8 for arbitrary large 8. As 

and for ek 0: 

the result follows. D 
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Corollary 5.13 is given by DEUFLHAR!) [1974b]. 

B. Difference Newton methods 

5.14. COROLLARY. Let, for given F, 'f' define a difference Newton process satis

:"ying (4.23) for nonsingular A E L(JRn). Let x 0 E. D and F,x0 and A satisfy 

condition 1. 8. Suppose that F and z satisfy condition 1. 7 on D, for all 

z E SF(x0 ,A). Furthermore, let condition 5.3 (ii), (iv) and (v) be satisfied. 

Define, for = hi(x) (i=l, ... ,n) (see def.inition 4.8) 

( 
n 2)1, 

(5.45) lh(xJI =, l (h,(x)) • 
j=1 J 

Suppose that u (x, I h (x) j) c D for all x E. SF (x0 ,A) and that for given e > 1 

and all XE SF(xo,A) 

(5.46) 2 
jh(x) I < ----w(x) (1+0K(x)) 

-1 
Then B (xk) is nonsingular for k s N. Let H0 = (B (x0 )) and T .be a constant 

satisfying (5. 38) fo:r a.21. k s N. Define, for k s N, with erk I, 

(5.47) 
,k ,k 

and c(x) (t) and ·~(x) simi.lar to c(x) (t) and z;(x) (cf (5.8) and (5.9)) with 

,k replaced by ,k (i=0,1,2). Suppose 'l' satisfies for all ks N 

(5.48) 

Then, the same conclusions as in corollary 5.13 with (5.44) replaced by 

(5.48) hcld. 

PROOF.', Applying theorem 3. 5 for x E SF (x0 ,A) and U 

that B (x) .i.s well···defined, nonsingular and 

(5.49) e(x) 
:$ w (x) h (x) 

2-w(x) h(x) 

U(x,jh(x) j) yields 

Note that this holds for o s jh(x) !, as follows from the proof of theorem 

3.4, and that w(x) lh(x) j < 2. Therefore condition 5.3 (iii) is satisfied. 

Furthermore, as (4.23) is satisfied, ,A) forks N, so that use 
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of (5.46) in (5.49) yields condition 5.3 (vi). As the conditions on F, x0 

and A are stronger than condition 5.3 (i), condition 5.3 is satisfied and 

theorem 5.8 can be applied. Now observe that l;;k is antitone with respect to 

ek and that v. k (i=0,1,2) is obtained by replacing in the formulas for v. k 
i, i, 

(i=0,1,2) the upper bound crk/(2-crk) for ek. Therefore, theorem 5.8 still 

holds with replacing vi,k' ck and 1,;k by vi,k' c\ (t) and , respectively 

(i=0,1,2). This completes the proof. D 

C. Updating Newton Methods 

Application of theorem 5.8 to updating methods runs into the following 

two problems. 

L The definition of D('¥ 2) in definition 4.11 is such that condition 5.3 

(ii.i) is not satisfied. 

2. Using theorem 3.16 to bound the error ek for some k, the given upper bound 

depends on ek_ 1 . Moreover, the upper bound on ek is greater or equal to 

the upper bound on 1 . Therefore, doing so in each iteration step the 

upper bound on ek increases in each step and will usually become larger 

than 1/K for some k. Thus condition 5.3 (vi) cannot hold and application 
k 

of theorem 5.8 is not possible. In fact, as condition 5.3 (vi) can not be 

proven with the results given so far, we cannot guarantee that a step 

length factor can be found such that the level function decreases at each 

step so that the algorithm may terminate after finitely many steps without 

finding a solution. 

Nevertheless, we can imagine a useful appli.cation of approximation by up

dating based on theorems 3.16 and 5.8. 

5.15. COROLLARY. Let 'fl define a Newton-like process for F and suppose that 

condition 5.3 is satisfied. Define, for some .fixed 8 > 1, a Newton-like 

p.rocess for F by 'l' so that, for (x,H) E D'fl, 

'l' l (x,H) 

(5. 50) 

'fl l (x,H), 

singular and 

if ('¥ 1 (x,H)-x)Tu cf 0, His non

~<ii\(x,H)) < 1/(GK(il\(x,H))), 

l V (ul(H ,x, r 1 (x,Ull , 

'l' 2 (x,H), otherwise, 



where 

(5. 51 l 

II H (F (y)-F (x)) II llull 

(F (y) -F (x)) I 
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lly--xll llull 

and u is some vector (see theorem 3 .16 and remark 3 .17). I.f there exists a 

constant, such that for al.I k, for which (~,Hk) is defined by'¥, (5.38) 

and (5.39) are satisfied, then the conclusions of theorem 5.8 hold for'¥. 

PROOF. CJ.early, condition 5.3 (.i), (ii), (iv) and (v) hold by assumption. 

By the conditions for use of .inverse-updating and the condition on'¥ it 

follows easily that condition 5.3 (iii) is satisfied. Moreover, the condition 

on the error in the update approximations assures that (vi) is also satis

fied if inverse-updating is used, as by theorem 3.16 e('¥ 1 (x,H)) i.s an upper 

bound on e('¥ 1 (x,H)). 

5.16. REMARK. In corollary 5 .15 it is stated that one can modify, for in·· 

stance, Newton methods or difference Newton methods which satisfy appropriate 

conditions, in such a way that in certain .iteration steps approximation by 

inverse-updating is used. If the original Newton method yields global con

vergent processes based on theorem 5.8 then the modified method still yields 

global convergence under similar conditions. Note that the condition on 

e (x,H)) guarantees that --HF (x) is a descent direction for the level func··· 

tion IIAF(x)ll 2 at x. Of course, updating can be used instead of inverse-
···1 -1 

updating by replacing V(u) (H,x, (x,H)) by (U(u) (H ,x, 'l' 1 (x,H))) in (5.50). 

D. Fixed Newton methods 

As for updating methods, we cannot guarantee that condition 5.3 (vi) 

is satisfied if we use fixed approximation i.n every step of a Newton-like 

process. However, we can imagine a similar application of fixed approximation 

as given i.n corollary 5.15 for inverse-·update approximation. 

5. 1 7. COROLLARY. Let '¥ defi.ne a Ner.rton-1.ike process for F and suppose con

di ti.on S. 3 is satisfied. Define, for some fixed 8 > 1 a Newton-like process 

for F by'¥ sot.hat for (x,H) E 
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'l' l (x,H) 

(5.52) 

'l' 1 (x,H), 

j H, if e (x) +w (x) (1+e (x)) II iji 1 (x,H)-xll 

1Y2 (x,H) otherwise. 

< 1/(0K(x)) 

(cf. theorem 3.19). If there exists a constant, such that for all k, for 

which (xk,Hk) is defined by 'l', (5.38) and (5.39) are satisfied, then the 

conclusions of theorem 5.8 hold for 'l'. 

PROOF'. Condition 5.3 (i), (ii), (iv) and (v) hold by assumption and 5.3 

(iii) is obvious. By theorem 3.19 and the condition for choosing 'l'2 (x,H) H, 

it is easily verified that condition 5.3 (vi) is also satisfied. Hence 

theorem 5.8 can be applied to'¥. D 

E. Use of generalized inverse 

Under the conditions of theorem 5.8 we know that J(x) is nonsingular 

for x € D. Therefore, (J(x))+ = (J(x))-l for x ED and the generalized 

Newton method generates the same processes as the Newton method for the 

same function. Hence corollary 5.13 is applicable. If we consider the gener

alized difference Newton method, then the conditions of corollary 5.14 also 

quarantee nonsingularity of B(~). So under these conditions the generalized 

difference Newton method generates identical processes as the difference 

Newton method. 

Obviously we are particularly interested in application of the gener

alized inverse if singular jacobian matrices occur in SF(:x:0 ,A). Let s0 de

note the set of points in D for which the jacobian matrix is singular (usu-· 

ally s 0 is an (n-1)-dimensional manifold). Suppose s 0 n SP(x0 ,A) ;f 0. Then 

the question is whether application of the generalized inverse will yield 

an iterate 

true then corollary 5. l.3· can be applied subsequently if the Newton-like 

method satisfies the conditions. However, with the results given in foregoing 

chapters (e.g. lemma 4.26) we can only prove that IIAF(x0 ) II > IIAF(x1) II > ••• > 

> IIAF II . In fact, the sequence } may converge to a point x with 



From optimization theory we know that it might be useful to do a so

called "steepest descent" iteration step, which in our case with IIF(xJll 2 

(A= I) to be optimized, turns out to be an iteration step of the form 
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with ;\k > 0 a scalar to be chosen in some specific way. It is interesting 

to note that both directions of search (J(xk))TF(xk) and (J(xk))+F(¾) lie 

in the same subspace orthogonal to ker(J(x )) • This fol.lows easily by using 
k 

the singular value decomposition .of J{¾) = u1i::rvi (cf. L18)l, Then 

In fact, if all nonzero singular values are equal then these directions are 

the same (not the lengths) . 

In BRANIN [1972] another strategy is given for handling singular 

jacobian matrices. This strategy uses an iteration step of the form 

where adj (J (xk)) is the adjoint of J (¾) (which satisfies J (¾) • adj (J l = 

= det(J(¾)) . I). Again, this yields a direction in the same subspace, or

thogonal to ker (J. (xk)) . An important point in this strategy is the choice 

of the sign, which is changed at a singularity. A drawback of the method of 

Branin is the fact that it only works well if rank(J(¾)) :2'. n-1 as his com

putation of the adjoint is only defined in this case. An interesting question 

to be asked may be which relation exists between the method with use of 

generalized inverse and Branin's method. 
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5.3. SEMI-LOCAL CONVERGENCE 

In tl1is section we present a semi-local convergence result for strict 

Newton-like methods. It is a so-called Kantorovich-type result. A similar 

theorem, restricted to the strict Newton method is given in KANrOROVICH & 

AKILOW [1964, section XVIII] and ORTEGA & RHEINBOLDT [1970, section 12.6.2]. 

In the latter a generalization to a certain class of strict Newton-like 

methods is also given, which is based on condition 1.6. The class of Newton

like methods considered in their theorem satisfies, for some B: ]Rn + L (J!l.n), 

where for x0 ED and constants c 1 , c 2 and c 3 : 

IIB(x) - B(x0 )11 s c 111x-x011, 

IIJ(x) - B(x) 11 s c 2+c311x-x0 11, 

for all x in a convex set in D, So '¥2 (x,H) does not depend on Hand the 

conditions are not affine invariant. DEUFLHARD & HEINDL [1979] give a 

Kantorovich type theorem for a class of strict Newton-like methods which is 

based on the rather unnatural Lipschitz condition (with (x0 ,a0 ) starting 

point for the iterative process): 

(5. 53) II H0 (J (x) - J (y) J II s wll x-yll , 

for some constant wand x,y in some convex set in D. This condition is 

affine invariant, only if H0 is chosen dependent on F such that H0 (TF') 
-1 

HO (F) T for arbitrary nonsingular T E L (lRn) . The theorem given here uses 

the affine invariant Lipschitz. condition 1.7. All these theorems are prov

en by finding a nonlinear majorizing sequence satisfying the condit:Lons of 

lemma 1.22. 

5.18. THEOREM. Let F and (xo,Ho) ED x L(JRn) be given. Suppose F and XO 

sat.isfy condition L 7 with w(xO) ,6 O on some convex set DO c D with x O E n0 • 

Let M be a strict Newton-like met.hod and F E V. Suppose that '¥ = M (F) 

satisfies 



N 
and, for starting point (x0 ,H0), '¥ generates a sequence {(xk,Hk)}k=o· 

Suppose F(xk) 'f' 0 (k SN) and there exists a constant e < -i+h such that 

ek s e (ks N). Define 

l+e 1-2e-e 2 
(5.54) X1 "'1-e' X2 1-e 

(5. 55) i\ IIH0F II, w(x0)80X1• 
- 1 (x -~} Cl = ?;; 

w(xo) .o 2 2 , 

- 2 
Moreover, suppose U(x0 ,~) c D0 and a< ½x2 . Then 

L (xk,Hk) exists for all k (N = 00 ) and {~} c U ,~), 

2. J(xk) is nonsingular for all k 0,1,2, ..• , 

* * 3. [xk} converges to a point x E U(x0 ,i;;) with F(x) = O. 

4. Let, in addition, F and x satisfy condition 1.7 on D0 for all x E D0 , 

with u.l (x) < w for some constant w and denote 

Then, a< 

u 

2 ( 1+e0 ) wS 0 

1-eo 
r; 

(1-eo) 

2 (l+eo) w 

* and l.\ c n0 implies that x is unique in D0 n U(x0 ,r;) :::i 

Notice that x1 is isotone and x2 is antitone with respect toe on 

[O, -i+h) and 

(5.56) for e E [O, -·1+h). 

- 2 - -By the assumption a< "lX2 we see that i;; is real, I; 2-: O. Consider U(x0 ,1;;). 

Then for all x (, U(:x0 ,~) we have, with J 0 = ,J(x0), 

-(x) - 1H s w011x0-xll < w0t , 
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Use of lemma 1.13 now yields that J(x) is nonsingular for all 

x E U(x0 ,~) and 

(5. 57) 

As Sa a/(wox1) and elementary calculation shows that a< X2-~ for 
2 - - - -

0 <a< ½x 2 we conclude that s0 < I;;. Hence llxcx0 11 = s0 <(;,so that 

x 1 E U(x0 ,~). Then Hl. is defined due to the condition on D('¥2). 

We shall prove by induction that (¾:, Hk) is defined for all k = 0, 1, 2, ... 

(N = 00 ) and¾: E U(x0 ,~). Therefore assume that, for certain integer K, 

(xk,Hk) is defined and xk E U(x0 ,~), for all ks K. Then 

(5. 58) 

Using (5.57) and the upper bound one we obtain 

(5. 59) IIH1 J II 
< 0 

1 l+e 
s IIHkJkll llJ; J 0 11 s "f=wT~-:-:ilf 

0 0 k 

Furthermore, we can bound 

So, application of lemma 1.16 yields 

s l,w II x -x II 2 + ( 1+w II x. -x II )-e- II x -x II • 
0 k k-1 0 k-1 0 1-e k k-1 

Therefore, with use of (5.59) in (5.58) we obtain 

IIH F II 
k k 

With the notation 

s l+e (½w II x. -x II+~( 1+w II x -x II)) II x -x. 111 • 
~ . 0 k k-1 1-e O k-1 0 k K-

O O k 

(l+e) 

we have for all ks K: 



(5. 60) 

Now define (cf. lemma 1.23) the sequence {tk} by t 0 
k = 1,2,~~,,, 
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So and, for 

Then {tk} satisfies the assumption of lemma 1.23. Thus {tk} is increasing, 

unless Fk = O, and lim tk = r;. Moreover, by (5.60) we have for all k < K: 
k-+oo 

(5.61) 

Hence 

So 

II X -x_ II = II H F II :S: 
k+1 k k k 

K K 
Ix-HF -x tt s I le FI s It -t st -t < G. 

K K K O k,;'.O k k k=O k+l k K+l 0 

- HF is defined and belongs to U(x0 ,~) and, hence, 
K K 

is defined. Therefore (xk,Hk) is defined for all k = 0, 1,2,.,. (N = 00 ) 

and E U (x0 , ~) . Moreover ( 5. 61) holds for all k and lim tk "" ~. ( { tk} is 

a majorizing sequence for {xk}). Application of lemma k-+oo 1.22 yields con

vergence of {xk} to some x* E U(x0 ,°G). By the nonsingularity of Hk we have 

llp II s II 
k 

(x ···x ) II s 
k+1 k 

* * 

IIJ llllx 1-x II. 
k k+ k 

So, convergence of to x implies F(x) = 0, which yields the third 

statement of the theorem. 

To prove the last statement, consider the fixed Newton-like process 

defined by'¥: 

The sequence {x1,} generated by this process for starting point (x0 ,e0 ) is 

also generated by the simple iterative process defined by the iteration 

function 

We see that 1i is differentiable on D0 : 
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cp' (x) 

Furthermore, for x,y E n 0 , we have 

Cy) -· rll. 

W~ < 1 we obtain for x,y E DO n U(x0 ,~): 

and 

II cp' (x) - 1>' (y) II 

Moreover, Ilg,• (x0 )11 <; e 0 <; e < 1 and llx0 -- 1'(x0 )11 = IIH0F 0 11 = 130 • So we can 

apply theorem 1.24 yielding existence of a sequence {xk} c u1 converging 

to a solution y* of F(x) = 0 which is unique in U(x0 ,"i;) n D0 . We shall show 

* * finally that r; < ;;;, so that x = y and statement 4 is proven. T'o do so, 

observe that 1 -~ <; x, for O <; x <; 1. Then 

and 

As a< and X2 <; 1 we have 

2130 

C 
2 - 'iX2\ 

r; > --
!,X2 ) 

~ 
280 ~ 
X2 

2a 
---= 
WOX1X2 

-

(1-eo) (1-a) 

(1+e 0 Jw 

r;. 

This completes the proof of the theorem. D 

5.19. REMARK. Note that fore= 0 we have = 1, a w0S0 , 

"i; = _!_ (1 /1-2a). This expression for~ also appears in comparable theorems 
WQ 

of ORTEGA & RHEINBOLD'r [ 1970] and DEUFLHARD & HEINDL [1979 ·1. 
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5.4. LOCAL CONVERGENCE 

In this section we give a general result on the order of convergence of 

sequences of approximations to a solution which are generated by strict 

Newton-like processes. This result is a generalization of a well known re

sult for Newton methods (see for .instance ORTEGA & RREINBOLDT [1970, section 

10.22]). DENNIS & MORE [1977] give a result for a class of Newton-like 

methods, using a non-affine invariant Lipschitz condition, which shows that 

we do not require convergence of HkJk to I, but only of HkJk to I with re

spect to its effect on a relevant direction (they use xk+i-xk). '!'his idea 

is incorporated in our result. The second theorem in this section gives a 

result for restrained Newton-like methods by combining global and local 

convergence results. 

* * * 5. 20. THEOREM. Let x E D, F (x ) ,~ 0 and suppose that F and x satis.fy con•-

di tion L7 on some open neighbourhood u c D of x*. Let (x0 ,s0 ) Eu x L(JRn) 

be given and let M be a str.ict Newton-.Iike method such that F E V and 

(x0 , H0) l.ies in the domain of M (F) • Suppose M {F) generates { (xk, Hk) } c U for 
·k ~k 

starting _point (x0 ,H0 ). Moreover, suppose that {xk} converges to x, xk 'f' x 

(k=0,1, .•. ) and there exist constants e,E 2 0 such that for all k, ek s E 

and 

(5.62) II (H ,T -I) (x -·x*) II 
k k k 

Then, t.he order of convergence of {xk} is at least 2. 

PROGL Denote w* w(x*) and choose o s min(1/2w*,1/2e) such that U(x\o) c U. 

* 'I'hen, by condition L7, we have for x E U(x ,o): 

Hence, by the perturbation lemma J(x) is nonsingular for x E U(x*,o) and 

(5.63) 
w*II x-i,/11 

1-u/llx-x*II 

* As {xk} converges to x, we can choose a K 2 0 such that for all k 2 K, 

* xk E U(x ,o). Hence, fork 2 K we have 
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(5.64) 

and 

* llx 1-x II 
k+ 

11-H F +x -·X *II 
k k k 

-1 * * -1 * * * 
5 II H J 1111 J J (x ) 1111 (J (x ) ) (F -F (x ) -J (x ) (x -x ) ) II 

k k k k k 

So, using lemma 1.16 to bound the last factor of the first term of the right 

hand side of (5.64) and (5.62) and (5.63) to bound the other factors and the 

second term, we obtain 

llx --x*ll 
k+1 

With the definition of o, we obtain finally 

(5.65) 

where 

Therefore 

* C 3w (1+E) + e 

lim inf(-logll 
k-+co 

which proves the theorem. D 

5.2L REMARK. If we consider the strict Newton method, then we can choose 

e = E 0 and C = 3w* for the given choice of o. In this case the theorem 

reduces to a well-known result (see ORTEGA & RHEINBOLDT [l970, section 

10.2.2]) reformulated for the affine invariant Lipschitz condition on the 

jacobian. DEUFLHARD & HEINDL [1979] also give a version of theorem 5.20 for 

the strict Newton method. They use condition (5.53). 

5.22. REMARK. Condition (5.62) is of practical importance. If we had only 

* required that ek 5 ell xk -x II for k = 0, 1, ... , then the theorem would not 

have been applicable in certain situations. For instance, using an updating 



Newton method it might appear that {xk} lies in a certain subspace of lR.n, 

so that f\Jk will not converge to I with respect to its effect on the com

* plement of this subspace. Then ek < eUxk-x U (k=0,1, ••• ) is not satisfied 

while (5.62) might be. 

Finally we give a theorem which combines the results of theorem 5.8 

and 5.20. 

5.23. THEOREM. Let the conditions of theorem 5.8 be satisfied. Moreover, 

* suppose that ek s ellx -xkll forks N and some constant e ::::c 0 and that 

A(xk,Hk) = 1 whenever this choice satisfies (5.39). Then 

1. (¾,Hk) is defined for k = 0,1,2, •.• (N = 00), 

* * 2. {xk} converges to a unique point x E SF(x0 ,A) with F(x) 0, 

3. the order of convergence of{¾} is at least 2. 
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PROOF. Statements 1 and 2 follow directly from theorem 5.8. Moreover, it 

follows from theorem 5.8 that there exists a K ::::CO such that A(¾,Hk) = 1 

satisfies (5.39) fork ::::CK. Hence, for all k ::::CK, we have A(Xk,Hk) = 1 by 

assumption. Now apply theorem 5.20 for the same process with starting point 

(xK,HK). This proves the third statement. D 
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CHAPTER 6 

SYNTHESIS OF NEWTON-LIKE METHODS 

6. l . INTRODUC'I'ION 

A Newton-like method applied to a given function yields a Newton-like 

process. Such a process generates for a given starting point (x0 ,H0 ) a, 

possibly infinite, sequence of iterates. In practice we are interested in 

solving systems of nonlinear equations with a certain precision and in fi-

nitely many iteration steps. Furthermore, the choice of the matrix will 

be based on the initial guess x0 of the solution and on the method used. 

6.1. TERMINOLOGY. We use the term Newton-like algorithm for a Newton-like 

method together with the choice of n0 and a stopping criterion, described 

in some formal way and assuming that non-exact arithmetic is used. 

A Newton-like program is an implementation of a Newton-like algorithm in a 

given programming language and for a given computer. 

Note that a Newton-like program defines a Newton-like algorithm but not 

vice versa. The formal description of an algorithm does not have to be in 

a programming language and the values of computer dependent constants are 

not actually given in the algorithms. 

Considering Newton-like algorithms we distinguish the following basic 

modules 

1, In.itialization, including the calculation of H0 as an approximation to 

(J -1. (or an approximation B0 to J (x0)). 

App:r:oxima tion of requi:ced data, such as w, etc. ( see notation 5, ) , 

'l'hese approximations are used for instance, for finding an appropriate 

step length for difference approximation or for special restraining 

strategies. Calculation of the step direction belongs to this module. 
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3. Restraining strategy, See examples 4. 22. Based on remark 5. 9 another 

strategy is developed. 

4. Stopping criteria for checking convergence or failure at every iteration 

step. 

5, Approximation of the inve.rse jacobian, including the choice between 

triangular and singular value decomposition if the approximation is 

obtained as (generalized) inverse of an approximation to the jacobian. 

Note that no explicit inverse is ca.lculated in this case, only a decom

position is kept. 

We will treat these modules separately in the next sections. In section 

6.2 we give the algorithms for numerical algebra computations, viz. trian

gular decomposition, singular value decomposition and scaling of a matrix 

by diagonal matrices. Then, in section 6.3, we treat module 5 as it provides 

the basis for other modules. Modules 2, 3 and 4 are treated subsequently in 

sections 6.4 up to 6.6. Initialization (module 1) is treated together with 

the synthesis of basic algorithms (section 6.7), because e.g. the choice 

of H0 (or B0 ) depends on the basic algorithm chosen. In section 6.8 up to 

6.11 we describe subsequently the conditional use of approximation by up

dating and fixed approximation, implicit and explicit scaling and reduction 

of problems with linear components. These strategies are considered as op

tional features. They can be applied to all or some of the basic algorithms. 

In this chapter we assume that the function F satisfies condition 1.5 
-1 

and if we write (J(x)) , for some x ED, then it is implicitly assumed 

that this inverse exists. If we use notation 5.1 then it is assumed that 

the conditions for using this notation are satisfied. In addition to nota

tion 5.1 we use: y(YK) = yk, with y(x) the Lipschitz constant in condition 

1. 6 for x E D, and if B E L (Rn ) is some approximation to CJ (x) (x E. D), then 

(6. 1 l n(x) 

(6. 2) e + (x) II (J (x) -B)"B 4 11 , 

(x) = II (fl (B)) 4 11, 
€ 

+ 

T1 
k 

n 

Furthermore r(x) denotes the rank of Band = r (xk). 'l'he approximation to 

a certain quantity, which will be used i.n the algorithms, is always denoted 

with,,_,, (e.g. iik is the approximation tonk). 
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We assume that numerical computation of the function and its jacobian 

is such that constants ~ 0 exists such that 

(6.3) II fl (F (x)) -F (x) II s c II F (x) II 
E rf 

(6.4) II fl (J (x)) -J (x) II s E • II J (x) II + saJ·, 
C rJ 

where c denotes the machine precision (see notation 3.8). 

We give formal descriptions of the modules and additional features in 

ALGOL 68 (see WIJNGAARDEN et al [1976]). We use the ALGOL 68 implementation 

(TORRIX 68) of the programming system 'EORRIX (see MEULEN & VELDHORST [ 1978]). 

'rhe prelude used for numerical algebra routines (prelude name: naprel) is 

based on HEMKER & WINTER [ 1979]. The problem of solving a system of non

linear equations with Newton-like methods is defined in the prelude with 

name: nlsprL So nlsprl is embedded in naprel, which is embedded in the 

'I'ORRIX 68 prelude, which is, in turn, embedded in the ALGOL 68 standard 

prelude. Our primary objective is to use ALGOL 68 as a reference language 

for unambiguous description of our algorithms. The ALGOL 68 programs have 

been compiled by the A68 compiler of the CYBER 73 system a.t the computer 

center SARA at Amsterdam. we ha.ve tested some example progra.ms for some 

small test problems in order to obtain some faith that these programs are 

correct. This testing ha.s been performed using an optimized version of 

'rORRIX BASIS, in which system • mode • seal = • real and in which the dyadic 

operators .max and .min have been defined for arguments of .mode .scaL 

We have not performed a full testing of the ALGOL 68 programs. Our experi

ments have been performed in ALGOL 60 (see chapter 7). 

Description in ALGOL 68 

naprel: 

I numerical algebra prelude, 
J.C.P. Bus, update 800103, 
to be compiled by: a68,i=lfn,p=numal3/tormin,n. 
where tormin is an optimized version of the torrix basis prelude 
(see MEULEN en VELDHORST [1978]) 
(tormin contains the operators .max and .min for .seal operands) 
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# 
.begin 

.mode 

.mode 

.mode 

.mode 

.mode 

.prb = .struct (.seal 
.int 

.prob = .ref .prb; 

relacc, absaec, reltol, abstol, 
maxi t) ; 

.matprob = .struct ( .mat mat, .prob prob), 

.lud .struet (.mat lu, .index piv, .seal nrm, 
. bool ready) , 

.svd .str:uet (.mat u, v, .vec sngval, .bool ready); 

.dee .union (.ref .lud, .ref .svd ); 

.scldmat = .struct (.mat mat, .vec rows, .vec cols, 
.bool scr, .bool sec, .bool sng); 

.op .defprob ( .mat m) .prob : 

.op 

.op 

(.heap .prb prob:= 
(small seal, small seal, small seal* ten, small seal* ten, 
.size m * 10); prob 

) ; 

( .matpr.ob ) . lud .ludee = .pr XREF LUDEC .pr .skip ; 
( .matprob ) . svd .svdec = .pr XREF SVDEC .pr .skip . 

.op .ludee (.mat m) .lud (.ludec .matprob (m, . defprob m)); 

.op .svdee ( .mat m) .svd (. svdec .matprob (m, .defprob m)); 

.op .check (. lud lud) .bool ready .of lud; 

.op .check (. svd svd) .bool ready ,of svd; 

.op ( .lud . .vec ) .vee .sol .pr XREF LUSOL .pr .skip 

.op ( .svd , .vec ) .vec .sol .pr XREF SVSOL .pr .skip 

.op .solve = ( .dee dee, .vec rhs) .vec 
.case dee .in 
(. ref . lud 1 ud): lud . sol rhs, 
(. ref .,svd svd): svd . sol rhs 
.esac 

.op .trims = (.seal r, .svd svd) .svd : 
.of svd, v = v .of 
.of svd; 

.begin .mat u = u 
.vec sv = sngval 
.i.nt n = l .upb 
.while (i +:• l; 

u .min 2 .upb u; 

svd; 

.int k, rk:= 0, i:• O; 

(i <• n ! (k .max 
. do r k +: • l; • if k /• i 

.then sv[il •:• sv(k]; 

.fi 

sv[i:n .at i]) > r ! 

u [, i] u[,k];v[,i] 

.false)) 

V [. kl 

.od; 

.svd (u[,1:rk], v[,l.:rk], sv[l:rk], ready .of svd) 
.end #operator trims#; 

.prio .sol • 2, .solve 2,.trims 

.op 

.op 
.sqr 
.sqr 

{. vee 
(.seal 

x). seal 
x). seal 

.op .nrm ( .vec x) .seal : 
(.seal max :• .maxabs x; .if max<• minseal .then zero 
.else .vec y • x I max; sqrt(y * y) * max .fi 

) # vector norm with avoiding overflow due to squaring#; 

.prio .nrm • 8; # 



# 
genranvec = (. int n). vec : .proc 

.begin 
.vec 

.end # 

.proc ran= (.i.nt i).scal: next random(setr); 
v = ran .into genvec(n); v /< (.nrm v) 

generation of vectors with random elements I; 

.int 

. seal 
setr:= 10; 

zero .widen 0, 
one .widen I, 
two .widen 2, 
ten .widen 10; 

. seal onetenth =one/ ten, 
minscal ~two** (-975) 

# we choose this value, which performs well. 
a precise choice of the smallest normalized real 
number requires a routine in machine language. #, 

max seal= max real, 
small seal= small real; 

.proc rotvec = (.vec 

.begin .int l = .lwb 
. for k • from l • to 

a, b, .seal c, s) .void 
a, u • . upb a; 

u 
.do .seal x a[k], 

a[k]:=c*x+s* 
.od 

.ref .seal y = b[k]; 
y; y:= C * y - S * X 

.end # rotation of two vectors#; 

.op .dmul = (.vec d, x) .vec: 
(((.int i).scal :(d[i] * x[i])) .into 
genvec(.upb x .max .upb d)); 

op .dirnul = (.vec d, x) .vec : 
(((.int i).scal :(x[i] / d[i])) .into 
genvec(.upb x .max .upb d)); 

.pri.o .dmul 6, .dimul 6; 

.op 

.op 

.op 

(.mat ) .scldmat .scale .pr 
(. scldmat ) . sc.ldmat . scale 
( .scldrnat ) .mat .bckscale 

.pr PROG .pr .skip 

XREF SCALE .pr .skip; 
.pr XREF SCALMAT .pr .skip 

• pr XREF BCKSCLE . pr . skip 1 

.end I naprel, numerical algebra prelude# 
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nlsprl: 

# prelude for Newton-like methods for solving systems of nonlinear 
equations by J.C.P. Bus, update 80013, 
embedded in numerical algebra prelude naprel in nl68lib (id=jbus), 
in this prelude a problem is defined and the various identifiers 
used in the modules of the algorithms are defined and set to 
default. this design is chosen in order to be able to use algal 68 
as a reference language for unambiguous definition of the 
algorithms. to be compiled by the following control cards: 
attach,nl,nl68lib,id=jbus. 
a68,i=lfn,p=nl/naprel,n . 

. begin 

.mode .func = .struct (.vec f, .bool in); 

#******************** problem definition (see definition 7.2) *****# 

.proc fun:= (.vec x) .func: .skip 
# the procedure defining the problem function has to be 

assigned to fun, 

#; 

the variables are given in x, 
on exit either in .of fun(x) = .true and f .of 
fun(x) contains the function vector, or 
in .of fun(x) = .false 

.proc jacobi.an:= (.vec x).mat: .skip 
# the procedure defining the problem jacobian has to be 

assigned to jacobian, 
the variables are given in x, 
jacobian will only be called if xis in the domain 
of the function (fun(x) is called first), 
on exit the jacobian matrix at xis delivered 

I it is assumed that the procedures to be assigned to fun and 
jacobian only use identifiers which have the same scope as 
fun and jacobian # 

.int 

.bool 

.vec 

.mat 

. seal 

n * the order of the function #; 
linpart:= .false # linpart = . true iff function 

components, default value is .false #; 
xO # the initial guess to the solution I' 
lb # the right hand side of the linear part #; 
la ti the matrix of the linear part II; 
eprf # the rel. prec. of the function (see (6. 3)) 
epaf' # the abs. prec. of the function (see (6. 3)) 
eprj # the rel. prec. of the jacobian (see ( 6. 4)) 
epaj # the abs .. prec. of the jacobain (see ( 6. 4)) 
dlf # the tolerance of the function norm #' 
dlrx # the rel. tolerance of the variables #, 
dlax # the abs. tolerance of the variables #; 

has linear 

#' 
#' 
#' 
#, 

#*************************** end problem definition****** 



II 
. int i.t 

fcnt 
jcnt 
dent 
maxit 

maxit:= 50 # 

# iteration counter#, 
# function evaluation counter#, 
I jacobian evaluation counter#, 
# decomposition counter#, 
# maximum number of iterations allowed#; 
default value of maxit #; 

.bool dif # .true iff difference approximation is used#, 
anl I .true iff analytic jacobian is used I, 
fix I .true iff fixed approximation is used#, 
upd # .true iff update approximation is used I, 
safe I .true iff all failure criteria have to be used I, 
scale# .true iff scaling allowed I, 
nongener I .true iff use of nongeneralized method allowed#, 
gener # .true iff use of generalized method allowed#, 
update I .true iff conditional updating allowed I; 
dif:• anl:• fix:• upd:= scale:= .false; 
safe:• nongener:• gener:• update:• .true, 
I setting default values of these booleans# 

.vec x 
xj 

f 
fO 

# the current vector of variables#, 
I the last point at which non fixed approximation is 

used I, 
# the current function vector#, 
I the previous function vector if inverse-updating is 

used, otherwise the function vector at xj I, 
I the current step vector#, 
I a vector with random elements and norm #, 
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ax 
V 

w # the product bl* v, with bl the previous approximation 
to the jacobian I, 

sol 

.mat b 

v2 

.dee decb 

# for use in reducenewt, see section 6.11 #; 

# the current approximation to the jacobian (or its 
inverse in inverse-updating methods) I, 

I for use in reducenewt, see section 6.11 I; 

I the current decomposition of bi; 

.mode .metric 

.metric a # 
• .struct {.int c, .ref .lud deca); 

if c .of a= l then the matrix a in the levelfunct
ion {see {4.23)) is the identity matrix, 

c • of a : • l. 

if c .of a• 2 then a is the inverse of the jacobian 
approximation at xO and the decomposition is given in 
deca .of a, 
if c .of a= 3 then a is the inverse of band its 
decomposition is given in deca .of a#; 
# default value#; 

.seal epsh • small seal* .widen 100 #lower bound differ. step#; 

.seal nrmx, nrmf, nrmdx 
I norms of x, f and dx #, 

slevell the square root of the value of the levelfunction I, 
omga # the approximation to omega or gamma (section 6.3) #, 
beta, kappa, eta, labda, e 

ii the approximations to these variables {section 6.3) #, 
etaO # the value of eta in the first iteration step#, 
h i the difference step length I, 
nrmul, nrmu2 

# nrm(u]) and nrm(u2), see section 6.2.2 #, 
epf # {eprf + small seal) * nrmf + epaf #, 
ej # the error in b(xj) #; 

.scldmat scb# gives scaled matrix b if explicit scaling is used#; 
# 
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( ] • char 
textl 
text2 
text3 
text4 
texts 
text6 
text? 
texts 
text9 
textlO= 
textll= 
textl2= 
textl3= 
textl4= 
textlS= 
textl6= 
textl7= 
textl8= 
textl9= 

"no orogress, maybe due to too high required precision", 
"no progress relative to error in function", 
"stationary point of norm of the function, no solution", 
"too many function evaluations or iterations required", 
"numerical singularity in triangular decomposition", 
"failure of singular value decomposition", 
"rank of jacob. approx. equal to zero", 
"error in jacob. approx. yields possible singular jacob.", 
"nearby singularity of jacobian expected", 
"difference approx. impossible, point on boundary domain", 
"divergence out of domain of function", 
"starting point not in domain of function", 
"eprf set to default (small seal)", 
"epaf set to default (OJ", 
"eprj set to default (small seal)", 
"epaj set to default (O)", 
"dlf set to default (epaf) ", 
"dlrx set to default (small seal)", 
"dlax set to default (small seal)"; 

.proe .seal calh = .pr XREF CAUi .pr .skip 

.proc .seal ealgh = .pr XREF CALGH .pr .skip 

.proc ( .vec ) .mat diffjac .pr XREF' DIFFJAC .pr 
• proc ( .mat ) • VO id invupdl = • pr XREF' INVUPDl . pr 
. proc ( .mat ) . void invupd2 = . pr XREF INVUPD2 . pr 
.proc .void cdatalr = .pr XREF CDATALR .pr .skip 
.proc .void cdatasv = .pr XREF CDATASV .pr .skip 
.proe (.ref .vec, .ref .vec ).seal slefu 
.pr XREF SLEFlJ .pr .skip 
.proc .void strict= .pr XREF s·rRICT .pr .skip 
.proc .void resbis = .pr XREF RESBIS .pr .skip ; 

.. skip 

.skip 

.skip 

. proc (. seal , . seal , . seal , . seal , . seal , . seal ) . seal quad 
= .pr XREF QUAD .pr .skip ; 

.proc (.ref .seal ,.ref .seal ,.ref .seal ,.ref .seal ,.ref .seal , 
. proe (. seal ) . seal , . seal ) • bool interp 
= .pr XREF INTERP .pr .skip ; 

.proc .void resint = .pr XREF RESINT .pr .skip : 

.proe (.ref .seal ,.ref .seal ,.ref .seal ,.ref .seal , 
.proc ( .seal ) .seal ) .bool extrap = .pr XREF EXTRAP .pr .skip 

.proc .void resest = .pr XREF RESEST .pr .skip ; 

.proc .bool stopful .pr XREF STOPFUL .pr .skip 

.proc .bool stopspl = .pr XREF STOPSPL .pr .skip 

.proc .void default= .pr XREF DEFAULT .pr .skip 

.proc ( .proc ( .vec ) .mat ) .mat conupdjac 
.pr XREF CONUPO .pr .skip 

.proc (.proe (.vec) .mat) .mat confixjac 
.pr XREF CONFIX .pr .skip 

.proc ( .proe ( .vec ) .mat ) .mat confixjacg = 
.pr XREF CONFIXG .pr .skip ; 

.proc .proe .bool ) .bool redueenewt = .pr XREF REDNEWT .pr 
.sk 

.pr PROG .pr .skip 

.end # prelude for nonlinear system solving# 
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6.2. NUMERICAL ALGEBRA ALGORITHMS 

6.2.1. Triangular decomposition 

Given a nonsingular matrix B E L (JRn) , we obtain a triangular decompo

sition by the process of triangularization with partial pivoting (i.e. with 

row interchanges only) (see WILKINSON [1965, section 4.15 - 4.23]). Hence, 

we find a permutation matrix P, a unit upper-triangular matrix U and a 

lower-triangular matrix L such that 

PB LU. 

Of course, round-off errors will occur during this process. In fact, if we 

solve a linear system Bx= bin such a way, then we obtain the exact solu

tion of the system (see DEKKER [1971] and WILKINSON [1965, section 4.24 -

4.29]) 

(6. 5) 

with 

(6.6) 

(B + X b 

and g the so-called growth (Le. the modulus of the in modulus largest 

element in the matrix during the process of triangularization). Although, 

one can construct pathological examples for which g becomes as large as 

2n-l max I I, in practice such a growth is very rare. With reference to 
i,j -

DEKKER [1971., section 5] and WILKINSON [1965, section 4.27] we choose g 

equal to a fixed multiple of some norm of B. We also replace 'by 

simply n, as it appears in practice that (6.6) yields a severe overestimate. 

So, we obtai.n 

(6. 7) ,,; 16m IIBII. 

In order to increase the numerical stability of triangularization one might 

use complete pivoting (row and column interchanges) which 5.s expensive, or a 

combination of both complete and partial pivoting (see BUSINGER [1971] and 

BUS [1.972]). Using the last technique one easily obtaines a reasonable upper 

bound on the growth gin (6.6). It depends on the software library to 

be used for a specific implementation of a Newton-like program whi.ch 
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particular method shall be used for triangularization. In our experiments 

in ALGOL 60 we use the combined pivoting strategy mentioned above. In our 

ALGOL 68 descriptions we simply use partial pivoting. The process of trian

gularization is terminated if in some stage the moduli of the elements in 

the first column of the remaining submatrix (see WILKINSON [1965, section 

4.201) are all less than some p~escribed precision (crk[I BIi). We choose Erk= c 

and say that Bis numerically singular if the process is terminated too early. 

We choose this value to avoid calamities like arithmetic overflow on a com·

puter. In this stage, this precision is not related to the error in Bas an 

approximation to J(x). Such criteria are discussed in subsection 6.4.8. 

'l'ogether with the triangular decomposition we give a program for forward 

and backward substitution to calculate the solution of a linear system if the 

triangular decomposition is given. 

Description in ALGOL 68 

.op .ludec = (.matprob m).lud: 

.pr XDEF LUDEC .pr 

.begin .mat lu = .copy .int n = .upb 
zero; .bool ready:= .true 

.index p = .subscr 

. for i . to n 

mat .of m; 
.seal bnd:= 

lu[ ,l]; .vec v = genvec(n); 

.do vli]:=(.scal vi=.sgr 
bnd +:= vi; . if vi = zero 
ready:= .false; one .else 

.od; 

lu [ i, l : 
.then 
one I sqrt (vi) • f i 

lu; 

.seal r.rm:= sgrt(bnd); bnd := nrm * (relace .of prob .of m); 

.for k .to n .while ready 

.do .seal max:= zero; .int pk:= k; .vec colk = lu[ , k]; 
.for i .from k .to n 
.do .if .seal s= (.abs 

(eolk[i] -:= lu[i, :k-1] * colk[ :k-1]) * v[i)); s > max 
.then pk:= i; max:= s .fi 

.od ; 

.if max< bnd .then ready:= .false 

.else p[k] := pk; v[pk] := v[k]; 
.if pk/= k .then lu[k,] =:= lu[pk, 
.vec rowk = lu[k, ]; 
. for i . from k + l • to n 

• f i 

.do rowk[i} -:= rowk[ :k-1 * lu[ :k-1,i] .od 
rowk[k+l: ] /< rowk[k] 

.fi 
.od ; .lud (lu, p, nrm, ready) 

.end # triangular (lu) decomposition of a matrix# 

.pr FEDX .pr ; 



.op .sol = (.lud lud, .vec rhs).vec 

.pr XDEF LUSOL .pr 

.begin .int n • .upb rhs; 
.index p • piv .of lud; .vec x • .copy rhs; 
.mat lu • lu .of lud1 
.for k .to n 
.do .int pk= p[k], .seal r • x[k]; 

x[k] :• (x[pk] - lu[k, :k-1] * x[ :k-1]) / lu k,k]; 
.it pk/• k .then x[pk]:• r .fi 

.od; 

.for 

.do 
X 

k .from n - l .by - l .to 1 
x[k] -:• lu[k,k+l: l * x[k+l: ] .od 

.end # forward and backward substitution# .pr FEDX .pr 

6.2.2. Singular value decomposition 
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The singular value decomposition as described here is an ALGOL 68 

implementation of the ALGOL 60 procedures from the NUMAL library (HEMKER 

et al.. [1979J). These procedures are transcriptions of the procedures given 

by GOLUB & REINSCH [1971]. 'The decomposition consists of four parts: 

- the transformation of the matrix to bidiagonal form using Householder 

orthogonalization (routine: hshreabid), 

- calculation of the postmultiplying matrix from the Householder matrices 

used to transform the matrix into bidiagonal form (routine: psttfmmat), 

- calculati.on of the premultiplying matrix from the Householder matrices 

used to transform the matrix into bidiagonal form (routine: pretfmmat), 

- transformati.on of the bidiagonal matrix to diagonal form by the 

QR-iteration process (routi.ne: svdecbid), 

The routines are combined in one operator (.op .svdec) which delivers an 

unordered singular value decomposi.tion (the singular values are not given 

in non-increasing order). Application of the operator .trims (see numerical 

algebra prelude) orders the singular values and delivers the significant 

part of the singular value decomposition (u1 , and according to (1.18). 

