MATHEMATICAL CENTRE TRACTS 122

J.C.P. BUS

MATHEMATISCH CENTRUM AMSTE

1980 Mathematics subject classification: 65HI0

ISBN 90 6196 195 5

ACKNOWLEDGEMENTS

This monograph is a slightly corrected version of my doctoral
thesis. The work on this thesis has been done under supervision of prof.dr.
T.J. Dekker and prof.dr. M.N. Spijker. I want to thank prof.dr. E.M. de Jager,
prof.dr. W.W.E. Wetterling and prof.dr.ir. A. van Wijngaarden for their
critical comments which have led to some corrections in this work. I thank
the Mathematical Centre for the opportunity to publish this monograph in
the series Mathematical Centre Tracts. Furthermore I thank all those who

have contributed to the technical realization of this monograph.

ACKNOWLEDGEMENTS

CONTENTS

NOTATIONS

INTRODUCTION

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CONTENTS

PRELIMINARIES
1.1. Analysis
1.2. Iterative processes

1.3. Numerical algebra
EXISTENCE AND UNIQUENESS

APPROXIMATING THE JACOBIAN

3.1. Introduction

3.2. Divided difference approximation
3.3. Approximation by updating

3.4. Fixed approximation

DESCRIPTION OF NEWTON-LIKE METHODS

4.1. General definition

4.2. Examples of Newton-like methods

4.3. Results for restrained Newton-like methods
4.4. Use of generalized inverse

4.5. Final remarks

CONVERGENCE OF NEWION-LIKE METHODS
5.1. Introduction

5.2. Global convergence

5.3. Semi-local convergence

5.4. Local convergence

SYNTHESIS OF NEWTON-LIKE METHODS

6.1. Introduction

6.2. Numerical algebra algorithms

6.3. Choice of approximation to inverse jacobian
6.4. Approximation of required data

6.5. Restraining strategy

111

111

23

29
30
36
41

43
47
52
57
63

65
68
84
89

93
101
109
114
126

iv

CHAPTER 7

CHAPTER 8

REFERENCES

APPENDIX I
APPENDIX II

6.8,
6.9.
6.10.
6.11.

Stopping criteria

Synthesis of basic Newton-like algorithms
Conditional use of approximation by updating
Conditional use of fixed approximation
Implicit and explicit scaling

Reduction of problems with linear function

components

EXPERIMENTAL EVALUATIONS OF METHODS

7.1,

7.2.
7.3.
7.4.
7.5.
7.6.
7.7.

7.8.

Introduction

Standard time

Problem indicators

Robustness, reliability and efficiency
Design of experiments

Experimental evaluation of basic algorithms
Evaluation of special properties and
features

Conclusions

FINAL RESULTS AND CONCLUSIONS

TEST PROBLEMS

TEST RESULTS

135
141
146
148
150

152

153
155
158
161
165
172

L(R™)

.t

[x%,v]

U(x,6)
U, int(U)

F, n, D

J (%)

SF(X,A)

U(u) (B,y,x)

Vi) (B,y,x%)

flE(a)

A\b

NOTATIONS

the n~dimensional real space.
. . n n
the linear space of linear operators from R to R .

the euclidean norm for vectors and the spectral norm for

matrices.

. n . . n
if %,y € R then the usual inner product in R ,

if %,y € R then a closed interval in R.
n
= {yly e B, lz-yl < §}.
n
for U ¢ R, are the closure and interior, respectively, of U.

F is a function, with oxder n, on an open nonempty domain

n n
DcR ,F :D>R (see notation 1.3).

d
= = F(x).

the levelset of F with respect to A and x (see definition 1.4).

The class of functions F which have a continuous Fréchet

derivative on D (see definition 1.18).

a jacobian update function from Broyden's class (see formula

(3.17)) .

an inverse-jacobian update function from Broyden's class

(see formula (3.18)).

the machine precision (see notation 3.8)
the expression within the parentheses computed with machine

precision €.

the solution of the linear system Ax = b, computed by trian-
gular decomposition of A, followed by forward and backward

substitution (see formula (1.13)).
the generalized inverse of matrix A.
a standard time unit of order n (see definition 7.1).

a class of problems of solving a system of nonlinear equations,

satisfying certain conditions (see definition 7.3).

vi

T(P,p)

E(n,tF,tJ)

the standard time required by program P to solve problem p

(see formula (7.1)).

the relative efficiency of a program, for solving problems
of order n and with function evaluation time tF and jacobian

evaluation time tJ (see description 7.13).

representative set of test problems of order n in C (see sub-

section 7.5.1).

INTRODUCTION

In this monograph we treat the problem of analysis and design of methods
for the numerical solution of systems of nonlinear equations. Solving sys-
tems of nonlinear equations often arises in problems of numerical analysis,
such as two-point boundary value problems, elliptic boundary value problems,
integral equations, two-dimensional variational problems or optimal control
problems. These problems motivate a detailed analysis of methods for solving
systems of nonlinear equations.

An analysis of systems of nonlinear equations is a prerequisite for any
synthesis of numerical methods. Basic to this analysis are questions of
existence and uniqueness of solutions. These topics are treated in chapter 2.
Our method of analyzing existence and uniqueness issues is based on a theory
given by RHEINBOLDT [1969] (see also ORTEGA & RHEINBOLDT [1970]). The re-~
sults are given in such a way that they fit the framework of the convergence
theory presented in later chapters.

We restrict attention to methods which can be classified as Newton-
like methods, which notion is defined in chapter 4. These methods are local
methods, i.e. methods which require an initial estimate of a solution which
is relatively close to an exact solution, in a sense which depends on the
smoothness of the problem . These methods produce at most one approximation
to a solution. Almost all local methods currently used are Newton-like
methods. For these methods we present a comprehensive convergence theory in
chapter 5. This leads, in chapter 6, to the construction of new Newton-like
methods. As basic references for this convergence theory we mention:
KANTOROVICH & AKILOW [1964], RHEINBOLDT [1969], ORTEGA & RHEINBOLDT [1970],
DENNIS [1971], DENNIS & MORE [1974], DEUFLHARD [1974a,1974b] and DEUFLHARD
& HEINDL [1979]. In fact, the theory about global convergence (section 5.2)
is an extension of Deuflhard's theory for Newton's method. The theory
about semi~Ilocal (section 5.3) and local convergence (section 5.4) is essen-

tially based on the well known Newton-Kantorovich theorem and extensions

of this result given by Dennis, Deuflhard and Heindl. The notion of affine
invariancy (invariancy of the results with respect to affine transformation
of the function), which was first introduced in this field by Deuflhard,
plays an important role in the convergence theory.

In the study of numerical methods we distinguish two issues. First the
investigation of these methods from a theoretical viewpoint. This is done
primarily by studying convergence behaviour (chapter 5). Secondly, a thor-
ough comparative study, based on practical tests, is performed. This study
meets as much as possible the requirements as given in CROWDER, DEMBO &
MULVEY [1977] about the design of computational experiments. This comparison
will not only involve the Newton-like methods described in this thesis, but
also the method of BROWN [1969] which is known to be competitive with cer-
tain Newton-like methods. Brown's method is not a Newton-like method accord-
ing to our definition. It is based on successive linear interpolation of the
nonlinear equations separately, while Newton-like methods handle these equa-
tions simultaneously. We refer to Brown's paper for a description of this
method. We also mention some efficient implementations of this method de-
scribed in BROWN [19731, BRENT [1973al, GAY [1975] and MORE & COSNARD [1979].
The experimental design, as well as the actual experiments are discussed
in chapter 7. Based on the experimental as well as theoretical e&aluation
of the algorithms, we present in section 7.8 two new poly-algorithms (combi-
nations of Newton-like algorithms) for solving systems of nonlinear equations.
In this thesis we use ALGOL 68 as a reference language in order to provide an
unambiguous description of the various algorithms. For practical reasons,
the experiments are performed in ALGOL 60. An ALGOL 60 implementation of the
poly-algorithms of chapter 7, together with a users manual is given in

BUs [198017.

CHAPTER 1

PRELIMINARIES

1.1. ANALYSIS

Let X,y € R" . with [%x,y] we denote the usual innerproduct of x and y.

Unless specified otherwise, we use the euclidean norm:
(1.1) Il = Vx,x], x ¢ ®".

With L(Ifl) we denote the space of linear operators from R" to ®" with

spectral norm

(1.2) Ial = sup Maxb/bxl, & e L(R™).
x#0
xeRD

n . . .
Let a, e R (i=1l,...,n). Then (al,az,...,an) denotes the nxn matrix with

columns ai(i=1,.n.,n). The following result is wvalid.

1.1. TEMMA. Zet A = (a,,...,a) € L(R™). Then, for i = 1,...,n,
la. l < kal < Ial
ai Al < 1A P

where “s"F denotes the Frobenius norm:
n b
2
Ial = fa I)
al (): ajl) -
j=1

PROOF. See WILKINSON [1965, section 52 to 541. [

For x ¢ R° and any real number § > 0, U(x,8) denotes the open

$~neighbourhood of x:

(1.3) Ux,8) ={y | vy e R, Ix-yl < &}.

Let U be some subset of Ifl, then U denotes its closure in Igl and int (U)

its interior.

1.2. DEFINITION. Let U be a subset of R . Then U is path-connected if for

any %,y € U there consists a continuous mapping p : [0,1] = U such that

p(0) = x, p(1) = y.

1.3. NOTATION. D is a nonempty open subset of R and F a function with

domain D and range in Rr" .
n
F:D")]Rl

where n is said to be the order of F. Moreover, if the Fréchet-derivative
F'(x) exists at x € D, then F'(x) is a linear operator from r" toimn,
which can be represented by an nxn matrix. This matrix is called the
jacobian (matrix) of F at x and is denoted by J(x). (J(x) equals the matrix

of partial derivatives of F at x.)
In the sequel notation 1.3 is used without further comments.

1.4, DEFINITION. Let A € L(Ifl) be nonsingular and x € D. Define the set

U < D by
U=1{y | yep, lary)l < lar)l}.

Then, the levelset of F with respect to A and x, denoted by SF(x,A), is

defined to be that path-connected component of U which contains x.

We shall now give some standard conditions which appear to be useful

in the sequel.

We say that F satisfies
1.5, CONDITION if the Fréchet-derivative F'(x) of F at x exists and is

continuous for all x € D.

Let x € D and U ¢ D with x € U be given. Then F and x satisfy on U:
1.6 CONDITION if condition 1.5 is satisfied and there is a constant

Y = y(x) 2 0 such that for all y € U:

Iay) = gl <y ly-xt;

1.7. CONDITION if condition 1.5 is satisfied, J(x) is nonsingular and there

exists a constant w = w(x) 2 0 such that for all y ¢ U:
Lo taw - 11 < wely-xl.

Let x € D, A € L(EJI). Then F, x and A satisfy

1.8. CONDITION if A is nonsingular, F satisfies condition 1.5, J(z) is non-
singular for all z ¢ SF(x,A) and SF(x,A) is compact;

1.9. CONDITION if condition 1.8 is satisfied and there exists a vy =2 0

such that, for all z ¢ SF(x,A), F and z satisfy condition 1.6 on SF(x,A)
with v(z) < v;

1.10. CONDITION if condition 1.8 is satisfied and there exists a w20

such that, for all z ¢ SF(x,A), F and z satisfy condition 1.7 on SF(x,A)

with w(z) < .

Conditions 1.7 and 1.10 are so-called affine invariant analoga of
conditions 1.6 and 1.9, respectively. This means that, if F in conditions
1.7 or 1.10 is affinely transformed yielding F = TF, for any nonsingular
T € L(n{n), then these conditions remain unchanged. This is easily shown

by the obsexvation
~ __1~ ...1
Tae) 7oy - b = 1@e) "ay) - 1l

where J denotes the jacobian of F. In particular, the constant w(x) (and w)
is independent of affine transformation of F. This is not true for y(x)
(and ;) in condition 1.6 (and 1.9). The justification of conditions 1.9 and

1.10 lies in their use in the convergence theorems in chapter 5.

As we are concerned with the numerical solution of systems of nonlinear
equations, we are confronted with round-off errors during computation of
function values. In order to be able to deal with this we use the following

definitions.

1.11, DEFINITION. Let be given a function £ : D> R, with D ¢ R, and a

real number § > 0. Then f is called §-monotonous on a certain interval (a,b)

if § < b~a and either

(1.4) £(t+8) =2 £(t) for all t € (a,b~8),
or
(1.5) £{t+8) < £(t) for all t € (a,b-6).

If (1.4) is satisfied then f is S-monotone increasing.

If (1.5) is satisfied then f is S-monotone decreasing.

1.12. DEFINITION. Let E(x) denote an approximation to F(x) for all x e D.

Let A(x) 2 0 be a given real number for all x e€ D. Then F is a A-unimodal
approximation to F if for all x € D and all d ¢ R with ldf = 1 the follow-
ing statement holds:

whenever T1 and 12 are real numbers with T2 > T1+A(X) and x+td ¢ D for

t € (Tl,T2), such that IF(x+td)l is monotone increasing (decreasing) for

t e (tr,,7,), then IF (x+ta) | is A(x)-monotone increasing (decreasing) on

[11,12].

The following lemmas are well known results. For proofs of these lemmas

see ORTEGA & RHEINBOLDT 1970, sections 2.3 and 3.2]7.

' -1
1.13. LEMMA (Perturbation lemma). Let A € L(IJ‘). Then A exists 1f and

only if there exists a B € L(R™) such that B“1 exists and
-1
Ip-nl < 1 /18771,

, -1 .
Moreover, if A exists then

(1.6) a7l = Yo - B“lA)iB—l,

(1.7) ha™

1=I8""1 Ip-al

1.14. LEMMA. Let F satisfy condition 1.5 and let DO be a convex subset of

D. Then, for any x,y € DO’

lr(y) = Pl < sup D (x+t (y=x)) I Ty—xl.
O<t<l

n m ,
An analogous result also holds for functions F : D ¢ R~ R with n # m.

1.15. LEMMA. Let D0 be a convex subset of D and x € DO' Suppose F and x

satisfy condition 1.6 on DO' Then

IF () =F (x) -7 (%) (y=3) | < Sy (x) By-xl 2,

for all y € D.. Moreover, an analogous result also holds for functions

0
F:DcR®R - R withn # m.

Finally we prove a lemma, which is the affine invariant analogon of

lemma 1.15.

1.16. LEMMA. Let DO be a convex subset of D and x € DO' Suppose F and x

satisfy condition 1.7 on D0° Then

1@ x)) " F () -F (x) -3 () (y=x) | < B x) Dy=-x12,

for all y € DO.

PROOF. Define, for all z € D:
~ -1
F(z) = (J(x)) "F(z).

Then, for z = %, we have for the jacobian E(X) of ; : E(X) = I, So, appli-

cation of lemma 1.15 yields the required result. [J

1.2. ITERATIVE PROCESSES

We use definitions which are close to those of ORTEGA & RHEINBOLDT
[1970].

1.17. DEFINITION. Let C(k)C Rm (k=0,1,...) for certain m > 0. Let a sequence

(k) | }
of operators {V¥ }k20 be given such that

S I Y A B

(0} (0)

be the set of all z_ € C such that a sequence {Zk}k=

*
Let C < C 0

0
exists generated by

(1.8) 2 =y

) -
- (z), k=0,1,....

*

Then C is the domain of the iterative process (1.8). The iterative process
. . . . , k

(1.8) is defined by the sequence of iteration functions {W()}:“O‘

m is called the dimension of the process. We say that the process converges

* *
for a given starting point z., € C if there exists a z ¢ Efl, called a limit

0

x
of the process, such that lim z, = z , where Zy is generated by (1.8) with

k
P00
Z as given. The process ig called a stationary iterative process defined

by iteration function ¥ if W(k) =Y (k=0,1,...).

Using the terminology of ORTEGA & RHEINBOLDT [1970] definition 1.17 defines
a sequential l-step iterative process. They give a more general definition
of an iterative process defined by iteration functions that may depend on
several preceding iterates in any non-specified order. As we shall not con-
sider such general processes in this thesis we restrict ourselves to defini~

tion 1.17.

For short we denote some sequence {wk}:_O by {wk} and {wk} ¢ S means

that wk € S for all k = 0,1,... .

Let F be given. Then the problem we are concerned with is to obtain a
solution of the equation F(x) = 0. Hence, we want to construct an iterative
process (depending on F) such that for an arbitrary starting point the
process converges to a limit which provides us a solution of F(x)= 0. There-

fore, we look for a method to construct an iterative process for arbitrary

F. This leads us to the concept of iterative method. In the following def-

inition we restrict attention to functions F satisfying condition 1.5.

1.18. DEFINITION. Define

F = {F | F satisfies condition 1.5}

and for arbitrary positive integer m

P(m)={‘!’|‘{’:C\{,"Pm,CWC]Rm,C‘y#Q}.
(k) . X
Let {M'™"} be a sequence of mappings:
w oo - Pm, D cF k=0,1,2,...,

I (k)
Suppose kgl Dk # @, then {M } is called an iterative method.

k
If M(- M (x=0,1,2,...) then we say that M is a stationary iterative
method.

k .
Note that, for a given F ¢ F, the iterative method {M()} gives a se-

quence of iteration functions {M(k)(F)} which defines an iterative process.

1.19. REMARK. The definition of iterative methods is such that, for given
F of order n, the dimension m of the resulting iterative process is not

necessarily equal to n. This is essential for our purposes.

n2

+
For instance, the iterates may be of the form z, = (x) € r" , with

k kB

x_ €D, H e L(R") and R"x L(R") identified with I?‘+n2. Here the se-

k k
quence {xk} may be interpreted as a sequence of approximations to a solution
and {Hk} may be interpreted as a sequence of approximations to the inverse
jacobian at xk (k=0,1,...). So in this case m > n. We can also give an exam-
ple with m < n. Suppose, for instance, that it is known that the solution x*

* * m n
has the form x = x_ + Vy , with x_ € D known, V a known operater V: R - R

0 0
*
and y €]{n to be determined. Then we may construct an iterative process

*
with iterates in]fn, which for a given starting point converges to y .

1.20. DEFINITION. Let {zk} be a sequence of elements in R . Suppose there

* *
exists a z € R such that lim zp = z* and Zy =2 for at most finitely many
k>0
indices k. Let ko'k1'k2""‘ be the sequence of indices obtained from
*
0,1,2,... by omitting those for which z, = z and suppose

k

10

k3 2o,

*

(1.9) lim inf (-loglzy .~z 1)

jooe ’

*
Then, we say that {zk} converges to z with order of convergence p. 1f there
*

is no finite p satisfying (1.9) then we say that {zk} converges to z with
order of convergence «, Let

c = lim sup ﬂz.-z*ﬂl/l,

i 1

then 0 € ¢ £ 1. We say that convergence is linear if 0 < ¢ < 1, sublinear

if ¢ = 1 and superlinear if c¢ = 0.

In the literature one sometimes uses the term "weak order of conver-
gence" where we have used the "order of convergence" (see van de GRIEND
[1978]). oOther definitions of order of convergence are possible which may
lead to different results (see also ORTEGA & RHEINBOLDT [1970, chapter 9]).

For our purposes definition 1.20 suffices.

The following definition and lemmas appear to be useful in proving

convergence of sequences of vectors

1.21. DEFINITION. Let {zk} be a sequence in R". Then a sequence {tk} c [0,®)

is called a majorizing sequence for {zk}, if

I - - = cen)
Zer % S gt (=0.1,.00)

1.22. LEMMA. Let {t } ¢ [0,) be a majorizing sequence for {z } ¢ R'.
1.22. LEMMA e k

* * X
Suppose that t < o exigts such that lim e =t . Then there exists a

% koo
zZ € Kgl such that

lim z, =z , "z*~zk“ < t*—t (k=0,1,...) .

k

kroo

k
PROOF. See ORTEGA & RHEINBOLDT [1970, sect. 12.4.2]. [

1.23. LEMMA. Let n 2 0 be some constant and let Py (i=1,2,3,4) be constants
satisfying P, z 0 (i=1,2,3,4), py > 0, Py < 1, pPytp, = 2P1 and
0=n=< (I-p,) /(4p1). Then we can define a sequence {tk} by t, = 0, t,=m
and the difference equation

1

- [- . -t k=1,2,...).
(1.10) et T T Top e, (py (& -ty) 4py*Raty) (Bt))

If n # 0 then {tk} is increasing and

: 1 / 2
(1.11) lim t = ———'<(1-pz) - /{1-p,) —4pln>

Kosco k 2p1

PROOF. See ORTEGA & RHEINBOLDT [1970, section 12.6.3]. [

Finally, we give a theorem about existence and uniqueness of fixed
points of iteration functions. This theorem is essentially based on

Kantorovich lemma (see ORTEGA & RHEINBOLDT [1970, lemma 12.5.3].

m , , .
1.24. THEOREM. Let V¥ : D = Ifl, D, R , be an iteration function which

Y Y

is differentiable on a convex set DO = DW" Assume that for some constant

Y >0

- T -
“W'(zl) Y (z2)" < y”zi 22", for all Zy12, € DO

and that there is a zy € D, such that "W'(zo)" < g < 1. Suppose

a = YS/(1~0)2 < %, where B = ||zo—‘l’(zo)“. Set

Hk
t

((1=8)/v) (1-V1i-20), = ((1-8)/v) (1+/1-20)

o+
it

11

and assume U(zo,t*) < DO' Then the sequence {zk} generated by the iterative

process with starting point 2z remains in U(zo,t?) and converges to a fixed

*
point z of Y which is unique in D_ n U(zo,t**).

0

PROOF. See ORTEGA & RHEINBOLDT [1970, theorem 12.5.5]. [

12

1.3. NUMERICAL ALGEBRA

1.3.1. Triangular decomposition of matrices and solution of systems of

linear equations

Let A be an arbitrary nonsingular nxn matrix. Then, by the process of
triangularization (see e.g. WILKINSON [1965, sect. 4.15]), we can obtain an
nxn lower-triangular matrix L and an nxn upper-triangular matrix R such

that

(1.12) PIAP2 = LR,

where one can choose either L or R unit-~triangular, i.e. with diagonal
elements equal to 1, and where P1 and P2 are some permutation matrices.
These permutation matrices are induced by some strategy for monitoring the
stability of numerical computation, called pivoting.

The number of basic arithmetical operations (+ and X) required to perform
such a triangular decomposition is %n3 + o(nz). In order to solve the linear

system
Ax = b,
with b € Igl, one solves subsequently

Ly = P,b, Rz = y and x = Pz,

1 2

i.e. forward substitution and backward substitution respectively, followed
by a permutation. This requires only O(n2) additional basic operations to
obtain x.

We like to point out that calculation of Aﬁl, which is done usually by cal-
culating the triangular decomposition first, will require %n3 + O(nz) basic
operations in addition to those required for the triangular decomposition.
Therefore, if A'-1 is not explicitly needed, one should calculate the solu-
tion of a linear system Ax = b by computing the triangular decomposition
and, subsequently, performing forward and backward substitution. In order to

avoid ambiguity we write

(1.13) x = A\b

13

for the vector x, the solution of Ax = b, which is obtained in this way. If
the inverse is calculated explicitly and then multiplied by the right hand
side b to obtain the solution, then we write

X = A_lb.

Note that mathematically, but not numerically, the identity A\b = Anlb holds.
So the notation (1.13) will be used only if algorithms are described or

numerical aspects are considered.

1.3.2. Generalized inverse and singular value decomposition

Let A be an arbitrary nxm matrix. Then an mxn matrix X is said to be

the generalized inverse of A, if the following identities hold:

i

(1.14) AXA =A , XAX X,

it

(AX)T AX (XA)T = XA.

The generalized inverse of A is uniquely determined by (1.14) (see PENROSE
[1955]). We denote the generalized inverse of A by A". In the literature
the term pseudo~inverse is sometimes used to denote the generalized inverse.
We can calculate the generalized inverse A+ of A by using the so-called
singular value decomposition of A (see GOLUB & KAHAN [1965]). For all nxm
matrices A there exists a decomposition

(1.15) A=U731V,

where U is an nxn orthonormal matrix, V is an mXm orthonormal matrix and I
is an nxm diagonal matrix : I = diag(ol,...,ok), with k = min(n,m) and
94 > o, 2 L., 2 Ok 2 0. The values n (i=1,...,k) are called the singular
values of A. The generalized inverse of I is given by the mxn diagonal

matrix
. + +
L o= dlag(cl,...,ck),
where
1/0., if o, #.0
+
o, = { * + (i=1,...,k).

0 ’ if g, =0
i

14

+
We obtain the generalized inverse A of A by

(1.16) 2" =v ot ol

The rank of A, denoted by rank(a), is defined as the number of nonzero

singular values of A,

Let us split the matrices U and V such that

(1.17) U= o), V=, | V),

:

where U1 and V1 consist of the first r = rank(A) columns of U and V respec—

tively, corresponding to the nonzero singular values of A. Furthermore,

write Er for the rxr diagonal matrix Zr = diag(cl,...,ar). Then

T + + T
(1.18) A= UIerl, A = VIZrU1
and consequently
+ T
(1.19) AN = Ului' A A = Vlvl"

2
For the nxn matrix P = UlUT we have P = P and [x~Px,Py] = O for all

X,Y € Rn, since UrfU1 = Ir (identity in LCRr)).T%erefore;P is an orthogonal
. n
projector in]Rn, projecting on the subspace in IR spanned by the columns

. . m . .
of U,. Similarly VlvT is an orthogonal projector in R , projecting on the

1 1

m
subspace of R spanned by the columns of V,. Before stating a lemma based

1
on these observations we give some notational conventions.

1.25. NOTATION. Let A be an arbitrary nxm matrix. Then we denote
(i) the range of A:
range(3) = {y i ye R, 3x ¢ R : ax = vy},
(ii) the kernel of A:
ker (A) = {x l X € HPE Ax = 0},
(iii) the span of A:
span (A) = the subspace of R" spanned by the columns of A.

(iv) if 8 ¢ Ef% then SC denotes, the orthogonal complement in Rp,

15

Note that range (A) = span(d) for all matrices. However, we use both nota-
tions. Range refers to A as an operator and span refers to A as a set of

columns which can be identified with a set of vectors inimn.

1.26. LEMMA. Let A be an arbitrary nxm matrix. Suppose its singular value
decomposition is given by (1.15) and Ul’ Uz, V1 and V2 are given by (1.17).
Define ¥ = rank(A). Then

(i) range (A) = span(Ul), AA+ = UIUT is an orthogonal projector on
range (3) ;

(ii) (ker(A))C = span(vl); A+A = Vlvf is an orthogonal projector on
“(ker (a))

(iii) if b € 151, b € range(B), then the equation Ax = b has at least one

solution and all solutions can be written in the form

X

i

+ -
(1.20) X =ADb + sz for arbitrary z € B

+ .
(iv) if b € R" then lax-bl is minimal for x = A'b + V.z for arbitrary

m-x ’ 2
z € R .
PROOF. Statements (i) and (ii) follow immediately from (1.18), (1.19) and

the obervations given after these formulas.
To prove (iii) we observe that (1.19) yields

4.
AR'b = U UTb = b,

as b € range(d) = span(Ul) (see (i)). Hence A+b is a solution of Ax = b.
As ker (A) = span(vz) (by (ii)) statement (iii) follows easily.

The proof of (iv) follows immediately from (i) and (iii). As Ax is the
orthogonal projection of b on span(Ul) (= range(aA)) for x = A+b + v

9Zs it

follows that the distance lax-bl is minimal. [J

+
To calculate x = A b according to (1.18) for some vector b ¢ IJl, we succes-

. . T o+
sively multiply b by Ul’ Zr and Vl. This requires (n+m+1)r basic arithmetical

. R L . . . + -
operations. This is much more efficient than first computing A explicitly,

16

which requires multiplication of an mxr and an rXn matrix (mxnxr basic oper-
ations). In the sequel we always assume that A+b is calculated in the econom-
ical way, as sketched above. As we do not require A+ explicitly, we do not
introduce different notations for different ways of computing, as we did in
section 1.3.1 for the solution of a linear system by means of triangular

decomposition followed by backward and forward substitution.

In the next two subsections we discuss applications of the singular

value decomposition-to the problem of solving systems of nonlinear equations.

1.3.3. Reduction of problems with linear components

When the problem F(x) = 0 can be decomposed as

Ax+b
(1.22) _ =0,
F(x)

where we have a linear part with p linear equations say (p < n), and a
nonlinear part for some F : p= RP , then we may reduce the n-th order
nonlinear problem of solving F(x) = 0 to an (n-p)-th order nonlinear problem

by first solving the p-th order linear problem explicitly.

1.27. THEOREM. Let A be a pxn matrix (p < n) and b € }é), both independent
of x. Suppose rank(A) = p. Let be given a function F:p~> R P, ret the
singular value decomposition of A be given by (1.15) and U and V split
according to (1.17). Define a function G : b, =~ RYP with D, = {z] ze RO P/
A+b+Véz € D} by

(1.23) Glz) = Fa'bv,2) .
Consider the problem

(1.24) G(z) =0, x=ATDb+ V2.

Then x is a solution of (1.22) if and only if % is a solution of (1.24).

PROOF. First let, for given x € D, (1.22) be satisfied, By lemma 1.26 (iii)

X can be written as

17

+ '
¥ =ADb+ V2z, for some z € EP p.

Substitution in (1.22) yields
— 4
(1.25) F(a b+sz) = 0.

Hence, there exists a z ¢ D1 such that G(z) = 0. This proves the first part
of the theorem. Now suppose (1.24) is satisfied. Then, again (1.25) holds
and by lemma 1.26 (iii) A+b + V2z is a solution of Ax = b. So, (1.22) is
satisfied. [

1.28. REMARK. Let F satisfy condition 1.5 and suppose F(x) = 0 is equivalent

to (1.22). Then F'(x) exists for all x in D. Moreover
-
(1.26) G'(z) = F'(A b+V22)V2.
So, from theorem 1.27 we see that, instead of solving the system of n
+
equations (1.22) as a system of n nonlinear equations, we can calculate A b

and solve the system of n-p nonlinear equations G(z) = O.

1.3.4. Projection and a singular jacobian

We assume that F satisfies condition 1.5. Suppose that for some Xy € D,

J(xo) is singular and its singular value decomposition is given by
(1.27) J(x,) = U, L VT
: R A

where ¥ = rank(J(xO)) and (1.18) is used rather than (1.15).
Congider the function f(x) = "F(x)"z. Then the derivative (gradient) of £
at x = Xq is given by

f'(xo) = ZJT(XO)F(XO).

Substituting (1.27) yields

\ B T
£'(xg) = 2V, T UIF(x).

So f'(xo) € span(vl). Moreover

18

T
(1.28) £'(xg) = 0= UF(x) =0 Flxy) ¢ (span(Ul))c.

In fact, only the projection of F(xo) on span(Ul) contributes to the gradient
T T T

as UlF(XO) = Ul(UlUl)F(XO) (see lemma 1.26 (i)). We are interested in calcu-

lating a solution of the equation F(x) = 0, i.e. in calculating a zero-

- T
minimum of f£(x). A necessary condition for a minimum of £ (x) is UlF(xO) = 0.

Moreover, if we search for a new approximation to a solution of F(x) = 0
with a technique based on exploiting only the gradient of f(x) at x = Xqs
n
= = +
O+span(V1) {x | x e R , x XtV
v € span(Vi)}. That means that, with such methods we naturally restrict

then a new point will be found in x

ourselves to searching a zero of a function F with domain in span(Vl) and

range in span(Ul) defined by

E(v) = UTF(XO+V), for v € {y I y € span(vl), x +y € D}.

0

Choosing the columns of V, as a basis for span(Vl), we can define a function

1

G : Di‘*’]Rrby

(1.29) G(z) = UT F(x o+, 2)

for all z ¢ D1 = {y I y € Ifi x +V,y € D}. G is called the projected func-

0 1

tion of F with respect to X Note that
(1.30) G'(2) = U T(x HV,2)V

1 0 "1 1
and
(1.31) G'(0) = £ .

r

* *

Furthermore, if z 1is a solution of G(z) = 0, then, in general, xO+Vlz
is not a solution of F(x) = 0, as all zeroes of F may lie outside the set

xo+span(V1).

1.29. REMARK. Let F(XO) # 0 and let the projected function G of F with

respect to x given by (1.29), satisfy G(0) = 0. Then, F(xo)e (span(Ul))c

OI

and f'(xo) = 0 (see (1.28)). Hence x_ is a stationary point of f(x). In this

0
case, an analysis of the eigenvalues and eigenvectors of £"(x) is necessary
to obtain the answer to the question whether this stationary point is a

local maximum or minimum, or a saddle point. If some eigenvalues are equal

19

to zero this analysis is not sufficient to answer this question. In such

a case analysis of the third or higher order derivatives is necessary.

1.3.5. Scaling of matrices

In this subsection we assume that A € L(Rn) is nonsingular. Consider
the linear system Ax = b, for some b e E{n. Then, the solution x = A\b is
well defined and it is well known that the error in the computed solution
due to round-off during the computational process, depends on the condition
number of the matrix defined by

(1.32) c@) = hal 1a~ty.

In fact, we may expect that this error is small if x(A) is small (about 1)
and large if x(A) is large (see WILKINSON [1965, chapter 4]). One reason
that x(A) may be large is that rows or columns of A are badly scaled. In
order to remove as much as possible the negative effect of bad scaling of

a matrix on its condition number, one often uses scaling by diagonal matri-
ces. The following example shows that premultiplying and/or postmultiplying

a matrix by diagonal matrices may improve its condition number considerably.

1.30. EXAMPLE. Let for some constant ¢, 0 < ¢ << 1:

then

k(a) = c~2’ approximately.

Premultiplying A with D, = diag(l,1/c) vields

1

and

K(DiA) = ¥2/c.

Moreover, postmultiplication of'DlA with D, = diag(1l,1/c) yields

20

with
34+v5

K(DlAD2) =37 = 6.9, approximately.

Based on these observations one may solve the linear system Ax = b
in the following steps:
1. Find appropriate diagonal matrices D1 and D2 such that row and column

norms of the matrix D,AD, are roughly equal to 1.

1772
2. Perform triangular decomposition of the scaled matrix (cf. (1.12)):

PlDlADZPZ = LR,

with P1 and P2 permutation matrices.

3. Perform forward substitution yielding y by:

Ly = Plle'

4. Perform backward substitution yielding z by:

5. Repermute and rescale

X = D2P22.

Then the computation error depends on K(DlAD2) if scaling is exact.

The following results give information how the diagonal matrices D1 and

D, might be chosen such that row and column norms of the scaled matrix are

2
roughly equal to 1.

1.31. LEMMA. Let A € L(EJI) be arbitrary nonsingular. Define for i = 1,2

b, = aiag@ ™ ,...,a™y witn
1 1

1

. . __2 "
d(l) - 2entler(logll}\ia)

(1.33) 1

12

]
e
-

N

N

N
-

ol
-

. 2
. 1ogl (0. a) .1 .
entier (ogll (1)’j), i

(3 _
(1.34) d2 = 2

21

where Bi- and B-j denotes the i~th row and j-th column of a matrix B, re-

spectively.

Define

(1.35) A = DlAD2.

Then

(1.36) y < HK;jH <1, o= 1,...,0,
1 Loz 1< v i

(1.37) in s Aie < vn, i=1,...,n.

(1
2 7’
(i=1,...,n) imply

PROOF. From the choice of d

(1) (i)
1 and d2

j=1,...,n, we have (1.36). Moreover, the

choices of 4

W (8 2
(1.38) Ly <4 () A,.) <1, i=1,...,n,
1 =1 ij

. n . 24
(3 (i) .
(1.39) 5 <d, () (dl Aij>) <1,

i=1

1,c..,0.

From these inequalities it follows that

. . . /D . 244
!d;j)dfl)Aijl < dé])(¥ (d;l)Aij>) <1, i,5=1,...,n.
i=1

Hence

0o/ (4 2\%
Y la2a,Ma, .) <vn, i=1,...,n,
=1 2 71 Uiy

which proves the right hand inequality of (1.37). From the left hand in-
equality of (1.38) we see that there exists a k (1<k<n) such that

(1)
(1.40) !dl Aikl 2 5=

Furthermore, from (1.39):

(! (d;i) Aij)2>% * <2d5j))-1“

i=1

Combining this with

(1} (i)
|<5l1 Aijl <a (

we obtain

22

(3) 1
d2 = 5

So with (1.40)

n .) 2\% .
(jzl(déj)d;l)Aij> > > Idék)d;l)Aikl > j%-, 0
It follows from lemma 1.31 that successive row and column scaling of
matrix elements by powers of 2, to assure exact scaling, yields a matrix
with row and column norms which are roughly equal to 1. Although we cannot
quarantee that K(X), with Z-given by (1.35), is less than «x(A), this is very
likely if column norms or row norms of A vary widely (see for instance

van der SLUIS [1969]).

1.3.6. Scaling of systems of nonlinear equations

Let F satisfy condition 1.5. Then we may scale the function by premul-

tiplying it by some diagonal matrix Dl' We can also scale the variables

= ~1
with a diagonal matrix D2, i.e. we choose new variables x = D2 X. SO we

may consider the function
F(x) = DlF(D2X)-

Then we obtain for the jacobian J(x) of F:
J(x) = DlJ(X)Dz'

This suggests choosing of D1 and D2 dependent on J(x) for some x € D, such

that norms of rows and columns of D1J(x)D2 are roughly equal to 1.

In fact, if %, is an initial guess to the solution of F(x) = 0 and B_. is an

0 0
approximation to J(xo), then scaling of the function and the variables with

diagonal matrices D1 and D2,

is at hand and will be used (see section 6.10).

satisfying (1.33) and (1.34) with A replaced

by BO

23

CHAPTER 2

EXISTENCE AND UNIQUENESS

In this chapter we shall derive conditions for the existence of a path
(the so-called Newton-path) going from a given starting point %y € D to a
solution which lies in SF(XO,A) for all nonsingular A € L(Rn). This path is
independent of A and is contained in SF(XO,A). The solution as well as the
Newton-path are unique in SF(XO’A) under the given conditions.
The results given in this chapter are based on RHEINBOLDT [1969] and ORTEGA
& RHEINBOLDT [1970]. Basic to this theory is the inverse function theorem
{theorem 2.2).

2.1. DEFINITION. ¥ is called a local homeomorphism at x € D, 1f their exist

open neighbourhoods U and V of x and F(x), respectively, such that U ¢ D
and the restriction of F to U is a homeomorphism of U onto V (i.e. F is a
one-to~-one mapping from U onto V and F and F_1 are continuous on U and V,

respectively) .

2.2. THEOREM f{Inverse function theorem). Let x,. € D. Suppose that the

0
Frechet~derivative of F exists at each point of some open neighbourhood of

g in D. Suppose that F' is continuous at x, and F'(xo) is nonsingular.

0

Then, F is a local homeomorphism at x.. Suppose, in addition, that the

0"

restriction FU of ¥ to a certain open neighbourhood U of xg is one-to-one,

Fﬁ exists and is continuous on U and Fé(x) is nonsingular for all x € U.
-1 . . . ,

Then (FU)' exists and is continuous on an open neighbourhood V of F(xo),

with
-1, -1
(2.1) (FU } O (F(x)) = (O(x))

for all % € U such that the argument F(x) € V.

PROOF. See ORTEGA & RHEINBOLDT [1970, section 5.2.11. [l

24

2.3. DEFINITION. F has the continuation property for a given continuous

function g : [0,1] = Igl, if the existence of a continuous function
p : [0,a2) » D, with a € (0,1], such that F(p(t)) = q(t) for all t ¢ [0,a),

implies that lim p(t) = p(a) exists with p(a) € D and F(p(a)) = g(a).
tta

2.4. LEMMA. Let F be a local homeomorphism at each point of some open set

D0 © D. If F has the continuation property for a continuous function
q : [0,1] ~ ®" such that F(xo) = q(0) for some xq € DO’ then there exists

which satisfies p(0) = x_. and

a unique continuous function p : [0,1] = D 0

F(p(t)) = q(t) for all t ¢ [0,1].

0

PROOF. See ORTEGA & RHEINBOLDT [1970, section 5.3.21. [J

2.5. LEMMA. Let F be a local homeomorphism at each point of some open set

DO c D. Let g : [0,1]1 x [0,1] = R®" and r : [0,1] ~ DO be continuous func-

tions such that F(r(s)) = q(s,0) for all s ¢ [0,1]. If, for each fixed

s € [0,1], F has the continuation property for qs(t) =qg(s,t), t e [0,1],
then there exists a unique continuous mapping p : [0,1] x [0,1] ~ Dy such
that p(s,0) = r(s) and F(p(s,t)) = q(s,t) for s,t ¢ [0,1]. Moreover, if
q(s,1) = q(0,t) = gq(l,t) =y for all s,t ¢ [0,1], then r(0) = r(l).

PROOF. See ORTEGA & RHEINBOLDT [1970, section 5.3.4]. [

2.6 LEMMA. Let F be a local homeomorphism at each point of some open set

DO c D. Let p : [0,a) = DO (a € (0,1]) be a continuous function. If

%im F(p(t)) = v exists, and if there is a sequence {tk} c [0,a) with
a
lim ty = a such that iig p(tk) = x and x € D

then lim p(t) = x.
k-0 tta

OI
PROOF. See ORTEGA & RHEINBOLDT [1970, section 5.3.71. [

2.7. LEMMA. Let x, € D and A «¢ L(I{l). Suppose F, x,. and A satisfy condition

0
1.8. Then there is an open set D

0

< D such that SF(xO,A) c D, and J{x) is

0 0

nonsingular for all x € DO'
PROOF. Suppose X € SF(XO,A). Then J(x) is nonsingular and there gxists a
constant B > 0 such that "(J(x))~1" < B. By the continuity of J on D we
know that there exists a 8§ > 0 such that for all z € U(x,8) ¢ D : lJ(z) -
J(x)l < 1/B. Then, use of lemma 1.13 yields nonsingularity of J(z) for all

z € U(x,6).

25

Thus, for each point x ¢ SF(XO,A) ¢ D there exists an open neighbourhood,

Ux say, on which the jacobian is nonsingular. Then D Uy is an

= U
1 XESF (XorA)
open set containing SF(xO,A) on which the jacobian is nonsingular. [

We can now present the main result of this chapter.

2.8. THEOREM. Let X, € D and A € Lx"). Suppose F, X

tion 1.8. Then, there exists a unique differentiable function p : [0,1] -

and A satisfy condi-
SF(xo,A) satisfying
(2.2) F(p(t)) = (1—-t)F(x0), t e [0,1].

Moreover, p satisfies

(2.3) p'(t) = ~@ (M) Fxy, tel0,1]
p(0) = Xqe
Furthermore, x* = p(l) is a unique solution of F(x) = 0 in SF(xO,A). The

path {y | y = p(t), t e [0,1]} © S_(x,A) is called the Newton-path.

PROOF. As a solution of AF(x) = 0 is also a solution of F(x) = 0 and the
conditions are also satisfied with F replaced by AF, without loss of gener-
ality we may assume that A = I. For simplicity, denote S = SF(xO,A). Now
let D, be an open set, D

0 0

all x € DO (cf. Lemma 2.7).

< D, such that § < DO and J(x) is nonsingular for

By condition 1.8 and theorem 2.2 we conclude that F is a local homeo-

morphism at each x ¢ DO

Now consider the continuous function g(t) = (l—t)F(xO) for t ¢ [0,1].
We shall prove that F has the continuation property for g. Therefore,
assume that p : [0,a) = DO' a € (0,1], is a continuous function such that
F(p(t)) = g(t) for all t ¢ [0,a). Then p(t) € S for t ¢ [0,a) and by theorem

2.2 there exist open neighbourhoods U ¢ D and V < r" of p(t) and q(t),

0
respectively, such that FU (the restriction of F to U) is a homeomorphism

of U onto V, (Fal)’ exists and is continuous and

26

(F;l)'(F(x)) = (J(x))—l, for all x € U.

Hence, we conclude that p is continuously differentiable on [0,a) with
[= =1 . - bt
(2.4) p'(t) = (J(p(t))) "qg'(t) = ~(J(p(t))) F(xo).

Now let {tk} c [0,a) be a monotone increasing sequence converging to a.

Then

-1
(2.5) p(tj)"p(tk) = J p'(t)dt = - J (T (p(t))) F(xo)dt.
t t

As (J(x))ﬁ1 exists and is continuous on the compact set S, there exists a

constant B such that

"(J(X))th(xO)" < B, for all x € S.
Hence (2.5) yields

“p(tj)—p(tk) I < sltj—tk].

Therefore {p(tk)} is a Cauchy-sequence in S. Thus, by the compactness of S
we conclude that there is a z € S such that lim p(tk) = z. By lemma 2.6 we
k-reo
cobtain %%m p(t) = z and by the continuity of F we have F(z) = g(a). This
a

proves that F has the continuation property for g.

Application of lemma 2.4 with g as above yields existence und unique-

ness of a path p : [0,1] = D. which satisfies p(0) = x, and F(p(t)) = q(t) for

0 0
all t € [0,1]. Clearly p(t) € S for t ¢ [0,1] and F(p(1)) = O by the defini-
tion of ¢. This proves the existence of a solution in S. We proved that

existence of a path p : [0,a) = D, satisfying (2.2) for all t e [0,a) im-

0
plies that p satisfies (2.4) for all t € [0,a). Moreover, existence of such
a path is proved for all a € (0,1]. Therefore, the nonsingularity of J(p(1))

and the continuity of p and q on [0,1] yields (2.3).

*
Finally. we have to prove that x = p(l) is a unique solution in S.

Suppose x*,x** € S and F(x*) = F(x**) = (0. As S is path-connected there

* * %
exists a continuous function ¥ : [0,1] @ 8 such that r(0) = x , r(l) = x .

27
Define q : [0,1] x [0,1] > ®" by
als,t) = (I-£)F(x(s)) for all s,t ¢ [0,1].

Then, for fixed s, F has the continuation property as is proved above.

Moreover,

q(s,0) = F(r(s)) for all s € [0,11]

and

i

q(s,1) q(0,t) = gq(1,t) = 0, for all s,t ¢ [0,1].

Hence, by lemma 2.5, r(0) = r(l), so that x* = x**. This proves the unicity

*
of x in 8. [J

2.9. REMARK. The Newton-path is invariant under affine transformation of the

function as follows from (2.2) and (2.3). In fact, DEUFLHARD [1974a] proves,

with notations as in theorem 2.8,

{x | x =pr), t e [0;2]} = AELT]RH) Sp(x4:R) .

A nonsingular
2.10. REMARK. The compactness of SF(XO,A) plays an important role in theorem
2.8. This will be illustrated by two typical examples for which compactness
does not hold and where no solution exists in D.
1. be R, D= (1,2}; F(x) = %, for x € D.

Then figure 2.1 shows that, for arbitrary Xq € D, SF(XO’I) = (1,XO],

which is not compact. Moreover F(x) = 0 has no solution in D.
{ [
: |
| |
! |
P
1 i |
1 1
| 1 |
t i |
! |
i 1
i i
] i i
1 EN 2 X
< D >

figure 2.1

28

2.

D = R; F(x) = arctan(x) + 7.

Then /2 < F(x) < 3m/2 and F(x) has no solution in D. Choose Xy = 1.

Then SF(xO,I) = (-»,1] which is not compact. Note that J(x) = (x +1)- ,
which tends to zero for x going to + =. Hence ”(J(x))_ln is not uniformly

bounded on SF(xO,I).

29

CHAPTER 3

APPROXIMATING THE JACOBIAN

3.1. INTRODUCTION

In the sequel we shall frequently use approximations to the jacobian
matrix or its inverse. Therefore, we present some methods that may be used
to obtain such approximations together with results on approximation errors.
In this chapter we assume that F satisfies condition 1.5. Furthermore, B(x)
shall denote an approximation to J(x) and H(x) an approximation to (J(x))-l.

Suppose x,y € D and x+t(y-x) € D for all t € (0,1). Consider the func-
tion g(t) = F(x+t(y-x)). Then g'(0) can be approximated by using the first

divided difference formula:
(g(8)~g(0)) / 6, 6 € (0,1].

For 6 = 1, this yields that J(x) (y-x) is approximately equal to F(y) - F(x).

Moreover, equality holds exactly if F is linear.

Motivated by the above reasoning an approximation B(x) to J(x) may be

required to satisfy
(3.1) F(y) - F(x) = B(x) (y-x),

for at least one y € D. We shall discuss two methods for approximating the
jaccobian based on (3.1), viz. the divided difference approximation and the
approximation obtained by updating some approximation to the jacobian at

another point. Finally, at the end of this chapter, we present two results

when the jacobian is approximated by some fixed matrix.

30
3.2. DIVIDED DIFFERENCE APPROXIMATION

3.1. DEFINITION. Let x € D and P € L(If]) be nonsingular such that

X + Pei ¢ D (i=1,...,n), where ei is the i-th unit vector in IJI. Define

0 e L(R™) by
(3.2) Q(x) = (F(x+Pe1)—F(x), .o ,F(x+Pen)~F(x)).

Then, B(x) defined by

(3.3) B(x) = 0(x)P "

is called the divided difference approximation to J(x) defined by P.

Note that, for given nonsingular P, B(x) is defined uniquely by (3.3)

and B(x) satisfies (3.1) for y = x + Pei (i=1,...,n).

3.2. REMARK. Let x € D and A,P € L(Igl) be nonsingular. Suppose x+Pei € D

(i=1,...,n). Let BF(x) and B__(x) denote the divided difference approxima-

AR
tions to the jacobians of F and AF, respectively, defined by P. Then

(3.4) Byp(X) = BB (x).
3.3. REMARK. Consider the case where P is a diagonal matrix:
P = diag(hl,.,.,hn),

for hi € R, hi # 0 (i=1,...,n). Then the elements of B(x) can be given

explicitly by
(3.5) (B(X))ij = (Fi(x+hjej)-Fi(X))/hj (i,3=1,...,n}),

where F(x) = (Fl(x),...,Fn(x))T.

In the sequel, unless stated otherwise, the term difference approximation
is used for a divided difference approximation defined by a diagonal matrix
P. As the general form (3.3) is rarely used, no confusion can arise from

this terminology.

31

We shall give two theorems on the error bounds for the divided differ-
ence approximation. One is based on condition 1.6, the other on the affine

invariant condition 1.7.

3.4. THEOREM. Let x € D. Suppose F and x satisfy condition 1.6 on some open
neighbourhood U ¢ D of x. For all nonsingular P ¢ LCRD) let p;, = Pei,

i=1,...,n, and

L

(3.6) n(e) = laiag(p,I,...,Ip He™'1 el

where | . “F denotes the Frobenius norm (see lemma 1.1). Then, there is a
real number & > O such that for any nonsingular P e L(®R") with lpl < &,
B(x) can be defined by (3.3) and satisfies

(3.7) IB(x)~J(x)l < Y%y (x)h(P).

Note that h(P) = 0 if IPl - 0 and the Frobenius condition number of P,

-1 . n 2.% -1
i lp. 0 I iel

p r HPHF,remalns bounded, as h(P) < (Xi=1 1 y 4 lip - Pl .
PROOF. Choose 8§ > 0 such that U(x,8) < U. Let P = (pl,...,pn) € L(Iﬁl) be
nonsingular, satisfying lel < 6. Then x + Pe, = x +p, € U(x,8), for
i=1,...,n. Hence, B(x) can be defined by (3.3). Now define

¢, = F(x+pi) - F(x) - J(x)pi (i=1,...,n).
Then by lemma 1.15

el < wyeolp 12 (i=1 n)

FLEE i peessD) .

Hence

IB(x)-Tx) 1 = I (Q(x)-T(x)P)P 1 = ﬂ(cl,...,cn)P-lﬂ

(o] C
1 n . ~1
(i o ey) sesle e e

1 n

A

. ' -1
o lel Jlaiag(ip, 0, ... dp eI,

32
So that
IB(x) - Jx)I < % (x)h(®). 0O

3.5. THEOREM. Let x € D. Suppose F and x satisfy condition 1.7 on some open
neighbourhood U ¢ D of x. Then there is a real number § > 0 such that, for
all nonsingular P € LCRn) with Ipl < 8§ and h(P) < 2/w(x) (h(P) defined by

(3.6)), B(x) can be defined by (3.3), is nonsingular and satisfies

w(x)h (P)

-1
(3.8) I(Bx) J&) -1l < e b (5]

PROOF. Define for y € U
~ -1
Fly) = (J(x)) "F(y).

Then F and x satisfy condition 1.6 on U with y(x) replaced by ;(x) = w(x).
By remark 3.2 we have for the divided difference approximation, B(y), to

the jacobian of E at y:
~ -1
B(y) = (J(x)) "B(y), y € U.

Hence application of theorem 3.4 yields the existence of a § > 0 such that
for all nonsingular P ¢ L(Efl) with Ipll < §, B(x) can be defined by (3.3)

and satisfies
(3.9) 1) B - Il < %w(x)h(P).

As Hw(x)h(P) < 1 we can use the perturbation lemma (lemma 1.13). Hence
-1

(J(x)) "B(x) is nonsingular (so B(x) is nonsingular) and using (1.6) we

obtain

[

1Y - sent

i=1

I @ee)) tam - 1l

i

Jolr =@ TBeolt,
L

N

By (3.9) the result follows. [J

33

For future use we also need a result in case B is a singular approxima-~

tion to J.

3.6. COROLLARY. Let the assumptions of theorem 3.4 be satisfied. Then, there
is a real number 6§ > 0 such that for all nonsingular P ¢ L(EJ‘) with

el < &, B(x) car be defined by (3.3) and satisfies
, + +
(3.10) aex) - B(x))BE) T < byne @) I,

PROOF. This easily follows by application of (3.7). [

3.7. REMARK. If P is a diagonal matrix, P = diag(h ..,hg, then the expres-

17
sion for h(P) given by (3.6) simplifies to

no, b
(3.11)) = lpl_ = (}ons) .
F =1 J

Up to now, we have not been concerned with the effect of numerical
computation of a divided difference approximation to the jaccobian. In fact,
if inexact computation is used, then round-off errors due to cancellation of
significant digits may cause serious difficulties. On this issue we present
two theorems associated with theorem 3.5 and corollary 3.6. We restrict

attention to diagonal matrices P.

3.8. NOTATION. Consider inexact floating point arithmetic with computational
precision e, called the machine precision {(as computation is usually done
with a machine). With fle(o) we denote the expression within the brackets
computed with machine precision e.

N.B. With this notation € can be defined to be the smallest representable

number such that flE(1+E) > 1 and flE(l—e) < 1.

3.9. THEOREM. Let the assumptions of theorem 3.5 be satisfied. Moreover,

suppose that there are constants e and €, such that

£ £

(3.12) 1 (F(x)) -~ Fx) s e Ir@l + ¢ e _2e, e =0,
€ rf al

£ rf af

Then, there is a real number § > 0, such that for all nonsingular P ¢ L(Rn)
with el < § and h(P) < 2/w(x), B{x) can be defined by (3.3). Moreover, if
P o= diag(hl,.aa,hn) for real numbers hi > 10e (i=1,...,n) and flE(B(x)) is

nonsingular, then

34

-1 1
(3.13) “(fle(B(x))) Jx) - 1l < = (ey*e)),
where
Ef(x) = (E+erf)HF(x)ﬂ + e g
n 5
¢, = %w(x)(X h?) ;
=1 3
“1, /2 o\®
c, = 2.12€f(x)ﬂ(flE(B(x))) "(.§ hj) .

j=1 ‘
PROOF. We have

"(fle(B(x)))_lJ(x) -1l < H(B(x))'lJ(x) - i
(3.14)
Y '

+ u(fle(B(x)))’ IB(x) - flg(B(x))” H(B(x))“1J(x)ﬂ.

Using the inequalities (see WILKINSON [1965, section 3.4])

!fle(ajb) - (axb) | = (lal+|b])e,

lfle(ax/b) - (@%/p)| < la %/ bl €, for a,b € R,

and (3.12), some tedious calculations show

;

n -2 5
(3.15) T£f1 (B(x)) - BN < 2 x 1.06¢ (x)() n, \ .
€ £ oy

(For typical examples of such calculations see WILKINSON [1965, section
3.1 -~ 3.9].) Using (3.8) and (3.15) to bound the right hand side of (3.14)
yields (3.13). [

3.10. THEOREM. Let the assumptions of theorem 3.4 be satisfied. Suppose

there exist constants e, and Ea satisfying (3.12). Then, there is a real

£ £
number § > 0, such that for all nonsingular P < L(Egl) with Pl < &, B(x)

can be defined by (3.3). Moreover, if P = diag(h "’hn) for real numbers

10"
hi > 10e (i=1,...,n) then

(3.16) g (x) - fle(B(x)))(fle(B(x)))+H < c; + c?,

35

where

0
]

[\
I %Y(x)n+(x)\j§1 hi) ¢

n %
c; = 2.12e.(x) n+(x)(¥ hf2> ,
\ . 3
V=1 /
n"e = e eeon Tl

PROOF. We have
hy(x) - flE(B(x))ﬂ < lgx) - Bx) + IB(x) ~ flg(B(x))".

Using this inequality and bounding the terms on the right hand side by use

of (3.7) and (3.15) yields the required result. [

+
3.11 REMARK. Note that in (3.13) and (3.16), the values of €y and ¢y decrease

+
and those of ¢, and c, increase, if Ipl decreases. So, in practice we have
to find for given x € D, diagohal elements hi(i=1,...,n) of P such that

<y and <, (or cI and cZ) roughly have the same magnitude.

36
3.3. APPROXIMATION BY UPDATING

The method of approximating J(x) by updating some approximation to J(y)
(x,v € D), such that (3.1) is satisfied, is due to DAVIDON [1959]. He sug-
gested this method for approximating the second derivative of a functional
in successive iteration steps of an iterative process for finding an optimum
of this functional. Davidon called his method a variable metric method.
Iterative methods for solving nonlinear systems which make use of Davidon's
idea are usually cailed quasi-Newton methods (see DENNIS [1975], DENNIS &
MORE [1977], BROYDEN [1965, 1969, 1970a,b, 1973]). However the term "quasi-
Newton" is confusing since it is also used for other modifications of
Newton's method; moreover, the prefix "quasi" is far from clear. Since the
term "variable metric" is used only for optimization methods, we prefer the
terms "updating methods" (see chapter 4) and "approximation by updating"

for the methods described in this thesis.

3.12. DEFINITION. Let F satisfy condition 1.5. Suppose DU c L(I{I) X D X D.
Then U is a jacobian update function for F with domain DU if
n
U : D~ L(R
- LR
and
U(B,y,x) (x~y) = F(x) - F(y)

for all (B,y,x) € DU°

We restrict ourselves to jacobian update functions of the form
T
U(B,y,x) =B + vu’,
n
where v,u € R depend on F, B, v and x. This restriction implies that for
arbitrarily chosen u such that uT(x~y) # 0, the vector v is determined and
given by
T

v = (F(x) - F(y) - B(x-y))/(u (x~y)).

In fact, we restrict attention to a class of jacobian update functions which

can be parametrized by a vector u. The elements, denoted by U(u), of this

class satisfy

37

T
(3.17) Uu) (B,y,x) = B + EXFEQI-Bl=y))u

uT(x—y)

for all (B,y,x) € DU(u) = {(B,y,x)IB e L"), X,y € D, uT(x—y) # 0}.

This class is also known as "Broyden's class".

