
MATH EMATICAl CENTRE TRACTS 119

SPARSE MATRICES
AND
SUBSTRUCTURES
W NOV IM

OF FINITE ELEMENT ALGORITHMS

F . PETERS

EM ISCH CENTRUM AMSTER

1980 Mathematics subject classification: primary 68B99
secondary: 65F05, 65N30

ISBN 90 6196 192 0

ACKNOWLEDGEMENTS

This monograph is a slightly revised version of my doctoral dissertation

submitted to the Department of Mathematics at the Eindhoven University of

Technology.

Part of the research leading to the dissertation was carried out at the

Joint Research Center of the European Communities in Ispra (Italy). Thanks

are due to both the Eindhoven University of Technology and the European

Communities for enabling me to spend a year in Ispra.

To the thesis advisors ProLdr. R.J·. Lunbeck and ProLdr. G.W. Veltkamp

I owe many thanks. I am indebted to Prof.dr. o. Axelsson, Prof.dr. E.W.

Dijkstra, Prof.dr. J. Jess, Dr. M. Rem, Prof.dr. J.J. Seidel and Ir. M. van

de Woude for their suggestions and their discoveries of some flaws in

previous versions of this monograph.

Mrs. !LE .Jo'.M. Baselrnans-Weijers did a magnificent job in typing the manu­

script.

I thank the Mathematical Centre for the opportunity to publish this mono­

graph in their series Mathematical Centre Tracts and all those at the

Mathematical Centre who have contributed to its technical realization.

CONTENTS

0. Introduction

0.1. Linear equations and partitions

0.2. A novel implementation of finite element algorithms

1. Linear equations

1.1. LU-decomposition

1.2. Profile and envelope algorithms

1.3. Graph-theoretic notation

1.4. connection and decomposition graphs

1.5. Consistent orderings

1.6. Preserving palms

2 • Part.i tions

2.1. Preserving part.it.ions

2.2. Perfect. preserving partitions

2.3. Proper pp-partitions

2.4. Construct.ion of a proper pp-partition

2.5. Example

2.6. Non-symmetric equations

2.7. Nested dissection

3. Finite element equations

3.1. Outline of the finite element method

3.2. Traditional organization

3.3. Substructuring

4. A novel finite element algorithm for n x m grids

4.1. Procedure ur

4.1.1. Element specification and storage of results

4.1.2. Dissection of the rectangle and representation of the
element matrices

4.1.3. Decompose

4, 1,4, Assemble

4,1,5, Removal of reduced structure matrices

4, 2, Procedures fur and bio:'

4,2.1, Computation of reduced structure vector_

4,2.2, Computation of solution vector and derived results

l

2

5

5

7

10

12

14

17

19

20

23

25

28

29

33

36

39

39

42

43

49

49

51

52

53

55

56

57

57

59

5. Efficiency o;f ur

5.1. Storage and operation counts

5,2. Reduction of storage requirements

6. Adaptation to more complicated structures

6.1. Frame structures

6.2. Solid quadrilateral structures

6.2.L Rectangles

6.2.2. Quadrilaterals

6.2.2.L Quadrilateral given

6.2.2.2. Quadrilateral given

6.3. Local mesh refinements

6.3.L Procedure lm

6.3.2. Storage and operation counts

6.4. General plane and curved surfaces

7. Closing remarks

7.1. Other implementations

7.2. Data retrieval

7.3. Triangular dissections

7.4. One- and three-dimensional problems

by points

by parametric

of lm

7. 5. Structure with more than one structure vector

7.6. Iterative methods

7.7. Data structuring facilities of PASCAL

7.8. Generalized element method, element merge tree

7.9. Parallel computation

Index

References

functions

61

61

66

73

73

74

74

75

76

78

79

79

81

82

85

85

86

87

87

88

88

89

89

91

93

95

CHAPTER 0

IN'rRODUC'rION

In this monograph we will prove that no intricate sparse matrix algorithms

are required for an efficient solution of large, sparse sets of linear equa­

tions. Such equations occur in finite element calculations, for which a

novel organization has been developed. Thus will be indicated in the second

part of this introduction.

0.1. Linear equations and partitions

Large sets of linear equations are usually sparse, that is, nearly all

coefficients of the associated matrix are zero. Let Qw = f be such a set of

equations, with Q a non-singular n x n matrix, w and :E vectors of unknown

and known values, Suppose this set can be solved (without permutation of

rows and columns) by LU-decomposition [Wilkinson '65], Le. there exist a

lower triangular matrix Land an upper triangular matrix U such that

Q"' LU. The matrices Land U usually contain many more non-zero coeffi­

cients than Q (Le, "fill-in" appears), but even so they. are often sparse.

To obtain Land U efficiently, one has to avoid, as much as possible,

arithmetical operations with zero coefficients, Optimum efficiency in this

sense is achieved by so called sparse matrj_x algorj_t:hms. For a survey see

[Duff '77], which contains 604 references. Due to the fill-in these algo­

rithms and the associated data structures are rather intricate. Envelope

algorithms are much more simple, However, in general these are not so ef­

ficient, because zeros within the envelopes are not taken into account.

It is well-known [Duff 'Tl, Tarjan '76] that the order of the equations

and variables influences the sparsity of the associated triangular factors

and the number of arithmetical operations with non-zero coefficients.

Therefore one may try to find suitable permutation matrices and so as
t to solve the permuted set (P 1 QP 2) w) = f, The determination of permu-

tation matrices, which achieve some minimum operation or storage count, is

an NP-complete problem j_n some cj_rcumstances and is conjectured to be one

in others [Ta:r.jan '76], 'l'hus to obtain a good ordering ·of variables and

2

equations, the best way seems to be a heuristic approach to the original

problem, which gives rise tc the equations. In this monograph we shall not be

concerned with finding optimal or good orderings, but witJ1 finding a method

to avoid, given an ordering, arithmetical operations with zeros.

Using graph-theoretic terminology it is demonstrated that for a given

matrix Q (irrespective of how well the equations are ordered) it is always

possible to partition the set of variables in such a way that the triangu­

lar factors Land U can be obtained from the (partial) decompositions of

smaller matrices determined by the partitioning. The decomposition of the

smaller matrices will require the same arithmetical operations with non­

zero matrix coefficients as the decomposition of Q. Because no zeros occur

within the envelopes of the triang·ular factors associated with those small­

er matrices, no intricate sparse matrix algorithms are required to avoid

operations with zero coefficients; simpler (viz. envelope) algorithms suf­

fice to obtain the triangular factors of Q with the least number of arith­

metical operations. An algorithm will be presented which determines such a

proper perfect. preserving partition, a.s it is called.

0.2. A novel implementation of finite element algorithms

Large, sparse sets of equations are encountered in the finite element

method, this being a widely used method to solve certain types of partial

differential equations. Already before its invention, the mathematical

soundness of the finite element method was shown in [Courant '43 J • 'I'he

method was independently developed in the fifties by aeronautical engineers

concerned with stress and structural analysis [Turner e.a. '56]. The term

"finite element" was used for the first time in [Clough '60].

The method was well received; it is applied to a variety of problems of the

non-structural type such as occur in fluid mechanics, heat conduction,

seepage flow, electric a.nd magnetic potential. Its acceptance among

engineers was assured at an early stage (the first edition of Zienkiewicz'

book dates from 1967). Later, applied mathematicians [Zlamal '68, Strang

and Fix '73] became interested. 'I'he popularity of the finite element method

is due to the fact that it is highly suj.table for computers" The Linkoping

survey [Fredriksson 76] already contains the description of 4.50 different

computer programs for structural mechanics applj_cations only" A recent

comprehensive bibliography [Norrie and De Vries '76] mentions over 7000

references up to the end of 1975.

3

The later part of this study deals with a novel efficient organization of

finite element calculations. It does not aim to discuss possible specific

applications of the method or when and under which circumstances the finite

element method is to be favoured. Finite element computations include the

assembly of a large sparse matrix from so called element matrices and the

solution of an associated set of linear equations. The results described

above for computing the triangular factors of a sparse matrix justify a

novel organization of finite element computations. Instead of one large set

of equations, a hierarchical series of smaller ones is set up or, in finite

element terminology, instead of one large structure a hierarchy of smaller

substructures is analysed. In particular we will show that if the nodes of

the finite element structure are ordered according to the nested dissection

strategy [George '73], then the associated proper perfect preserving parti­

tion is obtained immediately.

For (not necessarily homogeneous) n x m grids we describe algorithms in

PASCAL, which find a suitable hierarchy of substructures and perform the

decomposition of the associated matrices. These newly developed recursive

algorithms differ from existing ones in that a nUlllber of traditionally

consecutive steps (mesh generation, assembly, decomposition and forward

substitution) are carried out here in an interleaved way. Moreover, the

only data stored explicitly are (non-zero) matrix coefficients; no overhead

data like pointers, etc. are required. The algorithms are conceptually

simple and it is also possible to make them useful for arbitrary two­

dimensional solid and frame structures. For three-dimensional structures

similar algorithms could be developed.

5

CHAPTER 1

LINEAR EQUATIONS

By its very nature, it is convenient to view a sparse matrix as a graph

[Parter '61, Rose '71, Tarjan '76]. In this chapter we will formulate LU­

decomposition of a matrix in graph-theoretic terminology. Because reordering

of the rows and columns of a matrix leads to different triangular factors,

we will have to consider ordered graphs, Le. graphs in which the vertices

are ordered. Some new results will be derived concerning orderings which

lead to the same triangular factors. The chapter will be concluded with a

discussion of the new concept of a preserving palm, which is a graph for

which the fill-in is restricted to certain edges.

1.1. LU-decom)'.JOsition

Let

(L 1) Qw "' f

be a set of n linear equations in n unknowns, with Q a non-·singular matrix,

for which

Q ~ LU ,

where Lis a lower triangular and U an upper triangular matrix. The coef­

ficients of Q, Land U will be denoted by qij' .Q,ij and uij' respectively

(!. :C:: i, j :C:: n). The fol.lowing relations hold [Wilkinson '65]:

j

(L2)
-1

j

(1 s j :,; n)

(1 s j < i s n)

The coefficients of Land U must obviously be computed.in a certain

(partially prescribed) order.

6

The solution w of (1.1) can be obtained by a forward substitution, i.e.

solving w' from

Lw' f

followed by a backward substitution, i.e. solving w from

If Q is a symmetric matrix, then it is not necessary to compute all coef­

ficients of both Land U. If Q is moreover positive definite then one may,

for instance, use the formulae for Cholesky decomposition: Q = LLt

[Wilkinson '65]

!
(qjj -

j-1

2f R, .. l R,jt JJ b=l
(L2') (1 ,,; j < i $ n)

(qij -

j-1

I R,it 2 ·t) 1 JI, ••
t=d J JJ

If I is a set of row indices and J a set of column indices, then QIJ de­

notes the matrix obtained from Q by deleting all coefficients with a row

index not belonging to I or a column index not belonging to J. Let for a

certain k (1 s ks n) r {1, .. .,k} and J = {k+l,ee.,n}, then

Pa:rtiaZ decorrrposition of Q with QII as block-pivot or, equivalently,

partial decomposition of Q with its first k pivots is defined to be the

following decomposition of Q [Bunch and .Rose '74]

Q

with OIJ. and OJI zero matrices,

where LII is lower triangular and UII upper triangular such that

This partial decomposition is only defined if QII is non-singular and has

itself an LU-decomposition.

7

If Q is symmetric and positive definite, then partial Cholesky decomposition

of Q with QII as block-pivot results in:

where

with

Q

L Lt
II II

t
LJILII QJI

r Q . t
QI JJ - LJILJI

To compute the coefficients of and Q~ for partial Cholesky decomposition

the following formulae will be used:

(L

(
j-1)½

q_ .. - I 2\
J J t==l J

(
j-1)

q .. - I 2 · tJI, · t I JI, • -·
:tJ t=l :i. J . JJ

j-k

1.2. Profile and envelope algorithms

(1 s j s kl

(1 Sis n, 1 s j S min(k,i-1))

(k < j s i s n) •

If the matrix Q is sparse, then usually its triangular factors Land Ucon­

tain more non-zero coefficients than Q- Nevertheless L·and U are often

sparse matrices as well. A coefficient which is zero in Q but non-zero in

8

L + U is said to belong to the fill-in of Q. (A formal definition of fill-in

will be given in Section 1.4.) The fill-in is always restricted to the so

called envelope of Q, defined as follows. Let the column index of the first

non-zero coefficient in the lower triangular part of row i be denoted by

rQ (i). If no such coefficient exists in row i,

equal to i. In the same way cQ(j) denotes the

zero coefficient in the upper triangular part

then rQ(i) is defined to be

row index of the :first non­

of column j. Again, i:f no

such coefficient exists, then cQ (j) "' j. (The subscript Q will be dropped

if no confusion is likely.) If bJ/, = max{j -r(j) I 1 '.> j $ n} and

b = max{j -c(j) I 1 ,,; j ,,; n}, then the bandwidth of Q is defined to be the
\I

maximum of bJl and bu. Next env(Q) (the enveZope of Q) i.s defined as:

env(Q) = { (i,j) I j ~ r(i) and i ~ c(j)}

which implies: if (i,j) ~ env(Ql then qij O. For an example see figure 1.

* denotes non-zero coefficient

0 denotes zero coefficient

envelope

bandwidth is 4

Figure 1

If Q has an LU-decomposition Q = LU, what do we know of env(L) and env(U) ?

As usual we neglect numerical cancellation: Jl •• (i > j) is considered to be
J.J

a zero coefficient only if "" 0 and all relevant products t or

R,itutj in formulae .2 or 1.2' are zero; analogously fqr uij (:i. < j). It is

well known and Liu '75] that with this convention

9

env (L + U) = env (Q)

Only those coefficients of L and U whose indices belong to env (L + U) need

to be computed, the others being zero. If Q is symmetric, we use instead of

the envelope the profile defined by:

pr (Q) = { (i, j J I i ?. j and j ?. r (i) } ,

We then have:

pr (L) = pr(Q) ,

If (i,j) ,: env(Ql and qij = 0 (i ¥ j), then (i,j) will be called a zero

element of env(Q). An envelope without zero elements will be called dense.

In an analogous way a dense profile is defined. By definition (i,j) is a

first zero element of env(Q) if it is a zero element and if for all other

zero elements (i',j') of env(Ql it yields:

i' > i or j' > j ,

In the next chapter we will use the following lemma, which is a generaliza­

tion of a theorem in [George and Li.u ' 7 5 J :

LEMMA 1: If (i, j) is a first zero element of env (L + U) , then

CQ (j) = (j) = j (if i > j) or rQ(i) =

Proof: Suppose i > j •

From (L2) and J!,ij = 0 it follows

(1 • 3) 0 ' 1 :;; t < j

(i,j) is a first zero element of env(L+U) implies

(L4) ii . 1 ,J 0 ,J-

From (1.3) and (1.4) we deduce

(1, 5)
-1,j 0

(i) = i (if i <

Because (i,j) is a first zero element of env(L+U), (LS) implies:

(j-1,j) ,!: env(L +U)

From this we conc.lude cQ(j) ~ cu(j) ""j.

In the same way it can be shown that i < j implies rQ(i) (i)

j) •

L □

10

Remark: Let LI and UI be the factors obtained from a partial decomposition

of Q with its first k pivots (1 :,; k :,; n). From Lemma 1 it follows: if

rQ(i) < i for 1 < i :,; k and '\i(j) < j for 1 < j :,; k, then both env(LI) and

env(UI) are dense.

Corollary: If Q is a symmetric matrix and (i,j) is a first zero element of

Algorithms which use the property that only the coefficients whose indices

belong to pr (L) or env (L + U) are non-zero, will be called profile and

envelope algorithms respectively.

The profile and envelope algorithms may be overly inefficient in that they

may process many matrix coefficients which are in fact zero. This will

happen with sparse matrices having large envelopes or profiles. 'l'o handle

those matrices with optimum efficiency, Le. to avoid arithmetical opera­

tions with zeros, so called sparse matrix algo1'ithms have been developed;

these are algorithms in which for every coefficient is recorded whether it

is zero or not. Obviously these algorithms require considerable organiza­

tional overhead, the more so as it is not a priori cl.ear which coefficients

of Land U are non-zero. (The so called fill-in consists of all the coef­

ficients which are zero in Q, but non-zero in L or U. 'l'his fill-in will be

discussed in more detail in the sequel.) For a description see [Gustavson

'72]. Usually a sparse matrix algorithm contai.ns the following steps:

- symbolic decomposition: to determine the location of the non-zeros in L

and U;

- numeric decomposition: to determine the values of the non-zero coef­

ficients.

It will be clear that sparse matri.x algorithms are rather intricate.

1.3. Graph-theoretic notation

Following [Rose '71, George '77] we wi.1.1 introduce in this section a graph­

theoretic notation and nomenclature to be used later on.

A directed graph G ~ (V,E) consists of a finite set V of vertices and a

finite set Es:, {(v,w) j v,w Ev, v ,f- w} of ordered vertex pairs called

edges. An undirected graph G = (V,E) consists of a finite set V of vertices

and a finite set E of unordered vertex pairs, i.e. (v,w) is considered to

be the same as (w,v). Whenever in the sequel it is left unspecified whether

or not the graph G is directed, G may be either.

Let G == (V,E) be a graph. If w c V, then the section graph G(W) is the sub­

graph (W,E(W)), where E(W) = {(v,w) EE I v,w E W}. For v EV the adjacency

set adj (v) is defined by adj (v) = {w I (v,w) E E}. For distinct vertices v

and w a path from v tow of length k is defined to be a sequence of dis-

tinct vertices v = v 0 ,v·1 , •.• ,vk ~ w, ,such that (vi-i

i"' 1,oo.,k.

c E, for

An undirected graph is called connected and a directed graph is called

strongly connected, if for every pair of distinct vertices v, w there is a

path from v tow. If a graph is not (strongly) connected, then it consists

of two or more (strongly) connected components. The set W c V is a separator•

of the connected graph G = (V ,E) if the section graph G (V \ W) is not

(strongly) connected. A separator W of G ~ (V,E) is minimal if no proper

subset W' c Wis a separator of G.

A rooted tree Tis an undirected graph with a distinguished vertex r, call­

ed the root, such that there is a unique path from r to any vertex. If vis

on the path from r to w (w ¥ v), then v is an anceertor of w and w is a

deacemlant of v. If moreover (v,wl is a tree edge, then v is the predecesso1°

of w and is a successor of v. A vertex without successors is called a

leaf vertex.

•rhe concepts defined above are rather standard and definitions of them

occur rather frequently in literature. 'rhe following concept, although not

new, is less well-known. It has been introduced (with the name palm tree)

in [Tarjan '72] in connection with depth-first searches in graphs. In this

thesis we will name it a palm and use it to investigate the LU-decomposi­

tion of associated matrices. An undirected graph G"" (V,E) is called a

if the edge set E consists of two disjoint sets E ""E1 u E2 such that

i) the graph T = (V,E1) is a rooted tree,

ii) if (v,w) E E2 then vis an ancestor or descendant of win T.

The edges of El and E2 are called tree edges and fronds respectively. Hence

a palm may be obtained from a rooted tree T by appending a number of (pos­

sibly zero) fronds; a frond is always an edge from a vertex to one of its

ancestors in T. A palm is defined to be an undirected graph, whose

connected components are palms.

2

If v is a vertex of a palm or a tree, then A (v) and V (v) denote the sets

of ancestor, respectively descendant vertices, A(v) denotes A(v) u v and

V(v} denotes V(v) u v.

For a graph G = (V,E) with lvl n, an ordering a of Vis a bijection

a {1,2, •H,n}-+ V. G (V,E,a) denotes an ordered g1'a:ph.
a

Given a graph G = (V,E), let P be a partition of V, Le. P = {Vl, ... ,Vm},
m

such that V = U Vs and Vs n Vt = ~ for s ,I, t. The quotient gr•a:ph of G
s=1

with respect to P, denoted by G/P is the graph G/P = (P,E), where

(Vs, Vt) E E if and only if vertices v E Vs and w E Vt exist, so that

(v,w) EE, Obviously: G (strongly) connected implies G/P (strongly) con­

nected.

