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PREFACE 

The application of the theory of matrices and eigenvalues to combina­

torics is certainly not new. In a certain sense the study of the eigenvalues 

of the adjacency matrix of a graph even became a subject of its own, see for 

instance [BS], [C12], [C13], [H14] and [s2]. Also in the theory of designs, 

matrix and eigenvalue methods have oft.en been used successfully; see for 

instance [C6], [c9], [H17] and [R3]. In the present monograph (which is a 

slightly revised version of the author's thesis) the starting point is a 

theorem concerning the eigenvalues of partitioned matrices. Applications of 

this theorem and some known matrix theorems to matrices associated to graphs 

or designs lead to new results, and new proofs of known results. These con­

cern inequalities of various types, including conclusions for the case of 

equality. In addition we obtain guiding-principles for constructing strongly 

regular graphs or 2-designs. Let us give some more details. 

Our theorem (Theorem 1.2.3) about eigenvalues and partitionings of 

matrices, which was announced in [Hl], reads as follows: 

'.rHEOREM. Let A he a complete hermitian n x n matrix, into m2 

block matrices, such that all diagonal block matr-iees are square. Let B he 

i,j-th the m x m matrix whose i,j-·th entry equals the aver'age roW sum of the 

block matrix of A for i,j = 1, •.• ,m. Then the eigenvalues Al (A) ? ... ? 

of A and the eigenvalues Al (Bl ? ... ? Am(B) of B satisfy 

Moreover, some integer k, 0 cc; k cc; 

and i- 1 (Bl = A n-m+i (A) for i = k+l, •.. ,m, 

have constant row and column sums. 

m, Ai (Al = Ai (Bl 

then aU the block 

A (A) 
n 

i. = 1 ro •• ,k 

matrices A 

The weaker inequalities A1 (A) ? Ai(B) ? An(A) were already observed by 

c.c Sims (unpublished), and have been applied successfully by HESTENES & 

HIGMAN [H10], PAYNE [P4], [P6] and others. They are usually applied under 

the name Higman-·Si.ms technique. Many proofs by means of this Higman-Sims 

technique can be shortened by use of our generalization. But, what. is more 

important, our theorem leads to new results, which we shall indicate below. 
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Suppose G is a graph on n vertices, whose (0,1)-adjacency matrix has 

eigenvalues A1 (G) ~ ... ~ An(G). DELSARI'E [Di] proved that, for strongly 

regular G, the size of any coclique (independent set) cannot be larger than 

- n An {G) / C\ 1 (G) - An (G) l. A.J. Hoffman (unpublished) proved that this bound 

holds for any regular graph G. Using the above theorem we prove that an 

upper bound for the size of a coclique in any graph G is provided by 

- n Al (G) "n(G) / (d 2 . - "l (G) ;\ (G)) , min n 

where dmin denotes the smallest degree in G. 'l'his generalizes Hoffman• s 

bound, since in case of regularity A1 (G) = dmin holds. More generally, by 

use of the same methods we find bounds for the size of an induced subgraph 

of Gin terms of the average degree of the subgraph (Theorem 2.1.2). Apart 

from the inequalities of Delsarte and Hoffman we also find inequalities of 

Bumiller, De Clerck and Payne as corollaries of our result. 

By applying the generalization the Higman-Sims technique (with 

m = 4) to the adjacency matrix of the incidence graph of a design, we obtain 

bounds for the sizes of a subdesign in terms of the singular values of the 

incidence matrix ('l'heorem 3. 1 .1) . For nice designs, such as 2-designs and 

partial geometries, this result becomes easy to apply, since then the sin­

gular values are expressible in the design parameters (for symmetric 2-

designs the inequality also appeared in [H4]). Than.ks to the second part of 

our theorem certain conclusions may be drawn easily for the case that the 

bounds are attained, for the graph case as well as for the design case. 

We also prove results concerning the intersection numbers of designs, 

such as the inequalities of AGRAWAL [Al] (Theorem 3.2.1) and the results of 

BEKER & HAEMERS [B2] about 2 - (v,k,>.) designs with an intersection number 

k - A (v - k) / (k - 1) .. 

HOFFMAN [H13] proved that the chromatic number y (G) of a graph G 

satisfies y (G) :2: - A 1 (G) / "n (G) . To achieve this, Hoffman first proves a 

generalization of the inequalities of Aronszajn concerning eigenvalues of 

partitioned matrices. In Section 1.3 we give a new proof of these inequali.­

ties using our generalization of the Higman-Sims technique. In Section 2.2 

the application of these inequalities yields a generalization of Hoffman's 

bound (Theorem 2.2.1). For non-trivial strongly regular graphs this leads 

to y(G) :2: max{l-1. 1 (G) /;\n(G), (GJ / A 2 (G) } . In Chapter 4 we use these 

bounds, and many other results f-rom the previous chapters, in order to 

determine all 4-colourable strongly regular graphs. This chapter is also 
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meant to illustrate some applications of the results and techniques obtained 

in the first three chapters. 

Chapter 5 is in the same spirit, but rather independent from the other 

ones. The main result is the inequality of HAEMERS & ROOS [H3]: t :S s 3 if 

sf. 1 for a generalized hexagon of order (s,t), together with some addition­

al regularity for the case of equality. This is proved by rather elementary 

eigenvalue methods. The same technique applied to generalized quadrangles 

of order (s,t) yields the inequality of HIGMAN [H11]: t :S s 2 ifs f 1, the 

result of BOSE [B7] for the case of equality and a theorem of CAMERON, 

GOETHALS & SEIDEL [CS] about pseudo-geometric graphs. 

Using eigenvalue methods we obtain guiding-principles for the con­

struction of designs and graphs. In Section 6. 1 we construct a 2 - ( 56, 12, 3) 

design, for which the framework is provided by Theorem 3.2.4. This design 

is embeddable in a symmetric 2 - (71,15,3) design. By modifying this design 

we obtain eight non-isomorphic 2 - (71, 15, 3) designs. All these designs seem 

to be new (the construction is also published i.n [B2]). In Section 6.2 some 

ideas for the construction of strongly regular graphs are described. We 

construct strongly regular graphs with parameter sets 
3 2 2 3n 2n+1 , 2n n n 

(q +q +q+l,q +q,q-1,q+l) and (2 +2 ,2 +2 -1,2 -2, for prime power q 

and positive integer n. Strongly regular graphs with the first parameter 

set are known; however, our construction yields graphs which are not iso­

morphi.c to the known ones. The second family seems to be new. Special at­

tention is given to strongly regular graphs with parameter set (40,12,2,4). 

Several such graphs are constructed with the help of a computer. 

In the first appendix we recall some basic concepts and results from 

the theory of graphs and designs (including finite geometries). The second 

appendix exhibits explicitly some of the designs and graphs constructed 

earlier, 
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CHAPTER I 

MATRICES AND EIGENVALUES 

1.1. INTRODUCTION 

In this chapter we shall derive some results about eigenvalues of 

matrices. They provide the main tools for our investigations. We shall 

assume familiarity with the basic concepts and results from the theory of 

matrices and eigenvalues. Some general references are [M3], [N1], [WS]. 

Let A be a square complex matrix of size n. The hermitian transpose 

of Aw.ill be denoted by A* .. Suppose A has n (not necessarily dist1nct) 

real eigenvalues, which for instance is the case if A is hermitian (Le. 

A= A*). Then we shall denote these eigenvalues by 

Al (A) ? • • • ? (A) 

If denoted by subscripted variables, eigenvectors will always be ordered 

according to the ordering of their eigenvalues. Vectors are always column 

vectors. The linear span of a set of vectors u 1 , •.• ,un is denoted by 

< , ••• ,un >. A basic result, which is important to our purposes, is 

Rayley's principle (see [Nl], [WS]). 

1.1.1. RESULT. Let A be a hermitian matrix of size n. Par some i, 0 5 i 5 n, 

let u 1 , ••• , ui be an orthonormal set of eigenvect01°s of A for A 1 (A) , ••• , Ai (A) • 

Then 

L 

iL 

(A) 5 

* u u 

equality holds iff u is an eigenvector of A for (A). 

2 
* u Au 

* u u 

equality ho lds 

for u E < 

u is an eigenvector of A for (Al. 

For the multiplicity of an eigenvalue we shall always take the geo­

metric one, that is, the maximal number of linearly independent eigenvectors 
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(to be honest, this agreement is only of influence to the proof of the next 

lemma, because throughout the remainder of this monograph we shall only 

consider eigenvalues of diagonalizable matrices). Now we shall prove some 

easy and well known, but nevertheless useful lemmas. 

* 1. 1. 2. LEMMA. Let M and N be comp lex m1 x m2 matrices. Put 

Then the following are equivalent. 

L " ,f. 0 is an eigenvalue of A of multiplicity f· , 
iL -11. ,,. 0 is an eigenvalue of A of multiplicity f• , 

iii. 11. 2 ,f. 0 is an eigenvalue of MN of multiplicity f• , 
iv. 11.2,,. 0 is an eigenvalue of NM of multiplicity fo 

PROOF. 

1. (i) - (ii): let AU 11.U for some matrix U of rank f. Write 

U - [ :: ] , aOO define U ,. [-::] , 

where Ui has mi rows for i = 1,2. Then NU2 = 11.u1 and MU1 = 11.u 2 • This implies 

AU= -11.U. Since rank U = rank U, the first equivalence is proved. 

2. (iii) - (iv): let MNU' = 11. 2u• for some matrix U' of rank f. Then 

NM(NU') = 11. 2NU 1 , and rank NU'= rank U', since 

rank 11. 2u• = rank MNU' $ rank U' , 

and 11. ¥ 0. This proves the second equivalence. 

3. (i) - (iii): let U and Ube as in case 1. Put n := m1 +m2 • Then 

and rank [U U] 2f if 11. ,f. 0. On the other hand the multiplicity of an 

eigenvalue 11. 2 ¥ 0 of A2 equals 

2 2 
n - rank(A -11. I) = n - rank((A-AI) (A+AI)) S 

$ n - (rank (A - AI) + rank (A+ AI) - n) = 2f . D 



6 

The singuZa:r values of a complex matrix N, are the positive eigenvalues of 

By the above lemma we see that they are the same as the square roots of the 

non-zero eigenvalues of NN*. 

1.1.3. LEMMA. Let 

A 
All Alj 
A21 A22 

be a comp Zex matrix. If A11 is non-singular, and rank A11 rank A, then 

PROOF. For .i = 1, 2, let a. . denote the j-th column of Ai 2 . From 
* * * .1, J 

rank A rank [A11 A21 J .it follows 

for some vector u. But if A11 .is non-singular, then u 
-1 

a 2,j = A21 A11 ,j' which proves the lemma. 

-1 
1 ,j' Hence 

The identity matrix of size n will be denoted by In or I. The matrix 

with all entries equal to one by J; a column vector of J is denoted by j; 

Jn is a square J of size n; the symbol® is used for the Kronecker product 

of matrices. 

D 

As a last result in this section we observe that, if K := In ® Jm' then 

A (Kl mn 0 

1.2. INTERLACING OF EIGENVALUES 

Suppose A and Bare square complex matrices of size n and m, respec­

tively (ms n), having only real. eigenvalues. If 



for all i = 1, ••• ,m, then we say that the eigenvalues of B interlace the 

eigenvalues of A. If there exists an integer k, 0 s ks m, such that 

for i 1, ..• ,k 

and 
k+l, ••. ,m, 

then the interlacing will be called tight. Our first and fundamental case 

of interlacing eigenvalues is due to R. Courant (see [c11], p. 28). 

* 1.2.1. THEOREM. Lets be a complex n x m matrix such thats s = Im. Let A 
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* be a hermitian matrix of size n. Define B := s AS, and let v 1, ••• ,vm be an 

orthonormal set of eigenvectors of B. Then 

i. 

ii. 

iii. 

iv. 

the eigenvalues of B interlace the eigenvalues of A; 

if'A.(B) E {'A.(A) ,-;._ .(A)} for some i E {1, ••• ,m}, then there i i n-m+i 
exists an eigenvector v of B for -;,.i(B}, such that sv is an eigen-

vector of A for Ai(B); 

if, for some fl E {O, ... ,m}, -;..i(A) = -;..i(B) for all i = 1, ••• ,!l, 

then svi is an eigenvector of A for 'Ai(A), for i = 1, •.• ,!l; 

if the interlacing is tight, then SB= AS. 

PROOF. Let u 1, •.• ,un be an orthonormal set of eigenvectors of A. For any i, 

1 s i s m, take 

Thus also 

This proves (i}. 

If 'Ai(B) = 'Ai(A), then vi and svi are eigenvectors of Band A respectively 

for the eigenvalue Ai(B) = 'Ai(A). This, together with the same result 

applied to - B and - A yields (ii) . 
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We shall prove (iii) by induction on JI,. If JI, 

prove. Suppose JI,> O. We have 

"t (A) * v2,Bv2, 
* * vis ASvt 

* * vis sv£ 

0, there is nothing to 

On the other hand, Sv£ E < sv1 , ..• ,SvJl,-l >~, and by the induction hypothesis 

sv1, •.• ,sv£-l are orthonormal eigenvectors of A for A1 (A), ..• ,At-l(A). Now 

1.1.1.ii yields that Sv£ is an eigenvector of A for 1151,(A). This proves 

(iii) • 

Let the interla.cing be tight. By applying (iii) to A with £ = k and to - A 

with £ = m - k, we find that Sv 1 , ... ,Svm is an orthonormal set of eigenvec-

tors of A for 11 1 (B), ... ,Am(B). Write V := ••• vm] and 

D := diag (Al (B), .•• ,;\m (B)). Then ASV SVD, and BV = VD. Hence 

ASV = SBV • 

Because Vis non-singular, (iv) has now been proved. 

A direct consequence of the above theorem is the fol.lowing theorem. 

This result is known under the name Cauchy inequalities, see [H7], [M2], 

[WS]. 

1.2.2. THEOREM. Suppose 

is a hermitian matrix. 

L 

iL 

The eigenvalues of A11 interlace the eigenvalues 

If the interlacing is tight, then A 12 = 0. 

□ 

PROOF. Let m be the size of A11 . Define S := [I OJ*, and apply 1.2.L 
m □ 

Another consequence of 1.2.1 is the following result which was 

announced in [H1] (see also [H2]). This result will often be used .in the 

forthcoming sections. 
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1.2.3. THEOREM. Let A be a hermitian matrix partitioned as follows 

such that Aii is square for i = 1, ••• ,m. Let bij be the average row swn of 

Aij' for i, j = 1, ••• ,m. Define the m x m matrix B := (bij). 

i. The eigenvalues of B interlace the eigenvalues of A. 

ii. If the interlacing is tight, then A .. has constant row and column 
l.) 

swns for i,j = 1, •.• ,m. 

iii. If, for i,j = 1, ••• ,m, Aij has constant row and column swns, then 

any eigenvalue of Bis also an eigenvalue of A with not smaller 

a multiplicity. 

PROOF. Let n. be the size of A ..• Define 
l. l.l. 

1 1 0 0 0 0 

0 0 1 1 0 0 

~* 0 0 0 0 0 0 s : == 

0 0 0 0 1 1 

nl n2 n 
m 

D := diag(rn-;-, ••• ,~), and S := S D-l Then s*s I and s*s = D2 • We easily 
~'k ~ 

see that (S AS)ij equals the sum of the entries of Aij" Hence 

B 

* By 1.2.1.i we know that the eigenvalues of SAS interlace the eigenvalues 

of A. But B has the same eigenvalues as s*AS, since 

* -1~* ~ -1 -1 SAS= D S ASD = D BD. 

This proves (i). 
-1 

It is easily checked that AS= S(D BD) reflects that A .. has constant row 
. l.J 

sUlllS for all i,j = 1, ••• ,m. Hence 1.2.Liv implies (ii). 
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-1 
On the other hand, if AS 

-1 
integer i, then A(SD U) 

SD BD and BU= Ai(B)U for some matrix U and 

Ai(B)So-1u, and rank U = rank SD-1U. This proves 

(iii). 

As a special case of the above theorem we have that 

for i 1, ... ,m. These inequalities are well known and usually applied 

under the name Higman-Sims technique, see [H10], [P4]. We shall also use 

the name Higmans-Sims technique if we apply the more general result 1.2.3. 

Also 1.2.3.iii is well known, see for instance [C13], [H9] (note that this 

result .remains valid for non-hermitian A). We see that 1.2.3.ii gives a 

sufficient, and that 1.2.3.iii gives a necessary condition for the block 

matrices of A to have constant row and column sums. However, neither of 

these conditions is both necessary and sufficient. This is illustrated by 

the following partitioned matrices, 

-~] 
~ 

0 0 -1 

=~-ff' 
1 

0 0 1 
A' 

-1 1 
A ' 

:::::.: 

-1 1 0 0 0 

1 -1 0 0 0 

D 

For both A and A' the eigenvalues are 2,0,0,-2, and the average row sums of 

the block matrices are given by the entries of B = (~ ~J. The block 

matrices of A have constant row sums, whilst the interlacing is not tight. 

The row sums of the block matrices of A' are not constant, whilst the 

eigenvalues of Bare also eigenvalues of A. 

L 3. MORE EIGENVALUE INEQUALITIES 

In this section we shall use interlacing of eigenvalues in order to 

prove some known inequalities and equalities, which we shall use in later 

sections. The first result is due to WEYL [W2] (see also [WS]). 

1.3.1, THEOREM. Let A1 and A2 be hermitian matrices of size m. Then 

1, •.• ,m, 0 s: j s: min{i-1,m-i}. 
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PROOF. Define 

A:= 
A1 - >... . (A1 ) I 

J.-J 

0 

Then 

>.. • . (Al - >.. . . (A1)I) = >.. 1 . (A2 - >.. 1 . (A2)I) 0 • 
J.-J J.-J +J +J 

0. On the other hand 

With 1.2.1 we now have 

If we replace A1 and A2 by - A1 and - A2 , we get the second inequality. D 

The next theorem is due to HOFFMAN [H13]. 

1.3.2. THEOREM. Let A be a hermitian matrix of size n, partitioned as 

follows 

where Aii is a square matrix of size ni, for i = 1, ... ,m. Let j 1, •.. ,jm be 

integers suah that 1 ~ ji ~ ni for i = 1, ... ,m. Then 

n 
I Ai (A) • 

i=n-m+2 

PROOF. Let u 1, ••• ,un be an orthonormal set of eigenvectors of A. Let 

u. 1, ••• ,ui be an orthonormal set of 
J. ni 

eigenvectors of Aii for i = 1, ••. ,m. 

Put k := j 1 + ••• + jm. Choose a vector U -- [~* ~* ]* ~ 0 h th t k u 1k • • • umk r , sue a 
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and 

1, ... ,m • 

It follows from dimension considerations that we can always do so. Now 

define 

and 

if w. 0 , 
l. 

for i 1, ... ,m. Furthermore put 

* w := (wl, ... ,wm) 

and 

illk 0 0 

0 il2k 0 
s ::=== 

0 

'.l'hen we have 

* * S S =I, Sw and (S AS) ii 

By LL Li and the choice of uik' the last formula gives 

* (S AS) ii 2 for i 

Hence 

m m 

I A. (s*As) * I (*) trace SAS 2 A. (A .. ) 

i=l 
J. 

i=l Ji l.J. 

the other hand, * On Sw Uk' s s I and LLl yield 
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Applying L2.1 gives 

m-1 m-1 
(***) I "i (S 

* AS) I >.i(A) s: 
i=l. i=l 

Combining (*), (**)and(***) yields the first inequality of our theorem. 

Again, the second inequality follows by substituting -A for A in the first 

one. 

If the matrix A of the above theorem is positive semi-definite and 

m 2, then we have 

These axe the inequalities of ARONSZAJN [A3] · (see also [H7]). 

The following consequence of l..3.2 will turn out to be a useful tool 

in computations with eigenvalues. 

1.3.3. THEOREM. Suppose 

is hermitian of size n. Suppose A has just two distinct eigenvalues, that 

A. 1 (A) 

D 

for some f, 1 s: f < n. Let n1 and n2 be the sizes of A11 and A22 respective­

ly. Then 
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PROOF. By the Cauchy inequalities (1.2.2.i) we have 

This proves the result for 1 5 i < f+1-n 1, and for f < i 5 n2 . 

For the remaining values of i, 1.3.2 gives 

which proves the required result. D 

It is an easy exercise to give a direct proof of the above theorem, 

The proof then could go analogously to the one of Theorem 5 .1 of [CS], 

where a similar result is stated. 



2.1. INDUCED SUBGRAPHS 

CHAPTER 2 

INEQUALITIES FOR GRAPHS 

15 

In this section we shall derive inequalities for induced subgraphs of 

graphs, using the results of section 1.2 on interlacing of eigenvalues. 

Let G be a graph on n vertices. The eigenvaZues of Gare the eigen­

values of its (0,1)-adjacency matrix; we denote them by ll. 1 (G);;:: .•. ;;:: An(G). 

Let G1 be an induced subgraph of G. Then by 1.2.2 (Cauchy inequalities) the 

eigenvalues of G1 interlace the eigenvalues of G. In particular, if G1 is a 

coclique of size a, then /\0 (G) ;;:: /\ 0 (G1) = 0, and 11.n-a+l (G) ~ 11. 1 (G 1) = O. 

Hence, we have the following result, which was first observed by CVETKOVIC 

[C12] (see also [C13]). 

2.1.1. THEOREM. The size of a cocZique of a graph G cannot exceed the number 

of nonnegative [nonpositive] eigenvaZues of G. 

Now we shall derive inequalities for induced subgraphs using the Higman­

Sims technique (1.2.3). Suppose G is a graph on n (n;;:: 2) vertices of average 

degreed. Let the vertex set of G be partitioned into two non-empty sets, 

and let G1 and G2 be the subgraphs induced by these two sets. For i = 1,2, 

let ni be the number of vertices of Gi, let di be the average degree of Gi, 

and let di be the average of the degrees in Gover the vertices of Gi. Now 

we can state the following theorem. 

2.1.2. THEOREM. For i = 1,2 

L 

iL if equaZity hoZds on one of the sides, then G1 and G2 are 

reguZar, and aZso the degrees in Gare constant over the 

vertices of G1 and G2. 
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PROOF. If G is complete we easily see that the theorem is correct. So let 

us assume that G is not complete. Let A11 , A22 and 

be the adjacency matrices of G1 , G2 , and G, respectiveJy. Put 

Then the entries of Bare the average row sums of the block matrices of A. 

By 1.2.3.i we have 

Because trace A 0, we have An(A) ~ 0. From 2.1.1 we know that A2 (A) 2 O, 

since otherwise G would be complete. Trace B 2 0 implies J- 1 (B) 2 0. Hence 

On the other hand we know 

det B 

We quickly see 

dn 

This yields 

With (*) and (**) this proves (i). 

If equality holds on one of the sides, the interlacing must have been 

tight. Hence 1.2.3.ii gives (ii). 

Now let us look at the consequences of the above inequalities for 

some special cases. The size of the largest coclique and clique of Gare 

denoted by a(G) and w(G), respectively. 

□ 



17 

2 • L 3. THEOREM. If dmin and dmax are the smaUest and the largest degree in 

the graph G, respectively, then 

L 

PROOF. (i). Substitute a(G) 

inequality of 2.1.2.i. 

(ii). Substitute w(G) = 
inequality of 2.1.2.i. 

w (G) - 1 and d1 ,c; d 
max 

in the left hand 

D 

2 .1. 4. 'I'HEOREM. If G is a regular graph on n ~ 2 vertices of degree d, then 

L any induced suhgraph G1 of G with n 1 (0 < n1 < nJ ver·tices and 

average degree satisfies 

iiL w(G)(n-d+1c 2 (G)) $ n(l+1c 2 (G)). 

PROOF. If G is regular then Al (G) = d d 1 ct 2 = dmin d Now 
max 

2.1.2.i, 2.1.3.i and 2.1.3.ii give the required results. D 

The inequality 2.1.4.ii is an unpublished result of A.J. Hoffman 

{see [C13J, [H2], [L2]). In fact, the inequalities (ii) and (iii) of 2.1..4 

(just as the left and the right hand inequality of 2.1.4.i) are equivalent, 

because either one can be obtained from the other by using w(G) = a(G), 

(G) = n - A (G) - 1 
l 

the complement of G). 

and :\. (G) ,= - A . (G) - 1 
1. n-1.+2 

for i = 2, •.. , n (G is 

For the graph G with its subgraphs c1 and G2, we define D(G,G1) to be 

the incidence structure whose points and blocks are the vertices of and 

respectively, a point and a block being incident if the corresponding 

vertices are adjacent. If we have equality in any of the inequalities of 

2.L2-2.1.4, then 2.L2.ii yields that D(G,G1) is a 1-design, possibly 
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degenerate. Now let G be strongly regular. '.I'hen by use of L2.3.iii it is 

not difficult to show that equality holds in 2.1.4 if£ D(G,G 1) is a 1-design. 

If G1 is a coclique or a clique we have a criterion for D(G,G1J to be a 2-

design. 

2.1.5. THEOREM. If G is a strongly regula1° graph on n vertices of degree d, 

then 

i. 

ii. w (G) s 1 - d / (G) , 

iii. 1:f equality holds in (i) or (ii), and G1 is a coclique of size 

a(G), or a clique of size w(G), respectively, then D(G,G1) is a 

2-design, possibly degenerate. 

PROOF. If G is strongly regular, we know (see [CS], [S4] or Appendix I) 

From this it follows in a straightforward way that (i) and (ii) are equi­

valent to 2.1.4.ii and 2.1.4.iii. 

From the definition of a strongly regular graph we know that any two points 

of D(G,G1) are incident with a constant number of blocks of D(G,G1). 

Furthermore, equality in (i) or (ii) implies that D(G,G 1J is a 1-design, so 

in this case D(G,G1) is then a 2-design, possibly degenerate. 

The theorems 2.1.5 and 2.1.4 for strongly regular graphs are known. 

They are direct consequences of the linear programming bound of DELSARTE 

[Dl] (see also [H2]). They were also proved by BUMILLER [B9]. 

Applying 2.1.4.i to the point graph of a partial geometry (see Appen­

dix I, or [B6], [Tl]) gives the following result of DE CLERCK [C7] (see 

also [P3 J for the case a = 1, and [B9] for t ~, t 1) . 

2.L6. COROLLARY. Let P be a partial geometry with parameters (s,t,a), 

containing a partial subgeometry P 1 with parameters (s 1 ,t1 ,a). Then 

□ 
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PROOF. If G and G1 are the point graphs of P and P1 , respectively, then 

(see Appendix I or [Tl]) G1 is an induced subgraph of G, and 

n = (s+l)(st+a) /a 

Substitution of these values in the left hand inequality of 2.1.4.i leads 

to 

'rhis proves the result. C 

The next theorem gives a result in case both Hoffman's bound (2.1.4.ii) 

and Cvetkovic's bound (2.1.1) are tight. 

