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CHAPTER 1

INTRODUCTION

Over the past thirty years a considerable amount of publications has
been devoted to the theory of the large scale ocean circulation. One can
get an impression of the development of the theory by consulting for ih—
stance the review papers of STOMMEL (1957) and VERONIS (1973) or the book
of STOMMEL (1965). The book edited by ROBINSON (1963) provides further a
collection of pioneering studies on the wind-driven ocean circulation. Among
the more general textbooks on ocean modelling we mention KRAUSS (1973) and
KAMENKOVICH (1977). In all of these studies numerous references to the rel-
evant existing literature can be found.

One of the very first papers that gave an explanation of an important
feature of the general ocean circulation by a very simple mathematical mod-
el is due to STOMMEL (1948). In his linear model the input of wind energy
at the surface of the ocean is dissipated by bottom friction which is as-
sumed to be proportional to the velocity of the flow. The water is supposed
to be homogeneous. For a squared ocean basin Stommel solved the resulting
second order elliptic boundary value problem and then showed that the west-
ward intensification of the stream line pattern is a consequence of the
variation of the Coriolis force with latitude.

Munk, in 1950, assumed lateral friction to be the main dissipating
mechanism. He showed the dominant influence of the curl of the wind stress
on the general circulation. His model is also linear but the density field
is inhomogeneous. A description of the density structure however was not nec-
essary because the equations of motion were integrated between an assumed
level of no stresses and the surface. This model has been the starting point
of a number of theoretical investigations of the wind-driven ocean circula-
tion (examples of which can be found in ROBINSON'S (1963) book).

Inertial effects, not included by Munk and Stommel, were brought in
by several authors in an attempt to explain features of  the western bound-

ary currents that didn't follow from the linear transport theories (e.g.



CARRIER & ROBINSON, 1962, SPILLANE & NIILER, 1975). An example of such a
phenomenon is the separation of the Gulf Stream from the coast at an "unex-
pected" latitude.

For the description of the detailed three dimensional circulation the
knowledge of the density distribution is needed. This is described by a non-
linear diffusion equation and has only been succesfully tackled under severe
restrictive assumptions concerning the density distributions (e.g. PEDLOSKY,
1969, RATTRAY & WELANDER, 1975).

Starting from the general equations for the motion of viscous fluid
flow we will formulate in chapter ! the basic equations and boundary condi-
tions that describe the steady state circulation in the ocean. After scaling
these equations it will be shown by a systematic analysis under what aésump-
tions various models result. If the nonlinear inertial terms are neglected
and the system is integrated from the bottom to the surface of the ocean
the linear transport model results. A transport stream function y can then
be defined for which a boundary value problem will be formulated. The dif-

ferential equation for the transport stream function takes the form
(1.1) LYZE LY+ Ll hix,¢)
. Y = P % Xy

where L is a fourth order elliptic differential operator in the two space
variables x and ¢. In the main part of this study the assumptions underlying
the vorticity equation (1.1) will be supposed to hold. The mathematical mod-
el described by (1.1) is in essence Munk's model except that in our study
full account is taken of the geometry of the globe, i.e. (1.1) is a differ-
ential equation on a manifold. Our objective is to study in detail the ocean
circulation governed by (1.1) in various subdomains of the globe, and thus
for various shapes of the coastal boundaries. A motivation for the study is
to find out how much of the general features of large scale ocean circula-
tion is reproduced in the relatively simple model (1.1). We shall find, in
various problems, surprisingly strong agreement between our theory and ob-
servational data. A second motivation for our study is that the analysis of
(1.1) in various subdomains of the globe leads to nontrivial mathematical
problems.

The parameter E in equation (1.1) is the so called (lateral) Ekman
number. For the oceanographic application E = 0(10—6). This makes the pro-

blems we deal with of singular perturbation type. To comstruct approxima-

tions of a solution of equation (1.1) with boundary conditions the method



of matched asymptotic expansions will be applied. An extensive treatment of
this method has recently been given by ECKHAUS (1979). Various methods to
prove the asymptotic validity of approximations that have been constructed
by the formal methods have been described there as well. In chapter 3 of our
study a short description of the method of construction along the lines of
Eckhaus will be given.

An important factor that influences the structure of the approximations
is the geometry of the boundary of the domain D under consideration. A cru-
cial role is played by the characteristics of the unperturbed part é%—of the
operator LE. It appears that the ocean domain can be divided in strips
Q= {(x,9) € D|¢1 + o0 < ¢ < ¢2 -~ B} where o and B are arbitrary small posi-
tive numbers and ¢ = ¢i (i = 1,2) are characteristics that are tangent to
or partly coincide with the boundary. To the east and west the subdomains
Q are bounded by smooth parts of the continental boundary (90) such that
each characteristic intersects the eastern and western boundary once. For
such regions formal asymptotic approximations of the solution of (1.1) with
boundary conditions can be constructed by straightforward application of the
method of matched asymptotic expansions. This will be carried out in chapter
4 where we will also sketch how the results of BESJES (1973) can be applied
to prove the asymptotic validity of the approximations on the strips Q. The
simple model for a strip  already shows that the geometry of the eastern
boundary is reflected throughout the ocean basin. This is not the case with
the western boundary. Its variability causes only local changes of the stream
line pattern.

If the eastern boundary is such that a characteristic ¢ = c touches
that boundary the method of constructing a local approximation in a neigh-
bourhood of such a characteristic is based on the concept of a free bound-
ary layer that propagates westward into the interior of the domain. When a
part of the eastern boundary coincides with a characteristic a lateral bound-
ary layer along such a section exists that leaves the coast and develops in-
to the interior as a free boundary layer. The differential equations describ-
ing those boundary layers are of diffusion type. This fact plays an important
role in the methods of constructing asymptotic approximations. The chapters
5, 6 and 7 are predominantly devoted to the development of such methods.

In chapter 5 an asymptotic analysis is made of the wind-driven circu-
lation around the Antarctic continent (the so-called Antarctic Circumpolar
Current, see figure 1.1). BetweenAAntarctica and the southern tip of South

America the flow can encircle the globe unobstructed. The interaction



with currents in the meridionally closed basins more northward takes place
through a viscous free boundary layer along the characteristic that separates
the two essentially differing regions. It turns out that a local analysis of
the region near the southern tip of South America is necessary to determine
the approximations in the free boundary layer and in the Antarctic region.
The value of the total Antarctic Circumpolar Transport that comes out of the
model calculations appears to be of the same order of magnitude as values
that have been calculated from observational data.

The models in chapter 6 provide an analysis of the flow in the part of
the world ocean basin that contains the South African peninsula. First a
(two dimensional) model in which the African continent is represented by a
straight line will be developed. As a result a simple explanation can be
given of the turning of the Agulhas Current south of Africa as related to
the positions of the extrema and the zeros of the wind stress curl with res-
pect to the southern tip of the African continent. An explanation of the
relatively low transport of the Brasil Current (see fig. 1.1) is obtained
as well.

If a more realistic curved geometry of the South African continent is
used this turns out not to alter the first approximation of the free bound-
ary layer to the west of the southern tip. It is reflected in the appearance
of an extra boundary layer near that southern tip and a higher order of mag-
nitude of the second approximation in the free boundary layer.

If the geometry of the continent is such that the southern coast coin-
cides with a characteristic ¢ = ¢ the first approximation in the free bound-
ary layer is different from that in the line shaped case. This and related
problems will be analysed in chapter 7. For the oceanographic application
the model with a corner shaped eastern boundary leads to interesting results.
We find the formation of intense eastern boundary currents that leave the
coast and propagate into the interior. Such eastern boundary currents are
for instance the Guinee Current and the Flinders Current which originates

in the corner formed by the South Australian and West Tasmanian coasts.
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CHAPTER 2

MODELS OF THE LARGE-SCALE OCEAN CIRCULATION

After formulating the basic equations that describe the in general tur-
bulent motion in the ocean these shall be averaged. It leads to a set of
equations for the mean part of the flow. The influence of the turbulence on
the mean flow is represented by the "Reynolds stress” tensor which takes a
simple form based on the introduction of so qalled eddy viscosity coeffi-
cients. The eguations and boundary conditions can then be scaled in orxrder
to obtain an impression of the relative importance of the different mecha-
nisms that govern the motion. In a systematic way (among other things by a
small parameter analysis) various models shall be derived from the full non-
dimensional system. From this analysis it will become clear which are the
basic assumptions underlying different models. Vertical integration (between
the bottom and the surface of the ocean) of the equations of motion and neg-
lection of the inertial terms leads to a linear transport model. For the
so called transport stream function Y a singularly perturbed fourth order
elliptic boundary value problem results. The main part of this study will
then be devoted to the asymptotic analysis of such a problem for different

geometries of the ocean domain.

2.1, The basic equations

We start from the general equations describing the motion of viscous
fluid flow. The conservation law of mass is expressed by the equation of
continuity:

(2.1) 3 4T,V + eV, = 0
B 3t VP PV .
Here, ; is the fluid velocity, p its density and V is the gradient operator.
d
In the case of constant density for every volume element (a%-z 0y (2.1)

reduces to the simple equation:



(2.2) v,v =0

In most cases (2.2) (often referred to as the incompressibility condition)
is a good approximation for seawater.

The conservation law of momentum leads to the so called momentum equa-
tion. For an incompressible, viscous fluid and referred to a coordinate sys-
tem that is fixed to the earth (so it rotates with the angular velocity of
the earth) it reads:

.

Bv -~ - - e -~ -
(2.3) p(52-+ v,Vv) + 200XV = -Vp + pg + uAv

A systematic derivation of this equation, which in fact is a version
of the Navier-Stokes equation, can be found for instance in KRAUSS (1973).
The first term on the lefthand side represents the mass acceleration, the
second one the Coriolis force. This is an apparent force which appears in
the equation because the coordinate system is rotating with the angular
velocity 5 of the earth. On the righthand side Vp represents the pressure
gradient and pg = (0,0,~-pg) is the actual force of gravity (that is the
gravitational acceleration with a small modification from the centrifugal
force). Viscous effects enter the equation through the term uAG, where
is the molecular viscosity coefficient and A the Laplace operator.

The density of seawater depends on the other thermodynamic variables.
Therefore, a functional relationship between these quantities has to be add-
ed to the equations of motion. In general the pressure p, the temperature
T and the salinity S (the mass of dissolved solids per unit mass of seawater)
can be chosen to describe the state of seawater. This leads to the equation

of state:

(2.4) p = p(p,T,8).

Only empirical approximations of this function are known (e.g. FOFONOFF,
1962; WILSON & BRADLEY, 1968). An approximation which is often used in oceano-
graphy is the linear equation of state:

(2.4Y) p = po{l - a(T-T)) - b(s-so)}.

- *
a and b are constants and TO and SO are reference values. If T is defined

as T* =T + g-es (the "apparent" temperature) (2.4') reads:



(2.4") p = p,lt - a(T*-T;)}.

Finally, we add the eguation of diffusion for the salinity S:

a8 =
(2.5) 5t + v,Vs = vSAS

and the equation of heat conduction:

T | -~
(2.?) 5t + v, VT = vTAT.
Here vs and VT are the diffusion coefficients.
Together the equations (2.1),(2.3),(2.4),(2.5) and (2.6) provide a

closed system for the unknown variables v, p, p, T and S.

2.2. Averaging of the equations of motion for fluctuating fields

In general the motion in the ocean is turbulent. The velocity field

can be represented in the form
(2.7) ve=au+ v

where G is the mean part and ;' is the fluctuating part of the velocity.

The average is taken over the set of possible realisations of a motion under
consideration (under macroscopically identical conditions). Substituting the
representation (2.7) into the equations of motion and taking the mean of it

leads, with the neglect of molecular viscosity, to the following set of equa-

tions:

(2.8) V,u=0

(2.9) 8—G+Gvﬁ+2§xA=—lv g+ F
- 3t v u pP g v

where in tensor notation,

1 9 — _ 1 3
F,o= e —=—=—p Vv, = == rT,
i p 0X. i3 p dx. ij
J 3
{(the overbar indicates averaging).
The symmetric tensor 1,, = - pviv( is called the "Reynolds stress" tensor

ij i
after O. REYNOLDS (1895), who first introduced the above procedure. It thus
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describes the influence of the turbulence on the mean flow.

The functional form of the Reynolds stress tensor is not known. To get
around this difficulty in many theoretic oceanographical studies the com-
ponents of Tij are assumed to be linear&expressions in the first derivatives
of the components of the mean velocity u. The proportionality coefficients
are the so called eddy viscosity coefficients. Under the assumption that the
resulting tensor of eddy coefficients is axisymmetric about the vertical di-
rection rather simple expressions for the Reynolds stress have been derived
by KAMENKOVICH (1967). The expressions contain three coefficients of turbu-~
lent viscosity, AH, AV and A. AH and AV are the so called horizontal and
vertical eddy viscosity coefficients.

In an analogous way the equations of heat conduction and salinitf dif-
fusion can be averaged. In this case two coefficients of turbulent diffusion
appear, describing the different mixing in the vertical from that in the

horizontal direction.

2.3. The equations of motion in spherical coordinates

Because in this study we are especially interested in the large scale
characteristics of the ocean circulation we will formulate the equations of
motion in spherical coordinates. Moreover we will only study stationary flow:
E = ﬁ(k,¢,r), where A is the longitude (0 < A < 2w), positive in eastward
direction, ¢ the latitude (—g-£¢ < %) and r the distance to the center of

the earth (0 <= r < a).

: e (L 3 1 9 3 i .
With V = (z'cos¢ Y oY) 'Br) the momentum equation becomes:
-~ uv uw X _ 1 op (A)
(2.10) u,Vu - " tgg + - + 20w cos ¢ - 20vsin¢ = wprcosd) 3 + F
(2.11) SVV+‘—‘~2—t¢+X“i+ 2using = - - B 4 p®
: ! r ¢ r or 9¢
= uTtvt _ 13 (r)
(2.12) u, Vw p 2Qu cos ¢ = o Br g+ F

For the equation of continuity we obtain:

1 Ju ) aw
(2.13) m{ﬁ+5—$(vcos¢)+2wcos¢} +'é—r-——0,

and the equations of salt diffusion and heat conduction read:
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(2.14) 9,98 = o

(2.15) W, VT =

[
e}

In these equations u,v,w are the velocity components along A,¢$ and r, res-

a) L) (x)

pectively. F and F represent the Reynolds stress terms, o and

Q the effects of turbulent diffusion.

2.4. The boundary conditions

For steady state circulation the main driving forces act upon the sur-
face of the sea. Very important is the wind stress, leading to the boundary
condition:

(2.16) AV(%%-,SE' = (TA,T¢) in r = a.

)\ -
Here T ,T¢ are the eastward and northward components of the wind stress T
respectively.
The ocean surface is assumed to be level and it is given by r = a. In

consequence at the upper boundary we impose:
(2.17) w =0

Further there is the differential heating at the surface of the ocean,
also leading to differences between precipitation and evaporation. In the
boundary conditions this is reflected in either a given flux of heat and
salinity or given temperature and salinity distributions themselves.

The lateral boundaries and the bottom of the ocean basin can in most
cases be considered to be insulated:

(2.18) %§'= %§-= 0 at the bottom and coasts.
Here n denotes the direction normal to the boundary.
For the velocity at rigid boundaries the so called condition of no slip

holds:

(2.19) u=v=w= 0.
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2.5. The basic equations in nondimensional form

To get an impression of the relative importance of the different mecha-
nisms that govern the steady state ocean circulation it is useful to put the
basic equations and the boundary conditions in nondimensional form. For that
purpose characteristic values of the appearing dependent and independent
variables have to be defined. For instance the characteristic length scale
L of the motion has to be of the order of the width of the ocean basin if
it is the large scale circulation that we intend to analyse.

The nondimensional variables (marked by primes) are introduced as

follows:
r=a+ Hr'; (u,v) = V(u',v'); w = Ww';
LQV
2, = +-_|; = T [ l;
(2.20) 0 po(l g ph) P DO QVp pOgHr
? = T ?', T =TT'; S =5_85'.

m 0 0

(p' is called the reduced pressure).

If we substitute these in the equations and drop the primes there results:

(2.21) R{mﬁ%+ﬁ;%+gw%~%m¢+
+ 1ﬁir uw} + 82wcos ¢ - 2vsind = ~ (1+€r)(1$up)cos¢ %§-+ F(X)

(2.22) R%TTIE;%ESEE-%§-+ 1;;r %%- glw %%>+ 1:ir tgo + 1+exr vw} o+

+ 2usin¢ = - ?T?EE%%EIEET’%%.+ F(¢)
(2.23) gR{6%1+€r?cos¢g¥l+ 1;;r %%'+ g'w %% - 25555} -

- g2ucos ¢ = - 1;;p(%§-+p) + eF(r)
(2.24) m {—g—-;% + 'é% (vcos ¢) + 82wcos ¢} + .SJ_B?‘Z‘= 0
(2.25) (1+er?cos¢ %§'+ 1;;r %§.+ é%—w %g': ¢
(2.26) u___ T, v AT, 8 AT,

(l+er)coséd 5X>+ l+er 9¢ el 3t
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The parameters that appear in these equations are: the Rossby number

(2.27) R = = ,

which is a measure for the ratio between the inertial and Coriolis forces;

(2.29) u o=

m

i
L"J m

O

il
<=

(here, H is a characteristic length scale of the vertical motion).

To determine the numerical values of these parameters the characteris-
tic scale factors must be known. In modelliné the large scale ocean circula-
tion the orders of magnitude of the relevant scales are (see for instance

KRAUSS, 1973):

==
it

5X103m. (the average depth of the ocean);

L = a= 6.4X106m.; v = 10“1m secal;

(2.30) T, = 7.8x1072 kgm sec ?; oy = 10°kg m™

3

Q= 10“4sec"1; g = 9.8m sec—z; W = 7.9X10~5m sec_l;

Av= 6.1 kgmﬁlsechl; AH = 1OIkgxﬂ—1sec—

This leads to the values:

2.1x107%; 8§ = e = 7.0x107%;

P
L]

1.3x1070;  u

Q
it

1  (in general: pu £ 1),

The non-dimensional version of the boundary condition (2.16) reads:

du dv, _ A b
(2.31) vE; Grosn) = (1) dinr=0,

where EV is the vertical Ekman number, defined by:
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v m
2. E = V = e
( 32) 2 (so 1 ).

H
DOQ (DOQAV)

It is a measure for the ratio between the frictional and the Coriolis forces.

Substitution of the above given scale factors gives:

_ -6
EV = 2.44 x10 .

2.6. Reduction of the basic equations to simpler form

The small wvalue of e expresses the relative shallowness of the ocean. We
will exploit this fact by approximating in the system (2.21) through (2.26)
terms of the form ——Lw-f(k,¢,r) by £(A,¢,x).

