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CHAPTER 1

INTRODUCTION

In this monograph we shall be concerned with some asymptotic properties
of so-called branching processes. Talking about a branching process
{Zn; n=20,1,2,...} it is usual to think of Zn as the number of individuals
in the nth generation of some population. Doing so, this number Zn equals

the number of individuals produced by the Zn individuals of the (n—l)St

-1

generation, that is, we can consider Zn as a sum of Zn random variables,

which are usually assumed to be independent and identicilly distributed.
Such processes are known as Galton-Watson processes. Many results about
these have been derived and we shall mention some of them below. For in-
stance, there is the so-called extinction or explosion theorem, which says
that P(limn_”0 Zn==0 or «) = 1. It turns out that in a more detailed analysis
of asymptotic properties of Galton-Watson processes an important role is
played by the expectation of the so-called offspring distribution. This
offspring distribution is defined as the distribution of the random number
of individuals produced by one individual. We denote its expectation by m,
implying that under the usual assumption that P(ZO= 1) =1, m = Ezl. We can
distinguish four cases for Galton-Watson processes:

(1) subcritical processes, that is processes for which m < 1. In this case

P(lim Zr1= 0) = 1, and if EZ

. -n
S log Z, < « then llmn+w m P(Zn>>0) > 0;

1 1
(2) critical processes, that is processes for which m = 1. In this case

P(lim Zn==0) = 1, and if the variance 02(21) of 7z, is finite, then

ne 5 1
LLJ_mn_)co nP(z >0) = 2/c (Zl);
(3) supercritical processes, that is processes for which 1 < m < «=. In this
case P(lim Z =0) < 1. If P(lim zZ_=0) > 0, then such a process,
n>° “n nr® n

conditioned on {limném Zn==0} can be considered as a subcritical pro-
cess {En; n=0,1,2,...}, with probability generating function of its
offspring distribution given by f(s) = EiEELy where £ is the probability

generating function of the offspring distribution of the original pro-

cess and ¥ = P(limn+m Zn==0)* Furthermore, there exists a sequence of



constants {an; n=0,1,2,...} such that

P(0 < lim a 2_<w|lim Z_=) = 1;
nn n
n->o n-»o

(4} explosive processes, that is processes for which m = «, In this case

P({lim zZ =0) < 1. If P(lim Z_=0) > 0, then for such a process,

n-+oo n n-reo n
conditioned on {limn+m Zn==0}, the same result as under 3 holds, where-
as there exists no sequence of constants {an; n=20,1,2,...} such that

P(0 < lim a Z_ <« | lim 2 =) = 1.
nn n
oo n—>co

We can however construct a function L, such that

P(O < lim e "L(1/2) <= | lim 2_==) = 1.
n-—-e > !

In a paper of JIﬁINA [1958] it was noticed, that the size of the popu-
lation can be measured by other means than by fhe number of individuals, for
instance by means of its weight or volume. Therefore, it is reasonable to
consider branching processes with the non-negative real numbers as their
state space. Such processes {Zn; n=20,1,2,...} are studied in this mono-
graph. We pay particular attention to the correspondences and the differences
between these processes and Galton-Watson processes. After some preliminar-
ies in Chapter 2, we show that a necessary and sufficient condition for the
existence of such processes is that the offspring distribution, defined as
the distribution of the random quantity produced by a quantity of size 1,
is infinitely divisible. After that we shall see in Chapter 3, that also
for these processes P(limném Zn==0 or «) = 1, and then the behaviour of the
process on the events {limn+w z = 0} and {limn+w Zn==w} is further investi-
gated. As a rule we can say that this behaviour, both on {limn+m Zn= 0} if
P(Z1=:O) > 0 and on {limnéw Zn=£»} is essentially the same as that for
Galton-~Watson processes. This correspondence is elaborated in Chapters 4,

5, 6 and 7, where we study successively the four cases mentioned above under
1, 2, 3 and 4 for Galton-Watson processes. The only remaining case is then
the behaviour of the process on {lim

Ty-»co
for Galton-Watson processes P(Z1 =0} = 0 implies that every individual pro-

zn=o} if P(Z1=O) = (. Notice that

duces at least one individual, whence it follows that the process cannot

become extinct, that is P(limném‘zn= 0) = 0. However, this reasoning is not

valid in the case we consider: if we take for instance P(Zl= 1) = 1, then



it follows that P(Zp==(%)n) =1 for all'n =1,2,3,... , and so

P(limn»w Zn= 0) = 1, while obviously P(Zl= 0) = 0. This example also shows

that we can have that P(lim 7 =0) # lim P(Z =0), in contrast with
n>® n n—ro n

Galton-Watson processes, for which these two expressions are always equal

to each other. Now it turns out that we can use similar techniques for the

study of the process on {lim

7 =0} if P(Z, =0) = 0 as we use for the
n>o n 1

study of the process on {limn+w Zn=‘”}. We mentioned above that in the
latter case the value of the parameter m is important and we get different
results according as m < ® or m = ». If we consider the process on

{limn+m Zn:=0} if P(Z1= 0) = 0, it is not anymore the parameter m which

plays an essential role, but an other parameter comes in, to wit the almost

sure infimum of Z, , defined by inf{x; P(Z1 <x) >0}. This parameter is de~

1’
noted by a. A similar distinction as between the cases m < ® and m = « will
be shown to exist between the cases a > 0 and a = 0. As the most important
results we have that if a > 0, then there exists a sequence of constants

{a ;s n=20,1,2,...} such that P(0 < lim
n n-—-w

a Z2 <ow|lim Z_ =0) = 1, where-
n A n>o n

as 1f a = 0 we can construct a function L such that

P(0 < lim e 'L(1/2 ) < = |1limz_=0) = 1.
n»o n->c
The cases a > 0 resp. a = 0 will be treated in Chapters 8 resp. 9. After
this rather superficial introduction we shall now pass on to a more detailed

approach of the problems sketched above.
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CHAPTER 2

PRELIMINARIES

2.1. SOME PROBABILITY THEORY

In this section we formulate some concepts from probability theory we
need in the sequel. Throughout this study all random variables are supposed
to be defined on one probability triple (Q,F,P).

Let {xt} be a collection of random variables, indexed by a parameter
t in some subset I of IR, Such a collection is called a stochastic process.
We write {Xt; t e I} or {X(t); t € I}. As a first example we consider a

random walk.

DEFINITION 2.1.1. A random walk is a stochastic process {Xn; n=0,1,2,...}

' n
such that XO = 0 and Xn = Zj:l Yj’ n=1,2,3,..., where Yl'YZ'YB"" are

independent and identically distributed random variables.

From this definition we see that a random walk has the following two
properties:

1. The process has stationary increments, that is, for any fixed, non-nega-
tive integer m, the increment X(n+m) -~ X({n) has, for all n = 0,%1,2,...,
the same distribution.

2. The process has independent increments, that is, the o-field spanned by
{X(n+m) ~X(n), m = 0,1,2,...} is, for all n = 1,2,3,..., independent of
the o-field spanned by {X(m), m = 0,1,...,n}.

It is possible to generalize random walks to processes with index-set
[0,») having properties analogous to 1 and 2 above, that is 1 and 2 do not
only hold for all non-negative integers m and n, but for all s and t €
[0,2). If the values of X(l1) are non-negative then these processes are call-

ed subordinators. More precisely,

DEFINITION 2.1.2. A stochastic process {X(t); t € [0,»)} is called a




subordinator, if it has stationary and.independent increments, and if, for
almost all sample paths X(t,w):

1. X(0,w) = 0;

2. X(°,w) is right-continuous on [0,®);

3. X(*,w) has finite left limits on (0,);

4. X(1l,w) = O.

It follows from this definition that for each n = 1,2,3,..., X(1) =
?21 Yn,j’ where Yn,j = X(%J - X(jﬁio, and that Yn,l’Yn,2""’Yn,n are in=-

dependent and identically distributed, implying that X(1) has an infinitely
divisible distribution. On the other hand, it is well-known that, given a
non-negative random variable X having an infinitely divisible distribution,
there is a unique subordinator {X(t); t e [0,»)} such that X(1) g X. (The
notation X g Y means that X and Y have the same distribution.) See e.g.
BREIMAN [1968].

An important class of random variables appearing in the theory of
stochastic processes is the class of so-called stopping times. Roughly
speaking, a stopping time T only depends on the stochastic process up to
time T. Let {X(t); t € I ¢ [0,»)} be a stochastic process. We denote by

F(2(s), s € [0,t] n I) the u~field spanned by {X(s); s ¢ [0,t] n I}.

DEFINITION 2.1.3. Let I ¢ [0,»), {X(t); t € I} a stochastic process and T

a random variable with values in I. T is called a stopping time for the

process {X(t); t € I}, if for every t 2 0, {T < t} ¢ F(X(s), s ¢ [0,t] n I).

It follows from Definition 2.1.2 that if we define Xt(s) by
Xt(s) = X(t+s) ~ X(t), s,t € [0,»), then for any t ¢ [0,») the process
{Xt(s); s € [0,»)} has the same distribution as the process {X(s); s €
[0,«)} and is independent of the o-field spanned by {X(s); s ¢ [0,t]1}. This
property is called the weak Markov property. It says that at any time t> O,
the process starts afresh. A similar property satisfied for any stopping
time T is called the strong Markov property. Before stating the precise
definition we notice the following. If {X(t); t € I ¢ [0,»)} is a stocha-
stic process and T a random variable having at most countably many values,
which are moreover elements of I, then X(T) is again a random variable.
This is in general not true for an arbitrary random variable T. However, if
for example T is a stopping time for a process {X(t), t € [0,»)} having al-

most all sample paths right-continuous, then X(T) is also a random-variable.



See BREIMAN [1968]. If T is a stopping time for the process
{X(t); t € T < [0,%)}, then we denote by F(X(s), s ¢ [0,T] n I) the o~
field of events B € F such that B n {T < t} ¢ F{X(s), s € [0,t] n I).

DEFINITION 2.1.4. Let I = [0,») or I = {0,1,2,...}, {xX(t), t € 1} a stocha-

stic process, having almost all sample paths right-continuous in case I =
[0,»). Then the property that for any stopping time T for the process
{X(t); t € 1}, the process {Xl(t)' t € I}, defined by xl(t) = X(P+t) - X(T),
has the same distribution as {X(t), t € I} and is independent of

F(x(s); s € [0,7] n I), is called the strong Markov property.
The following result is well~-known, see e.g. BREIMAN [19687.

LEMMA 2.1.5. For random walks and for subordinators, the strong Markov

property holds.
This section is closed with a lemma which will be applied in Chapter 3,

LEMMA 2.1.6. Let {X(t); t € [0,»)} be a stochastic process such that, for
almost all w € 9, X(t,w) is a right continuous function of t for t € [0,),
and let (ZO,Zl,B@e,Zn) be a random vector such that Zn is non-negative.
Suppose that there exists a random variable M such that |X(t)| < M for all
t ¢ [0,) and that EM < «, and that furthermore (ZO'ZI"'°’Zn) and

{x(t); t ¢ [0,2)} are independent. Then E(X(Zn)|ZO,Zl,,..,Zn) = [Ex(t)]t=zn
a.s..

PROOF. Because almost all sample paths of the process {X(t); t ¢ [0,=)}

are right-continuous, we can write

o

o k1
X(Zn) N %iz kEO I[k/ﬂ,(k+1)/ﬂ)(zn)X(—Ifo a.s.,

where I stands for the indicator function. Now [X(t)]| < M and EM < «, and

hence the dominated convergence theorem yields that

L ot K+l
E(X(2 ) |25,8, 000z ) = E: E(kEOI[k/L(kH)/K) (Z) X5 [2,2, 000 0B) BeSee

Furthermore,

N
[ 2 k+1

k=01[k/£, (k1) ) B X s



for every positive integer N, and therefore, again by dominated convergence,

we obtain

E(X(Zn)]ZO,Zl,..,,Zn) = lim

§ K+l
Lo k=

o BTy e, ity 20) B KO0 120021002

Y ke+1
= lim kZO /e, (k) 70 B BRI 200200002

Lreo
v k+1
=lim ) I (Z YEX(=22)  a.s.,
foe Koo LK/&s (k+1)/£) *n z

where the last equality follows from the independence of {X(t); t ¢ [0,=)}
and (ZO’Zl""’Zn)' Finally, the right-continuity of almost all sample
paths of {X(t); t € [0,»)} allows another application of the dominated con-
vergence theorem yielding that E(X(Zn)]ZO,Al,...,Zn) = [EX(t)]t=Zn a.s.. [

2.2. SOME RESULTS ABOUT CUMULANT GENERATING FUNCTIONS
In the following chapters we shall often make use of cumulant generat-

ing functions. We therefore formulate some properties of these. Usually the

cumulant generating function h of a possibly defective random variable X is

- ~S.
defined for s € [0,») by h(s) = -logEe SX, with the convention that e ®
=0ande " =w for all s ¢ [0,2). As long as we consider only non-nega-
tive, real values of s, and use the convention ~loge = -x, this function h

is well-defined for every random variable X. But we shall also be concerned
with h(z) for complex values of z and then we encounter the well-known prob-

lem that the logarithm of a complex number is not univalent. Now we can try
~h(z)

to define h(z) as a continuous function, which satisfies e = ¢(z),
where ¢(z), called the Laplace transform of X, is defined by ¢ (z) = Ee_zx,
with the conventions that e %% =0 if Rez = 0, enz'm = o if Rez< 0 and

O . . . .
= e m. This can be done for all complex z in a simply connected sub-

set of the complex plane, if ¢(z) is continuous and has no zeros in that
subset. Now we are only dealing with non-negative random variables X, having
an infinitely divisible, possibly defective distribution, and it follows
from the theorems 5.3.1 and 8.4.1 in LUKACS [1970] that the Laplace trans-
form ¢(z) of such a random variable X has no zeros on {z;Rez >0} unless
P(X=) = 1, Furthermore, this ¢(z) is continuocus on {z;Re z >0} and hence we

can define on {z;Rez =0} a univalent function h(z), which is continuous



and satisfies ¢(z) = e—h(z) and which is real for z e [0,x), with the con-

vention that h(z) = o if P(X=w) = 1, This function h(z) is written as

—logE}eUZX. This leads to the following definition.

DEFINITION 2.2.1. Let X be a non-negative random variable with an infinitely

divisible, possibly defective distribution. Then the function
(2.2.1) h(z) = -logEe 2%,

where z is a complex number with Rez 2= 0, is called the cumulant generat-—

ing function of X.

In this section h stands for the cumulant generating function of a non-
negative random variable X with an infinitely divisible, possibly defective
distribution, not concentrated in one point, and a for the first point of

increase of the distribution function F(x) of X, that is
(2.2.2) a = inf{x;F(x) >0}.

Many properties of h(z) can be deduced from the corresponding proper-
ties of the Laplace transform ¢ (z). First of all we notice that ¢(z) is
analytic for all z with Rez > 0, and that O < |¢(z)| < 1 on {z;Rez>0}.
The derivatives of ¢(z) are given by

(2.2.3) 6™ (z) = (-1)"mx"e"%X, Rez > 0, n

il

1,2,3,... ,

Z.

with the convention that wne_ ® = 0 if Rez >0, n=1,2,3,... . This

yields

LEMMA 2.2.2. The function h(z) is well-defined and continuous for all

z € {z;Rez >0} and analytic for all z € {z;Rez >0}.

PROOF. From the remarks made before Definition 2.2.1 we know that h(z) is
well-defined and continuous for all z with Rez 2 0; h(z) is analytic on

{z;Rez>0} since 0 < |¢(z)| < 1 and ¢(z) is analytic on {z;Rez >0}. O

We shall now formulate some results on h(s) for s € [0,»). The follow~

ing property turns out to be very useful.
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LEMMA 2.2.3.
(a) If P(O<X<w) > 0, then h(s) is strictly increasing in s, 0 £ s < o;

(b) h(s) is concave on [0,»).

PROOF. Part (a) is an easy consequence of the definition of h. Part (b) is
obtained by an application of Schwarz' inequality, which states

1 1
E exp(—%(sl+s2)x) < (E exp(-slx))z(E exp(—szx))z, .18, € [0,),

1/

and therefore
h(b(s,+s,)) = fh(s)) + jn(s,)

1152 e [0,2). O

for arbitrary s
As is well-known the behaviour of ¢(s) for small s provides us with
some information on the distribution of X near «, and reversed. The trans-

lation of this fact in terms of h is stated in the following two lemmas.

LEMMA 2.2.4.
(a) lims¢0 h(s) = h(0) = =1log P (X<»);
h(s)
s

(b) If P(X<w) = 1, then lim = h'(0) = EX £ »,

s¥0

PROOF .
(a) By lemma 2.2.2 it follows that h(0) = lims+0 h(s); furthermore, the

dominated convergence theorem implies that

lim h(s) = lim-—logE:e-SX = ~logE lim e~sX = -log P (X<®).

s¥0 s+0 s+0
(b) By the concavity of h (Lemma 2.2.3(b)), h'(0) = lims¢0 h' (s). Since
h(s) = —logE:e_SX, it follows from (2.2.3) that
h'(s) = _{E exp(-sX))' _ E{X exp(-sX)}
E exp(~sX) E exp(-sx) '

and so, by part (a) of this lemma and again dominated convergence,
h' (0) = EX. 0

LEMMA 2.2.5.
(a) lims+m h(s) = =log P(X=0);



(b) limsém {h(s) - as} = -log P(X=a);
h(s)

(c) lims+m

= Q.

PROOF. The proof of part (a) is analogous to the proof of Lemma 2.2.4(a).

Part (b) follows by dominated convergence, because h(s) - as =

—logE:e_S(X_a). Part (c) is proved by taking the limits as s > « and § + O

in the inequalities

a =< -1 log E e-sX

1
- <
- a+§ s log P(X<a+d),

1 -sX
S—-S— logEe I{XSaHS} <

where I stands for the indicator function. 0

-+ EX as s + 0 and —j;—-+ a as s - «,. Next

decreases from EX to a as s passes through (0,).

We have thus seen that
h(s)
s

h(s) h(s)
s

we notice that

LEMMA 2.2.6. The function hif) is strictly decreasing in s € (0,).

PROOF. This is immediate from the concavity of h and the fact that X is

not concentrated in one point. 0

We terminate this section with a lemma which describes the connection
between the cumulant geherating functions of the random variables of a sub-

ordinator. A similar result holds for random walks.

LEMMA 2.2.7. Let {X(t); t € [0,®)} be a subordinator, and h(z,t) the cumu-

lant generating function of X(t). Then
h(z,t) = teh(z,1)

for all t 2 0 and all complex z with z € {z;Rez 20}.

PROOF. Because X(t+s) = X(s) + {X(t+s)-X(s)}, and, by Definition 2.1.2,
X(s) and X(t+s) - X(s) are independent and X(t+s) - X(s) g X(t),

(2.2.4) h(z,t+s) = h(z,t) + h(z,s)

for all s, t 2 0 and all complex z with z € {z;Rez =0}. Therefore, for all

) m .
rationals r = 5 2 0, where m 2 0 and n > 0 are integers,

hiz,r) = hiz,® = mhiz,D =2 h(z,1) = reh(z,1).
n n n
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Now by (2.2.4), h(z,t) is non-decreasing in t ¢ [0,») for all z ¢ [0,=),
and so h(z,t) = t<h(z,1) for all t € [0,») and all z ¢ [0,»). Since by Lemma
2.2.2 both h(z,t) and te<h(z,1) are analytic on {z;Re z >0} and continuous on

{z;Re z2 0}, also h(z,t) = t°h(z,1) for all t ¢ [0,») and all complex
z € {z;Rez20}. 0
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CHAPTER 3

GENERAL RESULTS

3.1. INTRODUCTION

Since long the theory of branching processes has been studied. For an
interesting historical sketch we refer to JAGERS [1975]. The idea of these
processes can be described in the following way. Consider individuals each
of which produces a random number of new ones, called its direct descend-
ants, such that the next two properties hold:

1. All the individuals act independently of each other.

2. The random numbers of produced individuals all have the same distribu-
tion.

One starts with a number Z, of individuals, which form the zeroth genera-

0
tion. Further, the number of individuals in the (n+l)st generation,

2oy
is the number of direct descendants of the Zn individuals in the nth gener-
ation for n = 0,1,2,... . Such processes {Zn; n=20,1,2,...} are called
Galton-Watson processes after F. Galton and H. Watson, who studied these
processes in the nineteenth century. For these processes all the Zn are
integer-valued. Now we want to generalize this to branching processes {Zn;
n=20,1,2,...} with Zn non-negative, real-valued. To this end we notice
that we can describe a Galton-Watson process more formally as follows. Let
b4

Y.,y be a sequence of independent and identically distributed ran-

17727737
dom variables, ZO some given positive integer. Then we can define Z1 to be
the sum of the first ZO random variables of the sequence {Yn; n=1,2,3,...}.

After that we can, conditionally given Zl’ define Z2 to be the sum of the

following Z, random variables of the sequence {Yn; n=1,2,3,...}, and so

1
on. This leads to the next definition which has indeed the advantage of

_being easy generalizable to processes with Zn real~-valued.

DEFINITION 3.1.1. Let {Xn; n=0,1,2,...} be a random walk such that

o

= 1, and let Z, = C for some positive

P(X1=k) = P k=20,1,2,.. 0

v oo Py
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integer C, S_, =0 and S_ =3I %, n=0,1,2,..., where 2 Xg_ - Xg .

-1 k=0 n+1 Sy n-1
n=20,1,2,... . Then the process {Zn; n=20,1,2,...} is called a Galton-
Watson process; the distribution of X1 is called the offspring distribution

of the process {Zn; n=20,1,2,...}.

From this definition we can indeed prove that Zn+1' conditionally
given Zn' is equal to a sum of Zn independent and indentically distributed
random variables, and that the properties 1 and 2 mentioned at the beginn-

ing of this section hold. For let Fk be the o-field spanned by

{Xm, m= 0,1,...,k} for k = 0,1,2,... . First of all we notice that since
Sy = 0 and ZO = C, both {S_m1 <k} and {SO:Sk} € Fk for all k = 0,1,2,c0.,
implying that 5_1 and SO are stopping times for the process
{Xn; n=0,1,2,...}. Now suppose that Sk is a stopping time for the process
{Xn; n=20,1,2,...} for k = -1,0,1,...,n~1. This means, by the remark made
before Definition 2.1.4 that Xsk is well-defined for k = -1,0,...,n~1.
Furthermore, since {Snzék} < {Sn_lfék} and
n n
= ) z =c+ | {X X }=cC+ X ,
noyzo K k=1 k-1 k-2 Sn-1

(s sk} = {xg ,sk-Cln{s ,<k}leF forall k=0,1,2,..., and there-

1 -1
fore also S is a stopping time for the process {Xn; n=20,1,2,...}. Hence

we obtain that Xsn is well-defined and therefore the same is true for Zn+1'

Moreover, conditionally given Zn'

1™

VA =

1 (X .- X ).

1 Sn-n1+J Sn--1+:|~1

it

3

Since Sn is a stopping time, the same is true for S + j for § = 1,2,

-1 n-1
3,..., and because Zn e F (Xj, j o= O,1,...,Sn“1), it follows from Lemma

2.1.5 that conditionally given 2 the random variables Xsn—1+j-.xsn—1+j“1'
g o= 1,2,.».,Zn, are independent and identically distributed, also indepen-

dent of the o-field F(Xj, i = O,l,...,sn ), that is, the properties 1 and

2 above are satisfied. :
Now the relation between random walks and subordinators explained in

Section 2.1 makes it clear how to define a branching process

{Zn; n=20,1,2,...} with 7, real-valued.

DEFINITION 3,1.2. Let {X(t); t ¢ [0,»)} be a subordinator and let Zo =

n=20,1,2,...,

. . — - n
for some positive real number C, S_4 = 0 and S, Zk=0 Zk'



where

(3.1.1) Z = X(Sn) - X(8 ) n=20,1,2,... .

n+1 n-1

Then the process {Zn; n=0,1,2,...} is called a branching process with
state space [0,»); the distribution of X (1) is called the offspring distri-

bution of the process {Zn; n=0,1,2,...}.

Such processes were introduced by JIKINA [1958]. Our definition is a
slight modification of a definition used by ATHREYA [1974]. See also
ATHREYA [1975].

From now on we suppose that {Zn; n=20,1,2,...} is a branching pro-
cess with state space [0,»), that ZO = 1, that 21 is a proper, non~degener-
ate and of course non-negative random variable having an infinitely divis-
ible distribution and that h is the cumulant generating function of le
unless stated otherwise.

Using a similar argument as the one following Definition 3.1.1 we can

prove that S is a stopping time for the process {x(t); t ¢ [0,0)} for all

n=-1,0,1,..., that Zn is well-defined for n = 0,1,2,... and that, since
ZO =1,
(3.1.2) Sn =1+ X(Sn—l)’ n=20,1,2,... .

Furthermore, we can deduce from Definition 3.1.2 the following lemma, which

is often referred to as the basic branching property.

LEMMA 3.1.3. For all complex z € {z;Rez20} and all n = 0,1,2,...

~27 ~h(z)2
+1 n
(3.1.3) E(e O ZyiByse-iB) = e a.s..

PROOF. We know already that Sn is a stopping time for the process {X(t);
t € [0,#)} for all n = 0,1,2,... . Furthermore, it follows from (3.1.1)
that {anix} e F(X(s); s ¢ [O’Sn~1])’ where x € (=2,®) and n = 0,1,2,...,
and so the Lemmas 2.1.5, 2.1.6 and 2.2.7 imply that a.s.

~27 -z{X(s_ ,+zZ )-X(s_ ,)}
n+1]zo,zl,...,zn)==E(e n-ln N P

E(e oty

°"Zn)

z Zn —h(z)Zn
= [Elexp(-z{x(s _ +1)-x(s__ ) N}] " =[Elexp(-22)}] "=e ,
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where z € {z;Rez20} and n = 0;1,2,... . 0
3.2. NOTATION
In the sequel the following notation will be used:

-zZ
hn(z) = ~logE e %, with z ¢ {z;Rez 20}, n=20,1,2,...

c(s) resp. cn(s) are the inverses of h{(s) resp. hn(s),

s e [0,®), n=0,1,2,...;

c (s) =h (s) andh (s) =c (s), s € [0,, n=1,2,3,...;
-n n -n n

r = P(lim Zn = 0);
>
m = EZl;

q, = P(Zn = 0);

g = lim ;
n-o %
a = first point of increase of the distribution function of Z

1'
that is a = inf{x; P(z; <x) > 0}.