We may also consider updating of an approximation to the inverse

jacobian. Analogous to definition 3.12 we can give the following definition.

3.13 DEFINITION. Let F satisfy condition 1.5. Suppose D, € L(R") x D x D.

Then V is an inverse-jacobian update function for F with domain DV if

n
. -
v o DV L(r)
and

V(H,y,x) (F(x) - F(y)) = (x~y),

for all (H,y,x) € DV'

Analogous to the derivation of (3.17) we can define a class of inverse-

jacobian update functions V(u) by

(x-y~H (F (x) =F (y))) u'H

(3.18) V(u) (H,y,x) = H + T
u H(F(x)-F(y))

for all (H,y,x) € Dy = {(H,y,x)lH e L(r™), X,y € D, uTH(F(x)—F(y)) # 0}.

(u)

3.14. REMARK. Let F satisfy condition 1.5 and let B ¢ L(R") be nonsingular.

Then, for all (B,y,x) € D such that (B_l,y,x) € DV the matrix

Ua)
U(u) (B,y,x) is nonsingular and

(uy '

(3.19) (U(u)(B,y,X))-—1 = V(u)(B-l,y:X)-

This can easily be verified by using (3.17) and (3.18).

3.15. REMARK, Let T ¢ L(Rn) be arbitrary nonsingular and u € Rn¢ Suppose
F satisfies condition 1.5. Denote U(u) and V(u) for F by UF and

VF' respectively, and U(u) and V(u) for TF by UTF and VTF' respectively.
Then

38

(B,y,x) € DU = (TB,y,X) € 1:)U ,
F TF

(H,y,x) € D &= (HT_l,y,x) €D
\Y \
F TF

and

UTF(TB,y,x) = TUF(B,y,x)
(3.20)

v__(ar !) = V_ (" yr !

TE 'A2: F Y X 7

for all B, H, ¥ and x such that (B,y,x) € Dy and (H,y,x%) € DVF.
F

In DENNIS [1971] an upper bound on the error MU(u) (B,v,x) -~ J(x)l is
given relative to the error IB - J(y)l. These results are based on condition
1.6. For our purpose, however, we need a similar result for functions satis-

fying the affine invariant condition 1.7.

3.16. THEOREM. Let x,y € D and H ¢ L(R"). Suppose Dy =1z | z = yrtx-y),
t e [0,11} ¢ D and F and y satisfy condition 1.7 on Dy- Define

(3.21) e(ly) = lag(y) - 1l

and suppose e(y) < 1. Let u eiRn* Then, for (H,y,x) € DV(u)’

- _ely) 3 sl
(32.22) V() ("H,y,%)J (%) Il < (pl e (y) +w(y)(p1+2p2)”x vyl J(1+e(y)),
where
HaEE) P)l N I syl Hall
[H(F (x)-F(y)) |

[aTH (F (x) -F (7)) |
PROOF. For simplicity denote

Jy) =3, I =3, V@ Eyx =H,

p = %x-y, q = F(x)~-F(y), e(y) = e.

Then T T *
- - H(T ~J
g% 1 = (@r-1) + B -y + BHUUEHT (P Hq); (g =9
u Hg u Hg
and thus
) T T
- -~ -1 %
(3.23) B -1 = -1+ (1 + jg_%glg_) HT + (I + iﬁL%?QB_» HI(I "3 ~I).

u Hg - . u Hg

39
By (3.21) and lemma 1.13 we know that HJ is nonsingular. Substituting
-1 -1 -1
p - Hg = (p~J "q) + (J "H "-I)Hg

in the second term of the right hand side of (3.23) we obtain:

i

T -1 T
gt -1 ((I-J'1H'1) + (J-'la'l—I)H%“ + (P"JT Du_) gy
u Hg u Hg ‘

+

H T uT ~1_*
(I m—,%E——+ P)HJ(J J-I).
u Hg u Hg’

Hence
T -1 T
(3.24) B -1 = (I—J”la'l)(l - H—q‘—l—) ay + B2d_Qu gy
u Hg’ u Hg
T

T
_ Hqu

+
-

2 fl-) By e -y
* u Hg u Hg

n
For the spectral norm we can verify the following equality for w,v € R

with va = 1 (see BROYDEN [1970a, lemma 1]):

[\

Il if n 2,
It - vl = {

0 if n 1.

f

Furthermore, applying lemma 1.16 on the convex set D0 yields
-1 2

(3.25) la *g - pl < Hw(y)lpl
and use of the perturbation lemma gives

It - g et o« &,

l-e

Hence, for n 2 2 and pi, p, as given:

e - 1l < 20 e+ Huly) (tredp lpl + u(y) (1+e) (p,+0,) Ipl .

So that

40

Tt e e 3

o -1l < (Lre) (o) 700 + o) (py+50,) Ipl) .
Finally, for n = 1, we obtain from (3.24) with

T
H
T - =32

= 0,
uTHq

-1 T T *
PR g K- Do B |+ |ee B) E

Then, application of (3.25) yields
*_k 3
g"g" - 1l < Ew(y)pzﬂpﬂ(1+e)e

Hence (3.22) is satisfied for all n =2 1. [

3.17. REMARK. The choice
(3.26) u = H(F(x) - F(y))

seems natural, because then p1 = 1 and the nominator of p2
as long as H(F(x)~F(y)) is nonzero. In the literature many

are proposed. The one most frequently used is (see BROYDEN
(3.27) u = X-y.

3.18. REMARK. If F is linear then w(y) can be chosen equal

chosen as in (3.26) then (3.22) reduces to

e (l+e)

IV (u) (H,y,x)3(x) - 1l < T

Hence, if H = (J(y))m1 then e = 0 and the error in the new

equals zero too. So the bound (3.22) is sharp in the sense

will be nonzero
other choices

[19691)

to zero. If u is

approximation

that, if e = 0,

there exist functions such that (3.22) is satisfied with equality sign.

For general nonlinear functions (3.22) quarantees that the

error in

V(u) (H,v,x) as an approximation to (J(x))_1 will be small if lx-yl is small

. -1
and the error in H as an approximation to (J(y)) is small.

41
3.4. FIXED APPROXIMATION

Let y € D be given and let B ¢ L(Ifl) be some approximation to J(y)
with known (upper bound on the) error. Then we give two results on the error
bounds for B as an approximation to J(x) for arbitrary x € D. We say that B

is a fixed approximation to J(x) for x e D.

3.19. THEOREM. Let x,y € D and H ¢ L(mp). Suppose DO = {z I z = y+t(x~y),
t € [0,1]1} ¢ D and ¥ and y satisfy condition 1.7 on D
(3.21). Then

0 Define e(y) by

(3.28) lar(x) - 1l < e(y) + wly) (1+e () Ix-yl.
PROOF. By the nonsingularity of J(y) we obtain
lag(x) - zl < lag(y) - zil @ ol + 1 (J(y))_lJ(x) - 1l

Application of condition 1.7 in both terms of the right hand side yields
the required result. [J

3.20., THEOREM. Let x,y € D and B ¢ L(r™). Suppose DO = {z | z = y+t(x-y),
t e [0,1]}cD and F and y satisfy condition 1.6 on D,. Define
etiy) = e - Byshl.

Then
I - BBl < e + vy B Hx-yl.

PROOF. We have

in

lweo - BBl < L@y - »B + 1o - s s,

Condition 1.6 then yields the result. [

43

CHAPTER 4

DESCRIPTION OF NEWTON-LIKE METHODS

4.1. GENERAL DEFINITION

Throughout this chapter we assume that F satisfies condition 1.5.

Suppose x € D. Then we can approximate F by the linear function F defined by

(4.1) F(y) = F(x) + J(x) (y-x), y € D.

If F(x) = 0 has a solution, x* say, in D, then we can approximate it by the
* ~

solution, y say, of F(y) = 0, provided it exists in D. If J(x) is nonsingu-

lar and x ~ (J(x))—lF(x) € D then
(4.2) y* =X - (J(x))-iF(x)-

A well-known iterative method for solving (systems of) nonlinear equations,
based on repeated use of (4.2) for given F, is Newton's method. This method
defines, for each function F, a stationary iterative process which is defined
by the iteration function V¥ : D Ifl, with DW = {x [x € D, J(x) nonsingu-

¥
lar} < D, such that

(4.3) ¥(x) = x - (3(x) PG, for all x € Dy.
For general nonlinear F, the linear function E given by (4.1) is a good
approximation only for y in a small neighbourhood of x. So we can expect that
Newton'‘s method performs well if the starting point for the iterative process
is close to a solution of F(x) = 0. Moreover, convergence to a solution for
starting points far away from this solution is unlikely. In other words, we
expect the local behaviour of Newton's method to be good but its global
behaviour to be uncertaiun. In order to avoid divergence, which alsc may

occur in Newton's method, one often modifies this method in such a way that

44

in every iteration step a decrease of some level function is guaranteed. The

iteration function is then given by
(4.4) Y(x) = x - A\x) (3x) IF®), for x ¢ Dy

where the scalar A(x) > 0 is chosen such that monotonicity of some level

function IaF(x)l (a ¢ L(R™), nonsingular) is guaranteed, e.g.
lar (¥ (x)) I < lar(x)l.

It follows from a general result given in theorem 4.20 that such a A(x)
exists. Such a method will be called a restrained Newton method; in the
literature several other terms are used (e.g. "relaxation", "step size
control", "damping"). A second drawback of Newton's method is the need for
analytic expressions for the elements of the jacobian matrix. As this in-
formation is often not available one uses Newton's method with J(x) in (4.3)
or (4.4) replaced by some approximation to it. This jacobian approximation
can depend on the previous iterate(s) or even on the jacobian approximation
in the previous step (e.g. updating methods). Particularly, the latter
possibility complicates the general definition of Newton-like methods as it
forces us to consider the jacobian approximation or its inverse as part of
the iterate. In our terminology this means that Newton-like processes gener-
ate, for given starting points, sequences of iterates of the form

{(xk,Hk)} c ®RY x L(R") instead of sequences of iterates {xk} c ®R". Note
that such iterative processes fit the theory about iterative processes given

in section 1.2.

We now present the definition of a Newton-like method.

n

4.1, DEFINITION. Let F satisfy assumption 1.5. Let be given ¥, : D(Wl) > R,

1

with D(¥,) < D x L(RY), ¥, : D(¥,) > L(R), with D(V,) < D x L(rY).

2

Suppose that, for all (x,H) € D(?l), Wl satisfies

(4.5) Wl(x,H) = x - A(x,H)HF(X),

with 0 < A (x,H) < 1 for all (x,H) € D(W1). Then, the stationary iterative

process defined by the iteration function ¥ : DW > R x L(I{l),

DW = D(Wl) n D(Wz)r

45

(4.6) Y(x,H) = (Wl(x,H), Wz(x,H)), for all (x,H) € DW

is called a Newton-like process. Dy is the domain of definition of Y. If

A(x,H) = 1 for all (x,H) € DW then the process is called a strict Newton-
like process, otherwise the process is called a restrained Newton-like pro-
cess. A(x,H) is the step length factor.

Let M be a mapping M : D c F = P(n2+n) (D # @) (see def. 1.18), such that,
for F e D, M(F) def@nes a (strict or restrained) Newton-like process (where
R x L(R") is identified with R™'™
Newton~like method.

2
). Then M is a (strict resp. restrained)

In the sequel we shall use the notation of definition 4.1 without

comment.,

In definition 4.1, % and Wl(x,H) are the old and new approximation,
respectively, to a solution of F(x) = 0; H and Wz(x,H) are the approximations
to the inverse jacobian at x and Wl(x,H), respectively. Note that for strict
processes (A(x,H) = 1), Wl is defined by (4.5) and D(Wl) =D x L(RY),
Examples of Newton-like methods that illustrate the definition are given in

the next section.

Let T € L(IJl) be nonsingular. Then, clearly, a solution of the equation
TF(x) = 0 is also a solution of the equation F(x) = 0 and vice versa.
However, if a particular Newton-like method yields an approximation to a
solution of F(x) = 0, then it may be the case that an approximation to a
different solution is found when the method is used to solve TF(x) = 0,
even if we use the same initial guess to the solution. Moreover, it may be
possible that, for a given initial guess, the sequence of approximations
to the solution generated by the process for solving TF(x) = 0 converges,
but for solving F(x) = 0 does not converge. Such events are most undesirable
as in practice one is interested in a solution of F(x) = 0 and it does not
matter whether this solution is obtained by applying an iterative method to
F or to TF. Furthermore, most practical problems are scaled in a way which
depends on the choice of dimensions, and one often is not aware of the
effect of this choice on the iterative method for solving the problem.

In order to obtain insight in the dependency of a Newton-like method on an
affine transformation of the function we introduce the concept of affine

invariancy.

46

4.2. DEFINITION. Let M be a Newton-like method with domain of definition

D < F. Then M is affine invariant if for all F e D and all nonsingular
T ¢ L(R") the following conditions are satisfied:
1. TF ¢ D;
2. if{(Xk,Hk)}is generated by M{F), for a starting point (xO,HO) in the
domain of M(F), then (xO,HoT) lies in the domain of M(TF) and
1

{xﬁ,Hﬁ}, generated by M(TF) for starting point (xé,Hé) = (xO'HOT-),

satisfies xk = xi (for k = 1,2,...).

4.3. REMARK. Let M be a strict Newton-like method with domain of definition
D < F. penote for all F ¢ D:

(4.7) MF) = v_ = (¥

F 1,F'w2,F)'

Then M is affine invariant if for all F ¢ D and all nonsingular T ¢ L®rY):

-1 -1
(4.8) WZ,TF(X,HT) = (WZIF(x,H))T .
This property follows directly from (4.5). In fact, starting from (xO,HO)

-1) . —
and (xy,H,T) respectively, we obtain sequences {(xk,Hk)} and {(xk,HkT)}

0
for F and TF, respectively.

4.4. REMARK. It should be noted that we consider exact methods in this
section. Affine invariancy of a method can be spoiled if inexact arithmetic
is used, as numerical processes may depend on scaling of the function. For
instance, pivoting strategies for triangularization of a matrix may depend

on scaling of the matrix.

47

4.2. EXAMPLES OF NEWTON~LIKE METHODS

4.2.1. Newton methods

4.5. DEFINITION. Let M be a Newton-like method. Suppose that, for all F e D,
¥ = M(F) satisfies

(4.9) D(¥,) = Dy= {(x,H) | (x,8) ¢ D(¥,), y=V¥, (x,H) € D, Jty) nonsingular},

(4.10) ¥, (x,H) = (J(wi(x,ﬁ)))*i, for (x,H) € Dy.

Then M is a Newton method and M(F) = ¥ defines a Newton process for F ¢ U.

Suppose (xO,(J(xo))wl) belongs to DW’ as given in definition 4.5. Then,

the sequence {(xk,Hk)} generated by a Newton process for the starting point

-1 . oes
(xO,HO) = (xo,(J(xo)) }, satisfies
(4.11) = = A (30,)) T F (k)
. et T P T MY Y k'
k=0,1,...,
-1
(Hk+1 = (J(Xk+1))),
where Xk = A(xk,(J(xk))_l)(k=0,1,...). This is the usual definition of a

-1
Newton method. Note that in our definition it can occur that HO # (J(xo))

in a Newton process.

4.6, REMARK, The strict Newton method is affine invariant. This follows
easily from (4.10) and remark 4.3. For restrained Newton methods, it depends

on the choice of A(x,H) whether such a method is affine invariant.

4.7. REMARK. Newton methods have two drawbacks.

1. The jacobian J(x}) has to be calculated in every iteration step, which may
be difficult or even impossible for real life problems.

2. Calculating g from Xy (for k=0,1,...) requires the computation of
J(xk)\F(xk) (see (1.13)) which is relatively expensive in terms of basic
arithmetical operations for high dimensional problems. Moreover, this

computation is undefined for singular J(xk)a

48

4.2.2. Difference Newton methods

4.8. DEFINITION. Let M be a Newton-like method. Let B(x) be the difference

approximation given by (3.5) for hi e R, hi # 0 and hi dependent on x and
F (i=1,...,n). Suppose that for all F ¢ D, ¥V = M(F) satisfies

(4.12) D(¥,) =D, = {(x,H0) | (x,H) « D(¥)), y =¥ (x,H) ¢D,

y+hjej € D (3=1,...,n), B(y) nonsingular},
(4.13) ¥, (x,H) = (B(Wl(x,H)))_l, for (x,H) ¢ D.
Then M is a difference Newton method and M(F) = V defines a difference

Newton process for all F e D,

Suppose (xo,(B(xO))—l) belongs to DW' as given in definition 4.8. Then

the sequence {(xk,Hk)} generated by a difference Newton process for the

starting point (XO,HO) = (xo,(B(xO))), satisfies
(4.14) X =x - A (Blx)) TF(x)
: k+l Tk T Pk ke i
1 k=0,1,...,
(Hk+1 = (B(Xk+1)))y
where Ak = A(xk,(B(xk))‘) (k=0,1,...). It seems natural to choose
(xo,(B(xO))_) as a starting point for the difference Newton process, al-

though with our definition other starting points are imaginable.

4.9, REMARK. From (3.4), (4.13) and remark 4.3 it follows that the strict

difference Newton method is affine invariant.

4.10. REMARK.

1. Difference Newton methods do not require the calculation of the (analytic)
jacobian at every iteration step. Note, however, that calculation of a
difference approximation at x, requires the calculation of the function
at n extra points around x.

2. As for Newton methods, in every iteration step a linear cystem has to be

solved (see also remark 4.7 ad 2).

49

4.2.3. Updating Newton methods

We distinguish methods using jacobian update functions and those using

inverse-jacobian update functions (see definitions 3.12 and 3.13).

4.11. DEFINITION. Let M be a Newton-like method. Let u : D X L(]Rn)"P R

be given. Suppose that, for all F ¢ D, ¥ = M(F) satisfies

(4.15) D(¥,) =D, = {8 | (x,H8) € D(¥,), H nonsingular, y = ¥, (x,H) € D,

(y=x) Tu(x,H) # 0, (F(y)~F(x)) H u(x,H) # 0},

(4.16) ¥, = (UlaGem) (B %% @), for (x,H) < D,
with U defined by (3.17). Then M is an updating Newton method and M(F) = V¥
defines an updating Newton process for all F ¢ D. (Note that wz(x,H) exists

for (x,H) € DW because of remark 3.14 and the definition of DW’)

n n
4,12, DEFINITION. Let M be a Newton-like method. Let u : D x L(R") - R

be given. Suppose that, for all F ¢ D, ¥ = M(¥) satisfies (4.15) and

(4.17) WZ(X,H) = U(u(x,H))(H,x,Wl(x,H)), for (x,H) € Dy

with ¥ defined by (3.18). Then M is an inverse-updating Newton method and

M(F) = ¥ defines an inverse~updating Newton process for all F ¢ D.

Let (xO,HO) belong to D, as given in definition 4.11, then the sequence

¥
{(xk,Hk)} generated by this process for starting point (xO,HO), satisfies

(4.18) K = %X - AkaF(xk)

")t
k Tk PR+t

(k"‘_‘orll-o-)l

B = (U(uk)(H

where Ak = A(xk,Hk), = u(xk,Hk) (k=0,1,...) . Note that Hk+1 depends on Hk.

Similarly for an inverse-updating Newton process we obtain

(4.19) Keag = ¥ - AkaF(Xk)

B = Vi) Boxax 0.

(k=0,1...),

where A = A(x H), w = ulx H) (k=0,1,...).

k

50

4.13. REMARK. From the remarks 3.15 and 4.3 it follows that a strict

(inverse~) updating Newton method is affine invariant.

4.14. REMARK.

1. (Inverse-) updating Newton methods neither require the calculaticn of the
(analytic) jacobian in an iteration step, nor extra function evaluations
to obtain an approximation to the (inverse) jacobian.

2. Updating Newton methods store and update an approximation to the jacobian
(in (4.16) and (4.18) formally denoted by H_l and H;l) and solve a linear
system with this approximation to the jacobian, at every iteration step.

Note that the condition (x,H) € D, is easily checked so that problems of

b4
trespassing the domain can be avoided.

3. Inverse-updating Newton methods store and update approximations to the
inverse jacobian. Thus solutions of linear systems do not have to be cal-

culated in these methods.

4.2.4, FPixed Newton methods

4.15. DEFINITION. Let M be a Newton~like method. Suppose that, for all

Fel, ¥V=MFr) satisfies

(4.20) D(Wz) =D, = D(Wl),

Y

(4.21) WZ(X,H) = H, for (x,H) € DW'
Then M is a fixed Newton method and M(F) = ¥ defines a fixed Newton process

for all F ¢ D. .

Let (XO,HO) belong to DW as given in definition 4.15, then the sequence

{(xk,Hk)} generated by this process for starting point (xO,HO) satisfies

(4.22) ble = X

w1 T ¥k T M ()

(k=0,lye'4’>l

Hipq = Hor

with A = A(xk,Hk) (k=0,1,...). Note that H depends on H_. only.

k k1 0

4,16. REMARK. It follows easily from the definition of affine invariancy

(definition 4.2) that the strict fixed Newton method is affine invariant.

51

4.17. REMARK.
1. Fixed Newton methods do not require calculations to obtain Wz(x,H).
2. Fixed Newton methods do not require the solution of a linear system during

the iteration steps.

52

4.3. RESULTS FOR RESTRAINED NEWTON-LIKE METHODS

In this section we assume that A € L(mn) is nonsingular. We restrict
attention to the class of restrained Newton-like methods M for which, for

all F e D, ¥ = M(F) satisfies the following monotonicity criterion

(4.23) HAF(W(X,H))H < lar()l, for all (x,H) € DW'
It should be emphasized that for these methods, in general, D(Wl) # D XL(IJH,
as Mx,H) e (0,1] satisfying (4.23) not always exists for (x,H) e DX L(EP).
Furthermore, if there exists a A(x,H) ¢ (0,1] satisfying (4.23), it is, in
general, not uniquely determined by (4.23). It is also important to note

that for arbitrary nonsingular A ¢ L(Ifl), restrained Newton-like methods
satisfying (4.23) may not be affine invariant. The usual methods for choosing
A(x,H) yield only affine invariant methods for special choices of A. In

particular for choices of A satisfying
(4.24) AT ~ = A

for all nonsingular T € L(I{l) and where the subscript F expresses dependency
on F, For instance, if we choose A equal to the inverse jacobian at some
point x € D, or to some suitable approximation to it (difference or update

approximation), then it satisfies (4.24).

4,18. REMARK, Let M be a restrained Newton method. Suppose that, for all
FelD, ¥=H# (") satisfies (4.23) for some A ¢ L(R") (A nonsingular) . Then
we say that M is an implicitly scaling restrained Newton method, with
implicit scaling matrix A. Similar terminology will be used for the other
Newton~like methods given in section 4.2. This terminology is due to the

fact that scaling of the function only influences the value of A(x,H), for
the methods given in section 4.2 and for the usual choices of A(x,H) satis~-
fying (4.23). Solving F(x) = 0 with an implicitly scaling restrained Newton-
like method with implicit scaling matrix A is equivalent to solving AF(x) = 0

with the method with implicit scaling matrix I.

We shall now derive sufficient conditions for existence of a step length

factor in the interval (0,1] such that (4.23) is satisfied.

53

4.19., LEMMA. Let x € D, F(x) # 0 and F satisfies condition 1.5. Let
B e L(R") and define

(4.25) e(x) = lny(x) - 1l.
Suppose that J(x) is nonsingular and define
(4.26) K(x) = HAJ(x)HH(J(x))‘lp(x)u/ﬂAp(x)ﬂ,

for A € L(Rn) nonsingular. Denote z(t) = x~tHF(x) and let t1 > 0 be such

that z(t) € D for all t € [O,tl). Define

(4.27) o(t) = lar(z(enl? (0 <t < £).
Then,

(4.28) e(x)rk(x) < 1

implies

(4.29) $1(0) < —2(1-k (e IArE)IZ < 0

and equality holds in (4.29) if e(x) = 0. Moreover, there exist a function F,
a point x € D and a nonsingular matrix A € L(I{n) such that for any e > 0
with ek (%) < 1 there is a matrix H = H€ with e(x) = € and (4.29) is satis-

fied with the equality sign.

PROOF. Using the Cauchy-Schwarz inequality we obtain

[(A (x)B-T)F (x) ,AF (x)]| < Ia(I () B-1)F (x) I aF () 1

= 1a7 (0 (17 () -1) (3 (x) T TF G HaF (0 | < k(x)e () 1aF (0 12,
Differentiation of ¢(t) vields

¢ (t)

-2[AJ (z (£))HF (x) ,AF(z (t))], t e [O,tl)q
Hence

$*(0) = -2([A(T{x)E~I)F(x),AF (x) 1"+ [AF(x),AF(x)])

il

< —2(1-k (x)e () IaF () 12,

which proves (4.29).

54

If e(x) = 0, then H = J(x) and ¢'(0) = -2[AF(x),AF(x)], so that equality
holds in (4.29).

Now consider F(x) = (51,52)T, for x = (El,EZ)T. Choose A = I, x = (1,1)T

and for e < 1/k(x) = 1:

o (1 e >

\e 1

Then

lag(x) - 1l = e
and

¢'(0) = -4 (1-e) = —2(1—|<(X)e)||AF(x)f|2. 0

4.20. THEOREM. Let M be a restrained Newton-like method. Suppose that, for

some nonsingular A ¢ L(ng) and all F ¢ D, ¥ = M(F) satisfies (4.23) and

(4.30) D(¥,) = {(x,H) | (x,H) ep x L(R"),

Htle (0,1] such that Vte (O,tl):z = x-tHF (x) e D, laF(z)l < lap(x)I}.
Define

(4.31) S = {(x,H)]| (x,H) €D x L(R™Y) ,F(x) # 0,J(x) is nonsingular,

lag(x) -1l < 1/k(x)},

where k(x) is defined by (4.26). Then S < D(Wl).

PROOF. For (x,H) € S, it follows from lemma 4.19 that the derivative of

2
IlaF(y)lI© at v = % is negative in the direction -HF(x). As D is open and non-
e (0,1] : x-tHF(x) € D for t ¢ (0,t

empty there exists a t) . Hence,

(x,H) € D(Wl). 0

1 1

4.21. COROLLARY. There exist restrained Newton-like methods M, such that

for all nonsingular A ¢ L(R™) and all F ¢ D for which J(x) is nonsingular

for some x ¢ D with F(x) # 0, ¥ = M(F) has a nonempty domain of definition.

PROOF'. We only have to demand that S n D(Wz) # @. As S # @, this holds for
all the examples of Newton-like methods given in section 4.2 and for all

nonsingular & ¢ L(R"). [

55

Ay is shown in the next examples, the assumptions in theorem 4.20 are
not very strong. In fact (4.30) imposes the natural condition on the strategy
for choosing the step-length factor A(x,H): if there exist a t € (0,1] such
that z = x-tHF(x) ¢ D and laF(z)l < larF(x)l, then there exists a A(x,H),

i.e. if an appropriate A(x,H) can be found, then the strategy is such that
an appropriate A(x,H) will be found. So, all restrained Newton-like processes,
given in section 4.2, which have a "natural" restraining strategy, have non-

empty domain of definition.

4,22, EXAMPLES.
1. The restrained Newton method M with the following restraining strategy

for some nonsingular A ¢ L(Rn): for all (x,H) € D x L(Rn):
Ax,H) = 2P,
where p is the smallest nonnegative integer such that

X - ZMPHF(X) €D

Il aF (x-2 PrF ()1 < laF)l

for F e D. If (x,H) € S (cf. (4.31)) then existence of such a A(x,H) is
guaranteed,
2. The restrained Newton method M with the following restraining strategy
for some nonsingular A € L(Iin): for all (x,H) € D x L(Hln):
Ax,H) =t
with
" € (0,£,1 (0,11, x-tHF(x) € D, for all t ¢ (0,t,7,

*
IaF (x-t B (x)) 1 < 1AF (x~tBF (x)) 1, t e (0,87,

for F ¢ D. Note that this strategy does not satisfy (4.30) for all F e F.
As D is open it might occur that |AF (x-tHF (x)! does not have a minimum
with respect to t such that %x-tHF (x) € D. Compactness of SF(x,A) is a
sufficient condition for existence of t*. Therefore U has to be restrict-
ed to functions satisfying such a condition for some x € D. Note that,
in general, t* is also not detérmined uniquely with the strategy.

* .
In practice, a t can be approximated by successive quadratic or cubic

56

interpolation (see BRENT [1973b]).

Of course, restrained difference, updating or fixed Newton methods,
with restraining strategies as above, are also examples of methods for which
the processes for given functions in some class, have nonempty domain of
definition. Such methods are affine invariant if the implicit scaling matrix

satisfies (4.24) for all functions in the domain of definition of the method.

57
4.4. USE OF GENERALIZED INVERSE

In most examples of Newton-like methods given in section 4.2 Wz(x,H)
is defined as the inverse of an approximation to J(Wi(x,H)). Therefore, the
domain of definition of Wz, D(WZ), is restricted to those (x,H) for which
this inverse exists. We can avoid problems with nonsingularity of
J(Wl(x,H)), or an approximation to it, by using the generalized inverse. We

obtain the following Newton-like methods:

4.23. DEFINITION. Let M be a Newton-like method. Suppose that, for all F ¢ D,
¥ = M(F) satisfies

(4.32) D(¥,) =D, = {(x,8) | (x,8) « D(¥,), ¥, (x,H) e D},

(4.33) ¥, (x,H) = (J(w1(x,ﬂ)))+, for (x,H) € D

Then M is a generalized Newton method and M(F) defines a generalized Newton

process.

4.24. DEFINITICN. Let, for F satisfying condition 1.5 and x € D, B(x) be the

difference approximation given by (3.5) for hi e R, hi# 0, hi depending on
x and F (i=1,...,n). Let M be a Newton-like method. Suppose, for all F ¢ U,
¥ = M(F) satisfies

(4.34) D(Y,) =D, = {(x,8) | (x,H) € D(¥)), ¥, (x,H) € D, B(Y, (x,H) exists},

(4.35) ¥, 0, H) = (B(Y, (x,0))", for (x,H) € D,.
Then M is a generalized difference Newton method and M(F) defines a

generalized difference Newton process.

4.25. REMARK. We shall not define "generalized updating Newton methods™.

Use of the generalized inverse of update approximations to the jacobian

is undesirable in our opinion, as we should not allow that the update

approximation becomes singular for the following reasons:

1. If B is a singular approximation to J(y), then Bv = 0 for all v ¢ ker(B),
H = B+. Consider the two choices of u(y,H) (see remark 3.17): u(y,H) =

B(F(x)~-F(y)) and u(y,H) = x-y = A(y,H)BF(y), for x = Wl(y,H)ﬁ

58

Then we see that u(y,H) € (ker(B))c and therefore (u(y,H))Tv = 0. So, it
follows easily from (3.17) that U(u(y,H)) (B,y,x) is singular. In other
words, once an update approximation, with u as above, is singular, then
it remains singular after updating, independent of the function. This is
highly undesirable as the sequence of approximations to a solution then
remains in a subset of D which may not contain a solution.

2. It is easy to avoid nonsingularity of U(u(y,H)) (B,y,x) if B is nonsingular.
If (x-y)u(y,H) # 0 and (F(x)-F(y)) H'u(y,H) # O then U(u(y,H)) (B,y,x) is
bounded and nonsingular. Therefore, performing these a-priori checks and
choosing another method of approximation if unboundedness or singularity
would occur, will avoid singularity, if the other method quarantees non-
singularity. An obvious choice is using fixed approximation, if B is non-

singular and the updating approximation will yield a singular matrix.

Theorems 4.19 and 4.20 and corollary 4.21 are to restrictive for gener-
alized restrained Newton-like methods, as in those results we consider only
points in the domain of definition of processes for which the jacobian of the
function is nonsingular (cf. definition of S in (4.31)). In fact, the defini-
tion of the error in H with respect to J(x), for some x € D, as given in
(4.25) is not appropriate if H is obtained as the generalized inverse of
some approximation to J(x). Let H = (J(x))+ for some x € D and suppose J(x)

is singular. Then

T
HI (x) = Vllrv1

T

1 (cE. (1.18)).

where the singular value decomposition is given by J(x) = Ulzrv

Hence, if r < n, then
lag(x) -~ =l = 1.

So, although H is the best approximation possible, we obtain for the error
according to (4.25) the value 1. Nevertheless, the domain of definition of
generalized Newton-like processes is not empty. This will be shown by the

following results.

4.26, LEMMA. Let % € D, F(x) # 0 and A e"L(Ifl) be nonsingular and let F

satisfy condition 1.5. Define for B ¢ L(R") :

59

(4.36) elx) = 1@ -8l

(4.37) t(x) = [ABB'F (x) ,aF (x) /1 aF (x) 12,

. .
Denote z(t) = x%x-tB F(x) and let t, > 0 be such that z(t) € D for all

1
t e [O'tl)" Suppose that

+ -
(4.38) e lalla™ < z(x),
2
Then ¢(t) = IAF(z(t))!" satisfies
+ -1 2
(4.39) ¢ (0) < -2(c(x)-e (x)lalla™ " ylar(x)l”.

Furthermore, if B is nonsingular then [(x) = 1 and equality may hold as in
lemma 4.19. Moreover, there exist a function F, a point x and a nonsingular
matrix B, such that for all e < 1/"A""A-1", there is a singular matrix B

satisfying the conditions with e+(x) = e+, such that equality holds in (4.39).

PROOE .
61 (1) = -2[AT(z(£))B F(x), AF(z(t))],

for t € [O,tl). Hence

i

$'(0) = -2{[A(T(x)-B)B'F(x), AF(x)] + [ABB F(x), AF(x)]1}

—2(z) -et e lalla™) har o 12,

A

For
T T T
F(X) = (511“862) y X = (61152) = (]IO) s A =1

and

equality holds in (4.39). [

4.27. THEOREM. Let M be a generalized restrained Newton-like method.

Suppose that for some nonsingular A € L(RY) and all F ¢ D, ¥ = M(F) satis-
fies (4.23) and (4.30). Define, for [(x) given by (4.37),

60

(4.40) S = {(X,H)I(x,H) eDx L(R™), F(x) # 0, H = 8" for some

-1y

Be L(R™, I -sys Halla™ < ¢x)}.

Then S < D(Wl).

PROOF. For (x,H) € S it follows from lemma 4.26 that the derivative of

2
laFr(y) 1" at v =x is negative in the direction -HF(x). As D is open and non-
empty, there exists a t

(x,H) € D(¥,). 0

L€ (0,1] : %x-tHF (x) € D for t € (O’tl)' Therefore

4.28. REMARK. Similar to corollary 4.21 there exists generalized restrained
Newton-like methods M, such that for all nonsingular A ¢ L(Igl) and all

F ¢ D for which F(x) # 0 for some x ¢ D, ¥ = M(F) has a nonempty domain of
definition. The generalized restrained Newton or difference Newton methods
with restraining strategies as given in example 4.22 generate such processes

with nonempty domains of definitions.

Finally we state some specific results for generalized Newton-like

methods.
4.29. LEMMA. The generalized strict Newton method is not affine invariant.

PROOF. This follows from the following example.

El 0.5 1 0
o+ (5] w(0) . me (1),
52 + 1 0 1 i
Then
28 0 0.25
s = (") re = ().
0 2£2 1
Hence
1 0\ - 1]
J(x,) = (' (T(x,)) = ()
0 0 0 / 0 0 0
and

+ 0.25
(J(xo)) F(XO) = () .
0"

61

However,
Ef 251 0
TF (%) =(2 9) , TI(x) =<)
51 + 52 + 17 251 252
and
1 0 + 0.5 0.5
'rJ(xO) = () . (TJ(xO)) = () .
1 0 0 o -
With

0.25
TF(x,.) = ()
0 1.25

we obtain

" 0.75 0.25 .
(TJ(XO)) TF(XO) = () # () = (J(xO)) F(xg) . 0
0 0

4.30. REMARK. The reason that the strict generalized Newton method is not
affine invariant is that projection (which is in fact induced if the gener-
alized inverse of a singular jacobian is used, see subsection 1.3.4) and
affine transformation do not commute. Of course, similar counterexamples
can be constructed to prove that the strict generalized difference Newton
method and the usual restrained versions of these methods are not affine

invariant.

4.31. THEOREM. Let F satisfy condition 1.5, x € D and F(x) # 0. Suppose
+
(4.41) [J(x)(J(x)) F(x), F(x)] = 0.

Then, the function £, defined by f(y) = "F(y)"2 for v € D, has a stationary
point at y = x.

PROOF. Suppose the singular value decomposition of J(x) is given by

(cf. (1.18))

T
J(x) = Ulzrvl,

+ T
with r the rank of J(x). By lemma 1.26 we see that J(x) (J(x)) = Uiui'

It follows from (4.41) that U'fF (x) = 0. Therefore,

62

F1(x) = 20 (x)F(x) = 2V ZrU‘fF(x) = 0.

1
So f has a stationary point at y = x. [

+
4.32. REMARK. It should be noted that [AJ(x) (J(x)) F(x), AF(x)] = 0, for
arbitrary nonsingular & e L(R"), does not necessarily imply that IaF(y)l
or IF(y)l have a stationary point at y = x. This is also due to the fact

that projection and affine transformation do not commute.

4.33. REMARK. In section 4.3 we introduced the matrix A (see (4.23)) in order
to be able to construct affine invariant restrained Newton-like methods.

It appears from lemma 4.29 and remark 4.30 that restrained Newton-like
methods using the generalized inverse are, in general, not affine invariant.
Therefore, in such methods we have lost our motivation for choosing A un-
equal I. The choice A = I will simplify lemma 4.2¢ and theorem 4.27 consider-
ably, as in that case /Z?ET in (4.37) is the ratio of the norm of the pro-

jection of F(x} on the range of B and the norm of F(x) itself.

63
4.5. FINAL REMARKS

In this chapter we have described most of the well-known Newton-like
methods in a formal way. Of course, other methods may be designed by mixing
the methods given here. For example, one may use fixed Newton or updating
Newton methods in the last steps, if the approximate solution, obtained
after some steps with a difference Newton method, is known to be close to a
true solution. Furthermore, one may perform a fixed Newton step if updating
is undefined in some step of an updating Newton method, or a step with genexr-
alized inversion if classical inversion is undefined. In fact one may create

many different combinations.

The most important examples of the strict Newton-like methods of sec~
tion 4.2 are affine invariant. For restrained Newton-like methods it depends
on the restraining strategy whether these methods are affine invariant.
Strategies satisfying the monotonicity condition (4.23) with A chosen ap-
propriately (satisfying (4.24)) will sometimes do. For example, the bisection
and interpolation strategy described-in examples 4.22. If generalized in-
version is used then affine invariancy can be lost for functions having a
singular jacobian (approximation) at some iteration point. We think that
affine invariancy is a desirable property for Newton-like methods, as one
may expect, at least theoretically, that such methods do not suffer from bad
scaling of the function. On the other hand, one often has to deal with
singular jacobian approximations in practice. Such matrices can be handled
elegantly by use of the generalized inverse. Therefore we shall not restrict

attention to affine invariant methods.

65

CHAPTER B

CONVERGENCE OF NEWTON-LIKE METHODS

5.1. INTRODUCTION

In this chapter we shall present convergence results for Newton-like
methods as defined in section 4.1. Convergence results for iterative methods
may be divided into three classes (cf. RHEINBOLDT [19741).

(i) Global convergence theorems. These theorems state existence of a
unigque solution in the domain of the function or at least in a large
part of it. Moreover, one has convergence to this solution from an
arbitrary starting point in this (part of the) domain.

(ii} Semi-local convergence theorems. In these theorems existence and
uniqueness of a solution in a neighbourhood of the starting point,
as well as convergence to this solution, are guaranteed, provided some,
usually stringent, conditions are satisfied at the starting point and
in its neighbourhood.

(iii) Local convergence theorems. Theorems in this class state that, assum~
ing a solution x* exists, there is a neighbourhood U of x* such that
for all starting points in U, the iterative process converges to x*e
Furthermore, results about the oxder of convergence of sequences
generated by the process are considered to be local convergence re-
sults.

We shall treat these three classes of convergence results for Newton-like

methods in the next three sections.

Throughout this chapter we use the following notation.

66

5.1. NOTATION. Let F be given, (x,H) € D X LCRn) and A ¢ Ltmn). If F, x

and A satisfy condition 1.10, with w > 0, and F(x) # 0, then we denote

(5.1) B(x) = sup lawn real,

yeS_ (x,R)

F

(5.2) a(x) = wB(x),
(5.3) k(o) = 1age @) e 1 /lar el ,
(5.4) e(x) = lay(x) - 1,
(5.5) vo(x) = i (x) (1+e (%)),
(5.6) v, (%) = (1+2e(x)+2(e(x))2)/(1+e(x)),
(5.7) v, (x) = (1we(x)K(x))/vO(X).
(5.8) c(x)(t) =1 + \)O(x)t((a(x)t)2 + vl(x)u(x)t - vz(x)>,

(5.9) t(x) = (*vl(x) + V(vl(x))2+4v2(x)) /(2a(x)),
2 N
{5.10) uix) = (—vl(X) + /(v (%)) T+3V, (%)) /(30.(x)) .

For simplicity, we omit the dependence on H (e.g. in e(x)), since H always
appears together with x, as an approximation to (J(x))_l. If (xk,Hk) €

D X L(Ifl) for some k, then we denote for short:

e = e(xk), Bk = B(Xk), oy = a(xk), K = K(xk),

vi,k = vi(xk) (i=0,1,2), o = c(xk), Ck = C(xk), W = U(xk)’

J, = J(xk), F

" = F(xk).

k

-1
5.2. REMARK. B(x) is finite by the existence and continuity of (J(y))

(y € SF(x,A)) and the compactness of SF(x,A). As H(J(x))—lﬂvis bounded
and lar(x) Il < ﬂAJ(x)“u(J(x))—lF(x}“ we have

1< k(x) < Iag@) Il (ag) "M < o,

67

For every x € D, c(x)(t) is a cubic function of t. If vz(x) > 0 then r({x)
is the real positive zero of the equation c(x)(t) -~ 1 = 0, and u(x) is the

point between 0 and ¢ (x) where c(x) (t) - 1 attains its minimum.

The following condition wll be frequently used in this chapter and its

notations will be used throughout.

5.3. CONDITION. Let A ¢ L(Iln), Y define a Newton-like process for F and
(xO,HO) e D . Suppose
(1) F, X
(1) DY) > {68 | (x,B) € 5 (xo,R) x LK),

Htle (0,1] such that Wte (O,tl)zz-mx—tHF(x)t p, lar(2)l < lar(x)l}.

(iii) p(¥,) > {(x,8) | (x,H) e D x L(R"), ¥, (x,H) € S (x,,A)},

¥
and A satisfy condition 1.10 with o > O,

N
(iv) VY generates for starting point (xO,HO) a seguence {(xk’Hk)}k=O’ where

N is the largest integer such that (xk,Hk) e D, for all kK £ N (note

v
that usually N =),
(v} F(xk) # 0 for all k < N,

(vi) there exists a constant 0 > 1 such that for all k < N:
< R
ek 1/(6Kk)

In the next sections we give results about the convergence of Newton-

like processes with starting points satisfying condition 5.3.

68

5.2. GLOBAL CONVERGENCE

5.2.1. Theoretical results

The results given in this section are generalizations of results

given by DEUFLHARD [1974a, 1974b] about Newton methods.

The following theorem provides the basis for the global convergence

results.

5.4. THEOREM. Let be given F,(x,H) ¢ D x L(R™) and A ¢ L(R™) . Suppose
F(x) # 0 and F,x and A satisfy condition 1.10 with w > 0. Moreover, suppose

that there exists a constant 6 > 1 such that

(5.11) Be(x) < 1/k(x).

Denote for t ¢ [0,1] : z(t) = x -~ tHF(x). Then, for all t satisfying

(5.12) 0 <t <min(l,z(x)),

we have z(t) € SF(x,A) and

(5.13) IaF (z (€)1 < c(x) () lar(x) .

5.5. REMARK. From the definition of c(x) (t) (see (5.8)) we see that
c(x)(0) = 15 = el (£)2] = ~2(1-k(x)e(x) .

Comparing this with (4.29) in lemma 4.19 we see that the value of the deriv-
ative of (c(x)(t))2 at r = 0 equals the upper bourd on the derivative of

IaF (z () 1 2/12F (x) 12, Moreover, this bound is sharp according to lemma 4.19.
Thus, theorem 5.4 states that lar(z(t))l/larF(x)l can be bounded above by a
cubic function c(x) (t) which is equal to 1 for t = 0 and has "the best pos-
sible" derivative at t = 0. Therefore, (5.13) gives a good upper bound for

small e(x) and t.

PROOF of theorem 5.4.)
For short we denote S = SF(X,A), By theorem 2.8 there exists a unique con-

tinuous function p : [0,1] = S satisfying, for t € [0,1],

69

(5.14) p'(t) =~ ()N F®), pl0) = x
and
(5.15) F(p(t)) = (1-t) (x).

Define, for t ¢ [0,1], s ¢ [0,1]:

(5.16) wit,s) = p(t) + s(z(t) - p(t))
and
(5.17) §(t) = sup{s|s e [0,1]; w(t,s') € 5 for all s’ ¢ [0,s]}.

For all t ¢ [0,1], we have §(t) # 0. This follows for t ¢ (0,1] from (5.15)
and the continuity of F. If t = 0 then w(0,s) = x for all s € [0,1] and
therefore 6(0) = 1. Now define

(5.18) Sq = {x|x=w(t,s), t ¢ [0,1], s ¢ [0,8(t)]1}.

By (5.17) w(t,s) € S for all t € [0,1] and s ¢ [0,8(t)). Therefore, the com-

pactness of S yields w(t,8(t)) € S for all t ¢ [0,1] and hence SO < 8.

Now choose t ¢ [0,1]. As J(x) is continuous on S, we can apply the mean

0
value theorem for s € (0,8(t)] yielding:

s
Fw(t,s)) = F(p(t)) + é (f J(w(t,S'))dS')(W(t.S)~ p(t)).
0
Using (5.15) and (5.16) yields
s
AF(w(t,s)) = (1-t)AF(x)+AJ(X)< J (J(X))_lJ(w(t,S'))dS'>(w(t,S)-p(t))
0

= (1-t)AF(x) + sAJ(x) (w(t,s)-p(t))
s
+ AJ(x) { (@) W t,sN)) - D) (wit,s) - p(t))ds'.
o]

Hence, taking norms on both sides and using the triangle inequality gives

lar(wit,s)! < -t)lar !l + Tag Hw(e,s)-pe)l
{(5.19) s .
+ lag(x)l J (@) " o wit,s))=1) (wit,s)-p(t))lds .
o]

70

We can use condition 1.10 to bound the integrand, so that for s e (0,8(t)I:

(5.20) lar (wit, sl < (1-e)laFrGol +

nigl

ﬂAJ(x)ﬂ(l +

s
[ﬂw(t,s')—x"ds') "w(t,s)—p(t)”a
0

We shall prove that for all s ¢ (0,8(t)1:

(5.21) lwie,s)-p(e)l < ts(%a(x)t+e(X))“(J(X))_lF(X)H

and s

(5.22) J lw(t,s") -~ xlds' < sB(x) (l+e(x))t. -
0

Then, using s < 1, it follows easily from (5.20) that

(5.23) Iar (wit, sl < c(x) (w)lar(x) 1.

a., PROOF of (5.21).

Condition 1.10 and (5.14) vield for t ¢ [0,1]:
(5.2a) lp'(8)-p' (O = 1((@(p(£)) 3 (0(0))-1) (3 (p(0))) i)
< wlp (&) -p) 1 (@ (x)) " YF (o) .
Use of lemma 1.14 and (5.1) gives
(5.25) lpe)y-p(O)ll < tB8(x).
Hence
Ip' (£)-p* ()1 < a(x) el (@(0)) PGl
So lemma 1.15 can be applied to function p(t) yielding
-1 2
(5.26) fp(t)-p(0)-tp' (O < Ha(x) I (3(x)) "F(x)lt
for all t ¢ [0,1]. For s € (0,8(t)] we have

(5.27) wit,s)~p(t) = ~s(p(t)~p(0)—tp'(0))+ts((J(x));i—H)F(x)b

Then {5.21) follows from (5.27) by using (5.26) and (5.4).

71

b. PROOF of (5.22).
By the definition of w (cf. (5.16)) we have

w(t,s)-x = (1-s) (p(t)—p(O))—st(J(x))'1F(x)—st(H—(J(x))"1)F(x) .
Use of (5.25), (5.1) and (5.4) yields for s ¢ (0,8(t)]:
lwit,s)-xl < B(x) (I+se(x))t € B(x) (1+e(x))t.

So that (5.22) follows easily.

Hence (5.23) holds for t ¢ [0,1] and s € [0,8(t)]. As vz(x) is ﬁbsitive
because of (5.11), r(x) is the positive zero of the equation c(x) (t)-1 = 0.
So we only have to prove yet, that 8§(t) = 1 for t ¢ [O,min(1,z(x))], so
that we can choose s = 1 in (5.23), which then reduces to (5.13). Therefore,
suppose 6(t*) < 1 for some t* € (0,1) with t* < g{x). Then, c(x)(t*) < 1 and
by (5.23)

Iar(w(t™,s) 0 < lar(x)l (for 0 < s < 6(t7)).

Consequently, w(t*,6(t*)) € int(S). By theorem 2.2 and condition 1.8, F is a
local homeomorphism at each point of int(S). Hence, there exists an open
neighbourhood U(w(t*,é(t*)),g) (§ < 1) such that lar(z)l < laFr(x)l (thus

z € 8), for all z ¢ U(w(t*,é(t*)),s). Therefore w(t*,s) e int(S) for all

s < d(t*)+§, but this contradicts the definition of §(t) in (5.17). Hence
§(t) =1 for all £ € (0,1) with t < g(x). &s w(t,1) € 8 for 0< t<min(Z(x),1)
and S is compact, we have 8(t) = 1 for t ¢ [O,min(1,z(x))]. 0O

5.6. REMARK. Condition 1.10 is, in fact, too strong. This condition states
that the Lipschitz condition

"(J(Z))_lJ(y) - 1l < plz-yl

has to be satisfied for all z ¢ SF(x,A) and all y € D. As appears from
(5.19) and (5.24) we need the condition that an w(x) > 0 exists such that

(5.28) @) awie,s)) -) (z(8)~p e < wi) Tx-wit,s) Mz (e)-p ()l
and

(5.29) (@m0 m - 0 @) FEl < o lpe-x@e) Tl

72

In fact an w(x) 2 0 has to exist

l@w) taz) - Dl

with y,z € S, (see (5.18)) and u

0
For clarity of exposition we use

such that
< w(x) il y—z" I u|| y

= (J(x))-lF(x) or u = x ~ tHF(x) - p(t).

condition 1.10. However, as will be shown

in chapter 6, the formulas (5.28) and (5.29) are of practical importance in
computing an estimate of the value of w(x), which in turn is used to esti-

mate o(x), C(x) etc.

5.7. THEOREM. Let the conditions of theorem 5.4 be satisfied and, moreover,

let T satisfy

0-
! 4o (x) (1+0k (%))

(5.30) O < 1 < min(l

Denote for t € [0,1] : z(t) =
t with
(5.31) T <t <min(l,g(x)=-1)

we have z(t) € SF(x,A) and

T

(5.32) lar (z ()l <

PROOF .
1. We first prove that t <

(remark 5.2) and by (5.11)

2(6-1)

Tror)~ V2 ()

x-tHF (x) .

min(1,

T ok(x)

1).

Then © <€ min(1,z(x)-1), and for all

2
(-3 (1-1/6))lar (x) I,

r(x)-1). Therefore observe that k(x) = 1

Furthermore we use the inequality

- ¢£2 X
box bt 2 SR

s0 as to get

vz(X)

for b,x > 0,

T (x)

2 7
a(x)(vl(x)+ vz(x))

As vl(x) is increasing as a function of e(x) on the interval [0,1] we

have vl(x) < 5/2. Hence

v () + /vz(xf < 5/2 + V2 < 4.
So
vz(X)
40, (%)

6-1

(5.33) z(x) 2 20 (x) (146K (%))

Hence, by (5.30), ¢(x)-T 2 1 and T < min(l,C(x)-1).
2. To prove (5.32) we show that
T2
(5.34) c(x)(t) s (1 ~ -Z'(l—l/e)),

so that application of theorem 5.4 yields the result.

Let ¢ = min(1,Z(x)-1) and define

(ot(x)t)2 + vl(x)a(x)t - vz(x).

]

g(t)

Then g (z(x))

(]

0 and g(t) is increasing and negative for

0 £t < min(l,z(x)). Therefore, for t ¢ [t,C],
(5.35) c(x) (t) < L4y, (x)Tq(Z).
We shall prove

= T
(5.36) q(g) = - i VZ(X)

so that (5.34) follows from (5.35) by using (5.36) and vo(x)-v2(x) =
= (l-exk(x)) 2 (1~1/8) (by (5.11)).

PROOF of (5.36).

Observe that, with A = [(%)~ and using g(z(x)) = 0,

Q@) = ~a () A(20(x) T (%) o (x) b+v, (%)) .

Therefore, with o = V(vi(x))2+4v2(x) 1

74
(5.37) q(Z) = a(x)A(o(x)A-0).

We distinguish between two cases.
a. £ < 1.
Then

A =T < hp(x) = (—vi(x)+d),

i
4o (x)
thus

a(x)A-g < k(v (0)430) < =B (v, (x)+0) .

Furthermore, from [(x) = C+A = Z+T < 2, we obtain from the definition

of g (x): B
a(x) = %(-v, (x)+0).
Using these inequalities to bound the right hand side of (5.37)

= T 2 2y _ ¢
a(g) < - TE'(U w(vl(x))) = i v, (%) .

So (5.36) is proven for E < 1.

b. £ = 1.
The definition of r(x) yields

=7 = A = L -
1 =17 =17(x)-A= o (%) (vl(x)+o) A.
So
(A = =2 (v (x)+
o{x = (140 (vl(x ag).
Consequently
a(x)A~o < %(—vl(x)+a)—0 = —%(vl(x)+0)~

Since t/(1+t) is isotone for t ¢ [0,).

We also have

af{x)A 2 (vl(x)-o).

—_
2(1+1)

Using these inequalities to bound the right hand side of (5.37) yields

75

- T 2_ 2, T
q(g) < ZTT:;T'((Vl(x)) -g") = \)z(x)1+T .
S50
(@) < - % v, (x) < - z v, (%),
which proves (5.36) for Z = 1,

Therefore (5.36) holds, which completes the proof of the theorem. []

Using theorem 5.7 we can give the following global convergence theorem

for Newton-like methods.

5.8. THEOREM. Suppose that condition 5.3 is satisfied. Let T be a constant
satisfying for all k < N

6-1

(5.38) 0 <t £ min(l,).
4ak(1+8Kk)

Suppose that ¥ satisfies, for all k < N,

(5.39) T < X(xk,Hk) < min{(l,Q).

KT
Then (x, ,H) is defined for k: 0,1,2,... (N =) ,*{xk} © S (x4,8) and {x}
converges to a unique point % ¢ SF(xO,A) with F(x) = 0. Moreover, there

exists an integer X 2 0 such that A(xk,Hk)= 1 satisfies (5.39) for all k 2 K.

PROQF. Suppose (xk,Hk) is defined for some k and *, € SF(xO,A) {this holds
for k = 0). Then SF(xk,A) < SF(XO,A). Moreover, SF(xk,A) is compact by

definition and the compactness of SF(xO,A). Hence F,x_ and A satisfy con-

k
dition 1.10 and we can apply theorem 5.7 yielding

X, - CHF, € SF(xk,A)

{5.40) 2
Iar (e ~tm POl < (1 - 34— (1-1/6)) IaF |

for t such that T £ € < min(l,ck~T). Therefore, by condition 5.3 (ii),
(xk,Hk) € D(Wi), By the choice of X(xk,Hk) {cf. (5.39)) we conclude that

{5.40) holds for t = A(xk,Hk), so that x € SF (xk,A). Use of condition

k1
5.3(iii) vields (xk,Hk) € D(Wz).ATherefore, (xk+1’Hk+1) is defined and

e+l

for all k = 0,1,2,... (N = =), Substituting t = X(xk,Hk) in (5.40) vields

€ SF(xO,A). So, by induction (xk,Hk) is well-defined and xke SF(xo,A)

76

2
T
(5.41) HAFk+1H < (1—-2— (1—1/6))"AFk".

Therefore, as t and 6 are independent of k,

lim laF(x)l = o.
k
k>0
By the compactness of SF(XO,A) there exists a subsequence of {xk} which
. *
converges to a limit x say, with x* € SF(XO'A) and F(x) = 0. Application

*
of theorem 2.8 proves the uniqueness of x . Therefore, lim o =X .

. koo
Finally, to prove the last statement note that ak and Ky are bounded

for all k. Moreover, as {xk} converges to a solution of F(x) = 0 we have

(5.42) lim o, < @ lim B, = O.
k k
) k-0

Hence, there is a K 2 0 such that for all k =z K

-t (. /2)
g, = (v1 + YV +4 > 2,

1
k 2ak 'k 1,k v2,k

as the expression between the parentheses is bounded away from zero (see
inequalities at start of proof of theorem 5.7 and note that Ky > 1 and Ky
is bounded for all k). Hence, for all k =2 K, tk—T > 1 and therefore

X(xk,Hk) = | satisfies (5.39). [J

5.9. REMARK. The cubic function c(x) (t) achieves its minimum for t=u(x) on

[0,z(x)]. Therefore, by (5.13) we see that the choice
A(xk,Hk) = mln(l,uk)

gives the best upper bound on the ratio "AF(xk+1)"/"AF(xk)".

Such a choice of A(x,H) yields a proper iterative process as is shown

by the following theorem

5.10. THEOREM. SupposeAthat condition 5.3 (i), (iii), (iv), (v) and (vi)

are satisfied. Let Wl be such that A(x,H) = min(l,u(x)), for (x,H) e DX L(ngl).
Then (xk’Hk) is defined for k*=.0,1,2,.e. (N=o) , {xk} c SF(XO,A) and {xk}
converges to a unique point X € SF(xO,A) with F(x) = 0. Moreover, there

exists an integer K 2 0 such that A(xk,Hk) = 1, for all k =2 K.

77

PROOF. If (x,H) € SF(xO,A) x L(R") and there exists a t ¢ (0,11 such that
z = x-tHF(x) € D and laF(z)l < lar(x)ll, then A(x,H) = min(l,u(x)) is well-
defined and hence (x,H) ¢ D(Wl). Therefore, condition 5.3 (ii) is satisfied
for this choice of A.