So we obtain for a given matrix BE. l.(1l), orthonormal matrices u1,v1 and 

a diagonal matrix (cf. (L18)) such that 

B 

Let B +Ebe the matrix which is e:xactly equal to the product of the numer-

ical.ly computed matrices and 
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B + E fl (U 1)fl (l::) (fl (V1 ))T. 
E: E: r e; 

Then we assume that II Ell s ce;II Bil, where c is not much greater than n. This is 

a reasonable assumption as orthogonal transformations are used to obtain the 

singular value decomposition (see WILKINSON [1965, section 6.3]). 

Operator .sol gives the solution of a linear system if the singular 

value decomposition of the matrix is given. 

p~scription i.n ALGOL 68 

.op .svdee • (.matprob a) .svd 

.pr XDEF SVDEC .pr 

.begin 
.proe hshreabid • (.mat 
.begin .int m = l .upb 

.for i .to m 

a, .vec a, b, 
a, n = 2 .upb 

.ref .seal norm) .void 
a; norm:= zero; 

.do .seal w:= .sigmabs 
.if w > norm .then 

a [ i, ] ; 
norm := w .fi 

.od ; 

.seal maehtol small seal* norm; 

.for i .to n 

.do .int il= i + l; 

.od 

.if .seal S:"' .sqr a[il: , i]; s <= machtol 

.then d[i] :• a[i,i] 
,else .vee ai = a[i , i]; .ref .seal f • ai[l]; 

s+:"' .sqr f; .seal g= ( d[i] = 
.if f <zero.then sqrt (s) .else - sqrt (s) .fi ); 
.seal h= f * g - s, f -:= g; 
.for j .from il .to n 
.do a[i : , j] +< (a[i : , j] * ai ) / h * ai .od 

• f i ; 
.if i < n 
.then .vee ai • a[i, il : ] ; 

.fi 

.if .seal s:z .sqr ai[2 : ] ; s <~ machtol 

.then b[il = ai[ll 

.else .ref .seal f ai[l]; 
s+:= .sqr f; .seal g = (b[i] :"' 
.if f <zero.then sqrt (s) .else - sqrt (s) .fi ): 
.seal h= f * g - s; f -:= g; 
.for j .from il .to m 
.do a[j, il ] +< ( a[j, il ] * ai) / h * ai .od 

• f i 

.end # householder bidiagonalization of real matrix#; # 



.proc psttfmmat 00 (,mat a, .mat v, .vec bl .void 

.begin .co psttfmmat .co 
.int n = 2 .upb a; # check : n = (1 and 2) .upb v # 
v[n,n] := one; 
.for i .• from n-1 .by -1 .to 1 
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.do .int il= i + 1; .vec ai =, a[i, il : l, vi v[il ' i] ; 

.od 

.int revn = .upb ai; 

.if .seal h= b[il * ai[l]; h < zero 

.then .for j .to revn .do vi[j]:= ai[j] / h .od; 
.for j .from i1 .to n 
.do v[il : , j] +< ( v[il , j] * ai) * vi .od 

• f i ; 
.for j .to revn .do v[i, j + i] := vi[j] := zero .od 
v[i,i] := one 

.end I post transformation matrix of householder matrices#; 

pretfmmat = (.mat a, .vec d) .void 
.co pretfmmat .co 
m = 1 .upb a, n = 
i .from n .by -1 

2 .upb a; 
. to 1 

.proc 

.begin 
.int 
.for 
.do .vec ai = a[i : m, 

. sea 1 g= d [ i] ; . seal 

.for j .from il .to 

i] ; . int revm 
h= g * ai [ 1 l ; 

= .upb ai, il j_ + 1' 

n ®do a[i,j] ~~ zero .od 
.if h < zero 
.then .for j .from il .to n 

.do a[i : , j] +< (ai[2 : ] * a[il : , j]) / h * ai 

.for j .to revm .do ai[j] /:=, g .od 

.od 

.else .for j .to revm .do ai[j]:"" zero .od 
• f i ; 
ai[l]+:•·· one 

.end I pre transformation matrix of householder matrices I; 

.proc svdecbidqr • (.vec 
.prob 

.begin .seal c, s, 

d, b, .mat 
prob) .bool 

~int n = .upb a, m l .upb u; 
.int nn:• n, 

u, v, . real 

.seal eps:= re.lace .of prob, bmax:= zero; 

.int count:= 0, rnk:= n, imax = maxit .of prob; 

.seal dmin:= reltol .of prob, tol:= eps * nrm 

.while nn > O 

.do .int k:'-" nn, .i.nt nl= nn - l; 
next : 

. if k-: = 1; k > 0 

.then ,if .abs b[k] >= tol 
.then .i.f .abs d[k] >'" tol .then next .fi 

c:= zero, s:= one; 
.for i .from k .to nl 

nrm, 

.od 

.do .int il= i + 1, .seal f= s * b[i]; b[i]*:= c; 
. i.f . abs f < tol . then neglect . fi ; 
.seal g= d[il]; 
.seal h = (d[il] :=- sqrt(.sqr f + .sqr g)); 
c:= g / h; s:= - f / h; 
rotvec(u[ , kl, u[ , ill, c, s) 

.od ; 
ect: .skip 

if .abs b[k] > bmax .then bmax:= .abs b[k] 
.fi 

. f i ; 
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.od 
end : 
.end 

. if k = nl 

.then .seal dnn= d[nn]; .if dnn < zero 
.then d[nn] := - dnn; 

.for i .to n .do v[i,nn] := - v[i,nn] .od 
• f i 
.if d[nn] <= dmin .then rnk -:= 1 .fi; nn:= nl 

.else .if count+:= l; count> imax .then end .fi 
.int kl= k + l; 
.seal z= d[nn], .seal x:= d[kl], y:= d[nl], 
g:= .if nl = l .then zero .else b[nl - l] .fi , 
h := b [nl l ; 
.seal f:= ( (y-z) * (y+z) + (g·-h) * (g+h)) / (2*h*y); 
g:= sgrt(.sqr f + one); 
.if f < zero .then f-:= g .else f+:= g .fi ; 
f:= ( (x - z) * (x + z) + h * (y / f - h)) / x; 
c:= s:= one; 
.for i .from kl+ 1 .to nn 
.do .int il= i - l; g:= b[il]; y:= d[i]; · 

h:= s * g; g*:= c; .seal z= 
sqrt( .sqr f + .sqr h); e:= f / z; s:= h / z; 

.if il /= kl .then b[il - 1] := z .fi 
f:• X * e + g * S; 
g:= g * c - x * s; h:= y * s; y*:= c; 
rotvec(v[ , ill, v[ , i], c, s); 
.seal zl= (d[il]:= sqrt(.sgr f + .sgr h)); 
.if zl < small seal 
.then c:= one; s:= zero; f:= g; x:= y 
.else c:= f / zl; s:= h / zl; 

.fi 

f:• C * g + S * y; X:• C * y - S * g; 
rotvec(u[ , ill, u[ , i], c, s) 

.od ; 
b[nl] := 

. fi. 
f; d [nn] := x 

' .skip ; nn = O 
I qr iteration on bidiagonal matrix yielding svd #; 

.mat u • copy mat . of a; • bool ready; 

.int m l .upb u, n= 2 .upb u; 

.vec b 1envec(n), sv = genvec(n); 

.mat v gensquare (n); • seal norm; 

.if m < n .then ready:= .false 

.else hshreabid(u, sv, b, norm); 
psttfmmat(u, v, b); pretfmmat(u, sv); 
ready:= svdecbidqr(sv, b, u, v, norm, prob .of a) 

• f i ; 
.svd (u, v, sv, ready) 

.end # singular value decomposition of matrix# 

.pr FEDX .pr ; 

.op .sol = (.svd svd, .vec rhs) .vec : 
# it is assumed that svd is trimmed at least with zero I 
.pr XDEF SVSOL .pr 
.begin .vec x = rhs * u .of svd; 

• for i . to . upb x 
.do x[i] /:= (sngval .of svd) [i] .od 
v . of svd * x 

.end 11 solution of system with sing' val decomposition # 

.pr FEDX .pr ; 



6.2.3. Scaling of a matrix 

We give a description of scaling of a matrix with diagonal matrices 

with elements equal to powers of two, according to subsection 1.3.5. The 

pre- and post-multiplying scaling matrices are defined as in lemma 1.31, 

except for the use of a simpler row and column norm. Instead of using the 
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euclidean norm we use the infinity norm: II xii= max I i;. I , with x 
i 1. 

T 
(i;l'"°"'~n) • 

We also give here a description of scaling of a matrix if the scaling 

matrices are known ( .op scale) and of backscaling of a matrix ( .op .bckscle) 

Description in ALGOL 68 

.op .scale = (.mat a) .scldmat: 

.pr XDEF SCALE .pr 
# scale will yield a scldmat whose field 

a is changed, its rows are multiplied 
and its columns with factors given in 

.begin .seal ln2:= ln(two); 
.int n = 1 .upb a, m = 2 .upb a; 

mat points to a,the matrix 
with factors given in rows 
cols# 

.seal max:= .widen (n * 4); .seal min:• one/ max; 

.bool reg:= .true , scr:= .false , sec:= .false; 

.vec rows= one .into genvec(n), cols= one .into genvec(m); 

.for i .to n .while reg 

.do .seal norm:= .maxabs a[i,]; 
. if (reg:= norm >= minscal) . and 

(.bool bl• norm> max .or norm< min; 
scr:= scr .or bl; bl) 

.then 
.od ; 

afi,] *< (rows[i] := two ** .entier (-ln(norm)/ln2)) .fi 

.for j .to n .while reg 

.do .seal norm:= .maxabs a[ ,il; 
.if (reg:= norm>= minscal) .and 

(.bool bl= norm> max .or 
sec:= sec .or bl; bl) 

a I , j * < (cols [ j] : • two ** 

norm< min; 

.entier (-ln(norm)/ln2)) .fi 

(a, rows, cols, scr, scc,.not reg) 
.end 
.pr 

# scaling of rows and columns of a matrix# 
FEDX .pr ; 
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.op .bckscle = (.scldrnat sa) .mat : 

.pr XDEF BCKSCLE .pr 

.begin .mat a = mat .of sa; . if scr .of sa 
.then .vec rows= rows .of sa; 

.for i .to .upb rows .do a[i,] /< rows[i] .od 
• f i ; 
.if sec .of sa 
.then .vec cols= cols .of sa; 

.for j .to .upb cols .do a[,j] /< cols[j] .od 
. fi ; 
a 

.end 

.pr 
# backscaling of scaled matrix# 

FEDX .pr ; 

.op .scale = (.scldmat sa).scldmat 
# this operator scales the matrix in sa with the factorsgiven in 

sa, the matrix in sa is changed,in fact sa = .scale sa after 
completion# 

.pr XDEF SCALMAT .pr 

.begin .mat a= mat .of sa; .if scr .of sa 
.then .vec rows= rows .of sa; 

.for i .to .upb rows .do a[i,] *< rowsli] .od 
.fi ; 
. if sec . of sa 
.then .vec cols= cols .of sa; 

.for j .to .upb cols .do a[,j] *< cols[j] .od 
.fi; sa 

.end # scaling of matrix with known scaling matrices# 

.pr FEDX .pr ; 
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6.3. CHOICE OF APPROXIMATION TO THE INVERSE JACOBIAN 

6.3.1. Introductory remarks 

In the next subsections we describe in detail the various choices of 

'l'2 (x,H) given in secti.ons 4.2 and 4.4. We restrict attention to five basic 

choices: 

- inverse of analytic jacobian, 

- inverse of difference approximation, 

- inverse-updating approximation, 

generalized inverse of analytic jacobian, 

generalized inverse of difference approximation. 

From remark 3.14 we see that the inverse of an update approximation is equal 

to an appropriate inverse-update of the inverse of the original matrix. As 

updating Newton methods require o(n3 ) arithmetical operations at each step 

and inverse-updating Newton methods o(n2J, we prefer inverse-updating as a 

basic choice. Conditional use of updating as well as fixed approximation 

are considered as optional. features (see sections 6.8 and 6.9). We expect 

fixed Newton algorithms to be inferior, particularly if initial guesses to 

the solution are not good. Therefore, fixed approximation does not belong 

to the set of basic choices given above. 

6.3.2. Inverse of analytic jacobian 

We assume that a routine is given in which the calculation of the ana

lytic expressions for the elements of the jacobi.an matrix are programmed 

(see .proc jacobian in prelude nl.sprl, section 6.1). In fact, neither at the 

initial phase, nor at the iteration steps, the inverse jacobian is calculat

ed. Only a triangular decomposition is made and the linear systems are solved 

by using this decomposition (see subsection 6.2.1). 

6.3.3. Inverse of difference approximation 

In order to calculate the difference approximation (see (3.5)) we have 

to choose values for the difference steps hi (i=1, ••. ,n) in such a way that 

the approximation is well defined and its error is as small as possible. 

'l'heorem 3. 9 gives an upper bound on the approximation error e (x). For sim-

plicity we choose (i=l, .•. ,n) by 



110 

(6. 8) hO+ls.ll, 
J. 

for x = (!; 1 , ••• ,1; )T. Then with the notation u1 = (1+li; 1I ,,.,,1+li; l)T, 
. -1 n -1 n 

u2 = ((1+11; 1 ) , ••• ,(l+li;nl) )T, and assuming that F and x satisfy condi-

tion 1..7 on some open neighbourhood U of x containing x + (i=1, .•. ,n) 

we obtain by (3.13) 

(6.9) 

with 

e(x) 

½w(x) II II; 

and n(x) given by (6.1). 'l'his upper bound on e(x) attains its minimum with 

respect to h (0 < h < 1/c1) for h = h with opt' · 

h opt 

provided c 1c 2 ,f 0. If c 1c 2 = 0 then w(x) = 0 (Fis linear) or cf(x) = 0 

( ca.f = 0 and F (x) = 0) . We like to a.void that II hi ei II becomes to large so 

that possibly x + h.e. lies outside the domain of the function. 
1 J. 

Therefore we use 1 as an upper bomid on h. Furthermore, if hi is chosen too 

small then it may happen that flc(i;i+hi) = i;i" As hi.'.> Ehli;il (E 2 E) 
h 

guarantees that flE (i;i+hi) ,f , we demand hopt 2 Eh' with Eh = 100c Some 

calculations show that 1 2 h > Eh is equivalent to the conditions 
opt 

We use these conditions in the definition of the approximated optimal value 

for h 

(6.10l :Fi 

f 1, if (2e 1-1)e2 + e 1 < 0, 

~l sh, if (2s11e 1-1Je2 + E~e 1 2 o, 

c2(-1+/2+(c1e2)-f) , otherwise, 

where 100E, 
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(6.11) (xJ llu111, 

and w(x) and n(x) approximations tow and n(x) (see section 6.4). Note that, 

at the moment we calculate fi according to (6.10), we have not yet available 

the difference approximation. 'l'herefore ii (x) will be based on the approxi

mation to the jacobian in the previous iteration step. Finally, if x+h.e. i D 
1. l 

for some i (i•i'" . .,n), then we choose hi ~ sh (1+/;i). If this still yields 

a point outside D then the iterative process is terminated (error exit of 

program). 

The initial values of w(x) and ri(x) are chosen equal to 1. This yields 

an initial value for h, which is required to calculate B 

Des_cription in ALGOL 68 

.proc calh • seal : 
XDEF CALH .pr 

in nrmul:• nrmu2:• zero; .for i .to n 
.seal aid:• (one+ .abs x[i]) *·k 21 

ncmul +:• aid; nrmu2 +:• (one/ aid) 

, using (6.10). 

.od I nr.nul:• sqrt(nrmul) 1 nrmu2:• sqrt(nrmu2); 

.seal _cl:• nrmul * omga / two, c2:• nrmu2 * epf *eta* two; 
h:• (.1f (cl* two - one) * c2 + cl zero .then one 

.elif (cl epsh * two - one) * c2 +cl* epsh ** 2 >• zero 

.then epsh 

.else (sqrt(one +one/ (cl* c2)) - one) * c2 

. f i ) 
.end #calculation of difference step in non-generalized case I 
.pr FEDX .pr ; 

.pr:oc diffjac • (. vec x) .mat : 

.pr XDEF DIFFJAC .pr 

.begin .mat jac • gensquare(n); 
.fcnt +:• n; . for j . to n 
.do .vec xl • .copy x; 

-~cal hj:• .abs x[j] ·> h + h; xl(j] +:• hj; 
.tune fu:• fun(xl); .bool in:• in .of fu; 
.if (in ! .true 

hj:• small seal* ten* ten; 
hj +:• ( .abs x[j] * hj); xl [j] :• x[j] + hj; 
fu:"' fun (xl); 
(in .of fu l .true 

) 
torrix(warning, textlO) 

.then jac[ ,j] :• (f .of fu - fl / hj .fi 
.od; jac 

.end # difference 

.pr FEDX .pr ; 
approximation of jacobian for given step# 

. false ) 
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6.3.4. Inverse-updating approximation 

We distinguish two inverse-jacobian update functions (see remark 3.17). 

These are V(u(x,H)) (see (3.18)) with 

(6.12) 

and 

(6.13) 

u(x,H) 

u(x,H) '¥ 1 (x,H) - x. 

We combine these methods with fixed approximations as follows 

(6.14) 
•{V(u(x,H))(H,x,'J' 1 (x,H)), if (x,H) E ·n'l', 

'l' 2 (x,H) 
H, if (x,H) / Do/, 

where o/ defines the inverse-updating process,'¥ the resulting combined 

process (~ 1 = '¥ 1 ) and D'l' the domain of 'l' (see (4.15)) • 

.!2_escription in ALGOL 68 

.proc invupdl = (.mat 

.pr XDEF INVUPDl .pr 

.begin .vec u • b * (f 

bl • void 

.if .abs (dx * u) > 

.then .vec v • dx -
.for j .to n .do 

.fi 

·- fO); 
small seal* nrmdx * .nrm 
u; u:• (u / .sqr (u)) * b; 

b [, j l + < ( u [ j J * v l • od 

.end if inverse updating with u • h \ (f •· fO) # 

.pr FEDX .pr ; 

. proc invupd2 • ( .mat b) • void 

.pr XDEF INVUPD2 .pr 

.begin .vee v • b * (f - fO), 
.seal dxv:• dx * v1 
.if .abs dxv > small 
.then .vee u = (dx * 

.for j ,to n .do 

seal* nrmdx * .nrm v 
b) / dxv; v -< dx; 
b [, j J -< ( u [ j] * v) • od 

. f i 
.end 
.pr 

# inverse updating with u = dx # 
FEDX • pr ; 

6.3.5. Generalized inverse of analytic jacobian 

u 

The analytic jacobian is given by .proc jacobiar1 (see prelude nlsprl 

in section 6.1). We do not calculate the generalized inverse but only a 

singular value decomposition (see subsection 6.2.2.). 



6.3.6. Generalized inverse of difference approximation 

As in subsection 6.3.3 we have to choose values for the difference 

steps hi (i=1, ••• ,n) in such a way that the approximation is well defined 

and its error is as small as possible. Theorem 3.10 gives an upper bound 

i13 

on the approximation error e+(x) (cf. (6.2)). We obtain, with hi as in (6.8) 

(6.15) 

where 

and y(x) the Lipschitz constant of condition 1.6 for some open neighbourhood 

of x. Using the same lower and upper bounds as in subsection 6.3.3 we define 

the approximated optimal step h+ by 

r if 
~+ < ;;+ c1 2' 

(6.16) fi.+ = e:h, if C+ X e:2 :?: a~, 1 h 

/c+ I ~+' otherwise, 
2 c1' 

where 

(6.17) 

and y(x) is an approximation to y(x). Note that at/ o; does not depend on 

n+(x) so that we can choose ct and c; independent of n+(x). The initial 

approximation to y(x) is: y(x0) • 1. We only give a formal description of 

the computation of the difference step. Computation of the difference approx

imation with this difference step has to be done with the routine diffjac 

(see subsection 6.3.3). 

Description in.ALGOL 68 

.proc calgh = .seal : 

.pr XDEF CALGH .pr 

.begin nrmul:= nrmu2:• zero; .for i .to n 
.do .seal aid:= (one+ .abs x[i]) ** 2; 

nrmul +:= aid; nrmu2 +:= (one/ aid) 
.od I nrmul:• sqrt(nrmul); nrmu2:=sqrt(nrmu2): 
.seal cl:= nrmul * omga / two, c2:= nrmu2 * epf * two; 
h:= (.if cl< c2 .then one 

.elif cl• epsh ** 2 >• c2 .then epsh 

.else sqrt(c2 / cl) · 

. fi ) 
.end # calculation of difference step in generalized case# 
.pr FEDX .pr ; 
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6.4. APPROXIMATION OF REQUIRED DATA 

6.4.1. Introduction 

Most algorithms described in this chapter use approximate values of 

quantities depending on function and method (w, y, (3(x), K(x), e(x) etc. 

(see notation 5.1)). The method of approximating these quantities is de

scribed in this section. We assume that F, A E L(Rn) and (k=0,1, .•. ) 

satisfy condition 1.10 or, i:E generalized methods are considered, condition 

1.9. Moreover, we assume that w, y cf O and F(~) c/ 0 fork= 0,1'" ... 

We restrict attention to Newton-like algorithms with an approximation 

to the jacobian as described in section 6.3. So, only the· two st.rict inverse

updating algorithms generate 'le explicitly. In these inverse-updating algo

ri thrns we do not use any of the approximate values described in this section, 

for reasons that will become clear in subsection 6.5.1. So we may restrict 

attention to algorithms using approximations to the jacobian without explic

itly inverting these approximations. For simplicity we say that the processes 

considered in this section generate a sequence {(~,Bk)} for a gi.ven start

i.ng point (x0 ,B0 ), i.nstead of {xk,Hk)} for (x0H0 ). We have the relation 

-1 
or k 

depending whether classical or generalized inversion is used and assuming 

that i.n the first case the inverse exists. 

In the remaining part of this section we describe the actual approxi·· 

mation to the values of the relevant quantities. We assume that for some 
. k 

k 2 0 the sequence {(xi,Bi)\~o is generated by a given Newton-like process 

for starting point (x0 ,B0 ). We distinguish two cases 

1. Classical Newton-like methods. We assume that condition 5.3 is satisfied 

and that approximations si, 
A 

and IIB.11 to w(x.) (and wl, wi' ' e.' ni l. 1. :L 

s. ' Ki, ei' ni and IIB.11 are given for i < k. Note that we use an 
:L :L 

approximation to w which depends on the iteration index. We shall pay 

attention to this point in subsection 6.4.2. We want to calculate wk, Sk, 
Kk, i\ , ~k and II Bk II • 

2. Generalized Newton-like methods. We assume that I'', A= I (see remark 4.33) 

and (i~l, ••. ,k) satisfy condition 1,9 and that approximations 



rt, n! and lli\11 to y(x1) (and y), e;, rank(Bi), n: anci 

i < k. We want to calculate 1\, e~; r~, and 11:i\11. 
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II B. II are given for 
]. 

The description in ALGOL 68 of these calculations has been given at the 

end of this section. 

6.4.2. Approximation of wk 

Let condition L 5 be satisfied and J. (x) be nonsingular for some x E D. 

Then w(x) defined by 

(6.18) w(x) sup IIJ(x) 

yED 

y,fx 

(y) - Ill / lly-xll 

can be used in condition 1.7 and if condition 1.8 is satisfied for F, x and 

A then w defined by 

(6.19) (J) sup w(y), 
yESF (x,A) 

with w(y) given by (6.18) can be used in condition 1.10. However, using 

(6.18) leads to a rather elaborate computation to obtain w ("'],) and careful 

examination of the various applications yields easier and more efficient 

suggestions. We consider four possible situations in which an approximation 

to w(xk) or 1il is used. 

1. Application of remark 5.9 to obtain an a-priori estimate of the step 

length factor. This application is based on theorem 5.4. In fact, the 

formulation of the results is such that in the k-th step we can approxi

mate w by (6.19) with x replaced by¾· However, from remark 5.6 we see 

that this would yield a too strong condition and that we can apply (5.28) 

and (5.29) to obtain a reasonable estimate to w at the k-t..h iteration 

step. First note that, with x = ¾-l' we have for s = 1 and small t (see 

(5.16)) w(t,s) = z(t) and 

Furthermore, 
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-1 
z(t) = ~-1 - tBk-1Fk-1' 

xk = z (\-1 J. 

-1 
As Jk Fk is the direction in which a new iterate is searched for, we ex-

pect it to be a reasonable approximation to the direction z ( ,\_ 1 ) ·· p ( "k- l) • 

' -1 Assuming that is small we approximate this direction by Bk Fk. Now 

substituting s - 1 and t = Ak~l in (5.28) and (5.29) we obtain two lower 

bounds on the value of w(xk) to be computed 

II -1 -1 
(Bk-lBk - I)Bk Fkll 

ll~-xk.., 111 IIB~lFkll 

We shall approximate wk by 

-0 -1 

{ max(wk,wk), if 
(6. 20) wk 

wk-1' if 

Bk 'f' 

Bk 

II Bk.,..l \Fk -Bk \F kll 

11~-~-lll ii Bk \Fkll 

ii Bk \Fk-1-Bkc-1 \Fk···lll 

II X -x II II B \F II 
k k-1 k-1 k-1 

Bk-1' 

Bk-1. 

Notice that computing wk only requires computation of Bk_ 1\Fk and 

Bk\Fk-l in addition to what has to be done anyhow. As decompositions of 

and Bk-l are available, 

to compute wk is of order 
-0 -1 mation) then wk= wk= 0. 

the number of basic arithmetical operations 

• Furthermore, if = Bk-l (fixed approxi-

2. Application of theorem 3.16 to obtain an a-priori upper bound on the 

error in the jacobian approximation if update approximation is used (see 

corollary 5.15). As follows from the theorem we need in the k-th iteration 

step (k=1,2,. .. ) an approximation tow(~) on the set D0 = {zlz ~ 
-1 

¾-tBk Fk, t E [0,1]}, As Bk+l is not available the approximation qiven 

by (6.20) seems to be a reasonable alternative. 

3. Application of theorem 3.19 to obtain an a-priori upper bound on the 

error in the fixed jacob.ian approximation (corollary 5.17). For this case 

we can make the same observations as for the second case above. 
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4. Application of theorem 3.5, in order to obtain an a-priori upper bound 

on the error in the difference approximation to the jacobian, and (6.10) 

to compute the optimal difference step. For these cases (6.19) can only 

be simplified to 

w sup (y) - rll /II 
yEU (xk, o) 

yf~ 

\'n 2 ½ 
for 6 > 0 such that (li=l hi) < o. 
Bk= Jk then w! is a lower bound on 

If ~--l E U(x,li), Bk-l 

the desired value . 

The above cases suggest to use wk given by (6.20) except for application 4. 

Anyhow it is about the best we can with the information available. For the 

same reason, although we may expect to be too small in the fourth case, 

we also use wk in this case. Moreover, as calculation of wk is cheap, its 

use is very attractive. 

As is shown in sect.ion 6. 6 we shill also use wk in two other applica

tions. One, a failure criterion, is based on theorem 5.7 and therefore the 

same arguments as in case 1 hold for use of wk. The other is a convergence 

criterion based on theorem 5.18. The usefulness of wk in this case is dis

cussed in section 6.6. 

6.4.3. Approximation of yk 

+ 'The value of yk is used for obtaining a.n upper bound on the error ek 

in the difference approximation in generalized difference Newton met.hods 

and for computi.ng an optimal difference step according to (6.16). Further

more, it .is used in the condition for fixed approximation (corollary 5.17). 

Except for the last application we need an estimate to 

sup IIJ (y) - J 
XEU o) 

yf~ 

We like to avoid computation of additional jacobia.n approximations. There-

fore we use and 1 yielding 

IB 1-B I/Ii .-x I 
k- k k-·1 k 
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as an approximation. •ro compute a norm of Bk_ 1-Bk requires, however, storing 

of both Bk-land Bk. Therefore, we simplify this expression even more 

yielding 

(6. 21) II B v-B vii /II x. 1-xkll , 
k-1 k K-

where v = v 1/llv111, with elements of v 1 randomly chosen in [-1,+1]. 

6;4.4. Approximation of Sk 

To obtain an approximation to Skone may choose several x E SF(¾,A) 

and evaluate IIB(x)\Fkll, where B(x) is an approximation to J(x). We obtain an 

approximation to Sk by taking the maximum of the values obtained. However, 

this requires evaluation of an approximation to J(x) at other points than 

the iteration points, which is highly unattractive. Therefore, we use only 

Bk, the approximation to J(xk). So 

(6.22) 

If J(x) is reasonably smooth on (¾,A) and its condition number is not 

large relative 1, then 1\ is a good approximation to Sk. 

6.4.5. Approximation of Kk 

By notation 5. we have 

(6. 23) 

An appr·oximation to Kk is used for estimating an a-priori step length factor 

using remark 5.9 and for some stopping criteria. We distinguish three typi

cal choices for the matrix A in the level function (see 4.23). In fact, this 

defines three typical ways of implicit scal.ing (see remark 4018). 

1.A=L 

No implicit scaling is performed and restrained methods with such a 

choice are not affine invariant. Replacing Jk by Bk in (6.23) yields as 

an approximation to 

(6.24) IIB II IIB \F 11/IIF II. 
k k k k 
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Using the perturbation lemma 1.13 and the definition of 

show that 

i.t is easy to 

(L25) 

Hence, if ek is small then Kk is a. good approxi.mati.on to 

-1 
2. A= BO. 

Implicit scaling with the inverse of the jacobian approximation at the 

initial guess. 'l'his choice satisfies condition (4.24) for all nonsingular 

matrices TE L(lRn ). Hence affine invariant restrained methods can be 

constructed with this choice. Replacing Jk by its approximation Bk in 

(6.23) yields an estimate Kk to KJ/ 

For this estimate (6.25) holds with Kk replac·ea by Kk. Hence is a 

good approximation to Kk for small However, direct computation of 

IIB~1Bkll requires o (n3) basic arithmetical operations. Therefore we ap

proximate this norm yielding 

(6.26) 

where v ,., v/llv 111 and 

[-1,+1]. 

-1 
3. A = Bk • 

a vector with elements randomly chosen in 

With this choice we can also construct affine invariant restrained algo~ 

rithms. Replacing Jk by Bk in (6.23) yields as an approximation to Kk: 

(6. 27) L 

Note however, that the global convergence result 5.8 is not applicable 

to methods with variable A. Finally, 

+ 6.4.6. Approximation of IIBkll, nk and nk 

satisfies (6.25). 

For several matrix norms which are compatible with a vector norm, it 

requires only o(n2) arithmetical operations to calculate that norm of a 
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matrix. E.g. the infinity-, one- or Frobenius norms. One might choose II i\11 

equal to one of these norms of Bk. If a singular value decomposition of Bk 

is available, hence in all generalized algorithms, we simply choose 

where cr 1 is the largest singular value of Bk. For simplicity we choose in 

the other algorithms 

max 
1:::isn 

because the operator .ludec as well as the procedure used for triangular 

decomposition in our ALGOL 60 experiments yield this value as an auxiliary 

result. For other prog-ramming systems other choices may be more attractive. 

The approximation of nk is more complicated. In fact a computation of 

IIB- 1 11 requires explicit computation of Bk-l' also for other norms than the 
k 

spectral norm. This is very unattractive. Therefore, we use the approximation 

(6.28) 

a vector with elements chosen randomly in [-1,+1]. 

~+ Finally, approximation of nk is at hand: 

(6.29) 

with rt the approximated rank of Bk and, therefore, (Tf:t the smallest. nonzero 

singular value. 

6.4.7. Approximation of ek and e: 

+ Approximation of ek and ek depend on the choice of the approximation of 

the jacobian. We distinguish the basic choices of section 6.3. 

Inverse of analytic jacobian, 

Backward analysis of the triangu.lar decomposition process and considering 

numerical errors in the computation of J(x) ·(see (6,4)) yields that we, in 

fact, approximate J(x) by 
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(6.30) B 

where, with use of the approximate upper bound on IIE2 11 given in (6. 7), 

(6. 31 l IIE II:<:: s . IIJ(x)ll+s .; IIE2II s 16sn11BII. 
1 rJ aJ 

So, ek as defined in (5.4) is approximated by its approximate upper bound 

(6. 32) 

Inverse of d.ifference approximation. 

We can use formula (6.9) to approximate the error due to difference approxi

mation and (6.7) to approximate the error due to triangular decomposition. 

Including both errors, the inverse jacobian is in fact approximated by 
-1 

(Bk+E2) with E2 satisfying (6.31). Using lemma 1.13 (formula (1.6), with 

A = , B ~ Bk) we obtain for the error, including round off 

{ 6. 33) II (B +E ) -
k 2 

- rll :<:: ' + 
IIB~1

11 IIE211 

1-IIB~1IIIIE211 

where ' is the upper baud on the error due to difference approx.i.mati.on 

(see(6.9)). Therefore, an approximation to the error may be 

(6.34) 

with 

e 
k 

and c 1 and c2 given by (6.11). In our ALGOL 60 experiments we neglected the 

second term in the right hand side of (6.34). Only in very exceptional cases 

((almost) linear functions and (almost) exact computation of the function, 

so that wk and Ef (Y .. k) are (almost) equal to zero) this term is not negligible 

relative to the first one, Moreover, only large values of 

E) influence the Newton-like processes, 

(relative to 
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Inverse-updating approximation. 

If we use inverse-updating in ever:y step, then the error bound based on 

theorem 3.16 increases in ever:y step. In fact, this bound may become so 

large that it is useless for the applications we have in mind (for restrain

ing strategies (see section 6.5) or failure criteria). Therefore, in the 

basic inverse-updating algorithms we do not use an approximation to ek. 

Only if updating is performed conditionally we calculate such an approxima

tion. 

Generalized inverse of analytic jacobian 

Using (6.4) and the bound on the error due to round-off during the singular 
+ value decomposition (see subsection 6.2.2) we take as an approximation to ek 

(cf. (6.2)) 

(6. 35) nk((s .+ns)IIBkll+s .) • 
rJ aJ 

Generalized inverse of difference approximation. 

We can use (6.15) to approximate the error due to difference approximation 

and the bound given in subsection 6.2.2 due to singular value decomposition. 
+ So we take as an approximation to ek: 

(6.36) 

with and c~ given by (6.17). In our ALGOL 60 experiments we neglected 

m:11 i\11 relative to the other terms, as only in ver:y exceptional cases 

-+ and c 2 are (almost) equal to zero) this term is not negligible. 

In all cases we use 1-s as an upper bound on the approximated error in 

order to avoid arithmetic overflow in some parts of the algorithms. 

6.4.8. Approximati.on of the rank of Bk 

We disti.nguish between algorithms using triangular decomposi.tion and 

algorithms using singular value decomposition. In the first case we are 

only interested in a possible breakdmm of the process of triangular de

composition, in the latter we need an approximation to the rank of 
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Triangular decomposition. 

We say that Bk is singular if the process of triangularization breaks down 

with Erk=-£ (see subsection 6.2.1.), otherwise Bk is nonsingular (rank 

equals n). In section 6.6 we describe some failure criteria which relate 

singularity of Bk to the error in Bk as an approximation to Jk. 

Singular value decomposition 

If B is nonsingular then e +k = II J B -l - I II and e + < 1 guarantees that ;rk is 
k k k k 

nonsingular. We use this condition to approximate the rank 

we say that Bk is singular if the error bound is so large that nonsingularity 

of Jk cannot be guaranteed. Let Z = diag ( a 1 , ... , an) be the diagonal matrix 

of singular values of Bk. Notice that we have defined;,+·= 1/a-+ (see (6.29)), 
k rk 

Hence, the condition e; < 1, withe~ given by (6.35) or (6.36), yields the 

following definition of 

6.2. DEFINITION. The approximated rank 

than or equal ton such that 

(6. 37) 

where 

(6. 38) 

if the analytic jacobian is used and 

(6.39) 

if the difference approximation is used. 

6.4.9. Description in ALGOL 68 

of is the largest integer less 

We distinguish between calculation of required data in nongeneralized 

algorithms ( .proc cdatalr) and in generalized algorithms ( .proc cdatasv). 

In these routines we also perform the decomposition of the matrix and com

pute the direction of search. So, in those algorithms in which no data as 

described in this section is required (e.g. inverse-updating algorithms 

(see section 6.7)) we replace a call of one of these routines by the state

ments: 

dx := -b * f; nrmdx := .nrm dx; fO f; 
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.pcoc cdatalr • .void : 

. pr XDEF CDA'rALR . pr 

.begin .if it• l .then decb:• .heap .lud :• .ludec 
.lud blu): 

b • f i ; 
.case decb .in (.ref 
.begin .if fix .then 

• eJ if it • 1 
dx:= -(blu .sol f)1 beta:• 

.then dent+:• .l; .if .not .check blu 
.then torrix(warning,text5); ready .fi ; 

.nrm 

dx:• -(blu .sol f); beta:• .nrm dx; omga:• one; 
.if c .of a> 1 
.then deca .of a:= blu; slevel:• beta 
.else slevel:• nrmf .fi; xj:• x; fO:• f 

.else .vec dOl • blu .sol f; blu :• .ludec b; 
dent+:• l; .if .not .check blu 
.then torrix(warning, text5); ready .fi; 
.if c .of a• 2 .then deca .of a:• blu .fi; 
.seal oml:• .nrm ((blu .sol fO) * labda + dx); 
dx:• -(blu .sol fl; beta:= .nrm dx; 
.seal om:• .nrm (dOl + dx); 
oml /:• (nrmdx ** 2); om/:• (nrmdx * beta); 
omga:• om .max oml; xj:• x; fO:• f 

. fi ; nrmdx := beta; 
kappa:• .case c .of a .in 

nrm .of blu * nrmdx / slevel, 
.nrm (deca .of a .sol (b * v)) * nrmdx / slevel, 
l .esae ; 

dx 

eta:• .nrm (blu .sol v); .if it 1 .then etaO:• eta .fi; 
.seal aid:• eta* nrm .of blu * n * .widen 16 * small seal; 
.if anl 
.then e:• ej:• (eprj * nrm .of blu + epaj) *eta+ aid 
.elif dif 
.then e:= ej:• 

(.seal cl:• nrmul * omga / two, 
c2:• nrmu2 *eta* epf * two; 

c2:• c2 / h +cl* h; cl:• one - cl* h; 
c2: • ( cl < c2 ! one ! c2 / cl) ; 
(aid* two> one I one ! 
c2 + (one+ c2) *aid/ (one - aid))) 

.fi ; e:• e .min (one - small seal); 
ready: . skip 
.end .esac 

.end #computing data and step direction in case of lu decom I 

.pr FEDX .pr ; 



.proe edatasv = .void : 

.pr XDEF COATASV .pr 

.begin .if it= 1 .then decb:= .heap .svd := .svdec 
• case decb • in (. ref . svd bsv) : 
.begin . if .not fix 

.then ornga:= (it= l ! w:= b * v; one 
! .nrrn (w - (w:= b * v)) / nrmdx); 

.if it> 1 .then bsv:= .svdec b .fi ; 
dent+:= l; xj:= x; .if .not .check bsv 
.then torrix(warning, text6); ready .fi 

. fi ; 

.seal 

. seal 

.seal 

rnaxval:= .max sngval .of bsv; 
aid:= maxval * n * small seal; 
ck:= (anl ! maxval * eprj + epaj + aid 

!: dif ! nrmul * omga * h / two 
+ nrrnu2 * epf *two/ h + aid); 

.if it= l .then slevel:• nrmf .fi ; 

.if anl .or dif 

.then bsv:• ck .trims bsv; 
.int rk = .upb sngval .of bsv; 
eta:• one / (sngval .of bsv) [rk]; 
e:= ej:= (ck * eta) .min (one - small seal) 

.fi ; 
nrmdx:• .nrm (dx:= -(bsv .sol f)); 
kappa:= maxval * nrmdx / slevel; 
. if .nrm (u .of bsv * f) < epf 
.then torrix(warning, text3) .fi 

ready: .skip 
.end . e.sac 

b • fi 

.end I computing data and step direction in case of sv dee t 

.pr FEDX .pr ; 

125 
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6. 5. RES'rRlHNING S'I'RATEGY 

6.5.1. Introduction 

In this section we shall describe three possible restraining strategies 

together with the module used in strict algorithms to calculate a new point 

and its function value. Define the level function (cf. (4.27)): 

(6.40) t E [0,1], 

where z (t) = x-tHF (x) and A E L (11:l ) nonsingular. We can only guarantee the 

existence oft E [0,1] such that ¢(t) < ¢(0) (cf. (4.23))·, H the step direc

tion (-HF'(x)) is a descent direction for IIAF(y)II at y = x. Assuming that 

F and x satisfy condition 1.5, F(x) # O and J(x) is nonsingular, lemma 4.19 

states a sufficient condition for -HF(x) being a descent direction (see also 

condition 5.3 (vi)), viz. 

(6.41) e (x)K(x) < L 

Therefore, in our non-generalized restrained Newton-like algorithms we use 

such a condition (see section 6.6) in order to guarantee the existence of 

a step lengtl, factor.As is already mentioned in subsection 6A.7 the approx

imate error in inverse-updating algorithms is increasing in every step and 

may easily become too large. Therefore, we have no good way to quarantee 

existence of a step length factor in inverse-updating algorithms. As a con

sequence, we shall not consider restrained inverse-updating algorithms. In 

the generalized algorithms nonsingularity of the jacobia.n is not quaranteed. 

In these algorithms we simply try to find an appropriate step length factor 

and terminate the process if we can not find one. Note that we use approxi-

mations to Kk and which may be bad. 'l'herefore, condi.ti.on (6.41) :Ls not 

sufficient to guarantee existence of a step length factor. We shall use a.n 

additional failure criterion in order to avoid looping during restraining, 

which particularly may occur if numerical errors in the function are large 

relative to the required precision. This criterion is based on (6.3). Let 

E [0,1] be three successive attempted values for the step length 

factor, obtained by one of the strategies described in subsections 6 •. 5. 3, 

6.5.4 and 6.5.5), then the algorithm is terminated if 

(6. 42) (x), i 
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We choose ef (x) (see (6. 9)) instead of e:rfll F (x) II +eaf' just for ease of pro

gramming. This value is available in most algorithms and the essential effect 

is the same. Inequality (6.42) has to hold for three successive values, as 

for two values it might occasionally hold if z(t1) and z(t2 ) lie on different 

sides of a valley of ¢(t). Of course, there is still a chance that a reason

able p can be found although (6.42) is satisfied, but we think that this 

chance is small enough to be negligible. Due to (6.42) and the fact that 

flc(¢(0)) fort small enough, the restraining process is always 

terminating if successive values for the step length factor are decreasing 

to zero. 

Finally we give an ALGOL 68 description of a routine, which is used in 

all algorithms. This routine calculates the function value and the square 

root of the value of the level function. If the argument vector is out of 

the domain of the function then max seal is delivered. 

Description in ALGOL 68 

.pi:oc slefu = (.ref .vec x, f).scal: 

.pr XDEF SLEFU .pr 

.begin .func fu = fun(x); fcnt +:= l; .if in .of fu 
.then f:= f .of fu; 

(c .of a• 1 l .nrm f ! .nrm (deca .of a .sol f)) 
.else max seal .fi 

.end #computing function and level function# 

. pr FEDX . pr , 

We choose it(x,H) = 1, for all (x,H) ED x L(:R11 ). 

Description in ALGOL 68 

.proc strict• .void: 
XDEF STRICT • pr 

in x:• x + dx; slevel:= slefu(x, f); 
.if slevel • max seal .then torrix(warning, textll) 
.else nrmf:= .nr.rn f .fi 

.end I strict step with function evaluation at new point I 

.pr F'EDX .pr ; 
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6.5.3. Bisection. 

Let (x,H) E D x L (lRn). Suppose there exists an integer p ?'. 0 such that 

(6.43) p 

where N denotes the set of nonnegative integral numbers and~ is defined by 

(6.40). Then we choose 

;\ (x,H) 
-p 

2 • 

pis calculated by trying subsequently p = 0,1,2, •... 

Note that definition of the level function by .proc slefu is such that, if 
-i 

z(t) lies outside the domain D of F for some t = 2 E [0,1], then the pro-

cess is not terminated, but bisection is continued until a value is found 

which yields a point in the domain. Such a value exists as x ED and Dis 

open. 

