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CHAPTER 0 

IN'rRODUC'rION 

In this monograph we will prove that no intricate sparse matrix algorithms 

are required for an efficient solution of large, sparse sets of linear equa­

tions. Such equations occur in finite element calculations, for which a 

novel organization has been developed. Thus will be indicated in the second 

part of this introduction. 

0.1. Linear equations and partitions 

Large sets of linear equations are usually sparse, that is, nearly all 

coefficients of the associated matrix are zero. Let Qw = f be such a set of 

equations, with Q a non-singular n x n matrix, w and :E vectors of unknown 

and known values, Suppose this set can be solved (without permutation of 

rows and columns) by LU-decomposition [Wilkinson '65], Le. there exist a 

lower triangular matrix Land an upper triangular matrix U such that 

Q"' LU. The matrices Land U usually contain many more non-zero coeffi­

cients than Q (Le, "fill-in" appears), but even so they. are often sparse. 

To obtain Land U efficiently, one has to avoid, as much as possible, 

arithmetical operations with zero coefficients, Optimum efficiency in this 

sense is achieved by so called sparse matrj_x algorj_t:hms. For a survey see 

[Duff '77], which contains 604 references. Due to the fill-in these algo­

rithms and the associated data structures are rather intricate. Envelope 

algorithms are much more simple, However, in general these are not so ef­

ficient, because zeros within the envelopes are not taken into account. 

It is well-known [Duff 'Tl, Tarjan '76] that the order of the equations 

and variables influences the sparsity of the associated triangular factors 

and the number of arithmetical operations with non-zero coefficients. 

Therefore one may try to find suitable permutation matrices and so as 
t to solve the permuted set (P 1 QP 2) w) = f, The determination of permu-

tation matrices, which achieve some minimum operation or storage count, is 

an NP-complete problem j_n some cj_rcumstances and is conjectured to be one 

in others [Ta:r.jan '76], 'l'hus to obtain a good ordering ·of variables and 
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equations, the best way seems to be a heuristic approach to the original 

problem, which gives rise tc the equations. In this monograph we shall not be 

concerned with finding optimal or good orderings, but witJ1 finding a method 

to avoid, given an ordering, arithmetical operations with zeros. 

Using graph-theoretic terminology it is demonstrated that for a given 

matrix Q (irrespective of how well the equations are ordered) it is always 

possible to partition the set of variables in such a way that the triangu­

lar factors Land U can be obtained from the (partial) decompositions of 

smaller matrices determined by the partitioning. The decomposition of the 

smaller matrices will require the same arithmetical operations with non­

zero matrix coefficients as the decomposition of Q. Because no zeros occur 

within the envelopes of the triang·ular factors associated with those small­

er matrices, no intricate sparse matrix algorithms are required to avoid 

operations with zero coefficients; simpler (viz. envelope) algorithms suf­

fice to obtain the triangular factors of Q with the least number of arith­

metical operations. An algorithm will be presented which determines such a 

proper perfect. preserving partition, a.s it is called. 

0.2. A novel implementation of finite element algorithms 

Large, sparse sets of equations are encountered in the finite element 

method, this being a widely used method to solve certain types of partial 

differential equations. Already before its invention, the mathematical 

soundness of the finite element method was shown in [ Courant '43 J • 'I'he 

method was independently developed in the fifties by aeronautical engineers 

concerned with stress and structural analysis [Turner e.a. '56]. The term 

"finite element" was used for the first time in [Clough '60]. 

The method was well received; it is applied to a variety of problems of the 

non-structural type such as occur in fluid mechanics, heat conduction, 

seepage flow, electric a.nd magnetic potential. Its acceptance among 

engineers was assured at an early stage (the first edition of Zienkiewicz' 

book dates from 1967). Later, applied mathematicians [Zlamal '68, Strang 

and Fix '73] became interested. 'I'he popularity of the finite element method 

is due to the fact that it is highly suj.table for computers" The Linkoping 

survey [Fredriksson 76] already contains the description of 4.50 different 

computer programs for structural mechanics applj_cations only" A recent 



comprehensive bibliography [Norrie and De Vries '76] mentions over 7000 

references up to the end of 1975. 

3 

The later part of this study deals with a novel efficient organization of 

finite element calculations. It does not aim to discuss possible specific 

applications of the method or when and under which circumstances the finite 

element method is to be favoured. Finite element computations include the 

assembly of a large sparse matrix from so called element matrices and the 

solution of an associated set of linear equations. The results described 

above for computing the triangular factors of a sparse matrix justify a 

novel organization of finite element computations. Instead of one large set 

of equations, a hierarchical series of smaller ones is set up or, in finite 

element terminology, instead of one large structure a hierarchy of smaller 

substructures is analysed. In particular we will show that if the nodes of 

the finite element structure are ordered according to the nested dissection 

strategy [George '73], then the associated proper perfect preserving parti­

tion is obtained immediately. 

For (not necessarily homogeneous) n x m grids we describe algorithms in 

PASCAL, which find a suitable hierarchy of substructures and perform the 

decomposition of the associated matrices. These newly developed recursive 

algorithms differ from existing ones in that a nUlllber of traditionally 

consecutive steps (mesh generation, assembly, decomposition and forward 

substitution) are carried out here in an interleaved way. Moreover, the 

only data stored explicitly are (non-zero) matrix coefficients; no overhead 

data like pointers, etc. are required. The algorithms are conceptually 

simple and it is also possible to make them useful for arbitrary two­

dimensional solid and frame structures. For three-dimensional structures 

similar algorithms could be developed. 
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CHAPTER 1 

LINEAR EQUATIONS 

By its very nature, it is convenient to view a sparse matrix as a graph 

[Parter '61, Rose '71, Tarjan '76]. In this chapter we will formulate LU­

decomposition of a matrix in graph-theoretic terminology. Because reordering 

of the rows and columns of a matrix leads to different triangular factors, 

we will have to consider ordered graphs, Le. graphs in which the vertices 

are ordered. Some new results will be derived concerning orderings which 

lead to the same triangular factors. The chapter will be concluded with a 

discussion of the new concept of a preserving palm, which is a graph for 

which the fill-in is restricted to certain edges. 

1.1. LU-decom)'.JOsition 

Let 

(L 1) Qw "' f 

be a set of n linear equations in n unknowns, with Q a non-·singular matrix, 

for which 

Q ~ LU , 

where Lis a lower triangular and U an upper triangular matrix. The coef­

ficients of Q, Land U will be denoted by qij' .Q,ij and uij' respectively 

(!. :C:: i, j :C:: n). The fol.lowing relations hold [Wilkinson '65]: 

j 

(L2) 
-1 

j 

( 1 s j :,; n) 

( 1 s j < i s n) 

The coefficients of Land U must obviously be computed.in a certain 

(partially prescribed) order. 
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The solution w of (1.1) can be obtained by a forward substitution, i.e. 

solving w' from 

Lw' f 

followed by a backward substitution, i.e. solving w from 

If Q is a symmetric matrix, then it is not necessary to compute all coef­

ficients of both Land U. If Q is moreover positive definite then one may, 

for instance, use the formulae for Cholesky decomposition: Q = LLt 

[Wilkinson '65] 

! 
(qjj -

j-1 

2f R, .. l R,jt JJ b=l 
(L2') (1 ,,; j < i $ n) 

(qij -

j-1 

I R,it 2 ·t) 1 JI, •• 
t=d J JJ 

If I is a set of row indices and J a set of column indices, then QIJ de­

notes the matrix obtained from Q by deleting all coefficients with a row 

index not belonging to I or a column index not belonging to J. Let for a 

certain k (1 s ks n) r {1, .. .,k} and J = {k+l,ee.,n}, then 

Pa:rtiaZ decorrrposition of Q with QII as block-pivot or, equivalently, 

partial decomposition of Q with its first k pivots is defined to be the 

following decomposition of Q [Bunch and .Rose '74] 

Q 

with OIJ. and OJI zero matrices, 



where LII is lower triangular and UII upper triangular such that 

This partial decomposition is only defined if QII is non-singular and has 

itself an LU-decomposition. 

7 

If Q is symmetric and positive definite, then partial Cholesky decomposition 

of Q with QII as block-pivot results in: 

where 

with 

Q 

L Lt 
II II 

t 
LJILII QJI 

r Q . t 
QI JJ - LJILJI 

To compute the coefficients of and Q~ for partial Cholesky decomposition 

the following formulae will be used: 

(L 

( 
j-1 )½ 

q_ .. - I 2\ 
J J t==l J 

( 
j-1 ) 

q .. - I 2 · tJI, · t I JI, • -· 
:tJ t=l :i. J . JJ 

j-k 

1.2. Profile and envelope algorithms 

( 1 s j s kl 

(1 Sis n, 1 s j S min(k,i-1)) 

(k < j s i s n) • 

If the matrix Q is sparse, then usually its triangular factors Land Ucon­

tain more non-zero coefficients than Q- Nevertheless L·and U are often 

sparse matrices as well. A coefficient which is zero in Q but non-zero in 
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L + U is said to belong to the fill-in of Q. (A formal definition of fill-in 

will be given in Section 1.4.) The fill-in is always restricted to the so 

called envelope of Q, defined as follows. Let the column index of the first 

non-zero coefficient in the lower triangular part of row i be denoted by 

rQ (i). If no such coefficient exists in row i, 

equal to i. In the same way cQ(j) denotes the 

zero coefficient in the upper triangular part 

then rQ(i) is defined to be 

row index of the :first non­

of column j. Again, i:f no 

such coefficient exists, then cQ (j) "' j. (The subscript Q will be dropped 

if no confusion is likely.) If bJ/, = max{j -r(j) I 1 '.> j $ n} and 

b = max{j -c(j) I 1 ,,; j ,,; n}, then the bandwidth of Q is defined to be the 
\I 

maximum of bJl and bu. Next env(Q) (the enveZope of Q) i.s defined as: 

env(Q) = { (i,j) I j ~ r(i) and i ~ c(j)} 

which implies: if (i,j) ~ env(Ql then qij O. For an example see figure 1. 

* denotes non-zero coefficient 

0 denotes zero coefficient 

envelope 

bandwidth is 4 

Figure 1 

If Q has an LU-decomposition Q = LU, what do we know of env(L) and env(U) ? 

As usual we neglect numerical cancellation: Jl •• (i > j) is considered to be 
J.J 

a zero coefficient only if "" 0 and all relevant products t or 

R,itutj in formulae .2 or 1.2' are zero; analogously fqr uij (:i. < j). It is 

well known and Liu '75] that with this convention 
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env (L + U) = env (Q) 

Only those coefficients of L and U whose indices belong to env (L + U) need 

to be computed, the others being zero. If Q is symmetric, we use instead of 

the envelope the profile defined by: 

pr ( Q) = { ( i, j J I i ?. j and j ?. r ( i) } , 

We then have: 

pr (L) = pr(Q) , 

If (i,j) ,: env(Ql and qij = 0 (i ¥ j), then (i,j) will be called a zero 

element of env(Q). An envelope without zero elements will be called dense. 

In an analogous way a dense profile is defined. By definition (i,j) is a 

first zero element of env(Q) if it is a zero element and if for all other 

zero elements (i',j') of env(Ql it yields: 

i' > i or j' > j , 

In the next chapter we will use the following lemma, which is a generaliza­

tion of a theorem in [ George and Li.u ' 7 5 J : 

LEMMA 1: If (i, j) is a first zero element of env (L + U) , then 

CQ (j) = (j) = j (if i > j) or rQ(i) = 

Proof: Suppose i > j • 

From (L2) and J!,ij = 0 it follows 

( 1 • 3) 0 ' 1 :;; t < j 

(i,j) is a first zero element of env(L+U) implies 

(L4) ii . 1 ,J 0 ,J-

From (1.3) and (1.4) we deduce 

( 1, 5) 
-1,j 0 

(i) = i (if i < 

Because (i,j) is a first zero element of env(L+U), (LS) implies: 

(j-1,j) ,!: env(L +U) 

From this we conc.lude cQ(j) ~ cu(j) ""j. 

In the same way it can be shown that i < j implies rQ(i) (i) 

j) • 

L □ 
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Remark: Let LI and UI be the factors obtained from a partial decomposition 

of Q with its first k pivots (1 :,; k :,; n). From Lemma 1 it follows: if 

rQ(i) < i for 1 < i :,; k and '\i(j) < j for 1 < j :,; k, then both env(LI) and 

env(UI) are dense. 

Corollary: If Q is a symmetric matrix and (i,j) is a first zero element of 

Algorithms which use the property that only the coefficients whose indices 

belong to pr (L) or env (L + U) are non-zero, will be called profile and 

envelope algorithms respectively. 

The profile and envelope algorithms may be overly inefficient in that they 

may process many matrix coefficients which are in fact zero. This will 

happen with sparse matrices having large envelopes or profiles. 'l'o handle 

those matrices with optimum efficiency, Le. to avoid arithmetical opera­

tions with zeros, so called sparse matrix algo1'ithms have been developed; 

these are algorithms in which for every coefficient is recorded whether it 

is zero or not. Obviously these algorithms require considerable organiza­

tional overhead, the more so as it is not a priori cl.ear which coefficients 

of Land U are non-zero. (The so called fill-in consists of all the coef­

ficients which are zero in Q, but non-zero in L or U. 'l'his fill-in will be 

discussed in more detail in the sequel.) For a description see [Gustavson 

'72]. Usually a sparse matrix algorithm contai.ns the following steps: 

- symbolic decomposition: to determine the location of the non-zeros in L 

and U; 

- numeric decomposition: to determine the values of the non-zero coef­

ficients. 

It will be clear that sparse matri.x algorithms are rather intricate. 

1.3. Graph-theoretic notation 

Following [Rose '71, George '77] we wi.1.1 introduce in this section a graph­

theoretic notation and nomenclature to be used later on. 

A directed graph G ~ (V,E) consists of a finite set V of vertices and a 

finite set Es:, {(v,w) j v,w Ev, v ,f- w} of ordered vertex pairs called 

edges. An undirected graph G = (V,E) consists of a finite set V of vertices 



and a finite set E of unordered vertex pairs, i.e. (v,w) is considered to 

be the same as (w,v). Whenever in the sequel it is left unspecified whether 

or not the graph G is directed, G may be either. 

Let G == (V,E) be a graph. If w c V, then the section graph G(W) is the sub­

graph (W,E(W)), where E(W) = {(v,w) EE I v,w E W}. For v EV the adjacency 

set adj (v) is defined by adj (v) = {w I (v,w) E E}. For distinct vertices v 

and w a path from v tow of length k is defined to be a sequence of dis-

tinct vertices v = v 0 ,v·1 , •.• ,vk ~ w, ,such that (vi-i 

i"' 1,oo.,k. 

c E, for 

An undirected graph is called connected and a directed graph is called 

strongly connected, if for every pair of distinct vertices v, w there is a 

path from v tow. If a graph is not (strongly) connected, then it consists 

of two or more (strongly) connected components. The set W c V is a separator• 

of the connected graph G = (V ,E) if the section graph G (V \ W) is not 

(strongly) connected. A separator W of G ~ (V,E) is minimal if no proper 

subset W' c Wis a separator of G. 

A rooted tree Tis an undirected graph with a distinguished vertex r, call­

ed the root, such that there is a unique path from r to any vertex. If vis 

on the path from r to w (w ¥ v), then v is an anceertor of w and w is a 

deacemlant of v. If moreover (v,wl is a tree edge, then v is the predecesso1° 

of w and is a successor of v. A vertex without successors is called a 

leaf vertex. 

•rhe concepts defined above are rather standard and definitions of them 

occur rather frequently in literature. 'rhe following concept, although not 

new, is less well-known. It has been introduced (with the name palm tree) 

in [Tarjan '72] in connection with depth-first searches in graphs. In this 

thesis we will name it a palm and use it to investigate the LU-decomposi­

tion of associated matrices. An undirected graph G"" (V,E) is called a 

if the edge set E consists of two disjoint sets E ""E1 u E2 such that 

i) the graph T = (V,E1) is a rooted tree, 

ii) if (v,w) E E2 then vis an ancestor or descendant of win T. 

The edges of El and E2 are called tree edges and fronds respectively. Hence 

a palm may be obtained from a rooted tree T by appending a number of (pos­

sibly zero) fronds; a frond is always an edge from a vertex to one of its 

ancestors in T. A palm is defined to be an undirected graph, whose 

connected components are palms. 
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If v is a vertex of a palm or a tree, then A (v) and V (v) denote the sets 

of ancestor, respectively descendant vertices, A(v) denotes A(v) u v and 

V(v} denotes V(v) u v. 

For a graph G = (V,E) with lvl n, an ordering a of Vis a bijection 

a {1,2, •H,n}-+ V. G (V,E,a) denotes an ordered g1'a:ph. 
a 

Given a graph G = (V,E), let P be a partition of V, Le. P = {Vl, ... ,Vm}, 
m 

such that V = U Vs and Vs n Vt = ~ for s ,I, t. The quotient gr•a:ph of G 
s=1 

with respect to P, denoted by G/P is the graph G/P = (P,E), where 

(Vs, Vt) E E if and only if vertices v E Vs and w E Vt exist, so that 

(v,w) EE, Obviously: G (strongly) connected implies G/P (strongly) con­

nected. 