REMARK 3.2.1. Taking expectations in (3.1.3) yields that hn(z) is the nth

iterate of h(z). By Lemma 2.2.3(a) we know that h(s) and therefore also
hn(s) is strictly increasing in s ¢ [0,»). Since by assumption P(Zl<:w) =1,

it follows from Lemma 2.2.4(a) that lims 0 h(s) = 0 and therefore also

¥

limS¢O hn(s) =0 for all n=1,2,3,... . Furthermore, if P(Z1==O) = 0, then

by Lemma 2.2.5(a) 1ims+m h(s) = » and so limséw hn(s) = o for all n = 1,2,
3;«.. . Thus in this case cn(s) is well-defined for all s ¢ [0,») and all
n=1,2,3,... . However, if P(Z1==O) > 0, then again by Lemma 2.2.5(a),
lims%O h(s) < =, and so 1im5+m hn(s) = ~log P(Zn==0) < » for all n = 1,2,
3,... . This means that in this case cn(s) is only well-~defined for

s ¢ [0,~log P(Zn:=O)).

; s - - <
REMARK 3.2.2. Since, by Definition 3.1.2, {Zn 0} ¢ {Zn+1 0}, AR

for all n=1,2,3,..., and s0 q = limnd’m a, exists and equals P(Zn=$O from



some n on) .
3.3. MAIN RESULTS

It turns out that the expectation of the offspring distribution and the
first point of increase of its distribution function play an important role
in the theory of branching processes. This is further explained in the fol-
lowing chapters. In this section we mention some results that hold in genex-
al, without any assumption about a or m. First of all we shall see that

there is a simple relation between h and r.

THEOREM 3.3.1. limn_me hn(s) = =logr for all s € (0,»). Furthermore, either
(a) or (b) or (c) holds:

(a) h(s) < s for all s € (0,x), and limn_}oo hn(s) = 0;

(b) there exists an s, € (0,») such that h(s.) = s,., and lim h (s) = s
0 0 n>o n

0 o’

(c) h{(s) > s for all s € (0,»), and limn+m hn(s) = o,

PROOF. Since h(s) is concave by Lemma 2.2.3(b) and limS h(s) = 0 by Lemma

+0
2.2.4(a), there is in case (b) exactly one solution € (0,®) of the equa-
tion h(s) = s. Moreover, it is obvious that we are always in one of the

three cases mentioned, and that limnéw hn(s) equals, for all s € (0,«), the
given value in each of the three cases. Now

-SZ ~S7Z

(3.3.1) hds)=—nge nS—logEe ;8 € (0,),

n

Hiim 7 =0}
noe n

where I stands for the indicator function. Because the right-~hand side of

(3.3.1) tends to ~logr as n - «,

(3.3.2) lim h_(s) £ ~logr for all s € (0,»).
nwn

We shall now consider each of the three cases separately.

(a) Suppose h(s) < s for all s € (0,»). Then by Lemma 2.2.4(b), m £ 1. It

follows from (3.1.3) and Lemma 2.2.4(b) that E(Zn+1 |Z0,...,Zn) =

= < i . = i - i -
E‘Zn+1 [Zn) mZn < Zn’ that is {Zn, n 0,1,2,...} is a non negative super
martingale. Hence Zn converges almost surely to a finite limit zZ_as n > =,
Since limn_)oo hn(s) = 0 for all s € (0,»), the continuity theorem for Laplace

transforms (FELLER [1971]) yields
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(3.3.3) P(z_=0) = 1,
oxr

~-logr = -log P(lim 2Z_=0) = 0.
noeo 1

(b) Now suppose that there exists an s, € (0,*) such that h(so) = s,_. Then

0 0
the sequence {e-sozn; n=20,1,2,...} is a bounded martingale by Lemma 3.1.3.
So e—sOZn converges a.s. to some random variable Xw(so) e [0,1] as n > =

and

s/s SO if s € (0,%)
-logEX (s.) = lim h_(s) = {
© "0 n .
0 if s =0

This means that
-S
(3.3.4) P(Xm(so) =0) =1 ~ P(Xm(so) =1) =1 - e P

or

~logr = -log P(Xm(so) =1) = s4.

(¢) Finally, if h(s) > s for all s € (0,»), then -logr = e by (3.3.2). [
In the following theorem the relation between g and h(s) is described.

THEOREM 3.3.2.

(a) g = 0 if and only if P(Z1 =0) = 0;

(b) If P(Z1 =0) > 0, then -logqg is the maximal solution of the equation
h(s) = s.

PROOF .
(a) Since 0 < a, 4+ g as n~> > and P(Z1 =0) = qyr a4 = 0 implies that P(Zl=0)
= 0. If on the other hand P(Z1 =0) = 0, we have by Lemma 2.2.5(a) that

lims_)m h(s) = -log P(Z1 =0) = . It follows that -log P(Zn=0) =
'lims_)(x7 hn(s) =0, n=1,2,3,..., and therefore q = 1j.mn_’m q, =
lim P(Z_=0) = 0.

N> n

(b) P(z,=0) > 0 implies that qn 2q = p(z1=0) >0 for all n = 1,2,3,...,
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and hence, again by Lemma 2.2.5(a), hn(w) i lims_)Oo hn(s) < », so that we

may write, using the continuity of h (Lemma 2.2.2),

h(~logq) + loggqg lim{h(hn(w)) - hn(w)} = lim{hn+1(w) - hn(w)}

n-oo n->o

lim{—logqn+1 + logqn} = 0.

n-ree

Finally, if t is another solution of the equation h(s) = s, then hn(w) 2
hn(t) =t for alln = 1,2,3,..., or —logqll = hn(m) 2t for all n=1,2,3,...
whence -logg 2 t. 0

In theorem 3.3.1 we saw that limn»m hn(s) = ~logr for all s € (0,»).

+Ou

By the continuity theorem for Laplace transforms, this means that Zn Zy
where Z is a random variable with distribution P(Z=0) = 1 - P(Z=») = r.
Actually, we can strengthen this to almost sure convergence. This result is

the so-called "extinction or explosion theorem".

THEOREM 3.3.3.

P(lim Z2_=0) = 1 - P(lim 2 =),
noe nve O
PROOF., From (3.3.3) and (3.3.4) we know already that the theorem holds true
if r > 0. Now, if ¥ = 0, Theorem 3.3.1 tells us that h(s) > s for all
s € (0,). By Lemma 2.2.5(¢) this means that a 2 1, whence P(Z1 =21) =1, and

so, by (3.1.1), 2 > Zn for all n = 0,1,2,... a.s.. Therefore lim Z

n+1 1 n

exists a.s.. Call this limit Zm. Then of course Z has the same distribution

as the random variable Z mentioned above, that is P(Zm==W) = le-r = 1, 0

Now that we know that P(limn_)Oo Zn==0 or ») = 1, the following step is
to find a sequence of norming constants o such that anZn converges in some
sense to a limit Z with P{0<Z<®) > 0. Since unZn = 0 for n large enough
on the event A := {Zn=:0 from some n on} and P(A) = g by Remark 3.2.2, it
is clear that no such sequence {an; n=1,2,3,...} can exist if g = 1, which
happens, as we shall prove in the sequel, if and only if m < 1 and P(ZI=O)> 0.
Suppose therefore that m > 1 or P(Zl==0) = 0. Then, because EZn = hA(O) =
ot = m', a first guess for ol might be a = m ", There are however
two objections against this o First of all it is not clear what to do if
m = «, and secondly, although {mﬁnZn; n=0,1,2,...} is a non-negative mar-

tingale if m < », implying that m“nZn converges almost surely to some
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random variable Z as n - «, it turns out that P(Z=0 or ») = 1 in many cases.
The corollary to the following lemma gives us a better choice for the an,
although it may happen that also with this choice P(limn»m unznf=0 or ®) =1.
However, as we shall see later on, in these cases there is no seqguence

{otn; n=1,2,3,...} of positive constants at all such that oann converges
a.s. and P(limn_)Oo unzn=:O or ) < 1. Remark 3.2.1 and Theorem 3.3.1 explain

the assumptions in the lemma.

LEMMA 3.3.4. If P(Z1=O) =0 and s € [0,») or P(Z1=O) >0 and s € [0,~logr],

(s) 2,

then the sequence {e Cn ;n=0,1,2,...} is a bounded martingale.

PROOF. Although only stated there for Galton-Watson processes, this result
was in fact first proved in HEYDE [1970]. It follows easily on substituting
z = cn(s) in (3.1.3). 1

COROLLARY 3.3.5. If P(Zl=30) =0 and s € [0,») or P(Zl==0) > 0 and

s € [0,~log ¥], then Y(s) := limném Cn(S)Zn exists a.s.; ¢(z,s) :=
_lOg]§e~zY(s) satisfies
(3.3.5) ¢(z,s) = lim h_(zc_(s)), z € {z;Rez>0}.

e P D

PROOF. These are all consequences of well-known results for bounded martin-

gales. See e.g. LOEVE [1963]. O

From now on Y(s) stands for the a.s. limit of cn(s)Zn, 6 (z,s) for its
cumulant generating function, and £(s) for the first point of increase of
the distribution function of Y(s). When we talk about ¥(s) it is taken for
granted that P(Zl==0) = 0 and s € [0,®), or that P(Zl==0) > 0 and
s € [0,-log r]. In the next chapters the study of Y(s) will be continued.
Now we pass on to the so-called total progeny of the branching process.

In Section 3.1 we defined Sn = Z;=O Zk'
This random variable $ is called the

Since each Zn 20, § :=
Qo

llmnéw Sn exists and equals I

k=0 Zk’
total progeny of the process. In a Galton-Watson process, Zn = 0 is eguiva-
lent to Zn = 0 from some n on, and 80 S < © on {Zn + 0}. Furthermore, S = o
on {Zn + w}, Since P(Zn + 0 or ) = 1, this means that P(S<®) = P(Zn > 0).
If the state space is [0,») on the contrary, there is a possibility that
‘Zn - 0, but yet S = «, However, the next theorem shows that this happens

inv

only with probability 0. (The function {f(s)} "' or £ '(s) is defined for

functions f which are monotone for s ¢ I R, as follows: {f(s)}lnv = g(s)
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or £™(s) = g(s), s € I, if and only if g(f(s)) = s for all s ¢ I).

THEOREM 3.3.6. Let k(z) be the cumulant generating function of S. Then:

(a) k satisfies the equation
(3.3.6) k(z) =z + h(k(z)), 2z e {z;Rez20};

(b) k(s) {s - logr - h{(s~-logr) P ~logr, s € [0,») if ¥ > O;

1]

k(s)

]

®, S € [O,m) if r = 0;

(c) P(S<w) = r,

PROOF' .

(a) Let kn(z) be the cumulant generating function of Sn' Then we have,

using Lemma 3.1.3,

—zSn+1 -z

~logEe = ~logE {E (e ntl

kn+1(z)

]zl)}

-zS5 Z
—log{e_zE(Ee ! 1} =z + h(kn(z)).

Now since S, 2:84 g, kn(z) + k(z) as n > © by the continuity theorem for

Laplace transforms and so part (a) follows from the continuity of h.

(b) We distinguish again the same three cases as in Theorem 3.3.1.
1. Suppose h(s) < s for all s € (0,»). Then ~logr = 0 by Theorem 3.3.1,

and by the concavity of h(s) (Lemma 2.2.3(b)), s-h(s) is increasing for
s € [0,0). Therefore {s-h(s)}'™ is well-defined and from (3.3.6) we

see that

(3.3.7) k(s) = {s-h(s) '™, s e [0,%).

2. Now suppose that there exists an s Then

0

we know from Theorem 3.3.1 that 0 < -logr = sO < o, Let h(s) =

h(s-logr) + logr, s € [0,»). Then exp(—ﬁ(s)) is completely monotone

€ (0,») such that h(so) = S4-

since exp(~h(s)) is so, and E(O) = 0. It follows_therefore from Theorem
XIII. 4.1 in FELLER [19717 that h(s) = —logE:e—szl, s € [0,»), where El

is a proper, non-negative random variable; 21 is not concentrated in one

point since Z1 is not. Furthermore, because Z, has an infinitely divis-

1
ible distribution, exp(~h(s)/n} is completely monotone for all
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n=1,2,3,..., and hence the same is true for exp(—;(s)/n) =

r—l/nexp(—h(s—logr)/n), and therefore El has an infinitely divisible

distribution. Let {En; n=20,1,2,...} be a branching process with EO =
having the distribution of El as its offspring distribution. Since

E(s) < s for all s € (0,x), (3.3.7) yields

K(s) = {s-h(s) 1, s e [0,),

where E(s) = —logE)e“SS and S = E:_O Ek' Now let g(s) = k(s) + logr,

then by (3.3.6),

]

g(s) s + h(k(s)) + logr = s + h(g(s) - logr) + logr

s + h(g(s)),

it

and hence

{s-g(s)}inv = %(s), s € [0,»),

i

g(s)

oxr

it

k(s) g(s)-logr = {s—ﬁ(s)}inv-logr

{s-logr - h(s-logr)}lnv - logr, s € [0,%).

3. Finally, if h(s) > s for all s € (0,®), then r = 0 by Theorem 3.3.1 and

as in the proof of Theorem 3.3.3, Zn+1 > Zn for all n = 0,1,2,... a.s.

so P(S=») = 1, Since the cumulant generating function of this S equals

© for all s € [0,®) par£ (b) of the theorem is proved.

(c) By Lemma 2.2.4(a) lims+0 k(s) = -log P(S <), whence, if r > 0,
inv
P(S<w) = lim e‘k(s) = lim e““{s-logr-h(s-log )} T +log x -
s¥0 s40
If ¥ = 0, then we know from part (b) that P(S<w®) =0 = r. 0
By (3.1.2) § =1 +X(S_,), n=0,1,2,... . Furthermore S_, = 0. Th

means that

2

is



(3.3.8) § =1+ X(s~) on {s<w},

where we use the notation X(to—) for limt+to X(t). It turns out however that

the event {X(S) > X(S-)} has probability O on {S<«} and so, using the con-

vention X (w«) = limt_)oo X(t), it follows that S = 1 + X(8) a.s.. This is made

precise in the next theorem.

o

THEOREM 3.3.7. S = Zk=0 Zk satisfies a.s. the equation
(3.3.9) S =1+ X(8).

PROOF. Since 5, is a stopping time for the process {X(t); t ¢ [0,»)} for

alln=-1,0,1,..., we know from Lemma 2.1.5 that

(3.3.10} X(Sn+€) - X(Sn) g X(e) for alln = ~-1,0,1,... and all € > 0.
This means that we have for every € > 0 and § > 0

(3.3.11) P(X(e) > 8) = an(e,é) + bn(e,ﬁ),

where

it

a (g,98) P(X(S_+e) - X(S_) > § and § < =) and
n n n

b (g,8) P(X(S +eg) - X(S_) > § and S = ).
n n n

Also, because Sn is non~decreasing in n,

(3.3.12) X(s_+€) 2:5: g(s+e-) for all € > 0 as n + « on {S <},
and
(3.3.13) X(s_) 2:55 %(s-) as n + @ on {S<w}.

Therefore, writing a(e,§) = P(X(S+e~) - X(S~) > § and S < =), we see by
"(3.3.12) and (3.3.13) that limn+m an(e,é) = afe,8) for every § where a(eg,q)
is continuous and hence by (3.3.11), limn_)oo bn(s,ﬁ) := b(e,8) exists, is

non-negative, and
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(3.3.14) P(X(g) >8) = a(eg,8) + b(e,q)

for every § > O where a(e,§) is continuous. Finally, lim 0 P(X(g) >8) =0

et

by Definition 2.1.2 and, writing a(§) = P(X(S) -=X(S-) > § and S < «), it

follows that lim
49

because X(S+e~) —— X(S) as € ¥+ 0 on {S<=»}. Since every distribution func-

a(e,8) = a(8) for every 8§ > 0 where a(S8) is continuous,

tion has at most countably many discontinuities, we see from (3.3.14), that
if we choose a sequence {en; n=1,2,3,...} such that En ¥+ 0 as n » «, then
limném b(en,d) := b(8) exists and is non-negative for all but at most count-
ably many § > 0. Substituting this into (3.3.14) we obtain 0 = a(d8) + b(S)
for all but at most countably many § > 0, and hence that X(S) = X(S-) a.s.
on {S<®}., This together with (3.3.8) yields the required result on {S<w}.

Since giEl-ELELA-m as t > @ by the strong law of large numbers, X(®) =
a.s., and hence also S = 1 + X(S) a.s. on {S=o}. 0

It follows from Theorem 3.3.7 that S = inf{t 2 0; X(t) = X(t-) <t-1}
a.s.. For if 0 £ t < S and X(t) = X(t~-), then Sh-1 <t < Sy for some n =
0,1,2,... . This means that X(t~) = X(t) 2 X(Sn—l) = Sn-l > t~1. The
analog of this result for a Galton-Watson process is S=inf{n>0; Xn==n~1},
where {Xn; n=0,1,2,...} is a random walk with X g Z,. In a paper of DWASS

1
[1969], the distribution of both S = I and W = {inf n; X, = n-1}

=z
k=0 "k
were derived and observed to be the same. The method used here makes
it clear why this has to be so.

In Section 3.2 we defined a to be the first point of increase of the
distribution function of Z,. If a 2 1 then P(Z1 21) = 1 and hence, by

1
(3.1.1), 2 ,, 22 and P(S==) = 1. If a < 1, then P(ZnZan) = 1, since

+1
h_ (s) n (S)
lim —5— = 1im _TT Tl =a" if P(z,=0) = 0
s k=1 h (s) 1
S0 S0 k-1
and
hn(s) n
lim =0 =a if P(z, =0) > O,
Soveo s 1
and therefore S 2 lim Zn ak = ”l—u The next theorem tells us that
1 n>e k=0 1-a
P(S < —— + g) > 0 for all € > O.

1-~a

THEOREM 3.3.8. If a < 1 then the first point of increase of the distribu-~

tion function of S equals Il;u Furthermore, P(S==Ii—0 = P(Z1 =a)1/(1_§).
- -a



PROOF; Because a < 1, either h(s) < s for all s € (0,») or there exists an

s. € (0,») such that h(sO) = SO’ and therefore, by Theorem 3.3.1, r > O.

0
This means, because of Theorem 3.3.6(b), that

k(s) = {s ~logr - h(s -logr) }inv ~-logr, s e [0,%),
or
(3.3.15) k(s =logr - h(s -logr)) + logr = s, s e [0,0).
Differentiating this we get

k'(s -logr = h(s -logr))-(1 - h'(s -logr)) =1,

and thus, using the concavity of k(s) and h(s) (Lemma 2.2.3(b)), and Lemma

2.2.5(c),

lim l(% = 1lim k*(s) = lim k'(s -logr - h(s -logr))

S0 S0 S
—_ 1 1
1~h'(s~logx)  1-a

it
=
[
g

Sr

This together with Lemma 2.2.5(c) proves the first part. The second part

follows on observing that
1 . S
~log P{S = ——} = lim qk(s) - ——
1-a 1-a
S0
by Lemma 2.2.5(b) and this together with (3.3.15) and again Lemma 2.2.5(b)

implies

s~log r ~h(s-log r)|
1-a

-log P(S =-1—i£) = lim{k(s—log r -h(s-logrx))-

S

= lim{s ~logr =~ s—logr—l-il(s~log r)l
s> @
 h(t)-at _ o9 P(Z=)
= lim = . 0
oo 1-a 1-a

REMARK 3.3.9. We can understand this last result also as follows. S = E—l-—
etk il ; -a
if and only if 7_ = a” for all n = 0,1,2,... . So if P(z,=a) = 0, then



p(s=L> = 0= P(Zl=a)1/(1_a). If P(z,=a) > 0, then

-sZn+1 n n
-log E (e IZn=a ) = a h(s)

+
by (3.1.3), and because an ! is the first point of increase of the distribu-

tion function of Zn conditioned on Zn = an, Lemma 2.2.5(b) yields

+1

n+1 n n+1

. n -
-log P(Z ., =a z =a) = lim {ah(s) ~a "s} =
s>
= -anlog P(Zl=a).
This means that
1 n
P( =———> = P(Z =a for all n =0,1,2,...)
l-a n
o n+1 n
=P(zy=1) T Pz, =a |z =a)
o2} an
= 0 Pz, =)} =
Y n 1
I a e
= 1=
= {p(z,=2)} "0 =p(z,=a) © .

We close this section with a discussion about the rate of convergence
of the random variables Zn in terms of ratios. More precisely, we want to
determine a function f such that Zn+1/f(zn) converges in some sense to a
positive and finite limit. This is not interesting in case P(Zl==0) > 0 and
limnﬁm Zn = 0, because then Zn = 0 from some n on, as we shall see in the
following chapters. It turns out that we can choose £ linear both if we
consider the process on {Zn + o}for m < » and if we consider it on {Zn + 0}
for a > 0. This will be proved in Chapters 6 and 8. So we are left with the
cases a = 0 and P(Z1==O) = 0 on {Zn + 0}, and m = « on {Zn + o}, Since the
branching process is defined in terms of subordinators, we might expect
some help from the paper of FRISTEDT and PRUITT [1971], in which the growth
of subordinators was studied. They proved that under certain conditions
(3.3.16) lim inf %l%%7-= d a.S.,

Y
where the lim inf may be taken both for t + 0 and for t - «, and where

{w(t); t € [0,«)} is a subordinator and
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log|log t]

3.3.17 £ (L) = —
( ) y® b(Yloglloqtl)
t
4
. inv -sW (1)
with b(s) = p (s), s € [0,») and p(s) = ~logEe , s € [0,o), and &
some constant € (0,»). Since P(limnam Zn = 0 or ) = 1, we can try to prove

a result like (3.3.16) for W(Zn)/fy(zn). Then choosing {W(t); t € [0,=)}
such that it has the same distribution as the subordinator by which the
branching process is defined, but independent thereof, it follows that

W(Zn) d Zn for all n =0,1,2,..., and this might possibly lead to a result

+1
concerning Zn+1/fY(Zn)@ In Chapters 7 and 9 however we shall see an example

of a process {Zn; n=0,1,2,...} for which limn+m

Zn+1/fy(zn) = ® a,s,, and
for which the corresponding subordinator satisfies (3.3.16). This means that
this method is not generally successful, and it is not clear how to choose
a good norming function for an arbitrary branching process
{z i n=0/1,2,...7.

We shall now turn back to the quotient W(Zn)/fy(zn) mentioned above,

for which the following results can be proved.

THEOREM 3.3.10. Let {W(t); t € [0,»)} be a subordinator, p(s) = —logEle_SW(l)

s € [0,), b(s) = pinv(s), s € [0,«) and

_ logllog t|
fy(t) = <Ylogllo tl) B t e (0,»).
p{Y=2g . 1-0dtl
t
Suppose that P(Zl==0) =0, If vy > 1 then
v w(Zn)
lim lnf?—a——)—ZY—l 8.8, .
n-+oo Ty n

PROOF. The proof is based on Lemma 4 in the paper of FRISTEDT and PRUITT
[1971]. There they construct, for every B < y-1, a sequence
{tk; k= 1,2,3,...} such that t ¥ 0 as k + « and

Wit )
(3.3.18)  lim inf?—%“g}rz 8 a.s.,
k > o v 'k

and a sequence {tﬁ; k=1,2,3,...} such that tﬁ + © as k -+ o and

“(3.3.19) lim inf —————— 2> B a.S. .
k =+ w Y k+i

resp. t'. Suppose

We shall compare Zn with these t Kk

k
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we A := {lim zn=o} n {zn>0 for all n = 0,1,2,...}

n->w
wit, .,)
n {lim inf “Lt”) > g}.
k &> o Y 'k
Because P(ZI:=O) =0, P(A) = r. Define to = o, then for every n = 1,2,3,...

there is an integer k = k(n,w) such that t < Zn < t, . Hence we obtain

k+1 k
W(Zn) . W(tk(n)+1)
fy(Zn) fy(tk(n))

(3.3.20)

because both W(t) and fy(t) are non-decreasing in t. (See FRISTEDT and
PRUITT [1971]; we use the convention f () = lim £ (t).) Since

Y toe Ty
11mn%w Zn(w) = 0,

(3.3.21) lim k(n,w) = o,

n->co
Therefore, by (3.3.18), (3.3.20) and (3.3.21)

W(Zn)
i .
lim inf Tz > B a.s. on {Zn -+ 0},
n-o “y'n
and since B < y-1 was arbitrary, the result holds on {Zn + 0}. The proof

for the case {Zn + o} ig similar, using the sequence {té; k=1,2,3,...1. 0
The same method yields a result for the lim sup.

THEOREM 3.3.11. Let {W(t); t € [0,)} and b(s) be as in Theorem 3.3.10,
g a positive function on (0,«), such that limt+0 glt) = limt_)Oo glt) = Q,
o a positive constant and

g(t)

£(t)
b(g(t)/tllogtl1+u)

’ t e (0,%).

Suppose that P(Zl==0) = 0 and that f£(t) is non-decreasing both for small
t and for large t. Then
W(Zn)

lim sup Tz = 0 a.S. .
n->w n
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REMARK 3.3.12. Writing

g(t)

X(t) = ? t e (0,%),
t|logt] 14
we get
N x{t) 1+a
= el w1 .
£8) = gy tllegt!
. s
Since 5s) + EW(1l) as s + 0 and

S .

PR o <

5er ¥ inf{z;P(W(1) <x) > 0} as s - o

+

by the Lemmas 2.2.4(b), 2.2.5(c) and 2.2.6, and t|logt| L+ is increasing
in t both for sufficiently small and for sufficiently large t, the condi-
tions on f are fulfilled if x(t) + O for t » «» and x(t) + = for t + 0. As
there exist functions g such that the corresponding y has these properties
and such that also llmt+O g(t) = llmt+m g(t) = 0, there are functions f

which satisfy the conditions of the theorem.