1+ex

If terms I:%E~f(K,¢,r) are approximated by £(A,¢,r) the so called

Boussinesq approximation results. Employing both approximations and neglect-

ing O(e) and 0(S§) terms with respect to O(1). terms of the same kind the fol-

lowing system of equations results:

: S u - - ing = - —M_3p .
(2.33) R{u,Vu - uvtg¢} - 2vsin¢ cosd X +
2 2
3 u 1 3 ou 1 97u
+ B —5 + BE{—— — (cos ¢ —) + e
v 8r2 cos$ 3¢ 3¢ cosz¢ 8A2
" .
+ cos;¢ - 2512¢ §¥}
cos ¢ cos ¢
-~ 2 X op
(2.34) R{u,VWw + u"tg¢} + 2usin¢ = - u §$-+
2 2
9 v 1 J v 1 37y
+ E = + B{——— — (cos ¢ ) + ———— —= +
v Br2 cosd 3¢ 99 cosz¢ BAZ
. cos§¢ v 2512¢ %%}
cos ¢ cos ¢
(2.35) 0=2 4
or
1 du 9 1w
(2.36) COST(T (BX + _375 (vcosd)) + 'J—é—r* =0
2 2
- 5 3°s s, 1 3 9S 1 3°s
(2.37) u,Vs = v = + yo{ = (cos¢ =) + ——mm— 2}
v ar2 H cos¢ 9¢ 3¢ cosz¢ aAZ
2 2
-~ T 9T T, 1 d 9T 1 94T
{2.38) u, VT = vy, —= + y_ { — (cosd =) + e —
v 3r2 H cos¢ 0¢ 39 cosz¢ 8X2
_L b a1
where now V = (cos¢ YT Br)°



15

In the frictional terms the horizontal Ekman number E appears. It is

defined by

(2.39) E = .

With the scale factors as given in (2.30) the numerical value of E is the

2,44 X10—6. In the sequel the two Ekman numbers

same as that of EV: E
will be set equal: Ev = E.
The parameters that appear in the diffusion terms of eguations (2.37)

and (2.38) are given by:

b\)Sa \)S \)Ta \)T

S som T v T
- 2 ; H - . - 2 I - 7

\Y% VH Va \ VH H Va

where the vv and vH are the vertical and horizontal eddy diffusion coef-
ficients, respectively.

If the diffusion coefficients and the equation of state (e.g. 2.4") are
such that it can be combined with the equations of heat conduction and salt

diffusion to give one equation of diffusion for the density we get:

2 2
-~ 3°p 1 il ap 1 97p
(2.40) u,Vp =y _ ==+ y {—— — (cosd =) + —=1,
v 3r2 H cosd 93¢ 9 c052¢ 3A2
with v a v
S A
\ VH2 H Va

The vertical component of the momentum equation (2.35) represents the
well known hydrostatic approximation. It is applicable in almost all oceanic

cases and we will use it throughout this study.

2.7. The f-plane and B-plane approximations

In the preceeding section the basic equations have been formulated in
spherical coordinates, which in most cases makes them difficult to analyse.
Depending on the scale of the motion various approximations of the equations
can be deduced.

A measure for the scale is the parameter u, the ratio between the char-
acteristic length of the motion (L) and the earth radius (a).

If the scale of the motion considered is small with respect to the earth
radius, i.e. if w « 1, this can be exploited in the equations by performing

the following transformation:
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(2.41) ux = cos¢o(k—ko)
Hy = ¢-¢
Z = X.

Here ¢O and XO
metric factors in the equations in Taylor series around ¢ = ¢O‘ Performing
these operations the equations (2.33) through (2.36) together with (2.40)

take the following form:

1

* he
(2.42) R {(u,) - uuv(tg¢0 + ny 5 + o)} -
c?s ¢O
- (2sin¢  + 2 ¢+ yv o= ~ (1 + tgd  + )EBWLEBu
0 Hycosd, + ... Hytgdo .. 5 v .
2 2
+ EX((L + 2uytge +...) 224 28 gy o+ M,y
0 2 2 0 Ay
9x oy cos ¢
cos2¢ 3 0
2 0 v
+ 1 (COS% +..0u - u(2tg¢0+ va) é'x'}
0
(2.43) R*{(G,Vv) + uuz(tg¢0 SR N (2sin¢O + 2uycos¢o + o) =
2 2 2
= -2 g 2V BN+ 2uytge, + .. ST LY
Ay A 2 0 2 2
2z ox oy
cos2¢
A4 2 du
- u(tgqbo N Sy+ T + o)V o+ u(2tg¢>0 + ...) E)X}
cos ¢
0
(2.44) 0=23 4
9z
ou v W
(2.45) (1 + uytg¢0 + o) Py + By + Py u(tg¢o +oL.)v =0
> *329 * 20
(2.46) u,Vp = vy == + vy {(1 + 2uytgd,. + ...) —= +
v 2 H 0 2
dz 9x
2
37 p 9P
o= - ultge, + ...) ==}
3
8y2 o] Yy
where now V= ((1 + tgd . + ) iL -jL -éﬁ
uy g 0 PR ax 7 ay I3 BZ '
* \ * B AH
R =_:5—I—:; B T e D e o
H M pohL
® __\)L *~YH_\)H
Yg = My T g T W T YL

are reference latitude and longitude. Moreover we expand the
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Thus, R*, E*, Y; and Y; are the Rossby and Ekman numbers and the eddy dif-
fusion coefficients based on the horizontal scale of the motion. In the
sequel we will omit the stars.

If in these equations | is set equal to zero the so called f-plane ap-

proximation emerges:

N ) 52 22 52
(2.47) R.u,Vu - fv = - 22 4+ g 28 4 g8, 21U
9x v 2 2 2
9z ox oy
-~ 2 2 2
(2.48) R.u,Vv + fu = —g~p+ E, a4 ‘2’+E(~—a ‘2’+~——a ‘;)
¥ 3 ax® oy
)}
(2.49) 0=+
(2.50) V,a =0
2 2 2
= d
(2.51) 0 =y, ey 2420
v 2 H 2 2
0z 3% Ay

L

9 3 )
5% ' Dy 'Bz)' Formally
this system is equal to that of flow in a plane layer of fluid, rotating

where £ = 2 sin¢o is the Coriolis parameter and V = (

with constant angular velocity. It is for instance used to study the local
influence on the flow of the continental slopes that engirdle the ocean basin
{e.g. PEDLOSKY, 1974 a,b; KILLWORTH, 1973).

The approximation of the Coriolis parameter by £ is based on the hypo-

thesis that
<< 1
2uy cos ¢O < 2 sin ¢O.

Consequently, this approximation cannot be used to study processes near the
equator. In that case (¢O = 0) the leading term will be 2uy, which brings
back in the momentum equation the variability of the Coriolis parameter.
Moreover, the ratio between the nonlinear acceleration terms and the Coriolis
force is not small any more.The same holds for the ratio between viscous and
Coriolis terms. For instance if L = 64 km (and the other scale factors as in

. -2 R Va E L
(2.30)) we find p = 10 7, E—(= —=) = 2.1 and E~= 2.4. These values indicate

2
QL
that in that case the nonlinear and viscous terms cannot be neglected with

respect to the Coriolis acceleration. A review of the interesting problem of
modelling of equatorial currents has been given by MOORE & PHILANDER (1977).
-1
In many studies of motion on "intermediate" scale (u = 0(10 7)) the

system (2.42) through (2.46) is reduced to describe theAso called B-plane
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approximation. In this approximation the variability of the Coriolis para-
meter with latitude is retained while the earth curvature is neglected. This
is accomplished by neglecting all O(u)-terms except for the second term in
the Taylor expansion of the Coriolis parameter. The resulting equations are
of the same form as (2.47)-(2.51). However, in this case the Coriolis para-

meter is defined by:
(2.52) f = 2sin ¢O + By

where B = 2ucos¢o.

A lot of studies of the wind-driven ocean circulation are based on the
B-plane concept (e.g. MUNK, 1950; CARRIER and ROBINSON, 1962; PEDLOSKY} 1968;
SPILLANE and NIILER, 1975); the motion is then considered to be of interme-
diate scale. However, if we consider for ins;ance the horizontal extent of
the path of the Gulf Stream, this leads to an O(l) value of u. This means
that in this approximation 0(1) terms are neglected with respect to other
O(1) terms and conclusions drawn from such model calculations are difficult
to extend to the real oceanic case.

To study the large scale ocean circulation the complete system (2.33)~
(2.40) has to be retained, with u = 1. In fact, most parts of the wind-driv-
en ocean circulation belong to this category. Another example of world wide
oceanic flow is the thermohaline circulation, mainly caused by the differen-

tial heating at the surface.

2.8. The geostrophic approximation

In regions of the ocean with low accelerations and away from frictional
influences an approximation of the momentum equation is obtained by setting
E =E=R= 0., With ¢t = 1 (and without employing the Boussinesqg approxima-

tion) we then get:

S S -
(2.53) 2vsing = (1+ap)cosd A
R )1
(2.54) 2using = - o0 5
(2.55) 0=L4o
dr .

Together with the continuity and diffusion equations the system describes
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the motion of geostrophic hydrostatic flow.
The rate of change of the horizontal velocity components with depth can

easily be obtained in terms of the density gradient:

v _ 1 a3 3p,
or (1+ap).sin2¢ "1+ap Or 9A D

(2.56) ) .

Now, the density field is called barotropic if the equidensity surfaces
coincide with the isobaric surfaces. In non dimensional terms, when p denotes
the reduced pressure, this means

p=plap~1x).

If the variable s is defined by s = ap-r, we obtain

dp _ dp 3p - ‘dp
(2.57) 3y Eg-.(a ™ 1) = (1 + op) Eg
%9 _ , de dp
(2.58) A% = % 3 5y

Substitution of (2.57) and (2.58) in (2.56) yields:

(2.59) %% =0

and analogously %%—= 0. Consequently, if the density field is barotropic,
the horizontal velocity components of the geostrophic flow are uniform with
depth. A trivial but frequently used example of a barotropic density field
is obtained if the model ocean is assumed to be homogeneous.

In the case the equidensity and the isobaric surfaces intersect the
density field is called baroclinic. Because o <« 1 it follows from (2.56)
that the rate of change with depth of the horizontal velocity components
is mainly caused by the horizontal density differences.

For the geostrophic approximation to hold the inertial and frictional
forces have to be negligible. In almost all cases in the interior of the
ocean this can be assumed. Near the bottom and lateral boundaries and at
the surface the viscous and acceleration effects will become more important
and have to be retained in the equations.

From (2.53) and (2.54) it is immediately clear that in general it will
be impossible to apply the boundéry conditions to solutions of the geostroph-

ic equations. For that boundary layers have to be analysed. Well known
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examples are formed by the so called Ekman layers at the surface and the
bottom of the oceans.

In the open ocean there can also occur narrow regions with important
frictional or inertial effects. An example has already been mentioned earlier
in this chapter: near the equator the Coriolis parameter approaches zero and
the acceleration and lateral friction terms cannot be neglected to describe
the interior flow. In a three dimensional study GILL (1971) has shown the ex-
istence of an equatorial boundary layer with an important undercurrent. Obser-
vations of a subsurface current with high velocities, the socalled equatorial
undercurrent, are an empirical confirmation of this theoretical fact (e.qg.
BUBNOV and. YEGORIKHIN, 1978).

Other examples of free boundary layers in the ocean will be analysed

in the following chapters.

2.9. The thermohaline circulation

The part of the ocean circulation that is driven by the differences in
heating between equatorial and polar regions is called the thermohaline cir-
culation. The influence of particularly the horizontal density gradient on
the structure of the flow has already been pointed out in the preceeding
section. So far, solutions of the full nonlinear system (2.33) through (2.36)
with (2.40) at which both the wind stress and for instance the density dis-~
tribution at the surface can be imposed haven't been found. Several approx-
imations of the equations have been derived, based on special assumptions
concerning the density field. A few will be mentioned here.

If in (2.40) the diffusion is neglected (YV=YH=O) a purely advective
model results. WELANDER (1971) used this assumption, together with the geo-
strophic hydrostatic approximation of the momentum equation. As a consequence
he could only impose the surface density distribution and no wind stress.

JOHNSON (1971) assumes the vertical diffusion of heat to dominate the
horizontal diffusion, YH = 0. The momentum equation is linearised (R=0)
and also lateral fr%ction is neglected (E=0). The vertical diffusion is
confined to an O(YV§5 thermocline layer, with an Ekman sub-boundary layer
at the surface. However, of the resulting nonlinear diffusion equation for
the thermocline, only similarity solutions are known. If these are used, it
is again impossible to impose both the wind and temperature boundary condi-
tions at the surface.

A linearisation of (2.40) has been proposed by BARCILON and PEDLOSKY
{1967 a,b) and applied to the oceanic case by PEDLOSKY (1969). They assume
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the density to vary linearly with depth with a perturbation around this
linear state:

Ap ApH .
p(A,0,r) = 5 .r o+ P (Asd,1),

O.a po.a

where Apv and ApH are characteristic values of the vertical and horizontal

*
density differences in the ocean respectively. If p is defined by

the hydrostatic equation (2.35) takes its original form:

* ApH .
=--—-———p‘
a
o

9

4ol

[

r

The diffusion equation becomes:

*
>k v v 3P H.. 1 ) ap
R{u,vo + —.w} = — 4 —(cosdp ——) +
bo, N 42 cosd 39 3¢
2 %
S '
cos ¢ OA

Ap
Under the assumption KEZ > 1, which indicates a strongly stratified ocean,

. . H, . . .
this leads to the linearised equation of diffusion:

Ap Y 2 * v * 2 %
(2.60) R ADV N e {Cols¢ -%)-(cos gg—) e 0 2y
H QD" dr Qa cos ¢ A
Ap
For the oceanic case the main assumption, Bog > 1, is not fulfilled. In

fact Apv = O(AOH)v .
An important advantage of the linearisation is that now both the bound-

ary condition for the density and the surface wind stress can be applied.

2.10. Vertical integration of the equations

In many studies the main interest is to determine the large scale char-
acteristics of the horizontal transport in the ocean. For that purpose an
important expedient can be formed by the vertical integration (from bottom
to surface) of the equations of motion (2.33) through (2.36).

Using the surface and bottom boundary conditions the following set of

equations results:
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0
(2.61) R. (0, ~ uvtg¢)dr -~ 2Vsin¢ = - L +
! cosd A
N e 1 32U
+ VE (T -7 ) + E{ 2 (coss ELIg — +
v cos¢ 3¢ 3¢ cosz¢ BAZ
+ cos2¢ U - 2sing EX}
2 2 90X
0 cos ¢ cos ¢
- 2 . opP
(2.62) R. J (u,V + u“tgp)dr + 2Using = - 39 "
_1 2
VE (r¢ —T¢) + E{coz¢ i% coso 5% 12 §~%~+
cos ¢ A
cos2d 2sing 3U
2 Y LS
cos ¢ cos ¢
oU 9
(2.63) 57—+ 5$~(Vcos¢) = 0,
The diffusion equation becomes:
0
o~ 9p Bp 1 a2p
(2.64) u,Vpdr = v (5= (0) = == (~1))+ v {c05¢ a¢(cos¢ 5&0 + = 5},
-1 cos ¢ I

Here

0
(U,V,P) = f (w,v,p)dr.
-1

At the coasts the boundary conditions read:
(2.65) U=V= 0.
In the momentum equation bottom stress terms enter, defined by:

du - A b
VE_ (ar,ar) (x=-1) = (5 ,1).

These terms are not given by the boundary conditions. To calculate the bot-
tom friction an analysis of the full three dimensional problem is necessary
and the advantage of the vertical integration is lost.

In many two dimensional studies (e.g. MUNK, 1950; MUNK and CARRIER,
1950) the additional assumption is made that the bottom stress can be neglect-
ed with respect to the applied wind stress. This assumption seems to be con-
firmed by observations and analysis of near bottom currents (e.g. CALLAHAN,
1971 and 1972).
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If the model ocean is barotropic such an assumption can not be justi-
fied in all cases. In particular at latitudes where the flow can encircle
the globe without meeting meridional barriers the bottom and wind stresses
appear to be of the same order of magnitude (see chapter 4).

A curious result of the vertical integration is a decoupling of the
diffusion equation (2.64) from the other equations in the system. No infor-
mation concerning the vertical density and velocity distribution is needed
to analyse (2.61)~(2.63). This appears to be a consequence of the use of the
Boussinesq approximation. For instance, if in (2.61) the integrated pressure

term is replaced by the original term there results:

1+0p 3A

0
J L §2~dr.
1

In this way the decoupling is undone: the vertical density distribution must
be known and for that the knowledge of the three dimensional flow field is
necessary. In the remainder of this study we will retain the simplification
brought in by the Boussinesq approximation.

A more serious problem is constituted by the nonlinear terms in the mo-
mentum equation. In their study on the wind-driven ocean circulation CARRIER

and ROBINSON (1962) get round this difficulty by replacing these terms by

(2.66) R. (U,VU - UVtgd)
and
(2.67) R. (U, W + U°tgs).

This means that they assume the flow field to be uniform with depth. The
approximation becomes less crude if the vertical integration is carried out
accross a relatively thin top layer of the ocean, whereas the deeper part
is assumed to be in rest (or, alternatively, if there is no momentum trans-—
port into the deeper l;yer).

The main qualitative result of Carrier and Robinsons study is the need
for the western boundary current (e.g. the Gulf Stream) to sepaiate from the
coast. This is an observed phenomenon, which couldn't so far be predicted by
the linear transport theories.

Other nonlinear analytical studies have been presented based on the

same assumptions ((2.66)-(2.67)), e.g. FOFONOFF (1954), CHARNEY (1955),
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MORGAN (1956), SPLILLANE & NIILER (1975). KUO (1975) has shown that if fric-
tion is introduced the free inertial jet at middle latitude no longer exists.
A serious difficulty in modelling the ocean circulation is the fact
that the Rossby and Ekman numbers are of equal order of magnitude. Moreover,
in regions with high accelerations viscous effects can become important. As
a consequence in such boundary layers both the frictional and the nonlinear

terms have to be retained. Analytical solutions of this combined problem

have not yet been obtained.

2.11. The linear transport model

If we'assumé that the nonlinear terms in (2.61) and (2.62) can be»ne~
glected, the linear transport model results. Equation (2.63) enables us to

define a transport stream function Y by

(2.68) - %%‘= U; g%'= Vcos ¢.

