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PREFACE 

Both the title and the subtitle of this collection of papers are some

what inadequate. As there are here a number of papers on geometry, the title 

"Topological Structures II" is actually too narrow; it was chosen, never

theless, to bring to mind that the 1978 symposium in Amsterdam was the 

second one in recent years*) devoted (mainly) to topology. As for the 

subtitle, the designation "Proceedings" stretches and extends the usual 

meaning of that term, inasmuch not all of the papers in this volume proceed 

directly from the symposium. 

Of the 34 papers presented here, 16 originate from lectures, and 2 

from a problem session during the 1978 meeting. In addition, 8 papers have 

been contributed by participants to the symposium. Most of the remaining 

8 papers have been sollici ted by the editors. In this manner, the valuable 

survey papers by M.G. BELL, D.W. CURTISS, M. HUSEK, F.D. TALL and R.G. WOODS 

could be added to these "Proceedings". 

The symposium on Topology and Geometry at the Free University in Am

sterdam on October 31 and November 1 and 2, 1978, was sponsored by the 

Dutch Mathematical Society WISKUNDIG GENOOTSCHAP and financed by the Math

ematics Department of the Free University, Amsterdam. In addition to the 

editors of these Proceedings, W.T. van EST and M.A. MAURICE took an essen

tial part in the organization of the symposium. 

On the last day of the symposium there was a meeting of Dutch mathematicians 

working in the fields of topology and geometry. 

Thanks are due, in the first place to all contributors to this volume 

and to the participants to the symposium; to them this volume owes its very 

existence. In the second place, we thank the Mathematics Department of the 

Free University in Amsterdam for its generous financial support, and the 

WISKUNDIG GENOOTSCHAP for sponsoring the symposium. Finally, we thank the 

Director of the Mathematical Centre for his consent to publish these volumes 

*) The first symposium was held in 1973; its proceedings (entitled 
"Topological Structures") were published by the Mathematical Centre in 
Amsterdam as Mathematical Centre Tracts 52. 



X 

as Mathematical Centre Tracts, and Mr. D. ZWARST and the Publication Service 

of the Mathematical Centre for the friendly and helpful way in which they 

did all those jobs necessary for the publication of these Proceedings. 

P.C. Baayen 

J. van Mill 
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LOCAL DYNAMICAL SYSTEMS AND THEIR MORPHISMS 

J.M. Aarts & J. de Vries 

1. INTRODUCTION 

1.1. The theory of local dynamical systems has its roots in the qualitative 

study of ordinary differential equations. It is an outgrowth of the "geomet

rical theory" initiated by H. POINCARE, A LYAPUNOV and G.D. BIRKHOFF. The 

latter actually laid the foundations of the theory of dynamical systems and 

the topological study of them (topological dynamics). The basic problems of 

this study were: 1) the study of solutions "globally", and 2) the study of 

solutions near singular points, both by means of topological methods. This 

can be done by either considering continuous actions of the additive group 

lR of the reals on metric spaces (see [15] or [5]) or, more abstractly, study

ing arbitrary topological groups, acting on arbitrary topological spaces (see 

[8] or [7]). 

The relevance of group actions for the study of the behaviour of solu

tions of differential equations is based on the following fact. Consider an 

autonomous differential equation 

(1.1) X = f (x) 

where f is a continuous JRn -valued function, defined on an open sul::set X of 

lRn. Under suitable additional conditions, guaranteeing unicity and extend

ability of solutions, there exists for every x EX a unique solution nx of 

(1.1) such that nx(O) = x. Here nx is a function of JR into X for every x Ex, 

and it can easily be shown that the follo.wing conditions are fulfilled: 

DSl. the mapping n: (x,t) ~ nxt: Xx JR+ Xis continuous; 

DS2. n(x,O) = x for all x EX; 

DS3. n(n(x,t),s) = n(x,t+s) for all x € X and t,s E JR. 

In this way a·continuous action n of the additive group lR on the space Xis 

obtained such that the orbits of points of X under this action are just the 
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solution curves of equation (1.1). This motivates the definition of a (glo

bal) dynamical system as a triple <X,JR, TT>, where Xis an arbitrary topologi
*) 

cal space and TT is a mapping from X x JR into X, satisfying the conditions 

DS1, DS2 and 0S3. In this setting, most of the notions of classical dynamics 

can be defined and studied. For example, a point x E X is called periodic 

whenever TT (t) 
X 

= X for some t f- O; it is called a rest point whenever TT (t) =x 
X 

for all t E JR. If X is a Hausdorff space and X E X is a moving periodic 

point (i.e. periodic, but not a rest point), then it can easily be shown that 

the real number 

(1.2) := inf{ t E JR: t > 0 and TT (t) 
X 

x} 

is non-zero; the number px is called the primitive period of x, and all 

periods of x (i.e. real numbers t with the property that TTx(t) =x) are inte

gral multiples of Px· Another important notion is that of a limit set: if 

x EX, then the (possibly empty) sets 

(1. 3) 

+) 
are called the negative' and positive limit sets of x, respectively. For 

the study of these and other notions, the reader is referred to [5] or [18], 

where the (topological) study of dynamical systems is exposed in a systema

tic way. 

1.2. In order to cover also the study of solutions of equation (1.1) for the 

case that there is still unicity of solutions, but possibly no extension of 

solutions to all of JR, the concept of a local dynamical system (in the se

quel to be abbreviated to lds) has to be used, a concept which has been intro

duced independently in [9] and [16], and which is closely related to the 

notion of an F-family introduced in [19] (see [3] for this relationship). 

An lds is a triple (X,D,TT) where Xis a topological space, Dis a subset of 

Xx JR of the following special form 

(1.4) D U {x} x J (x), 
XEX 

*) all spaces are supposed to be Hausdorff spaces. 

t) the A occurring in (1.3) is a capital alpha (symbolizing the begin, while 
D symbolizes the end). 
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where J(x) is an open interval in JR containing 0 for every x EX, and 

n: D +Xis a mapping satisfying the following conditions: 

LDS1. Continuity axiom: Dis open in Xx JR and n: D +Xis continuous; 

LDS2. Identity axiom: if x EX, then n(x,0) x; 

LDS3. Group axiom: if x EX and t, t+s E J(x) ands€ J(n(x,t)), then 

n(n(x,t) ,s) = n(x,t+s); 

LDS4. Maximality axiom: if (x,t) E D, then J (n (x,t)) = J (x) - t. 

3 

{Note that in the case that J(x) = JR for all x EX (that is, D=X x JR) we 

have a global dynamical system as defined in 1.1 above.) The space X and the 

mapping n are called the phase space and the phase mapping respectively. For 

every x EX, the mapping nx: t 1+ n(x,t): J(x) +Xis called the motion of x, 

and the set r(x) := n [J(x)] is called the orbit of x. The definition of 
X 

periodic point and rest point in an lds are formally the same as given in 

1.1 above for global dynamical systems; in fact, for such points the dif

ference between global and local systems disappears in the sense that if x 

is periodic, then J(x) = JR (an immediate consequence of the maximality axiom 

LDS4). 

For the study of lds's, we refer to [11] and [17]. Most methods from 

the theory of global systems can be used in the context of local systems. 

The only difficulty is that n may be not defined on all of Xx JR, so that 

one always has to be careful in writing down "n {x,t)" for a given x E X and 

t E JR; in such situations the maximality axiom LDS4 usually is of great help. 

This has been illustrated above by the remark that J(x) = JR if xis periodic. 

Another illustration is as follows. If (X,D,n) is an lds, then for every 

x EX the open interval J(x) will be denoted (a(x) ,w(x)) with-<»~ a(x) < 0 < 

w(x) ~~.Now the negative and positive limit sets of x € X are defined by 

and 

A{X) := n{n (a(x),t]: a(x) < t ~ o} 
X 

S"l(x) := n{n [t,w(x)): 0 ~ t < w(x)}. 
X 

It can be shown that in the definition of an lds the maximality axiom can 

be replaced by the condition 

LSD4'. For every x EX, if a(x) >-<» then A(x) 

n (x) = ¢. 

¢ and if w(x) <~then 
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(In particular, this guarantees that lR c J (x) if A (x) -I 0 and IR+ c J (x) 

if ~(x) f 0, in which cases the first and the second equality in (1.3) can 

be used.) Another statement which can replace LDS4 such as to produce (to

gether with LDS1 through LDS3) a set of axioms which is equivalent to LDS1 

through LDS4 is: 

LDS4". For every x EX, if a(x) > - 00 then r-(x) is not compact and if 

,:;:i:-;::, * ) w(x) < 00 then r (x) is not compact . 

Proofs of the equivalence of LDS4, LDS4' and LDS4" under assumption of LDS1 

through LDS3 are contained in [20] and in [11; Section IV.1]. This equiva

lence shows that our axiom system is equivalent to the axiom systems, given 

in [11], [17] and [20]. 

The name "maximality axiom" refers to the following fact: if (X,D,1r) 

and (X,E,p) are lds's such that 1rj - Pl then it can be shown (using DnE - DnE' 
LDS4 in a essential way) that D = E, whence 1T = p. In particular, the domain 

of the phase mapping of an lds cannot be extended without violating axiom 

LDS4. In this context, it is interesting to observe that for any system 

(X,D,1r) satisfying LDS1, LDS2 and LDS3 (a so-called germ of an lds; in fact, 

LDS1 may even slightly be weakened: D need not be open, but is required to 

be a neighbourhood of Xx {O} in Xx IR) the domain D and the phase mapping 

TI can be extended in a unique way so as to produce an lds. See [10] for 

details. 

1.3. As was said above, the definition of an lds was motivated by autonomous 

ordinary differential equations (they can also be used as a model for solu

tions of non-autonomous equations; cf. [16] or [17]). In fact, if Xis an 

open subset of IRn and f: X -+ IRn is a continous function such that the equa

tion (1.1) has unique solutions (i.e. for every x EX there is a unique solu

tion 1Tx defined in a neighbourhood of Osuch that 1rx(O) = x), then let J(x) 

denote the maximal interval in IR to which this solution can re extended. 

If we denote, for every x EX, this maximal solution by 1rx: J(x) ➔ X and if 

we put D := U {x} x J(x), and 1r(x,t) := 1T (t) for (x,t) ED, then we ob-
xEX X 

tain in this way an lds (X,D,1r). The orbits of this lds are just the solu-

tion curves of equation (1.1). We shall call this lds the system, defined 

by the differential equation~= f(x) or: defined by the vector-field f on x. 

+ 
*) Here r-(x) 

+ 
1r [m- n J(x) ]. 

X 
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1.4. In differential equation theory, two differential equations on the same 

domain X in ]Rn , say 

X f(x), X g(x), 

(f and g both continuous and giving unicity of solutions) are called geo

metrically equivalent if each solution of either system is a reparametriza

tion of the other. For the corresponding lds's this means exactly that each 

orbit of either system is an orbit in the other system. It is well-known 

that this situation occurs iff 

f(x) k(x)g(x), X € X 

for some continuous mapping k: X ➔ JR such that k(x) f O for all x € x. In 

particular, any lds defined by a differential equation is geometrically 

equivalent to a global system (Vinograd's theorem). 

These results have their counterparts in arbitrary lds's*). Two lds's 

(X,D,n) and (Y,E,p) are called geometrically equivalent whenever there exists 

a homeomorphism h of X onto Y such that h[rn(x)] rp(h(x)) for all x E Xt). 

It can be shown that a homeomorphism h of X onto Y is a geometric equivalence 

iff there exists for every x EX a homeomorphism, of J (x) onto J (h(x)) 
X n p 

such that 

(1.5) hon(x,t) p (h(x) ''x(t)) 

for all (x,t) € D. See [11; Thm. VI. 1.14] for the case that X = Y and h lx 

(also [4; Ch. 4] for global systems), [20] for the case that X and Y are 

Tychonoff spaces and [13] for the case that X and Y are T1-spaces, cf. also 

4.4 below. In [13] and [20] it is also shown that the mapping,: (x,t) ~ 

'x (t) : D ➔ lR is continuous on D\ (Sn x JR). Here Sn denotes the set of rest 

points in the lds (X,D,n). (Notice that in these papers, a geometrical equi

valence is called an NS-isomorphism - after [15] - and a pair (h,,) satisfy

ing the conditions mentioned above a GH-isomorphism - after [8].) 

*) For a generalization of Vinograd's theorem, cf. [6] and [22]. 

t) When dealing with more than one lds at a time, we shall use the symbol 
for the phase mapping as a subscript to distinguish the several sets 
which are associated with these systems. 
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Pairs (h,T) satisfying the above conditions are also called phase space 

homeomorphisms with reparametrization (cf. [12]); they include equivariant 

homeomorphisms (i.e. the case that Tx(t) = t for all (x,t) ED), which are 

related to isomorphisms of topological transformation groups [8] and also 

to the conjugacy relation of [4]: a reparametrization followed by an equi

variant homeomorphism. 

In the remainder of this paper, we shall discuss a notion of morphism 

of lds's, introduced by the authors in [1]. The definition is such that, 

first, important dynamical properties are preserved by morphisms and, second, 

in the resulting category of lds's the isomorphisms are just the phase space 

homeomorphisms with reparametrization. For general morphisms there are also 

counterparts for the theorems of HAJEK, URA and KIMURA mentioned above (cf. 

Theorem 3.4 below) as well as for the relationship with the conjugacy rela

tion of BECK (cf. 3.3 below and the remarks after 3.3). 

2. MORPHISMS OF LDS'S 

All lds's are assumed to have Hausdorff phase spaces. The domain of the 

motion of a point x in an lds will consistently be denoted by J(x) or 

(a(x),w(x)), where -oo ~ a(x) < 0 < w(x) ~ 00 • The set of periodic points will 

be denoted by P, and the set of rest points bys. All other notation will 

be as in Section 1. Recall, that the phase mapping will be used as a sub

script in order to be able to distinguish between notions associated to dif

ferent lds's. 

2.1. A morphism (of lds's) ~ from (X,D,TI) to (Y,E,p) is a pair ($,T), where 

$: X + Y and T: D + IR are functions satisfying the following conditions: 

Ml: The mapping$: X + Y is continuous; 

M2: For every x EX, the mapping Tx: t ~ T(x,t): JTI(x) + IR maps JTI(x) con

tinuously into Jp($(x)) such t.~at Tx(O) = O; 

M3: For all (x,t) ED, $ 0 TI(x,t) = p($(x),Tx(t)); 

M4: For every x EX, the mapping Tx: J (x) + J ($(x)) is strictly increasing, 
TI p 

and T: D + IR is continuous. 

Notation: ~: (X,D,TI) ➔ (Y,E,p) or ($,T): (X,D,TI) ➔ (Y,E,p). 

A morphism of the form (lX,T): (X,D,TI) + (X,E,p) is called a parameter

transformation, and Tis called a reparametrization of TI top. If ($,1) is 

a morphism such that 1(x,t) = t for all (x,t) in the domain of 1, then$ is 
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called an equivariant ma.pping, and (~ 1 1) will be called an equivariant mor

phism. 

If w = (~,T): (X,D,u) + (Y,E,p) is a morphism, then the symbol w will 

also be used to denote the mapping (x,t) ~ (~(x),T(x,t)): D + Y x IR. By M2, 

w maps D continuously into E, and M3 requires that the following diagram 

commutes: 

D ----------➔ E 

(2.1) r 
X -----~---- y 

Using this point if view, namely, that a morphism of lds's is a mapping be

tween the domains of the phase mappings, having a special form and special 

properties, the following definition of composition of morphisms is quite 

natural. Let for i = 1,2, wi = (~i'Ti): (Xi,Di,ui) + (Xi+l'Di+l'ui+l> be 

morphisms of lds's. Then 'I' := w2 ° w1 also satisfie,s the conditions of a mor

phism of lds's, that is, there exist mappings ij,: x 1 + x3 and cr: o1 + lR such 

that 'l'(x,t) = (ij,(x),cr(x,t)) for all (x,t} E o1, and the conditions Ml through 

M4 are fulfilled. Actually, 1j, and cr are given by 

(2. 2) and for x E x. 

In this way we have now defined a category whose objects are the lds's. The 

isomorphism in this category will be called isomorphisms of lds's. In [1], 

the following characterizations of isomorphisms have been obtained: a morphism 

w (~,T}: (X,D,u) + (Y,E,p) is an isomorphism iff w is a homeomorphism of 

D onto E, iff ~ is a homeomorphism of X onto Y and for every x EX the map

ping Tx is a surjection of Ju(x) onto JP(~(x}). See also Theorem 3.2 below. 

2.2. REMARKS 

1. The definition of a morphism given above is slightly redundant. It follows 

from 3.5 :telow that the conditions Ml, M2 and M3 alone imply already 

that Tis continuous on o\(~-1[s J x IR), whereas a (quite natural) addi
P 

tional condition on~ guarantees strict monotonicity of Tx for 

x € X\~-l[S ]. 
p 
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2. At the time of preparing [1] and [2], the authors were not aware of the 

paper [14] of KIMURA, where also a category of all lds's is considered. 

The morphisms in [14], so-called GE-morphisms, are just pairs (<j>,T) sat

isfying the conditions M1, M2 and M3 of 2.1 above; several types of GH

morphisms are defined in [14] according to various continuity conditions 

for T. In fact, a pair (<j>,T) is a morphism (in the sense defined above) 

iff in the terminology of [14] it is a GH-morphism of type 4 with the 

additional property that Tx is strictly increasing for every x. 

3. It follows from Theorem 3.4 below that it would be more natural to re

place in M4 the condition that Tx is strictly increasing for every x EX 

by the condition that Tx is injective (either strictly increasing or 

strictly decreasing) for every x EX. Except for making the statements 

quite cumbersome, this would not essentially affect our results to be 

presented below. Therefore, we shall use the definition as given in 2.1 

above. We want to emphasize here that the monotonicity condition in M4 

is crucial for the preservation properties which we shall discuss now. 

2.3. PROPOSITION. Let (<j>,T): (X,D,1r) + (Y,E,p) be a morphism of lds's. Then 

<j>[S] S S and <j>[P] SP. In addition, for every x EX we have 
1f p 1f p 

(i) <P[r+(x)] s r+(<j>(x)), <j>[f-(x)] s r-(<j>(x)), so ¢[I' (x)] s r (<j>(x)); 
1f p 1f p 1f p 

(ii) ¢[A1f(x)] s A (<j>(x)) and ¢Ul (x)] c S1 (<j>(x)). p 1f - p 
-1 -1 

If <Pis a bijection, then we have even S1f = ¢ [SP], P1f ¢ [Pp] and for 

x E P1f the primitive periods of x and <j>(x) are related by the equality 

p<j>(x) = Tx(px). Moreover, in this case we have equalities in (i) for every 

XE X. 

PROOF. See [1; Section 4] for the general case and [2; 4.3] for the case 

that¢ is a bijection. D 

2.4. REMARK. The difficult parts of Proposition 2.3 are the statements in 

(ii) and the case that¢ is a bijection. In the proof an essential use has 

been made of the following equality: 

(2. 3) T (s+t) 
X 

which is valid for all x E X\¢-1[s J and, by continuity of T, even for all 
p 

x E x\¢-1[s J. 
p 
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2.5. COROLLARY. Let (¢,T): (X,D,rr) + (Y,E,p) be a morphism of lds's. If x EX 

is positively Poisson stable (i.e. x E rl (x)) then so is ¢ (x) • If x E X is 
-+-- rr 

positively Lagrange stable (i.e. rrr(x) is compact) then so is ¢(x), and 

¢[r'1x)J = r+ (¢ (xl). □ 
rr P 

2.6. REMARK 

1. Examples which illustrate the special role of condition M4 in the defini

tion of morphism with respect to the preservation properties mentioned 

in 2.3 can be found in [l; 4.5]. 

2. Properties involving a certain distribution of the time parameter are in 

general not preserved by morphisms. In [1], an example is given where 

recurrence*) is not preserved by a reparametrization (which is an iso

morphism!). Also an example is given, showing that morphisms need not 

preserve Liapunov stability of rest points. However, isomorphisms pre

serve Liapunov stability of rest points. 

3. THE STRUCTURE OF MORPHISMS 

The following proposition shows how the isomorphisms in our category 

are related to the conjugacy relation in [4]. For the quite straightforward 

proof, we refer to [1; 3.5]. 

3.1. PROPOSITION. Let (¢,T): (X,D,rr) + (Y,E,p) be a morphism such that 

¢: X + Y is a homeomorphism. Then there exists a commuting diagram of mor

phisms 

(X,D,11) (¢,T) 
(Y ,E,p) 

(X,D' ,rr') 

where (¢,1) is an equivariant morphism. Moreover, (lx,T) is an isomorphism 

iff (¢,T) is an isomorphism. D 

*) According to the definition in [17]; this is the same as (pointwise) al
most periodicity in [8], almost recurrence in [18], and, for compact 
spaces, recurrence in [5] and [15]. 
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Recall from 2.1 above that (¢,T) and (1X,T) are isomorphisms iff ¢ is 

a homeomorphism of X onto Y and T: J (x) ➔ J (¢(x)) is a surjection for 
X 11 p 

every x EX. This latter condition turns out to be automatically fulfilled 
-1 

for every x EX\¢ [S] = X\S (under the assumption that¢ is a bijection); 
p 11 

this is actually the basic observation upon which re~ts the proof of the 

second part of 2.3 above. However, it must be observed that for x E ¢-1[s J 
p 

the values of Tx(t) are completely irrelevant; in particular, condition M3 

in the definition of morphism is then trivially fulfilled. Therefore, we in

troduce the following equivalence relation between morphisms. Two morphisms 

(¢,T) and (¢',T') from (X,D,11) to (Y,E,p) will be called equivalent whenever 
-1 

¢ = ¢' and T = T' for every x EX\¢ [s ]. Notation: (¢,T) :::::; (¢' ,T'). 
X X p 

In [2], examples are given which show that a morphism (¢,T) which is 

equivalent to an isomorphism may not be an isomorphism itself. Morphisms, 

equivalent to isomorphisms can be characterized as follows: 

3.2. THEOREM. Let (¢,T) be a morphism. The following conditions are equiva

lent: 

(i) (¢,T) is equivalent to an isomorphism; 

(ii) ¢ is a homeomorphism of X onto Y. 

In particular, if S11 is nowhere dense, then (¢,T) is an isomorphism iff ¢ 

is a homeomorphism of X onto Y. 

PROOF. Cf. [2; Theorem 4.5]. 0 

Using the equivalence relation defined above we shall try to generalize 

the first part of 3.1 to general morphisms. First we state a lemma, whose 

proof can be found in [2; 5.4]: 

3.3. LEMMA. Let (¢,T): (X,D,11) ➔ (Y,E,p) be a morphism. The following condi

tions are equivalent: 

(i) T satisfies the relation (2.3) for every x E X\S · 11' 
(ii) there exists a commuting diagram of morphisms 

(X,D,11) (Y,E,p) 

(X,D' ,11 1 ) 
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where (¢,1) is an equivariant morphism. 0 

Since the relation (2.3) is valid for all x E X\¢- 1[s J (see 2.4 above) 
p 

the lemma seems of no help in the case that (int ¢-1[s ])\S ~ 0- In that 
p TT 

case, one can try to modify the mappings 'x for x E (int ¢- 1[s ])\S such as 
p TT 

to make them to satisfy the relation (2.3), and still keeping T continuous 

on D, of course. Thus, we were able to prove that under certain additional 

conditions for the morphism(¢,,): (X,D,TT) ➔ (Y,E,p) there exist morphisms 

(X,D,TT) * * (X,D ,TT ) 
(¢, 1) 

(Y,E,p) 

* such that (¢,1) is an equivariant morphism and the composition (¢,-r) of 

* (lx'' ) and (¢,1) is equivalent to (¢,,). That is, up to equivalence we ob-

tain factorization of (¢,,) as a reparametrization, followed by an equi

variant morphism. 

One of the (sufficient) conditions for such a factorization-up-to-
-1 

equivalence of (¢,,) is that Xis metrizable and that bnd ¢ [Sp] s S11 • For 

a proof of this result and for other sufficient conditions for such factori

zations, we refer to [2]. 

our next, and final result essentially states that a morphism(¢,,) is, 

up to equivalence, completely determined by its phase space mapping¢. It 

is the generalization of a result for isomorphisms of URA [21] and KIMURA 

[13] to general morphisms. Roughly speaking, it says that an orbit preserv

ing mapping¢ between the phase spaces of lds's is the space component of a 

morphism (¢,,). A similar result can be found in [14], where it is shown 

that every NS-morphism is a GE-morphism. Since our definition of a morphism 

requires more than the definition of a GE-morphism ( the monotonicity condi

tion M4), an orbit preserving mapping must be just a little bit more than an 

NS-morphism. This little bit more turns out to be loca.l injectivity on 

orbits. Here is the definition: 

If (X,D,TT) and (Y,E,p) are lds's, then an orbit-preserving mapping 

from (X,D,TT) to (Y,E,p) is a continuous mapping¢: X ➔ Y such that 

OPMl. For every x EX, ¢[f11 (x)] s rp(¢(x)); 

OPM2. For every x E X\S there is an arc~ in r (x) such that¢ is injec-
TT TT 

tive on 2 

Here Q means an arc, i.e. a topological embedding h of the unit interval 

[O, 1] into X such that h(O) a, h(l) =band x = h(t) for some t with 

0 < t < l; as is often done, we identify such an embedding h with its 
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range h[0,1]. 

It can be shown that for every morphism (¢,T) of lds's, ¢ is an orbit 
*) preserving mapping [1; Prop. 5.2] . Before we can state a converse of this 

statement, we have to make two notational conventions. The first is that for 

every invariant subset c in an lds (X,D,rr) the restricted lds (X,D n (C x JR), 

rrl ( )) will be denoted by (C,D ,rrc). It is useful to know that every 
Dn cxIR c 

component of an invariant subset is also invariant (cf. [11; IV 2.10 and 

IV. 2.13]). Our second convention is, that for an lds (Y,E,p) the reverse 

system (Y,E*,p*) is defined by E* := {(x,t) E Y x JR! (x,-t) EE} and 

p*(x,t) := p(x,-t) for (x,t) EE*. It is easy to show that (Y,E*,p*) is an 

lds iff (Y,E,p) is. Now we can state our final result: 

3.4. THEOREM Let (X,D,rr) and (Y,E,p) be lds's and let¢: X ➔ Y be an orbit 

preserving mapping. Then there exists a unique continuous mapping 

T: D\ (¢- 1[s ] x IR) ➔ JR such that for each component C of X\¢- 1[s ] either 
p p 

or 

is a morphism of lds's. 

PROOF. Cf. [1; Theorem 5.7]. Part of the proof parallels the proof in [14], 

[13] or [20], but our proof is simpler because of our use of a result of 

J. and M. LEWIN (cf.[4; Theorem 1.25]). This result also guarantees the mono-

tonicity condition for T. D 

3.5. Unicity in the above theorem must be interpreted as follows: Tis the 

unique mapping of D\(¢-1[sp] x IR) into JR such that (¢I (X\¢-1[sp]l ,T) satis

fies the conditions M1, M2 and M3 of the definition of a morphism. In addi-
-1 

tion, T turns out to be continuous on D\ (¢ [S J x IR) and condition OPM2 for 
p -1 

¢ implies strict monotonicity of Tx for x EX\¢ [SP]. 

In particular, this implies that for a pair (¢,T) satisfying the condi

tions M1, M2 and M3 of the definition of a morphism, T must be continuous on 
-1 1 

D\ (¢ [s ] x IR), whereas monotonicty of T for x E X\¢ - [S ] is implied by 
p X p 

*) Monotonicity of each Tx (i.e. condition M4) is essential in the proof. 
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requiring~ to satisfy also condition OPM2. 
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HYPERSPACES OF FINITE SUBSETS 

Murray G. Bell 

1. INTRODUCTION 

The topological analysis of a space can be furthered by a study of the 

global properties of the space's finite subsets. This study is pursued, quite 

profitably, by endowing the finite subsets of a space with a topology which 

is intimately connected to the topology of the space. In this paper, we sur

vey and continue the investigations of two such topologies. Our main emphasis 

will be on problems of normality, paracompactness and metrizability. 

Let X be a space with topology T. F(x) will denote the collection of 

all non-empty finite subsets of X. 

If O is a finite subcollection of T, then define <0> ={FE F(X): 

F c UO and F n O -/ <f, for each O E 0}. The collection { <O>: 0 is a finite 

subcollection of T} serves as a base for a topology on F(x). When topolo

gized in this fashion, F(X) is denoted by F<X> and is referred to as the 

Vietoris hyperspace of finite subsets of X. This is exactly the topology 

that F(X) receives as a subspace of the hyperspace of non-empty compact sub

sets of X with the Vietoris topology [VJ. Our basic reference for the 

Vietoris topology is [M 1]. For each positive integer n, we define Fn<X> 

{F E F<X>: IFI :<;; n}. 

If FE F(X) and OE T, then define [F,0] ={GE F(X): F ~ G ~ O}. The 

collection {[F,O]: FE F(X) and OE T} serves as a base for a topology on 

F(X). When topologized in this fashion, F(X) is denoted by F[x] and is re

ferred to as the Pixley-Roy hyperspace of finite subsets of X. This kind of 

topology was introduced in [PR] in the special case of the real line and 

generalized in [vD]. 

The author is not aware of any general study of the properties of F<x>, 

other than those properties that F<X>, for Hausdorff X, inherits upon being 

a dense F0 subspace of the Vietoris hyperspace of all non-empty compact sub

spaces of X. 
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The matter of F[x] is quite different. It has been used as examples. 

[PR] used F[real line] as an easy example of a nonseparable Moore space of 

countable cellularity. [PT], assuming MA+ 7cH, used F[s], where Sis a sub

set of the real line of cardinality w1 , as an example of a nonseparable, 

metacompact, normal, Moore space of countable cellularity. [AP], assuming 

MA+ 7cH, showed that [F[s]Jw has all the preceding properties. [BE] used 

F[K] and F<K>, where K is the Cantor space, to construct a first countable, 

sigma compact, nonseparable p-space of countable cellularity. F[x] has also 

been studied in its own right in [vD] and [L]. Normality, paracompactness 

and metrizability of subspaces of F[x], for various spaces x, have been in

vestigated in [BFL 1], [BFL2 ], [PL], [PR] and [R]. Several of their results 

will appear in the following sections. 

2. BI\SIC UNDERSTANDINGS 

Our topological reference for undefined terms is [w]. 

All spaces considered are T1 . 

3. FUNDAMENTAL PROPERTIES OF F<x> AND F[x] 

It is easy to see that if Sis a subspace of X, then the hyperspace 

topologies on F(S) coincide with the subspace topologies that F(s) receives 

from F<X> and F[x]. Xis always embedded in F<X> (as the subspace F1<X>) but 

only under very restricted conditions is Xever embeddable in F[x]. 

PROPOSITION 3.1. F<X> satisfies the following: 

(a) clF <O> = <{cf 0: OE O}>. 
<X> X 

(b) F<S> is closed (open) in F<x> if and only ifs is closed (open) in X. 

(c) F<X> is T2 , regular, zero-dimensional and Tychonov if and only if Xis 

T2 , regular, zero-dimensional and Tychonov respectively. 

(d) If Xis T2 , then Fn<X> is closed in F<x> for each n. 

(e) The mapping hn: Xn ➔ F n <X>, defined by hn ( (x1 ,x2 , .•. ,xn)) = {x1 ,x2 , •.. , 

... ,x }, is continuous and finite-to-one. If Xis T2 , then h is also 
n n 

closed, i.e., hn is a perfect mapping. In general, only h 1 and h 2 are 

open mappings. 

PROOFS. cf. [M 1 ] or Problems 2.7.20 and 3.12.26 in [E]. □ 
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PROPOSITION 3.2. f[X] satisfes the following: 

(al Each [F,O] is both open and closed in F[x]. 

(bl For each s ~ x, F[s] is closed in F[x]. In addition, F[s] is open in 

F[x] if and only if Sis open in X. 

17 

(cl F[x] is zero-dimensional, T2 , hereditarily metacompact and is the union 

of countably many discrete subspaces - each subspace {FE F[X]: IF! = n} 

is discrete. 

(dl F [x] is closed in F[x] for each n. 
n 

(el F[x] is a Moore space if and only if Xis first countable. 

(fl F[x] is perfect (even hereditarily F0 ) if and only if every point of X 

is a G0 . 

PROOF. (al through (el were proved in [vD] and (fl was proved in [L]. D 

We now look at various cardinal functions of F<X> and F[x]. 

A network for a space Xis a collection N of subsets of X such that for 

each x EX and each open neighbourhood O of x, there exists an NE N such 

that x EN~ 0. The net weight of a space X, nw(Xl, is the least cardinal 

of a network for X. The weight of a space X, w(Xl, is the least cardinal of 

a base for X. The density of a space X, d(Xl, is the least cardinal of a 

dense subspace of X. The Lindelof number of a space X, L(~, is the least 

cardinal K such that every open cover of X has a subcover of size SK. The 

cellularity of a space X, c(Xl, is the least cardinal K such that every dis

joint collection of open sets has cardinality SK. 

PROPOSITION 3.3. The following hold for an infinite space X: 

(al nw(F<X>l = nw(Xl; nw(F[x]l = nw(X)•lxl. 

(bl w(F<X>l w(Xl; w(F[x]l w(Xl•lxl. 

(cl d(F<X>l d(Xl; d(F[x]l Ix!. 

(dl If Xis T2 , then L(F<X>) = sup{L(Xnl, n < w}; L(F[x]l = Ix!. 

PROOF. The first three are easy to prove. The equations in (al and (bl re

lating to F[x] appear in [L]. The equation in (cl relating to F[x] appears 

in [vD]. 

L(F[x]l S IF[x]I = Ix! and, since Xis a closed discrete subspace of 

F[x] we also have that !xis L(F[X]l. 

If Xis T2 , then the mappings 

L(Fn<X>l for each n. If Xis T2 , 

fore, L(F <X>l s L(F<X>l for n. It 
n 

h: Xn ➔ F <X> are perfect and so L(Xnl = 
n n 

then each F <X> is closed in F<X>. There
n 

follows that sup{L(Xnl: n < w} S L(F<X>l. 
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Since F<X> U F <X>, we have that L(F<X>) ~ sup{L(Xn): n < w}. 
n<w n □ 

The determination of the cellular function of F<X> and F[x] is more 

difficult. We only have that c{F<X>) ~ sup{c(Xn): n < w} from [G] and that 

c(F[x]) ~ nw(X) from [L]. 

The spaces F <X> can behave strangely, even for as simple a space as 
n 

the closed unit interval I. In [ru], it is shown that F <I> is homeomorphic 
n 

to In if and only if n = 1,2 and 3. 

4. NORMALITY OF f<X> AND f[X]. 

Necessary and sufficient conditions on X in order that F<x> or F[x] be 

normal are major unsolved problems. Is F<X> normal if and only if Xn is nor

mal for each n < w? We mention two important instances where there are 

characterizations. 

A space is a Q-set if every subset of it is a G0 set in it. 

4A. Subspaces of the Cantor Space K 

Since F<K> is metrizable, for all subsets W of K we have that F<w> is 

normal. 

In [R] it is shown that for W s K, F[w] is normal if and only if Wn is 

a Q-set for each n < w. Since K is not a Q-set, it follows that F[K] is not 

normal. From Proposition 3.2(b), we conclude that if a space X contains a 

copy of K, then F[x] is not normal. 

4B. Subspaces of a Souslin line S. 

We assume that S has no nontrivial separable subintervals and write 

S = U{Ka: a< w1 } where each Ka is a Cantor space and Ka~ KB for a< S. In 

[R] it is shown that for X ~ S, F[x] is normal if and only if 

(a) {a < w1 : X n U K is closed in X} contains a closed and unbounded 
B<a a 

subset of w1 and 

(b} (X n K tis 
a 

a Q-set for n <wand a< w1 . 

For subsets X of a Sorgenfrey-type space, in [PRZ] it is shown that 

F[xJ is hereditarily normal if and only if the characters of all non-isolated 

points coincide. It is also shown there that for locally ~ech-complete spaces 

X, F[xJ is normal if and only if Xis scattered. 
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5. PARACOMPACTNESS AND METRIZABILITY OF F<x> AND F[x] 

A space Xis collectionwise Hausdorff if for every closed discrete 

subspace {d: a EA} s X, there exists a disjoint collection {O: a EA} of 
a a 

open subsets of X such that da E Oa for each a EA. Moreover, if the col-

lection {O: a EA} can always be chosen to be a discrete collection, then 
a 

Xis strongly collectionwise Hausdorff. A space Xis said to be collection-

wise normal if for every discrete collection {c: a EA} of closed subspaces 
a 

of X, there exists a disjoint collection {O: a EA} of open subsets of X 
a 

such that Ca s Oa for each a EA. A space Xis ultraparacompact if every 

open cover of X admits a disjoint open refinement. A space Xis said to be 

ultrametrizable if the topology on Xis generated by a metric d which satis

fies the following: for every x, y and z, d(x,y) s max{d(x,z),d(z,y)}. 

PROPOSITION 5.1. If Xis T2 , then F<x> is paracompact if and only if Xn is 

paracompact for each n < w. 

PROOF. Assume F<X> is paracompact. Since Xis T2 , Fn<X> is closed in F<X> 

and therefore paracompact. The mapping hn: Xn + Fn<X> is perfect, hence Xn 

is paracompact. 

Assume Xn is paracompact for each n < w. Let {<OF>: FE F<x>} be an 

open cover of F<X> be basic open sets <OF> where FE <OF>. By Theorem 20.7 

in [W], it suffices to show that {<OF>: FE F<x>} has an open cr-locally 

finite refinement. Fix n < w. Since F <X> is paracompact (h is closed), 
n n 

let bn = {<UF> n Fn<X>: FE Fn<X>} be an open locally finite refinement of 

{<0 > n F <X>: FE F <X>} in F <X> such that FE <U >, <U > c <O > and 
F n n n F F - F 

IUFI = IFI. Define b* = {<U >:FE F <X>}. 
n F n 

CLAIM. {<U >:FE F <X>} is locally finite in F<X>. 
F n 

PROOF OF CLAIM. Let FE f<X>. Choose {V(F,f): f E F} such that 

(1) for each f E F, f E V(F,f) is open in X; and 

(2) if HS F and IHI s n, then <{V(F,h): h EH}> n F <X> intersects only 
n 

finitely many <U > n F <X>'s for GE F <X>. 
G n n 

Then, FE <{V(F,f): f E F}> and this neighbourhood intersects only finitely 

many <U >'s for GE F <X>. 
G n 

where IUGI = !GI s n, then 

<{V(F,h): h EH}> n <UG> n 

Observe that if <{V(F,f): f E F}> n <UG> f ¢ 

there exists an H s F, IHI s n such that 

F <X> f ¢. There can only be finitely many in
n 

stances of this. End of proof of claim. 
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{b*: n < w} is an open a-locally finite refinement of our original 
n 

cover. Hence, F<x> is paracompact. 