PROOF OF THEOREM 3.3.11. Let £, = e =, k = 1,2,3,..., {vj; k=1,2,3,...}

k
a sequence such that limk_)m vk = o, vkg(t ) <1 for all k = 1,2,3,...

k+1

and llmkﬁm vkg(tk+1) = 0, and let s, = 1/(f(tk+1)vk)’ d any constant

k
€ (0,«) and p(s) as in Theorem 3.3.10. Then we can prove using Lemma 1 in

FRISTEDT and PRUITT [19711],

o«
. > <
(3.3.22) T o= ) P(W(t,) > df(t, ) <
k=1
7= E B e U
Voo TRl
i-e
1
Because skf(tk+1) = ;;-+ 0 as k » =, we see that
® t. pls, )
(3.3.23) T, <@ if and only if T, = z E‘é%?%li“i < oo,
k=1 "k k+1
Now
1+a

o =L E - P(b(g(tk+1)/(tk+1llog gy | ))> .
27 L v, 9t )
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_1 § Vi it
- d 1+a '
k=l vpg(t, )t llogt, |

since 1/(vkg(tk+1)) > 1 and p(tes) < tep(s) for t > 1 by the concavity of

p(s). So, substituting tk = e"k we obtain

e

T, < — T
=1 (k+1) ¢

< o, because o > 0.

| ~1 8

1
a

Thus, by (3.3.22) and (3.3.23), T < o, An application of the Borel-Cantelli

lemma now yields
P(lim sup{w(tk) > df(tk+1)}) =0

and therefore, since d € (0,») is arbitrary,

w(t,)
. k
lim sup HCOR 0 a.s. .
k - o k+1
. k
In the same way we can prove, with ti =e , k=1,2,3;,...,
]
. Wity )
lim sup —}7;73—— = 0 a.s. .
k » o k

Then , using the same method as in the proof of Theorem 3.3.10, we get the

required result. 0
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CHAPTER 4

THE CASE m«<]1

4.1. INTRODUCTION

As we know from the Lemmas 2.2.4 and 2.2.5, the values of m resp. a
are determined by the behaviour of h(s) for small resp. large s. It turns
out that in many theorems these m and a play an important role. We shall
see that if m < 1, then P(limnﬁm Zn==0) =1 and if m > 1, then

P(limn Zn= 0) < 1. Furthermore, as can easily be proved in a similar way
. . . 2 . .
as in JAGERS [1975], if we suppose that the variance of Zl' o (Zl)' is fin-

. . 2 : . 2 .
ite, then lim 07°(z2_ ) =0 if m < 1, whereas lim o (2 ) = o ifm=1,
n—rw n n->oo n

indicating a different behaviour of the branching process in the cases m < 1

and m = 1. It also turns out that in many results it is essential that

lims+0 hi?) < », This explains why we distinguish four cases for m, namely
h
m<i1l, m=1,1<m< andm = o, Similarly, since LLims_mo —{;l-z a, the

positivity of a is important. We therefore study the cases a = 0 and a > O

separately.

Many proofs in the Galton-Watson process theory are based on the con-
vexity of the probability generating function f(s) := E(szli ZO==1) =
Z:=0 P(Zl==k ]ZO==1)sk for 0 < s < 1. If Z1 is not integer-valued, then the

function E(sZl IZO==1) is in general not convex. However we have at our dis-
posal the cumulant generating function h(s) which is concave for s e [0,%),
as we know from Lemma 2.2.3(b). We can therefore apply to this h(s) the
techniques used for f(s) in the Galton-Watson process theory. For this rea-
son we shall often not give a detailed proof, but only refer to the corres-
ponding proof for the Galton-Watson process.

In this chapter we investigate the so-called subcritical processes,
that is processes with m < 1. It turns out that if P(Zl~=0) = 0, the behav-
iour of the processes depends on the value of a. Results concerning that
case are therefore mentioned in Chapters 8 and 9, and we mostly confine

ourselves in this chapter to the case P(Zl==0) > 0.
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4.2. SOME LIMIT THEOREMS

First of all we look at the values of r and q.

THEOREM 4.2.1.

(a) r = 1;

(b) if P(Zl==0) > 0, then q = 1.

PROOF. Since h'(0) = m by Lemma 2.2.4(b), we see that h'(0) < 1. Therefore,
by the concavity of h(s) on [0,») (Lemma 2.2.3(b)), h(s) < s for all
s € (0,»), and so part (a) follows from Theorem 3.3.1 and part (b) is an

easy consequence of Theorem 3.3.2(b). 0

Part (b), of Theorem 4.2.1 states that if P(Zl= 0) > 0, then
limn+w P(Zn2>0) = 0. It is natural to ask how fast this convergence is. An

answer to this question is given in the following theorem, where we see

that, just as in Theorem 4.2.3 below, the finiteness of E2110921 is impor-
tant. In brief, this is caused by the fact that EleogZ1 < « can be proved
to be equivalent to fg E{fl-ds < o for any € > 0, where f(s) = m - Eé§L»

See the proof of Theorem 3 in SENETA and VERE~JONES [1968]. On the other

hand, since by Lemma 2.2.5(a), limsém h(s) = ~log P(Zl==0) < », we may write
-1 o1 f(hk(s))
hn(s) = h(s)m kgl (1 - ———7;———) for every s € (0,»]
and n = 2,3,4,..., where we use the convention h () = lim h (s). There-
n s> n

fore, lim m "h (s) is positive together with
n->e n

o { f(hk(s))
kg \1 - m !

that is if and only if

) £(h (s)) < .
k=1 k

Furthermore, it follows from the concavity of h that {h'(h(s))}k—lh(s) <

hk(s) < mk_lh(s), and therefore, for every s € (0,»] there exist 61 e (0,1)

and 62 e (0,1) such that GT < hk(s) < 62 for sufficiently large k. Now be-

cause integral comparison yields Z:=1 f(6k) < o for any § € (0,1) if and

only if fg £é§L ds < « for any € > 0, we thus can associate EZ,6logZ, with

1 1
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-n
limn%w m hn(s), and therefore, since hn(s) is the cumulant generating func-
tion of Zn' with the limit behaviour of Zn' The analysis in this chapter is

thus in fact based on the Taylor expansion h(s) = ms - f(s)s.

THEOREM 4.2.2. Suppose that P(Zl==0) > 0.

. -n
(a) If EleogZ1 < =, then llmném m P(Zn >0) > 0.

(b) If EZ,;logZ, =, then lim  _ m 'P(z >0) = 0.
(c) If g is a continuous, increasing function on [0,1) such that g(0) = 0
and
1
@20 [ LI gy o,
5 Yy
where

then

n-1
lim {mgnP(Zn> O)}g(<S - 1, for every & € (0,1).

n->ew

PROOF. The proof of the parts (a) and (b) is analogous to the proof of
Theorem (2.6.1) in JAGERS [1975]. It follows easily from the remark made

above, since, writing h_ (o) = lim h (s), P(Z2 >0) =1 - P(Z =0) =
n (@) n s> n n n
1 -e D ~ hn(w) as n + » by Theorem 4.2.1(b). This means that
. ~-n . . .
llmnéw m P(Zn3>0) > 0 if and only if llmném

above, in its turn is equivalent to EleogZ1 < o, For the proof of part

(c) we notice that since g(s) resp. f£(s) are non-negative and increasing

mnnhn(m) > 0, which, as we saw

in s by assumption resp. Lemma 2.2.6,
n

n 8
n-1
0= T g < f g (8 £(6%)ax = f WEW 4
v log ¢
k=1
0 1
1
< _loéwS f g(ygf(y) dy for every § ¢ (0,1),
0

-and thus, by (4.2.1) and the non-negativity of g(s)-<f(s) for s ¢ (0,1),
22:1 g(dk)f(sk) has a finite limit as n =+ «, for every § € (0,1). An appli-

cation of the Kronecker Lemma (LOEVE [1963]) now yields
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n
lim g™ 7 £ =0
N> k=1

for every 6 € (0,1). Therefore, because -log(l-x) < 2x for small x and, by

the continuity of g,

(4.2.2) lim g(s) = g(0) = O,
s¥0
n-1 k
(4.2.3) lim g(8"7Y) ¥ {—log(l - f‘%l)} =0
n--eo k=1

for every 6 € (0,1). Furthermore, a repeated application of the inequality

h(s) < ms yields hk(s) < mks for all s € (0,») and all k = 1,2,3,..., and

. s . k-1 k
le) llms+w hk(s) = 1lms+m hk—l(h(S)) < llmg»m m h(s) £ § for every
§ € (m,1) if k is large enough, since lims_)m h(s) = -log P(Z1 =(0) < o, This
together with (4.2.2) and (4.2.3) yields
n-1 f(h, (s))
(4.2.4) lim 1im g(s™°}) ) {—log(l - —-—}i———)} =0
n>o g k=1 n

for every § € (m,1), and hence a fortiori for every § € (0,1). Iterating

the equation

we obtain

f(h, (s))
_ n-1 A=l k
hn(S) = h(s)m kgl {1 - ———7;———}

and therefore, since limsﬁm |log h(s) | < o,
(4.2.5) lim logh (s) =
S0 n

n=-1 f(hk(s))
= limlogh(s) + (n-1)logm + lim ) 1og<1 - ——-—-m——~>

S0 s> k=1

Combining (4.2.2), (4.2.4) and (4.2.5) and remembering that limsﬁm his) < o,

we can conclude that

lim lim g(Gnml)-(—loghn(s) + nlogm) = 0

n-—»w s>
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for every § € (0,1). Finally, because limn+m P(Zni>0) = 0 by Theorem 4.2.1

(b) , we have

lim h_(s) = -log{1 —P(Zn> 0)} ~P(z_>0) as n > «,
oo D n

and therefore

on (6n—1)
lim {p(z_> 0)m "}9 1
ne n
for every § € (0,1). 0

Another interesting way to look at the behaviour of Zn is to examine
the distribution of Zn conditioned on Zn > 0, of course again in the case
P(Zl==0) > 0, since otherwise P(Zn> Q) = 1 for all n. For Galton-Watson
processes, there is the so-called "Yaglom-theorem". It turns out that this
theorem is also true if the state space of the branching process is [0,»).

We can formulate it in the following way.

THEOREM 4.2.3. Suppose P(Zl==0) > 0. Then:

(a) The distribution of z, conditioned on {Zn:>0} converges weakly to some
proper distribution.

Let Z be a random variable having this limit distribution.

(b) P(z2=0) = 0;

(c) BZ < o if and only if EZ logZ, < «;

1 1
(d) the cumulant generating function g of Z satisfies

(4.2.6) 1 - exp(~-g(h(s))) = m(l - exp(-g(s))), s € [0,);

(e) if E is the cumulant generating function of a random variable % for
which P(Z € (0,»)) = 1, such that 1 - exp(-g(h(s))) = m(1 - exp(-g(s))),
s € [0,»), then E(s) = g(s) for all s € [0,=).

PROOF. Writing hn(w) = l:i.ms_>°° hn(s), n=1,2,3,...,

~-sZ
g,(s) = -logE (e n [Zn2>0), s € [0,»)
and
hn(S)
Xn(5> = -109<1 - E;7;7>: s € [0,%),
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we see that
-g_(s) —hn(s) _hn(m) -x_(s)
e © =& —< ~e O as n>®, s € [0,
—h (m) 7 r 1
n
1-e

since limn»m hn(s) = 0 for all s € [0,») by the Theorems 3.3.1 and 4.2.1,
and, also by Theorem 4.2.1,

iﬂ hn(m) = :.:;I:; --loc_:;qn = -logg = 0.

In a similar way as in the proof of Theorem (2.6.2) of JAGERS [1975], we

can prove that hn(s)/hn(w), and therefore also xn(s), is increasing in n,
and hence xn(s) converges to some limit function g(s) as n - «. This implies
that also 1imn+m gn(s) exists and equals g(s). The parts (a), (c) and (4)
now follow as in JAGERS [1975]. In view of Lemma 2.2.5(a), part (b) is a
consequence of the fact that g(s) = xn(s) for all n =1,2,3,..., and that
lims_)m xn(s) = o for all n = 1,2,3,... . Finally, analogously to the proof
of Theorem I.7.3 in ATHREYA and NEY [1972], we can prove that 1 -exp(-g(s))
= ci(l‘-exp(~g(s))) + ¢, for some constants ¢y and Cye By the Lemmas 2.2.4
(a) and 2.2.5(a), g(0) g(0) = 0 and lims+m g(s) = lims+w g(s) = «, imply-
ing that ¢, = 1 and ¢, = O. O

1 2

Functional equations like (4.2.6) appear often in branching process
theory. In SENETA [1974] it is explained that there is an intimate relation
between equations such as (4.2.6) and regularly varying functions. The
next theorem is an example of that fact. As it provides a good insight in
the reason of this relation, we give a proof of part (a), although it is

the same as that of part (1) of Theorem 2 in SENETA [1974].

THEOREM 4.2.4. Suppose P(Z1==O) > 0. Let Z be as in Theorem 4.2.3. Then:

(a) m_nP(Zn2>O) ~ Ll(mn) as n - o;

) X

0 P(Z>vy)dy ~ L2(1/x) as x + o,

where L1 is a non-decreasing and L2 a non-increasing function, each slowly

varying at 0, such that, as s ¥ O, LI(S) ¥ éz-and Lz(s) 4+ EZ.

_PROOF. Writing y(s) = 1 - e 95

i

, s € [0,9), (4.2.6) becomes

it

(4.2.7) Y(h(s)) = mp(s), - s € [0,»).
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g(s)

Since e is the Laplace transform of the proper random variable Z and
P(Z2=0) = 0, ¥(s) is continuous and increasing in s on [0,~) from

1 - P(Z<w) =0 tol - P(Z2=0) = 1. So we can take inverses in (4.2.7) to

obtain
e (s)) = vV (s/m), s e [0,m).
. his) _ ; c(s) _ 1
Because lJ.mSWLO P m by Lemma 2.2.4(b), 11ms+0 Pt and therefore
inv inv
(4.2.8) L inéS/m) - C“gnv (s)) % as s + 0.
] (s) ] (s)

Further, since Y (s) is concave on [0,«), wlnv(s) is convex on [0,1), and

inv . .
thus Yy~  (s)/s increases as s increases. So for 1 € A < 1/m,

wlnv(Xs) 0 s . wlnv(s/m) " s
As inv s/m inv

Ve ¥ ()

1<

R s ¢ (O,m).
Hence, using (4.2.8),

inv

(4.2.9) lim Eia;éiil =

s¥0 ¢ (s)
for all A e [1,1/m], and we can iterate this to obtain (4.2.9) for all
A > 0. So we have proved that wlnv(s) = s.Ll(s), where Ll(s) varies slowly
at 0. By the convexity of wlnv(s), LI(S) is non-decreasing and because
llms¢0 Yis) = 0,
P (s) . ] . ] 1

lim = 1im = lim —— = == ,
st0 S svo VI8 o 9ls) EZ

by Lemma 2.2.4(b). Furthermore, L, is continucus on (0,1), since ¥ is con~

1
tinuous and strictly increasing. Iterating (4.2.7) gives

Vin (s)) = ny(s), se[0,, n=1,2,3,...
or

h () = 4 (@ie)) = me) L, @), s < [0,9),

n=1,2,3;... .
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Letting s - « we obtain, in view of the continuity of Ll'

-log P(z_=0) =an1(mn), n=1,2,3,...,

and as lim P(Z_ =0) = 1 by Theorem 4.2.1(b), ~log P(Z_=0) ~ P(Zz_>0)
n-e n n n
as n » o and so part (a) of the theorem is proved. For the proof of part

(b) we refer to part (2) of Theorem 2 in SENETA [1974]. 0



CHAPTER 5

THE CASE m=1

5.1. INTRODUCTION

In this chapter we look at the so-called critical processes, that is
processes with m = 1. It turns out that in this case we can exactly calcu-
late some asymptotics of the process; see Theorem 5.2.2 below.

In Chapter 4 we saw that we could associate limn+m m~nhn(s) with

EleogZ However, if m = 1 and P(Z1 =0) > 0, it is not true that there

exists gér every s € (0,»] a § € (0,1) such that hk(s) < 6% for sufficient~
ly large k. In view of the discussion before Theorem 4.2.2 it is at least
plausible that the association stated above does not exist in the case

m = 1. We therefore do not find conditions on EZ,6 log 2

1 1
and we have to use another term in the Taylor expansion for h(s) in the

in this chapter,

. . 2 . A
analysis. For this reason o (Zl) appears in the conditions.

Again as in Chapter 4 the behaviour of the process if P(Z, =0) = 0,

1
depends on the value of a and results concerning this case can therefore be

found in Chapters 8 and 9.
5.2. SOME LIMIT THEOREMS

To begin with we again calculate r and g. Their values are the same
as in the subcritical case as we see in the following theorem, the proof

of which is just like that of Theorem 4.2.1.

THEOREM 5.2.1.
{a) r = 1;

(b) if P(Z1==0) > 0, then q = 1.

So again we have lim P(Zn?>0) = (0 if P(Z1 =0) > 0, and the next

foisard
theorem says how fast this convergence is.
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THEOREM 5.2.2. Suppose P(Z1==0) > 0 and 02 i= 02(21) < ., Then:

o oo 2.
(a) ;Lmn%° nP(Zn>0) = 2/0";

. - g2/9.
(b) llmn E(Zn/n! Zn> 0) = ¢ /2;
—2u/cr2
e

(c) lim _ P(z /n<u | z >0 =1 - , uz 0.

PROOF. The proof is analogous to the proof of Theorem (2.4.2) in JAGERS

[1975]. It is based on the relation

Ll 1)<
n\h (s) s/ 2 °
Ik n

holding uniformly in 0 < s < A for every A > 0. 0
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CHAPTER 6

THE CASE T<m<x»

6.1. INTRODUCTION

In this chapter we shall consider processes with 1 < m < =, Such pro-
cesses are called supercritical. The most important difference with the
cases m < 1 and m = 1 is, that for supercritical processes P(limn+® Zn=(n <
< 1. This implies that P(limn%o Zn==m) > 0. We therefore have to consider

the behaviour of the process also on {limn+w

Zn==w}. Since -log r > 0, the
interval (0,-logr) is non-empty and Corollary 3.3.5 provides us with se-
quences of norming constants {cn(s); n=0,1,2,...} for the process

{zn; n=20,1,2,...}, both if P(Zl=0) = 0 and if P(Z1=O) > 0. They are in

fact only useful on {lim 7 =ow}, because lim ¢ (s)Z2 = 0 on
nre n n>© n n
{1lmn+m Zn:=0}, since llmném cn(s) = 0 for all s € (0,~logxr). On the other
hand, it turns out that P(0<1lim ¢ (s)Z <« |lim 2 =) = 1.
n>e n n n>® 1
As we shall see, the process conditioned on {limném Zn==0} can be con-

sidered as a subcritical branching process having the function h(s -~logxr) +
+ logr as the cumuiant generating function of the offspring distribution.
So if P(Zl==0) > 0 we can apply the results of Chapter 4. If P(Zl==0) = 0,
the behaviour of the process again depends on the value of a, and will

therefore be treated in Chapters 8 and 9.
6.2, THE BEHAVIOUR OF THE PROCESS ON {zn+0}.

THEOREM 6.2.1.

(a) r < 1;

(b) r = 0 if and only if a = 1;

(¢) if P(z,=0) > 0 then q = ¥.

PROOF. The parts (a) and (b) follow from Theorem 3.3.1, since lims¢0 E??L=xu,
lim ﬁi§l>= a and h(s) is concavé on [0,») by the Lemmas 2.2.4(b),

S0 S
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2.2.5(c) and 2.2.3(b). Part (c) is obtained on observing that lims*xh(s) < oo
by Lemma 2.2.5(a), and so, using Theorem 3.3.1 and the Lemmas 2.2.2 and

2.2.5(a)

-logr = lim hn(llm h(s)) = lim lim hn+ (s)

ne S0 N gHo !
= lim - logq ,, = -logq. 0
>0
Let us now look at the process conditioned on A := {limnﬁw Zn==0}.

Since P(A) = r, we suppose that r > 0, implying that -logr < =, First of
all we notice that, if we define the probability measure S by g(B) = P(B|Aa),
and write E for the expectation with respect to P, then for any Borel set

B and for all random vectors X and Y
P(AIY)-P(X ¢ BIY) = P(a A {X ¢ B}Y) a.s..

This implies that a.s.

. =—SZ
(6.2.1) P2y, .02 ) Ele ntl ) ZyreeiZ)
-s72
= E(e ° n+11A | 2gree02)
= E{E(enSZn+1 1|z z )]z z_}
N S R L
-sZ_

]

+1
E{e P(A | zo,...,zn+1)| zo,...,zn},

where I stands for the indicator function. In view of the basic branching

property (3.1.3)
P(A|Z ,...,z) =P(a]z) =r " a.s
0 "“n n T

Hence we obtain from (6.2.1) that a.s.

- —sZn+1 ~Z —(s——logr)Zn

E(e | z 1

n
orr--rZ) = cE(e Zgre-er2),

implying that

-s Z .
(6.2.2) “log Be "l

O""'Zn) = {h(s~logxr) + 1ogr}zn a.s.
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by (3.1.3). Now define g(s) by g(s) = h(s-logr) + logr, s € [0,»). From
part 2 of the proof of Theorem 3.3.6(b) we know that E(s) is the cumulant

generating function of a proper, non-negative random variable Z not con-

1!
centrated in one point, having an infinitely divisible distribution. So if
we define a subordinator {;(t); t e [0,%)}, such that ;(1) d El' and if we

construct a branching process {En: n=20,1,2,...} with the help of this

subordinator as in Definition 3.1.2, with EO = 1, then it follows from
(6.2.2) that the processes {Zn; n=0,1,2,...} conditioned on A and
{En; n=20,1,2,...} have the same distribution. Furthermore, since
Ezl =h'(0) = h'(-logr) < 1, and

inf{x;P(Z, <x) >0} = lim his)

o s
- +
= lim h(s-logr)+logr - 1im h(s) = a,
g¥eo s ERad S

we see that we can apply the results for subcritical processes to the pro-
cess {Zn; n=0,1,2,...} conditioned on A, with m replaced by h'(~logr).
Because

P(Elz=0) = 1im e—h(s) = %- im e~h(s) = L

S0 S0
these results can be found in Chapter 4 in case P(Z1 =0) > 0 and in Chap-

ters 8 and 9 in case P(Z1==O) = 0.
6.3. THE BEHAVIOUR OF THE PROCESS ON {Zn'+m},

As already mentioned {cn(s); n=1,2,3,...} can serve as a sequence
of norming constants for the random variables Zn' n=1,2,3,... if
s € (0,~logr). We shall now examine some properties of the random variable
Y(s), defined in Corollary 3.3.5 by VY(s} = limn+m cn(s)Zn. Throughout this
section we suppose that s ¢ (0,-logr), unless stated otherwise. First of all
we derive a functional equation which we shall often make use of. (Remember

that ¢(z,s) is the cumulant generating function of ¥ (s).)

THEOREM 6.3.1. For all z with Rez 2 0

(6.3.1) ¢ {mz,s) = h(¢(z,s))5
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PROOF. Since 0 < ¢(s) < s for s € (0,~logxr) and c(0) = O, cn(s) v 0 as

n -+ o, and we see that

cn(s) cn(s) s
lim e = lim e = lim
e Spoq (81 L, hle (s))

1
h(s) m”

Hence, using (3.3.5) and Lemma 2.2.3(a), we get for all u € (0,») and

e e (0O,u),

h(d¢(u~e,s8)) = lim h(hn_l((u—e)cnwl(s)))
n-ro
cn(s)
lim h(hn_l(mu —~A-~Tm~ cn_l(s)))

n-> cn—l s)

IA

= lim hn(mucn(s)) = ¢ (mu,s)
Ti—¥co
cn(S)

(mu ——r=-c__,(s)))

= lim h(hn_1 p =) °n
n-1

heeasd]

IN

Lim h(h ., ((ute)e ., (s)))

oo

= h(¢(ute,s)),

since h(t) is continuous for t € [0,») by Lemma 2.2.2. Again using this
same lemma, we see in the first place that ¢{(u,s) is continuous for

u € [0,%) and therefore (6.3.1) is true for all z ¢ [0,»). Furthermore, in
view of the fact that Re ¢(z,s) > 0 and both ¢{z,s) and h(z) are analytic
on {z;Rez >0}, it follows that (6.3.1) holds for all z € {z;Rez >0}, and
so by the continuity of cumulant generating functions on {z;Rez 20} also

for all z with Rez = 0. 0

Using (6.3.1) we shall now prove the already announced result, that
c,(s) is a good norming on {llmném Zn==m} in the sense that

P(O<Y¥(s) <w|lim 7 =«) = 1.

THEOREM 6.3.2.
(a) P(¥(s) =0) = r;
(b) P(¥(s) <) 1.

it

PROOF. From Lemma 2.2.5(a) we know that -log P(¥(s) =0) = J.:i_mw)<>o d{u,s).

Since h(t) is continuous for t e [0,®), (6.3.1) now yields
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(6.3.2) ~log P(¥(s) =0) = lim ¢(u,s)
oo
= lim h(¢(u/m,s)) = h(lim ¢ (u/m,s))
u-re u—>o

h(-log P(Y(s) =0)),

with the convention that h(e) = 1ims~m0 h(s). Similarly we get

(6.3.3) -log P(Y{s) <) = h(~log P(Y(s) <x)).
Because by (3.3.5) Ee_Y(S) = ens, we see that P(e—Y(s)= 1) < 1 and
P(e—Y(S)> 0) > 0, since r < e“S < 1, and hence
(6.3.4) -log P(Y(s)=0) >0 and -log P(Y(s) <®) < o,
Furthermore, since limn+m cn(s) = 0,
(6.3.5) ~log P(Y(s) =0) = -log P(lim c_(s)Z_=0)

e B n

< -log P(lim Z_=0) = -logr,
1n-ree n

and of course,
(6.3.6) ~log P(Y(s) =0) 2 -log P(Y(s) <=).

Combining (6.3.2), (6.3.4) and (6.3.5), we obtain that -log P(Y(s) =0) =
~logr, that is P(¥(s) =0) = r. Now using (6.3.3) and (6.3.6) it follows
that P(Y(s) <w) = r or 1. But if P(¥(s) <w) = r, then we should get
Ee_y(s) =y, since P(¥(s) =0) = r. However, Ee—Y(s) = e‘S > r, and so

P(Y(s) <w) = 1. O

We shall now further investigate the distribution of ¥(s). It turns
out that we can prove, making a repeated use of (6.3.1) that any sufficient-
ly large power of the absolute value of the characteristic function of Y(s)
is integrable if r = 0. Then it follows from a result on Fourier inversion
’ in FELLER [1971], and again some manipulation with (6.3.1) that ¥(s) has
an absolutely continuous distribution if r = 0. The proof given here is

analogous to the proof of Theorem 4 on page 34 of ATHREYA and NEY [1972],
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where the theorem is stated for Galton-Watson processes.

THEOREM 6.3.3. If r = 0, then the random variable Y(s) has an absolutely

continuous distribution.
PROOF. The result will be established with the help of the following lemmas.
LEMMA 6.3.4. P(Y(s) =c) < 1 for all constants c € {(-~w,»),

PROOF. Since cn(s) > 0 and Zn 20 for alln = 1,2,3,..., P(Y(s) =c) =0
for all ¢ € (-»,0). Furthermore, we know from part (a) of Theorem 6.3.2 that
P(Y(s) =0) = r, which equals O by assumption. Now suppose P(Y(s) =c¢) = 1

for some ¢ € (0,«). It follows then, in view of (6.3.1), that

mcu = ¢(mu,s) = h(f(u,s))

h(cu)

for all u ¢ [0,»), and therefore h(s) = ms for all s € [0,»). This means

that P(Zl==m) = 1, which case is however excluded. 0

Define (t,s) to be the characteristic function of Y(s), that is

Pi{t,s) = Eeity(s), t € (~w,»). Then we have
LEMMA 6.3.5. |¢(t,s)| < 1 for all real t # O.

