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GENERAL INTRODUCTION 

Let x1 ,x2 , ... be a sequence of independent identically distributed 

(i. i.d. J random variables taking values in :TI'< according to a distribution 

function l" and let F 11 be the empirical distribution function of x1 , ..• , Xn. 

SANOV (1957) has given conditions under which 

(0. 1) log pr{p E n } · n n -nK(a ,Fl + a(n), 
11 

n ➔ D'->, 

where is a set of distribution functions and K Wn, P) is the Kullback-

Leibler (information) number of 51 with respect to F (for definitions see !1 . 

chapter I). If lim KUl ,P) '" c > 0, then (0.1) iwplies that pr{p E n } 
n-+oo n n n 

comverges to zero exponentially fast. In this case the probabilities 

Pr{F En} are called probabilities of large deviations. 
n n 

More generally, let S be a Hausdorff topolooical space, let I\ be the 

set of probability measures on the Borel field B of Sand let x 1 be 

a sequence of i.i.d. random variables taking values in S according to a 

probability measure Pc/\. Let P be the empirical probability measure of 
11 . 

the random variables The so-called Sanov problem is the problem 

of finding conditions under which 

log E -nK ,Pl + a (n), n ➔- oo, 

where is a set of probability measures and K(5111 ,P) is the Kullback-

Leibler number of with respect to P. '!'his problem has been studied by 

many authors, see e.g. BOROVKOV (1967), HOADLEY (1967), HOEE'FDING (1967), 

STONE (1974), DONSKER & VARADHAN (1975,1976), SIEVERS (1976) and BAHADUR 

ZABELL (1979). 

V 

A new approach to the Sanov problem is the subject of the first chapter 

of this monograph. Some results of this chapter have first appeared ln 

GROENEBOOM 1976); a large part of chapter I is also contained in GROENEBOOM, 

OOSTERHOFF & RUYMGAART (1979), denoted by GOR (1979) in the sequeL 'I'he key 

idea in our attack on the Sanov problem is the introduction of a suitable 

topology on the set of probability measures. This topology, to be called 

the ,-topology, is the topology of convergence on all Borel sets. It pro

vides a natural link between multinomial approximations to the probabilities 
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Pr{P Ea} and approximations of the form 
n n 

m 

inf i!l Q(Bi) log(Q(Bi)/P(Bi)) 

to the Ku11back-Leibler numbers K(Dn,P), where {e 1 , •.. is a partition 

of S into Borel measurable sets. The 1:-topology is finer than the weak 

(or vague) topology, but coarser than the topology induced by the total 

variation metric. Since this topology is in general not first countable, we 

shall occasionally have to deal with nets and filters. 

Incidentally, in chapter I we also give a proof of Theorem 11 in 

SANOV (1957), generally called "Sanov's theorem". Sanov's own proof of this 

theorem is somewhat obscure (see section 1.4). 

We use our results on the Sanov problem to derive asymptoU.c expres

sions for probabilities of large deviations of linear or continuous functions 

of empirical probability measures. For example, if S ~ JR and is t.Jie set 

of probability measures on JR with compact support, sample means are given 

by T(Pn), where the linear function T: ➔ JR is defined by 

Defining 

problem 

T(Q) = f x dQ(x), 

JR 
-1 = T · ( [ r, 00 ) ) , we obtain from our results concerning the Sanov 

-J 
log Pr{n · 

n 

I 
i=l 

log pr{p c 
n 

X, 2 r} log Pr{T(P) 2 r} 
n l 

-nK(a ,P) + 0(n), 
r 

n + 

This asymptotic relation is a version of a theorem on probabilities of large 

deviations of sample means in CHERNOFF (1952). In fact, there is an exten

sive literature on probabili.ties of large deviations of sample means (for 

references see BAHADUR & ZABELL (1979)) and it is interesting that many 

results in this field can be derived from Sanov-type theorems. Conversely, 

it is also possible to derive Sanov-type theorems from theorems on probabil

ities of large deviations of sample means; this last approach is followed 

in BAHADUR & ZABELL (1979)" 

Whereas sample means are linear functions of empirical probability 

measures, trimmed means and signed rank statistics provide examples of 



continuous functions of empirical probability measures (if J\ is endowed 

with the ,-topology). Theorems on probabilities of large deviations of 

these statistics will be given .in section 1.6 and chapter II, respectively. 

Our interest in probabilities of large deviations of signed rank 

statistics is motivated by the role played by large devi.ation probabilities 

in the definition of Bahadur efficiencies of signed rank tests. More pre

cisely, Ba]1adur efficiencies of such tests can be derived from the exponen

tial rate of convergence to zero of probabilities of large deviations of the 

signed rank statistics under the null hypothesis. Th.is derivation is given 

in chapter II. In the case of samples from purely discrete distributions a 

comparison by means of Bahadur efficiency of different methods for dealing 

with ties in signed rank tests is of particular interest (see section 2.3). 

In chapter III the approach is quite different. Here we derive asymp

totic effici.enc.ies and deficiencies of some well-known multi.variate tests. 

Whereas the (relative) asymptotic efficiency of two tests describes the 

first order asymptotic behavior of ratios of sample sizes required to at·· 

tain certain criteria, the asymptotic deficiency describes the asymptotic 

behavior of differences of sample sizes required to attain such criteria. 

Although it might be possible to apply the theory of chapter I to the com

putation of Bahadur efficiencies of multivariate tests, this approach does 

not appear to be promising. Moreover, the results of chapter I only yield 

first order terms in an expansion of logarithms of large deviation prob

abilities, whereas higher order terms are needed in the computation of 

def.icienc.i.es. Hence we rely on Laplace's method for the expansion of multi.

dimensional integrals to describe the asymptotic behavior of probabilities 

of large and moderate deviations under the null hypothesis and we use the 

method of the stationary phase to derive asymptotic expansions of the distri

bution functions under fixed and local alternatives. 

Some doubt exists as to the value of the concepts of Bahadur efficien

cy and deficiency, 'l'he main objection to these concepts .is that they do not 

give equal weight to error probabilities of the first. and second kind. For 

example, Bahadur efficiency is based on the exponential rate of convergence 

to zero of error probabilities of the first kind, when the alternative and 

power are kept fixed and the sample size tends to .infinity. However, there 

exist inti.mate connect.ions between Bahadur efficiency and Pit.man efficiency 

(see e.g. chapter II), although .in the usual def.in.it.ion of Pitman efficien

cy the error probabilities of the first and second kind both tend to limits 

bounded away from 0 and 1 as the sample size tends to infinity. We show 
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in chapter III that there also exists a (somewhat more complicated) rela

tionship between Bahadur deficiency and Hodges-Lehmann deficiency for the 

tests studied here. 

Of course, for the practical statistician it is important to know how 

well the asymptotic efficiencies and deficiencies estimate the actual ratios 

or differences of sample sizes required to attain certain criteria of test 

performance. Some results in this direction will be reported in GROENEBOOM 

& OOSTERHOFF' (1980). 

The present monograph is a virtually unaltered version of the author's 

thesis written under the supervision of Prof. J. Oosterhoff. After the com

pletion of this thesis, a paper by HSIEH (1979) appeared, in which the exact 

slopes of the tests discussed in chapter III are derived. However, the me

thods of proof used in HSIEH (1979) are quite different from the methods 

used in chapter III and this chapter al.so contains higher order terms of the 

asymptotic expansions whereas HSIEH (1979) does not consider higher order 

terms. Perhaps the most interesting result of chapter III is that (non-local) 

asymptotic optimality of the likelihood ratio test does not hold when higher 

order terms a.re ta.ken into consideration. 



1.1. INTRODUCTION 

CHAPTER I 

LARGE DEVIATIONS OF 

EMPIRICAL PROBABILITY MEASURES 

Let S be a Hausdorff space and let B be the a-field of Borel sets in 

S. Let A be the set of all probability measures (pms) on B; the abbrevia··· 

tion pm(s) is used in analogy with the notation df(s) for distribution 

function(s). F'or P,Q EI\ the Kullback-Leibler information number K(Q,P) is 

defined by 

if Q « p 

(LLll K(Q,P) 

otherwise, 

where q = dQ/dP. Here and in the sequel we use the conventions log O = - 00 , 

0•(±00 ) = 0 and log(a/0) = 00 if a 2 0. If Q is a subset of fl and Pr: A we 

define 

(1.1.2) K(fl,P) 

By convention K(fl,P) 

inf K(Q,P). 
Qdl 

if fl is empty. 

Throughout this chapter x1 ,x2 , ... is a sequence of i.i.d. random vari

ables taking values in S according to a pm PE A. For each positive inte-

ger n the empirical pm based on xl' .•. ,xn is denoted by 

the fraction of X. 1 s 1 1 5 j 5 n, with values in 
J 

Let s ]R and let "1 be the set of pms on 

topology p induced by the supremum metric 

(1. l.. 3) d(Q,R) sup IQ( (-00 ,x] )- R( (-00 ,x]) I, 
XEJR 

the set 

(JR ,Bl , 

, Le. (B) is 

B E T.·l. 

endowed with the 
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Then we have the following theorem of HOADLEY (1967) specialized to the 

"one-sample case". 

Let P E i\ be a non-atomic pm. Let T be a real-va.Zued function on 1''1, 
uniformly continuous in the topology p. Define 

for each r E JR • Then, if the .function t + K Wt'P) , t E JR , is continuous 

at t =rand is a sequence o.f real numbers tending to zero, 

(LL4) lim n-l log Pr{T(P) ~ r+u} 
n n 

-K([l ,P). 
r 

In section 1 . 3 it will be shown that Hoadley' s theorem can be general

ized in three different directions simultaneously: 

(i) the set A1 may be replaced by tl1e set A of pms on a Hausdorff space S 

(ii) the uniform continuity of the function 'I' can be weakened to continuity 

(in a convenient topology which is finer than p if S = IR) at each pm 

Q such that K(Q,P) < 00 

(iii) PE A may be an arbitrary pm, not necessarily non-atomic. 

S'l'ONE (1974) has given a simpler proof of Hoadley's theorem, but under 

the original strong conditions. His proof can easily be adapted to cover the 

case of d····d.i.mensional random variables, but other generalizations are less 

obvious. 

A related theorem in the spirit of SANOV (1957) has been obtained by 

BOROVKOV (1967) : 

Let P E A1 be a non-atomic pm. Then, if 11 is a p-open subset o.f and 

K (0.) ,Pl ~ K(n,P) (where denotes closure in the topology p), 

(1.LS) 
-1 -

limn log pr{pn c n} -K(\1,P). 
n-~J'CO 

By this theorem the uniform continuity (in p) of the functional T .i.n 

Hoadley' s theorem can be weakened to continuity, but Borovkov relies in his 

proof on methods of Fourier analysis of random walks in BOROVKOV (1962) for 

which generalization to more general pms seems to be difficulL 

In this chapter the approach to large deviations based on multinomial 

approximations is systematically developed. It turns out that a natural 
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topology on the set A o.f pms on (S,B) is the topology T o.f convergence on 

all Borel sets, i.e. the coarsest topology for which the map Q _,. Q (B) I 

Q E: A, is continuous for all B E B. In th.is topology a sequence of pms {Qn } 

in fl converges to a pm Q E A, notation Qn Q, Hf fs fdQn fdQ 

for each bounded B-measurable function f: s ➔ ]R. The closure 

terior of a set S1 c fl in the topology Twill be denoted by 

(0,), respectively. 

With this notation we shall prove (Theorem 1. 3 .1) 

Let P E: A and let r2 be a subset of fl sat:.isfying 

(1 .1 .6) K(c1T (S"l) ,P). 

2'hen ( 1 • 1 • 5) holds. 

and the in-

($1) and 

This is a generalization of Theorem 4.5 o.f DONSKER & VARADHAN (1976) 

who obtained some related inequalities under stronger conditions. In par

ticular they assumed that Sis a polish space and that the set n is either 

open or closed in the weak topology. By the weak topology we mean the topo

logy with subbasis elements 

{Q E: A: If fdQ - f fdQ0 I < c}, Q0 E. A, f E: c8 (S), where CB (S) is the set of 

bounded continuous functions f: S ➔ JR. We avoid the name "topology of weak 

convergence" since Sis merely a Hausdorff space and hence weak convergence 

in A may not be properly defined because limits are not necessarily unique. 

The functions .f appearing in this definition are bounded and continuous; 

therefore the weak topology is coarser than the previously defined topology 

T. 

In the particular case S ~ JR the topology T is finer than p (Lemma 

1.2.1) which in turn is finer than the weak topology. Hence any p-conti.nuous 

(weakly continuous) functional 'l': 1\ ➔ JR is a fortiori T-conti.nuous and 

our results on T·-continuous functionals T imply t11e corresponding (weaker) 

results for p-continuous (weakly continuous) functionals. In fact, by this 

line o.f argument the generalized .form of Hoadley's theorem mentioned above 

easily .follows .from Theorem 1.3.1. 

After some crucial lemmas in section 1.2 the basic theorems are ob

tai.ned in section 1. 3. The theory includes theorems o.f Borovkov, Donsker & 

Varadhan, Hoadley, Sethuraman and Stone as particular cases and thus pro

vides a unified approach to these results which were obtained by rather 

different methods. Section 1.4 is devoted to a proof of the celebrated 
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theorem of Sanov mentioned in the general introduction. In section 1,5 a 

large deviation result for linear functions of empirical pms is proved. 

'I'his result generalizes CHERNOFF's (1952) theorem. Counterparts of some 

of the results in sections 1.3 and 1.5 have been obtained independently and 

by different methods by BAHADUR & ZABELL (1979). Finally, in section 1.6 

a large deviation theorem for a class of linear combinations of order sta

tistics (L-estimators) is proved. This leads to a large deviation theorem 

for trimmed means under minimal conditions. 

1.2. PRELIMINARIES 

Int.his section some notation is introduced and a few preliminary re

sults are proved which will play an essential role in the subsequent sec·· 

tions. By a partition P of the Hausdorff space S is meant a f.in.i.te parti

tion of s consisting of Borel sets. Such partitions are the starting point 

of the multinomial approximation on which the proof of Lemma 1.3.1 in sec

tion 1.3 is based. 'I~e number of sets in a partition is called the size of 

the partition. For P,Q EA and a partition P ~ 

(L2. l) 

and for a set a c A 

(a,P) 

O(B .) log{Q(B .) /P 
- J J 

inf Kp(Q,P). 
QELl 

) }, 

Without explicit reference the relation 

(L2.2) K(Q,P) sup{Kp(Q,P): Pis a partition of S} 

of S define 

(see e.g. PINSKER (1964), section 2.4) will repeatedly be used. We shall 

say that a partition P is finer than a. partition R. i.ff for each B E P 

there exists a C E: R such that B c C. 

For each partition P ~ {B1 , ... 

defined by 

(Q,R) max IQ 
1:;j:;m 

) -

of S the pseudo-metric on A is 

l I, Q,R EA. 
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The topology T of convergence on all Borel sets of Sis generated by the 

family {dp: Pis a partition of s}. A basis of this topology is provided 

by the collection of sets {RE A: dp(R,Q) < o} where Q EA, o > 0 and P 

runs through all partitions of s. Note that this collection is a basis and 

not merely a subbasis of T. 

LEMMA 1.2.1. Lets= JRd. Then the topology p induced by the supremum metric 

d(Q,R) = sup .....,.!Q((-oo,x]) - R((-oo,x]) I, Q,R EA, is strictly coarser than 
XE~ 

the topology T. 

PROOF. Since convergence in p of a sequence of pms does not imply conver

gence on all Borel sets (a sequence of purely atomic pms may converge in p 

to a non-atomic pm), it must be shown that p s T. 

Let e: > 0 and let Q be a pm on JR • Then there exists a finite (possi

bly empty) set of points with Q-probability ~ ½e:. Hence there exists a 

partition P = {B1 , .•• ,Bm} of JR consisting of 

Q(B.) ~ ½e: and open or half open intervals B. 
i J 

singletons Bi such that 

such that Q(B.) < ½e:. If 
J 

a pm on JR such that dp(Q,R) < ½e:/m, then d(Q,R) < e:, which proves the 

ma for pms on JR • 

R is 

lem-

Next suppose that Q is a pm on ]Rd (d>1) . Let Qi, 1 :,; i :,; d, be the 

one-dimensional marginals of Q. For each Qi there exists by the previous 

paragraph a partition {B. 1 , ... ,B. } of JR consisting of singletons B. . 
i, i,mi i,J 

with Q. (B .. ) ~ !e: and open or half open intervals B .. with Q. (B .. ) < 
i i,J i,J J i,J 

< ½e:/d. Let P be the partition consisting of the product sets 

Bl,j1 x x Bd,jd' 1::; ji:,; mi, 1:,; i:,; d, and let m = maxl$i$d mi. The 

implication 

proves the lemma for S = ]Rd • D 

A function T defined on A will be called T-continuous if it is contin

uous with respect to the topology Ton A and the given topology on the range 

space. The definition of T-(lower,upperl semicontinuity is similar. The 

topology of the extended real line JR is the usual topology generated by 

the sets [-00 ,x), (x,""], x E JR. 

LEMMA 1.2.2. Let PE A. Then the function Q + K(Q,P), Q EA, is T-lower 

semicontinuous. 
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PROOF. Let P,Q EA and let c be an arbitrary real number such that 

c < K(Q,P). By (1.2.2) there exists a partition P of S such that Kp(Q,P) > 

> c. Clearly there exists o > 0 such that 

(R,Q) < 6 • K(R,P) 2 Kp(R,P) > c, 

proving the lemma. [l 

A collection r of pros in A is called uniformly absolutely continuous 

with respect to a pm PE A if for each E > 0 there exists 13 > 0 such that 

for each Q Er and each BE B, P(B'i < cS"" Q(Bl < E. 

In the next lemma some topological properties are established of a 

class I' c A with uniformly bounded Kullback-Leibler numbers. 

LEM.i\iA 1.2.3. Let PE A and let r EA: K(Q,P) s c} for some finite 

c e: 0. 7'hen 

(a) I' is uni.formly abso.lutely continuous with .respect to P 

(b) r .is both compact and sequentially compact .. in the topology T. 

(a) Let E > O. Let c5 > 0 be such that h: log (½E/o) 

Q EI' and each BE B satisfying P(B) < 8, 

Q(B) f q dP f q dP + f 

-1 
> c+e 

q dP 

B Bn{qs½c/6} Bn{q>½c/o} 

'I'hen, :for each 

s; (B) + (log(!c/6)) 
-1 I q log q rJP 

Bn{q>½c/o} 

-1 -1 
< E + (c+e ) (log(h/o)) < E, 

-1 
where q = dQ/dP (note that the inequality x log x ?: -··e provides an 

upper bound c + e·· 1 :for the integral f Cq log q dP for any set C E B) • 

(b) Let M be the collection of all set functionsµ: B-+ [0,1] endowed with 

the topology , 1 of setwise convergence (note that Tis the corresponct

ing relative topology on A). Using the property that a Hausdorff space 

is compact iff each ultra:filter converges, we first prove that.Mis T 1-

compact. Consider an ultrafilter U ~ {U: a EI} on .M. For each BE B 
Cl 

the image of U under the map µ -+ µ (B) i.s an ul trafi 1 ter on [ O, 1 J and 
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hence converges to a (unique) point, say cB E [0,1]. Let µ0 EM be 

defined by µ0 (B) = cB, BE B. Since µ0 En I cl (U), the ultrafilter 
ctE Tl a 

U converges to µ0 , proving T1-compactness of M. 

In order to show that r is T-compact it suffices to prove that r is a 

T1-closed subset of M. Letµ E cl (r). Clearlyµ is an additive set 
Tl 

function. To prove a-additivity consider a sequence {B} of disjoint 
n 

Borel sets. Fix£> 0. By part (a) there exists o > 0 such that BE B, 
P(B) < o =l> Q(B) <£for each Q Er. Choose k so large that P(U:=k Bn) = 

I:=k P(Bn) < o. Sinceµ E clT1 (r) it follows that 

jµ(n~l Bn) - nil µ(Bn) I= µ(n=~+l Bn) s £, 

implying that µ(U:=l Bn) = I:=l µ(Bn). Henceµ EA. Now Lemma 1.2.2 

impliesµ Er and thus r is T-compact. 

Finally r is also sequentially compact in T since by Theorem 2.6 of 

GANSSLER (1971) the notions "compact" and "sequentially compact" coin

cide for the topology T. D 

Lemma 1.2.3 is closely related to the information - theoretical proofs 

of convergence of a sequence of pms {Q} to P under the condition 
n 

K(Qn,P) + 0, as n + 00 (see RENYI (1961) and CSISZAR (1962)). In fact, if 

K(Qn,P) + 0 then {Qn} converges to Pin the total variation metric (cf. 

PINSKER (1964)), which is a stronger type of convergence than convergence 

in T (the convergence has to be uniform on all Borel sets). 

Let P,Q EA and let p 

linear pm Q' corresponding to Q is defined by 

(1.2.3) Q' (BnB.) 
]. 

{

P(BnBi)Q(Bi)/P(Bi) 

Q(BnBi) 

if P(B.) > 0 
]. 

i 1, ... ,m; BE B. The usefulness of this concept lies in its property 

Kp(Q,P). 

The device of;-linear pms was, as far as we know, first used in large devi

ation problems by SANOV ( 1957) _for pms on JR. It was also used by HOADLEY 

(1967) and in the more general form of the preceding definition by STONE 
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(1974). 

'!'he next lemma generalizes relation ( 1. 2. 2l and plays a crucial role in 

the next sections. 

LEMMA 1. 2 .4. Let P E A and fl c A satisfy 

(1.2.4) 

Then 

(1. 2. 5l 

K(cl (rl) ,Pl 
T 

K(rl,P). 

K(rl,P) = sup[Kp(Q,P): P is a partition of S}. 

.!:.~OOF. Let a = sup[KpCrl,P): Pis a partition of s} and suppose (l.2.5l does 

not hold, Le. there exists an n > 0 such that a+n < K(sl,P) (see (1.2.2l). 

Put f E A: K(Q,P) :s; a+n}. The set of all (finite) partitions P, order-

ed by P > R iff P is finer than R, is a directed set. Choose for each par··· 

tition P a pm QP c '2 satisfying Kp(Qp,P) s a+n. Let Qp be the PP ··linear 

pm corresponding to Then 

and hence Er for each partition P. Since I' is compact in the topology 

T by Lemma 1.2 .3 there exists a Q E r such that Q i.s a cluster point of the 

net N = P is a partition of s}. 

Consider the open neighborhood {RE A: dp(R,Q) < d of Q. Since Q is 

a cluster point of the net N there exists a partition T > P such that 

< E. If B c P, then 

(B) l Qf(Al 
AET,AcB 

(Bl. 

Hence Q) ~ dp(Qf,Q) < £: 1 .implying that Q Js also a cluster point of 

P is a partition of s}. Since Qp E Q for each P, Q c (QJ. 

However, Q c I'""' K(Q,Pl :s; a+n < KW,P) in contradiction to (L2.4) and so 

(1.2.5) follows. [] 

REMARK l.2.1. Lemma l.2.4 is .i.n fact a min.i.max theorem since .i.n view of 

(1.2.2) the result (1.2.5) can also be written as 



sup inf Kp(Q,P) 
p QErl 

inf sup Kp(Q,P). 
QErl p 

9 

REM/.\RK 1.2.2. The following example shows that {1.2.4) is not necessary for 

(1.2.5), even if K(Q,P) < 00 • Let S = [-1,oo) c JR, let n1 = {Q E fl: 

f8 xdQ(x) > 0} and let P,Q 1 E fl be defined by P({-1}) = P({0}) " ! and 

Q1 ({-1}) = 1, respectively. Define r2 = ri 1 u Q1 . It is easily seen that 

K(Q 1 ,P) = sUPp1<pW 1 ,P) = 00 and hence by (1.2.2) K(Q,P) = K(Q 1 ,P) = log 2 

supp Kp(Q1 ,P) = supp Kp(Q,P). Obviously P E: clT (Q) and therefore 

K(clT(Q) ,Pl = 0. Thus (1.2.4) is violated but (1.2.5) holds true. 

REMARK L 2. 3. Let sclT Wl denote the sequential closure of rt, i.e. 

Q E sclT (Q) if there exists a sequence {Qn} in n such that Q. We show 

that (1.2.4) in Lemma 1.2.4 cannot be replaced by K(sclT(,l) ,P) K(n,P). 

Let rt be U1e set of all purely atomic pms on lR and let P be a non-atomic 

pm on JR. Then sup{Kp(n,P): P .is a partition of JR} = 0, but 

K(n,P) = K(sclT (Q) ,P) = "' since n = sclT (n). In this case clT (0,) = the 

set of all pms on JR • This shows that there are pms in 

"reached" by nets inn but not by sequences in Q. 

which can be 

By convent.ion the support supp(Q) of a pm Q E fl is the set of points 

x E s such that each neighborhood of x has posi.tive Q-·probability. Note 

that Q(supp(Q)) may be smaller than one. However, we shall say that Q E: /!. 

has finite support {x1' ... ,xk} if Q({x. }) 
l 

> 0, i = 1, ..• ,k, a.nd 

Q({x. }) 
l 

= 1. In general, let us call a pm Q Lindelof inner regular 

H Q(B) ~ sup{Q(V): V C: B, V Li.ndelof} for all open sets B C s ( a set is 

called Lindelof if each open cover has a countable subcover). A pm with this 

property assigns probability one to its support by a line of argument sim

ilar to the proof of Lemma 2. 3 in BAHADUR & ZABELL ( 1979 J • This regularity 

condition is certainly satisfied ifs is second countable. 

LEMMA 1 • 2 • 5 • Let P E /!.. Each pm which has finite support contained in tl1e 

support of P belongs to the weak c.losure of {Q E fl: K(Q,P) < 00 }. 

PROOF. Let QO E fl and supp(Q0 ) 

weakly open neighborhood V of Q0 contains a pm QV such that K(QV,P) < 00 

Let 

V {Q E fl: !f f .dQ -
J . 

j 1, ... ,J}' 
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where f 1 , ... , f_T E CB (S) . Choose neighborhoods U j i of xi in S such that 

x E Uji,.,.. lfj(x) ·- fj(xi) I < E, i = 1, ... ,k; j = 1, .. .,J, where for each j 

the sets u. 1 , ... ,u.k. are disjoint. Now put U. nJ U .. , i = l, ... ,k, and 
J J l j=1 Jl 

define QV EA by 

k 
L Q0 ({x.})P(Bnu.)/P(U.l, 

i=l l l l 

BE B. 

