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CHAPTER O

INTRODUCTION

In this monograph we will prove that no intricate sparse matrix algorithms
are required for an efficient solution of large, sparse sets of linear egua-
tions. Such equations occur in finite element calculations, for which a
novel organization has been developed. Thus will be indicated in the second

part of this introduction.

0.1. Linear equations and partitions

Large sets of linear equations are usually sparse, that is, nearly all
coefficlents of the associated matrix are zero. Let Qw = £ be such a set of
equations, with Q a non~singular n x n matrix, w and f vectors of unknown
and known values. Suppose this set can be solved (without permutation of
rows and columns) by LU-decomposition [Wilkinson °65], i.e. there exist a
lower triangular matrix L and an upper triangular matrix U such that

Q = LU. The matrices L and U usually contain many more non-zero coeffi-
clents than Q (i.e. "£ill-in" appears), but even so they. are often sparse.
To obtain L and U efficiently, one has to avoid, as much as possible,
arithmetical operations with zero coefficients. Optimum efficiency in this
sense is achlieved by so called sparse matrix algorithms. For a survey see
[puff *77], which contains 604 references. Due to the fill-in these algo-
rithms and the associated data structures are rather intricate. Envelope
algorithms are much more simple. However, in general these are not so ef~-

ficient, because zeros within the envelopes are not taken into account.

It is well-known [Duff °77, Tarjan '76] that the orxder of the equations
and variables influences the sparsity of the associated triangular factors
and the number of arithmetical operations with non-zero coefficients.
Therefore one may try to find suitable permutation matrices P1 and Pz SO as

to solve the permuted set (PIQPS)(Pzw) = P, f. The determination of permu-

i
tation matrices, which achieve some minimum operation or storage count, is
an NP-complete problem in some circumstances and is conjectured to be one

in others [Tarjan '76]. Thus to obtain a good ordering of variables and



equations, the best way seems to be a heuristic approach to the original
problem, whichgives rise to the equations. In this monograph we shall notbe
concerned with finding optimal or good orderings, but with finding a method

to aveid, given an orxdering, arithmetical operations with zeros.

Using graph-theoretic terminology it is demonstrated that for a given
matrix Q (irrespective of how well the equations are ordered) it is always
possible to partition the set of variables in such a way that the triangu-
lar factors L and U can be obtained from.the (partial) decompositions of
smaller matrices determined by the partitioning. The decomposition of the
smaller matrices will require the same arithmetical operations with non-
zero matrix coefficients as the decomposition of Q. Because no zeros occur
within the envelopes of the triangular factors associated with those small-
er matrices, no intricate sparse matrix algorithms are required to avoid
operations with zero coefficients; simpler (viz. envelope) algorithms suf-
fice to obtain the triangular factors of Q with the least number of arith-
metical operations. An algorithm will be presented which determines such a

proper perfect preserxving partition, as it is called.

0.2. A novel implementation of finite element algorithms

Large, sparse sets of equations are encountered in the finite element
method, this being a widely used method to solve certain types of partial
differential equations. Already before its invention, the mathematical
soundness of the finite element method was shown in [Courant 43]. The
method was independently developed in the fifties by aeronautical engineers
concerned with stress and structural analysis [Turner e.a. '56]. The term

"finite element” was used for the first time in [Clough ‘60].

The method was well xeceived; it is applied to a variety of problems of the
non~structural type such as occur in fluid mechanics, heat conduction,
seepage flow, electric and magnetic potential. Its acceptance among
engineers was assured at an early stage (the first edition of Zienkiewicz'
book dates from 1967). Later, applied mathematicians [Zlamal '68, Strang
and Fix "73] became interested. The popularity of the finite element method
is due to the fact that it is highly suitable for computers. The Link&ping
survey [Fredriksson °76] already contains the description of 450 different

computer programs for structural mechanics applications only. A recent



comprehensive bibliography [Norrie and De Vries *76] mentions over 7000

references up to the end of 1975.

The later part of this study deals with a novel efficient organization of
finite element calculations. It does not aim to discuss possible specific
applications of the method or when and under which circumstances the finite
element methed is to be favoured. Finite element computations include the
assembly of a large sparse matrix from so called element matrices and the
solution of an associated set of linear equations. The results described
above for computing the triangular factors of a sparse matrix justify a
novel organization of finite element computations. Instead of one large set
of eguations, a hierarchical series of smaller ones is set up or, in Einite
element terminology, instead of one large structure a hierarchy of smaller
substructures is aﬁalysed. In particular we will show that if the nodes of
the finite element structure are ordered acéording to the nested dissection
strategy [George °*73], then the associated proper perfect preserving parti-

tion is obtained immediately.

For (not necessarily homogeneous) n X m grids we describe algorithms in
PASCAL, which find a suitable hierazchy of substructures and perform the
decomposition of the assoclated matrices. These newly developed recursive
algorithms differ from existing ones in that a number of traditionally
consecutive steps (mesh generation, assembly, decomposition and forward
substitution) are carried out here in an interleaved way. Moreover, the
only data stored explicitly are (non-zero) matrix coefficients; no overhead
data like pointers, etc. are required. The algorithms are conceptually
simple and it 1s also possible to make them useful for arbitrary two-
dimensional solid and frame structures. For three~dimensional structures

similar algorithms could be developed.






CHAPTER 1

LINEAR EQUATIONS

By its very nature, it is convenlent to view a sparse matrix as a graph
[Parter '61, Rose ‘71, Tarjan '76]. In this chapter we will formulate LU-
decomposition of a matrix in graph-theoretic terminology. Because reordering
of the rows and columns of a matrix leads to different triangular factors,
we will have to consider ordered graphs, i.e. graphs in which the vertices
are ordered. Some new results will be derived concerning orderings which
lead to the same triangular factors. The chapter will be concluded with a
discussion of the new concept of a preserving palm, which is a graph for

which the fill-in is restricted to certain edges.

1.1. LU~decomposition

Let
(1.1) Qw = f

be a set of n linear equations in n unknowns, with Q a non-singular matrix,

for which
Q = LU ,

where L is a lower triangular and U an upper triangular matrix. The coef-

ficients of Q, L and U will be denoted by q and uij' respectively

3 M3
(1 £ 4,3 € n). The following relations hold [Wilkinson '65]:

j=1
Lou.. = qg,, - L,.u, ., 1 <3<
33733 T %33 tZ1 jroes ( 1 ==

i=1 i
2 gy = (ay - B teg) o)

(1 €3 <41i<gn)

izt
-1
u,, = L.L e, - L. :
SRR (qni tzl Jtutl>

The coefficients of L and U must obviously be computed in a certain

{partially prescribed) order.



The solution w of (1.1) can be obtained by a forward substitution, i.e.

solving w' from
w' = f
followed by a backward substitution, i.e. solving w from

Uw = w' .

If Q is a symmetric matrix, then it is not necessary to compute all coef-
ficients of both L and U. If Q is moreover positive definite then one may.
for instance, use the formulae for Cholesky decomposition: Q = LLt

[Wilkinson *65]

Il o, \E
L2 Q.. = Z 2.t
33 3k 3

(1.2%) {1 €3 <ic<n)

j=1
Ly, = o L, 5. L.
ij (qu tzl it jt)‘/ 33

i

If I is a set of row indices and J a set of column indices, then QIJ de~
notes the matrix obtained from Q by deleting all coefficients with a row
index not belonging to I or a column index not belonging te J. Let for a
certain k (1 Sk <n) I={i,...,k} and J = {k+l,...,n}, then

QII QIJ

Q

2 JJ

JI
Partial decomposition of Q with Qrq as block~pivot or, equivalently,
partial decomposition of Q with its first k pivots is defined to be the
followlng decomposition of Q [Bunch and Rose '74]:

0 0

_ II IJ
Q”LIUI+O r
g 91

with OII' 0IJ and 0JI zero matrices,

L, = : U, = (U

T I:F'UIJ) ¥



where L_._ is lower triangular and U__ upper triangular such that

TI II
LUz = 9 Lr1%g = Qg
L.U._ =0 oF = -L_U
g1'1r T ®a1 1" %o~ Yot

This partial decomposition is only defined if QII is non-singular and has

itself an LU-decomposition.

If Q is symmetric and positive definite, then partial Cholesky decomposition
of Q with QII as block-pivot results in:

0 0
0 =L.Ul + II IJ
II 0 r
g1 %
where
t_ . _ ..t t
LI =Up = (LII ,LJI)
with
t
Lyrlyr = Qg
t
Lartrr = %1
r o . t
Qr = Qg ~ Lgrlyr -

To compute the coefficients of LI and Qi for partial Cholesky decomposition
the following formulae will be used:

j~1 3
2
(2‘-=(q - ) (1<3sk
33 33 L5 Tt
3-1
*
(1.27) 25 = a5~ )) Liebie) /%y (L SE<n 153 S mintkinl)
v k
qi—kyj»k = qu tzl gitljt (k < jJ £4i=<mn).

1.2. Profile and envelope algorithms

If the matrixz Q is sparse, then usually its triangular factors L and U con~
tain more non-zero coefficients than Q. Nevertheless L 'and U are often

sparse matrices as well. A coefficient which is zero in Q but non-zero in



L+U is said to belong to the fill-in of Q. (A formal definition of fill-in
will be given in Section 1.4.) The fill-in is always restricted to the so
called envelope of Q, defined as follows. Let the column index of the first
non~zero coefficient in the lower triangular part of row i be denoted by
rQ(i). If no such coefficient exists in row i, then r_(i) is defined to be
equal to i. In the same way CQ(j) denotes the row index of the first non-
zero coefficient in the upper triangular part of column j. Again, if no
such coefficient exists, then cQ(j) = 3§, (The subscript Q will be dropped
if no confusion is likely.) If b2 = max{j - r(j) | 1 £ 3 <€ n} and

b, = max{j -c(j) | 1 £ 3 £ n}, then the bandwidth of Q is defined to be the

méximum of bk and bu” Next env(Q) (the envelope of Q) is defined as:
env(Q) = {(i,3) | 3 2 x(i) and i 2 (i)}

which implies: if (i,3) ¢ env(Q) then qij = 0. For an example see figure 1.

ADSK
AR

(e

MWGCRS
\A:T: s

S

W denotes non-zero coefficient

O denotes zero coefficient

envelope

bandwidth is 4
Figure 1

If Q has an LU~decomposition Q = LU, what do we know of env(L) and env(U) ?

As usual we neglect numerical cancellation: Zij (i > j) is considered to be
a zero coefficient only if qij = 0 and all relevant products litzjt or
ﬁitutj in formulae 1.2 or 1.2' are mero; analogously for uij (i <'j), It is

well known [George and Liu °75] that with this convention



env(L +U) = env(Q) .

Only those coefficients of L and U whose indices belong to env(L +U) need
to be computed, the others being zero. If Q is symmetric, we use instead of
the envelope the profile defined by:

{(i,3) | 1235 and j 2 x(1)} .

#

pr(Q)

We then have:

#

pr (L) pr(Q) .

If (i,3) € env(Q) and a4 = 0 (i # j), then (i,j) will be called a zexo
element of env(Q). An envelope without zero elements will be called dense.
In an analogous way a dense profile is defined. By definition (i,j) is a
first zero element of env(Q) if it is a zero element and if for all other

zero elements (i°;3') of env(Q) it yields:

i* > i or j*' >4 .

In the next chapter we will use the feollowing lemma, which is a generaliza-

tion of a theorem in [George and Liu °*75]:

LEMMA 1: If (i,j) is a first zero element of env(L+U), then
5y = Sy oo s g3 . = = . < 4.
CQ(J) cyld) =3 (if i > J) or rQ(l) r () =i (if i < 3)

Proof: Suppose i > j.
From (1.2) and Zij = 0 it follows

(1.3) 0, 1s<t<ij.

T
(i,3) is a first zero element of env(L +U) implies

(1.4) #0 .

li,j—l
From (1.3) and (1.4) we deduce

(1.5) =0 .

%51,
Because (i,]) is a first zero element of env(L+U), (1.5) implies:
(§=1,3) ¢ env(L +U) .

From this we conclude cQ(j) = cU(j) = j.

]
i
-]

In the same way it can be shown that i < j implies xQ(i) = rL(i)
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Remark: Let LI and UI be the factors obtained from a partial decomposition
of Q with its first k pivots (1 € k £ n). From Lemma 1 it follows: if
rQ(i) < ifor 1 < i<k and cQ(j) < j for 1 < j £ k, then both env(LI) and

env(UI) are dense.

Corollary: If Q is a symmetric matrix and (i,j) is a first zero element of
r(L), then r (j) = c_(j) = j.
P . Q(J ol b
Algorithms which use the property that only the coefficients whose indices
belong to pr(L) or env(L +U) are non-zero, will be called profile and

envelope algorithms respectively.

The profile and envelope algorithms may be overly inefficient in that they
may process many matrix coefficients which are in fact zero. This will
happen with sparse matrices having large enﬁelopes or profiles. To handle
those matrices with optimum efficiency, i.e. to avoid arithmetical opera-
tions with zeros, so called sparse matrix algorithms have been developed;
these are algorithms in which for every coefficient is recorded whether it
is zero or not. Obviously these algorithms require considerable organiza-
tional overhead, the more so as it is not a priori clear which coefficients
of L and U are non-zero. (The so called fill-in consists of all the coef~-
ficients which are zero in Q, but non-zero in L or U. This fill-in will be
discussed in more detail in the sequel.) For a description see [Gustavson
*72]. Usually a sparse matrix algorithm contains the following steps:
~ gymbolic decomposition: to determine the location of the non-zeros in L
and U;
- numeric decomposition: to determine the values of the non-zero coef-~
ficients.

It will be clear that sparse matrix algorithms are rather intricate.

1.3. Graph-theoretic notation

Following [Rose '71, George '77] we will introduce in this section a graph-

theoretic notation and nomenclature to be used later on.

A dirvected graph G = (V,E) consists of a finite set V of vertices and a
finite set E ¢ {(v,w) ] v,w € V, v # w} of ordered vertex pairs called

edges . An undirected graph G = (V,E) consists of a finite set V of vertices
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and a finite set E of unordered vertex pairs, i.e. (v,w) is considered to
be the same as (w,v). Whenever in the sequel it 1s left unspecified whether

or not the graph G is directed, G may be either.

Let G = (V,E) be a graph. If W ¢ V, then the section graph G(W) is the sub-
graph (W,E(W)), where E(W) = {(v,w) € E | v,w € W}. For v ¢ V the adjacency
set adj(v) is defined by adj(v) = {w ] (v,w) € E}. For distinct vertices v

and w a path from v to w of length k is defined to be a sequence of dis-

tinct vertices v = VO’V1’°”°'V = w, wuch that (viwl'vi) € B, for

k
i=1;...,k.

An undirected graph is called connected and a directed graph is calle@
strongly connected, if for every pair of distinct vertices v, w there is a
path from v to w. If a graph is not (strongly} connected, then it consists
of two or more (strongly) connected components. The set W © V is a separator
of the connected graph G = (V,E) if the section graph G(V\W) is not
{strongly) connected. A separator W of G = (V,E) is minimal if no proper

subset W' < W is a separator of G.

A rooted tree T is an undirected graph with a distinguished vertex r, call-
ed the root, such that there is a unigque path from r to any vertex. If v is
on the path from r to w (w # v), then v is an ancestor of w and w is a
descendant of v. If moreover (v,w) is a tree edge, then v is the predecessor
of w and w is a successor of v. A vertex without successors is called a

leaf vertex.

The concepts defined asbove are rather standard and definitions of them
occur rather frequently in literature. The following concept, although not
new, is less well-known. It has been introduced (with the name palm tree)
in [Tarjan *72] in connection with depth-first searches in graphs. In this
thesis we will name it a palm and use it to investigate the LU-decomposi-
tion of associlated matrices. An undirected graph G = (V,E) is called a
palm, if the edge set E consists of two disjoint sets E = E! U E2 such that
i) the graph T = (V,El) is a rooted tree,

ii) if (v,w) € E2Z then v is an ancestor or descendant of w in T.

The edges of El and E2 are called tree edges and fronds respectively. Hence
a palm may be obtained from a rooted tree T by appending a number of (pos-
sibly zero) fronds; a frond is always an edge from a vertex to one of its
ancestors in T. A palm forest is defined to be an undirected graph, whose

connected components are palms.
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If v is a vertex of a palm or a tree, then A(v) and D(v) denote the sets
of ancestor, respectively descendant vertices; A(v) denotes A(v) u v and

D(v) denotes D(v) u v.

For a graph G = (V,E) with |V| = n, an ordering o of V is a bijection

a: {1,2,...,n} » V. G, = (V,E,a) denotes an ordered graph.

Given a graph G = (V,E), let P be a partition of V, i.e. P = {Vi,...,Vm},
m

such that V= U Vs and Vs n Vt = § for s # t. The quotient graph of G
s=1

with respect to P, denoted by G/P is the graph G/P = (P,E), where

(vs,Vt) ¢ £ if and only if vertices v ¢ Vs and w e Vt exist, so that
(vew) € E. Obviously: G (strongly) connected implies G/P (strongly) con~

nected.