PROOF. Since the distribution of ¥Y(s) is non-degenerate, there exists a
§ > 0 such that [Y(t,s)] < 1 for all 0 < |t] < 6. (See e.g. Lemma XV.1.4 of
FELLER [1971].) This means that Re ¢ (-it,s) > 0, and so using (6.3.1)

e s) | = [T TIMES) | om0 S

—¢("itl S)Zl

. Z .
= |Ee | < Ele—¢(mlt's)l 1 _ e—h(Re¢(~1t,s))

< 1

for all 0 < |t] < 8. This implies that |y (t,s)] < 1 for all 0 < |t| < md,
and hence by iteration for all 0 < |[t] < m'6. Since 1 < m < ®, we can con-

clude that [$(t,s)] < 1 for all real t # O. 0

The following lemma is the key step leading to the integrability of

’Ew(t,s)lk for sufficiently large integers k. Define 8 = inf Red (it,s).

1<]t]<m
By the continuity of ¢(z) for z € {Rez >0} and Lemma 6.3.5 we know that

B > 0. Introducing furthermore d = h(B) - B and § = we get

4
log m



47

LEMMA 6.3.6.
8
sup [¥(t,s)|-lt]" < =.
~co< <o

PROQF. Since r = 0, we know from Theorem 3.3.1 that h(s) > s for all

s € (0,»). Therefore, as B > 0, both d > 0 and § > 0. Because

—hn(z) —zZn - Zn —hn(Rez) —hn(B)
le | = |Ee | < Ble 7| = e < e
for all z with Rez 2 B, and, again by Theorem 3.3.1, limn_mo hn(B) = o,
—hn(Z)
le | -0 as n > ®,

uniformly for all z with Rez 2 B. Hence there exists for all € > 0 an

integer NO(E) such that for all n = NO(E)

~h (¢ (it,s))

(6.3.7) sup le | < g.
1<]tl<m
Now because of the fact that r = 0, h(s) - s is increasing in s, and so for

all z with Rez 2 B,

~22, 2
Re h(z) = ~log|Ee | 2 ~logE e 7|

i

h(Rez) 2d + Rez > B.

Iterating this we get for all z with Rez 2= B8,

1,2,3,...

i

(6.3.8) Re hn(z) 2nd + Rez > B, for all n
Combining (6.3.7) and (6.3.8) yields

lexp{-h (¢(it,8))}] = exp{-Re h_(h_ (¢(it,s)))}
0 n N

n-+N
0

< exp{-nd-Re ho (¢(it,s))} <
6]

A
[0

°
™

for alln = 1,2,3,... and all t with 1 € |t] £ m, and so

(6.3.9) sup lexp{-h (6(it,s))}] < ee ™4
n+NO

1<)ti<m
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for all n = 1,2,3,... . Hence, using (6.3.1), (6.3.9) and the definition

of §, we obtain

§
sup lel = lw(t,s) | =
No+n N_+n+1
m <lt|<m
N_+n N _+n
0 8 0
=  sup lm t] e lP(m t,5) ]
1<|tf<m
N _+n s N0+n
= sup |m t] e lexp{~¢ (~im tes) b
1<]t|<m
No+n s
=  sup Im t] -]exp{—hN +n(¢(-it,s))}f
1<lt]<m 0
N _+n+1i
< (m 0 ) »ewe‘nd
d(n+NO+1) -nd (NO+1)d
= e cge = ge
for all n = 1,2,3,..., implying that
S
(6.3.10) sup el e lY(t,8)] < . 0

o< <o

Since § is not necessarily greater than one, we cannot yet apply the
Fourier inversion theorem to yield the absolute continuity of Y(s). However,
the fact that k8 > 1 for sufficiently large k establishes the integrability
of lw(t,s)lk, that is the absolute continuity of Y, +Y +...+Yk for k suffi-

172

ciently large where Yl’Y2""’Yk are independent and identically distributed

random variables with the same distribution as Y(s). This enables us to

prove the absolute continuity as is made precise in Lemma 6.3.7. Before

stating it we define forn=1,2,3,... random variables &,—(n) ,Yl(n) ,Y2(n) ,Y3(n) P
@ B =) are
i 1 't oty e
independent and such that conditionally given Z_, the random variables

={n) _(n) _(n) _(n) )
¥ 1 3

such that for every n = 1,2,3,..., it holds that Zn'

¥ 4 s Y.

2
every 1 = 1,2,3,... and

;... are independent, with Yin distributed as Y(s) for
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() z -[z_]
(6.3.11) e | z) = p(e tY(8), 0 o

~
N

t e [O,oo) v

where [z] is the integer part of z. Finally we define Y(n) by Y(n) =

0 0
(n) _(n) (n)
Yo, +...+Y[Zn]

Notice that since each Zn has an infinitely divisible distribution,

m +§(n)}’ n=1,2,3;220 .

the same is true for Y(s) being the limit of ¢ _(s)Z_ as n - «, and there-
fore, in view of (6.3.11), the distribution of §(n) given zn = 7z 15 well-
defined for every z = 0. A similar construction will be used in Chapters 7

and 9. For more details we refer to the proof of Theorem 9.2.13. By (6.3.11)

and (6.3.1) we see that Yén) and Y(s) have the same Laplace transform,
implying that
(6.3.12) v 2y g for every n = 1,2,3,... .

0

LEMMA 6.3.7. Suppose E ¢ IR has Lebesgue-measure zero. Then P(Y(s) e E) = O.

PROOF. Because § > 0 there exists a positive integer k such that ké > 1.

Since by (6.3.10) SUP _wci<o Ill)(t,s)}ﬂ'sl,t]bS < « for every positive £, it
follows from Theorem XV.3.3 of FELLER [1971], that Y;n)+Yén)+...+Yén) has

an absolutely continuous distribution for every integer £ 2 k. By (6.3.12),

(n) - (n)
0 € E) = J P(YO
[0,)

P(Y(s) € B) = P(Y eEIZn=md% (z) =

n

- (n) -
= J Py, eE|z =2)ap, (2)
[0,k) n

(n) _
+ J P(YO € E| Zn-—z)dPZn(Z)-
[k,)

Putting in the definition of Yén) it follows that

(n) _
P(Y e E | Zn"“z)dpzn(z)
[k,)
B -n._{n) _(n) (n) o (n) _
= J P(m {Y1 +, ...+y[zj+y ek | z =z)dp, (z).

(X)) A "
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Now since Q(n),Y;n),Yén),Yén),... are, conditionally given Zn’ independent

and Y;n)-szhn+...+Yén) has an absolutely continuous distribution for every
£ > k, we see that P(m—n{Yin)+Yén)+...+Yéza+§(n)}e E| Zn==z) = 0, because

it is well-known that the sum of two independent random variables has an
absolutely continuous distribution if one of these random variables has an

absolutely continuous distribution. Hence we obtain

(n)

P(Y(s) €eE) = J P(YO

[0,k)
Since r = 0, lim P(Z <k) =0 for all k = 1,2,3,..., and so
n-o n
P(Y(s) €eE) = 0. 0

€E | zn=z)dpzn(z) < P(z <Kk).

This completes the proof of Theorem 6.3.3. 0

In Section 3.3 we defined £(s) to be the first point of increase of
the distribution function of Y(s). In view of Theorem 6.3.2(a), obviously
£(s) = 0 if ¥ > 0. But £(s) = 0 also if r = 0. This follows since by Lemma
2.2.5(c) L(s) = lim
that ¢(m,s) = h ($(1,s)) = h_(s). This means that

n

m—n¢(mn,s). Now using (6.3.1) and (3.3.5) we see

£(s) = lim m "¢(m",s) = lim m “h_(s)
n-rwo o n
g ﬁ hk(s)
= im s —————
e k=1 mhk_l(s)
Because r = 0, lim h (s) = », and so
n-ro n
1im h_ntlf’_)_ =2
- 7
<o mhn(s) m

implying that £(s) = O.
In view of the remark made before Theorem 4.2.4 about the relation
between functional equations and regularly varying functions, it is not at

all astonishing that the following result follows from (6.3.1).

THEOREM 6.3.8. ¢(u,s) is regularly varying at O with exponent 1 as a func-

tion of u.

PROOF. See the proof of Theorem 1 in SENETA [1974]. 0
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Corollary 3.3.5 provides us with not only one but with a whole class
of norming constants cn(s) for the random variables Zn’ since we can choose
any s € (0,~logr). One may ask if there is any relation between the limit
random variables Y(s) for different values of s. A positive answer to this
question is given in the following theorem. Before stating it we notice
that by the convexity of c(s), cn(s)/cn(t) is non-increasing in n whenever
0 < s £t < ~logxr, and hence converges to some limit v(s,t). It follows
immediately that v(s,t) := 1imn+m cn(s)/cn(t) exists, also for 0 < t < s <
~logr. Furthermore, v(s,t) € (0,») for all s,t € (0,~logr). For if s < t,
then there exists a non-negative integer k such that s 2 ck(t). This means

that

12 v(s,t) = lim ———— > lim ——— = lim
—)OOC 00

Similarly we can prove that v(s,t) e [1,0) if s 2 t.

THEOREM 6.3.9. Suppose that both s and t € (0,~logr). Then:
(a) Y(s) = v(s,t)¥(t) a.s.;
(b) ¢(vis,t),t) = s.

PROOF. Part (a) is a consequence of the fact that v(s,t) € (0,»), whence

c_(s)
. s n -
Y(s) = lim cn(s)Zn = lim 5_727_0n<t)zn v(s,t)Y(t) a.s.
no n>e n
Part (b) follows on observing that e*s = EewY(s) = Ee—v(s't)Y(t)
ew¢(v(s,t),t)’ where the first equality is a consequence of (3.3.5). 0

Now that we know that all the random variables Y(s) belong to the same
class in the sense that every two have constant ratio, we shall have a
closer look at this class of random variables which can occur as the limit
of cn(s)Zn as n + o for some s € (0,-logyr). The basic tool in this investi-
gation is again the functional equation (6.3.1). It says that the cumulant
generating function ¢ of a random variable Y belonging to the class we con-
sider satisfies ¢(ms) = h($(s)). So reasoning in a rather superficial way,
we can, given a cumulant generating function ¢, define h(s) by h(s) =
A¢(m¢inv(s)) for some m € (1,®). Then we can check if it is possible to de-
fine a branching process with the help of this h(s). If so we can consider
the limit random variable g(s) belonging to this process and, since its

cumulant generating function $(u,s) also satisfies E(mu,s) = h(g(u,s)) there
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is some hope that ; and ¢ might be related. If we want to make this precise,
there are of course many problems. First of all we know from Theorem 6.3.2
that P(Y=0) = r and P(Y<w) = 1, which implies that limsqm d(s) =
~log PfY=:O) = ~logr and that lims¢0 ¢(s) = -log P(Y<w) = 0. So if r > O,
then ¢lnv(s), and therefore also h(s), is only well-defined for se [0,~-logr).
In the second place we have to make sure of the fact that h(s) is a cumulant
generating function of a random variable having an infinitely divisible dis-
tribution. This leads to the introduction of the following collection Fm,r,
for any m € (1,®) and r ¢ [0,1).

We say that a cumulant generating function ¢ of a non-negative, proper,
non-degenerate random variable V¥ belongs to Fm,r if and only if:
(1) 1imu+w ¢(u) = -logr;
(2) ¢*(s) 1= ¢(m¢inv(s)), s € [0,~logxr), can be continued analytically

along the positive real line;

*
(3) e £97(s) is completely monotone for every t > 0 as a function of s,
*
where ¢ (s), s € [~logr, ») is defined as the analytic continuation of

*
¢ (s}, s € [0,-logr).

(4) ¢(u) is regularly varying at O with exponent 1.

We shall prove that a random variable Y can occur as the limit of
cn(s)zn if and only if its cumulant generating function belongs to Fm .
i

and G for
m, ¥

To this end we introduce furthermore the collections Hm -
1

r
me (i,) and r ¢ [0,1) as follows.
A cumulant generating function h of a proper, non-degenerate, non-
negative random variable, having an infinitely divisible distribution, be-

longs to H if and only if:
m,r

. h(s) _ .
(1) llms¢0 P m;
(2) limn_)m hn(s) = ~logr.

A cumulant generating function ¢ belongs to Gm r if and only if there
14

is a branching process {Zn; n=0,1,2,...} with state space [0,») such that

ZO = 1 and h(s) := —logE)exp{~le} € Hm,r and llmn+w cn(solig has cumulant
generating function ¢, where cn(s) is the n iterate of h (s) and

]

0 € (0,~logx).

THEOREM 6.3.10.
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PROOF. We shall first prove that G cF and then that F < G .
[t m,r m,x m,xr m,X

(a) Suppose that ¢ ¢ Gm,r' Then it follows from Theorem 6.3.2 and Lemma
6.3.4 that ¢(u) = —log}Ze_uY, where Y is a non-negative, proper, non-degen-—
erate random.variable and that limu+w ¢(u) = ~logr. Furthermore, by (6.3.1),
¢*(s) = ¢(m¢lnv(s)) = h(s) for s € [0,~-logr). This means by Lemma 2.2.2
that ¢*(s) can be continued analytically along the positive real line and
that ¢*(s) = h{s) for all s € [0,»). Since h(s) is the cumulant generating
function of a random variable having an infinitely divisible distribution,

*
it is clear that e £7 (s)

is completely monotone for every fixed t > 0 as a
function of s. Finally, Theorem 6.3.8 yields that ¢(u) is regularly varying
at 0 with exponent 1. This proves that G cF .
m,r m,r «
(b) Now suppose that ¢ € Fm " Define h(s) by h(s) = ¢ (s), s € [0,»). Then
1
it follows from requirement 3 in the definition of Fm v that h(s) is the
7
cumulant generating function of some non-negative random variable X, having
an infinitely divisible distribution. Since h(s) = ¢ (md~ " (s)) for
inv
- i = 1i = 2.4
s ¢ [0,-1logx), llms¢0 h(s) llms%O ¢ (md (s)) 0, and so by Lemma 2
(a), P(X<®) = 1. Now we shall prove that X is non-degenerate. Suppose that
P(X=c¢) = 1 for some ¢ ¢ [0,»). Then h(s) = c°s for all s ¢ [0,»), implying

that ¢(m¢lnv(s)) = ces for all s € [0,~logr). This means that
(6.3.13) ¢ (mt) = cd(t) for all t € [0,).

Now by requirement 4 in the definition of Fm L e know that ¢(u) = uL(u),
where L(u) is a slowly varying function at 0. It follows therefore from
(6.3.13) that m = ¢, since L{mt) ~ L(t) as t ¥+ 0. Hence we obtain that ¢ is
linear, in contradiction with the fact that ¢ is the cumulant generating
function of a proper, non-degenerate random variable. So X is also non-

degenerate. Furthermore,

* inv
Tim 2680 _ gy 080 gy, $me (S))
sv0  ° sv0  ° s+0 ¢ (67 (s))
inv inv
g R Lme ey

st0 o V(Lo (s))

Let {Zn; n=0,1,2,...} be a branching process having the distribution of
X as its offspring distribution, and such that Z,. = 1. By Theorem 3.3.1 we

0
know that for all s € (0,®)
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(6.3.14) lim h_(s) = -log P(lim Z_=20),
e O P

.= 0)) .,

and because m > 1, limn+m hn(s) > 0., Choose some soe {0,~log P(limn_>m

then by Corollary 3.3.5, lim Cn(SO)zn exists a.s., with cn(s) the nth

. 10
iterate of hlnv(s). Defining ¢(u,so) by

- -1 limn_mcn(so)zn
¢(u,so) = ~logE e ; ue [0,2),

it follows from (6.3.1) that h(g(u,so)) = $(mu,so). Since by Theorem 6.3.2 (b)
o $lursg) =
0. So because r < 1, there exists a U > 0 such that ¢(u,so) < -logr for

P(limn+m cn(so)zn<iw) = 1, Lemma 2.2.4(a) implies that limu

all u e [0,U). Then we have g(mu,so) = h($(u,§o)) - ¢*($(u,so)).=
¢(m¢lnv($(u,so))) for all u ¢ [0,U), a?d S0 ¢lnv($(mu,so)) = m¢lnv($(u,so))
for all u € [0,U/m). This means that ¢lnv($(u,so)) = b.u, that is g(u,so) =
¢ (bu) for some b € (0,») and for all u € [0,U/m), and hence for all u, since

¢ and ¢ are both cumulant generating functions. So

. d
(6.3.15) lim Cn(sO)Zn = b¥,

nrwe

where Y is a random variable with cumulant generating function ¢, and there-

fore r = P(Y=0) = P(llmn cn(so)an=0), implying that P(lJ.mn

-0 <0
by Theorem 6.3.2(a). This together with (6.3.14) yvields that requirement 2

Z =0} =r
n

in the definition of Hm v is also fulfilled and we can conclude that
¥
h e Hm . The proof is now finished, once we have established that
1
Y d limn_wo cn(s)Zn for some s € (0,~logr). To this end we define s by s =

$(1/b,so), with b as in (6.3.15). It follows then from Theorem 6.3.2 that
s € (0,~logr). Now writing $lnv(s,so) for the inverse of g(s,so) as a func-

tion of s, we have by Theorem 6.3.9 that a.s.

R _ ~inv X
lim cn(s)zn = ¢ (s,so)llm cn(sO)Zn
n-oo n-re

~inv ~ X - X
= ¢ (¢(1/b,so),so)llm cn(SO)Zn = 1/b lim cn(so)Zn,

n-»ee T

d .. .
and so, by (6.3.15) ¥ = llmnﬁw cn(s)an This means that ¢ € Gm v and there-

7

fore F
m,¥r

c G . 0
m,xr
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) B _ on .
In Chapter 3 we introduced Sn = Zk=0 Zk = Zk=0 Zn—k‘ Since
Cn(s) cn(s) S -k
lim —————m = lim == = lim ———— = m
U U S

for every integer k, one might ask if we can exchange limit and sum to ob-

tain
n @ c (s)
limc (s)S = lim ] c (s)z_ = ] lim E‘B"TET'°n~k(S)Zn—k
neo O ne k=0 k=0 e “n-k
o0
= X m—kY(s) = B¥T~Y(s) a.s..
k=0

The following theorem answers this question positively.

THEOREM 6.3.11.

lim c¢_(s)S_ = -m—-Y(s) a.s..
n n m-1
1100
PRCOF. Since
. Cn(s) -k
Mo oy = ®
nre Nk
and
n k
= @ > ®
c (s)s = c (s) ‘2 z5 2 ¢ (s) .2 25
3=0 j=
for every integer k ¢ [0,n],
k c (s) k R
lim inf c_(s)S_ 2 lim 2 c_ .(s)z = Y (s)- X m 7 a.s.
n n . c  L(s) -3 n .
n > «© foa- ]=O n-7j =
for every non-negative integer k. So
k -5 m
(6.3.16) lim inf ¢ (s8)S 2 lim Y(s)- Z m I - Y (g) 8.S..
n n . m-1
n - o koo ]:0

. m
Next we prove that lim sup c (s)S_ £ —— Y¥(s) a.s.. To this end we choose
1 nHe n n m-1
-a § > 0 such that E~+ § < 1. Since

c (s)
+
1m <L

Krco ck(s) m
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there exists an integer K. = Ko(d,s) such that c (s)/ck(s) < i-+ § for

0 k+1

all k 2 K.. Now choose w € A := {lim c (s)z2 =Y(s)}. It follows from
0 n>o n n

Corollary 3.3.5 that P(a) = 1. Finally we choose an € > 0. Then there exists

an integer N, = NO(E,s,w) such that cn(s)Zn(m) < Y(s,w) + ¢ for all n =2 N_.

0 0

Let L = max(KO,NO). Then we have for all n 2 L,

Lil ? cn(s)
c (s)s_(w) = c (s)z, (w) + e 0 (S} 2, (W)
n n k=0 n k k=L ck(s) k k

Lil
c (s)
T k=0

IA

& 1 n-k
Z, @ + ] 8T (X(s0) +e)
k=L

-1 1=ty gyntHl

c () ) z () + (Y(s,w) +e€)
s K 1—(—115+ 8)

This means that

lim sup cn(s)Sn(w) < is,0) te)

n > fe==3
m
for all ¢ > 0, 0 < § <1 =~ l-and w € A, and therefore lim sup c (s)s <
m ne 0 n

¥(s)/(1-1/m) = ==~ ¥(s) a.s.. Combining this with (6.3.16) we obtain that

m-1
. m
lim ¢_{(s8)S_ = —— ¥(s) a.s8.. 0
n n m-1
n->co
We close this section with a result, concerning the quotient Zn+1/Zn'

conditioned on {Zn-*w}. Since Z 4q C3n be considered as a "sum" of z_ in-

+1
dependent and identically distributed random variables, all with expecta-
tion m, we might hope, in view of the law of large numbers, that Zn+1/zn

converges to m as n - o, This is indeed proved in the next theorem.
THEOREM 6.3.12.

Z
. n+l
lim = a.s.

>0 n

on {Z_ ~+w},
n

PROOF. Choose some s € {(0,~logr). Then we know from Theorem 6.3.2 that

Y(s) € (0,®) a.s. on {Zn->w}, Hence



h(cn+1(S))

. Zn+1 . cn+1(S)Zn+1
lim = 1i
c (s)z
nro n n+o n n
S ETR
s¥0

on {Z +w}. 0
n

n+1

(s)
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CHAPTER 7

THE CASE m=w

7.1. INTRODUCTION

We shall now consider processes for which m = ®., Such processes are
called explosive. Again as in the prévious chapters, the behaviour of the
process on {Zn->0} is in fact determined by the value of a. We therefore
make in this chapter only some brief remarks about that case and refer fur-
ther to Section 6.2. The behaviour on {Zn‘*m} is however completely differ-
ent from what we have seen so far. It turns out that in many cases it is
not useful anymore to normalize the random variables Zn by a sequence of
constants, as we did in Chapter 6, because for many explosive processes
PO < limnew anZn‘iw) = 0 for all sequences {an; n=1,2,3,...} of positive
and finite constants. We shall therefore study limits of gn(Zn) for suit-
able, and hence non-~linear, functions gn. First of all we mention some weak
convergence results, which will be extended to almost sure convergence re-
sults later on. The techniques used for this approach are well-known for
Galton-Watson processes. Because similar arguments can and will be used in
case a = 0, we shall not give all the details in this chapter, but confine
ourselves to referring to Chapter 9. Furthermore, we pay some attention to
the stochastic norming with the help of the function fY(t)' introduced in

Chapter 3.
7.2. THE BEHAVIOUR OF THE PROCESS ON {Zn-+0}

In Section 6.2, where we studied the behaviour of supercritical pro-
cesses {Zn; n=0,1,2,...} on {Zn->0}, we did not use the finiteness of m,
_but only the fact that m > 1, implying that h(s) > s for small s, and there-
fore that r < 1. For this reason we can again use the same techniques as in

Section 6.2 with respect to the behaviour of the process on {Zn-*O}. This

yields in particular, that if r > 0, then the process {Zn; n=0,1,2,...}
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conditioned on {Zn-*O} is equivalent to a subcritical process
{z s n=0,1,2,...} withm := E(Z, | Z,=1) = h'(-logr) and a :=

inf{x; P(E1 <x | EO =1) >0} = a. Furthermore, we get analogous to Theorem 6.2.1

THEOREM 7.2.1.

(a) ¥ < 1;
(b} r = 0 if and only if a = 1;
(¢)y if P(Zl=:0) > 0 then g = r.

7.3. THE BEHAVIOUR OF THE PROCESS ON {Zn'*w}

In contrast with the behaviour of the process on {Zn—%O}, there is no
analogy with the supercritical case on the event {Zn-fw}. We can for exam-
ple prove, in the same way as in SENETA [1969], that there is no sequence
of positive and finite constants {dn; n=1,2,3,...} suchthat ann converges
in distribution to a proper, non-degenerate limit as n -+ «. One way to get
a hold on the process is now to look for some sequence of functions {gn;
n=20,1,2,...} such that gn(Zn) converges in some sense to a proper, non-
degenerate limit as n » ». As we saw above, these 9, cannot be linear func-
tions. A first step in this direction was made in DARLING [1970] for
Galton-Watson processes. He proved that under certain conditions, we can
take gn(x) = bn log(1+x), where {bn; n=1,2,3,...} is a sequence of posi-
tive constants. We can lift out a part of his proof to obtain the following

result to be used repeatedly in the sequel. See also SENETA [1973].

LEMMA 7.3.1. Let {fn; n=1,2,3,...} be a sequence of cumulant generating
functions of non-negative random variables Xn, n=1,2,3,... . Suppose
there exist a sequence {bn; n=1,2,3,...} of positive constants and a

distribution function w such that lim b = 0 and
neo T n

{(7.3.1) lim £ {-log(l ~exp(~t/b })}} = ~logw(t), 0 <t < o,
e n

Then limn+m P(bn log (1+-Xn)$'t) = w(t), for every t ¢ (0,®) where w is

continuous.

Using cumulant generating functions and their iterates as the basic
tool in deriving results concerning branching processes, one becomes more
and more aware of the saddening fact that examples are hard to give, be-

cause these iterates soon become very complicated. However, at this moment
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we are able to present one.

EXAMPLE 7.3.2. Let {Zn; n=0,1,2,...} be a branching process having a
strictly stable distribution, concentrated on [0,»), as its offspring dis-
tribution. It follows from Section XITI.6 in FELLER [1971] that in this
case h(s) = dsa, s € [0,), where d € (0,») and o € (0,1) are constants;

o is called the characteristic exponent of the stable distribution. In this
example as well as in the following examples where we consider a branching
process having a strictly stable distribution concentrated on [0,») as its
offspring distribution, we suppose that d = 1, implying that

(7.3.2) his) = s%, s e [0,2).

n
s for all n = 1,2,3,... . Taking bn = ¢ and

it

This means that hn(s)

£f =h in (7.3.1) we cbtain
n n

n
£ (-log(l -exp(-t/b ))} = {-log(l - exp(-t/a)) 1%
~ {exp(—t/an)}u = e't, as n + », for all t € (0,»),
and hence it follows from Lemma 7.3.1 that

anlog(l-kzn) §+ Z,

where Z is a random variable with distribution function

o] . t <0
w(t) = { .

exp (~exp(~t)), 0t <ew

Since this distribution function is well-known in the extreme value theory,
one might ask if it is possible to give any interpretation for Z in this

context. For an answer to this question we refer to Example 7.3.11.

In general it is not so easy to decide whether or not the limit (7.3.1)
exists, for fn = hn and {bn; n=1,2,3,...} some sequence of constants.
- However, in SENETA [1973] a class of processes is described for which the
corresponding cumulant generating functions satisfy (7.3.1). For the con=-

struction of this class he introduced the following function.
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(7.3.3) £(t) = -log{1 - exp(-h(-log{l-e 1))}, t e [0,0).