2 .1. 7. 'I'HEOREM. Let G be a strongly r·egula,r gr•aph on n 

not complete y-pa:rtite (i.e. (G) > 0). Let fn(G) denote the 

of An (G) • Then 

L 

wh·t'.ch is 

Zicity 

iii. let G1 be a coc'lique, v;hose size attains both of these bounds, 

then G2, the subgraph of G induced by the .Pema1:ning vertices, is 

strongly regular with eigenvalues 

(G) , 

PROOF. Theorem 2.1.1 implies (i); (ii) is the same as 2.1.5.i. Let A and A2 

be the adjacency matrices of G and c2 , respectively. Then 

Ai (G) - A2 (G) 
A - ------J 

n 

has just two distinct eigenvalues, A2 (G) and An (G) of multiplicity n - (G) 

and (G) = a(G), respectively. From 1.3.3 it follows that 
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+ a (G) (), 1 (G) - A 2 (G) l / n, where the last eigenvalue is simple (has mul tipli­

ci ty one). On the other hand, 2.1.5.iii gives that G2 is regular of degree 

\ (G) - Al (G) a (G) / (n - a (G)). This shows that A2 and A2 have a common basis 

of eigenvectors, and that the simple eigenvalue of A 2 belongs to the eigen­

vector j. Thus A2 has the desired eigenvalues, and therefore (see [C6] or 

Appendix I) G2 is strongly regular. D 

Using 1.1.3 it is not difficult to show that D(G,G 1 ) is a quasi·•· 

symmetric 2-design (see Section 3.2), whose block graph is the complement 

of G2 . This situation has been studied by SHRIKHANDE [SS]. 

In proving 2.1.2 we applied interlacing to the product of eigenvalues. 

We did so in order to get reasonably nice formulas. However, for non­

regular graphs the .inequality for the product carries less .information than 

the separate .inequalities. For th.is reason, applying the Higman-Sims 

technique directly to the adjacency matrix of a given non-regular graph, 

may yield better results than 2.1.2 or 2.1.3. Also, if more is known about 

the structure of G or G1 , it is often possible to get better results by a 

more detailed application of the Higman-Sims technique. Let us illustrate 

this by the following result. 

2.1.8. THEOREM. Let G be a regular graph on n vertices of d, and let 

the complete ns.nnY>r:a be an induced of G, 
,m 

Let and 

(n--t-m)x2 + (dt+dm-21.m)x - fm(n-2d) . 

Then 

PROOF. Without .loss of generality, let G have adjacency matrix 

0 J Ai2 
A J 0 

2 

A2l A" 
21 
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where the diagonal block matrices are square of sizes t, m and n2 , respect­

ively. Using the Higman-Sims technique (1.2.3) we find that the eigenvalues 

of 

0 m d-m 

B := i 0 d-i 

d-m d-i id +md - 2im i-- m-- d -
n2 n2 n2 

interlace the eigenvalues of A. Clearly A1 (Bl = A1 (A) d and hence 

A2 (B) + A3 (B) = (trace B) - d = (2im - id -md) / n2 

This yields x1 = A2 (B) and x 2 = A3 (B). Now the interlacing gives the 

required result. 

BUMILLER [B9] showed for strongly regular G and m 1 that 

whereµ 

one easily checks that this follows from the second inequality of the 

above theorem. PAYNE [P6] proved that 

2 
( i - 1 ) (m - 1) :s: s , 

if G is the point graph of a generalized quadrangle of order (s,t) (see 

Chapter 5 or Appendix I). This follows after substituting 

n = (s+1)(st+1) , d = s(t+1), A2 (G) = s-1 

in the first inequality of the above theorem. It should not be surprising 

that for this case we obtain the same result as Payne, because he too uses 

the Higman-Sims technique. 

□ 
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2.2. CHROMATIC NUMBER 

In this section we shall derive lower bounds for the chromatic number 

of a graph in terms of its eigenvalues. The main tool is Hoffman's generali­

zation of Aronszajn's inequalities (1.3.2). 

Let G be a non-void graph on n vertices. Then it follows immediately 

that y(G), the chromatic number of G, satisfies 

y(G)a(G) ? n • 

Combining this with the upper bounds for a(G) found in the previous section 

we obtain lower bounds for y(G). For instance, 2.1.3 gives 

y(G)? 1-d2 , /:\ 1 (G);\ (G) 
min n 

However, this is not best possible, since HOFFMAN [H13] (see also [B5], 

[H2], [H14], [L2]) showed that 

which, if G is not regular, is better than the above bound. If G is regular, 

then the two bounds coincide. '.raking into account that a (G) is an integer 

we get 

which is occasionally better than Hoffman's bound. 

HOFFMAN [Hl3] proves his lower bound by use of the inequalities 1.3.2. 

We shall use the same technique, but in a more profound way, in order to 

obtain a generalization of Hoffman's inequality. 

2.2.1. THEOREM. Let G be a graph on n vertices uJith chromatic numbe:r, y. Let 

k be an integer satisfying O :s: k < n I y. Then 

L (y - 1) 

iL 

PROOF. Let A be the adjacency matrix of G. Then without loss of generality 



A 

where A .. is the n. X 
1.1. l. 

First, we assume that 

n. 
l. 

n. 
J_ 

A yy_ 

all-zero 

> k for 

matrix, for 

i = 1,. .. ,y. 

orthonormal set of eigenvectors of A. Define 

k 
A:= A+ (An(A) -A 1 (Al) l 

i=l 

* 

* u.u. 
l. l. 
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i 1, .. .,y. 

Let u1•···•un denote an 

Clearly the matrices uiui and A have a common basis of eigenvectors. This 

implies 

Ai (A) Ak+i (A) for i 

For i ,.~ 1, ... , y, let Aii be the submatrix of A corresponding to Aii. Si.nee 
k 

* 'i' * uiui i.s positive semi-definite of rank one, l uiui .is positive semi-
i=1 

definite of rank k. This yields that - Aii .is positive semi-definite of 

rank at most k, hence 

0 for i 

Now we apply the left hand inequality of 1.3.2 with ji 

With (*) this yields 

Hence 

y-1 
(y-1) (Al + l Ai+k(A) ? 0. 

i=l 

ni - k. '£his gives 

Now suppose that ni :S k for some .i E {1, .•• ,y}. Let L c {1, ... , be such 

that ni :S kif£ i. EL. Let A' be then' x n' submatri.x of A, obtained by 

discarding all block matrices wi.th i. E L or j E L. Put .!l := JLI. From 

k < n/y it follows that .~ < y, hence n' > 0. Now (***) gives 
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Using n' + kR, 2 n and the Cauchy ineguali ties ( 1. 2. 2) we have 

"n'+kR,-k(y-1) (A') ,s ,\n-k(y-1) (A') :; ,\n-k(y-1) (A) ' 

Hence 

From k < n/y it follows that ;\l+k(A) 2: \i-k(y-l) (A), hence ;\l+k(A) 2 0. 

Thus 

This proves (i). The proof of (ii) proceeds analogously, but also follows 

from the above by replacing A by - A. 

We see that the second inequality of the above theorem fork= 0 is 

Hoffman's bound. In Chapter 4 we shall need a sharpened version of this 

inequality (see [H13]): 

y-2 

I 
i=0 

A . (G) 
n-:i. 

which is in fact just formula(**) in the above proof with k 

equal to minus the adjacency matrix of G. 

0, and A 

If k > 0, the above inequalities are not really bounds for y (G), 

since y(G) also occurs in an index. However, this does not matter much i.f 

we use these inequalities for estimating the chromatic number of a given 

graph. It is also not difficult to derive proper bounds from these in­

equalities. The next results illustrate this. 

2.2.2. COROLLARY. Let fn(G) denote the multip?..icity of the eigenvalue 

A (G) • . Then 
n 

y (G) 2 min{ 1 + fn (G), 1 - "n (G) / >- 2 (G)} 

PROOF. Suppose y = y (G) '.S fn (G). Then \, (G) = ;\n-y+l (G) . Now 2. 2 .1. i with 

□ 

k = 1 gives (y - 1) (G) 2 - "n (G). This proves the required result. LJ 



l''or strongly regular graphs the above results lead to the following 

theorem. 
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2.2.3. THEOREM. Let G be a strongly regular graph on n vertices. Suppose G 

is not the pentagon or a complete y-partite gr>aph. Then 

PROOF. Due to the above results, it suffices to prove the following claim: 

To achieve this, we distinguish three cases. 

a) n s 28. For this case it follows by straightforward checking that all 

feasible parameter sets for strongly regular graphs which violate our claim 

are those of the pentagon and the complete y-partite graphs. 

bl ;,. 2 (G) < 2. If G has a non-integral eigenvalue, then (see [C6], [C9] or 

Appendix I) A2 (G) = - ½ + ½ rn·, hence n < 25 and we are in case a. Otherwise 

;,. 2 (G) = 1. SEIDEL [S3] determined all strongly regular graphs with A2 (Gl =1. 

They satisfy n s 28 or G is a ladder <Jraph (disjoint union of edges), the 

complement of a lattice graph (L(K-)), or the complement of a triangular m,m 
graph (L(K )). One easily verifies that these three families of graphs 

m 
satisfy our claim. 

c) A2 (G) ? 2 and n > 28. If G is imprimitive (G is complete y-partite or 

the disjoint union of complete graphs), the result is obvious. So assume G 

is primitive. Suppose the claim does not hold. Using A2 (G) ? 2, A1 (G) < n 

and 

we obtain 

f2 (G) 
n 

This yields 
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For primitive G the absolute bound (see [D2], [S4]) reads 

Bence l, n < 2yf~, i.e. n < 24. This contradicts our assumption, and there-

fore the theorem is proved. 

2.2.4. EXAMPLE. Let G be the Schlafli graph, which is drawn in Figure 1; 

two black or two white vertices are adjacent iff they are on one line, a 

black vertex is adjacent to a white one iff they are not on a line (see 

[S3], [H2]). Then G is strongly regular, n 27 and 

□ 

:\ l (G) -2, 

- 5' 

where G denotes the complement of G. From Figure 1 we see that 

a(G) ;,: 3 and a(G) 2 6 

The thin vertical lines partition G into six cliques, hence y(G) <; 6. '.I'he 

numbering gives a colouring of G with nine colours, so y(G) <; 9. Using our 

bounds it follows that equality holds in a.11 these inequalities. Indeed, 

by 2.1.4.ii or 2.1.5.i we have a(G) <; 3; 2.1.1 yields a(G) <; 6; y(G) 2 9 

follows from Hoffman's bound, and y{G) 2 6 follows from our last theorem. 

F'IGURE I 

The chromatic number of strongly regular graphs will be the subject of 

Chapter 4. 



3.1. SUBDESIGNS 

CHAPTER 3 

INEQUALITIES FOR DESIGNS 

In this section we shall derive inequalities for subdesigns of de­

signs. 
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Let D be a design with incidence matrix N. It is clear that we cannot 

apply the Higman-Sims technique (1.2.3) to N, because N does not have to 

be symmetric. Instead, we apply the Higman-Sims technique to 

By definition the positive eigenvalues of A are the singular values of N. 

Let o 1 ~ o2 ~ ••• > 0 denote these singular values. Then we can state the 

main result of this section. 

3.1.1. THEOREM. Let D be al - (v,k,r) design with b blocks. Let D1 be a 

possibly degenerate l - ,k1 ,r1 ) subdesign of D with b 1 blocks. Then 

.L 

ii. if equality holds, then each point [block] off n1 is incident 

with a constant number of blocks [points] of n1, 

PROOF. Let Nl and 

N 

be the incidence matrices of and D, respectively. Put 
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0 0 Nl N2 0 0 r1 r-r 1 

0 0 N3 N4 0 0 X r-x 
A := and B := 

* * Nl N3 0 0 k k-k1 0 0 

* * N2 N4 0 0 y k-y 0 0 

where 

X := b 1 (k-k1) /(v-v1 ) and y := v 1 (r - r 1) / (b -b1) 

Then the entries of Bare the average row sums of the block matrices of A. 

By 1.1.2 we know 

;\ . (B) = - ). " . (B) , 
J :>-J 

for .i 1, ... ,b+v, j 1, .•• ,4. We easily have 

From det B rk(r 1 -x) (k1 -·y) .it now follows that 

Now 1.2.3.i gives 

With b 1k 1 = v 1r 1 th.is yields (.i). 

If equality holds, then the .interlacing must be tight. Thus 1.2.3.ii gives 

(ii). 

From the above proof it .is clear that the result also holds .if is 

not a 1-design, but then we have to take r 1 and k 1 to be tile average row 

and column sums of N1 . 

For many 1-designs a2 .is expressible in terms of the parameters of 

the design. For .instance, o; = r - ;\ if D is a 2 - (v,k,;\) design, and 

a; = s + t - a+ 1 .if D .is a partial geometry with parameters (s,t,a) (see 

Appendix I, or [c6], [Tl]). 

We shall make explicit two consequences of the above theorem. 

□ 



3.1.2. COROLLARY. If a symmetric 2 - (v,k,>..) design contains a symmetric 

2 - (v 1 ,k1 ,>.. 1) suhdesign, possibly degenerate, then 

PROOF. Substitute b 

3.LLL 

v, k 
2 

and a 2 k -A in 

3.1.3. COROLLARY. Let X and Y be a set of points and a set of lines, 

respectively, of a partial geometry with parameters (s,t,a), such that no 

point of X is incident 1,;Uh a line of Y. Then 

(aJxJ + (s+t+l--a)(s+ll)(aJYI + (s+t+l-a)(t+l)) <; 

~- Substitute k 1 = r 1 = 0, b 1 = JYJ, v 1 = jxj, k = s+l, r = t+l, 
2 v = (s+l) (st+a.) /a, b = (t+l) (st+a) /a and o2 = s+t+1-a in 

3.Ll.L 

Corollary 3.1.2 appeared in [H4]. A Baer subplane of a projective 

plane (see [D3]) satisfies 3.L2 with equality. Other examples which meet 

this bound (hence where 3.1.1.ii applies) can be found in [H4]. 

The bound of 3.1.3 can also be tight. For instance, let Q be the 

partial geometry with parameters (2,4,1) (generalized quadrangle), whose 

points and lines are the vertices and the triangles of the complement of 

the Schlafli graph (see Example 2.2A). There are 15 triangles which do 

not have a vertex in common with a double six (the black vertices in 

Figure 1), 'I'hus we have an empty subgeometry (no point and line are in­

cident) of Q having 12 points and 15 lines. This satisfies 3.L3 with 

equality. 

29 

□ 

□ 

If D1 is an empty design (k 1 = r 1 = 0), then one easily finds examples 

which meet the bound of 3.1.1.i. For instance, a projective plane with a 

maximal arc (see [D3]); a symmetric 2-design containing an oval without 

tangent blocks (see [A4]); a 2-design having a block repeated b/v times 

{see [L1]; here the inequality 3.1.Li is Mann's inequality [M2]). 
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Although the results of this section are similar to those of Section 

2.1, we did not start with a general inequality for substructures of an 

incidence structure like we did for subgraphs of a graph in 2.1.2. This has 

two reasons. Firstly, the formula for an arbitrary incidence structure is 

more complicated than 2.1.2. The second reason is that there does not seem 

to be much interest in incidence structures without any additional proper­

ties; this is certainly not true for graphs. Yet we shall give one result 

for an arbitrary incidence structure, namely an inequality for the sizes of 

an empty substructure. 

3.1.4. THEOREM. Let D be an inc·idence str-uctur'e with v and b blocks. 

Let every point [block] be ineident 1.r,ith at least rmin blocks [kmin points] 

Let X and Y be a set po'ints and a set of bloeks, respectiveZ.y, such that 

no po'int of X is incident with a block of Y. Then 

2 
r , 
nun 

lxl !YI 

where o 1 and a2 denote the two largest 

matrix of D. 

PROOF. Let the incidence matrix of D be 

values of the 1:neidence 

where 0 denotes the lxl x Jyj all-zero matrix. Let ri and be the 

* = 2, 3, 4 . Then by average row sums of N, and Ni' respectively, for i 
l, 

1.2.3.i the eigenvalues of 

0 0 0 r2 

0 0 r3 
B :== 

0 0 0 

k2 k4 0 0 

interlace the eigenvalues of 
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Now with 1.1.2 it follows that 

On the other hand we have 

Since r 2k3 ~ rmin kmin' the theorem is proved. □ 

3.2. INTERSECTION NUMBERS 

If two distinct blocks of a design D have exactly p points in common, 

then pis called an intersection number of D. It is obvious that an inter­

section number p of a 1 - (v,k,r) design satisfies 

k ~ p ~ max{0,2k-v} 

The next result, which is due to AGRAWAL [Al], gives non-trivial bounds 

for the intersection numbers of a 1-design. Like in the previous section, 

the singular values of the incidence matrix of a design D will be denoted 

by a 1 ~ a2 ~ ••• > 0. 

3.2.1. THEOREM. Let D be a 1 - (v,k,r) design with b blocks. Let B1 and B2 

be distinct blocks of D. Then 

i. 

if equality holds then jB1 n B3 j + jB2 n B3 j 

any fW"ther block B3 , 

ii. I B1 n B2 j ~ k - a~ ; 

if equality holds then JB1 n B3 j = jB2 n B3 j for any further 

block B3 • 

PROOF. The result is obvious if b ~ 3, so assume b ~ 4. Let N be the in­

cidence matrix of D, such that the first two columns correspond to the 

blocks B1 and B2• Define 
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* A := N N 

Then the off-diagonal entries of A are the intersection numbers of D, and 

the row and column sums of A equal kr. Put p := iB 1 ri B2 J and consider the 

following partitioning of A: 

Define 

(k p' Al 2 

A 
\p k) 

* A12 A22 

and B : -- [kx+p x := 2(kr-k-p) / (b-2) 
kr-k-pl . 

kr-x 

Then the entries of Bare the average row sums of the block matrices of A. 

Clearly 

rk and ),2 (B) k+p-x. 

By 1.2.3.i we have 

Hence 

2 
o2 (b-2),; (k+p)(b-2) - 2(kr-k-p). 

This yields 

If equality holds, the i.nterlac.i.ng is tight and 1.2.3.ii gives that every 

column sum of A12 equals x. This proves (i). 

To prove (ii) we apply 1.2.1 to A w.i.th 

Then 

* B :=SAS 

0 

0 

o] '' [2 o i-½ 
1 0 n-2 

0 



It is easily seen that kr --x 2: k-p if b 2: 4. So A2 (B) 

1.2.1.i 

k - p :<; A2 (A) 
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k - p. Hence, by 

Here equality does not have to imply that the interlacing is tight. There-
2 

fore we shall use 1. 2 .1. ii. If a 2 = k - p = kr - x, then r = 1, p = 0 or 

r = 2, p = 0, b = 4, and the result follows immediately by use of (i). If 

<-fi,fi,o, ... ,oi* 2 * o2 = k-p < kr-x, then 1.2.Lii implies that S(l,O) 

is an eigenvector 

This proves (ii). 

* * of A for the eigenvalue k - p. 'l'hus A12 (--1, 1) = 0. 

□ 

It is straightforward to verify that equality in (i) or (ii) for a 

pair of blocks of D implies also equality for the corresponding blocks of 

the complement of D. 

Although Agrawal's proof of the above theorem is different from ours, 

it also uses eigenvalue techniques (in essence the Cauchy inequalities 

1.2.2). MAJUMDAR [Ml] gives a proof of this theorem for the case that Dis 

a 2-design, using counting arguments. See also BUSH [BlO] and CONNOR [CB] 

for similar results. 

It is clear that our method also leads to inequalities if we consider 

the intersection pattern of more than two blocks. 

3.2.2. THEOREM. Let D be a l - (v,k,r) design with b blocks. Let Y be a set 

of blocks which mutually have p points in common. Then 

L I Y I (rk - bp ) s b (k - p ) , 

iL 

PROOF. Let N be the incidence matrix of D. We apply the H.igman-Sims 

technique to A ,=, N*N, partitioned according to Y and the other blocks of 

D. Put 

Then 

I y I k (r - 1 J - P < I Y I - 1 l 
b - IYI 

rk - k + p ·- p I YI l 
rk -x 
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carries the average row sums of the block matrices of A. Clearly 

A 2 (BJ = k - p + p I YI - x = (b (k - p) + (bp - kr) I YI) / (b - I YI) 

From 1.2.3.i we have 

This lower and upper bound for :\ 2 (B) yields (i) and (ii.), respectively. D 

We define two blocks B1 and B2 of a 1 - (v,k,r) design to be 

if 

Then from 3.2.Lii it is clear that this indeed defines an equivalence 

relation, and that the number of common points of two blocks only depends 

on the equivalence classes of these blocks. By the use of 3.2.2 we find 

bounds for the size of the equivalence classes. 

3 • 2 • 3 • THEOREM . Let D be a 1 - ( v, k, r) 

equivalence class of blocks. Then 

with b blocks. Let Y be an 

L 

iL 

2 
k and k - a 2 cannot both be an intersection number' of D, 

k - a2 ·is a:n intersection numbeI' of D, then 
2 

2 
ba 2 - bk+ rk 

k is an intersection number of D, then 

2 
ba2 

I YI s ------2-
bk - rk + a2 

PROOF. Assume 2r s b; we may do so because of the remark right after 
2 

Theorem 3. 2. 1. Suppose k - o 2 is an inter section number. Then k ·· ;> 0, 
2 2 

hence a 2 -k+2(rk-a2) /b s 2k(r-1) /b < k. So 3.2.1.i yields that k can-

not be an intersection numbeL The combination of (i) and (ii) of 3.2,,1 
? 

yields ba2 - bk+ rk 2 . Now formulas (ii) and (iii) fol.low immediately 



from (i) and (ii) of 3.2.2 by substitution of p 

tively. 

k - 0 2 and p 
2 
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k, respec-

Suppose Dis a 2 - (v,k,!t) design, so o~ = r - It= (bk-rk) / (v - l). 

From 3.2.3.iii it follows that D has at most b/v repeated blocks; this is 

the inequality of MANN [M2] (see also [Ll]). If D has an intersection 

number k - cr~ = k - r + It, then 3. 2. 3. ii implies that the size of any equi­

valence class is at most b/ (b - v + 1) ; this bound appeared in [B2]. This 

paper also contains the next result. (see also [Bl]). 

D 

A 2-design with just two distinct intersection numbers is called 

quasi-symmetric. Consider the graph G, whose vertices are the blocks of a 

quasi-symmetric 2-design D, two vertices being adjacent if the number of 

points which the corresponding blocks have in common equals the larger 

intersection number. We call G the block graph of D. GOETHALS & SEIDEL [G2] 

(see also [C6]) proved that the block graph of a quasi-symmetric 2-design 

is strongly regular. 

Now suppose Dis a 2- (v,k,A) design with just three distinct intersection 

numbers k - r + A, p 1 and p2 (p 1 > p2). We have already observed that the 

number of points which two blocks have in common only depends on the equi­

valence classes of these blocks. J.'°or this reason the following defini.ti.on 

is legitimate. The cl-ass graph of D is the graph whose vertices are the 

equivalence classes, two vertices being adjacent if two blocks representing 

the corresponding classes have p 1 points in common. 

3,2.4. THEOREM. Let D be a 2 - (v,k,!t) design with just three intersection 

nwnbers, k - r + A, p 1 and p 2• Then the class graph of D is a strongly 

regular graph on 

b (k - r ·r It - pf) (k - r + A - P 2 ) 

n ,~ --=------------,,-----------
Ak2 - k(r - A) + (r - It) 2 + bp 1p2 - !tv(p 1 + P2) 

vex•tices, with eigenvalues 

A2 (G) 

(G) 
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* PROOF. Let N be the incidence matrix of D. Define A:= N N. Then 

* * N (NN )N * 2 N P,.J + (r -,\)I)N "' Ak J + (r -,\)A 

Put p 0 := k ·- r + ,\. Let xj (j = 0, 1, 2) denote the nwnber of times that fl j 

occurs in the i-th row of A, for some i E {1, ... ,b}, Then 

(AJ) il rk , 

on using (*"). Substitute x 2 ~ b - 1 - x0 -x 1 and subtract the first equation 

multi plied by (p 1 + p 2) from the second one. This yields 

Hence x 0 does not depend on i and therefore all equivalence classes have 

size x 0 + 1. Now n = b/ (x0 + l.) yields the given fonnula for n. 

Now we partition A according to the equivalence classes. Let A denote the 

adjacency matrix of G. Then the definition of G yields that the entries of 

are the row sums (which are constant) of the block matrices of lL Si.nee A 

has three distinct eigenvalues, rk, r ->- and 0, it follows from 1.2.3.iii 

that each eigenvalue of B is equal to rk, r - ,\ or O. We easily check that 

rk is a simple eigenvalue of B, belonging to the all-one vector j, Now from 

(**) the eigenvalues of A :follow. Hence A has an eigenvector j and just two 

distinct eigenvalues not belonging to j, This implies (see l'~ppendix l or 

[c6]) that G is strongly regular. □ 

Examples of designs which satisfy the hypothesis of the above theorem 

can be found in [Bl J, [B3 J or [MS]. For all these examples the class grapt, 

.i..s a complete mult.i..parti.te graph. In Section 6. 1 we shall g.i ve an example 

for the above theorem where the class graph is primitive (not complete 

multipartite or the complement). For other results on 2-<lesigns with an 

intersection nwnber k ·- r + ,\, see [B2]. 



CHAPTER 4 

4-COLOURABLE STRONGLY REGULAR GRAPHS 

4.1. INTRODUCTION 

In this chapter we shall illustrate the use of the results and 

techniques obtained in the previous chapters. The result will be the de­

termination of all 4-colourable strongly regular graphs. 
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It is obvious that a regular complete y-partite graph, and a disjoint 

union of complete graphs on y vertices are strongly regular graphs with 

chromatic number y. Strongly regular graphs, not belonging to one of these 

two families, are called pY!:mitive. 
1 2 

Let G be a strongly regular graph with parameters (n,d,p11 ,p11 l. Then 

(see [CS], [C9] or Appendix I) 

>. 2 (G) (G) ' (G) + (G) ' 

Moreover, G has at most three distinct eigenvalues: 

(G) ' 

where f (Gl, the multiplicity of >. 2 (G), satisfies 

f (-

4. 1 .1. LEMMA. If G is a primitive strongly regular graph, not the pentagon, 

then 

iL -An(G) 5 A2 (G) (y(G) -1) 
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PROOF. (i) and (ii) are quoted from 2.2.3. Since G is primitive, 
2 . 

0 < pll = d - A2 (G)An(G). Hence (1) gives y(G) -1 2 -d/An(G) > \ 2 (G). 0 

As a direct consequence of this lemma we have the following theorem. 

4.L2. THEOREM. Given y Elli, the numbel' of pPimitive strongly Pegular 

graphs with chromatic nwnber y is finite. 

PROOF. If the graph G is primitive, then p:1 2 1 and hence by use of the 

formulas above 

By Lemma 4.1.1 we have 

'rhis completes the proof. 

Now let us examine the case y(G) s 4. 

[I 

4.1.3. LEMMA. Let G be a 4-coZonrable strongly regula.r graph. Suppose G has 

a non-integral eigenvalue. Then G is the pentagon. 