Note that P{Ui) > 0 because xi E supp(P). Obviously K(Qv,P) < 00 Moreover, 

QV E V since for j = 1, •..• ,J 

This lemma does not continue to hold if the weak closure is replaced 

by the T-closure since the T·-closure of {Q E A, K(Q,P) < 00 } does not contain 

any pm which is not absolutely continuous with respect to P. This illustrates 

the difference between the weak topology and the topology T. 

1 . 3. BASIC RESUI/£S 

In the sequel we discuss probabilities of events of the form {P d1}, . - n 

ll c A, where the empirical pms {P } are induced by the sequence x1 ,X?, .. ., 
. n -

The problem which events {P d1} are Bn -measurable for all n is (at least 
11 

partially) solved by 

PROPOSITION 1.3.1. Le-t S be a completely regular space. Let fl denote the 

set of pms .in A with finite support and rational po.int masses. 1'hen 

[P d1} E Bn for all n E lN if.f ll n A E fii, where W is the CT-i'ield induced 
n 

by (IJ on A and W is the Borel CT-field on I\ generated by the r-1eak topology, 

PROOF, For n E JN let l\(n) denote the set of pms in A with finite support 
-1 

and point masses which are multiples of n and let [!/(n) denote the a-field 

induced by Won fl(n). 

We first prove that {P c)l} E Bn - ll n l\ (n) E (1/ (n) . Consider the map 
n 

P Sn ➔ fl (n) where P (x 1 ,.,, ,x ) is the pm assigning mass n- 1 to each x., 
n n n .i 

i = 1, .. ,,n (since the xi's need not be distinct, there may be less than n 

different point masses), Let B(n) denote the CT-field on A(n) induced by the 

surjecti.on Pn. Obviously {PnErl} E Bn - ll n A(n) E B(n), We show that 

B(n) = W(n), 
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B(n) is a Borel a-field generated by the topology with basis elements 
0 0 - 0 0 0 

V(x 1 , ... ,x) = {P (x1 , ... ,x ): x. E U(x.), i = 1, ... ,n} where (x 1 , ... ,xn) 
n n O n O n _1 i O 0 

ES and U(x 1), .•. ,U(xn) are neighborhoods ins of x 1 ,. • .,xn' respectively, 

which are disjoint for distinct x~'s. On the other hand, sets 
]_ 

V(Q0 ; ,. .• ,f} = {Q E /\(n): lffjdQ - ffjdQ0 1 < c, j = 1,. .. ,J}, where Q0 E 

A (n) and , ... , E C (S), are basis elements of the (relative) weak 
B O 0 

topology on A(n). If the neighborhoods U(x.J are small enough, V , ••. ,x) 
1 0 0 n 

c V(Q0 ;f1 , .. .,fJ). Con~ersely, for given U(x 1), •.• ,U(xn) choose Q0 E /\(n) 

such that Q0 ({x~, ... ,xn}) ~ 1 and let for i 1, ... ,n t11e continuous func-
0 0 

tions f 1. satisfy Os s 1, f. (x.) = 1 and (x) = O if xi U(x.); such 
]_ ]_ -1 ]_ 

functions exist since Sis completely regular. Let O < E: < n . Then 

Q E l\(n), lffidQ ·· ffidQ0 I < c.,, Q(U(x~J) 2 Q0 ({x~}J. Since this impl:ica-
0 

tion holds for all i, it follows that V(Q0 ;f1 , •• .,fn) c V , .. .,xn). Hence 

the topologies generating B (n) and [if (n) coincide. 

It remains to prove 0. n l\(n) E W(n) for all n - 0. n A E 0. The impli

cation .,. is trivial. To prove *, let 0.n E W be such that 0. n I\ (n) =0 

Si n l\(n), n E N. Fix m E N. If the pm Q E fi. E 0.c, then Q E A(s) n for n . 

some s E JN, implying Q i Qsm· Hence n:=l 0.sm n A c t, and thus 

um=l~n:=1 0.sm n Ac 0. n A. Conversely, u:=1 n:~1 0.sm n A :o u:=1 Si ri /\(m) 

n n A. It follows that Q n A E (if and the proof is complete. D 

The collection of sets Sic A satisfying 0. n A E fiJ is quite rich, much 

richer than W. Henceforth it will be assumed without explicit reference 

that Pr{P E0.} is well defined for all n E JN • However, in Remark 1. 3 .1 we 
n 

briefly return to this matter. 

For each n E N and 0. c A the set 0. (n) is defined by 

{Q E 0., nQ(Bl E ZZ for all E E B}. 

Our large deviation results concerning probabilities Pr{P E St} have 
n 

as starting point Lemma 1. 3 .1 which exploits multinomial approximations to 

the distributions of the empirical pms P. It is easily seen that the lemma 
11 

remains valid for arbitrary sets Sand arbitrary a-fields B containing all 

singletons. 

LEMMA 1. 3 .1. Let P E A and .let n .be a subset of' 1\. Consider tlie followi.nq 

conditions 
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(A) for each c < K(n,P) and for all sufficiently large n there exist sets 

r 1 , ... ,r k c A and partitions P 1 , .•. ,P k of S with sizes 
n, n, n n, n, n 

(Al) 

(A2) 

(A3) 

m 1 , ••• ,m k respectively such that 
n, n, n 

and 

Q(n) C 

max 
1:S:isk 

n 

r . 
n,1. 

1 :5: i :s; k 
n 

m . 
n,1. 

o (n/log n) 

o (n), 

(B) For each e > 0 and each sufficiently large n there exists a pm Qn € n(n) 

and a partition Pn of size mn such that 

(Bl) Kp (Qn,P) < K(Q,P) + e 

(B2) 

(B3) 

n 

{Q EA: dp (Q,Q) 
n n 

m 
n 

O(n/log n). 

o} c n 

If (A) is satisfied, 

(L3.1) 
-1 

lim sup n log Pr{P En} s - K(Q,P). 
n 

If (Bl is satisfied, 

(1.3.2) lim inf n- 1 log Pr{P En}~ - K(Q,P). 
n n-><x> 

Hence, if both (A) and (B) are satisfied, 

(1. 3.3) 
-1 • 

limn log Pr{Pn En} - K(Q,P). 
n-><x> 

PROOF. To prove the lemma it is first shown that condition (A) implies 

(1.3.1). Let c < K(Q,PJ. By condition (Al) we have 



Let 

and let 

Then 

Pr{P 
n 

p . 
n,:i. 

pr{p 
n E 

k n 

I 
i=l 

k n 

I 
i=1 

pr{p 
n 

E f . }. 
n,i 

{B . l, ••• ,B . ] n,i, n,1,m . 
n,i 

P(B .. ) , 
n,1.,J 

:$i.s;;k, 
n 

kn 
Q} $ I Pr{Kp (P ,P) ;:,, 

i=1 n,i n 

.i* ll¾1, i 
-1 I n! TT { ( (nz . . ) ! J 

j=l 
n,1,J 

.i* ~,.i 
-1 I n! TT { ( (nz .. ) !) 

j=1 
n,i,J 

Kp 

$ j $ m . • 
n,1 

(f . ,P)} 

n,i 
n,l 

nz 
n,i,j} 

Pn,.i,j 

nz 
~l,~, j} z 

n,1, J 

mn,i 
'exp{-n }: 

j=1 
z .. n,i,J 

log(z .. /p .. )}, 
n,:i.,J n,1,J 

where 
i 

' * l denotes srnmna tion over al 1 ( z n, i , 1 , .•. , such that 

mn,i 
z .. 
n,1,J 

1 , z . . ;:,, 0 , nz . . E Zo , 
n,i,J n,i,J 

and 

z .. log(z . ./p .. ) ;:,, 
n,i,J n,1,J n,1,J 

(f . ,P) . 
n,1 

13 

The number of points (z . 1 , •.. ,z . ) satisfying the first condition 
n,1, n,1.,mn,i 

iB equal to 

(
n+m .-1) n,.1. 

.-1 . l 
exp{o (n)}, 

uniformly in i, 1 :,; i :s: . Moreover, by Stirling's formula, as n ➔ 00 , 
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n!/{(nz . 1)! •..•••.• (nz . )!} 
n,i, n,i,m . 

n,1 
rnn,i 

exp{-n l 
j=1 

z .. 
D,l,J 

log + o (n)} 

again uniformly in i. 1 :,; i s: k Hence 
n 

implying 

kn 

E :,; (f . ,P) Pr{P a} I exp{-nKp 
n 

i=l n,i 
n,i 

s exp{-nc + o(n)}, 

···· 1 
n log Pr{§ Ea} s -c + 0(1), 

n 

+ o (n)} 

as n + 00 ~ Since c < K(Q,P) is arbitrary, (1~3~1) follows~ 

Conversely we prove that condition (B) implies 

K(n,P) < 00 , since otherwise (1.3.2) is trivial. Fix E 

there exists an E JN such that for all n :> a pm 

.3.2). Assume 

> 0. By condition (B) 

(n) 
E n and a par-

tition = [B 1 , ••. ,B } of size m 
n, n,mn n 

O(n/log n) can be found such that 

(B 1) and (B 2) are satisfied. 

Put 

z . 
n, J 

Then for n :> n0 

.) . 
• J 

m • 
n 

Pr{P Ea}:> Pr{dp (P ,Q) O} 
n n n 

where 

j=1 
z . 
n,J 

n 

(B .)} < K(n,P) + E, 
n, J 

Hence, again by Stirling's formula, as n + 00 , 

(lt,P)-nE + O(n) }, 

p .) 
• J 

nz . 
n,J 
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and (1.3.2) follows, completing the proof. D 

REMARK 1.3.1. If Q is an arbitrary subset of A, the event {P E Q} is not 
n 

necessarily measurable. But the proof of Lemma 1.3.1 is based on the inclu-

sion 

k 
O} C QC Un {KP (P ,Pl ~ Kp 

i=l n,i n n,i 
(f . ,P)} 

n r ]_ 

where the sets on the left and the right are measurable. Hence, if Pn (1t) 

denotes the outer (inner) measure corresponding to the product measure 

on Bn, the proof of the lemma shows t.hat under the conditions (A) and (B) 

-1 "n{P- En} limn log L n " 
n➔-oo 

for any set Q c A. In this sense Lemma 1.3.1 continues to hold for arbitrary 

sets Q. Similar remarks apply to all other results of this section. 

LEMMA l.3.2. Let PE A and let Q be a subset of A. Sufficient conditions for 

(1.3.1) and (L3.2) are respective.ly given by 

(A') KW,P) sup{KpW,P): P is a partition of S} 

(BI) K(Q,P) K (Q) ,Pl. 

PROOF. If (A') is satisfied there exists for each c < KW ,P) a part:i. tion 

P such that Kp(Q,P) > c. Hence (J..3.1) holds by the first part of Lemma 

1.3.1 with k = 1 and f l = Q. 
n n, 

To verify (L3.2) assume K(Q,P) < 00 • Fix s > 0. By (B') we can find 

a Q E int, Wl satisfying K(Q,P) < K(Q,P) + h;. Since Q E: (Q) there 

exists a partition P = {B 1 , ••• ,Bm} of Sand a o > 0 such that 

It follows that for all sufficiently large n there exist pms Qn E A(n) 

satisfying 

(i) dp 

(ii) Kp 

< 15, hence En and {RE A: dp(R,Qn) = O} c Q 

,P) < Kp(Q,P) + k s; .K(Q,P) + h: < K(n,P) + E:. 
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Hence condition (B) of Lemma 1.3.1 is satisfied, implying (1.3.2). D 

STONE (1974) proves (1.3.3) under the conditions (in our notation) 

(Cl) KW,P) < co 

For each£> 0 there are a pm Q En, a partition P of sand o > 0 

such that 

(C2) Kp(n,P) $ Kp(Q,P) < Kp(n,P) + E 

1c3J {a€ A: dp(R,Ql < a} c n. 

It turns out that if K(n,P) < 00 these conditions are equivalent to con

ditions (A') and (B') of our Lemma 1.3.2, implying that Stone's theorem is 

in fact equivalent to Lemma 1.3.2 if K(n,P) < 00 • 

To prove the equivalence suppose that conditions (A') and (B') are 

fulfilled and K(n,P) < 00 • Fix£> O. By (B') a pm Q E intT(n) exists satis

fying K(Q,P) < K(n,P) +½£.Since Q E intT(n), there exists a partition T 

and o > 0 such. that {RE A: dy(R,Q) < o} c n. By (A') there exists a parti

tion P which is finer than T and satisfies K(n,P) < Kp(n,P) + ½£ (note that 

Ky(R,P) $ Kp(R,P) for each pm R if Pis finer than T). Hence 

Moreover, for small enough a'> O the implication RE A, dp(R,Ql < o' * 
.., dy(R,Ql < o holds. It follows that conditions (C2) and (C3) of Stone are 

satisfied. 

Conversely, suppose that Stone's conditions (Cll to (C3) hold. Then 

by Lemma 2.3 of STONE (1974), condition (A') also holds. Let£> 0. Let a 

pm Q En, a partition P of sand o > O satisfy (C2) and (C31 for this£. 

Let Q' be the PP-linear pm corresponding to Q (see (1.2.3)). Then (C3) im

plies Q' E intT(n) and (C2) yields 

Thus K(intT(n),Pl < K(n,PJ +£for each£> O and condition (B') follows. 

Combining Lemma 1.2.4 and Lemma 1.3.2 we have 

THEOREM 1.3.1. Let PE A and let n be a subset of A satisfying 

(1.3.4) 
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Then (1.3.3) holds. 

Borovkov has shown (see (31) in BOROVKOV (1967)) that (1,3.3) holds if 

P is a non-atomic pm on JR, rl is a p-open set and K(rl,P) = K(cl Wl ,Pl. 
p 

This is a particular case of Theorem 1.3.1 in view of Lemma 1.2.1. 

In their work on large deviations of Markov processes, DONSKER & 

VARADHAN (1975,1976) have shown that in the i.i.d. case (1.3.1) (or (1.3.2)) 

hold under the conditions that n be weakly closed (or open, respectively) 

and S be a polish space. Since the weak topology is coarser than the topol

ogy,, their result is contained in Lemma 1.3.2 together with Lemma 1.2.4. 

REMARK 1.3.2. Suppose B c Sis an arbitrary Borel set satisfying P(B) = 1. 

Let AB= {Q € A: Q(B) 1} and let 'B denote the relative ,-topology on AB. 

Then Theorem 1.3.1 remains valid if (1.3.4) is replaced by the weaker con

dition 

This result i.s an immediate consequence of Theorem 1. 3 .1 (replace S by B, 

A by AB and T by TB and note that K(rlnAB,P) = K(rl,P) and Pr{Pn Erl} 

== Pr{Pn E rlnAB}). 

REMARK 1.3.3. Theorem 1.3.1 does not hold if intT(rl) and clT(rl) are replaced 

by the interior and closure of rl w.r.t. the topology n induced by the total 

variation distance o(Q,Rl = sup{IQ(B) - R(B) I: BE B}. For example, let 

S = JR , let n be the set of pms which are purely atomic and let P be a non-

atomic pm. Then K(cl W) ,Pl = K(int (rl) ,P) == 00 , but lim n-1 logpr{f, E n} n n n-+oo n 
= 0, since Pr{P 

n Erl}= 1 for all n. Note that n = cln(rl), since Qn ➔n Q 

for some Q E A1 and Qn E rl(nEJN) implies that Q is concentrated on the 

countable union of the countable sets carrying the mass of the Qn's. 

However, cl, Wl A1 (see Remark 1.2.3). 

COROLLARY 1,3.1. Let S be a polish space and let P €A.Then (1.3.3) holds 

for each weakly open convex subset n of A. 

PROOF. By Theorem 6.3 in PARTHASARATHY (1967) th.e space A endowed with the 

weak topology is a polish space. In the appendix of BAHADUR & ZABELL (1979) 

it is proved that each pm Q defined on the cr-algebra of Borel subsets of a 

polish space satisfies 
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Q(A) sup{Q(K): Kc A, K is convex and compact}, 

for each open convex set A; this property is called convex-tightness of the 

pm Q. Hence, for all n E ]I! the pm Qn defined on the er-algebra C of Borel 

subsets of A (wiU1 the weak topology) by 

Q (C) 
n 

is convex-tight. 

pr{p E C}, 
n 

CE C, 

Let a be a convex and weakly open subset of A. Since a weakly open 

subset of A is also T-open, Lermna 1. 3. 2 implies ( 1. 3. 2) . Fix c > 0. By con

vex-tightness, there exists for each n a convex weakly closed subset ca 
such that 

-1 
n log 

Thus, by Lemma 1. 3. 2, (A 1 ) and the convexi. ty of en, 

-1 " 
n log Pr{P E Q} 

n 
-1 

s n log Pr{P E 
n 

+ C 5 

-1 " 
~ lim sup(nk) log Pr{P J EC}+ s 

k➔w 11( n 

S - K(e ,P) +ES - K(D,P) + c. 
n 

Here the second inequality follows from the superadditivity of the function 

m ➔ log Pr{P m E en}, m E JN • This property easily follows from tlie convexity 

of C and the relation P rj Pk . , where n '" _jk and 
n n li=1 ,i 

empirical pm of the random variables X(i-l)k+l'"""'Xik' 1 s .i 

c > 0 is arbitrary it follows that 

-1 
lim n log E rJ} - K(n,P). D 
n-+oo 

. is the 
,1. 

s; j., Si.nee 

A similar result under slightly different conditions is given in GOR 

(1979). Corollary 1.3.1 has first been proved by BAHADUR & ZABELL (1979). 

Their (quite different) proof is based on a Chernoff-type theorem for sample 

means., 

The condition that n is weakly .open and convex cannot be replaced by 
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the condition that n is T-open and convex, even if K(intT(n),P) < 00 To see 

this, let S = [0,1], let P be Lebesgue measure on Sand let n = 
= {P E A: P ( (0, ! ) ) > ¾} U {p E A: P has at least one point mass}. Then Q is 

T-open and convex and the events {P En} are measurable. Obviously 
n 

Pr{P e: n} = 1 for all n and lim n-1 log Pr{P En}= O although K(rl,P) n n.- n 
¾log 3 - log 2 > 0. 

To determine the infimum K(rl,P) appearing in the preceding results one 

usually tries to find a pm Q En for which this infimum is attained. A suf

ficient condition for the existence of such a pm Q is given in the next lemma. 

LEMMA 1.3.3. Let PE A and let n be a non-empty T-closed set of pms in A. 

Then there exists a pm Q En such that K(Q,P) = K(n,P). 

PROOF. We assume K(n,P) < 00 since otherwise any Q En achieves the equali

ty. Let n > 0. Because n is T-closed the set n n {Q EA: K(Q,P) $ K(O,P) + 

+ n} is compact by Lemma 1.2.3. By Lemma 1.2.2 the map Q + K(Q,P), Q EA, 

is T-lower semicontinuous. Since a lower semicontinuous function attains its 

infimum on a compact set, the proof is complete. D 

A similar result is proved in CSISZAR (1975), where O is required to 

be convex and closed in the topology of the total variation metric. 

Next we specialize Theorem 1.3.1 by considering sets n induced by an 

extended real-valued function T: A + lR. For a fixed function T: A + lR, 
let 

{Q EA: T(Q) ~ t}, 

We first prove a technical lemma. 

LEMMA 1. 3. 4. Let P E A and let T: A + lR be a function which is T-upper 

semicontinuous on the set r = {Q EA: K(Q,P) < 00 }. Then the function 

t + K(S\,Pl, t E lR, is continuous from the left. 

PROOF. Let K: 1R + lR denote the function defined by t + K(nt'P), t E lR. 

Let {r } be a sequence in lR such that r + r for some r E lR satisfying 
m m 

K(rl < 00 • Since K is nondecreasing K(rml $ K(r) < 00 for each m E JN and 

K(rm) exists. For each m E 1N there exists by Lemma 1.3.3 a pm limm-+oo 

~ E n such that K(Q ,P) = K(r) (note that {Q EA: T(Q) ~ t and K(Q,P) $ 
rm m m 

$ M} is T-closed for each t E lR and M ~ 0). Since K(Qm,P) $ K(r) for each 
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m, Lemmas 1 . 2 . 2 and 1. 2. 3 imply the existence of a subsequence { Qm.} of 
J 

EA such that Qm. ➔ Q and K(Q,P) $ lim inf. K(Qru.,P) 
J T J➔oo ] 

It follows that T(Q) ? r since Tis upper semicontinuous on rand since 

T (Qmj) ? rmj for each j E :JN • Hence Q E Qr and K (r) :S: K (Q ,P) $ 

< 00 

:S: lim. K(Qm.,P) = lim :<(r ) $ l((r). Thus lim K(r ) = K(r) follows. J-><x> J m-><x> m m➔oo m 
The left continuity also holds for a point r E JR such that K (r) = 00 

and K(r') < 00 for all r' < r. For if (K(rm) }:=l is uniformly bounded for a 

sequence {rm} with rm tr, then by tbe preceding line of argument there 

exists a pm Q c rlr satisfying K(Q,P) < 00 in contradiction to K(r) 0 

'l'HEOREM 1 . 3. 2. Let P c fl and 1 et T: fl + JR be a function which .is T-contin-

UOllS at each Q Er {R E A: K(R,P) < 00 }. Then, Lf the function t + K(-1\,Pl, 

t E JR , is continuous from the r.ight at t = r and i.f { un} is a sequence of 

real numbers such that .lim u = 0, n-><x> n 

(L3.6) 
-1 

limn log Pr{T(~) ? r+u} 
n n 

-K(D ,P). 
r 

(Note that the continuity property of' 'I' is stronger than the property "T 

is continuous on f".) 

PROOF. Again define the function K by K(t) = K(nt'P). Since K is nondecreas

ing it has at most countably many discontinuiti.es. It is continuous from 

the left by Lemma 1. 3 A and continuous from the right at t ~ r by assump

tion. 

Let K(fl ,P) < 00 • Then there exists for each c > 0 a o > 0 such that 
r 

K(r) - c < K(r-o) $ K(r) $ K(r+8) :S: K(r) + c, where K is continuous at r-8 

and r+o. 

The continu.ity of T at each Q c: r implies cl,. (Dt) n r 

Moreover, if K is continuous from the right at t, 

11 n r. Bence 
t 

since r n D c {Q E r, 'f(Q) > t} c r n int,.Wt) for each y > 0 .. Hence by 
t+y 

Theorem 1. 3. 1 



Thus 

-K(r) - e; < -K(r+o) = lim 
-1 

log Pr{T(P) ?: r+o} n n n-+oo 

:::; lim inf 
-1 log Pr{T(P) ?: r+u} n n n n-+oo 

lim sup 
-1 

log Pr{T(P) ?: r+u} :::; n 
n n n-+oo 

$ lim sup 
-1 

log n Pr{T(P) 
n 

?: r-o} 
n-+oo 

-K(r-o) < -K (r) + E. 

-1 A 

limn log Pr{T(P) ?: r+u} = 
n n 

-K(r) -KW ,P). 
r n-+oo 
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The case KWr,P) 

are omitted. D 

00 may be dealt with along the same lines. The details 

REMARK 1.3.4. Theorem 1.3.2 continues to hold if Tis an ]Rd-valued function 

and rand {u} are vectors in ]Rd. The proof is quite similar. 
n 

EXAMPLE 1 . 3. 1. Let F be a class of continuous ]Rd -valued functions defined 

on the Hausdorff space Sand compact in the compact-open topology. Let 
-1 

Pe A be tight and assume that the one-dimensional marginals of Pf are 
-1 -1 -1 

non-atomic for each f E F. Let d(Qf ,Rf ) be the distance between Qf 

and Rf-l defined in Lemma 1.2.1. 

SETHURAMAN (1964) proves (in the case that Sis a polish space) that 

for each e:, 0 < E < 1, 

(1.3. 7) 
-1 - -1 -1 

limn log Pr{supfeF d(Pnf ,Pf ) ?: e:} -K (e;), 
n-¥X> 

where 

K(E) min {(p+e;)log((p+e;)/p) + (1-p-e;)log((i-p-e;)/(1-p))}. 
O<p$1-e; 

-1 
Here we prove that the function T: A ➔ :JR defined by T(Q) = supfe~(Qf , 

Pf- 1) is ,-continuous at each Q er satisfying K(Q,P) < 00 and hence that 

(1.3.7) follows from Theorem 1.3.2. 

Let Q EA satisfy K(Q,P) <. 00 and suppose that Tis not continuous at 
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Q, Then there exists an E >Osuch that for each T-open neighborhood U of 

Q a pm Q0 EU and a function fu E F can be found satisfying 

(1. 3 .8) 

(Note that for all pms R,R' E A one has IT (R) -·T (R') I 
Let the set V ~ {U: U is a T-open neighborhood of Q} be directed by U > V 

iff U c V. With this (partial) ordering on the set V, { fu: U E V} and 

{QU: U EV} are nets in F and A respectively. Since Fis compact in the 

compact-open 

Let for 

topology, the net {f0 : U EV} has a cluster point f E F. 
( (i) (d)) d th f b d f" db x "·' x , ... , x c JR e norm o . x e e ine y 

) .) 

llxll lx(i) I and let x $ y iff x(i) $ y(i), 1 ,:; i s d. Since Pis max15i5d 

tight and K(Q,P) < 00 , Q is tight and hence there exists a compact set Kc S 
-l 

such that Q(S\K) < ¾E. The pm Qf · has non-atomic marginals since has 

non-atomic marginals and Q << P. Hence there exists an n > 0 such that 

!Q{s EK: f(s) s x} - Q{s E: K: f(s) $ < ¾E 

if II x-yll < Tl. By Lemma l. 2 .1 we can choose a 1-open neighborhood of Q 

such that d 1) < ¼E: and R(S\K) < ¼E if R E u0 • Since f is a cluster 

point of the net {fu: U EV} there exists a T-open neighborhood Uc of 

Q such that sup KIi f J (s)-f (s) II < n. Because Q0 E U c u0 one has 
SI: l 

+ sup !Q0 {s E K: fu(s) s x} - Q{s E K: f 0 (s) ;s; x} ! 
XE1Rd 

< supd IQ0 {s EK: f(s) ;s; x} - Q{s EK: f(s) ;s; x}I + h: 
XEJR 

1.'his contradicts ( l 3. 8) and hence 'I' is T-continuous at Q. Let 

E A: T(Q) 2 d for O < E < 1. It has been shown by HOEFFDING (1967) 

that KW ,P) = K (s) and that K is continuous Ln E: for O < € < 1. Thus (1.3. 7) 
€ 

follows from Theorem 1.3.2. 