This function f was assumed to satisfy

(7.3.4) £(t) is convex or concave on [0,®)
and
(7.3.5) 0 <y := lim £(e) < 1.
t
o0

Furthermore introducing

(7.3.6) ¢(t) = £(t~log(l-xr)) + log(l-x), t e [0,0),
(7.3.7) aw = ¢, t e [0,%)),
. (7.3.8) o(x) = 1/d(1/x), x € (0,®),

t
and the convention that the subscript n indicates the n h iterate, Seneta
proved the following result, which is also true if the state space of the

branching process is [0,=).

THEOREM 7.3.3. Suppose that (7.3.4) and (7.3.5) hold. Then for any fixed

x € (0,%),

(7.3.9) ~logw(t,x) := lim hn(—log{l -exp(-t/p_(x))})

nre

exists for all t € (0,»). The function w(t,x) has the following properties:

(7.3.10) lim w(t,x) = r and lim w(t,x) = 1;
t40 tre
(7.3.11) h(-logw(t,x)) = ~logwl(yt,x), t e (0,»);
(7.3.12) w(t,x) is continuous and strictly increasing in t € (0,®).

- PROOF. The proof of (7.3.9), (7.3.10) and (7.3.12) is analogous to the
proof of Theorem 1 in SENETA [1973]. Furthermore, the analog of relation
{3.4) in SENETA [1974] yields that A(yt,x) = ¢(A(t,x)), £ € (0,»), where
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A(t,x) = log(i-r) - log(l -w(t,x)). Hence we obtain from (7.3.6) and
(7.3.3) that

"A (Ytrx)

-log w(yt,x) = =log(l -~ (1-x)e )

= —log(l - (1-r)e *(A(EX)),

-f(A(t,x)-log(1-xr))

= ~log(l -e )
= h(-log(l - (1-r)e A(EX) ),
= h(~-log w(t,x)), t e (0,®). ]

Until now the analysis was based on the cumulant generating function
hn of Zn' For this reason we obtained only weak convergence results. We
shall now try to extend this to almost sure convergence of gn(Zn) for some
sequence of functions {gn; n=1,2,3,...}. This will be done using a se-
quence of random variables {Un(x); n=1,2,3,...}, mentioned in PAKES
f1976]. It turns out that these Un(x) constitute a martingale sequence, a
fact which will be used to prove the almost sure convergence. These random
variables Un(X) are defined by

Z
(7.3.13) U (x) = {1~ (1—r)exp(—1/pn(X))} 7, n=1,2,3,...; x € (0,@),

with p(x) as in (7.3.8) and pn(x) its nth iterate. Since
(7.3.14) ¢n(1/pn(x)) = 1/x

by (7.3.7) and (7.3.8), we see that ¢(1/pn+1(x)) = 1/pn(x), and thus, using
the basic branching property (3.1.3) and (7.3.6) and (7.3.3),

E(U_, ) [ U () 000,00 (x))

Z
E{(1~ (- expl~1/p_, 0} "]z}

1t

Zl}Zn

it

{E(1 - (1-r)exp{ -1/on+1 )}

. Z
{expl-h(-log(1 - (1-x)exp(-1/p ()11} * =
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]

Z
{1- (-vyexpl-¢(1/p_,, (x)) 1} *

Z
{1~ (l—r)exp(—l/on(X))} R U (x)-

Furthermore obviously 0 < Un(x) <1 for alln=1,2,3,... and all x € (0,»).

So {Un(x); n=1,2,3,...} is a bounded martingale, and therefore

(7.3.15) Un(x) a.8., some random variable U(x), as n + o,
and
. o a
lim EUn(x) = EU(x) for all o € (0,»).

n-—reo

Particularly, since EUn(x) does not depend on n, by a well-known property

of martingales, we obtain, using the definition of ¢n and (7.3.14)

Z
(7.3.16) EU(x) = EUn(x) = E{1 "(1—r)exp(—l/pn(x))} n

exp{—hn(—log(l - (l—r)exp{-l/pn(x) )}

1 -~ (1—r)exp{-¢n(1/pn(x))}

1 = (l-xr)exp(-1/x%).

With the help of this we can prove the following result, which will be
used to show that there exists no sequence of positive constants
{an; n=1,2,3,...} such that P(0< limn

a Z < | lim 7 =w) > 0.
—>00 nn N> n

THEOREM 7.3.4. Suppose (7.3.4) and (7.3.5) hold. Then, for any x € (0,),

{exp(—l/pn(x))}-Zni—'~§—7-—> some random variable 7Z(x), and
(7.3.17) P(Z(x) =0) = 1 -« P(Z(x) =) =1 - (l-r)exp(-1/x).
PROOF. From (7.3.13) and (7.3.15) we know that

Z, log (1 —(1—r)exp{—1/pn(x)}) 2:85., log U(x) as n > o,
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Furthermore, it follows from the proof of Theorem 7.3.3 that pn(x) ¥ 0 as

n -+ «, implying that

log (1l - (1—r)exP{—1/pn(X)}) ~ —(1-r)exp(—1/pn(x)) as n >
and so
(7.3.18) (1-x) {exp(-1/p_(x)) }z_ 2:5:, log U(x) as n > .

Since obviously -~log U(x) = 0 on {Zn-+0}, we see that Z ~ « a.s. on

{0 < ~log U(x) <»}. This means that

(7.3.19) (1+z) " =
n

p_(x) Zn{exp(—l/pn(x))}(l—r) pn<x)‘
~log U(x)

) {—log U(x)}Dn(X){1+Zn}Dn(X) a.s

- Zn 0@ —) lelelee = e

as n + » on {0<-log U(x) <w}.

However, from Lemma 7.3.1 and Theorem 7.3.3 we know that pn(x)log(1+-zn)
converges weakly to some random variable W(x), and that the distribution
function of W(x) is continuous on (0,»). Combining this with (7.3.19) we can
conclude that P(0 < ~log U(x) <) < P(pn(x)log(l-kzn)->1) = (. So we have,

since U (x) € [0,1], and hence also U(x) € [0,1],

P(U(x) =1)

i

P(~log U(x) =0) = 1 - P(~log U(x) = =)

1 - P(U(x) =0),

and therefore, inview of (7.3.16), P(U(x) =1) =1 - (l-r)exp(~-1/x). This
together with (7.3.18) proves the theorem. 0

This last result is more important than it might seem at first sight,
because it says that not only for one sequence, but for a whole class of
_sequences of norming constants, to wit {{exp(—l/pn(x)); n=1,2,3,...};
x € (0,1}, it holds that limn_)m [exp(—i/pn(x))]zn = 0 or = almost surely.
The fact that pn(x) increases from 0 to « for every n = 1,2,3,... as x xruns

through (0,»), as follows from the relations (7.3.3) up to and including
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(7.3.8), enables us to compare any sequence {an; n=1,2,3,...} with
{exp(wl/pn(x)); n=1,2,3,...}. This leads to the following theorem, which
says that there is no sequence of positive constants {an; n=1,2,3,...}
such that P(0< limn_)m anZn-<Oa Ilimn+oo Zn==w) > 0. This result, together

with the corresponding result in Chapter 9, was meant in the remark made

before Lemma 3.3.4.

THEOREM 7.3.5. Suppose (7.3.4) and (7.3.5) hold. Let {an; n=1,2,3,...}
be a sequence of positive constants such that lim a = 0 and lim a_z
n>e n no n

exists almost surely. Then P(lim a2z =0 or «) = 1.
n>o nn

PROOF. Obviously, there are only three possibilities for the sequence
,{a ;o n= 112131--~}:
n

(1) for any x € (0,») there exists a subsequence {anj(x); j = 1,2,3,...}

of {an; n=1,2,3,...} such that aj (x) < exp(~1/pn_(x)(x)) for all
J J

3 =1,2,3,... .

(2) for any x € (0,») there exists a subsequence {an.(x); jo=1,2,3,...}

]

of {an; n=1,2,3,...} such that anj(x) > exp(-1/p %)) for all

o= 1,2,3,...

. - - < <
(3) there exist 0 < X, < X, < o guch that exp( 1/pn(x1)) sa <

nj(x)(

exp(»l/pn(xz)) for all sufficiently large n.

We shall now investigate each of these cases separately. By assumption

lim a_Z exists almost surely. Call this limit Z.
n© nn
(1) Since anj(x) < exp(—l/pnj(x)(x)) for all j = 1,2,3,... we obtain
< Z = lim & < 1i - Z =7
0< 2z %1m dn.(x)zn.(x) %1m[exp( 1/pn,(x)(X))] 0. (x) (x)
I J J Jee J ]

for all x € (0,») in view of Theorem 7.3.4. Hence P(Z=0) =2 P(Z2(x) =0) =

1 - (l-r)exp(~1/x) by (7.3.17). Now letting x ¥+ O we see that P(Z2=0) = 1.

(2) Because li):nn_%o a, = 0, a similar argument as under (1) yields

1 - r = P(lim zn=w) > P(z=1lim a @) 2 P(Z(x) = =)

z =
o Joreo nj(x) nj(x)

it

(1-r)exp(~1/x)

and
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r = P(lim Z_=0) < P(2=0) < P(Z(x)=0) =1 ~ (I-x)exp(-1/x)
neo O
for all x € (0,»). Letting x - » we can conclude that P(Z=«) = l-r and

P(z=0) = r.

(3) Since 1/pn(x2) < ~log an < 1/pn(x1), and the function ¢ (t), defined by
(7.3.6) is increasing in t, because h(t) is, (7.3.14) yields 0 < 1/x2 <
¢n(—log an) < 1/x1 < o for all sufficiently large n. This implies that the
sequence {¢n(«log an); n=1,2,3,...} has a convergent subseguence

{¢n (-log ay )i j = 1,2,3,...}. call its limit A. Then obviously

J
A e [1/x2,1/x1]. Furthermore, for any € € (0,A)

A~ g < ¢n (~log arl ) <A + g,
j j

for sufficiently large j. Now because pn(1/¢n(x)) = 1/x by (7.3.7) and
(7.3.8), this implies

1 1
exp(—l/pnj(g;zﬂ) < anj < exp(—l/pnj(i:;ﬁ)

for sufficiently large j, and in a similar way as above, we see that

(1-x)exp(~(A+e)) = P(Z(Zézﬂ==w) S P(Z =)

and

1 - (lI-r)exp(-(A-€g)) = P(Z(AlTe) =0) £ P(2=0).
Hence we obtain, letting € + 0, P(Z=w) = (l-r)e > and P(z=0) =
1 - (t-mye ®, 0

For an application of this last result we consider again the random
variables Y(s) introduced in Corollary 3.3.5. There we saw that Y(s) =
lim c_(s)Z_ exists a.s. 1if s € (0,-logr). Because lim c (s) =0,

noe N n N
it now follows that if (7.3.4) and (7.3.5) hold, then P(Y(s) =0) =
1 - P(Y(s) =) . Furthermore, the substitution z = 1 in (3.3.5) yields

eﬂy(s) =e° and hence P(¥(s) =0) = e—s and P(Y(s) =) = 1 - e ® for all

E
s € (0,~logr). One might ask if this last property holds true for all pro-
cesses with m = ». A negative answer to this question is given in a paper

of SCHUH and BARBOUR [19771. There they divide the explosive Galton-Watson
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processes into regular ones, fof which P(¥{s) =0 or ) = 1 for all s €
(0,~logr) and irregular ones for which this is not true, and prove that there
exist irregular processes. It turns out that their method can also be applied
to explosive branching processes with state space [0,®), but as a similar
method will be used in the case a = 0, we shall at this moment only present

a brief survey of the results analogous to the ones in the paper mentioned
above and to some related results in other papers. First of all we can prove

the following; see also GREY [1977].

THEOREM 7.3.6.

(a) Let L be a non~increasing function on (0,®) such that 1imx¢0 L(x) =
and Lo} = limx+m L(x) = 0, and let {an; n=0,1,2,...} be a sequence
of positive constants. Suppose that limn+m anL(cn(s)) exists € (0,%)
for all s € (0,~logr) and is continuous on (0,-logx). Call this limit
P (s). Then there is a random variable U such that

(7.3.20) a L(1/2) 22y as n + o,

where U = 0 on {Zn-+0} and U € (0,%) a.s. on {Zn->m};
(b) Suppose furthermore that L is slowly varying at 0 and that y is strict-
ly decreasing on (0,~logr). Then P(USt) = exp(—wlnv(t)), t e (toltl).

P(t) and t, := lim P(t).

where t := 1 1 10

0 lmt¢—lcgr

Later on we shall see that if L is continuous and strictly decreasing

on (0,A) for some A ¢ (0,»), then to = 0 and t1 = w,

EXAMPLE 7.3.7. We can again apply this result to a branching process having
a strictly stable distribution concentrated on [0,») with characteristic
exponent o € (0,1) as its offspring distribution. From (7.3.2) we know that

-n
in this case h(s) = su, and hence cn(s) = g% . Purthermore, Theorem 3.3.1

implies that ~logr = 1, that is ¥ = e-l. Now choosing an = an and L{s) =
log(t+1/8), s ¢ (0,»), we see that these a_ and L satisfy the conditions

of Theorem 7.3.6(a) and (b) and that

-n
P(s) = lim anL(cn(s)) = 1lim anlog(1+s ¢ )
> T1->oe
a _-n
= lim o logs™® = -log s,
1-»oo

for s € (0,~logr) = (0,1).
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Hence it follows from (7.3.20) that anlog(l-kzn) 2.8, U, where P(U=0) =
1/e and P(U<t) = exp(—wlnv(t)) = exp(-exp(~t)) for t € (tO'tl) = (0,»), in
agreement with the distribution function derived in Example 7.3.2. Moreover,

it follows that U € (0,x) a.s. on {Zn—+w}, a fact which will be used later

On.

EXAMPLE 7.3.8. We can also apply this result to processes which satisfy
(7.3.4) and (7.3.5), with an = pn(x) for any x € (0,©) and L(s) =
log(l1+1/s), s € (0,®), where we use the notation introduced before Theorem

7.3.3. For if we do so, then

anL(cn(S)) pn(x)log(l +1/cn(s)) ~ —pn(x)log cn(s)

i

~p_ (%) log{~1og (1 - exp{ —fninv(—log(l TSNP}
for s € (0,~logr),

with £ as in (7.3.3). Now ~-log(l-—ews) € (-log(l-r),») if s ¢ (0,-logx),

and because f(-log(l=-xr)) = ~log(l-xr), and f is convex or concave and
( i -y
lim f—ti‘l =y < 1, it follows that fnlnv(-—log(l -e %)) > wag n > ® for

all s € (0,-logr). Therefore
anL(cn(s)) ~ —on(x)log exp{«fninv(—log(l-e_s))}
= pn(x)fninv(—log(l -e™%)) as n » .

Now in view of the relations mentioned before Theorem 7.3.3,
fninv(t) = -log(1-r) + 1/p_(1/{t+log(i-r)}),

and since pn(x) v+ 0 as n > « this implies that

~ . - - ~1 o
anL(cn(S)) pn(X)/pn({log{(l r)/(l-exp(-s))}} ") as n >

This last expression converges to some function Y(s,x), which is continuous
and strictly decreasing as a function of s on (0,-logr) and satisfies

14

lmsf—logrlb(s’x) = 0 and llms+0 P(s,x) = =, as follows from Lemma 2.2 in
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SENETA [1973]. An application of Theorem 7.3.6 therefore yields that
pn(x)log(1+-zn) a-5., s?me random variable U(x), where U(x) = 0 on {Zn—*O}
and P(U(x) <t) = exp(—wlnv(t,x)) for t € (0,»), thus extending the result,
obtained by combining Lemma 7.3.1 and Theorem 7.3.3, to almost sure conver-

gence.

The following step in the paper of SCHUH and BARBOUR [1977] is that
they construct, for every cumulant generating function h(s), a function L
such that, with an = e_n, n=0,1,2,..., the conditions of Theorem 7.3.6(a)

are satisfied. This yields

. . -n a.s.
THEOREM 7.3.9. There exists a function L such that e L(l/Zn) ——— SOME
random variable U as n -+ «, where U = 0 on {Zn-+0} and U € (0,®) a.s. on

{zn-+m}.

In connection with Theorem 7.3.6 we can prove a result, the analog of

which for Galton-Watson processes is established in COHN and PAKES [1978].

THEOREM 7.3.10. Let L, {an; n=0,1,2,...}, ¥ and U be as in Theorem 7.3.6,
and suppose that the conditions of both part (a) and part (b) of that theorem

are satisfied and that furthermore o := lim an/an exists € (0,1) and

v

-1
that L is continuous and strictly decreasing on (0,A) for some A € (0,x).
Then

k) (k) (k) -(k)}

k (
(7.3.21) U = o max{U1 Uy ,...,U[Zk],u a.s.,

for every non-negative integer k, where [z] is the integer part of z;

Ul(k) ,U?fk) ,U3(k) s ... are random variables all distributed as U and P (U (k) <t I Zk) =
= P(USSt)Zk_EZk] for all t € (~w,»); Furthermore Zk,U;k),Uék),ng),...

= (k)

are independent, and U ,U;k),U(k),U(k),

2 3
independent; finally the distribution function ¥ of U satisfies

... are, conditionally given Zk'

(7.3.22) -log F{at) = h{-log F(t)), t € (wo,®).

It is interesting to compare this last result with relation (6.3.12)

which says that ¥(s) is distributed as mmk{Y(k)~+Y(k>~&...~+y(k) -+§(k)},
Coe) ) L) ) b2 (2]
with Y Y Y ' ;... analogous to the random variables

G(k),U{k),Uék),U§k),... above. The sum in (6.3.12) is now replaced by a

maximum.
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Using the notation of the Theorems 7.3.6 and 7.3.10 it follows that

under the conditions of Theorem 7.3.10, ~log F(t) € (0,-logr) for

t e <t0't1)' By (7.3.22) this implies that also -log F(at) ¢ (0,~logr) and
hence that ot ¢ (to,tl). Since o € (0,1), this is only possible if t0 = (.
On the other hand, if ot ¢ (tO'ti)' then -log F(at) € (0,-~logr) and thus
by (7.3.22) also ~log F(t) € (O,Tlogr), that is t € (tO'ti)' This implies
that t1 = o, Si?ce -log F(t)'= wlnv(t) on (to,tl) it follows therefore from
(7.3.22) that wlnv(at) = h(wlnv(t)), t € (0,»). We can consider this rela-
tion as the analog of relation (6.3.1), which says that ¢(u,s), the cumu-

lant generating function of Y(s), satisfies ¢{(mu,s) = h(¢(u,s)).

EXAMPLE 7.3.11. For a branching process with offspring distribution a

strictly stable distribution concentrated on [0,») with characteristic ex-

ponent o € {(0,1), Theorem 7.3.10 can be applied again with

L(s) = log(l+1/s), s € (0,®) and a_ = o as in Example 7.3.7. Then we ob-
kR k) (k) k) =

tain that U is distributed as o max{U U,y ""'U[ZkT'U

random variables 5(k),U;k),Uék),.n. as in that theorem. Furthermore,

(k) }, with the

(7.3.22) becomes ~log F(at) -= (—long(t))u, in agreement with the distri-

bution function derived in Example 7.3.7.

EXAMPLE 7.3.12. The result of Theorem 7.3.10 can alsoc be applied to pro-

cesses which satisfy (7.3.4) and (7.3.5). From Example 7.3.8 we know al-

ready that with a = pn(x) for any x € (0,%) and L(s) = log(l+ 1/s},

s € {0,»), the conditions of Theorem 7.3.6 are fulfilled, implying that
a.s.

pn(x)log(1—+zn) —— I (%) as n -+ o, Furthermore, it follows from the re-

lations (7.3.5) up to and including (7.3.8) that

a p_ (%) .
lim —— = lim -“—(X) = lim p—(ttl = lim ——
noeo Sn-l poe Pn-t £40 o ¢ (&)
= 1im 88 C g BB L0 0,1y

Since L(s) is strictly decreasing on (0,»), relation (7.3.22) holds and we
obtain that -log F(yt,x) = h(-log F(t,x)), t € (-»,x), where F(t,xz) is the
distribution function of U(x). Notice that for t € (0,») this is Jjust re-
lation (7.3.11), for as a consequence of Lemma 7.3.1 and Theorem 7.3.3 we
have that pn(x)log(l-PZn) converges in distribution to some random vari-
able Z(x), the distribution function w(t,x) of which satisfies

h{~log w{t,x)) = -log w(yt,x), t € (0,»).
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As already mentioned above, in Chapter 9 we shall give more details

of the methods leading to these last results.

We now pass on to the study of the quotient Zn+1/fy(zn) introduced in
Section 3.3, with
log|log t]

£
Y(t)

(vt Mogllog t])

We might obtain some results by considering the events {Zn+1 <d fy(zn)}
for some constant d, and trying to apply a Borel-Cantelli-type lemma to
them. The problem which arises then is not only the calculation of the pro-
bability of these events, but also the large measure of dependence between
them. There is however a case for which this dependence does not exist,

and this will be studied in the following example.

EXAMPLE 7.3.13. Let {Zn; n=20,1,2,...} be a branching process having a
strictly stable distribution, concentrated on [0,») with characteristic

exponent o € (0,1) as its offspring distribution. In Lemma 1 of ATHREYA

[1975] it is proved that in this case the random variables Zn+1/Zn1/a'

n=0,1,2,... are independent, and all distributed as Zl' The argument
1/0

leading to this statement is that the distribution of Zn+1/Zn / condi-

tionally given ZO'

as the distribution of

Zl""’zn only depends on Zn' and that it is the same

W(Zn)

1/0
%

given z . where {w(t); t € [0,»)} is a stochastic process independent of
the subordinator defining the branching process {Zn; n=20,1,2,...}, but
with the same distribution as that subordinator. Because for such so-called

stable processes {W(t); t € [0,»)} it holds true that

w(t)
t1/oc

jIfer]

W(1) for all t € (0,»),

it follows that both the conditional distribution of Zn+1/zn1/a

;...s% and the unconditional distribution of Z /% 1/0 are the same as
0 n n+l" n 1/a

“that of W(1). This means that the random variables Zn+1/Zn ,

are independent and all distributed as W(l). Now introducing the events Dn

by

given
Z
n=0,1,2,...
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B 1/a B(a) (1~a) /o B
b = {Zn+1 =2 (1+e)logn 1 D= 23,4,
where
Bl = (1-)® (17 (eog I~/ 1) (g,

and € any real number in (-1,%), it follows that the events Dn’ n=2,3,4,...
are independent. Furthermore, using the parts IV and VII of Theorem 2.1.7
in MIJNHEER [1975], we see that, with V a random variable having a standard

normal distribution,

: Z
(7.3.23) P(D) = P( ntt _ . B(a) }(l—ot)/u)

Zl/a (1+e)logn
n
= PW(1) < (el (1me) /e

(i+e)logn

1 1

~ (32[)2 p(V = {2(1+¢)logn} )

1
1.2 -
(a}ﬂ {2(1+€)logn}

N

2

e—(1+a)logn

1 S
= {2ma (1+g) } 2(log1ﬂ 2°n‘1“€ as n > o,
Hence it follows that
@ < if 0 < g € »
) P(Dn){ .
n=2 =0 if -1 < e £0
Since the events Dn, n = 2,3,4,... are independent, we can apply the zero-

one criterion of Borel to obtain

0 ifo<€<‘:»

P(lim sup Dn)= { v
1 if -1 < g =0
and therefore
zn+1(1ogrn (1-a)/a (1-a) /o
(7.3.24) lim inf = B(a) a.S8..
1/a
n > « 2

n
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Now we know from Example 7.3.7 that unlog(l +Zn) a-s:, U as n -+ », and that

U e (0,2) a.s. on {Zn->w}. This implies that also anlog Zn -5, U, and
hence o ~ U/log Z_ a.s. as n > « on {Z_ -«}. Since lim ol = 0, this
n n o
means that
loglogzn-logU loglogzn
(7.3.25) n ~ ~ a.s. as n > ® on {Z —+w}.
-log o ~log o n
From this we can conclude that
(7.3.26) logn ~ log log log Z_  a.s. as n + ® on {Zn—+w}.
Combining this with (7.3.24) we obtain
&1"1 1
Zn+1(log log log Zn) E_l
(7.3.27) lim inf = B(a) a.s. on {Z_=«},
n > o« Zl/u n
n
Turning back to Z /f (2 ), we see that, since c(s) = sl/a
n+l’ Ty o’ ' ‘
) . v log log Zn\
Z n+1 Z /
(7.3.28) ntl o =
fY(Zn) logloan
1/a (1=a)/a
~ Y Zn+1(log'log'Zn)
B ) Zl/a
n
5 o ! 1
) Y Znﬂ(log log log Zn) I log log Zn -07—1 .
Zl{a Ilogloglogzn
n

a.s. as n + © on {Zn->w}w This is one part of the result announced in Sec-
tion 3.3, where we promised to give an example of a subordinator
{w(t); tel0,)} with corresponding branching process {Zn; n=0,1,2,...} for

~ which llmn%w Zn+1

/fy(zn) = ® a.s. and for which (3.3.16) is satisfied,
that is lim inf W(t)/fY(t) =d e (0,®) a.s., where the lim inf may be taken
both for small and for large t, as can be found in FRISTEDT [1964]. The

/

second part, to wit 1imn Z

oo 2ot (Z ) = © a,s. on {Zn—*O}, will be proved

£
Y “n
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in Chapter 9.

At first sight the difference between (7.3.28) and (3.3.16) might
seem strange. However, a closer look at the method used above yields that
we proved in fact 1imn_)00 Wn(zn)/fy(zn) = ® a.s. on {Zn+°°}, where
{{Wn(t); te[0,}; n=1,2,3,...} is a sequence of independent subordina-
tors all distributed as {W(t); t € [0,»)}, whereas we observed in (3.3.16)
only one subordinator. This does indeed give rise to an important differ-
ence, because the independence of the subordinators {Wn(t); t e [0,=)1},

n=1,2,3,... enables us to prove, in a similar way as we proved (7.3.24),

W (tn)

1~a) /o - (1~a) /o
tl/oc
n

(7.3.29) lim inf (logn)( B(a) a.s.

n -+ o

for any sequence {tn; n=1,2,3,...} of positive and finite constants, a
result which is not true if we replace Wn(t) by W(t), even if limn_)_Oo tn:=W.

For if we take tn = n, then

Wit ) B

lim inf I (1ogn)“ a) /o
1/a

n > o« tn

= lim inf
n < «©

W(tn) / logn (l—a)/u. ~1/a
fY (t) \log logn Y -

since

W(tn)
lim inf -e—w—ee > d > 0 @.8..

n -+ o f'Y(tn)
It follows from (7.3.29) that if we consider a sequence
{tn; n=1,2,3,...} for which there exists a function f such that

f(tn) ~ logn as n + «, then

W_(t ) » _
lim inf SR f(tn)(l o) /o = B(OL)(1 a)/a a.s..