PROOF. Since G has a non-integral eigenvalue, we have (see [c9] or 

Appendix I) 

n = 1 (mod 4) , >1n ,j_ JN • 

By 2.1.5 we have a(G) s In, hence 

4 2 y (G) ?. n / n (G) 2 n / L >1n j , 

therefore n = 16 or n s 12. Combining the restrictions for n we haven 5, 

hence G is the pentagon. D 

4.L4. LEMMlL A 4-colourable primitive strongly regular graph has one 

the following parameter sets: 



L (5,2,0,1) , vii.. (16,9,4,6) , 

ii. (9,4,1,2) , viii. (40,12,2,4}, 

iii. (10,3,0,1), ix (50,7,0,1) , 

iv. (15,6,1,3), x. (56, 10,0, 2), 

v. (16,5,0,2), xi. (64,18,2,6), 

vi (16,6,2, 2), xii. (77,16,0,4). 

~- Let G be such a graph. Suppose G is not the pentagon (which has 

parameter set (i)). Then by 4.1.3, the eigenvalues of Gare integers. The 

primitivity of G yields A2 (G) > 0, An(G) < -1. Now 4.1.1.iii gives 

Suppose A2 (G) = 1. Then by 4.1.1 

Straightforward computations give that the only feasible parameter sets 

satisfying these conditions are (ii) - (v), (vii) and (10,6,3,4). However, 

a graph G with this last parameter set satisfies a(G) ~ 2, therefore 

y(G) ~ 5. Suppose A2 = 2. Then 4.1.1 implies 
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With a little more work than for the previous case, this leads to the 

feasible parameter sets (vi), (viii) - (xii) and (57,14,1,4). However, 

WILBRINK & BROUWER [W4] proved the nonexistence of a strongly regular graph 

with this last parameter set. D 

For graphs with parameters (i) - (v} existence and uniqueness is known 

(see [S3]). Cases (i), (ii) and (iii) are the pentagon, the line graph of 

K313 (also called the lattice graph L2 (3)), and the Petersen graph, 

respectively. It is easily seen that these three graphs have chromatic 

number three. From 4.1.1 it is clear that none of the other graphs is 

3-colourable. Case (iv) is the complement of the line graph of K6 (also 

called the complement of the triangular graph T(6)), which is easily seen 

to be 4-colourable. Case (v) is the Clebsch graph (see [S3]). This graph 
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is given in Figure 2, where two black or two wh.ite vertices are adjacent 

if£ they are not on one line, whilst a black vertex is adjacent to a white 

one if£ they are on one line. We almost immediately see that this graph is 

FIGURE 2 

4-colourable. There are precisely twc ·1.onisomorphic strongly regular 

graphs with parameter set (vi) (see [S6]): the line graph of K4 , (L-(4)) 
f ,o.,t ,t 

and the Shrikhande graph (see fly·-leaf), both graphs are easily seen to be 

4-colourable. Case (vii) is the complementary parameter set of (vi). We 

quickly see that the complement of the line graph of K4 , 4 is 4-colourablf,, 

however, the complement of the Shrikhande graph is not 4-coloural,le. 

Indeed, the size of the largest coclique equals three. The remaining cases 

are more difficult. 'l'hey wi.1.1 be treated in the next section. 

4. 2. S'I'RONGLY. REGULAR GRAPHS ON 40, 50, 56, 64 AND 77 VER'l'ICES 

In this section we shall study the feasible parameter sets for 4-

colourable strongly regular graphs, which remain from the previous section .. 

The first case is the parameter set (40,12,2,4). Although several 

strongly regular graphs with these parameters are known (see Section 6.2), 

it will turn out that no such graph has chromatic number four. To prove 

this we use the following lemma. 

4.2.1. LEMMA. There is no 1'egular blpa:rt-ite graph on 20 ve1°tfoes wUh 

eigenvalues 4, 2, 0, -2, -4 of muUiplicity 1, 6, 6, 6, 1, respectively, 
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PROOF. Suppose G were such a bipartite graph. Let 

be the adjacency matrix of G. Then N is the incidence matrix of a 

1 - (10,4,4) design, D say, with singular values cr 1 = 4, a 2 =' 2. 

Let B1 and B2 be two distinct blocks of D. Then J.2.1.i yields 

Suppose B1 and B2 are disjoint. Let x and y be the two points of D which 

are not incident with B1 and B2• Let BJ be a block through x. Using 

J.2.1.ii it follows that 

so B3 is incident with y. Hence, any block incident with xis also in­

cident with y. However, this is not possible, since two points of D have 

at most two blocks in common, as follows from 3.2.1.i applied to the dual 

of D. So we have 

This implies that B : "" N*N - ~r - JI is the adjacency matrix of a {strongly) 

regular graph with eigenvalues -3, 1 and 3 of multiplicity 3, 6 and 1, 

respectively. This is impossible, since 

30 

4.2.2. THEOREM. There exists no 4-colourable strongly :regular graph with 

parameters (40, 12, 2,4). 

□ 

PROOE'. Let G be a strongly regular graph with parameter set (40,12,2,4). 

The eigenvalues of A, the adjacency matrix of G, are 12, 2 and -4 of multi­

plicity 1, 24 and 15, respectively. Suppose G is 4-colourable. 'Then without 

loss of generality 



42 

0 A12 Al.3 A14 

A21 0 
A 

A23 A24 

A31 A32 0 A34 

A42 A43 0 

By 2.LS.i all block matrices are square of size 10, and by 2.LS.iii all 

row and column sums of A .. are equal to 4, for i,j = 1,2,3,4, ii j. Define 
l.J 

for .i = 1,2. Let .i c {1,2L Let G1 be the graph with adjacency matr.ix Ai. 

Now A has just two distinct eigenvalues 2 and ··4 of multiplicity 25 and 15, 

respectively. Furthermore, Ai and Ai have the same eigenvalues, except for 

the one belonging to the eigenvector j, which equals 4 for Ai and -1 for 

Ai. Since Gi is bipartite, Ai also has an eigenvalue -4. Now by the Cauchy 

inequalities (1.2.2) it follows that A., and hence also A., has at least 
1 l. 

five times the eigenvalue 2. But Gi is bipartite, therefore Ai' and hence 

also Ai' has at least five times the eigenvalue -2. Now from LJ.3 it 

follows that AJ-i' and hence also Ai and Ai' has at least five times the 

eigenvalue O. Si.nee Gi is bipartite on an even number of vertices, the 

multiplicity of the eigenvalue O is even, so at least six. By the same 

reasoning as above, Theorem 1 • 3. 3 yields that the mul tiplic.ities of the 

eigenvalues 2 and -2 of A. are also at least six. •rhus A. has eigenvalues 
l. 1 

4, 2, O, -2, -4 of multiplicity l., 6, 6, 6, 1, respectively. Now Lemma 

4 . 2. 1 finishes the proof, D 

HOFFMAN & SINGLETON [H15] showed the existence and uniqueness of a 

strongly regular graph with parameters (50,7,0,1). So we only have to 

determine whether this graph is 4-colourable or not. To do so, we shall 

use a description of the Hoffman-Singleton graph (this description seems 

to be folklore, si.nce it i.s well known; however, I could not find a refer­

ence) based on the following result, see [B11] or [C10]. 

4.2.3. RESULT. The thirtyfive lines of PG(3,2) can be represented by the 

thirtyfive triples of a set with seven elements, such that t-:wo lines 
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intersect iff the corresponding triples have exactly one element in common. 

REMARK. This result is directly related to the isomorphism of the groups 

PSL(4,2) and the alternating group on eight symbols (see for instance [B4] 

or [C10]). 

Now we construct the Hoffman-Singleton graph as follows. The vertices 

are the fifteen points and the thirtyfive lines of PG(3,2). Points are 

mutually non-adjacent; a point is adjacent to a line iff the point is on 

that line; two lines are adjacent iff the triples, which correspond with 

these lines according to the above result, are disjoint. It is an easy 

exercise to check that this construction indeed gives the desired strongly 

regular graph. 

4.2.4. THEOREM. The Hoffman-Singleton graph has chromatic number four. 

PROOF. Colour the fifteen points red. Fix two elements x and y of the 7-set 

of Result 4.2.3. Colour lines blue, if they correspond to a triple contain­

ing x. Of the remaining lines, colour those yellow, whose corresponding 

triple contains y, and colour the other ones green. From our definition it 

is obvious that this is a correct colouring of the Hoffman-Singleton 

graph. 

GEWIRTZ [G1] showed existence and uniqueness of a strongly regular 

graph with parameters (56,10,0,2). Before giving a description of the 

Gewirtz graph we first prove the following. 

□ 

4.2.5. PROPOSITION. If the Gewirtz graph has two disjoint cocliques of size 

16, then its chromatic number equals four. 

PROOF. Assume that the Gewirtz graph has adjacency matrix 

A 

where A12 = A;1 is square of size 16. We know that A has three distinct 

eigenvalues, 10, 2 and -4. From 2.1.5 it follows that A12 , A21 , A31 and A32 
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have constant row sums equal to 4. Therefore the graph , whose adjacency 

matrix is A33 , is a disjoint union of cycles. Suppose one of these cycles has 

length c < 24. Partition A33 according to the vertices of this cycle, and 

the remaining ones. This induces a partition of A into sixteen block 

matrices, and the entries of the matrix 

0 4 ¼c 6-1.ic 

4 0 ¼c 6-\c 
B := 

4 4 2 0 

4 4 0 2 

are the average row sums of these block matrices. We immediately see that 

the eigenvalues of Bare 

(Bl 

However, we know that 

(A) = (A) 

Hence the eigenvalues of B interlace the eigenvalues of A tightly, thus by 

L2,3.ii all block matrices have constant row sums. Therefore, !,ic is an 

integer. This proves that each component of G3 is a cycle of even length, 

Thus is bipartite, and therefore the wholE• graph is 4-colourable. D 

We use the description of the Gewirtz graph given in [G2], where this 

graph is obtained as the complement of the block graph of a quasi-symmetric 

2 - (21,6,4) design with intersection numbers O and 2 (see Section 3.2). 

4. 2, 6. 'I'HEOREM. The Gewirtz has chromatic number 

Let D be the quasi-symmetric 2 - (21,6,4) design. :rt is clear that 

all blocks through a fixed point of D yield a coclique in our graph of size 

16. To see that there is another coclique of the same size, disjoint from 

this one, we proceed as follows. D can be obtained from a 3 - ( 22, 6, .1) de­

sign D (the extension of PG(2,4), see for instance [C6]) by deleting one 

point and all blocks through that point (Le. D i.s a residual design of DJ. 

Take a block B of D, which is not a block of D. An elementary counting 

argument (see [C2]) shows that there are 16 blocks of D which are disjoint 
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from B, and which mutually have 2 points in common. Hence these 16 blocks 

provide a coclique of size 16 in the Gewirtz graph, which, if B has been 

chosen appropiately, is disjoint from our previous coclique. Application of 

4.2.5 completes the proof. □ 

Three 2 - (16, 6, 2) designs on a common point set are called linked if 

any two blocks from distinct designs have 3 or 1 points in common (see [C1] 

or [M7]). Let N1, N2 and N3 be incidence matrices of three linked 

2 - (16,6,2) designs. Then we know that 

* N.J == N.J = 6J 
l. J. 

2J + 4I, 

for i 1,2,3. Moreover, for i,j 1,2,3, if j, the matrix 

N .. := i:i(3J -N~N.) 
J.J J. J 

is a (0,1) matrix by definition. In fact, N .. is the incidence matrix of a 
l.J 

2 - (16,6,2) design, since 

2J + 4I , 

by use of the above formulas. Define 

for i 0,1,2,3, j 1,2,3. Then 

for i,j,k = 0,1,2,3, as follows readily from the formulas above. This 

implies that 

0 NOl N02 N03 

N10 0 N12 N13 
A := 

N20 N21 0 N23 

N30 N31 N32 0 

is a symmetric matrix, which satisfies 

A 2 = 1 BI + 2A + 6 (J - I ~ A) • 
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Hence A is the adjacency matrix of a strongly regular graph with parameters 

(64,18,2,6), which is 4-colourable. We call this graph the inc1:dence 

of the three linked designs. 

4. 2. 7. THEOREM. Let G be a strongly regular graph W'ith para,meters 

( 64, 18, 2, E) and chromatic number four. 1'hen G is the incidence of 

three linked 2 - (16,6, 2) designs. 

PROOF. Suppose G has adjacency matrix 

0 A01 A02 A03 

AlO 0 
A 

A12 A13 

A20 A21 0 A23 

.1\30 A31 A32 0 

A has eigenvalues 18, 2? and -6 of multiplicity 1 ' 45 and 18, respectively. 

By 2.LS, i:;:; square of size 16, and all row and column sums of are 

equal to 6, for i,J = O,l,2,3, i. ,j j. This implies that. A and 

have a common basis of eigenvectors. Using this, we obtain that 

A :m A - 2I + ½K 

has eigenvalues 24, 0 and -8 of multiplicity 1, 48 and 5, respectively. 

Thus 

rank A= 16. 

For i. 

~ [00 AOJj 
rank A .. 16 and A= • 

A~3 

ll. 

AJO 

-1 
From rank A00 = rank A, it follows that Ai.O A00 A0 j 

on applying 1.1.3, By use of 

-l ~ (½J - 2I) -l "" (1/24)J - ½I and 

, for i, j 1, 2, 3, 

6J 
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this implies that for i,j 1, 2,3 

This completes the proof. Indeed, if i j, then(*) implies 

* A0iAOi = 2J+4I, showing that AOi is the incidence matrix of a 2 - (16,6,2) 

design, and if if j, then(*) reflects that the designs represented by 

A01 , A02 and A03 are linked, and that Aij is of the desired form for 

i,j = 1,2,3. □ 

MATHON [M7] proved that there are exactly twelve non-isomorphic 

triples of linked 2 - (16,6,2) designs, which lead to eleven non-isomorphic 

incidence graphs. Hence there are precisely eleven non-isomorphic 4-colour­

able strongly regular graphs with parameters (64,18,2,6). It is fairly easy 

to show that one of these graphs is the point graph of the known generaliz­

ed quadrangle of order (3,5) (see Chapter 5; a construction is described in 

6.2.3). For completeness we list in Appendix II the systems of three linked 

2- (16,6,2) designs, which provide the ten remaining graphs; these systems 

are taken from Mathon's paper. It is not known whether there are any 

further strongly regular graphs with these parameters, which are not 4-

colourable. 

Finally, the next theorem deals with the last set of parameters of 

Lemma 4.1.4. 

4. 2. 8. THEOREM. The:re exists no 4-aolou:rab le strongly :regu.Za:r g:raph with 

pa:ramete:rs (77,16,0,4). 

PROOF. Let G be a strongly regular graph with parameters (77,16,0,4). Then 

G has eigenvalues 16, 2 and -6 of multiplicity 1, 55 and 21, respectively. 

Suppose G is 4-colourable, and let c be the size of the largest colour 

class. Then c ~ f 77/4 l = 20. Let 

where 0 is square of size c, be the adjacency matrix of G. Then G2, the 

graph with adjacency matrix A22 , is 3-colourable. From 2.1.7 it follows that 

c ~ a(G) ~ 21, and that c = a(G) = 21 implies that G2 is the Gewirtz graph. 
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Since the Gewirtz graph has chromatic number four, G cannot be coloured 

with four colours if c = 21 (this shows that G is 5-colourable if a (G) = 21, 

which is the case for the known strongly regular graph with these para­

meters; see [G2]). Whence c = 20. Now we apply 1.3.3 to A - (2/11)J, so as 

to obtain that 

Now L3.1 gives 

On the other hand, the average row sum of A22 equals 592/57. Pence hy 

1.2.3.i (take m = 1) we have 

Now the sharpened version of Hoffman's inequality for the chromatic number 

(seep. 24), applied to the 3-colourable graph G2 gives 

'.I'his is a contradiction, proving the theorem. □ 

4. 3. RECP,,PITULA'l'ION. 

All cases of Lemma 4 .1.. 4 have been treated now. 'l'he only thing left is 

to state the main theorem. 

4.3.1. THEOREM . . Tf G is a 4-colourable strongly regular graph, then one of 

the following holds: 

L y (G) =, 2, and G 1~s a regular complete bipartite graph, ox' a dis··· 

joint ur:ion of edges; 

iL y (G) "' 3, and G is a regular complete 3-pa1°tite graph, a dis-­

joint union of triangles, the pentigon, the line graph of K3 , 3, 

or the Pe-tersen graph_; 

ii.L y (G) = 4, and G -is a regufo1° complete 4-partite graph, a dis­

joint union of K4 'a, the complement of the Une g1°a:ph of K6, -the 

Une graph of K4 , 4, or its corrrplement, the Shrikhande gr•a:ph, the 
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Clebsch graph, the Hoffman-Singleton graph, the Gewirtz graph, 

or one of the eleven incidence graphs _of three linked 2 - (16,6,2) 

designs. 
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CHAPTER :i 

GENERALIZED POLYGONS 

5.1. INTRODUCTION 

A generalized n-gon of order' (s,t), s > 0, t > 0, is a 1 -· (v,sH,t+l) 

design whose incidence graph has girth 2n and diameter n (see [T4], [D3], 

[Fl], [H12] or Appendix I). A generalized polygon is a generalized n-gon 

for some n. 

Generalized n-gons were introduced by TITS [T4]. An i.mportant result 

is the theorem of FEIT & HIGMAN [Fl] (see also [H12], [.K2]), which states 

that a generalized n-gon of order (s,t) is an ordinary n-gon (s~t~l) or 

n c {2,3,4,6,8,12}. 

For a generalized polygon we speak of lines rather than blocks. We 

shall often omit the adjective "generalized". If Dis a polygon of order 

(s,t), then we immediately see that the dual of D (points and lines inter­

changed) is a polygon of order (t,s). 

Suppose N is the incidence matrix of the incidence graph of an n-gon 

of order (s,s). Then N is the incidence matrix of a 2n-gon of order (1,s). 

Conversely, it can be proved easily that all generalized n-gons of order 

(1, s), s > 1, are of this form. FEIT & HIGMAN [Fl] also proved that s = 1 

or t = for a 12-gon of order (s,t), thus in a sense generalized 12-gons 

are the same as generalized hexagons of order (s,s). Generalized n-gons of 

order (s,t) withs> 1, t > 1, are called thick. 

A generalized 2-gon is degenerate (every point is incident witb every 

line). It .is not diffi.cult to veri.fy that a generalized triangle of order 

(s,t) is a 2 - (s2+s+1,s+l,1) design, which is the same as a projective 

plane of orders (thus s ~ t). So 3-gons of order (s,s) exist for every 

pri.me power s, For projective planes see DEMBOWSKI [D3] or HUGHES & PIPER 

[H16]. 

Thick generalized quadrangles of order (s,t) are known to exist for 

(s,t), (t,s) ,= (q,q), (q,q2J, (q2 ,q3), (q-1,q+l), for every prime power q 

(q c/c 2 for the last case). Constructions are due to AHRENS &. SZEKERES [A2], 

HALL [H6], KANTOR [Kl], PAYNE [Pl , [P2] and TITS [T4], see also [DJ], 

[T3]. HIGMAN [H11] showed that. 
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for thick quadrangles of order (s,t). Several other proofs of this inequal­

ity have been found, see [C3], [CS], [H12], [P6] and Section 3 of this 

chapter; some of these proofs also lead to consequences for the case of 

equality. There is an extended literature on generalized quadrangles. We 

mention the survey papers [P4], [Tl] and [T3]. 

Thick generalized hexagons are known to exist for the orders ,s), 

(s,s) and (s,s3 ) for prime powers, see [T4]. A necessary condition for 

existence of a hexagon of order (s,t) is that st be a square, see [Fi]. 

HAEMERS & ROOS [H3] showed that 

9 
$ s 

for thick hexagons of order (s,t). This inequality, together with a result 

for the case of equality, will be the subject of the next section. For more 

information about generalized hexagons we refer to [M4], [Rl], [S1], [T4], 

[Yl]. 

Thick generalized octagons of order (s,t) are only known to exist for 

(t,s), (s,t) •= (2m,2 2m), for odd m. The construction is due to J. Tits, see 

[D3]. A necessary condition for existence of an octagon of order (s,t) is 

that 2st be a square, see [Fi]. HIGMAN [H12] showed that 

for thick octagons. There is hardly any literature about octagons. 

Let G be a connected graph of diameter m. For vertices x and y of G, 

let p(x,y) denote the distance between x and y. For i,j = O, ... ,m, defi.ne 

(x,y) := I {z I p (x,z) = i. & p (y,z) = j} I . 

If p .. (x,y) depends 
l.J 

regular (see [BS]), and we write 
0 

di:= pii' for i.,j = O, •.. ,m. The 

on i, j and p(x,y) only, then 
k 

pij := pijt'y) 

numbers p are 
ij 

numbers of G. Clearly, a distance regular graph is 

G is called distance 

where k := p(x,y), and 

called the intersection 

regular of degree d 1, 

and a distance .regular graph of diameter 2 is the same as a connected 

strongly regular graph (in general, a distance regular graph of diameter rn 

is equivalent to a metric association scheme wi.th m classes, see [Dl]). 

For a distance regular g.raph G of diameter m, we define the matrices 

indexed by the vertices of G, by 
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(A.;, = j 01 
i xy J 

m 

if p (x,y) = i , 

otherwise. 

Clearly, Ao I, I A. 
1. 

J and A1 is the adjacEncy matrix of G. Horeover, 

implies 

i=O 

(A. A.) 
l J xy 

A. A. 
l J 

P (x,y) 
pij 

A. J 
l. 

d.J 
1. 

for i, j 0 •••• ,m • 

These equations show that A0 , ... ,Am generate an ti+ 1 dimensional algebra. 

This type of alge.bra turns out to be useful in the study of distance 

regular graphs and similar configurations, see [BS], [B8], [Dl], [H12], 

[Wl]. 

'rhe gvaph of a generalized n-gon Dis the graph whose vertices are 

the points of D, two points being adjacent whenever they are on one line of 

D. It is well known (see [DJ], [Y2]) tha.t the point graph G of an n-gon of 

order (s,t) is distance regular of diameter L½n_l, and that.the intersection 

numbers of G can be expressed in terms of s and ·1: (in the forthcoming sec-­

tions of this chapter we shall exhibit ·::his resuJ.t for n = 6 and n = 4). 

A graph G is called geomet:vic for• an n-gon :cf G is the point graph of 

an n-gon. A graph G is called pseudo-ge()met:vic f,Jr an n-gon if G is dis·­

tance regular of diameter L11nJ and its .i.ntersect i.on numbers are such that c 

could be geometric, that is, there exist: integers sand t, such that the 

intersection numbers of G depend on sand t as for geometric graphs. 

Let D be a generalized polygon. An element of D is a point or a li.ne 

of D. A sequence of Jl + 1 elements e0 , ... , e 2 , is called a of Q 

between e 0 and e 9., if ei is incident with ei-.1 for i 1, ... ,Jt (thus in 

e 0 ,,,., e9., points and lines alternate). 'rhe d.Z.st,1nce between elemE,nts 

and e9. of D, denoted by A(e0 ,e2.), is the length of the shortest path 

between e 0 and eQ. Thus, if e 0 and eQ are both points, then :\(e0 , is 

twice the distance be,:ween e 0 and e R. in the point graph of D. 

In the next two sections we shall describe a method which fo:r quadr-· 

angles and hexagons .l.eads to the inequalities mentioned above, and to the 
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results in case of equality (unfortunately, this method does not work for 

octagons). 'l'he same method also yields a new proof of a theorem of CAMERON, 

GOETHALS & SEIDEL [CS], which states that a pseudo-geometric graph for a 

quadrangle of order (s,s 2) is geometric. 

5.2. AN INEQUALITY FOR GENERALIZED HEXAGONS 

For n = 6 the definition of a generalized n-gon is equivalent to the 

following one: 

5.2.L DEE'INITION. A generalized hexagon of or•der (s,t) is an incidence 

structure with points and lines, such that 

i. each line has s + 1 points, 

ii. each point is on t + 1 lines, 

iii. two distinct lines meet in at most one point, 

iv. for any non-incident point-line pair x,L the1°e is a unique path 

of length< 6 between x and L. 

Throughout this section H will denote a generalized hexagon of order 

(s,t). By use of the above definition it is straightforward to count the 
k 

intersection numbers pij of the point graph of H. They are exhibited in 

Table 1 . '.l'he amount of work in computing these numbers can be reduced by 

use of the equalities 

d. 
J 

3 

I 
j=O 

d, = V 
J 

This counting al.so shows that the point graph of a generalized hexagon is 

distance regular, 

TABLE 1 

k 
k k k k k 

1 P12 P22 P13 P23 P33 

0 s(t+l) 0 i./t(t+l) 0 0 s3t2 

1 s-1 st st(s-1) 0 s2t2 (s-1) 

2 1 s-1 s(t2+t-1) st st(s-1) (t+l) st(s2t-st-s+t) 

3 0 t.+1 (s-1) (t+1) 2 (s-1) (t+l) (t+l) (s2t-st-s+t) t(t-1) 
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Let A0 , .•. ,A3 be the matrices of the point graph of H. Define 

E := A2 - (s-1)A1 + (/-s+l)I - - 1--J 
s + 1 

Then we have the following lemma. 

5.2.2. LEMMA. The eigenvalues of E are 

0 and s 2 +st+ t 2 

of multiplicity 

1 + st ( s + 1) ( t + 1) 
s 2t ·t- st2 - st+ s + t 

respectively. 

PROOF. It is clear that EJ = 0, and that 

Prom A.A . 
.1 J 

3 k 2 pij Ak and Table 1 we have 
k"'O 

and 
2 2 ' s +st+ t 

2 2 2 2 A2 = s t(t+l)I + st(s-1)A1 + (st +st-s)A2 + (s-1)(t+1) A3 , 

By use of 

A1A2 = A2Al = st Al + (s - 1)A2 + (t + l)A3 , 

A2 
1 

s(t+l)I + (s-1) 

J - I and EJ O, this leads to 

Hence O and s 2 +st+ t 2 are the eigenvalues of E. Finally, 

2 1 1)-1) trace E = v(s -s+ - (s+ 3 ( 2 2 l) = s s t +st+ 

yields the multiplicities. 

~- In the terminology of DELSARI'E [Dl], the matrix 

is a minimal idempotent in the ~ose-Mesner algebra of the association 

scheme on the points of H. 'l'he underlying theory provides a more elegant 

□ 
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way to prove the previous lemma. 

Let L0 be a line of H, let Li (i = 1,2) denote the set of points at 

distance 2i + 1 from LO. Par ti ti.on E according to Lo, 

so E 
ij i for i,j 0,1,2. 

2 
5.2.3. LEMMA. The eigenvalues of E11 are 0, s and st of multiplicity 

st-s+t, t(s 2 -1) ands, respectively. 

