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CHAPTER 1 

INTRO DU CTIO N 

In this monograph we shall be concerned with some asymptotic properties 

of so-called branching processes. Talking about a branching process 

{Zn; n = 0,1,2, ••• } it is 

in the nth generation of 

the number of .individuals 

usual to th.ink of z as the number of individuals 
n 

some population. Doing so, th.is number Zn equals 

produced by the Z 1 individuals of the (n-ll st 
n-

generation, that is, we can consider Zn as a sum of zn-l random variables, 

which are usually assumed to be independent and identically distributed. 

Such processes are known as Galton-Watson processes. Many results about 

these have been derived and we shall mention some of them below. For in­

stance, there is the so-cal.led extinction or explosion theorem, which says 

that P (limn+oo Zn= 0 or "'.') = 1. It turns out that in a more detailed analysis 

of asymptotic properties of Gal.ton--Watson processes an important role is 

played by the expectation of the so-called offspring distribution. This 

offspring distribution is defined as the distribution of the random nv;nber 

of individuals produced by one .individual. We denote .its expectation by m, 

implying that under the usual assumption that P(Z 0 = 1) 

distinguish four cases for Gal.ton-Watson processes: 

1, m = EZ 1 . We can 

(1) subcritical processes, that is processes for which m < 1. In this case 

(2) 

(3) 

P(lim Z = 0) = 1' and if EZl log z1 n->-oo n 
< "' then m (Z > 0) > O; n 

critical processes, that is processes for which m = 1. In this case 

P (limn+oo z = 0) 1 ' and .if the variance 2 of is finite, then = a (Zl) Zl n 
2 nP(Z > 0) = 2/a ) ; 

n 
supercritical processes, that .is processes for which 1 < m < co. In this 

case P(limn->-co Zn=O) < 1. If P(l.i.mn+oo Zn=O) > 0, then such a process, 

conditioned on {1.im Z = O} can be considered as a subcritical pro-· n+oo n 
cess {z · n = 0,1,2, ... }, with probability generating function of .its n' 
offspring distribution given by f(s) = f(rs), where f is the probability 

r 
generating function o:E the offspring distribution o:E the original pro-

cess and r = P (limn+oo z 11 "' 0) . Furthennore, there exists a sequence of 
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constants {a; n 
n 

0,1,2, ... } such that 

P(O < lim a Z < 00 [lim Z =oo) 1; 
n n n n--+co n➔oo 

(4) explosive processes, that is processes for which m = 00 • In this case 

P(limn-+= Zn= 0) < 1. If P(limn._ Zn= 0) > 0, then for such a process, 

conditioned on { lim Z = 0}, the same result as under 3 holds, where-
n➔ro n 

as there exists no sequence of constants {an; n = 0,1,2, ... } such that 

P(O<limaZ <oo limZ = 00 ) 1. 
n n n 

n+oo 

We can however construct a function L, such that 

P(O <lime 
n->= 

(1/Z ) < 00 [ lim Z = oo) 
n n n-+= 

L 

In a paper of JI~INA [1958] it was noticed, that the size of the popu­

lation can be measured by other means than by the number of individuals, for 

instance by means of its weight or volume. Therefore, i. t is reasonable to 

consider branching processes with the non-negative real numbers as their 

state space. Such processes {Zn; n = 0,1,2, ... } are studied in this mono­

graph. We pay particular attention to the correspondences and the differences 

between these processes and Galton··Watson processes. After some preliminar­

ies in Chapter 2, we show that a necessary and sufficient condition for the 

existence of such processes is that the offspring distribution, defined as 

the distribution of the random quantity produced by a quantity of size 1, 

is infinitely divisible. After that we shall see in Chapter 3, that also 

for these processes P = 0 or 00 ) = 1, and then the behaviour of the 

process on the events {lim Z = O} and {lim Z = 00 } is further investi---n-+= n n-+oo n 
gated. As a rule we can say that this behaviour, both on {lim Z = O} if n-+= n 
P (z 1 = 0) > 0 and on { limn-+oo Zn= 00 } is essentially the same as that for 

Galton-Watson processes. This correspondence is elaborated in Chapters 4, 

5, 6 and 7, where we study successively the four cases mentioned above under 

1, 2, 3 and 4 for Galton-Watson processes. The only remaining case is then 

the behaviour of the process on { lim Z11 = 0} i.f P (z1 = 0) = 0. Notice that n-+oo 
for Galton-Watson processes P(Z 1 = 0) = 0 implies that every individual pro-

duces at least one individual, whence it follows that the process cannot 

become extinct, that 1s P(lim11-+=_ Zn= 0) = 0. However, this reasoning is not 

valid in the case we consider, if we take for instance P (Z 1 = ½) = 1, then 
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it follows that P(Z = dln) = 1 for all n = 1,2,3, ... , and so 
n 

P (limn->«> Zn= 0) = 1, while obviously P (z 1 = 0) = 0. •rhis example also shows 

that we can have that P (limn->«> Zn= 0) cf limn-+oo P (Zn= 0), in contrast with 

Galton-Watson processes, for which these two expressions are always equal 

to each other. Now it turns out that we can use simi.lar techniques for the 

study of the process on {lim Zn= 0} if P(Z 1 = 0) = 0 as we use for the n+oo 
study of the process on { lim z = 00 }. We mentioned above that in the 

n➔oo n 
latter case the value of the parameter mis important and we get different 

results according as m < or m = 00 • If we consider the process on 

{limn+oo Zn= O} if P(Z 1 = 0) O, it is not anymore the parameter m which 

plays an essential role, but an other parameter comes in, to wit the almost 

sure infimum of z1 , defined by inf{x; P(Z 1 s x) > o}. This parameter is de­

noted by a. A similar distinction as between the cases m < 00 and m = 00 will 

be shown to exist between the cases a> 0 and a= 0. As the most important 

results we have that if a> 0, then there exists a sequence of constants 

{an; n = 0,1,2, ... } such that P(O < lim a Z < 00 [lim Z =0) = 1, where-
n-= n n n->«> n 

as if a= 0 we can construct a function L such that 

P(O < lim e-nL(i/Z ) < 00 J lim Z 
n n 

0) 1. 
n➔oo 

'rhe cases a > 0 resp. a = 0 will be treated in Chapters 8 resp. 9. After 

this rather superficial introduction we shall now pass on to a more detailed 

approach of the problems sketched above. 
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CHAPTER 2 

PRELIMINARIES 

2.1. SOME PROBABILITY THEORY 

In this section we formulate some concepts from probability theory we 

need in the sequel. Throughout this study all random variables are supposed 

to be defined on one probability triple rn,F,P). 

Let {xt} be a collection of random variables, indexed by a parameter 

t in some subset I of JfL Such a collection is called a stochastic process. 

We write {Xt; t EI} or {X(t); t EI}. As a first example we consider a 

random walk. 

DEFINITION 2.1.1. A random walk is a stochastic process {Xn; n = 0,1,2, ... } 
n 

such that x0 = 0 and Xn = l:jc~l Yj' n = 1,2,3, ... , where Y1 ,Y2 ,Y 3 , ... are 

independent and identically distributed random variables. 

From this definition we see that a random walk has the following two 

properties: 

1. The process has stationary increments, that is, for any fixed, non-nega­

tive integer m, the increment X(n+m) - X(n) has, for all n = 0,1,2, ... , 

the same distribution. 

2. The process has independent increments, that is, the CT-field spanned by 

{X (n+m) - X (n) , m = 0, 1, 2, ... } is, for all n = 1, 2, 3, ... , independent of 

the u-field spanned by {X(m), m = 0,1, ... ,n}. 

It is possible to generalize random walks to processes with index-set 

[0, 00 ) having properties analogous to 1 and 2 above, that is 1 and 2 do not 

only hold for all non-negative integers m and n, but for alls and t E 

[0,w). If the values of X(l) are non-negative then these processes are call­

ed subordinators. More precisely, 

DEFINITION 2.L2. A stochastic process {X(t); t E [0, 00 )} is called a 
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subordinator, if it has stationary and independent increments, and if, for 

almost all sample paths X(t,w): 

1. X(O,w) = O; 

2. X(•,w) is right-continuous on [0, 00 ); 

3. X(•,w) has finite left limits on (0, 00 ); 

4. X(1,tu) 2 0. 

It follows from this definition that for each n = ,2,3, .. "' X(l) 

I:n Y . , where Y . = X (i) - X (.i:l) , 
j=1 n,J n,J n n 

dependent and identically distributed, 

and that Yn,i'Yn 12 , ... ,Yn,n are :i.n··· 

implying that X(l) has an infinitely 

divisible distribution. On the other hand, it is well-·known that, given a 

non-negative random variable X having an infinitely divisible distribution, 

there i.s a unique subordinator {X(t); t E [0, 00)} such that X(l) g X. (The 
d 

notation X = Y means that X and Y have the same distribution.) See e.g. 

BREI!'1AN [ 1968]. 

An important class of random variables appearing in the theory of 

stochastic processes is the class of so-called stopping ti.mes. Roughly 

speaking, a stopping time T only depends on the stochastic process up to 

time T. Let {X(t); t EI c [0,oo)} be a stochastic process. We denote by 

F(X(s), s E [O,t] n I) the o-field spanned by {X(s); s E [O,t] n I}. 

DEFINITION 2.1.3. Let I c [0, 00 ), {X(t); t E I} a stochastic process and T 

a random variable with values in I. T is called a stopping time for the 

process {X(t); t E I}, if for every t 2 0, h' :S: t} E F(X(s), s E [O,t] n l). 

It follows from Definition 2.1.2 that if we define Xt(s) by 

(s) = X(t+s) - X(t), s,t E [O,oo), then for any t E [0, 00 ) the process 

{Xt(s); s E [0, 00 )} has the same distribution as the process {X(s); s E 

[0, 00 )} and is independent of the a-field spanned by {X(s); s e [O,t]}. This 

property is called the weak Markov property. It says that at any time t > 0, 

the process starts afresh. A similar property satisfied for any stopping 

time Tis called the strong Markov property. Before stating the precise 

definition we notice the following. If {X(t); t EI c [0, 00 )} is a stocha­

stic process and Ta random variable having at most countably many values, 

which are moreover elements of I, then X(T) is again a random variable. 

This is in general not true for an arbitrary random variable T. However, if 

for example T is a stopping ti.me for a process {X (t), t E [O , 00 )} having al-· 

most all sample paths right-·cont.inuous, then X (T) is also a random-variable. 



See BREIMAN [1968]. If Tis a stopping time for the process 

{X(t); t EI c [0, 00 )}, then we denote by f(X(s), s E [0,T] n I) the a­

field of events BE F such that B n {TS t} E F(X(s), s E [0,t] n I). 
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DEFINITION 2.1.4. Let I= [0, 00 ) or I= {0,1,2, ••• }, {X(t), t EI} a stocha­

stic process, having almost all sample paths right-continuous in case I= 

[0, 00 ). Then the property that for any stopping time T for the process 

{x (t) ; t E I}, the process {xl (t) , t E I}, defined by xl (t) = X (T+t) - X (T)' 

has the same distribution as {X(t), t EI} and is independent of 

F(X(s); s E [0,T] n I), is called the strong Markov property. 

The following result is well-known, see e.g. BREIMAN [1968]. 

LEMMA 2.1.5. For random walks and for subordinators, the strong Markov 

property holds. 

This section is closed with a lemma which will be applied in Chapter 3. 

LEMMA 2.1.6. Let {X(t); t E [0, 00)} be a stochastic process such that, for 

almost all w En, X(t,w) is a right continuous function oft fort E [0, 00), 

and let (z0 ,z1 , ••• ,Zn) be a random vector such that Zn is non-negative. 

Suppose that there exists a random variable M such that !X(t) I s M for all 

t E [0, 00 ) and that EM< oo, and that furthermore (z0 ,z 1 , ... ,Zn) and 

{X(t); t E [Q,oo)} are independent. Then E(X(Zn) lz0 ,z1 , ... ,Zn) = [EX(t)]t=Z 
n 

a.s •• 

PROOF. Because almost all sample paths of the process {X(t); t E [0, 00 )} 

are right-continuous, we can write 

a.s., 

where I stands for the indicator function. Now !x(t) I SM and EM< 00 , and 

hence the dominated convergence theorem yields that 

Furthermore, 
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for every positive integer N, and therefore, again by dominated convergence, 

we obtain 

where the last equality follows from the independence of {X(t); t E [0, 00 )} 

and (z0 ,z 1 , ... ,Zn). Finally, the right-continuity of almost all sample 

paths of {X(t); t E [0, 00 )} allows another application of the dominated con­

vergence theorem yielding that E(X(Zn) lz0 ,z 1 , ... ,Zn) = [EX(t) a.s .. D 

2 • 2 • SOME RESULTS ABOU'E CTJMULANT GENERATING FUNCTIONS 

In the following chapters we shall often make use of cumulant generat­

ing functions. We therefore formulate some properties of these. Usually the 

cumulant generating function h of a possibly defective random variable Xis 

defined for s E [0, 00 ) by h(s) = -logEe-sx, with the convention that e-s.co 

= 0 and e-s.-co = 00 for all s E [0, 00 ) •. As long as we consider only non-nega­

tive, real values of s, and use the convention -log 00 00 - 00 , this function h 

is well--defined for every random variable X. But we shall also be concerned 

with h(z) for complex values of z and then we encounter the well-known prob­

lem that the logarithm of a complex number is not univalent. Now we can try 

to define h(z) as a continuous function, which satisfies e-h(z) = ¢(z), 

where ~(z), called the Laplace transform of X, is defined by ¢(z) 

with the conventions that e -z.oo = 0 if Re z 
-z ~co 

?:0,e = 00 ifRez< 

-zx Ee , 

0 and 

e2 • 00
• 'I'his can be done for all complex z in a simply connected sub­

set of the complex plane, if ¢(z) is continuous and has no zeros in that 

subset. Now we are only dealing with non-negative random variables X, having 

an infinitely divisible, possibly defective distribution, and it follows 

from the theorems 5. 3. 1 and 8. 4. 1 i.n LUKACS [ 1970] that the Laplace trans­

form ~ ( z J of such a random variable X has no zeros on { z; Re z ?: 0} unless 

P(X=00 ) = L Furthermore, this ¢(z) is continuous on {z;Rez?O} and hence we 

can define on { z; Re z ?: 0} a uni va.lent function h ( z) , which is continuous 
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and satisfies ¢(z) = e-h(z) and which is real for z E [0, 00 ), with the con­

vention that h(z) = 00 if P(X=00 ) = 1. This function h(z) is written as 

-log Ee -zx. This leads to the following definition. 

DEFINITION 2. 2. 1. Let X be a non-neg a.ti ve random variable with an infinitely 

divisible, possibly defective distribution. Then the function 

(2. 2. l) h(z) -zx 
-log Ee , 

where z is a complex number with Rez ? 0, is called the cumulant generat­

ing function of X. 

In this section h stands for the cmnulant generating function of a non­

negative random variable X with an infinitely divisible, possibly defective 

distribution, not concentrated in one point, and a for the first point of 

increase of the distribution function F(x) of X, that is 

(2. 2. 2) a = inf{x;F(x) > O}. 

Many properties of h(z) can be deduced from the corresponding proper­

ties of the Laplace transform ¢(z). First of all we notice that ¢(z) is 

analytic for all z with Re z > 0, and that O < l¢(z) I < 1 on {z;Re z > O}. 

The derivatives of ¢(z) are given by 

(2. 2. 3) ¢ (n) (z) n n -·zX 
(-1)EXe, 

with the convention that cone-z,.oo 

yields 

Rez>O,n 1, 2, 3,. . . , 

0 if Re z > 0, n 1, 2, 3,.. . . This 

LEMMA 2.2.2. The function h(z) is well-defined and continuous for al} 

z E {z;Re z? O} and analytic for all z E {z;Re z > O}. 

PROOF'. From the remarks made before Definition 2.2.l we know that h(z) is 

well-defined and continuous for all z with Re z ? 0; h (z) is analytic on 

{z;Rez>O} since O < l¢(z)I < 1 and ¢(z) is analytic on {z;Rez>O}. D 

We shall now formulate some results on h(s) for s E [0, 00 ). The follow­

ing property turns out to he very useful. 
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LEMMA 2.2.3. 

(a) .rf P(O < X < co) > 0, then h(s) is strictly .increasing in s, 0 :s: s < 00 ; 

(b) h(s) is concave on [0,co). 

PROOF. Part (a) is an easy consequence of the definition of h. Part (bl is 

obtained by an application of Schwarz' inequality, which states 

l 

E exp(-½(s 1+s2 )X) :S: (E exp(-s 1x)) 2 (E exp( E [0, 00), 

and therefore 

for arbitrary s 1 ,s2 E [0, 00 ). D 

As is well-·known the behaviour of ~ (s) for small s provides us with 

some information on the distribution of X near 00 , and reversed. The trans­

lation of this fact in terms of h is ,stated in the following two lemmas. 

LEMMA 2.2.4. 

(a) lims+O h(s) = h(O) = -log P(X<00 ); 

(b) If P(X<"') 1, then lims+O h~s) = h'(O) EX :S: co 

PROOF. 

(a) By lemma 2.2.2 it follows that h(O) = lims+O h(s); furthermore, the 

dominated convergence theorem implies that 

lim h (s) 
s+O 

--sx lim - log Ee 
s+O 

-log Elim e 
s+O 

(b) By the concavity of h (Lemma 2.2.3(b)), h' (0) 
-sx 

h (s) = --log Ee , it follows from (2. 2. 3) that 

h' (s) 
(E exp(-sX))' 

E exp(-sX) 
E{X exp(-sX)} 

E exp(-sX) 

-sx -log P(X<oo). 

lims+O h' (s). Since 

and so, by part (a) of this lemma and again dominated convergence, 

h' (0) = EX. 0 

(a) lims➔oo h(s) -log P(X=O); 



(b) lims-,-00 {h(s) - as} 

(c) lim 
s--

h(s) 
--= a. 

s 

11 

-log P(X=a); 

PROOF. The proof of part (a) is analogous to the proof of Lemma 2.2.4(a). 

Part (b) follows by dominated convergence, because h(s) - as 
-s (X-a) 

-log Ee . Part (c) is proved by taking the limits as s + 00 and cl + 0 

in the inequalities 

a s _ .!. -sx s _ l -sx 1 
s log Ee s log Ee I{xsatc'i} :<:: a+ c'i --;; log P (x:s:a+6), 

where I stands for the indicator function. D 

We have thus seen that h(s) + EX ass+ 0 and h(s) + a ass+ 00 • Next 
h(s) s s 

we notice that --8- decreases from EX to a as s passes through (0 , 00 ). 

h(s) . 
LEMMA 2.2.6. The function -s- is strictly decreasing ins E (0, 00). 

PROOF. This is immediate from the concavity of hand the fact that Xis 

not concentrated in one point. D 

We terminate this section with a lemma which describes the connection 

between the cumulant generating functions of the random variables of a sub­

ordinator. A similar result holds for random walks. 

LEMMA 2.2.7. Let {X(t); t E: [0, 00 )} be a subordinator, and h(z,t) the cumu-· 

.Zant generating function of X (t). Then 

h(z,t) 

for all t?: 0 and all comp.lex z with z E {z;Re z?: O}. 

PROOF. Because X(t+s) = X(s) + {X(t+s)-X(s)}, and, by Definition 2.1.2, 

X(s) and X(t+s) - X(s) are independent and X(t+s) - X(s) ~ X(t), 

(2.2.4) h(z,t+s) h(z,t) + h(z,s) 

for all s, t 2: 0 and all complex z with z E { z; Re z ?: 0}. Therefore, for all 

rationals r =ii"?: 0, where m 2 0 and n > 0 a.re integers, 

h(z,r) h(z :!:.J 
'n r,h(z, 1). 
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Now by (2.2.4), h(z,t) is non-decreasing i.n t E [0,oo) for all z E [0, 00), 

and so h(z,t) = t•h(z,1) for all t E [0, 00 ) and all z E [0, 00). Since by Lemma 

2.2.2 both h(z,t) and t•h(z,1) are analytic on {z;Rez>O} and continuous on 

{z;Re z 2 O}, also h(z,t) = t•h(z,1) for all t E [0, 00 ) and all complex 

z E {z;Rez;:>:Q}. D 
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CHAPTER 3 

GENERAL RESULTS 

3.1. INTRODUCTION 

Since long the theory of branching processes has been studied. For an 

interesting historical sketch we refer to JAGERS [1975]. The idea of these 

processes can be described in the following way. Consider individuals each 

of which produces a random number of new ones, called its direct descend­

ants, such that the next two properties hold: 

1. All the individuals act independently of each other. 

2. The random numbers of produced individuals all have the same distribu-

tion. 

One starts with a number z0 of individuals, which form the zeroth genera­

tion. Further, the number of individuals in the (n+l)st generation, Zn+l' 

.is the number of direct descendants of the Zn individuals in the nth gener­

ation for n = 0,1,2, .... Such processes {Zn; n = 0,1,2, ... } are called 

Galton·-Watson processes after F. Gal ton and H. Watson, who studied these 

processes in the nineteenth century. For these processes all the Zn are 

integer-valued. Now we want to generalize this to branching processes {Zn; 

n = 0,1,2, ... } with Zn non-negative, real-valued. To this end we notice 

that we can describe a Galton-Watson process more formally as follows. Let 

Y 1 , , Y 3 , ••• be a sequence of independent and identically distributed ran··· 

dom variables, z0 some given positive integer. Then we can define to be 

the sum of the first z0 random variables of the sequence 

After that we can, conditionally given z1 , define z2 to be the sum of the 

following random variables of the sequence {Yn; n 1,2,3, ... }, and so 

on. This leads to the next definition which has indeed the advantage of 

_being easy generalizable to processes with real-valued. 

DEFINITION 3.1.1. Let ; n = 0,1,2, ... } be a random walk such that 
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integer c, s_ 1 = 0 and Sn= Z~=O 

n = 0, 1, 2, . . . . Then the process 

Platson process; the distribution 

zk, n = 0,1,2, ... , where zn+l Xsn - x5n-l 

{Z; n = 0,1,2, ... } is called a Calton-· 
n 

of x 1 is called the offspring distribution 

of the process {Zn; n = 0,1,2, ... }. 

From this definition we can indeed prove that Zn+l' conditionally 

given Z11 , .is equal to a sum of Zn .independent and .indentically distributed 

random variables, and that the properties 1 and 2 mentioned at the beginn­

ing of th.is sect.ion hold. For let Fk be the a-field spanned by 

{xrn, m = 0,1, ... ,k} fork= 0,1,2, .... First of all we notice that since 

s_ 1 = 0 and z0 = C, both {s_1 :"'.k} and {s0 :"'.k} E Fk for all k 0,1,2,. . ., 

implying that s_ 1 and s 0 are stopping times for the process 

{x; n 
n 

0,1,2, ... }. Now suppose that Skis a stopping time for the process 

{Xn; n = 0,1,2, ... } fork ~0 -1,0,1, ... ,n-1. 'l'his means, by the remark made 

before is well-defined fork= -1,0, ... ,n-1. Definition 2.1.4 that Xs 
k 

Furthermore, si.nce {Sn s k} c {sn-l s k} and 

11 

C + l 
k=l 

{snsk} = {Xsn-l sk-C} n {sn_1 sk} E for all k = 0,1,2, .. ., and there-

fore also Sn is a. stopping ti.me for the process {Xn; n = 0,1,2, ... }. Hence 

we obtain that Xsn is well-defined and therefore the same i.s true for Zn+i· 

Moreover, conditionally given 

z 
n 

l (XS +· - XS l+j-1). 
j=1 n-1 J n-

Since Sn-l is a stopping time, the same is true for Sn-l + j for j = 1,2, 

3,."", and because Zn E F (Xj' j = 0,1, ... ,Sn-l), it follows from Lemma 

2.1.5 that conditionally given Zn' the random variables Xsn_ 1+j-Xsn··l+j-1' 

j = 1,2, ... ,zn' are .independent and identically distributed, also indepen­

dent of the a-field F(x., j = 0,1, ..• ,Sn-l), that is, the properties 1 and 
J 

2 above are satisfied. 

Now the relation between random walks and subord.inators explained i.n 

Section 2. makes it clear how to define a branching process 

; n:::::. 0,1,2,~ .... } with Zn real-valued~ 

DEFINITION 3.1.2. Let {X(t); t E [0, 00 )} be a subordinator and let z0 = C 

for some positive real number C,- s_ 1 = 0 and Sn l:~=O Zk, n = 0,1,2,.,q 
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where 

(3 .1.1) n 0, 1,2, .... 

Then the process {z ; n = 0, 1, 2, .•. } is called a branching process with 
n 

state space [0, 00 ); the distribution of X(l) is called the offspring distri-

bution of the process {Zn; n = 0,1,2, ... }. 

Such processes were introduced by JI~INA [1958]. Our definition is a 

slight modification of a definition used by ATHREYA [1974]. See also 

ATHREYA [1975]. 

From now on we suppose that {Zn; n = 0, l, 2, ... } is a branchlng pro··· 

cess with state space [0, 00 ), that z0 = 1, that z1 is a proper, non-degener­

ate and of course non-negative random variable having an infinitely divis­

ible distribution and that his the cumulant generating function of z1 , 

unless stated otherwise. 

Uslng a simllar argument as the one followlng Definition 3.1.1 we can 

prove that is a stopping time for the process {X(t); t E [0, 00 )} for all 

n = -1,0,1, ... , that Zn is well-defined for n = 0,1,2, ... and that, since 

zo = 1, 

(3. L2) s 
n 

n=0,1,2, .... 

Furthermore, we can deduce from Definition 3.1.2 the following lemma, which 

is often referred to as the basic branching property. 

LEMMA 3.1.3. For all complex z E {z;Rez2:0} and all n 

(3.1. 3) 
-zzn+l 

E{e I z0 ,z 1 , ••• ,z l . n 

··h (z) Z 
ll 

a.s .. 

0, 1, 2, ... 

PROOF. We know already that Sn is a stopping time for the process {X(t); 

t E [0, 00)} for all n ~ 0,1.,2,.°" . Furthermore, it follows from (3.Ll) 

that {Zn ~ x} E F ( X ( s) ; s E [ 0, s n-l J) , where x E ( - 00 , 00 ) and n = 0, 1 , 2 , .• "' 

and so the Lemmas 2.L5, 2.1.6 and 2.2.7 imply that a.s. 

z 
[E{exp(-z{X(S 1+1)~X(S 1)})}] n=[E{exp 

n- n-
) } J 

-h(z)Z 
n 
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where z E { z ; Re z ? 0 } and n 0, 1, 2,... . □ 

3. 2. NO'l'ATION 

In the sequel the following notation will be used: 

h (z) 
n 

-zz 
-log Ee 11 with z E { z; Re z ? 0}, 

c(s) resp. c 11 (s) are the inverses of h(s) resp. hn(s), 

s E [0, 00 ), n = 0,1,2, ... ; 

C (s) h (s) and h (s) 
-n 

r 

q 

n -n 

P(lim Z 
n 

n->= 

P(Z 
n 

lim 
n-+oo 

OJ; 

0); 

en (s), s E [0,oo), n 1, 2, 3, ... ; 

a ~, first point of increase of the distribution function of z1 , 

that. is a= inf{x; P(Z 1 ~ x) > o}. 

