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INTRODUCTION AND SUMMARY

The present treatise has the goal of setting forth the basic aspects

of the theory of topological semigroups.

A topological semigroup S is a semigroup endowed with a Hausdorff topo-
logy for which the mapping (x,y} + xy of Sx 8 into S is continuous.
There are many differences between topological groups and arbitrary
topological semigroups. One striking difference is that we may intro-
duce in any Hausdorff space S a continuous associative multiplication
under which S is a topological semigroup. Hence it secems reasonable to
study first those semigroups which are either algebraically or topolo-
gically easy to handle.

We will restrict our attention primarily to the theory of compact semi-~
groups unless it requires no further effort to state a result for lo-
cally compact or more gencral topological semigroups.

In Chapter I we present a number of elementary concepts. The existence
of maximal subgroups in a semigroup was noted first by Schwarz [12],
Wallace [1] and Kimura [1]. It is of great interest to determine con-
ditions under which a semigroup S5 will be a topological group. In par-
ticular it is important to find topological restrictions on a semi-
group that are sufficient to insure that it will be a group. Some re-~
sults of this kind stem from Koch and Wallace [6]? Hudson and Mostert
[3}, Wallace [5]. Mostert [3] proved that if a semigroup 8 is locally
compact and if H is a subgroup of S, then H is a topological group if
and only if H is locally compact. The fundamental equivalence relations
L,R and H, defined in section 1.1 were first introduced and studied by
Green [1]. Wallace [12] examined them for topological semigroups and
used them to prove that the kernel K of a compact semigroup S is a re-
tract of S. In a compact semigroup these equivalences define upper
semi-continuous decompositions. With some additional assumptions on S
it is possible to give a completely topological definition of K,

Wallace [6]}.
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The structure theorem for completely simple semigroups was first proved
by Suschkewitsch [1] in a special case., With the publication of his
paper he really started the theory of semigroups. He showed that every
finite semigroup contains a kernel and he determined the structure of
finite simple semigroups. His results were extended by Rees [1] to com~
pletely simple semigroups. The only difficulty to prove this theorem
for compact simple semigroups is that of selecting the various canon-
ical mappings so that they are continuous.

We also introduce in section 1.3 the concept of the Rees factor semi-
group. In general, congruences on a semigroup are not determined by any
single congruence class as they are for groups. The congruence on a
group, determined by its unit-component has a semigroup-theoretic
version. If S is a fﬁcally compact semigroup such that each component
is compact, then the component space of S can be made in an obvious

way into a topological semigroup which is totally disconnected.

In section 1.4 the concept of a maximal ideal is introduced. With the
aid of some results which involve maximal ideals one can prove for
example the following theorcms:

If S is compact with SL = S and such that S has at most one idempotent,
then S is a group.

If S is compact with unit u and if S_is not a group, then S has a unique
maximal proper ideal J and J = S\ H(u).

Let S be a connected compact semigroup having at least one left unit
and suppose that S is not right simple. Then every subgroup H(e), with
e a left unit lies in the boundary of the maximal right ideal.

Section 1.5 is devoted to the study of open prime ideals in compact
semigroups. It is proved that each open prime ideal P has the form
JO(S‘\[e}), where e is a non minimal idempotent and JO(S\ {e}} is the
maximal ideal of S contained in S\ {e}.

The results of this section are due to Numakura [4] and for commutative
semigroups to Schwarz [6].

In Chapter II we investigate the structure of some semigroups with zero
or identity. The notion of nilpotent elements in a semigroup with zero

was first introduced by Numakura [1]. He proved that if the set of nil-
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potent elements of a locally compact semigroup S is not open, then O

is a clusterpoint of the set of non-zero idempotents.

The characterization of minimal non-nil (left, right) ideals of a com-
pact semigroup S with zero as the sets SeS (Se,eS) with & a non-zero
primitive idempotent was given by Koch [I]. The complete determination
of all possible completely O~-simple semigroups was given by Rees. The
Rees~theorem faithfully represents a completely O-simple semigroup as
the semigroup of all matrices over a group with zero having at most

one non-vanishing element and multiplication by means of a certain ma-
trix.

in section 2.3 we give a topological extension of this theorem in the
case of a compact O~simple semigroup. The essential difficulty of
course, is that of finding a cross-section of the O-minimal left ideals.
contained in a O-minimal right ideal.

