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PREFACE

The application of the theory of matrices and eigenvalues to combina-
torics is certainly not new. In a certain sense the study of the eigenvalues
of the adjacency matrix of a graph even became a subject of its own, see for
instance [B51, [c12], [c13]1, [H14] and [S2]. Also in the theory of designs,
matrix and eigenvalue methods have often been used successfully; see for
instance [C6], [c9], [H17] and [R3]. In the present monograph (which is a
slightly revised version of the author's thesis) the starting point is a
theorem concerning the eigenvalues of partitioned matrices. Applications of
this theorem and some known matrix theorems to matrices associated to graphs
or designs lead to new results, and new proofs of known results. These con-
cern inequalities of various types, including conclusions for the case of
equality. In addition we obtain guiding-principles for constructing strongly
regular graphs or 2-designs. Let us give some more details.

Our theorem (Theorem 1.2.3) about eigenvalues and partitionings of

matrices, which was announced in [H1], reads as follows:

THEOREM. Let A be a complete hermitian n x n matrix, partitioned into m?
block matrices, such that all diagonal block matrices are square. Let B be

the m x m matrix whose i,j~th entry equals the average row sum of the i,j-th

block matrixz of A for i,j = 1,...,m. Then the eigenvalues Al(A) E- An(A)
WAMH%QWMM%Mmzu.MﬂmﬁBMWW

Ai(A) 2 Ai(B) = An—m+i(A) for i =1,...,m.
Moreover, if for some integer k, 0 < k < m, A (B) = A, (B) for i = 1,...,k

and Ai(B) = An_m+i(A) for i = k+l,...,m, then all the block matrices of A

have constant row and column sums.

The weaker inequalities Al(A) > Ai(B) > An(A) were already observed by
C.C. Sims {unpublished), and have been applied successfully by BESTENES &
HIGMAN [H10], pAYNE [P4], [P6] and others. They are usually applied under
the name Higman-Sims technique. Many proofs by means of this Higman-Sims
technigue can be shortened by use of our generalization. But, what is more

important, our theorem leads to new results, which we shall indicate below.



Suppose G is a graph on n vertices, whose (0,1)~adjacency matrix has
eigenvalues Al(G) 2 L., 02 An(G)° DELSARTE [Dl] proved that, for strongly
regular G, the size of any coclique (independent set) cannot be larger than
- nAn(G) /(AI(G) —An(G)). A.J. Hoffman (unpublished) proved that this bound
holds for any regular graph G. Using the above theorem we prove that an

upper bound for the size of a coclique in any graph G is provided by
-0, (@A (G) /(@5 -A, (G _(G))
1 n min "1 n !

where dmin denotes the smallest degree in G. This generalizes Hoffman's
bound, since in case of regularity xl(G) = dmin holds. More generally, by
use of the same methods we find bounds for the size of an induced subgraph
of G in terms of the average degree of the subgraph (Theorem 2.1.2). Apart
from the inequalities of Delsarte and Hoffman we also find inequalities of
Bumiller, De Clerck and Payne as corollaries of our result.

By applying the generalization of the Higman-Sims technique (with
m = 4) to the adjacency matrix of the incidence graph of a design, we obtain
bounds for the sizes of a subdesign in terms of the singular values of the
incidence matrix (Theorem 3.1.1). For nice designs, such as 2-designs and
partial geometries, this result becomes easy to apply, since then the sin-
gular values are expressible in the design parameters (for symmetric 2-
designs the inequality also appeared in [H4]). Thanks to the second part of
our theorem certain conclusions may be drawn easily for the case that the
bounds are attained, for the graph case as well as for the design case.

We also prove results concerning the intersection numbers of designs,
such as the inequalities of AGRAWAL [Al] (Theorem 3.2.1) and the results of
BEKER & HAEMERS [B2] about 2~ (v,k,A) designs with an intersection number
k=X(v=k) /(k=1).

HOFFMAN [H13] proved that the chromatic number y(G) of a graph G
satisfies y(G) = 1 »Al(G),/An(G), To achieve this, Hoffman first proves a
generalization of the inequalities of Aronszajn concerning eigenvalues of
partitioned matrices. In Section 1.3 we give a new proof of these inequali-
ties using our generalization of the Higman-~Sims technique. In Section 2.2
the application of these inequalities yields a generalization of Hoffman's
bound (Theorem 2.2.1). For non-trivial strongly regular graphs this leads
to y(G) 2 max{1 ~X1(G) /Xn(G) s 1 ~An(G) /AZ(G)}, In Chapter 4 we use these
bounds, and many other results from the previous chapters, in orxder to

determine all 4-~colourable strongly regular graphs. This chapter is also



meant to illustrate some applications of the results and techniques obtained
in the first three chapters.

Chapter 5 is in the same spirit, but rather independent from the other
ones. The main result is the inequality of HAEMERS & ROOS [H3]: t < 53 if
s # 1 for a generalized hexagon of order (s,t), together with some addition-
al regularity for the case of equality. This is proved by rather elementary
eigenvalue methods. The same technique applied to generalized quadrangles

of order (s,t) yields the inequality of HIGMAN [H11]: t < 52

if s # 1, the
result of BOSE [B7] for the case of equality and a theorem of CAMERON,
GOETHALS & SEIDEL [C5] about pseudo~geometric graphs.

Using eigenvalue methods we obtain guiding-principles for the con-
struction of designs and graphs. In Section 6.1 we construct a 2 - (56,12,3)
design, for which the framework is provided by Theorem 3.2.4. This design
is embeddable in a symmetric 2 - (71,15,3) design. By modifying this design
we obtain eight non-isomorphic 2 - (71,15,3) designs. All these designs seem
to be new (the construction is also published in [B2]). In Section 6.2 some
ideas for the construction of strongly regular graphs are described. We
construct strongly regular graphs with parameter sets

2n+1
2, q+1,q%4+q,q-1,q+1) and (2°P+220%1 220,00 4 o0 5 0%y for prime power g

(q3+q
and positive integer n. Strongly regular graphs with the first parameter
set are known; however, our construction yields graphs which are not iso-
morphic to the known ones. The second family seems to be new. Special at-
tention is given to strongly regular graphs with parameter set (40,12,2,4).
Several such graphs are constructed with the help of a computer.

In the first appendix we recall some basic concepts and results from
the theory of graphs and designs (including finite geometries). The second
appendix exhibits explicitly some of the designs and graphs constructed

earlier.



CHAPTER I

MATRICES AND EIGENVALUES

1.1. INTRODUCTION

In this chapter we shall derive some results about eigenvalues of
matrices. They provide the main tools for our investigations. We shall
assume familiarity with the basic concepts and results from the theory of
matrices and eigenvalues. Some general references are [M3], [N1], [ws].

Let A be a square complex matrix of size n. The hermitian transpose
of A will be denoted by A*. Suppose A has n (not necessarily distinct)
real eigenvalues, which for instance is the case if A is hermitian (i.e.

A = A*). Then we shall denote these eigenvalues by

Al(A) 2 ... 2 An(A) .

1f denoted by subscripted variables, eigenvectors will always be orxdered
according to the ordering of their eigenvalues. Vectors are always column

vectors. The linear span of a set of vectors Ugreeesiy is denoted by
< Upreeso >. A basic result, which is important to our purposes, is

Rayley's principle (see [N1], [wW5]).

1.1.1. RESULT. Let A be a hermitian matrix of size n. For some i, 0 £ i < n,

let Ugseoorly be an orthonormal set of eigenvectors of A for Al(A),v..,Ai(A).

*
. U Au .
i. Ai(A) < —;;:f fbr u e < ul,n..,ui >, us# 0, L5 0;

equality holds 1ff u is an eigenvector of A for Ay (a).

*
u Au L
Py > & 3 .
ii. Ai+1(A) > u*u for u e < ul,,”,ui >, u# 0, L# n;

equality holds iff u is an eigenvector of A for X, . (A).

i+l

Foxr the multiplicity of an eigenvalue we shall always take the geo-

metric one, that is, the maximal number of linearly independent eigenvectors



(to be honest, this agreement is only of influence to the proof of the next
lemma, because throughout the remainder of this monograph we shall only
consider eigenvalues of diagonalizable matrices). Now we shall prove some

easy and well known, but nevertheless useful lemmas.

x m, matrices. Put

1.1.2. LEMMA. Let M" and N be complex my 2

0 N

M 0

Then the following are equivalent.

i. A # 0 Zs an eigenvalue of A of multiplicity £;
id. =~k # 0 Zs an etgenvalue of A of multiplicity £;
iii. k25£0 18 an etgenvalue of MN of multiplicity £;
iv. A2¢13 18 an etgenvalue of NM of multiplicity £.
PROOF .

1. (i) === (ii): let AU = MU for some matrix U of rank £. Write

U N i u,
U = ; and define U := g
U —02

where Ui has m rows for i = 1,2. Then NU2 = AUl and MU1 = AU,. This implies

2
AE = ~kﬁ; Since rank U = rank 5, the first equivalence is proved.
2. {iii) == (iv): let MNU' = A2U' for some matrix U' of rank £. Then
NM(NU®) = A2NUE, and rank NU' = rank U', since

rank AZU‘ = rank MNU' < rank U° ,
and X # 0. This proves the second equivalence.
3. (i) &= (iii): let U and U be as in case 1. Put n := ml-fmz, Then

o~ 2 ~

a’u 91 =% W ’
and rank [U U] = 2f if A # 0. On the other hand the multiplicity of an
eigenvalue Az # 0 of Az equals

2 2
n = rank(A” -A"I) = n - rank ((A~AL) (A +AI)) <

< n -~ (rank(A - 2\I) + rank(A +AI) -n) = 2f . 0



The singular values of a complex matrix N, are the positive eigenvalues of

By the above lemma we see that they are the same as the square roots of the

. *
non-zero eigenvalues of NN .

1.1.3. LEMMA. Let

be a complex matrizx. lf‘All s non-singular, and rank A, = rank A, then

11

~ -1
Bop = Bop Byp By

PROQF. For i = 1,2, let ai 4 denote the j-th column of AiZ' From

* * %
rank A = rank [All A21] it follows

a A
1,3 11
30 a,
22,3 Aoy
-1
for some vector u. But if All is non-singular, then u = All a, 5 Hence
~1 . !
aZ,j =B, A al,j' which proves the lemma. 0

The identity matrix of size n will be denoted by In or L. The matrix
with all entries equal to cone by J; a column vector of J is denoted by J;
Jn is a square J of size n; the symbol ® is used for the Kronecker product
of matrices.

As a last result in this section we observe that, if X := Irl ® Jm, then

Al(K) = ... = A (K} =m, An+1(K) =Ll = Amn(K) = 0 .

1.2. INTERLACING OF EIGENVALUES

Suppose A and B are square complex matrices of size n and m, respec-

tively (m < n}, having only real eigenvalues. If

Ai(A) > Ai(B) (a)

2 A .
n-m+i



for all i = 1,...,m, then we say that the eigenvalues of B interlace the

eigenvalues of A. If there exists an integer k, 0 < k < m, such that

it

Xi(A) = Ai(B) for i 1,....k

and

A () = Ai(B) for i

. +ly00e
n-m+i kL, o

then the interlacing will be called tZght. Our first and fundamental case

of interlacing eigenvalues is due to R. Courant {see [Ci1], p. 28).

1.2.1. THEOREM. Let S be a complex n x m matrix such that s's = I, Leta
be a hermitian matrix of size n. Define B := S*AS, and let VireeeaVy be an

orthonormal set of eilgenvectors of B. Then

i. the eigenvalues of B interlace the eilgenvalues of A;
ii. if Ai(B) € {Ai(A) 'An-m+i

exists an eilgenvector v of B for A (B), such that Sv is an eigen=—

(8)} for some i ¢ {1,...,m}, then there

vector of A for Ai(B);
iid. if, for some & € {0,...,m}, A () =2, (B) forall i=1,....4,
then sv, is an eigenvector of A for Ai(A), for i = 1,...,%;

iv. 1f the interlacing is tight, then SB = AS.

PROCOF. Let Ugresert be an orthonormal set of eigenvectors of A. For any i,

1 £ 41 < m, take

o * * L o~
Vi€ < V...,V > 0< s ul,..u,s u > vy # 0 .
~ N
Then Svi € < ul,.,.,ui_l >7, hence by 1.1.1
ek ew o~ e
ViS ASVi vtii
AL (n) = = 2 A, (B) .
i ok ke B i
v,8 Sv, v,V,
i i ii
Thus also
e = B < - = e .
MY = Ay e OB S A gy (R *emes B

This proves (i).

If Ai(B) = Ai(A), then ;i and S;i are eigenvectors of B and A respectively
for the eigenvalue Ai(B) = Xi(A), This, together with the same result
applied to -~B and ~A yields (ii).



We shall prove (iii) by induction on &. If & = 0, there is nothing to
prove. Suppose £ > 0. We have

*

*
v_S ASv
X, (A) = A, (B) = viBv, = —& L
2 2 22 V*S*Sv
2 L
On the other hand, Sv£ € < Svl,...,SvR_1 >l, and by the induction hypothesis
Svl,...,Sv‘Q_1 are orthonormal eigenvectors of A for AI(A),...,AR_l(A). Now

1.1.1.ii yields that Sv, is an eigenvector of A for Al(A). This proves

L
(iii) .
Let the interlacing be tight. By applying (iii) to A with £ = k and to ~A

with 2 = m -k, we find that Svl,,..,Svm is an orthonormal set of eigenvec-

tors of A for Al(B),.,.,Am(B). Write V := [v1 e vm] and
D := diag(Al(B),..,,Am(B)). Then ASV = SVD, and BV = VD. Hence
ASV = SBV .
Because V is non-singular, (iv) has now been proved. ]

A direct consequence of the above theorem is the following theorem.
This result is known under the name Cauchy inequalities, see [H7], [M2],
[ws].

1.2.2. THEOREM. Suppose

AL B
A* A
12 Pz

A =

is a hermitian matrix.

i. The eigenvalues of Ay interlace the etgenvalues of A.
ii. If the interlacing is tight, then A, = 0.
PROOF. Let m be the size of Ayy- Define S := [Im 0]*, and apply 1.2.1. ]

Another consequence of 1.2.1 is the following result which was
announced in [H1] (see also [H2]). This result will often be used in the

forthcoming sections.



1.2.3. THEOREM. Let A be a hermitian matrix partitioned as follows

Biy oeee A
A= . . .

Aml oae Amm

such that Ay 18 square for i = 1,...,m. Let bij be the average row sum of

Aij’ for 1,3 = 1,...,m. Define the m x m matrix B := (bij).
i The eigenvalues of B interlace the eigenvalues of A.
ii. If the interlacing is tight, then Aij has constant row and column

sums for i,j = 1,...,m.
iii. If, for i,i = 1,...,m, Aij has constant row and column sums, then
any eigenvalue of B 1s also an eigenvalue of A with not smaller

a multiplicity.

PROOF. Let ni be the size of Aiia Define

... 1 0 ... 0 ... 0 ... d\
0 ... 0Q 1 ... ... 0 ...0
¥ 0 ... 0 0 ...0 ... 0 ...0

.
]
B
B
.
.
.
.

s
B
s
s
B
s

1

~ e sl ins
D:=diag(vn,,;...,Yn ), and 8 :=SD Then S*S =1 and § § = D2e We easily
1 m

see that (g*AE)ij equals the sum of the entries of Ai.ﬁ Hence

By 1.2.1.i we know that the eigenvalues of S*AS interlace the eigenvalues

*
of A. But B has the same eigenvalues as S AS, since

1 1 1

% vk o -
S AS =D "S5 ASD = D BD .

This proves (i).

It is easily checked that AS = S(DulBD) reflects that Aij has constant row

sums for all i,j=1,...,m. Hence 1;2.1uiv implies (ii).
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i

: -1
On the other hand, if AS SD "BD and BU = Ai(B)U for some matrix U and

integer i, then A(SDhiU)

Ai(B)SD_lU, and rank U = rank SDulU. This proves
(iii). 0

As a special case of the above theorem we have that

Al (a) = Ai(B) > An(A) ’

for i = 1,...,m. These inequalities are well known and usually applied
under the name Higman-Sims technique, see [H10], [P4]. We shall also use
the name Higmans-Sims technique if we apply the more general result 1.2.3.
Also 1.2.3.iii is well known, see for instance [C13], [H9] (note that this
result remains valid for non-hermitian A). We see that 1.2.3.ii gives a
sufficient, and that 1.2.3.iii gives a necessary condition for the block
matrices of A to have constant row and column sums. However, neither of
these conditions is both necessary and sufficient. This is illustrated by

the following partitioned matrices:

0 0 |-1 1 0 0 |-t 1

A = ‘O 0 1 -1 , At = 0 0]-1 1 .
-1 1 -1 -1 0 0
1 -1 0 0 1 1 0 0

For both A and A' the eigenvalues are 2,0,0,-2, and the average row sums of
the block matrices are given by the entries of B = 8 8]. The block
matrices of A have constant row sums, whilst the interlacing is not tight.
The row sums of the block matrices of A' are not constant, whilst the

eigenvalues of B are also eigenvalues of A.

1.3. MORE EIGENVALUE INEQUALITIES

In this section we shall use interlacing of eigenvalues in order to
prove some known inequalities and equalities, which we shall use in later

sections. The first result is due to WEYL [W2] (see also [W5]).
1.3.1. THEOREM. Let A, and A, be hermitian matrices of size m. Then
Ai_j(Al) + A1+j(A2) > ki(Al-FAz) = Xi+j(A1) + Xm_j(Az) .

for i=1,...,m; 0 < 3 < min{i~1,m-i}.
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PROQF. Define

A, ~A, . (A)I 0 [i
A= | b , s :=%v/2 0 T
i 0 a, Al+j(A2)I [}m
Then
Mg By A AT = ARy = hy L (B)T) = 0 .

Hence Ai(A) = Ai+1(A) = 0. On the other hand

*
S AS = lz(A1 + A2 - (Xi_j(Al) +A1+j(A2))I) R
With 1.2.1 we now have
*
Ai(Al-fA2) - Ai_j(Al) - A1+j(A2) = in(s AS) = ZAi(A) =0 .

If we replace A, and A, by -~A

1 5 and -A,, we get the second inequality. O

1
The next theorem is due to HOFFMAN [H13].

1.3.2. THEOREM. Let A be a hermitian matrix of size n, partitioned as
follows

i1 0 im

A = . . ;
A cos A
ml mm

where AL 18 a square matrix of size g, for i = 1,...,m. Let Jgeeeendy be

integers such that 1 < iy €y for i=1,...,m, Then

. m-1 m
Aj1+eha+jm(A) + 121 A (a) 2 121 Aji(Aii) >
n
= Aj1+.u,+jm~m+1(A) * i=n§m+2 Ajar .

PROOF. Let ul"”“’un be an orthonormal set of eigenvectors of A. Let

uil,ew,ui be an orthonormal set of eigenvectors of Aii for i = 1,...,m.

n,
kR

. -~ o~ 3 *
Put k o= j1 +,QB-+jm. Choose a vector uy = [u:k . umk] # 0, such that



12

~
U € < Uppeeauy g >,

and

~

€ < U,, ;.00 U, > for i =1,..

u, .
ik il 1]i

oy .

It follows from dimension considerations that we can always do so. Now

define
w, ‘lluikﬂ ,
and
L3 ifw #£0
w. ik i !
g, :={ *
ik
ui. ifw, =0,
I3

for i = 1,...,m. Furthermore put

*
W o= (wl,...,wm) ’
and
1k 0 “o 0
0 a cen 0
S := 2k .
‘O 0 hae %m&

Then we have

* ~ *
SS=1, Sw=u , and (S AS)ii =

k

By 1.1.1.1i and the choice of ﬁik'

*

Uik

*
> P =
(S AS)ii P Aj (Aii) for i l1see.,m.

i

Hence

m
(%) ) Ai(s*As) = trace S'AS 2
i=1 i

Il 18

A

On the other hand, Sw = 3, s¥s = I and 1.1.1 yield

.. G,
ii Tik

the last formula gives

for i=1,...,m.
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* ok Au
(%) A, (s"as) < LEAS u’: LW
W w u, u

Applying 1.2.1 gives

m-1 N m-1
(k%) 'z A;(57AS) 5 ‘2 A ) .

i=1 i=1
Combining (%), (*%) and (**%) yields the first inequality of our theorem.
Again, the second inequality follows by substituting =-2A for A in the first

one. 0

If the matrix A of the above theorem is positive semi-definite and

m = 2, then we have

AL (All) + A, (A (a) .

) = AL L
31 i, 22 31+32—1
These are the inequalities of ARONSZAJN [A3] (see also [H7]).

The following consequence of 1.3.2 will turn out to be a useful tool

in computations with eigenvalues.

1.3.3. THEOREM. Suppose

Ay By

A, A
12 P2

A =

s hermitian of size n. Suppose A has just two distinct eigenvalues, that
78,

AI(A) = oeo = Ae(B) >R (a) = ... = An(A)

f+1

for some £, 1 < £ < n. Let n; and n, be the sizes of A, and A, respective-
ly. Then

Apag) = A () + A () - Ae_iaq Byg)

for max{1,f+1-n,} < i < min{f,n,} ,

Aj(By)) = A @) for 1= i< fHon,

Ai(Azz) = xn(A) for £ < i < n, -
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PROOF. By the Cauchy inequalities (1.2.2.i) we have

i(Bypd A, 4y

A, (@) 2 A
* 1

This proves the result for 1 < i < f+1-n1, and for £ < i < n,-.

For the remaining values of i, 1.3.2 gives

(a) +)\1(A) > A (A“) +}\i(A22) > )\f(A) +An(A) ,

Af+1 f~i+l1

which proves the required result.
It is an easy exercise to give a direct proof of the above theorem,

The proof then could go analogously to the one of Theorem 5.1 of [C5],

where a similar result is stated.
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CHAPTER 2

INEQUALITIES FOR GRAPHS

2.1. INDUCED SUBGRAPHS

In this section we shall derive inequalities for induced subgraphs of

graphs, using the results of section 1.2 on interlacing of eigenvalues.

Let G be a graph on n vertices. The eigenvalues of G are the eigen-
values of its (0,1)-adjacency matrix; we denote them by Xl(G) Z .. 2 )\n(G)°
Let G1 be an induced subgraph of G. Then by 1.2.2 (Cauchy inequalities) the
eigenvalues of G1 interlace the eigenvalues of G. In particular, if G1 is a

coclique of size a, then XQ(G) = Aa(Gl) = 0, and An (G) < Al(Gl) = 0.

-0+
Hence, we have the following result, which was first observed by CVETKOVIC

[c12] (see also [ci3]).

2.1.1. THEOREM. The size of a coclique of a graph G cannot exceed the number

of nonmnegative [nonpositivel] eigenvalues of G.

Now we shall derive inequalities for induced subgraphs using the Higman-
sims technique (1.2.3). Suppose G is a graph on n (n=2) vertices of average
degree d. Let the vertex set of G be partitioned into two non-empty sets,
and let G1 and G2 be the subgraphs induced by these two sets. For 1 = 1,2,
let n, be the number of vertices of Gi' let di be the average degree of Gi'
and let di be the average of the degrees in G over the vertices of Gi' Now

we can state the following theorem.

2.1.2. THEOREM. For i = 1,2

~2

didn - dini
1. Al(G)AZ(G') > -—'-n—":—;:-'—-’ > )\1(G)>\n(G) 5
ii. 1f equality holds on one of the sides, then G, and G, are

regular, and also the degrees in G are constant over the

vertices of Gy and G,
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PROOF. If G is complete we easily see that the theorem is correct. So let

us assume that G is not complete. Let Ail' A22 and
A A
A = 11 12
Ay a
12 22

be the adjacency matrices of Gi’ G2, and G, respectively. Put

Then the entries of B are the average row sums of the block matrices of A.