REMARK 3. 2 .1. Taking expect.at.ions in ( 3 .1. 3) yields that. h (z) is the n th 
n 

iterate o:f h(z). By Lemma 2.2.3(a) we know that his) and then,fore also 

hn(s) is strictly increasing ins E [0, 00 ). Since by assumption P(Z 1 < 00 ) 1, 

it follows from Lemma 2.2.4(a) that lims+O h(s) = 0 and therefore also 

lims+O hn(sl = 0 for all n = 1,2,3, .... Furthermore, if P(Z 1 =O) 0, then 

by Lemma 2.2.S(a) h(s) = 00 and so lims-+oo h 11 (s) 00 for all n 1,2, 

3, .... Thus in this case c (s) is well-defined for alls E [0, 00 ) and all 
n 

n = 1,2,3".. However, if P(Z 1 =O) > 0, then again by Lemma 2.2.S(a), 

h(s) < 00 , and so lims-+oo h11 (s) -log P(Z11 = 0) < 00 for all n = 1,2, 

3, .... This means that in this case c 11 (s) is only well--defined for 

s E [0,-log P(Z =0)). 
. 11 

REMARK 3.2.2. Since, by Definition 3.1.2, {z = O} c {z 1 = O}, q ~ q 1 n n+ "Tl n+ 
for all = 1, 2, 3, ... , and so q = ~ exists and equals P (Z11 = 0 from 
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some n on). 

3.3. MAIN RESULTS 

It turns out that the expecta.tion of the offspring distribution and the 

first point of increase of its distribution function play an important role 

in the theory of branching processes. This is further explained in the fol­

lowing chapters. In this section we mention some results that hold in gener­

al, without any assumption about a or m. First of all we shall see that 

there is a simple relation between hand r. 

'I'HEOREM 3 . 3 . 1 . limn.._ hn ( s) 

(a) or (b) or (c) holds: 

-logr .for all s E (0, 00). Furthermore, either 

(a) h(s) < s .for all s E (0, co) 1 and lim h (s) = 0; 
n..- n 

(b) there exists an so E (0 ,co) such that h (s0 ) = so, and lim h (s) SQ; n.._ n 

(c) h(s) > s .for all s E ( 0 1 oo) 1 and lim h (s) 
n..- n 

PROOF. Since h(s) is concave by Lemma 2.2.3(b) and lims+O h(s) = 0 by Lemma 

2.2.4(a), there is in case (b) exactly one solution E (0, 00 ) of the equa-

tion h(s) s. Moreover, it is obvious that we are always in one of the 

three cases mentioned, and that limn.._ hn(s) equals, for alls E (0, 00 ), the 

gi.ven value in each of the three cases. Now 

(3. 3 .1) h (s) 
n 

-sz 
-logEe n s 

-sz 
n 

-log Ee I{lim z =0} 
n.._ n 

,SE (0, 00), 

where I stands for the indicator function. Because the right-hand side of 

( 3 . 3 . 1) tends to - log r as n ➔ oo, 

(3.3.2) lim hn (s) s --log r 
Il-700 

for alls E (0, 00 ). 

We shall now consider each of the three cases separately. 

(a) Suppose h(s) < s for alls E (0, 00). Then by Lemma 2.2.4(b), m S 1. It 

follows from (3.1.3) and Lemma 2.2.4(b) that E(Zn+l I z 0 , ... ,Zn) = 

E(Zn+l I Zn) = mZn s Zn' that i.s {Zn; n = 0,1,2, ... } i.s a non-negative super-·· 

martingale. Hence Zn converges almost surely to a finite limit as n ➔ 00 • 

Since limn➔«> hn(s) 0 for alls E (0, 00 ), the continuity theorem for Laplace 

transforms (FELLER [1971]) yields 
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(3. 3. 3) P(Z = 0) 
00 

or 

-log r 

1, 

-log P (lim Zn= 0) 
n~ 

0. 

(b) Now suppose that there exists an s 0 E (0, 00 ) such that h(s0 ) = s 0 . Then 

{ -soZn } the sequence e ; n = 0,1,2, ... is a bounded martingale by Lemma 3.1.3. 

So e-soZn converges a.s. to some random variable X
00

(s0 ) E [0,1] as n + 00 

and 

"rhis means that 

(3.3.4) 

or 

-log r 

lim h (s) 
n n~ 

if s E (0,oo) 

ifs= 0 

1 -

(cl Finally, if h(s) > s for all s E (0, 00 ), then -log r = 00 by (3.3.2) 0 

In the following theorem the relation between q and h(s) is described. 

THEOREM 3.3.2. 

(a) q = 0 if and onl.y if P(Z 1 =O) = O; 

(b) If P 

h(s) 

=O) > 0, then -logq is the maximal solution of the equat.ion 

PROOF. 

(a) Since 0 s: t q as n + 00 and P (z 1 = 0) = q 1 , q = 0 implies that P = 0) 

= O. If on the other hand P(Z 1 =O) = 0, we have by Lemma 2.2.S(a) that 

lims~ h (s) = -log P (z 1 = 0) = 00 • It follows that -log P (Zn= 0) 

·1im8 _.,.00 hn(s) = 00 , n = 1,2,3, ... , and therefore q = limn~ qn '" 

lim n~ 
(b) P 

P (Z = 0) = 0. 
n 

= 0) > 0 implies that q · ~ q 
n 1 P (z 1 = 0) > 0 for all n 
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and hence, again by Lemma 2.2.S(a), hn( 00 ) := lims->= hn(s) < 00 , so that we 

may write, using the continuity of h (Lemma 2.2.2), 

h(-log q) + log q lim{h(h (co)) - h (co)} 
n n 

lim{h 1 (co) - h (co)} 
n+ n n->= 

lim{-log~+l + log~} = 0. 
n->= 

Finally, if tis another solution of the equation h(s) = s, then hn( 00 ) 2 

hn(t) = t for all n 1,2,3, ••. , or -log~= hn(co) 2 t for all n = 1,2,3, ... 

whence -log q 2 t. D 

In theorem 3.3.1 we saw that limn->= hn(s) = -logr for alls E (0, 00). 

By the continuity theorem for Laplace transforms, this means that Z ~ z, . n 
where Z is a random variable with distribution P (Z = 0) = 1 - P (Z = 00 ) r. 

Actually, we can strengthen this to almost sure convergence. This result is 

the so-called "extinction or explosion theorem". 

THEOREM 3.3.3. 

P(lim Zn= 0) 
n->= 

1 - P (lim Zn= 00 ) • 

n->= 

PROOF. From (3.3.3) and (3.3.4) we know already that the theorem holds true 

if r > 0. Now, if r = 0, Theorem 3.3.1 tells us that h(s) > s for all 

s E (0, 00). By Lemma 2.2.S(c) this means that a 2 1, whence P(Z 1 21) = 1, and 

so, by (3.1.1), Zn+l 2 Zn for all n = 0,1,2, ... a.s .. Therefore limn->= Zn 

exists a.s •. Call this limit Z. Then of course z has the same distribution 
co co 

as the random variable Z mentioned above, that is P(Z00 = 00 ) = 1-r = 1. D 

Now that we know that P (limn->= Zn= 0 or 00 ) = 1, the following step is 

to find a sequence of norming constants an such that anzn converges in some 

sense to a limit Z with P(0 < Z < 00 ) > 0. Since anzn 0 for n large enough 

on the event A := {z = 0 from some non} and P(A) = q by Remark 3.2.2, it 
n 

is clear that no such sequence {a; n = 1,2,3, ..• } can exist if q = 1, which 
n 

happens, as we shall prove in the sequel, if and only if m ~ 1 and P(Z1=0) > 0. 

Suppose therefore that m > 1 or P(z1 = 0) = 0. Then, because EZn = h~ (0) = 
-{h' (0) }n = mn, a first guess for an might be an = m-n There are however 

two objections against this an. First of all it is not clear what to do if 

m = 00 , and secondly, although {m~nz; n = 0,1,2, ... } is a non-negative mar-
n 

tingale if m < oo, implying that m-nz converges almost surely to some 
n 
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random variable z as n ➔ co, it turns out that P(Z = 0 or 00 ) = 1 in many cases. 

The corollary to the following lemma gives us a better choice for the an' 

although it may happen that also with this choice P(limn➔oo anzn = 0 or co)= 1. 

However, as we shall see later on, in these cases there is no sequence 

{o:n; n = 1,2,3, ... } of positive constants at all such that anzn converges 

a. s. and P (lim a z = 0 or co) < 1. Remark 3. 2 .1 and Theorem 3. 3 .1 explain 
n➔oo n n 

the assumptions in the lemma. 

LEMMA 3.3.4. If P(Zl =0) = 0 ands E [0,oo) or P(Zl =0) > 0 ands E [0,-logr], 

then the seqt1ence {e-cn(s)Zn; n = 0,1,2, ... } is a bounded martingale. 

PROOF. Although only stated there for Galton-Watson processes, this result 

was in fact first proved in HEYDE [1970]. It follows easily on substituting 

Z = C ( S) in ( 3 . 1. 3 ) • 0 
11 

COROLLARY 3.3.5. If P(Zl = 0) = 0 ands E [0,co) or P(Z 1 = 0) > 0 and 

s E [0,-log r], then Y(s) := 

] -zY(s) . F" - .. og Ee sat1.s-1.es 

lim c (s) Z exists a.s.; $ (z,s) := 
n➔oo n n 

(3. 3. 5) ¢ (z,s) l.im hn (zcn (s)), 
n➔oo 

z E {z;Rez>0}. 

PROOF. These are all. consequences of well-known results for bounded martin-

gales. See e.g. LOEVE [1963]. 0 

From now on Y(s) stands for the a.s. limit of c 11 (s)Zn' $(z,s) for its 

cumulant generating function, and l(s) for the first point of increase of 

the distribution function of Y(s). When we talk about Y(s) it is taken for 

granted that P = 0) ~ 0 and s E [0, 00), or that P(z 1 = 0) > 0 and 

s E: [O,-log r]. In the next chapters the study of Y(s) will be continued. 

Now we pass on to the so-called total progeny of the branching process. 

In Section 3.1 we defined S n 
n 

= Zk=O zk. Since each Zn z O, s := 

limn➔oo Sn exists and equals ):==O Zk. 'Ehis random variable Sis called the 

total progeny of the process. In a Calton-Watson process, -► 0 is equiva-

lent to 0 from some n on, and so s < 00 on {z + O}. Furthermore, s 
n 

on {z ➔ co}. Since n 
P(Z 

n 
+ 0 or oo) = 1' this means that P(S < oo) ·-- P(Zn -+ 0). 

If the state space is [0 ,oo) on the contrary, there is a possibili. ty that 

-+ 0, but yet S = 00 • However, the next theorem shows that this happens 

only with probability 0. {The function {f(s) }inv or (s) is defined for 

functions f which are monotone for s E I c JR, as follows, {f(s) }inv = g(s) 



or finv(s) = g(s), s EI, if and only if g(f(s)) = s for alls EI). 

THEOREM 3.3.6. Let k(z) be the cumulant generating function of S. Then: 

(a) k satisfies the equation 

(3.3.6) k(z) z + h(k(z)), z E {z;Rez:2:0}; 

(b) k(s) { ( . }inv s - log r - h s - log rJ -log r, S E [ 0, oo) if r > 0; 

k(s) oo, s E [O,oo) if r = 0; 

(c) P(S < oo) r. 

PROOF. 

(a) Let kn(z) be the cumulant generating function of Sn. Then we have, 

using Lemma 3.1.3, 

-zs -zs 
n+1 n+1 I -logEe =-logE{E(e ) } 

-zs z -z n 1 -log{e E(Ee ) } z + h (z)). 

21 

Now since (z) ➔ k(z) as n + 00 by the continuity theorem for 

Laplace transforms and so part (a) follows from the continuity of h. 

(b) We distinguish again the same three cases as in Theorem 3.3.1. 

1. Suppose h (s) < s for all s E (0 , 00). Then -log r = 0 by '.l'heorem 3. 3 .1, 

and by the concavity of h(s) (Lemma 2.2.3(b)), s-h(s) is increasing for 

s E [0, 00 ). Therefore {s - h(s) }inv is well-defined and from (3.3.6) we 

see that 

(3. 3 7) k (s) { s - h ( s) } inv ' S E [0, 00 ). 

2. Now suppose that there exists an s 0 E (0, 00 ) such that h(s0 ) = s 0 . Then 

we know from Theorem 3.3.1 that O < -logr = s 0 < 00 • Let h(s) 

h(s-logr) + logr, s E [0, 00 ). Then exp(-h(s)) is completely monotone 

since exp(-h(s)) is so, and h(0) = O. It follows~therefore from Theorem 

XIIL 4.1 in FELLER [1971] that h(s) ~ -logEe-sz1 , s E [0, 00), where z 1 

is a proper, non-negative random variable; z 1 is not concentrated in one 

point since z1 is not . .Furthermore, because has an infinitely divis-

ible distribution, exp(-h{s)/n} is completely monotone for all 



22 

n = 1,2,3, ... , and hence the same is true for exp(--h(s)/n) 

r-l/nexp(-h(s-logr)/n), and therefore z1 has an infinitely divisible 

distribution. Let {Zn; n 0,1,2, ... } be a branching process with z0 1, 

having the distribution of z1 as its offspring distribution. Since 

h(s) < s for alls e (0,oo), (3.3.7) yields 

k Is) S E [Q, 00 ), 

where k(s) -ss 
-log Ee and s k(s) + logr, 

then by (3.3.6), 

g(s) s + h (k (s)) + log r s+h(g(s)-logr) +logr 

s + h (g (s)), 

and hence 

g (s) [s - h(s) }inv k(sJ, S E [Q, 00 ), 

or 

k(s) g(s)-log r {s-h(s) - log r 

inv 
{ s - log r ... h ( s - log r) } -· log r , S E [0,oo). 

3. Finally, if h(s) > s for alls E (0, 00), then r = 0 by Theorem 3.3.1 and 

as in the proof of Theorem 3.3.3, Zn+l 2 Zn for all n = 0,1,2, ... a.s., 

so P (S = 00 ) = 1. Since the cumulant generating function of this S equals 

00 for alls e [0,w) part (b) of the theorem is proved. 

(c) By Lemma 2.2.4(a) lims+O k(s) 

P(S < oo) li.m e -k (s) 

s+O 

-log P(S < 00), whence, if r > 0, 

inv 
lim e-{s-logr--h(s····logr)} +logr r. 
s+O 

If r = 0, then we know from part (b) that P(S < 00 ) 0 r. □ 

By (3.1.2) 

means that 

+ X ) ' n O, 1, 2,... . Furthermore S _ 1 0. This 



(3.3.8) s 1+X(S-) on {S<oo}, 

where we use the notation X(t0-) for lirnttto X(t). It turns out however that 

the event {X(S) > X(S-)} has probability O on {s < oo} and so, using the con·· 

vention X( 00 ) = limt-+co X(t), it follows that S = 1 + X(S) a.s .. This is made 

precise in the next theorem. 

THEOREM 3.3.7. S i:;=O Zk satisfies a.s. the equation 

(3. 3. 9) s 1 + X(S). 

PROOF. Since Sn is a stopping time for the process {X(t); t E [0, 00 )} for 

all n = -1,0,1, ... , we know from Lemma 2.1.5 that 

(3. 3. 10) X(S +E) - X(S) ~ X(E) 
n n 

for all n -1,0,1, ..• and all E > 0. 

This means that we have for every E > 0 and o > 0 

(3.3.11) P(X(E) > 6) a (E,o) + b (E,6), 
n n 

where 

a (E, 0) 
n 

P(X(S +E) - X(S) > 6 and S < 00 ) and 

b (E,ol 
n 

n n 

P(X(S +E) 
n 

X(S) > o and S 
n 

Also, because Sn is non-decreasing inn, 

00) • 

(3.3.12) X(S +E) 
11 

X(S+E:-) for all E > 0 as n ➔ oo on {S< 00 }, 

and 

(3.3.13) X(S) a.s. X(S-) 
n 

as n ➔ 00 on {S<oo}. 

Therefore, writing a(E,o) = P(X(S+E-) - X(S-) > 6 and S < oo), we see by 

· ( 3. 3. 12) and ( 3. 3. 13) that lim a ( E, 6) = a ( E, 6) for every 6 where a ( E, o) 
11-+co n 

is continuous and hence by (3.3.11), lim11-+co (E,o) := b(s,6) exists, is 

non-negative, and 
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(3.3.14) P(X(E) > Ii) a(E,O) + b(E,o) 

for every o > 0 where a(E,o) is continuous. Finally, limE{-O P(X(E) > o) = 0 

by Definition 2. L2 and, writing a(o) = P(X(S) - X(S-) > o and S < 00), it 

follows that limE+O a(E,o) = a(o) for every o > 0 where a(o) is continuous, 

because X(S+E--) a.s.; X(S) as E + 0 on {s < 00 }. Since every distribution func­

tion has at most countably many discontinuities, we see from (3.3.14), that 

if we choose a sequence {En; n = 1,2,3, ... } such that En+ 0 as n ➔ 00 , then 

limn-+<>o b(En,o) := b(o) exists and is non-negative for all but at most count­

ably many o > 0. Substituting this into (3.3.14) we obtain O = a(o) + b(o) 

for all but at most countably many ,S > 0, and hence that X(S) = X(S··) a.s. 

on {s < 00 }. This together with (3.3.8) yields the required result on {s < 00 }. 

S , X(t) a.s. f 1 ( ) ince -t- --~ m as t ➔ 00 by the strong law o arge numbers, X 00 = 00 

a.s., and hence also S = 1 + X(S) a.s. on {S= 00 }. D 

It follows from 'l'heorem 3.3.7 that S = inf{t?: O; X(t) = X(t-) 5t-1} 

a.s .. For if O:,; t <Sand X(t) = X(t-), then Sn-l 

0,1,2, .... This means that X(t-) = X(t)?: X(Sn_ 1 ) 

5 t < Sn for some n 

S - 1 > t - 1 . The 
n 

analog of this result for a Galton-Watson process is S=inf{n?:0; = n -1}, 

where {Xn; n '" 0, 1, 2, ... } is a random walk wtth 

[ 196 9], the distribution of both S = z;=O zk and W 

d 
z 1 . In a paper of DWASS 

{inf n; xn = n-1} 

were derived and observed to be the same. The method used here makes 

it clear why this has to be so. 

In Section 3.2 we defined a to be the first point of increase of the 

distribution function of z 1 . If a ?: 1 then P (z 1 ?: ) = 1 and hence, by 

(3.Ll), Zn+l?: Zn and P(S= 00 ) L If a< 1, then P(Zn?:an) = 1, since 

and 

lim 
s-+<>o 

h (s) 
n 

s 

h (s) 

n 1½( (s) 

lim kI!J_ -- h (s) 
s-+<>o k-1 

n 
a 0 

1 im ,,,,E___ = 0 
s 

n 
a if P (z 1 = 0) > O, 

s-+<>o 

n k 
and therefore S ?: limn->-oo l:k=O a 

P(S < l + E) > 0 for all E > 0. 
-a 

The next theorem tells us that 

'l'HEOREM 3. 3" 8. If a < 1 then the first point of increase of the distribu--

tion function of S equals 1 1-wcLIJ:iu.Ltc P(S= 1 P(Z 1 =a)l/(1-a). 
-a 



PROOF; Because a< l, either h(s) < s for alls E (0, 00 ) or there exists an 

s 0 E (0, 00 ) such that h(s0 ) = s 0 , and therefore, by Theorem 3.3.1, r > 0. 

This means, because of Theorem 3.3.6(b), that 

k(s) inv 
{s -log r - h(s -log r)} -log r, s E [0, 00), 

or 

(3. 3 .15) k(s -log r - h(s -log r)) + log r s, S E [0, 00 ). 

Differentiating this we get 

k'(s -logr - h(s -logr)).(1 - h'(s -logr)) 1, 

and thus, using the concavity of k(s) and h(s) (Lemma 2.2.3(b)), and Lemma 

2.2.5 (c), 

1 . k (s) 
im-­

s 
5-)-00 

limk'(s) 
s-?oo 

lim k' (s -log r - h(s -log r)) 
s-><x> 

lim ------­
s-><x> 1-h' (s-J.og r) 1-a 

This together with Lemma 2.2.5(c) proves the first part. The second part 

follows on observing that 

= lim {k(s) - ~} 
1-a s-><x> 

by Lemma 2.2.5(b) and thi.s together with (3.3.15) and again Lemma 2.2.5(b) 

implies 

{ s-J.og r ··h (s-log r)} lim k(s-J.ogr-h(s-logr))- 1_.,;: 
s->oo 

. { s-logr-h(s-·logr)l 11.m s -log r - -··-=· --1--a~-~-1 
s-><x> 

lim h(t)-at 
1-a t-><x> 

-log P(Z 1=a) 

1--a □ 

REMARK 3.3.9. We can understand this last result also as follows. S = 
i.f and only i.f n = a for all n = 0,1,2, .... So if P(Z 1 =al= 0, then 

1-a 
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P(S=-1 ) 1-a 0 P (z 1 = a) l/ (1-a). If P (z 1 = a) > 0, then 

-sz 
-log E (e n+l [ z = an) 

n 

by (3.1.3), and because an+l is the first point of increase of the distribu-

tion function of zn+l conditioned on Zn an, Lemma 2.2.5(b) yields 

n+l 
-log P (Zn+l = a 

This means that 

P(s =-1) 
1-a 

P(Z = 
n 

lim {anh(s) - an+ls} 
s-+oo 

for all n 0, 1, 2, ... ) 

We close this section wi.th a discussion about the rate of convergence 

of the random variables Zn in terms of ratios. More precisely, we want to 

determine a function f such that zn+l/f(Zn) converges in some sense to a 

positive and finite limit. This is not interesting in case P(Z 1 = 0) > 0 and 

limn->«> Zn= 0, because then O from some non, as we shall see in the 

following chapters. It turns out that we can choose f linear both if we 

consider the process on {z + 00 }for m < 00 and if we consider it on {Z + O} 
n n 

for a > 0. 'l'his will be proved i.n Chapters 6 and 8. So we are left with the 

cases a O and P (z 1 = OJ = 0 on {Zn + 0}, and m = 00 on {Zn + 00 }. Since the 

branching process is defined in terms of subordinators, we might expect 

some help from the paper of FRISTED'r and PRUITT [ 1971 J, in which the growth 

of subordinators was studied. They proved that under certain conditions 

. (3. 3 .16) lim inf~ 
f (t) 

y 
d a .. S~, 

where the lim inf may be taken both fort,!, 0 and fort+ 00 , and where 

{W(t); t E [0, 00)} is a subordinator and 



log I log ti (3.3.17) 
b(y log ti log ti) 

with b(s) = pinv(s), s E [0, 00 ) and p(s) 

f (t) 
y 
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-sW(1) -logEe , s E [0, 00), and d 

some constant E(0, 00 ). Since P(limn-- Zn O or 00 ) = 1, we can try to prove 

a result like (3.3.16) for W(Z )/f (Z ). Then choosing {W(t); t E [0, 00 )} n y n 
such that it has the same distribution as the subordinator by which the 

branching process is defined, but independent thereof, it follows that 

W(Z) ~ Z 1 for all n =0,1,2, ... , and this might possibly lead to a result n n+ 
concerning Z 1/f (Z ). In Chapters 7 and 9 however we shall see an example n+ y n 
of a process {z; n = 0,1,2, ••• } for which lim z 1/f (Z) = 00 a.s., and 

n n-- n+ y n 
for which the corresponding subordinator satisfies (3.3.16). This means that 

this method is not generally successful, and it is not clear how to choose 

a good norming function for an arbitrary branching process 

{Zn; n = 0,1,2, ... }. 

We shall now turn back to the quotient W(Z )/f (Z) mentioned above, n y n 
for which the following results can be proved. 

THEOREM 3.3.10. Let {W(t); t E [0, 00)} be a subordinator, p(s) 

s E [0, 00), b(s) 

log I log ti f (t) 
y b(y log ~log t I ) ' 

Suppose that P (z1 = 0) = 0. If y > 1 then 

W(Z) 

t € (Q,oo). 

lim inf f (;) 2: y - 1 
n -+ 00 y n 

a.s .. 

l -sW(1) - ogE e 

PROOF. The proof is based on Lemma 4 in the paper of FRISTEDT and PRUITT 

[1971]. There they construct, for every S < y-1, a sequence 

{~; k = 1,2,3, ... } such that tk + 0 ask-+ oo and 

(3. 3 .18) a.s., 

and a sequence {tk; k = 1,2,3, •.• } such that tk-+ oo ask-+ 00 and 

e (3. 3.19) 
W(tk) 

lim inf---- 2: S 
k -+ fy (tk+l) 

a.s .• 

We shall compare Zn with these tk resp. tk. Suppose 
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w E A := {lim Z = O} n {Z > 0 for all n 
n n 

0,1,2,. .. } 

Because P(Z 1 =OJ= 0, P(A) r. Define t 0 = 00 , then for every n = 1,2,3, ... 

there is an integer k = k(n,w) such that tk+l <Zn~ tk. Hence we obtain 

(3.3. 20) 
W(Z) 

n 
f(Z) 

y n 

because both W(t) and f (t) are non-decreasing int. (See FRISTEDT and 
y 

PRUITT [1971]; we use the convention f (00 ) = lim f (t).) Since 
y t-,ro y 

(3. 3. 21) lim k(n,w) 
n.-

Therefore, by (3.3.18), (3.3.20) and (3.3.21) 

W(Z ) 
n 

lim inf f(Z) ~ S 
n + oo y n 

a.s. on {z + O}, 
n 

and since S < y-1 was arbitrary, the result holds on {Zn+ O}. The proof 

for the case {Zn+ 00 } is similar, using the sequence {tk; k = 1,2,3,,,.}. D 

The same method yields a result for the 1.im sup. 

THEOREM 3.3.11. Let {W(t); t E [0, 00 )} and b(s) be as in Theorem 3.3.10, 

g a pos.itive function on (0, 00 ), such that limt+O g(t) = limt➔oo g(t) = 0, 

a a positive constant and 

f(t) 
g(t) 

l+a: ' 
b(g(t)/tllogtl ) 

t E (Q,co). 

Suppose that P (z 1 = OJ = 0 and that f (t) is non-decreas.ing both for small 

t and for large t. Then 

W(Z ) 
n 

lirn sup f(Z) 
n ➔ 00 n 

0 a.s .. 



REMARK 3.3.12. Writing 

X (t) 
g(t) 

1+a' 
tj log ti 

t E (0, 00 ), 

we get 

i (t) x(t) tllogtl l+a 
b(X (t)) 

s 
Since b(s) t EW(l) asst 0 and 

s + inf{x;P(W(l) S x) > 0} 
b(s) ass-+ 00 
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l+a 
by the Lemmas 2.2.4(b), 2.2.S(c) and 2.2.6, and ti log ti is increasing 

in t both for sufficiently small and for sufficiently large t, the condi-· 

tions on fare fulfilled if x(t) + 0 fort ➔ 00 and x(t) t 00 fort+ 0. As 

there exist functions g such that the corresponding x has these properties 

and such that also limt+O g(t) = limt➔oo g(t) = 0, there are functions f 

which satisfy the conditions of the theorem. 

-k 
PROOF OF 'THEOREM 3. 3. 11. Let tk e , k = 1, 2, 3, ... , { vk; k = 1, 2, 3, ... } 

a sequence such that li~➔oo vk = 00 , vkg(tk+l) < 1 for all k = 1,2,3, .. . 

and limk➔oo vkg (tk+l) = 0, and let sk = 1/ (f (tk+l )vk), d any constant 

E ( 0, 00 ) and p ( s) as in 'rheorem 3. 3. 1 0. Then we can prove using Le1mna in 

FRISTEDT and PRUI'r'l' [1971], 

(3. 3. 22) 

(3. 3. 23) T1 < oo i.f and only if T2 < 00. 

Now 

1+a 
~ (b (g (tk+l l / (tk+i] log tk+l I ) ) ) 

T? d l v t p ( ) S 
- k=l k k vkg tk+1 
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co 

I 
d k=l vkg (tk+l l tk+l I log tk+l I 

l+a ' 

since 1/(vkg(~+l)) > 1 and p(t•s) s; t-p(s) fort> 1 by the conca;rity of 
-k 

p(s). So, substituting tk = e we obtain 

T2 s; l __ e __ < '°, 
d k=1 (k+l)l+a 

Thus, by (3.3.22) and (3.3.23), T < 

lemma now yields 

because a> 0. 

An application of the Borel-Cantelli 

and therefore, since d E (0, 00 ) is arbitrary, 

W(tk) 
lim sup---­

k ➔ co f(tk+l) 
0 a.s .. 