Elimination of P from (2.61) and (2.62) then leads to the differential equa~

tion for the transport stream function:

4 3 2 4

E{é—%}'—- 2tg9 L‘g—— tg2s _a_%m £g¢ (2 +—) %+__2§_._35_@_2_+
¢ Bl ¢ cos ¢ cos"¢ BATIG

1 %y 4 3%y 2sine 3%y 5y
tgm b e T e T ) -2 = VR L TG 00E),
cos ¢ A cos ¢ 9A cos™ ¢ 0N
where
T(A,¢;E) = - —cgl;a[%{(rx-ré)cosw - '2% (T¢~Ti)]

is the vertical component of the curl of the difference between wind stress

and bottom stress. With

19 2

cosh 3¢

1

cosz¢ Ry

;o;

(cos¢ g%)+

N

equation (2.68) can be written in the form

2 y _
(2.69) E(A%Y + 209} - 2 33 = -VE; T.

The boundary conditions are
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3 3
LA . 0 along the coasts.

(2.70) 56 = 9\

An analogous derivation can be carried out in case that the B-plane

approximation is used. With the transport stream function ¢ defined by

the following vorticity equation results:

2 oY N
(2.71) EATY 8 N \/EV T,
where 32 32 sy s ;
3 . _ 9,V _9,x X
A= 3 + 5 T(x,y:E) E)X(T Tb) 3y(‘r Ib)

ox %

(and B = 2u cos¢o). Now we have the boundary. conditions:

9
W _ 0 at the coasts.
9x oy

In his well known paper on the wind-driven ocean circulation MUNK (1950)
solved the transport equation (2.71) for a squared ocean basin by separation
of variables.

Both equation (2.69) and (2.71) is of the structure

(2.72) b= ELp+ 2L = n(e,sim)

where L is a fourth order elliptic differential operator in the two space
variables t and s. The horizontal Ekman number E is a small parameter mul-
tiplying the term with the highest order derivatives. This makes the pro-
blems of singular perturbation type. Therefore, to construct approximations
of the solutions of the equations that satisfy the boundary conditions the
method of matched asymptotic expansions can be applied (see for instance
ECKHAUS, 1979 and the next chapter).

The boundary conditions that the solutions of the vorticity equations
have to satisfy are of Neumann type. As a conseguence the transport stream
function can be determined up to an arbitrary additive constant. The result-
ing stream line pattern doesn't depend on the choice of this constant.

Consider a part of an ocean basin as given in figure 2.1. The continents

A and B are disconnected. The boundary conditions (2.70) at the boundary of
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B(= oB) can be replaced by:
P =k, — = on 9B,

where é% is the derivative normal to the boundary and k an arbitrary constant.

T TTTTTTTTT T T T T 77777777

A

Figure 2.1. A part of a model ocean basin in which the
continents A and B are disconnected.

Along 9A the boundary conditions then read:

b= k+t

oY
AB’ on 0

9B
where tAB(E f U = wA-—wB) is the total transport through the strait between
A and B. Thén%alue of tAB has to emerge from the analysis. An example of such
an analysis can be found in the model of the Antarctic Circumpolar Current

{chapter 5).
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CHAPTER 3

THE METHOD OF ANALYSIS

3.1. Introduction

The main problems dealt with in this study are of a type already des-
cribed in §2.11: determine on a domain U (an asymptotic approximation of)

the solution of the boundary value problem (3.1),(3.2):

= F .?lp«.— =
(3.1) LV SE.Lp + e h(x, %)

(3.2) o= f(xl,xz), Free 0 for (Xl'x2) e aD.

30 denotes the boundary of U and é%—is the normal derivative to that bound-
ary. The fourth order operator L is assumed to be elliptic and E is a small
positive parameter. Thus the above formulated boundary value problem is of
singular perturbation type.

The emphasis will be on the construction of approximations for differ—
ent types of domains. Methods to prove the asymptotic validity of the (formal)
approximations are applicable in most cases on subdomains of D only.

A powerful tool in the construction of approximations of (3.1) and (3.2)
is the method of matched asymptotic expansions. We will only briefly outline

the method here. In ECKHAUS (1979) an extensive treatment of this method has

been given and for further reading we refer to that publication.
3.2, befinitions

The main concepts of asymptotic analysis used in this study will be
stated here.

A real function §(E) is called an order function if there exists an
E_. > 0 such that on (O,EO] § is p?sitive and continuous whereas é%g §(E)

0
exists.
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Landau's order symbols are introduced to be able to express the order

of magnitude of a function in some domain in terms of the small parameter E:

w(Xer2iE) = 0(8) on U if there exist constants E1 and k such that

Iyl < k.8 for 0 < E < E (x,r%)) € D.

1'

v = 0(8) on D if lim l%l = 0.
EYO

Y o= Os(d) on U if ¢ = 0(8) and ¥ # 0(8)
(Cbviously the order of magnitude depends on the choice of the norm I.l).

Suppose y = Os(l) on some subdomain Ds cP. A function wav is called an

asymptotic approximation of ¥ on Ds if

(3.3) U was = 0(1) on Ds.

We will also need the concept of local asymptotic approximation. In
most of the applications that we study a local analysis near a special point
or curve must be carried out to investigate the behaviour of the considered
function near such a lower dimensional subset S of the domain 0.

Let (Xl'x2) > (51,52) be a transformation of coordinates such that 8 is
represented by a part of {sy =0} if § is a curve and by {51=s2=0} if it de~
notes a point. Coordinates E are called local (stretched) coordinates if
oy . S1 _ 82 _ _ .
£=(8,/E,)) with £ = 5T @E £, = 5 5 , = 0(1) and 8, = OS(1) if

S is a curve and 61 and 62 are both 0(1) if S represents a point. Two local

, where §
variables 51 and 22 are called equidimensional if in these variables the cor-
responding components both have di = 0(1) or Os(l).
If the transformation to equidimensional local variables is denoted by
%> *
T, the function ¥ transforms to T.Y = ¢ (§;E). Suppose now | = Os(l) on
£ % *
some domain U . & function was is called a local asymptotic approximation of
%
Y on D if
* x *
.4 - = .
(3.4) Y was o(1y onD
We now return to the (linear) differential equation (3.1). Suppose

h = Os(l)e @(xl,x ;E) will be called a formal asymptotic¢ approximation of a

2
solution w(xl,xz;E) of (3.1) on a subdomain Ds(:D if



29

d - =
(3.5) L% - h o(1) for (Xl'x2) € Ds'
(m) : . .
Let @ be a regular asymptotic series (i.e.
(m) T
@ (x) /%, B) = nzo 8 (B) (x,,x,)

: - _ B (m) |
with 6n+1 = 0(6n) and ¢n = (1) for (Xi’x2) € US, 0<n<mli). ® is

called a formal regular asymptotic expansion of Y in Ds if for each g =

Lreee,m

i
<
=

(q)
(3.6) L2 ~ h

where 6 = 0(1), 6 =0(3 ) (@Q=1,...,m).
0 ;S o q

3.3. The method of construction

Only a short description of the method of constructing formal asymptot-
ic expansions of the solution of (3.1) and (3.2) will be given. (3.1) suggests

a regular asymptotic expansion of the form

(m}) ¥ on
(3.7) o = ) E¢
n
n=0
®(m) is a formal asymptotic expansion if:
3¢
0
(3.8) Fyaie h
1
3¢n
(3.9) Eyiie L¢n—1 for 1 £n<m

1

(3.8) and (3.9) are first order differential equations so in general it will

(m)

be impossible to apply the boundary conditions for ¢y ((3.2)) on ¢ . One of

these boundary conditions can be imposed, but only along a part Pr of the
boundary 30. The choice of the boundary condition to be imposed on ®(m) is
not an arbitrary one. In the type of problems that we will consider here it
appears that 1f a wrong choice of boundary conditions has been made it is
impossible to satisfy the remaining boundary conditions by boundary layers.

If singularities have been introduced in ®(m) these too must be removed
by boundary layers. The analysis of such a layer at S (see §3.2) proceeds in
terms of local coordinates E. Suppose for instance that S is a point (51=52=
0). A family of (equidimensional) local variables is then introduced by
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£ = (Ev,Eu), where

S S
(3.10) £ o=—; [ =-2

— > .
v S " " (v,u > 0)

=

_Under the transformation (xi,xz)'+ (Ev,éu) the operator LE transforms

3

to LE which (after Taylor expansion of the non constant coefficients) is of
the form

E_ v B
(3.11) f= 7 sfm k.

E =0 n E'n

-

The principal part (LE)é is called the degeneration of LE in the £-variable.

- 52 -~ Sl SZ
Let gl = (e, Er—o and £, = (—;EW —Eaﬁ both be elements of (3.10). The
B E - = e .
corresponding degenerations of LE then read: (LE)g1 and (LE)gz.(LE)g2 is said
to be contained in (LE)gl if ‘

gl 22 - g2
(3.12) () 152 = @p)e2.

A degeneration (LE)E is significant within the family (3.10) if it is

not contained in any other degeneration.

In a similar way the concept of significant approximations of a func~

tion w(xl,x ;E) can be introduced. Suppose

2

R mo g' ~
Tgw = ¢ (£;E) = nzo 8 0- + 0(5m+1

)

with order functions En such that gn+1 = G(En)' The local asymptotic ex-

pansion of { up to order m in the coordinates & is then denoted by

(m) T o~ 2
(3.13) E;C() = ] 8 4-.
£ n=0
Eim) is said to be contained in Eiz)(w) if
€1 €2
(3.14) ™ @® ) = ™ ).
€1 &o €1

An expansion Eim)(w) is a significant local approximation of y within
the family (3.10) o% equidimensional local coordinates and within the expan-
sions of order m if it is not contained in any other local asymptotic ex-

pansion.
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For the problems treated in this study we assume the so-called
"property of inclusion® (ECKHAUS, 1973) to hold:

If a degeneration (L )52 is contained in a significant degeneratlon
(L )51 then there are m and n such that E} (¢) is contained in E_ (w .

Obviously it is important to determln% those 1 and v (in (3. 10)) for
which the related degenerations of LE are significant. A significant approx-
imation must then be represented in the (u,v)=plane by one of the signifi-
cant degenerations.

local asymptotic approximations can then be constructed by substitu-
tion of formal local asymptotic expansions in the differential equation

*

(3.15) Ley” = nNEE

vk

which results if (3.1) is transformed to local coordinates. This also leads
to a recursive system of differential equations for the subsequent terms of
the expansion.

If S is a part of the boundary 30 boundary conditions along S can be ap-
plied. However, in most cases this is not sufficient to determine the local
approximation uniquely. If S is contained in the interior of the domain, ad-
ditional relations to obtain unique local approximations must also be derived.

Such additional relations are the so~called matching relations which
can be obtained in various ways. A profound discussion on the hypotheses
underlying different matching principles can be found in ECKHAUS (1979)
where the other concepts introduced in this section are extensively treated
as well.

In many cases treated in the sequel we can apply the property of in-
clusion to reach the desired relations. Different significant approximations
are represented in the (u,v)-plane by different pairs (u,v). Now it appears
that for (ui,vi) on the straight line connecting two "significant pairs” the
degenerations (LE)gi are contained in both significant degenerations. By in-

clusion we can then obtain the matching relations.

3.4. Free boundary layers

The boundaries of the ocean are very irregular. Different types of ir-
regularities lead to different mathematical problems. An additional complica-
tion comes from the fact that the domain U consists of a part of a spherical

surface. In figure 3.1 a sketch of such a domain is given.
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fig. 3.1. A part of the domain 7.

The characteristics of the "unperturbed" part (gi—ﬁ of the operator LE
are the parallelcircles Xy = constant. A special role iIs played by those
characteristics that are tangent to or partly coincide with the boundary.

The solution of the reduced equation (3.8) that satisfies along an eastern

boundary (e.b.) the condition ¢O(xe.b.) = Y(xz) reads:
Xy
(3.16) ¢O(x1,x2) = J h(t,xz)dt + Y(Xz)'
xi(e.b.)

The expression (3.16) strongly depends on the properties of such an eastern
boundary. For a smooth boundary the division in eastern and western bound-
aries (w.b.) takes place in points where a characteristic is tangent to

the coast. Let x be a point of the boundary 3D and n = (nl,nz) the normal

to the boundary that points into the basin 0. Then x is an element of a west-

ern boundary if the zonal component n, of n is positive. % is an element of

1
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an eastern boundary if n, < 0. Lateral boundary layers along the eastern

and western coasts are nicessary to satisfy the remaining boundary condi-
tions. The analysis of such boundary layers can be found in §4.3. The terms
of the approximations in these regions are solutions of ordinary differen-
tial equations. At the points where the tangents to 30 are characteristics
the lateral boundary layers turn out to become singular. Obviously different
local approximations hold near these points. The asymptotic analysis in the
neighbourhood of such points of contact has already been outlined in §3.3.
We will now examine more closely the influence of the boundary configu-
ration on the approximation in the interior of the domain U. In figure 3.2

a part of a domain has been sketched (in Mercator projection) that contains

an essential "irregularity"” that can appear.

=x, (Q)

fig. 3.2.

In the points P, Q and R the characteristics are tangent to the boundary.
The resulting division in eastern and western boundaries has been given in
the figure. The characteristic that passes through R divides the basin in
two subregions I and II. If we suppose.that the boundary conditions are
homogeneous (3.16) gives for the first approximation in region I:
X1
(3.17) o x, %) = h
. o (¥ rxy) = (t,xz)dt,
xl(e,b.l)
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The approximation in region II satisfying the boundary condition along

e.b.2 reads:

%1
(3.18) $oT ey vxy) = f h(t,x,)at.
Xl(e.b.2)

In general ¢é # ¢3I along RT. Accordingly in a neighbourhood of the line
RT a regular expansion of the form (3.7) does not exist. Therefore such a
neighbourhood must be investigated separately. Examples of such investiga-
tions will be presented in the sequel. It appears that a so called free
boundary layer develops westward into the interior along RT. This layer
brings about the transition between the regular approximations in I (3.17)
and II (3.18). The partial differential equations for the terms of the ap-
proximation in this region are of the parabolic type.

A boundary configuration of the type given in figure 3.3 also leads
to a free boundary layer in the interior of the domain. A part of the coast
coincides with a characteristic. (In fig. 3.3 RQ is a so called eastern char-
acteristic boundary). Consequently the regular approximation in the interior
of the domain is discontinuous along RT. Also in this case a free boundary

layer emerges.

X =x2(Q)

fig. 3.3.

The essential difference with the preceding case is that along RQ a lateral
boundary layer exists that is of a different type than the boundary layers

along the eastern and western boundaries in fig. 3.2. The equations for the
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terms of the local approximation .in this new layer are parabolic partial
differential equations. Therefore this type of lateral boundary layers is
called parabolic (the terminology has been proposed by ECKHAUS, 1968). The
origin of the time like variable is in xl(Q). The parabolic boundary layver
thus originates in Q, develops westward and separates from the coast in R
to establish the free boundary layer.

If a part of a western boundary of the ocean changes into a western
characteristic boundary the regular approximation in ihe interior of the
domain remains continuous. A lateral parabolic boundary layer is only nec-
essary to bring the flow to rest along such a characteristic boundary.

Discontinuities in the regular approximation (3.16) can also come from
discontinuous boundary conditions, while non-differentiabilities in the
boundary conditions manifest themselves in the higher order terms of the
regular expansion. Accordingly, also this type of non-uniformities of the
regular approximation can lead to the formation of free boundary layers.

A very special type of problem arises in a part of the domain which
has no meridional boundaries (those who can see the dark side of the globe
(a) <x

in fig. 3.1 can imagine that this is the case for x <x2(F)). If for

2 2
such a region a regular expansion (3.7) exists then the boundary condition
must be replaced by a periodicity condition. Solving for ¢O shows that this

can only be satisfied if
2m

(3.19) J h(t,xz)dt =0 (sz(a) <x
0

2<x2(F))

(where h is the inhomogeneous term in the reduced equation (3.8)). In gener-
al this condition is not fulfilled. Therefore, for X, < xz(F) a different
type of asymptotic approximation must be constructed. The transition with

the regular expansion for x, > xz(F) is then again brought about through a

free boundary layer (along i2-=x2(F)),

In chapter 5 we treat a case in which (3.19) holds and a problem with
hzzh(xz)sThere result two entirely different models of the so-called Antarc-
tic Circumpolar Current: under the assumption of a homogeneous ocean the

condition (3.19) appears to be satisfied, for a baroclinic ocean it is not.

3.4. Asymptotic validity

The problems we deal with in this study fall within a class for which

in several cases proof of the asymptotic validity of the approximations can
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be given by applying results of BESJES (1973). In ECKHAUS, (1977,1979)
the main results have been summarised and a short description of Besjes
method can be found there too.

For second order linear elliptic singular perturbation problems methods
to obtain asymptotic estimates have, among others, been derived by ECKHAUS
and DE JAGER (1966). Their method is based on the maximum principle which
they use to obtain estimates of the solutions of such second order singular-
ly perturbed elliptic boundary value problems. However, such a principle is
not available for higher order elliptic problems. Therefore Besjes method
completely differs from that of Eckhaus and De Jager.

His main tools are the so called a priori or Schauder's estimates (see
for instance AGMON, DOUGLIS & NIRENBERG, 1959). For our purpose the central

theorem reads:

THEOREM 3.1. Let U be a bounded domain (in the two dimensional Euclidean

space) with a smooth boundary 30D and let LE be given by LE=E;L m4~L , where

2 0

L2m is a linear uniformly strongly elliptic partial differential operator

of order 2m, independent of E, of which all the coefficients are elements

L-2m+a 9 , D
of C (L 2 2m, 0 < a < 1) and LO = 5;;-+ g(xl,xz) with [g]o > ¢ > 0.
Consider the Dirichlet problem
E.Lzmw + Low = h in D
J
L. 0, 3 =20,1,...,m~1 on?dl
an

3 . . 2m+
where 1S the derivative normal to 3D. Assume } € C YYDy, Then for any

3= 0,0,....4:

£-9-2m+2 j+l
D 2m-2 D 2m-2 2.k
< +
[yl <c® Inlp oire + CoB ({) h”ax)
(where Cl,C2 are constants).
In the theorem the following notations have been used:
D = .
[w]j = max sup lw(s)(x)] (7 = 0,1,...)
|s|=3 xeD
. . 2 (s) =
where s is a multi index: s = (s sz) e W, |s| = SRR U] (x) denotes

derivatives of order s. Y € Ck+a(D) (0 < a < 1) means: U € Ck(@) (that is:
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Y is continuously differentiable up to order k in 5) and

[w]k+u = max

(s) = (s) =~
sup |y (i);wa (v) 1 < o

[sl=k x,yeD [x-y|

(where |x~y| is the FEuclidean distance between x and V).

k
Ihlﬁ = ¥ [h]?
and 3=t
D _
Inf = Inl+

(these are so called Holder
Now in the operator LE
not of the desired form. If

for $ has the right form to

[n1?

k4o,
norms) .
in (3.1) we have m = 2 and L_ = "iw, which is

1 0 oK

~ cx 1
we define y = Y.e (¢ € R, #0) the problem

apply the theorem. After a very complex analys-—

is Besjes has succeeded to prove the asymptotic validity of the approxima-

tions on subregions of D that are bounded to the north and south by charac-

teristics of L. . In 84.3 a sketch of such an analysis is given. It leads to

0

a proof of the asymptotic validity of the formal approximations that have

been constructed of the solution of an elementary ocean circulation model.
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CHAPTER 4

SOME ELEMENTARY MODELS IN THE THEORY OF
THE LARGE-SCALE OCEAN CIRCULATION

In this section we treat some elementary ocean circulation models that
form part of more extensive models that shall be analysed in the later chap-
ters. In §4.1 we investigate the (three-dimensional) flow of homogeneoﬁs wa-
ter in a zonal channel that encircles the globe. The geometry of the model
ocean basin in §4.2 is such that there do exist meridional boundaries. In
both cases the driving wind stress at the sufface is purely zonal. As a re-
sult of the essentially different geometries we find in the interior of the
zonal channel, (that is below the surface (Ekman) boundary layer) 0(1) velo-
cities and consequently an 0(1) bottom stress. In the meridionally closed
basins the interior velocities and the bottom stress turn out to be O(JE)-
Both models form part of a homogeneous model of the Antarctic Circumpolar Cur-
rent that shall be investigated in chapter 5. In that model the ocean basin
can be divided in subregions where different approximations of the solution
of the equations of motion with boundary conditions hold. For two of those
subregions the results of §4.1 and §4.2 can then be applied.