1.4. Connection and decomposition graphs

Let G = (V,E,0) be an ordered graph and define E' = E v {(v,v) | v ¢ V}.
Suppose a map g: E' + IR is associated with G. The numbers g((v,w)), as-
sociated with the edges (v,w), may be arranged in an n X n matrix Q (with
n= |v]):

it

a4 gl{(a(i),al(i))) 4if (a(i),a(j)) € Bf
J 1

qij = otherwise

The graph G is then the connection graph of Q.

The coefficients qij with (a(i),a(j)) eE' will be called structurally non-

zero, even though their value may happen to be zero. Whenever henceforth
a ceoefficient is said to be non-zero, we will always mean structurally non-

AQKO .

Conversely, with each square matrix a connection graph is associated in the
following way. Let Q be an n X n matrix. Define the vertex set V by

Vv = {1,...,n} and the edge set E by:

(v,w) € 8 L1ff qv,w # 0 (v # w) .

A

Let moreover the ordering o be defined by a(i) = i (1 i £ n). Then the

graph G = (V,E,0) is a connection graph of Q.
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Generally, a connection graph G = (V,E,0) is directed. However, if E is
such that (v,w) € E iff {(w,v) € E, G will be considered to be undirected.
In that case an associated matrix Q is structurally symmetric, i.e. qij # 0
iff qji # 0. If an undirected graph is not comnected, then the associated
(structurally symmetric) matrices are decomposable. If a directed graph is
not stronglv connected, then the associated matrices are reductble. If the
matrix Q is reducible or decomposable, then the associated set of equations

may be replaced by a number of smaller sets [Varga °62].

For a vertex v of the graph ¢ = (V,E,a) the elimination graph G, is defined
as G = (v\{v}, E(v\{v}) u D(v)), where D(v) = {(x,y) | (x,v) ¢ E,
(v,y) € B, x #y, (x,¥) ¢ E}. D(v) is called the deficiency of v in G.

Let now G = (V,E,a) be the connection graph of a matrix Q. Partial decompo-

sition of Q with only its first pivot gives:

R R TL PRI OP DL
x @ &
9 = : : :
qn2“"£n1u12 e qnn'_lnluin

Since q§j¢t)iff(qij # 0 or (qil # 0 and 9y 4 # 0)), it is easily seen that

the elimination graph G is precisely the connection graph of Qi. The

a(l)
deficiency D{(a(i)) consists of those vertices (a{i),a(j)) with qij = (0 and

r
94 # 0.

Let G° =G = (V,B,a) and for i = 1,...,n~1 let Gl be recursively defined by:

i i

G~ is the elimination graph (™ . ThefillminDa(G) is defined by

a(d)

-1 1
D (G) = U D " (a(i)) ,
o .

je=i

i-1 . . . . i . ., s
where D (e (i}) is the deficlency of a(i) in Gt 1. The decomposition graph
G; is defined by: G:==(V,E UDa(G),u). If G={V,E,a) is the connection graph
of an n ¥ n matrix Q@ with LU~decomposition Q = LU, then the decomposition

graph G: is the connection graph of L +U [Rose and Tarjan ‘75]. The £ill-in
Da(G) congists precisely of those edges (a{i),a{j)) which satisfy

qij = ( and (lij # 0 or uij # 0) .

For an example see figure 3.
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The fill-in is characterized by the following lemma:

LEMMA 2: Let G = (V,E,a) be an ordered graph. Then (v,w)} is an edge of
*
Ga = (V,E uDa(G)) if and only if there exists a path

V =Vgs...,V, = w in G such that a—l(vi) < minimum (et (v) 0"t ()

for i = 1,...,k~1.

A proof of this lemma may be found in [Rose and Tarjan °75]. 0

In Section 1.2 we have introduced the notation rQ and CQ‘ Let G = (V,E,qa)
be the connection graph of the matrix Q with LU~decomposition Q = LU.
Suppose v 1s a vertex of G with o(i) = v. A notation equivalent to rQ(i) < i
is:

3 [aul(w) < aul(v) and (v,w) € E] .

wev .

Similarly cQ(i) < i is equivalent to:

-1 -1
Ewev o "(w) «a "(v) and (w,v) € E] .
Hence we know from Lemma 1: if for all v € V with a_i(v) # 1, there exists
awe V with a-l(w) <alv) and (v,w) € E and (w,v) € E, then both env(L)
and env(U) are dense; that is to say, the envelopes of L and U do not con-

tain any zero element.

1.5. Consistent orderings

Let Ga = (V,E,0) be the connection graph of an n x n matrix Q. Let B be

also an ordering of V. The graph G, = (V,E,B} is the connection graph of

B
the matrix Q:

gij g((B(i),B(3))) » 4if (B(i).,B(3)) ¢ E
{1.86) (L £4i,j s n).
0 otherwise

Qa2
H

ij
The orderings o and B together determine a permutation n = Bnla of
{1,....n}. B permutation matriz associated with v is defined by:

(P)ij @ 6i,ﬂ(j) (L <4i,3 < n)

where 8 is the Kronecker delta. The following relation holds:
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S = popt

oxr in other words, G, is the connection graph of PQPt.

8
Proof:
9= 1
(PQp7) . . = 8, Qg 6. =g - .
ij K, i=1 i,m(e) 2k Tj.w(k) " 1(i),n l(j)
Hence: v
(1.7) (pgP%) . = q )

I W, e

Since Ga is the connection graph of Q, we know that

B

q q((B(L),B(3))) 4if (B(L),B(J)) ¢ B

-1, -1
(1.8) a “B(i).o "B(J)
q .4 -1 = otherwise.

a "B{i).a "B(])

Since G, is the connection graph of 5 we know that (1.6) holds. Hence we

B
conclude from (1.7), (1.8) and (1.6):

t ....N
(poP ):Lj =gy - 0

Suppose the matrix @ has an LU~decomposition: Q = LU. The £ill-in Da(G) and
the decomposition graph G: depend upon the ordering a of V. Usually, LU~
decomposition of the permuted matrix PQPt results in triangular factors
esgentially different from L and U. That is to say, the triangular factors
of PQPt can not be obtained from a suitable permutation of the rows and
columns of L and U. For instance, the number of non-zero coefficients in
the triangular factors of PQPt usually differs from the number of non-zeros
in L and U. However, if PLPt is lower triangular and PUPt is upper trian-

gulaxr, then
pop® = (pLp%) (PUPY)
is an LU-decomposition of 5 = PQPta

An orxdering B of V will be called consistent with o if all edges (v,w) of
the decomposition graph G: = (V'EF’DQ(G)’Q) satisfy:



il6

oty s ot igr B W) s 8
We will prove:

LEMMA 3: Let Ga = (V,E,0) be the connection graph of the matrix Q with LU-

decomposition Q = LU. If the ordering B is consistent with o and P

is the permutation matrix associated with 7 = Bwla, then PLPt and

t
PUP~ are lower and upper triangular respectively.

Proof: (PLPt) X ., = %.., hence in order to prove that PLPt is lower
w(i),m(3) ij

triangular, it suffices to show:

(1.9) gij # 0+ w(d) > (i) .

From zij # 0, assuming a(i) = v and a(j) = w, it follows that

oty > a7t

Because B is consistent with o we conclude
-1 -1
B T(v) > B T(w) .

Hence w(i) = B-la(i) > 8-1a(j) = 7 (j). Herewith (1.9) is proved. In the
same way it is shown that PUPt is upper triangular. |

LEMMA 4: If PLPt is lower triangular and PUPt upper triangular, then the
expressions to be evaluated during the decompositions of Q and PQPt

respectively, both contain the same non-zero terms.

Proof: Let Q° = PQPt, L' = PLPt and U' = PUPt, then

{1.10) (1<i;j<n).

Grwy,n(d) ~ U3 Yrw) @ T Y30 ) ,m) T3

When decomposing PQPt, the computation of lij requires the evaluation of:

izt v
1.11) (!.- L u'.) u',.=(5.~— ; '.) ul,
( i3 t"z~=1 it %3)/ 33 i3 tzl it Ve / 3
t#3

From (1.10) we see that the righthand side of (1.11) may be rewritten as

n
- z L _ u a >/’u ~ _ .
=1 e et et

t#J

(e, -
ey, )
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Substituting k for w-i(t) in the above we get

n
(q - L u ),/u
-1, -1, -1, -1, -1 . -1 .
T (i), T (F) k=1 T {1,k kem T (3) m {3, T (G)
k#n L (3)

which is the expression for 2 -1 -1 . Hence the expression to be
T o(d),m ()
evaluated to compute Zij contains (apart from the order) the same non-zero

terms as the expression for £ - _ . In the same manner we can prove
mo{d) . T (d)
that the expressions for ui. and u -1 -1 both contain (apart from
w T {i)em T (3)
the order) the same non-zero terms. 0

An immediate consequence of Lemmas 3 and 4 is:

Corollary: Let o and B be the orderings associated with the matrices @ and
PQPt respectively (P being a permutation matrix). If B is con-
sistent with o then the LU~decompositions of Q and PQPt both re-

quire the evaluation of the same expressions with non-zero terms.

1.6. Preserving palms

An ordered undirected graph G = (V,E,a) is a preserving palm, if it is a
palm with the property: v € V, w € D(v) = anl(v) > a_l(w). Let G = (V,E,q)
be the connection graph assoclated with the n X n matrix Q and let @ have
an LU~-decomposition: Q = LU. If the decomposition graph G; = (V,BE UDG(G),u)
is a preserving palm, then we can show that

1 -1

u, .
33

L (q . 2 L., u .)B
BN Jy by it )

1<ign, all) eVlali)}
2—1

(1.12) 4 u., L. (q.. - 2., u .)
IIINTE g eDlagyyy AT OH

it

L. UL = gL (1 £3 <n)
LI e

it Bes
Since L is lower triangular and G; is the connection graph of L +U, we have

(1.13) i# 3 and lij # 0 Lff i > j and (a(i).a(j)) ¢ E U Da(G) .
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Since G: is supposedly a palm, we conclude from (1.13)
(1.14) (i#jami%j¥0)+(i>jmﬁ[au)evmﬁ))oruU)emamH])a
However, since G: is a preserving palm, it follows from (1.14)
(1.15) {L # j and Rij # 0) » a(j) € Dla(i)) .
The matrix Q is structurally symmetric, therefore:
zij # 0 iff uji # 0 .
Hence (1.15) gives:
(1.16) (i # 3 and Uiy # 0) » a(d) € Diafi)) .

Finally., from (1.15) and (1.16) together with (1.2) we conclude that (1.12)
holds. ”



19

CHAPTER 2

PARTITIONS

In this chapter we will investigate certain partitions of a matrix Q (with
LU-decomposition Q = LU) into blocks (which are again matrices). Associated
with such a partition is the quotient graph obtained from the corresponding

partition of the vertex set of the connection graph of Q.

For undirected graphs, corresponding to structurally symmetric matrices, we
introduce preserving partitions and describe how to compute the coefficients
of L and U. Perfect preserving partitions will be shown to have the nice
property that the corresponding computations to obtain the coefficients of
L and U do not require sparse matrix algorithms to avoid arithmetical opera-
tions with zeros. It will be proved that with every ordered undirected graph
an (even proper) perfect preserving partition is associated. Hence, irre-
spective of how well the rows and columns of a matrix are ordered, the coef-
ficients of its triangular factors can be obtained with optimum efficiency
by using only envelope algorithms. For directed graphs similar, though under

certailn circumstances less strong results hold.

The last section of this chapter deals with nested dissection [George '73],
a well-known way of finding a suitable ordering for a connection graph. It
is shown that if nested dissection is used to construct an orxdering, then
finding a proper perfect preserving partition is trivial. Hence, in order
to implement a nested dissection decomposition of a matrix with optimum

efficiency, no sparse matrix codes are needed; envelope algorithms suffice.

In this chapter it is assumed, unless stated otherwise, that G = (V,E,0) is
the ordered undirected connection graph of a structurally symmetric n X n
matrix @ with LU-decomposition Q = LU, where L is lower triangular and U is

upper triangular.
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2.1. Preserving partitions

A block-matrix is a matrix whose coefficients are matrices, called blocks.
All formulas and results derived thusfar apply to block matrices with square
matrices as diagonal blocks. A block is considered to be zero if it is a

zero matrix.

Let P = {Vl,...,Vm} be a partition of V. Let Qg denote the matrix obtained
from Q by deletion of all rows i for which o(i) ¢ Vr and all columns j for

which a{3) ¢ Vs. Define:

Qup e

(2.1) g=1": .

(5 will be considered to be an n % n matrix.) Moreover, let B denote the

unique orxdering {1,...,n} + V determined by

, -1 -1

i) vevVr, wevVs, v>s=+B (v) >B8 " (w)
(i.e. B orders first the vertices in V1, next the vertices in V2,...
and so on);

. X -1 -1 , -1 -1

1i) vew € Vr, o (v) >a {(w) iff B “(v) > B T (w)

{i.e. within every Vr the vertices are ordered according to a).

Hence the rows and columns of 5 are ordered in such a way that G, = (V,E,B)

B

is the connection graph of 50 Therefore we know from Section 1.5:
3 = pop®
where P is the permutation matrix associated with the permutation v = B “a.

The ordering ¢ : {1,...,m} + P ig defined by o(x) =Vr (1 < r <m). If P
satisfies the following properties:
i} the quotient graph (G;/P)U is a preserving palm (i.e.
Vs € D(Vr) »~ ¥ > 8);
- -1 -1
i) Vs € D(Vr) » o “(v) > a (w) for vevwr, we Vs,

then P will be called a preserving partition or p-partition for short.
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LEMMA 5: If P is a p-partition, then B as defined above is consistent with a.

Proof: We must show

. ot -1 | -1
Vs cpun (@t & (0 7@ @ TETW g

Assume that (v,w) € E U Da(G)@ If v,w € Vr then property ii} of B gives:

u—l(v) > a—l(w) z S—l(V) > Bul(W) .

If, however, v € V¥, w € Vs (r # s) then (because Gz /P is a palm)

Vs € D(vr) or vr € D(Vs). Assuming that Vs ¢ D(Vr), we know from property
ii) of a p-partition: a_l(v) > a_l(w), From property i) of a p-partition we
know r > s; hence property i) of B gives: Bnl(v) > Bﬂi(w)q

Now we have shown:

Vs € Dive) »[a t(v) > o (w) and 8 1(v) > gl .

In the same way we may show:

Ve e Dvs) »La t(w) > oty ana 87he > g7Hw 1.

Hence

Lot (v) >0 (w) ana 875 (w) > 87 )] or Lo~ tw) >0t (v) and 875 (w) > 87 (v} ]

which is equivalent with:

oty s ot e ) s 8w 0

Because B is consistent with o we know from Lemma 3 that I = PLPt and
E = PUPt are triangular factors of 5 = PQPt‘ The matrix 5 is in (2.1)

partitioned into blocks; the matrices T and U may be partitioned in the

same way:
by
£=PLPt= . .
L wes L
| mi mm
1 3
Upy eee Ugp
U = pupt = .. :
U
mm,
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Obviously the matrices er and Urr (1 <r £ m) are lower and upper triangu-

lar, respectively.

The connection graph of the block matrix in (2.1) is G/P. If P is a p-par=-
tition, then «;/P); is a preserving palm. Hence we may apply (1.15) and
(1.16) to the block matrices Q, T and U and the ordering o:

(r # s and Lrs #0) » Vs € D(Vr) .

Let us furthermore consider the computation of the matrices:

ss
s+l,8
. and (Uss 'Us,s+1 ’oeee ’Usm) .
L
ms
Defining
0 =0 - L., U
ss S8 veeD (vs) st "ts
Q. =0 =~ L, U
rs rs vieD (vs) rt “ts
90, =9,- L LU
sx sr veeD (vs) st “tr

we get from applying (1.12)

Lss Yss = Qs

=- < <
L. Ui Qrs 1 <s <m Vr e A(Vs) .
Lss Ysr = Qor

Writing
A(vs) = {vsl,...,Vsk}

it follows from Section 1.1 that partial decomposition of Qs defined by

st Qs,sl o0 Qs,sk
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with QSS a block pivot gives:

_ r
Qs Ls Us * Qs
whexe
L
S8
sl,s :
Ls = . and U5 = (Uss 'Us,sl P oees 'Us,sk) .
Lsk,s

Because Lrs = Usr = (0 for Vvr ¢ A(Vs), all non-zero coefficients of L and U
can be obtained by (partial) decomposition of the matrices QS {1 £ 8 <sm.
Furthermore, the matrix Qs and hence Ls and US can be computed once L_ and

t

Ut are computed for all t with vt ¢ D(vs).