1.4. Connection and decomposition graphs

Let G = (V,E,a) be an ordered graph and define E' =Eu {(v,v) Iv EV},

Suppose a map q: E' -+ :JR is associated with G. The numbers q((v,w)), as­

sociated with the edges (v,w), may be arranged in an n x n matrix Q (with

11"' lvll:

q((a(i),a(j))) if (ci(i),a(j)) EE'
:::: i,j :::: n,

0 otherwise

'l'he graph G is then the connection gr•a:ph of Q,

The coefficients qij with (et (i) , a (j)) EE' will be called structurally non­

zero, even though their value may happen to be zero, Whenever henceforth

a coefficient is said to be non-zero, we will always mean structurally non­

zero,

Conversely, with each square matrix a connection graph is associated in the

following way. Let Q be an n x n matrix, Define the vertex set V by

V = {1,,.,,n} and the edge set Eby:

(v,w) EE iff 4v,w # 0

Let moreover the ordering a be defined by a(i)

graph G = (V,E,a) is a connection graph of Q.

i (1:::: i:::: n), Then the

13

Generally, a connection graph G"' (V,E,a) is directed, However, if Eis

such that (v,w) EE iff (w,v) EE, G will be considered to be undirected,

In that case an associated matrix Q is structurally symmetric, Le. q .. ,f, 0
l.J

iff q .. ,f, 0. If an undirected graph is not connected, then the associated
J l.

(structurally symmetric) matrices are decorrrposable, If a directed graph is

not strongly connected, then the associated matrices a.re reducible. If the

matrix Q is reducible or decomposable, then the associated set of equations

may be replaced by a number of smaller sets [Varga '62].

For a vertex v of the graph G = (V,E,a) the elimination graph Gv is defined

as G = (V\{v}, E(V\{v}) u D(v)l, where D(v) = {(x,y) J (x,v) EE,
V

(v,y) E E, x ,f, y, (x,y) I- E}, D(v) is called the deficiency of v in G,

Let now G (V,E,a) be the connection graph of a matrix Q. Partial decompo-

sition of Q with only its first pivot gives:

Since q~j 'f O iff (qij 'f O or

the elimination graph Ga(l)

deficiency D(a(l)) consists
r

qij 'f o.

(qi1 ,f. 0 and qlj ,f 0)), it is easily seen that

is precisely the connection graph of Q~. '!'he

of those vertices (a(i),a(j)) with q,. = 0 and
l.J

Let G~ = G ~ (V,E,o.) and for i :.-;; 1,,.," .. ,n-1 let Gibe recursively defined by:

G1 is the elimination graph (Gi-l) (')" Thefill-inD (G) is defined by
a i a

n-1
U Di-l (a(i)) ,

i"'l

where Di-l (a (i.)) is t.he deficiency of a. (i) in Gi-l. The deaorrrposit·ion graph

G* is defined by: G*"' (V ,Eu D (G) ,a). If G = (V ,E,a) is the cormecti.on graph a a a.
of an n x n matrix Q with LU-deco!llposition Q = LU, then t.he decolllposition

* graph G0 is the connection graph of L + U [Rose and Tarjan '75]. The fill-in

D0 (G) consists precisely o:E those edges (a(i.l ,a(j)) which satisfy

J?or an exam:ple see figure 3.

14

'!'he fill-in is characterized by the following lemma:

LEMMA 2: Let G = (V,E,a) be an ordered graph. Then (v,w) is an edge of

* Ga = (V ,Eu Da (G)) if and only if there exists a path

v = v0 , ••• ,vk =win G such that a-1 (vi) < minimum(a- 1 (v),a-1 (w))

for i ~ 1, •.. ,k-1.

A proof of this lemma may be found in [Rose and Tarjan '75].

In Section L2 we have introduced the notation rQ and cQ. Let G

be the connection graph of the matrix Q with LU-decomposition Q

(V,E,a)

LU.

□

Suppose v is a vertex of G with a(i) = v. A notation equivalent to rQU)

is:

< i

-1 -1
3wEV Ca (w) < a (v) and (v,w) EE] .

Similarly cQ(i) < i is equivalent to:

-1 -1
3wEV [a (w) < a (v) and (w,v) E E] •

Hence we know from Lemma 1: if for all v EV with a-1 (v) 1' 1, there exists
-1 -1 a w E V with a (w) < a (v) and (v,w) E E and (w,v) E E, then both env(L)

and env(U) are dense; that is to say, the envelopes of Landu do not con­

tain any zero element.

1.5. Consistent orderings

Let G0 = (V,E,a} be the connection graph of an n n matrix Q. Let B be

also an ordering of V. The graph GS= (V,E,S) is the connection graph of

the matrix Q:

(L6)
q (($ (i) , s (j)))

0

if (f3(i),/3(j)) EE
(1 s; i, j s; n) •

otherwise

-1 The orderings a and S together determine a permutation TI= S a of

{1, ••• ,n}. A permutation matrix associated with TI is defined by:

(P) .. ""6. (.)
1J 1,TI J

(1 '.". i, j '.". n)

where 6 is the Kronecker delta. The following relation holds:

t
or in other words, Gfl is the connection graph of PQP.

Proof:

(L7)

t
(PQP) ij

t
(PQP) ij

n

r 6i,w(I) qlk 6j,w(k)
k,l=1

q
Ci

q -1 -1
• (i) ,. (j)

Since Ga is the connection graph of Q, we know that

""q((f.l(i),fl(j))) if (f.l(i),fl(j)) c E

(LB)
(j)

0 otherwise.

Since G13 is the connection graph of Q we know that (L6) holds. Hence we

conclude from (1. 7), (1.8) and (1.6):

15

□

Suppose the matrix Q has an LU-decomposition: Q =LU.The fill-in (G) and

* the decomposition graph Ga depend upon the ordering a of v. Usually, LU-

decomposition of the permuted matrix PQPt results in triangular factors

essentially different from L and U. l'hat is to say, the triangular factors

of PQPt can not be obtained from a suitable permutation of the rows and

columns of Land U. For instance, the number of non-zero coefficients in

the triangular factors of PQPt usually differs from the number of non-zeros

in Land U. However, if PLPt is lower triangular and PUPt is upper trian­

gular, then

is an LU-decomposition of Q == PQPt.

An ordering !3 of V will be called consistent with a if all edges (v,w) of

* the decomposition graph Ga = (V ,Eu (G) , o:) satisfy:

16

-1 -1
a (v) > a (w) j_ff

-1 -1 B (vi > B (w) •

We will prove:

LEMMA 3: Let = (V,E,a) be the connection graph of the matrix Q with LU-

decomposition Q = LU. If the ordering Bis consistent with a and P

is the permutation matrix associated with 1T = 1:i'-1a, then PLPt and

PUPt are lower and upper triangular respectively.

t in order to prove th 2 t prnt Proof: (PLP)1T(i),n(j) = flij' hence ~ ~ is lower

triangular, it suffices to show:

(1.9)

From ~ O, assuming a(i) = v and a(j) w, it follows that

-1 -1
a. (v) > a (w) •

Because Bis consistent with a we conclude

Hence n(i) = (i) > B-1a(j) = n(j). Herewith (1.9) is proved. In the

same way it is shown that PUJ?t is upper triangular. []

LEMMA 4: If PLPt is lower triangular and PUPt upper triangular, then the

expressions to be evaluated during the decompositionsofQ and PQPt

respectively, both contain the same non-zero terms.

(1.10)
(i) ,rr(j)

fl' - fl ' n(i) ,1T(j) - ij (i) 1T(j)
(1 $ i, j $ n) •

When decomposing PQP\ the computation of flij requires the evaluation of

(1.11) (
j-1)

q '. . - I fl : t ut' . ; u ' ..
1J t=1 1 J JJ

n

I
t=i
tfj

From (L10) we see that the righthand side of (L11) may be rewritten as

-1 -1
1T (i),rr (j)

fl -1 -1 u -1 -1) I u -1 -1
1T (i) ,11 (t) 1T (t) ,11 (j") 11 (j) ,1T (j)

17

-1
Substituting k for 1r (t) in the above we get

(q -
1T-1 (i) ,TI-1 (j)

n

2 Q, -1 .
k=1 1r (i) ,k

k;&,r-1 (j)

u -1) / u -1 -1
k,n (j) TT (j),n (j)

which is the expression fort -l _1 . Hence the expression to be
1T '(i),TT (j)

evaluated to compute l'-'.. contains (apart from the order) the same non-zero
J.J

terms as the expression for 9, _ 1 _ 1 . In the same manner we can prove
1T (i) ,TT (j)

that the expressions for u!. and u _1 _ 1 both contain (apart from
l.J 'lf (i) ,1r (j)

the order) the same non-zero terms. D

An immediate consequence of Lemmas 3 and 4 is:

corollary: Let a and S be the orderings associated with the matrices Q and

PQPt respectively (l? being a permutation matrix). If Sis con­
t

sistent with a then the LU-decompositions of Q and PQP both re-

quire the evaluation of the same expressions with non-zero terms.

1.6. Preserving palms

An ordered undirected graph G '" (V,E,a) is a pvesewing palm, if it is a

palm with the property: v EV, w E V(v) + a-1 (v) > a-1 (w). Let G (V,E,a)

be the connection g-raph associated with then x n matrix Q and let Q have

* an LU-decomposition: Q = LU. If the decomposition graph Ga = (V ,Eu Da (G) ,a.)

is a preserving palm, then we can show that

1 sisn, a(j) EV(a(i))

(L 12)
j (qji - I .Q,jt uti)

a(t)d)(a(j))

l',,. ujj 2 R,jt utj (1 s j s n)
JJ j a(t)EV(a{j))

Since Lis lower triangular and is the connection graph of L + U, we have

(L 13) 'f' j and ,j O iff i j and (a(i) ,a(j)) E E u (G) ,

18

* Since G0 is supposedly a palm, we conclude from (1.13)

(1.14) (i~j and R. •• ,o)-+ (i>j and [a{i) €V(a{j)) or a(j) €V(a(i))]l.
l.J

However, since G* is a preserving palm, it follows from (1.14)
a

(1.15)

The matrix Q is structurally symmetric, therefore:

Hence (1.15) gives:

(1.16) (i ~ j and uji ~ 0) -+ a(j) E V(a{i)) •

Finally, from (1.15) and (1.16) together with (1.2) we conclude that (1.12)

holds.

19

CHAPTER 2

PARTITIONS

In this chapter we will investigate certain partitions of a matrix Q (with

LU-decomposition Q = LU) into blocks (which are again matrices). Associated

with such a partition is the quotient g-raph obtained from the corresponding

partition of the vertex set of the connection graph of Q,

For undirected graphs, corresponding to structurally symmetric matrices, we

introduce preserving partitions and describe how to compute the coeffici.ents

of Land U, Perfect preservi.ng partitions will be shown to have the ni.ce

property that the corresponding computations to obtain the coefficients of

Land Udo not require sparse matrix algorithms to avoid arithmetical opera­

tions with zeros. It will be proved that with every ordered undirected graph

an (even proper) perfect preserving partition is associated. Hence, irre­

spective of how well the rows and columns of a matrix are ordered, the coef­

ficients of its triangular factors can be obtained with optimum efficiency

by using only envelope algorithms, For directed graphs similar, though under

certain circumstances less strong re.sults hold,

The last section of this chapter deals with nested dissection '73],

a well-known way of finding a suitable ordering for a connection graph. It

is shown that if nested dissection is used to construct an ordering, then

finding a proper perfect preserving partition is trivial" Hence, in order.

to implement a nested dissection decomposition of a matrix with optimum

efficiency, no sparse matrix codes are needed; envelope algorithms suffice,

In this chapter it is assumed, unless stated otherwise, that G"' (V,E,a) is

the ordered undirected connection graph of a structurally symmetric n n

matrix Q with LU-decomposition Q"' LU, where Lis lower triangular and U is

upper triangular,

20

2.1. Preserving partitions

A block-matrix is a matrix whose coefficients are matrices, called blocks.

All formulas and results derived thusfar apply to block matrices with square

matrices as diagonal blocks. A block is considered to be zero if it is a

zero matrix.

Let P = {v1, .•. ,Vm} be a partition of V. Let denote the matrix obtained

from Q by deletion of all rows i for which a(i) 4 Vr and all columns j for

which a(j) i/. Vs. Define:

(2.1) Q

(Q will be considered to be an n x n matrix.) Moreover, let 13 denote the

unique ordering { 1, ... , n} -► V determined by

i) v E Vr,
-1 -1

w E Vs , r > s + 13 · (v) > 13 (w)

(i,e. 13 orders first the vertices in Vl, next the vertices in V2, ...

and so on);

-1 -1
v,w c: Vr, a (v) > a (w) iff

-1 -1
13 (v) > 13 (w)

(Le. within every Vr the vertices are ordered according to a).

Hence the rows and columns of Qare ordered in such a way that G13

is the connection graph of Q. Therefore we know from Section 1.5:

where Pis the permutation matrix associated with the permutation~

(V,E,/3)

The ordering a : { , , , • ,m} + P is defined by a (r)

satisfies the following properties:

Vr (1 ~ r ~ m). If P

i) the quotient graph

Vs E V(Vr) + r > s);

I P) 0 is a preserving palm (Le,

ii) Vs E V(Vr) + a-1 (v) > a-1 (w) for v E Vr, w E Vs,

t.hen P will be called a pr,eserv'i:hg partition o:r. p-partition for sho:r.L

21

LEMMA 5: If P is a p-partition, then S as defined above is consistent with a.

Proof: We must show

-1 -1 +
V () ,) : a (v) > a (w) + v,w EE uDa(G

(w) "

Assume that (v,w) EE u Da(G). If v,w E Vr then property ii) of S gives:

-1
(v) > S (wl

If, however, v E Vr, w E Vs (r ,j s) then (because G* / P is a palm)
a

Vs e: V(Vr) or Vr e: V(Vs). Assuming that Vs E V(Vr), we know from property

ii) of a p-partition: a -i (v) > a -l (w). From property i) of a p-partition we
-1 -1 know r > s; hence property i) of S gives: S (v) > S (w).

Now we have shown:

In the same way we may show:

(v) J "

Hence

[a -l (v) > a -l (w) and (v) >
-1 -1 -1 -1 (w)] or [a · (wl > a (v) and S (w) > S (v) J

which is equivalent with:

(w) •

Because Sis consistent with a we know from Lemma 3 that L PLPt and
~ t ~ t ~, U "' PUP are triangular factors of Q "' PQP • The matrix Q J.s in (2. l.)

partitioned into blocks; the matrices Land U may be partitioned in the

same way,

1

L

Lml L
mm

UH Ulm

u PUPt

u
llllll

[1

22

Obviously the matrices Lrr and Urr (1 $ r $ m) are lower and upper triangu­

lar, respectively.

The connection graph of the block matrix in (2.1) is GIP. If P is a p-par­

* ti tion, then (G / P) 0 is a preserving palm. Hence we may apply (1. 5) and

(1.16) to the block matrices Q, Land U and the ordering a:

(rt sand Lrs #OJ ➔ Vs E V(Vr) •

Let us furthermore consider the computation of the matrices:

Defining

L ms

Qrs

Qsr

Qrs -

= Qsr -

we get from applying

Writing

L ss

L U rs ss

and (U , u +l , ... , U) • ss s,s sm

I 0 ts VtEV(Vs)

I Lrt
Vtc:V(Vs)

I Lst utr
VtEV(Vs)

(1.12)

1 $ s $ m, Vr " A (Vs) .

A(Vs) = {Vsl, ••• ,Vsk}

it follows from Section 1.1 that partial decomposition of Q6 defined by

Qss sl sk

Qs
Qsl,s

0

Qsk,s

with Q5 s a block pivot gives:

where

L
s

L
s

L ss

,s
and

23

Because ~ Usr ~ 0 for Vr i A(Vs), all non-zero coefficients of Land U

can be obtained by (partial) decomposition of the matrices (1 s s s m).

Furthermore, the matrix and hence L and
s

can be computed once and

are computed for all t with Vt E V(Vs).

Summarizing: The matrices L and U may be computed as follows. '.t'ake a vertex

Vs for which all matrices and Ut with Vt E V(Vs) have been computed and

compute and Us by partial decomposition of Qs• The computations must

start with a leaf vertex, for instance (but not necessarily) V1; the com­

putations end with the decomposition of Qm• All non-zero coefficients of L

and U are contained in the matrices and us (1 s s s m). The above process

will be called decomposition of Q based on its p-partition P.

In the following sections we will show that sparse matrix algorithms to

compute Land U are always equivalent with a decomposition based on a p­

partition satisfying special properties.

2.2. Perfect preserving partitions

A sufficient condition for the graph G that env(L) and env(U) are dense is

formulated at the end of Section 1.4. We will now formulate a condition

under which the envelopes of and (encountered during a decomposition

of Q based on a p-part.ition) are dense. ~'i.rst we will introduce the follow­

ing definition. A part.it.ion P"" {Vl, .•• ,vm} of Vis called perfect if for

all v E: Vs (1 s s 0:: ml with a -l (v) ,f min{a-l (wl [w E Vs} there is a w E Vs

such that

24

i)
-1 -1

a (w) < a (v) ,

ii) there is a path v

h = 1, ... ,k-L

-1 -1
win G with a (vh) < a (w) for

Perfect preserving partition will be abbreviated to pp-partition. We will

now prove:

LEMMA 6: Let P = {V1, ... ,Vm} be a pp-partition of v. Let Ls and 0 8

(1 s s s m) be obtained from a decomposition of Q based on P.
'l'he envelopes of L8 and Us are dense.

Proof: Ls and U5 (1 s s ,,; m) are obtained from a partial decomposition of

Q9 • Let the ordering S: {1,. .. , Jvsl} + Vs be induced by a, Le.

a- 1 (v) < a- 1 (w) iff s-1 (v) < s-1 (w) for v,w E Vs. To show that L and U
S 8

have dense envelopes, use is made of the remark immediately after Lemma 1;

it suffices to show

and for 1 < j :;; I Vs I •

Because Qs is structurally symmetric, we know

hence it suffices to show:

cQ (j) < j for 1 < j,,; IVs!
s

Let v E Vs, such that a -l (v) o/- minfo -l (w) w E Vs}. From the definition of

perfect partition, we know there exists aw E Vs such that

and there exists a path v

h "" 1, u. ,k-L From Lemma 2 we conclude (v,w) E E u D0 (G), Herewith we have

shown

(2,3)

i _1 _1 1 OJ
a (v) ,a (wl

Because the coefficients of L8 are ordered according to a, (2,3) is equi­

valent to:

25

(2.4) cL (j) < j for 1 < j :5 lvsl •
s

But from Section 1.2 we know that

(2.5)

and from (2.4) and (2.5) we infer (2.2). □

Suppose P ~ {V1, ••• ,Vm} is a pp-partition of v. The non-zero coefficients

of Land U may be obtained by calculating the matrices Ls and Us (1 :5 s :Sm),

where Ls and Us are the results of a partial decomposition of Qs• From

Lemma 6 we know that all coefficients whose indices belong to env(Ls)_and

env(Us) are non-zero. Hence a sparse matrix algorithm (in which it is ex­

plicitly determined whether a coefficient is non-zero) is not necessary to

avoid arithmetical operations with non-zero-coefficients during the decom­

position of Qs; an envelope algorithm suffices. To compute therefore the

non-zero coefficients of Land U we only need to apply envelope algorithms

to obtain the matrices Ls and Us (1 :5 s :5 ml. But the decomposition of Q

based on a p-partition results in the evaluation of expressions with the

same non-zero terms as any sparse matrix algorithm. Hence the decomposition

of Q based on a perfect p-partition using envelope algorithms results also

in the evaluation of expressions with precisely the same non-zero terms as

any sparse matrix algorithm to compute Land U.

Next we will show that for every undirected graph, i.e. for every structurally

symmetric matrix a pp-partition exists. The trivial partition

T ~ {{a(1)},{a(2)}, ••• ,{a(n)}} could be a pp-partition with the property

* that every vertex of the palm G0 /T {except {a(1) }) has precisely one

successor. To administer in that case all the envelopes of Qs (1 :5 s :5 n),

is essentially the same as to record for every coefficient of Q whether it

is zero or not. There is then no essential difference between a sparse

matrix algorithm and a decomposition based on T. Hence we will introduce

proper p-partitions.

2.3, Proper pp-partitions

First we introduce the following definitions. A paZm will be called proper

if each vertex has either zero or more than one tree-successor. A p-pa:l'ti-

26

tion P of V will be called proper if the palm I P is proper.

THEOREM 1: For every non-decomposable, structurally symmetric matrix there

exists a proper pp-partition.