PROPOSITION 5.2. F<x> is metrizabJe if and only if Xis metrizable. 

PROOF. If F<X> is metrizable, then F1<X> is metrizable. Since Xis homeo

morphic to F1<X>, Xis metrizable. 

If Xis metrizable, then the hyperspace of all non-empty compact sub-

sets of Xis metrizable [M 1] and hence F<x> is metrizable. Q 

As we shall see, both paracompactness and metrizability of F[x] reduce 

to the question of when is F[x] collectionwise Hausdorff. By the following 

result in [BFL2 ], we see that if F[x] is paracompact or metrizable, then it 

is so in a strong way. 

PROPOSITION 5.3. 

(a) F[x] is paracompact if and only if F[x] is ultraparacompact. 

(b) F[x] is metrizable if and only if F[x] is ultrametrizable. 

It was proved in [BFL2 ] that F[x] is paracompact if and only if F[x] 

is strongly collectionwise Hausdorff. We shall strengthen this result to 

just collectionwise Hausdorff. Independently of this author, 

T.C. Przymusinski has also proven this fact. 

LEMMA 5.4. If F[x] is collectionwise Hausdorff, then there exists 

{O(F): FE F[x]} where each O(F) = {O(F,f): f E F} and 

(a) for each f E F, f E O(F,f) and O(F,f) is open in X; 

(b) if f 1 ,f2 ~ F, then fl i O(F,f2 ) and f 2 i O(F,f 1 ); 

(c) if HS F, h EH, f E F and f E O(H,h), then O(F,f) ~ O(H,h); 

(d) if !Fl !GI, F ~ UO(G), Gs UO(F), Fi UO(H) for any proper subset H 

of F and G i UO{H) for any proper subset Hof G, then F = G. 

PROOF. We construct the O{F) 's by induction on !Fl. Assume that we have 

constructed the O(F)'s for all F's with !Fl < n so that (a) through {d) 

are satisfied. 

F [x] - U{[H,UO(H)]: IHI < n} is a closed discrete subspace of F[x]. 
n 

Since F[x] is collectionwi~e Hausdorff, for each F with !Fl= n, we can 

choose an open set V(F) s X such that F s V(F) and 

{[F,V(F)]: FE F [x] - U{[H,UO(H)]: IHI < n}} 
n 
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is a disjoint collection. Let F have cardinality n. Since Xis T1 , we can 

choose open sets W(F,f) EX for each f E F such that if {f1 ,f2} s F, then 

fl i W(F,f2 ) and f 2 i W(F,f1). Finally, for each f E F, define 

O(F,f) V(F) n W(F,f) nn {O(H,h): h EH i F and f E O(H,h)}. 

If O(F) = {O(F,f): f E F}, then the collection {O(F): !Fl s n} satisfies 

(a) through (d). The collection {O(F): FE F[x]} is our required collec-

tion. D 

21 

In order to facilitate our investigation, we use the following defini

tions: 

DEFINITION 5.5. A space X weakly separated if there exists a reflexive and 

antisymmetric relations defined on X such that for every x Ex, {y EX: 

y s x} is open in x. If, in addition, the relation is a partial (total) 

order, then we say that Xis partially (totally) separated. We calls a weak 

(partial, total) separation of X. 

Weakly separated spaces were defined in [T]. Partially separated spaces 

were defined in [BFL2 ] (called acceptable partial orders). These are gener

alizations of right-separated spaces in which the relation is a well

ordering. 

THEOREM 5.6. The following are equivalent: 

(a) F[x] is paracompact. 

(b) F[x] is collectionwise Hausdorff. 

{c) F<X> is weakly separated. 

PROOF. 

(a) implies (b). This is obvious. 

(b) implies (c). Let {O(F): FE F[x]} be as in Lemma 5.4. Define a relation 

son F<X> by F s G if and only if FE <O{G)>. This relation is reflexive 

since GE <O(G)>. For every GE F<X>, {F: F s G} = <O(G)> which is open 

in F<X>. It remains to show thats is antisymmetric. 

We first show that if !Fl= !GI, F s UO(G) and G ~ UO(F), then 

F n GI~- We induct on the cardinality of F and G. If IFI = !GI = 1, then 

this is true by condition (d) of Lemma 5.4. Assume that for every pair {H,K} 

such that IHI= !Kl < n, if HS UO(K) and Ks UO{H), then H n KI~- Let 
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IFI = IGI = n, F ~ UO(G) and G 5 UO(F). If F = G, then clearly F n G f ¢. If 

Ff G, then by condition (d) of Lemma 5.4., one of For G must reduce. With

out loss of generality, assume that there exists a proper subset Hof F such 

that F s UO(H). Condition (c) of the same Lemma implies that UO(F) ~ UO(H). 

There exists KS G such that IKI = IHI and H s UO(K). Since Ks Gs UO(F) ~ 

S UO(H) and IHI= IKI < n, our inductive hypothesis implies that H n K f ¢, 

whence F n G f ¢. 

We return to our proof of antisymmetry. Let F $ G and G $ F, i.e., 

FE <O(G)> and GE <O(F)>. Condition (bl of Lemma 5.4 implies that for every 

f E F - G, there exists a g E G - F such that g E O (F, f). Similarly, for every 

g E G-F, there exists an f E F-G such that f E O(G,g). Thus, if at least 

one of F - G or G - f is non-empty, then there exists r ~ 1, {f.: 1 $ i $ n} .; 
l. 

F-G and {gi: l$i$r} 5 G-F such that gl E O(F,f1), f 2 E O(G,g1), ... ,gr E 

O(F,fr) and fl€ O(G,gr). This means that {fi: l$i$r} s U{O(G,gi): 

l$i$r}.; UO({g,: l$i$r}) and that {g.: l$i$r} s U{O(F,f.): l$i$r} s 
l. l l 

~ UO({fi: 1 $ i $ r}). By the preceding paragraph, we conclude that 

{fi: 1 $ i $ r} n {gi: 1 $ i $ r} f ¢ which is a contradiction. Hence F-G 

G - F ¢ and F = G. 

(c) implies (a). Let$ be a weak separation of F<x>. Since F[x] is meta

compact, it suffices to show that F[x] is collectionwise normal. To this 

end, let {Ha: a EA} be a discrete collection of closed subspaces of 

F[xJ. 

By induction on the cardinality of F, we can construct sets O(F,f) for 

each F and f E F such that 

(1) f E O(F,f) and O(F,f) is open in X; 

(2) if H 5 F, h EH, f E F and f E O(H,h), then O(F,f) ~ O(H,h); 

(3) if HS F, then <{O(F,h): h EH}> 5 {G: G $ H}; 

(4) if a EA and Fi Ha, then [F,U{O(F,f): f E F}] n Ha=¢. 
For each FE F[x], define O(F) = {O(F,f): f E F}. For each a EA, de

fine U = U{[F,UO(F)]: FE H }. For each a EA, U is open in F[x] and a a a 
H = U. We now show that U n US=¢ for a f S. This we do by induction on a a a 
IF!+ IGI where FE Ha and GE HS. Assume that for all FE Ha and for all 

GE Ha such that IFI + IGI < n, we have that [F,UO(F)] n [G,UO(G)] =¢.Let 

FE Ha, GE HS, and IFI + IGI = n. Striving for a contradiction, assume that 

[F,UO(Fl] n [G,UO(G)] f ¢, i.e., F ~ UO(G) and G 5 UO(F). 

We first show that Fi UO(F n G). If it were, then condition 2 would 

imply that FE [F,UO(F)] ~ [F n G, UO(F n G)]. Since FE H, condition 4 
a 

implies that F n GE Ha. Hence, IFnG! < IGI, and our inductive hypothesis 
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implies that [F n G,UO(F n Gl] n [G,UO(Gl] =~.whence [F,UO(Fl] n [G,UO(Gl]= 

=~-Contradiction. Similarly, we prove that G i UO(F n G). Consequently, 

F - UO (F n G) and G - UO (F n G l are disjoint non-empty finite sets. 

Condition 2 implies that F-UO(F n Gl S U{O(G,gl: g E G-UO(F n Gl} 

and that G-UO(F n Gl S U{O(F,f): f E F-UO(F n Gl}. Thus there exists r ~ 1, 

{fl..: 1 sis r} s F-UO(F n G), and {g.: 1 sis r} c G-UO(F n Gl such that l. -
fl E O(G,g1 l,g1 € O(F,f2 l, ... ,fr E O(G,grl, and gr€ O(F,f1 ). Hence, 

{fi: 1 Si Sr}€ <{O(G,gil: 1 Si Sr}> and {gi: 1 Si Sr}€ <{O(F,fil: 

1 sis r}>. Condition 3 implies that {f.: 1 sis r} s {g.: 1 sis r} and l. l. 
{gi: 1 s i s r} s {fi: 1 s i s r}. The antisymmetry of s implies that 

r}. This is the contradiction that we were {f.: 1 s i s r} {gi: 1 s i s 
l. 

striving for. □ 

We mention a question posed in [PR]. Does there exist a space X such 

that F[x] is normal but not paracompact, i.e., not collectionwise Hausdorff? 

It is independent of the axioms of ZFC that an example exists of character 

Sc. MA+ 7CH implies that F[s], wheres is a subset of the real line of 

cardinality w1, is such a first countable example, whereas, according to a 

theorem of FLEISSNER [F], V = L implies that every normal space of character 

Sc is collectionwise Hausdorff. 

COROLLARY 5. 7. The following are equivalent: 

(al F[x] is metrizable. 

(bl Xis first countable and F<X> is weakly separated. 

PROOF. 

(al implies (b). First countability of F[x] implies first countability of x. 

Theorem 5.6 now applies because metric spaces are paracompact [ST]. 

(bl implies (a). F[x] is paracompact by Theorem 5.6, F[x] is a Moore space 

by Proposition 3.2(e) and a paracompact Moore space is metrizable [BI]. 

□ 
6. WEAK AND PARTIAL SEPARATION 

It is clear from Section 5 that our main aim is to find "nice" neces

sary and sufficient conditions on X in order that F<X> be weakly separated. 

Pursuant to this aim, we first investigate the general theoty of separations 

on an arbitrary space x. To require that a space be weakly separated is a 

very strong restriction as we see by the following: 
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PROPOSITION 6.1. If Xis weakly separated then for every subspace S of X, 

\s I = nw(S). 

PROOF. Lets be a weak separation on X, let S be a subspace of x, and let N 

be a network for S of minimal cardinality. For each x ES, choose Nx EN 
such that x E Nx S {z EX: z s x}. The antisymmetry of s implies that for 

distinct x and yin S, Nx I Ny. Hence, \SI s \NI, and the proposition is 

proved. D 

Since Xis a subspace of F<x>, we see that if F<x> is weakly separated, 

then for s £ x, \sl = nw(S). Thus, for example, an uncountable space X which 

has a countable network cannot be weakly separated and F[x] cannot be col

lectionwise Hausdorff. On the other hand, spc.ces like the SORGENFREY Line 

[so] or any subspace of an ordinal space clearly are totally separated. For 

any T 1 space X, F[x] is partially separated :Jy defining F s G if G s F. 

In the following proposition, the words "weakly separated" can be re

placed (except where noted) by "partially sEparated" or "totally separated" 

and the same proofs carry over. 

PROPOSITION 6.2. 

(a) If Xis weakly separated then every sutspace of Xis weakly separated. 

(b) If for every a E A, Xa is ,-reakly separc,ted then OaEA Xa is weakly sep

arated. Not so for totally separated spaces. 

( c) If e is a closed subspace of X such th,.t both e and X - e are weakly 

separated, then Xis weakly separated. 

(d) If X u:=l en where each en is closec'. in X and are weakly separated, 

then Xis weakly separated. 

(e) If each point of X has an open neighfuurhood which is weakly separated, 

then Xis weakly separated. 

PROOF. Proofs of (a) and (bl are straightforward. To prove (c) let s 1 be a 

weak separation on a closed subspace e of X and let s 2 be a weak separation 

on X - e. Define s on X by x s y if and only if at least one of the follow

ing obtains: 

(1) y Ee and xi e; 

(2) y E C, X E e and X < y; -1 

(3) y i e, X i e and X < y. -2 

s is reflexive and antisymmetric. If y E c, then {x E X: X s y} 

{x E C: X < y} u (X - e) which is open in x. If y i e, then -1 
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{x EX: x:;; y} = {x E (X-C): x :;;2 y} 1'hich is open in x. Consequently,:;; is 

a weak separation on X. 

To prove (d) let :;;n be a weak separation on the closed subspace en of 

x. Define:;; on X by x:;; y if and only if at least one of the following 

obtains: 

(1) there exists an n such that y E Ui<n Ci and xi Ui<n Ci; 

(2) there exists an n such that y E en - Ui<n ci, x E en - Ui<n Ci and 

X :,;n y. 

:;; is reflexive and antisymmetric. If y Ex, then there exists an n such 

that y E en - Ui<n ci. Thus, 

{x E X: X :;; y} 

which is open in X because the en's are closed. 

To prove (e) let""'\ be any well-ordering of X. For each x EX, choose 

an open neighbourhood Ox of x which has a weak separation :;;x• Define:;; on X 

by x:;; y if and only if at least one of the following obtains: 

(1) there exists av EX such that x E U{O: w-{ v} and y i U{O: w -(v}; w w 
( 2 ) there exists a v E X such that x E O - U{ 0 : w -< v}, y E O - U{ 0 : w -< v} 

V W V W 
and x :;;v y. 

:;; is reflexive and antisymmetric. If y EX, then there exists a least 

(under --c() v E X such that y E O - U{O : w -< v}. Thus, {x E X: x :;; y} = 
V W 

U{Ow: w ~ v} U {x E Ov: x :;;v y} which is open in X. D 

EXAMPLE 6.3. Every discrete space is totally separated. Part (d) of Proposi

tion 6.2 implies that every space which is the union of countably many 

closed discrete subspaces is totally separated. Thus from part (e) we see 

that every locally countable T1 space is totally separated. The MICHAEL line 

[M2] is totally separated by part (c) because it is the union of a closed 

countable T1 subspace and an open discrete subspace. 

PROPOSITION 6.4. If Xis T2 , then f<X> is weakly separated if and only if 

for every positive integer n, {FE F<X>: IFI = n} is weakly separated. 

PROOF. One direction follows directly from part (a) of Proposition 6.2. 

Since each F <X> is closed in F<x>, to show that F<X> is weakly separated, 
n 

it suffices to show that each F <X> is weakly separated. This follows from 
n 

the fact that each {FE F<x>: IFI n} is weakly separated by n applications 

of part (cl of Proposition 6.2. D 
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PROPOSITION 6.5. If Xis partially separated, then F<X> is weakly separated. 

PROOF. Lets be a partial separation on X. For every FE F<X> and f E F, 

choose an open neighbourhood O(F,f) off in X such that 

(1) {f1 ,f2 } SF implies fl i O(F,f2 ) and f 2 i O(F,f1 ); 

(2) O(F,f) ~ {h E X: h s f}. 

Define F s* G if and only if FE <{O(G,g): g E G}>. The relations* is re

flexive and for each GE f<X>, {FE f<X>: F s* G} = <{O(G,g): g E G}> which 

is open in F<x>. 

To prove antisymmetry, let F s* G and Gs* F, i.e., FE <{O(G,g): 

g E G}> and GE <{O(F,f): f E F}>. Condition 1 implies that for every 

f E F - G, there exists a g E G - F such that g E O (F, f). Similarly, for every 

g E G-F, there exists an f E F-G such that f E O(G,g). Thus, if at least 

one of F-G or G-F is non-empty, then there exsits r :2: 1, {fi: 1 sis r} £; 

'.:: F-G and {gi: 1 sis r} '.:: G-F such that gl E O(F,f1 ), f 2 E O(G,gi), .. . 

. . . ,gr E O(F,fr) and f 1 E O(G,gr). Condition 2 implies that f 1 s gr s fr' .. . 

... ,f2 sg1 sf1 . Since sis acyclic, this is a contradiction. Hence, F-G = ~ 

and G - F = ~, i.e. , F G. D 

COROLLARY 6.6. ([BFL2 ]). If Xis partially separated, then F[x] is paracom

pact. If, in addition, Xis first countable, then F[x] is metrizable. 

REMARKS. 

(a) Corollary 6.6 has been generalized in [PR] as follows: Let (S,<) be a 

partially ordered set and suppose that X = U{x : S E s}' where X n xt s s 

~ for s ,/ t and U{Xt: t s s} is open in X for every s E s. If F[x J is 
s 

paracompact for every s E s, then F[x] is paracompact. 

(b) Partially separated spaces include all locally countable T 1 spaces, all 

a-closed discrete spaces, all scattered spaces, all subspaces of F[x] 

and many generalized-ordered spaces. All examples of spaces X for which 

F[x] is paracompact have turned out to be partially separated. In an 

upcoming paper on weakly separated spaces, we will show that there 

exists a first countable Tychonov space X for which F<x> is weakly 

separated, but Xis not partially separated. We also have an example 

of a T 1 weakly separated space X for which F2 <X> is not weakly separat

ed. This example is not first countable, however. 

PROBLEM 6.7. If Xis a first countable Tychonov space, is F[x] metrizable 

if and only if Xis weakly separated? 
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COMPLETENESS FOR NEARNESS SPACES 

H.L. Bentley & H. Herrlich 

ABSTRACT AND INTRODUCTION. 

For uniform spaces completeness is a well-defined and useful concept. 

We investigate, in the realm of nearness spaces, to which extent this con

cept can be extended in a sensible way to some wider range. For this pur-

we first formulate 20 external resp. internal characterizations of complete

ness as well as some basic properties of completeness and completions for 

uniform spaces. Next we investigate these characterizations and properites 

in some wider range. Main results are: 

(1) Virtually the whole theory remains valid for regular nearness spaces. 

(2) Large parts of the theory remain valid for separated nearness spaces, 

the only notable exception being the fact that completions are no long

er unique. For separated nearness spaces there exist two distinguished 

completions, a "largest" (= simple) one, which is a complete reflection 

but otherwise behaves rather badly, and a "smallest" (= strict) one, 

which behaves rather well and whose restriction to uniform spaces is 

the usual uniform completion, but whiph fails to be a complete reflec

tion. 

(3) Beyond the range of separated nearness spaces, The various characteri

zations of completeness are no longer equivalent. The concept of com

pleteness splinters into many different concepts and a natural theory 

of completeness ceases to exist. 

In this paper we restrict attention to those nearness (in particular uni

form) spaces, whose underlying topological spaces are Hausdorff. 
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1. UNIFORM SPACES 

1.1. External Characterizations 

We start with two external characterizations of complete spaces among 

uniform spaces: 

(A) A uniform space is complete iff it is extension-closed, i.e. closed in 

every uniform extension (equivalently: iff it has no proper dense ex

tension). 

(B) A uniform space is complete iff it belongs to the epireflective hull 

of all complete metrizable uniform spaces in the category Unif (equi

valently: iff it is isomorphic to a closed subspace of some product of 

completely metrizable uniform spaces). 

1.2. Internal Tools 

In order to provide internal characterizations of completeness among 

uniform spaces, we need to recall definitions and properties of several 

useful internal tools. 

Let~= (X,µ) be a uniform (or more generally an arbitrary nearness) 

space - whereµ denotes the collection of all uniform covers of X. A col

lection A of subsets of Xis called 

- near, provided every uniform cover contains some member, which meets 

every member of A 

- micromeric, provided for every uniform cover U there exist members U of 

U and A of A with Ac U 

concentrated, provided it is near and micromeric 

- a stack, provided A EA and Ac B c X implies BE A 

- a grill, provided XE A, 0 i A and (Au BE A~ A EA or BE A). 

Micromeric filters are called Cauchy filters. Every Cauchy filter is near. 

An ultrafilter is near if and only if it is a Cauchy filter. A filter Fon 

Xis called a strong Cauchy filter (MORITA [6]), provided for every uniform 

cover U there exist members U of U and F of F, such that U is a uniform 

neighbourhood of F, i.e. such that there exists a uniform cover H with 

star(F,H) cu. Maximal (non-empty) near collections are called clusters. 

Minimal micromeric stacks (not containing the empty set) are called round 

Cauchy filters. 
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The operator sec, defined by sec A = {B c X I B n A f, 13 for all A E A}, 

is idempotent for stacks, reverses the order, interchanges the roles of 

filters and grills as well as of near collections and micromeric collections. 

The following diagram exhibits the relations between the above con

cepts for arbitrary nearness spaces. Let A be a stack and L = sec A {hence 

A = sec L). Then: 

IA cluster I IL round Cauchy filter I 
t t 

IA maximal near grill IL minimal Cauchy filter I 

j ultrafilterJ j I l strong filter I A near ultrafilter L near Cauchy 

'--..... ✓ 

IA near grill I IL Cauchy filter I 
+ + 

IA concentrated I IL concentrated I 

For uniform spaces the names "strong Cauchy filter", "round Cauchy filter" 

and "maximal near grill" are superfluous, as the following results show: 

{C) In a uniform space, the clusters are precisely the maximal near grills, 

{hence) the round Cauchy filters are precisely the minimal Cauchy fil

ters. 

(D) In a uniform space, the strong Cauchy filters are precisely the Cauchy 

filters. 

Any of the above concepts can be used to describe the "holes" in a non

complete space. Particularly useful are clusters and minimal Cauchy fil

ters, since for any "hole" in a uniform space the collection of all sets 

"near the hole" forms a cluster, and the collection of all sets "surround

ing that hole" forms a minimal Cauchy filter. The following result sheds 

more light on the picture: 

(E) For any stack A in a uniform space (X,µ), the following conditions are 

equivalent: 

(1) A is concentrated 

(2) there exists a (unique) cluster C and a (unique) minimal Cauchy 

filter F with F c Ac C. 
If the above conditions hold, then 

C {c c XI {c} u A is near} 
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and 

F {F c X I {F} u {X\A I A E A} is a uniform cover}. 

Completeness means that certain collections A converge resp. adhere. Here 

A is said to converge to x, provided for any neighbourhood U of x there 

exists some member A of A with Ac U; and A is said to adhere to x, provided 

xis an adherence point of every member of A. For uniform spaces we have 

the following useful result: 

(F) For any concentrated collection A and any point x in a uniform space, 

the following conditions are equivalent: 

( 1) A converges to x 

(2) A adheres to x. 

1.3. Internal Characterizations 

The tools, presented in the above section, suggest several possibili

ties to define completeness. The following result shows their equivalence 

for uniform spaces: 

(G) For a uniform space the following conditions are equivalent: 

(1) every cluster adheres 

(2) every maximal near grill adheres 

(3) every near grill adheres 

(4) every concentrated collection adheres 

(5) every Cauchy filter adheres 

(6) every near ultrafilter adheres 

(7) every strong Cauchy filter adheres 

(8) every minimal Cauchy filter adheres 

(9) every round Cauchy filter adheres 

(10) every round Cauchy filter converges 

(11) every minimal Cauchy filter converges 

(12) every strong Cauchy filter converges 

(13) every near ultrafilter converges 

(14) every Cauchy filter converges 

(15) every concentrated collection converges 

(16) every near grill converges 

{17) every maximal near grill converges 

(18) every cluster converges. 



COMPLETENESS FOR NEARNESS SPACES 33 

1.4. Completions 

Here we formulate some fundamental results concerning completeness and 

completions of uniform spaces: 

(H) Completeness is productive, closed hereditary (and coproductive), and 

hence epireflective in the category Unif of uniform spaces. 

(I) Every uniform space! has an essentially unique completion Y!· The points 

of Y! are in 1-1-correspondence to any of the following: 

(1) all clusters of X 

(2) all minimal Cauchy filters of X 

(3) all concentrated collections in!, modulo the equivalence A~ L.,. 
Au Lis near. 

(K) Completions preserve 

(1) products 

(2) embeddings 

(3) total boundedness (= contiguity, 

(4) (large) uniform dimension 

proximity) 

(5) uniform weight, i.e. the smallest cardinality of a base for the 

covering structure 

(6) uniform separability degree, i.e. the smallest cardinal k such that 

there exists a base, all of whose members have cardinality ~k 

(7) metrizability. 

2. REGULAR NEARNESS SPACES 

In a nearness space a uniform cover A is called a regular refinement 

of a uniform cover L, provided for any member A of A there exists a member 

B of L, which is a uniform neighbourhood of A (i.e. there exists a uniform 

cover C with star (A,C) c B). A nearness space is called regular provided 

every uniform cover has a regular refinement. Since star-refinements are 

regular, any uniform space is a regular nearness space. Regular nearness 

spaces were first introduced by K. MORITA [6], who demonstrated that sev

eral results in §1 hold in this more general context. Moreover we have: 

THEOREM 2.1. With the exception of (B), all the results (A) - (K) of §1 re

main valid for regular nearness spaces. Moreover, completions of regular 

nearness spaces preserve uniformity. 
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Proofs can be found e.g. in [4, 5]. 

3. SEPARATED NEARNESS SPACES 

A nearness space is called separated, provided for any concentrated 

collection A, the collection {B c XI {B} u A near} is near (and hence the 

unique cluster containing A). Separated nearness spaces were introduced in 

[4, 5]. Every regular nearness space is separated. 

Essential parts of the theory of complete uniform spaces remain valid 

for separated nearness spaces. First, the technical Lemmas (C), (E) and (F) 

still hold in this context: 

PROPOSITION 3.1. Results (C), (E) and (F) hold for separated nearness spaces. 

PROOF. (C) follows immediately from the definition. (E) (2) => (1) is obvious. 

Vice versa, if A is a concentrated stack, then C ={cc XI {c} u A near} 

is the unique cluster containing A. Since C is a near grill, sec C is a 

Cauchy filter and sec C c sec (sec C) = C. Therefore C is the unique cluster 

containing sec C. Hence sec C c sec A implies that C is the unique cluster 

containing sec A. Consequently sec C is the unique minimal Cauchy filter 

contained in sec ( sec A) = A. 

Finally, sec C = {F c XI C E C => F n C ,f, 0} {F c XI (X-F) I. C} = 

= {F c XI {X\F} u A not near}= {F c XI {F} u {X\A I A EA} uniform cover}. 

(F) Let A be a concentrated collection. Without loss of generality we assume 

A to be a stack. If A converges to x, then the neighbourhood-filter L of x 

is contained in A. Hence the cluster C = {c c x I {c} u L near} contains {x} 

and every member A of A, which implies that A adheres to x. Vice versa, let 

A adhere to x. Let L be the collection of all neighbourhoods of x, and C be 

the unique cluster containing L. Then {x} belongs to C. Hence, for every 

neighbourhood B of x, the complement X\B cannot belong to C, i.e. there 

exists a uniform cover U none of its members meets simultaneously X\B and 
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all members of L. Since A is micromeric, there exists a common member A of 

A and L. Since A meets every member of Lit cannot meet X\B, which implies 

that B ~ A is a member of A. Consequently A converges to x. 

For the investigation of completeness in separated nearness spaces 

Morita's strong Cauchy filters are no longer a suitable tool, as the fol

lowing example shows: 

EXAMPLE 3.2. Consider the separated nearness space (X,µ), defined by X 

:N x {0,1} and 

X jl. uA 

A E µ -. l2. 3n E :N, 

3. 3n E :N, 

Vm ~ n, 3A EA, {(m,O),(m,1)} c A 

3A E A, { (m, 1 ) I m ~ n} c A 

Then F = {F c XI (:Nx{l})\F finite} is a non-convergent Cauchy filter, 

which is not strong. The strong Cauchy filters are precisely the fixed 

ultrafilters and hence convergent. 

THEOREM 3.3. For separated nearness·spaces, all the conditions of result 

(G), with the exception of (7) and (12), are equivalent. 

Hence, for separated nearness spaces, each of the remaining 16 condi

tions of (G) describes internally the same phenomenon: completeness. More

over, this concept coincides with the external one, given in (A): 

THEOREM 3.4. Result (A) remains valid for separated nearness spaces. 

Moreover, the following results have been shown in [1]: 

THEOREM 3.5. Result (H) remains valid in the category SepNear of separated 

nearness space. 

THEOREM 3.6. Every separated nearness space can be completed. Any two com

pletions of a fixed separated nearness space are pointwise isomorphic. The 

points of the completions can be described via any of the conditions (1), 

(2) or (3) of (H). Among the completions of a fixed separated nearness 
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space are two distinguished ones: 

a "largest" (= simple) one, which provides the complete reflection in 

SepNear 

- a "smallest" (= strict) one. 

THEOREM 3.7. The strict completion preserves all the properties (1) - (7), 

exhibited in (K), as well as uniformity and regularity. The simple comple

tion(= complete reflection) preserves none of them. 

For the latter, see the following example: 

EXAMPLE 3.8. Consider the uniform space X = (X,µ), defined by X N and 

fl. UA X 

AEµ<==>l 
2. 3A EA, X\A finite. 

! has (up to isomorphism), precisely one completion Y! = (X',µ'), which can 

be described as follows: X = JN u { w} and 

X' 
A E µ' -r· UA 

2. 3A EA, w EA and X'\A finite. 

Then Y! x Y! is the strict completion of! x !· The simple completion 

(Y,v) of Xx X can be described as follows: Y = X' x X' and 

1. UA Y 

2. Vn E :N, 3m E N, 3A E A, 

{n} x ({k E N I k ~ m} u {w}) c A 

A E v <==>< 3. Vn E N, 3m E N, 3A E A 

({k E N I k ~ m} u {w}) x {n} c A 

4. 3n E N, 3A E A, 

({m E N Im 2". n} x {m E N Im 2". n}) u { (w,w)} c A. 
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. . 

• . 
• 

00 (· . ·) 0 0 (· 
0 0 (· ·) 0 0 (· ·) 

Strict completion of Xx X Simple completion of Xx X 

4. NEARNESS SPACES 

For arbitrary nearness spaces (with underlying Hausdorff spaces) com

pleteness splinters in many different concepts as the following examples 

demonstrate: 

EXAMPLE 4.1. Consider the nearness spaces (X,µ), defined as follows: 

X = :N x {0,l} and 

{
1. UA 

A€µ..,. 
2. 3nE :N, 'v'm~n, 3AEA, {(m,l)}u{(k,0) lk~m}cA. 

X 

~ g OLl-=P t==R ===·===-· 

Then: 

(1) A = {Ac XI A n (:N x {0}) infinite} is a maximal near grill, but not 

a cluster. 

(2) L = {B c XI (:N x {0})\B finite} is a minimal Cauchy filter, but not 

round (i.e. not a minimal Cauchy stack). 

(3) Au {:N x{l}} is concentrated, but not contained in any near grill. 

(4) {c c XI 3n E :N, ({(n,1)} u {(m,0) Im~ n}) c C} is concentrated, but 

does not contain any Cauchy filter. 
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(5) Every cluster adheres, but the maximal near grill A does not; every 

round Cauchy filter converges, but the minimal Cauchy filter L does 

not. 

EXAMPLE 4.2. Consider the nearness space (X,µ), defined as follows: 

X = (N x {0,1}) u {w} and 

Then: 

X Jl. UA 

A E µ - l2. 3n E JN, 

3. 3n E N, 

3A E A, ( {m E N I m ;:e n} x { 0, 1}) c A 

3A E A, ({ (m,O) Im ;:e n} u {w}) c A 

(1) The collection A= {JN x {1}} u {{(m,O) Im ;:en} In E JN} is concentrated 

and converges tow, but does not adhere. 

(2) The collection L = {{(m,i) Im ;:en, i E {0,1}} In EN} is concentrated 

and adheres tow, but does not converge. 

EXAMPLE 4.3. Consider the nearness space (X,µ), defined as follows: 

X = JN X JN and 

{'" 
UA X 

A E ]J - 2. Vn E JN, 3m E 

{ (k,i) I k ;:e m 

0 0 . . 

0 0 . . 
00 
00 
00 
00 
00 
00 

00 . . 
. . . . 
. . . . 
. . . . 

JN, 3A EA, 

and i:,; n} C A 
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Then: 

(1) Every maximal near grill is a fixed ultrafilter, hence converges and 

adheres. So does every minimal Cauchy filter. 

(2) The Cauchy filter F = {F c XI (:N x{O})\F finite} neither converges 

nor adheres. 

EXAMPLE 4.4. Consider the nearness space (X,µ), defined as follows: 

X=:NX:N 

f' UA X 

A E µ..,. 2. 3n € :N, \fm ~ n, 3A € A, {m} X :N CA 

3. 3n E :N, \fm ~ n, 3A E. A, :N X {m} c A. 

(· . . . . . 
(· . . . . . 
(· . . . . . 
0 0 0 . . . 
0 0 0 v v . 

'-.,.I 

Then: 

(1) Every Cauchy filter converges; every near grill adheres. 

(2) The collection A = {:N x {n} I n E :N} is concentrated but neither con

verges nor adheres. 

EXAMPLE 4.5. Consider the nearness space (X,µ), defined as follows: 

X = [0,1] and 

{
1. U{intA I A€ A} - X} 

A€µ -
2. 3A € A, X\A finite 

where int denotes the interior operator of the usual topology on [0,1]. 

Then: 

(1) Every near ultrafilter converges and adheres. 

(2) The cluster, consisting of all infinite subsets of X, converges but 

does not adhere. The round Cauchy filter {F c X I X\F finite} adheres, 

but does not converge. 
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A systematic analysis of the various completeness concepts for arbi

trary (Hausdorff) nearness spaces is still missing. Partial results are: 

Cluster completeness is productive [2] and allows the construction of a 

strict completion with completely satisfactory preservation properties 

[4, 5], but is neither closed hereditary nor reflective. 
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THE K-THEORY OF ALMOST SYMMETRIC FORMS 

F.J.-B.J. Clauwens 

INTRODUCTION 

To motivate this paper we first recall a few facts. 

According to [Wl , chapter 5] a nonnal map f between manifolds of di

mension 2k and fundamental group 11 9ives rise to a (so-called quadratic) 

fonn ¢ defined on some finitely generated free left B module V, where B de

notes the integral group ring Z[11]. The appropriate equivalence class of¢ 

in L2k(B) is the obstruction s(f) for changing f into a homotopy equivalence 

by surgery (for k > 2). 

According to [CJ a closed manifold P of dimension 2q and fundamental 

group p gives rise to a (so-called almost symmetric) form cr defined on sane 

finitely generated free left A module K, where A is Z[p]. The main theorem 

there states that cr ®¢represents the obstruction for doing surgery on 

id x f if¢ does so for f. 
p 

In this paper we will study the algebra of almost symmetric forms; there-

fore we first recall the main things about quadratic forms from [W2]. 

Orientability considerations give rise to a homomorphism w: 11 + {±1}. 
-- -1 

The map-: B + B defined by the formula rn g = rn w(g)g 
-- - g g 
x+y, xy = y x and x = x. For such an involuted ring B the 

satisfies x+y = 

dual vd 

HomB(V,B) of a left B-module V inherits the structure of a left B-module by 

(af) (v) = f (v) a; the canonical map A: V + Vdd defined by x (fl = f (x) is an 

isomorphism provided Vis finitely generated projective. A forms on V can 

be viewed as a homomorphism V + Vd; thens*= sd o A: v + vdd + vd is one 

such too. 

DEFINITION. Let Ebe a sign. An E-quadratic form over B consists of a finite

ly generated free left B-module Vanda class of forms¢ on V defined up to 

* the equivalence¢ ¢ + s - Es. It is called nonsingular if the symmetrisa-

tion A=¢+ EW* is an isomorphism V + Vd. We call (W,~d¢~) isomorphic to 
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(V,~) if¢ is a module isomorphism W ➔ V. 

If Fis f.g. free the quadratic form~ on F © Fd defined by ~F(x,f) = 

(f,0) is nonsingular; any quadratic form of this isomorphism type is called 

standard. Now L2k(B) is defined as the quotient of the Grothendieck group 

of nonsingular (-l)k quadratic forms over B by the subgroup generated by 

standard such forms. 

DEFINITION. Let n be a sign, A an involuted ring. A nonsingular almost n

symmetric form over A consists of a finitely generated free left A module 

Kand an isomorphism cr: K ➔ Kd such that cr* = no(l+N), where N is nilpotent 

(compare [C; §9]). Again ¢dcr¢ is considered to be isomorphic to cr for any 

module isomorphism¢. 

ALMOST SYMMETRIC FORMS ARE QUADRATIC 

Let A be an involuted ring, n = (-l)q_ We consider quadratic forms over 

the polynomial ring A[s] over A equipped with the involution -- such that 

Za.sj za":"" (1-s)j. 
J J 

THEOREM 1. Any element in L2q(A[s]) can be represented by a quadratic form 

o/ which is linear ins. Any such linear o/ can be viewed as an almost (-l)q 

symmetric form. 

PROOF. Let the element be represented by a quadratic form o/ = Zo/ si of de
i 

gree Mins. By the addition of a standard form and the use of an isomorphism 

we get (in matrix notation) 

-s 

1 

0 

0 

0 

a form of degree M-1 if M ~ 2; so we can make that M = 1. 

We can get rid of the constant term by using the equivalence 

0 

0 

0 

To prove the last clause we consider the linear o/ = 1 1s and write o for 
* * * no/ 1. Then the symmetrisation A = o/ + no/ of o/ becomes o + (ncr - cr) s which is 
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-1 * invertible exactly if cr is invertible and ncr cr -1 is nilpotent. Q.E.D. 

THEOREM 2. There is a well defined biadditive pairing 

which assigns to the quadratic form~= E~.si over A[s] with symmetrisation 
]. 

A and the quadratic form w over B with symmetrisation A the quadratic form 

over A® B. In particular it extends the familiar product of a symmetric 

form with a quadratic form. 

We start with the observation that for a general form r 

A[s] we have 

Hence the symmetrisation of the image is 

i 
Eris over 

which is invertible since both A and A are. Furthermore if we change~ into 

* the equivalent f + z - nz the image changes into 

-1 
which is equivalent to \f(\ w). 
If we change .f into the isomorphic <l>df<I> the image changes into 
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which is isomorphic to Ao/(A- 1¢). Finally if o/ is standard then Ao/(A- 1¢) is 

also standard: in fact such a o/ is induced from a quadratic form over A for 

which this statement is well-known. Since our pairing obviously respects 

direct sums we have proven that the class of the image in L2q+2k (A® B) is 

independent of the choice of the representing element for the class in 

L2q(A[s]). 

Now by Theorem 1 we may from now on assume that o/ is of the type as, 

where a is nonsingular, almost n symmetric; so Ao/(A- 1¢) is just a®¢. 