By 1.2.3.1i we have

Al(A) = Al(B) P AZ(A) > AZ(B) ’ —An(A) = —AZ(B)
Because trace A = 0, we have An(A) < 0. From 2.1.1 we know that AZ(A) 2 0,
since otherwise G would be complete. Trace B = 0 implies Al(B) 2 0. Hence

(%) Al(A)AZ(A) 2 Xl(B)AZ(B) 2 Kl(A)Kn(A) .
On the other hand we know

(%) A (B)A,(B) = det B = d,d, - d,(@,-d
We quickly see

dn = dlnl + d2n2 p nz(d2-—d2) = nl(dl'-d

This yields

d.d, - dl(dzu-d

~2
195 = (dldn-dlnl) /(n—nl) .

2)
With (*) and (**) this proves (i).

If equality holds on one of the sides, the interlacing must have been

tight. Hence 1.2.3.1ii gives (ii).

Now let us look at the consequences of the above inequalities for
some special cases. The size of the largest coclique and clique of G are

denoted by o(G) and w(G), respeciively.
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2.1.3. THEOREM. If‘dmin and dmax are the smallest and the largest degree in
the graph G, respectively, then

. 2
i. a(G)(dmin - Al(G)Kn(G)) = -'nll(G)Xn(G) :

L s 2
ii. w(G) (dn - dmax + Al(G)Az(G)) < n(d + AI(G)Xz(G))

PROOF. (i). Substitute a(G) = n,, d, = 0 and 51 > d . in the right hand

inequality of 2.1.2.1.

(ii). Substitute w(G) = n,, d, = w(G) -1 and d <d_ in the left hand

J | 1
inequality of 2.1.2.1. 0

2.1.4. THEOREM. If G 78 a regular graph on n = 2 vertices of degree 4, then

i. any tnduced subgraph G, of Gwith ny (0 < n, < n) vertices and
average degree 4, satisfies
ndl -n,d
)\Z(G) = —“';)—-;——I'_IT = }\n(G) N
ii. a(@ (@=-4 (6) = -nx (6) ,
iid. m(G)(n-—d~+A2(G)) < n(1 +A2(G)) .
PROOF. If G is regular then A,(G) =d = E = E =d , =d . Now
e 1 1 2 min max
2.1.2.i, 2.1.3.1 and 2.1.3.1i1 give the required results. 0

The inequality 2.1.4.ii is an unpublished result of A.J. Hoffman
(see [C13], [H2], [L2]). In fact, the inequalities (ii)} and (iii) of 2.1.4
(just as the left and the right hand inequality of 2.1.4.i) are equivalent,
because either one can be obtained from the other by using w(é) = o (G),

xl(é) =n -2 (G -1 and Ai(é) = (G) -1 for i = 2,...,n (G is

n-i+2
the complement of G).

Foxr the graph G with its subgraphs G1 and Gy, we define D(G,Gy)} to be
the incidence structure whose points and blocks are the vertices of G1 and
GZ’ respectively, a point and a block being incident if the corresponding
vertices are adjacent. If we have equality in any of the inequalities of

2.1.2-2.1.4, then 2.1.2.ii yields that D(G,Gl) is a l-design, possibly
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degenerate. Now let G be strongly regular. Then by use of 1.2.3.iii it is
not difficult to show that equality holds in 2.1.4 iff D(G,Gl) is a l-design.
If G1 is a coclique or a clique we have a criterion for D(G,Gl) to be a 2-

design.

2.1.5. THEOREM. If G 7s a strongly regular graph on n vertices of degree d,
then

i. a(G) <1 + (n-d-l)/()\z(G)+1) 5
ii. w(G <1 -4d/A (@),
iii. if equality holds in (i) or (ii), and G, is a coclique of size

a(G), or a clique of size w(G), respectively, then D(G,G;) i3 a

2-design, possibly degenerate.

PROOF. If G is strongly regular, we know (see [C5], [S4] or Appendix I)

(dt~A2(G))(d-—An(G)) = n(d-kXZ(G)kn(G)) .

From this it follows in a straightforward way that (i) and (ii) are equi-
valent to 2.1.4.ii and 2.1.4.iii.

From the definition of a strongly regular graph we know that any two points
of D(G,Gl) are incident with a constant number of blocks of D(G,Gl).
Furthermore, equality in (i) or (ii) implies that D(G,Gl) is a l-design, so

in this case D(G,Gl) is then a 2-design, possibly degenerate. ]

The theorems 2.1.5 and 2.1.4 for strongly regular graphs are known.
They are direct consequences of the linear programming bound of DELSARTE
[D1] (see also [H2]). They were also proved by BUMILLER [B9].

Applying 2.1.4.1i to the point graph of a partial geometry (see Appen-
dix I, or [B6], [T1]) gives the following result of DE CLERCK [C7] (see
also [P3] for the case o = 1, and [B9] for t = tl).

2.1.6. COROLLARY. Let P be a partial geometry with parameters (s,t,a),

containing a partial subgeometry P, with parameters (systy,a). Then

s=8s or s > sltl-fa -1 .
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PROOF. If G and Gl are the point graphs of P and Pl, respectively, then

(see Appendix I or [T1]) G, is an induced subgraph of G, and

1

s}
]

(s+1){st+a) /o , n, = (sl+1)(slt1+a)/a B

d

s(t+1) , d1 =sl(t1+1) . Az(G) = S =0 .

Substitution of these values in the left hand inequality of 2.1.4.i leads
to

(s-sl)(st+a)(slt +a-s~-1) <0 .

1

This proves the result. O

The next theorem gives a result in case both Hoffman's bound (2.1.4.ii)

and Cvetkovic¢'s bound (2.1.1) are tight.

2.1.7. THEOREM. Let G be a strongly regular graph on n vertices, which ig
not complete y-partite (i.e. Ay (G) > 0). Let £ (G) denote the multiplicity
of A (6. Then

i. al@) < £ (6) ,

ii. a(G) <1 + (n~)\1(G)—1)/()\2(G)+1) 5

iii. let G, be a coclique, whose size attains both of these bounds,
then G,, the subgraph of G induced by the remaining vertices, 18

strongly regular with eigenvalues

)\1(G2) = Al(G) - Al(G)a(G) / (n=-a(G)) , Xz(Gz) = KZ(G) '

A ) = )\Z(G) + )\n(G) .

n-a(c) (€2

PROOF. Theorem 2.1.1 implies (i); (ii) is the same as 2.1.5.1i. Let A and A2

be the adjacency matrices of G and G2, respectively. Then

)\1 (G) - A,(6)

A - m— ]
n

has just two distinct eigenvalues, AZ(G) and )\n(G) of multiplicity n-«fn(G)

and fn(G) = a(G), respectively. From 1.3.3 it follows that
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Al(G) - A2(G)

A = A e e S
A 2 o J

has three distinct eigenvalues, XZ(G), AZ(G) + An(G) and AZ(G) + An(G) +

+ a(G)(Al(G)-AZ(G)) / n, where the last eigenvalue is simple (has multipli-
city one).. On the other hand, 2.1.5.iii gives that 62 is regular of degree
Al(G)-Al(G)a(G) / (n-0(G)). This shows that A, and A, have a common basis
of eigenvectors, and that the simple eigenvalue of A2 belongs to the eigen-
vector j. Thus A, has the desired eigenvalues, and therefore (see [C6] or
Appendix I) G2 is strongly regular. 00

Using 1.1.3 it is not difficult to show that D(G,Gl) is a quasi-

symmetric 2~design (see Section 3.2), whose block graph is the complement

of Gy- This situation has been studied by SHRIKHANDE [S5].

In proving 2.1.2 we applied interlacing to the product of eigenvalues.
We did so in order to get reasonably nice formulas. However, for non-
regular graphs the inequality for the product carries less information than
the separate inequalities. For this reason, applying the Higman-Sims
technique directly to the adjacency matrix of a given non-regular graph,
may yield better results than 2.1.2 or 2.1.3. Also, if more is known about
the structure of G or Gy it is often possible to get better results by a
more detailed application of the Higman-~Sims technique. Let us illustrate

this by the following result.

2.1.8. THEOREM. Let G be a regular graph on n vertices of degree d, and let
the complete bipartite graph Ko be an induced subgraph of G. Let *, and

Koy Xy Z X, be the zeros of

{n ~Q,—m)x2 + (d8+dm-~28m)x -~ Lm(n -2d) .
Then

Az(G) 2 X and An{G) < x

1 2

PROOF. Without loss of generality, let G have adjacency matrix
¥

A2
= ]

A J 0 A12 K

)
Ba1 Par P
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where the diagonal block matrices are square of sizes %, m and Ny, respect~
ively. Using the Higman-Sims technique (1.2.3) we find that the eigenvalues
of ‘

4] m d-m

B := 2 .0 d -2
Qd_m md-JL d—2d+id‘2£m

Ay R 2

interlace the eigenvalues of A. Clearly >\1(B) = Al(A) = d and hence

>\2(13)/\3(B) = (det B) /d = 2m(2d ~n) /n2 ,

)\Z(B) + )\3(3) = (trace B) -~ d = (22m - 2d = md) /n2 .

This yields Xl = A2(B) and x2 = )\3(B) . Now the interlacing gives the

required result. 0

BUMILLER [B9] showed for strongly regular G and m = ! that

Lu+Ay(6)) £ -dA_(G) .
where u = d + AZ(G))\n(G) . Using
(d ~ )\2(G)) (d - Xn(G)) = n(d +>\2(G))\n(G))
one easily checks that this follows from the second inequality of the

above theorem. PAYNE [P6] proved that

(2 ~1)(m=-1) < 52 ’

if G is the point graph of a generalized quadrangle of order (s,t) (see
Chapter 5 or Appendix I). This follows after substituting

n= (s+l)(st+1) , d=s(t+1), A,(G) =s-1
in the first inequality of the above theorem. It should not be surprising

that for this case we obtain the same result as Payne, because he too uses

the Higman-Sims technique.
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2.2. CHROMATIC NUMBER

In this section we shall dexrive lower bounds for the chromatic number
of a graph in terms of its eigenvalues. The main tool is Hoffman's generali-
zation of Aronszajn's inequalities (1.3.2).

Let G be a non-void graph on n vertices. Then it follows immediately

that y(G), the chromatic number of G, satisfies
¥Y(G)a(G) =2 n .

Combining this with the upper bounds for «a(G) found in the previous sectiocn

we obtain lower bounds for v(G). For instance, 2.1.3 gives

2
y(G) =1 -dmin,/Xl(G)Xn(G) -

However, this is not best possible, since HOFFMAN [H13] (see also [B5],
[H2], [H14], [12]) showed that

Y@ 2 1-1,(6) /A (@) ,

which, if G is not regular, is better than the above bound. If G is regular,
then the two bounds coincide. Taking into account that a(G) is an integer

we get

. 2
Y(@) = n/[nr (@2 (G) /(A (@)1 (G) -a- ) I

which is occasionally better than Hoffman's bound.

HOFFMAN [H13] proves his lower bound by use of the inequalities 1.3.2.
We shall use the same technique, but in a more profound way, in order to

obtain a generalization of Hoffman's inequality.

2.2.1. THEOREM. Let G be a graph on n vertices with chromatic number y. Let
k be an integer satisfying O < k < n/vy. Then

i (Y=1)A,, (@) = -A @

n-k (y-1)

ii. (v =14, (8) < -A ) .

14k (y-1) ©

PROOF. Let A be the adjacency matrix of G. Then without loss of generality
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By oee AlY

A = . . .
A eee A
v1 YY

where Aii is the n, X n, all-zero matrix, for i = 1,...,v.
First, we assume that ni >k for i = 1,...,y. Let ul,...,un denote an
orthonormal set of eigenvectors of A. Define
k
Ri=a+ (@ -)@) ) uul
. n 1 . ii
i=1
*
Clearly the matrices ugu, and A have a common basis of eigenvectors. This

implies

(*) Ai(A) = Ak+i(A) for i = 1,e..,n~k .

For i = 1,...,Y, let Aii be the submatrix of A corresponding to Aii' Since

k

* *

uiui ig positive semi-definite of rank one, z uiui is positive semi-
i=1

definite of rank k. This yields that —Aii is positive semi-definite of

rank at most k, hence

ni__k(Aii} =0 for i=1,...,Y -

Now we apply the left hand inequality of 1.3.2 with ji = n,; -k. This gives

I
My B 121 A () 20 .

With (%) this yields

y-1

(%) Mt (y-1) B+ .Z () 20 .
i=1

Hence

(#%) (y=10A (B 2 —Annkw_l) (a) .

Now suppose that n, < k for some i € {1,...,v}. Let L ¢ {i,...,v} be such
that n, s k iff 1 € L. Let A' be the n' x n' submatrix of A, obtained by
discarding all block matrices A with i € L or j € L. Put 2 := [Ll. From

o

k < n/y it follows that £ < y, hence n' > 0. Now (*%x) gives
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(A') + A (a%) 20 .

(y=2-1)2 n'+k2-k (y~1)

1+k

Using n' +k& 2 n and the Cauchy inequalities (1.2.2) we have

Mtagek (y-1) B = A ey BN S A (yar) B
A1+k(A') = A1+k(A) )

Hence
(=2 =DA B+ A (B) 20

From k < n/y it follows that A (a)

> >
14k > An-k(y—i)(A)' hence A1+k(A) 2 0.

Thus

(y-1) (A) 2 ~A ) .

Max n-k (y-1) @

This proves (i}. The proof of (ii) proceeds analogously, but also follows

from the above by replacing A by =-A. {

We see that the second inequality of the above theorem for k = 0 is
Hoffman's bound. In Chapter 4 we shall need a sharpened version of this
inequality (see [H13]):

Y2
- iZO A4 (@) = a6,
which is in fact just formula (**) in the above proof with k = 0, and A
equal to minus the adjacency matrix of G.

If k > 0, the above inequalities are not really bounds for ¥y (G),
since y(G) also occurs in an index. However, this does not matter much if
we use these inequalities for estimating the chromatic number of a given
graph. It is also not difficult to derive proper bounds from these in-

equalities. The next results illustrate this.

2.2.2. COROLLARY. Let £ (G) denote the multiplicity of the eigenvalue
An(G)B Then

Y(G) = min{1+fn(G), 1—An(G) /)\2(G)} .

PROOF. Suppose Y = Y(G) < fn(G)a Then An(G) = An—y+1(G)" Now 2.2.1.i with

k = 1 gives (y ~1)A2(G) = «An(G). This proves the required result. 0
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For strongly regular graphs the above results lead to the following

theorem.

2.2.3. THEOREM. Let G be a strongly regular graph on n vertices. Suppose G
18 not the pentagon or a complete y-~partite graph. Then

Y(G) 2 max{1 =X (G) /A (G) s 1 -—)\n(G) /AZ(G)} .

PROOF. Due to the above results, it suffices to prove the following claim:

£.(G) = =2 (G) /Xr,(G) .

To achieve this, we distinguish three cases.

a) n £ 28. For this case it follows by straightforward checking that all
feasible parameter sets for strongly regular graphs which violate our claim

are those of the pentagon and the complete y~partite graphs.

b) A,(G) < 2. If G has a non-integral eigenvalue, then (see [cel, [C9] or
Appendix I) A,(G) = -~k +%/n, hence n < 25 and we are in case a. Otherwise
AZ(G) = 1. SEIDEL [S83] determined all strongly regular graphs with Ay(G) =1.
They satisfy n £ 28 or G is a ladder graph (disjoint union of edges), the
complement of a lattice graph (fnﬁ;:;)), or the complement of a triangular
graph (L(Km)). One easily verifies that these three families of graphs

satisfy our claim.

c) kz(G) 2 2 and n > 28. If G is imprimitive (G is complete y-partite or
the disjoint union of complete graphs), the result is obvious. So assume G
is primitive. Suppose the claim does not hold. Using Az(G) 2 2, Al(G) <n

and
fn(G)An(G) + (n-1 —fn(G))kz(G) + Al(G) = 0
we obtain
£2(6) < ~£_(G)A_(G) /A, (G) =
n n n 2
3
=n -1 - fn(G) + )\1((3) / Az(G) <3 n - fn(G) .

This yields

2 3 3
fn(G) + 3fn(G) < 50 +'2\j§-n .
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For primitive G the absolute bound (see [D2], [S4]) reads

2
n < %(fn(G) + an(G)) .
Hence *n < 2yegn, i.e. n < 24. This contradicts our assumption, and there-

fore the theorem is proved. 0

2.2.4. EXAMPLE. Let G be the Schlé&fli graph, which is drawn in Figure 1;
two black or two white vertices are adjacent iff they are on one line, a
black vertex is adjacent to a white one iff they are not on a line (see

[s3], [H2]). Then G is strongly regular, n = 27 and

Al(G) 16 , AZ(G) = .. = A7(G) =4, AS(G) = ... 0= X27(G) = =2,

]
i

it
i
o
-

1, A,,(G) = ... = A _(G)

A (@) 22 27

i
I

10, AZ(G) . =K21(G)

where G denotes the complement of G. From Figure 1 we see that
a(G) >3 and a(G) 2 6 .

The thin vertical lines partition G into six cliques, hence y(G) < 6. The
numbering gives a colouring of G with nine colours, so y(G) < 9. Using our
bounds it follows that equality holds in all these inequalities. Indeed,
by 2.1.4.ii or 2.1.5.i we have a(G) < 3; 2.1.1 yields o(G) £ 6; y(G) = 9

follows from Hoffman's bound, and y(é) > 6 follows from our last theorem.

\Pf |
LI L

FIGURE I

The chromatic number of strongly regular graphs will be the subject of

Chapter 4.
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CHAPTER 3

INEQUALITIES FOR DESIGNS

3.1. SUBDESIGNS

In this section we shall derive inequalities for subdesigns of de~-
signs.

Let D be a design with incidence matrix N. It is clear that we cannot
apply the Higman-Sims technique (1.2.3) to N, because N does not have to
be symmetric. Instead, we apply the Higman-Sims technique to

By definition the positive eigenvalues of A are the singular values of N.
Let 9, > o, 2 ... > 0 dencote these singular values. Then we can state the
main result of this section.

3.1.1. THEOREM. Let D be a 1 - (v,k,r) design with b blocks. Let D, be a
posstibly degenerate 1 - (vyrkyory) subdesign of D with b, blocks. Then
r) £ 02(v-v )(b~b,}

T2 1 1

i. (v —blk) (bkl -V

1 1

ii. if equality holds, then each point [block] off D, is incident

with a constant number of blocks [points] of D,.

PROOF. Let N1 and

be the incidence matrices of D1 and D, respectively. Put
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6] 0 N1 N2 0 0 ry r-r,
0 0 N3 N4 0 0 X r-x
A := % . and B := ’
N1 N3 0 0 k k—k1 0 0
NS ON 0 0 k 0
2 4 Y -y 0

where

X = bl(k—kl)/(v—vi) and y := vl(r~r1)/(b—b1) R
Then the entries of B are the average row sums of the block matrices of A.
By 1.1.2 we know

AjR) == A e B Kj(B) = - )‘S—j (B)

for i = 1,...,b+v, j

i

l1,...,4. We easily have

o, =X, (@) =1, (B) = Vrk .

1

From det B = rk(r1 —x)(k1 ~y) it now follows that
= am = e -
XZ(B) A3(B) V(r1 X)(kl y) .

Now 1.2.3.i gives

(r, ~x) (k, ~y) < A;(A) = 02 .

With blkl = vlr1 this yields (i).

If equality holds, then the interlacing must be tight. Thus 1.2.3.1i gives
(ii). 0

1.'LS

1 and k1 to be the average row

From the above proof it is clear that the result also holds if D
not a l-design, but then we have to take x
and column sums of Nl'

For many l-designs 02 is expressible in terms of the parameters of
the design. For instance, Ug =yr=-Aif D is a 2~ (v,k,}) design, and

02 = s+t-a+1 if D is a partial geometry with parameters (s,t,a) (see

Appendix I, or [c6l, [T1]).

We shall make explicit two consequences of the above theorem.
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3.1.2. COROLLARY. If a symmetric 2 - (v,k,\) design contains a symmetric

2= (vy/k o)) subdesign, possibly degenerate, then

k -k, 2
k = (kl -V ) + A .
1 v-—v1

PROOF. Substitute b = v, k = x, b1 = vl, kl = r1

3.1.1.4. 0

and UE = k=X in

3.1.3. COROLLARY. Let X and Y be a set of points and a set of lines,

respectively, of a partial geometry with parameters (s,t,o), such that no

point of X is ineident with a line of Y. Then
(a]x] + (s+t+l-a)(s+1))(a]Y]| + (s+t+1-a)(t+1)) <

< (s+t:+1-<:L)(s+1)2(1-_+1)2 -

PROOF. Substitute k; = r, = 0, by = |¥|, v, = |x|, k = s+1, x = t+1,
v = {(s+1)(st+a) /o, b= (£t+1)(st+a) /o and og = s+t+1-a in
3.1.1.4. U

Corollary 3.1.2 appeared in [H4]. A Baer subplane of a projective
plane (see [D3]) satisfies 3.1.2 with equality. Other examples which meet
this bound (hence where 3.1.1.ii applies) can be found in [H4].

The bound of 3.1.3 can also be tight. For instance, let Q be the
partial geometry with parameters (2,4,1) (generalized quadrangle), whose
points and lines are the vertices and the triangles of the complement of
the Schldfli graph (see Example 2.2.4). There are 15 triangles which do
not have a vertex in common with a double six (the black vertices in
Figure 1), Thus we have an empty subgeometry (no point and line are in-
cident) of Q having 12 points and 15 lines. This satisfies 3.1.3 with
equality.

If D1 is an empty design (k1 =ry= 0), then one easily finds examples
which meet the bound of 3.1.1.i. For instance: a projective plane with a
maximal arc (see [D3]); a symmetric 2-design containing an oval without

tangent blocks (see [A4]); a 2-design having a block repeated b/v times
(see [L1]; here the inequality 3.1.1.i is Mann's inequality [M2]).
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Although the results of this section are similar to those of Section
2.1, we did not start with a general inequality for substructures of an
incidence structure like we did for subgraphs of a graph in 2.1.2. This has
two reasons. Firstly, the formula for an arbitrary incidence structure is
more complicated than 2.1.2. The second reason is that there does not seem
to be much interest in incidence structures without any additional proper-
ties; this is certainly not true for graphs. Yet we shall give one result
for an arbitrary incidence structure, namely an inequality for the sizes of

an empty substructure.

3.1.4. THEOREM. Let D be an incidence structure with v points and b blocks.
Let every point [block]l be incident with at least X in blocks [kmin points].
Let X and ¥ be a set of points and a set of blocks, respectively, such that

no point of %X is ineident with a block of Y. Ther

2 K2 Xyl s o
min min

2

105W"1M)w-iﬂ).

where 9y and 9, denote the two largest singular values of the incidence

matrixz of D.

PROOF. Let the incidence matrix of D be

where 0 denotes the [X| x |Y| all-zerc matrix. Let r, and k, be the
*
average row sums of Ni and Ni' respectively, for i = 2,3,4. Then by

1.2.3.1 the eigenvalues of

s 5

0 0 0 x,

0 o} Ty r,
B :=

0 k3 0 0

k2 k4 0 ¢}

\ y
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Now with 1.1.2 it follows that
2 2 2 2
det B = Al(B)Az(B) < Al(A)Az(A) =g
On the other hand we have
det B = r.rk k. = rok> [X|1¥| / ((v= |X]) (b~ |¥]))
2737273 273 ‘

Since r.k , the theorem is proved. 0

z2r . k.
3 min “min

3.2. INTERSECTION NUMBERS

If two distinct blocks of a design D have exactly p points in common,
then p is called an Intersection number of D. It is obvious that an inter-

section number p of a 1 - (v,k,r) design satisfies
k 2 p 2 max{0,2k~-v} .

The next result, which is due to AGRAWAL [Al], gives non~trivial bounds

for the intersection numbers of a I-design. Like in the previous section,

the singular values of the incidence matrix of a design D will be denoted
> >

by cl 2 02 2 ... > 0.