1.4. Connection and decomposition graphs 

Let G = (V,E,a) be an ordered graph and define E' =Eu {(v,v) Iv EV}, 

Suppose a map q: E' -+ :JR is associated with G. The numbers q( (v,w)), as­

sociated with the edges (v,w), may be arranged in an n x n matrix Q (with 

11"' lvll: 

q((a(i),a(j))) if (ci(i),a(j)) EE' 
:::: i,j :::: n, 

0 otherwise 

'l'he graph G is then the connection gr•a:ph of Q, 

The coefficients qij with (et (i) , a ( j)) EE' will be called structurally non­

zero, even though their value may happen to be zero, Whenever henceforth 

a coefficient is said to be non-zero, we will always mean structurally non­

zero, 

Conversely, with each square matrix a connection graph is associated in the 

following way. Let Q be an n x n matrix, Define the vertex set V by 

V = {1,,.,,n} and the edge set Eby: 

(v,w) EE iff 4v,w # 0 

Let moreover the ordering a be defined by a(i) 

graph G = (V,E,a) is a connection graph of Q. 

i (1:::: i:::: n), Then the 



13 

Generally, a connection graph G"' (V,E,a) is directed, However, if Eis 

such that (v,w) EE iff (w,v) EE, G will be considered to be undirected, 

In that case an associated matrix Q is structurally symmetric, Le. q .. ,f, 0 
l.J 

iff q .. ,f, 0. If an undirected graph is not connected, then the associated 
J l. 

(structurally symmetric) matrices are decorrrposable, If a directed graph is 

not strongly connected, then the associated matrices a.re reducible. If the 

matrix Q is reducible or decomposable, then the associated set of equations 

may be replaced by a number of smaller sets [Varga '62]. 

For a vertex v of the graph G = (V,E,a) the elimination graph Gv is defined 

as G = (V\{v}, E(V\{v}) u D(v)l, where D(v) = {(x,y) J (x,v) EE, 
V 

(v,y) E E, x ,f, y, (x,y) I- E}, D(v) is called the deficiency of v in G, 

Let now G (V,E,a) be the connection graph of a matrix Q. Partial decompo-

sition of Q with only its first pivot gives: 

Since q~j 'f O iff (qij 'f O or 

the elimination graph Ga(l) 

deficiency D(a(l)) consists 
r 

qij 'f o. 

(qi1 ,f. 0 and qlj ,f 0)), it is easily seen that 

is precisely the connection graph of Q~. '!'he 

of those vertices (a(i),a(j)) with q,. = 0 and 
l.J 

Let G~ = G ~ (V,E,o.) and for i :.-;; 1,,.," .. ,n-1 let Gibe recursively defined by: 

G1 is the elimination graph (Gi-l) (')" Thefill-inD (G) is defined by 
a i a 

n-1 
U Di-l (a(i)) , 

i"'l 

where Di-l (a (i.)) is t.he deficiency of a. (i) in Gi-l. The deaorrrposit·ion graph 

G* is defined by: G*"' (V ,Eu D (G) ,a). If G = (V ,E,a) is the cormecti.on graph a a a. 
of an n x n matrix Q with LU-deco!llposition Q = LU, then t.he decolllposition 

* graph G0 is the connection graph of L + U [Rose and Tarjan '75]. The fill-in 

D0 (G) consists precisely o:E those edges (a(i.l ,a(j)) which satisfy 

J?or an exam:ple see figure 3. 
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'!'he fill-in is characterized by the following lemma: 

LEMMA 2: Let G = (V,E,a) be an ordered graph. Then (v,w) is an edge of 

* Ga = (V ,Eu Da (G)) if and only if there exists a path 

v = v0 , ••• ,vk =win G such that a-1 (vi) < minimum(a- 1 (v),a-1 (w)) 

for i ~ 1, •.. ,k-1. 

A proof of this lemma may be found in [Rose and Tarjan '75]. 

In Section L2 we have introduced the notation rQ and cQ. Let G 

be the connection graph of the matrix Q with LU-decomposition Q 

(V,E,a) 

LU. 

□ 

Suppose v is a vertex of G with a(i) = v. A notation equivalent to rQU) 

is: 

< i 

-1 -1 
3wEV Ca (w) < a (v) and (v,w) EE] . 

Similarly cQ(i) < i is equivalent to: 

-1 -1 
3wEV [a (w) < a (v) and (w,v) E E] • 

Hence we know from Lemma 1: if for all v EV with a-1 (v) 1' 1, there exists 
-1 -1 a w E V with a (w) < a (v) and (v,w) E E and (w,v) E E, then both env(L) 

and env(U) are dense; that is to say, the envelopes of Landu do not con­

tain any zero element. 

1.5. Consistent orderings 

Let G0 = (V,E,a} be the connection graph of an n n matrix Q. Let B be 

also an ordering of V. The graph GS= (V,E,S) is the connection graph of 

the matrix Q: 

(L6) 
q ( ($ ( i) , s ( j) ) ) 

0 

if (f3(i),/3(j)) EE 
( 1 s; i, j s; n) • 

otherwise 

-1 The orderings a and S together determine a permutation TI= S a of 

{1, ••• ,n}. A permutation matrix associated with TI is defined by: 

(P) .. ""6. (.) 
1J 1,TI J 

(1 '.". i, j '.". n) 

where 6 is the Kronecker delta. The following relation holds: 



t 
or in other words, Gfl is the connection graph of PQP. 

Proof: 

(L7) 

t 
(PQP ) ij 

t 
(PQP ) ij 

n 

r 6i,w(I) qlk 6j,w(k) 
k,l=1 

q 
Ci 

q -1 -1 
• (i) ,. (j) 

Since Ga is the connection graph of Q, we know that 

""q((f.l(i),fl(j))) if (f.l(i),fl(j)) c E 

(LB) 
(j) 

0 otherwise. 

Since G13 is the connection graph of Q we know that (L6) holds. Hence we 

conclude from (1. 7), (1.8) and (1.6): 

15 

□ 

Suppose the matrix Q has an LU-decomposition: Q =LU.The fill-in (G) and 

* the decomposition graph Ga depend upon the ordering a of v. Usually, LU-

decomposition of the permuted matrix PQPt results in triangular factors 

essentially different from L and U. l'hat is to say, the triangular factors 

of PQPt can not be obtained from a suitable permutation of the rows and 

columns of Land U. For instance, the number of non-zero coefficients in 

the triangular factors of PQPt usually differs from the number of non-zeros 

in Land U. However, if PLPt is lower triangular and PUPt is upper trian­

gular, then 

is an LU-decomposition of Q == PQPt. 

An ordering !3 of V will be called consistent with a if all edges (v,w) of 

* the decomposition graph Ga = (V ,Eu (G) , o:) satisfy: 
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-1 -1 
a (v) > a (w) j_ff 

-1 -1 B (vi > B (w) • 

We will prove: 

LEMMA 3: Let = (V,E,a) be the connection graph of the matrix Q with LU-

decomposition Q = LU. If the ordering Bis consistent with a and P 

is the permutation matrix associated with 1T = 1:i'-1a, then PLPt and 

PUPt are lower and upper triangular respectively. 

t in order to prove th 2 t prnt Proof: (PLP )1T(i),n(j) = flij' hence ~ ~ is lower 

triangular, it suffices to show: 

(1.9) 

From ~ O, assuming a(i) = v and a(j) w, it follows that 

-1 -1 
a. (v) > a (w) • 

Because Bis consistent with a we conclude 

Hence n(i) = (i) > B-1a(j) = n(j). Herewith (1.9) is proved. In the 

same way it is shown that PUJ?t is upper triangular. [] 

LEMMA 4: If PLPt is lower triangular and PUPt upper triangular, then the 

expressions to be evaluated during the decompositionsofQ and PQPt 

respectively, both contain the same non-zero terms. 

(1.10) 
(i) ,rr(j) 

fl' - fl ' n(i) ,1T(j) - ij (i) 1T(j) 
( 1 $ i, j $ n) • 

When decomposing PQP\ the computation of flij requires the evaluation of 

(1.11) ( 
j-1 ) 

q '. . - I fl : t ut' . ; u ' .. 
1J t=1 1 J JJ 

n 

I 
t=i 
tfj 

From (L10) we see that the righthand side of (L11) may be rewritten as 

-1 -1 
1T (i),rr (j) 

fl -1 -1 u -1 -1 ) I u -1 -1 
1T (i) ,11 (t) 1T (t) ,11 (j") 11 (j) ,1T (j) 
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-1 
Substituting k for 1r (t) in the above we get 

( q -
1T-1 (i) ,TI-1 (j) 

n 

2 Q, -1 . 
k=1 1r (i) ,k 

k;&,r-1 (j) 

u -1 ) / u -1 -1 
k,n (j) TT (j),n (j) 

which is the expression fort -l _1 . Hence the expression to be 
1T '(i),TT (j) 

evaluated to compute l'-'.. contains (apart from the order) the same non-zero 
J.J 

terms as the expression for 9, _ 1 _ 1 . In the same manner we can prove 
1T (i) ,TT (j) 

that the expressions for u!. and u _1 _ 1 both contain (apart from 
l.J 'lf (i) ,1r (j) 

the order) the same non-zero terms. D 

An immediate consequence of Lemmas 3 and 4 is: 

corollary: Let a and S be the orderings associated with the matrices Q and 

PQPt respectively (l? being a permutation matrix). If Sis con­
t 

sistent with a then the LU-decompositions of Q and PQP both re-

quire the evaluation of the same expressions with non-zero terms. 

1.6. Preserving palms 

An ordered undirected graph G '" (V,E,a) is a pvesewing palm, if it is a 

palm with the property: v EV, w E V(v) + a-1 (v) > a-1 (w). Let G (V,E,a) 

be the connection g-raph associated with then x n matrix Q and let Q have 

* an LU-decomposition: Q = LU. If the decomposition graph Ga = (V ,Eu Da (G) ,a.) 

is a preserving palm, then we can show that 

1 sisn, a(j) EV(a(i)) 

(L 12) 
j (qji - I .Q,jt uti) 

a(t)d)(a(j)) 

l',,. ujj 2 R,jt utj (1 s j s n) 
JJ j a(t)EV(a{j)) 

Since Lis lower triangular and is the connection graph of L + U, we have 

(L 13) 'f' j and ,j O iff i j and (a(i) ,a(j)) E E u (G) , 
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* Since G0 is supposedly a palm, we conclude from (1.13) 

(1.14) (i~j and R. •• ,o)-+ (i>j and [a{i) €V(a{j)) or a(j) €V(a(i))]l. 
l.J 

However, since G* is a preserving palm, it follows from (1.14) 
a 

(1.15) 

The matrix Q is structurally symmetric, therefore: 

Hence (1.15) gives: 

(1.16) (i ~ j and uji ~ 0) -+ a(j) E V(a{i)) • 

Finally, from (1.15) and (1.16) together with (1.2) we conclude that (1.12) 

holds. 
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CHAPTER 2 

PARTITIONS 

In this chapter we will investigate certain partitions of a matrix Q (with 

LU-decomposition Q = LU) into blocks (which are again matrices). Associated 

with such a partition is the quotient g-raph obtained from the corresponding 

partition of the vertex set of the connection graph of Q, 

For undirected graphs, corresponding to structurally symmetric matrices, we 

introduce preserving partitions and describe how to compute the coeffici.ents 

of Land U, Perfect preservi.ng partitions will be shown to have the ni.ce 

property that the corresponding computations to obtain the coefficients of 

Land Udo not require sparse matrix algorithms to avoid arithmetical opera­

tions with zeros. It will be proved that with every ordered undirected graph 

an (even proper) perfect preserving partition is associated. Hence, irre­

spective of how well the rows and columns of a matrix are ordered, the coef­

ficients of its triangular factors can be obtained with optimum efficiency 

by using only envelope algorithms, For directed graphs similar, though under 

certain circumstances less strong re.sults hold, 

The last section of this chapter deals with nested dissection '73], 

a well-known way of finding a suitable ordering for a connection graph. It 

is shown that if nested dissection is used to construct an ordering, then 

finding a proper perfect preserving partition is trivial" Hence, in order. 

to implement a nested dissection decomposition of a matrix with optimum 

efficiency, no sparse matrix codes are needed; envelope algorithms suffice, 

In this chapter it is assumed, unless stated otherwise, that G"' (V,E,a) is 

the ordered undirected connection graph of a structurally symmetric n n 

matrix Q with LU-decomposition Q"' LU, where Lis lower triangular and U is 

upper triangular, 
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2.1. Preserving partitions 

A block-matrix is a matrix whose coefficients are matrices, called blocks. 

All formulas and results derived thusfar apply to block matrices with square 

matrices as diagonal blocks. A block is considered to be zero if it is a 

zero matrix. 

Let P = {v1, .•. ,Vm} be a partition of V. Let denote the matrix obtained 

from Q by deletion of all rows i for which a(i) 4 Vr and all columns j for 

which a(j) i/. Vs. Define: 

(2.1) Q 

(Q will be considered to be an n x n matrix.) Moreover, let 13 denote the 

unique ordering { 1, ... , n} -► V determined by 

i) v E Vr, 
-1 -1 

w E Vs , r > s + 13 · (v) > 13 (w) 

(i,e. 13 orders first the vertices in Vl, next the vertices in V2, ... 

and so on); 

-1 -1 
v,w c: Vr, a (v) > a (w) iff 

-1 -1 
13 (v) > 13 (w) 

(Le. within every Vr the vertices are ordered according to a). 

Hence the rows and columns of Qare ordered in such a way that G13 

is the connection graph of Q. Therefore we know from Section 1.5: 

where Pis the permutation matrix associated with the permutation~ 

(V,E,/3) 

The ordering a : { , , , • ,m} + P is defined by a (r) 

satisfies the following properties: 

Vr (1 ~ r ~ m). If P 

i) the quotient graph 

Vs E V(Vr) + r > s); 

I P) 0 is a preserving palm (Le, 

ii) Vs E V(Vr) + a-1 (v) > a-1 (w) for v E Vr, w E Vs, 

t.hen P will be called a pr,eserv'i:hg partition o:r. p-partition for sho:r.L 
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LEMMA 5: If P is a p-partition, then S as defined above is consistent with a. 

Proof: We must show 

-1 -1 + 
V ( ) , ) : a (v) > a (w) + v,w EE uDa(G 

(w) " 

Assume that (v,w) EE u Da(G). If v,w E Vr then property ii) of S gives: 

-1 
(v) > S (wl 

If, however, v E Vr, w E Vs (r ,j s) then (because G* / P is a palm) 
a 

Vs e: V(Vr) or Vr e: V(Vs). Assuming that Vs E V(Vr), we know from property 

ii) of a p-partition: a -i (v) > a -l (w). From property i) of a p-partition we 
-1 -1 know r > s; hence property i) of S gives: S (v) > S (w). 

Now we have shown: 

In the same way we may show: 

(v) J " 

Hence 

[a -l (v) > a -l (w) and (v) > 
-1 -1 -1 -1 (w)] or [a · (wl > a (v) and S (w) > S (v) J 

which is equivalent with: 

(w) • 

Because Sis consistent with a we know from Lemma 3 that L PLPt and 
~ t ~ t ~, U "' PUP are triangular factors of Q "' PQP • The matrix Q J.s in ( 2. l.) 

partitioned into blocks; the matrices Land U may be partitioned in the 

same way, 

1 

L 

Lml L 
mm 

UH Ulm 

u PUPt 

u 
llllll 

[1 
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Obviously the matrices Lrr and Urr (1 $ r $ m) are lower and upper triangu­

lar, respectively. 

The connection graph of the block matrix in (2.1) is GIP. If P is a p-par­

* ti tion, then (G / P) 0 is a preserving palm. Hence we may apply ( 1. 5) and 

(1.16) to the block matrices Q, Land U and the ordering a: 

(rt sand Lrs #OJ ➔ Vs E V(Vr) • 

Let us furthermore consider the computation of the matrices: 

Defining 

L ms 

Qrs 

Qsr 

Qrs -

= Qsr -

we get from applying 

Writing 

L ss 

L U rs ss 

and (U , u +l , ... , U ) • ss s,s sm 

I 0 ts VtEV(Vs) 

I Lrt 
Vtc:V(Vs) 

I Lst utr 
VtEV(Vs) 

(1.12) 

1 $ s $ m, Vr " A (Vs) . 

A(Vs) = {Vsl, ••• ,Vsk} 

it follows from Section 1.1 that partial decomposition of Q6 defined by 

Qss sl sk 

Qs 
Qsl,s 

0 

Qsk,s 



with Q5 s a block pivot gives: 

where 

L 
s 

L 
s 

L ss 

,s 
and 
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Because ~ Usr ~ 0 for Vr i A(Vs), all non-zero coefficients of Land U 

can be obtained by (partial) decomposition of the matrices (1 s s s m). 

Furthermore, the matrix and hence L and 
s 

can be computed once and 

are computed for all t with Vt E V(Vs). 

Summarizing: The matrices L and U may be computed as follows. '.t'ake a vertex 

Vs for which all matrices and Ut with Vt E V(Vs) have been computed and 

compute and Us by partial decomposition of Qs• The computations must 

start with a leaf vertex, for instance (but not necessarily) V1; the com­

putations end with the decomposition of Qm• All non-zero coefficients of L 

and U are contained in the matrices and us (1 s s s m). The above process 

will be called decomposition of Q based on its p-partition P. 

In the following sections we will show that sparse matrix algorithms to 

compute Land U are always equivalent with a decomposition based on a p­

partition satisfying special properties. 

2.2. Perfect preserving partitions 

A sufficient condition for the graph G that env(L) and env(U) are dense is 

formulated at the end of Section 1.4. We will now formulate a condition 

under which the envelopes of and (encountered during a decomposition 

of Q based on a p-part.ition) are dense. ~'i.rst we will introduce the follow­

ing definition. A part.it.ion P"" {Vl, .•• ,vm} of Vis called perfect if for 

all v E: Vs (1 s s 0:: ml with a -l (v) ,f min{a-l (wl [ w E Vs} there is a w E Vs 

such that 
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i) 
-1 -1 

a (w) < a (v) , 

ii) there is a path v 

h = 1, ... ,k-L 

-1 -1 
win G with a (vh) < a (w) for 

Perfect preserving partition will be abbreviated to pp-partition. We will 

now prove: 

LEMMA 6: Let P = {V1, ... ,Vm} be a pp-partition of v. Let Ls and 0 8 

(1 s s s m) be obtained from a decomposition of Q based on P. 
'l'he envelopes of L8 and Us are dense. 