* Firstly if we change¢ by an isomorphism¢ into¢¢¢ then a®¢ changes 

by the isomorphism 1 ® ¢. 

Secondly the isomorphism K ® (F@ Fd) ;'. (K ® F) © (K ® F) d which maps 

a@ (x,f) to (a@x, cr(a)@ f) lets a@ ¢F correspond with ¢K@F" So standard 

forms are mapped to standard forms. 

* It remains to be shown that the equivalence¢~¢+ s - E~ changes 

a @ ¢ into something in the same class; this will be a consequence of the 

following lemma. 

LEMMA. For every integer p ~ 0 there is an isomorphism~ and there are 
p 

forms Z and H over A@ B such that 
p p 

-1 * where N is na a - 1 and thus nilpotent. 

PROOF. We apply induction. For p ~ 0 we take 

1, 

In general~ 
p 

p 
will be of the form 1 + N@ ¢1 + .•• +N @ ¢p and H of the form 

d p 
a@ epO + CTN® epl + If we assume all this for p then ~p+l (a®¢) ~p+l 

becomes 

* CT ® (¢ + ~ - E~ ) + Z 
p 
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* p+l * + crNp+l ® * + e (ncr - cr)N ® 1/! c/>p+l (1/J + £1/! ) c/>p+l 

and we want the last 

of H (Np+l ® 1) hence 

term cr~+l ® Acj> 1 to cancel the first term crNp+l ® epO 
p+ -1 

p 
we define c/>o+l = -A 0 0 . The first term we absorb in - p 

defining Z l Z + (Nd)p+lcr ® cpd 11/J. Z by 
p+ p p+ 

The remaining te:rm ecrNp+2 ® 1/J*c/>p+l will be absorbed in Hp+l (Np+2 ®1), 

as are the remaining terms of H (Np+i®l) and the E-terms. The last is pos

sible because Ndcr can be rewrit~en as -crN(l+N)- 1. 

and H 1 of the right form. 
p+ 

So there exists wp+l' Zp+l 

Q.E.D. 

By viewing almost symmetric forms A as quadratic forms over A[s] and 

classifying the latter up to stable isomorphism we have defined an equiva

lence relation on them. 

According to Theorem 2 this relation is sufficiently fine to admit the 

formulation of the product formula (for surgery obstructions). It is also 

sufficiently coarse to define a bordism invariant of algebraic symmetric 

Poincare complexes in the sense of [R], hence one of geometric Poincare com

plexes: As explained in [CJ we can associate an almost (-l)q symmetric form 

cr to a 2q-dimensional algebraic symmetric Poincare complex and then take its 

class in L2q(A[s]). The result is well-defin~d on L2q(A) since it can be seen 

as taking the tensor product with the element of L0 (z[s]) represented by 

cr = 1. 

Both the inherent periodicity in q and the wealth of techniques avail

able for L2 make it probable that L2q(A[s]) is better suited for calcula
q2 

tions then L q(A) is. 

One could hope that an almost (-l)q symmetric form is always equivalent 

to an honest (-l)q symmetric one; the following example, due to A. Ranicki 

shows that this is not the case. However we will see that it is the case if 

the ring A contains a central element t such that t + t = 1 or if it is a 

Dedekind domain. 

The two-dimensional torus T2 = s1 x s1 gives rise to an element in L2 (A), 

and hence to an element in L2 (A[s]), where A is the integral group ring of 

7f 1 (T2) = Zl x Zl. Suppose that this element could be represented by an anti

symmetric form cr; then cr could be written as cp - cp*; the result cr ® 1/J of its 
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* action on a (-1)-quadratic form 1jJ would be equivalent to ¢, © (ijJ- ijJ ) , hence 

* would depend only on the symrnetrisation 1jJ - 1jJ of ijJ. In particular it would 

kill the Arf nontrivial element in L2 (,z). On the other hand it follows from 

[SH] that multiplication with a circle induces a split injection on L-groups 

and hence the product with T2 gives a split injection L2 (l:Z) ➔ L4 (A). 

SOME CALCULATIONS 

THEOREM 3. If there exists a central element t of Z such that t + t = 1 then 

the canonical map L2q(A) ➔ L2q(A[s]) is an isomorphism. 

PROOF. The map A[s] ➔ A substituting t for s gives a left inverse so we must 

show that for any integer p ~ 0 there is an isomorphism¢, and there are 
p 

forms sp and ep such that 

d 
¢, (as)¢, 

p p 

For p =Owe take ¢,0 = 1, s 0 = as(1-t), e0 = (1-s)t. In general¢, will be 
p 2 p 

of the form 1 + a 1N + .•• + aPN and ep epO + ep1N + ep 2N + ... where the ai 

and eij are polynomial ins and t with Z coefficients, hence central. 

d 
If we assume all this for p then¢, 1 (as)¢, 1 becomes 

p+ p+ 

- d p+1 fo 1 (N ) as 
p+ 

* p+1 no N a 1 (1-s)} 
p+ 

* p+1 p+1 + (no -a)N a 1 (1-s) + a(s+ (1-s))a 1N -
p+ p+ 

__ p+1 
Then we let the last term cancel the first term of aw e by defining 

p 
ap+l -epO and absorb the first term ins by defining 

s s + a 1 (Nd)p+las. 
p+1 p p+ 
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__ p+2 . . __ p+2 
The middle term C1N'" a +l (1-s) is absorbed in ow 0 1 , 

p +1 p+ 
as are the I: 

terms and the ranaining terms of o~ 0 • 
p Q.E.D. 

THEOREM 4. 

L0 (z[s]) = z, 

PROOF. According to Theorem 1 we may restrict attention ton-quadratic forms 

* w of the type nos, where o is an almost n-symmetric form on some f.g. free 
-1 * e e-1 Z-module K. Thus N = no o - 1 satisfies N O for some e. Then N K is 

of finite index h in some direct sUI111Dand L of K. 

For X € L.i 
* e-1 since no N 

{x I o (x) (L) = 0} we have also o (L) (x) 0 and vice versa, 
e-1 e-1 

(0 + ON)N = ON implies 

e-1 o(N y) (x) 
e-1 

n o (x) (N y), for y E K. 

Furthermore L c L.i since oN d * -nN o implies 

e e-2 -no (N x) (N y) 0. 

So o induces a well-defined form; on L.i/L, and N ~-1~* 
no o - 1 satisfies 

~ e-1 ~e-1 N(x+L) = Nx + L hence N Kc L implies N = 0. 

Now L ® Z[s] is a direct summand of K ® Z[s] which is isotropic for W• 
If x = I:x sj E K ® Z[s] is in (L® z[s]).i for the symmetrisation ). = o + oNs 

j 
of w then we have for all l EL that 

I:o(l,x.)sj + I:o(Nl,x.) (1-s)sj 
J J 

hence x. E L.1. We see that (L®Z[s]).i/(L®Z[s]) is just (L.i/L) ® Z[s] and 
J ~ ~* obviously the induced quadratic form won it is just nos. 

It is well known that w is stably equivalent tow and we have just seen 

that the latter is associated to an almost n-symmetric form o which has a 

better e. We can go on inductively until e = 1 which means that we get an 

n-symmetric form. 

It is also well known [SE] that a (-1)-symmetric form is stably trivial 

and a (+1)-symmetric form stably isomorphic to some multiple m of the form 

(1) of rank cine. Finally m can be detected by taking the signature of the 
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1 
quadratic form over lR which we get by mappings to 2. Q.E.D. 

Now some general remarks about torsion are necessary. If we start with 

a finite Poincare complex Pour module K gets a natural basis (see §6 of 

[CJ). 

The symmetrization A of the associated quadratic form is cr(l+Ns) and 

according to Lemma 9 of [CJ we have N2 = 0 and 1 + Ns has a resolution by 
1 -1 * automorphisms 1 + ( (-1) i:: i:: - l)s of the Ei which are simple; in particular 

the isomorphisms involving Nin the proofs of Theorems 2 and 3 are simple. 

So the torsion of A lives in K1 (A) c K1 (A[sJ) and the appropriate L groups 
X 

L2q(A[sJ) have X = Wh(p) in the general case and (0) in the case of simple 

Poincare complexes. 

At the time this is written we do not have theorems as the above for 

the odd-dimensional case. Note however, that if we did, we could use the 

long exact sequence 9.4 of [RJ for the Ln groups to calculate Ln(Z[pJ[sJ) 

for p the cyclic group of prime order p > 2. If w denotes exp( 2Tii/p) and F 
p 

is the field of p elements, there are maps from Z[pJ[sJ to z[wJ[sJ and Z[sJ 

and from these to F [sJ satisfying all necessary conditions. Since 
p 

K2 (Fp[sJ) = 0 according to Theorem 11 of [QJ and 9.13 of [M] the map 

is injective, so we may use the "simple" L-groups throughout and we get an 

exact seqeunce 

... L l (F [sJ) ➔ L (Z[pJ[sJ) ➔ L (Z[w][sJ) Gl L (Z[s]) ➔ L (F [s]) 
n+ p n n n n p 

But L (Z[wJ[s]) ~ L (Z[wJ) by Theorem 3, hence is known, and similarly n · n 
L (F [s]) ~ L (F ). 

n p n p 

The author has now calculated L (Z[pJ[sJ) for p cyclic. 
n 
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HYPERSPACES OF PEANO CONTINUA 

D.W. Curtis 

The hyperspace 2X of nonempty compact subsets of a metric continuum X, 

and the hyperspace C(X) of nonempty subcontinua of X, are topologized by the 

Hausdorff metric p(A,B) inf{E > 0: Ac N (B) and B c N (A)}. In this sur-
E E 

vey paper we discuss some of the fundamental classical results for such 

hyperspaces, and some of the more recent work done on hyperspaces of Peano 

continua. We begin in §1 with a brief description of the general connecti

vity properties enjoyed by 2X and C(X). The investigation of these proper

ties was initiated by BORSUK and MAZURKIEWICZ [4], [23], [24] in the early 

1930s, and continued by KELLEY [21] in 1942 and SEGAL [32] in 1959. A com

prehensive treatement of these and many other topics in hyperspace theory 

is provided in the recently published monograph of NADLER [26]. In §2 we 

specialize to hyperspaces of Peano continua. The equivalence of local con

nectedness for X, 2x, and C(X), established by VIETORIS [37] and WAZEWSKI 

[38] in 1923, and the fundamental result of WOJDYSLAWSKI [41] in 1939 that 

such locally connected hyperspaces are absolute retracts, form the back

ground for the topological characterization theorems of CURTIS, SCHORI and 

WEST [29], [12] in the early 1970s. We describe in broad outline those tech

niques from infinite-dimensional topology (the recognition of near-homeo

morphisms, interior approximation by inverse sequences, and constructions 

involving Q-factors) which were crucial for obtaining these results, and 

which were in fact largely motivated by hyperspace problems. Relationships 

between topological properties and geometric positional properties of cer

tain subspaces of 2X are discussed in §3, §4, and §5. Finally, in §6 we in

dicate how certain Peano compactifications may be used to establish topo

logical characterization theorems for hyperspaces of non-compact spaces. 
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§1. HYPERSPACES OF METRIC CONTINUA 

The topology on 2X induced by the Hausdorff metric is also known as 

the Vietoris finite topology. The basic open sets are those of the form 
X 

<v1 , ... ,Vk> ={FE 2: F c v 1 u ... uvk and F n Vi ,f- .0 for each i}, where 

the Vi are open sets in X. It is easily shown that 2X and C(X) are continua. 

THEOREM 1.1. [4]. 2X and C(X) are arcwise-connected. 

THEOREM 1.2. [21]. 2X and C(X) are n-connected for all n, and locally n-

connected for n > 0. 

THEOREM 1.3. [21], [32]. 2X and C(X) are acyclic in all dimensions. 

The central concept underlying the proof of (1.1) is the existence of 

order arcs. An arc a in 2X is an order arc if, for every A, BE a, either 

Ac B or B c A. MAZURKIEWICZ [24] showed that every nondegenerate subcon

tinuum a c ~ with the above chain property is topologically an arc, hence 

an order arc. The endpoints of an order arc a are the elements n{A: A Ea} 

and U{A: A Ea} of 2x, and if the endpoint na is in C(X), then a c C(X). 

Borsuk and Mazurkiewicz essentially constructed an order arc between an 

arbitrary element A of 2X and the element X. 

KELLEY [21] showed that there exists an order arc in 2X from A to B if 

and only if Ac Band every component of B meets A. His proofs introduced 

into hyperspace theory the concept of Whitney maps. A map w: 2X ➔ [0, 00 ) is 

a Whitney map if w({x}) = 0 for every singleton {x} and w(A) < w(B) whenever 

A is a proper subset of B. Such maps exist for every metric continuum X, and 

have come to play an important unifying role in hyperspace theory (see 

[26]). 

The higher dimensional connectivity properties for hyperspaces (global 

and local n-connectedness for n > 0) are immediate consequences of the fact 

that, for a cell cr with dim cr > 1, there exists a map r: cr ➔ C(Bdcr) such 

that r(p) {p} for all p E Bdcr. Thus any map f: Bdcr ➔ 2X has an extension 

f: cr ➔ 2X defined by f (y) 

does f. 

U{f(p): p E r(y)}, and if f maps into C(X), so 

SEGAL [32] was the first to apply inverse limit techniques to hyper-

spaces. He showed that the hyperspace operation commutes with inverse limits: 

* if X ~ inv lim(X.,f. ), where X and X. are metric continua, and if f.: 
X·+l Xi ~ i i i 

2 1 ➔ 2 and f.: C(X. 1 ) ➔ C(X.) are the induced hyperspace maps, then 
i i+ i 
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2X ~ inv lim(2xi,f:) and C(X) ~ inv lim(C(Xi) ,fi). Since every metric con

tinuum X has an inverse limit representation inv lim(Xi,fi) with each Xi a 
X· finite connected polyhedron, and since each hyperspace 2 i and C(Xi) is an 

X AR (see §2), the hyperspace 2 and C(X) are represented as inverse limits 

of AR's, and can therefore be viewed as the intersections of nested sequences 

of AR's. 

2. HYPERSPACES OF PEANO CONTINUA 

THEOREM 2.1. [37], [38]. The following conditions are equivalent: 

(i) Xis locally connected; 

(ii) 2X is locally connected; 

(iii) C(X) is locally connected. 

The quickest proof for (2.1) is based on Kelley's criterion for the 

existence of order arcs. Thus, suppose Xis locally connected. Then for 

nearby elements A and B of 2x, there exists an element C near each of A and 

B such that C ~Au Band each component of C meets both A and B. Then the 

union of order arcs from A to c and from B to C provide a small-diameter 

path between A and B. For the converse, suppose 2X is locally connected, and 

consider nearby points a and bin X. There exists a small-diameter connected 

set Mc 2X containing {a} and {b}, and U{M: M € M} is a small-diameter con

nected set in X containing a and b. 

TaEOREM 2.2. [41]. The following are equivalent: 

(i) Xis locally connected; 

(ii) -i<' is an AR; 

(iii) C(X) is an AR. 

Perhaps the easiest proof for (2.2) is based on the Lefschetz-Dugundji 

characterization of ANR's by extension of partial realizations of polytopes 

[17]. The argument uses the local path-connectedness of 2X given by (2.1), 

the proof for local n-connectedness for n > O (1.2), and the fact that an 

ANR which is n-connected for all n is an AR. 

In [41] WOJDYSLAWSKI also asked whether 2X is homeomorphic to Q (the 

Hilbert cube) for every nondegenerate Peano continuum x. Earlier, 

MAZURKIEWICZ [23] had shown that for every nondegenerate metric continuum 

x, 2X contains a copy of the Hilbert cube and is therefore infinite

dimensional. A special case of this question (is 2I ~ Q?), and an analogous 
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question (is C(B 2 ) ~ Q?), had been considered by Polish topologists in the 

1920s. Note that a necessary condition for C(X) ~ Q is that X contain no 

free arcs, since C(I) is a 2-cell. 

The question of dimension for the hyperspace C(X) of a Peano continuum 

X was answered by KELLEY [21]. If Xis a finite graph, then C(X) is a finite 

polyhedron with dim C(X) =.max{ordA[X]: A E C(X)}. And if Xis not a finite 

graph, dim C(X) = 00 • In the latter case, C(X) actually contains a copy of 

the Hilbert cube (see [BJ, [25]). DUDA [16] has investigated in considerable 

detail the polyhedral structure of the hyperspace C(X), for X a finite 

graph. 

Further evidence supporting the conjectures that 2X ~ Q and, for X 

containing no free arcs, that C(X) ~ Q, was given by GRAY [18], [19]. He 

showed that if Xis nondegenerate, each point of 2X is unstable, and if X 

is a finite connected polyhedron with no free arcs, each point of C(X) is 

unstable. Of course, each point of Q is unstable (i.e. there exists arbi

trarily small maps from Q into Q\{pt}). 

THEOREM 2.3. [29], [30], [31]. If Xis a nondegenerate finite connected 

graph or dendron, then 2X ~ Q. 

The key concepts appearing in the proof are Q-factors, near-homeo

morphisms, and 'interior approximation' via inverse limits. We briefly out

line the proof that 21 ~ Q (I is the closed unit interval), indicating how 

these concepts are used. 

A compact space Xis a Q-factor if Xx Q ~ Q. Since Xis a retract of 

Xx Q, it is necessary that X be an AR. EDWARDS (see [6]) later established 

that every compact metric AR is a Q-fact9r, but at the time the hyperspace 

results were obtained, geometric techniques of WEST [39] were used to show 

that certain finite-dimensional subspaces of 21 are Q-factors. In particu-
I 

lar, for each positive integer n the subspace Bn ={FE 2 : F ~ {0,1} and 

each component of F has length at least 1/n} is a Q-factor. 

The union u7 Bn is dense in the space 2~ 1 {FE 21 : F ~ {0,1}}, and 
I 

2 01 ~ inv lim(Bn,fn), where each bonding map fn: Bn+l ➔ Bn is a naturally 

defined 'fattening' map. A general interior approximation lemma that applies 

here and in subsequent hyperspace proofs, is stated in [12]: 

LEMMA 2.4. Let X be a compact metric space, and (Xi,fi) an inverse sequence 

of maps and subcompacta of X such that 
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-i 
d(fi,id) < 2 for each i, and 

(i) 

(ii) 

(iii) 

Then 

{f,o ... of,:j2:i} 
1. J 

is an equi-uniformly continuous family for each i. 

X ~ inv lim(Xi,fi). 

This lemma is used in conjuction with an approximation lemma of BROWN 

[5]: 

LEMMA 2.5. Let (Xi,fi) be an invetse sequence such that each Xi is homeo

morphic to a conpact metric space Y and each fi is a near-homeomorphism 

(i.e., a uniform limit of homeomorphisms). Then inv lim(Xi,fi) ~ Y. 

The maps fn: Bn+l + Bn referred to above have the property that each 

map fn x id: Bn+l x Q + B x Q is a near-homeomorphism. It follows from the 
n I I 

approximation lemmas that 201 x Q ~ inv lim(Bn x Q, fn x id)~ Q. Thus 2 01 

is a Q-factor. 

WEST [39]. had previously shown that every countably infinite product 

of nondegenerate Q-factors is homeomorphic to Q. For each n, the subspace 

Yn = {F E 2~1 : F ::i {¼, n!l , ... } } is homeomorphic to n7 2~ 1 , and therefore 

homeomorphic to Q. Appropriate near-homeomorphisms rn: Yn+l + Yn are con

structed, and the approximation lemmas are used again to obtain 2~1 ~ 
inv lim(Y ,r) ~ Q. Finally, the observation that 21 is the double cone 

I n n I 
over 201 , and tha fact that Cone Q ~ Q, gives the result 2 ~ Q. 

The verification of near-homeomorphisms in the above constructions in

volved the use of Q-factor decompositions [7], which are analogous to the 

simplicial subdivisions of complexes. CHAPMAN [6] later showed that a map 

of Q onto itself is a near-homeomorphism if (and only if) it is a CE-map 

(i.e., point-inverses have trivial shape). 

THEOREM 2.6. [40]. If Xis a finite connected graph or dendron, then 

C (X) x Q ~ Q; if X is a dendron with a dense set of branch points, then 

C(X) ~ Q. 

One can view the hypothesis in the second part of (2.6) as follows: 

if the branch points of X are dense, each subcontinuum of X can expand (or 

contract) in infinitely many directions, thus each subcontinuum has non

finite order in X. Hence C(X) locally looks like an infinite product of 

intervals, and this is the key to the result C(X) ~ Q. 

Finally, affirmative answers to the general conjectures concerning the 

hyperspaces of Peano continua were announced in [12]: 
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THEOREM 2.7. Let X be a nondegenerate Peano continuum. Then 2X ~ Q, 

c (X) x Q ~ Q, and C (X) ~ Q if and only if X contains no free arcs. 

Details of the proof for the polyhedral case appear in [14], and for 

the general case in [15]. The proof is based on the earlier results (2.3) 

and (2.6) of SCHORI and WEST for the hyperspaces of finite connected graphs 

and dendra, and uses all the previously mentioned techniques. The main idea 

is to construct a sequence {ri} of finite connected graphs in X, and maps 

f.: 2ri+1 + 2ri which are near-homeomorphisms, such that the inverse se-
J. r. 

quence (2 i,f.) is an interior approximation for 2X in the sense of (2.4), 
l. X f. 

and therefore 2 ~ inv lim(2 i,fi) ~ Q. In the case that X contains no free 

arcs the graphs {r.} can be modified, by the addition of countably many 
l. * 

'stickers', to obtain a sequence {ri} of local dendra with dense sets of 

branch points. West's techniques for dealing with the hyperspace of sub

* continua of a dendron apply also to this situation, giving C(f.) ~ Q. Near-
* l. * homeomorphisms gi: C(fi+l) 

* inv lim(C(fi) ,gi) ~ Q. 

+ C(f.) are then constructed such that C(X) ~ 
l. 

The graphs ri may be obtained, when Xis a polyhedron, as the 1-skele

tons of a sequence {Ki} of subdivisions of X, with each Ki+l a refinement 

of Ki and mesh Ki+ 0. In the general case we must partition X, breaking 

it up into a finite number of small Peano subcontinua intersecting only 

along their boundaries (see [3]). Trees are constructed in each partition 

element, such that their union is a connected graph r which can be viewed 

as a 1-dimensional nerve of the partition. Thus, we construct a sequence 

{Pi} of partitions of X, with each Pi+l a refinement of Pi and mesh Pi+ 0, 

and a corresponding sequence {ri} of nerves of the partitions. These nerves 

are the desired finite connected graphs in X. 

In 1977, TORUNCZYK [34] obtained a suprisingly general characterization 

of Hilbert cube manifolds and the Hilbert cube. Specifically, a compact 

metric AR space Xis homeomorphic to Q if for every E > 0, there exist maps 

f, g: X + X with d(f,id) < E, d(g,id) < E, and f(X) n g(X) =~-The proof 

uses Edward's Q-factor theorem together with many earlier techniques in Q

manifold theory. In turn, this simple characterization provides short, in 

some cases almost immediate, proofs of most previous theorems on identifying 

the Hilbert cube. The hyperspace theorems are no exception. In particular, 

for the hyperspace 21 the maps f, g: 21 + 21 defined by f(A) = N (A) and 
E 

g(A) = (1-E)A u {sup A} have disjoint images, since no set f(A) has isolated 

points [36]. TORUNCZYK has given in [34] a short argument for 2X and C(X) 
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using the existence of a convex metric on the Peano continuum X and a hyper

space lemma from [13]. 

§3. GROWTH HYPERSPACES 

A nonempty closed subspace G of 2X satisfying the following condition 

is called a growth hyperspace: if A E G and BE 2X such that B ·~ A and each 

component of B meets A, then BEG. 

This condition was first studied by KELLEY [21], who showed that every 

growth hyperspace of a Peano continuum is an AR. The argument is the same 

as the outlines in §1 and §2 for 2X and C(X), using the fact that if a c 2X 

is an order arc with the endpoint n{A: A Ea} an element of G, then a c G. 

Note that every growth hyperspace contains the element X of 2x. 

Obviously both 2X and C(X) are growth hyperspaces. For A E 2X we have 

the following additional examples: 

(1) 2! = {F € 2X: F ~ A}; 

(2) 2X(A) {FE 2x, FnA ,f .0}; 

(3) CA (X) C(X) n 2x; 

(4) C(X;A) = C(X) n } (A); 
X 

(5) GA (X) = {F E 2 : F ~ A and each component of F meets A}; 

(6) cn(X) ={FE 2x, F has at most n components}. 

An inclusion hyperspace is a growth hyperspace satisfying the stronger 

condition: if A E G, and BE 2X with B ~ A, then BEG. Examples (1) and (2) 

above are inclusion hyperspaces. 

THEOREM 3.1. [9]. Let G be a nontrivial growth hyperspace of a Peano con

tinuum X, such that either X contains no free arcs or G is an inclusion 

hyperspace. Then G\{X} is a [0,1)-stable Q-manifold. Furthermore, the fol

lowing are equivalent: 

(i) GRSQ; 

(ii) G\{X} is contractible; 

(iii) Xis an unstable point in G. 

X 
If X is a nondegenerate and A ,f X, the inclusion hyper spaces 2A and 

2X(A) are homeomorphic to Q. And if X contains no free arcs, the growth 

hyperspaces CA(X), C(X;A), GA(X), and Cn(X) are homeomorphic to Q. For an 

example of a growth hyperspace not homeomorphic to Q, let A and B be proper 

closed subsets of X with A u B = X; then 2X u 2X is the union of two copies 
A B 

of Q intersecting in a point. 



58 CURTIS 

A more general result appears in [9]: for every Q-manifold Mand nondegen

erate Peano continuum X, there exists an inclusion hyperspace G of X such 

that G\{x} ~ M x [0,1). 

§4. THE HYPERSPACE OF COMPACT CONVEX SUBSETS 

For X a compact convex set in a locally convex linear metric space, 

the hyperspace cc(X) is the space of nonempty compact convex subsets of X. 

NADLER, QUINN, and STAVRAKAS [27], [28] initiated the study of cc-hyper

spaces, using techniques from functional analysis and convexity theory. 

THEOREM 4.1. [27]. If dim X > 1, then cc(X) ~ Q. 

The proof consists in showing that dim cc(X) = 00 and that cc(X) imbeds 

as a convex subset of Hilbert space 12 . The result follows from the classi

cal theorem of KELLER [20] that every infinite-dimensional compact convex 

subset of 12 is a Hilbert cube. Many other interesting results, examples, 

and questions on cc-hyperspaces appear in [26]. 

A convex growth hyperspace is a nonempty closed subspace G of cc(X) 

satisfying the following condition: if A E G and BE cc(X) with B ~ A, then 

BEG. Results for convex growth hyperspaces analogous to those for growth 

hyperspaces are given in [9]. 

§5. Z-SETS AND PSEUDO-BOUNDARIES IN HYPERSPACES 

A closed subset A of a compact metric AR space Y is a z-set in Y if 

for every E > 0 there exists a map f: Y ~ Y\A with d(f,id) < E. An equiva

lent condition is that, for every open sunset U of Y, the inclusion map 

U\A + U is a homotopy equivalence. z-sets were introduced by ANDERSON [1], 

and have come to play a fundamental role in infinite-dimensional topology 

(see [6]). Obvious examples of z-sets in the Hilbert cube I 00 = n7 [-1,1] 
+ -1 - -1 00 

are the endslices Wi = Tii (1) and Wi = Tii (-1). Every closed subset Ac I 

with the property that Tii (A) is a proper subset of [-1,1] for infinitely 

many indices i, is a Z-set. In particular, every compact subset of the 

standard pseudo-interiors= n7 (-1,1) is a Z-set in I 00
• Anderson showed 

that the Hilbert cube is Z-set homogeneous: every homeomorphism between z

sets in Q extends to a homeomorphism of Q onto itself. 

We have the following examples of Z-sets in hyperspaces: 
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THEOREM 5.1. [10]. Let A be a nonempty closed subset of a Peano contimuum X. 

Then 2X(A) (respectively, C(X;A)) is a z-set inf (respectively, C(X)) if 

and only if A is locally non-separating in X (i.e., for every nonempty con

nected open subset U of X, U\A is nonempty and connected). 

As another example, it can be shown that if Xis nondegenerate, then 

Cn(X) ={FE 2X: F has at most n components} is a z-set in 2x, for each n. 
00 00 + - CX) 

The subset Bd(I ) = Ui=l (Wi u Wi) = I \s is the standard pseudo-boundary 

of I=. In general, any subset B of a Hilbert cube Q such that (Q,B) is homeo

morphic as a pair to (I=,Bd(I=)) is called a pseudo-boundary of Q. The com

plement Q\B is called a pseudo-interior; note that Q\B ~ s ~ l 2 . ANDERSON 
= [2] gave the first non-trivial example E = {(xi) EI: suplxil < 1} of a 

pseudo-boundary, and a topological characterization of pseudo-boundaries as 

cap-sets (dense countable unions of z-sets in Q with a certain compact ab

sorption property). Using this, KROONENBERG [22] gave the following charac

terization: 

LEMMA 5.2. Let {K.} be an increasing sequence of subsets of Q such that 
l. 

(i) each Ki~ Q, 

(ii) each Ki is a z-set in Q, 

(iii) each Ki is a z-set in Ki+l' and 

(iv) for each£> 0 there exists a map f: Q + Ki for some i such that 

d(f,id) < £. 

Then u:=l Ki is a pseudo-boundary in Q. 

The first examples of pseudo-boundaries and pseudo-interiors in the 

hyperspaces 2X and C(X) were given by Kroonenberg, using the above character

ization. Namely, the subspace of closed 0-dimensional sets in the interval 

I, the subspace of z-sets in Q, and the subspace of connected Z-sets in Q, 

are pseudo-interiors in the hyperspaces 2I, 2Q, and C(Q), respectively. Us

ing the fact that each countable union of z-sets containing a pseudo-boundary 

is itself a pseudo-boundary. Kroonenberg showed further that the hyperspaces 

2s ={FE 2I=: F cs} and C(s) ={FE C(I=): F cs} are pseudo-interiors in 

2I= and C(I=), respectively. Incidentally, these were the first examples 

given of hyperspaces homeomorphic to Hilbert spaces l 2 • This technique was 

generalized in [10], resulting in a characterization of those non-compact 

spaces X which admit Peano compactifications X such that 2X is a pseudo

interior in 2X (see §6). 
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Mark Michael and the author have recently obtained a type of result 

which subsumes the above examples: 

THEOREM 5.3. If Xis a Peano contimuum and B c 2X is a countable dense union 

of Z-set inclusion hyperspaces, then Bis a pseudo-boundary in 2x. If Xis 

a Peano continuum containing no free arcs, and B c 2X (respectively, 

B c C(X)) is a countable dense union of z-set growth hyperspaces, then Bis 

a pseudo-boundary in 2X (respectively, C(X)). 

Thus for example, if {Fi} is a countable dense family of closed locally 
oo X 

non-separating sets in X, it follows from (5.1) that Ui=l 2 (Fi) is a pseudo-

boundary in 2x, and if X contains no free arcs, u;=l C(X;Fi) is a pseudo

boundary in C{X). Another example is the subset U~=l Cn(X), which is a 

pseudo-boundary in 2X if X contains no free arcs. 

There is a a-finite-dimensional analogue of pseudo-boundaries. Consider 

{(x.) E I 00
: x. = 0 for almost all i}, a countable dense union of finite-

l. ]. 00 

dimensional Z-sets in I . Any subset B of a Hilbert cube Q such that (Q,B) ~ 

(I00 ,I;) is called an fd-cap set [2]. Anderson characterized these sets in 

terms of a finite-dimensional compact absorption property, and showed that 

the complement Q\B is homeomorphic to s. (In the 'elliptic' Hilbert cube 

K = { (y.) 

n .21 2 
ri=l 1 Yi 

K\B ~ s.) 

2 00 2 2 
El: ri=l i yi ~ 1}, the 'boundary' set B = {(yi) EK: 

1 for some n} is an fd-cap set, and it is easily seen that 

QUESTION 5.4. Let r be a finite connected graph, and Fa countable dense 

union of finite-dimensional z-set growth hyperspaces in 2r. Is Fan fd-cap 

setin2r? 

Michael has obtained an affirmative answer for r =I.Thus for example, 

u:=l Cn(I) is an fd-cap set in 2 1 . Relative to this example, it can in fact 

be shown that F ={FE 2 1 : Fis finite} is an fd-cap set in 2 1 . 

§6. HYPERSPACES OF NON-COMPACT SPACES 

For an arbitrary metric space X, the Hausdorff metric on the hyperspace 

2X of nonempty compact subsets induces the Vietoris finite topology (see §1). 

Wojdyslawski's characterization (2.2) of hyperspaces which are compact metric 

AR's applies also to topologically complete metric spaces, as_ noted by 

Tasmetov: 
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THEOREM 6.1. [33]. 2X and C(X) are topologicall'] complete metric AR's if 

and only if Xis connected, locally connected, and topologically complete. 

Hereafter, X denotes a connected, locally connected, and topologically 

complete metric space. There exist various topological characterization 

theorems for the hyperspaces of X, analogous to (2.7). The first two theorems 

stated below involve certain Peano compactifications X of X. A metric don 

X has Property S if there exist finite covers of X by connected subsets with 

arbitrarily small diameters. Note that a space admitting a Property S metric 

is necessarily separable and locally connected. 

LEMMA 6.2. [10]. X has a Peano compactification X with a locally non-separat

ing remainder X\X if and only if X admits a metric with Property S. 

Q0 is the space Q\ pt. Since Q is homeomorphic to Cone Q, 

Q0 ~ cone Q\{pt} ~ Q x [0,1). 

X 
THEOREM 6.3. [10]. 2 ~ Q0 if and only if Xis locally compact but non-

compact. Similarly, C(X) ~ Q0 if and only if Xis locally compact, non

compact, and contains no free arcs. 

Outline of Proof. A space X satisfying the above conditions admits a metric 

with Property S, and therefore has a Peano compactification ~ with a closed 

locally non-separating remainder. By (5.1), the hyperspace 2X(X\X) is a Z-
X x x ~ 

set copy of Qin 2. Thus (2 ,2 (X\X)) ~ (Q x [0,1], Q x {1}) by Z-set homo-

geneity, and 2X = 2X\2X(X\X) ~ Q x [0,1). The converse is immediate, since 

X has a closed embedding into 2X. 

THEOREM 6.4. [10]. X admits a Peano compactification X such that the pairs 

(2X, ~) and (C (X) ,C (X)) are homeomorphic to (I00
, s) if and only if X is no

where locally compact and admits a metric with Property S. 

Outline of Proof. A space X satisfying the above conditions has a Peano 

compactification X with the remainder X\X a dense count~ble unio~ u:=l Fi 
oo X X 

of closed locally non-separating sets in X. Then Ui=l 2 (Fi) c 2 is a dense 

countable union of Z-set inclusion hyperspaces, and is therefore a pseudo: 
x x x\ oo x d . . . 2x boundary in 2 (5.3). Thus 2 = 2 Ui=l 2 ·(Fil is a pseu o-interior in 

The argument for C(X) is similar, using the fact that X contains no free 

arcs. Conversely, if either 2X or C(X) is a pseudo-interior in 2X or C(X), 

respectively, it can be shown that X\X is locally non-separating in X, hence 
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X admits a metric with Property S. 

Since s ~ l 2 , (6.4) gives sufficient (b~t not necessary) conditions for 

2X and C(X) to be homeomorphic to l 2 . The ch~racterization of those spaces 

X with hyperspaces homeomorphic to Hilbert spaces takes the following simple 

form: 

THEROEM 6.5. [11]. 2X and C(X) are homeomorphic to l 2 if and only if Xis 

separable and nowhere locally compact. 

2 
The proof uses Torunczyk's characterization of l as a separable, topo-

logically complete metric AR with a general position property for countable 

families of compact subsets [35]. This characterization is applicable in a 

more general form to Hilbert spaces of arbitrary weight. Efforts to apply 

it to the hyperspace of a non-separable metric space X lead naturally to 

the following question: 

QUESTION 6.6. Suppose that for some uncountable cardinal a, every nonempty 

open subset of X has weight a. Are 2X and C(X) homeomorphic to the Hilbert 
2 

space l {a) of weight a? 
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A MEASURE THAT KNOWS WHICH SETS ARE HOMEOMORPHIC 

Eric K. van Douwen 

Haar measureµ on a compact group G has the pleasant property of being 

invariant under all autohomeomorphisms3) of G which are algebraically signi

ficant: left and right translations, and topological isomorphisms of G (in 

particular under inversion); the restriction to algebraically significant 

homeomorphisms is essential here, as an easy example with the circle group 

shows. Furthermore, up to a multiplicative constant,µ is the only nonzero 

Borel measure on G which is invariant under all left translations. 

We here announce the existence of the following "impossible" example, 

and sketch its construction. Details will appear in [vD]. 

4) 
EXAMPLE. There exists an infinite compact zero-dimensional homogeneous 

space bH in which every open set is an F0 , which has a Borel measureµ 

satisfying 

(1) if X and Y are homeomorphic Borel sets in bH, then µ(X) µ(Y), 

(2) if X and Y are open subsets which are both compact or both noncompact, 

then 

(a) if µ(X) µ(Y) then X and Y are homeomorphic, and 

(bl if µ(X) ~ µ(Y) then X can be embedded in Y as an open subset; 

(3) up to a multiplicative constantµ is the only nonzero Borel measure on 

bH which is invariant under all autohomeomorphisms of bH. 

REMARKS. (a): The consequence of (1) and (2) that 

1) I am indebted to Arthur Stone for indirectly suggesting this title. 

2) Research supported by NSF Grant MCS 78-09484. 

3) An autohomeomorphism of a space Xis a homeomorphism of X onto itself. 

4) A space Xis called homogeneous if for all x,y EX there is a autohomeo
morphism3l' of X sending x toy. 
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µ is a nonzero Borel measure invariant under all autohaneomor

phisms 

would have been trivial if the identity had been the only autohomeomorphism 

of bH. But (*) is highly nontrivial since bH has many autohomeomorphisms, 

being homogeneous, and also because of (3). Of course (1) and (2) are even 

more nontrivial. 

(b) The original motivation for finding bH is the question of Monk and Rubin, 

which occurs in an early version of [vDMR], of whether a Boolean algebra B 

must be homogeneous (in the Boolean algebraic sense, i.e. Bis isomorphic 

to Bfb for all b EB - {0}) if its Stone space is homogeneous (in the topo

logical sense). Our example shows that such a Boolean algebra can even be 

Hopfian (= not isomorphic to any proper quotient). 

