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11X
PREFACE

Both the title and the subtitle of this collection of papers are some-
what inadequate. As there are here a number of papers on geometry, the title
"Topological Structures II" is actually too narrow; it was chosen, never-
theless, to bring to mind that the 1978 symposium in Amsterdam was the
)

second one in recent years* devoted (mainly) to topology. As for the
subtitle, the designation "Proceedings" stretches and extends the usual
meaning of that term, inasmuch not all of the papers in this volume proceed
directly from the symposium.

Of the 34 papers presented here, 16 originate from lectures, and 2
from a problem session during the 1978 meeting. In addition, 8 papers have
been contributed by participants to the symposium. Most of the remaining
8 papers have been sollicited by the editors. In this manner, the valuable
survey papers by M.G. BELL, D.W. CURTISS, M. HUSEK, F.D. TALL and R.G. WOODS

could be added to these "Proceedings".

The symposium on Topology and Geometry at the Free University in Am-
sterdam on October 31 and November 1 and 2, 1978, was sponsored by the
Dutch Mathematical Society WISKUNDIG GENOOTSCHAP and financed by the Math-
ematics Department of the Free University, Amsterdam. In addition to the
editors of these Proceedings, W.T. van EST and M.A. MAURICE took an essen-
tial part in the organization of the symposium.

On the last day of the symposium there was a meeting of Dutch mathematicians

working in the fields of topology and geometry.

Thanks are due, in the first place to all contributors to this volume
and to the participants to the symposium; to them this volume owes its very
existence. In the second place, we thank the Mathematics Department of the
Free University in Amsterdam for its generous financial support, and the
WISKUNDIG GENOOTSCHAP for sponsoring the symposium. Finally, we thank the

Director of the Mathematical Centre for his consent to publish these volumes

*#) The first symposium was held in 1973; its proceedings (entitled
"Topological Structures") were published by the Mathematical Centre in
Amsterdam as Mathematical Centre Tracts 52.



as Mathematical Centre Tracts, and Mr. D. ZWARST and the Publication Service
of the Mathematical Centre for the friendly and helpful way in which they

did all those jobs necessary for the publication of these Proceedings.

P.C. Baayen
J. van Mill
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LOCAL DYNAMICAL SYSTEMS AND THEIR MORPHISMS

J.M. Aarts & J. de Vries

1. INTRODUCTION

1.1. The theory of local dynamical systems has its roots in the qualitative
study of ordinary differential equations. It is an outgrowth of the "geomet-
rical theory" initiated by H. POINCARE, A LYAPUNOV and G.D. BIRKHOFF. The
latter actually laid the foundations of the theory of dynamical systems and
the topological study of them (topological dynamics). The basic problems of
this study were: 1) the study of solutions "globally", and 2) the study of
solutions near singular points, both by means of topological methods. This
can be done by either considering continuous actions of the additive group
IR of the reals on metric spaces (see [15] or [5]) or, more abstractly, study-
ing arbitrary topological groups, acting on arbitrary topological spaces (see
[8] or [7]).

The relevance of group actions for the study of the behaviour of solu-
tions of differential equations is based on the following fact. Consider an

autonomous differential equation
(1.1) x = £(x)

where f is a continuous ]fl—valued function, defined on an open subset X of
r. Under suitable additional conditions, guaranteeing unicity and extend-
ability of solutions, there exists for every x € X a unique solution “x of
(1.1) such that ﬂx(O) = x. Here ﬂx is a function of IR into X for every x € X,
and it can easily be shown that the following conditions are fulfilled:

DS1. the mapping m: (x,t) & Wxt: X X IR + X is continuous;

DS2. m(x,0) = x for all x € X;

DS3. w(m(x,t),s) = 7(x,t+s) for all x € X and t,s € IR.

In this way a continuous action m of the additive group R on the space X is

obtained such that the orbits of points of X under this action are just the
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solution curves of equation (1.1). This motivates the definition of a (glo-
bal) dynamical system as a triple <X,IR, m>, where X is an arbitrary topologi-
cal space*) and T is a mapping from X X IR into X, satisfying the conditions
DS1, DS2 and DS3. In this setting, most of the notions of classical dynamics
can be defined and studied. For example, a point x € X is called periodic
whenever nx(t) = x for some t # 0; it is called a rest point whenever nx(t) =X
for all t € IR. If X is a Hausdorff space and x € X is a moving periodic
point (i.e. periodic, but not a rest point), then it can easily be shown that

the real number
(1.2) p, = inf{t ¢ R} t > 0 and T (t) = x}

is non-zero; the number Py is called the primitive period of x, and all
periods of x (i.e. real numbers t with the property that m, (t) =x) are inte-
gral multiples of P Another important notion is that of a limit set: if

x € X, then the (possibly empty) sets

(1.3) A(x) := 0 ﬂx(—m,t]; Q(x)

%o Trx[t,w)

U
KN

are called the negative‘) and positive limit sets of x, respectively. For

the study of these and other notions, the reader is referred to [5] or [18],

where the (topological) study of dynamical systems is exposed in a systema-

tic way.

1.2. In order to cover also the study of solutions of equation (1.1) for the
case that there is still unicity of solutions, but possibly no extension of
solutions to all of IR, the concept of a local dynamical system (in the se-
quel to be abbreviated to 1ds) has to be used, a concept which has been intro-
duced independently in [9] and [16], and which is closely related to the
notion of an F-family introduced in [19] (see [3] for this relationship).

An Ids is a triple (X,D,m) where X is a topological space, D is a subset of

X x IR of the following special form

(1.4) D= U_ {x} x J(x),
xeX

*) all spaces are supposed to be Hausdorff spaces.

+) the A occurring in (1.3) is a capital alpha (symbolizing the begin, while
Q2 symbolizes the end).
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where J(x) is an open interval in R containing 0 for every x € X, and
m: D »> X is a mapping satisfying the following conditions:
LDS1. Continuity axiom: D is open in X x R and m: D - X is continuous;
LDS2. Identity axiom: if x € X, then 7(x,0) = x;
LDS3. Group axiom: if x € X and t, t+s € J(x) and s € J(m(x,t)), then
m(m(x,t),s) = w(x,t+s);

LDS4. Maximality axiom: if (x,t) € D, then J(w(x,t)) = J(x) - t.
(Note that in the case that J(x) = IR for all x € X (that is, D=Xx R) we
have a global dynamical system as defined in 1.1 above.) The space X and the
mapping T are called the phase space and the phase mapping respectively. For
every x € X, the mapping nx: tH» mx,t): J(x) >+ X is called the motion of x,
and the set T'(x) := ﬂx[J(X)] is called the orbit of x. The definition of
periodic point and rest point in an 1lds are formally the same as given in
1.1 above for global dynamical systems; in fact, for such points the dif-
ference between global and local systems disappears in the sense that if x
is periodic, then J(x) = IR (an immediate consequence of the maximality axiom
LDS4) .

For the study of lds's, we refer to [11] and [17]. Most methods from
the theory of global systems can be used in the context of local systems.
The only difficulty is that m may be not defined on all of X x IR, so that
one always has to be careful in writing down "m(x,t)" for a given x € X and
t € IR; in such situations the maximality axiom LDS4 usually is of great help.
This has been illustrated above by the remark that J(x) = R if x is periodic.
Another illustration is as follows. If (X,D,m) is an lds, then for every
x € X the open interval J(x) will be denoted (a(x),w(x)) with —» < a(x) < 0 <

w(x) £ . Now the negative and positive limit sets of x € X are defined by
Ax) = N{r_(a(x),t]: a(x) <t <0}

and
20x) = n{m Tt,0(x))i 0 <t <ol

It can be shown that in the definition of an lds the maximality axiom can

be replaced by the condition

LSD4'. For every x € X, if a(x) > —o then A(x) = @ and if w(x) < « then
Q(x) = @.
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(In particular, this guarantees that R ¢ J(x) if A(x) # P and E;'C J(x) §
if Q(x) # P, in which cases the first and the second equality in (1.3) can

be used.) Another statement which can replace LDS4 such as to produce (to-
gether with LDS1 through LDS3) a set of axioms which is equivalent to LDS1
through LDS4 is:

LDS4". For every X € X, if a(x) > -» then I'"(x) is not compact and if

- *
w(x) < « then I'"(x) is not compact ).

Proofs of the equivalence of LDS4, LDS4' and LDS4" under assumption of LDS1
through LDS3 are contained in [20] and in [11; Section IV.1]. This equiva-
lence shows that our axiom system is equivalent to the axiom systems, given
in [11], [17] and [20].

The name "maximality axiom" refers to the following fact: if (X,D,m)
and (X,E,p) are 1lds's such that = = p

DNE DNE
ILDS4 in a essential way) that D = E, whence m = p. In particular, the domain

, then it can be shown (using

of the phase mapping of an 1lds cannot be extended without violating axiom
LDS4. In this context, it is interesting to observe that for any system
(X,D,m) satisfying LDS1, LDS2 and LDS3 (a so-called germ of an lds; in fact,
LDS1 may even slightly be weakened: D need not be open, but is required to
be a neighbourhood of X X {0} in X x IR) the domain D and the phase mapping
7 can be extended in a unique way so as to produce an lds. See [10] for

details.

1.3. As was said above, the definition of an lds was motivated by autonomous
ordinary differential equations (they can also be used as a model for solu-
tions of non-autonomous equations; cf. [16] or [17]). In fact, if X is an
open subset of ﬂfl and f: X > R is a continous function such that the equa-
tion (1.1) has unique solutions (i.e. for every x € X there is a unique solu-
tion L defined in a neighbourhood of 0 such that nx(O) = x), then let J(x)
denote the maximal interval in IR to which this solution can be extended.

If we denote, for every x € X, this maximal solution by L J(x) > X and if
we put D := UxeX {x} x J(x), and m(x,t) := wx(t) for (x,t) € D, then we ob-
tain in this way an 1lds (X,D,T). The orbits of this lds are just the solu-
tion curves of equation (1.1). We shall call this lds the system, defined

by the differential equation X = f(x) or: defined by the vector-field f on X.

+ +
%) Here I' (x) := nX[IR_ n J(x)J.
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1.4. In differential equation theory, two differential equations on the same

domain X in nfﬂ say
x=£f(x), x=g(x),

(f and g both continuous and giving unicity of solutions) are called geo-
metrically equivalent if each solution of either system is a reparametriza-
tion of the other. For the corresponding lds's this means exactly that each
orbit of either system is an orbit in the other system. It is well-known

that this situation occurs iff
f(x) = k(x)g(x), X € X

for some continuous mapping k: X > IR such that k(x) # O for all x € X. In
particular, any lds defined by a differential equation is geometrically

equivalent to a global system (Vinograd's theorem).
*
These results have their counterparts in arbitrary lds's ). Two lds's
(X,D,m) and (Y,E,p) are called geometrically equivalent whenever there exists

Fp(h(x)) for all x € X+).

]

a homeomorphism h of X onto Y such that h[Pﬂ(x)]
It can be shown that a homeomorphism h of X onto Y is a geometric equivalence
iff there exists for every x € X a homeomorphism Ty of Jﬂ(x) onto Jp(h(x))

such that
(1.5) hom(x,t) = p(h(x),TX(t))

for all (x,t) € D. See [11; Thm. VI. 1.14J for the case that X = Y and h = 1X
(also [4; ch. 4] for global systems), [20] for the case that X and Y are

Tychonoff spaces and [13] for the case that X and Y are T, -spaces, cf. also

4.4 below. In [13] and [20] it is also shown that the map;ing T: (x,t) &
Tx(t): D + IR is continuous on D\(S“X IR). Here s_,r denotes the set of rest
points in the 1ds (X,D,m). (Notice that in these papers, a geometrical equi-
valence is called an NS-isomorphism - after [15] - and a pair (h,t) satisfy-

ing the conditions mentioned above a GH-isomorphism - after [8].)

*) For a generalization of Vinograd's theorem, cf. [6] and [22].

t) When dealing with more than one 1lds at a time, we shall use the symbol
for the phase mapping as a subscript to distinguish the several sets
which are associated with these systems.
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Pairs (h,t) satisfying the above conditions are also called phase space
homeomorphisms with reparametrization (cf. [12]); they include equivariant
homeomorphisms (i.e. the case that Tx(t) = t for all (x,t) € D), which are
related to isomorphisms of topological transformation groups [8] and also
to the conjugacy relation of [4]: a reparametrization followed by an equi-
variant homeomorphism.

