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GENERAL INTRODUCTION

Let X X2,... be a sequence of independent identically distributed

11
(i.i.d.) random variables taking values in R according to a distribution
function F and let ﬁn be the empirical distribution function of Xl,...,xn.

SANOV (1957) has given conditions under which
(0.1) log pr{F e } = -nK(Q ,F) + 0(n), n > e,

where Qn is a set of distribution functions and K(Qn,F) is the Kullback-
Leibler (information) number of Qn with respect to F (for definitions see
chapter I). If lim K(Q ,F) = c > 0, then (0.1) implies that Pr{F_ ¢ Q }
ne n n n

comverges to zero exponentially fast. In this case the probabilities
Pr{én € Qn} are called probabilities of large deviations.

More generally, let S be a Hausdorff topolocical space, let A be the
be

set of probability measures on the Borel field B of S and let X, ,X

gk
a sequence of i.i.d. random variables taking values in $ according to a
probability measure P ¢ A. Let ﬁn be the empirical probability measure of

the random variables Xl""’Xn” The so-called Sanov problem is the problem

of finding conditions under which
(0.2) log Pr{P_e Q } = -nK(Q_,P) + 0(n), n -+,
n n n

where Qn is a set of probability measures and K(Qn,P) is the Kullback-
Leibler number of Qn with respect to P. This problem has been studied by
many authors, see e.g. BOROVKOV (1967), HOADLEY (1967), HOEFFDING (1967),
STONE (1974), DONSKER & VARADHAN (1975,1976), SIEVERS (1976) and BAHADUR
& ZABELL (1979).

A new approach to the Sanov problem is the subﬁect of the first chapter
of this monograph. Some results of this chapter have first appeared in
GROENEBOOM (1976); a large part of chapter I is also contained in GROENEBOOM,
OOSTERHOFF & RUYMGAART (1979), denoted by GOR (1979) in the sequel. The key
idea in our attack on the Sanov problem is the introduction of a suitable
topology on the set of probability measures. This topology, to be called
the t-topology, is the topology of convergence on all Borel sets. It pro-

vides a natural link between multinomial approximations to the probabilities
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Pr{ﬁn € Qn} and approximations of the form

m

inf ] Q(B,) log(Q(B,)/P(B,))

0cq i=1 i i i

n

to the Kullback-~Leibler numbers K(Qn,P), where {Bl""'Bm} is a partition
of $ into Borel measurable sets. The t-topology is finer than the weak
(oxr vague) topology, but coarser than the topology induced by the total
variation metric. Since this topology is in general not first countable, we
shall occasionally have to deal with nets and filters.

Incidentally, in chapter I we also give a proof of Theorem 11 in
SANOV (1957), generally called "Sanov's theorem”. Sanov's own proof of this
theorem is somewhat obscure (see section 1.4).

We use our results on the Sanov problem to derive asymptotic expres-
sions for probabilities of large deviations of linear or continuous functions
of empirical probability measures. For example, if § = R and A* is the set
of probability measures on R with compact support, sample means are given
by T(ﬁn), where the linear function T : A* + R is defined by

T(Q) = J xdQ(x), Qe A"
R
Defining Qr = Tnl([r,m)), we obtain from our results concerning the Sanov

problem

v

log Pr{n~1
i

X,

r} = log priT(® ) > r}
;1 n

o~

= log Pr[ﬁn € Qr} —nK(Qr,P) + 0(n), n = ®,
This asymptotic relation is a version of a theorem on probabilities of large
deviations of sample means in CHERNOFF (1952). In fact, there is an exten-
sive literature on probabilities of large deviations of sample means (for
references see BAHADUR & ZABELL (1979)) and it is interesting that many
results in this field can be derived from Sanov-~type theorems. Conversely,
it is also possible to derive Sanov-type theorems from theorems on probabil-
ities of large deviations of sample means; this last approach is followed
in BAHADUR & ZABELL (1979).

Whereas sample means are linear functions of empirical probability

measures, trimmed means and signed rank statistics provide examples of
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continuous functions of empirical probability measures (if A is endowed
with the T-topology). Theorems on probabilities of large deviations of
these statistics will be given in section 1.6 and chapter II, respectively.

Our interest in probabilities of large deviations of signed rank
statistics is motivated by the role played by large deviation probabilities
in the definition of Bahadur efficiencies of signed rank tests. More pre-
cisely, Bahadur efficiencies of such tests can be derived from the exponen-
tial rate of convergence to zero of probabilities of large deviations of the
signed rank statistics under the null hypothesis. This derivation is given
in chapter II. In the case of samples from purely discrete distributions a
comparison by means of Bahadur efficiency of different methods for dealing
with ties in signed rank tests is of particular interest (see section 2.3).

In chapter III the approach is quite different. Here we derive asymp-~
totic efficiencies and deficiencies of some well-~known multivariate tests.
Whereas the (relative) asymptotic efficiency of two tests describes the
first order asymptotic behavior of ratios of sample sizes required to at-
tain certain criteria, the asymptotic deficiency describes the asymptotic
behavior of differences of sample sizes required to attain such criteria.
Although it might be possible to apply the theory of chapter I to the com-
putation of Bahadur efficiencies of multivariate tests, this approach does
not appear to be promising. Moreover, the results of chapter I only yield
first order terms in an expansion of logarithms of large deviation prob-
abilities, whereas higher order terms are needed in the computation of
deficiencies. Hence we rely on Laplace's method for the expansion of multi-
dimensional integrals to describe the asymptotic behavior of probabilities
of large and moderate deviations under the null hypothesis and we use the
method of the stationary phase to derive asymptotic expansions of the distri-
bution functions under fixed and local alternatives.

Some doubt exists as to the value of the concepts of Bahadur efficien-
cy and deficiency. The main objection to these concepts is that they do not
give equal weight to error probabilities of the first and second kind. For
example, Bahadur efficiency is based on the exponential rate of convergence
to zero of error probabilities of the first kind, when the alternative and
power are kept fixed and the sample size tends to infinity. However, there
exist intimate connections between Bahadur efficiency and Pitman efficiency
(see e.g. chapter II), although in the usual definition of Pitman efficien-
cy the error probabilities of the first and second kind both tend to limits

bounded away from 0 and 1 as the sample size tends to infinity. We show
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in chapter III that there also exists a (somewhat more complicated) rela-
tionship between Bahadur deficiency and Hodges-Lehmann deficiency for the
tests studied here.

Of course, for the practical statistician it is important to know how
well the asymptotic efficiencies and deficiencies estimate the actual ratios
or differences of sample sizes required to attain certain criteria of test
performance. Some results in this direction will be reported in GROENEBOOM
& OOSTERHOFF (1980).

The present monograph is a virtually unaltered version of the author's
thesis written under the supervision of Prof. J. Oosterhoff. After the com-
pletion of this thesis, a paper by HSIEH (1979) appeared, in which the exact
slopes of the tests discussed in chapter III are derived. However, the me-
thods of proof used in HSIEH (1979) are quite different from the methods
used in chapter III and this chapter also contains higher order terms of the
asymptotic expansions whereas HSIEH (1979) does not consider higher order
terms. Perhaps the most interesting result of chapter III is that (non-local)
agymptotic optimality of the likelihood ratio test does not hold when higher

order terms are taken into consideration.



CHAPTER I

LARGE DEVIATIONS OF
EMPIRICAL PROBABILITY MEASURES

1.1. INTRODUCTION

Let S be a Hausdorff space and let B be the o~field of Borel seté in
S. Let A be the set of all probability measures (pms) on B; the abbrevia-
tion pm(s) is used in analogy with the notation df(s) for distribution
function(s). For P,Q € A the Kullback~Leibler information number XK{(Q,P) is
defined by

fs q log g dp if Q< P
(1.1.1) K(Q,P) =

o otherwise,

where g = dQ/dP. Here and in the sequel we use the conventions log 0 = -,
O¢(tx) = 0 and log{a/0) = «» if a = 0. If Q is a subset of A and P ¢ A we

define

(1.1.2) K{Q2,P) = inf K(Q,P).
Qe

By convention K({2,P) = o if Q is empty.

Throughout this chapter X XZ,... is a sequence of i.i.d. random vari-

1!
ables taking values in 8 according to a pm P ¢ A. For each positive inte-

ger n the empirical pm based on Xl,...,xn is denoted by ﬁn, i.e. Pn(B) is
the fraction of Xj's, 1 £ 3 <n, with values in the set B e B.
Let S = IR and let A1 be the set of pms on (R ,B), endowed with the

topology p induced by the supremum metric

(1.1.3) d(Q,R) = sup IQ(("‘“’IX] )= R((-er])[l QR € Alv
xeIR '



Then we have the following theorem of HOADLEY (1967) specialized to the
"one~sample case".
Let P ¢ A1 be a non-atomic pm. Let T be a real-valued function on Al'

uniformly continuous in the topology p. Define
0 =1{0 ¢ Al: T(Q) > r}

for each r ¢ IR . Then, if the function t K(Qt,P), t € R, is continuous

at t = r and {un} is a sequence of real numbers tending to zero,

-1 -
(1.1.4) lim n =~ log Pr{T(P ) = r+u } = -K(Q ,P).
3o n n r
In section 1.3 it will be shown that Hoadley's theorem can be general-

ized in three different directions simultaneously:

(1) the set A1 may be replaced by the set N of pms on a Hausdorff space S

(ii)} the uniform continuity of the function T can be weakened to continuity
(in a convenient topology which is finer than p if S = IR) at each pm
Q such that K(Q,P) < «

(iii) P ¢ A may be an arbitrary pm, not necessarily non-atomic.

STONE (1974) has given a simpler proof of Hoadley's theorem, but under
the original strong conditions. His proof can easily be adapted to cover the
case of d-dimensional random variables, but other generalizations are less

ocbvious.

A related theorem in the spirit of SANOV (1957) has been obtained by
BOROVKOV (1967} :
Let P € A1 be a non-atomic pm. Then, if Q is a p-open subset of Al and

K(clp(ﬂ),P) = K(Q,P) (where clp denotes closure in the topology p),

(1.1.5) lim n > log Pr{f’n € Q) = -K(Q,P).
n-co
By this theorem the uniform continuity (in p) of the functional T in
Hoadley's theorem can be weakened to continuity, but Borovkov relies in his
proof on methods of Fourier analysis of random walks in BOROVKOV (1962) for
which generalization to more general pms seems to be difficult.
In this chapter the approach to large deviations based on multinomial

approximations is systematically déveloped. It turns out that a natural



topology on the set A of pms on (S,B) is the topology T of convergence on

all Borel sets, i.e. the coarsest topology for which the map Q -~ Q(B),

Q0 € A, is continuous for all B € B. In this topology a sequence of pms {Qn}
= Q

Jg fag = [ £aQ

for each bounded B-measurable function f: § » R . The closure and the in~

in A converges to a pm Q € A, notation Qn »T Q, iff llmn_)m

terior of a set @ ¢ A in the topology T will be denoted by clT(Q) and
intT(Q), respectively.
With this notation we shall prove (Theorem 1.3.1)

Let P ¢ N and let ) be a subset of N\ satisfying
(1.1.6) K(intT(Q),P) = K(clT(Q),P).

Then (1.1.5) holds.

This is a generalization of Theorem 4.5 of DONSKER & VARADHAN (1976)
who obtained some related inequalities under stronger conditions. In par-—
ticular they assumed that S is a polish space and that the set Q) is either
open or closed in the weak topology. By the weak topology we mean the topo-
logy with subbasis elements
{Q e A: |ffap - ffdQOI < ¢}, QO e A, £ e CB(S),where CB(S) is the set of
bounded continuous functions £f: 8 > IR. We avoid the name "topology of weak
convergence” since S is merely a Hausdorff space and hence weak convergence
in A may not be properly defined because limits are not necessarily unique.
The functions f appearing in this definition are bounded and continuous;
therefore the weak topology is coarser than the previously defined topology
T

In the particular case S5 = R the topology T is finer than p (Lemma
1.2.1) which in turn is finer than the weak topology. Hence any p-continuous
(weakly continuous) functional T: A1 + R is a fortiori t-continuous and
our results on t-continuous functionals T imply the corresponding (weaker)
results for p-continuous (weakly continuous) functionals. In fact, by this
line of argument the generalized form of Hoadley's theorem mentioned above
easily follows from Theorem 1.3.1.

After some crucial lemmas in section 1.2 the basic theorems are ob-
tained in section 1.3. The theory includes theorems of Borovkov, Donsker &
Varadhan, Hoadley, Sethuraman and Stone as particular cases and thus pro-
vides a unified approach to these results which were obtained by rather

different methods. Section 1.4 is devoted to a proof of the celebrated



theorem of Sanov mentioned in the general introduction. In section 1.5 a
large deviation result for linear functions of empirical pms is proved.
This result generalizes CHERNOFF's (1952) theorem. Counterparts of some

of the results in sections 1.3 and 1.5 have been obtained independently and
by different methods by BAHADUR & ZABELL (1979). Finally, in section 1.6

a large deviation theorem for a class of linear combinations of order sta-
tistics (L-estimators) is proved. This leads to a large deviation theorem

for trimmed means under minimal conditions.
1.2. PRELIMINARIES

In this section some notation is introduced and a few preliminary re-
sults are proved which will play an essential role in the subsequent sec—
tions. By a partition P of the Hausdorff space S is meant a finite parti-
tion of S consisting of Borel sets. Such partitions are the starting point
of the multinomial approximation on which the proof of Lemma 1.3.1 in sec-
tion 1.3 is based. The number of sets in a partition is called the size of

the partition. For P,Q ¢ A and a partition P = {B]""’Bm} of & define

m
1.2.1 K. P) o= B.)1 B.)/P(B.)},
( ) p(Q,P) 351 o) og{o( /P Ny

and for a set Q < A

KP(Q,P) = inf K,(Q,P).

Qe P

Without explicit reference the relation
(1.2.2) K(Q,P) = sup{KP(Q,P): P is a partition of s}

(see e.g. PINSKER (1964), section 2.4) will repeatedly be used. We shall
say that a partition P is finer than a partition R iff for each B ¢ P
there exists a C € R such that B < C.

For each partition P = {Bl”"'Bm} of S the pseudo-metric dP on A is
defined by

dp(Q,R) = max [Q(B.) - R(B) |, QR € A.
1<9<m J



The topology T of convergence on all Borel sets of S is generated by the
family {dp: P is a partition of S}. A basis of this topology is provided
by the collection of sets {R ¢ A: dP(R,Q) < 8} where Q ¢ A, § > 0 and P
runs through all partitions of S. Note that this collection is a basis and

not merely a subbasis of T.

LEMMA 1.2.1. Let S = IRd. Then the topology p induced by the supremum metric
d(Q,R) = supxen@JQ((mw,x]) ~ R({~w=,x1) |, O,R € A, is strictly coarser than
the topology T.

PROOF. Since convergence in p of a sequence of pms does not imply conver-—
gence on all Borel sets (a sequence of purely atomic pms may converge in p
to a non-atomic pm), it must be shown that p < t. -

Let € > 0 and let Q be a pm on R . Then there exists a finite (possi-
bly empty) set of points with Q-probability > ie. Hence there exists a
partition P = {Bl”'°’Bm} of R consisting of singletons Bi such that
Q(Bi) > e and open or half open intervals Bj such that Q(Bj) < e, If R is
a pm on IR such that dP(Q,R) < {e/m, then d(Q,R) < e, which proves the lem-
ma for pms on R.

Next suppose that Q is a pm onZRd {d>1). Let Qi’ 1 £1i < d, be the
one~dimensional marginals of Q. For each Qi there exists by the previous

paragraph a partition {Bi ,B. } of R consisting of singletons B,

PRRRERL PR
E ¢
with Qi(Bi,j) > le and open or half open intervals Bi

7
. with Q. (B, ) <
] Q]( i J)

I v

< fe/d. Let P be the partition consisting of the product sets

X ..a XB, ., , 15 ji < mi, 1 £ i <£d, and let m = max The

Bl,j1 d,ig 1<i<a i

implication

dp(Q,R) < je/dm = A(Q,R) < ¢

proves the lemma for § = Ifi, N

A function T defined on A will be called t-continuous if it is contin-
uous with respect to the topology T on A and the given topology on the range
space. The definition of t~(lower,upper) semicontinuity is similar. The
topology of the extended real line TR is the usual topology generated by

the sets [-»,x), (x,2], x ¢ R.

LEMMA 1.2.2. Let P ¢ N. Then the function Q -~ K(Q,P), Q € A, is t~lower

semicontinuous.



PROOF. Let P,Q € A and let ¢ be an arbitrary real number such that
c < K(Q,P). By (1.2.2) there exists a partition P of S such that KP(Q,P) >
> ¢. Clearly there exists § > 0 such that

dp(R,Q) < § = K(R,P) > Kp(R,P) > c,

proving the lemma. []

A collection T of pms in A is called uniformly absolutely continuous
with respect to a pm P ¢ A if for each & > 0 there exists § > 0 such that
for each Q ¢ I’ and each B € B, P(B) < § = Q(B) < g.

In the next lemma some topological properties are established of -a

class I' ¢ A with uniformly bounded Kullback-Leibler numbers.

LEMMA 1.2.3. Let P ¢ A and let T = {Q € A: K(Q,P) < c} for some finite
¢ =2 0. Then
(a) T is uniformly absclutely continuous with respect to P

(b) T is both compact and sequentially compact in the topology T.

PROOF' .
-1
(a) Let € > 0. Let § > 0 be such that fe log(ie/8) > ct+e . Then, for each
Q € I' and each B ¢ B satisfying P(B) < §,

Q(B) = [ g dp = J q dp + I q dp
B Bn{qsie/8} Bnig>ie/8}
< %ea”lp(s) + <1og(§e/5))'1 f q log q dp
Bn{g>ie/8}

< e + (c+e“1)(log(%t':/ts))“1 < €,

where q = dQ/dP (note that the inequality x log x = ~»e.1 provides an
upper bound ¢ + e”1 for the integral fcq log q dP for any set C e B).
(b) Let M be the collection of all set functions u: B - [0,1] endowed with
the topology r1 of setwise convergence (note that T is the correspond-
ing relative topology on A). Using the property that a Hausdorff space
is compact iff each ultrafilter converges, we first prove that M is Ti-
compact. Consider an ultrafilter U = {Ua: @ ¢ I} on M. For each B ¢ B

the image of U under the map p - u(B) is an ultrafilter on [0,1] and



hence converges to a (unique) point, say CB e [0,1]. Let uo € M be

defined by uO(B) = cp

U converges to Hor proving T

o€l T
~compactness of M.

, B e B. Since Hy € n cl 1(Ua)’ the ultrafilter

1
In order to show that I' is T-compact it suffices to prove that T is a

Tl—closed subset of M. Let u ¢ ClT1(T)’ Clearly u is an additive set

function. To prove o-additivity consider a sequence {Bn} of disjoint

Borel sets. Fix € > 0. By part (a) there exists § > 0 such that B ¢ B,

)

P(B) < § = Q(B) < e for each Q ¢ T. Choose k so large that P(Un=k

B ) =
n

7Y P(B) < 8. Since p e cl_ () it follows that
n=k n Tq

N

0 {ee]
implying that u(Un=1 Bn) = Zn=1 u(Bn). Hence p € A. Now Lemma 1.2.2

oo \ k ( 0 )
l=J B, )= n£1 we )=l U B,) <

n=1 ‘n=k-+1

implies u ¢ I' and thus I' is T-~compact.
Finally ' is also sequentially compact in T since by Theorem 2.6 of
GANSSLER (1971) the notions "compact” and "sequentially compact” coin-

cide for the topology t. [J

Lemma 1.2.3 is closely related to the information - theoretical proofs
of convergence of a sequence of pms {Qn} to P under the condition
K(Q ,P) > 0, as n > = (see RENYI (1961) and CSISZAR (1962)). In fact, if
K(Qn,P) - 0 then {Qn} converges to P in the total variation metric (cf.
PINSKER (1964)), which is a stronger type of convergence than convergence
in 1 (the convergence has to be uniform on all Borel sets).

Let P,Q € A and let P = {Bl'°°"Bm} be a partition of $. Then the PP—

linear pm Q' corresponding to Q is defined by

P(BNB,)Q(B,)/P(B,) if P(B,) > 0

i i i i

(1.2.3) Q'(BnBi) =

Q(BnBi) if P(Bi) = 0,
i=1,...,m; B ¢ B. The usefulness of this concept lies in its property

K(Q',p) = KP(Q'rP) = KP(QIP) .

The device ofi;—linear pms was, as far as we know, first used in large devi~-

ation problems by SANOV (1957) for pms on IR. It was also used by HOADLEY
(1967) and in the more general form of the preceding definition by STONE



(1974) .
The next lemma generalizes relation (1.2.2) and plays a crucial role in

the next sections.

LEMMA 1.2.4. Let P ¢ N and Q © A satisfy

(1.2.4) K(ClT(Q),P) = K(Q,P).

Then

(1.2.5) K(Q,P) = sup{Kp(Q,P): P is a partition of S}.

PROOF. Let o = sup{KP(Q,P): P is a partition of S} and suppose (1.2.5) does
not hold, i.e. there exists an n > 0 such that a+n < K(Q,P) (see (1.2.2)).

put T = {0 e M X(Q,P) < a+n}. The set of all (finite) partitions P, order-
ed by P > R iff P is finer than R, is a directed set. Choose for each par-

tition P a pm QP e Q) satisfying KP(QP'P) < a+n. Let Qﬁ be the Pp—linear

pm corresponding to QP' Then
K(Qb,P) = KP(QP'P) < a+n

and hence Qﬁ ¢ I' for each partition P. Since I' is compact in the topology
T by Lemma 1.2.3 there exists a Q € I' such that Q is a cluster point of the
net N = {Qﬁ: P is a partition of S}.
Consider the open neighborhood {R e A: dP(R,é) < g} of Q. Since Q is
a cluster point of the net N there exists a partition T > P such that

dp(Q4,Q) < e. If B € P, then

0-(B) = J oA = ) QLB = QiB).

T AeT ,AcB T AeT,ncB T T
Hence dP(QT,é) = dP(Qf,é) < e, implying that Q is also a cluster point of
the net {QP: P is a partition of S}. Since Qp € Q for each P, Q ¢ clT(Q).
However, é e I' = K(Q,P) < a+n < K(Q,P) in contradiction to (1.2.4) and so

(1.2.5) follows. [J

REMARK 1.2.1. Lemma 1.2.4 is in fact a minimax theorem since in view of

(1.2.2) the result (1.2.5) can also be written as



sup inf KP(Q,P) = inf sup KP(Q,P).

P Qe Qe P
REMARK 1.2.2. The following example shows that (1.2.4) is not necessary for
(1.2.5), even if K(Q,P) < ». Let S = [~1,») ¢ R, let Ql = {Q e A:
[S xdQ(x) > 0} and let P,Q, ¢ A be defined by P({-1}) = P({0}) = } and
Ql({—l}) = 1, respectively. Define Q = Ql uQ,. It is easily seen that
K(Ql,P) = supPKP(Ql,P) = « and hence by (1.2.2) R{(Q,P) = K(Ql,P) = log 2 =
supp KP(QI'P) = supp KP(Q,P). Obviously P € clT(Q) and therefore
K(clT(Q),P) = 0. Thus (1.2.4) is violated but (1.2.5) holds true.

REMARK 1.2.3. Let sclT(Q) denote the sequential closure of Q, i.e.

Qe sclT(Q) if there exists a sequence {Qn} in @ such that Qn +f Q. We show
that (1.2.4) in Lemma 1.2.4 cannot be replaced by K(sclT(Q),P) = K(Q,P).
Let  be the set of all purely atomic pms on R and let P be a non-atomic
pm on IR . Then sup{KP(Q,P): P is a partition of R} = 0, but

K(Q,P) = K(sclT(Q),P) = o gince { = sclT(Q), In this case clT(Q) = A1 = the
set of all pms on IR. This shows that there are pms in A1 which can be

"reached" by nets in  but not by sequences in (.

By convention the support supp(Q) of a pm Q ¢ A is the set of points
x € S such that each neighborhood of x has positive Q-probability. Note
that Q(supp(Q)) may be smaller than one. However, we shall say that Q € A
has finite support {xl,...,xk} if Q({xi}) >0, i =1,...,k, and
2§=1 Q({xi}) = 1. In general, let us call a pm Q Lindeldf inner regular
if Q(B) = sup{Q(V): V ¢ B, V Lindelsf} for all open sets B ¢ S ( a set is
called Lindeldf if each open cover has a countable subcover). A pm with this
property assigns probability one to its support by a line of argument sim-
ilar to the proof of Lemma 2.3 in BAHADUR & ZABELL (1979). This regularity

condition is certainly satisfied if S is second countable.

LEMMA 1.2.5. Let P € A. Each pm which has finite support contained in the
support of P belongs to the weak closure of {Q € A: K(Q,P) < =},

PROOF. Let QO € A and supp(QO) = {x .,,xk} < supp(P). We prove that each

1"
weakly open neighborhood V of QO contains a pm Qv such that K(QV,P) < o,

Let

v={Qg e A: [jfjdg - ffdeOl < e, 5= 1,...,3},
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where fl""’fJ € CB(S). Choose neighborhoods Uji of xi in S such that

X € Uji =» ffjfx) - fj(xi)l <e, i=1,...,k; j s...,J, where for each j

the sets Ujl""’Ujk

define QV e N by

U,., i=1,...,k, and

1
s s s ~ J

are disjoint. Now put U, = 11,
i F=1 "ji

k

9, = ‘X 9 {x He(®U)/P(U), B e B.
i=1

Note that P(ai) > 0 because X, € supp (P) . Obwviously K(QV,P) < o, Moreover,

Q

- € V since for j = 1,...,J

k
£ - §f < ~ - . < €.
[feja0, - Jeagpl = 1 Mg (f-f 00ag 0 < e [
: i=1 i
This lemma does not continue to hold if the weak closure is replaced
by the t1-closure since the t~closure of {Q ¢ A: K(Q,P) < »} does not contain
any pm which is not absolutely continuous with respect to P. This illustrates

the difference between the weak topology and the topology T.
1.3. BASIC RESULTS

In the sequel we discuss probabilities of events of the form {ﬁneﬂ},
2 < A, where the empirical pms {ﬁn} are induced by the sequence X, ,X,,....
The preoblem which events {ﬁneﬂ} are Bn—measurable for all n is (at least

partially) solved by

PROPOSITION 1.3.1. Let S be a completely regular space. Let Iy denote the

set of pms in A with finite support and rational point masses. Then
{ﬁneﬂ} ¢ B for all ne W iff 9 n A « ﬁ, where (I is the o-field induced

by W on A and W is the Borel o~field on A generated by the weak topology.

PROOF. For n ¢ W let A(n) denote the set of pms in A with finite support
and point masses which are multiples of n-l and let (/(n) denote the o-field
induced by W on A(n).

We first prove that {ﬁneﬂ} e B «= 0 n A(n) e W(n). Consider the map
ﬁn: Sn + A(n) where ﬁn(xl,.eﬁ,xn) is the pm assigning mass n"—1 to each Xi’
i=1,...,n (since the xi's need not be distinct, there may be less than n
different point masses). Let B(n) denote the o-field on A(n) induced by the
surjection ﬁn’ Obviously {ﬁneﬁ} € B e= 0 n A(n) € B(n). We show that
B(n) = W) .
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B(n) is a Borel o-field generated by the topology with basis elements
0 6] - 0 . 0 0
V(x%,...,xn) = {Pn(xl,é..,xn): X, € U(xi), i = 1,...6n} where (xl,...,xn)
€ S and U(xl),...,U(xn) are neighborhoods in S of xl,m.
which are disjoint for distinct xg's. On the other hand, sets
V(Qo;fl,...,fJ) = {0 € A(n): !ffde - ffdeOI <€, J=1,...,7}, where Q, €
A(n) and fl""'fj € CB(S), are basis elements of the (relative) weak
0
topology on A{n). If the neighborhoods U(xg) are small enough, V(x?,...,xp)

= V(Qo;f

.,xn, respectively,

1,...,fJ). Conversely, for given U(x?),...,U(xg) choose QO ¢ A(n)

such that QO({X?,...,xg}) = 1 and let for i = 1,...,n the continuous func-

tions fi satisfy 0 < fi <1, fi(xg) = 1 and fi(x) =0 if x ¢ U(xg); such
functions exist since S is completely regular. Let 0 < g < n-l. Then
Q e A(n), |ffidQ - ffidQO[ < g = Q(U(xg)) > QO({XS}). Since this implica-

0
tion holds for all i, it follows that V(Qo;f .,fn) c V{x ,a..,xg), Hence

fre
the topologies generating B(n) and (/(n) coincide.