Description in ALGOL 68 

.proc resbis = .void: 

.pr XDEF RESBIS .pr 

.begin .seal nrrnfl:= zero, slevell:= slevel 
.int i:= 0; labda:= two; 
.vec xl, fl; 
• while 

slevell >= slevel .and 
(.abs (nrmf - nrrnfl) <= epf 

(i = 2 ! .false ! i:= 2; .true) 
! i = 0; • true ) . or nrmfl = max seal 

.do labda /:= two; xl:= x + labda * dx; 
slevell:= slefu(xl, fl); 
nrmfl:= (slevell = max seal ! max seal .nrm fl) 

.od; 
x:= xl; dx:= labda * dx; f:= fl; nrmdx *:= labda; 
nrmf:= nrmfl; slevel:= slevell; .if i = 2 
.then .if anl .or dif 

.then torrix(warning, text2) 

.else e:= ej:= one - small seal; reset number of warnings 
. fi . fi 

.end I restraining with bisection and evaluation of function at 
new point# 

.pr FEDX .pr ; 
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N.B. If (6.42) is satisfied and conditional updating or fixed approximation 

is used (.not(anl .or dif)) then the process is not terminated. We first try 

an iteration step wi.th calculation of the analytic or difference jacobian, 

which is automatically induced in such algorithms if e and 

1 - E (see section 6.8 and 6.9). 

6.5.4. _:I:_nterpol.ation. 

are set to 

Let be given (x,H) E D x L(lRn). By successive quadratic interpolation 

we may determine tm E [0,1] such that ¢(tm) < ¢(0) and set 

A (x,H) t . 
m 

In our algorithms we first test whether the condition <j)(l) < ¢(0) is satis

fied. If this is true then :\(x,H) = 1; otherwise we use quadratic interpola

tion starting from the points t = 0, t = 0.5 and t = 1, to find a value 

t E 
m 

(0,1) satisfying ¢(tm) < <j)(O). In the interpolation algorithm, which is 

defined by .proc quad and .proc interp, we use the fact that,. fort small 

enough, ¢(t) < ¢(0) has to be satisfied. Interpolation is performed subse-

quently, with t = 0 and the two smallest approximations to tm found so far. 

As soon as a value is found for which the value of the levelfunction is 

less than ¢(0) we choose tm equal to this value. We use (E llxll+E )/IIBF(x)II rx ax 
as a lower bound on the value of :\(x,H). Two successive values differ at 

least with this value. If the lower bound is reached without finding an ap

propriate value, then the process is terminated. 

~iption in ALGOL 68 

.proc quad• (.seal v, fv, w, fw, z, fz) .seal : 
pr XDEF QUAD .pr 

# it is assumed that fz is the smallest function value i 
.begin .seal r:= (z - w) * (fz - fv), q:= (z - v) * (fz - fw): 

.seal p:= (z - v) * q - (z - w) * q q:• (q - r) * two; 

.if q >zero.then p:• .else q:• -q .fi ; 
(p >• (one - z) * q ! one : p <• -z * q ! zero ! p / q) 

.end I one quadratic interpolation step I 

.pr FEDX .pr ; 
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.proc interp = (.ref .seal fO, x, fx, b, fb, 
.proc (.seal ) .seal fun, .seal tol.) .bool : 

.pr XDEF INTERP .pr 
# it is assumed that fO = fun(O) and if interp delivers .true then 
xis such that fun(x) < fun(O) # 

.begin ,seal u; .bool bl; 
.while .if b > tol *two.then .not (bl:= fx < fO) 

,elae bl:= .false .fi 
,do u:= quad(b, fb, x, fx, zero, fO); 

.if u < tol .then u:= tol 

.elif u > x - tol 

.then u:= x / two 

.fi ; 
b:= x; fb:= fx; x:= u; fx:= fun(u) 

.od ; bl 
.end #interpolation with quadratic formula until function value 

less than fun{O) is obtained or interval becomes too small # 
.pr FEDX .pr ; 

.proc resint = .void 

.pr XDEF RESINT .pr 

.begin 
.proc fu= (.seal labda).scal.: 
.begin .vec xl:= x + labda * dx; slevell:= slefu(xl, fl) 1 

nrmfl: = ( slevell = max seal. ! max seal ! . nrm fl) ; 
{.abs (nrmf - nrmfl) > epf .or nrmfl = max seal 
! i:= 0 ! : i = 2 ! ready ! i:= 2) 1 
(smr .min slevell) ** 2 

.end I function to be interpolated#; 

.int i:= O; .seal slevell, nrmfl, smr:= sqrt(max seal); 

.vec fl; labda:= one; 

. seal level:= ( smr .min slevel) * * 2, levell = fu (one) ; 

.if levell >= level 

.then labda /:= two 
.seal b:= one, 1:= levell, flb:= fu(labda); 
.if .not interp(level, labda, flb, b, fll, fu, 

(nrmx * dlrx + dlax) / nrmdx) 
.then torrix(warning, textl) 
• f i 

• f i ; 
ready: dx *< labda; x +:= dx; nrmdx *:= labda; f:= fl; 

nr:mf:= nrmfl; slevel:= slevell; .if i = 2 
.then .if anl .or dif 

.fi 

.then torrix(warning, text2) 

.else e:= ej:= one - small seal; reset number of warnings 
•. f i 

.end I restrai with interpolation and evaluation of function at 
new point 

.pr FEDX .pr ; 

6. 5. 5. .A-priori estimation and control. 

Let be given (x,H) ED x L(JRn). Assume that the conditions of theorem 

5.4 are satisfied. Then, with¢ defined by (6.40) and use of notation 5.1, 

we have 

(6.44) ¢ (t) :S (c (x) (t)) 2¢ (0) t E [O,min(l,i;(x))], 

Note that c (x) (;;; {x)) = 1 and c (:x:) (t) is minimal on [O, I; (x)] fo:r t 

'rhe situation is illustrated by figure 6 .1. 

]J ( :x:) • 
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q>(t) 

_.t 

A possible strategy for choosing A(x,H) would be to choose it equal to 

min(1,µ(x)) as it gives the best upper bound on the function q>(t). However, 

(c(x) (t)) 2¢(0) is locally a good approximation of q>(t) but little is known 

when tis large. As figure 6.1 suggests, situations are imaginable in which 

µ(xl is a rather pessimistic choice for the step length factor and practical 

experience shows that repeated underestimation of the step length factor 

may result in slow convergence. Therefore, we will choose an initial estimate 

to A(x,H) based on the estimation of q>(t) by (c(x) (t)) 2¢(0), but we use the 

difference between the ¢(t) and its approximation (c(x) (t))¢(0) to decide 

whether we accept this value or choose a larger or smaller value. Then, no 

extra function evaluations are required if the first estimate to A(x,H) 

is accepted. Before describing the proposed strategy notice that 

¢' (0) -2[AJ(x)HF(x),AF(x)]. 

Therefore, ¢'(0) may be approximated by 
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2 
-211AF(x)II -2</> (0). 

Quadratic interpolation with (0,q,(0),<j,' (0) ~ $') and (s,</>(i';;)) yields an 

optimal value 

(q,(i';;)-q,(01+2</>(0)) ' 

where we have a minimum at q 0 if the denominator is positive. Denote~ 

min(1,~(x)) and ~(x) and </>opt are the approximated values of i';;(x) and </>opt 

obtained by using the approximations from section 6A. We use e as a first 

estimate to A (x,H). If <j, (t) is not small enough relative to <j, (0) and $ t 
op 

(Le. what can be obtained approximately) then we search for a smaller value 

using interpolation. If, however, q, ([;) is much less than expected (if <j, (~) < 

</>opt; we expect </>(tl = q,(0)), then we search for a larger step length factor 

by extrapolation. We define 

(6.45) A(x,H) if I ~ q,(t) < ½(¢ +q,(0)) ·· '!'opt opt 
or t 1 and¢ t > ¢(~) op· 
or qo E (0,t)' 

qi (O,t/2,t), if q(tJ ~ ~(~opt+<j,(0)), 

q (0,L 
e 

max(2~,min{q0 ,1))), 

if~ f- 1 and q0 i (O,t) and I > ¢(fl, 'Popt 

where q. (O,U2,~) is the first value less than or equal to ~/2, obtained by 
]. 

quadratic interpolation as described by .proc interp in subsection 6.5.3, in 

which the value of the level function is less than q,(0) and q (O,Lq0 ) i.s a e . 
value obtained by quadratic extrapolation, on (0,1]. In fact, quadratic 

extrapolation i.s performed as long as the level function in the extrapolated 

values decreases and the di.stance between successive extrapolated values is 

not decreasing, i.s precisely described by .proc extrap. 

Note that we always have A(x,H) ~ 1. Although i.t may be sensible to 

choose ;\(x,H) > 1 for some (x,H), we will not do so. At least asymptotically 

A(x,B) = 1 is a good value (see theorems 5.8 and 5.23) as convergence of 

such a generated sequence of iterates will be quadratic for appropriate 

jacobi.an approximations. It is not clear how to choose A(x,H) 2 1 i.n such a 

way that this asymptotic convergence behaviour i.s preserved. 



Description in ALGOL 68 

.proc resest = .void 

.pr XDEF RESEST .pr 

.begin 
.proc fu = ( .seal labda) .seal : 
.begin .vee xl:= x + labda * dx; slevell:= slefu(xl, fl); 

nrmfl:= (slevell = max seal ! max seal ! .nr:rn fl): 
(.abs (nrmf - nrmfl) > epf .or nrmfl • max seal 
! i:• O !: i = 2 ! ready! i:= 2); 
(smr .min slevell) ** 2 

.end # function to be interpolated#; 

.int i:= O; .seal slevell, nrmfl, smr:= sqrt(max seal); 

.vec fl; 

. seal level:= (smr .min slevel) ** 2, fiopt; 
,seal el:= e + one, t:• (dlrx * nrmx + dlax) / nrmdx; 
.seal nuO:• kappa* el/ two, nul:= {el* e *two+ one) / el; 
.seal nu2:= (one - kappa* e) / nuO; 
.if nu2 < O .then labda:= t; fiopt:= level 
.else .seal aidl:• nul * nul, alfa:= omga * beta; 

.seal three• .widen 3; 

. fi 

.seal aid2 = (sqrt(aidl + nu2 * three) - null / three, 
aid3 = (sqrt(aidl + nu2 *two* two) - null / two; 

.seal labdaopt = (aid2 >= alfa I one ! aid2 / alfa); 
labda:= (aid3 >= alfa ! one ! aid3 / alfa); 
aidl:• alfa * labdaopt; 
f:iopt:• (it= l ! one 

I one+ nuO * labdaopt * ((aidl + null * aidl - nu2)) 
** 2 * level 

!eve.le:• fu(labda), labdae:• labda; 
.if levele >• (fiopt + level) / two 
.then labda /:• two; .seal flb:• fu(labda); 

.if .not interp(level, labda, flb, labdae, levele, fu, t) 

.then torrix(warning, textl) 

.fi 
.elif levele < fiopt .and labda /= one 
.then .vee f2 • genvee(n); 

. proe fud • (. seal labda) . seal : 

.begin f2:• fl; slevel2:• slevell; fu(labda) .end 

.seal slevel2, aid:• labda *level* two; 

.seal p:= aid* labda, g:• (levele - level+ aid) * two; 
aid:• g * labdae; .seal labda2:• (labda '" two) .min one; 
.if g >• zero 
.then .if p > g .then 

.elif p < aid ,then 

.elif p >•aid* two 
f i ; 

l.abda2:• one 
labda2 :• labdae 
,then labda2:• p / q ,fi 

.if .not extrap(level, labda, levele, labda2, fud) 

.then fl:= f:2; slevell:• slevel2 .fi 
.fi ; 

ready: dx *< labda; x +:= dx; ncmdx *:• labda; f:= fl; 
nrmf:= nrmfl; slevel:• slevell; .if i • 2 
.then torrix(warning, text2) .fi ; 
. if ( fix . or upd) • and number of warnings > 0 
.then e:= ej:= one - small seal; reset number of warnings 
.fi 

.end I restraining with a priori estimation and control I 
,pr FEDX .pr ; 
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.proc extrap = (.ref .seaJ. fO, x, fx, y, .proc (.seal ).seal fun) 

.bool 

.pr XDEF EXTRAP .pr 
# it is assumed that fx < fO, fO = fun(O) and .true is delivered if 

we stop due to a too small step# 
,begin .bool b:= .true; 

.if y - x > x .or y = one 

.then .seal fy:= fun(y), u; 
.while b:= fy < fx 
.do u:= quad(zero, fO, x, fx, y, fy); x:= y; fx:= fy; 

.if u = zero .then u:= one .fi 

.od 
.fi ; 

end: b 

.if u - y <= y .then end .fi; 
y:= u; fy:= fun(u) 

.end # extrapolation until minimum is passed# 

. pr FEDX . pr ; 
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6.6. S'r0PPING CRITERIA 

6.6.1. Criteria for convergence 

An important aspect of a Newton-like program is the stopping rule. For 

a converging sequence {xk}==O we need some criterion to determine whether 

the iterate obtained can be considered a good approximation to the solution. 

We can think of two. possible criteria: 

(6. 46) for some k, 

where of is some prescribed tolerance and 

(6.47) o llx II + 
rx k for some k, 

where orx and oax are prescribed tolerance values. If J(x) satisfies conch

* tion 1.6 or 1.7 and + 8(¾-x) ED for 0 E [0,1], is a solution of 

* F(x) = 0 and¾ is the approximation to x in the k-th step, then by lemma 

L 15 or 1 .16 we have 

(6.48) 

So, if II is small and IIJ(;i/) (xk-i/) II large (hence IIJ(:i/) II large) then 

II F (¾) II will be large and in such cases (6. 46) will only be satisfied for 

relatively close to x*. However, if IIJ(x*) (¾-x*)II is small relative to 

*11, then (6.46) will be satisfied if llxk-x*II is still relatively large. 

In practice it depends on the problem to be solved which criterion is most 

desirable. Sometimes, only an argument vector :x* is required for which 

II F.' (:x *) II is small, sometimes the error in the argument vector itself has to 

be small. Therefore, we like to use both criteria and the user may adapt 

them to his problem by choosing appropriate values for and c5 a:x 
Clearly, (6.46) can easily be used, however, (6.47) cannot be evaluated 

* as x is not known in advance. To obtain a reasonable upper bound we use the 

nonlinear majorizing sequence defined in the proof of theorem 5.18 (see also 

MIEL [1977]). For short we delete the subscript k in ¾ and denote ¾+1 by 

x. Then we can apply theorem 5.18 assuming that the iterative process is 

started with x and the conditions.of the theorem are satisfied. 
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Then 

Hence, since s0 II x-xll for strict Newton-like methods we have 

From (5.55) we see that 

2 

and therefore we have 

L 

"rhus x satisfies the convergence criterion if 

(6.49) llx-xll s (o llxll + c5 )/(~/§0--1). 
rx ax 

6.3. REMARK. If IIF(x)II is small and the condition number of the jacobian 

approximation is not large relative to 1, then '§0 is small. As lim ~/S0 = 1 
* - so+o 

we see that the closer xis to x, the smaller is s0 and the larger is 
- - -1 * - - -1 (s/S0-1) . In fact if xis close to x then (~/s0-•1) will be greater than 

1 and criterion (6.49) is easier satisfied than e.g. llx-xll ::: cS llxll + o 
rx ax 

Based on (6.49) and using the approximations to various quantities as 

given in section 6.4 we obtain the following convergence criterion on the 

variables 

(6.50) 

where 

5 ( o II x II - o ) /¢ , 
rx k+l ax k 

+ ,k 1. 
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Note that Sk ~ II K F II which is the exact value to be used. Furthermore we · k k 

need an approximation to w(xk) on a neighbourhood of xk. Clearly, wk is an 

approximate lower bound to this value as it is only based on approximating 

the Lipschitz constant in certain directions. Thus, it is not qua.ranteed 

that (6.47) is satisfied if (6.50) is satisfied. The usefulness of (6.50) 

has to be established experimentally. 

To summarize, in the nongeneralized Newton algorithms we use (6.46) and 

(6.50). For the restrained algorithms we add the condition = 1. We make 

an exception for the inverse-updating Newton algorithms. For these algorithms 

and for the generalized algorithms we use condition (6.46) together with 

(6. 51) 11~+1 - ~II ~ o llx II + o 
rx k+1 ax 

6.6.2. Failure criteria 

We distinguish two kinds of failures. 

Failu.re resulting in term.ination of t.he algorit.hm wit.hout completing the 

iteration step. 

'.rhese are: 

a. divergence out of the domain of the function in strict algorithms, 

b. numerical singularity of the jacobian approximation if triangular 

decomposition is used (see subsection 6.2.2), 

c. trespassing the boundary of the domain D during computation of a 

difference approximation, 

d. finding a stationary point of the levelfunction which is no solution. 

2. Failure resulting in termination afte.r completion of the iteration step. 

During computation situations might occur which make termination after 

completing the iteration step sensible or necessary. Examples are 

a.. no better value for the levelfunction can be found due to numerical 

errors in the function values (condition (6.42)), 

b. the approximate error bound for the jacobian approximation is so large 

that nonsingularity of the jacobian can not be quaranteed. 

We shall now define precisely what is meant by 1.d and 2.b. 

Finding a stationary 

Let for some k, 

point 
T 

Z +V 
l\ 1 

(ad Ld) 

be the corresponding singular value decomposition. 
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Then we say that Y): is a stationary point of IIF(x)ll 2 if (cf. theorem 4.31) 

(6.52) 

This condition is given in .proc cdatasv (subsection 6.4,9). 

singular jacobian expected (ad 2.b) 

We want to develop a criterion for non-generalized algorithms, which indi

cates at an early stage that a (nearly) singular jacobian is expected. If 

such a criterion is available, then we may use a non-generalized algorithm 

until the criterion is satisfied and then switch to a generalized method. 

For non-generalized algorithms, this would avoid slow convergence to points 

with a singular jacobian which are no solution. Of course the criterion 

should not disturb the behaviour of the algorithms if the jacobian (approxi

mation) is well-conditioned. 

Consider non-generalized algorithms using approximations to required 

data as in section 6.4 and assume that the functions considered satisfy the 

conditions of theorem 5.7 for some (x,H) ED x L( ) , with 8 ~ 2 (we choose 

this value and not a value close to 1 in order to avoid numerical problems). 

Then conditions (5.11) and (5.30) become 

2e (x) K (x) 5 1 

and a real number T has to exist such that 

By theorem 5.7 we have, provided that the step length factor is chosen 

appropriately, 

IIAF (x,H)JII :c; (1 - 8 )IIAF(x)II. 

In order to guarantee that the decrease in II AF (x) II is not of the order of 

the numerical errors in (F(x)) we demand (using (6.3)) 

1.611AII E: (x). 
f . 

So, using the upper bound on T, we obtain as a failure criterion 
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(6.53) 

where llj\JI equals 1 if A = I, n0 if A = HO and fik if A = I\· In the derivation 

of this inequality we used several upper bounds which may be somewhat rough. 

Therefore, we relax this failure condition with a factor. For easiness of 
.2 .2 

programming we dropped the factor 16 and changed 16ak into 4ak. In addition 

to this failure criterion we use 

(6.54) 

The condition 2ekKk s 1 was a premise for the above reasoning. Moreover, it 

guarantees that the jacobian matrix is nonsingular and that a descent direc

tion can be found (see (6.41)). 

The usefulness of the relaxed criterion (6.53) and (6.54) as criteria 

for switching from non-generalized algorithms to generalized algorithms has 

to be established experimentally. 

6.6.3. Description in ALGOL 68 

We give one routine for generalized algorithms and inverse updating 

algorithms ( .proc stopspl) and one for the other Newton-like algorithms 

(.proc stopful). Note that the failure criteria (6.53) and (6.54) are used 

only if save~ .true . 

. proc stopspl = .bool 

.pr XDEF STOPSPL .pr 

.if nrmf = zero .then reset number of warnings; .true 

.elif nrmdx <= dlrx * nrmx + dlax .and nrmf <= dlf 
• then reset number of warnings; . true 

.elif it>= maxit 
. then torr ix (warning, text4) ; . true 

.else number of warnings> O 

.fi I simple convergence and failure criteria# 

.pr FEDX .pr 
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.proc stopful = .bool 

.pr XDEF STOPFUL .pr 
• if nrmf = zero . then reset number of warnings; . true 
.else .seal ksil:= (one+ e) / (one - e), 

ksi2:= (one - (e + two) * e)/(one - e), 
alfa2:= omga *beta* two, 

. if ( labda < one . or e >= sqrt ( two) - one . false 
nrmf <= dlf .and 
(.seal al= alfa2 * ksil, k2 = ksi2 * ksi2; 
(al< k2 ! nrmdx * (two/ (ksi2 + sqrt(k2 - al)) - one) 
<= (dlrx * nrmx + dlax) ! . false ) ) ) 

• then reset number of warnings; . true 
.elif it= 1 .and (e <= one - small seal .or .not safe) 

.then .false 
.elif safe .and e *kappa* two> one .and (dif .or anl) 

.then torrix(warning, text8); .true 
. el if safe • and 

(.seal tau2i = (((one+ kappa* two) * alfa2)**2) .max one; 
slevel <= epf * tau2i * 

(.case c .of a .in one, eta0, eta .esac )) 
.then torrix(warning, text9); .true 

.elif it >= maxit .then torr.ix(warning, text4); .true 

.else number of warnings> O 

.fi 
.fi # full convergence and failure criteria# 
.pr FEDX .pr ; 
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6.7. SYNTHESIS OF BASIC NEWTON-LIKE ALGORITHMS 

In this section we synthesize the basic Newton-like algorithms from 

the basic modules given in section 6. 2 up to 6. 6. 'l'he structure of these 

algorithms is already described in section 6.1. We are still free to choose 

the restraining strategy and the method of approximating the inverse jacobian 

from the various possibilities given in sections 6.3 and 6.5. The other mod

ules are determined by these choices, except for the initial choice of the 

jacobian approximation. However we shall choose the initial approximation 

in the same way as is done in the iteration step, except for the inverse

updating methods. In the last. methods we choose HO equal to the inverse of 

the difference approximation to the jacobian. As far as r~straining is con

cerned we are free to choose the matrix A defining the level. function (6.40). 

However, such a choice induces implicit scaling of the function, which is to 

be considered together with explicit scaling as an optional feature that. can 

be built in one or more basic algorithms. In the basic algorithms we choose 

A= L 

We summarize the various choices for restraining and approximation of 

the inverse j acobian which have been described h1 former sect.ions. 

Rest.raining 

(S) No restraining (strict) (subsection 6.5.2). 

(Bl Bisection (subsection 6.5.3). 

(I) Interpolation (subsection 6.5.4). 

(El A-priori estimation and control (subsection 6.5.5). 

Approximation of inverse jacobian 

(A) Inverse of analytic jacobi.an (subsection 6.3.2). 

(DJ Inverse of difference approximation (subsection 6.3.3). 

(U1,U2) Inverse-updating by the two methods described in subsection 6.3.4, 

respectively. 

(GA) Generalized inverse of analytic jacobian (subsection 6.3.5). 

(GD) Generalized inverse of difference approximation to the jacobian (sub

section 6.3.6). 

As is already discussed in subsection 6.5.1 we do not consider re

strained inverse-updating Newton ·methods (B, I or E). 
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A-priori estimation and control of the step length factor (El is not 

used in generalized algorithms. The theory on which this strategy is based 

demands a nonsingular jacobian matrix. 

In order to show the effect of the special failure criteria (6.53) and 

(6.54) we have added to our basic set a strict Newton and difference Newton 

method which do not use these criteria (we added a W to the name to distin

guish them from the others). 

The names of the basic Newton-like algorithms are composed from the 

capitals between the parenthes.es before the particular choices above, start

ing with the capital(s) denoting approximation of the inverse jacobian. 

We obtain the following 18 basic Newton-like algorithms. 

L ASW, AS, AB, AI, AE, 

2. DSW, DS, DB, DI, DE, 

3. U1S, U2S, 

4. GAS, GAB, GAI, 
,. 
::,. GDS, GDB, GDL 

Description in ALGOL 68 

We shall not define all 18 basic programs. We only give 5 examples: 

AB, DB, U2S, GAS and GDS. The definition of the other programs can easily 

be derived from these example programs. 

We shall give first a procedure which causes resetting of some input 

parameters if these are apparently wrong • 

• proc default= .void : 
.pr XDEF DEFAULT .pr 
.begin .if eprf < small seal 

.then torrix(warning, textl3); eprf:= small seal .fi 

.if epaf < zero 

.then torrix(warning, textl4); epaf:= zero .fi ; 

.if eprj < small seal 

.then torrix(warning, textl5); eprj:= small seal .fi 

. if epaj < zero 

.then torrix(warning, textl6); epaj:= zero .fi; 

. if dlf < epaf 

.then torrix(warning, textl7); dlf:= epaf .fi ; 

.if dlrx < small seal 

.then torrix(warning, textl8); dlrx:= small seal .fi; 

.if dlax < small seal 

.then torrix (warning, textl9); dlax:= small seal .fi 
.end # resetting to default of wrongly given precisions# 
. pr FEDX . pr ; 



.proc ab= ,bool : 
# restrained Newton algorithm (with bisection)# 
.begin .bool bl; anl:• .true; 

it:• dent:= O; fcnt:• l; 
e:= zero; omga:• beta:• kappa:• eta:= labda:• one; 
v:• genranvec(n)1 default; 
.if number of warnings/• 0 .then copyerrorfile ,fi 
x:• xO; nrmx:• .nrm x; .func fu • fun(x); 
.if .if .not in .of fu 

.then torrix(warning, textl2); .false 

.else f:• f .of fu; nrmf:= .nrm f1 
epf:• (eprf + small seal) * nrmf + epaf; nrmf > minscal 

.fi 
.then b:• jacobian{x); jcnt:• l; 

.while it+:• l; cdatalr; 
.if number of warnings> 0 .then .false 
0else resbis; nrmx:= ~nrm x; 

.fi 

epf:• (eprf + small seal) * nrmf + epaf; 
. not stopfu1 

.do b:= jacobian(x); jcnt +:= 1 .od 
.fi ; .if .not (bl:• number of warnings 0) 
.then copyerrorfile .fi; bl 

.end #ab#; 

.proc db= .bool : 
# restrained difference Newton algorithm {with bisection)# 
.begin .bool bl; dif:= .true; 

it:• dent:= O; fcnt:= l; 
e:= zero; omga:= beta:= kappa:= eta:= labda:= one; 
v:= genranvec(n); default; 
. if number of warnings /= 0 • then copyen:orfi.le • fi 
x:"' xo nrmx:= .nrm x; • func fu = fun{x); 
.if .not in .of fu 

.then torrix(warning, textl2); .false 

.else f:= f .of fu; nrmf:= ,nrm f; 
epf:= (eprf + small seal) * nrmf + epaf; nrmf > minscal 

fi 
.then calh; b:= diffjac(x); 

.while it+:= 1; cdatalr; 
.if number of warnings> 0 .then .false 
.else resbis; nrmx:= ,nrm x; 

.fi 

epf:= (eprf + small seal) * nrmf + epaf; 
.not stopful 

.do calh; b:= diffjac(x) .od 
.fi .if .not (bl:= number of warnings 0) 
.then copyerrorfile .fi; bl 

.end # db #; 
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.proc gas• .bool : 
# strict generalized Newton algorithm# 
.begin .bool bl; anl:• .true; safe:• .false; 

it:• dent:= O; fent:= l; 
e:= zero; omga:• beta:• kappa:• eta:• labda:= one; 
v:= genranvec(n); default; 
,if number of warnings/= 0 .then eopyerrorfile .fi 
x:• x(J; nrmx:= .nr.m x; .fune fu = fun(x); 
.if .if .not in .of fu 

.then torrix(warning, textl2); .false 

.else f:= f .of fu; nrmf:= .nrrn f; 
epf:• (eprf + small seal) * nrmf + epaf; nrmf > rninscal 

.fi 
.then b:= :iaeobian(x); jcnt:= l; 

.while it+:= l; cdatasv; 
.if number of warnings> 0 .then .false 
.el.if strict; number of warnings> 0 .then .false 
~else nrrnx:= ~nrrn x; 

.fi 

epf:= (eprf + small seal) * nrmf + epaf; 
.not stopspl 

.do b:= jacobian(x); jcnt +:= l ,od 
. fi ; . if . not (bl:= number of warnings 0) 
.then copyerrorfile .fi ; bl 

.end #gas#; 

.proc gds = .bool : 
# strict generalized difference Newton algorithm# 
.begin .bool bl; dif:= .true ; safe:= .false; 

it:= dent:= O; fcnt:= l; 
e:= zero; ornga:= beta:= kappa:= eta:= labda:= one; 
v:= genranvec(n); default 
. if number of warnings O • then copyerrorfile . fi 
x:= xO; nrmx:= .nrrn x; .func fu = fun(x); 
.if .if .not in .of fu 

.then torrix(warning, textl2); .false 

.else f:= f .of fu; nrmf:= .nrm f; 
epf: = ( epr f + small seal) * nrmf + epaf; nrmf > minscal 

.fi 
.then calgh; b:= diffjac(x); 

.while it+:= l; cdatasv; 
.if number of warnings> 0 .then .false 
.elif strict; number of warnings> 0 .then .false 
.else nrrnx:= .nrm x; 

• fi. 

epf:= (eprf + small seal) * nrmf + epaf; 
.not stopsp1 

.do calgh; b:= diffjac (x) .od 
.fi ; .if .not (bl:= number of warnings 0) 
. then co· yerrorfile . fi ; bl 

.end # gds #; 



.pcoc u2s = .bool 
* inverse-updating Newton algorithm* 
.begin .bool bl; it:= dent:= O; fcnt:= l; 

omga:= beta:= kappa:= eta:= labda:• one; 
default; 
.if number of warnings/= 0 .then copyerrorfile .fi 
x:= xO; nrmx:= .nrm x; .func fu = fun(x); 
.if .if .not in .of fu 

.then torrix(warning, textl2); .false 
,else f:= f .of fu; nrmf:= .nrm f; 

epf:= {eprf + small seal) * nrmf + epaf; nrmf > minscal 
.fi 

.then calh; b:= diffjac(x); 
.lud lub:= ,ludec b; .vec e =zero.into genvec(n); 
. for j • to n 
. do e [ j l : = 1; b [ , j l : = l ub . sol e; e [ j l : = O • od ; 

.while it +:= l; dx:"' - (b * f); nrmdx:= .nnn dx; 
fO:= f; strict; 
.if number of warnings >O .then .false 
.else nrmx:= .nrm x; 

.not stopspl 
.fi 

.do invupd2(b) .ad 
.fi; .if .not (bl:• number of warnings 0) 
.then copyecrorfile .fi ; bl 

. end # u2s #, 
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6.8. CONDITIONAL USE OF APPROXIMATION BY UPDATING 

This feature is described in corollary 5.15 and remark 5.16. It is 

applicable to a.ll basic Newton-like methods which compute approximations 

to ek, wk and Kk in every iteration step. These are A(S, B, I or E) and 

D(S, B, I or E). As approximation by updating requires no extra function 

evaluations, it can be used more economically than difference approximation 

or possibly even evaluation of the analytic expressions for the jacobian. 

Note that conditional use of updating might increase the number of iteration 

steps required to solve a problem within a certain precision. Experiments 

have to establish the usefulness of this strategy. 

We use update approximation and no .inverse--update approximation, as we 

have no explicit inverse of the jacobian approximation in the algorithms 

under consideration and calculation of ah explicit inverse is, for large 

order, about as expensive as two iteration steps. 

In the definition as given in corollary 5.15 we have to replace 

V(u) (H,x, (x,H)) by (Ll(u) (B,x, (x,B- 1)))-l (H ~ B-·l) and the constants by 

their approximations as given in section 6.4. Furthermore, we choose 0 ~ 1 
- -1 

and K('l1 1 (x,B )) is approximated by the approximation of K(x). We add one 

extra condi ti.on for practical reasons. 'l'his is 

(6. 55) e 

'.rhis is done to avoid slow convergence if, due to updating, the error be-

comes almost 1, which is possible if the condition number is about 1. We 

also refer to the condition ek < -1+/2 in theorem 5.18. The value 0.1 is 

chosen after some experimental tests. 

If during the restraining no appropriate value of A(x,H) can be found, 

then this might be the result of bad approximation of the required quanti-· 

ties. Therefore, the algorithm is not terminated if in this iteration step 

an update approximation was used, but it is forced to perform a normal 

iteration first (with a.nalytic jacobian or difference approximation) . 

we do not use updating in the first two iteration steps. The approxi-

mation is expected to be reasonable only after computation of data in 

the second iteration step. Note that, if conditional updating used, 



ek+i is calculated in .proc conupdjac instead of in .proc cdatalr. 

Description in ALGOL 68 

.proc conupdjac • (.proc (.vec) .mat jacapp) .mat 

.pr XDEF CONUPD .pr 

.begin .seal pu; .vec u; 
.if (.if it• l .or e >• onetenth .or .not update 

"then • false 
.else u := decb .solve (f - fO); 

pu := dx * u; .seal nrmu .nrm u; 
e:• (e / (one - e) + (one+ nrmdx * .widen 3 / 

(nrmu * two)) * nrmdx * omga) * (one+ e); 
kappa* e <one.and e < onetenth 

. fi ) 
.then upd:• .true; 

.vec 

.do 
b 

q • f + fO * (labda - one); .for j .to n 
b[,j] +< ( (u[j] / pu) * q) .od ; 

.else upd:• .false ; jacapp(x) .fi 
.end # conditional updating with jacapp # 
.pr FEDX .pr ; 

Modification of e.g. algorithm AB is obtained by adding after the 
statement: • jcnt:• 11" the statement: "upd:• .false;". 
Furthermore, replace "b:• jacobian(x); jcnt +:• l" by: 
• b:• conupdjac(jacobian); 

.if anl:• .not upd .then jcnt +:• 1 .fi • 

147 
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6.9. CONDITIONAL USE OF FIXED APPROXIMATION 

Conditional use of fixed jacobian approximation is based on corollary 

5.17. It is applicable to all Newton-like algorithms described in section 

6.7 except for inverse-updating algorithms. We need different conditions for 

algorithms using triangular decomposition and those using singular value 

decomposition. These conditions follow from the theorems 3.19 and 3.20 re

spectively. To obtain a fixed approximation as well as its decomposition 

does not require additional computation. Hence it may be very attractive to 

incorporate this feature. The negative effects of greater errors in the 

jacobian approximation, probably yielding slower convergence, can hardly be 

estimated theoretically. Experiments have to establish the practical use

fulness of this feature. 

Let ~' = (1¥ 1 , 1¥ 2 ) be an appropriate Newton-·like process (associated with 

a basic Newton-like algorithm except for U1S or U2S). Then, the k-th itera

tion step (k> 2) of the modified process iji = ( iji 1 , iji 2 ) say, generating { (y"k, Hk) } 

for given (x0 ,H0 ), is defined by 

where ek+l is the a-priori estimation to ek+l if fixed approximation would 

have been used: 

eJ,+l. e. + w (l+e.) II x -x. II, if triangular decomposition is 
• J k :J k+l J 

used, 

ej + ykn; ll~+l + xjll, if singular value decomposition is 

used, 

and where j is the greatest index less than or equal to k such that 

o/(x. 1 ,H. 1l='l'(x. 1 ,H. 1). Note that we also use condition (6.5r:i) in this 
J- J- J- J- -+ 

case. Furthermore, note that if fixed approximation is used then rk = n, 

hence if singular value decomposit_ion is used it follows from subsection 
-+ 6.4.8 that rk+l- = n. 



Moreover, for j $ i $ k, we have wi 

Description in ALGOL 68 

.proc confixjac = (.proc (.vec ).mat jacapp) .mat: 

.pr XDEF CONFIX .pr 

.if (.if it= 1 .then .false 
.else e:= ej + .nrm (x - xj) * omga * (one + ej); 

kappa* e <one.and e < onetenth 
.fi ) 

.then fix:• .true; b 

.else fix:• .false ; jacapp(x) .fi 
# conditional fixed approximation in case of lu decomp. # 
.pr FEDX .pr ; 

.proc confixjacg • (.proc (.vec) .mat jacapp) .mat 

.pr XDEF CONFIXG .pr 

.if (.if it• l .then .false 
.else e:• ej + .nrm (x - xj) * omga * eta; 
kappa* e <one.and e < onetenth .and 

.case decb .in (.ref .svd bsv): .upb sngval .of bsv • n 

.esac . fi ) 
.then fix:• .true I b 
.else fix:• .false ; jacapp(x) .fi 
# conditional fixed approximation in case of sv decamp. # 
.pr FEDX .pr ; 

Modification of the basic algorithms is as for conditional updating 
with "upd" replaced by "fix". 
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6.10. IMPLICIT AND EXPLICIT SCALING 

Consider the restrained basic Newton-like algorithms of section 6.7 

which use triangular decomposition. A choice of the matrix A in the defini

tion of the level function (6.40) is equivalent with scaling of the function 

with A (we say implicit scaling) (see remark 4.18). We have restricted atten

tion to three ways of implicit scaling ( see subsection 6 ,4. 5) : ( 1) A = I, 

(2) A H0 , (3) A= Hk. The last two choices yield affine invariant methods. 

(Note that the convergence theory of chapter 5 does not hold for variable A). 

Although the last two choices yield affine invariant methods, use of finite 

arithmetic can spoil this property. For instance, if we compute TJk \'l'Fk then 

we may obtain another result than if we compute Jk\Fk, as the errors depend 

on the condition number of TJk and Jk, respectively. Implicit scaling with 

choice (2) or (3), only influences the restraining strategy and not the 

solution of the linear system. 

Explicit scaling of r11e function and variables is described in subsec

tion 1.3.6. It is in fact based on scaling of the jacobian approximation at 

the starting guess with diagonal matrices n1 and n2 satisfying (1.33) and 

(1.34) (with A replaced by B0 ). A description, in ALGOL 68, of the matrix 

scaling is given in subsection 6.2.3. 

We shall consider implicit scaling for the restrained algorithms 

A(B, I 1 E) and D(B, I 1 E) and explicit scaling for all algorithms, as far as 

these algorithms appear to be useful from the general testing. 

Description in ALGOL 68 

Implicit scaling is obtained by assigning an appropriate value 

to c .of a (see prelude nlsprl) in the initial phase of the iterative 

process. 

Explicit scaling is illustrated by the following example program, 

which defines algorithm AB with explicit scaling. 



.proc scab= .bool : 
I restrained Newton alqorithm with explicit scaling I 
.begin .bool bl; anl:= .true ; 

it:= dent:= O; fcnt:= l; 
e:= zero; omga:= beta:= kappa:= eta:= labda:= one; 
v:= genranvec(n); default; 
. if number of warnings /= O • then copyerrorfile • fi 
x:= xO; nrmx:= .nrm x; .func fu:= fun(x); 
.proc (.vec) .func oldfun; .proc (.vec) .mat oldjacob; 
.scldmat scb; 
.ref .bool scr • scr .of scb, sec= sec .of scb; 
.ref .vec rows= rows .of scb, cols= cols .of scb; 
.if .if ,not in .of fu 

.then torrix(warning, textl2); .false 

.else f:= f .of fu; nrmf:= .nrm f; 
epf:= (eprf + small seal) * nrmf + epaf; nrmf > minscal 

.fi 
.then jcnt:= l; b:= jacobian(x); scb:= .scale b; 

.if sng .of scb .then torrix(warning, textS) 

.elif scr .or sec 

.then oldfun:= fun; oldjacob:= jacobian; 
fun:- (.vec x) .func : 

(. func fu:= old fun ( ( sec ! x .dmul cols ! x)); 
.if scr .then f .of fu:= f .of fu ,dmul rows 
• f i ; fu) ; 

jacobian:= (.vec x) .mat 
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(mat ,of scb:= oldjacob((scc ! x .dmul cols x)); 
scb:= .scale scb; mat .of scb); 

,if sec .then x:= cols .dimul x .fi ; 
.if scr .then f:= rows .dmul f .fi ; 
nrmf • .nrm f; epf:• (eprf + small seal) * nrmf + epaf 

. fi ; 

.while it+:• l; cdatalr; 
.if number of warnings> 0 .then .false 
.else resbis; nrmx:= .nrm x; 

• fj_ 

epf:= (eprf + small seal) * nrmf + epaf; 
.not stopful 

.do b:= jacobian(x); jcnt + 1 .od 
. fi 
.if sec .then x:= cols .dmul x .fi ; 
.if scr .then f:= rows .dimul f .fi ; 
• :i.f sec .or scr 
.then b .bckscale scb; fun:= oldfun; jacobian = oldjacob 
. fi ; 
.if .not (bl= number of warnings= 0) 
.then copyerrorfile .fi ; bl 

.end I scab#; 
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6.11. REDUCTION OF PROBLEMS WITH LINEAR FUNCTION COMPONENTS 

Suppose that the problem F(x) = 0 can be splitted. in a linear problem 

Ax-b = 0 and and a nonlinear problem F (x) = 0, with F : D + lRn-p and A a 

p x n matrix with rank equal top. Then, according to theorem 1.27 we may 

reduce the nonlinear problem of order n to a nonlinear problem of order n-p, 

yielding 

G(z) 
- + 
F(A b+V2zJ, 

where v2 is given by (L15) and (1.17). For the jacobian of G we have (cf. 

remark 1. 28) 

G' (z) 

Q.~scription in ALGOL 68 

.proc 1'.educenewt = ( .proc .bool newt) .bool : 
# newt gives the Newton-like program with which the reduced problem 

has to be solved# 
.pr XDEF REDNEWT .pr 
.begin .proc (.vec) .func oldfun; .proc {.vec) .mat oldjacob; 

.int m = .upb xO, p = 1 .upb la; 

.mat aO = zero .into gensquare(m); 
aO[l:p,l:m] := la; .svd asvO:= .svdec aO; 
.seal eps = .max (sngval .of asvO) * small seal* ten; 
.svd asv:= eps .trims asvO; 
.int r = .upb (sngval .of asv); 
. if r /= p 
.then torrix(warning, "matrix of linear part not full rank"); 

copyerrorfile; x:= xO; .false 
.else .bool bl; sol := asv .sol lb; 

v2:= (v .of asvO)fl:m, r+l:m]; 

oldfun:= fun; oldjacob:= jacobian; 
fun:= ( .vec x) .func : oldfun(sol + v2 * x); 
jacobian:= (.vec x).mat: oldjacob(sol + v2 * x) * v2; 
n:= m - r; xO := . trnsp v2 * (xO - sol); 
bl:= newt; x:= sol+ v2 * x; 
fun:= oldfun; jacobian:= oldjacob; bl 

.fi 
.end 
.,pr 

# reduction of problem with linear components# 
FEDX .pr ; 
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CHAPTER 7 

EXPERIMENTAL EVALUATION OF MHHODS 

7.1. INTRODUCTION 

In this chapter we compare the methods described in chapter 6. Further

more, three algorithms of componentwise approximation, based on the method 

given by BROWN [1969], are compared with the Newton-like algorithms. 'fhese 

algorithms are described in MORE & COSNARD [1979] with names BROWN, BRENT 

and BRENTM. We use the abbreviations BW, BT and BTM, respectively. 

Our ultimate goal is 

to obtain insight in the behaviour of the methods and the effect of partic

ular features, 

- to select the "best" methods or combinations of methods for implementation 

as part of a software library. 

We distinguish three cl.asses of criteria for evaluating algorithms for 

solving systems of nonlinear equations and software based on these algorithms. 

1. Criteria about availability of theoretical results for algorithms. Such 

theoretical results may be theorems a.bout global and/or (semi-) local 

convergence or asymptotic convergence behaviour. 

2. Criteria about the behaviour of algorithms based on experimental results . 

.Such criteria may concern: 

- efficiency (time and storage required to solve problems), 

- robustness (capability of solving relatively hard problems), 

- reli.ability (is the computed solution accurate within prescribed 

precision, or i.s an appropriate error message given). 

3. Criteria about the programs and program descriptions, such as 

- structure of the program, 

- ease of choosing values for the program parameters, 

- availability of a users manual. 
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In the foregoing chapters we paid attention to theoretical results for 

the Newton-like algorithms. Moreover, program structure is induced by the 

modular set up of the programs in chapter 6. In this chapter we focus atten

tion to the criteria from the second class. First we describe more precisely 

what is meant by the notions efficiency, robustness and reliability (sections 

7.2 up to 7.4). Then, we describe the experimental design (section 7.5) and, 

finally, we describ.e the results of the evaluation of the basic algorithms 

and the features (section 7.6 and 7.7). In section 7.8 we state conclusions 

based on these results. 
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7. 2. S'I'ANDARD TIME 

The notion "time" is essential for defining efficiency of algorithms 

or programs. It seems to be obvious to measure the CPU-time required to 

solve a problem with a program on a computer and to say that one program is 

less efficient than another for solving a certain problem, if this program 

uses more CPU-time than the other. '.rhe crucial point however, is that such 

a measure yields the efficiency of a program on that moment, but not of the 

underlying algorithm. The CPU-time required to solve a problem depends high

ly on ( 1) programming language, ( 2) compiler, ( 3) number of users on the 

machine in multi-user running systems, (4) memory asked for, etc. As we like 

to obtain conclusions about the performance of an algorithm and not only 

about some particular program implementing it, we cannot use simply CPU-time. 