1/a
n - tn
In view of (7.3.26} this function £, in the example of a branching process
with a strictly stable distribution with characteristic exponent o € (0,1)

as its offspring distribution, is given by £(t) = log log log t.
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We can use a similar method to obtain a result invelving a lim sup.
We shall see that this result is slightly different from (7.3.27) in the
sense that the lim sup is a.s. 0 or «. This however is a well-known pheno-
menon in the theory of stable processes. Introducing the events En by

1/0

E ={z . >az/%m

N n+ n 1, n=0,1,2,...,

where d is any constant € (0,») and f any non-negative function on [0,®)

such that lim f(n) = «» and
o
(7.3.30) f(an) ~ f(n) as n >

for any sequence of constants {an; n=20,1,2,...} such that an ~nasn > «,
it follows that the events En’ n=20,1,2,... are independent, since the ran-

dom variables Zn /Zi/a, n=0,1,2,... are independent.

+1
Furthermore, part I of Theorem 2.1.7 in MIJNHEER [1975] yields

A, _-a
P(E) =pw1) > atm% ~ L& agn e,
n ma £(n)
where
1
B, = F(a+1)'(14-tan2(%§3)2°sin To € (0,%).
Hence we obtain
< if zm 1 <
[eo] « l e casaa [es]
I PE) { 2'0 f(in) .
n=0 = 0 if Zn=0 ) = o0

The independence of the events En' n=0,1,2,... allows again an applica-

tion of the zero-one criterion of Borel, whence

0 if 5 L.
D — e
. Hthe0 T
P(lim sup E_)= .
n 1 if 1 b -
n=0 f(n)

éince d € (0,~) was arbitrary, this implies that



© 1

lim sup ————?Eiﬁ-—;— = {O o £ a.s
1/a /0 e e 1 U
n > ® Zn f(n) © if zn=0 o -

In view of (7.3.25) and (7.3.30) we can conclude from this that

. © 1
. 21 O HIoEm ¢
(7.3.31) lim sup =
n o+ o 1/a logloan 1/a - if © 1 -
Z f(—————————> n=0 £ (n)
n -log o

a.s. on {Z ~+w},
n
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CHAPTER 8

THE CASE a>0

8.1. INTRODUCTION

Now that we have studied branching processes for various values of m,
the only thing that still rests is the behaviour of the process on {Zn—>0}
if P(Z1==O) = 0. Of course, since we consider the process on {Zn-*O}, we
assume that P(Zn->0) > 0, implying that -logr < « and a < 1. Because the
offspring distribution of a Galton-Watson process is concentrated on the
non-negative integers, it follows that for such processes P(Zn-*O) > 0
implies that P(Zl= 0) » 0, and hence that the case we consider here does
not occur in the theory of Galton-Watson processes.

In Chapters 6 and 7 we made a repeated use of the constants c,(s) for
s € (0,-logr). As we shall see, we can now use similar techniques with the
help of the constants cn(s) for s € (-logr, »). We know from Chapters 6 and
7 that there is a basic difference between supercritical and explosive
branching processes on {Zn->m}, essentially caused by the fact that for
supercritical processes lim

feieacsd

limn+w cn+1(s)/cn(s) = 0 for explosive processes, with s ¢ (0,~logr). A sim-

1
Cn+1(S)/Cn(S) == 0, whereas

ilar difference will be shown to exist here. More precisely, we have to dis-

tinguish between the cases where, for s ¢ (-logr, »}, lim

n-o cn(s)/cn+1(s)> 0

and where lim c {s)/c (s) = 0. In view of Lemma 2.2.5(c), these cases
n¥eo n n+l

are a > 0 and a = 0, and we shall see that there is an intriguing parallel
between the process {Zn; n= 0,1,2,...} on {zn—+o} if 0 < a < 1 and the pro-
cess {Zn; n=0,1,2,...} on {Zn-*m} if m < », and also between the process
{zn; n=0,1,2,...} on {zn+o} if a = 0 and the process {zn; n=0,1,2,...}
on {Zn-+m} if m = ». Throughout this chapter we suppose that 0 < a < 1, and
hence that ~logr < «, and furthermore that s ¢ (~logr, »), unless stated

otherwise.



80

8.2. MAIN RESULTS

As already mentioned in Section 8.1, we shall see that there is a close
correspondence between this section and Section 6.3 where supercritical pro-
cesses were studied on {Zn->w}, and it turns out that we can proceed along
the same lines as we did there. First of all we consider the random variable
Y(s), defined in Corollary 3.3.5 by Y(s) = limn+w cn(s)zn, and derive again
a functional equation for its cumulant generating function. Notice that

P(Zi==0) = 0 since a > 0, and hence that Y(s) is well-defined.

THEOREM 8.2.1. For all z with Rez = 0
(8.2.1) d(az,s) = h(dp(z,s)).

PROOF. Since c(s) > s for all s € (-logr, ), it follows that

lim c_(s) = =, and hence, using Lemma 2.2.5(c) we see that
n+eo n
pim 0 s 1
. Cn—l(S) oo h(cn(S)) Goveo h{(s) a
The rest of the proof is now analogous to the proof of Theorem 6.3.1. O
Obviously Y(s) = « on {Zn->w}, since limn+m cn(s) = o, Using (8.2.1)

we shall now prove that Y(s) ¢ (0,®) a.s. on {Zn->0}.

THEOREM 8.2.2.
(a) P(¥(s) =0)
(b) P(Y(s) <)

0;

r.

PROOF. In a similar way as in the proof of Theorem 6.3.2 it follows that
both ~log P(¥(s) =0) and -log P(Y(s) <) are solutions of the equation
h(t) = t, where t ¢ [0,»], and that

(8.2.2) ~log P(Y¥(s) =0) > O and ~log P(Y(s) <®) < =,
Furthermore, since lim c (s) = o,
ne n
(8.2.3) ~log P(Y(s) <w) = -log P(lim c_(s)Z < «)
n-—>oo n n
> ~log P(lim Z_=0) = -logr,

n
n--e
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and

(8.2.4) ~log P(¥(s}) =0} 2 ~log P(¥Y(s) <=).

Since the equation h(t) = t has solutions t = 0, t = -logr and t = «, we
obtain from (8.2.2) and (8.2.3) that -log P(Y(s) <) = -logyr, that is

P(Y¥(s) <») = r. Combining this with (8.2.4) it follows that P(¥(s) =0) = 0

or r. But if BP(Y{(s) =0) = r, then we would have Ee_Y(S) = ¥, in contradic-

tion with the fact that Ee (5 = &7

and so P(Y(s)=0) = 0. 0

< r, as follows from Corollary 3.3.5,

In Section 6.3 relation (6.3.1) was further exploited to prove the
absolute continuity of the distribution of Y(s) for s ¢ (0,») if r = 0.
This was established by observing that any sufficiently large power of the
absolute value of the characteristic function Y(t,s) of Y(s) is integrable.
The reason that we could get a hold on |y (t,s)| for large values of |[t| was

in fact that we could write
lpm™t,s) | = |exp{-¢ (~itm",s)}| = lexp{—hn(¢(—it,5))}|,

and hence that we did indeed obtain information about large values of |t},
since m > 1. However, comparison of (6.3.1) with (8.2.1) shows that the
role of m is now played by a, and since a < 1, we can not apply the same
method as we did in Section 6.3. We can only prove the analog of Lemma

6.3.5.

LEMMA 8.2.3. Suppose that a is an irrational number. Then |Y(t,s)| < r for
all real £ # 0.

PROOF. Since by Theorem 8.2.2(b), P(Y(s) <w) = r, it follows that

it¥ (s)
e

[Y(t,s)] = |E < P(Y(s) <) =1

T0y (s) <o}

for all real t, where I stands for the indicator function. Now suppose

[9(t,s)] = x for some t # 0. Then (8.2.1) implies
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Z
exp{-h(Re¢ (-it/a,s))} = Elexp{-d(-it/a,s)}] !

Z
|E exp{~¢(~it/a,s)?} 1| = exp{-Reh(¢$ (-it/a,s))}

v

exp{-Re¢ (-it,s)} = |Y(t,s)] = r,
and so
h(Re¢ (-it/a,s)) < -logr,
whence also
(8.2.5) Re ¢(-it/a,s) < -logr.

On the other hand, because

e—Re¢(—it,s)

[W(t,s)| = <r for all t,

(8.2.6) Re¢ (~-it/a,s) 2 -logrx,

and a combination of (8.2.5) and (8.2.6) therefore yields, that
Re¢ (-it/a,s) = -logr. Iterating this we get Re¢(-it/a,s) = -logr for all
n=0,1,2,... . This means that the distribution of ¥Y(s) is concentrated on

%@ 00 2kT n

{0V, S5a +a 1t u (=},

where dn are constants € (0,*). Now,since a is irrational, a standard argu~-
ment yields P(¥Y(s) =d(s)) = r for some constant d(s), and by Theorem 8.2.2,
d(s) € (0,®). This implies that ¢(u,s) = ~logr +d(s) u for all u e [0,=).
Introducing the function ﬁ(x) by ﬁ(x) = h(x-logr) + logr, x € [0,»), it
follows now from (8.2.1) that

E(d(s)u) = h(d(s)u ~logr) + logr = h(¢{u,s)) + logr
= ¢(au,s) + logr = ad(s)u for all u € [0,»).

This however violates the assumption that the distribution of 21 is not

concentrated in one point. So |y(t,s)| < r for all real t # O. 0
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In Section 6.3 we saw that always £(s) = 0 for s € (0,-logr), where
£(s) is the first point of increase of the distribution function of Y(s).
We shall prove below that: this property does not hold in general if
s € (logr, »). Furthermore we shall see, that if P(Zl==a) > 0, then also

P(Y(s) =4L£(s)) > O.

THEOREM 8.2.4.

: l'l-—(§--)-:§:§§~ds = o for any € > 0;

S
a) 1/(1-a) )

(a) £(s) = 0 if and only if [

(b) P(¥(s) =4L(s)) = P(z, =

PROOEF.

(a) Iterating (8.2.1) it follows that for all n = 1,2,3,..., ¢(1l,s) =
h (¢(a ",s)), and hence c_(4(1,s)) = ¢(a " ,s). This implies that
c (s) = $(a",s) for all n = 1,2,3,..., since ¢(1,s) = s by (3.3.5).
Now using the fact that a < 1, Lemma 2.2.5(c) yields

L(s) = Lim an¢(a.n,s), and hence
(8.2.7) L(s) = lim ancn(s).
n-w
Since
n ac (s) n ac (s)
n k k
ac (s) =s- M ———=g [ ———0,

n k=1 ck_l(s) k=1 h(ck(s))

we see that
h(ck(S))

(8.2.8) L(s) = 0 if and only if kﬁl = o, that is

ack(s)

h(c, (s))
k 1}

co
if and only if | { e
k=1l 36 (s)

Now introducing S(S) by

o k
S(8) = Z {D_(_‘_S_.)__ 1},

k=1 a6k

where § > 1 is any constant, it follows that S(§) = o if and only if

7 {Mf}.-a}m
k=1 éXk '

where o := log § > 0. This implies that S(§) is infinite together with
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or eguivalently, together with

(<]
f{h(s) -a}d—s,
s s
€
S0 we see that if S(§) = » for some § > 1, then S(8§) = « for all § > 1,
and also that this is equivalent with f: (h(s)—as)/s2 ds = » for any
e > 0. In view of (8.2.8), part (a) is now proved once we have shown

that

(8.2.9) &7 £ ¢ (s) £ &, for some constants 61 and 62 e (1,), and all
sufficiently large k.

But this follows on observing that the function ¢, and therefore also

c is convex for every positive integer k, and so

kl
]

{h'(--logr)}k

it

c£(~logr)°s < ck(s_logr) + logr

s € (0,%).

. s
< se-lim ci(t) "
too a
Since both h'(~logr) and a € (0,1), this implies (8.2.9).

(b) First of all we shall prove that the sets {Y(s) ={£(s)} and {Zn = a"

for all n = 0,1,2,...} differ only by a set of probability zero. For
suppose that Zn = a" for all n = 0,4,2,... . Then it follows from

(8.2.7) that Y(s) = lim c (8)Z2 = lim
n n o}

n
- e & cn(s) = £(s). On the

other hand, the kranching property (3.1.3) and Lemma 2.2.5(c) imply

that P(Zn Zazn) = 1 for every n = 0,1,2,..., and therefore aléo

+1

P(A) = 1, where A := {2 2aZn for all n = 0,1,2,...}. Now suppose

n+l
that w ¢ A and w ¢ {Zn==an for alln = 0,1,2,...}. Then there is a

positive integer n such that Zn(m) = a" + e{w), with e{(w) > 0. But this
implies that zn+k(m) > akzn(w) = ak(an-+a(w)) for every positive integer

k, and hence
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Y(s,w) = limc_, ()7, () 2 Llin cn+k(s)an+k(1 e (wy/al)

koo koo

L(s) (1 +e(w)/a™) > L(s).

This proves that P(Y(s) =4L(s)) = P(Zn==arl for all n = 0,1,2,...), and

from Remark 3.3.9 we know that this is equal to P(Zl==a)1/(1—a). 0

In Section 4.2 we met with an integral analogous to

o0
h(s)-as
f%*ds'
s
€
namely
€
ms~h (s)
[ 5 ds.
0 s

The finiteness of this last one could be proved to be equivalent to

Ezlloqz1

grals with respect to the distribution function of 2

< o, This is essentially done by writing both m and h{s) as inte-
{ and then applying
Fubini's theorem. However, this technique cannot be used here, since the
number a is, in contrast with m, not an expectation. The condition in Theo-
rem 8.2.4(a) is therefore stated in terms of h(s) and not directly in terms
of Zl'

Appealing again to the paper of SENETA [1974] it is clear that we can

prove from (8.2.1)

THEOREM 8.2.5. ¢{u,s) Is regularly varying at « with exponent 1 as a func-

tion of u.

Our next aim is again the comparison of the random variables Y(s) for
different values of s € (-logr, ). First of all we notice, that by the
convexity of c(s), the quotient cn(s)/cn(t) is non-increasing in n for
~logr < s £ t < », and hence converges as n - «, Call its limit v(s,t).
Then obviously

c (s)

V(s ) = lim P = — 1t

e for ~logr < t < 5 < o,
s Cn(t) V(tls)

Furthermore, v(s,t) ¢ (0,») for all s,t € (-logyr, »). For if s £ t, then

there exists a non-negative integer k such that s 2 hk(t). This means that
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cn(s) cn(hk(t)) hk(cn(t))
1 2v(s,t) = 1lim —— 2 1im ——m = lim ————
c_(t) c_(t) c_(t)
noe n N n n-rw n
h, (u)
= lim k = ak > 0.
u-e u

Similarly we can prove that v(s,t) e [1,») if s > t.

THEOREM 8.2.6. Suppose that both s and t € (~logxr, ). Then
(a) ¥(s) = v(s,t)¥Y(t) a.s.;

(b) ¢(v(s,t),t) = s.
PROOF. The proof is analogous to the proof of Theorem 6.3.9. 0

In Section 6.3 we determined the class of possible limit distributions
for Y(s), s €(0,~logr). The basic tool was the functional equation (6.3.1).
It is therefore plausible that here we can use a similar method with (8.2.1)
as the starting point. From Theorem 8.2.2 we know that P(Y=0) = 0 and

P(Y<w) = r, implying that lim (s) = -log P(Y<») = ~logr and

sto ¢
1ims+m ¢(s) = ~log P(Y=0) = «, where ¢ is the cumulant generating function
of any random variable Y, with distribution in the class of possible limit
distributions. This leads to the introduction of the following collection
Fa,r for any a € (0,1) and r € (0,1].

We say that the cumulant generating function ¢ of a positive random
variable Y belongs to Fa - if and only if:

(1) lim (s) = =logr;

s¥0 ¢

(2) ¢ is non-linear;

% .
(3) ¢ (s) := ¢(a¢lnv(s)), s € (~logr, ), can be continued analytically
along the positive real line;

*
(4) e—t¢ (s) is for every t > O completely monotone as a function of s,
where ¢*(s), s € (0,~logr] is defined as the analytic continuation

of ¢*(s), s € (-logr, =);
(5) 1i “(s) = 0
Mmoo ¢ (8) =0
(6) ¢(u) is regularly varying at « with exponent 1.

This class Fa v turns out to be the class of cumulant generating func-
’

‘tions of possible limits of cn(s)Zn. Before proving this we introduce the

collections H and G for a € (0,1) and r € (0,1] as follows.
a,r a,r

7
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A cumulant generating function h of a proper, non-degenerate, non-
negative random variable having an infinitely divisible distribution be-
longs to H if and only if:

a,r

(1) lim his) _ a;
s> 5

(2) limnqm hn(s) = ~-logr.

A cumulant generating function ¢ belongs to Ga r if and only if there
r

is a branching process {Z ; n = 0,1,2,...} with state space [0,») such that
Z. = 1 and h(s) := —log]ﬁe_sz1 € H and lim c¢_(s,.)Z_has cumulant gen-
0 a,r h n>o n 0 By
erating function ¢, where cn(s) is the n iterate of h (s) and
Sy € (-logr, ).
Notice that cn(s) is well-defined for all s € (-logr, «©), since a > O.

THEOREM 8.2.7. F = G .
-V S a,r

PROOF'. The proof follows the same lines as that of Theorem 6.3.10. First

we show that G cF , and then that F < G .
a,r a,r a,r a,r

(a) Suppose that ¢ € Ga - Then we know from Theorem 8.2.2 that ¢ is the

r
cumulant generating function of a positive random variable Y and that, in

view of Lemma 2.2.4(a), limS¢0 ¢(s) = -logr. This implies that if ¢ is
linear, then ¢(s) = -logr +ds for some constant d > 0 and all s ¢ [0,®).
But then we should obtain h(-logr+ds) = -logr + ads, since ¢ satisfies

(8.2.1), and hence that h is linear. This however violates the assumption

that Z1 is non-degenerate, and therefore ¢ is non-linear. Now, again using

(8.2.1), we see that ¢*(s) = ¢(a¢lnv(s)) = h(s) for s € (~logr, «), and so
*
¢ (s) can be continued analytically along the positive real line and

*
¢*(s) = h(s) for all s € (0,»). This means that e £o" (s)

is completely
monotone for every t > 0 as a function of s, and that lims+O ¢*(s) =
lims¢0 h(s) = 0, since P(zl«cw) = 1. Finally, Theorem 8.2.5 yields that
4 (u) is regularly varying at o with exponent 1. This proves that

Ga,r © Fa,r' »
(b) Now suppose that ¢ € Fa e Define h(s) by h(s) = ¢ (s), s € (0,). Then

v

it follows from (4) and (5) in the definition of Fa,r that h is the cumu~
lant generating function of some proper, non-negative random variable X,
having an infinitely divisible distribution. Furthermore, if P(X=d) = 1
for some constant d € [0,»), then h(s) = ds for all s ¢ [0,»), and hence

6(ap ™ (s)) = 6" (s) = ds for all s € (-logr, ®). This means that
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(8.2.10) do(t) = ¢(at) for all t € [0,%).

But from (6) in the definition of Fa,r we know that ¢ (u) = ulL(u), with L(u)
slowly varying at «. Substituting this into (8.2.10) we obtain dtL(t) =
atL(at) ~ atL(t) as t - «, and hence a = d. However this implies, again by
(8.2.10), that ¢ is linear, in contradiction with requirement 2. So X is

non-degenerate. Next we notice that

* inv
lim B o gy 808 gy, 2660 (S))
S inv

g0 S0 sy (¢ (s))

inv inv
= Lim aq’:'mv(S)L(afnv t=l)
s¥0 ¢ (s)L(¢ (s))

Let {Zn; n=0,1,2,...} be a branching process having the distribution of
X as its offspring distribution, and such that ZO = 1. Then by Theorem
3.3.1 and the fact that a < 1,

(8.2.11) lim hn(s) = ~log P(lim Zn==0) < o,

- n->oo

Now choose some s, € (~log P(limrl Zn==0),w). Then by Corollary 3.3.5,

0 sl
. . . . . th |
liﬁ%*m cn(so)zn exists A.S., ilnce a > 0, with cn(s) the n iterate of
h (s). Defining ¢(u,so) by ¢(u,so) = —logE:exp{—u-llmnem cn(so)zn},

ue [0,»), it follows from (8.2.1) that h(g(u,so)) = g(au,so). Since by
Theorem 8.2.2 P(lim c (3.2 =0) = 0, Lemma 2.2.5(a) implies that

- n¥ n 0 n
limu_Mm ¢(u,so) = o, S0 because r > 0, there exists a U ¢ (0,») such that

K g(u;so) > ~logr if u € (U,»). Hence we obtain that
~ e * o~ _ inv
¢(au,50) = h((b(u,so)) = ¢ (¢(u,so)) = ¢ (ad (¢ (ursy)))

for all u € (U,x),

and so ¢lnv($(au,so)) = a¢lnv($(u,so)) for all u € (U/a,»). Therefore
¢lnv($(u,so)) = bu, that is ¢(bu) = a(u,so) for some b ¢ (0,») and for all
u € (U/a,»), and hence for all u ¢ [0,») since both ¢ and $ are cumulant

‘generating functions. This means that

: da
(8.2.12) lim cn(sO)Zn = b¥,

oo
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where Y is a random variable with cumulant generating function ¢, and so
r = P(Y<®) = P(limnam cn(sO)Zn<<w), implying that also P‘(limn’)m Zn= 0) =rx
by Theorem 8.2.2(b). Combining this with (8.2.11) we see that requirement
2 in the definition of Ha r is fulfilled and therefore h ¢ Ha e Finally
~ ’ .
defining s by s = ¢(1/b,so), it follows from Theorem 8.2.2 that
s € (~logr, »). Writing glnv(s,so) for the inverse of a(s,so) as a function
of s an application of Theorem 8.2.6 now yields
. _ vinv D1
lim cn(s)Zn = ¢ (s,so) lim cn(so)zn
-+ n-e
~inv .
= ¢ (¢(1/b,so),so) lim cn(sO)Zn
>0

= 1/b lim cn(so)Zn a.s.,
n-ro

d .. .
and so by (8.2.12), Y = llmn»m cn(s)Zn¢ This proves that ¢ € Ga’r,andhence

the proof is complete. 0

Next we make some remarks about. the total progeny of the process. This

was defined in Section 3.3 by S = I . We saw there, that S < « a.s.

e g
k=0 "k
on {an*o}, that is 5 converges as n + « to a finite limit for almost all
w € {Zn-+0}. It turns out that the c_(s) are useful norming constants for

the difference S - Sn' A rather careless reasoning yields

Cpeg () (S8, = ) Cnr1 8024y
k=1
% Che(® a.s. o k-1 Y (s)

= z E—~—Tgy<cn+k(s)z T P Z a’ TY(s) = T

k=1 “n+k n k=1

since

T R R | LA S
lim ) = 1lim ) = lim = a
n-o cn+k S n-rco cn+k S g0 s

The following theorem shows that we may indeed interchange sum and

limit as we did above.
THEOREM 8.2.8.

lim ¢ XiEL
n 1-a

n-re

(s)»(8=-8 ) = a.s. on {z_~0}.
n n

+1
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PROOF. We shall prove, using dominated convergence, that the interchanging
of sum and limit is allowed. To this end we have to show that there exists

for every k = 1,2,3,... a random variable Ak such that

(8.2.13) cn+1(s)zn+k <A a.s.on {Zn-*O} for all n = 1,2,3,...,
and that

fee)
(8.2.14) k§1 A < a.s. on {z_>0}.

Now suppose that

we B :={1lim 2 =0} n {lim c (s)2Z <o}.
n n n
n-o 1>

From Theorem 8.2.2 we know that P(B) = r. Furthermore, for all

n=1,2,3,0c0 &

h (c (s})

_ k-1 "n+k
Cn+1(s)zn+k(w) - c (s) cn+k(s)zn+k(w)
n+k

hk—l(ck+1(s)) c
Cir1 ()

IA
4]
[N

c2(S)

= —

(s)z (w)
Cpoq (€ (8)) "ntk n+k

02(5)
< e sup {c (8)Z (w)}
Ck“l(CZ(S)) Nkt n n
< 67 sup {c_(s)z_(w)}
nx1

for some constant § € (0,1) and all sufficiently large k, as follows from
(8.2.9). Since cn(s)zn(w) converges to some finite limit as n - «, obvious-
ly supn>1{cn(s)zn(w)} < ®», Hence we obtain that if we choose

= gk-1 .
A 8 supnzl{cn(s)zn}, then these A satisfy (8.2.13) and (8.2.14), and

so the theorem is proved. 0

In Section 6.3 we studied the quotient Zn+1/zn for supercritical pro-

cesses on {Zn-+w}. We proved there a kind of law of large numbers, in the
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sense that Z /Z 2.8, mas n > «, while 2 can be considered as a

n+l’ "n n+1
"sum" of Zn independent and identically distributed random variables, all
having expectation m. We shall now see that on {Zn—>0} the number a takes
over the role of m. This is not so surprising in view of Proposition 6.4 in
FRISTEDT [1974]. There it is proved that X(t)/t 22:» a as t + 0, where
{x(t); t € [0,»)} is a subordinator and a the first point of increase of
the distribution function of X(1). We can consider this a as the "rate of

decrease" of the process.
THEOREM 8.2.9.

Zn+1

lim
n->o n

=a a.s. on {Zn-+0}.

PROOF. Since, by Theorem 8.2.2, Y(s) € (0,®) a.s. on {Zn->0}, it follows

that
Py Cpgg (812, ble ()
Lim = lim — 57 c_.(s)
n-e n n-o n n n+l
= XiEl.li his) a.s. on {z_-+0}. ]
Y{(s) s s n
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CHAPTER 8

THE CASE a=0

9.1. INTRODUCTION

In this chapter we study the only remaining case, namely the behaviour
of the branching process {Zn; n=01,2,...} on {Zn-*O} if a = 0 and
P(Zl= 0) = 0. We mentioned already before, that we shall see that this be-

haviour closely parallels the behaviour of explosive processes on {Zn~>m}.
1
m
used as an essential argument leading to the results listed in Section 7.3.