It remains to prove Q2 n Ai{n) ¢ W(n) for all n e= Q n X € ﬁ. The impli-
cation ¢« is trivial. To prove =, let Qn € W be such that Q n A(n) =
Qn nA(n), ne N. Fixme N. If the pm Q ¢ i e QC, then Q ¢ A(s) n o¢ for
some s € IN, implying Q ¢ Qsm' Hence ﬂs= Q n A< Q and thus

~ ~ O ~ >
Um=1 nszl Qsm nhc@Qn A, Conversely, Um=1 ﬂs=1 Qsm nA> Um:

Q2 n X, It follows that Q n noe 0 and the proof is complete. [

1 2 n Am) =

The collection of sets § < A satisfying Q n T € w is guite rich, much
richer than (f. Henceforth it will be assumed without explicit reference
that Pr{ﬁneﬂ} is well defined for all n ¢ I . However, in Remark 1.3.1 we
briefly return to this matter.

For each n ¢ W and Q < A the set Q(n) is defined by

Q(n)

= {0 € Q: nQ(B) ¢ % for all B ¢ B}.

Our large deviation results concerning probabilities Pr{?n € R} have
as starting point Lemma 1.3.1 which exploits multinomial approximations to
the distributions of the empirical pms ﬁn. It is easily seen that the lemma
remains valid for arbitrary sets S and arbitrary o-fields B containing all

singletons.

LEMMA 1.3.1. Let P ¢ A and let Q be a subset of N. Consider the following

conditions
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(B) for each ¢ < K(Q,P) and for all sufficiently large n there exist sets

Tn,l"”"rn,kn c A and partitions Pn,l""’Pn,kn of § with sizes
mn,l""’mn,kn respectively such that
kn
(a1) PR T
. n,i
i=1
< i<
(A2) KP .(Tn,i'P) > c, I 1< kn
n,]_
(A3) max m_ . = 0(n/log n)
t<i<k
n
and
log kn = ¢(n), n <+ o,

(B) For each € > 0 and each sufficiently large n there exists a pm Qn € Q

and a partition Pn of size m, such that

(B1) Xp (Qn,P) < K(02,P) + €

n
(B2) {0 € A dpn(Q,Qn) =0} cQ
(B3) mo= 0(n/log n).

If (A) is satisfied,

(1.3.1) lim sup at log Pri{P_ e Q} < - K(Q,P).
n-roo n

If (B) is satisfied,

(1.3.2) lim inf n @ log Pr{P_ ¢ Q} = ~ K(Q,P).
o n

Hence, if both (A) and (B) are satisfied,

(1.3.3) Lim n ! log Pr{ﬁn € Q) = - K(Q,P).
T->os

PROOF. To prove the lemma it is first shown that condition (A) implies

(1.3.1). Let ¢ < K{(Q,P). By condition (Al) we have

(n)
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kn
Pri{P ¢ Q} < z priP_ e T .}.
n , i
i=1
Let
Pn i {Bn i 1""'Bn i,m }
1 I 14 v v n’l
and let
= < < < <
Pp,i,j Bn,i,5)7 lsisk,tsj=m,
Then

i n,i ned
kn Iy mn,i -1 i
= ] I nt W {tmz_, 90T p 100
i__:l le 3 I Ij
Ky ig O, i -1 B
= I I stz oonT oz T
i1 =1 s1,] sl
Mn, i
s expil-n z ., . log(z_ . . A
et j£1 noi,3 229,150,150 0
i*
where Z denotes summation over all (z_ pecoesZ . } such that
n,i,1 n,imy g
Mn, i
X z ., ,=1,2z ., ., 20, nz_, . €%, 1 <£3<sm .,
e NyLl,]] NyLleJ N,1:7] n,i
and
My, i
z_ . . log(z_ ., . . ) 2K (r_ ..p).
jzl n,i,J g D,l,]/pn,l,] pn,i n,i’
The number of points (zn 47 % 4o ) satisfying the first condition
7z L oW
is equal to ’
n+mn i~1

n,i

uniformly in i, 1 < i < kn' Moreover, by Stirling’s formula, as n - o,
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L ¥ 1 o
n'/{(nzn,i,l) ......... (nzn,i,m ,).}
n,i
My, i
= -1l . . logz ., .+ 0(n
expl ) o1, 209 %45 (n)}

j=1

again uniformly in i, 1 < i < kn' Hence

N
o~

Pr{}?n e Q) < exp{—nKPn (rn,i’P) +0(n)}

s L

A

kn exp{ ~-nc + 0(n)},
implying
n_1 log Pr{f’n € 0} < ~c + 0(1),
as n + », Since ¢ < K(Q,P) is arbitrary, (1.3.1) follows.

Conversely we prove that condition (B) implies (1.3.2). Assume

K(Q,P) < «, since otherwise (1.3.2) is trivial. Fix € > 0. By condition (B)

there exists an n, € N such that for all n = n, a pm Qn € Q(n) and a par-
tition Pn = {Bn,l""'Bn,mn} of size m = ¢(n/log n) can be found such that
(Bl) and (BZ) are satisfied.
Put
= < 5 <
zn,j Qn(Bn,j)' 1 < J = mn.
Then for n =2 ng
Pr{Pn e Q} = Pr{dp (Pn,Qn) = 0}
n
My nz
=nt/{(nz_ )l....(nz_ _)t}e T p(s_ ) 3,
n,l1 n,my . n,
j=1
where
m
n
z . log{z ./P(B_ )} < K(Q,P) + €.

Hence, again by Stirling's formula, as n + «,

Pr{ﬁn e R} 2 exp{-nK(Q,P)-ne + 0(n)},
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and (1.3.2) follows, completing the proof. []

REMARK 1.3.1. If Q is an arbitrary subset of A, the event {ﬁn e Q} is not
necessarily measurable. But the proof of Lemma 1.3.1 is based on the inclu~-

sion

k
. B n -
{dP (.9 = 0} ¢ Qc 'U %, (B /P) 2 Kp .(Fn,i’p)}
n i=1 n,i . n,i

where the sets on the left and the right are measurable. Hence, if P" (E?)

denotes the outer (inner) measure corresponding to the product measure p"
n

on B, the proof of the lemma shows that under the conditions (A) and (B)

-1 - - ~
lim n~ log P {P_e Q} = lim n ! log E?{P € Q} = ~K(Q,P)
n-»o n - n

for any set @ < A. In this sense Lemma 1.3.1 continues to hold for arbitrary

sets Q. Similar remarks apply to all other results of this section.

LEMMA 1.3.2. Let P ¢ N and let Q be a subset of N. Sufficient conditions for

(1.3.1) and (1.3.2) are respectively given by

it

(a') K(Q,P) sup{KP(Q,P): P is a partition of S}

(BY) K(Q,P)

i

K(int_(Q),P).
T

PROOF., If (A') is satisfied there exists for each ¢ < K(Q,P) a partition
P such that KP(Q,P) > c¢. Hence (1.3.1) holds by the first part of Lemma
1.3.1 withk =1 and T = Q.
n n,l
To verify (1.3.2) assume K(Q,P) < o, Fix € > 0. By (B') we can find
a Q e int () satisfying K(Q,P) < K(Q,P) + fe. Since Q € int () there

exists a partition P = {Bl""'Bm} of S and a § > 0 such that

{R € A: dP(R,Q) < 8} < Q.

It follows that for all sufficiently large n there exist pms Qn € A(n)

satisfying

(i) dP(Qn,Q) < §, hence Qn € Q and {R ¢ A: dP(R,Qn) =0} cQ
(i) KP(Qn,P) < Kp(Q,P) + le < K(Q,P) + ie < K(Q,P) + €.
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Hence condition (B) of Lemma 1.3.1 is satisfied, implying (1.3.2). [

STONE (1974) proves (1.3.3) under the conditions (in our notation)
(C1) K(Q,P) < =
For each € > 0 there are a pm Q ¢ Q, a partition P of S and § > O
such that
(C2) Kp(2,P) < Kp(Q,P) < Kp(Q,P) + ¢
(€3) {R e A: dp(R,Q) < 8} < Q.

It turns out that if K(Q,P) < « these conditions are equivalent to con-
ditions (A') and (B') of our Lemma 1.3.2, implying that Stone‘'s theorem is
in fact equivalent to Lemma 1.3.2 if K(Q,P) < o,

To prove the equivalence suppose that conditions (A) and (B') are
fulfilled and K(Q,P) < «, Fix € > 0. By (B') a om Q ¢ intT(Q) exists satis—
fying K(Q,P) < K{(Q,P) + le. Since Q ¢ intT(Q), there exists a partition T
and § > 0 such that {R e A: dT(R,Q) < 8} ¢ Q. By (A') there exists a parti-
tion P which is finer than T and satisfies K(Q,P) < KP(Q,P) + ¢ (note that

KT(R,P) < KP(R,P) for each pm R if P is finer than T). Hence
Kp(2,P) < Kp(Q,P) < K(Q,P) < K(Q,P) + ie < Kp(Q,P) + €.

Moreover, for small enough §' > 0 the implication R ¢ A, dP(RiQ) < 8 =
s dT(R,Q) < § holds. It follows that conditions (C2) and (C3) of Stone are
satisfied.

Conversely, suppose that Stone's conditions (Cl) to (C3) hold. Then
by Lemma 2.3 of STONE (1974), condition (A') also holds. Let € > 0. Let a
pm Q € 2, a partition P of § and § > 0 satisfy (C2) and (C3) for this €.
Let Q' be the PP~linear pm corresponding to Q (see (1.2.3)). Then (C3) im-
plies Q' € intT(Q) and (C2) yields

K(Q*,P) = KP(Q',P) = KP(Q,P) < KP(Q,P) + € < K(Q,P) + €.

Thus K(intT(Q),P) < RK(Q,P) + ¢ for each £ » 0 and condition (B') follows.

Combining Lemma 1.2.4 and Lemma 1.3.2 we have

THEOREM 1.3.1. Let P ¢ A and let Q be a subset of A satisfying

(1.3.4) K(intT(Q),P) = K(clT(Q),P).
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Then (1.3.3) holds.

Borovkov has shown (see (31) in BOROVKOV (1967)) that (1.3.3) holds if
P is a non-atomic pm on R, { is a p-open set and K(Q,P) = K(clp(Q),P).
This is a particular case of Theorem 1.3.1 in view of Lemma 1.2.1.

In their work on large deviations of Markov processes, DONSKER &
VARADHAN (1975,1976) have shown that in the i.i.d. case (1.3.1) (or (1.3.2))
hold under the conditions that Q be weakly closed (or open, respectively)
and S be a polish space. Since the weak topoclogy is coarser than the topol-

ogy T, their result is contained in Lemma 1.3.2 together with Lemma 1.2.4.

REMARK 1.3.2. Suppose B ¢ § is an arbitrary Borel set satisfying P(B) = 1.
Let AB = {0 ¢ A: Q(B) = 1} and let L denote the relative T-topology on AB.
Then Theorem 1.3.1 remains valid if (1.3.4) is replaced by the weaker con-

dition

K(J_ntT (QnAB),P) = K(clT (QnAB),P).
B B
This result is an immediate conseguence of Theorem 1.3.1 (replace S by B,
A by AB and T by g and note that K(QnAB,P) = K(Q,P) and Pr{f’n e Q) =
= py{P .
r{ n € QnAB})

REMARK 1.3.3. Theorem 1.3.1 does not hold if intT(Q) and clT(Q) are replaced
by the interior and closure of  w.r.t. the topology w induced by the total

variation distance S§(Q,R) = sup{|Q(B) - R(B)|: B ¢ B}. For example, let

5 = IR, let Q be the set of pms which are purely atomic and let P be a non-

atomic pm. Then K{cl (Q),P) = K(intﬂ(ﬂ),?) = «, but limnﬁm n“1 logPr{Pne Q3

T
= 0, since Pr{ﬁn € 2} = 1 for all n. Note that Q = cl (), since Q > Q
a

for some Q € Al and

L€ Q(neN) implies that Q is concentrated on the
countable union of the countable sets carrying the mass of the Qn'sw

However, clT(Q) = A1 (see Remark 1.2.3).

COROLLARY 1.3.1. Let S be a polish space and let P ¢ A. Then (1.3.3) holds

for each weakly open convex subset Q of A,

PROOF'. By Theorem 6.3 in PARTHASARATHY (1967) the space N endowed with the
weak topology is a polish space. In the appendix of BAHADUR & ZABELL (1979)
it is proved that each pm Q defined on the o-algebra of Borel subsets of a

polish space satisfies
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0(a) = sup{Q(X): K ¢ A, K is convex and compact},
for each open convex set A; this property is called convex-tightness of the
pm Q. Hence, for all n e N the pm Qn defined on the o-algebra C of Borel
subsets of A (with the weak topology) by

0 (c) = pr{P e C}, cecC,

n n
is convex~tight.

Let Q be a convex and weakly open subset of A. Since a weakly open
subset of A is also T-open, Lemma 1.3.2 implies (1.3.2). Fix ¢ > 0. By con-
vex~tightness, there exists for each n a convex weakly closed subset én [SEY]
such that

-1 - -1 -
n  log Pr{P_ e Q} <n ~ log Pr{P_ e C_} + €.
n n n

Thus, by Lemma 1.3.2, (A') and the convexity of Cn’

n—1 log Pr{P e Q) < nl log Pr{P_ e C } + ¢ <
n n n

< lim sup(nk)—1 log Pr{P K €C } + e
koo n n
<

- K(Cn,P) + e £ -~ K(Q,P) + €.

Here the second inequality follows from the superadditivity of the function
m - log Pr{ﬁm € Cn}' m ¢ I . This property easily follows from the convexity

s P B - o 3
of Cn and the relation Pn = Zi=1 Pk,i' where n = jk and Pk,i is the

L . < i o< 4 .
empirical pm of the random variables X(i~1)k+1’°"'xik' 1 <i < j. Since
€ > 0 is arbitrary it follows that
Lo =1 s
lim n =~ log Pr{Pn e Q) = - K(Q,P). [

oo

A similar result under slightly different conditions is given in GOR
(1979) . Corollary 1.3.1 has first been proved by BAHADUR & ZABELL (1979).
Their (quite different) proof is based on a Chernoff-type theorem for sample
means.

The condition that § is weakly .open and convex cannot be replaced by
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the condition that Q is t-open and convex, even if K(intT(Q),P) < w, To see
this, let § = [0,1], let P be Lebesgue measure on S and let { =
= {P e A: P((0,4)) > 2} u {P € A: P has at least one point mass}. Then Q is
T-open and convex and the events {?n € Q} are measurable. Obviously
Pr{f>n € Q} = 1 for all n and 1imn9m n“l log Pr{ﬁn e Q} = 0 although K(Q,P) =
= #log 3 - log 2 > O.

To determine the infimum K(Q,P) appearing in the preceding results one
usually tries to find a pm Q € O for which this infimum is attained. A suf-

ficient condition for the existence of such a pm Q is given in the next lemma.

LEMMA 1.3.3. Let P € A and let Q be a non-~empty t-closed set of pms in A.
Then there exists a pm Q ¢ Q such that X(Q,P) = K(R,P).

PROOF. We assume K(Q,P) < o gince otherwise any Q ¢ ) achieves the equali~
ty. Let n > 0. Because ) is t~closed the set 2 n {Q ¢ A: K(Q,P) < K(Q,P) +

+ n} is compact by Lemma 1.2.3. By Lemma 1.2.2 the map Q - K(Q,P), O ¢ A,

is t-lower semicontinuous. Since a lower semicontinuous function attains its

infimum on a compact set, the proof is complete. []

A similar result is proved in CSISZAR (1975), where Q is required to
be convex and closed in the topology of the total variation metric.

Next we specialize Theorem 1.3.1 by considering sets  induced by an
extended real-valued function T: A » R . For a fixed function T: A ~ R,

let

Qt = {Q e A: T(Q = t}, te R.

We first prove a technical lemma.

LEMMA 1.3.4. Let P ¢ A and let T: A > R be a function which is T=Upper
semicontinuous on the set ' = {Q ¢ A: K(Q,P) < »}. Then the function

t +~K(Qt,P), t € R, is continuous from the left.

PROOF. Let K: IR - R denote the function defined by t > K(Qt,P) , be R
Let {rm} be a sequence in IR such that r 4 r for some r ¢ R satisfying
k(r) < «., Since k¥ is nondecreasing K(rm) < k(r) < = for each m ¢ N and
limm¢m K(rm) exists. For each m ¢ N there exists by Lemma 1.3.3 a pm

Q, € Qr such that K(Qm,P) = K(rm) (note that {Q € A: T(Q) = t and K(Q,P) <

< M} is T~closed for each t ¢ JR and M = 0). Since K(Qm,P) < k(r} for each
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m, Lemmas 1.2.2 and 1.2.3 imply the existence of a subsequence {Qmj} of
s < i i <
{Qm} and a pm Q ¢ A such that Qmj >, Q and K(Q,P) < lim lnfjaw K(Qmj,P) .
It follows that T(Q) 2 r since T is upper semicontinuous on I' and since
T(Qmj) > rmj for each j € N . Hence Q € Qr and k(r) £ K(Q,P) <
< lim, Ly = 13 < . i = .
oo K(Qm] P) lim K(rm) k(r). Thus llmm+m K(rm) K(r) follows
The left continuity also holds for a point ¥ € R such that x(r) = «

and k(r') < « for all r* < r. For if {K(rm)}:= is uniformly bounded for a

1
sequence {rm} with rm + ¥, then by the preceding line of argument there

exists a pm Q € Qr satisfying K(Q,P) < « in contradiction to k(r) = «». [J

THEOREM 1.3.2. Let P ¢ A and let T: A~ R be a function which is T-contin=-
uous at each Q ¢ I' = {R ¢ A: K(R,P) < =}, Then, if the function t - KCQt,P),
t € R, is continuous from the right at t = r and if {un} is a sequence of

real numbers such that lim u = 0,
n+e n

(1.3.6) lim n log Pr{T(® ) > r+u } = -K(Q_,P).
oseo n n r
(Note that the continuity property of T is stronger than the property "T

is continuous on I'".)

PROOF. Again define the function « by k(t) = K(Qt,P). Since x is nondecreas-—
ing it has at most countably many discontinuities. It is continuous from

the left by Lemma 1.3.4 and continuous from the right at t = r by assump-

tion.

Let K(Qr,P) < o, Then there exists for each € > 0 a § > 0 such that
K(r) = & < k(r-6) € k(r) < k(r+8) £ x(r) + ¢, where k is continuous at r-§
and r+8.

The continuity of T at each Q ¢ ' implies ClT(Qt) nr= Qt n I'. Hence

= = = P).
K(clT(Qt) ,P) = K(clT(Qt) n I',P) K(Qt nT,pP) K(Qt, )
Moreover, if x is continuous from the right at t,
K(Qt,P) = K(Qt nr,p) = K(intT(Qt) nr,p) = K(intT(Qt),P),

since I' n th c{pe': T(Q >t} cTln intT(Qt) for each y > 0. Hence by
+

Theorem 1.3.1
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-k(x) = € < =kK(r+§) = lim nn1 log Pr{T(ﬁn) > r+8}

oo
< lim inf a7t log Pri{T(P ) 2 r+u }
e n n
< lim sup nul log Px{T(P ) 2 r+u }
e n n
< lim sup n_1 log Pr{T(® ) = r-8}
n e n
= -k {r-8) < -k{r) + g.
Thus
Lim n“1 log PriT(P ) 2 r+u } = -c(r) = -K(Q _,P).
n n b

P00

The case K(Qr,P) = o may be dealt with along the same lines. The details

are omitted. [J

REMARK 1.3.4. Theorem 1.3.2 continues to hold if T is an ﬂfiwvalued function

. d . . L
and r and {un} are vectors in IR . The proof is quite similar.

EXAMPLE 1.3.1. Let F be a class of continuous ]ii-valued functions defined
on the Hausdorff space § and compact in the compact-open topology. Let

=1
P ¢ A be tight and assume that the one-dimensional marginals of Pf are

- ~1
1,Rf 1) be the distance between Of

non-atomic for each £ ¢ F. Let d(Qf_
and anl defined in Lemma 1.2.1.
SETHURAMAN (1964) proves (in the case that S is a polish space) that

for each ¢, 0 < ¢ < 1,

(1.3.7) lim n“1 log Pr{supf F as ful,Pful) > e} = ~x(g),
o € n
where
k(e) = min {(p+e)log((p+e)/p) + (i~p-g)log((l-p~e)/(1-p})}.
O<ps<i-e

Here we prove that the function T: A >~ R defined by T(Q) = supf€Fd(Qf-1,
Pf—l) is T-continuous at each Q ¢ I' satisfying K(Q,P) < « and hence that
(1.3.7) follows from Theorem 1.3.2.

Let Q ¢ A satisfy K(Q,P) < ® and suppose that T is not continuous at
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Q. Then there exists an € > 0 such that for each t-open neighborhood U of

Q a pm QU € U and a function fU € F can be found satisfying

-1 -1
>
(1.3.8)  d(Qf, ,Qf ) = e.
(Note that for all pms R,R' € A one has |T(R)~T(R')| < suprFd(Rfﬂl,R'f—l)J
Let the set D = {U: U is a t-~open neighborhood of Q} be directed by U > V
iff U ¢ V. With this (partial) ordering on the set D, {fU: U e D} and
{Q

: U e D} are nets in F and A respectively. Since F is compact in the

“U
compact-open topology, the net {f : U ¢ D} has a cluster point £ ¢ F.
Let for x = (x(l),...,x(d)) € nfi the norm of x be defined by
fxl = max, ;4 lx(l)l and let x £ y iff x(l) < y(l), 1 i <d. Since P is

tight and K(Q,P) < «, O is tight and hence there exists a compact set K © §
-1 -1
such that Q(S\K) < le. The pm QOf has non-atomic marginals since Pf has

non-atomic marginals and Q « P, Hence there exists an n > 0 such that
[o{s € R: £(s) < x} - Qs ¢ K: £(s) < yv}| < le

if lx-yl < n. By Lemma 1.2.1 we can choose a T~open neighborhood U
1

0 of Q

such that d(Rf ,qul) < le and R(S\K) < }e if R ¢ Uy Since f is a cluster

point of the net {fU: U ¢ D} there exists a T-open neighborhood U ¢ UO of
3 i @) - < n.
Q such that sup_ o fU( y-£(s) n. Because QU € U c UO one has

-1 -1
d(QUfU Qf ) = max{Q(S\K),QU(S\K)} +

+ sup IQU{S € Ks fU(s) < x} - 9{s € K: fU(s) < x}]
zelR

< sup(iIQU{s € K: f(s) < x} - ofs € K: £(s) < x}| + le
xelR

< d(QUf“l,Qf"l) + 2 < €.

This contradicts (1.3.8) and hence T is T-continuous at Q. Let
QE ={Q e A: T(Q) = €} for 0 < ¢ < {. It has been shown by HOEFFDING (1967)
that K(QE,P) = k(e) and that k is continuous in e for 0 < € < 1. Thus (1.3.7)

follows from Theorem 1.3.2.

For one sample Theorem 1 in HOADLEY (1967) is a particular case of our

Theorem 1.3.2. In Hoadley's theorem S = IR, P is a non-atomic pm on R and
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T is a real-valued uniformly continuous function with respect to the topol-
ogy 0.

Actually HOADLEY (1967) proves a more general theorem where T is not
merely a function of one but of several empirical pms. This setup is of in-
terest in problems concerning k samples. The results obtained so far in this
section can also be generalized to the k-sample case. We briefly indicate
how this works out.

Let X N & be i.i.d. random variables taking values in S ac-

1" i,n;

I 1 1

cording to a pm Pi e A, 1 £1i £k, and assume that the sample sizes n, tend
k

to infinity i . - , - a

o infinity in such a way that llmN»m ni/N vi, where N i=1 ni an

v, >0, 1 £1i <k. (We remark in passing that the condition ni/N - Vi =

- .
= (N log N) in HOADLEY (1967) is unnecessarily restrictive.) The empiri-

cal pm of the i-th sample will be denoted by P s 1 €£4i £k. A is endowed
i
with the topology T and A is given the product topology .

- k ~ k k -
Let P = (Pl"“"'Pk) e A" and v = (;1""'Uk) € (0,11 where Zi=1 v, = 1.
Let P = P1 X, ..% Pk be a partition of 5 consisting of product sets

B, X, .. X where B, ., belongs to a partition P of S for 1 £ i < k.
IJI kljk llji
Then we define for Q = (Ql""'Q ) € A and a set Q < Ak
k
1,(Q,P) = _Z v K(Q,/P.), I,(Q,P) = inf I (Q,P)
i=1 Qe
and
k
I, plQB) = _2 ViKp (i /Py), T, p(@,P) = inf I ,(Q,P).
i=1 i Qe

By making small changes in the proofs of Theorems 1.3.1 and 1.3.2 one ob-

tains the following corollaries.

CORQLLARY 1.3.2, Let P = (Pl""'Pk) € Ak and Q < Ak satisfy

Iv(int(ﬂ),P) = Iv(cl(Q),P)ﬁ
Then

. ~1 -
lim N ~ log Pr{(P1 n ,...,P

) € Q) = —Iv(Q,P).
N 1

k,nk

COROLLARY 1.3.3. Let P = (Pl,..O,P ) € A , let T: A + R be continuous at
k
each Q ¢ ' = {R e A : IV(R,P) <. w} and let Q = {Q e A : T(Q) 2 t}, t e R.



24

Then, if the function t - Iv(Qt’P) is continuous from the right at t = r

and if {uN} is a sequence of real numbers such that u_ =+ 0,

N

-1 - -
lim N ~ log Pr{T(P seoasP Y 2 r+u } = ~I (R ,P).
N-oo 1,1’11 krnk ‘H\I Voo

1.4. A THEOREM OF SANOV

In this section we shall show that Theorem 11 in SANOV (1957) is a
special case of our Lemma 1.3.1. This is of interest since some obscure
points in SANOV's (1957) paper have raised doubt as to the validity of his
Theorem 11 (cf. HOADLEY (1967), BAHADUR (1971)). We shall show that Sanov's
theorem holds with the original definitions.

Let S = R and let D be the set of distribution functions (dfs) on R.
If G € D, the corresponding pm in A1 will be denoted by PG. For convenience
of notation we write K(G,F) instead of K(PG'PF) and K(f,F) to denote
inf{RK(G,F): G ¢ Q} if Q ¢ D (with similar conventions for KP(G,F) and
KP(Q,F)). If © < D, then Q<n) = {G e Q: nG(x) ¢ @ for all x ¢ R}. A set
Q © D will be called t-open if the set of pms {PG € A1: G € Q} is open in
the topology t defined on Al' The topology T on D is defined by these T-open
sets.

Suppose that P is a partition of IR consisting of the sets

o= (00 = | = = ©
B1 ( ,xl), B2 _xl,xz),..., Bm_1 [xm_2,xmu1), Bm [Xm~1' ), where
~0 < oy, < ¥, <,..< X < o, Let the set W_be defined by

U% 2 m~1 m

= = < < < < < < < L.
W =1 (Bi x [ai,bi]), where O a, £a, ... <a s 1, 0 < b1 b2
< B - s - - e > -
< bm 1 and b1 a2 0, b2 a3 > O,.,.,bmw2 amml > 0, bm—l am 0

Finally let G, ¢ D be defined by Gl(x) = ai, if x € Bi. Then Vm =

1
= {G e D: (%,6(x)) € W for all x ¢ Hl}q{Gl} is called an e-neighborhood.