We construct bH as an easy to visualize compactification of a very 

special subgroup Hof the circle group 'II'. His among others a thick subgroup 

of 'II', hence the Lebesgue (or Haar) measureµ of 'II'induces a Borel measureµ 

on H according to the rule 

µ(B'), with B' any Borel set in 'II'with B H n B', 

[H, p.74]. Then ii in turn inducesµ according to the rule 

µ (B) µ (B n H) • 

[This explains the notation bH andµ.] 

In the remaining part of this announcement we indicate how one con

structs a subgroup Hof 'II'such that 

(4) if X and Y are homeomorphic Borel subsets of H, then ii(X) µ(Y). 

This condition will imply (1) above since we construct bH in such a way that 

if X and Y are homeomorphic subsets of bH, then there are countable sets C 

and D such that X n H - C and Y n H - Dare homeomorphic, so that (4) and 

the definition ofµ imply 

µ(X) ii(X n H) ii (X n H - C) ii(Y n H- D) ii(Y n H) µ (Y) , 

if X and Y are Borel. Our construction of bH is a modification of the con

struction of the Alexandroff double arrow space, [AU, Ex. A7]. In order to 
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ensure thatµ satisfies (2) and (3) we will build in additional properties 

in H, which tells us that the analogues of (2) and (3) hold forµ. These 

additional properties are easily built in, but it would take too much space 

to explain their function, hence we ignore them. 

Before we proceed to the outline of the actual construction we explain 

what we are aiming for. Suppose (4) is false. Let X and Y be Borel sets of 

H with µ(X) > µ(Y) for which there is a homeomorphism f: X ➔ Y. There are 

G0-subsets X' and Y' of 'JI'with 

X s:; X' and µ(X) µ(X'), and Y s:; Y' and µ(Y) µ (Y'). 

Since 'JI'is completely metrizable, being compact, there are by a classical 

result of LAVRENTIEFF, [L], G0-subsets X and Y of 'I!'with 

X £XS X' and Y SYS Y' 

such that f can be extended to a haneomorphism f: X ➔ Y. Let X" be a Borel 

subset of 'Il' such that X H n X". Since clearly µ (X n X") = ii (X) > ii (Y) 

we can find a compact D c 'Il' with D c X n X" and µ (D) > µ (Y), hence µ·(D) > 

µ(f➔D). Now H n D s H n X11 = X, hence f(x) f(x) E y s H for all XE H n D. 

Therefore our assumption that (4) is false will lead to a contradiction if 

we make sure that His a stiff subgroup of 'JI', as defined next. 

DEFINITION. A compression of 'lI'is a homeomorphism f with dom(f) and range(f) 

compact subsets of 'Il'satisfying µ(dom(f)) > µ(range(f)). A subset S of 'Il'will 

be called stiff if for every compression f of 'JI' there is an x ES n dom(f) 

such that f(x) i S. 

we observe that if Sc 'Il'is stiff, then Sis thick, i.e. µ(B) = 0 for every 

Borel set B of 'Ir that misses S. Indeed, if B c 'Il'is Borel, and µ(B) > 0, then 

there is a copy K of the Cantor Discontinuum with Ks:; Band µ(K) > 0. But K 

includes a copy of C of itself with µ(C) < µ(K) (even with µ(C) = 0). A 

homeomorphism K ➔ C must be a compression, hence Kn Sf~-

We are now ready for the actual construction. We can list all compres

sions of '.II' as <fa: a< q; > • With transfinite recursion on a we will pick 

xa E dom(fa). For each a< a; we let Ha be the subgroup of '.Ir generated by 

{x~: ~<a}. We want to make sure that for all a~ q; we have 
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Then our stiff subgroup H will be Hq;. At stage y of the construction put 

D = dom (f ) , and 
y 

(k E Z), 

s where Z' is the set of nonzero integers. 

We assume (*) holds for a= y. Then an easy calculation shows that we can 

pick x such that ( *) holds for a = y + 1 if ID - SI = q;. We indicate the 
y 

proof of this equality. Fork E Z' define a continuous sk: Sk + Hy by 
-k 

sk(x) f(x)•x , and for Cs Ha define 

+ 
c {x ED: sk(x) EC for some k E Z'}. 

[Note that S H+]. We claim that 
y 

+ 
(t)D - C is uncountably for all countable Cs H • 

y 

In the proof one notes that s;{x} n s+{y} is countable for k,l E Z' and 

x,y EH with k i l or xi y, and that y 

fork E Z', y E Hy; and 

fork E Z' and Borel B s 'II'. 

Let Cs H be countable. If in L we sum over k E Z' and y EC, then y 

+ 
µ(C) 

++ 
µ (f C ) ~ 

y 
+ 

µ (f D), 
y 

-<-- + + 
since fy is an injection. [Note that each sk{y} and fy(sk{y}) is Borel, and 

in fact compact, since the former is closed in the compact set D.] Since f 
y 

is a compression, this proves (t). 

Using (t) one can construct a copy K of the Cantor Discontinuum with 

Ks D such that sk1K n skis injective fork E Z'. Then !Kn SI < q; since 

I Hy I < q;, hence ID - S I = q; since I KI = (I;. 

The same argument shows that several other second countable locally 

compact groups, like the reals, have a stiff subgroup, but I do not know if 

every such group has a stiff subgroup. 
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ORDERABILITY OF GO-SPACES 

A. Emeryk, R. Frankiewicz & W. Kulpa 

SUMMARY 

Two theorems are given answering the question when a GO-space is order

able. The first theorem implies that if Y is a GO-space of an ordered space 

X and Y is itself orderable then under some additional conditions weight 

Y s weight X. The second result shows that if a GO-space has no connected 

compactification then such a space has no topology induced by a dense order. 

Let< be a given linear order on a set X. Then the order is said to be 

dense if for each x,y EX, x < y, there is a z EX such that x < y < z. 

Open intervals are sets of the form 

(a,b) {xExla<x<b}, 

(+,a) {x E X I x < a}, and 

(b,+) {x E X I x > b}. 

Arrows are sets of the form 

. [a,b) {x E X I a s x < b}, 

with analogous definitions for (+,a], [b,+) and (a,b]. 

A topological space is orderable, iff there are exists a linear order

ing< on X, such that the collection of all open intervals forms a base 

for the topology on X and then Xis said to be an ordered space with re

spect to<. A topological space is a generalized ordered space X (abbrevia-

tion GO-space of X) iff X Y and the topology of Y if induced by a sub-

base consisting of all eopn sets and a subset of the family of arrows. 
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We define: 

Y {x I there is an r E X such that (r,x] is open in Y} 

Y+ {x I there is an r E X such that [x,r) is open in Y} 

Symbols w(x), L(X), hL(X), lxl mean respectively the weight of X, the 

Lindelof number of X, the hereditarily Lindelof number of X, and the card

inality of X (for the definitions see e.g., [37). 

LEMMA 1. Let X be an ordered space. If Pis a family of open intervals, 

directed with respect to the inclusion and {x} = nP, then Pis a local 

base at the point x. 

PROOF. Obvious. 

THEOREM 1. Let (x,J1,< 1) and (x,J2 ,< 2) be ordered spaces such that J 1 c J 2 . 

Then w(x,J2J s; w(x,J1) + hL(x,J2J._ 

PROOF. Let B be the 

in the sense of <1, 

an open covering {) 
-u 

such that 

uo ·--u 

* = U{{) Let Q -u 
of elements of 

u 

U E 

o* - . 

base for the topology of J 1 consisting of open intervals 

and assume that IBI = w(x,J1). For each U EB we choose 

of U consisting of open intervals in the sense of <2 

and 

B} and let Q be the family of all finite intersections 

Then for each x E X we can choose a subfamily P(x) of 

the family Q_ such that nP(xl = {x} and P(xl is directed with respect to 

the inclusion. By Lemma 1, Q is a base for the space (x,J2). Since IQI = 
S:w{x,J 1) + hL(X,J2 ), we have that w(x,J2) s: w(x,J1) + hL(x,J2). 

LEMMA 2. If Y is a GO-space of an ordered space X, where the topology of 

X is induced by a dense linear order, then hL (Y) hL (X) + I Y - n Y + I . 

PROOF. Let Ube an arbitrary family of open sets of Y. We define 

For each x EK there exists a U EU and an arrow S 
X X 

[x,r) or Sx (r ,x] 



such that S 
X 

x,y €Kn Y 
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c Ux. From the definition of Kit follows that if x ~ y and 

or x,y €Kn Y+ then S n S ~- Since the linear order on 
X y 
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Xis dense, intX[x,r) ~~and intX(x,r] ~~-Hence the families consisting 

of the sets of the form intxsx, x €Kn Y and intxsx, x €Kn Y+, are fam-

ilies of mutually disjoint open subsets of X and therefore !Kl = hL(X). 

Since there is a subfamily u* of the family U such that 

{ I € U*} u intxu u U{intxu I u € U} 

and IU*I S hL(X), and since 

there exists a subfamily u** of the family U such that uu** = UU and 

1u**1 s hL(X) + IY+nY-1 and therefore hL(Y) s hL(X) + IY-nY+I. Moreover 

hL(X) S hL(Y) and IY- n Y+I S hL(Y), and we obtain that hL(Y) = hL(X) + 

IY+nY-1. 

COROLLARY 1. Let Y be a GO-space of an ordered space X, with a dense linear 

order, and let IY- n Y+I s w(X). If moreover Y is orderable, then w(Y) s 

w(X). 

THEOREM 2. Let Y be a GO-space of an ordered space X, with a dense linear 

order. If IY- n Y+I s w(X) < IY- u Y+I then Y cannot be an orderable space. 

PROOF. It is clear that w(Y) ~ IY- u Y+I. Assume that Y is an orderable 

space. Then by Corollary 1 we have that w(Y) s w(X) which contradicts 

w(X) < IY- u Y+I (cf. [3]). 

COROLLARY 2 •. The Sorgenfrey line is not orderable. (See also [4], [S]J. 

Let :.z· be the set of integers in their natural ordering. For every 

ordinal -r we define :.z -r to be the lexicographical product of -r copies of 

:.z, i.e. the space of all sequences (z0 I a< -r) in which (z0 ) < (z' 0 ) iff 

for some B < -r we have z8 < z 1 8 and for ally s B: zy = z'y· 

* DEFINITION. A topological space Y is a GO -space iff Y is a GO-space and 

y + UY = Y. 
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Under the hypothesis 2w < 2w1 Theorem 2 implies that each Go*-space 
w 

of Zl 1 which is dense in itself cannot be orderable. Under the hypothesis 

2w = 2w 1 Theorem 2 does not allow us to decide that a GO*-space of Zlw 1 

* cannot be ordered. However, the following result will show that no GO -
w 

space of Zl 1 can be ordered by a dense order. 

LEMMA 3. Let Z be a T1 regular space and let Y be a GO-space of a space X 

with a dense linear order. If Y c z is a dense subspace of Zand 

for each arrow Ac X that is clopen in Y, then for each interval (x',y') c 
- + 

X such that clz (Y u Y ) :::, (x' ,y') there is a point p E Z and an interval 

[a,b] c (x',y'), a< b, such that p E clz(x',a) n clz(b,y'). 

- + PROOF. Since clz(Y UY):::, (x',y') we can find points x,y,t E (x',y') with 

x < t < y, such that either (x,t] is clopen in Y and Y is dense in (x,tl 

or [t,y) is clopen in Y and Y+ is dense in [t,y). Assume that [t,y) is 

clopen in Y and that Y+ is dense in 1t,y). (In the case that (x,t] is 

clopen in Y the proof is analogous.) Since Z is a regular space there is 

a point z E [t,y) n (Y- u Y+) such that clz[t,z) c U([t,y)) where U([t,y)) 

is the largest open set in z such that U([t,y)) n Y = t,y). According to 

( *) there is a point p E cli t, z) n clz (Y\ [ t, z)) .. For each neighbourhood W 

of the point p we have 

0 F W n U([t,y)) n (Y\[t,z)) w n [t,y) n (Y\[t,z)) W n [z,y) 

i.e. p E clz[z,y). If [z,d) is open in Y for some d E Y, (the case where 

(c,z] is open in Y for a suitable c is analogous) then since Z is a 

Hausdorff space, we can choose an interval [z,t'), t' < t, such that 

[z,t') n W = 0 for some open neighbourhood W of the point p. Let a,b E Y 

be such that [a,b] c (z,t'). Then p E clz(x,a) and p E clz(b,y). 

DEFINITION. A regular space Xis pseudobase-compact (with respect to B) 

iff there exists a pseudobase B (cf. [1]) of open sets for X such that for 

each centered subfamily C of B the intersection n{clxu I U E C} F 0. Such 

a pseudobase Bis called a compact pseudobase (cf. [1]). 

It is easily seen that the space Zl T has a compact pseudobase. The 
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following theorem is a generalization of Theorem 1 from [3]. 

THEOREM 3. Let X be a pseudobase-compact ordered space with a dense linear 

order. Let Y be a GO-space of X with Y+ n Y =~and Y+ u Y ~ U\F for 

some non-void open set U and some first category set Fin X. Then there is 

no T1 regular space Z such that Y is a dense subspace of Zand 

for each arrow A that is clopen in Y. 

PROOF. Suppose that there exists a T1 regular space Z satisfying the condi

tion (*) and Y is dense in z. Let B be a compact pseudobase for x. Recall 

that Y+ u Y ~ U\F. Let F = U{F I n < w} where F c F for n < m and F is 
n n m n 

nowhere dense in X for each n. According to Lemma 3 one can define de-

creasing sequences {u!; I !; < ;\.} and {V!; I !; < ;\.} such that: 

(1) uo C 0 and u!; EB, 

(2) VI; C (x!;,y!;), !; < A, 

(3) u!; ~ C XVI;, !; < A, 

(4) u n F ~, n < w, 
n n 

(5) 01;+1 C VI;, !; < A, 

(6) 3p!;: Pi; E clz(x!;,x!;+l) n clz(Y1;,Y1;+1> 

(7) intx n {u!; I !; < ;\.} = ~-
Let {xo} = n{u!; I !; < A} = n{clXv!; I !; < ;\_}. By Lemma 1 the open inter

vals VI;,!;< A, form a base at the point x0 EX. Either there exists a 

z E Y such that the arrow (z,x0J is open in Y or there exists any E Y 

such that [x0 ,y) is open in Y. Suppose that (z,x0J is open in Y (the case 

where [x0 ,y) is open is analogous). Since Z is regular there is a point 

t < x0 such that clz(t,x0J c U((z,x0J) where U((z,x0 J) is the largest open 

set in z such that U((z,x0]) n Y = (z,x0J. Let us choose an arbitrary 
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y > x0 . There is a;< A such that V;+l c Vs c (t,y) and there is a point 

PS E Z such that PS E ctz(t,xs+1) n clz(Ys+l'y). But PS E clz(Ys+l'y) and 

ps E U((z,x0 ]) implies that U((z,x0J) n (ys+l'y) f 0 which contradicts 

U((z,x0 J) n Y = (z,x0 ] and Ys+l > x. 

COROLLARY 3. Let X be a pseudobase-compact ordered space with a dense 

linear order. Let Y be a GO-space of X with Y+ n Y = 0 and Y+ u Y ~ U\F 

for some non-void open set U and some first category set Fin X. Then there 

exists no connected regular T1 space Z containing Y as a dense subspace. 

PROOF. If Z is a connected space then the condition (*) holds for each 

arrow A that is clopen in Y. 

COROLLARY 4. There is no T1 regular connected space containing the 

Sorgenfrey line as a dense subspace, (cf. [2]). 

COROLLARY 5. If Y is a Go*-space of 2Zw 1 then there exists no dense linear 

order inducing the topology of Y. 

The authors are indebted to Evert Wattel who carefully read this 

manuscript. 
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FUNDAMENTAL GROUPS OF MANIFOLD SCHEMES 

W.T. van Est 

It is the purpose of this paper to describe briefly the notion of funda

mental group for manifold schemes. Full details and remarks on the higher 

homotopy groups will appear elsewhere. 

1 • MANIFOLD SCHEMES 

We recall briefly the notion of manifold scheme (cf. [2]) in the sheaf 

formulation. 
**) Let P be a manifold and rp (or r) the topological groupoid of germs 

of transitions, i.e. diffeomorphisms from open subsets of P to open subsets 

of P [2,6]; the set Er of identities of r may be identified with Pas a topo

logical space. 

A pair (P;T), where Tis an open subgroupoid of r with Er c T, is call

ed a manifold scheme with Pas page manifold (or chart manifold) and T as 

transition groupoid; the components of Pare called the pages (or charts). 

Let P, P' be manifolds and let M denote the sheaf of germs of local 

maps P + P'. A subsheaf Ac Mis said to be a morphism from the manifold 

scheme (P;T) to the manifold scheme (P' ;T') if 

(i) T /1. T' C 
***) A , 

(ii) the source map a: I\.+ P is surjective, 

(iii) for 
-1 

is a T'-orbit. any p E P, a (p) 

*) Part of this paper was also read in the "Journees de Geometrie Differen
tielle" May 16-20, (1978), at Schnepfenried, Haute Alsace. 

**) The differentiability class of manifolds and maps will be fixed through
out the first sections. 

***) To conform with the conventions on groupoids in [2] we consider here 
maps and germs of maps as right operators on spaces and germs of spaces. 
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A is called an immersion if it is contained in the sheaf of germs of local 

immersions, it is called an open immersion if it belongs to the sheaf of 

germs of transitions P ➔ P', it is called an open embedding if for any q E P' 
-1 

the counter image w (q) of the target map w is either empty or a T-orbit. 

Composition of morphisms is the obviuous one. The category of manifold 

schemes and morphisms will be denoted by MS.Tis the identity morphism 

(P;T) ➔ (P;T). Any manifold scheme (P;T) is MS-equivalent with a scheme 

(P' ;T') which has simply connected open subsets of JRn (for suitable n) as 

pages. 

With a scheme A= (P;T) one associates a topological space Top(A) by 

factoring out P by the equivalence relation: p 0 ~ p 1 if for some TE T, 

Po= a(T), P1 

spectively. 

w(T), where a and w denote the source and target map re-

A morphism A: A ➔ B leads naturally to a morphism Top(A): Top(A) ➔ 

Top(B) in the category of topological spaces. 

A manifold scheme A is said to be connected, compact if Top(A) is 

connected, compact. 

2. COHERENCE IN GROUPOIDS 

For any set Ewe equip both E and E2 with a groupoid structure by 

defining e•e = e, e E E in the first case and (e 0 ,e 1) (e 1 ,e2 ) = (e 0 ,e 2 ) in 

the second case. 

For any groupoid G with E as set of identities the map (a,w): G ➔ E2 

is a groupoid homomorphism, and (a,w) jE is just the diagonal homomorphism 

l:i: E ➔ E2 . 
*) 

G is said to be coherent if (a,w) ·is surjective and to be simply co-

herent if (a,w) is injective. 

Any groupoid is a disjoint sum of coherent subgroupoids, the components. 

Any component of a simply coherent groupoid is simply coherent. 

For any e EE, the group eGe =:Geis called the coherence group ate. 

In a coherent groupoid the coherence groups are isomorphic. 

Let G be a coherent groupoid and Gens the underlying set. The map (a,a): 

G2 ➔ E2 is obviously a homomorphism of groupoids. Any component of the 
ens 

fibred product G2 x E that completes the diagram 
ens E2 

*) We prefer the adjective "coherent" instead of "connected" because we shall 
also be dealing with topological groupoids where confusion might arise. 
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,j, 

E 

*) is called a universal overlay of G. 

2 
.l 

(a,a) 

81 

With any e EE c G there is associated a universal overlay Ge consist

ing of the pairs (f,g) with a(f) = a(g) = e, with multiplication (f,g) (g,h) 

(f,h). 
~e -1 

The homomorphism TI: G ➔ G with (f,g) ~ f g is called the (overlay) 

projection. Ge is coherent and simply coherent. 

For any map of sets¢: F ➔ Ethe fibred product G ~2 F2 that completes 

the diagram 

I 
I 

.j, 

G 

is called the lift of Gunder¢. 

(a,w) 

Let G and H be coherent groupoids. A homomorphism TI: H ➔ G is said to 

be a weak fibre homomorphism if (i) TI is surjective and (ii) TI-1 (e) is co

herent for any e EEG. TI is called a fibre homomorphism if (i) TI is surjec

tive and (ii) TI induces a bijection EH ➔ EG. 

3. TOPOLOGICAL GROUPOIDS; THE COMPONENT GROUPOID 

Let G be a locally connected topological group, G0 the identity com

ponent of G, and y: G ➔ G/G0 = : IT(G) the quotient map. IT(G) is discrete, 

*) The term "overlay" is borrowed from R.H. FOX [SJ. 
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it is the group of the components of G, y is continuous, and furthermore the 

diagram G l IT(G) behaves functorially in the sense that there is a commuta

tive diagram 

y 
G ---------'>IT(G) 

(cp) 

y 
H IT(H} 

for any continuous homomorphism cp in the category of l.c. topological groups. 

Similarly one defines a functor IT from the category of l.c. topological 

groupoids to the subcategory of discrete groupoids and a continuous homomor

phism y: G ➔ IT(G) as follows: 

Let for any g E G, [g] denote the connectedness component of g, and let 

a[g] = [ag], w[g] = [wg]. Then [G] together with the maps a: [G] ➔ {[e]; 
w 

e EE} generates a free groupoid <l>([G]; a,w) with {[e]; e E E} as set of iden-

tities. For any g E G we continue to denote the canonical image of [g] in 

<l>([G]; a,w) again by [g]. 

Define IT(G) to be the quotient of <l>([G]; a,w) by the relation [g1J[g2 ]= 

[g1g 2 J, let p: <l>([G]; a,w) ➔ IT(G) be the quotient map, and put y(g) = p([g]). 

Then G J IT(G) has the functorial property(*). 

A locally connected topological groupoid G is said to be coherent/ 

simply coherent if IT(G) is coherent/simply coherent. The coherence group of 

IT(G) at y(e) is said to be the coherence group of G at the component [e]. A 

l.c. topological groupoid is the disjoint union of open coherent subgroupoids, 

the coherence components. 
*) A map CT: F ➔ E of locally connected spaces is said to be a spread if 

(i) CT is surjective, (ii) CT is an open embedding on each of the components 

of F. 

A locally connected space Xis said to be simply connected if any over
*) 

lay X ➔ Xis an equivalence. 

*) "Overlay" and "spread are introduced here in order to avoid the ambiguous 
word "covering". 
Overlay means "covering space" (+ "covering map"). The terminology is 
partly borrowed from R.H. FOX [4,5]. 
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For any l.c. topological groupoid G with E = EG and any spread 

a: F ➔ E, the lift G ~2 F2 of G by o has a natural locally connected topology 

such that the natural projection p: G ~2 F2 ➔ G is again a spread. 

PROPOSITION 3.1. For any spread a: F ➔ Ethe morphism TI(p): TI(G ; 2 F2) ➔ TI(G) 

is a weak fibre morphism. If Eis simply connected then TI(p) maps the coher

ence groups of TI(G ; 2 F2 ) isomorphically onto coherence groups of TI(G). 

REMARK. The proposition results from more general propositions on the pro

perties of TI. 

For any coherent and locally connected groupoid G let G be the fibred 
~~~~ 1T y 

product of a universal overlay TI(G) ➔ TI(G) and G ➔ TI(G). Then denoting the 

projection G ➔ G by p, we have 

~~~~ ~ PROPOSITION 3.2. There is an isomorphism t: TI(G) ➔ TI(G) such that TI(p) o t 

,r, and y: G ➔ Il(G) i TI(G). 