From the definition of Ck and uk we obtain for k < N

1 / 2 1
Ck -, 2 <—v1'k + Vv +4v) = §Ck'

k 60, 1,k 2,k
Using (5.33) yields

61
Ly = My Z o
k k Gak(1+9Kk)

As Oy and Ky are bounded for k £ N by o and K say, we have

C - >—.—.§:_1____.
k ~ Mk % Ga(1+6%) -

Therefore, the choice

—-— T ___._._._——_6“1 _—
T = min(l, e=rrEEy)

satisfies (5.38) and (5.39) for X(xk,Hk) = U, . So we can apply theorem 5.8

k
yielding well-definedness of {(xk,Hk)} and convergence of {xk} to a unique

solution in SF(XO,A). The definition of uk and (5.42) yields the last state-

ment of the theorem. [J

5.11. REMARK. (5.41) shows that {"AFk"} converges at least linearly. More-
over, in each step we have a decrease with a factor which is less than or

2 -
equal to (1 - %511—1/6)). If e as an approximation to J 1)

(the error in H k

k k
is relatively large so that we find a constant 0 close to 1 with

ek < 1/(6Kk) (k=0,1,...), then we can only quarantee a small decrease in

Iar(x)!. However, if e, = O (Newton method), then we can choose 0 arbitrar-

k
ily large, so that the decreasing factor becomes 1 - 12/4, with T satisfying

0 <1t < min(l,l/(4aknk)) for all k.

5.12. REMARK. Let M be a Newton-like method. Suppose that for all F ¢ U,
¥ = M(F) satisfies condition 5.3 with A(x,H) = min(1l,u(x)). Moreover, sup-

pose A in condition 5.3 satisfies (4.24) and VY. satisfies (4.8). Then M is

2
affine invariant. This follows from the affine invariancy of the quantities

78

given in notation 5.1 under the conditions. Note that, if A does not satisfy
(4.24), then the guantities x(x) and B(x) are not invariant under affine
transformation of the function.

5.2.2. Applications

In this subsection we shall give applications of the convergence results
from the last subsection. In particular corollaries of theorem 5.8 for the

methods given in section 4.2 shall be given.
A. Newton methods

5.13. COROLLARY. Let, for given F, Y define a Newton process. Suppose condi-

tion 5.3 (i), (ii), (iv) and (v) is satisfied. Let T be a constant satisfying

for all k £ N

1
(5.43) 0 <1 <€ min(l, =),
4akKk
Suppose HO = (J(xo))“1 and Y satisfies for all k £ N
(5.44) T < A(xk,Hk) < min(i,(m1+V1+8/Kk)/(2uk)~T),

Then (xk'Hk) is defined for k*: 0,1,2,... (N=x), {xk} c SF(xO,A) and {xk}
converges to a unique point X € SF(xo,A) with F(x) = 0. Moreover, there

exists an integer X 2 0 such that k(xk,Hk) = 1 satisfies (5.44) for all k=K,

PROOF. Condition 5.3 (ii}l) is satisfied by a Newton process as J(x) is non-

2 0

e = 0 for k £ N. Hence condition 5.3 (vi) is satisfied for all 6, 1 < 6 < «,

Therefore we can apply theorem 5.8 for arbitrary large 6. As

singular for x € SF(XO'A)° Furthermore, the choice of ¥, and H, yields

-1 - 1
4ak(1+6Kk) 4akKk

lim
B->c0

and for e = [OH

L, = (~1+»‘/1+8/x<k)/(20ck)

the result follows. [J

79

Corollary 5.13 is given by DEUFLHARD [1974b].
B. Difference Newton methods

5.14. COROLLARY. Let, for given F, ¥ define a difference Newton process satis-

Ffying (4.23) for nonsingular A ¢ L(mp). Let x. € D and F,x_ and A satisfy

0 0
condition 1.8. Suppose that F and z satisfy condition 1.7 on D, for all

Z € SF(xo,A). Furthermore, let condition 5.3 (ii), (iv) and (v) be satisfied.
Define, for hi = hi(x) (i=1,...,n) (see definition 4.8)

n 9 e
(5.45) [h(x)| = () (hy (x))) .

j=1

Suppose that U(x,lh(x)])c D for all % € SF(XO,A) and that for given 6 > 1
and all x € SF(xO,A)

2
(5.46) [h0 | < SRy
Then B(xk) is nonsingular for k < N. Let HO = (B(xo))_1 and t be a constant
satisfying (5.38) for all k < N. Define, for k £ N, with Gk = wkih(xk)|,
2
5.47) - _ Kk 5 _ 4+ok -) 2—0k(1+Kk)
. 0,k 2-0k ! 1,k 4—20k ! 2,k Ky !

and ¢ (x) (t) and T(x) similar to c(x) (t) and r(x) (cf (5.8) and (5.9)) with
v replaced by ;i X (i=0,1,2). Suppose Y satisfies for all kK < N
L

i,k
(5.48) TS A(x H) < min(1,Z(xk>~r).

Then, the same conclusions as in corellary 5.13 with (5.44) replaced by

(5.48) hold.

PROOF. Applying theorem 3.5 for x ¢ SF(XO’A) and U = U(x,]h(x)l) yvields

that B(x) is well-defined, nonsingular and

w(x) {h(x)
(5.49) e(x) < 5w () Th T

Note that this holds for § <]h(x)!, as follows from the proof of theorem
3.4, and that w(x)|h(x)| < 2. Therefore condition 5.3 (iii) is satisfied.

Furthermore, as (4.23) is satisfied,xke SF(xo,A) for k £ N, so that use

80

of (5.46) in (5.49) yields condition 5.3 (vi). As the conditions on F, Xy

and A are stronger than condition 5.3 (i), condition 5.3 is satisfied and
theorem 5.8 can be applied. Now observe that Ek is antitone with respect to

e, and that v, (i=0,1,2) is obtained by replacing in the formulas for vy

k ik
(i=0,1,2) the upper bound ok/(Z—Ok) for e

'k

k' Therefore, theorem 5.8 still
, ¢, and Ck by Gi
1

holds with replacing vy , Ek(t) and Ek' respectively
¥

k k
(i=0,1,2). This completes the proof. [

k

C. Updating Newton Methods

Application of theorem 5.8 to updating methods runs into the following
two problems. i
1. The definition of D(WZ) in definition 4.1! is such that condition 5.3
(iii) is not satisfied.

2. Using theorem 3.16 to bound the error e, for some k, the given upper bound

k
depends on e 1 Moreover, the upper bound on e, 1is greater or equal to

the upper bound on e

k

k=1" Therefore, doing so in each iteration step the

upper bound on e, increases in each step and will usually become larger

than 1/KK for so;e k. Thus condition 5.3 (vi) cannot hold and application
of theorem 5.8 is not possible. In fact, as condition 5.3 (vi) can not be
proven with the results given so far, we cannot guarantee that a step

length factor can be found such that the level function decreases at each
step so that the algorithm may terminate after finitely many steps without

finding a solution.

Nevertheless, we can imagine a useful application of approximation by up-

dating based on theorems 3.16 and 5.8.

5.15. COROLLARY. Let Y define a Newton-like process for F and suppose that

condition 5.3 is satisfied. Define, for some fixed 6 > 1, a Newton~like

process for F by ¥ so that, for (x,H) € DW'

it

Wl(x,H) Wl(XIH):

(5.50) V00 = 9 VW (8%, (8, if (‘Yl(x,H)—x)Tu # 0, H is non-
singular and 5(?1(x,H)) < 1/(8K(@1(X,H))),

W2(x,H), otherwise,

81

where
(5.51) sy = (o, =4 e +3p Yy-xl) (1+e(x))
: ¥ L R gy 173P)Y ’
@) -F) Hal _ I el
T T ’ 2 T
[u H(F (y)-F(x)) | [u H(F (y)-F (x)) |

and u is some vector (see theorem 3.16 and remark 3.17). If there exists a
constant v such that for all k, for which (xk,Hk) is defined by @, (5.38)

and (5.39) are satisfied, then the conclusions of theorem 5.8 hold for V.

PROOF. Clearly, condition 5.3 (i), (ii), (iv) and (v) hold by assumption.

By the conditions for use of inverse-updating and the condition on VY it
follows easily that condition 5.3 (iii) is satisfied. Moreover, the condition
on the error in the update approximations assures that (vi) is also satis-~
fied if inverse-updating is used, as by theorem 3.16 5(@1(x,ﬂ)) is an upper

bound on e(@l(x,H)).

5.16. REMARK. In corollary 5.15 it is stated that one can modify, for in-
stance, Newton methods or difference Newton methods which satisfy appropriate
conditions, in such a way that in certain iteration steps approximation by
inverse-updating is used. If the original Newton method yields global con-
vergent processes based on theorem 5.8 then the modified method still yields
global convergence under similar conditions. Note that the condition on
5(@1(X,H)) guarantees that -~HF (k) is a descent direction for the level func-
tion lar ()1 at x. of course, updating can be used instead of inverse-

updating by replacing V(u) (E,x,¥, (x,H)) by (U(u)(H”l,x,\yl(x,m))’1 in (5.50).
D. Fixed Newton methods

As for updating methods, we cannot guarantee that condition 5.3 (vi)
is satisfied if we use fixed approximation in every step of a Newton-like
process. However, we can imagine a similar application of fixed approximation

as given in corollary 5.15 for inverse-update approximation.

5.17. COROLLARY,. Let Y define a Newton-like process for F and suppose con-

dition 5.3 is satisfied. Define, for some fixed 6 > 1 a Newton-~like process

for F by ? s0 that for (%,H) € DW:

82

‘Pl(x,H) = ‘i’l (x,H),
(5.52) @2(x,a> =14 H, if e(x)+w<x)(1+e(x))I!@1(x,H)—x" < 1/(8k(x))
Wz(x,H) otherwise.

(cf. theorem 3.19). If there exists a constant T such that for all k, for
which (xk,Hk) is defined by @, (5.38) and (5.39) are satisfied, then the

conclusions of theorem 5.8 hold for @.

PROOF. Condition 5.3 (i), (ii), (iv) and (v) hold by assumption and 5.3
(iii) is obvious. By theorem 3.19 and the condition for choosing @z(x,H) = H,
it is easily verified that condition 5.3 (vi) is also satisfied. Hence

theorem 5.8 can be applied to Y. [
E. Use of generalized inverse

Under the conditions of theorem 5.8 we know that J(x) is nonsingulaxr
for x € D. Therefore, (J(x))+ = (J(x))_1 for x ¢ D and the generalized
Newton method generates the same processes as the Newton method for the
same function. Hence corollary 5.13 is applicable. If we consider the gener-
alized difference Newton method, then the conditions of corollary 5.14 also
quarantee nonsingularity of B(xk). So under these conditions the generalized
difference Newton method generates identical processes as the difference

Newton method.

Obviously we are particularly interested in application of the gener-

alized inverse if singular jacobian matrices occur in SF(XO'A)’ Let So de~-

note the set of points in D for which the jacobian matrix is singular {usu~—

ally S is an (n-1)-dimensional manifold). Suppose S_. n SF(xO,A) # @. Then

0 0
the question is whether application of the generalized inverse will yield

an iterate XK for some integer K, such that S_n SF(xK,A) = @, If this is

true then corollary 5.13 can be applied subseguently if the Newton-like
method satisfies the conditions. However, with the results given in foregoing
chapters (e.g. lemma 4.26) we can only prove that "AF(xO)" > "AF(xl)" >0, >
> HAF(XK)". In fact, the sequence {xk} may converge to a point X with

SO n SF(x,A) # @ (e.g. x ¢ SO).

83

From optimization theory we know that it might be useful to do a so-
called "steepest descent" iteration step, which in our case with "F(x)"2

(A = I) to be optimized, turns out to be an iteration step of the form

- T
Kepr T F T A @ENTFGG),

with Ak > 0 a scalar to be chosen in some specific way. It is interesting
+

to note that both directions of search (J(xk))TF(xk) and (J(xk)) F(xk) lie

in the same subspace orthogonal to ker(J(xk)). This follows easily by using

the singular value decomposition of J(xk) =U Zr T (cf. 1.18)). Then

1 1

T
\% ErUlF(xk),

T
(T)) F) 1

+ + T
(J(xk)) F(xk) = lerUlF(xk).

In fact, if all nonzero singular values are equal then these directions are

the same (not the lengths).

In BRANIN [1972] another strategy is given for handling singular
jacobian matrices. This strategy uses an iteration step of the form

x X, kA add (T(x))F(x),

K+l © Tk

where adj(J(xk)) is the adjoint of J(xk) (which satisfies J(xk). adj(J(xk))=
= det(J(xk)). I). Again, this yields a direction in the same subspace, or-—
thogonal to ker(J(xk)). An important point in this strategy is the choice

of the sign, which is changed at a singularity. A drawback of the method of
Branin is the fact that it only works well if rank(J(xk)) > n-1 as his com=-
putation of the adjoint is only defined in this case. An interesting question
to be asked may be which relation exists between the method with use of

generalized inverse and Branin's method.

84

5.3. SEMI-LOCAL CONVERGENCE

In this section we present a semi-local convergence result for strict
Newton~-like methods. It is a so-called Kantorovich-type result. A similar
theorem, restricted to the strict Newton method is given in KANTOROVICH &
AKILOW [1964, section XVIII] and ORTEGA & RHEINBOLDT [1970, section 12.6.2].
In the latter a generalization to a certain class of strict Newton-like
methods is also given, which is based on condition 1.6. The class of Newton-
like methods considered in their theorem satisfies, for some B: R" -~ L(RP),

¥ (xH) = (B(x)7

where for xo € D and constants cl, c2 and c3:

IB(x) - B(xo)ﬂ < cl"X'xo"'

la(x) - B(x) I < ¢ +c3ﬂx”x0",

2
for all % in a convex set in D, So Wz(x,H) does not depend on H and the
conditions are not affine invariant. DEUFLHARD & HEINDL [1979] give a
Kantorovich type theorem for a class of strict Newton-like methods which is
based on the rather unnatural Lipschitz condition (with (xO,HO) starting

point for the iterative process):
(5.53) T (360 - aent < wlx-yl,

for some constant w and x,y in some convex set in D. This condition is

affine invariant, only if H. is chosen dependent on F such that HO(TF) =

0
-1 .

HO(F)T for arbitrary nonsingular T € L(an). The theorem given here uses
the affine invariant Lipschitz condition 1.7. All these theorems are prov-—
en by finding a nonlinear majorizing sequence satisfying the conditions of

lemma 1.22.

5.18. THEOREM. Let. F and (xO,HO) € D X L(]Rn) be given. Suppose F and xq

satisfy condition 1.7 with w(xo) # 0 on some convex set DO < D with XO € DO.
Let M be a strict Newton-like method and F ¢ D. Suppose that ¥ = M(F)
satisfies

D(¥,) > {0e,H) | (x,8) e Dx L(RY), ¥, (x,H) € D}

N
B o

Suppose F(xk) # 0 (k < N) and there exists a constant e < -1+V2 such that

e < e (k < N). Define

and, for starting point (xO,HO), Y generates a sequence {(x

-
2
. 1+e 1-2e~-e
(5.54) X1 5 1er X T TTiIe
- - - - 1 2 -
) - I - S S (VI
(5.55) BO "HOFO P w(xO)Boxl, C w(xo)xl <x2 /&2 2a>

Moreover, suppose U(xO,Z) c D, and o < %Xg. Then

0
1. (x,H) exists for all k (N = @) and {Xk} € Ulxy,L),
2. J(xk) is nonsingular for all k = 0,1,2,...,
— %*
3. {xk} converges to a point x* € U(xO,C) with F(x) = 0.
4. Let, in addition, ¥ and x satisfy condition 1.7 on D for all x € D_,

with w(x) < w for some constant w and denote

(1~e.)

_ 2(1+e.)uwB B .
R G R s U O v
1-e 2(1+e,)
0 0
1“90 /-—:\
U1 = d(xo,w (1- 1—20&)‘) .

= 2 = , o, , ,
Then, o < %x? and U, « D_ implies that x is unique in D

1 o n U(XO,C) >
Ulxy,2) .

0
PROOF. Notice that X4 is isotone and Xy is antitone with respect to e on
[0, ~1+/2) and

(5.56) 1<y, < 7§ff ; 0<x,s1 forece [o, -1+v/2).

By the assumption o < %Xg we see that ¢ is real, C = 0. Consider U(XO.Z)-

Then for all x € U(XO,Z) we have, with JO = J(xo),

-1
"JO J(x) - 1l < wOHxO—x" < w

OC .
where wo == w(xo)° Furthermore
X
- i /2 - 2
s - - < e .
woc X1 <X2 X2 2a> X1 <!

85

86

Use of lemma 1.13 now yields that J(x) is nonsingular for all

X € U(xO,E) and

-1 1 -
. | < .
(5.57) '(J(X)) JO" < m v ® € U(XO,C)
070
As EO = a/(woxl) and elementary calculation shows that ¢ < Xz—Vx§~2a for

0<a < %xg we conclude that EO < 7. Hence "xl—xoﬂ = EO < T, so that

x1 € U(xO,E). Then ﬁ is defined due to the condition on D(Wz).

1
We shall prove by induction that (xk,Hk) is defined for all k=0,1,2,...
(N = ») and X € U(xO,Z). Therefore assume that, for certain integer K,

(xk,Hk) is defined and % € U(xO,Z), for all k £ K. Then

k

-1
I < .
(5.58) Hka" < "HkJo""JO Fk"

Using (5.57) and the upper bound on e we obtain

1+e

-1
. I < | < R
(5.59) HkJOH Hka“"Jk JOH < 1-w0 =

Furthermore, we can bound
Il 1 < “J‘I(F “F, =T (xo-x.)+ "J_l(F -3, " F .
0 "k 0 Yk Tr-1"k-1 P R-1 0 ¥re1ke1"k-1"k~1

So, application of lemma 1.16 yields

~1

2
I
0

A

o lx -x I

-1 -1 -1
i ol ! ~ 1hl
J Fr ol xx 17+ "JO Jk_lth H Ihie

k1K1 k-1 k-1

in

2 e
- e Ny %, ~ .
5woﬂxk xk_1H + (1+woﬂxk_1 X,)1—e T S

Therefore, with use of (5.59) in (5.58) we obtain

1te - e - g —x I
I r b < oyl 1 Gruglg —x (el -x D)l -x 1.

With the notation
p; = %Xlwoy P, = X;&, Py = WP, and Py = (1+e)m0

we have for all k < K:

87

1
. f I < lx - l I - lx, -
(5.60) BFy T, T (ylxemxg_yToppreglng -xgDix-x 1.
Now define (cf. lemma 1.23) the sequence {tk} by ty = 0, t, = EO and, for
k=1,2,0..,

1
Y1 % T Tty (py (Ep-ty)443ty) (-t)

Then {tk} satisfies the assumption of lemma 1.23. Thus {tk} is increasing,

unless Fk = 0, and lim tk = E. Moreover, by (5.60) we have for all k < K:
k>

. I -x I =1 I < -t .
(5.61) Fer1 ¥ HF' = b ™
Hence

K K
Ix -8 F -x I < J lgrl s Jt -t <t -t <cC.
K KK'0 k=0 k' k X=0 k+1 'k K+1 0

$o %, , = X, - HF is defined and belongs to U(XO.C) and, hence, H, ,
is defined. Therefore (xk,Hk) is defined for all k = 0,1,2,... (N = =)
and X, € U(XO'E)' Moreover (5.61) holds for all k and lim t, = z. ({tk} is

a majorizing sequence for {x }). Application of lemma ke 1.22 yields con-

k
* —
vergence of {xk} to some x € U(xo,g). By the nonsingularity of Hk we have

-1 -1 1
< | - e s
HFkﬂk. Hk Iy lllle(xk+1 xk)" < . HJkﬂka+1 x .

So, convergence of {xk} to % implies F(x*) = 0, which yields the third

statement of the theorem.

To prove the last statement, consider the fixed Newton-like process
defined by @:

- n
¥ (%,H) = x - HOF(x), ‘!’z(x,H) = H (x,H) € D, X L(r").

Ol
The sequence {xk} generated by this process for starting point (xO,HO) is
also generated by the simple iterative process defined by the iteration
function

.

d(x) = x ~ HOF(X), g € DO

We see that ¢ is differentiable on DO:

88
o' (x) =TI - HOJ(X).

Furthermore, for x,y € DO’ we have

lo' -6" (1)1 < T, (0= (y))1 < T gl @) o) - 10

As wOZ = GE < 1 we obtain for x,y € D n U(XO,Z):

o
I8 3Gl < HHOJ(XO)“"(J(XO))_lJ(x)" < (Lvey) (Lruglxmxgl) < 2(1+e)
and

lor(x) - o' ()l < 2<1+e0)$ny-xu.

(XX I < < i - b= I =B .
Moreover, I (xo) e, e < 1 and X @(xo) HOF0 BO So we can
apply theorem 1.24 yielding existence of a sequence {xk} c U1 converging
* -—
to a solution y of F(x) = 0 which is unique in U(XO,E) n DO' We shall show
finally that E < z, so that x* = y* and statement 4 is proven. To do so,

observe that 1 -V1-x £ x, for O £ x £ 1. Then

_ X ST - 28
T = 2(1_1_2.%)5-(”—29————=—~_9_

RO X; / oX1Xa X3
and
l-e (1-e.) (1-a)
= 0 = 0 > - 1
= me—— - - = - 1
¢ 2(1ve)& (1 + vi-2a) =2 (Tre) 2By - D

As o < %x; and X < 1 we have

- 2 -
2 -

80 (1 %X2N . 230
Xy W,)X,

> > L.

This completes the proof of the theorem. [J

5.19. REMARK. Note that for e = 0 we have Xy = Xy = 1, o = woéo,

2
T = BL-(l - V1-2a). This expression for T also appears in comparable theorems
0

of ORTEGA & RHEINBOLDT [1970] and DEUFLHARD & HEINDL [1979].

89

5.4. LOCAL CONVERGENCE

In this section we give a general result on the order of convergence of
sequences of approximations to a solution which are generated by strict
Newton-like processes. This result is a generalization of a well known re-
sult for Newton methods (see for instance ORTEGA & RHEINBOLDT [1970, section
10.22]). DENNIS & MORE [1977] give a result for a class of Newton-like
methods, using a noﬁ-affine invariant Lipschitz condition, which shows that

we do not require convergence of H to I, but only of H J, to I with re-

k' k
k+1_xk)' This idea

is incorporated in our result. The second theorem in this section gives a

x7k
spect to its effect on a relevant direction (they use X

result for restrained Newton-like methods by combining global and local

convergence results.

5.20. THEOREM. Let x* € D, F(x*) = (0 and suppose that F and x* satisfy con-
dition 1.7 on some open neighbourhood U < D of x*. Let (xO,HO) € U x LCRn)
be given and let M be a strict Newton-like method such that F ¢ U and

(xO,HO) lies in the domain of M(F). Suppose M(F) generates {(xk
starting point (XO'HO)° Moreover, suppose that {xk} converges to x , ¥ # %"

,Hk)} < U for

(k=0,1,...) and there exist constants e,E 2 0 such that for all k, ey < E
and

(5.62) H(Hka-x)(xk—x*)u < e“kax*ﬂz,

Then, the order of convergence of {xk} is at least 2.

* - .
PROOF. Denote w = w(x*) and choose § < min(l/Zm*,1/2e) such that U(x*,é)c U.
*
Then, by condition 1.7, we have for x € U(x ,8):

1

o)) o - 1l < o lx™xl < 1.

*
Hence, by the perturbation lemma J(x) is nonsingular for x ¢ U(x ,8) and

* *
w Mx—u' B

(5.63) o) o™ - 1l < < 2w hx-x"1.

*
TP P
*
As {xk} converges to x , we can choose a K 2 0 such that for all k 2 K,

*
xk € U(x ,8). Hence, for k 2 K we have

90

* *
ka+1—x I = H—Hka+xk~x I
-1 * *oo~1 N * U
(5.64) < HHka""Jk T x)) (F -F (x) -3 (x) (%, -x 1Pl
+ (=B 3 (x) (x-x)1
and

I (1-5 J(x" Y
(kJ(%{))(xk X)
~1 * *
I(r- Y Iiz- i -
< M- a,) (x -x o+ H . 1-g "3 x)Inxk x I,

S0, using lemma 1.16 to bound the last factor of the first term of the right
hand side of (5.64) and (5.62) and (5.63) to bound the other factors and the
second term, we obtain

I ¥ * * JF ¥ 2

L I < % (14E) (1+20 ka x ")ﬂxk x |

2 * *, 2
Ix —x"l hx —x 1%,
+ e xk X +2w (1+E) xk X

With the definition of §, we obtain finally

. Ix %1 < clx —x*12
(5.65) I I clhx, -x =,
where

C= 3w (14E) + e
Therefore

* 1/k
1im inf(~loghx -x I) > 2
k
ko0

which proves the theorem. []

5.21. REMARK. If we consider the strict Newton method, then we can choose
e=E=0and C = Bw* for the given choice of §. In this case the theorem
reduces to a well-known result (see ORTEGA & RHEINBOLDT [1970, section
10.2.2]) reformulated for the affine invariant Lipschitz condition on the
jacobian. DEUFLHARD & HEINDL [1979] also give a version of theorem 5.20 for

the strict Newton method. They use condition (5.53).

5.22. REMARK. Condition (5.62) is of practical importance. If we had only

*
required that e, < e"xk—x I for x = 0,1,..., then the theorem would not
have been applicable in certain situations. For instance, using an updating

91

Newton method it might appear that {xk} lies in a certain subspace of:mn,

so that Hka will not converge to I with respect to its effect on the com-
*

plement of this subspace. Then e, < e"kax I (x=0,1,...) is not satisfied

while (5.62) might be.

Finally we give a theorem which combines the results of theorem 5.8

and 5.20.

5.23. THEOREM. Let the conditions of theorem 5.8 be satisfied. Moreover,
suppose that e, < e"x*mxk" for k £ N and some constant e > Q and that
X(xk,Hk) = 1 whenever this choice satisfies (5.39). Then

1. (xk,Hk) is defined for k = 0,1,2,... (N = «},

2. {xk} converges to a unique point X e SF(xO,A) with F(x*) = 0,

3. the order of convergence of {x } is at least 2.
*x

PROOF. Statements 1 and 2 follow directly from theorem 5.8. Moreover, it
follows from theorem 5.8 that there exists a K 2 0 such that A(xk,Hk) = 1
satisfies (5.39) for k 2 K. Hence, for all k 2 X, we have X(xk,Hk) = 1 by
assumption. Now apply theorem 5.20 for the same process with starting point

(XK’HK)“ This proves the third statement. [

93

CHAPTER &

SYNTHESIS OF NEWTON-LIKE METHODS

6.1. INTRODUCTION

A Newton-like method applied to a given function yields a Newton-like
process. Such a process generates for a given starting point (xO,HO) a,
possibly infinite, sequence of iterates. In practice we are interested in
solving systems of nonlinear equations with a certain precision and in f£i-
nitely many iteration steps. Furthermore, the choice of the matrix H, will

0
be based on the initial guess X of the solution and on the method used.

6.1. TERMINOLOGY. We use the term Newton-like algorithm for a Newton-like

method together with the choice of H, and a stopping criterion, described

0
in some formal way and assuming that non-exact arithmetic is used.
A Newton-like program is an implementation of a Newton-like algorxithm in a

given programming language and for a given computer.

Note that a Newton-like program defines a Newton-~like algorithm but not
vice versa. The formal description of an algorithm does not have to be in
a programming language and the values of computer dependent constants are

not actually given in the algorithms.

Considering Newton-like algorithms we distinguish the following basic

modules

1. Initialization, including the calculation of H. as an approximation to

0
(J(XO))"1 {(or an approximation BO to J(xo)).

2. Approximation of reguired data, such as 5, etc. (see notation 5.1).

“k* %k
These approximations are used for instance, for finding an appropriate
step length for difference approximation or for special restraining

strategies. Calculation of the step direction belongs to this module.

94

3. Restraining strategy. See examples 4.22. Based on remark 5.9 another
strategy is developed.

4. Stopping criteria for checking convergence or failure at every iteration
step.

5. Approximation of the inverse jacobian, including the choice between
triangular and singular value decomposition if the approximation is
obtained as (generalized) inverse of an approximation to the jacobian.
Note that no expiicit inverse is calculated in this case, only a decom-

position is kept.

We will treat these modules separately in the next sections. In section
6.2 we give the algorithms for numerical algebra computations, viz. trian-
gular decomposition, singular value decomposition and scaling of a matrix
by diagonal matrices. Then, in section 6.3, we treat module 5 as it provides
the basis for other modules. Modules 2, 3 and 4 are treated subsequently in
sections 6.4 up to 6.6. Initialization (module 1) is treated together. with
the synthesis of basic algorithms (section 6.7), because e.g. the choice
of HO (ox BO) depends on the basic algorithm chosen. In section 6.8 up to
6.11 we describe subsequently the conditional use of approximation by up-
dating and fixed approximation, implicit and explicit scaling and reduction
of problems with linear components. These strategies are considered as op-

tional features. They can be applied to all or some of the basic algorithms.

In this chapter we assume that the function F satisfies condition 1.5
and if we write (J(x))*l, for some x € D, then it is implicitly assumed
that this inverse exists. If we use notation 5.1 then it is assumed that
the conditions for using this notation are satisfied. In addition to nota-
tion 5.1 we use: Y(xk) = Yk' with 7y (x) the Lipschitz constant in condition
1.6 for x € D, and if B ¢ L(R®) is some approximation to J(x) (x € D), then

L

. = - + = + = 'Y + = +
(6.1) nix) = I (£1_(®)) "I, n (x)*"(fle(B)) I, e n(kk), n= (xk>,

(6.2) fe = H@e-BTl, e = e x.

k

Furthermore r(x) denotes the rank of B and r, = r(xk)» The approximation to

k
a certain guantity, which will be used in the algorithms, is always denoted

with """ (e.qg. ﬁk is the approximation to nk).

95

We assume that numerical computation of the function and its jacobian

is such that constants ¢ __, € ., 2 ¢, € _, € , 2 0 exists such that
rf] af aj
. I - I < I I
(6.3) flE(F(x)) F (x) Erf F(x)l + Eaf’
. i - I < I I
(6.4) flE(J(x)) J (x) erj Jx)l + Eaj,

where ¢ denotes the machine precision (see notation 3.8).

We give formal descriptions of the modules and additional features in
ALGOL 68 (see WIJNGAARDEN et al [1976]). We use the ALGOL 68 implementation
(TORRIX 68) of the programming system TORRIX (see MEULEN & VELDHORST [19787) .
The prelude used for numerical algebra routines (prelude name: naprel) is
based on HEMKER & WINTER [1979]. The problem of solving a system of non-
linear equations with Newton-like methods is defined in the prelude with
name: nlsprl. So nlsprl is embedded in naprel, which is embedded in the
TORRIX 68 prelude, which is, in turn, embedded in the ALGOL 68 standaxrd
prelude. Our primary cbjective is to use ALGOL 68 as a reference language
for unambiguous description of our algorithms. The ALGOL 68 programs have
been compiled by the A68 compiler of the CYBER 73 system at the computer
center SARA at Amsterdam. We have tested some example programs for some
small test problems in order to obtain some faith that these programs are
correct. This testing has been performed using an optimized version of
TORRIX BASIS, in which system .mode .scal = .real and in which the dyadic
operators .max and .min have been defined for arguments of .mode .scal.

We have not performed a full testing of the ALGOL 68 programs. Our experi-

ments have been performed in ALGOL 60 (see chapter 7).

Description in ALGOL 68

naprel:

numerical algebra prelude,
J.C.P. Bus, update 800103,
to be compiled by: a68,i=lfn,p=numal3/tormin,n.
where tormin is an optimized version of the torrix basis prelude
{see MEULEN en VELDHORST [1978])
(tormin contains the operators .max and .min for .scal operands)

96

#
.begin
.mode .prb = .struct (.scal relacc, absacc, reltol, abstol,
’ .int maxit):
.mode .prob = .ref .prb ;
.mode .matprob = .struct (.mat mat, .prob prob),
.lud = .struct (.mat 1lu, .index piv, .scal nrm,

.bool ready),
.svd .struct (.mat u, v, .vec sngval, .bool ready);
.mode .dec .union {(.ref .lud , .ref .svd });
.mode .scldmat .= .struct (.mat mat, .vec rows, .vec cols,
.bool scr, .bool scc, .bool sng):

fou

.op .defprob = (.mat m).prob :
(.heap .prb prob:=
(small scal, small scal, small scal * ten, small scal * ten,
.8ize m * 10); prob
):

.op (.matprob).lud .ludec
.0op (.matprob).svd .svdec
.0op .ludec
.op .svdec

.pr XREF LUDEC .pr .skip ;
.pr XREF SVDEC .pr .skip ;
(.mat m).lud : (.ludec .matprob (m, .defprob

B o

won

.0op .check
.op .check

(.lud 1lud).bool : ready .of lud;
(.svd svd).bool : ready .of svd;

L]

.op (.lud , .vec).vec .sol .pr XREF LUSOL .pr .skip ;
.0op (.svd , .vec).vec .sol .pr XREF 8VSOL .pr .skip :
.0p .solve = (.dec dec, .vec rhs).vec :

.case dec .in

(.ref .lud lud): lud .sol rhs,

(.ref .svd svd): svd .sol rhs

.esac ;

]

.0op .trims = (,scal r, .svd svd).svd :
.begin .mat u = u .0of svd, v = v ,of svd;
.vec sv = gngval .of svd;

.int n =1 ,upb u .min 2 .upb wu; .int k, rk:= 0, i:= 0;

.while (i +:= 1;
(i <= n ! (k .max sv[i:n .at 1i]) > r ! .false))
.do rk +:= 1; if k /= i
.then sv[i] =:= sv[k]l; ul,i] =:= ul[,kl; v[,i] =¢= v[,k]
LFi
od
.svd (ul,l:rk], v[,l:rk]l, sv[l:rk], ready .of svd)
.end #operator trims #;

.prio .so0l = 2, .solve = 2, .trims = 3;
L0p .8gr = (.,vec Xx).scal : x * x;
.op .sqr = (.scal x).scal : x * x;
.0p .nrm = (.,vec X).scal :
(.scal max := .maxabs x; .if max <= minscal .then zero

.else .vec vy = x / max; sqrt(y * y) * max .fi
) # vector norm with avoiding overflow due to squaring #;

.prio .nrm = 8;

m))
(.mat m).svd : (.svdec .matprob (m, .defprob m))

97

.proc genranvec = (.int n).vec :

.begin .proc ran = (.int 1i).scal : next random(setr):;
.vec Vv = ran .into genvec(n); Vv /< (.nrm V)

.end # generation of vectors with random elements #;

.int setr:= 10;
.scal zero .widen 0,

one = .widen 1,
two = .widen 2,
ten = .widen 10;

.scal onetenth = one / ten,
minscal = two ** (~975)
we choose this value, which performs well.
a precise choice of the smallest normalized real
number reguires a routine in machine language. #,
max scal = max real,
small scal = small real;

.proc rotvec = (.vec a, b, .scal ¢, s).void :
.begin .int 1 = .lwb a, u = .upb a;
.for k .from 1 .to u
.do .scal x = al[k], .ref .scal vy = b[k];
alkl:=c * x + s * y; y:= ¢ * y - g * x
.od
.end # rotation of two vectors #;

.op .dmul = (.vec d, x).vec :
(((.int 1i).scal :(d[i] * x[i])) .into
genvec(.upb x .max .upb 4d)};

.0op .dimul = (.vec d, Xx).vec :
({{.int 1i).scal :(x[i] / d[i])) .into
genvec(.upb x .max .upb d)):

.prio .dmul = 6, .dimul = 6;

.0p (.mat).scldmat .scale = .pr XREF SCALE .pr .skip :
.op (.scldmat).scldmat .scale = .pr XREF SCALMAT .pr .skip ;
.op (.scldmat).mat .bckscale = .pr XREF BCKSCLE .pr .skip ;

.pr PROG .pr .skip

.end # naprel, numerical algebra preludef

98

nlsprl:

prelude for Newton-like methods for solving systems of nonlinear
equations by J.C.P. Bus, update 80013,
embedded in numerical algebra prelude naprel in nlé68lib (id=jbus),
in this prelude a problem is defined and the various identifiers
used in the modules of the algorithms are defined and set to
default. this design is chosen in order to be able to use algol 68
as a reference language for unambiguous definition of the
algorithms. to be compiled by the following control cards:
attach,nl,nl681lib,id=jbus.
a68,i=1fn,p=nl/naprel,n.

#

.begin

.mode .func = .struct (.vec £, .bool in);
grEkxkkkknkkkkrikkkk® problem definition (see definition 7.,2) **&%*§

.proc fun:= (,vec x).func : .skip
the procedure defining the problem function has to be
assigned to fun,
the variables are given in x,

on exit either in .of fun(x) = .true and f .of
fun(x) contains the function vector, or
in .of fun(x) = .false

#:

.proc jacobian:= (.vec x).mat : .skip

the procedure defining the problem jacobian has to be
assigned to jacobian,
the variables are given in x,
jacobian will only be called if x is in the domain
of the function (fun(x) is called first),
on exit the jacobian matrix at x is delivered

#3

it is assumed that the procedures to be assigned to fun and
jacobian only use identifiers which have the same scope as
fun and jacobian #

.int n # the order of the function #;

.bool linpart:= .false # linpart = .true iff function has linear

components, default value is .false #;

.vec x0 # the initial guess to the solution #,

1b # the right hand side of the linear part #;

.mat la # the matrix of the linear part #;

.scal eprf # the rel. prec. of the function (see (6.3)) #,
epaf # the abs. prec. of the function (see (6.3)) #,
eprj # the rel. prec. of the jacobian (see (6.4)) #,
epaj # the abs. prec. of the jacobain (see (6.4)) #,
dif # the tolerance of the function norm #,
dlrx # the rel. tolerance of the variables #,
dlax # the abs. tolerance of the variables #;

grAT KA AR AR A AR hhhh ok h ko ko hdk end problem definition #*¥%*kkdkkkhkirhk

99

.int it # iteration counter #,
fcnt # function evaluation counter #,
jent # jacobian evaluation counter #,
dcnt # decomposition counter #,
maxit # maximum number of iterations allowed #;
maxit:= 50 # default value of maxit #;
.bool dif # .true iff difference approximation is used #,
anl # .true 1iff analytic jacobian is used #,
fix # .true 1iff fixed approximation is used %,
upd # .true iff update approximation is used #,
safe # .true iff all failure criteria have to be used #,
scale # .true iff scaling allowed #,
nongener # .true iff use of nongeneralized method allowed #,
gener # .true iff use of generalized method allowed #,
update # .true iff conditional updating allowed #;
dif:= anl:= fix:= upd:= scale:= .false ; .
safe:= nongener:= gener:= update:= .true ;
setting default values of these booleans
vec X # the current vector of variables #,
x3 # the last point at which non fixed approximation is
used #,
f # the current function vector #,
£0 # the previous function vector if inverse-updating is
used, otherwise the function vector at xj #,
dx # the current step vector #,
v # a vector with random elements and norm 1 #,
w # the product bl * v, with bl the previous approximation
to the jacobian #,
sol # for use in reducenewt, see section 56.11 #;
.mat b # the current approximation to the jacobian (or its
inverse in inverse~updating methods) #,
v2 # for use in reducenewt, see section 6.11 #;
.dec decb # the current decomposition of b #;
.mode .metric = ,struct (.int ¢, .ref .lud deca);
.metric a # if ¢ .0f a = 1 then the matrix a in the levelfunct-
ion (see (4.23)) is the identity matrix,
if ¢ .of a = 2 then a is the inverse of the jacobian
approximation at x0 and the decomposition is given in
deca .of a,
if ¢ .0f a = 3 then a is the inverse of b and its
decomposition is given in deca .of a #;
¢ .of a := 1 ¢ default value #;
.scal epsh = small scal * .widen 100 #lower bound differ. step#;
.scal nrmx, nrmf, nrmdx
norms of x, £ and dx #,
slevel$# the square root of the value of the levelfunction #,
omga # the approximation to omega or gamma (section 6.3) #,
beta, kappa, eta, labda, e
the approximations to these variables (section 6.3) #,
eta0 # the value of eta in the first iteration step #,
h # the difference step length #,
nrmul , nrmu2
nrm(ul) and nrm(u2), see section 6.2.2 #,
epf # (eprf + small scal) * nrmf + epaf #,
ej # the error in b(xj) #;
.scldmat scb# gives scaled matrix b if explicit scaling is used #;

#

100

[].cha
textl
text2
text3
textd
text5
texté
text7
text8
text9
textlo=
textll=
textl2=
textl3=
textld=
textlhs=
textle=
textl7=
textl8=
textly=

FEJ U | L I I TR

.proc
.proc
.proc
.proc
.proc
.proc
.proc
.proc

r
"no vrogress, maybe due to too high required precision
"no progress relative to error in function®,
"stationary point of norm of the function, no solution
"too many function evaluations or iterations reqguired"
"numerical singularity in triangular decomposition",
"failure of singular value decomposition”,
"rank of jacob. approx. equal to zero”,

"
14
"
v

¢

"error in jacob. approx. yields possible singular jacob.",

"nearby singularity of jacobian expected",
"difference approx. impossible, point on boundary doma
"divergence out of domain of function",
"starting point not in domain of function",
"eprf set to default (small scal)",

"epaf set to default (0)",

"eprj set to default (small scal)",

"epaj set to default (0)",

"dlf set to default (epaf)*’,

"dlrx set to default (small scal)",

"dlax set to default (small scal)®:

.scal calh = ,pr XREF CALH .pr .skip ;

.scal calgh = .pr XREF CALGH .pr .skip ;

(.vec) .mat diffjac = .pr XREF DIFFJAC .pr .skip ;
(.mat).void invupdl .pr XREF INVUPD1 .pr .skip ;
(.mat).void invupd2 .pr XREF INVUPD2 .pr .skip ;
.void cdatalr = .pr XREF CDATALR .pr .skip ;

.void cdatasv = .pr XREF CDATASV .pr .skip ;

(.ref .vec , .ref .vec).scal slefu =

.pr XREF SLEFU .pr .skip ;

.proc
.proc
.proc

,void strict = .pr XREF STRICT .pr .skip ;
.void resbis = .pr XREF RESBIS .pr .skip ;
(.scal ,.scal ,.scal ,.scal ,.scal ,.scal).scal quad

= .pr XREF QUAD .pr .skip ;
(.ref .scal ,.ref ,scal ,.ref .scal ,.ref .scal ,.ref .scal
.proc (.scal).scal ,.scal }.bool interp
= .pr XREF INTERP .pr .skip ;

.proc

.proc
.proc

.void resint = .pr XREF RESINT .pr .skip ;
(.ref .scal ,.ref .scal ,.ref .scal ,.ref .scal ,

.proc (.scal).scal).bool extrap = .pr XREF EXTRAP .pr

.proc .void resest = .pr XREF RESEST .pr .skip :
.proc .bool stopful = .pr XREF STOPFUL .pr .skip ;
.proc .bool stopspl = .pr XREF STOPSPL .pr .skip ;
.proc .void default = .pr XREF DEFAULT .pr .skip ;
.proc (.proc (.vec).mat).mat conupdjac =
.pr XREF CONUPD .pr .skip ;
.proc {.proc (.vec).mat).mat confixjac =
.pr XREF CONFIX .pr .skip ;
.proc (.proc (.vec).mat).mat confixjacg =
.pr XREF CONFIXG .pr .skip ;
.proc (.proc .bool).bool reducenewt = .pr XREF REDNEWT .pr
.skip ¢

.pr PROG .pr .skip

.end # prelude for nonlinear system solving #

il’l",

.skip

101

6.2. NUMERICAL ALGEBRA ALGORITHMS

6.2.1. Triangular decomposition

Given a nonsingular matrix B € L(]Qn), we obtain a triangular decompo-
sition by the process of triangularization with partial pivoting (i.e. with
row interchanges only) (see WILKINSON [1965, section 4.15 ~ 4.23]). Hence,
we find a permutation matrix P, a unit upper-—triangular matrix U and a

lower~triangular matrix L such that

Of course, round-off errors will occur during this process. In fact, if we
solve a linear system Bx = b in such a way, then we obtain the exact solu-
tion of the system (see DEKKER [1971] and WILKINSON [1965, section 4.24 -
4.291)

(6.5) (B + Ez)x = Db
with

3 2
(6.6) HE2H < eg{n”+5n7)

and g the so-called growth (i.e. the modulus of the in modulus largest
element in the matrix during the process of triangularization). Although,
one can construct pathological examples for which g becomes as large as

o1 max IBijl' in practice such a growth is very rare. With reference to
DEKKE§'3[1971, section 5] and WILKINSON [1965, section 4.27] we choose g
equal to a fixed multiple of some norm of B. We also replace n3+5n2, by
simply n, as it appears in practice that (6.6) yields a severe overestimate.

So, we obtain
(6.7) HEZ“ < 16en l8l.

In order to increase the numerical stability of triangularization one might
use complete pivoting (row and column interchanges) which is expensive, or a
combination of both complete and partial pivoting (see BUSINGER [1971] and
BUS [1972]). Using the last technique one easily obtaines a reasonable upper
bound on the growth g in (6.6). It depends on the software library to

be used for a specific implementation of a Newton-like program which

102

particular method shall be used for triangularization. In our experiments

in ALGOL 60 we use the combined pivoting strategy mentioned above. In our
ALGOL 68 descriptions we simply use partial pivoting. The process of trian-
gularization is terminated if in some stage the moduli of the elements in

the first column of the remaining submatrix (see WILKINSON [1965, section
4.20]) are all less than some pfescribed precision (Erk"B"). We choose S
and say that B is numerically singular if the process is terminated too early.
We choose this value to avoid calamities like arithmetic overflow on a com-
puter. In this stage, this precision is not related to the error in B as an

approximation to J(x). Such criteria are discussed in subsection 6.4.8.

Together with the triangular decomposition we give a program for forward
and backward substitution to calculate the solution of a linear system if the

triangular decomposition is given.

Description in ALGOL 68

.op .ludec = (.matprob m).lud :
.pr XDEF LUDEC .pr
.begin .mat lu = ,copy mat .of m; .int n = 1 .upb 1lu;
.bool ready:= .true ; .scal bnd:= zero;
.index p = .subscr 1lu[,1]; .vec v = genvec(n);
.for i .to n
.do v[il:= (.scal vi= .sqr 1lufli,];
bnd +:= vi; .if vi = zero .then
ready:= .false ; one .else one / sqrt(vi) .fi)
.od ;
.scal nrm:= sqgrt(bnd); bnd := nrm * (relacc .of prob .of m);

.for k .to n .while ready

.do .scal max:= zero; .int pk:= k; .vec colk = luf , kl;
.for i .from k .to n
.do .if .scal s= (.abs

(colk[i] =:= lufi, :k-1} * colk[:k=1]) * v[i]); s > max

.then pk:= i; max:= s .fi

.od

.if max < bnd .then ready:= .false

.else plk]l:= pk; vpk]:= v[k];
.if pk /= k .then 1lulk,] =:= lulpk,] fi
.vec rowk = luflk,];
.for i .from k + 1 .to n
.do rowk[i] =-:= rowk|[:k=1} * lu[:k-1,1i] .od ;
rowk[k+1l:] /< rowk([k]

Lfi

.od ; .lud (lu, p, nrm, ready)

.end # triangular (lu) decomposition of a matrix #
.pr FEDX .pr ;

103

.0p .so0l = (.lud 1lud, .vec rhs).vec :
.pr XDEF LUSOL .pr
.begin .int n = .upb rhs;
.index p = piv .of 1lud; .vec x = .copy rhs;
.mat lu = lu .of 1lud;
.for k .to n
.do .int pk = p[k], .scal r = x[k];
x[k}:= (x[pk] = lulk, =k=1]1 * x[:k-=1]) / lulk,k]:
.if pk /= k .then =x[pkl:= r .fi
.od ;
.for k .from n -1 .by -1 .to 1
.do x[k] =:= lulk,k+l:] * x[k+l:] .od ;
X
.end # forward and backward substitution # .pr FEDX .pr ;

7

6.2.2. Singular value decomposition

The singular value decomposition as described here is an ALGOL 68
implementation of the ALGOL 60 procedures from the NUMAL library (HEMKER
et al. [1979]). These procedures are transcriptions of the procedures given

by GOLUB & REINSCH [1971]. The decomposition consists of four parts:

- the transformation of the matrix to bidiagonal form using Householder
orthogonalization (routine: hshreabid),

~ calculation of the postmultiplying matrix from the Householder matrices
used to transform the matrix into bidiagonal form (routine: psttfmmat),

- calculation of the premultiplying matrix from the Householder matrices
used to transform the matrix into bidiagonal form (routine: pretfmmat),

- transformation of the bidiagonal matrix to diagonal form by the

QR-iteration process (routine: svdecbid).

The routines are combined in one operator (.op .svdec) which delivers: an
unordered singular value decomposition (the singular values are not given
in non-increasing order). Application of the operator .trims (see numerical
algebra prelude) orders the singular values and delivers the significant

part of the singular value decomposition (U Zr and Vl) according to (1.18).

1}
So we obtain for a given matrix B € L(Ifl), orthonormal matrices Ul,V1 and
a diagonal matrix Zr (cf. (1.18)) such that

Let B + E be the matrix which is exactly equal to the product of the numer-—

ically computed matrices U Er and V1, i.e.

1!

104
B+E=f (U)fl (I) (L (v.))T
T ottet1 e r e 1 ’

Then we assume that IEl < celBl, where ¢ is not much greater than n. This is
a reasonable assumption as orthogonal transformations are used to obtain the
singular value decomposition (see WILKINSON [1965, section 6.3]).

Operator .sol gives the solution of a linear system if the singular

value decomposition of the matrix is given.

Description in ALGOL 68

.0p .svdec = (.matprob a).svd :
.pr XDEF SVDEC .pr
.begin
.proc hsnreabid = (.mat a, .vec d, b, .ref .scal norm).void :

.begin .int m =1 ,upb a, n = 2 .upb a; norm:= zero;
.for 1 .to m
.do .scal w:= .sigmabs afi,];
.if w > norm .then norm := w .fi
.od ;
.scal machtol
.for i .to n

i

small scal * norm;

.do .int il= i + 1;
.if .scal s:= .sqr afil : , i]; s <= machtol
.then d[i] := ali,i]

.else .vec ai = afi ¢ , i]; .ref .scal f = aifl];
s+:= ,sqr f; .scal g= (d[i]:=
.if f < zero .then sqgrt (s) .else - sqgrt (s) .fi)
.scal h= f ¥ g - 53 £ ~-:= g;
.for j .from il .to n
.do ali ¢ , j] +< (ali = , j] * ai) / h * ai .od
N
Lif 1< n
.then .vec ai

.if .scal s:= .sqr ail[2 :]; s <= machtol

.then Db[i] := aill]

.else .ref .scal £ = aill];
s+:= ,sqr f£; .scal g = (b[i]:=
.if £ < zero .then sqgrt (s) .else - sqgrt (s) .fi);
.scal = f * g - sg; £ ~:= g;

.for j .from il .to m
.do alj, i1 ¢] +< (alj, i1 ¢+] * ai) / h * ai .od
LB
1
.od

.end # householder bidiagonalization of real matrix #; 4

#
.proc psttfmmat = (.mat a, .mat v, .vec b).void
.begin .co psttfmmat .co

.int n = 2 .upb a; # check : n = (1 and 2) .upb v #

vin,n] one;
.for i .from n-1 .by -1 .to 1
.do .int il= i + 1; .vec ai = ali, il :], vi = v[il ¢ , il:
.int revn = ,upb ai;
.if .scal h= b[i] * ai[l]l; h < zero
.then .for j .to revn .do vi[jl:= aif[j] / h .od ;
.for j .from il .to n
.do w{il s , j] +< (v[il : , 3] * ai) * vi .od
LEL o .
.for j .to revn .do v([i, j + i]:= vi[j] := zero .od ;
v[i,i] := one
.od
.end # post transformation matrix of householder matrices #;
.proc pretfmmat = (.mat a, .vec d).void
.begin .co pretfmmat .co
.int m =1 .upb a, n = 2 .upb a;
.for i .from n .by -1 .to 1
.do .vec ai = afi : m, i]; .int revm = .upb ai, il = i + 1,
.scal g= d[i]l; .scal h= g * ai[ll;
.for j .from il .to n .do ali,j] := zero .od ;
.if h < zero
.then .for j .from il .to n
.do afi s , j] +< (ail2 1] * afil = , 1) / h * ai .od ;
.for j .to revm .do ailj] /:= g .od
.else .for j .to revm .do ai[j]l:= zero .od
i o R
ai{l]+:= one
.od

.end # pre transformation matrix of householder matrices #;

.proc svdecbidgr = (.vec d, b, .mat u, v, .real nrm,
.prob prob) .bool
.begin .scal ¢, s,
.int n= ,upb .d, m=1 .,upb u;
.int nn:= n,
.scal eps:= relacc .of prob, bmax:= zero;
.int count:= 0, rnk:= n, imax:= maxit .of prob;
.scal dmin:= reltol .of prob, tol:= eps * nrm;
.while nn > 0
.do .int k:= nn, .int nl= nn - 1l;
next :
LAf ke:= 1; k > 0
.then .if .abs b[k] >= tol
.then .if .abs d[k] >= tol .then next .fi
C:= zZero; S:= one;
.for i .from k .to nl

105

.do .int il= i + 1, .scal f= s * b[i]; bl[i]l*:= c;

.if .abs £ < tol .then neglect .fi ;

.scal g= d[il]:

.scal h = (d[il]l:= sqgrt(.sqr f + .sgr g));
c:=g / h; s:= - £ / h;

rotvec(uf{ , k], ul , i1}, ¢, s)

.od
neglect : .skip
.elif .abs b[k] > bmax .then bmax:= .abs bl[k]
Lfi
LEL g

106

Lif k = nl
.then .scal dnn= d[nn]; .if dnn < zero
.then d[nn]:= - dnny;
.for i .to n .do v[i,nn]:= - v{i,nn] .od
LEL
.if d[nn] <= dmin .then rnk -:= 1 .fi ; nn:= nl

.else .if count+:= 1; count > imax .then end .fi ;
.int kl= k + 1;
.scal z= d[nn], .scal =x:= d[kl], y:= dinl],
g:= ,if nl = 1 .then =zero .else b[nl - 1] .fi ,
h:= b[nl];
.scal f:= ((y-z) * (y+z) + (g-h) * (g+h)) / (2%h*y);
g:= sqrt(.sqr f + one);
.if f < zero .then f-:= g .else f+:= g .fi ;
fe= ((x - 2) ¥ (x + 2) +h * (y/ £ - h)) / %x;
c:= s:= one;
.for i .from k1l + 1 .to nn
.do .int il= i - 1; g:= b[il]; y:= d[il]l; -
h:= s * g; g¥*:= c; .scal z=
sgrt(.sqr f + .sgr h); c:= £ / z; s:= h / z;
.if il /= k1l .then b[il - 1]:= z .fi ;
fe= x * ¢ 4+ g * g;
g:= g * ¢ - x * s; hi=y * g; y*¥:= c;
rotvec(v|{ , il], v[, il, ¢, s);
.scal zl= (d[il]:= sqgrt(.sgr f + .sqr h));
.if 2zl < small scal

.then c¢:= one; s:= zero; f:= g; x:= y
.else c:= f / zl; s:= h / 2zl;
fi=c * g+ s ¥ y; x:= ¢ ¥y~ 35 * g;
rotvec(ul[, ill, u{ , i]l, c, s)
Lfi
.od
b{nl]l:= f; d{nn}:= x
Lfi
.od ;

end : .skip ; nn = 0
.end # gr iteration on bidiagonal matrix yielding svd #;

.mat u = .copy mat .of a; .bool ready:
.int m = 1 .upb u, n= 2 .upb u;

.vec b = genvec(n), sv = genvec(n);

.mat v = gensquare(n); .scal norm;

.if m < n .then ready:= .false
.else hshreabid(u, sv, b, norm);
psttfmmat (u, v, b); pretfmmat(u, sv);
ready:= svdecbidqr(sv, b, u, v, norm, prob .of a)
LEL o
.svd (u, v, sv, ready)
.end # singular value decomposition of matrix #
.pr FEDX .pr ;

.op .sol = (.svd svd, .vec rhs).vec :
it is assumed that svd is trimmed at least with zero
.pr XDEF SVSOL .pr
.begin .vec % = rhs * u .of svd;

.for i .to .upb x

.do x[i] /:= (sngval .of svd)[i] .od ;

v .of svd * x
.end # solution of system with sing val decomposition #
.pr FEDX .pr ;

107

6.2.3. Scaling of a matrix

We give a description of scaling of a matrix with diagonal matrices
with elements equal to powers of two, according to subsection 1.3.5. The
pré- and post-multiplying scaling matrices are defined as in lemma 1.31,
except for the use of a simpler row and column norm. Instead of using the
euclidean norm we use the infinity norm: lxl= mgxlgi], with x = (€1,.¢.,£n)T.
We also give here a‘description of scaling of almatrix if the scaling

matrices are known (.0p scale) and of backscaling of a matrix (.op .bckscle).

Description in ALGOL 68

.op .scale = (.mat a) .scldmat :
.pr XDEF SCALE .pr
scale will yield a scldmat whose field mat points to a,the matrix
a is changed, its rows are multiplied with factors given in rows
and its columns with factors given in cols #
.begin .scal 1n2:= 1ln(two);
.int n =1 .upb a, m = 2 .upb a;
.scal max:= .widen (n * 4); .scal min:= one / max;
.bool reg:= .true , scr:= ,false , scc:= .false :
.Vec rows one .into genvec(n), cols = one .into genvec(m);
.for i .to n .while reg
.do .scal norm:= .maxabs afi,]:
.if (reg:= norm >= minscal) .and
(.bool bl = norm > max .or norm < min;
scr:= scr .or bl; bl)
.then al[i,] *< (rows[i]:= two ** _entier (-ln(norm)/1ln2)).fi
.od :
.for j .to n .while reg
.do .scal norm:= .maxabs af,jl;
.if (reg:= norm >= minscal) .and
(.bool bl = norm > max .or norm < min;
scc:= scc .or bl; bl)
.then a[,j] *< (cols[j]:= two ** _entier (=~ln(norm)/1n2)).fi
.od ;
.scldmat (a, rows, cols, scr, scc,.not reg)
.end # scaling of rows and columns of a matrix #
.pr FEDX .pr ;

108

.0p .bckscle = (.scldmat sa) .mat :
.pr XDEF BCKSCLE .pr
.begin .mat a = mat .of sa; .if scr .of sa
.then .vec rows = rows .of sa;
.for i .to .upb rows .do ali,] /< rows[i] .od
LEL
.if scc .of sa
.then .vec cols = cols .of sa:
.for j .to .upb cols .do al,j] /< cols[j] .od
JEL g
a .
.end # backscaling of scaled matrix #
.pr FEDX .pr ;

.0op .scale = (.scldmat sa).scldmat
this operator scales the matrix in sa with the factorsgiven in
sa, the matrix in sa is changed,in fact sa = .scale sa after

completion #
.pr XDEF SCALMAT .pr
.begin .mat a = mat .of sa; .if scr .of sa
.then .vec rows = rows .of sa;
.for 1 .to .upb rows .do ali,] *< rows[i] .od
R
.1if scc .of sa
.then .vec cols = cols .of sa;
.for j .to .upb cols .do al,j] *< cols[j] .od
.fi ; sa
.end # scaling of matrix with known scaling matrices #
.pr FEDX .pr ;

109

6.3. CHOICE OF APPROXIMATION TO THE INVERSE JACOBIAN

6.3.1. Introductory remarks

In the next subsections we describe in detail the various choices of
Wz(x,H) given in sections 4.2 and 4.4. We restrict attention to five basic

choices:

- inverse of analytic jacobian,

-~ inverse of difference approximation,

-~ inverse-updating approximation,

~ generalized inverse of analytic jacobian,

~ generalized inverse of difference approximation.