In §4.3 we shall construct approximations of the solution of the linear
transport model (§2.11) for a part of the ocean domain that is meridionally
closed by smooth boundaries. Moreover a sketch of the proof of the asymptot-
ic validity of the approximations is added. In each of the following chapters

the results of this elementary model will be used in one way or another.

4.1. A three-dimensional model of the flow in a zonally unobstructed

homogeneous ocean

Let the boundaries of the ocean basin coincide with the latitude circles
¢ = ¢O and ¢ = ¢1 (see figure 4.1). At the surface we impose a zonal wind

stress:

—-,0u dv, _ A . ~
(4-1) \/Ev(szl'é';' = (T(¢),0) inr = 0,
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while the other boundary conditions are given in (2.17) and (2.19).

Fig. 4.1. The geometry of the zonally
unobstructed ocean basin.

The linear equations of motion for this model problem can be obtained
from (2.33) through (2.36) by setting R = 0, u = 1 and p = 0.

From the hydrostatic approximation we can immediately conclude that in
this homogeneous case the reduced pressure field is uniform with depth.

In view of the geometry and the given zonal wind stress we look for a
solution of the problem which is independent of the longitude A. The result-

ing system of governing equations reads (with EV = E):

2

) 9y 1 3 du cos2¢
(4.2) -2v sin¢ = E =35 + E{——r =—(cos¢ =) + ——=. u}
3r2 cosd 39 L) cos2¢
2
. dp 3 v 1 3 oV cos2
(4.3) 2usin¢ = - == 4 E —— + E{ = (cosp =) + ——it v}
d¢ Br2 cosd 9¢ ¢ cos24
1 9 ow
(4.4) E(—)—;—(gﬁ(vcosnp) + 5}-— 0.

In order to construct an asymptotic approximation of the solution of

this problem we introduce the following formal expansions:
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u(¢,r;E) = u(l)((b',r) + E1/2u(2)(¢,r) o

v(¢,r;E) = Ev(l)(¢,r) + E3/2v(2)(¢,r) + ...
e w(d,r;E) = El/zw(l)(¢,r) + ...

p(¢;E) = p(l)(¢) + ...

The leading terms of these expansions must satisfy the equations:

(1)

(1) . 1 ] ou cos2¢ (1)

(4.6) -2V sing = —(cos¢ — ) + —=%u
cosd 3P 9 cosz¢
(1)

(4.7) 2u(1)sin¢ = - g%

(1)

W

(4.8) 5 = 0.
Consequently u(l) = u(1)(¢); v(l) = v(l)(¢); w(l) = w(l)(¢). In order to

determine these functions we analyse so-called Ekman boundary layers at the

surface and the bottom.

(=) The surface Ekman layer

Let the local variable [ be defined by

i
it
&l

With the expansions:

aenm =a P, + 5P 40 ¢ ...

vo,mm = v 6,0 + BYE5 P 6,0 .
- wnm = /5% 6,0 v L

p(¢;E) = p(¢;E)

the equations for the leading terms read:

. 32
sing = )
9T

B (1)
(4.10) —2v(1)

(1,2
+

(1)

Qo
<t

(1)

|

(4.11) 2u' " ging = -

8]

d
aé

Q
Y



42

(1) =(1)

(4.12) —a%(\"z cos$) + cosd g—% = 0.

The solutions have to match with the interior and satisfy the surface bound-

ary conditions:

dut A A a2 0in =
(4.13) Y = T(9); 5% = 0 and W = 0 in ¢ 0.
For 5(1) the following equation can be obtained:
4-(1)
(4.14) —a——z + asin®e ¥ = 0
3T

which is easy to solve. As a result we find (with a = V|singl):

(4.15) 5(1)(¢'€) = ?%-eac.(sinaz-cosac)
(4.16) M 6,0) = L ™ (sinar+cosan) +u't) ()
. - (1) R a
(4.17) w (¢,2) = cosh 36 [cosd EEEHEKI e “cos atg) .

From the matching of the vertical velocity components we get in the

interior (that is below the Ekman layer):

(1, __1 4 T o
(4.18) W (9) = oo g (cose. D (£ =2sing).

This is the so called "Ekman suction" that comes out of the surface bound-

ary layer and penetrates, unchanged, the bottom Ekman layer.

(=) The bottom Ekman layer

With & = %;L as the stretched variable and the expansions
B
So,m =2 0,0 + eV 4,0 + ...
So,0m = 5 4,0 + Y2 4,0 + L.
(4.19)
SeiE = 52 W 0 4 ...
B(6,EE) = p(¢;E)

the differential equations for the first terms are identical to (4.7),(4.8)

and (4.9). Now, the bottom boundary conditions have to be imposed:
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A A A

(4.20) in £ = 0.

The solutions 3(1), 9(1)

that match with the interior can then easily be
computed. One finds:

A(L)
u

(4.21) ($,6) = u' ) (4) (1 - e Fcos ak)

(4.22) N 6ey = 0™ (4).e Fsin at

and, from the continuity equation:
(4.23) Q(l)(¢,g) S S {Egig-.u(l)(¢).[ena£(sin af + cos af) - 11}.

cos¢ 99

Matching of the vertical velocities leads to the condition

d ., (1) cos¢ d cos¢

4. Pl L ————T ) = il S0

(4-24) d¢(u ©) 2/T§§H$T) d¢(T 2sing
and thus

u(l)(¢) = i)

+k Vising |
VIsing cos¢

The constant k will be determined by the demand that the total north-south
transport, integrated along a parallel of latitude is zero. Because the flow

field is uniform in the A-direction this reduces to:

it
(@)

0
(4.25) f vdr
1

Substituting the above given expansions we get:

TR 10 + 0(/E) =0
2V sing| 2sing
so k = 0 and
(4.26) W Wgy = L&
/1sind |

(1

From (4.6) and (4.26) v ) can now be calculated.

In an analogous fashion terms of higher order (of E) can be determined:
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(2) _ 1 1 4a da.T cos2¢ T
(4.27) wte) = - {COS¢ dd)(coscb d¢(a” + 5 (a)}
cos ¢
(4.28) P60 =P
(4.29) v 6,0 =0
(4.30) 32 4,0 = u® () (1 - e cos at)
(4.31) 5 ey = 0 (4).e 2 sin at.

At this stage the bottom stress can be determined:

(4.32) T§(¢;E) = é%{ﬁ(l) +ELD w60 =
~ = - a.r _ cos2¢  T(9)
= 1{¢) + /E { o5 ag oot d¢)(a)) ;;;5;.-;;—} FR
¢ hmy = 14, 4,1, _cos2 1(9)
(4.33) 1, ($7E) = T(9) + VE (- s d¢(cos¢ d¢(a)) Cosz¢ C— Yo+ ...

It appears that in this homogeneous model there are 0(1l) wvelocities in the
interior and a resulting 0(l) stress at the bottom.

The approximations constructed so far do not satisfy the boundary con-
ditions along ¢ = ¢O and ¢ = ¢1. For that lateral boundary layers have to be
intioduced. The analysis near ¢O is identical to that along ¢1. There is an
O(E”) boundary layer that brings the zonal velocity (u) to rest, with an
O(E%) sub~-boundary layer where the boundary conditions for v and w can be
applied. The most simple way to find this boundary layer structure is to

derive one differential equation for the north-south velocity v from (4.2)

and (4.3). The local coordinates n% = —Egi-and n, = ~Eg£»(i = 0,1) then cor-

respond to significant degenerations of the diffzrential equation for v
(compare with chapter 3).
It is straightforward to determine the approximations in these boundary
layers and we will not present it here. (The interested reader is refered
to FANDRY, 1971). A result for the O(E%)—layer along ¢O which will be used
in one of the following chapters reads:
T(¢O)

. % Y
(4.34) u(n, ;B) = e {{ = expl~(lsind | n, J} + O(E")
K MTsing | 0 %

in the interior of the ocean. Again Ekman layers at the top and the bottom
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exist. These are of the same structure as those analysed earlier in this
section.

One of the most striking features of the homogeneous model is the fact
that the approximation in the region outside the lateral boundary layers has
uniquely been determined independently of the flow near the coasts. Another
important result is the 0(1) velocity and velocity gradient in the bottom
Ekman layer, which doesn't agree with observation (e.g. CALLAHAN, 1971,1972).

Unfortunately, a three dimensional baroclinic model of the flow in a
zonally unobstructed basin is very difficult to analyse. The main reason is
the nonlinearity of the diffusion equation, of which no suitable solution is
known (see also the section on the thermohaline circulation). Therefore, to
get an impression of the large scale horizontal transport in the baroclinic
ocean we will use throughout this study the linear transport model, as for-

A
mulated in the former section, with the bottom stress neglected (Tb = Tb = 0).

4.2. A three dimensional model of the flow in a homogeneous ocean

with meridional coasts

We will now investigate the flow in an ocean basin where the coasts
coincide with parallel and latitude circles. The main interest is the order
of magnitude of the flowin the interior of the ocean and the resulting stress
near the bottom. Again a purely zonal wind stress distribution is given at
the surface. The analysis of this model has been performed by PEDLOSKY (1968}
within the f-plane approximation. No essential differences appear when the
analysis is carried out on the sphere. Therefore the results will merely be

stated.
(~) The surface Ekman layer.

The analysis of the Ekman layers proceeds in almost the same way as in
the preceding section. The only difference is that the solutions have to
match with an interior solution which is not purely zonal. This is caused
by the fact that now boundary conditions along the meridional coasts must
be satisfied whereas in the zonal model of §4.1 the interior velocity had
to be periodic (in A). Consequently the Ekman layers depend on A too. Using

the same notation as in §4.1 we now have:

(4.35) M ey = o= ¢**(sinac+ cos ar)
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;(1) ag

(4.36) (A,¢;8) = e “(sin ar - cos at).

L
2a
The resulting Ekman suction into the interior is:

(1 -

(4.37) w Joosh ab

(A, d58) - (T cotg ¢) as g =+ -,

(~) The interior of the ocean.
Below the surface Ekman layer the interior velocity is now O(/E):

alub,z:E) = BT L8+ L)

v, 0B = VB (L)

it

+
.
.
—

(4.38) "
w(d,0,2:8) = VE(w (A, ¢,r) + ...)

(M o,riE) = VEE (L8 4+ ...

In these representations already the fact has been used that the O(/E)
motion is geostrophic and hydrostatic. Consequently (see §2.8) the hori-
zontal velocities are uniform with depth.
Elimination of the pressure and use of the continuity equation yields:
aw(1) )

(1
(4.39) 37 = - cotg(¢).v .

With (4.37) this gives:

(1) (1) 1 d '
. , = -, LV R .
(4.40) w AP, r.cotg(¢).v (A, ) Teost @9 (t cotg ¢)
The unique determination of v(l) and w(l) proceeds by the analysis of the

bottom Ekman layer. Because in the interior u and v are O(/E) the horizontal

velocities in the bottom layer will be O(/E) as well. This leads to an 0 (E)

1
vertical velocity (from the continuity equation)}. Therefore w( ) (4.40) has

to satisfy the boundary condition at the bottom:

w(l)(k,¢,“1) = 0, giving

(4.41) v n,g) = msing

2cos ¢

1 4
2cos¢ do

4
as

(1 cotg ¢)

(

(4.42) W 1)(A,¢,r) = (T cotg ¢).(x+1).
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From (2.53) and (2.54) (with a=0) u(l) can be determined up to a function

/

of ¢. To determine that function O(E1 3) lateral boundary layers along the

meridional coasts have to be analysed. It appears that in the case of a pure-
ly zonal wind stress (T¢ =0) u(l) already satisfies the boundary condition
along the eastern coast. This bears a resemblance to the east-west transport
in a two-dimensional transport model (see §4.3).

However, if the meridional component of the wind stress is nonzero at
the eastern coast, the zonal velocity is brought to rest through an O(E%)
sub bamdary layer, where also important upwelling occurs. This boundary layer
disappears if only the horizontal transport characteristics are investigated:
in the surface and bottom Ekman layers and in the interior of the O(E%)—
layer the east-west velocity is nonzero whereas the net zonal transpoft is
zero. For the ingenious construction of these lateral boundary layers we
réfar to PEDLOSKY (1968).

The flow in the above model differs essentially from that in a zonally
unobstructed ocean. Firstly, the existence of meridional boundaries prevents
the possibility of 0(1) horizontal velocity components below the surface Ek-
man layer. The resulting bottom stress is much smaller than the wind stress
at the surface: ]E@- = 0(VE).

Secondly thegg is a clear east-west asymetry in the circulation in this
model ocean. This is comparable to the results of the early transport models
for ocean basins where the meridional coasts are along latitude circles (e.g.
STOMMEL, 1948; MUNK, 1950). For general coastal boundaries a transport model

will be analysed in the following section.

4.3, The transport model for an ocean with "general" coastal

boundaries

Let the western coast of our model ocean be given by a function of
latitude: Aw = g(¢). The eastern coast will be described by ke = f(¢). A
solution of the transport equation (2.69) then has to satisfy the boundary

conditions:
oy
(4.43) Y ===0 along A= £(9) and A= gl(o).
The functions f and g describing the boundary are assumed to be four times

differentiable. An example of an appropriate boundary has been drawn in

fig. 4.2.
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fig. 4.2. An example of sufficiently smooth ocean bound-
aries to apply the method of section 4.3.

It is possible now to apply the method of matched asymptotic expansions
in a straightforward manner. In this section we will carry out the analysis
in detail. Suppose that in the interior of the ocean, that is away from the
boundaries, the solution of (2.69) and (4.43) can be represented by a regu-

lar expansion in powers of E:
vouem = E Q00 w2 oL + L0

Substitution of this expansion in (2.69) and collecting terms with equal

(0)

power of E leads for ¥ to the equation:
(0)
(4.44) 2 —g—i’ = T(¢)

(analogously equations for the hicgher order terms can be found). The solution
of (4.44) that satisfies the boundary condition w(o)(A-=f(¢)) = 0 reads:
(0

@) P00 = Eo-een.
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However, because the order of the differential equation (4.44) is too low
we cannot apply the other boundary conditions. For this we have to analyse
boundary layers along the coasts. The choice of the applied boundary condi-
tion on w(O) is not arbitrary. If one imposes another boundary condition it

turns out to be impossible to complete the approximation by boundary layers.

(i) Boundary layer along A =_f(¢)

Let the local variable & be defined by

£(9)-X
(4.46) E(A,¢;E) = =5 .
E1/3

"

The choice of §(A,¢;E) corresponds to the so-called "significant degeneration

of the operator LE under transformation to (equidimensional) local variables

(see chapter 3). Performing the transformation leads, among other things, to
the requirement that f has to be at least a four times differentiable func-

tion. The transformed equation reads:

(4.47) oo g5/ /% g ¢ =3y

S+ e e =0 2ty

cos ¢ 9

G(y) is an expression containing, among other things, the fourth order deriv-

ative of f. Let the local approximation be represented by

- £5/65 1) 7/65(2)

V(E,9:E) (£,0) + E (E,¢) + ... .

= (1
Then ¢( ) has to satisfy the differential equation:

4-(1) =(1)
(4.48) R NOE A 10
13 2
where
o(4) = 2.06" ()7 + —5072
cos ¢
The boundary conditions are:
~ =(1)
(4.49) -0 = -0 -o.
Moreover @(1) has to satisfy a matching condition with the solution in the

interior of the ocean. In this case it can not be formulated in a simple
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limit form. The matching has been carried out by imposing an asymptotic
matching principle (for technical details see ECKHAUS, 1979). The solu-
tion reads:

=(1 T
(4.50) T e, = Ty

)

-

(1-e7%) — g3,

Calculation of higher order terms of the expansion proceeds analogously and

will therefore not be presented here.

The analysis of the western boundary layer can be carried out in a way
completely analogous to that of the eastern one. For the local variable we
find:

(4.51) COLeE) = Amgle)
173

The expansion of the local approximation now takes the form:

1/3~(1
/w()

v, = B O (0,0 + E (Z,0) + ...}

Now 5(0) has to satisfy the differential equation:
4~(0) ~(0)
(4.52) L -fw i -o
E]4
where
3 2 -
82 (9) = 209" (0)° + —=-172,
cos ¢
with boundary conditions
- ~(0)
i1 @e=0 =2 =0 =o.

The matching condition can in this case be formulated as:

(4.53) 1im 3,0y = 1im o900,
> Arg(¢)

This leads to the solution:

w

4

@) -gonZe 2 sin®3 0Ty 1)
V3 2 3

(4.54) 79,0 = Tﬁf’
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Fig. 4.3. The stream line pattern in a section of the Atlantic Ocean
as calculated by the simple method of §4.3. It is given by
(4.5), (4.50) and (4.54). The applied wind stress curl is
given on the righthand side of the figure and is an approxi-
mation of the actual one.

18
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It represents the well-known narrow intense western boundary current (e.g.

Gulfstream, Agulhas Current).

In figure 4.3 the resulting stream lines have been drawn for a part
of the Atlantic Ocean. The wind stress curl is an approximation of the
actual one and has been calculated by EVANSON and VERONIS (1975) from the
HELLERMAN (1967) wind stress data. It comes from a zonal average of the
observed mean wind stress.