For one sample Theorem 1 in HOADLEY (1967) is a particular case of our 

Theorem 1. 3. 2. In Hoadley' s theorem S = JR , P is a non-atomic pm on JR and 
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Tis a real-valued uniformly continuous function with respect to the topol

ogy p. 

Actually HOADLEY (l.967) proves a more general theorem where Tis not 

merely a function of one but of several empirical pms. 'l'his setup is of in

terest in problems concerning k samples. The results obtained so far in this 

section can also be generalized to the k-sample case. We briefly indicate 

how this works out. 

Let X. 1 , ••• ,X. be Li..d. random variables taking values i.n sac-
.i I 1. ,n; 

cording to a pm Pi EA: sis k, and assume that the sample sizes ni tend 

to infinity in such a way that lill\.-+m ni/N = vi, where N = I1=l ni and 

\!. > 0, 1 s i s k. (We remark in passing that the condi.t.ion n_4 /N - v = 
l -l ·" i 
O(N log N) in HOADLEY (1967) is unnecessarily restrictive.) The empiri-

cal pm of the i-th sample will be denoted by P. , 1 sis k. f\ .is endowed 
i,ni 

with the topology T and is given the product topology. 

Let P = (P 1 , .. .,Pk) E Ak and v (v 1 , .. .,vk) E (0,1 where 

I t P P P b · t· f k · · f d t 1 .,e . = 1 x ••• x k e a partJ. 1.on o S consist.1.ng o pro uc ·· se :s 

B . x ••• x B . where B belongs to a partition P. of S for 1 s i. 5 k. 
1,J1 k,Jk :t,Ji k l 

'I'hen we define for Q = (Q 1 , •.• ,Qk) E: A and a set 0. c Ak 

and 

k 

l ViK(Qi 
i•l 

k 

l \!,Kp (Q. 
i=1 1 i 1 

inf Iv(Q,P) 
QErl 

I p(Q,PJ • inf I p(Q,P). 
V, QE'1 V, 

By making small changes in the proofs of Theorems l. 3. l and 1, 3. 2 one ob

tains the following corollaries. 

COROLLARY 1.3.2, Let P 

(i.nt. (Q) ,P) (cl (Q) ,P) • 

Then 

log Pr{ 

COROLLARY L 3. 3. Let: P = (Pl, .. .,P kl E , let: T: + JR be continuous at: 

each Q Er• {RE Ak: Iv(R,P) <. 00 } and let 0.t = {Q El, T(Q) :o: t}, t E JR, 

L 



24 

Then, if the function t + Iv U\,Pl is continuous from the right at t = r 

and if { uN} is a sequence of real numbers such that uN + 0, 

·---I (fl ,P) • 
v r 

1.4. A THEOREM OF SANOV 

In this section we shall show that Theorem 11 in SANOV (1957) is a 

special case of our Lemma 1.3.1. This is of interest since some obscure 

points in SANOV's (1957) paper have raised doubt as to the validity of his 

Theorem 11 (cf. HOADLEY ( 196 7) 1 BAHADUR ( 1971) ) . We shall show that Sanov' s 

theorem holds with the original definitions. 

Let S = JR and let D be the set of distribution functions (dfs) on JR. 

If GED, the corresponding pm in /\. 1 will be denoted by PG. For convenience 

of notation we write K(G,F') instead of K(PG,PF) and K(S"l,F) to denote 

inf{K(G,F): GE Q} if Q c D (with similar conventions for Kp(G,F) and 
(n) . } K-p(D,F)). If Q C D, then Q = {G E u: nG(x) E z;; for all X E JR • A set 

Q c D will be called T-open if the set of pms {PG E 1\: G E Q} is open in 

the topology T defined on !\. The topology T on D is defined by these T-open 

sets. 

Suppose that P is a partition of JR consisting of the sets 

B1"'-(-,.o,x1), B2 = [x1,x2), .. ., Bm-1 = [xm-2'xm-1), Bm = [xm--1•"'), where 

- 00 < x 1 < x2 < ••• < xm-l < 00 • Let the set Wm be defined by 

Wm l~=l (Bi x [ai,bi]), where O a 1 s a 2 s ... s ams 1, Os b 1 s b 2 s 

s bm = 1 and b 1 - a 2 2 O, b 2 - a 3 > O, .. ,,bm_ 2 - am-·l > 0, bm-l ·- am 2 0. 

Finally let G1 ED be defined by Gl (x) = ai, if x E Bi. Then Vm 

= {G E D: (x,G(x)) E Wm for all x E IR }\{G1 } is called an s-ne .. ighborhood. 

'l'he partition P is called the part.ition corresponding to Vm. 

DEFINITION 1.4.1. Let FED assume infinitely many values. A set '2 c Dis 

called F-distinguishable if the following conditi.ons hold 

(a) K(0,,F) < 

(b) for each n > 0 and each n e: JN there 

of s-neighborhoods vm1 , . , • , Vmk such 
n 

exi.sts a finite number k = k (nl 
(n) kn n n 

that Q c Ui=l vmi and K(Vmi.'F) > 

> K(Q,FJ - n, 1 sis kn. Moreover, log kn(n) = o (n) and max 1<. <k m. 
-1.- n i 

o (n/log n), as n + en 



(c) for each n > O there exists an E-neighborhood Vrn c S"l satisfying 

K(V ,F) < K(S"l,F) + fl• 
m 

The following theorem is Theorem 11 i.n SANOV (1957). 
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THEOREM 1 • 4. 1. Let F E D assume infinitely many values, .7.et St c D be F

distinguishable and let x1 ,x2 , .•. be a sequence of i . . i . • d. random variables 

with df F. Then, if i\1 is the empir ica.1 d.f of x 1 , ••• , X n, 

-1 
lim n log Pr{F E 11} 

n 
-K(St,F). 

PROOF. We shall first show that condition (Bl of Lemma 1.3. i.s satisfied. 

Fix E > 0. By condition (c) of Definition 1.4.1 there exists an E:-neighbor

hood vm c n satisfying 

(1.4.1) 

Choose G E Vm such that K ( G, F) < K (V m, F) + ½ c If P is the partition cor

responding to Vm we have 

(1.4.2) 

By the definition of E:-neighborhoods it is clear that for sufficiently large 

ft there exists a df G E V(n) satisfying 
n rn 

(1.4 .3) 

Moreover 

,F) -
1 

(G,F)l < 3 E. 

{HE D: dp(P6 ,PG) 
n 

o} c v c n. 
m 

It follows from (L4.1) to (1.4.4) that condition (B) of Lemma L3.1 is 

satisfied. 

On the other hand condition (b) of Definition 1.4.1 implies condition 

(A) of Lemma L3.1, for the E:-neighborhoods Vmi of condition (b) correspond 

to sets of pros ~ {PG E \: G E Vmi} in condition (A) of Lemma L3.1 

and we have KP 

E-neighborhood 

if Pis the partition corresponding to an 

To prove this last property we note that if G E Vm and if P ~ is the 

Ppp~linear pm corresponding to PG, then the df G' induced by ' is an element 

of Vm and therefore 
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K(G' ,Fl, 

.implying 

Since always Kp(Vm,F) c'.: K(Vm,F) it follows that Kp(Vm,F) K 

Hence condition (A) of Lemma L 3.1 is satisfied. D 

REMARK 1,.4 s 1 M F'rom the preceding proof it is clear that the condition np 

assumes infinitely many values" is redundant in Sanov's theorem. 

The crucial property of the £-neighborhoods Vm seems to be that 

K(Vm,F) = Kp(Vrn,F) for the partition P corresponding to Vm. It was shown 

.i..n Lemma 1. 3 .1 that we do not have to impose this condition on tJ1e sets Vm 

and that we can look at the quantities Kp(Vm,l.'') direct1y for suitably chosen 

sets which do not necessarily have the property Kp(Vm,F) ~ K(Vm,F). 

1.5. LINEAR FUNCTIONS OF EMPIRICAL PMS 

Several important statistics are in fact linear functions of empirical 
-1 

pms. For example, if S = JR , the sample mean n Xi may be written as 

T(P ) , where T is defined by n . 

T(Q) I x dQ(x) 

JR 

for all Q E A with bounded support. Note that T is a JLnear function, Le. 

T (aQ+ (1-a) R) aT(Q)+(l-a)T(R), 0 s a s L Although 'l' is not T-continuous 

at any pm Q, Tis T-continuous on each set {Q E A: Q([--M,M]) = 1}, where M 

is a fixed positive number. This property suggests that large deviation 

theorems might be obtained by first truncating the underlying pm and sub-

sequently taldng li.mi ts, letting the support of the truncated pm tend to S. 

It turns out that this kind of truncation is more convenient than trunca

tion of functionals T. Slightly different truncation arguments are syste

matically used in BAHADUR (1971) and HOADLEY (l.967). 

For the purpose of truncation we introduce conditional pms. If B c S 
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is a Borel set and Q EA satisfies Q(B) > 0, the conditional pm QB is de

fined by QB(C) = Q(C!B), C € B. For r c A and B € B with P(B) > 0, we write 

Pr{P Er I B} to denote Pr{P Er I x. EB, 1 5 i 5 n}. 
n n i 

The following lemma explains why truncation is a useful approach. 

LEMMA 1.5.1. Let PE A and let B1 c B2 c ••• be an increasing sequence of 

Borel sets in S such that lim P(B) = 1. Let A*= {Q EA: Q(B) = 1 for 
m->oo m Ill 

an rn E 1\1' } • Then, for each subset Q of A* 

K(n,P). 

PROOF. Fix e: > 0. Let mo E JN be so large that I log P (Brno) I < e:. Write 

Pm = PB , m E JN • Then 
m 

for all Q EA and m ~ m0 • 

The inequality is trivially true if K(Q,Pm) = 00 and is a consequence of 

It follows that K(O,P) 5 

5 lim infm->oo K(O,Pm). To prove the lemma it still must be shown that con

versely 

(1. 5.1) K(Q,PJ ~ lim sup K(l"l,P). 
m->oo Ill 

The inequality is obvious if K(!"l,P) = oo. Hence assume K(!"l,P) < 00 and let 

Q E Q satisfy K(Q,P) < K(!"l,P) + e:. Since Q EA*, there exists an m0 E JN 

such that Q(Brn0 l = 1. Hence 

lirn sup K(Q,Prn) 5 lim K(Q,Pm) 
m->oo m-+oo 

K(Q,P) < K(n,P) + e: 

implying (1.5.1). D 

THEOREM 1.5.1. Let PE A, let Ebe a real Hausdorff topological vector space 

and let B1 c B2 c ••• be an increasing sequence of Borel sets of s such that 

lim P (B ) = 1. Let 'I' = {Q E A: Q (B ) = 1} for m E l'-l' and let A* = 
m->oo m Ill Ill 

= U00 

1 'I' • Let T: A* + E be a function whose res.tr iction TI 'I' is linear and m= m m 
,-continuous at each Q E 'I'm such that K(Q,P) < 00 , for each m E :IN. 

If A is a convex subset of E with closure A and interior AO satisfying 

K(T-l(AO) ,Pl < 00 , then 
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(1. 5. 2) 
-1 

li.m n log Pr{1' (P n) E A} 
-1 

-K(T (A) ,P). 
n-;<>, 

PROOF. Assume without loss of generality that P(B 1 ) > 0. Let Pm= PBm' 
-1 0 -1 0 

m E :N. By Lemma 1.5.1 K(T (A ),P) = limm-·= K('I' (A ),Pm). Hence we may 

also assume without loss of generality that K(T- 1 (AO) ,P) < 00 for each 
m 

m E lN • We shall first prove 

(1.5. 3) 
-1 0 

K(T (A ) ,P ) 
m 

for each m E lN • 

Fix E > 0 and m E JN • There exists a. pm Q E •r -l (A) which satisfies 

K(Q,Pm) < K(T-l (A) ,Pm) + L There also exists a pm RE T-l (AO) such that 

K(R,Pm) < 00 • Let Q = aQ + (1-a)R, O <a< 1. Since Q, RE'!' and Tis 
a -1 0 m 

linear on 'I'm' Qa E T (A ) for each a E (0,1). Moreover K(Qa,Pm) '.S 

'.Sa K(Q,P) + (1-a)K(R,P J, a E (0,1), by the convexity of the mapping 
m m -I 0 

Q' + K(Q' ,P ) , Q' E 1\.. It follows that K(T "(A) ,P ) '.Slim t1 K(Q ,P) < 
_ 1 _ m m a. a m 

< K(T · (A) ,Pm) + c, proving (1.5.3). 

-1 * Let D = T (A), let '!' = {Q E '!'01 : K(Q,P) < 00 } and let T denote the 
m m 

relative T-topology on '¥m' m E N. Since the restriction of T to 'I'm is Tm-

continuous at each Q E '!''', one has '!'* n T-·l (A) :o '!': n clTm (Dn'¥m) :o '!': n 
* -Im O m 

n intTm(Dn'l'm) :o '¥m n T (A). Hence, by (1.5.3) 

(1.5 .4) K(clT (Dn'l'm) ,Pm) 
m 

K(intT (Dn'!'m) ,Pm), 
m 

for each m E N . 

-1 • 
Let y = lim supn.._ n log Pr{T (P n) E A} and let k E JN be such that 

-1 I k log Pr{•r(:i\) E A} 2: y-£. Since limm➔co Pr{T(l\) E A Bm} 

= Pr{Td\) E A} there exists m0 E 1N such that 

for all m;,, 

Hence form 2: m0 

(LS.SJ 
-1 

lim sup n log Pr{T(Pn) E A j B } 
m 

n-➔oo 

2: lim (kj) -1 log(Pr{T(Pk) E A I B } ) j 

j-+= 
m 

k--1 
log Pr{T ti\J E A I B } 2. y-2€. 

m 
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The first inequality in (1.5.5) follows by the same superadditivity argument 

as used in the proof of Corollary 1.3.1. 

By (1.5.4), Theorem 1.3.1 and Remark 1.3.2 

lim 
-1 

n log 
n-+co 

Pr{T(P ) 
n € A I B } 

m 

lim 
-1 

log pr{p € n I B } -K(!l,Pm). n 
n m n-+co 

Lemma 1.5.1 and (1.5.5) now imply 

y-2e: $ lim lim n- 1 log Pr{T(P) EA I B} 
n m 

-1 
-K(T (A) ,P). 

-1 
Thus y $ -K(T (A) ,P). 

Conversely, for any m,n E JN 

n-l log Pr{T(P) EA}~ n-l log Pr{T(P) EA I B} + log P(Bm). 
n n m 

Hence, by the first part of the proof and Lemma 1.5.1 

-1 
lim inf n log Pr{T(P) EA} 

n 

~ lim [lim inf n- 1 log Pr{T(P) EA I B} + log P(B )] 
n m m m-- n-+co 

-1 -1 
lim -K(T (A),Pm) = -K(T (A) ,P). □ 
m--

COROLLARY 1.5.1. In Theorem 1.5.1 let Tjo/ be linear and weakly continuous 
n 

for each n E JN. Then (1.5.2) holds for each subset A of E and P E A satis-

fying one of the following conditions: 

-1 0 
A is convex and K(T (A) ,P) < oo (i) 

(ii) 
-1 

A is open, Pis Lindelof inner regular and K(T (A) ,P) 

(iii) A is open and convex and Pis Lindelof inner regular. 

PROOF. Under condition (i) the result follows from Theorem 1.5.1 since weak 

continuity implies T-continuity of Tio/. Since condition (iii) implies 
n 

either (i) or (ii), it remains-to consider condition (ii). 
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··· 1 Suppose A is open and K (T (A) ,P) = oo. Assume without loss of general-

ity P(B 1 ) > 0. For each m E JN let Pm be the conditional pm PBm· We first 

show that Pm(supp(Pm)) = 1. 

Let Am Bm n (supp (P) \supp (Pm)) . Since P (supp (P)) = 1 by the inner 

regularity of P, it suffices to prove P(Am) 0. For all x E Am let Ux be 

a neighborhood of x in S such that P (U) 0 and put U ~ lJ U. Fix 
m X XEAm X 

c > 0. Again by the inner regularity of P there exists a Lindelof subspace 

V c U satisfying P(V) > P(U)-c. Si.nee V may be covered by countably many 

sets U , it is seen that P (V) = 0 and hence 
X m 

P(A) s P(UnB) 
m m 

P ( (U\V) n B ) < s , 
ID 

-1 
Next we prove that T (A) does not contain pms with finite support 

in Bm n supp(Pm), implying P:r{T(P ) E A [ B } = 0 for all m,n c JN and hence · ·· n m 
Pr{T(P ) c A}= 0 for all n E JN in accordance with (1.5.2). 

n 
Fix m c JN and let Q0 c A have finite support supp(Q0) c Bm n supp(Pm). 

Suppose T(Q0 ) E A. 'lne weak continuity of T['l' implies that there Ls a weak 
Ill 

neighborhood V of Q0 such that T(Vn'l'm) c A. By Lemma 1.2.5 (with P replaced 

by P ) the set V contains a pm QV such that K(QV,Pm) < 00 • It follows that 
m -1 -1 

Q E 'l' and hence K(T (A) ,P ) < 00 , in contradiction to K('l' (A) ,Pm) ~0 

V ~ ID 

= K(T (Al ,P) 00 'l'herefore T(Q0 ) i A, as required. D 

-1 
REMARK 1. 5 .1. The events {.P E 'l' (A) } in Theorem 1. 5 .1 and Corollary 1. 5. 1 

n 
are not necessarily Bn-measurable. If these events are not Bn-measurable 

we still have 

-l 
lim n log pn{'I' (P ) E A} 

n n-+oo 

··· 1 -K(T (A) ,P), 

where pri (_It) denotes the outer (inner) measure corresponding to the product 

measure Pn on Bn (cf. Remark 1. 3. l) . Proposi ti.on 1. 3 .1 implies that 

{P E T- 1 (A)} is Sn-measurable if A EB, Sis completely regular and Tis 
n 

weakly continuous. 

Consider the particular case that Sis a locally convex (Hausdorff) 

topological vector space. BAHADU:R & ZA.BELL (1979) have shown that for each 
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convex open set Ac S 

(1. 5.6) 
-1 -1 

limn log Pr{n 
n 

I E: A} 
n->-oo i=l 

exists and is equal to -K(M(A) ,P), where M(A) c fl is the set of pms with 

expectation in A (their Theorems 2 .1, 2. 3 and 3. 3) . This theorem, together 

with other methods to evaluate the limit, is derived under the condition 

that the pm P and its convolutions satisfy certain inner regularity condi

tions. 

Another version of theii result can also be deduced from Corollary 1. 5 .1. 

For this purpose integrals of functions taking values in vector spaces are 

needed. Let Ebe a copy of the locally convex topological vector space S, 

let E' be the dual of E (i.e. the space of continuous real-valued linear 

* functionals on E) and l.et E' be the algebraic dual of E' (i.e. the sp21ce 

* * of real-valued .Linear functionals on E') . For y E: E, y' E: E', y' E E' 

* * write <y,y'> = y'(y) and <y' ,y'> = y' (y'). Finally, let Bbea compact sub-

set of S, let ':l'B be the set of pms on the Borel Cl·-field of B and let C(B) 

denote the space of continuous functions f: B + E. Then the integral of 

f E: C(B) with respect to a pm Q E 1'B' denoted by fB fdQ or f8 f(x)dQ(x), 

* is an element of E' defined by the relation 

fdQ,y'> = f <f(x) ,y'> dQ(x) 

B B 

for each y' E E' (cf. BOURBAKI (1965), p. 74-82). 

Let Ebe the completion of E induced by the uniformity compatible with 

the topology on E. Each element y EE can be identified with an element of 

* E' by identifying y with the linear form y' + <y,y'> on E' (where E' is 

identified with E') . 

With this identification we have the following two fundamental proper

ties of the integral for each f E: C (Bl : (a) the closure of the convex hull 

of f(B) in E is equal to t-.he set {fB fdQ: Q E ':l'B}, and (bl the map 

¢: Q ➔ JB fdQ is the unique weakly continuous linear mapping from 'VB into E 

such that c/J(Q) = t=l f(xi)Q({xi}) for each pm Q with finite support 

} (cf. BOURBAKI (1965), loc.cit.). 

Now suppose that S = E and that P E [\ is tight. 11~en there exists an 

increasing sequence of compact subsets c B 2 c ... of S such that 

P(Bn) = 1. In the notation of 1'heorem 1.5.1 define T: +Eby 
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(1. 5. 7) T(Q) = f x dQ(x), 

B 
m 

Since fBm <x,y'> dQ(x) = f8n <x,y'> dQ(x) if Q(Bm) = Q(Bn) = 1, the value 

of T(Q) does not depend on the choice of Bm. Moreover, by property (b) 

mentioned above, T(P) = n- 1 I~ 1 X. and Tl'¥ is linear and weakly contin-
n i= i n 

uous for each n E JN. Hence Corollary LS.1 implies that (LS.6) exists and 

-1 
is equal to -K(T · (A) ,P) under the conditions Ci), (:i.i) or (ii.i). Apart 

from pms with non-compact support, the set T -l (A) coincides with the set 

M(A) appearing in the result of BAHADUR & ZABELL (1979). 

Note that we required that S =, E and that P is tighL If P is convex

tight (for the definition see p.18), then by property (a) above T c,,n be 

defined as a function 'I': /l * -+ E (instead of El since the sets B can be 
n 

chosen compact and convex in this case. 

Thus we have proved 

COROLLARY 1. 5. 2. Let s be a locally convex (Hausdorff) topological vector 

space and let P c A be convex-tight. Then E:he .Iimif: (1.5.6) exists and is 
---1 

equal f:o --K(T (A) ,P), r,1if:h 'I' defined by (1.5. 7), Lf A c S and P satisfy 

one of the conditions 

(i) and 
-1 0 

A is convex K('l' (A ) ,Pl < 00 

(ii) A is open, p is Lindelof i.nner regular and 
-1 

K(T (A) ,Pl --·- 00 

(iii) A is open and convex and p is Lindel.o.f inner .regular. 

REMARK 1.5.2. Results related to Corollary 1.5.2 are given in BOROVKOV & 

MOGUL'SKII (1978). 

REMARK 1. 5. 3. We briefly return to measurabili ty questions. If A E B, the 

events (P E qr , 'I' (P ) E A} are Bn -measurable, with '¥ and T defined as i.n 
n m n m 

( L 5. 7) . ~'his follows from Proposi. tion L 3 .1, the weak continuity of TI'¥ 
m 

and the compactness (and hence complete regular.tty) of B • Tims, if A E B 
-1 ~n n rn 

and [n l.i=I Xi c A} E B , we may write 

-1 
Pr{n 

l1 

I 
i=l 

-1 
Pr{n 

X, E A} 
i 

p 
n 

00 

,- u 'i' J. 
m~t m 



-1 ln n The events {n . 1 X. EA} are not necessarily B -measurable, even 
1.= l. 

if A EB. However, if Pis tight and the CJ-algebra. Bn is enlarged to the 

a-algebra Bn containing all subsets of sets of P-measure zero in Bn, then 
-1 ,n n 

{n l1.·=l X, E A} E sn, for each A E B. Hence if the pm P is (uniquely) 
l. - -1 '('n 

extended to a pm on Bn, then Pr{n li=l Xi EA} :i.s well-defined for all 

A EB. 

33 

In BAHADUR & ZABELL (1979) x1 ,x2 , ... are measurable transformations 

from a probabil.i ty space (n ,A,P) to a locally convex Hausdorff topological 

vector space S, endowed with the CJ-algebra of Borel sets B. The pm Pon A 
.induces a pm µ on B defined by 

µ (B) BE B. 

It .is assumed that, for each n E :JN and B1 ,. .• ,Bn in B, 

P(w, X. (w) E B,, 
l. l. 

.i 1, ... ,n) 
n 
TT 

.i=1 
µ (B.) 

l. 

and that {w: n- 1 }:1:1+n-l X. (w) E B} 
1.=m l. 

EA for each m,n = 1,2, ... 
m+n··l 

m,n = 1,2, ... the function '.I' 
m,n 

_ 1 m+n-1 

S ·--+ S be defined by 

. Let for 

T (x) n I X. I 
l. 

X 
m+n-1 

E S , 
m,n 

:i.=m 

-1 m+n-1 . 
Then C {T (B) : B E B} :i.s a a-algebra on S wluch is not neces·· 

m,n m,n m+n-l 
sarily contained in B . Hence the (convolution) pm 11 on B defined 

rn,n 
by 

B E B 

m+n-1 m+n-1 
need not be uniquely determined by the product measure µ on B . 

There:Eore BAHADUR & ZABELL (1979) impose additional conditions on the pms 

µ to ensure that µ (B) is well-defined for each B E B and that the col-
m,n m,n 

lection {11 } has certain intuitively reasonable regularity proper-
m,n m,nE:N 

ties., 

However, if the pmµ on B is tight, it follows that the pms 11m,n on B 
m+n-1 m+n-1 

are determined by the completion of the measure space (S ,11 ) • In 

the l.i.ght of this remark it seems that the tightness condi ti.ans on the con-

volutions µ are rc3dundant. 
m,n 
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1 .6. LINEAR COMBINATIONS OF ORDER STATIS'I'ICS 

In this section ,x2 , ••• are real-valued i.i.d. random variables with 

distribution function (df) F. Instead of 1\, the set of pms on (JR ,B) , we 

shall consider the set D of one dimensional dfs. We shall employ the same 

notation as in section L4. Moreover, for G E D the inverse G-i is defined 
-1 

in the usual way by G (u) = inf{x E JR: G(x) ::c u}. A set of dfs A in D will 

be called T-open (or p-open) if the set of pms {PG E 1\: G c A} is open in 

the topology T (or p) defined on A1. The topologies T and p on Dare defined 

by these T-open and p-open sets respectively. Obviously all results on large 

deviations for pms on JR lead to corresponding results for dfs on JR , so we 

freely use the theory of the preceding sections. 
1 

Suppose J: [0,1] ➔ JR is an L--integrable function, Le. f 0 1J(u) !du 

We consi.der linear combi.nations of order statistics of the form 

(L6.1) T(F) 
n 

1 

f ,T(uJF~ 1 (u)du, 

0 

where f;n denotes the empirical df of x 1 , ... ,Xn, or in a perhaps more fami.liar 

notation 

(1.6.2) 

where c . n,1. 

n 
'l'(F l 

n I 
i=l 

:n' 

(i-l)/n ,J(u)du and xi,n is the i-th order statistic of 

These statistics are sometimes cal.led L-estimators, cf. HUBER 

(1972). For a more recent discussi.on we refer to BICKEL & LEHMANN (1975). 