From remark 3.14 we see that the inverse of an update approximation is equal
to an appropriate inverse-update of the inverse of the original matrix. As
updating Newton methods require o(n3) arithmetical operations at each step
and inverse-updating Newton methods o(n2), we prefer inverse-updating as a
basic choice. Conditional use of updating as well as fixed approximation
are considered as optional features (see sections 6.8 and 6.9). We expect
fixed Newton algorithms to be inferior, particularly if initial guesses to
the solution are not good. Therefore, fixed approximation does not belong

to the set of basic choices given above.

6.3.2. Inverse of analytic jacobian

We assume that a routine is given in which the calculation of the ana-
lytic expressions for the elements of the jacobian matrix are programmed
(see .proc jacobian in prelude nlsprl, section 6.1). In fact, neither at the
initial phase, nor at the iteration steps, the inverse jacobian is calculat~
ed. Only a triangular decomposition is made and the linear systems are solved

by using this decomposition (see subsection 6.2.1).

6.3.3. Inverse of difference approximation

In order to calculate the difference approximation (see (3.5)) we have
to choose values for the difference steps hi (i=1,...,n) in such a way that
the approximation is well defined and its error is as small as possible.
Theorem 3.9 gives an upper bound on the approximation error e(x). For sim-

plicity we choose hi {i=1,...,n) by

110
(6.8) h, = h(1+|Ei|),

for x = (51,...,£n)T. Then with the notation u, = (1+|511,...,1+|€n])T,

_ -1 -1
u, = ((A+lE, D7, (avlg DT

tion 1.7 on some open neighbourhood U of x containing x + hiei (i=1,...,n)

, and assuming that F and x satisfy condi-

we obtain by (3.13)

1 ~ =1 .
(6.9) e(x) < = h (czh +c1h),

1-c
with !

51 = %w(x)“uln; 52 = 2.12ef(x)n(x)"u2“,
ef(x) = (e+srf)HF(x)H + €af

and n(x) given by (6.1). This upper bound on e(x) attains its minimum with

, with

respect to h (0 < h < 1/61) for h = hopt

- - - ,~1
hOpt = c2<—1+/€+(c1c2)) R

provided 5152 # 0. If 6152 = 0 then w(x) = 0 (F is linear) or ef(x) = Q
(eaf = 0 and F(x) = 0). We like to avoid that "hiei" becomes to large so
that possibly x + hiei lies outside the domain of the function.

Therefore we use 1 as an upper bound on h. Furthermore, if hi is chosen too

1 = . 2
small then it may happen that fle(6i+hi) Ei. As hi > Ehigil (e €)

h
> i =
guarantees that fl€(£i+hi) # £i, we demand hopt > eh, with Eh 100e. Some
calculations show that 1 2 hopt > ey is equivalent to the conditions

- - - - - 2~
(2c1—1)c2 + c1 =20, (Zehclul)c2 + ehc1 < 0.

We use these conditions in the definition of the approximated optimal value

for h
) [1, if (28-1)8, + & ; 0,
(6.10) h = o if (25hc1-1)c2 + ey =z 0,
- / PR | .
c2<—1+ 1+(c1c2)) , otherwise,
where €_ = 100¢g,

h

(6.11) ¢, = %w(x)"ulﬂ, c,

5 = 2€f(x)n(X)"u2",

and G(x) and 7 (x) approximations to @ and n(x) (see section 6.4). Note that,
at the moment we calculate h according to (6.10), we have not yet available
the difference approximation. Therefore N (x) will be based on the approxi-
mation to the jacobian in the previous iteration step. Finally, if x+~hiei¢ D
for some 1 (i=1,.,@]n), then we choose hi == ah(1+€i). If this still yields

a point outside D then the iterative process is terminated (error exit of

program) .

The initial values of H(x) and n(x) are chosen equal to 1. This yields

an initial value for h, which is required to calculate B(xo), using (6.10).

Description in ALGOL 68

.proc calh = .scal :
.pPr XDEF CALH .pr
.begin nrmul:= nrmul2:= zero; .for i .to n
.do .scal aid:= (one + .abs =x[i]) ** 2
nrmul +:= aid; nrmu2 +:= (one / aid)

.od ; nramul:= sqrt(nrmul); nrmul:= sqrt(nrmu2) ;
.scal cl:= nrmul * omga / two, c2:= nrmu2 * epf * eta * two;
he= (.if (cl * two -~ one) * ¢c2 + cl < zero .then one
.elif (cl * epsh * two - one) * ¢2 + cl * epsh ** 2 >= zero

.then epsh
.else (sqrt(one + one / (¢l * c2)) =~ one) * ¢2
LEi)

.end fcalculation of difference step in non-generalized case #
.pr FEDX .pr ;

.proc diffjac = (.vec x).mat
«pr XDEF DIFFJAC .pr
.begin .mat jac = gensquare(n);
fent +:= ny .for 3§ .to n
.do .vec x1 = .copy x;
.scal hj:= .abs x[j] * h + h; x1[j] +:= hi;
-func fu:= fun(xl); .bool in:= in .of fu;

Lif (in ! Ltrue
! hj:= small scal * ten * ten;
hj +:= (.abs x[j] * hj); x1[j]:= x[3] + hi;
fu:= fun(xl);
(in .of fu ! .true ! torrix(warning, textl0); .false)

)
.then Jjac[,3]:= (£ .of fu -~ f) / hj .fi
.0d ; Jjac
-end # difference approximation of jacobian for given step #
.pr FEDX .pr

112

6.3.4. Inverse-updating approximation

We distinguish two inverse-jacobian update functions (see remark 3.17).

These are V(u(x,H)) (see (3.18)) with

(6.12) u(x,H) = H(F(Wl(x,H))—F(x))
and
(6.13) u(x,H) ='W1(x,H) - X,

We combine these methods with fixed approximations as follows

V(u(x,H))(H,x,Wl(x,H)), if (x,H) € Dy,

(6.14) v, (x,H) ={
H, if (x,H) £ Dy s
where Y defines the inverse-updating process, ¥ the resulting combined

process (@1 H Wl) and DW the domain of ¥ (see (4.15)).

Description in ALGOL 68

.proc invupdl = (.mat b).void :
.pr XDEF INVUPDl .pr
.begin .vec u = b * (f - £0);
Lif .abs (dx * u) > small scal * nrmdx * .nrm u
.then .vec v = dx - u; u:= (u / .sqr (u)) * b;
.for j .to n .do b[,3] +< (ulj] * v) .od
LEi
.end # inverse updating with u
.pr FEDX .pr ;

1

h \ (£~ £0) #

.proc invupd2 = (.mat b).void :
.pr XDEF INVUPD2 .pr
.begin .vec v = b * (f -~ £0);
.scal dxv:= dx * vg3
Lif .abs dxv > small scal * nrmdx * .nrm v
.then .vec u = (dx * b) / dxv; v -< dx:
.for j .to n .do Db[,j] =< (ulj]l * v) .od
Lfi
.end # inverse updating with u = dx #
.pr FEDX .pr ;

6.3.5. Generalized inverse of analytic jacobian

The analytic jacobian is given by .proc jacobian (see prelude nlsprl
in section 6.1). We do not calculate the generalized inverse but only a

singular value decomposition (see subsection 6.2.2.).

6.3.6. Generalized inverse of difference approximation

As in subsection 6.3.3 we have to choose values for the difference
steps hi (i=1,...,n) in such a way that the approximation is well defined
and its error is as small as possible. Theorem 3.10 gives an upper bound

on the approximation error e+(x) (cf. (6.2)). We cbtain, with hi as in (6.8)

(6.15) etix < <+ Egh"l,
where

ot = wyEntlul, o = 2a12ef(x)n+(x)“u2"

and y(x) the Lipschitz constant of condition 1.6 for some open neighbourhood
of %. Using the same lower and upper bounds as in subsection 6.3.3 we define

the approximated optimal step ht by

1, if é; < &;,
(6.16) ht = € if EI x eﬁ = &t,
Vc; / 51, otherwise,
where
at = LY o S I
(6.17) ct %Y(x)ﬂulﬂ, ¥ Zef(x)“u2

and ?(x) is an approximation to yv(x). Note that E{ / 6; does not depend on
n+(x) so that we can choose EI and E; independent of n*(x)» The initial
approximation to y(x) is: ?(xo) = 1. We only give a formal description of

the computation of the difference step. Computation of the difference approx-
imation with this difference step has to be done with the routine diffjac

(see subsection 6.3.3).

Description in ALGOL 68

.proc calgh = ,scal :
.pr XDEF CALGH .pr
.begin nrmul:= nrmu2:= zero; .for i .to n
.do .scal aid:= (one + .abs =x[i]) ** 2;
nrmul +:= aid; nrmu2 +:= (one / aid)
.od ; nrmul:= sqrt(nrmul); nrmu2:=sqrt{nrmul);
.scal c¢l:= nrmul * omga / two, c2:= nrmu2 * epf * two;
h:= (,if ¢l < ¢2 .then one
.elif ¢l * epsh ** 2 >= c2 .then epsh
.else sqgrt(c2 / cl)
LE10)
.end # calculation of difference step in generalized case #
.pr FEDX .pr ;

114
6.4. APPROXIMATION OF REQUIRED DATA

6.4.1. Introduction

Most algorithms described in this chapter use approximate values of
quantities depending on function and method (w, Y, B(x), k(x), e(x) etc.
(see notation 5.1)). The method of approximating these quantities is de-
scribed in this section. We assume that F, A ¢ L(IJI) and xk(k=0,1,...)
satisfy condition 1.10 or, if generalized methods are considered, condition

1.9. Moreover, we assume that W, ? # 0 and F(x,) # 0 for kX = 0,1,... .
*k

We restrict attention to Newton-like algorithms with an approximation
to the jacobian as described in section 6.3. So, only the two strict inverse-
updating algorithms generate Hk explicitly. In these inverse-updating algo-
rithms we do not use any of the approximate values described in this section,
for reasons that will become clear in subsection 6.5.1. So we may restrict
attention to algorithms using approximations to the jacobian without explic—
itly inverting these approximations. For simplicity we say that the processes
considered in this section generate a sequence {(xk,Bk)} for a given start-

ing point (xO,BO), instead of {xk,Hk)} for (xOHO). We have the relation

Hk = B;l or Hk = B;, k=0,1,...,

depending whether classical or generalized inversion is used and assuming

that in the first case the inverse exists.

In the remaining part of this section we describe the actual approxi-~
mation to the values of the relevant quantities. We assume that for some
k .
k 2 0 the sequence {(xi,Bi)}i_o is generated by a given Newton-like process

for starting point (xO,BO). We distinguish two cases

1. Classical Newton-like methods. We assume that condition 5.3 is satisfied

i i ® K e n g |)
and that approximations W, éi' Ki, e, ni and Bi to w(xi) (and ®),

Bi, Kir €50 My and "Bi" are given for i < k. Note that we use an

approximation to ® which depends on the iteration index. We shall pay

attention to this point in subsection 6.4.2. We want to calculate &k' Sk’

& 1 s 1.
Kk, ek, nk and Bk
2. Generalized Newton-like methods. We assume that F, A = I (see remark 4.33)

and x; (i=1,...,k) satisfy condition 1.9 and that approximations Qi' é;,

115

nt I3 1 3, eF N i
r, n] and Bi to Y(xi) (and ¥), el rank(Bi), ny and HBiH are given for

+

i < k. We want to calculate ?k' é;; f;, ﬁk

8 k.
and Bk
The description in ALGOL 68 of these calculations has been given at the

end of this section.

6.4.2. Approximation of Wy

Let condition 1.5 be satisfied and J(x) be nonsingular for some x € D.

Then w(x) defined by

(6.18) w(x) = sup "J(x)nlJ(y) -1l / ly-xl
yeD
y#x

can be used in condition 1.7 and if condition 1.8 is satisfied for F, x and

A then o defined by

(6.19) w = sup w(y),
yeSF(x,A)

with w(y) given by (6.18) can be used in condition 1.10. However, using
(6.18) leads to a rather elaborate computation to obtain m(xk) and careful
examination of the various applications yields easier and more efficient
suggestions. We consider four possible situations in which an approximation

to w(xk) or ® is used.

i. Application of remark 5.9 to obtain an a-priori estimate of the step
length factor. This application is based on theorem 5.4. In fact, the
formulation of the results is such that in the k-th step we can approxi-
mate w by (6.19) with x replaced by Xy - However, from remark 5.6 we see
that this would yield a too strong condition and that we can apply (5.28)
and (5.29) to obtain a reasonable estimate to » at the k-th iteration
step. First note that, with x = kal, we have for s = 1 and small t (see
(5.16)) w(t,s) = z(t) and

-1

By gy O

=) - el E ~
p(t)~x =ty F _, +olt)

Furthermore,

-1
z(t) = X4~ tBk—le—l'

~1 . :
As Jk Fk is the direction in which a new iterate is searched for, we ex-

pect it to be a reasonable approximation to the direction z(kk_1)-p(xk_1).
-1

K Tk
in (5.28) and (5.29) we obtain two lower

Assuming that e is small we approximate this direction by B . Now

substituting s = 1 and t = Ak—l

bounds on the value of w(xk) to be computed

-1 -1
I - | -
20 _ PP T DB Fy! 1By B AR
k -1 - N
ﬂxk—xk_lﬂ "Bk Fk“ "Xk—xk-lu "Bk\Fk"
-1 -1
I - I - I
i Pk Pt DB P! BB Ve
k 1 =
% - | I - | |
B -1 P tFret b o 1B\
We shall approximate &k by

-0 .1
max (W, ,o,), if B, # B '
(6.20) 8, = { k" "k k k-1
mk—l' if Bk = Bk—l'

Notice that computing &, only requires computation of Bk—I\Fk and

k
Bk\Fk—] in addition to what has to be done anyhow. As decompositions of
Bk and Bk—i are available, the number of basic arithmetical operations
to compute Qk is of order n2. Furthermore, if Bk = Bk-l (fixed approxi-
. ~0 -1
mation) then wk = mk = 0.

2. Application of theorem 3.16 to obtain an a-priori upper bound on the
error in the jacobian approximation if update approximation is used (see
corollary 5.15). As follows from the theorem we need in the k-th iteration
step (k=1,2,...) an approximation to w(xk) on the set D0 = {zEz =

is not available the approximation given

1
k "k k+1
by (6.20) seems to be a reasonable alternative.

xk-tB— F , t e [0,1]}. As B

3. Application of theorem 3.19 to obtain an a-priori upper bound on the
error in the fixed jacobian approximation (corollary 5.17). For this case

we can make thé same observations as for the second case above.

117

4. Application of theorem 3.5, in order to obtain an a-priori upper bound
on the error in the difference approximation to the jacobian, and (6.10)
to compute the optimal difference step. For these cases (6.19) can only

be simplified to

w(x) = sup ﬂleJ(y) ~- Tl y-x I,
k k
yveU (xy,8)
yA%,
for § > 0 such that (En h2)lj < §. If % € U(x,8), B = J and
1 i=1 i k-1 PRI TReq k-1
Bk = Jk then &k is a lower bound on the desired value.

The above cases suggest to use &k given by (6.20) except for application 4.

Anyhow it is about the best we can with the information available. For the

same reason, although we may expect ®, to be too small in the fourth case,

k

we also use &k in this case. Moreover, as calculation of &k is cheap, its

use is very attractive.

As is shown in section 6.6 we shall also use &k in two other applica-

tions. One, a failure criterion, is based on theorem 5.7 and therefore the

same arguments as in case 1 hold for use of @ The other is a convergence

.
criterion based on theorem 5.18. The usefulness of &k in this case is dis—

cussed in section 6.6.

6.4.3. Approximation of Yy

The value of ?k is used for obtaining an upper bound on the error e;
in the difference approximation in generalized difference Newton methods

and for computing an optimal difference step according to (6.16). Further-
more, it is used in the condition for fixed approximation (corollary 5.17).

Except for the last application we need an estimate to

Y, = sup bayy = T) /ly-x I,
k ®€U (%3, 6) k "k

Y#xk

We like to avoid computation of additional jacobian approximations. There-

fore we use Bk and Bk—i yielding

i - (-
BBy I/l -x 1

118

as an approximation. To compute a norm of B B, requires, however, storing

k-1 "k
of both Bk—l and Bk. Therefore, we simplify this expression even more
yielding
. 7. = - p -x |
(6.21) T "Bk»1V Bkvll/llxk_1 x N

where v = vl/"vlﬂ, with elements of v, randomly chosen in [~-1,+1].

1

6:4.4. Approximation of Bk

To obtain an approximation to Bk one may choose several X ¢ SF(xk,A)
and evaluate ﬂB(x)\Fk", where B(x) is an approximation to J(x). We obtain an
approximation to Bk by taking the maximum of the values 6btained. However,
this requires evaluation of an approximation to J(x) at other points than
the iteration points, which is highly unattractive. Therefore, we use only
Bk’ the approximation to J(xk). So

(6.22) R = HBk\FkH.

k

If J(x) is reasonably smooth on SF(xk,A) and its condition number is not

large relative 1, then ék is a good approximation to Bk'

6.4.5. Approximation of Ky

By notation 5.1 we have
~1
. = I .
(6.23) Ky ﬂAJk" ”Jk Fy /HAFkH

An approximation to k., is used for estimating an a-priori step length factor

k
using remark 5.9 and for some stopping criteria. We distinguish three typi-
cal choices for the matrix A in the level function (see 4.23). In fact, this

defines three typical ways of implicit scaling (see remark 4.18).

1. A= 1.
Neo implicit scaling is performed and restrained methods with such a
choice are not affine invariant. Replacing Jk by Ek in (6.23) yields as

an approximation to Ky

(6.24) K = HBkU “Bk\FkU/HFkH,

. 119

Using the perturbation lemma 1.13 and the definition of e, it is easy to

k
show that
1-e 1+e
k - k
(6.25) K, <k, < K, .
1+ek k k 1 ek k

Hence, 1if e

-1
2. A = BO .

X is small then Ek is a good approximation to Ky -

Implicit scaling with the inverse of the jacobian approximation at the
initial guess. This choice satisfies condition (4.24) for all nonsingular
matrices T ¢ L(nf‘). Hence affine invariant restrained methods can be

constructed with this choice. Replacing J, by its approximation B, in

k k

(6.23) yields an estimate Ek to Ky ?

_ -1 -1 -1
= | (. /0 .
Ke = 1By By 1 B R /0By TEy

k replaced by Kk. Hence Kk is a

X for small e - However, direct computation of

"BalBk" requires o(n3) basic arithmetical operations. Therefore we ap-

For this estimate. (6.25) holds with K

good approximation to k

proximate this norm yielding

. e, = i It /0 i
(6.26)) BO\(BkV) Bk\Fk / BO\F ’

where v = vl/"vlﬂ and v, a vector with elements randomly chosen in

1

[‘1r+1].
-1
. A =B .
3 k
With this choice we can also construct affine invariant restrained algo-
rithms. Replacing Jk by Bk in (6.23) yields as an approximation to Kyt
(6.27) Ky = 1.

Note however, that the global convergence result 5.8 is not applicable

to methods with variable A, Finally, k. satisfies (6.25).

k

+
6.4.6. Approximation of “Bk“' and Ny

M

For several matrix norms which are compatible with a vector norm, it

requires only o(nz) arithmetical operations to calculate that norm of a

120

matrix. E.g. the infinity-, one~ or Frobenius norms. One might choose "ﬁk"
equal to one of these norms of Bk. If a singular value decomposition of Bk
is available, hence in all generalized algorithms, we simply choose

18,0 = oy,

where 9 is the largest singular value of B

the other algorithms

n 5
15 1 - max 2
Bl = gien (1 Biy)*
i=1

e For simplicity we choose in

because the operator .ludec as well as the procedure used for triangular
decomposition in our ALGOL 60 experiments yield this value as an auxiliary

result. For other programming systems other choices may be more attractive.

The approximation of Ny is more complicated. In fact a computation of
HB;1" requires explicit computation of B;I, also for other norms than the

spectral norm. This is very unattractive. Therefore, we use the approximation
6.28 n =1 I
() e B(Kk) \wvl,

where v = vl/"vlﬂ with v, a vector with elements chosen randomly in [-1,+117.

Finally, approximation of ﬁ; is at hand:

At = -
(6.29) ne l/Gr; ’

with E; the approximated rank of B, and, therefore, Oii the smallest nonzero

k
singular value.

+
6.4.7. Approximation of e and e

Approximation of ek and e; depend on the choice of the approximation of

the jacobian. We distinguish the basic choices of section 6.3.

Inverse of analytic jacobian.

Backward analysis of the triangular decomposition process and considering
numerical errors in the computétion of J(x) (see (6.4)) yields that we, in

fact, approximate J(x) by

121

(6.30) B = J(x) + E1 + E2,

where, with use of the approximate upper bound on "Ezu given in (6.7),
(6.31) et <e . blagl+e .; Il < 16enlsl,
1 ri aj 2

S50, e, as defined in (5.4) is approximated by its approximate upper bound

k

(6.32) é

- nk((srj+16an) ||Bk"+eaj).

Inverse of difference approximation.

We can use formula (6.9) to approximate the error due to difference approxi-
mation and (6.7) to approximate the error due to triangular decomposition.

Including both errors, the inverse jacobian is in fact approximated by

(Bk+E2)—1 with E2 satisfying (6.31). Using lemma 1.13 (formula (1.6), with
A = Bk+E?’ B = Bk) we obtain for the error, including round off
. I B}"{lu Is,!
(6.33) e, +8) "3 ~ Il <e' 4 —2e 1+et),
k 2 k % =L k
1—HBk HHEZH

where e' is the upper boud on the error due to difference approximation

k
(see(6.9)). Therefore, an approximation to the error may be
16n€ﬁk"ﬁ I ~
(6.34) g = ek + mr (1+ek)
k "k

with PP | -

_ czﬁ + &h

k 1 - &1h

and El and 62 given by (6.11). In our ALGOL 60 experiments we neglected the

second term in the right hand side of (6.34). Only in very exceptional cases
((almost) linear functions and (almost) exact computation of the function,

so that &k and ef(xk) are (almost) equal to zero) this term is not negligible
relative to the first one. Moreover, only large values of ék (relative to

£) influence the Newton~like processes.

122

Inverse-updating approximation.

If we use inverse-updating in every step, then the error bound based on
theorem 3.16 increases in every step. In fact, this bound may become so
large that it is useless for the applications we have in mind (for restrain-
ing strategies (see section 6.5) or failure criteria). Therefore, in the
basic inverse-updating algorithms we do not use an approximation to -
Only if updating is performed conditionally we calculate such an approxima-

tion.
Generalized inverse of analytic jacobian

Using (6.4) and the bound on the error due to round-off during the singulax
value decomposition (see subsection 6.2.2) we take as an approximation to e;

(cE. (6.2))

A+= -~ -~
(6.35) &t nk((erj+ne)"BkH+eaj).

Generalized inverse of difference approximation.

We can use (6.15) to approximate the error due to difference approximation

and the bound given in subsection 6.2.2 due to singular value decomposition.
+

So we take as an approximation to ek:

at = (atet 4 ot gyl 2oy at
(6.36) ey (c'i'hk + c2(hk) - ns"Bk")nk,

+
2

ne“ﬁk" relative to the other terms, as only in very exceptional cases

with E{ and ¢’ given by (6.17). In our ALGOL 60 experiments we neglected

(ET and 6; are (almost) equal to zero) this term is not negligible.

In all cases we use l-e as an upper bound on the approximated error in

order to avoid arithmetic overflow in some parts of the algorithms.

6.4.8. Approximation of the rank of Bk

We distinguish between algorithms using triangular decomposition and
algorithms using singular value decomposition. In the first case we are
only interested in a possible breakdown of the process of triangular de-

composition, in the latter we need an approximation to the rank of Bka

123

Triangular decomposition.

We say that B, is singular if the process of triangularization breaks down

k

with Erk = £ (see subsection 6.2.1.), otherwise Bk

equals n). In section 6.6 we describe some failure criteria which relate

is nonsingular (rank

singularity of B, to the error in B, as an approximation to J

k k k"

Singular value decomposition

- ; ' o lge -l *e ;
If Bk is nonsingular then ek JkBk Il and ek 1 guarantees that Jk is
nonsingular. We use this condition to approximate the rank T of Bk, In fact,

we say that Bk is singular if the error bound is so large that nonsingularity

of Jk cannot be guaranteed. Let I = diag(ci,...,cn) be the diagonal matrix

of singular values of B, . Notice that we have defined ﬁ; = 1/of+ (see (6.29)).
k

; given by (6.35) or (6.36), yields the

k
Hence, the condition é; < 1, with &

following definition of 2;.
6.2. DEFINITION. The approximated rank f; of Bk is the largest integer less
than or equal to n such that
(6.37) 02; > Ck,
where
R = (g .+ I8 I+
(6.38) Ck (erjine) Bk eaj
if the analytic jacobian is used and
- &t at + &r@Eh 7t I3,
(6.39) Ck =& ﬁk + cz(hk) + ne Bk

if the difference approximation is used.

6.4.9. Description in ALGOL 68

We distinguish between calculation of required data in nongeneralized
algorithms (.proc cdatalr) and in generalized algorithms (.proc cdatasv).
In these routines we also perform the decomposition of the matrix and com-
pute the direction of search. So, in those algorithms in which no data as
described in this section is required (e.g. inverse-updating algorithms
(see section 6.7)) we replace a .call of one of these routines by the state-
ments:

dx := -b % f£; nrmdx := .nrm dx; £f0 := f;

124

.proc cdatalr = .void :

.pr XDEF CDATALR .pr

.begin .if it = 1 .then decb:= .heap .lud := .ludec b .fi ;
.case decb .in (.ref .lud blu):
.begin .if fix .then dx:= -(blu .sol f); beta:= .nrm dx

.elif it = 1

.then dcnt +:= 1; .if .not .check blu
.then torrix(warning,textb); ready .fi ;
dx:= ~(blu .sol £f); beta:= .nrm dx; omga:= one;
Jif ¢ Lof a > 1
.then deca .of a := blu; slevel:= beta
.else slevel:= nrmf .fi ; xj:= x; f0:= £

.else .vec d01 = blu .sol £; blu := .ludec b;
dcat +:= 1; .if .not .check blu
.then torrix(warning, text5); ready .fi ;
.if ¢ .of a = 2 .then deca .of a := blu .fi ;
.scal oml:= .nrm ((blu .sol f0) * labda + dx):
dx:= =(blu .sol f); beta:= .nrm dx; .
.scal om:= .nrm (d0l + dx);
oml /:= (nrmdx ** 2); om /:= (nrmdx * beta);
omga:= om .max oml; xj:= x; f0:= f

.fi ; nrmdx:= beta;

kappa:= .case ¢ .of a .in
nrm .of blu * nrmdx / slevel,
.nrm (deca .of a .sol (b * v)) * nrmdx / slevel,
1 .esac ;

eta:= .nrm (blu .sol v); .if it = 1 .then etal:= eta .fi ;

n

.scal aid:= eta * nrm .of blu .widen 16 * small scal;
.if anl

.then e:= ej:= (eprj * nrm .of blu + epaj) * eta + aid

.elif dif

.then e:=

nrmul * omga / two,
nrmu2 * eta * epf * two;
c2:= ¢c2 / h+ cl * h; cl:= one - cl * h;
c2:= (cl < c2 ! one ! ¢c2 / cl);
(aid * two > one ! one !
c2 + (one + c¢2) * aid / (one - aid)))
.fi ;3 e:= e .min (one - small scal):
ready: .skip
.end .esac
.end #computing data and step direction in case of lu decom #
.pr FEDX .pr ;

Bonon

ej:
(.scal «cl:
c2:

.proc cdatasv = .void :
.pr XDEF CDATASV .pr

.begin .if it = 1 .then decb:= .heap .svd := .svdec
.case decb .in (.ref .svd bsv):
.begin .if .not fix
.then omga:= (it = 1 ! w:= b * v; one
i .nrm (w - (w:s= b * v)) / nrmdx);
.if it > 1 .then bsv:= .svdec b .fi ;
dent +:= 1; xj:= x; .if .not .check bsv
.then torrix(warning, text6é); ready .fi
Lfi g .
.scal maxval:= .max sngval .of bsv;

.scal aid:= maxval * n * small scal;
.scal ck:= (anl ! maxval * eprj + epaj + aid
f: dif ! nrmul * omga * h / two

+ nrmu2 * epf * two / h + aid);

Lif it = 1 .then slevel:= nrmf .fi ;
.1f anl .or dif
.then bsv:= ck .trims bsv;
.int rk = ,upb sngval .of bsv;
eta:= one / (sngval .of bsv)[rk];
e:= ej:= (ck * eta) .min (one - small scal)
LB
nrmdx:= .nrm (dx:= = (bsv .sol f£f));

kappa:= maxval * nrmdx / slevel;
Lif .nrm (u .of bsv * f) < epf

.then torrix(warning, text3) .fi ;
ready: .skip
.end .esac
.end

.pr FEDX .pr ;

b

Cfi

computing data and step direction in case of sv dec

v

125

126

6.5. RESTRAINING STRATEGY

6.5.1. Introduction

In this section we shall describe three possible restraining strategies
together with the module used in strict algorithms to calculate a new point

and its function value. Define the level function (c£. (4.27)):
(6.40) d(t) = ﬂAF(z(t))“z, t e [0,1],

where z(t) = x~tHF(x) and A € L(IJI) nonsingular. We can only guarantee the
existence of t € [0,1] such that ¢(t) < ¢(0) (cf. (4.23)), if the step direc-
tion (~HF(x)) is a descent direction for IaF(y)l at y = x. Assuming that

F and x satisfy condition 1.5, F(x) # 0 and J(x) is nonsingular, lemma 4.19
states a sufficient condition for ~HF (x) being a descent direction (see also

condition 5.3 (vi)), viz.

(6.41) e(x)k(x) < 1.

Therefore, in our non-~generalized restrained Newton-like algorithms we use
such a condition (see section 6.6) in order to guarantee the existence of

a step length factor.As is already mentioned in subsection 6.4.7 the approx—
imate error in inverse-updating algorithms is increasing in every step and
may easily become too large. Therefore, we have no good way to quarantee
existence of a step length factor in inverse-updating algorithms. As a con-
sequence, we shall not consider restrained inverse-updating algorithms. In
the generalized algorithms nonsingularity of the jacobian is not quaranteed.
In these algorithms we simply try to find an appropriate step length factor
and terminate the process if we can not find one. Note that we use approxi-
mations to Ky and ey which may be bad. Therefore, condition (6.41) is not
sufficient to guarantee existence of a step length factor. We shall use an
additional failure criterion in order to avoid looping during restraining,
which particularly may occur if numerical errors in the function are large
relative to the required precision. This criterion is based on (6.3). Let

t,,t, and t, € [0,1] be three successive attempted values for the step length

17-2 3
factor, obtained by one of the strategies described in subsections 6.5.3,

6.5.4 and 6.5.5), then the algorithm is terminated if

(6.42) I/qb(ti) - /¢(ti+1)[<egx, i=1,2

127

We choose ef(x) (see (6.9)) instead of erf“F(x)“+saf, just for ease of pro-
gramming. This value is available in most algorithms and the essential effect
is the same. Inequality (6.42) has to hold for three successive values, as
for two values it might occasionally hold if z(tl) and z(t2) lie on different
sides of a valley of ¢(t). Of course, there is still a chance that a reason-
able p can be found although (6.42) is satisfied, but we think that this
chance is small enough to be negligible. Due to (6.42) and the fact that
flE(¢(t)) = fle(¢(0)) for t small enough, the restraining process is always
terminating if successive values for the step length factor are decreasing
to zero.

Finally we give an ALGOL 68 description of a routine, which is used in
all algorithms. This routine calculates the function value and the square
root of the value of the level function. If the argument vector is out of

the domain of the function then max scal is delivered.

Description in ALGOL 68

.proc slefu = (.ref .vec x, f).scal

<pPr XDEF SLEFU .pr

.begin .func fu = fun(x); fent +:= 1; .if in .of fu
.then f:= f .of fu;

(c .of a=11! .ntm f ! .nrm (deca .of a .sol £))
.else max scal .fi

-end #computing function and level function #
.pr FEDX .pr ;

6.5.2. No restraining.

We choose A(x,H) = 1, for all (x,H) € D x L(Rn).

Description in ALGOL 68

.proc strict = ,void :
.pr XDEF STRICT .pr
.begin x:= x + dx; slevel:= slefu(x, f):
.if slevel = max scal .then torrix(warning, textll)
.else nrmf:= .nrm f .fi
.end # strict step with function evaluation at new point #
.pr FEDX .pr ;

128

6.5.3. Bisection.

Let (x,H) € D x L(Rn). Suppose there exists an integer p =2 0 such that
(6.43) p=min(i]i e N, ¢$(277) < ¢(0)),

where N denotes the set of nonnegative integral numbers and ¢ is defined by
(6.40) . Then we choose

A, E) = 2P,
p is calculated by trying subsequently p = 0,1,2,... . i
Note that definition of the level function by .proc slefu is such that, if

~i

z(t) lies outside the domain D of F for some t = 2 e [0,1], then the pro-
cess is not terminated, but bisection is continued until a value is found
which yields a point in the domain. Such a value exists as x ¢ D and D is

open.

Description in ALGOL 68

.proc resbis = .void

.pr XDEF RESBIS .pr

.begin .scal nrmfl:= zero, slevell:= slevel;
Lint ig=

0; labda:= two;
.vec x1, fl:
.while

slevell >= slevel .and
(.abs (nrmf - nrmfl) <= epf
Po(i= 2t .false ! i:= 2; .true
I i:= 03 .true) .or nrmfl = max scal
.do labda /:= two; xl:= x + labda * dx;
slevell:= slefu(xl, fl);
nrmfl:= (slevell = max scal ! max scal ! .nrm fl)
.od
x:= xl; dx:= labda * dx; f:= fl; nrmdx *:= labda;
nrmf:= nrmfl; slevel:= glevell; .if 1 = 2
.then .if anl .or dif
.then torrix(warning, text2)
.else e:= ej:= one -~ small scal; reset number of warnings
IS B & |
.end # restraining with bisection and evaluation of function at
new point #
.pr FEDX .pr ;

129

N.B. If (6.42) is satisfied and conditional updating or fixed approximation
is used (.not(anl .or dif)) then the process is not terminated. We first try
an iteration step with calculation of the analytic or difference Jjacobian,
which is automatically induced in such algorithms if e and ej are set to

1 - & (see section 6.8 and 6.9).

6.5.4. Interpolation.

Let be given (x,H) € D X L(mﬁ). By successive quadratic interpolation

we may determine tm € [0,1] such that ¢(tm) < ¢(0) and set
Ax,H) = tm.

In our algorithms we first test whether the condition ¢ (1) < ¢(0) is satis-
fied. If this is true then A(x,H) = 1; otherwise we use quadratic interpola-
tion starting from the points t = 0, t = 0.5 and t = 1, to find a value

tm e (0,1) satisfying ¢(tm) < ¢(0). In the interpolation algorithm, which is
defined by .proc quad and .proc interp, we use the fact that, for t small
enough, ¢(t) < ¢{0) has to be satisfied. Interpolation is performed subse-
quently, with t = 0 and the two smallest approximations to tm found so far.
As soon as a value is found for which the value of the levelfunction is

less than ¢(0) we choose t equal to this value. We use (Erxﬂxﬂ+eax)/”HF(x)"
as a lower bound on the value of A(x,H). Two successive values differ at
least with this value. If the lower bound is reached without finding an ap~

propriate value, then the process is terminated.

Description in ALGOL 68

.proc quad = (.scal v, fv, w, fw, z, fz).scal

.pr ADEF QUAD .pr

it is assumed that fz is the smallest function value

.begin .scal «r:= (z - w) * (fz ~ fv), g:= (z ~ v) * (fz - fw):
.scal p:= (2 - v) * g~ (z - w) * r; := {g - r) * two;
.if g > zero .then p:= -p .else qg:= -g .fi ;
(p >= (one - z) * g ! one {: p <= ~z ¥ gt zero ! p/ q)

.end # one quadratic interpolation step #

.pr FEDX .pr ;

130

.proc interp = (.ref .scal f0, x, fx, b, fb,
.proc (.scal).scal fun, .scal tol).bool :
.pr XDEF INTERP .pr
it is assumed that f0 = fun(0) and if interp delivers .true then
x is such that fun(x) < fun(0) #
.begin .scal wu; .bool bl;
.while .if b > tol * two .then .not (bl:= fx < £0)
.else bl:= ,[false .fi
.do u:= quad(b, fb, x, fx, zero, f0);
.if u < tol .then wu:= tol
.elif u > x - tol
.then wu:= x '/ two

I &
b:= x; fbe:= fx; x:= u; fx:= fun(u)
.od ; bl

.end #interpolation with quadratic formula until function value
less than fun(0) is obtained or interval becomes too small #
.pr FEDX .pr ;

.proc resint = .void :
.pr XDEF RESINT .pr

.begin
.proc fu = (.scal labda).scal
.begin .vec xl:= x + labda * dx; slevell:= slefu(xl, f1);
nrmfl:= (slevell = max scal ! max scal ! .nrm f£1);
(.abs (nrmf - nrmfl) > epf .or nrmfl = max scal

P i:z= 0 t: i = 2 ! ready ! i:= 2);
(smr .min slevell) *%* 2
.end # function to be interpolated #;

.int i:= 0; .scal slevell, nrmfl, smr:= sqrt(max scal);
.vec fl; labda:= one;
.scal level:= (smr .min slevel) ** 2, levell:= fu(one);
.if levell >= level
.then 1labda /:= two;
.scal b:= one, fll:= levell, flb:= fu(labda);
.if .not interp(level, labda, flb, b, f£f11, fu,
(nrmx * dlrx + dlax) / nrmdx)
.then torrix(warning, textl)
Lfi
Lfi
ready: dx *< labda; x +:= dx; nrmdx *:= labda; f:= fl;
nrmf:= nrmfl; slevel:= slevell; .if 1 = 2
.then .if anl .or dif
.then torrix(warning, text2)
.else e:= ej:= one -~ small scal; reset number of warnings
i
Lfi
.end # restraining with interpolation and evaluation of function at
new point #
.pr FEDX .pr ;

6.5.5. A-priori estimation and control.

Let be given (x,H) € D X L(Ifl). Assume that the conditions of theorem
5.4 are satisfied. Then, with ¢ defined by (6.40) and use of notation 5.1,

we have
(6.44) b(t) < (c(x)(t))2¢(0) t e [0,min(i,C(x))],

Note that c(x){Z(x)) = 1 and c¢(x)(t) is minimal on [0,z(x)] for t = u(x).

The situation is illustrated by figure 6.1.

131

figure 6.1.

/
/

7 2
; (c(x) (t) ¢(0)
/

$(t)

Denote

_ 2
¢opt = (c{x) (u(x))) 7o (0).

Then

d(ulx)) < ¢opt“
A possible strategy for choosing A(x,H} would be to choose it equal to
min{l,u(x)) as it gives the best upper bound on the function ¢(t). However,
(c(x)(t))2¢(0) is locally a good approximation of ¢(t) but little is known
when t is large. As figure 6.1 suggests, situations are imaginable in which
u(x) is a rather pessimistic choice for the step length factor and practical
experience shows that repeated underestimation of the step length factor
may result in slow convergence. Therefore, we will choose an initial estimate
to A(x,H) based on the estimation of ¢(t) by (c(x)(t))2¢(0), but we use the
difference between the ¢ (t) and its approximation (c(x) (£))¢(0) to decide
whether we accept this value or choose a larger or smaller value. Then, no
extra function evaluations are required if the first estimate to A(x,H)

is accepted. Before describing the proposed strategy notice that
$'(0) = -2[AJ(x)HF(x) ,AF (x)].

Therefore, ¢'(0) may be approximated by

132
3 = —2lar)12 = -26(0) .

Quadratic interpolation with (0,¢(0),¢'(0) ~ $*) and (L,$(r)) yields an

optimal value

o« - £26(0)
0 7 §(0)-4(0)+26(0)) '

where we have a minimum at qO if the denominator is positive. Denote £ =

min(1,Z(x)) and Z(x) and ¢OP are the approximated values of ¢ (x) and ¢op

t t
obtained by using the approximations from section 6.4. We use £ as a first

estimate to A(x,H). If ¢(§) is not small enough relative to ¢(0) and $opt
(i.e. what can be obtained approximately) then we searchvfor a smaller value

using interpolation. If, however, ¢(§) is much less than expected (if ¢(§) <

¢opt
by extrapolation. We define

; we expect ¢(E) = $(0)), then we search for a larger step length factor

iy i e < na
(6.45) A(x,H) €y if ¢°P§ < ¢ (&) <A%(¢opt+¢f0))
or £ = 1 and ¢opt > ¢ (€)

or q; e (0,8),
q;(0,8/2,8), if q(&) = %<$opt+¢(o>>.

q,(0,&, max(2,min(qy,1))),
if £ # 1 and 9y £ (0,8) and ¢Opt > (&),

where qi(O,i/Z,E) is the first value less than or equal to £/2, obtained by
quadratic interpolation as described by .proc interp in subsection 6.5.3, in
which the value of the level function is less than ¢(0) and qe(O,E,qo) is a
value obtained by quadratic extrapolation, on (0,1]. In fact, quadratic
extrapolation is performed as long as the level function in the extrapolated
values decreases and the distance between successive extrapolated values is

not decreasing, qe is precisely described by .proc extrap.

Note that we always have A(x,H) < 1. Although it may be sensible to
choose A(x,H) > | for some (%,H), we will not do so. At least asymptotically
AMx,H) = 1 is a good value (see theorems 5.8 and 5.23) as convergence of
such a generated sequence of iterates will be quadratic for appropriate
jacobian approximations. It is nét clear how to choose A(x,H) 2 1 in such a

way that this asymptotic convergence behaviour is preserved.

133

Degcription in ALGOL 68

.proc resest = .void :
.pr XDEF RESEST .pr
.begin

.proc fu = (.scal 1labda).scal :

.begin .vec xl:= x + labda * dx; slevell:= slefu(xl, fl);
nrmfl:= (slevell = max scal ! max scal ! .nrm -f1);
(.abs (nrmf - nrmfl) > epf .or nrmfl = max scal
£ i:= 0 1: i =2 | ready ! i:= 2);

(smr .min slevell) ** 2
.end # function to be interpolated #;

.int i:= 0; .scal slevell, nrmfl, smr:= sgrt(max scal);

.vec £l

.scal level:= (smr .min slevel) ** 2, fiopt;

.8cal el:= e + one, t:= (dlrx * nrmx + dlax) / nrmdx;

.scal nuO:= kappa * el / two, nul:= (el * e * two + one) / el;

.scal nu2:= (one ~ kappa * e) / nu0;
.if nu2 < 0 .then labda:= t; fiopt:
.else .scal aidl:= nul * nul, alfa:
.scal three = ,widen 3;
.scal aid2 = (sqgrt(aidl + nu2 * three) - nul) / three,
aid3 = (sqgrt(aidl + nu2 * two * two) - nul) / two;
.scal labdaopt = (aid2 >= alfa ! one ! aid2 / alfa):
labda:= (aid3 >= alfa ! one ! aid3 / alfa);
aidl:= alfa * labdaopt;
fiopt:= (it = 1 ! one
{ one + nu0 * labdaopt * ({aidl + nul) * aidl - nu2))
#% 3 % level

level
omga * beta;

LEL g
.scal levele:= fu(labda), labdae:= labda:
+if levele >= (fiopt + level) / two
.then labda /:= two; .scal flb:= fu(labda);
.if .not interp(level, labda, flb, labdae, levele, fu, t)
.then torrix(warning, textl)
Fi
.elif levele < fiopt .and labda /= one
.then .vec f£2 = genvec{n);
.proc fud = (.scal labda).scal :
.begin f2:= £l; slevel2:= slevell; fu(labda) .end ;

.scal slevell, aid:= labda * level * two;
.scal p:= aid * labda, g:= (levele - level + aid) * two;
aid:= g * labdae; .scal labda2:= (labda * two) .min one;
.if g >= zero
.then .if p > g .then labda2:= one
.elif p < aid .then 1labda2:= labdae
.elif p >= aid * two .then 1labda2:= p / g .fi
JEL
.if .not extrap(level, labda, levele, labda2, fud)
.then fl:= £2; slevell:= slevel2 .fi
LE1g
ready: dx *< labda; x +:= dx; nrmdx *:= labda; f:= fl;
nrmf:= nrmfl; slevel:= slevell; .if i = 2
.then torrix(warning, text2) .fi ;
.if (fix .or upd) .and number of warnings > 0
.then e:= ej:= one - small scal; reset number of warnings
Lfi
.end # restraining with a priori estimation and control #
.pr FEDX .pr ;

134

.proc extrap = (.ref .scal f0, x, fx, v, .proc (.scal).scal fun)
.bool :
.pr XDEF EXTRAP .pr
it is assumed that fx < £0, f0 = fun(0) and .true 1is delivered if
we stop due to a too small step #
.begin .bool := .true ;
.if y - x> x .or y = one
.then .scal fy:= fun(y), u;
.while b:= fy < £x
.do u:= quad(zero, f0, x, fx, y, fy); x:= y; fx:= fy;
.if u = zero .then wu:= one .fi ;
Jif u - y <=y .then end .fi ;
y:= u; fys:= fun(u)
.od
I
end: b
.end # extrapolation until minimum is passed #
.pr FEDX .pr ;

135

6.6. STOPPING CRITERIA

6.6.1. Criteria for convergence

An important aspect of a Newton-like program is the stopping rule. For
a converging sequence {Xk};—o we need some criterion to determine whether
the iterate obtained can be considered a good approximation to the solution.

We can think of two possible criteria:
(6.46) ﬂF(xk)ﬂ < Gf, for some k,
where Gf is some prescribed tolerance and
*
(6.47) ka—x I < er"xk" + Gax’ for some k,

where arx and Gax are prescribed tolerance values. If J(x) satisfies condi-
tion 1.6 or 1.7 and % + G(xk—x*) e D for 6 € [0,1], x* is a solution of

*
F(x) = 0 and X is the approximation to x in the k-~th step, then by lemma

1.15 or 1.16 we have
(6.48) IF(x) - 36 g %1 = o(uxk»x*u?‘).

so, if ﬂkax*" is small and "J(x*)(xk—x*)" large (hence Iyl large) then
"F(xk)“ will be large and in such cases (6.46) will only be satisfied for

relatively close to x*. However, if "J(x*)(xk—x*)" is small relative to
"xk~x*", then (6.46) will be satisfied if “xk—x*" is still relatively large.
In practice it depends on the problem to be solved which criterion is most
desirable. Sometimes, only an argument vector x* is required for which
"F(x*)" is small, sometimes the error in the argument vector itself has to
be small. Therefore, we like to use both criteria and the user may adapt
them to his problem by choosing appropriate values for Gf, 6rx and sax'

Clearly, (6.46) can easily be used, however, (6.47) cannot be evaluated

as x* is not known in advance. To cbtain a reasonable upper bound we use the
nonlinear majorizing sequence defined in the proof of theorem 5.18 (see also
MIEL [1977]). For short we delete the subscript k in X and denote Kert by
%. Then we can apply theorem 5.18 assuming that the iterative process is

started with x and the conditions.of the theorem are satisfied.

136

Then
Ix*-% <7 - B .
C BO
Hence, since EO = lx-xl for strict Newton-like methods we have

Ix™ %l < (z/éo-1)u;-xn.

From (5.55) we see that
- 1 2 - 2
t/By == (x, - /x;-20 | =
0 & 2 2 + ;2_2&
Xg Xz
and therefore we have

1< 1/x, < T/By < 2/x, <= lim /By = 1.

0 0
-0
BO

Thus x satisfies the convergence criterion if
. Il 3%-xl < 1%l z/B.~1).
(6.49) XX (6, Mxl+ aax)/(c/so 1)

6.3. REMARK. If I¥(x)l is small and the condition number of the jacobian

approximation is not large relative to 1, then EO is small. As lim E/§O==1

* -
we see that the closer x is to x , the smaller is B, and the larger is

0
(;/Bo—l) 1. In fact if x is close to x*then (E/Eo-l) i will be greater than

1 and criterion (6.49) is easier satisfied than e.g. lx-xl < arxHEH + 8.

Based on (6.49) and using the approximations to various quantities as

given in section 6.4 we obtain the following convergence criterion on the

variables
- F ~2
e < ~1+/2; wkgkxl,k < %lek,
(6.50)
I - x < I - I,
er1 T *x (8 el = 80 /0y
where
1+8 1-28, -82
. e ey . I
Lk~ 1-8 ' X2,k e’

137

Note that(ék ='ﬂHka" which is the exact value to be used. Furthermore we
need an approximation to m(xk) on a neighbourhood of Xy - Clearly, &k is an
approximate lower bound to this value as it is only based on approximating
the Lipschitz constant in certain directions. Thus, it is not quaranteed
that (6.47) is satisfied if (6.50) is satisfied. The usefulness of (6.50)

has to be established experimentally.

To summarize, in the nongeneralized Newton algorithms we use (6.46) and
(6.50) . For the restrained algorithms we add the condition Ak = 1. We make
an exception for the inverse-updating Newton algorithms. For these algorithms

and for the generalized algorithms we use condition (6.46) together with

(6.51) "Xk+1 - xk“ = 6rxnxk+1" + 6ax°

6.6.2. Failure criteria

We distinguish two kinds of failures.

1. Failure resulting in termination of the algorithm without completing the

iteration step.

These are:

a. divergence out of the domain of the function in strict algorithms,

b. numerical singularity of the jacobian approximation if triangular
decomposition is used (see subsection 6.2.2),

c. trespassing the boundary of the domain D during computation of a
difference approximation,

d. finding a stationary point of the levelfunction which is no solution.

2. Failure resulting in termination after completion of the iteration step.
During computation situations might occur which make termination aftex
completing the iteration step sensible or necessary. Examples are
a. no better value for the levelfunction can be found due to numerical

exrors in the function values (condition (6.42}),
b. the approximate error bound for the jacobian approximation is so large

that nonsingularity of the jacobian can not be quaranteed.
We shall now define precisely what is meant by 1.d and 2.b.

Finding a stationary point (ad 1.4)

T
Let for some k,Bk= U12*+V1 be the corresponding singular value decomposition.
b
k

138
Then we say that x_is a stationary point of "F(x)ﬂ2 if (cf. theorem 4.31)

T T 2 2
7=
(6.52) [UIUle,Fk,, ”U1Fk" < Ef(x) .

This condition is given in .proc cdatasv (subsection 6.4.9).

singular jacobian expected (ad 2.Db)

We want to develop a criterion for non-generalized algorithms, which indi-
cates at an early stage that a (nearly) singular Jjacobian is expected. If
such a criterion is available, then we may use a non-generalized algorithm
until the criterion is satisfied and then switch to a generalized method.
For non~generalized algorithms, this would avoid slow convergence to points
with a singular jacobian which are no solution. Of course the criterion
should not disturb the behaviour of the algorithms if the jacobian (approxi-
mation) is well-conditioned.

Consider non-generalized algorithms using approximations to required
data as in section 6.4 and assume that the functions considered satisfy the
conditions of theorem 5.7 for some (x,H) € D x L(Ifl), with 6 = 2 (we choose
this value and not a value close to 1 in order to avoid numerical problems).

Then conditions (5.11) and (5.30) become
2e(x)rk(x) < 1
and a real number T has to exist such that
1

T <€ min(l, (da(x) (1+2c (x))) 7).

By theorem 5.7 we have, provided that the step length factor is chosen
appropriately,

2
laF (v, e, < (1 - g ylar (x) 0.

In order to guarantee that the decrease in IaF(x)l is not of the order of

the numerical errors in flE(F(x)) we demand (using (6.3))
2
“lar ()l = 16“A"ef(x).

So, using the upper bound on T, we obtain as a fallure criterion

139
(6.53) lar, I < 160l (x) max(l,16a2(1+2%)2)
’ k = £ %% 400y, x

where l&l equals 1 if A = I, fi, if A = H_ and ﬁk if A = H_. In the derivation

of this inequality we used sevzral upperobounds which may be somewhat rough.
Therefore, we relax this failure condition with a factor. For easiness of
programming we dropped the factor 16 and changed 16&i into 4&i. In addition
to this failure criterion we use

e. B >
(6.54) zekKk > 1.

The condition 2eks<k < 1 was a premise for the above reasoning. Moreover, it
guarantees that the jacobian matrix is nonsingular and that a descent direc~
tion can be found (see (6.41)).

The usefulness of the relaxed criterion (6.53) and (6.54) as criteria
for switching from non-generalized algorithms to generalized algorithms has

to be established experimentally.

6.6.3. Description in ALGOL 68

We give one routine for generalized algorithms and inverse updating
algorithms (.proc stopspl) and one for the other Newton-like algorithms
(.proc stopful). Note that the failure criteria (6.53) and (6.54) are used

only if save = ,true.

.proc stopspl = .bool

.pr XDEF STOPSPL .pr

.1f nrmf = zero .then reset number of warnings; .true

.elif nrmdx <= dlrx * nrmx + dlax .and nrmf <= d1f
.then reset number of warnings; .true

.elif it >= maxit
.then torrix(warning, text4): .true

.else number of warnings > 0

.fi # simple convergence and failure criteria #

.pr FEDX .pr ;

140

.proc stopful = .bool :
.pr XDEF STOPFUL .pr
.if nrmf = zero .then reset number of warnings; .true
.else .scal ksil:= (one + e) / (one - e),
ksi2:= (one - (e + two) * e)/(one - e},
alfa2:= omga * beta * two;
.if (labda < one .or e >= sqrt(two) - one ! .false
! nrmf <= dl1f .and
(.scal al = alfa2 * ksil, k2 = ksi2 * ksi2:;
(al < k2 ! nrmdx * (two / (ksi2 + sqrt(k2 - al)) - one)
<= (dlrx * nrmx + dlax) ! .false)))
.then reset number of warnings; .true
.elif it = 1 .and (e <= one - small scal .or .not safe)
.then .false
.elif safe .and e * kappa * two > one .and (dif .or anl)

.then torrix(warning, text8); .true
.elif safe .and
(.scal tau2i = (((one + kappa * two) * alfa2)**2) .max one;

slevel <= epf * tau2i *
(.case ¢ .of a .in one, etal, eta .esac })
.then torrix(warning, text9); .true
.elif it >= maxit .then torrix(warning, textd); .true
.else number of warnings > 0
LEi
.fi # full convergence and failure criteria #
.pr FEDX .pr ;

6.7. SYNTHESIS OF BASIC NEWION-LIKE ALGORITHMS

In this section we synthesize the basic Newton-like algorithms from
the basic modules given in section 6.2 up to 6.6. The structure of these
algorithms is already described in section 6.1. We are still free to choose
the restraining strategy and the method of approximating the inverse jacobian
from the various possibilities given in sections 6.3 and 6.5. The other mod-
ules are determined by these choices, except for the initial choice of the
jacobian approximation. However we shall choose the initial approximation
in the same way as is done in the iteration step, except for the inverse-
updating methods. In the last methods we choose HO equal to the inverse of
the difference approximation to the jacobian. As far as restraining is con-
cerned we are free to choose the matrix A defining the level. function (6.40).
However, such a choice induces implicit scaling of the function, which is to
be considered together with explicit scaling as an optional feature that can

be built in one or more basic algorithms. In the basic algorithms we choose
A = 1.

We summarize the various choices for restraining and approximation of

the inverse jacobian which have been described in former sectiodns.

Restraining

(S) No restraining (strict) (subsection 6.5.2).
(B) Bisection (subsection 6.5.3).

(I) Interpolation (subsection 6.5.4).

(E) A~priori estimation and control (subsection 6.5.5).

Approximation of inverse jacobian

(A) Inverse of analytic jacobian (subsection 6.3.2).

(D) Inverse of difference approximation (subsection 6.3.3).

(U1,02) Inverse-updating by the two methods described in subsection 6.3.4,
respectively.

(GA) Generalized inverse of analytic jacobian (subsection 6.3.5).

(GD) Generalized inverse of diffe%ence approximation to the jacobian (sub-

section 6.3.6).

As is already discussed in subsection 6.5.1 we do not consider re-

strained inverse-updating Newton methods (B, I or E).

142

A-priori estimation and control of the step length factor (E) is not
used in generalized algorithms. The theory on which this strategy is based
demands a nonsingular jacobian matrix.

In order to show the effect of the special failure criteria (6.53) and
(6.54) we have added to our basic set a strict Newton and difference Newton
method which do not use these criteria (we added a W to the name to distin-

guish them from the others).

The names of the basic Newton-like algorithms are composed from the
capitals between the parentheses before the particular choices above, start-
ing with the capital(s) denoting approximation of the inverse jacobian.

We obtain the following 18 basic Newton-like algorithms. '

1. ASW, AS, AB, AI, AE,
2. DSW, DS, DB, DI, DE,
3. uls, U2s,

4. GAS, GAB, GAI,

5. GDS, GDB, GDI.

Description in ALGOL 68

We shall not define all 18 basic programs. We only give 5 examples:
AB, DB, U2S, GAS and GDS. The definition of the other programs can easily
be derived from these example programs.

We shall give first a procedure which causes resetting of some input

parameters if these are apparently wrong.