The partition P is called the partition corresponding to Vm.

DEFINITION 1.4.1. Let F ¢ D assume infinitely many values. A set € D is

called F-distinguishable if the following conditions hold

(a) K(Q,F) < =

{(b) for each n > 0 and each n ¢ W there exists a finite number kn = kn(nl

such that Q(n) c Ukn v and K(V, F} >
i=1 ‘mj mj ¢

- < i< = 5 =
> K(Q,F) n, 1 €1 < kn' Moreover, log kn(n) ¢ (n) and maxlSiSkn mi

of e-neighborhoods le,,u,vmkn

= ¢0(n/log n), as n » x,
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(c) for each n > 0 there exists an e-neighborhood Vm c Q satisfying

K(Vm,F) < K(Q,F) + n.

The following theorem is Theorem 11 in SANOV (1957).

THEOREM 1.4.1. Let F ¢ D assume infinitely many values, let < D be F-

distinguishable and let X 'XZ"°' be a sequence of i.i.d. random variables

1
with df F. Then, If ﬁn is the empirical df of xl""'Xn'

lim a7t log Pr{ﬁn e Q) = -K(Q,F).

1
PROOF. We shall first show that condition (B) of Lemma 1.3.1 is satisfied.
Fix € > 0. By condition (c) of Definition 1.4.1 there exists an s—neijhbor—

hood Vm < Q) satisfying

(1.4.1) K(V_,F) < K(Q,F) + 1‘5-
m 3

1 . . - -
Choose G ¢ V_ such that K(G,F) < K(Vm,F) + 5 €. 1f P is the partition cor

responding to Vm we have

(1.4.2) KP(G’F) < K(G,F) < K(V_,F) + i'€-
m 3

By the definition of e-neighborhoods it is clear that for sufficiently large
(n)

n there exists a df Gn € Vm satisfying
(1.4.3) X, (G ,F} - k,(G,F)] < L.

P n’ X (G 3
Moreover
(1.4.4) {H ¢ D: dP(PH,PGn) = 0} © vm c Q.

It follows from (1.4.1) to (1.4.4) that condition (B) of Lemma 1.3.1 is
satisfied.

On the other hand condition (b) of Definition 1.4.1 implies condition
(A) of Lemma 1.3.1, for the e-neighborhoods Vmi of condition (b} correspond
to sets of pms Fn,i = {PG € Al: G € Vmi} in condition {(A) of Lemma 1.3.1
and we have KP(Vm,F) = K(Vm,F) if P is the partition corresponding to an
e-neighborhood Vme

To prove this last property we note that if G € Vm and if Pé is the

PPFrlinear pm corresponding to P

G’ then the df G' induced by Pé is an element

of V,, and therefore
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- 'L,F) = K(G',F),
K5 (G,F) KP(G F) ( )
implying
KP(V ,F) 2 K(V_,F).
m m

Since always KP(Vm,F) < K(Vm,F) it follows that KP(Vm'F) = K(Vm,F).

Hence condition (A) of Lemma 1.3.1 is satisfied. [J

REMARK 1.4.1. From the preceding proof it is clear that the condition "F

assumes infinitely many values" is redundant in Sanov's theorem.

The crucial property of the e-neighborhoods Vm seems to be that
K(Vm,F) = KP(Vm,F) for the partition P corresponding to Vm. It was shown
in Lemma 1.3.1 that we do not have to impose this condition on the sets Vm
and that we can look at the quantities KP(Vm'F) directly for suitably chosen

sets Vm which do not necessarily have the property KP(Vm’F) = K(Vm,F),
1.5. LINEAR FUNCTIONS OF EMPIRICAL PMS

Several important statistics are in fact linear functions of empirical

. -1 .
pms. For example, if S = IR, the sample mean n Z? Xi may be written as

=1
T(ﬁn), where T is defined by

T(Q) = J % dQ(x)
R

for all Q € A with bounded support. Note that T is a linear function, i.e.
T(oQ+(1-a)R) = aT(Q)+(1~a)T(R), 0 < a < 1. Although T is not t-continuous
at any pm Q, T is T~continuous on each set {Q e A: Q([-M,M]) = 1}, where M
is a fixed positive number. This property suggests that large deviation
theorems might be obtained by first truncating the underlying pm and sub-
sequently taking limits, letting the support of the truncated pm tend to S.
It turns out that this kind of truncation is more convenient than trunca-
tion of functionals T. Slightly different truncation arguments are syste-
matically used in BAHADUR (1971) and HOADLEY (1967).

For the purpose of truncation we introduce conditional pms. If B < §
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is a Borel set and Q € A satisfies Q(B) > 0, the conditional pm QB is de~
fined by QB(C) = Q(CIB), C e B. For ' ¢« A and B ¢ B with P(B}) > 0, we write
Pr{P_ e T | B} to denote Prif €T | X, €B, 1 <i<n}
The following lemma explains why truncation is a useful approach.
LEMMA 1.5.1. Let P ¢ A and let B1 c B2 c,.. be an increasing sequence of
. - s e * - “ —
Borel sets in § such that lim P(Bm) = 1, Let A {0 € A: Q(Bm) 1 for

an m ¢ N }. Then, for each subset 9 of A

1im K(Q,PB ) = K(Q,P).
e m

PROOF. Fix ¢ > 0. Let m. ¢ N be so large that |log P(Bmo)l < g. Write

0

Pn = PBm, m € W . Then

K(Q,P) < K(Q,Pm) + ¢ for all Q e A andm 2 m -
The inequality is trivially true if K(Q,Pm) = o and is a consequence of
K(Q,P)—K(Q,Pm) = ~log P(Bm) if K(Q,Pm) < o, It follows that K(Q,P) <

< lim inf K(Q,Pm). To prove the lemma it still must be shown that con-

versely

(1.5.1) K(Q,P) 2 lim sup K(Q,Pm).

iga]
The ineguality is obvious if K(Q,P) = «, Hence assume K(Q,P) < « and let
0 € 0 satisfy K(Q,P) < K(Q,P) + €. Since Q ¢ A*, there exists an m. ¢ W

0
such that Q(Bmo) = }. Hence

lim sup K(Q,Pm) < lim K(Q,P } = K(Q,P) < K(Q,P) + ¢
rroo m>eo m

implying (1.5.1). [

THEOREM 1.5.1. Let P ¢ A, let E be a real Hausdorff topological vector space
and let B1 c B2 C... be an increasing sequence of Borel sets of § such that
lim$+m P(Bm) =1, Lit Wm = {Q ¢ A: Q(Bm) =1} for m ¢ N and let 2=
= Um=1 Wm“ Let T: A ~ E be a function whose restriction T Wm is linear and
t-continuous at each Q ¢ Wm such that K(Q,P) < =, for each m ¢ I .

If A is a convex subset of E with closure A and interior AO satisfying

-1
et e < ®, then
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(1.5.2) Lim n ' log Pr{T(® ) € A} = —K(T_l(A),P).
n-wo n

PROOF. Assume without loss of generality that P(Bl) > 0. Let p =Pg.

- -1, 0
me N, By Lemma 1.5.1 K(T 1(AO),P) = lim (T (A ),Pm). Hence we may

also assume without loss of generality that K(T—l(AO),Pm) < o for each

m € N . We shall first prove
-1,0 -1 =
(1.5.3) R(T “(A ),Pm) = K(T (A),Pm) for each m ¢ W .

Fix € > 0 and m € IN. There exists a pm Q € Tml(i) which satisfies
K(Q,Pm) < K(T_l(i),Pm) + €. There also exists a pm R € T—I(AO) such that
K(R,Pm) < o, Let Qa flaQO+ (1-0)R, O < o < 1. Since Q, R ¢ Wm and T is
linear on Wm, Qa e T "(A") for each o ¢ (0,1). Moreover K(Qu’Pm) <
<o K(Q,Pm) + (1—@)K(R,Pm), a e (0,1), by f?e gonvexity of the mapping
Qf foL,Pm), 0' ¢ N. It follows that K(T ~ (A ),Pm) < llma¢1 K(Qa'Pm) <
< R(T (A)'Pm)_: €, provinz (1.5.3).

Let Q =T ~(A), let Wm = {Q ¢ Wm: K(Q,P) < »} and let T denote the
relative t-topology on Wm, m e WN . Since the restriction of T to Wm is Tm-
continuous at each Q € W;, one has W; n Tnl(i) ] Wg n cle(QnWm) o W; n

nintr (@0 ) > ¥ 2% . Hence, by (1.5.3)

(1.5.4) K(cl (QnY ) ,P ) = K(int (Qn¥ ),P ), for each m ¢ W .

T m ‘“m T m “m

m m

Let y = lim sup ot log Pr{T(ﬁn) € A} and let k € W be such that
-1 . R
o . . -

k logAPr{T(Pk) € A} = y-¢g. Since lim Pr{T(Pk) e n | Bm}
= Pr{T(Pk) ¢ A} there exists m, € N such that

k! log Pr{T(ﬁk) e Al B }2y-2¢ forallm2zm,.

Hence for m 2 mo

(1.5.5) lim sup 0 log Pr{T(® ) € A [ B }

-

> lim (kj) "} 1og(pr{T(§k) en| B I
3o "

-1 -
= > y-
k * log Pr{T(Pk) e A | Bm} > y-2e.
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The first inequality in (1.5.5) follows by the same superadditivity argument
as used in the proof of Corollary 1.3.1.
By (1.5.4), Theorem 1.3.1 and Remark 1.3.2

lim o log Pr{T(F ) e & | B }
v n m

= lim 1'1_-1 log Pr{P_ e 2 | B } = -K(Q,P ).
n m m
n-e

Lemma 1.5.1 and (1.5.5) now imply

y-2e < lim lim n ! log Pr{T(ﬁn) e A | Bm}
me e

“lim K(T 1 (@),p ) = ~x(T L (a),P).
mee n

Thus vy < «K(T"l(A),P).

Conversely, for any m,n € WN
nm1 log PriT(F ) ¢ a} 2 n‘1 log PriT(® ) ¢ A [ B } + log P(B ).
n h n m m
Hence, by the first part of the proof and Lemma 1.5.1
P -1 =
lim inf n log Pr{T(Pn) € A}

oo

> lim [lim inf a7t log Pr{T(ﬁn) e A | Bm} + log P(Bm)]

Tr-peo faad
s -1 -1

= lim -K(T ~(a),P ) = -K(T ~(a),P). [
oo m

COROLLARY 1.5.1. In Theorem 1.5.1 let TIWn be linear and weakly continuous

for each n €¢ W . Then (1.5.2) holds for each subset A of E and P ¢ N satis-

fying one of the following conditions:

(i) A is convex and K(T *(a°),p) < =
(ii) A is open, P is Lindeldf inner regular and K(T_l(A),P) = o

(iii) A is open and convex and P is Lindeldf inner regular.

PROOF. Under condition (i) the result follows from Theorem 1.5.1 since weak
continuity implies T~continuity of T Wna Since condition (iii) implies

either (i) or (ii), it remains -to consider condition (ii).
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-1 )
Suppose A is open and K(T (A),P) =«, Assume without loss of general-
ity P(Bl) > 0. For each m € N let P be the conditional pm PBm. We first

show that Pm(supp(Pm)) = 1.

Let Am = Em n (supp(P)\supp(Pm)). Since P(supp(P}) = 1 by the inner
regularity of P, it suffices to prove P(Am) = 0. For all x € Am let UX be
a neighborhood of x in S such that P (U ) = 0 and put U = U U . Fix

m X XehAp X

e > 0. Again by the inner regularity of P there exists a Lindeld8f subspace
V ¢ U satisfying P(V) > P(U)~e. Since V may be covered by countably many

sets Ux, it is seen that Pm(v) = 0 and hence
P(A ) < P(UNB ) = P((U\V) n B ) < g,
m m m

implying P(Am) = 0. 1

Next we prove that T ~(A) does not contain pms with finite support
in Bm n supp(Pm), implying Pr{T(ﬁn) € A I Bm} = 0 for all m,n € W and hence
Pr{T(ﬁn) € A} = 0 for all n € N in accordance with (1.5.2).

Fix m ¢ N and let QO e N have finite support supp(QO) c Bm n supp(Pm).
Suppose T(QO) € A. The weak continuity of T!Wm implies that there is a weak
neighborhood V of QO such that T(VnWm) c A. By Lemma 1.2.5 (with P replaced
by Pm) the set V contains a pm QV such that K(QV,Pm) < o, It follows that
Q !
= K(T ~(A),P) = o, Therefore T(QO) ¢ A, as required. [J

¢ ¥ and hence K(Tml(A),Pm) < », in contradiction to K(T—l(A),Pm) =

= -1
REMARK 1.5.1. The events {Pn e T " (A)} in Theorem 1.5.1 and Corollary 1.5.1
are not necessarily Bnmmeasurable. If these events are not Bn-measurable

we still have

lim n“1 log P{T(P ) ¢ A} = lim n—1 log E?{T(ﬁ ) € A} =
o n osco n

xr @),

where Pn(gé) denotes the outer (inner) measure corresponding to the product
measure P on 3" (cf. Remark 1.3.1). Proposition 1.3.1 implies that

- ~1 .
{Pn € T ' (a)} is B'-measurable if A ¢ B, S is completely regular and T is

weakly continuous.

Consider the particular case that S is a locally convex (Hausdorff)

topological vector space. BAHADUR & ZABELL (1979) have shown that for each
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convex open set A ¢ S

(1.5.6) lim n t log prin”’ § X, € A}
n->e i=1

exists and is equal to -K(M(a),P), where M(A) < A is the set of pms with
expectation in A (their Theorems 2.1, 2.3 and 3.3). This theorem, together
with other methods to evaluate the limit, is derived under the condition
that the pm P and its convolutions satisfy certain inner regularity condi-
tions.

Another version of their resultcan also be deduced from Corollary 1.5.1.
For this purpose integrals of functions taking values in vector spaces are
needed. Let E be a copy of the locally convex topological vector space S,
let E' be the dual of E (i.e. the space of continuous real-valued linear
functionals on E) and let E'* be the algebraic dual of E' (i.e. the space
of real-valued linear functionals on E'). For y ¢ E, y' € E', y'* € E'*
write <y,y'> = y'(y) and <y'*,y'> = y'*(y‘), Finally, let Bbe a compact sub-
set of §, let WB be the set of pms on the Borel o-field of B and let C(B)
denote the space of continuous functions f: B = E. Then the integral of
f € C(B) with respect to a pm Q ¢ WB, denoted by IB £dQ or IB f(x)dQ(x),

*
is an element of E' defined by the relation

<J £fdQ,y'> = J <f(x),y'> dQ(x)
B B
for each y' ¢ E' (cf. BOURBAKI (1965), p.74-82).

Let E be the completion of E induced by the uniformity compatible with
the topology on E. Each element y € E can be identified with an element of
E'* by identifying y with the linear form y' - <y,y'> on E' (where E' is
identified with §').

With this identification we have the following two fundamental proper-
ties of the integral for each £ € C(B): (a) the closure of the convex hull
of £(B) in E is equal to the set {IB £dQ: O € WB}, and (b) the map
$: Q %'IB £dQ is the unique weakly continuous linear mapping from WB into B
such that ¢(Q) = 2?21 f(Xi)Q({Xi}) for each pm Q with finite support
{xl,‘..,xk} (cf. BOURBAKI (1965), loc.cit.).

Now suppose that § = E and that P ¢ A is tight. Then there exists an
increasing sequence of compact subsets B, < B, <... of S such that

1 2

* ~
limn+m P(Bn) = 1. In the notation of Theorem 1.5.1 define T: A -~ E by



32

(1.5.7) T(Q) = J x dQ(x) ; Q€ Wm (me W).

B
Since J’Bm <x,y'> dO(x) = J’Bn <x,y'> dQ(x) if Q(B ) = Q(B ) = 1, the value
of T(Q) does not depend on the choice of Bmﬂ Moreover, by property (b)
mentioned above, T(ﬁn) = n.—1 Z?=1 Xi and Tan is linear and weakly contin-
uous for each n ¢ IN. Hence Corollary 1.5.1 implies that (1.5.6) exists and
is equal to *K(Twl(A),P) under the conditions (i), (ii) or (iii). Apart
from pms with non-compact support, the set Tal(A) coincides with the set
M(A) appearing in the result of BAHADUR & ZABELL (1979).

Note that we required that S = E and that P is tight. If P is convex-
tight (for the definition see p.18), then by property (a) above T can be
defined as a function T: A* + E (instead of E) since the sets Bn can be
chosen compact and convex in this case.

Thus we have proved

COROLLARY 1.5.2. Let S be a locally convex (Hausdorff) topological vector

space and let P € A be convex-tight. Then the limit (1.5.6) exists and 1is
equal to ~K(T01(A),P), with T defined by (1.5.7), if A © S and P satisfy

one of the conditions

(1) A is convex and K(T—l(AO),P) < o
-1
(ii) A is open, P is Lindeldf inner regular and K(T ~(A),P) = «

(iii) A is open and convex and P is Lindeldf inner regular.

REMARK 1.5.2. Results related to Corollary 1.5.2 are given in BOROVKOV &
MOGULSKIT (1978).

REMARK 1.5.3. We briefly return to measurability questions. If A e B, the
events {ﬁn € Wm, T(ﬁn) ¢ A} are B"-measurable, with Wm and T defined as in
(1.5.7). This follows from Proposition 1.3.1, the weak continuity of T]Wm
and the compactness (and hence complete regularity) of Bm‘ Thus, if A ¢ B

-1
and {n Zgzl X, € a} ¢ B, we may write

Pr{n“1 ) X, € a}

5}

n
-1 .
prin Z Xi € n, X, € Y Bm' i=1,...,n}
i=1 m=1

(1.5.8)

it

Pri{T(P ) e A, P e U V¥ }.
n I m
m=]1 .

i
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The events {n-1 Z§=1 Xi € A} are not necessarily Bn—measurable, even
if A € B. However, if P is tight and the o-algebra B" is enlarged to the
o-algebra E;.containing all subsets of sets of P-measure zero in Bn, then
{n_1 Zz=1 Xi € A} € EE; for each A ¢ B. Hence if the pm " is (uniquely)
extended to a pm on EE; then Pr{nm1 2=1 X, € A} is well-defined for all
A e B.

In BAHADUR & ZABELL (1979) Xl,X s+.. are measurable transformations

2
from a probability space (Q,A,P) to a locally convex Hausdorff topological
vector space S, endowed with the o-algebra of Borel sets B. The pm P on A

induces a pm py on B defined by
H(B) = P(X €B), B ¢ B.

It is assumed that, for each n € W and Bl,”.,Bn in B,

n

Plw: X, (w) € B,, i=1,...,n) = T u(B,)

i i . i
i=1
-1 vmn-1
and that {w: n zi—m Xi(w) ¢ B} ¢ A for each myn = 1,2,... . Let for
+11
m,n = 1,2,... the function Tm n: Sm n-1 —> S be defined by
I
m+n=-1
-1 m+n-1
Tm'n(x) = n 'z Xi' X = (xl,...,xm+n_1 S .
i=m
-1 , m+n-1 . .
Then Cm . {Tm (B): B ¢ B} is a o-algebra on S which is not neces-—
¥ 1
+n-
sarily contained in g™ 1. Hence the (convolution) pm Wy p O B defined
H

by

B = PO (XX ) € B, BeB

+n-—~ 1
need not be uniquely determined by the product measure;Jm n-1 on g™ !

Therefore BAHADUR & ZABELL (1979) impose additional conditions on the pms
um a to ensure that um n(B) is well-defined for each B ¢ B and that the col-
I 1

lection {um,n}m,nemi has certain intuitively reasonable regularity proper-

ties.

However, if the pm u on B is tight, it follows that the pms Hp,n ©7 B
are determined by the completion of the measure space (Sm+n—1,um+n"1). in
the light of this remark it seems that the tightness conditions on the con-

volutions um o are redundant.
1
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1.6. LINEAR COMBINATIONS OF ORDER STATISTICS

In this section Xl,XZ,... are real-valued i.i.d. random variables with
distribution function (df) F. Instead of Al’ the set of pms on (R ,B), we
shall consider the set D of one dimensional dfs. We shall employ the same
notation as in section 1.4. Moreover, for G ¢ D the inverse G—1 is defined
in the usual way by G—l(u) = inf{x ¢ R: G(x) = u}. A set of dfs A in D will

be called t-open (or p-open) if the set of pms {PG € A G € A} is open in

the topology T (or p) defined on Al' The topologies T ;nd p on D are defined
by these tT-open and p-open sets respectively. Obviously all results on large
deviations for pms on R lead to corresponding results for dfs on R, so we
freely use the theory of the preceding sections. -
Suppose J: [0,1] -+ R is an L-~integrable function, i.e. fé{J(u)ldu < o, .

We consider linear combinations of order statistics of the form

1

(1.6.1) T(F ) = f s wau,
n n

0
where ﬁn denotes the empirical df of Xl,...,Xn, or in a perhaps more familiar
notation

n
(1.6.2) T(F ) = izl i ¥in?

i/n
(i-1)/n

Xl,.b.,xn. These statistics are sometimes called L-estimators, cf. HUBER

(1972) . For a more recent discussion we refer to BICKEL & LEHMANN (1975).

where Ly = f J(u)du and Xi-n is the i-th order statistic of
7 -

Related to the statistics T(ﬁn) are the sets
1 1
(1.6.3) 9 =1{6enD: f swe hwau 2 ¢, { lre Hw lau < =},
0 0
where € € IR,
The following large deviation theorem is a consequence of the preced-

ing theory.

THEOREM 1.6.1. Let F € D, let J: [0,1] + R be an L-integrable function and
let [a,B] be the smallest closed interval containing the support of J. Then,
for each sequence {un} of real numbers such that lim un = 0,

n-eo

(1.6.4) lim o~} log Pr{T(F ) = r+u } = -K(Q_,F)
neveo n n xr
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if J,F and r € R satisfy the conditions

(1) t© =~ K(Qt,F),t ¢ R, is continuous from the right at t = v

(ii) ~» < sup{x ¢ R: F(x) < a} < inf{x ¢ R: F(x) = B} < =,

Moreover, (i) Is certainly satisfied if one of the following pairs of con-

ditions holds:

(a) J 2 0 on an interval (v,8) and fi J(u)du > O

(b} F is continuous,

or

(c) the support of J is an interval, J 2 0 and fé J{u)du > 0

(d8) F is continuous at ry =1 / fé J(u)du.

Finally, if ¥, is a discontinuity point of F then (1.6.4) holds provided com-

1
ditions (ii) and (c) are satisfied and u < 0 for all large n € IN.

REMARK 1.6.1. Condition (ii) of Theorem 1.6.1 is satisfied if L has com-
pact support or if 0 < o < B < 1. A partial extension of Theorem 1.6.1 for

the case that (ii) is not satisfied is given in OOSTERHOFF (1978).

REMARK 1.6.2. The second part of Theorem 1.6.1 illustrates a phenomenon
known from proofs of asymptotic normality of linear combinations of order
statistics: with strong conditions on the underlving df F only weak con-

ditions on the score functions are needed and vice versa.

PROOF OF THEOREM 1.6.1. Let A = [0,B] let B be the smallest interval con-

taining the support of PF and let 1A and 1B denote the indicator functions
of A and B respectively. Then
1
T(F ) = J J i, F @) F (wau
n B ' n n
0
with probability one. Define the function T: D - R by
1
(1.6.5) T(G) = I I (u) 1B(G'1(u))e”1(u)du, G € D.
0
The function T is p~continuous. For a proof consider a sequence of dfs {Gn},
such that Gn +b G for a df G ¢ D. Then G;l_T G_1 except perhaps on a count-
able number of discontinuity points of G 7. Together with condition (ii)
this implies that the functions 1B(G;1)G;1°1A, n € B, are uniformly bound-

ed on the interval [0,1]. Hence limnﬁw T(Gn) = T(G) by dominated convergence
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implying that T is p-continuous. The proof of (1.6.4) is now completed by an
application of Theorem 1.3.2, since p-continuity implies t-continuity.

In the proof of the other statements of the theorem we may assume that
K(Qr,F) < ©, since otherwise condition (i) is trivially satisfied. Let
G € Qr satisfy K(G,F) = K(Qr,F). The existence of G is assured by Lemma
1.3.3 and the fact that a p-closed set is also t-closed.

First suppose that conditions (a) and (b) are satisfied. Since
PG < P ;, G is continuous. Let (y,8) be an interval satisfying condition

(a) and let Y and € > 0 be numbers such that Yl € (y,8) and

il

(5), ¢ = Gul(Yl) and let the

dPGE/dPG given by

€ < mln{Y1 Y,G Yl}. Let ¢ = (Y),

i

df Ge be defined by its PGwdensity 9.

(Yl'Y—E)/(Yl‘Y): x € (c,c))
ge(x) = (6”Y1+€)/(5~Y1), X € [Clld)

1 ’ elsewhere.

Then G;l(u) > G—‘l(u), u e (y,6) and G;l = G_1 elsewhere. Note that Gz—: is
derived from G by moving some probability mass of PG to the right on the
interval (c,d). Since J(u) 2 0 for u ¢ (y,8) and f J(u)du > 0,
f J(u)G (u)du > f TG (u)du. Hence T(G ) > T(G) Since llm€¢0 K(GE,F)
= K(G F), (i) follows.

Next suppose that conditions (c¢) and (d) are satisfied. Without loss
of generality assume fé J(u)du = 1 and hence r, =1r. Let agaln G € Q satis~
fy K(G,F) = K(Qr,F) < «, First suppose that G (at0) <G (B) Then there
exists v € (a,8) such that Gﬂl(y+h) > G_l(y) for each h > 0. Let ¢ = G—l(y)
(hence 0 < G(c) = v < 1) and let for 0 < € < min{y,1-y} the df G, be defined
by its PG—density g, = dPGe/dPG given by

A
(o]

(y-€) /v , x
ga(x) =
(I-y+e) / (1~y), X > C.

~1 -1 -1 -
Then G€ > G and G_ (u) > G 1(u) for each u in a left~hand neighborhood

of y. Hence Ié J(u)Ggl(u)du > fé J(u)G_l(u)du for each € > 0. Since
lim K(G _,F) = K(G,F), condition (i) follows.
€40 € -1 -1
It remains to consider the case that G ~(a+0) = G (B) = b, say.

1 -1 . .
Then IO J(u)G (uw)du =Db 2 ¢ since G € Qr' Suppose r is a continuity point
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of F. Then P, « P implies PG({r}) = 0 and hence b > r, since b is a dis~
continuity point of G. It follows that K(Qt,F) = K(Qr,F) for all t ¢ (¥x,b),
implying (i).

Now suppose that r is a discontinuity point of F and that b = r. Note
that G{r~0) £ o in this case. If G(r-0) > 0 we proceed as follows. For

0 < g < G(r~0) define the df GE by its density gE = dPGE/dPG given by

(G (x=0)~€) /G (x~0) , x < r
ge(x) =
(1~G(r~0)+&) / (1-G(x=~0)), ®

Y
2l

Then GEOr~O) = G{r-0) - ¢ £ a~¢, hence GE € Qr. Considering the partition

P = {(~o,r),[r,»)} of R it follows immediately that there is a T-open
neighborhood of Ge contained in Qr. Hence K(intT(Qr),F) < K(GE,F), for each
€ > 0. Since lim 0 K(GE,F) = K(G,F), we have K(intT(Qr),F) <

< lim8¢0 K(GE,F)ei K(Qr,F), i.e. K(intT(Qr),F) = K(Qr,F). The t~continuity
of T implies that Qr is T-closed and hence Theorem 1.3.1 yields that (1.6.4)
holds provided v = 0 for all large n € M. The left continuity of the
function t - K(Qt,F) (Lemma 1.3.4) implies that (1.6.4) also holds if u <0
for all large n € N (consider a sequence {tm} in R such that t 4+ r and

t o K(Qt,F) is continuous at tm for each m ¢ W ).