In the remainder of this paper, we shall discuss a notion of morphism
of 1ds's, introduced by the authors in [1]. The definition is such that,
first, important dynamical properties are preserved by morphisms and, second,
in the resulting category of lds's the isomorphisms are just the phase space
homeomorphisms with reparametrization. For general morphisms there are also
counterparts for the theorems of HAJEK, URA and KIMURA mentioned above (cf.
Theorem 3.4 below) as well as for the relationship with the conjugacy rela-

tion of BECK (cf. 3.3 below and the remarks after 3.3).
2. MORPHISMS OF LDS'S

All 1ds's are assumed to have Hausdorff phase spaces. The domain of the
motion of a point x in an lds will consistently be denoted by J(x) or
(0 (x) ,w(x)), where == < a(x) < 0 < w(x) £ ». The set of periodic points will
be denoted by P, and the set of rest points by S. All other notation will
be as in Section 1. Recall, that the phase mapping will be used as a sub-
script in order to be able to distinguish between notions associated to dif-

ferent 1lds's.

2.1. A morphism (of lds's) & from (X,D,n)Ato (Y,E,p) is a pair (¢,Tt), where

¢: X > Y and t: D > IR are functions satisfying the following conditions:

M1: The mapping ¢: X > Y is continuous;

M2: For every x € X, the mapping Tt tkTx,t): J"(x) - IR maps J“(x) con-
tinuously into Jp(¢(x)) such that TX(O) = 0;

M3: For all (x,t) € D, ¢om(x,t) = p(¢(x),rx(t));

M4: For every x € X, the mapping TX: J“(x) -> Jp(¢(x)) is strictly increasing,

and 7: D > IR is continuous.

Notation: ¢: (X,D,mw) - (Y,E,p) or (¢,t): (X,D,m) - (Y,E,p).
A morphism of the form (IX,T): (X,D,m) > (X,E,p) is called a parameter-
transformation, and T is called a reparametrization of m to p. If (¢,1) is

a morphism such that 1(x,t) = t for all (x,t) in the domain of 1, then ¢ is
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called an equivariant mapping, and (¢,1) will be called an equivariant mor-
phism.

if ¢ = (¢,7): (X,D,m) > (Y,E,p) is a morphism, then the symbol & will
also be used to denote the mapping (x,t) » (¢(x),T(x,t)): D> Y x IR. By M2,
® maps D continuously into E, and M3 requires that the following diagram

commutes:

D ° > E
(2.1) i )
X 3 TY

Using this point if view, namely, that a morphism of 1lds's is a mapping be-
tween the domains of the phase mappings, having a special form and special
properties, the following definition of composition of morphisms is quite

natural. Let for i = 1,2, @i = (¢i,1i): (Xi,Di,ﬂi) + (X +1) be

i+1'Pi417 s
morphisms of 1lds's. Then Y := @20 ¢1 also satisfies the conditions of a mor-

phism of 1lds's, that is, there exist mappings y: X, - X, and 0: D, - IR such

1 3 1
that ¥Y(x,t) = (Y(x),0(x,t)) for all (x,t) € Dl’ and the conditions M1 through

M4 are fulfilled. Actually, Yy and ¢ are given by

) for x € X.

(Tl X

(2.2) P o:= ¢2° ¢1 and O, i (T2)¢1(x)
In this way we have now defined a category whose objects are the lds's. The
isomorphism in this category will be called isomorphisms of lds's. In [1],

the following characterizations of isomorphisms have been obtained: a morphism
¢ = (¢,7): (X,D,m) > (Y,E,p) is an isomorphism iff ¢ is a homeomorphism of

D onto E, iff ¢ is a homeomorphism of X onto Y and for every x € X the map-

ping Ty is a surjection of J“(x) onto Jp(¢(x)). See also Theorem 3.2 below.

2.2. REMARKS

1. The definition of a morphism given above is slightly redundant. It follows
from 3.5 below that the conditions M1, M2 and M3 alone imply already
that T is continuous on D\(¢—1[Sp] x R), whereas a (quite natural) addi-
tional condition on ¢ guarantees strict monotonicity of Ty for

X € X\¢—1[Sp].
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2. At the time of preparing [1] and [2], the authors were not aware of the
paper [14] of KIMURA, where also a category of all lds's is considered.
The morphisms in [14], so-called GH-morphisms, are just pairs (¢,T) sat-
isfying the conditions M1, M2 and M3 of 2.1 above; several types of GH-
morphisms are defined in [14] according to various continuity conditions
for 1. In fact, a pair (¢,7) is a morphism (in the sense defined above)
iff in the terminology of [14] it is a GH-morphism of type 4 with the
additional property that 1, is strictly increasing for every x.

3. It follows from Theorem 3.4 below that it would be more natural to re-
place in M4 the condition that T is strictly increasing for every x € X
by the condition that TX is injective (either strictly increasing or
strictly decreasing) for every x ¢ X. Except for making the statements
quite cumbersome, this would not essentially affect our results to be
presented below. Therefore, we shall use the definition as given in 2.1
ébove. We want to emphasize here that the monotonicity condition in M4

is crucial for the preservation properties which we shall discuss now.

2.3. PROPOSITION. Let (¢,T): (X,D,m) = (Y,E,p) be a morphism of 1lds's. Then

¢[S“] c Sp and ¢[Pn] c Pp' In addition, for every x ¢ X we have

@ BTy eT € Th@e), oI ()] e T (@), so 4T (0] € T (bG));
(1) ¢[a ()] € A (9(x)) and ¢[Q (x)] € Q (4(x).

If ¢ is a bijection, then we have even STT = ¢_1[Sp], P = ¢‘1[Pp] and for
X € PTT the primitive periods of x and ¢ (x) are related by the equality

p¢(x) = Tx(px). Moreover, in this case we have equalities in (i) for every

x € X.

PROOF. See [1; Section 4] for the general case and [2; 4.3] for the case
that ¢ is a bijection. 0

2.4. REMARK. The difficult parts of Proposition 2.3 are the statements in
(ii) and the case that ¢ is a bijection. In the proof an essential use has
been made of the following equality:

(2.3) T (s+t) =1 (s) + T (t), s,s+t € J (%),
X x T

mT(x,s)

which is valid for all x € X\¢-1[Sp] and, by continuity of T, even for all
X € x\¢“1[sp].
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2.5. COROLLARY. Let (¢,t): (X,D,m) > (Y,E,p) be a morphism of lds's. If x € X
is positively Poisson stable (i.e. x € Qﬂ(x)) then so is ¢(x). If x € X is
R
positively Lagrange stable (i.e. Fﬂ(x) is compact) then so is ¢(x), and
¥ = TF A
¢[F“(x)] Fp(¢(x)) O

2.6. REMARK

1. Examples which illustrate the special role of condition M4 in the defini-
tion of morphism with respect to the preservation properties mentioned
in 2.3 can be found in [1; 4.5].

2. Properties involving a certain distribution of the time parameter are in
general not preserved by morphisms. In [1], an example is given where
recurrence*) is not preserved by a reparametrization (which is an iso-
morphism!). Also an example is given, showing that morphisms need not
preserve Liapunov stability of rest points. However, isomorphisms pre-

serve Liapunov stability of rest points.
3. THE STRUCTURE OF MORPHISMS

The following proposition shows how the isomorphisms in our category
are related to the conjugacy relation in [4]. For the quite straightforward

proof, we refer to [1; 3.5].

3.1. PROPOSITION. Let (¢,T): (X,D,m) - (Y,E,p) be a morphism such that

¢: X > Y is a homeomorphism. Then there exists a commuting diagram of mor-

phisms

(X,D,) (.0 (Y,E,p)

(1XIT) (¢11)

(x,D',m")

where (¢,1) is an equivariant morphism. Moreover, (1X,T) is an isomorphism

iff (¢,T) is an isomorphism. 0

*) BAccording to the definition in [17]; this is the same as (pointwise) al-
most periodicity in [8], almost recurrence in [18], and, for compact
spaces, recurrence in [5] and [15].
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Recall from 2.1 above that (¢,T) and (lx,r) are isomorphisms iff ¢ is
a homeomorphism of X onto Y and Tt Jn(x) -> Jp(¢(x)) is a surjection for
every x € X. This latter condition turns out to be automatically fulfilled
for every x € X\¢_1[Sp] = X\STr (under the assumption that ¢ is a bijection);
this is actually the basic observation upon which rests the proof of the
second part of 2.3 above. However, it must be observed that for x € ¢'1[sp]
the values of Tx(t) are completely irrelevant; in particular, condition M3
in the definition of morphism is then trivially fulfilled. Therefore, we in-
troduce the following equivalence relation between morphisms. Two morphisms
(¢,7) and (¢',7') from (X,D,m) to (Y,E,p) will be called equivalent whenever
¢ = ¢' and T, = T; for every x € X\¢_1[Sp]. Notation: (¢,T) = (¢',T').

In [2], examples are given which show that a morphism (¢,t) which is
equivalent to an isomorphism may not be an isomorphism itself. Morphisms,

equivalent to isomorphisms can be characterized as follows:

3.2. THEOREM. Let (¢,T) be a morphism. The following conditions are equiva-
lent:

(1) (¢,7) is equivalent to an isomorphism;

(ii) ¢ is a homeomorphism of X onto Y.

In particular, if STr is nowhere dense, then (¢,T) is an isomorphism iff ¢

is a homeomorphism of X onto Y.
PROOF. Cf. [2; Theorem 4.5]. ]

Using the equivalence relation defined above we shall try to generalize
the first part of 3.1 to general morphisms. First we state a lemma, whose

proof can be found in [2; 5.4]:

3.3, LEMMA. Let (¢,7): (X,D,m) > (Y,E,p) be a morphism. The following condi-
tions are equivalent:
(i) T satisfies the relation (2.3) for every X € X\Sﬂ;

(ii) there exists a commuting diagram of morphisms

(X,D,m) (4,7 (Y,E,p)

(1,,7) (d,1)

(X,D',m")
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where (¢,1) is an equivariant morphism. 0

Since the relation (2.3) is valid for all x ¢ X\¢_1[Sp] (see 2.4 above)
the lemma seems of no help in the case that (int ¢—1[spj)\s“ # @#. In that
case, one can try to modify the mappings T for x € (int ¢_1[Sp])\s1T such as
to make them to satisfy the relation (2.3), and still keeping T continuous
on D, of course. Thus, we were able to prove that under certain additional
conditions for the morphism (¢,1): (X,D,m) - (Y,E,p) there exist morphisms

*

(1,,7) (¢,1)

* *
(X,b,m) — (X,D ,m ) ———> (Y,E,p)

such that (¢,1) is an equivariant morphism and the composition (¢,T*) of
(IX,T*) and (¢,1) is equivalent to (¢,T). That is, up to equivalence we ob-
tain factorization of (¢,T) as a reparametrization, followed by an equi-
variant morphism.

One of the (sufficient) conditions for such a factorization-up-to-
equivalence of (¢,T) is that X is metrizable and that bnd ¢_1[Sp] € S, . For
a proof of this result and for other sufficient conditions for such factori-
zations, we refer to [2].

Our next, and final result essentially states that a morphism (¢,71) is,
up to equivalence, completely determined by its phase space mapping ¢. It
is the generalization of a result for isomorphisms of URA [21] and KIMURA
[13] to general morphisms. Roughly speaking, it says that an orbit preserv-
ing mapping ¢ between the phase spaces of lds's is the space component of a
morphism (¢,T). A similar result can be found in [14], where it is shown
that every NS-morphism is a GH-morphism. Since our definition of a morphism
requires more than the definition of a GH-morphism (the monotonicity condi-
tion M4), an orbit preserving mapping must be just a little bit more than an
NS-morphism. This little bit more turns out to be local injectivity on
orbits. Here is the definition:

If (X,D,m) and (Y,E,p) are lds's, then an orbit-preserving mapping

from (X,D,w) to (Y,E,p) is a continuous mapping ¢: X + Y such that

OPM1. For every x € X, ¢[T“(x)] c Tp(¢(X));
OPM2. For every X € X\S11 there is an arc E;B in Fﬂ(x) such that ¢ is injec-

tive on g;B

Here‘Q;B means an arc, i.e. a topological embedding h of the unit interval
[0,1] into X such that h(0) = a, h(l) = b and x = h(t) for some t with

0 < t < 1; as is often done, we identify such an embedding h with its
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range h[0,1].