.proc default = ,void :
.pr XDEF DEFAULT .pr
.begin .if eprf < small scal
.then torrix(warning, textl3); eprf:= small scal .fi ;
.1f epaf < zero
.then torrix{warning, textld); epaf:= zero .fi ;3
.if eprj < small scal
.then torrix(warning, textl5); eprj:= small scal .fi ;
.1f epaj < zero
.then torrix(warning, textl6); epaj:= zero .fi ;
.if dlf < epaf
.then torrix(warning, textl7); dlf:= epaf .fi ;
Lif dlrx < small scal
.then torrix(warning, textl8); dlrx:= small scal .fi :
.if dlax < small scal
.then torrix (warning, textl9); dlax:= small scal .fi
.end # resetting to default of wrongly given precisions #
.pr FEDX .pr ;

143

.proc ab = ,bool :
¢ restrained Newton algorithm (with bisection)t
.begin .bool bl; anl:= .true ;
it:= dent:= 0; fcnt:= 1;
e:= zero; omga:= beta:= kappa:= eta:= labda:= one;
ve= genranvec(n); default;
.if number of warnings /= 0 .then copyerrorfile .fi ;
¥s= x0; nrmx:= .nrm x; .func fu = fun(x);
Lif Lif .not in .of fu
.then torrix(warning, textl2); .false
.else f:= f ,of fu; nrmf:= .nrm £;
epf:= (eprf + small scal) * nrmf + epaf; nrmf > minscal
Lfi
.then b:= jacobian(x); jcnt:= 1;

.while it +:= 1; cdatalr;
.if number of warnings > 0 .then .false
.else resbis; nrmx:= .nrm x;
epf:= (eprf + small scal) * nrmf + epaf;
.not stopful
Lfi
.do b:= jacobian(x); jcnt +:= 1 .od
Lfi ; Jif .not (bl:= number of warnings = @)
.then copyerrorfile .fi ; bl
.end # ab #;

.proc db = ,bool :
restrained difference Newton algorithm (with bisection)#
.begin .bool bl; dif:= .true ;
it:= dent:= 0; font:= 1;
e:= zero; omga:= beta:= kappa:= eta:= labda:= one;
vi= genranvec(n); default;
.if number of warnings /= 0 .then copyerrorfile .fi ;
®:= X0; nrmx:= .nrm Xx; .func fu = fun(x);
Lif Jif .not in .of fu
.then torrix(warning, textl2); .false
.elgse f:= f ,0f fu; nrmf:= .nrm £;
epf:= (eprf + small scal) * nrmf + epaf; nrmf > minscal
fi
.then calh; b:= diffjac(x);

.while it +:= 1; cdatalr;
.if number of warnings > 0 .then ,false
.else resbis; nrmx:= .nrm x;
epf:= (eprf + small scal) * nrmf + epaf;
.not stopful
LEi
.do calh; b:= diffjac(x) .od
LEL p Jif .not (bl:= number of warnings = 0)
.then copyerrorfile .fi ; bl
.end # db #;

144

.proc gas = .bool :
strict generalized Newton algorithm
.begin .bool bl; anl:= .true ; safe:= .false ;

it:= dcnt:= 0; fcnt:= 1;
e:= zero; omga:= beta:= kappa:= eta:= labda:= one;
v:= genranvec(n); default;
.if number of warnings /= 0 ,then copyerrorfile .fi ;
x:= x0; nrmxs= .nrm x; .func fu = fun(x);
Lif Lif .not in .of fu

.then torrix(warning, textl2); .false

.else f:= f ,of fu; nrmf:= .nrm £f;

epf:= (eprf + small scal) * nrmf + epaf; nrmf > minscal

fi
.then b:= jacobian(x); jcnt:= 1;

.while it +:= 1; cdatasv;
.if number of warnings > 0 .then .false
.elif strict; number of warnings > 0 .then .false
.else nrmx:= .nrm X;
epf:= (eprf + small scal) * nrmf + epaf;
.not stopspl
i
.do b:= jacobian(x); jcnt +:= 1 .od
.fi ; Jif .not (bl:= number of warnings = 0)
.then copyerrorfile .fi ; bl
.end # gas #;

.proc gds = ,bool :
strict generalized difference Newton algorithm ¢
.begin .bool bl; dif:= .true ; safe:= ,false ;
it:= decnt:= 0; fcnte:= 1
e:= zero; omga:= beta:= kappa:= eta:= labda:= one;
v:= genranvec(n); default;
.if number of warnings /= 0 .then copyerrorfile .fi ;
x:= x0; nrmx:= .nrm x; .func fu = fun(x);
Lif Jif .not in .of fu
.then torrix(warning, textl2); .false
.else f:= f .of fu; nrmf:= .nrm f;
epf:= (eprf + small scal) * nrmf + epaf; nrmf > minscal

Lfi
.then calgh; b:= diffjac(x);

.while it +:= 1; cdatasv;
.if number of warnings > 0 .then .false
.elif strict; number of warnings > 0 .then .false
.else nrmx:= .nrm X;
epf:= (eprf + small scal) * nrmf + epaf;
.not stopspl
LFi
.do calgh; b:= diffjac(x) .od
LEi o Jif .not (bl:= number of warnings = 0)
.then co'yerrorfile .fi ; bl
.end # gds #;

145

.proc u2s = ,bool :

inverse-updating Newton algorithm

.begin .bool bl; it:= dcnt:= 0; fcnt:= 1;
omga:= beta:= kappa:= eta:= labda:= one;
default;

.1f number of warnings /= 0 .then
X:= x0; nrmx:= .nrm x; .func fu = fun(x);
Lif .if .not in .of fu
.then torrix(warning, textl2); .false
.else f:= £ .of fu; nrmf:= .nrm £

epf:= {(eprf + small scal) * nrmf + epaf; nrmf > minscal

copyerrorfile .fi ;

’

LEi
.then calh; b:= diffjac(x);

.lud lub:= .ludec b; .vec e = gzero .into genvec(n);

.for j .to n

.do eljl:= 1; b[,jl:= lub .sol e; el[jl:= 0 .od ;

while it +:= 1;: dxs:= « (b * £);:
f0:= f; strict;
.if number of warnings >0 .then .false
.else nrmx:= .nrm Xx;
.not stopspl
LEi
.do invupd2(b) .od
LEi ; Jif .not (bl:= number of warnings = 0)
.then copyerrorfile .fi ; bl
.end # uls #;

nrmdx:= .nrm dx;

146

6.8. CONDITIONAL USE OF APPROXIMATION BY UPDATING

This feature is described in corollary 5.15 and remark 5.16. It is
applicable to all basic Newton-like methods which compute approximations .
to ek, wk aﬁd Kk in every iteration step. These are A(S, B, I or E) and
D(S, B, I or E). As approximation by updating requires no extra function
evaluations, it can be used more economically than difference approximation
or possibly even evaluation of the analytic expressions for the jacobian.
Note that conditional use of updating might increase the number of iteration

steps required to solve a problem within a certain precision. Experiments

have to establish the usefulness of this strategy.

We use update approximation and no inverse-update approximation, as we
have no explicit inverse of the jacobian approximation in the algorithms
under consideration and calculation of an explicit inverse is, for large

order, about as expensive as two iteration steps.

In the definition as given in corollary 5.15 we have to replace
V(u)(H,x,Wl(x,H)) by (U(u)(B,:{,\L’:l(}{,le,—l)))-1 (H = Bml) and the constants by
their approximations as given in section 6.4. Furthermore, we choose 0 = 1
1

)

and K(@l(x,B—) is approximated by the approximation of k(x). We add one

extra condition for practical reasons. This is
(6.55) é(@1<x,m)) < 0.1,

This is done to avoid slow convergence if, due to updating, the error be-
comes almost 1, which is possible if the condition number Kk is about 1. We

also refer to the condition ek < -1+/2 in theorem 5.18. The value 0.1 is

chosen after some experimental tests.

If during the restraining no appropriate value of A(x,H) can be found,
then this might be the result of bad approximation of the required quanti-
ties. Therefore, the algorithm is not terminated if in this iteration step
an update approximation was used, but it is forced to perform a normal

iteration first (with analytic jacobian or difference approximation).

We do not use updating in the first two iteration steps. The approxi-

mation @k is expected to be reasonable only after computation of data in

the second iteration step. Note that, if conditional updating is used,

147

ék+1 is calculated in .proc conupdjac instead of in .proc cdatalr.

Description in ALGOL 68

.proc conupdjac = (.proc (.vec).mat jacapp).mat :
.pr XDEF CONUPD .pr

.begin .scal pu; .vec u;
Lif (.if it = 1 .or e >= onetenth .or .not update

.then ,false
.else u':= decb .solve (f - £0);
pu := dx * u; .scal nrmu = .nrm u;
e:= (e / (one - e) + (one + nrmdx * .widen 3 /

(nrmu * two)) * nrmdx * omga) * (one + e);
kappa * e < one .,and e < onetenth
LEi)
.then upd:= .true ;
.vec q = f + £0 * (labda - one); .for Jj .to n

.do bl[,j] +< ((ulj] / pu) * q) .od ;
b
.else upd:= .false ; jacapp(x) .fi
.end # conditional updating with jacapp #
.pr FEDX .pr ;

Modification of e.g. algorithm AB is obtained by adding after the
statement : " jecnt:= 1;" the statement: "upd:= .false;".
Furthermore, replace "b:= jacobian(x); jcnt +:= 1" by:
" b:= conupdjac(jacobian);

.if anl:= .not upd .then jcnt +:= 1 .fi ".

148

6.9. CONDITIONAL USE OF FIXED APPROXIMATION

Conditional use of fixed jacobian approximation is based on corollary
5.17. It is applicable to all Newton-like algorithms described in section
6.7 except for inverse~updating algorithms. We need different conditions for
algorithms using triangular decomposition and those using singular value
decomposition. These conditions follow from the theorems 3.19 and 3.20 re-
spectively. To obtain a fixed approximation as well as its decomposition
does not require additional computation. Hence it may be very attractive to
incorporate this feature. The negative effects of greater errors in the
jacobian approximation, probably yielding slower convergence, can hardly be
estimated theoretically. Experiments have to establish the practical use-

fulness of this feature.

Let ¥ = (wl,w?) be an appropriate Newton-like process (associated with
a basic Newton-like algorithm except for U1S or U2S). Then, the k-th itera-
tion step (k>2) of the modified process @==(W1,@2) say, generating {(xk,Hk)}

for given (x ,HO), is defined by

0
Wl(xk,Hk) = Wl(xk,Hk) (=,xk+1, by definition),

- ~ | .. 2 . - S
Wl(xk,Hk) = 1 Hk' if ek+1 < min (1/Kk,0&1) and =1,

W2 (xk,Hk), otherwise,

where §k+1 is the a-priori estimation to e

have been used:

1 if fixed approximation would

»
#

e. +w e) s -x. I, i i iti i
Kl ej wk(1+ej) Kk+1 xj , if triangular decomposition is

used,

= ég + ?kﬁ; "Xk+1 + xjﬁ, if singular value decomposition is

used,

and where j is the greatest index less than or equal to k such that

@(xj_l,Hj_l)=‘¥(xj_1,Hj_1), Note that we also use condition (6.55) in this
case. Furthermore, note that if fixed approximation is used then f; = n,

hence if singular value decomposition is used it follows from subsection

6.4.8 that ¥f . = n.

149
Moreover, for j € i £ k, we have &i = B., Y, = Y., 0, = ﬁj and ﬁ; = f

Description in ALGOL 68

.proc confixjac = (.proc (.vec).mat jacapp).mat :
.pr XDEF CONFIX .pr
Jif (.if it = 1 ,.then .false
.else := ej + .nrm (x - xj) * omga * (one + ej);
kappa * e < one .and e < onetenth
LE10) :
.then fix:= .true ; b
.else fix:= ,false ; jacapp(x) .fi
conditional fixed approximation in case of lu decomp.
.pr FEDX .pr ;

.proc confixjacg = (.proc (.vec).mat jacapp).mat :
.pr XDEF CONFIXG .pr
Lif (.if it = 1 .then .false
.else e:= ej + .nrm (x - xj) * omga * eta;

kappa * e < one .and e < onetenth .and

.case decb .in (.ref .svd bsv): .upb sngval .of bsv = n

.esac Lfi)
.then fix:= ,true ; b
.else fix:= ,false ; jacapp(x) .fi
conditional fixed approximation in case of sv decomp.
.pr FEDX .pr ;

Modification of the basic algorithms is as for conditional updating
with "upd” replaced by "fix".

150

6.10. IMPLICIT AND EXPLICIT SCALING

Consider the restrained basic Newton-like algorithms of section 6.7
which use triangular decomposition. A choice of the matrix A in the defini-
tion of the level function (6.40) is equivalent with scaling of the function
with A (we say implicit scaling) (see remark 4.18). We have restricted atten-
tion to three ways of implicit scaling (see subsection 6.4.5): (1) A = I,

(2) A = HO' (3) A ='Hk. The last two choices yield affine invariant methods.
(Note that the convergence theory of chapter 5 does not hold for variable A).
Although the last two choices yield affine invariant methods, use of finite
arithmetic can spoil this property. For instance, if we compute TJk\TFk then
we may obtain another result than if we compute Jk\Fk, as the errors depend
on the condition number of TJk and Jk’ respectively. Implicit scaling with
choice (2) or (3), only influences the restraining strategy and not the

solution of the linear system.

Explicit scaling of the function and variables is described in subsec-
tion 1.3.6. It is in fact based on scaling of the jacobian approximation at
the starting guess with diagonal matrices D1 and D2 satisfying (1.33) and
(1.34) (with A replaced by BO). A description, in ALGOL 68, of the matrix

scaling is given in subsection 6.2.3.

We shall consider implicit scaling for the restrained algorithms
A(B, I, E) and D(B, I, E) and explicit scaling for all algorithms, as far as

these algorithms appear to be useful from the general testing.

Description in ALGOL 68

Implicit scaling is obtained by assigning an appropriate value
to ¢ .of a (see prelude nlsprl) in the initial phase of the iterative
process.

Explicit scaling is illustrated by the following example program,

which defines algorithm AB with explicit scaling.

151

.proc scab = .bool : L. .
restrained Newton algorithm with explicit scaling
.begin .bool bl; anl:= .true ;
it:= dcnt:= 0; fcnt:= 1;
zero; omga:= beta:= kappa:= eta:= labda:= one;
genranvec(n); default;
.if number of warnings /= 0 .then copyerrorfile .fi ;
X:= xX0; nrmx:= .nrm x; .func fu:= fun(x);
.proc (.vec).func oldfun; .proc (.vec).mat oldjacob;
.scldmat scb;
.ref .bool scr = scr .of scb, scc = scc .of scb;
.ref ,vec rows = rows .of scb, cols = cols .of scb;
Lif .if .not in .of fu
.then torrix(warning, textl2); .false
.else f:= f .of fu; nrmf:= .nrm f;
epf:= (eprf + small scal) * nrmf + epaf; nrmf > minscal
LEi
.then Jjcnt:= 1; b:= jacobian(x); scb:= .scale b;
.if sng .of scb .then torrix(warning, text5)
.elif scr .or scc
.then oldfun:= fun; oldjacob:= jacobian;
fun:= (.vec x).func :
(.func fu:= oldfun((scc !
.if scr .then £ .of fu:
LEfi ;3 fu);
jacobian:= (.vec x).mat :
(mat .of scb:= oldjacob((scc ! x .dmul <cols ! x));
scb:= .scale scb; mat .of scb);
.if scc .then x:= cols .dimul x .fi ;
.if scr .then £:= rows .dmul £ .fi ;
nrmf:= .nrm £; epf:= (eprf + small scal) * nrmf + epaf
Lfiog

e:
v

% .dmul cols | x));
= f .0of fu .dmul rows

.while it +:= 1; cdatalr;
.if number of warnings > 0 .then .false
.else resbis; nrmx:= .nrm x;
epf:= (eprf + small scal) * nrmf + epaf;
.not stopful
LEi
.do b:= jacobian(x); jcnt +:= 1 .od
Lfi o
.if scc .then x:= cols .dmul x .fi ;
.if scr .then f£f:= rows .dimul £ .fi ;
.if scc .or scr
.then b:= _.bckscale scb; fun:= oldfun; jacobian:= oldjacob
LE1
,if .not (bl:= number of warnings = 0)
.then copyerrorfile .fi ; bl
.end % scab #:

152
6.11. REDUCTION OF PROBLEMS WITH LINEAR FUNCTION COMPONENTS

Suppose that the problem F(x) = 0 can be splitted in a linear problem
Ax~b = 0 and and a nonlinear problem F(x) = 0, with F:D~ Rn“p and A a
p X n matrix with rank equal to p. Then, according to theorem 1.27 we may
reduce the nonlinear problem of order n to a nonlinear problem of order n-p,
yielding

G(z) = E(A+b+vzz),

where V2 is given by (1.15) and (1.17). For the Jjacobian of G we have (cf.

remark 1.28)
G'(z) = F' (A bV _2) V...
2 2

Description in ALGOL 68

.proc reducenewt = (.proc .,bool newt).bool
newt gives the Newton-like program with which the reduced problem
has to be solved #
.pr XDEF REDNEWT .pr
.begin .proc (.vec).func oldfun; .proc (.vec).mat oldjacob;
.int m = ,upb x0, p = 1 .,upb la;
.mat a0 = zero .into gensquare(m);
a0f[l:p,l:m]:= la; .svd asv0:= .svdec a0;
.scal eps = .max (sngval .of asv0) * small scal * ten;
.svd asv:= eps .trims asv0;
.int r = ,upb (sngval .of asv);
JAf r /= p
.then torrix(warning, "matrix of linear part not full rank");
copyerrorfile; x:= x0; .false
.else .bool bl; sol := asv .sol 1lb;
v2:= (v .of asv0)[l:m, r+l:m];

oldfun:= fun; oldjacob:= jacobian;
fun:= (.vec x).func : oldfun(sol + v2 * x);
jacobian:= (.vec x).mat : oldjacob(sol + v2 * x) * v2;
n:=m ~ r; x0:= ,trnsp v2 * (x0 - sol);
bl:= newt; x:= sol + v2 * x;
fun:= oldfun; jacobian:= oldjacob; bl
fi
.end # reduction of problem with linear components #
.pr FEDX .pr ;

153

CHAPTER 7

EXPERIMENTAL EVALUATION OF METHODS

7.1. INTRODUCTION

In this chapter we compare the methods described in chapter 6. Further-—
more, three algorithms of componentwise approximation, based on the method
given by BROWN [1969], are compared with the Newton-like algorithms. These
algorithms are described in MORE & COSNARD [1979] with names BROWN, BRENT
and BRENTM. We use the abbreviations BW, BT and BTM, respectively.

Our ultimate goal is
- to obtain insight in the behaviour of the methods and the effect of partic~
ular features,
- to select the "best" methods or combinations of methods for implementation

as part of a software library.

We distinguish three classes of criteria for evaluating algorithms for
solving systems of nonlinear equations and software based on these algorithms.
i. Criteria about availability of theoretical results for algorithms. Such

theoretical results may be theorems about global and/or (semi-) local
convergence or asymptotic convergence behaviour.
2. Criteria about the behaviour of algorithms based on experimental results.
Such criteria may concern:
- efficiency (time and storage required to solve problems),
-~ robustness (capability of solving relatively hard problems) ,
- reliability (is the computed solution accurate within prescribed
precision, or is an appropriate error message given).
3. Criteria about the programs and program descriptions, such as
- structure of the program,
- ease of choosing values for the program parameters,

- availability of a users manual.

154

In the foregoing chapters we paid attention to theoretical results for
the Newton~like algorithms. Moreover, program structure is induced by the
modular set up of the programs in chapter 6. In this chapter we focus atten-
tion to the criteria from the second class. First we describe more precisely
what is meant by the notions efficiency, robustness and reliability (sections
7.2 up to 7.4). Then, we describe the experimental design (section 7.5) and,
finally, we describe the results of the evaluation of the basic algorithms
and the features (section 7.6 and 7.7). In section 7.8 we state conclusions

based on these results.

155

7.2. STANDARD TIME

The notion "time" is essential for defining efficiency of algorithms
or programs. It seems to be ocbvious to measure the CPU~time required to
solve a problem with a program on a computer and to say that one program is
less efficient than another for solving a certain problem, if this program
uses more CPU-time than the other. The crucial point however, is that such
a measure yields thé efficiency of a program on that moment, but not of the
underlying algorithm. The CPU-time required to solve a problem depends high-
ly on (1) programming language, {(2) compiler, (3) number of users on the
machine in multi-user running systems, (4) memory asked for, etc. As we like
to obtain conclusions about the performance of an algorithm and not only
about some particular program implementing it, we cannot use simply CPU~time.
Another suggestion may be to use the number of basic arithmetical operations
(additions plus multiplications) as a measure for the "time" required by an
algorithm. However, this also has several disadvantages. (1) Neither the
CPU~-time required for multiplication and addition nor the ratio of these
times is the same for all machines or even for central processors of one
machine (e.g. the CYBER 73). As certain computations can be rewritten such
that less multiplications are used at the cost of more additions (e.g.
matrix multiplication) it is not quite clear what has to be counted.
{2) Memory access, particularly array accesses, are relatively expensive
and neglected here. (3) It is difficult to obtain any idea about the actual
CPU~time required by a program when implemented for a certain programming

system.

We like to introduce a time unit which depends on
(1) the computer and its running system,
(2) the programming system used (language, compiler, software library),
(3) the kind of algorithms to be compared (Newton-like algorithms),
{4) the order of the problem to be solved.
This notion should be such, that two programs implementing the same algorithm
use about the same amount of standard time units. Moreover, a standard time
unit should be easily expressable in CPU-seconds for a given computer and
programming system. We define a standard time unit dependent on the order n,
as for large order the matrix-vector computations are the bulk of the work,
but for small order other things, e.g. routine calls, may also play an im-

portant role.

156

7.1. DEFINITION. Let be given x ¢ R', £ = F(x) ¢ R® and B = J(x) ¢ L(R").

A standard time unit, Un’ of order n, dependent on a certain computer with
given running system, on a certain programming system (language, compiler,
software library) and on other machine~ and time dependent quantities (e.g.
the number of users at a certain moment) is the CPU-time required to compute

y = x -~ B\f (cf. (1.13)) on that computer under the given conditions.

Note that the computation y = x - B\f (by use of triangular decomposi-
tion and forward and backward substitution) is the most time consuming part
of an iteration step of a strict Newton method, besides from the evaluation
of the function and its jacobian. It should be stressed that this computa-
tion has to be done with use of the appropriate software library programs
which are available in the given programming system and which would have
been used in the strict Newton program if it would belong to this library.
The conclusions about efficiency, based on standard time are easily trans-—
formed to CPU~time, if it is known how much CPU~-time is equivalent to one
standard time unit for a given computer system. This knowledge can be obtain-
ed by running a program in the given programming system which performs com-
putation of y = x -~ B\f for given x, f and B and measuring the CPU~time re-
quired for this computation. We give an example of such a program for the

ALGOL 68 programming system introduced in chapter 6.

7.2. EXAMPLE. The following ALGOL 68 program prints Un(nm2,13,24,35,46) in
CPU seconds for the ALGOL 68 programming system from chapter 6, when it is
run on the CYBER 73 with the NOS/BE running system.

.begin
.proc comp = (.int n).void :
.begin .lud dec = ,ludec b;
.vec y = x - (dec .sol f); .skip

.end # computation to get standard time unit #;

.index ind = genindex(5);
ind[1]:= 100; ind[2]:= 8; ind[3]:= 4; ind[4]:= ind[5]:= 1:
.for n .from 2 .by 11 .to 46
.do x:= genranvec(n); f:= genranvec(n);
.proc ran = (.int i, j).scal : next random(setr);
:= ran .into gensquare(n);
.int k = ind[(n-2) .over 11 + 1]:; .real t:= clock;
.for i .to k .do comp(n) .od ; t:= clock -~ t;
print(("standard time unit of order ", n,
g "is in cpu secs: ", t / k, newline))
.0
.end

157

As an illustration, we give the results of this example program in
table 7.1, together with the amount of CPU-seconds in a standard time unit
for the ALGOL 60 system with the NUMAL software library and for the
FORTRAN IV system with the NAG software library. Moreover, we give the amount
of standard time units required if y = x - B+f is computed using singular
value decomposition for these three programming systems (obtained in ALGOL
68 by replacing the first statement in .proc comp by: ":svd dec = .svdec b;").
The discrepancies between these standard times may be due to (1) algorithmic
differences of the matrix decomposition routines in the three programming
systems, (2) the fact that the programs have been run in different nights.
However, note that there is agreement within at most 50% from the mean and
CPU times sometimes differ up to a factor 6. Moreover, note that the dif-
ferences between the standard times for ALGOL 60 and FORTRAN IV are at most
15% from the mean. These versions use software libraries with optimized code
for vector and matrix operations (in NUMAL most of these operations are
written in machine language). For the ALGOL 68 system of chapter 6 we did
not use optimized code for vector and matrix operations. Table 7.1 shows
that standard times may be more appropriate for comparing efficiency of
algorithms, but results based on the use of standard times should be inter-
preted rather carefully. Differences in efficiency of algorithms which are

less than 20% say are, in fact, negligible.

table 7.1.

Un in CPU seconds for three programming systems and
standard times for implementations in these systems of

a step of the generalized Newton method.

standard times of

Un in CpU-sec. generalized
Newton step llargest
n BEAN povia-
768 260 FIV |A68 A60 PIV ftion
2 0.019| 0.013 | 0.0030|1.5 1.4 1.5 1.5 7%

13 9.25 | 0.14 | 0.060 (9.6 7.9 5.8 7.8 | 26%
24 0.80 | 0.45 | 0.25 15 9.6 7.6 i1 31%
35 1.9 0.99 | 0.64 17 1 8.3 12 42%

46 3.2 1.8 1.3 21 i1 9.2 14 50%

158

7.3. PROBLEM INDICATORS

The probability that a problem can be solved with a certain algorithm
and, if it can be solved, how efficient solving will be, depends on the
characteristics of the problem. In this section we shall give a set of
problem indicators, i.e. quantities which give indications about such char-
acteristics. First, we define the problem of solving a system of nonlinear

equations on a given computer.

7.3. DEFINITION. A problem of solving a system of nonlinear equations on a

computer with machine precision £ is defined by
(1) a function F of order n with domain D < Rﬁ.

(2) an initial guess x, € D to the solution of F(x) = 0,

0

(3) constants Er and ea satisfying (6.3),

£ £
(4) tolerance values Gf, 6rx and Gax defining the stopping criteria (6.46)

and (6.50) or (6.51).

In the sequel we restrict attention to problems which, moreover,
satisfy
(i) F and x satisfy condition 1.6 for all x € D,
(ii) fle(F (x)) is a ("x“cﬁrX + 5ax) -unimodal approximation to F on D (see

definition 1.12).

A class of problems which are defined by definition 7.3 and satisfy the
above conditions is denoted by C. We say that the analytic jacobian of the
problem is available if explicit expressions for the elements of the jacobian

matrix are given, as well as constants Erj and Eaj satisfying (6.4).

7.4. PROPOSITION. The following set of problem indicators provide a good

characterization of the problems of a class C as far as properties are
concerned influencing the behaviour of Newton-like algorithms or Brown's
algorithm.

1. The defining quantities (see definition 7.3.).

2. The availability of an analytic jacobian (with Erj and Eaj)'

3. The set of indices of those function components which are linear in all

variables.

4.a., The value of x(x) (see notation 5.1) for A = I and x € D. If J(x) is

singular then we define x(x) = « and if F(x) = 0 then k(x) = lim K(yk),
koo
for some sequence {yk} < D with lim Vi = Xi provided that this limit
oo

exists;

159

otherwise «(x) is undefined.
b. The value of w(x) on D, provided that condition 1.7 is satisfied on D;
otherwise the value of Y(x) on D, for all x € D.
c. The value of H(J(xo))"lF(xo)ﬂ.
5.a. The standard time tF(x) required to evaluate the value of F(x) {(x € D).
b. If the analytic jacobian is available, then the standard time tJ(x)
required to evaluate the value of J(x) (x € D).
6. The scaling of the function and variables, i.e. the ratio of the largest

and smallest row and column norm, respectively, of J(x) (x € D).

We want to select test problems based on the values of their problem

indicators. This requires simplification of the set of problem indicators.

7.5. REMARK. In the sequel we shall use the following simplified set of

* *
problem indicators, where x € D satisfies F(x) = 0.

1, 2 and 3 as in proposition 7.4.

e B e o *
4.a. Ko = K(XO); K, = klx),
where ¥ (x) = 13 (01 (3 (x)) .
. - e o *
b. wy = w(xo) and w_ = wix), where
w(x) = max (max(w(x,u,), w(u,,x))),
\ i i
i=1,...,D

I () \F (y) ~ J(y) \F(y)l

wix,y) = if P(y) # 0, x # y and J(x),

T I TT (O \F () T :
J{y) nonsingular,
o , 1€ J(x) or J{y) are singular,
(4] , otherwise,
u, =%+ hvi/"vi", i=1,...,D¢

with v, having randomly chosen elements in [~1,1], h > 0 is some small
real number, depending on x and the machine precision, and p is some
integer 1 £ p £ n.

c. B, = H(J(xo))mlF(xo)H*

5.a. tF’ where it is assumed that we have roughly tF = tF(x), for all % € D.

tF is called the function evaluation time.

160

b. If the analytic jacobian is available: tJ, where it is assumed that we
have roughly tJ = tJ(x) for all x € D. tJ is called the jacobian

evaluation time.

6.a. "Dlﬂ, "D2", with D, and D, given by (1.33) and (1.34) for A = J(x,).

b. k=g, K= 25 (x"), with
-5 ~ -1
Ko(x) = lIDlJ(x)Dzllll (DlJ(X)Dz) I,

The problem indicators play an important role in the experimental

evaluation of the algorithms, as will be explained in the next sections.

161

7.4. ROBUSTNESS, RELIABILITY AND EFFICIENCY

Most of us have gome intuitive idea about the notions robustness, re-
liability and efficiency. We will try to give more precise descriptions or
definitions of our interpretation of these notions. To this end we need the

following descriptions.

7.6. DESCRIPTION. Let be given a parametrized test problem, such that vari-

ation of the value of one or more parameters of this problem effectuates a
variation of the value(s) of one or more problem indicators (remark 7.5).
Suppose we have obtained the values of the problem indicators for a number
of parameter values. Then a table, which gives performance results of an
algorithm tested on this problem for these parameter values, is called a

performance table.

We can imagine many different kinds of performance results, such as
standard time required to solve the problem, number of function and/or ja-

cobian evaluations, number of iteration steps, accuracy obtained, etc.

7.7. DESCRIPTION. A set of test problems T ¢ C is called a representative

test set for C, if the values of the problem indicators from remark 7.5,
except for tF and tJ, are reasonably spread over the ranges of values that
can be obtained by problems in (. (The exception of tF and tJ will be ex-

plained in remark 7.11).

This description is intuitive and not at all exact. Moreover, it 1s not
based on the problem indicators as described in proposition 7.4, which are
claimed to give a good characterization of problems in C, as far as behaviour
of our algorithms is concerned, but only on the simplified set of remark

7.5. Nevertheless, we think that this description is useful in practice.

Intuitively, robustness of an algorithm should reflect the highest
degree of difficulty of problems in a certain class, that can be solved
adequately by that algorithm. Such a definition requires quantification of
the degree of difficulty of a problem when solved by a certain algorithm.
By proposition 7.4, such a definition depends on the problem indicators.
However, we do not know how. In fact, one of the goals of the evaluation is
to get insight in this dependency. Therefore, we think that it is not sen-

sible to quantify neither the degree of difficulty of a problem (relative

162
to an algorithm), nor. the notion robustness.

7.8. REMARK. We consider robustness of an algorithm, relative to C, in the
above intuitive sense. Discussion of this property will be based on:

1. a number of performance tables of a program implementing this algorithm,
2. the number of problems from a representative test set for C, which are

solved by the algorithm.
The notion reliable can be described somewhat more precise.

7.9. DESCRIPTION. We say that a program for solving problems from C is

reliable, if the program, when it is applied to any problem of a representa-
tive test set for C, yields either a solution within the required accuracy
or an informative error message, i.e. a message giving information about the

(bad) characteristics of the problem which might have caused the failure.

From the error messages from the ALGOL 68 programming system we con-

sider the following messages not being informative:

- "too many function evaluations or iterations required",
- "difference approximation impossible, point on boundary domain",

~ "divergence out of domain of function".

Hence, termination of a program with such a message shows unreliability of

this program and is therefore called an unreliable failure.

Reliability is a desirable property of programs. A reliable program
provides the tools for interpreting the results of the program. The user
can rely upon the approximate solution which is obtained in a successful run
and in case of failure he obtains an indication for what reason the program

fails.
To describe the notion efficiency we need the following definition.

7.10. DEFINITION. Let P be a given program for solving problems from C and

let p ¢ C. Let to and ts be given (see remark 7.5) and let

ts: be the standard time required to perform an iteration step (exclu-
sive the time needed for evaluation of the function or its
jacobian) ,

t_: be the standard time reguired to perform the initialization

(without function or jacobian evaluation),

163

mF: be the number of function evaluations required to solve p by P,
mJ: be the number of jacobian evaluations required to solve p by P
(mJ = 0 if the analytic jacobian is not available),

m: be the number of iteration steps required to solve p by P.

Then, the time T(P,p), required to solve p by P is defined by

7.] = + 4 + .
(7.1) T(P,p) tI tSmS tFmF tJmJ

Note that, if J(x) is approximated using, say q, additional function

evaluations, then g is added to mF.

7.11. REMARK. Use of T(P,p) has many advantages above just measuring the

total time by experiments. It enables us to present test results for variable

F J
test set (see description 7.7). This can be seen by the following reasoning.

t., and t_ and to disregard tF and tJ in the description of a representative

Assume that for P the values of t_ and tS are known (can be measured once
by experiments). Then, the values of M, mF and m for solving p by P can be

obtained easily by experiment. Therefore, for given tF and tJ,

be calculated according to (7.1). If p'e C differs from p only in the values
of tF and t

T(P,p) can

3 then T(P,p') can be calculated from the experimental results

of p.

n

7.12. REMARK. We assume that Mg, T and m, obtained for solving p by P, are
representative for the algorithms of which P is an implementation. Hence,
we assume that these values are independent of the computer and programming
system. In particular, we assume that these values are not (substantially)
affected by round-off. This assumption holds as long as the relative errors
due to round-off are small relative to 1. If, for instance, the condition
number of a matrix in a linear system is of order 1/e, then the numerical
solution may contain large relative errors. Solving such a system with
double precision might yield a far better solution. Therefore, particularly
the machine precision may influence the values of Mg, M and mJ if the con-
dition numbers of the successive jacobian approximations are large. In gen-

eral, one may expect that program P, is more robust than program P2 if they

1

implement the same algorithm and if the machine precision in P1 is smaller

than in P2.

164

7.13. DESCRIPTION. Let {pj}§=1 be a representative test set for Cn=={p|p e C,
p has order n}. Let algorithms Al""'Ak be implemented for a given computer
and programming system by programs Pl""’Pk’ respectively. Then we define

the relative efficiency of Aj(j=1,...,k) with respect to {Ai}§=1 by:

1
(7.2) E.(n,t_,t) =5+) T(P.,p.),
3 T Y2 ieT 3754

where T is defined by (7.1), I = {i]l <ic<4, P, is solved by all Pj
(3=1,...,k)} and £' is the number of integers in I. We say that A, is more

efficient than A, for solving problems of Cn with given values for tF and

t

77 if Ei(n,tF,tJ) < Ej(n'tF’tJ)'

7.14. REMARK. We assume independency of Ej(n,tF,tJ) (3=1,...,k) of {pj}§=1,

as we chose this set to be representative for Cn. We also assume that the
relative efficiencies of the algorithms, relative to each other, are not
dependent on the set of programs {Pj}g*i' In general, this assumption does
not hold, due to the fact that I changes if programs are added or deleted
from the given set. We base this assumption on the representativity of
(0,1
i73=1
designed for the same class of problems.

and the fact that we compare algorithms with the same structure,

7.15. REMARK. The notions described in this section are all vague and
intuitive. They are based on proposition 7.4, which is, most likely, not
completely true. Proposition 7.4 is based on the theory of chapter 5 and
our practical experience. We expect it to be reasonable. We emphasize that
care must be taken in using the notions from this section. For instance,

conclusions like algorithm A, is 10% more efficient than algorithm A2, are

1

not relevant, but conclusions like A1 is twice as efficient as A2 certainly

are relevant (see also the comment on table 7.1).

165

7.5. DESIGN OF EXPERIMENTS

7.5.1. General design of comparison of algorithms

Let k Newton-like algorithms and/or algorithms of component wise approx-—
imation be given, denoted by Aj (3j=1,...,k), which have to be compared. Then,
we write programs Pj (j=1,...,k) in ALGOL 60, implementing Aj (3=1,...,k),
respectively, on a CYBER 73 computer with NOS-BE running system and machine
precision £ = 2“47. We use the current ALGOL 3.435 compiler and the NUMAL
software library (see HEMKER et al. [1979]). Then the programs are run for

the following specific set of test problems.
Test problems for performance tables (cf. appendix I).

1. problem 1, n = 2,3,...,9,10,13,24,35.
When n increases the values of EO and EO increase rapidly; the value
of BO increases only very slowly. The values E*, 5* at the solutions

also increase only slowly.

2. problem 2, n = 3, ¢ = 10P (p=1,2,...,11).

When the value of ¢ increases the values of KO and K, increase while

w. and W, remain small and almost constant.

0
3. problem 4, n = 2,13, ¢ = 10° (p=1,2,...,7).
When ¢ increases the values of EO’ BO and éO are constant or decreasing

and the values of Ky and w, increase.

4, problem 5, n = 2,13,24,35,46.
The values of the problem indicators are small and almost independent
of n. These problems are expected to be easily solvable and dependence

of the behaviour of algorithms on the order can be tested.

5. problem 5a, n = 35,

o) = (10742,107%%y, (107%%,1071%, (1071%,1078), (1071%,1079),
(072,107, 1071%,107%), (1071%,1071%), (1078,1071%,
(10"6,10'12), (10"4,10"12) and (10'2,10"12)°

For this problems we choose 6f =48 = 6ax = 10~3. The test problems

rx
show the dependence of the algorithm on errors in function and jaco-

bian.

6. problem 7, n = 2, ¢ = 0.1,1,5,10,50,10%,10°,10%,10°, 10°.

When ¢ increases, w, increases slowly and the other values remain

166

constant. The solutions (four for ¢ 2 10) come very close to the origin

for large values of c.

Based on the results for these test problems which are given in perfor-
mance tables (see description 7.6), we state conclusions about specific be-
haviour of algorithms and we also give preliminary conclusions about robust-
ness and reliability. Based on these conclusions we select programs Pji,
j, € {1,...,k} which appear to be worthwhile for testing on a representative
test set. In fact we choose test sets Tn' which are representative for

C_ = {p|lp € C, p has order n}. These sets consist of the following problems.

Test problems in representative test set Tn (cf. appendix I).

problem 1;

problem 2, c¢ = 10;

problem 3;

problem 4, ¢ = 10, 104, 107:

problem 5;

problem 6;

problem 7, ¢ = 10, 1¢4;

problem 8;

problem 9;

problem 10, for (s _,s) = (1,1), (10-3,1), (10-6,1), (19-9,1), (10-14,1),
(1,10-3), (L,10-6), (1,109, (1,10~14);

problem 11, (sr,sc) = (1,1);

problem 12;

problem 13;

problem 14;

So, Tn consists of 25 problems for each n. By collecting the values of the
problem indicators, one can see that these values are reasonably spread,
although, for large order these are larger on the average than for small
order. We are a bit sloppy with this criterion in order to be able to use

the same set of problems in Tn' for each n 2 2.

Due to storage requirements and limitations on the CPU-time that can be
used for testing, we only choose the following five different values of n

(we shall speak about selected orders) :

n =2, 13, 24, 35, 46.

167

We choose odd and even values in order to avoid conclusions which are in-

fluenced by the fact that orders are only even or odd.

Based on the results given in the performance tables and those for the
sets Tn' for the selected orders, we shall derive conclusions about the ro-
bustness and reliability of the algorithms. The standard times T(Pj,pk)
(see (7.1)) or efficiencies Eji(n'tF’tJ)’ where ji € {1,...,k} are the in-
dices of the selected programs, are given for the following selected values

£ :
o tF and tJ

S R ~1 2
(tFltJ) - (Il In); (n ri)r (1rn)1 (nln)r
w e, 1, o,
(n,1).

Note that the dependence of tF and tj on n is at hand since F(x) € lgl,
J(x) € L(Ifl). Note that tF = 1 means that one evaluation of a function
value is about as expensive as the solution of a linear system of order n,
for large n. Finally, note that, for algorithms which do not use analytic
expressions for the jacobian, only four choices are left because mJ = 0 in
that case. We derive final conclusions about the usefulness of Pji, and
hence of Aji, using the efficiency results, which completes the comparison

of a given set of algorithms.

7.5.2. Design of comparison of basic algorithms

In section 6.7 we described 18 basic Newton-~like algorithms. Further-
more, we have two basic algorithms of component wise approximation: BW and
BT (see section 7.1). The third algorithms of component wise approximation,
BTM, is in fact a modification of BT, which reuses old jacobian information
at the end of each iteration step. Essentially, this is an additional feature
in BT, which may be compared with conditional use of fixed approximation of
the jacobian in Newton-like algorithms. Evaluation of this feature is dis-

cussed in subsection 7.5.3.

The 20 basic algorithms are grouped into 6 groups, such that for each
group we can take the same values for ts and tI“ This makes comparison rela-
tively easy within a group. For this grouping we assumed that computation

of the step length factor is small relative to the time required for solving

168

the linear system. This is true for large n. For small n, we have very small
values for tS and tI’ which are relatively negligible. The various groups
with the a-priori knowledge about relevant quantities are listed below.

1. ASW, AS, AB, AI, AE;

t. =0, t

T s = 1, m = mJ,

S
2. GAS, GAB, GAIL;

t. =0, ts givén in table 7.1 (ALGOL 60 results, column 6), mg = mo-

3. DSwW, DS, DB, DI, DE;

t.=0, t, =1, m_= 0,

S J
4. GDS, GDB, GDI;

t. =0, ts given in table 7.1 (column 6), mo = 0.

5. uis, U2s;

tI and tS given in table 7.2, m, = 0.

6. BW, BT;
tI = (), ts given in table 7.2 (differs for both algorithms),

mJ = 0.

Note that group 6 is an exception to the rule in that tI and tS are equal
for algorithms within a group. BW and BT are taken together as both are
implementations of the same method. Note also that we choose tI = 0 in
groups 1, 2, 3 and 4 which agrees with the structure of these algorithms
described in section 6.7, where the matrix decomposition is performed to-—
gether with the computation of data in each iteration step (see also section
6.4). In UlS and U2S we have to calculate an approximation to the inverse

jacobian (inversion of difference approximation) in the initialization phase.

table 7.2.

tI and t, (in standard time) for some algorithms
Pl

(based on ALGOL 60 programs) .

no | e O e O e | e e
u2s u2s

2. 1 1 2 2

13 2 0.3 4 4

24 2 "0.1 4 3

35 2 0.1 4 5

46 2 0.1 4 6

169

Comparison of the basic algorithms is performed in the following steps.

1. Comparison of the algorithms of the six groups separately in the way as
described in subsection 7.5.1.

2. Comparison of algorithms using the analytic jacobian.

3. Comparison of algorithms using difference approximation.

Some conclusions will be stated based on these comparisons. However, final

conclusions can only be made after testing the additional features, which

are not all applicable to all basic algorithms.

7.5.3. Design of evaluation of additional features and special properties

For the additional features and special properties, given in section
6.8 up to 6.11, we choose specific sets of test problems, to test their

effectiveness and usefulness.

A. Test problems for testing the convergence criteria.

The testproblems are chosen such that the solutions are known, or can

be computed, in almost full machine precision.

1. problem i, n = 5,6,7,8,9,10,13,24;

6f = er = Gax = 10~3s 107+ 10-1t.
2. problem 7, n = 2, ¢ = 107, p=1,3,5,8;
5f = er = éax = 103 10~7: 19~-11.

3. problem 15, n = 4;

df = er = Gax = 10-p (®=1,2,...,10).

Note that problem 1 has reasonably small values for E* and 5*, problem 7 has
slowly increasing values for a* but small E*. For problem 15 the jacobian

has rank 2 at the solution (n=4).

B. Test problems for testing conditional use of approximation by updating

or fixed approximation.

It is expected that these features work well if the jacobian varies
*
only slowly around the solution (w(x) small), but will have no effects

if this is not true.

1. problem 4, n = 13, ¢ = 10 and 100;

5* = 4 and 300 respectively.

170

2. problem 7, n = 2, ¢ = 0.1,1,5,10,50,100,1¢3,1094,105 and 1(8;

w, grows slowly from 0.09 up to 7393, for increasing c.

it

2,13,24,35 and 46;
.2.

3. problem 8, n

IN
(@]

W
*

4. problem 1, n = 5,6,7,8,9,10,13;
6f = drx = Gax
the effect of these features on the accuracy obtained.

= 10-3s 10~7s 10-11, in order to check

C. Test problems for testing scaling.

1. problem 1, n = 24;

scaling based on the jacobian at x,. spoils the small

0
condition number at x*.
2. problem 2, n = 3, ¢ = 10° (p=1,2,...,11);

scaling based on the jacobian at x does not have very

0
much effect on the large condition number at x*.

3. problem 10, n = 2,13, with sr and sC chosen as in table 1.10;
scaling decreases the condition number on the whole

domain, if sr is small.

4. problem 11, n = 2,13, with s, and S chosen as in table I.11;
scaling decreases the condition number on the whole

domain if sr is small.

5. problem 16, n = 2, ¢ = 10° (p=0,1,...,5);
scaling based on J(xo) hardly has any effect on the

*
scaling at x .
D. Testproblems for testing reduction of problems with linear components.

problem 1, forn = 2,3,...,9,10,13,24;

this function has n-~1 linear function components.

These special properties and additional features are tested only for
the basic algorithms selected after evaluation. Based on a qualitative dis-
cussion of the experimental results obtained in this way we select useful

combinations of basic algorithms and features.

171

7.5.4. Design of final experiments

Based on the comparisons designed in subsection 7.5.2 and 7.5.3 we
shall give final conclusions about robustness, reliability and efficiency
of combinations of algorithms (basic algorithms with certain additional
features). These conclusions may depend on
- availability of an analytic jacobian,

- the order,

- the values of tF and tJ.

172

7.6. EXPERIMENTAL EVALUATION OF BASIC ALGORITHMS

7.6.1. Algorithms ASW, AS, AB, AI and AE

The experimental results are given in appendix II.1. For these algo-

it : = = = .
rithms we have tI 0, tS 1, mS mJ

Performance tables

The results fof problem 1 show the effect of an increasing condition
number of the jacobian matrix at the initial point. Restrained algorithms
appear to be favourable, as these solve most problems and efficiently so.
The performance of AI is the best. AB fails to solve the problem for n = 24
and 35 and AE fails three times (n = 8,10,13). AS fails for n = 5 due to the
special failure criterion (6.53) for n = 5,6,7 and to numerical singularity
for n 2 8. ASW solves the problem for n = 5,6,7 but at the cost of relatively
many iteration steps.

The results for problem.Z show the effect of an increasing condition
number at the starting guess as well as at the solution. Particularly at the
solution the condition number increases fast (E* = 197 for ¢ = 1¢96). This
causes the failure of AS, AB, AI and AE for ¢ 2 106, due to failure criteria
(6.53) and (6.54). ASW is apparently superior to the other algorithms. It
does not use these failure criteria and the bad condition number at the
solution does not cause failure, although the number of iteration steps
required increases. AE performs badly. The step length factor obtained by
a-priori estimation is pessimistically small, so that slow linear convergence
occurs. In fact, it fails four times with the non-informative error message
4 ("too many function evaluations or iterations required").

The results for problem 4 show a somewhat similar effect as for prob-
lem 2. For this problem E* as well as B* increase rapidly with increasing
parameter value, while the other problem indicators remain almost constant.
Failure of AS, AB, AI and AE is due to failure criteria (6.53) and (6.54)
(with one exception for AI). ASW, which does not use these criteria, fails
only three times. Note that the restrained algorithms also perform worse
than AS. This suggests that the bad behaviour is due to the restraining and
that the restrained algorithms would not perform better if the failure
criteria (6.53) and (6.54) would not have been used. In fact, these criteria
induce earlier detection of failure. This conjecture is confirmed by the

results of GAS, GAB and GAI for this problem (see appendix II.2).

173

figure 7.1.

log (P (x))

10

ASW

problem 4, 1 = 13, c = 103

Here the restrained algorithms GAB and GAI also solve the problem only for

¢ = 1. The fact that restraining performs so bad, is that it forces the
algorithms to search for a solution in the valley of the levelfunction in
which the starting point lies. There appears to be no solution in this val-
ley. The strict algorithms jump from one valley to another until an appro-
priate point is found. This difference in behaviour of restrained and strict
algorithms is illustrated in figure 7.1. Clearly, the value of | F(xk)“
jumps up and down during all but the last three iteration steps of algorithm
ASW. In fact, the behaviour of ASW for n = 13 is rather unpredictable and

the algorithm fails three times with non~informative messages. It seems that

174

solving problem 4 for n = 13 with ASW is rather occasional.

Based on the values of the problem indicators in table I.5, we expect
problem 5 to be easily solvable. This is confirmed by the results. The
number of iteration steps and function evaluations is small and practically
the same for all selected orders and all programs.

The results for problem 5a show the effect of random errors in the
function and jacobian. All algorithms perform well as long as the errors are
not so large that the convergence criteria cannot be satisfied (see subsec-
tion 7.5.1). This happens for p = jg~2. In that case all algorithms fail and
only AB, AI and AE give an informative message.

The results for problem 7 are the same for all algorithms. The number
of iteration steps and function evaluations required to solve the problem
increases with increasing parameter values (which induce increasing values
of w , see table I.7).

Based on these results we state some conclusions and make some choices.

AE performs equally well or worse than AB or AI. The a-priori estimation
does not work very well in practice. As, moreover, AE is considerably
more complicated than AI and AB, we reject AE.

~ AS is never more efficient that ASW. Moreover, AS is considerably less
robust than ASW and less reliable than AB or AI. Therefore, AS is rejected
also.

- We expect that the performance of AB and AI is almost the same. The small
differences that occur seem to be very occasional. Therefore, there is
little sense in testing both algorithms on the whole set of test problems.
We discard AI because of its more complicated program structure.

~ ASW seems to be robust, but not very reliable (6 non-informative failure
messages) . Moreover, its unpredictable behaviour for problem 4 is unsatis-—
factory.

-~ AB seems to be reliable (all failures with informative messages) but not

very robust. For some problems AB performs considerably better than ASW

(e.g. problem 1).

We shall consider ASW and AB for further testing.

Representative test sets

In table 7.3 we give the relative efficiences E(n,tF,tJ) (see descrip-
tion 7.13) for the selected orders and values of tF and tJ, We also give
the percentages of problems solved and the numbers of unreliable failures

(see section 7.4). Note that all results for AB indicate that the number of

175

steps required is almost always very reasonable. Only once 77 steps are
required (problem 4, n = 13, ¢ = 132) and once 43 (problem 4, n = 13, c=1¢96).
In all other cases at most 17 iteration steps are required. On the contrary,

ASW reaches 17 times the upper bound on the number of function evaluations.

table 7.3. E(n,tF,tJ)

tF tJ n=2 n=13 n=24 n=35 n=46

ASW AB ASW AB ASW AB ASW AB ASW AB
Y T) 8 5 5 5 5 4 4 5 5
o 11 12 9 9 9 9 9 8 10 10
1 n 16 19 65 63 | 120 | 110 | 160 | 150 ! 230 | 230
n n? 30 34 | 800 | 830 | 2700 |2600 | 5300 |5200 |10000 [10000
" ot 9 10 5 s 5 5 4 4 5 5
1 1 13 15 14 i5 14 14 14 13 15 15
n n 22 26 | 130 140' 240 | 240 | 330 | 330 | 490 | 490
n 1 18 21 77 83 | 140 | 140 | 190 | 190 | 280 | 280
% solved | 92 76 84 66 76 68 72 60 72 60
unrel.fail i [} 3 0 5 4] [4] (3 [}

Conclusions

Efficiency: ASW and AB are equally efficient.
Robustness: ASW is more robust than AB, in the sense that it solves more
test problems. However, the behaviour of ASW is sometimes unsatisfactory.

Reliability: AB is very reliable and ASW is not.

7.6.2. Algorithms GAS, GAB and GAI

The experimental results are given in appendix II.Z. For these algo-
rithms tI = 0, ms = mJ and tS is given in table 7.1 (column 6). Notice that
these algorithms use singular value decomposition, so that failure criteria
(6.53) and (6.54) as well as the special convergence criteria are not used

(see section 6.6).

Performance tables:

The results for problem ! show that the restrained algorithms GAI

176

and GAB perform best. Failure of these algorithms for n = 24 is due to
forcing termination as the number of function evaluations exceeds its upper
bound (25 for n = 24). The first step direction vector is very large and a
large number of bisection or interpolation steps is required to obtain a rea-
sonable step length factor. GAS obtains an iterate outside the domain of the
function.

The results for problem 2 are almost the same for GAB and GAI and there
is a slight difference with GAS. Only for very large values of the parameter
(very large E*, see table I.2) restraining causes a less efficient behaviour.

The results for problem 4 show almost the same picture as for algorithms
with triangular decomposition. Restraining causes bad behaviour for these
problems.

The results for problem 5 are practically the same for GAS, GAB and GAIL
and for all selected orders.

The effect of random errors is shown by the results of problem 5a. GAS
and GAB are terminated due to too many function evaluations; GAIL reports that
no progress is obtained due to too high required precision. Note that the
number of iteration steps in GAB is less than half of that of GAS. Restrain-
ing in GAB requires more function evaluations per step.

Finally, the results for problem 7 show no difference between GAS, GAB
and GAI.

We come to the following conclusions and choices.
~ The difference between performances of GAB and GAI is very small. Therefore
we discard GAI as GAB has a simpler program structure.
- GAB performs best for problem 1 (large EO) and GAS performs best for prob-
lem 4 (large K, and m*), It is difficult to draw conclusions about robust-
ness and reliability of GAS and GAB based on these results.

GAS and GAB are considered for further testing.

Representative testsets
In table 7.4 we give the relative efficiencies E(n,tF,tJ) for the selected

orders and values of tF and t the percentages of problems solved and the

Jl
numbers of unreliable failures.

177

table 7.4. (E(n,tF,tJ))

=2 n=13 n=24 ' n=35 n=46
t‘.F tJ GAS GAB GAS GAB GAS GAB GAS GAB GAS3 GAB
| ot 8 9 38 40 50 50 18 48 54 52
P 1 12 13 43 45 55 55 53 53 59 57
1 n 19 21 110 110 | 180 | 170 | 220 | 220 | 310] 290
n n? 33 37 | 910 | 950 | 3100 | 3000 | 6200 | 6100 12000 311000
ol ol 9 10 39 40 50 50 49 48 54 52
1 1 14 16 48 50 61 60 59 | s8 65 63
n n 24 27 170 | 180 | 310 | 310 | 420 | 420 | 590 , 580
n 1 20 23 120 | 120 | 200 | 200 | 260 | 250 | 350 | 350
% solved | 96 92 88 84 80 80 80 76 84 ! 84
unrel. fail| 1 1 2 4 3 4 4 6 4 4

Conclusions

Efficiency: GAS and GAB are equally efficient.
Robustness: GAS is slightly more robust than GAB.
Reliability: GAS and GAB are not reliable.

7.6.3. Comparison of algorithms requiring an analytic jacobian

We compare ASW, AB, GAS and GAB. We use tables 7.3 and 7.4, although
these tables do not give precisely the efficiency of these algorithms
relative to each other (note that I and £° in (7.2) are based on ASW and AB
for table 7.3, and on GAS and GAB for table 7.4). Precise computation of
these efficiencies will not lead to other conclusions. We obtain the follow-

ing conclusions.

Conclusions

Efficiency: For very small order ASW, AB, GAS and GAB are almost equally
efficient. Otherwise ASW and AB are significantly more efficient than GAS
and GAB for problems with cheap function and jacobian evaluations (up to a
factor 10, due to the expensive singular value decomposition relative to

triangular decomposition). For problems with expensive function and jacobian

178

evaluations (e.g. (tF,tJ) = (n,nz)), ASW, AB, GAS and GAB are almost equally
efficient.

Robustness: GAS is the most robust algorithm (solves 86% of the problems of
the representative test sets, GAB 83%, ASW 79% and AB 66%). Algorithms using
singular value decomposition are more robust than algorithms using triangular
decomposition. Strict algorithms are more robust than restrained algorithms.
Reliability: AB is very reliable (no unreliable failures for all test prob-
lems). ASW, GAS and GAB are not reliable.

Other properties: Some kind of problems (e.g. problem 1) can better be solved

by restrained aléorithms, others (e.g. problem 4) can better be solved by

strict algorithis.

Based on these conclusions we suggest to combine the reliable and efficient
algorithm AB with the robust and less efficient algorithm GAS. That means
that, when AB fails, we subsequently use GAS. Note that failure of AB is
usually detected after a few iteration steps. Furthermore, the error mes-
sages given in case of failure of the reliable algorithm AB, may help to
interpret possible unreliable results of GAS. We combine AB with GAS and not
with GAB because (1) GAS is somewhat more robust than GAB and (2) based on
the last conclusion above, it is preferable to combine a restrained and a
strict algorithm. We shall talk about the poly-algorithm AB+GAS. Based on
the results of the testing of special features we possibly modify this

poly-algorithm.

7.6.4. Algorithms DSW, DS, DB, DI and DE

The experimental results are given in appendix II.3. For these algo-

rithms we have tI = 0, tS = 1 and mJ = 0,

Performance tables

The results show a remarkable similarity with the results for ASW, AS,
AB, AI and AE, respectively, (see appendix II.l1), besides the fact that the
difference approximation requires n extra function evaluations in each step.
There is a small difference in the results for problem 2, where DS, DB, DI
and DE fail for ¢ 2 3195 and AS, AB, AI and AE for c > 1¢6. This happens

because difference approximation yields a greater value for & so that

kl

failure criterion (6.54) is satisfied for smaller values of Ek in the differ-

ence algorithms. Furthermore, notice the difference in performance of ASW

and DSW for problem 4 (¢ = 136). The large values of E* and E* clearly

179

indicate difficulties with computing the difference approximation. The

Qerformance of DSW is considerably worse than of ASW for these test problems.
Finally, comparison of the results for problem 5a indicate that numeri-

cal errors in the function cause more problems for algorithms with difference

approximations than for algorithms using the analytic jacobian. Apart from

these observations we obtain similar conclusions as in subsection 7.6.1.

- DE and DS arxe rejected.

~ DI is discarded.

- DSW seems more robust but less reliable than DB.

DSW and DB are considered for further testing.

Representative test sets

In table 7.5 we give the relative efficiencies E(n,tF,tJ) for the se-
lected orders and values of tF (note that my = 0, so that the efficiencies
are independent of tJ), Furthermore this table gives the percentages of prob-
lems solved and the numbers of unreliable failures. Note that DB has no un-

reliable failures, while DSW has 22.

Conclusions
Efficiency: DSW and DB are equally efficient.
Robustness: DSW is more robust than DB.

Reliability: DB is very reliable and DSW is not.

table 7.5. (E(n,tF,tJ))

n=2 n=13 n=24 n=35 n=46
t‘F nsw DB DSW DB DSW DB DSW DB DSW DB
a2 7 9 5 5 5 5 5 5 5 5
u? 11 12 9 10 9 9 9 9 10 10
1 17 20 68 71 120 120 160 160 | 240 240
n o 36 830 | 870 | 2700 | 2700 | 5600 | 5600 110060 [11000
% soived| 88 72 76 64 68 60 60 54 60 54
unr.fail| © 0 3 0 6 0 7 0 6 0

180

7.6.5. Algorithms GDS, GDB and GDI

The experimental results are given in appendix II.4. For these algo-

rithms tI =0, mJ

rithms use singular value decomposition, so that failure criteria (6.53) and

= 0 and ts is given in table 7.1 (column 6). These algo-

(6.54) as well as convergence criterion (6.50) are not used.

Performance tables

Comparing the results of GDS, GDB and GDI with those of GAS, GAB and
GAI (appendix II.2), we must realize that a greater error in the approxima-
tion to the jacobian may cause another value for the approximate rank, as
the approximate rank depends on the approximate error ék. Therefore, we have
a somewhat different performance of GDS, GDB and GDI as compared with GAS,
GAB and GAI. Such an effect does not occur in algorithms using triangular
decomposition.

The results for problem 1 show the best performance for GDB and GDI.
There is almost no difference between the performance of GDB and GDI for
this problem. Notice that GDS performs better than GAS for n = 6,8,24, which
may be due to a lower approximate rank in GDS.

The results for problem 2 show that the bad condition number of the
jacobian, if ¢ is large, causes problems for the algorithms. GDB and GDI
terminate for ¢ 2 138 with error messages: no progress. This may be due to
a too low approximated rank which forces a search direction in a subspace
in which the level function can not be decreased.