In the same way we can prove, with tk 

0 a.s .. 

1,2,3,.'", 

Then, using the same method as in the proof of Theorem 3.3.10, we get the 

required result. D 
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CHAPTER 4 

THE CASE m<1 

4.1. INTRODUCTION 

As we know from the Lemmas 2.2.4 and 2.2.5, the values of m resp. a 

are determined by the behaviour of h(s) for small resp. larges. It turns 

out that in many theorems these m and a play an important role. We shall 

see that if ms 1, then P(lim Z =O) = 1 and if m > l, then n-+<x> n 
P(lim Z = OJ < 1. Furthermore, as can easily be proved in a similar way n-+<x> n 
as in JAGERS [1975], if we suppose that the variance of Zl, 

2 
CT (Z1)' is fin-

ite, then lim 0 2 (z) ·- 0 i:E m < 1' whereas lim 0 2 (z ) = 00 if m = 1, n-+<x> n n·= n 
indicating a different behaviour of the branching process in the cases m < 

and m = 1. It also turns out that in many results it is essential that 

h(s) < oo. This explains why we distinguish 
s 

four cases form, namely 

m < , m = 1, 1 < m < 00 and m Similarly, since lims-+<x> 

positivity of a is important. We therefore study the cases 

separately. 

h(s) -- = a, the 
s 

a= 0 and a> 0 

Many proofs in the Galton-Watson process theory are based on the con­
Z 

f(s) := E(s 1 z0 =1J = vexity of the probability generating function 
00 I k 

1 

l:k=O P (z1 = k z0 = 1) s for O s s s 1. If z1 is not integer-valued, then the 

function E (s21 I z 0 = 1) is in general not convex. However we have at our dis­

posal the Clllilulant generating function h(s) which is concave for s E ro, 00), 

as we know from Lemma 2.2.3(b). We can therefore apply to this h(s) the 

techniques used for f(s) in the Galton-Watson process theory. For this rea­

son we shall often not give a detailed proof, but only refer to the corres­

ponding proof for the Galton-Watson process. 

In this chapter we investigate the so-called subcritical processes, 

j:hat is processes with m < 1. It turns out that if P {z 1 = 0) = 0, the behav-­

iour of the processes depends on the value of a. Results concerning that 

case are therefore mentioned .in Chapters 8 and 9, and we mostly confine 

ourselves in this chapter to the case P(z 1 =O) > 0. 
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4.2. SOME LIMIT THEOREMS 

First of all we look at the values of rand q. 

THEOREM 4 . 2 . 1 . 

(a) r = 1; 

(b) if P(Z 1 = OJ > 0, then q = 1. 

PROOF. Since h' (0) = m by Lemma 2.2,4(bJ, we see that h' (0) < 1. Therefore, 

by the concavity of h(s) on [0, 00 ) (Lemma 2.2.3(b)), h(s) < s for all 

s E (0, 00), and so part (a) follows from Theorem 3.3.1 and part (b) is an 

easy consequence of Theorem 3.3.2(b). D 

Part (b), of Theorem 4.2.1 states that if P(z 1 =OJ> 0, then 

limn-+oo P (Zn> 0) = 0. It is natural to ask how fast this convergence is. An 

answer to this question is given in the following theorem, where we see 

that, just as in Theorem 4.2.3 below, the finiteness of EZ 1logz1 is impor­

tant. In brief, this is caused by the fact that EZ 1 log z1 < 00 can be proved 

to be equivalent to JE f(s) ds < 00 for any E > 0, where f(s) = m - !1.i13l_ 
0 s s 

See the proof of '.l'heorem 3 in SENETA and VERE-JONES [ 1968]. On the other 

hand, since by Lemma 2.2.S(a), lims➔«> h(s) = -log P(z 1 = 0) < 00 , we may write 

and n = 2,3,4, ... , where we use the convention (00 ) 

fore, lim m-nh (s) is positive together with 
n-+oo n 

that is if and only if 

l f(hk(s)) < 00 • 

k=l 

for every s E (0,oo] 

lim h (sl. There-
s-+«> n 

Furthermore, it follows from the concavity of h that {h' (h(s)) (s) ~ 
k-1 

~(s) ~ m h(s), and therefore, for every s E (0, 00 ] there exist o1 E (0,1) 

-and o2 E (0,1) such that o~ ~ hk(s) ~ o~ for sufficiently large k. Now be­

cause integral comparison yields z:=l f(ok) < 00 for any o E (0,1) if and 

only if f~) ds < 00 for any s > 0, we thus can associate EZ 1log with 
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limn-+<x> m hn(s), and therefore, since hn(s) is the cumulant generating func-

tion of Zn, with the limit behaviour of Zn. The analysis in this chapter is 

thus in fact based on the 'l'aylor expansion h (s) = ms - f (s) s. 

THEOREM 4. 2. 2. Suppose that P (Z 1 = 0) > 0. 
-n 

(a) If EZ 1logz1 < 00 , then limn-+<x> m P(Zn > OJ > 0. 

(b) If EZ 1 log 00 , then lim m -np (Z > 0) 
n-+<x> n o. 

(c) If g is a continuous, increasing function on [0,1) such that g(0) 0 

and 

1 

(4. 2 .1) I _g(y):{y) dy < oo, 

0 

where 

f(y) m - y E (0, 00 ), 

then 

1' for every 6 E ( 0, 1) . 
n-+<x> 

The proof of the parts (a) and (b) is analogous to the proof of 

Theorem (2.6.1) in JAGERS [1975]. It follows easily from the remark made 

above, since, writing h11 (oo) = lim5 _.,.00 hn(s), P(Z11 >0) = 1 - P =O) 
-h (oo) 

1 - e n ~ hn( 00 ) as n + 00 by 'rheorem 4.2.l(b). This means that 

m-nP(Z > OJ > 0 if and only if lim m-nh (00 ) > 0, which, as we saw 
n n➔oo n 

above, in its turn is equivalent to EZ 1 log z1 < 00 • For the proof of part 

(c) we notice that since g(s) resp. f(s) are non-negative and increasing 

ins by assumption resp. Lemma 2.2.6, 

n-1 
0 S I g(6k)f(6k) 

k=l 

1 

n 

SJ g(ox)f(ox)dx 

0 

6n 

J g(y)f(y) dy 
y log 6 

s - log o J SJj_y)yf (y) dy. 

0 

for every 6 E ( 0, 1) , 

·and thus, by (4.2.1) and the non-negativity of g(s)•f(s) for s E (0,1), 

f( has a finite limit as n + 00 , for every o E (0,1). An appl:i.-

cation of the Kronecker Lemma (LOEVE [1963]) now yields 
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n 

lim g(on) l f(ok) 0 
n-+w k=l 

for every 8 E (0,1). Therefore, because -log(l-x) < 2x for small x and, by 

the continuity of g, 

(4. 2. 2) lim g{s) = g{O) = O, 
srn 

(4. 2 .3) g (on-1) 
n-1 

{-1og(1 - f(t))} = 0 lim z: 
n-+w k=l 

for every o E (0,1). Furthermore, a repeated application of the inequality 

h(s) S ms yields I\(s) S mks for alls E (0, 00 ) and all k 1,2,3, ... , and 

so lim h__ (s) = lim h 1 (h (s)) s lim mk-lh (s) s ok for every s-+w --k s-+w -k- s-+w 
o E (m, 1) if k is large enough, since lims-+w h (s) = -log P = 0) < co This 

together with (4.2.2) and (4.2.3) yields 

(4.2. 4) 
n-1 { ( f (hkm(s)) )} __ 0 lim lim g(on-l) I -log 1 - ----

n-+w s-+w k=l 

for every o E (m, 1) , and hence a fortiori for every o E (0, 1). Iterating 

the equation 

we obtain 

h (s) 
n 

and therefore, since lim5 -+w I log h (s) I < co, 

(4.2.5) lim log hn (s) 

n-1 ( _ f(hk(s)I)_ 
limlogh(s) + (n-l)logm + lim l log 1 - . 
s➔-00 s-+w k=l m 1 

Combining (4.2.2), (4.2.4) and (4.2.5) and remembering that lims-+w h(s) < 00 , 

we can conclude that 

n-1 
lim lim g(o )• (-loghn(s) + nlogm) 0 
n-➔-oo s...+oo 
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for every a E (0,1). Finally, because limn-- P(Zn > 0) 

(b), we have 

0 by 'I'heorern 4. 2 . 1 

lirn h (s) 
n 

S-l--00 

and therefore 

-log{1 - P(Zn > 0)} ~ P(Zn > OJ 

for every 6 E (0,1). D 

as n ➔ 00 ,. 

Another interesting way to look at the behaviour of Zn is to examine 

the distribution of Zn conditioned on Zn> 0, of course again in the case 

P(Z 1 =O) > 0, since otherwise P(Zn>O) = for all n. For Galton-Watson 

processes, there is the so--called "Yaglom-theorem". It turns out that this 

theorem is also true if the state space of the branching process is [0, 00). 

We can formulate it in the following way. 

THEOREM 4.2.3. Suppose P(Z 1 = 0) > 0. Then: 

(a) The distribution of Zn conditioned on {Zn> O} converges weakly to some 

proper distribution. 

Let Z .be a random variable having this limit distribution. 

(b) P(Z=cO) = O; 

(c) EZ < 00 if and only if' EZ 1 log z 1 < 00 ; 

(d) the cumulant generating ±'unction g of Z satis.fies 

(4.2.6) 1 - exp(-g(h(s))) m(l - exp(-g(sl)), s E [0, 00 ); 

(e) i.i" g is the cumulant generating function of a random variable Z for 

which P(Z E (0, 00 )) = 1, such that 1 - exp(-g(h(s))) = m(l-exp(-g(s))), 

s E [ 0, 00 ) , then g ( s) g(s) for alls E [0, 00). 

PROOF. Writing hn( 00 ) 

and 

g (s) 
n 

X (s) 
n 

lim h(s),n=l,2,3, .•. , 
s-l--00 n 

-log E (e Z > 0), 
n 

( 
h (s)) 

- log 1 - h n (co) , 
n 

S E [Q, 00 ) 

S E [O,oo), 



36 

we see that 

-h (s) -h (oo) 
n n 

e -e 
-h (oo) 

as n -+ 00 , s E [ 0, oo) , 

1-e 
n 

since limn➔oo hn(s) = 0 for alls E [0, 00 ) by the Theorems 3.3.1 and 4.2.1, 

and, also by Theorem 4.2.1, 

lim h (co) 
n 

n➔oo 

lim -log~ 
n➔oo 

-log q 0. 

In a similar way as in the proof of Theorem (2.6.2) of JAGERS [1975], we 

can prove that hn(s)/hn(00 ), and therefore also xn(s), is increasing inn, 

and hence xn(s) converges to some limit function g(s) as n-+ 00 • This implies 

that also limn➔oo gn(s) exists and equals g(s). The parts (a), (cl and (d) 

now follow as in JAGERS [ 1975 J. In view of Lemma 2. 2. 5 ( a) , part (b) is a. 

consequence of the fact that g(s) 2 xn(s) for all n = 1,2,3, ... , and that 

lim5 -+oo xn(s) = 00 for all n = 1,2,3, •... Finally, analogously to the proof 

of Theorem I.7.3 in ATHREYA and NEY [1972], we can prove that 1-exp(-g(s)) 

= c 1 (1 - exp(-g(s))) + c 2 for some constants c 1 and c 2 . By t~e Lemmas 2.2.4 

(a) and 2.2.S(a), g(0) g(0) 0 and lims-+oo g(s) = lims-+oo g(s) = 00 , imply-

ing that c 1 = 1 and c 2 o. □ 

Functional equations like (4.2.6) appear often in branching process 

theory. In SENETA [1974] it is explained that there is an intimate relation 

between equations such as (4.2.6) and regularly varying functions. 'rhe 

next theorem is an example of that fact. As it provides a good insight in 

the reason of this relation, we give a proof of part (a), although it is 

the same as that of part (1) of 'l'heorem 2 in SENETA [1.974]. 

THEOREM 4. 2. 4. Suppose P (Z 1 = 0) > 0. Let Z be as in Theorem 4. 2. 3. 2'hen: 

(b) P(Z > y)dy ~ (1/x) as x -+ oo, 

where is a non-decreasing and L2 a non-increasing function, each slowly 

varying at 0, such that, ass+ 0, (s) + EZ and L2 (s) ·\' EZ. 

.PROOF. Writing ijJ(s) = 1 - e-g(s), s E [0, 00 ), (4.2.6) becomes 

(4. 2. 7) \µ(h(s)) S E [Q,oo). 
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Since e-g(s) is the Laplace transform of the proper random variable Zand 

P(Z=0) = 0, lj!(s) is continuous and increasing ins on [0, 00 ) from 

1 - P(Z< 00 ) = 0 to 1 - P(Z=0) = 1. So we can take inverses in (4.2.7) to 

obtain 

sE[0,m). 

lim h(s) = m c(s) 1 Because s+0 s by Lemma 2. 2. 4 (bl , lims+O -s- == ;;;-, and therefore 

(4.2.8) 
1/Jinv (s/ml c(lnv(s)) 1 s + 0. ➔- as 
lnv(s) lnv (s) m 

Further, since 1/J (s) is concave on [0,oo), 1/Jinv(s) is convex on [0, 1), and 
inv 1/m, thus 1/J (s)/s increases ass increases. So for 1 :S i\ :S 

s :S v/nv (s/m) 
_1/J_i_n_v_(_s_) s/m 

s 
S E (0,m). 

Hence, using (4.2.8), 

(4.2.9) 
ijJinv (i\s) lim _,_ __ ___:._:... 

s+0 lnv (s) 
i\ 

for all i\ E [1,1/m], and we can iterate this to obtain (4.2.9) for all 

i\ > 0. So we have proved that 1/Jinv(s) = s.L1 (s), where L1 (s) varies slowly 

at 0. By the convexity of 1/Jinv(s), L1 (s) is non-decreasing and because 

lims+O 1/J(s) = 0, 

lnv (s) lim _,_ __ ___:...;.a... 

s+O s 
lim _s_ = lim _s_ = _!_ 
s+0 lj!(s) s+0 g(s) EZ, 

by Lemma 2.2.4(b). Furthermore, L1 is continuous on (0,1), since 1/J is con­

tinuous and strictly increasing. Iterating (4.2.7) gives 

or 

h (s) 
n 

s E [0 ,oo), n 1,2, 3, ... 

S E [0,co) 1 

n = 1,2,3, .... 
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Lettings ➔ 00 we obtain, in view of the continuity of 

-log P (Zn= OJ 
n n 

m L 1 (m ) , n=l,2,3, ... , 

and as limn➔oo P(Zn=O) = 1 by Theorem 4.2.l(b), -log P(Zn=O) ~ P(Zn>O) 

as n + 00 and so part (a) of the theorem is proved. For the proof of part 

(b) we refer to part (2) of Theorem 2 in SENETA [1974]. D 
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CHAPTER 5 

THE CASE m=1 

5.1. INTRODUCTION 

In this chapter we look at the so-called critical processes, that is 

processes with m = 1. It turns out that in this case we can exactly cal cu··· 

late some asymptotics of the process; see Theorem 5.2.2 below. 

In Chapter 4 we saw that we could associate limn-+oo m (s) with 

and P(z 1 =0) > O, it is not true that there 

exists for every s E (O,m] a 6 e (0,1) such that (s) s for sufficient-

ly large k. In view of the discussion before Theorem 4.2.2 it is at least 

plausible that the association stated above does not exist in the case 

m = 1. We therefore do not find conditions on EZ 1 log z1 in this chapter, 

and we have to use another term in the Taylor expansion for h(s) .i.n the 
2 

analys.i.s. For this reason 0 (Z 1 ) appears in the cond.i.tions. 

Again as in Chapter 4 the behaviour of the process if P ( z 1 = 0) = 0, 

depends on the value of a and. results concerning this case can therefore be 

found in Chapters 8 and 9. 

5.2. SOME LIMIT THEOREMS 

To begin with we again calculate r and q. 'l'heir values are the same 

as in the subcritical case as we see in the following theorem, the proof 

of which is just like that of Theorem 4.2.1. 

'rHEOREM 5 . 2 . 1 . 

(a) r = 1; 

(b) Lf P(Z 1 =O) > 0, then q L 

So again we have p > 0) = 0 if P(Z 1 = 0) > 0, and the next 

theorem says how fast this convenjence is. 



40 

THEOREM 5. 2. 2. Suppose P (z 1 = 0) > 0 and c/ 
(a) lim nP (Z > 0) 

n-+oo n 
2 

2/cr; 

(b) lim E(Z /n I z >OJ= a212; n-+oo n n 

(c) lim P(Z /nsu I z >O) = 1 n-+oo n n 

2 -2u/cr 
- e , 

< co Then: 

u ~ o. 

PROOF. The proof is analogous to the proof of Theorem (2.4.2) in JAGERS 

[1975]. It is based on the relation 

lim .!. (-1- - .!.) = cr2 
n-+oo n hn (s) s 2 ' 

holding uniformly in O < s $ A for every A> 0. 0 
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CHAPTER 6 

THE CASE 1 < m<oo 

6.1. INTRODUCTION 

In this chapter we shall consider processes with 1 < m < 00 • Such pro­

cesses are called supercritical. The most important difference with the 

cases m < 1 and m = 1 is, that for supercritical processes P(limn-= = 0) < 

< 1. This implies that P (limn.._ Zn= 00 ) > 0. We therefore have to consider 

the behaviour of the process also on { limn-►co Zn= 00 }. Since -log r > 0, the 

interval (0,-logr) is non-empty and Corollary 3.3.5 provides us with se­

quences of norming constants {cn(s); n = 0,1,2, ... } for the process 

{Zn; n = 0,1,2, ... }, both if P(Zl =0) = 0 and if P(Zl =0) > 0. They are in 

:fact only useful on { lirn Z = 00 }, because lim c ( s) Z = 0 on 
n--+«> n n-+= n n 

{limn.._ Z11 = O}, since limn.._ en (s) = 0 :for all s E: (0,-log r). On the other 

hand, it turns out that P(O < lim c (s)Z < 00 I lim Z = 00 ) 1. 
n-+w n n 11-+oo n 

As we shall see, the process conditioned on { lim Z = 0} can be con-n-+w n 
sidered as a subcritical branching process having the function h(s -log r) + 

+ log r as the cumulant generating :function of the offspring distribution. 

So if P = O) > O we can apply the results of Chapter 4. If P 

the behaviour of the process again depends on the value of a, and will 

therefore be treated in Chapters 8 and 9. 

6. 2. 'I'l!E BEHAVIOUR OF THE PROCESS ON { Z + 0} . 
n 

THEOREM 6.2.1. 

(a) r < 1; 

(b) r = O if and only if a~ l; 

(c) if P = 0) > 0 then q r. 

PROOF. The parts (a) and (bl follow from Theorem 3.3.1, since 

s 
= a and h(s) is concave on [0, 00 ) by the Lemmas 2.2.4(b), 

=m, 
s 
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2.2.S(c) and 2.2.3(b). Part (c) is obtained on observing that h(s) < oo 

by Lemma 2.2.S(a), and so, using Theorem 3.3.1 and the Lemmas 2.2.2 and 

2.2.S(a) 

-log r lim h (lim 
11 

h(s)) lim lim hn+1 (s) 
n-+«> s-+«> n-+«> s-+«> 

lim log qn+1 -log q. D 
n->-ro 

Let us now look at the process conditioned on A := {limn->-ro Zn= OL 
Since P (A) = r, we suppose that r > 0, implying that -log r < 00 • First of 

all we notice that, if we define the probability measure P by P(B) ~ P(BJA), 

and write E for the expectation with respect to P, then for any Borel set 

Band for all random vectors X and Y 

P(AA{XEB}\Y) a.s .. 

Th.i.s implies that a.s. 

(6. 2 .1) 

···s z 
n+l I I E{e P(A z0 , .•• ,z 11 z0 , ••. ,z }, 

n+ n 

where I stands for the indicator function. In view of the basic branching 

property (3.1.3) 

Hence we obtain from (6.2.1) that a.s. 

implying that 

-s 
(6. 2. 2) -log E(e 

a.s .. 

-z - (s-log r) z 
n •E (e n+l I Z z ) 0 , •• ,, , 

n 

{h(s-logr) + logr}Z a.s. 
n 
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by (3.1.3). Now define h(s) by h(s) = h(s-logr) + logr, s E [0, 00). From 

part 2 of the proof of Theorem 3.3.6(b) we know that h(s) is the cumulant 

generating function of a proper, non-negative random variable z1 , not con­

centrated in one point, having an infinitely divisible distribution. So if 

~ ~ d ~ and i'f we we define a subordinator {X(t); t E [0, 00)}, such that X(l) = z1 , 

construct a branching process {Zn; n = 0,1,2, •.. } with the help of this 

subordinator as in Definition 3.1.2, with z0 = 1, then it follows from 

(6.2.2) that the processes {Zn; n = 0,1,2, ... } conditioned on A and 

{Zn; n = 0,1,2, ... } have the same distribution. Furthermore, since 

EZ 1 = h' (0) = h' (-logr) < 1, and 

inf{x;P(z1 5:: x) > O} = lim h~s) 
s-+<x> 

lim h(s-logr)+logr 
s s-+<x> 

1 . h(s) 
im-­

s 
a, 

we see that we can apply the results for subcritical processes to the pro­

cess {Zn; n = 0,1,2, ... } conditioned on A, with m replaced by h' (-logr). 

Because 

lim e -h(s) 

s-+<x> 

1 lime-h(s) 
r s-+<x> 

1 
rP(Z 1 =0), 

these results can be found in Chapter 4 in case P(Z 1 = 0) > 0 and in Chap­

ters 8 and 9 in case P(Z 1 = 0) = 0. 

6 . 3 . THE BEHAVIOUR OF THE PROCESS ON { Z ->- 00 }. 
n 

As already mentioned {c (s); n 
n 

1,2,3, ••• } can serve as a sequence 

of norming constants for the random variables Zn' n = 1,2,3, •.. if 

s E (0,-logr). We shall now examine some properties of the random variable 

Y(s), defined in Corollary 3.3.5 by Y(s) = limn-+<x> cn(s)Zn. Throughout this 

section we suppose thats E (0,-logr), unless stated otherwise. First of all 

we derive a functional equation which we shall often make use of. (Remember 

that ¢(z,s) is the cumulant generating function of Y(s).) 

THEOREM 6.3.1. For all z with Rez ~ 0 

(6. 3 .1) ¢(mz,s) h(¢ (z,s)). 
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PROOF. Since O < c(s) < s for s E (0,-logr) and c(O) 

n + 00 , and we see that 

C (s) 
lim __ n __ 
n➔oo cn-1 (s) 

C (s) 
n 

lim h(c (s)) 
n➔oo n 

0, c (s) + 0 as 
n 

Hence, using (3.3.5) and Lemma 2.2.3(a), we get for all u E (0, 00 ) and 

£ E (0,u), 

h(¢(u-£,s)) = lim h(hn_1 ((u-E)cn-l(s))) 
n➔oo 

C (s) 
n 

:::; lim h(hn-l (mu c (s) cn-l (s) l) 
n➔oo n-1 

C (s) 
11 

:::; lim h(hn-l ( (u+E) 
n-►oo 

h(<p(U+E,s)), 

(s) l) 

since h(t) is continuous fort E [0, 00 ) by Lemma 2.2.2. Again using this 

same lemma, we see in the first place that ¢(u,s) is continuous for 

u E [O,oo) and therefore (6.3.1) is true for all z E [0,oo). Furthermore, in 

view of the fact that Re ¢(z,s) > 0 and both ¢(z,s) and h(z) are analytic 

on {z;Re z > o}, it follows that (6.3.1) holds for all z E {z;Re z > o}, and 

so by the continuity of cumulant generating functions on {z;Re z ?c O} also 

for all z with Re z ?c 0. 0 

Using (6.3.1) we shall now prove the already announced result, that 

en (s) is a good norming on {limn·= Zn= 00 } i.n the sense that 

P(O<Y(s) <oo I Hm Z = 00 ) = L n--+oo n 

THEOREM 6.3.2. 

(a) P(Y(s) = OJ r; 

(b) P(Y(s) < 00 ) L 

~ROOF. From Lemma 2.2.5(a) we know that -log P(Y(s) =O) = limu-+co ¢(u,s). 

Si.nee h(t) is continuous for t_E [0, 00 ), (6.3.1) now yields 



(6. 3. 2) -log P(Y(s) =0) 

lim h(¢(u/m,s)) 
u-+oo 

lim ¢(u,s) 
u·+w 

h (lim ¢ (u/m, s)) 
u+oo 

h(-log P(Y(s) = 0)), 

with the convention that h( 00 ) lim h(s). Similarly we get 
S-¾o 

(6. 3 .3) -log P(Y(s) <oo) h(···log P(Y(s) < oo)). 

-Y(s) ···S -Y(s) 
Because by (3.3.5) Ee = e , we see that P(e = 1) < 1 and 

P(e-Y(s) > 0) > 0, since r < e-·s < 1, and hence 

(6. 3.4) 

Furthermore, 

(6.3.5) 

-log P(Y(s) = 0) > 0 

since lim n->-o:, (s) 

and -log P (Y (s) < oo) < oo 

o, 

-log P(Y(s) = 0) -log P (lim en (s) Zn= OJ 
n+oo 

5 -log P(lim Zn= 0) 
n-+«> 

-log r, 

and of course, 

(6. 3. 6) -·log P(Y(s) = 0) 2' -log P(Y(s) < oo). 
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Combining (6.3.2), (6.3.4) and (6.3.5), we obtain that -log P(Y(s) = 0) = 
-logr, that is P(Y(s) =0) = r. Now using (6.3.3) and (6.3.6) it follows 

that P (Y (s) < 00 ) = r or 1. But if P (Y (s) < 00 ) = r, then we should get 

Ee-Y(s) = r, since P(Y(s) =0) = r. However, Ee-Y(s) = e·--s > r, and so 

P(Y(s) <oo) ,.c 1. D 

We shall now further investigate the distribution of Y(s). It turns 

out that we can prove, making a repeated use of (6.3.1) that any sufficient­

ly large power of the absolute value of the characteristic function of Y(s) 

is integrable if r = 0. 'I'hen it follows from a result on Fourier inversion 

in FELLER [1971], and again some manipulation with (6.3.l) that Y(s) has 

an absolutely continuous distribution if r = 0. The proo:E given here is 

analogous to the proof of Theorem 4 on page 34 o:E ATHREYA and NEY [1972], 
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where the theorem is stated for Galton-Watson processes. 

THEOREM 6.3.3. If r = 0, then the random variable Y(s) has an absolutely 

continuous distribution. 

PROOF. The result will be established with the help of the following lemmas. 

LEMMA 6.3.4. P(Y(s) =c) < 1 for all constants c E (·-00 , 00 ). 

PROOF. Since c (s) > 0 and 
--- n 

? 0 for all n = 1,2,3, ... , P(Y(s) =c) = 0 

for all c E (-00 ,0). Furthermore, we know from part (a) of Theorem 6.3.2 that 

P(Y(s) = 0) r, which equals 0 by assumption. Now suppose P(Y(s) = c) 

for some c E (0, 00 ). It follows then, in view of (6.3.1), that 

mcu q, (mu,s) h(q, (u,s)) h(cu) 

for all u E [0, 00 ), and therefore h(s) = ms for alls E [0, 00 ). This means 

that P ( Z 1 = m) = 1, which case is however excluded. D 

Define t/J(t,s) to be the characteristic function of Y(s), that is 

iµ(t,s) = EeitY(s), t E (- 00 , 00 ). Then we have 

LEMMA 6. 3 . 5. I 1j; ( t, s) I < 1 for aJ.l rea.J. t ,/ 0. 