Proof: Ls and U5 (1 s s ,,; m) are obtained from a partial decomposition of 

Q9 • Let the ordering S: {1,. .. , Jvsl} + Vs be induced by a, Le. 

a- 1 (v) < a- 1 (w) iff s-1 (v) < s-1 (w) for v,w E Vs. To show that L and U 
S 8 

have dense envelopes, use is made of the remark immediately after Lemma 1; 

it suffices to show 

and for 1 < j :;; I Vs I • 

Because Qs is structurally symmetric, we know 

hence it suffices to show: 

cQ (j) < j for 1 < j,,; IVs! 
s 

Let v E Vs, such that a -l (v) o/- minfo -l (w) w E Vs}. From the definition of 

perfect partition, we know there exists aw E Vs such that 

and there exists a path v 

h "" 1, u. ,k-L From Lemma 2 we conclude (v,w) E E u D0 (G), Herewith we have 

shown 

(2,3) 

i _1 _1 1 OJ 
a (v) ,a (wl 

Because the coefficients of L8 are ordered according to a, (2,3) is equi­

valent to: 



25 

(2.4) cL (j) < j for 1 < j :5 lvsl • 
s 

But from Section 1.2 we know that 

(2.5) 

and from (2.4) and (2.5) we infer (2.2). □ 

Suppose P ~ {V1, ••• ,Vm} is a pp-partition of v. The non-zero coefficients 

of Land U may be obtained by calculating the matrices Ls and Us (1 :5 s :Sm), 

where Ls and Us are the results of a partial decomposition of Qs• From 

Lemma 6 we know that all coefficients whose indices belong to env(Ls)_and 

env(Us) are non-zero. Hence a sparse matrix algorithm (in which it is ex­

plicitly determined whether a coefficient is non-zero) is not necessary to 

avoid arithmetical operations with non-zero-coefficients during the decom­

position of Qs; an envelope algorithm suffices. To compute therefore the 

non-zero coefficients of Land U we only need to apply envelope algorithms 

to obtain the matrices Ls and Us (1 :5 s :5 ml. But the decomposition of Q 

based on a p-partition results in the evaluation of expressions with the 

same non-zero terms as any sparse matrix algorithm. Hence the decomposition 

of Q based on a perfect p-partition using envelope algorithms results also 

in the evaluation of expressions with precisely the same non-zero terms as 

any sparse matrix algorithm to compute Land U. 

Next we will show that for every undirected graph, i.e. for every structurally 

symmetric matrix a pp-partition exists. The trivial partition 

T ~ {{a(1)},{a(2)}, ••• ,{a(n)}} could be a pp-partition with the property 

* that every vertex of the palm G0 /T {except {a(1) }) has precisely one 

successor. To administer in that case all the envelopes of Qs (1 :5 s :5 n), 

is essentially the same as to record for every coefficient of Q whether it 

is zero or not. There is then no essential difference between a sparse 

matrix algorithm and a decomposition based on T. Hence we will introduce 

proper p-partitions. 

2.3, Proper pp-partitions 

First we introduce the following definitions. A paZm will be called proper 

if each vertex has either zero or more than one tree-successor. A p-pa:l'ti-
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tion P of V will be called proper if the palm I P is proper. 

THEOREM 1: For every non-decomposable, structurally symmetric matrix there 

exists a proper pp-partition. 

To prove this theorem, we will. first prove: 

LEMMA 7: If G ~ (V,E,a) is an undirected (not necessarily connected) graph, 

then there exists a perfect partition P = {Vi,... of V, with 

the property that G* / P is a forest of proper palms consistent 
et -1 -1 

with a, i.e. Vs E V(Vr) + a (v) > a (w) for v E Vr, w E Vs. 

Proof We will prove this lemma by induction with respect to n, the number 

of vertices in V. The lemma obviously holds for n = 1, because a graph con­

sisting of only one vertex is a proper palm. 

Now ass\.lllle that n > 1. Let x ~ a(n) be the vertex with the highest number 

* * in G. Let A(x) and A (x) denote the adjacency set of x = a(n) in G and Ga 

respectively; let moreover Hbe G(V \ {x}), Le. the graph obtained from G by 

removing x = a(n) and all edges connected to x. The ordering of H induced 

by the ordering of G will be called u again. From the induction hypothesis 

applied to H, the existence follows of a perfect partition P• "' {V1 ••. ,Vm} 

of V \ {x}, with the property that / P1 is a forest of proper palms con-

sistent with a P1, •• .,Pz. Let C denote the collection of palms Pj, such 

that the vertex set of Pj has at least one vertex in common with A(x). We 

will distinguish three cases:. IC I = 0, IC I > 1 and IC I "" 1. 

i) ICI = 0. Define P ~ P' u {x}. Obviously Pis a perfect partition of v. 
The graph Pt consisting of only one vertex, viz. :x, is a proper palm 

consistent with a. From ICI == 0 it follows that A(x) == 0, Hence, from 

Lemma 2, A* (x} == !1). Therefore G* / P is a forest of proper palms a . 
Pl, ••• ,Pz,Pt, consistent with a. 

ii) IC I > 1. Define P == P• u {x}. Obviously P is a perfect partition of 

The collection of palms C may be considered as a (disconnected) graph. 

The graph Pt is obtained from C by adding {x} to the vertex set of C; 
the edge set of Pt is obtained by adding ({x}, Vs) to the edge set of C 

for those Vs with a vertex w such that w E (x). Pt is a proper palm 

with root {:x} and consistent with a. Obviously G: / P consists of the 

* palms Pt and Pj ( 1 ~ j ~ z, Pj 4 C) • Hence, Ga/ P is a forest of 

proper palms consistent with a. 



iii) [CI = L The partition P = P• u {x} does not meet the requirements, 

because the palm Pt as defined in the preceding case is not proper. 

Therefore we have to distinguish this case IC[= 1 from the case 

IC[ > L 
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C consists of only one palm, say Ps. Let Vt be the root of 

the following partition of V: P = {Vl, •• .,Vtu{x}p .. ,VmL 

Ps. Define 

G* IP con­
a 

sists of the palms Pj (1 s j s z, j 'f s) and PS ' where Ps is obtain-

ed from Ps by joining x = a(n) to its root Vt, Ps obviously is a 

proper palm consistent with a, To prove that Pis a perfect partition 

of V, it suffices (because P• is a perfect partition of V \ {x}) to 

show that there exists a vertex w E Vt and a path x = v O, ... , vk = y in 
-1 -·1 

G with a (vh) < a (y) for h = 1,'°.,k-L Vt is the root of the palm 

Ps, which is consistent with a. Let y be the highest numbered verte,t 

of l?s, then y £ Vt, :From the definition of C we know that the vertex 

set of Ps has a vertex in collllllon with A(x). Let v 1 be such a vertex. 

* Because v 1 and y both belong to the same connected component of H0 / P1 , 

-1 -1 
there is a path v 1 , .. .,vk y with a (vh) < a (y) for h"" 1, ... ,k-1 

y is a path in G. 

Proof of 'rheorem 1: The conm:iction graph G"" (V,E,a) associated with a 

structurally symmetric, non-decomposable matrix is a connected undirected 

graph. From Lemma 7 the existence follows of a perfect partition 

* P "" {Vi, ... , Vm} of V, such that Ga/ P is a forest of proper palms, with 

the property 

D 

Because G is connected, G* / P is connected; hence G* / P is a palm. Let the a a 
partition elements Vl, ••• ,vm be ordered according to a post-order traversal 

of the palm G* / P (Le. of every subtree in the palm, the root is visited 
a * 

last), and let a denote the ordering a (s) = Vs, then (G0 / P) er is even a 

preserving palm. 

From the above we conclude, P is a proper perfect preserving partition. [] 



28 

2.4. Construction of a proper pp-partition 

The proof of Lemma 7 is constructive. A (worst case) 0 algorithm to 

construct a proper pp-partition could be derived from that proof. However, 

such a partition may also be obtained in still another way. 

Let P = {V 1, ••• , vm} (m > 1) be a proper pp-partition of the graph 

G = (V,E,a). It is easily verified that Vm, the root of / P, is a 

separator of G, containing the vertices with the highest numbers. On the 

other hand, if there is no separator Sc V of G with the property: 

I -1 
31<kSn [S = {w EV a (w) > k}] • 

then P' = {V} .is a proper pp-partition of G. 

Proof: G/P' is a graph consisting of one vertex only, therefore it is a 

proper preserving palm. 'rhat P• is moreover perfect follows from the obser-

vat.ion that, if v would be a vertex for which no path v = = w 

exists -1 -1 -1 
for h = 1., ••• ,k-1, then with a (vh) < a (w) < a (v) 

I -1 -1 } □ s = {w E V a (w) > a (v) would be a separator of G. 

The following construction results in a proper pp-partition. Let initially 

P be empty. Determine a minimal separator S of G with the property 

>min{a-1(v)} [S = {w EV I a-1 (w) > k}J; 

VEV 

sis minimal if no other separator with the same property is contained in S. 

If no separator with property (2.6) exists, then set S = V. Next add S to P 

and apply the above recursively to each of the connected components of 

G(V \ S). 

With induction to the depth of G / P, it may be verified that P obtained in 

this way is a proper pp-partition. Using an O (ml algorithm of [•rarjan '72], 

to determine the connected components of a graph consisting of m vertices, 

the above construction may be implemented ultimately resulting in an 0 

algorithm. 
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2.5. Example 

As an example we will use an undirected graph G, with vertex set 

V = {1,2, .•. ,16} and ordering a, with o:(i) = i (i = 1,. .. ,16). 'l'he edge set 

of G is represented in Figllre 2; an edge is drawn from vertex v to 

vertex w if and only if (v,w) belongs to the edge set of G, 

Connection graph. 

Figure 2 

* 
2 0 * 
3 0 0 * 
4 0 0 0 * Symmetric 
5 * 0 0 0 * 
6 0 0 0 0 ** 7 0 * 0 0 0 0 * 
8 0 0 * 0 0 0 0 * 9 0 0 0 0 0 0 *** 10 * 0 0 * ® * 0 0 0 * ·11 0 * * 0 0 0 ® ® * 0 * 12 0 0 0 * 0 * 0 0 0 ® 0 * 13 0 0 0 0 0 0 0 * @ 0 @ * * 14 0 0 0 0 0 0 0 0 0 0 0 0 0 * Hi 0 0 0 0 0 * 0 0 * ® ® @ * 0 * 
16 0 0 0 0 * ® * 0 @ @ @ @ @ ·fol** 

1 2 3 4 5 6 7 !l 9 10 11 12 13 14 15 16 

* Denotes non-zero coefficient 
0 Denotes zero coefficient 
® Denotes fill-in 

Figure 3 
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Figure 3 shows the zero/non-zero structure of an associated matrix. Both 

constructions as outlined in the preceding section result in a partition 

P = {Vl, ... ,V9} with V1 = {2,7}, V2 = {3,8}, V3 = {9,11}, V4 = {4}, 

VS= {1,5,6}, V6 = {10,12}, V7 = {13,15}, VB= {14}, V9 = {16}. 

* The graph Ga/ P is depicted in Figure 4; Figure 5 shows the according to P 

reordered matrix. The decompcsition based on P proceeds as follows: 

1) decompose 

q2,2 

q7,2 ,7 

Qi 0 q9,7 

qll,2 0 

0 ql6,7 

with the first two pivots, 

Jl,2,2 

!l7,2 Jl,7, 7 

Ll 0 9,9,7 

9,11,2 9,11,7 

0 9,16,7 

2) decompose, in the same way, 
r 

Q2. 

3) decompose 

q9,9 + ,9 
2 

+q9,9 
l 2 

9 +qll,9 +qll,9 

Q3 
2 

ql3,9 

q15,9 
1 

q16,9 

0 

0 0 

0 0 

giving 

and 

0 

1 
q9,9 

1 
q11,9 

1 
q16,9 

1 
qll,11 

1 
q16, 1.1 

with the first two pivots 

1 2 
qll,11 +qll,11 +qll,11 

2 
0 q13, 11 

0 0 

1 
q16, 11 0 

with the first two pivots, giving 

giving 

0 

0 

and 

0 



4) 

5) 

6) 

7) 

31 

£9,9 

£ £11,11 
3 

11,9 q13,13 

\3,9 213,11 
and 

3 3 
L3 q15,13 ql5,15 

.Q,15,9 .Q,15,11 
3 3 

q16,13 ql6,15 ,16 

.Q, 
1.6,9 216, 11 

Note: the superscripts of the matrix coefficients refer to the step in 

which they were computed. 

decompose Q4 with its first pivot only; 

decompose Qs With the first three pivots; 

decompose Q6 with the first two pivots; 

decompose 

2 3 6 
q13,l3 +q13,13 +q13,13 +q.13,13 

3 6 
,13 +ql.5,13+q15,13 

3 5 6 
q1!5,15 +ql.5,15 +ql.5,15 +q15,15 

3 6 
q.1.6,13 +q16,13 

3 5 
,15 +q16,15 +q16,15 + ,15 

witl1 tj1e first two pivots, giving 

.11,13,13 

.11,15,13 215,15 
and 

,13 Jl,16,15 

0 

8) decompose 

QB , [414,14 

ql.6,14 a] 

with its first pivot, giving 

['1,.1,l 
= Jl,16,1.4 

and 



32 

r ~ {16} 

Quotient graph of a pp-partition 
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9) decompose 

with its first pivot, giving 

The coefficients of L which are not computed in the above steps, for in­

stance i 14 11 , are zero. Note that steps 1, 2, 4, 5 and 8 are independent 

of each other and may be done in any order or even si.mul ta.neously. Another 

order of the steps corresponds with another post-order traversal through 

2,6, Non-symmetric equations 

'rhe preceding sections dealt with structurally symmetric matrices. If the 

set of equations to be solved is not structurally symmetric, then the as­

sociated connection graph is directed. Analogous, though less strong, 

results will be shown to hold, 

The matrix Q, with triangular decomposition Q"' LU, will be assumed to be 

such that its connection graph G (V,E,a) is strongly connected (otherwise 

we would in fact be dealing with a number of sets of equations), As in the 

symmetric case, we may try to find a separator Sc V with the property: 

3 [S={w£ VI a-1 (w) > k}]. 
l<k,;n 

Xt may be proven (with Lemma 1 and a reasoning as we used in Section 

2, 4) that if emr (L + U) contains zero elements, then such a separator 

exists. In the symmetric case, the variables associated with the con­

nected components may be eliminated in arbitrary order. 'rhis is not allowed 

in the non-symmetric case as may be seen as follows. Consider the graph of 

Figure 6a with ordering a defined by: a(i) = i (i = 1, .. .,5), 'rhe separa­

tor S == {5} yields the strongly connected components Vl == {1,3} and 

V2 = {2,4}. Eliminating first the variables associated with V2 leads to an 

elimination order which results in triangular factors different from Land 

U; this may be seen in figure 6b, where the vertices are renumbered accord­

ing to this new ordering. Figure 6c shows that eliminating first the 

variables associated with Vi also leads to other triangular factors, 
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Figure 6 
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To guarantee obtaining the correct triangular factors we modify the con­

struction of a partition in the following way. A separators, consisting of 

vertices with the highest numbers, is looked for with the further property 

that the vertices in each strongly connected component are consecutively 

numbered. Applying this rule recursively to each of the strongly connected 

components, we obtain a partitioning P"' {Vl, ••• , Vm} of V. The matrix Q may 

be partitioned into blocks: 

Q 

~ 

where Qrs denotes the matrix obtained from Q by deletion of all rows i for 

which a(i) i Vr and all columns j for which·a(j) i Vs. (Note that contrary 

to the symmetric case, the rows and columns of Qare not permuted to obtain 

the partitioned matrix.) 

Let the matrices Land Ube partitioned in the same way. Defining 

it follows that partial decomposition of 

Qss Qs,s+1 Qsm 

Qs "' 
Qs+l,s 

0 

~s 

with Q as block-pivots gives ss 

Qs L us + Qr 
s s 

where 

L ss 

Ls "" 
Ls+l, s 

and us (U ,U +1, ••• ,U ) ss s,s sm 

L ms 
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(see ( 1. 2) and formulae for partial decomposition) • Hence all coefficients 

of Land U can be obtained by (partial) decomposition of the matrices 

( 1 5 s 5 m) . The matrix Qs and hence Ls and U5 can be computed once Lt and 

Ut are computed for all t with 1st< s. Note that contrary to the symme­

tric case, the order of computing the matrices Qs is strictly determined. 

If the partitioning Pis obtained as outlined above, it may happen that 

env(L5 +Us), for some s (1 5 s 5 m), contains zero In that case P 

may be refined. Let env + Ut) contain a zero element. Then the section 

graph G(Vt) contains a separator S', with the properties that S' contains 

vertices with the highest number in Vt and the associated strongly connected 

components all contain consecutively mimbered vertices. By removing Vt from 

P and adding S' and vertex sets of the associated strongly connected compo­

nents, we get a refined partition. 

Let be a partition which needs not be refined any further. 'I'hen the com-

putation of Land U may be based (in the above described way) upon in 

such a way that envelope algorithms suffice to avoid arithmetical opera·­

tions witl1 zero coefficients. 

Note that contrary to the structurally symmetric case, Ip'' is not a palm 

or another type of a nicely structured graph. '.['herefore non-symmetric 

matrices exist for which there is hardly any difference between sparse 

matrix decomposition and decomposition based on a partition constructed in 

the above way. 