It can be shown that for every morphism (¢,Tt) of 1lds's, ¢ is an orbit
preserving mapping [1; Prop. 5.2]*). Before we can state a converse of this
statement, we have to make two notational conventions. The first is that for
every invariant subset C in an 1lds (X,D,wm) the restricted 1lds (X,Dn (CXx IR),

ﬂl ) will be denoted by (C,D_,m ). It is useful to know that every

Dn (CXIR) c C

component of an invariant subset is also invariant (cf. [11; IV 2.10 and
IVv. 2.13]). Our second convention is, that for an lds (Y,E,p) the reverse
system (Y,E*,p*) is defined by E* := {(x,t) € Y x R} (x,-t) € E} and
p*(x,t) := p(x,-t) for (x,t) € E*. It is easy to show that (Y,E*,p*) is an

lds iff (Y,E,p) is. Now we can state our final result:

3.4. THEOREM Let (X,D,w) and (Y,E,p) be 1lds's and let ¢: X > Y be an orbit
preserving mapping. Then there exists a unique continuous mapping

-1 -1 .
T: D\ (¢ [Sp]X IR) » R such that for each component C of X\¢ [Sp] either

(¢|CIT|D ): (CID rﬂc) > (YIEIp)
C

C

or
(¢IC,TIDC): (C,Dgsmy) > (Y,E,.p,)

is a morphism of 1ds's.

PROOF. Cf. [1; Theorem 5.7]. Part of the proof parallels the proof in [14],
[13] or [20], but our proof is simpler because of our use of a result of
J. and M. LEWIN (cf.[4; Theorem 1.25]). This result also guarantees the mono-

tonicity condition for T. ]

3.5. Unicity in the above theorem must be interpreted as follows: T is the

unique mapping of D\(¢—1[Sp] x JR) into R such that (¢[ ,T) satis-

x\¢~1ls, 1)
fies the conditions M1, M2 and M3 of the definition of a morphism. In addi-
tion, T turns out to be continuous on D\(¢-1[Sp]x IR) and condition OPM2 for
¢ implies strict monotonicity of Ty for x € X\¢_1[Sp].

In particular, this implies that for a pair (¢,1) satisfying the condi-
tions M1, M2 and M3 of the definition of a morphism, T must be continuous on

D\(¢-1[Spjx IR), whereas monotonicty of Ty for x € X\¢_1[SD] is implied by

*) Monotonicity of each Ty (i.e. condition M4) is essential in the proof.
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requiring ¢ to satisfy also condition OPM2.
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HYPERSPACES OF FINITE SUBSETS

Murray G. Bell

1. INTRODUCTION

The topological analysis of a space can be furthered by a study of the
global properties of the space's finite subsets. This study is pursued, quite
profitably, by endowing the finite subsets of a space with a topology which
is intimately connected to the topology of the space. In this paper, we sur-
vey and continue the investigations of two such topologies. Our main emphasis
will be on problems of normality, paracompactness and metrizability.

Let X be a space with topology T. F(X) will denote the collection of
all non-empty finite subsets of X.

If 0 is a finite subcollection of T, then define <0> = {F ¢ F(X):

Fc U0 and Fn O # ¢ for each 0 € 0}. The collection {<0>: 0 is a finite
subcollection of 1} serves as a base for a topology on F(X). When topolo-
gized in this fashion, F(X) is denoted by F<X> and is referred to as the
Vietoris hyperspace of finite subsets of X. This is exactly the topology
that F(X) receives as a subspace of the hyperspace of non-empty compact sub-
sets of X with the Vietoris topology [V]. Our basic reference for the
Vietoris topology is [Ml]. For each positive integer n, we define Fn<X> =

{F € F<x>: |F| < n}.

" If Fe F(X) and 0 € 1, then define [F,0] = {G € F(X): F € G ¢ 0}. The
collection {[F,0]: F € F(X) and 0 € 1} serves as a base for a topology on
F(X). When topologized in this fashion, F(X) is denoted by F[X] and is re-
ferred to as the Pixley-Roy hyperspace of finite subsets of X. This kind of
topology was introduced in [PR] in the special case of the real line and
generalized in [vD].

The author is not aware of any general study of the properties of F<x>,
other than those properties that F<Xx>, for Hausdorff X, inherits upon being
a dense F'c subspace of the Vietoris hyperspace of all non-empty compact sub-

spaces of X.



16 BELL

The matter of F[X] is quite different. It has been used as examples.
[PR] used F[real line] as an easy example of a nonseparable Moore space of
countable cellularity. [PT], assuming MA + “ICH, used F[S], where S is a sub-
set of the real line of cardinality w,r @s an example of a nonseparable,
metacompact, normal, Moore space of countable cellularity. [AP], assuming
MA + TICH, showed that [FLS11” has all the preceding properties. [BE] used
F[K] and F<k>, where K is the Cantor space, to construct a first countable,
sigma compact, nonseparable p-space of countable cellularity. F[X] has also
been studied in its own right in [vD] and [L]. Normality, paracompactness
and metrizability of subspaces of F[Xx], for various spaces X, have been in-
vestigated in [BFLl], [BFLz], [PL], [PR] and [R]. Several of their results

will appear in the following sections.
2. BASIC UNDERSTANDINGS

Our topological reference for undefined terms is [W].
All spaces considered are Tl'
3. FUNDAMENTAL PROPERTIES OF F<Xx> AND F[x]

It is easy to see that if S is a subspace of X, then the hyperspace
topologies on F(S) coincide with the subspace topologies that F(S) receives
from F<x> and F[x]. X is always embedded in F<X> (as the subspace F1<X>) but

only under very restricted conditions is X ever embeddable in F[X]J.

PROPOSITION 3.1. F<X> satisfies the following:
(a) C£F<X><O> = <{C£X0: 0 ¢ 0}>.

(b) F<S> is closed (open) in F<X> if and only if S is closed (open) in X.

(c) F<x> is T2, regular, zero-dimensional and Tychonov if and only if X is
T2, regular, zero-dimensional and Tychonov respectively.

(d) If X is T,, then Fn<X> is closed in F<X> for each n.

2/

, n . _
(e) The mapping hn. X > Fn<X>' defined by hn((xl’XZ""'Xn)) = {x1,x2,---,

...,xn}, is continuous and finite-to-one. If X is T then hn is also

2/

closed, i.e., hn is a perfect mapping. In general, only h1 and h2 are

open mappings.

PROOFS. cf. [M1] or Problems 2.7.20 and 3.12.26 in [E]. 0O
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PROPOSITION 3.2. F[X] satisfes the following:

(a) Each [F,0] is both open and closed in F[X].

(b) For each S ¢ X, F[S] is closed in F[X]. In addition, F[S] is open in
F[x] if and only if S is open in X.

(c) F[X] is zero-dimensional, T2, hereditarily metacompact and is the union
of countably many discrete subspaces - each subspace {F ¢ F[x]: |F| = n}
is discrete.

(@) Fn[X] is closed in F[X] for each n.

(e) F[X] is a Moore space if and only if X is first countable.

(£) F[X] is perfect (even hereditarily Fo) if and only if every point of X

is a GG'
PROOF. (a) through (e) were proved in [vD] and (f) was proved in [L]. g

We now look at various cardinal functions of F<x> and F[X].

A network for a space X is a collection N of subsets of X such that for
each x € X and each open neighbourhood 0 of x, there exists an N € N such
that x € N ¢ 0. The net weight of a space X, nw(X), is the least cardinal
of a network for X. The weight of a space X, w(X), is the least cardinal of
a base for X. The density of a space X, d(X), is the least cardinal of a
dense subspace of X. The Lindeldf number of a space X, L(X) , is the least
cardinal k such that every open cover of X has a subcover of size <k. The
cellularity of a space X, c(X), is the least cardinal «k such that every dis-

joint collection of open sets has cardinality <k.

PROPOSITION 3.3. The following hold for an infinite space X:

(a) nw(F<X>) = nw(X); nw(F[X]) = nw(x)-|x]|.
() w(F<x>) = w(X); w(FIX]) = w(x)-Ix|.
(c) a(F<x>) = d(x); d(F[x1) = Ix]|.

(d) If X is T,, then L(FX>) = sup{L(x™): n < w}; L(F[X]) = Ix].

i

i
]

PROOF. The first three are easy to prove. The equations in (a) and (b) re-
lating to F[X] appear in [L]. The equation in (c) relating to F[X] appears
in [vD].

L(F[x]) < |F[x]| = |X| and, since X is a closed discrete subspace of
F[x] we also have that |X| < L(F[x1).

If X is T2, then the mappings hn: x" > Fn<x> are perfect and so L(Xn)=
= L(Fn<X>) for each n. If X is T, then each Fn<x> is closed in F<X>. There-

fore, L(Fn<x>) < L(F<X>) for n. It follows that sup{L(Xn): n < w} € L(F<x>).
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Since F<x> = Un<w Fn<X>, we have that L(F<x>) < sup{L(Xn): n < wl. ]

The determination of the cellular function of F<X> and F[X] is more
difficult. We only have that c(F<x>) < sup{c(Xn): n < w} from [G] and that
c(F[X]) € nw(x) from [L].

The spaces Fn<X> can behave strangely, even for as simple a space as
the closed unit interval I. In [BUJ], it is shown that Fn<I> is homeomorphic

to In if and only if n = 1,2 and 3.
4. NORMALITY OF F<x> aND F[x].

Necessary and sufficient conditions on X in order that F<X> or F[X] be
normal are major unsolved problems. Is F<X> normal if and only if Xn is nor-
mal for each n < w? We mention two important instances where there are
characterizations.

A space is a Q-set if every subset of it is a G6 set in it.

4A. Subspaces of the Cantor Space K = 2%,

Since F<K> is metrizable, for all subsets W of K we have that F<w> is
normal.

In [R] it is shown that for W ¢ K, F[W] is normal if and only if W ois
a Q-set for each n < w. Since K is not a Q-set, it follows that F[K] is not
normal. From Proposition 3.2(b), we conclude that if a space X contains a

copy of K, then F[X] is not normal.

4B. Subspaces of a Souslin line S.

We assume that S has no nontrivial separable subintervals and write

S = U{Ka: o < wl} where each Ka is a Cantor space and Ku c K, for o < B. In

B
[R] it is shown that for X ¢ S, F[X] is normal if and only if
(a) {a < mlz X n UB<a Ka is closed in X} contains a closed and unbounded
subset of wl and

(b) (X n Ka)n is a Q-set for n < w and o < wl.
For subsets X of a Sorgenfrey-type space, in [PRZ] it is shown that

F[x1 is hereditarily normal if and only if the characters of all non-isolated

points coincide. It is also shown there that for locally éech—complete spaces

X, F[X] is normal if and only if X is scattered.
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5. PARACOMPACTNESS AND METRIZABILITY OF F<x> aND F[x]

A space X is collectionwise Hausdorff if for every closed discrete
subspace {da: a € A} ¢ X, there exists a disjoint collection {Oa: a € A} of
open subsets of X such that da € Oa for each o € A. Moreover, if the col-
lection {Oa: o € A} can always be chosen to be a discrete collection, then
X is strongly collectionwise Hausdorff. A space X is said to be collection-
wise normal if for every discrete collection {Ca: a € A} of closed subspaces
of X, there exists a disjoint collection {Oa: o € A} of open subsets of X
such that Cu c Oa for each a € A. A space X is ultraparacompact if every
open cover of X admits a disjoint open refinement. A space X is said to be
ultrametrizable if the topology on X is generated by a metric d which satis-

fies the following: for every x, y and z, d(x,y) < max{d(x,z),d(z,y)}.

PROPOSITION 5.1. If X is T then F<X> is paracompact if and only if X" is

2[
paracompact for each n < w.

PROOF. Assume F<X> is paracompact. Since X is T2,

and therefore paracompact. The mapping hn: " > Fn<x> is perfect, hence X"

Fn<X> is closed in F<x>

is paracompact.

Assume X' is paracompact for each n < w. Let {<0F>: F € F<x>} ke an
open cover of F<X> be basic open sets <OF> where F € <0F>. By Theorem 20.7
in [W], it suffices to show that {<0F>: F ¢ F<x>} has an open o-locally
finite refinement. Fix n < w. Since Fn<x> is paracompact (hn is closed),
let b = {<UF> n Fn<X>: F e Fn<X>} be an open locally finite refinement of

<X>: < i <
{<OF> n Fn X>: F € Fn X>} in Fn X> such that F e <U_>, <UF> c <OF> and
. * 3
= . = < > <X>7J.
IUFI |F|. Define bn { UF F e Fn x>}
CLAIM. {<UF>: F e Fn<X>} is locally finite in F<x>.