The very strong influence on the flow pattern of the wind stress curl
can at once be seen on the picture. Another curious feature is the role
played by the east coast of the basin. Its shape is more or less "reflected"
in the interior of the ocean, even in the western boundary layer as can be
seen in the expression for the approximation (4.54). The western coast doesn't
play such a crucial role in the over all picture of the flow.

It appears that "irregularities” of the eastern boundary are felt in a
larger part of the basin. Contrary to that irregularities of a west coast
produce only local changes in the stream line pattern.

The very important role of the eastern coast is also reflected in the
method of constructing approximations. Different types of boundary irregu-
larities leading to the formation of free boundary layers have already been
mentioned in chapter 3. In the chapters 5, 6 and 7 we will treat examples
of such behaviour.

The early model of MUNK {(1950) follows (on the sphere) from our results
by taking f and g to be constant functions. To obtain the triangular model
of MUNK and CARRIER (1950) we have to take f£{(¢) = c+a.$ (a <0, c>0) and

g(¢} = b.¢ (b>0) with the range of ¢ such that no intersection takes place.

4.4. Asymptotic validity

The results of Besjes (83.4) will now be applied to the model of the
preceding section. We have seen that no analysis near northern and southern
boundaries is necessary to determine uniquely the formal approximation in
the parts of the basin limited to the north and to the south by parallel-
circles. This feature also appears in the proof of the correctness of the
formal approximations. The proof can be given for a zonal strip of the ocean
bounded above and below by parallelcircles ¢ = ¢O' ¢ = ¢1 (wgich are cﬁfrw
acteristics of the unperturbed part of the operator LE = B(AT+28) ~ 2 Ef)
and with smooth western and eastern boundaries where the boundary conditions

are satisfied.
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In figure 4.4 such a strip S(={¢1 <¢ §¢O} n D) has been put in the

domain . The characteristic ¢ = ¢, is tangent to the boundary in A.

1

fig. 4.4.

Let Q be a subdomain of S bounded to the north by 50, to the south by the
parallelcircle 51 (¢1 <$1 <$O <¢O) and to the east and west by the boundary
of U, In an analogous way Q"% ¢ Q is defined:

2" = {$1 < ¢ < $O} nD where ¢1 <9y < 60 < 9y

The purpose is to estimate the order of magnitude of the remainder
~ % ~
R = 1i'mw(o) _w(O) in *. Substitution of ¢ = /E(R«hw(o)-&w(o)) in the trans-
port equation (2.69) leads to a differential equation for R with (homogeneous)

boundary conditions on 32 n 97, To this problem theorem 3.1 (see §3.4) can
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not yet be applied. The conditions of the theorem are not fulfilled because
the boundary of  is not smooth enough. To overcome this difficulty a domain
Q* can be introduced such that @ c Q* < S and the boundaries of Q* are suf-
ficiently smooth (see fig. 4.4).

If a Cw—function z{(¢) is defined such that

o
iA
Y
A
-

(Vo)

=0 if ¢ <$, or ¢ >

*
a Dirichlet problem for ¢R on §§ can be derived. To that problem theorem

3.1 and the results of Besjes theory can be applle& It leads to estimates

of [ER] (3 = 0,1,...,4, £24). Now [R] = [rR] e < [gR]?* so estimates
of R on Q o are obtained as well. There results.
[RI]  <cE 1Ty geg ™o © ulRI, + c{E ™
3 zj L1403 N
+E %) 1/T‘Rl2dx +c, (g% 4 % 4g 2}‘m~[R]?

o

(5 = 0,1,...,4; ﬁ z 4y U o€ (O,u ) arbitrary; w ¢ (O,w ) arbitrary). To in-
vestigate f [R[ dx an elaborate analysis analogous to the one carried out by
Besjes can be performed. With an optimal choice of the free parameters p and

w as functions of E finally (for our purpose) the main result is obtained:

1y (0) _~(0) 8 1/3
T =P - ]

We remark that this is an estimate in the supremum norm. Moreover it
holds for any domain Q** with ¢1 <$1 <$b <¢O. This provides an implicit
proof of the statement that a free boundary layer propagates along a charac-
teristic of LO.

Let now the ocean basin be divided in separate subdomains that are
bounded to the north and to the south by characteristics that are tangent to
or (partly) coincide with the boundary. To each:i.of the independent subdomains
the above result applies. Therefore by using the theory of BESJES (1973) the
asymptotic validity of the formal approximations that have been constructed
in §4.3 has been shown for such étrips° Only on arbitraky small neighbour-

hoods of the separating characteristics the approximations do not hold.
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An exception arises if a strip encircles the globe that is if there is
no eastern and western boundary. However, we have seen that in that case

also the formal construction of the preceding section does not hold.
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CHAPTER 5

THE ANTARCTIC CIRCUMPOLAR CURRENT

5.1. Introduction

The large scale circulation in the so-called Southern Ocean differs
markedly from that in separate ocean basins in that it does not meet merid-
ional barriers as it flows in eastward direction. Because the driving wind
stress at the surface is mainly directed zoﬁally the resulting circulation
in the Antarctic Circumpolar Current (A.C.C.) also is chiefly zonal.

To the north of this zonal channel the flow is obstructed by the con-
tinents and consequently exhibits a gyre like pattern. A model for flow in
basins with meridional barriers has been given in §4.3. Between the merid-
ionally closed basins and the circumpolar ocean there is an intermediate
region of flow that passes the South American peninsula near the southern
tip and brings about the interaction between the two completely different
regions.

An early study of the dynamics of the A.C.C. has been carried out by
MUNK and PALMEN (1951). In a baroclinic ocean model the A.C.C. is regarded
as an eastward flow on a plane tangent to the earth at the South Pole, driv-
en by a constant eastward wind stress which is balanced by lateral friction
against the Antarctic Continent and an imaginary wall to the north (for which
the 45°S latitude was taken). With a lateral eddy viscosity AH of 107k<_:;m"1
sec—1 they computed a transport of a hundred times that observed, which is
of an order of 1081113s.ec—1 (e.g. BRYDEN and PILLSBURY, 1977; NOWLIN et.al.,
1977) . From these calculations Munk and Palmén concluded that lateral friction
could not provide enough dissipation to balance the wind stress. They sug-
gest that the main balancing mechanism is the stress against the bottom, com-
bined with zonal pressure gradients, caused by the presence of submarine
ridges along parallel circles that pass through Drake Passage.

Several bottom frictional models have been developed since then. In a

two-dimensional model GILL (1968) assumes as in STOMMEL (1948) the bottom
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stress to be proportional to the velocity of the flow. Moreover he uses a
model ocean basin which incorporates the South American peninsula. The same
geometry has been used by FANDRY (1971) in a three-~dimensional flat bottom
model of the A.C.C. on the f-plane. He assumes the water to be homogeneous
which leads in the zonal part of the flow to bottom stresses which are equal
in magnitude to the applied surface wind stress (see also §4.1). However,
the observations of CALLAHAN (1971,1972) suggest that bottom stress is of
minor importance.

The effects of submarine ridges on the transport characteristics have
(among others) been studied by HILL and JOHNSON (1975) in a homogeneous
model and by SMITH and FANDRY (1978) in a two layer analogue of the model of
FANDRY (1971). They all indicate a reduction of transport caused by the pres-
ence of such ridges.

A three~dimensional thermocline model of the A.C.C. has been developed
by DEVINE (1972), who assumes the A.C.C. to be frictionless, except for a
small region near Drake Passage.

In all these models it is assumed that a free shear layer brings about
the interaction between the zonally unobstructed flow and the flow in the
meridionally closed basins more northward. However, the stream line pattern
in the zonal channel can be calculated without the knowledge of the shear
layer, and this is one of the reasons that a mathematical analysis of that
free boundary layer has not been carried out in those studies.

For a description of numerical A.C.C. models we refer to Mc.WILLIAMS
et.al. (1978).

In the present investigation we take up again the baroclinic ocean
model. However, instead of postulating an imaginary wall at the north, as
in MUNK and PALMEN (1951), we introduce a more realistic geometry including
the South American peninsula. Using the techniques of singular perturbation
analysis (see chapter 3) we construct asymptotic approximations of the solu-
tion of the problem. The process of constructing the asymptotic approxima-—
tions which will occupy us through most of this chapter is a nontrivial ap-
plication of the method of singular perturbation analysis exhibiting some
rather unusual aspects.

It turns out that in the present model an analysis of the free bound-
ary layer is necessary to determine the solution in the zonal channel. The
shear layer originates at the western side of the tip of South America and
develops in westward direction along the parallel circle.through this south-

ern point. Moreover, a local analysis of the region near Cape Horn has to
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be carried out in order to complete the solution of the problem.

The resulting transport turns out to be of the same order of magnitude
as the observed. This leads to the conclusion that lateral friction can in-
deed be one of the main dissipating mechanisms in the A.C.C. system.

In order to make clear what are the essential differences between the
baroclinic model and the homogeneous bottom frictional A.C.C. model, the

main results of FANDRY (1971) will also be discussed (section 5.3).

5.2. Formulation of the model

We consider stationary flow in an ocean of uniform depth, driven by a
purely zonal wind stress acting at the surface. The equations of motion are
those of the linear transport model that have been derived in chapter 2.

For convenience these will be repeated here (with TA = 1(¢), T¢ = 0):

. _ .1 op A cos2¢ . 2sin¢ 9V

(5.1) 2V sin ¢ = e o /Ev(r(qs) ) +E{AU +——5-U - == aA}
cos ¢ cos ¢
(5.2) Wsing = - o vVE . P 4 mlay 4+ S0828 ., 2sing Uy
¢ v b 2 2. 93X
cos ¢ cos ¢
U 3
(5.3) N + 59 (Vcos ¢) = 0.
. Y _ oy . . .
If U = '55, Vecos¢d = Ei'the differential equation for the transport

stream function reads:
(5.4) E(A%Y + 209) -~ 2% = /B, T(,¢;:E).

The most simple geometry containing the characteristic features of the

Southern Ocean has been drawn in figure 5.1.

b=0¢

=9
A=0 A=2T

Fig. 5.2. The geometry of the model Southern Ocean.
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The South American peninsula is represented by a flat plane perpendicular
to the ocean floor, situated along the meridian A = 0 (which coincides with
A = 2m) with the southern tip at ¢ = ¢1 (N‘—57°).°The coast line of Antarc-
tica is approximated by the parallel ¢ =¢O (=%~-65 ). The same geometry has
been used by GILL (1968) and FANDRY (1971) who both carried out their anal-
ysis within the B-plane approximation.

At the coasts the following boundary conditions will be imposed:

(5.5) Y o= 0; g%-= 0 along A =0, ¢ = ¢1 and A = 2w, ¢ = ¢1
- @, OV _ -
Y = B; Y) 0 along ¢ = ¢O.

Here the (unknown) constant B represents the total transport through the
gap between South Bmerica and Antarctica (see §2.11) and has to be deter-

mined from the analysis.

5.3. The homogeneous model

A three dimensional analysis of a homogeneous A.C.C. is not very dif-
ficult to perform and has, within the B-plane approximation, been carried
out by FANDRY (1971). His main results will be formulated for the transport
model and somewhat extended in this section. A part of the analysis has al-
ready been given in §4.1.

Following Fandry the basin of the Southern Ocean can be divided in var-
ious subareas in which the solution of the transport equation behaves quite

differently (fig. 5.2)

T 1 I
]
U D . R
L3 IX ) _
I S - S SR
A
v
o=t
A=0 A=2T

fig. 5.2. Division of the Southern Ocean in subareas
for the homogeneous model (schematically).
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(~) Region A. In this part of the ocean the flow doesn't meet meridional
barriers. The results of §4.1 are applicable in this case. The transport

can be described by a purely zonal solution of (5.1) through (5.3):

(5.6) vV =0

1 d dUA cos2¢ 1 b
(5.7) cos? Eﬂ(cosq’&? )+ ;—5—2—; U= ‘/—E(wb) = 1y)
{where we have used: E_ = E).

v
With the expression (4.33) for the bottom stress the inhomogeneous

term of (5.7) reduces to:

18 cos oL TlO) ) cos20 Tld)
cos¢ dé dé /5ing c052¢ V-sing

The resulting east-west transport is:

(5.8) Plorm) = 9L L o(/E)

~sing
which can easily be obtained from the three-dimensional approximation by
integrating it from bottom to surface. It is surprising that in the homo-
geneous model the transport in region A can be determined independently of

the flow near the Antarctic coast and the currents more northward.

(~) Region I, the interior region in which the influence of lateral fric-
tion is zero up to order E. Here the results of §4.2 do apply. The order
of magnitude of the transport is smaller than that in the Antarctic Region

(B):

vt (h,0:8) = 0(/E)  and  VI(A,4;E) = O(/E).

(-} Region IV. The O(E%) viscous boundary layer where, from (4.34), we get

for the leading term of the east-west transport:

T(¢,)
(5.9) oV (nim) = 7____,__———0¢ {1 ~exp[—(—sinq>o)l‘n]} + 0(EY
=51in 0
L)
o o O
(here n — ).

(=) Region II. The transition from the parallel transport in A to the much

smaller A-dependent transport in I is brought about in a viscous free bound-
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ary layer along ¢ = ¢1. For ¢ > ¢1 again the lateral boundary layers fi and

I serve to bring the flow to rest at the coasts.

Let again n be the stretched variable: n= ’—glu The 0(1) component of
E
the east-west transport Uig) has to satisfy the differential equation
foyy g g 21
(5.10) - a. + =0 (where x =
4 2 ox 2
an an

a = (~sin¢1) ).

The second term represents the contribution of the bottom stress which now
turns out to be

(5.11) TiI(x,n;E) = a.uig)(x,n) + 0(EY.

I
Because U~ is O(/E) the matching condition to the north is simply:

)

UII

0 as n > o,

To the south there is the condition:

U(O)

IT > a.T(¢1) as n > -o,

We have slightly extended Fandry's analysis by célculating the solution of
(0)

this problem for UII

by means of Fourier transformation. The result is:

o0

(x,n) = a.T(cbl){%—%{ J
0

(0)
UII

sin(An)

(5.12) 5

exp[—(X4'+aX2).x]dX},

REMARKS: (-) the fact that the bottom stress is proportional to the trans-
port is a consequence of the assumption in this model that the ocean is
homogeneous. This gives in the interior of the ocean, that is between the
Fkman layers, horizontal components of the flow which are uniform with depth

and have 0(l) magnitude in this region (see also chapter 2).

(~) the east-west component of flow in the interior of region II
is described by the same differential equation (5.10). As a consequence the
solution of the transport equation (5.10) immediately solves this part of a

three~dimensional analysis as well.

: 1
(~) in the three-dimensional analysis an additional 0(E?) upwell~

ing layer is necessary to bring about the transition of the north-south and
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the vertical velocity components. In this study the main interest is in the
large scale horizontal transport and the detailed vertical structure has
been integrated out. However, now that a solution of (5.10) with matching
conditions has been found there are no essential difficulties left to des-

cribe the three-dimensional structure of the free boundary layer.

(-) Region III, the region near the southern tip of South America. An anal-
ysis of this region will not be carried out for the homogeneous model for
two reasons:

(1) The transport in the other regions of the Southern Ocean has al-
ready uniquely been determined. An analysis of region III is therefore not
necessary to obtain global results.

(2) The solution in II is not valid across the line A = 0 (2m), ¢ < ¢1.
Making the model complete with respect to this fact can proceed almost anal=-
ogously to a local analysis which is necessary in the nonhomogeneous model.

Therefore the method of analysis will be developed there.

5.4. The baroclinic model

It has already been pointed out earlier that the bottom stress can be
assumed negligible in the baroclinic ocean model.

The structure of the approximations in the different ocean regions will
turn out to differ markedly from the results in the homogeneous case. Even

the division of the Southern Ocean in subareas is different (fig. 5.3).

fig. 5.3. Division of the Southern Ocean in subareas for the
baroclinic case. A: purely zonal flow;
I: interior region, no lateral friction up to O(E)
II: free viscous boundary layer.
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The region A extends now to the Antarctic coast ¢==¢O. The flow is described

by a purely zonal exact solution of the vorticity equation. No boundary layer
is needed to bring the flow to rest along ¢ = ¢O because the boundary condi-

tions along the Antarctic coast can be imposed on the exact zonal solution.

It can be easily verified that this solution reads:

(5.13) e = 715 9(4) + AP(P) + B,
where o

® () =~% J {(sins~sin¢).1(s).f(s)cos(s) +
¢O

+ (sin(s) 1n(tg(—;—s+%)) - sin(¢) ln(tg(—;—d>+—2—))).T(s)cosz(s)}dsﬁ

£(¢.) 1 T
©ip) = smcb«(cos% - In(tg(5o+3))) +
. £(9g) 1 il
+ 51n¢0.(_ costy + ln(tg(§-¢04-zﬁ)),

(with £(4) = tg(¢) + cos(9) In (tgGo+ ).

MUNK and PALMEN (1951) introduced a wall at about 45°S to determine
the values of A and B. This led to a calculated transport which exceeds
by several orders of magnitude the observed transport.

In what follows the constants A and B will be determined by matching
the zonal solution with the free boundary layer approximation (region II).
A remarkable difference with the homogeneous model is the fact that the
analysis of the shear layer will be necessary to determine the zonal solu-

tion.

In region I the influence of lateral friction is zero up to order E.
The approximation for this region has been calculated in §4.3. If we substi-

tute Aw = (0 and Ae = 27 the approximation in I is obtained:

(5.14) v 0u0m) = B 0L + wi“m,tb) v}
with
(5.15) 0 00 = 2 om.

In the same way the boundary layers T and E can be obtained.
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5.5. The free viscous boundary layer in the baroclinic ocean model

we now turn to the analysis of region II (fig. 5.2). In this shear
layer the appropriate stretching of the north-south variable is defined by:
=6,
(5.16) n = 5 -
E
. . 2m-A . .
For convenience we introduce x = 5 hence in this layer 0 < x < m;

-© < n < ©, Introducing the expansion:

. - L (0) 5 (1)
Yo (x,niE) = = {wu Gem) + B Gom) 4 L)
we obtain
A
(5.17) 7t T 0
an
4y (1) (1) 3 (0)
5. 19) e S <SS ¢ 2l
. 2 o 994 3
an an

In an analogous way equations for the higher order terms of the expansion

can be obtained.