G is called the universal overlay of G, and is according to Proposition 
~~~~ 3.2 simply coherent since TI(G) is simply coherent. 

4. FUNDAMENTAL GROUPS OF MANIFOLD SCHEMES 

Let A= (P;T) be a manifold scheme.Tis a locally connected topologi

cal groupoid. 

PROPOSITION 4.1. Tis coherent iff A is connected. In general there is a 

1-1 correspondence between the components of A and the coherence components 

of T. 

Proposition 3.1 leads to 

PROPOSITION 4.2. Let A be connected and P be simply connected. Then the co

herence group of Tis up to isomorphism an invariant of the equivalence 

class of A i.e. for any equivalent scheme (P',T') with P' simply connected, 

T and T' have isomorphic coherence groups. 

The coherence group of the transition groupoid of a connected manifold 

scheme with simply connected page manifold is therefore called the funda

mental group of the manifold scheme; the fundamental group is up to isomor

phism an equivalence invariant. As usual we denote the fundamental group by 

ir1. 
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Retaining the hypotheses and notations of Proposition 4.2, let T denote 

a universal overlay of T and TI: T + T be the overlay projection. TI is such 

that it maps the components of ET=: P homeomorphically onto the components 

of ET. The canonical identification ET~ P :nduces on ET and hence on ET a 

differential structure, which is such that T identifies in a natural fashion 

with an open subgroupoid of rp. 

A= (P;T) is called a universal overlay of A (P;T). 

PROPOSITION 4.3. TI 1 (A) = (1). The fundamental group of A acts in a natural 

fashion as an automorphism group of A. 

As explained in [2], for any manifold Mand foliation Fon M the quo

tient scheme M/F is well defined, and there is a natural MS-morphism 

p: M + M/F. Supposing Mand the leaves of F to be connected, one obtains 

PROPOSITION 4.4. Til (M/F) is a quotient of Til (M). 

REMARK. 

1) In order to specify the quotient map TI 1 (M) + TI 1 (M/F), one ought to choose 

a suitable open covering of Mand relate the transition groupoid of this 

covering of M with the transition groupoid of M/F. 

2) The quotient map TI 1 (Ml + TI 1 (M/F) is part of a short homotopy sequence. 

3) A special case of manifold schemes are the Q-manifolds studied by 

R. BARRE [1], who also defined the notion of fundamental group of a Q

manifold and the notion of universal overlay (revetement universel). It 

seems likely that the Barre construction and the manifold scheme con

struction can be proved to yield the same results in the case of a Q

manifold. 

5. EXAMPLES 

Let G be a set of transitions P + P such that i~ E G. By TG we denote 

the groupoid generated by the germs of the g E G. TG is automatically open 

in rp, and Er c TG. By abuse of notation the manifold scheme (P;TG) will 

also be denoted by (P ;G) . 

A transition g is said to be locally stable if for some x E P, gx 

(i~)x (equality of germs). 

A group G of diffeomorphisms is said to act generically free if i<\, is 

the only locally stable element in G. 
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The examples below are given as illustrations of the general considera

tions in the preceding sections, they are manifold schemes with JR as page 

manifold. In these examples the fundamental group can be determined right 

away, or in case the set of transitions indicated generates a group of dif

feomorphisms JR + JR it may be determined by applying: 

PROPOSITION 5.1. Let G be a group of diffeomorphisms of a connected and 

simply connected manifold P, and let G0 denote the normal subgroup generated 

by the locally stable elements. Then TT 1 ( (P ;G)) ~ G/G 0• In particular if G 

acts generically free, then n1 ((P;G)) ~ G. 

In addition the universal overlay is indicated and furthermore a folia

tion Fin a suitable manifold M such that M/F is the given scheme; the sym

bol JJ. denotes the disjoint union of a collection of copies of JR, cf. the 

table of examples. 

We proceed to make some comments on the examples in the table. 

One should note that both Top(L 0) and Top(H_1) are homeomorphic to the 

real half line{;; ; E JR,;~ 0}, however the difference in fundamental group 

indicates that L 

* 
and H_1 are inequivalent schemes. Similarly Top(Ha.) ~ 

Top(H) ~ Top(R + _) whereas the associated schemes are inequivalent. 
(Y. <P I <P 
Top(Pa.) is a "black hole" i.e. a topological space with the empty sub-

space and total space as the only open subspaces. It is known that Pa. and 
1 

Pa.2 are equivalent iff a. 1 and a.2 are related by a unimodular fractional 

linear transformation with integral coefficients. Therefore there are pairs 

of inequivalent Pa's although the underlying topological spaces Top(Pa.) are 

homeomorphic and their fundamental groups are isom<Jrphic. 

PlR is not a quotient scheme of a finite dimensional manifold by a 

foliation. (Since Top(PJR) is a single point, the foliation would consist 

of a single leaf; therefore the quotient scheme would then just be a 0-

manifold consisting of a single point.)· 

The Le's admit the lasso's considered in [7] as a double overlay; we 

propose to call the Le's non-orientable lasso's; the H_1 , and Ha's might be 

called elementary hyperbolic schemes; the Pa's are the Poincare tori of 

dimension 1 and rank 2 considered in [2]; the schemes R& & might be called 
'l'+l'l'

Reeb-SChemeS. 
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EXAMPLES 

A IT I 'i. M F 

(.lL ll\;i), 2 
foliation by 1 8 (B>0): (JR - EB)/(1,-1) the 

nc7l 
( JR;,)' ,(0 = -E, 7l £:n+l = i(E,n) = -r,n' 2 2 2 lines y = constant 

for t; > s. (, > G, 'n 
E JR 

Es=( (x,y) Ix +y <B } 

n n (1,-1)= group of 
scalar multiplica-
tions bv 1 and -1. 

H -1 : ( JR,o)' JR2 /S foliation by the 

a(i,) = -E,, E, E ]R, 7l2 JR S = group generated lines y = constant 

bv (x,y) .. (x+I ·-v) 

H0 (0 < a < 1): foliation by solu-

(JR;µo), 7l JR JR2 - (0,0) 
tions of the diff. 
eqn. 

µ,,(O = al;, f, E JR, (log r)'=(log a)logr 
40' = 2rr 
(r.<.D) polar coordinates 

H:(O < a < I): (~(a,b) JRw; same foliation as 

( lR;µ:), 7l * 7l;;; F(a,b) 'a• 'b) JR2 - ( (0,0), (1,0)} before 

µ:<o = of,, s i o. E;wa=Aa(Sw)=aSw, 

E, > 
w 

0, 

'wb "'b (E,w)=aE,w 

'w < · o. 

Pa (a irrational): foliation by lines 

( JR; TI, Ta), 7l@ 7l JR 2 - torus of slope a. 

·1<0 = E, +I, E, E JR, 

'c(O = S + a. 

R : Reeb-foliation, 
(p+,<p-

s3 [10 J. 
( JR;4J.,4'_)' (I) R 

<.p+,l.P-
f,<4J+(E,)<0 if E, < 0 

4'+(E,)=E, if E, ' 0 

4J_(O=E, if E, < 0 

O«JLf<\<[ if [ > 0 

p JR' ( JR; T /3' B E JR) JR JR 

•s<O = E, + s as abstract group 
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6. LOCALLY HOMOGENEOUS SPACES 

Let M be a connected real analytic manifold, and let XM denote the sheaf 

of germs of local analytic vectorfields on M. Let l c XM be a transitive 

Lie algebra (of vectorfields) on M, i.e. l has the following properties for 

every m E M: (i) l is a finite dimensional Lie subalgebra of X , (ii) l(m) m m 
{X(m); XE lm} is the tangent space at m, (iii) there is a neighbourhood U 

of m such that the sections in lover u span l for every y EU. The local y 
diffeomorphisms obtained by integrating locally the local vectorfields that 

are sections in l, generate an open subgroupoid Tl,M c rM with ErM c Tl,M" 

The pair (M,Tl,M) is called a locally homogeneous space. On the other 

hand (M;Ti,Ml is an object from MS. The difference in the two notions is of 

course due to the difference in the associated morphism concept. 

Let u be a domain in M. By restricting l to u one gets an associated 

manifold scheme (U;Tl,u>· 

PROPOSITION 6.1. If Mis simply connected the "inclusion" Tl,u•Tl,M' 

(U;Tl,u) + (M;Tl,M) is an equivalence of manifold schemes. 

Let m0 EM be chosen and let 60 be the isotropy subalgebra of lra0 =: l 0 . 

In the simply connected Lie group L generated by l 0 , 60 generates a Lie sub

group F. The collection of left cosets of Fis a foliation Fin L. If Fis 

closed, Fis a fibration of L, and hence L/F is just the coset manifold L/F. 

Therefore we write L/F instead of L/F in the general case also. In the case 

that F is closed in L, L/F is up to equivariant equivalence the unique sim-

ply connected manifold which admits Las transitive Lie transformation group 

with Fas isotropy subgroup for some poiQt. Similarly one has in the general 

case 

PROPOSITION 6.2. Up to equivariant isomorphism L/F is the unique simply con

·nected manifold scheme which admits L as transitive Lie automorphism group 

with Fas isotropy subgroup for some point. 

By choosing a suitable neighbourhood u of m0 one finds by classical 

Lie theory that ~1 ((U;Tl u>> ~ L. Let A be the universal overlay of A= 
(U;Tl,u>· Then A admits~ as a transitive Lie automorphism group with Fas 

isotropy subgroup for some point. Combining this with Proposition 6.2 and 

6.1 and with the universal overlay construction properties one obtains 
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THEOREM. Let M be a connected and simply connected analytic manifold, and l 
a transitive Lie algebra of vector fields on M, 60 the isotropy subalgebra 

of some m0 EM. Then the following statements hold: 

(i) rr 1 ((M;T,e_,Ml) ~ L where Lis the simply connected Lie group generated 

by l 0 . 

(ii) L operates transitively on the universal overlay A of the manifold 

scheme (M;T 0 ) as a Lie automorphism group, with Fas isotropy sub
,{__,M 

group of some point. Therefore A is equivariantly equivalent with L/F. 

(iii) There is an open immersion A: M + L/F such that the Lie algebra l on 

Mis the A-counter image of the Lie algebra on L/F of the left trans

lations by L. 

COROLLARY. If in addition Mis compact, then M ~ L/F. 

PROOF. Since A: M + L/F is an open immersion A(M) is open and closed (be

cause of the compactness) and therefore A(M) = L/F. Again by the compact

ness of M, A: M + L/F is an overlay of L/F, and since L/F is simply connect

ed, M -:e L/F. 

REMARKS. 

(1) The corollary has been obtained by EHRESMANN [37. Although the theorem 

is not stated by him, his procedure of "developing along a curve" is in 

fact a construction of A, which is obtained here directly from the con

struction of the universal overlay. His considerations bear on the case 

that L/F is a Hausdorff manifold. 

(2) The construction of A involves two steps. First a "natural" immersion 

A0 : M + A which is determined up to a decktransformation i.e. a trans

lation by an element g EL, and secondly an isomorphism A1 : A+ L/F as 

homogeneous manifold schemes. The latter isomorphism is determined up 

to an automorphism of L/F (or A) as homogeneous manifold scheme. 

(3) PALAIS [9] essentially obtained A via the integration of a suitable in

volutive differential system. 

(4) The quotient scheme L/F is als a Q-manifold in the sense of R. BARRE [1]. 

(5) The problem to give sufficient conditions for a locally homogeneous 

space to be enlargeable to a homogeneous space was also considered by 

G.D. MOSTOW in "The extensibility of local Lie groups of transformations 

and groups on surfaces", Ann. Math. g, 606-636, (1950). 
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2 
As an illustration to the theorem one might take lR as a homogeneous 

space under the action of some Lie transformation group L, e.g. the group 

of translations, and M to be the universal overlay of a non-simply connected 

domain Din JR2 • The transitive Lie algebra f is of course taken to be the 

lifting under the overlay projection p: M + D of the Lie algebra of the 

infinitesimal transformations of L. The pair M, f satisfies then the hypo-
~ 2 

theses of the theorem. In this case A is just lR, and A may be taken to be 
2 

p followed by the inclusion map D c lR. 

6. ANALYTIC MANIFOLD SCHEMES OF DIMENSION 1 

The simple connectedness of a Reeb-scheme (cf. §5) is a consequence of 

the fact that both$+ and$ are locally stable. Obviously a Reeb-scheme 

cannot be realized within the analytic category. Thinking of Haefliger's 

theorem and the available examples one is led to conjecture: 

PROPOSITION GH. A compact connected 1-dimensional analytic manifold scheme 

has a non-trivial fundamental group. 

Exploiting the geometry of tree-manifolds (cf. [2]) (in particular the 

Helly property) and simple properties of analytic transitions one may re

formulate the conjecture, and a somewhat more general one not involving 

compactness, as an enlargeability problem for local groups. This suggests 

to apply a criterion for enlargeability due to MALCEV [8]. There seems to 

be a chance that, by judiciously taking into account the geometry of tree

manifolds and of course the analyticity of the transitions, the 'criterion 

may be verified to hold. 

Proposition GH entails. 

THEOREM GH. A compact connected 1-dimensional analytic manifold scheme has 

an infinite.fundamental group. 

PROOF. suppose the fundamental group of some such scheme A tobe finite. Then 

the universal overlay A would lie finitely sheeted over A, and hence would 

still be compact (and of course connected analytic 1-dimensional). There

fore A would still have a non-trivial fundamental group which would contra

dict the simple connectedness of A. 
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As a consequence one would obtain by Proposition 4.4 Haefliger's 

theorem: A compact connected analytic manifold which admits a codimension 

1 analytic foliation has an infinite fundamental group. 
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UNDERLYING BOOLEAN ALGEBRAS OF TOPOLOGICAL SEMIFIELDS 

J. Flachsmeyer 

INTRODUCTION 

Soviet mathematicians have a good tradition in the investigation of 

ordered algebraic structures. Fundamental contributions in the theory of 

vector lattices have been made by L.V. Kantorovich and his school. Inspired 

partly by this work, M.YA. Antonowskii, V.G. Boltyanskii and T.A. Sarymsakov 

have developed in the last 20 years a new topological-algebraical object, 

which they called topological semifield. A theory of such topological semi

fields was subsequently built up mainly in the Soviet Union. Applications 

to probability theory and ergodic theory and to metrizations of normed 

spaces over topological semifields were made. But a satisfacory representa

tion theory for topological semifields and for their underlying Boolean 

algebras is lacking. Some years ago the present author conjectured that the 

corresponding Boolean algebras are exactly the hyperstonian algebras. Now 

we show that our conjecture is equivalent to the Maharam Problem about sub

measures. The key for this reduction is the approach by monotone Boolean 

pseudo-norms (Section 4) which has close analogies to the prenorms in the 

locally convex vector spaces. 

Our paper is a continuation of our former work on Topologization of 

Boolean algebras [5]. At the same time it must be considered as a part of 

the announced work which was cited in [5] under [14]. Some missing details 

delayed its publication. 

1. THE NOTION OF A TOPOLOGICAL SEMIFIELD 

Roughly speaking a topological semifield is a topological lattice

ordered ring with sufficiently many invertible positive elements. The ori

ginal axioms of M.YA. Antonowskii, V.G. Boltyanskii and T.A. Sarymsakov are 
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not based on the real numbers, but every semifield contains the reals as 

its so-called axis. It is more convient to replace the original axioms, by 

the following equivalent system of axioms: 

A topological semifield is a topological algebraical order-theoretical 

object S = (S,+,·,~,OJ satisfying the following conditions: 

(i) (S,+,•) is a commutative real algebra with a unit element 1. 

(ii) (S,+,·,~l is a Dedekind complete ordered algebra, (so in particular, 

it is a Dedekind complete vector lattice). 

(iii) (S,+,·,OJ is a topological algebra with a Hausdorff topology 0. 

(iv) The positive cone {x ES: x ~ O} of Sis the closure of the set K of 

all positive invertible elements. Moreover (K,•) is a group and it 

satisfies: K + cl(K) c K. 

(v) In the set I(S) of all idempotents of S the following relation holds 

for nets: a + 0 ~ a ~ 0. 
a a u 

(vi) The positive cone of S (which equals cl(K), by 4) is normal, i.e. the 

origin has a neighbourhood base consisting of solid sets U. (A set U 

is solid whenever for every y ES one has y EU iff there is an x EU 

such that IYI ~ !xi.) 

(vii) For every neighbourhood W of the origin S there exists a neighbourhood 

V of the origin such that (In V) S c W. This means that every neigh

bourhood W of zero absorbes Sin some sense uniformly with respect to. 

small idempotents. 

REMARK. My student A. FROHLICH [8] has given a careful proof of the equiva

lence of the both systems of axioms. We drop this technical argumentation 

because of its length. He also discovered that an earlier version of my list 

of axioms contained a little gap. 

Here we mention only a few examples of topological semifields. 

(1) The products of reals in their canonical structure, i.e. JRm, many 

cardinal, with the coordinate addition, multiplication, ordering and the 

Tichonov product topology. These semifields are called Tichonov semifields 

[2]. 

(2) The lattice-algebra C(X) of all continuous real-valued functions on a 

hypertonian space X with respect to the topology of convergence in all 

hyperdiffuse measures on X (vid. Section 3 and [5]). 

This is a subsemifield of the semified C00 (X) of all numerical contin

uous functions which take the value - 00 , +00 only on nowhere dense sets. 
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In this language, Example 1 is the special case of Coo (SM) , where SM is the 
V 

Stone-Cech-compactification of a discrete space M of cardinality m. 

2. THE NOI'ION OF ABS-TOPOLOGICAL BOOLEAN ALGEBRAS 

The set I(S) of all idempotents of a topological semifield S, i.e. 

I(S) = {x; x ES, x2 = x}, forms a Boolean ring with respect to the follow

ing operations. 

X $ y 

X ® y 

X + y - 2xy 

X y (vid. [5]) 

This ring (or the corresponding canonical lattice) will be called the under

lying Boolean algebra of the given semifield S. On I we shall consider the 

trace topology OI of 0. 

We have: 

(i) (I,81,®,0I) is an order complete Boolean ring with a compactible locally 

solid Hausdorff topology; 

(ii) The order convergence implies the convergence with respect to the 

topology 0. 
A topological abstract Boolean algebra~ with properties (i) and (ii) we 

will call ABS-Boolean algebra. The three authors Antonowskii-Boltyanskii

Sarymsakov have shown that every ABS-Boolean algebra (~,O) can be the under

lying Boolean algebra of a (not uniquely determined) suitable topological 

semifield. 

The question arises which Boolean algebras~ can be equipped with a 

topology Osuch that (~,0) is an ABS-Boolean algebra. The aim of our paper 

is to contribute to this problem. 

The following statement can be immediately seen. Recall, that the 0-

topology is.the greatest topology P for which 0-convergence of nets implies 

the convergence in P; 0-convergence of nets is defined as follows: aa + a 

iff th.ere are nets bS t a, cy + a such that b 13 $ aa $ cy for all a ?: a (S ,y) . 

LEMMA 1. In every ABS-Boolean algebra (~1 0) the following inclusions hold: 

interval topology of B c O c 0-topology of~-

PROOF. Observe that O is a Hausdorff topology. The multiplication in Bis 

continuous with respect to 0. Hence every order interval [a,b] is closed 
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with respect to 0, i.e. 0 ~ interval topology. The other inclusion is clear 

from the definitions. D 

COROLLARY 1. Let ~be a separable Boolean algebra. B can be made into an 

ABS-Boolean algebra iff Bis atomic. 

PROOF. Generalizing a result of FLOYD [6] we have shown in [4] that the 

order-topology of a separable Boolean algebra is a Hausdorff topology iff 

Bis atomic. On the other hand there is only one atomic complete separable 

Boolean algebra B ~ 2~0 , where~ is the Boolean algebra of two elements (~ 

is the ring (!<Z/ (2)). But in 2~0 Tichonov's product topology is an ABS-

topology. D 

COROLLARY 2. The Dedekind-MacNeille completion of a free generated Boolean 

algebra with infinite many free generators cannot be made into an ABS

algebra. 

PROOF. We have shown in [4] that those Boolean algebras have no Hausdorff 

a-topology. D 

COROLLARY 3. (Theorem of Antonowskii-Boltyanskii-Sarymsakov). Let (~ 1 0) be 

an ABS-Boolean algebra. Then O is the interval topology of B iff Bis atomic. 

In this case the interval topology of~, the order topology of Band 

the product topology of~ (namely B ~ ~m) coincide. 

PROOF. KAT~TOV [9] has shown that the interval topology in a Boolean algebra 

Bis Hausdorff iff ~ is atomic. (Another proof is given in our paper [4].) 

But for any atomic Boolean algebra all three mentioned topologies coincide.□ 

3. THE MAHARAM PROBLEM. HYPERTONIAN ALGEBRAS 

Let us define a Maharam submeasure-algebra Bas follows: 

(i) Bis a complete Boolean algebra; 

(ii) There exists a strictly positive 0-continuous submeasure on~, say 

\/: ~ + :Ill., with the properties 

a) v(b) 0 - b = 0 

b) v(a) ~ v(b) for a~ b 

c) v(aVb) ~ v(a) + v(b) 

d) b a O b ~ v (b a) + v (b) . 
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REMARKS. 

(1) A Maharam submeasure-algebra ~ satisfies c,c.c. (countable chain condi

tion), i.e. every set D of non-zero disjoint elements in Bis countable. The 

argumentation is given by the following well-known routine argument. There 

can be only a finite number of d. E. D with v (d.) 2 e: > 0. Indeed, if 
l. l. 

v (d.) 2 e: for i = 1, ... ,n, ... , then for a := supi:2'.n d. one would have 
l. n l. 

v(a ) 2 e: and otherwise a + 0, hence v(a) ➔ o. n n n 
(2) For every Maharam submeasure algebra~ instead of d) it is enough to 

require bn Ob~ v(bn) + \!(b) for ordinary sequences. 

According to a well-known theorem of D. MAHARAM [10] a complete Boolean 

algebra~ is a Maharam submeasure algebra iff the order topology O on~ is 

metrizable. Of course, every measure algebra (~1 µ), i.e. c) is replaced by 

additivity, is a Maharam submeasure algebra. The famous unsolved Maharam 

Problem asked for the converse: Is every Maharam submeasure algebra Ba 

measure algebra? 

Now we recall the notion of a hypertonian space in the sense of DIXMIER 

[3]. Let be X a compact Hausdorff space andµ positive Radon measure on X, 

µ E. M+(X). Thenµ is called hyperdiffuse (or normal) iff every nowhere dense 

Borel set has µ-measure zero. A signed measureµ E. M(X) is hyperdiffuse iff 

µ+andµ- are hyperdiffuse. Let be H(X) c M(X) the set of all hyperdiffuse 

measures on X. The space Xis hyperstonian iff it has the following proper

ties. 

(i) Xis Stonian (= extremally disconnected compact Hausdorff space) 

(ii) The union U{supp µ: µ E. H(x)} is dense in X. 

From a functional analytic point of view equivalent formulations of this 

notion are as follows:µ E. M+(X) is hype~diffuse iff the corresponding linear 

functional$(•) = J•dµ: C(X) ➔ JR is order continuous, i.e. C(X) 3 f + 0 
Cl 

~$(fa)+ 0, cf. [13]. The space XE. Comp is hyperstonian iff 

(i) C(X) is a Dedekind complete vector lattice and 

(ii) H(X) (as the set of functionals) is total over C(X). 

In the case of a hyperstonian space X the space C(X) is the Banach dual of 

H(X) is this natural pairing. 

We shall call a Boolean algebra~ a hyperstonian algebra iff the Stone 

representation space X = spec(~) is hyperstonian. Without any look to the 

Stone representation space spec(~)one can say that Bis a hyperstonian 

Boolean algebra iff 
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(i) Bis Dedekind complete and 

(ii) For every O < b EB there is a nontrivial order continuous measure 

µ: B + :n/ with support dominated by b: supp µ s b. 

It must be observed that in the book of D.F. FREMLIN [7] the notion of a 

Maharam algebra (~ 1 v) is defined as follows: 

(i) Bis a Dedekind complete Boolean algebra 

(ii) On B there exists a numerical function v: ~ + [0, 00 ] which is strictly 

positive, finite additive and monotonely continuous, i.e. 

antO a=> v(a) = sup v(an), and which is semifinite, i.e. for every 

a EB with v(a) 00 there is an b with O < b < a and v(b) < 00 • 

Now we can easily see: The two notions of a hyperstonian Boolean alge

bra and a Maharam-algebra in the sense of Fremlin coincide. Namely, take 

in a Maharam algebra Ba maximal disjoint set Mc B for which every b EM 

has finite measure O < v(b) < 00 • 

(By Zorn's lemma such a set exists.) Then for every b' s b, for a suit

able b E M, the equation vb' (a) := v (aAb'), a E ~, defines an order continuous 

measure on~ with supp vb, s b'. Because of the maximality of M every c E ~, 

c > 0, dominates a supp vb' of a suitable b' s b EM. Thus Bis hyperstonian. 

Conversely, let~ be hyperstonian. We take any maximal disjoint set M with 

the property that every b EM is the support of a non-trivial 0-continuous 

measure vb. Then let by definition v(a) = ~{vb(a): (b EM)}. This makes B 

into a Maharam algebra. 

Let~ be a hyperstonian algebra, or, what amounts to the same, a Maharam 

algebra. If~ denotes the ideal [O,b], then one has 

B ~ TT~ : (b E M) • 

Here Mis, as before, any maximal disjoint system. Observe that b = 

supp vb for b EM, so we have a decomposition of~ into supports of 0-contin

uous measures. Since (~,vb) is a measure algebar, we have the following 

PROPOSITION. The hyperstonian Boolean algebras are the same as the products 

of measure algebras. 

4. BOOLEAN PSEUDO-NORMS AND THEIR RELATIONS TO ABS-ALGEBRAS 

DEFINITION. If~ is a Boolean algebra, then a Boolean pseudo-norms on Bis 

a function p: B + lR such that 
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(i) p(b) ~ 0 and p(O) = 0 

(ii) p(aE!lb) $ p(a) + p(b) 

We shall call a pseudo-norm monotone iff 

(iii) p(a) $ p(b) for a$ b. 

REMARKS. 
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(1) Not every Boolean pseudo-norm is automatically monotone, as an example 

on 22 shows. 

(2) But for every bounded Boolean pseudo-norm q the function 

µ(a) ·= supb$a q(b) is a monotone pseudo-norm - the monotone modifica

tion of q. 

(3) Every invariant pseudo-metric p on~ defines a pseudo-norm p by p(a) := 

p(a,O). Conversely, every pseudo-norm p on~ gives by the definition 

p(a,b) := p(aE!lb) an invariant pseudo-metric on~-

PROPOSITION. p: B ➔ JR is a monotone Boolean pseudo-norm on B iff p is a 

subcontent on ~• i.e. 

(i) p(a) ~ 0 and p(O) 0 

(ii) p(a) $ p(b) for a$ b 

(iii) p(aVb) $ p(a) + p(b) 

PROOF. 

(1) Let p be a monotone pseudo-norm on~- Then av b 

p(aVb) $ p(a) + p(b\a) $ p(a) + p(b). 

a Ell (b \a) . Thus 

(2) If pis a subcontent, then from a Ell b $av bit follows that 

p(aE!lb) Sp(a) +p(b). □ 

THEOREM 1. Let O be a topology on the Boolean algebra~-

(1) 0 is a locally solid compactible topology iff O is generated by a family 

P of monotone Boolean pseudo-norms p, i.e. 

0 sup{O(p): (p E P)}. 

Here O(p) is the corresponding pseudo-metric topology for p. 

(2) The locally solid compactible topology O is Hausdorff iff the generat

ing family Pis separating. 

(3) The locally solid compactible topology O is metrizable iff there is a 

strictly monotone Boolean pseudo-norm p with O = O(p). 
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PROOF. 

(1) Let be p any monotone Boolean pseudo-norm on~- The corresponding pseudo

metric p defines the topology O(p). One gets a base for the neighbourhoods 

of the origin by 

U :={a:aE~,p(a)<d. 
p,£ 

Each U is solid. Furthermore, the addition and the multiplication are 
p,E 

continuous with respect to O(p). Indeed, let be a + a b + b, i.e. 
(l, p , s p 

p(aaala) + 0, p(bSalb) + 0. 

Then p(aaalaEllbSEllb) '.". p(aaElla) + p(bSEllb) and p(a@b Ill aa®bs) = 

p(a @ (ba+b) EB b@ (a Ella))'.". p(baEBb) + p(a Ella), i.e. a EB ba i: a Ell b, 
(l, µ (l, µ (l, (l, µ p 

aa @ bS p a @ b. 

The properties local solidity and compactibility are invariant under taking 

the supremum topology. Thus O = sup{O(p): p E P} is a locally solid com

patible topology. 

Now let conversely O be a locally solid compactible topology The following 

argumentation is based on theorems of FREMLIN [7, 22c] and the author [5, 

Th. 5]. Due to the last theorem O is the trace of a locally solid lattice

algebra topology Pon C(spec(~)) (containing~ as the Boolean ring of all 

idempotents). Now Fremlin has shown that P is generated by all its contin

uous so-called Riesz pseudo-norms q. But every Riesz-pseudo-norm q gives on 

~ a Boolean pseudo-norm p = qlB· The defining properties of a Riesz pseudo

norm q on a Riesz space E are the following: A function q: E + JR is a 

Riesz pseudo-norm whenever 

(i) q(x) ~ 0, 

(ii) q(x+y) '.". q(x) + q(y), 

(iii) q(x) '.". q(y) whenever lxl '.". IY I, 
(iv) lima+O q(ax) 0. 

(2) Of course, 0 is Hausdorff iff Pis separating, i.e. for every a> 0 

there exists an p E P with p(a) > 0. 

(3) If pis strictly positive, then it is obvious that O(p) is metrizable. 

Conversely, let O be a locally solid compatible metrizable topology. We have 

0 = sup{O(p): p E P}, where Pis the family of all its continuous monotone 

pseudo-norms on (~,0). 

We take a countable basis u1 ::, u2 ::, ..• ::, Un ••. of neighbourhoods of the origin. 

Then we can find pn E P, pn t 0, with 
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V := {a: p (a) < 1} c U 
n n n 

for all n. 

Then sup O(p J 
n 

0. Because of 91 U 
n- n 

{O} the family of the pn separates 

points. Now 

p(·J := 

is a monotone strictly positive Boolean pseudo-norm on B with O(p) 

sup O(p J = 0. 0 
n 

THEOREM 2. Let (~1 0) be a Dedekind complete Boolean algebra equipped with 

a Hausdorff topology 0. Then the following statements are equivalent: 

(1J (~,OJ is an ABS-Boolean algebra. 

(2J The topology O is generated by a separating family P of 0-continuous 

monotone Boolean pseudo-norms: 

0 sup{O(pJ: p E P}. 

Recall that order continuity of p means: (*J ba Ob=> p(ba) + p(bJ. 

For a monotone Boolean pseudo-norm p the condition (*) is equivalent to: 

ba + 0 (i.e. inf ba =OJ=> p(baJ + 0. 

PROOF. 

(1J If O is an ABS topology on~ then it is locally solid and compatible. 

Thus there exists by the last theorem a generating and separating family P 

of monotone Boolean pseudo-norms p. The following O is smaller than the 0-

topology; it follows that every pis 0-c~ntinuous. 

(2J If every p E Pis an 0-continuous monotone pseudo-norm on B then accord

ing to the preceding theorem O = sup O(p): (p E PJ is a locally solid com

patible topology. This is also smaller.than the a-topology and it is 

Hausdorff by the separating property of P. 

The proof consists of an easy estimation, as follows. Suppose ba Ob. 

Then there are monotone nets as t b, cy + b with as s ba $ cy for all 

a~a(S,yJ. 

One has only to show: p(aSJ t p(bJ 

Part (i): c + b means c Ell b + 0 
y y 

p(c J =p(bEll(c EllbJJ $ . y y 

and p ( c ) + p (b) • 
y 

and therefore p (c <iB b) ,} 0. Now p (b) ~ 
y 

p(bJ + p(c Ellb), thus p(c J + p(bJ. y y 
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Part (ii) : aS t b means b Ell aS + 0 and therefore p (b Ell aS) + 0. Now 

p(aS) :<; p(b) :<; p(aS) + p(b@aS), thus p(aS) + p(b). □ 

REMARKS. 

(1) A monotone 0-continuous Boolean pseudo-norm p on any Boolean algebra 

is nothing but an 0-continuous submeasure on B. (vid. the first proposition 

of this section). 

(2) Every monotone 0-continuous Boolean pseudo-norm p on a complete Boolean 

algebra B has a support, defined by 

supp p := complement of sup{a: p(a) O}. 

The element supp pis characterized (under the assumption p ~ 0) as the 

greatest element b EB such that for every a, 0 <a:<; b, p(a) > O. 

COROLLARY. Let B be a Dedekind complete Boolean algebra. Then the following 

statements are equivalent: 

(1) Bis a Maharam submeasure algebra, 

(2) Bis an ABS-algebra with countable cellularity (i.e. c.c.c), 

(3) Bis a metrizable ABS-algebra. 

If the conditions are fulfilled. The topology in question must be the 

order-topology. 

PROOF. 

(1) =i> (2). If Bis a Maharam submeasure algebra by the strictly positive 

submeasure v then, as already remarked in section 3, c.c.c holds in B. By 

the preceding theorem O(v) is an ABS topology (v separates points:). 

(2) =i> (3). For any ABS-algebra topology Owe have by the preceding theorem 

a generating family P of 0-continuous pseudo-norms p. If the corollary num

ber of Bis m, we get a set P of cardinality m. Indeed, take a maximal set 

P for which the supports supp pare disjoint. Now a countable family Pde

fines by 

p E P} 
n 

a strictly positive monotone pseudo-norm on B which is 0-continuous. 

(3) =i> (1). If the ABS-topology O is metrizable then we find by the last 

theorem a strictly positive monotone pseudo-norm p with O = O(p). This pis 
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0-continuous. 

For the final statement let p be any strictly positive monotone 0-

continuous pseudo-norm on B. Then O(p) = 0-topology. This was first shown 

by MAHARAM [10, Th. 1]. 0 

REMARK. The equivalence of (1) and (2) in this corollary was stated as 

Theorem 1 in the paper [11] of T.A. SARYMSAKOV and A.N. ISLAMOV. In a forth

coming paper [12] of T.A. SARYMSAKOV and V.I. tILIN this was proved similar 

to the invariant metrization theorem of Kakutani for topological groups. 

In [12], the coincidence of the 0-topology and ABS-topology on a 

Dedekind complete Boolean algebra with c.c.c. is ascribed to D.A. VLADIMIROV 

[14], but in fact it is one of the main statements of MAHARAM's paper [10]. 

THEOREM 3. Let (!!_,0) be a Dedekind complete Boolean algebra equipped with 

a Hausdorff topology. Then the following statements are equivalent: 

(1) (!!_,0) is an ABS-algebra. 

(2) (!!_,0) is topological and Boolean isomorphic to a product 

TT { (B , 0 (p ) ) : a E A} 
a a 

of Maharam submeasure algebras ~a with the submeasures Pa•·· • The pro

duct structure is taken both for the Boolean ·structure and the topology. 

PROOF. 

(2) ~ (1). The product TT~ of the complete Boolean algebras~ is again 

complete. For any net 

x(S) + x in TTB 
0 -a 

+ X 
0 a 

in B ---a, 
for all a EA. 

Now every Maharam submeasure algebra (~,pa) gives a metrizable ABS-algebra 

(B ,0(p )). Then TT{O(p): a EA} is a locally solid compatible Boolean topo-
---a, a a 

logy because these properties are invariant under the product. Even more, 

every pa(x) := pa(xa) is a monotone Boolean pseudo-norm on TT~ which is 0-

continuous and 

TT(O (p l . a sup O (f, ) . 
a 
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(1) ~ (2). For an ABS-algebra (~1 0) take a generating and separating family 

P of 0-continuous Boolean pseudo-norms. Then let Q c P be a maximal family 

for which the supports b of q E Qare disjoint. It must be proved that Q 
q 

is a generating family too. So let p E P, p 1 O, and q(aS) + 0 for all 

q E Q. We shall deduce p(aS) + 0. Denote the support of p of b. Then only 

a countable number of the supports b intersect b, i.e. have b /\ b > 0. 
q q 

Write these supports as b 1 ,b2 , ... ,bn,··· . For any£> 0 there is a k such 

that p(supn>k bn) <£,because for cm:= supn>m bn we have that cm i O and 

p is 0-continuous. On the other hand q 0 := q 1 + q 2 + ... + qk is a strictly 

positive 0-continuous pseudo-norm on supn~k bn. The same is true for p, 

thus 

a + 0 and p(aS A sup b ) ->- 0 
s qo n~k 

n 

are equivalent. 

Now as I\ supn b = (as/\ supn~k b ) ~ (as /\ supn>k bn ) . Hence 
n n 

p(aS A sup bn) + p(aS A sup bn), 
n~k n>k 

□ 

REMARK. Theorem 3 and the proposition at the end of Section 3 show that our 

conjecture on ABS-algebras which was mentioned in the introduction, namely, 

that they are just the hyperstonian algebras is equivalent to the affirma

tive answer to the Maharam problem. 
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ON EXTENDING HOMEOMORPHISMS ON THE CANTOR SET 

A.Gutek 

1 • INTRODUCTION 

B. Knaster stated the following problem: Let P and Q be closed and no

where dense subsets of the Cantor set C and let h be a homeomorphism from P 

onto Q. Does there exist a homeomorphism h' from C onto itself which is an 

extension of h? The answer is yes. The first proof, based on the notion of 

boolean algebra's, was presented by c. Ryll-Nardzewski in Wroclaw during 

the session of-Polish Mathematical Society on 30th November 1951. A topolo

gical proof, given by M. Reichbach, allows some generalizations published 

by B. KNASTER and M. REICHBACH [2], and J. POLLARD [4]. J. Mioduszewski asked 

whether such a homeomorphism can be extended to a homeomorphism with a dense 

orbit. The aim of the paper is to answer this question. 

2. DEFINITIONS AND PREPARATORY LEMMAS 

The Cantor set is a perfect totally disconnected metric space. We assume 

that the Cantor set is given in the clos~d unit interval [0,1] by the usual 

ternary expansion, and that Bis the basis induced by this expansion, i.e. 

a basis of closed-open subsets,such that if I and J are distinct and belong 

to B, then In J =¢or one of them is included in the other and diamI = 

3n•diamJ foi some integer n. 

Let dist(A,B) = inf{la-bl: a€ A and b € B}, where A and Bare non-void 

subsets of the Cantor set C. If A 

dist({p},B). 

{p}, then we put dist(p,B) instead of 

Let f be a one-to-one mapping from X onto itself; then fO(x) x and 

~+1 (x) = f(~(x)) for every integer k. 

The set O {~(x): k is an integer} is the orbit of a point x. If for 
X 

some x the set Ox is dense in X, then we say that the mapping f has a dense 

orbit. 
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LEMMA 1. (BANACH [1], th. 1 p. 236, KURATOWSKI and MOSTOWSKI [3], th. 2 

p. 183). If A and Bare sets and f and g are one-to-one, where f: A ➔ Band 

g: B ➔ A, then the sets A and B can be represented as unions of disjoint sets 

LEMMA 2. (KNASTER and REICHBACH [3]). Let P and Q be closed and nowhere dense 

subsets of the Cantor set C and let h be a homeomorphism from Ponto Q. Then 

there exists a homeomorphism h' from C onto itself which is an extension 

of h. 

LEMMA 3. Let A be a nowhere dense subset of the Cantor set C. Then there 

exists a nowhere dense subset D of C which is homeomorphic to C and such 

that A is a nowhere dense subset of D. 

LEMMA 4. (cf. KNASTER and REICHBACH [3]). Let D be a nowhere dense non-void 

and closed subset of the Cantor set C, h be a homeomorphism from D onto it-

self and R {I1 ,I2 , ... } be a family of closed-open pairwise disjoint sub-

intervals of c such that UR C - D. Then there exists a one-to-one mapping 

f from R onto itself such that any extension h' of h which maps homeomor

phically every In onto f(In), is a homeomorphism from C onto itself. 

PROOF. Since Dis closed, nowhere dense and non-void, then R is infinite, 

and for each In of R there exists a point pn of D such that dist(D,In) 

dist(pn,In). 

We define one-to-one mappings f 1 and f 2 from R into itself in such a 

way that both dist(h(p ),f1 (I )) and dist(h-1 (p ),f2 (I )) are not greater 
n n n n 

than dist(pn,In). By Lemma 1, there are disjoint subfamilies R1 and R2 of 

R such that R1 u R2 =Rand the mapping f defined on R by f!R1 = f 1 1R1 and 

f/R2 f; 1 1R2 is one-to-one and onto. Simple computation shows that f satis

fies the conclusion of the lemma. 

LEMMA 5. Let D0 be a nowhere dense, non-void and closed subset of the Cantor 

set c, h 0 be a homeomorphism from D0 onto itself and R be a family of closed

open pairwise disjoint subintervals of C such that UR= C - D0 . Then there 

exist a nowhere dense and closed subset D of C containing D0 , a homeomorphism 

h from D onto itself which is an extension of h 0 , a family R' of closed-

open and pairwise disjoint subintervals of C with UR'= C - D, and a one-to

one mapping f' from R' onto itself such that any extension h' of h which 