PROOF OF CLAIM. Let F e F<X>. Choose {V(F,f): £ e F} such that

(1) for each £ ¢ F, £ € V(F,f) is open in X; and

(2) if H ¢ F and |H| < n, then <{V(F,h): h € H}> n Fn<x> intersects only
finitely many <UG> n Fn<X>'s for G € Fn<x>.

Then, F € <{V(F,f): £ € F}> and this neighbourhood intersects only finitely

many <UG>'s for G € Fn<X>. Observe that if <{V(F,f): £ € F}> n <UG> # ¢

where IUGI = |G| € n, then there exists an H ¢ F, |H| < n such that

<{V(F,h): h ¢ H}> n <UG> n Fn<x> # ¢. There can only be finitely many in-

stances of this. End of proof of claim.
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*
{bn: n < w} is an open o-locally finite refinement of our original

cover. Hence, F<x> is paracompact.

PROPOSITION 5.2. F<X> is metrizable if and only if X is metrizable.

PROOF. If F<X> is metrizable, then F1<X> is metrizable. Since X is homeo-
morphic to F1<X>, X is metrizable.
If X is metrizable, then the hyperspace of all non-empty compact sub-

sets of X is metrizable [M1] and hence F<X> is metrizable. N

As we shall see, both paracompactness and metrizability of F[X] reduce
to the question of when is F[X] collectionwise Hausdorff. By the following
result in [BFLz], we see that if F[X] is paracompact or metrizable, then it

is so in a strong way.

PROPOSITION 5.3.

(a) F[X] is paracompact if and only if F[X] is ultraparacompact.

(b) F[X] is metrizable if and only if F[X] is ultrametrizable.

It was proved in [BFL2] that F[X] is paracompact if and only if F[x]
is strongly collectionwise Hausdorff. We shall strengthen this result to
just collectionwise Hausdorff. Independently of this author,

T.C. Przymusinski has also proven this fact.

LEMMA 5.4. If F[x] is collectionwise Hausdorff, then there exists

{0(F): F e F[X]} where each 0(F) = {O(F,f): £ ¢ F} and

(a) for each £ ¢ ¥, £ ¢ O(F,f) and O(F,f) is open in X;

(b) if fl,f2 c F, then f1 ¢ O(F,fz) and f2 I'4 O(F,fl);

(c) if H< F, he H, f ¢ F and £ ¢ 0(H,h), then O(F,f) < O(H,h);

(@) if |F| = |Gl, F ¢ UUG), ¢ < UO(F), F ¢ UO(H) for any proper subset H
of F and G ¢ UO(H) for any proper subset H of G, then F =G.

PROOF. We construct the 0(F)'s by induction on |F|. Assume that we have
constructed the O(F)'s for all F's with |F| < n so that (a) through (d)
are satisfied.

Fn[X] - U{[H,U0®)]: |H| < n} is a closed discrete subspace of F[X].
since F[X] is collectionwise Hausdorff, for each F with |F| = n, we can
choose an open set V(F) ¢ X such that F ¢ V(F) and

{[F,v(F)]: F ¢ Fn[x] - U{[H,U0HE)]: |H| < n}}
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is a disjoint collection. Let F have cardinality n. Since X is Tl’ we can

choose open sets W(F,f) ¢ X for each £ € F such that if {fl,fz} c F, then
f1 ¢ W(F,fz) and f2 ¢ W(F,fl). Finally, for each f € F, define

O(F,f) = V(F) n W(F,£) nn {O(H,h): h e H S Fand f € 0(H,h)}.

If O(F) = {O(F,f): £ € F}, then the collection {0(F): |F| < n} satisfies
(a) through (d). The collection {0(F): F € F[x]} is our required collec-
tion. 0

In order to facilitate our investigation, we use the following defini-

tions:

DEFINITION 5.5. A space X weakly separated if there exists a reflexive and
antisymmetric relation < defined on X such that for every x € X, {y € X:

y £ x} is open in X. If, in addition, the relation is a partial (total)
order, then we say that X is partially (totally) separated. We call < a weak

(partial, total) separation of X.

Weakly separated spaces were defined in [T]. Partially separated spaces
were defined in [BFLz] (called acceptable partial orders). These are gener-
alizations of right-separated spaces in which the relation is a well-

ordering.

THEOREM 5.6. The following are equivalent:
(a) F[x] is paracompact.
(b) F[X] is collectionwise Hausdorff.

(c) F<x> is weakly separated.

PROOF.

(a) implies (b). This is obvious.

(b) implies (c). Let {O(F): F ¢ F[X]} be as in Lemma 5.4. Define a relation
< on F<Xx> by F < G if and only if F € <0(G)>. This relation is reflexive
since G ¢ <0(G)>. For every G ¢ F<x>, {F: F < G} = <0(G)> which is open
in F<X>. It remains to show that < is antisymmetric.

We first show that if |F| = |G|, F ¢ U0(G) and G < UO(F), then
FNG # ¢. We induct on the cardinality of F and G. If |F| = |G| = 1, then
this is true by condition (d) of Lemma 5.4. Assume that for every pair {H,K}

such that |H| = |K] < n, if H ¢ U0(K) and K ¢ UO(H), then H n K # ¢. Let
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|IFl = |G| =n, F < U0O(G) and G c UO(F). If F = G, then clearly F n G # ¢. If

F # G, then by condition (d) of Lemma 5.4., one of F or G must reduce. With-

out loss of generality, assume that there exists a proper subset H of F such

that F ¢ UO(H). Condition (c) of the same Lemma implies that UQ(F) < UO(H).

There exists K € G such that |K| = |H| and H ¢ U)(K). Since K ¢ G < UO(F) ¢

c UO(H) and |H| = |K| < n, our inductive hypothesis implies that H n K # ¢,

whence F n G # ¢.

We return to our proof of antisymmetry. Let F £ G and G < F, i.e.,

F e <0(G)> and G ¢ <0(F)>. Condition (b) of Lemma 5.4 implies that for every

f € F-G, there exists a g ¢ G-F such that g € O(F,f). Similarly, for every

g € G-F, there exists an £ € F -G such that £ € 0(G,g). Thus, if at least

one of F-G or G- f is non-empty, then there exists r = 1, {fi: 1<i<n} ¢

F -G and {gi: 1<i<r} ¢ G-F such that 9, € O(F,fl), f2 € O(G,gl),...,gr €

O(F,fr) and £, € O(G,gr). This means that {fi: 1<i<r} ¢ U{O(G,gi):

1SiSr}glM(@i:1s15rh and ﬂmt{gf 1£i$r}§lﬂ0@3%):1SiSr}g

c UO({fi: 1 £i < r}). By the preceding paragraph, we conclude that

{fi: 1<ic<r}n {gi: 1 <i<r}# ¢ which is a contradiction. Hence F -G =

G-F =¢ and F = G.

(c) implies (a). Let < be a weak separation of F<x>. Since F[X] is meta-
compact, it suffices to show that F[X] is collectionwise normal. To this
end, let {Ha: a € A} be a discrete collection of closed subspaces of
FLx1.

By induction on the cardinality of F, we can construct sets O(F,f) for
each F and £ € F such that

(1) £ € O(F,f) and O(F,f) is open in X;

(2) if H< F, he H, f ¢ F and £ € O(H,h), then O(F,f) < O(H,h);

(3) if H ¢ F, then <{0(F,h): h ¢ H}> ¢ {G: G < H};

(4) if o e A and F ¢ Hd, then [F,U{O(F,£f): £ € F}] n Ha = 6.

For each F e¢ F[Xx], define O(F) = {O(F,f): f € F}. For each o € A, de-
fine Ua = U{[F,U0(F)]: F ¢ Ha}' For each a € A, Uu is open in F[Xx] and

a
|F| + |G| where F ¢ Ha and G ¢ H

H < Uu. We now show that Uu n UB = ¢ for o # B. This we do by induction on
g Assume that for all F ¢ Ha and for all
G e Ha such that |F| + |G| < n, we have that [F,U0(F)] n [G,U0(G)] = ¢. Let
F e Hu' G € HB' and |F| + |G| = n. Striving for a contradiction, assume that
[F,U0(F)] n [G,U0(G)] # ¢, i.e., F c UD(G) and G < UO(F).

We first show that F ¢ UDO(F n G). If it were, then condition 2 would
imply that F ¢ [F,U0(F)] < [F n G, UJ(F n G)]. Since F ¢ Hu' condition 4

implies that F n G € Ha' Hence, |FnG| < |G|, and our inductive hypothesis
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implies that [F n G,U0(F n ¢)] n [G,U0(G)] = ¢, whence [F,U0(F)] n [G,U0(G)]=
= ¢. Contradiction. Similarly, we prove that G ¢ UO(F n G). Consequently,
F-UO(F nG) and G-UD(F n G) are disjoint non-empty finite sets.

Condition 2 implies that F-UQ(F n G) < U{0(G,g): g € G-UO(F n G)}
and that G-UO(F n G) < U{O(F,f): f € F-UO(F n G)}. Thus there exists r = 1,

{£.: 1 €i<r}
1

in

F-UO(F n G), and {gi: 1 <i<r}cc-UO(F n G) such that
f1 € O(G,gl),g1 € O(F,fz),...,fr € O(G,gr), and g, € O(F,fl). Hence,
{fi: 1 <i<r}e <{0(G,gi): 1 <1i<r}> and {gi: 1<ic<r}e <{O(F,fi):
1 <i < r}>. Condition 3 implies that {fi: 1 <ic<r}cs< {gi: 1 £1i<r} and
{g,: 1 £i<r}<s{f :1<1i
i i

. < i £ = . < i

{fi' 1<ic<r} {gi. 1 <i

A

r}. The antisymmetry of < implies that

IN

r}. This is the contradiction that we were

striving for. ]

We mention a question posed in [PR]. Does there exist a space X such
that F[X] is normal but not paracompact, i.e., not collectionwise Hausdorff?
It is independent of the axioms of ZFC that an example exists of character
<c. MA + TICH implies that F[S], where S is a subset of the real line of
cardinality wl, is such a first countable example, whereas, according to a
theorem of FLEISSNER [F], V = L implies that every normal space of character

<c is collectionwise Hausdorff.

COROLLARY 5.7. The following are equivalent:
(a) F[X] is metrizable.

(b) X is first countable and F<X> is weakly separated.

PROOF.

(a) implies (b). First countability of F[X] implies first countability of X.
Theorem 5.6 now applies because metric spaces are paracompact [ST].

(b) implies (a). F[X] is paracompact by Theorem 5.6, F[X] is a Moore space
by Proposition 3.2(e) and a paracompact Moore space is metrizable [BI].

0
6. WEAK AND PARTIAL SEPARATION

It is clear from Section 5 that our main aim is to find "nice" neces-
sary and sufficient conditions on X in order that F<X> be weakly separated.
Pursuant to this aim, we first investigate the general theoty of separations
on an arbitrary space X. To require that a space be weakly separated is a

very strong restriction as we see by the following:
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PROPOSITION 6.1. If X is weakly separated then for every subspace S of X,

|s| = nw(s).

PROOF. Let < be a weak separation on X, let S be a subspace of X, and let N
be a network for S of minimal cardinality. For each x € S, choose Nx e N
such that x € Nx c {z € X: z £ x}. The antisymmetry of < implies that for
distinct x and y in S, NX # Ny. Hence, |S| < |N|, and the proposition is

proved. O

Since X is a subspace of F<X>, we see that if F<X> is weakly separated,
then for S ¢ X, |S| = nw(S). Thus, for example, an uncountable space X which
has a countable network cannot be weakly separated and F[X] cannot be col-
lectionwise Hausdorff. On the other hand, spécces like the SORGENFREY Line
[s0] or any subspace of an ordinal space clearly are totally separated. For

any T, space X, F[X] is partially separated Dy defining F < G if G ¢ F.

1
In the following proposition, the words "weakly separated" can be re-
placed (except where noted) by "partially separated" or "totally separated"

and the same proofs carry over.

PROPOSITION 6.2.

(a) If X is weakly separated then every sukspace of X is weakly separated.

(b) If for every a € A, Xu is weakly separeted then DaeA Xa is weakly sep-
arated. Not so for totally separated spaces.

(c) If C is a closed subspace of X such that both C and X -C are weakly
separated, then X is weakly separated.