To prove this theorem, we will. first prove:

LEMMA 7: If G ~ (V,E,a) is an undirected (not necessarily connected) graph,

then there exists a perfect partition P = {Vi,... of V, with

the property that G* / P is a forest of proper palms consistent
et -1 -1

with a, i.e. Vs E V(Vr) + a (v) > a (w) for v E Vr, w E Vs.

Proof We will prove this lemma by induction with respect to n, the number

of vertices in V. The lemma obviously holds for n = 1, because a graph con­

sisting of only one vertex is a proper palm.

Now ass\.lllle that n > 1. Let x ~ a(n) be the vertex with the highest number

* * in G. Let A(x) and A (x) denote the adjacency set of x = a(n) in G and Ga

respectively; let moreover Hbe G(V \ {x}), Le. the graph obtained from G by

removing x = a(n) and all edges connected to x. The ordering of H induced

by the ordering of G will be called u again. From the induction hypothesis

applied to H, the existence follows of a perfect partition P• "' {V1 ••. ,Vm}

of V \ {x}, with the property that / P1 is a forest of proper palms con-

sistent with a P1, •• .,Pz. Let C denote the collection of palms Pj, such

that the vertex set of Pj has at least one vertex in common with A(x). We

will distinguish three cases:. IC I = 0, IC I > 1 and IC I "" 1.

i) ICI = 0. Define P ~ P' u {x}. Obviously Pis a perfect partition of v.
The graph Pt consisting of only one vertex, viz. :x, is a proper palm

consistent with a. From ICI == 0 it follows that A(x) == 0, Hence, from

Lemma 2, A* (x} == !1). Therefore G* / P is a forest of proper palms a .
Pl, ••• ,Pz,Pt, consistent with a.

ii) IC I > 1. Define P == P• u {x}. Obviously P is a perfect partition of

The collection of palms C may be considered as a (disconnected) graph.

The graph Pt is obtained from C by adding {x} to the vertex set of C;
the edge set of Pt is obtained by adding ({x}, Vs) to the edge set of C

for those Vs with a vertex w such that w E (x). Pt is a proper palm

with root {:x} and consistent with a. Obviously G: / P consists of the

* palms Pt and Pj (1 ~ j ~ z, Pj 4 C) • Hence, Ga/ P is a forest of

proper palms consistent with a.

iii) [CI = L The partition P = P• u {x} does not meet the requirements,

because the palm Pt as defined in the preceding case is not proper.

Therefore we have to distinguish this case IC[= 1 from the case

IC[> L

27

C consists of only one palm, say Ps. Let Vt be the root of

the following partition of V: P = {Vl, •• .,Vtu{x}p .. ,VmL

Ps. Define

G* IP con­
a

sists of the palms Pj (1 s j s z, j 'f s) and PS ' where Ps is obtain-

ed from Ps by joining x = a(n) to its root Vt, Ps obviously is a

proper palm consistent with a, To prove that Pis a perfect partition

of V, it suffices (because P• is a perfect partition of V \ {x}) to

show that there exists a vertex w E Vt and a path x = v O, ... , vk = y in
-1 -·1

G with a (vh) < a (y) for h = 1,'°.,k-L Vt is the root of the palm

Ps, which is consistent with a. Let y be the highest numbered verte,t

of l?s, then y £ Vt, :From the definition of C we know that the vertex

set of Ps has a vertex in collllllon with A(x). Let v 1 be such a vertex.

* Because v 1 and y both belong to the same connected component of H0 / P1 ,

-1 -1
there is a path v 1 , .. .,vk y with a (vh) < a (y) for h"" 1, ... ,k-1

y is a path in G.

Proof of 'rheorem 1: The conm:iction graph G"" (V,E,a) associated with a

structurally symmetric, non-decomposable matrix is a connected undirected

graph. From Lemma 7 the existence follows of a perfect partition

* P "" {Vi, ... , Vm} of V, such that Ga/ P is a forest of proper palms, with

the property

D

Because G is connected, G* / P is connected; hence G* / P is a palm. Let the a a
partition elements Vl, ••• ,vm be ordered according to a post-order traversal

of the palm G* / P (Le. of every subtree in the palm, the root is visited
a *

last), and let a denote the ordering a (s) = Vs, then (G0 / P) er is even a

preserving palm.

From the above we conclude, P is a proper perfect preserving partition. []

28

2.4. Construction of a proper pp-partition

The proof of Lemma 7 is constructive. A (worst case) 0 algorithm to

construct a proper pp-partition could be derived from that proof. However,

such a partition may also be obtained in still another way.

Let P = {V 1, ••• , vm} (m > 1) be a proper pp-partition of the graph

G = (V,E,a). It is easily verified that Vm, the root of / P, is a

separator of G, containing the vertices with the highest numbers. On the

other hand, if there is no separator Sc V of G with the property:

I -1
31<kSn [S = {w EV a (w) > k}] •

then P' = {V} .is a proper pp-partition of G.

Proof: G/P' is a graph consisting of one vertex only, therefore it is a

proper preserving palm. 'rhat P• is moreover perfect follows from the obser-

vat.ion that, if v would be a vertex for which no path v = = w

exists -1 -1 -1
for h = 1., ••• ,k-1, then with a (vh) < a (w) < a (v)

I -1 -1 } □ s = {w E V a (w) > a (v) would be a separator of G.

The following construction results in a proper pp-partition. Let initially

P be empty. Determine a minimal separator S of G with the property

>min{a-1(v)} [S = {w EV I a-1 (w) > k}J;

VEV

sis minimal if no other separator with the same property is contained in S.

If no separator with property (2.6) exists, then set S = V. Next add S to P

and apply the above recursively to each of the connected components of

G(V \ S).

With induction to the depth of G / P, it may be verified that P obtained in

this way is a proper pp-partition. Using an O (ml algorithm of [•rarjan '72],

to determine the connected components of a graph consisting of m vertices,

the above construction may be implemented ultimately resulting in an 0

algorithm.

29

2.5. Example

As an example we will use an undirected graph G, with vertex set

V = {1,2, .•. ,16} and ordering a, with o:(i) = i (i = 1,. .. ,16). 'l'he edge set

of G is represented in Figllre 2; an edge is drawn from vertex v to

vertex w if and only if (v,w) belongs to the edge set of G,

Connection graph.

Figure 2

*
2 0 *
3 0 0 *
4 0 0 0 * Symmetric
5 * 0 0 0 *
6 0 0 0 0 ** 7 0 * 0 0 0 0 *
8 0 0 * 0 0 0 0 * 9 0 0 0 0 0 0 *** 10 * 0 0 * ® * 0 0 0 * ·11 0 * * 0 0 0 ® ® * 0 * 12 0 0 0 * 0 * 0 0 0 ® 0 * 13 0 0 0 0 0 0 0 * @ 0 @ * * 14 0 0 0 0 0 0 0 0 0 0 0 0 0 * Hi 0 0 0 0 0 * 0 0 * ® ® @ * 0 *
16 0 0 0 0 * ® * 0 @ @ @ @ @ ·fol**

1 2 3 4 5 6 7 !l 9 10 11 12 13 14 15 16

* Denotes non-zero coefficient
0 Denotes zero coefficient
® Denotes fill-in

Figure 3

30

Figure 3 shows the zero/non-zero structure of an associated matrix. Both

constructions as outlined in the preceding section result in a partition

P = {Vl, ... ,V9} with V1 = {2,7}, V2 = {3,8}, V3 = {9,11}, V4 = {4},

VS= {1,5,6}, V6 = {10,12}, V7 = {13,15}, VB= {14}, V9 = {16}.

* The graph Ga/ P is depicted in Figure 4; Figure 5 shows the according to P

reordered matrix. The decompcsition based on P proceeds as follows:

1) decompose

q2,2

q7,2 ,7

Qi 0 q9,7

qll,2 0

0 ql6,7

with the first two pivots,

Jl,2,2

!l7,2 Jl,7, 7

Ll 0 9,9,7

9,11,2 9,11,7

0 9,16,7

2) decompose, in the same way,
r

Q2.

3) decompose

q9,9 + ,9
2

+q9,9
l 2

9 +qll,9 +qll,9

Q3
2

ql3,9

q15,9
1

q16,9

0

0 0

0 0

giving

and

0

1
q9,9

1
q11,9

1
q16,9

1
qll,11

1
q16, 1.1

with the first two pivots

1 2
qll,11 +qll,11 +qll,11

2
0 q13, 11

0 0

1
q16, 11 0

with the first two pivots, giving

giving

0

0

and

0

4)

5)

6)

7)

31

£9,9

£ £11,11
3

11,9 q13,13

\3,9 213,11
and

3 3
L3 q15,13 ql5,15

.Q,15,9 .Q,15,11
3 3

q16,13 ql6,15 ,16

.Q,
1.6,9 216, 11

Note: the superscripts of the matrix coefficients refer to the step in

which they were computed.

decompose Q4 with its first pivot only;

decompose Qs With the first three pivots;

decompose Q6 with the first two pivots;

decompose

2 3 6
q13,l3 +q13,13 +q13,13 +q.13,13

3 6
,13 +ql.5,13+q15,13

3 5 6
q1!5,15 +ql.5,15 +ql.5,15 +q15,15

3 6
q.1.6,13 +q16,13

3 5
,15 +q16,15 +q16,15 + ,15

witl1 tj1e first two pivots, giving

.11,13,13

.11,15,13 215,15
and

,13 Jl,16,15

0

8) decompose

QB , [414,14

ql.6,14 a]

with its first pivot, giving

['1,.1,l
= Jl,16,1.4

and

32

r ~ {16}

Quotient graph of a pp-partition

2

7

3

8

9

11

4

5

6

10

12

13

15

14

16

r root

*
**
0 0

0 0

0 *
* @

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 *
2 7

*
0

@

*
** 0 **

:tree-edge

frond

fill-in

Figure 4

Symmetric

* @ * * 0 0 0 0 * 0 0 0 0 0 * 0 0 0 0 0 ** 0 0 0 0 0 0 ** 0 0 0 0 ** @ ** 0 0 0 0 * 0 0 * @ * 0 * @ @ 0 0 0 0 0 **
0 0 * @ 0 0 0 * ® @ **
0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 @ @ 0 0 * @ @ @

@ * * *

3 8 9 11 4 1 5 6 10 12 13 15 14 16

Denotes non-zero coefficient
Denotes zero coefficient
Denotes fill-in

Figure 5

33

9) decompose

with its first pivot, giving

The coefficients of L which are not computed in the above steps, for in­

stance i 14 11 , are zero. Note that steps 1, 2, 4, 5 and 8 are independent

of each other and may be done in any order or even si.mul ta.neously. Another

order of the steps corresponds with another post-order traversal through

2,6, Non-symmetric equations

'rhe preceding sections dealt with structurally symmetric matrices. If the

set of equations to be solved is not structurally symmetric, then the as­

sociated connection graph is directed. Analogous, though less strong,

results will be shown to hold,

The matrix Q, with triangular decomposition Q"' LU, will be assumed to be

such that its connection graph G (V,E,a) is strongly connected (otherwise

we would in fact be dealing with a number of sets of equations), As in the

symmetric case, we may try to find a separator Sc V with the property:

3 [S={w£ VI a-1 (w) > k}].
l<k,;n

Xt may be proven (with Lemma 1 and a reasoning as we used in Section

2, 4) that if emr (L + U) contains zero elements, then such a separator

exists. In the symmetric case, the variables associated with the con­

nected components may be eliminated in arbitrary order. 'rhis is not allowed

in the non-symmetric case as may be seen as follows. Consider the graph of

Figure 6a with ordering a defined by: a(i) = i (i = 1, .. .,5), 'rhe separa­

tor S == {5} yields the strongly connected components Vl == {1,3} and

V2 = {2,4}. Eliminating first the variables associated with V2 leads to an

elimination order which results in triangular factors different from Land

U; this may be seen in figure 6b, where the vertices are renumbered accord­

ing to this new ordering. Figure 6c shows that eliminating first the

variables associated with Vi also leads to other triangular factors,

34

5

3

6a

5

2
6c no fill-in

directed edge

edge in two directions

---➔ fill-in edge

Figure 6

35

To guarantee obtaining the correct triangular factors we modify the con­

struction of a partition in the following way. A separators, consisting of

vertices with the highest numbers, is looked for with the further property

that the vertices in each strongly connected component are consecutively

numbered. Applying this rule recursively to each of the strongly connected

components, we obtain a partitioning P"' {Vl, ••• , Vm} of V. The matrix Q may

be partitioned into blocks:

Q

~

where Qrs denotes the matrix obtained from Q by deletion of all rows i for

which a(i) i Vr and all columns j for which·a(j) i Vs. (Note that contrary

to the symmetric case, the rows and columns of Qare not permuted to obtain

the partitioned matrix.)

Let the matrices Land Ube partitioned in the same way. Defining

it follows that partial decomposition of

Qss Qs,s+1 Qsm

Qs "'
Qs+l,s

0

~s

with Q as block-pivots gives ss

Qs L us + Qr
s s

where

L ss

Ls ""
Ls+l, s

and us (U ,U +1, ••• ,U) ss s,s sm

L ms

36

(see (1. 2) and formulae for partial decomposition) • Hence all coefficients

of Land U can be obtained by (partial) decomposition of the matrices

(1 5 s 5 m) . The matrix Qs and hence Ls and U5 can be computed once Lt and

Ut are computed for all t with 1st< s. Note that contrary to the symme­

tric case, the order of computing the matrices Qs is strictly determined.

If the partitioning Pis obtained as outlined above, it may happen that

env(L5 +Us), for some s (1 5 s 5 m), contains zero In that case P

may be refined. Let env + Ut) contain a zero element. Then the section

graph G(Vt) contains a separator S', with the properties that S' contains

vertices with the highest number in Vt and the associated strongly connected

components all contain consecutively mimbered vertices. By removing Vt from

P and adding S' and vertex sets of the associated strongly connected compo­

nents, we get a refined partition.

Let be a partition which needs not be refined any further. 'I'hen the com-

putation of Land U may be based (in the above described way) upon in

such a way that envelope algorithms suffice to avoid arithmetical opera·­

tions witl1 zero coefficients.

Note that contrary to the structurally symmetric case, Ip'' is not a palm

or another type of a nicely structured graph. '.['herefore non-symmetric

matrices exist for which there is hardly any difference between sparse

matrix decomposition and decomposition based on a partition constructed in

the above way.

2.7. Nested dissection

In Section 2 .4 we have pointed out how to construct a proper pp-partition

for a given matrix Q. In this section we will show that if a so called

nested dissection ordering is used to arrange the rows and columns of a

mat.rix, then a proper pp-partition is obtained trivially. Hence, to im­

plement nested dissection decomposition, no sparse matrix codes are needed

for effi.ciency; envelope algorithms suffice.

The set of equations Qw f is equivalent with

w) f

37

where P1 and P2 are permutation matrices. If P1 ~ P2, symmetry is preserved.

Many papers (see [Duff '77]) are devoted to the subject of choosing the

permutation matrices in such a way that some minimum or other is obtainecL

For instance, one may try to minimize the profile, envelope or fill-in of
t P1QP 2 . Unfortunately, these minimization problems are proven or conjectured

to be NP-complete [Papadimitriou '76, 'l'arjan '76]. We are i.n agreement with

the following quotation from [Tarjan '76]: "In view of the NP-completeness

results, we cannot hope to solve the general problem of effi.ciently imple­

menting sparse Gaussian elimination. We can only try to solve the problem

for special cases."

One such special case is the class of symmetric matrices arising in two or

three dimensional finite element equations. For these problems the nested

di.ssection ordering has been developed [George and Liu '78oct, George 1 73],

which has been proven to be a good ordering e.a. '79]. We will show

that a proper pp-partitlon is trivially obtained for such an orderlng.

A nested d·issection ordering of a connected undirected graph G "' (V, E) is

formally defined as follows [George and Liu '78 oct]. First, an algorithmic

definition of a nes"/;ed diaaect·ion pa:.Ptitfon P of V is:

0) Initially, set P empty.

1) Choose a minimal separator V' of G; if G does not contain a separator

then set V' ~ V. Add V' to P.
2) If V ~ V', then apply step recursively to each of the connected com-

ponents of the section graph G (V \ V') •

The set P"" {v1 •.. ,vm} thus obtained is a partition of V, a nested dissec-

ti.on partition of v. A rooted dissection tree T (P,E) is associated with

P, where Eis defined as follows. Let Wr (1 :Sr :S ml denote the edge set of

the section graph separated by Vr; then (Vr,Vs) E f if and only if Vs has

been chosen as the separator of one of the connected components of the

secti.on graph G (Wr \ Vr) ; Vr is in that case the predecessor of Vs. An

ordering a: { 1, • • . n} + V is called nested dissection ordering if it is

consi.stent with the nested dissection partition Pin the following way:

Note that in finding a nested dissection ordering, both a part.it.ion of Vis

created and a consistent ordering·on it is chosen; whereas in finding a

38

proper pp-partition an ordering should be given beforehand, them a partition

is constructed, We will now prove:

'l'HEOREM 2: Let a be a nested dissection ordering consistent with the nested

dissection partition P = {Vi, •.• , Vm}, then P .is a proper pp­

partition associated with ex.

Proof: Let T be the dissection tree associated with P. Because Tis a tree,

the elements of P may be arranged in such a way that cr: { 1,,., ,m} + P de-

fined by cr(r) Vr is an ordering of P with the property:

Vs E V(Vr) + a -l (Vr) = r > o -i (Vs)

It is easily verified that G* / P is the tree with some fronds added to
a

it; hence / P is a palm and / P) a is a preserving palm, Hence P is a

preserving partition. Moreover, every vertex of T has either zero or more

than one successor, hence I P is a proper palm and therefore P is a

proper p-partition. From the construction of P and the connectedness of G

it follows that Pis a perfect partition, Hence Pis a proper pp-partition

associated with a,

Corollary l: If a given algorithm determines a nested dissection partition

and ordering, then no other algorithm to find a proper pp­

partition associated with this ordering is requi.l;,ed.

□

Corollary 2: To implement a nested dissection decomposition of a matrix, no

sparse matrix codes are needed for efficiency; envelope algo­

rithms suffice.

It is well-known [Hoffman e .a. '73] that nested dissection applied to so

called regular n x n grids may lead to an (asymptotically) optimal ordering

(in the least-arithmetic or fill-in sense). In view of our Corollary 1

above, we do not support a quotation from '74]: "In order to

actually benefit from these orderings, it is necessary to use general

sparse matrix techniques", A similar remark appears in [George and Liu • 78

A1.1. known implementations of nested dissection decomposition use, at

least for parts of the matrix involved, sparse matrix techniques, requiring

considerable storage overhead for pointers etc, ' 77 J , In Chapter 4

we will show how to implement nested dissection decomposition for n" m

grids without storage overhead, using the concept of substructures.

39

CHAPTER 3

FINITE ELEMENT EQUATIONS

In applications of the finite element method (to the solution of partial

differential equations) one often encounters large, sparse sets of linear

equations. Many papers (see [Duff '77]) deal with the problem of solving

those finite element equations efficiently. A way to avoid large sets of

equations is the use of the substructuring technique, In this chapter first

the finite element method with the drawbacks of its traditional organiza­

tion is outlined and next we discuss the relation between substructuring

and perfect preserving partitions.

3.1, outline of the finite element method

We will outline the finite element method only briefly, since proofs and

details may be found elsewhere [Strang and Fix '73, Zienkiewicz '77].

Suppose the problem to be solved is finding the function; which minimizes

a given energy expression:

(3 .1)

where A is a self-adjoint differential operator, van element from a function

space H with domain ri, and (.,.) denotes the inner product ·in that space. A

finite element solution is obtained as follows: the function; is approximated by:

(3. 2)

where the ip1 are certain functions in H, called shape functions. Next the

constant coefficients wi will be determined so that (3.2) minimizes (3,1),

Substitution of (3.2) in (3.1) yields:

(3.3)

40

Defining the matrix Q by: qij = (Aqij, , was the vector consisting of the

coefficients wi and the vector f by fi = (f,<pi), (3.3) may be written in

matrix notation as:

(3.4)

If Q is a symmetric matrix, then (3.4) obtains its minimum for w satisfying:

(3.5) Qw = f •

Formula (3.5) shows a set of n linear equations with n unknowns, which may

be solved for w. In most applications Q is a positive definite matrix.