Summarizing: The matrices L and U may be computed as follows. Take a vertex
Vs for which all matrices Lt and Ut with vVt ¢ D(Vs) have been computed and
compute LS and US by partial decomposition of Qs. The computations must
gtart with a leaf vertex, for instance (but not necessarily) V1; the com~
putations end with the decomposition of Qm. All non-zexo coefficients of L
and U are contained in the matrices Ls and Us {1 £ 8 < m). The above process

will be called decomposition of Q based on its p-partition P.

In the following sections we will show that sparse matrix algorithms to
compute L and U are always equivalent with a decomposition based on a p-

partition satisfying special properties.

2.2. Perfect preserving partitions

A sufficient condition for the graph G that env(L) and env(U) are dense is
formulated at the end of Section 1.4. We will now formulate a condition
under which the envelopes of Ls and Us {encountered during a decomposition
of @ based on a p-partition) are dense. First we will introduce the follow-
ing definition. A partition P = {Vi,...,Vm} of V is called perfect if fox
all v € Vg (1 £ ¢ < m) with a—l(v) # min{anl(w) | w € Vs} there is a w € Vs

such that
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9 ot <o tw,
ii) there is a path v = VgreeesVy =W in G with a—l(vh) < ami(w) for

h=1,...,k-1.

k

Perfect preserving partition will be abbreviated to pp-partition. We will

now prove:

LEMMA 6: Let P = {Vl,...,Vm} be a pp-partition of V. Let L, and U
(1 £ s £ m) be obtained from a decomposition of Q based on P.

The envelopes of Ls and US are dense.

Proof: Ls and Us (1 = s £ m) are obtained from a partial decomposition of
Q- Let the ordering B:{1,...,]Vs|} - Vs be induced by o, i.e.

a~(v) < o~ tw) i£f 87 (v) < 8" (w) for v,w € Vs. To show that Ly and U_
have dense envelopes, use is made of the remark immediately after Lemma 1;

it suffices to show

c. (j) <3 and x. (j) <3 for 1 < j < |vs|
QS QS

Because Qs is structurally symmetric, we know

g (3) = x4

E s

(3)

hence it suffices to show:

(2.2) c (3) <3 for i <3< |vs| .
Qg
Let v € Vs, such that abl(v) # min{aul(w) I w € Vs}. From the definition of

perfect partition, we know there exists a w ¢ Vs such that
ot <ot

and there exists a path v = vo,...,v = w in G with aul(vh) < aul(w) for

k
h=1,...,k-1. From Lemma 2 we conclude (v,w) € E U Du(G)a Herewith we have

shown

(2.3) o ) < o (v) and

A7 - -

vevs, o ! (v)#min{a 1 (w) |wevs} Fvevs
2 # 01 .
o tw) e )

Because the coefficients of Ls are ordered according to o, (2.3) is equi-

valent to:
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(2.4) cp (i) < 3 for 1 < j < |vs| .
s

But from Section 1.2 we know that

(2.5) ¢, (3 = 9 (3}
s s

and from (2.4) and (2.5) we infer (2.2). {

Suppose P = {Vl,...,Vm} is a pp-partition of V. The non-zero coefficients
of L and U may be obtained by calculating the matrices Ls and US (1 <s<m),
where LS and Us are the results of a partial decomposition of an From
Lemma 6 we know that all coefficients whose indices balong to env(Ls)iand
env(Us) are non-zero. Hence a sparse matrix algorithm (in which it is ex-
plicitly determined whether a coefficient is non-zero} is not necessary to
avoid arithmetical operations with non-zero coefficients during the decom-
position of Qs; an envelope algorithm suffices. To compute therefore the
non~zero coefficients of L and U we only need to apply envelope algorithms
to obtain the matrices Bs and Us {1 £ 8 £ m). But the decomposition of Q
based on a p-partition results in the evaluation of expressions with the
same non-zero terms as any sparse matrix algorithm. Hence the decomposition
of Q based on a perfect p-partition using envelope algorithms results also
in the evaluation of expressions with precisely the same non-zero terms as

any sparse matrix algorithm to compute L and U.

Next we will show that for every undirected graph, i.e. for every structurally
symmetric matrix a pp-partition exists. The trivial partition

T= {{a(D} {a(},...,{aln)}} could be a pp-partition with the property
that every vertex of the palm GZ /T (except {a(1)}) has precisely one
successor. To administer in that case all the envelopes of QS (1 <8< n),
is essentially the same as to record for every coefficient of Q whether it
is zero or not. There is then no essential difference between a sparse
matrix algorithm and a decomposition based on T. Hence we will introduce

proper p-partitions.

2.3. Proper pp-partitions

Pirst we introduce the following definitions. A palm will be called proper

if each vertex has either zero or more than one tree-successor. A p-parti~
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tion P of V will be called proper if the palm GZ‘/P is proper.

THEOREM 1: For every non-decomposable, structurally symmetric matrix there

exists a proper pp-partition.
To prove this theorem, we will first prove:

LEMMA 7: If G = (V,E,a) is an undirected (not necessarily connected) graph,
then there exists a perfect partition P = {v1,...,Vm} of V, with
the property that G;,/P is a forest of proper palms consistent
with a, i.e. Vs € D(vr) = aul(v) > a_l(w) for v € Vr, w € Vs.

Proof: We will prove this lemma by induction with respect to n, the number
of vertices in V. The lemma obviously holds for n = 1, because a graph con-
sisting of only one vertex is a proper palm.

Now assume that n > 1. Let x = a(n) be the vertex with the highest number
in G. Let A(x) and A*(x) denote the adjacency set of x = a(n) in G and G:
respectively; let moreover Hbe G(V\{x}), i.e. the graph obtained from G by
removing x = oa(n) and all edges connected to x. The ordering of H induced
by the ordering of G will be called ¢ again. From the induction hypothesis
applied to H, the existence follows of a perfect partition P* = {vi,...,vm}
of v\ {x}, with the property that H:,/P' is a forest of proper palms con-
sistent with a: P1,...,Pz. Let C denote the collection of palms Pj, such
that the vertex set of Pj has at least one vertex in common with A(x). We
will distinguish three cases: [C| = 0, [C] > 1 and [C] = 1.

i) |C] = 0. Define P = P* u {x}. Obviously P is a perfect partition of V.
The graph Pt consisting of only one vertex, viz. x, is a proper palm
consistent with a. From |[C]| = 0 it follows that A(x) = ¢. Hence, from
Lemma 2, A*(x) = ff, Therefore G:,/P is a forest of proper palms
Pl,...,Pz,Pt, consistent with a.

ii) |C] > 1. pefine P = P* u {x}. Obviously P is a perfect partition of V.
The collection of palms C may be considered as a (disconnected} graph.
The graph Pt is obtained from C by adding {x} to the vertex set of C;
the edge setof Pt is cbtained by adding ({x},Vs) to the edge set of C
for those Vs with a vertex w such that w € A*(x). Pt is a proper palm
with root {x} and consistent with a. Obviously GZ,/P consists of the
palms Pt and Pj (1 < j < z, Pj ¢ C). Hence, G;;/P is a forest of

proper palms consistent with a.



27

iii) [|C|] = 1. The partition P = P' y {x} does not meet the requirements,
because the palm Pt as defined in the preceding case is not proper.
Therefore we have to distinguish this case |[C| = 1 from the case
ICl > 1.

C consists of only one palm, say Ps. Let Vt be the root of Ps. Define
the following partition of v: P = {vi,...,Vveu{x},...,vm}. G; /P con-
sists of the palms Pj (1 < § < z, j # s) and PS, where P& is obtain-
ed from Ps by joining x = a(n) to its root Vt. PS obvicusly is a

proper palm consistent with a. To prove that P is a perfect partition
of V, it suffices (because P' is a perfect partition of V \ {x}) to

show that there exists a vertex w ¢ Vt and a path x = vo,“,,vk = oy in

G with anl(vh) < u—i(y) for h = 1,...,k=1. Vt is the root of the‘palm

Ps, which is consistent with o. Let y be the highest numbered vertex

of Ps, then y € Vt. From the definition of C we know that the vertex

set of Ps has a vertex in common with A(x). Let vy be such a vertex.

Because vy and y both belong to the same connected component of H:/’P',

there is a path vl,...,v = y with aﬁi(vh) < awl(y) for h = 1,...,k-1

k
in H. Hence x = vj,...,V, =y is a path in G. i}
Proof of Theorem 1: The connection graph G = (V,E,0a) associated with a

structurally symmetric, non~decomposable matrix is a connected undirected
graph. From Lemma 7 the existence follows of a perfect partition

P= {vi,...,vm} of Vv, such that G:,’P is a forest of proper palms, with
the property

Vs ¢ D(vx) - ugl(v) > a_l(w) for v ¢ Vr, we Vs .

Because G is connected, G: /P is connected; hence G:,/P is a palm. Let the
partition elements V1,...,Vm be ordered according to a post-order traversal
of the palm G;/’P (i.e. of every subtree in the palm, t?e root is visited
last), and let ¢ denote the ordering o(s) = Vs, then (Ga’/P)a is even a
preserving palm.

From the above we conclude: P is a proper perfect preserving partition. [J
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2.4. Construction of a proper pp-partition

The proof of Lemma 7 is constructive. A (worgt case) 0(n2) algorithm to
construct a proper pp-partition could be derived from that proof. However,

such a partition may also be obtained in still another way.

Let P = {¥1,...,Vm} (m > 1) be a proper pp-partition of the graph

G = (V,E,a). It is easily verified that Vm, the root of GZ,/P, is a
separator of G, containing the vertices with the highest numbers. On the
other hand, if there is no separator S © V of G with the property:

. -1,
A pep (8= {wey [« w) > k31,

then P* = {V} is a proper pp~partition of G.

Proof: G/ P' is a graph consisting of one vertex only, therefore it is a
proper preserving palm. That P' is moreover perfect follows from the obser-—
vation that, if v would be a vertex for which no path v = VgrossaVy =W
exists with anl(vh) < anl(w) < a—l(v) for h = 1,...,k=~1, then

s={wev| ot >0 (v)} would be a separator of G. 0

The following construction results in a proper pp-partition. Let initially

P be empty. Determine a minimal separator § of G with the property

(2.6) 3 fwev | ot >k

k>min{a™t(v)} [s =
vev

8 is minimal if no other separator with the same property is contained in 8.

If no separator with property (2.6) exists, then set § = V. Next add S to P

and apply the above recursively to each of the connected components of

GV\S).

With induction to the depth of G /P, it may be verified that P obtained in
this way is a proper pp~partition. Using an O(m) algorxithm of [Tarjan '72],
to determine the connected components of a graph consisting of m vertices,

the above construction may be implemented ultimately resulting in an 0(n2)

algorithm.
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As an example we will use an undirected graph G, with vertex set

v ={1,2,...,16} and ordering a, with a(i)

of G is represented in Figure 2

=1i (i=1,...,16). The edge set

an edge is drawn £from vertex v to

vertex w if and only if (v,w) belongs to the edge set of G.

© 0N OO A W N =

- -
- Q

14

1. 5 16 7 2
10 11
6 15 9

4 12 13 8 3

Connection graph.

Figure 2

b 4
O %
O O %
O 00 % Symmetric
% O O O %
O 000 % %
O#% OO0 O %
OO % OO0 OO0 %
OO 0000 % % %
# OO % & # O O O %
O% %# OO0 0 & & % O %
OO0 0% O#% OO0 @& O %
O0O0O000O0O% @ O & % %,
OO0 00000000000 %R
O0000O*%00% & & & % O %
O0O0OO0O% 8% O 2 & & & & % & &
12 345 6 7 8 9 10111213 14 15 16
* Denotes non-zero coefficient
o) Denotes zero coefficient
@ Denotes fill-in

Figure 3
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Figure 3 shows the zero/non-zero structure of an associated matrix. Both
constructions as outlined in the preceding section result in a partition
P={vi,...,v9} with V1 = {2,7}, v2 = {3,8}, v3 = {9,11}, V4 = {4},

vs = {1,5,6}, v6 = {10,12}, V7 = {13,15}, v8 = {14}, v9 = {16}.

The graph G:,/P is depicted in Figure 4; Figure 5 shows the according to P

reordered matrix. The decomposition based on P proceeds as follows:

1) decompose

(qz,z W
97,2 97,7
Q =10 9,7 O
4G, O 0 0
| © Qg O 0 0

r A

29,2

1
Yr,0 P79 9,9
r _ 1 1
Ly=10 29,7 and Q= 937 .9 917,11
. . 1 1 1
11,2 *11,7 Q6,9  F16,11  “s,16

| © *16,7)

2) decompose, in the same way, QZ with the first two pivots giving L2 and
r
Qz"

3) decompose

r 1 2
99,9 *d9,9 9,9 W
Qo *a, o +a2 q IR T
11,9 7 %11,9 T 911,09 11,11 T 911,11 T 911,11
~ 2 2
23 913,9 93,11 ©
q15,9 0 0 0
1 1
| 16,9 916,11 0 0

with the first two pivots, giving




31

9,9
2 ) 3
11,9 11,11 913,13
L, = |4 % and Qr = q3 qs
3 13,9 13,11 3 15,13 915,15
. . 3 3 3
15,9 15,11 96,13 Ys,15  Y1s,16
Y16,9 16,11

Note: the superscripts of the matrix coefficients refer to the step in

which they were computed.
4) decompose Q4 with its first pivot only;
5) decompose Qs with the first three pivots;
6) decompose Q6 with the first two pivots;

7) decompose

2 3 6
913,13 ¥ 913,13 ¥ 93,13 T 913,13
a +3 +6 "1'3 +5 “#”6
Q7= 1915,13 95,13 % %5,13 915,15 T H5,15 T 915,15 Y 915,15

6

3 6 3 5
4o
Ug,13 96,18 %16,15 96,15 T 96,15 6,15 O

with the first two pivots, giving

JLLLS,:LB

7
L7 = *15,18  Yis,15| @9 @ = [q16,16]

Y16,13  *16,15

8) decompose

q
U
9.8"'

6,14

with its first pivot, giving

glq,lu

r 8
YT, and Qg = [qls,lG]
16,14
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9} decompose

_ 6 8
Qg = {qle,ls'*qle,le'*qle,le'*q16,16'+q16,15 *q16,16'+q16,16}

with its first pivot, giving

L ( ).

9 = 16,16

The coefficients of L which are not computed in the above steps, for in-

stance 214 117 are zero. Note that steps 1, 2, 4, 5 and 8 are independent
&

of each other and may be done in any order or even simultaneously. Another

order of the steps corresponds with another post-order traversal through

3
Ga/R

2.6. Non-symmetric equations

The preceding sections dealt with structurally symmetric matrices. If the
set of equations to be solved is not structurally symmetric, then the as-
sociated connection graph is directed. Analogous, though less strong,

results will be shown to hold.

The matrix Q, with triangular decomposition Q = LU, will be assumed to be
such that its connection graph G = (V,E,a) is strongly connected (otherwise
we would in fact be dealing with a number of sets of equations). As in the
symmetric case, we may try to find a separator S ¢ V with the property:

Beg S=twev|ato >,

It may be proven (with Lemma 1 and a reasoning as we used in Section
2.4) that if env(L+U) contains zero elements, then such a separator
exists. In the symmetric case, the variables associated with the con-
nected components may be eliminated in arbitrary order. This is not allowed
in the non~symmetrié case as may be seen as follows. Consider the graph of
Figure 6a with ordering o defined by: a(i) =i (i =1,...,5). The separa-
tor § = {5} yields the strongly connected components Vi = {1,3} and

v2 = {2,4}. Eliminating first the variables associated with V2 leads to an
elimination order which results in triangular factors different from L and
U; this may be seen in figure 6b, where the vertices are renumbered accord-
ing to this new ordering. Figure.6c shows that eliminaéing first the

variables associated with V1 also leads to other triangular factors.
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To guarantee obtaining the correct triangular factors we modify the con-
struction of a partition in the following way. A separator S, consisting of
vertices with the highest numbers, is looked for with the further property
that the vertices in each strongly connected component are consecutively
numbered. Applying this rule recursively to each of the strongly connected
components, we obtain a partitioning P= {Vi,...,Vm} of V. The matrix Q may

be partitioned into blocks:

where Qrs denotes the matrix obtained from Q by deletion of all rows i for
which o(i) ¢ Vr and all columns j for which a(j) ¢ Vs. (Note that contrary
to the symmetric case, the rows and columns of Q are not permuted to obtain
the partitioned matrix.)
Let the matrices L and U be partitioned in the same way. Defining
min(xr,s) -1
5. =9o.- 1

L U
. rt “ts

it follows that partial decomposition of

S 2 RIS

s,s+l sm
0 Qs+i,s
s 0
s
with st as block-pivots gives
r
Qg = Lg Ug ¥ Qs
where
L
ss
Ls+1 ]
L = ! 3 s
s . and Ug ¢ ss’ 5,8+l 'Usm)
L

ms
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(see (1.2) and formulae for partial decomposition). Hence all coefficients
of L and U can be obtained by (partial) decomposition of the matrices Qs
{1 £ s £ m). The matrix QS and hence Ls and Us can be computed once Lt and

Ut are computed for all t with 1 £ t < s. Note that contrary to the symme-

tric case, the order of computing the matrices Qs is strictly determined.