Related to the statistics T(F) are the sets 
n 

(1.6.3) {G c D: 

where t € JR. 

1 

f J(u)G- 1 (u)du ~ t, 

0 

1 

f l,J(u)G-l (u) !du < 00 }, 

0 

The following large deviation theorem is a consequence of the preced

ing theory. 

THEOREM 1.6.L Let E' c D, let ,J: [o,1] ➔ JR be an L-integrable function and 

let [a.,8] be the smallest closed .interval contain.ing the support of ,J. Then, 

for each sequence { un} o.f real numbers suc.h that limn➔oo ~ 0, 

-1 
limn log Pr{T(F) ~ 

n 
r+u} 

n 
-K ,Fl 



if J ,F and r e: JR satisfy the conditions 

(i) t + KWt'F) ,t e: JR, is continuous from the right at t = r 

(ii) - 00 < sup{x E JR: F(x) s a} s inf{x E JR: F(x) ;?: S} < 00 • 
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Moreover, (i) is certainly satisfied if one of the following pairs of con

ditions holds: 

(a) J;,: 0 on an interval (y,o) and f 0 J(u)du > 0 
y 

(b) Fis continuous, 

or 

(c) the support of J is an interval, J;?: 0 and f~ J(u)du > 0 

(d) Fis continuous at r 1 = r / f; J(u)du. 

Finally, if r 1 is a discontinuity point of F then (1.6.4) holds provided com

ditions (ii) and (cl are satisfied and un s O for all large n E lN. 

REMARK 1.6.1. Condition (ii) of Theorem 1.6.1 is satisfied if PF has com

pact support or if O <a< B < 1. A partial extension of Theorem 1.6.1 for 

the case that (ii) is not satisfied is given in OOSTERHOFF (1978). 

REMARK 1.6.2. The second part of Theorem 1.6.1 illustrates a phenomenon 

known from proofs of asymptotic normality of linear combinations of order 

statistics: with strong conditions on the underlying df F only weak con

ditions on the score functions are needed and vice versa. 

PROOF OF THEOREM 1.6.1. Let A= [a,6] let B be the smallest interval con

taining the support of PF and let 1A and 18 denote the indicator functions 

of A and B respectively. Then 

1 

T(Fn) = f J(u)18 (F~1 (u))F~1 (u)du 

0 

with probability one . Define the function T: D + JR by 

1 

(1.6.5) T(G) f J(u)18 (G- 1 (u))G- 1 (u)du, 

0 

Ge: D. 

The function Tis p-continuous. For a proof consider a sequence of dfs {G }, 
-1 -1 n 

such that Gn +p G for a df GED. Then Gn + G except perhaps on a count-

able number of discontinuity points of G- 1 • Together with condition (ii) 
-1 -1 

this implies that the functions 18 (Gn )Gn •lA, n E lil, are uniformly bound-

ed on the interval [0,1]. Hence lim T(G) T(Gl by dominated convergence 
n+oo n 
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implying that T is p-continuous. The proof of (1.6.4) is now completed by an 

application of Theorem 1.3.2, since p-continuity implies T-continuity. 

In the proof of the other statements of the theorem we may assume that 

K(Qr,F) < 00 , since otherwise condition (i) is trivially satisfied. Let 

GE nr satisfy K(G,F) = K(Qr,F). The existence of G is assured by Lemma 

1.3.3 and the fact that a p-closed set is also T-closed. 

First suppose that conditions (a) a.nd (bl are satisfied. Since 

PG« PF, G .is continuous. Let (y,6) be an .interval satisfying condition 

(a) and let y 1 and E > 0 be numbers such that y 1 E (y, 13) and 
-1 -1 -1 

c < min{yl-y,13-yl}. Let c = G (y), d G (o), cl= G (yl) and let the 

df Ge be defined by its PG-density gE 

-1 -1 -1 
Then GE: (u) > G (u), u c (y,o) and GE 

x E (c,c1 ) 

X c [c 1 ,d) 

elsewhere. 

G-l elsewhere. Note that G 
E:: 

is 

derived from G by moving some probability mass of PG to the right on the 

interval (c,d). Since J(u) ;oc O for u" (y,o) and f 6 J(u)du > 0, 
6 -1 6 -1 y f J(u)G (u)du > f J(u)G (u)du. Hence 'l'(G) > T(G). Since lim , 0 K(G~,F) 
y C y E E't' ~ 

K(G,F), (i) follows. 

Next suppose that conditions (cl and (d) are satisfied. Without loss 

of generality assume f~ J(u)du = 1 and hence r 1 = r. Let again G c: Q satis-

fy K(G,F) = K(ll ,F) < °'· First suppose that G-l (a+O) < G·-1csl. The~ there 
r -1 -1 -1 

exists y c (a, SJ such that G (y+h) > G (y) for each h > 0. Let c = G · (y) 

(hence O < G(c) = y < 1) and let for O < E < rnin{y,1-y} the df GE be defined 

by i.ts PG-density gE ~0 dPcE::/dPG given by 

g (x) 
C 

f (y-E)/y ' 

1 (1-y+E::) / (1-y) , 

X ~ C 

X > C,, 

'l'hen G-l ;oc G-.1 
E 

-1 -1 
and G (u) > G (u) for each u in 

of y. Hence f l E -1 fl -1 
0 J(u)GE:: (u)du > 0 J(u)G · (u)du 

a left-hand neighborhood 

for each c > 0. Since 

lirnE::fO K(GE,F) = K(G,F), condition (i) follows. 

It remains to consider the case that G- 1 (a+O) 
-1 

G (S) = b, say. 

f l -1 
Then O ,J (u) G (u) du = b ;oc r since_ G E nr. Suppose r is a continuity point 
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of F. Then PG« PF implies PG({r}) = 0 and hence b > r, since bis a dis

continuity point of G. It follows that K(nt,F) = K(nr,F) for all t E (r,b), 

implying (i). 

Now suppose that r is a discontinuity point of F and that b = r. Note 

that G(r-0) $ a in this case. If G(r-0) > 0 we proceed as follows. For 

0 < £ < G(r-0) define the df G8 by its density g 8 = dPG8 /dPG given by 

{

(G(r-0)-E)/G(r-0) , 

(l-G(r-0)+£)/(1-G(r-0)), 

X < r 

X ;:,c r. 

Then G8 ((r-0) = G(r-0) - £ :,; a-£, hence G8 E nr. Considering the partition 

P = {(-00 ,r),[r, 00)} of lR it follows immediately that there is a T-open 

neighborhood of G8 contained in nr. Hence K(intT(Qr) ,Fl $ K(G8 ,FJ, for each 

£ > 0. Since lim 'O K(G ,F) = K(G,F), we have K(int (Q) ,F) $ 
£v £ T r 

$ lim£+0 K(G£,F) = K(nr,F), i.e. K(intT(Qr) ,F) = K(Qr,F). The T-continuity 

of T implies that Qr is T-closed and hence Theorem 1.3.1 yields that (1.6.4) 

holds provided un = 0 for all large n E :IN • The left continuity of the 

function t + K(Qt,F) (Lemma 1.3.4) implies that (1.6.4) also holds if un $ 0 

for all large n E :IN ( consider a sequence { t } in lR such that t t r and 
m m 

t ➔ K(Qt'F) is continuous at tm for each m E :IN). 

Finally suppose G(r-0) = 0 •. Let the df G' be defined 

PF(Bn[r, 00))/PF([r, 00 )), for each Borel set B. Then G' E 

$ K(G,F), hence K(G,F) = K(G' ,F) = -log PF([r, 00 )). Since 

Lemma 1. 2. 4 implies that condition (A' l of Lemma 1. 3. 2 is 

by PG' (B) 

Q and K(G' ,F) $ 
r 

n is T-closed, 
r 

satisfied. Hence 
-1 ~ 

lim sup n log Pr{F En}$ log PF([r, 00 )). It is clear that conversely 
n➔oo _ 1 ~n r _1 

lim inf n log Pr{F En};:,, lim inf n log Pr{Xl:n;:,, r} 
n➔oo n r n➔oo 

= log PF([r, 00)). Thus (1.6.4) holds provided un 0 for all large n E JN • 

By the same argument as before (1.6.4) also holds if un $ 0 for all large 

n E J\1, • 0 

REMARK 1.6.3. The continuity of a function which is essentially equivalent 

to the function Tin (1.6.Sl has been pointed out by BICKEL & LEHMANN (1975). 

In fact there exists an interesting link between robust statistics and the 

theory of large deviations, since robustness of statistics T(F) may be 
n 

defined by continuity of the corresponding functionals Ton D with respect 

to some suitably chosen topology and since large deviations of these types 

of "continuous" functionals of empirical dfs can be tackled by the methods 



38 

of this chapter. Note that HOADLEY's (1967) 'I'heorem 1 would not suffice to 

prove (1.6 .4) since T is in general not uniformly p-continuous (and F is 

not assumed to be continuous). 

In applications the weight function J appearing in the definition of 

the statistic T(F) may also depend on n. In this case Theorem 1.6.1 is not 
n 

immediately applicable, but the next t.ri.eorem may be of use. 

THEOREM 1.6.2. Let FED, let Jn (nEJN) and J be L-integrable functions 

defined on [0,1] and let [a,Bl be the smallest closed interval containing 

the support o.f J and the support of each Jn. Let nt be defined by (1.6.3) 

for t c: JR. Then, for each sequence of real. numbers {u } such that: 
n 

lim u o, 
n->co n 

1 

(1.6.6) lim 
-1 

log Pr{f 
--1 

r+un} -K(rlr,F) n J (u) F (u)du ? 
n n n->co 

0 

if J, F, a and S satisfy condit.ions (i) and (ii) of Theorem 1.6 .1 and if 

the sequence {J} satisfies . n 
(iii) lim J0

1 !J (u) - J(u) ldu o. 
n·+<» n 

PROOF. The proof proceeds by a truncation argument. We write Bm [-m,m] 

and denote by the conditional df defined by 

BE B, if Ge D and (B ) > 0. 
m 

Let {G E D: (B ) ~ 1 for some m E JN L By condition (i) there exists 
m 

for each n > 0 a o > O and a df G E "r+o satisfying K(G,F) s Y:: ,F) + n. 

,F) Since GmErlrforlargemand limm->coK(Gm,F') = K(G,F), it follows that K 
·k 

= KW/lD ,F). Hence by Lemma 1.4.1 limm->oo K(Qr,Fm) K (Q ,F) • F'i.x E > 0. 
r 

'l'hen there exists N0 NO (m,c) such that for all n ? 

1 1 

if (u) (u)du - f J(u)F:1 (u)du! s m 

0 0 

1 

f /Jn(u)··J(u} I 
0 

du< 

.if 1 (u) c B , u E (0,1). For convenience of notation we shall write 
m 

E A/F-l (u) E B , u ,: (0,1)} 
n m 

if PF(Bm) > 0. With this notation we have for each la.rge m E JN: 

E 
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1 

lim inf n- 1 log Pr{f Jn(u)F~ 1 (u)du? r+un} 
n-..oo 

0 
1 

? lim inf 
-1 

Pr{f 
--1 

?: r+u IB} log PF(Bm) ? n log J (u)F (u)du + 
n n n m 

n-+«> 
0 

? lim inf n 
-1 

Pr{j 
·-1 

r+IEIB} + loq P (B) log J(u)F (u)du ? 
n m · F m 

n-+«> 
0 

The last inequality holds by Theorem 1.6.1, since we may choose a continuity 

point r E (r+h:,r+E) of the function t ➔ KW ,F ) • 
m t m 

Since limm->oo K(51r+c:'Fm) = K(rlr+E'F), we have 

1 

lim inf n- 1 log Pr{f 
n->oo 0 

Hence by condition (i) 

1 

(1.6.8) lim inf 
-1 

log Pr{f n 
n-= 

0 

Next we show that conversely 

1 

(1.6 .9) lim sup 
-1 

log Pr{f n 
n-+«> 

0 

• 1 } J (u)F- (u)du?: r+u ? 
n n n 

--1 r+un} J (u)F (u)du ? ? 
n n 

·-1 
r+un} J (u)F (u)du ? $ 

n n 

-K(Q 

-K(rl 

Fix E: > 0. 'l'here exists an m E JN such that for all n E :N , 

,F) . 
r 

r 
,F). 

Pr{F-l (a+O) i B } < rct and Pr{F-l (13) i B } < En (this may be seen for ex-
n m n m 

ample by an application of Chernoff' s theorem to the binomial representa--

tion of the probabilities Pr{F'-l (a+O) i Bm} and Pr{F-l (8) i B }) • 
n n m 

Hence for large n: 

since 

() 

1 

5 Pr{f 
0 

--1 
J (u)F (u)du? r+u 

n n n 

--1 } J(u)Fn (u)du? r-E 

--1 } 0 n and F (u) EB, u E (a,B) + LE 
n m 

(1 .6."7) l ld . f 1 'f ·-l ( ) . . 10 s aga1.n .. or . ·arge n i F n u EB for u E (a,13). 
m 
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'l'his result implies (L6.9) by Theorem 1.6.1 and Lemma 1.3.4 (also if 

K(Qr,F) = 00 ) and the present theorem follows from (1.6.8) and (1.6.9). D 

REMARK 1. 6. 4. Related results for particular cases have been obtained by 

BOOK (1974) and STEINEBACH (1977). BOOK (1974) gives large deviation re-

sults for Winsorized means of samples from an exponential distribution and 

STEINEBACH (1977) considers the more general case of linear combinations 

of order statistics from uniform and exponential distributions. The proofs 

in these papers are based on the relation between probabilities of large 

deviations and moment generating functions. 

For O < ex < J, the a-t:rimmed mean of x 1 , ••• 

(1.6.10) ·r 
n 

n-[an] 
(n-2[an])-l l xi,n' 

i=[cm]+l 

is defined by 

where [x] denotes the largest integer :<; JL As an application of the previous 

theorems we prove the following large deviation result for ex-trimmed means. 

THEOREM L6. 3. Let r E JR , let F E D be continuous at r and let be the 

a-trimmed mean given by (l.6.10). 2'hen, f:or each sequence {un} such that 

limn->-oo = 0, 

(1.6.11) 

where 

lim n--l log 

n➔= 

1-a 

n; {GED: J G--l(u)du ?'. (1-2a)r}. 

a 

l"f F is discontinuous at r, then ( 1 • 6 .11) conti.n11es t:o hold 

for all large n E :N • 

PROOF. We wri.te the statistic T 

= n(n-2[om])-l , where 

in the form f ~ J (u) F-l (u) du with 
n n n _ 1 
= ([an]/n,1-[an]/n). Let J = (1-2a) 

s 0 

•l(a,i----a). If F' is coni:i.nuous at r, then (L6.1.J.) follows since in this 

case (c) and (d) of Theorem 1.6 .1 and hence the conditions of 'l'heorem 1.6 .2 

are fulfilled. 

Now suppose that Fis discontinuous at r. Let GE satisfy K(G,F) 

Theorem 

(such G exists'. l. It was shown in the course of the proof of 

.6. that the function t + K(Qa,F') is continuous at r (and hence 
t 
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the above proof remains valid) unless G- 1 (a+0) = G- 1 (1-a) = r. 

It remains to consider this exceptional case. Fix E > 0 and let 

f l -1 = {H E D: O Jn (u)H (u)du 2 r}, n E JN. For O < o < 1 let Go E D be ri 
r,n 

defined by G0 (x) (1-o)G(x) if x <rand G0 (x) = (1-o)G(x) + a if x > r, 

implying G0 (r-0) 2 1-a+oa. Note that K(G5,Fl < K(G,F) 

= KWa ,F) 
r 

+ E if o < o , say. Moreover, An c (a-oa,1-a+oa) and hence 

G-" E rl 
u r,n 

-r if n > (ao) . Let P denote the partition {(-00 ,r) ,{r}, (r, 00 )} of 

lR • Choosing appropriate o E (½o ,o) it follows that there exists a se-
n E £ 

quence {G } = {G.,, } such that for all n > <½ao ) -l 
n un · E 

( 1) nG (r-0) E 2Z and nG (r) E 2Z 
n n 

(2) G E fl and {H ED: dp(PH,PGn) O} C n 
n r,n r,n 

(3) Kp(Gn,F') < K(fla,F) + £. 
r 

Hence, if ~ 0 for all large n, the same arguments that were used in the 

last part of the proof of Lemma 1.3.2 yield 

Pr{'I' :?: r+un} 2 pr{pn E n } 2 Pr{dp (PF ,PG ) 0} 
n r,n 

n n 

as n + 00 , implying 

-1 
lim inf n log 

n➔oo 

2 r+u } 2 -K(r;{J. ,F). 
n r 

On the other hand ( 1.6. 9) continues to hold in the present case, with in 

lieu of nr' since the second part of the proof of Theorem 1.6. 2 does not 

use condition (i) . This completes the proof of the last statement of the 

theorem. D 

The actual computation of the infimum K(ria,F) in (1.6.11) is not easy. 
r 

We shall derive a more explicit expression for K(ria. ,F) under the assumption 
r 

that Fis continuous. In this case any df H such that K(H,F) < 00 is also 

continuous and 

b 

-1 I H (u)du = xdH(x) 

a a 
-1 -1 

where a = H (al, b = H (1-a) and - 00 < a < b < 00 We also assume F(r) < 1 

since otherwise K ma, F) "" oo. 
r 

'l'he minimization procedure is performed in two steps. Let 
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ri°·(a,b) 
r 

b 

{HE D: (1-2a)-l f xdH(x) ? r, H(a) 

a 

for - 00 <a< b < 00 In view of the continuity of F 

a, H(b) 1-a} 

(1.6.12) inf{K(na(a,b),F): 0 < F(a) < F(b) < 1, F(b) > F(r)L 
r 

fb tx 
Consider the function t + tr - log a e dF(x), t? 0. This function 

achieves its maximum on [0, 00 ) at a points= s(a,b) defined by 

if fb xdF(x)/(F(b)-F(a)) ? r 
a 

otherwise, 

f b tx fb tx where ¢(t) = xe 'dF(x)/ e dF(x), t? 0. Note that in the second case 
a a 

tl1e equation ¢ (t) •=' r has a unique positive root s since ¢ (0) < r, 

limt+oo ¢(t) >rand ¢'(t) > 0 for all t? 0. 

Let GED be defined by its density g = dPG/dPF given by 

Let HE 

g(x) 

K(G,F) 

r(al X < a 
sx b esxdF(x), (1-2a)e If a a 5 X 5 b 

et/(1-F(b)) x > b. 

2a log a+ (1-2a)log(1-2a) - a log F(a) - a log(1-F'(b)) + 

b 

+ (1-2a)sr - (1-2a)log f e 5 xdF(x). 

a 

(a,b), K(H,F) < 00 and h dP8 /dPF. By Jensen's inequality 

b 

sr - (1-2a) -1 I (x)} 

a 
b 

(1-2a) -1 f exp(sx - log h(x))dH(x)} s 

b 

5 s{r - (1-2a)-l f 
a 

a 
b 

xdH(x)} + (1-2a)-l f 
a 

log h (x) dH (x) . 



Hence 

b I log h(x)dH(x) ~ (1-2a}{sr + log(1-2a) - log 

a 

Similarly, by Jensen's inequality, 

and 

Thus 

a I log h(x)dH(x) ~ H(a) log{H(a)/F(a)} = 0t log(a/F(a)) 

I log h(x)dH(x) ~ (1-H(b)) log{(l-H(b))/(1-F(b))} 

b 

= 0t log{a/(1-F(b))}. 

K(H,F) =flog h(x)dH(x) ~ K(G,F), 

lR 

implying K(~Ot(a,b),F) = K(G,F). 
r 

and 

Now define the functions 

(1-2a)s(a,b)r - alog F(a) - 0t log(1-F(b)) + 

b 

- (1-2a) log f exp(s(a,b)x}dF(x) 

a 

g(a) 2a log 0t + (1-2a)log(1-2a). 

Then, by (1.6.12) 
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(1.6.13) g(a) + inf{f (a,b): 0 < F(a) < F(b) < 1, F(b) > F(r)}. 
Ot 
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CHAPTER II 

BAHADUR EFFICIENCIES OF SIGNED RANK TESTS 

2. 1 • INTRODllC'I'ION 

Let x1 ,x2 , ... be a sequence of i.Ld. random variables taking values 

in lR according to some pm P E \. The hypothesis of symmetry is given by 

P ( ( -b, ---a) ) , for each interval (a,b) c (0, 00 ). 

We shall consider signed rank tests for H0 based on signed rank test sta

tistics without regression constants. If Pis non-atomic these statistics 

are of the following form 

(2. L 1) T 
n J 

((),co) 

J (H (x) )dF (x), 
n n n 

where Fn is the empirical df of x 1 , ... ,Xn' fin is the empirical df of 

lx1 1, ... ,lxnl and J 11 : (0,1] + JR is a score function. 

For example, J 11 (u) = 1 yields the sign test statistic and Jn(ul = 

= n -l t 1 L 1 ( (. l) / . / J (u) yields the Wilcoxon signed rank test sta-1= 1-. n,1 n · -
tistic. Large deviation theorems for these statistics will be given in 

section 2.2. If Pis purely atomic and hence ties are present, there exist: 

several methods for dealing with ties and zeros leading to different: types 

of signed rank statistics. We shall be concerned with probabilities of large 

deviations of these statistics in section 2.3. 

The large deviation theorems to be presented in the next two sections 

will be relatively straightforward consequences of the theory wh.ich was 

developed in chapter I. They will enable us to determine the exact slopes 

of signed rank tests. The main results of section 2. 2 have first been de-·· 

rived by H0(1974) under slightly stronger conditions and by rather different 

methods (Theorems 2.2.1, 2.2.2 and_ 2.2.4). In Theorem 2.2.3 a sufficient 
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condition is given under which the Bahadur efficiency coincides locally with 

Pitman efficiency. 

As far as we know, the results of Section 2.3 are new. They yield the 

exact slopes of conditional signed rank tests when the underlying pms have 

finite support under essentially the same conditions as in the non-atomic 

case. Related results have appeared in an unpublished Ph.D. thesis by 

CHAKRABARTI (1978). 

2.2. EXACT SLOPES IN THE NON-ATOMIC CASE 

Let for each n e: lll the score function J : (0, 1 J -+ lR be defined by 
n 

(2.2.1) J (u) = 
n l((i-i)/n,i/n](u), u e: (0,1], 

where the ain's, 1 sis n, are real numbers. For each Q e: A1 the df HQ is 

defined by 

(2. 2. 2) 

and the pm Q, with support contained in [-1,1], by 

(2.2.3) Q(B) {

Q({x > 0: 

Q({x < 0: 

Q({0})' 

HQ(xl e: B}), Be: B, B c (0,1], 

- HQ(-x) e: B}), Be: B, B c [-1,0), 

if B = {0}. 

Note that Pis the distribution of the random variable HP(lx1 llsign(X1), 

where sign(x) = l(O ) (x) - 1( O) (x). The empirical pm P induces an em-- ,oo -oo, n 
pirical pm P of the (dependent) random variables H- (IX. ll sign(Xi), 

n _ Pn i 

i = 1, ••• ,n (note that Hp H ). In the sequel we use the convention 
-1 n n 

HQ (0) = 0. 

With this notation we can write the statistics (2.1.1) with score 

functions Jn as defined by (2.2.1) in the following way 

(2.2.4) T 
n f J (u)d~ (u). 

(0,1] n n 

This representation of Tn suggests the study of the functionals 

T J : A1 -+ :JR defined by 
m 
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(2. 2. 5) TJ (Q) 

m 
J J (u)dQ(u), 

(0, 1] m 

where Jm is a score function satisfying (2.2.1). 

LEMMA 2. 2 .1. Let J : (0, 1 J + JR be a score function satisfy.ing (2. 2 .1) • 
m 

:1.'hen T,ym: 1\ ·+ lR is p-continuous at each non-atomic pm Q E 1\. 1 • 

PROOF. Suppose that Q E i\ is non-atomic and that Qn + p Q,n + 00 , for a 

sequence {Q} in A1 . Let F and F be the dfs corresponding to Qn and Q, 
n n 

respectively. Then Fn +Fin the supremum metric and hence HQn + HQ, also 
-1 -1 

in the supremum metric. It follows that HQ + H except perhaps on a 
n Q 

countable set D of discontinuity points. Fix E > 0 and first suppose that 

F(Ol < 1. Let a 0 E (0,1) and a 1 ,a2 e (0,1)\D be points 
-1 

~ F(HQ (a1)), i = 0,1,2 satisfy b 0 - E <bl< b 0 < b 2 

such that b . = 
1 

< b 0 + E:. Since 

F (H-Ql(a.))+ b,, i = 1,2, (by the uniform convergence 
n n 1 1 

of {F} to F), we 
n 

have 

It follows that 
-1 

-1 ··1 
F n (HQn (a0 )) + F (HQ (a0 )) for all a 0 E (0, 1) . If F (0) 

then F (HQ (a)) ➔· 
n -n 

In a similar 

1, for all a E {0,1). 
-1 . -1 

way one can prove that F (HQ (a)) + F(Hg (a)), if a 

or a 
-1 -1 n n 

1 and that P (-HO (-a)) + F(-H · (-a)), if a E [-1,0). Hence Q 
n -n Q n 

n -+ oo, and thus, in view of (2.2.1), 

+ TJ (Q), 

m 

n -:>" oo, 

implying the p-continuity of TJ at Q. 0 
m 

1, 

+ Q, 
p 

The following somewhat. technical lemma will enable us to reduce prob

abilities of large deviations of 'I'n under H0 to probabili. ti.es of large de

viations of the statistics 

(2.2.6) f J (u) dP (u), 
m n 

(0, 1] 
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where Jm is a fixed score function. By Lemma 2.2.1 we can apply Theorem 

1.3.2 to the statistics of type (2.2.6) and thus obtain expressions for the 

asymptotic behavior of probabilities of large deviations. 