Finally suppose G(r-0) = 0. Let the 4f G' be defined by PGE(B)

PF(Bn[r,m))/PF([r,w)), for each Borel set B. Then G° ¢ Qr and K(G',F} <

n

K{G,F), hence K(G,F) = K(G',F) = -log PF([r,w)). Since Qr is t~closed,
Lemma 1.2.4 implies that condition (A') of Lemma 1.3.2 is satisfied. Hence
lim SUP L., n:i log Pr{ﬁn € ﬂr} < log PF([r,w))i It is clear that conversely
lim inf __n "~ log Pr{f‘n e} 2 lim inf n = log Prix, zr}=

= log PF([r,W))g Thus (1.6.4) holds provided un = 0 for all large n € WN.
By the same argument as before (1.6.4) also holds if u, < 0 for all large

ne ™. [J

REMARK 1.6.3. The continuity of a function which is essentially equivalent
to the function T in (1.6.5) has been pointed out by BICKEL & LEHMANN (1975).
In fact there exists an interesting link between robust statistics and the
theory of large deviations, since robustness of statistics T(?n) may be

defined by continuity of the corresponding functionals T on D with respect
to some suitably chosen topology and since large deviations of these types

of "continuous" functionals of empirical dfs can be tackled by the methods
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of this chapter. Note that HOADLEY's (1967) Theorem 1 would not suffice to
prove (1.6.4) since T is in general not uniformly p-continuous (and F is
not assumed to be continuous).

In applications the weight function J appearing in the definition of
the statistic T(ﬁn) may also depend on n. In this case Theorem 1.6.1 is not

immediately applicable, but the next theorem may be of use.

THEOREM 1.6.2. Let F ¢ D, let Jn (neN ) and J be L-integrable functions
defined on [0,1] and let [a,B] be the smallest closed interval containing
the support of J and the support of each Jn' Let Qt be defined by (1.6.3)

for t € R . Then, for each sequence of real numbers {un} such that

limném un = 0,
1
(1.6.6) lim n * log pr{f J W wau 2 r+u } = -K(Q_,F)
N> 0 n n n r

if J, F, o and B satisfy conditions (i) and (ii) of Theorem 1.6.1 and if
the sequence {Jn} satisfies

(1ii) lim fé [Jn(u) - J(w|du = 0.

PROOF. The proof proceeds by a truncation argument. We write B = [~m,m]

and denote by Gm the conditional df defined by

me(B) = PG(B]sm), BeB, if Ge Dand P (B ) > 0.

*
Let D' = {G ¢ D: PG(Bm) = 1 for some m € IN }. By condition (i) there exists
for each n > 0 a § > 0 and a df G ¢ Qr+6 satisfying K(G,F) < K(Qr,F) +1n.
Since Gm::Qr for large m and liﬂhﬁn>K(Gm’F): K(G,F), it follows that K(Qr,F)=
= K(Q_nD ,F). Hence by Lemma 1.4.1 lim K(Q ,F ) = K(Q ,F). Fix & > 0.

r mo r''m X

Then there exists N_ = No(m,s) such that for all n 2 N

0 0
1 1 1
(1.6.7) [{ I (WF Hwau - ( swF lwdau] < m f s w-s@]| du < e
n n n n
0 0 0

L. ool . . .
if Fn (u) € Bm, u € (0,1). For convenience of notation we shall write
- a1 -
pr{f e AlF (W e¢B, ue (0,)} =pr{F_ e alB }
n n m n m

if PF(Bm) > 0. With this notation we have for each large m ¢ W :
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n—oe

1
L -1 ~-1
lim inf n log Pry| J_(u)F_"(u)du 2 r+u
J n n n
0

c -1 ==1
2 lim inf n log Pr{ Jn(u)Fn (u)du = r+un|Bm} + log PF(Bm) >

n-oo

L -1 ~-1
2 lim inf n log Pr{ J(u)Fn (u)du 2 r+%e]Bm} + log PF(Bm)

n-oe

OO =

> —K(Qr+€,Fm) + log PF(Bm).

The last inequality holds by Theorem 1.6.1, since we may choose a continuity
point r € (r+}e,r+e) of the function t - K(ﬂt,Fm).
Since llmm*w K(Qr+E,Fm) = K(Qr+€,F), we have
1
lim inf n ' log Pr{| J (wWF l(wdu = r+u b = -K(Q__,F)
i g L (WE u u e ) e

n->o 0

Hence by condition (i)

1
(1.6.8) lim inf n ! log Pr{[ 5 @ wau = r+u } > -K(Q ,F).
N> 5 n n n r

Next we show that conversely
1

(1.6.9) lim sup n_1 log Pr{[ Jn(u)ﬁgl(u)du = r+un} < «K(Qr,F).

neo 0
Fix € > 0. There exists an m € N such that for all n ¢ I,
Pr{ﬁ;l(a+0) ¢ Bm} < ¢" ana Pr{ﬁ;l(s) ¢ Bm} < " (this may be seen for ex-
ample by an application of Chernoff's theorem to the binomial representa-
tion of the probabilities Pr{ﬁgl(a+o) ¢ Bm} and Pr{ﬁgl(s) ¢ Bm}).

Hence for large n:

Pr{[ J (u)ﬁul(u)du 2 r+u }
) 'n n n
0

J (u)F—l(u)du > r+u and ﬁ—l(u) e B, uce (a,B)} + 25n
n n n m

IA

e

]
Py

A

T
0
1
Pr{f J(u)ﬁgl(u)du > r—s} + 27,

0

since (1.6.7) holds again for large n if ﬁ;l(u) € Bm for u € (a,B).
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This result implies (1.6.9) by Theorem 1.6.1 and Lemma 1.3.4 (also if
K(Qr,F) = ®) and the present theorem follows from (1.6.8) and (1.6.9). [J

REMARK 1.6.4. Related results for particular cases have been obtained by
BOOK (1974) and STEINEBACH (1977). BOOK (1974) gives large deviation re-
sults for Winsorized means of samples from an exponential distribution and
STEINEBACH (1977) considers the more general case of linear combinations
of order statistics from uniform and exponential distributions. The proofs
in these papers are based on the relation between probabilities of large

deviations and moment generating functions.

For 0 < a < §, the a~trimmed mean of Xl""'xn is defined by
-1 n-[an]
(1.6.10) T = (n-2[an]) ) X, , neN,
n . i:n
i=lan]+1

where [x] denotes the largest integer < x. As an application of the previous

theorems we prove the following large deviation result for a-trimmed means.

THEOREM 1.6.3. Let ¥ € IR, let F ¢ D be continuous at r and let Tn be the
a-trimmed mean given by (1.6.10). Then, for each sequence {un} such that
lim u = 0,

n+e N

. ~1 o
(1.6.11) lim n = log Pr{Tn > r+un}=-—K(Qr,F),
where
-0
o -1
Qr = {G ¢ D: G " (u)du = (1-2a)r}.
a

If F is discontinuous at v, then (1.6.11) continues to hold provided un'S 0

for all large n € W .

PROOF. We write the statistic Tn in the form fé Jn(u)ﬁgl(u)du with
Jn = 1’1(n*2[ou'1])w1 1An, where A = (lan1/n,1-[anl/n). Let J = (1~2a)_1°
‘1(a,1wu)' If F is continuous at r, then (1.6.11) follows since in this
case (c¢) and (d) of Theorem 1.6.1 and hence the conditions of Theorem 1.6.2
are fulfilled.

Now suppose that F is discontinuous at r. Let G € Qg satisfy K(G,F) =
= K(ﬂ:,F) (such G exists!). It was shown in the course of the proof of

Theorem 1.6.1 that the function t - K(Qz,F) is continuous at r {(and hence
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the above proof remains valid) unless Gal(a+0) = G"1 (1-a) = x.
It remains to consider this exceptional case. Fix ¢ > 0 and let
) = {H € D: fé Jn(u)H-l(u)du 2r}, ne N. For 0 < § < 1 let G, € D be

dZé?ned by Gé(x) = (1-8)G(x) if x < r and GG(X) = (1-8)G(x) + & ii X > r,
implying GG(r-O) < o~8a and Gs(r) 2 1~a+6a. Note that K(GS,F) < K(G,F) + & =
= K(Q:,F) + ¢ if § < §_, say. Moreover, An c (o~8a,l-a+8a) and hence

Gg € Qr,n if n > (a8) ~. Let P denote the partition {(-=,r),{r}, (r,»)} of

R . Choosing appropriate Gn € (%68,68) it follows that there exists a se-

quence {Gn} = {GG } such that for all n > (%a&s)—l

n
(1) nG (r-0) ¢eZ and nG (r) ¢ Z
n n

(2) G € Q
n r,n

14

(3) Kp(G_,F) < k@, ) + .
n b

and {H ¢ D: dp(P ,Pg ) = 0} « Qr,n

Hence, if u < 0 for all large n, the same arguments that were used in the

last part of the proof of Lemma 1.3.2 yield

Pr{Tn > r+un} > Pr{Fn € Qr,n} > Pr{dP(PE‘n,PGn) = 0}

as n > «, implying

~1
lim inf n = log Pr{Ty 2 r+u } = —K(QG,F).
n r
e el
On the other hand (1.6.9) continues to hold in the present case, with Qi in
lieu of Qr, since the second part of the proof of Theorem 1.6.2 does not
use condition (i). This completes the proof of the last statement of the

theorem. [J

The actual computation of the infimum K(Qi,F) in (1.6.11) is not easy.

We shall derive a more explicit expression for K(Q:,F) under the assumption
that F is continuous. In this case any df H such that K(H,F) < « is also

continuous and

g

b

H~1(u)du = f *dH (x)
o a
1

where a = H_l(a), b = H_l( ~q) and ~» < a < b < », We also assume F(r) < 1
since otherwise K(Qi,F) = o,

The minimization procedure is performed in two steps. Let
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b

Qz(a,b) = {H e p: (1-20)71 J xdH(x) = r, H(a) = a, H(b) = 1-a}
=)

for -» < a < b < », In view of the continuity of F
(1.6.12) K(Q:,F) = inf{K(Qz(a,b),F): 0 < Fla) < F(b) < 1, F(b) > F(x)}.

. . t: . .
Consider the function t - tr -~ log fz e xdF(x), t =2 0. This function

achieves its maximum on [0,») at a point s = s(a,b) defined by
i b
0 if fa *dF (x) /(F(b)-F(a)) 2 r
1 .
¢ " (r) otherwise,

where ¢(t) = fz xethF(x)/fz etxdF(x), t 2 0. Note that in the second case
the equation ¢(t) = r has a uniqgue positive root s since ¢(0) < r,
lil:ut_)m ¢(t) > r and ¢'(t) > 0 for all t 2 0.

Let G € D be defined by its density g = dPG/dPF given by

a/F (a) ’ % < a
glx) = (1w2a)esx/f2 eFar(x), a<x <b
a/(1-F(b)) , x> b.

Then G € Qi(a,b) and

K(G,F) = 20 log a + (1-2u0)log(i-20) - a log F{a) - o log(i~F(b)) +

b
sX
+ (1-2a)sr - (1-2a)log J e dF{x).
a
Let H ¢ Qi(a,b), K(H,F) < ® and h = dPH/dPF. By Jensen's inequality
b
st -~ log{ (1-20) " f e“¥ar (%) }

a

N

b
sy - loc_m;f[(lv-Zoz)—1 f exp(sx ~ log h(x))dH(x)} <
a

A

b b
s{r - (1-20)7% f %dH(x)} + (1-20) "1 f log h(x)dH (x) .
a ’ a
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Hence

b b
J log h(x)dH(x) 2 (1-20){sr + log(l-2a)} - log [ “Far (x) }.
a3

a

Similarly, by Jensen'‘s inequality,

and

Thus

a
J log h(x)dH(x) = H(a) log{H(a)/F(a)} = o log(a/F(a))

OO

log h(x)dH(x) 2 (1-H(b)) log{(1-H())/(1-F(®))} =

O — 8

#

a logla/(1-F(b))}.

K(H,F) = J log hi(x)dH(x) 2= K(G,F),
R

implying K(Q:(a,b),F) = K(G,F) .

and

Now define the functions

il

fa(a,b) (1-20)s(a,b)r - alog F(a) - o log(l-F(b)) +
b

(1~2a) log f exp (s (a,b)x) dF (x)

a

g(a) = 20 log o + (1-~2a)log(l-~2a).

Then, by (1.6.12)

(1.6.

13) K(Q:,F) = g(@) + inf{€ (a,b): 0 < F(a) < F(b) <1, F(b) > F(x)}.
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CHAPTER II

BAHADUR EFFICIENCIES OF SIGNED RANK TESTS

2.1. INTRODUCTION

Let xl,xz,... be a sequence of i.i.d. random variables taking values

in IR according to some pm P ¢ Al’ The hypothesis of symmetry is given by

HO: P((a,b)) = P((~b,-a)), for each interval (a,b) < (0,x).
We shall consider signed rank tests for HO based on signed rank test sta-
tistics without regression constants. If P is non-atomic these statistics

are of the following form

(2.1.1) T o= J' J_(H_(x))dF (x),
n n n n
(0,)
where ﬁn is the empirical df of xj,..,,xn, ﬁn is the empirical df of

IXll,...,Ian and Jn: (0,11 + R is a score function.

For example, Jn(u) z 1 yields the sign test statistic and Jn(u) =
-1 ¢n
= i. ields t ilc i -
n zi=1 i 1((i-1)/n,i/n](u) yields the Wilcoxon signed rank test sta

tistic. Large deviation theorems for these statistics will be given in
section 2.2. If P is purely atomic and hence ties are present, there exist
several methods for dealing with ties and zeros leading to different types
of signed rank statistics. We shall be concerned with probabilities of large
deviations of these statistics in section 2.3.

The large deviation theorems to be presented in the next two sections
will be relatively straightforward consequences of the theory which was
developed in chapter I. They will enable us to determine the exact slopes
of signed rank tests. The main results of section 2.2 have first been de-
rived by HO(1974) under slightly stronger conditions and by rather different
methods (Theorems 2.2.1, 2.2.2 and. 2.2.4). In Theorem 2.2.3 a sufficient
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condition is given under which the Bahadur efficiency coincides locally with
Pitman efficiency.

As far as we know, the results of Section 2.3 are new. They yield the
exact slopes of conditional signed rank tests when the underlying pms have
finite support under essentially the same conditions as in the non-atomic
case. Related results have appeared in an unpublished Ph.D. thesis by
CHAKRABARTI (1978).

2.2, EXACT SLOPES IN THE NON-ATOMIC CASE

Let for each n € W the score function Jn: {(0,1] »+ R be defined by

it

(2.2.1) J {u) (), u ¢ (0,17,
n ]

n
121 %n Y((i-1)/n,i/n

where the a, ‘s, | £ i £ n, are real numbers. For each Q € A1 the 4f HQ is

in
defined by

i

(2.2.2) H (x) QL-x,x)1

0 [O'OD)(X)IXEJRI

and the pm Q, with support contained in [~1,1], by
o{{x > 0: HQ(X) e B, Be B, Bc (0,11,
(2.2.3) 0(B) = {0({x < 0: ~ H,(-x) ¢ B}, B ¢ B, B c[-1,0),

o¢{o}, if B = {0}.

Note that P is the distribution of the random variable HP(Ixil)sign(Xl),

where sign(i) = 1(O’w)(x) - 1(_m'0)(x). The empirical pm §n induces an em-
pirical pm B of the (dependent) random variables Hy (Ixil) sign(xi),
- n
i=1,...,n (note that Hp = Hn)s In the sequel we use the convention
-1 n
H “{0) = 0.
Q

With this notation we can write the statistics (2.1.1) with score
functions Jn as defined by (2.2.1) in the following way

(2.2.4) T = f J (u)dé (u) .
n ©i11 n

This representation of Tn suggests the study of the functionals

TJ : A1 + IR defined by
m
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(2.2.5) T (Q) = f J (w)dg(ua), Oe€ A,
Jm 0111 m 1

where Jm is a score function satisfying (2.2.1).

LEMMA 2.2.1. Let Jm: (0,11 + R be a score function satisfying (2.2.1).

Then Tapt A1 + R 1is p-continuous at each non-atomic pm Q € Al‘

PROOF. Suppose that Q € A1 is non-atomic and that Qn s o Q,n >+ «, for a
sequence {Qn} in Al' Let Frl and F be the dfs corresponding to Qn and Q,
respectively. Then Fn - F in the supremum metric and hence HQn -> HQ' also
in the supremum metric. It follows that Héi - Hél except perhaps on a

countable set D of discontinuity points. Fix € > 0 and first suppose that

F(0) < 1. Let a, ¢ (0,1) and a,,a

0 1772

-1 X .
= F(HQ (ai)), i=0,1,2 satisfy bo - g < b1 < bo < b2 < bo + £. Since

F (Hél(a,))é-b., i = 1,2, (by the uniform convergence of {F_} to F), we
n 9 i i n

€ (0,1)\D be points such that bi =

have

b, < lim inf F_(H N

1
1 (ao)) <b,.

-1 .
0 (ao)) < lim sup Fn(H 5

e n n-re Qn
w1 -1 _
It followslthat Fn(HQn(ao)) > F(HQ (ao)) for all ao e (0,1). If F(0) = 1,
(a)) = 1, for all a € (0,1).
n

Q

then F_ (H
n -1 -1
In a similar way one can prove that Fn(HQn(a)) - F(HQ (a)), 1if a = 0

or a =1 and that F_(-Hg! (-a)) +»F(-H;1<—a)>, if a e [-1,0). Hence 3 + B,

n -+ o, and thus, in view of (2.2.1),

T, (Qn) > T Q) , n > e,
m m

implying the p-continuity of T at 9. [

The following somewhat technical lemma will enable us to reduce prob-
abilities of large deviations of Tn under HO to probabilities of large de-

viations of the statistics

(2.2.6) J I (wdb (u),
m n
0,11
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where Jm is a fixed score function. By Lemma 2.2.1 we can apply Theorem
1.3.2 to the statistics of type (2.2.6) and thus obtain expressions for the
asymptotic behavior of probabilities of large deviations.

We introduce the following notation. The set T' < A1 is defined by

(2.2.7) r ={gc¢ Al: O has a density g w.r.t. Lebesgue measure such that
ga) + g(-u) =1, ue (0,1]}.

Note that 5 e I' for each non-atomic pm Q € Al' If J: (0,1)» R is an L~
integrable function, then fé J(u)dQ(u) is well-defined for each Q € I', since

Ié |3 (w) [aQ(u) < Ié |3 (u) [du < .

Hence we may define

(2.2.8) r(t,J) = {Q e I': fé J(u)dQ(u) 2 1;},

where t ¢ IR . Furthermore, the function fJ: R -+ R U {=} is defined by
(2.2.9) £.(8) = inf{K(Q,R): Q € T(t.M) ],

where R is the pm in A1 corresponding to the uniform density on [-1,1] and

where fJ(t) = if T(t,J) = f. Finally we define for L-~integrable functions
Js (011) + 1R,

[

1
m(J) %J J(w)du
0
(2.2.10)

M(J)

i

i
[ J(u)l(oim)(J(u))du.
0

LEMMA 2.2.2. Let J: (0,1) - IR be an L~integrable function. Then

(i) the function fJ is finite, convex and non-decreasing on the interval
(m(J) ,M(T)) .
(ii) 4if m(J) < r < M(J), then

1 1
(2.2.11)  £.0r) = Ax - -é- A f J(w)du - f log cosh(—zl— AT (1)) du,
0 0

where A = A(r) is the unique solution of the equation
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1
(2.2.12) f J(uw{t + exp(-—)\J(u))}—ldu = r
0

(iii)

Let r and € > 0 satisfy
m(J) < r-e < r+e < M(J).

~ 1 ~
If J is an L~integrable function such that IO |J(u)~J (u) |[du < e, then

(2.2.13) m(J) £m(J) + e <r < M) - e £ M)

and

(2.2.14) fJ(r—e) < fg(r) < fJ(r+€).

PROOF.

(ii)

(i)

Assume m(J) < M{J), since otherwise the implication is trivially
satisfied. By the method of Langrangian multipliers it is seen that
the infimum at the right-~hand side of (2.2.9) is attained by the pm
Q ¢ I with the following density g

{1+exp(~AJ(u))}—1, ue (0,1,
G = {{1texp(AT ()} Hu e (1,00,

0, otherwise ,

where A is a solution of equation (2.2.12). Since by assumption
M(J) > m(J), the function J is not equal to zero on a set of positive
Lebesgue measure, implying that the function

1

d: A +’f J(u) {1 + exp(—AJ(u))}—idH. A e [0,),

0
is strictly increasing. By Lebesgue's dominated convergence theorem
¢ is also continuous. Since ¢(0) = m(J) and limKAw $(X) = M(J), there
exists exactly one solution A of (2.2.12).
By (ii) fJ(r) is finite if m(J) < r < M(J). The convexity of the
function fJ follows from the convexity of the mapping Q = K(Q,P) and
the linearity of the mapping Q +—fé J(u)dQ{(u), Q € I'. Finally, the

monotonicity of fJ follows from the inclusion relation



49

P(x',J) <« I'(x,0), ifr < x'.

(iii) Let Q € T and let g be the density of Q. Then
1 1
f [T(a) - E(u)lq(u)du < f [T () ~ E(u)ldu < .
0 0
Hence

1 1 1
J Jg(wdu - e < J TWqwdu < [ J(ug(udu + €,
0 0 0

“implying  (2.2.13) and (2.2.14). [

In the following theorem an asymptotic expression for probabilities
of large deviations under HO of the signed rank statistics (2.1.1) is given

(in the non-atomic case).

THEOREM 2.2.1. Let P be a non-atomic pm in A1 satisfying H0 and let
Xl'X2’°°' be a sequence of i.i.d. random variables taking values in R ac-
cording to P. Let Tn be defined by (2.1.1), n = 1,2,..., where the score
functions Jn satisfy (2.2.1) and the condition
1

(2.2.15) lim f IJn(u) - J(u)ldu = 0,

ne o
for some L~integrable function J: (0,1) -~ R. If m(J) < r < M(J) then, for

each segquence {un} of real numbers such that }1mn un = 0,
. -1
lim n log Pr{T 2z r +u } =~ f_(r),
n n J
Jeeasl

where fJ(r) is defined by (2.2.11) and (2.2.12).

PROOF, Without loss of generality we may assume that P corresponds to the
uniform density on [~1,1], since the distribution of ’I‘n is the same for
each non-atomic pm, symmetric about O.

Fix € > 0 such that
m(J) < r-2e¢ < r+2e < M(J).

By (2.2.15) there exists an m = m(e) such that
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1

J [T (u) - J(u) ldu < L €, n > m.
n 4

4]

Since with probability one the empirical d4df ﬁn runs through all wvalues

0,1/n,...,1, we have with probability one

~ n
IJn(u) - J () Idﬁn(u) < n"l‘Z IJn(i_/n) - Jm(i/n)l <

(0,11 i=1
1
< I 1T () - J (wldu + (m/n) max |J (i/m) ~J ((i-1)/m}.
n m . m
0 1<i<m

Hence there exists an ng 2 m such that with probability one

(2.2.16) T -T_(P)l <e,nzn
n J n

m

OI

where TJm ig defined as in (2.2.5).

Let

Qt={QeA1:TJ Q) = t}, te R.

m

By Theorem 1.3.2 and Lemma 2.2.1

-1 -
(2.2.17) limn = log Pr{T_ (P ) 2 r +u } = - K(Q ,P),
J n n ¥
n-o m
if t 4~K(Qt,P) is continuous from the right at t = r and llmn_mo un = 0.

Thus, by (2.2.16) and (2.2.17),

- K(R  ,P) < lim inf n_1 log Pr{T =2 r + u }
r+e v n n
(2.2.18)
. -1
< lim sup n ~ log Pr{T 2r +u } < - K2 ,P),
110 n n r—€
if the function t - K(Qt,P), t € R, is continuous from the right at
t=1xr ~-¢cand t = ¥ + g, and llmném un = (0. We shall show that K(Qt,P) =
= f t) £ J < < .
Jp(t) for m(I ) <t M)
Let Q be a pm in A1 such that K(Q,P) < «, then Q is absolutely con-
tinuous w.r.t. Lebesgue measure. Suppose g and & are the densities of O and

5, respectively. Then
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1

T, (Q) = f Jm(u)&(u)du
m
0
and
1
K(Q,P) = j g (u) log (2g (u) }du
-1
1
= f (qE (w) /{a B (W) +q (-B- (@) 1) Log (2q (E (w))) du
0 0 0 0
0
4]
+ J (@ (-8 (~w)) /{q (B ew) ) 4 (-8 H=w) ) D) Log (2q (-B L (~) ) ) du
0 0 0 0
-1
1 1
= I q(u) log{2q(u))du + f (g (x)+g(~x) ) log{q (x)+q(~x) }dx
e} 0
1
2 f q(u)log (2q(u))du = K(Q,P).

-1

Since O = O it follows that

1
(2.2.19)  K(Q_,P) = inf{K(Q,B): O € Ay f Jm(u)aé(u) >t}
0
= inf{K(Q,P): Q ¢ r(t,Jm)} e me(t),

By Lemma 2.2.2 and the choice of € and m = m(g) we have m(Jm) <
s m(J) + € < r~g < r+e < M(J)~e < M(Jm). Hence the function
t - K(Qt,P), t € R, ig continuous at t = r + € and t = v ~ £ by Lemma 2.2.2
and (2.2.19). The theorem now follows from (2.2.18). [J

Theorem 2.2.1 has been proved by HO(1974) by methods which are similar
to those used in WOODWORTH (1970). Ho also considers the more general case
of signed rank statistics with regression constants. For this case the
results are less explicit.

We now discuss the concept of Bahadur efficiency of signed rank tests
in the non-atomic case. Let Tn be defined by (2.1.1) and let Gn be the df

of Tn undexr HO' when the df of Xi, i=1,2,..., is continuous. The level
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attained by Tn is defined by

(2.2.20) Ln(Tn) = 1—Gn(Tn—).

Suppose that the limit

(2.2.21)  c(P) = - lim 20" ' log L (T )

oo

exists with probability one, if Xl'XZ

non-atomic pm P. Then c(P) is called the exact slope of the sequence {Tn}

;... are distributed according to the

at P. If the sequence {Téi)} has the exact slope ci(P) at P, i = 1,2, and
if CI(P) and ¢, (P) are not both equal to zero, then the Bahadur efficiency
of {T;l)} W.r.t. {Téz)} at P is defined by cl(P)/cz(P) (with the conven-
tions 0/ = 0 and a/0 = «» if a > 0). In chapter III other (equivalent)
definitions of Bahadur efficiency and exact slopes will be used. For the
proof of the equivalence of these definitions (under a very weak regularity
condition) we refer to BAHADUR (1967).

The following "strong law of large numbers for signed rank statistics"

will be of use in the computation of exact slopes.

LEMMA 2.2.3. Let X x2,... be distributed according to a non-atomic pm

’
P e Ai' If Tn is d;fined by (2.1.1) and if the score functions Jn satisfy
the conditions of Theorem 2.2.1, then with probability one
1
T »-I J(u)dP (u) , as n - ®,

0

PROOF. By (2.2.15)

1 1
(2.2.22) 1lim sup f 10 (@) - J(w)l1dP(u) < lim f 13 (u) = J(u)ldu = 0.
n n
e o e o

By the Glivenko-Cantelli theorem we have with probability one

P - P, as n » ®,
nop

Hence, by Lemma 2.2.1
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(2.2.23) T, (ﬁn) > T (P), as n > =,

m m
with probability one, if m is a fixed natural number. The result now follows
from (2.2.22) and (2.2.23) (see (2.2.16)). 0

Combination of Theorem 2.2.1 and Lemmas 2.2.2 and 2.2.3 gives

THEOREM 2.2.2. Let the score functions Jn satisfy the conditions of Theorem

2.2.1. Let X, ,X ;... be distributed according to P, where P is a non-atomic

17727
pm in Al satisfying
1
(2.2.24)  m(J) < f J()dP (u) < M(J).
0

Then the exact slope of the sequence of signed rank statistics {Tn} at P is

given by 2fJ(fé J(u)dP(u)), where the function f_ is defined by (2.2.11).