In section 2.4 attention is given to connected semigroups, although we
stick mainly to the realm of connected semigroups with an identity. The
theorem of Faucett that if the minimal ideal K of a compact connected
semigroup has a cutpoint, then every element of K is a left or right
zwero, has been generalized by Wallace [;é] to relative ideals.

Mostert and Shields [ﬁ] have studied connected semigroups 5 with iden-
tity u in which the maximal subgroup containing u is open. They proved
that this class includes the semigroups with identity on a manifold
{theorem 2.4.9). This theorem is not true for general locally convex
linear spaces.

Perhaps the most natural example of a compact connected semigroup is
the closed unit interval I with the usual multiplication. Simple exam-~
ples show that the space I admits many semigroup structures. These
semigroups need not be abelian, may not have a zero element and may ad-
mit both idempotents and nilpotents.

In section 2.5 the semigroup structures with which the space I may be
provided is analysed. The systematic study of I-semigroups was initiated
by Faucett [g], The general structure is given in theorem 2.5.4 and is
due to Mostert and Shields [i]. It should be noted that nearly all theo-

rems and proofs of section 2.5 and 2.6 generalize to arbitrary compact
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connected linearly ordered topological spaces.

The object of section 2.6 is to characterize compact connected semi-~
groups S with S2 = S on an interval. Partial results in this connect-
ion have been found by several authors. Cohen and Wade [4] have des-
cribed compact connected semigroups with an identity and a zero, for
which the underlying space is an interval. The class of compact con-
nected interval semigroups with idempotent endpoints has been studied
by Clifford [3]y [4] . In addition the case when zero is an endpoint and
s = 52 has been described by Storey [1].

in this connection we also mention the work of Mostert and Shields [6],
who gave a description of semigroups defined on the interval [0,«) in
which "zero" and "one' play their usual roles.

In Chapter III attention is given to compact commutative semigroups.
Most of the results about compact monothetic semigroups are due to Koch
[2] and Hewitt [1].

By a decomposition of a semigroup S we mean a partition of S into the
union of disjoint subsemigroups. For this to be of any value the sub-
semigroups should be semigroups of some more restricted type than S.

An example of such a decomposition is given by Schwarz [6] who proved
that every compact commutative semigroup is a semilattice of subsemi-
groups containing exactly one idempotent.

We also study the embedding of a commutative cancellative semigroup in
a group (Gelbaum, Kalisch, Olmsted [1]). The usual procedure for doing
this, by means of ordered pairs is just like that of embedding an inte-
gral domain in a field. In fact it is easier, since there is only one
binary operation to consider.

In section 3.3 characters on commutative semigroups are considered,

The Pontryagin duality theorem asserts that a locally compact abelian
group G can be identified in a natural way with its second dual. For
discrete commutative semigroups S the Pontryagin duality holds if and
only if S has an identity and is a union of groups. For compact
abelian semigroups S a less complete result is obtained. Most of the
results obtained in this section are due to Austin [1].

In the fourth chapter we are concerned with the theory of invariant and
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subinvariant measures on compact semigroups. In the theory of semi-
groups we are troubled for a lack of something like Haar measure. With-
out this we will be at a loss for representation theorems. A measure U
on a semigroup S will be called right invariant if for every Borel set
B «8S and a € S for which Ba is also a Borel set, u(Ba) = yu(B) holds.
u is right subinvariant if u(Ba) £ u(B).

The 1nveétigation of subinvariant measures was suggested by Prof.dr.

J. de Groot. e '

In section 4.1 it is proved that right invariant measures exist only
if the minimal ideal K is a minimal left ideal. Right invariant means
are also considered and it is proved that a mean is right invariant if
and only if it is right subinvariant. If y is the regular Borel meas-
ure determined by a right invariant mean, then u has the property that
w(B) = u(Ba) where B_ = {x|x ¢ S, xa ¢ B} . The use of sets like B,
is typical., This set seems indicated as a replacement for the set Ba'l,
with which Ba should be identical were § a group. Furthermore the sup-
port of u is the kernel K of S,

In section 4.2 we study subinvariant measures on simple semigroups.