The results for problem 4 are similar to other results as far as the
restrained algorithms GDB and GDI are concerned. GDS performs worse than
GAS for n = 2, but better for n = 13, It strengthens an earlier remark that
this problem is hard to solve and causes unpredictable performance of strict
algorithms.

The results for problem 5 and 7 show practically no differences between
GDS, GDB and GDI.

The results for problem 5a show the effect of numerical errors in the
function values. These errors have a strong effect on the difference approximation.

We come to the following conclusions and choices.

-~ The difference between the performances of GDB and GDI is very small.
Therefore, GDI is discarded because of the simpler program structure of
GDB.)

~ GDS performs best for problem 4 and GDB for problem 1. It is difficult te

181

draw conclusions about robustness and reliability based on these results.

Representative test sets
In table 7.6 we give the relative efficiencies E(n,tF,tJ) for the se-
lected orders and values of tF, the percentages of problems solved and the

numbers of unreliable failures.

table 7.6. (E(n,tF,tJ))

n=2 n=13 n=24 n=35 n=46
t‘F GDS GDB GDS GDB GDS GDB GDS GDB GDS GDB
a2 8 9 38 39 50 50 46 46 53 51
ot 12 13 43 44 55 55 51 51 s8 s6
1 19 21 100 | 110 | 170 | 170 | 210 | =210 | 300 | 290
n 33 37 | 910 | 930 | 3000 | 3000 |5900 | 5900 [12000 {11000
§ solved| 92 92 84 76 84 80 84 76 88 84
unr.fail 0 1 i 3 2 3 2 3 1 2

Conclusions

Efficiency: GDS and GDB are equally efficient.
Robustness: GDS is slightly more robust than GDB.
Reliability: GDS and GDB are not very reliable.

7.6.6. Algorithms using difference approximations.

We compare DSW, DB, GDS and GDB using tables 7.5 and 7.6. (Note that
these tables do not give precisely the relative efficiencies of these four
algorithms.) We can state the following conclusions.

Efficiency: For very small order DSW, DB, GDS and GDB are almost equally
efficient. Otherwise DSW and DB are significantly more efficient than GDS
and GDB for functions with cheap function evaluations (up to a factor 10

for tF = nnz) and about equally efficient for expensive function evaluations
(tF = n).

Robustness: GDS is the most robust algorithm (GDS solves 86% of the problems
from the representative test sets, GDB 82%, DSW 70% and DB 61%). Algorithms

using singular value decomposition are more robust than those using trian-

182

gular decomposition. Strict algorithms are more robust than restrained algo-
rithms.
Reliability: DB is very reliable. GDB, GDS and DSW are not very reliable.

Other properties: Some kind of problems can better be solved by restrained

algorithms, others by strict algorithms.

Based on these conclusions we suggest, similar to the conclusions in
subsection 7.6.3, to use a poly-algorithm: DB + GDS. That means that, when
DB fails, we subsequently use GDS. We shall possibly modify this poly-algo-

rithm based on the results of the testing of special features.

7.6.7. Algorithms UlS and U2S

The experimental results are given in appendix II.5. For these algo-

rithms we have m, = 0, tI and tS given by table 7.2.

bPerformance tables
No significant difference is shown by the results for problems 1, 2,
4, 5, 5a and 7. Furthermore, both UlS and U2S do not seem to be very robust

or reliable.

Representative test sets
In table 7.7 we give the relative efficiencies E(n,tF,tJ) for the se-
lected orders and values of tF, the percentages of problems solved and the

numbers of unreliable failures.

table 7.7. (E(n,tF,tJ))

n=2 n=13 n=24 n=35 n=46
tF uls u2s uls u2s uls uz2s uls [u2s uls u2s
nt 10 10 4 4 4 4 3 3 3 3
nt 12 13 6 6 5 5 4 4 4 4
1 17 18 27 27 38 38 49 49 60 60
n 27 27 300 300 840 840 | 1600 | 1600 | 2600 | 26007
3 solved| 80 84 72 72 72 72 72 68 64 68
unr.fail 5 4 7 7 7 7 7 8 9 8
)

183

Conclusions

Efficiency: UlS and U2S are equally efficient. Both are considerably more
efficient than DB and GDS.

Robustness: UlS and U2S are not wvery robust (solve both 72% of the problems
of the representative test sets (GDS 86%)).

Reliability: UlS and U2S are not reliable.

As U2S uses the simplest and most well known update formula (Broyden's for-

mula) we discard ULS.

7.6.8. Algorithms BW and BT

The experimental results are given in appendix II.6. For these algo-
rithms tF = 0, m, = 0 and tS is given in table 7.2 (different for BW and
BT). In these algorithms a value has to be chosen for a parameter control-
ling the length of the difference steps in the formulas for approximating the
derivatives. We have created some performance tables for two different val-
ues of this parameter. These values are %e and Ye. However, most tests are
performed with the value %s“ Furthermore, in these programs we use a simple
convergence criterion in order to avoid additional function evaluations.
This criterion is
(3)

P ol <8e 3= 1m,

F(i) (=) r--aiF(n) (X))Tl yk 3

iteration step of the k~th iteration steb@ Finally these programs require

for Fix) = (is the iterate in the j~th sub~-

evaluation of function components separately. For a given vector of variables
only one function component has to be evaluated. In the reported results MF
denotes the number of component evaluations divided by the order n and roun-

ed to below.

Performance tables

For problem 1, the smaller value (Ve) for the difference steps yields
the best results. The reason for these big differences in behaviour is dif-
ficult to explain. It might be due to the fact that the only nonlinear func-
tion component is highly nonlinear and therefore its derivative is best ap-
proximated with small difference steps. Moreover, the fact that n~1 compo~
nents are linear might be of influence to this performance too. Note that
there is not much difference beﬁween the performances of BW and BT for n < 8,

if we choose the same value for the difference step.

184

The results for problem 2 do not show much difference between the two
choices for the value of the difference step. Here BT solves more problems.
Note that BT performs worse, and BW hardly any better than the Newton-like
algorithms AB and DB.

For problem 4 we see that the smallest value for the difference step
performs best. This is understandable as a large Lipschitz constant (a* is
laxge for large c¢) yields a small optimal value for the difference step
(see subsection 6.3.3).

The results for problem 5 show no difference between BW and BT.

The results for problem 5a show that the convergence criterion used
does not imply that IF(x)l < 6. for the computed solution x. BW and BT satis-
fy the convergence criterion without satisfying this condition on the norm
of the function.

The results for problem 7 do not show significant differences between
the performance of the algorithms.

We come to the following conclusions.

-~ Both algorithms are sensitive to the choice of the value for the difference
step. A choice, which is appropriate for all problems, cannot be given.
- BW and BT are not reliable.

- BW and BT seem to be not very robust.

Representative test sets
In table 7.8 we give the relative efficiencies E(n,tF,tJ) for the se-
lected orders and values of tF’ the percentages of problems solved and the

numbers of unreliable failures.

table 7.8. E(n,tF,tJ)

n=2 n=13 I n=24 n=35 n=46

tF BY BT BY BT BW BT BW BT BW BT

| a2 14 15 21 24 22 28 23 28 23 32
al 18 18 24 27 25 31 26 31 26 35

1 25 26 63 71 96 100 130 140 160 160

n 39 40 570 640 | 1800 | 1900 |3800 | 3800 | 6400 | 6000

% solved 96 83 92 80 92 76 €0 68 a4 72
unr. fail 1 1 1 3 2 | 6 5 7 4 5

185

Conclusions

Efficiency: BW and BT are almost equally efficient. For small values of tF'
BW and BT are less efficient than DB (up to a factor 4). For large values

of tF' however, BW and BT are more efficient than DB (up to a factor 2).
These conclusions are based on the assumption that the computation of n
function components for different argument vectors is as expensive as com-
putation of one function vector for a given argument vector. Very often this
assumption does notvhold, however. In that case BW and BT might become con-~
siderably less efficient than DB (up to a factor n if calculating one com-
ponent is as expensive as calculating the whole vector).

Robustness: BW is more robust than BT. The performance tables show no big
difference but BW solves 89% and BT 77% of the test problems from the repre-
sentative test sets. Note that the robustness of BW is comparable with the
robustness of GDS (considering all test results and depending on the choice
of the value of the difference step in BW).

Reliability: BW and BT are not reliable.

Conclusions here indicate that BW is the best choice. As BT can be modified
as to use old jacobian information and BW can not, a definite choice between

BW and BT has to be postponed until this modification of BT is tested.

7.6.9. Summary of conclusions about basic algorithms

1. The use of an analytic jacobian, if available, leads to more robust algo-
rithms (see discussion of performance tables in subsection 7.6.4 and
7.6.5).

2. Generalized algorithms are more robust than other Newton-like algorithms.

3. Generalized algorithms are less efficient than other Newton-like algo-
rithms, particularly for cheap function and jacobian evaluations.

4. Strict algorithms are, on the average, more robust than restrained algo-
rithms, although restrained algorithms perform better for some classes of
problems.

5. Restraining with a-priori estimation of the step length factor performs
badly.

6. Restraining with bisection and with interpolation yields almost the same
performance.

7. The poly-algorithms AB+GAS and DB+GDS seem to be reliable, robust and

reasonably efficient algorithms.

186

8. For efficiency reasons U2S and, in some particular cases, BW and/or BT

may be interesting; these algorithms are not reliable; U2S and BT are

not robust.

The following algorithms are left for testing the special properties and

features:

AB, GAS, DB, GDS, U2S, BW and BT.

187

7.7. EVALUATION OF SPECIAL PROPERTIES AND FEATURES

7.7.1. Convergence criterion

In appendix II.7.1 we show some experimental results for evaluating the
performance of the convergence criteria. Algorithm ASWC is the same as ASW
except for the fact that the special convergence criterion (6.50) is not
used in ASWC, but (6.51) is used instead. The other algorithms are those
selected in section 7.6. The selected test problems have been mentioned in

subsection 7.5.3.A.

The results show a typical difference between ASW and ASWC. ASW has
always reached the precision required if no error message is given, however,
ASWC sometimes delivers a solution in a lower precision than required,
without giving an error message (problem 15 with singular jacobian at the
solution) . Furthermore, for easier problems ASWC often performs one more
iteration step than ASW. In fact ASWC terminates too late and obtains higher
precision than necessary. We conclude that the convergence criterion (6.50)
performs as was expected. It is safer and more accurate than (6.51). This
performance is not disturbed by the use of restraining or difference approx-
imation as is shown by the results of AB and ASW for problem 7 and the re-
sults of AB and DB. The results for problem 15 show that criterion (6.50)
sometimes is too pessimistic, as sometimes the precision is obtained and a
failure is reported. However, in our opinion, this is preferable above
having not reached the precision without giving any message. Furthermore,
notice that the error messages of AB and DB are adequate (not for ASWC as

no special failure criteria are used in this algorithm).

Another observation to be made from the results is that ASW, ASWC, AB,
GAS, DB and GDS require only one or two more iteration steps to satisfy the

convergence criteria with Gf = 6r = 109~11 instead of j;(~3. (notice

x 6ax
that ¢ = j9-14, approximately). This shows the (almost) quadratic order of
convergence for these algorithms (see theorem 5.20). If the jacobian is
singular at the solution then the order of convergence may become linear,
which is confirmed by the results for function 15. Furthermore, the asymp-
totic convergence behaviour of BW and BT is almost as for the Newton-like

algorithms above. For U2S we see a lower order of convergence.

188

Finally we want to point out some remarkable results:

-~ U2S sometimes performs well for low precision but fails for high precision
(problem 1, n = 6,7).

- U28 sometimes performs many iteration steps without gaining any better
results (problem 15, precision < ;¢=7).

- Asking a higher precision for problem 1 (n = 24) with BT results in one
more iteration step and loss of all precision. This suggests a very unre-
liable behaviour of BT. It is not quite clear whether we may expect similar

unreliable behaviour for BW.

Conclusions:

- The convergence criterion (6.50), used in ASW, AB and DB, is safe and
accurate. It yields somewhat more efficient algorithms, particularly for
easy problems. However, it might lead to unnecessary failure sometimes.

~ The convergence criterion (6.51), used in ASWC, GAS, GDS and U2S, sometimes
yields results which do not have the precision required.

- The convergence qriterion used in BW and BT may occasionally yield very
unreliable results.

~ Asymptotic convergence of ASW, ASWC, AB, GAS, DB and GDS is at a higher
rate than of U2S and is almost the same as of BW and BT.

In view of this conclusions there is no reason to consider ASWC any further.

7.7.2. Conditional use of updating and fixed approximation

As far as the algorithms are concerned which are left for further eval-
uation (see subsection 7.6.9), only AB and DB are suitable for application of
conditional use of updating. The modified algorithms are denoted by ABU and
DBU, respectively. Conditional use of fixed approximation is applicable to
AB, GAS, DB and GDS. These modified algorithms are denoted by ABF, GASF,

DBF and GDSF, respectively. Furthermore, MORE & COSNARD [1979] give a modi-
fication of BT, which reuses old jacobian information, which will be denoted
by BTM. In appendix II.7.2 we show the experimental results for testing these
features. The test problems used are mentioned in subsection 7.5.3.B. For con-

venience we also recall the results for the basic algorithms.

Update approximation
The results show a successful performance of ABU and DBU. One more
iteration step is incidentally required to solve problems 4, 7 and 8.

However, the number of jacobian evaluations required by ABU, and the number

189

of function evaluations required by DBU is always less than for AB and DB, re-
spectively. A similar performance was obtained for problem 1 if the required
precision is not very high (6f = er = sax = 10~3,109-7) - Only for high pre-
cision (3¢9-11) ABU and DBU use one more iteration step for all orders tested.
Clearly, the positive effect of the use of conditional updating on the ef-
ficiency depends on the expensiveness of a jacobian evaluation (for ABU) or

a function evaluation (for DBU). ABU is preferable, only if the jaccbian
evaluation is not Very cheap, relative to a standard time unit. DBU is pref-
erable, only if the function evaluation is not very cheap relative to a
standard time unit. Notice that an iteration step with updating in ABU and

DBU still requires a triangular decomposition of the jacobian approximation.

Fixed approximation

An iteration step with fixed approximation requires only o(nz) basic
arithmetical operations and is therefore negligible relative to a normal
step for large n. That makes conditional use of fixed approximation attrac-—
tive. However, the results show that use of fixed approximation sometimes
vields a considerable increase of the number of iteration steps required,
particularly if high precision is required (e.g. problem 1, n=13). Further-
more, use of fixed approximation decreases the robustness and reliability
of the algorithms (see GASF and GDSF for problem 1, n=6,9 and note that for

n=6 the precision, j3(-3, is not reached).

Reusing old jacobian information in BT
The effect of this feature on problem 4, 7 and 8 is very small. For
this reason we did not perform precision tests. Moreover, we discard BT and

BTM based on the conclusions of subsection 7.6.8.

Table 7.9 gives an illustration of the effect of conditional updating
and fixed approximation on the efficiency of the algorithms. We give in this
table the times (see (7.1)) required by the algorithms to solve problem 8
(n = 13,46).

This table alsc shows that ABU is about as efficient as AB for tJ less
than or equal to one standard time unit. For large tJ (n oxr n2 standard time
units), ABU may be up to 30% more efficient than AB. DBU is about as effi-

cient as DB as long as t_ is less than or equal to 1/n standard time unit.

F

For larger tF, DBU may become about 30% more efficient than DB. Use of con-

ditional fixed approximation may increase the efficiency from 0 up to 50%.

190

For n = 46 and tF % 1/n, the efficiencies of ABU and ABF, and of DBU and DBF

are about the same.

table 7.9. (T(P,p) for several algorithms)

tE‘ tJ AB ABU ABF DB DBU DBF GAS GASF GDS GDSF
1/a° i/n| 4 4 2 4 4 2 40 24 40 24
i/n 1 8 7 4 8 7 4 45 27 45 27
E 1 n 61 48 34 61 48 34 110 69 110 69
; n a2 750 580 420 750 580 420 960 610 960 610
§ i/n |1/n 5 5 3 8 7 4 41 25 45 27
g‘ 1 1 13 12 10 61 48 34 31 33 110 69
n a | 120 110 110 750 580 420 180 140 960 610
n 1 73 72 82 750 580 420 120 110 960 610
1/2° | i/n 4 4 3 4 4 3 50 30 50 30
1/n 1 8 7 6 | 8 7 3 55 33 55 33
© 1 n | 190 150 150 190 150 150 290 170 290 170
% n a2 |8700 | 6600 | 6600 | 8700 | 6600 | 6600 |11000 | 6700 |11000 | 6700
; i/n | i/n 4 4 3 8 7 6 50 30 55 33
% 1 1 13 12 11 190 150 150 61 39 290 170
= n n | 420 370 370 | 8700 | 6600 | 6600 560 440 {11000 | 6700
n 1| 240 240 240 | 8700 | 6600 | 6600 330 310 11000 | 6700

Conclusions

-~ Use of conditional updating may increase the efficiency of the algorithms
(up to about 30%), particularly if tJ > 1 (for AB) and tF > 1/n (for DB)
and if the required precision is not very high.

~ If very high precision is required (almost machine precision), than it is
better not to use conditional updating.

~ Conditional updating has little effect on the robustness and reliability
of the algorithms.

~ Use of conditional fixed approximation may increase the efficiency of the
algorithms (up to about 50%), if relatively low precision is reguired

(< Ve, say).

191

- If high precision is required, then conditional fixed approximation may
seriously decrease the efficiency, robustness and reliability of the algo-
rithms.

- Reusing old jacobian information in algorithm BT seems not to yield an
increase of the efficiency of this algorithm, hence BT and BTM are dis-
carded.

-~ If a method for updating a triangular decomposition would have been used
in algorithms ABU or DBU, then increase of efficiency would be about as
high as for conditional fixed approximation. In ABU and DBU the approxi-
mate jacobian is updated and a new triangular decomposition has to be
performed. We shall not work out updating of triangularly decomposed
matrices here. We just notice that it might increase the efficiency of

ABU or DBU.

7.7.3. Scaling

Implicit scaling is only applicable to the selected basic algorithms AB
and DB. We consider two choices for the implicit scaling matrix A (see re~

mark 4.18 and (sub)section 6.4.5 and 6.10): (i) A = H denoted by ABIS! and

’
DBIS! and (ii) A = Hk (k=0,1,...), denoted by ABIS2 agd DBIS2. Explicit
scaling is applicable to all selected basic Newton-like algorithms AB, GAS,
DB, GDS and U2S. Application of explicit scaling, as described in section
6.10, to BW runs into problems. BW does not use approximations to the jaco-
bian, neither at the initial point, nor at any other point obtained during
the process. Thus, application of scaling would require an additional eval-
uation of a jacobian approximation, which is very unattractive. Therefore,
we do not consider BW with scaling. The basic Newton~like algorithms with
explicit scaling are denoted by SCAB, SCGAS, SCDB, SCGDS and SCU2S, respec-—
tively. The experimental results are given in appendix II.7.3. We use the
test problems mentioned in subsection 7.5.3.C. In ABIS1/2 and DBIS1/2 we

use the normal stopping criteria on the function and variables. If explicit
scaling is used, then the stopping criteria are evaluated for the scaled
function and variables. The stopping criteria use vector norms and are,
therefore, based on the largest vector element. If we would adapt the re-
quired precision using the norms of the scaling matrices, then we would
require too high precision for the small components of the original function

and/or argument vector.

192

The comparison of AB with its modifications ABIS1, ABIS2 and SCAB
shows that the number of failures is reduced best with explicit scaling
(SCAB) . ABIS2 is better only for problem 2. This can be explained by the
observation that scaling based on the jacobian at the initial point (as is
done in SCAB) reduces the condition number due to bad scaling at the solution
only slightly for this problem (see table I.2). We expect that reusing of
SCAB after failure, which yields rescaling, might give better performance.
For the same reason, scaling does not yield a better performance for problem
16. Note that ABIS2 performs worse than the other algorithms for this prob-
lem. The results of ABIS! for problems 10 and 11 appear to be worse than of
AB. Sometimes ABIS1 fails if AB does not and sometimes vice versa. Therefore,
the results indicate that implicit scaling with A = HO is not a useful strat-
egy. Implicit scaling with A = Hk yields a somewhat better performance.
However, for problems 10 and 11 it fails as many times as AB. One reason
for this is that computation of ﬂBk\Fk"2 (which is the approximation to the
level function at xk) yields large errors if the condition number of B is
large. Hence, the problems that we want to avoid by using scaling, show up
in the scaling itself. This behaviour is confirmed by the fact that ABIS2
fails more often with error message 2 (no progress during restraining,
possibly due to error in function) than the other algorithms. SCAB reduces
the number of failures of AB with about 50% for this set of test problems.
Particularly, for problem 10 and 11 we obtain a reduction of the number of
failures from 17 to 5. Note that SCAB never performs worse than AB for these
test problems. For DB, DBIS1/2 and SCDB we can make similar observations

as for AB, ABIS1/2 and SCAB.

The results for the generalized algorithms show much less differences
between algorithms with and without scaling. An important reason for this is
that generalized algorithms do not necessarily fail if the jacobian approx-
imation is singular due to bad scaling. Moreover, for some problems the
scaled algorithms fail while the unscaled algorithms do not. Therefore,

scaling seems to be unattractive for generalized algorithms.

Finally, explicit scaling for the inverse-updating method U2S increases
robustness as well as efficiency of the algorithm slightly. Note that this
suggests that explicit scaling may also be useful in algorithms using con-

ditional updating.

193

Conclusions

- Implicit scaling does not always yield a performance which is at least as
good as for the unscaled algorithms. Moreover, the algorithms are less
robust than if explicit scaling is used. Therefore, implicit scaling is
rejected.

-~ Explicit scaling may considerably increase the robustness of the non-gener—
alized algorithms AB and DB, while efficiency is increased slightly.

- Explicit scaling for generalized algorithms has, on the average, only
little effect. For particular problems the effect is sometimes negative.
Therefore we reject explicit scaling for generalized algorithms.

~ The effect of explicit scaling on inverse-updating algorithms is positive

but small.

7.7.4. Reduction of problems with linear components

In appendix II.7.4 we give some results for the case that problem 1 is
reduced to a one~dimensional nonlinear problem (see section 6.11 and theorem
1.27). Our intention is to show the effect of the reduction method, not to
show the superiority or inferiority of the one~dimensional equation solver
that is used. The method chosen for solving the one-dimensional problem
is given in BUS & DEKKER [1975]. As this method requires an interval in
which the zero is searched for, we first search for a point in which the
function has a sign opposite to the one at the initial point. A modification
of Newton's method (if the analytic jacobian is available) or a linear inter-~
polation method is used to find such a point. A precise description is given
in the description of the ALGOL 60 package based on the results of this
thesis. (see BUS [19801).

Note that, for all given orders, we only require one singular value
decomposition of a nxn matrix and 11 evaluations of the nonlinear function
component. The overhead cost in the one-dimensional equation solver is neg-
ligible with respect to the time needed for the function evaluations and

matrix decomposition.

Our conclusion is that for problems with linear function components,
the above method provides a more robust and efficient algorithm, than solv-

ing the system as if all function components would be nonlinear.

194
7.8. CONCLUSIONS

Based on the experimental evaluation, described in sections 7.6 and
7.7, we obtain the following useful algorithms.

1. If the analytic jacobian is available:
(sC)aB(U) + GAS.
2. If no analytic jacobian is available:

(SC)DB(U) + GDS or
(sc)uz2s or
BW.

Here "+" means that, when the first algorithm fails, we subseguently use the
second algorithm. Parentheses denote that the feature should be optional to
the user of the algorithm. Conditional updating should be made optional,
because it is only preferable if the required precision is not very high.
Scaling should be made optional because there might be problems for which
scaling is undesirable. Moreover, as we only used a restricted test set for
testing the scaling, it is not sure that it always yields better performance.
If scaling is used in AB(U) or DB(U) we allow only 20 iteration steps. If

no solution is found within this number of steps, we check whether rescaling
might be useful and, if this is true, we use AB(U) or DB(U) again with at
most 20 iteration steps. If it fails again GAS or GDS is used subsequently.
If no scaling is allowed, we perform at most 40 iteration steps. These upper
bounds on the number of iteration steps are based on the fact that the test
results show that AB(U) or DB(U) almost always terminate in a reliable way
within this number of iteration steps. We do not consider conditional fixed
approximation, as we think that the loss of reliability in AB or DB and the
loss of robustness in GAS or GDS is more important than the gain of effi-
ciency if fixed approximation is used instead of update approximation. We
give precise descriptions in ALGOL 68 of (SC)AB(U)+ GAS and (SC)DB(U) + GDS
at the end of this section. We will call these final poly-algorithms SNOLEQJ
(Solution of NOnlinear EQations with analytic Jacobian) and SNOLEQ, respec—

tively.

195

The choice of BW follows from the conclusions in subsections 7.6.8
and 7.7.2. We notice that our conclusions about BW, BT and BTM differ from
the conclusions given by MORE & COSNARD [1979]. They conclude that BT is
preferable above BW, and BTM above BT. We like to emphasize that the choice
of the parameter that controls the difference step is a crucial one, which
may change results drastically. Furthermore, the set of test problems of
Moré and Cosnard seems to be chosen somewhat arbitrarily and might be not
very representativé for the class of problems considered here. Note that,

up to now a definite choice between SNOLEQ and BW is difficult to make.

The choice of U2S is due to the fact that it is a very efficient algo-

rithm, although it is not reliable nor robust.

If the analytic jacobian of the problem is available and is to be
used, then the only choice left is SNOLEQJ. If no analytic jacobian is
available, then we can choose one of the three algorithms SNOLEQ, BW and
(8C)U2S. Experimental results for these algorithms are reported in appendix
I1.8. Final conclusions about these algorithms, based on these results as

well as on other evaluation criteria, are given in chapter 8.

Description in ALGOL 68

It is assumed that the prelude nlsprl is extended with declarations

of the Newton~like algorithms: abu, scabu, gas, dbu, scdbu and gds.

.proc snoleg = .bool :
.begin
.proc nlp = .bool :
.begin .bool ok:= ,false ;
.if nongener
.then LJif scale
.then maxit:= 20; .if .not (ok:= scdbu)
.then torrix(warning,
"second attempt of nongeneralized method, rescaled");
ok:= scdbu
LEi
.else maxit:= 40; ok:= dbu .fi ;
.if .not ok .then torrix(warning,
"generalized method will be tried if allowed")
.fi . fi ; .if .not ok .and gener
.then maxit:= 40; ok:= gds .fi ;
ok
.end # nlp #;

.if linpart .then reducenewt(nlp) .else nlp .fi
.end # snoleq #;

196

.proc snolegj = .bool
.begin
.proc nlp = .bool :
.begin .bool ok:= .false ;

.if nongener
.then .if scale
.then maxit:= 20; .if .not (ok:= scabu)
.then torrix(warning,
"second attempt of nongeneralized method, rescaled");
ok:= scabu
.fi
.else maxit:= 40; ok:= abu .fi ;
.if .not ok .then torrix(warning,
"generalized method will be tried if allowed")
.fi .fi ; .if .not ok .and gener
.then maxit:= 40; ok:= gas .fi ;
ok
.end # nlp #;

.if linpart .then reducenewt(nlp) .else nlp .fi
.end # snoleqj #;

197

CHAPTER 8

FINAL RESULTS AND CONCLUSIONS

In appendix IT.8 we give the results for SNOLEQ and SNOLEQJ, with and
without scaling, and for SCU2S. For convenience we recall the results of
U2S and BW. We have not given the results for problem 5a (n=35), as these
tests are relatively expensive and required to test reliability mainly.

We already have enough information about the reliability of each algorithm
separately. In the ALGOL 60 tests described here, we only perform a second
call of the nongeneralized method if rescaling yields a scaling matrix with

a condition number = 100.

Performance tables

The results for preblem ! show that scaling is not always favourable.
For n = 6, 8 and 10, SNOLEQ(J) with scaling fails, but without scaling the
performance is nice. As is seen in appendix I.1, scaling based on the jaco-
bian matrix at X, may have a negative effect on the condition number of the
jacobian at the solution. We like to note also that algorithm BW performs
relatively well because the problem has n~!1 linear components, so that ap-
proximation of these components is exact.

The results for problem 2 show that scaling is preferable in SNOLEQ(J)
for this problem.. Note that scaling has no effect for U2S. If no scaling is
performed, then SNOLEQ(J) switches to the generalized algorithm after a few
iterations. Clearly SNOLEQ(J) with or without scaling is preferable for
this problem.

The results for problem 4 show a behaviour of SNOLEQJ (with and without
scaling) which is comparable to the behaviour of ASW (see appendix II.1),
which was the best among the tested algorithms which use the analytic jaco-
bian. However, SNOLEQ performs somewhat worse than DSW. Scaling yields some-
times better, sometimes worse results.

The results for problem 5 show a good behaviour for all algorithms.

Note that the number of jacobian evaluations is one less than the number

198

of iteration steps for SNOLEQJ. This indicates that in the third iteration
step updating is used to approximate the jacobian. The number of function
evaluations required indicate that this also holds for SNOLEQ.

The results for problem 7 are as was expected. Scaling hardly has any

effect.
Representative test sets

In table 8.1 we give the relative efficiencies E(n,tF,tJ) (see (7.2))
for SNOLEQ(J), with and without scaling, SCU2S, U2S and BW, for the selected
orders and values of tF and tJ, Furthermore, we give the percentages of
problems solved for each order and the mean value of these percentages for

all selected orders.
Conclusions

Bfficiency:

For small problems the efficiency is about the same for all algorithms.

Therefore, we restrict our conclusions to problems of order greater than or

equal to 13.

- SNOLEQJ, using the analytic jacobian, is considerably more efficient than
SNOLEQ, if the jacobian evaluation time satisfies tJ < ntF. In fact, for
<tF'tJ) = (n—l,n_l)r (1,1), (n,n) and (n,1), SNOLEQJ is the most efficient
algorithm.

-~ Conditional use of updating in SNOLEQJ might be efficient only if tJ is
greater than or equal to one standard time unit (see definition 7.1).

~ Scaling slightly improves the efficiency on the whole, but it might be
opposite for particular problems.

- SNOLEQ(S) is more efficient than BW for cheap functions and about as effi-
cient for expensive functions, provided that calculation of n components
of the function vector at different points is as expensive as calculation
of a complete function vector at one point. In the case that the last
calculation is cheaper than the first, the numbers for BW given in table
8.1 are not valid. BW will be less efficient in that case.

- (SC)U28 is the most efficient algorithm not using analytic derivatives

(up to 2 or 3 times as efficient as SNOLEQ(S) and BW)

table 8.1.

Relative efficiencies for selected programs

B n tF td SNOLEQJS | SNOLEQJ SNOLEQS SNOLEQ Cu2s uz2s BW
2| a2 o7t 7 7 7 7 9 10 11 |
P 9 10 10 11 1 13 LI
1 n 15 16 16 17 15 18 20 |
n n? 26 27 28 29 24 27 31
2! 8 8 10 11 11 13 14
1 1 12 12 16 17 15 18 20
n n 20 21 28 29 24 27 31
n 1 17 17 28 20 24 27 31
© solved 100 100 96 % 88 84 96
13 72| o7t 5 6 5 8 4 5 20
o 8 9 8 11 6 6 23
1 n 47 51 47 53 2 27 59
n n? 550 590 550 600 290 290 EEC
R oaT 5 7 8 11 6 6 23 !
1 1 13 14 47 53 6 | 27 s
n n 110 120 550 600 290 290 530
n 1 79 80 550 600 290 290 530
v solved 88 88 84 80 68 72 92
20| n"?| o7t 5 8 7 9 3| 3 22
P 8 11 10 13 a a 25
1 n 82 91 8s 90 3 | 38 96
n | on? 1900 2000 1900 1900 g0 | 840 1800
[o) o™t 5 8 10 13| L A
1 1 13 17 85 90 | 8 | 96
n n 210 220 1900 1900 800 | 840 ; 1800
n 140 150 1900 1900 800 ; 840 1800
% solved 88 88 84 80 g 72 : 72 92
350 a?| ot 5 8 5 s | 3 | 3 25 |
P 8 11 8 8 4 4 28
1 n 120 130 120 120 46 i 49 140
n n? 3900 4100 4000 4000 1500 | 1600 4100
2t oatt 5 8 8 8 4 4 28
13 17 120 120 46 | a9 140
n n 310 320 4000 4000 1500 | 1600 4100
n 1 200 210 4000 4000 1500 i 1600 4100
% solved 80 80 84 76 68 ' 68 80
46| n?| ot 8 10 10 15 3 3 24
2t 12 14 13 19 4 4 27
n 180 190 190 190 58 60 170
n n? 8100 8100 8200 8100 2600 2600 6700
P 8 10 13 19 4 4 27
1 18 20 190 | 190 58 60 170
n n 470 480 8200 | 8100 2600 2600 6700
n 1 310 310 8200 j 8100 2600 2600 6700
% solved 88 88 84 84 76 68 84
mean % 89 89 86 82 74 73 89

199

200

Robustness:

i

SNOLEQJ is somewhat more robust than SNOLEQ.
-~ BW is about as robust as SNOLEQJ.

(SC)U2S is considerably less robust than the other algorithms.

Scaling may improve the robustness, but there are problems for which

scaling has a negative effect on the performance of the algorithms.

Reliability:

- (SC)U2S is not reliable (see subsection 7.6.7).

- BW is not reliable (see subsection 7.6.8).

~ SNOLEQ(J) (S) is reliable if the generalized algorithms are not used. If
these are used, then one or two informative messages from the non-general-—
ized algorithm might be given, together with a possibly non-informative

final message.

Other conclusions obtained from experiments:

- BW requires the choice of a value controlling the step sizes in difference
formulas approximating the derivatives. This choice may be critical and
is sometimes difficult to make. In the other algorithms, all guantities
needed are approximated in the algorithms.

- Use of conditional updating is profitable as long as the error in the ap-~
proximation to the solution is not required to be almost as small as the
machine precision. The profit in SNOLEQJ is small or nought if the jaco-
bian evaluation time is about 1/n or less standard time units.

- If some components of the problem to be solved are linear, then reduction

of the problem to a smaller nonlinear problem is advisable.

Storage:
~ The storage required in SNOLEQ(J) (S) is 2n2+0(n)ﬁ

~ The storage required in (SC)U2S and BW is n2+O(n),

Mathematical basis:

-~ Convergence theory (global, (semi~)local) for the algorithms used in
SNOLEQ(J) (S) is given in chapter 5. Based on this theory a mathematical
justification for these algorithms is given in chapter 6.

- For BW and U2S (semi-)local convergence results are given in literature

(see BROWN [1969, 1973], BROYDEN [1970a] and DENNIS & MORE [1977]).

Program structure and ease of use:

~ Program structure of SNOLEQ(JY(S) is based on the modular structure of

the ALGOL 68 system given in chapter 6. These programs are longer and

201

more complicated than BW and U2S. However, SNOLEQ(J) (S) is easy to use.
A users manual for these algorithms in ALGOL 60 is given in BUS [1980].

Summary

SNOLEQ and SNOLEQJ, with possible scaling and reduction for problems with
linear components, are robust, reliable and reasonably efficient algorithms,
with a sound mathematical basis and defined in a structured and modular way.
They are easy to use. (SC)U2S may be preferable in those cases in which
efficiency is much more important than robustness and reliability. We prefer
SNOLEQ(S) above (SC)U2S for use in a software library, because in that situ-
ation robustness and reliability are important, as such software will be used
for many different problems and by many different users. We also prefer
SNOLEQ(S) above BW although robustness and efficiency, particularly for ex-
pensive functions, are almost the same. Our preference is based on the un-
reliability of BW, the fact that a parameter value has to be chosen which is
difficult to choose and because of the component wise evaluation of the
function. Finally, if the analytic jacobian can be obtained and t_ < nt

J o
then SNOLEQJ is preferable above one of the other algorithms.

203

REFERENCES

BRANIN jr., F.H., [1972], widely convergent method for finding multiple
solutions of simultaneous nonlinear equations, IBM J. Res. Develop.,

504~522.

BRENT, R.P., [1973a], Some efficient algorithms for solving systems of

nonlinear equations, SIAM J. Numer. Anal. 10, 327-343.

BRENT, R.P., [1973b], Algorithms for minimization without derivatives,

Prentice Hall, Englewood Cliffs, N.J.

BREZINSKI, C., [1975], Numerical stability of a guadratic method for solving

systems of nonlinear equations, Computing 14, 205-212.

BROWN, K.M., [1969], A guadratically convergent Newton-like method based

upon Gaussian elimination, SIAM J. Numer. Anal. 6, 560-569.

BROWN, K.M., [1973], Computer oriented algorithms for solving systems of
simultaneous nonlinear algebraic equations, in: Numerical solution of
systems of nonlinear algebraic equations, BYRNE, G.D. & C.A. HALL (eds),

Academic Press, New York.

BROYDEN, C.G., [1965], A4 class of methods for solving nonlinear simultaneous

equations, Math. Comp. 19, 577-593.

BROYDEN, C.G., [1969], A new method of solving nonlinear simultaneous equa-

tions. Algorithm 44 CACM. Comput. J. 12, 94-99.

BROYDEN, C.G., [1970al, The convergence of single~rank quasi-Newton methods,
Math. Comp. 24, 365-382.

BROYDEN, C.G., [1970b], Recent developments in solving nonlinear algebraic
systems, in: Numerical methods for nonlinear algebraic equations,

RABINOWITZ, P.(ed.), Gordon & Breach, 61~73, London.

BROYDEN, C.G., [1971], The convergence of an algorithm for solving sparse

nonlinear systems, Math. Comp. 25, 285-294.

BROYDEN, C.G., [1973], Quasi-Newton, or modification methods, in: Numerical
solution of systems of nonlinear algebraic equations, BYRNE, G.D. &

C.A. HALL (eds), Academic Press, New York.

204

BUS, J.C.P., [1972], Linear systems with error estimation and iterative
refinement (dutch), LR 3.4.19, Mathematisch Centrum, Amsterdam.

See also HEMKER [1979] section 3.1.1.1.1.1.1.

BUS, J.C.P., [1977], Convergence of Newton-like methods for solving systems

of nonlinear eguations, Numer., Math. 27, 271-281.

BUS, J.C.P., [1980], An ALGOL €0 package for the solution of nonlinear

equations, Mathematisch Centrum, Amsterdam, to appear.

BUS, J.C.P. & T.J. DEKKER, [1975], Two efficient algorithms with guaranteed
convergence for finding a zero of a function, ACM Trans. Math. Soft-

ware 1, 330~345.

BUSINGER, P.A., [1971], Monitoring the numerical stability of Gaussian
elimination, Numer. Math. 16, 360-361.

CROWDER, H.P., R.S. DEMBO & J.M. MULVEY, [1977], Guidelines for reporting
computational experiments in mathematical programming, Harvard Univ.

HBS 77-8.

DAVIDON, W.C., [1959], variable metric methods for minimization, A.E.C.

Research & Development Report ANL 5990.

DEKKER, T.J., [1968], ALGOL 60 procedures in numerical algebra, part 1,

Tract 22, Mathematisch Centrum, Amsterdam.

DEKKER, T.J., [1971], Numerical Algebra (dutch), Syllabus 12, Mathematisch
Centrum, Amsterdam.

DENNIS jr., J.E., [1971], On the convergence of Broyden's method for non=-
linear systems of egquations, Math. Comp. 25, 559-567.

DENNIS jr., J.E., [1975], A4 brief survey of convergence results for quasi-

Newton methods, Cornell Univ. rep. TR 238.

DENNIS jr., J.E. & J.J. MORE, [1977], Quasi-Newton methods, motivation and
theory, SIAM Rev. 12! 46-89.

DEUFLEARD, P., [1974al, a4 modified Newton method for the solution of ill-
conditioned systems of nonlinear equations with application to multiple

shooting, Numer. Math. 22, 289-315.

DEUFLHARD, P., [1974b], A relaxation strategy for the modified Newton method
in: Conference on optimization and optimal control, BULIRSCH, R.,

W. OsTTLI & J. STOER (eds), Chorwelfach, Soringer. Berlin.

205

DEUFLHARD P. & G. HEINDL, [1979], Affine invariant convergence theorems for
Newton's method and extensions to related methods, SIAM J. Numer. Anal.
16, 1-10.

FLETCHER, R. & M.J.D. POWELL, [1963], A rapidly convergent descent method

for minimization, Comput. J. 6, 163-168.

GAY, D.M., [1975], Implementing Brown's method, Univ. of Texas, Austin,
Center for Numer. Anal., Rep. CNA-109.

GHERI, G. & 0.G. MANCINO, [1971], A significant example to test methods

for solving systems of nonlinear equations, Calcolo 8, 107-113.

GOLUB, G.H. & W. KAHAN, [1965], Calculating the singular values and pseudo-

inverse of a matrix, SIAM J. Numer. Anal. 2, 205-224.

GOLUB, G.H. & C. REINSCH, [1971], Singular value decomposition and least
squares solutions, in: Handbook of automatic Computation, vol. 2,

Linear Algebra, WILKINSON J.M. & C. REINSCH (eds), Springer, Heidelberg.

GRIEND, J.A. van de, [1978], Optimization of functions of one variable

(dutch), Dissertation, Univ. of Leiden.

HEMKER, P.W. et al, [1979], NUMAL, A library of numerical procedures in
ALGOL 60, Third revision, Mathematisch Centrum, Amsterdam.

HEMKER, P.W. & D.T. WINTER, [1979], A preliminary report on numerical
operators in ALGOL 68, NW 66/79, Mathematisch Centrum, Amsterdam.

KANTOROVICH, L.W. & G.P. AKILOW, [1964], Functional analysis in normed
spaces (german), publ. by P.H. Miller, transl. from Russ. by H. Langer
and R. Kihne, Berlin, Akademie-Verlag, Math. Lehrbicher und Monogra-

phien: 2.17.

MEULEN, S.G. van der & M. VELDHORST, [1978], TORRIX, A programming system
for operations on vectors and matrices over arbitrary fields and of

variable size, Vol. 1, Tract 86, Mathematisch Centrum, Amsterdam.

MIEL, G.J., [1977], Exit criteria for Newton-type iterations, Univ. of

Calgary, Dep. o. Math. & Stat., Res. paper 363.

MORﬁ, J.J. & M.Y. COSNARD, [1979], Numerical solution of nonlinear equations,
ACM Trans. Math. Software 5, 64-85.

APPENDIX |

TEST PROBLEMS

In this appendix we describe fourteen test problems of variable order
and two of fixed order. Some of these problems depend on (a) parameter(s)
which influence(s) the values of the problem indicators. As far as possible
we describe the peculiar properties which make those problems worthwhile as
test problems. Furthermore, we give numerical approximations to the problem
'indicators (see remark 7.5; we used h = -3 for the computation of a).
These values are computed with a CYBER 73 (e = 2_47). As these values only
give an indication of certain properties of the problem, we only give one

significant digit. If the jacobian (at x. or x*) appears to be numerically

0
singular (triangular decomposition can not be performed, see subsection

6.2.1) then an S is given in the tables and no values for w and B. For all
problems analytic expressions for the jacobian elements are given, so that

all problems can be used for Newton methods as well. The values for erf’

3’ P and Eaj are no sharp upper bounds on the errors in flE(F(x)) and

flE(J(x)) {(see (6.3) and (6.4)). These values are reascnable bounds to be

€

used in the test runs. The precision asked for is chosen to be standard

6f = 6rx = Sax = 1077

For some problems we make an exception to this rule. Such exceptions are
stated explicitly in the descriptions. We refer to a problem which is des-

cribed in section I.i (i=1,2,...,16) as problem i.

I.1. (BROWN [19691)

function:
n
FI(X) = -] kgl gk, .
Fi(X) = o (fkl) o+ gi + Z Ek' i=2,...,n.

k=1

jacobian:
n
21 £k, i=1, 3=1,...n,
k#3
J . = . L .
((X)EJ i, i# 3, L=2,...,n, 3=1,...,1,
2: i= j, i # 1.

initial guess: Ei = 0.5, i=1,...,n.

solutions:
* .
Q. Ei =1, i=1,...,n,
: * n~-1 * .
b. El = 1/p P Ei =p (i=1,...,n),

for p a real zero of npn - (n+1)pn~1 + 1 =0, p#1l.

recisions: € = g = g . = g . = NE.
P rf af rj aj

particular properties: The condition number of the Jjacobian matrix at the
initial guess increases with increasing order due to the values of the
jacobian elements in the first row which are all equal to 2“(n—1). Scaling
improves the condition number but using the same scaling throughout may

increase the condition number at the solutions. (See table I.1).

table I.1.
starting guess solution a solution b

n| kg | g | By ;g Io I [p b} &, | &, P T T p

2| 10 |p-11] 2 | 10 1 1 7 2 7 9 2 9 0.5

3| 40 | s 7 | 40 1 1| 10 1] 10 5 | 0.9 5 |-0.43426
4 | 2102 | 8 | 20 202 | 1 1 | 20 | 0.5[20 |30 3| 30 0.86888
50510210 | 70 |1102] 2% | 1 | 30 4 | 30 6 1 |20 | -0.57904
6 | 1193]10 |2102 2102 | 23| 1t | 40 | 10 | 50 |60 5 i 60 0.94215
7 4103]10 40202102 | 2% | 1t |60 ! 20 102 | 8 710—3i 60 | -0.65564
8 | 9103120 [1103 (3102 | 22| t | 80 | 30 | 3102 | 90 6 3102 | 0.96769
9 | 2194 |20 |2103 {4102 | 2% | 1 [1302] 5 602 | 10 13,4-313102 | -0.70521
10 | 6104 (20 [5103 | 4102 | 27 11 1192] 10 | 1193 {1192 | 8 [1343 | 0.97943
13 | 7,05 |30 |6104 | 7102 | 210| 1 {2102 6 | 1194 |3192 |110-4| 40 | -0.76739
24 | 1391150 |5109 [5103 | 229 1 |6y52 | 20 | 3197 |7102 | 20 |3197 | 0.99648
35 s | - | aea 23 4 J1p3] 8 | 81910 40 | 210-4]11910| ~0.88370
46 s | - - lo1ps | 2%%| 1 |2103| 28 s [2,03] 40| s 0.99905

For small oxder, it can be shown that the jacobian is singular at a point
in SF(XO'I)' It is expected that this alsc holds for larger order. That
means that the conditions for convergence of Newton-~like methods (condition

5.3) are not satisfied for this starting guess.
In restrained methods, restraining occurs especially at the first step.

The problem has n-1 linear function components.

I.2. {(Generalization of a function given by POWELL [19701])

function:

n
Fol) =c L & - L

t

1 .
Fi(x) exP(—ﬁi_l) + exp(—Ei) - (1+E)' i= 2,...,0,

for some real parameter ¢ > 0.

jacobian:
n s »
el kgl Ek' i=1,3=1,...,n
k#3j
(J(X))ij=
0, 3 >i, j<i~1,1i=2,...,n, 3=1,...,n,

i

- eXP(-Ej), j =1, 3 i=1, i = 2,...,0.

initial guess:

it

£,

1, for 2 < i £ n, i even,
i

£ = C«2/n

i ’ for 1 £ 4i £ n, i odd.

T
solution: e.g. for n = 2, ¢ = 194 : % = (1.098y9~5, 9.106) .

recisions: € = g =g _, = E_, = NE.
p xE af rj aj

particular properties: - The scaling of the variables can be controlled by the
parameter c¢. For large c, the condition number at the starting point as well
as at the solution can be improved by choosing a fixed scaling matrix based
on the jacobian at XO' However, the condition number at the solution will
still be large. The problem indicators are given in table I.2, For n = 24

no solution is known,

table 1.2.
starting guess solution
n c |k |8, | B Ez Ip b | b | & |, <2
2 10 |40 |0.7]0.6]| 8 24| 1 f2502] 2| 20
3 10 8 6 | 0.2 8 1 1 10 3] 10
3 102 | 10 2 | 0.7 4 23 1 3102 | 1| 40
3 103 | 30 2 [0.9 4 24 | 1 [a103 | 1 | 3102
3 104 | 60 2 | 0.9 | a 25 | 1 6108 | 1 | 2,03
3 105 [1102 | 2 1 6 27 11 |7105 | 1 | 6103
3 106 [3102 | 2 1 5 28 | 1 J9196 | 1 | 3104
3 107 6102 | 2 1 5 22 | 1 [1108 | 1 | 2145
3 108 |1103 1 1 5 2100 1 19 | 1 | 1906
3 109 [3103 | 1 1 5 2211 |15010] 1 | 6106
3 101016103 | 1 1 5 221 1 1011] 1| 3147
3 1ol [1104 | 1 1 4 283 1 19012 2 12908
13 10 |50 |0.4] 1 50 1 1 (2704 | 0.5] 2104
24 10 [1193 | 2 |2102 |1103 | 1 1 - - -
35 10 3102 | 0.3 | 70 [3102 | 1 1 - - -
46 10 J5103 3 | 1103 (5103 | ¢ 1 - - -
I.3. (Generalization of a function given by POWELL [1970])
function:
i
Fi(X) = Ek -1, i=1,,..,n,
jacobian:
0, i=1,...,n, j > i,
(J(x))ij = i
(I g i=1,...m, 34l
k#3

initial guess:

Ei:-l, i =

2, i=

. * .
solution: éi =1, i

1,...yn, 1 odd,

2y...,0, 1 even.

1,0..,0.

recisions: € = g =€ ., = E_, = NE.
p rf af rj aj

particular properties: Fl(x) is linear and the jaccbian matrix is lower
triangular. The values of 50 and 5* are reasonably small for all orders; the

same holds for Ko However, K. increases rapidly for increasing order.

0
Scaling improves this number but spoils the value of E*, if the same scaling

* -
matrices are used at x. and x . Note that BO remains small while k

0 0 increases,
which shows that the bad condition of J(xo) for large n is not reflected in
I ax) e,

(J(0)) (O)
table I.3.
starting guess solution
- - N -5 - - -5
I
n %0 0 BO o Ilnli ﬂDzll K<, w, K<,
2 6 0.8 2 6 1 1 3 0.3 3
13 7102 | 0.8 3 90 28 1 20 2 | 1193
24 5104 | 0.8 3| 1142 214 30 2 | 7104
35 1 2106 | 0.8 | 3 | 3102] 2200 1 |so 2 | 6106
46 | 1108 0.8 | 3 | 3102 2% 2% |60 | 2 |1108

I.4. (Generalized function of ROSENBROCK [19601)

function:
" = e P 2 - -
Pl(x) = 4c(£2 51)51 2(1 El),
- 2 o ;
Fi(x) = ZC(Ei - 51—1’ - 4c(£i+1 - Ei)Ei - 2{1 Ei), i= 2,000,001,
2
Fn(X) = ZC(En - En—l)’
jacobian:
. n - 2
(J(x))nn = 20, (J(x))11 = 12c£1 4c&;2 + 2,
2 c . s “
12c§i - 4c€i+1 + 2 + 2¢, i=13, i=2,...,n~1,
-4k, , i=2,.0.,n and j = i=1,
(Fx)),, = J
1]

w4c§i, i 1,000,111 and j = i+1,

0, 1.3 = 1,.eeemn, J > i4l, § < i-i,

I.6

initial guess:

g, =-1.2, i=1,...,n, io0dd,

1, i=2,...,n, i even.
. * o
solution: Ei =1, i=1,...,n.
recisions: € = ¢ , = 10g, € = g_, = 10ce.
p rf rj " Taf aj

Note that the error in F(x) may be large at the solution due to cancellation
of significant digits and a large value of c. Cancellation of digits also
occurs in some terms of the jacobian; we assumed that in the domain of

interest ||x” is not much greater than 1.

table I.4.
starting guess solution

n c EO 50 EO 20 o, 0 | p,t X, w, kS

2 10 |60 | 20 [o0.2 40| 22| 1] 30 |6,0-11] 30
2 102 | 60 | 0.9 | 0.4 i 30 ’ 2 2 | 3103 1103 | 2103
2 103 | 60 | 7y0-2] 0.4 a0 2 1| 3104] 5193 | 2104
2 104 | 60 } 710—3§ 0.4 ? 40 22 1 { 3105{ 4104 | 3105
2 105 | €0 ! T10-4! 0.4 Hao | 221 b 3106 4105 | 3106
2 106 | 60 i 710-5] 0.4 | 40 L2l 13,07 4306 | 2107
2 107 | 60 5 710-61 0.4 L 30 | 27| 2 1 2108§ 4107 | 2108
13 0 |30 | oz 3 |10 ? 2 1] 10 |4 20
13 02 [30 | 0.2 3 Pio o 2% 1 | ayeal 3102 | 2103

‘ ‘ ‘

13 103 | 30 { 0.2 | 3 10l 220 { 4104% 5102 | 2104

13) 04|30 | 02! 3 Lo | 22| 4 1 4105 8103 | 2105
|

13 ? 105 | 30 | 0.2 ? 30 i 22| % 4106 | Bygd | 2106
13 | 106 | 30 i 0.2 | 3 j 10 22| 1| ae7] 8105 | 3107
13 ; w7 | 30 | 0.2 E 3 |10 22| 1 | 4y08) 8106 | 2108
2 | 10 |0 | o3 i 3 i 30 22 1 10 4 | 20
. 24 ’ o4 |70 | 02| 3| 30 221 1| 2104 1194 | 3104
24 w? |70 | 02 3 |30 22| 1| 4108 4106 | 2108
35 10 |30 | o2 | 3 | 10 2 1] 10! 4 20
35 wd (30 | o2 3 |10 22| 1| 2104 1304 | 3108
35 w7 |30 | 02| 3 |10 22| 1 | 4108 6106 | 2108
46 10 |70 | 02| a4 |30 2| 1] 10| 4 20
46 4 |70 | 02| 3 | 30 22| 1| 2504|6103 | 3104
46 w7 {70 | 02 3 |30 220 1 | ay08] 4106 | 2108

I.7

particular properties: For fixed order n = 2 or 13 and increasing c we have
increasing values for E* and 5*. At the starting point most indicator values
remain almost independent of ¢, except for BO which decreases with increas-
ing c. Scaling yields no significant improvement of the condition number.
“D1" and “D2" are less than or equal toc 4, although for large ¢ all diagonal
elements of D1 f;g very small (e.g. for ¢ = 137, the smallest diagonal ele-

ment of D1 is 2)

I.5. (GHERI & MANCINO [19711])

function:
n3 ¢ 5 5
Fi(x) = 14n£i + (1—5) + kZ1 zik(31n (Zn(zik)) + cos (ﬂn(zik))), i = 1,0e.,0,
ki
where z,, = v Ez + 1/3 i, =1 n
.'LJ j ds 12 yooogplla
jacobian:
14n, i=13, i=1,...,n,
55 5 5 4 4
(T(x)), . = — [sin (L, V+cos™ (£,)+5sin (£,)cos(L, .)=Bcos (£,)sin(L,)
i3 245 ij ij iy ij ij ij

with zij = Zn(zij), i,3 = 1,...,0, 1 # 3.

initial guess:

C,+C
172
X, = -F(O)\—m—w—)
0 \2C1C2,
where C1 = 20n~6, C2 = 8n+6.

solution: depends on n. In general many solutions exist.

= g = ¢ ., = €e_, = 100ne.

recisions: €
p af rj aj

rf
{(These values are only rough estimates of the upperbound on the errors. In
fact they should depend on the precision of the special functions £n, sin

and cos.)

particular properties: As appears from table I.5 the values of the problem
indicators are all small, almost independent of the order. One can say that
this problem is easily solvable for any reasonable order. One can cbtain

theoretical bounds on some of the values (see BUS [1977, section 4]):

In

2_ s
¢ (%) (100n 60n+9\

—2n2+69n-12/

w(x) < 36va-1 [-2n2+69n-127"%,

which are hounded for n < 34.

table I.5.
: : : 1

n starting point solution

K ® B K Ip I |lIpl K ® K

g mo Bo KO D1 D2 K W, Ko
2 1 0.1 |470~-3 1 1 1 1 0.1 1
13 1 1;0-2(0.4 1 1 1 1 2102 1
24 1 510=3| 2 1 1 1 1 210-3 1
35 1 3103 5 1 1 1 1 2103 1
46 1 310~4| 10 1 1 1 1 210-3 1

1 We have chosen an approximation to one possible solution obtained

by one of our algorithms; for other solutions we expect to obtain

almost the same results.

For these problems the tolerances are chosen to be
6 = 10"6; [= § = 10—6.

Problem 5 will be used also for testing the effect of large errors in the
function and jacobian. The following problem will be referred to as

problem 5a.
function: Let F be problem 5. Then
Fi(x) = Fi(x)(1+pi(x)) + qi(x), i=1,...,n,

where pi(x) and qi(x) are randomly chosen in the intervals [-p,p] and [-q,ql,
respectively , for all i < n and x and with p and q real parameters

0 <p, g=1.

Jjacobian: Let J be the jacobian of problem 5. Then

(J(x))ij = (J(x))ij(1+pij(x)) + qij(x), i=1,.0.4n,

where again pij(x) and qij(x) are randomly chosen in [-p,p] and [-q,q] for

all x, 1 and J (i,3 < n).

] [H = = = = -4 .
precisions e ¢ Erj 100ne + p, Eaf Eaj 100ne aq

The values for p and g depend on the experiment and on the machine precision.

tolerances: We have to choose at least df 2 ¢ .. Specific choices depend

af
on the testing objectives.

1.6. (BROYDEN [19711)

function:

2 2
F,(x) = (14100600 €, + 1 - 100) (B +E,)

keI,
i
vhere I = {k|k#1i, max(i,i-2) £ k £ min(n,i+2)}.
Jjacobian:
2 . . .
1+ 30051, i=1l,00e,n, i =3,
(J(x))ij =1 0, i,9=1,e0.,n, i # 3, 3 < i-2, § > i+2,
~100(1+2gj), i,9 = 1,0..n, i # 3, i-2 < § < i+2,
initial guess: Ei = -1, i=1,...,n.
solution: depends on n,
precisions: e . = erj = eaj = 5eg, €F ” 100¢€.

particular properties: The jacobian of this problem is a guinta-diagonal
matrix. Based on the values given in table 1.6 we may expect this problem

to be easily solvable by Newton-like programs.

I.10

table I.6.
n initial guess solution
EO ao EO .23 I, fip,l <, o, kS
2 1 1 0.4 2 1 1 2 3 2
13 7 0.6 | 0.6 7 1 1 7 0.9 7
24 9 0.5 | 0.8 9 1 1 7 0.8 7
35 9 0.4 | 0.9 9 1 1 8 0.6 8
46 9 0.3 1 9 1 1 8 0.7 8
1.7. (BROYDEN [19717)
function:
Fl(X) = (3—c£1)£1 + 1 - 252,
Fi(x) = (3—c£i)£i + 1 - Ei—l - 2Ei+1' i=2,0..,0-1,
=) + -
Fo(x) = (3-cE)E +1~-E .,

for ¢ a real parameter, c¢ > 0.