J

PROOF, By (2.2.24) and Lemma 2.2.2 the function fJ is continuous at
1 rmab.

Since by Lemma 2.2.3
1
T > I J(u)dP (u), as n - ®,
0

with probability one, it follows from Theorem 2.2.1 that
1
-1 -
~-2n ~log Ln(Tn) %-ZfJ(I J(u)dP(u)), as n > ©,
0
also with probability one. [J

We shall apply Theorem 2.2.2 to one-sample tests for location. Let

Xl,Xz,... be distributed according to a df F_, where Fe(x) = F(x-0) for

0
some unknown continuous df F symmetric about 0 and where 6 is an unknown
location parameter. The null hypothesis 6 = 0 is to be tested against the
alternative 8 > 0. Since F is unknown, this hypothesis coincides with the

hypothesis

Hc: P is non-atomic and satisfies HO’

{c for "continuous®)}, where P is the pm corresponding to F.
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We shall consider the sign test, Wilcoxon's signed rank test and van
der Waerden's signed rank test. These statistics can (apart from standardi-
zations) be written in the form (2.1.1) with score functions of type (2.2.1).

The score functions of these tests are respectively given by

J(l)(u) = 1, ue (0,17,

It
n
(2) -1 .
Jn (u) = n izl 1'1((i—1)/n,i/n](u)' ue (0,17,
(3) o111
a7 ) z O Gy /D)L g ue (0,1,

i=1

where ¢ is the standard normal df. Let us denote the corresponding test
statistics by Tél), Téz) and TéB), respectively. For these statistics the
conditions of Theorem 2.2.2 are satisfied with the limiting score functions
5% gefinea by 3w =1, 3@ () = u ana 3 (W = @“1(-%+% w,

u e (0,1).

We define for i = 1,2,3,

(2.2.25)  w (F,0) = f s wad,,

0
where F is a symmetric and continuous df and P6 is the pm corresponding to
Fe. If-% < F(B8) < 1, the exact slope of the sign test at Fe is given by

cl(F,G) = 2F(6) log(2F(8)) + 2(1-F(6)) log(2(1-F(8))).

This result easily follows from Theorem 2.2.2. By Theorem 2.2.2 we also
obtain the following results. If %—< HZ(F,G) < %-, the exact slope of

Wilcoxon's signed rank test is given by
(F,8) = 2A(2u,(¥,0)~ }0 -2 1 sh(lﬁ)
C2 I3 - u2 ¥ 2 og co 2 L
where A > 0 is the unique solution of the equation

1
{ u{t + exp(—Xu)}—ldu = uz(F,e).
6]

1

-1 1 .
Finally, if (2w} < py(F,0) < 2(2ﬂ)li the exact slope of van der Waerden's

signed rank test is given by
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1
-* . 1,.,-1 .1 1
C3(F'e) = 2 {>\.U3(Fle) ‘}\(2’”) "J lOgCOSh('z_ Ad (E'{"E u))du} ’
0

where A > 0 is the unique solution of the equation

1
J s it ¢ e (ae T G Eun =y m,0)
o]

It is clear that in general the computation of these exact slopes must
be accomplished by numerical methods. Tables and graphs of the Bahadur
efficiencies of the three rank tests w.r.t. one another have been given by
KLOTZ (1965) for normal, logistic and double exponential location alter-
natives. Graphs of the efficiencies of the three tests w.r.t. the most
powerful test for these same types of alternatives are giveﬁ in
GROENEBOOM & OOSTERHOFF (1977).

We shall show that under some regularity conditions the Bahadur ef-
ficiencies tend to the Pitman efficiencies as 0 ¥+ 0. To this end we need
the following result of PITMAN (1949).

LEMMA 2.2.4. Let n?e be the probability distribution of the random sequence

§ = (X,:X,,...), where 8 ¢ [0,@). Let T =T (X;,...,X ), n ¢ N, be a test

2"
statistic for testing 6 = 0 against 6 > 0, rejecting the hypothesis for
large values of Tn. Suppose

(1) B?G(THZa) is non~decreasing in 6 for each a ¢ R and 6 = 0.

‘s . 1 _

(ii) Hm Pen(n (Tn—u(en))/a(? ) S x) o= d(x),
for x ¢ R and all Bn = k.n ‘, k 2 0, where the function 6 - 1u(9),
8 = 0, has a right-hand derivative u'(0) at 6 = 0 and the function

6 »+ o(8), 8 2 0, satisfies lim 10 c{6) = o(0) > O.

0
If {%n} is a second sequence of statistics satisfying the same condi-
tions, but with u and ¢ replaced by ; and S, then the Pitman efficiency of

{En} War.t. {Tn} for testing 6 = 0 against 8 > 0 is given by
P N' ~ 2 1] 2
e = (u'(0)/0(0)) "/ (u*(0}/0(0))".
THEOREM 2.2.3. Let {Tn} be a sequence of signed rank statistics such that
the score functions Jn and J satisfy (2.2.15). Let F be a continuous df,

symmetric about 0, such that for sufficiently small 8 > 0O,

m(J) < w(F,0) < M(J),
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1 -
where u(F,0) = IO J(u)dPe(u) and P, is the pm corresponding to F,. Moreover,

0 Ch

suppose that the following conditions hold

(i) Ié 7% (wau < =

(ii) the right-~hand derivative u'(F,0) of the function 8 - u(F,0) at 0 = 0
exists

(iid) {Tn} and F satisfy the conditions of Lemma 2.2.4 with u(8) = u(¥,8)

and °(0) = [} (3(w-u(0)) aP

o
If {%n} is a second sequence of statistics satisfying the same condi-
tions, but with u,c,Jn and J replaced by G,S,En and 3 respectively, then
the Pitman efficiency of {Tn} w.r.t. {Tn} for testing Hc against Fg, 6 > 0,
is equal to lim

{T } at 6.
n

040 e(8), where e(8) is the Bahadur efficiency of {%n},w,r.t.

PROOF. Without loss of generality we may assume that Ié J(u)du = 0. By con-

dition (ii) we have
u(8) = ou'(0) + 0(6), 6 ¥+ 0,

where n'(0) denotes the right-hand derivative of the function 6 - u(6) at

6 = 0. Since by condition (i)

1 1
J J(uy {1 + exp(—kJ(u))}"1 du = %xf Jz(u)du + 00, A+O0,
0 0

the solution A of (2.2.12) with r = p(0) satisfies
2
A = 40u' (0) /o7 (JT) + 0(8), 6+ 0,
where 02(J) = fé J2(u)du. Hence

2(6u‘(0))2/02(J) + 0(62), 6 ¥ 0.

£, 0n(0))

Similarly,

i

£L(0)) = 20007 (0) /07 (3 + 06%), 6 40,

implying
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Lim £5(1(6))/£,(u(8)) = (&' (@) /03 %/ @ /0@,
640

The theorem now follows from Lemma 2.2.4. O

Theorem 2.2.3 implies that the Bahadur efficiencies of the éign test,
Wilcoxon's signed rank test and van der Waerden's signed rank test w.r.t.
one another tend to the respective Pitman efficiencies if 6 ¥+ 0 and F is a
normal, logistic or double exponential df. It can be shown using WIEAND
(1976) that in these circumstances the Pitman efficiencies are also the
limits of the approximate Bahadur efficiencies as 6 + 0 (for the definition of
this concept see e.g. BAHADUR (1960)). It follows that in this case the
Pitman efficiency coincides with the limiting approximate and exact Bahadur
efficiency as 6 ¥+ O.

Sufficient conditions under which the exact and approximate Bahadur
efficiencies of linear rank tests for the two-sample problem coincide local-
ly for ® + 0 have been given by KREMER (1979).

Although locally van der Waerden's test, Wilcoxon's test and the sign
test are asymptotically most powerful for testing Hc against normal, logistic
and double exponential shift alternatives respectively, these optimality
properties are not preserved for fixed alternatives. In fact, the Bahadur
efficiency of Wilcoxon's signed rank test w.r.t. van der Waerden's signed

rank test is greater than one for alternatives ¢, with 0 greater than 1.1

6
(see KLOTZ (1965)). Nevertheless, the best possible exact slope for testing
Hc is attained by signed rank tests at each fixed alternative under some
weak regularity conditions. This is shown by the next theorem.

THEOREM 2.2.4. Let P ¢ A1 be a non-atomic pm not satisfying HO and let p

be a density of Pw.r.t. Lebesgue measure. Let the function J: (0,1) » R

be defined by

log(p(a) /p(~ull, if p(u)p(-ul > O
J(u) =

0, otherwise.

Suppose that the score functions Jn and J satisfy (2.2.15) and
1
m(J) < [ J(u)dP(u) < M(J).
5 .
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Then the sequence {Tn} defined by (2.2.4) attains the best possible slope
for testing Hc against P. This exact slope is given by

1
2 I p(u)log(2p(u))du,

-1

ZK(P,QO)

where QO ={Q € Al: Q satisfies Hc}.
PROOF. For each Q ¢ A1 we define a pm 5 € A1 by
QmB) = o({x e R: |x| ¢ BY, B ¢ B.
Let Q € QO ind leE u be a o-finite measure dominating P, Q, S and 5. Suppose
that p, g, p and q are the densities of P, Q, P and Q w.r.t. p and let

K(P,Q) < =, Then

K(P,Q) p(x) Log (p (x) /q(x))du (x)

i
g BT BT

p(x)log (2p(x) /{p (x) +p (=x) }) du (x)

P (%) Log ({3(p () +p (-x)) }/a (x) ) du (x)

p(u)log(2p(u))du + f B (%) Log (p (x) /q (x) ) dp (x)
[0,=)

Y

| |
ol

p(u)log(2p (u)) du,
1
by the symmetry of the density g and the non-negativity of K(E,a)” Hence
1
K(P,QO) = J p(u) log(2p(u))du = f p{x)log (2p (x) /{p (x) +p (~x) }) du (%)
-1 R
and the pm R € Q

i

with p-~density r(x) %{p(x) + p(-x)} is the "least favor-

able” pm for tesging Hc against P. By a result of Stein the Bahadur slope
of the sequence of most powerful (MP) tests for testing R against P is
equal to 2K(P,R) (cf. BAHADUR (1971}, Lemma 6.1). Since the power of any
test of Hc against P cannot exceed the power of the MP test for testing R

against P, 2K(P,R) is the best possible exact slope at P. By Theorem 2.2.2
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this is also the slope of {Tn} at P. [J

Theorem 2.2.4 has first been proved by HO(1974) under somewhat stronger
conditions (Ho assumes that P has a density w.r.t. Lebesque measure and that
{Jn} is of uniformly bounded variation on (0,1)). The optimality property of
signed rank tests expressed by Theorem 2.2.4 is called the asymptotic suf-
ficiency in the Bahadur sense of the vector of signs and ranks. A similar
result for linear rank tests has been proved for the two-sample problem by
HAJEK (1974) and for the independence problem by GROENEBOOM et al (1976).

It follows from Theorem 2.2.4 that a rank test satisfying the condi-
tions of Theorem 2.2.1 is optimal in the sense of Bahadur efficiency for

testing Hc‘against each non-atomic P such that P has a density 5 sati;fying
- ) -1
p(u) = {1 + exp(=J(w)} °, ue (0,1),

Hence the sign test is optimal against each non-atomic P such that the

density p of P satisfies

1

pw = {1 +e 17, uwe {0,1).

For Wilcoxon'’s signed rank test this pm P is characterized by
- -, -1
plu) = {1 +e "} 7, ue (0,1)

and for van der Waerden's signed rank test by

pla) = {1 + exp(—é—l(%+%u))}~1, ue (0,1).

2.3. EXACT SLOPES FOR PMS WITH FINITE SUPPORT

Let Xl'X

in the set D = {x ¢ Z : |x| < m} according to some Pa € A1 (a for "atomic"),

PYARE be a sequence of i.i.d. random variables taking values
where m ¢ N . The null hypothesis to be tested is

H:p satisfies H .
a a ¢}
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There are several types of statistics for testing Ha corresponding to dif-
ferent ways of dealing with ties and zeros. To facilitate the definition of

these statistics we introduce an infinite sequence of i.i.d. auxiliary

random variables U1,U2,... which have a uniform distribution on (-~ %7'%).

We suppose that the Xi's and Ui's are stochastically independent. Let
(2.3.1) Y, =X + U, i=1,2,...,
i i i

let ?n be the empirical pm of Y ...,Yn and let ﬁn be the empirical df of

1'
IYII""']Yn]' Score functions J, are defined as:in (2.2.1).

Signed rank statistics with randomized ranks and Pratt's method for

handling ties at zero (cf. PRATT (1959)) are defined by

2.3.2) oM < J J_(A_(x))aP_(x).
n n n n

(%, )
Signed rank statistics with randomized ranks and zeros discarded are defined

by

(2) _ & o 5
(2.3.3) T = J Jn(Hn(x)-Hn(%))dPn(X)-

(s,)
Signed rank statistics with Pratt’s method for handling ties at zero and

the average score method for other ties are defined by

J (A (x))dps (%) .
n n H

m P ((k-%,k+%])
2.3.0p 1= ] B
k=1 5 n

5 ((k=%,k+5])
n (k=% ,k+%]

Finally, signed rank statistics with zeros discarded and the average score

method for other ties are defined by

P ((k=%,k+5])
I

L B ~H (Y -
N AT=ETon) Jn(Hn(x) Hn(z))dPH (x) .
n

m

2.3.5 1@ -7
n

k= n

1 (k=35 ,k+%]

A tie at i, i = 0,...,m, of the sample Y ..,Yn is defined by

17"

- # . . o 3 .
Thi {5 € m: ]le € (i~%,i+%), j < n},

where # V denotes the number of elements of a (finite) set V. The vector of

ties of the sample Y goeeesT ).

.»,Yn is defined by Tn = (Tn’o n,m

17"
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Let AO = {(-%,%) and Ai = (=i=d,~i4k) U (i-%,i+%), 1 = 1,...,m. Further-

more, let Pi be the uniform pm on Ai’ i.e. PO((a,b)) = b-a, if (a,b) ¢ (=%,%)
and Pi((a,b)) = %(b-a), if (a,b) < (i-%,i+k%) or (a,b) ¢ (=i=%,~i+k),
i=1,...,m. If we condition on the vector of ties Tn and if Pa satisfies
Ha' then Yl,...,Yn may be considered as coming from m + 1 samples of sizes

n from the probability distributions P ,h..,Pm, respectively.

T seeorT

n,0 n, 0
This observation will be helpful in proving large deviation theorems for
the statistics Tél),...,Té4). To avoid trivialities we define
Pr{Tél) ed | 1 = tn} =0, if A ¢ B and Pr{rn = tn} =0, i=1,...,4.

n
For the statistics Tél) we have the following result.

THEOREM 2.3.1. Let Ha be satisfied and define p, = Pr{lxll = i},

i=0,1,...,m, with p. < 1. Suppose that the score functions J_ satisfy
0 n

(2.2.15) for some L-integrable function J. Let {t } = {(t_ .,...,t )1} be
n n,0 m n,m
a sequence of (m+l)-tuples of non-negative Integers such that Zi~0 tn ; =0
- ¥
and
(2.3.6)  limn 't = i =0
.3. im n ni s B, i = 0,...,m.
n-—ee
If
1 1
2.3.77 1| swau<r < I It (7 (u)) du
2 (O'GU)
Py Py

and {un} is a sequence of real numbers tending to 0, then

(1)

lim n_1 log Pr{Tn

> r+u T =t } = «f (v,p.),
o n n n J 0

where
1 1
(2.3.8) fJ(r,pO) = Ar -~ %A f J(u)du ~ [ log cosh (5\J (1) )du
Py Py
and A > 0 is the unigue solution of the equation
1
(2.3.9) J J) {1 + exp(—AJ(u))}“1 du = r.
Po
PROOF. First suppose that Py > 0. For i = 0,1,...,m let Bi denote the Borel
field on Ai and let Pi be the set of pms on (Ai'Bi)" Without loss of gener-

ality we may assume that pi >0, 1= 1;00.,m. Let v = (vo,..,,vm), where
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. m
vi >0, i=0,...,m and Zi=0 Vi = 1, Furthermore, let Q = (QO,G..,Qm),

where Qi is a pm in Fi‘ The df HQ p 1s defined by

2

m
(2.3.10)  H, (x) = Z v,Q, ([-x,x1 n a1 (%)

Q, £o,=)

and the pms éi € A1 are defined by

Qﬁ{x > 0: HQ,v(X) € B, X € Ai})' B e B, Bc (0,1]

(2.3.11) éi(B) = 10,({x < 0: -H, (-x) ¢ B, x a1, BeB, Bc[-1,0
Qﬁ{o}), if B = {0}, i =0,

Qi is the distribution of HQ,v(IYII)lAi(Yl) sgn (Yl) if Qi is the conditional

distribution of Y, given Y1 € Ai' i=20,...,m. Let Pi be endowed with the

1

p~topology. The product topology on I' = HT=O Pi will also be called p-topol=-

ogy .
With these definitions it can be proved along the lines of Lemma 2.2.1

that the mapping Tv : ' >+ R defined by

Ik

m

(2.3.12) Tv'Jk(Q) = izl vy [ 3, (W dQ, (u),
(0,11

is p=continuous at each Q = (QO,...,Qm) such that Qi is non-atomic,

0 €1 £ m, for each fixed score function J .

k

Let ﬁn 5 be the empirical pm of a sample of size tn i of random vari~
? 7

ables distributed according to Pi' where Pi is the uniform distribution on
A, L =0,...,m.
i -

Let P_ . be defined by (2.3.11) with Qi replaced by ﬁn X v replaced
_1 ¥ - B
by n tn and HQ v replaced by Hn. Then we have

I3

(1) -1 % =
(2.3.13) 7 =n " ) t_ J J (wdb_ |, (u),
n jop Ml n n,i
(0,17
conditional on T = t . Hence
n n
Pr{T(l) >rvu_ |t =t}
n n n n
-1 0 =
= Prin ot [ J (u)dP_ . (u) = r+u_}.
jop Rl n n,i n
(0,17

Let p = (pO,,.,,pm) and let
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Q= Qt(T

. T y = {Q e I': Tp Jk(Q) > t}.

K 7

Moreover, for P = (PO,..B,Pm) and Q = (QO,...,Qm) define

i

m
I py K(Q.P)

I_(Q,P)
P i=0

and

IP(Q,P) inf{IP(Q,P): 0 e Q}, for Q < TI'.

Then, by an easy extension of Corollary 1.3.3

lim n_-1 log Pr{'I‘p ((B B

... > r+ = -
Lin 3, Fnor ,Pn'm)) r un} Ip(ﬂr,P),

if t +~IP(Qt,P) is continuous from the right at t = r and if u, + 0, as
n > w,

Ol(tyJ) = infil (Q,P) ¢ T (Q z tr,
P le ) }

where TP:J is defined by

m a

izl P, [ T, (w),  if I (QP) <=
(0,11

(2.3.14) TPIJ(Q)

0, otherwise.

By the Lagrangian multiplier technique it can be shown that, if r satisfies
{2.3.7), one has a(r,J) = fJ(r,pO), where fJ(r,pO) is defined by (2.3.8).

For small € > 0 and sufficiently large k = k(e) we have

alr-2e,J) < Ip(Qr~€(Tp,Jk)'P)

and

a(r+2e,J) > Ip(nr+€(Tp,Jk)'P)'

implying that the function
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t > Ip(Qt(Tp,Jk)'P)' te R,

is continuous from the right at t = ¥ + ¢ (cf. Lemma 2.2.2). The proof is
now completed in the same way as the proof of Theorem 2.2.1 using the con-
L £ . . 7 = b.
tinuity of the function v - lv(Qr( v,Jk)’P) at v = p
If pi = 0 for some i, 0 £ i < m, the proof is essentially the same.
We only have to adapt the method of proof used above for a smaller number

of samples. [J

REMARK 2.3.1. If po = (0, the number fJ(r,pO) reduces to fT(r) as defined
by (2.2.11).

In a similar way we obtain the following theorems for the statistics

T(2), T(3) and T(4).
n n n

THEOREM 2.3.2. Let J,{Jn}, {tn} and {un} satisfy the conditions of Theorem
2.3.1 and suppose that Ha holds. Then, if

1*p0 l—po
¥ J J(u)du < ¥ < [ J(U)l(o m)(J(u))du
0 0
we have
lim n"! 1o Pr{T(z) > r+u T =t } = -g_(r,p.)
9 n n n n IgtErPgls
oo
where
1—-pO 1—pO
(2.3.15) gJ(r,pO) = Ar - %A J J(u)du - J log cosh (30T (u) )du
0 0

and X > 0 is the unique solution of the egquation
1
Py »
(2.3.16) J J {1 + exp(-AJ(w))} = du = r.
0

THEOREM 2.3.3. Let J, {Jn}, {tn} and {un} satisfy the conditions of Theorem

2.3.1 and suppose that Ha holds.
Let

i
q = jgo pj, io= O,a,f,m, p = (PO"“’pm)'
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(1) r1f
1 1
3 J J(uw)du < r < f J(u)l(o °°)(J(u))du,
¥
Po Py
then -
, ~1 (3)
lim n = log Pr{T > r+u T =+t }=-h_(r,p),
n n n n J
n-oo
where

1 9y
ks -1
(2.3.17)  h_(r,p) = Ar - %\ J J(udu - ) p; log cosh(\p; J J(u) du)
e

i=1
Po 9i-1
and A > 0 is the unique solution of the equation
di q;

m
(2.3.18) ) f J(u)du{l + exp(—kp;l I Jvant = r.
i=1

i1 9.1
(ii) If
1-p, 1=p,
J
3 [ (u)du < r < J J(u)l(olw)(J(u))du,
0 0
then
1im nwl log Pr{T<4) > r+u T =t } = -k_(x,p)
n n n n g\ FePl
I-»e
where
1=p, m _1qi'Po
(2.3.19) kJ(r,p) = Ar - HA J{u)du - z 1 log cosh(%kpi J J (u)du) ,
i=1
© 9% .17Pg
and XA > 0 is the unique solution of the equation
B 4i-po
(2.3.20) ) J J(u)du{1-+exp(-xp;1 f F(wan 3t =,
i=1
9;-17Pg 93-17Pp

To define the Bahadur efficiency of conditional signed rank tests we
o«
use the approach of BAHADUR & RAGHAVACHARI (1972). Let S = [-m-%,m#+%]

and let Y = (Yl,Y ), where Yi is defined by (2.3.1), 1 = 1,2,... .

PYARE
Then Y takes values in S according to the product measure P =P %X P X ...

for some pm P on [-m~%,m+%]. Since Yi = Xi + Ui' P is absolutely continuous
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w.r.t. Lebesgue measure. The statistics Tn defined by (2.3.2) to (2.3.5)
and the vectors of ties L will be considered as functions of Y. For each
ne N, Bn will be the o-field on S induced by the mapping y - (yl,...,yn),
y € S. Clearly Tn and Tn are Bn—measurable for each n ¢ W . The o-field on
S induced by the mapping y - Tn(y), y € S, will be denoted by Crl (Cn is the
conditioning field for the statistics Tn).

Let Fn(t,y) = IED(Tn < t f Cn)(y) be a regular version of the condi-

tional df of Tn given T Then the level attained by Tn ! Cn is defined by
(2.3.21) Ln(y) =1 - Fn(Tn(y)—,y).

Hence, for fixed y, Ln(y) denotes a version of the conditional probability
given Cn of Tn being as large as or larger than the observed value Tn(y) if
H0 holds.

Let X, ,X,,... be distributed according to some pm Pa on

1!

{j € Z: |j] < m} which does not satisfy Ha' Then Y WYor... are distributed

1
according to some absolutely continuous pm P which does not satisfy HO. Let

P =P X P X .., be the induced product measure on S. Then, if
. -1
c(P_) = - lim 2n log L_(Y)
a n
n—reo

exists with IP -probability one, we call c(Pa) the conditional exact slope
of {Tn} at P_. If the sequence {Tél)} has the conditional exact slope ci(Pa)

at Pa' i= 1,2, and if CI(Pa) and c (Pa) are not both equal to zero, then

2
the conditional Bahadur efficiency of {Tél)} w.r.t. {Téz)} at P_ is defined

by cl(Pa)/CQ(Pa)

THEOREM 2.3.4. Suppose P does not satisfy Ha“ Let p = (po,,.,,pm),

p, = Pa({mi,i}), i=1,...,m p,= Pa({O}), with py < 1 and let J and {Jn}
satisfy (2.2.15). Let P be the distribution of X1 + Ul’ where U1 has a uni-
form df on (-%,%) and is independent of Xla Furthermore, let HP be defined
by (2.2.2) and let the statistics Tél),...,Té4) be defined by (2.3:2) to
(2.3.5). Finally, let ci(Pa) be the conditional exact slope of {Tél)} at

Pa, i=1,...,4, and let bl(Pa) and b2(Pa) be defined by

bl(Pa) = J J(Hp(x))dP(x)
L
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(1)

(ii)

If

then

and

where

If

then

and

where
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b, () = J J(H, (x) = H, () dP(x) .
Y

1 1
4 f J(u)du < b (P) < f I g, (I )ay,
P, Py
¢ () = 2£ (b, (B),p)

i

cy(P) = 2h (b, (P )y (pyrensp))

fJ and hJ are defined by (2.3.8) and (2.3.17), respectively.

1—p0 1—pO
3:[ J(U)du<b2(P) < [ J(u)t
a
0 0

(0, ) (T (W),

c2(Pa> = ZgJ(bZ(Pa) ,po)

i

c4(Pa) 2kJ(b2 (Pa) ’ (po. e .pm) )

94 and kJ are defined by (2.3.15) and (2.3.19), respectively.

PROOF. Let P, >0, i = 0,...,m. We may write

and

o » H»P(i+3§)
b, (P) = i£1 p; P ({i} J (u)du
HP(1~%)
no Hp(i#z) ~Py
b,(® ) = 121 P, Pa<{i}) J(u)du.

Hp(i_%) “Pg
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Let Pi be the pm on (Ai,Bi) defined by

-1
Pi(B) =p, P(B), B e Bi,
and (with a notation analogous to the notation used in the proof of Theorem
2.3.1) let
s -1 -~
= H{9 < n: si B B
PoyB) =1 {j £n SLgn(Yj)Hn(lel) € B,Yj € Ai}, e B,

¢ 4

where i = 0,...,m, and T 5 is the tie of Yl,...,Yn at i. Then
’

m -
pH o gt Tt J J (wab_ . (u)
n (=1 n,i n n,i
+ (0,1]
and
m —
b (B) = ) P, J 3 (w)ab, ().
=L 0,10
Let
mn
m+1
w={vel0,1] : v o= (vo,...,vm), iZo v, = 1}

be endowed with the (relative) Euclidean topology and let I' be defined as
in the proof of Theorem 2.3.1 (endowed with the p-topology). Moreover, let
U x T be endowed with the product topology. Then the mapping

m
(VIQ) g l_,Z_l Vi J Jn(u)in(u)' Vo= (Vor~'-r\)m)l Q = (QOI--oIQm)I
B (0,17

is continuous at ((po,...,pm), (PO,,..,Pm)) for each fixed n. Since

m
izl B, J IJn(u)—J(u) IdP_i(u) >0, n > e,
(0,11
it follows that Téi) +~b1(Pa), as n + «, with probability one under P.
Likewise, also with probability one under P,
(3)

Tn -> b1<Pa)' as n > «,

and for i = 2,4,
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T(l) >~ b, (P ), as n > o,
n 2 a
Only trivial changes in the proof are necessary if p, = 0 for some 1i.