In a similar way one can even solve differential equations of quite general

type: solve;;, a function in the function space H, from

Aw= f

where A is a differential operator. A way to obtain an approximate solution

is the following. Choose a set of n test functions 1/Ji EH (i = 1, ..• ,n);

approximate w by a linear combination of shape functions EH:

(3 .2')

and require

(1 s; i s; n) •

Substitution of (3.2') in the above gives

n
(3.3') 2 (A<pj

j=l

Defining the matrix Q by,

(f,ljJ.)
• 1.

= (Aqi.

(1 ;;; i s; n) •

, was the vector consisting of the
J

coefficients wi and the vector f by fi = (f,lj!i), (3.3') may be written in

matrix notation as

(3. 5'}

Again (3.5') shows a set of n Ii.near equations inn unknowns. These equa­

tions are not necessarily symmetric or positive definite. We will not

address the question under which conditions (3.2) or (3.2') is a reliable

approximation of w,

41

The domain 11 of His in finite element terminology usually called structure.

The matrix Q, respectively vector f, will be called structure matrix,

respectively structure vector (in the literature often called stiffness

matrix and load vector, respectively).

In order to obtain the shape functions characteristic for the finite ele­

ment method, fl is divided into a finite number of elements. Each shape

function is now chosen in such a way that its support (Le. that part of n
where it is different from zero) consists of a small nmnber of elements.

The choice of the elements and their shape functions is determined by the

problem to be solved.

Let lie(i), for l :s: i :s: k0 , denote the indices of the shape functions whose

support includes a certain element EL The k x k matrix Q0 is defined by,
e e

where (.,.)e denotes the inner product restricted toe. Qe will be cal.led

element matrix.

If Ce denotes the so called connection mat1>ix defined by,

where o is the Dirac delta function, then Q is obtained by "assembling" the

element matrices Q8 as follows,

Q

In an analogous way the element vectors f 6 and structure vector .f may be

computed,

Because the support of each shape function is restricted to only a few

elements, many coefficients of Qare zero. In the finite element method the

shape functions are usually chosen in such a way that the coefficients wi

in (3.2) have obvious physical interpretations; they may be identified with

42

the values of w or its derivatives at particular element. pcsitions, usually

called nodes,

3.2. Traditional organization

In the actual computations the following consecutive steps are usually en­

countered:

1) choice of element types (i.e. shapes of elements and k.ind of shape

functions) t.o be employed,

2) mesh generation: division of the structure in elements,

3) node numbering: determination of the order in which rows and columns of

the structure matrix are arranged,

4 a) computation of element matrices,

bl assembly of element mat.rices into the structure matrix,

c) computation of the structure vector,

5) computation of the solution vector,

6) computation of results determined by the solution vector.

Steps 4a and 4b are usually not carried out stri.ctly consecuti.vely, but as

follows, as soon as an element matrix is computed, it is assembled into the

already partially formed structure matrix,

As steps 1, 4a and 6 depend upon the specific problem to be solved, we will

in this thesis only be concerned with, mesh generation, node numbering,

assembly and solution of the equations. First we will discuss some problems

that are encountered when the finite element computations are organized .in

this traditional way,

The partitioning of a structure in elements results in a mesh for that

structure. Mesh generation is an impcrtant aspect of finite element calcu­

lations. The shape and number of elements have to be chosen, Irregular

structure boundaries must be approximated by element boundaries, The accu­

racy of the calculations depends upcn certain mesh characteristics, such as

the slenderness of the elements and Fix '73]. Specifying the mesh

often involves much work, in particular if the mesh is irregular and con­

tains many nodes. Therefore, so called mesh generators [Zienkiewicz and

Phillips '71, Schoofs e.a. '79] have been developed, i.e. programs generat­

ing the necessary geometrical. input data for finite element pro<Jrams.

43

Another difficulty is that the numbering of the nodes, i.e. the ordering of

rows and columns of the structure matrix Q affects the efficiency of the

solution process [George '71]. A poor numbering results in triangular

matrices Land U (defined by Q LU), many coefficients of which are non­

zero, whereas a good numbering results in much sparser Land U, thus re­

ducing the required number of arithmetical operations to solve the asso­

ciated set of equations. Several algorithms have been developed to minimize

the bandwidth of a given matrix by rearrang·ing rows and columns [Cuthill

'72]. Unfortunately the determination of the minimum bandwidth turns out to

be an inherently hard problem, because it belongs to the class of so called

NP-complete problems [Papadimitriou '76]. Instead of minimizing the band-

width, it. is usually better to try to minimize the profile '71].

'l'his is however also an NP-complete problem e ,a. '74]. One might.

also consider the fill-in as a measure of efficiency. However, it. has been

shown that minimizing the fill-in is again an NP-complete problem for non­

symmetric matrices and the same is conjectured to be true for symmetric

mat.rices [Rose and 'l'arjan '75],

A final difficulty is that in practice special measures are required to

assemble Q and f, in particular when, for problems with many nodes, the

matrices are too large for integral storage in central memory and the

operating system of the computer does not provide a virtual memory (see

further [Irons '70])"

3.3. Substructuring

A sensible way to solve a problem in general is by dividing it into a

number of simpler problems and then combining the solutions of those

simpler problems to get the solution of the overall problem. To split a

finite element problem, the substructuring techn:i.que [Przemieniecld '68,

Williams '73] has been applied. Because our organizat:i.on of finite element.

calculations is based upon the substructuring technique, we will describe

that technique and prove that. it leads to correct results.

Let Q and f be the structure matrix and structure vector, respectively,

associated with the structures. Let. s consist of elements with associated

element matrices and element vectors . Then the following relations

44

hold (see 3.1)

Q f
e

where C are the connection matrices associated with the elements. Let w
e

denote the solution vector to be solved from

(3.6)

When applying the substructuring technique to compute w one proceeds as

follows. The structure Sis divided into k substructures S1, .. ,,Sk; i.e.

every element of S belongs to precisely one substructure (the prefix sub

will often be omitted). Assembling the elements of Sj (j = 1, ... ,k) results

in the substructure matrix:

and substructure vector

where the connection matrices Cj are obtained from C by deleting the rows e e
which do not correspond with a node in Sj. All nodes of a substructure which

belong to only that substructure are called inter=l nodes; other nodes are

called external. The equations associated with structure Sj

(3,7)

may be arranged in such a way that the external nodes are grouped togetl1er:

the subscripts Ij and Ej referring to the internal and external nodes of

Sj, respectively, Partial elimination of (3,7) with Q . 1 . as block-pivot
IJ J

results in:

(3,9)

where

(3 .10)

and

(3.11)

The matrix Qrs· will be called reduaed structure mat:rix;
J

is said to be

obtained from QSj by eliminating the internal nodes. The vector is

called i•educed structure vector.

Obviously we are not interested in the solutions of the sets of equati.ons

(3.7), but in the solution of (3.6).

Now suppose Ej (1 S j s k) contains m. nodes, nUl!lbered from 1 to m . ; and
k J J

45

suppose U
j=l.

Ej contains n' different nodes, nUl!lbered from 1 ton'. Let for
k

a node fl from Ej (1 s fl s m .) JI j (fl) denote the 11\.ll!lber of fl in U E j' hence
J j=1

1 s Ilj(!l) s n'. Let the connection matrix Cj (1 s j s k) be defined by

1 sh Sn', 1 s fl

The set o:E equa.tions (3. 6) can be arranged in the following way:

Qu m

0

(3.12) 0
Qik Ik QikEk fik

k

I1 Ck Ik l QEj Ej
j=el

Partial elimination of (3.12) with

0

0

as block pivot, results in

46

(3.13)
t k

QEJ' EJ' CJ. - 2
j=1

Ij

From (3 • .10) and (3.11) it follows that (3.13) are the equations

(3 .14)

From (3.14) it follows that w' can be solved after the reduced structure

matrices and vectors have been assembled. If w' is known, then wEj may

be computed from w w' for all J. (1 < J. < kl. Finally, can be Ej
obtained by solving,

(3.15)
Ej

(this last equation follows from (3.8) and the definition of partial decom­

position).

The partitioning of the structure S into substructures implies a certain

ordering of the nodes: the internal nodes of the substructures are eliminat­

ed first, the nodes belonging to more than one substructure axe eliminated

last, Theorder of processing the substructures, i.e. computing t.he reduced

structure matrices and vectors, is irrelevant.

If a substructure, say Sj, consists of a number of elements, it is possible

to partition also that set of elements. 'I'he substructure Sj is then parti-

tioned into substructures j , •.. ,s 2 • To compute the reduced structure

matrix of Sj, instead of element matrices, reduced structure mat.rices

associated with s~ (1 s: h ::: 2) are then assembled together, and so on. Thus

one may create a hierarchy of substructures.

47

Some advantages of using the substructur:i.ng technique are:

- Instead of assembling all element matrices into one large, usually sparse,

structure matrix, a number of smaller matrices is set up"

- Sometimes identical substructures can be distinguished within a structure;

obviously the calculations of identical reduced structure matrices need to

be done only once, thus saving computations.

- Substructures may be analyzed more or less independently of each other;

the effect - on the complete structure - of changes of a substructure may

be analyzed without a need to repeat all computations.

As remarked before, substructuring implies a certain ordering of the nodes

The order of the nodes influences the number of arithmetical operations

with non-zero matrix coefficients required for the elimination. Hence a

possible danger of the substructuring is that an inappropriate

partitioning may lead to far more than the minimum number of arithmetical

operations with non-zero coefficients. With a careful choice of the sub­

structures, however, this danger can be avoided. This may be seen as fol­

lows.

Consider a structure S with structure matrix Q and ordering a. Let

G = (V,E,a) be the associated connection graph, where is the set of

nodes of S. Suppose P = Vl, ••• , Vk (k > 1) is a proper pp-partition as­

sociated with G. Hence Vk is a separator of G; let the connected components

of the section graph G (V \ Vk) be denoted by Gl., •.• ,Gp. All coefficients of

the element matrices are considered to be structurally non-zero. Hence two

nodes (not in Vk) belonging to the same element of S belong to the same

connected component Gj . With each component Gj (1 5 j 5 p) a substructure

Sj of Sis associated in the following way, all elements of S which have a

node in collllllon with Gj together form substructure Sj. '!'he nodes of Sj which

belong to Vk are precisely the external nodes of Sj. By applying the above

rule we do not necessarily obtain a complete partitioning of all elements;

there may be elements, all nodes of which occur in Vk only. Each of these

elements may be considered as a separate substructure; they are substruc­

tures consisting of one element only and without internal nodes. In the

same way ass, its substructures Sj may be partitioned; thus with Pa

hierarchy of substructures is assocJ.ated, Computing reduced structure

matrices, corresponds with partial decomposition of matrices as indicat­

ed in Section 2" 1, From SectJ.on 2 .3 know that - irrespective of how well

48

the equations are ordered - we can find a proper pp-partition. From the

above it now follows that, if the ordering of the equations is such that it

gives rise to the minimum amount of arithmetical operations and/or storage,

substructures can be found which lead to the same mini.mum. Moreover, to

avoid operations with zero coefficients envelope algorithms suffice.

Now, conversely, suppose the structure S, with structure matrix Q and as­

sociated unordered connection graph G = (V,E), is partitioned into a hier­

archy of substructures. With such a hi.erarchy a partitioning P = {Vl, ... , Vk}

of the nodes Vis associated: two nodes belong to the same partition element

Vj i.f and only if they are internal nodes in the same substructure. The i.n-

ternal nodes can be ordered in such a way that the associated env) is

dense. Let a denote an ordering of V, thus induced by the hierarchy of sub­

structures. It is now easily verified that Pis a proper pp-partition for

the graph G = (V,E,a). Hence it. is not necessary to apply the algorithm of

Section 2.4 in order to obtain a proper pp-partition associated with CL,

49

CHAPTER 4

A NOVEL FINITE ELEMENT ALGORITHM FOR N GRIDS

In this chapter we will develop an algorithm for finite element calcula­

tions on a structure with an n x m mesh, that is to say: the structure con­

sists of n rows and m columns of quadrilateral elements, each element com­

prising four corner nodes. The most simple example of such a structure is a

rectangular plate which, in an obvious way, is partitioned into n x m uni­

form rectangular ele.ments (i.e. all elements are of the same size). Note,

however, that by allowing arbitrary quadrilateral elements, the structure

is not necessarily a rectangular plate. Deformations are permitted. It will

be assumed that, as far as numerical stability is concerned, the pivot­

order of the associated set of equations is not of importance. We will

moreover assume that the element matrices are symmetric.

our approach will he based upon the substructuring technique. The obvious

way to dissect a rectangle is to divide it into two rectangles of about

equal size. Hence reduced structure matrices and vectors must then be com­

puted, associated with each of the two smaller rectangles. To compute the

reduced structure matrices, every substructure will in turn be divided into

two (smaller) rectangles, unless the substructure is too small to be dis­

sected, i.e. consists of only one element.

The implementation of this algorithm and the data structures involved will

be described with the programming language PASCAL [Jensen and Wirth '78].

A step-wise refinement approach [Wirth '71 comm.] will be employed to

clarify the procedures developed .

• 1. Procedure ur

'I'he procedure ur produces the reduced structure matrix of a structure R

provided with an n x m mesh. A corner node of Risa node belonging to

precisely one element, hence R has four corner nodes. In an obvious way

four sides of R may be distinguished; they will be identified by left,

upper, and lowe1'. Only nodes on the sides of R are external. A side

will be called external if it contains external nodes only. Not all sides

of Rare necessarily external, On a non-external side at most the corner

nodes are external.

The procedure heading of ur is

procedure ur (n, m, integer; ext:

The type set-of-sides is defined as follows:

~ set-of-s·ides = set of (left, upper, right, lo1.Jer)

The value parameter ext refers to the external sides of R. The parameters n

and m refer to the number of elements; their values equal the number of

rows and co1U!!lns, respectively, The body of ur is:

L procedure ur (n, m: integer; ext: set-of-sides);

~ n1, ml, n2, m2: integer; el, e2: set-of sides;

{m'., mi are the number of elements along the sides of

substructure -i (i = 1, 2); ei denotes the external sides}

3, be9:in if (n = 1) ~ (m"" 1)

'-L ~ compute-element

5. begin divide R into two rectangles Ri and R2, i,e,

end

end;

decorrrpoBe

compute nl, ml, n2, m2, e.1, e2;

ur (nl, m1, el);

ur (n2, m2, e2);

assemble

The procedure assemble performs the assembly of the two (reduced) structure

mat.rices computed in lines 6 and 7, The procedure performs the

partial decomposition of either the structure matrix assembled in line 8,

or the elernent matrix computed in line 4, This decomposition results in the

reduced structure matrix Qr and the decomposed matrices L11 and LEI' where

E denotes the external nodes of Rand I stands for the internal nodes

eliminated by the last call of deeorrrpose; hence I are the nodes which are

internal in Rand external in R1 and R2; I does not denote all the internal

nodes of R,

51

The correctness of ur, i.e. upon its termination Qr is correctly computed,

is easily verified by induction [Dijkstra '72], taking the correctness of

lines 4, 5, 8 and 9 for granted. It is trivial to verify that the execution

of ur will always terminate.

4.1.1. Element specification and storage of results

In order to compute in line 4 an element matrix, it must be known which

element is meant. Therefore we provide ur with the further parameters i and

j, the row and column number of the lower left element of the structure

whose reduced structure matrix must be computed.

Another point where we want to be a bit more specific is the way in which

the resulting matrix is recorded. For reasons to be explained in Chapter 7,

all data are stored in a global one-dimensional array A of sufficient

length. All that is necessary to retxieve data are their indices in A.

Therefore we include a variable parameter r in ur, whose value upon exit of

the procedure i.s the position in A from where the computed results may be

obtained.

With these extensions the declaration of u:x• becomes:

L procedure ur (n, m, 1'. j: integer; ext: set-of-sides;

2. ~ r: integer);

3. ~ nl, ml, il, jl, n2, m2, i2, j2: integer;

4. el, e2: set-of-sides;

5. rl, r2: integer,

{ri i.s the index in A where data of substructure i may be

retrieved (i = 1,2)}

6. begin assign value tor {initialize datastruct.ure};

7. g (n = 1) ~ (m = 1 l

8. ~ eompute-e Z.ement (1:, j, r)

9. ~ begin compute nl, ml, 1:1, jl, n2, m2, i2, j2, el, e2;

10. ur (n1, ml, i1, , el, rl);

1. ur (n2, m2, i2, j2, e2, r2),

2. assemble

13. decompose

end

52

4.1.2. Dissection of the rectangle and representation of element matrices

In line 9 the rectangular mesh is dissected into two smaller rectangular

meshes. The way of dissecting affects the efficiency of the computations .

.Following intuition, it seems advisable to dissect the rectangle along a

line roughly through the middles of the two long sides (that are the sides

with the largest number of elements). Therefore line 9 becomes:

n > m

~ begin nl ;;::::: n 2; n2 := n - n.1;

ml :== m; m2 := m;

1: .1 ;:::: i; i2 ::::: i + n.7;

:== j; j2 :~ j;

e.1 :=:: ext + [uppel']; e2 :::.-:;: ext + [lower]

end

else begin nl : == n; n2 := n;

m.1 := m 21 m2 z=:; m - m.1;

i.1 ;:= i; '<) 1,,., "' ~~- i

,j1 :;:=.: ti; ;:;:,,::. j + ml;

el := ext + [right]; e2 :: ;;..-;. ex·t + [

end

Because the parameters to he passed in lines 10 and 11 are au called by

value (except l'l and r2), we may recode lines 10-12 without using the

intermediate variables declared in lines 3 and 4. To shorten the code a

variable nm1 will be introduced to avoid repeated evaluation of n 2 or

m~2.

As stated before, we will not be concerned with the computation of element

matrices. Therefore we assume that the procedure corrrpute-element will be

supplied by others. An element matrix computed by compute-eZement will

subsequently be (partially) decomposed by decorrrpose; hence the representa­

tion of an element matrix is determined by the specifications of the

procedure decompose following. In order to free the writer of compute­

eZement from the necessity to be aware of the special representation

required by decompose, we will introduce an auxiliary 2-dimensional array Q,

to be passed as a parameter to compute-element. After a call of aompute-

e Zement Q will then represent the elE>..ment matrix in the usual way: the

lower triangular part stored rowwise. Next the contents of Q must he

53

transferred to A. Due to restrictions imposed by PASCAL it is not possible

to declare Q locally (in line 8); therefore Q is assumed to be declared

globally,

With these modifications the procedure declaration becomes:

1. procedure ur (n, m, i, j: integer; ext: set-of-sides;

2. ~ r: integer);

3. Y!!. nml, rl, r2: integer;

4. begin assign value to r;

5. g (n = 1) ~ (m == 1)

6. ~ begin compute-eZement (i, j, Q);

7. transfer contents of Q to A

end

else begin g n > m

~ be51in nml := n ~ 2;

ur (nml, m, i, j, ext+ [upper], rl);

8.

9.

10.

11. ur (n - nml, m, i + nml, j, ext + [lower], r2)

12.

13.

14.

15

16.

end

4,1.3. Decompose

~
~be<Jin nml

~;

asserrib'le

Ul'

Ul'

:=

(n,

(n,

m ~2;

nml, i, j, ext+ [right], rl);

m -nml, i, j +nml, ext+ [l.eft], r2)

Given an assembled structure matrix, the procedure deaompose computes a

reduced structure matrix, whereas the procedure assemble has to assemble

two given reduced structure matrices into one matrix. Hence, the procedures

asserribZe and tiecompose are closely related; there is a trade-off in the

share of work that has to be performed by tieaompose and asserribZe. Because

asserribZe has a kind of bookkeeping function, we have tried to minimize the

work to be done by tieaompose. Therefore the lower triangular part of the

matrix to be decomposed is partitioned into two matrices: QEE (the part

54

that corresponds with external nodes only) and the rest. (Leaving the

internal rows and columns intermixed with the external ones, would, on the

other hand, simplify the procedure assemble.)