We introduce the following notation. The set r c is defined by 

(2.2.7) r {Q E Q has a density q w.r.t. Lebesgue measure such that 

q(u) + q(-u) = 1, u E (0,1]}. 

Note that Q E r for each non-atomic pm Q E J\ · If J: (0,1) ➔ JR is an L-

integrable function, then J~ J(u)dQ(u) is well-defined for each Q Er, since 

I~ !J(u) ldQ(u) s st IJ(u) !du< OO 

Hence we may define 

(2.2.8) r(t,:r) "" {Q E r: It ,J(u)dQ(u) 2: t}, 

where t E lR • Furthermore, the function f J: JR + JR u { oo} is defined by 

(2.2.9) inf{K(Q,R): Q c f (t,J)}, 

where R is the pm in A1 corresponding to the uniform density on [-1,1] and 

where (t) = 00 if I' (t,J) = 0. Finally we define for L-integrable functions 

J: (0,l) ➔ JR' 

1 

m(J) = ½ f J(u)du 

0 

1 

M(J) f ,T(u)l(Q,oo)(J(u))du. 

0 

LEMMA 2 • 2. 2 • Let J: ( 0, 1) ➔ JR be an L-integrab.I e function . 2'hen 

(i) the function is finite, convex and non-decreasi.ng on the i.nte:r:val 

(m(J) ,M(J)). 

(ii) if m(J) < r < M(J), then 

1 l 

(2.2. 11) (r) Ar - l A j J(u)du f log cosh 
1 AJ(u))du, 

2 
0 0 

where;\ A (r) .is the unique solut.ion of the equation 
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1 

(2. 2. 12) I -1 
J(u){l + exp(-AJ(u))} du = r 

0 

(iii) Let rand E > 0 satisfy 

m(J) < r-E < r+E < M(J) . 

. rf J is an L-integrable function such that f ~ I J (u) __ 3: (u) $ E, then 

(2. 2. 13) m(J) $ m(J) + E < r < M(J) - C $ M(J) 

and 

(2. 2 .14) 

PROOF. 

(ii) Assume m(J) < M(J), since otherwise the implication is trivially 

satisfied. By the method of Langrangian multipliers it is seen that 

the infimum at the right-hand side of (2. 2. 9) is attained by t.h.e pm 

Q E r with the following density q 

(i) 

q(u) 
{ 

-1 
{l+exp(-A,J(u))} , u 

-1 
{1+exp(AJ(-u))} , u 

0, otherwise , 

E (0, 1) , 

E (-·1,0), 

where A is a solution of equation (2.2.12L Since by assumption 

M(J) > m(J), the function J is not equal to zero on a set of positive 

Lebesgue measure, implying that the function 

1 

f -1 
¢: A-,.. J(u){l + exp(-AJ(u))} du, ;,\ E [ 0 ,co) , 

0 

is strictly increasing. By Lebesgue's dominated convergence theorem 

¢ is also continuous. Since ¢ (0) "' m(J) and UmA . ._ ¢ (;,) = M(J), there 

exists exactly one solution A of (2.2.12). 

By (ii) (r) is finite if m (J) < r < M (J) . 'rhe convexity of the 

function fa follows from the convexity of the map.12i.ng Q-,.. K(Q,P) and 

the linear.ity of the mapping Q-+ J(u)dQ(u), Q Er. F.inally, the 

monotonicity of follows from t.he inclus.ion relation 



(iii) 

r (r I ,LT) c· r (r ,J) ' if r s r I • 

Let Q E r and let q be the density of Q. Then 

1 1 

f IJ(ul -- J(u) Jq(u)du s f IJ<uJ 

0 0 

Hence 

1 1 I J(u)q(u)du - £sf J(u)q(u)du 

0 0 

implying (2.2.13) and (2.2.14). I] 

- J(u) ldu s £. 

1 

sf J(u)q(u)du + E, 

0 

In the following theorem an asymptotic e:,pression for probabilities 
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of large deviations under H0 of the signed rank statistics (2.1.1) is given 

(in the non-atomic case). 

THEOREM 2.2.1. Let P be a non-atomic pm in satisfying H0 and let 

,x2 ,. .. be a sequence of LLd. random variab.les taking va.lues in JR ac

cording to P. Let 'fn be defined by (2.1.1), n ~0 1,2, ... , where the score 

functions Jn satisfy (2.2.1) and the condition 

1 

lim I I 
n->oo 0 

(2.2. SJ (u) -J(u)Jdu o, 

for some L-integrab.le .function J: (0, 1 J + 1R. I.f m (J) < r < M (J) then, .for 

eacii sequence o.f real numbers such that lim u = 0, n-+oo n 

lim 
-1 

log Pr{T } f,J (r) , n ~ r + u -
n n n-+oo 

where (r) .is def.ined by (2. 2 .11) and (2.2.12). 

PROOF'. Without loss of generality we may assume that P corresponds to the 

uniform density on [ -1 , 1], since the distribution of 'r is the same for 
n 

each non-atomic pm, symmetric about 0. 

Fix E: > 0 such that 

m(J) < r-2£ < r+2£ < M(J). 

By (2.2.15) there exists an m m(e:) such that 
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1 

f !Jn(u) - J(u) ldu < ¼ s, 

0 

n 2 m. 

Since with probability one the empirical df 

0,1/n, ... ,1, we have with probability one 

runs through all values 

f 
(0' 1] 

1 

$ f 
() 

(u) - J (u) ldP (u) 
m n 

-1 
s n 

n 
L IJn O/n) - Jm (i/n) I $ 

i=i 

IJ (u) - J (u) ldu + (m/n) max I J (i/m) -
lsisrn m 

((i-1)/m) I. 
n m 

Hence there exists an 2 m such that with probability one 

(2. 2 .16) !Tn - TJ U\ll < s, n 2 n 0 , 
m 

where TJm is defined as in (2.2.5). 

Let 

Q 
t 

{Q E (Q) 2 t}, 

By •rheorem 1 . 3. 2 and Lemma 2 . 2 . 1 

(2. 2 .17) 
-1 -

limn log Pr{TJ (Pn) 2 r + un} 
n-+w m 

-· K(n ,P), 
r 

if t + K(Qt'P) is continuous from the right at t 

•rhus, by ( 2 • 2 • 16 J and ( 2 • 2 • 1 7 I , 

rand lim n-w> 

-1 
P) $ lim inf n log Pr{T 

n 
2 r + u } 

n 
(2. 2 .18) 

Il-l-<X> 

$ - K(Q ,P) , 
r-·E 

if the function t + K(Qt'P), t E 1R, .is continuous from the right at 

t r ·· c and t = r + E, and limn-- un = 0. We shall show that K(\lt,P) 

(t) for m(J) < t < M(J). 
m Ill 

Let Q be a pm in '\ such that K(Q,P) < 00 , then Q is absolutely con-

tinuous w. r. t. Lebesgue measure. Suppose q and q are the densi t.ies of Q and 

respectively. Then 



and 

1 

K(Q,P) •- f q(u)log(2q(u))du 

-1 

f1 
-1 -1 -1 -1 

(q(HQ (u))/{q(HQ (u))+q(-HQ (u))})log(2q(HQ (u)))du 

0 
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of -1 -1 -1 -1 
+ (q(-HQ (-u))/{q(HQ (-u))+q(-HQ (-u))})log(2q(-HQ (-u)))du 

-1 

= I 
-1 

1 

1 

q(u)log(2q(u)Jdu + f 
0 

(q(x)+q(-x))log{q(x)+q(-x)}dx 

~ f q(u)log(2q(u))du K(Q,P). 

-1 

Since Q = Q it follows that 

(2.2.19) 

1 

inf{K(Q,P): Q E A1 , I Jm(u)dQ(u) ~ t} 

0 

inf{K(Q,P): Q E r (t,Jml} = fJ (tl. 
m 

By Lemma 2.2.2 and the choice of E and m = m(E) we have m(Jm) ::;; 

::;; m(J) + E < r-E < r+E < M(J)-E::;; M(J ). Hence the function 
m 

t + K(Qt,Pl, t Em., is continuous at t = r + E and t r - Eby Lemma 2.2.2 

and (2.2.19). The theorem now follows from (2.2.18). D 

Theorem 2.2.1 has been proved by H0(1974) by methods which are similar 

to those used in WOODWORTH (1970). H'o also cons·iders the more general case 

of signed rank statistics with regression constants. For this· case the 

results are less explicit. 

We now discuss the concept of Bahadur efficiency of signed rank tests 

in the non-atomic case. Let Tn be defined by· (2.1.11 and let Gn be the df 

of Tn under H0 , when the df of Xi, i = 1,2, ••. , is continuous. The level 
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attained by Tn is defined by 

(2.2.20) (T ) 
n 

1-G (T -) • 
n n 

Suppose that the limit 

(2. 2. 21) c (P} 
-1 

- lim 2n log Ln (Tn) 
n-+oo 

exists with probabil.i ty one, if x1 ,x2 ,... are distributed according to the 

non-atomic pm P. Then c(P) is called the exact slope of the sequence {T} 
(') n 

at P. If the sequence {Ti} has the exact slope (P} at P, i = 1,2, and 
n 

if (P) and c 2 (P) are not both equal to zero, then the Bahadur efficiency 

of {T~1)} w.r.t. {T~2)} at Pis defined by c 1 (P)/c2 (P) (with the conven

tions 0/00 0 and a/0 00 if a> OJ. In chapter III other (equivalent) 

definitions of Bahadur efficiency and exact slopes will be used. For the 

proof of the equivalence of these definitions (under a very weak regularity 

condition) we refer to BAHADUR (1967). 

The following "strong law of large numbers for signed rank statistics" 

will be of use in the computation of exact slopes. 

LEMMA 2. 2. 3. Let x1 ,x2 ,. H be distributed according to a non-atomic pm 

PE A1• If is defined by (2.1.1) and if the score functions satisfy 

the cond.i tions of Theorem 2. 2. 1 , then with p:robabili ty one 

l 

-+ f J(u)dP(u), 

0 

as n + 00 

PROOF. By (2.2.15) 

(2.2.22) IJ (u) - J(u) Jd~(u) slim 
n 

1 1 

lim sup f 
n➔oo 

0 

J ]Jn(u) - J(u)Jdu 
n-+oo 0 

By the Glivenko-Cantelli theorem we have with probability one 

as n + 00 , 

Hence, by Lemma 2.2.i 

o. 
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(2 .2. 23) as n -·r 00 , 

with probability one, if mis a fixed natural number. The result now follows 

from (2.2.22) and (2.2.23) (see (2.2.16)). D 

Cambi.nation of Theorem 2.2.1 and Lemmas 2.2.2 and 2.2.3 gi.ves 

'l'HEOREM 2. 2. 2. Let the score functions ,J n satisfy the conditions of Theorem 

2.2.1. Let , ••. be distributed according to P, where Pis a non-atomic 

pm in 

(2, 2.24) 

sat.isfying 

1 

m(J) < f J(u)dP(u) < M(J). 

0 

Then the exact slope of the sequence of signed rank statist.ics {'1' } at P is 

f l - n 
given by 2fJ( 0 J(u)dP(u)), where the function is defined by (2.2.11). 

PROOF. By (2.2.241 and Lemma 2.2.2 the function fJ is continuous at 

~u)dP(u). 
0 

Since by Lemma 2.2.3 

1 

+ f ,T(u)dP(ul, 

0 

as n + 00 , 

with probability one, i. t follows from 'l'heorem 2. 2 .1. that 

-1 -2n log 

1 

('J'n) + 2fiI J(u)dP(u) 

0 

also with probability one. D 

as n ➔· 00 , 

We shall apply Theorem 2.2.2 to one-·sample tests for location. Let 

, ••. be distributed according to a df , where (x) = P(x-0) for 

some unknown continuous df F symmetric about O and where 0 is an unknown 

location parameter. 'l'he null hypothesis 0 = O is to be tested against the 

alternative 0 > 0. Since Fis unknown, this hypothesis coincides with the 

hypothesis 

He, Pis non-atomic and satisfies H0, 

(c for "continuous"), where Pis the pm correspondi.ng to F. 
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We shall consider the sign test, f1ilcoxon 's signed rank test and van 

der Waerden 's signed rank test. 'l'hese statistics can (apart from standardi

zations) be written in the form (2.1.1) with score functions of type (2.2.1). 

The score functions of these tests are respectively given by 

J (2) (u) 
n 

1 ' 

-1 
n 

U E (0,1], 

n 

I i.l((i-1)/n,i/n](u), 
i=l 

U E (0,1], 

~ -1 1 1 
l 1' (2+2i/(n+l)).l((i-1)/n,i/n](u), 

i=l 
u E: (0,1], 

where 1' is the standard normal df. Let us denote the corresponding test 

statistics by T(1), T( 2 ) and (3 ), respectively. For these statistics the 
n n 

conditions of Theorem 2.2.2 are satisfied with the limiting score functions 

J (i) def'ned . (1 l (2) (3) -1 1 1 
L by J (u) = 1, J (u) = u and J (u) = 1' + 2 u) , 

u E: (0, 1). 

We define for i 

(2 .2 .25) 

1, 2, 3, 

1 

f J (j_) (u) di\, 
0 

where Fis a symmetric and continuous df and P8 is tl1e pm corresponding to 

F 8 . If½< F(8) < 1, the exact slope of the sign test at is given by 

(F', 8) 2F(8) log(2F'(8)) + 2(1-F(S)l log(2(1-F(8))). 

This result easily follows from 'l'heorem 2. 2. 2. By 'l'heorem 2. 2. 2 we also 

obtain the following results. If ¼ < v2 (F ,8) < } , the exact slope of 

Wilcoxon' s signed rank test is given by 

(F,8) 

where A> 0 is the unique solution of the equation 

1 

f -1 
u{l + exp(-Au)} du= µ 2 (F,8). 

0 
-11 

Finally, if [2n} < µ3 (F,0) < 2 , the exact slope of van der Waerden's 

signed rank test is given by 



l 

c 3 (F,0) = 2 {:i_µ 3 (F,9) -;\(211)-½-f l0gcosh 

0 

where;\> 0 is the unique solution of the equation 

1 

f -1 
<i) 

1 -1 +-u ){1 + exp(-H 
2 

1 -1 +2 u))} du 

0 
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(F, el . 

It is clear that in general the computation of these exact slopes must 

be accomplished by numerical methods. Tables and graphs of the Bahadur 

efficiencies of the three rank tests w.r.t. one another have been given by 

KLOTZ (1965) for normal, logistic and double exponential location alter··· 

natives. Graphs of the efficiencies of th.e three tests w.r.t. the most 

powerful test for these same types of alternatives are given in 

GROENEBOOM & OOSTERHOFF (1977). 

We shall show that under some regularity conditions the Bahadur ef

ficiencies tend to the Pitman efficiencies as 0 + 0. To this end we need 

the following result of PITMAN ( 1949). 

LEMMA 2. 2. 4. Let JP 8 be the p:r:obabili ty dist:r: ibution oE the random sequence 

S = (X 1 ,x2 , ••• ), where OE [0, 00 ). Let Tn (Xi'"""'Xn), n EN, be a test: 

statist:ic for testing 0 "·' 0 against 0 > 0, rejecting the hypothesis for 

large values of , Suppose 

(i) 

(ii) 

1P 0 (T n 2a) is non-decreasing in 8 Eo:r: each a E 1R and 0 ::: 0. 
ll 

(n. ( 0 ) ) / a ( 8 ) :::; x) =- iP (x) , 
n ~ 

for x E JR and a}l e k.n , k 2 O, where the function 0 ➔ 11(0), 
n 

8 2 0, has a right-hand derivative µ'(0) at 8 0 and the ±'unction 

8->- 0(8), 0 2 O, satist'ies 1im0rn a(0) ,= a(O) > 0. 

If {Tn} .i.s a second sequence of statistics sat:is.fying the same condi

t.ions, but with µ and a replaced by ·µ and a, then the P.itman et'.ficiency o.f 

{T } w .r, L {T } .for testing 0 = 0 against 8 > 0 is given by 
n n 

(0) 

'l'HEOREM 2. 2. 3. Let {'r } be a sequence of signed rank statistics such that 
n 

the score funct:ions Jn and J satisfy (2,2.15). Let F be a continuous df, 

symmetric about O, such that ±'or su.fficient.Iy small 8 > 0, 

m(Jl < µ(F,8) < M(J), 
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-- fl -where µ(F,0) 0 J(u)dP8 (u) and P 8 is the pm corresponding to F8 . Moreover, 

suppose that the following conditions hold 

(i) f~ J 2 (u)du < oo 

(ii) the right-hand derivat_ive µ' (F,O) of the function 8 + µ(F,0) at 0 0 

exists 

(iii) {T } and F satis.fy the conditions of Lemma 2.2A with µ(8) 
n 2 

and a (8) I 1 2 -
O (J(u)-µ(8)) dP0 . 

µ(F,8) 

If {T } is a second sequence of statist_ics satisfying the same condi
n 

tions, but with µ,a,Jn and J replaced by µ,a,Jn and J respectively, then 

the Pitman efficiency of {T } w.r.t. {'r } for testing H against F8 , 8 > 0, 
n n c 

is equal to lim8+o e(G), where e(0) .is the Bahadur effic.iency of {Tn}w.r.t. 

{T} ate. 
n 

PROOF. Without loss of generality we may assume that f~ :J(u)du 

diti.on (ii) we have 

ii (8 l 8µ' (OJ + a (0J , 8 + o, 

0. By con-

where µ' (0) denotes the right-hand derivative of the function 0 + µ (0) at 

8 ~, 0. Since by condition (i) 

1 1 

I J(u){l + exp(-\J(u))} 
-1 

du ¼AI 2 
,T (uldu + 0(\), \ + 0, 

0 0 

the solution \ of (2. 2 .12) with r µ (8) satisfies 

8 + 0, 

Wher.e 0 2 (J) Jl . 2 ( ) = 0 J u du. Hence 

Similarly, 

2 
2 2 ~ 2 

(OJ) /0 (J) + o (8 J , 8 + Cl, 

implying 



lim fJ(µ(8))/fJ(µ(8)) 
e+o 

The theorem now follows from Lernma 2.2.4. D 
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Theorem 2.2.3 implies that the Bahadur efficiencies of the sign test, 

Wilcoxon's signed rank test and van der Waerden's signed rank test w.r.t. 

one another tend to the respective Pitman efficiencies if 8 + 0 and Fis a 

normal, logistic or double exponential df. It can be shown using WIEAND 

(1976) that in these circumstances the Pitman efficiencies are also the 

limits of the approximate Bahadur efficiencies as 8 + O (for the definition of 

this concept see e.g. BAHADUR (1960)). It follows that in this case the 

Pitman efficiency coincides with the limiting approximate and exact Bahadur 

efficiency as 8 + o. 
Sufficient conditions under which the exact and approximate Bahadur 

efficiencies of linear rank tests for the two-sample problem coincide local

ly for 0 + 0 have been given by KREMER (1979). 

Although locally van der Waerden's test, Wilcoxon's test and the sign 

test are asymptotically most powerful for testing H against normal, logistic 
C . 

and double exponential shift alternatives respectively, these optimality 

properties are not preserved for fixed al terna.tives. In fact, tli.e Ba.hadur 

efficiency of Wilcoxon' s signed rank test w. Lt. van der Waerden 's signed 

rank test is greater than one for alternatives <!> 0 with 8 greater than .1 

(see KLOTZ (1965)). Nevertheless, the .oest possible exact s·lope :for testing 

is attained by signed rank tests at each fixed alternative under some 

weak regularity conditions. This is shown by the next theorem. 

'l'HEOREM 2. 2. 4. Let P E: be a non-atomic pm not satisfy.ing H0 and 1.et p 

be a dens.ity o.f P w.r.t. Lebesgue measure. Let the function J: (0,1) -+ JR 

be defined by 

J(u) { 

log(p(u)/p(-u)), 

0, otherwis·e. 

if p(u)p > 0 

Suppose that the score functions Jn and ,J sat.isfy (2.2.15) and 

1 

rn(J) < f J(u)d~(ul < M(J). 

0 
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Then the sequence {Tn} defined by (2.2.4) attains the best possible slope 

for testi.ng H against P. This exact slope is given by 
C 

1 

2 f p(u)log(2p(u))du, 

-1 

PROOF. For each Q E A1 we define a pm Q E A1 by 

Q(B) Q({x E :m: !xi E B})' BE B. 

Let Q E 110 and letµ be a a-finite measure dominating P, Q, P and Q. Suppose 

that p, q, p and q are the densities of P, Q, P and Q w.r.t. µ and let 

K(P,Q) < 00 • Then 

K(P,Q) f p(x)log(p(x)/q(x))dµ(x) 

lR 

I p (x) log ( 2p (x) / {p (x) +p (···x) } ) dµ (x) 

IR 

+ f p(x)log({½(p(x)+p(-xl)}/q(x))dµ(x) 

]R 

1 I p(u)log(2p(u))du + 

p(u)log(2p(u))du, 

f p(x)log(p(x)/q(x))dµ(x) 

[ 0 ,oo) 

by the symmetry of the density q and the non-negativity of K(P,Q). Hence 

1 

K(P, = I p(u)log( (u))du = f p(x)log(2p(x) (x)+p(-x)})dµ(x) 

-1 ]R 

1 
and the pm RE ri0 with µ-density r(x) 2{p(x) + p(-x)} is the "least favor-

able" pm for testing against P. By a result of Stein the Bahadur slope 

of the sequence of most povrerful (MP) tests for testing R against P is 

equal to 2K(P,R) (cf. BAHADUR (1971), Lemma 6.1). Since the power of any 

test of H c against P cannot exceed the power of the MP test for testing R 

against P, 2K(P,R) is the best possible exact slope at P. By 'rheorem 2.2.2 



this is also the slope of {T} at P. D 
n 
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Theorem 2.2.4 has first been proved by H0(1974) under somewhat stronger 

conditions (Ho assumes that P has a density w.r.t. Lebesgue measure and that 

{Jn} is of uniformly bounded variation on (0,1)). 'l'he optimality property of 

signed rank tests expressed by Theorem 2.2.4 is called the asymptotic suf

ficiency in the Bahadur sense of the vector of signs and ranks. A similar 

result for linear rank tests has been proved for the two-sample problem by 

HAJEK (1974) and for the independence problem by GROENEBOOM et al (1976). 

It follows from Theorem 2.2.4 that a rank test satisfying the condi

tions of Theorem 2.2.1 is optimal in the sense of Bahadur efficiency for 

testing H against each non-atomic P such that P has a density p satisfying 
C 

- -1 
p(u) ~ {1 + exp(-J(u))} , U E (Q, 1.) , 

Hence the sign test is optimal against each non-atomic P such that the 

density p of P satisfies 

p(u) 1 + e- 1 u € {0,1). 

For Wilcoxon' s signed rank test this pm P is characterized by 

p(u) 
-u -1 

{1 + e } ·, U E (0,1) 

and for van de:c Waerden's signed rank test by 

- -1 -1 
p(u) = {1 + exp(-1! (½+½uJ)} , 

2.3. EXACT SLOPES FOR PMS WITH FINITE SUPPORT 

U E (0,1). 

Let , ... be a sequence of i.i.d. random variables taking values 

in the set D = {x E 26 : Ix I s m} according to some 

where m E JN • The null hypothesis to be tested is 

H ' P a a 
satisfies 

E (a for "atomic"), 
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There are several types of statistics for testing H corresponding to dif
a 

ferent ways of dealing with ties and zeros. To facilitate the definition of 

these statistics we introduce an infinite sequence of i.i.d. auxiliary 
1 

random variables , u2 , ... which have a uniform distribution on (- ':1) • 
We suppose that the Xi's and Ui's are stochastically independent. Let 

(2. 3 .1) Y. 
l 

+ u.' 
l 

i 

let be the empirical pm of Y1, ... ,Yn and let Hn be the empirical df of 

IY 1 J, .• ,,JYnJ. Score functions Jn are defined as in (2.2.1). 

Signed rank statistics with randomized ranks and Pratt's met.hod for 

.handling ties at zero (cf. PRATT (1959)) are defined by 

(2. 3 .2) (H (x) )dP (x). 
n n 

Signed rank statistics with random.ized ranks and zeros discarded are defined 

by 

(2. 3. 3) 
(2) rn Cxl 

n 
(½)) (x). 

Signed rank statistics with Pratt's met.hod for .handl.i.ng ties at zero and 

the average score method for at.her ties are defined by 

(2. 3.4) 
PH ( (k-l, 'k.+½ J) 

n 
I 

(k-½,k+½J 

J 
n 

(x)) dPli (x) • 
n 

Finally, signed rank statistics with zeros discarded and the average score 

met.hod for other ties are defined by 

- ( (k-½,k+½]) 
T(4) 

m p 

f (2 .3 .5) L n J CH CxJ-§: ( 1,) ) (X) • 
n p_ ( (k-½,k+½]) n n n 

k=l H 
n (k-'::i 

A tie at i, i 0, ~.,.,, .,m, of the sample is defined by 

T 
n,i 

#{j E: N: Jy. I 
J 

E: (i-l,,i+l,), j s: n}, 

where # V denotes the number of elements of a (finite) set V. The vector of 

t:ies of the sample l,;,, ,,,Y 
n 

is defined by T ... ~ (T 0,. •., T 
11 n, n 
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Let A0 = (-½,½) and Ai= (-i-1:,,-i+½) u (i-½,i+½), i = 1, ... ,m. Further-

more, let be the uniform pm on Ai, i.e. P0 ((a,b)) = b-a, if (a,b) c (-½,½) 

and ( (a,b)) = ½ (b-a), if (a,b) c (i-½,i+½) or (a,b) c (-i-½,-i.+½l, 

i = 1, ... ,m. If we condition on the vector of ties \i and if Pa satisfies 

Ha' then Y1, ••• ,Yn may be considered as coming from m + 1 samples of sizes 

O, ... ,T from the probability distributions P0 , ... ,Pm' respectively. 
, n,m 

'I'his observation will be helpful in proving large deviation theorems for 

th t t . t' T(1) T( 4 ) 'l' "d t ' . l't' d f" e s ·a :i.s .:i.cs , ... , .. o avoi rivia :i. :i.es we e. ine 
(') n 11 

Pr{T 1 EA I T = t} = 0, if A EB and Pr{, 
11 n n ( ) 

= t } = o, i 
n n 

For the statistics T 1 we have 
11 

the foll.owing result. 