3:2.1. THEOREM. Let D be a 1 - (v.,k,r) design with b blocks. Let B, and B,

be distinct blocks of D. Then

2
rk - 02

. 2
S [Blnszlsz——-—g—-—k+02;

if equality holds then |B) n By| + |B, n Byl = 2(zk —og) /b for
any further block By,

.. 2

ii. IBlnBZIZk—GZ;
1f equality holds then |Bl n B3l = |32 n B3] for any further
block Bs.

PROOF. The result is obvious if b £ 3, so assume b 2 4. Let N be the in~
cidence matrix of D, such that the first two columns correspond to the

blocks B1 and Bza Define
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*
A := NN .
Then the off-diagonal entries of A are the intersection numbers of D, and

the row and column sums of A egual kr. Put p := B1 n B2 and consider the

following partitioning of A:
k
/ D\ A12
A= [\e K/

* A
B12 22’

Define
k+p kr-k-p

x := 2(kr-k-p)/ (b~2) and B := .
X kr-x

Then the entries of B are the average row sums of the block matrices of A.
Clearly

AI(B) = Al(A) = rk and XZ(B) =k+p-%x .
By 1.2.3.1i we have
K2(B) < Az(A) =0q

Hence

cg(b ~2) < (k+p)(b=~2) = 2(kr~k -p) .
This yields

p < 02 - k + 2(xk ~c§) /b .

2

If equality holds, the interlacing is tight and 1.2.3.ii gives that every

column sum of A12 equals x. This proves (i).

To prove (ii) we apply 1.2.1 to A with

-1 1 0...0\" f2 o0)°"
S := . )
0 0 1 ...1 0 n-2
Then
N k~-p 0
B := S'AS = .

0 kr-x
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It is easily seen that kr~x > k-~p if b 2 4. So AZ(B) = k -p. Hence, by
1.2.1.4

Here equality does not have to imply that the interlacing is tight. There-

fore we shall use 1.2.1.ii. If 02 = k=-p = kr~x, thenxr =1, p = 0 oxr

¥ =2, p=20, b=4, and the result follows immediately by use of (i). If

* *
; = k=-p < kr ~x, then 1.2.1.ii implies that S(1,0) = (~/2,¥2,0,...,0)
is an eigenvector of A for the eigenvalue k -p. Thus Aiz(-l,l)* = Q.

o
This proves (ii). 0

It is straightforward to verify that equality in (i) or (ii) for a
pair of blocks of D implies also equality for the corresponding blocks of
the complement of D.

Although Agrawal's proof of the above theorem is different from ours,
it also uses eigenvalue techniques (in essence the Cauchy inequalities
1.2.2). MAJUMDAR [M1] gives a proof of this theorem for the case that D is
a 2-design, using counting arguments. See also BUSH [B10] and CONNOR [C8]
for similar results.

It is clear that our method also leads to inequalities if we consider

the intersection pattern of more than two blocks.

3.2.2. THEOREM. Let D be a 1 - (v,k,x) design with b blocks. Let Y be a set

of blocks which mutually have p points in common. Then

i. |¥] (tk ~bp) < b(k -p) ,

ii. |y| (bp—rk+o§) Sb(og-knrp) .

PROOF. Let N be the incidence matrix of D. We apply the Higman-Sims

*
technique to A := N N, partitioned according to Y and the other blocks of

D. Put
L k(r-1) - p(ly|-1)
x = |yl b - IY| .
Then
k~p+plYl rk-k+p=-plyl
B := .

X rk -x
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carries the average row sums of the block matrices of A. Clearly

A (B) = k-p+plY| -x = (b(k~p) + (bp -kx) [¥l) / (b~ 1¥])

From 1.2.3.1 we have

2

0 < Ab(A) < AZ(B) < A, (A) = o, -

2

This lower and upper bound for A2(B) yields (i) and (ii), respectively. 0

We define two blocks Bl and B2 of a 1 - (v,k,r) design to bhe equivalent
if

2
By n B,| e {k,k-03} .

Then from 3.2.1.ii it is clear that this indeed defines an equivalence
relation, and that the number of common points of two blocks only depends
on the equivalence classes of these blocks. By the use of 3.2.2 we find

bounds for the size of the equivalence classes.

3.2.3. THEOREM. Let D be a 1 - (v,k,xr) design with b blocks. Let Y be an

equivalence class of blocks. Then

i. k and k mog cannot both be an intersection number of D,
ii. if k ﬂog 18 an intersection number of D, then
b02
2
R
boﬁ - bk + xk
idi. if k 78 an intersection number of D, then
bo?
ly| < m———
bk =~ rk + 02

PROOF. Assume 2r < b; we may do so because of the remark right after

Theorem 3.2.1. Suppose k-—og

hence og —k~+2(rk-—03) /b < 2k(r-1) /b < k. So 3.2.1.1i yields that k can-

not be an intersection number. The combination of (i) and (ii) of 3.2.1

2
is an intersection number. Then k-«ﬁz = 0,

yvields bo;«—bk-+rk 2 02

- Now formulas (ii) and (iii) follow immediately
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from (i) and (ii) of 3.2.2 by substitution of p = k—o; and p = k, respec-

tively. 0

Suppose D is a 2 - (v,k,X) design, so cg =yr=-A= (bk~xk) /(v-1).
From 3.2.3.iii it follows that D has at most b/v repeated blocks; this is
the inequality of MANN [M2] (see also [L1]). If D has an intersection
numbex k-cg = k=-r+A, then 3.2.3.ii implies that the size of any equi-
valence class is at most b/(b ~v +1); this bound appeared in [B2]. This

paper also contains the next result (see also [B1]).

A 2-design with just two distinct intersection numbers is called
&uasi-symmetric. Consider the graph G, whose vertices are the blocks of a
quasi-symmetric 2~design D, two vertices being adjacent if the number of
points which the corresponding blocks have in common equals the largexr
intersection number. We call G the block graph of D. GOETHALS & SEIDEL [G2]
(see also [C6]) proved that the block graph of a quasi-symmetric 2-design
is strongly regular.

Now suppose D is a 2 - (v,k,X) design with just three distinct intersection
numbers k -x + A, pl and p2 (p1 > p2). We have already observed that the
number of points which two blocks have in common only depends on the equi-
valence classes of these blocks. For this reason the following definition
is legitimate. The class graph of D is the graph whose vertices are the
equivalence classes, two vertices being adjacent if two blocks representing

the corresponding classes have Py points in common.

3.2.4. THEOREM. Let D be a 2 ~ (v,k,A) design with just three intersection
numbers, k-xr + 2, G and CPY Then the class graph of D is a strongly
regular graph on

b(k—r+)\—p1)(k—r+>\~p2)

n o=

2 2
AT = k(r=A) + (x =27 + bp,o, = AV(p; +0,)

vertices, with eigenvalues

)\1(G) = (Avn—b(k-—r+>\—p2+p2n))/b(pl'—pz) ’
Ag(G) = (p, ~k+r-]2) /Loy =py)
}\n(G) = (b(pz*k+r~>\) - n(x ~2A}) /b(pl-pz) .
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%
PROOF. Let N be the incidence matrix of D. Define A := N N. Then

(%) 22 = N )N = N 4+ (r =M IIN = AKST 4 (r-M)A .

Put po := k~xr+A. Let Xj (j = 0,1,2) denote the number of times that pj

occurs in the i-th row of A, for some i ¢ {1,...,b}. Then

(AJ)il =k + xo(k —-X -+ A) + lel + szz = rk ,
2 2 2 2 2 2 _
(A )ii = k7 + xo(k r+A)T o+ %07 + X P, = AkT 4+ k(xr -2} .
on using (%). Substitute A, = bh~-1 - Xy TRy and subtract the first equation

multiplied by (p, +p.,) from the second one. This yields
piied By 1Py 70y

xo(k—r+)\-p J(k=r+d-p,) =

1

2
= (b «1)p1p2 - k(r ~1)(pl +p2) + k{r-A) + k(A ~-1) .
Hence Xg does not depend on i and therefore all equivalence classes have
size xo-tiw Now n = b/(xoﬂfl) yields the given formula for n.

Now we partition A according to the equivalence classes. Let A denote the

adjacency matrix of G. Then the definition of G yields that the entries of
(%) B i= (b/n) ((k=x+X=p,)T + (p; =py)A + p,0) + (xr-N1I

are the row sums (which are constant) of the block matrices of A. Since A
has three distinct eigenvalues, rk, ¥ -A and 0, it follows from 1.2.3.1iii
that each eigenvalue of B is equal to rk, r =X or 0. We easily check that
rk is a simple eigenvalue of B, belonging to the all-one vector j. Now from
(**) the eigenvalues of A follow. Hence A has an eigenvector j and just two
distinct eigenvalues not belonging to j. This implies (see Appendix I or

[c6]) that G is strongly regular. 0

Examples of designs which satisfy the hypothesis of the above theorem
can be found in [B1], [B3] or [M8]. For all these examples the class graph
is a complete multipartite graph. In Section 6.1 we shall give an example
for the above theorem where the class graph is primitive (not complete
multipartite or the complement). For other results on 2-designs with an

intersection number k -r + X, see [B2].
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CHAPTER 4

4-COLOURABLE STRONGLY REGULAR GRAPHS

4.1. INTRODUCTION

In this chapter we shall illustrate the use of the results and
techniques cobtained in the previous chapters. The result will be the de-
termination of all 4-colourable strongly regular graphs.

It is obvious that a regular complete y-partite graph, and a disjoint
union of complete graphs on y vertices are strongly regular graphs with
chromatic number y. Strongly regular graphs, not belonging to one of these
two families, are called primitive.

Let G be a strongly regular graph with parameters (n,d,pil,pfl). Then
(see [C5], [C9] or Appendix I)

2

d = )\l(G) ¢ pll

~-d = AZ(G)An(G) ’ = XZ(G) + An(G) .

2

Py 7Py
np? = (d=X, (@) (A=A (G))
P11 2 n :

Moreover, G has at most three distinct eigenvalues:
Al(G) = A2(G) = .. = Af+1(G) 20, =1z Xf+2(G) = Ll = kn(G) ;

where £ = fZ(G), the multiplicity of AZ(G), satisfies

£ o= (m)\n(s) (n=1) -~d) / (A, (6) —An(G)) .

If G is primitive, then pfl > 0, XZ(G) > 0, and Xn(G) < -1,

4.1.1. IEMMA. If G 18 a primitive strongly regular graph, not the pentagon,
then

i. d = -A @ (v(G) -1)
id. A (G = A, (G) (y(6) 1)

iii. Az(G) < ¥(G) -1 .
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PROOF. (i) and (ii) are quoted from 2.2.3. Since G is primitive,

0 < i, =d-2,(0))(6). Hence (i) gives y(6) =1 2 =a/A_(G) > A,(@). D

As a direct consequence of this lemma we have the following theorem.

4.1.2. THEOREM. Given y € M, the number of primitive strongly regular

graphs with chromatic number y is finite.

PROOF. If the graph G is primitive, then pfl 2 1 and hence by use of the

formulas above
2
n < np,, = (d ~n>\2(G))(d ~An(G)) < d(d ~An(G)) .
By Lemma 4.1.1 we have
5
d(d=A_(G)) < v(G) (v{G) ~1}" .

This completes the proof. 0
Now let us examine the case Y(G) < 4.

4.1.3. IEMMA. Let G be a 4-colourable strongly regular graph. Suppose G has

a non—-integral eigenvalue. Then G is the pentagon.

PROOF. Since G has a non-integral eigenvalue, we have (see [C9] or

Appendix I)

A€ =xm=1) , MA@ =~k +%/n, A (@) =-%~%Vn,
n = 1 (mod 4) , Vn ¢ .

By 2.1.5 we have a(G) < /E, hence
429G 2n/a(@ 2n/ | Vo],

therefore n = 16 or n < 12. Combining the restrictions for n we have n = 5,

hence G is the pentagon. O

4.1.4. LEMMA. A 4~colourable primitive strongly regular graph has one of

the following parameter sets:
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i. (5,2,0,1) , vid. . (16,9,4,6) ,
ii. (9.,4,1,2) , viii. (40,12,2,4),
iii. (10,3,0,1), ix (50,7,0,1) ,
iv. (15,6,1,3), X (56,10,0,2),
Ve (16,5,0,2), xi. (64,18,2,6).
vi (16,6,2,2), xii. (77,16,0,4).

PROOF. Let G be such a graph. Suppose G is not the pentagon (which has
parameter set (i)). Then by 4.1.3, the eigenvalues of G are integers. The

primitivity of G yields A2(G) > 0, Xn(G) < «1. Now 4.1.1.iii gives
AZ(G) e {1,2} .

Suppose AZ(G) = 1. Then by 4.1.1
A (G e {-2,-3}, d=2(6) =9 .

Straightforward computations give that the only feasible parameter sets
satisfying these conditions are (ii) - (v), (vii) and (10,6,3,4). However,
a graph G with this last parameter set satisfies a(G) < 2, therefore

v(G) = 5. Suppose AZ = 2. Then 4.1.1 implies
An(G) € {~2,~3,-4,~5,-6} , 4 < 18 .

With a little more work than for the previous case, this leads to the
feasible parameter sets (vi), (viii) - (xii) and (57,14,1,4). However,
WILBRINK & BROUWER [W4] proved the nonexistence of a strongly regular graph

with this last parameter set. [

For graphs with parameters (i) - (v) existence and uniqueness is known
(see [83]). Ccases (i), (ii) and (iii) are the pentagon, the line graph of
K3’3 (also called the lattice graph L2(3)), and the Petersen graph,
respectively. It is easily seen that these three graphs have chromatic
number three. From 4.1.1 it is clear that none of the other graphs is
3~colourable. Case (iv) is the complement of the line graph of KG (also
called the complement of the triangular graph T(6)), which is easily seen

to be 4~colourable. Case (v) is the Clebsch graph (see [S3]). This graph
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is given in Figure 2, where two black or two white vertices are adjacent
iff they are not on one line, whilst a black vertex is adjacent to a white

one iff they are on one line. We almost immediately see that this graph is

FIGURE 2

4~colourable. There are precisely two nonisomorphic strongly regular
4,4 L2084
and the Shrikhande graph (see fly-leaf), both graphs are easily seen to be

graphs with parameter set (vi) (see [S6]): the line graph of K

4-colourable. Case (vii) is the complementary parameter set of (vi}. We
quickly see that the complement of the line graph of K4’4 is 4-colourable,
however, the complement of the Shrikhande graph is not 4-colourable.
Indeed, the size of the largest coclique eguals three. The remaining cases

are more difficult. They will be treated in the next section.

4.2. STRONGLY REGULAR GRAPHS ON 40, 50, 56, 64 AND 77 VERTICES

In this section we shall study the feasible parameter sets for 4-

colourable strongly regular graphs, which remain from the previocus section.

The first case is the parameter set (40,12,2,4). Although several
strongly regular graphs with these parameters are known (see Section 6.2},
it will turn out that no such graph has chromatic number four. To prove

this we use the following lemma.

4.2.1. LEMMA. There is no regular bipartite graph on 20 vertices with
etgenvalues 4, 2,0, -2, ~4 of multiplicity 1, 6,6, 6, 1, respectively.
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PROOF. Suppose G were such a bipartite graph. Let

0 N

be the adjacency matrix of G. Then N is the incidence matrix of a

1-1(10,4,4) design, D say, with singular values 0y = 4, Op = cow = 04 = 2.
Let B1 and B2 be two distinct blocks of D. Then 3.2.1.1i yields

|B, nB,| < 12/5 .
Suppose B1 and B2 are disjoint. Let x and y be the two points of D which

are not incident with B, and Bz. Let B, be a block through x. Using

1
3.2.1.ii it follows that

3

B, nBy| =|B,nB

1 3!

S0 B3 is incident with y. Hence, any block incident with x is also in-
cident with y. However, this is not possible, since two points of D have
at most two blocks in common, as follows from 3.2.1.i applied to the dual

of D. So we have

|, n B,| e {1,2} .

This implies that B := N*N-J-—3I is the adjacency matrix of a (strongly)
regular graph with eigenvalues -3, 1 and 3 of multiplicity 3, 6 and 1,

respectively. This is impossible, since

2 + 1,32 . u

30 = trace B2 # 3.(-3)% + 6.1
4.2.2. THEOREM. There exists no 4-colourable strongly regular graph with
parameters (40,12,2,4).

PROOF. Let G be a strongly regular graph with parameter set (40,12,2,4).
The eigenvalues of A, the adjacency matrix of G, are 12, 2 and ~4 of multi-
plicity 1, 24 and 15, respectively. Suppose G is 4-colourable. Then without

loss of generality
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O Ay Bz By
Ay 0 By Ay,
A = w
Byp B3 0 Ay,
Bgy Byy By O
- -

By 2.1.5.1 all block matrices are square of size 10, and by 2.1.5.iii all

row and column sums of Aij are equal to 4, for i,j = 1,2,3,4, i # j. Define
Ay = ¢ By = ;o A= A=k, AL = AL -WT,

for i = 1,2. Let i € {1,2}. Let G, be the graph with adjacency matrix A, .
Now A has just two distinct eigenvalues 2 and -4 of multiplicity 25 and 15,
respectively. Furthermore, Ai and Xi have the same eigenvalues, except for
the one belonging to the eigenvector j, which equals 4 for Ai and -1 for
Ai” Since Gi is bipartite, Ai also has an eigenvalue -~4. Now by the Cauchy
inequalities (1.2.2) it follows that Xi’ and hence also Ai' has at least
five times the eigenvalue 2. But Gi is bipartite, therefore Ai, and hence
also Zi' has at least five times the eigenvalue -2. Now from 1.3.3 it
follows that X3~i’ and hence also Zi and A, has at least five times the
eigenvalue 0. Since Gi is bipartite on aneven number of vertices, the
multiplicity of the eigenvalue 0 is even, so at least six. By the same
reasoning as above, Theorem1.3.3 yields that the multiplicities of the
eigenvalues 2 and -2 of Ai are also at least six. Thus Ai has eigenvalues
4, 2, 0, -2, =4 of multiplicity 1, 6, 6, 6, 1, respectively. Now Lemma
4.2.1 finishes the proof. 1

HOFFMAN & SINGLETON [H15] showed the existence and uniqueness of a
strongly regular graph with parameters (50,7,0,1). So we only have to
determine whether this graph is 4-colourable or not. To do so, we shall
use a description of the Hoffman-Singleton graph (this description seems
to be folklore, since it is well known; however, I could not find a refer-

ence) based on the following result, see [B11] or [C10].

4.2.3. RESULT. The thirtyfive lines of PG(3,2) can be represented by the

thirtyfive triples of a set with seven elements, such that two lines
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intersect Lff the corresponding triples have exactly one element in common.

REMARK. This result is directly related to the isomorphism of the groups
PSL(4,2) and the alternating group on eight symbols (see for instance [B4]
or [c10]).

Now we construct the Hoffman-Singleton graph as follows. The vertices
are the fifteen points and the thirtyfive lines of PG(3,2). Points are
mutually non-adjacent; a point is adjacent to a line iff the point is on
that line; two lines are adjacent iff the triples, which correspond with
these lines according to the above result, are disjoint. It is an easy
exercise to check that this construction indeed gives the desired strongly

regular graph.

4.2.4. THEOREM. The Hoffman-Singleton graph has chromatic number four.

PROOF. Colour the fifteen points red. Fix two elements x and y of the 7-set
of Result 4.2.3. Colour lines blue, if they correspond to a triple contain-
ing x. Of the remaining lines, colour those yellow, whose corresponding
triple contains y, and colour the other ones green. From our definition it
is obvious that this is a correct colouring of the Hoffman-Singleton

graph. o

GEWIRTZ [G1] showed existence and uniqueness of a strongly regular
graph with parameters (56,10,0,2). Before giving a description of the

Gewirtz graph we first prove the following.

4.2.5. PROPOSITION. If the Gewirtz graph has two disjoint cocliques of size

16, then its chromatic number equals four.

PROOF . Assume that the Gewirtz graph has adjacency matrix

O By A3
A=dy 0 Byl
Byp Byp By
where A12 = AZl is square of size 16. We know that A has three distinct
eigenvalues, 10, 2 and -4. From 2.1.5 it follows that A12, A21, A31 and A32
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have constant row sums equal to 4. Therefore the graph G3, whose adjacency
matrix is A33, is a disjoint union of cycles. Suppose one of these cycles has
length ¢ < 24. Partition A33 according to the vertices of this cycle, and
the remaining ones. This induces a partition of A into sixteen block

matrices, and the entries of the matrix

0 4 ke 6-%¢c

4 0 ke 6-4c
B :=

4 4 2 0

4 4 0 2

are the average row sums of these block matrices. We immediately see that

the eigenvalues of B are

Al(B) = 10 , XZ(B) = 2 , XB(B) = A4(B) = -4,
However, we know that
Al(A) = 10 , Az(A) = 2, AsS(A) = ASG(A) = -4,

Hence the eigenvalues of B interlace the eigenvalues of A tightly, thus by
1.2.3.ii all block matrices have constant row sums. Therefore, %c is an
integexr. This proves that each component of G3 is a cycle of even length.
Thus G3 is bipartite, and therefore the whole graph is 4-colourable. 0

We use the description of the Gewirtz graph given in [G2], where this
graph is obtained as the complement of the block graph of a quasi-symmetric
2~ (21,6,4) design with intersection numbers 0 and 2 (see Section 3.2).

4.2.6. THEOREM. The Gewirtz graph has chromatic wnumber four.

PROOF. Let D be the quasi-symmetric 2 - (21,6,4) design. It is clear that
all blocks through a fixed point of D yield a coclique in our graph of size
16. To see that there is another coclique of the same size, disjoint from
this one, we proceed as follows. D can be obtained from a 3 ~ (22,6,1) de-
sign 5 (the extension of PG(2,4), see for instance [C6]) by deleting one
point and all blocks through that point (i.e. D is a residual design of 5).
Take a block B of S, which is not a block of D. An elementary counting

argument (see [C2]) shows that there are 16 blocks of D which are disjoint
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from B, and which mutually have 2 points in common. Hence these 16 blocks
provide a coclique of size 16 in the Gewirtz graph, which, if B has been
chosen appropiately, is disjoint from our previous cocligue. Application of

4.2.5 completes the proof. O

Three Z - (16,6,2) designs on a common point set are called linked if
any two blocks from distinct designs have 3 or 1 points in common (see [Cl1]
or [M7]). Let Nl' N2 and N3 be incidence matrices of three linked

2= (16,6,2) designs. Then we know that

* * *
N,J = N,J=6J , NN, =N,N, = 27 + 41 ,
i i ii ivi

i

for i = 1,2,3. Moreover, for i,j 1,2,3, i # j, the matrix

*
Nij s= 3 (37 -NiNj)

is a (0,1) matrix by definition. In fact, Nij is the incidence matrix of a

2-={16,6,2) design, since

% %* *
NijNij = %(3J'-NiNj)(3J -NjNi) = 2T + 4L ,

by use of the above formulas. Define

*
Nii = b - 21, NOj i= Nj B NjO s= Nj B

for i = 0,1,2,3, j = 1,2,3. Then

Ny = Nji . Niijk =37 - N, .,

for i,j,k = 0,1,2,3, as follows readily from the formulas above. This

implies that

O Nyy Moy Mgz
Nio 0 Ny Ny
A =
Nog Ny 0 Nog
N3p N3y N3y O

is a symmetric matrix, which satisfies

2% = 18T + 28 + 6(T -1 =a) .
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Hence A is the adjacency matrix of a strongly regular graph with parameters
(64,18,2,6), which is 4~-colourable. We call this graph the Zncidence graph
of the three linked designs.

4.2.7. THEOREM. Let G be a strongly regular graph with parameters
(64,18,2,€) and chromatic number four. Then G is the incidence graph of
three linked 2 - (16,6,2) designs.