As mentioned before, decompose decomposes a given structure matrix

with QII as block-pivot into

Let ni and ne denote the number of internal and external nodes, respective-

ly, and let

4ij denote (QII)ij for 1 s j s i s ni,

R. •• denote
1,J (LII)ij for 1 s j s i s ni,

4ij denote (QEI)i-ni,j for 1 s j s ni, ni+l s i s ni+ne,

R,.. denote (~I)ij for 1 s j
1,J

:,; ni, ni+1 s i s ni+ne,

qij denote (QEE)i-ni,j-ni for ni+1 s j sis ni+ne,

r
'qj denote (Qr) ij for 1 $ j :,; is ne,

then the procedure body of deaompose may be coded as follows (see (1.2*)):

var i, j, k: integer, h: real;

begin {computation of (lower triangular part of) LII and LEI}

for i ,~ 1 to ni + ne do

end

begin for j := 1 to min(i,ni) do

begin h := ~j;

for k : = 1 to ,i - 1 do h : "'

end

if j < i

then !I, ••
-- 1,J

else Jl ••
-- 1.1,

'""hit ..
1,J

:= sqrt(h)

r t
{computation of Q = QEE - LEI LEI}

for i :"' 1 tone do

for j : "' 1 to i do

begin h '"' q. . . .; 1,,+n1..,J+rn
fork:= 1 to ni doh:=

end

h - t.k * £.k;
1, J

55

Remark: In the actual implementation the space occupied by Q11 , QEI and QEE

will be overwritten by L11 , LEI and Qr, respectively.

4.L4, Assemble

r r The procedure assemble must assemble two matrices, say QRl and QR2 , into

the structure matrix Q associated with R, A way to do this, is (see 3.14)):

procedure assemble;

b~in initialize Q with zeros;

add c1 Q;1 c1 to Qi

add c2 Q;2 c; to Q
end

where Ci (i"' 1,2) is the connection matrix associated with Ri. To compute

c1 and c2 , it is necessary to know how the nodes are numbered. The program

as listed in [Peters '79] follows the (rather arbitrary) convention: the

external nodes are ordered clockwise, starting with the lower left corner

56

node; the internal nodes are numbered either from left to right or from top

to bottom, depending upon the way R is split into Rl and R2. Of course not

the matrices c1 and c2 are computed, but instead two vectors vl and v2

(with a length equal to the number of externals of Rl and R2, respectively)

defined by:

vl[h] tiff the hth external node of Rl is the i th external

(if t > 0) or internal (if t < 0) node of R.

An analogous definition holds for v2. The distinction between internal and

external nodes of R is made because Q is partitioned in Q11 , QEI and QEE'

The values of n, m and ext are needed to compute vl and v2. The coding of

the computation of vl and v2 is straightforward, requiring an extensive

case analysis. After assembly the vectors vl and V2 may be deleted. Further

details may be found in [Peters '79].

4.1.5. Removal of reduced structure matrices

A reduced structure matrix is, once it is assembled to another matrix, not

needed any longer. The space it occupies in the global array A may then be

used for other data. The array A will therefore be used in a st.Jlilck-like

manner. If the structure R, partitioned into all its substructures, is

viewed as a tree, then the reduced structure matrices are stored consecu­

tively in A in pre-order [KnUth '75], i.e. of every substructure Rj, first

its "own" reduced structure matrix is stored, then all the reduced struc­

ture matrices associated with its first substructure and next all those

matrices of the second substructure.

A global variable pr is introduced, indicating from which index in A on the

next reduced structure matrices may be stored. From the parameters n, m and

ext it can be determined precisely how much space is needed to store the

reduced structure matrix of R. Hence the value needed to update pr is known

and in line 4 of the program text in 4.1.2 the old value of pr is assigned

tor. If every reduced structure matrix is removed as soon as it is not

needed anymore (and if no other data are stored in A), then the pre-order

storage implies that the two reduced structure matrices, which are assem­

bled together in line 15 are always the two last ones and removing them is

simply achieved by updating pr:

57

Because the decomposed matrices LII and LEI will be used for subsequent

computations, they will not be removed; they (and hence and QEI) are

stored in the same pre-order, but separated from the reduced structure

matrices in another part of A. A second variable pd is then required to

indicate from which index in A on the next decomposed matrices may be

stored. Note that an extra parameter in ur to indicate where the decomposed

matrices are stored is not needed.

4 • 2, Procedures fu:r• and bu:r•

4.2.1. Computation of reduced structure vector

The computation of the reduced structure vector with the procedure fur is

analogous to the computation of the reduced structure matrix with ur:

1, procedure fUX' (n, m, i, j, integer; ext: set-of-sides;

2. ~ r: ·integer);

3. ~ nml, r1, r2, integer;

4, b§:gin assign value to r;

8.

9.

10.

lL

12,

13.

14.

15.

if (n "") ~ (m = 1)

~ b~in compute-element-vector (i, j, F);

transfer contents of F to A

end

~ begin n > m

then b§:gin nm1 P~ n div 2;

fUX' (mn1, m, i, j, ext+ [upper], rl);

fUX' (n - nm1, m, i + nml, j, ext + [Zower], r2)

end

else begin nm1 := m ~ 2;

fur (n, mnl, i, j, ext+ [right], rl);

fUX' (n, m - nml, i, j + nm1, ext + [left], r2)

~;

asserrib le-structU1°e vectors

forward-substitution

58

All parameters and variables play the same role as the corresponding ones

in u.r. Only the procedure foruard-substitution and the parameter r require

some comments.

This procedure foX'Ward-substitution computes the reduced structure vector
-1

(see (3 -11)) by calculating h1 = LII f 1 and next subtracting LEI h1 from fE.

Because h1 is needed again for the computation of the solution vector (see

(3.15)), f 1 will be overwritten by h1 , called the substituted struat!AX'e

vector. The matrices ~I and t 11 are computed with the procedure !AX'. The

execution of ur must then precede the first call of f!AX' and the array A

must be global to both procedures. fur needs access to both matrices and

vectors. This is simply achieved (without having to extend the parameter

list) by storing vectors and matrices together: the storage locations in A

immediately succeeding those of t 11 will be used to store f 1 and later h1 •

Prior to the first call of fur, the value of the global variable pd (as­

sociated with A) is reset to the value it had immediately before the initi­

al call of ur. Hence the meaning of pd is slightly changed; it no longer

indicates which part of A is free, but to which part of A the computations

are advanced.

As is the case with the reduced structure matrices, also the reduced

structure vectors may be removed (overwritten) as soon as they have been

used in asserrible-struature-veators.

From the observation that the matrices needed in line 16 of f!AX' are precise­

ly those computed in line 16 of ur it is clear, that both procedures may be

combined to form one procedure. If line 4 of ur is changed into

r := pr; pr:= pr+ 'expression';

where the value of 'expression' is the number of storage locations needed
r r

for QEE and fE, and if, moreover, lines 6, 7, 15 and 16 of flAX' are appended

to the corresponding lines of ur, then the resulting procedure computes

correctly in an interleaved way both the reduced structure matrix and the

reduced structure vector.

59

4.2.2. Computation of solution vector and derived results

In the foregoing we have seen how the procedures Ul' and fur partition the

structure R into substructures and compute the decomposed structure matrices

and substituted structure vectors associated with those substructures. Given

those decomposed structure matrices and substituted structure vectors (re­

presented in a global array A as indicated before), the following procedure

bur provides the solution vector associated with R. Moreover, bur provides

(application dependent) quantities for the (structure) elements; these

quantities are obtained from the solution vector.

1. procedure bur (n, m, i, j: integer; ext: set-of-sides;

2. pwe: integer; ~ d: integer) ;

3. ~ nml, pwl, pw2: integer;

4. begin solve; assign value to d;

5. g (n .. 1) !!E. (m "' 1)

6. ~ begin transfer data from A to F;

7. process-solution (i, j, F)

8.

9.

10.

11.

12.

13.

14.

end

end

~begingn > m

end

then begin nml :"' n ~ 2; separate;

{assigns value to pwl and pw2}

end

bur(nml, m, i, j, ext+[upper], pwl, d);

bur (n-nml, m, i+nml, j, ext+ [lower], pw2, d)

else begin nml := m ~ 2; separate;

{assigns value to pwl and pw2}

end

bur(n, nml, i, j, ext+[z,ight], pwl, d);

bur (n, m-nml, i, j+nml, ext+ [left], pw 2, d)

The parameters and other variables of buz, play the same role as the corre­

sponding ones in ur and fur. The value parameter pwe indicates where the

values of wE (see (3,15)) will be found in the global array A. For a struc­

ture without external nodes, the value of pwe is irrelevant. Upon each

entry of the procedure, the value of d must indicate where the decomposed

60

matrices LII and LEI are stored; an adjustment of d with the number of

storage locations needed for LII' LEI and hr' assures, due to the storage

sequence of these matrices, that d then indicates the decomposed matrices

to be processed next. A simple induction argument shows that in this way d

has also the correct value for the recursive call in line 11 or 14.

The proceuure solve compute~ w1 (see (3.15)) as follows: first

is subtracted from giving hi (in an actual implementation hI may be over-

written by h±l, next wI is computed from hi by back substitution with L~I

(and again h1 is ove:rwritten by

nodes, then hi h1 .

• Obviously, if there are no external

In line 6, the solution vector of the element i.s transferred from A to an

auxiliary global array F. 'rhe procedure process-solution next provides the

quanti.ties to be derived from that solution·vector (usually geometrical

data like node coordinates are required). Just like the procedures compute­

element and compute-element-vector in ur and fur, also process-solution de­

pends upon the specific problem to be solved and has to be written by those

working on an application"

The procedures separate in lines 9 and 12 perform the opposite of assernble­

struature-vectors in fur. The vectors wE and wI, as computed in line 4, are

split into two vectors wEl and which are the solutions for the external

nodes of the two substructures of R. The variables pw1 and

locations in A where the vectors wE 1 and wE 2 may be found.

denote the

Alt.hough the procedure bur has precisely the same control structure as ur

and fur•, it can not be combined with them to form one procedure, because

the substructures are processed i.n opposite order. If the structure R is

viewed as the root of a tree, of whi.ch its substructures are the nodes,

then u.:t' and fu:l' process the substructures in post-order, whereas bur pro­

cesses them in pre-order, Moreover, bur needs the results of ur and

Hence decomposition and fo:rward substitution cannot be interleaved with

backward substitution, they must be carried out consecuti.vely.

CHAPTER 5

EFFICIENCY OF UR

61

In this chapter we present some operation and storage counts for the pro­

cedure UP, as developed in the preceding chapter. It will be shown how the

storage requirements of U1' may be reduced. If applied to a square R. x R.

grid, then in total 2.8 R. 2 + O(R.) storage locations are required.

5.1. Storage and operation counts

In this section we will investigate the efficiency of the procedures de­

veloped in the preceding chapter. The efficiency can be expressed in terms

of the amount of storage required and processor time needed. These two

quantities, however, depend upon the specific implementation on a particul­

ar computer. Therefore, the - implementation independent - number of arith­

metical operations with matrix coefficients and the number of matrix coef­

ficients stored will be considered.

If i and e denote the number of internal, respectively external nodes of

the structure to be analyzed with u.r>, then in line 4 of UP in Section 4,1.2

space is reserved for:

(5.1) s(i,e)"' ½i(i+1) + ie

coefficients of the decomposed matrices. Space needed for the reduced

structure matrices will be dealt with separately. The procedure decompose

in line 16 requires

(5.2)

multiplicative operations (i.e. multiplications, divisions and square

roots) with matrix coefficients. The number of additive operations is about

the same, therefore we will not consider them,

In the procedure fu.r> space is reserved for i coefficients of the substi­

tuted structure vector and Ii (i + 1) + ie multiplicative operations are

performed by fo:t'WaX'd-substitution _(see also (3.11)). These numbers are

62

small compared with (5.1) and (5.2), respectively, therefore we will

restrict our attention tour.

To determine the total number of multiplicative operations carried out and

matrix coefficients stored by ur, we will first restrict ourselves to the

case

(r ~ 0) •

Let gt(R.) denote the number'of multiplicative operations for an R. x R. mesh

with t adjacent external sides (t = 0,1,2,3,4). Let gt(R.) denote the number

of operations for an R. x !R. mesh, where gi, respectively g3 , is associated

with a mesh, a long respectively one short side of which is external. Si,milar­

ly, g3 is the same function for an R. x it mesh, all sides of which are ex­

ternal, except for a long one; g 2 belongs to an R. x ½R. mesh, the two long

sides of which are external. With these definition we have the following

set of recursive relations:

go<tl "' 2gi (R.) + t(H1,0)

"'\2g2(R.) + t(R.,Hl)
gl (R.)

gj_Hl + g2(R.) + t(Hl,Hl)

gi (R.) 2g2 (itl + t(½R.,Hl)

g2(R.) g2(R.) + g3(R.) + t(R.,2£+1)

g2(R.) = g2 (it) + g3(}R.) + t(!R., ½ R.+1)

(5.3) g2 (R.) .. 2g3(½R.) + t{lR.-1,2£+2)

=(g3 (R.) + t(R.,3H1)
g3 (R.)

+ g4(R.) + t(R.-1,3R.+1) g3(R.)

g.3 (R.) g3 (½R.) +g4(!R.) + t(iR.-1, tH1)

g3(R.) 2g3 (it) + t(lt,2R.+1)

g4 (R.) 2g4(R.) + t(R.-1,4£)

g4 (R.) 2g4 (!t) + t{½Jl.-1,31)

For g 1 there are two possibilities, each corresponds with a different split­

ting. The first relation corresponds with a splitting from the external to

a non-external side, the second one with a splitting parallel to the extern­

al side. We will ultimately choose the splitting, which leads to the least

number of operations. A similar remark applies to g3 •

63

Elimination of g'. and g'! (j = 0,1,2,3,4) from the above set of relations,
J J

together with (5.2) gives:

go (ll = 4g 2 (½.tl + 23 .l',3
24

+ 0(,Q,2)

=(g2{!£)
+ 2g3(½£) + .§2. .R,3 + 0(.R-2)

24
g 1 (9,)

+ 2g3(½R,)
68 3 + 0(£,2) 2g 2 (½2) + 24 ,Q,

(5.4)
35 3 + 0(£2) g2 (£) g2{!,Q,) + 2g3(!,Q,) + g4 (!tl + -6 ,Q,

,,,(g3 dtl + 2g4 (½,Q,)
239 t3 0(22) + 24 +

g 3 (R,)

+ 2g4 (!£)
121 t3 + 0(,Q,2) 2g3 (½£) + 12

g4 (£) "' 4g4 c½t) + 2Z.l. Q,3 -
24

1n2 + 0(£)

Now it is clear which relations for g 1 and g3 are the best ones; they both

correspond to a splitting from an external to a non-external side,

The set (5,4) contains recursive equations of the form:

where pis a known polynomial, The following properties of this kind of

equations are easily verified (see also [Rose and Whitten '76]):

1) additivity: if g(2) satisfies (5,5) and g(,Q,) satisfies

then h(Jl) ""g(£) + g(£) satisfies:

h(1) ~ ah(£) + p(1) + ~(2)

2) non-uniqueness: if g(2) satisfies (5.51, then g' (1)

with can arbitrary constant, satisfies:

3) if p(,Q,) ~ S£5 , the solution is:

g (J/,) if Ct

g(,Q,) +

64

with can arbitrary constant;

g (.Q,)

with can arbitrary constant.

From the above properties it may be derived that the solution of (5.4) is

given by:

g3 (.Q,)

(5.6) 92 (,Q,)

(R,)

go (tl

371
12
849 Q,3 _
36

4491 Q,3 _
252

3291 ,e,3 _
252

2487 ,e,3 _
252

1 7!/, 2

17!/,2

1 7J1, 2

17!/,2

From property 2 it follows that

lower order coefficients of the

log2 -~ + 0(.Q,2)

log2 ,e, + O(t2l

log2 £ + 0(£2)

log2 t + 0 (l:,2)

initial values only affect the second and

solution polynom:i.als.

In a similar way we may deduce from (5,1) that, if h. (Q,) denotes the number
J

of matrix coefficients stored for an Q, x R, mesh, with j adjacent external

sides, then:

(R,)

The procedure ur needs space to store not only the decomposed matrices, but

also the reduced structure mat.rices, notwithstanding the fact that these

are all ultimately removed. Let r(e) ½e(e + 1) denote the number of coef-

ficients of a reduced structure matrix belonging to a structure withe

external nodes, If f,(R,) denotes the max:i.mum number of coefficients of
J

reduced structure matrices stored at any time for an ,e, x JI, mesh, with j

(j "'0,1,2,3,4) adjacent external sides, then we may derive the following

set of recurrence relations:

Solution of these equations yields,

(5.8)

From

f4 (.1',) 2£.9.2
3

+ 0(£)

f 3 (.I',) "'~ .l',2 +
24

0 (£)

f2 (.I',) = 223 t 2 +
24

0(£)

f 1 (.I',) "'El. 9.2 +
96

0 (.1',)

fo (.l',J = 271 R,2 +
96

0(9.)

t(i+l,e+l) - t(i,e)

s(i+1,e+1) - s(i,e)

r (e+i) - r(e)

O(il + O(el

Olel

+ r(i+l)

+ r(£+1)

+ r(H) + r(3£) "

together with the properties 1 and 3 a.hove, it follows that (5.6), (5. 7)

and (5.fJ) are generally valid, also if .I', is not a power of 2.

65

If n 'f m the set of recurrence relations is much more intricate. '.r'he solu­

tion of an n x m problem (n > m) requires less computations than tl1at of an

n x n problem; hence if n > m then g. (n) and h. (n) may serve as upper
r J J

bounds. If n >> m, say n = 2 ,m (r > 0), then the rectangular structure is

by u:r partitioned into 2r m ~ m substructures; solution of the corresponci­

ing set of recurrence relations yields:

G0 (n,ml ""'21 nm2 + O(m2J

31 2 2 H0 (n,ml ~ 4 nm + O(m)

223 2 ·
F O (n,m) "" (24 + !r)m + 0 (ml

66

denote the number of operations, decomposed and reduced

matrix coefficients, respectively, for an n x m mesh without external sides.

The recursion depth of UX' is 1 + entier(log 2 (n)) + entier(log 2 (m)). All

parameters and local variables of ur are simple, except ext, which is of

fixed size. Hence the stack associated with ur requires only O(log(n.m))

storage locations or O(logU,)) for n = m ~-' 9-, which is small compared with

(5. 7) and (5.8).

All matrices are represented in the usual way, no special measures have

been taken to deal with non-zero coefficients only. As we know from Section.

3.3, the envelopes of the decomposed matrices are dense; however, an en­

velope does not necessarily comprise all its matrix coefficients. Assume

that two reduced structure or element ma.trices are dense, i.e. do not con­

tain a zero coefficienL If the two matrices are assembled and (partially)

decomposed, then the resulting decomposed and reduced matrices are dense

again, unless there are no internal nodes (an internal node would be as­

sociated with both matrices)" When applying ur, indeed substructures occur

without internal nodes, hence the decomposed matrices of certain s1Jbstruc­

tures may contain zeros. As experience indicates, for an n x n mesh and n

not too small (n > 13), the number of zeros stored is less than 2% of the

total number of coefficients and of all multiplications less than 2% has a

zero multiplicant. Therefore it is not worthwhile to replace the full. matrix

algorithms in ur by envelope or profile algorithms,

5.2, Reduction of storage requirements

In [Eisenstat e.a. '76] it is suggested, that for certain finite element

types of equations, it is advantageous to recompute certain data, instead

of saving them, In subsection 4,l..5 it has been pointed out that the pro­

cedure ur saves the decomposed structure matrices requiring

log 9-) storage locations (see (5.7)), At the expense of a two to six

fold increase of the operations count, the storage requirements may be re-

duced to 0(, by not saving the decomposed structure matrices, 'I'o that end

the procedures are modified as fol.lows:

ls procedure mur (n, m, i, j: integer; ext, set-of-sides;

2. ~ r, intege1°);

3. ~£ nml, r•l, r•2, integer;

4. be9in assign value tor;

5. if (n = 1) and (m = 1)

6. the..E, begin compute-element U, j, Q);

7. compute-element-vector (i, j, F);

8. trans:(:er contents of Q and F to A

end

else begin if n > m

~ be_gin_ nm.7 := n div 2;

mur (nml, m, i, j, ext+ [upper], r•l);

67

9.

10.