The principal result is contained in theorem 4.2.4 which states that
if § is a compact simple mob such that S = (Self\ B) x H(el)x (elsr\E),
then 5 has a right subinvariant measure if and only if the compact

space e,S r E has a regular normed Borel measure u such that u({e}) =

u({e'})lfor all points el,e' € els © E. Some applications of this theo-
rem to special kinds of semigroups are given.

Section 4.3 is devoted to the investigation of subinvariant measures

on a certain class of semigroups, semigroups of type 0. This class con-
tains the semigroups S with the property that Ua is open in S for all

a £ S and all open sets U<« S,

A reasonably complete survey of the literature on the theory of topo-

logical semigroups is listed at the end of the treatise.

I wish to express my gratitude to the Mathematical Centre, Amsterdam,
which gave me the opportunity to carry on the investigations which are
dealt with in this treatise. I also wish to express my sincere thanks

to Prof.dr. J. de Groot to whom I am deeply indebted. This tract would
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never have been written but for his never failing and stimulating en-~

couragement.

I am indebted to P.C. Baayen and M.A. Maurice for many stimulating

discussions.
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CONVENTIONS

In this section we explain some of the notation and terminology used
throughout the text.

The empty set will be denoted by @. The symbols ¢ and D mean ordinary
inclusion between sets, they do not exclude the possibility of equali-
ty. If A and B are sets, then A \ B will denote the set of points of A
which do not belong to B. Mappings will be considered as left operators
and written on the left of the argument. If f is a mapping of X into Y
and Ac X, Be Y, then

£A) = (f(a)]ac A}, £°(B) = (x ¢ X[£(x) ¢ B).

A semigroup S is a non~void set together with an associative multi-
plication. We do not assume the existence of an identity or the vali-
dity of any cancellation law. Let A and B be subsets of a semigroup S.
The symbol AB denotes the set {abfa ¢ A, be B} . We write AA as Az,
AAA as A3 etc. ‘ »
It Sl and.S2 are topological semigroups, then S1 and S2 are called iso~
morphic if there is a one-~one correspondence between their elements
which is a semigroup isomorphism and a space homeomorphism,

For further information on abstract semigroups see e.g. E.S. Ljapin [1]

and A.H. Clifford and G.B. Preston [5].

If A is a subset of a topological space X, then A will denote the
closure of A in X and A® the interior of A in X. A covering JI of =
space X is a refinement of a covering J7 if each memﬁer of l is a
subset of a member of 47 .

A topological space will be called compact if every open covering of
it has a finite subcovering.

A continuum is a compact connected Hausdorff space. A continuum is de-
composable if it is the union of two proper subcontinua, otherwise it

is indecomposable.
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If X and Y are topological spaces, then X x Y will denote the product
space.
We reserve the symbol En for Euclidean n-space.

For further topological concepts see J.L. Kelley [1].

If X is a locally compact space and C is the family of all compact sub-
sets of X, then the family of Borel sets B in X is defined as the small-
est O-algebra of sets containing C. A Borel measure p on X is an ex-
tended real valued non-negative and countably additive set function
defined on B, and such that u(@) = 0.

u is called regular if for all A ¢ B we have both

u(A) = inf {u(V).I V open and A< V, V ¢ ®} and

u(A) = sup {W(F) | F is compact and F ¢ A}

For further information on Borel measures and for some of the termino-

logy and notation used in Chapter IV we refer to P.R. Halmos [1].
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I SUBSEMIGROUPS

1.1. Subgroups and subsemigroups

Definition. A topological semigroup ('mob") is a space § together with

a continuous function f: S x 8 + 8§ such that:

a) S is a Hausdorf{ space,

b) f is associative.

If we write f{x,y) = Xy , then b) becomes the more familiar

{xy)z = x{yz) for all x,y,z ¢ S.

A mob may be thought of as a set of elements which is both an abstract
semigroup and a Hausdorf{f{ space, the operation of the semigroup being
continuous in the topology of the space.

Familiar examples are the topological groups and the closed unit inter-
val with the usual multiplication and topology. Furthermore if ¥ is any
Hausdorff space, then a continuous associative multiplication may be

introduced by

X all x,y € ¥ - or

it

a) xy

b) xy =y all x,y € %.