1, ... ,4. 

THEOREM 2. 3. L Let Ha be satisfied and define pi = Pr{ I x1 I i}, 

i = 0,1, ••. ,m, with p 0 < 1. Suppose that the score functions satisfy 

(2.2.15) for some L-integrable function J. Let {t} = {(t 0 , •.• ,t )} n nr n,m 
a sequence of (m+1)-tuples of non-negative integers such that L~=O 
and 

(2.3.6) 

If 

(2 .3. 7) 

and 

where 

(2. 3 ,8) 

i 0, ... ,m. 

1 1 
1 I J(uldu < r < I J (u) 1 (O ,oo) (,J (u)) du 2 

Po Po 
is a sequence of real numbers tending to O, then 

Um n- 1 l.og Pr{'l'(l) 2': r+u 
n n 

T 
n 

t } 
n 

1 

J(u)du - f 
Po 

log cosh(½AJ(u))du 

and A> 0 is the unique solution of the equation 

1 

(2.3.9) f J(u){l + exp(-AJ(u)) du r. 

Po 

i 

be 

= n 

PROOF. First suppose that p 0 > 0. For j_ = 0, 1, •.. ,rn let Bi denote th.e Borel. 

field on Ai and let r i be the set of pms on (Ai ) . Without loss of gener·-

ali ty we may assume that > O, i = 1, ... ,m. Let v = , •.. , , where 
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vi.> 0, i. = 0, ... ,m and I:=o vi.= 1. Furthermore, let Q 

where Qi is a pm in ri. The df HQ,v is defined by 

rn 
(2.3.10) HQ (x) 

,\! 
l v.Q. ([-x,x] n A.) l[O ) (x) 

i=0 l l l ,oo 

and the pms Qi E A1 are defined by 

(2.3.11) Q. (B) 
1. 

l Q, \) 
0.({x < 0: -H (···x) E B 

EA.}), BE B, B c (0,1] 
i lQ.({x > 0: H (x) E B, x 

-i Q \) ' 

Q.({O}l, if t= {O}, i = 0. 
l 

x E A.}), B E B, B c [-1,0) 
1-

Qi is the distribution of HQ,v(IY1 IJ1Ai. (Y 1) sgn (Y 1 ) if Qi is the conditional 

distribution of Y1 given Y1 E Ai' :i. 0, ... ,rn. Let ri be endowed with the 

p-topology. The product. topology on r = n1:1 0 r. will also be called p-topol-
1= l 

ogy. 

With these definitions it can be proved along the lines of Lemma 2.2.1 

that the mapping T : r + JR defined by 
v,Jk 

(2. 3 .12) \) 
:i. f Jk (u) a~\ (u) , 

(0, 1] 

is p-continuous at each Q 

0 ~ i ~ m, for each fixed score function Jk. 

Let P . be the empirical pm of a sample of size t . of random vari-n,1 · n,1 
ables distributed according to P., where P. is the uniform distribution on 

.1. ]_ 

A., i = O, ... ,m. 
l 

Let P . be defined by (2.3.11) with Q1. replaced by P . , v replaced _1 n,i n,1 
by n tn and H replaced by Hn. Then we have 

Q,v 

(2. 3 .13) 

condi ti.anal on t 
n 

-1 
n 

m 

I 
i=l 

t 
n,i 

t Hence 
n 

Pr{'!'(l) 2: r+u T 
n n n 

Pdn -l 
m 

I 
i.=1 

Let p 

I 
(0, lJ 

t } 
n 

t . n,1. 

J (u)dP . (u), 
n n,1. 

I J (u)dP . (u) 2: r+u }. 
n n,1 n 

(0, 1] 



{ Q £ f : 'P J. ( Q) ~ t}. 
p, k 

Moreover, for P• ""· (P0 , ••. and Q 

and 

I (Q,P) 
p 

m 

l pi K(Qi,Pi) 
i~O 

I (S:l,P) = inf{I (Q,P): Q E: 0}, 
p p 

Then, by an easy extension of Corollary 1. 3. 3 

-1 
lim n log Pd'l' J ( 
n-¾> p' k 

for (t Cf. 

W ,Pl, 
r 

if t + Ip (1\,Pl is continuous from tl1e right at t 

n ➔ oo., 

rand if un + 0, as 

Let 

Cl (t,,J) = inf{I (Q,P): T (Q) ~ t}, 
p p,J 

where T is defined by 
p,J 

(2.3.14) T J(Q) p, 

J J (ul 

(0, 1] 

otherwise. 

(u) ' if I (Q,P) 
p 

< co 
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By the Lagrangian multiplier technique it can be shown that, if r satisfies 

(2.3.7), one has Cl(r,J) = fJ(r,p0 ), where fJ(r,p0 ) is defined by (2.3.8). 

For small E: > 0 and sufficiently large k = k(E:) we have 

and 

a(r-2£,J) < (T J ) ,P) 
p, k 

a(r+2e,J) > I (0 (T 
p r+e p 

) ,P) • 

implying tl1at the function 
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t -+ I (rl (T ) ,P), 
p t p,Jk 

is continuous from the right at t ~ r ± E (cf. Lemma 2.2.2). The proof is 

now completed in the same way as the proof of Theorem 2.2.1 using the con-

tinui.ty of the function v -~ cg (T J) ,Pl at V ~ p. 
r v, k 

0 for some i, 0 $ i $ m, the proof is essentially the same. 

We only have to adapt the method of proof used above for a smaller number 

of samples. 0 

REMARK 2.3.1. If Po 

by ( 2 • 2 • 11 ) • 

In a similar way we obtain the following theorems :for the statistics 

T( 2 ), T( 3) and T( 4 ). 
11 11 11 

'rliEOREM 2.3.2. Let J",{J }, {t } and {u } satisfy the conditions o.f Theorem 
n n n 

2.3.1 and suppose that Ha holds. Then, if 

we have 

where 

(2.3.15) 

J(u)du < r < J (u) 1 (O ,oo) (J (u)) du 

-1 
limn log 
n-+oo 

(2) ?'. r+u 
n 

T 
n 

t } 
n 

(r 

1-po 1-po 

= \r - ½\ f J(u)du - f log cosh(½\J(u))du 

0 0 

and\> 0 is the unique so.lution of the equation 

(2. 3 .16) 
-1 

,J(u){l + exp(-7'J(u)J} du r. 

THEOREM 2.3.3. Let ,J, {J }, {t } and {u } satisfy the condit.ions of Theorem 
n n n 

2.3.1 and suppose that Ha ho.Ids. 

Let 

i 



(i) If 

then 

where 

(2. 3. 17) 

1 1 

½ J 
J(u)du < r < 

J J(u)i(O,oo) (J(u))du, 

Po Po 

lim n-l log Pr{T(J) 
n 

1 

hJ(r,p) = Ar - ½A f 
Po 

;,: r+u 
n 

,T (u) du -

T 
n 

t } 
n 

and A> 0 is the unique solution of the equation 

( 2 .3 .18) 

(ii) 1"f 

then 

where 

( 2. 3 .19) 

and A 

(2. 3. 20) 

m 

I r J(u)du{l + 
i=l 

qi·-1 

if-po 
½ J(u)du < r < 

0 

-1 
limn log 
n->oo 

(4) 

qi 

-1 I -1 
exp(-Api J(v)dv)} r. 

qi-1 

,J(u) 1 (O,oo) (.T(u) )du, 

? r+u 
n 

T 
n 

J(u)du -

t } 
n (r,p)' 

log 

> 0 is the unique solution of the equation 

Ill qiro 
qi-PO 

-1 

f 
-1 I J(u)du{l +exp(-Ap, J (v)dv)} 

i=l :t 

1-Po qi-1-pO 

r. 

To define the Bahadur efficiency of conditional signed rank tests we 

use the approach of BAHADUR & RAGHAVACHARI ( 1972] . Let S [-m-½ ,m+½]00 

and let Y = (Y 1 ,Y2 , ... ), where Yi is defined by (2.3.1), i 1,2, ... 

'l'hen Y takes values in S according to the product measure lP "·' P x P x 
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for some pm P on [-m-½,m+1,]. Since + u., Pis absolutely continuous 
:t 
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w.r.t. Lebesgue measure. The statistics Tn defined by (2.3.2) to (2.3.5) 

and the vectors of ties T will be considered as functions of Y. For each 
n 

n E Xii, Bn will be the cr-field on S induced by the mapping y ➔ (y 1 , ... ,yn), 

y ES. Clearly Tn and 'n 

S induced by the mapping 

are B -measurable for each n c :N • 'rhe cr·-·field on 
n 

y -, Tn (y), y E s, will be denoted by Cn (Cn is the 

conditioning field for the statistics Tn). 

Let Fn (t,y) = lP ('l'n < t I Cn) (y) be a regular version of the condi

tional df of Tn given 'n· Then the level attained by T I C is defined by 
n n 

(2. 3. 21) 

Hence, for fixed y, Ln (y) denotes a version of the condi. ti.anal probability 

given C of being as large as or larger than the observed value Tn(y) if 
n 

Ho holds. 

Let x1 ,x2 , ••• be distributed according to some pm Pa on 

{j E z;;: ljl <; m} which does not satisfy I-la. '!'hen Y1 ,Y2 , ... 

according to some absolutely continuous pm P which does not 

are distributed 

sati.sfy . Let 

JP = P x P x ••• be the induced product measure on S. '.rhen, if 

c(P) 
a 

-1 
lim 2n log 
n-+<JO 

(Y) 

exists with JP-probability one, we call c (P ) the conditional exact slope 
(i) a 

of {T} at P. If the 
n a 

sequence {Tn } has the conditional exact slope (P ) 
a 

at P, i = 1,2, and if c 1 (P) and c 2 (P) are 
a a - ,~ (l) 

not both equal to zero, then 

the condi.tional Bahadur efficiency of {T } - n 
w.r.t. {T( 2 )} at is defined 

fl 

THEOREM 2.3.4. Suppose does not satisfy Ha. Let p = (p0 , ... 

p, = P ({-i,i}), i = 1, .. .,m, p 0 = P ({O}), with p 0 < 1 and let J and {J} 
i a a n 

satisfy (2.2.15). Let P be the distribution of x1 + u1 , where has a un.i-

form df on and 

by (2.2.2) and .let the 

(2.3.5). Finally, let 

is independent o:f Furthermore, -let be defined 

statistics T(l>, ... ,Tl4 l b d f' db (2 3 2) t n 11 e e 1.ne y . . - o 

(P ) be 
a 

the conditiona.l exact slope of (i.)} at 

, i = 1, .•• ,4, and let b 1 (Pa) and b 2 (Pa) be defined by 

f J(Hp(x))dP(x) 

½ 



We have 

(i) If 

then 

and 

f J(BP(x) - BP(½))dP(x). 

½ 

1 1 

'1 f J(u)du < b 1 (Pa)< J J(u)i(O,oo) (J(u))du, 

Po Po 

where fJ and hJ are def.ined by (2.3.8) and (2.3.17), respect.ive.Iy. 

(ii) If 

J (u) 1 (0 ,"") (J (u)) du, 

then 

and 

where and are defined by (2.3.15) and (2.3.19), respect.ively. 

PROOF. Let p, > 0, 
J. 

i 0, ... ,m. We may write 

H (i+½) 
m 

-1p p I I ({i}) J(u)du 
i=l 

a 
Hp (i-½) 

and 

m 
H (i+l;i) -p 

b2 (Pa) z -1 ({'1) p I 0 
:r(u)du. 

i=l 
Pi Pa 1··' 

H (i-;i) 
p 

67 
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Let be the pm on (A.,B.) defined by 
l. l. 

p. (B) 
l. 

-1 
p, P(B), 

l. 

and (with a notation analogous to the notation used in the proof of Theorem 

2.3.1) let 

where i 

and 

Let 

P . (Bl 
n,1. 

-l_.#{j:; n: sign(Y.) 
,1. J 

(IY.I) E B,Y. E .Ai}, 
J J 

o, .... ~,m, and T n,i 

,/1l -1 
Ill 

n I n 
i=l 

is 

,i 

I 

the tie of Yi, •.. ,Yn 

f J (u)dP . (u) 
n n,.1. 

(0, 1] 

J(u)dP. (u). 
l 

(0, 1] 

w { [. 1m+1 
VE O,L : \) 

rn 

(vo, ... ,vm)' l 
i=O 

at 

v . 
. 1. 

i. Then 

1} 

BE B, 

be endowed with the (relative) Euclidean topology and let r be defined as 

in the proof of Theorem 2.3.1 (endowed with the p-topology). Moreover, let 

U x r be endowed with the product topology. 'l'hen the mapping 

m 

I 
i=l , J 

\!. 
l. 

J Jn (u)dQi (u), v ~ (v0 , H "'vm), Q 

(0, 1] 

[J (u)-J(u) [dP. (u) + 0, n ·1. 

it follows that T~l) -+ b 1 (Pa), as n ➔ 00 , with probability one wider P. 

Likewise, also with probabili.ty one under P, 

( 3 ) + b (P ) , 
1 a 

and for i 2,4, 

as n ➔· 00 , 
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T(i) + b (P ) , 
n 2 a 

as n ➔ 00 

Only trivial changes in the proof are necessary if pi= 0 for some i. 

The result now follows from Theorems 2.3.1, 2.3.2 and 2.3.3. D 

The theorem implies that the exact slope of a signed rank test with 

randomized ranks never exceeds the exact slope of a signed rank test based 

on the average score method if the score functions J.n and the method of 

dealing with zeros are the same for the two tests. We shall prove this for 

tests based on statistics of type (2.3.2) and (2.3.4) and omit the (quite 

similar) proof for tests based on statistics of type (2.3.3) and (2.3.5). 

Let pi= HP(i+½) - HP(i-½) > O and qi HP(i+!;), i = O, •.. ,m. 

By ,lensen • s inequality we have for fixed :\ ;,- 0, 

qi 1 

(2.3.22) I J(u)duf s I log cosh(½:\J(u))du. 

qi-1 Po 
Furthermore, if :\ 1 > 0 satisfies (2.3.9), 

(2.3.23) 

1 

J(u)du - J 
Po 

log cosh(½\J(u) )du 

1 

max{:\r - ½:\ J 
:\>0 

1 

J(u)du - f log cosh (•,11.J (u)) du}. 

Po Po 
Sim.ilarly, if >, 3 > 0 satisfies (2.3.18), 

1 qi 

f 
m 

-1 

f 11. 3r - ½11.3 J(u)du - I pi log cosh(1l11. 3pi J(u)du) 
i=l 

Po qi-1 
(2.3.24) 

qi 1 

max{h - ½11. J 
11.>0 

J(u)du - iil pi log cosh( 1i:\p/ f ,J(u)du)}. 

Po 
Hence, by (2.3.22), (2.3.23) and (2.3.24) 

where fJ(r,p0 ) is defined by (_2.3.8) and hJ(r,p) is defined by (2.3.17). 

This implies by Theorem 2.3.4 that c 1 (Pa) s c 3 (Pa) if Pa is a fixed 
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alternative to H satisfying 
a 

1 

½ f J(u)du < b (P 
1 a 

Po 

) 

Analogous results on Pitman 

1 

< I J(u) 1 (O,oo) (J(u) )du. 

Po 
efficiencies of signed rank tests with 

-v -
ferent methods of dealing with ties are given in VORLICKOVA (1972) and 

CONOVER (197Ja, 1973b). In fact, under conditions analogous to those of 

Theorem 2.2.3 Pitman efficiencies are limits of Bah.adur efficiencies as 

the alternatives tend to the null hypothesis. 

dif-



CHAPTER III 

THE EFFICIENCIES OF SOME TESTS FOR 

THE MULTIVARIATE LINEAR HYPOTHESIS 

3.1. INTRODUCTION 
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Let the row vectors of the N x m random matrix Y be distributed indepen

dently according to an m-variate normal distribution with covariance matrix 

E. Suppose 

EY XB, 

where Xis an N x q·(design-) matrix of rank q ~ N and Bis an unknown 

q x m matrix of regression coefficients. We write n = N-q. The multivariate 

linear hypothesis is given by 

AB o, 

where A is an n1 x q matrix of rank n1 ~ q. We shall consider tests of H0 

based on the matrix of sums of squares and cross-products due to the hypo

thesis 

and the matrix of sums of squares and cross-products due to error 

where IN denotes the N x N identity matrix. The matrix se,N has a central 

Wishart distribution Wm(n,E) and the matrix sh,N has a non-central Wishart 

distribution Wm(n1 ,E,Nn), where 
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'2 -1 -1 -1 -l 
N B'A'[A(X'X) A'] ABl:. 

As an example consider the one-way analysis of variance set-up with 

X = Iq ® Jk, N = qk, Jk = ~• and B = (iti, .. .,JJ~) ', where 

]Ji= (JJi 1 , ..• ,µirn) denotes the mean of the observations from the i-th group, 

i = 1, ... ,q, and® denotes the Kronecker product of two matrices. The hypo

thesis H0 of equality of the means ]Jl, ... ,µq is given by 

where 

An easy computation yields: 

-1 N 
where JJ q li"' 1 ]Ji. Note that for fixed alternatives B = (µ 1, ... ,]Jc~)' 

the matrix ND O(N), as N + oo. 

Well-known tests for testing H0 are based on the statistics 

(3.Ll) t (1) -1 
tr S (S +S ) 

N h,N h,N e,N 

(3.L2) 
(2) -1 

tN. tr s s 
h,N e,N 

(3 .1. 3) 
(3) 

tN largest latent root of 8h,N 
s-1 

e,N 

and 

t(4) -1 (3. l. 4) -logls (s N+sh Nl I, N e,N e,. , 

where IA! denotes the determinant of the matrix A. The tests based on t (1) 

to t~4 ) are (generally) called Pillai's test, Hotelling's '1'~, Roy's lar:est 

root test and the likelihood ratio (LR) test, respectively. 

In each case, H0 is rejected for large values of the test statistic. 

Numerical comparisons of the power functions have been made by PILLAI 

& :TAYACHANDRAN (1967) in the case of 2-dimensional normal distributions. 
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The general picture which emerges from these comparisons is that Pillai's 

test behaves rather well against alternatives for which the latent roots of 

the non-centrality matrix NQ are small or close to one another, whereas 
2 Hotelling's T0 and Roy's largest root test are more powerful against alter-

natives for which NQ has one large root and one small root. The LR test 

seems to occupy an intermediate position. 

Asymptotic expansions of the distribution functions of the test 
. . (1) (2) (4) 

statistics tN , tN and tN under H0 and under contiguous alternatives 

(i.e. tr NQ bounded away from O and 00 as N ➔ 00 ) have been given by FUJIKOSHI 

(1970). He uses these expansions to compute approximate powers in the 

3-dimensional case (m=3), with the general conclusion that Pillai's test is 

more powerful than the LR test and the LR test is more powerful than Hotel

ling's Ti if the roots of NQ are close to one another, while the reverse 

seems to be true if the largest latent root of NQ dominates the other roots. 

ROY, GNANADESIKAN & SRIVASTAVA (1971) have done some simulation exper

iments for the 2-dimensional case. These experiments essentially yield the 

same picture of the power behavior of the tests with the additional finding 

that Roy's test seems to be more powerful than the other tests when th.ere 

is only large latent root of NO different from zero. 

Finally, as a finite sample result, we mention that Pillai's test is 

locally best among invariant level-a tests of H0 which depend only on the 
-1 

latent roots of sh,Nse,N (see SCHWARTZ (1967a), Theorem 1) and that each of 

the four tests is admissible (SCHWARTZ (1967b)). 

All these results suggest that the power functions of the tests depend 

critically on the product of the sample size N and the matrix n. Different 

pictures of the relationships between the tests arise in the following 

situations: 

(i) Q fixed, N ➔ oo. 

In this situation Bahadur efficiencies and deficiencies can be computed 

(see section 3.3), showing a marked superiority of the LR test. The LR test 

is only "deficient" with respect to some of the other tests on certain 

halflines of the parameter space. 

(ii) n = nN depends on the sample size N, {tr QN} is a bounded sequence 

and N tr nN ➔ 00 (note that (i) is a special case of (ii)). 

To give an example of what happens in this case, we mention that the defi-

ciency of the LR test w.r.t. Roy's largest root test is of order 
-1 log (N01,N)' e 1,N N0. N 0(1), 81 ,N if ➔ 0, N0 ➔ oo and j 2: 2' where 

1,N J' 



74 

0 ?. ••• ?. 8 are the latent roots 
1,N m,N 

guous local alternatives). Hence, if 

of rlN (this is 
-l+c 

8 = k•N 
1,N 

the case of non-conti

for some constant k > 0 

and some small c > 0, the deficiency is "almost" of order N (see section 

(iii) N!:1 = NrlN °0 M, where M is some fixed positive semidefinite matrix. 

This is the familiar case of contiguous alternatives. The Pitman efficien··· 

cies of Pillai's test, Hotelling's T~ and the LR test w.r.t. one another 

are equal to one. In section 3.4 the Hodges-Lehmann deficiencies of these 

tests are computed, showing that Pillai's test is superior to the other 

two tests if ie 1 ,N;ej,N-ll < c, for all 

while Hotelling• s •r2 is better than the . 0 

N E JN , j = 2, ..• ,m and small E: > 0, 

other two tests when 8. N/0 1 N < c 
] I , 1 

for all N E JN , j 2, ... ,m and small E > 0, where el ,N' ... ,em,N are again 

the latent roots of rlN. In contrast to this, the LR-test is only deficient 

in the sense of Bahadur deficiency w.rot. Pilla.i's test if e1;ej = 1, 

j 2, ... ,m and only deficient in this sense to HotelHng's T~ if Oj/8 1 = 0, 

j 2, ... ,rn, where e1 , ... ,8m are the latent roots of the fixed non-central-

ity matrix r/. (cf. (i)). 

'l'he d.istribution of Roy's test statistic under contiguous alternatives 

is rather complicated; presumably the Pitman eff.i.ciency of Roy's test w.r.L 

the other tests is less than one if 0 = ... = 8 and great.er than one 
1,N m,N 

if 8j,N/8l,N = 0, j = 2, ... ,m. 

(i.v) N fixed, !:I·>- 0. 

In this case Pilla.i's test is superior by the result of SCHWARTZ (1967a). 

The rerml t of SCHWARTZ ( 1967a) provides an analytical explanation of 

the numerical finding- by PILLAI & JAYACHANDRAN (1967) that PillaJ's test is 

the best test against alternatives for which the latent roots of [I, are 

small. It is the purpose of this chapter to treat the situations mentioned 

under (i), (i.i.) and (i.ii). Thus we obtain a more complete analytical de

scription of the asymptotic power behavior of the four tests considered. 

'l'he results not only support the numerical results described before, but 

also explain why the product of the sample size N and the magnitude of 

tr Q is so l.mport.ant. in determin.ing the power of the tests. The role played 

by the ratios of the latent roots of 0, also becomes more transparent. 

The results are based on theorems on probabilities of large and 

moderate deviations of the test statistics under H0 • These theorems are 

given in section 3.2. We shall also need expansions of the distribution 

functions of the test statistics under fixed and local alternatives. These 



expansions are given in the appendix (section 3.5). Some efforts are made 

to prove the validity of the expansions rigorously, since the known ex-· 

pansions in this field are only formal ones. 

3.2. PROBABILITIES OF LARGE AND MODERATE DEVIATIONS OF THE TEST STATISTICS 

UNDER THE NULL HYPOTHESIS 
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Using the notation of section 3.1, we assume that S has the Wishart 
e,N 

distribution W (n,I) and that Sh has the Wishart distribution Wm(n 1 ,I) 
m ,N 

under H0 , where I is the identity matrix. Replacing i: by I causes no loss of 
-1 

generality, since each statistic is a function of sh,Nse,N· Moreover we shall 

assume that n 1 is a fixed number and that n 1 ;,, m, since the results for the 

case 

and n ->-

< m can be obtained by the well-known substitutions 

-m. Unless otherwise specified, we assume m;,, 2. 

First asymptotic expressions for large and moderate deviation probabil

ities of Pilla.i's test statistic will be given. The matrix 

has under 1-10 the multivariate beta density 

where 

(3. 2. 2) 

(3. 2. 3) r ( a) 
m 

p 

(s) 

(m+1), 

)f (!:in) } 
m 

m 

n f(a-l:,(.i-1)) 
i~1 

and S(s) is a (symmetric) positive definite m x rn matrix whose upper trian-

] · · b th t ( ) ' c ·mmp. g.e 1.s given y .e vec.or s = s 11 , ... ,srnm,s 12 ,s 13 , ... ,sm-l,m ~ -"' 

The df of ti 1 ), defined by (3. 1. 1), is given by 

(3. 2. 5) 

{tr S(s) 0<:S(sl<I} 
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where O < S(s) < I means that the matrices S(s) and I-S(s) are both positive 

definite and where ds denotes the Lebesgue measure ds 11 ... dsmmds 12 ..• dsm-l,m 

on m.mp. 

In the sequel m will always denote the order of the matrix S (s) (and 

hence the dimension of the multivariate observations) and p will denote 

k,(m+1J. 'rhe space of positive definite m x m matrices will be denoted by Sm. 

'.['HEOREM 3. 2 .1. Let F ~ 1 ) be the d.f of Pillai' s test staListic t~ 1 ) under H0 . 

Let {x } be a sequence of real numbers in the interval (0, 1), bounded aivay 
n 

from 1 and satisfying nx2 + 00 as n + oo 'J.'hen, as n -+ 00 , . n 

(3. 2 .6) 2½m( J-!1(2Tf)l.,mp , 1 )½mn m( 1m 1-p) c mn1r - - \ -x x , 
n n n n 

where en is given by (3.2.2). 