1L

12 mur (n-nml, m, i+n:ml, j, ext+[lower], 1°2)

end

16

end

end;

else):leg:in nml ,~ m div 2;

mu.r (n, nml, -i, j, ext+ [right], r•l);

mur (n, m-nml, i, j+nml, ext+ Cleft], r2)

end;

reserve space in A for L11 , LEI and h1 ,

assemble; assemble-structure-vectors

decompose; f oru_iard-suhsi;i tution;

free space reserved for L11 , LEI and h1

This procedure computes both the reduced structure matrix and reduced

structure vector, associated with the structure R, characterized by the

parameters n, m, i, j and ext. The parameter r indicates where the computed

results may be found in the global array A. Essentially mur is the proce­

dure ur combined with fur, modified in such a way that the decomposed

structure matrices and substituted structure vectors are not saved"

The next procedure just computes the decomposed structure matrices and

substituted structure vector of R,

68

L 12rocedure lur (n, m, i, j: intege1'; ext: set-of-sides;

2, ~:i:, d: integer.);

3. ~ nml, r.1, r2;

4. begin if (n = 1) and (m = 1)

5, then begin corrrpute-element (i, j, Q);

6. corrrpute-element-vector (i, j, F);

7. transfer contents of Q and F to A

end

8.

9.

10.

1L

12.

13.

14.

16.

17.

end

else begin if n > m

then begin nml :~ n div 2;

mur (nml, m, i, j, ext + [upper], rl);

rrrur (n-nml, m, i+nml, j, ext + [l01.ue1'], r2)

end

else begi_ri._ nml := m div 2;

nrur (n, nml, i, j, ext + [right], 1•1) ;

mUl' (n, m-nml, i, j+nm.1, ext+ [left], r•2)

~;

reserve space in A for L11 , LEI and h1 ;

assenib le; assenib le-str•ucture-vectors

end;

decorrrpose; foruard-suhstitution

Note that the procedure lur itself is not recursive.

As the number of arithmetical operations and the number of storage loca­

tions required for the vectors are of a lower order than needed for the

matrices, we may use gj (JI,) (see (5.6)) also to denote the operations count

for lur. The storage count f~(JI,) follows from the observation:
J

f~(i) "' max(f.(.l',),s.(JI,))
J J J

r
where s.(JI,) is the number of storage locations needed for L11 , LIE' QEE'

r J r .
QEl, El and QE 2 , E2 , El and E2 are the e.xternals of the substructures in

which the JI, x £ mesh is divided. Hence

fo* (£) = 271 .11,2 + 0 (£)
96

69

* "'Bl J/,2 + ow f 2 (JI,)
24

* 22.R,2 + 0(£) f 3 (JI,) 4

* f 4 (JI,) 43 J/,2
2

+ OU,l

The next prvcedure, which computes the solution vector, is a slight modifi­

cation of bur,

L procedure tur• (n, m, i, ,i: integer; ext: set·-of-sides;

2" '[)We: integer);

3. ~ nml, d, pw1, '{JW2: integer;

4. begin lur (n, m, i, j, ext, d);

5. solve;

6. if (n = 1) and (m ~ 1)

7. ~ begin transfer data from A to F;

8. process-solution (i, j, F)

9.

10.

1L

12.

end

end

~ begin g_ n > m

end

_then begin nm.1 '"" n div 2; sepa,rate;

tur (nml, m, Z:, j, ext+[upper], pwl);

tur (n-nm1, m, i+nm1, j, ext+Clower], pw2)

end

~ begin nml :"' m div 2; sepa,rate;

tur (nm1, m, i, j, ext+[right], pw.1);

tur (n, m-nml, i, j+nml, ext+[Zeft], pw2)

end

'rhe storage requirements of tur are precisely those of Zur i..n li..ne 4. The

operation count g.(Q.) may be deduced from:
J

go (!1.l 2gi (JI,) + go<n

91 (Q,) 2g2 (JI,) + g 1 (,Q,)

gi (.Q,) 2g20JI,) + gi (,Q,)

g2(,Q,) g2(£,) + 93 (,Q,) + g2(Q,)

70

g2W g,.,(!Jl,)
"'

+ g3 (½Z) + 9;/R,l

g3(R,) 2g3(,Q,) + 93 (,Q,)

g3 UL) g3 (ft) + g4(!£l + g3 (,Q,)

g4 (R,) 2g4 (R,) + 94 (JI,)

g4 (R,) 2g4 (½JI,) + g4 (R,)

where g'.
J

(j = 1,.,.,4) is defined analogously to gj. Elimination of gj
(j = 1, ... ,4) from the above gives:

go (Zl 4g2(!,Q,) + go(£) + 2gi (JI,)

g 1 (9,) 2g 2 (½£l + 2g3 (½i) + gl (9,) + 2g2(9,)

g2 (9,) g2 (!£) - l + 2g3 (22-l + g4 n ii + g 2 (R,) + g2(9,) + gjW

g3 (R,) 2g3{½J1,) + 2;_j4 dil + g 3 (R,) + 2gj (Ji,)

g4(.0 4g4 (½R,J + 94 (Ji,) + 2g4 (Ji,)

Combining the above with (5,3) yields:

go(,Q,) 4g2 dil + go <il + 4g2{½9,) + 2t(½J1,,Hl)

g 1 (J1,) 2g2(!J1,) + 2g3 {½JI,) + g 1 (Ji.) + 2g2(!J1,) + 2g3 (½9.) + 2tqz, ½Hl)

g 2 (Jl) g2(!i) + 2g3 (i.O + 94 (½JI,) + g2(R,) + g 2 d!ll + 2g3 qi) +

It is easily verified that the following may be added to the properties of

equations (5.5):

5) if p(J!,) 00 13,e, 9 log 2i, the solution for a = 2s is:

(c is an arbitrary constant);

6) if p (9.) = il!l s (log2 i/, the solution for a 1 28 is:

Hence, solution of the above set of recursive

g4(R,) = 620 Jl,3 _ £ Jl,2(log2JI,) 2
6 2

g3 (JI,) ~R,3
9

_ £ .e, 2 (log2 JI.) 2
2

(5.9) g2(JI,) "'~ Jl,3
441

_ £ Jl,2 (log2 R,) 2
2

g1 (JI,) "'
9785 Jl,3
147

_ £ !1.2 (log2 JI.) 2
' 2

go(Jl.l "'~ Jl,3
441

_ £ Jl.2(log2JI,) 2
2

From (5.9) and (5.6) it follows:

g4(JI,) /g4(R,) ""3.3

go(!l.l /go(!l.l ""5.9

+

+

+

+

+

71

equations gives:

0(11,2 log JI,)

Oo,2 log JI,)

Oc.e,2 log R,)

0(!1.2 log JI,)

0(!1.2 log R.) .

Hence for a structure with four external sides we have, at the expense of a

three-fold increase in the number of computations, reduced the storage

count from 3i JI. 2 log2 R. to 4; JI. 2 (there is also a reduction if R, < 8) ; for

structures without external sides the storage count is even reduced to
271 2 96 JI,, requiring a six-fold increase of the operations count, (Note that

the complete structure matrix assoicated with a square JI. x JI, grid contains

5£2 + 0(JI,} non-zero coefficients.) The trick of not storing the decomposed

structure matrices, but instead recomputing them whenever they are needed

is motivated by the desire to save storage. It is however not necessary to

apply the trick on all levels of the recursion, Obviously, for small sub­

structures (deep in the recursion) it is not necessary to save storage.

Therefore the same storage reduction can be achieved with a smaller in­

crease in the number of operations. By still other, more intricate, modi­

fications it is possible to restrict the increase in the number of computa­

tions to a factor 2 yielding a storage count of 3i t 2 for a structure

without external sides.

73

CHAPTER 6

ADAPTATION TO MORE COMPLICATED STRUCTURES

Applications of the algorithms presented in the preceding chapters are not

restricted ta simple rectangular plates with a uniform mesh, We will in­

dicate in this chapter how the algorithms may be adopted for more general

two-dimensional solid as well as frame structures.

The algorithms (or variants of them) are in particular useful if (parts of)

the structure to be analyzed can be provided with a "topologically" regular

mesh. Irregular el<:>.ment partitionings a.re often encountered if triangular

elements are used to refine grids locally. It will be shown how locally

refined grids are most efficiently analyzed.

6. 1. Prame structures

A structure will be called fratne structure if it consists of elements with

two nodes only. Let the elements of the frame structure F be arranged to

form a rectangular n x m grid, such that the (n + 1) x (m + 1) nodes are the

grid points and each element is a horizontal or vertical edge joining two

neighbouring grid points, It is not immediately obvious how to decompose F

into two similar substructures (how to partition the elements into two

sets), One may want to dissect F along a line roughly through the middles

of the two sides with the most elements, but then the dissection line

passes through some elements and for every element along the dissection

line a choice must be made to which substructure that element belongs. 'I'wo

possibilities for a sensible decision are,

i) every element along the dissection line belongs to the same, say first,

substructure;

ii) starting at one end of the dissection line, the elements alternatingly

belong to the first or the second substructure.

In both cases the number of different kinds of substructures increases, In

the first case we obtain substructures, an external side of which may or

may not be "notched", In the second case all external sides are "dashed",

but the first two nodes of an external side may or may not belong to a same

74

element. Hence in both cases there are two types of external sides. This

can be accounted for by extending the procedures Ul', fur and bu:t' with an

extra parameter (or by extending the parameter ext) to indicate the type of

each external side. Of the procedure ur only the procedures assemble and

compute-element need be adapted to these extensions, leading to an .i.ncrease

of the amount of code required. The efficiency of the computations is not

adversely affected; only the length of the program text increases due to a

more extensive case analysis. The number of arithmetic operations and

matrix coefficients stored is precisely the same as in the quadrilateral

element case. However, the matrices associated with frame structures con­

tain more zero coefficients. This may be seen as follows.

An element. matrix associated with a quadrilateral four node element is a

4 x 4 matrix without zeros, whereas in the frame structure case, each call

of compute-element yields a 4 x 4 matrix M, which is assembled from at most

four 2 x 2 matrices and hence the envelope of M does not contain all the

coefficients of M. As may be estimated (see also [Duff e.a. '76]) the

savings may amount to about 25% of storage and to about 30% of arithmetical

operations by storing only the envelopes of the matrices. In these percent­

ages, the overhead .in using envelopes only is not included.

6.2. Solid quadrilateral structures

The procedures as developed in Chapter 4 apply to finite element. calcula­

tions for structures with an n m mesh. To derive the element matrices,

one usually needs geometrical data, like node coordinates. In th.is

section we will describe how these geometrical data are obtained from the

row and column number of the element concerned.

6.2.1. Rectangles

Let the rectangle R be determined by the following X, Y coordinates of its

four corner nodes: (0,0), (a,0), (a,b), (0,b), where the nodes are listed

clockwise, starting with the lower left node (a,b :2: 0). Suppose the mesh is

uniform, Le. all elements are rectangular and of the same size. If there

are N and M elements along the sides parallel to the X- and Y-axis, re­

spectively, then the coordinates of the lower left node of the element in

:row i and column j a:re:

(a , b ')
N 1 ' i J

(0 5 i < N, 0 5 j < M) ,

'I'he coordinates of the other element nodes may be obtained from similar

expressions, Because i and * may be considered as global constants for

the procedures ur, fur etc., each coordinate requires in fact only one

multiplication.

In order to ensure that the results of the finite element computations are

sufficiently accurate, the size of the elements must be small enough

75

[Strang and Fix '7 3 J. The smaller the size of the elements, the larger the

number of nodes, hence the more computations. For several finite element.

problems, it is not necessary that all elements have the same size. By

allowing elements with different sizes, one may achieve sufficient accuracy

with only a modest amount of computations. Hence, it is useful to provide a

facility ta "grade" the mesh. Far the rectangle R, to be divided into rect­

angular elements, grading is simply achieved by choosing two monotone func­

tions rp: {O,, .. ,N-1}-+ [O,a) and ;Ji: {O, .. .,M-1}-+ [O,b) with cp(O) ~ ;Ji(O) = 0

and defining the coordinates of the lower left node of the elements in row

i and column j to be

(qi (i) 'ij, (j))

For example:

(jl (i) - 1) (i

with pa suitably chosen constant, is such a monotone function.

As is well known, t.he accuracy of the results of the finite element. com­

putation depends also upon the shape of the elements, the more a rectangu­

lar element deviates from a square, the less accurate the results of the

computation are and Fix '73]. Grading the mesh in the above way may

lead to elements which are too slender. To avoid those too slender elements

the grading technique as outlined in Section 3 is mare appropriate,

6.2.2. Quadrilaterals

In this subsection we will consider a (curvilinear) quadrilateral structure

C with a mesh consisting of raws and columns of (not n,;':cessarily rect­

angular) elements. We will describe how, in this general case, the node

76

coordinates can be obtained from the row and column number of the elements

concerned. A transformation <I> will be constructed, which is a one-to-one

map from a suitably chosen rectangle R onto the quadrilateral c. (In the

sequel x, y will denote coordinates of a point in Rand~. n will be used

for points in C.) The map <I> transforms a mesh of R with rectangular ele­

ments into a mesh of C with quadrilateral elements. The coordinates of the

element nodes of Care obtained by applying <I> to the coordinates of the

corresponding element nodes of R. In which way the node coordinates of R

are derived from the row and column number of the element concerned, has

been shown in the preceding subsection.

6.2.2.1. Quadrilateral given by points

If the quadrilateral Chas straight sides and is given by the coordinates

of its corner nodes c.
l.

(i = 1,2,3,4), bilinear shape functions

[Zienkiewicz '77] may be used to construct <I>. If for R the unit. square with

corner nodes

taken, then

(6.1) <I> (x,y)

with

N1 t(1-x)(1-y)

¾ (1 - x) (1 + y)
(6. 2)

N
3

¼ (1 + x) (1 + y)

N4 !(1+x)(1-y)

It is easy to verify that

4

I
i=l

N.
l.

<j, (i"" 1,2,3,4) •

= (1,1) and = (1,-1) is

A sufficient condition that such a transformation, using bilinear shape

functions, is a one-to-one map from R onto C is that no internal angle of C

be larger than 11 [Strang and Fix '73]. (This implies that the transforma­

tion may even be used if C degenerates into a triangle.)

<!> as defined by (6.1) and (6.2) is bilinear; hence straight boundary and

inter-element line segments are_transformed into straight segments. There-

fore the image of a rectangular element in Risa quadrilateral with

straight boundaries.

77

Let now the quadrilateral C be given by m successive points, to be denoted

(in clock-wise order) by c 1

cb3 and cb4 be (in clock-wise order) the corner points of C. For R we

choose a rectangle with sides parallel to the coordinate axes. On the sides

of R we choose (in clock-wise order) m points r 1 = (x1 ,y1) p•-, rm= (xm,ym)

in such a way that rbl' rb2 , rb3 and rb4 are the corner points of R. To

construct <l> we choose the shape functions of the "serendipity family" of

finite elements [Zienkiewicz '77]. The idea is the following, Let <l> be

defined by

<l> (x, y l = (I N . s . , I N . n .)
r"'i 1 1 i=l 1 1

where Ni are functions still to be specified. If we manage to choose those

functions in such a way that they satisfy,

(6. 3) 1 :;; i, j :;; m ,

then obviously the following relations hold:

Lagrangean interpolation is now used to obtain the functions Ni satisfying

(6.3):

1) Let ri (not a corner point) lie on a side s parallel to the Y-axis and

let rk be a point on the side parallel to s, then

Ifs is parallel to the x-axis, then x and y are interchanged:

y - y,
TT ~

r. on s Yi -yj
J

2) If ri is a corner point lying on the sides sand t, parallel to the X­

and Y-axis respectively, and rk is a corner point not on sand t, then

78

rj on s
except corners

l
rj on t

except corners

If<!> as defined in this way (depending amongst others upon the choices

of r 1, ••• ,rm) is a one-to-one map from Ron C, then<!> transforms a mesh

of R into a mesh of C. Whether, however,<!> is one-to-one and whether the

mesh obtained is appropriate, cannot be stated in general. Intuition and

graphics facilities must be resorted to.

6.2.2.2. Quadrilateral given by parametric functions

Assume that the four sides of the quadrilateral Care given by the para­

metric functions:

f.
J

[O, 1 J ➔ m.2 , j"' 1,2,3,4

with the corner points of C given by

(0) (1) (0)

Blending function interpolation [Gordon and Hall '73] can be used to con­

struct a transformation from the rectangle R determined by the corner

points (0, 0) (1 , 0) , (1 , 1) and (0, 1) to c:

<!>(x,y) "" (1-x)f1 (y) + xf2 (y) + (1 -y)

- x(1-y}f2 (0) - xyf2 (1)

- (1-x) (1-y)f1 (0) - (1-x) y (1) •

¢ transforms the straight line segment {(O,t) I Ost s 1} in the curved

line segment (t) I O :S t s 1} and the line { (t.,O) [0 :S t. :S 1} into

{f3 (t) IO :St s 1}, etcetera. Hence the four sides of Rare transformed in

the :four sides of C.

Again it is difficult to state in general, whether the parametric functions

fj (j ~, 1,2,3,4) lead to an appropriate mesh for C, So far one is best.

guided by experience, geometric intuition and inspectiono The aid of

computer graphics facilities seems indispensable.

6,3. Local mesh refinements

79

In Section 6,2.1 we have indicated how grading of a mesh may be achieved.

For problems which allow very different element sizes in different parts of

the structure, grading in that way leads to elements which are too slender,

Therefore, in practice triangular elements are popular, because they are

more suited to achieve local mesh refinements. A serious drawback of using

triangular elements for that purpose is that they may give rise to irregular

meshes. The merits of the procedures as outlined in Chapter 4 are due to

exploiting regularity, To obtain local mesh refinements, however, one does

not need to resort to irregular meshes. For the ease of presentation we

will in the following apply rectangular elements, more specifically blended

elements [Cavendish '75]. Blended elements differ from standard elements in

that node to node connection for two adjacent elements is not required and

thus that two or more smaller elements are allowed to abut against the edge

of a larger element. In an obvious way the meshes described can also be

obtained by applying (standard} triangular elements.

6,3.1. Procedure Zm

Let us consider, to start with, a rectangular structure R with a mesh,

locally refined around the lower left corner of R, Consider a partitioning

of R into rectangular elements obtained in the following way

first partition R into four similar subrectangles;

next perform n times

partition the left, lower subrectangle into four similar subrectangles,

This partitioning leads to a mesh with 2 elements along the upper and right

side of R and with n + 2 elements along the lower and left side. Altogether

there are 3n + 4 elements and Sn + 9 nodes.

The elements of R will be identified with two integers, a "row" and a

"column" number, in the following way: the three largest elements are (in

clock-wise order, starting with the left most one) identified by (n+l,O),

(n+i,n+1) and (O,n+l}, respectively; of the remaining elements the three

80

largest ones are, in the same way, identified with (n,0), (n,nl and (0,n);

and so on. The lower left element is identified by (0,0l.

Let Rm (0 s m s n) denote the substructure containing the elements of which

the row and column number do not exceed m + 1. We then have R = R • Moreover
n

the elements (m+l,0), (m+1,m+1) and (0,m+l) ass~~Jbled with Rm-l yield

precisely Rm. Hence assembling the three element matrices to the reduced

structure matrix of Rm-l gives a structure matrix consisting of five in­

ternal and five external nodes • .Elimination of the five internal nodes

results in the reduced structure matrix of R.
m

A procedure computing i.n the same vei.n as in Chapter 4 the reduced structure

matrix associated wi.th R if the five nodes along the upper and right side

are external, i.s:

1. procedure un (n: integer; var r: integer);

2. ~..E. h, rl: integer;

3. be~ ur (2, 2, 0, O,

h ,,,, O;

, rl)

7.

8.

9.

10.

1L

12.

while h < n do

begin h : = h + 1 ;

compu/:e-element (h+1, 0);

compute-element (0 , h+ 1) ;

compui;e-e 7,ement (h+ 1 , h+ 1) ;

assemble;

decompose; update rl

I' ,,. rl

The parameter n indicates the number of times a lower, left subrectangle of

R was partitioned in order to obtain the complete partitioning of R, The

value of the parameter .!' upon exit of the procedure i.s the address of the

reduced structure matrix of R in the global array A,

The values of the auxiliary variables hand rl are such that always at the

beginning and the end of the repeated compound statement the following re­

lation holds

11 .1 is the address of the reduced structure matrix _of

81

The procedure assemble assembles the three element matrices, computed in

the preceding lines, with the reduced structure matrix of Rh_1; elimination

of the five internal nodes with the procedure decompose gives the reduced

structure matrix of Rh. When execution of the while-statement is completed,

it yields h = n and hence rl is the address of the reduced structure matrix

R = R. n

It is straightforward to develop in a similar fashion procedures to compute

the {reduced) structure and solution vectors.