PROOF. Since the distribution of Y(s) is non-degenerate, there exists a 

o > 0 such that \iµ(t,s) \ < 1 for all 0 < ltl < o. (See e.g. Lemma XV.L4 of 

FELLER [1971].) This means that Re ¢(-it,s) > 0, and so using (6.3.1) 

= e-h(Req,(-it,s)) < 1 

for all 0 < \ti < o. 'l'his implies that [t/J(t,s) I < 1 for all 0 < ltl < mo, 

and hence by iteration for all 0 < ltl < rrto. Since 1 < m < 00 , we can con-

clude that lt/J(t,s) I < 1 for all real t # 0. D 

The following lemma is the key step leading to the integrability of 

-111(t,s)lk for sufficiently large integers k. Define 8 ltlSm Req,(it,s). 

By the continuity of ~(z) for z E {Rez>0} and Lemma 6.3.5 we know that 

B > 0. Introducing furthermore d = h ( B) - 8 and o ~ _d __ we get 
log m 



LEMMA 6.3.6. 

sup I 1/J ( t, s l I • It IO < 00 

-oo<t<oo 

PROOF. Since r = 0, we know from Theorem 3.3.1 that h(s) > s for all 

s E (0, 00). Therefore, as S > 0, both d > 0 and 6 > 0. Because 

-h (z) 

le n I = e 
-h (Re z) 

n 
5 e 

( Sl 

for all z with Rez 2 S, and, again by Theorem 3.3.1, limn-+ro hn(S) 00 , 

-h (z) 

le 11 I+ o as n ➔ 00 , 

uniformly for all z with Re z 2 S. Hence there exists for all E: > 0 an 

integer N0 (E) such that for all n 2 N0 (E) 

(6. 3. 7) 
-h (qi (it, s)) 

le n I 5 E. 
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Now because of the fact that r 

al.1 z with Rez 2 S, 

0, h(s) - sis increasing ins, and so for 

Re h(z) 
-zz 1 

-loglEe I 2 
--z 2 1 

--logEle I h ( Re z) 2 d + Re z > S • 

Iterating this we get for all z with Re z 2 S, 

(6.3.8) Re hn(z) 2nd+ Rez > S, for all n 1, 2, 3,... . 

Combining (6.3 7) and (6.3.8) yields 

for all n 

(6. 3. 9) 

lexp{-h N (q,(it,s))}I n+ 
0 

exp{-Re h (hN (¢ (:i.t, s)))} 
n 0 

5 exp{-nd·-Re h (¢(i.t,s))} 
NO 

1,2,3, ... and all t with 1 5 ltl 5 m, and so 

[exp{-hn+N (<j)(it,s)))[ 
15[t Sm 0 
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for all n = 1,2,3, .... Hence, using (6.3.1), (6.3.9) and the definition 

of o, we obtain 

for all n 

sup It IO• I !/J <t, sl I 
N0+n N0+n+1 

m s: It\ o::m 

sup 
10:: I ti o::m 

sup 
10:: I ti o::m 

sup 
.bltlo::m 

N +n 0 
Im O ti •lexp{-h (¢(-it,s))}I 

N0+n 

d(n+No+l) ·-nd 
e 'Ee 

1,2,3, ... , implying that 

sup 
-oo<t<oo 

□ 

Since 6 is not necessarily greater than one, we cannot yet apply the 

Fourier inversion theorem to yield the absolute continuity of Y(s). However, 

the fact that ko > 1 for sufficiently large k establishes the integrability 
k 

of l!/J(t,s) I , that is the absolute continuity of Y1+Y2+ ... +Yk fork suffi-

ciently large where Y1 ,Y2 , ..• ,Yk are independent and identically distributed 

random variables with the same distribution as Y(s). This enables us to 

prove the absolute continuity as is made precise in Lemma 6.3.7. Before 

t t · · d f · f 1 2 3 d · 1 - (n) (n) (n) · (n) s a·:i.ng:i.twe e :i.ne orn=,, , ... ran omvar:i.ab esY ,Y 1 ,Y2 ,Y3 , ••• 
. . (n) (n) (n) 

such that for every n = 1,2,3, ... , it holds that Zn' Y1 ,Y2 ,Y3 , ... are 

independent and such that conditionally given z, the random variables 

Y-(n) y(n) y(n) ,,(n) · d d 't' Y~n) d' 'b d Y( ) f , . 1 , . 2 , i 3 , ••• are in epen ent, wi 11 i istri ute as s or 

every i = 1,2,3, ... and 



(6.3.11) 
-(n) 

-tY 
E(e z ) 

n 
t E [Q, 00), 

where [z] is the integer part of z. Finally we define y(n) by (n) 
-n (n) (n) (n) - (n) O 

m {Y1 +Y2 + ... +Y[ZnJ+Y }, n = 1,2,3, ..•• 

49 

Notice that since each Zn has an infinitely divisible distribution, 

the same is true for Y(s) being the limit of cn(s)Zn as n ➔ 00 , and there­

fore, in view of (6.3.11), the distribution of Y(nl given z 
n 

z is well-

defined for every z 2 0. A similar construction will be used in Chapters 7 

and 9. For more details we refer to the proof of Theorem 9.2.13. By (6.3.11) 

and (6.3.1) we see that Y6n) and Y(s) have the same Laplace transform, 

implying that 

(6. 3 .12) for every n 1, 2, 3,... . 

LEMMA 6.3.7. Suppose E c IR has Lebesgue-measure zero. Then P(Y(s) EE)= 0. 

PROOF. Because o > 0 there exists a positive integer k such that ko > 1. 
Since by (6.3.10) sup -"'<t<co 11/!(t,s) J'c, ltllo < co for every positive l, it 

(n) (n) (n) 
follows from Theorem XV.3.3 of FELLER [1971], that Y1 +Y2 +.,.+Y,e, has 

an absolutely continuous distribution for every integer l 2 k. By (6.3.12), 

P(Y(s)EE) P(Y(n) EE) 
0 J P(Y(n) EE I z caz)dP (z) 

0 n z 

J 
[O,k) 

[ 0 ,co) 

P(Y6n) EE I Zn= z)dP2 (z) 

n 

+ J p (n) EE I Zn = z) dP z ( z) • 
n 

[k ,oo) 

Putting in the definition of (n) it follows that 

f 
[k,oo) 

f 

P(Y6n) EE I Zn= z)dP2 (z) 

n 

P( -niy(n)+Y(n)+ +Y(n)+Y-(n)} E 
rn L 1 2 ··· [zl E' 

[k, co) 

n 

= z) (z). 



so 

:- (n) (n) . (n) (n) . . . 
Now since Y , Y 1 , Y 2 , Y 3 , . . . are, condJ_ tionally 

(n) (n) (n) · and Y1 + Y2 + .. . +Yl has an absolutely continuous 
-n . (n) (n) (n) - (n) 

l '.:". k, we see that P(m {Y 1 +Y2 + .•. +Y[zty } EE 

given Zn' independent 

distribution for every 

I Z = z) = 0, because 
n 

it is well-known that the sum of two independent random variables has an 

absolutely continuous distribution if one of these random variables has an 

absolutely continuous distribution. Hence we obtain 

P(Y(s) EE) I 
[0,k) 

Since r = 0, lim P(Z < k) n->oo n 
P{Y(s) EE) = 0. 0 

P(Y~n) EE I Zn=z)dPZ (z),,; P 
n 

0 for all k 1,2,3, ... , and so 

This completes the proof of Theorem 6.3.3. D 

< k). 

In Section 3.3 we defined l(s) to be the first point of increase of 

the distribution function of Y(s). In view of Theorem 6.3.2(a), obviously 

l(s) = 0 if r > 0. But l(s) = 0 also if r = 0. This follows since by Lemma 

2.2.S(c) f(s) lim m-n¢(mn,s). Now using (6.3.1) and (3.3.5) we see n-+oo 
that ¢(mn,s) = h (¢(1,s)) 

n 
h (s). This means that 

rt 

Because r 

l(s) = lim m-n¢(mn,s) 
n->oo 

0, 

lim 
n->oo 

lim 

n hk(s) 
lim s k!Jl 
n-+oo mhk-1 (s) 

(s) = 00' and n-+oo 

hn+l (s) 
~ 1, 

mh (s) 
n 

< 
m 

implying that l(s) = 0. 

so 

In view of the remark made before Theorem 4.2.4 about the relation 

between functional equations and regularly varying functions, it is not at 

all astonishing that the following result follows from (6.3.1). 

THEOREM 6. 3. 8. ¢ (u, s) is regularly vary.ing at 0 with exponent 1 as a func­

t.ion of u 

PROOF. See the proof of Theorem 1 in SENE'l'A [ 197 4]. D 
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Corollary 3.3.5 provides us with not only one but with a whole class 

of norming constants cn(s) for the random variables Zn, since we can choose 

any s E (0,-logr). One may ask if there is any relation between the limit 

random variables Y(s) for different values of s. A positive answer to this 

question is given in the following theorem. Before stating it we notice 

that by the convexity of c(s), cn(s)/cn(t) is non-increasing inn whenever 

0 < s ::; t < -log r, and hence converges to some limit v ( s, t) . It follows 

immediately that v(s,t) := limn-+ro cn(s)/cn(t) exists, also for O < t < s < 

-log r. Furthermore, v(s,t) E (0, 00 ) for all s,t E (0,-log r). For if s ~ t, 

then there exists a non-negative integer k such thats? ck(t). This means 

that 

C (s) ck (en (t)) (u) 
l z v(s,t) lim 

n lim Um ? 
C (t) C (t) 

u+o 
u n-+ro n n-+ro n 

Similarly we can prove that v(s,t) E [ 1 , oa) if s z t. 

THEOREM 6.3.9. Suppose that both sand t E (0,-logr). Then: 

(a) Y(s) = v(s,t)Y(t) a.s.; 

(b) ¢(v(s,t) ,t) = s. 

-k o. m > 

PROOF. Part (a) is a consequence of the fact that v(s,t) E (0, 00), whence 

Y (s) lim C (s)Z 
n n 

C (s) 
n 

lim ~ en (t) Zn 
n-+-00 n 

v(s,t)Y(t) a.s .. 

Part (b) follows on observing that e-s = Ee-Y(s) = Ee-v(s,t)Y(t) = 

e-¢(v(S,t),t), where the first equality is a consequence of (3.3.5). D 

Now that we know that all the random variables Y(s) belong to the same 

class in the sense that every two have constant ratio, we shall have a 

closer look at this class of random variables which can occur as the limit 

of en (s) Zn as n ··► 00 for some s E (0,-log r). The basic tool in this investi­

gation is again the functional equation (6.3.1). It says that the cumulant 

generating function¢ of a random variable Y belonging to the class we con­

sider satisfies ¢(ms) = h(¢(s)). So reasoning in a rather superficial way, 

we can, given a cumulant generating function~' define h(s) by h(s) 
inv 

¢(m¢ (s)) for some m E (1, 00 ). Then we can check if it is possible to de-

fine a branching process with the help of this h(s). If so we can consider 

the limit random variable Y(s) belonging to this process and, since its 

cumul.ant generating function ¢(u,s) also satisfies ¢(mu,s) = h(¢(u,s)) there 
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is some hope that¢ and¢ might be related. If we want to make this precise, 

there are of course many problems. First of all we know from Theorem 6.3.2 

that P(Y= 0) r and P(Y < oo) = 1' which implies that lim ¢ (s) = 
s-+oo 

-log P(Y= 0) -log r and that lims+O ¢ (s) - -log P(Y< 00 ) = o. So if r > o, 
then lnv (s), and therefore also h(s), is only well-defined for s E [O,-logr). 

In the second place we have to make sure of the fact that h(s) is a cumulant 

generating function of a random variable having an infinitely divisible dis­

tribution. This leads to the introduction of the following collection F , 
m,r 

for any m E (1, 00 ) and r E [0,1). 

We say that a cumulant generating function¢ of a non-negative, proper, 

non-degenerate random variable Y belongs to if and only if: 

(l) limu+oo ¢ (u) = -log r; 

* inv (2) ¢ (s) := ¢ (m¢ (s)), s E [0,-log r), can be continued analytically 

along the positive real line; 

(3) 
-tq,*(s) . 

e is completely monotone for every t > 0 as a function of s, 

where ¢ * ( s) , s E [-log r, 00 ) is defined as the analytic continuation of 

q,*(s), s E [0,-logr). 

(4) ¢(u) is regularly varying at O with exponent 1. 

we shall prove that a random variable Y can occur as the limit of 

cn(s)Zn if and only if its cumulant generating function belongs to 

To this end we introduce furthermore the collections H and for 
m.rr r 

m E (1, 00 ) and r E [0,1) as follows. 

A cumulant generating function h of a proper,non-degenerate, non­

negative random variable, having an infinitely divisible distribution, be-

longs to H if and only if: 
m,r 

h(s) 
(1) lims+O -s- = m; 

(2) .limn➔<» hn (s) = -·log r. 

A cumulant generating function¢ belongs to Gm,r 

is a branching process {Zn; n = 0, 1,2, ... } with state 

z0 1 and h(s) := -logE exp{-sz1 } E H and J.im 
· m,r h n➔w 

generating function¢, where c (s) is the nt iterate 
n 

THEOREM 6.3.10. 

F 
m,r ,r 

if and only if there 

space [0, 00 ) such that 

(s0)z11 has cumulant 
inv 

of h (s) and 
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PROOF. We shall first prove that G c F and then that F c G 
m,r m,r m,r m,r 

(a) Suppose that¢ E G • Then it follows from Theorem 6.3.2 and Lemma 
m,;::uY 

6. 3. 4 that ¢ (u) = -log Ee , where Y is a non-negative, proper, non-degen-

erate random variable and that limu-+<x> ¢(u) = -logr. Furthermore, by (6.3.1), 
* inv q, (s) = q,(mq, (s)) = h(s) for s E [0,-logr). This means by Lemma 2.2.2 

* that q, (s) can be continued analytically along the positive real line and 

* that q, (s) = h{s) for alls E [0, 00 ). Since h(s) is the cumulant generating 

function of a random variable having an infinitely divisible distribution, 
-tq,* (s) . 

it is clear that e is completely monotone for every fixed t > 0 as a 

function of s. Finally, 'I'heorem 6.3.8 yields that q,(u) is regularly varying 

at O with exponent 1. This proves that Gm,r c Fm,r 

(b) Now suppose that q, E F . Define h(s) by h(s) 
m,r 

it follows from requirement 3 in the definition of f' that h(s) is the m,r 
cumulant generating function of some non-negative random variable X, havi.ng 

an infinitely divisible distribution. Since h(s) ¢(mlnv(s)) for 

s E [O,-logr), lims+O h(s) = lims+o q,(m¢1 11v(s)) O, and so by Lemma 2.2.4 

(a), P (X < oo) = 1. Now we shall prove that X is non-degenerate. Suppose that 

P(X= c) = 1 for some c E [0, 00 ). Then h(s) c•s for alls E [0, 00 ), implying 
inv . [ that ¢ (m¢ (sJ) = c•s for all s E 0,-log r). This means that 

(6.3.1.3) ¢ (mt) c¢ (t) for all t E [O,oo). 

Now by requirement 4 in the definition of F we know that q,(u) = uL(u), · m,r 
where L(u) is a slowly varying function at 0. It follows therefore from 

(6.3.13) that m = c, since L(mt) ~ L(t) as t + 0. Hence we obtain that¢ is 

linear, in contradiction with the fact that¢ is the cumulant generating 

function of a proper, non-degenerate random variable. So Xis also non­

degenerate. Furthermore, 

lim h~ = lim UEl = lim ¢(m¢inv(s)) 

s+o s s+O s s-1-0 ¢ (¢inv (s)) 

m. 

Let {z; n = 0,1,2, ... } be a branching process having the distribution of 
n 

X as its offspring distribution, and such that z 0 = L By Theorem 3.3.1 we 

know that for all s E ( 0, 00 ) 
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(6.3.14) lim h (s) 
n -log P (lim Zn= 0) , 

n-+oo 

and because m > 1, limn..,..,, hn (s) > 0. Choose some s 0 E (0, -log P(limn..,..,, Zn= 0)), 

then by Coro~lary 3.3.5, limn+oo cn(s0)zn exists a.s., with cn(s) the nth 

iterate of hinv(s). Defining $(u,s0) by 

-logE e 
-u limn..,..,,cn(s0)zn 

U E [Q,co), 

it follows from (6.3.1) that h(¢(u,s0)) (j> (mu, s 0) . Since by Th~orem 6. 3. 2 ( b) 

P(limn+oo cn(s0)zn < 00 ) = 1, Lemma 2.2.4(a) implies th~t limu-1-0 (j>(u,s0) = 
0. So because r < 1, there exists a U > 0 such that (j> (u, s 0) < -log r for 

all~ E [O,U). Then we have ¢(mu,s0 ) 
inv ~ ¢(m¢ (¢(u,s0 ))) for all u E [O,U), 

for all u E [0,U/m). This means that 

~ * ~ == h ($ (u, ~0 )) = 4> ($ (u, s 0)). = 
inv ~ inv ~ and so (j> ((j>(mu,s0 )) = m(j> ((j>(u,s0)) 

inv ~ ~ 
(j> (¢(u,s0 )) = b.u, that is ¢(u,s0) = 

¢(bu) for some b E (0, 00 ) and for all u E [0,U/m), and hence for all u, since 

¢and¢ are both cumulant generating functions. So 

(6.3 .15) lim c (s0)z ~ bY, 
n n n-+oo 

where Y is a random variable with cumulant generating function¢, and there­

fore r = P (Y = 0) = P (limn..,..,, en (s0) Zn= 0), implying that P (limn..,..,, Zn= 0) = r 

by Theorem 6.3.2(a). This together with (6.3.14) yields that requirement 2 

in the definition of H is also fulfilled and we can conclude that m,r 
h EH • The proof is now finished, once we have established that m,r 
Y ~ limn..,..,, en (s)Zn 'for some s E (0,-logr). To this end we define s bys= 

;(1/b,s0), with bas in (6.3.~5). It follows then from Theorem 6.3.2 that 

s E (0,-logr). Now writing $1 nv(s,s0) for the inverse of ¢(s,s0) as a func­

tion of s, we have by Theorem 6.3.9 that a.s. 

and so, by (6.3.15) Y ~ lim 
n-+oo 

fore F c G D m,r m,r 

c (s)Z n n 

1/b lim cn(s0 )zn' 
n-+oo 

This means that¢ E Gm,r and there-
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n n 
In Chapter 3 we lntroduced s = l:k=O Zk l:k=O z n-k· Si.nee 

n 

C (s) C (s) 
-k 

Hm 
n 

llm 
11 Hm __ s __ = 

cn-k (s) hk (en (s)) 
m 

n-+«> n➔oo s+O hk(s) 

for every lnteger k, one mlght ask lf we can exchange llmlt and sum to ob­

taln 

Hm C (s)S 
n n n-+«> 

n 

llm l c 11 (s) zn··k 
n-+«> k=O 

I 
k=O 

-k 
m Y(s) m 

m-1 Y(s) 

C (s) 
n 

( ) cn··k(s)Zr1-k 
cn-k s 

a.s .. 

The following theorem answers this question positlvely. 

THEOREM 6.3.11. 

Hm C (s) s 
n n 

ra 
m-1 Y(s) a.s .. 

PROOF. Since 

and 

n➔co 

C (s) 
11 

lim 
n➔co cn-k (s) 

-k 
ra 

C (s) S 
n n 

n 
c (s), l 

n j=O 

for every integer k E [ 0, n], 

k 
z. ?cc (s)• L 

J n j=O 

k c (s) 

z . 
n-J 

lira inf c (s) S 
n n n ➔ oo 

?': lira I c 11 
• ( s) c . ( s) z . 

n·><o j=O n-J n-J n-J 

for every non-negative integer k. So 

lira inf c (s) S 
n n n ➔ co 

k 
?': lim Y(s)• l m-j 

k-+«> j=O 

ra 
Y(s) 

a.s. 

Next we prove that lim supn·+co cn(s)Sn :C:: m~l Y(s) a.s .. '.ro this end we choose 

-a 6 > 0 such that l + 6 < 1. Since 
rn 
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there exists an integer K0 

all k ~ K0 • Now choose w E 

Corollary 3.3.5 that P(A) 

1 = K0 (o,s) such that ck+i (s)/ck(s) $iii+ o for 

A := {lim c (s)Z =Y(s)}. It follows from 
n+oo n n 

= 1. Finally we choose an E > O. Then there exists 

an integer N0 = N0 (E,s,w) such that cn(s)Zn(w) $ Y(s,w) + E for all n ~ N0 • 

Let L = max(K0 ,N0). Then we have for all n ~ L, 

c (s)S (w) 
n n 

L-1 
$ C (s) I n 

k=O 

L-1 
(s) I C n 

k=O 

zk (wl 

Zk(w) 

n 
1 n-k + I (m+ o) (Y(s,w) + E) 

k=L 

l-(.1+ o)n-L+l 
(Y(s,w) + E) 

m 
+ 

1-(.!..+ al 
m 

This means that 

lim sup cn(s)Sn(w) 
n + oo 

$ (Y(s,w) + E) 

1-.!.._13 
m 

for all E > 0, 

Y(s)/(1-1/m) = 

O < o < 1 - ¼ and w € A, and therefore lim supn+oo cn(s)Sn $ 
m m-l Y(s) a.s .• Combining this with (6.3.16) we obtain that 

lim C (s)S = _E!__ Y(s) 
n n m-1 a.s .. □ 

We close this section with a result, concerning the quotient Zn+l/Zn, 

conditioned on {z ·+ 00 }. Since Z 1 can be considered as a "sum" of Z in-
n n+ n 

dependent and identically distributed random variables, all with expecta-

tion m, we might hope, in view of the law of large numbers, that Zn+l/Zn 

converges tom as n + 00 • This is indeed proved in the next theorem. 

THEOREM 6.3.12. 

on {z +oo}. 
n 

z 
lim n+l = m 

z n+oo n 
a.s. 

PROOF. Choose some s € (0,-logr). Then we know from Theorem 6.3.2 that 

Y(s) € (O,oo) a.s. on {z +oo}. Hence 
n 
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z c (s)Z h(cn+l(s)) 
ll.·m n+1 = 1 . n+l n+l 

Z l.ID C (s) Z • ( ) 
n..- n n-+00 n n cn+l 5 

= Y(s) lim h(s) = m a.s. 
Y(s) s+O s 

on { z -+ co}. D 
n 
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CHAPTER 7 

THE CASE m:::oo 

7.1. INTRODUCTION 

We shall now consider processes for which m = 00 • Such processes are 

called explosive. Again as in the previous chapters, the behaviour of the 

process on {Z ➔ O} is in fact determined by the value of a. We therefore 
n 

make in this chapter only some brief remarks about that case and refer fur-

ther to Section 6. 2. The behaviour on {Zn+ 00 } is however completely differ­

ent from what we have seen so far. It turns out that in many cases it is 

not useful anymore to normalize the random variables Zn by a sequence of 

constants, as we did in Chapter 6, because for many explosive processes 

P(O<limn+oo anZn< 00 ) = 0 for all sequences {an; n = 1,2,3, ... } of positive 

and finite constants. We shall therefore study limits of gn(Zn) for suit­

able, and hence non-linear, functions gn. First of all we mention some weak 

convergence results, which will be extended to almost sure convergence re­

sults later on. The techniques used for this approach are well-known for 

Galton-Watson processes. Because similar arguments can and will be used in 

case a= O, we shall not give all the details in this chapter, but confine 

ourselves to referring to Chapter 9. Furthermore, we pay some attention to 

the stochastic norming with the help of the function f (t), introduced in 
y 

Chapter 3. 

7. 2 • THE BEHAVIOUR OF THE PROCESS ON { Z ➔ 0} 
n 

In Section 6. 2, where we studied the behaviour of supercritical 

cesses {z ; n = 0,1,2, ... } on {z n + o}, we did not use the finiteness 
n 

. but only the fact that m > 1, implying that h(s) > s for small s, and 

pro-· 

of m, 

there-

fore that r < 1. I'or this reason we can again use the same techniques as in 

Section 6.2 with respect to the behaviour of the process on {Zn ➔ O}. This 

yields in particular, that if r > 0, then the process {Zn; n ~ 0,1,2, ... } 
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conditioned on {Z + O} is equivalent to a subcritical process 
n 

(i\, n=0,1,2, ... }with;;; :=E(Z1izo=1) =h'(-logr) and;:= 

inf{x; P(Z 1 S:x J z0 = 1.) > O} =a.Furthermore, weqetanalogoustoTheorem6.2.1 

THEOREM 7 . 2 . 1 . 

(a) r < 1; 

(b) r = 0 if and only Lf a 2 1; 

(c) if P(Z 1 = OJ > 0 then q r. 

7 . 3 • THE BEHAVIOUR OF THE PROCESS ON { Z + 00 } 

n 

In contrast with the behaviour of the process on {z +O}, 
n 

there is no 

analogy with the supercritical case on the event {z + oo} • We can for exam-
n 

ple prove, in the same way as in SENETA [1969], that there is no sequence 

of positive and finite constants {dn; n = 1,2,3, ... } such that dz converges 
n n 

in distribution to a proper, non-degenerate limit as n + 00 • One way to get 

a hold on the process is now to look for some sequence of functions {gn; 

n = 0,1,2, ... } such that g (Z) converges in some sense to a proper, non-n n 
degenerate limit as n + 00 • As we saw above, these gn cannot be linear func-

tions. A first step in this direction was made in DARLING [1970] for 

Galton-Watson processes. He proved that under certain conditions, we can 

take gn(x) = bn log(l+x), where {bn; n = 1,2,3, ... } is a sequence of posi­

tive constants. We can lift out a part of his proof to obtain the following 

result to be used repeatedly in the sequel. See also SENETA [1973]. 

LEMMA 7.3.1. Let {f; n = 1,2,3, ... } be a sequence of cumulant generating 
n 

.functions of non-neg a ti. ve random vari.ahles Xn, n = 1 , 2, 3, . . . . Suppose 

there exist a sequence {bn; n = 1,2,3, ... } of positive constants and a 

distrihution function w such that lim b O and 

(7.3.1) 

'I.'hen 

continuous. 

n➔oo n 

lim fn{-log(l-exp(-t/bn))} 
n-;.oo 

-logw(t), O<t< 00 • 

p log ( 1 + w(t), for every t E (0, 00 ) where w is 

Using cumulant generating functions and their iterates as the basic 

tool in deriving results concerning branching processes, one becomes more 

and more aware of the saddening fact that examples are hard to give, be­

cause these iterates soon become very complicated. However, a.t this moment 
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we are able to present one. 

EXAMPLE 7.3.2. Let {Zn; n = 0,1,2, ... } be a branching process having a 

strictly stable distribution, concentrated on [O,ro), as its offspring dis­

trirution. It follows from Section XIII.6 in FELLER [1971] that in this 

ca.se h(s) = dsa, s E [O,ro), where d E (0, 00 ) and a E (0, 1) a.re constants; 

a is called the characteristic exponent of the stable distribution. In this 

example as well as in the following examples where we consider a branching 

process having a strictly stable distribution concentrated on [0, 00 ) as its 

offspring distribution, we suppose that d = 1, implying that 

(7. 3. 2) h(s) a 
s ' 

This means that h (s) 
n 

S E [0,oo). 

an 
s for all n 

f 
n 

hn in (7.3.1) we obtain 

1 , 2 , 3 , . . . . Taking 

n 
{ -log ( 1 - exp ( -t/ at) ) } a 

as n + 00 , for all t 

and hence it follows from Lemma 7.3.1 that 

where Z is a. random variable with distribution function 

w(t) {° ' 
exp (-exp ( ··t)) , 

t < 0 

an and 

( 0, oo) ' 

Since this distribution function is well-known in the extreme value theory, 

one might ask. if it is possible to give any interpretation for Zin this 

context. For an answer to this question we refer to Example 7.3.11. 

In general it is not so easy to decide whether or not the limit (7.3.1) 

exists, for fn = hn and {bn; n = 1,2,3, ... } some sequence of constants. 