Definitions. A subsemigroup of a mob S8 is a non-~void set A € § satig~
2

fying A <« A.

A non-void set A < 8§ is called a subgroup of 8 if %A = Ax = A for all

® € A,

Of course this defines an abstract group in the customary sense. 4, with
the relative topology, then becomes a topological semigroup, although
it need not be a topological group since the function g with g{x) = x

«1
{z,x ~ € A) need not be continuous.
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1.1.1. Theorem. Let S be a mob with more than one element. Then S
contains a submob S' such that S' # S.

Suppose each submob S' of S is equal to S and let a € S, Since Sa and

aS are submobs of S8 we have Sa = § = a8S.

Hence S is a group. If e is the identity of S, then {e} is a submob of

S, and {e} # S. This contradicts the assumption that each submob of S

is equal to S.

1.1.2. Lemma. Let A be a submob of the mob S. Then A is a submob of S.
Proof:

Suppose for x,y € K, xy & A. Then since A is closed, there exist
neighbourhoods V of x and W of y such that VWn A = @.

Since x,y ¢ K, there is an a1 e VN A and a_, ¢ WM A.

2
This implies a ,a, ¢ VW and a az ¢ K which is a contradiction.

12 1

1.1.3. Theorem. Each subgroup of a mob S is contained in a (unique!)

maximal subgroup, and no two maximal subgroups of S intersect.
let & be a subgroup of S and e the identity of A.
Let A0 be the set of all ilc S such thaflae :»ia = a anﬁlsuch t?it o
there exists an element a € S with aa = a a=@€, a e = ea = a .
Then it is immediately clear that AO is a maximal subgroup of S con-
taining A.

Suppose now that Al and A2 are maximal subgroups of S and

ae b N A # 0. Let e, and e_ be the identities of A, and A_ respect=-
i T2 R 2, 1 2
ively, and let aa = e, , aa = @
-1 1 1 2 2. -1
Then elaa2 = ele2 = aa2 = e2 and a ae2 = ele2 = al a = e1
Hence ey = ez.

Since A, is maximal, A, contains all a with ae, = e _a = a and
-1 -1 -1 -1 oot
a a = aa = e a e, = a . Thus A1 = A

1’ 1 2°

It may happen that a mob S contains no subgroups at all. Consider

for example the open unit interval I = (0,1) with the usual multi-
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plication. I contains no subgroups. Or let N be the set of all
positive integers with the discrete topology under addition. Then N

contains no subgroups.

1.1.4. Lemma. Let S be a mob and let & = {aA}A Y B = {bA}A e A with

AcCSand B a compact subset of S.

Then for every a € A there exists a b ¢ B such that ab ¢ C with

¢ ={ayb) by o4
Proof:

Suppose that such a b does not exist. Then we have for every ba ¢ B,
aba ¢ C. The continuity of multiplication implies the existence of
neighbourhoods U of a and V_ of b_ such that UV nC = g.
a ] a a o .
The set {V } constitutes an open covering of the compact set B.
e, Y
2’ n

n
Let U = }% U U is an open neighbourhood of a with UB © U Lj Vi’

There exists therefore a finite subcovering say V WV

and hence UB !’\ C=0.

U however contains at least one element aA € &, since a € K.
e O -
We have therefore a_ b e UB and a, b e C.
Ao Ao Ao Ao
This contradiction proves the lemma.

1.2.5. Theorem. If § is a compact mob, then each maximal subgroup of 8

is closed.

Let A be a maximal subgroup of S. Then aA = Aa = 4 for all a ¢ A,
hence AA = Az = A and the continuity of multiplication implies that
AA = A. Thus Ax c A and XA € A for all x ¢ A.

On the other hand suppose A & xA for x € A. Thep there is an a1 €A

with a, Z xK, and the continuity of multiplication together with the
compactness of A imply the existence of a neighbourhood V of x such
that a; ¢ VA, Since x € A there is an a, € A& n V and then a, € a2K
leads to a contradiction.

Thus A < %A for all € A, and hence A e %A,

X
Analogously we have K c Ax.
A

Therefore Ax = %A = for all x € K, and 4 is a subgroup =i 8.
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Since A is maximal we have A = A.

If S is not compact, then the maximal subgroups of S may fail to be
closed. Let S be the mob [O,m) with the usual multiplication.