As is the case with W'.', Zm may be applied to rectangles as well as to

general quadrilateral structures.

The procedure Zm resembles U1' in that decomposition of the structure matrix

is interleaved with partitioning the structure, computing the element

matrices, assembling and ordering the equations. The traditionally con­

secutive steps are carried out interleaved.

6.3.2. Storage and operation counts of Zm

If the matrices are represented as full matrices, then the procedure

decompose in line 11 requires (see 5.2)

multiplicative operations with i = e = 5. Hence, the ~-statement

requires 185 n multiplicative operations with matrix coefficients. The

procedure U1' requires 130 such operations, therefore the total number is

185 n + 130 •

By applying profile algorithms that number may be reduced to

(6.4) 119 n + 67 •

To store the matrix, assembled in line 10, as a full matrix requires 55

storage locations, for the reduced structure matrix 15 locations are need­

ed. Hence, if the decomposed and reduced structure matrices are overwritten

once they are not needed any longer, Zm requires in total 55 + 15 that is

70

locations {W'.' in line 3 requires.less).

82

If the decomposed matrices are retained, then at. most

(6.5) 40 n + 100

storage locations are occupied.

It should be noted that (6 A) shows also the operation count. associated

with a more usual organization of the calculations, L first assembling

the complete structure ma.tr.ix associ,ited with R and next applying a profile

algorithm to compute the reduced structure matrix.

Let N denote the total number of nodes of R, then N "' Sn+ 9. It fol.lows

from (6.4) and (6. that the operation and storage counts are about

24N - 147 and 8N + 28, respectively. Hence both time and space required are

0 (N) , i.e. linear in the number of nodes. An asymptotically faeS'ter algo­

rithm does not exist, because writing down the solution alone requires O(NJ

space and time. Remember that the corresponding counts for UY' are 0

and O(N log N), respectively, with N the total number of nodes of the

structure concerned.

If the rectangle R would have been partitioned uniformly with all elements

in size equal. to tl1e smallest element of the locally refined grid, then the

total number of multiplicative operations with matrix coefficients would

have been O , Comparing this with (6A) shows the computational advan-

tages of local mesh refinement.

6 General plane and curved surfaces

For more general surfaces, which for instance may contain appendages

holes, an approach as out.lined in [Zienkiewicz and Phillips '71] may be

followed,

The surface, say S, is divided into a number of quadrilaterals Vi

,, With Sa so called key diagram is associated" diagram

is a rectangular configuration of (possibly empty) rectangles. There .is a

one-one correspondence between the non-empty rectangles Ri (i '" , , ,, , ,r)

and the quadrilaterals VL Moreover, Ri and Rj (i ,/ j) are adjacent in the

key diagram only if V.i and Vj are adjacent in S. For every pair Ri, Vi a

transformation <!> j_ is constructed, as outlined in Section . 2, which trans~

forms a partitioning of Ri into a partitioning of VL Of course, if Ri and

83

Rj have a common boundary b, then the nodes of Ri and Rj on b must coincide;

moreover ti and ~j applied to b must be the same transformation.

To complete the versatility of the scheme it is important to include one

further feature, namely to express that two seemingly different boundaries

in the key diagram are identical. It is of course necessary to ensure that

the transformation conditions just described for common boundaries, are

satisfied for such identical boundaries. By including this feature it is

even possible to deal with such three-dimensional surfaces like tori and

ball surfaces. Key diagrams are in [Zienkiewicz and Phillips '71] used to

generate an element partitioning for Sonly. However, it is just as well

possible to apply procedures as described in Chapters 4 and 5 to compute

immediately the reduced structure matrices Q;i and vectors f;i associated

with the quadrilaterals Vi (i = 1, ••• ,r).

r r
To assemble the matrices ~i and vectors fVi and to compute the associated

parts of the total solution vector, one may proceed in the traditional way.

The finite element system FEMSYS [Peters '76] is very well suited not only

to perform such matrix calculations, but also to handle the necessary book­

keeping. FEMSYS is well suited because of its facilities for specifying

structures consisting of arbitrary substructures; moreover its possibility

to identify nodes with different numbers is necessary in this case.

7.1. Other implementations

CHAPTER 7

CLOSING REMARKS

85

A discussion of various strategies to solve a set of linear finite element

equations efficiently by direct. methods rnay be found in '77, George

and McIntyre '78 • 'l'hose papers deal only with ordering of the equations,

LU-decomposition (or factorization as it is called) and forward and back­

ward substitution; they are not concerned with the assembly of the struc­

ture matrix. Comparing figures from those papers with Table 1 indicates

(taking into account the different processor speeds and the efficiency of

the code produced by the respective compilers) that our solution (by apply­

i.ng the proct,>dures from Chapter 4) is far more efficient (by about a factor

This may be due to the fact that reordering as well as overhead storage

and bookkeeping are avoided. For a better appraisal. must compare our

program with one that executes aZZ the relevant steps"

Por another comparison we have taken a pcpul.ar finite element program for

structural. analysis in use on several computer installations all over the

world. From Table 2 it i.s obvious that our program saves a factor greater

that 50 of the processor time, Moreover, our program uses only central

memory, whereas the other needs ai:udl.iary disk space, The structural

lysis program is intended to a general purpose one, suited for all

of meshes. Therefore the comparison may not be quite fair; it indi-

cat.es very clearly which gains efficiency may be achieved.

7,2. Data retrieval.

One of the reasons why the procedures as developed in this monograph are

efficient is undoubtedly that no other data than coefficients of structure

matrices and vectors are stored, Whenever the valu,a of a coordinate is

required, is computed,, 'l'his is easily done, because the regularity of

the problem is fully exploited. l"or instance, if the structure is a rect­

angle with a uniform mesh, the computation of a coordinate takes only one

addition and one multiplication with simple variables as operands, which is

86

n

5

10

15

20

25

30

35

40

45

50

number of
unknowns

36

121

256

441

676

961

1296

1681

2116

2601

number of rl - total
multiplications time*

817 0.018 ,06

6829 0.10 0.30

24848 0.31 0.83

62744 o. 72 1. 73

123429 L43 3.12

2l.6323 2.40 4.77

350184 3.81 7.07

544868 6.00 10,5

772081 SAS 14.3

1057805 10.7 17.7

storage and operations counts

decomposition and total time

of

number of coefficients
of decomposed matrices

220

1170

3200

6561

11230

17314

25065

35189

46350

59142

procedure UI' applied ton x grids

* times are seconds on IBM 370/16.5 with double length reals

*l

TABLE 1

number of
unknowns S'l'RUDI/l Ul'

450 224 2

882 377 5

3200 1247 23

total processing times

in seconds on IBM 370/165

See [Frederiksson and Mackerle '76].

TABLE 2

87

no more e>.xpensive than the evaluation of a subscripted variable. Hence, it

is cheaper to compute than to retrieve the coordinates every time they are

needed, For less regular structures the topologies of (parts) of the ele­

ment meshes are the same. 'l'o compute the coordinates of the nodes, trans­

formations as described in Chapter 6 are applied. These transformations are

simple, easy to compute functions, if the structure does not deviate too

much from that of a uniform rectangle.

7.3. Triangular dissections

The computational steps of and bur resemble the traversal of a binary

tree. Going from a tree vertex to its successor, all information relevant

for the successor is easily derived from the information concerning its

predecessor.

Such information includes not only the number of internal and external

nodes, but also the ordering of them, Procedures analo9ous to u.v, and

bur may be developed for other kinds of structures,, For instance, a tri­

angular structure T can be dissected into four similar triangles, each of

which can be dissected into four , , , , and so orL The associated tree of

substructures is then a quaternary tree,

7.4, One- and three-dimensional problems

It is straightforward to develop procedures analogous tour,

for one- or three-dimensional structures: a line segment can

and bur

dissected

into two segmerrts, a brick into two bricks, 'I'he adaptations as de-

scribed in Chapter 6 may be extended to the one- or three-dimensional ca,5e

as well,

However, for one-dimensional structures it proves to be cheaper both in

storage and in number of a:dtl1rnetical operations not to dissect the line

into two lines of about equal size, but to split off just one element at

one of the ends, In this way the nodes are successively eliminated from one

end of the structure to the other,

'!'he above remark i.s also valid for two-dimensional structures with an x m

mesh if n >> m, For those structur-es it is , as far as efficien-

cy is concerned, to consider them as one-dimensi.onal strings of substruc-

88

tures with m x m meshes, 'l'o compute tl!e matrices and vectors associated

with those substructures, the procedures UY', and bu1' may be applied

7.5. Structures with more than one structure vector

In some applications of the finite element method, many sets of equa.tions

having the same coefficient matrix must be solved, If the procedures from

Chapter 4 are used, then the decomposed structure matrices associated with

the structure, say R, need to be computed only once by a call of ur and

each structure and solution vector for R requi.res the execution of the

procedures and bur, We have seen that the amount of time needed to

execute and bur is small compared with ux•.

Also the storage space saving procedures of Chapter 5 may be applied if a

number of structure vectors is presented simultaneously, A facility to

handle simultaneously more than one structure vector instead of only one at

a time must be added to lur, In the same way also tur must be accommodated

to handle more than one solution vector, These facilities are easily imple­

mented, If the structure vectors are presented consecutively, then for each

structure vector the procedure Zur must be executed, which implies that for

each structure vector the assembly and decomposition of the matrices as­

sociated with Rare repeated,

7 , Iterative me·thods

Direct and iterative methods to solve partial differential equation pro­

blems are compared in [Axelsson '77 , The amount storage required by the

iterative method depends upon (contrary to the direct met11od) the number of

non-zeros in the structure matrix; no extra storage for fill-in is needed,

Second and fourth order problems with two-dimensional n x n and three-

dimensional n n grids are considered, A comparison is made between

the asymptotic number of arithmetlcal operations required by the "SSOR

preconditioned conjugate gradient method" and the nested dissection method ..

It turns out that for a three-dimensional second order problem the iterat­

ive methods are asymptotically faster than the backward substitution phase

in the direct method, For a fourth order two-dimensional problem the direct

method is superior, In other problems the superiority of one method over

another is not clear. ?:'he size of the problem and the number of structure

vectors may influence the cholce of the method, It should be noted, how­

ever, that direct methods are more generally applicable then iterative

ones"'

89

7.7. Data structuring facilities of PASCAL

The data structuring facilities of PASCAL are judged to be among its more

attractive features [Wirth '71 acta]. Nevertheless, to represent all the

structure matrices and vectors associated with an n x m grid, we have used

only the most simple data structure (apart from a simple variable), viz.

the one-dimensional array, The reason is the following.

A call of the procedure ur results in a hierarchy of substructures with

corresponding matrices. Therefore, a tree like data organization with in

every vertex the matrices associated with a substructure could be very ap­

propriate. Such dynamic data structures could then be used to represent all

matrices. However, PASCAL requires that the sizes of the arrays contained

in the vertices of dynamic trees are declared statically, thus requiring

setting of fixed limits. This is inefficient for the storage of matrices of

various sizes, as generated by the procedure uz,. These matrices can neither

be stored in local arrays, because they are needed outside the block where

they are computed, nor in as many global arrays as there are matrices or

substructures, because their number and sizes would then have to be de­

clared statically, The only remaining possibility is to store all matrices

together into one or two global arrays of sufficient length.

If it were possible to define dynamically the sizes of the arrays in the

tree vertices, then tree structures could be considered, However, for

the procedure uz,, trees would result in a less efficient data organiza­

tion, because pointer variables would be required as well as information

concerning the sizes. On the other hand in our data representation as set

up for uz, only matrix coefficients are stored, nothing else,

In nearly every programming ianguage one-dimensional arrays occur; moreover

the iterative counterparts of the recursive procedures in Chapter 4 are

easily obtained [Peters '78], Hence the procedures as described in this

thesis may be coded in nearly all programming languages,

7,8, Generalized element method, element merge tree

Although one may be tempted to do so, our method for finite element com­

putations must not be confounded with the generalized element method

[Speelpenning '78] (a generalization and improvement of the frontal solution

90

method [Irons '70]). Nor should a proper preserving palm be confused with an

element merge tree [Eisenstat e, a. '78],

'l'he generalized element method is different in the following aspects:

- it is motivated by an efficient use of "backing store";

- nodes of a structure are eliminated one at a time;

- the elimination order of the nodes is assumed to be determined in advance;

the way in which a structure is dissected into substructures is completely

control.led by the elimination order of the nodes;

- it requires overhead storage and bookkeeping;

element matrices are assumed to have been computed in advance,

Simi.1.arities between the method and our way of organizing finite element

computations are that assembly and decomposition of the structure matrix

are interleaved (substructures may be distinguished) and that only full

matrices are manipulated.

The generalized element method is only applicable to so called "network

equations", which are equations whose associated matrix can be considered

to be assembled from (small.er) element matrices, In this sense the MSSE

method [Eisenstat e.a, '78] is a generalization, it applies to arbitrary

symmetric positive definite matrices. However, this method deals only with

LU-decomposition and forward and backward substitution; assembly of the

matrix is not considere<L The principal. advantages of MSSE are described to

be "the ability to solve problems in significantly less core and to trade

off an increase in execution time for a decrease in core", To achieve this

a so cal.led "element merge tree" is constructed, Such an element merge tree

depends on the ordering of the equations and variables, In an obvious way a

pp-partition can be associated with such an element merge tree, Hence the

results of Chapter 2 apply also to those element merge trees, 'l'he partition

associated with an element merge tree is not always a proper one, however.

As a consequence, if the .MSSE method is applied to a dense band matrix, it

results in highly inefficient moving around of data,, In all cases the

method requires extensive bookkeeping. The claim "for a nine-point problem

with the nested dissect.ion ordering on an n x n grid fewer than 7
2 non-

93 2 zeros must. .be saved versus 12 log n for sparse elimination, while the

work required at most doubles" is incorrect,,

91

It should be noted that Williams was the first to point out the equivalence

of substructuring and sparse matrix algorithms [Williams '73]. He showed

that it is always possible to choose the substructures so that the sub­

structure method will lead to precisely the same computations as any sparse

matrix solution, with the minor difference that some additions are perform­

ed at different stages of the solution. He showed this, however, in such a

way that he was led to the conclusion: "It appears that a sparse matrix

method will always be preferable to a substructure method ••• ". We have

shown in this thesis that this conclusion is not valid any longer.

7.9. Parallel computation

Let us consider the procedure u.r in 4.1.2. Execution of the recursive call

in line 11 (or line 14) does not depend upon the execution of the immedia­

tely preceding call in line 10 (or line 13), except for the determination

of the position to store the computed matrices. Hence both recursive calls

may be done in either order or even simultaneously by two different pro­

cessors. In the last case, each processor in its turn may set to work two

other processors, The processors do not need access to common data. The

procedure u.r is therefore well suited for implementation on a computer with

many processors. The way in which the processors communicate with each

other is independent of the finite element problem being solved. The pro­

cessors may be linked as a binary tree.

The same remark applies to the procedures fur, bUl', mu:t' and tur.

A(vl

AM
adjacency set

ancestor vertex

assemble

backward substitution

bandwidth

blended element

blending interpolation

block-matrix

block-pivot

bur

Cholesky decomposition

connected component

connected graph

connection graph

connection matrix

consistent ordering

CQ

O(vl

V<v>
D(v)

decomposable matrix

decomposed (structure) matrices

decomposition graph

deficiency

dense

descendant vertex

directed graph

dissection tree

edge

element

element matrix

element vecto:r

INDEX

12

12

11

1.1

55

6

8

79

78

20

6

59

6

11

11

12

41

15

8

12

12

13

13

55

57

13

13

9

11

10

37

1.0

41

41

4

elimination graph

envelope

external node

fill-in

forward substitution

frame structure

frond

fur

* G
Cl

graph

internal node

key diagram

leaf vertex

lm

LU-decomposition

Zur

mesh generation

mu..1.<J

nested dissection ordering

nested dissection partition

node

ordered graph

palm

palm forest

partial decomposition

partition

path

perfect partition

p-partition

pp-partition

predecessor vertex

preserving palm

preserving partition

profile

proper palm

93

13

8

44

13

6

73

11

57

11

44

82

11

80

1

68

42

67

37

Tl

42

2

11

6

2

11

23

24

11

17

9

25

94

proper p-partition

quotient graph

reduced structure matrix

reduced structure vector

reducible matrix

root

rooted tree

rQ
section graph

separator

serendipity element

shape function

sparse matrix algorithm

25

12

45

45

13

11

11

8

11

11

77

39

10

strongly connected graph 11

structure 41

structure matrix 41

structure vector 41

substituted structure vector 58

substructure 44

successor vertex 11

tree 11

tur 69

undirected graph 10

Ul' 53

vertex 10

REFERENCES

A:xelsson, o., Solution of linear systems of equations: iterative met.hods,

in: Sparse matrix techniques, Copenhagen 1976 (V . Barker ed.),

Berlin, Springer, 1977.

95

Bunch, ,T .l.'L and D.J. Rose, Partitioning, tearing and modification of sparse

linear systems. J. Math .. AnaL AppL ~ (1974), 574-593.

Cavendish, J.C., Local mesh refinement using rectangular blended finite

elements. J. Comp. Phys. 2:,g_ (1975), 211-228.

Clough, R.W., The finite element in plane stress analysis, in: Proceedings

second ASCE conference on electronic computation, Pittsburgh, ASCE,

1960.

Courant, R., Variational met.hods for the solution of problems of equilibrium

and vibrations. BulL Amer. Math. Soc, (1943), 1-23.

Cuthill, E., Several strategies for reducing the bandwidth of matrices, in:

Sparse matrices and their applications (D.J. Rose and R.A. Willoughby

eds.), New York, Plenum Press, 1972.

Dijkstra, E.W., Notes on structured programming, in: Structured programming

(o.J·. Dahl, E.W. Dijkstra and C.A.JL Hoare), London, Academic Press,

1972.

Duff, r.s., A survey of sparse matrix research. Proc. IEEE

500-535.

(1977),

Duff, LS., l\.t-L Erisman and J Reid, On George's nested dissection

method, SIAM J·. Numer, AnaL (1976), 686-695.

Eisenstat, s.c., M,H, Schultz and A.H. Sherman, Applications of an element

model for Gaussian elimination, in: Sparse matrix computations (D ,,T,

Rose and J.R. Bunch eds.), New York, Academic Press, 1976,

Eisenstat, s.c., l'LH. Schultz and A,H, Sherman, Software for sparse Gauss­

ian elimination with limited core storage. Yale University, Department

of Computer Science, 1978.

Frederiksson, B. and ,J. Macker le, Structural mechanics finite element com­

puter programs - surveys and availability. Linkoping, Linkoping

96

Institute of 'l'echnology, 19 7 6.

Garey, M.R., D.S. Johnson and P,K. Stockmeyer, Some simplified NP-complete

problems. Proceedings sixth annual ACM symposium on theory of comput­

ing, 1974.

George, J.A., Computer implementation of the finite element method.

Stanford, Stanford University, Department of Computer Science, 1971.

George, J .A., Nested dissection of a regular finite element mesh. SIAM J.

Numer. Anal. l.Q_ (1973), 345-363.

George, J .A., On block elimination for sparse linear systems. SIAM J. Numer.

Anal. l.!. (1974), 585-603.

George, J .A., Solution of linear systems of equations: direct methods for

finite element problems, in: Sparse matrix techniques, Copenl1agen 1976

(V.A. Barker ed.), Berlin, Springer, .1977.

George, J and J.W.H. Liu, Some results on fill for sparse matrices. SIAM

J. Numer. AnaL 12 (1975), 452-455.

George, J.A. and J.W.H. Liu, An automatic nested dissection algorithm for

irregular finite element problems. SIAM ,L NumeL Anal. 1.2, (october

1978), 1053-1069.

George, ,LA. and J .w.H. Liu, Algorithms for matrix partitionings and the

numerical solution of finite element syste.ms. SIAM J. Numer. Anal. 15

(april 1978), 297-327.

George, J.A. and D.R. McIntyre, On the application of the minimum degree

algorithm to finite element systems. SIAM J. NumeL AnaL

90-112.

(1978),

Gordon, W .,T. and C .A. Hall, Transfinite ele.ment methods, blending function

interpolation over arbitrary curved element domains. Numer. Math.

(1973) , 109-129.

Gustavson, F .G., Some basic techniques for solving sparse systems of Linear

equations, in: Sparse matrices and their applications (D.J. Rose and

R.A. Willoughby eds.), New York, Plenum Press, 1972.