Another suggestion may be to use the number of basic arithmetical operations 

(additions plus multiplications) as a measure for the "time" required by an 

algorithm. However, this also has several disadvantages, (1) Neither the 

CPU-time required for multiplication and addition nor the ratio of these 

times is the same for all machines or even for central processors of one 

machine (e.g. the CYBER 73). As certain computations can be rewritten such 

that less multiplications are used at the cost of more additions {e.g. 

matrix multiplication) it is not quite clear what has to be counted. 

(2) Memory access, particularly array accesses, are relatively expensive 

a.nd neglected here. (3) It is difficult to obtain any idea about the actual 

CPU-time required by a program when implemented for a certain programming 

system .. 

We like to introduce a time unit which depends on 

(1) the computer and its running system, 

(2) the programming system used (language, compiler, software library), 

(3) the kind of algorithms to be compared (Newton-like algorithms), 

(4) the order of the problem to be solved. 

This notion should be such, that two programs implementing the same algorithm 

use about the same amount of standard time units. Moreover, a standard time 

unit should be easily expressable in CPU-seconds for a given computer and 

programming system. We define a standard time unit dependent on the order n, 

as for large order the matrix-vector computations are the bulk of the work, 

but for small order otber things, ·e.g. routine calls, may also play an im

portant role. 
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7.1. DEFINITION. Let be given x E , f = F(x) E Rn and B = J(x) E l(lRn). 

A standard time unit, Un' of order n, dependent on a certain computer with 

given running system, on a certain programming system (language, compiler, 

software library) and on other machine- and time dependent quantities (e.g. 

the number of users at a certain moment) is the CPU-time required to compute 

y = x - B\f (cL (L 13)) on that computer under the given conditions. 

Note that the computation y = x - B\f (by use of triangular decomposi

tion and forward and backward substitution) is the most time consuming part 

of an iteration step of a strict Newton method, besides from t...he evaluation 

of the function and its jacobian. It should be stressed that this computa

tion has to be done with use of the appropriate software library programs 

which are available in the given programming system and which would have 

been used in the strict Newton program if it would belong to this library. 

The conclusions about efficiency, based on standard time are easily trans

formed to CPU-time, if it is known how much CPU-time is equivalent to one 

standard time unit for a given computer system. This knowledge can be obtain

ed by running a program in the given programming system which performs com-

putation of y x - B\f for given x, f and B and measuring the CPU··time re-

quired for this computation. We give an example of such a program for the 

ALGOL 68 programming system introduced in chapter 6. 

7. 2. EXAMPLE. The following ALGOL 68 program prints Un (n°0 2, 13 ,24, 35 ,46) in 

CPU seconds for the ALGOL 68 programming system from chapter 6, when it. is 

run on the CYBER 73 with the NOS/BE running system • 

• begin 
.proc comp• (.int n) .void : 
.begin .lud dee• .ludec b; 

.vec y • x - (dee .sol f); .skip 
.end# computation to get standard time unit t; 

.index ind• genindex(S); 
ind[l] ;• 100; ind[2J :• 8; ind[3] :• 4; ind[4] :• indfS] :• l 
.for n .from 2 .by 11 .to 46 
.do x:• genranvec(n); f:• genranvec(n); 

.od 
.end 

.proc ran• (.inti., j).scal: next random(setr); 
b:• ran .into gensguare(n); 
.int k • ind[(n-2) .over 11 + l]; ,real t:• clock; 
• for i . to k .do comp(n) .od ; t:• clock - t; 
print(("standard time unit of order ", n, 

"is in cpu secs: ", t / k, newline)) 
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As an illustration, we give the results of this example program in 

table 7.1, together with the amount of CPU-seconds in a standard time unit 

for the ALGOL 60 system with the NUMAL soft.ware library and for the 

FORTRAN IV system with the NAG soft.ware library. Moreover, we give t11e amount 
+ of standard time units required if y = x - Bf is computed using singular 

value decomposition for these three programming systems (obtained in ALGOL 

68 by replacing the first statement in .proc comp by:" ,svd dee = .svdec b; "). 

The discrepancies between these standard times may be due to (1) algorithmic 

differences of the matrix decomposition routines in the three programming 

systems, (2) the fact that the programs have been run in different nights. 

However, note 1:11at 1:11ere is agreement within at most 50% from the mean and 

CPU times sometimes differ up to a factor 6. Moreover, note that the dif

ferences between the standard times for ALGOL 60 and FORTRAN IV are at most 

15% from the mean. These versions use software libraries with optimized code 

for vector and matrix operations (in NUMAL most of these operations are 

written in machine language). For the ALGOL 68 system of chapter 6 we did 

not use optimized code for vector and matri.x operati.ons. Table 7.1 shows 

that standard times may be more appropriate for comparing efficiency of 

algorithms, but results based on the use of standard times should be .inter

preted rat.her carefully. Differences in efficiency of algorithms which are 

less than 20% say are, in fact, negligible. 

u in 
n 

table 7.1. 

CPU seconds for three programming systems and 

standard ti.mes for implementations in these systems of 

a step of the generalized.Newton method. 

standard times of 

~::i=~tl u n in CPU-sec. generalized 
Newton step 

n 

A60 I 
mean 

A68 E'IV A68 A60 PIV tion 

2 0.019 0.013 0.0030 1.5 1.4 1.5 LS 7% 

!3 0.25 o. 14 0.060 9.6 7.9 5.8 7.13 26i 

24 0.80 0.45 0.25 15 9.6 7.6 11 31% 

35 1.9 0.99 0.64 l7 11 8.3 12 42% 

46 3.2 LB 1.3 21 11 9.2 14 50% 
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7.3. PROBLEM INDICATORS 

The probability that a problem can be solved with a certain algorithm 

and, if it can be solved, how efficient solving will be, depends on the 

characteristics of the problem. In this section we shall give a set of 

problem indicators, i.e. quantities which give indications about such char

acteristics. First, we define the problem of solving a system of nonlinear 

equations on a given computer. 

7.3. DEFINITION. A problem of solving a system of nonlinear equations on a 

computer with machine precision Eis defined by 

(1) a function F of order n with domain D c Rn, 

(2) an initial guess x0 ED to the solution of F{x) 0, 

(3) constants srf and Eaf satisfying (6.3), 

(4) tolerance values of, orx and oax defining the stopping criteria. (6.46) 

and (6.50) or (6.51). 

In the sequel we restrict attention to problems which, moreover, 

satisfy 

(i) F and x satisfy condition 1.6 for all x ED, 

(ii) flE(F(x)) is a (llxllorx + oax)-unimodal approximation to Fon D (see 

definition 1.12). 

A class of problems which are defined by definition 7.3 and satisfy the 

above conditions is denoted by C. We say that the analytic jacobian of the 

problem is available if explicit expressions for the elements of the jacobian 

matrix are given, as well as constants Erj and Eaj sati.sfyi.ng (6.4). 

7. 4. PROPOSI'I'ION. The following set of prob.I em indicators provide a good 

characterization o.f the problems of a class C as far as properties are 

concerned influencing the behaviour of Newton-like algo.r_ithms or Bro1m's 

a.Igori thm. 

1. The defining quantities (see definition 7.3.). 

The availabi.Iity of an analytic jacobian (with ands .). 
aJ 

3. The set of indices of those function components which are linear in all 

variables. 

4. a, The value of K (x) {see notation 5 .1) for A = I and x E D. If J (x) is 

singular then we define K (x) = 00 and if F (x) 0 then K(x) lim K 

for some sequence {yk} c D 1dth lim yk = x, provided that 
Jc--exists; 
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otherwise K(x) is undefined. 

b. The value of w(x) on D, provided that condition 1.7 is satisfied on D; 

otherwise the value of y(x) on D, for all x ED. 
-1 

c. The value of 11 (J (x0)) F (x0J 11. 

5.a. The standard time ~(x) required to evaluate the value of F(x) (x ED). 

b. If the analytic jacobian is available, then the standard time (x) 

required to evaluate the value of J(x) (x ED). 

6. The scaling of the function and variables, .i.e. the ratio of the largest 

and smallest row and column norm, respectively, of J (x) (x E D) • 

We want to select test problems based on the values of their problem 

indicators. This requires simplification of the set of problem indicators. 

7.5. REMARK. In the sequel we shall use the following simplified set of 

* * problem indicators, where x ED satisfies F(x) = O. 

1, 2 and 3 as in proposition 7.4. 

- * K (x0 ) ; = K (x ) , 

where K(x) = IIJ(x)ll11 (J(x)J- 1L 

- * 1;J (x ) , where 

w(x) max 
i=1,, . .,p 

(max(w(x,u.), w(u. ,x))), 
1. l. 

w(x,y) IJ(x)\F(f) - J(y)\F(y)II 
II x-y 11J (y) \F (y) II 

0 

x + hv./11 
1. 

i 

if F(y) i 0, xi y and J(x), 

J(y) nonsingular, 

, if J(x) or J(y) are singular, 

, otherwise, 

with vi having randomly chosen elements in [-1,1], h > 0 is some small 

real number, depending on x and the machine precision, and pis some 

integer 1 ~ p ~ n, 

5.a. tF, where it is assumed that we have roughly tF 

tF is called the function evaluation t.ime. 



160 

b. If the analytic jacobian is available: tJ, where it is assumed that we 

have roughly tJ tJ(x) for all x ED. tJ is called the jaco.bian 

evaluation time. 

6.a. 110111, 110211, with n 1 and o2 given by (1.33) and (1.34) for A 

b. -s -s * 
K* = K (x ), with 

-s 
K (X) 

The problem indicators play an important role in the experimental 

evaluation of the algorithms, as will be explained in the next sections. 
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7.4. ROBUSTNESS, RELIABILITY AND EFFICIENCY 

Most of us have some intuitive idea about the notions robustness, re

liability and efficiency. We will try to give more precise descriptions or 

definitions of our interpretation of these notions. To this end we need the 

following descriptions. 

7.6. DESCRIPTION. Let be given a parametrized test problem, such that vari

ation of the value of one or more parameters of this problem effectuates a 

variation of the value(s) of one or more problem indicators (remark 7.5). 

Suppose we have obtained the values of the problem indicators for a number 

of parameter values. Then a table, which gives performance results of an 

algorithm tested on this problem for these parameter values, is called a 

performance table. 

We can imagine many different kinds of performance results, such as 

standard time required to solve the problem, number of function and/or ja

cobian evaluations, number of iteration steps, accuracy obtained, etc. 

7.7. DESCRIPTION. A set of test problems Tc C is called a representative 

test set for C, if the values of the problem indicators from remark 7.5, 

except for tl" and are reasonably spread over the ranges of values that 

can be obtained by problems in C, (The exception of 

plained in remark 7.11). 

and will be ex-

'I'his description is intuitive and not at all exacL Moreover, it is not 

based on the problem indicators as described in proposition 7.4, which are 

claimed to gi.ve a good characterization of problems in C, as far as behaviour 

of our algorithms is concerned, but only on the simplified set of remax:k 

7,5. Nevertheless, we think that this description is useful in practice, 

Intuitively, robustness of an algorithm should reflect the highest 

degree of difficulty of problems in a certain class, that can be solved 

adequately by that algorithm. Such a definition requires quantification of 

the degree of difficulty of a problem when solved by a certain algorithm. 

By proposition 7.4, such a definition depends on the problem indicators. 

However, we do not know how. In fact, one of the goals of the evaluation is 

to get insight i.n this dependency, 'I'herefore, we think that it is not sen

sible to quantify neither the degree of difficulty of a problem (relative 
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to an algorithm), nor the notion robustness. 

7.8. REMARK. We consider robustness of an algorithm, relati'lre to C, in the 

above intuitive sense. Discussion of this property will be based on: 

1. a number of performance tables of a program implementing this algorithm, 

2. the number of problems from a representative test set for C, which are 

solved by the algorithm. 

The notion reliable can be described somewhat more precise. 

7.9. DESCRIPTION. We say that a program for solving problems from C is 

reliable, if the program, when it is applied to any problem of a representa

tive test set for C, yields either a solution within the required accuracy 

or an informative error message, i.e. a message giving information about the 

(bad) characteristics of the problem which might have caused the failure. 

From the error messages from the ALGOL 68 programming system we con

sider the following messages not being informative: 

- "too many function evaluations or iterations required", 

- "difference approximation impossible, point on boundary domain", 

- "divergence out of domain of function". 

Hence, termination of a program with such a message shows unreliability of 

this program and is therefore called an unreliable failure. 

Reliability is a desirable property of programs. A reliable program 

provides the tools for interpreting the results of the program. The user 

can rely upon the approximate solution which is obtained in a successful run 

and in case of failure he obtains an indication for what reason the program 

fails. 

To describe the notion efficiency we need the following definition. 

7.10. DEFINITION. Let P be a given program for solving problems from C and 

let p EC. Let tF and tJ be given (see remark 7.5) and let 

t: be the standard time required to perform an iteration step (exclu-
s 

sive the ti.me needed for evaluation of the function or its 

jacobian), 

be the standard time required to perform the initialization 

(without function or jacobian evaluation), 
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~: be the number of function evaluations required to solve p by P, 

mJ: be the number of jacobian evaluations required to solve p by p 

(mJ - 0 if the analytic jacobian is not available), 

m· s· he the number of iteration steps required to solve p by P. 

Then, the time T(P,p), required to solve p by P is defined by 

(7. 1) T(P,p) 

Note that, if J(x) is approximated using, say q, additi.onal fw,ction 

evaluations, then q is added to 

7.11. REMARK. Use of T(P,p) has many advantages above just measuring the 

total time by experiments. It enables us to present test results for variable 

tF and \r and to disregard tF and tJ in the descri.pti.on of a representative 

test set (see description 7.7). This can be seen by the following reasoning. 

Assume that for P the values of and 

by experiments). Then, the values of m8 , 

are known (can be measured once 

and mJ for solving p by P ca.n be 

obtained easily by experiment. Therefore, for given and , T(P,p) can 

be calculated according to (7.1). If p' EC differs from p only in the values 

of arid t,J' then T(P ,p') can be calculated from the experimental results 

of p. 

7.12. REMARK. We assume that m8 , and mJ, obtained for solving p by P, are 

representative for the algorithms of which P is ar1 implementation. Hence, 

we assume that these values are independent of the computer and programming 

system. In particular, we assume that these values are not (sul)stant.i.ally) 

affected by round-off. This assumption holds as long as the relative errors 

due to round-off are small relative to 1. If, for instance, the condition 

number of a matrix in a linear system is of order 1/E, then the numerical 

solution may contain large relative errors. Solving such a. system with 

double precision might yield a far better solution. Therefore, particularly 

the ma.chine precision may influence the values of m5 , ~ and if the con-

dition numbers of the successive jacobian approximations are large. In gen-

eral, one may expect that program is more robust th.an program P2 if they 

implement the same algorithm and if the ma.chine precis.ton in 

than in P2 . 

is small.er 
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7.13. l 
DESCRIP'l'ION. Let {p. } . 1 be a representative test set for C = {p j p E C, 

J J= n 
p has order n}. Let algorithms A1 , •.• ,J\ be implemented for a given computer 

and programming system by programs P1 , ••. ,Pk, respectively. Then we define 

the relative efficiency of Aj(j=1, •.. ,k) with respect to {Ai by: 

(7.2) 

where 'l' is defined by (7.1), I = {ij 1 s i s l, p. is solved by all P 
l. j 

(j=l,. .. ,k)} and t• is the number of integers in I. We say that A, is more 
l. 

efficient than Aj for solving problems of Cn with given values for tF and 

tJ, if Ei (n,tF,tJ) < Ej (n, ,tJ). 

7. 14. REMARK. We assume independency of E. (n,tF,tJ) (j=l, ... ,k) of {p. / 1 , 
. J ' J J= 

as we chose this set to be representative for Cn. We also assume that the 

relative efficiencies of the algorithms, relative to each other, are not 

dependent on the set of programs {P.}~ 1• In general, this assumption does 
J J= 

not hold, due to the fact that I changes if programs are added or deleted 

from the given set. We base this assumption on the representativity of 
l 

{pj}j=l and the fact that we compare algorithms with the same structure, 

designed for the same class of problems. 

7.15. REMARK. The notions described in this section are all vague and 

intuitive. They are based on proposition 7.4, which is, most likely, not 

completely true. Proposition 7.4 is based on the theory of chapter 5 and 

our practical experience. We expect it to be reasonable. We emphasize that 

care must be taken in using the notions from this section. For instance, 

conclusions like algorithm A1 is 10% more efficient than algorithm A2 , are 

not relevant, but conclusions like A1 is twice as efficient as A2 certainly 

are relevant (see also the comment on table 7.1). 
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7.5. DESIGN OF EXPERIMENTS 

7.5.1. General design of comparison of algorithms 

Let k Newton-like algorithms and/or algorithms of component. wise approx

imation b8 given, denoted by A. (j=l, ••. ,k) , which have to be compared. Then, 
J 

we write programs P. (j=1, ••• ,k) in ALGOL 60, implementing A. (j=l, ••• ,k) , 
J . J 

respectively, on a CYBER 73 computer with NOS-BE running system and machine 

precision€= 2-47 • We use the current ALGOL 3.435 co~piler and the NUMAL 

software library (see HEMKER et aL [1979 ]) • •rhen the programs are run for 

the following specific set of test problems. 

Test problems for performance tables (cf. appendix I). 

L problem 1, n = 2,3, ... ,9,10,13,24,35. 

When n increases the values of i<0 and a0 increase rapidly; the value 

of w0 increases only very slowly. The values K,_., w* at the solutions 

also increase only slowly. 

2. problem 2, n = 3, c 10P (p=l,2, ..• ,11). 

When the value of c increases the values of KO and K* increase while 

w0 and w* remain small and almost constant. 

3. problem 4, n = 2,13, c 10P (p•l,2, ..• ,7). 

When c increases t:he values of ic0 , w0 and s0 are constant or decreasing 

and the values of K and w* increase. 
* 

4. problem 5, n = 2,13,24,35,46. 

The values of the problem indicators a.re small and almost independent 

of n. 'l.'hese problems are expected t:o be easily solvable and dependence 

of the behaviour of algorithms on the order can be tested. 

5. problem Sa, n = 35, 

(p,q) (10-12, 10-12), (10-12, 10-10), (10-12, 10-8), (10-12, 10-6), 

(10- 12 , 10-4 ,, (10- 12 , 10-2 ), (10-10 ,10- 12 ), (10-B, 10-12), 

(10-6,10-12), (10-4,10-12) and (10-2,10-12). 

For this problems we choose of• orx oax = 10-3. The test problems 

show the dependence of the algorithm on errors in function and jaco

bian. 

6. problem 7, n ~ 2, c 2 3 4 5 8 0.1,1,s,10,so,10 ,10 ,10 ,10 ,10 

When c increases, w increases slowly and the other values remain 
* 
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constant. The solutions (four for c ~ 10) come very close to the origin 

for large values of c. 

Based on the results for these test problems which are given in perfor

mance tables (see description 7.6), we state conclusions about specific be

haviour of algorithms and we also give preliminary conclusions about robust-

ness and reliability. Based on these conclusions we select programs 
i' 

ji E {1, .•. ,k} which appear to be worthwhile for testing on a representative 

test set. In fact we choose test sets T, which are representative for 
n 

C 
n 

Test 

{pip EC, p has order n}. These sets consist of the following problems. 

problems in 

problem 1; 

problem 2, 

problem 3; 

problem 4, 

problem 5; 

problem 6; 

problem 7, 

problem 8; 

problem 9; 

problem 11, 

problem 12; 

problem 13; 

problem 14; 

representat.i ve test set (cL appendix I) . 

C = 10; 

C = 10, 

C = 10, 

(s ,s ) 
r C 

104, 

104; 

107; 

(1,1), (10-3,1), (10-6,l), (10-9,1), (10-14,l), 

(1,i 0-3), (1, 10-6), o, 10-9), (1,i 0-14); 

( 1, 1) ; 

So, T11 consists of 25 problems for each n. By collecting the values of the 

problem indicators, one can see that these values are reasonably spread, 

although, for large order these are larger on the average than for small 

order. We are a bit sloppy with this criterion in order to be able to use 

the same set of problems in Tn' for each n ~ 2, 

Due to storage requirements and limitations on the CPU-time that can be 

used for testing, we only choose the following five different values of n 

(we shall speak about selected orders): 

n 2, 13, 24, 35, 46. 
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We choose odd and ev;;.n values in order to avoid conclusions which are in

fluenced by the fact t.~at orders are only even or odd. 

Based on the results~ given in the perfo=ance tables and those for the 

sets T, for the selected orders, we shall derive conclusions about the ro
n 

bustness and reliability of the algorithms. The standard times T(P.,pk) 
J 

(see (7.1)) or efficiencies (n, , where E {1,u.,k} are the in-

dices of the selected programs, are given for the following se.Iected values 

oft and 
F 

-2 -1 
(n ,n ) , -1 ) (n , 1 , (1,n), 

-1 -2 
(n , n ) , (1, 1) , (n,n), 

(n, 1). 

Note that the dependence of and on n is at hand si.nce F(x) E 

J (x) E L ) • Note that tp 1 means that one evaluation of a function 

value is about as expensive as the solution of a linear system of order n, 

:for large n. Finally, note that, for algorithms which do not use analytic 

expressions for t.ne jacobian, only four choices are left because m;J ~ 0 in 

that case. We derive final conclusions about the usefulness of , and 

hence of using the efficiency results, which completes the comparison 

of a given set of algorithms. 

7.5.2. Design of comparison of basic algorithms 

In section 6.7 we described 18 basic Newton-like algorithms. Further

more, we have two basic algorithms of component wise approximation: BW and 

BT (see section 7.1). The third algorithms of component wise approximation, 

BTM, is in fact a modification of BT, which reuses old jacobian information 

at the end of each iteration step. Essentially, this is an additional feature 

in BT, which may be compared with conditional use o:f fixed approximation of 

the jacobian in Newton-like algorithms. Evaluation of this feature is dis

cussed in subsection 7.5.3. 

'l'he 20 basic algorithms are grouped into 6 groups, such that for each 

group we can take the same values for and 'I'his makes comparison rela-

tively easy within a group. For ·this grouping we assumed that computati.on 

of the step length factor is small relative to the time required for solving 
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the linear system. This is true for large n. For small n, we have very small 

values for ts and tI, which are relatively negligible. The various groups 

with the a-priori knowledge about relevant quantities are listed below. 

1 • ASW, AS, AB, AI , AE ; 

2. GAS, GAB, GAI; 

t 
I 

0, t 8 given in table 7.1. (ALGOL 60 results, column< 6), ms 

3. DSW, DS, DB, DI, DE; 

0, t = s 1' mJ o. 

4. GDS, GDB, GDI; 

t = I 
0, ts given in table 7.1 

5. U1S, U2S; 

tI and t 8 given .in table 7.2, 

6. BW, BT; 

(column 6), 

m 
,J 

0. 

mJ o. 

0, t 8 given in table 7.2 (differs for both algorithms), 

o. 

m . 
J 

Note that group 6 is an exception to the rule in that t 1 and t 8 are equal 

for algorithms within a group. BW and BT are taken together as both are 

implementations of the same method. Note also that we choose = 0 in 

groups 1, 2, 3 and 4 which agrees w.ith the structure of these algorithms 

described in section 6.7, where the matrix decompos.it.ion..is performed to

gether with the computation of data in each iteration step {see also section 

6.4). In U1S and U2S we have to calculate an approximation to the .inverse 

jacob.ian (inversion of difference approximation) in the initialization phase. 

table 7.2. 

and (in standard time) for some algorithms 

(based on ALGOL 60 programs). 

n t tis, I 
I U2S I 

t (uis, 
S U2S 

t 8 (BW) tS(BT) 

2 ! 1 2 2 

13 2 0.3 4 4 

24 2 0 .1 4 5 

35 2 0.1 4 5 

46 2 O.! 4 6 
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Comparison of the basic algorithms is performed in the following steps. 

1. Comparison of the algorithms of the six groups separately in the way as 

described in subsection 7.5.1. 

2. Comparison of algorithms using the analytic jacobian. 

3. Comparison of algorithms using difference approximation. 

Some conclusions will be stated based on these comparisons. However, final 

conclusions can only be made after testing the additional features, which 

are not all applicable to all basic algorithms. 

7. 5. 3. Design of evaluation of additional features a.nd special p:i:-operties 

For the additional features and special properties, given in section 

6.8 up to 6.11, we choose specific sets of test problems, to test their 

effectiveness and usefulness. 

A. Test problems for test.ing the convergence criteria. 

The testproblems are chosen such that the solutions are known, or can 

be computed, in almost full machine precision. 

1. problem 1, n 5,6,7,8,9,10,13,24; 

2. problem 7, n 2, C p 1,3,5,8; 

'\ () 6 10-7, 10-lL rx ax 

3. problem 15, n - 4; 

of = () 0 o-P (p=1,2, .. ., 10). 
rx ax 

Note that problem 1 has reasonably small values for K* and w*, problem 7 has 

slowly increasing values for Di but small K. For problem 15 the jacobian -;, * 
has rank 2 at the solution (n=4). 

B. Test problems for testing conditional use of approximation by updating 

or fixed approximation. 

It is expected that these features work well if the jacobi.an varies 

* only slowly around the solution (w(x) small), but will have no effects 

if this is not true. 

1 . problem 4, n 13, c =, 10 and 100; 

4 and 300 respectively. 
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2. problem 7, n = 2, c = 0.1,1,5,10,50,100,103,104,105 and 108, 

w* grows slowly from 0.09 up to 7103, for increasing c. 

3. problem 8, n = 2,13,24,35 and 46; 

w :a; 0.2. 
* 

4. problem 1, n = 5,6,7,8,9,10,13; 

cS 
rx oax = 10-3, 10-7, 10-11, in order to check 

the effect of these features on the accuracy obtained. 

C. Test problems for testing scaling. 

1. problem 1, n = 24; 

scaling based on the jacobian at x0 spoils the small 

condition number at 

2. problem 2, n = 3, c = 10P (p=1,2, ... ,11); 

scaling based on the jacobian at x0 does not have very 

* much effect on the large condition number at x. 

3. problem 10, n = 2,13, with sr and sc chosen as in table I.10; 

scaling decreases the condition number on the whole 

domain, if is small. 

4. problem 11, n = 2,13, with sr and sc chosen as in table I.11; 

scaling decreases the condition number on the whole 

domain if is small. 

5. problem 16, n = 2, c = 10P (p=0,1, ..• ,5); 

scaling based on J(:x:0) hardly has any effect on the 

* scaling at x. 

D. Testproblems for testing reduction of problems with linear components. 

problem 1, for n = 2,3, ..• ,9,10,13,24; 

this function has n-1 linear function components. 

These special properties and additional features are tested only for 

the basic algorithms selected after evaluation. Based on a qualitative dis

cussion of the experimental results obtained in this way we select useful 

combinations of basic algorithms and features. 
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7.5.4. Design of final experiments 

Based on the comparisons designed in subsection 7.5.2 and 7.5.3 we 

shall give final conclusions about robustness, reliability and efficiency 

of combinations of algorithms (basic algorithms with certain additional 

features). These conclusions may depend on 

- availability of an analytic jacobian, 

- the order, 

- the values of tF and tJ. 
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7.6. EXPERIMENTAL EVALUATION OF BASIC ALGORITHMS 

7.6.1. Algorithms ASW, AS, AB, AI and AE 

The eA-perimental results are given in appendix II.1. For these algo

rithms we have: tI = 0, ts= 1, ms= mJ. 

Performance tables 

The results for problem 1 show the effect of an increasing condition 

number of the jacobian matrix at the initial point. Restrained algorithms 

appear to be favourable, as these solve most problems and efficiently so. 

The performance of AI i.s the best. AB fails to solve the problem for n = 24 

and 35 and AE fails three ti.mes (n 8,10,13). AS fails for n 2 5 due to the 

special failure criterion (6.53) for n = 5,6,7 and to numerical singularity 

for n 2 8. ASW solves the problem for n = 5,6,7 but at the cost of relatively 

many iteration steps. 

The results for problem 2 show the effect of an increasing condition 

number at the starting guess as well as at the solution. Particularly at the 

solution the condition number increases fast (K = 107 for c = 106). This 
* 

causes the failure of AS, AB, AI and AE for c 2 106, due to failure criteria 

(6.53) and (6.54). ASW is apparently superior to the other algorithms. It 

does not use these failure criteria and the bad condition number at the 

solution does not cause failure, although the number of iteration steps 

required increases. AE performs badly. The step length factor obtained by 

a-priori estimation is pessimistically small, so that slow linear convergence 

occurs. In fact, it fails four times with the non-informative error message 

4 ("too many function evaluations or iterations required"). 

The results for problem 4 show a somewhat similar effect as for prob

lem 2. For this problem K* as well as w* increase rapidly with increasing 

parameter value, while the other problem indicators remain almost constant. 

Failure of AS, AB, AI and AE is due to failure criteria (6.53) and (6.54} 

(with one exception for AI). ASW, which does not use these criteria, fails 

only three times. Note that the restrained algorithms also perform worse 

than AS. This suggests that the bad behaviour is due to the restraining and 

that the restrained algorithms would not perform better if the failure 

criteria (6.53) and (6.54) would not have been used. In fact, these criteria 

induce earlier detection of failure. This conjecture is confirmed by the 

results of GAS, GAB and GAI for this problem (see appendix II.2). 
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30 

Here the restrained algorithms GAB and GAI also solve the problem only for 

c = 1. The fact that restraining performs so bad, is that it forces the 

algorithms to search for a solution in the valley of the levelfunction in 

which the starting point lies. There appears to be no solution in this val

ley. The strict algorithms jump from one valley to another until an appro

priate point is found. •rhis difference in behaviour of restrained and strict 

algorithms is illustrated in figure 7 .1. Clearly, the value of U F (~) II 

jumps up and down during all but the last three iteration steps of algorithm 

ASW. In fact, the behaviour of ASW for n = 13 is rather unpredictable and 

the algorithm fails three times with non-informative messages. It seems that 
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solving problem 4 for n = 13 with ASW is rather occasional. 

Based on the values of the problem indicators in table I.5, we expect 

problem 5 to be easily solvable. This is confirmed by the results. 'l'he 

number of iteration steps and function evaluations is small and practically 

the same for all selected orders and all programs. 

'rhe results for problem Sa show the effect of random errors in the 

function and jacobian. All algorithms perform well as long as the errors are 

not so large that the convergence criteria. cannot be satisfied (see subsec

tion 7.5.1). This happens for p = 10-2. In that case all algorithms fail and 

only AB, AI and AE give an informative message. 

The results for problem 7 a.re the same for all algorithms. The number 

of iteration steps and function evaluations required to solve the problem 

increases with increasing parameter values (which induce increasing values 

of w*, see table I.7). 

Based on these results we state some conclusions and make some choices. 

- AE performs equally well or worse than AB or AI. The a-priori estimation 

does not work very well in practice. As, moreover, AE is considerably 

more complicated than AI and AB, we reject. AE. 

- AS is never more efficient that ASW. Moreover, AS is considerably less 

robust than ASW and less reliable than AB or AI. Therefore, AS is rejected 

also. 

- We expect that the performance of AB and AI is almost the same. The small 

differences that occur seem to be very occasional. 'rherefore, there is 

little sense in testing both algorithms on the whole set of test problems. 

We discard AI because of its more complicated program structure. 

- ASW seems to be robust, but not very reliable (6 non···informa.tive failure 

messages). Moreover, its unpredictable behaviour for problem 4 is unsatis

factory. 

- AB seems to be reliable (all failures with informative messages) but not 

very robust. For some problems AB performs considerably better than ASW 

(e.g. problem l.). 

We shall consider ASW and AB for further testing. 

Representat.ive test sets 

In table 7.3 we give the relative efficiences E(n,tp'\Jl (see descrip-

tion 7.13) for the selected orders and values of and tJ. We also give 

the percentages of problems solved and the numbers of unreliable failures 

(see section 7. 4) . Note that all results for AB indicate that th.e number of 
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steps required is almost always very reasonable. Only once 77 steps are 

required (problem 4, n = 13, c = 102) and once 43 (problem 4, n = 13, c = 106). 

In all other cases at most 17 iteration steps are required. On the contrary, 

ASW reaches 17 times the upper bound on the number of function evaluations. 

tF tJ n=2 n=13 n=24 n=35 n=46 

ASW AB ASW AB ASW AB ASW AB ASW AB 

-2 
n-1 7 8 5 5 5 5 4 4 5 5 n 

-1 
1 11 12 9 9 9 9 9 8 10 10 n 

1 n 16 19 65 6i3 120 110 160 150 230 230 

2 
30 34 800 830 2700 2600 5300 5200 10000 10000 n n 

-1 -1 
9 10 5 5 5 5 4 4 5 5 n n 

1 1 13 15 14 15 14 14 14 13 15 15 

n n 22 .26 130 140 240 240 330 330 490 490 

n 1 18 21 77 83 140 140 190 190 280 280 

'Ii solved. 92 76 84 68 76 68 72 60 72 60 

unrel.fail 1 0 3 0 5 0 6 0 6 0 

Conclusions 

Efficiency: ASW and AB are equally efficient. 

Robustness: ASW is more robust than AB, in the sense that it solves more 

test problems. However, the behaviour of ASW is sometimes unsatisfactory. 

Reliability: AB is very reliable and ASW is not. 

7.6.2. Algorithms GAS, GAB and GAI 

The experimental results are given in appendix II.2. For these algo

rithms t 1 = 0, ms= mJ and ts is given in table 7.1 (column 6). Notice that 

these algorithms use singular value decomposition, so that failure criteria 

(6.53) and (6.54) as well as the special convergence criteria are not used 

(see section 6.6). 

Performance tables: 

The results for problem 1 show that the restrained algorithms GAI 
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and GAB perform best. Failure of these algorithms for n = 24 is due to 

forcing termination as the number of function evaluations exceeds its upper 

bound (25 for n = 24). The first step direction vector is very large and a 

large number of bisection or interpolation steps is required to obtain area

sonable step length factor. GAS obtains an iterate outside the domain of the 

function. 

The results for problem 2 are almost the same for GAB and GAI and there 

is a slight difference with GAS. Only for very large values of the parameter 

(very large K*, see table I.2) restraining causes a less efficient behaviour. 

The results for problem 4 show almost the same picture as for algorithms 

with triangular decomposition. Restraining causes bad behaviour for these 

problems. 

The results for problem 5 are practically the same for GAS, GAB and GAI 

and for all selected orders. 

The effect of random errors is shown by the results of problem Sa. GAS 

and GAB are terminated due to too many function evaluations; GAI reports that 

no progress is obtained due to too high required precision. Note that the 

number of iteration steps in GAB is less than half of that of GAS. Restrain

ing in GAB requires more function evaluations per step. 

Finally, the results for problem 7 show no difference between GAS, GAB 

and GAI. 

We come to the following conclusions and choices. 

- The difference between performances of GAB and GAI is very small. 'I'herefore 

we discard GAI as GAB has a simpler program structure. 

- GAB performs best for problem 1 (large KO) and GAS performs best for prob

lem 4 (large K and w ) , It is difficult to draw conclusions about robust--
* * 

ness and reliability of GAS and GAB based on these results. 

GAS and GAB are considered for further testing. 

Representative testsets 

In table 7.4 we give the relative efficiencies E(n,tF,tJ) for the selected 

orders and values of tF and tJ, the percentages of problems solved and the 

numbers of unreliable failures. 
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-, 
n 

1 

n 

-1 
n 

n 

Jl 

t J i G~.s I GAE i GAS GAB GAS GAB GAS GAB I .GA:; l GAB J 
n-1 I 8 ·+-1-+-i --t---J.---J.-, -.-.L.--J.-------1.,- • j 

I 
9 38 40 1· 50 I 50 48 48 54 I 52 I 

l 12 13 43 45 55 55 53 53 59 j 57 I 

n 1 19 21 110 110 I 180 170 220 220 I 310 ! 29l' I 
2 I I I 

n I 33 J7 910 950 I 3100 I 3000 6200 6100 112000 , 11000 I 

n -! j 9 lO 39 40 I 50 II 50 49 48 j,i 54 52 I 
1 II 14 I ·, 16 48 I 50 61 60 :,y ] 58 65 63 

I I 
i 24 27 170 180 I 310 I 310 420 I 

120 I 200 1 200 260 j 350 

n 420 590 580 

20 23 120 
- L - - t---+----1-·---+---•---+-------1 

-~-'-'o~~'°~--+-96-+-_9_2_1--_s_s--+ ___ 04__ _ _:O_~ __ so_+--_c1_"0_1-----11---8-'4--+--8-4-1 

unrel. fai.l 1 1 2 4 3 j 4 4 6 
1 

4 4 
______ _,_ _ _,_ __ ...___.....J. __ ..J.._ __ L.__...J_ __ ...L __ L..._-L._. __ 

Conclusions 

Efficiency: GAS and GAB are equally efficient, 

Robustness: GAS is slightly more robust than GAB. 

Reliability: GAS and GAB are not reliable. 

7. 6. 3. _Comparison of algorithms requi3:..ing an analytic j acobian 

177 

We compare ASW, AB, GAS and GAB. We use tables 7.3 and 7.4, although 

these tables do not give precisely the effJ.ciency of these algorithms 

relative to each other (note that I and l' in (7.2) are based on ASW and AB 

for table 7.3, and on GAS and GAB for table 7.4). Precise c:omputation of 

these effi.ciencies will not lead to other conclusions. We obtain the follow

ing conclusions. 

Concl us.i.ons 

Efficiency, For very small order ASW, AB, GAS and GAB are almost equally 

efficient. Otherwise ASW and AB are significantly more efficient than GAS 

and GAB for problems with. cheap function and jacobian evaluations (up to a 

factor 10, due to the expensive singular value decomposition relative to 

triangular decomposition). For problems with expensive function and jacobian 
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evaluations (e.g. (tF,tJ) 

efficient. 

2 
(n,n )) , ASW, AB, GAS and GAB are al.most equally 

Robustness: GAS is the most robust algorithrn (solves 86% of the problems of 

the representative test sets, GAB 83%, ASW 79% and AB 66%). Algorithms using 

singular value decomposition are more robust than algorithms using triangular 

decomposition. Strict algorithms are more robust than restrained algorithms. 

Reliability: AB is very reliable (no unreliable failures for all test prob

lems). ASW, GAS and GAB are not reliable. 

Other properties: Some kind of problems (e.g. problem 1) can better be solved 

by restrained al_gorithms, others (e.g. problem 4) can better be solved by 

strict algorithms. 

Based on these conclusions we suggest to combine the reliable and efficient 

algorithm AB with the robust and less efficient algorithm GAS. That means 

that, when AB fails, we subsequently use GAS. Note that failure of AB .is 

usually detected after a few .iteration steps. Furthermore, the error mes

sages given in case of failure of the reliable algorithm AB, may help to 

.interpret possible unreliable results of GAS. We combine AB with GAS and not 

with GAB because (1) GAS is somewhat more robust than GAB and (2) based on 

the last conclusion above, it is preferable to combine a restrained and a 

strict algorithm. We shall talk about the poly-algorithm AB-I-GAS. Based on 

the results of the testing of special features we possibly modify this 

poly-algorithm. 

7.6.4. Algorithms DSW, DS, DB, DI and DE 

'rhe experimental results are given in appendix II.3. For these algo

rithms we have 

Performance tables 

The results show a remarkable similarity with the results for ASW, AS, 

AB, AI ,md AE, respectively, (see appendix IL1), besides the fact that the 

difference approximation requires n extra function evaluations in each step. 

There is a small difference in the results for problem 2, where DS, DB, DI 

and DE fail for c ?'. 105 and AS, AB, AI and AE for c ?'. 106, This happens 

because difference approximation yields a greater value for ek, so that 

failure criterion (6.54) is satisfied for smaller values of~ in the differ

ence algorithms. Furthermore, notice the difference in performance of ASW 

and DSW for problem 4 (c ?'. 106). The large values of and clearly 
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indicate difficulties with computing the difference approximation. The 

performance of DSW is considerably worse than of ASW for these test problems. 

Finally, comparison of the results for problem Sa indicate that numeri

cal errors in the function cause more problems for algorithms with difference 

approximations than for algorithms using the analytic jacobian. Apart from 

these observations we obtain similar conclusions as in subsection 7.6.1. 

- DE and DS are rejected. 

- DI is discarded. 

- DSW seems more robust but less reliable than DB. 

DSW and DB are considered for further testing. 

Representative test sets 

In table 7.5 we give the relative efficiencies E(n,tF,tJ) for these

lected orders and values of tF (note that mJ = O, so that the efficiencies 

are independent of tJ). Furthermore this table gives the percentages of prob

lems solved and the numbers of unreliable failures. Note that DB has noun

reliable failures, while DSW has 22. 

Conclusions 

Efficiency: DSW and DB are equally efficient. 

Robustness, DSW is more robust than DB. 

Reliability: DB is very reliable and DSW is not. 

n=2 n=13 n=24 

t,, DSW DB DSW DB DSW DB DSW 

-2 n 7 9 5 5 5 5 5 

-! 
11 12 9 10 9 9 9 11 

1 !7 20 68 71 120 120 160 

n 31 36 830 870 2700 2700 5600 

% solved 88 72 76 64 68 60 60 

unr.fail 0 0 3 0 6 0 7 

n=3~ n=46 

DB DSW D~ 

------
5 5 5 

9 10 lO 

160 240 240 
-

5600 11000 11000 

54 60 54 

0 6 0 
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7.6.5. Algorithms GDS, GDB and GDI 

The experimental results are given in appendix II.4. For these algo

rithms t 1 = 0, mJ = 0 and t 8 is given in table 7.1 (column 6). These algo

rithms use singular value decomposition, so that failure criteria (6.53) and 

(6.54) as well as convergence criterion (6.50) are not used. 

Performance tab.Ies 

Comparing the results of GDS, GDB and GDI with those of GAS, GAB and 

GAI {appendix IL 2), we must realize that a greater error in the approxima-· 

tion to tJ1e jacobian may cause another value for the approximate rank, as 

the approximate rank depends on the approximate error ek. Therefore, we have 

a somewhat different performance of GDS, GDB and GDI as compared with GAS, 

GAB and GAI. Such an effect does not occur in algorithms using triangular 

decomposition. 

The results for problem 1. show t.he best performance for GDB and GDI. 

There is almost no difference between the performance of GDB and GDI for 

this problem. Notice that GDS performs better than GAS for n =' 6, 8, 24, which 

may be due to a lower approximate rank in GDS. 

The results for problem 2 show that the bad condition number of the 

jacobian, if c is large, causes problems for the algorithms. GDB and GDI 

terminate for c ::> 10 8 with error messages, no progress. This may be due to 

a too low approximated rank which forces a search direction in a subspace 

in which the level function can not be decreased. 

The results for problem 4 are similar to other results as far as the 

restrained algorithms GDB and GDI are concerned. GDS performs worse than 

GAS for n = 2, but better for n = 13. It strengthens an earlier remark that 

this problem is hard to solve and causes unpredictable performance of strict 

algorithms. 

The results for problem 5 and 7 show practically no differences between 

GDS, GDB and GDI. 

The results for problem Sa show the effect of numerical errors in the 

function values. These errors have a strong effect on the difference approximation. 

We come to the following conclusions and choices. 

- The difference between the performances of GDB and GDI is very small. 

Therefore, GDI is discarded because of the simpler program structure of 

GDB. 

- GDS performs best for problem 4 and GDB for problem 1. It is difficult to 
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draw conclusions about robustness and reliability based on these results. 

Representative test sets 

In table 7.6 we give the relative efficiencies E(n,tF,tJ) for these-

lected orders and values of , the percentages of problems solved and the 

numbers of unreliable failures. 

nm2 n=l3 n~24 

t,. GOS GOB GOS GOB GOS GOB GOS 

-2 
8 9 38 39 50 50 46 n 

-1 
12 13 43 44 55 55 51 n 

1 19 21 !00 110 170 170 210 

n 33 37 910 930 3000 3000 5900 

% solved 92 92 84 76 84 80 84 

uru:.fail 0 1 1 3 2 3 2 

Conc.lusions 

Efficiency: GDS and GDB are equally efficient. 

Robustness: GDS is slightly more robust than GDB. 

Reliability: GDS and GDB are not very reliable. 