PROOF. Let and ,11 
corresponding to 

holds, hence 

,ll be the submatrices of A1 and A2 , respectively, 

We easily see that without loss of generality 

I ® J 
st+t s and 

Ell= I ■ J - s(Ist+t ® J) + s2I - _1_ J s+l st s s + 1 •· 

From the eigenvalues of Is+l © Jst' Ist+t ® J 8 , I and J, and the fact that 

these four mat.rices have a common basis of eigenvectors, the eigenvalues of 

1 and their multiplicities follow. 

5.2.4. 'rHEOREM. A generalized hexagon with s+l points on a Une and t+l 

lines through a point satisfies 

i. or s = 

ii. or t. 1 

PROOF. From 5.2.2 and 5.2.3 it follows that 

rank E rank 

Since rank E11 5 rank E, we have 

D 
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( 2 ) 2 2 s t+s-t (s +st+t) ~ 
3 2 2 

s (s t +st+ 1) . 

This yields 

Thuss 1 or t ~ s 3 . Applying this result to the dual of H yields (ii). D 

For another proof of this inequality see [H3]. Next we shall derive 

some additional regularity for hexagons meeting the above bound. To achieve 

this we need some properties of the matrices E ..• First we observe that 
J.J 

if A(x,y) 4 , 
(E02) . xy 1

1-1/(s+l) 

-1/(s+l) otherwise, 

as follows directly from the definition of E and E02 • This implies 

* ( 1-1/(s+l) 
(E02 E ) "' 

0 2 xy -1/(s+l) 

Hence, without loss of generality 

if A (x,z) A (y,z) for some z E L0 , 

otherwise. 

·*BI - _l __ J 
J s+l s+l r(s+l) 

J 
r 

®I __ l_J 
s+ 1 s + 1 r ( s+l ) 

where r := s 2t 2 • Now the positions of the points of relative to the 

points of L0 give rise to a partition of E22 into (s+1) 2 square block 

matrices F .. of size s 2t 2 , 
J.J 

It is a matter of straightforward counting to see that F .. has constant row 
2 2 J.J 

sums equal to ( s - 1 + o .. ) - s t / ( s + 1) for i, j = O, ..• , s. This, and 
J.J 

the structure of E02 imply that 
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The following identities are now quickly seen to be true: 

s 2 (I 1 
Eoo s + 1 ,T) E .. J 0 for i,j 0,1,2, 

l.J 

2 2 
Eoo s Eoo ' Eoo Eo2 s 2 * t2 

E02 ' E02 E02 Eoo 

5.2.5. LEMMA. 1'he matrix 

has eigenvalues 

0 , st+ t 2 and s 2 +st+ t 2 ; 

h Z • z· . f 2 2 z t e mu tip un ty o s + st + t equa s 

2 2 3 2 2 
t (s -1) (s -t) / (s +st+t) 

PROOF. Define 

Using the above formulas we obtain 

* 2 2 2 UUU=s(s +t)U, 

Since rank U s, the last formula reflects that the columns of U span an 

s-dimensional eigenspace of E' corresponding to the eigenvalue + t 2 . 

'fhanks to 5. 2. 2 and 5. 2. 3 the eigenvalues of E and E 11 are known. By use of 

1.3.3 we obtain that the non-zero eigenvalues of E' are 

+ t 2 , st+ t 2 and s 2 +st+ t 2 , 

of multiplicity 

respectively. Now from(*) it follows that 

u 

has just two distinct non-zero eigenvalues st+ t 2 and s 2 +st+ , with the 
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same multiplicities as before. On the other hand one easily verifies that 

which proves the le.mma. D 

2 2 
The important thing in the last lemma is that the eigenvalue s + st + t 

d . "f 3 d l . f isappears 1. t = s . In or er to give a combinatoria interpretation o 

this phenomenon, we need two definitions. For a line Land points x and y 

of a generalized hexagon we define: 

pijk(L,x,y) := i{z I ;,_(z,L) = 2i+1, :>,_(z,:x:) = 2j, \(z,y) ~ 2k}j , 

for i = 0,1,2, j,k = 0,1,2,3; the configuration induced by L, x and y is the 

configuration formed by the points and the lines, which are on a shortest 

path between Land x, Landy, or x and y. For example, Figure 3 gives all 

possible configurations induced by L, x and y if A(L,x) = A(L,y) = 5 and 

\(x,y) = 4. 

7 4 3 2 
s +s -s -s -1 

7 4 3 
s +s -s -1 

7 4 3 
s +s -s -s 

FIGURE 3 

5.2.6. THEOREM. If a generalized hexagon has order (s, ), then pijk(L,x,y) 

only depends on is j, k and the configUX'ation induced by L, x and y. 

PROOF. First observe that 
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2 

l Pijk(L,x,y) ' 
i=O 

3 
l Pijk(L,x,y) 

j=O 

3 

and }: pijk(L,x,y) 
k=O 

only depend on i, j, k and the configuration induced by L, x and y (in fact, 
2 
t p(x,y) 
l p. 'k (L,x,y) = pJ.k ) • Subsequently, we verify (this is an easy but 

i=O l.J 

tiresome job), that the theorem is true if i = 0, or j 5 1, or k 5 1, and 

also if \(L,x) < 5 or \(L,y) < 5. Thus it suffices to prove the theorem for 

i = j = k = 2, \(L,x) = A(L,y) = 5. From the definitions of E, E22 and 

Pijk(L,x,y) it follows that 

1 2 
( (E22 - s + 1 J) ) xy 

) + 

Now take t = s 3 • Lemma 5.2.5 implies that E22 has just two distinct eigen­

values O and s 4 ( 1 + s 2) • Hence 

Using· the formulas for the matrices E this yields ij 

2 4 2 2 * 8 -1 
J) = s ( 1 + s ) E22 - s E02 E02 + s (s + 1) . J • 

-1 2 This implies that ( (E 22 - (s + 1) J) ) xy only depends on the configura-

tion induced by L0 , x and y. Combination with the previous steps 

yields that for x,y E L2, p 222 (L0 ,x,y) only depends on the configuration 

induced by L0 , x and y. This completes the proof. 

With the available formulas the values of pijk(L,x,y) are readily 

computed. For example, in Figure 3 we give (L,x,y) for the given con-

figurations. 

□ 

RONAN [Rl], [R2] and THAS ['1'2], give sufficient conditions for a 

genera.lized hexagon to be one of the known ones, One hopes of course that a 

result like the one aboYe will imply such a sufficient condition. Unfor-
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tunately, the gap between the condition we have and the condition we need, 

still seems to be too large to close up. It is worthwhile to remark that the 

known hexagons of order (s,t) with t ,jc s 3 do not satisfy the condition of 

the above theorem. 

Finally we remark that similar techniques yield the inequality (see 

MATHON [M6]) 

for a regular near hexagon with parameters (s,t,t2J, as introduced by 

SHULT & YANUSHKA [S7] (see also [Y2]). If t 2 ~ 0, then a near hexagon is 

the same as a generalized hexagon. 

5. 3. GEOMETRIC AND PSEUDO··GEOMETRIC GRAPHS FOR GENERALIZED POLYGONS 

In th:Ls section we deal with the question whether a pseudo-geometric 

graph is geometric for a generalized n-gon. It :Ls clear that for n E {2,3} 

the point gra.ph of an n-gon is the complete graph. Assume G is the point 

graph of an n-gon D with n > 3. Then three points of D which form a triangle 

in G, must lie on one line of D. This implies that the graph ¾>' cannot 

be an induced subgraph of G. The next result states that the converse is 

also true. 

5. 3. L LEMMA. Fo1° a gene1°alized n-gon with n > 3, a pseudo-geometric graph 

G is geomet.ric ~ is not an induced subgraph of G. 

PROOF'. Only the "if" part remains to be proved. 'l'ake n even (the case n odd 

is not difficult., but. superfluous because of the Feit-Higman theorem). Let 

D be the incidence structure whose points are the vertices of G, and whose 

lines are the cliques (= complete subgraphs) of G of size Pii + 2. For two 

adjacent vertices of G, there are Pii vertices adjacent to both, but all 

these vertices are mutually adjacent since otherwise ~ occurs. This 

means that every edge of G determines a unique line of D. This proves that 
1 

Dis a 1- (v,s+1,t+1) design, wheres= p 11 +1 and t+l = d1/s. Let G' be 

the incidence graph of D. Suppose G has a c-cycle as an induced subgraph. 
k 

'l'hen from ,k-l = 1 and p1,k = s - 1 for 1 :o: k < ½n it follows that c 2: n 

for c even, and c = 3 or c > n for c odd. 'l'herefore, since each triangle of 
':m G is on a line of D, we have that G' has girth at least 2n. Nowt+ 1 = P1 ,½n-l 
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implies that the distance between a point and a line of D (regarded as 

vertices of G') is at most n - 1. Hence G' has diameter n and girth 2n. This 

proves that Dis an n-gon, whose point graph is G. 

A direct consequence of this lemma (which was pointed out to me by 

D.E. Taylor) is the following. 

5.3.2. COROLLARY. For a generalized n-gon with n > 4, a pseudo-geometric 

graph is geometric. 

PROOF. If n > 4, then pt 1 == 1 • Hence ~ does not occur in a pseudo­

geometric graph. Now 5.3.1 gives the result. 

What remains to be studied are generalized quadrangles. A very easy 

counting argument shows that the point graph G of a quadrangle of order 

□ 

□ 

1 2 (s, t) is strongly regular with intersection numbers p11 = s - 1, p 11 = t + 1, 
0 p 11 = d 1 = s (t + 1) (this proves that the point graph of an n-gon is dis-

tance regular, in the case n = 4). This implies (see [CS], [Tl] or Appendix 

I) that the eigenvalues of G, and hence the eigenvalues of any pseudo-geo­

metric graph for a quadrangle of order (s,t), are 

s (t + i) , s - 1 and - t - 1 

of multiplicity 

1, s 2 (st+1) /(s+t) and st(s+1)(t+1) /(s+t), 

respectively. 

There exist many pseudo-geometric graphs for quadrangles, which are 

not geometric. The Shrikhande graph (see fly-leaf) is one of them. More 

examples (including an infinite family) are given in Section 6.2. The 

following theorem, which is due to CAMERON, GOETHALS & SEIDEL [CS], gives 

a sufficient condition for a pseudo-geometric graph to be geometric, as 

well as the extension of Higman's inequality to pseudo-geometric graphs 

for generalized quadrangles. 

5.3.3. THEOREM. Let G be a pseudo-geometric graph for a thick generalized 

quadz,angle of order (s,t). Then 

i. 

ii. if equality holds, then G is geometric, 
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iiL equality implies that all suhconstituents 

regular. 

PROOF. Let A be the adjacency matrix of G. Define 

2 
E :=- (s+l)A+ (s -1)I+J. 

G are str'ongZy 

Then from the eigenvalues of A it follows that E has just one non-·zero 

eigenvalue (s + 1) (s + t) of multiplicity s 2 (st+ 1) / (s + t) . Hence 

2 
rank E = s {st+l) / (s+t) . 

Lat .x be a vertex of G. Partition A and E according to x, the vertices ad­

jacent to x, and the vertices not adjacent to .x, 

* where A12 = A21 and For i = 1, 2, let Gi be the graph with ad-

jacency matrix (so is a subconstituent of G). Then has s (t + 1) 

1 
vertices, and .is regular of degree p 11 = s - 1. Hence s - 1 is an eigenvalue 

of A11 of mult.iplicity c, say. It is known {see [B5], [C12] or Appendix I) 

that c equals the number of components of G1 . Clearly each component has 

at leasts vertices. Hence 

(**) cs:<:: s(t+l) . 

The matrices A11 , I and J have a common basis of eigenvectors. Using this 

it follows that E11 has an eigenvalue O of multiplicity c - 1 (one of the 

eigenvalues s - 1 of A11 corresponding to the eigenvector j leads to the 

eigenvalue s(t+l) of E11 ). Hence 

rank E11 = s(t+l) - (c-1) 

Now using (*) and (,H) we have 

s(t+ 1) -·t. s rank E11 :<:: rank E 
2 

s (st.+1)/(s+t). 

This yields 
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2 t(s-l)(t-s) s O, 

proving (i). Suppose equality holds. Then we must have equality in (**), 

which means that G1 is a disjoint union of complete graphs on s vertices. 

Since x is arbitrary, this yields that ~ does not occur in G. Now 

(ii) follows on applying 5.3.L 

Since the disjoint union of complete graphs of the same size is strongly 

regular, it only remains to be proved that G2 is strongly regular. This we 

shall prove analogously to the proof of 5.2.5. We know that the eigenvalues 

of E11 are 0, s(s+l) and s(s2 +1) of multiplicity s 2 , (s-1)(s2 +1) and 1, 

respectively. Now using 1. 3. 3 and the eigenvalues of E, we obtain that the 

matrix 

has eigenvalues 0, s 2 (s + 1) and 2s2 , where 2s2 is a simple eigenvalue with 

eigenvector [s 2 j*J*. Hence E22 , and also A22 , has just two distinct eigen­

values not belonging to the eigenvector j. This proves that c 2 is strongly 

regular. 

From (iii) of the above theorem it follows that the number of points 

adjacent to three mutually non-adjacent points of a quadrangle of order 

(s, s 2 ) is constant. This result was first proved by BOSE [B7]. 

□ 

A quadrangle of order (s,t) is the same as a partial geometry with 

parameters (s,t,1) (see [H11], [Tl] or Appendix I). For pseudo-geometric 

graphs for a partial geometry with parameters (s,t,a), where a> 1, a result 

like Lemma 5.3.1 does not hold anymore. Therefore the question in the be­

ginning of this section is much more difficult. to answer for these geo­

metries. 
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CHAPTER 6 

CONSTRUCTIONS 

6. L SOME 2 - ( 71 , 15, 3) DESIGNS 

In this section we shall construct eight non-isomorphic 2 - ( 71, 15, 3) 

designs. First we shall construct a 2 - (56,12,3) design D, which satisfies 

the hypothesis of Theorem 3.2.4. Next we show that Dis embeddable in a 

2 - (71,15,3) design. A less extensive treatment of this construction appear­

ed in [B2]. Designs with these parameters seem to be new (see [C4] p.104, 

or [HS] p.297). 

The most important ingredient for our construction is F 8 , the f.i.eld 

with eight elements. Let G be the grcup AfL(l,8), that is, the group of 
2i 

order 168 defined by x » ax +b, a,b E JF'8 , a # 0, i E .:IZ. We shall iden-

tify JF8 with AG(3,2), the 3-dimensional affine space over JF2° Altl1ough G 

is not the full automorphism group of AG(3,2), G acts transitively on the 

elements (we reserve the word points for points of a design), the lines 

(Le. unordered pairs of elements), the planes (sets of the form 

{a,b,c,a+b+c}), and the sets of four elements which do not form a plane. 

Moreover, t.he stabilizer of a line L has four orbits on .li.nes: L itself, 

the lines intersecting L, the lines parallel to L, and the lines skew to L. 

Now we shall define the incidence structure D. The points of Dare the 

fifty-six ordered pairs of distinct elements of JF 8 • The blocks of D are the 

seventy 4-subsets of JF·8 • Let a, satisfying a 3 =a+ 1, be a primitive element 

of JF'8 • The point (0,1) is defined to be incident with the following blocks: 

3 2 2 3 2 3 4 {0,1,a,a,'}, {0,1,a,a }, {0,1,a ,a }, {a,a ,a ,a }, 

{o 1 2 6} {O l 2 4} {0,1,N4,N6}, {N, , ,a ,a , , ,a ,a , - ~ ~ 

{0,1,a4 4 5 2 4 
{0,1,a,a }, {0,1,a,a }, {a,a ,a, 

} • {a, 

4 5 ,a ,a } , 

6 
,a } , 

[ 2 ,a6}. , , a, a , 

Now we let G act on D. This defines D, because G acts transitively on the 

points of D, and because the map x ..+ x 2, which fixes the point ( 0, 1) , also 

fixes the set of blocks incident with (0,1). A point (x,y) is called 
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equivalent to a point (w,z) if {x,y} = {w,z}. Two blocks b c JF8 and 

b' c :JF8 are called equivalent if b == b', orb n b' ~ 0 (i.e. bub'= :JF8 ). 

We know that G has two orbits on the blocks of D. The first orbit contains 

fifty-six blocks, they are the 4-subsets of F 8 which do not form a plane; 

these blocks will be called blocks of type I. The second orbit consists of 

the fourteen 4-subsets of JF 8 which are planes; these blocks are of type II. 

It is clear that equivalent blocks are of the same type. 

6.LL LEMMA. Let (x,y) be a point of D. Let b c :JF8 and b' c JF8 be dis­

tinct equivalent blocks of D. 

L If (x,y) is incident with b., then {x,y} c b or {x, 

iL If {x,y} c b., b of type I., then exactly one of the j'0Zlo1<1ing tu10 

statements is true. 

1. (x,y) is incident with b and not ulith b', and (y,x) is inci­

dent 1Jith b' a:nd not with b; 

2. (x,y) is incident with b' and not with b., and (y,x) is incident 

with band not with b'. 

iii. If b is of type II., then (x,y) is incident with b iff {x,y} c b. 

iv. b and b' have no points of D in common. 

PROOF. Without loss of generality take (x,y) = (0, 1). We may do so, because 

G is transitive on the points of D. Blocks incident with (0,1) are given in 

(*). On applying the map x » x + 1 to (*) we find that the blocks incident 

with (1,0) are the following ones, 

{ 3} { 3 6} { 6- { 3 5 6} { 4 0,1,a,a , 0,1,a ,a , 0,1,a,a l, a,a ,a ,a , a,a 
6 ,a }, 

{ 0 'a6}, { 5 6} { ,1, 0,1,a ,a , 0,1, 

4 {0,1,a {o 1 3 5} {0 l 3 4} { 3 4 5 , , ,a ,a , , ,a ,a , a ,a ,a 

2 3 5 , {a,a ,a ,a }, 

2 3 4 , {a ,a ,a 

The first column of(*) and (**) consists of blocks of type II, all other 

blocks are of type I. Now (i), (ii) and (iii) are just a matter of verifica­

tion, (iv) follows :immediately from (ii) for blocks of type I, and from 

(iii) for blocks of type II. □ 
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From (ii) and (iii) of this lemma we conclude the following. If each 

point of Dis replaced by its equivalent partner and each block of D of 

type I by its equivalent partner, then incidence is not changed. Hence the 

permutation of the points of D, which interchanges the equivalent pairs of 

points, is an automorphism of D. This automorphism .is different from, and 

commutes with, the automorphisms provided by the group G. 

6.1.2. THEOREM. D is a 2 - (56,12,3) design, 

PROOF. First we prove that Dis a 1-design. Since every point is incident 

with fifteen blocks, the average number of points incident with a block 

equals twelve. By 6.1.1.iii a block of type II is incident with exactly 

twelve points. Now, since G acts transitively on blocks of the same type, 

also the blocks of type I are incident with exactly twelve points. We have 

seen that G has three orbits on the (unordered) pairs of lines of JF 8 
(intersecting, parallel, skew), for which the following pairs are repre­

sentatives: 

From this it follows that the group 2 x G, which is an automorphism group of 

D, has seven orbits on the (unordered) pairs of points of D, for which the 

following ones are representatives: 

{(1,0),(0,1)} 

Blocks incident with (0,1) and (1,0) are given in(*) and (**), respective­

ly. Using the maps x t➔ ax, x >➔ x + a and x r+ a (x +a) , we obtain the blocks 

incident with (O,a), (a,o?) and (c/ ,ti 4). The blocks incident with (0 ,a) are 

2 4 2 3 3 4 2 3 4 5 3 4 5 6 
{0,a,a ,a }, {0,a,a ,a }, {0,a,a ,a }, '(a ,a ,a ,a }, {a ,a ,a ,a P, 

3 3 5 5 2 3 5 2 4 5 <{0,1,a,a }, {O,a,o: ,o: }, '(0,1,o:,o: }, {1,a ,a ,a }, {1,o: ,a ,a } , 

5 6 2 5 2 6 2 3 5 6 2 3 6 
{O,a,o: ,o: }, {O,o:,a ,o: }, {O,o:,a ,o: }, {a ,o: ,a ,a 1, {1,a ,a ,a L 

The blocks incident with (a,a3) are 
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3 3 4 . 3 4 2 4 2 4 6 
<{O, 1,ct,ct },, {O,ct,ct ,Cl. }, { 1,ct,ct ,Cl. }, ,i(O, 1,ct ,ct }, { 1,ct ,ct ,ct } , 

{ 3 4 5 2 3 4 2 3 5 2 4 5, 2 
ct,ct ,ct ,ct } , "lct,o: ,a: ,a: } , {o:,o: ,a: ,a: ],, {O,ct ,ct ,a 1, {O, 1,a 

{ 2 ,~6}, { 2 3} { 3 6} { 2 4 a,a, ~ O,a,ct ,a , O,ct,o: ,ct , O,o: ,ct, 
4 5 6 , {O,a ,a ,a L 

2 4 
'l"'he blocks incident wi.th (a ,a ) are 

24 245 245 35 35 
{O,a,ct ,a:}, {O,o: ,a ,a}, {a,a ,a ,a}, {O,a,a ,a}, {1,a,a ,ct}, 

2 4 5 6 2 3 4 5 2 3 4 6 3 5 6 3 6 {a ,a ,a ,a }, -Ca ,a ,a ,a }, {a ,a ,a ,a ],, {0,o: ,a ,a } , {O,a,a ,a }, 

2 3 4 2 3 4 2 4 3 5 5 
{1,a ,a ,a }, {O,a ,ct ,a }, "(0,1,ct ,ct }, {0,1,a ,ct ],, {0,1,a , 

Blocks incident with (0,1) are marked by<{. Blocks incident with (1,0) are 

marked by). We see that for each of the seven pairs of points there are 

exactly three blocks incident with both points. Hence Dis a 2 - (56,12,3) 

design. □ 

Next we shall see that D satisfies the hypothesis of 3.2.4. The line 

gra:ph of a geometry is the graph whose vertices a:ce the lines, two vertices 

being adjacent iff the lines intersect. 

6.1.3. THEOREM. D has just three ·intersection nwribers 3, 2 and O (= k - r +A) . 

. The class graph of Dis the complement of the line gra:ph of PG(3,2). 

~- Let b 1 c JF8 and b 2 c JF8 be non-equivalent blocks of D. Let b1 and 

b 2 be the equivalent partners of and b 2, respectively. Let B1, 

B2 be the sets of points incident with b 1 , b 2 , bi_, b 2, respectively. 'rhen 

by 6.Ll 

0 k-r+A. 

This implies 

From (ii) and (iii) of 6.Ll it follows that 
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I (Bl u Bil n (B 2 U B2) 

I {<x,yl 
2 

E F B IX 'f y, {x,y} C bl or {x,y} c bi, 

{x,y} c b 2 or C b2} l 

8 H n b2I 2 , 

12 if lb1 n b2l E {1, 3} 

Hence 3, 2 and Oare the intersection numbers of D. It is clear that the 

thirtyfive equivalence classes of blocks of D can be represented by the 

4-subsets of lF 8 containing O. Therefore, they can also be represented by 

all 3-subsets of 1F8 - {OL Now using Result 4.2.3 we see that the class 

graph of Dis indeed the complement of the line graph of PG(3,2). □ 

By the above theorem, there exists a 2-1 correspondence between the 

blocks of D and the lines of PG(3,2), such that. two blocks have no point in 

common iff they correspond to the same line of PG(3,2), two blocks have two 

points in common iff they correspond to intersecting lines and two blocks 

have three points in common iff they correspond to skew lines. 

6.L4. THEOREM. D 1:s embeddable in a symmetr1:c 2 - (71, 5,3) 

PROOF. We extend D to D1 with fifteen points (called nezJ points), being the 

points of PG(3,2) and one block (new block). The points incident with the 

new block are precisely the new points. We define a new point to be inci­

dent with an old block (block of D) iff the line of PG(3,2) corresponding 

to that block contains that points Now it is easily seen that is a 

1 - (71, 15, 15) design, and that any two distinct blocks of D1 have three 

points in common. This proves that the dual of 

is a symmetric 2 - ( 71 , 15, 3 l design. 

, and therefore D1 itself, 

□ 

From 6.1,1.iii it follows that the seven equivalence cl.asses of blocks 

of type II of D correspond to seven mutually intersecting lines of PG(3,2). 

f'or these lines we may take seven lines through one point or seven lines in 

one plane. Let D1 be the embedding of D i.n which blocks of type II corre-

spond to lines through one point, and let be the other embedding of D 
* -J: Define D1 and D2 to be the dual of and D2, respectively. We shall show 
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that these four 2- (71,15,3) designs are non-isomorhic. To achieve this we 

define a block B of a 2 - (71,15,3) design to be special if the derived 

design with respect to B (i.e. the 2 - (15,3,2) subdesign of the 2 - (71,15,3) 

design, formed by the points of Band the blocks distinct from Bl consists 

of two identical copies of a 2 - (15,3,1) design. It is not difficult to see 

that the residual design with respect to a special block B (Le. the 

2 - ( 56, 12, 3) subdesign of the 2 - ( 71, 15, 3) design, formed by the points off 

Band the blocks distinct from B) satisfies the hypothesis of Theorem 3.2.4 

and that its class graph is isomorphic to the complement of the block graph 

of the 2 - (15,3,1) design associated to B (which clearly is quasi-symmetric, 

since A= 1). F'rom the proof of 6.1.4 it follows that the new blocks of n1 

and D2 are special. Moreover, 6. LL iii implies that the new point of D1 

* which is incident with all old blocks of type II, is a special block of D1 . 

By verification it turns out that these are the only special blocks of D1, 

* * D1 and D2 . However, n2 has seven special blocks. They are the seven new 

points of n2 , which lie in the plane of PG(3,2) corresponding to the old 

blocks of type II. This already shows that 

We know that any 2 - (15,3,1) design associated to a special block of or 

D2 is the design formed by the points and lines of PG(3,2). By use of 

6.1.Liii it follows that also the 2 - (15,3,1) design associated to the 

* * special block of n1 is the design which comes from PG(3,2). Let D be the 

* residual design of D1 with respect to the special block. 'l'hen the class 

* graph of D is again the compl<?.ment of the line graph of PG (3, 2). This 

means that, similarly as for the design D, interchanging points and planes 

of PG(3,2) yields a second embedding of into a 2-(71,15,3) design. Let 

* * n3 be this 2 - (71,15,3) design and let n3 be the dual of n3 • By verifica-

* tion it follows that n3 has just one special block (the one we started 

with}, but that has precisely seven special blocks. This shows that 

n; c/4 n;. By further investigation it turns out that the 2- (15,3,1) design 

associated to any of the seven special blocks of n3 is again the design 

* obtained from PG(3,2), however, the seven special blocks of n2 give other 

2 - (15, 3, 1) designs (in fact all seven of th<?..m give the second design in 

the list of WHITE, COLE & CUMMINGS [W3]). This proves that ck. , and 

and are all non-isomorphic. 