(d) If X = U:=1 Cn where each Cn is closec in X and are weakly separated,
then X is weakly separated.

(e) If each point of X has an open neighbourhood which is weakly separated,

then X is weakly separated.

PROOF. Proofs of (a) and (b) are straightforward. To prove (c) let Sl be a
weak separation on a closed subspace C of X and let 52 be a weak separation
on X -C. Define € on X by x < y if and only if at least one of the follow-
ing obtains:

(1) vy e Cand x ¢ C;

(2) y e C, x € C and x 51 v

(3) y £ C, x ¢ C and x 52 V.
< is reflexive and antisymmetric. If y € C, then {x € X: x < y} =

={x e C: x < v} U (X-C) which is open in X. If y £ C, then
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{x e X: x <yl =1{xe (X-C): x <, vy} vhich is open in X. Consequently, < is
a weak separation on X.
To prove (d) let Sn be a weak separation on the closed subspace Cn of
X. Define € on X by x < y if and only if at least one of the following
obtains:
(1) there exists an n such that y € Ui<n Ci and x ¢ Ui<n Ci;
(2) there exists an n such that y e C_ - U, C., x e C_ - U, C, and
n i<n i n i<n i
< .
X<y
< is reflexive and antisymmetric. If y € X, then there exists an n such
that y € Cn - U, C, . Thus,

i<n i

{x e X: x <y} = (x - ign c) v {x ¢ c, - ign C;: x < v}
which is open in X because the Cn's are closed.
To prove (e) let < be any well-ordering of X. For each x € X, choose
an open neighbourhood Ox of x which has a weak separation SX. Define £ on X
by x £ y if and only if at least one of the following obtains:
(1) there exists a v € X such that x € U{Ow: w=< v} and y ¢ U{Om: w = v};
(2) there exists a v € X such that x € Ov-U{Ow: w=<v}l ye 0V-U{Ow: w < v}
and x Sv Y.
< is reflexive and antisymmetric. If y € X, then there exists a least
(under <) v € X such that y € OV-U{ON: w <v}. Thus, {x € X: x < y} =

= U{Ow: w=v}luixe 0,: x < vy} which is open in X. 0

EXAMPLE 6.3. Every discrete space is totally separated. Part (d) of Proposi-
tion 6.2 implies that every space which is the union of countably many
closed discrete subspaces is totally separated. Thus from part (e) we see

that every locally countable T, space is totally separated. The MICHAEL line

1
[M2] is totally separated by part (c) because it is the union of a closed

countable T1 subspace and an open discrete subspace.

PROPOSITION 6.4. If X is T2, then F<x> is weakly separated if and only if

for every positive integer n, {F ¢ F<X>: |F| = n} is weakly separated.

PROOF. One direction follows directly from part (a) of Proposition 6.2.
Since each Fn<x> is closed in F<X>, to show that F<X> is weakly separated,
it suffices to show that each Fn<x> is weakly separated. This follows from
the fact that each {F ¢ F<x>: |F| = n} is weakly separated by n applications
of part (c) of Proposition 6.2. 0
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PROPOSITION 6.5. If X is partially separated, then F<X> is weakly separated.

PROOF. Let < be a partial separation on X. For every F € F<x> and f ¢ F,
choose an open neighbourhood O(F,f) of f in X such that
(1) {£,,£,} ¢ F implies £, ¢ O(F,f,) and £, ¢ O(F,£,);
(2) 0(F,£) ¢ {h € X: h < £}.
Define F <* G if and only if F ¢ <{0(G,g): g € G}>. The relation <* is re-
flexive and for each G € F<x>, {F ¢ F<x>: F <F G} = <{0(G,g): g € G}> which
is open in F<x>.

To prove antisymmetry, let F S* G and G S* F, i.e., F € <{0(G,qg):
g € G}> and G € <{0(F,f): f ¢ F}>. Condition 1 implies that for every
f € F-G, there exists a g € G-F such that g € O(F,f). Similarly, for every
g € G-F, there exists an £ € F-G such that £ € 0(G,g). Thus, if at least
one of F-G or G-F is non-empty, then there exsits r 2 1, {fi: 1<i<r}eg
c F-G and {gi: 1 <i<r}cG-F such that 9, € O(F,fl), f2 € O(G,gi),...

- . . < <
..,gr € O(F,fr) and £, € O(G,gr). Condition 2 implies that fi_,gr_.fr,...

1
...,f25;g1$ fl. Since < is acyclic, this is a contradiction. Hence, F-G = ¢

and G-F = ¢, i.e., F = G. O

COROLLARY 6.6. ([BFL2]). If X is partially separated, then F[X] is paracom-

pact. If, in addition, X is first countable, then F[X] is metrizable.

REMARKS .

(a) Corollary 6.6 has been generalized in [PR] as follows: Let (S,<) be a
partially ordered set and suppose that X = U{XS: s € S}, where XS n Xt =
¢ for s # t and U{Xt: t < s} is open in X for every s € S. If F[XS] is
paracompact for every s € S, then F[X] is paracompact.

(b) Partially separated spaces include all locally countable T, spaces, all

o-closed discrete spaces, all scattered spaces, all subspaies of F[x]
and many generalized-ordered spaces. All examples of spaces X for which
F[x] is paracompact have turned out to be partially separated. In an
upcoming paper on weakly separated spaces, we will show that there
exists a first countable Tychonov space X for which F<X> is weakly
separated, but X is not partially separated. We also have an example

1
ed. This example is not first countable, however.

of a T, weakly separated space X for which F2<X> is not weakly separat-

PROBLEM 6.7. If X is a first countable Tychonov space, is F[X] metrizable
if and only if X is weakly separated?
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COMPLETENESS FOR NEARNESS SPACES
H.L. Bentley & H. Herrlich

ABSTRACT AND INTRODUCTION.

For uniform spaces completeness is a well-defined and useful concept.

We investigate, in the realm of nearness spaces, to which extent this con-

cept can be extended in a sensible way to some wider range. For this pur-

we first formulate 20 external resp. internal characterizations of complete-

ness as well as some basic properties of completeness and completions for
uniform spaces. Next we investigate these characterizations and properites
in some wider range. Main results are:

(1) Virtually the whole theory remains valid for regular nearness spaces.

(2) Large parts of the theory remain valid for separated nearness spaces,
the only notable exception being the fact that completions are no long-
er unique. For separated nearness spaces there exist two distinguished
completions, a "largest" (= simple) one, which is a complete reflection
but otherwise behaves rather badly, and a "smallest" (= strict) one,
which behaves rather well and whose restriction to uniform spaces is
the usual uniform completion, but which fails to be a complete reflec-
tion.

(3) Beyond the range of separated nearness spaces, The various characteri-
zations of completeness are no longer equivalent. The concept of com-
pleteness splinters into many different concepts and a natural theory
of completeness ceases to exist.

In this paper we restrict attention to those nearness (in particular uni-

form) spaces, whose underlying topological spaces are Hausdorff.
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1. UNIFORM SPACES

1.1. External Characterizations

We start with two external characterizations of complete spaces among
uniform spaces:

(A) A uniform space is complete iff it is extension-closed, i.e. closed in
every uniform extension (equivalently: iff it has no pioper dense ex-
tension) .

(B) A uniform space is complete iff it belongs to the epireflective hull
of all complete metrizable uniform spaces in the category Unif (equi-
valently: iff it is isomorphic to a closed subspace of some product of

completely metrizable uniform spaces).
1.2. Internal Tools

In order to provide internal characterizations of completeness among
uniform spaces, we need to recall definitions and properties of several
useful internal tools.

Let X = (X,u) be a uniform (or more generally an arbitrary nearness)
space - where u denotes the collection of all uniform covers of X. A col-
lection A of subsets of X is called
- near, provided every uniform cover contains some member, which meets

every member of A
- micromeric, provided for every uniform cover U there exist members U of
U and A of Awith A cuU )
- concentrated, provided it is near and micromeric
- a stack, provided A ¢ A and A ¢ B ¢ X implies B € A
- a grill, provided X e A, # ¢ Aand (A UBe A«>Ac Aor BeA).
Micromeric filters are called Cauchy filters. Every Cauchy filter is near.
An ultrafilter is near if and only if it is a Cauchy filter. A filter F on
X is called a strong Cauchy filter (MORITA [6]), provided for every uniform
cover U there exist members U of U and F of F, such that U is a uniform
neighbourhood of F, i.e. such that there exists a uniform cover H with
star (F,H) c U. Maximal (non-empty) near collections are called clusters.
Minimal micromeric stacks (not containing the empty set) are called round

Cauchy filters.
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The operator sec, defined by secA = {Bc X|B n A # @ for all A e A},
is idempotent for stacks, reverses the order, interchanges the roles of
filters and grills as well as of near collections and micromeric collections.

The following diagram exhibits the relations between the above con-
cepts for arbitrary nearness spaces. Let A be a stack and L = secA (hence

A = secl). Then:

h

A cluster »|L round Cauchy filter

¥ +

A maximal near grill |«—— 5 ([ minimal Cauchy filter

A near ultrafilter|es| L near ultrafilter L strong Cauchy filter
« ~ P
A near grill |< »>| L Cauchy filter
v v
A concentrated |- >| L concentrated

For uniform spaces the names "strong Cauchy filter", "round Cauchy filter"
and "maximal near grill" are superfluous, as the following results show:
(C) In a uniform space, the clusters are precisely the maximal near grills,
(hence) the round Cauchy filters are precisely the minimal Cauchy fil-
ters.
(D) In a uniform space, the strong Cauchy filters are precisely the Cauchy
filters.
Any of the above concepts can be used to describe the "holes" in a non-
complete space. Particularly useful are clusters and minimal Cauchy fil-
ters, since for any "hole" in a uniform.space the collection of all sets
"near the hole" forms a cluster, and the collection of all sets "surround-
ing that hole" forms a minimal Cauchy filter. The following result sheds
more light on the picture: .
(E) For any stack A in a uniform space (X,u), the following conditions are
equivalent:
(1) A is concentrated
(2) there exists a (unique) cluster C and a (unique) minimal Cauchy
filter F with F ¢ A ¢ C.

If the above conditions hold, then

C={cc X| {c} u A is near}
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and

F={Fcx|{F} u{x\a|ae A} is a uniform

cover} .

Completeness means that certain collections A converge resp. adhere. Here

A is said to converge to x, provided for any neighbourhood U of x there

exists some member A of A with A ¢ U; and A is said to adhere to x, provided

x is an adherence point of every member of A. For uniform spaces we have

the following useful result:

(F) For any concentrated collection A and any point x in a uniform space,

the following conditions are equivalent:
(1) A converges to x

(2) A adheres to x.

1.3. Internal Characterizations

The tools, presented in the above section, suggest
ties to define completeness. The following result shows

for uniform spaces:

several possibili-

their equivalence

(G) For a uniform space the following conditions are equivalent:

(1) every cluster adheres

(2) every maximal near grill adheres

(3) every near grill adheres

(4) every concentrated collection adheres
(5) every Cauchy filter adheres

(6) every near ultrafilter adheres

(7) every strong Cauchy filter adheres
(8) every minimal Cauchy filter adheres
(9) every round Cauchy filter adheres
(10) every round Cauchy filter converges
(11) every minimal Cauchy filter converges
(12) every strong Cauchy filter converges
(13) every near ultrafilter converges

(14) every Cauchy filter converges

(15) every concentrated collection converges
(16) every near grill converges

(17) every maximal near grill converges

(18) every cluster converges.
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1.4. Completions

Here we formulate some fundamental results concerning completeness and
completions of uniform spaces:
(H) Completeness is productive, closed hereditary (and coproductive), and

hence epireflective in the category Unif of uniform spaces.

(I) Every uniform space X has an essentially unique completion yX. The points

of yX are in l-l-correspondence to any of the following:

(1) all clusters of X

(2) all minimal Cauchy filters of X

(3) all concentrated collections in X, modulo the equivalence A~ <
A u L is near.