2.7. Nested dissection 

In Section 2 .4 we have pointed out how to construct a proper pp-partition 

for a given matrix Q. In this section we will show that if a so called 

nested dissection ordering is used to arrange the rows and columns of a 

mat.rix, then a proper pp-partition is obtained trivially. Hence, to im­

plement nested dissection decomposition, no sparse matrix codes are needed 

for effi.ciency; envelope algorithms suffice. 

The set of equations Qw f is equivalent with 

w) f 
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where P1 and P2 are permutation matrices. If P1 ~ P2, symmetry is preserved. 

Many papers (see [Duff '77]) are devoted to the subject of choosing the 

permutation matrices in such a way that some minimum or other is obtainecL 

For instance, one may try to minimize the profile, envelope or fill-in of 
t P1QP 2 . Unfortunately, these minimization problems are proven or conjectured 

to be NP-complete [Papadimitriou '76, 'l'arjan '76]. We are i.n agreement with 

the following quotation from [Tarjan '76]: "In view of the NP-completeness 

results, we cannot hope to solve the general problem of effi.ciently imple­

menting sparse Gaussian elimination. We can only try to solve the problem 

for special cases." 

One such special case is the class of symmetric matrices arising in two or 

three dimensional finite element equations. For these problems the nested 

di.ssection ordering has been developed [George and Liu '78oct, George 1 73], 

which has been proven to be a good ordering e.a. '79]. We will show 

that a proper pp-partitlon is trivially obtained for such an orderlng. 

A nested d·issection ordering of a connected undirected graph G "' (V, E) is 

formally defined as follows [George and Liu '78 oct]. First, an algorithmic 

definition of a nes"/;ed diaaect·ion pa:.Ptitfon P of V is: 

0) Initially, set P empty. 

1) Choose a minimal separator V' of G; if G does not contain a separator 

then set V' ~ V. Add V' to P. 
2) If V ~ V', then apply step recursively to each of the connected com-

ponents of the section graph G (V \ V') • 

The set P"" {v1 •.. ,vm} thus obtained is a partition of V, a nested dissec-

ti.on partition of v. A rooted dissection tree T (P,E) is associated with 

P, where Eis defined as follows. Let Wr (1 :Sr :S ml denote the edge set of 

the section graph separated by Vr; then (Vr,Vs) E f if and only if Vs has 

been chosen as the separator of one of the connected components of the 

secti.on graph G (Wr \ Vr) ; Vr is in that case the predecessor of Vs. An 

ordering a: { 1, • • . n} + V is called nested dissection ordering if it is 

consi.stent with the nested dissection partition Pin the following way: 

Note that in finding a nested dissection ordering, both a part.it.ion of Vis 

created and a consistent ordering·on it is chosen; whereas in finding a 
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proper pp-partition an ordering should be given beforehand, them a partition 

is constructed, We will now prove: 

'l'HEOREM 2: Let a be a nested dissection ordering consistent with the nested 

dissection partition P = {Vi, •.• , Vm}, then P .is a proper pp­

partition associated with ex. 

Proof: Let T be the dissection tree associated with P. Because Tis a tree, 

the elements of P may be arranged in such a way that cr: { 1,,., ,m} + P de-

fined by cr(r) Vr is an ordering of P with the property: 

Vs E V(Vr) + a -l (Vr) = r > o -i (Vs) 

It is easily verified that G* / P is the tree with some fronds added to 
a 

it; hence / P is a palm and / P) a is a preserving palm, Hence P is a 

preserving partition. Moreover, every vertex of T has either zero or more 

than one successor, hence I P is a proper palm and therefore P is a 

proper p-partition. From the construction of P and the connectedness of G 

it follows that Pis a perfect partition, Hence Pis a proper pp-partition 

associated with a, 

Corollary l: If a given algorithm determines a nested dissection partition 

and ordering, then no other algorithm to find a proper pp­

partition associated with this ordering is requi.l;,ed. 

□ 

Corollary 2: To implement a nested dissection decomposition of a matrix, no 

sparse matrix codes are needed for efficiency; envelope algo­

rithms suffice. 

It is well-known [Hoffman e .a. '73] that nested dissection applied to so 

called regular n x n grids may lead to an (asymptotically) optimal ordering 

(in the least-arithmetic or fill-in sense). In view of our Corollary 1 

above, we do not support a quotation from '74]: "In order to 

actually benefit from these orderings, it is necessary to use general 

sparse matrix techniques", A similar remark appears in [George and Liu • 78 

A1.1. known implementations of nested dissection decomposition use, at 

least for parts of the matrix involved, sparse matrix techniques, requiring 

considerable storage overhead for pointers etc, ' 77 J , In Chapter 4 

we will show how to implement nested dissection decomposition for n" m 

grids without storage overhead, using the concept of substructures. 
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CHAPTER 3 

FINITE ELEMENT EQUATIONS 

In applications of the finite element method (to the solution of partial 

differential equations) one often encounters large, sparse sets of linear 

equations. Many papers (see [Duff '77]) deal with the problem of solving 

those finite element equations efficiently. A way to avoid large sets of 

equations is the use of the substructuring technique, In this chapter first 

the finite element method with the drawbacks of its traditional organiza­

tion is outlined and next we discuss the relation between substructuring 

and perfect preserving partitions. 

3.1, outline of the finite element method 

We will outline the finite element method only briefly, since proofs and 

details may be found elsewhere [Strang and Fix '73, Zienkiewicz '77]. 

Suppose the problem to be solved is finding the function; which minimizes 

a given energy expression: 

(3 .1) 

where A is a self-adjoint differential operator, van element from a function 

space H with domain ri, and (.,.) denotes the inner product ·in that space. A 

finite element solution is obtained as follows: the function; is approximated by: 

(3. 2) 

where the ip1 are certain functions in H, called shape functions. Next the 

constant coefficients wi will be determined so that (3.2) minimizes (3,1), 

Substitution of (3.2) in (3.1) yields: 

(3.3) 
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Defining the matrix Q by: qij = (Aqij, , was the vector consisting of the 

coefficients wi and the vector f by fi = (f,<pi), (3.3) may be written in 

matrix notation as: 

(3.4) 

If Q is a symmetric matrix, then (3.4) obtains its minimum for w satisfying: 

(3.5) Qw = f • 

Formula (3.5) shows a set of n linear equations with n unknowns, which may 

be solved for w. In most applications Q is a positive definite matrix. 

In a similar way one can even solve differential equations of quite general 

type: solve;;, a function in the function space H, from 

Aw= f 

where A is a differential operator. A way to obtain an approximate solution 

is the following. Choose a set of n test functions 1/Ji EH (i = 1, ..• ,n); 

approximate w by a linear combination of shape functions EH: 

(3 .2') 

and require 

(1 s; i s; n) • 

Substitution of (3.2') in the above gives 

n 
(3.3') 2 (A<pj 

j=l 

Defining the matrix Q by, 

(f,ljJ.) 
• 1. 

= (Aqi. 

(1 ;;; i s; n) • 

, was the vector consisting of the 
J 

coefficients wi and the vector f by fi = (f,lj!i), (3.3') may be written in 

matrix notation as 

(3. 5'} 

Again (3.5') shows a set of n Ii.near equations inn unknowns. These equa­

tions are not necessarily symmetric or positive definite. We will not 

address the question under which conditions (3.2) or (3.2') is a reliable 

approximation of w, 
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The domain 11 of His in finite element terminology usually called structure. 

The matrix Q, respectively vector f, will be called structure matrix, 

respectively structure vector (in the literature often called stiffness 

matrix and load vector, respectively). 

In order to obtain the shape functions characteristic for the finite ele­

ment method, fl is divided into a finite number of elements. Each shape 

function is now chosen in such a way that its support (Le. that part of n 
where it is different from zero) consists of a small nmnber of elements. 

The choice of the elements and their shape functions is determined by the 

problem to be solved. 

Let lie(i), for l :s: i :s: k0 , denote the indices of the shape functions whose 

support includes a certain element EL The k x k matrix Q0 is defined by, 
e e 

where (.,.)e denotes the inner product restricted toe. Qe will be cal.led 

element matrix. 

If Ce denotes the so called connection mat1>ix defined by, 

where o is the Dirac delta function, then Q is obtained by "assembling" the 

element matrices Q8 as follows, 

Q 

In an analogous way the element vectors f 6 and structure vector .f may be 

computed, 

Because the support of each shape function is restricted to only a few 

elements, many coefficients of Qare zero. In the finite element method the 

shape functions are usually chosen in such a way that the coefficients wi 

in (3.2) have obvious physical interpretations; they may be identified with 
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the values of w or its derivatives at particular element. pcsitions, usually 

called nodes, 

3.2. Traditional organization 

In the actual computations the following consecutive steps are usually en­

countered: 

1) choice of element types (i.e. shapes of elements and k.ind of shape 

functions) t.o be employed, 

2) mesh generation: division of the structure in elements, 

3) node numbering: determination of the order in which rows and columns of 

the structure matrix are arranged, 

4 a) computation of element matrices, 

bl assembly of element mat.rices into the structure matrix, 

c) computation of the structure vector, 

5) computation of the solution vector, 

6) computation of results determined by the solution vector. 

Steps 4a and 4b are usually not carried out stri.ctly consecuti.vely, but as 

follows, as soon as an element matrix is computed, it is assembled into the 

already partially formed structure matrix, 

As steps 1, 4a and 6 depend upon the specific problem to be solved, we will 

in this thesis only be concerned with, mesh generation, node numbering, 

assembly and solution of the equations. First we will discuss some problems 

that are encountered when the finite element computations are organized .in 

this traditional way, 

The partitioning of a structure in elements results in a mesh for that 

structure. Mesh generation is an impcrtant aspect of finite element calcu­

lations. The shape and number of elements have to be chosen, Irregular 

structure boundaries must be approximated by element boundaries, The accu­

racy of the calculations depends upcn certain mesh characteristics, such as 

the slenderness of the elements and Fix '73]. Specifying the mesh 

often involves much work, in particular if the mesh is irregular and con­

tains many nodes. Therefore, so called mesh generators [Zienkiewicz and 

Phillips '71, Schoofs e.a. '79] have been developed, i.e. programs generat­

ing the necessary geometrical. input data for finite element pro<Jrams. 
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Another difficulty is that the numbering of the nodes, i.e. the ordering of 

rows and columns of the structure matrix Q affects the efficiency of the 

solution process [George '71]. A poor numbering results in triangular 

matrices Land U (defined by Q LU), many coefficients of which are non­

zero, whereas a good numbering results in much sparser Land U, thus re­

ducing the required number of arithmetical operations to solve the asso­

ciated set of equations. Several algorithms have been developed to minimize 

the bandwidth of a given matrix by rearrang·ing rows and columns [Cuthill 

'72]. Unfortunately the determination of the minimum bandwidth turns out to 

be an inherently hard problem, because it belongs to the class of so called 

NP-complete problems [Papadimitriou '76]. Instead of minimizing the band-

width, it. is usually better to try to minimize the profile '71]. 

'l'his is however also an NP-complete problem e ,a. '74]. One might. 

also consider the fill-in as a measure of efficiency. However, it. has been 

shown that minimizing the fill-in is again an NP-complete problem for non­

symmetric matrices and the same is conjectured to be true for symmetric 

mat.rices [Rose and 'l'arjan '75], 

A final difficulty is that in practice special measures are required to 

assemble Q and f, in particular when, for problems with many nodes, the 

matrices are too large for integral storage in central memory and the 

operating system of the computer does not provide a virtual memory (see 

further [Irons '70])" 

3.3. Substructuring 

A sensible way to solve a problem in general is by dividing it into a 

number of simpler problems and then combining the solutions of those 

simpler problems to get the solution of the overall problem. To split a 

finite element problem, the substructuring techn:i.que [Przemieniecld '68, 

Williams '73] has been applied. Because our organizat:i.on of finite element. 

calculations is based upon the substructuring technique, we will describe 

that technique and prove that. it leads to correct results. 

Let Q and f be the structure matrix and structure vector, respectively, 

associated with the structures. Let. s consist of elements with associated 

element matrices and element vectors . Then the following relations 
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hold (see 3.1) 

Q f 
e 

where C are the connection matrices associated with the elements. Let w 
e 

denote the solution vector to be solved from 

(3.6) 

When applying the substructuring technique to compute w one proceeds as 

follows. The structure Sis divided into k substructures S1, .. ,,Sk; i.e. 

every element of S belongs to precisely one substructure (the prefix sub 

will often be omitted). Assembling the elements of Sj (j = 1, ... ,k) results 

in the substructure matrix: 

and substructure vector 

where the connection matrices Cj are obtained from C by deleting the rows e e 
which do not correspond with a node in Sj. All nodes of a substructure which 

belong to only that substructure are called inter=l nodes; other nodes are 

called external. The equations associated with structure Sj 

(3,7) 

may be arranged in such a way that the external nodes are grouped togetl1er: 

the subscripts Ij and Ej referring to the internal and external nodes of 

Sj, respectively, Partial elimination of (3,7) with Q . 1 . as block-pivot 
IJ J 

results in: 

(3,9) 

where 

(3 .10) 



and 

(3.11) 

The matrix Qrs· will be called reduaed structure mat:rix; 
J 

is said to be 

obtained from QSj by eliminating the internal nodes. The vector is 

called i•educed structure vector. 

Obviously we are not interested in the solutions of the sets of equati.ons 

(3.7), but in the solution of (3.6). 

Now suppose Ej ( 1 S j s k) contains m. nodes, nUl!lbered from 1 to m . ; and 
k J J 
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suppose U 
j=l. 

Ej contains n' different nodes, nUl!lbered from 1 ton'. Let for 
k 

a node fl from Ej (1 s fl s m . ) JI j (fl) denote the 11\.ll!lber of fl in U E j' hence 
J j=1 

1 s Ilj(!l) s n'. Let the connection matrix Cj (1 s j s k) be defined by 

1 sh Sn', 1 s fl 

The set o:E equa.tions (3. 6) can be arranged in the following way: 

Qu m 

0 

(3.12) 0 
Qik Ik QikEk fik 

k 

I1 Ck Ik l QEj Ej 
j=el 

Partial elimination of (3.12) with 

0 

0 

as block pivot, results in 
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(3.13) 
t k 

QEJ' EJ' CJ. - 2 
j=1 

Ij 

From (3 • .10) and (3.11) it follows that (3.13) are the equations 

(3 .14) 

From (3.14) it follows that w' can be solved after the reduced structure 

matrices and vectors have been assembled. If w' is known, then wEj may 

be computed from w w' for all J. (1 < J. < kl. Finally, can be Ej 
obtained by solving, 

(3.15) 
Ej 

(this last equation follows from (3.8) and the definition of partial decom­

position). 

The partitioning of the structure S into substructures implies a certain 

ordering of the nodes: the internal nodes of the substructures are eliminat­

ed first, the nodes belonging to more than one substructure axe eliminated 

last, Theorder of processing the substructures, i.e. computing t.he reduced 

structure matrices and vectors, is irrelevant. 

If a substructure, say Sj, consists of a number of elements, it is possible 

to partition also that set of elements. 'I'he substructure Sj is then parti-

tioned into substructures j , •.. ,s 2 • To compute the reduced structure 

matrix of Sj, instead of element matrices, reduced structure mat.rices 

associated with s~ ( 1 s: h ::: 2) are then assembled together, and so on. Thus 

one may create a hierarchy of substructures. 



47 

Some advantages of using the substructur:i.ng technique are: 

- Instead of assembling all element matrices into one large, usually sparse, 

structure matrix, a number of smaller matrices is set up" 

- Sometimes identical substructures can be distinguished within a structure; 

obviously the calculations of identical reduced structure matrices need to 

be done only once, thus saving computations. 

- Substructures may be analyzed more or less independently of each other; 

the effect - on the complete structure - of changes of a substructure may 

be analyzed without a need to repeat all computations. 

As remarked before, substructuring implies a certain ordering of the nodes 

The order of the nodes influences the number of arithmetical operations 

with non-zero matrix coefficients required for the elimination. Hence a 

possible danger of the substructuring is that an inappropriate 

partitioning may lead to far more than the minimum number of arithmetical 

operations with non-zero coefficients. With a careful choice of the sub­

structures, however, this danger can be avoided. This may be seen as fol­

lows. 

Consider a structure S with structure matrix Q and ordering a. Let 

G = (V,E,a) be the associated connection graph, where is the set of 

nodes of S. Suppose P = Vl, ••• , Vk (k > 1) is a proper pp-partition as­

sociated with G. Hence Vk is a separator of G; let the connected components 

of the section graph G (V \ Vk) be denoted by Gl., •.• ,Gp. All coefficients of 

the element matrices are considered to be structurally non-zero. Hence two 

nodes (not in Vk) belonging to the same element of S belong to the same 

connected component Gj . With each component Gj ( 1 5 j 5 p) a substructure 

Sj of Sis associated in the following way, all elements of S which have a 

node in collllllon with Gj together form substructure Sj. '!'he nodes of Sj which 

belong to Vk are precisely the external nodes of Sj. By applying the above 

rule we do not necessarily obtain a complete partitioning of all elements; 

there may be elements, all nodes of which occur in Vk only. Each of these 

elements may be considered as a separate substructure; they are substruc­

tures consisting of one element only and without internal nodes. In the 

same way ass, its substructures Sj may be partitioned; thus with Pa 

hierarchy of substructures is assocJ.ated, Computing reduced structure 

matrices, corresponds with partial decomposition of matrices as indicat­

ed in Section 2" 1, From SectJ.on 2 .3 know that - irrespective of how well 
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the equations are ordered - we can find a proper pp-partition. From the 

above it now follows that, if the ordering of the equations is such that it 

gives rise to the minimum amount of arithmetical operations and/or storage, 

substructures can be found which lead to the same mini.mum. Moreover, to 

avoid operations with zero coefficients envelope algorithms suffice. 