maps homeomorphically every IE R' onto f' (I), is a homeomorphism from C 
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onto itself, and such that every orbit off' is infinite. If Risa sub

family of the natural basis B of c, then R' is contained in B also. 
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PROOF. By Lemma 4, there exists a mapping f which describes some extensions 

of h0 • If every orbit off is infinite, then we take D = o0 , h = h0 , R' = R 

and f' = f. 

If there are finitely many finite orbits, then by changing f we can make 

them a part of an infinite orbit, and the resulting mapping f' satisfies 

the conclusion of the lemma. 

If there are infinitely many finite orbits, then let Ji 
. .n 

n i f (J0), let 
i i 

Bi= {Jo,···•Jni} be the i-th finite orbit, and let ai < bi be endpoints of 
· · i i in n · 

Ji, for i = 1,2, ••• ; 
n 

i.e. [ai,bi] n c = J and a ,b E c. Let {Ji(k): k is 
n n n n n n 

an integer} be a family of closed-open pairwise disjoint subintervals of Ji 
n 

which belong to B, the union of which is equal to Ji - {ai,bi}, and such 
i i n n n 

that the sequence {J (k): k = 1,2, ••• } and {J (k): k = -1,-2, ••• } converge 
· n. n i · i i 

to the points bi and¾ respectively. Put D. = {a0 , ••• ,~. ,b0 , ••• ,bn.},and 
n . i i i 

let R. be the family {Ji (k): n = 0, ••• ,n. }and k is an integer • Define map-
i n . i. . . 

pings fi on Di u Ri by setting fi(a~) ~ a~el and fi(b~) = b~el' where e de-

notes addition modulo n. + 1, and fi (Ji(k)) to be equal to Ji+l (k) for 
ii n n 

n = O, ••• ,ni-1, and to J 0 (k+1) for n = ni. 

Put D = U{D.: i = 0,1, ••• } and R' = U{R.: i = 0,1,2, ••• }, where Ro is 
i i 

the union of the infinite orbits off. Leth be defined by hlo0 = h0 and 

hloi = filoi for i = 1,2, •••• The mapping f' defined by f' IR0 = flR0 and 

f' lo.= f. lo. for i = 1,2, •.• satisfies the conclusion of the lemma. Further-i i i 
more, if R c B, then R' c B. 

3. THE MAIN RESULT 

We prove the following: 

THEOREM 1. Let P and Q be closed and nowhere dense subsets of the Cantor 

set C, and let h be a homeomorphism from Ponto Q. Then there exists an ex

tension h' of h such that h' is a homeomorphism from C onto itself and for 

some point c of C the set {(h')n(c): n is an integer} is a dense subset 

of c. 

Let us observe that because Pu Q is a nowhere dense subset of c, then 

by Lemma 2 and LeDDlla 3 there exists a nowhere dense closed subset D of C 
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which is homeomorphic to C, and which is such that Pu Q is nowhere dense 

in D, and an extension h 0 of h which is a homeomorphism from D onto itself. 

Thus, it suffices to prove the following: 

THEOREM 2. Let D be non-void, nowhere dense and closed subset of the Cantor 

set C and let h be a homeomorphism from D onto itself. Then there exsits a 

homeomorphism h' from C onto itself which extends hand which has a dense 

orbit. 

PROOF. For every two subsets A and B of C put A< B if and only if a< b for 

every a EA and b EB. For every set I of the basis Band for every positive 

integer n consider a partition of I into 2n disjoint subsets of diameters 

equal to 3-n • diamI. Order these subsets as above and denote the i-th subset 

in this ordering by I(i,2n)_ So, I(i,2n) < I(j,2n) if and only if i < j. 

Let R be a subfamily of B consisting of pairwise disjoint subsets such 

that the union UR is equal to C - D. Clearly, R is infinite 

By Lemma 4 there exsits a one-to-one mapping f from R onto itself such 

that any extension h' of h defined by h' In= hand h' Ir is for every IE R 

a homeomorphism from I onto f(I), is a homeomorphism from C onto itself. In 

virtue of Lemma 5, we can assume that every orbit off is infinite. Let 

o1 ,02 , ... be 

Oi a segment 

for every i, 

different orbits of f, o1 u o2 u ... = R. Choose for every orbit 
i i k i i 

J 0 and put Jk = f (J0 ). So, Oi = {Jk: k is an integer}. Now, 

let {m(i,j): j is an integer} be a sequence of integers, such 

+ 2 < m(i,j+l) and the sequences {Ji(' .,: j 1,2, ... } and that m(i,j) 
m l.:(J . 

{ i . 
J ( .. ) : J m l.,J 

-1,-2, ... } converge to some points a and bi respectively. 

If the mapping f has finitely many orbits, i.e. i = 1, ... ,N, then we 

define homeomorphisms hi on UOi by setting hi to be linear and order

preserving mappings. 

i i 
(a) from Jm onto Jm+l if m+l i m(i,j) for every integer j. 

(b) from ji(2,2), Ji(2,4) and Ji(l,4) 
m m m 

i i 
onto J (' . 2 ) (4,4), J (' . 2 ) (3,4) 

m 1.,J- m 1.,J-
and Ji (. . ) ( 1, 2) respectively 

m i,J 
if m+l = m(i,j) for a certain j > 1, 

(c) from Ji(2,2) and Ji(l,2) onto Ji (2 2) and Ji (1 2) respectively 
m m m(i,-1) ' m(i,1) ' 

if m+l = m(i,1), 

1 1 
(d1) from J (4,4), J (3,4) 

1m m. 
and Jm(l,j) (2,4) 1.f m+1 = 

1 1 1 
and Jm(l,2) onto Jm(l,j-2 ) (2,2), Jm(i,j) (1,4) 

m(l,j) for a certain j < 1, 



i 
{d2) f~om Jm (4,4), 

l. 
J {' ') (1,4) m l., J 
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J i{3,4) i i i and J (1,2) onto J {' . 2) (2,2), J {' ') (2,4) and m m m 1.,J- m 1.,J 
if m+l = m{i,j) for a certain j < 1 and i = 2, ... ,N. 

We say that a homeomorphism his linear and order-preserving mapping 

from I onto J, where I and J belong to B, if and only if for every positive 

integer j and k = 1, .•. ,2j the image h{I{k,2j)) is equal to J(k,2j). 

Note that an extension g of h defined by gin= hand glUo. = h., 
l. l. 

i 1, ... ,N, is a homeomorphism from c onto itself. We will define an ex-

tension h' of h by changing the homeomorphism g on some subintervals of C. 

CASE 1. The unique orbit of f is equal to R. We define h' by putting h' ID= h 

and h' !UR= h 1• Clearly, h' is continuous. Let d 0 be the diameter of 

J 1 {1 O)' and d,, j = 1,2, .•. , be the supermum of the diameters of J 1 , 
m , J _1 m 

m(l,-j) s m < m{1,-j+1) and m{1,j-1) <ms m(l,j), and of 2 •d. 1 . These
J-

quence {d.: j = 1,2, •.. } converges to O when h converges to 00 • 

J 

Using induction we shall prove that for every positive integer n there 

exists a positive integer tn such that 

(1) the family Fn = {(h')k{J!{l,-n) (1,2)): k = O, •.. ,tn} consists of pair

wise disjoint and closed-open subsets the diameters of which are less 

or equal to dn+l' 

(2) 
t 1 ' 1 ' 

(h') n(Jm(1,-n) (k,2J)) is equal to Jm(1,n+1) (k,2J) and 
(h')m{1,n-fl)-m'(l,-n)(J1 (k+2j-1,2j)) J1 (k+2j-1 2j) for 

. 1 m{1,n) m(l,-n-1) ' 
J-k = 1 , ... , 2 and j = 1 , 2 , . . • , 

(3) {(h')m(1,0)-m&1,-j)(J1(l ')(1, 2)): j 
m , -J 

O, ..• ,n} is a decreasing se-

squence of closed-open sets, 

(4) J! - UFn are equal to J!{2n+l-j,2n+l~j) for m(l,-j-1) Sm< m{1,-j), 

j = o, .•• ,n-1 and for m(1,j) s m < m(1,j+1), j = o, ... ,n. 

t 
n 

It is easy to see that conditions (1) - (4) hold for n = 1 and 

2m(1,2) + m(1,1) - 2m(1,-1) - m(l,O). 

In fact, the family F1 consists of sets J 1 {1,2) for m{l,-1) Sm< m(1,0) 
1 1 m 1 

and m = m(1,2), of Jm(l,4) and Jm(2,4) for m(l,O) Sm< m(1,2) and of Jm{3,4) 

for m(l,-1) s m < m(1,1), and these sets are pairwise disjoint and their 

diameters are less than or equal to d 2• 
j-1 Let k = 1, •.. ,2 and j = 1,2, ...• We have the following: 
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(h')m(1,0)-1-m(1,-1) (J1 (k 2 j)) 1 j 
m(l ,-1) ' = Jm(1,0) -1 (k, 2 ) ' by (a), 

1 j-1 j+1 
Jm(1,0) (k+2 ,2 ) , 

1 j-1 j+1 
Jm(l,2)-1 (k+2 ' 2 ) ' by (a) , (c) , 

1 j-1 j+1 
h' (Jm(l,2)-1 (k+2 ,2 )) 

1 j j+1 
Jm(1,0) (k+2 ,2 ) ' by (b), 

(h')m(1,1)-1-m(1,0)(J1 (k 2 j 2 j+1)) 
ffi(1,0) + I 

1 j j+1 
Jm(1,1)-1(k+2 ' 2 ), by (a), 

, 1 j j+l 
h (Jm(l,1)-1 (k+2 ,2 )) 

1 j j+1 
Jm(1,-l)(k+2,2 ), by (c), 

(h' )m(1,0)-1-m(1,-1) (J1 (k 2 j 2 j+1)) 
m(l,-1) + ' 

1 j j+1 
Jm(l,0)-1 (k+2 ' 2 ), by (a), 

I 1 j j+1 
h (Jm(l,0)-1 (k+2 ,2 )) 

1 j+1 
Jm(1,0) (k, 2 ) ' 

1 j+1 
Jm(1,2) -1 (k, 2 ) ' by (a) and (c), 

I 1 j+1 
h (Jm(1,2)-1(k,2 )) by (b). 

Because 

m(1,0) - 1 - m(l,-1) + 1 + m(1,2) - 1 - m(1,0) + 1 + m(1,1) - 1 + 

- m(1,0) + 1 + m(1,0) - 1 - m(l,-1) + 1 + m(1,2) - 1 -

- m (1, 0) + 1 

2•m(1,2) + m(1,1) - 2•m(1,-1) - m(1,0) t 1 , 

then 
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, t1 1 j _ 1 j 
(h ) (J m ( 1 , -1) (k' 2 ) ) - J m ( 1 , 2) (k' 2 ) . 

The other equality of (2) one can verify in the same way. 

By two first steps of the computation above we have 

(h')m(l,0)-1(1,1) {Jl (1 2)) = Jm1(1,0) (2,4) c Jl (1 2) 
m(1,-1) ' m(1,0) • · 

So condition (3) holds for n = 1. 

To verify condition (4) we use the form of the 

that J 1 - UF, is equal to J 1 (4,4) for m(1,-1) ~ m < m i m 
for m(1,1) ~ m < m(1,2). 

family F1 , and we have 
1 

m(1,1), and to Jm(2,2) 

Suppose that conditions (1) - (4) hold for some positive integer n. Then 

we show that conditions (1) - (4) hold \ohen n+1 is substituted for n and for 

tn+l = 2tn + 2m(l,n+2) - m(l,n+1) + m(1,-n) - 2m(1,-n-1). We begin with con

dition (2). We have the following: 

1 j-1 j+1 
= Jm(l,n+l) (k+2 ,2 ) by assumption 

that condition (2) holds for n, 

1 j j+l 
Jm(l ,n) (k+2 ,2 by (a) and (b), 

1 j j+1 
Jm(l,-n-1) (k+2 ,2 

by assumption that condition (2) holds for n, 

1 j+l 
Jm(1m-n) (k, 2 ) 

by (a) and (d1), 
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, tn 1 j+l _ 1 j+l 
(h ) (Jm(l ,-n) (k,2 ) ) - Jm(1,n+2) (k,2 ) 

by assumption that condition (2) holds for n, 

(h')m(1,n+2)-m(1,n+1) (Jl (k 2 j+1)) 
m(l ,n+l) ' 

1 j 
Jm(1,n+2) (k, 2 ) 

by (a) and (b). So, for tn+l as above, we have the first equality of condi

tion (2). The second one we can prove in the same way. 

The family F 1 consists of sets I(l,2), I(2,2), for IE F, of 
1 n+ 1 1 1 n 

(Jm - Fn) (1,2) if Jm intersects UF, and of J (1,2) and J (3,4) for 
1 n 1 m m 

m(l,-n-1) :<;; m < m(l,-n), of Jm(l,4) and Jm(2,4) for m(1,n) < m < m(1,n+1), 
1 

and of Jm(l,n+l) (1,2). Thus condition (2) holds. 

To verify condition (4) we use the form of the family Fn+l· To see that 

condition (3) holds we use the fact that 

(h')m(l,-n)-m(l,-n-1) (Jl (l, 4 )) Jl (1 2 ) 
m(l,-n-1) c m(l,-n) ' · 

From these conditions we conclude that the intersection 

n{ (h I )m(1,0)-m(1,-n) (Jl (1 ) (1,2)): n 
m ,-n 1,2, •.. } 

is non-void and contains exactly one point, say p, and that the orbit 

0 {(h')n(p): n is an integer} of this point is dense in C. 
p 

CASE 2. The mapping f has finitely many different orbits. Let 0 1 , ... ,0N 

be the orbits. To obtain h' we use homeomorphisms h., i = 1, ... ,N, defined 
J.. 

by conditions (a) - (d2 ). We put h' In= h, h' I (U0. -Ji(' 0) 1 (1,2)) to be 
J. mi, + . 

equal to h. restricted ·co the same set, and h' restricted to Ji (. 0) 1 (1,2) 
i . +1 m i' + 

to be linear and order··preserving mappings onto Ji (. 1 0) 2 (1, 2) for 
1 m J.+ I + 

i = 1, ... ,N-1, and onto Jm(l,0)+2 (1,2) for i = N. 

Note that h' is a homeomorphism. By a similar induction as in Case 1, 

we can show that h' has a dense orbit. 

CASE 3. The mapping f has infinitely many infinite orbits. Let 0i, 

i = 1,2, ... , be these orbits. We reduce this case to Case 1. 

For every positive integer n divide the Cantor set C into 2n pairwise 

disjoint subintervals with diameters equal to 3-n, and denote the k-th set 

of this partition by C(k,2n). Order all pairs (k,2n), k = 1, ..• ,2n, putting 

(k' ,2m) < (k,2n) if and only if 2m < 2n or 2m = 2n and k' < k. With every 
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pair (k,2n) join exactly one nonnegative integer i, and in result, if i > 0, 

an orbit Oi. We put i(1,2) to be the smallest positive integer i such that 

infinitely many subsets of C(l,2) belongs to Oi, if such an integer exists, 

and O otherwise. Suppose that we have done it for all pairs less than (k,2n). 

We put i(k,2n) to be the smallest positive integer not chosen before, such 

that infinitely many subsets of C(k,2n) belong to Oi, if such an integer i 

exists, and O otherwise. 

For every positive integer i we choose a sequence {m(i,j): j is an 

integer} of integers such that m (i, j) + 2 < m (i, j+l) , and whenever i = i (k, 2n) 

for some positive integers 
i 

i 
k and n, then subsequences of the sets {J (' .): 

m J.,J 
j = 1,2, ••• } and {J (' .): 

. m J.,J 
j = 0,-1, ••. } converge to some points, say ai 

and b1 respectively, and consist of subsets of 
n n 

C(k1,2) and C(k2 ,2) re-

spectively, for some integers k 1, k 2 , where k 1 = k or k 2 = k. We let e(i) = 1 

when k 1 = k and e(i) = -1 otherwise. We c~ choose m(i,j) in su7h a way that 

every Ji(' ') is contained in this C(t,2IJl+i) which contains a1 , if j > O, 
• m 1 ,J 1 • I+· 

and b1 , if j ~ 0, where tis a positive integer not greater than 2 J 1 • 

Using the mapping f and the family R we construct a family R' consist

ing of pairwise disjoint and closed-open intervals which belong to the natural 

basis B such that clc UR'= c, and a one-to-one mapping f' from R' onto it

self such that R' is the unique orbit off'. 

Denote by ai, b; the endpoints of J;, i.e. a;< b;, a;,b; EC and 
. . im 

[a1 b1 ] n c = J. m' m m 

STEP 1. Consider i(1,2) and i(2,2). At least one of these integers is posi-

tive. If both i(1,2) and i(2,2) are positive, then we define f' restricted 

k = 1,2, ••• } of Ji . . { i k+l i k+1 k+1 i i to the partition J (2,2 ), J (2 -1,2 ), a ,b: 
m m m m m 

for i = i(1,2) ,i(2,2) and m(i,-3) ~ m < m(i,3) -1 by setting 

(1a) the values off' on J~(2,2k+l), Ji(2k+1-1,2k+l), ai, bi to be equal to 

J i k+1 i k+1 k+1 m i m m 

(lb) 

m+l(2,2 ), Jm+l(2 -1,2 ), a~+l' bm+l respectively, if 

m ~ m(i,e(i)) -1; and 

the valuJ~~2~;)f' on members of the partition of J;~~(~~ 2),e(i(l, 2 )))-l 

and of m(i(2 , 2 ),e(i(2 , 2)))-l are equal to the corresponding members 
of the partition of Ji <2 , 2> and of Ji (l , 2 ) 

m(i(2,2),-3) m(i(1,2),-3) 
respectively. 

If i(1,2) = 0 or i(2,2) = 0, then let i be equal to whichever is posi
i 

tive. If all segments Jm(i,j) are contained in C(1,2) for i = i(1,2), or in 

C(2,2) for i = i(2,2), then we define f' as in (1a) for m(i,-3) ~m<m(i,3)-1. 
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If this is not the case, then form~ m)i,-1), m(i,1)-1 we define f' as be

fore, and we put the values off' on the members of the partition of 
i 

Jm(i, 3 )-l to be equal to the corresponding members of the partition of 

J~(i,-3). 
Let us observe that in this way we have defined two chains joining 

C(l,2) and C(2,2), or, in a special csae, one chain in C(l,2) or in C(2,2). 
1 k+l k+l . Denote by A1 (s,2 ), s = 2,2 -1, the corresponding segments, and by 

Ai(-oo), Ai(+00 ) the corresponding points ai. bi belonging to the first ele-
. m m 1 k+l 1 1 

ment of the chain which starts in C(l,2), and by B1 (s,2 ), B1 (-00 ), B1 (+00 ) 

2 k+l 
the members of its last element. In a similar way we define A1 (s,2 ), ... , 

B~(+00 ) for the other chain. The lower index denotes the number of the. step 

(here n = 1), and the upper index denotes the number of the segment of the 

partition of the Cantor set into 2n subsets, in which the chain has its 

first element. 

Denote by D1 the set of points 

on which f' has been defined. 

i 
a ' m 

and by R1 the family of segments 

STEP 2. This step allows to imagine the general one. Consider i(l,4), ... , 

i(4,4), and the segments C(s,4), s = 1, ..• ,4, the members of which are points 

ai, bi for i = i(l,2),i(2,2) ,i(l,4) , ... ,i(4,4). The idea of the construction 
m m 

is the following: we construct a chain from every such segment to the next 

one, and from the last segment to the first one in a similar way as before, 

but now we change fin C(l,2) or in C(2,2), and we start to construct an 

orbit. We begin with C(l,2). 

Suppose that i(l,4) and i(2,4) are positive. Then f' restricted to 

and to 

{Ji(l, 2), m(i(l,2),-5):,; m < m(i(l,2),-3)-1} 
m 

{ Ji (1 ' 2 ) : m ( i (1 , 2 ) , 3) :,; m < m ( i ( 1 , 2 ) , 5 ) -1 } 
m 

is equal to f, and the values off' on Ji(l, 2 ) and on 
1 2 2 2 1 2 m(i(l,2),4e(ill,2))+1)-1 

B1 (2,2 ), B1 (2,2 ), B1 (3,2) are equal to Al(2,22), Af(2,22), A!(3,22) and 

Af(3,2 2 ) respectively, thus we pass twice by every chain constructed before. 

Let us assume that l:Dth e(i(l,4)) and e(i(2,4)) are equal to 1 (in 
i 

other cases f' is defined in a similar way). Thus, using the sets Jm' 

i = i(l,4),i(2,4) and m(i,l) $ m < m(i,2) - 1, we construct a chain from 
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C(l,4} to C(2,4} as before, i.e. the values off' on members of the parti-

tion of a given segment is a corresponding member of the partition of the 

next one, and on the partition 
th . . f i(2,4) 

i(l,4) . 
of Jm(i(l, 4), 2)-l corresponding member of 

e partition o Jm(i(2 , 4),l) From the sets {Ji: m(i,2) ~ m < m(i,3)-1} 
m 

for i = i(1,4),i(2,4) we make the beginning, or the end of a chain which 
2 2 join C(4,4) with C(1,4) and C(2,4) with C(3,4). The value off' on B1 (3,2) 

· l't Ji(l, 4) ~fit' t' d' C(12) dt A1 (223) is equa o m(i(l, 4),-3),. is con aine in , , an o 1 , 

otherwise, and then the value off' on a 1
1 12,23) is equal to Ji(l, 4 ) 

m(i(l,4) ,-3) 
On the set 

{Ji(l, 4): m(i(l,4),-3) ~ m < m(i(l,4),1)-1} 
m 

f' is equal to f. 

Because e(i(l,4)) = 1, we have 

and the value off' on this segment 

Ji(l, 4 ) is contained in C(2,2) 
m(i(l,4) ,1) 

i (1,4) 
that Jm(i(l, 4) ,l) is contained in C(l,2) 

is equal to J~~ft~! 4),-3• If 

then we ought to use a member of the 

chain joining C(2,2) to C(l,2) having the biggest diameter and not used 
2 3 before, in our case A1 (2,2 ). 

We do a similar construction in C(2,2). Then we come back to C(l,2) 

and we end the definitions of the chains. We map members of the partition 

of J~l~c~~4),3)-1 on the segments Ai(s,2k+l) which are left. 

Denote by n2 the set of points, and by R2 the set of segments on which 

f' has been defined. The set Du n1 u n2 u ••• is closed and nowhere dense, 

and g is defined on this set by gin= hand glnj = f' lnj, j = 1,2, ••• is a 

homeomorphism, and f' is defined on R' = R1 u R2 u ••• as f in Case 1, which 

finishes the proof. 
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A SPLITTING THEOREM FOR SURFACES 

Harrie Hendriks and Anant R. Shastri 

We consider the situation that Sis a closed surface with base point 

sand nits fundamental group. Suppose Fis an infinite cyclic subgroup of 

n and that either 

a) there are subgroups G0 and G1 of n such that F = G0 n G1 but Ft G0 , 

Ft G1 and that n = G0 ; G1 (i.e. n is the free amalgamated product of 

G0 and G1 with amalgamation F}, or 
-1 

b} there is a subgroup G of n and t € n, such that F c G, that T(f) = tft 

defines a monomorphism F + G and that n = G FT (i.e. n equals the HNN 

extension of G by F by means of T). ([3]) 

One can realize this s.ituation geometrically as formulated below. We 

thank Robert Bieri for bringing the theorem to the attention of the first 

author. The theorem of which a proof is given here is known at least to 

Bieri. 

1. THE THEOREM 

THEOREM. In the above situation there is a 2-sided simple closed curve c 

through s such that n 1 {C,s) = F. Moreover given a small segment b trans

verse to Cats with endpoints b 0 and b 1 lying on either side of C and con

sidering bas a 'fat' base point one may reach the following: 

(i) In case a, the complement of Chas two components u0 and u1 and 

n1 (Ui,bi) = Gi (i = 0,1). 

{ii) In case b, the complement of Chas one component U and there is a path 

a joining b0 to b 1 in u, n1 {U,b0 ) = G and a= tin n1 {S,b) = n. 

The equalities of groups in the statement are induced by the subspace in

clusions. The statements {i) and {ii) are intended to identify the factori

zations of a and bas van Kampen diagrams for unions of subspaces u0 and u1 

or u and a neighbourhood of c. 
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We start the proofs by constructing an Eilenberg-MacLane complex 
1 

X = K(1r,l) with a "codimension 1" subspace M = K(F,1) ~ S as in [3, p. 60]. 

In case a (resp. b) take for i = 0,1 the mapping cylinder Yi of the maps of 

Eilenberg-MacLane spaces corresponding to the monomorphisms F c Gi (resp. 

F c G and,) and identify them along M = K(F,1) (resp. along M = K(F,1) and 

K(G,1)). Then M has a neighbourhood homeomorphic to M x (-1,+1) such that M 

corresponds to M x 0. Remark that thus transversality w.r.t. Mis defined. 

Now one has the caninical homotopy class of (base point preserv~ng) maps 

S ➔ X, both spaces having fundamental group TI. Let f be a representative 

of this class. 

CLAIM. 

s1 and 

-1 
f is homotopic to a map g: S ➔ X, transversal to M, so that g (M) -

-1 
g: g (M) ➔ Mis a homotopy equivalence. 

In its proof we will not try to find a base point preserving homotopy. 

Therefore we will find a map g inducing an inner automorphism of TT. By com

posing g with an appropriate diffeomorphism of S isotopic to the identity 

one can then find a map gin the canonical homotopy class. Moreover by argu

ments as in §3 one may deduce the theorem from the above claim. 

We will make use of the following facts. Recall that a simple closed 

curve Cina surface Vis essential if it does not bound a disc in V. We 

will say that C is incompressible if no proper power of C is zero in the 

fundamental group of V. 

REMARK 1. ([1]). Let C be a simple closed curve in a surface. If C is null 

homotopic then C is the boundary of an embedded disc. 

REMARK 2. (cf. [1, §2]). Let c 1 and c 2 be incompressible disjoint simple 

closed 2-sided curves in a surface. If some non-trivial powers of c 1 and 

c2 are conjugate in the fundamental group, then c1 and c2 form the boundary 

of an embedded annulus. 

REMARK 3. Let V be a surface and W c V be a closed connected codimension 0 

submanifold with incompressible boundary components, then n 1w ➔ n 1v is in

jective. 

REMARK. Let C be an essential simple closed curve in an orientable sur

face, then C represents an indivisible element in the fundamental group. 

The last remark can be deduced from intersection arguments in an appro

priate covering of the surface. 
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2. THE PROOF OF THE CLAIM 

Recall the map f: S + X. Up to homotopy we may suppose that f is trans

verse to M. Consider T = f- 1 (M), then Tis the disjoint union of finitely 

many simple closed two sided curves. 

Suppose T has an inessential component. Using Remark 1, one can find 

an embedded disc D such that T n D =an.It is now easy to find a homotopy 

off with support in a neighbourhood U of D to a map g such that g(U) n M 

is empty (rr 2 (X) 

and this proves 

0). This reduces the number of inessential components 

-1 
LEMMA 1. There is a homotopy off to a map g such that g (M) is the union 

-1 
of the essential components off (M). 

For the further simplification we will use Stallings' notion of binding 

tie. Let c1 and c2 be different components of f- 1 (M) and ya path from c1 

to c2 with interior disjoint from f-l(M). Then y is a binding tie iffy is 

homotopic in the complement of Mand relative to its endpoints to a path in 

the collar of M. (Cf. [2]). 

LEMMA 2. If c1 and c2 are two essential components of f-1 (M) joined by a 

binding tie y, there is a homotopy off to a map g (transverse to M) such 
-1 -1 

that g (M) = f (M) - (Cl u c 2 ). 

PROOF. Let w0 be the component of S - f-l (M) containing y and let W = 

w0 u c1 u c2 . Since y is a binding tie by Remarks 2 and 3, c1 and c2 bound 

an annulus in W, therefore Wis an annulus itself. Now we can homotopy y to 

an embedded binding tie. Embedded surgery methods enable us to find a homo-
-1 

topy off with support in a neighbourhood of y to a map g such that g (M) = 

(f-l (M) - (c1 u c2 )) u C where C is the connected sum of c1 and c2 along y. 

Since C bounds a disc it can be removed by Lemma 1. Of course Remark 2 im

plies that a priori any two essential components of f- 1 (M) bound an annulus 

in M. 

-1 
In the following section we will show that f (M) cannot be empty and 

that whenever there are more than two essential components a binding tie 

can be found. The claim will then follow from Lemma 4. 
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3. FINDING A BINDING TIE 

-1 
Recall the map f: S + X. We may suppose that f (M) consists of essen-

tial circles. 

-1 -1 
LEMMA 3. f (M) is not empty and if f (M) has more than 2 components and 

f: C + M induces an isomorphism of fundamental groups for every component 
-1 

C off (M), then there is a binding tie. 

PROOF. Suppose that either f- 1 (M) is empty or has more than 2 components 

but no binding tie. Then one may construct a non-trivial covering space 

p: X + X through which f factors. This would be absurd since then f#rr 1s 

would be contained in the proper subgroup p#rr 1x of rr 1x. 

The covering p can be taken as the union of a rr 1w covering of the com-
-1 

ponent of X - M in which f (W) lies for every component W of S - f (M) and 

of F' coverings of components of X - M where F' c F glued together above M 

in such a way that pis a covering and that f factors through p. If f- 1 (M) 

is empty the degree of pis in case a at least mini ([Gi:F]) and in case b 

it is infinite. If f- 1 (M) is not empty the degree of pis at least the num-
-1 

ber of components off (M). 

LEMMA 4. Let c be an (essential) component of f-l (M), then f: C + M induces 

an isomorphism of fundamental groups. 

PROOF. If not, recall that the components of f-l(M) are 2-sided and there

fore orientation preserving. By Remark 4 the generator of F cannot be orient-

ation preserving. Consider the orientation coverings p: s + s, q: x+ X and 

f: s + x of and f. M 
-1 . --1 -s, X Clearly = q (M) is connected, and f (M) = 

p -1 (f-1 (M)) is a trivial degree 2 covering of f-l (M). Now the previous theory 

applies to f: S + X w.r.t. M. By simplifying f by removing pairs of compon

ents of f- 1 (M) one can find a homotopy off to a map g which does not meet 

Mat all. This contradicts Lemma 3 . 

.ii 
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A PRODUCT FORMULA FOR 

HIGHER ORDER COHOMOLOGY OPERATIONS 

D.N. Holtzman 

1. INTRODUCTION AND NOTATION 

It is the purpose of this note to exhibit a family of higher order co

homology operations that admit particularly "nice" Cartan-like formulae with 

a relatively low level of indeterminacy. That is, we shall define two q th 

order cohomology operations, Wand n, such that if n(xl and n(y) are defined 

then W(xl, W(y) and W(x u Yl are defined and W(x u Yl = W(xl ·Y + x•W(Yl, 

modulo the total indeterminacy. Let us begin by establishing some notation. 

Throughout this paper, p shall denote some fixed prime number and F 
p 

will be the category of homotopy CW complexes whose integral (co)homology 

is free of p-torsion. For the duration of this note, we shall not venture 

out of the confines of our category, F. By Q, we shall mean the subring 
p p 

of the rational numbers whose denominators are all relatively prime top. 

Let m be the integer, (p-1), and N some even natural number, 2q. 

In the notation of C.R.F. MAUNDER [4, 5], we shall give a chain complex 

of length 2q such that ~;q,q = n and ~;• 0 = W. We shall, then, go on to prove 

the above mentioned Cartan-like formula for W. 

The author takes great pleasure in acknowledging the guidance and 

supervision of Prof. J.R. Hubbuck during the writing of [2] from which this 

note is excerpted. 

2. THE qTH ORDER OPERATIONS 

In this section we shall define the operation with which we will·be 

working in terms of the chain complexes of C.R.F. MAUNDER [4]. We recall 

that "pyramids" of higher order operations may be associated with augmented 

chain complexes of the form: 

(2.1) 
· d d 

C ~ CN-1 ...!t:L 
N- ••• --+-
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where each en (0 s n s N) is a locally finitely-generated free-graded left 

module over the mod p Steenrod algebra, A • The differentials, di' are 
p 

all of degree zero and are such that d. 0 d. 1 = 0, for all i, 1 $ i $ N-1. 

Associated with the complex (2.1) is a~ Ntfi+order operation, ¢N,O, which is 

·· r 0 defined on A -maps, E, such that¢ ' (E) is an equivalence class of maps 
* p 

C + H2Z (X) that includes the zero map, for all r, 0 < r < N. The equiva-
r p 

lence relation used here is equality, modulo the indeterminacy of the opera-

tion. The image of ¢N,O(E) is an equivalence class of maps C + H2Z*(x). 
N p 

The reader is encouraged to refer to [4] for a more detailed and thorough 

treatment of the construction of pyramids of higher order operations asso

ciated with such chain complexes. 

To a given complex which defines a pyramid of operations, one may 

assign a dual complex, yielding higher order operations, Spanier-Whitehead 

dual to the original ones. In Theorem 4.3.1 of [4], MAUNDER defines such a 

complex, made up of locally finitely-generated free graded left 

where A• denotes the "anti"-Steenrod algebra (which agrees with 
p 

A 1 -modules, 
p 

A in F l. 
p p 

The dual chain complex to (2 .1) , for example, would take the form: 

* * * 

(2.2) 
dN * dN-1 dl * * 

* * ~H2Z * 
CN -+--C - -<--Cl -+--CO (X). 

N-1 p 

Let us consider a particular example of a complex of the form (2.2). 

* * We denote by C (N,N) the complex defined in the following way. Each en is 

* as in (2.2), for Os n s N. For each such n, en will be generated by the 

following set: {c ,c 0 ,c 1 , ... ,c } where the dimension of c is 2Nm+ 
n n, n, n,N-n n 

N-n-1 and that of c . is N-n+2m(N-n-i), for Os is N-n. we define the 
n,1. 

differentials of c*(N,N) by: 

(2 .3 .a) * d (c ) 
n n 

N-1 
-B(cn+l) + l pN-i+n(c .) 

i=n n+l,N-1-1. 

and 

* (2.3.b) d (c . ) 
n n,1 

where T denotes the operation P1s - sP1 . 

REMARK 2~4. The chain complex, c*(N,N), is the dual of C(N,N) of [5], for a 

general prime, p. 
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Let us, now, define the two q th order operations with which we will be 

working in terms of the chain complex, (2.2). We shall write n for the oper

ation w:,q and~ for w;'O where w~,s denotes an (r-s) th order operation in 

the pyramid associated with the complex, (2.2). For the precise definition 

of w~'s, the reader is, once again, referred to [4]. 

* Let £ * * and o be two coaugmentations, that is to say maps from HZ!; (X) 
p 

* into c0 , for (2.2). These will be objects in the dual category correspond-

ing to augmentations,£ and o. 

Heuristically speaking, a chain complex, in this sense, represents a 

"cohomologised" version of a Postnikov system. The augmentations, upon which 

higher order operations are defined, correspond to cohomology elements in 

* HZ!; (X) which admit liftings in the appropriate Postnikov towers. With this 
p 

in mind, we shall write £•o, the product of two augmentations, for the aug-

mentation corresponding to the cup product of the two elements, x and y, 
* say, in HZ!; (X) which are represented, respectively, by£ and o. 
p 

3. THE MAIN THEOREM 

We are, now, in a position to state the main result of this paper: 

THEOREM 3.1. Let£* and o* be coaugmentations such that Q(£*) and Q(o*) are 

* * * * defined. Then,~ is defined on£, o and£ •o and, modulo the total in-

determinacy, one has: 

In order to prove (3.1), we move to_the context of [2]. It was shown, 
th -N q -q 0 

there, that n and~ correspond to the q order operations, wN' and wN' , 
-N'0 respectively. We indicate, briefly, how w ; is defined, for any q' ~ N'. 

q 
For any X in F, one may identify the evenly graded Q -cohomology of X 

. p O p 
with the associated graded group of the Q -unitary K -theory of X. This fol-

p 
lows directly from the fact that the differentials in the Atiyah-Hirzebruch 

spectral sequence are all torsion valued. Thus, using standard notation, we 

have, for any n ~ 0: 

(3.2) 

where zero-z2 grading is understood for the K-theory and where all 
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coefficients are in Q (we will continue to assume this, tacitly, in what 
p 

follows, unless another coefficient group or K-theory grading is explicitly 

given). It is clear (see, for example, [3]) that one may define an isomor

phism (indeed, several may be defined) of filtered Q -modules: 
p 

(3. 3) J: Hev (X) ---+ K(X) 

2n 
such that J(H (X)) £ K2n(X) and where the composition of J with the quo-

tient map, I 2n: K2n(X)-+ K2n(X)/K2n+i (X), is the identity map on H2n(X). 

Let us denote by cht, the component of the Chern character in dimen

sion 2t. If u is an element of H2n (X) and q' is any non-negative integer, 

then we may define a homomorphism of evenly graded Q -cohomology groups by: 
p 

DEFINITION 3.4. 

q' 
The factor, p , in (3.4) is the mod p component of the "Adams multi-

plier" ( [ 1]) and it assures us that the image of 05' lies in the image of 

* * the coefficient homomorphism: H (X)-+ HQ (X). By definition of J, we have 

that 0~ is the identity map. We define, now, another homomorphism, 

-q' q' 
by letting 0J be the formal inverse of eJ. That is, for any q' 2 0, we 

have: 

(3.5) o. 

We, now, define anN 1th order cohomology operation eN' ,O in terms of 
. I q f 

this homomorphism, 05: 

DEFINITION 3.6. Let J be as above and denote, by p;, the coefficient homo-
* * 2n morphism, p;: H -+ mz . Consider a lZ -cohomology class, x E HlZP (X) such 

p p 2n 
that it is the lZ reduction of some Q -class u EH (X), that satisfies 

p p 
the following: 
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CONDITION*: 

-q' N'-1 
6J u - 0 mod p , 

-q'-1 N'-1 
6J u - 0 mod p , 

-q'-i 
.•• ,eJ u 

0 N'-2 
- mod p 

0 N'-i -q'-(N'-1) - mod p , ..• ,eJ u _ 

We define an N1th order cohomology operation, 

eN' ,O. H:i'Z2n(X) ➔ H:i'Zp2n+2qm(X)/Q, 
q' . p 

0 mod p • 

127 

-q' N'-1 · such that x ➔ [p;(eJ U/p )], where the outer square brackets indicate the 

the equivalence class, modulo the indeterminacy Q; this is generated by 

allowing J and u to range over all appropriate isomorphisms and Q -liftings 
p 

of x that satisfy*· 

REMARK 3.7. It can be shown, in fact, that the choice of J offers no real 

contribution to Q([2]). That is, all J may be thought of as equivalent with 
-N' ,O 

respect to determining the value of ~q' • 

Now, in order to prove (3.1), we shall have to introduce some new mach

inery which will allow us to determine the product behaviour of~-

2n 2£. 2n+2l+2im 
DEFINITION 3.8. Let Mi: H (X) x H (X) ➔ H (X) be the bilinear map-

ping defined by taking the component in dimension 2n+2l+2im of 
-1 

(U,V) ➔ J (J(U) •J(V)), for i ~ 0. 

It is 

Now, using 
-q' 

phism, 6J 

-1 
clear that J (J(U)•J(y)) = E.>O M. (U,V) and that Mo(U,V) = u u v. 

I i- i 

the fact that s5 of [3] corresponds precisely to our homomor-

<.[2]), we quote the following result of HUBBUCK (see 2.19 of [3]): 

LEMMA 3.9. Let J be as above and let u and V be elements in Hev(X). Then, 

in KQ(X), one has: 

Applying the definition (3.8) to (3.9) and restricting to dimension 

2q'm + dim(U) + dim(V), one gets, in the above notation: 
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LEMMA 3.10. 

ef (U. UV) 

q' 

Z: Z: 
r=O i+j=q'-r 

We are, now, in position to proceed with 

PROOF OF 3 .1 . Let us suppose that x and lj are ZI - cohomology elements cor-

* * p * * responding to E and o , respectively. The facts that ~(E) and ~(o) are 

defined imply that there exist isomorphisms, J and J', as above, and Q -
p 

liftings, U. and v, of x and lj, respectively, such that the following con-

gruences are satisfied for the pairs (J,U.) and (J',v): 

(i) 8~-i (U.) - 8 N-i ( ) 
J' V - O(pq-1), 0 ,,; i ,,; q+1 and 

(ii) e~-i <u.J - 0N-i ( ) 
J' V - O(pN-i), q+2 ,,; i ,,; N-1. 

By virtue of (3.7), we assume that J = J'. By (3.10), we may write, modulo 

pq: 

(3.11) 

Since the pairs, (J,U.) and (J,V) satisfy the congruences (i) and (ii), 

above, we may rewrite (3.11) as: 

(3 .12) -eNJ (u.J -eN < l U V + U. U J V , 

modulo pq. 

Moreover, by hypothesis, each individual summand on the right-hand side 

of (3.12) is divisible by pq-l. The result now follows from (3.6) and the 

definition of 'l'. 
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MAPPINGS FROM PRODUCTS 

M. Husek 

This contribution deals with factorizations of mappings from products 

and their applications, i.e. with the following situation: There is a con

tinuous map f on a topological space X into another topological space Yi if 

Xis embedded into a product IT{X. Ii€ I}, we look for small subsets J of I 
l. 

such that f depends on J (i.e., if x,y € X, prJx = prJy, then fx = fy). 

There are modifications of the above situation, for instance, f is less 

or more than continuous, X and Y may possess other structures, the factoriz

ed map may be requested to have a given property, etc. 

In the first part of this contribution we shall look at topological 

conditions on the domain and the range of f which enables to factorize f 

(generalizations of results by Gleason, Comfort and Negrepontis, etc.). The 

last part shows some applications of the preceding results. 

Now, we shall recall several concepts which will often be used in the 

sequel. For history and references see e.g. [HUi • We shall suppose that all 

the spaces under consideration are completely regular although many results 

of this paper are valid for more general spaces (e.g. Hausdorff). If there 

is no other description of a product ITXi_or letters K, a, we always mean 

that the index set of IIXi is I and that K, a are infinite cardinals. We 

shall say that a product ITXi is nontrivial if III ~wand lxil ~ 2 for all 

i € I. By R(ITAi) for Ai c xi we mean the set {i € I I Ai -/= xi}. A net 

{x I a € A} ·converges to a set S in X if every neighbourhood u of S in X 
a 

contains residually many xa's (i.e., xa € U starting with some a0), it con-

verges trivially to S if residually many xa's belong to S. A family~ of 

sets is said to be quasidisjoint if {s - n~ I S € ~} is disjoint; if ~ is a 

family of finite sets and l~I is regular uncountable, then there is a quasi

disjoint subfamily of~ with cardinality 1~1-
If z is a subspace of X, then Xis said to be pseudo-(K,a)-compact with 

respect to z -if for every family {u, I,€ K} of non-void open sets in X there 

is a point in z every neighbourhood of which intersects at least a members 
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of {ui:; JI'; E K}. We omit Cl if Cl = w, and the expression "with respect to Z" 

if z = x. If, in the above definition, the sets UE; are replaced by points 

of x, we obtain the definition of (K,Cl)-compactness. A space Xis said to 

have caliber (K,Cl) if for every family {Ui:; JI'; e: K} of nonvoid open sets in 

X there is a subfamily {ui:; J E; e: L} with ILi = Cl and n{ui:; JI'; e: L} ,; fl!. 

A subspace X of a product has the property V(K) if every projection of 

X into a Cl-fold subproduct, Cl< K, is a surjection; it is K-invariant pro

vided for every x,y EX and Jc I with IJI < K there is a z e: X such that 

prI-Jy. For instance, EK-products have both the above 

properties (Xis EK-product of Xi if, for some a E ITXi, l{i EI J prix # 

pr,a}I < K for every x EX). 
1 

1. FACTORIZATIONS OF MAPPINGS 

We shall start now with factorizations of mappings defined on the whole 

product. 

THEOREM 1. [NU]. The following conditions are equivalent for nontrivial 

rrxi, I I I ~ K: 

(a) ITXi is pseudo-K-compact and pseudo-Cl-compact for some Cl< Kin the case 

cof K = w. 

(b) Every continuous real-valued function on ITXi depends on less than K co

ordinates. 

Thus pseudo-K-compactness is the largest property with respect to fac

torization of real-valued functions f. Of course, the range off may be more 

general than reals. It was proved in [NU] that every space with G0-diagonal 

(i.e., the diagonal is an intersection of countably many of its closed neigh

bourhoods) may substitute reals in (b) (or spaces with G -diagonal for re-<K 
gular K). We have proved, [HU 1], that the class may still be enlarged to 

the class of spaces with weakly K-inaccessible diagonal: 