PROOF . Suppose G has adjacency matrix

O Ay Byy Bp3
Ao 0 Ay By
A = N
Bog By 0 By
B3p By Ay O

A has eigenvalues 18, 2, and -6 of multiplicity 1, 45 and 18, respectively.

By 2.1.5, Aij is square of size 16, and all row and column sums of Ai‘ are
El

equal to 6, for i,3 = 0,1,2,3, i # j. This implies that A and

K o= 14 ® J16

have a common basis of eigenvectors. Using this, we obtain that

B osm A - 2T + 4K

has eigenvalues 24, 0 and -8 of multiplicity 1, 48 and 15, respectively.

Thus
rank K =16 .

For i = 0,1,2,3, put Aii s %Jle - 2116. Then

- 00 03
rank A,, = 16 and A = . . .
ii . .
B30 ccr Pas
~o -1 _ L.
From rank AOO = rank A, it follows that AiO‘AOOAOj = Aij' for i,j = 1,2,3,
on applying 1.1.3. By use of
-1 -1 _
Ay = (k3 - 21) = (1/24)3 -~ %I  and AijJ = 6J
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this implies that for i,j = 1,2,3

3 1 =
() 79 77 BoiPoy T Ay

This completes the proof. Indeed, if i = j, then (%) implies

= 2J +4I, showing that A is the incidence matrix of a 2 - (16,6,2)

A A . .
0i 01 0i
design, and if i # j, then (*) reflects that the designs represented by
AOl' A02 and A03 are linked, and that Aij is of the desired form for

i,3 = 1,2,3. 0

MATHON [M7] proved that there are exactly twelve non-isomorphic
triples of linked 2 - (16,6,2) designs, which lead to eleven non-isomorphic
incidence graphs. Hence there are precisely eleven non-isomorphic 4-colour-—
able strongly regular graphs with parameters (64,18,2,6). It is fairly easy
to show that one of these graphs is the point graph of the known generaliz-
ed quadrangle of order (3,5) (see Chapter 5; a construction is described in
6.2.3). For completeness we list in Appendix II the systems of three linked
2-(16,6,2) designs, which provide the ten remaining graphs; these systems
are taken from Mathon's paper. It is not known whethexr there are any
further strongly regular graphs with these parameters, which are not 4-

colourable.

Finally, the next theorem deals with the last set of parameters of

Lemma 4.1.4.

4.2.8. THEOREM. There exists no 4~colourable strongly regular graph with
parameters (77,16,0,4).

PROOF. Let G be a strongly regular graph with parameters (77,16,0,4). Then
G has eigenvalues 16, 2 and -6 of multiplicity 1, 55 and 21, respectively.
Suppose G is 4—-colourable, and let ¢ be the size of the largest colour

class. Then c 2 [ 77/4 |= 20. Let

where 0 is square of size ¢, be the adjacency matrix of G. Then G2, the

graph with adjacency matrix A Py is 3=-colourable. From 2.1.7 it follows that

2
¢ £ a(G) £ 21, and that ¢ = a(G) = 21 implies that G2 is the Gewirtz graph.
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Since the Gewirtz graph has chromatic number four, G cannot be coloured
with four colours if ¢ = 21 (this shows that G is 5-colourable if o (G) =21,
which is the case for the known strongly regular graph with these para-
meters; see [G2]). Whence ¢ = 20. Now we apply 1.3.3 to A - (2/11)J, so as
to obtain that

2 2

AggBop =7 9) = =6 Agp(By, — 97 J) = —4.
Now 1.3.1 gives
1 - -
Nog(Byy) 2 =6, A (By,) = =4.

On the other hand, the average row sum of A equals 592/57. Hence by

22
1.2.3.1 (take m = 1) we have

Al(AZZ) > 592/57 .

Now the sharpened version of Hoffman's inequality for the chromatic numbexr

(see p. 24), applied to the 3-colourable graph G, gives

2

Thgy(Byg) mAge(Boo) 2 Ay (By,) .

This is a contradiction, proving the theorem. O

4.3. RECAPITULATION.

All cases of Lemma 4.1.4 have been treated now. The only thing left is

to state the main theorem.

4.3.1. THEOREM. If G Z8 a 4~colourable strongly regular graph, then one of
the following holds:

i. Y(G) = 2, and G 78 a regular complete bipartite graph, or a dis—

Joint union of edges;

ii. Y(G) = 3, and G <8 a regular complete 3~partite graph, a dis—
Joint union of triangles, the pentagon, the line graph of Ky 3,
or the Petersen graph;

iid. Y(G) = 4, and G 78 a regular complete 4-partite graph, a dis-

Joint union of K4’sy the complement of the line graph of Kes the
Line graph of Ky 40 OF its complement, the Shrikhande graph, the
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Clebsch graph, the Hoffman-Singleton graph, the Gewirtz graph,
or one of the eleven incidence graphs of three linked 2 - (16,6,2)

designs.
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CHAPTER 5

GENERALIZED POLYGONS

5.1. INTRODUCTION

A generalized n~gon of order (s,t), s > 0, t > 0, is a 1 -~ (v,s+1,t+1)
design whose incidence graph has girth 2n and diameter n (see [T4], [D3],
[F1], [H12] or Appendix I). A generalized polygon is a generalized n-gon
for some n.

Generalized n-gons were introduced by TITS [T4]. An important result
is the theorem of FEIT & HIGMAN [Fl1] (see also [H12], [K2]), which states
that a generalized n-gon of order (s,t) is an ordinary n-gon (s=t=1) or
ne {2,3,4,6,8,12}.

For a generalized polygon we speak of lines rather than blocks. We
shall often omit the adjective "generalized". If D is a polygon of crder
(s,t), then we immediately see that the dual of D (points and lines inter-
changed) is a polygon of order (t,s).

Suppose N is the incidence matrix of the incidence graph of an n-gon
of oxder (s,s). Then N is the incidence matrix of a 2n-gon of order (i,s}.
Conversely, it can be proved easily that all generalized n-gons of order
(1,8), s > 1, are of this form. FEIT & HIGMAN [F1] also proved that s = 1
or t = 1 for a 12~gon of order (s,t), thus in a sense generalized l2-gons
are the same as generalized hexagons of order (s,s). Generalized n-gons of
order (s,t) with s > 1, t > 1, are called thick.

A generalized 2-gon is degenerate (every point is incident with every
line). It is not difficult to verify that a generalized triangle of oxder
{(s,t) is a 2 ~(52+s+1,s+1,l) design, which is the same as a projective
plane of order s (thus s = t). So 3~gons of order (s,s) exist for every
prime power s. For projective planes see DEMBOWSKI [D3]or HUGHES & PIPER
[niel.

Thick generalized quadrangles of order (s,t) are known to exist for
(s,t), (t,s) = (q.,9 . (q,qz), (qz,q3), (g~1,g+1), for every prime power g
(g # 2 for the last case). Constructions are due to AHRENS & SZEKERES [A2],
HALL [H6], KaNTOR [K1], PAYNE [P1], [P2] and TITS [T4], see also [D3],
{T3]. HIGMAN [H11] showed that .
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s < t2 < 54

for thick quadrangles of order (s,t). Several other proofs of this inequal-
ity have been found, see [¢3], [c5], [H12], [P6] and Section 3 of this
chapter; some of these proofs also lead to consequences for the case of
equality. There is an extended literature on generalized quadrangles. We
mention the survey papers [P4], [T1] and [T3].

Thick generalized hexagons are known to exist for the orders (53’5),
(s,s) and (s,s3) for prime power s, see [T4]. A necessary condition for
existence of a hexagon of order (s,t) is that st be a square, see [F1].

HAEMERS & ROOS [H3] showed that

s < t3 < Sg

for thick hexagons of order (s,t). This inequality, together with a result
for the case of equality, will be the subject of the next section. For more
information about generalized hexagons we refer to [M4], [R1], [s1], [T41,
[vi].

Thick generalized octagons of order (s,t) are only known to exist fox
(tys), (s,t) = (2m,22m), for odd m. The construction is due to J. Tits, see
[D3]. A necessary condition for existence of an octagon of order (s,t} is

that 2st be a square, see [F1]. HIGMAN [H12] showed that

SStZSS4

for thick octagons. There is hardly any literature about octagons.
Let G be a connected graph of diameter m. For vertices x and y of G,
let p(x,y) denote the distance between x and y. For i,j = 0,...,m, define
P (xry) = [{z | p(x,2) =i & p(y,z) = 3}| .

If pij(x,y) depends on i, j and p(x,y) only, then G is called distance

regular (see [B5]), and we write pk. 1= p
0 ij i

di el SN for i,3 = 0,...,m. The numbers pij are called the intersection

j(x,y) where k := p(x,y), and

numbers of G. Clearly, a distance regular graph is regular of degree dl'
and a distance regular graph of diameter 2 is the same as a connected
strongly regular graph (in general, a distance regular graph of diameter m
is equivalent to a metric association scheme with m classes, see [D1]).
For a distance regular graph G of diameter m, we define the matrices

AO,QB,,Am, indexed by the vertices of G, by



1 1if p(x,y) = 1,

(A.“rx =
¥ 0 otherwise.
m
Clearly, AO = I, X Ai = J and Al is the adjacency matrix of G. Moreover,
i=0
(A, A,) = p?fx'y)
i 73 xy ij

implies

m
k
A, = ’ I =4d,J, ci,3 = 0,0e.,m .
iRy kgo Piy By » BjJ=d; 3, for i,3=0 m

These equations show that AO,...,Am generate an m+ 1 dimensional algebra.
This type of algebra turns out to be useful in the study of distance
regular graphs and similar configurations, see [B5], [B8], [p1l, [#d12],
[wi].

The point graph of a generalized n-gonD is tnegraph whose vertices are
the points of D, two points being adjacent whenever they are on one line of
D. It is well known (see [D3], [Y2]) thet the point graph G of an n-gon of
order (s,t) is distance regular of diameter L%n/, and that the intersection
numbers of G can be expressed in terms of s and 1 (in the forthcoming sec-
tions of this chapter we shall exhibit this result for n = 6 and n = 4).

A graph G is called geometric for an n~gon if G is the point graph of
an n-gon. A graph G is called pseudo-gecometric for an n-gon if G is dis-
tance regular of diameter |%nJ and its intersection numbers are such that C
could be geometric, that is, there exist integers s and t, such that the

intersection numbers of G depend on s and t as for geometric graphs.

Let D be a generalized polygon. An element of D is a point or a line

gr+e-r€qr is called a path of length %

between e. ard e,, if e, is incident with e,
0 2 i i1

8greeer€py points and lines alternate). The distance between elements ey

of D. A sequence of  +1 elements e

for i = 1,...,2 (thus in

and ey of D, denoted by A(eo,el),

between ey and ey Thus, if e and e, are both points, then A(eo,eg) is

twice the distance between 9 and e, in the point graph of D.

is the length of the shortest path

In the next two sections we shall describe a method which for quadxr-

angles and hexagons leads to the inequalities mentioned above, and to the
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results in case of equality (unfortunately, this method does not work for
octagons) . The same method also yields a new proof of a theorem of CAMERON,
GOETHALS & SEIDEL [C5], which states that a pseudo-geometric graph for a

quadrangle of order (s,sz) is geometric.

5.2. AN INEQUALITY FOR GENERALIZED HEXAGONS

For n = 6 the definition of a generalized n~gon is equivalent to the

following one:

5.2.1. DEFINITION. 4 generalized hexagon of order (s,t) 1s an ineidence

structure with points and lines, such that

i. each line has s+ 1 points,

ii. each point s on t+1 Lines,

iidi. two distinet lines meet in at most one point,

iv. for any non-incident point~line pair x,L there 1s a unique path

of length < 6 between x and L.

Throughout this section H will denote a generalized hexagon of ordexr
(s,t). By use of the above definition it is straightforward to count the
intersection numbers ptj of the point graph of H. They are exhibited in
Table 1. The amount of work in computing these numbers can be reduced by

use of the equalities
k 2 2,2
Y op.=d. ., ) d, =v=(s+1)(st +st+1) .

This counting also shows that the point graph of a generalized hexagon is

distance regular.

TABLE 1
N " X X K K
Py P12 Po2 Py3 Po3 P33
0sce+) | 0 | sPe(es1) 0 0 s3¢?
1 g1 st st(s-1) o] sztz s2t2(5~1)
2 1 g1 s(t2+t-1) st st (s-1) (t+1) st(sZt«stms+t)
3] o £+1 | (5-1) (£+1) 2 | (s=1) (£+1) | (£+1) (s2tmstos+t) | £(t-1) (s2t-s+E)
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Let AO’ .o .,A3 be the matrices of the point graph of H. Define

= A - (s- 2_ oL
E.-A2 (s 1)A1+(s s+1)I s+1J'

Then we have the following lemma.
5.2.2. LEMMA. The eigenvalues of E are

0 and 52+St+t2

of multiplicity

szt+st2—st+s+t 352t2+st+1
and s —m—————r

3
s +st+t2 32+5t+t2

1 + st(s+1)(t+1)

respectively.

PROOF. It is clear that EJ = 0, and that

2 1 2 2 .2 2
<E - (s“-s+1)I + J) = (s-1)° Aa] - (s-1)(AjA,+AA) + A .

s+1
3 k
From A,A. = 2 P.. A and Table 1 we have
i3] ij "k
k=0
2 2 2 2
A2 =g t(t+1)I + st(s—l)A1 + (st +st—s)A2 + (s-1)(t+1) A3 ,

AA, = AA, = st A

12, SRy 1+(s—1)A2+(t+1)A

37

i
]

s(t+1)1 + (s—-l)A1 + A2 .

By use of A, + A = J~I and EJ = 0, this leads to

1 2+A

3
E(E - (sz+st+t2)I) =0 .

Hence 0 and 52 +st+t2 are the eigenvalues of E. Finally,

2

trace E =v(52—s+1—(s+1)_1) = s3(szt +st+1)

yields the multiplicities. ]
REMARK. In the terminology of DELSARTE [D1], the matrix (s + st +e4) 7 E
is a minimal idempotent in the Bose-Mesner algebra of the association

scheme on the points of H. The underlying theory provides a more elegant
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way to prove the previous lemma.

Let LO be a line of H, let Li (i = 1,2) denote the set of points at

distance 2i+1 from L,. Partition E according to LO' Ly and L

0 2°

Eoo  Eor  Eo2
E= 1B By Eyp| -
Exo  Ear Ep
so E,. = E., for i, = 0,1,2.
1} Ji

5.2.3. LEMMA. The eigenvalues of E,, are 0, s? and st of multiplicity
st-s+t, t(52 - 1) and s, respectively.

PROOF. Let A and A be the submatrices of A, and A,, respectively,
—— 1,11 2,11 1 2

corresponding to Llw We easily see that without loss of generality

+ == ® + + = ®
T AR gy ®Igpe ®9g a0 TRy By g =T B
holds, hence
E = I B J ~ s(T @J)+2I-———-}——T
117 Ts+l o Vst st+t s s s+1 " "
i ® ®
From the eigenvalues of Is+1 Jst’ ISt+t Js’ I and J, and the fact that

these four matrices have a common basis of eigenvectors, the eigenvalues of
E,, and their multiplicities follow. 0
5.2.4. THEOREM. A generalized hexagon with s+ 1 points on a line and t+1

lines through a point satisfies

33 or s =1,

t3 or t

in

i. t

IA
il
—

ii. s
PROOF. From 5.2.2 and 5.2.3 it follows that

2

rank E = s3(52t +st+1)/(sz+st+t2) ;, rank E =g t+s~t .

Since rank E11 < rank E, we have
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2
(s"t+s~-1t) (sz+st+t2) < 53(52t2+st+1) R

This yields
22 -1)(e-s%) <0 .

Thus s = 1 or t < s3. Applying this result to the dual of H yields (ii). [

For another proof of this inequality see [H3]. Next we shall derive
some additional regularity for hexagons meeting the above bound. To achieve

this we need some properties of the matrices Eij' First we observe that

1-1/(s+1) if A(x,y) = 4 ,
)

(EO2 ba% =

~1/(s+1) otherwise,

as follows directly from the definition of E and E02. This implies

1=-1/(s+1) 4if A(x,2z) = A(y,z) for some z € Lo ,

E._E_.)
(Ego Foa

*y ~-1/(s+1) otherwise.

Hence, without loss of generality

% 1

Bop =3 ®lor " 5FT r(etl) !

* 1
Eop B2 = 90 ® Tgit " SHT (st !

where x := sztz. Now the positions of the points of L2 relative to the
points of LO give rise to a partition of E22 into (s+1)2 square block

matrices Fij of size sztzz

FOO b FOS
Eyp = T
FSO PP FSS

It is a matter of straightforward counting to see that Fij has constant row
sums equal to t2(s~n1+6ij) - sztz/ (s+1) for i, = 0,...,8. This, and

the structure of E02 imply that

E E* = t2 *
22 Bo2 =t Epy -
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The following identities are now quickly seen to be true:

R 1 _ c s
EO0 =g (I - pr J) ., EijJ =0 fori,j=20,1,2,
2 2 _ 2 o _ .2
Boo =% Eog r Eog Boo T ST Bpp By By = T Egp -
5.2.5. LEMMA., The matrix
E.. :=E R
22 "7 Epp T8 Egy Egp
has eigenvalues
0, st+t2 and sz-+st-+t2 5
. .. 2 2
the multiplicity of s +st+t° equals
t2(s?-1)(s°-1) / (s®+st+t?) .
PROQF. Define
E E E..
e I -1
B2 B Ea2
Using the above formulas we obtain
(*) 'y = 32(52+t2)U ; E'U = (s2+t2)U .

Since rank U = s, the last formula reflects that the columns of U span an
s~dimensional eigenspace of E' corresponding to the eigenvalue szl+t2&

Thanks to 5.2.2 and 5.2.3 the eigenvalues of E and E are known. By use of

11
1.3.3 we obtain that the non-zero eigenvalues of E° are

sz+t2, st+’t2 and 52+st+t2,
of multiplicity

s, t(s?-1) and t3(s?-1)(s°-¢) / (s2+st+t?) ,

respectively. Now from (%) it follows that
Ef - s 2U U

. ‘o . 2 2 .
has just two distinct non-zero eigenvalues st+t” and s <+st-+t2, with the
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same multiplicities as before. On the other hand one easily verifies that

which proves the lemma. 0

2
The important thing in the last lemma is that the eigenvalue 52-+st-+t
disappears if t = 53. In order to give a combinatorial interpretation of
this phenomenon, we need two definitions. For a line L and points x and y

of a generalized hexagon we define:

Py (Brxey) i< [{z | A(z,L) = 2i+1, A{(z,x) = 23, A(z,y) = 2k}| ,

for i = 0,%,2, j,k = 0,1,2,3; the configuration Znduced by L, x and y is the
configuration formed by the points and the lines, which are on a shortest
path between L and %, L and y, or x and y. For example, Figure 3 gives all
possible configurations induced by’L, x and y if A(L,x) = A(L,y) = 5 and
Alx,y) = 4.

S7+s4—s3—2s s7+s4—s3—sz—1 s7+s4~s3-1 s7+s4-s3»s s7+s4—s3—s

FIGURE 3

5.2.6. THEOREM. If a generalized hexagon has order (s,s3), then Pijk(L'x’y)

only depends on i, j, k and the configuration induced by L, % and y.

PROOF . First observe that
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3
L

2 3
) P (Tex,y) » ) p.. (L,x,y) and
i=g 13K jmo 13K k=0

pijk(L:X:Y)

only depend on i, j, k and the configuration induced by L, x and y (in fact,

2
z p Q(X,y))
i=0 e

tiresome job), that the theorem is true if i = 0, or j < 1, or k £ 1, and

(L,x,y) = p . Subsequently, we verify (this is an easy but

ijk

also if A(L,x) < 5 or A(L,y) < 5. Thus it suffices to prove the theorem for

i=3=%k=2, \ML,x) = A(L,y) = 5. From the definitions of E, E,, and

22
pijk(L,x,y) it follows that

N3 = (s?-s+1)?

)
By = 531 Xy P200

(Lolxly) +
- 2s=1)(s2=s+1)p. (L. ,xsy) + 2(s>=s+1)p. (L.,x,y) +
201 Mot EeY 2020 *

2
+ (s=1) pzn(Lo,x,y) - (s'l)(Pziz(Lo'x'y) + p221(L0.x,y)) +

+ Pogyllgexey) -

Now take t = s3. Lemma 5.2.5 implies that E has just two distinct eigen-

22
values 0 and 54(1-+52). Hence

~2

4 2.~
E22 =g (1+s )E22 .

Using the formulas for the matrices Eij this yields

1 2

4 2 1
(Byp =537 9 =5 (1+sNEy, - s

2 g* + ss(s-kl)_ J .

Eg2 Eoz
This implies that ((E,, - (s~+—1).‘1 J)Z)xy only depends on the configura-
tion induced by Ib' % and y. Combination with the previous steps

yields that for x,y € L (Lo,x,y) only depends on the configuration

2" P222
induced by Log % and y. This completes the proof. 0

With the available formulas the values of pijk(L,x,y) are readily
computed. For example, in Figure 3 we give pzzz(L,x,y) for the given con-
figurations.

RONAN [R1], [R2] and THAS [T2], give sufficient conditions for a
generalized hexagon to be one of the known ones. One hopes of course that a

result like the one above will imply such a sufficient condition. Unfor-
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tunately, the gap between the condition we have and the condition we need,
still seems to be too large to close up. It is worthwhile to remark that the
known hexagons of order (s,t) with t # 33 do not satisfy the condition of
the above theorem.

Finally we remark that similar techniques yield the inequality (see

MATHON [M6])
t < 53 + t2(sz—s+1)

for a regular near hexagon with parameters (s,t,tz), as introduced by

SHULT & YANUSHKA [S7] (see alsoc [¥2]). If t, = 0, then a near hexagon is

2
the same as a generalized hexagon.

5.3. GEOMETRIC AND PSEUDO-GEOMETRIC GRAPHS FOR GENERALIZED POLYGONS

In this section we deal with the question whether a pseudo-~geometric
graph is geometric for a generalized n-gon. It is clear that for n e {2,3}
the point graph of an n-gon is the complete graph. Assume G is the point
graph of an n-gon D with n > 3. Then three points of D which form a triangle
in G, must lie on one line of D. This implies that the graph G:j;:o cannot
be an induced subgraph of G. The next result states that the converse is

also true.

5.3.1. LEMMA. For a generalised n-gon with n > 3, a pseudo~geometric graph
G is geometric iff o<j:>o 18 not an induced subgraph of G.

PROOF. Only the "if" part remains to be proved. Take n even (the case n odd
is not difficult, but superfluous because of the Feit-Higman theoxem). Let
D be the incidence structure whose points are the vertices of G, and whose
lines are the cliques (= complete subgraphs) of G of size Pil + 2. For two
adjacent vertices of G, there are pil vertices adjacent to both, but all
these vertices are mutually adjacent since otherwise a:j:>o occurs. This
means that every edge of G determines a unique line of D. This proves that
D is a 1 - (v,s+l,t+l) design, where s = pil +1 and t+1 = dl/s. Let G' be
the incidence graph of D. Suppose G has a c-cycle as an induced subgraph.
Then from pT,kml = 1 and pf,k =g-1 for 1 £ k < 4n it follows that ¢ 2 n
for ¢ even, and ¢ = 3 or ¢ > n for ¢ odd. Therefore, since each triangle of

G is on a line of D, we have that G' has girth at least 2n. Now t + 1 =P?ngnu1
7
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implies that the distance between a point and a line of D (regarded as
vertices of G') is at most n- 1. Hence G' has diameter n and girth 2n. This

proves that D is an n-gon, whose point graph is G. O

A direct consequence of this lemma (which was pointed out to me by

D.E. Taylor) is the following.

5.3.2. COROLLARY. For a generalized n-gon with n > 4, a pseudo-geometric

graph is geometric.