The result now follows from Theorems 2.3.1, 2.3.2 and 2.3.3. [J

The theorem implies that the exact slope of a signed rank test with
randomized ranks never exceeds the exact slope of a signed rank test based
on the average score method if the score functions Jn and - the method of
dealing with zeros are the same for the two tests. We shall prove this for
tests based on statistics of type (2.3.2) and (2.3.4) and omit the (quite
similar) proof for tests based on statistics of type (2.3.3) and (2.3.5).

Let p, = HP(i+%) - Hp(i—%) > 0 and q; = HP(i+%), i =0,...,m.

By Jensen's inequality we have for fixed A 2 0,

di 1
m -1 )
(2.3.22) E 1 log cosh(%lpi f J(u)du) < J log cosh (%AJ(u))du.
i=1
91 Po
Furthermore, if Al > 0 satisfies (2.3.9),
1 1

Alr _‘%Al f J(u)du -~ f log cosh(%AIJ(u))du

PO PO
(2.3.23)
i
= max{\r - %\ f J(u)du - J log cosh (%AJ (u))du}.
A>0
Py Po
Similarly, if AB > 0 satisfies (2.3.18),
1 dj
i -1
A3r - %A3 J J(u)du - izl P, log cosh(%l3pi J J (u) du)
Py g
(2.3.24)
1 9
T -1
= max{lr - %\ f J{u)du - z p. log cosh (3Ap, J J(u)du) }.
. i i
A>0 i=1
Po 91

Hence, by (2.3.22), (2.3.23) and (2.3.24)
fJ(r,pO) < hJ(r,p),

where fJ(r,pO) is defined by (2.3.8) and hJ(r,p) is defined by (2.3.17).
This implies by Theorem 2.3.4-that cl(Pa) < cg(Pa) if Pa is a fixed
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alternative to Ha satisfying
1 1

5 J J(u)du < bl(Pa) < f J(u)l m)(J(u))du.

(0,
Po Py
Analogous results on Pitman efficiencies of signed rank tests with dif-
ferent methods of dealing with ties are given in VORLféKOVA (1972) and
CONOVER (1973a,1973b). In fact, under conditions analogous to those of
Theorem 2.2.3 Pitman efficiencies are limits of Bahadur efficiencies as

the alternatives tend to the null hypothesis.
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CHAPTER III

THE EFFICIENCIES OF SOME TESTS FOR
THE MULTIVARIATE LINEAR HYPOTHESIS

3.1. INTRODUCTION

Let the row vectors of the N X m random matrix Y be distributed indepen-
dently according to an m-variate normal distribution with covariance matrix

L. Suppose
Ey = X8,
where X is an N X g (design~) matrix of rank g X N and B is an unknown
g ¥ m matrix of regression coefficients. We write n = N-g. The multivariate
linear hypothesis is given by

H : 8B = 0,

where A is an n, X g matrix of rank n1

based on the matrix of sums of squares and cross-products due to the hypo-

< g. We shall consider tests of HO

thesis

Sy N = vxx artacex a1 e ey
I

and the matrix of sums of squares and cross-products due to error

-]
== ¢ - J [
Se’N Y (IN X(X'X) X9y,

where IN denotes the N X N identity matrix. The matrix Se N has a central
El

Wishart distribution Wm(n,Z) and the matrix S N has a non-central Wishart

h,
distribution Wm(nl,E,Nﬂ), where
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1 1

Q = N B'A'[A(x'x)'lA']"lABz".

As an example consider the one-way analysis of variance set-up with
X=1I ®J =
q K’ N aqk, Jk

ui = (uii""’uim) denotes the mean of the observations from the i-th group,

i=1,...,9, and ® denotes the Kronecker product of two matrices. The hypo-

1
= ({,...,1) and B = (ui,...,ué)‘, where

thesis HO of equality of the means Ui'"""uq is given by

H : AB = 0,

0
10...0 -1
where A = 0 1::’0 -1
Oceverl =1

An easy computation yields:

q
-1 - - o1
Q =q ) -,
. i i
i=1
- -1
where u = q Zgzl ui. Note that for fixed alternatives B = (ui,,».,ué)'
the matrix NQ = O(N), as N » o,

Well-known tests for testing Ho are based on the statistics

(1) -1

3.1.1 t = t 5 +

( ) N © Sy nGh v n
(2) -1

3.1.2 t =

( ) N tr Sh,N Se,N

(3.1.3) t(3) = largest latent root of 8 5,1
N h,N "e,N

and
(4) -1

N = - s +S ;
(3.1.4) ty 1og|qe,N(Se,N Sh,N) |

where |A| denotes the determinant of the matrix A. The tests based on tél)

to té4) are (generally) called Pillai's test, Hotelling's Té, Roy's largest

root test and the likelihood ratio (LR) test, respectively.

In each case, HO is rejected for large values of the test statistic.
Numerical comparisons of the power functions have been made by PILLAIL

& JAYACHANDRAN (1967) in the case of 2-dimensional normal distributions.



73

The general picture which emerges from these comparisons is that Pillai's
test behaves rather well against alternatives for which the latent roots of
the non-centrality matrix NQ are small or close to one another, whereas
Hotelling's Tg and Roy's largest root test are more powerful against alter-
natives for which NO has one large root and one small root. The LR test
seems to occupy an intermediate position.

Asymptotic expansions of the distribution functions of the test
statistics tgl), téz) and té4) under HO and under contiguous alternatives
(i.e. tr NQ bounded away from O and « as N = «) have been given by FUJIKOSHI
(1970) . He uses these expansions to compute approximate powers in the
3-dimensional case (m=3), with the general conclusion that Pillai's test is
more powerful than the LR test and the LR test is more powerful than Hotel-
ling's Tg if the roots of NQ are close to one another, while the reverse
seems to be true if the largest latent root of NQ dominates the other roots.

ROY, GNANADESIKAN & SRIVASTAVA (1971) have done some simulation exper—
iments for the 2-dimensional case. These experiments essentially yield the
same picture of the power behavior of the tests with the additional finding
that Roy's test seems to be more powerful than the other tests when there
is only large latent root of N different from zero.

Finally, as a finite sample result, we mention that Pillai's test is
locally best among invariant level-o tests of HO which depend only on the
latent roots of sh,NS;%N (see SCHWARTZ (1967a), Theorem 1) and that each of
the four tests is admissible (SCHWARTZ (1967b)) .

All these results suggest that the power functions of the tests depend
critically on the product of the sample size N and the matrix Q. Different
pictures of the relationships between the tests arise in the following
situations:

(i) Q fixed, N -+ o,

In this situation Bahadur efficiencies and deficiencies can be computed
(see gection 3.3), showing a marked superiority of the LR test. The LR test
is only "deficient" with respect to some of the other tests on certain
halflines of the parameter space.

(ii) @ = QN depends on the sample size N, {tr QN} is a bounded sequence

and N tr QN > © (note that (i) is a special case of (ii}).

To give an example of what happens in this case, we mention that the defi-
ciency of the LR test w.r.t. Roy's largest root test is of order

_ul :
¢} log (Nel, y, if 91

1,N N > 0, Nel - = (0(1), § =2 2, where

-+ o and NO,
i I

N 3N

’
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0 2...2 0 are the latent roots of @ (this is the case of non-conti-
1,N m,N N ire

guous local alternatives). Hence, if 81,N = keN for some constant k > O
and some small e > 0, the deficiency is "almost" of order N (see section
3.4).

(1ii) NQ = NQN = M, where M is some fixed positive semidefinite matrix.
This is the familiar case of contiguous alternatives. The Pitman efficien-
cies of Pillai‘s test, Hotelling's Tg and the LR test w.r.t. one another
are equal to one. In section 3.4 the Hodges-Lehmann deficiencies of these

tests are computed, showing that Pillai's test is superior to the other

two tests if |9 /0. N-ll <g, for all Ne N, § =2,...,m and small € > O,

1,8 73,
while Hotelling's Tg is better than the other two tests when 6j N/O1 N < g€
§ E
for all Ne N, 3 = 2,...,m and small € > 0, where © PP are again
1,N m,N

the latent roots of QN. In contrast to this, the LR-~test is only deficient
in the sense of Bahadur deficilency w.r.t. Pillai's test if 81/9, = 1,
j = 2,...,m and only deficient in this seﬁse to Hotelling's Tg if Gj/e1 = 0,
j = 2,...,m, where 81,...,8m are the latent roots of the fixed non-central-
ity matrix Q (cf. (i)).

The distribution of Roy's test statistic under contiguous alternatives
is rather complicated; presumably the Pitman efficiency of Roy's test w.r.t.
the other tests is less than one if 0 = .. = 8 and greater than one

1,N m,N

if ej,N/ei,N =0, j=2,...,m.
(iv) N fixed, Q =+ 0.

In this case Pillai's test is superior by the result of SCHWARTZ (1967a).

The result of SCHWARTZ (1967a) provides an analytical explanation of
the numerical finding by PILLAI & JAYACHANDRAN (1967) that Pillai's test is
the best test against alternatives for which the latent roots of Q are
small. It is the purpose of this chapter to treat the situations mentioned
under (i), (ii) and (iii). Thus we obtain a more complete analytical de-
scription of the asymptotic power behavior of the four tests considered.
The results not only support the numerical results described before, but
also explain why the product of the sample size N and the magnitude of
tr @ is so important in determining the power of the tests. The role played
by the ratios of the latent roots of ) also becomes more transparent.

The results are based on theorems on probabilities of large and
moderate deviations of the test statistics under HO' These theorems are
given in gection 3.2. We shall also need expansions of the distribution

functions of the test statistics under fixed and local alternatives. These
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expansions are given in the appendix (section 3.5). Some efforts are made
to prove the validity of the expansions rigorously, since the known ex-

pansions in this field are only formal ones.

3.2. PROBABILITIES OF LARGE AND MODERATE DEVIATIONS OF THE TEST STATISTICS
UNDER THE NULL HYPOTHESIS

Using the notation of section 3.1, we assume that Se N has the Wishart
&

distribution wm(n,I) and that S has the Wishart distribution Wm(nl'I)

h,N

under HO’ where I is the identity matrix. Replacing I by I causes no loss of

generality, since each statistic is a function of Sh Ns;lN' Moreover we shall
¥ i

assume that n1 is a fixed number and that n1 > m, since the results for the

case nl < m can be obtained by the well-known substitutions n

and n - n+n1-m, Unless otherwise specified, we assume m > 2.

First asymptotic expressions for large and moderate deviation probabil-

g T mem > n .

ities of Pillai's test statistic will be given. The matrix

- -

.
h,N “e,N Sh,N(Sh,N e,

has under HO the multivariate beta density

(3.2.1) £ (s) = c |s(s) ™11 g(s) | 7P,
nln1 n

where

(3.2.2) e, = Fm(%(n1+n))/{Fm(¥n1)Tm(%n)}

m
= =D ey

(3.2.3) I (a)
m R
i=1

(3.2.4) p = %(m+l),

and S(s) is a (symmetric) positive definite m X m matrix whose upper trian-

gle is given by the vector s = (s ceeSp g m)‘ e P
=l
The df of tél)

117 S 51279137

, defined by (3.1.1), is given by

(3.2.5) Py () = fn'nl(S(sl)ds;
{tr S(s)<x,0<8(s1<I}
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where 0 < S(s) < I means that the matrices S(s) and I-S(s) are both positive

.ds ds

definite and where ds denotes the Lebesgue measure ds dAs, e
mm 12 m~-1,m
on R™®

117

In the sequel m will always denote the order of the matrix S(s) (and
hence the dimension of the multivariate observations) and p will denote

% (m+1) . The space of positive definite m X m matrices will be denoted by Sm.

THEOREM 3.2.1. Let Fél) be the df of Pillai's test statistic tél)

under HO'
Let {xn} be a sequence of real numbers in the interval (0,1), bounded away

. , 2
from 1 and satisfying nxn + ® gs n > ®©, Then, as n +» «,

NEY

L of & 3, Ly, -
(3.2.6) - Fy &Ry, mOmg-p)
n n n

(mx ) ~ c 27 (unm)
n je

where c, is given by (3.2.2).
PROOF. By (3.2.1) and (3.2.5) we have

(1) -
i~ FN (mxn) =

y Is(s) ™1 1-5(s) | " Pas

i

{0<S(s)<I,tr S(s)men}

X%mn 1

ny-p Bnp
a *n Is(s) | [1-x S (s) | ds.

{O<an(s)<I,tr S(s)zm}

By the transformation

u,. = s, 7 (lpj) # (1,1),

{ =
Uy tr S(s)
ij ij

the last integral can be written

(3.2.7) ¢ x™1 IS | ™1 1% s(w) | ™ Pau,
nn n
{O<an(u)<I,u112m}
where u = (ull'u22’""umm'u12""'um—1,m) and (with a slight abuse of

notation) S(u) = S{s(u)).

Let E = {u ¢ RrP . s (u) represents the upper triangle of a matrix

S{u) € Sm} and let Dn ={ueE:0< an(u) < I,u11 > m}. We define the
functions g : D - R and h_ : D - R by
n n n n

gn(u) = log]I—XnS(u)J, uebD
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and
Loy g - -
h (u) = IS(u)lﬁnl Plix s | p' uebD .
n n n
m
PR —
The function gn attains a maximum in Dn at uO = (myl,;a00,1,0,...,0)7 and

the asymptotic behavior (as n + «) of the integral (3.2.7) is completely
determined by the behavior of the integrand in a neighborhood of uo.
Let for ¢ > O, Ks = [m,m+e], L, = [1-e,1+c], ME = [~g,e] and

W=k x 1 ymmel)
£ € 4 €

Fix € > 0 such that WE < Dn (this inclusion is satisfied for all sufficient-

ly small & and all n) and let ¢n H WE <+ IR be defined by

) R B
¢n(u) = hn(U)/ 5;;; g, (W), we W .

Since 8/81111 gn(u) = ~-% a,  (u), where a,, (u) is the element in the first

n 11 11
row and first column of (I»an(u))m ;, the function ¢n is well defined on we

(note that all(u) >0, u ¢ Wor since (I—xns(u))'1 is positive definite for

these values of u). We have

9

aull

-1
(3.2.8) f hn(u) exp{%ngn(u)}du = 2n { (¢n(u)exp{%ngn(u)})du

WE WE

-1 . O
~2n [ exp{%ngn(u)} ™ ¢n(U)ﬂu«
W

11
€
(2) _ . (2) _ _m-1 bm (m~1)
Let u = (u22,»“9,u ~1,m) and let W€ = LE b Me . Then, by
Fubinifs theorem, the first integral at the right-hand side of (3.2.8) is
equal to
on”t J (¢, tmre,u?))expling_(mre,u’?)))
WE(Z) (2) (2) (2)
m¢n(m,u )exp{%ngn(m,u yhdu' .
) r_m¢1
In a neighborhood of u = (1,...,1,0,...,0)" one has the expansion

0
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(2)

(3.2.9) gn(m,u ) = m log (1«xn) + logII—xn(l—xn)“l(S(m,u(

2))—1) |

(2) (2) u(2)-

2 -2 2
=m log(l—xn) - %xn(lhxn) tr (S (m,u y=I) T (1+0(1)), u —
Hence, by Laplace's method for multi-dimensional integrals (cf. BLEISTEIN &
HANDELSMAN (1975), Ch. 8, Section 3)

(2) )

(3.2.10)

) (2) (2
¢n(m,u )exp{ﬁngn(m,u ) }du

w'?
£

(2)

2 )exp{lmgn(m.u(z)

)}du<2)

-1
(xna”(U)) hn(m,u
w(2)
€

mp+1

~ x_l(l—x ) 2)
n n

exp{%ngn(m,u(z))}du(

W(Z)
€
Lbmn-mp+1

(2) 2)

2

x“l(lwx ) exp{w%nxz(l—x )u2tr(s(m,u )~I)2}du(
n n n n

w'?
€

K (1-x_) T gy T2 (0P f
n n

4

exp (~kk (w) ) dw,
IR'mp—l
where k(w) = k(wl,QOQ,wmp_l) is the quadratic form

m-1 5 mp-1 5
(3.2.11)  k(w) =2 ) w.+2 ] ww, +2 ) wi.
. 1 A 1 . ES
i=1 i<j<m i=m
The last asymptotic equivalence in (3.2.10) is obtained by making a shift
to the origin (followed by an application of Laplace's method) .
=% (mp-1) 25, bm (m-1)

Since (2m) exp{~%k{w)} is the density of an (mp-1)~-

variate normal distribution, one has

(3.2.12) f exp{“;ﬁk(w) }aw = (2ﬂ)%(mp-—1)m-5§ 2'%1’1(m—1)
mppwl

and hence by (3.2.10) and (3.2.12)
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(3.2.13) - J 6 mu'?) explong_(m,u?)3au'?
W(2)
€
N (2“)15(mp—1)m~!: 2-1xm(m—1) x;mp(l_xn)%mn(%n)—%(mpml).
It is easily seen that the integrals
J ¢n(m+e,u(2))exp{lzngn(m+e,u(2))}du(Z),
W(2)
€
3
f exp{%ngn(u)} Fo b, (W du,
1
W
€
and %n J hn(u)exp{%ngn(u)}du,
D \W
n' e

are of lower order than the integral in (3.2.13), as n = .

The result now follows from (3.2.7), (3.2.8) and (3.2.13). [
REMARK 3.2.1. By Stirling's formula one has

;ﬂﬂnll n -+ o,

-1
(3.2.14) c, "~ Fm(%nl) (%n)

REMARK 3.2.2. We briefly indicate a different proof of Theorem 3.2.1. The
(1)

moment generating function of ntN is given by the hypergeometric function

of matrix argument
mn(t) = 1Fl(lznl;%(n+n1);ntl).

For simplicity we shall only consider the case X, = X € (0,1) for all n e WN.

For large n and fixed t > 1 the "peak" of the integrand of the integral

mn(%t) =c, [ exp{knt tr S(s)} IS(S)]%nlwplI—S(s)|%n—pds
0<S(s)<I o
is reached at the interior point t_l(l—t)(TTT?TTP,O,...,O)' of the domain
of integration. Hence, by Laplace's method

(3.2.15)  m (4t) ~ k_ QTnt, —mn =1y gy me-p) a > o
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where

x = am —1)%mp e

=c_ 27 (2mn
n n

The moment generating function mn(%t) can be inverted to obtain an asymp-
totic expression for the density fn(mnx) of ntél)

x ctie
(3.2.16)  £_(mnx) ~ 7% J gmnll-x)s ~tmn =1y o)ymBn1mRl,,

Cc~iw

where ¢ = (1«11:)“1 is the saddlepoint of mn(%s)exp(—%mnxs) for large n.
But the right-hand side of (3.2.16) is in fact a well-~known integral repre-
sentation of a one-dimensional hypergeometric function (see ERDELYI et al.

(1953), p. 273). Hence

fsmn

f (mnx) ~ %k_(}mn(1-x)) !
n n

-1r(%mn)- 1Fl(--m(%nl—p); Lmn; bmn(1-x))
~ %kn(%mn(l—x))%mn“lr(%mn)~1 Xm(%nlwp)’

by ERDELYI et al. (1953), p.280, (18), implying

[

(1)
1 - FN (mx) mn [ fn(mny)dy
b'e
2%m

(mnW)‘%(Zanl)%mp(l—x)%mn Xm(%nl—p)'

~o
n
We note that in using this method to find asymptotic expressions for large
deviation probabilities, it is necessary to look for a saddlepoint of the
function mn(%s)exp(m%mnsx) before inverting. For example, in the domain

0 £ t < 1, the function mn(%t) satisfies the relation

(3.2.17)  m_(4t) ~ (1-t) 71 n > e

Inversion of the right-~hand side of (3.2.17) leads to tail probabilities of

a an1~distribution (the limiting distribution under HO), contradicting
(3.2.16) .

1
REMARK 3.2.3. In the statistical literature only the probabilities 1-F§ )(mx)
for fixed x ¢ (0,1) (and large N) are generally called large deviation

probabilities. The case X -+ 0, nxn + », corresponds to probabilities of
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moderate deviations.

We next turn to Hotelling's Tg and Roy's largest root test. It was seen
in the proof of Theorem 3.2.1 that the asymptotic behavior of certain proba-
bilities of large and moderate deviations of Pillai's test statistic is de-
termined by an integral over the neighborhood of a "critical point" which
is located in a smooth piece of the boundary of the domain of integration.
We shall see that the asymptotic behavior of these probabilities in the
case of Hotelling's Tg and Roy's largest root test is likewise determined
by an integral over the neighborhood of a critical point. But this time the
critical point does not belong to a smooth piece of the boundary, but it is
located in a "corner® of the boundary. .
-1

We shall need the density of the latent roots of the matrix Sh Nse N
¥ 7

under HO’ This density is given by

2 m m
— i () e .
(3.2.18)  c a™ o @gm tm a2l gy TEOE) gy,
n m . i i i

i=1 i=1 i<j

where c, is given by (3.2.2) (see ANDERSON (1958), Ch.13).

2
For Hotelling's TO we have the following result.

THEOREM 3.2.2. Let Féz)

HO. Let {xn} be a bounded sequence of real numbers satisfying nx > «,

as n -+ o, Then, as n - ©,

(2)

be the df of Hotelling's Tg statistic tN under

(3.2.19) 1 - P (%) ~ c 1 ™r ()
N n n

%(ng-1) (m=1)+1
1 -
g Ge(ny 1)) (2/n)

. g2 m=2) (ng-2)

14x )—%(n~1)+%(mm2)(n1"1),
n n

(

where Ch is given by (3.2.2).

PROQF . Let the function Gn : (0,0) =+ IR be defined by

m 1 - m =
(3.2.20) G (x) = [ « v e e e -{ MR (g4 R
n . i . i
i=1 i=1

m
{Eizlk,ZX,A

>...2x_20}
i 1 m

« T (X.—X,)dkl,*mdh
1< i) m
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m
I J e e e e e e o N I
. 1
o i=1
= 2.0 2N 2
{0y oq2210ny A_20}

m

. (1+xn ) " 2(nn)
. 1
i=1

« T (X,=A_)AX,...dx .
. i 3 1 m
i<j

We make the following change of variables in the last integral of (3.2.20)

m
u, = .Z Ai -1

i=1
ul = Xl - Ai+1' 1 <i<m
u_ = A
m m

The Jacobian of this transformation is equal to one and the inverse trans-
formation is given by
m

(xl =u +1- ] (i-Duy
i=2

4

>
i

i ~18
=1
I
Y
N

By this change of variables Gn(x) can be written as

bamn g

h:4

_m T Y
f f {(a+1=]7_, (i-Du))

{u1+122?=21ui,ui20,i:1,u,.,m}

m m Lngo m
ST PP Pk - T G-Duy))
i=2 §=i i=2
m m B ' 3
Com (x ) w7 g (F u,)
i=2 j=i 7 1<i<j<m k=i
m m m
o T (u, - ) (i=l)u,~ ) u)du,...du_.
=2 1 129 L2 k71 m

Let

. m m
b (upeeiu) = log(1+xn(u1+1-‘z (ivl)ui))+.z log(1+xn‘2. u,).
i=2 i=2 =i



The function ¢ is defined for all (ui,..,,um)' such that u, + 1 2
n

1
and ui 20, i =1,...,m.

Moreover
6 (0 seenpu ) = log(l+x ) + (1+xn)“1xnu1<x+o<1))
+ (1+xn)—1xi i, (i-Du (1v0(1),
u, v+ 0, i=1,...,m.
Hence, by Laplace's method,

~% (n+nq)

~ N = -1
(3.2.21) Gn(xn) x (1+x ) exp{.%n(1+xn) xnul}du

1

Q8

1 m

i=2

oO—— 8
.
I o~18 O 8

(===
e

N
.

J

ot

1<i<j<m k=i

J
u.)lml-p m () uk)du

-1 2 ]
exp{-tn (1+x ) * x_ ) (i-1)u,}

Inverting the previous transformation, the integral over the variables

u ..,um can be written as

2"

2 -1
(3.2.22) J o e e e J exp{-tnx_ (1+x ) DRI

on
Az...2h 20 =
2 m

moo
S D s 1 (A,=A)dAA, ...\
i=2 * t<i<jsm + m

it

-1 -2 % (nq-1) (m-1) 7
(20" "% “(1+x)) f © e e f exp(~ ) X))

A 2.2\ 20 i=2
2 m

m
I Vi S (A -A,)dh, ...\
i=2 1<i<j<m "
-1 -2 % (ng~1) (m-1) _
= (2n " x“(1+x)) T Gme1)T | G -1

By (3.2.21) and (3.2.22) one has

iu,
= i
2.«,dum.
2
-% (m-1)
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(3.2.23) G (x ) ~ (14x ) 2(n-D+2(m=2) (n1-1)
n n n

. X—%(m—2)(n1—2) L(ni-1) (m-1)+1

n (2/n)
-B(m—l)z
. Tm_l(%(m—l))Fm_1(%(nl—l))ﬂ ;
and by (3.2.18)
(2) 1m? -1
(3.2.24) 1 - FN (xn) = cnﬂ Tm(%m) Gn(xn)'

The result now follows by (3.2.23) and (3.2.24). [

2
REMARK 3.2.4. In Theorems 3.2.1 and 3.2.2 it is assumed that nx_ > o, Ac-
tually, the sequences {xn} such that nxi + x ¢ (0,%) separate two regions
2
where different types of asymptotic relations hold. If nx_ -+ 0, but ng > e,

the tails 1 = Féi)(xn), i = 1,2, behave as the tails of a X%n - distribu-
1
tion (the limiting distribution under HO).

s 1 R
For example, in the case of Pillai's test statistic t; ), this is
easily established by inspection of the simultaneous distribution of the

latent roots of S, _( y~! (anDERSON (1958), p.314, (47)).

S +S
h,N "h,N "e,N
One has, as nxn <+ o and nx_ + 0,

1) T

_ -1
1 - Fy (xn) =c Tm(%m)

m
. J b e e e e e J T (AP17P () Py
. 1 i
o i=1
{122 2,024 20,]7 (A 2x }

< T (A )AR Ledd
i<y J

m
. J e e e e | MR )R
X i n i
B - i=1
JEhze.2) 20,0 A 21}

o TIT (X.-X.)dll..,dkm
i<y * 3
%mz 1 _mny

~c Tt F-(%m)m e
n m n
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m
- -l .
. J SN R I P e s U B
. 1
i=1

a2t}

{hyz.002h 20,]0

o T (A.“A.)dlia.,dxm
i<y *

)%mnlml

~ I’(%mnl)—1 e—%nxn (5nx
n

The last asymptotic equivalence is obtained by using (3.2.14) and the fact
that
m
MR TRy g

i=1 " i<y

L=AL)
T3
is (apart from a scale factor) equal to the density of latent roots of a
matrix A having a Wishart W(nl,I) distribution.
By similar methods one obtains

e i e
1 -2 () ~ P mn,) "t e TIEN 1y, T
N n 1 n

2
as nx - o« and nx_ -~ 0.
n n

An agymptotic expression for large and moderate deviation probabilities

(3)

in the case of Roy's largest root test statistic tN is given by the fol-

lowing theorem

THEOREM 3.2.3. Let Fé3)

be the df of Roy's largest root statistic under HO'
Let {xn} be a bounded sequence of real numbers satisfying nx >0, g8 n oo,

Then, as n + ©,

ED
N

1 =m % (ng-1) (m-1)+1

(3.2.25) 1 (xn) ~ ch(%m) ™ mei(%(nl—l))(Z/n)

b (ng+m=-3)
© %

=35 {nq+n)+1
n ¥

(1+xn)

where c, is given by (3.2.2)

PROOF. Let Gn : (0,2} »+ R be defined by
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o kng- -} (n+n)
(3.2.26) G_(x) = I s e e e e -J n (APUP a2y
n i=1 1 1

{Alzx,x z...zxmzo}

1
= T (A,=A)dX, ...dx_ =
i3 1 m

i<j
- ™ hng - ~% (nq+n)
] [ e e e e .f m {xinl p(1+x>\i) mTy
i=

{Alzl,xlz...zxmzo}

o .ﬂ.(ki—kj)dkl..,dlm.
i<j

By the change of variables

u, = Al -1
ui = Ai - Ai+1' 1 <i<m
u = A
m m
we have

m m
G (x) = U {u+) T (] u,) }ILP
m i=2 g=i
u1+1zzi=2ui
m m
» {x(a+1)) T (14x ] u,)} 20
i=2  §=i A
. m ?
LI | I % w ) M (u, +1- u )du,...du_.
t<isj<m k=i X 4=2 1 p=3 M ! m

Define for non-negative ul,...,um

m
¢n(u1"”"um) = log(1+xn+xnu1) + iZQ 10g(1+xn ;

)

u,).
4 J

For ul,.uh,um near zero we have

~ -1
¢n(u1,q«,,um) = log(1+xn) + u xn(1+xn) (1+0 (1))

1

m
o i;Z (i=1)u, (1+0(1)), u, + 0, i =1,...m.