We shall make use of similarity solutions for the homogeneous problem

¥ +¢_ = 0 of the form xn/4
nnnn X

analysed by GILL and SMITH (1970). The functions wn(y) satisfy the differ-

.wn(n/x%). These have been calculated and

ential equation

d 4wn dwn
4 -y = + n.w_ = 0
4
ay dy n

(where y = J%). For each n four independent solutions exist:
X

(i) a polynomial solution:
n
[ZJ m _n-4m
(-1) .y £ .
L “am o= 0
m=0
(5.19) Pn(y) =

v 0% men
] . r(=S  for n < 0;
m=0 " 4

(ii) an exponentially growing solution (as y + * ®);
(iii) the solution Jon(y),‘an oscillating function that diminishes at

an exponential rate as y + «, exhibits exponential decay as y - -~ if n is
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negative but grows algebraically as y - -« if nis positive;
(iv) Kon(y), which is also an oscillating function with exponential

decay as y - « and exponential growth as y + -«.

These solutions have many useful properties such as:

d wn
(5.20) (i) = w (m=1,2,...)
m n-m
dy
(ii) 4wn_4 = y.wn__1 —n.wn

cas = (D
(iii) Pn(fy) = (-1) Pn(Y)
(iv) Jo_(=y) = (-D)7.{-Jo_(y) + 2P (v)}.

In our case the values of n with the proper linear combinations of the
above solutions are determined by the matching conditions:

to the north wII has to match wI' to the south it has to match the
parallel wA which moreover is of a much larger order of magnitude than WI"

To analyse the matching we transform wA and wI to x,n-coordinates and

then expand for small E. Putting

= L & ; =L &
(5.21) A= /E(aOAFE a, L I B /E(b04-E bl +oee.)
we obtain:
(5.22) WA = —L-{[®(¢ ) + a@(¢,) + b 1+ E% [n.(e"(¢p,) + a P (d,)) +
- e 1 0 1 0 T 1 0 1

2
5 n t n i
+ aiw(¢1) + b1] + E '[TT(Q (¢1) 4 aow (¢1)) +

+ n.alw‘(¢1) + azm(¢1)+ b2] + ...}

(5.23) Y o= /EIwT(¢1)°x-—E%.n,T‘(¢1)x E

T
The problem for wig) is thus described by equation (5.17) and the con-

ditions that the solution tends to zero for large positive n and to ®(¢1)+

a0$(¢1)+b0 as n + -». This gives

(0) (0)

(5.24) Vpo = oy -Joy(y). (withy = ——”1;).
x



(0) (0)

With (5.20-iv) it follows that wII - 2a0 as n > ~-*, so we get:
(5.25) 2010 = 6(p.) + aw(6.) + b
: o] 1 0 1 0
(1) .
For wTI equation (5.18) becomes
4 (1) (1)
Y Y
II IT (0) _~3/4 n

(5.26) _;;Zw_ + e 2tg¢1.a0 WX .Jo_B(;g)

with the conditions that wi;) + 0 as n = @ and

(1)

wII

> a@(@) + b +n.(8(4) +a® (4,)) asn > -
Now the solution reads:

(5.27) w;;) = aél)JoO(y) + a

(1)
1

0y %

1 .
x Jol(y) + 2tg¢1.a0 X .Jow3(y),

and the matching leads to the relations

[

m _ .,
(5.28)  a. 20, 21 (9,) + afP(s,)
(1)

b. 2
=4 ao

afp(¢1)+ b1

In an analogous way we get:

(5.29) w;i) = aé2)Joo + u{z)x%Jol + az(z)x%Jo2 +

(2)
P

)

with wéz a particular solution which doesn't come into the matching.

relations are now:

2a(2)

5 = 9" + adp

(2) :
b. 20L1 = afD

(2)
0

]

c. 20 aip + b

9t

4)

Proceeding in this way the equation for wél is:

4 (4) (4) ~£3,(3) 2.(2)
0 wII awII o wII 2 0 wII . 1
(5.30) + = 2tg¢ +eg g, —ET—  bgd, . (24
4 Ix 1 3 1 2 1 2
an an an cos ¢y

67

The

) 5

“T(¢1)+{terms that are not relevant for matching}
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with solution:

4
(4) _ (4) _n/4 (3) 2 (2)
(5.31) b= nZO o Tx 7 Tg0 (v) + x{(2tge, .0+ tgTe 0"+
+ tg¢1.(2 +——1§——0.a§1)).Joo(y) - T(¢1)} + w(4).
P
cos ¢1
As n->w® w;i) behaves like —T(¢1).x so it matches nicely the northern solu-~

tion wI. As 1 > ~

4 3 2
4y _ , (4) n (4y n~ (4) n_
wII 2a4 .(4: x) + 2a3 3 + 2a2 Y +
(4) (4) (3) 2 (2)
+ 2&1 .n o+ 2a0 + [4tg¢1.a3 + 2tg ¢1.u2
+ 2tge, (2 + —=—) oV < w1k,
1 1 R |
cos ¢
1
This gives the relations
(5.32)  a. 20 = oWV L UV
- 4 o)
(4) _ "
b. 2a3 = afg
c. 2aé4) = ajp"
- (4) _ .
d. 2a1 = aip
(4)
e. 2u0 = a0+ b4~

Because the solution has to become x-independent (for n -+ -~} we have the

relation:
£ ~2a;4) + 4tg¢1.a§3) + 2tg2¢1.a52) + 2tg¢1,(2-+——£§-0.a;1)
cos ¢1
Here - T(¢1) = 0.
(5.33) 2@53) = o™ + aom“'.

It now locks as if the relations (5.28a), (5.29a), (5.32 a and f) and
(1)

i .

not the case because if one works out the left hand side of (5.32f) one

(5.33) determine uniquely the o (i = 1,2,3,4) and ay- This is however
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finds that this relation is automatically fulfilled. Also calculation of
further terms in the expansion of wII and matching does not lead to the
unique determination of the remaining constants. We shall find that a local
analysis of the region near the southern tip of South America is necessary
in order to determine fully the solution.

If n > 0 again we need boundary layers near x = 0 and x = 7 to bring
the flow to rest.

Along x = 0 we find for the approximation that matches both wII and

¥yt
T($,)
- - A - S 1/3 1 1 a —a(¢1).€ _ 2/3
(5.34) ¢II(£.n,E) VE{E 5 {-*——a((bl)(l e )=E} + O(E™" 7}
2x .
where § = ~T73 (compare with §4.3).
B
The western boundary layer (f&) again exhibits intense north-south flow.
With ¢ = giﬂ:zl-the approximation that matches with ¢ and E reads:
E1/3 II I
B(dq)T
(5 35) ’J; (C E) = _1_. OL(O)JO (_LL)“ .._?.... - : 'H(M( +1T_)}+
- TT N7 ‘/.E_- 0 0 "T% /.3_8 S1 P ) 3
+OETH.

For n < 0 there is no coast where the flow has to come to rest, but
there is the demand that the solution and all the derivatives appearing in
the governing equations are continuous across x = 0,7. The approximations

(1)
wII
Cape Horn region.

do not satisfy that condition. This is another reason to analyse the

5.6. The region near the southern tip of South America

It is convenient to place the point ¢ = ¢1; x = 0 {(m) at the center of

the coordinate system, which is achieved by the transformation

-X when x < %
(5.36) t =
m
=X when x > 5o

ki m

- —< < -,

=) 5 t 3
The southern tip of the peninsula is now at ¢ = ¢1, t = 0, and to

analyse the region near this point we introduce the local variables:
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o
1
-
-

(5.37) T =

|

[
~
w

=

2]

—
~
w

If the formal expansion of the approximation wIII(T,u;E) has the form:

. _ 1 (0) 1/4 (1) .
(5.38) Yrpp(TrWIE) = = W tmew) + BV Ty (1) 4 ceo}
. (0)

then the equation for wIII reads:

4 (0) 4 (0) 4. (0) (0)

0 wIII 1 0 lpIII 1 0 q)III alp:[i"II
(5.39) g T 2. 2" 2 e

3 2cos ¢1 9T JM 16cos ¢1 9T

with the conditions that the solution matches with wII' E&I and EII’ and
is zero at T = 0, U 2 0.

Solving this equation with matching conditions is not the simplest
problem one can think of. Fortunately it turns out that it is not necessary
to calculate the solution of (5.39), if the main interest is not the local
behaviour of the stream line pattern very near the tip of South America, but
the influence of this small region on the global characteristics of the flow.
In other words: the as yet unknown constants in the boundary layer approxi-
mation wII and the Antarctic solution wA can be determined without the ex-
plicit knowledge of wIII'

We proceed to the analysis of the process of matching, as described in
ECKHAUS (1979) (see also chapter 3) and introduce "intermediate" variables
defined by:
4~ .

- - b cep L 1
(5.40) Ti = daol ni = o with 2 < o < 3

Suppose that the so-called intermediate solutions, V.

T LG E can be
lnt( iy )

expanded as follows:

oy = L ¢, (0) 5 (1)
(5.41) e (T g 7B = {wintni,ni) +EY L (T + .ot
then the equation that wigi must satisfy, reads:
Ll
(5.42) '_4— - Tﬂ 0, where lTil > 0, T]i < 0.
Bni i

On the basis of the so-called overlap hypothesis (property of inclusion,
§3.2) we now demand that in the intermediate limit (that is: lim )
(Ti,ni)flxed
E~Q
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the difference of wint and wIII and that of wint and wII go to zero, that

is:
. (0) 2 (1) (0) (1) _
(5.43) lim ' [wint FEW e Yo - B el =0
(t,,n,)fixed
i’
E*Q
and
. (0) 5 (1) (0) 5 (1)
{(5.44) lim . [wint + E wint-+.._ _wII - B wII - 1= 0.
(Ti,ni)flxed
E+Q

We shall now concentrate on the analysis of matching condition (5.44).

Transforming w;g) given by (5.24) to intermediate coordinates gives:

(0) N
J [ROUun O
ao OO((—Ti)%) for Ti <0
(5.45) w(O) 1=
1T .
(0) n; B
o Jo ) for t, > O.
0 0 (“_E4u-1T )% i
Performing the limits we find
n,
(0) i
ey Joo( » for TS <0
(5.46) 69 n e
; int 1M
(0)
o, JoO(O) for T > 0.

(0 . s
One may verify by substitution that wini thus defined indeed satisfies the

differential equation for the intermediate approximation (5.42). However, we

(0)

must define a continuation of win on the whole domain -« < T, < o, ni < 0,

t i

and refuire it to be a continuous function, four times differentiable with

respect to n; and one time with respect to Ti. Straightforward analysis

shows that there does not exist a sub-boundary-layer aleng the line t = 0,

ni < 0 that satisfies the continuity and differentiability conditions on

T =0, n; < 0 and matches with (5.46) as T > +w, (Here T =

4o~1

S(E) = 0(E )). Therefore w?O)
int

differentiability requirements along Ti = 0, ni < 0.

t .
el +
) with
itself must satisfy the continuity and

Because of the properties of JoO (see §5.5) we get

n. .
) = 2a(0) and aéO)

— a(o)
(~1,)% 0 :
1

lim G(O)JO (
0 0 0

ny <0

JoO(O) =
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So, imposing the continuity demand we get:

o0

0o = 0.

(5.47)

The consequences are that

(0) _

(5.48) wII = 0
and
(5.49) b0 = w®(¢1) - ad@(¢1)-

Let us therefore consider the problem for the next terms in the approxima-

tions. After transformation to intermediate coordinates w;i) reads:
. n,
(1) o~k Y Ny (- . .
oy .E .(—Ti) ”Jol( %) + N .Joo( &) if T 0
(-1,) (~1,)
1p(l) - i i
T X a-*
n,.g% n,.E
(1) _da-1 4 i (1) i . S
ul . 7B Ti) .Jol(————zaiﬁf——j;)4—uo Joo(—~w~zazz--§0 if Ti 0.
(T-E Ti) (T~E T.)
Taking the limit we find:
n.
(1) i
ao Joo( %) if T <0
(5.50) vy = oy
: int i
(1) % (1) . ) -
oy i Jol(O) + ey if T > 0; (JOO(O) 1),

which satisfies again (5.43).

With the continuity demand in T, 0 (ni < 0) we now get the relation:

(5.51) L ail) %

o T Jol(O).

The differentiability requirements on wéil
fied. This follows from the nice properties of the Jon(y) as y >+ ~©, n < 0.

In what follows we shall also need an analogous result for wiil.

can easily be shown to be satis-

The

calculations proceed as before and we find:
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n,
(2) i .
% Joo(-——*j;) if T, < 0
(5.52) 0 e = oy
: int' 1M
(2) % (2) % (2) .
az m Joz(O) + al ™ Jol(O) + uo if Ti > 0
and the relation:
(2y _ (2) % (2) %
(5.53) aO = a2 T Joz(O) + al m Jol(O).

5.7. Closure of the solution

To complete the solution we will use the "continuity of pressure” con-
dition. It can be derived from equation (5.1) and compensates for the loss
of information in deriving the vorticity equation from (5.1) through (5.3).

Integration of equation (5.1) over a closed parallel in the region

¢O<¢<¢1 and substitution of the stream function leads to the condition:

2m

2
i 9 Y cos2¢ oY _
(5.54) /E J {COS¢ g(coss =) +-_77~564dk = 2m. 1.
0

3¢ cos ¢

Outside the free boundary layer this condition turns out to be identically
fulfilled. It is possible to impose this condition if we integrate along a
parallelcircle that traverses the intermediate region. The path of integra-
tion can be divided in parts such that in each part a proper local approxi-
mation is wvalid.

By the transformation (5.36) the path of integration becomes —g«:t< g.
We divide it in three parts:

(- e e’ E T ana ™ D

1 1 .
where k and 1 are arbitrary positive constants and Z—<u <<, The approxima-

3
X da~-1 4o-~1
tion ¥ is valid in the first and last parts and Y, in (-k.E o L B o ).
Iz int ¢_¢1

E(l

Substituting the expansions and performing the transformation n, =

we get the condition:

401 4o~1 /2 3 (1)

-k
Ty AR Y
(5.55) f —E g+ ~—~%§E de + «——%%» at + 0(s") =0.
. g on,
g kLE i l,E4a~1 i



Grouping terms that are of the same order of magnitude and equating

each group to zero leads to a new set of relations. The first one is:

NS

1
o

(5.56)

(1) %
Jol(O) + al m

Joz(O)
. X (1) (1) % _ . . X
With the relation ao - al m Jol(O) = 0 which has been derived in §5.6
we get the result:

; (1 _
(5.57) oy 1

As a consequence we now have:

(1)

(5.58) wII

i
<

and, with (5.28)a,b):

v (8
(5.59) ao = - mm
(5.60) b1 = -al.qJ((bl).

With a, also bo (5.49) can be calculated:

2 (8,).0,)

(5.61) b, = "@(4)1) B W P
1

0
so the leading term of the Antarctic solution wA has now uniquely been deter-
mined.

This, however, is still not the case with the leading term of the ex-
pansion of the free boundary layer WII' For that we have to equate the next

term in the expansion of (5.55) to zero. As a result we get the relation:

(2) (2) . (2) % _
(5.62) oy Jol(O) oot Joz(O) oo, Jo3(0) = 0.
Now aéz) = %(@“(¢1) + ad@“(¢1)) is, with (5.59), a known constant while
aéz) and aiz) can at this stage be calculated with the relations (5.53)
and (5.62). Using the fact that Jo2(0) = 0 this gives:

2) aéZ).ﬂ%Jo3(Q)
(5.63) o = -

0 Jo, (0)
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(2) %
o . T Jo, (0)
(5.64) aiz) -2 3 .

2
Joi(O)
With (5.29b) we then have:
(2)

(2)
2a1 2a1 19(¢1)

SO b, = - ————————

(5.65) o6 ! © G,

The leading term of wII is now determined, and calculation of further terms

in the expansions can take place along the same lines.

Before proceeding to the discussion and analysis of our results some

additional remarks on the structure of the solution for the free boundary

(2)

layer must be made. To be specific consider for example wII . From the con-

dition that w;i) + 0 as n + « and that w(2) behaves algebraically with res-—

pect to n as n + - we have concluded that w;i) was of the form:

2) _ 2 .7
4 I
wII X a Tx .Jon( %).
n=0 bs
However, one could also write
2 _ 2 2.7
= 4
wII E an X Jon
n::-oo

because for negative n, Jon + 0 as y = *t», However, this nonuniqueness can
2

fortunately be removed. In fact it is not difficult to show that the ué )
have to be zero for n < 0. This is done by substitution of the last form in

the continuity of pressure condition and working out the integrals.

5.8. Discussion of the results

Like most oceanographic models the model analysed in this chapter is
of course a simplified description of the ocean circulation. One can there-~
fore not expect detailed small scale correct results. What one can expect
are correct qualitative and quantitative global results. It is with this in
mind that we analyse further our results.

Let us first look at the expressions that have been derived in §5.7
for the first two terms in the expansion of the total Antarctic Circumpolar
Transport (B):

bO = -®(¢1)-ado(¢1) " and b1 = —a1$(¢1).
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Substituting these in the expansion of the Antarctic solution (5.22) gives
the result that wA(¢1) = 0(1) so the first two terms satisfy the "boundaryA
condition® wA(¢1) = 0. Moreover the first term of the expansion of UA(E—%ﬁrﬂ
satisfies U (¢1) = 0 and the effect of the viscous free boundary layer ap-
pears (in first approximation) to be the same as that of a rigid wall, placed

along the parallelcircle ¢ = ¢ (%~—57°) and not further northward at 4>==—45o

1
as MUNK and PALMEN (1951) supposed. This explains already to some extent the
erroneous numerical results of Munk & Palmén.

In calculating a numerical value of the Antarctic circumpolar transport

we take the wind stress to be:

4.

(5.66) t{(¢p) = sin(6¢ + 10

This represents the prevailing westerlies over the Southern Ocean and the
westward wind stress very near the Antarctic coast (e.g. EVANSON & VERONIS,
(1975) . Then we get the following values:
b =4.6x107°; b, = 2.8x107°
0 1
which are small because of the narrowness of the gap between Antarctica and

South America. With E = 2.44 x 10 this gives:
B 0.1.

In m.k.s. units the transport thus calculated is approximately 3.2 X108m35ec—1
which is the same order of magnitude as values that have been calculated
from observational data (e.g. BRYDEN and PILLSBURY, 1977, give a value of
2.6x10%m sec™ ).

Based on formula (5.8) also a value for the transport through Drake
Passage in a homogeneous ocean model can be calculated. If the same wind
stress (5.66) is applied as in the baroclinic model the resulting approxi-
mate value of the transport is 0.2 X108m3secn1. Accordingly neither of the
two models can be rejected or prefered on the basis of the calculated trans-
port only. Both lead to the right order of magnitude.