PROOF. If n > 4, then pfl = 1, Hence o(it:n does not occur in a pseudo-

geometric graph. Now 5.3.1 gives the result. 0

What remains to be studied are generalized quadrangles. A very easy
counting argument shows that the point graph G of a quadrangle of oxder
2

Py = t+1i,
= d1 = g(t+1) (this proves that the point graph of an n-gon is dis-

(s,t) is strongly regular with intersection numbers Pil =51,
0
Pyq
tance regular, in the case n = 4). This implies (see [C5], [T1] or Appendix

I) that the eigenvalues of G, and hence the eigenvalues of any pseudo-geo-

metric graph for a quadrangle of order (s,t), are
s(t+1) , s=~1 and =-t-1

of multiplicity

1, s?(st+1) /(s+t) and st(s+1)(c+1) /(s+t) ,

respectively.

There exist many pseudo-geometric graphs for quadrangles, which are
not geometric. The Shrikhande graph (see fly-leaf) is one of them. More
examples (including an infinite family) are given in Section 6.2. The
following theorem, which is due to CAMERON, GOETHALS & SEIDEL [C5], gives
a sufficient condition for a pseudo-geometric graph to be geometric, as
well as the extension of Higman's inequality to pseudo-geometric graphs

for generalized quadrangles.

5.3.3. THEOREM. Let G be a pseudo-geometric graph for a thick generalized
quadrangle of order (s,t). Then

ii. 1f equality holds, then G is geometric,
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iii. equality implies that all subconstituents of G are strongly

regular.
PROOF. Let A be the adjacency matrix of G. Define

E := -~ (s+1)A + (52 -1 +J .
Then from the eigenvalues of A it follows that E has just one non-zero
eigenvalue (s +1) (s +t) of multiplicity sz(st-+1) / (s +t). Hence
2
(*) rank E = g (st +1) /(s+t) .

Lat x be a vertex of G. Partition A and E according to x, the vertices ad-

jacent to x, and the vertices not adjacent to x:

0] j* 0 s2 ~sg* j*
A=3 Ay Bl e EETST By Byl
O Ay Ay I By By
* * Lo ; -
where A12 = A21 and E12 = E21. For i = 1,2, let Gi be the graph with ad

jacency matrix Aii (so Gi is a subconstituent of G). Then G, has s(t +1)

1
vertices, and is regular of degree pil = g~1. Hence s ~1 is an eigenvalue
of Al of multiplicity c, say. It is known (see [B5], [C12] or Appendix I)
that ¢ equals the number of components of Gl‘ Clearly each component has

at least s vertices. Hence
(#%) cs < s(t+1) .

The matrices All' I and J have a common basis of eigenvectors. Using this

it follows that By has an eigenvalue 0 of multiplicity ¢ ~1 (one of the

eigenvalues s ~ 1 of A11 corresponding to the eigenvector j leads to the

eigenvalue s(t+1) of Ell)a Hence

rank E11 = g(t+1) - (¢=-1) .

Now using (*) and (**) we have

s{t+1) -t < rank E11 < rank E = sz(st-rl) /(s+t) .

This yields
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t(s-1)(t-s2) <0,

proving (i) . Suppose equality holds. Then we must have equality in (*%),
which means that G1 is a disjoint union of complete graphs on s vertices.
Since x is arbitrary, this yields that o(it:o does not occur in G. Now
(ii) follows on applying 5.3.1.

Since the disjoint union of complete graphs of the same size is strongly

regular, it only remains to be proved that G, is strongly regular. This we

2
shall prove analogously to the proof of 5.2.5. We know that the eigenvalues
of E11 are 0, s(s+1) and s(sz-fl) of multiplicity 52, (s-—l)(sz-Pl) and 1,
respectively. Now using 1.3.3 and the eigenvalues of E, we obtain that the

matrix

has eigenvalues 0, 52(s-+1) and 252, where 252 is a simple eigenvalue with

#
eigenvector [52 j*] . Hence E22, and also A P has just two distinct eigen-

2
values not belonging to the eigenvector j. This proves that G2 is strongly

regulax. 0

From (iii) of the above theorem it follows that the number of points
adjacent to three mutually non-adjacent points of a quadrangle of order
(s,sz) is constant. This result was first proved by BOSE [B7].

A quadrangle of order (s,t) is the same as a partial geometry with
parameters (s,t,1) (see [H11], [T1] or Appendix I). For pseudo~geometric
graphs for a partial geometry with parameters (s,t,a), where o > 1, a result
like Lemma 5.3.1 does not hold anymore. Therefore the question in the be-
ginning of this section is much more difficult to answer for these geo-

metries.
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CHAPTER 6

CONSTRUCTIONS

6.1. SOME 2 - (71,15,3) DESIGNS

In this section we shall construct eight non-isomorphic 2 - (71,15,3)
designs. First we shall construct a 2 - (56,12,3) design D, which satisfies
the hypothesis of Theorem 3.2.4. Next we show that D is embeddable in a
2~ (71,15,3) design. A less extensive treatment of this construction appear-
ed in [B2]. Designs with these parameters seem to be new (see [C4] p.104,

or [H5] p.297).

The most important ingredient for our construction is Pé, the field
with eight elements. Let G be the grcup AIL(1,8), that is, the group of
2 a # 0, i e#. We shall iden-
. Although G

order 168 defined by x » ax“ +b, a,b ¢ TF

81

tify ¥, with AG(3,2), the 3-dimensional affine space over F

8

is not the full automorphism group of AG(3,2), G acts transitively on the
elements (we reserve the word points for points of a design), the lines
(i.e. unordered pairs of elements), the planes (sets of the form
{a,b,c,a+b+c}), and the sets of four elements which do not form a plane.
Moreover, the stabilizer of a line L has four orbits on lines: L itself,

the lines intersecting L, the lines parallel to L, and the lines skew to L.

Now we shall define the incidence structure D. The points of D are the

fifty-six ordered pairs of distinct elements of IF The blocks of D are the

g
3 s
seventy 4-subsets of Eéwlﬁt o, satisfying ¢~ = a+1, be a primitive element

of IFB.The point (0,1) is defined to be incident with the following blocks:

2 2 3 4

3 2 2 3 4 5
{0,1,a,07}, {0,1,0,a"}, {0,1,a ,a3}, {a,a%0a”,0 }, {a“,07,a ,a"},

2

6
(*) {O,lfaz.aG}, {O.l.az,a4}, {0,1,a4,a6}, {o,a ,a4,a6}, {a,a3,u4,a },

4 5 4 5 2 5 6
{0,1,07,07}, {0,1,0,a }, {O,l,a,as}, {a,a2,a4,a5}, {a,0%a7,0 }.

Now we let G act on D. This defines D, because G acts transitively on the
points of D, and because the map x r x2, which fixes the point (0,1), also

fixes the set of blocks incident with (0,1). A point (x,y) is called
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equivalent to a point (w,z) if {x,y} = {w,z}. Two blocks b < Ié and

b' c ¥y are called equivalent if b = b', or b n b’ = § (i.e. bub' = JFB).
We know that G has two orbits on the blocks of D. The first orbit contains

fifty-six blocks, they are the 4-subsets of ¥, which do not form a plane;

8
these blocks will be called blocks of type I. The second orbit consists of
the fourteen 4-subsets of FB which are planes; these blocks are of type II.
It is clear that equivalent blocks are of the same type.

6.1.1. LEMMA. Let (x,y) be a point of D. Let b ¢ ¥, and b' < F_ be dis-

8 8
tinet equivalent blocks of D.
i. If (x,y) is incident with b, then {x,y} ¢ b or {x,y} ¢ b'.
ii. If {x,y} < b, bof type I, then exactly one of the following two

statements 18 true.

1. (x,y) s incident with b and not with b, and (y,x) 1§ inci-
dent with b* and not with b;

2. (x.,y) Z8 incident with b' and not with b, and (v,x) 18 incident
with b and not with b'.

iii. If b 18 of type II, then (x,y) ©s incident with b <ff {x,y} < b.

iv. b and b* have no points of D in common.

PROOF. Without loss of generality take (x,y) = (0,1). We may do so, because
G is transitive on the points of D. Blocks incident with (0,1) are given in
(*). On applying the map x#+ x+1 to (*) we find that the blocks incident

with (1,0) are the following ones:

3 6
{O,I,a,a3}, {0,1,d3,a6}, {0,1,a,a6}, {a,a3.a5,a6}, {a,a4,a5,a 1,

6

() {0,1,02,0%F, 10,1,0°,0°}, {0,1,0%,0%}, {a%,0,0%,0%}, {a,0?,03,0%},

4 5 6

{0.1,a4,a5}, {0.1.a3,a5}, {0.1.a3,a4}, {a3ya ,07,00 ), {a?,a>

4 6
L0 0t
The first column of (%) and (**) consists of blocks of type II, all othexr
blocks are of type I. Now (i), (ii) and (iii) are just a matter of verifica-
tion. (iv) follows immediately from (ii) for blocks of type I, and from

(iii) for blocks of type II. [
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From (ii) and (iii) of this lemma we conclude the following. If each
point of D is replaced by its equivalent partner and each block of D of
type I by its equivalent partner, then incidence is not changed. Hence the
permutation of the points of D, which interchanges the equivalent pairs of
points, is an automorphism of D. This automorphism is different from, and

commutes with, the automorphisms provided by the group G.

6.1.2. THEOREM. D 728 a 2 - (56,12,3) design.

PROOF. First we prove that D is a l-~design. Since every point is incident
with fifteen blocks, the average number of points incident with a block
equals twelve. By 6.1.1.1iii a block of type II is incident with exactly
twelve points. Now, since G acts transitively on blocks of the same type,
also the blocks of type I are incident with exactly twelve points. We have
seen that G has three orbits on the (unordered) pairs of lines of Eé
(intersecting, parallel, skew), for which the following pairs are repre-

sentatives:
{{o,1}.{0,a}} , {{0,1},{a,a3}} s {{0,1},{a2,a4}} i

From this it follows that the group 2 xG, which is an automorphism group of
D, has seven orbits on the (unordered) pairs of points of D, for which the

following ones are representatives:
3 2 4
{w,n,0,0)} , {(0,1),(, ™)}, {(0,1),(c%0)},

{(1,0),(0,)} , {(1,0),(a,a3)} . {(1,0),(a2,a4)} ’

{((1,0,(0,01} .

Blocks incident with (0,1) and (1,0) are given in (*) and (*x), respective-
ly. Using the maps x+ ox, x+ x+0a and x> a(x +a), we obtain the blocks

incident with (0,a), (a,a3) and (az,a4). The blocks incident with (0,a) are

4
{O,a.az,a4}, {O,u,az,a3}. {O,G,a3.u4}. (uz,u3,a4,a5}, {a3,a ,u5,a6},

(0,1,a,a3}, {O,a,a3.a5}, {0,1.a,a5}, {l,az,a3,a5}, {1,a2,a4,a5}.

2
{O,a,as,a6}, {O.Q,az,aS}, {O,u.az,aG}, {az,a3.a5,a6kf {i,a ,a3,a6}a

The blocks incident with (a,aB) are
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3 3 2 2 4
€0, 10,0k, {(Osara,0), {1,0,00,0%), €0,1,0%,0%), {1,0%,0%,0%),

. .
{a.aB,a .as}, {a,azyaa,a4}, {u,az.a3,a5}. {O,az.a4.a5}, {0,1,a2,a5},

2 4
{asa ,a3,a6}, {O,u.az,aB}, {O.u,a3.a6}, {Olaz,a4,a6}. {00 .us,ae}-

The blocks incident with (a2,a4) are

2 4 5 3

{O,a,uz,a4}, {0,0%,07,07}, {a,uz

.u4,a5}, {0,0,a ,as}, {l,a,a3,a5},

2 4 5 6 2 3 6
{a $O L0 L0 }l {a Ia3la4la5}l {321331a4136}r {OIQSIQS:GG}: {Olala Fass }r

2 3 4 2 3 4 2 4 3 5 5 6
{1IQ $ 0,0 }r {Ora O 50 }r %Ollla O }I {Ollla O ﬁ; {0,1,& s O }-
Blocks incident with (0,1) are marked by €. Blocks incident with (1,0) are
marked by k. We see that for each of the seven pairs of points there are
exactly three blocks incident with both points. Hence D is a 2~ (56,12,3)
design. O

Next we shall see that D satisfies the hypothesis of 3.2.4. The line
graph of a geometry is the graph whose vertices are the lines, two vertices

being adjacent iff the lines intersect.

6.1.3. THEOREM. D has just three intersection numbers 3, 2 and 0 (= k-xr+i).
The class graph of D is the complement of the line graph of PG(3,2).

PROOF. Let b, ¢ IF, and b, < F_, be non-equivalent blocks of D. Let b] and

1 8 2 8 1
bé be the eguivalent partners of b1 and b2, respectively. Let Bis Bys Bi,
Bé be the sets of points incident with bl’ b2, bi, bi, respectively. Then
by 6.1.1

¥ = i = = -

B, nBj| = |B,nByf =0=k-z+1r.

Hence by 3.2.1.1i
= 3 . t - ¢ %

B, 0 B,| IB1 n By = [B] nBy| = [B] nBY| .

This implies
) § P
|(B1 u Bl) n (82 U Bz)i = 4|B1 n Byl -

From {(ii) and (iii) of 6.1.1 it follows that
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[(B, uBl) n (B, uBY| =

2
Heey) e ¥y | x # v, {x,y} € by or {x,y} < by,

{x,v} ¢ b, or {x,y} ¢ bé}l =

2
8 if [b, nby| =2,
12 if [b, nb,| e {1,3} .
Hence 3, 2 and 0 are the intersection numbers of D. It is clear that the

thirtyfive equivalence classes of blocks of D can be represented by the

4-subsets of F_ containing 0. Therefore, they can also be represented by

8
all 3-subsets of Ty~ {0}. Now using Result 4.2.3 we see that the class
graph of D is indeed the complement of the line graph of PG(3,2). O

By the above theorem, there exists a 2-1 correspondence between the
blocks of D and the lines of PG(3,2), such that two blocks have no point in
common iff they correspond to the same line of PG(3,2), two blocks have two
points in common iff they correspond to intersecting lines and two blocks

have three points in common iff they correspond to skew lines.

6.1.4. THEOREM. D 78 embeddable in a symmetric 2 - (71,15,3) design.

PROOF. We extend D to D, with fifteen points (called new points), being the

1
points of PG(3,2) and one block (new block). The points incident with the

new block are precisely the new points. We define a new point to be inci=-
dent with an old block (block of D) iff the line of PG(3,2) corresponding
to that block contains that point. Now it is easily seen that D1 is a

1~ (71,15,15) design, and that any two distinct blocks of D1 have three

points in common. This proves that the dual of D and therefore D1 itself,

1l
is a symmetric 2 - (71,15,3) design. 0

From 6.1.1.1iii it follows that the seven equivalence classes of blocks
of type II of D correspond to seven mutually intersecting lines of PG(3,2).
For these lines we may take seven lines through one point or seven lines in

one plane. Let D, be the embedding of D in which blocks of type II corre-

1
spond to lines through one point, and let D

* *

1 and D2 to be the dual.of D1

5 be the other embedding of D.

Define D and Dy, respectively. We shall show
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that these four 2 - (71,15,3) designs are non-isomorhic. To achieve this we
define a block B of a 2~ (71,15,3) design to be special if the derived
design with respect to B (i.e. the 2 - (15,3,2) sﬁbdesign of the 2~ (71,15,3)
design, formed by the points of B and the blocks distinct from B) consists
of two identical copies of a 2 - (15,3,1) design. It is not difficult to see
that the residual design with respect to a special block B (i.e. the

2~ (56,12,3) subdesign of the 2~ (71,15,3) design, formed by the points off
B and the blocks distinct from B) satisfies the hypothesis of Theorem 3.2.4
and that its class graph is isomorphic to the complement of the block graph
of the 2~ (15,3,1) design associated to B (which clearly is quasi-symmetric,
since A = 1). From the proof of 6.1.4 it follows that the new blocks of D

1

and D2 are special. Moreover, 6.1.1.iii implies that the new point of D,
which is incident with all old blocks of type II, is a special block of D?.

By verification it turns out that these are the only special blocks of Dl’

* *
D1 and D2. However, D2 has seven special blocks. They are the seven new

points of D2, which lie in the plane of PG(3,2) corresponding to the old
blocks of type II. This already shows that

* E3 * * *
Dzaénz, D2$D1, D2$D1, quéni, Dzaénl .

We know that any 2~ (15,3,1) design associated to a special block of D1 or
D2 is the design formed by the points and lines of PG(3,2). By use of
6.1.1.4iid it follows that also the 2 - (15,3,1) design associated to the

*

1

residual design of DI

graph of D* is again the complement of the line graph of PG(3,2). This

*
special block of D, is the design which comes from PG(3,2). Let D be the

with respect to the special block. Then the class

means that, similarly as for the design D, interchanging points and planes

of PG(3,2) yields a second embedding of D* into a 2~ (71,15,3) design. Let

Dg be this 2 - (71,15,3) design and let D3 be the dual of Dg. By verifica-
tion it follows that Dg has just one special block (the one we started

with), but that D3 has precisely seven special blocks. This shows that
* .
D1 o D;. By further investigation it turns out that the 2~ (15,3,1) design

associated to any of the seven special blocks of D, is again the design

obtained from PG(3,2), however, the seven special glocks of D; give other
2= (15,3,1) designs (in fact all seven of them give the second design in
the list of WHITE, COLE & CUMMINGS [W3]). This proves that DZ & Dy, and
therefore D1 Gt Dim Hence Dl’ D:, pz, D*, D, and D* are all non-isomorphic.

3 3
But there is still more. As remarked before, the 2 - (15,3,1) design associ-~
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ated to one of the seven special blocks of D, (these seven special blocks

3
form an orbit under the automorphism group of D3) is the design formed by

the points and lines of PG(3,2). This implies that once again we can make
another 2 - (71,15,3) design by taking away the (two identical) 2 - (15,3,1)
designs and putting them back again after having interchanged points and

planes. Call this new design D4, and let DZ be its dual. It turns out that
%
D4 has one special block, and that D4 has seven special blocks. Hence D4 is
. . * * * . kY
not isomorphic to Dl' Dl' D2, D3 and D4. In addition, D4

*
would have been isomorphic to D1 or Dl'

is not isomorphic

*
to D2 and D3, since otherwise D3

Because of time considerations we did not check whether it is possible

to produce still more 2 - (71,15,3) designs by playing once again the same
*

e Thus we have the following

game with respect to a special block of D

result.

6.1.5. THEOREM. There exist at least eight 2~ (71,15,3) designs.

*
3
taking residual designs with respect to various special blocks we obtain

*
The designs Dl’ D;, D, and DZ are given explicitly in Appendix II. By
(at least) four non-isomorphic 2 - (56,12,3) designs which satisfy the hypo-
thesis of Theorem 3.2.4. One of these designs has a class graph which is

non-~isomoxrphic to the class graph of the other ones.

An ovgl in a 2~ (71,15,3) design is a set S of six points such that
any block has two or no points with S in common, see [A4]. Let S be an oval.
It is clear that exactly twentysix blocks do not meet S. Therefore, by
3.1.1 an oval of a 2-(71,15,3) design is equivalent to an empty sub-
design with six points and twentysix blocks. From 3.1.1.ii (see also [a4])
it follows that the subdesign of the 2 - (71,15,3) design formed by the
points off S and the blocks not meeting S is the dual of a 2 - (26,6,3)
design. By verification it follows that the following blocks of D provide
an oval in D :

1

2 3 2 5 5
{1,0,0%0a }I {11(1:@ 70 }: {0,1,0,0 }

2 4 5 2

{1,a §O ;0 }l {ala 30,08

ra41055}: {0:a" ;0 40 }.

We conclude this section with a remark about automorphism groups. The

group 2 xG of order 336 is an automorphism group of Dl’ D2, D3 and their
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duals. The designs D4 and DZ have an automorphism group of order 48, viz.

the stabilizer of a special block of D3. F.C. Bussemaker has verified by use
of a computer that the groups mentioned above are the full automorphism

groups.

ACKNOWLEDGEMENT . I thank H.J. Beker, F.C. Bussemaker, R.H.F. Denniston and

M. Hall Jr. for various contributions to this section.

6.2. SOME STRONGLY REGULAR GRAPHS

Suppose A is the adjacency matrix of a strongly regular graph G on n

vertices of degree d. Furthermore, assume that A admits the following

structure:

All s 00 Alm

B = . . p

Am1 N Amm
where Aij is a square matrix of size ¢ := n/m having constant row sums
equal to bij' say, for i,j = 1,...,m. From 1.2.3.1iii it follows that the
elgenvalues of the matrix B := (bij) satisfy
(%} Al(B) = AI(A) =d , Ai(B) € {AZ(A), An(A)} for i = 2,...,m .

Hence (*) yields directives for the construction of strongly regular graphs,
whose adjacency matrix admits this block structure. Let us consider two

special cases of this structure.

CASE 1: All diagonal entries of B are equal to Iy, say, and all off-diagonal

entries of B are equal to ryr say;, that is,
B = (r, ~r )L+ r J.
Hence by (*)

(m-»l)r1 + r, =d and r

0 ] € {KZ(A), kn(A)} .

This implies

0

A, B)m=1) +d) /m , z; = (d=2,(8)) /m

or

it
i

()xn(A) m-1)+d) /m ., =x, (d—An(A)) /m .

o
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6.2.1. EXAMPLE. We wish to construct a strongly regular graph G with para-
meter set (q3+q2+q+1,q2+q,q—1,q+l), admitting the block structure of case 1
with m = q2+1 and ¢ = g+ 1. Then (see Appendix I) )\Z(G) =q=-1,

An(G) = -g~-1 and the formulas above yield ry =4, ¥y = 1. It is indeed
possible to construct G, by use of this framework. To do so we define the

permutation matrices P and Q of size g+ 1 by

os
it

P o= and Q). .

[o 1 1 if i+3=qg+2,
10 +J

0 otherwise.

It easily follows that

+ * +1~ -
Pq 1 =1, (Pk) - Pq 1~k =p k 2

% _ .
o= " 0 = 7, §P1=J,
. k -k
For k = 1,...,9, define Rk = P Q = QP ', Then

RS R R‘kRQ=Pk_£' %Ri=3r § %RiRj:(q+1)J,

i=0 i=0 3=0

for k,2 = 1,...,9. Let Ppree-sPy (v := q2) be the points, and let

Cl""'c be the parallel classes of an affine plane of order g. For

g+l 5
i, =1,...,9"+1, define the (g+1) x (g+1) matrices

J-1 if i

il

Je
q2+1 or j =q2+1,

R, Afi# 3§, is 9%, 3 < g%, and c, contains the

il

= I lfl#]rl

line through =5 and pj.

By use of the formulas above it is straightforward to verify that the square
matrix A of size q3 +q2 +qg+ 1, built up with these block matrices Aij’
satisfies
2
(A+I)" = (g+1)J + q21 .

Therefore, A is the adjacency matrix of the desired strongly regular graph.
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A strongly regular graph with the same parameters is provided by the
point graph of a generalized quadrangle of order (g:q) (see Section5.1). However,
for g >4 the graphs constructed above need not be geometric. Indeed, we can
order the points and the parallel classes of an affine plane of order q in
such a way that the graph we obtained by our construction has o(it:n as an
induced subgraph. Then by 5.3.1, this graph is not geometric, and therefore

non~-isomorphic to any of those which come from generalized quadrangles.

As a second example of graphs admitting the block structure of case 1
we mention the eleven incidence graphs of three linked 2 - (16,6,2) designs

{see Section 4.2).

CASE 2: All diagonal entries of B are equal to Lo say. The off-diagonal
entries of B take exactly two values r, and Xy, say {(r, > r

T ). Then by (x)
the (0,1) matrix

2

1
P (B - IZ(J_I) - rOI)

1

has just three distinct eigenvalues, one of which is simple and belongs to
the eigenvector j. Hence g is the adjacency matrix of a strongly regular

graph G' with eigenvalues

4’ = Al(G‘) = (d—r2m+r2~ro) /(rl—rz) R

A (G") (A (B) +xy~xp) [ (xy ~x,)

Xm(G“)

()\n(A) +r2-r0) / (r1 -rz) .