But there is still more. As remarked before, the 2 - (15,3,1) design associ.-
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ated to one of the seven special blocks of n3 (these seven special blocks 

form an orbit under the automorphism group of D3 ) is the design formed by 

the points and lines of PG (3, 2). 'rhis implies that once again we can make 

another 2- (71,15,3) design by taking away the (two identical) 2 - (15,3,1) 

designs and putting them back again after having interchanged points and 

* planes. Call this new design D4 , and let D4 be its dual. It turns out that 

* D4 has one special block, and that n4 has seven special blocks. Hence is 
* * -:k not isomorphic to D1 , n1 , o2 , n3 and n4 . In addition, D4 is not isomorphic 

* to D2 and n3 , since otherwise D3 would have been isomorphic to or 

Because of time considerations we did not check whether it is possible 

to produce still more 2- (71,15,3) designs by playing once again the same 

* game with respect to a special block of D4 . Thus we have the following 

result. 

6.1.5. THEOREM. There exist at least wight 2- (71,15,3) designs. 

* * * * "rhe designs D1, D2, n3 and D4 are given explicitly in Appendix II. By 

taking residual designs with respect to various special blocks we obtain 

(at least) four non-isomorphi.c 2 - (56,12,3) designs which satisfy the hypo·· 

thesis of Theorem 3.2.4. One of these designs has a class graph which is 

non-isomorphic to the class graph of the other ones. 

An oval in a 2 - (71,15,3) design is a set S of six points such that 

any block has two or no points with S i.n common, see [A4]. Let S be an oval. 

It is clear that exactly twentysix blocks do not meet S. Therefore, by 

3.1.1 an oval of a 2- (71,15,3) design is equivalent to an empty sub­

design with six points and twentysix blocks. From 3.1.Lii (see also [A4]) 

it follows that the subdesign of the 2- (71,15,3) design formed by the 

points off S and the blocks not meeting S is the dual of a 2 - ( 26, 6, 3) 

design. By verification it follows that the following blocks of D provide 

an oval in 

{1,a, 2 5 }, {1,a,a ,a}, {0,1,a, 

2 4 5 2 5 3 4 6 {1,a ,a ,a }, {a,a , ,a }, {O,a ,a ,a L 

We conclude this section with a remark about automorphism groups. 'l'he 

group 2 x G of order 336 is an group o:E and their 
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* duals. The designs n4 and n4 have an automorphism group of order 48, viz. 

the stabilizer of a special block of n3 • F.C. Bussemaker has verified by use 

of a computer that the groups mentioned above are the full automorphism 

groups. 

ACKNOWLEDGE:lAENT. I thank H.J. Beker, F.C. Bussemaker, R.H.F. Denniston and 

M. Hall Jr. for various contributions to this section. 

6.2. SOME STRONGLY REGULAR GRAPHS 

Suppose A is the adjacency matrix of a strongly regular graph G on n 

vertices of degreed. Furthermore, assume that A admits the following 

structure: 

where A .. is a square matrix of size c ,~ n/m having constant row sums 
l.J 

equal to b .. , say, for i,j = 1, .. qm. From 1.2.3.iii it follows that the 
l.J 

eigenvalues of the matrix B := (bij) satisfy 

(A) = d 

Hence (*) yields directives for the construction of strongly regular graphs, 

whose adjacency matrix admits this block structure. Let us consider two 

special cases of this structure. 

CASE 1: All diagonal entries of Bare equal to r 0 , say, and all off-diagonal 

entries of Bare equal to r 1 , say, that is, 

Hence by (*) 

d and 

This implies 

or 

(Al (m - 1) + d) / m , (d - (A)) / m • 
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6.2.1. EXAMPLE. We wish to construct a strongly regular graph G with para­

meter set (q3+q2+q+1,q2+q,q-1,q+l), admitting the block structure of case 1 
2 with m = q + 1 and c 0~ q + 1. Then (see Appendix I) A2 (G) ,~ q - 1, 

An (G) = - q - 1 and the formulas above yield r 0 = q, r 1 = 1. It is indeed 

possible to construct G, by use of this framework. To do so we define the 

permutation matrices P and Q of size q + 1 by 

It easily follows that 

k k * 
p Q = (P Q) 

Fork 

and 

k-9, ~ 
.P , l 

i=O 

-k p 

J 

ifi+j=q+2, 

otherwise. 

Q2 I ' 

Then 

J , I r 
i=O j=O 

(q+1),1, 

(v ,= q 2) be the points, and let 

c1 ,. • .,c 1 be the parallel classes of an affine plane of order q. For 
. q+ 2 . 

i,j = 1, .. .,q +1, define the (q+l) x (q+l) matrices 

J-I if i j' 

if i ¥- j' i q2 + 1 j 
2 

A .. := I or q + 1, 
J.J 

¾ if i ¥- j' i $ 
2 

j $ 
2 and contains the q , q ' 

line through pi. and Pr 
By use of the formulas above it is straightforward to verify that the square 

matrix A of size q 3 + q 2 + q + 1, built up with these block matrices Aij, 

satisfies 

2 
(A+I) = (q+l)J+ I. 

Therefore, A is the adjacency matrix of the desired strongly regular graph. 



73 

A strongly regular graph with the same parameters is provided by the 

point graph of a generalized quadrangle of order (q, q) ( see Section 5 .1) • However, 

for q > 4 the graphs constructed above need not be geometric. Indeed, we can 

order the points and the parallel classes of an affine plane of order q in 

such a way that the graph we obtained by our construction has ~ as an 

induced subgraph. Then by 5.3.1, this graph is not geometric, and therefore 

non-isomorphic to any of those which come from generalized quadrangles. 

As a second example of graphs admitting the block structure of case 1 

we mention the eleven incidence graphs of three linked 2- (16,6,2) designs 

(see Section 4.2). 

CASE 2: All diagonal entries of Bare equal to r 0 , say. The off-diagonal 

entries of B take exactly two values r 1 and r 2, say (r1 > r 2). Then by(*) 

the (0,1) matrix 

B :== __ 1 __ 

has just three distinct eigenvalues, one of which is simple and belongs to 

the eigenvector j. Hence Bis the adjacency matrix of a strongly regular 

graph G' with eigenvalues 

6.2.2. EXAMPLE. We wish to construct a strongly regular graph G with para­

meters (40,12,2,4), admitting the block structure of case 2 with m = 10, 

c = 4, r 0 = r 2 = 0, r 1 = 2. From >. 2 (G) = 2, >. 40 (G) = -4 and the above for­

mulas it follows that d' = 6, ;>,. 2 (G') = 1, >. 10 (G') = -2. Hence G' is the 

complement of the Petersen graph. For h = 0,1 and i,j = 2,3,4, define the 

square (0,1) matrices Thij of size four, by 

if (k,R,J € { (1,1), (1,R,J, (k,1), (k,R,)} , 

otherwise. 
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Then we have for h,h' 0, 1; ••• f • 1l 1,J,l ,J 2,3,4, 

* Thij Thji J == 2J' Thij + T (1-h) ij = J , 

* 'I' * Thij Th'i' j' J if j j' , Thij Thi'j 2T lii' ' 

* Thij T(l-h)i'j: 2TOii' 

With the help of these properties it is relatively easy to check that the 

following two matrices are adjacency matrices of strongly regular graphs 

with parameters (40,12,2,4), 

0 T044 T034 T044 'roJJ Tl22 T024 0 '1'022 T03;:: T042 T022 T032 T042 : i T044. 0 D T044 T134 0 T 122 '1'034 0 T122 T022 0 T033 T043 'ro22 0 T032 T042 

T043 
0 0 T133 'I'0,13 T024 0 T 133 '1'024 T023 'l.'033 0 T044 0 '1'022 0 T032 a T042' 

T044 T044 T133 0 D T123 D '1'033 0 1'024 T024 T034 T044 0 0 T022 T023 Toti 
T033 Tl43 T034 D 0 T123 T144 T122 T022 '1'022 0 0 'L'033 T043 ']'033 T033 

' 
'1'122 0 T042 Tl32 

0 T124 T044 T134 '1'023 0 1'022 D T033 'I'044 1'033 0 

T I 
043 

T042 T 122 0 0 T132 Tl42 0 T032 T022 T024 
0 T022 TOJ4 '1'044 

0 1'033 T0--13 

0 T043 T133 T T144 T123 T123 '1'023 T023 0 T033 T 0 'J' 044 
T : 

0J3 033 0.1.J.1 

0 T042 0 T122 1'044 'l'D23 T132 0 TOJ3 0 T024 0 1'023 TOJJ 0 TOJJ '1'044 0 T(,'441 

0 T122 0 T042 0 T 143 '1'022 Tl32 
,, 
-033 

0 T024 T024 0 T034 TOJ/4 
T 

0,14 T014 0 J 

MATRON [MS] used th.e block structure of case 2 for the construction of 
2 2 2 2 strongly regular graphs with parameters (pq , ½.(pq -1), ¼(pq -5), \(pq -1)) 

for prime powers p and q, p = 1, q = -1 (mod 4) , •rhe strongly regular graph 

G', which provides the framework for Mathon's construction has parameters 

Any graph constructed in one of the examples above has the property 
l. 2 

that p 11 + 2 p 11 , This implies that its adjacency matrix A satisfies 

where d denotes the degree of the graph, This yields the well-known fact 

that A+I is the incidence matrix of a symmetric 2- (n,d+1,pi 1l design, 
1 2 

Similarly, if a strongly regular graph satisfies p 11 = p 11 , then its ad-

jacency matrix itself is the incidence matrix of a symmetric 2- 1) 

design, 'rhis phenomenon is behind the next example, where we derive a 

strongly regular graph with p! 1 + 2 = pf 1 from one with p~ 1 ~ pf , 
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6.2,3. EXAMPLE. We start with a description of the generalized quadrangle Q 

fl fl of order (2 -1,2 +1), fl E JN, due to HALL [H6]. Consider AG(3,q), the three 

dimensional affine geometry over lF , with q = 22 • Let S be a set of 
q 

m := q + 2 lines from AG(3,q) passing through one point, such that no three 

lines.lie in one plane. Such a set exists, because it corresponds to a com­

plete oval in the projective plane PG(2,q), which exists iff q is even, see 

[D3]. It is easy to prove that each plane of AG(3,q) contains two or no 

lines from S. The points of Qare the points of AG(3,q); the lines of Qare 

the lines of s, and the lines of AG(3,q) which are parallel to a line of S; 

a point and a line are incident in Q, iff they are incident in AG(3,q). Now 

it is easy to prove that Q is a generalized quadrangle of order (q-1,q+1). 

Let us partition the adjacency matrix A of the line graph of Q (i.e. the 

point graph of the dual of Q) into m2 square block matrices of size q2 , 

according to the m parallel classes in Q: 

From the structure of Q it follows that we may arrange the lines such that 

A .. 
l.J 

A .. 
l.J 

0 if i = j ; 

I ® J if i odd and j q q 
i + 1 , or j odd and i j + 1 

for all other values of i,j, where Pk£ is a permutation matrix of size q, 

for k, fl 

for i 

1, ••• ,q. Now we derive a new matrix A from A by replacing 

A .. 
l.l. 

,i 

by 

1,3, ••• ,m-i. Then it follows that 

A .. 
l.l. J 

Since A is symmetric with all diagonal entries equal to one, the matrix 
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A - I is the adjacency matrix of a strongly regular graph with parameters 
2 2 

(q (q+2),q +q-1,q-2,q). For q = 2 this graph is the Clebsch graph (see 

Section 4 .1, Figure 2), but for all other values of q '"' 2il these strongly 

regular graphs seem to be new. 

We rE>mark that in the above example A has the block structure of case 

1, whilst A has the block structure of case 2 with the cocktailparty graph 

on m vertices (complete ½m-partite graph) as the underlying strongly regular 

graph. 

The remainder of this section will be devoted to strongly regular 

graphs with pa.rameters (40,12,2,4). For convenience we call such graphs 

40-graphs. Examples 6.2.1 (q= 3) and 6.2.2 provide 40-graphs. The point 

graph of a generalized quadrangle of order (3,3) is a 40-graph. PAYNE [PS] 

proved that there a.re exactly two generalized quadrangles of order (3,3) 

(one being the dual of the other). In fact, these two geometric 40-graphs 

are the graph of Example 6. 2 .1 with q = 3, a.nd the second graph of Example 
. 1 

6.2.2. From p 11 2 it follows that a subgraph of a 40-graph induced by all 

vertices adjacent to a given vertex, is regular of degree two, so a dis­

joint union of cycles. But we can say more. 

6.2.4. LEMMA. Let G be a 40-graph. Let x be a vertex of G and let Gx be the 

subgraph of G induced by the ver•Hces adjacent to x. Then Gx is one of the 

following graphs: 

L 

iL 

iiL 

iv. 

v. 

a 12-cycle; 

the disjoint 

the disjoint 

the disjoint 

the disjoint 

union of a 9-cycle and a triangle; 

uJ1ion of two 6-cycles; 

union of a 6-cycle and two triangles; 

union of four triangles. 

PROOF. We only have to prove that the number of vertices of any component 

of Gx is divisible by three. If Gx is connected, there is nothing to prove. 

Suppose Gx has a component C of size c < 12. We partition A into sixteen 

block matrices according to: the vertex x, t.he vertices of c, the remaining 

vertices of Gx, and the vertices not adjacent to x. Then the entries of 
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0 C 12-c 0 

1 2 0 9 
B := 

1 0 2 9 

0 c/3 4-c/3 8 

are the average row sums of the block matrices of A. It is easy to see that 

On the other hand we know 

So the eigenvalues of B interlace the eigenvalues of A tightly. Hence, by 

1.2.3.ii the row sums of the block matrices are constant., so c/3 is an 

integer. 

We associate with a 40-graph a .5-t.uple (a1 , ••. ,a5), where , .•• ,a5 
denote the number of vertices x for which has the form (i), ..• ,(v), 

□ 

respectively, of the above lemma. Using 5. 3. 1 we observe that a 40-graph is 

the point graph of a generalized quadrangle iff its 5-t.uple is (0,0,0,0,40). 

'l'he first graph of Example 6.2.2 has 5-t.uple (0,0,4,24,12). R. Mathen 

(private communication) constructed a 40-graph with 5-tuple (0,0,0,36,4). 

WEISFEILER [wl] describes an algorithm for generating strongly regular 

graphs with a given parameter set, based on the principle of backtracking. 

By use of this algorithm we wrote a computer program (in Algol 60) for the 

construct.ion of 40-graphs. Weisfeiler's algorithm rejects isomorphism only 

partially. This means that some of the produced 40-graphs may be isomorphic. 

We had our program run for about ten minutes. It turned out that, although 

we obtained about t.wohundred (not necessarily non-isomorphic) 40-graphs, 

the process of finding all 40-graphs still was in the beginning phase. For 

this reason there was no hope for completing the whole search. It seems 

that there are thousands of 40-graphs. Still we wanted to test the few 

hundred 40-graphs we found on isomorphism. A complete test on isomorphisms 

would have been too expensive. 'l'herefore we just computed the 5-tuple of 

each 40-graph. It turned out that twentyone of these 40-graphs had different. 

5-t.uples. So we found at least twentyone non-isomorphic 40-graphs. One of 

these is the first graph of Example 6.2.2. But none of these graphs has the 
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5-tuple of a geometric 40-graph or Mathon's 40-graph. So we have the follow­

ing result. 

6.2.5. THEOREM. There exist at least twentyfoUJ.• strongly 

with parameters (40,12,2,4). 

graphs 

These 40-graphs are given in Appendix II, except for the three 40-

graphs that are already exhibited in the Examples 6.2.1 and 6.2.2. The 

first graph in the list is Ma.thon's 40-graph. 

We noticed already that a 40-graph gives a 2 - (40, 13,4) design. There 

is no reason why non-isomorphic graphs should lead to non-isomorphic 

designs. However, it has been checked that our twentyfour 40-graphs do 

produce twentyfour non-isomorphic 2 - ( 40, 13, 4) designs. 

An oval,, in a 2 - (40,13,4) design is a set S of four points, such that 

any block has at most two points in common withs, see [A4]. Easy counting 

arguments give that twelve blocks are disjoint from Sand four blocks have 

exactly one point in common with S. Suppose we have a 40-graph with a co­

clique of size four, such that any vertex is adjacent to two or to no 

vertices of that coclique. Then this coclique of the 40-graph produces a.n 

oval in the corresponding 2 - (40,13,4) design. Conversely, it can be proved 

that any oval in a 2- (40,13,4) design, obtained from a 40-graph, corre­

sponds to such a coclique. We see that the two 40-graphs of Example 6.2.2 

produce 2- (40,13,4) designs with ten disjoint ovals. Also the last six 

40-graphs of Appendix II supply designs with ovals. The remaining sixteen 

40-graphs have no ovals. 

In 4.2.2 we saw that the chromatic number of any 40-graph is at least 

fi.ve. Since the complement of the Petersen graph is 5-colourable, it follows 

that the two 40-graphs of Example 6.2.2 are 5-colourable as well. 
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This appendix contains the basic concepts and results from the theory 

of graphs and designs, which are used in the present monograph. Some general 

references are [BS], [C13], [HS], [W6] for graphs, [D3], [HS], [H17], [R3] 

for designs, and [B7], [C6] for both. We shall assume knowledge of Section 

1.1. 

A graph consists of a finite non-empty set of ve1•tioes together with a 

set of edges, where each edge is an unordered pair of vertices (so our 

graphs are finite, undirected and without loops or multiple edges). The two 

vertices of an edge are called adjaoent (or joint). A graph is oomplete if 

every pair of vertices is an edge. The complete graph on n vertices is 

denoted by Kn. A graph without edges is called void (or null). The comple­

ment of a graph G is the graph G on the same vertex-set as G, where any two 

vertices are adjacent whenever they are not adjacent in G. The disjoint 

union of a collection of graphs G1, ••• ,Gm on disjoint vertex sets is the 

graph whose vertex-set is the union of all vertex-sets, and whose edge-set 

is the union of all edge-sets of G1, ••• ,Gm. A graph is disconnected if it 

is the disjoint union of two or more graphs. Any graph G is the disjoint 

union of one or more connected (= not disconnected) graphs, called the 

components of G. 

Let G be a graph on n vertices. A sequence of distinct vertices 

x0 , ... ,xi of G is a path of length£ between x0 and xi if {xi-l'xi} is an 

edge for i 1, ••• ,t. The distance p(x,y) between two vertices x and y is 

the length of the shortest path between x and y (p(x,y) =~if x and y are 

in distinct components of G). The diameter of G is the largest distance in 

G. A sequence of vertices 

are distinct, x0 = xi, i 

girth of G is the length 

x0 , ••• ,xi is a circuit of length i if x 1 , ••• ,xi 

> 2 and {x. 1,x.} is an edge for i = 1, .•• ,i. The 
1- 1 

of the shortest circuit in G. The adjacency matrix 

of G is then x n matrix A, indexed by the vertices of G, defined by 

if {x,y} is an edge, 
(A) 

xy 
otherwise. 
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Obviously, G has adjacency matrix J -.. A - I. The 

eigenvalues of A; they are denoted by Al (G) 2 .•. 2 

are real, because A is symmetric). We easily have that 

(G) 

of Gare the 

(the eigenvalues 

The incidence matrix N of G, whose rows are indexed by the vertices and 

whose columns are indexed by the edges, is defined by 

l 1 
(N) = 

x,E O 

if X E E , 

otherwise. 

The graph with adjacency matrix N*N - 2I is called the line of G, 

denoted by L(G) .. The subgraph of G induced by a set S of vertices of G is 

the graph with vertex-set S, where two vertices are adjacent whenever they 

are adjacent in G (a subgraph is always an induced subgraph). Note that the 

adjacency matrix of a subgraph of G is a principal submatrix of A. A clique 

is a complete subgraph; a (or independent set of vertices) is a 

void subgraph. The size of the largest clique and coclique is denoted by 

w (G) and a (G), respectively. A coloun:ng of G i.s a colouring of the verti­

ces, such that adjacent vertices have different colours (Le. a partition 

of the vertices into cocliques). Vert.ices which are coloured with the same 

colour form a colour class. G .is k-colourable if G admits a colouring with 

k colours; the smallest possible value of k is the chromatic nwriber of G, 

denoted by y(G). It easily follows that 

y (G) ? w (G) , y (G) a (G) ? n • 

If y(G) = 2, chen G is 

bipartite, then 

By use of 1 . 1 . 2 it follows that if G i.s 

Conversely, >- 1 (G) = - (G) implies that G is void or bipartite; th.is follows 

from the Perron-Frobenius theorem on non-negative matrices (see [c13J, 

[M3]). If G can be coloured with y colours, such that all pairs of differ­

ently coloured vertices are edges, then G is corrrp le-i;e y-parti te ( i.. e. the 

complement. of the disjoint union of complete graphs). The complete bipartite 

graph (y = 2) is denoted by K,Q,,m' where R. and m an, the sizes of the two 

colour classes. By use of 1.1.2 it follows that 
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il 1 (K, ) = -i\ 0 (K, ) "'/9:m, L(K,, l 
x,,m ;,;,+m x..-,m i 1v,m 

0 for i = 2, ... ,Jl+m-1 

The degree (or valency) of a vertex is the number of vertices adjacent to 

that vertex. A graph is regula11 (of degree d) if all its vertices have the 

same degree (equal to d). 

Let G be regular of degreed. Then Aj = dj, hence dis an eigenvalue 

of G with eigenvector j. Moreover, the matrices A, J and I have a common 

basis of eigenvectors. By use of this we obtain 

A 1 (G) = n - d - 1 , ii. (G) = - ii . (G) - 1 
i n+2-i 

for i = 2, ... , n • 

If G is connected, then the Perron-Frobenius theorem yields that d i.s the 

largest eigenvalue of G with multiplicity one. Hence, d = "l (G) and i.ts 

multiplicity equals the number of components of G (see [BS] for an element­

ary proof). If G i.s connected and d ~ 2, then G is called an n-cyale (or 

circuit). G is strongly regular if G is not void or complete and the ad­

jacency matrix A satisfies 

( 1) A.T d.J , (A·· >. 2 (G) I) (A - "n (G) I) 
2 

P11 J, 

for some number p~ 1 • 'rhis is equivalent to requiring that A has precisely 

two distinct eigenvalues not belonging to the eigenvector j. 

Now let G be strongly regular. Then al.so G is strongly regular. Com­

putation of the diagonal entries and the row sums of both sides of the 

second equality of (1) yields 

(2) 

l 
Define p 11 := 

(d-A 2 (G)) (d-An(G)) 

1 2 
dI + p 11A + pll (J -A .. I) 

2 
P11 n. 

This reflects that G satisfies the following three properties: G is regular 

of degreed; for any pair of adjacent vertices there are exactly 1 ver .. 

tices adjacent to both; for any pair of non-adjacent vertices there are 
2 1 2 

exactly p 11 vertices adjacent to both. The integers n, d, p 11 , p 11 are the 

par•ameters of G. Let f be the multiplicity of the eigenvalue (G). Then 

0 trace A 
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whence 

f 
d+ (n-l)An(G) 

An (G) - A2 (G) 
A (G) (n-2f-1) =-d-f 

n 

So, if n 'F 2f + 1, then An (G) is rational, and therefore 

.integers. It .is an easy exercise (see [C6]) to show that n = 2f + 1 implies 

n-1 2d 

By use of the above results and trace A 

A (G) '.". -1. From ( 2) we have that A2 (G) 

0, it follows that A2 (G) 2 0 and 

0 iff pt1 = d. It is easily seen 
n 2 

that p 11 = d reflects that G is a complete y-partite graph. If (G) = -1, 

then A2 (G) 0, hence G is the disjoint union of complete graphs and 
2 2 

p 11 = 0. Conversely, by (1) p 11 = 0 implies d = A2 (G) and An(G) = -1. These 

two families of strongly regular graphs are called imprimitive. Let x be a 

vertex of G. The two suhconstituents of G with respect to x are the sub­

graphs of G induced by the vertices adjacent to x and by the vertices non-
1 2 

adjacent to x. The subconstituents are regular of degree p 11 and d - p 11 , 

respectively. Examples of primitive (= not imprimitive) strongly regular 

graphs are: the pentagon (5-cycle), L(Km) form 2 5 (= triangular graph), 

L(K ) form 2 3 (= lattice graph) and their complements. The Petersen m,m 
graph is the complement of L(K5 ) and has parameters (l0,3,0,1). 

An incidence structure consists of a finite non-empty set v1 of points 

and a f.ini te non-<?.mpty set V 2 of blocks, together with a subset of V 1 x V 2 

of flags. A point and a block are incident if they form a flag. Often blocks 

are identified with the sets of points with which they are incident; if so, 

blocks are denoted by capitals, otherwise we use small types. An incidence 

structure without flags is called empty. 

Let D be an incidence structure with v points and b blocks. An inci-· 

dence structure D' formed by points and blocks of Dis a suhstructure of D 

whenever a point and a block are .incident in D' iff they are incident in D. 

The ·incidence matrix N of D, whose rows are indexed by the points and whose 

columns are indexed by the blocks, is defined by 

(N) B = j 1 
x, l a 

if X E B , 

otherwise. 
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The incidence structures with incidence matrices N* and J - N are called the 

dual and the complement of D, respectively. The graph with adjacency matrix 

[~* ~] is the incidence graph of D. Clearly D and its dual have the same 

incidence graph. We call D a t - (v, k, ), ) design (or t-design with pcwamet;ers 

(v,k,>.)) if all blocks have size k, and if any set oft points is contained 

in exactly >. blocks. A t - (v,k,>.) design with k < t or v-k < t is 

A design is at-design for some t. A suhdesign is a substructure which is a 

design. Note that we allow repeated blocks (two or more blocks incident 

with exactly the same points). 

Let D be a non-degenerate t - (v, k, :>,) design. The complement of D is 

also a non-degenerate t-design. By elementary counting we see that fort? 

Dis also a (t-1) - (v,k,:\(v-t+l) / (k-t+l)) design. In particular, Dis a 

1 - (v,k,r) design, where 

r equals the number of blocks incident w:i.th any point. counting flags yields 

bk= vr. If D is a 1 - (v,k,r) design, then rk is the largest eigenvalue of 
* rriZ is NN and hence by LL2 the largest singular value of N. A 2-design 

is also called (balanced incomplete) bloc/( design. Now let D be a non-· 

degenerate 2 - (v,k,>.) design. In terms of the incidence matrix N this means 

(3) * * N J = kJ , NJ = r,J , NN = ;\,J + (r - ;\) I 

* NN has eigenvalues >.v + r - A = rk and r - A of multi.plicity 1 and v - 1, 

respectively. By 1.1.2 these eigenvalues are the squares of the singular 

values of N. From rk # 0, r - ;\ ,) 0, it follows that v "" rank mi* = rank N, 

hence b ;;,: v (Fisher's inequality). If b = v (Le. r k), D is called 

syrronetric. Formula (3) yields N(N*-(:\/r)J) = (r-Jc)L If Dis symmetric, N 

.is square, hence (N*- (>-/r)J)N = (r-A)I, i.e. N*N = ),J + (r-A)I, and 

therefore the dual of D .is a symmetric 2 - (v,k,J-c) design as well. Let D be 

symmetric, and let B be a block of D. The subdesign formed by the points 

incident with B and the blocks distinct from B is a 2 - (k, >., :\-1) design 

(possibly degenerate), called the derived design of D with respect to B. 