However, in SENETA [1973] a class of processes is described for which the 

corresponding cumulant generating functions satisfy (7.3.1). For the con­

struction of this class he introduced the following function. 
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(7. 3. 3) f (t) 
·-t 

-log{l - exp(-h(-·log{l -· e }) ) }, t E: [O,oo). 

This function f was assumed to satisfy 

(7. 3 .4) 

and 

(7. 3. 5) 

f(t) is convex or concave on [0, 00 ) 

0 < y := lim f(t) < 1. 
t-J-oo t 

Furthermore introducing 

(7. 3.6) f(t- log(1-r)) + log(1-r), t E: [O,oo), 

(7 .3. 7) d(t) t E [0, 00), 

• (7. 3. 8) p (x) 1/d(l/x), X E (O,oo), 

and the convention that the subscript n indicates the n th iterate, Seneta 

proved the following result, which is also true if the state space of the 

branching process is [0,oo). 

THEOREM 7. 3. 3. Suppose that (7. 3. 4) and (7. 3. 5) hold. Then for any fixed 

X E (0, 00), 

(7. 3.9) •·logw(t,x) := lim hn(-log{1-exp(-t/pn(x))}) 
n-= 

exists for all t E (0, 00). The function w(t,x) has the fa.I.lowing properties: 

(7. 3 .10) 

(7. 3 .11) 

(7 .3.12) 

lim w(t,x) 
t+O 

r 

h(-log w(t,x)) 

and lim w(t,x) 
t-J-oo 

-logw(yt,x), 

1; 

t E (O,oo); 

w(t,x) is continuous and strictly increasing int E (0, 00). 

The proof of (7.3.9), (7,3.10) and (7.3.12) is analogous to the 

proof of Theorem 1 in SENETA [1973]. Furthermore, the analog of relation 

(3.4) in SENETA [1974] yields that Ll(yt,x) = ~(Ll(t,x)), t E (0, 00), where 



Ll(t,x) = log(l-r) - log(l-w(t,x)). Hence we obtain from (7.3.6) and 

(7.3.3) that 

-log w(yt,x) 

1 ( 1 -f(Ll(t,x)-log(l-r))) 
- og - e 

-Ll(t,x) 
h(-log(1 - (1-r)e ) ) 

h(-log w(t,x)), t E: (0, 00). □ 
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Until now the analysis was based on the cumulant generating function 

hn of Zn. For this reason we obtained only weak convergence results. We 

shall now try to extend this to almost sure convergence of gn(Zn) for some 

sequence of functions {gn; n = 1,2,3, ... }. This will be done using a se­

quence of random variables {un(x); n = 1,2,3, ... }, mentioned in PAKES 

[1976]. It turns out that these Un(x) constitute a martingale sequence, a 

fact which will be used to prove the almost sure convergence. These random 

variables Un(x) are defined by 

(7. 3 .13) U (x) 
n 

z 
{1-- (1-r)exp(-1/p (x))} n, 

n 
n = 1,2,3, ... ; XE (Q, 00 ), 

with p(x) as in (7.3.8) and p (x) its nth iterate. Since 
n 

(7. 3 .14) 1/x 

by (7.3.7) and (7.3.8), we see that <j,(1/pn+l(x)) = 1/pn(x), and thus, using 

the basic branching property (3.1.3) and (7.3.6) and (7.3.3), 

E (U 1 (x) I u1 (x) , ••• , u (x) ) 
n+ n 

z 
E{ (1 - {1-r) exp{ -1/p 1 (x)}) n+l I Z } 

n+ n 

z1 Z 
{E(1···(1-r)exp{-1/p 1 (x)}) }n 

n+ 

. z 
{exp[-h(-log(1- (1-r)exp{-1/p 1 (x)}))]} n 

n+ 
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{1 - (1-r)exp[-q,(1/p 1 (x)) ]} 
n+ 

z 
{1 - (1.-r)exp(-1/p (x))} n 

n 
U (x). 

n 

Furthermore obviously Os Un(x) s 1 for all n = 1,2,3, ... and all x E (0, 00 ). 

So {Un(x); n = 1,2,3, ... } is a bounded martingale, and therefore 

(7. 3. 15) 

and 

u (x) ~. some random variable u (x) , as n + 00 , 

n 

lim EU (x)a 
n 

EU(x)Cl for all a E (0, 00). 

Particularly, since EUn(x) does not depend on n, by a well-known property 

of martingales, we obtain, using the definition of and { 7 . 3 . 14) 

(7. 3 .16) EU(x) EU (x) 
n 

z 
E{1 - (1-r) exp(-1/p (x))} n 

n 

exp{-hn (-log(l - (1--r)exp{-1/pn (x) }) ) } 

1 - (1-r)exp(-1/x). 

With the help of this we can prove the following result, which will be 

used to show that there exists no sequence of positive constants 

n = 1,2,3, ... } such that P(O<lim a Z < 00 I lim Z = 00 ) > 0. 
n-+= n n n-+co n 

THEOREM 7.3.4. Suppose (7.3.4) and (7.3.5) hold. Then, for any x E (0, 00 ), 

{exp(-1/pn (x)) }, some random variable Z(x), and 

(7. 3 .17) P(Z(x) = 0) -· P (Z (x) = 00 ) 1 - (1--r)exp(-1/x). 

PROOF'. From (7.3.13) and (7.3.15) we know that 

log(l - (1-r)exp{-1/p (x) }) ~~ log U(x) 
n 

as n ➔ 00 
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Furthermore, it follows from the proof of Theorem 7.3.3 that pn(x) + 0 as 

n + 00 , implying that 

log(l - (1-r)exp{-1/pn (x) }) ~ -(1-r)exp(-1/pn (x) J as n + 00 

and so 

(7 .3.18) (1-r) {exp(-1/p (x)) }Z ~ ··log U(x) n · n as n + 00 

Since obviously -log U (x) = 0 on {Zn+ 0}, we see that Zn + 00 a. s. on 

{O<-log U(x) < 00 }. This means that 

(7. 3 .19) 
P (x) 

(1+Z)n 
n 

fz {exp(-1/p (x))}(1-r)}p (x) 
n n n 

l ··log U(x) 

as n ➔ 00 on {O<-log U(x) < 00 }. 

However, from Lemma 7.3.1 and Theorem 7.3.3 we know that (x) log ( + z ) 
n 

converges weakly to some random variable W(x), and that the distribution 

function of W(x) is continuous on (0, 00 ). Combining this with (7.3.19) we can 

conclude that P (0 < -log U (x) < 00 ) ::': P (pn (x) log (1 + Zn) + 1) = 0. So we have, 

si.nce (x) E [0,1.], and hence also U(x) E [0,1], 

P (U (x) = 1) P(-log U(x) = 0) 1 - P(-log U(x) =oo) 

1 ·• P (U (x) = 0) , 

and therefore, i.nview of (7.3.16), P(U(x) =1) = 1 - (1-r)exp(-1/x). This 

together with (7.3.18) proves the theorem. D 

'rhis last result is more important than it might seem at first sight, 

because it says that not only for one sequence, but for a whole class of 

_sequences of norming constants, to wit {{exp(-1/pn(x)); n = 1,2,3, ... }; 

x E (0, 00)}, it holds that limn-+oo [exp{-1/pn(x))]Z11 ~ 0 or 00 almost surely., 

The fact that p11 (x) increases from Oto oo for every n = 1,2,3, ... as x runs 

through (0, 00 ), as follows from the relations (7.3.3) up to and including 
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(7.3.8), enables us to compare any sequence {a; n = 1,2,3, ... } with 
n 

{exp(-1/pn(x)); n = 1,2,3, ... }. This leads to the following theorem, which 

of positive constants {a; n = 1,2,3, ... } 
n 

says that there is no sequence 

limn-+oo Zn= 00 ) > 0. T'his result, together such that P(O<lim a z < 00 

n-+oo n n 
with the corresponding result in Chapter 9, was meant in the remark made 

before Lemma 3.3.4. 

THEOREM 7.3.5. Suppose (7.3A) and (7.3.5) hold. Let {an; n = 1,2,3, ... } 

be a sequence of positive constants such that limn-+oo an 

exi.sts almost surely. Then P (lim11-+oo a 11Zn = 0 or 00 ) = 1. 

0 and lim a z n-+oo n n 

PROOF'. Obviously, there are only three possibilities for the sequence 

{a11 ; n = 1,2,3, ... }: 

(1) for any x E (0, 00 ) there exists a subsequence {anj(x); j = 1,2,3, ... } 

an.(x) < exp(-1/Pn,(x)(x)) for all 

(2) 

1,2,3, ..• } such that 

j=l,2,3, .... 

for any x E (0, 00 ) there exists a. 

of {an; n = 1,2,3, ... } such that 

j = 1,2,3, ... 

J J 

subsequence {an.(x); j = 1,2,3,"".} 
J 

anj (x) > exp(-1/p 11 j (x) (x)) for all 

(3) there exist O < < < 00 such that exp(-1/pn ) ) 5 

exp(-1/pn(x2 )) for all sufficiently large n. 

We shall now investigate each of these cases separately. By assumption 

limn-+oo anzn exists almost surely. Call this limit z. 

(1) Since (x) < exp(-1/Pn,(x)(x)) for all j = 1,2,3, ... we obtain 
J 

0 5 Z lim a z S: lim[exp 
n. (x) n. (x) 

j-+oo J J j-+oo 
(x) (x)) ]Zn. (x) = z (x) 

J 

for all x E (0 , 00 ) in view of Theorem 7. 3. 4. Hence P (Z = 0) 2 P (Z (x) = 0) 

1 - (1-r)exp(-1/x) by (7.3.17). Now letting x-). 0 we see that P(Z=O) =·' 1. 

(2) Because an= 0, a similar argument as under (1) yields 

1 - r P (lim Zn= 00 ) 2 P (Z = lim an. (x) Zn. (x) = 00 ) 2 P (Z (x) = 00 ) 

n->-00 j->w J J 

( 1-r) exp (-·1/x) 

and 



r = P(lim Z =O) s; P(Z=O) s; P(Z(x) =O) 
n 

1 ··· (1-r)exp(-1/x) 
n+oo 

for all x c:: (0 , 00 ) • Let.ting x ➔ 00 we can conclude that P (Z = 00 ) 

P(Z=O) r. 

1·--r and 
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(3) Since 1/pn(x2 ) s; -log ans 1/pn(x1 ), and the function ¢(t), defined by 

(7.3.6) is increasing int, because h(t.) is, (7.3.14) yields O < 1/x2 s 

¢n(-log an) s; 1/x1 < 00 for all sufficiently large n. This implies that the 

sequence {¢n(··log an); n = 1,2,3, ... } has a convergent subsequence 

{¢n. (-log an.l; j = 1,2,3, ... }. Call its limit A. Then obviously 
J J 

A E [l/x2 ,1/x1 ]. Furthermore, for any£ c:: (0,A) 

for sufficiently large j. Now because pn (l/¢n (x)) 

(7. 3. 8) , this implies 

exp (-1-)) < 
A+s 

1/x by (7.3.7) and 

for sufficiently large j, and in a similar way as above, we see that 

(1-r)exp(- (A+s)) 

and 

1 - (1-r)exp(-(A-s)) P(Z(-1-) = 0) s P(Z = 0). 
A-£ 

Hence we obtain, letting E + 0, P (Z = oo) 
-A 

(1-r)e and P(Z=O) 

1 - (1-r)e-A. D 

For an application of this last result we consider again the random 

variables Y(s) introduced in Corollary 3.3.5. 'l'here we saw that Y(s) = 

limn➔oo (s) exists a.s. if s E (0,-logr). Because 1.imn➔oo cn(s) •: 0, 

it now follows that if (7.3.4) and (7.3.5) hold, then P(Y(s) = 0) = 
- P(Y(s) = 00 ). Furthermore, the substitution z = 1 in (3.3.5) yields 
-Y(s) -s -s -s 

Ee = e and hence P(Y(s) =O) = e and P(Y(s) = 00 ) = 1 - e for all 

s E ( 0, -log r) . One might ask if this last property holds true for all. pro-

cesses with m = 00 • A negative answer to this question is given in a paper 

of SCHUH and BARBOUR [1977]. There they divide the explosive Galton··Watson 
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processes into regular ones, for which P(Y(s) = 0 or 00 ) = 1 for all s E 

(0,-logr) and irregular ones for which this is not true, and prove that there 

exist irregular processes. It turns out that their method can also be applied 

to explosive branching processes with state space [0, 00), but as a similar 

method will be used in the case a= O, we shall at this moment only present 

a brief survey of the results analogous to the ones in the paper mentioned 

above and to some related results in other papers. First of all we can prove 

the following; see also GREY [1977]. 

THEOREM 7.3.6. 

(a) Let L be a non-increasing function on (0, 00 ) such that limxiO L(x) = 00 

and L( 00 ) li~-+oo L(x) = 0, and let {an; n = 0,1,2, .•. } be a sequence 

of positive constants. Suppose that limn-+oo anL(cn(s)) exists E (0, 00 ) 

for all s E (0,-log r) and is continuous on (0,-log r). Call this limit 

$(s). Then there is a random variable U such that 

(7 .3.20) a L(1/Z ) ~ U 
n n 

as n + 00 , 

where U = 0 on {z +O} and U E (0, 00 ) a.s. on {z + 00 }; 
n n 

(b) Suppose furthermore that Lis slowly varying at O and that$ is strict­
inv 

ly decreasing on (0,-logr). Then P(u:,;t) = exp(-$ (t)), t E (t0,t1), 

where t 0 := limtt-log r $ (t) and t 1 := limuo $ (t). 

Later on we shall see that if Lis continuous and strictly decreasing 

on (0,A) for some A E (0, 00 ), then t 0 = 0 and t 1 = 00 • 

EXAMPLE 7.3.7. We can again apply this result to a branching process having 

a strictly stable distribution concentrated on [0, 00 ) with characteristic 

exponent a E (0,1) as its offspring distribution. From (7.3.2) we know that 

in this case h(s) = sa, and hence c (s) = 
n -1 

implies that -log r 1, that is r = e 

sa-n_ Furthermore, Theorem 3.3.1 

Now choosing a = an and L(s) = 
n 

log(l + 1/s), s E (0, 00), we see that these 

of Theorem 7.3.6(a) and (b) and that 

an and L satisfy the conditions 

$ (s) 
-n 

lim a L(c (s)) = lim anlog(l + s-a 
n n n+oo n-+oo 

-n 
lim cP logs-a = -log s, 
n-+oo 

for s E ( 0,-log r) ( o, 1). 
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Hence it follows from (7.3.20) that ctlog(l +Z) ~ u, where P(U=O) = 
. n 

1/e and P(Ust) = exp(-1jl1.nv(t)) = exp(-exp(-t)) fort E (t0 ,t1 ) = (0, 00), in 

agreement with the distribution function derived in Example 7.3.2. Moreover, 

it follows that U E (0, 00 ) a.s. on {z +oo}, a fact which will be used later 
n 

on. 

EXAMPLE 7.3.8. We can also apply this result to processes which satisfy 

(7.3.4) and (7.3.5), with an= pn (x) for any x E (0, 00 ) and L(s) 

log(l + 1/s), s E (0, 00), where we use the notation introduced before Theorem 

7.3.3. For if we do so, then 

a L(c (s)) 
n n 

(s) 

. { { inv -p n (x) log -log (1 - exp -fn (-log (1 - e l } l } 

forsE (0,-logr), 

with fas in (7.3.3). Now -log(1-e-s) E (-log(1-r), 00 ) ifs E (0,-logr), 

and because f(-log(l-r)) = -log(l-r), and f is convex or concave and 

1 . f(t) 1 . f 11 inv -·s 
1.mt➔oo -t- = Y < ., 1.t o _ows that fn (-log(1-e )) + 00 as n + oo for 

alls E (0,-logr). Therefore 

p (x) 
n 

inv -s 
(-log(l - e ) ) as n ➔ 00 

Now in view of the relations mentioned before 'l.'heorem 7. 3. 3, 

inv (t) -log(l-r) + 1/p (1/{t+ log(l-r) }) , 
n 

and since p11 (x) + 0 as n + 00 this implies that 

(s)) ~ p (x) 
n 

({log{ (1--r)/ (1-exp(-s) J} 

This last expression converges to some function \jJ(s,x), which is continuous 

and strictly decreasing as a function of s on (0, -log r) and satisfies 

r 1µ(s,x) = 0 and lims+O iµ(s,x) = 00 , as follows from Lemma 2.2 in 
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SENETA [1973]. An application of Theorem 7.3.6 therefore yields that 

p (x) log (1 + z ) ~ some random variable U (x) , where U (x) = 0 on { Z -+ 0} 
n n . n 

and P(U(x) st) = exp(-~Jinv (t,x)) for t E (0, 00), thus extending the result, 

obtained by combining Lemma 7. 3. 1 and 'l'heorem 7. 3. 3, to almost sure conver­

gence. 

The following step in the paper of SCHUH and BARBOUR 11977] is that 

they construct, for every cumulant generating function h(s), a function L 

such that, with a = e-n, n = 0,1,2, ... , the conditions of Theorem 7.3.6(a) 
n 

are satisfied. This yields 

THEOREM 7.3.9. There exists a function L such that e (1/Z) ~ some 
n 

random variable U as n + 00 , where u = 0 on {z +O} and U E (0, 00 ) a.s. on 
n 

{z +oo}. 
n 

In connect.ion with Theorem 7.3.6 we can prove a result, the analog of 

which for Galton-Watson processes is established in COHN and PAKES [1978]. 

THEOREM 7.3.10. Let L, {a; n = 0,1,2, ... }, 1/J and Ube as in Theorem 7.3.6, 
n 

and suppose that the conditions of both part (a) and part (b) o.f that theorem 

are satisfied and that furthermore a:= 

that Lis continuous and strictly decreasing on (0,A) for some A E (0, 00 ). 

Then 

(7.3.21) u 

for every non-negative integer k, where [zl is the integer part of z; 
(k) (k (k) . . . - (k) ,u2 ,u3 , •.• arerandomvar1.ablesalld1.str1.butedasUandP(U st )~ 

~ Zk-[Zk] (kl (k) (kl 
P(U,, t) for all t E (-00 , 00 ); furthermore zk,u 1 ,u2 ,u3 , ... 

-lk) (kl (kl (k) .. 
are independent, and U , U l. , U 2 , U 3 , • • • are, cond1. t1.onall y given zk, 

.independent; finally the distribution function F of u satisfies 

(7. 3 .22l -log F(at) h(-log F(t)), t E (--00,00) • 

It is interesting to compare this last result with relation (6.3.12) 

which says Y(s) is distributed as m (k) +Yik) + ••• +Y~~~J+Y(k)}, 

- "ti y-·(k) (k) (k) 1 h d wi 1 , ,Y3 , ... ana ogous tote ran om variables 
-(k) (kl ) 
U ,u 1 , ... above.The sum in (6.3.12) is now replaced by a 

maximum. 



Using the notation of the Theorems 7.3.6 and 7.3.10 it follows that 

under the conditions of Theorem 7.3.10, -log F(t) E (0,-logrl for 
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t E (t0 ,t1). By (7.3.22) this implies that also -log F(at) E (0,-logr) and 

hence that at E (t0 ,t1). Since a E (0,1), this is only possible if t 0 = O. 

On the other hand, if at E (t0,t1), then -log F(atl E (0,-logr) and thus 

by (7.3.22l also -log F(t) E (0,-logr), that is t E (t0 ,t1). This implies 

that t 1 = 00 • Si?ce -log F(t) .= ijlinv(t) on (t0 ,t1) it follows therefore from 

(7.3.22) that ijlinv(at) = h(ijlinv(t)), t E (0, 00). We can consider this rela­

tion as the analog of relation (6.3.1), which says that $(u,s), the cumu­

lant generating function of Y(s), satisfies $(mu,s) = h($(u,s)). 

EXAMPLE 7.3.11. For a branching process with offspring distribution a 

strictly stable distribution concentrated on [0, 00 l with characteristic ex­

ponent a E (0,1), Theorem 7.3.10 can be applied again with 

L(s) log(1+ 1/s), s E (0, 00 l and a = an as in Example 7.3.7. Then we ob-
. . . . k n (k) (kl (kl -(kl 

tain that u is distributed as a max{u1 ,u2 , .•. ,u[ ]'u }, with the 
. -(k) (k) (k) . Zk 

random variables U ,u1 ,u2 , ••• as in that theorem. Furthermore, 

(7.3.22l becomes -log F(at) •= (-log F(tl)a, in agreement with the distri­

bution function derived in Example 7.3.7. 

EXAMPLE 7.3.12. The result of Theorem 7.3.10 can also be applied to pro­

cesses which satisfy (7.3.4) and (7.3.5). From Example 7.3.8 we know al­

ready that with an pn (xl for any x E (0 , 00 ) and L (s) = log ( 1 + 1/s), 

s E (0, 00), the conditions of Theorem 7.3.6 are fulfilled, implying that 

pn (x) log(l + Zn) ~ U(x) as n -+ 00 • Furthermore, it follows from the re­

lations (7.3.5) up to and including (7.3.8) that 

a pn (x) 
lim _n_ = lim ---­
n➔co an-1 n➔oo pn-1 (x) 

lim P (t) = lim t 

t+O t t➔oo $ inv ( t) 

l 'm 1i!l_ = l'm f(t) = (0 1l • k y E , • 
t-+oo t t-+oo t 

Since L(s) is strictly decreasing on (0, 00), relation (7.3.22) holds and we 

obtain that -log F(yt,xl = h(-log F(t,x)), t E (-00 , 00), where F(t,x) is the 

distrirution function of U(x). Notice that fort E (0, 00 ) this is just re­

lation (7.3.11), for as a consequence of Lemma 7.3.1 and Theorem 7.3.3 we 

have that pn (x) log(l + Zn) converges in distribution to some random vari­

able Z(x), the distribution function w(t,x) of which satisfies 

h(-log w(t,x)) = -log w(yt,x), t E (0,m). 
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As already mentioned above, i.n Chapter 9 we shall give more details 

of the methods leading to these last results. 

We now pass on to the study of the quotient Z 1/f (Z) introduced in 
n+ y n 

Section 3.3, with 

f (t) 
y 

logj log t I 
-1 

c ( yt log I log t I ) 

We might obtain some results by considering the events {zn+l,; d fy(Zn)} 

for some constant d, and trying to apply a Borel-Cantelli-type lemma to 

them. The problem which arises then is not only the calculation of the pro­

bability of these events, but also the large measure of dependence between 

them. There is however a case for which this dependence does not exist, 

and this will be studied in the following example. 

EXAMPLE 7.3.13. Let {Zn; n = 0,1,2, ... } be a branching process having a 

strictly stable distribution, concentrated on [0, 00 ) with characteristic 

exponent a E (0,1) as its offspring distribution. In Lemma 1 of ATHREYA 

[1975] it is proved that in this case the random variables zn+/Znl/a, 

n = 0,1,2, ... are independent, and all distributed as z 1 . 'l'he argument 
1/a 

leading to this statement is that the distribution of condi-

tionally given z0 ,z 1 , ... ,z11 only depends on Zn' and that it is the same 

as the distribution of 

given Z11 , where {W(t); t E [0, 00 )} is a stochastic process independent of 

the subordinator defining the branching process {Zn; n = 0,1,2, ... }, but 

with the same distribution as that subordina.tor. Because for such so-·called 

stable processes {W(t); t E [0, 00)} it holds true that 

W(t) d W(i) 
·t1/ci = for all t E (O,oo), 

it follows that both the conditional distribution of Z 1;z l/a given 
n+ n 

z0 , ... ,Z and the unconditional distribution of Z 1;z 1/a are the same as 
n . . n+ n 1 ct 

-tha.t of W (1). This means that the random variables z 1;z / n = 0, 1, 2, ••• 
n+ n 

are independent and all distributed as W (1) • Now i.ntroducing the events D11 

by 
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D 
n {z 1 n+ 
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S z1/a. { B(a.) } (1-a.)/a.} 
n (1+£) log n ' 

n = 2,3,4, ... 

and£ any real number in (-1, 00), it follows that the events Dn' n = 2,3,4, ... 

are independent. Furthermore, using the parts IV and VII of Theorem 2.1.7 

in MIJNHEER [1975], we see that, with Va random variable having a standard 

normal distribution, 

(7. 3.23) P(D ) 
n 

z P( n+1 s 
z1/a. 

n 

{ B (a.) } (1-a.) /a.) 
( 1+£) log n 

P(W(1) S { B (a.) } (1-a) /a.) 
(1+£) log n 

1 
2 

2: {2(1+£)logn} ) 

1 2 -2 -(l+E)logn 
(-) {2(1+£)logn} e 

Cl1T 

as n -+ 00 • 

Hence it follows that 

< 00 if O < e: < 00 

if -1 < e: s 0 

Since the events Dn' n = 2,3,4, ••• are independent, we can apply the zero­

one criterion of Borel to obtain 

P(lim sup D ) = {
0 

n 1 

if O < e: < 00 

if -1 < e: s 0 

and therefore 

(7 .3.24) 

z 1 (log n) (1-a.) /a. 
lim inf _n_+ ___ ~----

z1/a 
n -+ "' 

B(et) (1-a.)/a. a.s .. 

n 
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Now we know from Example 7.3.7 that anlog(1+Z) ~ U as n ➔ 00 , and that 
n 

U E (0, 00 ) a.s. 011 {z ➔ 00 }. This implies that also anlog Z ~ U, and 
n n 

hence an U/log Z a.s. as n + 00 on {Z + 00 }. Since lim an = 0, this n n n➔oo 

means that 

(7. 3.25) n ~ 
log log Zn - log u 

-log a 

log log Zn 

-log a 

From this we can conclude that 

(7 .3.26) log n ~ log log log Zn a. s. 

Combining this with (7.3.24) we obtain 

(7. 3.27) 

.!. _ 1 
a 

zn+l (log log log Zn) 
lim inf------------

1/a n ➔ oo z 
n 

a. s . as n ➔ oo on { Z ➔ oo} • 
n 

as n ➔ 00 on {Z ➔ co}. 
n 

a.s. on {z +co}. 
n 

Turning back to Z 1/f (Z ), we see that, since c(s) 
n+ y n 

1/a 
s 

(7. 3 .28) 
zn+l 
f(Z)= 

y n 

Z c(y log log Zn ) 
n+l Z 

n 
log log Zn 

l/az (lo lo z ) ( l-a) /a 
y n+l g g n 

zl/a 
n 

1 f log log Zn }a- 1 
• ------- ➔ 00 l log log log z 

n 

a.s. as n + 00 on {z + 00 }. This is one part of the result announced in See­
n 

tion 3.3, where we promised to give an example of a subordinator 

{W(t); t E [ 0, co)} with corresponding branching process {Z ; n = 0, 1,2, ••• } for 
n 

which lim z 1/f (Z) = 00 a.s. and for which (3.3.16) is satisfied, 
n➔oo n+ y n 

that is lim inf W(t)/f (t) = d E (0, 00 ) a.s., where the lim inf may be taken 
y 

both for small and for large t, as can be found in FRISTEDT [1964]. The 

second part, to wit lim Z +. 1/f (Z ) = 00 a.s. on {Zn ➔ O}, will be proved 
n➔oo n y n 
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in Chapter 9. 

At first sight the difference between (7.3.28) and (3.3.16) might 

seem strange. However, a closer look at the method used above yields that 

we proved in fact lim W (Z )/f (Z) 
n-+<>o n n y n 

a.s. on {Zn + 00 }, where 

{{wn(t); t E [0, 00)}; n = 1,2,3, •.. } is a sequence of independent subordina-

tors all distributed as {W(t); t E [0, 00 )}, whereas we observed in (3.3.16) 

only one subordinator. This does indeed give rise to an important differ­

ence, because the independence of the subordinators {Wn(t); t E [0, 00)}, 

n = 1,2,3, ... enables us to prove, in a similar way as we proved (7.3.24), 

(7.3.29) lim inf 
n + oo 

w (t ) 
n n (l 1(1-a)/a . ogn 
tl/a 

n 

B(a) (1-a)/a a.s. 

for any sequence {tn; n = 1,2,3, ... } of positive and finite constants, a 

result which is not true if we replace W11 (t) by W(t), even if limn-+<>o tn = 00 • 

For if we take t n, then 

since 

n 

W(t ) 
lim inf n (logn)(1-a)/a 

n ➔ co 

W(tn) ( log n )(1-a) /a -1/a 
Um inf f(t) \log log n •y 

n + "" y n 

W{t ) 
n 

li.m inf f (t ) 
n + co y n 

2 d > 0 a.s •. 