Hoffman, A,J., M.S. Martin and D.J. Rose, Complexity bounds for regular

finite difference and finite element grids. SIAM J. Numer. AnaL

(1973), 364-369.

97

Irons, B,M,, A frontal solution program. Int. J. Numer. Meth. Eng.£ (1970),

5-32.

Jensen, K. and N. Wirth, PASCAL user manual and report, second edition.

New York, Springer, 1978.

Knuth, D,E., The art of computer programming, second edition, volume 1:

Fundamental algorithms. Reading, Addison-Wesley, 1975.

Lipton, R.J., D.J. Rose and R.E. Tarjan, Generalized nested dissection.

SIAM J. Numer, Anal.~ (1979), 346-358,

Norrie, D.H. and G. de Vries, Finite element bibliography. New York, Plenum

Press, 1976.

Papadimitriou, C.H., The NP-completeness of the bandwidth minimization

problem. Computing~ (1976), 263-270.

Parter, s.v., The use of linear graphs in Gauss elimination. SIAM Rev, 3

(1961), 119-130.

Peters, F.J., A novel implementation of finite element algorithms. Eindhoven,

Eindhoven University of Technology, Department of Mathematics, 1979.

Peters, F,J., FEMSYS, een systeem voor op de eindige-elementenmethode geba­

seerde berekeningen. Eindhoven, Eindhoven University of Technology,

Department of Mathematics, 1976.

Peters, F.J. Another organization of finite element calculations and its

implementation with ICETRAN, in: Proceedings XX ICES users group world­

wide conference (A.N. Natali ed.), Padua, Padua University, 1978.

Przemieniecki, J.S,, Theory of matrix structural analysis. New York,

Mc Graw-Hill, 1968,

Rose, D.J., A graph-theoretic study of the numerical solution of sparse

positive definite systems of linear equations, in: Graph theory and

computing (R. Read ed.), New York, Academic Press, 1971.

Rose, D,J. and R.E. Tarjan, Algorithmic aspects of vertex elimination, in:

Proceedings Seventh Annual ACM Symposium on Theory of Computing, 1975.

Rose, D.J. and G.F. Whitten, A recursive analysis of dissection strategies,

in: Sparse matrix computations (J.R. Bunch and D,J. Rose eds), New

York, Academic Press, 1976.

98

Schoofs, A.J.G., L.H.T.M. van de Beukering and M.L.C. Sluiter, General

purpose 2-dimensional mesh generator. Eindhoven, Eindhoven University

of Technology, Department of Mechanical Engineering, 1979.

Speelpenning, B., 'rhe generalized element method. Urbana, University of

Illinois at Urbana-Champaign, Department of Computer Science, 1978.

Strang, G. and G.J. Fix, An analysis of the finite element. method.

Englewood Cliffs, Prentice-Hall, 1973.

Tarjan, R.E., Depth-first search and linear graph algorithms. SIAM J.

Comput. ! (1972), 146-160.

Tarjan, R.E., Graph theory and Gaussian elimination, in: Sparse matrix

computations (J-.R. Bunch and D,J. Rose eds.), New York, Academic

Press, 1976.

Turner, M.J., R.W. Clough, ILC. Martin and L.J. Topp, Stiffness and deflec­

tion analysis of complex structures. J. Aeron. Sci. 23 (1956), 805-823.

Varga, R.S., Matrix iterative analysis. Englewood Cl.i..ffs, Prentice-Hall,

1962.

Wilkinson, J • .H., The algebraic eigenvalue proble.ni. Oxford, Oxford University

Press, 1965.

Williams, F.W., Comparison between sparse stiffness matrix and substructure

methods. Int. J. Numer. Meth. Eng.;§_ (1973), 383-394.

Wirth, N., Program development by step-wise refinemenL Co!llll1. ACM

221-227.

Wirth, N., The programming language PASCAL. Acta Inf.! (1971), 35-63.

Zienkiewicz, o.c., 'l'he finite element method, third edition. London,

Mc Graw--Hill, 1977.

197 l,

Zienkiewicz, o.c. and n.v. Phillips, An automatic mesh generation scheme

for plane and curved surfaces by iso_parametric coordinates. Int.

Numer. Meth. Eng. l (1971), 519-528.

Zlamal, M., On the finite element. met.hod. Numer. Math. (1968), 394-409.

OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

A leaflet containing an order-fonn and abstracts of all publications men­
tioned below is available at the Mathematisch Centrum, 'l'weede Boerhaave­
straat 49,Amsterdam,1091AL The Netherlands. Orders should be sent to the
same address.

MCT T. VAN DER WAL'l', Pixed and almost fixed points, 1963. ISBN 90 6196
002 9.

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 90 6196 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generalized Markovian decision processes, pa:rt II: Pro­
babilistic background, 1964. ISBN 90 6196 005 3.

MCT 5 G. DE LEVE, H.C. TIJMS & P.,J. \i?EEDA, Generalized Markovian decision
processes, AppUcations, 1970. ISBN 90 6196 051 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1.

MCT 7 W.R. VAN ZWE'l', Conve:r; tr>ansformations of random variables, 1964.
ISBN 90 6196 007 X.

MCT 8 J·.A. ZONNEVELD, Automatic numerical integration, 1964. ISBN 90 6196
008 8.

MCT 9

MCT 10

MCT l1

MCT 12

MCT 13

MCT 14

MCT 15

MC'l' 16

MCT 17

MCT 18

P.C. BAAYEN, Unive1°sal mo.rphisms, 1964. ISBN 90 6196 009 6.

E.M. DE JAGER, Applications of distributions in mathematical physl.cs,
1964. ISBN 90 6196 010 X.

A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964. ISBN 90 6196
OU 8.

J.A.Tl:I.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MoKKEN & A. VAN
WIJNGAARDEN, Formal properties of newspaper> Dutch, 1965.
ISBN 90 6196 013 4.

H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced
by MCT 54 and 67.

H.A. Lll.UWERIER, Calculus of variat·ions in mathematical physics, 1966.
ISBN 90 6196 020 7.

u. DooRNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

J.W. DE BAKKER, Por>maZ definition of programming languages vYith an
application to the definUion of ALGOL 60, 1967. ISBN 90 6196
022 3.

R.P. VAN DE RIET, Formula manipulation in ALGOL 60, pm0 t 1, 1%8.
ISBN 90 6196 025 8.

R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 2, 1968.
ISBN 90 6196 038 x.

MCT 19 J. VAN DER SLOT, Some properties re lated to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HODWEN, Finite difference methods fo:r .solving pa1'tiaZ
d1:fferential equations, 1968. ISBN 90 6196 027 4.

MCT 21 E. WATl'EL, The corrrpactness operator in set theory and topology,
1968. ISBN 90 6196 028 2.

MCT 22 T .J. DEKKER, ALCrOL 6'0 p:rocedux'es in nwnerical algebra, part 1, 1968.
ISBN 90 6196 029 0.

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 6'0 procedures in nwnerical algefo,a,
part 2, 1968. ISBN 90 6196 030 4.

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6.

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective
geometry, 1969. ISBN 90 6196 039 8.

MCT 26 EUROPEAN MEETING 1968, Selected s-tatistical papers, part I, 1968.
ISBN 90 6196 031 2.

MCT 27 EUROPEAN MEETING 1968, &·7ected staUstical papers, part II, 1969.
ISBN 90 6196 040 1.

MCT 28 J. 00STERHOFF, Combinat1'.on of one-sided stah'.st1'.cal test.s, 1969.
ISBN 90 6196 041 x.

MCT 29 J. VERHOEFF, Err•or detecting decimal. code.s, 1969. ISBN 90 6196 042 8.

MCT 30 H. BRANDT CORSTIUS, Excer•cises in computaUona l linguistics, 19 70.
ISBN 90 6196 052 5.

MCT 31 W. J\.x.)LENAAR, Approximations to the Po·isson, binomial and hype.rgeo­
metric distribution functions, 1970. ISBN 90 6196 053 3.

MCT 32 L. DE HAAN, On regular var-iatfon and its application to the weak
convergence of sample extl:'emes, 1970. ISBN 90 6196 054 L

MCT 33 F.W. STEU'l'EL, Preservation of infinite divisibiUty under mixing
and related topics, 1970. ISBN 90 6196 061 4.

MCT 34 I. JUHASZ, A. VBRBEEK & N.S. KROONENBERG, Cardinal functions in
topology, 1971. ISBN 90 6196 062 2.

MCT 35 M.H. VAN EMDEN, An analysfo of complexity, 1971. ISBN 90 6196 063 0.

MCT 36 J. GRASMAN, On the birth of boundary layers, 19 71 • ISBN 90 6196 064 9 •

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DUIJVESTIJN, E.W. DLJKSTAA,
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
A.RETZ, W.L. VAN DER POEL, J.P. ScHAAP-KRUSEMAN, M.V. WILKES &

G. ZOUTENDIJK, MC-25 Informatica Symposiwn, 1971.
ISBN 90 6196 065 7.

MCT 38 W.A. VERLOREN VAN THEMAAT, Automatic analysis of Dutoh compound words,
1971. ISBN 90 6196 073 8.

MCT 39 H. BAVINCK, Jacobi series and approx-imation, 1972. ISBN 90 6196 074 6.

MC'r 40 H.C. TIJMS, Analysis of (s,S) inventol:'y models, 1972. ISBN 90 6196 075 4.

MC'r 41 A. VERBEEK, Superextensions of topological spaces, 1972. ISBN 90
6196 076 2.

MCT 42 W. VERVAAT', Success epochs in Bernoulli trials (with applications in
nwnber theory), 1972. ISBN 90 6196 077 o.

MCT 43 F .H. RUYMGAART, Asymptotic theory of 1°ank tests for independen<!e,
1973. ISBN 90 6196 081 9.

MCT 44 H. BART, Meromorphic~ oper•at;or valued .function.s, 1973.,ISBN 9061960827.

MCT 45 A.A. BALKEMA, Monotone t!'ansf ormations and limit la/JJs, 19 7 3 .
ISBN 90 6196 083 5.

MCT 46 R.P. VAN DE RIET, ABC ALGOJ,, A portable language for formula manipu­
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3.

MCT 47 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipu­
lation systems , part 2: The compiler, 1973. ISBN 90 6196 085 1.

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL
60 aompiler in ALGOL 60, Text of the MC-compiler for the
EL-XB, 1973. ISBN 90 6196 086 X.

MCT 49 H. KOK, Conneated orderable spaces, 1974. ISBN 90 6196 088 6.

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J .E.L. PECK, C.H.A. KOSTER,
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERI'ENS & R.G. FISKER
(Eds),. Revised report on the algorithmic language ALGOL 68,
.1976. ISBN 90 6196. 089 4.

MCT 51 A. HORDIJK, Dynamic programming and Markov potential theory, 1974.
ISBN 90 6196 095 9.

MCT 52 P.C. BAAYEN (ed.), Topologiaal structures, 1974. ISBN 90 6196 096 7.

MCT 53 M.J. FABER, Metrizability in generalized ordered spaces, 1974.
ISBN 90 6196 097 5.

MCT 54 H.A. LAUWERIER, Asymptotic analysis, part 1, 1974. ISBN 90 6196 098 3.

MCT 55 M. HALL JR. & J .H. VAN LINT .(Eds) , Combinatorics, part 1: Theory
of designs, finite geometry and coding theory, 1974.
ISBN 90 6196 099 1.

MCT 56 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 2: graph
theory, foundations, partitions and combinatorial geometry,
1974. ISBN 90 6196 100 9.

MCT 57 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 3: Combina­
torial group theory, 1974. ISBN 90 6196 101 7.

MCT 58 W. ALBERS, Asymptotic expansions and the deficiency concept in sta­
tistics, 1975. ISBN 90 6196 102 5.

MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

MCT 60 F. GoBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108

* MCT 61 P. VAN EMDE BoAS, Abstract resource-bound classes, part 1.
ISBN 90 6196 109 2.

* MCT 62 P. VAN EMDE BoAS, Abstract resource-bound classes, part 2.
ISBN 90 6196 110 6.

MCT 63 J.W. DE BAKKER (ed.), Foundations of computer science, 1975.
ISBN 90 6196 111 4.

MCT 64 W.J. DE SCHIPPER, Symmetric closed categories, 1975. ISBN90 6196
112 2.

MCT 65 J. DE VRIES, Topological transformation groups 1 A categorical ap­
proach, 1975. ISBN 90 6196 113 o.

MCT 66 H.G.J. PIJLS, Locally convex algebras in spectral theory and eigen­
function expansions, 1976. ISBN 90 6196 114 9.

4.

* MCT 67 H.A. LAUWERIER, Asymptotic analysis, part 2.
ISBN 90 6196 119 X.

MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operator•s of
second order, 1976. ISBN 90 6196 120 3.

MCT 69 J.K. LENSTRA, Sequencing by enumerative methods, 1977.
ISBN 90 6196 125 4.

MCT 70 W.P. DE ROEVER JR., Recurs1:ve program scheme.c;: semantics and proof
theory, 1976. ISBN 90 6196 127 0.

MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision proce.c;ses, 1976.
ISBN 90 6196 129 7.

MCT 72 J.K.M. JANSEN, Simple periodic and nonpe1°iodic Lame functions and
their applications in the theory of conical, waveguides, 1977.
ISBN 90 6196 130 0.

MCT 73 D.M.R, LEIVANT, Absoluteness of intuitfon-istic log·ic, 1979.
ISBN 90 6196 122 x.

MCT 74 H.J.J. TE RIELE, A theoretical and computational study of general­
ized aliquot sequences, 1976. ISBN 90 6196 131 9.

MC'r 75 A.E. BROUWER, T1°eelil<e spaces and .related connected topological
spaces, 1977. ISBN 90 6196 132 7.

MCT 76 M. REM, Associons and the closure statement, 1976. ISBN 90 6196 135 1.

MCT 77 W.C.M. KALLENBERG, Asymptotic optimality of likelihood ratio tests in
e;;::ponential families, 1977 ISBN 90 6196 134 3.

MC'r 78 E. DEJONGE, A.C.M. VAN ROOIJ, Intr•oduction to Riesz .c;paces, 1977.
ISBN 90 6196 133 5.

MC'l' 79 M.C.A. VAN ZUIJLEN, Empirical distributions and rankstatistics, 1977.
ISBN 90 6196 145 9.

MCT 80 P.W. HEMKER, A nwne.rical study of stiff -two-point boundary probleme,
1977. ISBN 90 6196 146 7.

MCT 81 K.R. AP'l' & J.W. DE BAK.KER (Eds), Foundations of computer science
part 1, 1976. ISBN 90 6196 140 8.

MCT 82 K.R. APT & ,J.W. DE BAKKER (Eds), Poundat1:ons of computer sc'lence
part 2, 1976. ISBN 90 6196 141 6.

MCT 83 L.S. VAN BENTEM JUTTING, Checking Landau's 11Grundlagen" in the
AUTOMATE system, 1979 ISBN 90 6196 147 5.

II,

TI,

MC'r 84 H.L.L. BUSARD, The translation of the elements of Euclid from the
Arabic into Latin by Hermann ofCarinthia (?)books vU-xii, 1977.
ISBN 90 6196 148 3.

MCT 85 J. VAN MILL, Supe.rcompactness and Wallman spaces, 1977.
ISBN 90 6196 151 3.

MC'I' 86 S.G. VANDERMEULEN & M. VELDHORST, Tor"f'ix I, 1978.
ISBN 90 6196 152 1.

* MCT 87 S.G. VAN DER METJLEN & M. VELDHORS'r, 'I'or"f'ix II,
ISBN 90 6196 153 x.

MCT 88 A. SCHRIJVER, Matroids and Unking systems, 1977.
ISBN 90 6196 154 .8.

MCT 89 J.W. DE RoEVER, Complex Fourier transfoT'mation and analytic
functionals with unbounded carriers, 1978.

*MCT 90

MCT 91

MCT 92

MCT 93

MCT 94

MCT 95

* MCT 96

ISBN 90 6196 155 6.

L.P.J. GROENEWEGEN, Characterization of optimal strategies in dy-
namic games, • ISBN 90 6196 156 4.

J.M. GEYSEL, Transcendence in fields of positive characteristic,
1979, ISBN 90 6196 157 2.

P.J. WEEDA, Finite generalized Markov progrCUl'D7ling,1979.
ISBN 90 6196 158 0.

H.C. TIJMS (ed.) & J. WESSELS (ed.) , Markot' decision theory, 1977.
ISBN 90 6196 160 2.

A. BIJLSMA, Simultaneous approximations in transcendental number
theory, 1978. ISBN 90 6196 162 9.

K.M. VAN HEE, Bayesian control of Markov chains, 1978 ..
ISBN 90 6196 163 7.

P.M.B. VITANYI, Lindenmayer systems: structure, languages, and
growth functions, . ISBN 90 6196 164 s.

* MCT 97 A. FEDERGRUEN, Markovian control problems; functional equations
and algorithms, . ISBN 90 6196 165 3.

MCT 98 R. GEEL, Singular perturbations of hyperbolic type, 1978.
ISBN 90 6196 166 l

MCT 99 J.K. LENSTRA, A.H.G. RINNOOY KAN & P. VAN EMDE BOAS, Interfaces
be-tween computer science and operations research, 1978,
ISBN 90 6196 170 X.

MCT 100 P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (Eds), Proceedings bicenten­
nial congress of the Wiskundig Genootschap, part 1,1979,
ISBN 90 6196 168 8.

MCT 101 P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (Eds), Proceedings bicenten­
nial congress of the Wiskundig Genootschap, part 2,1979.
ISBN 90 9196 169 6.

MCT 102 D. VAN DULST, Reflexive and superreflexive Banach spaces, 1978.
ISBN 90 6196 171 8.

MCT 103 K. VAN HARN, Classifying infinitely divisible distributions by
functional equations,1978 . ISBN 90 6196 172 6.

MCT 104 J.M. VAN WOUWE, Go-spaces and generalizations of metrizability,1979.
ISBN 90 6196 173 4.

* MCT 105 R. HELMERS, Edgeworth eX'{)ansions for Zinear combinations of order
statistics, . ISBN 90 6196 174 2.

MCT 106 A. SCHRIJVER (Ed.), Packing and covering in combinatorics, 1979.
ISBN 90 6196 180 7.

MCT 107 C, DEN HEIJER, The numerical solution of nonlinear operator
equations by imbedding methods, 1979. ISBN 90 6196 175 O.

MCT 108 J.W. DE BAKKER & J. VAN LEEUWEN (Eds), Foundations of computer
science III, part 1, 1979. ISBN 90 6196 176 9.

MCT 109 J.W. DE Bfil<KER & J. VAN LEEUWEN {Eds), Foundations of computer
science III, part 2, 1979. ISBN 90 6196 177 7.

MCT 110 J.C. VAN VLIET, ALGOL 68 tra:nsput, part I: Historical Review and
Discussion of the Implementation Model, 1979. ISBN 90 6196 178 5.

MCT 111 J.C. VAN VLIET, ALGOL 68 transput, part II: An
1979. ISBN 90 6196 179 3.

model,

MCT 112 H.C.P. BERBEE, Random walks with stationary increments and Renewal
theory, 1979. ISBN 90 6196 i82 3.

MCT 113 T,.A.B. SNIJDERS, Asymptotic optimality theory for testing Pl'Oblems
1;Jith restricted alternatives, 1979, ISBN 90 6196 183 1.

MC'l' 114 A.J .E.M. JANSSEN, Application of the Wigner distribution to harmonic
analysis of generalized stochastic processes, 1979.
ISBN 90 6196 184 x.

MCT 115 P.C, BAAYEN & J. VAN MILL (Eds),
1979. ISBN 90 6196 185 5.

St1°uctz.1,res II, part 1,

MC'I' 116 P.C. BAAYEN & J·. VAN MILL {Eds), 'l.'opological Structures I.[, part 2,
1979. ISBN 90 6196 186 6.

Mer 117 P .J.M. KALLENBERG, B.ranching proce,:uws with continuous state space,
1979. ISBN 90 6196 188 2.

MCT 118 P. GROENEBOOM, Large deviations and Asymptotic efficiencies, 1980.
ISBN 90 6196 190 4.

MCT 119 F. PETERS, Sparse matrices and substructu:r•es, 1980. ISBN 90 6196
192 0.

AN ASTERISK BEFORE THE NOMBF.R MP..J\NS "TO APPEAR"