The fact that lim cn+1(s)/cn(s) =

oo = 0 for s € (O,~logr) if m = », is

Since we have now that limn cn(s)/cn+1(s) =a = 0 for s € (-logr, »), it

~»00
is at least plausible that we can use similar techniques as in the papers
mentioned in Chapter 7, to obtain results for the process {Zn; n=0,1,2,...}
if a = 0 and P(Zl==0) = 0. This will be further elaborated in the following

section.
9.2. MAIN RESULTS

As already indicated, the results in this section can and will be pre-
sented in the same order as their analogs in Section 7.3. First of all we
notice, that we can prove, in a similar way as in SENETA [1969], that if
dnzn converges in distribution to some random variable Z, where
{dn; n=0,1,2,...} is a sequence of positive and finite constants, then
P(Z<®) < x or P(Z=10) 2 r. We shall come back to this norming by a se-
quence of constants later on. Now we pass on to a norming with the help of
a sequence of functions {gn; n=20,1,2,...}, that is we look for functions
9, such that gn(zn) converges in some sense to a proper, non-degenerate

‘limit. As a first step we prove a result, similar to Lemma 7.3.1.

LEMMA 9.2.1. Let {fn; n = 1,2,3,.,.} be a sequence of cumulant generating

functions of positive random variables Xn, n=1,2,3,... . Suppose there
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exist a sequence {bn; n=1,2,3,...} of positive constants and a distribu-

tion function w such that lim b = 0 and
n>e n

—t/bn
(9.2.1) lim fn(de ) = ~log w(t), t e (-o,®),

n->o

for some constant d € (0,®). Then lim P(b logX <t) = w(t) for every
n-»o n n

t € (=w,o) where w is continuous.
PROOF. From (9.2.1) it follows that

1/bn
v(t) := 1 - w(~logt) = lim E(l ~exp(-d-t !Xn))
N>

for all t ¢ (0,).

Now define an(A) by

1/b

(9.2.2) a_ () e M1 - exp(-a-t n.x_))at,

il
>
=
o——38

for any A € (0,«) and n = 1,2,3,... . An application of Fubini's theorem

and the dominated convergence theorem then yield that

T -\t 1/bn T -\t
(9.2.3) an(l) = ) J e E(l - exp(-d-t -xn))dt > A J e v(t)dt
0 0
(o]
= ! e_ktdv(t) as n > o,
0
Next we shall prove that on the other hand
«bn
lim an(A) = lim E exp(—l(dxn) ) for all X ¢ (0,%).

-0 F1-rco

To this end we notice that, since by (9.2.2)

Ae—xt

1/by
an(x) = B{ dt - | A exp(~At-d-t ~xn)dt
0 0

1/b

[ee)
= 1 - AE J exp (-At~det" n-Xn)dt,
0

b
the substitution s = t(dxn) n yields (remember that Xn > 0 by assumption)
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n

n n
(dxn) exp(—ks(dxn) -8 )ds.

¢ -b -b 1/b
(9.2.4) a (\) =1 - AE J
n
0

For the calculation of this expression we introduce the following notation:

g(B,y) = f exp(-Bs—sY)ds, Be (0,2, v e (0,°);
0
-b
H (A) = A(dx)
n n
G () = Hn(x)g(Hn(x), 1/bn) - (1—exp{-Hn()\)});
1
~Hn(A)s 1/bn
J (A) = J H (Me (exp (~s ) = 1)ds;
n n
0
r -H_(\)s /0,
Kn(k) = f Hn(A)e exp (~s )ds.
1

With this notation it follows that Gn(k) = Jn(A) + Kn(A), and by (9.2.4)
that

—Hn(k) -Hn(k)
[ . - - = -
{9.2.5) an(x) 1 E(Gn(k) + 1 e ) E(e Gn(k))a
-SX -1 -X

Furthermore, because 0 < xe < (es) and 1 - e < x for all s € (0,»)
and x € (0,»),

o wm b_

0 < —Jn(x) < J (es) s nds = :;-+ 0 as n > o,
0

and

T ) 1/b
0 < Kn(k) < [ (es) exp(~s n)ds
1

A

r 1/b ‘
[ exp(~s n)ds -+ 0 as n > o,
1

by dominated convergence. This means that limn+

dominated convergence we see that limn+mE Gn(A) = 0, since

- Gn(k) = (. Again using



1/b)ds + b/e < «

[=e]
= - < -
IGn(X)' Kn(A) Jn(K) < f exp (~s
1
for all n = 1,2,3,..., where b:= supn bn' Substituting this into (9.2.5)
yields the required result, that is

-b
lim a_(\) = limE exp(-A(dX ) ) for all A e (0,).

n-—>oo n->o
Combining this with (9.2.3), an application of the continuity theorem for

Laplace~transforms implies that

-b
lim P((X_) T <) = v

n->o
for every t € (0,®) where v is continuous, or equivalently, since
lim b =0,

n>© n

lim P(-b_ log X_ < log t) = v(t)
. n n
for every t € (0,«) where v is continuous. Finally, remembering that

v(t) = 1 -~ w(-logt), t e (0,»), obvious calculations finish the proof. []

EXAMPLE 9.2.2. We can apply this result to a branching process
{Zn; n=0,1,2,...} having a strictly stable distribution concentrated on
[0,») with characteristic exponent o € (0,1) as its offspring distribution.

Choosing b_ = o, £ =h andd=11in (9.2.1) we obtain, in view of (7.3.2),

-t
e

it

n

fn(exp(—t/bn)) = h (exp(—t/an)) = {exp(—t/an)}u
n

for t € ("°°r°°)l

and Lemma 9.2.1 implies that
ocn loy Zn §+ Z.

where Z is a random variable with distribution function w(t)

exp(-exp (-t)) .
t € (-»,»), thus extending Example 7.3.2.

Just as in Section 7.3 we shall now describe a class of processes for

which the corresponding cumulant generating functions satisfy (9.2.1). To
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this end we define the function h by
(9.2.6) h(s) = 1/h(1/s) if s € (0,=»), h(0) = 0 and h(x) = o,

The function h is strictly increasing in s since h is, and

lim EE?L = lim t L =
s¥0 troo

Moreover, ﬁn(s), the nth iterate of h(s), satisfies Bn(s) = l/hn(l/s). This
gives rise to an imitation of the methods mentioned in Section 7.3 with h(s)
replaced by h(s). We therefore introduce the following functions.

(9.2.7) c(s) = Vs, s e [0,2];

(9.2.8) f(t) = ~log{1 —exp(—ﬁ(»log{1-e“t}))}, t e [0,®).

Since h is strictly increasing, so is f. We assume that f satisfies

(9.2.9) f is convex or concave on [0,®)
and
(9.2.10) 0 < vy := lim 5%§l < 1.

t-yco

Furthermore, we define the number r and the functions ¢, § and p by

. exp(l/logr) if r <1

(9.2.11) T = ;
0 if r =1
(9.2.12) ¢(t) = £(t ~log(l-r)) + log(l-r), t ¢ [log(1-7),=);
(9.2.13) §e) = "V (e), t ¢ [log(1-3),w) ;
and
(== l—"‘(ll—_—)'] u (0, if ¥ >0

(9.2.14) p(t) = 1/8(1/t), £ e og(1~¥ ’

(0,) if r =0
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and use the convention that the subscript n indicates the nth iterate for
n=1,2,3;,... . Notice that the relations (9.2.7), (9.2.8), (9.2.12), (9.2.13)
and (9.2.14) also hold for the corresponding iterated functions. A closer
look at the functions B, £, ¢, 6 and p shows that if (9.2.9) holds, then

¢ and § are convex or concave, and that

(9.2.15) h(0) = 0, h(-logr) = -logr and lim h(s) = «;

S0
£(0) = 0, f£(-log(i-r)) = -log(l-r) and 1lim £(t) = «;

Tt

i

¢{log(l-r)) = log(i-r), ¢(0) =0 and lim ¢(t) = w,

£
If £, and hence also ¢, is concave, then
© if t € (0,»)
Llim Gn(t) = _ - ‘
n-eo log (1-x) if t € [log(i-r),0)
whence
0 if t e (0,%)
(9.2.16) lim p_(t) = .
e O -m——i—:r« if t e (=~ —~—J4m:vﬂ and r >0
log (1-%) . " log(l-¥)-

We shall now prove that for processes with m < «, and for which the corres-
ponding function f satisfies (9.2.9) and (9.2.10), relation (9.2.1) heolds,
for fn = hn and bn = pn(x) for any x € (0,). This implies that for such
processes pn(x)logzn converges in distribution to a random variable Z,
which turns out to be proper and non-degenerate. There is a slight differ-
ence between this result and the result we get by combining Theorem 7.3.3
and Lemma 7.3.1, to wit pn(x)log(ld-zn) converges in distribution to a ran-
dom variable Z, where pn(x) is as in Theorem 7.3.3. This last result is in

fact only interesting on {Zn->m}, because pn(x) ¢+ 0, and hence
+2 ) - s n > >0}.
pn(x)log(l 7n) » 0 as n > ® on {Zn 0}
However, the assertion
(x)1log Z §+ Z
Qn g n .

with pn(x) as in (9.2.16), is noén-trivial both on {Zn—%O} and on {Zn*>w}.
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The price we have to pay for this is that we have to make the extra assump-
tion m < «, needed in proving (9.2.17) below for positive values of t. The
proof of (9.2.17) for negative values of t is comparable with that of

(7.3.9) for t € (0,»).

THEOREM 9.2.3. Suppose that m < « and that (9.2.9) and (9.2.10) hold. Then

for any fixed x € (0,»)

exp(-t/pn(x))>

(9.2.17) -log w(t,x) := ilm hn( T

-+00

exists for all t € (-»,»). The function w(t,x) has the following properties:

wit,x) = 1 for all t € {(0,»),

(9.2.18)
w({0,x) = r and llmt+_mw(t,x) = 0;
(9.2.19) h{~log w(t,x)) = =log w{yt,x), t e (=0,0);
(9.2.20) w(t,x) is continuous and strictly increasing in t ¢ (-%,0).

PROOF. Analogously to a part of the proof of Theorem ! in SENETA [1973] we
can prove that, with ¢ as in (9.2.12), A(t,x) := lJ‘_mn_wo ¢n(t/pn(x)) exists
for all t € [0,»). Furthermore, A(t,x) is continuous and strictly increasing

in t, and satisfies

(9.2.21) A(Q,x) = 0 and lim A{t,x) = «,

o0
Now defining a_ (t,x) by a_(t,x) ='{—log(1»(1—f)exp{—t/pn(x)})}"1, t e (0,°),
n=1,2,3,..., the relations between hn and ﬁn and between En and ¢n (see

(9.2.6), (9.2.8) and (9.2.12)) imply that
(9.2.22) lim h (a_(t,=))
n n
oo

= 1lim hn({—log[l —(1—f)exp(—t/pn(x))]}-1)
n-o

= 1lim {ﬁn(—logfl —(1—5.:)exp(~-t/pn(x))])}_1
1100

= lim {~log[1 -»e:»q:){wfl_l.(t/pn(x)—log(l—f))}]}“1 =
n-o
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lim {-logl1 -(1—f)exp{—¢n(t/pn(x))}]}_1

n-—o

it

~{log[1 - (1-)exp(~A(t,x)) 1} L.
Furthermore defining bn(t,x) by
b (t,x) = {exp(t/p_(x))}/(1-x), te (0,9, n=1,2,3,...,

it follows from the inequality =-log(l-x) 2 x, holding for x ¢ (0,1), that
an(t,x) < bn(t,x) for every t ¢ (0,») and n = 1,2,3,...; also
an(t,x) ~ bn(t,x) for every t € (0,®) as n > =, since pn(x) + 0 as n > o,

This means that for every € > 0 and every t € (0,),

an(t+e,x) bn(t+e,x)

~ = > > o,

b (e, %) 5 %) exp(e/pn(x)) ) as n

n n

and so an(t,x) < bn(t,x) < an(t+g,x) for sufficiently large n. Now using
the continuity of A(t,x) as a function of t, together with (9.2.22), we
get

(exp(t/pn (%) )>

lim hn(bn(t,x)) = lim hn —_ i3

> n-w

= —{logl1 - (1-F)exp(-A(t,x)) 137",
and so (9.2.17) is proved for all t € (~«,0) with
w(t,x) = exp{logl1 ~(1~f)exp(—A(—t,x))]}“1.

In particular, (9.2.21) implies that limt+_ww(t,x) = 0. The proof of (9.2.19)
is analogous to that of (7.3.11); (9.2.20) follows in a similar way as the

corresponding result in Theorem 1 in SENETA [1973]. Furthermore,

~-log w(0,x) = lim hn(l/(l-"f)) = -logr

n—row

by Theorem 3.3.1. Now suppose that t ¢ (0,»). First of all we notice that

if m £ 1, then limn - hn(s) = 0 for all s ¢ [0,») and because

g
exp(_t/pn(x))
lim ————e—— = [,
1-r
n-+o0
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obviously

{exp(-t/pn(X))) 0

lim hn\ 1-%
>

So we are left with the proof of (9.2.17) for m € (1,») and t € (0,»). Since
r < 1 in this case, and ¥ > 0 because a = 0, (9.2.11) implies that T e (0, 1),

whence
(9.2.23) log(l-r) € (=»,0).

In view of (9.2.10) and (9.2.15) this means that f, and therefore also ¢,
cannot be convex, and hence is concave by (9.2.9). By the relation between

¢ and h we know that
(9.2.24) h (s) = l/hn(l/s)

= ~{log(1 -~ (1-r)exp{-¢_(-logl (1 ~exp(~1/s))/(1-r) 1) 1t
S0 because we want to know if

1-r

exp(—t/on(x))
lim h (w———~———~« )
e O
exists, we have to check whether lim ¢ (o (t,x)) exists, where o_(t,x)
n»e 'non n

is defined by
an(t,x) = ~log[1-—exp{—(lnf)exp(t/pn(x))}] + log(1-x),
te (0,®), n=1,2,3,...

Since J_imnH)00 pn(x) = 0 by (9.2.16), it follows that limnﬁw an(t,x) = log(l-x),
whence an(t,x) € (log(l-r),0) for all n 2 some integer N = N(t,x). The way
to get a hold on ¢n(an(t,x)) for large n is now the following. Choose any

X, € (~0,1/log(l-r)). Then (9.2.15) implies that

inv -
e (%) = ¢ (1/x1) € (log(i-x),0),
just as an(t,x). Now compare an(t,x) and 1/pn(x1) as follows. Define for

every n = N the integer jn = jn(x,xl,t) by
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<
(9.2.25) 1/0n+j +1(X1) < an(t,x) < 1/9n+j (Xl)'
n n
where we use the conventions 1/p_n(x) = ¢n(1/x) and ¢_n(1/x) = 1/pn(x) for
positive integers n, and ¢O(1/x) = 1/po(x) = 1/x. Such a j always exists,

since llmn+® 1/pn(x1) = log{l-r) and llmn»_00 1/pn(x1) = 0 by (9.2.15) and

(9.2.16) . Below we shall prove that limn_)Oo

jn = o, implying that

log(l-r) = lim 1/pj () = lim ¢_(1/p

n->ro n n->co

n+jn+1(x1))

< lim ¢ (o (£,%)) < Lim ¢ (1/0_ . (x,))
n->w n->e n
= lim 1/p. (x,) = log(i-%),
n-+o Jn 1
that is
(9.2.26) Lim ¢_(a_(t,x)) = log(1-I).

I-co

First of all we notice that, since the function f(t), defined in (9.2.8),
is concave, pn+1£t) < pn(t) if t € (0,») and pn+1(t) > pn(t) if
t e (-»,1/log(l-x)). Therefore, (9.2.25) implies that

<
l/pn+1+j +1 (x,) < an+1(t,x) <o (t,x) < l/pmj (xl),
n+1 n
whence
(9.2.27) a2 3 7 2 n = N,N+1,N+2,... .
pefining p(t) by p(t) = -log(l - (1-r)exp(-1/£)), t # 0, we see that

(9.2.28) p(x)) € (-log r,®),

since Xl € (-w,l/log(l—g))w Furthermore, it follows from the relations

(9.2.7), (9.2.8), (9.2.12), (9.2.13) and (9.2.14) that
inv - -
1/on(S) = qﬁn (1/s) = log(l-r) - logl1l —exp{-cn(p(S))}].

1/s € [log(1-1),®),



and so (9.2.25) yields

1/pn+j +1
n

(xl) - log(1-r) = -logl1 - exp{-c

103

niy 41 PO ]

<o (t,x) - log(1-r) = -logl1 —exp{—<1-E)exp<t/pn(x))}J

< 1/£Jn_}_j (xi) - log(l-r) = -logl[1 —exp{-cn

n

Therefore

(9.2.29) En+j (p(x)) < (1-5){exp<t/pn(x))} =

< cn+j +1(p(x1)).
n
Since x € (0,»)

(9.2.30) p(x) € (0,~log x).

and thus lim En(p(x)) = 0 by (9.2.6) and (9.2.
(p(xl)) = o, and then by (9.2.28)

oo
and (9.2.29) this means that lim c_ ..
nre “n+j,
and again (9.2.6) and (9.2.7), it follows that

(9.2.31) lim (n+jn) = o,

n-oe
Now by (9.2.7) and (9.2.11) we have

c (s) c (1/s) m if
(9.2.32) lim 2 qp B

now  on () oo Cna1 (178 o g

m if
0 if
Combining this with (9.2.28) and (9.2.31) we see

Cha (p(x)) .
lim:.—“‘——n'T—(T=—€ (0,1).
n-> cn+jn+1 plxy "

Now because lim c (p(x)) = 0, it follows that
neo n

4y (0xy)I -

- 1-r c
(1»r){1_exp{_an(p(x))}}

7). In view of (9.2.23)

1/s € (0,-log r)

1/s € (-logxr, «)

s € (—log;:, )
s € (0,~logT)

that



104

(1+t)log (1~1) —t*log[l-‘exp{—an(p(X))}] ~ ~trlog c_(p(x))

as n + o,

So taking logarithms in (9.2.29) yields, in view of (9.2.28}, (9.2.31) and
(9.2.32),

log En+jn_1(p(x1)) < -t log c_(p(x)) < log ¢ (p(x))

+j +
n+j +2
for sufficiently large n. Therefore

cn+1(p(x))

te« log En(p(x)) = ~telog En(p(x)) - {*tdoggn+1(p(x))}
> log cn+j 1(p(xl)) - log ¢ e +z(p(xl))

Cntj -1<p(x1))
= log = .

n+jn+1+3(p(xl))

By (9.2.30) and (9.2.32), the left hand side of this expression has limit
. . . . . 1, .

e 00‘ - —-— + _.’

® as n > The right hand side is at least (j 1”3 4) log in view

of (9.2.27) and the fact that

c (s) o (l/s) ¢ (e (1/s))

Ek(s) cn(l/s) cn(l/s)

= : >
(m) for k 2 n

by the convexity of c(s). So we can conclude that also

g
I
H
8

lim(jn+1-jn-+4)log

-+

whence llmnam(j —jn) = o, because m € (1,»). Therefore also limnAm j o=,

n+i n

implying that (9.2.26) holds. Substituting this into (9.2.24) we obtain

/exP(—t/on(x)) -1
lim hn\——m«—f:g————~> = lim ~{log[1»(1—r)exp{—¢n(an(t,x))}]} =0,
- n-roo
and so we have proved (9.2.17) also for t € (0,»), with w(t,x) = 1, g

Proceeding as in Section 7.3 we shall now try to derive results con-
cerning almost sure convergence, To this end we define a sequence of random

variables {Un(x); n=1,2,3,...} by
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4
n

Uy %) = exP{log[l—(l—f)exp(—l/on(x))]} A

xe (0,®).

with p(x) as in (9.2.14) and pn(x) its nth iterate. Since pn(x) € (0,») for

x € (0,v), we see that Un(x) is well-defined and satisfies 0 < Un(x) <1

for all n =

{Un(x) i n =

1,2,3,... and all x € (0,»). Moreover, the sequence

1,2,3,...} turns out to be a martingale sequence, as can be

proved in the following way with the help of the basic branching property
(3.1.3) and the relations (9.2.6), (9.2.8), (9.2.12), (9.2.13) and (9.2.14).

E{U_,, () [ U (x),0,(x),...,0 (0}

. E{exp(zn+1/log[1-(1~f)exp{-1/pn+1(x)}]) ]zn}

Z
{E exp(Zi/log[l »(l—f)exp{—1/0n+1(x)}])} n
- Zn
{exp{~h(~1/logl1 - (1—r)exp{—1/anr1 (x) 1D 1}
exp{—zn/ﬁ(—log[l —(1~;)exp{—1/pn+1(x)}])}
exp{z_/logl1 - exp{-£(1/p__, (x)-log (1-r) )} 1}
exp{z_/logl1 —(1~£)exp{-¢(1/cn+1(x))}J}

exp{z_/logl1 -(1—E)exp{—1/on(x>}]} = U_(x).

We have thus proved that {Un(x); n=1,2,3,...} is a bounded martingale,

whence Un(x) converges almost surely to some random variable U(x) as n =+ «

and

EU(x) = EU_(x) = E exp{Zn/log[l —(l—f)exp{—l/pn(x)}]}

= exp{-h_(~1/logl1 - (1-r)exp{~1/p_(x)}1)}
= exp{—i/ﬂn(—log[l -(1w§)exp{-1/pn(x)}])}
= exp{1/log[1 ~<1—E)exp{—¢n(1/pn(x>>}]}

= exp{1/logl1 - (1-r)exp{-1/x}1}.
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Remembering the discussion in Section 7.3 it is now clear that the follow-

ing results hold.

THEOREM 9.2.4. Suppose (9.2.9) and (9.2.10) hold. Then for any x € (0,®),

{eXP(l/Dn(x))}Zn 8-S-, some random variable 7 (x), and

P(z(x) =0) = 1 -P(Z(x) =») = exp{-1/logll - (1-r)exp{-1/x}1}.
PROOF. Analogous to the proof of Theorem 7.3.4. 0

THEOREM 9.2.5. Suppose (9.2.9) and (9.2.10) hold. Let {an; n=1,2,3,...}

be a sequence of finite constants such that lim a = » and lim a2z
n>o n n»© nn
exists almost surely. Then P(lim az =0or ) =1.
n*® nn
PROOF. Analogous to the proof of Theorem 7.3.5. 0

As a consequence of this last result we have that if (9.2.9) and

(9.2.10) hold, then the random variable Y(s), defined in Corollary 3.3.5

by Y(s) = lim c (s)z_, satisfies P(Y(s) =0 or =) = 1 for all

n>®© n n
s € (~logr, @), For, since P(Z1==O) = 0 by assumption, it follows from
Corollary 3.3.5 that Y(s) exists a.s.; furthermore limn+w cn(s) = o for
every s € (~logr, ©). From (3.3.5) we know that E exp{-¥(s)} = ™%, and

therefore P(Y(s)=0) = 1 - P(Y(s)=w») =¢e ~,

Our next aim is to derive almost sure convergence results such that
the limit random variable has its values in (0,»), at least on {Znﬂ-O},
since this is in fact the case we are interested in. This will be done using
a technique developed in SCHUH and BARBOUR [1977] for explosive Galton-
Watson processes. In short, this method is, to obtain sufficient conditions
such that an almost sure convergence result holds, which is in agreement
with the requirements just mentioned, and then to construct, for every
branching process {Zn; n=20,1,2,...} with P(Zl= 0) = 0 and a = 0, a func-
tion, with the help of which we can prove that the sufficient conditions
meant above are satisfied. For the processes we met so far in this chapter,
it holds that P(Y¥(s) =0 or ») = 1 for all s € (~logr, ). In the sequel we
shall also consider the possibility that P(0<Y(s) <«) > 0 for some

s € {(-logr ,»), and we introduce the following regularity concept.

DEFINITION 9.2.6. A point s € (-logr, ) is called regular for the process

{Zn; n=0,1,2,...} if P(¥(s) =0 or =) = 1 and irregular for the process

otherwise.
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First of all we shall have a closer look at the set of irregular points.
It turns out that this set is open, as follows immediately from the next
lemma. Before stating it we notice that we know already from the previous
chapters that cn(s)/cn(t) is non-increasing in n for 0 < s £ t < «, and
hence converges to some limit as n - «. This limit is again denoted by

v(s,t). Obviously,

Cn(s) 1
= i P T < o,
v(s,t) lim T poy T for 0 < t < s
n+e n
LEMMA 9.2.7. If s, is an irregular point for the process {Zn; n=0,1,2,...}
then there exists an open interval I(si) = (sl,sz) such that s € I(si)

and all s € I(si) are irregular points for the process {Zn; n=0,1,2,...};
v(s,si) is a strictly increasing, continuous function of s on (51'52);
v(sl,si) = 0 and v(sz,si) = »; s, and s, are both regular points for the

1 2
process {Zn; n=0,1,2,...}.

PROOF. Since s, is an irregular point for the process, P(O‘iY(si)‘<M) > 0.
Hence the Lemmas 2.2.2 and 2.2.3(a) imply that ¢(u,si), the cumulant gen-
t

erating function of Y(Si)' is continuous and strictly increasing on [0,).

Now define Sy and S, by 8 = ¢(O,si) and s, = llmu+m ¢(u,si). Then it fol-
lows that Sl 2 ~logr, because
¢(O,si) = ~-log P(Y(si)‘<w) > -log P(lim Zn==0) = -logr;
n—»co

furthermore, the inverse of ¢(u,si) as a function of u, written as
inv . . R . . .
[0 (u,si), is well-defined, continuous and strictly increasing on [51'52)

and

(9.2.33) o (s ;) =0 and lim ¢““’(s,si) = o,
s+52

1

Since ¢(1,si) = s, by (3.3.5), it is clear that s, € (51’52)' Next we shall
prove that all s € I(sj) are irregular points for the process. For suppose
that s € (sl,si) is regular. Then P(¥(s) =0) = 1 -P(¥(s) =) = eﬁs, whence

d(u,s) = s for all u € [0,»). In view of (3.3.5) this means that

limnﬁw hn(ucn(s)) = g for all u € (0,x), and thus
cn(t) \
hn(cn(s) cn(s)) =t < hn(ucn(s)) for all u € (0,«),
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all t € (~logr, s) and all sufficiently large n. Hence we obtain that
cn(t)/cn(s) < u for all u € (0,x), all t € (~logr, s) and all sufficiently
large n, that is v(t,s) = 0 for all t € (-logr ,s), and so a fortiori
v(t,si) = 0 for all t € (~logr, s). However, this implies that for all

£ € (0O,s+logr), and all u ¢ (O,¢lnv(s,si)], it holds that

c_ (s~¢g)
s=¢ = h (—~—————-c (s,)> < lim h (uc_(s.))
n\ ¢ (s,) n i n n i
n i -

[

inv
¢(u,si) < o (¢ (S,si),si) = s,

whence ¢(u,si) = g for all u € (O,¢inv(s,si)]. But this contradicts the
fact that ¢(u,si) is strictly increasing on [0,)., Therefore, all

s € (sl’si) are irregular points for the process. An analogous argument
yields that v(s,si) # 0, that is v(s,si) € (0,11 for all s € (sl,si). Simi~
larly we can show that all s € (si,sz) are irregular and that v(s,si) €

[1,») for all s € (Si'SZ)” Since

hic_(s,))
n 1

v(h(s,),s,) = lim
i i c (s,) s
n 1

n-re

i
—
.
8

i
I

it
o

it follows that s, = h(si) > ~logr. Similarly we get s, < «. The following

1 . 2
step we make is that we prove that v(s,si) = ¢lnv(s,si) for all s € (51’52)'
To this end we notice that if s € (sl,si], then cn(s)/cn(si) decreases to

v(s,si) as n - «., Hence

c (s)
s = h (c (s,) ~ll~—~) 2 h (c_(s,)v(s,s.)).
n\ n i cn(si) n n i i

Using the convexity of c(s) we see from this that
s cn(s)

1 < <
hn(cn(si)v(s,si)) cn(hn(cn(si)v(s,si)))

cn(S)

P —
cn(si)v(s,si)

This proves that

s = lim hn(v(s,si)cn(si)) = ¢(V(S,Si),si),
n-eo
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in view of (3.3.5), that is v(s,s) = ¢lnv(s,si) for all s ¢ (s,,s,). In a

similar way we can prove the analogous result for all s ¢ (si,s ). Because

2
v(s,si) is non-decreasing as a function of s, it now follows that

inv
< s < =
0 < v(s i) V(sl+€'si) ¢ (Sl+€fsi) v 0

as € ¥ 0 by (9.2.33) and hence V(Sl'si) = 0; similarly we get v(sz,si)

We can use this to prove that Sy and s2 are regular points for the process.