A = (0,») is a maximal subgroup of S which is not closed.

1.1.6. Lemma. Let S be a locally compact mob and an abstract group.
- ~1 -1

Let A be a countable subset of § and x ¢ A. Then x e A .

Proof: ©

Let B = HLJW (& v {x1)". Then B is a countable subgroup of S and the

continuity of multiplication implies Ezt: B.

Let V be a compact neighbourhood of the identity and let b € B. Since
S is a group, BV is a neighbourhood of b and BY n B # @.

This implies that be val and hence B ¢ Bv_l.

Thus B = U [t—)v"ln 8 = U b in B). L

By 1.1.4 v is closed since V is compact and hence b{(V ~ /N B) is
closed. Moreover B is a closed subset of S and hence locally compact.

Baires category theorem implies that the interior relative to B of one
of the sets b(Vulr\ B) is not empty.

Hence there exist an open set U with BN UGK#G@ and an element bo [
such that UN B ¢ bo(v'1 N B). . )
U ? B and x¢ U = U0 is open.

Let ¢ ¢ B n U. Then xc_l(U la) E) = XC
UnAcU NBexc '(UnB) c xc b v
o o -1 1 -1 o

Hence (Uor\ Ay T« Vb0 ¢x = C with C compact.

Then by 1.1.4, there existsfor every a ¢ Uor\ A an element
-1

b e (Uon A) 7 with ab the identity.

Since x € Uoiﬁ A it follows also that x—1 € (Uo e A)“lc; Anl.

1.1.7. Lemma. ILet S8 be a locally compact mob and an abstract group.
Let A be a compact subset of S. Then A"l is compact.

From 1.1.4 it follows that A—l is closed.

Suppose that Aml cannot be covered by a finite number of compact sets

xglv, with V any compact neighbourhocod of the identity, Xi € A. Then
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) n-1

. -1 - -1 -1
there is a sequence {x } € A i such that x ~ ¢ Y xT'v.
n n=1 n i=1 i @
Let En = {xk i k > n}. Since A is compact, there exists a y ¢ éjg En.
.3 - -1 =
Since y € E_, there is xm € Vy, whence y 1 3 xm V.
-1 -

Moreover y € E implies by 1.1.6 vy e E . Thus there is ann > m

-y M1y m+1 1
such that Xn € Xm V which contradicts the choice of {xn }n—l'

1.1.8. Theorem. Let S be a locally compact mob and an abstract group.
Then S is a topological group.

Let U be an open neighbourhood of the identity u of S and {Va}a the

collection of compact neighbourhoods of u.

Suppgse that for every V@ s V;l ¢ U. Then V;ll\ SNU# @, and

sz;lf\ S \NU# @ since V;l is compact.

But Q vgln S\ Ucl;\ v;l = {u} implies that u € S \ U, which is a

contradiction.

Hence for every neighbourhood U of u there exists a neighbourhood V of

-1
u, such that V ~ < U. Therefore S is a topological group.

Let S be the additive group of real numbers. We define a topology in S
by means of a base B consisting of all half open intervals [a,b), S is
a mob and an abstract group. S however is no topological group, for

1
there is no neighbourhood U of 1, with - U € [—1,«5),

Definition. An element e of a mob S is called an idempotent if e2 = e.
We shall denote by E the set of idempotents in S.

if S contains an idempotent e, then {e} is a subgroup of S, and is
contained in a maximal subgroup.

By H(e) we shall denote the maximal subgroup of S containing the
idempotent e.

An element O is termed the zero of S if Ox = %0 = 0 for all x ¢ S. It

is easily seen that the zero of S, if it exists is uniquely defined.
It is also immediately clear that it is an idempotent.

An element u is termed the identity of 8 if ux = xu = x for all x ¢ S.
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The identity of S, if it exists is uniquely defined and is an
idempotent.
A mob S in which the product of any two elements is zero we term a

zZero semigroup.

1.1.9. Lemma. The set E of all idempotents of a mob is closed.
If E = ¢ the lemma is trivial.
Suppose now x € E and x2 # x, then there exists a neighbourhood V of x
such that Vz NV = g.
2

Since x € E, there is an e € E AV and hence e = e” ¢ V2(\ V which is

a contradiction.