If the partitioning P is obtained as outlined above, it may happen that
env(Ls-%Us), for some s (1 £ s < m), contains zero elements. In that case P
may be refined. Let env(Lt-rUt) contain a zero element. Then the section
graph G(Vt) contains a separator S', with the properties that S' contains
vertices with the highest number in Vt and the associated strongly connected
components all contain consecutively numbered vertices. By removing Vvt from
P and adding S$' and vertex sets of the associated strongly connected compo-

nents, we get a refined partition.

%
Let P° be a partition which needs not be refined any further. Then the com-
%
putation of L and U may be based (in the above described way) upon P” in
such a way that envelope algorithms suffice to avoid arithmetical opera-

tions with zero coefficients.

Note that contrary to the structurally symmetric case, GZ /F# is not a palm
or another type of a nicely structured graph. Therefore non-symmetric
matrices exist for which there is hardly any difference between sparse
matrix decomposition and decomposition based on a partition constructed in

the above way.

2.7. Nested dissection

In Section 2.4 we have pointed out how to construct a proper pp-partition
foxr a given matrix Q. In this section we will show that if a so called
nested dissection oxdering is used to arrange the rows and columns of a
matrix, then a proper pp-partition is obtained trivially. Hence, to im-
plement nested dissection decomposition, no sparse matrix codes are needed

for efficiency; envelope algorithms suffice.
The set of equations Qw = f£ is equivalent with

Pl £

t
(P,QP) (P, W)
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where P1 and P2 are permutation matrices. If P1 = P2, symmetry is preserved.
Many papers (see [Duff '77]) are devoted to the subject of choosing the
permutation matrices in such a way that some minimum or other is obtained.
For instance, one may try to minimize the profile, envelope or fill-in of
P1QP§n Unfortunately, these minimization problems are proven or conjectured
to be NP-complete [Papadimitriou 76, Tarjan '76]. We are in agreement with
the following quotation from [Tarjan *76]: "In view of the NP-completeness
results, we cannot hope to solve the general problem of efficiently imple-
menting sparse Gaussian elimination. We can only try to solve the problem

for special cases."

One such special case is the class of symmetric matrices arising in two or
three dimensional finite element equations. For these problems the nested
dissection ordering has been developed [George and Liu ‘78 oct, George '73],
which has been proven to be a good ordering'[Lipton e.a. '79]. We will show

that a proper pp-partition is trivially obtained for such an ordering.

a nested dissection ordering of a connected undirected graph G = (V,E) is
formally defined as follows [George and Liu '78 oct]. First, an algorithmic

definition of a nested dissection partition P of V is:

0) Initially, set P empty.

1) Choose a minimal separator V' of G; if G does not contain a separatox
then set V' = v. add V' to P.

2) If v # V', then apply step ! recursively to each of the connected com-
ponents of the section graph G(V\V®).

The set P = {vl,...,vm} thus obtained is a partition of V, a nested dissec-
tion partition of V. A rooted dissection tree T = (P,E) is associated with
P, where E is defined as follows. Let Wr (1 € r < m) denote the edge set of
the section graph separated by Vr; then (Vi,Vs) € E if and only if Vs has
been chosen as the separator of one of the connected components of the
section graph G(Wr \Vr); Vr is in that case the predecessor of Vs. An
ordering ¢: {1,...,n} = V is called nested dissection ordering if it is
consistent with the nested dissection partition P in the following way:

vs ¢ U(vr) 4»a_i(v) > uﬁl(w) for v ¢ Vr, w ¢ Vs .

Note that in finding a nested dissection ordering, both a partition of V is

created and a consistent ordering on it is chosen; whereas in finding a
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proper pp-partition an ordering should be given beforehand, then a partition

is constructed. We will now prove:

THEOREM 2: Let a be a nested dissection ordering consistent with the nested
dissection partition P = {Vvl,...,Vvm}, then P is a proper pp-

partition associated with o.

pProof: Let T be the dissection tree associated with P. Because T is a tree,
the elements of P may be arranged in such a way that o: {1,...,m} = P de-

fined by o(r) = Vr is an ordering of P with the property:
-1 -1
Vs e Dvr) -0 " (Vr) =xr > ¢ "(Vs) = s .

It is easily verified that G;/’P is the tree with some fronds added to
it; hence G:,/P is a palm and (GZ/’P)G is a preserving palm. Hence P is a
preserving partition. Moreover, every vertex of T has either zero or more
than one successor,; hence G:,/P is a proper palm and therefore P is a
proper p-partition. From the construction of P and the connectedness of G
it follows that P is a perfect partition. Hence P is a proper pp-partition

associated with a. 0

Corollary 1: If a given algorithm determines a nested dissection partition
and ordering, then no other algorithm to find a proper pp-

partition associated with this ordering is requived.

Corollary 2: To implement a nested dissection decomposition of a matrix, no
sparse matrix codes are needed for efficiency; envelope algo-

rithms suffice.

It is well-known [Hoffman e.a. ‘73] that nested dissection applied to so
called regular n X n grids may lead to an (asymptotically) optimal ordering
(in the least-arithmetic or fill-in sense). In view of our Corollary 1
above, we do not support a quotation from [George '74]: "In order to
actually benefit from these orderings, it is necessary to use general
sparse matrix techniques". A similar remark appears in [George and Liu '78
aprl. all known implementations of nested dissection decomposition use, at
least for parts of the matrix involved, sparse matrix techniques, requiring
considerable storage overhead for pointers etc. [George *77]1. In Chapter 4
we will show how to implement nested dissection decomposition for n X m

grids without storage overhead, ﬁsing the concept of substructures.
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CHAPTER 3

FINITE ELEMENT EQUATIONS

In applications of the finite element method (to the solution of partial
differential equations) one often encounters large, sparse sets of linear
equations. Many papers (see [Duff '77]) deal with the problem of solving
those finite element equations efficiently. A way to avoid large sets of
equations is the use of the substructuring technique. In this chapter first
the finite element method with the drawbacks of its traditional organiza-
tion is outlined and next we discuss the relation between substructuring

and perfect preserving partitions.

3.1. Cutline of the finite element method

We will outline the finite element method only briefly, since proofs and

details may be found elsewhere [Strang and Fix 73, Zienkiewicz '77].

Suppose the problem to be solved is finding the function w which minimizes

a given energy expression:
(3.1) E(EV) = (av,v) - 2(£,9)

where A is a self-adjoint differential operator,;an element from a function
space H with domain 0, and (.,.) denotes the inner product in that space. A
£inite element solution is obtained as follows: the function w is approzimated by:

n
(3.2) wo= ] wo
h joy i

where the 9, are certain functions in H, called shape functions. Next the

constant coefficlents Wy will be determined seo that (3.2} minimizes (3.1).

Substitution of (3.2) in (3.1) yields:

n n ., n
(A i£1 LN ’iEi Wi@i) - Z(f ,igi wimi) =

n . n -
(3.3 ( z w, (Ag gw.)w.) - 2 S w,{£,9,) .
i5=1 0 F 3D i=p 1



40

Defining the matrix Q by: qij = (Amj,wi), w as the vector consisting of the
coefficients W, and the vector £ by fi = (E,mi), (3.3) may be written in

matrix notation as:

(3.4) whow - 20" .

If Q is a symmetric matrix, then (3.4) obtains its minimum for w satisfying:
(3.5) Ow = £ .

Formula (3.5) shows a set of n linear equations with n unknowns, which may

be solved for w. In most applications Q is a positive definite matrix.

In a similar way one can even solve differential equations of quite géneral

type: solve Q, a function in the function space H, from

~

aw = £

where A is a differential operator. A way to obtain an approximate solution
is the following. Choose a set of n test functions wi € H (4 = 1,...,n);

approximate w by a linear combination of shape functions 0, € H:

n
¥ =
(3.2%) wh .2 Wimi
de=]
and require

A p) = (E)) (1<is<n .

Substitution of (3.2°) in the above gives

n
(3.3%) Y e w, = (£,0,) (1 <is<mn .
. SR S | i
j=1
Defining the matrix Q by: qij = (ij,wi), w as the vector consisting of the
coefficients W, and the vector £ by fi = (%,wi), (3.3') may be written in

matrix notation as
(3.5%) Qw = £ .

Again (3.5') shows a set of n linear equations in n unknowns. These equa-
tions are not necessarily symmetric or positive definite. We will not
address the question under which conditions (3.2) or (3.2') is a reliable

approximation of w.
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The domain Q@ of H is in finite element terminology usually called structure.
The matrix Q, respectively vector £, will be called structure matriz,
respectively structure vector (in the literature often called stiffness

matrix and load vector, respectively).

In order to obtain the shape functions characteristic for the finite ele~-
ment method, £ is divided into a finite number of elements. Each shape
function is now chosen in such a way that its support (i.e. that part of
where it is different from zero) consists of a small number of elements.
The choice of the elements and their shape functions is determined by the

problem to be solved.

Let le(i), for 1 £ 1 < ke’ denote the indices of the shape functions whose

support includes a certain element e. The ke X ke matyix Qe is defined by:

e .
95 = Blrerg) Oeqayle (P SIS k)

where (°")e denotes the inner product restricted to e. Qe will be called

element matrix.
If C_ denotes the so called connection matrix defined by:

()

iy = 6i,He(j) {1l <i<n, 1 <3

A

ke)

where § is the Dirac delta function, then Q is obtained by "assembling” the
element matrices Qe as follows:
e t
e=]c,Qc .
e
Inananalogous way the element vectors £® and structure vector £ may be
computed:

@ o~
£ - (f:(Pi)e

Because the support of each shape function is restricted to only a few

elements, many coefficients of Q are zero. In the finite element method the
shape functions are usually chosen in such a way that the coefficients Wy
in (3.2) have obvious physical interpretations; they may be identified with
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the values of w or its derivatives at particular element positions, usually

called nodes.

3.2. Traditional organization

In the actual computations the following consecutive steps are usually en-

countered:

1) choice of element types (i.e. shapes of elements and kind of shape
functions) to be employed, ‘

2) mesh generation: division of the structure in elements,

3) node numbering: determination of the order in which rows and columns of
the structure matrix are arranged,

4 a) computation of element matrices,
b) assembly of element matrices into the structure matrix,
¢) computation of the structure vector,

5) computation of the solution vector,

6) computation of results determined by the solution vector.

Steps 4a and 4b are usually not carried out strictly consecutively, but as
follows: as soon as an element matrix 1s computed, it is assembled into the

already partially formed structure matrix.

As steps 1, 4a and 6 depend upon the specific problem to be solved, we will
in this thesis only be concerned with: mesh generation, node numbering,

assembly and solution of the equations. First we will discuss some problems
that are encountered when the finite element computations are organized in

this traditional way.

The partitioning of a structure in elements results in a mesh for that
structure. Mesh generation is an important aspect of finite element calcu-
lations. The shape and number of elements have to be chosen. Irregular
structure boundaries must be approximated by element boundaries. The accu-
racy of the calculations depends upon certain mesh characteristics, such as
the slenderness of the elements [Strang and Fix °73]. Specifying the mesh
often involves much work, in particular if the mesh is irxegular and con-
tains many nodes. Therefore, so called mesh generatoxs [Zienkiewicz and
Phillips '71, Schoofs e.a. '79] have been developed, i.e. programs generat-

ing the necessary geometrical input data for finite element programs.
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Another difficulty is that the numbering of the nodes, i.e. the ordering of
rows and columns of the structure matrix Q affects the efficiency of the
solution process [George *71]. A poor numbering results in triangular
matrices L and U (defined by @ = LU}, many coefficients of which are non-
zero, whereas a good numbering results in much sparser L and U, thus re~
ducing the required number of arithmetical operations to solve the asso-
ciated set of equations. Several algorithms have been developed to minimize
the bandwidth of a given matrix by rearranging rows and columns [Cuthill
'72]. Unfortunately the determination of the minimum bandwidth turns out to
be an inherently hard problem, because it belongs to the class of so called
NP-complete problems [Papadimitriou *76]. Instead of minimizing the band-
width, it is usually better to try to minimize the profile [George '71].
This is however also an NP-complete problem [Garey e.a. '74]. One might
alsc consider the filll-in as a measure of efficiency. However, it has been
shown that minimizing the fill-in is again an NP-complete problem for non-
symmetyic matrices and the same is conjectured to be true for symmetric

matrices [Rose and Tarjan '75].

A final difficulty is that in practice special measures are required to
assemble Q and £, in particular when, for problems with many nodes, the
matrices are too large for integral storage in central memory and the

operating system of the computer does not provide a virtual memory (see

further [Irons °701).

3.3. Substructuring

A sensible way to solve a problem in general is by dividing it into a
number of simpler problems and then combining the solutions of those
simpler problems to get the solution of the overall problem. To split a
finite element problem, the substructuring technique [Przemieniecki ‘68,
Williams ‘73] has been applied. Because our organization of finite element
calculations is based upon the substructuring technique, we will describe

that technigque and prove that it leads to correct results.

Let Q and £ be the structure matrix and structure vector, respectively,
associated with the structure 8. Let S consist of elements with associated

element matrices Qe and element vectors £°. Then the following relations
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hold (see 3.1)

e t
o=Jcooc ., £=]cf
e e
where Ce are the connection matrices associated with the elements. Let w

denote the solution vector to be solved from
(3.6) Qw = £ .

When applying the substructuring technique to compute w one proceeds as

follows. The structure § is divided into k substructures Si,....Sk; i.e.

every element of § belongs to precisely one substructure (the prefix sub

will often be omitted). Assembling the elements of Sj (j = 1,...,k) results

in the substructure matrix:

9gy = I clofed”
elnsj

and substructure vectoxr

) Cife

£ =
81 einsy

where the connection matrices Ci are obtained from Ce by deleting the rows
which do not correspond with a node in $j. All nodes of a substructure which
belong to only that substructure are called internal nodes; other nodes are

called extermal. The equations associated with structure $j

(3.7) QSj WSj = ij

may be arranged in such a way that the external nodes are grouped together:

£

9515 %yEs| Y15 15

(3.8) =
Q Q

5319 ZmiEs) (Ves)  FE

the subscripts Ij and Ej referring to the internal and external nodes of

S3, respectively. Partial elimination of (3.7) with QIj as block-pivot

Ij
results in:

r -
{3.9) QSj ij = ij
where

X - -
(3:100 Q55 = %y py ~ TgyryUrgeg
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and
r -1
3.1 .= .- s S
( 1 fSJ ij IE] Ij LIjIj fI]
The matrix Q;j will be called reduced structure matrix; Q;. is said to be
obtained from QSj by eliminating the internal nodes. The vector fgj is

called reduced structure vector.

Obviocusly we are not interested in the solutions of the sets of equations
(3.7), but in the solution of (3.6).

Now suppose Ej (1 £ j £ k) contains mj nodes, numbered from 1 to mj; and

k
suppose U Ej contains n' different nodes, numbered from 1 to n'. Let for
=1 k
a node & from Ej (1 £ & < mj) I5(2) denote the number of & in U Ej' hence
j=1

I £ II3(L) £ n'. Let the connection matrix Cj (1 £ j £ k) be defined by

= ]
(Cj)h2 dh,Hj(k) . 1 £hs<n', 1s < mj N

The set of equations (3.6) can be arranged in the following way:

1 Ct ’ rw 1 ' f }
Q11 11 Qr181%1 11 11
. 0 . . E
(3.12) 0 t | =
Qk 1k Qrk rx %k Yrx frx
k € k
' c. £
1% ;111 0 k% .E 3%y g3 5| »g 3 TEj
( j=1 J \3_1 J

Partial elimination of (3.12) with

Q111

QIka

as block pivot, results in
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3.13) (]Z{c ct-]fcz, ct)'=
3 i C3%3E3% T L Oy tey Yy )Y
K k )
- jZ1 €3 %83 " jzl %83 1500315 T3

From (3.10) and (3.11) it follows that (3.13) are the equations

( k
(3.14) \'Z1

X t X r
C.Q C)w'= Yy c.fL. .
3 j ot J

53 73 S

3] j J
From (3.14) it follows that w' can be solved after the reduced structure
matrices and vectors have been assembled. If w' is known, then w_. may

EJ

be computed from ij = C;:wH for all j (1 < j < k). Finally, ij can be

obtained by solving:

-1

5 = la oo
(19 Pry13¥ey T Pry oy fry T Y1yey Ve

(this last equation follows from (3.8) and the definition of partial decom-

position) .

The partitioning of the strxucture S into substructures implies a certain
ordering of the nodes: the internal nodes of the substructures are eliminat-
ed first, the nodes belonging to more than one substructure are eliminated
last. The oxrder of processing the substructures, i.e. computing the reduced

structure matrices and vectors, is irrelevant.