By the same argument as in the proof of Theorem 3.2.2 we obtain
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. Jmng ~3 (n1+n) . 1 -1
Gn(xn) X (1+xn) [ I exp{ %nxn(1+xn) u,
0 0
m
- knx_ ) (i-u,}
n 1
i=2
m m 3j
N AT ki I ) u)du, .. .du
i=2 =i 1<i<j<m k=i
N (z/n)%(nl—l)(m—1)+1 X:(n1+m~3)(1+xn)~%(n1+n)+1
%(m—l)2

+ T am-1)T Calny=1) /7

The result now follows from the relation

t-r P = cnnamzrm(%m)"lcn(xn). 0
REMARK 3.2.5. Note that (3.2.25) holds for all bounded sequences {xn} such
that nx > e (2nd not only for Ti?uences {xn} satisfying nxi > ), Ifm=1,
nxn <+ o and nxn + 0, then 1 - FN (xn) behaves by (3.2.25) as the tail of a
Xil - distribution.

We have seen that in the case of Pillai's test, Hotelling's Tg and
Roy's largest root test the asymptotic behavior of the tails of the null
distribution is determined by certain critical points on the boundary of
the domain of integration. The behavior of the LR test is somewhat dif-
ferent; in this case there is in fact a whole surface of critical points.
Accordingly, the constant appearing in the leading term of an asymptotic
expansion of large deviation probabilities is more complicated. To facili-
tate the statement of Theorem'3,2.4, this constant is given below. Let for

x € (0,»)

m=-1
(3.2.27) clx) = r(%nl)“m [ « s 6 & 6 s e b o e f (1_e‘x+zi=1 Y:’L)lfnl“1
m-1 .
{zi=1yi£x,yi>0,1—1,...,m}
m-

1 . . },5 _‘1
s {eYi(1oeTYiy '}dyl...dym
i=1

-1

%mn1~1
X

It will be shown in the proof of Theorem 3.2.4 that c(x) ~ /F(anl),
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as x ¥+ 0.

(4) (4)

THEOREM 3.2.4. Let FN be the df of the LR statistic tN under HO.
(i) If {xn} is a sequence of real numbers such that limn_)00 X =X (0,»),
then
4 -t -
(3.2.28) 1t —Fé )(xn)vvc(x)(%n)%mnl I

(ii) If {xn} is a sequence of real numbers such that x_ + 0 and nx =+ ®,
then

(3.2.29) 1 »F(4)(x ) ~T (%mn )ml(%nx )%mnl—l e“%nxn, as n > ®,
N n 1 n

(4)

PROOF'. The statistic uy = exp(—tN ) has under HO the distribution of a

u - yvariable (see ANDERSON (1958), Ch.8). Hence
m,nl,n
p (4) _ . -1 ~m
(3.2.30) 1 -F (x ) =T (%(n, 4n))T (&n) "T'(%n,)
N n m 1 m 1

{nTzlyiSexp(-xn),O<yi<1}

By the change of variables Yi +~e—xnui one has

(3.2.31) 1 - F(4)(xn) = rm<%(n1+n))rm(gn)"lrfﬁni)"m

N
o x o o s s e
n

m
{Zi=1ui21’ui>0}

m .
m {e—%(n+1-1)xnui
i=1

—xnui)%nimi}d

« (1-e ul..,dum.

Next, by the change of variables
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and integration by parts we obtain

m .
(3.2.32) I e e e [ m {e 2 (ntl-D)xnuy ~¥nug,kng 1}du1.,.dum
i=1

i1}
{Zi=1ui21,ui>0}
«@0
. . -
- f ay, { C e ,J oTIX Y1 | ¥n (V1-]1_o¥1) ) Bni=1
1 m
Ly =y ey >0}

m
Mmoo anYi g mxnyy) 1}dY2---de

i=2
'
= 2(nxn)—1e_lmxn f e e e s J {1—e_xn(1—2i=2 Yi)}%nlml
m
{Xi=2y1S1,yi>0}b

m s
. T {e!'i(l‘—‘l)xnyi(1__e_}"1’1yi)linl_1

] }dy2”"dym
im2

[es
-1 ~bnxpyy
+ 2(nxn) f e gn(yl)dylr
1
where

m
gn(yl) = I e o & o e @f {1_e—xn(y1_21=2 Yié}%nl"i
m

m .
oon {e%(lwl)xnyi(1_e~xnyi>%n1~1

' }dyz,,.dymu

i=2
Integration by parts of the second term at the right-hand side of (3.2.32)
shows that this second term is of lower order than the first term as n - o,

Since

r_Gs(ntn ) /T (m) ~ Can) P17,

result (i) follows from (3.2.31) and (3.2.32).

If * + 0, one has by Lebesgue's dominated convergence theorem
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m~1 . - _ [

(3.2.33) J s e s e J m {e%lxnyi{xnl(1~e XYy y i1y

et i=1
{Lgoqysstey >0

m-1
s reloqoom¥n(1=)i1 v,)) -t
{x ~(1-e i)} dy,...dy__

m-1 m=-1
e 0 -1 ny-1
> J J iT1 ' (1..i§1 yi) dyl._.dym_l.
-1 - -

{ TH

1
1=17351¥;>0)

It is easily shown (using induction) that this last expression equals
F(%nl)m/F(%nlm).

Thus (ii) follows from (3.2.31) to (3.2.33). [

REMARK 3.2.6, If xn ¥ 0 and nxn + w, part (ii) of Theorem 3.2.4 yields that
1 - F(4)
N

(xn) behaves as the tail of a Xin ~distribution (compare with Remark
3.2.4).

1

3.3. BAHADUR EFFICIENCY AND DEFICIENCY AT FIXED ALTERNATIVES

Consider the four statistics t;l),...,t§4) defined by (3.1.1) to

(3.1.4). without loss of generality we may assume that Se N has the central
I

Wishart distribution Wm(n,I) and that Sh,N has the non-central Wishart

distribution Wm(ni,I,NG), where 0 is a diagonal matrix diag(el,...,em) with
61 2.2 Bm 2 0. It is clear that the distributions of the statistics only
depend on the alternative through the matrix 0. Probabilities under HO will

be denoted by P. and probabilities under the alternative € by P_.. We shall

0 S]
(continue to) assume that n1 is a fixed number satisfying ny 2 m and that
the sample size N = n+0(1), as N - o,
Let for B e (0,1), Ne W and i = 1,...,4 the constant cél) = cél)(B,O)

be chosen such that

(1), )

(3.3.1) Pe(tN N )y =8

and let aél)(B,G) be defined by
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(1) - (1) (1)
{(3.3.2) oy (B,0) = PO(tN 2o ).

It will be shown that for i = 1,...,4 the limit

(3.3.3} ci(O) = ~lim N—llog agi)(s.e)

N->o0
exists and that this limit does not depend on 8. The number 2c (@) is called
the exact (Bahadur) slope of the test sequence {t( )} at the alternatlve 0.
The Bahadur efficiency of the test sequence {t( )} w.r.t. the test sequence
{t(J)} is given by the ratio oy (@)/c (0) (see also chapter II).

An interpretation of the Bahadur efficiency in terms of sample sizes
required to attain a certain criterion runs as follows. Define for

0 <o < B <1 and 6 # 0 the numbers N(l)(u,B,G), i=1,...,4, by

(i)

(3.3.4) Y (0,8,0) = min {N e W : a(l)(

8,0) ga}l

i.e. (l)(a B,0) is the smallest sample size of a level o test based on
{t (l)} which achieves power £ at ©. Then the Bahadur efficiency of {t )}
w.r.t. {t(l)} is given by

lim N(1) (3)
040

(a,B,0) /N7 (a,B,0).

(see e.g. BAHADUR (1967)).
(i)
t,

The exact Bahadur slops of the sequences of test statistics {t

i=1,...,4 at O are given by the following theorem

THEOREM 3.3.1. Let the diagonal matrix © represent a fixed alternative to
HO and let el(e),...,e4(6) be the exact slopes at 0 of pPillai's test,

Hotelling's TO’ Roy's largest root test and the LR test respectively. Then

(3.3.5) e, (0 = -m 1og{m'1tr(1+e)“1},

i

(3.3.6) e, (0) = log(i+tre),

i

(3.3.7) 63(@) log(1+61),

and
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(3.3.8) e, (0) = loglI+0].

PROOF. By Proposition 3.5.1 and Remark 3.5.1 of the appendix, we have the

following expansions of the critical values cél)

2 trfarre) 7l + 0T

(3.3.9) M ;) N
(3.3.10) céz) = tr 0 + O(N—%), N + o
(3.3.11) c;3) =0, + O(N'%), N >

(3.3.12) cé4) = log|I+0]| + O(N—%), N > o,

The theorem now follows easily from Theorems 3.2.1 to 3.2.4 and (3.3.9) to

(3.3.12). [

The exact slope of the LR test can also be computed by an application
of theorems in BAHADUR & RAGHAVACHARI (1970). These theorems can be used
to show that the LR test attains the optimal slope at each alternative
(see HSIEH (1979)).

We have, by Jensen's inequality, cl(@) < c4(6) with equality if and

only if 61 = .. = am. Hence the Bahadur efficiency of the LR test w.r.t.
Pillai's test is strictly greater than one unless the roots 91’”""'6m are
equal.

Furthermore we have |[I+0] > l+tr 0 2 1+61, where both inequalities
are strict unless ei = 0, 1 2 2. It follows that the Bahadur efficiency of
the LR test w.r.t. Hotelling's Tg
one unless only one latent root of 0 is different from zero.

and Roy's test is strictly greater than

This has the remarkable consequence that Pillai's test, Hotelling's
Tg and Roy's test are inadmissible in the sense of Bahadur efficiency.
However, this is a kind of "first order inadmissibility" and it will be
shown that in cases where the Bahadur efficiency of the LR test w.r.t. one
of the three other tests is equal to one, the other test is strictly better
when we take second order terms into consideration.

The relationships between the exact slopes partly reflect the numerical
results of PILLAI & JAYACHANDRAN (1967) and FUJIKOSHI (1970) and the simu-
lation results of ROY, GNANADESIKAN & SRIVASTAVA (1971); when tr 0 is kept

constant, Pillai's test has the greatest exact slope if the latent roots
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2
61,...,em are equal and Hotelling's TO

exact slope if only one root is not equal to zero. But the results on

and Roy's test have the greatest

Bahadur efficiency seem to be in favor of the LR test, in contrast to the

numerical result mentioned above, where the LR test only occupied an inter-

mediate position. We shall give an explanation of this fact in section 3.4.
To make a more precise comparison in cases where the Bahadur efficiency

is equal to one, we introduce the concept of Bahadur deficiency.

Let for 1 = 1,...,4, 0 <o < B < 1 and 0 # 0, the number N(i)(u,B,@) be

defined by (3.3.4). Suppose that there exists a positive non-decreasing

function £ = £ : IN - IR such that lim £(n) = o and
[} no

(1 (i)

(3.3.13)  lim {N (0,8,0 /e (0,8,0)) = 1,

a0

(0.,8,0) - N

for each B ¢ (0,1). Then we say (in analogy to the definition of Hodges-
Lehmann deficiency in the case of contiguoué alternatives) that the Bahadur
deficiency of {téj)} w.r.t. {tgi)} is asymptotically equivalent to £(N).
In other words, the additional number of observations required to attain
the same power B and the same level o for test {téj)} as for test {téi)}
at O is asymptotically equivalent to f(N(i)(u,B,O)) as o ¥+ 0 (a slightly
weaker definition of Bahadur deficiency is given in KALLENBERG (1978)).
We briefly defer the definition of Bahadur deficiency in cases where

(3 (

0 < 1im sup (8 (a,8,00 8 (0,8,0)} < .

at0

The Bahadur deficiency of the LR test w.r.t., the other tests in cases where

the Bahadur efficiency equals one, is given by the following theorem.

THEOREM 3.3.2.

(i) Let the latent roots Gl,aao,em of © be such that 91 = L. = em = 0§ > 0.

FThen the Bahadur deficiency of the LR test w.r.t. Pillai's test is
asymptotically equivalent to (mp-1) logN/{m log(i+8)}.

{ii) Let the latent roots Gl,wea,em of © be such that 61 > (O and

0, = ... = em 0. Then the Bahadur deficiency of. the LR test w.r.t.

2
Hotelling’s T

[ R

and Roy's largest root test is asymptotically equivalent

to (nl-l)(mul) logN/log(1+91).

REMARK 3.3.1. For computational purposes it is convenient to note that the

Bahadur deficiency of {téj)} w.r.t. {tél)} is asymptotically equivalent to



94

2¢(0) H{1og o\’ (8,0) - 1og ot (8,0}

if e(0) is the exact slope both of {t;l)} and {téj)} at 0.

PROOF OF THEOREM 3.3.2.

(1) It follows from Proposition 3.5.1 of the appendix that cél) defined by

(3.3.1) has the expansion

(3.3.14) cél) = m6(1+8)'1+N“%T1u6+O(N_1), N =+ o,
-2 i -1 . .
where Ty = (1+08) “{2m6 (2+6)}° and uB = & " (B) with ¢& the standard norxmal df.
(4)

The critical value °y (also defined by (3.3.1)) has by Proposition 3.5.1

the expansion
(4) 3

(3.3.15)  ¢* = n 1og(1+e) T4uB+O(N“1); N + o,

where T, = (140) " {2mo (2+6) ) 7.

Hence, by (3.3.14) and Theorem 3.2.1

(3.3.16)  1log aél)(s,e) = ~bNm log(1+9)“%(1+6)_1{2Nme(2+9)}%u8+

+ (mn, -mp-1)  log N+O (1), N =+ o,

Similarly, by (3.3.15) and Theorem 3.2.4

(3.3.17)  log a§4’(6,9) = —%m log(1+6)—%(1+6)~1{2Nm6(2+9)}%u8+

+%(mn1—2) log N+0 (1), N -+ o,

The result now follows from Remark 3.3.1.
(ii) By Proposition 3.5.1 we have
(2)

- -3 -1 -
(3.3.18) oy = e1 + N Tug + 0w 7y, N+ o,

where 1 = {261(24-61)};2° Proposition 3.5.2 yields

3 _ 5 LN
(3.3.19)  ¢” =8, +N

%Tus + O(Nmi), N - o,
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Thus, by (3.3.18), (3.3.19) and Theorems 3.2.2 and 3.2.3

(3.3.20) log aéz)(B,O) = ~4N log (1+91) - %N%'ruB +

+%{mn1—(n1—1)(m~1)~2} log N + 0(1) =

= log o!” (8,0) + 0(1), N

Since by Proposition 3.5.1

(4)

- b
(3.3.21) ¢ " = log (1+0,) + N

Tug + O(N_l), N + o,

Theorem 3.2.4 implies

{(3.3.22) log ué4)(8,9) = ~-LN log (1+61) -SN%Tu84~%(mn1w2)log N+0(1),

N = o,

The result now follows from Remark 3.3.1. N

2
Thus, Pillai‘*s test, Hotelling's TO

strictly better than the LR test in the sense of Bahadur deficiency, in

and Roy's largest root test are

cases where the Bahadur efficiency w.r.t. the LR test is equal to one.
In KALLENBERG (1978) it is shown that in typical testing problems in multi-
variate exponential families the Bahadur deficiency of the LR test w.r.t.
the optimal test is of order O(log N}, in accordance with the results of
Theorem 3.3.2.

It is clear from the proof of Theorem 3.3.2 (cf. (3.3.20)} that the

(2) (3)

difference between N (a,B8,0) and N (0.,B,0) remains bounded as a ¥ 0 if

2
the two tests w.r.t. one another in this case, we introduce the concept of

61 >0 and 8, = .., = Gm = (. In order to give a measure of efficiency of

finite Bahadur deficiency. To this end we need an artifice which is similar
to a technique by which (finite) Hodges-~Lehmann deficiencies are defined.

Let {tN}NeEJ be a test s?q?enc?'for H ?2? let ¢ and uN(B,@) defined
by (3.3.1} and (3.3.2) with tNl ’ ch and aN (B,0) replaced by tN’ cN and

aN(B,G), regpectively. We shall use the abbreviation Nu to denote N{a,B,0).

Define
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(3.3.23) N, = pla)N  + (t-plaj) (¥ -1),

where p(a) = log(a (B,0)/a) /Log (o (B,0)/a_ (B,0)).
Ng~1 Ny-1 Ny
Let (tN,cN) be a test based on tN which rejects HO for values of tN larger

than or equal to c_ and let t-~ be a test based on (t_ ,c_ ) and
N Ny, Ny N
. . sqs «

(tNa—l'cNa—l) which chooses (tNa'cNa) with probability p(a) and ( Na~1'CN
with probability 1-p(a). The test tﬁ

o
i+ . . . . +
its size has expectation log a. The extension of {tN}NEJN o {tNa}ae(O,l)
serves the purpose of making the sample size, required to obtain power B

has power B at 0 and the logarithm of

for the alternative O at the significance level o, a continuous function of

Qo

Let‘ﬁ(z) and ﬁ(B)

¢

be defined by (3.3.23) with {tN} replaced by {£§2)}
and {té3)}, respectiVely. Then, if only one latent root of 0 is different

from zero, llma+0

2
this limit the Bahadur deficiency of Hotelling's TO

{ﬁ;2)~ﬁ;3)} exists and is independent of B. We shall call
w.r.t. Roy's largest

root test.

REMARK 3.3.2. Although this definition of Bahadur deficiency is mathemati-
cally the most convenient one, it is not appealing from a statistical point
of view. In statistical practice one would fix the size of the test and
would "randomize" the sample size in such a way that the (expected) power
of the test has some desired value B. In fact, this method is followed in
the definition of Hodges-~Lehmann deficiency. However, in the present con-
text, where the alternative 0 and the power B of the test are fimed, there
exists a simple relationship between the sample size N and the "performance
(1) (1)
N
i=1,...,4. This has motivated our definition of (finite) Bahadur defi-

criterion® log a (B,0), since log a (B,0) ~ -~ N ci(O), N > o,

ciency.

THEOREM 3.3.3. Suppose that 0 satisfies 61

w.r.t. Roy's largest root test at 0 is

>Cand 6, = ... =08 = 0. The
2 m

Bahadur deficiency of Hotelling's TO

given by
(3.3.24) (m—l)(n1~1){log(611(1+61))-(1+61)m1}/log(1+91).

PROOF. By Proposition 3.5.1

o=l

)
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(2) _ ~ -1
(3.3.25) ey = 81 + N ruB + N {mn1+(m+1+N n)61 +
-2, 2 2,8 .3 ~3/2 .
+ T (uB—l) (461+861+ 3 81)} + O(N ), N >

where T = {261(2+81)}%, and by Proposition 3.5.2

(3.3.26) céB) = 61 + N-Ji'ruB + N_l{n1+m—1+(m+1+N—n)81
-2 2 2 8 .3 ~3/2
+ T (uB—l)(461+891+ 3 81)} + O(N ).

Hence by Theorems 3.2.2 and 3.2.3

(2) (3)

(3.3.27) log oy (8,9) - log Gy (B,0) =

= %(u-1) (n,~1) {log (0] ' (1+46,))=(1+8 ) '3+ 0(1), N >,

implying (3.3.24). [

The theorem implies that Roy's test is superior for this type of al-
ternative in the sense of Bahadur deficiency. This confirms the simulation
results of ROY, GNANADESIKAN & SRIVASTAVA (1971). It is also seen that the

deficiency tends to zero as 8, ~ o,

1

3.4. DEFICIENCIES AT MOVING ALTERNATIVES

It was seen in section 3.3 that the LR test is superior to the other
tests in the sense of Bahadur efficiency and that the LR test is only infe~
rior to some of the other tests in the sense of Bahadur deficiency on cer-
tain halflines in the parameter space. We shall show that the situation is
somewhat different for moving alternatives and that the regions of the
parameter space on which the LR test is deficient are enlarged if the al-
ternatives tend to the null hypothesis. The rate at which these regions are
enlarged is inversely proportional to the rate at which the alternatives
move to the null hypothesis.

First we shall introduce a deficiency concept in the case of moving
alFernatives GN such that N tr @N “+ @ and {GN} is a bounded sequence. Let
aél)(s,oq> be the level of.a test based on tél) with power B ¢ (0,1) at
the alternative Oq. Let N(l)(a/B,Oq} be defined by (3.3.4) with 0 replaced



98

by Gq and let {ON} be a bounded sequence of alternatives such that
N tr @N + o, If there exists a positive non-decreasing function £ :* N - R

such that limN~>°° £f(N) = « and
G40 8P g0),8,0) ~n~fm, 0o,
n n n

with £ independent of B ¢ (0,1), we shall say that the (non-finite) defi-
ciency of {téj)} w.r.t. {téi)} is asymptotically equivalent to f(N). In
other words, the additional number of observations required to attain for
a test based on the sequence {t;j)} the same power B and the same level a
as for a test based on the statistic téi) is asymptotically eguivalent to
£(N) .

The following theorem is an extension of Theorem 3.3.2.

THEOREM 3.4.1. Let {ON} = {diag (0 Gm’N)} be a bounded sequence of
1

1,N77"
alternatives such that N tr @N +> o, g5 N > o,
(i) If 91 N ej N O(Nwl), 3 =2,...,m, then the deficiency of the LR
¥ I
test w.r.t. Pillai's test is asymptotically equivalent to

2
(mp—l)(log(NSllN))/{m log(1+61'N)}.

(14) If 0, = oY)y, 5 = 2,...,m, then the deficiency of the LR test
7
w.r.t. Hotelling's Tg is asymptotically equivalent to
2
(m»l)(nl—l)(log(NellN))/log(1+61’N).
PROQF' .,
. Lo = . -1 .
(i) Since ej’N = 61,N + 0(N 7)), j > 1, we have
er{o_(+0) '} = mo, (140, )7 + o™h N > o
N N 1,N 1,N ! 4
and
2 -4 -1
TilN 2me1,N(2+91,n) (1+61’N) + 0m ),
where T N is defined by (3.5.4) in the appendix. Hence cél) may be ex-
1
panded in the following way:
(1) -1 ~ i -2
3.4.2 = + +
( ) g mel,N(l 61,N) + ugh {2mel,N(2 el,N)} (1+el,N)

+ O(N‘l), N » o,
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Thus, by Theorem 3.2.1,

(1) _ o ~1 3
(3.4.3) log uN (B,GN) = ~kmN 10g(1+61'N) N u8(1+61,N) {zmel,N(2+el,N)}

2
+#1(mny-2) log (N0, ) -%(mp-1) log(N6) ) + 0y,
N > e,

Furthermore, by (3.5.8) in the appendix,

(4) _ = -1 .
(3.4.4) oy = loglI+ON! + N T4,n% + 0w ), N -
and hence by Theorem 3.2.4
(4) RPN 5 B (4
(3.4.5) log ag "' (B,0,) = -hNe ™ + %(mn, -2) log(Ne ™) + 0(1)

. Iy -1 3
= ~hmN log(1+81’N)~%N uB(1+61,N) {Zmel,N(2+61,N)}

1, - o
+,,(mn1 2)log(N611N) + 01y, N =+ o,

Comparison of (3.4.3) and (3.4.5) yields (i).

(ii) Since the method of proof is similar to that used in (i), we shall
only give the essential steps and omit details. By Theorems 3.2.2 and 3.2.4

and Proposition 3.5.1 one has

(

2) - 1
(3.4.6) Llog ay (B,ON) = LN lOg(1+91,N)~%u

-1
(1+e1 ) {2N61’N(2+61,NH

8 N

+%{mn1~(mm1)(n1—1)«2}log N

—%(m~2)(n1—2) log 6, .+ 01y, N > o

N

and
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(4)

(3.4.7) log ay }%

N

(B,ON) = =%N log(1+61’N)—%uB(1+61’ .

-1
) {2N61’N(2+61’ )
+%(mn1—2) lOg(Nel,N) + 01, N - o,

The result follows from (3.4.6) and (3.4.7). [

Theorems 3.2.3 and 3.2.4 yield asymptotic expressions for the tail

(4)
N

probabilities aéB)(B,@N) and o (B,ON) which are uniformly valid for all

bounded sequences {ON} such that N tr ON > o, This leads to the following

result

THEOREM 3.4.2. Let {@N} = {diag (6 ] N)} be a bounded sequence of

1,N"77" " "m,

alternatives such that NO + o and 0,
1,N N

the deficiency of the LR test w.r.t. Roy's largest root test is asymptoti-

).

oY), 522, as N + . Then

cally equivalent to (m-1) (n,~1) (log (N6 ))/log (1+6
1 1,N 1N

PROOF. By Theorem 3.2.3 and Proposition 3.5.2

%

(3) _ -1
(3.4.8) log Oy (B,@N) = =kN log(1+81’N)—%u8(1+61 ) {2N61,N(2+61' )}

N N

—%(mnl—Z—(m~1)(n1-1)} log N

+%(n1+m—3) log 0 + 01, N - o,

1,N

The expansion of log aé4)

(B,GN) is given by (3.4.5) in the proof of Theorem
3.4.1 (by Theorem 3.2.4 and Proposition 3.5.1 this expansion is uniformly
valid for all sequences {GN} such that GN =+ 0 and N tr @N + ®). The theorem

now follows from (3.4.7) and (3.4.8). [I

COROLLARY 3.4.1. Under the conditions of Theorem 3.4.1 (ii) the deficiency

2
of Hotelling'’s TO

alent to —(m—l)(nl—l)(log 61,N)/l°9(1+e1,N)'

w.r.t. Roy's largest root test is asymptotically equiv-

These results imply that the regions of the parameter space on which

the LR test is deficient are in a certain sense "enlarged" if GN <+ 0. For

in Theorems 3.4.1 and 3.4.2 the ratios Gj N/el - either have to satisfy the
7 7
condition
-1 .
(3.4.9) Iej’N/GllN—ll = 0(<N61,N) ) 3= 2,...,m
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or the condition

-1

(3.4.10) 8 /8 N= O((Neer) ) s i=2,...m

jIN 1'
and it is seen that the rate at which the upper bounds at the right hand
sides of (3.4.9) and (3.4.10) tend to zero is inversely proportional to the
rate at which 91 N tends to zero. It is also interesting that the deficiency

,

becomes of higher order if QN -+ 0. For example, the deficiency of Hotelling's

2
To w.r.t. Roy's test is no longer finite under condition (ii) of Theorem

4. -+ 0.
3.4.1 if @N 0

If tr GN - 0 at a faster rate than specified by the conditions of

(2) A (4y
N (B,0) and ag (B,@N)

become smaller. Roy's test seems to behave somewhat differently. We do not

Theorem 3.4.1, the differences between aél)(B,GN), o

attempt to give a complete treatment of all possible cases, but comment
briefly on some cases of particular interest.