Now, conversely, suppose the structure S, with structure matrix Q and as­

sociated unordered connection graph G = (V,E), is partitioned into a hier­

archy of substructures. With such a hi.erarchy a partitioning P = {Vl, ... , Vk} 

of the nodes Vis associated: two nodes belong to the same partition element 

Vj i.f and only if they are internal nodes in the same substructure. The i.n-

ternal nodes can be ordered in such a way that the associated env ) is 

dense. Let a denote an ordering of V, thus induced by the hierarchy of sub­

structures. It is now easily verified that Pis a proper pp-partition for 

the graph G = (V,E,a). Hence it. is not necessary to apply the algorithm of 

Section 2.4 in order to obtain a proper pp-partition associated with CL, 
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CHAPTER 4 

A NOVEL FINITE ELEMENT ALGORITHM FOR N GRIDS 

In this chapter we will develop an algorithm for finite element calcula­

tions on a structure with an n x m mesh, that is to say: the structure con­

sists of n rows and m columns of quadrilateral elements, each element com­

prising four corner nodes. The most simple example of such a structure is a 

rectangular plate which, in an obvious way, is partitioned into n x m uni­

form rectangular ele.ments (i.e. all elements are of the same size). Note, 

however, that by allowing arbitrary quadrilateral elements, the structure 

is not necessarily a rectangular plate. Deformations are permitted. It will 

be assumed that, as far as numerical stability is concerned, the pivot­

order of the associated set of equations is not of importance. We will 

moreover assume that the element matrices are symmetric. 

our approach will he based upon the substructuring technique. The obvious 

way to dissect a rectangle is to divide it into two rectangles of about 

equal size. Hence reduced structure matrices and vectors must then be com­

puted, associated with each of the two smaller rectangles. To compute the 

reduced structure matrices, every substructure will in turn be divided into 

two (smaller) rectangles, unless the substructure is too small to be dis­

sected, i.e. consists of only one element. 

The implementation of this algorithm and the data structures involved will 

be described with the programming language PASCAL [Jensen and Wirth '78]. 

A step-wise refinement approach [Wirth '71 comm.] will be employed to 

clarify the procedures developed . 

• 1. Procedure ur 

'I'he procedure ur produces the reduced structure matrix of a structure R 

provided with an n x m mesh. A corner node of Risa node belonging to 

precisely one element, hence R has four corner nodes. In an obvious way 

four sides of R may be distinguished; they will be identified by left, 

upper, and lowe1'. Only nodes on the sides of R are external. A side 



will be called external if it contains external nodes only. Not all sides 

of Rare necessarily external, On a non-external side at most the corner 

nodes are external. 

The procedure heading of ur is 

procedure ur (n, m, integer; ext: 

The type set-of-sides is defined as follows: 

~ set-of-s·ides = set of (left, upper, right, lo1.Jer) 

The value parameter ext refers to the external sides of R. The parameters n 

and m refer to the number of elements; their values equal the number of 

rows and co1U!!lns, respectively, The body of ur is: 

L procedure ur (n, m: integer; ext: set-of-sides); 

~ n1, ml, n2, m2: integer; el, e2: set-of sides; 

{m'., mi are the number of elements along the sides of 

substructure -i (i = 1, 2); ei denotes the external sides} 

3, be9:in if (n = 1) ~ (m"" 1) 

'-L ~ compute-element 

5. begin divide R into two rectangles Ri and R2, i,e, 

end 

end; 

decorrrpoBe 

compute nl, ml, n2, m2, e.1, e2; 

ur (nl, m1, el); 

ur (n2, m2, e2); 

assemble 

The procedure assemble performs the assembly of the two (reduced) structure 

mat.rices computed in lines 6 and 7, The procedure performs the 

partial decomposition of either the structure matrix assembled in line 8, 

or the elernent matrix computed in line 4, This decomposition results in the 

reduced structure matrix Qr and the decomposed matrices L11 and LEI' where 

E denotes the external nodes of Rand I stands for the internal nodes 

eliminated by the last call of deeorrrpose; hence I are the nodes which are 

internal in Rand external in R1 and R2; I does not denote all the internal 

nodes of R, 
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The correctness of ur, i.e. upon its termination Qr is correctly computed, 

is easily verified by induction [Dijkstra '72], taking the correctness of 

lines 4, 5, 8 and 9 for granted. It is trivial to verify that the execution 

of ur will always terminate. 

4.1.1. Element specification and storage of results 

In order to compute in line 4 an element matrix, it must be known which 

element is meant. Therefore we provide ur with the further parameters i and 

j, the row and column number of the lower left element of the structure 

whose reduced structure matrix must be computed. 

Another point where we want to be a bit more specific is the way in which 

the resulting matrix is recorded. For reasons to be explained in Chapter 7, 

all data are stored in a global one-dimensional array A of sufficient 

length. All that is necessary to retxieve data are their indices in A. 

Therefore we include a variable parameter r in ur, whose value upon exit of 

the procedure i.s the position in A from where the computed results may be 

obtained. 

With these extensions the declaration of u:x• becomes: 

L procedure ur (n, m, 1'. j: integer; ext: set-of-sides; 

2. ~ r: integer); 

3. ~ nl, ml, il, jl, n2, m2, i2, j2: integer; 

4. el, e2: set-of-sides; 

5. rl, r2: integer, 

{ri i.s the index in A where data of substructure i may be 

retrieved (i = 1,2)} 

6. begin assign value tor {initialize datastruct.ure}; 

7. g (n = 1) ~ (m = 1 l 

8. ~ eompute-e Z.ement ( 1:, j, r) 

9. ~ begin compute nl, ml, 1:1, jl, n2, m2, i2, j2, el, e2; 

10. ur (n1, ml, i1, , el, rl); 

1. ur (n2, m2, i2, j2, e2, r2), 

2. assemble 

13. decompose 

end 



52 

4.1.2. Dissection of the rectangle and representation of element matrices 

In line 9 the rectangular mesh is dissected into two smaller rectangular 

meshes. The way of dissecting affects the efficiency of the computations . 

.Following intuition, it seems advisable to dissect the rectangle along a 

line roughly through the middles of the two long sides (that are the sides 

with the largest number of elements). Therefore line 9 becomes: 

n > m 

~ begin nl ;;::::: n 2; n2 := n - n.1; 

ml :== m; m2 := m; 

1: .1 ;:::: i; i2 ::::: i + n.7; 

:== j; j2 :~ j; 

e.1 :=:: ext + [uppel']; e2 :::.-:;: ext + [lower] 

end 

else begin nl : == n; n2 := n; 

m.1 := m 21 m2 z=:; m - m.1; 

i.1 ;:= i; '<) 1,,., "' ~~- i 

,j1 :;:=.: ti; ;:;:,,::. j + ml; 

el := ext + [right]; e2 :: ;;..-;. ex·t + [ 

end 

Because the parameters to he passed in lines 10 and 11 are au called by 

value (except l'l and r2), we may recode lines 10-12 without using the 

intermediate variables declared in lines 3 and 4. To shorten the code a 

variable nm1 will be introduced to avoid repeated evaluation of n 2 or 

m~2. 

As stated before, we will not be concerned with the computation of element 

matrices. Therefore we assume that the procedure corrrpute-element will be 

supplied by others. An element matrix computed by compute-eZement will 

subsequently be (partially) decomposed by decorrrpose; hence the representa­

tion of an element matrix is determined by the specifications of the 

procedure decompose following. In order to free the writer of compute­

eZement from the necessity to be aware of the special representation 

required by decompose, we will introduce an auxiliary 2-dimensional array Q, 

to be passed as a parameter to compute-element. After a call of aompute-

e Zement Q will then represent the elE>..ment matrix in the usual way: the 

lower triangular part stored rowwise. Next the contents of Q must he 
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transferred to A. Due to restrictions imposed by PASCAL it is not possible 

to declare Q locally (in line 8); therefore Q is assumed to be declared 

globally, 

With these modifications the procedure declaration becomes: 

1. procedure ur (n, m, i, j: integer; ext: set-of-sides; 

2. ~ r: integer); 

3. Y!!. nml, rl, r2: integer; 

4. begin assign value to r; 

5. g (n = 1) ~ (m == 1) 

6. ~ begin compute-eZement (i, j, Q); 

7. transfer contents of Q to A 

end 

else begin g n > m 

~ be51in nml := n ~ 2; 

ur (nml, m, i, j, ext+ [upper], rl); 

8. 

9. 

10. 

11. ur (n - nml, m, i + nml, j, ext + [lower], r2) 

12. 

13. 

14. 

15 

16. 

end 

4,1.3. Decompose 

~ 
~be<Jin nml 

~; 

asserrib'le 

Ul' 

Ul' 

:= 

(n, 

(n, 

m ~2; 

nml, i, j, ext+ [right], rl); 

m -nml, i, j +nml, ext+ [l.eft], r2) 

Given an assembled structure matrix, the procedure deaompose computes a 

reduced structure matrix, whereas the procedure assemble has to assemble 

two given reduced structure matrices into one matrix. Hence, the procedures 

asserribZe and tiecompose are closely related; there is a trade-off in the 

share of work that has to be performed by tieaompose and asserribZe. Because 

asserribZe has a kind of bookkeeping function, we have tried to minimize the 

work to be done by tieaompose. Therefore the lower triangular part of the 

matrix to be decomposed is partitioned into two matrices: QEE (the part 
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that corresponds with external nodes only) and the rest. (Leaving the 

internal rows and columns intermixed with the external ones, would, on the 

other hand, simplify the procedure assemble.) 

As mentioned before, decompose decomposes a given structure matrix 

with QII as block-pivot into 

Let ni and ne denote the number of internal and external nodes, respective-

ly, and let 

4ij denote (QII)ij for 1 s j s i s ni, 

R. •• denote 
1,J (LII)ij for 1 s j s i s ni, 

4ij denote (QEI)i-ni,j for 1 s j s ni, ni+l s i s ni+ne, 

R,.. denote (~I)ij for 1 s j 
1,J 

:,; ni, ni+1 s i s ni+ne, 

qij denote (QEE)i-ni,j-ni for ni+1 s j sis ni+ne, 

r 
'qj denote (Qr) ij for 1 $ j :,; is ne, 

then the procedure body of deaompose may be coded as follows (see (1.2*)): 



var i, j, k: integer, h: real; 

begin {computation of (lower triangular part of) LII and LEI} 

for i ,~ 1 to ni + ne do 

end 

begin for j := 1 to min(i,ni) do 

begin h := ~j; 

for k : = 1 to ,i - 1 do h : "' 

end 

if j < i 

then !I, •• 
-- 1,J 

else Jl •• 
-- 1.1, 

'""hit .. 
1,J 

:= sqrt(h) 

r t 
{computation of Q = QEE - LEI LEI} 

for i :"' 1 tone do 

for j : "' 1 to i do 

begin h '"' q. . . .; 1,,+n1..,J+rn 
fork:= 1 to ni doh:= 

end 

h - t.k * £.k; 
1, J 
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Remark: In the actual implementation the space occupied by Q11 , QEI and QEE 

will be overwritten by L11 , LEI and Qr, respectively. 

4.L4, Assemble 

r r The procedure assemble must assemble two matrices, say QRl and QR2 , into 

the structure matrix Q associated with R, A way to do this, is (see 3.14)): 

procedure assemble; 

b~in initialize Q with zeros; 

add c1 Q;1 c1 to Qi 

add c2 Q;2 c; to Q 
end 

where Ci (i"' 1,2) is the connection matrix associated with Ri. To compute 

c1 and c2 , it is necessary to know how the nodes are numbered. The program 

as listed in [Peters '79] follows the (rather arbitrary) convention: the 

external nodes are ordered clockwise, starting with the lower left corner 
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node; the internal nodes are numbered either from left to right or from top 

to bottom, depending upon the way R is split into Rl and R2. Of course not 

the matrices c1 and c2 are computed, but instead two vectors vl and v2 

(with a length equal to the number of externals of Rl and R2, respectively) 

defined by: 

vl[h] tiff the hth external node of Rl is the i th external 

(if t > 0) or internal (if t < 0) node of R. 

An analogous definition holds for v2. The distinction between internal and 

external nodes of R is made because Q is partitioned in Q11 , QEI and QEE' 

The values of n, m and ext are needed to compute vl and v2. The coding of 

the computation of vl and v2 is straightforward, requiring an extensive 

case analysis. After assembly the vectors vl and V2 may be deleted. Further 

details may be found in [Peters '79]. 

4.1.5. Removal of reduced structure matrices 

A reduced structure matrix is, once it is assembled to another matrix, not 

needed any longer. The space it occupies in the global array A may then be 

used for other data. The array A will therefore be used in a st.Jlilck-like 

manner. If the structure R, partitioned into all its substructures, is 

viewed as a tree, then the reduced structure matrices are stored consecu­

tively in A in pre-order [KnUth '75], i.e. of every substructure Rj, first 

its "own" reduced structure matrix is stored, then all the reduced struc­

ture matrices associated with its first substructure and next all those 

matrices of the second substructure. 

A global variable pr is introduced, indicating from which index in A on the 

next reduced structure matrices may be stored. From the parameters n, m and 

ext it can be determined precisely how much space is needed to store the 

reduced structure matrix of R. Hence the value needed to update pr is known 

and in line 4 of the program text in 4.1.2 the old value of pr is assigned 

tor. If every reduced structure matrix is removed as soon as it is not 

needed anymore (and if no other data are stored in A), then the pre-order 

storage implies that the two reduced structure matrices, which are assem­

bled together in line 15 are always the two last ones and removing them is 

simply achieved by updating pr: 
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Because the decomposed matrices LII and LEI will be used for subsequent 

computations, they will not be removed; they (and hence and QEI) are 

stored in the same pre-order, but separated from the reduced structure 

matrices in another part of A. A second variable pd is then required to 

indicate from which index in A on the next decomposed matrices may be 

stored. Note that an extra parameter in ur to indicate where the decomposed 

matrices are stored is not needed. 

4 • 2, Procedures fu:r• and bu:r• 

4.2.1. Computation of reduced structure vector 

The computation of the reduced structure vector with the procedure fur is 

analogous to the computation of the reduced structure matrix with ur: 

1, procedure fUX' (n, m, i, j, integer; ext: set-of-sides; 

2. ~ r: ·integer); 

3. ~ nml, r1, r2, integer; 

4, b§:gin assign value to r; 

8. 

9. 

10. 

lL 

12, 

13. 

14. 

15. 

if (n "" ) ~ (m = 1) 

~ b~in compute-element-vector (i, j, F); 

transfer contents of F to A 

end 

~ begin n > m 

then b§:gin nm1 P~ n div 2; 

fUX' (mn1, m, i, j, ext+ [upper], rl); 

fUX' (n - nm1, m, i + nml, j, ext + [ Zower], r2) 

end 

else begin nm1 := m ~ 2; 

fur (n, mnl, i, j, ext+ [right], rl); 

fUX' (n, m - nml, i, j + nm1, ext + [left], r2) 

~; 

asserrib le-structU1°e vectors 

forward-substitution 
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All parameters and variables play the same role as the corresponding ones 

in u.r. Only the procedure foruard-substitution and the parameter r require 

some comments. 

This procedure foX'Ward-substitution computes the reduced structure vector 
-1 

(see ( 3 -11) ) by calculating h1 = LII f 1 and next subtracting LEI h1 from fE. 

Because h1 is needed again for the computation of the solution vector (see 

(3.15)), f 1 will be overwritten by h1 , called the substituted struat!AX'e 

vector. The matrices ~I and t 11 are computed with the procedure !AX'. The 

execution of ur must then precede the first call of f!AX' and the array A 

must be global to both procedures. fur needs access to both matrices and 

vectors. This is simply achieved (without having to extend the parameter 

list) by storing vectors and matrices together: the storage locations in A 

immediately succeeding those of t 11 will be used to store f 1 and later h1 • 

Prior to the first call of fur, the value of the global variable pd (as­

sociated with A) is reset to the value it had immediately before the initi­

al call of ur. Hence the meaning of pd is slightly changed; it no longer 

indicates which part of A is free, but to which part of A the computations 

are advanced. 

As is the case with the reduced structure matrices, also the reduced 

structure vectors may be removed (overwritten) as soon as they have been 

used in asserrible-struature-veators. 

From the observation that the matrices needed in line 16 of f!AX' are precise­

ly those computed in line 16 of ur it is clear, that both procedures may be 

combined to form one procedure. If line 4 of ur is changed into 

r := pr; pr:= pr+ 'expression'; 

where the value of 'expression' is the number of storage locations needed 
r r 

for QEE and fE, and if, moreover, lines 6, 7, 15 and 16 of flAX' are appended 

to the corresponding lines of ur, then the resulting procedure computes 

correctly in an interleaved way both the reduced structure matrix and the 

reduced structure vector. 
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4.2.2. Computation of solution vector and derived results 

In the foregoing we have seen how the procedures Ul' and fur partition the 

structure R into substructures and compute the decomposed structure matrices 

and substituted structure vectors associated with those substructures. Given 

those decomposed structure matrices and substituted structure vectors (re­

presented in a global array A as indicated before), the following procedure 

bur provides the solution vector associated with R. Moreover, bur provides 

(application dependent) quantities for the (structure) elements; these 

quantities are obtained from the solution vector. 