7.6.6. Algorithms using difference aJ?proximations. 

n~3s nm46 

GDB GDS GDB 

46 53 51 

51 58 56 

210 300 290 

5900 12000 11000 

76 88 84 

3 1 2 

We compare DSW, DB, GDS and GDB using tables 7.5 and 7.6. (Note that 

these tables do not give precisely the relative efficiencies of these four 

algorithms.) We can state the following conclusions. 

Efficiency: For very small order DSW, DB, GDS and GDB are almost equally 

efficient. Otherwise DSW and DB are significantly more efficient than GDS 

and GDB for functions with cheap function evaluations (up to a factor l.O 
-2 

for tF = n ) and about equally efficient for expensive function evaluations 

(tF = n) • 

Robustness: GDS is the most robust algorithm (GDS solves 86% of the problems 

from the representative test sets, GDB 82%, DSW 70% and DB 61%). Algorithms 

using singular value decomposition are more robust than those using trian-
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gular decomposition. Strict algorithms are more robust than restrained algo

rithms. 

Reliability: DB is very reliable. GDB, GDS and DSW are not very reliable. 

Other properties: Some kind of problems can better be solved by restrained 

algorithms, others by strict algorithms. 

Based on these conclusions we suggest, similar to the conclusions in 

subsection 7.6.3, to use a poly-algorithm: DB+ GDS. That means that, when 

DB fails, we subsequently use GDS. We shall possibly modify this poly-algo

rithm based on the results of the testing of special features. 

7.6.7. Algorithms UlS and U2S 

The e:i..'Perimental results are given in appendix II.5. For these algo-

rithms we have mJ ~ 0, t 1 and given by table 7. 2. 

Performance tab.Ies 

No significant difference is s.hown by the results for problems 1, 2, 

4, 5, 5a and 7. F'urthennore, both U1S and U2S do not seem to be very robust 

or reliable. 

Representative test sets 

In table 7.7 we give the relative efficiencies E(n,tF,tJ) for these

lected orders and vaJ.ues of tF, the percentages of problems solved and the 

numbers of unreliable failures. 

-2 
n 

··! 
n 

n 

UlS 

10 

12 

17 

27 

% solved 80 

unr~ fail r..:: 

n=2 

U2S 

10 

13 

18 

27 

84 

4 

UlS 

6 

27 

300 

72 

U25 

4 I 

6 

27 

300 

UlS 

38 

840 

72 I 72 

U2S 

4 

5 

38 

840 

72 

n~35 

UlS U2S 

3 3 

4 4 

49 49 

1600 . 1600 

72 68 

UlS 

4 

60 

2600 

64 

U2S I 

68 

8 
8 I 

~--_, ___ 1 __ ~1--~---'---..L.---'----'----~--~--· 
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Conclusions 

Efficiency: U1S and U2S are equally efficient. Both are considerably more 

efficient than DB and GDS. 

Robustness: U1S and U2S are not very robust (solve both 72% of the problems 

of the representative test sets (GDS 86%) ). 

Reliability: U1S and U2S are not reliable. 

As U2S uses the simplest and most well known update formula (Broyden's for

mula) we discard U1S. 

7.6.8. Algorithms BW and BT 

The experimental results are given in appendix II.6. For these algo

rithms tF = 0, mJ = 0 and t 5 is given in table 7.2 (different for BW and 

BT). In these algorithms a value has to be chosen for a parameter control

ling the length of the difference steps in the formulas for approximating the 

derivatives. We have created some performance tables for two different val

ues of this parameter. These values are 1e and le. However, most tests are 
3 

performed with the value le. Furthermore, in these programs we use a simple 

convergence criterion in order to avoid additional function evaluations. 

This criterion is 

j 1, ... ,n, 

(1) (n) T 
for F(x) = (F (x), ••• ,F (x)) , yk . is the iterate in the j-th sub-

,J 
iteration step of the k-th iteration step. Finally these programs require 

evaluation of function components separately. For a given vector of variables 

only one function component has to be evaluated. In the reported results MF 

denotes the number of component evaluations divided by the order n and roun

ed to below. 

Performance tables 

For problem 1, the smaller value (le) for the difference steps yields 

the best results. The reason for these big differences in behaviour is dif

ficult to explain. It might be due to the fact that the only nonlinear func

tion component is highly nonlinear and therefore its derivative is best ap

proximated with small difference steps. Moreover, the fact that n-1 compo

nents are linear might be of influence to this performance too. Note that 

there is not much difference between the performances of BW and BT for n $ 8, 

if we choose the same value for the difference step. 
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The results for problem 2 do not show much difference between the two 

choices for the value of the difference step. Here BT solves more problems. 

Note that BT performs worse, and BW hardly any better than the Newton-like 

algorithms AB and DB. 

For problem 4 we see that the smallest value for the difference step 

performs best. This is understandable as a large Lipschitz constant (;;;* is 

large for large c) yields a small optimal value for the difference step 

(see subsection 6.3.3). 

The results for problem 5 show no difference between BW and BT. 

The results for problem 5a show that the convergence criterion used 

does not imply that IIF(i)II < of for the computed solution x. BW and BT satis

fy the convergence criterion without satisfying this condition on the norm 

of the function. 

The results for problem 7 do not show significant differences between 

the performance of the algorithms. 

We come to the following conclusions. 

- Both algorithms are sensitive to the choice of the value for the difference 

step .. A choice, which is appropriate for all problems, cannot be given. 

- BW and BT are not reliable. 

- BW and BT seem to be not very robust. 

Representative test sets 

In table 7.8 we give the relative efficiencies E(n,tr,,'tJ) for the se-

lected orders and values of , the percentages of problems solved and the 

numbers of unreliable failures. 

n~35 i n~-;~-] 

~-~-- - :J_J~T -- ~-,1---i--B----i~-_B,---+-1 -B1'----:'3_1 l·:iBT ! __:2~11 -1~-iBJ-;~? I 
i n-2 14 I 1s j 21 1 24 n 28 " 1 _ 

n' 1 18 18 24 27 25 31 26 26 35 

1 25 26 GJ 71 96 100 130 140 j !EO 1 160 

n n 40 S70 640 1300 1900 3800 ;800 i MOO 6000 i 

n=l.3 

~ solved 9G 1j 88 92 8Q 92 7G 80 68 I H•J 72 I 
r----+-----+----------------+----1---------+------l---+l--+-----t' 

7 I 
+-----~---~-... --- ---.~-~--~-- --'---+---~--~--~--

unr~fail 2 6 5 
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Conclusions 

Efficiency: BW and BT are almost equally efficient. For small values of tF, 

BW and B'I' are less efficient than DB (up to a factor 4). For large values 

of tF, however, BW and BT are more efficient than DB (up to a factor 2). 

'rhese conclusions are based on the assumption that the computat~on of n 

function components for different argument vectors is as expensive as com

putation of one function vector for a given argument vector. Very often this 

assumption does not hold, however. In that case BW and BT might become con

siderably less efficient than DB (up to a factor n if calculating one com

ponent is as expensive as calculating the whole vector). 

Robustness: BW is more robust than BT. The perfonnance tables show no big 

difference but BW solves 89% and BT 77% of the test problems from the repre

sentative test sets. Note that the robustness of BW is comparable with the 

robustness of GDS (considering all test results and depending on the choice 

of the value of the difference step in BW). 

Reliability: BW and BT are not reliable. 

Conclusions here indicate that BW is the best choice. As BT can be modified 

as to use old jacobian information and BW can not, a definite choice between 

BW and BT has to be postponed 1mtil this modification of BT is tested. 

7.6.9. Summary of conclusions about basic algorithms 

1. '.!.'he use of an analytic jacobian, if available, leads to more robust algo

rithms (see discussion of performance tables in subsection 7.6.4 and 

2. Generalized algorithms are more robust than other Newton-like algorithms. 

3. Generalized algorithms are less efficient than other Newton-like algo

rit11llls, particularly for cheap function and jacobian evaluations. 

4. Strict algorithms are, on the average, more robust than restrained algo

rithms, although restrained algorithms perform better for some classes of 

problems. 

5. Restraining with a-priori estimation of the step length factor performs 

badly. 

6. Restraining with bisection and with interpolation yields almost the same 

performance. 

7. The poly-algorithms AB+GAS and DB+GDS seem to be reliable, robust and 

reasonably effioient algorithms. 
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8. For efficiency reasons U2S and, in some particular cases, BW and/or BT 

may be interesting; these algorithms are not reliable; U2S and BT are 

not robust. 

The following algorithms are left for testing the special properties and 

features: 

AB, GAS-, DB, GDS, U2S, BW and B'l'. 
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7. 7. EVALUATION OF SPECIAL PROPERTIES AND FEATURES 

7.7.1. Convergence criterion 

In appendix IL 7 .1 we show some experimental results for evaluating the 

performanc8 of the convergence criteria. Algorithm ASWC is the same as ASW 

except for the fact that the special convergence criterion (6.50) is not 

used in ASWC, but (6.51) is used instead. The other algorithms are those 

selected in section 7.6. The selected test problems have been mentioned in 

subsection 7.5.3.A. 

The results show a typical difference between ASW and ASWC. ASW has 

always reached the precision required if no error message is given, however, 

ASWC sometimes delivers a solution in a lower precision than required, 

without giving an error message (problem 15 with singular jacobian at the 

solution). Furthermore, for easier problems ASWC often performs one more 

iteration step than ASW. In fact ASWC terminates too late and obtains higher 

precision th.a.n necessary. We conclude that the convergence cri.terion (6.50) 

performs as was expected. It is safer and more accurate than (6.51). This 

performance is not disturbed by the use of restraining or difference approx

imation as is shown by the results of AB and ASW for problem 7 and the re

sults of AB and DB. The results for problem 15 show that criterion (6.50) 

sometimes is too pessimistic, as sometimes the precision is obtained and a 

failure is reported. However, in our opinion, this is preferable above 

having not reached the precision without giving any message. Furthermore, 

notice that the error messages of AB and DB are adequate (not for ASWC as 

no special failure criteria are used in this algorithm). 

Another observation to be made from the results is that ASW, ASWC, AB, 

GAS, DB and GDS require only one or two more iteration steps to satisfy the 

convergence criteria with of~ orx 10-11 instead of 10-3. (notice 

that E: = 10-14, approximately). This shows the (almost) quadratic order of 

convergence for these algorithms (see theorem 5.20). If the jacobian is 

singular at the solution then the order of convergence may become linear, 

which is confirmed by the results for function 15. Furthermore, the asymp

totic convergence behaviour of BW and BT is almost as for the Newton-like 

algorithms above. For U2S we see a lower order of convergence. 
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Finally we want to point out some remarkable results: 

U2S sometimes performs well for low precision but fails for high precision 

(problem 1, n = 6,7). 

U2S sometimes performs many iteration steps without gaining any better 

results (problem 15, precision'.:'. 10-7). 

·- Asking a higher precision for problem 1 (n = 24) with BT results in one 

more iteration step and loss of all precision. This suggests a very unre

liable behaviour of BT. It is not quite clear whether we may expect similar 

unreliable behaviour for BW. 

Conclusions: 

- The convergence criterion (6.50), used in ASW, AB and DB, is safe and 

accurate. It yields somewhat more efficient algorithms, particularly for 

easy problems. However, it might lead to unnecessary failure sometimes. 

- The convergence criterion (6.51), used in ASWC, GAS, GDS and U2S, sometimes 

yields results which do not have the precision required. 

- The convergence criterion used in BW and BT may occasionally yield very 

unreliable results. 

Asymptotic convergence of ASW, ASWC, AB, GAS, DB and GDS is at a higher 

rate than of U2S and is almost the same as of BW and BT. 

In view of this conclusions there is no reason to consider ASWC any further. 

7.7.2. Conditional use of updating and fixed approximation 

As far as the algorithms are concerned which are left for further eval

uation (see subsection 7.6.9), only AB and DB are suitable for application of 

conditional use of updating. The modified algorithms are denoted by ABU and 

DBU, respectively. Conditional use of fixed approximation is applicable to 

AB, GAS, DB and GDS. These modified algorithms are denoted by ABF, GASF, 

DBF and GDSF, respectively. Furthermore, MORE & COSNARD [1979] give a modi

fication of BT, which reuses old jacobian information, which will be denoted 

by B'l'M. In appendix II. 7. 2 we show the experimental results for testing these 

features. 'I'he test problems used are mentioned in subsection 7.5.3 .. B. For con

venience we also recall the results for the basic algorithms. 

Update approximation 

'.r'he results show a successful performance of ABU and DBU. One more 

iteration step is incidentally required to solve problems 4, 7 and 8. 

However, the number of jacobian evaluations required by ABU, and the number 
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of function evaluations required by DBU is always less than for AB and DB,re

spectively. A similar performance was obtained for problem 1 if the required 

precision is not very high (of :, orx ,= oax = 10-3,io-7). Only for high pre

cision (10-11) ABU and DBU use one more iteration step for all orders tested. 

Clearly, the positive effect of the use of conditional updating on the ef-· 

f:!.ciency depends on the expensiveness of a jacobian evaluation (for ABU) or 

a function evaluation (for DBU). ABU is preferable, only if the jacobian 

evaluation is not very cheap, relative to a standard time unit. DBU is pref

erable, only if the function evaluation is not very cheap relative to a 

standard time unit. Notice that an iteration step with updating in ABU and 

DBU still requires a triangular decomposition of the jacobian approximation. 

Fixed approximation 

An iteration step with fixed approximation requires only o(n2) basic 

arithmetical operations and is therefore negligible relative to a normal 

step for large n. 'l'hat makes conditional use of fixed approximation attrac

tive. However, the results show that use of fixed approximation sometimes 

yields a considerable increase of the nlllllber of iteration steps rec;uired, 

particularly if high precision is required (e.g. problem 1, n=13). Further

more, use of fixed approximation decreases the robustness and reliability 

of the algorithms (see GASF and GDSF for problem 1, n=6,9 and note that for 

n~6 the precision, 10-3, is not reached). 

Reusing old jacobian information in BT 

The effect of this feature on problem 4, 7 and 8 is very smalL For 

this reason we did not perform precision tests. Moreover, we discard BT and 

BTM based on the conclusions of subsection 7.6.8. 

Table 7.9 gives an illustration of the effect of conditional updating 

and fixed approximation on the efficiency of the algorithms. We give in this 

table the times ( see · ( 7. 1) ) required by the algorithms to solve problem 8 

(n = 13,46). 

This table also shows that ABU is about as efficient as AB fort less 
2 J 

than or equal to one standard time unit. For large (nor n standard time 

units), ABU may be up to 30% more efficient than AB. DBU is about as effi-

cient as DB as long as is less than or equal to 1/n standard time unit. 

F'or larger , DBU may become about 30% more efficient than DB. Use of con-

ditionaJ. fixed approximation may increase the efficiency from O up to 50%, 
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For n = 46 and tF? 1/n, the efficiencies of ABU and ABF, and of DBU and DBF 

are about the same. 

table 7. 9. (T (P ,p) for several algorithms) 

tF tJ AB ABU ABF DB DBU DBF GAS GASP GOS GDSF' 

1/n2 1/n 4 4 2 4 4 2 40 24 40 24 

1/n 1 8 7 4 8 7 4 45 27 45 27 

"' ! n 61 48 34 6! 48 34 110 69 110 69 
;;' 
" 2 
,,; n n 750 580 420 750 580 420 960 610 960 610 

8 !/n 1/n 5 5 J 8 7 4 41 25 45 27 
" ,-j 

fl l 1 13 12 10 61 48 34 51 33 !10 69 
" "' 

n " 120 110 110 750 580 420 180 140 960 610 

n 1 73 72 82 750 580 420 120 110 960 610 

l/n2 1/n 4 4 3 4 4 3 50 30 50 JO I 

I I 1/n 1 8 7 6 8 ' 7 6 55 33 I 55 33 I 

170 
I 

290 170 I "' 1 n 190 !50 150 190 150 150 290 i 
" II 2 

I 
" ll n 8700 6600 6600 8700 6600 6600 !1000 6700 11000 6700 
,i; 

m 
1/n 1/n 4 4 3 8 7 6 50 30 55 33 

,-j 

1l l 1 13 12 !l 190 150 150 61 39 290 170 
'" "' fl n 420 370 370 8700 6600 6600 560 440 11000 6700 

n 1 240 240 240 8700 6600 6600 330 310 11000 6700 

Cone.I usions 

- Use of conditional updating may increase the efficiency of the algorithms 

(up to about 30%), particularly if tJ > 1 (for AB) and 

and if the required precision is not very high. 

> 1/n (for DB) 

If very high precision is required (almost machine preci.si.on), than it is 

better not to use conditional updating. 

- Conditional updating has little effect cm the robustness and reliability 

of the algorithms. 

- Use of conditional fixed approximation may increase the efficiency of the 

algorithms (up to about 50%) , if relatively low precision .is required 

(< IE, say), 
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If high precision is required, then conditional fixed approximation may 

seriously decrease the efficiency, robustness and reliability of the algo

rithms. 

- Reusing old jacobian information in algorithm BT seems not to yield an 

increase of the efficiency of this algorithm, hence BT and BTM are dis

carded. 

- If a method for updating a triangular decomposition would have been used 

in algorithms ABU or DBU, then increase of efficiency would be about as 

high as for conditional fixed approximation. In ABU and DBU the approxi

mate jacobian is updated and a new triangular decomposition has to be 

performed. We shall not work out updating of triangularly decomposed 

matrices here. We just notice that it might increase the efficiency of 

ABU or DBU. 

7.7.3. Scaling 

Implicit scaling is only applicable to the selected basic algorithms AB 

and DB. We consider two choices for the implicit scaling matrix A (see re

mark 4.18 and (sub)section 6.4.5 and 6.10): (i) A= H0 , denoted by ABIS1 and 

DBISl and (ii) A=¾ (k=0,1, •.• ), denoted by ABIS2 and DBIS2. Explicit 

scaling is applicable to all selected basic Newton-like algorithms AB, GAS, 

DB, GDS and U2S. Application of explicit scaling, as described in section 

6.10, to BW runs into problems. BW does not use approximations to the jaco

bian, neither at the initial point, nor at any other point obtained during 

the process. Thus, application of scaling would require an additional eval

uation of a jacobian approximation, which is very unattractive. Therefore, 

we do not consider BW with scaling. The basic Newton-like algorithms with 

explicit scaling are denoted by SCAB, SCGAS, SCDB, SCGDS and SCU2S, respec

tively. The experimental results are given in appendix II.7.3. We use the 

test problems mentioned in subsection 7.5.3.C. In ABIS1/2 and DBISl/2 we 

use the normal stopping criteria on the function and variables. If explicit 

scaling is used, then the stopping criteria are evaluated for the scaled 

function and variables. The stopping criteria use vector norms and are, 

therefore, based on the largest vector element. If we would adapt the re

quired precision using the norms of the scaling matrices, then we would 

require too high precision for the small components of the original function 

and/or argument vector. 
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The comparison of AB with its modifications ABIS1, ABIS2 and SCAB 

shows that the number of failures is reduced best with explicit scaling 

(SCAB). ABIS2 is better only for problem 2. This can be explained by the 

observation that scaling based on the jacobian at the initial point (as is 

done in SCAB) reduces the condition number due to bad scaling at the solution 

only slightly for this problem (see table I.2). We expect that reusing of 

SCAB after failure, which yields rescaling, might give better performance. 

For the same reason, scaling does not yield a better performance for problem 

16. Note that ABIS2 performs worse than the other algorithms for this prob

lem. The results of ABIS1 for problems 10 and 11 appear to be worse than of 

AB. Sometimes ABIS1 fails if AB does not and sometimes vice versa. 'rhe.refore, 

the results indicate that implicit scaling with A= H0 is not a useful strat

egy. Implicit scaling with A= Hk yields a somewhat better performance. 

However, for problems 10 and 11 it fails as many times as AB. One reason 

for th.is is that computation of II Bk \F kll 2 (which is the approximation to the 

level function at xk) yields large errors if the condition number of Bk is 

large. Hence, the problems that we want to avoid by using scaling, show up 

in the scaling itself. 'l'his behaviour is confirmed by the fact that ABIS2 

fails more often with error message 2 (no progress during restraining, 

possibly due to error in function) than the other algorithms. SCAB reduces 

the number of failures of AB with about 50% for this set of test problems. 

Particularly, for problem 10 and 11 we obtain a reduction of the number of 

failures from 17 to 5. Note that SCAB never performs worse than AB for these 

test. problems. For DB, DBISl/2 and SCDB we can make similar observations 

as for AB, ABIS1/2 and SCAB. 

The results for the generalized algorithms show much less differences 

between algorithms with and without. scaling. An important reason for this is 

that generalized algorithms do not necessarily fail if the jacobian approx

imation is singular due to bad scaling. Moreover, for some problems the 

scaled algorithms fail while the unscaled algorithms do noL Therefore, 

scaling seems to be unattractive for generalized algorithms. 

Finally, explicit scaling for the inverse··updating method U2S increases 

robustness as well as efficiency of the algorithm slightly. Note that this 

suggests that explicit scaling may also be useful in algorithms using con·· 

di.ti.anal updating. 
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Conclusions 

- Implicit scaling does not always yi.eld a performance whi.ch is at least as 

good as for the unscaled algorithms. Moreover, the algorithms are less 

robust than i.f expli.ci.t scaling i.s used. Therefore, implicit scaling is 

rejected. 

- Explicit scaling may considerably increase the robustness of the non-gener

alized algorithms AB and DB, while efficiency is increased slightly. 

- Explicit scaling for generalized algorithms has, on the average, only 

little effect. For particular problems the effect is sometimes negative. 

Therefore we reject explicit scaling for generalized algorithms. 

- The effect of explicit scaling on inverse-updating algorithms is positive 

but small. 

7.7.4. Reduction of problems with linear components 

In appendix II.7.4 we give some results for the case that problem 1 is 

reduced to a one-dimensional nonlinear problem (see section 6.11 and theorem 

1.27). Our intention is to show t.he effect of the reduction method, not to 

show the superiority or inferiority of the one-dimensional equation solver 

that is used. The method chosen for solving the one-dimensional problem 

is given in BUS & DEKKER [1975]. As this method requires an interval in 

which the zero is searched for, we first search for a point in which the 

function has a sign opposite to the one at the initial point. A modification 

of Newton's method (if the analytic jacobian is available) or a linear inter

polation method is used to find such a point. A precise description is given 

in the description of the ALGOL 60 package based on the results of this 

thesis. (see BUS [1980:I). 

Note that, for all given orders, we only require one singular value 

decomposition of a nxn matrix and 11 evaluations of the nonlinear function 

component. The overhead cost i.n the one-dimensional equation solver is neg

ligible with respect to the time needed for the function evaluations and 

matrix decomposition. 

Our conclusion is that for problems with linear function components, 

the above method provides a more robust and efficient algorithm, than solv

ing the system as if all function components would be nonlinear. 
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7.8. CONCLUSIONS 

Based on the experimental evaluation, described in sections 7.6 and 

7.7, we obtain the following useful algorithms. 

1. If the analytic jacobian is available: 

(SC)AB(U) + GAS. 

2. If no analytic jacobian is available: 

(SC) DB (U) + GDS or 

(SC)U2S or 

BW. 

Here "+" means that, when the first algori,thrn fails, we subsequently use the 

second algorithm. Parentheses denote that the feature should be optional to 

the user of the algorithm. Conditional updating should be made optional, 

because it is only preferable if the required precision is not very high. 

Scaling should be made optional because there might be problems for which 

scaling is undesirable. Moreover, as we only used a restricted test set for 

testing the scaling, it is not sure that it always yields better performance. 

If scaling is used in AB(U) or DB(U) we allow only 20 iteration steps. If 

no solution is found within this number of steps, we check whether rescaling 

might be useful and, if this is true, we use AB(U) or DB(U) again with at 

most 20 iteration steps. If it fails again GAS or GDS is used subsequently. 

If no scaling is allowed, we perform at most 40 iteration steps. These upper 

bounds on the number of iteration steps are based on the fact that the test 

results show that AB(U) or DB(U) almost always terminate in a reliable way 

within this number of iteration steps. We do not consider conditional fixed 

approximation, as we think that the loss of reliability in AB or DB and the 

loss of robustness in GAS or GDS is more important than the gain of effi

ciency if fixed approximation is used instead of update approximation. We 

give precise descriptions in ALGOL 68 of (SC) AB (U) + GAS and (SC) DB (U) + GDS 

at the end of this section. We will call these final poly-algorithms SNOLEQJ 

(Solution of NOnlinear EQations with analytic Jacobian) and SNOLEQ, respec

tively. 
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The choice of BW follows from the conclusions in subsections 7.6.8 

and 7.7.2. We notice that our conclusions about BW, BT and BTM differ from 

the conclusions given by MORE & COSNARD [1979]. 'l'hey conclude that BT is 

preferable above BW, and BTM above BT. We like to emphasize that the choice 

of the parameter that controls the difference step is a crucial one, which 

may change results drastically. Furthermore, the set of test problems of 

More and Cosnard seems to be chosen somewhat arbitrarily and might be not 

very representative for the class of problems considered here. Note that, 

up to now a definite choice between SNOLEQ and BW .is difficult to make. 

The choice of U2S is due to the fact that it is a very efficient algo

rithm, although it is not reliable nor robusL 

If the analytic jacobian of the problem is available and is to be 

used, then the only choice left is SNOLEQJ. If no analytic jacobian is 

available, then we can choose one of the three algorithms SNOLEQ, BW and 

(SC)U2S. Experimental results for these algorithms are reported in appendix 

II.8. Final conclusions about these algorithms, based on these results as 

well. as on other evaluation. criteria, are g:i.ven ln chapter 8 . 

.12.::scri.ption in ALGOL 68 

It is assumed that the prelude nlsprl is extended with declarations 

of the Newton-like ulgorithms: abu, sea.bu, gas, dbu, scdbu and gds. 

snoleg • .bool 
in 

.pr.oc nlo - .bool 

.begin .bool ok:• .false 
.if nongener 
.then .if scale 

.then maxit:• 20; .i.f .not (ok:• scdbu) 
.then torrix(warning, 

"second attempt of nongeneralized method, rescaled") 
ok"" scdbu 

. fi 
.else maxit:• 40; ok:• dbu 
.if .not ok .then torrix 

"generalized method will if allowed ) 
.fi .fi ; .if .not ok .and gener 
.then maxit:• 40; ok:• gds .fi ; 
ok 

.end # nlp #; 

• i.f 
.end # 

t then reducenewt (nlp) . else nlp . fi 
# 
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.proc snolegj = .bool : 

.begin 
.proc nlp = .bool : 
.begin .bool ok:= .false 

.if nongener 

.then .if scale 
.then maxit:= 20; .if .not (ok:= scabu) 

.then torrix(warning, 

• f i 

"second attempt of nongeneralized method, rescaled"); 
ok:= scabu 

.else maxit:= 40; ok:= abu .fi ; 

.if .not ok .then torrix(warning, 
"generalized method will be tried if allowed") 

.fi .fi ; .if .not ok .and gener 

.then rnaxit:= 40; ok:= gas .fi ; 
ok 

.end ,t nlp I; 

.if linpart .then reducenewt(nlp) .else nlp .fi 
.end I snoleqj #; 
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CHAPTER 8 

FINAL RESULTS AND CONCLUSIONS 

In appendix II.8 we give the results for SNOLEQ and SNOLEQJ, with and 

without scaling, and for SCU2S. For convenience we recall the results of 

U2S and BW. We have not given the results for problem Sa (n=35), as these 

tests are relatively expensive and required to test reliability mainly. 

We already have enough information about the reliability of each algorithm 

separately. In the ALGOL 60 tests described here, we only perform a second 

call of the nongeneralized method if rescaling yields a scaling matrix with 

a condition nll!llber ~ 100. 

Performance tables 

The results for prablem 1 show that scaling is not always favourable. 

Fm:· n = 6, 8 and 10, SNOLEQ(J) with sea.ling fails, but without scaling the 

performance is nice. As is seen in appendix I.1, scaling based on the jaco

bian matrix at may have a negative effect on the condition number of the 

jacobian a.t the solution. we like to note also that algorithm BW performs 

relatively well because the problem has n-·l linear components, so that ap

proximation of these components is exacL 

The results for problem 2 show that scaling is preferable in SNOLEQ(J) 

for this problem .. Note that scaling has no effect for 02S. If no scaling is 

performed, then SNOLEQ (J) switches to the generalized al.gorit.J:im after a few 

iterations. Clearly SNOLEQ(J) with or without scaling is preferable for 

this problem. 

The results for problem 4 show a behaviour of SNOLEQ,J (with and without 

scaling) which is comparable to the behaviour of ASW (see appendix IL1), 

which was the best among the tested algorithms which use the analytic jaco

bian. However, SNOLEQ performs somewhat worse than DSW. Scalinq yields some

times better, sometimes worse results. 

The results for problem 5 show a good behaviour for all algorithms, 

Note that the number of jacobian evaluations is one less than the nu.lJJber 
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of iteration steps for SNOLEQJ. This indicates that in the third iteration 

step updating is used to approximate the jacobian. The number of function 

evaluations required indicate that this also holds for SNOLEQ. 

The results for problem 7 are as was expected. Scaling hardly has any 

effect. 

Representative test sets 

In table 8.1 we give the relative efficiencies E(n,tF,tJ) (see (7.2)) 

for SNOLEQ(J), with and without scaling, SCU2S, U2S and BW, for the selected 

orders and values of tF and tJ. Furthermore, we give the percentages of 

problems solved for each order and the mean value of these percentages for 

all selected orders. 

Conclusions 

Efficiency: 

For small problems the efficiency is about the same for all algorithms. 

Therefore, we restrict our conclusions to problems of order greater than or 

equal to 13. 

- SNOLEQJ, using the analytic jacobian, is considerably more efficient than 

SNOLEQ, if the jacobian evaluation time satisfies tJ < ntF. In fact, for 
-1 -1 

(tF,tJ) = (n ,n ), (1,1), (n,n) and (n,1), SNOLEQJ is the most efficient 

algorithm. 

- Conditional use of updating in SNOLEQJ might be efficient only if tJ is 

greater than or equal to one standard time unit (see definition 7.1). 

- Scaling slightly improves the efficiency on the whole, but it might be 

opposite for particular problems. 

SNOLEQ(S) is more efficient than BW for cheap functions and about as effi

cient for expensive functions, provided that calculation of n components 

of the function vector at different points is as expensive as calculation 

of a complete function vector at one point. In the case that the last 

calculation is cheaper than the first, the numbers for BW given in table 

8.1 are not valid. BW will be less efficient in that case. 

- (SC)U2S is the most efficient algorithm not using analytic derivatives 

(up to 2 or 3 times as efficient as SNOLEQ(S) and BW) 
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table 8. L 

Relative efficiencies for selected programs 

- - __ ,,_ --·-

B-~ 
n ', tJ ~~NOLEQ,JS GNOLEQJ SNOLEQS SNOLEQ SOJ2S li2S 

-··· 
n · 2 I -1 

--
2 n 7 7 7 I 9 I 10 11 

-1 

I n l 9 l0 l0 11 11 lJ " 
l n JS 16 16 17 

I 
l S I 1f3 ,o 

2 
;:G I I 

n n 

I 

27 28 29 2,1 27 Jl 

I n 
- l 

n 
-1 

8 B 

I 

10 ll ll ll 14 

l 1 I 2 12 16 17 l 5 18 20 I 

n n 20 .21 28 29 

i 
2'l 27 Jj 

I 
n 1 17 I 17 28 29 24 '7 31 

i solved 100 JOO 96 % 138 84 96 

131 n 
-2 

n 
-1 

5 ! 6 5 

I 
8 

I 
4 5 20 l -1 

I n 1 fl 9 8 11 
! 

G 6 23 

I 

1 n 47 51 47 I SJ I 26 27 59 

n n 
2 

550 S'JO 550 290 290 !'>30 (,00 

! n 
-1 

n 
-1 

5 7 8 I 6 6 23 
I 

ll 

i j l 13 

I 
" 47 53 

I 

,a 27 09 

I n n 110 120 550 600 290 290 530 

I n I 1 79 00 sso 600 290 2()(1 530 

'· sol vcd 813 
I 

88 84 00 ! 
68 72 i 92 

24 n-21 n 
-l 

5 t 8 7 

n l 3 j 3 I 22 
-l , 

n I j 8 
I 

11 10 J I 4 4 ! 25 

1 i n 82 I Sl 85 0 I J6 38 96 

n n 
2 

1900 I 2000 1900 OD 800 I 840 I 1800 I 

n -1 ' n 
-1 

5 B 

I 
10 3 

I 
4 4 2') 

I 

i 
I 

! 
! 

j I 13 n 85 90 
I 

36 38 9G 

I 
n 

I 
n 210 220 1900 

I 

1900 i 800 840 1800 

I 
I 

n l 140 150 1900 19(10 I BOO : 840 i 1800 

% solved 88 88 84 i 80 72 
I 

i I 72 92 

35 n 
-2 

n 
-l 

5 8 5 I 5 ] J 25 I 

n 
·1 

1 8 11 8 i 8 4 
I 

4 28 

1 n 120 l 30 120 I 120 46 i 49 
I 

140 

n n 
2 

3900 4100 4000 I 4000 1500 1600 I •100 i 
n 
-1 

n 
-1 

5 B 8 8 4 4 I 28 

1 1 !.] 17 120 120 46 I 49 ; 140 

i 

I 

1 4100 

I 
n n 310 i 320 4000 4000 1500 I 1600 

n 1 200 210 4000 4000 1500 i 
1600 4100 

" solved 80 80 84 76 68 68 80 

" ::: : 

-: --------- ---T- ··--·-·· 

8 10 10 1c_; 3 J 24 

l 12 14 1J 19 4 4 27 

l n 180 190 190 190 58 60 170 

n n 
2 

8100 8100 8200 0100 2600 2600 6700 

n 
·1 

n 
-I 

8 JO l 3 19 4 ' 27 

1 l 18 20 190 190 58 60 170 

n 
! 

n 470 480 8200 8100 

I 
2600 

i 
2600 6700 

n I l 310 310 8200 8100 2600 2600 6700 

% solved 88 88 84 
! 

s,1 76 I 68 s,, 

mean •. 89 89 8(, 82 74 73 89 
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Robustness: 

- SNOLEQJ is somewhat more robust than SNOLEQ. 

- BW is about as robust as SNOLEQJ. 

- (SC)U2S is considerably less robust than the other algorithms. 

- Scaling may improve the robustness, but there are problems for which 

scaling has a negative effect on the performance of the algorithms. 

Reliability: 

- (SC)U2S is not reliable (see subsection 7.6.7). 

- BW is not reliable (see subsection 7.6.8). 

- SNOLEQ(J) (S) is reliable if the generalized algorithms are not used. If 

these are used, then one or two informative messages from the non-general

ized algorithm might be given, together with a possibly non-informative 

final message. 

Other conclusions obtained from experiments: 

BW requires the choice of a value controlling the step sizes in difference 

formulas approximating the derivatives. 'I'his choice may be critical and 

is some ti.mes difficult to make. In the other algori. thms, all quantities 

needed are approximated in the algorithms. 

Use of conditional updating is profitable as long as the error in the ap-·· 

proximation to the solution is not required to be almost as small as the 

machine precision. 'I'he profit in SNOLEQJ is small or nought if the jaco

bian evaluation time is about 1/n or less standard time units. 

- If some components of the problem to be solved are linear, then reduction 

of the problem to a smaller nonlinear problem is advisable. 

Storage: 

The storage required in SNOLEQ(J) (S) is 21/+o(n). 

The storage required in (SC)U2S and BW is n2+o(n). 

Mathematical basis: 

- Convergence theory (global, (semi··) local) for the algorithms used in 

SNOLEQ(J) (S) is given in chapter 5. Based on this theory a mathematical 

justification for these algorithms is given in chapter 6. 

For BW and U2S (semi-)local convergence results are given in literature 

(see BROWN [1969, 1973], BROYDEN [1970a] and DENNIS & MORE [1977]). 

Program structure and ease of use: 

Program structure of SNOLEQ(J) (S) is based on the modular structure of 

the ALGOL 68 system given in chapter 6. These programs are longer and 
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more complicated than BW and U2S. However, SNOLEQ{J) (S) is easy to use. 

A users manual for these algorithms in ALGOL 60 is given in BUS [1980]. 

Summary 

SNOLEQ and SNOLEQJ, with possible scaling and reduction for problems with 

linear components, are robust, reliable and reasonably efficient algorithms, 

with a sound mathematical basis and defined in a structured and modular way. 

They are easy to use. (SC)U2S may be preferable in those cases in which 

efficiency is much more important than robustness and reliability. We prefer 

SNOLEQ (S) above (SC) U2S for use in a software library, because in that situ-• 

ation robustness and reliability are important, as such software will be used 

for many different problems and by many different users. We also prefer 

SNOLEQ(S) above BW although robustness and efficiency, particularly for ex

pensive functions, are almost the same. Our preference is based on the un

reliability of BW, the fact that a parameter value has to be chosen which is 

difficult. to choose and because of the component wise evaluation of the 

function. Finally, if the analytic jacobian can be obtained and 

then SNOLEQJ is preferable above one of the other algorithms. 
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APPENDIX I 

TEST PROBlEMS 

In this appendix we describe fourteen test problems of variable order 

and two of fixed order. Some of these problems depend on (a) parameter(s) 

which influence(s) the values of the problem indicators. As far as possible 

we describe the peculiar properties which make those problems worthwhile as 

test problems. Furthermore, we give numerical approximations to the problem 

indicators (see remark 7.5; we used h = io-3 for the computation of w). 
These values are computed with a CYBER 73 (E = 2-47 ). As these values only 

give an indication of certain properties of the problem, we only give one 

* significant digit. If the jacobian (at x0 or x) appears to be numerically 

singular (triangular decomposition can not be performed, see subsect.i.on 

6. 2. 1 J then an S i.s given in the tables and no values for w and ii. For all 

problems analytic expressions for the jacob:i.an elements are given, so that 

all problems can be used for Newton methods as well. The values for 

and are no sharp upper bounds on the errors in fl (F(xii and 
E: 

(J(x)) (see (6.3) and (6.4)), •rhese values are reasonable bounds to be 

used in the test runs. The precis.i.on asked for .i.s chosen to be standard 

0 rx 
,5 
ax 

For some problems we make an exception to this rule. Such exceptions are 

stated expl.i.citly in the descr.i.pt.i.ons. We refer to a problem which is des

cribed in section Li (i=1, 2, .. ,, 16) as problem L 

LL (BROWN [1969]) 

function: 

(x) -(n+l) + i 
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jacobian: 

=I~~~ (J(x) )ij 1, 

2, 

initial guess: ~i 

solutions: 

1, i 

i 

i I 

i 

0 .. 5, 

1, j 1, ... n, 

j' i 2,.,., ",n, j 1,.,,,,,,,. ,n, 

j' i I 1. 

i 1, ... ,n. 

p (i=l, ... ,n), 

for pa real zero of npn 
n-1 

(n+1)p + 1 

precisions: £ = 
rf 

particular properties: The condition number of the jacobian matrix at the 

initial guess increases with increasing order due to the values of the 
-(n-1) 

jacobian elements in the first row which are all equal to 2 . Scaling 

improves the condition number but using the same scaling throughout may 

increase the condition number at the solutions. (See table I.1). 

table LL 

starting guess solution a solution b 

- - so -s 
II o1 II II 0 211 

- - -s - - -s 
11 K WO KQ K w K K w K p 

0 * * * * * * 

2 10 1 o·· 11 2 10 1 1 7 2 7 9 2 9 0.5 

3 40 5 7 40 1 1 10 1 10 5 0.9 5 -0 . .43426 

4 21 o2 8 20 21 o2 1 1 20 0.5 20 30 3 30 0. 86888 

5 51 o2 10 70 11 o2 22 1 30 4 30 6 1 20 -0.57904 

6 I 103 10 2102 21 o2 23 1 40 10 so 60 5 60 0.94215 

7 4103 10 41 o2 2102 24 1 60 20 :t 102 8 71 o-3 60 -0 .65564 

8 9103 20 1103 31 o2 25 1 80 30 31 o2 90 6 , 31 o2 0. 96769 
I 

9 21 o4 20 2 10.J 4102 26 1 11 o2 i 5 61 o2 10 310-3 :3102 -0. 70521 

I 
I 

10 6104 20 5103 4102 27 1 1 I 02 : 10 11 o3 1 I 02 8 I 1 l 03 0.97943 

16 210 i 
13 7105 30 71 o2 1 2102 I 6 1 I 04 3 I 02 110-4 40 -0.76739 

24 11 o 11 so s i o9 510 3 
220 1 6102 I 20 3107 71 o2 20 3107 0.99648 

35 s - - 10 4 231 1 
11031 

8 8101.0 40 21 o-4 11 o 10 --0. 883 70 

46 s - - 21 o4 242 l 2103 25 s 2103 40 s 0. 99905 
I 
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For small order, it can be shown that the jacobian is singular at a point 

in SF(x0 ,I). It is expected that this also holds for larger order. That 

means that the conditions for convergence of Newton-like methods (condition 

5.3) are not satisfied for this starting guess. 

In restrajned methods, restraining occurs especially at the first step. 

'I'he problem has n-1 linear function components. 

I.2. (Generalization of a function given by POWELL [1970]) 

function: 

n 
c k~l E;k - 1, Fl (x) 

F. (x) 
1. 

exp(-E;i-1) + exp(-E;i) 

for some real parameter c > 0. 

n 
C 

k~l i 1' 

k;-ij 
(<J(x)) .. "' 

1.J 0, j > i, 

j 

j 

- exp(-1;.), j 
J 

i, j 

initial guess: 

1, for 2 s i. s n, i even, 

< 

-2/n 
C ' for sis n, i odd. 

r,oJution: e.g. for n = 2, c = 

i 

1, .. ,,n 

i-1, i 

i-1, i 

* X 

2, ... ,n, :i 

2, .•. ,n. 

particuJ.ar properties: The scaling of the variables can be controlled by the 

parameter c. For large c, the condition number at the starting point as well 

as at the solution can be improved by choosing a fixed scaling matrix based 

on the jacobian at x0 • However, the condition number at the solution will 

still be large. The problem indicators are given in table L2. For n 2: 24 

no solution is known. 
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table I. 2. 

starting guess solution 

- - -s -s -n C KO WO jio KQ II lloi K w 
-A * 

2 10 40 0.7 0.6 8 24 1 2102 2 

3 10 8 6 0.2 8 1 1 10 3 

3 10 2 10 2 0.7 4 23 1 3 l o2 1 

3 103 30 2 0.9 4 24 1 41 0 3 1 

3 l o4 60 2 0.9 4 25 1 6104 1 

3 105 1102 2 1 6 27 1 71 o5 1 

3 l 06 31 o2 2 1 5 28 1 9106 1 

3 10 7 6102 2 l 5 29 l 1108 1 

3 10 8 1103 1 1 5 210 1 1109 1 

3 l o9 3103 1 1 5 211 11 o IO ! 

212 i 
3 1010 6103 1 1 5 1 1 IO 11 1 

I 3 1011 1104 1 1 4 213 1 11012 2 

13 10 50 0.4 1 50 1 1 2104 0.5 

24 10 1103 2 2102 11 03 1 1 - -

35 10 3102 0.3 70 3102 1 t - -

46 10 5103 3 1103 5103 1 1 
I - -

I.3. (Generalization of a function given by POWELL [1970]) 

f'unct:ion, 
i 

Fi (x) = kgl ~k -l, 

Jacobian, 

(J(x)) .. 
lJ 

ini t.ial guess, 

-1, i 

2, i 

* sol.ution, i;. 
J. 

1,'" "0 fill 

2,"'.,,,, ,n, 

1' i 

i l,,.;:,,, ,n., 

i 11,,,,., ,n, j > i, 

i 1.,,, .... ,n, j 5 i. 

i. odd, 

i even. 

1, ... ,n. 

I 
! 
I -s 

K 

* 

20 

10 

40 

3102 

2103 

6103 

3104 

21 oS 

1 I 06 

6106 

310 7 

2108 

21 o4 

.. 

-

-
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precisions: Erf = Eaf = Erj = Eaj = nE. 

particular properties: F1 (x) is linear and the jacobian matrix is lower 

triangular. The values of w0 and w* are reasonably small for all orders; the 

same holds for K*. However, KO increases rapidly for increasing order. 