If N tr ON > o and N tr O; -+ 0, we have

: (i) (3) - .
(3.4.11) lim Oy (B,@N)/aN (B,ON) =1, i,j = 1,2,4.
N-roo

This follows from Proposition 3.5.1, Theorem 3.2.4 and Remark 3.2.4. However,
. - . -1 . ] 2 .

if ej,N = 0(N ), § =2 2, Nel,N -+ o and Nel,N + 0 we have by Theorem 3.4.2

for j = 1,2,4

(3)

) (m=1) (ng=1)
N ¥

(3) ~ ©
(3.4.12) g (B,ON)/ot (B.GN) (N6 N -+ o

1,N

2
implying that the deficiency of Pillai's test, Hotelling's To and the LR

test w.r.t. Roy's test is asymptotically equivalent to

-1
(m~1)(n1—1)81,N log(NGLN

against these sequences of alternatives.

). Hence Roy's test is better than the other tests

If @N + 0 and N tr ON + ¢ e (0,), we are in the familiar case of con-

tiguous alternatives. Asymptotic expansions of the dfs of Pillai‘s test,
0
NON = [, where A = diag(ll,.,.,km) does not depend on N, have been given by

Hotelling®s T, and the LR test underxr HO and under alternatives @N such that
FUJIKOSHI (1970). These expansions can be used to compute Hodges-Lehmann
deficiencies (as introduced by HODGES & LEHMANN (1970)). It makes sense to
compute these deficiencies, since the Pitman efficiencies of Pillai's test,
Hotelling's Tg and the LR test w.r.t. one another are equal to one.

We first compute the Hodges-Lehmann deficiency of the LR test w.r.t.
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Pillai's test for some fixed size o € (0,1). Let {GN} be a seqguence of al-
2

ternatives such that N@N = A = diag(xl,...,xm) and let 28 =tr A, 4e =txr A".

It follows from Theorem 5.2 in FUJIKOSHI (1970) that the power at @N of a

1 .
test based on té ) with size o has the asymptotic expansion

1 2 -1 2
(3.4.13) Sl\(] )(G)N) = Pr{xf(d) > xN} - (an) | (min, +1) £ Pr{xf(é) > xN}

2
—2(m+n1+1)f Pr{xf+2(6) > xN}+{(m+n1+1)f~4(m+n1+1)6

°4€}PI{X§+4(5) > xN}+4(m+n1+1)6 Pr{x§+6(6) > XN}

e PriC, o (8) > xJH00TD), N,

- 1)
where £ = mni, XN

has a non-central chi-squared distribution with n degrees of freedom and

. ( - 2
is chosen such that PO{NtN > xN} = o and where xn(ﬁ)

non—céntrality parameter §. Here FUJIKOSHI (1970) is followed. Often 28 is
called the non-centrality parameter. The power at GN of a test based on t§4)

with size o has the asymptotic expansion

(

(3.4.14) BN

4 2 -
’(eN) = Prix;(8) > x }+ (2M) 1{(m+n1+1)6 Pr{x§+2(6) > x )
2
~{(m+n1+1)GmZE}Pr{Xf+4(5) > xa}
~2€ Pr{x2 (8) > x }}~+0(N‘2) N - o
£46 o ! !

. . 2
where X, is given by Pr{xf > xa} = o and §, ¢ and f are as before. The ex-
pansion (3.4.14) follows from FUJIKOSHI (1970), p. 106 and 107.
, a 2 _ 2 2
Since aﬁ-Pr{xf(n)> Xa} = Pr{xf+2(n) >xa} —Pr{xf(n) >xu}, one has by Taylor
expansion
(4)

(4) - -
ek O BN+k (Oag) + KN

1

(3.4.15) 8 (Pr{x§+2(6) > Xa}

~pr{x§<a> > x 1)+ o4

(4)

= BN

-1 2
(@N) + kSN (Pr{xf+2(d) > Xa}
aPr{Xi(S) > xa}) + O(N“Z), N+ o,

where k is some fixed integer. The "critical value" Xy in (3.4.13) has the

expansion
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(3.4.16) Xy = X, (m+n1+1){2(f+2)N}_1Xa(Xa-f~2) + O(N_z),

N = o,

(See FUJIKOSHI (1970), p.97.)

Let 95 £ denote the density of a non-central chi-squared distribution with
7

f degrees of freedom and non-centrality parameter §, let

wl
(3.4.17) a; = (m+n1+1){2(f+2)} xa(xa_faz)gé,f(xa)

-1
and let a, be the coefficient of N in the expansion (3.4.13) with X, re-

placed by X, - Then, by (3.4.13) and (3.4.16)

(

(3.4.18) BN

1) _ 2 -1 -2

(e = Pr{xf(cs) > xa} + N T(atay) + om %,
Let ¢ be the coefficient of N—1 in the expansion (3.4.14) and let d be
defined by .

(3.4.19) d = 5(Pr{x§+2(6) > xu} —»Pr{xi(ﬁ) > Xu})'

It then follows from (3.4.14), (3.4.15) and (3.4.18) that the Hodges-Lehmann
deficiency of the LR test w.r.t. Pillai's test is given by

-c)/d.

(3.4.20) di(a,G,s) = (a1+a2

Note that this deficiency is finite in contrast to the Bahadur deficiency.
The computation of the Hodges-Lehmann deficiency of Hotelling's Tg

w.r.t. the LR test may also be based on the expansions given in FUJIKOSHI

{1970) . Since the computations are quite similar we only give the result.

We define, using the same notation as before,

(3.4.21) b

i

wl
-{2(£+2) } xa{(m+n1+1)xu+(m-n1+1)(f+2)}g6'f(xa),

(3.4.22) b

f

2 2
{ (nlmm—l)f P?{?(f(§) > xa} - 2n1(mn1w26)Pr{xf+2(6) > xu}
+{f(m+n1+1)-—4(m+2nl+1)6+48}Pr{)(§+4(<5) > xu} + 4{(m+n1+1)<5

«22}Pr{x§+6(6) > xa}+-4e Pr{x§+8(6) > Xa}}'
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2, .
The Hodges-~Lehmann deficiency of the LR test w.r.t. Hotelling's TO is given
by

(3.4.23) dz(a,G,e) = (b1+b2—c)/d,

where ¢ and d have the same meaning as in (3.4.20). It follows that the

2
Hodges-~Lehmann deficiency of Hotelling's T

o w.r.t. Pillai's test is given

by

(3.4.24) d3(a,6,e) = (a1+a2—b1—b2)/d.
Numerical computations on the basis of (3.4.20), (3.4.23) and (3.4.24)
confirm the numerical results on power behavior in table 4 on p. 108 of

FUJIKOSHI (1970): if X, ,...,A (i.e. NB Nem N) are close to one
r

1,N7°7°
, .
another we have {tél)} > {té4 } > {té2)}, meaning that Pillai's test is
more powerful than the LR test and the LR test is more powerful than

Hotelling's Tg, whereas if ll’is dominant w.r.t. A ,...,Am the inequalities

are reversed. ’
These results also explain why the LR test occupies an intermediate
position in numerical comparisons on power behavior in contrast to the op-
timality in the sense of Bahadur efficiency. In numerical investigations it
is convenient to consider moderate values of Nei,N' But it is clear from
our analytical results that the LR test compares more favorably w.r.t. the
other tests for sequences of alternatives {ON} such that N tr O - «, espe-

cially for sequences of fixed alternatives {@N} = {0,0,...}.
3.5. APPENDIX
We summarize the notation which will be used in this section. The

symbol uB

sample size, n

will denote 6_1(1—8), where ¢ is the standard normal df, N denotes

1 and n denote the degrees of freedom of the "hypothesis
matrix" sh N and the "error matrix" Se N’ respectively. The alternative to
7 1

HO is specified by the non-centrality matrix GN of the non-central Wishart

distribution Wm(nl’I’NGN)' The matrix ON has the structure ON =

= diag(8 soeesB ) with 6 >0 2...2 6 . We shall use the abbre-
m,N m,N

1,N 1,8 " 72,N ,
viation etr (A) to denote exp(tr A).
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PROPOSITION 3.5.1. Let {@N} be a bounded sequence of alternatives such that

(3.5.1) N tr GN -+ o, as N - o,
A (1) (2) (4) ,
Let the critical values cN y cN and cN be defined by (3.3.1) for
pillai's test, Hotelling's TS and the LR test, respectively. Then, for
pillai's test
(3.5.2)  o'P =erfo (mro) T 4N, w N M (n.-m-Da. _+a, .a _+a
N N N 1,N B 1 2,N “1,N2,N "3,N
+(N~n) (a -a ) +4t, tr{0_(I1+0 )_4(1—49 (1+0 )~1
1,N 2,N 1,N N N N N
11 .2 -2 _ 3 -3 2. -3/2 1
+ = O (1+0) 0y (T+6,) )}.(118 N1+ 0 7 )
where
._i 3
(3.5.3) 3y = tr{(1+0,) 1, i=1,2,3,
and

- ]
(3.5.4) TI'N = {2(a2'N a4'N)} .
, 2
For Hotelling's T0 we have
(3.5.5) oy o +n %, w +8 mn + (m+1+N-n)b +
N N 2,N°8 1 1,N
-2 8 2 -3/2_~-1
TZ’N(4b1'N+§b2’N+ 3 bB,N)(uB~1)]+-O(N lle),
where
i .
(3.5.6) bi,N = tr(GN), i=1,2,3,
and
(3.5.7) T = (4b +2b )%.
2,N i,N 2,N

For the LR test we have
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4) _ -4 -1 o
(3.5.8) oy = 1oglI+ON]-+N T4,Nu6-FN [mnl-F(N n nl)dl,N +
2 -2 20 2 P
*hd, Ay T, (48 8d, T Ay 2d, ) (ugmD) ]
-3/2 =1
+ O(N T4,N)’
where
B i -i .
(3.5.9) di,N = tr{ON(I+6N) }, i=1,...,4,
(3.5.10) . T = (4d, . -2d )li
. 4,N i,N 772,N 7

PROOF. We only prove (3.5.5) and omit the quite similar (though slightly
more involved) proofs of (3.5.2) and (3.5.8). The proof is an elaboration
of arguments used in FUJIKOSHI (1977) and SUGIURA (1973) .

We have

o - “% o0 ¢
NS = Oy + N “(Yog + Og

5 -1 v v
h,N Y") f N “(Yy' + z2z2%),

where the m X m matrix Y = (yij) and the m X (n1~m) matrix Z = (zij) have

independent standard normal variables as their elements. Moreover, let

I -
(3.5.11) v = NN TS \-T).

We define the norm lAl of an m x m matrix A by lal = {tr A'A}%. Note
that laBl < fal I8l (cf. BELLMAN (1960), Exercise 1 p.162). Let By denote
the event

L
24
}

B

2
.5. = {lvyl off <
(3.5.12) B {Iyl+lzz +HVNN < (NTZ'N)

Then

L

. _ 2 12 o
(3.5.13) Py (BN) =1 - 0(exp{ (chle) } )y

) =1 - 0((NT§
N 1

N

) "7) means "0((NT§ )-k) for

where ¢ is a positive constant and 0((NT2 N
14

2,N
each k > 0".
- s 1

On B __ the stati i S -
N tistic Ty y Sh,n Se,n

has the convergent power series

expansion
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-2 -1 _ -2 Tk
(3.5.14) )"0 8 (S =T, 0+ k£1 ey A’
where

- 2 -k
ey = (NTle) ’
- -1 %%

By n T Ty n(YOgOY =0V,

(3.5.15)

i
it

- ] LI
oy =YY 272 Ty 1N’

KN = —T2,NAk—1,NVN’ k= 3,4,... .
The series is convergent on BN since by (3.5.12) and (3.5.15)
11
=k
k 12
I I < >
N BN G By
for some constant c1 >0 and @all N e N. By (3.5.14) one also has the fol-

lowing convergent power-series expansion on B

N
-2 -1 -2 3 k
5.1 = + + R,
(3.5.16) 1) ¢ T Sy nSen T Ton Oy kzl o B Aon T Ry
where |R | =|]o £ er | <c ¢, for some constant c, > 0 and all
RN k=4 "N Ak,N 2 N’ 2
N e .
-1 -1
t F £ -
, L§-1 N be the df of N T2,N tr(sh,Nse,N ON) and let GN be the df of
Zk=1 eN tr Ak,N'

Then, by (3.5.13)

o

k-1
F (%) 2 PON({kZIEN troay oS x} n By

v

GN(x—czeé) - 0(e) s
and similarly
F (%) < G (xtc el) + 0(e) .
N N 2N N
We shall prove that for each c > 0

2 T, 2
+ = I
GN(x_ceN) GN(x) + O(EN), N - o,
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implying

(3.5.17) FN(x) = GN(x) + 0(53), x € R.

Let g (t) = E etr(it Zi_l e;ul A, ) - Since for fixed t e R
= ’

)y = Eetr (2it ye%

E etr (it TZ,NAl,N N

VE etx (~it ONVN)

etr(-2t2@N)lI+Zit N_%@N!—%netr(it N%@N)

_ 2 2 . -4 4. 7% ,...3 3 -1 2
= etr{~t (2oN+eN)}{1+lt(N-n)N tr O -3 N ©(it) tr ON+O(N~ tro)},
the statistic ZB ekml tr has a standard normal df as its limiting
k=1 °N BN

14 2

distribution. For |t] < e& the function wN(t) has the expansion

(3.5.18) Y () = E etr (it A N){1+it ey tr B, o

. 2 1. 2 2
+ it €x tr A3’N + (it eN) (tr AZ,N) }
5/2

2,3
N max{|t]",[t]7)).

+ (e

This follows from the fact that on BN

1

¥ 2 b 2
i 57 (e, welpy e} =ty troa) O

N

max (1t1%,1t1%)) .

The expectations in (3.5.18) can be evaluated in the same way as in SUGIURA

(1973), implying that for It]-<'e;% the function wN(t) has the expansion

2 2 .
(3.5.19)  yy(0) = " {1re [ v (00 107K 4 0(el max(lel?, 161

k=1
+ max(lt|2.1t|3)0(€3/2),

where
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Yl(GN) = mn1 + (m+1+N—n)b1,N,
(3.5.20)
y.(0) =12 (4b, +8b. +2b. )
2'°N 2,N 1,N "2,N 3 3,87
with b, _ = tr(07), i = 1,2,3.
i,N N

Next, for t = e;% we have -
(3.5.21) wN(t) = O(eN).
This can be proved in the following way. Consider for each N € N
(3.5.22) hN(yll)

as a function of Yyqr with fixed yij,(i,j) # (1,1), fixed Z and VN.

Then
-1 % 5
' - ~0
hN(Yll) 2T2’N61’N + ZeN(y11 1,Nv11,N)
m m
2 e 2
26y (Vyy w¥ygt L MERCETRER Vi) T
j=2 k=1
where VN = (vij N)' It follows that there exist constants d and e such that
! -1 -1
¥ 3 < 9
for all N, hN(yll) 2 e >0 if |yij| < d €x and lvij,Nl < d ey !
i, =1,...,m.

i __a - 2 . . .
Putting kN(yll) 5;]]{(2ﬂ) exp ( %yll)/hN(yli)} we have by integration by
parts

de_l
-y [N 2
(2m) f » exp{—*zy11 + it hN(y“)}dy11
«deN
-1
= | (2m) expl-hy?, +it h_(y. )}/ (it B! ( y ]
SXPLTEY ¢ N Yyp? P gy -1
~-de
N
de”1
-] N
- (it) J 9 kN(yll) exp{it hN(y“)}dy11
—deN
-1 - -1
= odlel e + 0ael™h = 0qe™h.

The asymptotic relation holds uniformly for



110

<
in
o))
™

-1 .o
N’ (i,3) # (1,1),
(3.5.23)

Jv, .| -1 .\
ij N ij N

In
o
m

N

Repeated integration by parts shows that

de-1
_12 N 2 ey o
(2m) f exp{—%y11~+it hN(y“)}dy11 =0(t]l ) = 0(eN>,
-1

—deN

again uniformly under (3.5.23). Since

m
_1 co

P, ({ ] Uy, l+lz  J+lv.. 1) <dehH =1-0(),

ON i,5=1 ij ij ij,N N N
we have

3 ket
vy (t) = E(E(etr(ltkEI e Py | ¥y (D) £ (LD, 2,Vv)) =
= O(EN),
This proves (3.5.21).
Let
2 2

~ bt oy 2k=1
(3.5.24) ¢ (t) = e s {1+st§1 ¥y (6) (it) }, te R
By (3.5.19)
(3.5.25) { | (£ =3, (£)) /tlat = 0(el),

lel<e ®

N

and by (3.5.21) and (3.5.24)
(3.5.26) f |y, ()-8 (£))/tlat

Y -2

ex <€t|<eN

< N f . IwN(t)/t]dt + N J . I¢N(t)/tldt = O(EN).

€y <It[<eN €y <lt|<eN



The function E& is the Fourier transform of the function EN defined by
(3.5.27)  Fu(x) = 0(x) - e dy, (O ¢(x) + v, (06" (x) 1},

where ¢ = ®'. By Esseen's smoothing Lemma (ESSEEN (1945), Theorem 2a, p.32),
-2

€
N
~ -1 ~ o 20 2
(3.5.28) IGN(x)—FN(x)] < J l(¢N(t)—¢N(t))/tldt + O(EN) = O(sN),

N

2 2
uniformly in x € IR . Hence GN(x+c€N) = GN(x) + O(SN) for each constant

¢ e R and by (3.5.17), (3.5.27) and (3.5.28)
-~ 2, _ e " +0(e2
FN(X) = FN(x) + 0(€N) = & (x) EN[Yl(GN)¢(x) +Y2(9N)¢ (%)} + O(EN),

implying (3.5.5). [

PROPOSITION 3.5.2. Let {ON} be a bounded sequence of alternatives such that
(i) N tr ON >0, 45 N -+ ®
and

(ii) 6. ../6 < ¢ < 1, for N sufficiently large.
2,N "1,N
(3)

Let the critical value Cy of Roy's largest root test be defined by (3.3.1).

Then cé3) has the expansion

(3) ~15 -1
e =z X e’ 4
(3.5.29) Sy 81,N + N T3,NuB + N {n1 + (m+1+N n)el,N
m
+ 7 0, -8, vl 4. 4o, 6. )
§=2 1,N "j,N 1, "j,N 1,N j,N
-2 2 8 .3 2 ~3/2 -1
= - ) g
+ T3,N(461,N+891,N+ 3 el,N)(uB DY + 0mw IB,N)’
where
5

(3.5.30) T3,N = {261,N(2+61,N)} .

PROOF. Let

. 2k
(3.5.31) ey = {NT3 e,

/N
= o1 (yoliiiy
Dy y = Ty, (YORHOY -0V,
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= YY' + ZZ' ~
2,N ¥ z T3,ND1,NVN’

o
i

%N T 73,8 k-1, 88"

where ¥, 2 and VN are defined as in the proof of Proposition 3.5.1. On the
set B, defined by (3.5.12) with Tt

replaced by T , the statistic

N 2,N 3,N
T—z S S—1 has the con ent ies expansion
3,N "h,N Se,n NaS converg power series expansi
2 i 2 *® k
o Ja = - .
(3.5.32) L. sh'N se’N TB’NON kgl £y Dk,N
-2
Ay = >,z i o s of A .
Let N 3 N @N and let Al N Am,N be the diagonal elements o N

w2 -1 .
On BN the largest latent root leN of T3'N Sh,N Se,N can be expanded in the

following way

-2 (1) (1) 2

(2)
5. = +
(3.5.33) £, o it ey t e {d11 jgl EPPChHA 1+
(3) (1) (2) (2) (1) (1) (1) (1)
€ {d11 + 1w (@yy7dyy Ty —Hydyy Ty dyy
J>1 )
(1) (1) (1)
4 Z u,.u, .d d.. } + R
1,341 1i714714 N’
where d(k) is the ij~th element of the matrix D = 0 (6 -0 )m1
4 i- kN Y15 1,871,870,
and IRNI ey for some constant c, . The coefficients in (3.5.33) can be
computed by a perturbation method (see BELLMAN (1960) or FUJIKOSHI (1978)).
~1 ~2
Lf? Py be tge df of €y (Kl N3, N 1, N) and let Gy be the df of
€N (ﬂl N 3,N 1N RN) Then, by the same arguments as used in the proof of
Proposition 3.5.1
Fo(x) = G_(x) + 0(c2)
N N N
and
G (x) = 8(x) - e {h, (0 )¢(x) + h (6)¢"(x)} + 0(e2)
N N 1N 2N N
where
-1
= + o + +
hy(B) = n, + (mHl+N=n)O o+ Zl(s1 e e (T Ty
(3.5.34) _ J
4 2 -2
hz(@N) = 5- 1,N (3+66 + 61 N) 3,N°
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The proof can be completed in the same way as the proof of Proposition
3.5.1. 0O

REMARK 3.5.1. If condition (ii) is not satisfied, the expansion (3.5.29) is

not correct. However, if (i) holds, we still have

(3.5.35) c§3)

=%
= el.N + 0(N %),

since (3.5.32) remains valid under this condition.
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tigties, 1975. ISBN 90 6196 102 5.

J.L. MIJNHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

F. GOBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108 4.

P. VAN EMDE Boas, Abstract resource-bound classes, part 1.
ISBN 90 6196 109 2.

P. VAN EMDE BOAS, Abstract resource-bound classes, part 2.
ISBN 90 6196 110 6.

J.W. DE BAKKER (ed.), Foundations of computer science, 1975.
ISBN 90 6196 111 4.

W.J. DE SCHIPPER, Symmetric closed categories, 1975. ISBN 90 6196
112 2.

J. DE VRIES, Topological transformation groups 1 A categorical ap-—
proach, 1975. ISBN 90 6196 113 0.

H.G.J. P1JLS, Locally convex algebras in spectral theory and eigen—
function expansions, 1976. ISBN 90 6196 114 9.
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H.A. LAUWERIER, Asymptotic analysis, part 2.
ISBN 90 6196 119 X.

P.P.N. DE GROEN, Singularly perturbed differential operators of
second order, 1976. ISBN 90 6196 120 3.

J.K. LENSTRA, Sequencing by enumerative methods, 1977.
ISBN 90 6196 125 4.

W.P. DE ROEVER JR., Recursive program schemes: semantics and proof
theory, 1976. ISBN 90 6196 127 0.

J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976.
ISBN 90 6196 129 7.

J.K.M. JANSEN, Simple periodic and nonmperiodic Lamé functions and
their applications in the theory of conical waveguides,1977,
ISBN 90 6196 130 O.
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ISBN 90 6196 122 x.

H.J.J. TE RIBLE, 4 theoretical and computational study of general—
ized aliquot sequences, 1976. ISBN 90 6196 131 9.

A.E. BROUWER, Treelike spaces and related connected topological
spaces, 1977. ISBN 90 6196 132 7.

M. REM, Associons and the closure statement, 1976. ISBN 90 6196 135 1.

W.C.M. KALLENBERG, Asymptotic optimality of likelihood ratio tests in
exponential families, 1977 ISBN 90 6196 134 3,

E. DE JONGE, A.C.M. VAN ROOLJ, Introduction to Riesz spaces, 1977.
ISBN 90 6196 133 5.

M.C.A. VAN ZUIJLEN, Empirical distributions and vankstatistics, 1977.
ISBN 90 6196 145 9.

P.W. HEMKER, A numerical study of stiff two-point boundary problems,
1977. ISBN 90 6196 146 7.
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part 1, 1976. ISBN 90 6196 140 8.
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part 2, 1976. ISBN 90 6196 141 6.

L.S. VAN BENTEM JUTTING, Checking Landau's "Grundlagen" in the
AUTOMATH system, 1979 ISBN 90 6196 147 5.

H.L.L. BUSARD, The translation of the elements of Euclid from the
Arabice into Latin by Hermann of Carinthia (?) books vii~xii, 1977.
ISBN 20 6196 148 3.

J. VAN MILL, Supercompactness and Wallman spaces, 1977.
ISBN 90 6196 151 3.
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ISBN 90 6196 152 1.

S.G. VAN DER MEULEN & M. VELDHORST, Torrix II,
ISBN 90 6196 153 x.

A. SCHRIJVER, Matroids and linking systems, 1977.
ISBN 90 6196 154 8.
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J.W. DE ROEVER, Complex Fourier transformation and analytic
functionals with unbounded carriers, 1978.
ISBN 90 6196 155 6.

L.P.J. GROENEWEGEN, Characterization of optimal strategies in dy-
namic games, . ISBN 90 6196 156 4.

J.M. GEYSEL, Transcendence in fields of positive characteristic,
1979. ISBN 90 6196 157 2.

P.J. WEEDA, Finite generalized Markov programming,1979,
ISBN 90 6196 158 0.

H.C. TIJMS (ed.) & J. WESSELS (ed.), Markov decision theory, 1977.
ISBN 90 6196 160 2.

A. BIJLSMA, Simultaneous approximations in transcendental number
theory, 1978 . ISBN 90 6196 162 9.

K.M. VAN HEE, Bayestian control of Markov chains, 1978 .
ISBN 90 6196 163 7.

P.M.B. VITANYI, Lindenmayer systems: structure, languages, and
growth functions, . ISBN 90 6196 164 5.

A. FEDERGRUEN, Markovian control problems; functional equations
and algorithms, . ISBN 90 6196 165 3.

R. GEEL, Singular perturbations of hyperbolic type, 1978,
ISBN 90 6196 166 1

J.K. LENSTRA, A.H.G. RINNOOY KAN & P. VAN EMDE Boas, Interfaces
between computer science and operations research, 1978,
ISBN 90 6196 170 X.

P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (Eds), Proceedings bicenten—
ntal congress of the Wiskundig Genootschap, part 1,1979,
ISBN 90 6196 168 8.

P.C. BAAYEN, D. VAN DULST & J. COSTERHOFF (Eds), Proceedings bicenten—
ntal congress of the Wiskundig Genootschap, part 2,1979,
ISBN 90 9196 169 6.

D. VAN DULST, Reflexive and superreflexive Banach spaces, 1978.
ISBN 90 6196 171 8.

K. VAN HARN, Classifying infinitely divisible distributions by
funetional equations, 1978 . ISBN 90 6196 172 6.

J.M. VAN WOUWE, Go-spaces and generalizations of metrizability,1979.
ISBN 90 6196 173 4.

R. HELMERS, Edgeworth expansions for linear combinations of order
statistics, . ISBN 90 6196 174 2.

A. SCHRIJVER (Ed.), Packing and covering in combinatorics, 1979.
ISBN 90 6196 180 7.

C. DEN HEIJER, The numerical solution of nonlinear operator
equations by imbedding methods, 1979. ISBN 90 6196 175 O.

J.W. DE BAKKER & J. VAN LEEUWEN (Eds), Foundations of computer
setence III, part 1, 1979. ISBN 90 6196 176 9.
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sctence III, part 2, 1979. ISBN 90 6196 177 7.

110 J.C. VAN VLIET, ALGOL 68 transput, part I: Historical Review and
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111 J.C. VAN VLIET, ALGOL 68 transput, part II: An implementation model,
1979. ISBN 90 6196 179 3.

112 H.C.P. BERBEE, Random walks with stationary increments and Renewal
theory, 1979. ISBN 90 6196 182 3.

113 T.A.B. SNIJDERS, Asymptotic optimality theory for testing problems
with restricted alternatives, 1979. ISBN 90 6196 183 1.

114 A.J.E.M. JANSSEN, Application of the Wigner distribution to harmonic
analysis of generalized stochastic processes, 1979.
ISBN 90 6196 184 x.

115 P.C. BAAYEN & J. VAN MILL (Eds), Topological Structures II, part 1,
1979. ISBN 90 6196 185 5.

116 P.C. BAAYEN & J. VAN MILL (Eds), Topological Structures II, part 2,
1979. ISBN 90 6196 186 6.
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1979. ISBN 90 6196 188 2.

118 P, GROENEBOOM, Large deviations and Asymptotic efficiencies, 1980.
ISBN 90 6196 190 4
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