DEFINITION. A space Xis said to have (weakly) K-inaccessible diagonal, if 

for every family {xi:; J I'; E K} c X x X - LIX and every regular Cl, cof K ~ Cl ~ K, 

there is an open u ~ llx in Xx X and a cofinal Sin K with Isl= Cl such that 

{xi:; J I'; E S} n U fll (or {xi:; J I'; E S} n U = fll, resp.) • 

Clearly, if K is regular, then the above property is equivalent to the 

fact that only trivial well-ordered nets of length K (weakly) converges to 



MAPPINGS FROM PRODUCTS 133 

the diagonal (or if Mc xxx - fix, IMI = K, then IM-UI = K (or IM-UI = K, 

resp.) for an open U ~ fix). See [HU2] for basic properties of spaces with 

K-inaccessible diagonal. For instance, every subspace of a compact F-space 

(hence of extremally disconnected space) has weakly w-inaccessible diagonal. 

It is not known yet whether there are compact nonmetrizable spaces with w1-

inaccessible diagonal. It was proved in [BS], [SJ that the spaces B(K) have 

w1-accessible diagonal. 

THEOREM 2. [HU2]. Each of the following conditions implies the next one: 

(a) Y has weakly K-inaccessible diagonal. 

(b) Every continuous mapping on a pseudo-a-compact product (a~ K, a regular) 

into Y depends on less than K coordinates. 

(c) Y has K-inaccessible diagonal. 

If there is a base of closed neighbourh::>ods of the diagonal of Y, then all 

the three conditions are equivalent. 

An interesting corollary of Theorem 2 is the fact that every continuous 

mapping on a pseudocompact product into an extremally disconnected space 

depends on finitely many coordinates. 

If we start with maps into 2 = (0,1), then we obtain almost the same 

results as above if we restrict our consideration to spaces projectively 

generated by 2, i.e. to zero-dimensional spaces. The only difference with 

Theorem 1 is the case cof K = w: 

THEOREM 3. [HU1]. The condition (a) implies (b). If IlXi is nontrivial, zero

dimensional and III ~ K, then (a) is equivalent to (b): 

(a) rrxi is pseudo-K-compact. 

(b) Every continuous function on rrxi into a discrete space depends on less 

than K coordinates. 

We shall sketch the proofs: The proof that (b) => (a) in Theorems 1, 3 

goes as follows. If rrxi is not pseudo-K-compact, K f w, K regular, then a 

finite subproduct Il{X. Ii€ F} is not pseudo-K-compact [NU], hence there are 
l. 

continuous gl; € C (Il{Xi I i € F}), with discrete {gt (R- (0)) j 1; € K} and non-

constant hi;€ C(XI;), I;€ K, for a Kc I-F. Then fx = E{gl;(prFx)hl;(prl;x) I 

I;€ K} does not depend on less than K coordinates. The same procedure can 

be used for the case K = w if we know that a finite subproduct is not 

pseudocompact. If a zerodimmensional rrxi is not pseudocompact, then there 

is a continuous function on rrxi onto w, hence by (b), f factorizes via a 
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finite subproduct which cannot be pseudocompact (this process may be used 

also for the general case, instead of the above result from [NU], if we deal 

with mappings into metrizable spaces because pseudo-K-compactness can be 

characterized by mappings into metrizable hedgehogs; of course, the set F 

need not be finite then). 

The proof of (b).,. (c) in Theorem 2: If there is A= {(a~,b~) I~ EK} in 

Y x Y - liy converging to liy, we put X _1 = A u (An liy) and define. 

f: x_ 1 x 2K + Y to be equal at ((y1 ,y2), {h~}) to y 1 if y 1 = a~, h~ = O, 

to y 2 if y 1 = a~, h~ = 1 or if y 1 = y 2 • The f does not depend on less than 

K coordinates. The implications (a).,. (b) will follow from more general re

sults in this paper. 

2. XIS A PROPER SUBSET OF A PRODUCT 

The case when Xis a proper subset of a product is more complicated. 

Usually, the result depends on how Xis embedded in the product: 

EXAMPLE 1. For every nontrivial product ITXi and a space Y with IYI ~ 2 

there is an X c ITXi and a continuous f: X + Y such that f depends on no 

proper subset of I. 

It suffices to suppose that X. = Y = 2 for all i. Every power 2I con-
l. 

tains a discrete subspace X such that for each i EI there are points 

xi,yi EX with xi f yi, prI-(i)xi = prI-(i)yi and (xi,yi) n (xj,yj) =¢for 

i # j. Indeed, suppose that I is well-ordered without the last element and 

define the points xi, Yi as follows: 

The set X 
-1 

pri (0) n 

=( 

if j f i+1 
prjxi 

if j i+1 

( if j 1' i,i+1 
prjyi 

if j i,i+1. 

= {x. I i E I} u {y. Ii E I} is discrete since the neighbourhood 
-1l. -1 i 

pr.+1 (1) n pr.+2 (0) of x. contains no other point of X and simi-
l. i -1 i -1 

larly the neighbourhood pri (1) n pri+l (1) of yi contains no other point of 

x. Thus the ~ap f that is O on all xi's and 1 on all yi's is continuous on 

X into Y and depends on no proper subset of I. 
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2wl 
EXAMPLE 2. Take X to be without two points p, q: then every continuous 

real-valued function on X depends on countably many coordinates (Theorem 5). 

Let Z be the one-point compactification of X and embed z into 2w 1• There is 

a continuous real-valued function on X not depending on countably many co

ordinates in this last embedding. Indeed, take a function f on X which can

not be continuously extended onto z - if f depends on countably many coor

dinates, it could be continuously extended onto the whole product because 

the image of X in a countable subproduct is compact (Xis a pseudocompact) 

and the projection is quotient (no strictly finer topology of a compact 

metrizable one is pseudocompact). 

The procedure from Example 2 can be generalized for every space which 

is not almost compact (has more than one compactification). Since every con

tinuous mapping on an almost compact space is uniformly continuous, we get 

by [MI], [VI]: 

THEOREM 4. A space Xis almost canpact iff for every embedding of X into a 

product, every continuous mapping on X into a metrizable space depends on 

countably many coordinates. 

COROLLARY. Every continuous mapping on an almost compact subspace of a pro

duct into a space with weight less than K depends on less than K coordinates. 

All the methods dealing with factorizations for general subspaces need 

some kind of openness of the subspace of the product. If we exclude trivial 

conditions (as e.g. X connected, Y disconnected or a projection X ➔ prJX is 

one-to-one) we shall see that X cannot contain certain discrete subspaces 

and Y cannot contain certain well-ordered nets. The next result is a direct 

generalization of the implication (a),. (b) in Theorem 1, [Hu1J ([CN] for 

X dense in IIXi). 

THEOREM 5. Suppose that a subspace X of a product rrxi is pseudo-K-compact 

with respect to X n IntX, where K is a regular cardinal. Then any contin

uous mapping on X into a space Y, the diagonal of which is intersection of 

less than K of its closed neighbourhoods, depends on less than K coordinates. 

PROOF. If an f € C(X,Y) does not depend on less than K coordinates, then we 

can construct transfinitely sets J~ c I and open canonical sets u~, V~ in 

IIXi such that for all~ EK and some open neighbourhood G of ~Yin Y x Y 
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Let p E X n Int X be an accumulation point of {x n us I s E K}, W c X an open 

canonical neighbourhood of p such that f (X n W) x f (X n W) c G. Then there is 

as EK such that w nus~ 0, R(Us) n R(W) c Js. Consequently, w n Vs~ 0, 
hence X n W n Vs~ 0 - a contradiction. 

REMARKS. 

(1) The closure and interior in Int X are always taken in the whole product 

TIXi. The assumption on X means exactly that X n Int Xis pseudo-K

compact and Xis regularly closed (i.e., X c Int X). 
(2) The assumption on X coincides with pseudo-K-compactness of X if 

X c Int X, i.e. if there is an open set Gin the product such that 

X c G c x (e.g., if Xis open or dense in the product). 

(3) If K is a singular cardinal, we obtain the same result if we suppose 

that Xis pseudo-a-compact with respect to X n Int X for a a< K. 

(4) The assumptions on X are satisfied if dXi <Kand Xis regularly closed. 

We do not know whether Theorem 5 holds in the most general situation 

when Y has weakly K-inaccessible diagonal. The next result shows that it 

almost holds. But first we present an important lemma (in the proof, we 

mean by continuous factorization the case when the factorized map is con

tinuous): 

LEMMA. In the category of regular spaces, for X c TIXi, X c Int X, we have 

lim{(prI-FX, prI-F,I-F') IF, F' finite, F,F' cI-J,F'c F}. 
+ 

PROOF. Take- an f E C(X,Y), Y regular, such that f depends continuously on 

every I - F for finite F c I-J. We must prove that f depends continuously 

on J. Take x,y E X with prJx = prJy and assume that fx ~ fy. Thus f(X n U) n 

f (X n V) = 0 for some open canonical neighbourhoods u, V or x, y in X. We 

may suppose that R(U) = R(V), prJU = prJV. Since f factorizes continuously 

via I-F, where F = R(U) - J, and prI-Fx E prI-F (X n V), we have got a contra

diction. It ranains to prove that the factorized map g on prJX is contin

uous. Assume that for some y E X, {ya I a E A} c X we have prJya + prJy, 

fy a+ fy. Thus there is a canonical neighbourhood U of y in X such that 
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prJya E prJU and fya i fU for some a. If we put F = R(U) -J, then prI-Fya E 

prI_Fu c prI-F (X n U), which contradicts the continuity of the factorized 

map on prI_Fx. 

REMARKS. For the above result it suffices to suppose less than X c Int X, 

namely that for each x E. X there is a finite F c I-Janda neighbourhood U 

of x in the product such that prI_Fv c prI-F (X n V) for each cononical neigh

bourhood V of x in u. But the lemma is not true if we suppose only that X 

is regularly closed even in the case when Xis compact: 

EXAMPLE 3. Put x0 [0,2], xn 2 for n E w- 0, xi E. ITXn, i = 1,0, where 

prkxi 1 fork = 0, prkxi = i for k > 0. Pur X = Au Bu (x0 ,x1), where 

A U ([1-1/(n+l),1-1/(n+2)] x {0 I k ::5 
n 

n+l, ka/0} x IT{~ I k ;,, n+2}), 

B U ([1+1/(n+2),1+1/(n+l)] x {1 j k ::5 n+l, kf0} x IT{~ I k;,, n+2}). 

Then Xis compact, regularly closed in ITXn, and the continuous mapping 

f = pr 1 : X ➔ 2 factorizes continuously via every w - F, F finite, 0 I. F, but 

not via 0 (indeed, if prw-Fx = prw-FY, then either x,y EA or x,y EB or 

x = y xi since prkxO # prkxl for infinitely many k's; clearly, fx0 # fx 1, 

prOxO prOxl) • 

THEOREM 6. Let X be a pseudo-a-compact subspace of irxi with X c Int X, a ::5 K, a 

regular, let Y have a weakly K-inaccessible diagonal and let f E C(X,Y). If 

there is an Ac I such that IAI ::5 Kand F n A al~ for every finite F c I 

with the property that f depends noncontinuously on I-F, then f depends on 

less than K coordinates. 

PROOF. There are two possibilities: either there is a disjoint family 

{F~ I~ EK} .of finite subsets of I such that f depends on no I-F~, or there 

is a B c I-A with I Bl < K and such that f depends continuously on every I-F, 

F finite, F c I - (Au B). In this latter case, f depends continuously on 

A u B by the lemma, and we may suppose that I Kin this case. If for each 

~ E. K there are points x~, y~ in X such that pr~x~ = pr~y~, fxs f fys, then 

there is a cofinal Sin Kand an open G ~ ~Y such that (fx1,fys) I. G for 

~ES. Fors Es, there are open canonical sets U~, vs in X such that 

XS€ u~, ys € v~, pr~us = prsvs, R(Us) = R(Vs)' f(XnUS) X f(XnV~) nG ~

If a= Isl > w, there is a cofinal Tin S such that {R(U~) I~ ET} is 
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quasidisjoint with an intersection K. Let p be an accumulation point of 

{u I; I T 3 I; ::, K} and W a canonical neighbourhood of p in X such that f (X n W) x 

f(XnW) c G. Then there is a I; ET, I;::, K such that X n W n U!; f, 0, R(W) n 

R(U!;) c K; consequently, W n VI; f, 0 and W n VI; n X f, 0 - a contradiction. 

If a. = w and p is an accumation point of {u I; I I; E S}, W its canonical neigh

bourhood as above, then there is a I; ES such that X n W nu!; f, 0, I;::, R(W). 

Hence \'I n VI; f, 0 - a contradiction. 

It remains to establish the case where there is a cofinal Sin K, 

Is\= a. and canonical open sets U!;, VI; in X and an open G::, ty such that 

prI-F1;u/; = prI-F1;v,, R(U!;) R(V!;), f(XnU!;) x f(XnV!;) nG = 0. up is an 

accumulation point of {u!; I I; ES}, Wits canonical neighbourhood such that 

f(XnW) x f(XnW) c G, then, for some s ES, W nu!; f, 0, R(W) nF!; = 0. Hence 

W n VI; f, 0, which is a contradiction. 

COROLLARY. Let X be a pseudo-K-compact subspace of rrxi, K regular, X c IntX, 

and let Y have a weakly K-inaccessible diagonal. Then in each of the follow

ing cases every f E C(X,Y) depends on less than K coordinates: 

(a) \ I\ K. 

(bl X c Int Int X. 

(cl Xis w-invariant. 

PROOF. In the case (al we may put A= I in Theorem 6 and in the case (cl 

A= 0 (every factorization via a complement of finite set off E C(X,Y) is 

continuous). Suppose now that (bl holds and Jc I. We shall prove that 

prJ: X + prJX is quotient in completely regular spaces. Let g: prJX + R be 

such that g • pr J is continuous and there are a net {ya} converging to y in 

prJX and a neighbourhood V of fy in R missing all gya. Let x Ex, prJx = y, 

U a canonical neighbourhood of x with U c Int X, (g • prJ) (X n U) c V. There 

are ya E prJU, xa EX, and a canonical neighbourhood W of xa such that 

prJxa =ya,· (g • prJ) (X n W) n (g • prJ) (X n U) = 0, prJW c pr JU. Since 

X c Int X we find that pr J (W n Int X) is nonempty open, pr J (W n Int X) c pr JU 

and, also, prJ(U n Int X) dense in pr JU. Thus prJ(W n Int X) n prJ(U n Int X) f, 

0 and there are points u EX n W, v EX n U such that prJu = prJv, gprJv f, 

gprJv - a contradiction. Consequently, we may put again A= 0. 

In fact, we have proved that in (bl all the projections prJ: X + prJX 

are quotient in the category of regular spaces. The following easy examples 

show that the result is not true for nonregular spaces (thus prJ: X + prJX 
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is not open in general} and that the assumption X c Int Int X cannot be 

weakened to a similar form. 

EXAMPLE 4. 

139 

(i} Suppose x0 = x1 = [0,1], Y = [0,1] with the additional open set [0,1] 

- {1/nln=1,2, ••• }, X = {(x,y} I if x = 1/n then y = 1, if x = 0 then 

y = O}. Then f = pr0 : X ➔ Y factorizes via x0 noncontinuously. 

(ii) Suppose x0 = [0,1], x1 = 2, x = { (x,y) I if y = O then x is rational, 

if y = 1 then xis irrational}, Y = 2, f(x,i} = i for (x,i} EX. Then 

X c Int X but the factorization via x0 is not continuous. 

(iii} Suppose x0 = [0, 00 ], x1 = 2, Y 2, X { (x,y) I if y = 0 then 

x E U{[2n,2n+1] In E w}, if y 1 then x E U{[2n+1,2n+2] In E w}}, 

f(x,i) = i for (x,i} EX. Then X c IntX but the factorization off 

via x0 is not continuous. 

REMARKS. X C Int Int X iff X C Int X and X C Int X iff there is an open set 

G such that G c X c Int G. This is true e.g. if Xis open or contains an 

open dense set. 

We know, [Hu3J, that if X has V(K} then prJ: X ➔ prJX are open provided 
w 

IJI < K. But almost the same example as (i} above (x1 = [0,1] 1, Y = x1 with 

the added open set Y - {x }, where {x} ,converges nontrivially to a point 
n n 

not in {xn}) shows that not all projections of X are quotient in Hausdorff 

spaces, and (ii) shows that not even in completely regular spaces 

2, X E (0) x (0) u E (1) x (1)). w w 

3. OTHER CONDITIONS ON X, Y 

Now, we shall look at other conditions on X, Y. Clearly, if we restrict 

the property for products, we may enlarge the class of ranges. We have used 

for products pseudo-K-compactness which is the most general property for 

our purpose if we consider real-valued functions. The corresponding class 

appeared to be the class of spaces with weakly K-inaccessible diagonal. The 

pseudo-K-compactness means that there are no uniformly discrete subspaces 

of cardinality K. We restrict this property by requiring that there is no 

closed discrete subspace of cardinality K, which means K-compactness. The 

next result 9an easily be deduced from results and remarks in [Hu2J and 

shows that the corresponding property for ranges in this new case is to 
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have K-inaccessible diagonal. The proof is similar to that of Theorem 2. 

THEOREM 7. The following conditions on Y are equivalent: 

(a) Every a-compact subspace of Y (a$ K, a regular) has K-inaccessible 

diagonal. 

(b) Every continuous mapping on a a-compact product (a$ K, a regular) 

into Y depends on less than K coordinates. 

One can prove now similar assertions as before but for spaces which 

are K-compact or have K-inaccessible diagonal. We shall state only the 

following one: 

THEOREM 8. Let X be a K-compact subspace of IIXi, K regular, X c Int X and 

let Y have K-inaccessible diagonal. Then every f E C(X,Y) depends on less 

than K coordinates provided one of the following conditions holds: 

(a) X C Int Int x. 
(b) X is w-invariant. 

PROOF. Either there is a disjoint family {Ls Is EK} of finite subsets of 

I such that f depends on no I - Ls of there is a K c I, I Kl < K such that 

for each finite L c I disjoint with K, f depends on I-L. If the second case 

occurs and f depends continuously on those I-L (which are our cases (a), 

(b)), then by Lemma, f depends on Kand we are ready. Suppose now that the 

first case occurs. For every s EK there are XS,YS EX such that prI-LsxS 

prI-Lsys, fxs f fys. There is an open neighbourhood G of ~y and a cofinal 

sin K such that {(fxs,fys) Is E s}nG = 0- There is an accumulation point 

p of {xs I s E S} and a canonical neighbourhood W of p such that f (X n W) x 

f(X n W) c G. Choose a s E s with R(W) n Ls = 0; consequently, y sE w, which 

is a contradiction. 

REMARKS. Theorem 8 has corresponding formulation for singular K. As for Y, 

one needs only suppose that every K-compact subspace has K-inaccessible 

diagonal. As for X one needs only suppose that certain projections are 

quotient. 

In the second part of the proof no condition on how Xis embedded in 

IIXi was needed. The next example shows that even in the case K = w1, Y 2, 

the general result without any condition on loc~tion of X in the product 

does not hold. 
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(1)1 
EXAMPLE 5. Put X = (1)1 + (1)1 and embed it into 2 in such a way that Ix- xi= 1. 

Then Xis countably compact and the map f: X + 2, with f 0 on the first 

copy of w1 and 1 on the second one, does not depend on countably many coor

dinates. 

We cannot construct a similar example for K w: 

THEOREM 9. Let X be a (a,a)-cornpact subspace of a product TIXi for a regular 

a~ K, where III = K. Then every continuous mapping on X into a space with 

K-inaccessible diagonal depends on less than K-coordinates. 

PROOF. If not, then for every;€ K there are points x;,y; € X such that 

pr;x; = pr;y; (we suppose that I= K), fx; # fy;. Then {(fx,,fy;) I;€ s} n 

G =~for some open G ~ 6y, cofinal Sin K, Isl = a. If pis a complete 

accumulation point of {x; I;€ s}, Wits canonical neighbourhood such that 

f(X n W) x f(X n W) c G, then we can find a ; € S such that x; € w, R(W) c ;, 

which is a contradiction because then y; € w. 

4. ANorHER PROPERTY 

Another property that is weaker than pseudo-K-compactness (and incompar

able with K-compactness) is to have caliber K. 

GLEASON proved (see [I]) that every f € C(X,Y) depends on countably 

many coordinates provided Xis an open subspace of a product of separable 

spaces and all the points of Y are G0• MIStENKO [MI] generalized this for 
V 

open X with caliber w1 and HUSEK [Hu3J for subspaces with V(w1) in a product 

of separable spaces. The proofs can easily be modified for other cardinals. 

We shall show .that the properties of X and Y may be requested to be more 

general without affecting the result. The most interesting case is, perhaps, 

again K = w •. we shall say that a space X has pseudocaliber Kif for every 

collection U of K open nonvoid sets in X there is a point p, a subcollection 

{u; I ; € K} of U and u; € U; such that {u; I ; € K} converges to p. 

THEOREM 10. Let a product TIXi have pseudocaliber K. If there is no nontrivial 

convergent well-ordered net of length Kin Y, then every f € C(TIXi,Y) depends 

on less than K coordinates. 

PROOF. Suppose not. Then there are families {J; I;€ K} of subsets of I, 

{U; I ; € K}, {V; I ; € K} of canonical open sets in TIXi such that 
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R(U/;) = R(V/;), JI; u R(U/;) C Jn for I; E n EK, prJ/;u/; = prJ vi;, f(U/;) n f(V/;) 

0- By assumption, there are a point p, Sc K with Isl = K ~nd u/; EU/; for 

each I; E S such that {u/; I 1; E S} converges to p. For I; E S let vi; E VI; be a 

point with pr ( )vr: = pr ( )ur:. Then {vr: I 1; E s} converges top and, 
I-R Ut; s I-R V s s 

consequently, either {fu/; I 1; E sJ or {fv/; I 1; E s} converges nontrivially to 

fp - a contradiction. 

COROLLARY. Let Xi be sequentially compact spaces and suppose Y has no non

trivial convergent sequence. Then every f E C(ITXi 1 Y) depends on finitely 

many coordinates. 

THEOREM 11. If Y contains a nontrivial convergent sequence, then there is 

a product rrxi with pseudocaliber wand an f E C(ITXi 1 Y) not depending on 

finitely many coordinates. 

PROOF. Put x_ 1 to be a convergent sequence with its limit point, e.g. w+ 1, 

and XI; = 2 for I; E w + 1. Suppose that {y n I n E w} is a nontrivial sequence 

in Y converging to yw and define f: IT{X/; I -1 :". I; :". w} + 2 as follows: 

if 0, if 1. 

Then f E C(ITX/; 1 Y) and f does not depend on finitely many coordinates. 

Clearly, Theorem 11 is true for other infinite cardinals without chang

ing the proof and both the last theorems, with modified proofs, for some 

subspaces near to open ones. We shall not go into details in this case. 

If the product has caliber K, then the assumption on the range can be 

weakened. As examples we shall prove the next two results (the first result 

is, in fact, proved in [MI] by a different method). In the following, 

f E C(ITXi 1 Y) depends at x on J if prJx = prJy implies fx = fy. 

THEOREM 12. Let rrxi have caliber Kand let f E C(ITXi,Y) depend on less than 

K coordinates at each point of rrxi. Then f depends on less than K coordinates. 

PROOF. Suppose not, then we may construct {JI;}, {u/;}, {v /;} as in Theorem 10. 

If p E nu/; and f depends at p on J, IJI < K, then there is an n E K such 

that J n UJ = J n J . Conseqeuntly, there is a point z E V with prJz = prJp 
l; n n 

- a contradiction. 
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THEOREM 13. Suppose that Mis metrizable, IMI nonmeasurable, IlX. countably 
]. 

compact. Then every f E C(IlXi,SM) depends at each point of IlXi on countably 

many coordinates. 

PROOF. Choose an x € IlXJ.. and suppose that J = { i I fy. f, fx for some y. with 
]. ]. 

prI-(i)yi = prI-(i)x} is uncountable. If fx EM, then there is an infinite 

Kc Janda neighbourhood U of fx such that fyi ¢ U for i EK (since fx is 

G0 in ~). If y is an accumulation point of {y i I i E K} then fy = fx because 

for every canonical neighbourhood G of y one can find i EK - R(G) such that 

yi E G. Hence x E G, but this is a contradiction. If fx E SM - M, then there 

is again an infinite Kc J and open U 3 fx such that fyi ¢ u because there 

is no nontrivial sequence in~ converging to fx. 

COROLLARY. If rrxi is countably compact and has caliber w1, then every con

tinuous f on rrxi into SM, where Mis metrizable and IMI nonmeasurable, de

.pends on countably many coordinates. 

5. APPLICATIONS OF PRECEDIN. RESULTS 

We shall look now at various applications of the preceding results 

(see [Hu113]). 

(1) If Xis a subspace with V(w1) of a pseudo-w1-compact product rrxi, then 

Xis c-embedded in the product (hence, Sx = rrsxi provided rrxi is pseudo

compact or vx = rrxi provided all the Xi are realcompact). 

If all the X. are metrizable then Xis C-embedded in rrx. whenever Xis 
]. ]. 

pseudocompact with respect to X n Int X. The same result holds if all the 

Xi are metrizable separable and Xis pseudocompact regularly closed. 

The proofs of the above results go in the following way: every f E C(X) 

depends on countably many coordinates, the factorized map is continuous on 

prJX and can· be extended to Il{Xi I i € J}. 

(2) The assumption on pseudocompactness in the last result from (1) may be 

omitted. Indeed, if all the Xi are separable and Xis regularly closed, 

then X depends as a set on a countable set J 1 (the continuous map 

h: rrxi - (X - Int X) + 2, hx = 0 if x E Int x, hx 1 if x E rrxi - x, de

pends on such a set); if f E C(X) then f depends on a countable set J 2 , 

hence f depends continuously on J = J 1 u J 2 and prJX is regularly closed 

in Il{X. Ii € J}. Thus every regularly closed subspace of a product of 
]. 
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metrizable separable spaces is C-embedded (a much stronger result with
vv 

out separability of Xi was proved in [SC] by a different method). 

As a consequence of the proof we obtain the following result (recall 
vv 

from [SC] that a space is called k-normal if every regularly closed subset 

* of Xis C -embedded in X): A product of separable spaces is k-normal iff 

every countable subproduct is k-normal. 
I 

Clearly, the above mentioned results remain true if separability is 

replaced by a property ensuring pseudo-w1-compactness of open subspaces of 

the product. E.g., if rrxi has caliber w1, A, B two disjoint regularly closed 

subsets, then prJA n prJB =~for a countable Jc I. 

(3) Every extremally disconnected continuous image of a product of se

quentially compact spaces is finite (hence, every m-adic extremally dis

connected compact space is finite). This result is a consequence of the 

Corollary to Theorem 11. In fact, one can prove more, namely that if Y 

is a continuous image of a product of sequentially compact spaces, then 

either Y is finite or contains a nontrivial convergent sequence. 

(4) Let Xn' n € w, be finite compact F-spaces, A, B subsets of ITX with 
w n 

IAI + IBI < 22. If A, Bare not homeomorphic, then IlX - A, rrx - B n n 
are not haneanorphic. 

Indeed, if rrxn - A is homeomorphic to rrxn - B, then rrxn is the reflec

tion of both spaces in the epireflective subcategory generated by {x }; n 
hence, A and Bas remainders must also be homeomorphic. The fact about the 

reflection follows from Theorem 6 because un:ier our conditions both spaces 

are pseudocompact, contain Ew-products and every contim1ous mapping on them 

into any Xn depends on finitely many coordinates, thus can be extended to 

the whole product. 
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SOME VERY SMALL CONTINUA 

Miroslav Hu§ek, Jan van Mill & Charles F. Mills 

0. INTROOOCTION 

Given spaces X, Y, we shall say X :s; Y if Y embeds in a product of copies 

of x. This gives a preorder on the class of topological spaces. In what fol

lows we shall pretend that "$" is an order; it will be clear how to forma

lize what we say, but we feel that our informal approach is more perspicuous. 

The properties of"$" have been extensively studied (see [H], [P],[HP] 

for references). Our interest here is in a smaller class, the class of con

tinua, and in particular the question of the existence of $-minimal continua 

and related questions. 

In 1970 the first author asked whether or not the pseudoarc lP is mini

mal. We answer this question in the negative, but with a very nonmetrizable 

continuum. It is natural to ask whether lP is minimal among metric continua; 

we answer this question in the negative also. 

CONVENTION 0.1. All given spaces are compact Hausdorff and have more than 

one point. In particular, continua are assumed to be nondegenerate. 

DEFINITION 0.2. XS Y if C(X,Y) separates points of x. 

Observe that for compact X, 0.2 is_ equivalent to the definition of :s; 

in the first paragraph above. 

Clearly, {0,1} 2 :s; X s [0,1] for all X, X :s; 2 iff Xis zero-dimen

sional, and [0,1] :s; X iff X contains an arc. 

1. THE MAIN RESULTS 

Henceforth all given spaces are continua. Put E 

13:JH - JH. 

[O , 00 ) S IR, JH* 
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* THEOREM 1.1. IB is strictly smaller than any metric continuum. 

This is the smallest of the continua promised in the title. The result 

is a corollary of 

* * THEOREM 1. 2. If f: IB + K is nonconstant then IB s K. 

A more general, and in one sense sharper, result on lower bounds is: 

THEOREM 1. 3. If K is a cardinal, and A is a collection of at most K con

tinua, each of weight at most K, then there is a continuum K of weight K 

with KS H for each HE A. 

COROLLARY 1.3.1. Every set of continua is bounded below. 

COROLLARY 1.3.2. If K0 and K1 are metric continua then there is K with 

K S KO and K S K1 . 

Since it is known [R] that there is a plane continuum incomparable 

with IP, 1.3.2 shows that IP is not minimal, indeed, that any minimally 

metric continuum is a minimum (i.e. a least metric continuum). We do not 

know whether such a beast exists. 

2. PROOFS 

PROOF OF THEOREM 1.1. By [AvEB] every metric continuum is the remainder in 

* a compactification of IB, and hence an image of IB . Since every continuum 

has more than one point, the result follows from Theorem 1.2. D 

PROOF OF THEOREM 1. 2. For U open in JH, define 

u * IB -cl (IB-U) SJH • 

We shall say that <U,V> is an alternating sequence of intervals if 

00 00 

u u <a ,b >, V u <c ,d >, 
n=1 

n n 
n=l 

n n 

a < b < C < d < a for each n, and supn<w a 00 

n n n n n+l n 



SOME VERY SMALL CONTINUA 149 

The theorem follows at once from the following three observations: 

(a) If U, V are disjoint open sets of m*, then there is an alternating se

quence <U,V> of intervals with u £ U, V £ V. 
(bl If p, q are distinct points of m* then there is an alternating sequence 

<U,V> of intervals with p Eu, q EV. 

(c) All alternating sequences of intervals are the same; that is, for any 

two there is an autohomeomorphism of lH taking one to the other. 0 

The above may be neatly summarized by saying that m:* is nearly homo

geneous. 

PROOF OF THEOREM 1.3. We leave the elementary verification of the following 

fact to the reader: 

FACT. If H and K are continua, u and V are open subsets of H with u n V 

¢, and U' and V' are open proper subsets of K with U' u V' = K, then 

H X K - (U X U' u V X V') 

is a continuum. 

Fix A ~ K and A = {K : a < ;\} as in the hypotheses of the theorem. Let 
a 

j: K ➔ K2 x A be a bijection such that if j(a) = <S,y,8>, then S ~ a; we 

write j(a) = <j 1 (a),j 2 (a),j 3 (a)>. Fix, for each a~ ;i., proper open subsets 

Aa' Ba of Ka with Aa u Ba= Ka. 

We define inductively an inverse system <Ha,faS'K> of continua of weight 

at most K. Given H, let {u: a< K} be an open basis for HN and let 
a a ~ a a {<v6,w6>: B < K} enumerate the pairs of basic open sets of Ha with disjoint 

closures. 

(al H0 = K0 ; 

(b) For;\ a.limit, 

(c) 

an~ the f's are defined as the restrictions of the appropriate projections. 

We claim that K = l¾.m <Ha,faS'K> satisfies the conclusion of the theorem. We 

need only show that there are point-separating maps from K into Ka for 

a<;\; so fix a<;\ and distinct p,q € x. For some y < K, fK:~f) ~ fKY(q), 

and so for some E; < K, f (p) € Vy and f (q) € wr. Let n = J <y,E;,a>. Then 
KY E; KY , 
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and one sees directly that projection onto K separates f (p) from 
a K,n+l 

f 1 (q). 
K,n+ □ 

3. QUESTIONS AND REMARKS 

As we have already noted we do not know whether there is a minimally 

metric continuum; one feels strongly however that there is not. One can ask 

also whether there is a minimal planar continuum. 

We should note that one can easily construct, given a continuum K, a 

continuum H with Ht K; with Theorem 1.3 this shows that there are no mini

mal continua. 

Let us also add the following information. If Xis a hereditarily in

decomposable (metric) continuum, then X :, JP, [B 1]. There is also a here

ditarily indecomposable continuum M1 in IR3 such that Xi M, for every plane 

continuum X, [c], [R]. Finally, :rn* is indecomposable, [B2 ]. 
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A FACTORIZATION THEOREM FOR GO-SPACES 

W. Kulpa 

ABSTRACT 

A factorization theorem is given implying the possibility to factorize 

a continuous map f: X + M, where X = (X,<,T) is a generalized ordered space 
g 

and Mis a metric space, such that f is equal to a composition X + z + M of 

continuous maps, where Z = (Z,<,T) is a metric generalized ordered space and 

g: X + Z is a monotonic map onto z. In the case when Xis a paracompact lin

early ordered space, the space z can be assumed to be linearly ordered. 

1 • PRELIMINARIES 

Let X = (X,<) be a linearly ordered set. A subset cc Xis called to be 

convex, whenever a,b EC and a~ b imply that {x EX: a~ x ~ b} c C. A con

vex set Cc A, Ac X, is called a convexity-component of A, whenever 

C' n C ~~implies C' c C for each convex set C' c A. Open intervals are 

sets of form 

(a,b) {x E X: a < x < b}, (-+-,a) {x € X: X < a}, (b,+) 

{x E X: b < x}. 

A linearly ordered topological space X (abbreviated LOTS) is a triple 

X = (X,<,A(<)), where (X,<) is a linearly ordered set on which a topology 

A(<) is defined by the subbase of all sets (-+-,a), (b,+) with a,b EX. 

A generalized ordered space X (abbreviated GO-space) is a triple X = 
(X,<,T), where T ~ A(<) is a topology with a base consisting of convex sub

sets of x. 
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2. PARACOMPACTNESS OF GO-SPACES 

The main result of this section is: 

THEOREM 1. If Xis a generalized ordered space and if there exists a con

tinuous map f: X +Minto a metric space M such that for each m EM, f- 1 (m) 

is paracompact, then the space Xis paracompact. 

The theorem is an easy consequence of two results: a theorem of 

ENGELKING and LOTZER [2]: 

"A generalized ordered space Xis not paracompact iff some closed sub

space of Xis homeomorphic to a stationary set in some regular uncountable 

cardinal K," 

and,the Pressing Down Lemma [4]: 

"Suppose that Sis a stationary subset in a regular uncountable cardi

nal number Kand let f: S + K be a function satisfying f(x) < x for each 

S\{o} Th f f -1 ( ) • • ub f II x E • en or some y EK, y is a stationary s set o K. 
*) 

A space X said to be m-space iff there exists a sequence {Pn: n < w} 

of open coverings of X such that for each x Ex, {x} n{st(x,Pn): n < w}. 

The class of m-spaces contains all metric spaces. 

The theorem will follow from a 

LEMMA. If f: S +Mis a continuous map, where Sis a stationary set in some 

regular uncountable cardinal Kand Mis am-space, then there exists a 

y <Kand an m EM such that 

is constant. 

-1 
sn[y,K)cf (ml, i.e. f!S n [y,K) 

Proof. Let {Pn: n < w} be a sequence of open coverings of M such that for 

each x EM, {x} n{st(x,Pn): n < w} and let sd be the set of non-isolated 

points of S. The set Sd is also stationary in K. For each n < w define a 
d 

regressive function fn: S + S by putting f (x) ES to be the first ordinal 
-ln 

such that fn(x) < x and [fn(x),x] n Sc f [u] for some u E Pn. Let us 

choose a yn Es, n < w, such that f~ 1 (yn) is stationary ink. Choose y < K 

such that y > y for each n < w. Then for each point x E f- 1 (y) (x > y) 
n n n 

*) usually a space with this property is said to have a G0-diagonal 
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there exists au€ P such that n 

-1 [y,x] n s c [y ,x] n s cf (u). 
n 

Since the set f- 1 (yn) is cofinal in K we have 

and hence 

-1 
[y,K) n s c st(y,f (Pn)) 
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COROLLARY (LUTZER [7]). If f: S +Mis a continuous map, where Sis a sta

tionary set in some regular uncountabl.e cardinal K and M is a metric space 

(m-space), then lf[S]I < K. 

-1 PROOF. Let m0 €Mandy< K be such thats n [y,K) cf (m0 ). Then for each 
-1 

m f m0 , f (ml n s c [O,y). Hence lf[sJI s 1 + IYI < K. 

PROOF OF THEOREM 1. Suppose that Xis not paracompact. Then according to 

the Engelking-Lutzer theorem there is a stationary set Sis some regular 

uncountable cardinal K which is homeomorphic to a closed set in x. Assume 

that Sc X and clx5 = S. By the lemma there is an m €Mand there is a 

y < K such that Sn [y,K) c f- 1 (m). But this implies that Sn [y,K) is a 
-1 paracompact space, because f (m) is paracompact and S € [y,K) is closed, 

but this is impossible because Sc [y,K) is not paracompact. 

3. A FACTORIZATION THEOREM AND SOME OF ITS APPLICATIONS 

THEOREM 2. Let f: X + M be a continuous map from a GO-space X = (X,<,t) 

into a metric space M. Then there exists a metric GO-space Z = (Z,<,T), 
onto 

dim z = 0 whenever dim X = 0, and continuous maps g: X--+ z, h: Z + M 

such that f = hog and g(x) s g(y) whenever x s y, for each x,y € x. In 

addition, if the space Xis a paracompact LOTS, the space Z is also a LOTS, 

i.e. T = A(<). 

We shall give some applications of Theorem 2 for metrizability and 

paracompactness of inverse images of metric spaces under continuous maps. 
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A continuous map f: X + M, where Xis a GO-space and Mis a metric 

space, is said to be convexity-zerodimensional (FABER [3]) if each convex

ity component of f- 1 (m), m EM, consists of a single point, and f is said 
-1 

to be convexity-paracompact if each convexity component off (m), m EM, 

is paracompact. 

COROLLARY 1. If a GO-space X has a convexity-paracompact map into a metric 

space, then Xis paracompact. 

COROLLARY 2. If a GO-space X has a convexity-zerodimensional map into a 

metric space, then Xis paracompact and has a one-to-one continuous mono

tonic map onto a metric GO-space. 

COROLLARY 3. (FABER [3]). If X ls a LOTS and X has a convexity-zerodimen-

sional map into a metric space, then Xis metrizable. 

PROOF OF THE COROLLARIES. Let f: X + M, X = (X,<,,) be a convexity-para

compact (convexity-zerodimensional) map into a metric space M. According 

to Theorem 2 there exist a metrizable GO-space Z = (Z,<,T) and continuous 
onto 

maps g: X-->- Zand h: Z + M such that f = h 0 g and g(x) 5 g(y) whenever 
-1 

x 5 y, x,y EX. Since g is a monotonic map, g (z) is a convex set for each 
-1 -1 

z E Zand g (z) cf (h(z)) because f =hog.But each convex set in 

f- 1 (h(z)) is paracompact (a single point), hence g- 1 (z) is paracompact for 

each z E Z. In Section 2 it was proved that if g: X + z is a continuous 
-1 

map from a GO-space into a metric space such that g (z) is paracompact 

for each z E z, then the space Xis paracompact. Thus Corollary 1 is 

proved. 

-1 
Now, if it is assumed that f is convexity-zerodimensional then g (z) 

onto 
consists of a single point. Then g: X - Z is a strictly monotonic con-

tinuous map from a paracompact GO-space X onto a metrizable GO-space Z. 

Thus Corollary 2 is proved. 

If, in addition, it is assumed that f is convexity-zerodimensional 
-1 onto 

then g (z) consists of a single point. Then g: X-->- Z is a strictly 

monotonic continuous map from a paracompact GO-space X onto a metriz~ble 

GO-space z. Thus Corollary 2 is proved. 

If, in addition, it is assumed that Xis a LOTS, then it can be assum

ed that Z is also a LOTS, and then g: (X,<) + (Z,<) being an isomorphism 

between the linearly ordered sets is a topological homeomorphism between 

the LOTS. Thus Corollary 3 is obvious. 
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QUESTION. Is in Theorem 2 the assumption on paracompactness of the LOTS X 

essential? 

A family Q is a star-refinement of a family P if for each v E Q 

there is au E P such that st(v,Q) cu, where st(v,Ql = U{u E Q: u n v f O}. 

LEMMA. Let P = {P: n < w} be a family of open convex coverings of a GO
n 

space X = (X,<,T) such that for each n < w, Pn+l is a star-refinement of 

Pn. Put for each x,y EX: [x] n{st(x,Pn): n < w} and [x] ~ [y] iff x ~ y. 