It follows from (7.3.29) that if we consider a sequence 

{tn; n = 1,2,3, ... } for which there exists a function f such that 

f(tn) ~ logn as n + 00 , then 

li.m inf 
w (t ) 
-~ f(t l O···a)/a 

1/a n 
tn 

(1-a)/lt 
B(a) a.s .. 

In view of (7.3.26) this function f, in the example of a branching process 

with a strictly stable distribution with characteristic exponent a 1c (0,1) 

as its offspring distribution, is _given by f (t) ~ log log log t. 
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We can use a similar method to obtain a result involving a lim sup. 

We shall see that this result is slightly different from (7.3.27) in the 

sense that the lim sup is a.s. 0 or 00 • This however is a well-known pheno-

menon in the theory of stable processes. Introducing the events by 

n o, 1, 2, ... , 

where dis any constant E (0, 00 ) and f any non-negative function on [0, 00 ) 

such that lim f(n) = and 
n->= 

(7 .3. 30) f(a) ·~ f(n) 
n 

as n ➔ ro 

for any sequence of constants {an; n = 0,1,2, ... } such that an~ n as n + 00 , 

it follows that the events En, n = 0,1,2, ... are independent, since the ran-.. 

dam variables zn+l/Z~/a, n = 0,1,2, ... are independent. 

Furthermore, part I of Theorem 2.1.7 in MIJNHEER [1975] yields 

where 

P(E) 
n 

p (W(l) as n-+ 00 , 

1 
2 TTCT 2 , 

:= r (a+l), o + tan (2) l •sin 1TCT E (0, 00 ). 

Hence we obtain 

00 1 
00 if i:: --< 00 

I P(E ) 
n=O f(n) 

n 00 1 
n=O 00 if z f'Tiif = n=O 

The independence of the events , n = 0,1,2, ... allows again an applica-

tion of the zero-one criterion of Borel, whence 

00 

{° if z --< 
P(lim 

n=O f(nl 
sup 

00 1 
1 if i:: f (n) = 

00 

n=O 

Since d E (0, 00 ) was arb:i.trary, this implies that 



00 l 
z {° if i:: --< 00 

lim sup 
n+l n=O f(n) 

zl/af(n)l/a 1 
a.s .. 

00 

n ➔ oo 00 if i:: f(n) = 00 n n=O 

In view of (7.3.25) and (7.3.30) we can conclude from this that 

(7.3.31) 
z ( lim 
n+l 

sup 
Zl/afcog log zny/a n ➔ oo 

n -log a 

00 1 
if i:: --< 00 

n=O f(n) 
00 1 

if i:: -- = 00 
n=O f(n) 

a. s. on { z ➔ 00 L 
n 
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CHAPTER 8 

THE CASE a >0 

8.1. INTRODUCTION 

Now that we have studied branching processes for various values of m, 

the only thing that still rests is the behaviour of the process on {Zn ➔ 0} 

if P(Z 1 = 0) c, O. Of course, since we consider the process on {Zn ➔ O}, we 

assume that P (Zn+ 0) > 0, implying that -log r < 00 and a < 1. Because the 

offspring distribution of a Galton-Watson process is concentrated on the 

non-negative integers, it follows that for such processes P (Zn ➔ 0) > 0 

implies that P (Z 1 = 0) > 0, and hence that the case we consider here does 

not occur in the theory of Galton-Watson processes. 

In Chapters 6 and 7 we made a repeated use of the constants cn(s) for 

s E (0,-log r). As we shall see, we can now use similar techniques with the 

help of the constants en ( s) for s E (-log r, 00 ) • We know from Chapters 6 and 

7 that there is a basic difference between supercritical and explosive 

branching processes on {Z + 00 }, essentially caused by the fact that for 
- n 1 

supercritical processes limn+oo (s)/cn(s) = m > 0, whereas 

cn+i (s)/cn(s) = 0 for explosive processes, withs E (0,-logr). A sim­

ilar difference will be shown to exist here. More precisely, we have to dis-

tinguish between the cases where, for s E (-log r, 00), limn➔oo (s) /cn+i (s) > 0 

and where limn->-oo (s)/cn+l (s) = 0. In view of Lemma 2.2.S(c), these cases 

are a> 0 and a= 0, and we shall see that there is an intriguing parallel 

between t.he process {Zn; n = 0,1,2, ... } on {zn+O} if O <a< 1. and the pro­

cess {Zn; n = 0,1,2, ... } on {zn+co} if m < 00 , and also between the process 

{z; n = 0,1,2, ... } on {z +O} if a= 0 and the process {Zn; n 0,1,2, ... } 
n n 

on {zn+ 00 } if m = 00 • Throughout this chapter we suppose that O <a< 1, and 

hence that -log r < 00 , and furthermore that s E (-log r, 00), unless stated 

otherwise. 
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8.2. MAIN RESULTS 

As already mentioned in Section 8.1, we shall see that there is a close 

correspondence between this section and Section 6.3 where supercritical pro­

cesses were studied on {Zn + 00 }, and it turns out that we can proceed along 

the same lines as we did there. First of all we consider the random variable 

Y(s), defined in Corollary 3.3.5 by Y(s) = limn-+oo cn(s)Zn' and derive again 

a functional equation for its cumulant generating function. Notice that 

P(Z 1 = OJ = 0 since a > 0, and hence that Y(s) is well-defined. 

THEOREM 8. 2 .1. For all z with Re z z 0 

(8. 2 .1) ~(az,s) h(rp(z,s)). 

PROOF. Since c(s) > s for all s E: (-logr, 00 ), it follows that 

lim c ( s) 
n-t-oo n 

00 , and hence, using Lemma 2.2.S(c) we see that 

C (S) 
n 

lim c .. l(s) 
n---),-00 n-

(s) 

lim h(c (s)) 
n+oo n 

s 1 
lim h(s) = a 
s➔oo 

The rest of the proof is now analogous to the proof of Theorem 6. 3. 1. D 

Obviously Y (s) = co on {Zn+ 00 }, since limn+oo en (s) 

we shall now prove that Y(s) E: (0, 00 ) a.s. on {Zn +0}. 

THEOREM 8.2.2. 

(a)P(Y(s)=0) 0; 

(b) P(Y(s)<co) r. 

Using (8.2.1) 

PROOF. In a similar way as in the proof of Theorem 6.3.2 it follows that 

both -log P(Y(s) = 0) and -log P(Y(s) < co) are solutions of the equation 

h(t) = t, where t E [0, 00 ], and that 

(8.2.2) -log P(Y(s) =0) > 0 

Furthermore, since C (s) 
n 

(8.2. 3) -log P(Y(s)<co) ···log 

?: .:..1og 

and -log P (Y (s) < ro) < co 

co, 

P(lim C (s) 
n 

< oo) 

n➔·oo 

P(lim Z = 0) 
n 

-log r, 
n➔oo 
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and 

(8.2.4) -log P(Y{s) =0) 2:: -log P(Y(s) <co). 

Since the equation h(t) = t has solutions t = O, t = -log r and t = 00 , we 

obtain from (8.2.2) and (8.2.3) that -log P(Y(s) < oo) = -logr, that is 

P(Y(s) < 00 ) = r. Combining this with (8.2.4) it follows that P(Y(s) = 0) = 0 

or r. But if P(Y(s) =O) r, then we would have Ee-Y(s) = r, in contradic-

tion with the fact that Ee-Y(s) e-s < r, as follows from Corollary 3.3.5, 

and so P(Y(s) = 0) = 0. D 

In Secti.on 6.3 relation (6.3.1) was further exploited to prove the 

absolute continuity of the distribution of Y(s) for s E (0, 00 ) if r = 0. 

This was established by observing that any sufficiently large power of the 

absolute value of the characteristic function 1/J(t,s) of Y(s) is integrable. 

The reason that we could get a hold on 11/J(t,s) I for large values of It[ was 

in fact that we could write 

lexp{-h {t(-it,s)l}I, 
n 

and hence that W8 did indeed obtain information about large values of It[, 

since m > 1. However, comparison of (6.3.1) with (8.2.1) shows that the 

role of mis now played by a, and since a< 1, we can not apply the same 

method as we did in Section 6.3. We can only prove the analog of Lemma 

6.3.5. 

LEMMA 8.2.3. Suppose that a .is an irrational nurriber. Then 11/J(t,s) I < r for 

all real t ,j, O. 

PROOF. Since by Theorem 8. 2. 2 (b) , P (Y (s) < oo) r, it follows that 

I¢ (t,sl I = r 

for all real t, where I stands for the indicator function. Now suppose 

11/J(t,s) I = r for some t ,j 0. Then (8.2.:l) implies 
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and so 

whence also 

(8.2.5) 

z1 
exp{-h(Re¢(-it/a,s))} = Elexp{-¢(-it/a,s)}! 

z1 
~ IE exp{-¢(-it/a,s)} I exp{-Reh(¢(-it/a,s))} 

exp{-Re¢(-it,s)} 11/J<t,sl I r, 

h(Re¢ (-it/a,s)) s; -log r, 

Re ¢(-it/a,s) s; -logr. 

On the other hand, because 

11/J(t,s)I = e-Re¢(-it,s) s; r for all t, 

(8.2.6) Re¢(-it/a,s) ~ -logr, 

and a combination of (8.2.5) and (8.2.6) therefore yields, that 

Re¢(-it/a,s) = -logr. Iterating this we get Re¢(-it/an,s) = -logr for all 

n = 0,1,2, .••. This means that the distribution of Y(s) is concentrated on 

where dn are constants E (0, 00 ). Now,since a is irrational, a standard argu­

ment yields P(Y(s) = d(s)) = r for some constant d(s), and by Theorem 8.2.2, 

d(s) E (0, 00). This implies that ¢(u,s) = -logr +d(s) •u for all u E. [0, 00 ). 

Introducing the function h(x) by h(x) = h(x-log r) + log r, x E [0, 00), it 

follows now from (8.2.1) that 

h(d(s)u) h(d(s)u -logr) + logr h(¢(u,s)) + logr 

¢ (au, s) + log r ad(s)u for all u E [O,oo). 

This however violates the assumption that the distribution of z1 is not 

concentrated in one point. So 11/J(t,s) I < r for all real t F 0. D 
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In Section 6.3 we saw that always £.(s) ""0 for s E (0,-logr), where 

£.(s) is the first point of increase of the distribution function of Y(s). 

We shall prove below that this property does not hold in general if 

s E (log r, 00 ). Furthermore we shall see, that if P 

P(Y(s) =i(s)) > 0. 

= a) > O, then also 

THEOREM 8.2,4. 

(a) l(s) = 0 if and 1 'f ! 00 h(s)-as ds 
on y J. s s2 00 for any s > 0; 

(b) P(Y(s) =f(s)) P (Zl = a) 1/ (1-a). 

PROOF. 

(a) Iterating (8.2.l) it follows that for all n = 1,2,3, .. ., <j)(l,s) = 

h (<j)(a-n,s)), and hence c (<j)(l,s)) = <j)(a-n,s). This implies that 
n n -n 

cn(s) = <j)(a ,s) for all n = 1,2,3, ... , since <j)(l,s) = s by (3.3.5). 

Now using the fact that a< 1, Lemma 2.2.S(c) yields 

f(s) = lim an<j)(a-n,s), and hence 
n-+w 

(8. 2. 7) 

Since 

we see that 

n 
s fO 

ack (s) 

ck-1 (s) 

n ack (s) 

8 1c!J1 h(ck (s))' 

,e_ (s) 
h(ck (s)) 

0 if and only if k~l () oo, that is 
ack s 

oo { h(ck(s)) } 
if and only if l ---- - 1 00 

k=1 ack (s) 

Now introducing S(o) by 

s (ol 
oo { k I h(o/ _ 

k=l ao 

where o > 1 is any constant, it follows that S(o oo if and only if 

where a:= logo> 0. This implies that S(o) is infinite together with 
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or equivalently, together with 

e: 

So we see that if S(o) = 00 for some o > 1, then S(o) = 00 for all o > 1, 

and also that this is equivalent with ! 00 (h(s)-as)/s2 ds = oo for any 
e: 

e: > 0. In view of (8.2.8), part (a) is now proved once we have shown 

that 

(8.2. 9) so~ for some constants o1 and o2 E (1, 00), and all 

sufficiently large k. 

But this follows on observing that the function c, and therefore also 

ck, is convex for every positive integer k, and so 

s 
k {h'(-logr)} 

s s•lim ck (t) 
t-+oo 

ck (-log r) • s s ck (s-log r) + log r 

s 
k' 
a 

S E (0,oo). 

Since both h' (-log r) and a E (0, 1), this implies (8.2.9). 

(bl First of all we shall prove that the sets {Y(s) =l(s)} and {z n 
n 

a 

for all n = 0,1,2, ••• } differ only by a set of probability zero. For 

suppose that Zn an for all n = 0,1,2, .... Then it follows from 

(8.2.7) that Y(s) = limn-+oo cn(s)Zn = limn._ ancn(s) = l(s). On the 

other hand, the branching property (3.1.3) and Lemma 2.2.S(c) imply 

that P (Zn+l ~ aZn) = 1 for every n = 0, 1, 2, ... , and therefore also 

P (A) 1 , where A : = { Z 1 ~ aZ for all n = 0, 1 , 2, ••• } • Now suppose n+ n 
that w E A and w I. {z = an for all n = O, 1, 2, ... }. Then there is a 

n 
positive integer n such that z (w) =an+ e:(w), with e:(w) > O. But this 

n 
implies that zn+k (w) ~ akzn (w) = ak (an+ e: (w)) for every positive integer 

k, and hence 
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Y(s,w) lim c k(s)Z k(w) 
k-+oo n+ n+ 

This proves that 

from Remark 3.3.9 we 

P(Y(s) =l(s)) = P(Z =an for all n = 0,1,2, ... ), and 
n 

know that this is equal to P(Z 1 = a) l/(1-a). 0 

In Section 4.2 we met with an integral analogous to 

f 
h(s)-as 

ds, 
2 

s 
E 

namely 

E 

I ms-h(s) 
ds. 2 

0 
s 

The finiteness of this last one could be proved to be equivalent to 

EZ 1 log <""·This is essentially done by writing both m and h(s) as inte-

grals with respect to the distribution function of and then applying 

Fubini's theorem. However, this technique cannot be used here, since the 

number a is, in contrast with m, not an expectation. The condition in Theo­

rem 8.2.4(a) is therefore stated in terms of h(s) and not directly in terms 

of z1 • 

Appealing again to the paper of SENETA [1974] it is clear that we can 

prove from (8.2.1) 

THEOREM 8.2.5. ¢(u,s) is regularly varying at 00 with exponent 1 as a func­

tion of u. 

Our next aim is again the comparison of the random variables Y(s) for 

different values of s E (-logr, 00 ). First of all we notice, that by the 

convexity of c(s), the quotient (s)/cn (t) is non·-increasing in n for 

-logr < s;; t < 00 , and hence converges as n + 00 • Call its limit v(s,t). 

Then obviously 

v(s,t) := lim 
n-+oo 

C (s) 
n 

(t) v(t,s) 
for -log r < t < s < 

Furthermore, v(s,t) E (O,co) for all s,t E (-logr, 00 ). F'or ifs S: t, then 

there exists a non-negative k such thats? hk(t). This means that 
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1 2 v(s,t) 
en {s) en (hk (t)) 

lim -;_;-fil 2 lim c (t) lim 
hk (en (t)) 

n-+oo n n-+oo n 

hk (u) k 
lim --- = a > 0. 

u u-+oo 

Similarly we can prove that v(s,t) E [1, 00 ) ifs 2 t. 

THEOREM 8.2.6. Suppose that both s and t E (-log r, 00 ). Then 

(a) Y(s) = v(s,t)Y(t) a.s.; 

(bl ¢ (v(s,t) ,t) = s. 

C (t) 
n 

PROOF. The proof is analogous to the proof of Theorem 6.3.9. D 

In Section 6.3 we determined the class of possible limit distributions 

for Y(s), s E(0,-logr). The basic tool was the functional equation (6.3.1). 

It is therefore plausible that here we can use a similar method with (8.2.1) 

as the starting point. From Theorem 8.2.2 we know that P(Y=0) = 0 and 

P(Y<oo) = r, implying that lims+O ¢(s) = -log P(Y< 00 ) = -logr and 

lims->co ¢(s) = -log P(Y=0) = co, where¢ is the cumulant generating function 

of any random variable Y, with distribution in the class of possible limit 

distributions. 'l'his leads to the introduction of the following collection 

for any a E (0,1) and r E (0,1]. ,r 
We say that the cumulant generating function¢ of a positive random 

variable Y belongs to F if and only if: 
a,r 

(1) lims+O q, (s) = •··log r; 

(2) ¢ is non-linear; 

* inv 
(3) ¢ (s) := ¢(a¢ (s)), s E (-logr, 00 ), can be continued analytically 

along the positive real line; 

* 
(4) e-t¢ (s) is for every t > 0 completely monotone as a function of s, 

where ¢* (s), s E (0,-log r] is defined as the analytic continuation 

of ¢*(s), s E (-logr, oo); 

(s) = O; 

(6) ¢(u) is regularly varying at 00 with exponent 

This class F turns out to be the class of cumulant generating func-
a,r 

·tions of possible limits of en (s) Zn. Before proving this we introduce the 

collections and G for a,: (0,1) and r E (0,1] as follows. 
a,r 
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A cumulant generating function h of a proper, non-degenerate, non­

negative random variable having an infinitely divisible distribution be-

longs to H if and only if: 
a,r 

(1) Hm h(s) = a; 
s-= s 

A cumulant generating function¢ belongs to G if and only if there 
a,r 

is a branching process {Zn; n = 0,1,2, ... } with state space [0, 00 ) such that 

z0 1 and h(s) := -logEe-sZ1 EH and lim c (s 0 )z has cumulant gen­
. a,r th . n-= n iiiv 

erating function¢, where cn(s) .1.s then iterate of h (s) and 

s 0 E (-logr, 00 ). 

Notice that en (s) is well-defined for all s E (-log r, 00 ) , since a > 0. 

THEOREM 8.2.7. G 
a,r 

!:!<OOF. The proof follows the same lines as that of Theorem 6.3.10. Pirst 

we show that G c F , and then that F c G 
a,r a 1 r a,r a,r 

(a) Suppose that ¢ E G • Then we know from 'rheorem 8. 2. 2 that ¢ is the · a,r 
cumulant generating function of a positive random variable Y and that, in 

view of Lemma 2.2.4(a), lims+O ¢(s) = -logr. This implies that if¢ is 

linear, then ¢ (s) = -log r + ds for some constant d > 0 and all s E [0, 00). 

But then we should obtain h (-log r + ds) -log r + ads, since ¢ satisfies 

(8.2.1), and hence that his linear. This however violates the assumption 

that is non-degenerate, and therefore¢ is non-linear. Now, again using 

h(s) forsE (-logr, 00 ), and so 

(s) can be continued analytically along the positive real line and 
* (s) = h(s) for alls E (0, 00). This means that e-t¢ (s) is completely 

* monotone for every t > 0 as a functi.on of s, and that lim s+ 0 ¢ ( s) 

lims+O h (s) = 0, since P (z 1 < 00 ) = 1. Finally, Theorem 8. 2. 5 yields that 

1' (u) is regularly varying at 00 with exponent 1. 'l'his proves that 

C F' 
,r a,r * 

(b) Now suppose that ¢ E F . Define h(s) by h(s) = ¢ (s), s E (0, 00 ). Then 
a,r 

it follows from (4) and (5) in the definition of F that h is the cumu-· 
a,r 

lant generating function of some proper, non-negative random variable X, 

having an infinitely divisible distribution. Purthermore, if P (X = d) = 1 

-for some constant d E [O,oo), then h(s) = ds for alls E [O,oo), and hence 
inv * ¢ (a¢ (s)) = ¢ (s) ds for all s E (-log r, 00). This means that 
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(8.2.10) dq, (t) q,(at) for all t E [0,oo). 

But from (6) in the definition of F' we know that cp(u) = uL(u), with L(u) 
a,r 

slowly varying at 00 • Substituting this into (8.2.10) we obtain dtL{t) = 

atL(at) ~ atL(tl as t ➔ 00 , and hence a= d. However this implies, again by 

(8.2.10), that q, is linear, in contradiction with requirement 2. So Xis 

non-degenerate. Next we notice that 

h(s) = q,*(s) = <j,(a<j,inv(s)) 
lim lim lim -'-'-'---'----'--'-
s->-oo s s➔co s s➔co <j,(q,inv(s)) 

a. 

Let {z; n = 0,1,2, •.. } be a branching process having the distribution of 
n 

X as its offspring distribution, and such that z 0 = 1. Then by Theorem 

3.3.1 and the fact that a< 1, 

(8 2.11) lim 
n➔co 

(s) -log P(lim Zn=0) 
n➔co 

< 00 

Now choose some s 0 E (-·log P(limn->oo Zn= 0) , 00). Then by Corollary 3.3.5, 

l~mn➔co cn(s0 )zn exists a.s., since a> 0, with cn(s) the n th iterate of 

h1.nv(s). Defining $(u,s0 ) by <j,(u,s 0J -logEexp{-u•lim c (s 0)z}, 
:..., ~ n➔oo n n 

u E: 0, 00), it follows from (8.2.1) that h(<j,(u,s 0)) = q,(au,s 0). Since by 

Theorem 8. 2. 2 P (limn➔co en ( 3 0) Zn= 0) = 0, Lemma 2. 2. 5 (a) implies that 

lim <j,(u,s 0) = 00 
r.,, u+oo 

So because r > 0, there exists a U E (0, 00 ) such that 

q, (u, s 0 ) > -log r if u E (l , 00 ). Hence we obtain that 

inv ~ 
cp (a(/> ((/> (u,s 0 J) l 

for all u E (U,oo), 

and so (<j,(au,s 0)) 
inv ~ 

a,b (<j,(u,s 0~) for all u E (U/a,oo). 'l'herefore 
inv ~ 

cp (q,(u,s 0)) = bu, that is <j,{bu) = <j,(u,s0 ) for some b E (~ 1 00 ) and for all 

u E (U/a,co), and hence for all u E [O,oo) since both q, and <j, are cumulant 

generating functions. This means that 

(8. 2 .12) 
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where Y is a random variable with cumulant generating function¢, and so 

r = P (Y < 00 ) = P (1.imn+oo en (s 0 ) Zn< 00), implying that also P (limn+oo Zn= 0) = r 

by Theorem 8.2.2(b). Combining this with (8.2.11) we see that requirement 

2 in the definition of H is fulfilled and therefore h EH Finally 
~ a,r a,r 

defining s bys= ¢(1/b,s0J, it follows from Theorem 8.2.2 that 

s E (-logr, 00 ). Writing iinv(s,s 0 ) for the inverse of ¢(s,s0) as a function 

of s an application of Theorem 8.2.6 now yields 

li.m c (s)Z 
n n 

n+oo 

1/b lim c 11 (s0Jzn 
n+oo 

a .. s.,., 

and so by (8.2.12), Y glim c (s)Z 'l'his proves that¢ E Ga,r' and hence 
n+oo n n 

the proof is complete. D 

Next we make some remarks about the total progeny of the process. '.rhis 

was defined in Section 3.3 by S = i::;=O Zk. We saw there, that S < 00 a.s. 

on {Zn+ O}, that is Sn converges as n + 00 to a finite limit for almost all 

ul E { Z + 0}. It turns out that the c { s) are useful norming constants for 
n n 

the difference S - • A rather careless reasoning yields 

since 

(s) (S - S ) 
n 

I cn+l (s) 

k=l cn+k (s) 

cn+l (s) 
lim ---­
n+oo cn+k ( s) 

a.s. 'i' k··1 
(s)Zn+k ---> l a Y(s) 

k=l 

hk-1 (cn+k (s)) 
lim ----(-1--
n·>-ao cn+k s 

hk-1 (s) 
li.m ----

s 
s➔oo 

The following theorem shows that we may indeed interchange sum and 

limit as we did above. 

-THEOREM 8. 2. 8. 

lim cn+l (s), (S - Sn) 
n+oo 

a,,.s .. on {z + oL 
n 
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PROOF. We shall prove, using dominated convergence, that the interchanging 

of sum and limit is allowed. To this end we have to show that there exists 

for every k = 1,2,3, ... a random variable 1\: such that 

(8. 2 .13) 

and that 

(8.2.14) 

a.s. on {z ->-0} for all n 
n 

a. s . on { Z ➔ 0}. 
n 

1, 2, 3, ... , 

Now suppose that 

w EB:= {lim Z =O} n {lim c (s)Z < 00 }. 

n n n 
n+oo 

From Theorem 8.2.2 we know that P(B) = r. Furthermore, for all 

n = 1,2,3, ... , 

hk-1 (ck+l (s)) 
$ cn+k(s)Zn+k(w) 

ck+l (s) 

$ 

c 2 (s) 

sup {c (s)Z (w)} 
(c2 (s)) n:2:k+1 n n 

s ok-l sup {c (s)Z (w)} 
n?1 n n 

for some constant o E ( 0, 1) and all sufficiently large k, as :follows from 

(8.2.9). 

ly supn::::l 

J\: = 0k-1 

Since (s)Zn(w) converges to some finite limit as n ➔ 00 , obvious-

(s)Z (w)} < 00 • Hence we obtain that if we choose 
n 

supn:2:l {en (s) Zn}, then these 1\: satisfy (8. 2 .13) and (8. 2. 14) , and 

so the theorem is proved. 0 

In Section 6.3 we studied the quotient for supercritical pro-

cesses on {Zn ➔ 00 }. We proved there a kind of law of large numbers, in the 
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sense that z 1/z ~mas n ➔ 00 , while z 1 can be considered as a 
n+ n n+ 

"sum" of Zn independent and identically distributed random variables, all 

having expectation m. We shall now see that on {Z + O} the number a takes 
n 

over the role of m. This is not so surprising in view of Proposition 6.4 in 

FRISTEDT [ 974]. There it is proved that X(t)/t ~ a as t + 0, where 

{X(t); t E [0, 00)} is a subordinator and a the first point of increase of 

the distribution function of X(l). We can consider this a as the "rate of 

decrease" of the process. 

THEOREM 8.2.9 . 

. zn+J. 
lim - 2- = a 
n+oo n 

a • s • on { z ➔ 0 }. 
n 

PROOF. Since, by Theorem 8.2.2, Y(s) E (0, 00 ) a.s. on {Zn +O}, it follows 

that 

lim 
0 n+1 (s)Zn+1 

lim c (s) 

h(cn+l (s)) 

cn+l (s) z 
n n+oo n 

Y(s) lim h(s) = a 
Y(s) s 

s➔oo 

a. s . on { Z ➔ 0}. 
n □ 
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CHAPTER 9 

E CASE a:::: 0 

9. 1 . INTRODUC'I'ION 

In this chapter we study the only remaining case, namely the behaviour 

of the branching process {Zn; n = 0,1,2, ... } on {Zn ➔ O} if a= 0 and 

P(Z 1 = OJ = O. We mentioned already before, that we shall see that this be­

haviour closely parallels the behaviour of explosive processes on {Zn-+ 00 }. 

'l'he fact that lim c (s)/c (s) = l= O for s E (0,-logr) if m = 00 , is 
n➔oo n+l n m 

used as an essential argument leading to the results listed in Section 7.3. 