Scaling improves this number but spoils the value of K*, if the same scaling 
* -matrices are used at x0 and x. Note that s0 remains small while KO increases, 

which shows that the bad condition of J(x0) for large n is not reflected in 

II (J (x0)) -lF (x0) II. 

table I. 3. 

starting guess 

n iio 
-s Uo1H Uo211 -

KQ "'o KQ K 

* 
2 6 0.8 2 6 1 1 3 

13 7102 0.8 3 90 28 1 20 

24 5104 0,8 3 1102 214 1 30 

35 2106 a.a 3 3102 220 ! 50 

46 1108 0.8 3 3102 i26 24 60 

I.4. (Generalized function of ROSENBROCK [1960]) 

function: 

F 1 (x) -4c(1;; 2 
2 

-' 2 (1-1;1)' - 1;;1i s1 

Fi (x) 2c(l;;i si-1> 4c(l;;i+l -
2 

- 2 (1-i;i)' - l;;i) l;;i 

Fn(x) 2c(l;;n -
2 

l;;n-1) • 

jacobian: 

2 
(J(x)) 11 = 12c1;; 1 - 4c1;; 2 + 2, 

(J(x))ij 

2 

-4cl;;., 
J 

i = j, i 

2, ••• ,n and j i-1, 

1, ••• ,n-1 and j = i+1, 

solution 

- -s 

"'* K* 

0.3 3 

2 1103 

2 7104 

2 6106 

2 1108 

i 2, ••• ,n-1, 

2, ••• ,n-1, I 12ci;i - 4cl;;i+l + 2 + 2c, 

i 

i 

o, i,j = 1, ••• ,n, j > i+1, j < i-1. 
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initial guess: 

i;i = -L2, 

1' 

* solution: i;i 

i 

i 

1, 

1,. .• ,n, i odd, 

2, ... ,n, i even. 

i 1, ... ,n. 

precisions: Erf = Erj = 10s, Eaf E , = 10cE. 
aJ 

Note that the error in F(x) may be large at the solution due to cancellation 

of significant digits and a large value of c. Cancellation of digits also 

occurs in some terms of the jacobian; we assumed that in the domain of 

interest llxlj is not much greater than L 

table I.4. 

starting guess solution 

'o WO so KO 110 1 11 llo}; K 

* i 
w 
* 

K;! 

10 60 20 o. 2 40 22 30 I 6 I 0-11 30 

l o2 60 0.9 0. 4 30 2 

i 
31 o3 I 11 oJ 21 o3 

1 o3 60 710-2 0.4 40 JJ Q4 I 51 o3 2 I 04 

l o4 60 71 o-3 0.4 40 22 3 l 05 4 I o4 3 I as 

105 60 7 l □ -4' o. 4 40 2
2 I 3106 4 l aS 3 106 

; 06 60 7i 0-s 0.4 40 
2 I J 1 Q 7 4106 21 o7 

I,: 
I o7 60 710-6 0.4 30 22 ) 2108 41 o7 21 oB 

- i 

2 2 i 
I 

IO 30 0.2 I 3 ' 10 10 20 

I 
I 

I 

' 2 ' 
13 1 o 2 30 0. 2 10 2 l 41 oJ 3 1 o2 2 l O 3 

I 

2
2

1 
13 103 30 0. 2 10 41 o4 i 5 l 02 2 l 04 

I 
13 1 o4 30 0.2 I 10 22 l 4105 81 03 21 os 

13 l o5 30 o. 2 10 22 4106 8104 2106 

13 106 30 0. 2 10 22 4107 8105 3107 

13 10 7 30 0. 2 3 ' 10 22 1 i, 4108 8106 21 08 

10 70 0. 3 30 22 10 
i 

20 

24 104 70 0. 2 30 22 1 21041 1 I 04 31 o4 

24 10 7 70 o. 2 3 i 30 22 i I 
4106 21 oB 

I 
1, 4108 I 

' 

3S 10 30 0. 2 10 22 10 20 

I o4 JO 0.2 10 22 21 o4 1 l 04 31 o4 

10 7 30 0. 2 10 22 4108 6106 2108 

46 10 70 0. 2 30 z2 10 20 

46 1 o4 70 0.2 30 i 2104 61 o3 3104 

46 107 70 o. 2 30 22 4108 4106 21 oB 
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particular properties: For fixed order n = 2 or 13 and increasing c we have 

increasing values for K* and w*. At the starting point most indicator values 

remain almost independent of c, except for w0 which decreases with increas

ing c. Scaling yields no significant improvement of the condition number. 

110111 and 110211 are less than or equal to 4, although for large call diagonal 

elements of o1 are very small (e.g. for c = 107, the smallest diagonal ele-
-28 ment of o1 is 2 ). 

I.5. (GHERI & MANCINO [1971]) 

function: 

where zij 

jacobian: 

14n, i 

n 

I 
k=l 
k,-!i 

i,j 1, .•. ,n. 

j, i = 1, •.• ,n, 

1, ... ,n, 

_:j_ [sin5 (l. j)+cos5 (l .. )+Ssin 4 (l .. ) cos (l .. )-5cos 4 (l .. ) sin(li.)] 
zij 1 1J 1J 1J 1J J 

with lij ln(zij), i,j = 1, ••• ,n, if j. 

initial guess: 

where c1 = 20n-6, c2 = 8n+6. 

solution: depends on n. In general many solutions exist. 

precisions: Erf = Eaf = Erj = Eaj = 100ne. 

(These values are only rough estimates of the upperbound on the errors. In 

fact they should depend on the precision of the special functions ln, sin 

and cos.) 

particular properties: As appears from table I.5 the values of the problem 

indicators are all small, almost independent of the order. One can say that 

this problem is easily solvable for any reasonable order. One can obtain 

theoretical bounds on some of the values (see BUS [1977, section 4]): 
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K(X) 

w(x) - 2 -½ :::: 36 ✓n-1 [-2n +69n-12] , 

which are hounded for n:::: 34. 

table I.5. 

starting point solution 
1) 

n 

- i\ 110 1 11 llv} - - -
KQ WO KQ K 

* 
w 
* 

K 

* 

2 1 O. l 410-3 1 I 1 1 o. 1 1 

13 I I 10-2 0.4 1 I l 1 210-2 1 

24 I 510-3 2 1 1 I 1 210-3 1 

35 l 310-3 5 1 I 1 1 210-3 1 

46 1 310-4 10 l 1 1 1 210-3 1 

1 ) We have chosen an approximation to one possible soluti.on obtained 

by one of our algorithms; for other solutions we expect to obtain 

almost the same results. 

For these problems the tolerances are chosen to be 

0 
rx 

0 
ax 

Problem 5 will be used also for testing the effect of large errors in the 

function and jacobian, The following problem will be referred to as 

problem Sa. 

function: Let F be problem 5. Then 

(x) i = 1, ... ,n, 

where pi(x) and (x) are randomly chosen in the intervals [-p,p] and [-q,q], 

respectively, for all i:::: n and x and with p and q real parameters 

0 :::: p, q :::: L 

jacobian: Let J be the j acobi.an of problem 5. Then 
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Ci (x)) ij = (J (x)) ij ( l+pij (x)) + qij (x), 

where again p .. (x) and q .. (x) are randomly chosen i.n [-p,p] and for 
l.J l.J 

all x, i and j (i,j s n). 

precisions:£ f = £ . = 100n£ + p, £ f = £ . = 100n£ + q. 
r rJ a aJ 

The values for p and q depend on the experiment and on the machine precision. 

tolerances: We have to choose at least of c Eaf" Specific choices depend 

on the testing objectives. 

1.6. (BROYDEN [1971]) 

function, 

1' 2 
+ 1 - 100 l (i;k+i;k)' 

kEii 

where {kik;Ji, max(l,i-2) s ks min(n,i+2)}. 

Jacobian: 

l 
1 

2 + 300/;i' 

(J(x))ij 0, 

-100(1+2/;,), 
J 

initial guess: s. = -1, 
1. 

solution: depends on n. 

i 1,,,,,.,,,, ,n, i j' 

i,j 1, .. ., .. ,n, i r 
i,j 1 re •• n, i r 

i 1, •.• ,n. 

precis.ions: crf = c . = c . = 5£, £ f = 100c. 
rJ aJ a 

j' 

j' 

j < i-2, j > i+2, 

i-2 s j :-; i+2. 

particular properties: The jacobian of this problem is a quinta-diagonal 

matrix. Based on the values given in table I.6 we may expect this problem 

to be easily solvable by Newton-like programs. 
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table I.6. 

n initial guess solution 

- -
iio K~ lln111 1102!1 

- - ;::s 
KQ WO K "' * * 

2 1 1 0.4 2 1 I 2 3 

13 7 0.6 0.6 7 I 1 1 7 0.9 

24 9 0.5 0.8 9 
i 

I I I 7 o .8 i I I 

35 9 0.4 0.9 9 1 1 8 0.6 

46 9 0.3 I 9 I 1 8 o. 71 

1.7. (BROYDEN [1971]) 

.function: 

F'1 (x) (3-cs 1H 1 + - n2, 

(x) (3-cEiJ si + 1 - - 2si+t' i 2, .. "'n-1, 

(x) (3-ct;n)t;n + 1 - E;n-1' 

for ca real parameter, c > 0. 

jacobian: 

r 3 -· 2cE., i j' i 1,~ .. .,,n, 

j 
l 

-1, j i-l, i 2, .... ., .,n, 
(J (x)) .. 

l.J -2, j i+l, i 1, ... ,n-1, 

o, j ,;. i,i-1,i+l, i,j 1, ... ,n. 

* 
2 

7 

7 

8 

8 

initial guess: Ei = -1, i = 1, ... ,n. 

solution: depends on n and c. E.g. for n 

solutions, see particular properties. 

2 we have in general four 

precisions: c = c = 
rf af 

part:icular properties: For small values of c, these problems are expected 

to be easily solvable as the approximate values of the problem indicators 

are small (see table I. 7). 



table I,7, 

starting guess solution *) 

-
iio Kg llo1 n Uo2ff i< w Ks n C KQ "'o * * * 

2 10 1 0.7 0.7 l 1 1 2 5 2 

2 104 1 0.7 0.7 1 1 1 1 102 1 

13 10 1 0.3 2 1 1 1 2 1 2 

13 104 1 0.3 2 1 1 1 1 50 1 

24 10 1 0.2 2 1 1 1 2 0.8 2 

24 104 1 0.2 2 1 1 1 t 40 1 

35 10 1 0.2 3 1 1 1 2 0.6 2 

35 104 1 0.2 3 1 1 1 1 40 1 

46 10 I 0.1 3 1 1 1 2 0.6 2 

46 104 1 0.1 3 1 1 1 I 40 1 

*) The values at the solution are given for one particular solution 

obtained by one of our algorithms. Other solutions exist. 

For n = 2 the solutions of this problem are the intersective points of the 

parabolas: 

The four solutions (if c is large enough (e.g.~ 10) we have four inter

sective points) come closer to each other if c increases. In the degenerate 

case that c = 00 we have one solution at the origin. In table I,7a we give 
-* for various values of c the values of w (which appear to be of the same 

magnitude for the various solutions) and the maximum of the norms of the 

solutions. 

table I. 7a. 

C o. 1 1 5 10 50 102 103 104 105 108 

-
"'• 910-2 0.7 2 5 7 10 30 102 3102 7103 

maxUx*II 20 3 0.9 0.5 0.2 0.1 310-2 110-2 310-3 10-4 
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I.8. (MORE & COSNARD [1979]) 

function: 

Fl (x) 21;1 !;2 + 
2 3 

l:ih (i; 1+t1+1) , 

F' i {x) 2/;i i;i+l i;i-1 + ½h 2 ( C +t . + 1 ) 3 , i 2, ••• ,n-1, 
J. l 

F (x) 2/;n - i;n-1 
+ ½h2( +t +1) 3 , 

n n 

where hi (i=1, .•• ,n) and h = 1/(n+l). 

jacobian, 

i. j, i. 1, ... ,n, 

{J{x)) .. 
J.J 

-1, j i+l,i-1, i 1, .... ,, ,n, 

o, i,j j < i.-1' j > L 

ini t.ial guess: = 0.5, i = 1,2, .•. ,n. 

solut.ion: depends on n. 

precisions: E: = af 

particular propert.ies: Using Gerschgorin' s theorem we can bound the condi ti.on 

number of the jacobian by 

Note that the right hand side increases for increasing n (decreasing h) and 

becomes infinite if l;i -(1 +_:!___).For the starting point we obtain 
n+l 

4 
<; 1 + -------

3h2(L5+t1)2 

which yields for n = 2, 13, 24, 35 and 46, respectively 4.6, 110, 330, 740 

and 1300 approximately. In table I.8 we give the approximations to the 

values of the problem indicators, for the selected orders. 



table I.8. 

n initial guess solution 

- - i\ -s Uo1 II Uo2U ;; - Ks KQ WO KO 
* 

w 
* * 

2 2 0.3 0.8 5 22 

13 50 0 .1 2 50 1 

24 200 710-2 3 200 1 

35 300 610-2 3 300 1 

46 600 510-2 4 600 1 

I.9. (MORE & COSNARD [1979]) 

function: 

where ti= ih(i=1, ••. ,n) and h 

jacobian: 

1/ (n+l). 

l 
3 ) 2' i 1 + 2hti ( 

(J (xl) ij ~ht. (1-t..) (I; .+t..+1/, i,j 
l. J J J 

3 +t..+1)2, l 2ht. ( i,j 
J J 

table I.9. 

n initial guess 

1 3 0.2 6 

1 60 0.1 60 

1 200 810-2 200 

1 400 710-2 400 

1 700 610-2 700 

- --

n 
~ (1-tk) (l;k+tk+1)3)' 

k=J.+1 

j' i = 1, ~ .. ,. ,n,. 

l., ••• ,n, j > i, 

1,"'"'"'n, j < i. 

solution 

-
iio KQ II 0111 110211 

- - ;:s KO WO K w ,, * * 

2 1 0.3 0.8 1 1 1 1 0.3 1 

13 2 0.1 2 2 1 1 1 0.1 1 

24 2 710-2 3 2 I ! 1 710-2 l 

35 2 610-2 3 2 1 1 710-2 1 

46 2 510-2 4 2 1 1 1 610-2 1 

I.13 
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initial guess: ~i = 0.5, 

solution: depends on n. 

i 

precisions: E:rf = E:af = E:rj = E:aj = 2E:n. 

particular properties: This problem is easily solvable (see table I. 9) • 

I.10. (FLETCHER & POWELL [1963]) 

function: 

F(x) = Au{x) + Bv(x) - e, 

where A and Bare nxn matrices with integer elements, independent of x and 

chosen randomly in [-m,+m], u (x) and v (x) E JRn for all x E D and e E JRn 

* is chosen such that for a given x 

elements in [-b * ,b *] E JR : 

We choose 

Jacobian: 

* * e = Au(x) + Bv(x). 

m = 100 

* b ·rr, 

u(x) 

v(x) 

(sin ( s 1) , 

(cos (~ 1 ) , 

d d 
J(x) = A dx u(x) + B dx v(x), 

.,.,n 
E ..K'\. , which is chosen randomly with 

with d! u(x) 

d 
dx v(x) 

diag (cos (s 1 J, ••. ,cos (~n)) T' 

diag(-sin(~ 1), •.• ,-sin(~n))T. 

ini t.iaJ. guess: x 0 = x * + p, with p E JRn chosen randomly with elements in 

[-b ,+b ], we choose b = 0.0l1r. 
p p p 

* so.lution: x , randomly chosen, see above. 

precisions, = 100m:. 
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particular properties: We can influence the row or column scaling of the 

jacobian by multiplying a certain row or column of A and B with some scaling 

factor. In table I.10 we give values of the problem indicators for several 

values of and s and for the set of selected orders. If ors is un-
C C 

equal 1 then the (n//2+1 )-th row or column, respectively, of A and B are 

multiplied by s or s 
r C 

table I.10. 

initial guess solution 

- - K~ 110111 llo)I - - ;;;s n s s KQ WO Bo K w 
r C * * * 

2 1 1 3 0.7 I 
410-2 3 I 1 3 I 1 3 

I 10 i 
2 10-3 I 2103 0.7 410-2 3 2 I 21 03 3 I 

220 
: 

2 10-6 1 2106 0.7 410··2 3 1 21 06 0 t: 3 

230 I 
2 10-9 1 21 o9 0.7 410-2 3 1 21 o9 1 3 

1 

2 10-14 1 s - - 3 246 1 s - 3 I 

2 1 l o-3 1 10 3 5 0.5 3 2 I 29 1103 61 o-2 3 I 

I i 219 i ' 
2 1 10-6 I 106 610-2 5102 3 2 

' 1106 0.3 3 
I 

2 l 10-9 6109 1 
I 

2106 3 2 I i9 51 o9 110-3 10 
i 

I I 

2 1 10-14 s - i - 4 2 i 245 s - 4 
I 

: ' i I 13 I 1 1 20 0.9 810-2 20 1 I 20 ! 20 
I 

I 13 
' 10-3 1 6 10 3 0.9 810-2 30 28 i 1 7103 1 30 I 

' z20 
I 

i 13 10-6 1 6106 0.9 810-2 20 ! 1 7106 20 
i 

13 
' 

10-9 1 6109 0.9 810-2 20 230 1 71 o9 1 20 

13 10-14 1 s - ·- 20 246 1 s -· 20 

JO 

I 13 1 10-3 41 o3 5 0.3 20 1 2 3103 O. l 20 

13 I 1 J o··6 4106 610-2 31 o2 20 1 220 3106 0.3 I 20 

13 I 10-9 4109 610-2 3105 20 1 230 
3109 71 o-3 20 

13 1 10-14 s .• - 20 1 I 246 s - 20 I 
24 1 30 1 0.1 30 2 ! 20 O.R 30 

35 1 
I 

1 70 2 0.1 70 l l 60 1 60 

46 I I 1 3102 6 0. I 31 o2 I 1 3102 4 3102 

Note that scaling of the function does not influence the values of 

or w . This is not true 
* 

for scaling of the variables. This problem is, 

for n ~ 2, 13; particularly suitable for testing scaling strategies. 
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Scaling based on the jacobian at x0 yields good scaling everywhere in the 

domain. 

L1L 

function, jacobian, starting guess and solution: as problem 10 with 

T 
u(x) (exp(E; 1), """' exp(E;n)) , 

v(x) (exp(-E; 1), ••• , exp(-E;n))T, 

* m • 100, b - 1, b • 0.1. 
p 

table L 11. 

l 3 

13 I 

13 

24 

35 

46 

initial guess 

I 4 0.1 

I 60 
I 

0.5 0.3 60 

J104 0.5 0.3 80 

3107 0.5 0.3 60 

10 ·14 S 

90 o. 3 

70 0.6 0.3 

1102 0.7 0.4 

70 

60 

60 

*) algorithm used did not find a solution 

211 

ill 1 

2 31 i 1 

248 : l 

231 I 
I 

47 I 

2 

29 

so.l uti.on 

2 i 2 

- ] 2 

0.6 

0.6 

40 i 0.B 40 
I 

70 

60 

80 

50 

40 

40 

40 

40 

40 

2 80 

I 
o.4 I 60 

o. 7 ! 80 
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precisions: E = E = E . = E . = 100nE. 
rf af rJ aJ 

particular properties: As for problem 10 we can influence row or column 

scaling of the jacobian by multiplying a certain row or column of A and B by 

some scaling factors. In table I.11 we give the approximate values of the 

problem indicators. 

1.12. 

function, jacobian, starting guess and solution: As problem '10 with 

u(x) 

v(x) 

(ui(i:;1+10), 

(ui(10-i;1), 

* m = 10, b 1, b 
p 

O.L 

100m:. 

particular propert.ies: The function is undefined for all x with s. :cc 10 or 
J 

i;. S -10 for some j, 1 s j s n. In table L 12 we give the values of the 
J 

problem indicators for selected orders. 

table L 12. 

n initial guess 

- -
iio K~ II n1 11 KO WO 

2 4 0.2 0 .1 4 1 

13 10 910-2 0.3 10 1 

24 40 810-2 0.3 40 1 

35 50 0.1 0.3 50 1 

46 60 0.3 0.4 60 1 

£'unction: 

F'(x) = A(x)u(x) +· B(x)v(x) - e, 

where 

with 

(A(x)) .. 
.l l.J 

( ) (i, j 

( 1) 
(a(x)) .. ,(B(xl) .. 

l.J l.J 
1, ••• ,n, .l = 1,2) chosen 

solution 

110211 i< w ;s 
* * * 

l 3 0.2 3 

l 10 810-2 10 

l 40 0.3 40 

1 50 0.2 50 

1 60 0.3 60 

(2 ) f . . - l (b(x))ij' or l,J - ,.u,n, 
randomly in [-m,m], (a(x)) .. and 

l.J 
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(b ( x) ) ij given functions ( i, j 

that for given ,/ E lll. n 

1, .• , , n) for x E D and e E JR n chosen such 

We choose 

(a(x)) .. 
lJ 

exo(C+I; .) , 
- l. J 

i,j 

(b(x)) ij exp(-(si+sj))' i,j 

u(x) ""v(x) 

m = 10, 

and x* randomly with elements in [-b*,b*] E :JR with b* L 

jacobian, 

.J(x) = (d~ A(x))u(x) + A(x)d~ u(xl + 
d d <ax B(x))v(x) + B(x)dx v(x). 

H d ( ) -~- v (x) I. ere dx u x = dx 

* n in..i tial guess: x 0 "" x + p, with p E JR chosen randomly with elements in 

[-b ,+b ]. We choose b ~ 0,1. 
p p p 

* so.lut_ion, x , chosen randomly, s(1e above. 

particular properties: The approximate values of the problem indicators 

an, given in table I. 13. 

table I.13. 

I 
n initlal guess solution 

' 
... - i3a ;~ 1101 1! 110211 - w -s 

I KO '"o K 

* * 
K 

* 

2 7 2 0.1 4 2 2 5 4 4 

13 80 2 0.5 40 4 ! 70 4 40 

24 3102 2 0.7 2102 
' 

4 1 2102 4 110 2 

\ 35 9102 20 0.9 71 o2 2 1 - - - *) 

i 
21 o2 I j 46 2 0.5 1102 4 1 31 02 3 31 o2 

I 

*) algor:Lt.hm used d.id not find a soluti.on 
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function, jacobian, starting guess and solution: As problem 13 with 

(a(x)) .. 1;1 + i;j i,j = 1, .•• ,n, 

-1 
J.J 

(b(x)) ij (i;,+i;.+10) i,j 1, .•• ,n, 
J. J 

u(x) 

v(x) 

(sin{i; 1 ), ... ,sin(I; ))T, 
11 

T 
(cos(i; 1 ), ••• ,cos(i;11)), 

b 
p 

0.0111. 

I.19 

particular properties: The function is undefined for x with i;i + i;j + 10 O, 

for some i and j, 1 ~ i,j s n. 

table I. l.4. 

n initial guess 

iio 
-s lln111 lln II KQ WO KO 2 

2 60 10 510-2 60 2 1 

13 70 1 810-2 60 22 1 

24 40 1 0.1 40 i 1 

35 3102 6 0.1 3102 22 1 

46 2102 2 0.1 11 o2 2 1 

*) algorithm used did not find a solution 

I.15. (POWELL [1962]) 

function: 

F' 1 (x) 

r"2 (xl 

F 3 (x) 

F4 (x) 

10 (1;3-1;4) -

-10(1;3-1;4) -

solution 
I 

- - ;s K w 
* * * 

50 8 50 

60 6 60 

50 2 50 

6102 20 6102 

*} - - -
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jacobian: 

/2+120 o;:ci;:4> 2 20 0 
2 

-120 ,i::i-·•i::4i 
I 2 

-24(1;2-21;3)2 I 20 200+12 (1;; 2-21;; 3) 0 

J(x) I 

i 0 -24(1;; -21;) 10+48( 2 -10 
\ 2 3 

\-120(1\-1;4) 2 0 -10 10+120(1;1-1;4) 
2 

initial guess: x0 = ( 3, -1 , 0, 1) T • 

so.lution, x* (0, O, O, OJ T• 

precisions: E:rf = E:af = E:rj = E:aj = 10r. 

particular properties, The jacobian matrix is singular (rank equals 2) at 

the solution. 1~is makes the problem especially suitable for testing the 

robustness of the stopping criteria used, as convergence will become linear 

close to the solution, for Newton-like algorithms. 

The values of the problem indicators are: 

I.16. (BREZINSKI [1975]) 

function: 

(x) 

(x) 

for some real parameter c, 0 < c < 0.5. 

initial guess, 

* solution: x 

precisions, 

(c, 1/c) T. 

E: ' aJ 
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particular properties: For small c the solution vector contains a very small 

and a very large element. I.e. the variables are badly scaled around the 

solution. This problem is particularly suitable for testing the influence 

of bad variable scaling on the performance of the algorithms. In table I.16 

we give the values of the problem indicators for various c. 

table I.16. 

initial guess solution 

- i\ K~ II 0 111 !lo} " - ;: C KO "'o * 
w 
* 

1 9 0.6 2 3 23 2 2 1 7 

10 20 8 0.2 1 24 1 1104 60 81 02 

102 20 80 210-2 1 24 1 !108 40 31 o7 

103 20 5102 210-3 1 24 1 41012 0 31011 

1 o4 20 \103 210-4 I 24 1 s - s 

105 20 s 10 3 210-5 1 24 1 s - s 
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APPENDIX II 

In this appendix we give the experimental results obtained by running 

the ALGOL 60 programs for the various test problems. 'l'he ALGOL 60 programs 

use the NUMAL software library (HEMKER et al. [1979]). We have used the 

CYBER 73 computer with the NOS-BE system and the current ALGOL 3.343 compiler. 

The machine precision is 2-47 . We use the following notation in the tables. 

MS number of iteration steps required; 

MF number of function evaluations required; 

N the order of the problem; 

C the value of the parameter or values of parameters (e.g. in 

results for various order for problem 10, c = 1"-03 1. means that 

MJ the number of jacobian evaluations required; 

MSV the number of iterations with singular value decomposition 

(only in II.8). 

For problem Sa, P and Q have the same meaning asp and q in the problem 

description. 

If a program fails to solve a problem than we do not give the number of 

function evaluations required, but instead we give .a"*" followed by the 

mmiber of the error message given (number i means message texti as given in 

the problem prelude in ALGOL 68 (nlsprl in section 6.1)). In all tests we 

use fixed upper bounds on the allowed number of function evaluations. These 

are, with 

M min(100, 600 // n): 

M for algorithms using the analytic jacobian; 

M(n+1) for algorithms using difference approximation; 
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2M for update algorithms. 

In the algorithms of component wise approximation, BW, BT and BTM, we allow 

M iteration steps. We have multiplied M with (n+1) for difference algorithms 

as in each iteration step n evaluations of the function are required to ap

proximate the jacobian. As update algorithms are expected to use more iter

ation steps than algorithms with analytic jacobian we used 2M for these pro

grams. These upper bounds decrease for increasing order, Although this might 

cause more failures for problems of high order, this bound is necessary for 

practical reasons, to be able to perform all tests within a reasonable amount 

of CPU hours. 

The interpretations of these results are given in chapters 7 and 8. The test 

results are divided into 8 groups: 

1. results for ASW, AS, AB, AI and AE; 

2. results for GAS, GAB and GAI; 

3. results for DSW, DS, DB, DI and DE; 

4. results for GDS, GDB and GDI; 

5. results for UlS and U2S; 

6. results for BW and BT; 

7. results to test special properties and features (convergence criteria, 

conditional updating and fixed approximation, scali.ng and reduction of 

problems with linear function components); 

8. results of the algorithms SNOLEQ(S), SNOLEQJ(S), (SC)U2S and BW, which 

a.re selected based on the experimental results in 1. up to 7. 

Note that in I.6, MS denotes the number of function component evaluations 

divided by 11 (rounded to below). Furthermore here BW(l) and B'l'(l) mean that 

we use the value lE: for the difference steps in BW and B'l', and BW(2) and 

BT(2) indicate that le is used. Without this indication is used. 
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II.1. RESULTS for ASW, AS, AB, AI AND AE 

RESULTS FOR PROBLEM 1 

N ASW AS AB AI AE 
MS MF MS MF MS MF MS MF MS MF 

2 1 2 1 2 l 2 1 2 1 3 
3 6 7 6 7 6 8 6 8 6 9 
4 14 15 14 15 8 19 7 14 8 15 
5 17 18 2 *09 7 14 7 14 9 16 
6 59 60 2 *09 10 16 10 16 8 15 
7 33 34 2 *09 6 15 6 15 9 16 
8 2 *05 2 *05 9 22 9 22 3 *08 
9 2 *05 2 *05 6 18 6 18 6 10 

10 2 *05 2 *05 11 22 11 22 2 *09 
13 2 *05 2 *05 7 25 7 25 2 *09 
24 1 *11 2 *05 2 *09 3 4 3 5 
35 l *11 2 *05 2 *08 3 4 3 5 

RESULTS FOR PROBLEM 2, N = 3 

C ASW AS AB AI 11.E 
MS MF MS MF MS MF MS MF MS MF 

l "01 4 5 4 5 4 5 4 5 4 5 
l "02 6 7 6 7 6 8 6 8 7 13 
l "03 7 8 7 8 8 10 8 10 8 16 
1"04 9 10 9 10 9 12 9 12 16 32 
1"05 10 11 10 11 11 15 10 13 31 62 
l "06 11 12 7 *09 8 *09 8 *09 44 *09 
1"07 12 13 5 *09 7 *09 6 *09 154 *09 
l "08 13 14 6 *08 5 *09 5 *09 147 *04 
1"09 15 16 5 *09 5 *09 4 *09 149 *04 
1"10 16 17 4 *08 3 *09 4 *08 143 *04 
1"11 18 19 3 *08 3 *09 3 *08 139 *04 

RESULTS FOR PROBLEM 4 

N C II.SW AS AB AI l',.E 
MS MF MS MF MS MF MS MF MS MF 

2 l "01 8 9 8 9 17 32 14 22 24 42 
2 1"02 6 7 6 7 2 *09 2 *09 2 *09 
2 1"03 6 7 2 *09 2 *09 2 *09 2 *09 
2 1"04 6 7 2 *09 2 *09 2 *09 2 *09 
2 1"05 5 6 2 *08 2 *08 2 *08 2 *08 
2 1"06 5 6 2 *08 2 *08 2 *08 2 *08 
2 l "07 5 6 2 *08 2 *08 2 *08 2 *08 

13 1"01 9 10 9 10 12 17 14 19 100 *04 
13 1"02 31 32 31 32 77 *09 30 *09 14 26 
13 1"03 45 *04 8 *09 8 *09 100 *04 100 *09 
13 1"04 11 12 11 12 8 *09 8 *09 7 *09 
13 l "05 45 *04 8 *09 8 *09 8 *09 9 *09 
13 l"Ll6 19 20 9 *08 43 *09 8 *09 8 *09 
13 1"07 45 *04 s· *09 9 *09 9 *09 8 *08 
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RESULTS FOR PROBLEM 5 

N !,SW AS AB AI AE 
MS MF MS MF MS MF MS MF MS MF 

2 2 3 2 3 2 3 2 3 2 3 
13 3 4 3 4 3 4 3 4 3 4 
24 3 4 3 4 3 4 3 4 3 5 
35 3 4 3 4 3 4 3 4 3 5 
46 3 4 3 4 3 4 3 4 3 5 

RESULTS FOR PROBLEM 51\, N = 35 

p Q ASW AS AB AI AE 
MS MF ! l Fl! MS MF ! ! F !! MS MF l l Fl! MS MF ! ! Fl! MS MF ! ! Fl! 

l"-12 l"-12 3 4 4"-11 3 4 4 "-11 3 4 4"-11 3 4 4"-11 3 5 3"-11 
l"-12 l"-10 3 4 4"-11 3 4 4"-11 3 4 4"-11 3 4 4"-11 3 5 5"-11 
l"-12 l"-08 3 4 7"-11 3 4 7"-11 3 4 7"-11 3 4 7 11 -ll 3 5 5"-11 
l"-12 l"-06 3 4 l"-09 3 4 l"-09 3 4 l"-09 3 4 l"-09 3 5 6"-10 
l"-12 l"-04 3 4 l"-07 3 4 l"-07 3 4 l"-07 3 4 l"-07 3 5 6"-08 
l"-12 l"-02 3 4 4"-04 3 4 4"-04 3 4 4"-04 3 4 4"-04 4 6 2"-05 
l"-10 l"-12 3 4 3 "-lll 3 4 3"-10 3 4 3"-10 3 4 3"-10 3 5 2"-10 
l"-08 l"-12 3 4 2"-08 3 4 2"-08 3 4 2"-08 3 4 2"-08 3 5 2"-08 
l"-06 l"-12 3 4 2"-06 3 4 2"-06 3 4 2"-06 3 4 2"-06 3 5 2"-06 
l"-04 l"-12 3 4 2"-04 J 4 2"-04 3 4 2"-04 3 4 2"-04 3 5 2"-04 
l"-02 l"-12 16 *04 2"-02 17 *04 2"+01 14 *09 2"-02 4 *O 1 2"-02 3 *01 2"-02 



II.5 

RESULTS FOR PROBLEM 7, N = 2 

C ASW AS AB AI AE 
MS MF MS MF MS MF MS MF MS MF 

l"-1 3 4 3 4 3 4 3 4 3 4 
l"+O 4 5 4 5 4 5 4 5 4 5 
5"+0 5 6 5 6 5 6 5 6 5 6 
1"+1 .5 6 5 6 5 6 5 6 5 6 
5"+1 6 7 6 7 6 7 6 7 6 7 
1"+2 7 8 7 8 7 8 7 8 7 8 
1"+3 9 10 9 10 9 10 9 10 9 10 
1"+4 10 11 10 11 10 11 10 11 10 11 
1"+5 12 13 12 13 12 13 12 13 12 13 
1"+8 17 18 17 18 17 18 17 18 17 18 

RESULTS FOR ORDER 2 RESULTS FOR ORDER 13 

FN C ASW AB FN C ASW AB 
MS MF MS MF MS MF MS t1F 

l l 2 l 2 1 2 *05 7 25 
2 l" 1 5 6 5 7 2 l "1 13 14 9 *09 
3 2 3 2 3 3 14 15 2 *05 
4 l "l 8 9 17 32 4 l "l 9 10 12 17 
4 l "4 6 7 2 *09 4 l "4 11 12 8 *09 
4 l "7 5 6 2 *08 4 l "7 45 *04 9 *09 
5 2 3 2 3 5 3 4 3 4 
6 5 6 5 6 6 5 6 5 6 
7 l "l 5 6 5 6 7 l" l 5 6 5 6 
7 l "4 10 11 10 11 7 l "4 10 11 10 11 
a 4 5 4 5 8 4 5 4 5 
9 4 5 4 5 9 4 5 4 5 

10 1"+00,l 3 4 3 4 10 1"+00,1 3 4 3 4 
10 l"-03,1 3 4 3 4 10 l"-03,1 3 4 3 4 
10 l"-06,l 3 4 3 4 10 l"-06,1 3 4 3 4 
10 l"-09,l 3 4 3 4 10 l"-09,1 3 4 3 4 
10 l"-14,1 99 *04 2 *08 10 l"-14,l 45 *04 2 *08 
10 l,l"-03 4 5 4 5 10 l,l"-03 4 5 4 5 
10 l,l"-06 4 5 3 *08 10 l,l"-06 4 5 3 *09 
10 l,l"-09 7 8 2 *08 10 l,l"-09 7 8 2 *08 
10 l,l"-14 2 *05 2 *05 10 l,l"-14 45 *04 2 *08 
11 4 5 4 5 11 4 5 4 5 
12 2 3 2 3 12 2 3 2 3 
13 4 5 4 5 13 5 6 5 6 
14 4 5 4 5 14 3 4 3 4 
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RESULTS FOR ORDER 24 RESULTS FOR ORDER 35 

FN C ASW AB FN C ASW AB 
MS MF MS MF MS MF MS MF 

1 l *11 2 *09 l 1 *11 2 '"08 
2 l "1 2 *05 2 *09 2 l "l 2 *OS 2 *08 
3 24 *04 2 *05 3 16 *04 2 *05 
4 l "l 9 10 9 10 4 l "l 9 10 9 *09 
4 l "4 12 13 7 *09 4 l "4 12 13 8 *09 
4 l "7 24 *04 7 *08 4 l "7 16 *04 9 *09 
5 3 4 3 4 5 3 4 3 4 
6 5 6 5 6 6 5 6 5 6 
7 l" 1 5 6 5 6 7 l "1 5 6 5 6 
7 l" 4 10 11 10 11 7 l "4 10 11 10 11 
8 4 5 4 5 8 4 5 4 5 
9 4 5 4 5 9 4 5 4 5 

10 1"+00,l 3 4 3 4 10 l "+00 ,l 3 4 3 4 
10 l"-03,1 3 4 3 4 10 l"-03,1 3 4 3 4 
10 l"-06,l 3 4 3 4 10 l"-06,1 3 4 3 4 
10 l"-09,l 3 4 3 4 10 l"-09,l 3 4 3 4 
10 l"-14,1 24 *04 2 *08 10 l"-14,1 16 *04 2 *08 
10 l,l"-03 4 5 4 5 10 l,l"-03 4 5 4 5 
l.O l,l"-06 4 5 3 4 10 1,l"-06 4 5 3 4 
10 1, l "-09 6 7 2 *08 10 l,l"-09 9 10 2 *08 
10 l,l"-14 24 *04 2 *08 10 l,l"-14 16 *04 2 *08 
11 4 5 4 5 11 4 5 4 5 
12 3 4 3 4 12 3 4 3 4 
13 5 6 5 6 13 16 *04 11 *09 
14 3 4 3 4 14 5 6 5 6 

RESULTS FOR ORDER 46 

FN C A.SW AB 
MS MF MS MF 

l l *11 1 *02 
2 l "l l *11 2 *08 
3 12 *04 2 *10 
4 l "l 9 10 9 10 
4 l "4 12 13 7 *09 
4 l "7 12 *04 7 *08 
5 3 4 3 4 
6 5 6 5 6 
7 l "l 5 6 5 6 
7 l "4 10 11 10 11 
8 4 5 4 5 
9 4 5 4 5 

10 l "+00 ,1 4 5 4 5 
10 l"-03,1 4 5 4 5 
10 l"-06,l 4 5 4 5 
10 l"-09,1 4 5 4 5 
10 l"-14,l 12 *04 2 *08 
10 1,l"-03 8 ') 2 *09 
10 l,l"-06 7 8 2 *08 
10 l,l"-09 6 7 2 *08 
10 l,l"-14 12 *04 2 *08 
11 4 5 4 5 
12 3 4 3 4 
13 7 ''05 6 10 
14 4 5 4 5 
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II.2, RESULTS FOR GAS, GAB AND GAI 

RESULTS FOR PROBLEM 1 RESULTS FOR PROBLEM 2, N = 3 
N GAS GAB GIi.I C GAS GAB GIi.I MS MF MS MF MS MF MS MF MS MF MS MF 
2 2 3 2 3 2 3 1"01 5 6 5 6 5 6 3 7 8 7 9 7 9 1"02 7 8 7 9 7 9 4 15 16 9 20 8 15 l "03 8 9 9 11 9 11 5 18 19 8 15 8 15 1"04 9 10 10 13 10 13 6 60 61 11 17 11 17 l "05 11 12 12 16 11 14 7 34 35 7 16 7 16 l "06 12 13 13 17 13 16 a 41 *03 10 23 10 23 l "07 13 14 14 19 20 35 9 52 53 6 18 6 18 1"08 14 15 15 20 15 19 10 60 *04 12 23 12 23 1"09 16 17 17 23 16 21 13 45 *04 8 26 8 26 1"10 17 18 18 24 18 23 24 1 *11 1 *04 1 *04 1"11 18 19 29 56 30 59 35 5 6 5 6 5 6 

RESULTS FOR PROBLEM 4 

N C GAS GAB GAI 
MS MF MS MF MS MF 

2 1"01 9 10 17 32 15 23 
2 1"02 7 8 11 *04 15 *04 
2 l "03 6 7 8 *04 12 *04 
2 l "04 6 7 7 *04 10 *04 
2 l "05 5 6 6 *04 10 *04 
2 1"06 5 6 6 *04 8 *04 
2 1"07 5 6 2 *02 2 *01 

13 1"01 10 11 13 18 15 20 
13 1"02 32 33 12 *04 14 *04 
13 1"03 45 *04 12 *04 12 *04 
13 1"04 12 13 9 *04 10 *04 
13 l "05 45 *04 11 *04 10 *04 
13 l "06 45 *04 18 *04 16 *04 
13 l "07 45 *04 11 *04 13 *04 

RESULTS FOR PROBLEM 5 

N GAS GAB GAI 
MS MF MS MF MS MF 

2 2 3 2 3 2 3 
13 3 4 3 4 3 4 
24 3 4 3 4 3 4 
35 3 4 3 4 3 4 
46 3 4 3 4 3 4 
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RESULTS FOR PROBLEM 5A, N = 35 

p Q GI\.S GAB GAI 
MS MF ! ! F! ! MS MF ! !F! ! MS MF ! ! F! ! 

l"-12 l"-12 3 4 4"-11 3 4 4"-11 3 4 4"-11 
l"-12 l"-10 3 4 5"-11 3 4 5"-11 3 4 5"-11 
l"-12 l"-08 3 4 7"-11 3 4 7"-11 3 4 7 "-11 
l"-12 l"-06 3 4 l"-09 3 4 l"-09 J 4 l"-09 
l"-12 l"-04 3 4 l"-07 3 4 l"-07 3 4 l"-07 
l"-12 l"-02 3 4 3"-04 3 4 3"-04 3 4 3"-04 
l"-10 l"-12 3 4 3"-10 3 4 3"-10 3 4 3"-10 
l"-08 l"-12 3 4 2"-08 3 4 2"-08 3 4 2"-08 
l"-06 l "-12 3 4 2"-06 3 4 2"-06 3 4 2"-06 
l"-04 l"-12 3 4 2"-04 3 4 2"-04 3 4 2"-04 
l"-02 l"-12 16 *04 2"-02 7 *04 2"-01 4 *01 2"-02 

RESULTS FOR PROBLEM 7, Jij = 2 RESULTS FOR ORDER 2 

C GAS GAB GAI FN C GAS GAB 
MS MF MS MF MS MF MS MF MS MF 

l"-1 4 5 4 5 4 5 1 2 3 2 3 

l"+0 5 6 5 6 5 6 2 l "l 6 7 6 8 

5"+0 6 7 6 7 6 7 3 3 4 3 4 

l"+l 6 7 6 7 6 7 4 l "l 9 10 17 32 
5"+1 7 8 7 8 7 8 4 l "4 6 7 7 *04 
1"+2 8 9 8 9 8 9 4 l" 7 5 6 2 *02 
l "+3 9 10 9 10 9 10 5 2 3 2 3 
1"+4 11 12 11 12 11 12 6 6 7 6 7 

l "+5 12 I3 12 13 12 13 7 l "1 6 7 6 7 
1"+8 17 18 17 18 17 18 7 l "4 11 12. 11 12 

8 5 6 5 6 
9 5 6 5 6 

10 1"+00,l 3 4 3 4 
10 l "-03 ,1 3 4 3 4 
10 l"-06,1 3 4 3 4 
10 l "-09 ,1 3 4 3 4 
10 l"-14,l 3 4 3 4 
10 l,l"-03 5 6 5 6 
10 l ,l"-06 5 6 5 6 
10 1,l"-09 99 *04 4 7 
10 l ,l "-14 3 4 3 4 
11 4 5 4 5 
12 3 4 3 4 
13 4 5 4 5 
14 4 5 4 5 
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.RESULTS FOR ORDER 13 RESULTS FOR ORDER 24 

FN C GAS GAB FN C GAS GAB 
MS MF MS MF MS MF MS MF 

l 45 *04 8 26 l l "11 l *04 
2 l "1 14 15 6 *04 2 l "l 24 *04 3 *04 
3 14 15 4 *04 3 24 *04 2 *04 
4 1"1 10 11 13 18 4 l" l 10 11 10 11 
4 l "4 12 13 9 *04 4 l "4 12 13 8 *04 
4 l "7 45 *04 11 *04 4 l "7 24 *04 8 *04 
5 3 4 3 4 5 3 4 3 4 
6 5 6 5 6 6 5 6 5 6 
7 l" 1 6 7 6 7 7 l "l 6 7 6 7 
7 1"4 11 12 11 12 7 l "4 11 12 11 12 
8 5 6 5 6 8 5 6 5 6 
9 5 6 5 6 9 5 6 5 6 

10 1"+00,1 3 4 3 4 10 1"+00,1 4 5 4 5 
10 l"-03,l 3 4 3 4 10 l"-03,1 4 5 4 5 
10 l"-06,1 3 4 3 4 10 l"-06,1 4 5 4 5 
10 l"-09,l 3 4 3 4 10 l"-09,1 4 5 4 5 
10 l"-14,l 3 4 3 4 10 l"-14,1 4 5 4 5 
10 l,l"-03 5 6 5 6 10 l,l"-03 5 6 5 6 
10 l,l"-06 5 6 5 6 10 l,l"-06 5 6 4 5 
10 l,l"-09 5 *03 3 4 10 l,l"-09 7 *03 4 5 
10 l,l"-14 3 4 3 4 10 l,l"-14 4 5 4 5 
11 4 5 4 5 11 4 5 4 5 
12 3 4 3 4 12 3 4 3 4 
13 6 7 6 7 13 5 6 5 6 
14 4 5 4 5 14 4 5 4 5 

RESULTS FOR ORDER 35 RESULTS FOR ORDER 46 

FN C GAS GAB FN C GAS GAB 
MS MF MS MF MS MF MS MF 

l 5 6 5 6 1 5 6 5 6 
2 l "l 16 *04 2 *04 2 l "1 1 *11 2 *04 
3 16 *04 2 *04 3 12 *04 2 *04 
4 l "l 10 11 8 *04 4 l "l 10 11 10 11 
4 l "4 12 13 8 *04 4 l "4 12 13 7 *04 
4 l "7 16 *04 9 *04 4 l "7 12 *04 7 *04 
5 3 4 3 4 5 3 4 3 4 
6 5 6 5 6 6 5 6 5 6 
7 l "l 6 7 6 7 7 l "l 6 7 6 7 
7 l "4 11 12 11 12 7 l "4 11 12 11 12 
8 5 6 5 6 8 5 6 5 6 
9 5 6 5 6 9 5 6 5 6 

10 1"+00,1 4 5 4 5 10 1"+00,1 4 5 4 5 
10 l"-03,1 4 5 4 5 10 l"-03,1 4 5 4 5 
10 l"-06,1 4 5 4 5 10 l"-06,1 4 5 4 5 
10 l"-09,1 4 5 4 5 10 l"-09,1 4 5 4 5 
10 l"-14,1 4 5 4 5 10 l"-14,1 4 5 4 5 
10 l,l"-03 5 6 5 6 10 l,l"-03 9 10 6 10 
10 l,l"-06 5 6 4 5 10 l,l"-06 8 9 7 8 
10 l,l"-09 8 *03 4 5 10 l,l"-09 4 5 4 5 
10 l,l"-14 3 4 3 4 10 l,l"-14 4 5 4 5 
11 4 5 4 5 11 4 5 4 5 
12 4 5 4 5 12 4 5 4 5 
13 16 *04 7 *04 13 12 *04 7 11 
14 6 7 6 7 14 4 5 4 5 
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II.3. RESULTS FOR DSW, OS, DB, DI and DE 

RESULTS FOR PROBLEM 1 

N DSW DS DB DI DE 
MS MF MS MF MS MF MS MF MS MF 

2 2 7 2 7 2 7 2 7 2 8 
3 6 25 6 25 6 26 6 26 6 28 
4 14 71 14 71 8 51 7 42 8 47 
5 17 103 2 *08 7 49 7 49 9 61 
6 59 414 2 *08 10 76 10 76 8 63 
7 33 265 2 *08 6 57 6 57 9 79 
8 2 *05 2 *05 9 94 9 94 3 *05 
9 2 *05 2 *05 6 72 6 72 6 64 

10 2 *05 2 *05 11 132 11 132 2 *08 
13 2 *05 2 *05 7 116 7 116 1 *01 
24 1 *11 3 76 1 *08 3 76 3 77 
35 1 *05 3 109 1 *05 3 109 3 llO 

RESULTS FOR PROBLEM 2, N = 3 

C DSW OS DB DI DE 
MS MF MS MF MS MF MS MF MS MF 

1"01 4 17 4 17 4 17 4 17 4 17 
l "02 6 25 6 25 6 26 6 26 7 34 
l "03 7 29 7 29 8 34 8 34 9 44 
1"04 9 37 9 37 9 39 9 39 15 77 
1"05 10 41 7 *08 8 *08 7 *08 14 *08 
1"06 11 45 6 *08 6 *08 6 *08 50 *08 
1"07 12 49 5 *08 5 *08 5 *08 59 *04 
1"08 13 53 5 *08 5 *08 5 *08 59 *04 
1"09 15 61 4 *08 4 *08 4 *08 64 *04 
1"10 16 65 3 *08 3 *08 4 *08 63 *04 
1"11 17 69 2 *08 2 *08 3 *08 60 *04 

RESULTS FOR PROBLEM 4 

N C DSW OS DB DI DE 
MS MF MS MF MS MF MS MF MS MF 

2 1"01 8 25 8 25 17 66 14 50 25 93 
2 1"02 6 19 6 19 2 *09 2 *09 2 *09 
2 1"03 6 19 2 *08 2 *08 2 *08 2 *08 
2 1"04 7 22 2 *08 2 *08 2 *08 2 *08 
2 1"05 9 28 2 *08 2 *08 2 *08 2 *08 
2 1"06 14 43 2 *08 2 *08 2 *08 2 *08 
2 1"07 22 67 2 *08 2 *08 2 *08 2 *08 

13 1"01 9 127 9 127 12 173 14 201 87 *04 
13 1"02 32 449 32 449 59 *09 15 226 14 208 
13 1"03 43 603 8 *OB 8 *09 70 *04 87 *04 
13 1"04 11 155 7 *08 8 *08 8 *08 7 *08 
13 l "05 43 *04 7 *08 8 *08 8 *08 9 *08 
13 1"06 43 *04 8 *08 8 *08 8 *08 8 *08 
13 1"07 43 *04 8 *08 9 *08 9 *08 8 *08 



RESULTS FOR PROBLEM 5 

N DSW DS 
MS MF MS MF 

2 2 7 2 7 
13 3 43 3 43 
24 3 76 3 76 
35 3 109 3 109 
46 3 142 3 142 

RESUL'rS FOR PROBLEM SA, N = 35 

p Q DSW OS 
MS MF ! !F! ! MS MF ! !F! ! 

l"-12 l"-12 3 109 2"-10 3 109 2"-10 
l"-12 l"-10 3 109 2"-10 3 109 2"-10 
l"-12 l"-08 3 109 2"-09 3 109 2"-09 
l"-12 l"-06 3 109 2"-04 3 109 2"-04 
l"-12 l"-04 17 *04 6"+03 11 *08 2"+06 
l"-12 l"-02 17 *04 3"+03 5 *08 4"+03 
l"-10 l"-12 3 109 6"-10 3 109 6"-10 
l"-08 l"-12 3 109 5"-08 3 109 §"-08 
l"-06 l"-12 3 109 2"-04 3 109 2"-04 
l"-04 l"-12 17 *04 5"+01 4 *08 1"+03 
l"-02 l"-12 17 *04 5"+03 10 *04 1"+03 

DB DI 
MS MF MS MF 

2 7 2 7 
3 43 3 43 
3 76 3 76 
3 109 3 109 
3 142 3 142 

DB 
MS MF ! ! F! ! 