1. procedure bur (n, m, i, j: integer; ext: set-of-sides; 

2. pwe: integer; ~ d: integer) ; 

3. ~ nml, pwl, pw2: integer; 

4. begin solve; assign value to d; 

5. g (n .. 1) !!E. (m "' 1) 

6. ~ begin transfer data from A to F; 

7. process-solution (i, j, F) 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

end 

end 

~begingn > m 

end 

then begin nml :"' n ~ 2; separate; 

{assigns value to pwl and pw2} 

end 

bur(nml, m, i, j, ext+[upper], pwl, d); 

bur (n-nml, m, i+nml, j, ext+ [lower], pw2, d) 

else begin nml := m ~ 2; separate; 

{assigns value to pwl and pw2} 

end 

bur(n, nml, i, j, ext+[z,ight], pwl, d); 

bur (n, m-nml, i, j+nml, ext+ [left], pw 2, d) 

The parameters and other variables of buz, play the same role as the corre­

sponding ones in ur and fur. The value parameter pwe indicates where the 

values of wE (see (3,15)) will be found in the global array A. For a struc­

ture without external nodes, the value of pwe is irrelevant. Upon each 

entry of the procedure, the value of d must indicate where the decomposed 
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matrices LII and LEI are stored; an adjustment of d with the number of 

storage locations needed for LII' LEI and hr' assures, due to the storage 

sequence of these matrices, that d then indicates the decomposed matrices 

to be processed next. A simple induction argument shows that in this way d 

has also the correct value for the recursive call in line 11 or 14. 

The proceuure solve compute~ w1 (see (3.15)) as follows: first 

is subtracted from giving hi (in an actual implementation hI may be over-

written by h±l, next wI is computed from hi by back substitution with L~I 

(and again h1 is ove:rwritten by 

nodes, then hi h1 . 

• Obviously, if there are no external 

In line 6, the solution vector of the element i.s transferred from A to an 

auxiliary global array F. 'rhe procedure process-solution next provides the 

quanti.ties to be derived from that solution·vector (usually geometrical 

data like node coordinates are required). Just like the procedures compute­

element and compute-element-vector in ur and fur, also process-solution de­

pends upon the specific problem to be solved and has to be written by those 

working on an application" 

The procedures separate in lines 9 and 12 perform the opposite of assernble­

struature-vectors in fur. The vectors wE and wI, as computed in line 4, are 

split into two vectors wEl and which are the solutions for the external 

nodes of the two substructures of R. The variables pw1 and 

locations in A where the vectors wE 1 and wE 2 may be found. 

denote the 

Alt.hough the procedure bur has precisely the same control structure as ur 

and fur•, it can not be combined with them to form one procedure, because 

the substructures are processed i.n opposite order. If the structure R is 

viewed as the root of a tree, of whi.ch its substructures are the nodes, 

then u.:t' and fu:l' process the substructures in post-order, whereas bur pro­

cesses them in pre-order, Moreover, bur needs the results of ur and 

Hence decomposition and fo:rward substitution cannot be interleaved with 

backward substitution, they must be carried out consecuti.vely. 
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EFFICIENCY OF UR 
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In this chapter we present some operation and storage counts for the pro­

cedure UP, as developed in the preceding chapter. It will be shown how the 

storage requirements of U1' may be reduced. If applied to a square R. x R. 

grid, then in total 2.8 R. 2 + O(R.) storage locations are required. 

5.1. Storage and operation counts 

In this section we will investigate the efficiency of the procedures de­

veloped in the preceding chapter. The efficiency can be expressed in terms 

of the amount of storage required and processor time needed. These two 

quantities, however, depend upon the specific implementation on a particul­

ar computer. Therefore, the - implementation independent - number of arith­

metical operations with matrix coefficients and the number of matrix coef­

ficients stored will be considered. 

If i and e denote the number of internal, respectively external nodes of 

the structure to be analyzed with u.r>, then in line 4 of UP in Section 4,1.2 

space is reserved for: 

(5.1) s(i,e)"' ½i(i+1) + ie 

coefficients of the decomposed matrices. Space needed for the reduced 

structure matrices will be dealt with separately. The procedure decompose 

in line 16 requires 

(5.2) 

multiplicative operations (i.e. multiplications, divisions and square 

roots) with matrix coefficients. The number of additive operations is about 

the same, therefore we will not consider them, 

In the procedure fu.r> space is reserved for i coefficients of the substi­

tuted structure vector and Ii (i + 1) + ie multiplicative operations are 

performed by fo:t'WaX'd-substitution _(see also (3.11)). These numbers are 
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small compared with (5.1) and (5.2), respectively, therefore we will 

restrict our attention tour. 

To determine the total number of multiplicative operations carried out and 

matrix coefficients stored by ur, we will first restrict ourselves to the 

case 

(r ~ 0) • 

Let gt(R.) denote the number'of multiplicative operations for an R. x R. mesh 

with t adjacent external sides (t = 0,1,2,3,4). Let gt(R.) denote the number 

of operations for an R. x !R. mesh, where gi, respectively g3 , is associated 

with a mesh, a long respectively one short side of which is external. Si,milar­

ly, g3 is the same function for an R. x it mesh, all sides of which are ex­

ternal, except for a long one; g 2 belongs to an R. x ½R. mesh, the two long 

sides of which are external. With these definition we have the following 

set of recursive relations: 

go<tl "' 2gi (R.) + t(H1,0) 

"'\2g2(R.) + t(R.,Hl) 
gl (R.) 

gj_Hl + g2(R.) + t(Hl,Hl) 

gi (R.) 2g2 (itl + t(½R.,Hl) 

g2(R.) g2(R.) + g3(R.) + t(R.,2£+1) 

g2(R.) = g2 (it) + g3(}R.) + t(!R., ½ R.+1) 

(5.3) g2 (R.) .. 2g3(½R.) + t{lR.-1,2£+2) 

=(g3 (R.) + t(R.,3H1) 
g3 (R.) 

+ g4(R.) + t(R.-1,3R.+1) g3(R.) 

g.3 (R.) g3 (½R.) +g4(!R.) + t(iR.-1, tH1) 

g3(R.) 2g3 (it) + t(lt,2R.+1) 

g4 (R.) 2g4(R.) + t(R.-1,4£) 

g4 (R.) 2g4 ( !t) + t{½Jl.-1,31) 

For g 1 there are two possibilities, each corresponds with a different split­

ting. The first relation corresponds with a splitting from the external to 

a non-external side, the second one with a splitting parallel to the extern­

al side. We will ultimately choose the splitting, which leads to the least 

number of operations. A similar remark applies to g3 • 
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Elimination of g'. and g'! (j = 0,1,2,3,4) from the above set of relations, 
J J 

together with (5.2) gives: 

go (ll = 4g 2 (½.tl + 23 .l',3 
24 

+ 0(,Q,2) 

=(g2{!£) 
+ 2g3(½£) + .§2. .R,3 + 0(.R-2) 

24 
g 1 (9,) 

+ 2g3(½R,) 
68 3 + 0(£,2) 2g 2 (½2) + 24 ,Q, 

(5.4) 
35 3 + 0(£2) g2 (£) g2{!,Q,) + 2g3(!,Q,) + g4 ( !tl + -6 ,Q, 

,,,(g3 dtl + 2g4 (½,Q,) 
239 t3 0(22) + 24 + 

g 3 (R,) 

+ 2g4 (!£) 
121 t3 + 0(,Q,2) 2g3 (½£) + 12 

g4 (£) "' 4g4 c½t) + 2Z.l. Q,3 -
24 

1n2 + 0(£) 

Now it is clear which relations for g 1 and g3 are the best ones; they both 

correspond to a splitting from an external to a non-external side, 

The set (5,4) contains recursive equations of the form: 

where pis a known polynomial, The following properties of this kind of 

equations are easily verified (see also [Rose and Whitten '76]): 

1) additivity: if g(2) satisfies (5,5) and g(,Q,) satisfies 

then h(Jl) ""g(£) + g(£) satisfies: 

h(1) ~ ah(£) + p(1) + ~(2) 

2) non-uniqueness: if g(2) satisfies (5.51, then g' (1) 

with can arbitrary constant, satisfies: 

3) if p(,Q,) ~ S£5 , the solution is: 

g ( J/,) if Ct 

g(,Q,) + 
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with can arbitrary constant; 

g (.Q,) 

with can arbitrary constant. 

From the above properties it may be derived that the solution of (5.4) is 

given by: 

g3 (.Q,) 

(5.6) 92 (,Q,) 

(R,) 

go (tl 

371 
12 
849 Q,3 _ 
36 

4491 Q,3 _ 
252 

3291 ,e,3 _ 
252 

2487 ,e,3 _ 
252 

1 7!/, 2 

17!/,2 

1 7J1, 2 

17!/,2 

From property 2 it follows that 

lower order coefficients of the 

log2 -~ + 0(.Q,2) 

log2 ,e, + O(t2l 

log2 £ + 0(£2) 

log2 t + 0 ( l:,2) 

initial values only affect the second and 

solution polynom:i.als. 

In a similar way we may deduce from (5,1) that, if h. (Q,) denotes the number 
J 

of matrix coefficients stored for an Q, x R, mesh, with j adjacent external 

sides, then: 

( R,) 

The procedure ur needs space to store not only the decomposed matrices, but 

also the reduced structure mat.rices, notwithstanding the fact that these 

are all ultimately removed. Let r(e) ½e(e + 1) denote the number of coef-

ficients of a reduced structure matrix belonging to a structure withe 

external nodes, If f,(R,) denotes the max:i.mum number of coefficients of 
J 

reduced structure matrices stored at any time for an ,e, x JI, mesh, with j 

(j "'0,1,2,3,4) adjacent external sides, then we may derive the following 

set of recurrence relations: 



Solution of these equations yields, 

(5.8) 

From 

f4 (.1',) 2£.9.2 
3 

+ 0(£) 

f 3 ( .I',) "'~ .l',2 + 
24 

0 ( £) 

f2 (.I',) = 223 t 2 + 
24 

0(£) 

f 1 (.I',) "'El. 9.2 + 
96 

0 (.1',) 

fo (.l',J = 271 R,2 + 
96 

0(9.) 

t(i+l,e+l) - t(i,e) 

s(i+1,e+1) - s(i,e) 

r (e+i) - r(e) 

O(il + O(el 

Olel 

+ r(i+l) 

+ r(£+1) 

+ r(H) + r(3£) " 

together with the properties 1 and 3 a.hove, it follows that (5.6), (5. 7) 

and (5.fJ) are generally valid, also if .I', is not a power of 2. 
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If n 'f m the set of recurrence relations is much more intricate. '.r'he solu­

tion of an n x m problem (n > m) requires less computations than tl1at of an 

n x n problem; hence if n > m then g. (n) and h. (n) may serve as upper 
r J J 

bounds. If n >> m, say n = 2 ,m (r > 0), then the rectangular structure is 

by u:r partitioned into 2r m ~ m substructures; solution of the corresponci­

ing set of recurrence relations yields: 

G0 (n,ml ""'21 nm2 + O(m2J 

31 2 2 H0 (n,ml ~ 4 nm + O(m) 

223 2 · 
F O (n,m) "" (24 + !r)m + 0 (ml 
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denote the number of operations, decomposed and reduced 

matrix coefficients, respectively, for an n x m mesh without external sides. 

The recursion depth of UX' is 1 + entier(log 2 (n)) + entier(log 2 (m)). All 

parameters and local variables of ur are simple, except ext, which is of 

fixed size. Hence the stack associated with ur requires only O(log(n.m)) 

storage locations or O(logU,)) for n = m ~-' 9-, which is small compared with 

(5. 7) and (5.8). 

All matrices are represented in the usual way, no special measures have 

been taken to deal with non-zero coefficients only. As we know from Section. 

3.3, the envelopes of the decomposed matrices are dense; however, an en­

velope does not necessarily comprise all its matrix coefficients. Assume 

that two reduced structure or element ma.trices are dense, i.e. do not con­

tain a zero coefficienL If the two matrices are assembled and (partially) 

decomposed, then the resulting decomposed and reduced matrices are dense 

again, unless there are no internal nodes (an internal node would be as­

sociated with both matrices)" When applying ur, indeed substructures occur 

without internal nodes, hence the decomposed matrices of certain s1Jbstruc­

tures may contain zeros. As experience indicates, for an n x n mesh and n 

not too small (n > 13), the number of zeros stored is less than 2% of the 

total number of coefficients and of all multiplications less than 2% has a 

zero multiplicant. Therefore it is not worthwhile to replace the full. matrix 

algorithms in ur by envelope or profile algorithms, 

5.2, Reduction of storage requirements 

In [Eisenstat e.a. '76] it is suggested, that for certain finite element 

types of equations, it is advantageous to recompute certain data, instead 

of saving them, In subsection 4,l..5 it has been pointed out that the pro­

cedure ur saves the decomposed structure matrices requiring 

log 9-) storage locations (see (5.7)), At the expense of a two to six 

fold increase of the operations count, the storage requirements may be re-

duced to 0( , by not saving the decomposed structure matrices, 'I'o that end 

the procedures are modified as fol.lows: 



ls procedure mur (n, m, i, j: integer; ext, set-of-sides; 

2. ~ r, intege1°); 

3. ~£ nml, r•l, r•2, integer; 

4. be9in assign value tor; 

5. if (n = 1) and (m = 1) 

6. the..E, begin compute-element U, j, Q); 

7. compute-element-vector (i, j, F); 

8. trans:(:er contents of Q and F to A 

end 

else begin if n > m 

~ be_gin_ nm.7 := n div 2; 

mur (nml, m, i, j, ext+ [upper], r•l); 
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9. 

10. 

1L 

12 mur (n-nml, m, i+n:ml, j, ext+[lower], 1°2) 

end 

16 

end 

end; 

else ):leg:in nml ,~ m div 2; 

mu.r (n, nml, -i, j, ext+ [right], r•l); 

mur (n, m-nml, i, j+nml, ext+ Cleft], r2) 

end; 

reserve space in A for L11 , LEI and h1 , 

assemble; assemble-structure-vectors 

decompose; f oru_iard-suhsi;i tution; 

free space reserved for L11 , LEI and h1 

This procedure computes both the reduced structure matrix and reduced 

structure vector, associated with the structure R, characterized by the 

parameters n, m, i, j and ext. The parameter r indicates where the computed 

results may be found in the global array A. Essentially mur is the proce­

dure ur combined with fur, modified in such a way that the decomposed 

structure matrices and substituted structure vectors are not saved" 

The next procedure just computes the decomposed structure matrices and 

substituted structure vector of R, 
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L 12rocedure lur (n, m, i, j: intege1'; ext: set-of-sides; 

2, ~:i:, d: integer.); 

3. ~ nml, r.1, r2; 

4. begin if (n = 1) and (m = 1) 

5, then begin corrrpute-element (i, j, Q); 

6. corrrpute-element-vector (i, j, F); 

7. transfer contents of Q and F to A 

end 

8. 

9. 

10. 

1L 

12. 

13. 

14. 

16. 

17. 

end 

else begin if n > m 

then begin nml :~ n div 2; 

mur (nml, m, i, j, ext + [upper], rl); 

rrrur (n-nml, m, i+nml, j, ext + [l01.ue1'], r2) 

end 

else begi_ri._ nml := m div 2; 

nrur (n, nml, i, j, ext + [right], 1•1) ; 

mUl' (n, m-nml, i, j+nm.1, ext+ [left], r•2) 

~; 

reserve space in A for L11 , LEI and h1 ; 

assenib le; assenib le-str•ucture-vectors 

end; 

decorrrpose; foruard-suhstitution 

Note that the procedure lur itself is not recursive. 

As the number of arithmetical operations and the number of storage loca­

tions required for the vectors are of a lower order than needed for the 

matrices, we may use gj (JI,) (see (5.6)) also to denote the operations count 

for lur. The storage count f~(JI,) follows from the observation: 
J 

f~(i) "' max(f.(.l',),s.(JI,)) 
J J J 

r 
where s.(JI,) is the number of storage locations needed for L11 , LIE' QEE' 

r J r . 
QEl, El and QE 2 , E2 , El and E2 are the e.xternals of the substructures in 

which the JI, x £ mesh is divided. Hence 

fo* (£) = 271 .11,2 + 0 (£) 
96 
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* "'Bl J/,2 + ow f 2 (JI,) 
24 

* 22.R,2 + 0(£) f 3 (JI,) 4 

* f 4 (JI,) 43 J/,2 
2 

+ OU,l 

The next prvcedure, which computes the solution vector, is a slight modifi­

cation of bur, 

L procedure tur• (n, m, i, ,i: integer; ext: set·-of-sides; 

2" '[)We: integer); 

3. ~ nml, d, pw1, '{JW2: integer; 

4. begin lur (n, m, i, j, ext, d); 

5. solve; 

6. if (n = 1) and (m ~ 1) 

7. ~ begin transfer data from A to F; 

8. process-solution (i, j, F) 

9. 

10. 