If a substructure, say 5j, consists of a number of elements, it is possible

to partition also that set of elements. The substructure Sj is then parti-

tioned into substructures Si,,..,sz

matrix of Sj, instead of element matrices, reduced structure matrices

. To compute the reduced structure

associated with Sg (1 £h £ %) are then assembled together, and so on. Thus

one may create a hierarchy of substructures.
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Some advantages of using the substructuring technique are:

~ Instead of assembling all element matrices into one large, usually sparse,
structure matrix, a number of smaller matrices is set up.

- Sometimes identical substructures can be distinguished within a structure;
obviously the calculations of identical reduced structure matrices need to
be done only once, thus saving computations.

- Substructures may be analyzed more or less independently of each other;
the effect - on the complete structure - of changes of a substructure may

be analyzed without a need to repeat all computations.

As remarked before, substructuring implies a certain ordering of the nodes.
The order of the nodes influences the number of arithmetical operatiohs
with non-zero matrix coefficients required for the elimination. Hence a
possible danger of the substructuring technique is that an inappropriate
partitioning may lead to far more than the minimum number of arithmetical
operations with non-zero coefficients. With a careful choice of the sub-
structures, however, this danger can be avoided. This may be seen as fol-

lows.

Consider a structure S with structure matrix Q and orxdering a. Let

G = (V,E,a) be the associated connection graph, where ¥V is the set of

nodes of S. Suppose P = V1,...,vk (k > 1) is a proper pp-partition as-
soclated with G. Hence Vk is a separator of G; let the connected components
of the section graph G(V \Vk) be dencted by Gl,a.”,Gpe All coefficients of
the element matrices are considered to be structurally non-zero. Hence two
nodes (not in Vk) belonging to the same element of $ belong to the same
connected component Gj. With each component Gj (1 £ j £ p) a substructure
83 of 8 is associated in the following way: all elements of 5 which have a
node in common with Gj together form substructure Sj. The nodes of 5j which
belong to Vk are precisely the external nodes of Sj. By applying the above
rule we do not necessarily obtain a complete partitioning of all elements;
there may be elements, all nodes of which occur in Vk only. Bach of these
elements may be considered as a separate substructure; they are substruc-
tures consisting of one element only and without internal nodes. In the
same way as S, its substructures Sj may be partitioned; thus with P a
hierarchy of substructures is associated. Computing reduced structure
matrices, corresponds with partial decomposition of matrices Qs as indicat-

ed in Section 2.1. From Section 2.3 we know that - irréspective of how well
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the equations are ordered - we can find a proper pp-partition. From the
above it now follows that, if the ordering of the equations is such that it
gives rise to the minimum amount of arithmetical operations and/or storage,
substructures can be found which lead to the same minimum. Moreover, to

avoid operations with zero coefficients envelope algorithms suffice.

Now, conversely, suppose the structure S, with structure matrix Q and as-
sociated unordered connection graph G = (V,E), is partitioned into a hier-~
archy of substructures. With such a hierarchy a partitioning P = {vi,...,Vk}
of the nodes V is associated: two nodes belong to the same partition element
Vi if and only if they are internal nodes in the same substructure. The in-
ternal nodes can be ordered in such a way that the associated enV(Lljij) is
dense. Let o denote an ordering of V, thus induced by the hierarchy of sub-
structures. It is now easily verified that P is a proper pp-partition for
the graph ¢ = (V,E,a). Hence it is not necessary to apply the algorithm of

Section 2.4 in order to obtain a proper pp-partition associated with o.
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CHAPTER 4

A NOVEL FINITE ELEMENT ALGORITHM FOR N XM GRIDS

In this chapter we will develop an algorithm for finite element calcula-
tions on a structure with an n X m mesh, that is to say: the structure con-
sists of n rows and m columns of quadrilateral elements, each element com-
prising four corner nodes. The most simple example of such a structure is a
rectangular plate which, in an obvious way, is partitioned into n x m uni-
form rectangular elements (i.e. all elements are of the same size). Note,
however, that by allowing arbitrary quadrilateral elements, the structure
is not necessarily a rectangular plate. Deformations are permitted. It will
be assumed that, as far as numerical stability is concerned, the pivot-
order of the associated set of equations is not of importance. We will

moreover assume that the element matrices are symmetric.

Our approach will be based upon the substructuring technique. The obvious
way to dissect a rectangle is to divide it into two rectangles of about
equal size. Hence reduced structure matrices and vectors must then be com-
puted, associated with each of the two smaller rectangles. To compute the
reduced structure matrices, every substructure will in turn be divided into
two (smaller) rectangles, unless the substructure is too small to be dis—-

sected, i.e. consists of only one element.

The implementation of this algorithm and the data structures involved will
be described with the programming language PASCAL [Jensen and Wirth 78].
A step-wise refinement approach [Wirth '71 comm.] will be employed to

clarify the procedures developed.

4.1. Procedure ur

The procedure ur produces the reduced structure matrix of a structure R
provided with an n X m mesh. A corner node of R is a node belonging to
precisely one element, hence R has four corner nodes. In an cbvious way
four sides of R may be distinguished; they will be identified by left,

upper, right and lower. Only nodes on the sides of R are external. A side
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will be called external if it contains external nodes only. Not all sides
of R are necessarily external. On a non-external side at most the corner

nodes are external.
The procedure heading of ur is
procedure ur (n, m: integer; ext: set-of-sides);
The type set-of=~gides is defined as follows:
Ltype set-of-sides = set of (left, upper, right, lower)

The value parameter ext refers to the external sides of R. The parameters n
and m refer to the number of elements; thelr values equal the number of

rows and columns, respectively. The body of ur is:

1. procedure ur (n, m: integer; ext: set-of-sides);

2.  wvar nl, ml, n2, m2: integer; el, e2: set~of sides:
{ni, ml are the number of elements along the sides of
substructure 7 (£ = 1,2); et denotes the external sides}

3. begin if (n = 1) and (m = 1)

4, then compute—element
5. else begin divide R into two rectangles Rl and R2, i.e.
compute nl, ml, n2, md, el, el;
6. ur (nl1, ml, el);
7. ur (n2, md, e2);
8. assemble
end;
9. decompose
end

The procedure gssemble performs the assembly of the two (reduced) structure
matrices computed in lines 6 and 7. The procedure decompose performs the
partial decomposition of either the structure matrix assembled in line 8,
or the element matrix computed in line 4. This decomposition results in the
reduced structure matrix Qr and the decomposed matrices LII and LEI’ where
B denotes the external nodes of R and I stands for the internal nodes
eliminated by the last call of decompose; hence I are the nodes which are
internal in R and external in Rl and R2; I does not denote all the internal

nodes of R.
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The correctness of wur, i.e. upon its termination Qr is correctly computed,
is easily verified by induction [Dijkstra *'72], taking the correctness of
lines 4, 5, 8 and 9 for granted. It is trivial to verify that the execution

of ur will always terminate.

4.1.1. Element specification and storage of results

In order to compute in line 4 an element matrix, it must be known which
element is meant. Therefore we provide ur with the further parameters 7 and
J+ the row and column number of the lower left element of the structure

whose reduced structure matrix must be computed.

Another point where we want to be a bit more specific is the way in which
the resulting matrix is recorded. For reasons to be explained in Chapter 7,
all data are stored in a global one—dimensiénal array 4 of sufficient
length. ALl that is necessary to retrieve data are thelr indices in 4.
Therefore we include a variable parameter r in ur, whose value upon exit of
the procedure is the position in 4 from where the computed results may be

obtained.

With these extensions the declaration of ur becomes:

i. procedure ur (n, m, Z, J: integer; ext: set-of-sides:
2. var r: tnteger);
3. vax nl, ml, ©1, j1, n2, m2, 12, j2: integer;
4. el, e2: set~of-sides;
5. rl, r2: integer;
{ri is the index in 4 where data of substructure ¢ may be

retrieved (7 = 1,2)}

6., begin assign value to r {initialize datastructure};
7. if (n = 1) and (m = 1)
8. then compute-element (Z, j. )
9. else begin compute nl, ml, <1, jl, n2. m2, 22, j2, el, e2;
10. ur (nl, mi, <1, jl, el, »1);
i1. ur (n2, m2:. 12, j2:. e2. vr2i;
12. assemble
end;
13. decompose

end
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4.,1.2. Dissection of the rectangle and representation of element matrices

In line 9 the rectangular mesh is dissected into two smaller rectangular
meshes. The way of dissecting affects the efficiency of the computations.
Following intuition, it seems advisable to dissect the rectangle along a
line roughly through the middles of the two long sides (that are the sides

with the largest number of elements). Therefore line 9 becomes:

if n>m
then begin nl := n div 2; n :=n - nl;
ml = m; ma = m;
71 = 1; 12 = 7 + nl;
J1 = g; Je = g;
el := ext + [upperl; e2 := ext + [lower]
end
else begin nl := n; n2v== ni
ml :=m div 2; m2 = m ~ ml;
11 := 1; 12 = 1;
J1 = g; Jo = g + ml;
el := ext + [rightl; e2 := ext + [left]
end

Because the parameters to be passed in lines 10 and 1! are all called by
value (except »] and r2), we may recode lines 10-12 without using the
intermediate variables declared in lines 3 and 4. To shorten the code a
variable nml will be introduced to avoid repeated evaluation of n div 2 or

m div 2.

As stated before, we will not be concerned with the computation of element
matrices. Therefore we assume that the procedure compute—element will be
supplied by others. An element matrix computed by compute—element will
subsequently be (partially) decomposed by decompose; hence the representa-
tion of an element matrix is determined by the specifications of the
procedure decompose following. In order to free the writer of compute-
element from the necessity to be aware of the special representation
required by decompose, we will introduce an auxiliary 2-dimensional array &,
to be passed as a parameter to compute-element. After a call of compute-
element @ will then represent the element matrix in the usual way: the

lower triangular part stored rowwise. Next the contents of € nmust be
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transferred to 4. Due to restrictions imposed by PASCAL it is not possible
to declare @ locally (in line 8); therefore § is assumed to be declared

globally.

With these modifications the procedure declaration becomes:

1. procedure ur (n, m, <, J: integer; ext: set-of-sides:
2. var r: integer);
3. wvar wmml, rl, r2: integer;

4. begin assign value to r;

5. if (m=1) and (m = 1)
6. - then begin compute-element (i, j, @):
7. transfer contents of ¢ to 4
end
8. else begin if 7 > m |
9. then begin mml := n div 2;
10. ur (mml, m, i, J. ext + Lupperl, »l);
il. ur (n-mml, m, < +nml, §, ext + [lower], r2)
& Eﬂg_ '
i2. g&gg_gggig.nml s=om div 2;
13. ur (n, wml, 1, J, ext + Lrightl, »1);
14, ur (n, m=wml, 2, §+nml, ext + [leftl. »r2)
end;
15 assemble
end;
16. decompose
end

4.1.3. Decompose

Given an assembled structure matrix, the procedure decompose computes a
reduced structure matyrix, whereas the procedure assemble has to assemble
two given reduced structure matrices into one matrix. Hence, the procedures
assemble and decompose axe closely related; there is a trade-off in the
share of work that has to be performed by decompose and assemble. Because
assemble has a kind of bookkeeping function, we have tried to minimize the
work to be done by decompose. Therefore the lower triangular part of the
matriz to be decomposed is partitioned into two matrices: QEE (the part
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that corresponds with external nodes only) and the rest. (Leaving the
internal rows and columns intermixed with the external ones, would, on the

other hand, simplify the procedure assemble.)

As mentioned before, decompose decomposes a given structure matrix

t
Ir QEI

Q

Q
%1 EE

with QII as block-pivot into

Let ni and ne denote the number of internal and external nodes, respective-

1y, and let
. . .. < J <1< nt
qu denote (QII)ig for 1 £ %51 Nls
. P
Lij denote (LII)ij for 1 < g <1 < ni,
qij denote (QEI)imni ; for 1 £ g4 2 nt, nitl £ 4 < nitne,
é
lij denote (LEI)ij for 1 £ J < ni, ni+tl $ 7 £ nitne,
.y ., 4+l € F € 7 < nit
qtg denote (QEE)tunt,J~nz for ni+l J 7z nitne,
P *y .. i< 1 s
q;%7 denote (Q )tJ for 1 g 7 < ne,

then the procedure body of decompose may be coded as follows (see (1e2*)):
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var 1, J. K: tnteger; h: real;
begin {computation of (lower triangular part of) LII and LEI}
for 7 := 1 to ni + ne do
begin for J := 1 to min(Z,nZ) do
begin /2 := qij;
for k := 1 toj - 1doh :=h~ zik * ljk;

i <d
then Rij 1= h/lij
else Rii 2= sqrt (h)
end
end;
{computation of Q¥ =0 __ - L Lt}
EE EI TEI
for © := 1 to ne do

for J := 1 to 7 do

for k = 1 tont do h = h - &
r L.
Oyt

. L A
1+nt .k Jni.k

end

Remark: In the actual implementation the space occupied by QII' QEI and QEE

will be overwritten by LII’ L and Qr, respectively.

EI

4.1.4. Assemble

The procedure assemble must assemble two matrices, say le and Q;2p into

the structure matrix Q associated with R. A way to do this, is (see 3.14)):

procedure assemble;
begin initialize Q with zeros;
r _t
add C1 QRlcl to Q;

t

2 to Q

T
add C,0p,C

end

where Ci (i = 1,2) is the connection matrix associated with Ri. To compute
C1 and C2' it is necessary to know how the nodes are numbered. The program
as listed in [Peters °79] follows the (rather arbitrary) convention: the

external nodes are ordered clockwise, starting with the lower left cornexr
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node; the internal nodes are numbered either from left to right or from top
to bottom, depending upon the way R is split into Rl and R2. Of course not

the matrices C1 and C2
{(with a length equal to the number of externals of Rl and R2, respectively)

defined by:

are computed, but instead two vectors vl and v2

vI[h] = 2 i£f the hth external node of Rl is the Rth external
(if 2 > 0) oxr interxrnal (if % < 0) node of R.

An analogous definition holds for v2. The distinction between internal and

external nodes of R is made because Q is partitioned in QII’ QEI and QEE°

The values of %, m and ext are needed to compute vl and v2. The coding of
the computation of vl and v2 is straightforward, requiring an extensive
case analysis. After assembly the vectors v] and v2 may be deleted. Further

details may be found in [Peters '79].

4.1.5. Removal of reduced structure matrices

A reduced structure matrix is, once it is assembled to another matrix, not
needed any longer. The space it occupies in the global array 4 may then be
used for other data. The array 4 will therefore be used in a stack-like
manner. Lf the structure R, partitioned into all its substructures, is
viewed as a tree, then the reduced structure matrices are stored consecu-
tively in 4 in pre~order [Rnuth '75], i.e. of every substructure Rj, first
its "own" reduced structure matrix is stored, then all the reduced struc-—
ture matrices associated with its first substructure and next all those

matrices of the second substructure.

A global variable pr is introduced, indicating from which index in 4 on the
next reduced structure matrices may be stored. From the parameters n, m and
ext it can be determined precisely how much space is needed to store the
reduced structure matrix of R. Hence the value needed to update pr is known
and in line 4 of the program text in 4.1.2 the old value of pr is assigned
to r. If every reduced structure matrix is removed as soon as it is not
needed anymore (and if no other data are stored in 4), then the pre-order
storage implies that the two reduced structure matrices, which are assem-
bled together in line 15 are always the two last ones and removing them is

simply achieved by updating pr.
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Because the decomposed matrices LII and LEI will be used for subsequent
computations, they will not be removed; they (and hence QII and QEI) are
stored in the same pre-order, but separated from the reduced structure
matrices in another part of 4. A second variable pd is then required to
indicate from which index in 4 on the next decomposed matrices may be
stored. Note that an extra parameter in ur to indicate where the decomposed

matrices are stored is not needed.

4.2. Procedures fur and bur
4.2.1. Computation of reduced structure vector

The computation of the reduced structure vector with the procedure fur is

analogous to the computation of the reduced structure matrix with ur:

i. procedure fur (n, m, ©. J: integer; ext: set—of-gides;
2. var r: integer);
3. var mml, rl, r2: integer;

4. begin assign value to r;

5. if (n= 1) and (m = 1)
6. then begin compute-element-vector (L, J. F);
7. transfer contents of F to 4
end
8. else begin if 7 > m
9. then begin mml := n div 2;
10. fur (nml, m, £, ., ext + Lupperl, rl);
i1. fur (m~wmwml, my, < +wml, j, ext + [lowerl., »2)
end
i2. else begin nml := m div 2;
i3, fur (n, wml, 2. j. ext + [Lrightl, rl);
14. fur (n, m-wnml, <, J+nml, ext + Lleftl, r2)
end;
15. assemb le~structure vectors
end;
16. Sorward-substitution

end
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All parameters and variables play the same role as the corresponding ones
in ur. Only the procedure forward-substitution and the parameter r require

gome comments .