3 109 2"-10 
3 109 2"-10 
3 109 2"-09 
3 109 2"-04 
5 *08 1"+02 
5 *08 3"+03 
3 109 6"-10 
3 109 5"-08 
3 109 2"-04 
7 *08 6"+00 
4 *08 1"+02 

DE 
MS MF 

2 7 
3 43 
3 77 
3 110 
3 143 

DI 
MS MF 

3 109 
3 109 
3 109 
3 109 
7 *08 
3 *01 
3 109 
3 109 
3 109 
4 *01 
2 *01 

DE 
! ! F! ! MS MF 

2"-10 3 110 
2"-10 3 110 
2"-09 3 110 
2"-04 3 110 
4"+01 7 *08 
3"+03 l *01 
6"-10 3 110 
5"-08 3 110 
2"-04 3 110 
l "+01 4 *01 
l "+02 2 *01 

! ! F! ! 

2"-10 
2"-10 
5"-10 
8"-05 
4"+01 
3"+03 
5"-10 
6"-08 
2"-04 
5"+00 
l "+02 

H 
H 

.... .... 
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RESULTS FOR PROBLEM 7, N = 2 

C DSW DS DB DI DE 
MS MF MS MF MS MF MS MF MS MF 

l "-1 3 10 3 10 3 10 3 10 3 10 
l"+O 4 13 4 13 4 13 4 13 4 13 
5"+0 5 16 5 16 5 16 5 16 5 16 
l"+l 5 16 5 16 5 16 5 16 5 16 
5"+1 6 19 6 19 6 19 6 19 6 19 
l "+2 7 22 7 22 7 22 7 22 7 22 
1"+3 9 28 9 28 9 28 9 28 9 28 
1"+4 10 31 10 31 10 31 10 31 10 31 
1"+5 12 37 12 37 12 37 12 37 12 37 
1"+8 17 52 17 52 17 52 17 52 17 52 

RESULTS FOR ORDER 2 RESULTS FOR ORDER 13 

FN C DSW D9 FN C DSW DB 
MS MF MS MF MS MF MS MF 

1 2 7 2 7 1 2 *05 7 116 
2 l" 1 5 16 5 17 2 l "l 13 183 9 *09 
3 3 10 3 10 3 14 197 2 *05 
4 l "l 8 25 17 66 4 l "l 9 127 12 173 
4 l "4 7 22 2 *08 4 l "4 11 155 8 *08 
4 l "7 22 67 2 *08 4 l "7 43 *04 9 *08 
5 2 7 2 7 5 3 43 3 43 
6 5 16 5 16 6 5 71 5 71 
7 l" 1 5 16 5 16 7 l "l 5 71 5 71 
7 l "4 10 31 10 31 7 l "4 10 141 10 141 
8 4 13 4 13 8 4 57 4 57 
9 4 13 4 13 9 4 57 4 57 

10 1"+00,1 3 10 3 10 10 1"+00,l 3 43 3 43 
10 l"-03,1 3 10 3 10 10 l"-03,1 3 43 3 43 
10 l"-06,l 2 7 2 7 10 l"-06,l 3 43 3 43 
10 l"-09,1 3 10 1 *08 10 l"-09,1 43 *04 1 *08 
10 l"-14,l 2 *05 l *08 10 l"-14,1 43 *04 1 *08 
10 l,l"-03 4 13 4 13 10 l,l"-03 4 57 4 57 
10 l,l"-06 5 16 2 *08 10 l,l"-06 5 71 2 *08 
10 l,l"-09 29 *05 1 *08 10 l,l"-09 12 *05 1 *08 
10 l,l"-14 1 *05 1 *05 10 l,l"-14 1 *05 1 *05 
11 4 13 4 13 11 4 57 4 57 
12 2 7 2 7 12 2 29 2 29 
13 4 13 4 13 13 5 71 5 71 
14 4 13 4 13 14 3 43 3 43 
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RESULTS FOR ORDER 24 RESULTS FOR ORDER 35 

FN C DSW DB FN C 0S11 DB 
MS MF MS MF MS MF MS MF 

1 1 *11 l *OB 1 1 *05 1 *05 
2 l "1 2 *05 2 *08 2 l "1 2 *05 2 *08 
3 24 *04 2 *05 3 17 *04 2 *05 
4 l "1 9 226 9 226 4 l "l 9 325 10 *09 
4 l "4 12 301 7 *08 4 l "4 12 433 8 *08 
4 l "7 24 *04 7 *08 4 l "7 17 *04 9 *08 
5 3 76 3 76 5 3 109 3 109 
6 5 126 5 126 6 5 181 5 181 
7 l "l 5 126 5 126 7 l "1 5 l.81 5 181 
7 l "4 10 251 10 251 7 l "4 l.O 361 10 361 
8 4 101 4 101 8 4 145 4 145 
9 4 101 4 101 9 4 145 4 145 

10 1"+00,1 3 76 3 76 10 1"+00,l 3 109 3 109 
10 l"-03,1 3 76 3 76 10 l"-03,l 3 109 3 109 
10 l"-06,l 3 76 3 76 10 l."-06,l 4 145 4 145 
10 l"-09,l 24 *04 l *08 10 l"-09,1 17 *04 1 *08 
10 l"-14,l 24 *04 1 *08 10 l"-14,1 J. 7 *04 l *08 
10 l,l"-03 4 101 4 101 10 l,l"-03 4 145 4 145 
10 l,l"-06 5 l.26 2 *08 10 l,l"-06 17 *04 1 *08 
10 l,1"-09 24 *04 l *08 10 l,l"-09 17 *04 1 *08 
10 l,l"-14 l *05 l *OS 10 l,l"-14 1 *05 1 *05 
11 4 101 4 101 11 4 145 4 145 
12 3 76 3 76 12 3 109 3 109 
13 5 126 5 126 l.3 17 *04 13 *08 
14 3 76 3 76 14 5 181 5 181 

RESULTS F'OR ORDER 46 

FN C DSW DB 
MS MF MS MP 

l l ·hos l *05 
2 l "l 1 *11 2 *08 
3 13 *04 2 *05 
4 l" 1 9 424 9 424 
4 l "4 12 565 7 *08 
4 l "7 13 *04 7 *08 
5 3 142 3 142 
6 5 236 5 236 
7 l "l 5 236 5 236 
7 l "4 10 471 10 471 
8 4 189 4 189 
9 4 189 4 189 

10 1"+00 ,1 4 169 4 189 
10 l"-03,1 4 189 4 189 
10 l"-06,l 4 189 1 *08 
10 l"-09,l 13 *04 l *08 
10 l"-14,1 13 *04 1 *08 
10 l,l"-03 10 471 2 *08 
10 l,l"-06 13 *04 1 *08 
10 l,l"-09 13 *04 l *08 
10 l ,l "-14 l *05 l *05 
11 4 189 4 189 
12 3 142 3 142 
l.3 10 *05 6 286 
14 4 189 4 189 
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II.4. RESULTS FOR GDS, GDB and GDI 

RESULTS FOR PROBLEM l RESULTS FOR PROBLEM 2, N = 3 

N GDS GOB GDI C GDS GDB GDI MS MF MS MF MS MF MS MF MS MF MS MF 

2 2 7 2 7 2 7 1"01 5 21 5 21 5 21 3 7 29 7 30 1 30 1"02 7 29 7 30 7 30 4 15 76 9 56 8 47 1"03 8 33 9 38 9 38 
5 18 109 8 55 8 55 1"04 10 41 10 43 10 43 6 29 204 11 83 11 83 l"US 11 45 12 52 11 47 
7 32 257 7 65 7 65 l "06 12 49 13 56 13 55 8 49 442 10 103 10 103 1"07 14 57 15 65 20 95 
9 51 511 6 72 6 72 1"08 23 *07 15 *02 15 *02 10 60 *04 12 143 12 143 1"09 63 *03 14 *02 14 *02 13 46 *04 8 130 8 130 1"10 27 *03 16 *02 17 *01 24 5 126 5 126 5 126 1"11 100 *04 20 *02 14 *02 35 5 181 5 181 5 181 

RESULTS FOR PROBLEM 4 

N C GOS GOB GD! 
MS MF MS HF MS MF 

2 l "01 9 28 17 66 15 53 
2 l "02 7 22 26 *04 34 *04 
2 l "03 8 25 20 *04 30 *04 
2 l "04 8 *07 19 *04 23 *04 
2 l "05 8 *03 4 *02 4 *02 
2 l "06 8 *03 4 *02 4 *02 
2 l "07 8 *03 4 *02 4 *02 

13 l "01 10 141 12 173 14 201 
13 l "02 33 463 30 *04 16 241 
13 l "03 46 645 26 *04 30 *04 
13 l "04 12 169 23 *04 25 *04 
13 l "05 20 281 19 *04 20 *04 
13 l "06 11 *03 19 *04 20 *04 
13 l "07 9 *03 10 *02 10 *02 

RESULTS FOR PROBLEM 5 

N GDS GOB GDI 
MS MF MS MF MS MF 

2 2 7 2 7 2 7 
13 3 43 3 43 3 43 
24 3 76 3 76 3 76 
35 3 109 3 109 3 109 
46 3 142 3 142 3 142 
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RESULTS FOR PROBLEM SA, N = 35 

p Q GDS GDB GDI 
MS MF ! !F! ! MS MF ! !F! ! MS MF ! ! F! ! 

l "-12 l"-12 3 109 4"-10 3 109 4"-10 3 109 4"-10 
l "-12 l"-10 3 109 4"-10 3 109 4"-10 3 109 4"-10 
l "-12 l"-08 3 109 4"-09 3 109 4"-09 3 109 4"-09 
l"-12 l"-06 3 109 2"-07 3 109 2"-07 3 109 2"-07 
l "-12 l"-04 7 253 6"-05 7 253 6"-05 7 253 6"-05 
l "-12 l"-02 17 *04 3"+03 6 *04 3"+03 3 *0l 3"+03 
l"-10 l"-12 3 109 5"-10 3 109 5"-10 3 109 5"-10 
l"-08 1"-12 3 109 4"-06 3 109 4"-08 3 109 4"-08 
l"-06 l"-12 3 109 4"-04 3 109 4"-04 3 109 4"-04 
l "-04 1."-12 17 *04 2"-01 10 *07 5"-02 4 *01 7"-02 
l "··02 l "-12 17 *04 7"+03 8 *07 7"+01 4 *01 1"+02 

RESULTS FOR PROBLEM 7, N = 2 RESULTS FOR ORDER 2 

C GDS GDB GDI FN C GDS GDB 
MS MF MS MF MS MP MS MF MS MF 

l"-1 4 13 4 13 4 13 l 2 7 2 7 
l "+O 5 16 5 16 5 16 2 1 "l 6 19 6 20 
5"+0 6 19 6 19 6 19 3 3 10 3 10 
l "+l 6 19 6 19 6 19 4 l "l 9 28 17 66 
5"+1 7 22 7 22 7 22 4 l "4 8 *07 19 *04 
1"+2 8 25 8 25 8 25 4 l. "7 8 *03 4 *02 
1"+3 9 28 9 28 9 28 5 2 7 2 7 
1"+4 11 34 11 34 11 34 6 6 19 6 19 
l "+5 12 37 12 37 12 37 7 l "l 6 19 6 19 
l "+8 17 52 17 52 17 52 7 l "4 11 34 11 34 

8 5 16 5 16 
9 5 16 5 16 

10 l "+00 ,1 3 10 3 10 
10 l"-03,1 3 10 3 10 
10 l"-06,1 3 10 3 10 
10 l"-09,1 3 10 3 10 
10 l"-14,l 3 10 3 10 
10 l,l"-03 5 16 5 16 
10 l,l"-06 6 19 5 19 
10 l,l"-09 3 10 3 10 
10 l,l"-14 3 10 3 10 
11 4 13 4 13 
12 3 10 3 10 
13 4 13 4 13 
14 4 13 4 13 
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RESULTS FOR ORDER 13 RESULTS FOR ORDER 24 

FN C GOS GOB FN C GDS GDB 
MS MF MS nF MS MF MS MF 

1 46 *04 8 130 l 5 126 5 126 
2 1 "l 14 197 22 *04 2 l "1 25 *04 13 *04 
3 15 211 23 *04 3 25 *04 18 *04 
4 l "l 10 141 12 173 4 l "1 10 251 10 251 
4 l "4 12 169 23 *04 4 l "4 12 301 20 *04 
4 l "7 9 *03 10 *02 4 l "7 8 *03 8 *02 
5 3 43 3 43 5 3 76 3 76 
6 5 71 5 71 6 5 126 5 126 
7 l "1 6 85 6 85 7 l "1 6 151 6 151 
7 l "4 11 155 11 155 7 l "4 ll. 276 11 276 
8 5 71 5 71 8 5 126 5 126 
9 5 71 5 7l 9 5 126 5 126 

10 1"+00,l 3 43 3 43 10 l "+O O, 1 4 101 4 101 
10 l"-03,l 3 43 3 43 10 l"-03,l 4 101 4 101 
10 l"-06,1 6 *03 4 *02 10 l"-06,l 4 101 4 101 
10 l "-09 ,1 3 43 3 43 10 l"-09,.l 4 101 4 101 
10 l"-14,l 3 43 3 43 10 .l "-14, l 4 101 4 101 
10 l,l"-03 5 71 5 71 10 l,l"-03 5 126 5 126 
10 l,l"-06 6 *03 4 *02 10 l,l"-06 6 *03 5 *02 
10 l,l"-09 3 43 3 43 10 l,l"-09 4 101 4 101 
10 l,l"-14 3 43 3 43 10 l,1"-14 4 101 4 101 
11 4 57 4 57 11 4 10.l 4 101 
12 3 43 3 43 12 3 76 3 76 
13 6 85 6 85 13 5 126 5 126 
14 4 57 4 57 14 4 101 4 101 

RESULTS FOR ORDER 35 RESULTS FOR ORDER 46 

FN C GOS GOB FN C GOS GOB 
MS MF MS MF MS MF MS MF 

1 5 181 5 181 1 5 236 5 236 
2 l "l 17 *04 4 *02 2 l "l l *11 5 *02 
3 12 *03 3 *02 3 13 *04 13 *04 
4 l "1 10 361 15 *04 4 1 "l 10 471 10 471 
4 l "4 12 433 14 *04 4 l "4 12 565 13 *04 
4 l "7 12 *07 11 *02 4 l "7 8 *03 8 *02 
5 3 109 3 109 5 3 142 3 142 
6 5 181 5 181 6 5 236 5 236 
7 l "l 6 2.17 6 217 7 l "l 6 283 6 283 
7 l "4 11 397 11 397 7 l "4 11 518 11 518 
8 5 181 5 181 8 5 236 5 236 
9 5 181 5 181 9 5 236 5 236 

10 1"+00 ,1 4 145 4 145 10 l "+O O, 1 4 lBY 4 189 
10 1"-03,1 4 145 4 145 10 l"-03,1 4 189 4 189 
10 l"-06,1 4 145 4 145 10 l "-06, 1 4 189 4 J. 89 
10 l"-09,l 4 145 4 145 10 l"-09,l 4 189 4 189 
10 l"-14,l 4 145 4 145 10 l"-14,1 4 189 4 189 
10 l,l"-03 5 181 5 181 10 l,l"-03 10 471 6 285 
10 l,l"-06 3 109 3 109 10 l,l"-06 4 189 4 189 
10 l,1"-09 3 109 3 109 10 l,l"-09 4 189 4 189 
.10 l,l"-14 3 109 3 109 10 l ,l "-14 4 189 4 189 
11 4 145 4 145 11 4 189 4 189 
12 4 145 4 145 12 4 189 4 189 
13 17 *04 15 *04 13 7 *03 7 333 
14 6 217 6 217 14 4 189 4 189 
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II,5. RESULTS FOR U1S AND U2S 

RESUL"rS FOR PROBLEM 1 RESULTS FOR PROBLEM 2, N 3 

N UlS U2S C UIS U2S 
MS MF MS MF MS MF MS MF 

2 2 5 2 5 l "01 8 12 8 12 
3 15 19 11 15 l "02 12 16 17 21 
4 9 14 9 14 1"03 34 38 199 *04 
5 10 16 10 16 1"04 61 *11 94 *11 
6 199 *04 11 18 1"05 28 32 3 *11 
7 199 *04 199 *04 1"06 199 *04 4 *11 
8 2 *11 199 *04 1"07 199 *04 5 *ll 
9 2 *11 2 *11 1"08 62 *11 199 *04 

10 2 *11 2 *ll 1"09 199 *04 199 *04 
13 2 *11 2 *11 1"10 199 *04 4 *11 
24 l *11 l *11 l "11 199 *04 4 *11 
35 1 *11 2 *11 

RESULTS FOR PROBLEM 4 RESULTS FOR PROBLEM 5 

N C UlS U2S N UlS U2S 
MS MF MS MF MS MF MS MF 

2 l "01 199 *04 151 154 2 2 5 2 5 
2 1"02 199 *04 190 193 13 4 18 4 18 
2 l "03 199 *04 199 *04 24 4 29 4 29 
2 1"04 199 *04 199 *04 35 5 41 5 41 
2 1"05 199 *04 199 *04 46 4 51 4 51 
2 1"06 199 *04 199 *04 
2 1"07 199 *04 199 *04 

13 1"01 91 *04 91 *04 
13 1"02 91 *04 91 *04 
13 1"03 91 *04 91 *04 
13 1"04 91 *04 91 *04 
13 l "05 91 *04 91 *04 
13 1"06 91 *04 91 *04 
13 1"07 91 *04 91 *04 

RESULTS FOR PROBLEM 5A, N = 35 

p Q UlS U2S 
MS MF ! !F! ! MS MF ! IF!! 

l"-12 l"-12 3 39 7"-04 3 39 7"-04 
l"-12 l"-10 3 39 7"-04 3 39 7"-04 
l"-12 l"-08 3 39 7"-04 3 39 7"-04 
l"-12 l"-06 4 40 5"-04 4 40 4"-04 
l"-12 l"-04 15 51 4"-04 15 51 4"-04 
l"-12 l"-02 33 *04 4"+03 33 *04 8"+03 
l"-10 l"-12 3 39 7"-04 3 39 7"-04 
l"-08 l"-12 3 39 7"-04 3 39 7"-04 
l"-06 l"-12 3 39 6"-04 3 39 6"-04 
l"-04 l"-12 4 40 2"-04 4 40 2"-04 
l"-02 l"-12 33 *04 l"-02 33 *04 3"-02 
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RESULTS FOR PROBLEM 7, N 2 

C UlS U2S 
MS MF MS MF 

l"-1 5 8 5 8 
l "+O 7 10 7 10 
5"+0 9 12 9 12 
l"+l 10 13 10 13 
5"+1 13 16 13 16 
1"+2 14 17 14 17 
l "+3 17 20 15 18 
l "+4 19 22 17 20 
1"+5 20 23 20 23 
l "+8 24 27 24 27 

RESULTS FOR ORDER 2 RESULTS FOR ORDER 13 

FN C UlS U2S FN C UlS U2S 
MS MF MS MF MS MF MS MF 

l 2 5 2 5 l 2 *11 2 *11 
2 l "l 16 19 24 27 2 l "l 91 *04 91 *04 
3 4 7 4 7 3 91 *04 3 *ll 
4 l" 1 199 *04 151 154 4 l "l 91 *04 91 *04 
4 1"4 199 *04 199 *04 4 l "4 91 *04 91 *04 
4 l "7 199 *04 199 *04 4 l "7 91 *04 91 *04 
5 2 5 2 5 5 4 18 4 18 
6 7 10 7 10 6 13 27 13 27 
7 l "l 10 13 10 13 7 l" l 17 31 17 31 
7 l "4 19 22 17 20 7 l "4 24 38 22 36 
8 6 9 6 9 8 6 20 6 20 
9 6 9 6 9 9 6 20 6 20 

10 1"+00,1 4 7 4 7 10 l"+OO,l 5 19 5 19 
10 l"-03,1 4 7 4 7 10 l"-03,l 5 19 5 19 
10 l"-06,1 4 7 4 7 10 l"-06,1 5 19 5 19 
10 l"-09,1 4 7 4 7 10 l"-09,1 5 19 5 19 
10 l"-14,l 4 7 4 7 10 l"-14,1 5 19 5 19 
10 l,l"-03 8 11 8 11 10 l,l"-03 7 21 7 21 
10 l,l"-06 8 11 8 11 10 l,l"-06 10 24 10 24 
10 l,l"-09 199 *04 199 *04 10 l,l"-09 20 34 17 31 
10 l,l"-14 199 *04 199 *04 10 l,l"-14 91 *04 91 *04 
11 6 9 6 9 11 8 22 8 22 
12 4 7 4 7 12 4 18 4 18 
13 6 9 6 9 13 12 26 12 26 
14 6 9 6 9 14 7 21 7 21 
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RESULTS FOR ORDER 24 RESULTS FOR ORDER 35 

FN C UlS U2S FN C UlS 02S 
MS MF MS MF MS MF MS MF 

l l *11 1 *11 l 2 *11 2 *11 
2 l "l 2 *11 2 *11 2 l "1 2 *11 2 *11 
3 49 *04 3 *11 3 33 *04 3 *11 
4 l "l 49 *04 19 *04 4 l" 1 33 *04 33 *04 
4 l "4 49 *04 49 *04 4 l "4 33 *04 33 *04 
4 l "7 49 *04 49 *04 4 l "7 33 *04 33 *04 
5 4 29 4 29 5 5 41 5 41 
6 13 38 13 38 6 13 49 13 49 
7 l "l 17 42 17 42 7 l."l 17 53 17 53 
7 l "4 25 50 22 47 7 l "4 26 62 22 58 
8 6 31 6 31 8 6 42 6 42 
9 6 31 6 31 9 6 42 6 42 

10 1"+00,1 6 31 6 31 10 1"+00,l 6 42 6 42 
10 l"-03,l 6 31 6 31 10 l"-03,1 6 42 6 42 
10 l"-06,l 6 31 6 31 10 l"-06,1 6 42 6 42 
10 1"-09,l 6 31 6 31 10 l"-09,l 6 42 6 42 
10 l"-14,l 6 31 6 31 10 l"-14,1 6 42 6 42 
10 l,l"-03 8 33 8 33 10 l,1"-03 11 47 11 47 
10 l,l"-06 12 37 12 37 10 l,l"-06 15 51 15 51 
10 l,l"-09 15 40 22 47 10 l,l"-09 15 51 19 55 
10 l,l"-14 49 *04 49 *04 10 l,l"-14 33 "04 33 *04 11 9 34 9 34 11 9 45 9 45 
12 4 29 4 29 12 5 41 5 41 
13 18 43 19 44 13 19 55 33 *04 14 7 32 7 32 14 10 46 10 46 

RESULTS FOR ORDER 46 

FN C UlS U2S 
MS MF MS MF 

l 2 *11 2 *11 
2 l "l 1 *11 1 *11 
3 25 *04 3 *11 
4 l "l 25 *04 25 *04 
4 l "4 25 *04 25 *04 
4 l "7 25 *04 25 *04 
5 4 51 4 51 
6 13 60 13 60 
7 l "l 17 64 17 64 
7 l "4 25 *04 22 69 
8 6 53 6 53 
9 6 53 6 53 

10 1"+00,1 7 54 7 54 
10 l"-03,1 7 54 7 54 
10 l"-06,1 7 54 7 54 
10 l"-09,l 7 54 7 54 
10 l"-14,1 7 54 7 54 
10 l,l"-03 11 58 11 58 
10 l ,l "-06 22 69 22 69 
10 l,l"-09 18 65 25 *04 
10 l,l"-14 25 *04 25 *04 
11 10 57 10 57 
12 5 52 5 52 
13 25 *04 18 65 
14 8 55 8 55 
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II.6. RESULTS FOR BW AND BT 

RESULTS FOR PROBLEM l 

N BW(l) BW(2) BT (1) BT(2) 
MS MF MS MF MS MF MS MF 

2 2 5 2 5 2 5 2 5 
3 7 21 7 21 7 21 7 21 
4 15 52 7 24 15 52 7 24 
5 19 76 7 28 18 72 7 28 
6 60 270 8 36 60 270 8 36 
7 34 170 8 40 34 170 8 40 
8 66 363 8 44 67 368 8 44 
9 55 330 1 *05 55 330 8 48 

10 61 *04 1 *05 61 *04 8 52 
13 8 64 1 *05 9 72 9 72 
24 9 121 1 *05 9 121 9 121 
35 9 171 l *05 10 190 1 *05 

RESULTS FOR PROBLEM 2, N = 3 

C BW(l) BW(2) BT (1) BT (2) 

MS MF MS MF MS MF MS MF 

l" 01 5 15 5 15 5 15 5 15 
1"02 7 21 7 21 7 21 7 21 
1"03 8 24 8 24 8 24 8 24 
1 "04 11 *05 31 *11 10 30 10 30 
l 1105 10 *05 32 *11 11 33 11 33 
l. "06 12 *05 36 *11 13 39 13 39 
1"07 14 *05 55 *01 12 *11 71 *11 
1"08 13 *05 100 *04 13 *05 12 *05 
l "09 12 *05 24 *01 100 *04 7 *05 
l" 10 16 *05 22 *01 100 *04 20 60 
l "11 20 *05 100 *04 21 63 21 63 

RESULTS FOR PROBLEM 4 

N C Bl•/(l) BW(2) BT (1) BT (2) 
MS MF MS MF MS MF MS MF 

2 1 "01 13 32 13 32 13 32 13 32 
2 1"02 17 42 16 40 18 45 16 40 
2 l "O 3 28 70 22 55 32 80 22 55 
2 l "04 100 *04 20 50 100 *04 20 50 
2 l "05 100 *04 29 72 100 *04 29 72 
2 1"06 100 *04 72 18U 100 *04 72 180 
2 l "07 100 *04 100 *04 100 *04 100 *04 

13 l"0l 9 72 9 72 47 *04 47 *04 
.l3 1"02 47 *04 26 208 47 *04 47 *04 
13 l. "03 15 120 16 128 47 *04 27 216 
13 l "04 20 160 13 104 47 *04 24 192 
l.3 l. "tJS 47 *04 17 138 47 *04 23 184 
13 l "06 20 *01 20 *01 47 *04 47 *04 
13 l "07 47 *04 4? *04 47 *04 47 *04 
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RESULTS FOR PROBLEM 5 

N BW BT 
MS MF MS MF 

2 3 8 3 8 
13 3 24 3 24 
24 4 54 4 54 
35 4 76 4 76 
46 4 98 4 98 

RESULTS FOR PROBLEM SA, N = 35 

p Q BW BT 
MS MF ! !F! ! MS MF ! !F! ! 

l"-12 l"-12 3 57 2"-09 3 57 2"-09 
l"-12 l"-10 3 57 2"-09 3 57 2"-09 
l"-12 l "-08 3 57 2"-09 3 57 2"-09 
l"-12 1"-06 3 57 2"-09 3 57 2"-09 
1"-12 l"-04 3 57 2"-09 3 57 2"-09 
l"-12 l"-02 3 57 2"-09 3 57 2"-09 
l"-10 l"-12 3 57 2"-09 3 57 2"-09 
l"-08 l"-12 3 57 2"-08 3 57 2"-08 
l"-06 l"-12 3 57 2"-06 3 57 2"-06 
l"-04 l"-12 3 57 2"-04 3 57 2"-04 
l"-02 l"-12 3 57 2"-02 3 57 2"-02 

RESULTS FOR PROBLEM 7, N = 2 

C BW(l) BW(2) BT (1) BT (2) 
MS MF MS MF MS MF MS MF 

l"-1 4 10 4 10 4 10 4 10 
l "+0 5 12 5 12 5 12 5 12 
5"+0 6 15 6 15 6 15 6 15 
l"+l 6 15 6 15 6 15 7 17 
5"+1 7 17 7 17 8 20 8 20 
1"+2 8 20 8 20 8 20 8 20 
1"+3 9 22 10 25 9 22 10 25 
l "+4 12 30 11 27 12 30 11 27 
1"+5 13 32 13 32 13 32 13 32 
1"+8 21 52 18 45 21 52 18 45 
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RESULTS FOR ORDER 2 RESULTS FOR ORDER 13 

FN C BW BT FN C BW B'r 
MS MF MS MF MS MF MS MF 

l 2 5 2 5 l 8 64 9 72 
2 l "l 6 15 6 15 2 l "l 4 *05 2 *05 

3 2 5 2 5 3 2 16 2 16 
4 l" 1 13 32 13 32 4 l "l 9 72 47 *04 
4 l "4 20 50 20 50 4 l "4 13 104 24 192 
4 l "7 100 *04 100 *04 4 l "7 47 *04 47 *04 
5 3 8 3 8 5 3 24 3 24 
6 6 15 6 15 6 6 48 6 48 
7 l" .1 6 15 6 15 7 l "l 6 48 7 56 
7 l "4 12 30 12 30 7 l "4 12 96 .12 96 
8 5 13 5 13 8 4 32 5 40 
9 5 13 4 10 9 4 32 4 32 

10 l "+00 ,.1 3 8 3 8 10 l "+00 ,1 4 32 4 32 
10 l"-03,1 3 8 3 8 10 l"-03,1 4 32 4 32 

10 l"-06,l 3 8 3 8 10 l "-06 ,1 4 32 4 32 
10 l"-09,1 3 8 3 8 10 l "-09 ,1 4 32 4 32 
10 l"-14,l 3 8 1 *05 10 l"-14,1 4 32 l *05 
10 1, l "-0 3 4 10 4 10 10 l,l"-03 5 40 5 40 
10 l,l"-06 4 10 4 10 10 l ,l "-06 6 48 47 *04 
10 l,1"-09 3 8 3 8 10 l ,l "-09 4 32 5 40 

10 l,l"-14 3 8 1 *05 10 .1, l "-14 4 32 4 32 
11 5 13 5 13 11 5 40 5 40 
12 3 8 3 8 12 3 24 3 24 
13 5 13 5 13 13 5 40 5 40 
14 4 10 5 13 14 5 40 4 32 

RESULTS FOR ORDER 24 

FN C BW 3T 
MS MF MS MF 

l 9 121 9 121 
2 l "l 2 *11 2 *11 
3 2 27 2 27 
4 l "1 9 122 26 *04 
4 l" 4 20 322 26 *04 
4 l "7 26 *04 26 *04 
5 4 54 4 54 
6 6 81 6 81 
7 l "1 6 81 7 95 
7 l" 4 12 162 12 162 
8 4 54 5 68 
9 4 54 4 54 

10 1"+00,l 5 68 4 54 
10 l"-03,1 5 68 4 54 
10 l"-06,1 5 68 4 54 
10 l"-09,l 5 68 4 54 
10 l"-14,1 5 68 l *05 
10 l,l"-03 5 68 6 81 
10 l,l"-06 6 81 26 *04 
10 1,l"-09 5 68 8 10 8 
10 l,l"-14 5 68 8 108 
11 6 81 6 81 
12 4 54 4 54 
13 7 95 6 81 
14 5 68 4 54 
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RESULTS FOR ORDER 35 RESULTS FOR ORDER 46 

FN C BW BT FN C BW BT 
MS MF MS MF MS MF MS MF 

1 9 171 10 190 1 10 245 1 *05 
2 l "l 2 *11 2 *11 2 l "l 2 *11 2 *11 
3 2 38 2 38 3 2 49 2 49 
4 l "l 9 171 18 *04 4 l "l 9 221 14 *04 
4 l "4 18 *04 18 *04 4 l "4 14 *04 14 *04 
4 l "7 18 *04 18 *04 4 l "7 14 *04 14 *04 
5 4 76 4 76 5 4 98 4 98 
6 6 114 6 114 6 6 147 6 147 
7 l"l 6 114 7 133 7 l "l 6 147 7 171 
7 1"4 12 228 12 228 7 1"4 12 294 12 294 
8 4 76 5 95 8 4 98 5 122 
9 4 76 4 76 9 4 98 4 98 

10 1"+00,l 5 95 5 95 10 1"+00,l 6 147 5 122 
10 l"-03,1 5 95 5 95 10 l"-03,1 6 147 5 122 
10 l"-06,1 5 95 5 95 10 l"-06,1 6 147 5 122 
10 l"-09,l 5 95 5 95 10 l"-09,1 6 147 5 122 
10 l"-14,l 5 95 1 *05 10 l"-14,l 6 147 1 *05 
10 l,l"-03 18 *04 6 114 10 l,l"-03 5 122 7 171 
10 l,l"-06 13 247 18 *04 10 l,l"-06 7 171 14 *04 
10 l,l"-09 8 152 11 *05 10 l,l"-09 14 *04 5 122 
10 l,l"-14 7 133 6 114 10 l,l"-14 5 122 4 98 
11 6 114 5 95 11 6 147 5 122 
12 4 76 3 57 12 4 98 3 73 
13 18 *04 18 *04 13 9 221 6 147 
14 7 133 6 114 14 5 122 5 122 
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II. 7. RESULTS FOR SPECIAL PROPER'I'IES AND FEATURES 

II.7.L 

10 _ 
In these tables we use the notation P = - log(llx - x*II), where x* is 

the solution and x the computed approximation. Problems 1 and 7 are run for 

10-3, 10-7 and 10-11. The results for these three required 

precisions are given on the three subsequent lines given for each problem. 

Failure is denoted by a "*". Problem 15 is run for of = orx 0= liax = c, with 

c as given in column three. For this problem we give also the number of 

iteration steps performed and the error message (behind the star), if the 

algorithm fails. 
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EXPERIMENTS TO TEST CONVERGENCE CRITERIA 

FN N C ASWC ASW AB GAS 
MS p MS p IIS p MS p 

1 5. 17 7 16 4 6 6 17 7 
18 13 17 7 7 12 ltl 13 
19 13 18 13 7 12 19 13 

l 6 59 8 58 4 9 5 59 8 
60 13 59 8 10 8 60 13 
61 13 60 13 11 5 61 14 

1 7 33 9 32 5 5 4 33 9 
34 13 33 9 6 9 34 13 
35 13 34 13 7 13 35 13 

l 8 * * 8 4 * 
* .. 9 7 * 
* .. 10 13 * 

1 9 * * 4 3 51 9 
* * 6 13 52 13 
* * 6 13 53 15 

l 10 * * 9 4 * 
* * 11 12 * 
* * 11 12 * 

1 13 * * 6 4 * 
* * 7 9 " 
* * 8 12 * 

1 24 * * * " 
* " * * 
" * * * 

7 2 10 5 9 4 5 4 5 5 9 
6 15 5 9 5 9 6 15 
7 15 6 15 6 15 7 15 

7 2 "3 8 8 8 8 8 8 8 8 
9 13_ 9 13 9 13 9 13 

10 13 9 13 9 13 10 13 
7 2 "5 11 8 11 8 11 8 11 8 

12 13 12 13 12 13 12 13 
13 14 13 14 13 14 13 14 

7 2 "8 16 9 16 9 16 9 16 9 
17 11 17 11 17 11 17 11 
18 11 18 11 18 11 18 11 

15 4 H-1 7 1 *5 7 *7 2 7 l 
15 4 "'-2 9 1 *5 7 *7 2 9 l 
15 4 n_3 14 2 *5 7 *7 2 14 2 
15 4 H-4 20 3 *5 7 *7 2 20 3 
15 4 0_5 26 4 *5 7 *7 2 26 4 
15 4 H-6 31 5 *5 7 *7 2 31 5 
15 4 u_7 37 6 *5 7 *7 2 *3 5 
15 4 ~f-8 *5 6 *5 7 *7 2 *3 5 
15 4 "-9 *5 6 *5 7 *7 2 *3 5 
15 4 "-10 *5 6 *5 7 *7 2 "3 5 
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FN N C DB GOS U2S !31-1 i'lT 
MS p MS p MS p MS p M3 p 

1 5 6 6 l.7 7 8 6 17 7 17 7 
7 12 18 13 10 13 H 13 lil 13 
7 12 19 13 14 10 19 13 19 13 

1 6 9 5 27 5 9 5 58 4 59 8 
10 8 29 15 11 9 60 15 60 13 
11 15 29 15 * 61 15 61 15 

l 7 5 4 31 8 40 4 33 9 33 9 
6 9 32 13 * 34 13 34 13 
7 13 33 13 * 35 13 35 13 

1 8 8 4 47 6 * 65 6 65 6 
9 7 49 13 * 66 12 67 14 

10 13 49 13 * 67 15 67 14 
l 9 4 3 50 8 * 54 11 54 11 

6 14 51 13 * 55 14 55 13 
6 14 52 15 * 56 13 56 13 

1 lU 9 4 * * * * 
11 12 * * * * 
11 12 ·k * * * 

l 13 6 4 * * 6 4 7 7 
7 9 * * 8 13 9 13 
8 12 * * 9 13 9 13 

1 24 * * * 6 l 8 l 

* * ·k 9 1 3 12 
* * * 10 15 10 1 

7 2 10 4 5 5 9 tl 6 5 10 5 8 
5 9 6 15 10 9 6 14 6 12 
6 15 7 15 12 15 7 15 7 15 

7 2 113 8 8 8 a 10 5 9 13 ~ 12 
9 13 9 13 15 9 9 13 9 1 
9 13 10 13 18 13 10 13 11 13 

7 2 u5 11 8 11 8 15 7 12 10 12 10 
12 13 12 13 20 13 13 13 13 13 
13 14 13 14 21 13 15 14 IS 14 

2 "8 16 9 16 9 22 4 17 9 17 ':J 
17 11 17 11 24 11 21 11 21 11 
18 11 18 11 3Ll 11 25 11 25 11 

15 4 " -1 *8 3 7 l 10 l *5 l *5 l 
15 4 " -2 *8 3 9 l 13 1 *5 1 *5 l 
15 4 " -3 *8 3 14 2 B 2 *4 1 *5 1 
15 4 " -4 *8 3 20 3 27 3 *4 l *4 l 
15 4 " -5 *8 3 26 4 35 4 *4 ] *4 l 
15 4 " -6 *d 3 33 5 44 5 *4 l *4 l 
15 4 " -7 *8 3 *3 5 48 6 *4 l *4 l 
15 4 " -8 *8 3 *3 5 49 6 *4 1 *4 1 
15 4 " -9 *8 3 *3 5 50 6 *4 l *4 1 
15 4 " -10 *8 3 *3 5 85 6 *4 l *4 l 
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IL 7.2. 