Si.nee we have now that limn➔oo en (s) /cn+l (s) 00 a = 0 for s E (-·log r, 00), it 

is at least plausible that we can use similar techniques as in the papers 

mentioned in Chapter 7, to obtain results for the process n = 0,1,2, ... } 

if a = 0 and P (Z 1 = 0) = 0. This will be further elaborated in the following 

section. 

9. 2 . MAIN RESUL'l'S 

As already indicated, the results in this section can and w.ill be pre­

sented in the same order as their analogs in Section 7.3. First of all we 

notice, that we can prove, in a similar way as in SENETA [1969], that if 

dnZn converges in distribution to some random variable z, where 

{dn; n = 0,1,2, ... } is a sequence of positive and finite constants, then 

P (Z < 00 ) < r or P (Z ,a 0) :2'. r. We shall come back to this norming by a se­

quence of constants later on. Now we pass on to a norming with the help of 

a sequence of functions {gn; n = 0,1,2, ... }, that is we look for functions 

gn such that gn(Zn) converges in some sense to a proper, non-degenerate 

·J.imiL As a first step we prove a result, similar to Lemma 7.3.1. 

LEMMA 9.2.1. Let {f; n = 1,2,3, ... } be a sequence of cumulant generating 
.n 

functions of posi t.i ve random variables X11 , .n = 1 , 2, 3, . • . . Suppose there 
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exist a sequence {b n; n = 1, 2, 3, ... } of positive constants and a distribu-

tion .function w such that lim b = 0 and 
n➔00 n 

(9. 2 .1) lim 
n+oo 

-log w(t), t E: (-co' co) , 

for some constant d E: (0, 00). Then limn-t<>o P (bn log Xn < t) 

t E: ( -•·00 , 00 ) where w is continuous. 

PROOF. From (9.2.1) it follows that 

v(t) := 1 - w(-log t) 
1/bn 

lim E (1 - exp ( -d • t 
n-t-0o 

w(t) for every 

) ) 

for all t E: (0,oo). 

(9.2.2) a C\l n f -i\t 1/b 
;\E e (1--exp(-d•t n.Xn))dt, 

0 

for any i\ E: (O,oo) and n 1, 2, 3,... . An application o.f Fubini' s theorem 

and the dominated convergence theorem then yield that 

( 9. 2 .3) (t)dt 

0 0 

(t) as n ->- 00 

Next we shall prove that on the other hand 

lim a (A) 
n 

-b 
li.m E exp(-:\ (dXn) 11 ) 

n+oo 
.for all i\ E (Q,co). 

n->-co 

'I.'o this end we notice that, since by (9.2.2) 

00 co 

E{f -:\t I 1/b 
(i\) i\e dt - j\ exp(·-i\t-d·t n )dt 

0 0 

1 - :\E exp(-:\t-d•t n I 1/b 
)dt, 

0 

the substitutions t yields (remember that Xn > 0 by assumption) 



(9.2.4) 

0 

-b 
n 

- s 
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For the calculation of this expression we introduce the following notation: 

g(/3,y) 

G (i\) 
n 

J (i\) 
n 

f exp(-/3s - s y)ds, 

0 

/3E (0, 00 ), ye (Q,oo); 

-b 
i\(dX ) n 

n 

1 

f H (i\)e 
Il 

-H (i\)s 1/b 

0 

I 
1 

n (exp(-s n) - 1)ds; 

-H (A) s 
(i\)e n 

1/b 
exp(-s n)ds. 

With this notation it. follows that G (i\} 
n 

that 

(9.2.5) a (i\ 
n 

1 - E(G (i\) + 1 
n - e 

-H (i\) 
n ) 

Furthermore, because O cs: xe-sx s (es)-l and 1 - e-x s x for alls E (0, 00 ) 

and x E (O,oo), 

and 

1 

0 s -Jn(A) s I 
0 

co 

0 s ( i\) 5 J 
l. 

00 

-1 1/bn 
(es) s ds 

1/b 
·-1 

(es) exp(-s 

1/b 

b 
-21:. + 0 
e 

n)ds 

as n -► 00 , 

5 I exp(-s n)ds + 0 as n ➔ o::i, 

1 

by dominated convergence. This means that limn+oo Gn (i\) = O. Again using 

dominated convergence we see that limn+ooE Gn (i\) = 0, since 
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IG ().) I 
n 

K (;\) - J Pd 
n n 

1/b 
exp(-s )ds + b/e < oo 

for all n = 1,2,3, .. , where b:= supn bn Substituting this into (9.2.5) 

yields the required result, that is 

limE exp(-A(dXn) 
n-+oo 

for all A E (0, 00 ). 

Combining this with (9.2.3), an application of the continuity theorem for 

Laplace-transforms implies that 

lim P( (dX ) 
n 

n-+oo 
,,; t) v(t) 

for every t E (0, 00 ) where vis continuous, or equivalently, since 

lim b O, 
n-+oo n 

lim P 
n-)-00 

log Xn ,,; log t) v(t) 

for every t E (0, 00 ) where vis continuous. Finally, rememrering that 

v(t) = 1 - w(-log t), t E (0, 00), obvious calculations finish the proof. D 

EXAMPLE 9.2.2. We can apply this result to a branching process 

{Zn; n = 0,1,2, ... } having a strictly stable distribution concentrated on 

[0, 00 ) with characteristic exponent a E (0,1) as its offspring distribution. 

Choosing b = an f 
n ' n 

and d = 1 in (9.2.1) we obtain, in view of (7.3.2), 

and Lemma 9.2.1 implies that 

loy Z, 

n 
{exp (-t/an) }a 

for t E ( -oo, oo) , 

where z is a random variable with distribution function w(t) 

t E (-00 , 00), thus extending Example 7.3.2. 

exp(-exp(-t)), 

,Just as in Sect.ion 7. 3 we shall now describe a class of processes for 

which the corresponding cumulant generating functions satisfy (9. 2. 1) . 'I'o 
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this end we define the function h by 

(9.2.6) ii(sl 1/h (1/s) if S E (Q,a,), h(O) 0 and h(oo) 

The function his strictly increasing ins since his, and 

lim h(s) = t 1 
s lim h(t) = a 

s+O t-+co 

Moreover, ii (s), the n th iterate of h(s), satisfies h (s) = 1/h (1/s). This 
n n n 

gives rise to an imitation of the methods mentioned in Section 7. 3 with h (s) 

replaced by h(s). We therefore introduce the following functions. 

(9.2. 7) c <sl s E: [O,oo]; 

( 9. 2. 8) f(t) 
- --t 

-1og{1-exp(-h(-1og{1-e }))}, t E ["Q,oo). 

Since his strictly increasing, so is f. We assume that f satisfies 

(9.2.9) 

and 

( 9. 2 .10) 

f is convex or concave on [O,oo) 

0 < y := 1.im 
t•+co 

t 
< 1. 

Furthermore, we define the number rand the functions <j,, o and p by 

(9.2.11) r = 

( 9. 2 .12) Htl 

(9. 2.13) 

and 

exp (1/log r) 

0 

.if r < 

if r 

f{t -log(1-i)) + log(l-i), 

t E [ lo,:, ( 1 

t E 1log(l , oo) j 

J. ] U (0, 00 ) 

log(1-r) 
:Lf r > 0 

p (t) 1/ 6 ( /t) , t C 

if r 0 
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and use the convention that the subscript n indicates the n th iterate for 

n = 1,2,3,. ••• Notice that the relations (9.2.7), (9.2.8), (9.2.12), (9.2.13) 

and (9.2.14) also hold for the corresponding iterated functions. A closer 

.look at the functions h, f, ¢, o and p shows that if (9.2.9) holds, then 

¢ and o are convex or concave, and that 

(9. 2. 15) h(O) 0, 

f(O) o, f(-log(l-r)) 

¢ (log(l log(l-r), 

-log r and 

-log(l-r) 

,t, (0) 0 

lim h(s) 

and 

and 

lim f(t) 
t-+oo 

lirn <j,(t) 

t➔= 

If f, and hence also¢, is concave, then 

00 if t E (0, 00 ) 

lim 0 (t) 
n+oo n log (1-r) if t E [log(1-r) ,OJ 

whence 

0 if t E (O,oo) 

(9.2.16) lim p (t) 
n n0-00 

log (1-r) 
1 

if t E (-oo, log(l-F.) J and r > 0 

We shall now prove that for processes with m < 00 , and for which the corres­

ponding function f satisfies (9.2.9) and (9.2.10), relation (9.2.1) holds, 

for = hn and bn = pn(x) for any x E (0, 00 ). This implies that for such 

processes (x) log Zn converges in distribution to a random variable Z, 

which turns out to be proper and non-degenerate. There is a slight differ­

ence between this result and the result we get by combining Theorem 7.3.3 

and Lemma 7.3.1, to wit pn(x)log(l +Zn) converges in distribution to a ran-

dom variable Z, where (x) is as in Theorem 7.3.3. This last result is in 

fact only interesting on {Zn-+ 00 }, because pn (x) + 0, and hence 

as n ➔ 00 on 

However, the assertion 

d 
(x) .log Zn -·-->- Z, 

with (x) as in (9. 2 .16), is non-trivial both on ·> 0} and on { Z ➔ co}. 
n 
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The price we have to pay for this is that we have to make the extra assump­

tion m < 00 , needed in proving (9.2.17) below for positive values oft. The 

proof of (9.2.17) for negative values oft is comparable with that of 

(7.3.9) fort E (0, 00 ). 

THEOREM 9.2.3. Suppose that m < 00 and that (9.2.9) and (9.2.10) hold. Then 

for any fixed x E (0, 00 ) 

(9.2.17) -log w (t,x) ( exp(-t/p (x) )) 
:= lim h 1 _n 

n -r n~ 

exists for all t E (-00 , 00 ). The function w(t,x) has the following properties: 

(9.2.18) 

(9.2.19) 

(9.2.20) 

w(t,x) 

w(O,x) 

1 for all t E (0, 00), 

r and lim w(t,x) = O; 
t-+-oo 

h(-log w(t,x)) -log w(yt,x), t E (-co, 0) ; 

w(t,x) is continuous and strictly increasing int E (-00 ,0). 

PROOF. Analogously to a part of the proof of Theorem 1 in SENETA [1973] we 

can prove that, with¢ as in (9.2.12), 6(t,x) := limn-+«> ¢n(t/pn(x)) exists 

for all t E [0, 00). Furthermore, 6(t,x) is continuous and strictly increasing 

int, and satisfies 

(9.2.21) 6(0,x) 0 and lim 6(t,x) 
t~ 

Now defining an(t,x) by a (t,x) = {-log(l-(1-r)exp{-t/p (x) }) r 1 , t E (0,oo), n n 
n = 1,2,3, .•. , the relations between h and h and between h and ¢n (see 

n n n 
(9.2.6), (9.2.8) and (9.2.12)) imply that 

(9.2.22) lim h (a (t,x)) 
n n n~ 

- -1 lim hn({-log[1- (1-r)exp(-t/pn(x))]} ) 
n-+oo 

lim {h (-log[1 - (1-r)exp(-t/p (x)) ]) }-1 
n n 

lim {-log[1 -exp{-f .(t/p (x)-log(l-r)) }J}-l 
n n 
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lim {-log[!- (1--r)exp{-q, (t/p (x))}]}-l 
n n n-+oo 

- -1 
-{log[l - (1-r)exp(-i.'i(t,x))J} . 

Furthermore defining b (t,x) by 
n 

b (t,x) 
n 

{exp(t/p (x))}/(1-r), 
n 

t E ( 0, oo) , n 1, 2, 3, ... , 

it follows from the inequality -log(l-x) ;:,: x, holding for x E (0,1), that 

a (t,x) 
n 

:S: 

a (t,x) 
n 

'rhis means 

b (t,x) 
n 

for every t E ( 0, oo) and n = 1,2 ,3, ... ; 

b (t,x) 
n 

for every t E ( 0, oo) as n ➔ 00 , since 

that for every E > 0 and every t E ( 0 ,oo) , 

a (t+E:,X) 
n 
b (t,x) 

n 

bn (t+s,x) 

b (t,x) 
n 

also 

(x) ➔ 0 as n ➔ 

as n ➔ 00 , 

and so an(t,x) s bn(t,x) s an(t+E:,x) for sufficiently large n. Now using 

the continuity of li(t,x) as a function oft, together w:Lth (9.2.22), we 

get 

lim h (b (t,x)) 
n n 

(
exp (t/p (x))) 

lim h. 1 _n 
n -r n-+oo 

-{log[! - (1-r)exp(-6(t,x)) J 

and so (9.2.17) is proved for all t E (-00 ,0) with 

w(t,x) exp{log[l - (1 
·· 1 

exp(-1.'i(-t,x))]} . 

In particular, (9.2.21) implies that limt-+-00w(t,x) = 0. The proof of (9.2.19) 

is analogous to that of (7.3.11); (9.2.20) follows in a similar way as the 

corresponding result in Theorem 1 in SENETA [1973]. Furthermore, 

-log w(O,x) lim h (1/ (1-r)) 
n 

-log r 

by Theorem 3.3.L Now suppose that t E (0, 00 ). First of all we notice that 

if m '.". l, then lim h (s) = 0 for alls E [0, 00 ) and ,because n-+co n 

exp(-t/pn (x)) 
lim ---1-_-r __ _ 0, 
n-+oo 
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obviously 

. rexp(-t/pn(x))) -
lim h \ 1 _ - 0. n -r 
n+oo 

So we are left with the proof of (9.2.17) form E (1, 00 ) and t E (0, 00). Since 

r < 1 in this case, and r > 0 because a= O, (9.2.11) implies that r E (0,1), 

whence 

( 9.2. 23) log(l-r) E (-oo,0). 

In view of (9.2.10) and (9.2.15) this means that f, and therefore also qi, 

cannot be convex, and hence is concave by (9.2.9). By the relation between 

q, and h we know that 

(9.2.24) h (s) 
n 1/fi < 1/sl n 

-{log[l-(1-r)exp{-qi (-log[(l-exp(-1/s))/(1 ])}] n -

So because we want to know if 

h (
exp(·-t/~n (x) )) 

lim n 1-r 
n+oo 

exists, we have to check whether limn·= qin (an (t,x)) exists, where an (t,x) 

is defined by 

Ol (t,X) 
n 

-log[l - exp{-- (1 exp(t/pn(x))}] + log(1-r), 

t E (0,oo), l1 , 2, 3, ·•,, . 

Since pn(x) = 0 by (9.2.16), it follows that limn+oo an(t,x) = log(1-r), 

whence an (t,x) E (log (1 , 0) for all n?. some integer N = N (t,x) . 'I'he way 

to get a hold on qin(an(t,x)) for large n is now the following. Choose any 

E (-o,, 1/log ( ) . Then ( 9. 2 .15) implies that 

'0) ' 

just as (t,x). Now compare an(t,x) and 1/pn(x1J as follows. Define for 

every n ?.. N the integer (x, ,t) by 
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(9.2.25) 1/pn+j +1 (x 1) < an (t,x) <:; 
n 

where we use the conventions 1/p_n(x) = ¢n(1/x) and ¢_n(1/x) = 1/pn(x) for 

positive integers n, and ¢ 0 (1/x) = 1/p 0 (x) = 1/x. Such a j always exists, 

since lim 1/p (x 1 ) = log(l-r) and lim 1/pn(x1 ) = 0 by (9.2.15) and n-}-00 n n--+-00 

(9.2.16). Below we shall prove that limn•+oo jn = 00 , implying that 

that is 

(9.2.26) 

<:; lim ¢n(an(t,x)) 
n-+oo 

lim 1/p. (x ) 
n•+oo JD i 

log(1-r), 

lim ¢n(an(t,x)) = log(l-r). 
n-+«> 

First of all we notice that, since the function f(t), defined in (9.2.8), 

is concave, pn+l (t.) < pn (t.) if t E (0, 00) and pn+l (t.) > pn (t.) if 

t. E (-00 ,1/log(i-r)). Therefore, (9.2.25) implies that 

whence 

(9.2.27) n = N,N+1,N+2, .... 

Defining p(t) by p (t) -log(l - (1-r)exp(-1/t.)J, t f. 0, we see that 

(9.2.28) 

since x 1 E (-00 , 1/log ( 1-r)) . Furthermore, it. follows from the relations 

(9.2.7), (9.2.8), (9.2.12), (9.2.13) and (9.2.14) that 

log(l-r) - log[l-exp{-c (p(s))}l, 
n 

1/sE [log(l-r),ro), 



and so (9.2.25) yields 

1/pn+j +l (x 1) ·· log(l-r) 
n 

-log[l -exp{-c . l (p(x1)) }] 
n+J + 

n 

< a (t,x) 
n 

log (1-r) -log[l - exp{-(1 exp(t/pn(x))}] 

Therefore 

:S: 1/pn+j (x 1) - log(1 
n 

-log[ 1 - exp{ -c . {p 
n+Jn 

) ) }] . 
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(9.2.29) cn+j (p(xl)) :s: 
n 

(1-r){exp(t/p (x))} 
n 

(1-r) 1-r { - }t 
1-exp{-c (p(x))} 

n 

Since x E (0, 00 ) 

(9. 2. 30) p(x) E (0,-log r). 

and thus lim c (p(x)) = 0 by (9.2.6) and (9.2.7). In view of (9.2.23) n-+oo n 
and (9.2.29) this means that limn-+oo cn+j

11
(p(x1)) = 00 , and then by (9.2.28) 

and again (9.2.6) and (9.2.7), it follows that 

( 9. 2. 31 l lim (n+jn) = 00 • 

n-+<n 

Now by (9.2.7) and (9.2.11) we have 

(9. 2. 32) 
c 1 <sl 

lim _n_+ __ 
c (s) 

n-+<>o n 

C (1/s) 
1 im _n_,--,,-­
n-+-0o cn+l ( 1/s) 

m 

0 

if 1/s E (0,-logr) 

if 1/s E (-logr,oo) 

m ifs E (-logr,oo) 

0 if s E (0,-log r) 
Combining this with (9.2.28) and (9.2.31) we see that 

c . (p(x1)) 
n+Jn 1 

lim -------= - E 
n➔oo cn+j +1 (p(xi)) m 

n 

(0, 1). 

Now because limn-+-0o cn(p(x)) ~ 0, it follows that 
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(1+t)log(1-r) -t•log[1 - exp{-c (p(x)) }] 
n 

as n ➔ 00 .. 

So taking logarithms in (9,2.29) yields, in view of (9.2,28), (9,2,31) and 

(9.2.32), 

for sufficiently large n, Therefore 

c 1 (p(xl l 
t•log _n_+ ___ _ 

en (p(x)) 

> log c . 1 (p 
n+Jn -

-t, log c (p (x)) 
n 

c t · 1 (p (xl) ) 
n· Jn-

log --------
0n+j +3 (p (xl)) 

n+l 

{ -t•log cn+l (p (x))} 

By (9,2.30) and (9.2.32), the left hand side of this expression has limit 

- 00 as n + 00 , The right hand side is at least (j 1 - j + 4) log l, in view 
n+ n · m 

of (9.2.27) and the fact that 

en (s) ck (1/s) 

'\ (s) = en (1/s) 

ck-n (en (1/s)) 
-------2: 

C ( 1/s) 
n 

by the convexity of c(s). So we can conclude that also 

lim ( j 1 - j + 4) loq l = -oo, 
n+ n - m 

n--

fork 2: n 

whence limn+oo(jn+l - jn) = 00 , because m E (1,oo). Therefore also limn+oo =oo, 

implying that (9.2.26) holds. Substituting this into (9.2.24) we obtain 

lim -·{log[1-(1-r)exp{-¢n (an (t,x) )}]}-l = 0, 
n+oo 

and so we have proved (9.2.17) also for t E (0, 00 ), with w(t,x) = L 0 

Proceeding as in Section 7.3 we shall now try to derive results con­

cerning almost sure convergence, To this end we define a sequence of random 

variables {Un(x); n •~ 1,2,3,. •. } by 



n = 1,2,3, ... , 

XE (O,oo). 
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with p(x) as in (9.2.14) and pn(x) its nth iterate. Since (x) E (O,oo) for 

x E (0, 00 ), we see that Un(x) is well-defined and satisfies O < Un(x) S l 

for all n = 1,2,3, ... and all x E (0,oo). Moreover, the sequence 

{Un(x); n = l,2,3, ... } turns out to be a martingale sequence, as can be 

proved in the following way with the help of the basic branching property 

(3.1.3) and the relations (9.2.6), (9.2.8), (9.2.12), (9.2.13) and (9.2.14). 

E{exp(Zn+/1og[1 -· (1 exp{-1/p 1 (x)}]) I Z} 
n+ n 

z 
- n 

{E exp(Z/log[l - (1-r)exp{-1/pn+l (x) }]) } 

{exp{-h(-1/log[l - ( 
z 

exp{-1/pn+l (x) }]) }} n 

exp{-z /h(-log[l - ( 
n 

exp{-1/p 1 (x)} ]) } 
n+ 

exp{Zn/log[l - exp{-f (l/p n+l (x) -log (1-r) ) } ] } 

exp{Z /log[1- (1-r)exp{-¢(1/p 1 (x))}]} 
n n+ 

exp{Z /log[1 - (1-r)exp{-1/p (x) }J} 
n n 

U (x). 
n 

We have thus proved that {Un(x); n = 1,2,3, ... } is a bounded martingale, 

whence Un(x) converges almost surely to some random variable U(x) as n + 00 

and 

EU(x) 

exp{-·h (-·1/log[l - (1-r)exp{-1/p (x) }]) } 
n n 

exp{-1/h (-log[l - (1-r)exp{-1/p (x) }]) } 
n · n 

exp{ 1/log[ 1 - ( exp{-¢ (1/p (x))}]} 
n n 

1/log[l - (1 exp{--1/x} J}. 
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Remembering the discussion in Section 7.3 it is now clear that the follow­

ing results hold. 

'l'HEOREM 9.2.4. Suppose (9.2.9) and (9.2.10) hold. Then for any x E (0, 00 ), 

{exp(l/p (x))}Z ~ some random variable Z(x), and 
n n 

P(Z(x)=O) = 1-P(Z(x)= 00 ) =exp{-1/log[l-(1 exp{-1/x}J}. 

PROOF. Analogous to the proof of Theorem 7.3.4. D 

THEOREM 9.2.5. Suppose (9.2.9) and (9.2.10) ho.Id. Let 

be a sequence of finite constants such that limn-+«> an 

exists almost surely. Then P(lirnn->= anZn=O or 00 ) = 1. 

PROOF. Analogous to the proof of Theorem 7.3.5. D 

;n=l,2,3, ... } 

oo and lim a Z 
n➔,co n n 

As a consequence of this last result we have that if (9.2.9) and 

(9.2.10) hold, then the random variable Y(s), defined in Corollary 3.3.5 

by Y(s) = cn(s)Zn' satisfies P(Y(s) =O or 00 ) = 1 for all 

s E (-logr, co). For, since P(Z 1 =O) = 0 by assumption, it follows from 

Corollary 3.3.5 that Y(s) exists a.s.; furthermore limn->= cn(s) = 00 for 

every s E (-logr, 00 ). From (3.3.5) we know that E exp{-Y(s)} = e-s, and 

therefore P(Y(s) = 0) = 1 - P(Y(s) = 00 ) = e-s. 

our next aim is to derive almost sure convergence results such that 

the limit random variable has its values in (0, 00 ), at least on {Zn+O}, 

since this is in fact the case we are interested in. This will be done using 

a technique developed in SCHUH and BARBOUR [1977] for explosive Galton­

Watson processes. In short, this met.hod is, to obtain sufficient conditions 

such that an almost sure convergence result holds, which is in agreement 

with the requirements just mentioned, and then to construct, for every 

branching process {Zn; n = 0,1,2, ... } with P(Z 1 =O) = 0 and a= 0, a func­

ti.on, with the help of which we can prove that the sufficient conditions 

meant above are satisfied. For the processes we met. so far in this chapter, 

it holds that P(Y(s) =0 or oo) = 1 for alls E (-logr, 00 ). In the sequel we 

shall al.so consider the possibility that P (0 < Y (s) < 00 ) > 0 for some 

s E (-log r , 00), and we introduce the following regularity concept. 

DEFINI'l'ION 9.2.6. A points E (-logr, 00 ) is called regular for the process 

n = 0,1,2, ... } if P{Y(s) =O or 00 ) = 1 and irregular for the process 

otherwise. 
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First of all we shall have a closer look at the set of irregular points. 

It turns out that this set is open, as follows immediately from the next 

lemma. Before stating it we notice that we know already from the previous 

chapters that cn(s)/cn(t) is non-increasing inn for 0 < s $; t < 00 , and 

hence converges to some limit as n + 00 • This limit is again denoted by 

v(s,t). Obviously, 

v(s,t) 
C (s) 

n 
:= lim ~ = v(t,s) 

n+oo n 
for 0 < t < s < oo 

LEMMA 9.2.7. If si is an irregular point for the process {Zn; n 0,1,2, ... } 

then there exists an open interval I ,s2 ) such that si EI 

and alls E I(si) are irregular points for the process {Zn; n 0,1,2, ... }; 

v(s,s1 ) is a strictly increasing, continuous function of son (s 1 ,s2); 

v(s 1 ,s1 ) = 0 and v(s2 ,s1 ) = 00 ; s 1 and s 2 are both regular points for the 

process {Zn; n = 0,1,2,. .. }. 

Since is an irregular point for the process, P(0 < Y(si) < 00 ) > 0. 

Hence the Lemmas 2.2.2 and 2.2.3(a) imply, that <j,(u,si), the cumulant gen-

erating function of Y( , is continuous 0 and strictly increasing on [0, 00 ). 

Now define and 

lows that s 1 ;> -log r, because 

</J (0, s.) 
J. 

-log P(Y(si) < 00 ) ;> -log P(lim Zn= 0) 

n= 
-log r; 

furthermore, the inverse of cp(u,s.) as a function of u, written as 
. J. 

cpinv(u,si), is well-defined, continuous and strictly increasing on [s 1 ,s2 l 

and 

(9. 2. 33) 

Since </J (1, 

prove that 

that s f: 

</J (u, s) = s 

0 and lim ,,_inv(c s ) 
4' i:.)f i 

sts2 

by (3.3.5), it is clear that 

alls E I(si) are irregular points for the process. For suppose 

,si) is regular, 'l'hen P(Y(s) =O) = 1··-P(Y(s) =oo) = e-5 , whence 

for all u E [0, 00 ). In view of (3.3.5) this means that 

lim b (uc (s)) = s for al:_ u E (0, 00), and thus 
n➔00 n n 

(
C (t) 

h n 
n c (s) 

n 
t < h (uc (s)) 

11 11 
for all u e (0, 00 ), 
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all t E (-log r, s) and all sufficiently large n. Hence we obtain that 

cn(t)/cn(s) S: u for all u E (0, 00 ), all t E (-logr, s) and all sufficiently 

large n, that is v(t,s) 0 for all t E (-log r ,s), and so a fortiori 

v(t, = 0 for all t E (-logr, s). However, this implies that for all 
inv 

s E (0,s+logr), and all u E (0,<j, (s,si)], it holds that 

s, 

inv 
whence <j, (u,si) = s for all u E (0,<j, (s,si) ]. But this contradicts the 

fact that <j,(u,si) is strictly increasing on [0, 00 ). Therefore, all 

s E (s 1,si) are irregular points for the process. An analogous argument 

yields that v(s,si) ¥ 0, that is v(s,si) E (0,1] for alls E (s 1 ,si). Simi-

larly we can show that alls E ( ,s2 ) are irregular and that v(s, E 

[1,oo) for alls e (s1 ,s2). Since 

v(h(s.) ,s.) 
l l 

lim 
n-><o 

h(c ) ) 
n 

C (s,) 
n l 

.it follows that s 1 ?: h ( > ··log r. Si.mi.1.arly we get s 2 < 00 • The following 

step we make is that we prove that v(s,si) = cj,inv(s,si) for alls e (s 1 ,s2 ). 