PROOF. By (3.2.1) and (3.2.5) we have 

1 ·• F ( 1) (mx ) 
N n 

C 
n J 

½n -p ½n-p 
!s(s) I· 1 II-S(s) I ds 

C 
n 

{O<S(s)<I,tr S(s)2:mx} 
n 

J 
{O<x S(s)<I,tr S(s)2:m} 

n 

By the transformation 

tr S {s) 

s .. 
l.J 

(i,j) t (1,1), 

the last integral can be written 

(3. 2., 7) c x½mn1 
n n 

where u = (u11 ,u22 , ... ,umm,u 12 , ... ,um-l,m)' and (with a slight abuse of 

notation) S(u) = S(s(u)). 

Let E = {u E IRmp : s (u) represents the upper triangle of a matrix 

S(u) E Sm} and let Dn {u EE: 0 < xnS(u) < I,u 11 2 mL We define the 

functions gn : Dn + JR and hn Dn -+ JR by 

u E D 
n 



and 

h (u) 
n 

u E D • 
n 

m 

The function gn attains a maximum in Dn at u0 = (~O, •.. ,0)' and 

the asymptotic behavior (as n + 00 ) of the integral (3.2.7) is completely 

determined by the behavior of the integrand in a neighborhood of u0 • 

Let for E > o, K = [m,m+E], L = [1-E,l+E], M = [-E,E] and 
E E E 

w 
E 

K 
E 

X Lm-1 X M½m(m-1). 
E E 

77 

Fix E > 0 such that W c D (this inclusion is satisfied for all sufficient-
E n 

ly small e: and all n) and let ¢n : WE + JR be defined by 

¢ (u) = h (u)/ ~ g (u), n n u 11 n 
u € w . 

E 

Since 3/au11 gn(u) = -xn a 11 (u), where a 11 (u) is the element in the first 

row and first column of (I-x S(u))-1, the function¢ is well defined on W 
n n e: 

(note that a 11 (u) > 0, u EWE, since (I-xnS(u))-l is positive definite for 

these values of u). We have 

I hn(u) exp{½ngn(u)}du 

WE 

2n-1 I 
w 

e: 

-2n -1 I 
_a_(¢ (u)exp{½ng (u)})du 
au11 n n 

a 
exp{½ng (u)} -~- ¢ (u)du. 

w 
E 

n ou 11 n 

(2) _ , (2) 
Let u - (u22 , ••• ,um-l,m) and let WE 

Fubini's theorem, the first integral at the 

equal to 

Lm-l x M'l!n(m-l). Then, by 
E E 

right-hand side of (3.2.8) is 

(2) (2) 
(¢ (m+E,u )exp{½ng (m+E,u )} 

n n 

(2) 
In a neighborhood of u0 

(2) (2) (2) -¢ (m,u )exp{½ng (m,u )})du . 
n n 

m-1 
(~, 0, •.. , 0) " one has the expansion 
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(3.2.9) 
(2) -1 (2) 

g (m,u ) = m log (1-xn) + loglI-x (1-x) (S(m,u )-I) I 
n n n 

Hence, by Laplace's method for multi-dimensional integrals (cf. BLEISTEIN & 

HANDELSMAN (1975), Ch. 8, Section 3) 

(3.2.10) 

where k(w) 

(3. 2 .11) 

I 
w(2l 

e: 

(2) (2) (2) 
~ (m,u )exp{½ng (m,u )}du 

n n 

-1 (2) (2) (2) 
(x a 11 (u)) h (m,u )exp{½ng (m,u )}du 

n n n 

w<2l 
e: 

(2) (2) 
exp{½ng (m,u )}du 

n .. 

~ x-1(1-x ,~n-mp+l I 
n n 

2 -2 (2) 2 (2) 
exp{-\nx (1-x) tr(S(m,u )-I) }du 

n n 

= k(w1 , ••• ,w 1) is the 
mp-

m-1 
2 

k(w) 2 I W, + 2 I 
i=l 

l. i<j<m 

f exp(-½k(w))dw, 

m.mp-1 

quadratic form 

mp-1 
2 

W,W, + 2 I w .• 
l. J i=m 

l. 

The last asymptotic equivalence in (3.2.10) is obtained by making a shift 

to the origin (followed by an application of Laplace's method). 

Since (2~)-½(mp-l)m½2\m(m-l) exp{-½k(w)} is the density of an (mp-1)-

variate normal distribution, one has 

(3 .2.12) I 
JR.mp-1 

and hence by (3.2.10) and (3.2.12) 



(3.2.13) - I (2) (2) . (2) 
¢ (m,u )exp{l:;ng (m,u )}du 

n n 

It is easily seen that the integrals 

and 

f 
w 

E 

(2) (2) . (2) q, (m+E: ,u ) exp{½ng (m+e: ,u ) }du , 
n n 

3 
exp{½ng (u)} ··---- ¢ (u) du, 

· n 8u11 n 

J 
D \w 

n E 

are of lower order than the i.ntegral in (3.2.13), as n + 00 • 

The result now follows from (3.2.7), (3.2.8) and (3.2.13). 0 

REMARK 3.2.1. By Sti.rli.ng's formula one has 

(3.2.14) C 
n 
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REMARK 3.2.2. We briefly indicate a different proof of T'heorem 3.2.L The 

moment generati.ng function of nt (1) is given by the hypergeometric function 
N 

of matrix argument 

l''or simpli.city we shall only consider tJ1e case xn '·" x E (0, 1) for all n E JN. 

For large n and fixed t > 1 the "peak" of the integrand of the integral 

Ill (\t) 
n 

C 
Il f 

O<S(s)<I 
m 

is reached at the interior point t-l (1-t) (C~,O, ... ,0)' of the domain 

of integration. Hence, by Laplace's method 

(3.2.15) n -}a oot 
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where 

The moment generating function mn (1,t) can be inverted to obtain an asymp

totic expression for the density fn (mnx) of nt~1) 

(3. 2 .16) 

where c 

f {mnx) 
n 

k 
~-~ 

4Tri 

c+i00 

J ds, 

c-i00 

-1 
(1-x) is the saddlepoint of mn(½s)exp(-1,mnxs) for large n. 

But the right-hand side of (3.2.16) is in fact a well-known integral repre

sentation of a one-dimensional hypergeometric function (see ERDELYI et al. 

(1953), p. 273). Hence 

f {mnx) 
n 

½mn-1 -1 m 
UlilJn{l-x)) I'(½mn) x 

by ERDELYI et al. (1953), p.280, (18), implying 

mn J fn(mny)dy 

X 

C 
n 

z1:~m(mn1T)-\21m-1/imp(1-x)½mn xm(½n1-pl. 

We note that in using this method to find asymptotic expressions for large 

deviation probabilities, it is necessary to look for a saddlepoint of the 

function mn{½s)exp{-½mnsx) before inverting. For example, in the domain 

0 :S t < 1, the function m {1,t) satisfies the relation 
n 

(3. 2 .17) n + oo 

Inversion of the right-hand side of (3.2.17) leads to tail probabilities of 

a x2 -distribution (the limiting distribution under H0 ), contradicting 
mn1 

(3.2.16). 

REMARK 3.2.3. In the statistical literature only the probabilities 1 (1) (mx) 

for fixed x E (0,1) (and large N) are generally called large deviation 

probabilities. 'l'he case xn + 0, nxn + 00 , corresponds to probabilities of 
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moderate deviations. 

2 We next turn to Hotelling's T0 and Roy's largest root test. It was seen 

in the proof of '.rheorem 3. 2. 1 that the asymptotic behavior of certain proba

bilities of large and moderate deviations of Pillai's test statistic is de

termined by an integral over the neighborhood of a "critical point" which 

is located in a smooth piece of the bo1mdary of the domain of integration. 

We shall see that the asymptotic behavior of these probabilities in the 
2 

case of Hotelling's T0 and Roy's largest root test is likewise determined 

by an integral over the neighborhood of a critical point. But this time the 

critical point does not belong to a smooth piece of the boundary, but it is 

located in a "corner" of the boundary. 

we shall need the density of the latent roots of the matrix S s-1 
h,N e,N 

under H0 • Th.is density is given by 

(3. 2 .18) 
½m2 _1 m 

C 1f f (l:im) fl 
n m i<j 

(1'. -\.), 
'.L J 

A ? 0, 
m 

where en is given by (3.2.2) (see ANDERSON (1958), Ch.13). 

For Hotelling' s •r~ we have the following result. 

• (2) 2 
_T_H_E_O_RE_M_._3_.2_._2. Let FN be the df of Hotelling's TO stat.istic 

H0 . Let: {xn} be a bounded sequence of real numbers satisfying 

as n + 00 • Then, as n + oo, 

(3. 2 .19) 

t( 2 ) under 
N 2 
nx + 00 , 

n 

-½(m-2) (n1-2) -½(n-l)+½(m-2) (n1-l) 
• x (l+x) , 

where en is given by (3.2.2). 

PROOF'. Let the function G 
n 

(3. 2 .20) G (x) 
n 

n n 

(0 ,oo) + JR be defined by 

n 
i<j 

m 
TT 

i=l 
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m 
• TT 

i=1 

• TT (A.-t-.)dt- 1 ... dt-. 
i<j i J m 

We make the following change of variables in the last integral of (3.2.20) 

m 

ul I "· - 1 
i=1 

l. 

u. "· "i+l' 1 < i < m 
l. l. 

u " m m 

The Jacobian of this transformation is equal to one and the inverse trans

formation is given by 

m 

r 
ul + 1 - I (i-l)u. 

i=2 
l. 

m 

\ I u., i ~ 2 
j=i J 

By this change of variables G (x) can be written as 
n 

m m m . TT ( I u,)}½n 1-p{(l+x(u1+1- l (i-1)ui)) 
i=2 j=i J i=2 

m m 
u.) }-½(n1+n) 

j . TT (l+x I TT I Uk) 
i=2 j=i J 1<i$j<m k=i 

m m m 
• TT (u 1+1- l (i-l)u.- l uk)du 1 ••• du. 

j=2 i=2 1 k=j m 

Let 

m m m 
log(l+x (u 1+1- l (i-l)u.))+ l log(l+x l u.). 

n i=2 1 i=2 nj=i J 



The function ¢n is defined for all (u 1 , ... ,um)' such that u 1 + 1 2 l~= 2 

and u. 2 0, i = 1, ..• ,m. 
]. 

Moreover 

Hence, by Laplace's method, 

(3.2.21) G (x ) 
n n 

+ ( l+x ) - \/ Lrn ( i ·· 1) u. (1 +o ( 1) ) , 
n n i=2 i 

u. + 0, 
] 

00 

f 
0 

m 

i 1, .. .,m. 

0 

f exp{ -•,n ( 1 +xn 

0 

m 

) -1 2 
m 

X I n 
i=2 

j 

(i-1)1\} 
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ill. 
]. 

)½n1-p TT I u. TT I 1\) au2 •..• dum. 
i=2 j=i J 1<i5j<m k=i 

Inverting the previous transformation, the integral over the variables 

u 2 , ••• ,urn can be written as 

(3.2.22) 
2 -1 m 

exp{ -½nx (1 +x ) l !. . } 
n n i=2 J. 

m 
Tl 

i=2 

rn 
n 

i=2 

By (3.2.21) and (J.2.22) one ha.s 

m 

exp(- l 
i=2 

\. l 
] 
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(3 .2. 23) G (x) 
n n 

and by (3.2.18) 

(3.2 .24) 

(l+x )-1:;(n-l)+½(m-2) (n1-1l 
n 

, x-½(m-2) (n1-2) ( 2/nl½(n1-1) (m-1)+1 
n 

½m2 -1 
C 1T f (l:,rn) G (x ) • 

n m n n 

The result now follows by (3.2.23) and (3.2.24). [I 

REMARK 3.2.4. In Theorems 3.2.i and 3.2.2 it is assumed that nx2 + 00 Ac
n 

tually, the sequences {x} such that nx2 + x E (0, 00 ) separate two regions 
n n 2 

where different types of asymptotic relations hold. If nxn + 0, but nxn + '", 

the tails 1 - F(i) (x ) , i = 1,2, behave as the tails of a y2 - distribu-
N n '1nn 1 

tion (the limiting distribution under 1-10). 

For example, in the case of Pillai' s test sta.tistic ti 1) , this is 

easily established by inspection of the simultaneous distribution of the 
-I 

latent roots of sh,N(sh,N+se,N) (ANDERSON (1958), p.314, (47)). 

One has, as nxn + 00 and nx2 + O, 
n 

C 
n 

C 
n 

2 
1T ¼n r (¼nl-1 

m 

2 
11 ¼n I'. (½ml 

m 

TT 
i<j 
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• TI (:\,-:\.)d:\ 1 ••• d:\ 
i<j 1 J m 

(½nx ) ½mn1 -1. 
n 

The last asymptotic equivalence is obtained by using (3.2.14) and the fact 

that 

m 
TT 

i=1 
TT (:\.-:\.) 

i<j 1 J 

is (apart from a scale factor) equal to the density of latent roots of a 

matrix A having a Wishart W(n1 ,I) distribution. 

By similar methods one obtains 

as nx 
n 

+ 00 and nx2 + 0. 
n 

An asymptotic expression for large and moderate deviation probabilities 

in the case of Roy's largest root test statistic t( 3 l is given by the fol-
N 

lowing theorem 

THEOREM 3.2.3. Let F~3J be the df of Roy's largest root statistic under H0 • 

Let {xn} be a bounded sequence of real numbers satisfying nxn + 00 , as n + 00 • 

Then, as n ➔ 00 , 

(3.2.25) 

where en is given by (3.2.2) 

PROOF. Let Gn : (0, 00 ) + lR be defined by 
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(3.2.26) 
m 
TI 

i=l 

• TT P.. 
i<j :t. 

m 
TT 

i=l 

{A ~n1 -p (l+x:\.) -½ (n1+n)} 
:t. J. 

By the change of variables 

lul: :\1 -
u. - A, 

], J 

u :\ 
m m 

1 < i 

we have 

(x) x½nm1 

< m 

m m 
{(u1+1) TI ( l 

i'-"2 j=i 
u ,) 

J 

m m 
{(l+x(u1+1)) TT (l+x l u.)}-½(ni+n) 

i=2 j=i J 

Define for non-negative 

m 

q,n(u 1 , ... ,um) = log(1+xn+xnu1) + l log( 
i=2 

near zero we have 

m 

m 
I u.). 

j=i J 

+ X 
n 

( i-1 J u. (1 +o (1 J J , u. + o, i 
J. J. 

By the same argument as in the proof of Theorem 3.2.2 we obtain 



G (x) 
n n 

m 
- ½nx l 

n .i=2 

m 

TT 
i=2 

m 

I 
j=.i 

0 0 

(i-i)u,} 
l 

n 
l<iC,:j<m 

j 

I uk)du 1 .•. dum 
k=.i 

( 2 /n)½(n1-l) (m-1)+1 x½(n1+m-3) (l+x )-½(n 1+n)+1 
n n 
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The result now follows from the rel.at.ion 

½m2 -1 
c 1\' f (½m) G (x ) • 

n m n n □ 

REMARK 3.2.5. Note that (3.2.25) holds for all bounded sequences {x} such 
2 n 

that nx ->- 00 (and not only for sequences {x} satisfying nx ->- 00). If m = 1, n 2 131 n n 
nxn ➔ 00 and nxn + 0, then 1 - FN (xnl behaves by (3.2.25) as the tail of a 

x2 - distribution. 
n1 

We have seen that in the case of Pilla.i's test, Hotelling's 'r~ and 

Roy's largest root test the asymptotic behavior of the tails of the null 

distribution is determined by certain critical points on the boundary of 

the domain of integration. The behavior of the LR test is somewhat dif-

ferent; .in this case there is in fact a whole surface of critical points. 

Accordingly, the constant appearing in the leading term of an asymptotic 

expansion of large deviation probabilities is more complicated. 'l'o facili

tate the statement of 'rheorem 3.2.4, this constant is given below. Let for 

X E (Q, 00 ) 

(3,2.27) c(x) 

m-1 ½iy• -y• ':in1-l} 
TT {e 1(1-e 1 ) dy1 ••• dym·-l" 

i=l 

It will be shown in the proof of Theorem 3.2.4 that c(x) ,~ x½mn1-l/r('1,ITm 1), 
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as x + 0. 

THEOREM 3.2.4. Let Fi4 ) be the df of the LR statistic t~4 ) under H0 . 

(i) If {xn} is a sequence of real numbers such that limn-+w xn x E (0, 00 ), 

then 

(3 .2 .28) as n ···► 00 1 

(ii) If {x } .is a sequence of real numbers such that x + 0 and nxn ➔- 00 , 
n n 

then 

(3,2.29) as n "➔• 00 

PROOP. 'l'he statistic uN = exp(-ti4 )) has under 1-10 the distribution of a 

U ·- variable (see ANDERSON (1958), Ch.8). Hence 
rn,n1 ,n 

(3.2.30) 

{rf,1 1y.~exp(·-x) ,O<y.<1} 
1= 1 n 1 

By the change of variables y i ➔- e·-XnUi one has 

(3 .2. 31) 

m 
• X 

n 

Next, by the change of variables 

m 
n 

.i=l 

-¾(n+l-.i)x u· {e n 1 



and integration by parts we obtain 

(3 .2.32) 

where 

f·····f 

f -½nx Y1(1 -xn(Y1-Imi·-2Yil)½n1-1 
0 ° @ e n -e -

{I:=2Y/'Y1 ,yi>O} 

m 
• TI 

i=2 

2(nxn)-le-½nxn f • • • • • f {1-e-xn(l-L~=2 Yil}½n1-1 -

{I:=2yi:S1,yi>O} 

00 

f • • • • • •f {i-e-xn(Y1-l~=, Yt}}½n1-l 

{I:=2yi:Sy1,yi>O} 
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Integration by parts of the second term at the right-hand side of (3.2.32) 

shows that this second term is of lower order than the first term as n + 00 • 

Since 

result (i) follows from (3.2.31) and (3.2.32). 

If xn + 0, one has by Lebesgue's dominated convergence theorem 
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(3 .2. 33) 

m-1 
{ 1 . 1y.S1,y.>0} Li= l. l 

It is easily shown (using induction) that this last expression equals 

'I'hus (.ii) follows from (3.2.31) to (3.2.33). D 

REMARK 3.2.6, If ✓r O and + 00 , part (ii) of Theorem 3.2.4 yields that 

1 - F'( 4 ) behaves as the tail of a x2 -distribution (compare with Remark 
N mn 1 

3.2. 4). 

3. 3. BAHADUR EFFICIENCY AND DEFICIENCY AT FIXED AL'I'ERNATIVES 

Consider the four statistics till , ... ,ti4 ) defined by (3.1.1) to 

(3.l.4). Without loss of generality we may assume that S N has the central 
e, 

Wishart distribution W (n,I) and that S~ N has t.be non-central Wishart 
ID 11,I 

distribution Wm(n 1 ,r,N0), where 0 is a diagonal matrix diag(e 1 , ... ,0rn) with 

e 1 2: ••• ?: 0m?: 0. It is clear that the distributions of the statistics only 

depend on the alternative through the matrix 0. Probabilities under will 

be denoted by P0 and probabilities under the alternative G by P0 . We shall 

(continue to) assume that is a fixed number satisfying 

the sample size N ~ n+O(l), as N + 00 • 

Let for SE (0,1), NE 1N and i = 1,, •. ,4 the constant 

be chosen such that 

(3, 3 .1) s 

and let (i) (S,G) be defined by 

?: m and that 

(i) (i) (S,0) 
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(3.3.2) p (t (i) ? C (i)) . 
0 N N 

It will be shown that for i 1, ... ,4 the limit 

(3. 3. 3) (0) (i) 03,0) 

exists and that this limit does not depend on {3. The number (0) is called 
(i) 

the exact (Bahadur) slope of the test sequence {t } at the alternative 0. 
(i) N 

'l'he Bahadur efficiency of the test sequence { tN } w. r. t. the test sequence 

{ tN(j)} is given by the ratio c. (0) /c. (0) (see also chapter II) • 
l. J 

An interpretation of the Bahadur efficiency in terms of sample sizes 

required to attain a certain criterion runs as follows. Define for 
(i) 

0 <a< 8 < 1 and 0 # 0 the numbers N (a,8,0), i = 1, ... ,4, by 

(3.3.4) (i) ( <> 0) . { ruN(i) (·{3,0) } N oi , ,,, , - = min N E JN : u s a , 

Le. N(il (oi,{3,0) is the smallest sample size of a level a test based on 

{t~i)} which achieves power {3 at 0. Then the Bahadur efficiency of {t~j)} 

w.r.t. {t~i)} is given by 

(il (j l 
lim N (a,{3,0)/N (oi,13,0). 
a+o 

(see e.g. BAHADUR (1967)). 

'l'he exact Bahadur slope of the sequences of test statistics 

i 1, ..• ,4 at 0 are given by the following theorem 

( i l } ' 

'rHEOREM 3.3.1. Let: t:he diagonal matrix 0 represent a fixed alternative to 

H0 and let e 1_(0) , .•. ,e4 (0) be the exact slopes at 0 of Pillai's test, 

llotelling's T~, Roy's largest root test and the LR test respectively. 1'hen 

(3. 3. 5) (0) -m log{m 
-1 

(I+0) }, 

(3.3.6) e 2 (0) log ( 1+tr0) , 

(3.3.7) e 3 (0) log(l.+6 1), 

and 
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(3. 3. 8) loglr+e I. 

By Proposition 3.5.1 and Remark 3.5.1 of the appendix, we have the 
(i) 

following expansions of the critical values cN 

(3.3.9) 
(1) 

(2) 
tr 0 + 0 

( 3. 3 .11) 
(3) 

(3. 3 .12) log I r+0I + 0 

n1e theorem now follows easily from Theorems 3. 2 .1 to 3. 2. 4 and (3. 3. 9) to 

(3.3.12). 0 

The exact slope of the LR test can also be computed by an application 

of theorems in BAHADUR & RAGHAVACHARI (1970). These theorems can be used 

to show that the LR test attains the optimal slope at each alternative 

(see HSIEH (1979)). 

We have, by Jensen's inequality, (0) 5 c4 (0) with equality if and 

only if 0 1 ~ ... =em. Hence the Bahadur efficiency of the LR test w.r.t. 

Pillai' s test :i.s strictly greater than one unleciS the roots e 1, ... , are 

equal . 

.Furthennore we have II+0I 2 1+tr 0 2 1+8 1 , where both inequalities 

are strict unless 8. = 0, i 2 2. It follows that the Bahadur efficiency of 

the LR test w.r.t. ~otelling's T; and Roy's test is strictly greater than 

one unless only one latent root of O is different from zero. 

'.I'his has the remarkable consequence that Pillai' s test, Hotelling' s 

and Roy's test are inadmissible in the sense of Bahadur efficiency, 

However, this is a kind of "first order inadmissibility" and it will be 

shown that .in cases where the Bahadur efficiency of the LR test w.r.t. one 

of the three other tests is equal to one, the other test is strictly better 

when we take second order terms into consideration. 

The relationships between the exact slopes partly reflect the numerical 

results of PILLAI & JAYACHANDRA."l (1967) and FUJIKOSHI (1970) and the simu

lation resu1 ts of ROY, GNANADESIKAN & SRIVASTAVA ( 1971) ; when tr 0 is kept 

constant, Pillai's test has the greatest exact slope if the latent roots 
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2 e1 , ... ,em are equal and Hotelling's T0 and Roy's test have the greatest 

exact slope if only one root is not equal to zero. But the results on 

Bahadur efficiency seem to be in favor of the LR test, in contrast to the 

numerical result mentioned above, where the LR test only occupied an inter

mediate position. We shall give an explanation of this fact in section 3.4. 

To make a more precise comparison in cases where the Bahadur efficiency 

is equal to one, we introduce the concept of Bahadur deficiency. 
(i) 

Let for i =·• 1, .•• ,4, 0 <a< 8 < 1 and 0 f 0, the number N (a,S,0) be 

defined by (3.3.4). Suppose that there exists a positive non-decrea.sing 

function f 

(3. 3 .13) 

f 0 : lN -+ JR such that limn-><x> f (n) ,~ 00 and 

lim {N(j) (a,S,0) - N(i) (a,S,0) 
a-1-0 

1, 

for each SE (0,1). Then we say (in analogy to the definition of Hodges

Lehmann deficiency in the case of contiguous alternatives) that the Bahadur 

deficiency of {t~j)} w.r.t. {tii)} :i.s asymptot:i.cally equivalent to f(N). 

In other words, the add:i.tional number of observations 
( ') 

required to attain 

the same power S and the same level (Y for test { tNJ } as 

at 0 :i.s asymptotically equivalent to f(N(i) (a,S,0)) as a 

(i) 
for test {tN } 

-1- 0 (a slightly 

weaker definition of Bahadur deficiency is given in KALLENBERG (1978)). 

We briefly defer the def:i.nition of Bahadur deficiency in cases where 

0 s Hm sup {N(j) (a,S,0)-N(j_) (a.,S,0)} < 00 

a+o 

'rhe Bahadur deficiency of the LR test w. r. t. the other tests in cases where 

the Bahadur efficiency equals one, is given by the following theorem. 

THEOREM 3.3.2. 

(i) Let the latent roots 01 ,..,,em o.f 0 be such that 01 = ... =Gm 0~ 0 > 0. 

Then the Bahadur deficiency of the LR test w.r.t. Pillai's test is 

asymptotically equivalent to (mp-1) logN/{m log(1+8)}. 

(ii) Let the latent roots e1 '" .• ,8m of 0 be such that e1 0 and 

8 2 = . . . = 8 m = 0. Then the Bahadur deficiency of the LR test w. Lt. 

t 11 . ' 'r2 d ' 1 . . 11 . 1 Ho e .. 1.ng s O an Roy s argest root test 1.s asymptot1.ca y eqUJ.va .. ent 

to (n 1-1) (m-·l) logN/log(1+8 1). 

REMARK 3.3,1. For computational purposes it is convenient. to note that the 

Bahadur deficiency of { t~j) } w .r, L (.i l } is asymptotically equivalent to 
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if e(0) is the exact slope both of {t(i)} and 
N 

PROOF OF THEOREM 3.3.2. 

(j)} at 0. 