(K) Completions preserve

(1) products

(2) embeddings

(3) total boundedness (= contiguity, = proximity)

(4) (large) uniform dimension

(5) uniform weight, i.e. the smallest cardinality of a base for the
covering structure

(6) uniform separability degree, i.e. the smallest cardinal k such that
there exists a base, all of whose members have cardinality <k

(7) metrizability.
2. REGULAR NEARNESS SPACES

In a nearness space a uniform cover A is called a regular refinement
of a uniform cover L, provided for any mémber A of A there exists a member
B of L, which is a uniform neighbourhood of A (i.e. there exists a uniform
cover C with star (A,C) c B). A nearness space is called regular provided
every uniform cover has a regular refinement. Since star-refinements are
regular, any uniform space is a regular nearness space. Regular nearness
spaces were first introduced by K. MORITA [6], who demonstrated that sev-

eral results in §1 hold in this more general context. Moreover we have:

THEOREM 2.1. With the exception of (B), all the results (A) - (K) of 81 re-
main valid for regular nearness spaces. Moreover, completions of regular

nearness spaces preserve uniformity.
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Proofs can be found e.g. in [4, 5].
3. SEPARATED NEARNESS SPACES

A nearness space is called separated, provided for any concentrated
collection A, the collection {B c X | {B} u A near} is near (and hence the
unique cluster containing A). Separated nearness spaces were introduced in
[4, 5]. Every regular nearness space is separated.

Essential parts of the theory of complete uniform spaces remain valid
for separated nearness spaces. First, the technical Lemmas (C), (E) and (F)

still hold in this context:

PROPOSITION 3.1. Results (C), (E) and (F) hold for separated nearness spaces.

PROOF. (C) follows immediately from the definition. (E) (2) = (1) is obvious.
Vice versa, if A is a concentrated stack, then C = {C ¢ X I{C} U A near}

is the unique cluster containing A. Since C is a near grill, secC is a
Cauchy filter and secC c sec(sec(C) = C. Therefore C is the unique cluster
containing sec C. Hence secC c secA implies that C is the unique cluster
containing secA. Consequently sec C is the unique minimal Cauchy filter

contained in sec(secA) = A.

N
\

7

secC.

Finally, secC ={FcX|CeC=FncCc#@}={Fcx| (xF) ¢C}=

= {F ¢ x| {X\F} u A not near} = {F ¢ x| {F} u {X\a | A ¢ A} uniform cover}.
(F) Let A be a concentrated collection. Without loss of generality we assume
A to be a stack. If A converges to x, then the neighbourhood-filter L of x
is contained in A. Hence the cluster C = {C c XI {c} u L near} contains {x}
and every member A of A, which implies that A adheres to x. Vice versa, let
A adhere to x. Let L be the collection of all neighbourhoods of x, and C be
the unique cluster containing L. Then {x} belongs to C. Hence, for every
neighbourhood B of x, the complement X\B cannot belong to C, i.e. there

exists a uniform cover U none of its members meets simultaneously X\B and
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all members of L. Since A is micromeric, there exists a common member A of
A and L. Since A meets every member of L it cannot meet X\B, which implies
that B o A is a member of A. Consequently A converges to x.

For the investigation of completeness in separated near ness spaces
Morita's strong Cauchy filters are no longer a suitable tool, as the fol-

lowing example shows:

EXAMPLE 3.2. Consider the separated nearness space (X,u), defined by X =
N x {0,1} and

1. VA = X

Aecpes<2. Ine N, Vm2n, 3a e A, {(m,0),m,1)} c A
[3. In e N, A e A, {(m,1) Im >n} ca

@@@ﬂﬂﬂ"‘
ooUUUl . ..

Then F = {F ¢ x[ (Nx{1})\F finite} is a non-convergent Cauchy filter,

which is not strong. The strong Cauchy filters are precisely the fixed

ultrafilters and hence convergent.

THEOREM 3.3. For separated nearness spaces, all the conditions of result

(G) , with the exception of (7) and (12), are equivalent.

Hence, for separated nearness spaces, each of the remaining 16 condi-
tions of (G) describes internally the same phenomenon: completeness. More-

over, this concept coincides with the external one, given in (A):
THEOREM 3.4. Result (A) remains valid for separated nearness spaces.
Moreover, the following results have been shown in [1]:

THEOREM 3.5. Result (H) remains valid in the category SepNear of separated

nearness space.

THEOREM 3.6. Every separated nearness space can be completed. Any two com-
pletions of a fixed separated nearness space are pointwise isomorphic. The
points of the completions can be described via any of the conditions (1),

(2) or (3) of (H). Among the completions of a fixed separated nearness
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space are two distinguished ones:

- a "largest" (= simple) one, which provides the complete reflection in

SepNear

- a "smallest" (= strict) one.

THEOREM 3.7. The strict completion preserves all the properties (1) - (7),
exhibited in (K), as well as uniformity and regularity. The simple comple-

tion (= complete reflection) preserves none of them.
For the latter, see the following example:

EXAMPLE 3.8. Consider the uniform space X = (X,u), defined by X = N and

Il. UA = X
Acpye 1
2. 3a € A, X\A finite.

X has (up to isomorphism), precisely one completion yX = (X',p'), which can

be described as follows: X = N U {w} and

1. VA = x'
Ae ' = {
2. 3A € A, w € A and X'\A finite.

Then yX x YX is the strict completion of X x X. The simple completion

(Y,v) of X x X can be described as follows: Y = X' x X' and

1. VA =Y

2.Vne N, 3me N, 3a € A,

{n} x (ke N |k=2m}u{uwh ca
Aeve<3.Vne N, Ime N, Jae A
({k e ¥ [k 2m} u {o}) x {n} ca

4. 3n e W, 3a € A,

2
v

(fme N|m2n}x{me N |m2nh v {(w,w} cA.
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(D (N (~ « o) (D (D (DD (D @
el ol le o . el G D
S JUL P

VA .
OO - D, OCOC-—- 9
OOC > OOC—

Strict completion of X x X Simple completion of X x X
4. NEARNESS SPACES

For arbitrary nearness spaces (with underlying Hausdorff spaces) com-
pleteness splinters in many different concepts as the following examples

demonstrate:

EXAMPLE 4.1. Consider the nearness spaces (X,u), defined as follows:
X =N x {0,1} and

1. VA = X
A e u<=>{
2. Ine N, Vm=2n, 3a e A, {(m,1)}u{(k,0) |k2m}<:A.

oJolalo]pims
OO0 LTt

Then:

(1) A={acx|an (N x{0}) infinite} is a maximal near grill, but not
a cluster.

(2) L ={Bc x| (N x{0})\B finite} is a minimal Cauchy filter, but not
round (i.e. not a minimal Cauchy stack).

(3) A u {N x{1}} is concentrated, but not contained in any near grill.

@) {ccx|3men, ({(n,)} u {m0) |m=n}) cC} is concentrated, but

does not contain any Cauchy filter.
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(5) Every cluster adheres, but the maximal néar grill A does not; every
round Cauchy filter converges, but the minimal Cauchy filter L does

not.

EXAMPLE 4.2. Consider the nearness space (X,u), defined as follows:
X = (N x{0,1}) v {w} and

1. VA = X
Aepne><2. Ine N, A ecA ({me N |m=n}x {0,1}) ca

3.3Inew, FAaeA {mO0) |m=2n}u {uh ca

ool >

Then:

(1) The collection A = {WN x {1}} u {{(m,0) ]m > n}l n € N} is concentrated
and converges to w, but does not adhere.

(2) The collection L = {{(m,1i) lm >n, i e {0,1}} ln e N} is concentrated

and adheres to w, but does not converge.

EXAMPLE 4.3. Consider the nearness space (X,u), defined as follows:

X =N x N and

1. VA = x )
Aecpue=<2.Vne N, Ime N, 3a € A,
{(k,i) |k 2mand i < n} cAa

NOO0O
OO0

OOOOOO
OOOOOO
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Then:

(1) Every maximal near grill is a fixed ultrafilter, hence converges and
adheres. So does every minimal Cauchy filter.

(2) The Cauchy filter F = {F ¢ X | (W x{0})\F finite} neither converges

nor adheres.

EXAMPLE 4.4. Consider the nearness space (X,u), defined as follows:

X =N x N
1. VA = x
Aecpue=<2. Ine N, Vm2n, 3a e A, {m} x N cAa
3, 3ne€ N, Vm=2n, 3a ¢ A, N x {m} < A.
Q 3 'Y . . o
(. o L] ° Ll .
(. ° L] Ll ° -
© O 0 v U U
Then:

(1) Every Cauchy filter converges; every near grill adheres.
(2) The collection A = {N x {n} In e N} is concentrated but neither con-

verges nor adheres.

EXAMPLE 4.5. Consider the nearness space (X,u), defined as follows:
X = [0,1] and

1. U{inta| & € A} = x
Aey e { }
2. 3a € A, X\A finite

where int denotes the interior operator of the usual topology on [0,1].

Then:

(1) Every near ultrafilter converges and adheres.

(2) The cluster, consisting of all infinite subsets of X, converges but
does not adhere. The round Cauchy filter {F c X ]X\F finite} adheres,

but does not converge.
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A systematic analysis of the various completeness concepts for arbi-
trary (Hausdorff) nearness spaces is still missing. Partial results are:
Cluster completeness is productive [2] and allows the construction of a
strict completion with completely satisfactory preservation properties

[4, 5], but is neither closed hereditary nor reflective.
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THE K-THEORY OF ALMOST SYMMETRIC FORMS

F.J.-B.J. Clauwens

INTRODUCTION

To motivate this paper we first recall a few facts.

According to [W1 , chapter 5] a normal map f between manifolds of di-
mension 2k and fundamental group m gives rise to a (so-called quadratic)
form § defined on some finitely generated free left B module V, where B de-
notes the integral group ring Z[m]. The appropriate equivalence class of ¥
in L2k(B) is the obstruction s(f) for changing f into a homotopy equivalence
by surgery (for k > 2).

According to [C] a closed manifold P of dimension 2q and fundamental
group p gives rise to a (so-called almost symmetric) form ¢ defined on some
finitely generated free left A module K, where A is Z[p]. The main theorem
there states that ¢ ® § represents the obstruction for doing surgery on
idP x £ if ¢ does so for f.

In this paper we will study the algebra of almost symmetric forms; there-
fore we first recall the main things about quadratic forms from [W2].

Orientability considerations give rise to a homomorphism w: 7 - {*1}.
The map -: B > B defined by the formula E“g?g" = zngw(g)g'1 satisfides xty =
X+y, Xy =y x and X = x. For such an involuted ring B the dual V =
HomB(V,B) of a left B-module V inherits the structure of a left B-module by
(af) (v) = f£(v)a; the canonical map “: V +-Vdd defined by &(f) = f(x) is an
isomorphism provided V is finitely generated projective. A form Z on V can
be viewed as a homomorphism V »vvd; then c* = cd o ":V > Vdd > Vd is one

such too.

DEFINITION. Let € be a sign. An e-quadratic form over B consists of a finite-
ly generated free left B-module V and a class of forms ¢y on V defined up to

*
the equivalence ¥ ~ ¥ + £ - € . It is called nonsingular if the symmetrisa-

tion A = Y + ew* is an isomorphism V - Vd. We call (W,¢dw¢) isomorphic to



42 CLAUWENS

(V,¢¥) if ¢ is a module isomorphism W - V.

If F is f.g. free the quadratic form y on F & Fd defined by wF(x,f) =
(£,0) is nonsingular; any quadratic form of this isomorphism type is called
standard. Now L2k(B) is defined as the quotient of the Grothendieck group
of nonsingular (-1)" quadratic forms over B by the subgroup generated by

standard such forms.

DEFINITION. Let n be a sign, A an involuted ring. A nonsingular almost n-
symmetric form over A consists of a finitely generated free left A module
K and an isomorphism o: K - Kd such that 6* = no (1+N), where N is nilpotent
(compare [C; §9]). Again ¢d0¢ is considered to be isomorphic to o for any

module isomorphism ¢.
AILMOST SYMMETRIC FORMS ARE QUADRATIC

Let A be an involuted ring, n = (—l)q. We consider quadratic forms over

the polynomial ring Als] over A equipped with the involution —— such that

Ia.s) = Ia, (1—5)3.
J J

THEOREM 1. Any element in L2

q(A[s]) can be represented by a quadratic form
Y which is linear in s. Any such linear Y can be viewed as an almost (—1)q

symmetric form.

PROOF. Let the element be represented by a quadratic form ¥ = ZWisl of de-
gree M in s. By the addition of a standard form and the use of an isomorphism

we get (in matrix notation)

1 -s wa-™ v oo o) [1 0 0 vy 0 s
0 1 0 0 0 1] |-14s 1 o] = \yMsM"l 0 1
0 0 1 0 0 O stM'1 0 1 o 0 0

a form of degree M-1 if M 2 2; so we can make that M = 1.