This procedure forward-substitution computes the reduced structure vector
(see (3-11)) by calculating hy = L;i fI and next subtracting Lo, h, from £.
Because hI is needed again for the computation of the solution vector (see
(3.15)), £, will be overwritten by h,, called the substituted structure
vector. The matrices LEI and LII are computed with the procedure ur. The
execution of ur must then precede the first call of fur and the array 4
must be global to both procedures. fur needs access to both matrices and
vectors. This is simply achieved (without having to extend the parameter
list) by storing vectors and matrices together: the storage locations in 4
immediately succeeding those of LII will be used to store fI and later hI”
Prior to the first call of fur, the value of the global variable pd (ag-
sociated with 4) is reset to the value it had immediately before the initi-
al call of wr. Hence the meaning of pd is slightly changed; it no longer
indicates which part of 4 is free, but to which part of 4 the computations

are advanced.

As is the case with the reduced structure matrices, also the reduced
structure vectors may be removed (overwritten) as soon as they have been

used in assemble~structure~vectors.

From the cbservation that the matrices needed in line 16 of fur are precise-
ly those computed in line 16 of wur it is clear, that both procedures may be

combined to form one procedure. If line 4 of wr is changed into
r := pr; pr := pr + ‘expression’;

where the value of ‘expression’ is the number of storage locations needed
for QgE and f;, and if, moreover, lines 6, 7, 15 and 16 of fur are appended
to the corresponding lines of ur, then the resulting procedure computes
correctly in an interleaved way both the reduced structure matrix and the

reduced structure vector.
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4.2.2. Computation of solution vector and derived results

In the foregoing we have seen how the procedures wr and fur partition the
structure R into substructures and compute the decomposed structure matrices
and substituted structure vectors associated with those substructures. Given
those decomposed structure matrices and substituted structure vectors (re-
presented in a global array 4 as indicated before), the following procedure
bur provides the solution vector associated with R. Moreover, bur provides
(application dependent) quantities for the (structure) elements; these

quantities are obtained from the solution vector.

i. procedure bur (n, m, ¢, J: integer; ext: set~of-sides:
2. pwe: integer; var d: integer);

3. var mml, pwl, pw2: integer;

4. begin solve; assign value to d;

5. if (n=1) and (m= 1)
6. then begin transfer data from 4 to F;
7. process~solution (L, J, F)
end
8. else begin if n > m
9. then begin nml := n div 2; separate;
{assigns value to pwl and pw2}
10. bur {(mml, m, <, J, ext +[upperl, pwl, d);
il. bur (n~nml, m, L+nml, J, ext + [ lower], pw2, d)
end
i2. else begin nml := m div 2; separate;
{assigns value to pwl and pw2}
13. bur (n, nml, 2., J., ext +[rightl, pwl, d);
i4. bur (n, m~nml, i, j4nml, ext +{leftl, pw 2. d)
end
end
end

The parameters and other variables of bur play the same role as the corre-
sponding ones in ur and fur. The value parameter pwe indicates where the
values of W (see (3.15)) will be found in the global array 4. For a struc-
ture without external nodes, the value of pwe is irrelevant. Upon each

entry of the procedure, the value of d must indicate where the decomposed
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matrices LII and LE are stored; an adjustment of d with the number of

I

storage locations needed for L_._, L and hI' assures, due to the storage

II EI

sequence of these matrices, that d then indicates the decomposed matrices

to be processed next. A simple induction argument shows that in this way d
has also the correct value for the recursive call in line 11 or 14.

(see (3.15)) as follows: first U__w_=L°_ w

o (see . as fo gws. i 18 e = Yrr Vg
is subtracted from hI giving hi (in an actual implementation hI may be over-

The procedure solve computes w

. . . t
1 is computed from hi by back substitution with Lig

(and again hi is overwritten by wI). Obviously, if there are no external

written by hi), next w

nodes, then hi = h..
In line 6, the solution vector of the element is transferred from 4 to an
auxiliary global array F. The procedure process—solution next provides the
quantities to be derived from that solution vector (usually geometrical
data like node coordinates are required). Just like the procedures compute-
element and compute-element—vector in ur and fur, also process-—solution de-
pénds upon the specific problem to be solved and has to be written by those

working on an application.

The procedures separate in lines 9 and 12 perform the opposite of assemble-

structure~vectors in fur. The vectors w_ and Wy as computed in line 4, are

E

split into two vectors w and WEz, which are the solutions for the external

El
nodes of the two substructures of R. The variables pwl and pw2 denote the

locations in 4 where the vectors w and w

=1 g DAy be found.

Although the procedure bur has precisely the same control structure as ur
and fur, it can not be combined with them to form one procedure, because
the substructures are processed in opposite order. If the structure R is
viewed as the root of a tree, of which its substructures are the nodes,
then ur and fur process the substructures in post-order, whereas bur pro-
cesses them in pre-order. Moreover, bur needs the results of ur and fur.
Hence decomposition and forward substitution cannot be interleaved with

backward substitution, they must be carried out consecutively.
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CHAPTER 5

EFFICIENCY OF UR

In this chapter we present some operation and storage counts for the pro-
cedure ur, as developed in the preceding chapter. It will be shown how the
storage requirements of ur may be reduced. If applied to a square { x £

grid, then in total 2.8 12 + 0(%) storage locations are required.

5.1. Storage and operation counts

In this section we will investigate the efficiency of the procedures de-
veloped in the preceding chapter. The efficiency can be expressed in terms
of the amount of storage required and processor time needed. These two
quantities, however, depend upon the specific implementation on a particul-
ar computer. Therefore, the -~ implementation independent -~ number of arith-
metical operations with matrix coefficients and the number of matrix coef-

ficients stored will be considered.

If 1 and e denote the number of internal, respectively external nodes of
the structure to be analyzed with ur, then in line 4 of ur in Section 4.1.2

space is reserved for:
(5.1) s(i,e) = §i(i+1) + ie

coefficients of the decomposed matrices. Space needed for the reduced
structure matrices will be dealt with separately. The procedure decompose

in line 16 requires

(5.2) tlise) = =1 + + i%(e+1) +—;~ie(e+2) +-%i

()]
N

multiplicative operations (i.e. multiplications, divisions and sguare
roots) with matrix coefficients. The number of additive operations is about

the same, therefore we will not consider them.

In the procedure fur space is reserved for i coefficients of the substi-
tuted structure vector and 4i(i+1) + ie multiplicative operations are

performed by forward-substitution (see also (3.11)). These numbers are
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small compared with (5.1) and (5.2), respectively, therefore we will

restrict our attention to wr.

To determine the total number of multiplicative operations carried out and
matrix coefficients stored by ur, we will first restrict ourselves to the

case
n=ms=2 = § (r =2 0} .

Let gt(l) denote the number of multiplicative operations for an £ x £ mesh
with t adjacent extermal sides (t = 0,1,2,3,4). Let gé(l) denote the number
of operations for an £ % }% mesh, where gi, respectively gg, is associlated
with a mesh, a long respectively one short side of which is external. Similar-
Ly, g; is the same function for an £ X }f mesh, all sides of which are ex~
ternal, except for a long one; 95 belongs to an £ X 4% mesh, the two long
sides of which are external. With these definition we have the following

set of recursive relations:

go(l) = 291(2) + £(4+1,0)
29} (%) + £(0,0+1)
gl(l) m<
gi(z) + gg(z) + £ (Ll, 2+1)
gi () = 2g2(é2) + £(4, 0+1)
gz(k) = g_;_(l) + g:;(,Q,) + £{R,20+1)
3
gh(a) = gz(éz) + g3(§z) + t(gz,-51+1)
(5.3) g5(8) = 2g3(§2) + t(e-1,20+2)
2g§(£) + t(L,32+1)
93(£) =<
gg(l) + gé(z) + t(L-1,38+1)
5
g5(2) = g3(30) + g, (32) + t(iL-1, 50+1)
gg(e) = 2g3(£2) + (e, 20+1)
9,02 = 29, (%) + t(f-1,40)
g, (L) = 294(§z) + t(ie-1,30)

For g, there are two possibilities, each corresponds with a different split-
ting. The first relation corresponds with a splitting from the external to
a non-external side, the second one with a splitting parallel to the extern-—
al side. We will ultimately choose the splitting, which leads to the least

number of operations. A similar remark applies to gy«
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Elimination of gg and gg (3 = 0,1,2,3,4) from the above set of relations,

together with (5.2) gives:

9o (0 = 49, (4) + %% 22+ 009
29, (48) + 295(40) + %% o2+ 0uh
1 m<292(£2) + 294(42) + %% w0003
e g,(0) = g,(40) + 20,40 + g, (40 + 2 20+ 0D
29, (42) + 2g, (40) #2207 4 00?)
% =<2g3(£2) + 29, (40) + ifg-z3 + 003
g, () = 49, (}2) 3 e v 0w

Now it 1s clear which relations for 9 and g, are the begt ones; they both
correspond to a splitting from an external to a non-external side.

The set (5.4) contains recursive equations of the form:

{5.5) g(2) = ag(i) + p(L) , o= 1,2,4

where p is a known polynomial. The following properties of this kind of

equations are easily verified (see also [Rose and Whitten '76]):
1) additivity: if g(L) satisfies (5.5) and 5(2) satisfies
g(8) = ag(48) + B(4)
then h(%) = g(&) + g(8) satisfies:
h(2) = ah(&) + p(L) + p(&) ;
logza
2) non-uniqueness: 1f g(&) satisfies (5.5), then g' () = g(L) + c.4 P

with ¢ an arbitrary constant, satisfies:

g’ (R) = ag' (§2) + p(R) ;

3) if p(L) = B2°, the solution is:

2
g(2) = —~i137@ 25 4 e 09 e g g 28,
[
25
g(2) = 82° log2g + c.2% , if o = 2%,
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with ¢ an arbitrary constant;

4) if p(R) = Sls logzl, the solution for o # 25 is:

2
8 ) + c,ZlOg “

g8 = ——r" Zs(logzx -

| —

25

27 ~q

with ¢ an arbitrary constant.

From the above properties it may be derived that the solution of (5.4) is

given by:
g, (%) = 9-1-7-2-1- 23 - 1722 10928 + 0029
g5 (1) = %4%?- 23 - 1702 10g22 + 0023
(5.6) g, = 22L 0% - 1707 10920 + 0047
g,(2) = 3—22_,;9% 23 - 1722 10922 + 0(2%)
o0 = 22007 - 170% 10g20 + 008D .

From property 2 it follows that initial values only affect the second and

lower order coefficients of the solution polynomials.

In a similar way we may deduce from (5.1) that, if hj(l) denotes the number
of matrix coefficients stored for an £ x £ mesh, with j adjacent external

sides, then:

(5.7) By (1) = 5’-43- 22 log28 + 02%) , O0s3<4.

The procedure ur needs space to store not only the decomposed matrices, but
also the reduced structure matrices, notwithstanding the fact that these
are all ultimately removed. Let r(e) = je(e+1) denote the number of coef-
ficients of a reduced structure matrix belonging to a structure with e
external nodes. If fj(z) denotes the maximum number of coefficients of
reduced structure matrices stored at any time for an £ X £ mesh, with j

(j = 0,1,2,3,4) adjacent external sides, then we may derive the following

set of recurrence relations:
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£,00) = f2(§£) + x (g +1)

£,(0) = max(£,(40),£,(42)) +r(e+1) + r(%-z+-1)
£,0) = max(fz(ﬁﬁ),f3(§£),f4(%£)) + (284 1) + r(% £+ 1)
£,(8) = max(£,(42),£,(32)) +r(3n+1) + r(% L +1)
£,00) = f4(%£) , + r(48) + r(34)

Solution of these equations yields:

£,00) = %gozz + 0(2)
£5(0) = %;f-zz + 0(2)
(5.8) £,00 =22 4% 4+ 00
g =207 4 0w
£, = 22 4 00

From

0(i%) + 0(ie) + 0(e?)

i

t(i+i,e+l) - t(i,e)

]

0i) + 0(e)

s(i+i,erl) ~ s(i,e)

it

Oe)

r{e+i) - r{e)

together with the properties 1 and 3 above, it follows that (5.6), (5.7)

and (5.8) are generally valid, also if L is not a power of 2.

If n # m the set of recurrence relations is much more intricate. The solu-
tion of an n x m problem (n > m) requires less computations than that of an
n % n problem; hence if n > m then gj(n) and hj(n) may serve as upper
bounds. If n >> m, say n = 2% m {r » 0), then the rectangular structure is
by ur partitioned into Fom ¥ m substructures; solution of the correspond-

ing set of recurrence relations yields:

Go(nﬁm) = 21 nm2 + O(mz)

31 2 2
Ho(n,m) & ==an® + 0(m™)

223 2
Fo(n,m) = (S irym© + O(m)
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where GO’ H_, and F0 denote the number of operations, decomposed and reduced

0
matrix coefficients, respectively, for an n x m mesh without external sides.

The recursion depth of ur is 1 + entier(logz(n)) + entier(logz(m)). AlL
parameters and local variables of ur are simple, except ext, which is of
fixed size. Hence the stack associated with ur requires only O(log(n.m)})
storage locations or 0(log(%)) for n = m = %, which is small compared with
{(5.7) and (5.8).

All matrices are represented in the usual way, no special measures have
been taken to deal with non-zero coefficients only. As we know from Section
3.3, the envelopes of the decomposed matrices are dense; however, an en-
velope does not necessarily comprise all its matrix coefficients. Assume
that two reduced structure or element matrices are dense, i.e. do not con-
tain a zero coefficient. If the two matrices are assembled and (partially)
decomposed, then the resulting decomposed and reduced matrices are dense
again, unless there are no internal nodes (an internal node would be as~
sociated with both matrices). When applying ur, indeed substructures occur
without internal nodes, hence the decomposed matrices of certain substruce
tures may contain zeros. As experience indicates, for an n X n mesh and n
not too small (n > 13), the number of zeros stored is less than 2% of the
total number of ceefficients and of all multiplications less than 2% has a
zero multiplicant. Therefore it is not worthwhile to replace the full matrix

algorithms in ur by envelope or profile algorithms.

5.2. Reduction of storage requirements

In [Eisenstat e.a. '76] it is suggested, that for certain finite element
types of equations, it is advantageous to recompute certain data, instead
of saving them. In subsection 4.1.5 it has been pointed out that the pro-
cedure ur saves the decomposed structure matrices requiring h (2) =

@ 0(2 log %) storage locations (see (5.7)). At the expense of a two to six
fold increase of the operations count, the storage requirements may be re-
duced to 0(22), by not saving the decomposed structure matrices. To that end

the procedures are modified as follows:
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1. procedure mur (n, m. 1. J: integer: ext: set~of-sides;
2. var r: integer);
3. var mml, rl, r2: integer;

4. Dbegin assign value to r;

5. if (n=1) and (m = 1)
6. then begin compute-element (i, j. @)
7. compute—element-vector (T, j. F);
8. transfer contents of § and F to 4
end
10. then begin mml := n div 2; )
11. mur {nml, m, 1, J. ext + Lupperl, rl);
12 mur (n~nml, m, i+nml, J. ext +[lowerl, »r2)
end ,
13. else begin nml :=m div 2;
14. mur (n, nml, i, J. ext + [rightl, »rl);
15, mur (n, m-nml, 7, J+nml, ext+[left]l, r2)
end;
i6 reserve space in 4 for LII’ LEI and hI;
17. assemble; assemble—structure~vectors
end;
18. decompose; forward-substitution;
19. free space reserved for LII’ LEI and hI
end

This procedure computes both the reduced structure matrix and reduced
structure vector, associated with the structure R, characterized by the
parameters #n, m, %, J and ext. The parameter »r indicates where the computed
results may be found in the global array 4. Essentially mur is the proce-
dure ur combined with fur, modified in such a way that the decomposed

structure matrices and substituted structure vectors are not saved.

The next procedure just computes the decomposed structure matrices and

substituted structure vector of R:
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1. procedure lur (n, m, ., J: integer; ext: set-of-sides;
2. var d: integer);
3. var wmml, rl, r2;

4. begin if (n = 1) and (m = 1)

5. then begin compute~element (2, J, Q)i
6. compute~element~vector (i, j, F);
7. transfer contents of @ and F to 4
end
9. then begin nml := n div 2;
10. mur (nml, m, T, J. ext + [upperl, rl):
11, mur (n-wml, m, t4+nml, J, ext + [lowerl, r2)
end
12. else begin nml := m div 2;
13. mur (n, nml, 2, J., ext + Lrightl, »1):
14. mur (n, m=nml, €, Jtnml, ext + [leftl, »2)
end;
15. reserve space in 4 for LII' LEI and hI;
16. assemble; assemble-structure-vectors
end;
17. decompose; forward-substitution
end

Note that the procedure lur itself is not recursive.