( 1) 
(i) It follows from Proposition 3.5.1 of the appendix that cN defined by 

(3.3.l) has the expansion 

(3.3.14) cil) N ➔ cc, 

where T 1 = (1+8) 

The critical value 

the expansion 

2m0 ( 2+8) } ½ and u 13 rJ,-l (13) with rJ, the standard normal dL 
(4) 

cN (also defined by (3.3.1)) has by Proposition 3.5.1 

(3 .3 .15) 

where 

Hence, by (3.3.14) and Theorem 3.2.1 

(3. 3 .16) log 
(1) -

(13,0) = -i~Nm log(1+9)-\(1+8) (2+8) 

N + oo 

Similarly, by (3.3.15) and Theorem 3.2.4 

(3 .J .17) 
-1 ½ 

-½Nm log(1+0)-½(1+0) {2Nm0(2+0)} u 13+ 

The result now follows from Remark 3.3.1. 

(H) By Proposition 3.5.1 we have 

(3.3. JB) 

where T 

(2) -½ -1 = 8 + N TUl3 + O(N. I, 
1 

(3) 
+ 0 ) ' 

N + oo, 



Thus, by (3.3.18), (3.3.19) and Theorems 3.2.2 and 3.2.3 

(3.3.20) log a.~2) (13,0) 

(3) 
log a.N (13,0) + 0(1), 

Since by Proposition 3.5.1 

(3. 3 .21) N-+ oo, 

Theorem 3.2.4 implies 

(3.3.22) log a.~4 ) (13 ,0) 

N + "'· 

The result now follows from Remark 3.3.1. D 

Thus, Pillai's test, Hotelling's T~ and Roy's largest root test are 

strictly better than the LR test in the sense of Bahadur deficiency, in 

cases where the Bahadur efficiency w.r.t. the LR test is equal to one. 
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In KALLENBERG (1978) it is shown that in typical testing problems in multi

variate exponential families the Bahadur deficiency of the LR test w.r.t. 

the optimal test is of order O(log N), in accordance with the results of 

Theorem 3.3.2. 

It is clear from the proof of Theorem 3.3.2 (cf. (3.3.20)) that the 

difference between N( 2 ) (a.,13,0) and N( 3 ) (a.,13,0) remains bounded as a. ,} 0 if 

e 1 > 0 and e2 = ... =em= 0. In order to give a measure of efficiency of 

the two tests w.r.t. one another in this case, we introduce the concept of 

finite Bahadur deficiency. To this end we need an artifice which is similar 

to a technique by which (finite) Hodges-Lehmann deficiencies are defined. 

Let {tN}N li'I be a test sequence for 1-10 and let c and a (13,0l defined 
€ ("l (') (') N N 

by (3.3,1) and (3.3.2) with tNi, cNi and a.Ni (13,0) replaced by tN, cN and 

a.N(l3,0), respectively. we shall use the abbreviation N0 to denote N(a.,13,0). 

Define 
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(3 .3. 23) 

where p(a) = log(a 1 (13,8)/a)/log(a 1 (13,8)/aN (13,8)). 
~- ~- a 

Let (tN,cN) be a test based on tN which rejects H0 for values of larger 

than or equal to cN and let tN- be a test based on (t ,c ) and 
a Na Na 

(tN _ 1 ,cN _ 1) which chooses 
a a 

with probability 1·-p (a) . The 

(tN ,cN) with probability p(a) and 
a. a 

,cN -1) 
C( 

test. t.
Na. 

has power Sat 8 and the logarithm of 

its size has expectation log a. 'fhe extension of { t } JN to 
N NE (0,1) 

serves the purpose of making the sample size, required to obtain power 13 

for the alternative 8 at the significance level a, a continuous function of 

a. 

and 

from zero, 

this limit 

root test. 

(3 ) be defined by (3.3.23) with ' { . (2) ·1 
replaced by tN J 

respectively. 'l'hen, if only one latent root of 8 .is different 

lim , 0 {N( 2 ) -N( 3 )} exists and · · d d f 13 I h J J 11 av a a 1.s 1.n epen ent o. . !'le s a .. ca. 

the Bahadur deficiency of Hotelling's T; w.r.t. Roy's largest 

REMARK 3.3.2. Although this definition of Ba.hadur deficiency is mathemati

cally the most convenient one, it is not appealing from a statistical point 

of view. In statistical practice one would fix the size of the test and 

would "randomize" the sample size in such a way that the (expected) power 

of the test has some desired value 13. In fact, this method is followed in 

the definition of Hodges-Lehmann deficiency. However, in the present con

text, where the alternative 0 and the power S of the test are fixed, there 

exists a simple relationship between the sample size N and the "performance 

criterion" log a~i) (S,0), since log a~i) (13,8) ~ - N ci (8), N->- 00 , 

i ~ 1, ... ,4. •rh.is has moti.vated our definition of (finite) Bahadur defi

ciency. 

THEOREM 3.3.3. Suppose that 0 satisfies 01 > C and = ... =em= 0. The 

Bahadur deficiency of !:1otelling's T~ w.r.t. Roy's largest root test at 0 is 

given by 

(3 .3 .24) (m-1) 

By Proposition 3.5.1 



(3 .3 .25) 

N ➔ oo 

where T and by Proposition 3.5.2 

(3 .3 .26) 

Hence by Theorems 3.2.2 and 3.2.3 

(3.3.27) log a~2 ) (B,0) - log (3 ) (8,0) 

-1 
( 1 +e 1 J J - ( 1 +e 1 l }+ o ( 1 l , 

implying (3.3.24). [] 

The theorem implies that Roy's test is superior for this type of al

ternative in the sense of Bahadur deficiency. This confirms the simulation 

results of ROY, GNANADESIY-AN & SRIVASTAVA (1971). It is also seen that the 

deficiency tends to zero as 81 -+ 00 • 

3. 4. DEFICIENCIES AT MOVING ALTERNA'l'IVES 
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It was seen in section 3.3 that the LR test is superior to the other 

tests in the sense of Bahadur efficiency and that the LR test .i.s only infe

rior to some of the other tests in the sense of Bahadur deficiency oncer

tain halflines in the parameter space. We shall show that the situation is 

somewhat different for moving alternatives and that the regions of the 

parameter space on which the LR test is deficient are enlarged If the al

ternatives tend to the null hypothesis. The rate at which these regions are 

enlarged is Inversely proportional to the rate at which the alternatives 

move to the null hypothesis. 

First we shall introduce a deficiency concept in the case of moving 

alternatives 0 such that N tr 0 + 00 and {0N} is a bounded sequence. Let 
(i) N N 

cxN (8 ,G ) be the level of a test based on tJil with power 6 E (0, 1) at 

the alte;native 0. Let N(i) (cx,6,0 J be defined by (3.3.4) with 0 replaced 
q q 
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by 0 and let {0N} be a bounded sequence of alternatives such that 
q 

N tr 0N ➔ 00 • If there exists a positive non-decreasing function f: N + JR 

such that li~➔oo f(N) = 00 and 

(3A.1) :U -+- co I 

with f independent of BE (0,1), we shall say that the (non-finite) defi

ciency of {t~j)} w.r.t. {t~i)} is asymptotically equivalent to f(N). In 

other words, the additional number of observations required to attain for 
( ') 

a test based on the sequence {t J } the same power Sand the same level a 
N (i) 

as for a test based on the statistic is asymptotically equivalent to 

f(N). 

The following theorem is an extension of Theorem 3.3.2. 

THEOREM 3.4.1. Let {0N} = {di;g(Gl,N' ... ,em,N)} be a bounded sequence of 

al te:r.nati. ves such that N tr 0 ➔ "", as N -+ 00 

-1 N 
(i) If e1 - 0. N = O(N ), j = 2, •.• ,m, then the deficiency of the LR 

,N J' 
test w. r. t. P.il.1.ai 's test is asymptotical.1.y equival.ent to 

2 
(mp-1) (log(Nel,N))/{m log(1+81,N)}. 

(ii) If e. = 0 (I-,r- 1) , j = 2, ... ,m, then the deficiency of the LR test 
J,N 2 

w.rot. Hotelling's •r0 is asymptot.ical.ly equ.ivalent to 

( . 2 / m-1) )(log(N81,N)) log(l+el,N). 

PROOF'. 

(i) Since 8. N 
J' 

and 

8 + O(N- 1), j > 1, we have 
1,N 

2 -4 O -1 
'1,N"" 2m81,N(2+e1,n) (1+81,N) + (N ) ' 

where Tl,N is defined by (3.5.4) in the appendix. Hence 

panded in the following way: 

(3.4.2) 

N ➔ oo, 

(1) 
may be ex-

-2 



99 

Thus, by Theorem 3.2.1, 

(3.4.3) 

N -+ co. 

Furthermore, by (3.5.8) in the appendix, 

(3.4.4) N -+ "" 

and hence by Theorem 3.2.4 

(3.4.5) 

Comparison of (3.4.3) and (3.4.5) yields (i). 

(ii) Since the method of proof is similar to that used in (i), we shall 

only give the essential steps and omit details. By Theorems 3.2.2 and 3.2.4 

and Proposition 3.5.1 one has 

(3 .4.6) 

N -+ oo 

and 
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(3 .4. 7) 

N + oo 

The result follows from (3.4.6) and (3.4.7). D 

Theorems 3.2.3 and 3.2.4 yield asymptotic expressions for the tail 

probabilities a~3) (13,0N) and (4 ) (13,0N) which are uniformly valid for all 

bounded sequences {0N} such that N tr 0N + 00 This leads to the following 

result 

THEOREM 3.4.2. Let {0} = {diag(8 1 , ... ,8 N)} be a bounded sequence of 
N ,N m, -l 

al ternat.ives such that NB 1 _ + 00 and 8 . = 0 (N ) , j ;o, 2, as N -> 00 • Then 
,N J ,N 

the deficiency of the LR test r,.r.r.t. Roy's largest root test is asymptoti-

cally equ.ivalent to (m-1) (n 1--1) (log(N8 1 ,N))/log(1+8 1 

PROOF. By Theorem 3. 2. 3 and Proposition 3. 5. 2 

(3 .4.8) -½N log(l+e 1_ l ,N 

+½(n.+m-3) log e1 + 0(1), 
l ,N 

The expansion of log ai4 ) ($,0N) is given by (3.4.5) in the proof of Theorem 

3.4.1 (by Theorem 3.2.4 and Proposition 3.5.1 this expansion is uniformly 

valid for all sequences { such that + 0 and N tr + 00). The theorem 

now follows from (3.4.7) and (3.4.8). 0 

COROLLARY 3.LL Under the conditions of Theorem 3.4.1 (ii) the deficiency 

f . ' 2 . . . o Hote.IL1ng s T0 w.r.t. Roy's largest root test is asymptotical.ly equiv-

alent to - (m-1) ) (log 0 1 )/log(1+0 1 ) . 
,N ,N 

These results imply that the regions of the parameter space on which 

the LR test is deficient are in a certain sense "enlarged" if + 0. For 

in Theorems 3.4.1 and 3.4.2 the ratios 8. 
J 

condition 

(3A.9) I e. 
J 

-1 
) ' j 

1 either have to satisfy the 
. ,N 

2, ... ,m 
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or the condition 

(3.4.10) 2, •.. ,m 

and it is seen that the rate at which the upper bounds at the right hand 

sides of (3.4.9) and (3.4.10) tend to zero is inversely proportional to the 

rate at which e1 tends to zero. It is also interesting that the deficiency 
,N 

becomes of higher order if ON+ O. For example, the deficiency of Hotelling's 

T~ w.r.t. Roy's test is no longer finite under condition (ii) of Theorem 

3 • 4. 1 if ON + 0. 

If tr -; 0 at a faster rate than specified by the conditions of 

Theorem 3. 4. 1, the differences between ai 1) (S ( 2 ) (S, and ( 4 J (B, 

become smaller. Roy's test seems to behave somewhat. differently. We do not 

attempt to give a complete treatment of all possible cases, but comment 

briefly on some cases of particular interest. 

If N tr 0 + 00 and N tr 02 + O, we have 
N N 

(3.4.11) lim (i) (S 

N+oo 
1 ' i,:i ,,, 1,2,4. 

This follows from Proposition 3.5.1, Theorem 3.2.4 and Remark 3.2.4. However, 

if 8 j , N = 0 ( N ·- l) , j 2 2 , N0 l 'N + oo and 1 + 0 we have by Theorem 3.4. 
,N 

for j = 1,2,4 

(JA, 12) (Ne ) (m:-1) (n1-1J 
1,N ' 

N ➔ oo, 

2 
implying that the deficiency of Pillai's test, Hotelling's T0 and the LR 

test w.r.t. Roy's test is asymptotically equivalent to 
-1 

(m-1) (n1-1)8l,N log(N0 1 ,N). Hence Roy's test is better than the other tests 

against these sequences of alternatives. 

If + 0 and N tr ON+ c E (O,oo), we are in the familiar case of con

tiguous alternatives. Asymptotic expansions of the dfs of Pillai's test, 

Hotelling' s and the LR test under H0 and under alternatives such that 

= A, where A = diag ( :\ 1 , ... , does not depend on N, have been given by 

FUJIKOSHI (1970). These expansions can be used to compute Hodges-Lehmann 

deficiencies (as introduced by HODGES & LEHMANN (1970)). It makes sense to 

compute these deficiencies, since the Pitman efficiencies of Pillai's test, 

Hotelling' s T~ and the LR test w. r. t. one another are equal to one. 

We first compute the Hodges-Lehmann deficiency of the LR test w.r.t. 
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Pillai's test for some fixed size ct E (0,1). Let {0} be a sequence of al-
N 2 

ternatives such that N0N"' A diag(\ 1 , ... ,\m) and let 26 =tr A, 4E =tr A 

It follows from Theorem 5.2 in FUJIKOSHI (1970) that the power at 0N of a 

test based on t~ 1) with size a has the asymptotic expansion 

(3.4.13) 

N + oo, 

(1) 2 
where f = mn 1 , xN is chosen such that P0{NtN > xN} = a and where x11 (o) 

has a non-central chi-squared distribution with n degrees of freedom and 

non-centrality parameter o. Here FUJIKOSHI (1970) .is followed. often 2o is 

called the non-centrality parameter. The power at 0 of a test based on t( 4 l 
N N 

with size ct has the asymptotic expansion 

(3.4.14) s( 4l <0 J 
N N 

where xa is given by Pr{x; > xct} = a and o, £ and fare as before. The ex

pansion ( 3. 4. 14) follows from F'UJIKOSHI ( 197 O) , p. 106 and 107. 

S.i.nce ddn Pdx~(n) >xct} ""Pr{x;+2 (n) >xct} -Pr{x!(nl >xct}, one has by Taylor 

expansion 

(3.4.15) 6 (4) (0N) 
N+k 

N ➔ oo, 

where k is some fixed integer. The "critical value" xN in (3.4.13) has the 

expansion 
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(3 .4.16) 

(See FUJIKOSHI (1970), p.97.) 

Let go,f denote the density of a non-central chi-squared distribution with 

f degrees of freedom and non-centrality parameter o, let 

(3.4.17) 
-1 

(m+n 1+1){2(f+2)} x (x -f-2)gs f(x) 
Cl Ct u,· Ct 

and let be the coefficient of N-l in the expansion (3.4.13) with xN re-

placed by xC!. '!'hen, by (3.4.13) and (3.4.16) 

(3.4.18) 8 ( l) (0 ) 
N N 

Let c be the coefficient of N-l in the expansion (3.4.14) and let d be 

defined by 

(3 .4.19) d 

It then follows from (3.4.14), (3.4.15} and (3.4.18) that the Hodges-Lehmann 

deficiency of the LR test w.r.t. Pillai's test is given by 

(3.4.20) /d. 

Note that this deficiency is finite in contrast to the Bahadur deficiency. 

The computation of the Hodges-Lehmann deficiency of Hotelling's 

w. r. t. the LR test may also be based on the expansions given in F'UJIKOSHI 

(1.970). Since the computations are quite similar we only give the result. 

We define, using the same notation as before, 

(3.4.21) 

(3 A.22) 

+ 4{(m+n ) 0 
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2 
The Hodges-Lehmann deficiency of the LR test w.r.t. Hotelling's T0 is given 

by 

(3A.23) 

,where c and d have the same meard.ng as in (3.4.20). It follows that the 

Hodges-Lehmann deficiency of Hotelling's T~ w.r.t. Pillai's test is given 

by 

(3.4.24) 

Nuroerical computations on the basis of (3.4.20), (3.4.23) and (3.4.24) 

confirm the numerical results on power behavior in table 4 on p. 108 of 

FUJIKOSHI (1970) : if Al,"""' A (Le. N6 1 , •• .,N8 ) are close to one 
(1) (4f (?) ,N m,N 

another we have { tN } > { tN } > { tN··· } , meaning that Pillai' s test is 

more powerful than the LR test and the LR test is more powerful than 

Hotelling's T~, whereas if \ 1 ·is dominant w.r.t. A2 , .. "'Am the inequalities 

are reversed. 

'.I'hese results also explain why the LR test oce:upies an intermediate 

position in nuroerical comparisons on power behavior in contrast to the op·· 

timality in the sense of Bahadur efficiency. In numerical investigations it 

is convenient to consider moderate values of Ne .. But it is clear from 
1,N 

our analytical results that the LR test compares more favorably w.r.t. the 

other tests for sequences of alternatives {0N} such that N tr 0N ➔· 00 , espe

cially for sequences of fixed alternatives {0N} ~ {0,0'" .. L 

3.5. APPENDIX 

We summarize the notation which will be used in this section. The 
-1 

symbol uS will denote w (1-S), where~ is the standard normal df, N denotes 

sample size, and n denote the degrees of freedom of the "hypothesis 

matrix" S and the "error matrix" S , respectively. 'l'he alternative to 
h,N e,N 

is specified by the non-centrality matrix of the non··central Wishart 

distribution (n 1 ,I,N0NJ. The matrix 0N has the structure 0N ~ 

= diag(e 1 ,N, .. .,em,Nl with e1 ,N 2 02 ,N ;:, ... 2 em,N" We shall use the abbre·· 

vi.at.ion etr(A) to denote exp(t:.r A). 
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PROPOSITION 3.5.1. Let {0N} be a bounded sequence of alternatives such that 

( 3. 5 .1) as N + ""· 

r.et the critical values c~ 1) 2 ci2) and c~4 ) be defined .by (3 .3. ) for 

Pillai's test, Hotelling's T0 and the LR test, respectively. Then, for 

Pillai's test 

(3 .5. 2) 

-1 

where 

(3.5.3) 
,N i 1, 2, 3, 

and 

(3.5.4) 

For Hote.U.ing's we have 

-½ -1 
tr0 +N T 2 u 0 +N [mn +(m+l+N-n)bl + 

N .. ,N µ ,N 

where 

(3. 5. 6) i 
,N tr(0N), i 1,2, 3, 

and 

(3. 5. 7) (4b1 
11 

,N 

For the LR test we have 
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(3. 5 .8) 
-1, -1 

log I I+0NI + N -r 4 ,Nuf3 + N [mn + (N-n-n ) d + 1 1. ,N 

where 

(3.5.9) i 1, ... ,4, 

(3.5.10) 

PROOF. We only prove (3.5.5) and omit the quite similar (though slightly 

more involved) proofs of (3.5.2) and (3.5.8). 'l'he proof is an elaboration 

of arguments used in FUJ.IKOSHI (19T!) and SUGIURA (1973). 

We have 

where them x m matrix Y = (yij) and them x (n 1-m) matrix Z = ) have 

independent standard normal variables as their elements. Moreover, let 

(3.5.11) 

We define the norm IIAII of an m x m matrix A by IIAII = (tr A . Note 

that IIABII :s; IIAII 11B11 (cf. BELLMAN (1960), Exercise 1 p.162). Let BN denote 

the event 

(3.5.12) 

Then 

(3.5.13) 

{hll+llzz•ll+llv II 
N 

2 
,-; (NT 2 

where c is a positive constant and 0( 
each k > O". 

On BN the statistic -r-2 S s-1 has the convergent power series 
2,N h,N e,N 

expansion 
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-2 s-1 -2 I k 
(3. 5. 14) T 8h,N 

T 0 + SN ¾,N' 2 ,N e,N 2,N N 
k=l 

where 

SN 
2 -½ 

(NT'J N) , ~, 

-1 ½ ½ 
Al ,N - (Y0 +0 Y'-0 V) 

,N N N N N' 
(3. 5 .15) 

A2,N YY' + ZZ' T2,~l,NVN, 

k 3 ,4, .... 

The series is convergent since by (3.5.12) and (3.5.15) 

ski! II :o: 
N ,N 

for some constant c 1 > 0 and all NE JN. By (3.5.14) one also has the fol-

lowing convergent power-series expansion on BN 

(3. 5.16) 
,N 

-2 3 k 
T tr 0 + ' s tr A + 

2,N -N ktl N k,N 

where /RN!= II==4 s~ tr Ak,NI :o: c 2 s~, for some constant c2 > 0 and all 

NE ]I!. 

Let FN be the df of N!,T;~N tr 
s;-3 sk-1 tr A • 
lk=1 N k,N 
Then, by (3.5.13) 

and similarly 

(xl <'. Pe ({ l 
N k=1 

We shall prove that. for ea.ch c > O 

s- 1 -0) and let 
,N e,N N 

be the df of 



108 

implying 

(3. 5 .17) 

,3 k-1 
Let 1/;N(t) ~• E etr(it l e: A ) . Since for fixed t E JR 

k=l N k,N 

E E . ½ E etr(itT2 A1 )= etr(2itY0) etr(-it0NVN) 
,N ,N N 

02)} 
N ' 

3 k-1 
the statistic Lk=l e:N tr, 1\,N has a standard normal df as its limiting 

-"' distribution. For It I < e:N the function 1iN ( t) has the expansion 

(3. 5 .18) 

5/2 2 3 
+ 0 ( e:N max ( I t I , I t I ) ) . 

This follows from the fact that on BN 

j=2 

O(E: 512 max(ltl 2 ,ltl 3JJ. 
N 

The expectations in (3.5.18) can be evaluated in the same way as in SUGIURA 

(1973), implying that for !ti < -1. the function ~;N(t) has the expansion 

(3.5.19) (t) 

where 



(3. 5. 20) 

(3.5.21) 

This can be proved i.n the following way. Consider for each NE JN 

(3.5.22) 

as a function of y 11 , with fixed yij'(i,j) i (1,1), fixed z and VN. 

Then 

?·r-l 011 + 2 ( GI.,; ) 
- 1 cN Y11" 1,Nvll,N 2 ,N ,N 

where V = (v. . ) • It. follows that 
N J.) ,N 

there exist constants 

for all N, h~(y11 ) ~ e > 0 if lyijl 

i,j = 1,. . .,m. 

Putting kN (y 1l) 

parts 

- (it) 
-1 

::;; d 
-1 

CN 

The asymptotic relation holds uniform.Iy for 

lw.. I and :; 
J.J ,N 

d and e such 

d 
-1 

cN ' 
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that 
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(i,j) ,j, (1,1), 

(3 .5 .23) 

Repeated integration by parts shows that 

dc:-1 

i,j 1, ... ,m. 

-½ f N 2 (2Tr) -l exp{-½yi1 + it hN(y11 ) }dyll 

-dEN 

aga:!.n uniformly under (3.5.23). Since 

we have 

3 
r k-1 I E(f(etr(:!.t l E A_ 

k=l N k,N 

Th:!.s proves (3.5.21). 

Let 

(3.5.24) 

By (3.5.19) 

(3,5.25) f 
ltl 

and by (3.5.21) and (3.5.24) 

(3.5.26) 

I 
ltl 

li/J (t)/tldt + 
-2 N 
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The function ¢N is the Fourier transform of the function FN defined by 

(3.5.27) 

where cp ~•. By Esseen's smoothing 
-2 

Lemma (ESSEEN (1945), Theorem 2a, p.32), 

(3.5.28) IG (x)-F (x) I < TI-l fE:N 
N N - _2 

-E: 
N 

uniformly in x c JR • Hence GN (x+cE:!) = GN (x) + 0 (E:!) for each constant 

cc JR and by (3.5.17), (3.5.27) and (3.5.28) 

implying (3.5.5). D 

PROPOSITION 3.5.2. Let 

( i) N tr 0N ··> 00 , as N ➔ oo 

and 

be a bounded sequence of al ternat.i ves such that 

(ii) ,N/0 1 ,N s c < 1, for N suf.ficiently large. 

(3) 
Let the cr.i tical value cN of Roy's largest root test be defined by ( 3. 3 .1) . 

Tllen <3) / th . cN ias e expansion 

(3.5.29) 

r1here 

(3.5.30) 

Let 

(3. 5. 31) 

(3) 
C 

N 

T3,N 

,N 

{201,N (2+81,N) 

-1 ½ 1, 
(Y0 +0"Y'-0 V), 

,N N N N N 
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k 3 ,4,. ••I 

where Y, z and VN are defined as in the proof of Proposition 3,5,1. On the 

set BN, defined by (3.5.12) with T2 ,N replaced by T3 ,N, the statistic 
-2 -1 

T3 ,N sh,N se,N has the convergent power series expansion 

(3 .5.32) 

-2 
Let AN= T3 ,N 0N and let Al,N ~ ... ~ Am,N be the diagonal elements of AN. 

2 -1 
On BN the largest latent root t 1,N of T3,N sh,N se,N can be expanded in the 

following way 

(3.5.33) 

(k) -1 
where dij is the ij-th element of the matrix nk,N' µlj = e 1 ,N(e 1 ,N-ej,N) 

and l~I ~ c 1 e!, for some constant c 1 • The coefficients in (3.5.33) can be 

computed by a perturbation method (see BELLMAN (1960) or FUJIKOSHI (1978)). 

Let FN be the df of e;1 (i1 N-T-3
2 e 1 .) and let G be the df of 

-1 -2 , ,N ,N N 
eN (l1 ,N-T3 ,Nel,N-~). Then, by the same arguments as used in the proof of 

Proposition 3.5.1 

and 

where 

(3.5.34) 



The proof can be completed in the same way as the proof of Proposition 

3.5.L □ 
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REMARK 3.5.L If condition (ii) is not satisfied, the e)s.-pansion (3.5.29) is 

not correct. However, if (i) holds, we still have 

(3. 5. 35) 

since (3.5.32) remains valid under this condition. 
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