Similarly, the subdesign formed by the points not incident with Band the 

blocks distinct from B is a 2 - (v-k,k-.>., ,,) design (possibly degenerate), 

called the residual design of D with respect to B. A 2 - (v-k,k-A,A) design 

D' is embeddahle in D if D' is a residual design of D. r·or example, the 
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points and lines of PG(2,q), the projective plane of order q, form a sym­

metric 2 - (q2 +q+l ,q+l, 1) design; the degenerate 2 - (q+1, 1, 0) design is a 

derived design, and the affine plane of order q, which i.s a 2 - (q2 ,q, 1) 

design, is a residual design. 

A par•tial geometry with parameters (s,t,a), s,t,a E JN, is a 

1 -· (v,s+1,t+1) design satisfying the following two conditions: 

(4) 

any two blocks have at most one point in common; 

for any non-incident point-block pair (x,B) the number of 

blocks incident with x and intersecting B equals a. 

For a partial geometry we speak of lines rather than blocks. Let D denote a 

partial geometry with parameters (s,t.,a) and incidence matrix N. The graph 

with adjacency matrix NN* - (t + 1) r is the point graph of D. The line graph 

of Dis the point graph of the dual of D. From the definition it readily 

follows that the point graph G of Dis strongly regular with parameters 

(v,s(t+1) ,t(a-l)+s-1,a(t+l)). 

By use of our identities for strongly regular graphs we obtain 

V (s + 1) (st+ a) /a 

* 

s - ()I, , .\ (G) = - t - 1 , 
n 

b ~ (t + 1) (st+ a) /a 

Hence NN has the eigenvalues (s + 1) (t + 1), 0 and s + t + 1 -· a of multiplicity 

1, s (s + 1 - a) (st+ a) / a (s + t + 1 -a) and st(s + 1) (t + 1) / a (s + t + 1 - a), 

respectively. By 1.1.2 the square roots of these eigenvalues are the singular 

values of N. A partial suhgeometry is a substructure, which itself is a 

partial geometry. Let D' be a partial subgeometry of D with parameters 

(s',t',a). Then the point graph of D' is an induced subgraph of the point 

graph of D. This can be seen as follows. Let x and y be two points of D' and 

suppose there exists a line L of D, which is not a line of D', incident with 

x a.nd y. Let M be a line of D' incident with x. By (4) there are a lines of 

D' incident with x and intersecting M. Hence there are at least a+ 1 such 

lines in D. 'l'his is a contradiction. So two points are on a line of D' iff 

they are on a line of D, which proves the claim. A partial geometry with 

parameters (s,t,1) is the same as a generalized quadrangle of order (s,t). 
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APPENDIX II 

TABLES 

First we list the twentyone strongly regular graphs with parameters 

(40,12,2,4), as promised in Section 6.2. Together with the ones of Examples 

6. 2. 1 and 6. 2. 2 they form the twentyfour 40-graphs of Theorem 6. 2. 5. The 

respective 5-tuples of the 40-graphs listed below are: 

(0,0,0,36,4) 

(12, 18,6,3, 1) 

(12, 12,0, 14, 2) 

(6,22,6,3,3) 

(0,32,0,0,8) 

( 0, 24, 0, 12, 4) 

(2,8, 12, 16,2) 

2 3 4 5 6 7 8 9 10 11 12 13 
l 3 4 14 15 16 17 18 19 20 21 22 
l 4 23 2-l 25 26 27 28 29 30 31 
1 2 3 32 33 34 35 36 37 38 39 40 
1 6 7 14 17 20 23 27 31 32 37 39 

5 7 15 18 21 24 28 29 33 35 40 
5 6 16 19 22 25 26 30 34 36 38 
9 10 14 17 20 25 26 30 33 35 40 

10 15 18 21 23 27 31 34 36 38 
9 16 l 9 22 ;,;4 28 29 3 2 37 39 

12 13 14 17 20 24 28 29 34 36 38 
i 11 13 15 18 21 25 26 30 32 37 39 
1 11 12 16 19 22 23 27 31 33 35 40 

5 8 11 15 16 23 28 30 3 2 35 40 
2 6 9 12 14 16 24 26 31 33 37 38 

7 10 13 14 15 25 27 29 34 3 5 39 
5 8 11 18 19 24 26 31 34 35 39 
6 9 12 17 19 25 27 29 32 36 40 
7 10 13 17 18 23 28 30 33 37 38 
5 8 11 21 22 25 27 29 JJ 37 38 

2 6 9 12 20 22 23 28 JO 34 35 39 
7 10 13 20 21 24 26 31 32 36 40 
5 9 13 14 19 21 24 2.S 32 35 38 

J 6 10 11 15 17 22 23 25 33 36 39 
7 8 12 16 18 20 23 24 34 37 40 

8 12 15 I 7 22 27 28 32 35 38 
3 5 9 13 16 18 20 26 28 33 36 39 
3 6 10 11 14 19 21 26 27 34 37 40 

10 11 16 18 20 30 31 32 35 38 
3 7 8 12 14 19 21 29 31 33 36 39 
3 5 9 13 15 17 22 29 30 34 37 40 

10 12 14 18 22 23 26 29 33 34 
8 13 15 19 20 24 27 30 32 34 
9 11 16 17 21 25 28 31 32 33 
8 13 16 17 21 23 26 29 36 ]7 
9 11 14 18 22 24 27 30 35 37 

10 12 15 19 20 25 28 Jl 35 36 
9 11 15 19 20 23 26 29 39 40 

10 12 16 17 21 24 27 30 38 40 
4 6 8 13 14 18 22 25 28 31 38 39 

(8,18,2,9,3) 

(4, 20,4, 10, 2) 

(9,18,0,9,4) 

(18, 12,9,0, l.) 

(0, 12,0, 18., 10) 

(8,8,0, 20, 4) 

(10,8, 18,4,0) 

(16, 14,4,5, 1) 

(18,18,0,3,1) 

(18, 20,0,0, 2) 

(27, 12,0,0, 1) 

(0,36,0,0,4) 

(6, 12, 12, 10,0) 

(0, 16,6, 12,6) 0 

9 10 15 16 17 21 22 24 28 32 35 31:' 
6 D 9 10 14 19 23 24 32 33 34 39 
4 7 12 15 16 19 23 24 30 31 35 39 

8 10 13 17 18 20 21 30 32 37 39 
9 12 14 18 20 21 22 28 31 34 39 
9 12 13 15 17 18 23 31 36 37 38 

3 5 10 11 14 16 18 24 33 36 37 38 
2 4 11 15 18 20 22 24 29 34 35 36 

2 5 6 11 16 20 25 30 35 37 39 
1 2 7 12 13 22 25 29 33 38 39 

8 13 l 5 19 21 25 28 30 33 36 
5 6 10 17 19 21 25 29 34 35 36 

4 G 10 11 16 19 22 26 28 31 34 37 
2 5 15 17 19 22 26 29 30 32 37 
1 3 6 8 11 14 21 26 29 31 38 39 

3 7 9 13 20 23 26 29 3 2 34 36 
4 6 J 2 14 20 24 26 28 30 33 36 

4 5 6 7 8 23 25 26 28 32 35 38 
2 3 11 12 13 14 20 27 28 32 35 38 

5 8 9 16 17 19 27 29 31 33 38 
4 5 11 12 15 27 32 33 34 37 

1 5 10 13 14 23 27 30 35 36 
3 16 18 21 22 27 28 29 30 33 
2 7 8 1 7 25 27 28 3 l 34 3 7 

10 11 12 18 24 26 27 29 30 31 32 
13 14 15 16 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

5 11 13 17 18 19 23 24 29 39 40 
10 12 14 15 16 20 23 25 28 3 7 40 

,) 9 11 14 1 7 22 23 25 ]4 38 40 
5 13 15 20 22 24 25 32 33 40 

1 141618192125313640 
2 10 11 17 20 21 23 26 31 35 40 
2 8 12 13 16 21 24 26 30 38 40 
1 8 9 12 18 19 26 33 37 40 
6 7 8111216172227323940 
4 6 7 9 13 14 21 24 27 29 35 40 
1 6 7 10 15 18 19 20 27 30 34 40 
2 3 4 5 9 10 15 26 27 LB 36 40 

28 29 30 31 32 33 34 35 36 37 38 39 

9 10 15 16 17 21 2~ 24 28 32 35 
6 8 9 10 14 19 24 32 33 3..1, 39 
I) 7 1:: l"i 16 19 23 24 30 31 39 

10 13 17 18 20 21 30 32 37 39 
12 14 18 20 21 22 28 31 34 39 

9 11 15 17 18 20 23 31 35 36 37 
5 10 11 i4 16 18 24 33 36 37 38 

2 4 12 13 15 18 2 2 24 29 34 36 38 
1 2 5 6 12 l J 16 25 30 3 7 38 39 

2 4 7 l i 20 22 2S 29 33 39 
10 13 15 19 21 25 28 JO 34 36 

17 19 21 25 29 33 35 36 
11 16 19 22 26 28 31 37 

5 7 15 17 19 22 26 29 30 32 37 
1 3 6 11 14 21 26 29 31 39 

3 7 1 3 20 2:S 26 29 34 36 
4 6 12 t4 20 24 26 28 30 '33 36 

4 5 6 7 8 25 26 2£1 32 35 3tl 
2 3 11 12 13 14 20 27 28 32 35 38 
4 5 6 10 16 17 1~; 27 29 31 34 38 
J 4 5 11 12 15 27 32 33 ·i4 37 
1 5 8 10 13 i4 23 27 JO 31 35 36 

3 6 16 18 21 22 27 28 29 30 33 
3 7 8 1 7 25 27 28 31 34 3 7 

10 11 12 18 24 26 27 .'29 30 31 32 
13 14. 15 16 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

S 11 13 17 18 19 23 24 29 39 40 
s 10 12 14 1s .t6 20 23 2s 2s 37 ,rn 

4 9 11 14 1 7 22 23 25 34 38 ,10 
5 13 1 S 20 22 2<1 25 32 33 ,!Q 

l 2 4 14 16 18 19 21 25 31 36 40 
10 12 13 17 21 23 26 31 38 40 

8 11 16 20 21 24 26 30 35 40 
6 10 12 18 19 22 26 34 37 40 
8 11 12 16 17 2:2 27 32 39 40 

4 6 9 13 14 21 24 29 35 ,10 
1 7 9 15 18 19 20 '27 30 33 40 
2 3 5 9 10 15 26 28 36 40 

28 29 30 31 32 33 3'1 35 36 37 38 J9 
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10 1s 16 17 21 22 24 2s 32 35 :rn 
8 9 14 15 19 23 24 30 32 33 39 

4 6 10 12 16 19 23 24 31 34 35 39 
10 13 17 18 20 21 30 32 37 39 
12 14 18 20 21 22 28 31 34 39 
11 14 15 17 18 23 31 36 37 38 

2 5 10 12 13 16 18 24 33 36 37 38 
2 4 11 15 18 20 22 24 29 34 35 36 

2 5 6 11 16 20 25 30 35 37 39 
3 4 7 11 14 22 25 29 33 38 39 
s 9 10 12 19 21 2s 2s JJ J4 36 
5 7 15 17 19 21 25 29 30 35 36 

4 7 11 15 16 19 22 26 28 30 31 37 
5 6 10 17 19 22 26 29 32 34 37 

6 12 13 ~ l 26 29 J 1 38 39 
13 20 23 26 29 3 2 34 36 

4 12 14 20 24 26 28 30 33 JG 
4 5 6 7 8 23 25 26 28 32 35 38 

3 il 12 13 14 20 27 28 32 35 38 
4 5 8 9 16 17 19 27 29 31 33 38 

4 5 11 12 15 23 27 32 33 34 37 
5 8 10 13 14 23 27 30 31 35 36 

2 3 6 16 18 21 22 27 28 29 30 33 
2 3 7 8 17 25 27 28 31 34 37 

10 11 12 1B 24 26 27 29 30 31 32 
13 14 15 16 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

5 11 13 17 18 19 23 24 29 39 40 
10 12 14 15 16 20 23 25 28 37 40 

4 9 12 13 17 22 23 25 34 JO 40 
5 6 13 15 20 22 2,1 25 32 33 40 

1 2 4 14 16 18 19 21 25 31 36 40 
2 7 10 11 17 20 21 23 26 31 35 40 
3 5 8 11 14 16 21 24 26 30 38 40 
1 3 8 9 12 18 19 22 26 33 37 40 
6 7 8 11 .i2 16 17 22 27 32 39 40 
4 7 9 13 14 21 24 27 29 JS 40 
1 7 10 15 18 19 20 27 JO 34 40 
2 3 4 5 9 10 15 26 27 28 36 40 

28 29 30 31 32 33 34 35 36 38 39 

9 10 15 16 17 21 22 24 28 32 35 J8 
6 8 9 10 12 19 23 24 33 34 35 39 

; i 4 15 l 6 19 2.l 24 30 31 3 2 39 
10 12 13 17 18 21 30 37 38 39 
12 14 18 20 21 22 28 31 34 39 
13 15 17 18 20 23 31 32 36 37 

5 10 11 16 18 20 24 33 35 36 
1i 14 15 18 22 24 29 34 36 38 

6 11 14 16 25 30 37 38 39 
7 13 20 22 25 29 32 33 39 

7 8 13 15 19 21 25 28 30 33 36 
2 4 5 16 17 19 21 25 29 31 35 36 

6 10 11 16 19 22 26 28 31 34 37 
5 8 9 17 19 22 26 29 32 33 37 

1 3 6 8 11 20 21 26 29 31 35 39 
1 3 9 12 13 2J 26 29 ]4 36 38 
1 4 6 12 14 20 24 26 28 30 33 36 

6 7 8 23 25 26 28 32 35 38 
11 12 13 14 20 27 28 32 35 38 

5 6 10 15 1 7 19 27 29 30 34 38 
1 4 11 12 15 23 27 32 33 34 37 

5 10 13 14 23 27 30 Jl JS 36 
2 3 6 16 18 21 2.'2 27 28 29 30 33 
1 2 3 7 8 17 25 27 :.:8 31 34 37 
9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 :',1 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 5 11 l3 17 18 19 23 24 29 39 40 
10 12 14 15 16 20 23 25 28 37 40 

9 11 17 20 23 25 34 35 40 
6 12 13 15 22 24 25 33 38 40 

l 3 6 10 14 19 21 25 34 36 40 
2 7 10 11 11, 17 21 23 26 31 38 40 
2 S E:l l.3 16 20 21 24 26 30 32 40 

12 1:) 18 10 22 26 30 40 
7 8 11 12 lG 17 22 27 12 39 40 

4 6 g u 1<1 :n 24 27 J5 40 
1 4 9 1G 18 19 20 27 31 33 40 
2 3 ,1 s g 10 1 s .?.6 n 2s 36 .rn 

28293CJ3I::Q3) 353637 39 

10 15 16 17 21 22 24 28 32 35 38 
9 12 15 19 23 24 30 33 35 39 

10 14 16 19 23 24 31 32 34 39 
10 11 17 18 20 21 30 35 37 39 
12 14 18 20 21 22 28 31 34 39 
12 13 15 17 18 23 31 36 37 38 

5 10 11 14 16 18 24 33 36 37 38 
4 13 15 18 20 22 24 29 32 34 36 
2 5 6 13 16 20 25 30 32 37 39 
3 4 7 12 13 22 25 29 33 38 39 
7 13 15 16 19 21 25 28 30 31 36 

2 5 10 17 19 21 25 29 34 35 36 
6 8 10 11 19 22 26 28 33 34 37 
3 5 15 17 19 22 26 29 JO 32 37 

2 81114212629313839 
J 7 9 11 20 23 26 29 34 35 36 

i 4 6 12 14 20 24 26 28 30 33 36 
5 6 7 8 23 25 26 28 32 35 38 
3 11 12 13 14 20 27 28 32 35 38 

4 5 8 9 16 17 19 27 29 31 33 38 
1 4 5 11 12 15 23 27 32 33 34 37 

5 8 10 13 14 23 27 30 31 35 36 
3 6 16 18 21 22 27 28 29 30 33 

l 2 3 7 8 17 25 27 28 31 34 37 
9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 5 i 1 13 18 19 23 24 29 39 40 
8 10 12 14 15 16 20 23 25 28 37 40 
2 4 11 14 L 7 22 23 25 34 38 40 
J 5 11 15 20 22 24 25 33 35 ,10 

8 9 14 18 19 21 25 33 36 40 
10 13 17 20 21 23 26 31 32 40 

5 8 12 13 16 21 24 26 30 38 40 
1 2 12 16 18 19 22 26 31 37 40 
6 7 ll 1216172227323940 
4 6 7 9 13 14 21 24 27 29 35 40 
1 6 7 10 15 18 19 2.0 27 JO 34 40 

3 4 5 9 10 15 26 27 28 36 ,10 
28 29 30 31 32 33 34 35 36 37 38 

10 12 14 16 17 20 22 24 28 32 35 38 
4 7 9 10 15 16 23 24 32 33 37 39 
4 8 11 12 14 19 23 24 30 34 35 39 
2 3 11 13 17 18 21 22 31 32 38 39 
7 8 10 12 13 1 7 18 20 30 36 39 

10 11 14 15 18 20 21 23 28 31 37 
5 14 16 18 19 21 24 29 31 35 36 
5 9 15 18 20 22 24 29 33 34 38 

2 8 10 11 13 14 19 25 28 33 36 38 
1 2 S 9 21 22 25 30 34 35 39 

4 6 16 17 20 25 29 35 36 37 
3 5 13 14 21 23 2S 29 32 33 37 

4 S 9 12 16 19 22 26 28 31 34 37 
1 6 7 9 12 15 26 31 36 38 39 
2 6 8 14 17 19 22 26 29 30 32 37 
1 7 11 13 20 23 26 29 30 34 38 
l 4 5 11 15 21 24 26 28 30 33 36 
4 5 6 7 8 23 25 26 28 32 35 38 
3 7 9 13 15 20 21 27 28 30 32 35 
l 5 6 8 11 16 19 27 31 32 33 39 

10 12 17 19 27 29 33 34 38 
10 1 J 15 23 27 29 31 35 36 
12 16 18 22 27 28 30 33 36 

2 3 7 8 17 25 27 28 31 34 37 
9 10 11 12 18 24 26 27 29 30 31 32 

1J 14 15 16 17 18 25 27 J3 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

l 6 9 13 17 18 19 23 24 29 39 40 
8 11 12 15 16 21 22 25 28 39 40 
5 10 15 16 17 19 23 25 31 38 40 

4 6 7 13 14 20 22 24 25 30 33 40 
12 15 18 19 20 25 34 36 40 

8 121720212326313540 
3 6 10 13 16 21 24 26 3 2 36 40 

10 11 18 19 22 26 33 37 40 
5 7 9 11 14 17 22 23 27 32 34 40 

5 6 11 12 l3 15 24 27 35 38 40 
l 4 8 9 14 16 18 21 27 30 37 40 
7. J 4 S 10 14 20 26 27 28 29 40 

28 29 30 31 32 34 35 36 37 38 39 

10 15 16 1 7 21 22 2-1 22 3 2 3 5 38 
7 10 12 15 19 23 24 30 34 35 39 
8 9 14 16 19 23 24 31 32 33 39 
3 10 11 17 18 20 21 30 35 37 39 

7 9 12 1'1 18 20 21 22 28 Ji 34 39 
9 13 15 17 18 20 23 31 32 36 31 
5 10 11 14 16 18 24 33 36 37 38 

3 4 12 13 15 18 22 24 29 34 36 38 
1 3 S 6 12 13 16 25 30 37 38 39 
1 2 4 7 13 20 22 25 29 32 33 39 
4 7 13 15 16 19 21 25 28 30 31 36 

5 8 9 17 19 21 25 29 33 35 36 
8 9 10 11 19 22 26 28 33 34 37 

3 5 7 15 17 19 22 26 29 JO 32 37 
l 2 6 8 11 14 21 26 29 31 38 39 
1 3 9 11 20 23 26 29 34 35 36 
1 4 12 14 20 24 26 28 30 3 3 36 
4 5 7 B 23 25 26 28 32 35 38 
2 3 11 12 1J 14 20 27 28 32 35 38 
4 5 6 10 16 17 19 27 29 31 34 38 

4 5 11 12 15 23 27 32 33 34 37 
5 8 10 13 14 23 27 30 31 35 36 
J 6 lG 18 21 2L 28 29 30 33 

1 2 7 8 17 25 27 28 34 37 
9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 5 11 13 17 18 19 23 24 29 39 40 
8 10 12 14 15 16 20 23 25 28 37 40 
2 4 9 11 14 17 22 23 25 34 38 40 
3 5 6 11 15 20 22 24 25 33 35 40 
1 3 6 10 14 18 19 21 25 34 36 40 

7 10 12 17 21 23 26 31 ]8 40 
5 8 13 16 20 21 24 26 30 32 40 

4 12 16 18 19 22 26 31 37 40 
6 7 8 11 12 16 17 22 27 32 39 40 
IJ 6 9 13 14 21 24 27 29 35 40 

7 8 9 15 18 19 20 27 30 3 3 40 
3 4 ,:; 9 1 0 15 27 28 36 40 

2tl 29 30 32 35 36 37 38 J9 

10 12 1,1 16 17 20 22 24 28 32 35 38 
5 7 9 10 15 22 23 24 32 33 34 39 

8 11 12 14 19 23 24 30 34 35 39 
810131718212231 3639 
7 11 12 13 17 18 20 30 37 38 39 

10 11 14 15 18 20 21 23 28 Jl 34 37 
5 14 16 18 19 21 2,1 29 31 35 36 

3 4 9 1 5 16 18 20 24 29 3 3 3 7 38 
8 10 11 13 14 19 25 2s :n 36 38 

1 2 6 9 16 21 25 30 35 37 39 
3 5 9 17 20 22 25 29 34 35 36 

3 5 lJ 14 21 23 25 29 32 33 37 
5 9 12 16 19 22 26 .'.:8 31 34 37 

1 3 6 7 9 12 15 26 31 36 38 39 
2 6 8 14 17 19 22 26 29 30 32 37 
l 7 8 10 1 3 20 26 29 30 3"1 36 
l 4 5 11 15 21 24 26 28 30 33 36 
4 5 6 7 8 23 25 26 28 32 35 38 

7 9 13 15 20 21 27 28 JO 35 
5 6 8 16 19 27 31 32 33 39 

4 6 7 10 12 17 19 27 29 33 34 38 
1 2 4 11 13 15 23 27 29 31 35 38 

3 6 16 18 22 27 28 JO 33 36 
1 2 7 8 17 25 27 28 31 34 37 
9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 6 13 17 18 19 23 24 L9 39 40 
7 8 11 12 15 16 21 22 25 28 39 40 
3 5 10 l 'i 16 17 19 23 25 31 3(l 40 
4 6 7 lJ 14 20 22 24 25 30 33 ,:HJ 

2 ,1 12 15 18 19 20 2S J,1 36 40 
2 8 9 12 1 / 20 26 J 1 3 5 40 

'l 6 11 13 16 21 26 32 JB .JO 
1 J 7 JO 11 18 l9 22 26 33 37 40 
4 7 9 11 14 16 17 27 32 37 40 
S 6 O 1 O 12 lJ 1 S £4 27 -i 5 JG 40 

5 8 14 18 21 22 27 JO 34 40 
3 4 10 14 20 26 27 28 29 40 

?8 29 -rn 31 3::' 34 J'J JG J8 '!9 



10 12 14 16 17 20 22 24 22 32 35 38 
10 lS 16 19 23 2<l JO 32 34 39 

4 8 11 12 14 19 23 24 31 33 35 39 
8 10 13 17 18 21 22 30 32 37 39 

2 7 111213 17 18 20 31 36 38 ]9 
10 11 14 15 18 20 21 23 28 31 34 37 

2 5 9 14 18 21 22 24 29 33 35 37 
9 l S 16 18 20 2-1 29 34 36 38 

7 8 10 lJ 14 19 20 25 28 30 33 ]6 
4 6 9 12 15 25 35 36 37 39 

3 5 6 l.4 16 19 2:, 29 32 36 37 
1 3 5 10 13 21 13 25 29 33 34 38 
4 5 12 16 19 22 26 28 31 34 37 

J 6 9 11 22 26 30 34 38 39 
6 101719222629313338 

1 2 11 13 20 23 26 29 JO 35 37 
4 5 11 15 21 24 26 28 30 33 36 
s G 7 a 23 2s 26 2s 32 JS :rn 

9 l.1 lJ 15 21 27 28 32 35 38 
8 9 16 21 27 31 32 33 39 

12 17 19 20 27 29 30 34 35 
7 13 14 15 23 27 29 31 32 36 
G 12 16 18 22 27 28 30 33 36 

1 2 J 7 8 17 25 27 28 31 34 37 
9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 6 9131718192324293940 
7 a 11 12 ts 15 21 22 2s 2a 39 <10 
2 4 9 14 16 17 21 23 25 31 38 4() 

5 6 13 15 20 22 24 25 30 35 40 
1 2 11 18 19 20 22 25 33 34 40 

7 12 15 1 7 20 23 26 32 37 40 
2 6 12 13 14 21 2,1 26 32 36 40 
1 3 7 10 16 18 19 21 26 31 36 40 
S 8 9 10 11 17 22 23 27 34 35 40 
<l 6 10 11 13 16 24 27 33 38 40 
1 5 12 14 15 18 19 27 30 37 40 
2 3 4 10 14 20 26 27 28 29 40 

28 29 30 Jl 32 33 34 35 36 37 38 39 

10 12 
4 S 
7 8 

8 
2 7 

I 0 

14 16 17 20 22 24 28 32 35 38 
12 15 16 19 23 24 31 32 34 39 
10 11 14 19 23 24 30 33 35 39 
10 11 13 17 18 22 31 36 38 39 
9 12 17 .18 20 2.1 J(l 35 37 39 

14 E, 18 2.0 21 23 28 31 34 37 
5 9 14 15 18 22 24 29 34 36 38 
4 i3 16 18 20 21 24 29 32 33 37 

10 13 16 19 20 25 28 31 33 36 
l 3 4 6 9 15 16 25 30 37 38 39 
3 4 6121719202529343536 

5 11 13 14 23 25 29 33 37 38 
9 12 14 19 22 26 28 30 34 37 
6 7 12 13 21 26 31 32 36 39 

10 17 19 22 26 29 32 33 37 
9 10 21 23 26 29 34 35 36 

5 11 15 21 24 26 28 30 33 36 
6 7 8 23 25 26 28 32 35 38 

3 9 1l 13 15 21 27 28 32 35 38 
1 5 6 8 9 11 22 27 32 33 34 39 
S 6 8 14 16 1 7 19 27 29 30 31 38 
1 4 13 15 20 23 27 29 30 31 35 

3 12 16 18 22 27 28 30 33 36 
1 2 7 8 17 25 27 28 31 34 37 
9 10 11 1.2 18 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 6 9 13 17 18 19 23 24 29 39 40 
7 S 11 12 15 l.6 21 22 25 28 39 40 