Namely, for all u € [1,®) it holds that

5, = hn(cn(sl)) < lim hn(ucn(sl))
100

C (Sl)
1lim h (—27-T>ucn(s.)>
e TAC (84 i

In

lim hn(eucn(si)) = ¢(Eu,si) - sy as e ¥+ 0.
-ree

Because of (3.3.5) this means that ¢(u,sl) = llmn+w hn(ucn(sl)) = 5 for

all u € [1,»), and thus for all u ¢ [0,®), since ¢ is a cumulant generating

function. Because the distribution corresponding to this cumulant generat-
-
ing function is given by P(Y(sl) =0) = 1-P(Y(sl) =) = e 1, and

s, € (-logr, =), it follows that 84 is a regular point for the process.

Similarly we can prove that s, is a regular point for the process. 0

Since cn(s) is increasing in s, Y(s) is non-decreasing. This leads to
the introduction of a very useful random variable, being the point where

Y (s) exceeds the level 1. More precisely, for evefy w € Q we define T{(w) by

inf{se(~logr,»); ¥Y(s,w)>1}if Y(s,w)>1 for some sc (~log r,«)
(9.2.34) T(w) =
@ else

T is a random variable, since

if £t € (-»,~logr)
(9.2.35) {r<t} =
) Lim {v(s) > 1} if €t € [~logzr, )
sttt
s rational
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From Lemma 9.2.7 it follows that there exists a sequence {sn; n=1,2,3,...}

of regular points such that limn+m s, = Since P(T =) < P(Y(sn)= 0) and
-s
P(Y(sn) =0) = e N for all n = 1,2,3,... , we see that P(T=o) = 0. Next

we shall prove that P(Y(s) =¥(t) € (0,)) = 0 for all ~logr < s < t < o,
For suppose that P(Y(s) =Y(t) € (0,»)) > 0 for some ~logr < s < t < o, Then
both s and t are irregular points, and hence Lemma 9.2.7 implies that
v(s,t) # 1. On the other hand, for all w e {w; ¥Y(s,w) =Y(t,w) € (0,®) } it
holds that

 Y(s,w) c (8)Z (w)

1 = —4—" = lim —————— = v(s,t).
Y(t,w) e cn(t)zn(w)

This proves that for almost all w € @ either (9.2.36) or (9.2.37) holds:
(9.2.36) T(w) = ~logr;

(9.2.37) T(w) € (~logx, ®), Y(s,w) < 1 on (~logr, T(w)) and

Y(s,w) > 1 on (T(w),®).

The random variable T will be used to prove the already announced almost

sure convergence result.

THEOREM 9.2.8.
(a) Let L be a non~decreasing function on [0,»), such that limxam L(x) = o

and limx+0 L(x) = 0, and let {an; n=0,1,2,...} be a sequence of posi~-

tive constants. Suppose that limm_)Oo anL(cn(s)) exists ¢ (0,») for all

s € (~-logr, ) and is continuous on (-logr, @), Call this limit Y (s).

Then there is a random variable U such that

(9.2.38) a L(1/2 ) 280,y as n -+ «,

where U = 0 on {Zn'*m} and U = Y(T) € (0,) a.s. on {Zn-+0}, with T as
in (9.2.34);
(b) suppose furthermore that L. is slowly varying at « and that | 1s strictly

MWE%ﬂgonbdmr,M.TManSt)=1—wph¢m%ﬂ),te &yt),

1

where t0 1= llmt¢~log1‘¢(t) and t1 1= llmt+m P(t).

tion function of U is given by



0 if t e (=»,0)

1-r if te [0ty
P(USt) = { .

1 -exp(-0 " (t)) if toe [t,t)

1 if t e [ty ,)

Notice that this function is continuous on (0Q,»). Later on we shall see
that if L is continuous and strictly increasing on (A,») for some A ¢ [0,®),

then to = 0 and t1 = o,

PROOF OF THEOREM 9.2.8. First of all we shall prove that T = -logr on

{Zn*+w} and that T € (~logr, ®) a.s. on {Zn-%O}, where T is the random vari-
able defined in (9.2.34). If Zn + o, then Y(s) = « because cn(s) -+ o« for
all s € (-logr, ®»), and therefore T = ~logr on {Zn—>w}. The fact that

T € (~logr, »}) a.s. on {Znﬁ-O} follows now once we have proved that
P{T=~logr) = l-r, because also P(Zn—>m) = l-r while P(Zn+0 or =) = 1 and
P(Te [~logr, ©»)) = 1. To this end we notice that it follows from Lemma
9.2.7 that there exists a sequence {sn; n=1,2,3,...} of regular points
such that limn+oo s, = ~logr. Now P(T=~logr) < P(Y(sn)==w) =1-e N for
alln=1,2,3,... , whence P(T=-logr) < limn+°o (1-—e*sn) = l-r. Since on
the other hand P(T= ~logr) = P(Zn—wo) = l-r, this proves that Te¢ (~logxr,»)
a.s. on {Zn~+0}, implying that we can choose, for almost all w € {Zn-fo},
numbers s and t such that ~logr < s < T(w) < t < o, By (9.2.37) this means
that cn(s) < 1/Zn(w) < cn(t) for sufficiently large n. In view of the fact
that we assumed that the function L, mentioned in the conditions of this
theorem, is non~decreasing, and that an is positive for all n = 0,1,2,...,
we obtain anL(Cn(S)) < anL(l/Zn(m)) < anL(cn(t)) for sufficiently large n.
Finally the continuity of ¢ on (~logr, ») yields that limn+m anL(l/Zn(m)) =
V(T() € (0,%), that is a L(1/z ) 2:5:, gy e (0,%) on {z_~+0}. Now suppose
that Zn + ., Since limn_wG L(cn(s)) = l:'LmXu)m L(x) = = and limn%O anL(cn(s))=
P(s) < o for all s € (~logr, »), and hence lim a = 0, the assumption

ne n
llmx%O L(x) = 0 implies that llmn+m anL(l/Zn) = 0 on {Zn—+w}. This estab-
lishes part (a).
(b) We start with proving that the conditions of part (b) imply that all
s € (~logr, ») are regular points for the process {Zn; n=0,1,2,...}. This

follows on observing that v(s,t) = lim
n--e

Cn(S)/cn(t) = 0 for all
~logr € t < g < o, bscause if v(s,t) > 0, then we would have by Corollary

1.2.1.2 in DE HAAN[19707 that lim
-+

L(Cn(s))/L(cn(t)) = 1, in contradiction



with the assumption that y(s) is strictly increasing in s on (-~logr, ®).
Hence Lemma 9.2.7 implies that all s ¢ (-logr, ») are regular points. In

view of part (a} of this theorem and (9.2.35) we then obtain
PUSt) = P(P(T)St) = P(T<Y ()

= lim  P(¥(s) =) = 1 - exp(~vTV (¢))
S¢¢1nv(t)

for all t such that ¢y "' (t) is well-defined and Y ' (t) e (-logr, ®), that
is for all t e (tO'tl)' 0

EXAMPLE 9.2.10. For an application of this last result we consider again a

branching process {Zn; n=0,1,2,...} having a strictly stable distribution
concentrated on [0,») with characteristic exponent o € (0,1) as its off-

n -n
spring distribution. Since hn(s) = g% , cn(s) = s%  and -logr =1, as we

know from the Examples 7.3.2 and 7.3.7, it follows that L(s) = log(l+s),
s € (0,») and an = an, n=20,1,2,... satisfy the conditions of Theorem
9.2.8(a) and (b), with

-n

P(s) = lim a _L{c_(s)) = lim o log(1‘+sa ) = log s,
nae O n n->e

s € (~logr, ®) = (1,w).

Hence (9.2.38) implies that oo log (1 +1/Zn) 220 Uas n -~ ©, where

P(U=0) = 1/e and

PUSE) = 1 - exp(~¢inv(t)) 1 - exp(~exp t), t e (0,»).

Because
n n n
+ ~ = -
o log (1 1/Zn) o log 1/Zn o loc_;'Zn
on {Zn~*0} as n » ® we see that ocnlogzn 2:8:5 ¥ oon {z,+0} as n » =, where
P(-U<t) = P(U2Z~t) = exp(~exp(~t)), t ¢ (~»,0), in agreement with the dis-

tribution function derived in Example 9.2.2, Furthermore, U < (0, a.s.

on {z,~+0}.



EXAMPLE 9.2.11. Just as in Example 7.3.8, we can also apply the result of

Theorem 9.2.8 to processes which satisfy (9.2.9) and (9.2.10}. Arguing as in

Example 7.3.8 it follows that we can choose a_ = o (x) for any x € (0,%) and

L(s) = log(l+s), s € [0,»), where pn(x) is the nth iterate of the function

p(x) defined in (9.2.14). We then obtain that if (9.2.9) and (9.2.10) hold,
a.s.

then pn(x)log(lﬁvl/zn) ———> gome random variable U(x) as n - o, where

U(x) = 0 on {z_>=} and P(U(x) <t) = exp (-0 (£,%)), t € (0,%), with

4 = -1
P(t,x) = lim p_(x)/p_({logl (1-r) /(1 - exp{-1/t}) 1} 7).
n n n
This extends the weak convergence result we obtained by combining Lemma

9.2.1 and Theorem 9.2.3, to an almost sure convergence result.

We shall now construct a function L and a sequence {an; n=0,1,2,...}

which satisfy the conditions of Theorem 9.2.8(a). Let s, be any number

0
€ (~logr, «). Since (-logr, ) = Un:—m (hn+1(so),hn(so)], where we use the
convention hmn(s) = cn(s) for positive integers n, and since the sets
(hn+1(so),hn(so)] are disjoint for different values of n, it follows that
there exist for all x € (~logr, ») exactly one integer n(x) and exactly

one number s(x) € (h(so),sO] such that x = h (s{x}). Furthermore, we de-

n(x)
fine the functions p and u by p(s) = (sO—s)/(sO—h(sO)), s € [h(so),sO] and

u(x) = n(x) + p(s({x)), x € (~logx, »). Finally we define L by

{O if x € [0,-logxr]

exp (~u(x)) if x € (~logr, «)

and an by an =e ;, n=0,1,2,... . We shall prove that these L and an
satisfy the conditions of Theorem 9.2.8(a). First of all we shall prove
that akL(ck(x)) = L(x) for all x € (-logx, ») and all k = 1,2,3,... . To
this end we choose some x ¢ (-logr, «»). Then by definition s(x) =

cn(x)(x) € (h(so),so]. Since n(hz(s(x))) = [ for every integer £, it follows
that n(ck(x)) = n{h (c (x))) = n(h (s(x))) = ~k+n(x);

~k+n (x)  n(x) ~-k+n (x)
furthermore, s(ck(x)) = g(x). This implies that

a Ll (x)) = exp(~k—u(ck(x))) = exp{~k—n(ck(x)) - p(S(ck(x)))}

= exp{~ktk-n(x) - p(s(x))} = exp(~-u(x)) = L(x).
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* Next we shall prove that L is continuous on (-logr, »). Obviously L is con-
tinuous in x if x # hn(so) for some integer n. To prove the continuity of

L in the points hn(so) it is sufficient to prove that u(x) is right-contin-
uous in s_. Since n(s

0 0 0’
Furthermore, n(so+e) = -1 for all € € (0,c(sO)—sO], and s(s0+£) ¥ h(so) as

) = 0 and s(so) =5 it follows that u(so) = 0.

€ ¥ 0. Therefore, llm”O u(sO+€) = -14—p(h(so)) = =1+1=0= u(so), proving

the continuity of L on (-logr, »). Since lj.mx_m° n(x) = ~« and

1 (x) = », we see that llmx+w L(x) = « and llmx+—logx'L(X) = 0.

0 L(x) = 0, both if

im n
x¥-log r
Since L(x) = Oon [0,~logr], it follows that limx+
r = 1 and if r < 1. Finally we notice that u(x) is non-increasing and hence

L(x) is non-decreasing on (-logr, «»), and since lim L(x) = 0, also

x¥v-log r
on [0,»). So we have proved that L and {an; n=20,1,2,...} satisfy the con-
ditions of Theorem 9.2.8(a), with Y(s) = L(s) for s € (-logr, ). We can

formulate this as follows.

. . ~-n
THEOREM 9.2.12. There exists a function L such that e L(i/Zn) converges
almost surely to some random variable U as n = «, where U = 0 on {Zn-*w}

and U € (0,°) a.s. on {Zn~*0}.

We shall now turn back again for a while to Theorem 9.2.8. It turns
out that the random variable U, introduced in that theorem as
limnéw anL(l/Zn) can be represented under certain conditions as a minimum
of a random number of random variables.

THEOREM 9.2.13. Let L, {an; n=0,1,2,...}, ¥ and U be as in Theorem 9.2.8
and suppose that the conditions of both part (a) and part (b) of that

theorem are satisfied, and that furthermore o := lim a /a exists
n+» n’ n-—1

€ (0,1), and that L is strictly increasing and continuous on (A,») for some

A e [0,°). Then

(9.2.39) U= ot min{U(k),U(k),...,U(k) A
1 2 [zk]

A.S.y

for every k = 0,1,2,..., where U;k),Uék),a
tributed as U and P(ﬁ(k):>t| Zk) = P(U>t)
(k) U(k) U(k)
1 72 '3

... are conditionally given Z

.. are random variables all dis-
Zc=L2] for all t ¢ (-»,»), and
where furthermore Zk’U
=(k k k (k
U )IU; )IU2( )IU3 )I

bution function F of U satisfies

v+.. are independent and

Xk independent. The distri-

(9.2.40) ~log (i - F(at)) = h(-log{l -F(t)}), t € (~,2),
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PROOF. From Remark 9.2.9 we know that F is continuous on (0,«). Therefore,

for every t € (0,)

(9.2.41) {u<t} = lim {anL(l/Zn)S t} a.s..

n-—><o
(The notation A = B a.s. for two subsets A, B of Q means that
P((ArwBC) U (Acr1B))==O.) Since L is slowly varying at «, and
limx_)oa L(x) = » and a - 0 a; n > ®, as we know from the proof of Theorem
9.2.8(a), we see that anL(bLlnv(t/an)) ~ anL(Llnv(t/an)) = t as n > « for
any constant b € (0,»). Because t is a continuity point of F, this means

that

(U<t} = lim {a L(1/2 ) < anL(bLinv(t/an))}
N0 n n
= 1im {1/z_spr*™
n-»w n

(t/an)}

in
= lim (L™
n->o

(t/an)zn;zi/b} a.s.,

and thus, since b € (0,x) is arbitrary, we obtain that

e on {us<t}
> { as n > o,
0

(9.2.42) Linv(t/an)Zn 2
on {U>t}

Now remembering the definition of the branching process {Zn; n=20,1,2,...},

" i

it follows that we can consider Zn conditionally given 2 as a "sum

+k ' k*
of Zk independent random variables, each of which can be interpreted as
the size of the nth generation of a branching process having the same off-
spring distribution as the process {Zn; n=20,1,2,...}. More precisely,
for any fixed non-negative integer k, we can write for every integer

n=20,1,2,...

[zk]
9.2.43) z__ = ) z¥) 4 z®),
n+k . n,j n
j=1
(k) . . .
where {{Zn j; n=20,1,2,...}; §=1,2,3,...} is a sequence of branching
1

processes all distributed as {Zn; n=20,1,2,...}, and {Eék); n=0,1,2,...}

is, conditionally given Zk' a branching process with the same offspring

distribution as {Zn; n=20,1,2,...}, but with P(Eék) = Zk-erT ,Zk) = 1;
. k
furthermore Zk' {Zéfi; n=20,1,2,...1}, {Zé';; n=20,1,2,...}, ... are
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(k)

independent and {Z n=20,1,2,...1}, {Z te)

n,2’
independent. An application

k

( ‘.)l.; n = 011121---}1 {Z
n=20,1,2,...}, ... are, conditionally given Zk'
of Theorem 9.2.8 now yields that for every j = 1,2,3,... it holds that

Uék) := lim a L(1/Z( )) exists a.s. and is distributed as U. Furthermore,
obviously Zk,U(ksl ék) (k) =0,1,2,...},

we notice that if we consider a branching process {Zn, n = 0,1,2,...} having

;... are independent. Concerning {Z

the same offspring distribution as {Zn; n=20,1,2,...}, but with 20 = d for

some constant d € (0,«), then

_ —sin «sén ~
h_(s) -logEe = -log E(E(e |z

n )

i

n-1

-h(s)z _, _
-logEe = hn—l(h(s)) for n = 1,2,3,...,

s e [0,2).

i

_ -8 -
Since ho(s) := ~logEe 0 = ds, this implies that hn(s) = dhn(s), and
therefore En(s), its inverse, satisfies En(s) = cn(s/d). Hence we obtain

that

P(s) := lim anL(cn(s)) = lim anL(cn(s/d)) = P (s/d).

n»w n->o

This means that anL(l/En) converges almost surely to some random variable

= . - . - d
U, for which P(U=0) = 1-—exp(-llmn+® hn(s)) = l-r , and

P<t) = 1-exp(-V () = 1-exp(-av ™ (e)), te (tyt),

that is P(ﬁ:>t) = P(U:»t)d for all t € (~w,»). We can therefore conclude

that U(k) = limn»m a L(l/Z( )) exists almost surely and that

zk—[zk]
Zk) = P(U>t) for every t e (-w,®),

P(ﬁ(k) >t

and it is clear that the random variables 6(k),U§k),Uék),..

K’ independent. Using a similar argument as the one leading to
(k)

(9.2.42), it follows that L inv (t/a )Z 3 converges almost surely to zero or

are, condition-

ally given 2

infinity as n » « for every j = 1, 2 3,..., and that conditionally given Z

i
also L nV(t/a )Z( ) converges almost surely to zero or infinity as n <+ o,

kl

The assumption that llmn%m an/an_1 = o, together with (9.2.41) and (9.2.43)

implies that



{u<t} = lim {an+k L(l/zn+k)$'t}
-
= lim {aka L(1/Z )<t}
n n+k’
=>0
= lim {1/Zn+kf£Llnv(t/(akan))}
n-»w
. inv k
= iiﬁ { (t/(o7a )2 ., = 1}
[zk]
= 1im { ] e/ e® a ))z( by

for every t € (0,»). This last expression is a sum co
number of terms, each of which converges to zero or i

as n + o, In ordexr that the limit of this sum is at 1

1nv (k)

(t/(ua ))Z 21}

a.s.
nsisting of a finite
nfinity almost surely

east 1 it is therefore

necessary and sufficient that at least one of the terms converges to infin-

ity. So we get
{ust} = lim{max{L nv (t/(a a ))Z(k) ,
oo
inv k (k) v k = (k)
cee LT (E/ an))Zn,[Zk],L (t/(a an))Zn }=1}
= lim{min{l/z(k),@.,,i/Z(k) ,1/z(k)} L e/ )
n,t ] n
n-+oo
= llm{mzn{a L(l/é(k) Yireoesd L(l/z(k)
.1 n [Z ]
n->o0
a 1(1/2%)} < /0"
- (k) (ky  =(k}
= {a mln{U ""'U[Z ],U }<t} a.s.
for every t € (0,»). Obviously this relation alsc holds for every t € (-=,0).
We have thus proved that the sets {U<t} and {«o mln{U(k) ...,Ué;)],U(k)}< }

are a.s. equal both for t € (-»,0) and for t e (0,«),

t

tain

(1) (1)

...,U
’ [z

zl
= EP(U > t)

1 -Flot)=P(U > at) = EP( mln{U

B [21]+z [21J

E{p(u>t)}

0. This establishes the first part of the theorem.

and therefore also for

Taking k = 1 we ob-

],U(l)}> t]z )

_ e~h(—loq{ 1-F () })
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thus proving (9.2.40). 0

Using the notation of Theorem 9.2.8 we see that, under the conditions

of Theorem 9.2.13,
inv
~log(l ~F(t)) = (t) € (~logr, ») for any t € (to,t1).

By (9.2.40) this means that also ~log(l -F(at)) € (-logr, »), that is also

ot € (tO'tl)' Since o € (0,1) this is only possible if t_ = 0. Conversely,

if ot € (to'tl)' then -log(l -F(at)) € (~logr, ), and hgnce also
-log(l - F(t)) € (~logxr, »), that i§ t e (tO'tl)' This implies that t1 = o,
Now substituting -log(l -F(t)) = ¢ "' (t) for t e (0,®) in (9.2.40), we ob-
tain ¥ (at) = h@ ™ (t)) for all t e (0,%). This equation can be consider-
ed as the analog of (8.2.1), which says that ¢ (u,s), the cumulant generat-

ing function of Y(s), satisfies ¢ (au,s) = h($(u,s)).

EXAMPLE 9.2.14. We can again apply this theorem to a branching process
{Zn; n=0,1,2,...} having a strictly stable distribution concentrated on

[0,») with characteristic exponent a € (0,1) as its offspring distribution,

with L and {an; n=20,1,2,...} as in Example 9.2.10, since
a, o8
lim = lim ] =0 € (0,1)
n>o n-l n>® g
and L(s) = log(l+s) is continuous and strictly increasing on (0,). Hence

we obtain that for any fixed non-negative integer k, U is a.s. equal to

(k) U(k) —(k)},

k .
o mJ.n{U1 P [Zk],U

with the random variables a(k),U;k),Uék)

(9.2.40) becomes -log(l ~F(at)) = —log(l-F(t))a, as fits in with the fact

;... as in Theorem 9.2.13. Relation

that F(t) = 1 ~exp(-exp t) for t € (0,»), as we know from Example 9.2.10.

EXAMPLE 9.2.15. For another application of Theorem 9.2.13 we consider again
processes for which (9.2.9) and (9.2.10) are satisfied. Tn Example 9.2.11
we saw that with a = pn(x) for any x € (0,») and L(s) = log(l+s), se [0,®),

-the conditions of Theorem 9.2.8 are fulfilled and so

p_(x)log(1+1/2 ) 2:5, ux) as n - .
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Furthermore, in a similar way as in Example 7.3.12 we get

on(X)

lim ————— = vy ¢ (0,1).
ne pn—lkx)

Since L(s) is strictly increasing in s on (0,»), we can apply (9.2.40) to
obtain that -log(l -F(yt,x)) = h(-log{l ~F(t,x)}), t € (~wo,»), where F(t,x)
is the distribution function of U(x). Now we know from Lemma 9.2.1 and
Theorem 9.2.3 that if m < « and (9.2.9) and (9.2.10) hold, then pn(x)logzn
converges in distribution as n + « to a random variable Z(x), which has an
atom of size 1l-r at 0. Since pn(x)log Zrl < 0 on {Zn—>0} and pn(x)log Zn > 0
on {Zn~%m} for sufficiently large n, and pn(x)log(l-%l/zn) o~ -pn(x)log Zn
as n > on {7 ~0} and o_(x)log(l+1/2 ) 25 0 as n > ©on {2 +=), it

follows that

d
I{Znﬁm} pn(x)log Zy T O

and that

. a.s.
I{Z +O}“pn(x)10g Zn ey (J (%) as n > o,
n

where I stands for the indicator function. This means that

. s}
= . + = =
pn(x)log Zn I } pn(x)log Zn I (%) log Zn U (%)

{7+ {z 0} °n
n n
as n > ®,
whence Z(x) g ~U{(x). Therefore, w(t,x), the distribution function of 2 (x),

satisfies w(t,x) = 1 -F(~t,x), and relation (9.2.40) becomes
-log w(~yt,x) = h(-log w(-t,x)), t € (-w,®).

For t € (0,»), this is just (9.2.19).

We close this section with a discussion on the norming of Z by a

n+1
suitable function of Zn' that is we try to find a sequence of functions
{fn; n=0,1,2,...} such that Zn+1/fn(zn) converges in some sense to a
random variable W with P(O0<W<w») > 0. If we want to do so we encounter
the same problems as in Section 7.3, where we studied this question for

explosive processes, and just like we did there, we shall now only present
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one example.

EXAMPLE 9.2.16. Let {Zn; n=20,1,2,...} be a branching process having a
strictly stable distribution concentrated on [0,®) with characteristic ex-
ponent o € (0,1) as its offspring distribution. For this process we derived

relation (7.3.24) which says that

(1-a) /o
Z {logn) B
lim inf -2H v = B (17 a.s..
n > ® Zn .

From Example 9.2.10 we know that ocnlogzn ELELA-~U € (~0,0) as n » » on

{Zn~>0}. In a similar way as in Example 7.3.13 it now follows that

(1~a) /o
Z_,,(loglog | logz_|) .
lim inf ntl = = B(OL)(1 ) /o a.5. on
1/a
n -+ o Zn

{Zn+0}

and that 2z JE (Z.) 28 wasn -+ ®on {z =+ 0}, where
n+l" 7y Tn n

log|log t|

ey e )
¥ c(yt “logllogtl)

Furthermore, we can prove, analogously to (7.3.31)

z

lim sup n+l =
1 /o
n =+ o f(logllog an/(—log a)) /aazn/a
0 if 5 L.
B =0 T
B if T L
o i D
T oth=0 F(0)

a.s. on {Zn->0}, where £ is any non-negative function on [0,») such that

limnqm f(n) = « and £(n) ~ f(an) as n > « for any sequence of constants

{an; n=0,1,2,...} for which a ~mnasn > oo,
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