Jjacobian:
[3- 28, i=3,4=1,...mn,
-1, 4= 4=1, i = 2,...,0,
(J(x))i. =
] -2, 3 =di+#l, i =1,...,n-1,
0, J# i,i-1,i+1, i,3 =1,...,n.
initial guess: Ei =1, i=1,.,..,n.

solution: depends on n and ¢, E.g. for n = 2 we have in general four

solutions, see particular properties.

recisions: € = g =¢ , = ¢g_, = 5¢.
p rf af rj aj

particular properties: For small values of ¢, these problems are expected
to be easily solvable as the approximate values of the problem indicators

are small (see table I.7).

table I.7.
starting guess solution *)
n c EO GO EO Eg IlDlll HD2|| E* 5* Ei
2 10 1 0.7 | 0.7 1 1 1 2 5 2
2 104 1 0.7 | 0.7 1 1 1 1 102 i
13 10 1 0.3 2 1 1 1 2 1 2
13 104 1 0.3 2 1 1 1 1 50 1
24 10 1 0.2 2 1 1 1 2 0.8 2
24 104 1 0.2 2 1 1 1 1 40 1
35 10 1 0.2 3 1 1 1 2 0.6 2
35 104 1 0.2 3 1 1 1 1 40 1
46 10 1 0.1 3 1 1 1 2 0.6 2
46 104 1 0.1 3 1 1 1 1 40 1

*)

obtained by one of our algorithms. Other solutions exist.

The values at the solution are given for one particular solution

I.11

For n = 2 the solutions of this problem are the intersective points of the

parabolas:

N 2 g2)
£2 = %(—c£1+3£1+1) and 51 = c£2 + 3&2 + 1.

The four solutions (if c is large enough {(e.g. 2 10) we have four inter-—

sective points) come closer to each other if ¢ increases. In the degenerate

case that ¢ = ® we have one solution at the origin. In table I.7a we give

for various values of ¢ the values of 5* (which appear to be of the same

magnitude for the various solutions) and the maximum of

the norms of the

solutions.
table I.7a.
< 0.1 1 5 10 50 102 103 104 105 108
o, 919-2| 0.7 | 2 5 7 10 | 30 102 | 3102 [7103
maxl %" 20 3 1 0.9 0.5] 0.2 0.1 330-21130-2|310~3| 10-4

I.12

I.8. (MORE & COSNARD [1979])

function:
F,(x) = 2, - £, + 4h2(E, +t, +1)°
R 1T
- a = 2 3 . ~
FL(x) = ZEi Ei+1 Ei—l + %h (Ei+ti+1) , i=2,...,n-1,
2 3
= - 1
Fo(x) =26 - &, +4RT(E 4t +1)7,
where ti = hi (i=1,...,n) and h = 1/(n+1).
jacobian:
3.2 2 . C
[2+ shOE +t+1)%, 1=, i=1,....n,
(J(x))ij = -1, g o= i+l,i~1, i = 1,...,n,
l 0, i,3=1,...,n, § < i=1, 3§ > i.
initial guess: Ei = 0.5, i = 1,2,¢00,0.

solution: depends on n.

recisions: € =€ . =€ ., = g_, = 5e.
p rf af rj aj

particular properties: Using Gerschgorin's theorem we can bound the condition

number of the jacobian by

k(%) £ max (1 + ———m—é¥~m~-T5) R

. 2
1<i<n 3h (€i+ti+1)

Note that the right hand side increases for increasing n (decreasing h) and

becomes infinite if Ei = - (1 -+ H%TJ' For the starting point we obtain

4

K51+-——2————‘°—~7
3h (1,5+t1)

which yields for n = 2, 13, 24, 35 and 46, respectively 4.6, 110, 330, 740
and 1300 approximately. In table I.8 we give the approximations to the

values of the problem indicators, for the selected orders.

I.13

table I.8.

n initial guess solution

ol &, | B | %S |tp e, |x

ko | 9 BO 0 D, ﬂD2N €, w, S
2 2| 0.3 |0.8| s 22 | 1 3| 0.2 6
13 50 0.1 2 50 1 1 60 0.1 60
24 | 200 | 7;09-2| 3 |200 1 1 200 |8;¢-2|200
35 | 300 |630-2| 3 |300 1 1 [400 | 71¢-2 [400
46 | 600 [519-2| 4 |600 1 1 700 | 619-2|700

I.9. (MORE & COSNARD [19797)

function:

i n
3 3
Fo(x) =g + 5h((1—ti)k§1tk(gk+tk+1) g) (-t (Bt D)),

k=i+1
i=1,...,0,
where ti = ih(i=1,...,n) and h = 1/(n+1).
jacobian:
1+ 2ht, (1=t) (£, +t +1)%, 1 =3, i = 1,...,n
'é i i iy I =7, L pesogily
3 2 . .
= - e] =1 « s s > 7
(J(X))l] thi(l t]) (£j+tj+1) 7 i,3] F2 Y] 1
2 . . .
%htj(l—ti)(gj+tj+1) , i,j=1,...,n, j < i.
table 1.9.
n initial guess solution
Eo BO §o Eg Ip I |ip,] K, @, P
2 1] 0.3 |o0.8 1 1 1 1 0.3 1
13 2| 0.1 2 2 1 1 1 0.1 1
24 2 [7y9-2] 3 2 1 1 1| 7y0-2] 1
35 2 |619-2] 3 2 1 1 1| 710-2] 1
46 2 |510-2| 4 2 1 1 1 | 619-2| 1

I.14

initial guess: Ei = 0.5, i=1,...,n.
solution: depends on n.

isi s £ = = .= = .
precisions: € . €.f Erj Eaj 2en

particular properties: This problem is easily solvable (see table I.9).

I.10. (FLETCHER & POWELL [1963])

function:
F(x) = Au(x) + Bv(x) - e,

where A and B are nxn matrices with integer elements, independent of x and
n
chosen randomly in [-m,+m], u(x) and v(x) € Efl for all x ¢ D and e € R
*
is chosen such that for a given x ¢ Ifl, which is chosen randomly with

elements in [—b*,b*] € R:

* *
e = Au(x) + Bv(x).

We choose
m = 100
*
b =,
: . T
u(x) = (sm(El), ceoy sm(in)) ’
T
v(x) = (cos(£1), ceer COS(En)) .
Jjacobian:

d d
J(x) = A ax ul(x) + B a;'v(x),

. d o as . T
with a;-u(x) dlag(cos(gl), ...,cos(&n)) ,

it

4 v(x) diag(—sin(il), ,.,,—sin(En))Ta

dx

* .
initial guess: X, = X + p, with p € R" chosen randomly with elements in

0
[~b_,+b_], we choose b_ = 0.01mw.
b P P

, *
solution: x , randomly chosen, see above.

= g =g ., =¢_, = 100ne.

recisions: €
p af rj aj

rf

I.15

particular properties: We can influence the row or column scaling of the
jacobian by multiplying a certain row or column of A and B with some scaling
factor. In table I.10 we give values of the problem indicators for several
values of S, and sc and for the set of selected orders. If 8. Or 8, is un-
equal 1 then the (n//2+1)-th row or column, respectively, of A and B are

multiplied by 8, 0r 8.

table I.10.
initial guess solution

n s, s, EO 50 EO E(SJ I Dl" Ip,l K, w, K8
2 1 1 3] 0.7 | 4302 3 | 1 1 3 1 3
2| 10-3 |t |2103] 0.7 2| 3 | 20| 1 |2093] 1 3
2| 1076 | 1 |2106 | 0.7 | 4yp~2| 3 | 22| 1 |2y06| 0.5 | 3
2| y09 | 1t 2109] 0.7 | 4yp-2| 3 | 2% | 1 [2509] 1 3
2 | qo-14] 1 s - - 3 2% 1 s | - 3
2 1 J10-3|1303] 5 | 0.5 | 3 | 2 2% 1,03 6102 3
2 1 10761106 | 619-2] 5102 | 3 | 2 2% 1,061 0.3 | 3
20 1 107906109 | t | 2906 | 3 | 2 229 5,09 | 154-3] 10
2 [1 -4 s - - 4 2 | M s |- 4
13 i 1 1t |20 | 0.9 | 8-2{20 |1 1| 20 1 |20
13 ; w03 | 1 (6103 0.9 | 8yg-2(30 | 28 | 1 |73 1 |30
13 l 106 | 1 [6106 | 0.8 | Bp-2/20 | 221 1 |76 1 | 20
13 1 19-9 |1 (6109] 0.9 | 8yg-2|20 | 2% 1 |79 1 |20
13 i Lo-14] 1 s | - - |20 | 2% 1 s | - ! 20
13 i 1 |y10-3]a103| 5 0.3 |20 | 1 23,03 0.1 | 20
13 | 1 |10-6|4106 | 610-2| 3102 | 20 | 1 203,06 | 0.3 | 20
13 1 |10-9|4109 | 610-2]| 3105 |20 | 1 239 3,09 1 714-3| 20
13 t :10-14 s | - - 20 |1 248 s - |20
24 1 1| 30 1 0.1 |30 | 2 1| 20| 0.8]30
35 1 1 |70 2 0.1 |70 | 1 1| 60 1| 60
46 1 1 [3192] 6 0.1 [3102 | t 1 {3;02] 4 [3102

Note that scaling of the function does not influence the values of

EO or a*. This is not true for scaling of the variables. This problem is,

for n = 2, 13, particularly suitable for testing scaling strategies.

I.16

Scaling based on the jacobian at X yields good scaling everywhere in the
domain.

I.11.

function, jacobian, starting guess and solution: as problem 10 with

il

W) = (exp(E,), -on, exp(E)7,
(exp(~£,), ..., exp(-£)7,

m= 100, b* = 1, b, = 0.1.

it

v(x)

table 1.11.

initial guess solution

I T S N I O S 2 B IR S i

2 1 1 4 2 [o] 2 2 1 4 3 3

2 | ye3 |1 43| 2 | 0| 2 2y a3 |3 3
|2 1o-6 | 1 a6 | 2 | o] 2 2 1 ayee | s 3|

2 | 100 |1 9 2 | 01| 2 21 jay | 2 .

2 | qp-14] 1 s | - - 2 28 } s - j 2

2 L lo-32103 | 05| 8 | 4 1 2 12103 1 0.6 1 5 |

2 1 |10=6 12106 | 0.3 {8103 | 4 1 219}2l06 0.6 5 |
P2 v w910l 7 |77 | 4 1 22 - - i -0
’ 21 ,0—131 s i - - 4 1 M s |- s }

13 | 1 1 |60 ; 0.5] 0.3 | 60 2 v Lo Lo ! a0 |

13 i 10-3 | 1 Pio4 | 0.5] 0.3 80 PR (2108 | 1 | 50 :

13 ; Lo-6 | 1 Byg7 i 0.5] 0.3 | 60 220 1 207 | 1] a0 ;

13 1 10-9 | 1 [31010] 0.5] 0.3 | 60 231! 1 25010] 2 | 40 é

13 2 Lo-14] 1 s 1ol o2 a0 Y7 s |- | a0
!13 i 1 10-3 (7103 | 2 |2 60 2 { 2101643 1 40 ‘
|13 i 1 |10-6 7,06 i 1 12103 60 2 i 2201646 ? 1|40

13| 1 1079|7109 i 12106 | 60 2| PECJ N R B

13 i 1 |14 s 5 -l - e 2 5 s | - a0

2 | t e |2 loldige] 2 |1 | 2 | 80

‘

35 ' 1 1t |70 |o.6 J 0.3 | 70 1 1 16 |o0.4] 60

6 1 1 1392 | 0.7] 0.4 | 92| 1 t |80 |0.7] 80
*)

algorithm used did not find a solution

I.17

precisions: Erf = eaf = Erj = Eaj = 100ne.

particular properties: As for problem 10 we can influence row or column
scaling of the jacobian by multiplying a certain row or column of A and B by
some scaling factors. In table I.1l we give the approximate values of the

problem indicators.

I.12.

function, jacobian, starting guess and solution: As problem 10 with

i

ux) = Un(E+10), ..., £a(E +10))",
Un(10-E,), ..., £a(10-€)",

m=10, b* =1, b_ = 0.1.
S

i

v (%)

precisions: Erf =€ = Erj = Eaj = 100ne.

particular properties: The function is undefined for all x with Ej 2 10 or
Ej £ ~10 for some j, 1 £ 3 £ n. In table I.12 we give the values of the

problem indicators for selected orders,

table I.12.
n initial guess solution

K @ B ©S Ip I {UIp_10 i o ©s

KO wo BO KO D1 D2 K. w, (34

2 4 0.2] 0.1 4 1 1 3 0.2 3
13 10 {930-2| 0.3 10 1 1 10 |83p-2 io
24 40 |8y9-2| 0.3 | 40 1 1 40 0.3 40
35 50 0.1 0.3 | 50 1 1 50 0.2| 50
46 60 0.3| 0.4 | 60 1 1 60 0.3 60

I.13.

function:

Fx) = AMx)ul{x) + B(x)vix) -~ e,

- (1) . (2) P
where (A(x)),, = k.| = P P T S
0 i3 kij (a(X))i.,(B(X))ij kij (b(X))l.J or i,j n
with kij (i,9 = 1,...,n, £ = 1,2) chosen randomly in [-m,m], (a(x)) and

ij

I.18

(b(x))ij given functions (1,3 = 1,...,n) for x ¢ D and e ¢ r" chosen such

* n
that for given x ¢ R
e = A(x)u(x® + B(xMvx").

We choose

(a(X))ij exp(£i+£j), i,9 = 1,...,n,

it

(b(x))i exp(“(Ei+Ej))y irj = 17.--,n,

3
- n T
ulx) = v(x) = (511'--Ign) ’

m = 10,

* * * ¥
and x randomly with elements in [~b ,b] ¢ R with b = 1.
jacobian:

J(x) = (é%-A(x))u(x) + A(x)é% ul(x) + (é% B(x))vix) + B(x)ﬁ% vix).

d d
Here aw u(x) = = vix) = I.

R * . n . .
initial guess: x, = x + p, with p € R chosen randomly with elements in

0
~b ,+b 1. We ch b =
[o g oose o 0.1.

. *
solution: x , chosen randomly, see above.

precisions: Erf = Eaf = Erj = Eaj = 103 ne.

particular properties: The approximate values of the problem indicators

are given in table I.13.

table I.13.

n initial guess solution

i © B %S llp, I |ip b | ¥ ® P

Ko | Yo | Bo | kg |Tegt |topt)k, e)k
2 7 2 0.1 4 2 2 5 4 4
13 80 2 0.5 | 40 4 1 70 4 40
24 | 3192 2 0.7 2142 4 1 2192 4 | 1392
35 | 9902| 20 | 0.9 |72 | 2 1 - - -
46 | 2192 2 0.5 1302 4 1 [3192 3 | 3192

) algorithm used did not find a solution

I.14.

function, jacobian,

(a(x)),
1

(b(x))i

i

u(x)

v(x) =

3

J

starting guess and solution: As problem 13 with

L}
[

. i

3=

-1
(gi+gj+10)

1,...,n,

i, =1,...,n,

(sin (£)) ... sin(E)7,

T
(cos(gl),...,cos(En)) ’

m = 100,

precisions: € =

rf

€

*
b

af

= T

€ .
rj

' bp

= E_.
aj

= 0.

= 103ne.

Oim.

I.19

particular properties: The function is undefined for x with Ei + Ej + 10 =

for some i and j,

I.15.

1 £1i,j €n.
table I.14.

n initial guess solution

P ® B P [w s

kg 9o BO <9 D1 D2 K, w, [
2 60 10 | 510-2| 60 2 1 50 8 50
13 70 1 |8;9-2| 60 22 1 60 6 60
24 40 1 0.1 | 40 22 1 50 2 50
35 | 3102 6 0.1 13792 22 1 16192| 20 |6392
46 {2102 2 | 0.1 |1,02] 2 1 - - -4

*)

algorithm used did not find a solution

(POWELL [19621])

function:

F,(x)
Fz(x)
F3(x)

F4(x)

i

]

it

i

2(8,+108,) + 40(E,~€,)°,

3
20(Ei+10£2) + 4(52-253) ’

3
10(E53=E,) - 8(E,-285)7,

—10(£3~£4)

- 20-,)°.

0,

I.20

jacobian:
//2+120(g1-z—;4)2 20 0 ~120 (8 -£,)°
[20 200412 (£ ,-26) 7 ~24(5,-26,)° 0
J(x) = | 9
\,\ 0 -24(£,-28.) 10+48(£,-2£) -10
\-1zo(gl-g4)2 0 ~10 104120 (£ ~£,)

initial guess: x. = (3, -1, 0, 1)1 .

0
solution: x* = (0, 0, 0, 0)~.

precisions: Ef = Eaf ™ Erj = Eaj = 10¢g.

particular properties: The jacobian matrix is singular (rank equals 2) at
the solution. This makes the problem especially suitable for testing the
robustness of the stopping criteria used, as convergence will become linear
close to the solution, for Newton-like algorithms.

The values of the problem indicators are:

- - 4 - -
= . = . = 2, %5 = , = 2%, =1, = 55 =
Ko 2102; wy 0.2; B 2; ko 3102 "Dlu 27 "D2“ 1; ok, = kS =,

I.16. (BREZINSKI [19751)

function:

o 3.2
Fl(x) = 5,1 s} 52'
FZ(X) = g2 el l/gll

for some real parameter ¢, 0 < ¢ < 0.5,

jacobian:

J(x) =
-2
51 1

initial guess: x. = (2/c, 2/c)T.

0

solution: x* = (¢, 1/C)T_

recisions: € =g . = 5¢; € = g_, = Sce.
p rf rj ! af aj €

I.21

particular properties: For small c¢ the solution vector contains a very small
and a very large element. I.e. the variables are badly scaled around the
solution. This problem is particularly suitable for testing the influence

of bad variable scaling on the performance of the algorithms. In table I.16

we give the values of the problem indicators for various c.

table I.16.
initial guess solution

P o B s (N Pt ' s

c o 9, BO 5 HD1 Dzﬂ K, w, <5

1 9| o0.6| 2 3 23 | 2 2 1 7
10 | 20 8 | 0.2 | 1 24 | 1 11504 | 60 | 8192
02| 20| 80 |210-2| 1 2% | 1 1108 | 40 | 3197
103 | 20 | 5192 [219-3 | 1 2% | 1 |age12] 0 | 39011

104 | 20 | 1103|2104 | 1 2| s - s

108 20 | 51093 | 210-5 1 24 1 S - S

1.1

APPENDIX 1

TEST RESULTS

In this appendix we give the experimental results obtained by running
the ALGOL 60 programs for the various test problems. The ALGOL 60 programs
use the NUMAL software library (HEMKER et al. [1979]). We have used the
CYBER 73 computer with the NOS-BE system and the current ALGOL 3.343 compiler.

The machine precision is 2_47, We use the following notation in the tables.

MS : number of iteration steps required;

MF : number of function evaluations required;

N : the order of the problem;

C : the value of the parameter or values of parameters (e.g. in

results for various order for problem 10, ¢ = 1"-03,1 means that

s_ = 19-3 and S, = 1);

X
MJ : the number of jacobian evaluations required;
MSV : the number of iterations with singular value decomposition

(only in II.8).

For problem 5a, P and Q have the same meaning as p and g in the problem
description.

If a program fails to solve a problem than we do not give the number of
function evaluations required, but instead we give a "x" followed by the
number of the error message given (number i means message textl as given in
the problem prelude in ALGOL 68 (nlsprl in section 6.1)). In all tests we
use fixed upper bounds on the allowed number of function evaluations. These
are, with

M = min (100, 600 // n):

M for algorithms using the analytic jacobian;

M{n+1) for algorithms using difference approximation:

1.2

2M for update algorithms.

In the algorithms of component wise approximation, BW, BT and BTM, we allow
M iteration steps. We have multiplied M with (n+1) for difference algorithms
as in each iteration step n evaluations of the function are required to ap-
proximate the jacobian. As update algorithms are expected to use more iter-
ation steps than algorithms with analytic jacobian we used 2M for these pro-
grams. These upper bounds decrease for increasing order. Although this might
cause more failures for problems of high order, this bound is necessary for
practical reasons, to be able to perform all tests within a reasonable amount
of CPU hours.

The interpretations of these results are given in chapters 7 and 8. The test

results are divided into 8 groups:

1. results for ASW, AS, AB, AI and AE;

2. results for GAS, GAB and GAI;

3. results for DSW, DS, DB, DI and DE;

4. results for GDS, GDB and GDI;

5. results for UlS and U2S;

6. results for BW and BT;

7. results to test special properties and features (convergence criteria,
conditional updating and fixed approximation, scaling and reduction of
problems with linear function components);

8. results of the algorithms SNOLEQ(S), SNOLEQJ(S), (SC)U2S and BW, which

are selected based on the experimental results in 1. up to 7.

Note that in I.6, MS denotes the number of function component evaluations

divided by n (rounded to below). Furthermore here BW(1l) and BT (1) mean that
3

we use the value Ye for the difference steps in BW and BT, and BW(2) and

BT (2) indicate that Ye is used. Without this indication 9& is used.

ITX.1. RESULTS for ASW, AS, AB, AI AND AE

RESULTS FOR PROBLEM 1

N ASW AS AB
MS MF MS MF MS MF
2 1 2 1 2 1 2
3 6 7 6 7 6 8
4 14 15 14 15 8§ 19
5 17 18 2 *03 7 14
6 59 60 2 *09 10 16
7 33 34 2 *09 6 15
8 2 *05 2 *05 9 22
9 2 %05 2 *05 6 18
10 2 *05 2 *05 11 22
13 2 *05 2 %05 7 25
24 1 %11 2 *05 2 %09
35 1 *11 2 *05 2 *08
RESULTS FOR PROBLEM 2, N = 3
C ASW AS AB
us MF MS MF MS MF
1"01 4 5 4 5 4 5
1"02 6 7 6 7 6 8
1"03 7 8 7 8 8 10
104 9 10 9 10 9 12
165 10 11 10 11 11 15
1"06 11 12 7 *09 8 *09
107 12 13 5 *09 7 *0S
1"08 13 14 6 *08 5 %09
1"09 15 16 5 *09 5 %09
1710 le 17 4 *08 3 *09
1"11 18 19 3 *08 3 *09
RESULTS FOR PROBLEM 4
N C ASW AS
MS MF Ms MF MS
2 1"01 8 9 8 9 17
2 1"02 6 7 6 7 2
2 1"03 6 7 2 *09 2
2 1"04 6 7 2 *09 2
2 1"05 5 6 2 *08 2
2 1"06 5 6 2 *08 2
2 1"07 5 6 2 %08 2
13 1701 9 10 g 10 12
13 1702 31 32 31 32 77
13 1"03 45 *04 8 *09 8
13 1"04 11 12 11 12 8
13 1"05 45 *04 8 *09 8
13 1"06 19 20 9 *08 43
13 1707 45 *04 8 *09 9

AL

MS

et
W ~d = WO OO~ ~JO0

—

MF

14
14
16
15
22
18
22
25

=
w
=
e |

*09
*09
*09
*08
*08
*08

17
*09
*09
*09
*09
*09
*09

12

13
*09
*09
*09
*09
*08
*08

W & 1O 0O W o &

=
[

ot
o

—
[=ovy
OO NN NN R

W oo @

AE

=
17}

E:3

¥
E3

Wl BN Y W WO 0 O

MF

15
16
15
16
08
10
09
09

8 16

154
147
149
143
139

AL

MF

22
*09
*09
*09
*08
*08
*08

19
*09
*04
*09
*09
*09
*09

*04
*04
*04
*04

B AS B R BN

100

100

QU LD WO =]

BE

MF

42
*09
*09
*09
*08
*03
*08
*04

26
*09
*09
*09
*083
*08

RESULTS FOR PROBLEM 5

N NSW AS AB AT AE
MS MF MS MF MS MF MS MF M5 MF

2 2 3 2 3 2 3 2 3 2 3

13 3 4 3 4 3 4 3 4 3 4

24 3 4 3 4 3 4 3 4 3 5

35 3 4 3 4 3 4 3 4 3 5

46 3 4 3 4 3 4 3 4 3 5

RESULTS FOR PROBLEM 5A, N = 35
P Q ASW AS AB AT

MS MF LiFil MS MF liFl} MS MF IRl MS MF lIFl!
1"-12 1"-12 3 4 4"-11 3 4 4"-11 3 4 4°"-11 3 4 4"-11
1"-12 1"-10 3 4 4v-11 3 4 4"-11 3 4 4"-11 3 4 4"-11
1"-12 1"-08 3 4 7"-11 3 4 7"-11 3 4 7"-11 3 4 7"-11
1"-12 1"-08 3 4 1"-09 3 4 1"-09 3 4 1"-09 3 4 1"-09
1"-12 1"-04 3 4 1"-07 3 4 1"-07 3 4 1"-07 3 4 1"-07
i"-12 1"-02 3 4 4"-04 3 4 4"-04 3 4 4"-04 3 4 4"-04
1"-10 1"~12 3 4 3"-10 3 4 3"-10 3 4 3"-10 3 4 3"-10
i"-08 1"~12 3 4 2"-08 3 4 2"-08 3 4 2"-08 3 4 2"-08
1"-06 1"-12 3 4 2"-086 3 4 2"-06 3 4 2"-06 3 4 2"-06
1"~-04 1"-12 3 4 2"-04 3 4 2"-04 3 4 2"-04 3 4 2"-04
1"-02 1"-12 16 *04 2"-02 17 *04 2"+01 14 %08 2"-02 4 *01 2"-02

71T

=
WWWwWwdwwwww O

[k S O RO RV = N RO, O RO R

*
«©

II.5

RESULTS FOR PROBLEM 7, N = 2

C ASW AS AB AL AE
MS MF MS MF MS MF MS MF MS MF

1*=-1 3 4 3 4 3 4 3 4 3 4
1"+0 4 5 4 5 4 5 4 5 4 5
5"+0 5 6 5 6 5 6 5 6 5 6
1"+1 -5 6 5 6 5 6 5 6 5 6
5"+1 6 7 6 7 6 7 6 7 6 7
1"+2 7 8 7 8 7 8 7 8 7 8
1743 9 10 9 10 9 10 9 10 g 10
1"+4 10 11 10 11 10 11 10 11 10 11

1"+5 12 13 12 13 12 13 12 13 12 13
1"+8 17 18 17 18 17 18 17 18 17 18

RESULTS FOR ORDER 2 RESULTS FOR ORDER 13

FN C ASW AB FN C ASW AB
MS MF M8 MF MS MF MS MF
1 - 102 12 1 - 2 %05 7 25
2 "1 5 6 5 7 2 "1 13 14 9 %09
3 - 2 3 2 3 3 - 14 15 2 *05
4 1"y 8 g 17 32 4 1”1 9 10 12 17
4 1"4 6 7 2 *09 4 1"4 11 12 8 *09
4 17 5 6 2 *08 4 17 45 %04 9 %09
5 - 2 3 2 3 5 - 3 4 3 4
6 - 5 6 5 6 6 - 5 6 5 6
7 11 5 6 5 6 7 "1 5 6 5 6
7 1%4 10 11 10 11 7 1"4 10 11 10 11
a3 - 4 5 4 5 8 - 4 5 4 5
9 - 4 5 4 5 9 - 4 5 4 5
10 1"+00,1 3 4 3 4 16 1"+00,1 3 4 3 4
10 1"-03,1 3 4 3 4 10 1"-03,1 3 4 3 4
10 1"-06,1 3 4 3 4 10 1"-06,1 3 4 3 4
10 1"-09,1 3 4 3 4 10 1"-09,1 3 4 3 4
10 1"-14,1 99 *04 2 *08 10 1"-14,1 45 %04 2 *08
10 1,1"-03 4 5 4 5 10 1,1"-03 4 5 4 5
10 1,1®*~06 4 5 3 %08 10 1,1"-06 4 5 3 *09
10 1,1*-09 7 8 2 %08 10 1,1"-0% 7 8 2 %08
10 1,1"-14 2 %05 2 %05 10 1,1"-14 45 *04 2 *08
11 - 4 5 4 5 11 - 4 5 4 5
12 - 2 3 2 3 12 - 2 3 23
13 - 4 5 4 5 13 - 5 6 5 6
14 - 4 5 4 5 14 - 3 4 34

11.6

RESULTS FOR ORDER

FN

bt bk bt ot et et
COOCOQOW®-IA U & B WK -

bt et bt
coc

[y
W N

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

ASW

MS

1
2
24
9
12

N
.

-

N

)
WU WE SN ESDWWWWREEOUUTW

MF

*11
*05
*04
10
13
*04

ot

*
(=)

*
o
B R U I UTU S B RS B UTU OO

24

AB
MF

=
197]

*09
*09
*05

[
o

*09

*
o
@

-
[y

WUOWENNWLANWWWWEEOUVUMTWINWONONDN
E3
(=]

B O) b U1 00 00 W U100 i b b i U UT OV OY

* #*
(=R}

RESULTS FOR ORDER

FN

e el ey e
NHEFOCOOCO OO WM~ U b B W

e
W

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"~-14

MS

1
1
12
9
12

ot
n

P

P

—
S JdwbhNNONoONS S B AEMD_OUTOI W

ASW
MF

*11
*¥11
*04
10
13
*04

—

*
(=]

#*
(=}
MU NI CHTUTUIUIU U OO S

*
(=]

RESULTS FOR ORDER

FN

WRN LU RSB W

ot
(=)

bt ot et ot
cooc

—
< o

ot
(=]

=
Ll =)

[
(8]

ot ot
N

46

=
7]

B O LB NN N NN B B BB DO UTUT WS~ W NN

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"~03
1,1"-06
1,1"-09
1,1"~14

AB
MF

*02
*08
*10

10
*09
*08

Ut T Ul OO S

*08
*09
*08
*08
*08

10

MS

1
2
16
9
12

ot
(=2}

s

b

—
UTO W VS P b O Wi Wb O W U1 W

it

ASwW

MF

*11
*05
*04

1

13

*0

ot

*
O = o

*

*
o
OV i U1 O U U b b i s UT UL O OY

0

4

35

=
w

[y

i
U 00 B NN WS N W W Wwd O U U W WKW NN N

AB
MF

*08
*08
*05
*09
*09

bl
o
o

e

B 00D B B UT U O OY s

II.2. RESULTS FOR GAS, GAB AND GAI

RESULTS FOR PROBLEM 1

N

GAS
MS MF
2 3
7 8
15 16
18 19
60 61
34 35
41 *03
52 53
60 *04
45 *04
1 *11
5 6

GAB GAI

RESULTS FOR PROBLEM 2, N = 3

MS MF MS MF ¢
2 3 2 3 "
7 9 7 9 Teos
9 20 8 15 1%03
815 8 15 1"0a
1117 11 17 1"0s
7 16 7 16 106
10 23 10 23 1"07
6 18 6 18 108
12 23 12 23 1"09
8 26 8 26 1"10
1 %04 1 %04 1°11
5 6 5 6
RESULTS FOR PROBLEM 4
N c GAS GAaB
MS MF MS MF
2 1"0l 9 10 17 32
2 1"02 7 8 11 *04
2 1"03 6 7 8 *04
2 1"04 6 7 7 *04
2 1"05 5 6 6 *04
2 1"06 5 6 6 %04
2 1"07 5 6 2 %02
13 1"01 10 11 13 18
13 1"02 32 33 12 *04
13 1"03 45 %04 12 *04
131704 12 13 9 *04
13 1"65 45 *04 11 *04
13 1"06 45 %04 18 *04
13 1"07 45 %04 11 *04
RESULTS FOR PROBLEM 5
N GAS GAB
MS MF MS MF MS
2 2 3 2 3 2
13 3 4 3 4 3
24 3 4 3 4 3
35 3 4 3 4 3
46 3 4 3 4 3

M8

L@~

11
12
13
14
16
17
18

G
MS

15
15
12
10
10

15
14
12
10
10
16
13

GAT
MF

E R

GAS
MF

6

8

9
10
12
13
14
15
17
18
19

AT
MF

23
*04
*04
*04
*04
*04
*01

*04
*04
*04
*04
*04
*04

MS

5

7

9
10
12
13
14
15
17
18
29

GAB
MF

6

9
11
13
16
17
19
20
23
24
56

MS

5

3

9
10
11
13
20
15
16
18
30

1.7

GAI
MF

6

9
11
13
14
16
35
19
21
23
59

II.8

RESULTS FOR PROBLEM 5A, N = 35

P
1"-12
1"-12
1"=-12
1"-12
1"-12
1"-12
1"-10
1"-08
1"-06
1*-04
1"-02

Q
1"-12
1"=-10
1"-08
1"-06
1"-04
1"-02
1"-12
1"-12
1"-12
1%-12
1"-12

RESULTS FOR PROBLEM 7,

C

GAS

MS MF

1"=1
1"+0
5!I+0
l“+l
5lI+l
lll+2
lll+3

W~ U

17+4 11 12
1"+5 12 13
1"+8 17 18

GAS
MS MF LIFLY
3 4 4"-11
3 4 5"-11
3 4 7"-11
3 4 1"-09
3 4 1"-07
3 4 3"-04
3 4 3"-10
3 4 2"-08
3 4 2"-06
3 4 2"-04
16 *04 2"-02
N = 2
GAB GAI
MS MF MS MF
4 5 4 5
5 6 5 6
6 7 6 7
6 7 6 7
7 8 7 8
8 9 8 9
9 10 9 10
11 12 11 12
12 13 12 13
17 18 17 18

=
197}

NWWwwwwwwwww

GAB GAI
MF LIFLE MS MF LIFU!
4 4"-11 3 4 4"-11
4 5"-11 3 4 5"-11
4 7"-11 3 4 7"-11
4 1"-09 3 4 1"-09
4 1"-07 3 4 1"-07
4 3"-04 3 4 3"-04
4 3"-10 3 4 3"-10
4 2"-08 3 4 2"-08
4 2"-06 3 4 2"-06
4 2"-04 3 4 2"-04
*04 2"-01 4 %01 2"-02
RESULTS FOR ORDER 2
FN C GAS
MS MF MS
1 - 2 3 2
2 i"1 6 7 6
3 - 3 4 3
4 1"1 9 10 17
4 1"4 6 7 7
4 "7 5 6 2
5 - 2 3 2
6 - 6 7 6
7 "1 6 7 6
7 1"4 11 12 11
8 - 5 6 5
9 - 5 6 5
10 1"+00,1 3 4 3
10 1"-03,1 3 4 3
10 1"-06,1 3 4 3
10 1"-09,1 3 4 3
10 1"-14,1 3 4 3
10 1,1"-03 5 6 5
10 1,1"-06 5 6 5
10 1,1"-09 99 *04 4
10 1,1"~14 3 4 3
11 - 4 5 4
12 - 3 4 3
13 - 4 5 4
14 - 4 5 4

GAB

w
B b 00 W

L 3
[=Ne}
B b

U D UTE IO O b DO N~ W

RESULTS FOR ORDER 13
FN C GAS
MS MF
1 - 45 *04
2 i1 14 15
3 - 14 15
4 "1 10 11
4 14 12 13
4 "7 45 . %04
5 - 3 4
6 - 5 6
7 "1 6 7
7 1“4 11 12
8 - 5 6
9 - 5 6
10 1"+00,1 3 4
10 1"-03,1 3 4
10 1"-06,1 3 4
10 1"-09,1 3 4
10 1"-14,1 3 4
10 1,1"-03 5 6
16 1,1"-06 5 6
10 1,1"-09 5 *03
10 1,1"-14 3 4
11 - 4 5
12 - 3 4
13 - 6 7
14 - 4 5
RESULTS FOR ORDER 35
FN C GAS
MS MF
1 - 5 6
2 11 16 *04
3 - 16 *04
4 "1 10 11
4 "4 12 13
4 "7 16 *04
5 - 3 4
6 - 5 6
7 "1 6 7
7 1”4 11 12
8 - 5 6
9 - 5 6
10 1"+00,1 4 5
10 1"-03,1 4 5
16 1"-06,1 4 5
10 1"-09,1 4 5
10 1"-14,1 4 5
10 1,17"-03 5 6
16 1,1"-06 5 6
16 1,1"-09 8 *03
10 1,1"-14 3 4
11 - 4 5
12 - 4 5
13 - le *04
14 - 6 7

GAB

=
W

[y

o
B N WL WWUMUVTWWWWWUoHEOUIWRWOWSEHD

=
w

OV~ b b) B UT o e D B DU AW WS oMoV

MF

*
(=0 &)
& Oy

*04

F %
(=N
€= > 00

U ~d s U7 8 e OV Y b s b e YOV RO O

GAB

MF

*04
*04
*04
*04

%
(=]
>

ot

E
[
N MR NO

RESULTS FOR ORDER
FN C GAS
MS MF
1 - 1 %11
2 "1 24 *04
3 - 24 *04
4 1"1 10 11
4 14 12 13
4 "7 24 *04
5 - 3 4
6 - 5 6
7 "1 6 7
7 174 11 12
8 - 5 6
9 - 5 6
10 1"+00,1 4 5
10 1"-03,1 4 5
10 1"-06,1 4 5
10 1"-09,1 4 5
10 1"-14,1 4 5
10 1,1"-03 5 6
10 1,1"-06 5 6
16 1,1"-09 7 *03
10 1,1"~14 4 5
11 - 4 5
12 - 3 4
13 - 5 6
14 - 4 5
RESULTS FOR ORDER

FN C Gas
MS MF

1 - 5 6
2 171 1 *11
3 - 12 *04
4 11 10 11
4 1"4 12 13
4 "7 12 *04
5 - 3 4
6 - 5 6
7 171 6 7
7 174 11 12
8 - 5 6
9 - 5 6
10 1"+00,1 4 5
10 1"-03,1 4 5
10 1"-06,1 4 5
10 1"-09,1 4 5
10 1"-14,1 4 5
10 1,1"-03 9 10
10 1,1"-06 8 9
10 1,1"-09 4 5
10 1,1"-14 4 5
11 - 4 5
12 - 4 5
13 - 12 %04
14 - 4 5

24

46

=
w

B U7 L b s B b U0 B s B e e U YU W DO B L

GAB
MF

*04
*04
*04

—
bt

*04

#*
o
=

I ninmiuiauinUiul GO~

GAB

MS

B oed B e e B I DN R B BRUT NN NW-IJON WL

ME

6
*04
*04

11
*04

*
s ot <
=y

ot
ViMoo Uaiuiuao d i~ o s

I1.9

II1.10

II.3. RESULTS FOR DSW, DS, DB, DI and DE

RESULTS FOR

N

MS

14

[aall i SISO N

DSW
MF

7
25
71
103
414
265
*05
*05
*05
*05
*11
*05

PROBLEM 1

DS
MS MF

7
25
71
*08
*08
*08
*05
*05
*05
*05

76
109

WWNDNNN NN N &N

DB

=
w

ot
HEOW OO IONN

et

RESULTS FOR PROBLEM 2, N = 3

C

1"01
1702
103
104
1"05
1"06
107
108
1"09
1"10
1"11

D&
MS

RESULTS FOR

N

OB MR BN B

13

13
13
13
13
13

C

1"01
1702
1"03
1704
1705
1706
1707
1"01
1"¢2
1"03
1704
1"05
1706
1"07

w DS
MF MS MF
17 4 17
25 6 25
29 7 29
37 9 37
41 7 %08
45 6 *08
49 5 *08
53 5 *08
61 4 *08
65 3 *08
69 2 *08
PROBLEM 4

DsSwW
MS MF MS

8 25

6 19

6 19

7 22

9 28
14 43
22 67

9 127
32 449 3
43 603
11 155
43 *04
43 *04
43 *04

@ NNV ®

=
“

NWEEUUIOE@ W RN

DS

MF
25

*08
*08
*08
*08
*08
127
449
*08
*08
*08
*08
*08

DB
MF

17
26
34
39
*03
*08
*08
*08
*08
*08
*08

Ut
WO NNNNND NN

DI

AW AD I IAN

111
71
3
31

=
wn

Wl VIO JW0 @O

DB

MF

66
*09
*08
*08
*08
*08
*08
173
*09
*09
*08
*08
*08
*08

MF

26
42
49
76
57
94

32
16
76
09

DI
MP

17
26
34
39
*08
*08
*08
*08
*08
*08
*08

DE

=
[75]

*

¥
*

WWwk N W WOW NN

1

M8

15
14
50
59
59
64
63
60

DI

MF

50
*09
*08
*08
*08
*08
*08
201
226
*04
*08
*08
*08
*08

MF

28
47
61
63
79
a5
64
08
01
77
10

DE

&
#
%
*
¥

MF

17
34
44
77
08
08
04
04
04

*04
*04

MS

NN NN WG,

87
14
87

00D~

DE

MF

93
*09
*08
*08
*08
*08
*08
*04
208
*04
*08
*08
*08
*08

RESULTS FOR PROBLEM 5

N DS¥W DS DB DI DE

MS HMF MS MF MS MF MS WMF MS MF

2 2 7 2 7 2 7 2 7 2 7

13 3 43 3 43 3 43 3 43 3 43

24 3 76 3 76 3 76 3 76 3 77

35 3 169 3 109 3 109 3 109 3 1i¢

46 3 142 3 142 3 142 3 142 3 143

RESULTS FOR PROBLEM 5A, N = 35
P Q DSW Ds DB DI DE

MS MF lIFl! MS MF 1IiFil MS MF lIFil MS MF liFli MS MF lIFi}
1"=-12 1%-12 3 109 2"-10 3 169 2"-10 3 109 2"-10 3 108 2"-10 3 110 2°-10
1"-12 1"-10 3 109 2"-10 3 105 2"-10 3 109 2"-10 3 109 2%"-10 3 110 2"-10
1"-12 1"-08 3 109 2"-09 3 169 2"-09 3 109 2"-09 3 108 2"-09 3 110 5"-10
1"-12 1"-06 3 109 2"-04 3 109 2"-04 3 109 2"-04 3 108 2"-04 3 110 8"-05
1"-12 1*-04 17 *04 6"+03 11 *08 2"+06 5 *08 1"+02 7 *08 4"+01 7 *08 4"+01
1"-12 1"-02 17 *04 3"+03 5 %08 4"+063 5 *08 3"+03 3 %01 3"+03 1 %01 37403
1"-30 1"-12 3 109 6"-10 3 109 6"-10 3 109 6"-10 3 1068 6°-10 3 110 5°-10
1"-08 1%-12 3 109 5"-08 3 109 5°-08 3 109 5"-08 3 169 5"-08 3 116 6%~08
1"-06 1"-12 3 109 2"-04 3 108 2"-04 3 108 2"-04 3 108 2"-04 3 110 2%-04
1"-04 1"-12 17 #0904 5"+01 4 *08 1%+03 7 ¥08 6"+00 4 *01 1%+01 4 *01 5%+00
1"-02 1"-12 17 *04 5%+03 10 *04 1"+03 4 *08 1"+02 2 *Q1 1%"+02 2 *g1 1"+02

11°11

I1.12

RESULTS FOR PROBLEM 7, N = 2

C DSW DS DB DI DE

MS MF MS MF MS MF MS MF MS MF

1"-1 310 3 10 3 10 3 10 310

1"+0 4 13 4 13 4 13 4 13 4 13

5%4+0 5 16 5 16 5 16 5 16 5 16

1"+1 5 16 5 16 5 16 5 16 5 16

5%4+1 6 19 6 19 6 19 6 19 6 19

1742 7 22 7 22 7 22 7 22 7 22

1"+3 9 28 9 28 9 28 9 28 9 28

1"+4 10 31 10 31 16 31 10 31 10 31

1"+5 12 37 12 37 12 37 12 37 12 37

1"+8 17 52 17 52 17 52 17 52 17 52

RESULTS FOR ORDER 2 RESULTS FOR ORDER 13
FN C DSW DB FN C DSW DB

MS MF MS MF MS MF MS MF
1 - 27 27 1 - 2 *05 7 116
2 1" 5 16 5 17 2 1"1 13 183 9 *09
3 - 3 10 3 10 3 - 14 197 2 *05
4 11 8 25 17 66 4 1"1 9 127 12 173
4 14 7 22 2 *08 4 1"4 11 155 8 *08
4 17 22 67 2 %08 4 17 43 *04 9 *08
5 - 2 7 2 7 5 - 3 43 343
6 - 5 16 5 16 6 - 5 71 5 71
7 11 5 16 5 16 7 vl 5 71 5 71
7 1"4 16 31 10 31 7 14 10 141 10 141
8 - 4 13 4 13 8 - 4 57 4 57
9 - 4 13 4 13 g - 4 57 4 57
10 1"+00,1 3 10 3 10 10 1"+00,1 3 43 3 43
10 1"-03,1 3 10 3 10 10 1"-03,1 3 43 3 43
0 1"-06,1 2 7 2 17 16 1"-06,1 3 43 3 43
o 1"-09,1 3 10 1 *08 10 1"-09,1 43 *04 1 %08
10 1"-14,1 2 *05 1 *08 10 1"-14,1 43 *04 1 *08
10 1,1"-03 4 13 4 13 10 1,1"-03 4 57 4 57
10 1,1"-06 5 16 2 *08 10 1,1"-06 5 71 2 %08
10 1,1"-09 29 *05 1 *08 10 1,1"-09 12 *05 1 %08
10 1,1"-14 1 *05 1 %05 10 1,1"-14 1 *05 1 *05
11 - 4 13 4 13 11 - 4 57 4 57
12 - 27 27 12 - 2 29 229
13 - 4 13 4 13 13 - 5 71 5 71
14 - 4 13 4 13 14 - 343 3 43

RESULTS FOR ORDER

FN

bt et
OO G m~d IO U W N

=
coo

e o
~COOO

bt b e
we N

C

24
DSW DB
MS MF MS MF
1 *11 1 *08
2 *05 2 *08
24 *04 2 *05
g 226 9 226
12 301 7 *08
24 *04 7 *08
3 76 3 76
5 126 5 126
5 126 5 126
10 251 10 251
4 101 4 101
4 101 4 101
3 76 3 76
3 76 3 76
3 76 3 76
24 *04 1 *08
24 *04 1 %08
4 101 4 101
5 126 2 *08
24 %04 1 *08
1 *05 1 *05
4 101 4 101
3 76 3 76
5 126 5 126
3 76 3 76

RESULTS FOR ORDER

FN

WO U B W N

bt b b b bt et et b e
BWwihhHCCOOCOQOOO

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

Ms

1
1
13
9
12
13

WD O T W

DSW
MF

*05
*11
*04
424
565
*04
142
236
236
471
189
189
189
189
189
*04
*04
471
*04
*04
*05
189
142
*05
189

RESULTS FOR ORDER

FN

=
OO OWEI IO U b o i WP

el e el e
whHOoODoCOOO

b
o>

486

=
w

S ON L0 s b b N R R i B © UT U W~ 1O NN

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

DB
MF

*05
*08
*05
424
*08
*08
142
236
236
471
189
189
189
189
*08
*08
*08
*08
*08
*08
*05
189
142
286
189

MS

1
2
17
9
12

-
~

ot

]
MW Nl Bt bWWwds oUW

—

DSW
MF

*05
*05
*04
325
433
*04
109
181
181
361
145
145
109
109
145
*04
*04
145
*04
*04
*05
145
109
*04
181

35

=
92}

[

ot

s
U1 W L) o bt et Bt s et e B WO W0 i i O T T W W0 0O NN

DB
MF

*05
*08
*05
*09
*08
*08
109
181
181
361
145
145
109
109
145
*08
*08
145
*08
*08
*05
145
109
*08
181

I1.13

I1.14

II.4. RESULTS FOR GBS, GDB and GDI

RESULTS FOR PROBLEM 1

N

MS

2
7
15
138
29
32
49
51
60
46
5
5

GDS
MF

7
29
76

109

204

257

442

511

*04

*04

126

181

GDB

MS

bt

ot
VTN OO 0WIN

b

MF

7
30
56
55
83
65
103

72
143
130
126
181

RESULTS FOR

N

C

101
1702
1"03
1"04
1705
1%06
107
1701
1702
103
104
1705
1706
107

GDI

RESULTS FOR

N

13
24
35
46

RESULTS FOR PROBLEM 2,

c
MS MF
2 7 1"01
7 30 1"02
8 47 1%03
8 55 1"04
11 83 1"05
7 65 106
10 103 107
6 72 108
12 143 109
8 130 "
5 126 i"ig
5 181
PROBLEM 4
GDS GDB
MS MF MS MF
9 28 17 66
7 22 26 *04
8 25 20 *04
8 %07 19 *04
8 *03 4 *02
8 *03 4 *02
8 *03 4 %02
10 141 12 173
33 463 30 *04
46 645 26 *04
12 169 23 *04
20 281 19 *04
11 %03 19 *04
9 %03 10 *02
PROBLEM 5
GDS GDB
MS MF MS MF MS
27 2 7 2
3 43 3 43 3
3 76 3 76 3
3 109 3 109 3
3 142 3 142 3

GDS

MS

5
7
8
10
11
12
14
23
63
27
100

MF

21
29
33
41
45
49
57
*07
*03
*03
*04

GDI

MS

15
34
30
23

14
16
30
25
20
20
10

GDI
MF

76
109
142

MF

53
*04
*04
*04
*02
*02
*02
201
241
*04
%04
*04
*04
*02

MS

5

7

9
10
12
13
15
15
14
16
20

GDB
MF

21
30
38
43
52
56
65
*02
*02
*02
*02

N =3

MS

5

7

9
10
11
13
20
15
14
17
14

GDI
MF

21
30
38
43
47
55
95
*02
*02
*01
*02

RESULTS FOR PROBLEM 5A, N

Q
1"-12 1"=12
1"~12 1"-10
1"-12 1"-08
1"-12 1"-06 -
1"-12 1"-04
1"-12 1"-02
1"-10 1"-12
1"-08 1"-12
1"-06 1"-12
1"-04 1"-12
1"-02 1"~12

=
w

—

b

NNW W W N N W W ww

GDS
MF

109
109
109
109
253
*04
109
109
109
*04
*04

RESULTS FOR PROBLEM 7, N = 2

C

1%-1
1“+0
5"+0
1ll+1
5"+1
1"+2
l||+3
1"+4
1"+5
1"+8

GDS

MS

MF

13
16
19
19
22
25
28
34
37
52

GDB

MS

4
5
6
6
7
8
9
11
12

MF

13
16
19
19
22
25
28
34
37
52

= 35
1IFpl!
4"-10
4"-10
4"-09
2"-07
6"-05
3"+03
5"-10
4"-08
4"-04
2"-01
7"+03

GDI
MS MF
4 13
5 16
6 19
6 19
7 22
8 25
9 28
11 34
12 37
17 52

=
w

-
VOWWWANA JWw Www

GDB
MF

109
109
109
109
253
*04
109
109
109
*07
*07

IR

4"-10
4"-10
4"-09
2"-07
6"-05
3"+03
5"-10
4"-08
4"-04
5"-02
7%+01

GDI
MF

=
17

109
109
109
109
253
*01
109
109
109
*01
*01

A WwwWwWw dww ww

RESULTS FOR ORDER

FN

W00 DU D W N

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

GDS
MF

=
0

7
19
10
28

*07
*03

7
19
19
34
16
16
10
10
10
10
10
16
19
10
10
13
10
13
13

BR WA WWAOAUNWWWWWUIUIFGOANN XY WAN

2

=
w

[y

BB WH WWUTUMWWWWWwUOHEOAN & W WaN

GDB
MF

20
10
66
*04
*02

19
19
34
16
16
10
10
10
10
10
16
19
10
10
13
10
13
13

II.15

I1.16

RESULTS FOR ORDER

FN

st
CWEONIOU BB WM

b
oCOO

e e
BWNHOOO OO

RESULTS FOR ORDER

FN

W00 N~ OY U b o e W N

[e e e
BWNHDOOOOOOO O

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

MS

46
14
15
10

[
8]

BOAWRB WWAHATTWWwAhWwWwwuTu—E O UIwWw

GDS
MF

*04
197
211
141
169
*03
43
71
85
155
71
71
43
43
*03
43
43
71
*03
43
43
57
43
85
57

GDS

MS

5
17
12
10
12

—
(S}

b

G\\lbbuwumha&bbn&meo\mw

-t

MF

181
*04
*03
361
433
*07
109
181
217
397
181
181
145
145
145
145
145
181
109
109
109
145
145
*04
217

13

35

=
n

RN NN
O W wN

O WhbWWRUIWWwdbWWwUBIE OOV W

GDB
MF

130
*04
*04
173
*04
*02
43
71
85
155
71
71
43
43
*02
43
43
71
*02
43
43
57
43
85
57

GDB

—
U B WwWwWUl &R _TOEOAO W

MF

181
*02
*02
*04
*04
*02
109
181
217
397
181
181
145
145
145
145
145
181
109
109
109
145
145
*04
217

RESULTS FOR ORDER

FN

WO 00~~~ U W

P e el
BWNHOOOOOODOO

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"~14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

GDS

MS

5
25
25
10

fu—y
(38

B UTWDS &BEAUTS S & & BOIUTFOU WX

MF

126
*04
*04
251
301
*03

76
126
151
276
126
126
101
101
101
101
101
126
*03
101
101
101

76
126
101

RESULTS FOR ORDER

FN

WO~ U D W N

el el) i Sy Wi S
WO COCOC OO0

C

1"+00,1
1"-03,1
1"~06,1
1"-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

GDS

MS

5
1
13
10

—
N

B ST R D DD O de D R DS T WU O UT W 00

MF

236
*11
*04
471
565
*03
142
236
283
518
236
236
189
189
189
189
189
471
189
189
189
189
139
*03
189

24

GDB

MS

13
18
10
20

B 01 W D B UT U1 b s s U U O

46

MEF

126
*04
*04
251
*04
*02

76
126
151
276
126
126
101
101
101
101
101
126
*02
101
101
101

76
126
101

GDB

=
w

ot et ot
wowuw

W R D R B D OV D D B UT U OY U W OO

MF

236
*02
*04
471
*04
*02
142
236
283
518
236
236
189
189
189
189
189
285
189
189

189

189

189

333

189

II.5. RESULTS FOR UlS AND U2S

RESULTS FOR PROBLEM 1

RESULTS FOR

N

uls

MS

2
15
9
10
199
199

= BB DO RO

C

1"01
1"02
1703
1704
1"05
1"06
1707
101
102
1"03
1704
1"05
1"06
17

RESULTS

MF

5
19
14

16

*04
*04
*11
*11
*11
*11
*11
*11

u2s

MS

2
11
9
10
11
199
199

BB NN

uls

MS MF

1
1
1
1
1
1
1

P

99
99
99
99
99
99
99
91
91
91
91
91
91
91

1"-12
1"-12
1"-12
1"=-12
1"-12
1"-12
1"-10
1"-08
1"-06
1"-04
1"-02

*04
*04
*04
*04
*04
*04
*04
*04
*04
*04
*04
*04
*04
*04

Q

MF

5
15
14
16
18

*04
*04
*11
*11
*11
*¥11
*11

PROBLEM 4

1
1
1
1
1
1
1

1"-12
1"-10
1"-08
1"-06
1"-04
1"-02
1"-12
1"-12
1"-12
1"-12
1"-12

51
90
99
99
99
99
99
91
91
91
91
91
91
91

uz2s
MF

154
183
*04
*04
*04
*04
*04
*04
*04
*04
*04
*04
*04
*04

FOR PROBLEM 5A,

uls

MS MF

1
3

33,

3 39
3 39
3 39
4 40
5 51
3 *04
3 39
3 39
3 39
4 40
3 %04

RESULTS FOR PROBLEM 2,

c

101
1"02
1"03
1"04
1"05
106
107
108
1"0¢9
1"10
111

Uls

MS

8
12
34
61
28
199
199

62
199
189
199

MF

12
16
38
*11
32
*04
*04
*11
*04
*04
*04

MS

8
17
199
94
3

4

5
199
199

Uz2s

MF

12

21
04
*11
*11
*11
*11
*04
*04
11
*11

RESULTS FOR PROBLEM 5

N Uls U2s

MS MF MS P

2 2 s 2 5

13 4 18 4 18

24 4 29 4 29

35 5 41 5 41

46 4 51 4 51

N = 35
u28

LIPID MS MF LIFtH
7704 339 7v-04
7"-04 3 39 7"-04
704 3 33 7°-04
504 4 40 4"-04
4"-04 15 51 4"-04
4"+03 33 *04 8"+03
7"-04 3 39 7"-04
7904 3 39 7"-04
6"~04 3 39 6"-04
2"-04 4 40 2"-04
1"-02 33 *04 3"-02

N = 3

Ir.17

Ir.18

RESULTS FOR PROBLEM 7, N = 2

C

1"-1
1"+0
5"+0
1"+1
5%+1
1"+2
143
1"+4
1"+5
lll+8

RESULTS FOR ORDER 2

Fi

—
© W~ ~I U W N

el e e e e o
BWNHCOOOOO OO

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

M5

2
16
4
199
199
199

10
19

O i B OV O

199
199
6
4
6
6

uls

MF MS
5 2
19 24
7 4
*04 151
*04 199
*04 199
5 2
10 7
13 10
22 17
9 6

9 6

7 4

7 4

7 4

7 4

7 4
11 8
11 8
*04 199
*04 199
9 6

7 4

9 6

9 6

uls

MS

5

7

9
10
13
14
17
19
20
24

U2s
MF

27
154
*04
*04

10
13

B S R N |

ey
-

*04

*
o
ES

[teiV= N It e)

MF

8
10
12
13
16
17
20
22
23
27

MS

5

7

9
10
13
14
15
17
20
24

uz2s
MF

8
10
12
13
16
17
18
20
23
27

RESULTS FOR ORDER

FN

et
OO WVW®~TO U BB W

=
oo

[A
N—OOCOOO

bt et
)

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1%-14,1
1,1"-03
1,1"-06
1,1"-09
1,1%-14

MS

2
91
91
91
91
91

4
13
17
24

uls
MF

*11
*04
*04
*04
*04
*04
18
27
31
38
20
20
19
19
19
19
19
21
24
34
*04
22
18
26
21

13

22

e
wowuuuuiaoa o

X=]
—

ot
~I N

uz2s
MF

*11
*04
*11
*04
*04
*04
18
27
31
36
20
20
19
19
19
19
19
21
24
31
*04
22
18
26
21

RESULTS FOR ORDER

FN

e
OOCODY W ~I~IN U &b W B

et ot o
cooco

ot ot ot ot
NS S

C

1"l

P
i = = =
~d o bt

1"l
1"4

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1i"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

MS

uls
MF

*11
*11
*04
*04
*04
*04
29
38
42
50
31
31
31
31
31
31
31
33
37
40
*04
34
29
43
32

24
u2s
MS MF
1 *11
2 %11
-3 *11
19 *04
49 *04
49 *04
4 29
13 38
17 42
22 47
6 31
6 31
6 31
6 31
6 31
6 31
6 31
8 33
12 37
22 47
49 *04
9 34
4 29
19 44
7 32

RESULTS FOR ORDER

FN

i
SO O~ O U s D P

bttt ot ot
coooco

e
-0 oCc

[
ERREN)

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1*-03
1,1"-06
1,1"-09
1,1"-14

MS

2

1
25
25
25
25

4
13
17
25

25
8

uls
uF

*11
*11
*04
*04
*04
*04
51
60
64
*04
53
53
54
54
54
54
54
58
69
65
*04
57
52
*04
55

RESULTS FOR ORDER

FN

WO 0~ =3 UT S o W B

bttt ot o et o
coococoocco

=
o

bt s et
ENEREN

46

Ms

25
25
25

13
17

s~ Y OY

11
22
25
25
10

18
8

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"~14

uz2s
MF

*11
*11
*11
*04
*04
*04
51
60
64
69
53
53
54
54
54
54
54
58
69
*04
*04
57
52
65
55

M5

uls
MF

*11
*11
*04
*04
*04
*04
41
49
53
62
42
42
42
42
42
42
42
47
51
51
*04
45
41
55
46

35

II1.19

u2s
MF

*11
*11
*11
*04
*04
*04
41
49
53
58
42
42
42
42
42
42
42
47
51
55
04
45
41
*04
46

I1.20

II.6. RESULTS FOR BW AND BT

RESULTS FOR PROBLEM 1

N BW (1) BW(2) BT (1) BT (2}

MS MF MS MF MS MF MS MF

2 2 5 2 5 2 5 2 5

3 7 21 7 21 7 21 7 21

4 15 52 7 24 15 52 7 24

5 19 76 7 28 18 72 7 28

6 60 270 8 36 60 270 8 36

7 34 170 8 40 34 170 8 40

8 66 363 8 44 67 368 8 44

9 55 330 1 *05 55 330 8 48

10 61 *04 1 *05 61 *04 8 52

13 8 64 1 *05 9 72 9 72

24 9 121 1 *05 9 121 9 121

35 9 171 1 *05 10 190 1 *05

RESULTS FOR PROBLEM 2, N = 3

C BW(1l) BW(2) BT (1) BT (2)

MS MF MS MF MS MF MS MF

1"01 5 15 5 15 5 15 5 15

1"o02 7 21 7 21 7 21 7 21

1"03 8 24 8 24 8 24 8 24

1"04 11 *05 31 *11 10 30 10 30

1"05 10 *05 32 *11 11 33 11 33

1"06 12 *05 36 *11 13 39 13 39

107 14 *05 55 *01 12 *11 71 *11

1"08 13 *05 100 *04 13 *05 12 *05

1"09 12 *05 24 *01 100 *04 7 *05

1"10 16 *05 22 *01 100 *04 20 60

1"11 20 *05 100 *04 21 63 21 63

RESULTS FOR PROBLEM 4

N C BW (1) BW(2) BT (1) BT (2)
MS MF MS MF MS MF MS MF
2 1"01 13 32 13 32 13 32 13 32
2 1"02 17 42 16 40 18 45 16 40
2 1"03 28 70 22 55 32 80 22 55
2 1"04 100 *04 20 50 100 *04 20 50
2 1"05 100 *04 29 72 100 *04 29 72
2 1"06 100 *04 72 180 100 *04 72 180
2 1"07 100 *04 100 *04 100 *04 100 *04
13 1"01 3 72 g 72 47 *04 47 *04
13 1"02 47 *04 26 208 47 *04 47 *04
13 1"03 15 120 16 128 47 *04 27 216
13 1"04 20 160 13 104 47 *04 24 192
13 1"05 47 *04 17 138 47 *04 23 184
13 1"06 20 *01 20 *01 47 *04 47 *04
13 1"07 47 *04 47 *04 47 *04 47 *04

RESULTS FOR PROBLEM 5

N

13
24
35
46

RESULTS FOR PROBLEM 5A&, N = 35

P Q
1"-12 1"=-12
1"-312 1"-10
1"-12 1"-08
1"-12 1"-06
1"-12 1"-04
1"-12 1"-02
1"-10 1"-12
1*-08 1"-12
1"-06 1"-12
1%-04 1"-12
1"-02 1"-12

=
42}

L W W W W W W W W

RESULTS FOR PROBLEM 7, N = 2

c

1v-1
1940
5440
1%4+1
54
1942
1%43
1%44
1945
1%4+8

BW(1)
MS MF
4 10
5 12
6 15
6 15
7017
8 20
9 22
12 30
13 32
21 52

BW BT
MS MF MS MF
3 8 3 8
3 24 3 24
4 54 4 54
4 76 4 76
4 098 4 98
BW BT

MF LIFbt M5 MF
57 2"-09 3 57
57 2"-09 3 57
57 2"-09 3 57
57 2"-09 3 57
57 2"-09 3 57
57 2"-09 3 57
57 2"-09 3 57
57 2"-08 3 57
57 2"-06 3 57
57 2"-04 3 57
57 2"-02 3 57

BW(2) BT (1)
MS MF MS MF

4 10 4 10

5 12 5 12

6 15 6 15

6 15 6 15

7 17 8 20

8 20 8 20
10 25 g 22
1T 27 12 30
13 32 13 32
18 45 21 52

BT (2)

[UtS]

@3 U i

10
11
13
18

ME

10
12
15
17
20
20
25
27
32
45

I1.21

Ir.22

RESULTS FOR ORDER

FN

OO =1~ Oy Ul B BB N

[el =l sl oy
EWNHOOODODOOOOO

C

1"400,1
1"-03,1
1"-06,1
1%-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

2
BW BT

MS MF MS MF
2 5 2 5
6 15 6 15
2 5 2 5
13 32 13 32
20 50 20 50
100 *04 100 *04
3 8 3 8
6 15 6 15
6 15 6 15
12 30 12 30
5 13 5 13
5 13 4 10
3 8 3 8
3 8 3 8
3 8 3 8
3 8 3 8
3 8 1 *05
4 10 4 10
4 10 4 10
3 8 3 8
3 8 1 *05
5 13 5 13
3 8 3 8
5 13 5 13
4 10 5 13

RESULTS FOR ORDER

FN

e e el e e e el e el
BLUNHOOOOCOOOO

RESULTS FOR ORDER

FN C

1 -

2 "1

3 -

4 "1

4 1"4

4 "7

5 -

6 -

7 "1

7 "4

8 -

9 -
10 1"+00,1
10 1"-03,1
10 1"-06,1
10 1"-09,1
10 1"-14,1
10 1,1"-03
10 1,1"~06
10 1,1"-09
10 1,1"-14
11 -
12 -
13 -
14 -

NN =
423

NSOV UINUINESBNAAOD OO WK NW

BW
MF

121
*11
27
122
322
*04
54
81
81
162
54
54
68
68
68
68
68
68
81
68
68
81
54
95
68

WO~ ~OY U DN

24

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

8T
MS MF

121
*11
27
*04
*04
*04
54
81
95
162
68
54
54
54
54
54
*05
81
*04
108
108
81
54
81
54

N
YN WD

NN
[e2 =)}

B OV OV OO sk B DD TN N Y

=
n

Lo

GO WU OV U B D BB OO W~ WK & ®

BW
ME

64
*05
16
72
104
*04
24
48
48
96
32
32
32
32
32
32
32
40
48
32
32
40
24
40
40

13

=
w

£
~NN RO

Lo
~3 &

W U W U1 U1 N U R B D UT R N O

BT
MF

72
*05
16
*04
192
*04
24
48
56
96
40
32
32
32
32
32
*05
40
*04
40
32
40
24
40
32

RESULTS FOR

FN

WO 00~ O U e 0 RN

ORDE

=
w

i bt

et

i bt
COHEOLOWROVUVIVIUIUES &I G 8 MDY

[

R

BW
MF

171
*11
38
171
*04
*04
76
114
114
228
76
76
95
95
95
95
95
*04
247
152
133
114
76
*04
133

35

- =
N NO w

= b
© ™

st —
X WU FEARUTMIUTS BTN~ O

ot

BT
MF

190
*11
38
*04
*04
*04
76
114
133
228
95
76
95
95
95
95
*05
114
*04
*05
114
95
57
*04
114

RESULTS FOR ORDER

FN

O @~ O U s W B

ot B ot o ot ot ot ot ot et o et
BWRNROCOCODO0O OO

C

1"1

1"1
1"4
17
171
174

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

MS

]

MO HE VNN &AL B SONNO

BW
MF

245
*11

49
221
*04
*04

98
147
147
294

98

98
147
147
147
147
147
122
171
*04
122
147

98
221
122

46

MS

LSRR

14
14
14

MW U S WL ~d = UTUE U~

BT
MF

*05
*11

49
*04
04
*04

98
147
171
294
122

98
122
122
122
122
*05
171
*04
122

98
122

73
147
122

I1.23

I1.24

II.7. RESULTS FOR SPECIAL PROPERTIES AND FEATURES

I1.7.1.