We can get rid of the constant term by using the equivalence

* *
WO + Wls ~ WO + Wls - Wo(l—s) + nWos = (Wl + WO + nWO)s.
To prove the last clause we consider the linear Y = Wls and write o for

* * *
nWl. Then the symmetrisation A =Y + nY of ¥ becomes 0 + (no -0)s which is
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-1 %
invertible exactly if o is invertible and no 10 -1 is nilpotent. Q.E.D.

THEOREM 2. There is a well defined biadditive pairing

L q(A[s]) x L2k(B) > L

2 (A®B)

2g+2k

which assigns to the quadratic form ¥ = Ewisl over Als] with symmetrisation

N and the quadratic form \{ over B with symmetrisation A the quadratic form
Tty = zy, ® At

over A ® B. In particular it extends the familiar product of a symmetric

form with a quadratic form.
. . q k
PROOF. Again write n = (-1)%, € = (-1)".

We start with the observation that for a general form T = ZFisl over

Als] we have

a0ty

i o A=At = ol e atea T

ezr: o A MM Nt - ezr; o (M hHix

elir, o AT = enroTin ¥
Hence the symmetrisation of the image is
A0 + eniv T = a7+ mrt o) = oy

which is invertible since both A and A are. Furthermore if we change Y into

the equivalent ¥ + Z - nZ* the image changes into
Wty azaTly - mzt oty =
-1 - - *
= AY(A TY) + AZ(X 1W) - ne{Az () 1lb)}

which is equivalent to AW(A—lw).

If we change ¥ into the isomorphic @dW¢ the image changes into
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A@d(x'iw)W(x'1¢)¢(x'1w) = {®(A"1¢y}de(x"1w)@(A"1W)

which is isomorphic to A‘l’()\_ld)). Finally if ¥ is standard then )\‘i’()\_lw) is
also standard: in fact such a ¥ is induced from a quadratic form over A for

which this statement is well-known. Since our pairing obviously respects

direct sums we have proven that the class of the image in L2q+2k (A®B) is
independent of the choice of the representing element for the class in
L2q(A[s]) .

Now by Theorem 1 we may from now on assume that Y is of the type os,
where 0 is nonsingular, almost n symmetric; so )\‘!’()\—1\1)) is just o ® Y.

Firstly if we change y by an isomorphism ¢ into ¢*1b¢ then 0 ® Y changes
by the isomorphism 1 @ ¢.

Secondly the isomorphism K @ (F@Fd) = (K®F) ® (K®F)d which maps
a® (x,f) to (a®x, o(a) ® f) lets 0 ® lpF correspond with wK@F' So standard
forms are mapped to standard forms.

It remains to be shown that the equivalence y ~ ¢y + ¢ - e?;* changes
0 ® P into something in the same class; this will be a consequence of the

following lemma.

LEMMA. For every integer p 2 0 there is an isomorphism <I>p and there are

forms Zp and Hp over A ® B such that
2doee =oe Wrr-cr') +2_ - enz’ + B P e
p b p b b

-1 %
where N is no 10 - 1 and thus nilpotent.

PROOF. We apply induction. For p = 0 we take

*
<I>0=1, zo=—c®c HO=—eo®c.

In general <I>p will be of the form 1 + N® ¢1+ +Np®¢p and H_of the form

o®6 + ON® 6 + ... . If we assume all this for p then <I>d (c®Y) o
p0 pl p

p+l +1

becomes

* * p+1
c® (y+z-€¢ ) +Z_ - enzZ_ + H (N ®1) +
v+z 4 o o p(

P
d,pt+l a 3 d,p+l_j a
+»(N AR jzl () oN” ® ¢p+1w¢j +

p+1
® WP+1 + jz

p+l d. j +1- -~ 4
+ ON . (N7) cN‘p ® ¢jw¢p+1'
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d)p+1

. 4 p+l
Now we rewrite (N ) ¢p+1¢ + ON ® ¢¢p+1 as

4, p+l d _ * p+l *
{() o ® ¢p+1w ENC N ® ¢p+1} +

p+1

* p+1 * + *
+ e(no -0)N ® Y ¢p+1 + ON ® (Y+ey )¢p+1

+ +
and we want the last term oNp ! ® A¢P+1 to cancel the first term GNP ! ® 6

- PO
of Hp(NP+1® 1) hence we define ¢p+1 = -A 1ep0' The first term we absorb in
7 by defining 2, = 2+ wHPHs e 4’;1“"
+
The remaining tem ech+2 ® ¢*¢p+1 will be absorbed in Hp+1(Np 2® 1),

as are the remaining terms of HP (Np"'1 ® 1) and the I-terms. The last is pos-
-1
sible because Ndo can be rewritten as -oN(1+N) ~. So there exists ®p+1' Zp+1

and Hp+1 of the right form. Q.E.D.

By viewing almost symmetric forms A as quadratic forms over Als] and
classifying the latter up to stable isomorphism we have defined an equiva-
lence relation on them.

According to Theorem 2 this relation is sufficiently fine to admit the
formulation of the product formula (for surgery obstructions). It is also
sufficiently coarse to define a bordism invariant of algebraic symmetric
Poincaré complexes in the sense of [R], hence one of geometric Poincaré com-
plexes: As explained in [C] we can associate an almost -n< symmetric form
0 to a 2g-dimensional algebraic symmetric Poincaré complex and then take its
class in qu(A[s]). The result is well-defined on qu(A) since it can be seen
as taking the tensor product with the element of LO(Z[s]) represented by
o= 1.

Both the inherent periodicity in g and the wealth of techniques avail-
able for quzmake it probable that qu(A[s]) is better suited for calcula-
tions then L q(A) is.

One could hope that an almost -n9 symmetric form is always equivalent
to an honest (—1)q symmetric one; the fdllowing example, due to A. Ranicki
shows that this is not the case. However we will see that it is the case if
the ring A contains a central element t such that t + t=1or if it is a
Dedekind domain.

The two-dimensional torus T2 = S1 X 81 gives rise to an element in L2(A),
and hence to an element in L2(A[s]), where A is the integral group ring of
ﬂl(Tz) = Z x Z. Suppose that this element could be represented by an anti-

. *
symmetric form o; then ¢ could be written as ¢ - ¢ ; the result 0 ® §y of its
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action on a (-1)-quadratic form Y would be equivalent to ¢ ® (w-—w*), hence
would depend only on the symmetrisation ¢ - w* of Y. In particular it would
kill the Arf nontrivial element in Lz(Z). On the other hand it follows from
[sH] that multiplication with a circle induces a split injection on L-groups

and hence the product with T2 gives a split injection LZ(Z) > L4(A).

SOME CALCULATIONS

THEOREM 3. If there exists a central element t of Z such that t + t = 1 then

the canonical map L

2

q(A) > L,

q(A[s]) is an isomorphism.

PROOF. The map Als] - A substituting t for s gives a left inverse so we must
show that for any integer p =2 0 there is an isomorphism ¢P and there are

forms ¢ and 6 such that
P P
d * p+1
(os) = ot + - + ON 6 _.
¢P ¢P CP m;P p

For p = 0 we take ¢0 =1, CO = os(1l-t), 90 = (1-s)t. In general ¢P will be
of the form 1+a N+ ...+0 NP and 6 =6 _+6 ,N+60 Nz-b... where the o,
1 ho) P pO pl p2 i

and eij are polynomial in s and t with Z coefficients, hence central.

. d
If we assume all this for p then ¢P+1(Gs)¢P+1 becomes

* p+1
ot + -n + ON 6+
CP CP p

— d, p+1
+ a +1(N )

° - d
os + ) o_ . (N
P L%

— +
We rewrite ap+1(Nd)p 1cs + 0Os0, N as

— d, p+1 * p+1
{ap+1(N ) 0s - no N ap+1(1 s)}

1
NP+1 Pt

*
+ (no -o0) 1

ap+1(1—s) + c(s-l-(l—s))ap+

+1
Then we let the last term cancel the first term of ONP GP by defining

= -8 . . -
ap+1 0 i?d abzorilthe first term in ¢ by defining
=z + P

Cp+1 is) m’p+1(N S-.
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4
The middle term oNp 2oup+1(1--s) is absorbed in 0Np+2ep+1, as are the I

+1
terms and the remaining terms of GNP Bp. Q.E.D.

THEOREM 4.

~

(0).

1]
e

LO(Z[s]) Z, L2(Z[s])

PROOF. According to Theorem 1 we may restrict attention to n-quadratic forms
*

Y of the type no s, where 0 is an almost n-symmetric form on some f.g. free

1 %

- -1
Z-module K. Thus N = no ¢ -1 satisfies N = 0 for some e. Then Ne K is

of finite index h in some direct summand L of K.

For x € LY = {x Ic(x)(L)==0} we have also o(L) (x) = 0 and vice versa,

since r1cr~kNe_1 = (0+0N)Ne_1 = che_1 implies
e-1 e-1
o(N~ y)(x) = nox)(N Ty, for y € K.
1, d x .
Furthermore L <€ L~ since oN = -nN ¢ implies
- - -2
o ) ¢ x) = o) %y = 0.

~ 1 ~ ~e vk
So 0 induces a well-defined form ¢ on L' /L, and N = nd o0 - 1 satisfies
~ -1 ~e—-1
N(x+L) = Nx + L hence N°® K ¢ L implies N° = 0.

Now L ® Z[s] is a direct summand of K ® Z[s] which is isotropic for V.

J

L
If x = ijs € K ® 2[s] is in (L®Z[s])” for the symmetrisation A = o + ONs

of § then we have for all £ ¢ L that
0=xle1, ijsj) = Zc(l,xj)sj + Zo(Nﬁ,xj)(l—s)sJ = Zc(K,xj)sJ

hence xj € LJ'. We see that (L® Z[s])l{‘(LebZ[s]) is jusi:.*(LJ'/L) ® z[s] and
obviously the induced quadratic form ¢ on it is just no s.

It is well known that y is stably equivalent to a and we have just seen
that the latter is associated to an almost n-symmetric form g which has a
better e. We can go on inductively until e = 1 which means that we get an
n-symmetric form.

It is also well known [SE] that a (-1)-symmetric form is stably trivial
and a (+1)-symmetric form stably isomorphic to some multiple m of the form

(1) of rank one. Finally m can be detected by taking the signature of the
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1
5 Q.E.D.

quadratic form over IR which we get by mapping s to

Now some general remarks about torsion are necessary. If we start with
a finite Poincaré complex P our module K gets a natural basis (see §6 of
[ch.

The symmetrization A of the associated quadratic form is o (1+Ns) and
according to Lemma 9 of [C] we have N2 =0 and 1 + Ns has a resolution by
automorphisms 1 + ((—1)12_12*-1)5 of the Ei which are simple; in particular
the isomorphisms involving N in the proofs of Theorems 2 and 3 are simple.
So the torsion of A lives in El(A) c El(A[s]) and the appropriate L groups
Léq(A[s]) have X = Wh(p) in the general case and (0) in the case of simple
Poincaré complexes.

At the time this is written we do not have theorems as the above for
the odd-dimensional case. Note however, that if we did, we could use the
long exact sequence 9.4 of [R] for the L groups to calculate Ln(Z[p][s])
for p the cyclic group of prime order p > 2. If w denotes exp(zni/p) and F0
is the field of p elements, there are maps from Z[pl[s] to Z[wlls] and Z[sa
and from these to Fp[s] satisfying all necessary conditions. Since

K2(Fp[s]) = 0 according to Theorem 11 of [Q] and 9.13 of [M] the map
K, (2[p1[s]) X, (zlw]ls]) @ K, (2[s])

is injective, so we may use the "simple" L-groups throughout and we get an

exact segeunce

... L
n

+ (Fp[s]) —>Ln(Z[p][51) ->Ln(Z[m][53) eLn(Z[s]) +Ln(FPESJ) .