5 10 13 17 21 22 23 25 32 34 40 
2 4 6 14 21 22 24 25 33 35 40 
1 2 8 14 15 J.8 19 20 25 30 36 40 

8 9 l.2 15 17 20 23 26 31 38 40 
2 6 7 11 13 16 20 24 26 30 38 40 

5 11 16 18 19 22 26 31 37 40 
,t 7 11 14 16 17 23 27 32 37 40 

6 10 12 13 15 24 27 35 36 40 
4 101218192127333440 
J 51014202627282940 

2d 29 JO 31 32 33 34 35 36 37 38 39 

10 12 14 16 17 20 22 24 28 32 35 38 
5 7 10 15 16 19 23 24 30 31 35 J9 
4 8 11 12 14 19 l3 24 32 3J 34 39 

8 10 13 17 18 21 22 30 31 31:l 39 
2 7 11 12 13 17 18 20 3'.) 36 .)7 39 

10 l.l 14 1S 18 20 21 23 2:3 31 34 
2 5 9 14 18 21 22 2Ll 29 33 34 38 

4 9 15 16 18 20 2,1 ?O 35 JG 37 
7 2 10 13 14 19 20 25 28 30 33 36 

2 4 6 9 t1 16 2S 34 36 38 39 
5 6 10 17 19 22 25 29 33 JS 

1 3 13 14 1.5 23 25 29 31 36 38 
4 S 'J 12 16 19 22 26 28 31 34 37 
1 J 6 7 9 12 21 26 30 35 J7 3') 
2 6 12 17 19 20 26 29 30 34 38 
1 101321232629323337 
1 4 t l 15 21 24 26 28 30 33 36 

5 7 8 23 25 26 28 32 35 38 
3 111315212728323538 

1 5 8 9 15 22 27 31 32 33 39 
6 141617192729313236 
4 7 l l 13 20 23 27 29 30 34 35 
3 12 16 18 22 27 28 30 3] 36 

1 2 3 7 8 17 25 27 28 31 34 37 
9 10 11 12 18 24 26 27 29 30 31 32 

13 14 15 16 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 6 13 17 18 19 23 24 29 39 40 
7 8 11 12 J5 16 21 22 25 28 39 40 
2 4 9 14 15 17 22 23 25 32 37 40 
2 4 6 12 13 20 21 24 25 33 35 40 

3 5 16 18 19 20 21 25 30 34 40 
7 9 11 16 17 20 23 26 31 38 40 

3 6 7 10 13 15 22 24 26 32 36 ·10 
1 8 11 14 18 19 22 26 31 36 40 
5 8 9101217112327343540 
5 6 8 11 13 14 16 24 27 JO 38 40 
1 4 7 10 12 15 18 19 27 33 37 40 

3 •'l 5 10 14 20 26 27 28 29 40 
28 29 30 Jl 32 33 J4 35 36 37 38 39 

10 12 14 16 17 20 22 24 28 32 35 38 
4 7 10 11 12 19 23 24 33 34 35 39 

8 14 15 16 19 23 24 30 31 32 39 
8 to 13 17 rn 21 22 31 32 36 39 
7 l 1 12 13 17 l.8 20 30 37 38 39 

10 11 14 15 18 20 21 23 28 31 34 37 
2 5 14 15 18 22 24 29 34 36 38 

16 18 20 21 24 29 33 35 37 
10 13 14 19 20 25 28 30 33 36 

l 2 4 6 9 15 16 25 30 37 38 39 
2 5 6 16 17 19 20 25 29 31 35 36 
1 2 5 13 14 21 23 25 29 32 33 37 

5 9 12 16 19 22 26 28 31 34 37 
6 7 9 12 2l. 26 31 35 36 39 
7 10 17 19 22 26 29 32 33 37 

3 8 10 11 13 23 26 29 34 36 38 
1 4 5 11 15 21 24 26 28 30 33 36 

5 6 7 8 23 25 26 28 32 35 38 
3 9 11 13 15 21 27 28 32 35 38 
5 6 8 9 11 22 27 32 33 34 39 
6 121417192729303438 

l 4 13 15 20 23 27 29 30 31 35 
3 6 12 16 18 22 27 28 30 33 36 
2 3 7 8 17 25 27 28 31 34 37 

10 11 12 18 24 26 27 29 30 31 32 
13 14 15 16 1 7 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 6 9 13 17 18 19 23 24 29 39 40 
8 11 12 15 16 21 22 25 28 39 40 

9 10 17 21 22 23 25 34 35 40 
6 11 13 14 22 24 25 33 38 40 
4 12 15 18 19 20 25 34 36 40 

12 15 17 20 23 26 31 38 40 
13 16 20 21 24 26 30 32 40 

8 11 14 18 19 22 26 30 37 40 
11 14 16 17 23 27 32 37 40 
10 12 13 15 24 27 35 36 40 

5 7 10 16 18 19 21 27 31 33 40 
2 3 4 5 10 14 20 26 27 28 29 40 

28 29 30 31 32 3] 3,1 35 36 37 38 39 

10 12 16 1 
7 10 15 16 
fl 11 12 14 

'.,A 28 JS JS 
2,1 J 1 32 33 39 

23 24 JC 3~ 35 39 
J 1.:: iO 17 22 31 36 39 

111213 l8203C 3639 
1011141518 212-i28313·1 

2 5 9 14 18 21 29 34 '35 36 
1 4 9 15 16 lb 2C 24 .29 :n 37 36 
7 8 10 13 14 19 .25 28 30 33 ]6 
1 2 6 '} U 15 25 35 36 37 39 

14 16 17 19 29 3:2 3(-. 

1 3 i0 13 :11 23 25 29 33 J4 38 
~ S 3 12 16 19 22 26 28 31 34 

..i 6 7 9 11 26 J l 33 38 J9 
2 6 8 10 17 19 2G 29 30 H 38 
l 2 8 11 13 20 2J 26 29 31 3 S 36 
1 4 5 l 1 15 21 24 26 28 30 33 36 
4 5 6 8 23 25 26 28 32 35 38 
2 3 9 11 1J 1 S 21 27 28 32 35 JB 
1 5 6 8 9 16 21 27 JO 32 3'1 39 
4 6 7 12 17 19 20 27 29 31 33 35 
1 4 u 14 1s n n n 30 32 31 
2 ".l 6 12 16 .t8 22 27 :w 30 3J 36 

2 3 7 8 17 25 27 28 31 34 37 
10 11 12 18 24 26 27 29 30 31 32 

1J 14 15 16 17 18 25 27 33 34 35 39 
J'J 20 21 22 23 24 25 26 36 37 38 39 

1 6 9 13 17 18 19 23 24 29 39 40 
7 11 12 15 16 21 22 25 28 39 '10 

9 15 17 20 22 23 25 31 35 40 
6 13 14 16 21 24 25 30 38 40 

2 4 11 rn 1-g 20 22 25 33 34 40 
8 9 12 l tJ 17 21 23 26 32 37 40 

l 2 13 15 20 24 26 3 2 36 40 
1 J 10 16 rn 19 21 26 30 37 40 
tJ 7 10 11 16 17 23 27 34 38 40 
5 6 10 11 13 22 24 27 33 35 40 
1 5 12 14 15 18 19 27 31 36 40 
2 3 4 5 to 14 20 2G 27 28 29 40 

28 29 JO 31 32 33 l-:l 35 36 37 38 39 

10 12 14 16 11 20 22 24 28 32 35 38 
5 7 10 15 16 19 23 24 31 32 33 39 
4 8 11 12 14 19 23 24 30 34 35 39 
3 8 10 13 17 18 21 22 31 32 36 39 

7 11 12 13 17 18 20 3(1 37 38 39 
10 11 14 16 18 20 21 23 28 31 34 37 

5 9 14 18 21 22 24 29 34 35 36 
3 4 9 15 16 18 20 /.4 29 33 37 38 
7 8 10 13 14 19 20 25 28 30 J3 36 
1 2 4 6 16 21 25 30 35 37 39 

5 6 l.6 17 19 20 25 29 31 35 36 
3 5 13 14 21 23 25 29 32 33 37 

4 5 9 12 16 19 22 26 28 31 34 37 
1 3 6 7 9 12 15 26 3 l 36 38 39 
2 6 8 14 17 19 22 26 29 30 32 37 
1 2 8 10 11 13 23 26 29 34 36 38 

4 5 11 15 21 24 26 28 30 33 36 
6 7 8 23 25 26 28 32 35 38 

2 3 9 1.t 1J 15 21 27 28 32 35 38 
1 5 6 8 9 11 22 27 32 33 34 39 
4 6 101217192729333438 
1 4 13 15 .20 23 27 29 JO 31 35 
2 3 12 16 l8 22 27 28 30 33 36 
1 2 3 7 8 17 25 27 28 31 34 37 
9 10 11 1.2 18 24 26 27 29 30 31 32 

13 14 15 i6 17 18 25 27 33 34 35 39 
19 20 21 22 23 24 25 26 36 37 38 39 

1 6 9131718192324293940 
8 11 12 15 16 21 22 25 28 39 40 
5 9 10 15 17 22 23 25 34 38 40 

2 4 6 13 14 22 24 25 33 38 40 
1 2 12 15 18 l 9 20 25 34 36 40 
2 8 12 17 20 21 23 26 31 35 ·10 

13 16 20 21 24 26 30 32 40 
7 10 11 18 19 22 26 33 37 40 
9 11 14 16 17 23 27 32 37 40 

6 8 10 12 1J 15 24 27 35 36 40 
1 5 8 14 16 18 19 21 27 30 31 40 
2 3 4 5 10 14 20 26 27 28 29 40 

28 29 JO 31 'l2 33 34 )6 37 38 39 
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9 10 12 17 20 21 23 26 27 30 31 
:> 6 8 12 18 20 22 24 25 27 29 32 

9 10 11 18 19 22 23 25 28 29 31 
6 7 11 1 i 19 21 24 26 28 30 32 
4 10 12 14 15 22 23 26 28 33 35 
4 9 11 13 16 18 20 30 31 33 35 
4 8 9 14 l 5 17 20 29 32 34 35 
2 10 13 16 21 24 25 28 34 35 

l 3 7 14 16 22 24 26 27 33 36 
3 (>1315181930323336 
4 l 2 13 15 21 23 25 27 34 36 
2 5 11 14 16 17 19 29 31 34 36 
8 10 11 17 22 26 29 35 36 37 38 
7 9 12 18 21 25 30 35 36 37 38 
7 10 11 20 24 27 31 33 34 37 38 

9 12 19 23 28 32 33 34 37 38 
7 12 13 22 25 31 32 33 37 39 
6 10 14 21 26 31 32 34 37 39 

10 12 16 24 27 29 30 35 37 39 
6 7 15 23 28 29 30 36 37 39 
8 11 14 18 27 28 29 33 37 40 
5 9 13 17 27 28 30 34 37 40 
5 11 16 20 25 26 32 35 37 40 

9 15 19 25 26 31 36 37 40 
11 14 17 23 24 30 33 38 39 

4 91318232429343839 
1 2 9 11 15 19 21 22 32 35 38 39 
3 4 5 8 16 20 21 22 31 36 38 39 
2 3 7 12 13 19 20 21 26 33 38 40 
l 4 6 10 14 19 20 22 25 34 38 40 
1 3 6 12 15 17 18 24 28 35 38 40 
2 4 7 10 16 17 18 23 27 36 38 40 
5 6 9 10 15 16 17 21 25 29 39 40 
7 8 11 12 15 16 18 22 26 30 39 40 
5 6 7 8 13 14 19 23 27 31 39 40 
9 10 11 12 13 14 20 24 28 32 39 40 

13 14 15 16 17 18 19 20 21 22 23 24 
13 14 15 16 25 26 27 28 29 30 31 32 
17 l 8 19 20 25 26 27 28 33 34 35 36 
21 22 23 24 29 30 31 32 33 34 35 36 

8 9 10 12 17 20 22 23 25 27 30 31 
6 11 12 18 20 21 24 26 27 29 31 
8 9 10 18 19 21 23 26 28 29 32 
6 7 11 17 19 22 24 25 28 30 32 
4 10 12 14 15 22 23 26 28 33 35 

9 13 16 18 20 30 32 33 35 
11 14 15 17 20 29 31 34 35 
12 13 15 21 24 25 28 34 35 

7 14 16 22 24 26 27 33 36 
11 13 15 18 19 30 31 33 36 

2 4 10 13 16 21 23 25 27 34 36 
1 2 5 8 14 16 17 19 29 32 34 36 
6 8 10 11 17 22 26 29 35 36 37 38 
5 7 9 12 18 21 25 30 35 36 37 38 
5 7 8 10 20 24 27 32 33 34 37 38 
6 9 11 12 19 23 28 31 33 34 37 38 

4 7 12 13 21 26 31 32 33 37 39 
3 6 10 14 22 25 31 32 34 37 39 
4 10 12 16 24 27 29 30 35 37 39 
2 6 7 15 23 28 29 30 36 37 39 

11 14 17 27 28 30 33 37 40 
9 13 18 27 28 29 34 37 40 

11 16 20 25 26 32 35 37 40 
9 15 19 25 26 31 36 37 40 

11 14 18 23 24 29 33 38 39 
9 13 17 23 24 30 34 3:, 39 

11 15 19 21 22 32 35 _j(; 39 
8 16 20 21 22 31 36 38 39 

12 13 19 20 22 25 33 38 40 
10 14 19 20 21 26 34 38 40 
10 16 17 18 24 28 35 38 40 
12 15 17 18 23 27 36 38 40 

5 10 15 16 17 21 25 29 39 40 
7 11 12 15 16 18 22 26 30 39 40 
5 6 7 8 13 14 19 23 27 31 39 40 
9 10 11 12 13 14 20 24 28 32 39 40 

13 14 15 16 17 18 19 20 21 22 23 24 
13 14 15 16 25 26 27 28 29 30 31 32 
17 18 19 20 25 26 27 28 33 34 35 36 
21 22 23 24 29 30 31 32 33 34 35 36 

8 9 10 12 17 20 21 23 26 27 30 31 
6 11 12 18 20 22 24 25 27 29 31 
8 9 10 18 19 22 23 25 28 29 32 
6 7 11 17 19 21 24 26 28 30 32 
J:i, 10 12 14 15 22 23 26 28 33 35 
4 8 9 13 16 18 20 30 32 33 35 
4 111415172029313435 
3 12 13 15 21 24 25 28 34 35 

1 3 7 14 16 22 24 26 27 33 36 
3 111315181930313336 

10 13 16 21 23 25 27 34 36 
5 8 14 16 17 19 29 32 34 36 

10 11 17 22 26 29 35 36 37 38 
9 12 18 21 25 30 35 36 37 38 
8 10 20 24 27 32 33 34 37 38 

11 12 19 23 28 31 33 34 37 38 
12 13 22 25 31 32 33 37 39 
10 14 21 26 31 32 34 37 39 

3 4 10 12 16 24 27 29 30 35 37 39 
2 6 7 15 23 28 29 30 36 37 39 

8 11 14 18 27 28 29 33 37 40 
9 13 17 27 28 30 34 37 40 

11 16 20 25 26 32 35 37 40 
9 15 19 25 26 31 36 37 40 

11 14 17 23 24 30 33 38 39 
4 9 13 18 23 24 29 34 38 39 
2 11 15 19 21 22 32 35 38 39 
4 8 16 20 21 22 31 36 38 39 
3 12 13 19 20 21 26 33 38 40 
4 10 14 19 20 22 25 34 38 40 
2 7 10 16 17 18 24 28 35 38 40 
4 6 12 15 17 18 23 27 36 38 40 
6 9 10 15 16 17 21 25 29 39 40 
a 11 12 15 16 10 22 26 30 39 40 
6 7 8 13 14 19 23 27 31 39 40 

10 11 12 13 14 20 24 28 32 39 40 
13 14 15 16 17 18 19 20 21 22 23 24 
13 14 15 16 25 26 27 28 29 30 31 32 
17 18 19 20 25 26 27 28 33 34 35 36 
21 22 23 24 29 30 31 32 33 34 35 36 

10 12 18 20 21 23 26 27 29 31 
10 11 1 7 20 22 24 25 27 30 31 

9 12 1 7 19 22 23 25 28 30 32 
7 11 18 19 21 24 26 28 29 32 

10 12 14 15 22 23 26 28 33 35 
9 11 13 15 18 20 30 31 33 35 
8 9 14 16 17 20 29 32 34 35 

10 13 15 21 24 25 28 34 35 
7 14 16 22 24 26 27 33 36 
8 13 16 18 19 30 32 33 36 

4 6 12 13 16 21 23 25 27 34 36 
3 5 11 14 15 17 19 29 31 34 36 
8 10 11 17 22 26 29 35 36 37 38 

5 7 9 12 18 21 25 30 35 36 37 38 
5 6 8 12 20 24 27 32 33 34 37 38 

9 10 11 19 23 28 31 33 34 37 38 
3 7 12 13 21 26 31 32 33 37 39 

6 10 14 22 25 31 32 34 37 39 
10 12 16 24 27 29 30 35 37 39 

6 7 15 23 28 29 30 36 37 39 
8 11 14 17 27 28 30 33 37 40 
5 9 13 18 27 28 29 34 37 40 

11 16 20 25 26 32 35 37 40 
9 15 19 25 26 31 36 37 40 

11 14 18 23 24 29 33 38 39 
9 13 17 23 24 30 34 38 39 

11 15 19 21 22 32 35 38 39 
8 16 20 21 22 31 36 38 39 

12 13 19 20 22 25 33 38 40 
10 14 19 20 21 26 34 38 40 
12 16 17 18 24 28 35 38 40 
10 15 17 18 23 27 36 38 40 
10 15 16 17 21 25 29 39 40 

11 12 15 16 18 22 26 30 39 40 
7 8 13 14 19 23 27 31 39 40 

9 10 11 12 13 14 20 24 28 32 39 40 
13 14 15 16 17 18 19 20 21 22 23 24 
13 14 15 16 25 26 27 28 29 30 31 32 
17 18 19 20 25 26 27 28 33 34 35 36 
21 22 23 24 29 30 31 32 33 34 35 36 

10 12 17 20 22 23 25 27 30 31 
8 10 18 20 21 24 26 27 29 32 

6 11121819212326282931 
5 11 17 19 22 24 25 28 30 32 
2 10 12 14 15 22 23 26 28 33 3S 
3 8 9 13 15 18 20 30 32 33 35 
2 4 11 14 16 17 20 29 31 34 35 
1 2 12 13 16 21 24 25 28 34 35 
1 3 7 14 16 22 24 26 27 33 16 

2 11 13 16 18 19 30 31 33 36 
10 13 15 21 23 25 27 34 36 

5 8 14 15 17 19 29 32 34 36 
10 11 17 22 26 29 35 36 37 38 

9 12 18 21 25 30 35 36 37 38 
11 12 20 24 27 31 33 34 37 38 

9 10 19 23 28 32 33 34 37 38 
7 12 13 21 26 31 32 33 37 39 
6 10 14 22 25 31 32 34 37 39 

10 12 16 24 27 29 30 35 37 39 
6 7 15 23 28 29 30 36 37 39 
8 11 14 17 27 28 30 33 37 40 

1 5 9 13 18 27 28 29 34 37 40 
1 S 11 16 20 25 26 32 35 37 40 
2 4 8 9 15 19 25 26 31 36 37 40 

11 14 18 23 24 29 33 38 39 
9 13 17 23 24 30 34 38 39 

2 11 15 19 21 22 32 35 38 39 
4 81620212231363839 
3 121319202225333840 
4 6 10 14 19 20 21 26 34 38 40 
3 7 10 15 17 18 24 28 35 38 40 
4 6 12 16 17 18 23 27 36 38 40 
6 9 10 15 16 17 21 25 29 39 40 

7 8 11 12 15 16 18 22 26 30 39 40 
6 7 8 13 14 19 23 27 31 39 40 

10 11 12 13 14 20 24 28 32 39 40 
13 14 15 16 17 18 19 20 21 22 23 24 
13 14 15 16 25 26 27 28 29 30 31 32 
17 18 19 20 25 26 27 28 33 34 35 36 
21 22 23 24 29 30 31 32 33 34 35 36 

9 10 12 18 20 22 23 25 27 29 31 
10 11 17 20 21 24 26 27 30 31 

9 12 17 19 21 23 26 28 30 32 
7 11 18 19 22 24 25 28 29 32 

4 10 12 14 15 22 23 26 28 33 35 
4 9 11 13 15 18 20 30 31 33 35 

8 9 14 16 17 20 29 32 34 35 
7 10 13 15 21 24 25 28 34 35 
6 7 14 16 22 24 26 27 33 36 

2 5 8 13 16 18 19 30 32 33 36 
6 12 13 16 21 23 25 27 34 36 
5 11 14 15 17 19 29 31 34 36 

10 11 17 22 26 29 35 36 37 38 
9 12 18 21 25 30 35 36 37 38 
8 12 20 24 27 32 33 34 37 38 

10 11 19 23 28 31 33 34 37 38 
7 12 13 22 25 31 32 33 37 39 
6 10 14 21 26 31 32 34 37 39 

10 12 16 24 27 29 30 35 37 39 
1 6 7 15 23 28 29 30 36 37 39 
2 8 11 14 18 27 28 29 33 37 40 
1 4 5 9 13 17 27 28 30 34 37 40 
1 3 5 11 16 20 25 26 32 35 37 40 

4 8 9 15 19 25 26 31 36 37 40 
8 11 14 17 23 24 30 33 38 39 

9 13 18 23 24 29 34 38 39 
11 15 19 21 22 32 35 38 39 

8 16 20 21 22 31 36 38 39 
12 13 19 20 21 26 33 38 40 
10 14 19 20 22 25 34 38 40 

6 12 16 17 18 24 28 35 38 40 
10 15 17 18 23 27 36 38 40 
10 15 16 17 21 25 29 39 40 

7 11 12 15 16 18 22 26 30 39 40 
5 7 8 13 14 19 23 27 31 39 40 
9 10 11 12 13 14 20 24 28 32 39 40 

13 14 15 16 17 18 19 20 21 22 23 24 
13 14 15 16 25 26 27 28 29 30 31 32 
17 18 19 20 25 26 27 28 33 34 35 36 
21 22 23 24 29 30 31 32 33 34 35 36 
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Here are listed the ten systems of three linked 2 - ( 16, 6, 2) designs, 

as promised in Section 4.2. The incidence graphs of these systems, together 

with the point graph of the generalized quadrangle of order (3,5) form the 

eleven 4-colourable strongly regular graphs with parameters (64,18,2,6) of 

Theorem 4.3.1. 

2 3 5 13 
6 10 14 

11 15 
12 16 

7 8 9 13 
7 10 14 
6 11 15 
6 12 [6 

10 11 12 13 
11 12 14 

7 9 10 12 15 
8 9 10 11 16 

1 5 9 14 15 16 
6 10 13 15 16 

11 13 14 16 
4 8 12 13 14 15 

4 6 11 16 
4 5 12 15 

9 14 
1 2 10 13 
1 5 11 16 

6 12 15 
9 14 

6 8 10 13 
6 9 10 12 16 
5 9 10 11 15 
8 10 11 12 14 

4 7 11 l 2 13 
l b 11 L3 14 15 
2 5 12 13 14 16 
3 8 9 13 15 16 
4 7 10 14 15 16 

3 4 12 14 
3 4 11 13 

10 16 
6 9 15 

6 12 14 
5 6 7 11 13 

3 6 7 8 10 16 
4 5 7 8 9 15 
1 7 9 10 11 14 
2 8 9 10 12 13 

9111216 
6 10 11 12 15 
712131516 

11 14 15 16 
10 13 14 15 

4 6 9 13 14 16 

3 4 Li 
4 6 10 14 

2 4 11 1 S 
12 16 

9 13 
10 14 

6 1l 15 
4 5 7 12 16 
l S 10 11 12 13 

9 11 12 14 
lC i 2 1 S 

8 10 11 16 
1 5 9 14 15 16 
2 6 10 13 15 16 

7 11 13 14 16 
4 8 12 13 14 15 

2 3 4 6 11 15 
3 4 8 15 

12 1,1 

2 3 10 13 
1 5 6 8 10 16 
2 5 9 10 11 15 

810111214 
7 8 11 13 
9 11 12 16 

G 7 12 15 
5 6 14 

4 6 9 10 12 13 
6 11 13 14 15 
8 9 13 14 16 

12131516 
4 7 10 14 15 16 

5 6 10 : 2 
4 8 11 12 
2 121315 

7 14 16 
1 4 5 7 9 10 

7 8 9 11 
6 7 13 15 
9 12 14 16 

10 11 15 16 
2 4 8 15 16 
5 6 11 13 16 

11 12 14 15 
1 3 5 13 14 

4l0lll314 
6 8 9 10 14 15 
7 8 10 12 13 16 

4 9 13 
4 10 14 
4 7 11 15 

2 3 8 12 16 
6 8 9 13 

2 5 8 10 14 
3 6 8 11 15 

6 12 16 
10 11 12 13 

6 9 11 12 14 
7 9 10 12 15 

4 8 9 10 11 16 
5 9 14 15 16 

10 13 15 16 
11 13 14 16 

4 8 12 13 14 15 

/, ( 11 16 

3 4 9 15 
1 ;;_ 4 1 ~' l 4 

10 13 
1 S 6 8 10 16 
2 5 9 10 11 15 

8 10 11 12 14 
4 5 8 11 13 

9 1 i 12 16 
7 12 15 
6 9 14 
9 10 12 13 

11131415 
9 13 14 16 

12 13 15 16 
4 7 10 14 15 16 

11 12 
6 9 11 

10 11 14 16 
13 15 

4 7 10 12 
3 6 9 10 

3 4 8 14 16 
410111315 

1 3 6 7 15 16 
4 9 12 15 16 
6 10 12 14 15 

6 11.121316 
9 12 13 14 

2 4 6 7 13 14 
9 10 13 16 
9 11 14 15 

2 
1 2 

3 5 

15 16 
10 11 

8 14 
4 6 9 13 
4 10 12 14 16 
811121315 

4 5 12 13 
6 11 14 15 

6 8 10 13 16 
8 9 12 14 

4 9 10 15 
6 11 12 16 
710111314 

4 5 7 8 11 16 
6 7 10 12 15 

5 9 13 14 15 16 

3 6 11 13 
12 14 15 

7 10 
4 11 15 16 
6 7 8 12 16 
8 9 10 13 14 
J 8 9 16 
4 6 9 10 12 

13 14 16 
10 11 15 

4 8 11 12 14 
6 10 14 15 16 
7 9 12 13 15 

4 6 B 13 15 
5 6 7 9 11 14 

10 11 12 13 16 

6 7 10 14 
9 12 13 16 

4 9 14 16 
4 7 8 10 12 13 

3 4 6 12 15 
11 13 14 
13 14 1 S 

6 11 12 
7 11 
8 10 15 16 

10 11 16 
7 9 15 
9 10 13 

3 7121416 
6 7 11 13 15 16 

1011121415 

J 5 

15 16 
10 11 

8 14 
4 6 13 

14 16 
13 1 5 

4 10 11 
11 12 

4 12 13 
4 6 11 14 15 

2 6 10 13 16 
2 9 12 14 

10 15 
11 12 16 

10 11 13 14 
4 7 8 11 16 
5 6 7 10 12 15 

9 13 14 D 16 

1 2 1 l 13 
12 14 15 

4 5 7 10 
11 15 16 

6 7 12 16 
13 10 13 14 

8 J 16 
ti 9 10 12 

1 4 13 16 
- b 10 l i. 1 S 

8 11 lcl 
~O 1 ,:: : S : G 

7 9 12 
4 5 6 13 15 
5 6 9 11 14 

10 11 12 l J 16 

1 2 6 
2 

9 J!l l(_; 

10 12 13 
8 10 14 6 

4 8 12 13 lG 
4 13 14 15 

1 4 S 6 11 12 
6 12 15 
8 11 13 14 

l 3 8 10 11 16 
1 5 7 8 9 15 
2 3 11 
2 4 10 15 16 
3 5 7 13 16 
3 5 10 12 14 
6 9 10 11 1 :3 
7 11 12 14 1S 16 
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2 15 16 
1 2 10 11 