6.2.2. EXAMPLE. We wish to construct a strongly regular graph G with para-
meters (40,12,2,4), admitting the block structure of case 2 with m = 10,

c = 4, Lo = Fg = 0, ry = 2. FProm AZ(G) = 2, A40(G) = «4 and the above for-
mulas it follows that d° = 6, }\Z(G’) = 1, Alo(c;’) = =2, Hence G' is the
complement of the Petersen graph. For h = 0,1 and i, = 2,3,4, define the

square (0,1) matrices T of size four, by

hij

h if (ki’zf) € {(111)1(1l2')l(kfl)l(kig)} 7

( )

T .. H
hij kl 1 ~h otherwise.
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Then we have for h,h' = 0,1; i,j,i*,3' = 2,3,4,

Thij = Thji P Thij J = 2T, Thij + T(l—h) i =J ,

T .. =3 if 3 # 3° T =

hij “hrivgr D0 R I T I Thiy thivy T “tiiir !
&

T . = B

hij T(1-n)it - Toii

With the help of these properties it is relatively easy to check that the
following two matrices are adjacency matrices of strongly regular graphs

with parameters (40,12,2,4).

O Togs Tosa Toas Tosz Tizz Toza  © e 0 0 T3 Tozz Tosz Tozz Tozz Tosz ° o0
Toas 0 O Toas Tizg 0 Tizo Tozs O Tizo| |Tozz O To33 Toas Tozz ¢ O Tosz Tosz °
Toas O O Ti33 Toaz Toaa O Tizz Tope O | {Toas Toss © Toas O Tozz O Tozz O Toaz
Toas Tosa T133 © O Tizz O Tozs O Topa| (Tozg Tozs Toaa O O O oo O Tops Ton
Toys Tras Tosa O O O Tips Tigq Tiop O | (Topp Tozz O O O To33 Togy Tozs Tozz O
T O Toap Tyzp O 0 Ty O Toup Tysgl %o O Tozz O Tozz 0 Toaa Tozs O Toas
Tosz T2z © 9 Tyzp Tiap © 0 O Tosp Tono| 1Toas O O Tozp Tosa Toas O © Tozs Toas

O Tous T3z Tozs Tige O O O Tioy Tiosf | O Tozz Tozs O Tosz Tosz O 9 Tosa Tous

0 0 Ty, O Ton Tog ooy Tz O Toaz| | O Toos O Toas Tosz O Toaw Toas O Toas
\_ 0 Ty O Ty O Tigy Tozz Tizz Toss O | [ 0 O Toza Toas O Tosa Toss Toaa Toas °

MATHON [#5] used the block structure of case 2 for the construction of
strongly regular graphs with parameters (pq2 4 (pa=1) , % (pa>~5) , k(pa’-1))
for prime powers p and ¢, p = 1, g £ -1 (mod 4). The strongly regular graph
G', which provides the framework for Mathon's construction has parameters
(p s 3(p~1) + %(p=~5) , %(p~1)).

Any graph constructed in one of the examples above has the property

that pi1-+2 = pfl. This implies that its adjacency matrix A satisfies

2 2 2
(A+I) —p11J+ (d+1~p11)1 5

where d denotes the degree of the graph. This yields the well-known fact
that A+I is the incidence matrix of a symmetric 2-(n,d+1,pf1) design.
Similarly, if a strongly regular graph satisfies pil =Py then its a?—
Jjacency matrix itself is the incidence matrix of a symmetric 2-(n,d,p11)
design. This phenomenon is behind the next example, where we derive a

strongly regular graph with p111+2 = pfl from one with pil = pfl.
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6.2.3. EXAMPLE. We start with a description of the generalized quadrangle Q

of order (21—1,22+1), £ € N, due to HALL [H6]. Consider AG(3,q),

the three

dimensional affine geometry over Eﬁ, with g = ZQ. Let S be a set of

m := g+ 2 lines from AG(3,q) passing through one point, such that no three

lines lie in one plane. Such a set exists, because it corresponds

plete oval in the projective plane PG(2,q), which exists iff g is

to a com-

even, see

[D3]. It is easy to prove that each plane of AG(3,g) contains two or no

lines from S. The points of Q are the points of AG(3,q); the lines of Q are

the lines of S, and the lines of AG(3,q) which are parallel to a
a point and a line are incident in Q, iff they are incident in AG
it is easy to prove that Q is a generalized quadrangle of oxrder (
Let us partition the adjacency matrix A of the line graph of Q (i
point graph of the dual of Q) into m2 square block matrices of si

according to the m parallel classes in Q:

11 im
A= . PO
Aml P Amm

From the structure of Q it follows that we may arrange the lines
Aij =0 if i = j;
A,.=1_®J if i odd and j = i+1, or j odd and i =
1] q q
P11 s P1q
i3 | S
P ves P
ql qq,
for all other values of i,j, where sz is a permutation matrix of
for k,2 = 1,...,9. Now we derive a new matrix A from A by replaci
A, A, . A, . a,.
ii i,i+1 by i,4i+1 ii ,
Bie1,1 Piet, e Bivt,iet Pty

for i 1,3,...,m=1. Then it follows that

~2
A =A2=qJ+q21.,

line of S;
(3,q) . Now
g-1,g+1).
.e. the

ze qZ'

such that

J+1;

size q,

ng

Since A is symmetric with all diagonal entries equal to one, the matrix
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A-I is the adjacency matrix of a strongly regular graph with parameters
(qz(q+2),q2+q~1,qn2,q). For q = 2 this graph is the Clebsch graph (see
Section 4.1, Figure 2), but for all other values of g = 22 these strongly

regular graphs seem to be new.

We remark that in the above example A has the block structure of case
1, whilst 2 has the block structure of case 2 with the cocktailparty graph
on m vertices (complete :m-partite graph) as the underlying strongly regular

graph.

The remainder of this section will be devoted to strongly regular
graphs with parameters (40,12,2,4). For convenience we call such graphs
40~graphs. Examples 6.2.1 (g=3) and 6.2.2 provide 40-graphs. The point
graph of a generalized quadrangle of order (3,3) is a 40-graph. PAYNE [P5]
proved that there are exactly two generalized quadrangles of order (3,3)
(one being the dual of the other). In fact, these two geometric 40-~graphs
are the graph of Example 6.2.1 with g = 3, and the second graph of Example
6.2.2. From pii = 2 it follows that a subgraph of a 40~graph induced by all
vertices adjacent to a given vertex, is reqular of degree two, so a dis-

joint union of cycles. But we can say more.

6.2.4. LEMMA. Let G be a 40-graph. Let x be a vertex of G and let G, be the
subgraph of G induced by the vertices adjacent to x. Then G, 18 one of the
following graphs:

i. a 12~cycle;

ii. the disjoint union of a 9-cycle and a triangle;
iii. the disjoint union of two 6-cycles;

iv. the disjoint union of a é-cycle and two triangles;
V. the disjoint union of four triangles.

PROOF. We only have to prove that the number of vertices of any component
of GX is divisible by three. If Gx is connected, there is nothing to prove.
Suppose GX has a component C of size ¢ < 12. We partition A into sixteen
block matrices according to: the vertex x, the vertices of C, the remaining

vertices of Gx’ and the vertices not adjacent to x. Then the entries of



77

0 c/3 4~c/3 8

are the average row sums of the block matrices of A. It is easy to see that

A (B) =12, A,y(B) = Ay(B) = 2, A4(B) =-4.
On the other hand we know
AI(A) = 12 , AZ(A) = 13(A) =2, A4O(A) = -,

So the eigenvalues of B interlace the eigenvalues of A tightly. Hence, by
1.2.3.ii the row sums of the block matrices are constant, so c¢/3 is an

integer. 0

We associate with a 40-~graph a 5-tuple (al,..»,as), where ai,...,a5
denote the number of vertices x for which Gx has the form (i),...,(V),
respectively, of the above lemma. Using 5.3.1 we observe that a 40-graph is
the point graph of a generalized quadrangle iff its 5-tuple is (0,0,0,0,40).
The first graph of Example 6.2.2 has 5-tuple (0,0,4,24,12). R. Mathon

(private communication) constructed a 40~graph with 5-tuple (0,0,0,36,4).

WEISFEILER [W1] describes an algorithm for generating strongly regular
graphs with a given parameter set, based on the principle of backtracking.
By use of this algorithm we wrote a computer program (in Algol 60} for the
construction of 40-graphs. Weisfeiler's algorithm rejects isomorphism only
partially. This means that some of the produced 40-graphs may be isomorxphic.
We had our program run for about ten minutes. It turned out that, although
we obtained about twohundred (not necessarily non-isomorphic) 40-graphs,
the process of finding all 40-graphs still was in the beginning phase. For
this reason there was no hope for completing the whole search. It seems
that there are thousands of 40-graphs. Still we wanted to test the few
hundred 40-graphs we found on isomorphism. A complete test on isomorphisms
would have been too expensive. Therefore we just computed the 5~tuple of
each 40-graph. It turned out that twentyone of these 40-graphs had different
5~tuples. So we found at least twentyone non-isomorphic 40-graphs. One of

these is the first graph of Example 6.2.2. But none of these graphs has the
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S5-tuple of a geometric 40-graph or Mathon's 40-graph. So we have the follow-

ing result.

6.2.5. THEOREM. There exist at least twentyfour strongly regular graphs
with parameters (40,12,2,4).

These 40~graphs are given in Appendix II, except for the three 40~
graphs that are already exhibited in the Examples 6.2.1 and 6.2.2. The
first graph in the list is Mathon's 40-graph.

We noticed already that a 40-graph gives a 2~ (40,13,4) design. There
is no reason why non-isomorphic graphs should lead to non-isomorphic
designs. However, it has been checked that our twentyfour 40~graphs do
produce twentyfour non-isomorphic 2 - (40,13,4) designs.

An oval in a 2~ (40,13,4) design is a set S of four points, such that
any block has at most two points in common with S, see [A4]. Easy counting
arguments give that twelve blocks are disjoint from S and four blocks have
exactly one point in common with S. Suppose we have a 40-graph with a co-
clique of size four, such that any vertex is adjacent to two or to no
vertices of that coclique. Then this coclique of the 40-graph produces an
oval in the corresponding 2 - (40,13,4) design. Conversely, it can be proved
that any oval in a 2 - (40,13,4) design, obtained from a 40-graph, corre-
sponds to such a coclique. We see that the two 40-graphs of Example 6.2.2
produce 2 - (40,13,4) designs with ten disjoint ovals. Also the last six
40~graphs of Appendix II supply designs with ovals. The remaining sixteen

40-graphs have no ovals.

In 4.2.2 we saw that the chromatic number of any 40-graph is at least
five. Since the complement of the Petersen graph is 5-colourable, it follows

that the two 40-graphs of Example 6.2.2 are S5~colourable as well.
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APPENDIX I

GRAPHS AND DESIGNS

This appendix contains the basic concepts and results from the theory
of graphs and designs, which are used in the present monograph. Some general
references are [B5], [c13], [H8], [w6] for graphs, [D3], [H5], [H17], [R3]
for designs, and [B7], [C6] for both. We shall assume knowledge of Section
1.1,

A graph consists of a finite non-empty set of vertices together with a
set of edges, where each edge is an unordered pair of vertices (so our
graphs are finite, undirected and without loops or multiple edges). The two
vertices of an edge are called adjacent (or joint). A graph is complete if
every pair of vertices is an edge. The complete graph on n vertices is
denoted by K . A graph without edges is called void (or null). The comple-
ment of a graph G is the graph G on the same vertex-set as G, where any two
vertices are adjacent whenever they are not adjacent in G. The disjoint
union of a collection of graphs Gl""’Gm on disjoint vertex sets is the
graph whose vertex-set is the union of all vertex-sets, and whose edge-set
is the union of all edge-sets of GpeoeasGpe B graph is discomnected if it
is the disjoint union of two or more graphs. Any graph G is the disjoint
union of one or more connected (= not disconnected) graphs, called the
components of G.

Let G be a graph on n vertices. A sequence of distinct vertices
Rgreoor¥y of G is a path of length & between %g and x, if {xi_l,xi} ig an
edge for i = 1,...,%. The distance p(x,y) between two vertices x and y is
the length of the shortest path between x and y (p({x,y) = » if x and y are
in distinct components of G). The diameter of G is the largest distance in

G. A sequence of vertices Xgeoo X is a cireuit of length & if KygonosX

2 2
are distinct, x, = Koo 2 > 2 and {xi_l,xi} is an edge for i = 1,...,%. The
girth of G is the length of the shortest circuit in G. The adjacency matrix

of G is the n X n matrix A, indexed by the vertices of G, defined by

1 if {x,y} is an edge,

®y 0 otherwise.
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Obviously, G has adjacency matrix J-A - I. The elgenvalues of G are the
eigenvalues of A; they are denoted by Al(G) > ...002 An(G) (the eigenvalues

are real, because A is symmetric). We easily have that

Al(Kn) =n-1, A2(Kn) = L= An(Kn) = -1

The incidence matrix N of G, whose rows are indexed by the vertices and
whose columns are indexed by the edges, is defined by

1 if % € B,
(N) =

®oE 0 otherwise.

The graph with adjacency matrix N N - 2I is called the line graph of G,
denoted by L(G). The subgraph of G induced by a set S of vertices of G is
the graph with vertex-set S, where two vertices are adjacent whenever they
are adjacent in G (a subgraph is always an induced subgraph). Note that the
adjacency matrix of a subgraph of G is a principal submatrix of A. A clique
is a complete subgraph; a coclique (or independent set of vertices) is a
void subgraph. The size of the largest clique and coclique is denoted by
w(G) and a(G), respectively. A colouring of G is a colouring of the verti-
ces, such that adjacent vertices have different colours (i.e. a partition
of the vertices into cocliques). Vertices which are coloured with the same
colour form a colour class. G is k-colourable if G admits a colouring with
k colours; the smallest possible value of k is the chromatic number of G,

denoted by y(G). It easily follows that
Y(G) 2 w(G) , Y(@a(G) 2 n.

If Y(G) = 2, then G is bipartite. By use of 1.1.2 it follows that if G is
bipartite, then

Ai(G) = ~An+1“i(G) for i = 1,...,n.

Conversely, Al(G) = —An(G) implies that G is void or bipartite; this follows
from the Perron-Frobenius theorem on non-negative matrices (see [C13],
[M3]). If G can be coloured with y colours, such that all pairs of differ-
ently coloured vertices are edges, then G is complete y-partite (i.e. the
complement of the disjoint union of complete graphs). The complete bipartite

graph (y = 2) is denoted by K , where £ and m are the sizes of the two

L,m
colour classes. By use of 1.1.2 it follows that
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AR ) = -x |

= Vim = i o= 2,...,0+m-1 .
1% m e+m Kk,m) m , Ai(Kklm) 0 for i 2 s L4+m=1

The degree (or valency) of a vertex is the number of vertices adjacent to
that vertex. A graph is regular (of degree d) if all its vertices have the
same degree (equal to d).

Let G be regular of degree d. Then Aj = dj, hence d is an eigenvalue
of G with eigenvector j. Moreover, the matrices A, J and I have a common

basis of eigenvectors. By use of this we obtain

Al(é) =n-d-1, A, (G =-2A (G) ~1 for i = 2,...,n.
1 -1

n+2

If G is connected, then the Perron-Frobenius theorem yields that d is the
largest eigenvalue of G with multiplicity one. Hence, d = Al(G) and its
multiplicity equals the number of components of G (see [B5] for an element-
ary proof). If G is connected and d = 2, then G is called an n-cycle (or
eircult) . G is strongly regular if G is not void or complete and the ad-

jacency matrix A satisfies

2
(1) AT =dT , (B-X,(G) D) (A~} (G)T) =p] T,

for some number pfl. This is equivalent to requiring that A has precisely
two distinct eigenvalues not belonging to the eigenvector j.

Now let G be strongly regular. Then also G is strongly regular. Com-
putation of the diagonal entries and the row sums of both sides of the

second equality of (1) yields

2 2
(2) d+2,(@A (@ =pi, , (@=),(@)(d-A_(6) = pj, n.
Define p. := A (G) + A_(G) + p°.. Then (1) b
erine pll = 2 n pllu en ecomes

AT = 4J , A2 = d1 + pilA + pfi(J-—A-I) .

This reflects that G satisfies the following three properties: G is regular
of degree d; for any pair of adjacent vertices there are exactly pil ver-
tices adjacent to both; for any pair of non-adjacent vertices there are

! 2 are the
Piyr Pig
parameters of G. Let £ be the multiplicity of the eigenvalue A2(G). Then

exactly pfl vertices adjacent to both. The integers n, d,

0 = trace A = 4 + fAz(G) + (n-f~-1)Xn(G) ;
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whence

d+ (n-1)a (G)

1
f»w, )\n(G)(n-2f~1) ~——d—f(p11-p

2

11)

So, if n # 2f+ 1, then Xn(G) is rational, and therefore A2(G) and An(G) are

integers. It is an easy exercise (see [C6]) to show that n = 2f+ 1 implies

n-1=2d = 4pf1 = 4(p11+1) » 2,(6) == (@) =1 = ~%+k/n .

By use of the above results and trace A = 0, it follows that XZ(G) > 0 and
Xn(G) < =1. From (2) we have that AZ(G) = 0 iff pil = d. It is easily seen

that pfl = d reflects that G is a complete y-partite graph. If An(G) = -1,
then Az(a) = (0, hence G is the disjoint union of complete graphs and
pfl = (. Conversely, by (1) pfl = 0 implies 4 = A2(G) and An(G) = 1, These

two families of strongly regular graphs are called imprimitive. Let x be a
vertex of G. The two subconstituents of G with respect to x are the sub-
graphs of G induced by the vertices adjacent to x and by the vertices non-
adjacent to x. The subconstituents are regular of degree pil and d-—pfl,
respectively. Examples of primitive (= not imprimitive) strongly regular
graphs are: the pentagon (5-cycle), L(Km) for m 2 5 (= triangular graph).

L(Km m) for m 2 3 (= lattice graph) and their complements. The Petersen

14

graph is the complement of L(KS) and has parameters (10,3,0,1}).

An Zneidence structure consists of a finite non-empty set V, of points

1

o of blocks, together with a subset of v, ox v,

of flags. A point and a block are incident if they form a flag. Often blocks

and a finite non-empty set V

are identified with the sets of points with which they are incident; if so,
blocks are denoted by capitals, otherwise we use small types. An incidence
structure without flags is called empty.

Let D be an incidence structure with v points and b blocks. An inci-
dence structure D' formed by points and blocks of D is a substructure of D
whenever a point and a block are incident in D' iff they are incident in D.
The incidence matrix N of D, whose rows are indexed by the points and whose

columns are indexed by the blocks, is defined by
1 if xe B,

0 otherwise.
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Theincidence structures with incidence matrices N* and J - N are called the
dual and the complement of D, respectively. The graph with adjacency matrix
g* g] is the Zneidence graph of D. Clearly D and its dual have the same
incidence graph. We call D a t - (v,k,)) design (or t-design with parameters
(v,k,A\)) if all blocks have size k, and if any set of t points is contained
in exactly A blocks. A t - (v,k,A) design with k < t oxr v~k < t is degenerate.
A design is a t-design for some t. A subdesign is a substructure which is a
design. Note that we allow repeated blocks (two or more blocks incident
with exactly the same points).

Let D be a non-degenerate t - (v,k,A) design. The complement of D is
also a non-degenerate t-design. By elementary counting we see that for t > 1
D is also a (t~1) - (v, k,A(v-t+1) / (k~t+1)) design. In particular, D is a
1~ (v,k,r) design, where
v~-1 k-

e

r o= () /

1
1) 7
r equals the number of blocks incident with any point. Counting flags yields
bk = vr. If D is a 1 - (v,k,r) design, then rk is the largest eigenvalue of

*
NN and hence by 1.1.2 Vrk is the largest singular value of N. A 2-design
is also called (balanced incomplete) block design. Now let D be a non-

degenerate 2 - (v,k,A) design. In terms of the incidence matrix N this means
* *
(3) NJIJ=kJ, NI =1xrJ, NN =AXJ+ (r~-\TI .

NN* has eigenvalues Av+r -A = rk and r ~ X of multiplicity 1 and v-1,
respectively. By 1.1.2 these eigenvalues are the squares of the singular
values of N. From ¥k # 0, r~A # 0, it follows that v = rank NN* = rank N,
hence b 2 v (Fishexr's inequality). If b = v (i.e. ¥ = k), D is called
symmetric. Formula (3) yields N(N* - (A/x)J) = (xr-A)I. If D is symmetric, N
is square, hence (N*-(X/r)J)N = (x=-A)I, i.e. N*N = AJ + (r=-A)I, and
therefore the dual of D is a symmetric 2 -~ (v,k,A) design as well. Let D be
symmetric, and let B be a block of D. The subdesign formed by the points
incident with B and the blocks distinct from B is a 2 - (k,A,A-1) design
(possibly degenerate), called the derived design of D with respect to B.
Similarly, the subdesign formed by the points not incident with B and the
blocks distinct from B is a 2 - (v-k,k-A,1) design (possibly degenerate),
called the residual design of D with respect to B. A 2 - (v-k,k-A,A) design

D' is embeddable in D if D' is a residual design of D. For example, the
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points and lines of PG(2,q), the projective plane of order g, form a sym=-
metric 2-—(q2+q+1,q+1,1) design; the degenerate 2 - (g+1,1,0) design is a
derived design, and the affine plane of order g, which is a 2-—(q2,q,1)
design, is a residual design.

A partial geometry with parameters (s,t,a), s,t,o ¢ N, is a

1~ (v,s+1,t+1) design satisfying the following two conditions:

any two blocks have at most one point in common;
(4) for any non-incident point-block pair (x,B) the number of

blocks incident with x and intersecting B equals a.

For a partial geometry we speak of lines rather than blocks. Let D denote a
partial geometry with parameters (s,t,a) and incidence matrix N. The graph
with adjacency matrix NN - (£ +1)I is the point graph of D. The line graph
of D is the point graph of the dual of D. From the definition it readily
follows that the point graph G of D is strongly regular with parameters

(v,s(t+1) ,t(a=1) +s8~1,a(t+1)) .

By use of our identities for strongly regular graphs we obtain

i

Al(G) = s(t+1) , 12(G) s-=-a , An(G) = -t~1,

v=(s+l)(st+a)/o , Db (t+1) (st +a)/a .

i

Hence NN* has the eigenvalues (s+1)(t+1), 0 and s+t +1 ~a of multiplicity
1, s(s+il-~a)(st+0) /a(s+t+1~-a) and sti(s+1)(t+1) /a(s+t+1~qa),
respectively. By 1.1.2 the square roots of these eigenvalues are the singular
values of N. A partial subgeometry is a substructure, which itself is a
partial geometry. Let D' be a partial subgeometry of D with parameters
(s*';t',a). Then the point graph of D' is an induced subgraph of the point
graph of D. This can be seen as follows. Let x and y be two points of D' and
suppose there exists a line L of D, which is not a line of D', incident with
x and y. Let M be a line of D' incident with x. By (4) there are a lines of
D' incident with x and intersecting M. Hence there are at least o +1 such
lines in D. This is a contradiction. So two points are on a line of D' iff
they are on a line of D, which proves the claim. A partial geometry with

parameters (s,t,1) is the same as a generalized quadrangle of order (s,t).
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APPENDIX II

TABLES

First we list the twentyone strongly regular graphs with parameters
(40,12,2,4), as promised in Section 6.2. Together with the ones of Examples
6.2.1 and 6.2.2 they form the twentyfour 40-graphs of Theorem 6.2.5. The

respective 5-~tuples of the 40-~graphs listed below are:

(0,0,0,36,4) (8,18,2,9,3) (16,14,4,5,1)
(12,18,6,3,1) (4,20,4,10,2) (18,18,0,3,1)
(12,12,0,14,2) (9,18,0,9,4) (18,20,0,0,2)
(6,22,6,3,3) (18,12,9,0,1) (27,12,0,0,1)
(0,32,0,0,8) (0,12,0,18,10) (0,36,0,0,4)
(0,24,0,12,4) (8,8,0,20,4) (6,12,12,10,0)

(2,8,12,16,2) (10,8,18,4,0) (0,16,6,12,6) .