To this end we notice that ifs E (s1 ,sil, then cn(s)/cn(si) decreases to 

v(s,s.) as n + 00 • Hence 
l 

s = h (c (s.) cn((sJ_))?: h (c (s.)v(s,s.)). 
n n l C S, n n l l 

n l 

Using the convexity of c(s) we see from this that 

C (S) s: _____ s_____ s: n 
h (c (s.)v(s,s.)) c (h (c (s.)v(s,s.))) 

n n i i n n n i i 

This proves that 

s = lim h (v(s, 
n 

11-><D 

C (s) 
n + 1 

(s. )v(s,s.) 
l l 

<j, (v(s, ) , 

as n + 00 
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in view of (3.3.5), that is v(s, 

similar way we can prove the analogous result for alls E ,s2 ). Because 

v(s, is non-decreasing as a function of s, it now follows that 

as E + 0 by (9.2.33) and hence v(s 1 ,si) = O; similarly we get v(s 2 ,si) = 00 • 

We can use this to prove that s 1 and are regular points for the process. 

Namely, for all u E [1, 00 ) it holds that 

(en (s 1 )) s lirn 
n-+= 

(uc 
n 

(
C (s 1 ) ) 

lim h _ _!l: ______ UC (s.) 
nc(s.) n i 

n->= n l 

slim h (Euc 
n n 

n➔-oo 

) ) 

Because of (3.3.5) this means that <j>(u,s 1) = limn➔oo hn(ucn )) = s 1 for 

all u E [1, 00 ), and thus for all u E [0, 00 ), since <j> is a cumulant generating 

function. Because the distribution corresponding to this cumulant generat-
-sl 

ing funcUon is given by P (Y (s 1 ) = 0) = 1 - P (Y (s 1 ) = co) = e , and 

s 1 E (-log r, co), it follows that s 1 i.s a regular point for the process. 

Similarly we can prove that s 2 is a regular point for the process. D 

Since cn(s) is increasing ins, Y(s) is non-decreasing. This leads to 

the introduction of a very useful random variable, being the point where 

Y(s) exceeds the level 1. More precisely, for every w E S1 we define T(w) by 

inf{sE (-log r, 00 ); Y(s,w) >1} if Y(s,w) >1 for some SE (-log r, 00 ) 

(9.2.34) T(w) 

Tis a random variable, since 

(9o2,35) {T :St} 
fl! 

lim 
s-1-t 

s rational 

{Y(s)>l} 

else 

if t E (-00 ,-logr) 

if t E [-logr, 00 ) 
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From Lemma 9.2.7 it follows that there exists a sequence {s; n 
n 

= oo Since P (T = oo) 5 P (Y of regular points such that lim s 
-sn n-- n 

P(Y(sn) =0) = e for all n = 1,2,3, ... we see that P (T = 00 ) 

1, 2, 3, ... } 

= 0) and 

0. Next 

we shall prove that P(Y(s) = Y(t) E (0, 00 )) 0 for all -log r < s < t < 00 • 

For suppose that P(Y(s) =Y(t) E (0, 00)) > O for some •·logr < s < t < oo 'rhen 

both sand tare irregular points, and hence Lemma 9.2.7 implies that 

v(s,t) -} l. On the other hand, for all w E {w; Y(s,w) = Y(t,w) E (0, 00)} .i.t 

holds that 

!1~1:111 
Y(t,w) 

c (s)Z (w) 
n n 

li.m c (t)Z (w) 
n-- n n 

v(s,t). 

Th.is proves that for almost all w c: S'l either (9.2.36) or (9.2.37) holds: 

(9.2.36) T(w) --log r; 

( 9.2. 37) T(w) E (-logr, 00 ), Y(s,w) < 1 on (-logr, T(w)) and 

Y(s,w) > 1 on (T(w) , 00 ). 

The random variable T w.i.11 be used to prove the already announced almost 

sure convergence result. 

THEOREM 9. 2. 8. 

(a) Let L be a non-dec.r:easing function on [0, 00), such that limx->= L(x) = 00 

and l.i.mxtO L(x) = 0, and let {an; n 0,1,2,. .. } be a sequence of pos .. i­

tive constants. Suppose that 1.i.mn->= anL(cn(s)) exists E (0, 00 ) for all 

s E (-log r, 00 ) and is continuous on (-log r, 00 ) • Cal.I th.is 1.imi t 1J; ( s) . 

Then there is a random variable U such that 

(9.2.38) 
a.s. 
-u 

where U = 0 on {z ➔ 00 } and U 
n 

in (9.2.34); 

as n ~➔· 00 , 

ij;(T) E (O,oo) a.s. on ➔ O},ivithTas 

(b) suppose furthermore that L is s.lowly varying at 00 and that 1J; is strict.ly 
inv 

increasing on (-logr, 00 ). Then P(U:".t) 1-exp(-ij; (t)), t E (t0 ,t1), 

r ij;(t) and t 1 

REMARK 9.2.9. As a consequence of this theorem we have that the distribu­

tion function of U is given by 



111 

0 if t E (-oo, 0) 

1-r if t E [ O,t 0) 
P(U St) 

inv 
1-exp(-~J (t)) if t E: [tO,tl) 

if t E [t1 , 00 l 

Notice that this function is continuous on (0, 00 ). Lat.er on we shall see 

that if Lis continuous and strictly increasing on (A, 00 ) for some A E [0, 00 ), 

PROOF OF THEOREM 9.2.8. First of all we shall prove that T = -logr on 

{Zn + 00 } and that '.I' E (-log r, oo) on {z -+ O}, where •r .is the random vari­
n 

able defined in (9.2.34). If Zn+ 00 , then Y(s) = 00 because c (s) -+ 00 for 
n 

all s E (-log r, 00), and therefore T = -log r on {z + 00 }. 'I'he fact that 
n 

T E (-log r, oo) a.s. on { z + 0} fol lows now once 
n 

we have proved that 

P (T = -log r) 1-r, because also P (Z + oo) = 1-r while P (Z + 0 or oo) = 1 and 
n n 

P (TE [-log r, 00)) = 1. 'I'o th.is end we not.ice that. it. follows from Lemma 

9.2.7 that there exists a sequence {sn; n = 1,2,3, ... } of regular points 

such that lim s = -log r. Now P (T = -log r) <; P (Y (s ) = 00 ) = 1 - e -sn for 
n+oo n n 

all n = 1,2,3, ... , whence P(T=··logr) <:: lim (1-e-s11 ) = 1-L Since on 
n-►co 

the other hand P('l'"'··logr) 2 P(Zn-+ 00 ) = 1-r, this proves that 'l'E (-logr, 00 ) 

a.s. on {Zn +O}, implying that we can choose, for almost all UJ E {Zn +O}, 

numbers s and t such that ··log r < s < 'l'(w) < t < 00 • By (9.2.37) this means 

that c11 (s) < 1/Zn(UJ) < cn(t) for sufficiently large n. In view of the fact 

that we assumed that the function L, mentioned in the conditions of this 

theorem, is non-decreasing, and that a11 is positive for all n = 0,1,2, ... , 

we obtain anL(cn (s)) <:: anL(l/Zn (w)) <:: anL(c11 (t)) for sufficiently large n. 

Finally the continuity of 1jJ on (-logr, 00 ) yields that lim11+oo a 11L(1/Z11 (w)) = 
1!(T(UJ)) E ( 0, oo) , that is a L(1/Z ) 

n n 
a.s. - u E ( 0 ,co) on {Zn ➔ 0}. Now suppose 

and l.im a L(c (s)) 
n+oo n n 

that z ➔ Since lim L(c (s)) 1.irn L(x) = 00 

n n+oo n x+oo 
= 0, the assumption 1jJ (s) < QO for all s E (-logr, 00 ), and hence lim a 

n-= 11 

limx-l-O L(x) ~, 0 implies that lirnn+oo a11L(l/Z11 ) = 0 on {Zn ➔ 00 }. This estab­

lishes part (a), 

(b) We start with proving that the conditions of part (bl imply that all 

s E (-logr, 00 ) are regular points for the process {Z11 ; n = 0,1,2, ... L This 

follows on observing that v(s,t) = l.imn+oo c 11 (s)/c11 (t) = 0 for all 

-logr < t < s < 00 , J::ecause if v(s,t) > 0, then we would have by Corollary 

L 2. L 2 in DE HAAN [ 1970] that lim L (c (s)) /L (c (t)) = 1, in contradict.ion 
n➔·co n n 
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with the assumption that lji(s) is strictly increasing ins on (-logr, 00 ). 

Hence Lemma 9.2.7 implies that alls E (-logr, 00 ) are regular points. In 

view of part (a) of this theorem and (9.2.35) we then obtain 

P(U 5 t) P(lji(T) St) 

lim P (Y (s) = oo) 1 - exp(-lnv(t)) 

s+lnv (t) 

for all t such that 1lnv (t) is well-defined and (t) E (-log r, 00 ), that 

is for all t E (tO, ) . D 

EXAMPLE 9. 2. 10. E'or an application of this last result we consider again a 

bran.ching process { n = 0,1,2, ... } having a strictly stable distribution 

concentrated on [0, 00 ) with characteristic exponent a E (0,1) as its off-
n -n 

spring distribution. Since hn (s) = sa , en (s) = sa and -log r = 1, as we 

know from the Examples 7.3.2 and 7.3.7, it follows that L(s) = log(l+s), 

s E ( 0, 00 ) and = an, n = 0,1,2, ... satisfy the conditions of Theorem 

9.2.8(a) and (b), with 

ljJ (s) Um a L(c (s)) 
n n 

n-+= 

-n 
lim an log(l + sa 
n-+w 

s E: (•··log r, 00 ) 

logs, 

( 1, oo) • 

Hence (9.2.38) implies that ct log(l + 1/Zn) ~ u as n + 00 , where 

P (U = 0) = 1/e and 

P(U 5 t) 
inv 

1 - exp(-lji (t)) 1 - exp (-exp t) , t E (O,oo). 

Because 

anlog(1+1/Z) ~- anlog 1/Z 
n n 

-ct loq z - n 

on {Zn +O} as n ➔ 00 we see that log Zn~ -u on {Zn ➔ O} as n ➔ 00 , where 

P(-USt) = P(u;oc-t) = exp(-exp(-t)), t E (-00 ,0), in agreement with the dis-

tribution function derived in Example 9. 2. 2. FurtherJ11ore, U c: ( 0, 00) a. s. 
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EXAMPLE 9.2.11. Just as in Exrunple 7.3.8, we can also apply the result of 

Theorem 9.2.8 to processes which satisfy (9.2.9) and (9.2.10). Arguing as in 

Example 7.3.8 it follows that we can choose an 

L(s) = log(l+s), s E [Q,oo), where pn(x) is the 

p (x) for any x E (0, 00 ) and 
thn. 

n iterate of the function 

p(x) defined in (9.2.14). We then obtain that if (9.2.9) and (9.2.10) hold, 

then p (x) log ( 1 + 1/Z ) ~ some random variable U (x) as n ➔ oo, where 
n n . 

U(x) = 0 on ➔ 00 } and P(U(x) st)= exp(-1/nv(t,x)), t € (0, 00), with 

iµ (t,x) limp (x)/p ({log[(l-r)/(1-exp{-1/t})]}-l). 
n n 

This extends the weak convergence result we obtained by combining Lemma 

9.2.1 and Theorem 9.2.3, to an almost sure convergence result. 

We shall now construct a function Land a sequence {a; n = 0,1,2, ... } 
n 

which satisfy the conditions of Theorem 9.2.8(a). Let s 0 be any number 

E (-logr, 00 ). Since (-logr, 00 ) = u"' (h 1 (s0 ),h (s0 )], where we use the 
n=-00 n+ n 

convention h (s) 
-n 

cn(s) for positive integers n, and since the sets 

(hn+l (s0 ) ,hn (s0 ) J are disjoint for different values of n, it follows that 

there exist for all x E (-logr, 00 ) exactly one integer n(x) and exactly 

one number s(x) E (h ,s 0] such that x = hn(x) (s(x)). Furthermore, we de-

fine the functions p and u by p(sl = (s0-s)/(s0-h(s0 )), s E [h(s 0 ),s 0 J and 

u(x) =n(x) +p(s(x)), XE (-··logr, 00 ). Fi.nallywedefineLby 

if x E [0,-log r] 
L(x) 

if x E (-logr,oo) 

and an by an= e-n, n = 0,1,2, •••• We shall prove that these Land an 

satisfy the conditions of Theorem 9.2.S(a). First of all we shall prove 

that akL(ck(x)) = L(x) for all x E (-logr, 00 ) and all k = 1,2,3, .... To 

this end we choose some x E (-log r, 00). Then by definition s (x) = 

(x)(x) E (h(s0),s 0]. Si.nee n(h.e_(s(x))) =f for every integer f, it follows 

that n (x)) 00 n (h_k+n (x) (en (x) (x))) = n (h _k+n (x) (s (x))) = -k + n (x) ; 

furthermore, s(ck(x)) = s(x). This implies that 

exp(-k-u (x) ) ) = exp{ ·-k-n (x)) - p (s (x)))} 

-k+k-n(x) - p(slx))} exp(-u(x)) L(x) -
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Next we shall prove that L is continuous on (-log r, 00 ) • Obviously L is con­

tinuous in x if x cf hn(s0 ) for some integer n. To prove the continuity of 

Lin the points hn(s0) it is sufficient to prove that u(x) is right-contin­

uous in s 0 . Since n(s0) = 0 and s(s0 ) s 0 , it follows that u(s 0) = 0. 

Furthermore, n(s 0+s) = -1 for alls E (O,c(s0)-s 0J, and s(s0+r) + h(s 0) as 

r + 0. 'rherefore, lims+O u(s0+s) = -1 +p(h(s0 )) = -1 + 1 0 = u(s0 ), proving 

the continuity of Lon (-logr, 00 ). Since limx-rro n(x) = - 00 and 

lim n (x) = 00 , we see that lim L(x) = 00 and li.m , 1 L(x) = 0. 
x+--log r x-rro x-,,- og r 

Since L (x) = 0 on [O,-log r], it follows that limx+O L(x) = 0, both if 

r = 1 and if r < 1. Finally we notice that u(x) is non-increasing and hence 

L (x) is non·-decreasing on (-log r, 00), and since limx+-log r L (x) = 0, also 

on [0, 00 ). So we have proved that Land {an; n 0,1,2, ... } satisfy the con­

ditions of Theorem 9.2.8(a), with ijJ(s) = L(s) for s E (-logr, 00 ). We can 

formulate this as follows. 

-n 
'rHEOREM 9.2.12. There exists a function L such that e L(1/Znl converges 

almost surely to some random variable U as n ➔ 00 , where U = 0 on ➔ 00 } 

and U E ( 0, oo) a. s . on { z ➔ 0 }. 
11 

We shall now turn back again for a while to Theorem 9.2.8. It turns 

out that the random variable u, introduced in that theorem as 

anL (1/Zn) can be represented under certain conditions as a minimum 

of a random number of random variables. 

THEOREM 9.2.13. Let L, {an; n = 0,1,2, ... }, 1jJ and Ube as in Theorem 9.2.8 

and suppose that the conditions of both part (a) and part (b) of that 

theorem are satisfied, and that .furthermore a : = lim11➔00 a 11/an··l exists 

E (0,1), and that Lis strictly increasing and continuous on (A, 00 ) for some 

A E [0, 00 ). Then 

(9. 2. 39) 

0 1 2 h · (k) (k) d . bl 11 d. , , . , ... , w ere ul. , u 2 , ••• are ran om var.1a es a .1.s-
-(k) I zk-[zkJ tributed as U and P(U > t Zk) = P(U> t) for all t E (-00 , 00 ), and 

h f i.. (k) (kl (k) , -d d d were urtuermore zk,ul ,u2 ,u3 , ... are 1.n epen ent an 
- (k) (kl (kl _ (k) . . _u ,u1 ,u2 ,u3 , ... are cond1.t1.onally given zk independent. The distri-

fo:r. every k 

bution function F of U satisfies 

(9.2.40) -log(i - F (at)) h(-log{ - F(t) }) , 
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PROOF. From Remark 9.2.9 we know that Fis continuous on (0, 00 ). Therefore, 

for every t E (0, 00 ) 

(9.2.41) {us t} lim {anL(l/Zn) st} 
n-+<n 

a.s .. 

(The notation A , .• B a. s. for two subsets A, B of rl means that 

P((AnBc) u (AcnB))=O.) Since Lis slowly varying at 00 , and 

lim L(x) 
x->oo as we know from the proof of Theorem = 00 and an ➔ 0 as n ➔ oo, 

that a L(bLinv(t/a )) 9.2.S(a), we see 
n n 

~ a L(Linv(t/a )) 
n n 

any constant b E (0, 00 ). Because tis a continuity point of 

t as n -> 00 for 

F, this mea.ns 

that 

{us t} lim {a L(l/Z ) sa L(bLinv(t/a ))} 
n n n n n..;.= 

lim { 1/Z 
n 

s bL inv (t/a ) } 
11 

n➔<:o 

lim {L 
inv 

)Z11 '?. 1/b} a .. s.,, 
n->-o::> 

and thus, since b E (0, 00 ) is arbitrary, we obtain that 

(9.2A2) (t/a )Z 
n n 

on {us t} 
as n ->-

on {u > t} 

Now remembering the definition of the branching process {Zn; n = 0,1,2, •.. ], 

it follows that we can consider , conditionally given Zk, as a "sum" 

of independent random variables, each of which can be interpreted as 

the size of the nth generation of a branching process having the same off­

spring distribution as the process {Z11 ; n = 0,1,2, ... }. More precisely, 

for any fixed non-negative integer k, we can write for every integer 

Tl= 0,1,2,,.. 

(9.2.43) 

where { {Z (k); 
n, J 

(k) + -(kl 

'j 

0,1,2, ... }; j 1,2,3, ... }isa 

processes all distributed as {z0 n = 0,1,2, ... }, 

is, conditionally given Zk, a branching process with 

distribution as {z; n = 0,1,2, ... }, but with P(Z(k) 

sequence of branching 

and {z(k); n = 0,1,2, ... 
n 

the same offspring 

n (k) 0 
-1-:\ll ),~1, 

furthermore n = 0,1,2,: .. }, 2 ; n = 0,1,2, ... ], ... a.re 
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independent and {Z~k); n = 0,1,2, ... }, {z~:i; n = 0,1,2, ... }, (:i• 
n = 0, 1,2, ... }, ... are, conditionally given Zk, independent. An application 

of Theorem 9.2.8 now yields that for every j = 1,2,3, ... it holds that 
(k) . (k) 

U. := 11.m a L(l/Z . ) 
J n-+oo(k~ (k)n,J 

obviously zk,ul ,u 2 , ... 

exists a.s. and is distributed as u. Furthermore, 

are independent. Concerning {z(k); n = 0,1,2, ... }, 
n 

we notice that if we consider a branching process {z; n = 0,1,2, ... } having 
n 

the same offspring di.stribution as {Zn; n = 0,1,2, ... }, but with z0 = d for 

some constant d E (0, 00 ), then 

-sz -sz 
hn(sl :=-logEe n=-logE(E(e n zn_ 1 JJ 

-h(s)Z 1 
-log Ee n- for n 1, 2, 3, ... , 

S E fQ,oo). 

-sz0 
Since fi0 (s) := -log Ee = ds, thi.s implies that h (s) = dh (s), and 

n n 
therefore cn(s), i.ts inverse, satisfies cn(s) (s/d). Hence we obtain 

that 

lim a L(c (s)) 
n n 

n->= 
lirn anL(cn (s/d) l 
n-->«> 

This means that a L(l/Z ) converges almost surely to some random variable 
n n 

U, for which P(U=O) = 1-exp(-limn-= hn(s)) 1-rd, and 

P <us tJ 
-inv 

1 - exp (-1), ( t) ) 
inv 

1-exp(-di)J (t) ), 

that is P (U > t) 

that U (kl := 

P(U > t)d for all t E (-«>, 00 ). We can therefore conclude 

a L (1/Z (k)) exists almost surely and that 
n n 

for every t E (···"',""), 

and it is clear that the random variables 5(k) ,u;k) (k) 
are, condition-

ally given Zk, .independent. Using a similar argument as the one leading to 
. inv . (k) 

(9.2.42), it follows that L (t:/a )Z . converges almost surely to zero or 
n n, J 

.infinity as n + 00 for every j = 1,2,3, ... , and that conditionally given Zk, 

_also (t/a )Z(k) converges al.most surely to zero or .infinity as n + 00 • 

n n 
The assumption that limn➔co an/an- a, together with (9.2.41) and (9.2.43) 

implies that 



{u cS t} lim {a k L(l/Z k) :St} n+ n+ n-+oo 

lim {c/a L(l/Z k) $ t} 
n n+ n+oo 

lim {1/Z k '.". Linv (t/(c/a ) ) } 
n+ n n-+oo 

lim 
n->-00 

lim 
n-+oo 
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a.s. 

for every t E (0, 00). 'l'his last expression is a sum consisting of a finite 

number of terms, each of which converges to zero or infinity almost surely 

as n-+ 00 • In order that the limit of this sum is at least 1 it is therefore 

necessary and sufficient that at least one of the terms converges to infin­

ity. So we get 

{u cS t} . { inv k (kl lim{max L (t/(a a ))Z 1 , ... , 
n n, n->-00 

k (k) inv k -- (k) 
(t/(aa))Z [ J'L (t/(cxa)) }::Cl} 

n n, zk n 

(k) (k) -(k) 
lim{min{1/Z 1 , ... ,1/Z [z ]'1/Z } '.". 
n-+oo n, n, k n 

for every t E (0, 00 ). Obviously this relation also holds for every t E (- 00 ,0). 
k . (k) (kl -- (k) < 

We have thus proved that the sets {U'.". t} and {a m:1.n{u 1 , ... ,U[zk]'U } - t} 

are a.s. equal both fort E (-00 ,0) and fort E (0, 00 ), and therefore also for 

t = 0. 'rhis establishes the first part of the theorem. Taking k = 1 we ob­

tain 

1 -F(cit) = P(U > cit)= EP 

E{P(U > t)} 
J 

EP(U > t) 
-h(-log(l-F(t)}) = e , 



118 

thus proving (9.2.40). D 

Using the notation of Theorem 9.2.8 we see that, under the conditions 

of Theorem 9.2.13, 

-log(l - F(t)) lj;inv(t) E (-logr, oo) for any t E 

By (9.2.40) this means that also -log(1-F(at)) E (-logr, 00 ), that is also 

at E (t 0,t1). Since a E (0,1) this is only possible if t 0 = 0. Conversely, 

-if at E (t0 ,t1), then -log(l-F'(at)) E (-logr, 00), and hence also 

-log(1-F(t)) E (-logr, 00 ), that i~ t E (t0 ,t1). •rhis implies that t 1 = 00 • 

Now substituting -log(1-F(t)) = lj;inv(t) fort E (0, 00 ) in (9.2.40), we ob-
. inv inv 

tain ij, (at) = h(ij, (t)) for all t E (0, 00 ). 'I'his equation can be consider-

ed as the analog of (8.2.1), which says that ¢(u,s), the cumulant generat­

ing function of Y(sl, satisfies ¢(au,s) = h(¢(u,s)). 

EXAMPLE 9.2.14. We can again apply this theorem to a branching process 

{Zn; n = 0,1,2, ... } having a strictly stable distribution concentrated on 

[0,oo) with characteristic exponent a E (0,1) as its offspring distribution, 

with Land {an; n = 0,1,2, ... } as in Example 9.2.10, since 

lim 
n-+oo 

a 
n 

n 
lim a 

n-1 n->-oo a 
a E (0, 1) 

and L(s) = log(l+s) ls continuous and strictly increasing on (0, 00 ). Hence 

we obtain that for any fixed non-negative integer k, is a.s. equal to 

. -(k) (k) (k) 
with the random variables U ,u 1 as in Theorem 9.2.13. Relation 

(9.2.40) becomes -log(1-F(at)) = -log(l-F(t) )a, as fits in with the fact 

that F(t) = 1 - exp(-exp t) fort E (0, 00 ), as we know from Example 9.2.10. 

EXAMPLE 9.2.15. For another application of Theorem 9.2.13 we consider again 

processes for which (9.2.9) and (9.2.10) are satisfied. Tn Example 9.2. 1 

we saw that with a 
n 

(x) for any x E ( O,co) and L (s) = log (1 +s) , s E [ 0, 00 ), 

·the conditions of Theorem 9.2.8 are fulfilled and so 

as n -\- 00 



Furthermore, in a similar way as in Example 7.3.12 we get 

p (x) 
n 

y C ( 0, 1). 
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Since L(s) is strictly increasing ins on (0, 00 ), we can apply (9.2.40) to 

obtain that -log(1-F(yt,x)) = h(-log{1-F(t,x)}), t E (-00 ,,,,), where F(t,x) 

is the distribution function of U(x). Now we know from Lemma 9.2.1 and 

Theorem 9.2.3 that if m < 00 and (9.2.9) and (9.2.10) hold, then (x) log Zn 

converges in distribution as n + 00 to a random variable Z(x), which has an 

atom of size 1-r at 0. Since pn (x) log Zn < 0 on {Z11 + O} an6 

on {Z + 00 } for sufficiently large n, and p (x)log(1+1/Z) 
n n n 

as n + 00 on {Z -,o} and (x)log(l + 1/Z ) ~Oas n + oo on 
n n 

follows that 

and that 

I. •p (x) log z ~:..~: . .-,. -u (x) 
{Z +O} n n 

as n ➔ 00 , 

n 

where I stands for the indicator function. This means that 

(x)log Zn> 0 

(x) L:ig Zn 

{z +no}, it 
n 

(x) log Zn +oo}•p11 (xllog Zn+ I{z +o}'Pn(x)log 
11 

-·U (x) 

asn~+- 00 , 

whence Z(x) ;): -U(x). 'I'herefore, w(t,x), the distribution function o.f Z(x), 

satisfies w(t,x) ~ 1 - F(-t,x), and relation (9.2.40) becomes 

-log w(-yt,x) h(-log w(-t,x)), t E (-00,00). 

Fort E (0, 00), this is just (9.2.19). 

We close this section with a discussion on the norming of zn+i by a 

suitable function of Zn' that is we try to find a sequence of functions 

; n Orl,2,~ .. ,.} such that Zn+l/fn(Zn) converges in some sense to a 

random variable W with P ( 0 < W < 00 ) > 0. If we want to do so we encounter 

the same problems as in Section 7.3, where we studied this question for 

explosive processes, and just like we did there, we shall now only present 
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one example. 

EXAMPLE 9.2.16. Let {Zn; n = 0,1,2,. .. } be a branching process having a 

strictly stable distribution concentrated on [0, 00 ) with characteristic ex­

ponent a E (0,1) as its offspring distribution. For this process we derived 

relation (7.3.24) which says that 

lim inf 
n ➔- oo 

Z 1 (log n) (1-a) /a 
n+ 

zl/a 
n 

B(a) (1-a)/a a. s .. 

From Example 9.2.10 we know that an log Zn a.s.-+ -U E (-00 ,0) as n + 00 on 

{Zn ➔ 0}. In a similar way as in Example 7. 3 .13 it now follows that 

lim inf 
n -► oo 

. (1--a) /a 
Zn+l (log log I log Zn I) 

z1/a 
n 

B(a) ( -a)/a 

and that ( Z ) ~ oo as n -► 00 on { Z + 0} , where 
n n 

(t) 
log I log t I 
-1 

c (yt log I log t I) 

Furthermore, we can prove, analogously to (7.3.31) 

lim sup 
n + 00 f(logllog znl/(-log a))l/a. l/a 

00 1 . 
if I: ----<-

n=O f(n) 
00 1 

if I: = 00 

n=O f(n) 

a.s. on 

[Z + O} 
n 

a.s. on +O}, where f is any non-negative function on [0, 00 ) such that 

limn➔oo f(n) ~ 00 and f(n) ~ f(a11 ) as n ➔ "'for any sequence of constants 

{an; n = 0,1,2, ... } for which an~ n as n ➔ 
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