6 8 14 
4 6 9 13 
4 10 12 14 16 
8 11 12 13 15 
3 4 5 12 13 
4 6 11 14 15 
6 8 10 13 16 

8 9 12 14 
8 9 10 15 

6 9 11 12 16 
7 10 11 13 14 
5 8 11 16 
6 10 12 15 

13 14 15 16 

6 11 13 
12 14 15 

4 5 10 
4 9 11 15 16 

8 12 16 
10 13 14 

8 16 
4 6 9 10 12 

13 14 16 
8 10 11 15 

4 8 11 12 14 
10 14 15 16 

7 9 12 lJ 15 
5 6 8 13 15 
6 7 9 11 14 

10 11 12 13 16 

2 6 7 10 14 
2 12 13 16 
6 9 14 16 
7 10 12 13 

I 3 6 12 15 

J 

5 
I 3 

4 

11 13 14 
8 13 14 15 

8 11 12 
10 11 16 

7 8 9 15 
4 7 11 
5 10 15 16 

5 6 9 10 13 
7 12 14 16 

6 11 13 15 16 
9!011121415 

1 2 15 16 
9 10 11 
6 B 14 

4 6 9 13 
410121416 
8 11 12 13 15 

5 12 13 
6 11 14 15 
8 10 13 16 
8 9 12 14 

9 10 15 
3 6 11 12 16 

10 11 13 14 
8 11 16 

10 12 15 
13 14 15 16 

6 11 13 
12 14 15 

5 7 10 
4 11 15 16 
6 8 12 16 

10 13 14 
8 9 16 

2 4 9 10 12 
2 4 7 13 14 16 
2 7 8 10 11 15 
J 4 11 12 14 

610141516 
7 9 12 ll 15 
5 6 8 13 15 
6 9 11 14 

10 11 12 1 J 16 

9 14 16 
1 2 10 12 13 
4 6 8 10 14 
4 8 12 13 16 
1 3 4 13 14 15 

4 6 11 12 
3 8 12 15 

11 13 14 
8 9 11 

8 10 15 16 
10 11 16 

2 4 7 9 1.: 
7 13 16 

9 10 12 14 
6 10 11 13 15 
71112141516 

15 16 
10 11 

6 8 14 
6 9 13 

1 4 10 12 14 16 
8 11 12 13 15 

4 12 13 
4 6 I 1 14 15 
6 10 13 16 

9 12 14 
8 10 15 
9 11 12 16 

10 11 13 14 
4 8 11 16 
5 10 12 15 

13 14 15 16 

11 13 
1 2 12 14 15 

3 5 10 
11 15 16 

6 8 12 16 
1 8 10 13 14 
2 3 5 8 9 !6 
2 4 6 9 10 12 
2 4 ll 14 16 

10 11 15 
4 J 11 12 14 

j 6 10 14 15 16 
7 9 12 13 15 

4 5 6 8 13 15 
6 11 14 

10 11 12 13 16 

2 6 7 10 14 
2 9 12 13 16 

9 14 16 
4 10 12 13 

13 14 15 
6 11 12 

6 8 12 15 
8 11 13 14 
8 10 11 16 

I 5 7 8 9 15 
2 4 11 
2 4 5 10 15 16 

6 9 11 13 
7 12 14 16 

6 11 13 15 16 
9 10 11 12 14 15 

2 15 16 
2 5 10 1 ! 

5 14 
9 13 

4 ro 12 14 16 
811121315 
3 4 12 13 
4 6 11 14 15 
6 8 10 13 16 

8 9 12 14 
10 15 

11 12 16 
10 11 13 14 

5 7 11 16 
6 10 12 15 
913141516 

6 11 13 
12 14 15 

4 5 10 
4 111516 
6 8 12 16 

10 13 14 
8 9 16 
9 10 12 

2 4 13 14 16 
7 8 10 11 15 
4 8 11 12 14 
610141516 

9 12 13 15 
4 5 6 13 15 
5 6 7 11 14 
5 10 i1 12 13 16 

6 14 16 
10 12 13 

6 7 8 10 14 
4 8 9 12 13 16 

4 6 12 15 
11 13 14 
13 14 15 

2 5 6 8 11 12 
! 3 7 8 9 11 
1 5 8 10 15 16 

4 10 11 16 
7 9 15 

13 16 
5 9 10 12 14 

6 9 10 11 13 15 
7 11 12 14 15 16 

4 9 13 
4 6 10 14 

7 11 15 
8 12 16 

6 9 13 
5 10 14 

11 15 
6 12 16 

10 11 12 13 
9 11 12 14 

10 12 15 
10 11 16 
14 15 16 

10 13 15 16 
11 13 14 16 

4 6 12 13 14 15 

3 4 11 16 
4 8 9 1 S 

5 12 14 
i 10 1.3 

1 5 6 B 10 16 
9 10 11 15 

810111214 
4 5 8 11 13 
1 9 11 12 16 

B 12 15 
9 14 

6 9 10 12 13 
6 11 13 14 15 

2 8 9 13 14 16 
512131516 
710141516 

11 
4 5 6 9 11 
2 10 11 14 16 
2 9 12 13 15 

I 4 8 10 12 
3 5 6 10 12 

12 14 16 
3 4 10 11 13 15 

5 B 13 14 
4 6 13 14 

9 10 13 16 
7 11 12 14 15 
J 6 1 S 16 

s e 1 s 16 
10 14 1 .S 

6 11121.Ji6 
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"?,: * * * Here we give the 2- (71,15,3) designs n1 , n2 , n3 and D4 , which are 

constructed in Section 6.1. Together with their duals they form the eight 

2- (71,15,3) designs of Theorem 6.LS. 

1 2 
1 4 
1 4 

6 

3 4 G 7 d 9 10 11 12 13 14 15 
10171819 2.1 2]24252627 
26 29 JO J l ]2 33 J4 35 J6 37 38 .39 
16 17 Lt{ 29 40 41 42 43 44 45 46 4 7 
18 19 JO 48 49 50 51 52 SJ 54 
16 17 JO 31 56 57 58 59 60 61 62 63 

7 18 19 28 29 64 65 66 67 68 69 70 71 
8 9 20 21 32 33 40 41 48 49 56 57 64 65 
8 9 22 23 34 35 12 43 50 S1 58 59 66 67 

10 11 20 21 34 35 44 45 52 53 60 61 68 G9 
10 11 22 23 32 33 46 47 54 55 62 63 70 71 
12 13 24 25 36 37 40 41 50 51 60 61 70 71 
12 13 26 27 38 39 42 43 48 49 62 63 68 69 

1 14 15 24 25 38 39 44 45 54 55 56 57 66 67 
l 14 15 26 27 36 37 46 47 52 53 58 59 64 65 

4 6 20 22 36 38 40 42 52 54 5(, 58 68 70 
4 6 21 23 37 39 41 43 53 55 57 59 69 71 
5 20 22 37 39 44 46 48 50 60 62 64 66 

21 23 36 38 45 47 49 SI 61 63 65 67 
10 24 26 28 30 40 46 48 54 59 61 67 69 
10 25 27 29 31 41 47 49 55 58 60 66 68 

9 11 24 26 29 31 43 45 51 53 56 62 64 70 
2 9 11 25 27 28 30 42 44 so 52 57 63 65 71 

12 14 16 18 32 34 40 44 51 55 59 63 64 68 
12 14 17 19 33 35 41 45 50 54 58 62 65 69 
13 15 16 18 33 35 42 46 49 53 57 61 66 70 
13 15 17 19 32 34 43 47 48 52 56 60 67 71 

4 7 24 27 32 35 40 42 53 55 60 62 65 67 
3 4 7 25 26 33 34 41 43 52 54 61 63 64 66 
3 5 6 24 27 33 34 44 46 49 51 56 58 69 71 

5 6 25 26 32 JS 45 4 7 48 50 57 59 68 70 
8 11 16 19 37 :,s 41 44 49 52 59 62 67 70 
8 11 17 18 36 39 40 45 48 53 58 63 66 71 
9 10 16 19 36 39 43 46 51 54 57 60 65 68 

10 17 18 37 38 42 47 50 55 56 61 64 69 
12 15 20 23 29 30 40 47 51 52 57 62 66 69 
12 15 21 22 28 31 41 46 50 53 56 63 67 68 
13 14 20 23 28 31 43 44 48 55 58 61 65 70 
13 14 21 22 29 JO 42 45 49 54 59 60 64 71 

8 13 18 23 25 30 34 37 45 46 56 62 65 68 
8 13 19 22 24 31 35 36 44 47 57 63 64 69 

4 9 12 18 21 26 JO 33 39 44 47 58 60 67 70 
4 9 12 19 20 27 31 32 38 45 46 59 61 66 71 
4 10 15 16 21 25 28 35 38 48 51 58 62 64 71 
4 10 15 l7 20 24 29 34 39 49 50 59 63 GS 70 
4 11 14 16 23 26 28 32 36 49 50 56 60 66 69 
4 11 14 17 22 27 29 33 37 48 51 57 61 67 68 
.S 8 12 16 22 26 29 35 J9 52 55 56 61 65 71 

12 17 23 27 28 34 38 53 54 57 60 64 70 
9 13 16 20 25 29 32 37 53 54 58 63 67 69 
9 13 17 21 24 28 33 36 52 55 59 62 66 68 

10 14 18 20 26 31 34 36 41. 42 57 62 67 71 
10 14 19 21 27 30 35 37 40 43 56 63 66 70 
11 15 18 22 25 31 33 38 40 43 59 60 65 69 
11 15 19 23 24 30 32 39 41 42 58 61 64 68 

6 8 15 18 21 27 29 32 36 43 44 so 54 61 62 
6 8 15 19 20 26 28 33 37 42 45 51 55 60 63 
6 9 14 18 23 24 29 35 38 41 46 48 52 60 63 
6 14 19 22 25 28 34 39 40 47 49 53 61 62 
6 10 13 16 23 27 31 33 39 40 45 50 52 64 67 
6 10 13 17 22 26 30 32 38 41 44 51 53 65 66 
6 11 12 16 21 24 31 34 37 42 47 48 54 65 66 
6 11 12 17 20 2'.) 30 35 36 43 46 49 55 64 67 

8 14 16 20 24 30 33 38 43 47 50 53 68 71 
8 14 17 21 25 31 32 39 42 46 51 52 69 70 
9 15 16 22 27 30 34 36 41 45 48 55 69 70 
9 15 17 23 26 31 35 37 40 44 49 54 GB 71 

7 10 l 2 18 22 24 28 32 37 43 45 49 52 57 58 
10 12 19 23 25 29 33 36 42 44 48 53 56 59 

7 11 13 18 20 27 28 35 39 41 47 51 54 56 59 
7 11 13 19 21 26 29 34 38 40 46 50 57 58 

3 4 5 ll 7 B 0 10 12 
16 13192021222324 
28293031323334 36 
16 17 28 29 40 41 42 4J cl4 4.S 46 

4 5 18 19 30 31 48 49 50 52 53 54 55 
6 16 1 7 30 J 1 56 :i 1 58 .59 60 61 Cl 

1 6 18 19 28 29 64 65 66 67 68 69 70 
1 8 9 20 21 32 40 ,JI 4G 49 ~•6 57 64 65 
1 8 9 22 23 34 35 42 51 Stl 59 66 67 

10 11 20 21 34 35 4,l 45 S2 GO 61 68 69 
10 11 22 23 32 46 47 :,:i4 62 63 70 71 
12 13 24 25 36 37 40 41 50 51 GO 61 7C 71 

1 12 13 26 27 38 39 42 ,.U 4B 49 62 GJ 68 69 
1 14 15 24 25 38 39 44 45 54 5') 56 57 66 67 
1 14 15 26 27 36 37 46 52 SJ 58 59 64 6S 
2 4 6 20 22 36 38 40 52 54 56 58 68 70 

4 6 21 23 37 39 41 43 53 55 59 69 71 
2 5 7 20 22 37 39 44 46 48 50 60 62 64 66 

5 7 21 23 36 38 45 47 49 51 61 63 65 67 
10 24 26 28 30 40 47 48 55 59 60 67 68 
10 2S 27 29 31 42 45 50 53 57 62 65 70 
11 24 26 29 31 43 44 51 52 56 63 64 71 

2 9 l l 25 27 28 30 41 46 49 54 58 61 66 69 
12 14 16 18 32 34 40 44 50 54 59 63 65 69 
12 14 17 19 33 35 42 46 48 52 57 61 67 71 
13 15 16 18 33 35 41 45 51 55 58 62 64 68 

2 13 15 17 19 32 34 43 47 49 53 56 60 66 70 
3 4 24 27 32 35 ,10 42 53 55 61 63 64 66 
3 4 25 26 33 34 41 43 52 54 60 62 65 67 

5 6 24 27 33 34 4,1 46 49 51 57 59 68 70 
5 6 25 26 32 35 45 47 48 50 56 58 69 71 
8 11 16 1 9 3 7 38 41 45 48 52 59 63 66 70 

3 8 11 17 18 36 39 43 47 50 54 57 61 64 68 
9 10 16 l.9 36 39 40 44 49 53 58 62 67 71 
9 10 17 18 37 38 42 46 51 55 56 60 65 69 

3 12 15 20 23 29 30 43 44 48 55 58 61 65 70 
3 12 15 21 22 28 31 41 46 50 53 Sb 6J 67 68 

13 14 20 23 28 31 40 47 51 52 57 62 66 69 
13 14 21 22 29 30 42 45 49 54 59 60 64 71 

4 8 12 18 21 27 31 33 38 44 47 58 60 66 71 
4 8 12 19 23 24 30 34 36 45 46 56 62 64 69 
4 13 18 20 26 Jl 32 39 45 46 59 61 67 70 
4 9 13 19 22 25 30 35 37 44 47 57 63 65 68 

iO 14 16 23 26 29 33 37 49 .so 56 61 66 68 
4 10 14 17 21 25 28 14 39 48 51 58 63 64 70 

11 15 16 22 27 29 32 36 48 51 57 60 67 69 
11 15 17 20 24 28 35 '38 49 50 59 62 65 71 

8 13 16 22 27 28 34 39 55 56 61 65 7J 
13 17 20 24 29 33 37 53 54 58 63 67 69 

5 9 12 16 23 26 28 35 38 53 54 57 60 64 70 
12 17 21 25 29 32 36 52 55 59 62 66 68 

5 10 15 l 8 20 26 30 34 36 41 42 57 63 66 71 
5 10 15 19 22 25 31 33 38 40 43 59 61 64 69 

11 14 18 21 27 30 35 37 40 43 56 62 67 70 
11 14 19 23 24 31 32 39 41 42 58 60 65 68 

6 8 15 18 23 25 29 35 39 40 46 49 52 60 63 
6 8 15 19 21 26 28 32 37 42 44 51 54 61 62 
6 14 18 22 24 29 34 38 41 47 48 53 61 62 
6 14 19 20 27 28 33 '36 43 45 50 55 60 61 
6 10 13 16 21 24 31 35 36 43 46 48 54 65 66 
6 10 13 17 23 27 30 32 38 41 44 50 52 64 67 

11 12 16 20 25 31 ]4 37 42 47 49 55 6l\ 67 
6 11 12 17 22 26 30 33 39 40 45 51 53 65 66 
7 8 14 16 20 25 30 32 38 43 46 51 53 68 71 
7 8 14 17 22 26 31 35 36 41 44 49 55 69 70 
7 9 15 16 21 24 30 33 39 42 47 50 52 69 70 
7 9 15 17 23 27 31 J4 37 40 4~; ,rn 54 68 71 
7 10 12 18 22 24 28 32 37 43 4') 49 52 57 58 

10 12 19 20 27 29 35 39 41 47 51 54 56 59 
11 1.82325283336424448 5659 
11 13 J 9 21 26 29 34 38 -:10 46 50 ss 57 
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4 6 8 10 11 12 13 14 15 
16 17 18 19 20 21 22 23 24 25 26 27 

2 28 29 30 31 32 33 34 35 36 37 38 39 
4 5 16 17 28 29 40 41 42 43 44 45 46 47 
4 18 19 30 31 48 49 50 51 52 53 54 55 
6 16 17 30 31 56 57 58 59 60 61 62 63 
6 18 19 28 29 64 65 66 67 68 69 70 71 
8 9 20 21 32 33 40 41 48 49 56 57 64 65 
8 9 22 23 34 35 42 43 50 51 58 59 66 67 

10 11 20 21 34 35 44 45 52 53 60 61 68 69 
10 11 22 23 32 33 46 47 54 55 62 63 70 71 
12 13 24 25 36 37 42 43 48 49 62 63 68 69 
12 13 26 27 38 39 40 41 50 51 60 61 70 71 
14 15 24 25 38 39 46 47 52 53 58 59 64 65 
14 15 26 27 36 37 44 45 54 55 56 57 66 67 

4 6 24 26 32 34 44 46 48 50 56 58 68 70 
4 6 25 27 33 35 45 47 49 51 57 59 69 71 

7 24 26 33 35 40 42 52 54 60 62 64 66 
5 7 25 27 32 34 41 43 53 55 61 63 65 67 
8 10 16 18 36 38 41 45 51 55 58 62 64 68 
8 10 17 19 37 39 43 47 49 53 56 60 66 70 
9 11 16 18 37 39 40 44 50 54 59 63 65 69 
9 11 17 19 36 38 42 46 48 52 57 61 67 71 

12 14 20 22 28 30 42 45 51 52 56 63 65 70 
12 14 21 23 29 31 40 47 49 54 58 61 67 68 

2 13 15 20 22 29 31 41 46 48 55 59 60 66 69 
2 13 15 21 23 28 30 43 44 50 53 57 62 64 71 
3 4 20 23 36 39 44 46 49 51 60 62 65 6 7 

4 7 21 22 37 38 45 47 48 50 61 63 64 66 
5 6 20 23 37 38 40 42 53 55 56 58 69 71 
5 6 21 22 36 39 41 43 52 54 57 59 68 70 
8 11 24 27 28 31 4 2 4 7 50 55 5 7 60 65 68 
8 11 25 26 29 30 40 45 48 53 59 62 67 70 
9 10 24 27 29 30 41 44 49 52 58 63 66 71 
9 10 25 26 28 31 43 46 51 54 56 61 64 69 

12 15 16 19 32 35 41 47 50 52 56 62 67 69 
12 15 17 18 33 34 43 45 48 54 58 60 65 71 
13 14 16 19 33 34 40 46 51 53 57 63 66 68 
13 14 17 18 32 35 42 44 49 55 59 61 64 70 

4 8 12 16 20 24 28 32 36 53 54 59 61 66 71 
4 8 12 17 23 26 29 34 39 52 55 57 63 64 69 
4 9 13 16 21 25 28 33 37 52 55 58 60 67 70 
4 9 13 17 22 27 29 35 38 53 54 56 62 65 68 
4 10 14 18 22 24 30 32 38 40 43 57 60 67 69 
4 10 14 19 21 26 31 34 37 41 42 59 62 65 71 
4 11 15 18 23 25 30 33 39 41 42 56 61 66 68 
4 11 15 19 20 27 31 35 36 40 43 58 63 64 70 
5 8 13 18 21 24 31 35 39 45 46 56 63 67 71 
5 8 13 19 22 26 30 33 36 44 47 58 61 65 69 
5 9 12 18 20 25 31 34 38 44 47 57 62 66 70 
5 9 12 19 23 27 30 32 37 45 46 59 60 64 68 
5 10 15 16 23 24 29 35 37 48 51 57 61 65 70 

10 15 17 20 26 28 33 38 49 50 59 63 67 68 
11 14 16 22 25 29 34 36 49 so 56 60 64 71 

5 11 14 17 21 27 28 32 39 48 51 58 62 66 69 
6 8 14 18 20 27 29 33 37 43 46 50 52 61 62 
6 8 14 19 23 25 28 35 38 41 44 48 54 60 63 
6 9 15 18 21 26 29 32 36 42 47 51 53 60 63 
6 9 15 19 22 24 28 34 39 40 45 49 55 61 62 
6 10 12 16 22 27 31 33 39 42 44 48 53 64 67 
6 10 12 17 21 25 30 35 36 40 46 50 55 65 66 
6 11 13 16 23 26 31 32 38 43 45 49 52 65 66 
6 11 13 1 7 20 24 30 34 3 7 41 4 7 51 54 64 6 7 

8 15 16 21 27 30 34 38 42 46 49 54 69 70 
8 15 17 22 25 31 32 37 40 44 51 52 68 71 
9 14 16 20 26 30 35 39 43 47 48 55 68 71 
9 14 17 23 24 31 33 36 41 45 so 53 69 70 

10 13 18 23 27 28 34 36 40 47 48 52 56 59 
10 13 19 20 25 29 32 39 42 45 50 54 57 58 
11 12 18 22 26 28 35 37 41 46 49 53 57 58 
11 12 19 21 24 29 33 38 43 44 51 55 56 59 

4 5 6 7 8 9 10 II 12 13 14 15 
16 17 18 19 20 21 22 23 24 25 26 27 
28 29 30 31 32 33 34 35 36 37 38 39 

4 5 16 17 28 29 40 41 42 43 44 45 46 47 
4 5 18 19 30 31 48 49 50 51 52 53 54 55 
6 16 17 30 31 56 57 58 59 60 61 62 63 
6 18 19 28 29 64 65 66 67 68 69 70 71 
8 9 20 21 32 33 40 41 48 49 56 57 64 65 
8 9 22 23 34 35 42 43 50 51 58 59 66 67 

10 11 20 21 34 35 44 45 52 53 60 61 68 69 
10 11 22 23 32 33 46 47 54 55 62 63 70 71 
12 13 24 25 36 37 42 43 48 49 62 63 68 69 
12 13 26 27 38 39 40 41 so 51 60 61 70 71 
14 15 24 25 38 39 46 47 52 53 58 59 64 65 
14 15 26 27 36 37 44 45 54 55 56 57 66 67 

6 24 26 32 34 44 46 48 50 60 62 64 66 
6 25 27 33 35 45 47 49 51 61 63 65 67 

5 20 24 34 36 40 47 51 54 56 58 68 70 
5 7 21 25 35 37 41 46 50 55 57 59 69 71 
8 10 16 18 37 38 42 45 51 52 56 62 64 71 
8 10 17 19 36 39 43 44 50 53 57 63 65 70 
9 II 16 27 28 38 40 48 53 55 58 63 66 69 
9 11 17 26 29 39 41 49 52 54 59 62 67 68 

12 14 18 22 30 32 40 42 44 54 59 61 65 69 
12 14 19 23 31 33 41 43 45 55 58 60 64 68 
13 15 20 22 28 30 43 47 48 52 57 60 67 71 
13 15 21 23 29 31 42 46 49 53 56 61 66 70 

4 22 26 32 39 43 45 49 53 56 58 69 71 
7 23 27 33 38 42 44 48 52 57 59 68 70 

3 5 6 20 22 36 39 41 42 52 55 61 63 64 66 
3 5 6 21 23 37 38 40 43 53 54 60 62 65 67 

8 11 24 26 29 31 42 47 51 55 57 60 65 69 
8 11 25 27 28 30 43 46 50 54 56 61 64 68 
9 10 18 25 30 37 41 44 47 49 58 60 66 70 
9 10 19 24 31 36 40 45 46 48 59 61 67 71 

12 15 16 18 32 34 41 46 51 53 57 63 67 68 
12 15 17 19 33 35 40 47 50 52 56 62 66 69 
13 14 16 20 28 34 45 49 50 55 59 62 65 70 
13 14 17 21 29 35 44 48 51 54 58 63 64 71 

4 8 12 16 20 25 29 33 36 53 54 59 60 66 71 
4 8 12 17 21 24 28 32 37 52 55 58 61 67 70 
4 9 13 16 19 23 34 37 39 47 54 57 61 64 69 

9 13 17 18 22 35 36 38 46 55 56 60 65 68 
4 10 14 20 23 24 29 30 38 41 50 56 63 67 69 
4 10 14 21 22 25 28 31 39 40 51 57 62 66 68 
4 11 15 18 20 26 31 35 37 40 43 59 63 64 70 
4 11 15 19 21 27 30 34 36 41 42 58 62 65 71 

8 13 18 20 27 31 33 39 44 46 58 62 67 69 
8 13 19 21 26 30 32 38 45 47 59 63 66 68 
9 12 22 24 27 29 30 35 45 53 57 62 64 70 
9 12 23 25 26 28 31 34 44 52 56 63 65 71 

5 10 15 16 22 26 29 33 37 48 50 58 61 65 68 
5 10 15 17 23 27 28 32 36 49 51 59 60 64 69 
5 11 14 16 19 25 32 35 39 42 48 56 60 67 70 
5 11 14 17 18 24 33 34 38 43 49 57 61 66 71 
6 8 15 16 23 24 30 35 39 40 44 49 55 68 71 
6 8 15 17 22 25 31 34 38 41 45 48 54 69 70 
6 9 14 16 21 26 30 33 36 43 46 51 52 69 70 
6 9 14 17 20 27 31 32 37 42 47 50 53 68 71 
6 10 12 18 21 27 29 34 39 43 47 48 55 56 59 
6 10 12 19 20 26 28 35 38 42 46 49 54 57 58 
6 11 13 18 23 25 29 32 36 40 45 so 52 57 58 
6 11 13 19 22 24 28 33 37 41 44 51 53 56 59 

8 14 18 23 26 28 35 36 41 47 48 53 61 62 
8 14 19 22 27 29 34 37 40 46 49 52 60 63 
9 15 18 21 24 28 33 39 42 45 50 54 60 63 
9 15 19 20 25 29 32 38 43 44 51 55 61 62 

10 13 16 24 27 31 32 35 41 43 52 54 65 66 
10 13 17 25 26 30 33 34 40 42 53 55 64 67 
11 12 16 21 22 31 36 38 44 47 49 50 64 67 
11 12 17 20 23 30 37 39 45 46 48 51 65 66 
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