10 -
In these tables we use the notation P = - log(lx - x*l), where x* is

the solution and X the computed approximation. Problems 1 and 7 are run for
éf = er = 6ax = 107
precisions are given on the three subsequent lines given for each problem.

3, 10~7 and jp~11. The results for these three required

Failure is denoted by a "x". Problem 15 is run for 6f = 6rx = 6ax = ¢, with
¢ as given in column three. For this problem we give also the number of
iteration steps performed and the error message (behind the star), if the

algorithm fails.

EXPERIMENTS
F N C
105 -
106 -
T 7 -
1 8 -
1 9 -
1w -
113 -
124 -
7 2 10
72 "3
7 2 s
7 2 "8
15 4 el
15 4 -2
15 4 -3
15 4 -4
15 4 *-5
15 4 “-g
15 4 “-7
15 4 -8
15 4 “-3
15 4 %-10

ASWC
MS P
17 7
18 13
19 13
59 8
60 13
61 13
33 9
34 13
35 13

b et e
DWW HHOCE~ENU % % # % & & % % % % % % % # %

e
[T]

HOR W N B
U =3~ OO

#5

O DUT W N

MSs

L O U0 UT e e
S WO Wwm LG

*

WO U e ¥ % ¥ % % % K X ok R % % N B

ASW

S T
HCaswWwwu,mwu,

et
B N I N N e N

1S

T

LW F P PO DLSOROLIANIHECOCWOI-ND

-

B bt ot ok bt ot bt
-] =3 O0 =3 OV W BN

®7

L
RS IR SRS B

AB

TO TEST CONVERGENCE CRITERIA

Le)

et
LN oY

e -
W W W W~ W0 U1 OO

[e
[SRE-FCNE R g

NN NNN NN NN

MS
17

W W Y O Un
Ul = O W

LA

v Ut
[ES S ol

*

WO Ww k # % % % F % W

ERE S X R R Pt Bt ot fod o ot ot
W W W GO ©J0~ OO

(3]

w

13
13

13
14

13
13

13
15

T1l

-
TN U U1 o 0 DD bt bt el

11.25

II.26

FN

15
15
15
15
15
15
15
15
15
15

10

13

24

o ok I

10

"3

ng

=
(2}

—

=
L O F ¥ OO HFHONABRCLCONOWMEOWNNO

11

DB

WWWwwww Wwww

Ms

UL B DWW W NN N b
NHFCOCWOULECNWRhNMHLCWOWIWwE

*

CONA WU ¥ ¥ % ® R X F W

bt et ot et ot et
WOV N D

~J

o F R WNN
WWWWwwo o s

GDS

13
13

15
15

13
13

13
13

13
15

N e e N =
HECBWOWW R OWE

WU 01 O o BN b

MS

* K % %k d ¥ H X O K H ¥ X O F H

OO U i o> W N b= 0 DN NN N = b b e e el
MoOCodUNYWOoODEdRNHOULUTIONOX

u2s

e U wo el

>

N WU W N

-

BW

13
13

15
15

13
13

12
15
11
14
13

I e Tl e = STy

M3

17

3T

13
13

13
15

13
13

14
14
11
13
13

—
P

11.27

11.7.2.

RESULTS FOR CONDITIONAL UPDATING AND FIXED APPROXIMATION

FN N c AB ABU ABF DB DBU DBF
MS MF MS MF MJ MS MF MJ MS MF MS MF MS MF MJ
4 13 10 12 17 12 17 11 13 18 10 13 187 12 160 13 148 10
4 13 "2 77 *09 - 77 *09 77 77 *09 77 13 *09 60 *09 60 *09 60
7 2 0.1 3 4 3 4 2 3 4 2 3 10 3 8 3 8 2
7 2 1 4 5 4 5 3 6 7 2 4 13 4 11 6 11 2
7 2 5 5 6 5 6 4 7 8 3 5 16 5 14 7 14 3
7 2 10 5 6 6 7 4 6 7 4 5 16 6 15 6 15 4
7 2 50 6 7 7 8 5 8 9 5 6 17 7 18 8 19 5
7 2 "2 7 8 7 8 6 10 11 5 7 22 7 20 16 21 5
7 2 "3 9 10 9 10 8 10 11 7 9 28 9 26 10 25 7
7T 2 "4 10 11 11 12 9 11 12 9 10 31 11 30 11 30 9
7 2 "5 12 13 12 13 11 15 16 10 12 37 12 35 15 36 10
7 2 "8 17 18 17 18 16 20 21 15 17 52 17 50 20 51 15
8 2 - 4 5 5 6 3 5 6 2 4 13 5 12 5 10 2
8 13 - 4 5 4 5 3 5 6 2 4 57 4 44 5 32 2
8 24 - 4 5 4 5 3 4 5 3 4 101 4 77 4 77 3
8 35 - 4 5 4 5 3 4 5 3 4 145 4 110 4 110 3
8 46 - 4 5 4 5 3 4 5 3 4 189 4 143 4 143 3

PRECISION TESTS FOR CONDITIONAL UPDATING AND FIXED APPROXIMATION

FM N AB ABU ABF DB DBU DBF
M3 P M5 P MS P MS P MS P Ms P

1 5 6 6 6 6 6 4 6 6 6 6 6 4
7 12 7 9 9 8 7 12 7 9 9 8

7 12 8 13 12 12 7 12 8 15 12 12

1 6 9 5 9 5 9 5 9 5 9 5 9 5
10 8 11 10 11 8 10 8 11 10 11 8

11 15 12 14 13 11 11 15 12 14 13 11

1 7 5 4 6 5 6 4 5 4 6 5 6 4
6 9 7 11 11 8 6 9 7 11 11 8

7 13 8 15 16 12 7 13 8 13 16 12

1 8 8 4 8 4 8 4 8 4 8 4 8 4
9 7 9 7 10 7 g 7 9 7 10 7

10 13 11 13 13 11 10 13 11 13 13 11

1 9 4 3 4 3 4 3 4 3 4 3 4 3
6 13 6 8 7 7 6 14 6 3 7 7

6 13 7 14 10 12 6 14 7 13 10 12

1 10 9 4 9 4 9 4 9 4 Y 4 9 4
11 12 11 9 11 9 11 12 11 9 11 9

11 12 12 13 12 11 11 12 12 13 12 11

113 6 4 6 4 11 3 6 4 6 4 11 3
7 9 g 11 23 7 7 9 8 11 23 7

8 12 9 13 35 11 3 12 9 12 35 11

I1.28

RESULTS FOR CONDITIONAL UPDATING AND FIXED APPROXIMATION

FN N C GAS GASF GDS GDSF BT BTM
MS MF MS MF MJ M5 MF MS MF MJ M5 MF MS MF
4 13 10 10 11 10 11 3 10 141 10 115 8 47 *04 47 *04
4 13 "2 32 33 32 33 31 33 463 33 450 32 47 *04 47 *04
7 2 0.1 4 5 4 5 2 4 13 4 9 2 4 10 3 9
7 2 1 5 6 7 8 2 5 16 7 12 2 5 12 4 12
7 2 5 6 7 8 9 3 6 19 8 15 3 6 15 6 18
7 2 10 6 7 7 8 4 6 19 7 16 4 6 15 6 18
7 2 50 7 8 8 9 5 7 22 8 19 5 8 20 7 20
7 2 "2 8 9 10 11 5 8 25 10 21 5 8 20 8 23
7 2 "3 9 10 10 11 7 9 28 10 25 7 9 22 9 25
7 2 "4 11 12 11 12 9 11 34 11 30 9 12 30 11 30
7 2 "5 12 13 15 16 10 12 37 15 36 10 13 32 12 32
7 2 "8 17 18 200 21 15 17 52 20 51 15 21 52 18 49
8 2 - 5 6 o 7 2 5 1leé 6 11 2 5 13 4 12
8 13 - 5 6 5 6 3 5 71 5 45 3 5 40 4 42
3 24 - 5 6 5 6 3 5 126 5 78 3 5 68 4 68
8 35 - 5 6 5 6 3 5 181 5 111 3 5 95 4 96
8 46 - 5 6 5 6 3 5 236 5 144 3 5 122 4 122

PRECISION TESTS FOR CONDITIONAL UPDATING AND FIXED APPROXIMATION

FN N GAS GASF GDS GDSF
Ms P MS P MS |4 MS 14

—
v

17 7 17 5 17 7 17 5
18 13 20 10 18 13 20 10
19 13 22 13 19 13 22 13
1 6 59 8 66 2 27 5 43 2
60 13 100 *04 29 15 100 *04
61 14 100 *04 29 15 100 *04
7 33 9 33 7 31 8 31 6
34 13 35 11 32 13 33 9
35 13 37 13 33 13 35 13
1 8 41 *03 74 *04 47 6 47 6
41 *03 74 *04 49 13 49 11
41 *03 74 %04 49 13 51 13
1 3 51 9 55 4 50 8 50 4
52 13 66 7 51 13 54 8
53 15 67 *04 52 15 58 13
110 60 *04 60 *04 60 *04 60 *04
60 *04 60 *04 60 *04 60 *04
60 *04 60 *04 60 *04 60 *04
113 45 *04 45 *04 47 *04 47 *04
45 *04 45 *04 47 *04 47 *04
45 *04 45 *04 47 *04 47 *04

I1.7.3.

RESULTS OF SCALING TESTS

FN

NN RN DN

N

RN NN NNNWWWWWW WwWwWw ws

et 4=
ww

bt et b
wwww

13

el e i = = S S
NRNNNON WWWWWwW W Www NN R R R R

C

10

“2

||3

|l4

I'IS

"

"7

"8

“9

"10
llll
1,1
||__3, 1
"6, 1
"-9, 1
"-14, 1
1, "-3
1, "-6
i, -9
1, "-14
1,1
11__3, 1
""6, 1
||__9’ 1
"-14, 1
1, "=3
1, "-6
1, "-9
1, "-14
1,1
ll___3’ 1
""6, 1
"-9, 1
"-14, 1
1, "-3
1, "-6
1, "-9
1, "-14
1,1
l|_3’ l
ll__6' 1
"—9' 1
"-14, 1
1, "-3
1, "-6
1, "-9
1, "-14
1

10

I|2

|I3

"4

"5

MS

—
CUNRNNNONS B EBRBNNOOHWWWENNWBARNWWWWINNNWEAENWWRWWWWOMUIN®EOHWOO &N

[

I
[SR=RV-¥.7

AB
MF

*09
5

8
10
12
15
*09
*09

*09
*09
*09

11
*09
*09
*09
*09

ABIS1

MS

bt
NN NNNWWESNNOWHWWWENNEBNNWWWIUNRNWENNWWWONINOO®EO WO &N

bt bt et
WNHHOO

MF

*01
5

7

8
11
12
*09
*09
*08
*09
*08
*08

*09
*08

*Q7
*08
*05

*09
*08

*08
*08

*09
*05

31
*09
*09
*01

*09
*09
*08
*02
*04
*04
*01

11
*09
*09
*09
*09

ABIS2

M3

2
4
6
7

9
10
11
13
14
15
17
18

RNRRNNROUNDNNDNBENNDNW WS SN IHFWWWEB N WHS SN WWWR S &NNWWW

MF

*01
5
7
8

11
12
13
15
16
17
19

*09
*05
10
28
*07
*01

*09
*09
*08
*08

23
*07
*01

*02
*02
*02
*02
*02

=

ey

[
NS LULdCUINDNUWWWWWNNNOWWWWWWWNWWWWWWINNNWRNINOMNN NN O®RH OO

sCaB
MS

MF

*08
5

8

8

9
11
12
*09
*09
*09
*09

*
sl
=)

Bl s e e B B W0 e D B R DWW R W W W W

I1.29

I1.30

FN

[
O NN NN N NN R

—
o

bt et
ocooocCc

e
oo OO

et bt et ot ot
_OCCO OO

]
bt et et

11

RN NN NN WWWWWWWWWW W

L)
"3

—

DB

MF

*08
17
26
34
39

*08

*08

*08

*08

*08

*08

*08
10
10

*08
*08
13
*08
*08
*08
43
43

*08
*08
57
*08
*08
*05
13
10
13
*08
*05
26
*08
*08
*05
57
57
57
*08
*08
85
*08
*08
*05
17
31
*08
*08
*09
*08

DBIS1

MS

—

- -
WHWHBWABUOWE CWWWWHFHWERENNNWWNNIN00 O WSO s

=
N O

G = DO N DN W b

bt ettt ot
N SO

MF

*01
17
25
29
38
42

*09

*09

*09

*09

*09

*09
10
10

7

*09

*05
13

*09

*02

*05
43
43
43

*07

*02
57

*09

*02

*01
13
10
13

*09

*05
57

*09

*09

*05
57
57
57

*09

*02

*02

*02

*09

*05
17
31

*09

*09

*09

*09

DBIS2

MS

P e N e
WWNO U W C WO

N

=
NN UFNANCWa R ONNFRWREWSHRWODE @WWWWHWUS NN

MF

*01
17
25
29
38
42
46
54
58
62
66
70
10
10

7

*09

*05
13
16

*02

*05
43
43
43

*09

*02
57
71

*02

*05
13
10
13

*09

*05
24
62

113

*05
57
57
57

*09

*02

*02

205

256

*05
17

*02

*02

*02

*02

*02

NN NNOUIFENNUOWLWWWWWHENNODWWWWWHFWOWLWWWWRWWHENUOWBODNNNNONON NN OO 0O

*05

*08
*05
10
10
10

10
26
*08
*08
*05
43
43
43
43
43
71
*08
*05
*05
17
31
*09
*09
*08
*08

ey
=4

[
[=R SR NESNENESESHCENE CRESENE S

Bt bt bt ot bt ot ot b et Bt et o b o et e Bt B o bt o e ot ok ot ot ot bt et bt et et et et e s B bt b et ot
N OO O bt i et ot bt ot bt o et ek et et (R L e b i R D O O OO D OO0 OO0 OO

DRI RS RO DN PR BN W W0 W o o W W W W

b e
Wl W w

]
W w

13

"

SCGAS
MS MF
1 *11
5 6
7 8
8 9
10 11
11 12
12 13
13 14
14 15
16 17
17

ot Gt e bt Y o B B B B b bt G0 D e D B WO L2 LD R L) W L L W W W D WD o) W

et
it

99

e
W o

- et et
B U O O U1 U B U s b B D B UT b B B B D WO

#*
bt
et

*11
*11

ST ctur

*11
*¥11
*11

12
*04
*03

16
*03

GAS
MS MF
1 *11
5 6
7 8
8 9
g 10
11 12
12 13
13 14
14 15
16 17
17 18
18 19
4
4

B b b a0 D D W W W R B R B W UTUTUTWWWWWWwOUuwwwww

B B N b
U D o

B AT UT U B WY O R B B e D B O OV R e

SCGDS

MS

25
5
3
8

10

11

12

13

14

16

17

19

B bt = OY B B B B e L0 R G0 D D B D e W W) W W W W W U e L W o W W

e
B b= 00

"
WA N

MF

*04
21
29
33
41
45
49
53
57
65
69

*03
10
10
10
10
10
13
16
13
10
43
43
43
43
43
57
43
43
43
13
13
13
13
13
40

*11

*¥11
10
57
57
57
57
57
85

*11

*11
57
55
34

*03

*07

*07

*07

GDS

ot

MF

126
21
29
33
41
45
49
57

*07

*03

*03

*04
10
10
10
10
10
16
19
10
10
43
43

*03
43
43
71

*03
43
43
13
13
16
10
10
40

*11
10
10
57
57
57
57
57
99

*04
57
57
55
34

*03

*03

*03

*07

3CU28

M5

2

8
17
199
199

199

199
163

=N
P b R S S I N A AV YW U U U B U R R B UT DD B U W W W B e

O
Ko W

199
199
199
199

MF

*11
12
21

*G4

*04

*11

*04

*11

*04

*11

*11

*11
*11
*11

19

38
*04
*04
*04
*04

I1.31

u2s

MS

17
199
94

199
199

CO 00 b > B> o 4B > d>

199
199

pu—

—
W b= B 00 00 €0 00 00 = b b=t b ~J LU T OY

199

35
199
199
199
199

*04
*04

*11
*11
*11
22
22
22
22
22
26
*11
*11
*11
*04
38
*04
*04
*04
*04

II1.32

I1.7.4.

RESULTS FOR PROBLEM 1 WHEN REDUCED TO A OMNE-DIMENSIONAL
NONLINEAR PROBLEM (NO ANALYTIC DERIVATIVES USED)

DB WITH DB
REDUCTION
N MFL MS MF
2 11 2 7
3 11 7 30
4 11 9 56
5 11 8 55
6 11 11 83
7 11 7 65
8 11 10 103
9 11 6 72
10 11 12 143
13 11 *
24 11 w

In this table MF1 denotes the number of evaluations of the nonlinear function

component. .

RESULTS FOR PROBLEM 1

SNOLEQJ(S)

MS MSV

S

s
[SSRWR- N NI N SIEE VIR TN S
B o

b

=
Pt DO OO OO OO

ME

2

8
20
14
*04
17
*04
18
*04
26
*11
*11

MJ

Y

E
W) O R s D O L Oy ~ad 3 b

S

RESULTS FOR PROBLEM 2,

C

1"01
1702
1"e3
1704
105
1706
107
1708
108
1710
i"11

SNOLEQJ (S)
MS MSV

OCOOOCOOOOOO

MF

6

8
10

9
11
12
13
15
17
17
18

M

[

SHOLEQJ
MS MSV MEF
1 0 2
6 ¢ 8
9 0 20
7 0 14
11 Y 17
7 g 16
S [t} 22
6 Q 18
11 0 22
8 0 26
3 1 *11
41 40 *04
N = 3

SNOLEQJ

MS MSV MF

5 0 6

6 0 8

8 0 10

9 0 iz

11 0 15

13 5 17

15 8 20

16 11 21

17 12 23

18 15 24

20 17 27

=
[}

et

P-4

=0 O O WO WU AD O =l LA

SHOLEQ (S}
MS MSV MF
2 0 7
6 0 23
9 0 48
7 0 44
43 40 *04
7 0 59
42 40 *04
6 0 54
42 40 *04
6 0 91
6 4 199
5 5 181
SNOLEQ(S)
M3 MSV MF
5 0 15
6 g 26
8 0 34
8 0 33
10 G 41
11 0 42
12 0 46
14 0 51
15 0 59
16 0 62
20 6 *07

SNOLEQ
MS MSV MF
2 0 7
6 0 23
E} 0 43
7 0 44
11 0 71
7 4} 51
g 0 94
6 Y 54
11 0 122
8 0 104
41 40 *04
6 5 181
SNOLEQ
MS MSV HME
5 0 15
6 0 26
8 0 34
9 0 39
12 4 49
13 7 53
15 10 62
17 12 *07
44 40 *04
43 40 *04
14 12 *04

SCu2s

MS

1
12
11
11
15

170

MF

4
16
16
17
22

*04
*11
*11
*04
*11
*11
*11

#11
*11

02

199 *
199 *

*
*
*
*
*

B = BB B

MS

17
199
94

199
199

S
MF

5
15
14
16
13
04
04
11
11
11
11
11

uz2s

MF

12

21
04
*11
*11
*11
*11
*04
*04
*11
*11

Ms

15
19
60
34
66
55
61

00

BW
MF

21
52
76
270
1790
363
330
*04
64
121
171

1Y
MS HF

11 *05
10 *05
12 *Q5
14 *05
13 *05
12 *05
16 *05
20 *05

"8°IL

SWHIITYOOIY QHLOITIS Y04 SITIOSHE

€€ II

RESULTS FOR PROBLEM 4

N

c

1"01
1702
1"03
1"04
1"05
1"06
107
1"01
i"02
1"03
1"04
1"05
1"06
1"07

MS

3

48

SNOLEQJ (S)

MSV

Ul T UTOYO

22
21
39
10
40
40
40

MF

99
18
21
24
22
21
20
330
196
59
25
*04
*04
*04

RESULTS FOR PROBLEM 5

N

2
i3
24
35
46

SHNOLENJ (S)
MS MSV MF
2 0 3
3 0 4
3 0 4
3 0 4
3 0 4

RESULTS FOR PROBLEM

1v-1
1"+0
5"+0
1"+1
5"+1
l"+2
lﬂ+3
1H+4
lu‘+5
1"+8

C

MS

bt et
DO b= D ~d =3 Y U B W

ot
~J

MJ

2
2
2
2
2
7.

SNOLEQJ (S)

MSV

oo CcCc oo

MF

CO O ~J O U

10
iz

18

MJ

A D 00 Y U0 e W N

b et

N

MJ

2

N OY 0w

62

46
17
49
48
48

MS

W wwN

SNOLEQJ
MS MSV MF
17 0 32
8 6 18
7 5 21
7 5 24
6 4 27
6 4 30
6 4 32
12 0 17
65 25 352
36 28 46
48 40 *04
49 40 *04
50 40 *04
25 15 41
SNOLEQJ
MSV MF MJ
0 3 2
0 4 2
0 4 2
0 4 2
0 4 2
2
SNOLEQJ
MS MSV MF MJ
3 0 4 2
4 0 5 3
5 0 6 4
6 0 7 4
7 0 8 5
7 0 8 6
9 0 10 8
11 0 12 9
12 0 13 11
17 0 18 16

SNOLEQ(S)

MJ MS MSV MF

16 30 0 157
8 8 6 32
7 g 7 39
7 12 10 50
6 42 40 *04
6 42 40 *04
6 12 10 *07

11 63 23 1137

65 37 14 598

36 45 38 630

48 43 36 *07

48 18 11 243

48 23 21 *07

23 14 12 %907
SNOLEQ (S)

MS MSV MF MS
2 0 7 2
30 30 3
30 52 3
30 74 3
30 96 3

SNOLEQ (S)
MS MSV MF
30 8
4 0 11
5 0 14
6 0 15
7 0 18
7 0 20
9y 0 26
110 30
12 0 35
18 1 51

SNOLEQ
MS MSV
17 0
8 6
8 6
10 8
119
9 7
13 11
12 0
80 40
37 29
43 35
49 40
31 21
21 11
SNOLEQ
MSV MF
0 7
0 30
0 52
0 74
0 96
SNOLEQ
MS MSV MF
30 8
4 0 11
5 0 14
6 0 15
7 0 18
7 ¢ 20
9 0 26
11 0 30
12 0 35
170 50

SCU2s
MF MS MF
64 199 *04
32 199 *04
36 199 %04
45 199 *04
*07 199 *04
*07 199 *04
*07 199 *04
160 91 *04
*04 91 *04
515 91 *04
*07 91 *04
*04 91 *04
*07 49 63
*07 66 80
SCU2s

s MF s
3 6 2
4 13 4
4 29 4
4 40 5
4 51 4

sCu2s

MS MF

5 8

7 10

9 12

10 13

12 15

12 15

12 15

14 17

17 20

23 26

U2s

MS

151
190
199
199
199
199
199
91
91
91
91
91
91
91

U2s

MS

10
13
14
15
17
20
24

MF

18
29
41

51

U2s
MFP

8
10
12
13
16
17
18
20
23
27

MF

154
193
*04
*04
*04
*04
*04
*04
*04
*04
*04
*04
*04
*04

S

B B W W

MS

13
17
28
100
100
100
100

47
15
20
47
20
47

BW

MS

P DN WD 0O~ OV O LD

DO s b

MP

24
54
76
98

BW

BW
MF

32

42

70
*04
*04
*04
*04

72
*04
120
160
*04
*01
*04

peIx

RESULTS FOR ORDER 2

FN c SNOLEQJ (S) SNOLEQJ SNOLEQ(S) SNOLEQ sCu2s uz2s Bw
MS MSV MF MJ MS MSV MF MJ M5 MSV MF MS MSV MF MSs MF MS MF Ms MF
1 - 1 G 2 1 1 0 2 1 2 0 7 2 0 7 1 4 2 5 2 5
2 "1 5 0 6 4 5 Y 7 5 5 0 14 8 0 26 13 16 - 24 27 6 15
3 - 2 0 3 2 2 0 3 2 3 0 10 3 0 10 3 6 4 7 2 5
4 171 30 0 89 29 17 0 32 16 30 0 157 17 0 64 199 *04 151 154 13 32
4 174 7 5 24 7 7 5 24 7 12 10 50 10 8 45 199 %04 199 *04 20 50
4 "7 7 5 20 7 6 4 32 6 12 10 *07 13 11 *07 199 %04 199 *04 100 *04
5 - 2 0 3 2 2 0 3 2 2 0 7 2 0 7 3 6 2 5 3 8
6 - 6 0 7 4 6 0 7 4 6 0 15 6 0 15 7 10 7 10 6 15
7 "1 6 0 7 4 6 0 7 4 6 0 15 6 0 15 10 13 10 13 6 15
7 1"4 11 0 12 9 11 0 12 9 11 0 30 11 0 30 14 17 17 20 12 30
8 - 5 0 6 3 5 0 6 3 5 0 12 5 0 12 5 9 6 9 5 13
9 - 5 0 6 3 5 0 6 3 5 0 12 5 0 12 6 9 6 9 5 13
10 1"+00,1 3 0 4 2 3 0 4 2 3 0 8 3 0 8 4 7 4 7 3 8
10 1"-03,1 3 0 4 2 3 0 4 2 3 0 8 3 0 8 4 7 4 7 3 8
10 1"-06,1 3 0 4 2 3 0 4 2 3 0 3 2 0 7 4 7 4 7 3 8
10 1"-09,1 3 0 4 2 3 0 4 2 3 0 8 3 2 8 4 7 4 7 3 8
10 1"-14,1 3 0 4 2 3 2 4 3 3 0 8 3 2 8 4 7 4 7. 3 8
10 1,1"-03 5 0 6 2 4 0 5 4 5 0 10 4 0 13 5 8 8 11 4 10
10 1,1"-06 4 0 5 2 5 2 6 5 8 3 24 7 5 20 4 7 8 11 4 10
10 1,1"-09 3 0 4 2 13 11 14 13 3 0 8 3 2 8 4 7 199 *04 3 8
10 1,1"-14 3 0 4 2 3 2 4 3 3 3 io0 4 3 10 4 7 199 *04 3 8
11 - 4 0 5 3 4 0 5 3 4 0 11 4 0 11 5 8 6 9 5 13
12 - 2 0 3 2 2 0 3 2 2 0 7 2 0 7 5 8 4 7 3
13 - 4 0 5 3 4 0 5 3 4 0 11 4 0 11 7 10 6 9 5 13
14 - 4 0 5 3 4 0 5 3 4 0 11 4 0 11 5 8 6 9 4 10

GE'TI

RESULTS FOR ORDER 13

FN C SNOLEQJ (S) SNOLEQJ SNOLEQ(S) SNOLEQ 5CU2s U2s BW
MS MSV MF MJ MS MSV MF MJ MS MSV MF MS MSV MF MS MF MS MF MS MF
1 - 6 0 26 5 8 0 26 6 6 0 91 8 0 104 3 *11 2 *11 3 64
2 1"l 49 40 *04 49 49 40 *04 49 49 40 *04 49 40 *04 31 *04 91 *04 4 *05
3 - 9 7 *03 9 9 7 *03 9 11 8 *11 9 7 *11 3 %11 3 *11 2 16
4 1"1 62 22 330 62 12 0 17 11 63 23 1137 12 0 160 91 *04 91 *04 g 72
4 1"4 17 10 25 17 48 40 *04 48 43 36 *07 43 35 *07 91 *04 91 *04 13 104
4 17 48 40 *04 48 25 15 41 23 14 12 *97 21 11 *07 66 80 91 *04 47 *04
5 - 3 0 4 2 3 0 4 2 3 0 30 3 0 30 4 18 4 18 3 24
6 - 6 0 7 3 6 0 7 3 6 0 46 6 0 46 10 24 13 27 6 48
7 1"1 6 0 7 4 6 0 7 4 6 0 59 6 0 59 17 31 17 31 6 438
7 1"4 11 0 12 9 11 0 12 9 11 0 129 11 0 129 14 28 22 36 12 96
8 - 4 0 5 3 4 0 5 3 4 0 44 4 0 44 6 20 6 20 4 32
9 - 5 0 6 2 5 0 6 2 5 0 32 5 0 32 6 20 6 20 4 32
10 1°+400,1 3 0 4 2 3 0 4 2 3 0 30 3 0 30 4 18 5 19 4 32
10 1"-03,1 3 0 4 2 3 0 4 2 3 0 30 3 0 30 5 19 5 19 4 32
10 1"-06,1 3 0 4 2 3 0 4 2 3 0 390 3 0 30 4 18 5 19 4 32
10 1"-09,1 3 0 4 2 3 0 4 2 3 0 30 4 3 44 5 19 5 19 4 32
10 1"-14,1 3 0 4 2 4 3 5 4 3 0 30 4 3 44 5 19 5 19 4 32
10 1,1"-03 5 0 6 2 4 0 5 4 5 0 32 4 0 57 8 22 7 21 5 40
10 1,1"-06 4 0 5 2 5 2 6 5 6 0 46 42 40 *04 57 *11 10 24 5 48
10 1,1"-09 3 0 4 2 5 3 6 5 4 0 44 3 2 30 78 *11 17 31 4 32
10 1,1"-14 3 0 4 2 3 2 4 3 3 3 43 4 3 43 85 *11 91 *04 4 32
11 - 5 0 6 2 5 0 6 2 5 0 32 5 0 32 7 21 8 22 5 46
12 - 2 0 3 2 2 0 3 2 2 0 29 2 0 29 11 25 4 18 3 24
13 - 6 0 7 4 6 0 7 4 6 0 59 6 0 59 11 25 12 26 5 49
14 - 4 0 5 2 4 0 5 2 4 0 31 4 0 31 5 19 7 21 5 40

9¢€ " II

RESULTS FOR ORDER

Fi

bt bt bt bt bt et ot ot ok ot ok ot ot
BWNHCOODOTCOOO

OO0~ =) O U1 s b e G0 D b

c
~

1°+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"-03
i,1"-086
1,1"-09
1,1"-14

SNOLEQJ (3)

MS MSV
3 1
4 1

10 8

33 19

17 10

20 13
3 0
6 0
6 0

11 0
4 0
5 0
4 0
4 0
4 0
4 0
4 0
4 0
5 0
3 0
4 0
4 0
3 0
5 0
4 0

24

MF

*11
*11
*03
70
26
21

WO ek U LT GY DDLU LT LY CD U D~]

MJ

3
3
10
33
16
18
2

BB BN WO N L)) B DO RN N DN NI DD WD B

SNOLEQJ

MS M3V

B =

b U1 L B B U G0 T e B B B B W ke s O ON L) O) D s W
ot o

COOOWWOODLWOOODODOCOOCOM OIKN M

MF

*11
*11
*11
10
26
38
4

[

VIOV > U1 LT QY QY T UT U1 U1 U Y U DDl g

bt et =
Gy

B B B Lo B U1 G0 B a8 BN DD DRI DD L2 D B el DN] N 00 o))

SNOLEQ (8)

MS MSV

6
4
12
48
15

ot
L=]

B U1 G e U1) Ul B b B U1 e b OY O) (W

DODO R DIWOOOOOOOOOOCU N O M d

MF

i9¢
*11
*11
*04
335
*07
52
79
103
228
77
54
53
53
53
53
53
102
76
78
101
77
52
102
53

SNOLEQ
MS MSV
41 40

3 1
42 40
3 0
17 10
15 6
3 4]
6 0
6 0
11 0
4 0
5 0
4 0
4 0
a2 0
4 3
4 3
5 0
s 7
4 3
5 4
4 0
3 0
5 0
4 0

MF

*04
*11
*04
202
386
*07
52
79
163
228
77
54
53
53
53
77
77
102
*07
77
101
77
52
102
53

=
VIR =1 W W3 WU WUt gy (n

w

u2s
MF

*11
*11
*11
*04
*04
*04
29
38
42
47
31
31
31
31
31
31
31
33
37
47
*04
34
29
44
32

=
w

N b

D@ AU UU SN NOWNRNW

BW
MF

121
*11
27
122
322
*04
54
81
81
16z
54
54
63
68
68
68
68
68
81
68
68
81
54
95
68

LEIT

RESULTS FOR ORDER

FN

el el e o e W T SISV S
BWUNHOOOOOOO CO

000~ ~ O R s B o N

C

1"+00,1
1"-03,1
1"-06,1
1"-09,1
1"-14,1
1,1"-03
1,1"-06
1,1"-09
1,1"-14

w
U1 b= W0 U1 B W Wb b b s i U1 = OY O W

SNOLEQJ (S)
MS MSV

N

s
ODDQOO0OO0OCOOCOLOOOOTOOOONCO QD btk

35

MF

*11
*11
*03
63
*04
35

ot

#*
o
BB AT R TUIUTU U OO UTN I~

MJ

3
4
10
18
48

N
o

Ut

NN WWWENNNNNDNDNDWWS WN

MS

41
3
4

29

48

33

et

U1 b W UT B b W0 B B B B B s U7 b O O W

ur

SNOLEQJ
MSV MF
40 *04
1 *11
2 *11
20 56
40 *04
23 51
0 4
0 7
0 7
0 12
0 5
0 6
0 5
0 5
0 5
0 5
3 5
0 5
0 4
2 5
3 5
0 6
[t} 4
40 %04
0 6

MJ

41

29
48

wr
U b= D DD i b W0 bl DR DD NN W WO s W

SNOLEQ(S)

MS MSV

5
44
7
20
20
45

L=

-

[y
OBOOQOLWODOCOODOOOOOOOOOCOWO RO

N
L1~ W U1 W b U1 e ke o B sl o U OV O W

it

MF

181
*14
*11
693
689
*07
74
112
147
327
110
76
75
75
75
75
75
145
146
110
109
76
74
*07
181

MS

6
42
6
50
48
20

ot

U1~ W U W U1 b b o s i U1 = O O W

3%}

SNOLEQ
MSV

5
40
4
490
40
10
0

et
OB OOWOCOOODOCODOOOC O

MF

181
*04
*11
*04
*04
*Q07
74
112
147
327
110
76
75
75
75
75
75
145
146
110
109
76
74
*Q7
181

sCuzs

MS

o~NUTITWa YOO

MF

*11
*11
*11
*04
*04
*04
40
46
53
50
42
42
42
42
42
42
42
45
42
42
*04
43
41
*11
44

u2s
MF

*11
*11
*11
*04
*04
*04
41
49
53
58
42
42
42
42
42
42
42
47
51
55
*04
45
41
*04
46

MS

[

[

et
OO OV~ 00 W GO U U U U U B N O O W 00 0O NN D

-

BW
MF

171
*11
38
171
*04
*04
76
114
114
228
76
76
95
95
95
95
95
*04
247
152
133
114
76
*04
133

8E€"II

RESULTS FOR ORDER

FN

D Q0 =~ N U ks B B W N

et ot ot
ocoo

e I el e S e
WNHOOoOOO OO

-
=

C

1"+00,1

1"-03,1
17-06,1
1"-09,1
1"-14,1
1,1"-03
1,17-06
1,1"-09
1,1%-14

SNOLEQJ (8S)

MS M8V

4 4

bt ot
b

-
COLQOCOOUIODOCODOOODOOC OO CMMN O

B W UT e B OV S e B e e T b O CR L) 0D D WD s b

46

MF

*04
*11
*11
10
26
19

-

i
WD VU~ 0G0 0T O U B~ ~3

ey

MJ

o
bt

bt bt

W OB W Q0 b U1 = 0 Lo W) W0 L) BN L) WD s LD N OV O 00 b (W

MS

DN b

1O O B e U1 wd i s o B B U1 i bt Q) OV G0 b wd D o) bt

SNOLEQJ

MSV

4

[

CCOQWNWUWODOOODOOOOODOMNOORN kO

MF

*04
*¥11
*11
10
26
39

ot

ot
NS 1D NUTUVUUT0 NN = wd

(=

MJ

b

BN CY R G ol B UT ~d e L0 L W WD DN W0 D i L) DD 00 O 06 B W b

SNOLEQ (S)

MS MSV

-

ot s

W VA O DT W b e BT B = O NWOWW oUW
OO WW-OODODNMDOOCEEMW O -] WU

MF

236
*11
*11
378
526
*07

96
145
181
426
143

98
143
143
143
143
143
380
*07
180
189
144

96
286
143

SNOLEQ
MS MSV

bt e

[
COOOBPWNIWWWOOOOOoTOODADO O MW,

D WY U 00 W b il >l Tl b2 O WU W0 W

MF

236
*07
*11
378
716
*07

96
145
191
426
143

98
143
143
143
143
143
380
*07
143
189
145

96
286

38

scuzs

ot

=
Wead T~ NN DBNNN NN

MF

*11
*11
*11
*04
*04
*04
51
57
64
61
53
54
53
53
53
53
53
59
55
53
52
54
52
64
52

MS

u2s

*11
*11
*11
*04
*04
*04
51
60
64
69
53
53
54
54
54
54
54
58
69
*04
*04
57
52
65
52

MS

bt

WD & DU ~JUTA NGO = DO OV b DO N MO

BW

245
*11

49
221
*04
*04

98
147
147
294

98

98
147
147
147
147
147
122
171
*04
122
147

98

221
122

6€°IL

OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

A leaflet containing an order-form and abstracts of all publications men-
tioned below is available at the Mathematisch Centrum, Tweede Boerhaave-
straat 49,Amsterdam,l1091AL The Netherlands. Orders should be sent to the
same address.

MCT 1 T. VAN DER WALT, Fized and almost fixed points, 1963. ISBN 90 6196
002 -9.

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 90 6196 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II: Pro-
babilistic background, 1964. ISBN 90 6196 005 3.

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision
processes, Applications, 1970. ISBN 90 6196 051 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1.

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964.
ISBN 90 6196 007 X.

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964. ISBN 90 6196
008 8.

McT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.

MCT 10 E.M. DE JAGER, Applications of distributions in mathematical physics,
1964. ISBN 90 6196 010 X.

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964. ISBN 90 6196
011 8.

MCT 12 J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN
WIJNGRARDEN, Formal properties of newspaper Dutch, 1965.
ISBN 90 6196 013 4.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced
by MCT 54 and 67.

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics, 1966.
ISBN 90 6196 020 7.

MCT 15 R. DOORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

MCT 16 J.W. DE BAKKER, Formal definition of programming languages with an
application to the definition of ALGOL 60, 1967. ISBN 90 6196
022 3.

MCT 17 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 1, 1968.
ISBN 90 6196 025 8.

MCT 18 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 2, 1968.
ISBN 90 6196 038 X.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial
differential equations, 1968. ISBN 90 6196 027 4.

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT
MCT

MCT

MCT

MCT

MCT

MCT
MCT
MCT

MCT

MCT
MCT
MCT

MCT

MCT

MCT

21

22

23

24

25

26

27

28

29
30

31

32

33

34

35
36
37

38

39
40
41

42

43

44

E. WATTEL, The compactness operator in set theory and topology,
1968. ISBN 90 6196 028 2.

T.J. DEKKER, ALGOL 60 procedures in numerical algebra, part 1, 1968.
ISBN 90 6196 029 0.

T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in numerical algebra,
part 2, 1968. ISBN 90 6196 030 4.

J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6.
E.R. PAERL, Representations of the Lorentz group and projective
geometry, 1969. ISBN 90 6196 039 8.

EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968.
ISBN 90 6196 031 2.

EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969.
ISBN 90 6196 040 1.

J. COSTERHOFF, Combination of one-sided statistical tests, 1969.
ISBN 90 6196 041 X.

J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8.

H. BRANDT CORSTIUS, Excercises in computational linguistics, 1970.
ISBN 90 6196 052 5.

W. MOLENAAR, Approximations to the Poisson, binomial and hypergeo—
metric distribution functions, 1970. ISBN 90 6196 053 3.

L. DE HAAN, On regular variation and its application to the weak
convergence of sample extremes, 1970. ISBN 90 6196 054 1.

F.W. STEUTEL, Preservation of infinite divisibility under mixing
and related topics, 1970. ISBN 90 6196 061 4.

I. JUHASZ, A. VERBEEK & N.S. KROONENBERG, Cardinal functions in
topology, 1971. ISBN 90 6196 062 2.

M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 0.
J. GRASMAN, On the birth of boundary layers, 1971. ISBN 90 6196 064 9.

J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DUIJVESTIJN, E.W. DIJKSTRA,
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
ARETZ, W.L. VAN DER POEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES &
G. ZOUTENDIJK, MC-25 Informatica Symposium, 1971.
ISBN 90 6196 065 7.

W.A. VERLOREN VAN THEMAAT, Automatic analysis of Dutch compound words,
1971. ISBN 90 6196 073 8.

H. BAVINCK, Jacobi sertes and approximation, 1972. ISBN 90 6196 074 6.
H.C. T1gMS, Analysis of (s,5) inventory models, 1972. ISBN 90 6196 075 4.

A. VERBEEK, Superextensions of topological spaces, 1972. ISBN 90
6196 076 2.

W. VERVAAT, Success epochs in Bernoulli trials (with applications in
number theory), 1972. ISBN 90 6196 077 O.

F.H. RUYMGAART, Asymptotic theory of rank tests for independence,
,1973. ISBN 90 6186 081 9.

H. BART, Meromorphic operator valued functions, 1973..ISBN 906196 082 7.

MCT

MCT

MCT

MCT
MCT

MCT

MCT
MCT

MCT

MCT

MCT

MCT

MCT

MCT
MCT

MCT

MCT

MCT

MCT

45

46

47

48

49
50

51

52
53

54

55

56

57

58

59

60
61

62

63

64

65

66

A.A. BALKEMA, Monotone transformations and limit laws, 1973.
ISBN 90 6196 083 5.

R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipu-
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3.

R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipu-—
lation systems, part 2: The compiler, 1973. ISBN 90 6196 085 1.

F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL
80 compiler in ALGOL 60, Text of the MC-compiler for the
EL~X8, 1973. ISBN 90 6196 086 X.

H. KoK, Connected orderable spaces, 1974. ISBN 90 6196 088 6.

A. VAN WIJNGAARDEN, B.J. Marirroux, J.E.L. PeEcx, C.H.A. KOSTER,
M. SinTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER
(Eds) ,. Revised report on the algorithmic language ALGOL 68,
1976. ISBN 90 6196 089 4.

A. HORDIJK, Dynamic programming and Markov potential theory, 1974.
ISBN 90 6196 095 9.

P.C. BAAYEN (ed.), Topological structures, 1974. ISBN 90 6196 096 7.

M.J. FABER, Metrizability in generalized ordered spaces, 1974.
ISBN 90 6196 097 5.

H.A. LAUWERIER, Asymptotic analysis, part 1, 1974. ISBN90 6196 098 3.

M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 1: Theory
of designs, finite geometry and coding theory, 1974.
ISBN 90 6196 099 1.

M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 2: graph
theory , foundations, partitions and combinatorial geometry,
1974. ISBN 90 6196 100 9.

M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 3: Combina-
torial group theory, 1974. ISBN 90 6196 101 7.

W. ALBERS, Asymptotic expansions and the deficiency concept in sta-
tistics, 1975. ISBN 90 6196 102 5.

J.L. MIONHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

F. GOBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108 4.

P. vAN EMDE BOAS, Abstract resource-bound classes, part 1.
ISBN 90 6196 109 2.

P. VAN EMDE BOAS, Abstract resource~bound classes, part 2.
ISBN 90 6196 110 6.

J.W. DE BAKKER (ed.), Foundations of computer science, 1975.
ISBN 90 6196 111 4.

W.J. DE SCHIPPER, Symmetric closed categories, 1975. ISBN 90 6196
112 2.

J. DE VRIES, Topological transformation groups 1 A categorical ap-
proach, 1975. ISBN 90 6196 113 0.

H.G.J. PIJLS, Locally convex algebras in spectral theory and eigen—
function expansions, 1976. ISBN 90 6196 114 9.

* MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT
MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

* MCT

MCT

67

68

69

70

71

72

73

74

75

76
77

78

79

80

81

82

83

84

85

86

87

88

H.A. LAUWERIER, Asymptotic analysis, part 2.
ISBN 90 6196 119 X.

P.P.N. DE GROEN, Singularly perturbed differential operators of
second order, 1976. ISBN 90 6196 120 3.

J.K. LENSTRA, Sequencing by enumerative methods, 1977.
ISBN 90 6196 125 4.

W.P. DE ROEVER JR., Recursive program schemes: semantics and proof
theory, 1976. ISBN 9C 6196 127 O.

J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976.
ISBN 90 6196 129 7.

J.K.M. JANSEN, Simple periodic and nowperiodic Lamé functions and
their applications in the theory of conical waveguides,1977.
ISBN 90 6196 130 O.

D.M.R. LEIVANT, Absoluteness of intuittionistic logic, 1979,
ISBN 90 6196 122 x.

H.J.J. TE RIELE, A theoretical and computational study of general-
Zzed aliquot sequences, 1976. ISBN 90 6196 131 9.

A.E. BROUWER, Treelike spaces and related connected topological
spaces, 1977. ISBN 90 6196 132 7.

M. REM, Associons and the closure statement, 1976. ISBN 90 6196 135 1.

W.C.M. KALLENBERG, Asymptotic optimality of Llikelihood ratio tests in
exponential families, 1977 ISBN 90 6196 134 3,

E. DE JONGE, A.C.M. VAN ROOLJ, Introduction to Riesz spaces, 1977.
ISBN 90 6196 133 5.

M.C.A. VAN ZUIJLEN, Empirical distributions and rankstatistics, 1977.
ISBN 90 6196 145 9.

P.W. HEMKER, A numerical study of stiff two-point boundary problems,
1977. ISBN 90 6196 146 7.

K.R. APT & J.W. DE BAKKER (Eds), Foundations of computer science II,
part 1, 1976. ISBN 90 6196 140 8.

K.R. APT & J.W. DE BAKKER (Eds), Foundations of computer science II,
part 2, 1976. ISBN 90 6196 141 6.

L.S. VAN BENTEM JUTTING, Checking Landau's "Grundlagen' in the
AUTOMATH system, 1979 ISBN 90 6196 147 5.

H.L.L. BUSARD, The translation of the elements of Euclid from the
Avabic into Latin by Hermann of Carinthia (?) books vii-xii, 1977,
ISBN 90 6196 148 3.

J. VAN MILL, Supercompactness and Wallman spaces, 1977.
ISBN 90 6196 151 3.

S.G. VAN DER MEULEN & M. VELDHORST, Torriz I, 1978.
ISBN 90 6196 152 1.

S.G. VAN DER MEULEN & M. VELDHORST, Torrix II,
ISBN 90 6196 153 x.

A, SCHRIJVER, Matroids and linking systems, 1977.
ISBN 90 6196 154 8.

MCT

* MCT

MCT

MCT

MCT

MCT

MCT

* MCT

* MCT

MCT

MCT

MCT

MCT

MCT

MCT

* MCT

MCT

MCT

MCT

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

J.W. DE ROEVER, Complex Fourier tramsformation and analytic
functionals with unbounded carriers, 1978.
ISBN 90 6196 155 6.

L.P.J. GROENEWEGEN, Characterization of optimal strategies in dy-
namic games, . ISBN 90 6196 156 4.

J.M. GEYSEL, Transcendence in fields of positive characteristic,
1979. ISBN 90 6196 157 2.

P.J. WEEDA, Finite generalized Markov programming,1979,
I5BN 90 6196 158 O.

H.C. TIoMS (ed.) & J. WESSELS (ed.), Markov decision theory, 1977.
ISBN 90 6196 160 2.

A, BIJLSMA, Stmultaneous approximations in transcendental number
theory, 1978 . ISBN 90 6196 162 9.

K.M. VAN HEE, Bayesian control of Markov chains, 1978.
ISBN 90 6196 163 7.

P.M.B. VITANYI, Lindenmayer systems: structure, languages, and
growth functions, . ISBN 90 6196 164 5.

A. FEDERGRUEN, Markovian control problems; functional equations
and algorithms, . ISBN 90 6196 165 3.

R. GEEL, Singular perturbations of hyperbolic type, 1978,
ISBN 90 6196 166 1

J.K. LENSTRA, A.H.G. RINNOOY KAN & P. VAN EMDE Boas, Interfaces
between computer science and operations research, 1978,
ISBN 90 61% 170 X.

P.C. BAAYEN, D. VAN DULST & J. QOSTERHOFF (Eds), Proceedings bicenten—
nial congress of the Wiskundig Genootschap, part 1,1979,
ISBN 90 6196 168 8.

P.C. BAAYEN, D. VAN DULST & J. QOSTERHOFF (Eds), Proceedings bicenten—
nial congress of the Wiskundig Gewnootschap, part 2,1979,
ISBN S0 9196 169 6.

D. VAN DULST, Reflexive and superveflexive Banach spaces, 1978.
ISBN 90 6196 171 8.

K. VAN HARN, Classifying infinitely divisible distributions by
functional equations, 1978 . ISBN 90 6196 172 6.

J.M. VAN WOUWE, Go-spaces and generalizations of metrizability,1979.
ISBN 90 6196 173 4.

R. HELMERS, Edgeworth expansions for linear combinations of order
statistics, . ISBN 90 6196 174 2.

A. SCHRIJVER (Ed.), Packing and covering in combinatorics, 1979.
ISEN 90 6196 180 7.

C. DEN HEIJER, The numerical solution of nonlinear operator
equations by imbedding methods, 1979. ISBN 90 6196 175 0.

J.W., DE BAKKER & J. VAN LEEUWEN (Eds), Foundations of computer
setence III, part 1, 1979, ISBN 90 6196 176 9.

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

MCT

109 J.W. DE BAKKER & J. VAN LEEUWEN (Eds), Foundations of computer
science III, part 2, 1979. ISBN 90 6196 177 7.

110 J.C. VAN VLIET, ALGOL 68 transput, part I: Fistorical Review and
Discussion of the Implementation Model, 1979. ISBN 90 6196 178 5.

111 J.C. VAN VLIET, ALGOL 68 transput, part II: An implementation model,
1979. ISBN 30 6196 179 3.

112 H.C.P, BERBEE, Random walks with stationary increments and Renewal
theory, 1979. ISBN 90 6196 182 3.

113 T.A.B. SNIJDERS, Asymptotic optimality theory for testing problems
with restricted alternatives, 1979. ISBN 90 6196 183 1.

114 A.J.E.M. JANSSEN, Application of the Wigner distribution to harmonic
analysis of generalized stochastic processes, 1979.
ISBN 90 6196 184 x.

115 P.C. BAAYEN & J. VAN MILL (Eds), Topological Structures II, part 1,
1979. ISBN 90 6196 185 5.

116 P.C. BAAYEN & J. VAN MILL (Eds), Topological Structures II, part 2,
1979. ISBN 90 6196 186 6.

117 P.J.M. KALLENBERG, Branching processes with continuous state space,
1979. ISBN 90 6196 188 2.

118 P. GROENEBOOM, Large deviations and Asymptotic efficiencies, 1980.
ISBN 90 6196 190 4.

119 F. PETERS, Sparse matrices and substructures, 1980. ISBN 90 6196
192 0.

120 W.P.M. DE RUYTER, On the Asymptotic Analysis of Large Scale Ocean
Circulation, 1980. ISBN 90 6196 192 9.

121 W.H. HAEMERS, Eigenvalue techniques in design and graph theory,
1980, ISBN 90 6196 194 7.

122 J.C.P. BUS, Numerical solution of systems of monlinear equations,
1980. ISBN 90 6196 195 5.

123 I. YUHASZ, Cardinal functions intopology - ten years later, 1980.
ISBN 90 6196 196 3,

AN ASTERISK BEFORE THE NUMBER MEANS "TO APPEAR"