As the number of arithmetical operations and the number of storage loca-
tions required for the vectors are of a lower order than needed for the
matrices, we may use gj(l) (see (5.6)) also to denote the operations count

for lur. The storage count f;(Z) follows from the observation:
*
£.(2) = max(£f, (L (2
J( } max ( J( )'S]( )]

where s, (2) is the number of storage locations needed for L

¥ r
%1,E1 E2,E
which the £ X £ mesh is divided. Hence

r
11’ Lrge QEE'

and Q 2° El and E2 are the externals of the substructures in

* 271 2

£,02) = T 0(2)
* 17 02

£,00) = 2"+ 0(0) .
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223 2
5h L9+ 0(n)

57 2
T 27+ 0()

43
2

*
fz(ﬁ)

*
f3(1)

£ (0) 22 w0 .

it

The next procedure, which computes the solution vector, is a slight modifi-

cation of bur:

1.
2.

13.
14.
i5.

procedure tur (n, m, <, j: integer; ext: set—of~sides;
pwe: integer):
var nml, d, pwl, pw2: integer;
begin lur (n, m, %, . ext, d);:
solve;
if (n=1) and (m = 1)
then begin transfer data from 4 to F;
process-solution (i, J, F)
end
else begin if n > m
then begin nml := n div 2; separate;
tur (nml, m, <, J, ext +Lupperl, pwl);
tur (n~wml, m, i+nml, J, ext +[lowerl, pw2}
end
else begin mml := m div 2; separate;
tur (nml, m, <, J. ext+[rightl, pwl);
tur (n, m-mml, 7, j+nml, ext +[leftl, pw2)
end

end

end

The storage requirements of tur are precisely those of lur in line 4. The

operation count Ej {2) may be deduced from:

i

gy (2 = 295 (&) + gg(h)

gi(ﬂ,) = ZgE(E) + gi(ﬂ,)

g3 () 2g2(5z) +gi ()

g,(2) = g5(8) + gg(z)_+ g,(2)
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]

g5(8) = gy(40) + g, (48) + g4(R)

g4(8) = 295(2) + g5(0)

33(2) = g (40) + g, (48) + g5 (1)

gy (0) = 2g5(0) + g, (8)

g;(2) = 29,(42) + gj(8)

where QS (j = 1,...,4) is defined analogously to gé. Elimination of §3

(i = 1;,...,4) from the above gives:

go(l) = 492(%2) + gp(8) + 2g97(8)

51(1) = 252(§2) + 253(££) + gy (L) + 2g5(8)

éz(z) = 52(51) + 253(52) + 54(§z) +gy(8) + gh() + gi(a)
93(8) = 295(38) + 29, (48) +

93(2) + Zgé(ﬂ)

- = dew '
g, (&) = 4g,(48) + g,(8) + 29,(%)
Combining the above with (5.3) yields:

50(z> = 4g,(42) + go(R)  + 4g,(18) + 2t(42,8+1)

i

- - - 3
g, (2) = 29,(48) + 295(48) + g (&) + 29,(}2) + 2g5(48) + 2£(48, F0+1)

52(2) = 52(52) + 2§3<§z)

+

g0 + g, (0 + g,(38) + 295(30) +

+ g4(52) + t(38,30+1) + t(&£~1,'%2+1)

- - - 5
g4 (8) = 293(40) + 29, (48) + g5(8) + 2g5(}8) + 2g,(}8) + 2£(}e-1, FA+1)

G,(0) =49, (J2) + g, (R) + 4g,(}) + 2€(4e-1,38)

It is easily verified that the following may be added to the properties of
equations (5.5):

5) if p(8) = BL® log?s, the solution for o = 2° is:

g(2) = }825(log2)? + 184° log?s + c2®
{c is an arbitrary constant);
i = ag® 24y 2 : s |
6) if p(L) = BL (log“L)”, the solution for o # 2~ is:

8

O

] -

ZS

ge) = 25 (1og22)? + 0(2° 1og 2)
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Hence, solution of the above set of recursive eguations gives:

5 o= 8203 1752005202 + 0022 10g )
4 3 2
S. = 89203 17 4201562012 4 0(4? 100 1)
3 ) 5
- 34106 3 _ 17 2,0 2,02 . 5,2
(5.9) g, = 23398 9% - 1 92(10620)% + 002° 1og 0
- 9785 3 17 2, 2.2 2 .
- s - o £
g, (4 Vo 2%(Log® ) < + 0(2° log 1)
- 25684 3 17 2. o .2 2
P t— o oo 9' .
gg () Ta1 5 £°(log8) “ + 0(8° Log A)

From (5.9) and (5.6} it follows:

9,(8) /g () = 3.3

50(2) /g8 = 5.9 .

Hence for a structure with four external sides we have, at the expense of a

three-fold increase in the number of computations, reduced the storage

2 43 2

count from %% L logzl to «E-z {there is also a reduction if 2 < 8); fox

structures without external sides the storage count is even reduced to
%i% Rzy requiring a six-fold increase of the operations count. (Note that
the complete structure matrix assoicated with a square £ % £ grid contains
SRZ + () non-zero coefficients.) The trick of not storing the decomposed
structure matrices, but instead recomputing them whenever they are needed
is motivated by the desire to save storage. It is however not necessary to
apply the trick on all levels of the recursion. Obviously, for small sub-
structures (deep in the recursion) it is not necessary to save storage.
Therefore the same storage reduction can be achieved with a smaller in-
crease in the number of operations. By still other, more intricate, modi-
fications it is possible to restrict the increase in the number of computa-
31 .2

tions to a factor 2 yielding a storage count of 1;-2 for a structure

without external sides.
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CHAPTER 6

ADAPTATION TO MORE COMPLICATED STRUCTURES

Applications of the algorithms presented in the preceding chapters are not
restricted to simple rectangular plates with a uniform mesh. We will in-
dicate in this chapter how the algorithms may be adopted for more general

two-dimensional solid as well as frame structures.

The algorithms (or variants of them) are in particular useful if (parts of)
the structure to be analyzed can be provided with a "topologically® regular
mesh. Irregular element partitionings are often encountered if triangular
elements are used to refine grids locally. It will be shown how locally

refined grids are most efficiently analyzed.

6.1. Frame structures

A structure will be called frame structure if it consists of elements with
two nodes only. Let the elements of the frame structure F be arranged to
form a rectangular n X m grid, such that the (n+1) x (m+1) nodes are the
grid points and each element is a horizontal or vertical edge jolning two
neighbouring grid points. It is not immediately obvious how to decompose F
into two similar substructures (how to partition the elements into two
sets). One may want to dissect F along a line roughly through the middles
of the two sides with the most elements, but then the dissection line
passes through some elements and for every element along the dissection
line a cholce must be made to which substructure that element belongs. Two

possibilities for a sensible decision are:

i) every element along the dissection line belongs to the same, say first,
substructure;
ii) starting at one end of the dissection line, the elements alternatingly

belong to the first or the second substructure.

In both cases the number of different kinds of substructures increases. In
the first case we obtain substructures, an external side of which may or
may not be "notched”. In the second case all external sides are "dashed®,

but the first two nodes of an external side may or may not belong to a same



74

element. Hence in both cases there are two types of external sides. This
can be accounted for by extending the procedures wr, fur and bur with an
extra parameter (or by extending the parameter ext) to indicate the type of
each external side. Of the procedure ur only the procedures assemble and
compute~element need be adapted to these extensions, leading to an increase
of the amount of code required. The efficiency of the computations is not
adversely affected; only the length of the program text increases due to a
more extensive case analysis. The number of arithmetic operations and
matrix coefficients stored is precisely the same as in the quadrilateral
element case. However, the matrices associated with frame structures con-

tain more zero coefficients. This may be seen as follows.

An element matrix associated with a quadrilateral four node element is a

4 x 4 matrix without zeros, whereas in the frame structure case, each call
of compute-element yields a 4 x 4 matrix M, which is assembled from at most
four 2 x 2 matrices and hence the envelope of M does not contain all the
coefficients of M. As may be estimated (see also [Duff e.a. '76]) the
savings may amount to about 25% of storage and to about 30% of arithmetical
operations by storing only the envelopes of the matrices. In these percent~

ages, the overhead in using envelopes only is not included.

6.2. Solid quadrilateral structures

The procedures as developed in Chapter 4 apply to finite element calcula-
tions for structures with an n x m mesh. To derive the element matrices,
one usually needs geometrical data, like node coordinates. In this
section we will describe how these geometrical data are obtained from the

row and column number of the element concerned.

6.2.1. Rectangles

Let the rectangle R be determined by the following X, Y coordinates of its
four corner nodes: (0,0), (a,0), (a,b), (0,b), where the nodes are listed
clockwise, starting with the lower left node (a,b 2 0). Suppose the mesh is
uniform, i.e. all elements are rectangular and of the same size. If there
are N and M elements along the sides parallel to the X~ and Y-axis, re-
spectively, then the coordinates of the lower left node of the element in

row i and column j are:



75

(-:—i,ﬁ—j) (0<i<N, 0<3<M .

The coordinates of the other element nodes may be obtained from similar
expressions. Because % and %- may be considered as global constants for
the procedures wur, fur etc., each coordinate requires in fact only one

multiplication.

In order to ensure that the results of the finite element computations are
sufficiently accurate, the size of the elements must be small enough
[Strang and Fix '73]. The smaller the size of the elements, the larger the
number of nodes, hence the more computations. For several finite element
problems, it is not necessary that all elements have the same size. By
allowing elements with different sizes, one may achieve sufficient accuracy
with only a modest amount of computations. Hence, it is useful to provide a
facility to "grade" the mesh. For the rectahgle R, to be divided into rect-
angular elements, grading is simply achieved by choosing two monotone func-
tions ¢: {0,...,N-1} » [0,a) and ¥: {0,...,M~1} + [0,b) with ¢(0) = ¥(0) = O
and defining the coordinates of the lower left node of the elements in row

i and column j to be
(o), (3)) »
For example:

a

pN—i

(- -1) (i=0,...,N-1)

(i) =

with p a suitably chosen constant, is such a monotone function.

As is well known, the accuracy of the results of the finite element com-
putation depends also upon the shape of the elements: the more a rectangu-
lar element deviates from a square, the less accurate the results of the
computation are [Strang and Fix °73]. Grading the mesh in the above way may
lead to elements which are too slender. To avoid those too slender elements

the grading technique as outlined in Section 3 is more appropriate.

6.2.2. Quadrilaterals

In this subsection we will consider a (cuxvilinear) quadrilateral structure
C with a mesh consisting of rows and columns of (not necessarily rect-

angular) elements. We will describe how, in this general case, the node
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coordinates can be obtained from the row and column number of the elements
concerned. A transformation ¢ will be constructed, which is a one-to-one
map from a suitably chosen rectangle R onto the quadrilateral C. (In the
sequel x, y will denote coordinates of a point in R and £, n will be used
for points in C.) The map ¢ transforms a mesh of R with rectangular ele-
ments into a mesh of C with quadrilateral elements. The coordinates of the
element nodes of C are obtained by applying ¢ to the coordinates of the
corresponding element nodes of R. In which way the node coordinates of R
are derived from the row and column number of the element concerned, has

been shown in the preceding subsection.

6.2.2.1. Quadrilateral given by points

If the quadrilateral C has straight sides and is given by the coordinates

of its corner nodes ¢, = (Ei,ni) (i=1,2,3,4), bilinear shape functions

[Zienkiewicz "77] may be used to construct ¢. If for R the unit square with

corner nodes ri = (=1,~1), r, = (-1,1), Xy = (1,1) and r, = (1,-1) is

taken, then

4 4

(6.1) o (x,y) = (121 N, € 121 N, ni>
with

Nl = Hi~-x)(1~-y)

N, = P(1-x)(1+y)
(6.2)

N3 = (1 +x)(1+y)

N4 = Hi+x)(1~-y) .
it is easy to verify that

@(rl) = Ci (i = 1,2,3,4) .

A sufficient condition that such a transformation, using bilinear shape
functions, is a one-to-one map from R onto C is that no internal angle of C
be larger than m [Strang and Fix *73]. (This implies that the transforma-

tion may even be used if C degenerates into a triangle.)

% as defined by (6.1) and (6.2) is bilinear; hence straight boundary and

inter-element line segments are transformed into straight segments. There-
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fore the image of a rectangular element in R is a quadrilateral with

straight boundaries.

Let now the quadrilateral C be given by m successive points, to be denoted

(in clock-wise oxder) by c1 = (51'”1) goesy © (gm,nm)a Let cy = cbl' Cb2’

_—

and c be (in clock-wise orxder) the corner points of C. For R we

°p3 b4
choose a rectangle with sides parallel to the coordinate axes. On the sides

of R we choose (in clock~wise order) m points ry = (xl’yl) reees X = (xm,ym)

in such a way that r and r are the corner points of R. To

b1’ b2’ *b3 b4
construct ¢ we choose the shape functions of the "serendipity family" of
finite elements [Zienkiewicz '77]. The idea is the following. Let ¢ be

defined by
m m
o (x,y) = (Z N s ) Nini)
=1 i=1

where Ni are functions still to be specified. If we manage to choose those

functions in such a way that they satisfy:

(6.3) Ni(rj) = Sij y 1 <i,3 €<m,

then obviously the following relations hold:
= <i<m.
¢(ri) ;v 1<i<m
Lagrangean interpolation is now used to obtain the functions Ni satisfying
(6.3):

1) Let r, (not a corner point) lieon a side s parallel to the Y-axis and

let T be a point on the side parallel to s, then

Yy - ¥ X o= ¥,
N, (x,y) = ——= ¢ 1 —d
i yi--yk H, =X,

r.ons i
3 J

If s is parallel to the X-axis, then x and y are interchanged:

X - X ¥ - Y.
O e Lk
i 7k rj ons ¥i yj

2) If x, is a corner point lying on the sides s and t, parallel to the X-

and Y-axis respectively, and Ty is a corner point not on s and t, then
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X =-x%x_ Y-V X, - X
k k k

N (%,y) = o=re= oo - N ;27:2—'Nj(xry) -

iT % YiT ¥ ryon s i %k

except corners

Y, —Y

k
- Y Ny .

Yi‘"yk J

rjont
except corners

If ¢ as defined in this way (depending amongst others upon the choices

of rl,...,rm) is a one-~to-one map from R on C, then ¢ transforms a mesh
of R into a mesh of C. Whether, however, ¢ is one-to-one and whether the
mesh obtained is appropriate, cannot be stated in general. Intuition and

graphics facilities must be resorted to.

6.2.2.2. Quadrilateral given by parametric functions

Assume that the four sides of the quadrilateral C are given by the para-

metric functions:

£, ¢ [0,1 > R, 4 =1,2,3,4

with the corner points of C given by

£,(0) = £5(0) ,  £5(1) = £,(0) .

i
i

£,(1) = £,(0) ,  £,(1) = £,(1) .

Blending function interpolation [Gordon and Hall '73] can be used to con-
struct a transformation from the rectangle R determined by the corner

points (0,0), (1,0), (1,1) and (0,1) to C:
®(x,y) = (1-"x)fi(y) + xfz(y) + (i-uy)fB(x) + yf4(x)
= x(1-y)£,(0) - xyf, (1)
- (1—x)(1—y)f1(0) - (1-x) Yfl(l) .
¢ transforms the straight line segment {(0,t) | 0 < t < 1} in the curved
line segment {f1(t) | 0 <t <1} and the line {(t,0) | 0 <t <1} into

{f3(t) | 0 <t < 1}, etcetera. Hence the four sides of R are transformed in

the four sides of C.

Again it is difficult to state in general, whether the parametric functions

fj (j = 1,2,3,4) lead to an appropriate mesh for C. So far one is best
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guided by experience, geometric intuition and inspection. The aid of

computer graphics facilities seems indispensable.

©.3. Local mesh refinements

In Section 6.2.1 we have indicated how grading of a mesh may be achieved.
For problems which allow very different element sizes in different parts of
the structure, grading in that way leads to elements which are too slender.
Therefore, in practice triangular elements are popular, because they are
more suited to achieve local mesh refinements. A serious drawback of using
triangular elements for that purpose is that they may give rise to irregulax
meshes. The merits of the procedures as outlined in Chapter 4 are due to
exploiting regularity. To obtain local mesh refinements, however, one does
not need to resort to irregular meshes. For the ease of presentation we
will in the following apply rectangular elements, more specifically blended
elements [Cavendish *75]. Blended elements differ from standard elements in
that node to node connection for two adjacent elements 1s not reguired and
thus that two or more smaller elements are allowed to abut against the edge
of a larger element. In an obvious way the meshes described can also be

obtained by applving (standard) triangular elements.

6.3.1. Procedure Ilm

Let us consider, to start with, a rectangular structure R with a mesh,
locally refined around the lower left corner of R. Consider a partitioning

of R into rectangular elements obtained in the following way:

first partition R into four similar subrectangles;
next perform n times

partition the left, lower subrectangle into four similar subrectangles.

This partitioning leads to a mesh with 2 elements along the upper and right
side of R and with n+ 2 elements along the lower and left side. Altogether

there are 3n+4 elements and 5n+ 9 nodes.