In figure 5.4 the stream line pattern in the free boundary layer has
been sketched for the baroclinic ocean. The calculations are based on the
formulas (5.13) and (5.29) with the appearing constants as in §5.7. There

is a clear asymmetry between the northern and southern part of the region,
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caused by the geometry and the resulting asymmetric matching conditions for
the shear layer. Near x = 0 (figure 5.5) a crowding of northern stream lines
takes place whereafter they wind themselves around Cape Horn (¢=¢1;xz=0(w))
to form the intense northward current which agrees with the Falkland Current.
After leaving the regicn near the east coast of South America (f&) the cur-
rent again flows eastward and completes the stream lines in the vicinity of

the southern tip.
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Fig. 5.4. The stream line pattern in the viscous free
Latitude has been exaggerated ten times.

boundary layer.

8L
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5.5, Transport stream lines near the southern tip
of South America. The north-south scale is
not exagerrated.
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CHAPTER 6

THE RETURN AGULHAS CURRENT

6.1. Formulation of the model

In this chapter we will use the free boundary layer concept to analyse
one of the curious phenomena in the ocean circulation i.e. the turning of the
Agulhas Current south of Africa (see fig. 1.1). For that we use the most
simple geometry containing the essential features of that part of the world
ocean basin.

The South African peninsula is represented by a straight line (in the
transport model) and the ocean is bounded by straight coasts to the east

and west. In figure 6.1 this geometry has been sketched.

b=¢

o o m e ——— — - —

fig. 6.1. The model ocean in which the basin is divided by
a continent. The basin is divided in subregions
where different approximations of the solution
of the associated boundary value problem hold.



We start from the assumptions leading to the linear transport model of
§2.11. The equation for the transport stream function then reads ((2.69)

i = B):
with Ev )

(6.1) E{Azw + 200} - 2 g%-= ~VE.T($,)\).

Moreover the bottom stress is assumed to be negligible. The applied wind
stress is purely zonal. Thus the inhomogeneous term represents the curl of

the wind stress. It has the simple form:

1_a
cosd do

T($) = - (t(¢) cos¢d).

The boundary conditions are

(6.2) po= %%~= 0 along the coasts.

6.2. Construction of approximations

In figure 6.1 the basin is divided in different subareas in which the
solution of (6.1) and (6.2) will exhibit different behaviour.

Considering the regions I ({0 < A < a; ¢ > ¢O}) and II ({0 < X < by
¢ < ¢O} ufa<A<b; ¢ = ¢o}) the results of §4.3 can immediately be ap-
plied. This leads to:

A
(6.3) v (A, ¢:E) = VE.T(4). ,_23+ 0(E)
- /B A~b
(6.4) ¢II(X,¢;E) = YE.T(9). 5t 0(E),
with O(E1/3) boundary layers along the coasts. The western boundary layer

along A = a+, ¢ > ¢O reads:

By
~ b-a,, 2 2 . B/3¢ 5/6
V(e 9iE) = VET() () Gz e T osin(E 4 -1) + 08T,
with
A-a 3 2
C= 1/31 B = mm———
E cos ¢
Around A = a+, ¢ = ¢O an E1/3 XE1/3 boundary layer emerges. The leading
term of the local approximation must satisfy a differential equation which
is of the same structure as equation (7.1) (with E = 1). If ¢ = A%E—-and
~ d=dg E /3

T we will denote this approximation by

gl/3
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v (g, 1E) = /E{wfo)(;,T> + ...

(~) The free boundary layer (F)

The interaction between the regions I and II takes place through a
viscous shear layer along the characteristic ¢ = ¢O (0 < X < a). The ap-

propriate local coordinate is:

S

-¢
1

o

.6.

~

4

=

Let the local expansion be

(6.5) e miE) = E O oum + Bl oum s
The differential equation for w;O) reads

B4%(‘0) QW;O)
(6.6) - 2 = - T(d,.)-

3n4 A 0

The solution has to satisfy the matching conditions:

(0)

(6.7) Ve

om) > o). 52 as e

(0)

(6.8) b

A~
(A,n) - T(¢O)- _22 as n > ~®,

Along A = a we impose the "initial"™ condition:

(0)

(6.9) Ve (a,n) = g(n)
where
0 for n 2 0
g(n) =
v (n) for n < 0
. - . . * ~1/12 1/12
The function ¥ is defined such that it equals w(ofo,n.E ) if n=0(E )

1/3 (0)

(so ¢ - ¢O = Q(E }) and wIl (a,¢o) otherwise.

4 A fundamental solution e(A,n) of the homogeneous differential eguation
] 9

—~%~— 2 5; = 0 can easily be constructed by means of Fourier transformation.
an

It reads:
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o -X
1 “t4'(é§*)
(6.10) e{A,n) = ;-J cos(nt)e dt (A < a, =» < < @),
0

(so lim e(A,n) = 6(n) where 8(n) is the Dirac S§-distribution). This leads
Ata
to the solution of the problem formulated by (6.7) through (6.9):

@

0 A=
(6.11) w0 = [ g(n)e(A,n-n")dn' + T(9 ). 5 =
—00 0 o 4 Y
1 [ - “e A-a
= [ — ? 7 AR
= v M JCOS((n n')t).e dtdn +T<<i>o).. 5 -
0O Q
3 . . . . - ) 1/12
If the integration interval (~«,0) is divided in (-»,~k.E } UL
(«k.El/lz,O), where k is an arbitrary positive constant, (6.11) can be
written in the form:
0
(0) _ 1 (0) o '
(6.12) wF (A,m) = - J wII (a,¢O)E(A,n n'ydn' +
e OO
1 * -1/12, (0) v
+ o j (w(o)(O,n E ) wII (a,¢o))«e(A,n n*)dn® +
wkeE1/12

+ T) - 353;

1/3 y 1/3

The contribution to the free boundary layer of the E E ~region turns
out to be O(El/lz):
G [ 4 a=X
(6.13) Ly omm =2 [0 o[ costamnntre 2 atan +
N /Fj F s N7 p 11 1P n-n n
e OO O
A 2 * 1/12
s 22 w0ty = 0 ¢ 0@/
An O(E1/3) western boundary layer serves to impose the boundary con-

ditions along A = 0. The structure of this boundary layer is the same as
that of the corresponding layers in the regions I and II. Using an analo-

gous notation we find:

L gy = 2O 1/3~(1) .
(6.14) = Up(TmiE) = T (e ) BT )
with st -
(6.15) 3 wm = wl% 0,1 -—% e PeanER 4 Iy
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(where now 83 = 2 ;L= A ).

COS4% /3

6.3. Discussion of the results

We are now in a position to apply different wind stresses in our model
ocean. It turns out that the positions of the maximum and the zeros of the
wind stress curl with respect to the southern tip of the African continent
are of particular importance. In the figures (6.2) through (6.5) subsequent-
ly these positions are shifted a little. The resulting changes in the flow
pattern are dramatic.

If the position of the curl maximum is above ¢ = ¢O (fig. 6.3), two
maxima of the transport stream function appear, one on each side of the
African Continent. To the south of Africa there is a saddle point, which
represents a place in the ocean where there is no (vertically averaged)
motion. A part of the flow through the westérn boundary layer along A = a
is returned to the east, where the saddle point serves as the "retroflexion”
point. The position of this point depends on the wind stress distribution
and it is not "fixed" to South Africa (see fig. 6.3 and 6.4).

It is very remarkable that such a wandering retroflexion point has in-
deed been observed recently in satellite infra-red images of the region un-
der consideration (e.g. HARRIS, et.al. (1978), HARRIS and VAN FOREEST (1978)).

The wind stress curl in fig. 6.3 qualitatively resembles most the ac-
tual one (e.g. EVANSON and VERONIS, 1975). It gives a picture of the Agulhas
Current and the Return Agulhas Current. A part of the Agulhas transport pass-—
es the South African coast and turns north westward into the Atlantic. After
crossing the ocean it is deflected southward where it constitutes the Brasil
Current. It is obvious that the transport of the Brasil Current is, under
these wind stress conditions, much smaller than that of the Agulhas Current.
The above theory gives a simple explanation of that reduction of transport
as coupled to the turning of (a part of) the Agulhas Current.

If the maximum of the wind stress curl is situated south of ¢O the
full transport of the western boundary layer along A = a (¢ > ¢O) is deflect~
ed westward through the free boundary layer (see fig. 6.5). In that case the
transport of the Brasil Current would exceed the Agulhas transport. In fig.
6.2 one of the zeros of the wind curl coincides with the latitude ¢o. The
(first approximation of the) free boundary layer then disappears (T(¢O)==O).
The zero stream line that passes ﬁhrough the southern tip of the continent

divides the basin in three separate parts that do not interact.
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6.4. The influence of a more realistic shape of the South-African

continent

We shall analyse now the influence on the free boundary layer of a more
realistic geometry of the African continent. As in the line shaped case a
free boundary layer propagates westward along the characteristic through the
southern tip (¢ = ¢O) of the peninsula. Instead of an "initial" condition
(6.9) along the line A = a for the first approximation such a condition must
now be satisfied along the curved continent (for n > 0). A comparison will
be made between this problem and one in which the same initial condition is
applied at the line A = a. The difference with the model of §6.1 and 6.2
then appears in the initial condition for n < 0. It now reads: Y{A=a, n<0)=
¢ (n) where the function ¥ is determined by the approximation more eastward
in the basin (A > a). The structure of this approximation differs from that
when the continent is a line. Due to the curvature of the boundary an extra

1/3 xE1/3

boundary layer appears near the southern tip of which the E ~layer

(see §6.2) is a sub boundary layer. If the continent is a second order para-

1/7 XE2/7). Outside

bola this "intermediate" boundary layer appears to be O(E
this boundary layer the initial condition (wo) is determined by the regular
approximation for A > a. We will show that the influence of the curvature

(i.e. of the intermediate boundary layer) on the approximation in the free
boundary layer does not appear in the leading term. It is reflected in the

2
order of magnitude of the second approximation which is O(El/1 ) for a line

shaped continent and O(E1/28) if the continent is a second order parabola.

Let the boundary of the continent be given by
(6.16) ¢ = ¢O + g(A ~a)
where the function g has the properties:

- g(2n—1)(o) =0 (> 1)

g(0) = g'(0) = ...
g(zn) (0) #0

{(which expresses that the tangency of the characteristic in A = a, ¢ = ¢O

is of order 2n);

< 0 if = <0
g’ (x)
>0 if x > 0.
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As a consequence a local approximation of the boundary is given by
2
(6.17) ¢ = ¢O + (=), with k > 0 a constant.

In the variables of the free boundary layer we get:

(6.16%) E%.n = g(A~-a) (X <a)

and, for instance for 0 < n < N, (6.17) yields:

(6.17") A-a = -k.p/8n /20

We define the "thickness" §(E) of the continent relative to the width
of the free boundary layer by the absolute value of A -a in (6.17') for

n=1, so §(8) = k.u/8",

The above considerations lead us to the following problem for the first

approximation of the free boundary layer:

B4%&0) 3¢é0)
(6.18) -2 =~T(p ).
3ﬂ4 A 0

with the "initial condition":

(Ol(a_nEl/Sn

Vr

it
[w]

E(n) ) for n > 0

(6.19)
(0)

P ¥ (n) for n < 0.

12

(a,n)
Moreover wéO) has to satisfy the matching conditions (6.7) and (6.8). We
take £ to be a bounded and monotonically decreasing function with £(0) = O,
£f'(n) » © as n ¥+ O.

To determine the function w— a local analysis of the region near A = a,
n = 0 with A > a will be carried out in the sequel.

The relations (6.19) are rather unusual conditions. We will compare
this problem with the one described by the differential equation (6.18) but

with the initial condition given on the line X = a:

0 for n > 0
(6.20) w*(a,ﬂ) =
¥ (n) for n < 0.



90

Such a problem has already been solved in §6.2 where the solution is given

in (6.11). From that formula the value of w* along A = a-—El/Sn.f(n) (n>0)

can be calculated. The result is:

* __E1/8n 1/8n

(6.21) v (a -f£(n),n) = E -R(n) (n > 0),

where R(n) is a bounded function.

)

*
For the difference of y and wéo we then get the initial value prob-

lem:
4
P TR
G 25w - =0
an
with
(w*—wF(O))(a—El/B“.f(n),n) =g/ rm (>0
W -9 0, =0 (n<0),

*
and the requirement that Y ~—w;0) + 0 as n » * «, The problem thus formu-

lated makes it plausible to assume that for the region under consideration

(O<)\<a,—m<n<m):

(0) * 1/8n

(6.22) bpo =0+ 0@,

with 0 o ~t4(3:l)

(6.23) v = %J UG f cos((n-nyte 7 atan' +rieg) Tt
00 0

Let us now turn to the analysis of the boundary layers near A =a, ¢ = ¢O'
This analysis is necessary to gather information about the structure of the
function w_, For convenience we take for the local geometry a parabola to
which the tangency of the characteristic is of order 2 (son = 1 in (6.17)).

If t = cos¢on(k—a) and the metric factors are expanded in Taylor series

around ¢ = ¢ the vorticity equation (6.1) becomes:

0
2 54 2%
(6.24) E{ATY + (4(d -0 Vtgd +...) ¥ + —= + lower order terms} -
0 0 2,.2
3¢ ot ot
N
~2cos¢o rre E.T(¢)

82 32
where now A = ——§A+ —

3¢ 3t2
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A natural system of curvilinear orthogonal coordinates is achieved by

introducing parabolic coordinates (u,v):

12 1,2 2
¢ty myup=plvi-un)
(6.25)
t = uv

with the prescriptions

t < 0 <> u>0 and v <0
£t > 0 <> u>0 and v > 0.

kcosd
If we choose uo = ~;§r~—-the boundary of the continent ((6.17)) coincides

with the parabola u = u,.. After transformation to parabolic coodinates

0
(6.24) takes the form:
(6.26) E{§f£‘+ 2 oV EEE + } - 2¢ 2, 2) {vﬁi-+ uﬁy% =
. 4 2. 2 g7 uotvo)eosh, vy, +ougy
du du v v

= VE . T(q)o-{--é—(uz -—u2 +v2)) (u2 +v2)

0

with the boundary conditions:

= 3 _ =
(6.27) P o= ™ 0 for u u

o
A local analysis of the region near ¢ = ¢O, A = a now comes down to

an analysis near u = u v = 0. To that end we transform (6.26) and (6.27)

O’
to local coordinates (&,71) defined by:

(6.28) u-u, = E £; v=ET.

Performing the transformation yields:

4 4
1-4v é_%.+ E1—2u—2v —J%JL§~+ E —=+{non~relevant terms} ~
& 3ET 3T 9T

2

(6.29) Ly = E

- 2cos¢o{(u04-Ev.£)2+~E u.r2}{Eu_v.T 3£+%E— u+E _U.E)g%J =

: 2
=V/E{ (g +eV.0) 245 ST (9, —E"uog -E
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In figure 6.6 in the (v,u)-plane the positions of the significant degenera-

tions of the operator L in (6.29) have been marked. These significant degen-

erations are:

(6.30)

IJ=\)='§" - 2cos¢0.uo -B%"+ ——% + 2 —————~—-—4 5+ -—-——844
9E 087 oT 9T
9 ]
H=v=0 — + —
Tt e
1 2 2 3 9 84
= W omE e e . et et e
u 7 - 2cos¢o.u0.(r 3E + uO 2)T) i
3E
1 3 9 84
= V=0 - 2 R P
H 3 cos¢0 (uo-+g) Py + 7
9T
4
B 1 2 2. 0 ]
u=0, v==-: - 2 . Loy 2
3 cos¢o (u0-+v 3 3E + 7
3g
U
! u=4v-1
1 /
=)0
©r3) Y
; 33
/
ut3v=d 7
VA
ﬁ<7r7)
P \
V=24~ \
- \
- AY
-7 \ v
(0,0) & 1
(3,0)
fig. 6.6.

In figure 6.7 the corresponding boundary layers have been drawn schematical-

ly. The degeneration (e) u =0, v = %'represents the "standard"” western

boundary layer if v > 0 (see fig. 6.7).



II

fig. 6.7. The division of the ocean basin in subareas.
In regions a, c¢ and e the corresponding
degenerations of the vorticity equation hold
(see (6.3)).
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It brings the flow of region II to rest along the coast of continent A. If

we transform the regular approximation wII (6.4) to the local variables of

this lateral boundary layer the leading term becomes

(6.31) /E.T(qao +~;‘v2)(§%§).

For the western boundary layer (e) this suggests the expansion

1/3$(1)

(6.32) V(E,viB) = /E;(a(O)(EIV) + B (E,v) + ..).

The first approximation then must satisfy the differential eqguation

4~(0) ~(0)

3y N 2 2. Y _
(6.33) AEE;TW— 2cos¢0 v(uo-fv ) oE T 0
with the boundary conditions:
(0)
oy -
E 5E 0 in E = 0,

Matching with w; comes down to. the condition
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. ~(0) - 1 2 a-b
(6.34) lim ¢ (E,v) = T(¢04~5v ) ( 5 )

E-reo

(compare with 6.31).

The solution reads:

(6.35) E(O) (E,v) = T(¢O+%V2) (%){1 -% A B inia v V3E +%)}
(where d(v)==(2cos¢0°v.(u§'+vz))1/3)-

The function given in (6.35) is a boundary layer function only if v>0

(+<> X > a). Therefore the approximation is strictly confined to the region

(0)

v>0. Near v = 0 a different local approximation brings wII to rest. The
12
appropriate local variables can be read off in figure 6.6: for (u,v) =(7—,70
the significant degeneration (6.30-c¢) results with a possible sub boundary
i1
).

layer at (u,v) = (5',3
We will not try to determine the corresponding local approximations

but only give a qualitative description of the analysis. For v > 0 (1 > 0)

i 1 .
the O(E /7><E /7) "intermediate" boundary layer has to match with both WII'

E and the O(El/JxEl/B) sub boundary layer. Along the line v = 2u (fig. 6.7),
(0)

T and that

for 0 < u < %y both the differential operator that determines Y

of the intermediate boundary layer degenerate to

Therefore, if the property of inclusion holds (ch. 3), matching of the two
approximations takes place along this line.

The same reasoning leads to the conclusion that
(-) the matching condition between the western ((%—,O)) and the intermediate

boundary layers holds along the line 3v + p = 1 for 0 < p < %u where the com-
4
mon degeneration is -2 cos ¢ .u2.1~§— +~3——,
0 0 9& 3&4
(~) the intermediate and its sub boundary layer must match along U Z4v==—1

1 1 3
T < Y i is -~ B S e e al
for 5 u o< R where the common degeneration is -2 cos¢0 uo 31 8&4

L 1

We now divide the integration interval in(6@23)ip (ww@~kBE28)u(—ksE28,On
with k an arbitgary positive constant. For n € (—k@E§§)O) (which corresponds
tou - uO = O(E7)) w“ represents the intermediate boundary layer, so we can

write
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0 ® 4 a-A
6.3 v =1 D, Cnenytle 2 avant 4
. = T a,¢0 cos{ (n-n e n
-0 0
® 4 a-\
+ 1 O W) =99 (a6 0) [ costinmnnrer.e (%—)dtd '
p 1 n brp (@rdg s{(n-n . n
_k-E28 0
A-a
+ T(¢'O). -
(wint denotes the first approximation of the intermediate layer). Conse~
quently:
0 0 4 a-)
(6.37) oLy, {nytde (L)dtd Fm(e ). Aoy
. b= b (andy cos{ (n-n e n o r
00 0 1

+ O(E28).