RESUL'rS FOR CONDI'l'IONAL UPDATING AND FIXED APPROXIMA'l'ION 

FN N C AB ABU ABF DB DBU DBF 
MS MF MS MF MJ MS MF MJ MS MF MS MF MS MF MJ 

4 13 10 12 17 12 17 11 13 18 10 13 187 12 160 13 148 10 
4 13 "2 77 *09 77 *09 77 77 *09 77 13 *09 60 *09 60 *09 60 
7 2 0.1 3 4 3 4 2 3 4 2 3 10 3 8 3 8 2 
7 2 l 4 5 4 5 3 6 7 2 4 13 4 11 6 11 2 
7 2 5 5 6 5 6 4 7 8 3 5 16 5 14 7 14 3 
7 2 10 5 6 6 7 4 6 7 4 5 16 6 15 6 15 4 
7 2 50 6 7 7 8 5 8 9 5 6 17 7 18 8 19 5 
7 2 "2 7 8 7 8 6 10 11 5 7 22 7 20 10 21 5 
7 2 "3 9 10 9 10 8 10 11 7 9 28 9 26 10 25 7 
7 2 "4 10 11 11 12 9 11 12 9 10 31 11 30 11 30 9 
7 2 "5 12 13 12 13 11 15 16 10 12 37 12 35 15 36 10 
7 2 "8 17 18 17 18 16 20 21 15 17 52 17 50 20 51 15 
8 2 4 5 5 6 3 5 6 2 4 13 5 12 5 10 2 
8 13 4 5 4 5 3 5 6 2 4 57 4 44 5 32 2 
8 24 4 5 4 5 3 4 5 3 4 101 4 77 4 77 3 
8 35 4 5 4 5 3 4 5 3 4 145 4 110 4 110 3 
8 46 4 5 4 5 3 4 5 3 4 189 4 143 4 143 3 

PRECISION TESTS FOR CONDITIONAL UPDATING AND FIXED APPROXIMATION 

FN N AB ABU ABF DB DBU DBF 
MS p MS p MS p MS p MS p MS p 

l 5 6 6 6 6 6 4 6 6 6 6 6 4 
7 12 7 9 9 8 7 12 7 9 9 8 
7 12 8 13 12 12 7 12 8 15 12 12 

1 6 9 5 9 5 9 5 9 5 9 5 9 5 
10 8 11 10 11 8 ltl 8 11 10 11 8 
11 15 12 14 l3 11 11 15 12 14 13 11 

l 7 5 4 6 5 6 4 5 4 6 5 6 4 
6 9 7 11 11 8 6 9 7 11 11 13 
7 13 8 15 16 12 7 13 8 13 16 12 

1 d 8 4 13 4 8 4 8 4 8 4 8 4 
9 7 9 7 10 7 9 7 9 7 10 7 

10 13 11 13 13 11 10 13 11 13 13 u 
l ':l 4 3 4 3 4 3 4 3 4 3 4 3 

6 13 6 8 7 7 6 14 6 tl 7 7 
6 13 7 14 10 12 6 14 7 13 10 12 

l 10 '} 4 9 4 ':J 4 9 4 9 4 9 4 
11 12 11 9 11 9 11 12 .ll 9 11 9 
11 12 12 lJ 12 11 11 12 12 J.3 12 1 

l 13 6 4 6 4 11 3 6 4 6 4 11 3 
·1 ;) 8 11 23 7 7 9 8 11 23 7 
8 12 9 l.3 35 11 d 12 9 12 35 11 
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RESULTS FOR CONDITIONAL UPDATING AND FIXED APPROXIMATION 

Fl.ii N C GAS GA.SF GOS GDSF '3T BTcl 
MS MF MS MF MJ MS MF MS MF MJ MS MF MS MF 

4 13 10 10 11 10 11 d lU l.41 10 115 8 47 *ll4 47 *04 
4 13 !I 2 32 33 32 33 31 33 463 33 450 32 47 *04 47 *04 
7 2 0.1 4 5 4 5 2 4 13 4 9 2 4 10 3 9 
7 2 l 5 6 7 8 2 5 Hi 7 12 2 5 12 4 12 
7 2 5 6 7 8 9 3 6 19 8 15 3 6 15 6 18 
7 2 lU 6 7 7 8 4 6 19 7 16 4 6 15 6 18 
7 2 51] 7 8 8 9 5 7 22 8 19 5 a 20 7 20 
7 2 112 8 9 10 11 5 8 25 10 21 5 tl 20 8 23 
7 2 "3 9 10 10 11 7 9 28 lU 25 7 9 22 9 25 
7 2 "4 l.J. 12 11 12 9 11 34 11 30 9 12 3ll 11 30 
7 2 115 12 13 15 16 10 12 37 15 36 10 13 32 12 32 
7 2 "8 17 18 20 21 15 17 52 20 51 15 21 52 18 49 
8 2 5 6 6 7 2 5 16 6 11 2 5 13 4 12 
8 13 5 6 5 6 3 5 71 5 45 3 5 40 4 42 
d 24 5 6 5 6 3 5 126 5 78 3 5 68 4 68 
8 35 5 6 5 6 3 5 181 5 111 3 5 95 4 96 
8 46 5 6 5 6 3 5 236 5 144 3 5 122 4 122 

PRECISION TESTS FOR CONDITIONAL UPDATING AND FIXED APPROXIMATION 

FN N GAS GASF GDS GDSF 
MS p MS p MS p MS p 

l 5 17 7 17 5 17 7 17 5 
18 13 20 10 18 13 20 10 
19 13 22 13 19 13 22 13 

1 6 59 8 66 2 27 5 43 2 
60 13 100 *04 29 15 100 *04 
61 14 100 *04 29 15 100 *04 

1 7 33 9 33 7 31 8 31 6 
34 13 35 11 32 13 33 9 
35 l.3 37 13 33 13 35 13 

l 8 41 *03 74 *04 47 6 47 6 
41 *03 74 *04 49 13 49 11 
41 *03 74 •04 49 13 51 13 

1 9 51 9 55 4 50 8 50 4 
52 13 66 7 51 13 54 8 
53 15 67 *04 52 15 58 13 

l 10 60 *04 60 *04 60 *04 60 *04 
60 *04 60 *04 60 *04 60 *04 
60 *04 60 *04 60 *04 60 *04 

1 13 45 *04 45 *04 47 *04 47 *04 
45 *04 45 *04 47 *04 47 *04 
45 *04 45 *04 47 *04 47 *04 



II. 7. 3. 

RESULTS OF SCALING TESTS 

FN N 

l 24 
2 3 
2 3 
2 3 
2 3 
2 3 
2 3 
2 3 
2 3 
2 3 
2 3 
2 3 

10 2 
10 2 
10 2 
10 2 
10 2 
10 2 
10 2 
10 2 
10 2 
10 13 
10 13 
10 13 
10 13 
10 13 
10 13 
10 13 
10 13 
10 13 
11 2 
11 2 
11 2 
11 2 
11 2 
11 2 
11 2 
11 2 
11 2 
11 13 
11 13 
11 .13 
11 13 
11 13 
11 13 
11 13 
11 13 
11 13 
16 2 
16 2 
16 2 
16 2 
16 2 
16 2 

C 

10 
112 
113 
"4 
"5 
"6 
117 
"8 
"9 
"10 
"11 
1, 1 
"-3, 1 
11 -6, l 
11 -9 r 1 
"-14, 1 
1 ~ 11 -3 
1, 11 -6 
1, H_9 
1, "-14 
1, l 
0 -3, l 
11 -6, 1 
"-9, l 
"-14, l 
1, "-3 
1, "-6 
1, 11 -9 
1, "-14 
1, l 
n_3, 1 
"-6, 1 
0 -9 y 1 
"-14, 1 
l r 11 -3 
1, 11 -6 
l, "-9 
1, "-14 
1, 1 
"-3, l 
"-6, 1 
n_g I l 
"-14, 1 
1, "-3 
1 r 11 -6 
1, "-9 
1, "-14 

l 
10 
"2 
"3 
"4 
"5 

AB 
MS MF 

2 *09 
4 5 
6 8 
8 10 
9 12 

11 15 
8 *09 
7 *09 
5 *09 
5 *09 
3 *09 
3 *O'J 
3 4 
3 4 
3 4 
3 4 
2 *08 
4 5 
3 *08 
2 *08 
2 *05 
3 4 
3 4 
3 4 
3 4 
2 *08 
4 5 
3 *09 
2 *08 
2 *08 
4 5 
3 4 
3 4 
3 *08 
l *05 
8 10 

10 *09 
2 *09 
2 *09 
4 5 
4 5 
4 5 
4 5 
2 *08 
6 7 
7 *09 
2 *09 
2 *09 
5 7 

10 11 
8 *09 
9 *09 

10 *09 
10 *09 

ABISl 
MS MF 

2 *0l 
4 5 
6 7 
7 S 
9 11 

10 12 
8 *09 
8 *09 
8 *08 
7 *09 
7 *08 
6 *08 
3 4 
3 4 
3 4 
2 *09 
2 *OB 
4 5 
3 *07 
2 *08 
2 *05 
3 4 
3 4 
3 4 
2 *09 
2 *08 
4 5 
4 5 
2 *08 
2 *OB 

5 
4 
4 

4 
3 
3 
3 *09 
l *05 

13 31 
10 *09 

2 *09 
2 *01 
4 5 
4 5 
3 *09 

*09 
*08 
*02 
*04 
*04 
*01 

3 
2 
2 
2 
2 
2 
5 

10 
10 
11 
12 
l.3 

7 
11 

*09 
*09 
*09 
*09 

ABIS2 
MS MF 

2 *01 
4 5 
6 7 
7 tl 
9 

10 
11 
13 
14 
15 
17 
18 

3 
3 
3 

11 
12 
13 
15 
16 
17 
19 
20 

4 
4 
4 

2 *09 
2 *08 
4 
4 
4 

5 
5 
6 

2 *05 
3 4 
3 4 
3 4 
2 *09 
2 *08 
4 5 
4 5 

*02 3 
2 *08 
4 5 
3 4 
3 4 
3 *09 
l *05 
7 10 

l.7 28 
2 *07 
2 *01 
4 5 
4 5 
3 *09 
3 *09 
2 *08 
2 *08 

14 23 
2 *07 
2 *01 
5 7 
2 *02 
2 *02 
2 *02 
2 *02 
2 *02 

SCAB 
MS MF 

1 *08 
4 5 
6 8 
7 8 
8 9 

10 11 
11 12 

8 *09 
8 *09 
7 *09 
7 *09 
7 *09 
2 3 
2 3 
2 3 
2 3 
2 3 
3 4 
2 3 
2 3 
2 3 
3 4 
3 4 
3 4 
3 4 
3 4 
3 4 
2 3 
3 4 
3 4 
3 4 
3 4 
3 4 
3 4 
3 4 
8 10 
2 *09 
2 *OB 
2 *08 
3 4 
3 4 
3 4 
3 
3 
5 

4 
4 
6 

12 21 
2 ''09 
2 *08 
5 7 

10 11 
7 *09 
7 *09 
4 *09 
2 *09 

II.29 
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FN N C DB DBISl DBIS2 SCDB 
MS MF MS MF MS MF MS MF 

l 24 l *08 2 *Ul 2 *01 1 *08 
2 3 10 4 17 4 17 4 17 4 17 
2 3 "2 6 26 6 25 6 25 6 26 
2 3 "3 8 3,1 7 29 7 29 7 29 
2 3 "4 9 39 9 38 9 38 8 33 
2 3 "5 8 *08 10 42 10 42 10 41 
2 3 "6 6 *08 8 *09 11 46 8 *08 
2 3 "7 5 *08 8 *09 13 54 8 *08 
2 3 "8 5 *08 7 *09 14 58 7 *08 
2 3 "9 4 *08 7 *09 15 62 7 *08 
2 3 "10 3 *08 7 *09 16 66 7 *08 
2 3 "11 2 *08 7 *09 17 70 6 *08 

10 2 1, 1 3 10 3 10 3 10 2 7 
10 2 " -3' l 3 10 3 10 3 10 2 7 
10 2 " -6, 1 2 7 2 7 2 7 2 7 
10 2 " -9, l 1 *08 2 ·•09 2 *09 2 7 
10 2 " -14, l l *01.l 2 *05 2 *05 2 7 
10 2 1, " -3 4 13 4 13 4 13 3 10 
10 2 1, " -6 2 *08 3 *09 5 16 5 17 
10 2 1, " -9 1 *08 11 *02 3 *02 2 *08 
10 2 l ' " -14 l *08 1 *05 1 *05 1 *05 
10 13 1, 1 3 43 3 43 3 43 3 43 
10 13 " -3' l 3 43 3 43 3 43 3 43 
10 13 " -6' l 3 43 3 43 3 43 3 43 
10 13 " -9, l 1 *08 3 *07 3 *09 3 43 
10 13 " -14, 1 1 *08 8 *02 8 *02 3 43 
10 13 1, " -3 4 57 4 57 4 57 3 43 
10 13 1, " -6 2 *08 3 *09 5 71 3 43 
10 13 1, " -9 l *08 6 *02 3 *02 3 *08 
10 13 1, " -14 1 *05 5 *01 1 *05 l *05 
11 2 1 ' 1 4 13 4 13 4 13 3 10 
11 2 " -3, l 3 10 3 10 3 10 3 10 
11 2 " -6, 1 4 13 4 13 4 13 3 10 
11 2 u_g, 1 l *08 3 *09 3 *09 3 10 
11 2 " -14, 1 1 *05 1 *05 1 *05 3 10 
11 2 l' " -3 8 26 13 57 7 24 8 26 
11 2 1, " -6 2 *08 10 *09 17 62 2 *08 
11 2 l, " -9 1 *08 12 *09 29 113 2 *08 
11 2 l, " -14 1 *05 1 *05 1 *05 1 *05 
11 13 1, 1 4 57 4 57 4 57 3 43 
11 13 11 -3 f l 4 57 4 57 4 57 3 43 
11 13 "-6, l 4 57 4 57 4 57 3 43 
11 13 rr_9 t 1 1 *08 3 *09 3 *09 3 43 
11 13 " -14, 1 l *01.l 2 *02 9 *02 3 43 
11 13 1, " -3 6 85 2 *02 2 *02 5 71 
11 13 1, " -6 2 ·•as 2 *02 14 205 2 *08 
11 13 1, " -9 1 *08 4 *09 17 256 2 *05 
11 13 1, " -14 1 *05 1 *05 1 *05 1 *05 
16 2 1 5 17 5 17 5 17 5 17 
16 2 10 10 31 10 31 2 *02 10 31 
16 2 "2 8 ·•os 10 *09 2 *02 7 *09 
16 2 "3 9 •os 11 *09 2 *02 7 *09 
16 2 "4 9 *09 12 *09 2 *02 2 *08 
16 2 "5 7 *08 11 *09 2 *02 2 *08 
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FN N C SCGAS GAS SCGDS GDS SCU2S 02S 
MS MF MS MF NS MF MS MF MS MF MS MF 

l 24 1 *11 1 *11 25 *04 5 126 2 *11 2 *11 
2 3 10 5 6 5 6 5 21 5 21 8 12 8 12 
2 3 "2 7 8 7 8 7 29 7 29 17 21 17 21 
2 3 "3 8 9 8 9 8 33 8 33 199 *04 199 *04 
2 3 "4 10 11 9 10 10 41 10 41 199 *04 94 *11 
2 3 "5 11 12 11 12 11 45 11 45 3 *ll 3 *11 
2 3 "6 12 13 12 13 12 49 12 49 199 *04 4 *11 
2 3 "7 13 14 13 14 13 53 14 57 4 *11 5 *11 
2 3 "8 14 15 14 15 14 57 23 *07 199 *04 199 *04 
2 3 "9 16 l7 16 l. 7 16 65 63 *03 163 *11 199 *04 
2 3 ".1.0 17 18 17 l.8 17 69 27 *03 4 *11 4 * 1.1 
2 3 "11 18 19 18 19 19 *03 100 *04 4 *11 4 *11 

10 2 1, 1 3 4 3 4 3 10 3 10 4 7 4 7 
10 2 11_3, 1 3 4 3 4 3 10 3 10 3 6 4 7 
10 2 11_6, l. 3 4 3 4 3 10 3 10 3 6 4 7 
10 2 u-9, 1 3 4 3 4 3 10 3 10 3 6 4 7 
10 2 n-14, l 3 4 3 4 3 10 3 10 3 6 4 7 
10 2 1' "-3 4 5 5 6 4 13 5 16 5 8 8 11 
10 2 1, " -6 3 4 5 6 5 16 6 19 4 7 8 11 
10 2 1, " -9 3 4 99 *04 4 13 3 10 4 7 199 *04 
10 2 1, " -14 3 4 3 4 3 10 3 10 4 7 199 *04 
10 13 1, l 3 4 3 4 3 43 3 43 5 19 5 19 
10 13 " -3, l 3 4 3 4 3 43 3 43 4 18 5 19 
10 13 li-6 f l 3 4 3 4 3 43 6 *03 4 18 5 19 
10 13 " -9, l 3 4 3 4 3 43 3 43 4 18 5 19 
10 13 " -14, l 3 4 3 4 3 43 3 43 4 18 5 19 
10 13 1, "-3 4 5 5 6 4 57 5 71 5 19 7 21 
10 13 1, l'/-6 3 4 5 6 3 43 6 *03 4 18 10 24 
10 13 1, " -9 3 4 5 *03 3 43 3 43 4 18 17 31 
10 13 1, " -14 3 4 3 4 3 43 3 43 1 *11 91 *04 
11 2 1, l 4 5 4 5 4 13 4 13 5 8 6 9 
11 2 11_,3, l. 4 5 4 5 4 13 4 13 5 8 5 8 
J.l 2 " -6, 1 4 5 4 5 4 13 5 16 5 13 5 8 
11 2 " -9, l. 4 5 4 5 4 13 3 10 5 8 5 8 
1l. 2 11 -14, l 4 5 3 4 4 13 3 10 5 8 7 10 
11 2 1, " -3 13 14 13 14 13 40 13 40 3 *11 ll 14 
11 2 1, " -6 1 *11 l *11 l *11 1 *11 6 9 1 *11 
11 2 1, " -9 l *11 1 *11 1 *11 3 10 l *11 l *11 
11 2 l, "-14 1 *11 3 4 3 10 3 10 6 9 1 *11 
11 13 1, 1 4 5 4 5 4 57 4 57 7 21 8 22 
11 13 " -3, 1 4 5 4 5 4 57 4 57 7 21 8 22 
11 13 " -6' l 4 5 4 5 4 57 4 57 7 21 8 22 
11 13 "-9, 1 4 5 4 5 4 57 4 57 7 21 8 22 
]_]_ 13 "-14, 1 4 5 4 5 4 57 4 57 7 21 8 22 
ll 13 1, " -3 6 7 7 8 6 85 7 99 42 56 12 26 
11 13 1, n_6 1 *11 l *11 l *11 46 *04 1 *11 1 *11 
11 13 l, n_g 1 '*11 1 *11 l *11 4 57 l *11 4 *ll 
11 13 1, " -14 l *11 4 5 4 57 4 57 13 *11 1 *11 
16 2 l 1 *11 l *11 18 55 18 55 16 19 199 *04 
16 2 10 11 12 11 12 11 34 11 34 35 38 35 38 
16 2 "2 99 *04 18 19 14 *03 17 *03 199 *04 199 *04 
16 2 n3 16 *03 99 *04 12 *07 18 *03 199 *04 199 *04 
16 2 "4 15 16 23 *03 9 *07 21 *03 199 *04 199 *04 
16 2 "5 13 *03 25 *03 3 *07 16 *07 199 *04 199 *04 



II. 32 

IL 7.4. 

RESULTS FOR PROBLEM l WHEN REDUCED TO A ONE-DIMENSIONAL 
NONLINEAR PROBLEM (NO ANALYTIC DERIVA'rIVES USED) 

DB WI'rH DB 
REDUCTION 

N MPl MS MF 

2 11 2 7 
3 11 7 30 
4 11 9 56 
5 11 8 55 
6 11 11 83 
7 11 7 65 
8 11 10 103 
9 11 6 72 

10 11 12 143 
13 11 * 
24 11 * 

In this table MF1 denotes the number of evaluations of the nonlinear function 

component. 



H 

~ 
?' 

RESULTS FOR PROBLEM 1 
61 

N SNOLEQJ (SJ SNOLEQJ SNOLEQ(S) SNOLEQ· SCU2S U2S BW Cl) 
C 

MS MSIT MF MJ MS MSV MF MJ MS MSV MF MS MSV MF MS MF MS MF MS MF ti 
t:/l 

2 1 0 2 1 l 0 2 l 2 0 7 2 0 7 l 4 2 5 2 5 "l 
3 6 0 8 5 6 0 8 5 6 0 23 6 0 23 12 16 11 15 7 21 0 

4 9 0 20 7 9 0 20 7 9 0 48 9 0 48 11 16 9 14 15 52 
:;<l 

5 7 0 14 6 7 0 14 6 7 0 44 7 0 44 11 17 10 16 19 76 
Cl) 
t,;I 

6 43 40 *04 43 11 0 17 9 43 40 *04 11 0 71 15 22 11 18 60 270 &; 
7 7 0 17 6 7 0 16 5 7 0 59 7 0 51 170 *04 199 *04 34 170 (1 

8 42 40 *04 42 9 0 22 9 42 40 *04 9 0 94 2 *11 199 *04 66 363 1-3 
i:'l 

9 6 0 18 4 6 0 18 4 6 0 54 6 0 54 2 *11 2 *11 55 330 ti 

10 42 40 *04 42 11 0 22 10 42 40 *04 11 0 122 119 *04 2 *11 61 *04 :i,, 

13 6 0 26 5 8 0 26 6 6 0 91 8 0 104 3 *11 2 *11 8 64 
t' 

8 24 3 l *11 3 3 l *11 3 6 4 199 41 40 *04 2 *11 1 *11 9 121 :;<l 
35. 3 1 *11 3 41 40 *04 41 5 5 181 6 5 181 2 *11 2 *11 9 171 H 

1-3 
i 
Cl) 

RESULTS FOR PROBLEM 2, N = 3 

C SNOLEQJ(S) SNOLEQJ SNOLEQ(S) SNOLEQ SCU2S U2S BW 
MS MSV MF MJ MS MSV MF MJ MS MSV MF MS MSV MF MS MF MS MF MS 11F 

l "01 5 0 6 3 5 0 6 3 5 0 15 5 0 15 8 12 8 12 5 15 
1"02 6 0 8 6 6 0 8 6 6 0 26 6 0 26 17 21 17 21 7 21 
1"03 8 0 10 8 8 0 10 8 8 0 34 8 0 34 199 *04 199 *04 8 24 
1"04 8 0 9 8 9 0 12 9 8 0 33 9 0 39 199 *04 94 *11 11 *05 
1"05 10 0 11 10 11 0 15 11 10 0 41 12 4 49 3 *11 3 *11 10 *05 
1"06 11 0 12 11 13 5 17 13 11 0 42 13 7 53 199 *04 4 *11 12 *05 
1"07 12 0 13 11 15 8 20 15 12 0 46 15 10 62 4 *11 5 *11 14 *05 
1"08 14 0 15 12 16 11 21 16 14 0 51 17 12 *07 199 *04 199 *04 13 *05 
1"09 15 0 17 14 17 12 23 17 15 0 59 44 40 *04 163 *11 199 *04 12 *05 
1"10 16 0 17 15 18 15 24 18 16 0 62 43 40 *04 4 *11 4 *11 16 *05 
l "11 17 0 18 16 20 17 27 20 20 6 *07 14 12 *04 4 *11 4 *11 20 *05 

H 

~ 
w 
w 



RESULTS FOR PROBLEM 4 H 
;' 

N C SNOLEQJ (S) SNOLEQJ SNOLEQ(S) 
w 

SNOLEQ SCU2S U2S Bl'/ .,. 
MS MSV MF MJ MS MSV MF MJ MS MSV MF MS MSV MF MS MF MS MF MS MF 

2 l "01 30 0 99 29 17 0 32 16 30 0 157 17 0 64 199 *04 151 154 13 32 
2 1"02 8 6 18 8 8 6 18 8 8 6 32 8 6 32 199 *04 190 193 17 42 
2 l "O 3 7 5 21 7 7 5 21 7 9 7 39 8 6 36 199 *04 199 *04 28 70 
2 l "IJ4 7 5 24 7 7 5 24 7 12 10 50 10 8 45 199 *04 199 *04 100 *()4 
2 l "05 6 4 22 6 6 4 27 6 42 40 *04 11 9 *07 199 *04 199 *04 100 *04 
2 1"06 6 4 21 6 6 4 30 6 42 40 *04 9 7 *07 199 *04 199 *04 100 *04 
2 1"07 7 5 20 7 6 4 32 6 12 10 *07 13 11 *07 199 *04 199 *04 100 *04 

13 l "Ol 62 22 330 62 12 0 17 11 63 23 1137 12 0 160 91 *04 91 *04 9 72 
13 l 11 02 51 21 196 51 65 25 352 65 37 14 598 80 40 *04 91 *04 91 *04 47 *04 
13 l "03 46 39 59 46 36 28 46 36 45 38 630 37 29 515 91 *04 91 *04 15 120 
13 l "04 17 10 25 17 48 40 *04 48 43 36 *07 43 35 *07 91 *04 91 *04 20 160 
13 l "05 49 40 *04 49 49 40 *04 48 18 11 243 49 40 *04 91 *04 91 *04 47 *04 
13 l "06 48 40 *04 48 50 40 *04 48 23 21 *07 31 21 *07 49 63 91 *04 20 *01 
13 l 11 07 48 40 *04 48 25 15 41 23 14 12 *07 21 11 *07 66 80 91 *04 47 *04 

RESULTS FOR PROBLEM 5 

N SNOLE'}J (S) SNOLEQJ SNOLEQ(S) SNOLEQ MS MSV MF MJ SCU2S U2S BW MS MSV MF MJ MS MSV MF MS MSV MF ~IS '1F e!S ,MF MS l·lF 
2 2 0 3 2 2 0 3 2 2 0 7 2 0 7 3 6 2 5 3 i:l 13 3 0 4 2 3 0 4 2 3 0 30 3 0 30 4 18 4 18 3 24 24 3 0 4 2 3 0 4 2 3 iJ 52 3 0 52 4 29 4 29 4 54 35 3 0 4 2 3 0 4 2 3 0 74 3 0 74 46 3 0 4 40 5 41 4 76 4 2 3 0 4 2 3 0 96 3 0 96 4 51 4 51 4 98 

RESULTS FOR PROBLEM 7, N = 2 

C SNOLEQJ(S) SNOLEQJ SNOLEQ(S) SNOLEQ SCU2S U2S Bvl 
MS MSV MF MJ MS MSV MF MJ MS MSV MF MS MSV MF MS MF MS MF MS MF 

l"-1 3 0 4 2 3 0 4 2 3 0 8 3 0 8 5 8 5 8 4 lU 
1"+0 4 0 5 3 4 0 5 3 4 0 11 4 0 11 7 10 7 10 5 12 
5"+0 5 0 6 4 5 0 6 4 5 0 14 5 0 14 9 12 9 12 6 15 
l +l 6 0 7 4 6 0 7 4 6 0 15 6 0 15 10 13 10 13 6 15 
5 H ~ 1 7 0 8 5 7 0 8 5 7 0 18 7 0 18 12 15 13 16 7 17 
1"+2 7 0 8 6 7 0 8 6 7 0 20 7 0 20 12 15 14 17 8 20 
1"+3 9 0 10 8 9 0 10 8 9 0 26 9 0 26 12 15 15 18 9 22 
l ll'+4 11 0 12 9 11 0 12 9 11 0 30 11 0 30 14 17 17 20 12 30 
l "+5 12 0 13 11 12 0 13 11 12 0 35 12 0 35 17 20 20 23 13 32 
1"+8 17 0 18 16 17 0 18 16 18 1 51 17 0 50 23 26 24 27 21 52 



RESULTS FOR ORDER 

FN C SNOLEQJ(S) SNOLEQJ SNOLEQ(S) 
MS MSV MF MJ MS MSV MF HJ MS MSV MF 

l - 1 0 2 1 l 0 2 l 2 0 7 
2 l "l 5 0 6 4 5 0 7 5 5 0 14 
3 - 2 0 3 2 2 0 3 2 3 0 10 
4 l '1 l 30 0 99 29 17 0 32 16 30 0 157 
4 l "4 7 5 24 7 7 5 24 7 12 10 50 
4 l "7 7 5 20 7 6 4 32 6 12 10 *07 
5 - 2 0 3 2 2 0 3 2 2 0 7 
6 - 6 0 7 4 6 0 7 4 6 0 15 
7 l "l 6 0 7 4 6 0 7 4 6 0 15 
7 l "4 11 0 12 9 11 0 12 9 11 0 30 
8 - 5 0 6 3 5 0 6 3 5 0 12 
9 - 5 0 6 3 5 0 6 3 5 0 12 

10 1"+00,l 3 0 4 2 3 0 4 2 3 0 8 
10 l"-03,l 3 0 4 2 3 0 4 2 3 0 8 
10 l"-06,1 3 0 4 2 3 0 4 2 3 0 8 
10 l"-09,l 3 0 4 2 3 0 4 2 3 0 8 
10 l"-14,l 3 0 4 2 3 2 4 3 3 0 8 
10 l,l"-03 5 0 6 2 4 0 5 4 5 0 10 
10 l,l"-06 4 0 5 2 5 2 6 5 8 3 24 
10 l,l"-09 3 0 4 2 13 11 14 13 3 0 8 
10 1,1°-14 3 0 4 2 3 2 4 3 3 3 10 
11 - 4 0 5 3 4 0 5 3 4 0 11 
12 - 2 0 3 2 2 0 3 2 2 0 7 
13 - 4 0 5 3 4 0 5 3 4 0 11 
14 - 4 0 5 3 4 0 5 3 4 0 11 

SNOLEQ SCU2S 
MS MSV MF ~!S MF 

2 0 7 1 4 
8 0 26 13 16 
3 0 10 3 6 

17 0 64 199 *04 
10 8 45 199 *04 
13 11 *07 199 *04 

2 0 7 3 6 
6 0 15 7 10 
6 0 15 10 13 

11 0 30 14 17 
5 0 12 6 9 
5 0 12 6 9 
3 0 8 4 7 
3 0 8 4 7 
2 0 7 4 7 
3 2 8 4 7 
3 2 8 4 7 
4 0 13 5 8 
7 5 20 4 7 
3 2 8 4 7 
4 3 10 4 7 
4 0 11 5 8 
2 0 7 5 8 
4 0 11 7 10 
4 0 11 5 8 

ll2S 
MS MF 

2 5 
24 27 

4 7 
51 154 
99 *04 
99 *04 

2 5 
7 10 

10 13 
17 20 

6 9 
6 9 
4 7 
4 7 
4 7 
4 7 
4 7 
8 11 
8 11 

199 *04 
199 *04 

6 9 
lj 7 
6 9 
6 9 

Bw 
MS MF 

2 5 
6 15 
2 5 

13 32 
20 50 

100 *04 
3 5 
6 15 
6 15 

12 30 
5 13 
5 13 
3 8 
3 8 
3 8 
3 8 
3 8 
4 10 
4 10 
3 8 
3 8 
5 13 
3 8 
5 13 
4 10 
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RESULTS FOR ORDER 13 

FN C SNOLEQJ (S) SNOLEQJ SNOLEQ(S) SNOLEQ SCU2S U2S SW 
MS MSV MF MJ MS MSV MF MJ MS MSV MF MS MSV MF MS MF MS MF MS MF 

1 - 6 0 26 5 8 0 26 6 6 0 91 8 0 104 3 *11 2 *11 8 64 
2 lHl 49 40 *04 49 49 40 *04 49 49 40 *04 49 40 *04 91 *04 91 *04 4 *05 
3 - 9 7 *03 9 9 7 *03 9 11 8 *11 9 7 *11 3 *11 3 *11 2 16 

A lul 62 22 330 62 12 0 17 11 63 23 1137 12 0 160 91 *04 91 *04 9 72 
4 l "4 17 10 25 17 48 40 *04 48 43 36 *07 43 35 *07 91 *04 91 *04 13 104 
4 l "7 48 40 *04 48 25 15 41 23 14 12 *07 21 11 *07 66 80 91 *04 47 *04 
5 - 3 0 4 2 3 0 4 2 3 0 30 3 0 30 4 18 4 18 3 24 
6 - 6 0 7 3 6 0 7 3 6 0 46 6 0 46 10 24 13 27 6 48 
7 1 11 1 6 0 7 4 6 0 7 4 6 0 59 6 0 59 17 31 17 31 6 48 
7 l "4 11 0 12 9 11 0 12 9 11 0 129 11 0 129 14 28 22 36 12 96 
8 - 4 0 5 3 4 0 5 3 4 0 44 4 0 44 6 20 6 20 4 32 
9 - 5 0 6 2 5 0 6 2 5 0 32 5 0 32 6 20 6 20 4 32 

10 l "+O O, 1 3 0 4 2 3 0 4 2 3 0 30 3 0 30 4 18 5 19 4 32 
10 l "-03 ,1 3 0 4 2 3 0 4 2 3 0 30 3 0 30 5 19 5 19 4 32 
10 l"-06,l 3 0 4 2 3 0 4 2 3 0 30 3 0 30 4 18 5 19 4 32 
10 l"-09,l 3 0 4 2 3 0 4 2 3 0 30 4 3 44 5 19 5 19 4 32 
10 1 H-14 ,l 3 0 4 2 4 3 5 4 3 0 30 4 3 44 5 19 5 19 4 32 
10 1,1 11 -03 5 0 6 2 4 0 5 4 5 0 32 4 0 57 8 22 7 21 5 40 
10 l,l"-06 4 0 5 2 5 2 6 5 6 0 46 42 40 *04 57 *11 10 24 6 48 
10 l,l"-09 3 0 4 2 5 3 6 5 4 0 44 3 2 30 78 *11 17 31 4 32 
10 l,l"-14 3 0 4 2 3 2 4 3 3 3 43 4 3 43 85 *11 91 *04 4 32 
11 - 5 0 6 2 5 0 6 2 s 0 32 5 0 32 7 21 8 22 5 4G 
12 2 0 3 2 2 0 3 2 2 0 29 2 0 29 11 25 4 18 3 24 
13 - 6 0 7 4 6 0 7 4 6 0 59 6 0 59 11 25 12 26 s 4ll 
14 - 4 0 5 2 4 0 5 2 4 0 31 4 0 31 5 19 7 21 5 4ll 



RESULTS FOR ORDER 24 

FN C SNOLEQJ ( ,) SNOLEQJ 
MS MSV MF MJ MS MSV MF MJ 

l - 3 l *11 3 3 l *11 3 
2 l "l 4 1 *11 3 3 l *11 3 
3 - 10 8 *03 10 4 2 *11 4 
4 l "l 33 19 70 33 9 0 10 8 
4 l "4 17 10 26 16 17 10 26 16 
4 l "7 20 13 21 18 20 11 38 17 
5 - 3 0 4 2 3 0 4 2 
6 - 6 0 7 3 6 0 7 3 
7 l "l 6 0 7 4 6 0 7 4 
7 l "4 11 0 12 9 11 0 12 9 
8 - 4 0 5 3 4 0 5 3 
9 - 5 0 6 2 5 0 6 2 

10 1"+00,l 4 0 5 2 4 0 5 2 
10 l"-03,l 4 0 5 2 4 0 5 2 
10 l"-06,l 4 0 5 2 4 0 5 2 
10 l"-09,l 4 0 5 2 4 0 5 2 
10 l"-14,l 4 0 5 2 4 3 5 4 
10 l,l"-03 4 0 5 4 5 0 6 4 
10 l,l"-06 5 0 6 3 3 0 4 3 
10 l,l"-09 3 0 4 3 5 3 6 5 
10 l,l"-14 4 0 5 2 4 3 5 4 
11 - 4 0 5 3 4 0 5 3 
12 - 3 0 4 2 3 0 4 2 
13 - 5 0 6 4 5 0 6 4 
14 - 4 0 5 2 4 0 5 2 

SNOLEQ(S) SNOLEQ 
MS MS\/ MF MS MS\/ MF 

6 4 199 41 40 *04 
4 l *11 3 l *11 

12 9 *11 42 40 *04 
48 40 *04 9 0 202 
15 8 335 17 10 386 
10 5 *07 15 6 *07 

3 0 52 3 0 52 
6 0 79 6 0 79 
6 0 103 6 0 103 

11 0 228 11 0 228 
4 0 77 4 0 77 
5 0 54 5 0 54 
4 0 53 4 0 53 
4 0 53 4 0 53 
4 0 53 4 0 53 
4 0 53 4 3 77 
4 0 53 4 3 77 
5 3 102 5 0 102 
3 0 76 9 7 *07 
5 l 78 4 3 77 
4 4 101 5 4 101 
4 0 77 4 0 77 
3 0 52 3 0 52 
5 0 102 5 0 102 
4 0 53 4 0 53 

SCU2S U2S 
MS MF MS MF 

2 *11 l *11 
2 *11 2 *11 
3 *11 3 *11 

49 *04 19 *04 
49 *04 49 *04 
37 *11 49 *04 

4 29 4 29 
10 35 13 38 
17 42 17 42 
14 39 22 47 

6 31 6 31 
7 32 6 31 
5 30 6 31 
5 30 6 31 
5 30 6 31 
5 30 6 31 
5 30 6 31 
6 31 8 33 
5 30 12 37 
5 30 22 47 

49 *04 49 *04 
7 32 9 34 
5 30 4 29 

32 57 19 44 
5 30 7 32 

BW 
MS MF 

9 121 
2 *11 
2 27 
9 122 

20 322 
26 *04 

4 54 
6 81 
6 81 

12 162 
4 54 
4 54 
5 68 
5 68 
5 68 
5 68 
5 68 
5 68 
6 81 
5 68 
5 68 
6 81 
4 54 
7 95 
5 68 
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RESULTS FOR ORDER 35 

FN C SNOLEQJ(S) SNOLEQJ SNOLEQ (S) SNOLEQ SCU2S U2S BW 
MS MSV MF MJ MS MSV MF MJ MS MSV MF MS MSV MF MS MF MS MF MS MF 

l - 3 1 *11 3 41 40 *04 41 5 5 181 6 5 181 2 *11 2 *11 9 171 
2 l II l 5 l *11 4 3 1 *11 3 44 40 *14 42 40 *04 2 *11 2 *11 2 *11 
3 - 10 8 *03 10 4 2 *11 4 7 4 *11 6 4 *11 3 *11 3 *11 2 38 
4 l "1 20 0 63 18 29 20 56 29 20 0 693 50 40 *04 33 *04 33 *04 9 171 
4 l "4 48 40 *04 48 48 40 *04 48 20 13 689 48 40 *04 33 *04 33 *04 18 *04 
4 l "7 31 22 35 29 33 23 51 31 45 40 *07 20 10 *07 33 *04 33 *04 18 *04 
5 - 3 0 4 2 3 0 4 2 3 0 74 3 0 74 4 40 5 41 4 76 
6 - 6 0 7 3 6 0 7 3 6 0 112 6 0 112 10 46 13 49 6 114 
7 l" l 6 0 7 4 6 l) 7 4 6 0 147 6 0 147 17 53 17 53 6 114 
7 l "4 11 0 12 9 11 0 12 9 11 0 327 11 0 327 14 50 22 58 12 228 
8 4 0 5 3 4 0 5 3 4 0 110 4 0 110 6 42 6 42 4 76 
9 - 5 0 6 2 :, 0 6 2 5 0 76 5 0 76 6 42 6 42 4 76 

10 1"+00, l 4 0 5 2 4 l) 5 2 4 0 75 4 0 75 6 42 6 42 5 95 
10 l"-03,1 4 0 5 2 4 0 5 2 4 0 75 4 u 75 6 42 6 42 5 95 
10 l"-06,l 4 0 5 2 4 0 5 2 4 0 75 4 0 75 6 42 6 42 5 95 
10 l"-09,l 4 0 5 2 4 0 5 2 4 0 75 4 0 75 6 42 6 42 5 95 
10 l"-14,l 4 0 5 2 4 3 5 4 4 0 75 4 0 75 6 42 6 42 5 95 
10 l,l"-03 4 0 5 4 4 0 5 4 4 0 145 4 0 145 9 45 11 47 18 *04 
10 l,lll-06 3 0 4 3 3 0 4 3 5 0 146 5 0 146 6 42 15 51 13 247 
10 l,l"-09 3 0 4 3 4 2 5 4 4 0 110 4 0 110 6 42 19 55 8 152 
10 l ,l "-14 4 0 5 3 4 3 5 4 3 3 109 3 3 109 33 *04 33 *04 7 133 
11 - 5 0 6 2 5 0 6 2 5 0 76 5 0 76 7 43 9 45 6 114 
12 - 3 0 4 2 3 0 4 2 3 0 74 3 0 74 5 4' _J. 5 41 4 76 
13 - 51 40 *04 51 51 40 *04 51 27 14 *07 27 14 *07 7 *11 33 *04 18 *04 
14 - 5 0 6 5 5 0 6 5 5 0 181 5 0 181 8 44 10 46 7 133 



RESULTS FOR ORDER 46 

FN C SNOLEQJ (S) SNOLEQJ 
MS MSV MF MJ MS MSV MF MJ 

l - 41 40 *04 41 41 40 *04 41 
2 l "l 4 1 *11 3 3 l *11 3 
3 - 4 2 *11 4 4 2 *11 4 
4 l "1 9. 0 10 8 9 0 10 ti 
4 l "4 17 10 26 16 17 10 26 16 
4 l "7 18 11 19 16 21 12 39 18 
5 - 3 0 4 2 3 0 4 2 
6 6 0 7 3 6 0 7 3 
7 1 1 6 0 7 4 6 0 7 4 
7 1 11 4 11 0 12 9 11 0 12 9 
8 - 4 0 5 3 4 0 5 J 
9 - 5 0 6 2 5 0 6 2 

10 l "+O O, l 4 0 5 3 4 0 5 3 
10 l "-0 3, 1 4 0 5 3 4 0 5 3 
10 l"-06,l 4 0 5 3 4 0 5 3 
10 l"-09,l 4 0 5 3 4 0 5 3 
10 l"-14,1 4 0 5 3 4 3 5 4 
10 1,1°-03 7 5 11 7 7 5 11 7 
10 l,l"-06 6 0 7 5 5 3 6 5 
10 l,l"-09 4 0 5 4 4 2 5 4 
10 l,l"-14 4 0 5 3 4 3 5 4 
11 - 5 0 6 3 6 0 7 3 
12 - 3 0 4 2 3 0 4 2 
l3 - 6 0 10 6 6 0 10 6 
14 - 4 0 5 3 5 0 6 2 

SNOLEQ(S) SNOLEQ 
MS MSV MF MS MSV MF 

5 5 236 6 5 236 
5 l *11 9 6 *07 

10 7 *11 13 10 *11 
9 0 378 9 0 378 

13 6 526 17 10 716 
10 5 *07 15 6 *07 

3 0 96 3 0 96 
6 0 145 6 0 145 
6 0 191 6 0 191 

11 0 426 1' _.,_ 0 426 
4 0 143 4 0 143 
5 0 98 5 0 98 
4 0 143 4 0 143 
4 0 143 4 0 143 
4 0 143 4 3 143 
4 0 143 4 3 143 
4 0 143 4 3 143 
9 7 380 9 7 380 
9 3 *07 8 7 *07 
5 3 190 4 3 143 
4 4 189 5 4 189 
5 0 144 6 0 145 
3 0 96 3 0 96 
6 0 286 6 0 286 
4 0 143 5 0 98 

SCU2S U2S 
MS MF MS MF 

2 *11 2 *11 
2 *11 1 *11 
3 *11 3 *11 

25 *04 25 *04 
25 *04 25 *04 
25 *04 25 *04 

4 51 4 51 
10 57 13 60 
17 64 17 64 
14 61 22 69 

6 53 6 53 
7 54 6 53 
6 53 7 54 
6 53 7 54 
6 53 7 54 
6 53 7 54 
6 53 7 54 

12 59 11 58 
B 55 22 69 
6 53 25 *04 
5 52 25 *04 
7 54 10 57 
5 52 5 52 

17 64 18 65 
5 52 5 52 

BW 
MS MF 

10 245 
2 *11 
2 49 
9 221 

14 *04 
14 *04 

4 98 
6 147 
6 14 7 

12 294 
4 98 
4 98 
6 147 
6 14 7 
6 14 7 
6 14 7 
6 147 
5 122 
7 171 

14 *04 
5 122 
6 147 
4 98 
9 221 
5 122 

H 
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w 
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