1L 

12. 

end 

end 

~ begin g_ n > m 

end 

_then begin nm.1 '"" n div 2; sepa,rate; 

tur (nml, m, Z:, j, ext+[upper], pwl); 

tur (n-nm1, m, i+nm1, j, ext+Clower], pw2) 

end 

~ begin nml :"' m div 2; sepa,rate; 

tur (nm1, m, i, j, ext+[right], pw.1); 

tur (n, m-nml, i, j+nml, ext+[Zeft], pw2) 

end 

'rhe storage requirements of tur are precisely those of Zur i..n li..ne 4. The 

operation count g.(Q.) may be deduced from: 
J 

go (!1.l 2gi (JI,) + go<n 

91 (Q,) 2g2 ( JI,) + g 1 ( ,Q,) 

gi (.Q,) 2g20JI,) + gi (,Q,) 

g2(,Q,) g2(£,) + 93 (,Q,) + g2(Q,) 
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g2W g,.,(!Jl,) 
"' 

+ g3 (½Z) + 9;/R,l 

g3(R,) 2g3(,Q,) + 93 (,Q,) 

g3 UL) g3 ( ft) + g4(!£l + g3 (,Q,) 

g4 (R,) 2g4 (R,) + 94 (JI,) 

g4 ( R,) 2g4 (½JI,) + g4 (R,) 

where g'. 
J 

(j = 1,.,.,4) is defined analogously to gj. Elimination of gj 
(j = 1, ... ,4) from the above gives: 

go (Zl 4g2(!,Q,) + go(£) + 2gi (JI,) 

g 1 ( 9,) 2g 2 (½£l + 2g3 ( ½i) + gl (9,) + 2g2(9,) 

g2 (9,) g2 ( !£) - l + 2g3 ( 22-l + g4 n ii + g 2 (R,) + g2(9,) + gjW 

g3 (R,) 2g3{½J1,) + 2;_j4 dil + g 3 (R,) + 2gj (Ji,) 

g4(.0 4g4 (½R,J + 94 (Ji,) + 2g4 (Ji,) 

Combining the above with (5,3) yields: 

go(,Q,) 4g2 dil + go <il + 4g2{½9,) + 2t(½J1,,Hl) 

g 1 (J1,) 2g2(!J1,) + 2g3 {½JI,) + g 1 ( Ji.) + 2g2(!J1,) + 2g3 (½9.) + 2tqz, ½Hl) 

g 2 (Jl) g2(!i) + 2g3 (i.O + 94 ( ½JI,) + g2(R,) + g 2 d!ll + 2g3 qi) + 

It is easily verified that the following may be added to the properties of 

equations (5.5): 

5) if p(J!,) 00 13,e, 9 log 2i, the solution for a = 2s is: 

(c is an arbitrary constant); 

6) if p (9.) = il!l s (log2 i/, the solution for a 1 28 is: 



Hence, solution of the above set of recursive 

g4(R,) = 620 Jl,3 _ £ Jl,2(log2JI,) 2 
6 2 

g3 (JI,) ~R,3 
9 

_ £ .e, 2 (log2 JI.) 2 
2 

(5.9) g2(JI,) "'~ Jl,3 
441 

_ £ Jl,2 (log2 R,) 2 
2 

g1 (JI,) "' 
9785 Jl,3 
147 

_ £ !1.2 (log2 JI.) 2 
' 2 

go(Jl.l "'~ Jl,3 
441 

_ £ Jl.2(log2JI,) 2 
2 

From (5.9) and (5.6) it follows: 

g4(JI,) /g4(R,) ""3.3 

go(!l.l /go(!l.l ""5.9 

+ 

+ 

+ 

+ 

+ 
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equations gives: 

0(11,2 log JI,) 

Oo,2 log JI,) 

Oc.e,2 log R,) 

0(!1.2 log JI,) 

0(!1.2 log R.) . 

Hence for a structure with four external sides we have, at the expense of a 

three-fold increase in the number of computations, reduced the storage 

count from 3i JI. 2 log2 R. to 4; JI. 2 ( there is also a reduction if R, < 8) ; for 

structures without external sides the storage count is even reduced to 
271 2 96 JI,, requiring a six-fold increase of the operations count, (Note that 

the complete structure matrix assoicated with a square JI. x JI, grid contains 

5£2 + 0(JI,} non-zero coefficients.) The trick of not storing the decomposed 

structure matrices, but instead recomputing them whenever they are needed 

is motivated by the desire to save storage. It is however not necessary to 

apply the trick on all levels of the recursion, Obviously, for small sub­

structures (deep in the recursion) it is not necessary to save storage. 

Therefore the same storage reduction can be achieved with a smaller in­

crease in the number of operations. By still other, more intricate, modi­

fications it is possible to restrict the increase in the number of computa­

tions to a factor 2 yielding a storage count of 3i t 2 for a structure 

without external sides. 
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CHAPTER 6 

ADAPTATION TO MORE COMPLICATED STRUCTURES 

Applications of the algorithms presented in the preceding chapters are not 

restricted ta simple rectangular plates with a uniform mesh, We will in­

dicate in this chapter how the algorithms may be adopted for more general 

two-dimensional solid as well as frame structures. 

The algorithms (or variants of them) are in particular useful if (parts of) 

the structure to be analyzed can be provided with a "topologically" regular 

mesh. Irregular el<:>.ment partitionings a.re often encountered if triangular 

elements are used to refine grids locally. It will be shown how locally 

refined grids are most efficiently analyzed. 

6. 1. Prame structures 

A structure will be called fratne structure if it consists of elements with 

two nodes only. Let the elements of the frame structure F be arranged to 

form a rectangular n x m grid, such that the (n + 1) x (m + 1) nodes are the 

grid points and each element is a horizontal or vertical edge joining two 

neighbouring grid points, It is not immediately obvious how to decompose F 

into two similar substructures (how to partition the elements into two 

sets), One may want to dissect F along a line roughly through the middles 

of the two sides with the most elements, but then the dissection line 

passes through some elements and for every element along the dissection 

line a choice must be made to which substructure that element belongs. 'I'wo 

possibilities for a sensible decision are, 

i) every element along the dissection line belongs to the same, say first, 

substructure; 

ii) starting at one end of the dissection line, the elements alternatingly 

belong to the first or the second substructure. 

In both cases the number of different kinds of substructures increases, In 

the first case we obtain substructures, an external side of which may or 

may not be "notched", In the second case all external sides are "dashed", 

but the first two nodes of an external side may or may not belong to a same 
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element. Hence in both cases there are two types of external sides. This 

can be accounted for by extending the procedures Ul', fur and bu:t' with an 

extra parameter (or by extending the parameter ext) to indicate the type of 

each external side. Of the procedure ur only the procedures assemble and 

compute-element need be adapted to these extensions, leading to an .i.ncrease 

of the amount of code required. The efficiency of the computations is not 

adversely affected; only the length of the program text increases due to a 

more extensive case analysis. The number of arithmetic operations and 

matrix coefficients stored is precisely the same as in the quadrilateral 

element case. However, the matrices associated with frame structures con­

tain more zero coefficients. This may be seen as follows. 

An element. matrix associated with a quadrilateral four node element is a 

4 x 4 matrix without zeros, whereas in the frame structure case, each call 

of compute-element yields a 4 x 4 matrix M, which is assembled from at most 

four 2 x 2 matrices and hence the envelope of M does not contain all the 

coefficients of M. As may be estimated (see also [Duff e.a. '76]) the 

savings may amount to about 25% of storage and to about 30% of arithmetical 

operations by storing only the envelopes of the matrices. In these percent­

ages, the overhead .in using envelopes only is not included. 

6.2. Solid quadrilateral structures 

The procedures as developed in Chapter 4 apply to finite element. calcula­

tions for structures with an n m mesh. To derive the element matrices, 

one usually needs geometrical data, like node coordinates. In th.is 

section we will describe how these geometrical data are obtained from the 

row and column number of the element concerned. 

6.2.1. Rectangles 

Let the rectangle R be determined by the following X, Y coordinates of its 

four corner nodes: (0,0), (a,0), (a,b), (0,b), where the nodes are listed 

clockwise, starting with the lower left node (a,b :2: 0). Suppose the mesh is 

uniform, Le. all elements are rectangular and of the same size. If there 

are N and M elements along the sides parallel to the X- and Y-axis, re­

spectively, then the coordinates of the lower left node of the element in 

:row i and column j a:re: 



(a , b ') 
N 1 ' i J 

(0 5 i < N, 0 5 j < M) , 

'I'he coordinates of the other element nodes may be obtained from similar 

expressions, Because i and * may be considered as global constants for 

the procedures ur, fur etc., each coordinate requires in fact only one 

multiplication. 

In order to ensure that the results of the finite element computations are 

sufficiently accurate, the size of the elements must be small enough 
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[Strang and Fix '7 3 J. The smaller the size of the elements, the larger the 

number of nodes, hence the more computations. For several finite element. 

problems, it is not necessary that all elements have the same size. By 

allowing elements with different sizes, one may achieve sufficient accuracy 

with only a modest amount of computations. Hence, it is useful to provide a 

facility ta "grade" the mesh. Far the rectangle R, to be divided into rect­

angular elements, grading is simply achieved by choosing two monotone func­

tions rp: {O,, .. ,N-1}-+ [O,a) and ;Ji: {O, .. .,M-1}-+ [O,b) with cp(O) ~ ;Ji(O) = 0 

and defining the coordinates of the lower left node of the elements in row 

i and column j to be 

(qi (i) 'ij, (j)) 

For example: 

(jl (i) - 1) (i 

with pa suitably chosen constant, is such a monotone function. 

As is well known, t.he accuracy of the results of the finite element. com­

putation depends also upon the shape of the elements, the more a rectangu­

lar element deviates from a square, the less accurate the results of the 

computation are and Fix '73]. Grading the mesh in the above way may 

lead to elements which are too slender. To avoid those too slender elements 

the grading technique as outlined in Section 3 is mare appropriate, 

6.2.2. Quadrilaterals 

In this subsection we will consider a (curvilinear) quadrilateral structure 

C with a mesh consisting of raws and columns of (not n,;':cessarily rect­

angular) elements. We will describe how, in this general case, the node 
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coordinates can be obtained from the row and column number of the elements 

concerned. A transformation <I> will be constructed, which is a one-to-one 

map from a suitably chosen rectangle R onto the quadrilateral c. (In the 

sequel x, y will denote coordinates of a point in Rand~. n will be used 

for points in C.) The map <I> transforms a mesh of R with rectangular ele­

ments into a mesh of C with quadrilateral elements. The coordinates of the 

element nodes of Care obtained by applying <I> to the coordinates of the 

corresponding element nodes of R. In which way the node coordinates of R 

are derived from the row and column number of the element concerned, has 

been shown in the preceding subsection. 

6.2.2.1. Quadrilateral given by points 

If the quadrilateral Chas straight sides and is given by the coordinates 

of its corner nodes c. 
l. 

(i = 1,2,3,4), bilinear shape functions 

[Zienkiewicz '77] may be used to construct <I>. If for R the unit. square with 

corner nodes 

taken, then 

(6.1) <I> (x,y) 

with 

N1 t(1-x)(1-y) 

¾ ( 1 - x) ( 1 + y) 
(6. 2) 

N 
3 

¼ (1 + x) ( 1 + y) 

N4 !(1+x)(1-y) 

It is easy to verify that 

4 

I 
i=l 

N. 
l. 

<j, (i"" 1,2,3,4) • 

= (1,1) and = (1,-1) is 

A sufficient condition that such a transformation, using bilinear shape 

functions, is a one-to-one map from R onto C is that no internal angle of C 

be larger than 11 [Strang and Fix '73]. (This implies that the transforma­

tion may even be used if C degenerates into a triangle.) 

<!> as defined by (6.1) and (6.2) is bilinear; hence straight boundary and 

inter-element line segments are_transformed into straight segments. There-



fore the image of a rectangular element in Risa quadrilateral with 

straight boundaries. 
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Let now the quadrilateral C be given by m successive points, to be denoted 

(in clock-wise order) by c 1 

cb3 and cb4 be (in clock-wise order) the corner points of C. For R we 

choose a rectangle with sides parallel to the coordinate axes. On the sides 

of R we choose (in clock-wise order) m points r 1 = (x1 ,y1) p•-, rm= (xm,ym) 

in such a way that rbl' rb2 , rb3 and rb4 are the corner points of R. To 

construct <l> we choose the shape functions of the "serendipity family" of 

finite elements [Zienkiewicz '77]. The idea is the following, Let <l> be 

defined by 

<l> (x, y l = ( I N . s . , I N . n . ) 
r"'i 1 1 i=l 1 1 

where Ni are functions still to be specified. If we manage to choose those 

functions in such a way that they satisfy, 

(6. 3) 1 :;; i, j :;; m , 

then obviously the following relations hold: 

Lagrangean interpolation is now used to obtain the functions Ni satisfying 

(6.3): 

1) Let ri (not a corner point) lie on a side s parallel to the Y-axis and 

let rk be a point on the side parallel to s, then 

Ifs is parallel to the x-axis, then x and y are interchanged: 

y - y, 
TT ~ 

r. on s Yi -yj 
J 

2) If ri is a corner point lying on the sides sand t, parallel to the X­

and Y-axis respectively, and rk is a corner point not on sand t, then 
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rj on s 
except corners 

l 
rj on t 

except corners 

If<!> as defined in this way (depending amongst others upon the choices 

of r 1, ••• ,rm) is a one-to-one map from Ron C, then<!> transforms a mesh 

of R into a mesh of C. Whether, however,<!> is one-to-one and whether the 

mesh obtained is appropriate, cannot be stated in general. Intuition and 

graphics facilities must be resorted to. 

6.2.2.2. Quadrilateral given by parametric functions 

Assume that the four sides of the quadrilateral Care given by the para­

metric functions: 

f. 
J 

[O, 1 J ➔ m.2 , j"' 1,2,3,4 

with the corner points of C given by 

(0) ( 1) (0) 

Blending function interpolation [Gordon and Hall '73] can be used to con­

struct a transformation from the rectangle R determined by the corner 

points ( 0, 0) ( 1 , 0) , ( 1 , 1) and ( 0, 1) to c: 

<!>(x,y) "" (1-x)f1 (y) + xf2 (y) + (1 -y) 

- x(1-y}f2 (0) - xyf2 (1) 

- (1-x) (1-y)f1 (0) - (1-x) y ( 1) • 

¢ transforms the straight line segment {(O,t) I Ost s 1} in the curved 

line segment (t) I O :S t s 1} and the line { (t.,O) [ 0 :S t. :S 1} into 

{f3 (t) IO :St s 1}, etcetera. Hence the four sides of Rare transformed in 

the :four sides of C. 

Again it is difficult to state in general, whether the parametric functions 

fj (j ~, 1,2,3,4) lead to an appropriate mesh for C, So far one is best. 



guided by experience, geometric intuition and inspectiono The aid of 

computer graphics facilities seems indispensable. 

6,3. Local mesh refinements 
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In Section 6,2.1 we have indicated how grading of a mesh may be achieved. 

For problems which allow very different element sizes in different parts of 

the structure, grading in that way leads to elements which are too slender, 

Therefore, in practice triangular elements are popular, because they are 

more suited to achieve local mesh refinements. A serious drawback of using 

triangular elements for that purpose is that they may give rise to irregular 

meshes. The merits of the procedures as outlined in Chapter 4 are due to 

exploiting regularity, To obtain local mesh refinements, however, one does 

not need to resort to irregular meshes. For the ease of presentation we 

will in the following apply rectangular elements, more specifically blended 

elements [Cavendish '75]. Blended elements differ from standard elements in 

that node to node connection for two adjacent elements is not required and 

thus that two or more smaller elements are allowed to abut against the edge 

of a larger element. In an obvious way the meshes described can also be 

obtained by applying (standard} triangular elements. 

6,3.1. Procedure Zm 

Let us consider, to start with, a rectangular structure R with a mesh, 

locally refined around the lower left corner of R, Consider a partitioning 

of R into rectangular elements obtained in the following way 

first partition R into four similar subrectangles; 

next perform n times 

partition the left, lower subrectangle into four similar subrectangles, 

This partitioning leads to a mesh with 2 elements along the upper and right 

side of R and with n + 2 elements along the lower and left side. Altogether 

there are 3n + 4 elements and Sn + 9 nodes. 

The elements of R will be identified with two integers, a "row" and a 

"column" number, in the following way: the three largest elements are (in 

clock-wise order, starting with the left most one) identified by (n+l,O), 

(n+i,n+1) and (O,n+l}, respectively; of the remaining elements the three 
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largest ones are, in the same way, identified with (n,0), (n,nl and (0,n); 

and so on. The lower left element is identified by (0,0l. 

Let Rm (0 s m s n) denote the substructure containing the elements of which 

the row and column number do not exceed m + 1. We then have R = R • Moreover 
n 

the elements (m+l,0), (m+1,m+1) and (0,m+l) ass~~Jbled with Rm-l yield 

precisely Rm. Hence assembling the three element matrices to the reduced 

structure matrix of Rm-l gives a structure matrix consisting of five in­

ternal and five external nodes • .Elimination of the five internal nodes 

results in the reduced structure matrix of R. 
m 

A procedure computing i.n the same vei.n as in Chapter 4 the reduced structure 

matrix associated wi.th R if the five nodes along the upper and right side 

are external, i.s: 

1. procedure un (n: integer; var r: integer); 

2. ~..E. h, rl: integer; 

3. be~ ur (2, 2, 0, O, 

h ,,,, O; 

, rl) 

7. 

8. 

9. 

10. 

1L 

12. 

while h < n do 

begin h : = h + 1 ; 

compu/:e-element (h+1, 0); 

compute-element ( 0 , h+ 1 ) ; 

compui;e-e 7,ement ( h+ 1 , h+ 1) ; 

assemble; 

decompose; update rl 

I' ,,. rl 

The parameter n indicates the number of times a lower, left subrectangle of 

R was partitioned in order to obtain the complete partitioning of R, The 

value of the parameter .!' upon exit of the procedure i.s the address of the 

reduced structure matrix of R in the global array A, 

The values of the auxiliary variables hand rl are such that always at the 

beginning and the end of the repeated compound statement the following re­

lation holds 

11 .1 is the address of the reduced structure matrix _of 
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The procedure assemble assembles the three element matrices, computed in 

the preceding lines, with the reduced structure matrix of Rh_1; elimination 

of the five internal nodes with the procedure decompose gives the reduced 

structure matrix of Rh. When execution of the while-statement is completed, 

it yields h = n and hence rl is the address of the reduced structure matrix 

R = R. n 

It is straightforward to develop in a similar fashion procedures to compute 

the {reduced) structure and solution vectors. 