The family X/P = {[x]: x Ex} is a closed partition of X into convex 

sets and X/P = (X/P,<,T) is a metrizable GO-space with a topology T = 

{W c X/P: [x] E W implies there is an n < w such that st ([x] ,P#) c W}, where 

P# {u#: u E P }, u# = {[x] cu: x Eu}. The map g: X ➔ X/P,ng(x) = [x], 
n n 

is continuous and monotonic (i.e. x ~ y implies g(x) ~ g(y)J and Pn+l is a 
-1 # 

refinement of g [Pn], n < w. Moreover, if each covering Pn consists of 

open intervals then T = A(<) i.e. (X/P,<,T) is a LOTS. 

PROOF. It was proved in [4] that: (1) x/P is a closed partition of X, (2) 

P# is a covering of x/P, (3) P# 1 n # n+ 
implies [x] i st([y],P) for some 
-1 # n 

g [Pn], where g(x) = [x], x EX. 

is a star-refinement # 
(4) [x] f [y] of Pn' 

n < w, (5) Pn+l is a refinement of 

The last condition implies that g is con-

tinuous. 

According to the Alexandroff-Urysohn metrization theorem (see 

ENGELKING [1], p. 419) the conditions (1) - (4) imply that the space x/P 

with the topology T = W c X/P: [x] E W implies there is an< w such that 

st([x],P#) c Wis metrizable. 
n 

Now, we shall show that (X/P,<,T) i~ a GO-space. First, let us notice 

that each set [x] is convex as an intersection of convex sets. Hence each 

set u#, u E Pn' n < w, is convex, and hence each set st([x],P:) is convex. 

Now we shall show that each interval ([x], [y]) is open in the space (X/P, 

<,T). Let [z] € ([x],[y]). Then X < z < y. Since z i [x] and z i [y], there 

exists an< w such that z i st(x,Pn) and z i st(y,Pn). This is equivalent 

to x,y i st(z,P ). From this and since st([z],P#) is convex and [x] < [y] 
n# #n 

we have st([z],P) c ([x],[y]). Since st([z],P) is convex and ([x],[y])ET 
n # n 

we have that intyst([z],Pn) is a convex set. 

Assume now that each covering Pn E P consists of open intervals. We 

shall show that (X/P,<,T) is a LOTS i.e. A(<)= T. Let W be a basic 
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neighbourhood of a point [x] E x/P. It may be assumed that W 

Let u E Pn be such that st(x,Pn+l) cu. Then 

i.e. [xJ E intru# cu# cw. 

CW, 

Assume that u = (+,a) (for the cases u = (a,b) and u = (b,+) the proof 

is similar). Then [x] E (+,[a]). We shall show that (+,[a]) cu#. Suppose 

that there exists a pointy< a such that [x] < ly] < La] and (X\u) n[y] f 0. 

Since [y] is convex and u (+,a) we have a E [y] but this is impossible 

because [a] n [y] =~since [y] < [a]. 

PROOF OF THEOREM 2. Let f: X + M be a continuous map between a GO-space 

X = (X,<,,) and a metric space M. Let {Qn: n < w} be a family of open local

ly finite coverings of M such that each Q consists of sets of diameter<..!:.. _1 n n 
Then for each n < w, f [Qn] is open locally finite covering of X. It is 

known that a space is normal iff each open locally finite covering has an 

open locally finite star-refinement. Since Xis a normal space it is possible 

to choose a sequence P = {P: n < w} of open coverings of X consisting of 
n 

convex sets (of open intervals whenever Xis a paracompact LOTS) such that 

Pn+l is a star-refinement of P and P is a refinement of f- 1[Q] (and P n n n n 
is a disjoint family whenever dim X = 0). 

Applying the lemma we obtain a metrizable GO-space Z = (X/P,<,T) 

dim Z = 0 whenever dim X = O, see [SJ) and a continuous map g: X + Z, g(x) 

[x], such that x s y implies g(x) s g(y), x,y Ex. Define h: z + M, h([x]) 

f{x). The map his continuous, because for each n < w, Pn+l is a refinement 

of g-1[P#] and of f- 1[Q ]. It is clear that f = h O g. Thus, Theorem 2 is 
n n 

proved. D 
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SOME RESULTS ON CONTINOUS SELECTIONS 

E. Michael 

The study of (continuous) selections deals with the following question: 

Given a set-valued map¢: X + 2Y (where 2Y = {s c Y: Sf~}), under what 

conditions is there a selection for¢, i.e. a continuous f: X + Y such that 

f(x) € ¢(x) for all x € X. More generally, given a closed Ac X, under what 

conditions can every selection for ¢IA be extended to a selection for¢, or 

at least to a selection for ¢IU for some open U ~ A. 

For technical reasons, we shall always assume that Xis paracompact and 

that¢ is lower semi-continuous, or l.s.c. which means that 

{x € X: ¢(x) n V f ~} is open in X for every open Vin Y. 

The following are three relatively simple selection theorems; the first 

two were obtained in 1956 and the third, without proof, in 1974. 

THEOREM 1. [1]. Let X be paracompact, Ya Banach space, and¢: X + 2Y 1.s.c. 

such that ¢(x) is closed and convex for all x € x. Then¢ has a selection. 

THEOREM 2. [1]. Let X be paracompact with dim X = O, Ya complete metric 

space, and¢: X + 2Y 1.s.c with ¢(x) closed in Y for all x € X. Then¢ has 

a selection. 

THEOREM 3. [2]. Let X be countable and regular, Y first-countable, and 

¢: X + 2Y 1.s.c. Then¢ has a selection. 

Observe that, in the preceding theorems, the hypotheses on X become 

progressively stronger while those on Y and the sets ¢(x) become weaker. By 

a suitable modification of their proofs, these theorems can now be combined 

into a single comprehensive - although somewhat complicated - result. 

THEOREM 4. Let X be paracompact, Ya Banach space, z c X with dim Zs O, 

Cc X countable, and¢: X + 2Y 1.s.c such that ¢(x) is closed in Y for x ¢ C 

and ¢(x) is convex for x ¢ z. Then¢ has a selection. 
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The conclusions of Theorems 1 - 4 can be strengthened a bit to assert 

that¢ has the selection extension property, or SEP, which means that, for 

all closed Ac X, every selection for ¢IA extends to a selection for¢. This 

strengthened conclusion can be derived from the original one by a simple 

device: If g is a selection for ¢IA, define¢ : X + 2Y by¢ (x) ¢(x) if 
g g 

X f. A 

again 

f is 

and¢ (x) 
g 

{g(x)} if x € A. It is not hard to check that this¢ is 
g 

l.s.c., hence¢ has a 
g 

a selection for¢ which 

selection f by the original theorem, and this 

extends g. 

Theorem 2 is merely the 0-dimensional version of a more complicated 

result, whose statement requires some more definitions: A space Sis en 

(= n-connected) if every continuous image of an i-sphere (is n) in Sis 

contractible in S. A collection S of subsets of a metric space Y is uniform

ly equi-LCn if to every E > 0 corresponds a o > 0 such that, for all S € S, 

every continuous image of an i-sphere (is n) in S of diameter< o is con

tractible over a subset of S of diameter< E. Finally, we say that a map 

¢: X + 2Y has the selection neighbourhood extension property, or SNEP, if 

for all closed Ac X, every selection for ¢IA extends to a selection for ¢IU 

for some open U ~A.We can now state the following generalization of 

Theorem 2. 

THEOREM 5. [2, Theorem 1.2]. Let X be paracompact with dim X s n + 1, Ya 

complete metric space, and¢: X + 2Y l.s.c. with ¢(x) closed in Y for all 

x € X and {¢(x): x € X} uniformly equi-LCn. Then¢ has the SNEP. If, more

over, ¢(x) is en for every x € x, then¢ has the SEP. 

We can now generalize Theorem 4 by combining Theorem 5 with Theorems 

1 and 3: 

THEOREM 6. Let X be paracompact, Ya Banach space, Z c X with dim ZS n + 1, 

Cc X countable, and¢: X + 2Y l.s.c. with ¢(x) closed in Y for xi C, ¢(x) 

convex for xi Z, and {¢(x): x € Z} uniformly equi-LCn. Then¢ has the SNEP. 

If, moreover, ¢(x) is en for every x € z, then¢ has the SEP. 

We conclude this note with a result in which a local assumption yields 

a global conclusion. The map¢ is automatically l.s.c. in this result, since 

(¢(x)) = Y for all x € X. 

THEOREM 7. Let X be paracompact with dim X s n + 1, Yan LCn complete metric 

space, Cc X countable, and¢: X + 2Y with ¢(x) = Y for xi C and 
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(~(x)) = Y for x c C. Then~ has a selection. 

Details regarding Theorems 4, 6 and 7 will be found in [4], [5] and 

[6]. 
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A PROBLEM 

E. Michael 

PROBLEM. Suppose that f: X ➔- Y is a continuous map from a separable metric 
-1 

space X onto a compact metric space Y, that f (y) is compact for ally€ Y, 

and that every countable compact subset of Y the image of some compact sub

set of X. Must Y be the image of some compact subset of X? 

The following comments may be helpful 

(1) I don't know the answer for even one uncountable compact metric space Y 

(even with X a subset of the plane). 

-1 
(2) Without the hypothesis that each f (y) is compact, the answer is "no": 

In [Duke Math. J. 26 (1959), 647-651; Example 4.1], I gave an example of a 

map f: X + Y, where Y I, Xis obtained from Ix I by removing one point 

from {x} x I for each x € I, and f is the projection onto the first coor

dinate, such that Y is not the image of any compact subset of X. (In [Duke 

Math. J. 36 (1969), 125-128], it is shown that X may even be chosen to be 

an F0 in Ix I). Since f is open, however, it follows from a result of 

H. Reiter [Math. Ann. 140 (1960), 417-421] (orE. Michael [Abstracts of Com

munications, International Congress of Mathematicians, Vancouver 1974]) that 

every countable subset of Y is the homeomorphic image of some subset of x. 

(3) If it is only assumed that every convergent sequence in Y is the image 

of a compact Cc x, then the answer is "no": Let f: X + Y be as in (?.) above. 
1 

Let z c X be obtained by removing a vertical open interval of length 4 about 

each point that was removed from Ix I to obtain X, and let g = flZ. Then 
-1 

g (y) is compact for ally€ Y, and Y is not the image of any compact Cc z. 

But =~ppose xn + x0 is a conv~rgent sequence in Y. Pick (x0 ,s) and (x0 ,t) 

in g (x0 ) such that ls-ti = 2. Let K = {xn: n ~ O}, and let c = g-1 (K) n 

(K x {s,t}). It is easy to check that Cc z is compact and g(C) = K. 
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(4) The problem is closely related to Question 1.9 in my paper [Illinois J. 

Math. 21 (1977), 716-733], but - unlike that question - is stated entirely 

in terms of simple, standard concepts. (A negative answer to our problem 

would imply a negative answer to Question 1.9; that follows from Theorem 

6.5 (e), Remark 5.3, and Theorem 6.6 in the above paper.) It has recently 

been shown that the answer to Question 1.9 is affirmative if Y is a count

able metric space, but that is no help in solving our problem. 
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A SIMPLE OBSERVATION CONCERNING THE EXISTENCE 

OF NON-LIMIT POINTS IN SMALL COMPACT F-SPACES 

Jan van Mill 

All spaces are completely regular and for all undefined terms we refer 

to [CN]. 

FRANKIEWICZ [F] has shown that under MA {a consequence of CH) in each 

compact extremally disconnected space X of weight 200 there is a point x EX 

which is not a limit point of any countable discrete subset of X. For re

lated results see [K1], [K2], [vM]. 

The aim of this note is to point out that under the stronger hypothesis 

CH a stronger result can quite easily be derived; apparently, this proof has 

been overlooked. 

THEOREM {CH): Let X be a compact F-space of weight 200 • Then there is an 

x € X such that x r/. D for each countable discrete D c X - {x}. 

~- Striving for a contradiction, we assume that each point of Xis a 

limit point of some countable discrete set. Let {u: n € oo} be a family of 
n 

nonempty pairwise disjoint open Fa's of x. Define Y = nn<oo Yn and let B be 

the collection of all nonempty open Fa's of Y. The family 

E = {as: s € B} 

has clearly cardinality 200 • List E as {E: ex< 001} {by CH) and let {F: 
Cl . Cl 

ex< 00 1} list the boundaries of the nonempty closed G6 1 s of Y - Y. Since 
* -each nonempty G6 in Y = Y - Y has nonempty interior {[FG, 3.1)) by a 

straightforward induction ([R]) we can construct for each ex< 001 a nonempty 

* open set Vex of Y such that 

- if ex< K then VK c Vex; 

- v n CE u F ) . = 11 
Cl Cl Cl . 
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(observe that Ea n y* is nowhere dense in y*, cf. [WO, 2.11]). Take 

x E n V • By assumption x E D for some countable discrete D c X - {x}. 
a<w1 a * 

Since xis a P-point of Y, we may assume that D n y* = 0. Moreover, since 

X is an F-space and D is countable, we may assume that D n (X - Y) = 0. List 

Das {dn: n < w}. By assumption, each point of Dis a limit point of some 

countable discrete set in x. Since D c Y and since Y contains a dense open 

Fcr of X, each point of Dis a limit point of some countable discrete set in 

Y. Hence, there exists a family U = {um, n,m < w} of nonempty open F's of 
n cr 

Y such that 

- d E (U{~: m < w}) 
n n 

U{~: m < w}; 
n 

if k f n then U{u:, m < w} n U{u:, m < w} 0. 

Put B = U U Um. Then D c 3B, and hence, by construction, xi D; a con-
n<w m<w n 

tradiction. D 
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ON SUPEREXTENSIONS AND HYPERSPACE$ 

J. van Mill*1, M. van de Vel 

0. INTRODUCTION 

The superextension A(X) (or AX) of a topological space X has been intro

duced by DE GROOT in [2]. Although its construction parallels the construc

tion of Wallman compactifications, its properties are firmly distinct, and, 

in general, A(X) is a much nicer space. For instance, A(X) is a metric AR 

if (and only if) Xis a metric continuum (cf. van MILL [4] or van de VEL 

[12]); A(X) is a C00 and LC00 space if X satisfies certain weak assumptions, 

such as separability+ path connectedness, or, cr-compactness + finite (homo

topy) category (cf. van MILL & van de VEL [9]). Also A(X) has the fixed 

point property if Xis a connected normal T1-space (cf. van de VEL [12]). 

In all of these results, the hyperspace H(X) of a space X has been of 

invaluable help. The present paper is concerned with the relationship be

tween the two kinds of topological extensions: A, H. We shall first prove 

that A(X) is a subspace of H(H(X)) for compact X (cf. Section 2). The proof 

of this nontrivial fact depends on the use of "compact" subbases, which were 

studied in van MILL & van de VEL [8]. With these techniques, we are able to 

derive more results at the time, e.g. that a certain "transversality" map 

in H(H(X)) is continuous and that its fixed point set is exactly A(X). Also, 

we prove that a certain "convex closure operator" in H(H(X)) is continuous. 

Finally, we use subbase convexity theory again to derive a retraction pro

perty of A(X) in H(H(X)). 

In view of the above facts, superextension theory can be looked upon 

as a kind of hyperspace theory. Both theories have also met with a same 

conjecture: H(X), or A(X), is a Hilbert cube for suitable X. Concerning 

*) Research supported by the Netherlands Organization for the Advancement 
of Pure Research (Z.W.O.); Juliana van Stolberglaan 148, s'-Gravenhage, 
The Netherlands. 
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H(X), this conjecture has been settled in the affirmative by the work of 

CURTIS, SCHOR! and WEST (cf. [1] and [11]). Concerning A(X), it has been 

proved by van MILL (cf. [4]) that A[0,1] is a Hilbert cube, and (recently) 

that AX is a Hilbert cube iff Xis a nondegenerate metric continuum (cf. [7]). 

The proof of this result uses the above mentioned retraction property of 

A(X) in H(H(X)). 

1. COMPACT SUBBASES IN HYPERSPACES 

The hyperspace of a T 1 space X will be denoted by H(X). If A1 , ... ,An 

are nonempty subsets of x, then we write 

n 
{D E H (X) [ D c i~l Ai and D n Ai -/- 0 for each 

i 1, ... ,n}. 

With this notation, the family 

H H(X) {<C> ICE H(X)} u {<C,X> ICE H(X)} 

constitutes a closed subbase for H(X). 

If Sis a closed subbase of X, then a nonempty subset C of Xis called 

S-convex if C = nC for some Cc S. We let H(X,S) denote the subspace of H(X), 

consisting of all S-convex sets of X. We say that the closed subbase Sis 

compact if; (i) H(X,S) is a normal T1 family, and; (ii) the space H(X,S) is 

compact. 

Recall that a closed subbase Sis normal if any two disjoint members 

of Scan be separated by disjoint complements of members of S, and that S 

is T 1 if for each S E S and x E X - S there is an S' E S with x E S' c X - S. 

See van MILL & van de VEL [8]. 

THEOREM 1.1. Let X be compact T1 , and let S be a closed normal T1 subbase 

of X which is closed under formation of intersections. Then the following 

assertions are equivalent: 

(a) Sis a compact subbase; 

(b) the S-convex closure operator IS: H(X) ➔ H(X,S) which sends CE H(X) 

onto Is(c) =n{s [cc s ES}, is continuous; 

(c) the space H(X,S) admits a closed nonnal T1 subbase, consisting of all 

sets of type <C> n H(X,S) or <C,X> n H(X,S), where CE H(X,S). 
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See [15], Theorem 2.6. 

We now present a characterization of convexity in H(X), relative to its 

canonical subbase H = H(X). This result will be used to prove our basical 

result that His actually a compact subbase for compact X. 

Let Ac H(X) be closed and nonempty, and let BE H(X). If B meets all 

members of A, then we call Ba transversal set of A. We let i(A) denote the 

collection of all transversal sets of A. With this notation, one can easily 

check the following formula on the convex closure operator IH, related to 

the subbase H of H (X) : 

n{<B,X> I BE i(A)} n <UA> 

THEOREM 1.2. Let X be compact Hausdorff, and let Ac H(X) be closed and 

nonempty. Then the following assertions are equivalent: 

(i) A is H-convex; 

(ii) if B E H(X) and if A c B c UA for some A E A, then B E A. 

PROOF. Let A be H-convex, let B E H(X), and assume that Ac BC UA for some 

A EA. For each CE i(A), we have that C n A 'F fb, and hence that C n B 'F {b. 

Also, BE <UA>, whence BE IH(Al =Abythe above formula. 

Assume next that A satisfies condition (ii), and that there is a 

BE IH(A) -A. Then B c UA, and by (ii), <B> n A= {b. A being closed and <B> 

being compact, there is an open set O => <B> of H (X) of type 

m k k 
U <01, ••• ,OP>, 

k=1 
0~ open in X, 

which does not meet A. For each b EB we·put 

n{o~ I b E ~, k 1, ... ,m, 1 1, ... ,p}. 

In this way, we obtain but a finite number of different open sets of x, say 

01 , •.• ,0n. Writing I= {1, ... ,n}, we show that 

In fact, 

<B> c U{ <O. I j E J> I fb f, J c I} c 0 
J 

<O. I j E J> 
J 
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for some b 1 , ... ,br EB. Hence there is a k E {1, ... ,m} such that 

Therefore, each 0j is contained in some 0~, and each 0~ contains some 0j, 

whence 

<0. 
J 

n 
The other half of (*) is obviuous, using B c Ui=l 0i. 

A n n 
Let A E . If A does not meet ni=l X - 0i, then A c Ui=l 0i, and hence 

A E <0. I j E J>, where J = {i I An 0. f ¢}, contradicting that An O ¢. 
J l 

Hence niEI X - 0i is a transversal set of A which does not meet B. This con-

tradicts the fact that Bis in IH(A). D 

As a direct consequence of this theorem, it follows that ~(Al is H
convex for each nonempty closed Ac H(X). 

THEOREM 1.3. Let X be compact Hausdorff. Then H 

of H(X). 

H(X) is a compact subbase 

PROOF. Let A E HH(X) be nonconvex. Then by the previous theorem, there 

exists a BE H(X) and an AO EA such that 

Bi A. 

Let 0, P be disjoint open sets of H(X) such that BE P, Ac 0. Then 

for some open sets 0 1 , ... ,0n of X. We assume that, among the latter, 

01 , ... ,0p (p $ n) are all sets meeting A0 . Notice that p < n, and that 

AO E <0 1 , ... ,0p>. For each k with p < k $ n, we choose bk EB n Ok. As 

B c UA, there is an¾ EA with bk E ¾• and hence¾ n Ok f ¢. Therefore, 

V <0> n <<0 , ... ,0 >, <0 1 ,x>, ... ,<0 ,X>,H(x)> 
1 p p+ n 

is a neighbourhood of A in HH(X), no member of which is H-convex. In fact, 

if A• EV, then there exist A01 ,A' 1 , ... ,A' EA• such that 
p+ n 
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for p < k s n. 

Choose~ E ~ n Ok for each p <ks n, and let B' 

Then 

A' c B' c uA•· 0 ' 

whence B' i A•, and A• is not H-convex. 

Ao' U {a' 1 , ... ,a'}. 
p+ n 

A• c 0, 
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This shows that the space H(H(X) ,H) is compact, being a closed subspace of 

the compact space HH(X) (cf. MICHAEL [3]), and it remains to be verified 

that the family H(H(X),H) is normal and T1 : 

Let A, B c H(X) be disjoint H-convex sets, say 

A n{<c,x> I c E 1.(A)} n <A> (A UA), 

B n{<D,X>jDE 1.(B)} n <B> (B UB). 

Then An B cannot meet all members of 1.(A) u 1.(B), for otherwise An BE 

An B. So e.g. An B n C = 0, where CE 1.(A). X being normal, there exist 

closed sets K, Lin X with 

AnCcK-L; B c L - K; K U L X. 

Hence, 

A c <A> n <C,X> c <An c,x> c <K,X> 

BC <B> C <L>, 

whereas A n·<L> 0, B n <K,X> 0, and <L> U <K,X> H(X). The T1-property 

is obvious. 0 

Combining Theorems 1.1 and 1.3 yields: 

COROLLARY 1.4. Let X be compact Hausdorff. Then the convex closure operator 

IH: HH(X) ➔ H(H(X) ,H) 

is continuous. 0 
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A linked system on a space Xis a collection Mc H(X) such that any two 

members of M have a nonempty intersection. Equivalently, M c J. (M). A linked 

system Mon X is maximal (or, M is an mls) if it is not properly contained 

in another linked system on X. The reader can verify that Mis an mls iff 

M = 1. (Ml . 

COROLLARY 1.5. Let X be compact Hausdorff. Then the transversality map 

J.: H(H(X)) ➔ H(H(X)) is continuous, and its fixed point set is exactly the 

collection ;\ (X) of all mls 's on X. 

PROOF. As we noted before, J.(A) is H-convex for each A E HH(X). Hence, the 

map J. factors through the subspace H(H(X),H) of HH(X). To prove continuity 

of J., it now suffices to use the closed subbase of H(H(X),H), consisting of 

all sets of type <S> or <S,H(X)>, where Sc H(X) is H-convex (cf. Theorem 

1.l(c)). For convenience, we write f = J., and we let 

s n{ <B ,x > I B E J. (S l } n <c> (S-/- 0). 

(i). 
-1 

A E Then A f-l<S,H(X) > iff Computation off <S,H(X)>. Let HH(X). E 

J. (Al n S -/- 0, iff for some A E J.(A), A c C and A meets all members of J.(S), 

iff C E J. (Al, iff A C <C,X>. Hence: 

(ii) Computation of f- 1<S>. Assume first that c-/- X. Then f- 1<S> = P, since 
-1 

for each A E f <S>, XE J.(A) c Sc <C>, which is impossible. Assume now 

that C = X, and let J.(A) c S. Then 

VB E J.(S)3A EA: Ac B 

In fact, assume to the contrary that for some B E J. (S), An (X - B) -/- 0 for 

all A E A. Fix aA E A - B for each A E A. X being regular, there exist dis

joint open sets 0A, PA of X with aA E 0A and B c PA. By the compactness of 

Ac H(X), there exist A1 , ... ,An EA such that each A EA meets one of 

0A , ... , 0A . Let P = n~ _1 PA,. Then each A E A meets the closed set X - P, 
1 n l- l 

whence X -PE J.(A). However, B n (X -Pl = p, contradicting that J.(A) c Sc 

<B,X>. 

Conversely, if A E HH(X) satisfies (*), then J.(A) c S. In fact, to 

each BE J.(S) we can assign an A EA with Ac B. Hence, if DE J.(A), then D 
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meets each A EA, and hence it meets B, proving that 

1.cAi c n{<B,x> I BE 1.csi} = s. 

Using the formula(*), it now follows that 

-1 I f <S> = n{<<B>,HCXl> BE 1.cSJ}. 

In both cases (i) and (ii), we find that the inverse image is a closed 

set of HH(X). 0 

2. SUPEREXTENSIONS 

For a T1-space X, the collection A(X) of all maximal linked systems 

on Xis given a topology, generated by the closed subbase 

H(X)+ {c+lc E H(Xl}, 

where C+ ={ME A(X) I c EM}. With this topology, A(X) is called the super

extension of X. See VERBEEK [13] or van MILL [6] for details. Notice that 

A(X) is compact. 

The present section is mainly concerned with embedding and retraction 

properties of A(X) in HH(X). 

THEOREM 2.1. Let X be a compact Hausdorff space. Then A(X) is a subspace 

of HH(X). 

PROOF. As each ME A(X) is obviously a closed subfamily of H(X), and satis

fies M = 1.(M), we find that Mis H(x)-convex and hence that A(X) is a sub

set of H(H(X),H). We are again in a position to use the closed subbase of 

H(H(X),H) mentioned before, to prove that the inclusion mapping A(X) c HH(X) 

is continuous. Let S be H-convex, say 

S n{<B,X> I B E 1.(Sl} n <C>. 

(i) <S,H(X)> n A(X) = C+: 

In fact, as Sf 0, we have that C n Bf 0 for each BE 1.(S). Therefore, an 

mls Mis in A(X) n <S,H(Xl> iff Mn Sf fJ, iff c EM, iff ME c+. 
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(ii) <S> n A(X) =~if cf X and <S> n A(X) = n{B+ j BE ~(S)} otherwise: 

If C f X, then no mls M can satisfy M c S c <C> since X E M. Assuming C X 

we have Mc S iff for each BE ~(S) and for each ME M, B n M f 0, iff 

~(SJ c M, Hf ME n{B+ I BE ~(SJ}. □ 

Notice that the above computed traces on A(X) are convex (or empty) 

relative to the canonical subbase of A(X). 

A remarkable fact is that for metric compacta there is a direct proof 

of the above theorem without intervenience of compact subbases. Instead, we 

use the following metrizability result of VERBEEK [13]: if dis a metric on 

a compact space X, then the formula 

a(M,NJ inf{r j VM E M: B (M) E N} 
r 

(where B (M) = {x j d(x,M) ,,; r}) defines a metric on A(X), compatible with 
r 

its original topology. We notice that if Xis compact metric, say with me-

tric d, then H(X) is metrized by the well-known Hausdorff metric, denoted 

by dH. 

We now prove the following result, adding some information to Theorem 

2 .1: 

THEOREM 2.2. Let (X,d) be a compact metric space. Then the inclusion mapping 

is an isometry. 

PROOF. Let M,N E A(X) and let d(M,N) = r. Hence, if NE N, then B (N) EM 
r 

and consequently, dH(N,M),,; r. Similarly, dH(M,N) ,,; r for each ME M, show-

ing that (dH)H(M,N) ,,; r. 

Lets= (dH)H(M,N). For each ME M we can then find an NE N such that 

dH(M,N),,; s, whence N c B (M) and B (M) EN. Therefore, d(M,N),,; s. D 
s s 

More information on the above (metric) embedding is presented in the 

next result. 

Let L(X) c HH(X) denote the subspace of all closed linked systems on X. 

Then A(X) is a subspace of L(X). We now describe how to extend linked systems 

to maximal linked systems in a continuous way. 
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THEOREM 2.3. Let X be a compact Hausdorff space. Then there is a continuous 

retraction 

h: L(X) + A(X) 

extending each linked system to a maximal linked system. If Xis metrizable 

moreover; then h can be chosen such as to be a metric contraction. 

PROOF. Fix an x EX. For each LE L(X) we put 

Lu {MI x EM E H(X) and Lu {M} is linked} 

It has been proved in van MILL [5] that h 1 (L) is a linked system which is 

contained in a unique maximal linked system, which we denote by h(L). This 

gives a mapping h: L(X) + >..(X), and we show that h has all the desired pro

perties: 

If Tis a closed subbase of a space Y, then we let L(Y,T) denote the 

subspace of H(H(Y,T)), consisting of all closed linked systems L c H(Y,T). 

With this notation, we have the following composition maps: 

+ 
L(X) ..LJ..+ L(>..(X) ,H(X)+) ~ H(>..(X) ,H(X)+) ~ >..(X) 

The first map, )+, sends LE L(X) (='(L(X,H(X))) onto 

+ +1 L ={L LEL}, 

where ()+refers to the construction described at the beginning of this 

section. The second map is the intersection operator, sending 

ME L(>..(X) ,H(X)+) onto rM. It is easy to verify that n'.4 'I (ll. The third map 

is a restriction of the so-called nearest point mapping of >..(X), 

sending a pair (M,A) onto the unique point NE >..(X) with the property that 

I{M,N} n A {N}. 

(cf. van MILL & van de VEL [8]). In (**), px denotes the map p(x,-) (re

garding x EX as a point of >..(X)), and it has been proved in van de VEL [12] 
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that both constructions (*) and (**) coincide. 

All mappings appearing in (**) are continuous, see van MILL & van de VEL 

[8]. Hence his continuous 

Assume now that Xis metrizable, say with a metric d. Using the induced 

metrics on the superextension A(X) and on the various hyperspaces, we shall 

prove below that both n and p are metric contractions. It remains to be 
X + 

verified that the first map, ( ) , is an isometry. But this is a straight-

forward consequence of the following elementary facts about A(X): 

(i) B (C)+ = B (C+) for each CE H(X) and r ~ O; 
r r+ + 

(ii) AC B iff A CB for each A,B E H(X). 

We now prove the contraction property of n and px cited above. In order 

to simplify the argument, we give a proof which is valid for all spaces with 

a normal binary subbase, i.e. a closed normal subbase S such that for each 

linked systems• cs we have that ns• f 0. 
As was shown in [8], there is also a nearest point map 

p: XX H(X,S) ➔ X 

for such a subbase, satisfying a similar property as in the A(X)-case, 

namely: for each x EX and CE H(X,S), IS(x,p(x,C)) n C = {p(x,c)}, and 

p(x,C) is the unique point with this property. 

In [10], a metric don X (with a closed subbase SJ has been called S

convex provided that for each CE H(X,S) and each r ~ 0, Br(C) E H(X,S). 

It is shown in [10] that the above mentioned metric don A(X) is H(Xl+

convex, and that each metrizable space with a normal binary subbase S admits 

an S-convex metric. 

LEMMA. Let S be a normal binary subbase for X and let d 1::e an S-convex met

ric on X. Then the intersection operator n: L(X,S) -->- H(X,S) is a metric con

traction with respect to the metrics on L(X,S) and H(X,S) which are induced 

by d. 

PROOF. We first show that for each (nonempty) linked system A E H(X,S) and 

for each r ~ 0 the equality 

B (nA) 
r 

n{B (Al I A E A} 
r 

holds. The inclusion "c" being obvious, take a point x in the right hand 

side of (*). Then B (x) meets each A EA, and since B (x) is S-convex, we 
r r 
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B (x) n nA I¢ r 

by the binarity of S. Hence x EB (nA). 
r 

Now take L1,L2 E L(X,S) such that (dH)H(L1 ,L2) s r. Then 
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and hence it easily follows that Br(nL1) = n{Br(L1 ) I L1 E L1 } ~ nL2 by the 

formula(*). Similarly Br(nL2) ~ nL1 , which proves that dH(nL 1,nL2) s r. 0 

The fornnila (*) is also applied in the proof of the next result: 

LEMMA. Let S be a normal binary subbase fox X and let d be an S-convex metric 

on x. Then fox each x EX the nearest point map 

p(x,-): H(X,S) ➔ X 

is a metric contraction. 

PROOF. Let A,B E H(X,S) and assume that dH(A,B) Sr. Writing xA = p(x,A) and 

xB = p(x,B), we show that d(xA,xB) s r. Indeed, since Ac Br(B), 

¢ I B (x) n BC B (Is(x,xA)) n B; 
r A r . 

whence by the construction of p (cf. the above remarks),~ E Br(IS(x,xA)). 

On the other hand B c Br(A), and conseq;uently 

using formula(*) and the construction of p. D 

It has been proved in [10] that the nearest point map pis a metric 

contraction in the first variable too, and that p(x,A) is also metrically a 

nearest point of A with regard to x. 
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WALLMAN COMPACTIFICATIONS 

AND THE CONTINUUM HYPOTHESIS 

J. van Mill, J. Vermeer 

0. INTRODUCTION 

All spaces are completely regular. In [10] UL'JANOV constructed a 

variety of compactifications which are not Wallman compactifications. In 

addition, combining these results with those of BANDT [1] he showed the fol

lowing interesting theorem: 

CH is equivalent to the statement that every compactification 

of a separable space is a Wallman compactification. 

Consequently, by applying constructions of SA.PIRO [7] or STEINER & STEINER 

[9] it follows that under 7CH there is a compactification ylN of IN which 

is not a Wallman compactification. Since under CH every compactification 

of IN is a Wallman compactification (by (*)) we even have that: 

(**) CH is equivalent to the statement that every compactification 

of lN is a Wallman compactification. 

Also, there is a theorem of HAGER [4] which states: 

(***) Every compactification of a pseudo-compact space is a Wallman 

compactification. 

At first glance, (**) and (***) do not give us any information concerning 

non pseudo-compact spaces. 

In this note we will show that(**) and(***) imply the following two 

theorems. 

THEOREM 1. CH is equivalent to the statement that there is a non pseudo

compact space all compactifications of which are Wallman compactifications. 

THEOREM 2. [7CH]. For any space X the following assertions are equivalent 

(i) Xis pseudo-compact 
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(ii) All compactifications of X are Wallman compactifications. 

These two theorems imply that there is no honest(= not requiring addi

tional set theoretic axioms) example of a non pseudo-compact space every 

compactification of which is a Wallman compactification. 

1 . THE THEOREMS 

Recall that a Wallman compactification of a space Xis a compactifica

tion yX which has a closed base B satisfying the following two conditions: 

(a) Bis closed under finite intersections and finite unions. 

(b) for all BE B we have that B = cl (B n X). 
yx 

(this can easily be derived from a theorem in STEINER [8]). 

All our results follow from the following proposition, which is of 

independent interest. 

PROPOSITION 1.1. Let X be any space every compactification of which is a 

Wallman compactification. Let B be a closed subspace of X. If one of the 

following conditions is satisfied, 

(i) X is normal 

(ii) B is a C-embedded copy of lN in x, 
then every compactification of Bis a Wallman-compactification. 

PROOF. Let yB be any compactification of B. 

Note that the closure operator in SX has the following two properties: 

* (a} In both cases Bis c -embedded in x, so clSXB = SB, 

(b) If Tis a closed subset of x such that T n B =~.then clSXB n clSXT ~

When Xis normal, this is clear; 

When Bis a C-embedded copy of lN, it follows from [3] (GILLMAN & 

JERISON, page 51 3L). 

Let f: SB-+ yB be the unique map which extends the idenity on B. Define 

Z := yB u (SX- SB) 

Lets: SX-+ Z be defined by 

X 

f(x) 

(x E SX\SB) 

(x E SB) 
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It is clear that z supplied with the quotient-topology is a (Hausdorff)

compactification of X, say z = y0x, such that clzB = yB. By assumption, Z 

is a Wallman compactification of X. Let T be a closed base for Z such that 

Tis closed under finite unions and finite intersections, while in addition 

clz(T n X) = T for all T € T. Define 

F {T n yB I T € n. 

It is clear that Fis a closed base for yB which is closed under finite 

unions and finite intersections. We claim that: 

cl (F n B) = F 
yB 

for all F € F, ~hich suffices to prove the proposition. 

Indeed, take F € F, say F = T n yB and assume there is a point x such 

that x € F - clyB(F n B). Since Tis a closed base for y0x we may take 

TO€ T such that x € TO and TO n clyB(F n B) =~.Define Tl= T n T0 . 

Then 

~. 
So, (b) implies that clax(T1 n X) n claxB = clax(Tl n X) n aB =~-Therefore, 

clz(T1 n X) n yB c ~[clax<T1 n X)] n ~[aBJ =~-But this is a contradiction, 

since 

X € F n Ton yB = T n Ton yB = Tl n yB 

We conclude that yB is a Wallman compactification. □ 

From this proposition the two theorems are immediately clear. 

2. REMARKS 

Recall that a compactification yX of Xis called a GA compactification 

provided that there is a closed subbase T for yX such that: 

(a) for each x € yx and T € T such that x ¢ T there is a T0 € T 
with x € TO and TO n T = ~. 
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for all disjoint T0 ,T1 ET there is a finite cover M of yX by 

elements of T such that each ME M meets at most one of T0 and 

Tl. 

(cf. van MILL [5]). In [5] and [6] it has been shown that if yX is a com

pactification of X of weight at most 2w then yX is a GA compactification. 

As remarked in the introduction, 7CH implies that there is a compactifica

tion of lN which is not a Wallman compactification. Hence there is a con

sistent example of a GA compactification which is not a Wallman compactifi

cation. Whether there is a real example of such a compactification is un

known. In addition, it is unknown whether every compactification is a GA 

compactification. 
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WHEN COLORADO IS HOMEOMORPHIC TO UTAH 

Charles F. Mills 

In 1969, Maurice asked whether there is a compact order-homogeneous 
2 2 2 linearly ordered space (LOTS) X f I such that X z X - (o,1] for some 

(equivalently, every) o with O < o < 1. Here I is the closed unit interval, 

0 and 1 are the endpoints of X, and in an order-homogeneous LOTS any two 

nondegenerate closed intervals are order-isomorphic. 

In this note we show that the answer to Maurice's question is "no"; 

in fact, we prove a stronger theorem; 

THEOREM. If Xis a compact connected LOTS with no separable intervals, then 

the only autohomeomorphisms of x2 have the form$ x w, possibly followed 

by a reflection (<x,y> ➔ <y,x>l, where $,w: x z x. 

In other words, all autohomeomorphisms of x2 are "affine maps". To 

see that this answers Maurice's question we note that by conjugating the 

given homeomorphism between Colorado (0) and Utah(~) with id x $ for some 

$ E Aut X we find a "non-affine" member of Aut(X2), that is, one violating 

the conclusion of the theorem. The astute reader will notice, however, that 

our proof of the theorem can be applied directly to Maurice's problem with

out making any use of homogeneity (except to prove that Xis connected and 

contains no separable intervals). 

PROOF OF THEOREM. First, a l.emma; 

2 
LEMMA. Let X satisfy the hypotheses of the theorem. Given$ E Aut(X ), 

- 2 2 there is a monotone f: X ➔ I and a$: I z I such that the diagram 
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commutes. Moreover, given distinct x, yin X, f can be chosen to separate 

x from y. 

PROOF. We construct a sequence F0 c F c F c 
1 2 2 

... of finite subsets of X. 

into (IF I + 1) 2rectangles. 
n 

Given F , 
n 

F defines a "cross-hatching" of X 
n 

fine enough so that if Risa rectangle of F 1 then ¢(R) and 
n+ 

t.ake F 1 
-1 n+ 

¢ (R) each meet at most four rectangles of F, and also so that between 
n 

We 

each two points of F is 
n 

a point of F 1 . Then there is a monotone map from 
n+ 

u 
nEW 

F onto the rationals of the open unit interval, which extends to a 
n 

monotone map from X onto I which satisfies our conclusion. Moreover, if 

x,y E F0 then f separates x from y. D 

To prove the theorem we now need only show that¢ is an "affine" 

map", in the rather special sense we have been using; that is, that the 

collection of horizontal and vertical lines is invariant. 

We note now that because X has no separable intervals there is a dense 

D c I such that if d ED then f- 1 ({d}) is a nondegenerate interval. If¢ is 

not "affine" then there is d E D, x E I such that O < x < 1 and O < d < 1 and 

A = ¢ ({d} x I) does not contain a horizontal or vertical line segment with 

¢ ( <d,x>) in its interior (or similarly for Ix {d}, in which case we con

jugate the following argument with a reflection across the diagonal). 

Define BO= {<y,z>: y<¢ 1<d,x> and z<¢ 2<d,x>} where ¢(<u,v>) = <¢ 1<u,v>, 

¢ 2<u,v>>, and define B1 , B2 and B3 similarly. 

CASE 1. For all w < x, ¢(dxD n (w,x)) n UiE 4 Bi is infinite. 

In this case we may pick, for some fixed i E 4, a sequence dn / x, with 

each d € D and ¢(<d,d >) EB. for all n·E w. But then 
n n 1 

cl 2f- 1{<d,dn>: n E w} n f- 1 (d) x f- 1 (x) 
X 

has more than one point while 

-1- -1-
does not (for instance if i = 0 it is {<min f ¢ 1 (<d,x>) ,min f ¢2 (<d,x>)>}: 

otherwise one or both of the occurrences of "min" must be replaced by "max"), 

a contradiction. 
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CASE 2. Not case 1. That is, for some w < x, ¢{d} x [w,x] is (say) a verti

cal line segment. By the above argllillent we may also assUllle that there is 

v < x such that ¢({d} x [x,v]) is horizontal line segment (where it vertical 

A would contain a vertical segment through ¢<d,x>, contrary to assUlllption). 

But then, more or less as above, 

cl 2f-
1{d} x [x,v] n cl 2f-

1 ({d} x [w,x]) 
X X 

has more than one point, unlike 

-1 1 cl 2,P(f ({d} x [x,v]) n cl i(f- ({d} x [w,x]). D 
X X 
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