The elements of R will be identified with two integers, a "row” and a
“column® number, in the following way: the three largest elements are (in
clock-wise order, starting with the left most one) identified by (n+1,0},

(n+i,n+l) and (0,n+l), respectively; of the remaining elements the three
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largest ones are, in the same way, identified with (n,0), (n,n) and (O,n);

and so on. The lower left element is identified by (0,0).

Let Rm (0 £ m £ n) denote the substructure containing the elements of which
the row and column number do not exceed m+ 1. We then have R = Rn' Moreover
the elements (m+1,0), (m+i,m+l) and (O,m+l) assembled with R.m_1 yield
precisely Rm. Hence assembling the three element matrices to the reduced
structure matrix of R.m__1 gives a structure matrix consisting of five in-
ternal and five external nodes. Elimination of the five internal nodes

results in the reduced structure matrix of Rm'

A procedure computing in the same vein as in Chapter 4 the reduced structure
matrix associated with R if the five nodes along the upper and right side

are external, is:

1. procedure Im (n: integer; var r: integer);
2. var h, rl: integer;

3. begin ur (2, 2, 0, 0, Lupper, rightl, rl);

4. hoe= 0
5. while % < n do
6. begin % := h+1;
7. compute~element (h+l, 0);
8. compute—-element (0, h+l);
9. compute—-element (h+l, h+l);
10. assemble;
i1, decompose;: update rl
i2. end; » = rl

end

The parameter n indicates the number of times a lower, left subrectangle of
R was partitioned in order to obtain the complete partitioning of R. The
value of the parameter » upon exit of the procedure is the address of the

reduced structure matrix of R in the global array 4.

The values of the auxiliary variables A and rl are such that always at the
beginning and the end of the repeated compound statement the following re-

lation holds:

rl is the address of the reduced structure matrix of Rh
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The procedure assemble assembles the three element matvices, computed in
the preceding lines, with the reduced structure matrix of Rh«i; elimination
of the five internal nodes with the procedure decompose gives the reduced
structure matrix of Rh" When execution of the while-statement is completed,
it yields % = »n and hence rl is the address of the reduced structure matrix

£ = = R.
s} Rh Rn R

It is straightforward to develop in a similar fashion procedures to compute

the {reduced) structure and solution vectors.

As is the case with ur, Im may be applied to rectangles as well as to

general guadrilateral structures.

The procedure Im resembles ur in that decomposition of the structure matrix
is interleaved with partitioning the structure, computing the element
matrices, assembling and ordering the equations. The traditionally con-

secutive steps are carrvied out interleaved.

6.3.2. Storage and operation counts of Im

If the matrices are represented as full matrices, then the procedure

decomp0$e in line 11 requires (see 5.2)

3

13,1

i, 1
{e+1) + 5»1@(6«%2) + §~i

multiplicative operations with i = e = 5. Hence, the while-statement
regquires 185 n multiplicative operations with matrix coefficients. The

procedure wr requires 130 such operations, therefore the total number is
i85n 4+ 130.

By applying profile algorithms that number may be reduced to

(6.4) 119 n + 67 .

To store the matrix, assembled in line 10, as a full matrix reguires 55

storage locations; for the reduced structure matrix 15 locations are need-

ed. Hence, if the decomposed and reduced structure matrices are overwritten

once they are not needed any longer, Im requires in total 55 + 15 that is
70

locations {wr in line 3 reguires. less).
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If the decomposed matrices are retained, then at most
(6.5) 40 n + 100
storage locations are occupied.

It should be noted that (6.4) shows also the operation count associated
with a more usual organization of the calculations, i.e. first assembling
the complete structure matrix associated with R and next applying a profile

algorithm to compute the reduced structure matrix.

Let N denote the total number of nodes of R, then N = 5n+9. It follows
from (6.4} and (6.5) that the operation and storage counts are about

24N -~ 147 and 8N + 28, respectively. Hence both time and space required are
O(N), i.e. linear in the number of nodes. An asymptotically faster algo-
rithm does not exist, because writing down the solution alone requires 0(N)
space and time. Remember that the corresponding counts for wr are 0 (NVN)
and O(N log N), respectively, with N the total number of nodes of the

structure concerned.

If the rectangle R would have been partitioned uniformly with all elements
in size equal to the smallest element of the locally refined grid, then the
total number of multiplicative operations with matrix coefficients would
have been 0(8"). Comparing this with (6.4) shows the computational advan-

tages of local mesh refinement.

6.4. General plane and curved surfaces

For more general surfaces, which for instance may contain appendages or
holes, an approach as outlined in [Zienkiewicz and Phillips '71] may be
followed.

The surface, say $, is divided into a number of guadrilatexals Vi

(i = 1,...,x). With § a so called key diagram is associated. A key diagram
is a rectangular configuration of (possibly empty) rectangles. There is a
one-one correspondence between the non-empty rectangles Ri (i = §,...,x)
and the quadrilaterals Vi. Moreover, Ri and Rj (i # j) are adjacent in the
key diagram only if Vi and Vi are adjacent in 5. For every pair Ri, Vi a
transformation ®i is constructed, as outlined in Section 6.2, which trans-

forms a partitioning of Ri into a partitioning of Vi. Of course, if Ri and
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Rj have a common boundary b, then the nodes of Ri and Rj on b must coincide;

moreover ¢i and ¢j applied to b must be the same transformation.

To complete the versatility of the scheme it is important to include one
further feature, namely to express that two seemingly different boundaries
in the key diagram are identical. It is of course necessary to ensure that
the transformation conditions just described for common boundaries, are
satisfied for such identical boundaries. By including this feature it is
even possible to deal with such three~dimensional surfaces like tori and
ball surfaces. Key diagrams are in [Zienkiewicz and Phillips '71] used to
generate an element partitioning for S only. However, it is just as well
possible to apply procedures as described in Chapters 4 and 5 to compute
immediately the reduced structure matrices Qéi and vectors fr assoclated

Vi
with the quadrilaterals Vi (i = 1,...,x).

To asgemble the matrices Q§i and vectors fsi and to compute the associated
parts of the total solution vector, one may proceed in the traditional way.
The finite element system FEMSYS [Peters *76] is very well suited not only
to perform such matrix calculations, but also to handle the necessary book-
keeping. FEMSYS is well suited because of its facilities for specifying

structures consisting of arbitrary substructures; moreover its possibility

to identify nodes with different numbers is necessary in this case.
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CHAPTER 7

CLOSING REMARKS

7.1. Other implementations

A discussion of variocus strategies to solve a set of linear finite element
equations efficiently by direct methods may be found in [George '77, Geoxge
and MclIntyre *78]. Those papers deal only with ordering of the equations,
LU~decomposition {or factorization as it iz called) and forward_and back=
ward substitution; they are not concerned with the assembly of the struc-
ture matrix. Comparing figures from those papers with Table 1 indicates
(taking into account the different processor speeds and the efficiency of
the code produced by the respective compilers) that our solution (by apply~
ing the procedures from Chapter 4) is far more efficient (by about a factor
4) . This may be due to the fact that reordering as well as overhead storage
and bookkeeping are avoided. For a better appraisal we must compare our

program with one that executes all the relevant steps.

For another comparison we have taken a popular finite element program for
structural analysis in use on several computer installations all over the
world. From Table 2 it is obvious that our program saves a factor greater
that 50 of the processor time. Moreover, our program uses only central
memory. whereas the other needs auxiliary disk space. The structural ana-~
lysis program is intended to be a general purpose one, suited for all kinds
of meshes. Therefore the comparison may not be quite fair; still it indi-

cates very clearly which gains in efficiency may be achieved.

7.2, Data retrieval

One of the reasons why the procedures as developed in this monograph are so
efficient is undoubtedly that no other data than coefficients of structure
matrices and vectors are stored. Whenever the value of a coordinate is
required, it is computed. This is easily done, because the regularity of
the problem is fully exploited. For instance, if the structure is a rect-
angle with a uniform mesh, the computation of a coordinate takes only one

addition and one multiplication with simple variables as operands, which is
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number of number of decomposition | total | number of coefficients

n | unknowns | multiplications time time® | of decomposed matrices
5 36 817 0.018 0.06 220
10 121 6829 0.10 0.30 1170
15 256 24848 0.31 0.83 3200
20 441 62744 0.72 1.73 6561
25 676 123429 1.43 3.12 11230
30 961 216323 2.40 4.77 17314
35 1296 350184 3.81 7.07 25065
40 1681 544868 6.00 10.5 35189
45 2116 772081 8.48 14.3 46350
50 2601 1057805 10.7 17.7 59142

storage and operations counts

decomposition and total time

of

procedure yr applied to n x n grids

* times are seconds on IBM 370/165 with double length reals

TABLE 1
number of
unknowns STRUDL*) ur
450 224 2
882 377 5
3200 1247 23

total processing times

in seconds on IBM 370/165

*)

TABLE 2

See [Frederiksson and Mackerle '76].
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no more expensive than the evaluation of a subscripted variable. Hence, it
is cheaper to compute than to retrieve the coordinates every time they are
needed. For less regular structures the topologies of (parts) of the ele-
ment meshes are the same. To compute the coordinates of the nodes, trans-
formations as described in Chapter 6 are applied. These transformations are
simple, easy to compute functions, if the structure does not deviate too

much from that of a uniform rectangle.

7.3. Triangular dissections

The computational steps of wr, fur and bur resemble the traversal of a binary
tree. Going from a tree vertex to its successor, all informatioh relevant
for the successor is easily derived from the information concerning its

predecessor.

Such information includes not only the number of internal and external
nodes, but also the ordering of them. Procedures analogous to wur, fur and
bur may be developed for other kinds of structures. For instance, a tri-
angular structure T can be dissected into four similar triangles, each of
which can be dissected into four ..., and so on. The associated trxee of

substructures is then & quaternary tree.

7.4. One~ and three-~dimensional problems

It is straightforward to develop procedures analogous to ur, fur and bur
for one- or three-dimensional structures: a line segment can be dissected
into two line segments, a brick into two bricks. The adaptations as de-
scribed in Chapter 6 may be extended to the one~ or three-dimensional case

as well.

However, for one-dimensional structures it proves to be cheaper both in
storage and in number of arithmetical operations not to dissect the line
into two lines of about equal size, but to split off just one element at
one of the ends. In this way the nodes are successively eliminated from one

end of the structure to the other.

The above remark is also valid for two-dimensional structures with an n X m
mesh if n »> m. For those structures it is advantageous, as far as efficien-

¢y is concerned, to consider them as one-dimensional strings of substruc-
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tures with m X m meshes. To compute the matrices and vectors associated

with those substructures, the procedures wr, fur and bur may be applied.

7.5. Structures with more than one structure vector

In some applications of the finite element method, many sets of eguations
having the same coefficient matrix must be solved. If the procedures from
Chapter 4 are used, then the decomposed structure matrices associated with
the structure, say R, need to be computed only once by a call of wr and
each structure and solution vector for R requires the execution of the
procedures fur and bur. We have seen that the amount of time needed to

execute fur and bur is small compared with ur.

Also the storage space saving procedures of Chapter 5 may be applied if a
numpber of structure vectors is presented simultaneously. A facility to
handle simultaneously more than one structure vector instead of only one at
a time must’be added to lur. In the same way also ftur must be accommodated
to handle more than one solution vector. These facilities are easily imple~-
mented. If the structure vectors are presented consecutively, then for each
structure vector the procedure lur must be executed, which implies that for
each structure vector the assembly and decomposition of the matrices as-

sociated with R are repeated.

7.6. Iterative methods

Direct and iterative methods to solve partial differential equation pro-
blems are compared in [BAxelsson ‘77]. The amount of storage required by the
iterative method depends upon (contrary to the direct method) the number of
non-zeres in the structure matrix; no extra storage for £ill-in is needed.
Second and fourth order problems with two-dimensional n x n and three-
dimensional n X n x n grids are considered. A comparison is made between
the asymptotic number of arithmetical operations required by the “SSOR
preconditioned conjugate gradient method"” and the nested dissection method.
It turns out that for a three~dimensional second order problem the iterat—
ive methods are asymptotically faster than the backward substitution phase
in the direct methed. For a fourth order two-dimensional problem the direct
method is superior. In other problems the superiority of one method over
another is not clear. The size of the problem and the number of structure
vectors may influence the choice of the method. It should be noted, how-
ever, that direct methods are more generally applicablé then iterative

Qnes .
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7.7. Data structuring facilities of PASCAL

The data structuring facilities of PASCAL are judged to be among its moxre
attractive features [Wirth *71 acta]. Nevertheless, to represent all the
structure matrices and vectors associated with an n ¥ m grid, we have used
only the most simple data structure (apart from a simple variable), viz.

the one-~dimensional array. The reason is the following.

A call of the procedure ur vesults in a hierarchy of substructures with
corresponding matrices. Therefore, a tree like data organization with in
every vertex the matrices associlated with a substructure could be very ap-
propriate. Such dynamic data structures could then be used to rgpres&nt all
matrices. However, PASCAL reguires that the sizes of the arrays contained
in the vertices of dynamic trees are declared statically, thus reguiring
setting of fixed limits. This is inefficient for the storage of wmatrices of
various sizes, as genserated by the procedure wr. These matrices can neither
be stored in local arrays, because they are needed outside the block where
they are computed, nor in as many global arrays as there are matrices ox
substructures, because their number and sizes would then have to be de-
clared statically. The only remaining possibility is to store all matrices

together into one or two global arravs of sufficlent length.

If it were possible to define dynamically the sizes of the arrays in the
tree vertices, then tree structures could be considered. However, fox
the procedure wr, trees would result in a less efficient data organiza-
tion, because pointer variables would be required as well as information
concerning the sizes. On the other hand in our data representation as set

up for wr only matrix coefficlents are stored, nothing else.

In neaxrly every programming language one-~dimensional arrays occur; moreover
the iterative counterparts of the recursive procedures in Chapter 4 ave
easily obtained [Peters *78]. Hence the procedures as described in this

thesis may be coded in nearxly all programming languages.

7.8. Generalized element method, element merge tree

Although one may be tempted to do so, our method for finite element com~
putations must not be confounded with the gensralized slement method

[speelpenning '78] (a generalization and improvement of the frontal solution
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method [Irons *70]). Nor should a proper preserving palm be confused with an

element merge tree [Eisenstat e.a. '78].

The generalized element method is different in the following aspects:

- it is motivated by an efficient use of "backing store®;

- nodes of a structure are eliminated one at a time;

- the elimination order of the nodes is assumed to be determined in advance;

- the way in which a structure is dissected into substructures is completely
controlled by the elimination orxrder of the nodes;

- it requires overhead storage and bookkeeping;

- element matrices are assumed to have been computed in advance.

Similarities between the method and our way of organizing finite element
computations are that assembly and decomposition of the structure matrix
are interleaved (substructures may be distinguished) and that only full

matrices are manipulated.

The generalized element method is only applicable to so called "network
equations", which are equations whose associated matrix can be considered
to be assembled from (smaller) element matrices. In this sense the MSSE
method [Eisenstat e.a. *78] is a generalization, it applies to arbitrary
symmetric positive definite matrices. However, this method deals only with
LU~decomposition and forward and backward substitution; assembly of the
matrix is not considered. The principal advantages of MSSE are described to
be "the ability to solve problems in significantly less core and to trade
off an increase in execution time for a decrease in core”. To achieve this
a so called “element mexrge tree" is constructed. Such an element merge tree
depends on the ordering of the equations and variables. In an obviocus way a
pp-partition can be associated with such an element merge tree. Hence the
results of Chapter 2 apply also to those element merge trees. The partition
associated with an element merge tree is not always a proper one, however.
As a consequence, if the MSSE method is applied to a dense band matrix, it
results in highly inefficient moving around of data. In all cases the
method requires extensive bookkeeping. The claim “for a nine-point problem
with the nested dissection ordering on an n X n grid fewer than %'nz non-
2

zeros must be saved versus %% n logzn for sparse elimination, while the

work required at most doubles® is incorrect.
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It should be noted that Williams was the first to point out the eguivalence
of substructuring and sparse matrix algorithms [Williams *73]. He showed
that it is always possible to choose the substructures so that the sub-
structure method will lead to precisely the same computations as any sparse
matrix solution, with the minor difference that some additions are perform-
ed at different stages of the solution. He showed this, however, in such a
way that he was led to the conclusion: "It appears that a sparse matrix
method will always be preferable to a substructure method ...". We have

shown in this thesis that this conclusion is not valid any longer.

7.9. Parallel computation

Let us consider the procedure ur in 4.1.2. Execution of the recursive call
in line 11 (or line 14} does not depend upen the execution of the immedia-
tely preceding call in line 10 (or line 13), except for the determination
of the position to store the computed matrices. Hence both recursive calls
may be done in either order or even simultaneously by two different pro-
cegsors. In the last case, each processor in its turn may set to work two
other processors. The processors do not need access to common data. The
procedure ur is therefore well suited for implementation on a computer with
many processors. The way in which the processors communicate with each
other is independent of the finite element problem being solved. The pro-

cessors may be linked as a binary tree.

The same remark applies to the procedures fur, bur, mur and tur.
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guotient graph
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