Comparison with (6.13) shows that the leading term of the free boundary
layer for the parabolic continent equals the one for a line shaped conti-
nent! The distinction appears in the order of magnitude of the remainder

term.

0)
I
be rewritten in the form:

Because w; (a,¢0) is a constant, after some manipulation (6.37) can

(6 ) ° e L L
(6.38) v = 20 [EiE-J Eigﬂi e 2 Gt ~é%EJ'+O(E28 =y 4+ 0(E%8).

Combining this result with (6.22) we find that

L

(6.39) b = ¥+ 0(E28),

From (6.22) it follows that if the order of tangency (2n) in A = a, ¢ = ¢O
increases the remainder term becomes more and more important. As n - « the
southern coast approaches a characteristic boundary. The analysis for such

a configuration is given in the following chapter.

+
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CHAPTER 7

THE CIRCULATION IN OCEAN BASINS WHEN A PART OF
THE BOUNDARY IS CHARACTERISTIC

7.1. A basin with a corner shaped eastern boundary

Let the boundaries of a model ocean be given by:

A =0 western coast
A=A for ¢ > ¢O

A=A for ¢ < ¢o eastern coast

A NAVAVAVEY
<
i
&

o

AVAVAN

fig. 7.1. A model of an ocean basin including a corner
shaped eastern boundary.

A domain with this geometry can for instance be regarded as a simple model
of a section of the Atlantic Ocean including the Gulf of Guinee (see fig.
7.1). The west coast A = 0 then describes the American coast. Though the
boundaries are not realistic this geometry contains the essential mathema-

tical difficulties involved in realistic geometries.
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The eastern boundary cannot be given by a function of ¢ only. Part of
it coincides with a characteristic of the unperturbed part of the operator
LE (2.72). Therefore the method (and results) of §4.3 can not be applied to
this case. In this section the method of constructing approximations of the

solution of equation (2.69) satisfying the boundary conditions
(7.1) Y = =0 along the coasts

will be extended such that this type of geometry can be included.
For this purpose we divide the ocean basin in a northern and a southern
part, separated by the parallel circle ¢ = ¢o. In the northern half, ¢ > ¢O,

the method of §4.3 applies to give for the approximation in the interior:

U8B = B 000 + 03, with
A=A
(0) _ 0
(7.2) ¢N (A, 9) = T(¢O). 5 (¢ > ¢O)-
1/3 v .
Along A = 0 and A = AO the O(E ) lateral boundary layers are given by
(4.50) and (4.54) with £(¢) = xo and g{(¢) = 0.

In an analogous way an approximation for ¢ < ¢O can be written down:

Vg (h45E) = /Ewém(x,m + 0(E)}, where
(7.3) oMo =T 0o 6o<e.

From (7.2) and (7.3) we immediately conclude that wéo) together with wéO)

cannot represent an approximation for the full interior of the basin. Along
the line ¢ = ¢O (for 0 < X < AO) a discontinuity appears.

We will remove this discontinuity by introducing a free boundary layer
along ¢ = ¢O, 0 < A< AO where also the viscous terms in the transport equa-
tion (2.69) play an important role. In fact this shear layer "originates”
in the corner point (A1,¢O), develops westward along the coast where it
serves to bring the interior flow WS to rest and leaves the coast in (AO,¢O).

It is along these lines that we shall develop the construction: first
the lateral ("parabolic") boundary layer along the coast will be analysed.
This yields an "initial" condition {(whexre A serves as the time-like vari-

able) along A = AO, ¢ < ¢O which the free boundary layer has to satisfy.
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We define for the boundary layer the following stretching of the north-
south variable (which corresponds to a significant degeneration of the oper-
ator LE' see chapter 3):

(7.4) n =

and, for convenience:

5.
Ai—A
As a consequence we have n < 0 and 0 < x < R For the solution in this
region we assume the following expansion:
0 1/4 (1
¢p(x,n;E) = /Eiwé Y (x,m) + E / ¢; Yx,m) + ...

Inserting this expansion in the (transformed) transport equation leads to

the following problem for the leading term:

34,0 5, (0)
(7.5) B B o )
an4 Bx 0

with boundary conditions:
(0)

oY

0y, _ P _ ), _ _
(7.6) wp (n=0) = 5 (n=0) = 0 and wp (x=0) 0.
Moreover wéO) has to satisfy a matching condition which in this case simply
reads:

. (0) _
(7.7) lim ¥ (x,m) = - T($.)x

= P 0

For the solution of this problem we again make use of the similarity solu-~

tions for the homogeneous differential equation Y + wx = 0 of the form

nnnn
Xn/4.w(~f%zﬁ that have been analysed by GILL and SMITH (1970, see also §5.5).
X

Using their notation we find:
(0) -

- "~ ot W__mn .
(7.8) wp (x,m) = T(¢O),3.LJ04(X1/4) + Ko4(xl/4) + 17,
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Jo4(y) and Ko4(y) are both oscillating functions, infinitely differentiable
and diminishing at an exponential rate as y - « (see fig. 7.2). The same

properties hold for the derivatives.

Ko

I
4

Fig. 7.2. The functions Jo, and Ko, for positive
values of the argument.

In an analogous way higher order terms of the approximation can be calcu-

lated.
Y

9
The solution (7.8) does not satisfy the boundary condition gi(x==0)t=0a

For that again an O(El/J) boundary layer along x = 0 can be constructed in

a fully analogous way to §4.3. As a result we find:

Boemm = 55 @ v 0™, wnere £ = 5 ana
-9 T(0,) ’

=(1) _ 0 1 _o~a{d )&,

B e = 5 (g (-0 g,

It can easily be verified that ﬁél) also matches with i(l) (4.50). Now (7.9)
doesn't satisfy the boundary conditions along n = 0. To solve this problem
an analysis has to be added of the corner region near ¢ = ¢O, A= Al where
the appropriate local variables are given by:
=9,
£ = and U=

1/3 E1/3

The leading term of the local expansion then must satisfy the following

differential equation:
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v
2 + 2 5E 0

+

§fg,+ 2 2%y 1 oYy
Bu4 cos2¢O 3523u2 cos4¢0 &

with matching and boundary conditions.

We will not tackle this problem. It would only give some insight in
the local behaviour of the solution. However, approximations in the other
parts of the basin already have been constructed without the a priori know-

ledge of the corner flow.

(ii) The free boundary layer

b-¢
For the shear layer we find the same stretched variable n = _T7I as
B
for the parabolic layer. However, the variable n now ranges between -« and
- A
© while —=-2 < x < 7}. £

Uy (x,M5E) = fE_{wF(,O)(x,n) + 041,

again the differential equation (7.5) is found for the leading term of the
expansion. Now there are matching conditions to the south and to the north

which simply read:

A=A
Lin 0% G = o). 52 x)
n*)m
(7.10)
lim w(o)(x,n) = —T(¢O)‘X’
o F
A1-Ag
In x = 5 we impose the boundary condition
) A1'A0 0 for n 20
(7.11) U] (x = —=) =
T 2 ) M1
wp (—— ) forn <0

)

where w;o (%,n) has been calculated in the foregoing.
The problem for wéO) is identical to the one formulated and solved in

§6.1. The solution reads:

A=A
E ) 4 10
» -t (x - 5 )

(x,n) =%J g(n®) Jcos((n—n')t)e . dtdn® -
w00 0

(0)

(7.12) Ve

- T(9,) %
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where *1“K0
o ——— >
T(¢0) 5 for n 0
g(n') = - -
w(o)(A1 AO n') + T(¢ ).A1 AO for n' < 0.
P 2 ! 0 2

Moreover it is easy to show the following properties for n < 0:

4 (0
s4(1);0) 3 wé )
lim — lim —————
A ~A. ant A-A and
170 4 1 0
+'—'2"~" X 2
and
Bw(O) 8w(0)
. F .
lim - = lim % .
M M7
K —— x 4 5

)

With these additional properties the functions w;o ind wéo) together pro-

vide an approximation on the whole interval O ; x < 7}-(for n < 0).

Again a lateral boundary layer along x = 7}) - < 1 < « has to be anal-

ysed. It leads to the solution:

—8(¢O)-C 5
A e B(¢.)V3
~(0) _ . 0) 1 _2 2 ) 0 LT
(7.13) b @) = 5, m e sin(—— 4+ 3>}.
(0)
Mg e ) F
Along x = 5T n > 0 it is easy to verify that T # 0. The boundary

layer that brings the flow to rest along this part of the eastern coast is

of the same structure as (7.9). If now £ _ = we find:
0 El/3
T($.) ~a(¢.).&
=(1) _ 0 1 B 0 0, _
(7.14) wF (Eoyn) = “*§—-{&7$—7-(1 e ) EO}.

0

Along n = 0, £ > 0 a singularity appears which has to be removed by a local

0
1/3 « E1/3

analysis of an O(E ) region near the second corner point in the bound-

ary: ¢ = ¢O, A= AO, This analysis will not be carried out too because it has
no consequences for the global stream line pattern.

In figure (7.3) a picture is drawn showing schematically the complete
set of boundary layers needed to construct a uniform asymptotic approxima-
tion of the solution of the transport equation (2.69) satisfying the bound-

ary conditions (7.1).
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1/3 1/3

1/4

Fig. 7.3. The subdivision of the model ocean in northern (N) and
southern (S) interior regions, with an O(E1 4) free
viscous boundary layer (F) in between. This layer
"originates" in the O(El/3 XE1/3) corner region Ci,
develops as a "parabolic" boundary layer (P) along
the coast and leaves the coast through the corner
region C2. Along A = 0; A = A & ¢ > ¢ i A= Al &
¢ < ¢ O(E1/3) lateral bcundary layers sexve tO
bring the flow to rest at the coasts.

7.2. Discussion and conclusions

For three different functions describing the wind stress curl a sketch
of the resulting stream line pattern is given in figure 7.4. The longitude
and latitudes determining the coast line geometry have been chosen to be
¢O = g%-,ko = %—and Al = %igu Figures 7.4b and c are obtained from 7.4a by
applying a phaseshift on the curl (northward and southward respectively).

It is clear from the figure that the "perceptibility" of the shear
layer depends on the properties of the given wind stress curl. In particular
the position of the zeros with respect to the axis ¢ = ¢O of the boundary
layer is important. When such a zero approaches the latitude ¢ = ¢O the free
boundary layer becomes less important and the westward drift current (or
eastward, depending on the sign of the curl) will dominate the picture.

For reasons of comparison in figure (7.5) the transport stream lines

have been drawn for a model ocean basin where the eastern and western coasts

coincide with latitude circles.
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A first conclusion from these calculations and pictures is the follow-
ing: in this simple linearized model the shape of the eastern coast can be
a determining factor in the formation of a strong "eastern" boundary current
(which corresponds with the parabolic boundary layer). Moreover this coastal
shape is "reflected" into the interior through the viscous shear layer and
in this way it remodels the path of the drift current in the interior.

To compare with observations we analyse further the figures. Figure
7.4b fits best in the Gulf of Guinee type of situation because qualitatively
the given T(¢) resembles most the actual wind stress curl (e.g. EVANSON and
VERONIS, 1975). In reality the period of the curl is about two thirds of the
one chosen here. For the sake of clearness we have exaggerated the period a
little in the figure.

The strong eastern boundary current represents the Guinee current whilev
the eastward current in the interior can be considered to be the Equatorial
Counter Current. It can not be looked upon as a pure drift current, as is
the case in fig. 7.5b, because its path is altered by the viscous effects
of the free shear layer.

The intense northward current along the western coast of the basin can
be identified with the Guiana Current. As a result of the linear analysis
the full Guiana Current leaves the coast to form the Equatorial Counter Cur-
rent. This doesn't agree with observation where it overshoots partly the
latitude of zero wind stress curl and links up with the Florida Current (see
for instance SVERDRUP et.al. 1942). The remaining part turns eastward. In
this way the transport of the Equatorial Counter Current is reduced. Obvious-
ly too much simplifications have been made to obtain this phenomenon from
the theory developed here.

In fig. 7.4c the driving wind stress curl is obtained from 7.4a by a
phaseshift to the north. Moreover its direction has been reversed. The re-
sulting flow pattern can be regarded then as a (simple) model of the south-
ern part of the Indian Ocean. The strong southward current along the western
coast can now be looked upon as the Agulhas Current. Tasmania is "fixed" to
Australia (by the continental shelf) and in this way it forms the corner

like shape at the east coast of our basin.
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a 1Oo
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T
\\\\\\‘\\\\\ |,
(-]
4 0
0° 65°

T(¢):—C056¢

Fig. 7.4. The stream line pattern for three different
wind stress curls T(¢). G: Guinee Current;
Gu: Guiana Current; E.C.C.: Equatorial
Counter Current; S.E.: South Equatorial
Current; Fl.: Flinders Current; A.: Agulhas;
W.: West Wind Drift.
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&———

—

Fig. 7.5. The stream lines when both the eastern
and western coast coincide with latitude
circles. In a., b. and c. the same wind
stress curls have been applied as in the
corresponding parts of fig. 7.4.
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Because in this region the maximum of the curl almost coincides with
the latitude of the South Australian Coast there is a large "onshore”
(inviscid) transport. This must all be turned westward in a narrow intense
eastern boundary layer, the so-called Flinders Current (Bye, 1968).

Of course in the model the geometry has been simplified. Especially the
western coast is not realistic: the African continent doens't extend as far
southward as it does here. However, this doesn't alter the picture east of
the African coast. This is a consequence of the diffusive character of the
parabolic and free boundary layers: the solutions originate in the corner
point at the eastern coast and develop westward. Accordingly in a model in-
cluding a more realistic South African coastal shape the stream line pattern
east of Africa will remain the same. In A = 0, ¢ < ¢O' that is south of
Africa, the free boundary layer solution acts as an "initial" condition for
a free shear layer that develops westward into the Atlantic Ocean.

The techniques developed here can be uéed again to construct an approx-

imation for that part of the ocean system.

7.3. The interaction of the flow in ocean basins divided by a

rectangular continent

We will apply the method of the former section to construct approxi-
mations in an ocean basin with a geometry as in figure 7.5. This geometry
resembles very much that of §6.1. However, now the continent A has a south-
ern coast which coincides with a characteristic of the unperturbed part of
the operator LE (2.60). We will show in this section that this leads to dif-
ferent approximations not only near the southern coast but also in the free

boundary layer to the west.

g I A
Y
F i i £ "%
i P
A -
> L
) ”
I
L
A=0 A=a A=h ) A=21

Fig. 7.6. The geometry of the model ocean with a
division in subareas.
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The division of the domain in subareas has been drawn in figure 7.5.

In the regions I and II we have the approximations:

A-a

(7.15) v (A,4:E) = VE.T(4). 52 +0m) (0<h<asd > gy
(7.16) Vo (A93E) = /E.T($) . X'22“ + 0(E) ({0 <X <2ma ¢ < ¢O}
U{b <A< 21 & ¢ > ¢O}).
To apply the boundary conditions y = g%-= 0 at ¢ = ¢O, a < A < b again

a parabolic boundary layer along that coast has to be introduced. The dis-
continuity along ¢ = ¢O' 0 < X < a will be removed by a free boundary layer

that develops westward.

(=) The parabolic boundary layer

Putting
4-4,
(7.17) n = 172 (so n< 0),
E
b-A b-a
x = =7 (0 < x < 5 )

and

b e, niE) = VElwgo’(x,n) P

the equation for wéO) reads:
a4%()0) ne
(7.18) —Fﬁ + -——R—-——-ax = uT(qu)

with boundary conditions:

81‘)(0)
(7.19) WO 2P o inn=o0, 0<x-<Z2
js) an 2
and a matching condition
(7.20) w;o) > —T(d)o) (x +3~TLZ_—b) as n + -
whereas there is also the condition
(0) 2m-b
- - < .
(7.21) wp - T(¢O)e 3 as x + 0 (n 0)
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The solution of this problem can easily be constructed and reads:

(0) - __n _.n
(7.22) wp (x,n) = —T(¢O).[x{Jo4( Xl/4) + Ko4( x1/4) + 1} +
2m-b __n __n
+ 5 {Joo( xl/4) + Koo( ~——x1/4) + 1}].

(For the Joi and Koi-functions see §5.5).
(-) The free boundary layer

The construction of the free shear layer can proceed along the same

lines as in the former section. With

n = ——— X = (SO-°°<TI<°°,;{>O)

a=-A
2

the problem for the first approximation becomes:

a4¢é0) Bwéo)
(7.23) —*-Z—*'+ - = —T(¢O)
on ax
6] for n 2 0
(7.24) 00 (z-0) =
F (0) b-a
wp (-§-,n) for n < 0
(7.25) wéo’ > T(8) R as n >
(7.26) \p;m > —T(¢O).(§+2ﬂ2—a) as n > -,

The solution of this problem reads:

(7.27) oG = L

0
(0) ,b~a
2

(=] 4_.-
wp —=, t) [ ccas{s(nat)}e_S Xgsdt - T(¢O).§.
0

1/

Along the meridional coasts again O(E J) lateral boundary layers can
(0)
P

region near that singular point ap-

easily be analysed. The parabolic boundary layer ¥ has a singularity in

% = 0, n = 0. Consequently an E1/3 XE1/3
pears where a different local approximation of the solution of this model

problem holds.



(~) Conclusions

We have shown that when the southern boundary of the continent A coin-
cides with a characteristic the first approximation in the free shear layer
is not only dependent on the matching conditions but also on the initial con-
dition at the rim of the parabolic boundary layer. In this way the informa-
tion about the processes along the southern coast of A is reflected in the
interior of the basin.

In the case of a parabolic shaped southern boundary the leading term
does not contain such information. As has been shown in the preceding chap-
ter the influence of the continent is contained then in the remainder term
(see 6.38) the order of magnitude of which depends among other things-on
the order of tangency of the characteristic to the southern tip.

If in this section the thickness (2520 of the continent is set depen-

b-a B

dent on E, for instance —%-= E~, the local coordinates (7.17) for the para-

bolic boundary layer should be replaced by

_ =g b-A

(7.28)

g irg
g 4

Accordingly the north-south extend of this layer is thinner than in the case
b=-a=0(1). The initial condition (7.24) for the free boundary layer must
then be altered in agreement. The result is again that the leading term of
the free boundary layer is the same as that for the case of a line shaped

continent (treated in chapter 6).
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