5 6 7 8 91011 1213 10 15 16 17 21 22 24 28 32 35 3¢ 10 15 16 17 21 22 24 28 32 35 38
14 15 16 17 18 19 20 21 22 9 10 14 19 23 24 32 33 34 39 9 10 14 19 23 24 32 33 34 39
23 24 25 26 27 28 29 30 31 12 15 16 19 23 24 30 31 35 39 12 15 16 19 23 24 30 31 35 39

10 13 17 18 20 21 30 32 37 39
12 14 18 20 21 22 28 31 34 39
12 13 15 17 18 23 31 36 37 38
10 11 14 16 18 24 33 36 37 38
11 15 18 20 22 24 29 34 35 36
5 6 11 16 20 25 30 35 37 39
4 7 1213 22 25 29 33 38 39
9 13 15 19 21 25 28 30 33 36

10 17 19 21 25 29 34 35 36

11 16 19 22 26 28 31 34 37

10 13 17 18 20 21 30 32 37 38
12 14 18 20 21 22 28 31 34 39
11 15 17 18 20 23 31 35 36 37
10 11 14 16 18 24 33 36 37 38
12 13 15 18 22 24 29 34 36 38
S 6 12 13 16 25 30 37 38 39
4 711 20 22 25 29 33 35 39

13 15 19 21 25 28 30 34 36

9 17 19 21 25 29 33 35 36

11 16 19 22 26 28 31 33 37

4

4

4

3 32 33 34 35 36 37 38 39 40
7 14 17 20 23 27 31 32 37 39
7 15 18 21 24 28 29 33 35 40
6 16 19 22 25 26 30 34 36 38
10 14 17 20 25 26 30 33 35 40
10 15 18 21 23 27 31 34 36 38
9 16 19 22 24 28 29 32 37 39
12 13 14 17 20 24 28 29 34 36 38
11 13 15 18 21 25 26 30 32 37 39
11 12 16 19 22 23 27 31 33 35 40

NWUAEVWUALWUOULINRAENOODS®O

2 9 9

1 6 6

1 4 4

1 3 3

1 7 7

1 2 2

1 3 3

1 2 2

1 1 1

1 1 1

1 7 6 0

1 3 6 3 8

1 4 0 4 9

2 5 811 15 16 23 28 30 32 36 40 2 715 17 19 22 26 29 30 32 37 2 715 17 19 22 26 29 30 32 37
2 6 912 14 16 24 26 31 33 37 38 1 6 B8 11 14 21 26 29 31 38 39 1 6 811 14 21 26 29 31 38 39
2 710 13 14 15 25 27 29 34 35 39 1 7 913 20 23 26 29 32 34 36 1 7 913 20 23 26 29 32 34 36
2 5 81118 19 24 26 31 34 35 39 1 6 12 14 20 24 26 28 30 33 36 1 6 12 14 20 24 26 28 30 33 36
2 6 91217 19 25 27 29 32 36 40 4 6 7 8 23 25 26 28 32 35 38 4 6 7 8232526 28 32 35 38
2 710 13 17 18 23 28 30 33 37 38 2 11 12 13 14 20 27 28 32 35 38 2 11 12 13 14 20 27 28 32 35 38
2 5 811 21 22 2527 29 33 37 38 4 8 9 16 17 19 27 29 31 33 38 4 6 10 16 17 19 27 29 31 34 38
2 6 912 20 22 23 28 30 34 35 39 1 5 11 12 15 23 27 32 33 34 37 1 5 11 12 15 23 27 32 33 34 37
2 710 13 20 21 24 26 31 32 36 40 1 8 10 13 14 23 27 30 31 35 36 1 8 10 13 14 23 27 30 31 35 36
3 5 91314 19 21 24 25 32 35 38 2 6 16 18 21 22 27 28 29 30 33 2 6 16 18 21 22 27 28 29 30 33
3 610 11 15 17 22 23 25 33 36 39 1 3 7 817 25 27 28 31 34 37 1 3 7 817 25 27 28 31 34 37
3 7 812 16 18 20 23 24 34 37 40 9 10 11 12 18 24 26 27 29 30 31 32 9 10 11 12 18 24 26 27 29 30 31 32
3 7 8121517 22 27 28 32 35 38 13 14 15 16 17 18 25 27 33 34 35 39 13 14 15 16 17 18 25 27 33 34 35 39
3 5 91316 18 20 26 28 33 36 39 19 20 21 22 23 24 25 26 36 37 38 39 19 20 21 22 23 24 25 26 36 37 38 39
3610 11 14 19 21 26 27 34 37 40 1511 13 17 18 19 23 24 29 39 40 151113 17 18 19 23 24 29 39 40
2 6 10 11 16 18 20 30 31 32 35 38 8 10 12 14 15 16 20 23 25 28 37 40 8 10 12 14 15 16 20 23 25 28 37 40
3 7 8121419 21 29 31 33 36 39 3 4 911 14 17 22 23 25 34 38 40 34 91114 17 22 23 25 34 38 40
3 5 9131517 22 29 30 34 37 40 3 5 6131520 22 24 25 32 33 40 3 5 6 13 15 20 22 24 25 32 33 40
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Here are listed the ten systems of three linked 2~ (16,6,2) designs,
as promised in Section 4.2. The incidence graphs of these systems, together
with the point graph of the generalized quadrangle of order (3,5) form the
eleven 4-colourable strongly regular graphs with parameters (64,18,2,6) of
Theorem 4.3.1.

2 3 4 5 913 2 3 4 5 913 2 3 4 5 9131 2 3 71516 12 3 71516
1 3 4 610 14 1 3 4 61014 1 3 4 61014 | 1 2 5 91011 12 5 91011
1 2 4 71115 1 2 4 71115 1 2 4 71115] 1 3 5 6 814 13 5 6 814
12 3 81216 1 2 3 81216 1 2 3 81216 | 1 4 6 7 913 1 4 6 7 913
1 6 7 8 913 1 6 7 8 913 1 6 7 8 913 | 1 4101214 16 141012 14 16
2 5 7 81014 2 5 7 810 14 2 5 7 81014 | 1 811 121315 1811 12 13 15
3 5 6 81115 3 5 6 81115 3 5 6 81115 2 3 4 51213 2 3 4 51213
4 5 6 71216 4 5 6 71216 4 5 6 71216 | 2 4 611 1415 2 4 6111415
1 510 11 12 13 1 510 11 12 13 1 510 11 12 13 2 6 8101316 2 6 81013 16
2 6 91112 14 2 6 91112 14 2 6 9111214 2 7 8 91214 2 7 8 91214
3 7 910 12 15 3 7 9101215 3 7 91012 15 3 4 8 91015 3 4 8 91015
4 8 91011 16 4 8 910 11 16 4 8 91011 16 3 6 9111216 36 9111216
1 5 9 14 15 16 1 5 914 15 16 1 5 914 15 16 3 7101113 14 3 7101113 14
2 6 10 13 15 16 2 610 13 15 16 2 6 10 13 15 16 4 5 7 81116 4 5 7 81116
3 711 13 14 16 3 7 11 13 14 16 3 711 13 14 16 5 6 7101215 5 6 7101215
4 812 13 14 15 4 81213 14 15 4 81213 14 15 5 913 14 15 16 5 913 14 15 16
2 3 4 61116 2 3 4 611 16 2 3 4 61116 1 2 3 61113 1 2 3 61113
13 4 51215 1 3 4 8 915 1 3 4 8 915 1 2 5121415 12 5121415
1 2 4 8 914 1 2 4 51214 12 4 51214 13 4 5 710 1 3 4 5 710
1 2 3 71013 12 3 71013 1 2 °3 71013 1 4 9111516 1 4 9111516
15 7 81116 1 5 6 81016 1 5 6 810 16 16 7 81216 16 7 81216
2 6 7 81215 2 5 910 11 15 2 5 91011 15 1 8 91013 14 18 91013 14
3 5 6 7 914 3 810 11 12 14 3 810 11 12 14 2 3 5 8 916 2 3 5 8 91

4 5 6 810 13 4 5 7 811 13 4 5 7 81113 2 4 6 91012 2 4 6 91012
1 6 91012 16 17 91112 16 17 9111216 2 4 713 14 16 2 4 713 14 16
2 5 910 11 15 2 6 7 81215 2 6 7 81215 2 7 81011 15 2 7 81011 15
3 810 11 12 14 35 6 7 914 35 6 7 914 3 4 8111214 34 81112 14
4 7 9111213 4 6 91012 13 4 6 910 12 13 3 6 10 14 15 16 3 610 14 15 16
1 611 13 14 15 1 611 13 14 15 1 611 13 14 15 3 7 9121315 37 9121315
2 51213 14 16 2 8 91314 16 2 8 91314 16 4 5 6 81315 4 5 6 81315
3 8 9131516 3 51213 15 16 3 5121315 16 5 6 7 911 14 5 6 7 911 14
4 710 14 15 16 4 7 10 14 15 16 4 710 14 15 16 510 11 12 13 16 510 11 12 13 16
2 3 4 71214 2 3 5 610 12 2 3 5 71112 1t 2 6 71014 12 6 91416
1 3 4 81113 1 4 6 81112 1 4 5 6 911 1 2 9121316 12 7101213
1 2 4 51016 1 2 9121315 1 210 11 14 16 4 6 8 91416 4 6 7 810 14
1 2 3 6 915 1 2 6 71416 1 2 5 81315 4 7 810 12 13 4 8 91213 16
15 6 812 14 14 5 7 910 1 4 7 81012 1 3 4 61215 13 4131415
2 5 6 71113 2 3 7 8 911 2 3 6 8 910 1 4 51113 14 14 5 61112
3 6 7 81016 3 4 6 71315 3 4 5 81416 2 3 8131415 2 3 6 81215
4 5 7 8 915 3 4 91214 16 3 410 11 13 15 2 5 6 81112 2 5 811 13 14
17 91011 14 1 310 11 15 16 1 3 6 71516 13 7 8 911 1 3 81011 16
2 8 91012 13 2 4 5 81516 2 4 91215 16 1 5 810 15 16 1 5 7 8 915
3 5 91112 16 5 6 911 13 16 5 610 12 14 15 2 3 41011 16 2 3 4 7 911
4 6 10 11 12 15 5 711 12 14 15 6 811 12 13 16 2 4 5 7 915 2 4 510 15 16
1712 13 15 16 1 3 5 81314 1 3 91213 14 3 5 6 910 13 35 6 71316
2 811 14 15 16 2 41011 13 14 2 4 6 71314 3 5 712 14 16 35 91012 14
3 510 13 14 15 6 8 910 14 15 5 7 910 13 16 6 7 11 13 15 16 6 9 10 11 13 15
4 6 913 14 16 7 810 12 13 16 7 8 911 14 15 9 10 11 12 14 15 7 11 12 14 15 16
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*

3
constructed in Section 6.1. Together with their duals they form the eight

Here we give the 2 - (71,15,3) designs D*, D;, D., and D*, which are

2-(71,15,3) designs of Theorem 6.1.5.

2 3 4 5 6 7 8 91011 1213 14 15 2 3 4 5 6 7 8 91011 1213 14 15
2 316 17 18 19 20 21 22 23 24 25 26 27 2 316 17 18 19 20 21 22 23 24 25 26 27
2 3 28 29 30 31 32 33 34 35 36 37 38 39 2 328 29 30 31 32 33 34 35 36 37 38 39
4 516 17 28 29 40 41 42 43 44 45 46 47 4 516 17 28 29 40 41 42 43 44 45 46 47
4 518 19 30 31 48 49 50 51 52 53 54 55 4 518 19 30 31 48 49 50 51 52 53 54 55
6 7 16 17 30 31 56 57 58 59 60 61 62 63 6 7 16 17 30 31 56 57 58 59 60 61 62 63
6 718 19 28 29 64 65 66 67 68 69 70 71 6 7 18 19 28 29 64 65 66 67 68 69 70 71
8 9 20 21 32 33 40 41 48 49 56 57 64 65 8 9 20 21 32 33 40 41 48 49 56 57 64 65
8 9 22 23 34 35 42 43 50 51 58 59 66 67 8 9 22 23 34 35 42 43 50 51 58 59 66 67
10 11 20 21 34 35 44 45 52 53 60 61 68 69 10 11 20 21 34 35 44 45 52 53 60 61 68 69
10 11 22 23 32 33 46 47 54 55 62 63 70 71 10 11 22 23 32 33 46 47 54 55 62 63 70 71
12 13 24 25 36 37 40 41 50 51 60 61 70 71 12 13 24 25 36 37 40 41 50 51 60 61 70 71
12 13 26 27 38 39 42 43 48 49 62 63 68 69 12 13 26 27 38 39 42 43 48 49 62 63 68 69
14 15 24 25 38 39 44 45 54 55 56 57 66 67 14 15 24 25 38 39 44 45 54 55 56 57 66 67
14 15 26 27 36 37 46 47 52 53 58 59 64 65 14 15 26 27 36 37 46 47 52 53 58 59 €4 65
4 6 20 22 36 38 40 42 52 54 56 58 68 70 4 6 20 22 36 38 40 42 52 54 56 58 68 70

6 21 23 37 39 41 43 53 55 57 59 69 71
7 20 22 37 39 44 46 48 50 60 62 64 66
7 21 23 36 38 45 47 49 51 61 63 65 67

4 6 21 23 37 39 41 43 53 55 57 59 69
5

5

8 10 24 26 28 30 40 46 48 54 59 61 67 69

8

9

4

5 7 20 22 37 39 44 46 48 50 60 62 64

5 7 21 23 36 38 45 47 49 51 61 63 65 67
8 10 24 26 28 30 40 47 48 55 59 60 67 68
8

9

o~y
& —

10 25 27 29 31 41 47 49 55 58 60 66 68
11 24 26 29 31 43 45 51 53 56 62 64 70
9 11 25 27 28 30 42 44 50 52 57 63 65 71
12 14 16 18 32 34 40 44 51 55 59 63 64 68
12 14 17 19 33 35 41 45 50 54 58 62 65 69
13 15 16 18 33 35 42 46 49 53 57 61 66 70
13 15 17 19 32 34 43 47 48 52 56 60 67 71
4 7 24 27 32 35 40 42 53 55 60 62 65 67
4 7 25 26 33 34 41 43 52 54 61 63 64 66
5 6 24 27 33 34 44 46 49 51 56 58 69 71
5 6 25 26 32 35 45 47 48 S0 57 59 68 70
8

8

9

10 25 27 29 31 42 45 50 53 57 62 65 70
11 24 26 29 31 43 44 51 52 56 63 64 71
9 11 25 27 28 30 41 46 49 54 58 61 66 69
12 14 16 18 32 34 40 44 50 54 59 63 65 69
12 14 17 19 33 35 42 46 48 52 57 61 &7 71
13 15 16 18 33 35 41 45 51 55 58 62 64 68
13 15 17 19 32 34 43 47 49 53 56 60 66 70
4 7 24 27 32 35 40 42 53 55 61 63 64 66
4 7 25 26 33 34 41 43 52 54 60 62 65 67
5 6 24 27 33 34 44 46 49 51 57 59 68 70
5 6 25 26 32 35 45 47 48 50 56 58 69 71
11 16 19 37 38 41 44 49 52 59 62 67 70 8 11 16 19 37 38 41 45 48 52 59 63 66 70
11 17 18 36 39 40 45 48 53 58 63 66 71 8
10 16 19 36 39 43 46 51 54 57 60 65 68 9
9 10 17 18 37 38 42 47 50 55 56 61 64 69
12 15 20 23 29 30 40 47 51 52 57 62 66 69
12 15 21 22 28 31 41 46 50 53 56 63 67 68
13 14 20 23 28 31 43 44 48 55 58 61 65 70
14 21 22 29 30 42 45 49 54 59 60 64 71
8 13 18 23 25 30 34 37 45 46 56 62 65 68
8 13 19 22 24 31 35 36 44 47 57 63 64 69
9 12 18 21 26 30 33 39 44 47 58 60 67 70
9 12 19 20 27 31 32 38 45 46 59 61 66 71
10 15 16 21 25 28 35 38 48 51 58 62 64 71
10 15 17 20 24 29 34 39 49 50 59 63 65 70
11 14 16 23 26 28 32 36 49 50 56 60 66 69
11 14 17 22 27 29 33 37 48 51 57 61 67 68
8 12 16 22 26 29 35 39 52 55 56 61 65 71
8 12 17 23 27 28 34 38 53 54 57 60 64 70
9 13 16 20 25 29 32 37 53 54 58 63 67 69
9 13 17 21 24 28 33 36 52 55 59 62 66 68
10 14 18 20 26 31 34 36 41 42 57 62 67 71
10 14 19 21 27 30 35 37 40 43 56 63 66 70
11 15 18 22 25 21 33 38 40 43 59 60 65 69
11 15 19 23 24 30 32 39 41 42 58 61 64 68
8 15 18 21 27 29 32 36 43 44 50 54 61 62
8 15 19 20 26 28 33 37 42 45 51 55 60 63
9 14 18 23 24 29 35 38 41 46 48 52 60 63
9 14 19 22 25 28 34 39 40 47 49 53 61 62
10 13 16 23 27 31 33 39 40 45 50 52 64 67
10 13 17 22 26 30 32 38 41 44 51 53 65 66
11 12 16 21 24 31 34 37 42 47 48 54 65 66
11 12 17 20 25 30 35 36 43 46 49 55 64 67
8 14 16 20 24 30 33 38 43 47 50 53 68 71
8 14 17 21 25 31 32 39 42 46 51 52 69 70
9 15 16 22 27 30 34 36 41 45 48 55 69 70
9 15 17 23 26 31 35 37 40 44 49 54 68 71
10 12 18 22 24 28 32 37 43 45 49 52 57 S8
10 12 19 23 25 29 33 36 42 44 48 53 56 59
11 13 18 20 27 28 35 39 41 47 51 54 56 59
11 13 19 21 26 29 34 38 40 46 50 S5 57 58

11 17 18 36 39 43 47 50 54 57 61 64 68

10 16 19 36 39 40 44 49 53 58 62 67 71
9 10 17 18 37 38 42 46 51 55 56 60 65 69
12 15 20 23 29 30 43 44 48 55 58 61 65 70
12 15 21 22 28 31 41 46 50 53 56 63 67 6
13 14 20 23 28 31 40 47 51 52 57 62 66 69
13 14 21 22 29 30 42 45 49 54 59 60 64 71
21 27 31 33 38 44 47 58 60 66 71
8 12 19 23 24 30 34 36 45 46 56 62 64 69
9 13 18 20 26 31 32 39 45 46 59 61 67 70
9 13 19 22 25 30 35 37 44 47 57 63 65 68
10 14 16 23 26 29 33 37 49 50 56 61 66 68
10 14 17 21 25 28 34 39 48 51 58 63 64 70
11 15 16 22 27 29 32 36 48 51 57 60 67 69
11 15 17 20 24 28 35 38 49 50 59 62 65 71
8 13 16 22 27 28 34 39 52 55 56 61 65 71
8 13 17 20 24 29 33 37 53 54 58 63 67 69
9 12 16 23 26 28 35 38 53 54 57 60 64 70
9 12 17 21 25 29 32 36 52 55 59 62 66 &8
10 15 18 20 26 30 34 36 41 42 57 63 66 71
10 15 19 22 25 31 33 38 40 43 59 61 64 69
11 14 18 21 27 30 35 37 40 43 56 62 67 70
11 14 19 23 24 31 32 39 41 42 58 60 65 68
8 15 18 23 25 29 35 39 40 46 49 52 60 63
8 15 19 21 26 28 32 37 42 44 51 54 61 62
9 14 18 22 24 29 34 38 41 47 48 53 61 62
9 14 19 20 27 28 33 36 43 45 50 55 60 &3
10 13 16 21 24 31 35 36 43 46 48 54 65 66
10 13 17 23 27 30 32 38 41 44 50 52 64 67
11 12 16 20 25 31 34 37 42 47 49 55 64 67
11 12 17 22 26 30 33 39 40 45 51 53 65 66
8 14 16 20 25 30 32 38 43 46 51 53 68 71
8 14 17 22 26 31 35 36 41 44 49 55 69 70
9 15 16 21 24 30 33 39 42 47 50 52 69 70
9 15 17 23 27 31 34 37 40 45 48 54 68 71
10 12 18 22 24 28 32 37 43 45 49 52 57 58
10 12 19 20 27 29 35 39 41 47 51 54 56 59
11 13 18 23 25 28 33 36 42 44 48 53 56 59
11 13 19 21 26 29 34 38 40 46 50 55 57 58

NNNNNNNNO OO0 UI G R U UTUTO S DD DS S E W W W WW W W W W RN DR DR RN RN e b e b b b b e e e e e e e
-
w
NNNNNNNNOOOO OO ROV U AN USSR D DWW W W W W W WWWWR R R R MR R R R R e e e b e e e s s e
@
8}
-
@



92

NNNNNNNNOOO OO NN NUNA ROV SRR DA DREREDWLLELLLWWWEWERLNRNRNON NN NN R R R R s b e b b e b b e b s

[ NN NIF NN NN

11

15

12
12
13
13
14
14
15
15
13
13
12
12
15
15
14
14

14
15
15
12
12
13
13
15
15
14
14
13
13
12
12

4
16

-
2

16

16
18
20
22
20
22
24
26
24
26
24
25
24
25
16
17
16
17
20
21
20
21
20
21
20
21
24
25
24
25
16
17
16
17
16
17
16
17
18
19
18
19
18
19
18
19
16
17
16
17
18
19
18
19
16
17
16
17
16
17
16
17
18
19
18
19

23

21
22
20
23
23
20
22
21
20
23
21
22
22
21
23
20
21
22
20
23
23
20
22
21

27
24
26
25
27
24
26
25
27
24
26
25
27
27
25
26
24
27
25
26
24
27
25
26
24
27
25
26
24

31
29
31
31
29
33
35
35
33
37
39
39
37
34
35
35
34
38
39
39
38
30
31
31
30
39
38
38
39
31
30
30
31
35
34
34
35
28
29
28
29
30
31
30
31
31
30
31
30
29
28
29
28
29
28
29
28
31
30
31
30
30
31
30
31
28
29
28
29

32
34
33
35
32
34
33
35
35
33
34
32
35
33
34
32
33
35
32
34
33
35
32
34
34
32
35
33
34
32
35
33

39

39
36
38
37
37
38
36
39
37
38
36
39
39
36
38
37
38
37
39
36
36
39
37
38

44
44
45
48
49
49
48
43
41
42
40
42
40
43
41
42
40
43
41
40
42
41
43

11
23

35

43
51
59
67
49
51
53
55
49
51
53
55
50
51
54
55
55
53
54
52
52
54
55
53
51
50
55
54
55
53
52
54
52
54
53
55
54
55
55
54
43
42
42
43
46
47
47
46
51
50
50
51
46
44
47
45
44
46
45
47
46
44
47
45
47
45
46
44

58

59
59
57
58
56
57
59
56
58
56
58
57
59
57
59
56
58
50
48
51
49
48
50
49
51
49
51
48
50
48
50
49
51

13
25

45
53
61
69
57
59
61
63
63
61
59

58
59
62
63
62
60
63
61
63
61
60
62
62
63
58
59
60
62
63
61
62
60
63
61
61
63
60
62
60
62
61
63
63
61
62
60
61
63
60
62
52
54
53
55
53
55
52
54
54
52
55
53
52
54
53
55