~

But Ln(Z[w][sJ) = Ln(Z[w]) by Theorem 3, hence is known, and similarly

~

L (F [s]) 2L (F).
n'p n’ p

The author has now calculated Ln(Z[p][s]) for p cyclic.
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HYPERSPACES OF PEANO CONTINUA

D.W. Curtis

The hyperspace 2X of nonempty compact subsets of a metric continuum X,
and the hyperspace C(X) of nonempty subcontinua of X, are topologized by the
Hausdorff metric p(A,B) = inf{e > 0: A ¢ NE(B) and B © Ne(A)}' In this sur-
vey paper we discuss some of the fundamental classical results for such
hyperspaces, and some of the more recent work done on hyperspaces of Peano
continua. We begin in §1 with a brief description of the general connecti-
vity properties enjoyed by 2X and C(X). The investigation of these proper-
ties was initiated by BORSUK and MAZURKIEWICZ [4], [23], [24] in the early
1930s, and continued by KELLEY [21] in 1942 and SEGAL [32] in 1959. A com-
prehensive treatement of these and many other topics in hyperspace theory
is provided in the recently published monograph of NADLER [26]. In §2 we
specialize to hyperspaces of Peano continua. The equivalence of local con-
nectedness for X, 2x, and C(X), established by VIETORIS [37] and WAZEWSKI
[38] in 1923, and the fundamental result of WOJDYSLAWSKI [41] in 1939 that
such locally connected hyperspaces are absolute retracts, form the back-
ground for the topological characterization theorems of CURTIS, SCHORI and
WEST [29], [12] in the early 1970s. We describe in broad outline those tech-
niques from infinite-dimensional topolog& (the recognition of near-homeo-
morphisms, interior approximation by inverse sequences, and constructions
involving Q-factors) which were crucial for obtaining these results, and
which were in fact largely motivated by hyperspace problems. Relationships
between topological properties and geometric positional properties of cer-
tain subspaces of 2x are discussed in §3, §4, and §5. Finally, in §6 we in-
dicate how certain Peano compactifications may be used to establish topo-

logical characterization theorems for hyperspaces of non-compact spaces.
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§1. HYPERSPACES OF METRIC CONTINUA

The topology on 2X induced by the Hausdorff metric is also known as
the Vietoris finite topology. The basic open sets are those of the form
<V1,...,Vk> = {F € 2X: F c V1 U... UVk and F n Vi # P for each i}, where
the Vi are open sets in X. It is easily shown that 2X and C(X) are continua.

THEOREM 1.1. [4]. X and C(X) are arcwise-connected.

THEOREM 1.2. [21]. 2x and C(X) are n-connected for all n, and locally n-

connected for n > 0.

THEOREM 1.3. [21], [32]. 2X and C(X) are acyclic in all dimensions.

The central concept underlying the proof of (1.1) is the existence of
order arcs. An arc o in 2X is an order arc if, for every A, B € a, either
A c B or B c A. MAZURKIEWICZ [24] showed that every nondegenerate subcon-
tinuum o < Zx with the above chain property is topologically an arc, hence
an order arc. The endpoints of an order arc o are the elements N{A: A ¢ o}
and U{A: A € a} of 2X, and if the endpoint No is in C(X), then a < C(X).
Borsuk and Mazurkiewicz essentially constructed an order arc between an
arbitrary element A of 2X and the element X.

KELLEY [21] showed that there exists an order arc in 2X from A to B if
and only if A ¢ B and every component of B meets A. His proofs introduced
into hyperspace theory the concept of Whitney maps. A map w: 2X + [0,») is
a Whitney map if w({x}) = 0 for every singleton {x} and w(A) < w(B) whenever
A is a proper subset of B. Such maps exist for every metric continuum X, and
have come to play an important unifying role in hyperspace theory (see
[26]).

The higher dimensional connectivity properties for hyperspaces (global
and local n-connectedness for n > 0) are immediate consequences of the fact
that, for a cell o with dim ¢ > 1, there exists a map r: ¢ - C(Bdo) such
that r(p) = {p} for all p € Bdo. Thus any map f: Bdo - 2% has an extension
f: 0 > 2X defined by %(y) = U{f(p): p € r(y)}, and if f maps into C(X), so
does %.

SEGAL [32] was the first to apply inverse limit techniques to hyper-
spaces. He showed that the hyperspace operation commutes with inverse limits:
if X = inv 1im(Xi,fi), where X and Xi are metric continua, and if f::

X Xy ~
PIE A and fi: C(Xi+1) +~C(Xi) are the induced hyperspace maps, then
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2x ~ inv 1im(2xi,f:) and C(X) = inv lim(C(Xi),Ei). Since every metric con-
tinuum X has an inverse limit representation inv lim(xi,fi) with each xi a
finite connected polyhedron, and since each hyperspace 2Xi and C(Xi) is an
AR (see §2), the hyperspace 2X and C(X) are represented as inverse limits

of AR's, and can therefore be viewed as the intersections of nested sequences

of AR's.
2. HYPERSPACES OF PEANO CONTINUA

THEOREM 2.1. [37], [38]. The following conditions are equivalent:
(i) X is locally connected;
(ii) 2x is locally connected;

(iii) C(X) is locally connected.

The quickest proof for (2.1) is based on Kelley's criterion for the
existence of order arcs. Thus, suppose X is locally connected. Then for
nearby elements A and B of 2X, there exists an element C near each of A and
B such that C > A U B and each component of C meets both A and B. Then the
union of order arcs from A to C and from B to C provide a small-diameter
path between A and B. For the converse, suppose 2X is locally connected, and
consider nearby points a and b in X. There exists a small-diameter connected
set M c 2% containing {a} and {b}, and U{M: M € M} is a small-diameter con-

nected set in X containing a and b.

THEOREM 2.2. [41]. The following are equivalent:
(i) X is locally connected;
(11) 2* is an aR;

(iii) C(X) is an AR.

Perhaps the easiest proof for (2.2) is based on the Lefschetz-Dugundji
characterization of ANR's by extension of partial realizations of polytopes
[17]. The argument uses the local path-connectedness of X given by (2.1),
the proof for local n-connectedness for n > 0 (1.2), and the fact that an
ANR which is n-connected for all n is an AR.

In [41] WOJDYSLAWSKI also asked whether 2X is homeomorphic to Q (the
Hilbert cube) for every nondegenerate Peano continuum X. Earlier,
MAZURKIEWICZ [23] had shown that for every nondegenerate metric continuum
X, 2X contains a copy of the Hilbert cube and is therefore infinite-

dimensional. A special case of this question (is 2I ~ Q?), and an analogous
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question (is C(Bz) ~ Q?), had been considered by Polish topologists in the
1920s. Note that a necessary condition for C(X) = Q is that X contain no
free arcs, since C(I) is a 2-cell.

The question of dimension for the hyperspace C(X) of a Peano continuum
X was answered by KELLEY [21]. If X is a finite graph, then C(X) is a finite
polyhedron with dim C(X) =,max{ordA[X]: A e C(X)}. And if X is not a finite
graph, dim C(X) = «. In the latter case, C(X) actually contains a copy of
the Hilbert cube (see [8], [25]). DUDA [16] has investigated in considerable
detail the polyhedral structure of the hyperspace C(X), for X a finite
graph.

Further evidence supporting the conjectures that 2X ~ Q and, for X
containing no free arcs, that C(X) = Q, was given by GRAY [18], [19]. He
showed that if X is nondegenerate, each point of 2X is unstable, and if X
is a finite connected polyhedron with no free arcs, each point of C(X) is
unstable. Of course, each point of Q is unstable (i.e. there exists arbi-

trarily small maps from Q into Q\{pt}).

THEOREM 2.3. [29], [30], [31]. If X is a nondegenerate finite connected
graph or dendron, then 2X = Q.

The key concepts appearing in the proof are Q-factors, near-homeo-
morphisms, and 'interior approximation' via inverse limits. We briefly out-
line the proof that ZI ~ Q (I is the closed unit interval), indicating how
these concepts are used.

A compact space X is a Q-factor if X x Q = Q. Since X is a retract of
X X Q, it is necessary that X be an AR. EDWARDS (see [6]) later established
that every compact metric AR is a Q-factor, but at the time the hyperspace
results were obtained, geometric techniques of WEST [39] were used to show
that certain finite-dimensional subspaces of 2I are QO-factors. In particu-
lar, for each positive integer n the subspace Bn = {F ¢ 21: F o {0,1} and
each component of F has length at least 1/n} is a Q-factor.

I . {F € 2I: F o {0,1}}, and

01

The union UT Bn is dense in the space 2
I . . .
201 ~ inv llm(Bn’fn)' where each bonding map fn. Bn

> B_ is a naturally
+1 n
defined 'fattening' map. A general interior approximation lemma that applies

here and in subsequent hyperspace proofs, is stated in [12]:

LEMMA 2.4. Let X be a compact metric space, and (xi,fi) an inverse sequence

of maps and subcompacta of X such that
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(1) X, »X (in 2%,
(11)  a(f,,id) < 27" for each i, and
(iii) {fio c.. 0 fj: j 2 i} is an equi-uniformly continuous family for eachi.

Then X =~ inv lim(X, ,f.).
i’

This lemma is used in conjuction with an approximation lemma of BROWN

[5]:

LEMMA 2.5. Let (Xi'fi) be an invetse sequence such that each xi is homeo-
morphic to a conpact metric space Y and each fi is a near-homeomorphism

(i.e., a uniform limit of homeomorphisms). Then inv lim(xi,fi) ~ Y.

The maps fn: Bn > Bn referred to above have the property that each

+1
X Q > Bn x Q is a near-homeomorphism. It follows from the

I . . . I
o1 X QO = inv llm(Bn X Q, fn x id) = Q. Thus 201

map fn x id: Bn+1

approximation lemmas that 2
is a Q-factor.

WEST [39] had previously shown that every countably infinite product
of nondegenerate Q-factors is homeomorphic to Q. For each n, the subspace

1 1 o

Yn = {F ¢ 2I : F o {= ...}} is homeomorphic to T 2;1, and therefore

01 n'n+l’ 1
homeomorphic to Q. Appropriate near-homeomorphisms r : Yn+1 > Yn are con-
I
structed, and the approximation lemmas are used again to obtain 201 I~

inv lim(Yn,rn) = Q. Finally, the observation that ZI is the double cone

I
over 2 and tha fact that Cone Q = Q, gives the result 2~ = Q.

'
Tgé verification of near-homeomorphisms in the above constructions in-
volved the use of Q-factor decompositions [7], which are analogous to the
simplicial subdivisions of complexes. CHAPMAN [6] later showed that a map
of Q onto itself is a near-homeomorphism if (and only if) it is a CE-map

(i.e., point-inverses have trivial shape).

THEOREM 2.6. [40]. If X is a finite connected graph or dendron, then
C(X)xQ = Q; if X is a dendron with a dense set of branch points, then

c(x) = Q.

One can view the hypothesis in the second part of (2.6) as follows:
if the branch points of X are dense, each subcontinuum of X can expand (or
contract) in infinitely many directions, thus each subcontinuum has non-
finite order in X. Hence C(X) locally looks like an infinite product of
intervals, and this is the key to the result C(X) = Q.

Finally, affirmative answers to the general conjectures concerning the

hyperspaces of Peano continua were announced in [12]:
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THEOREM 2.7. Let X be a nondegenerate Peano continuum. Then 2= = Q,

C(X) xQ =~ Q, and C(X) = Q if and only if X contains no free arcs.

Details of the proof for the polyhedral case appear in [14], and for
the general case in [15]. The proof is based on the earlier results (2.3)
and (2.6) of SCHORI and WEST for the hyperspaces of finite connected graphs
and dendra, and uses all the previously mentioned techniques. The main idea
is to construct a sequence {Fi} of finite connected graphs in X, and maps

£ 2Ti+l 5 of
1

i which are near-homeomorphisms, such that the inverse se-
quence (2Pi,fi) is an interior approximation for 2X in the sense of (2.4),
and therefore 2X ~ inv lim(2ri,fi) & Q. In the case that X contains no free
arcs the graphs {Fi} can be modified, by the addition of countably many
'stickers', to obtain a sequence {F:} of local dendra with dense sets of
branch points. West's techniques for dealing with the hyperspace of sub-
continua of a dendron apply also to this situation, giving C(F:) & Q. Near-
homeomorphisms gi: C(F:+1) > C(P:) are then constructed such that C(X) =
inv lim(C(T}) ,9;) = Q.

The graphs Fi may be obtained, when X is a polyhedron, as the l-skele-
tons of a sequence {Ki} of subdivisions of X, with each Ki+1 a refinement
of Ki and mesh Ki -+ 0. In the general case we must partition X, breaking
it up into a finite number of small Peano subcontinua intersecting only
along their boundaries (see [3]). Trees are constructed in each partition
element, such that their union is a connected graph TI' which can be viewed
as a l-dimensional nerve of the partition. Thus, we construct a sequence

{Pi} of partitions of X, with each Pi+ a refinement of Pi and mesh Pi -+ 0,
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