As is the case with W'.', Zm may be applied to rectangles as well as to 

general quadrilateral structures. 

The procedure Zm resembles U1' in that decomposition of the structure matrix 

is interleaved with partitioning the structure, computing the element 

matrices, assembling and ordering the equations. The traditionally con­

secutive steps are carried out interleaved. 

6.3.2. Storage and operation counts of Zm 

If the matrices are represented as full matrices, then the procedure 

decompose in line 11 requires (see 5.2) 

multiplicative operations with i = e = 5. Hence, the ~-statement 

requires 185 n multiplicative operations with matrix coefficients. The 

procedure U1' requires 130 such operations, therefore the total number is 

185 n + 130 • 

By applying profile algorithms that number may be reduced to 

(6.4) 119 n + 67 • 

To store the matrix, assembled in line 10, as a full matrix requires 55 

storage locations, for the reduced structure matrix 15 locations are need­

ed. Hence, if the decomposed and reduced structure matrices are overwritten 

once they are not needed any longer, Zm requires in total 55 + 15 that is 

70 

locations {W'.' in line 3 requires.less). 
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If the decomposed matrices are retained, then at. most 

(6.5) 40 n + 100 

storage locations are occupied. 

It should be noted that (6 A) shows also the operation count. associated 

with a more usual organization of the calculations, L first assembling 

the complete structure ma.tr.ix associ,ited with R and next applying a profile 

algorithm to compute the reduced structure matrix. 

Let N denote the total number of nodes of R, then N "' Sn+ 9. It fol.lows 

from (6.4) and (6. that the operation and storage counts are about 

24N - 147 and 8N + 28, respectively. Hence both time and space required are 

0 (N) , i.e. linear in the number of nodes. An asymptotically faeS'ter algo­

rithm does not exist, because writing down the solution alone requires O(NJ 

space and time. Remember that the corresponding counts for UY' are 0 

and O(N log N), respectively, with N the total number of nodes of the 

structure concerned. 

If the rectangle R would have been partitioned uniformly with all elements 

in size equal. to tl1e smallest element of the locally refined grid, then the 

total number of multiplicative operations with matrix coefficients would 

have been O , Comparing this with (6A) shows the computational advan-

tages of local mesh refinement. 

6 General plane and curved surfaces 

For more general surfaces, which for instance may contain appendages 

holes, an approach as out.lined in [Zienkiewicz and Phillips '71] may be 

followed, 

The surface, say S, is divided into a number of quadrilaterals Vi 

,, With Sa so called key diagram is associated" diagram 

is a rectangular configuration of (possibly empty) rectangles. There .is a 

one-one correspondence between the non-empty rectangles Ri (i '" , , ,, , ,r) 

and the quadrilaterals VL Moreover, Ri and Rj (i ,/ j) are adjacent in the 

key diagram only if V.i and Vj are adjacent in S. For every pair Ri, Vi a 

transformation <!> j_ is constructed, as outlined in Section . 2, which trans~ 

forms a partitioning of Ri into a partitioning of VL Of course, if Ri and 
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Rj have a common boundary b, then the nodes of Ri and Rj on b must coincide; 

moreover ti and ~j applied to b must be the same transformation. 

To complete the versatility of the scheme it is important to include one 

further feature, namely to express that two seemingly different boundaries 

in the key diagram are identical. It is of course necessary to ensure that 

the transformation conditions just described for common boundaries, are 

satisfied for such identical boundaries. By including this feature it is 

even possible to deal with such three-dimensional surfaces like tori and 

ball surfaces. Key diagrams are in [Zienkiewicz and Phillips '71] used to 

generate an element partitioning for Sonly. However, it is just as well 

possible to apply procedures as described in Chapters 4 and 5 to compute 

immediately the reduced structure matrices Q;i and vectors f;i associated 

with the quadrilaterals Vi (i = 1, ••• ,r). 

r r 
To assemble the matrices ~i and vectors fVi and to compute the associated 

parts of the total solution vector, one may proceed in the traditional way. 

The finite element system FEMSYS [Peters '76] is very well suited not only 

to perform such matrix calculations, but also to handle the necessary book­

keeping. FEMSYS is well suited because of its facilities for specifying 

structures consisting of arbitrary substructures; moreover its possibility 

to identify nodes with different numbers is necessary in this case. 
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CHAPTER 7 

CLOSING REMARKS 
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A discussion of various strategies to solve a set of linear finite element 

equations efficiently by direct. methods rnay be found in '77, George 

and McIntyre '78 • 'l'hose papers deal only with ordering of the equations, 

LU-decomposition (or factorization as it is called) and forward and back­

ward substitution; they are not concerned with the assembly of the struc­

ture matrix. Comparing figures from those papers with Table 1 indicates 

(taking into account the different processor speeds and the efficiency of 

the code produced by the respective compilers) that our solution (by apply­

i.ng the proct,>dures from Chapter 4) is far more efficient (by about a factor 

This may be due to the fact that reordering as well as overhead storage 

and bookkeeping are avoided. For a better appraisal. must compare our 

program with one that executes aZZ the relevant steps" 

Por another comparison we have taken a pcpul.ar finite element program for 

structural. analysis in use on several computer installations all over the 

world. From Table 2 it i.s obvious that our program saves a factor greater 

that 50 of the processor time, Moreover, our program uses only central 

memory, whereas the other needs ai:udl.iary disk space, The structural 

lysis program is intended to a general purpose one, suited for all 

of meshes. Therefore the comparison may not be quite fair; it indi-

cat.es very clearly which gains efficiency may be achieved. 

7,2. Data retrieval. 

One of the reasons why the procedures as developed in this monograph are 

efficient is undoubtedly that no other data than coefficients of structure 

matrices and vectors are stored, Whenever the valu,a of a coordinate is 

required, is computed,, 'l'his is easily done, because the regularity of 

the problem is fully exploited. l"or instance, if the structure is a rect­

angle with a uniform mesh, the computation of a coordinate takes only one 

addition and one multiplication with simple variables as operands, which is 
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n 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

number of 
unknowns 

36 

121 

256 

441 

676 

961 

1296 

1681 

2116 

2601 

number of rl - total 
multiplications time* 

817 0.018 ,06 

6829 0.10 0.30 

24848 0.31 0.83 

62744 o. 72 1. 73 

123429 L43 3.12 

2l.6323 2.40 4.77 

350184 3.81 7.07 

544868 6.00 10,5 

772081 SAS 14.3 

1057805 10.7 17.7 

storage and operations counts 

decomposition and total time 

of 

number of coefficients 
of decomposed matrices 

220 

1170 

3200 

6561 

11230 

17314 

25065 

35189 

46350 

59142 

procedure UI' applied ton x grids 

* times are seconds on IBM 370/16.5 with double length reals 

*l 

TABLE 1 

number of 
unknowns S'l'RUDI/l Ul' 

450 224 2 

882 377 5 

3200 1247 23 

total processing times 

in seconds on IBM 370/165 

See [Frederiksson and Mackerle '76]. 

TABLE 2 
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no more e>.xpensive than the evaluation of a subscripted variable. Hence, it 

is cheaper to compute than to retrieve the coordinates every time they are 

needed, For less regular structures the topologies of (parts) of the ele­

ment meshes are the same. 'l'o compute the coordinates of the nodes, trans­

formations as described in Chapter 6 are applied. These transformations are 

simple, easy to compute functions, if the structure does not deviate too 

much from that of a uniform rectangle. 

7.3. Triangular dissections 

The computational steps of and bur resemble the traversal of a binary 

tree. Going from a tree vertex to its successor, all information relevant 

for the successor is easily derived from the information concerning its 

predecessor. 

Such information includes not only the number of internal and external 

nodes, but also the ordering of them, Procedures analo9ous to u.v, and 

bur may be developed for other kinds of structures,, For instance, a tri­

angular structure T can be dissected into four similar triangles, each of 

which can be dissected into four , , , , and so orL The associated tree of 

substructures is then a quaternary tree, 

7.4, One- and three-dimensional problems 

It is straightforward to develop procedures analogous tour, 

for one- or three-dimensional structures: a line segment can 

and bur 

dissected 

into two segmerrts, a brick into two bricks, 'I'he adaptations as de-

scribed in Chapter 6 may be extended to the one- or three-dimensional ca,5e 

as well, 

However, for one-dimensional structures it proves to be cheaper both in 

storage and in number of a:dtl1rnetical operations not to dissect the line 

into two lines of about equal size, but to split off just one element at 

one of the ends, In this way the nodes are successively eliminated from one 

end of the structure to the other, 

'!'he above remark i.s also valid for two-dimensional structures with an x m 

mesh if n >> m, For those structur-es it is , as far as efficien-

cy is concerned, to consider them as one-dimensi.onal strings of substruc-
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tures with m x m meshes, 'l'o compute tl!e matrices and vectors associated 

with those substructures, the procedures UY', and bu1' may be applied 

7.5. Structures with more than one structure vector 

In some applications of the finite element method, many sets of equa.tions 

having the same coefficient matrix must be solved, If the procedures from 

Chapter 4 are used, then the decomposed structure matrices associated with 

the structure, say R, need to be computed only once by a call of ur and 

each structure and solution vector for R requi.res the execution of the 

procedures and bur, We have seen that the amount of time needed to 

execute and bur is small compared with ux•. 

Also the storage space saving procedures of Chapter 5 may be applied if a 

number of structure vectors is presented simultaneously, A facility to 

handle simultaneously more than one structure vector instead of only one at 

a time must be added to lur, In the same way also tur must be accommodated 

to handle more than one solution vector, These facilities are easily imple­

mented, If the structure vectors are presented consecutively, then for each 

structure vector the procedure Zur must be executed, which implies that for 

each structure vector the assembly and decomposition of the matrices as­

sociated with Rare repeated, 

7 , Iterative me·thods 

Direct and iterative methods to solve partial differential equation pro­

blems are compared in [Axelsson '77 , The amount storage required by the 

iterative method depends upon (contrary to the direct met11od) the number of 

non-zeros in the structure matrix; no extra storage for fill-in is needed, 

Second and fourth order problems with two-dimensional n x n and three-

dimensional n n grids are considered, A comparison is made between 

the asymptotic number of arithmetlcal operations required by the "SSOR 

preconditioned conjugate gradient method" and the nested dissection method .. 

It turns out that for a three-dimensional second order problem the iterat­

ive methods are asymptotically faster than the backward substitution phase 

in the direct method, For a fourth order two-dimensional problem the direct 

method is superior, In other problems the superiority of one method over 

another is not clear. ?:'he size of the problem and the number of structure 

vectors may influence the cholce of the method, It should be noted, how­

ever, that direct methods are more generally applicable then iterative 

ones"' 
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7.7. Data structuring facilities of PASCAL 

The data structuring facilities of PASCAL are judged to be among its more 

attractive features [Wirth '71 acta]. Nevertheless, to represent all the 

structure matrices and vectors associated with an n x m grid, we have used 

only the most simple data structure (apart from a simple variable), viz. 

the one-dimensional array, The reason is the following. 

A call of the procedure ur results in a hierarchy of substructures with 

corresponding matrices. Therefore, a tree like data organization with in 

every vertex the matrices associated with a substructure could be very ap­

propriate. Such dynamic data structures could then be used to represent all 

matrices. However, PASCAL requires that the sizes of the arrays contained 

in the vertices of dynamic trees are declared statically, thus requiring 

setting of fixed limits. This is inefficient for the storage of matrices of 

various sizes, as generated by the procedure uz,. These matrices can neither 

be stored in local arrays, because they are needed outside the block where 

they are computed, nor in as many global arrays as there are matrices or 

substructures, because their number and sizes would then have to be de­

clared statically, The only remaining possibility is to store all matrices 

together into one or two global arrays of sufficient length. 

If it were possible to define dynamically the sizes of the arrays in the 

tree vertices, then tree structures could be considered, However, for 

the procedure uz,, trees would result in a less efficient data organiza­

tion, because pointer variables would be required as well as information 

concerning the sizes. On the other hand in our data representation as set 

up for uz, only matrix coefficients are stored, nothing else, 

In nearly every programming ianguage one-dimensional arrays occur; moreover 

the iterative counterparts of the recursive procedures in Chapter 4 are 

easily obtained [Peters '78], Hence the procedures as described in this 

thesis may be coded in nearly all programming languages, 

7,8, Generalized element method, element merge tree 

Although one may be tempted to do so, our method for finite element com­

putations must not be confounded with the generalized element method 

[Speelpenning '78] (a generalization and improvement of the frontal solution 
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method [Irons '70]). Nor should a proper preserving palm be confused with an 

element merge tree [Eisenstat e, a. '78], 

'l'he generalized element method is different in the following aspects: 

- it is motivated by an efficient use of "backing store"; 

- nodes of a structure are eliminated one at a time; 

- the elimination order of the nodes is assumed to be determined in advance; 

the way in which a structure is dissected into substructures is completely 

control.led by the elimination order of the nodes; 

- it requires overhead storage and bookkeeping; 

element matrices are assumed to have been computed in advance, 

Simi.1.arities between the method and our way of organizing finite element 

computations are that assembly and decomposition of the structure matrix 

are interleaved (substructures may be distinguished) and that only full 

matrices are manipulated. 

The generalized element method is only applicable to so called "network 

equations", which are equations whose associated matrix can be considered 

to be assembled from (small.er) element matrices, In this sense the MSSE 

method [Eisenstat e.a, '78] is a generalization, it applies to arbitrary 

symmetric positive definite matrices. However, this method deals only with 

LU-decomposition and forward and backward substitution; assembly of the 

matrix is not considere<L The principal. advantages of MSSE are described to 

be "the ability to solve problems in significantly less core and to trade 

off an increase in execution time for a decrease in core", To achieve this 

a so cal.led "element merge tree" is constructed, Such an element merge tree 

depends on the ordering of the equations and variables, In an obvious way a 

pp-partition can be associated with such an element merge tree, Hence the 

results of Chapter 2 apply also to those element merge trees, 'l'he partition 

associated with an element merge tree is not always a proper one, however. 

As a consequence, if the .MSSE method is applied to a dense band matrix, it 

results in highly inefficient moving around of data,, In all cases the 

method requires extensive bookkeeping. The claim "for a nine-point problem 

with the nested dissect.ion ordering on an n x n grid fewer than 7 
2 non-

93 2 zeros must. .be saved versus 12 log n for sparse elimination, while the 

work required at most doubles" is incorrect,, 
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It should be noted that Williams was the first to point out the equivalence 

of substructuring and sparse matrix algorithms [Williams '73]. He showed 

that it is always possible to choose the substructures so that the sub­

structure method will lead to precisely the same computations as any sparse 

matrix solution, with the minor difference that some additions are perform­

ed at different stages of the solution. He showed this, however, in such a 

way that he was led to the conclusion: "It appears that a sparse matrix 

method will always be preferable to a substructure method ••• ". We have 

shown in this thesis that this conclusion is not valid any longer. 

7.9. Parallel computation 

Let us consider the procedure u.r in 4.1.2. Execution of the recursive call 

in line 11 (or line 14) does not depend upon the execution of the immedia­

tely preceding call in line 10 (or line 13), except for the determination 

of the position to store the computed matrices. Hence both recursive calls 

may be done in either order or even simultaneously by two different pro­

cessors. In the last case, each processor in its turn may set to work two 

other processors, The processors do not need access to common data. The 

procedure u.r is therefore well suited for implementation on a computer with 

many processors. The way in which the processors communicate with each 

other is independent of the finite element problem being solved. The pro­

cessors may be linked as a binary tree. 

The same remark applies to the procedures fur, bUl', mu:t' and tur. 
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AM 
adjacency set 

ancestor vertex 

assemble 

backward substitution 

bandwidth 

blended element 

blending interpolation 

block-matrix 

block-pivot 

bur 

Cholesky decomposition 

connected component 

connected graph 

connection graph 

connection matrix 

consistent ordering 

CQ 

O(vl 

V<v> 
D(v) 

decomposable matrix 

decomposed (structure) matrices 

decomposition graph 

deficiency 

dense 

descendant vertex 

directed graph 

dissection tree 

edge 
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element matrix 

element vecto:r 

INDEX 

12 

12 

11 

1.1 

55 

6 

8 

79 

78 

20 

6 

59 

6 

11 

11 

12 

41 

15 

8 

12 

12 

13 

13 

55 

57 

13 

13 

9 

11 

10 

37 

1.0 

41 

41 

4 

elimination graph 

envelope 

external node 

fill-in 

forward substitution 

frame structure 

frond 

fur 

* G 
Cl 

graph 

internal node 

key diagram 

leaf vertex 

lm 

LU-decomposition 

Zur 

mesh generation 

mu..1.<J 

nested dissection ordering 

nested dissection partition 

node 

ordered graph 

palm 

palm forest 

partial decomposition 

partition 

path 

perfect partition 

p-partition 

pp-partition 

predecessor vertex 

preserving palm 

preserving partition 

profile 

proper palm 
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13 
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44 

13 

6 
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11 

57 

11 

44 

82 

11 

80 

1 

68 

42 

67 

37 

Tl 

42 

2 

11 

6 

2 

11 

23 

24 

11 

17 

9 

25 
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proper p-partition 

quotient graph 

reduced structure matrix 

reduced structure vector 

reducible matrix 

root 

rooted tree 

rQ 
section graph 

separator 

serendipity element 

shape function 

sparse matrix algorithm 

25 

12 

45 

45 

13 

11 

11 

8 

11 

11 

77 

39 

10 

strongly connected graph 11 

structure 41 

structure matrix 41 

structure vector 41 

substituted structure vector 58 

substructure 44 

successor vertex 11 

tree 11 

tur 69 

undirected graph 10 

Ul' 53 

vertex 10 
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