14
26
38
46
54
62
70
64
66
68
70
68
70
64
66
68
69
64
65
64
66
65
67
65
67
66
64
65
64
69
68
65
67
66
64
67
65
66
64
66
64
67
65
67
65
66
64
67
65
66
64
65
67
64
66
61
60
60
61
64
65
65
64
69
68
68
69
56
57
57
56

15
27
39
47
55
63
71
65
67
69
71
69
71
65
67
70
71
66
67
68
70
69
71
70
68
69
71
67
66
71
70
68
70
71
69
69
71
68
70
71
69
70
68
69
71
68
70
71
69
70
68
70
68
71
69
62
63
63
62
67
66
66
67
70
71
71
70
59
58
58
59

NNNNNNNNOOO0OOONNNUNNNUONEDSREEEDEDLEDN LN LR WY R WWWRRRRNNNRNNRDRD R R - e s e b b e b b b e s

e N RN N N

15

14
12
12
13
13
14
14
15
15
13
13
12
12
15
15
14
14
15
15
14
14
12
12
13
13
14
14
15
15
13
13
12
12

16
28
16
18
16
18
20
22
20
22
24
26
24
26
24
25
20
21
16
17
16
17
18
19
20
21
22
23
20
21
24
25
18
19

17
16
17
16
17
16
17
20
21
18
19
18
19
22
23
16
17
16
17
16
17
16
17
18
19
18
19
18
19
18
19
16
17
16
17

S
17
29
17
19
17
18
21
23
21
23
25
27
25
27
26
27
24
25
18
19
27
26
22
23
22
23
26
27
22
23
26
27
25
24
18
19
20
21
20
21
19
18
23
22
20
21
20
21
24
25
22
23
19
18
23
22
21
20
21
20
23
22
23
22
21
20
24
25
21
20

6
18
30
28
30
30
28
32
34
34
32
36
38
38
36
32
33
34
35
37
36
28
29
30
31
28
29
32
33
36
37
29
28
30
31
32
33
28
29
25
24
23
22
24
25
26
27
27
26
27
26
26
27
25
24
24
25
26
27
27
26
25
24
26
27
24
25
27
26
22
23

19
31
29
31
31
29
33
35
35
33
37
39
39
37
34
35
36
37
38
39
38
39
32
33
30
31
39
38
39
38
31
30
37
36
34
35
34
35
29
28
34
35
29
28
31
30
31
30
29
28
29
28
32
33
30
31
30
31
29
28
29
28
28
29
28
29
31
30
31
30

8
20
32
40
48
56
64
40
42
44
46
42
40
46
44

45
40
41
42
43
40
41
40
41
43
42
43
42
41
40
42
43
41
40
41
40
45
44
33
32
37
36
30
31

34
33
32
30
31
33
32
35
34
35
34
33
32
34
35
32
33
35
34
33
3

32
33
36
37

9

33
41
49
57
65
41
43
45
47
43
41
a7
45

47
47
46
45
44
48
49

43
47
46
45
44
42
43
47
46
44
45
46
47
49
48
36
37
39
38
38
39
37
36
39
38
35
34
37
36
39
38
39
38
36
37
39
38
36
37
36
37
39
38
35
34
38
39

10
22
34
42
50
58
66
48
50
52
54
48
50
52
54
48
49
51
50
51
50
53
52
44
45

49
49
48
52
53
51
50
47
46
51
50
50
51
53
52
47
46
41
40
40
41
44
45
45
44
48
49
42
43
40
41
43
42
43
42
40
41
41
40
42
43
41
40
44
45

11
23
35
43
51
59
67
49
51
53
55
49
51
52
55
50
51
54
55
52
53
55
54
54
55
52
53
53
52
55
54
55
54
49
48
53
52
55
54
54
55
54
55
50
51
43
42
46
47
53
52
50
51
48
49
44
45
46
47
47
46
45
44
47
46
45
44
43
42
47
46

2

24

44
52
60
68
56
58
60
62
62
60
58
56
60
61
56
57
56
57
58
59
59
58
57
56
56
57
61
60
57
56
58
59
57
56
59
58
59
58
57
56
56
57
59
58
58
59
57
56
58
59
56
57
49
48
51
50
48
49
50
51
48
49
50
51
52
53
49
48

63

62
61
60
60
61
58
59
63
62
60
61
60
61
63
62
62
63
60
61
61
60
63
62
63
62
62
63
62
63
61
60
60
61
55
54
52
53
55
54
52
53
53
52
54
55
54
55
50
51

14
26

46
54
62
70
64
66
68
70
68
70
64
66
64
65
68
69
64
65
66
67
65
64
67
66
69
68
64
65
65
64
66
67
67
66
65
64
66
67
64
65
67
66
64
65
67
66
64
65
65
64
67
66
68
69
69
68
56
57
57
56
61
60
60
61
65
64
64
65



[a1]

[a2]

{a3]

[a4]

[B1]

[B2]

[B3]

[Ba]

[B5]

[B6]

[B7]

[B8]

93

REFERENCES

H. AGRAWAL, On the bounds of the number of common treatments between
blocks of certain two associate PBIB designs, Calcutta Statist. Assoc.
Bull. 13 (1964), 76~-79.

R.W. AHRENS & G. SZEKERES, On a combinatorial generalization of the
27 lines assoctiated with a cubic surface, J. Austral. Math. Soc. 10
(1969) , 485-492.

N. ARONSZAJN, Rayleigh-Ritz and A. Weiwnstein method for approximation
of eigenvalues. I. Operators in a Hilbert space, Proc. American Nat.
Acad. Sci. 34 (1948), 474-480.

E.F. ASSMUS, Jr. & J.H. van LINT, Ovals in projective designs, J.
Combinatorial Theory A gl {1979), 307-324.

H.J. BEKER, Constructions and decompositions of designs, Ph.D. Thesis,

University of London, 1976.

H.J. BEKER & W. HAEMERS, 2~designs having an intersection number k -n,
J. Combinatorial Theory A 28 (1980), 64-81.

H.J. BEKER & C.J. MITCHEL, 4 construction method for point divisible
designs, J. Statist. Planning and Inference 2 (1978), 283-306.

N. BIGGS, Finite groups of automorphisms, London Math. Soc. Lecture
Notes No. 6, Cambridge University Press, Cambridge, 1971.

N. BIGGS, Algebraic Graph Theory, Cambridge tracts in math. No. 67,
Cambridge University Press, Cambridge, 1974.

R.C. BOSE, Strongly regular graphs, partial geometries and partially
balanced designs, Pacific J, Math. 13 (1963), 389-419.

R.C. BOSE, Graphs and designs, in "Finite geometric structures and

their applications"” (A. Barlotti ed.), Cremonese, Rome, 1973, pp. 3-104.

R.C. BOSE & D.M. MESNER, On linear associative algebras corresponding
to assoetation schemes of partially balanced designs, Ann. Math.
Statist. 30 (1959), 21-38.



94

[B9]

[Bi0]

[B11]

[c1]

[c2]

[c3]

[ca]

[c¢s]

[cel

[c7]

[c8l

[col

[cio]

fci1]

[c12]

C. BUMILLER, Pointwise products of incidence matrices of subgraphs
(preprint) .

K.A. BUSH, Bounds for the number of common symbols in balanced and
certain partially balanced designs, J. Combinatorial Theory A 23
(1977}, 46-51.

F.C. BUSSEMAKER & J.J. SEIDEL, Symmetric Hadamard matrices of order
36, Ann. N.Y. Acad. Sci. 175 (1970), 66-79; also: Report Techn. Univ.
Eindhoven 70-WSK-02.

P.J. CAMERON, On groups with several doubly-transitive permutation
representations, Math. Z. 128 (1972), 1-14.

P.J. CAMERON, Extending symmetric designs, J. Combinatorial Theory A
14 (1973), 215-220.

P.J. CAMERON, Partial quadrangles, Quart. J. Math. Oxford (3) 25
(1974), 1-13.

P.J. CAMERON, Parallelisms of Complete Designs, London Math. Soc.
Lecture Notes 23, Cambridge University Press, Cambridge, 1976.

P.J. CAMERON, J.M. GOETHALS & J.J. SEIDEL, Strongly regular graphs
having strongly regular subconstituents, J. Algebra 55 (1978), 257-280.

P.J. CAMERON & J.H. van LINT, Graph theory, coding theory and block
designs, London Math. Soc. Lecture Notes No. 19, Cambridge University
Press, Cambridge, 1975.

F. de CLERCK, Partial geometries: a combinatorial survey, Bull.
Belgisch Wiskundig Genocotschap (to appear).

W.8. CONNOR, On the structure of balanced incomplete block designs,
Ann. Math. Statist. 23 (1952), 57-71.

W.S. CONNOR & W.H. CLATWORTHY, Some theorems for partially balanced
designs, Ann. Math. Statist. 25 (1954), 100-112.

G.M. CONWELL, The 3-space PG(3,2) and its group, Ann. Math. 11 (1910),
60~76.

R. COURANT & D. HILBERT, Methoden der Mathematischen Phystk, Vol. 1,
Springer Verlag, Berlin, 1924.

D.M. CVETKOVIC, Graphs and their spectra, Thesis, Univ. Beograd.
Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 354-356 (1971), 1-50.



95

[c13] p.M. CVETKOVIE, M. DOOB & H. SACHS, Spectra of Graphs — Theory and

Applications, V.E.B. Deutscher Verlag der Wissenschaften, Berlin, 1980.

[p1]l P. DELSARTE, 4n algebraic approach to the association schemes of
coding theory, Philips Res. Rep. Suppl. 10 (1973).

[p2] P. DELSARTE, J.M. GOETHALS & J.J. SEIDEL, Spherical codes and designs,
Geometriae Dedicata §_(1977), 363-388.

[p3] P. DEMBOWSKI, Finite Geometries, Springer Verlag, Berlin~Heidelberg-

New York, 1968.

[Fi]l wW. FEIT & G. HIGMAN, The non-existence of certain generalized poly—
gons, J. Algebra 1 (1964), 114-131.

[c1]l A. GEWIRTZ, The uniqueness of g(2,2,10,56), Trans. New York Acad.
Sci. 31 (1969), 656-675.

[G2] J.M. GOETHALS & J.J. SEIDEL, Strowngly regular graphs derived from
combinatorial designs, Canad. J. Math. 22 (1970}, 597-614.

[H1] W. HAEMERS, 4 generalization of the Higman—Sims technique, Proc. Kon.
Nederl. Akad. Wetensch. A 81 (= Indag. Math. 40) (1978), 445-447.

[H2] W. HAEMERS, Elgenvalue methods, in: "Packing and Covering in Combina-—
torics" (A. Schrijver ed.), Tract 106, Mathematical Centre, Amsterdam,

1979, pp. 15-38.

[H3] W. HAEMERS & C. ROOS, An inequality for generalized hexagons,

Geometriae Dedicata (to appear).

[H4] W. HAEMERS & M.S. SHRIKHANDE, Some remarks on subdesigns of symmetric

designs, J. Statist. Planning and Inference (to appear).

(5] M. HALL, Jr., Combinatorial Theory, Blaisdell, Waltham-Toronto~London,
1967.

[#6] M. HALL, Jr., Affine generalized quadrilaterals, in: "Studies in pure
mathematics® (L. Mirsky ed.), Academic Press, 1971, pp. 113-1i6.

[#7] H.L. HAMBURGER & M.E. GRIMSHAW, Linear transformations in n-dimension-

al vector space, Cambridge University Press, London-New York, 1951.
[#8] ¥. HARARY, Graph Theory, Addison-Wesley, Reading, Mass., 1969.

[H9] E.V. HAYNSWORTH, Applications of a theorem on partitioned matrices,
J. Res. Nat. Bur. Standards B 63 (1959), 73-78.



96

[H10]

[H11]

[H12]

[(H13]

[H14]

[H15]

[H16]

[r17]

[x1]

[x2]

[11]

[12]

[M1]

M.D. HESTENES & D.G. HIGMAN, Rank 3 groups and strongly regular graphs,
in: "Computers in Algebra and Number Theory" (G. Birkhoff & M. Hall,
Jr., eds.), SIAM~AMS Proc. IV, Amer. Math. Soc., Providence, R.I.,
1971, pp. 141-159.

D.G. HIGMAN, Partial geometries, generalized quadrangles and strongly
regular graphs, in: Atti Convegno di Geometria e sue Applicazioni”,

Perugia, 1971, pp. 263-293.

D.G. HIGMAN, Invariant relations, coherent configurations and
generalized polygons, in: "Combinatorics; part 3: combinatorial group
theory” (M. Hall, Jr. & J.H. van Lint, eds.), Tract 57, Mathematical
Centre, Amsterdam, 1974, pp. 27-43

A.J. HOFFMAN, On eigenvalues and colourings of graphs, in: “"Graph
Theory and its Applications”™ (B. Harris, ed.), Acad. Press, New York,

1970, pp. 79-91.

A.J. HOFFMAN, Eigenvalues of graphs, in: "Studies in Graph Theory;
part II" (D.R. Fulkerson, ed.), M.A.A. Studies in Math., 1975, pp.
225-245.

A.J. HOFFMAN & R.R. SINGLETON, On Moore graphs of diameters 2 and 3,
I.B.M. J. Res. Develop. é_(1960), 497~504,

D.R. HUGHES & F.C. PIPER, Projective Planes, Springer Verlag, Berlin-
Heidelberg-New York, 1973.

D.R. HUGHES & F.C. PIPER, Block Designs (in preparation).

W.M. KANTOR, Generalized quadrangles associated with G,(q) (preprint).
R. KILMOYER & L. SOLOMON, On the theorem of Feit—Higman, J. Combina~
torial Theory A 15 (1973), 310-322.

J.H. van LINT & H.J. RYSER, Block designs with repeated blocks,
Discrete Math. 3 (1972), 381-396.

L. LOVASZ, On the Shannon capacity of a graph, IEEE Trans. Information

Theory 25 (1979), 1-7.

K.N. MAJUMDAR, On some theorems in combinatorics relating to incom—

plete block designs, Ann. Math. Statist. 24 (1953), 379-389.



[M2]

[mM3]

[e4]

[m5]

[M6]

[m7]

[mM8]

[n1]

[rp1]

{r2]

[r3]

[ra]

[p5]

[p6]

97

H.B. MANN, 4 note on balanced incomplete block designs, Ann. Math.
Statist. 40 (1969}, 679-680.

M. MARCUS & H. MINC, A survey of matrix theory and matrix inequalities,
Allyn & Bacon, Boston, 1964.

R. MATHON, 3-class associlation schemes, in: "Proc. Conf. on Algebraic
Aspects of Combinatorics®, (D.G. Corneil & E. Mendelsohn, eds.),

Congressus Numerantium XIII, Utilitas, Winnipeg, 1975, pp. 123-155.

R. MATHON, Symmetric conference matrices of order pg? + 1, Canad. J.
Math. 30 (1978), 321-331.

R. MATHON, On primitive association schemes with three classes

(in preparation).

R. MATHON, The systems of Llinked (16,6,2) designs (submitted to Ars

Combinatorial .

C.J. MITCHELL, An infinite family of symmetric designs, Discrete Math.
26 (1979), 247-250.

B. NOBLE & J.W. DANIEL, Applied Linear Algebra (second edition),
Prentice-Hall, Englewocod Cliffs, 1977.

S.E. PAYNE, Nonisomorphic generalized quadrangles, J. Algebra 18
{1971), 201-212.

S.E. PAYNE, Generalized quadrangles of order (s-1,s+l), J. Algebra 22
(1972), 97~119.

S.E. PAYNE, 4 restriction on the parameters of a subquadrangle, Bull.
Amer. Math. Soc. 79 (1973}, 747-748.

S.E. PAYNE, Finite generalized quadrangles: a survey, in: "Proc. Int.
Conf. on Projective Planes®, Wash. State Univ. Press, 1973, pp. 291~
261.

S.BE. PAYNE, ALl generalized quadrangles of order 3 are known, J.
Combinatorial Theory A 18 (1975), 203-206.

S.E. PAYNE, An inequality for generalized quadrangles, Proc. Amer.
Math. Soc. 71 (1978), 147-152.



98

[R1]

[r2]

[R3]

[s1]

[s2]

[s3]

[s4]

[s5]

[s6]

[s7]

[T1]

[T2]

T3]

[T4]

M.A. RONAN, A geometric characterization of Moufang hexagons, Ph. D.

Thesis, University of Illinois, 1978.

M.A. RONAN, A combinatorial characterization of the dual Moufang

hexagon  (preprint).

H.J. RYSER, Combinatorial Mathematics, Carus Mathematical Monograph
14, wWiley, New York, 1963.

G.J. SCHELLEKENS, On a hexagonic structure I & II, Proc. Kon. Nederl.
Akad. Wetensch. A 65 (= Indag. Math. 24) (1962), 201-217, 218-234.

A.J. SCHWENK & R.J. WILSON, EiZgenvalues of graphs, in: "Selected
Topics in Graph Theory" (L.W. Beineke & R.J. Wilson, eds.), Academic

Press, London-New York-San Francisco, 1978, pp. 307-336.

J.J. SEIDEL, Strongly regular graphs with (-1,1,0) adjacency matrix
having eigenvalue 3, Linear Algebra and Appl. 1 (1968), 281-298.

J.J. SEIDEL, Strongly regular graphs, in: “"Surveys in Combinatorics"
(B. Bollobas, ed.), London Math. Soc. Lecture Notes No. 38, Cambridge
University Press, Cambridge, 1979, pp. 157-180.

M.S. SHRIKHANDE, Strongly regular graphs and quasi-symmetric designs,
Utilitas Mathematica 3 (1973), 297-309.

S.S. SHRIKHANDE, The uniqueness of the L
Math. Statist. 30 (1959), 781-798.

5 assoctation scheme, Ann.

E.E. SHULT & A. YANUSHKA, Near n—gons and line systems, Geometriae
Dedicata (to appear).

J.A. THAS, Combinatorics of partial geometries and generalized
quadrangles, in: "Higher Combinatorics", (M. Aigner, ed.), Reidel,
Dordrecht, 1977, pp. 183-199.

J.A. THAS, A remark on the theorem of Yanushka—Ronan characterizing

the generalized hexagon H(q) arising from the group G,(q) (preprint).

J.A. THAS & S.E. PAYNE, Classical finite generalized quadrangles: a
combinatorial study, Ars Combinatoria 2 (1976), 57-110.

J. TITS, Sur le trialité et certains groupes qui s'en déduisent,
Publ. Math. I.H.E.S. 2 (1959), 14-60.



[wil

[w2]

[w3]

[wal

[ws]

[wel

[vil

[v2]

99

B. WEISFEILER, On Comstruction and Identification of Graphs, Lecture
Notes in Math. No. 558, Springer Verlag, Berlin-Heidelberg-New York,
1976.

H. WEYL, Das asymptotische Verteilungsgesetz der Eigevwerte Llinearer

-partieller Differentialgleichungen (mit einer Avwendung auf die

Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), 441-479.

H.S. WHITE, F.N. COLE & L.D. CUMMINGS, Complete classification of the
triad systems on fifteen elements, Memoir Nat. Acad. Sci. 14, second
memoir (1925), 1-89.

H.A. WILBRINK & A.E. BROUWER, 4 (57,14,1) strongly regular graph does
not exist, Report ZW 121/78, Math. Centre Amsterdam, 1978.

J.H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon, Oxford,
1965,

R.J. WILSON, Introduction to Graph Theory (second edition), Longman,
London, 1979.

4. YANUSHKA, Generalized hexagons of order (t,t), Israel. J. Math. 23
(1976) , 309-324.

A. YANUSHKA, 4 sufficient condition for the existence of an associa-

tion scheme (preprint).



100

NOTATION
A* hermitian transpose of matrix A.

(A)ij ij~th entry of matrix A

(bij) matrix with entries bij'

Al(A) . ZAn(A) eigenvalues (if real) of matrix A.

A ®B Kronecker product of matrices A and B.
diag(al,...,an) diagonal matrix with diagonal entries Qyrecesd .
I oxr In n X n identity matrix.

J all-one matrix.

Jn n X n all-one matrix.

j all-one vector.

lall length of vector u.

< Ugrewesu >l linear span of vectors ul,..e,un,

< Uyreeost > orthogonal complement of < Ugreeesuy >,

G complement of graph G.

a(G) size of largest coclique of G.

Y (G) chromatic number of G.

w(G) size of largest clique of G.

Al(G) 2., EXn(G) eigenvalues of G.

fi(G) multiplicity of eigenvalue Ai(G).

L(G) line graph of G.

D(G,Gi) incidence structure formed by G and Gl' see p. 17.
Kn complete graph on n vertices.

%,m complete bipartite graph on £ +m vertices.
p(x,y) distance between vertices x and y, see p. 79.
pij(x,y) or P?j intersection numbers of a graph, see p. 51 and p. 81.
A(el,ez) distance between elements of an n-gon, see p. 52.
Pijk(L,x,y) see p. 58.

Z set of integers.

N set of positive integers.

Fq field with g elements.

PG(n.,q) n-dimensional projective geometry over E&.
AG(n,q) n-dimensional affine geometry over IFq.

5ij 1 if i = 3; O if i # J.

Lxl lower integer part of real number x.

[x] upper integer part of real number x.
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INDEX
adjacency matrix 79 | distance regular graph 51
adjacent vertices 79 | dual of an incidence structure 83
balanced incomplete block design 83 | edge 79
bipartite graph 80 | eigenvalues of a graph 15,80
block 82 | element of a generalized n~gon 52
block design 83 | embeddable 83
block graph 35 | empty incidence structure 82
Cauchy inequalities 8 | equivalent blocks 34,65
chromatic number 80 | equivalent points 65
circuit 79,81 | flag 82
class graph 35 | (generalized) n-gon 50
Clebsch graph 39 | (generalized) hexagon 53
clique 80 | (generalized) polygon 50
coclique 80 | (generalized)} quadrangle 84
coloux class 80 | geometric graph 52
colourable, k- 80 | Gewirtz graph 42
colouring 80 | girth 79
complement of a graph 79 | graph 79
complement of an inc. structure 83 | graph, 40~ 76
complete graph 79 | Higman~-Sims technique 10
complete y-partite graph 80 | Hoffman~Singleton graph 42
component 79 | imprimitive str. reg. graph 37,82
connected graph 79 | incidence 82
cycle, n- 81 | incidence graph 46,83
degenerate design 83 | incidence matrix 80,82
degree 81 | incidence structure 82
derived design 83 | induced configuration 58
design 83 | induced subgraph 80
design, t- 83 | independent set of vertices 80
design, t -~ (v,k,A) 83 | interlacing eigenvalues 7
diameter 79 | intersection numbers of a design 31
disconnected graph 79 | intersection numbers of a graph 51
disjoint union of graphs 79 | joint vertices 79
distance in a graph 79 | lattice graph 82
distance in a generalized n-gon 52 | length of a circuit 79
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length of a path in a graph 79 | quasi-symmetric 2-design 35
length of a path in a gen. n-gon 52 | regular graph 81
line graph 67,84 residuai design 83
linked 2 - (16,6,2) designs 45 | Schlafli graph 26
new block 68 | Shrikhande graph fly~leaf
new point 68 | singular values 5
null graph 79 | special block 69
order of a generalized n-gon 50 | strongly regular graph 81
oval 70,78 | subconstituent 82
parameters of a t-design 83 | subdesign 83
parameters of a partial geometry 84 | subgraph 80
parameters of a str. reg. graph 81 | substructure 82
partial geometry 84 | symmetric 2-design 83
partial subgeometry 84 | thick generalized n-gon 50
path in a generalized n~gon 52 | tight interlacing 7
path in a graph 79 | triangular graph 82
Petersen graph 82 | type I, II block 65
point 82 | valency 81
point graph 52,84 | vertex 79
primitive str. reg. graph 37,82 | void graph 79
pseudo~geometric graph 52
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