1.1.10. Theorem. Let S be a compact mob. Then S contains a subgroup
and hence at least one idempotent.
et a € S and let K{a) deno&e the set of cluster points of the

- -
sequence {an}I ; K{a) = gjh {a* | 1> n}.

Then since S ;slcompact, K(a) is compact and the continuity of multi-
plication implies that K(a) is a commutative submob ol S.

Suppose now xK(a) # K{(a), x ¢ K(a). Then there exists z ¢ K{(a) such
that z £ xK(a).

Therefore there are neighbourhoods V, O and U such that VvVOn U = 4,

x €V, K{a)y e 0, z ¢ U. n

Since x,z ¢ K(a} there are am € V and a i € U with ni+1 > ni > m
{i=1,2,...). n ~m

L=+
Let b be a cluster point of the sequence {a . }

i=1 " n.-m

Then b ¢ K(a) € O and hence there is a j such that a J e O.

m yom n;
Thus a a = a € VO, a contradiction.

Hence xK{(a) = K(a). In the same way we prove K(a)x = K(a), and it

follows that K{(a) is a subgroup of S.

Corollary. Let S be a mob and 8' a compact submob. Then if S is an

abstract group, S' is a subgroup.
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By 1.1.10 S' contains an idempotent which must be u (the identity of
S).

Again by 1.1.10, applied to xS8', x ¢ S', there is an idempotent in xS'.
Thus u ¢ xS' and S' = uS' € x8".

Hence since xS' € S8', x8' = S' for all x ¢ S'.

Analogously S'x = S'.

1.1.11. Lemma. Let G be a compact group and § a submob of G. Lf S is
either open or closed, then S is a compact suﬂbroup of G.

If 8 is closed the preceding corollary implies that 8 is a subgroup of

G.

Next let S be open. Then S is a closed submob of G and hence a sub-

group of G. This implies that the identity u of G is contained in S.

We now prove that §0 = 8. For let x € V& §o, where V is a neighbour-

hood of x. Then there exists a neighbourhood O of u with xO’lCZ V.

Since u ¢ S we have O N S = W # @ and xw“lc. xO‘l < V. Moreover XW_

is open, hence anll\ S £ ¢. Let s ¢ xW—l(\ S, then s = xw_l and

x = sw with we W= 0 MNS. Hence x € S and we have §0 < S.

Since S is open we also have S < §O and hence S = §0.
From this it follows that § = go = g, since any subgroup of a topo=-

logical group having a non-void interior is an open and closed sub-

group.

1.1.12. Theorem. Each locally compact submob S of a compact group G
is a compact subgroup of G.

Since S is a closed submob of G, S is a compact group. Furthermore S

is a dense locally compact subset of §, hence S is open in g, so that

S is a compact open subgroup of E, i.e. 8 = S.
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Definition. If S8 is a mob and a & S, then we shall dencte by r{a} the

closure of the set (an}:_ i.e.

17
rqa) = (a")”
n=1
From 1.1.10 it follows that if I'{a) is compact, it contains an idem-~

potent. Moreover I'{a}) = K(a) U Gan):;l N K(a)) with K{a) a group.

Hence we see that I'(a) contains in that case exactly one idempotent.

1.1.13. Lemma. Let S be a mob and let A be a compact part of §, such
that Ax € A, with I'(x) compact.
D
2
Then Aj{ Ax" = Ae, with e = e~ € I'(x).

Proof:

~ n 2
Let s ¢ M A% . Then s = a,x = a_ X = ... , a. € A, i=1,2,... .

n=1 1 2 i e
Hence it follows from 1.1.4 that there is an element a ¢ {ai}i~1 such

that s = ae; thus né“ ax"© Ae.
Now let ae ¢ Ax . Then we can find a neighbourhood V of e such that
aVv r Axk = . But since e ¢ [{x), there is a ko > k such that x ey
ang hence ax ° 4 Axk. This is a contradiction since Ax ¢ A implies
Ax °c Ax -
Thus Ae C Axk and Jf} Ax" - Ae.
1.1.14. Theorem. Let S be a mob and A a compact submob of S.
Then for every a ¢ A there exists a unique maximal submob
A*C: A with the property A*a = A*; and A* = Af} Aan = Ae with

2
e =e g I'(a}.

Proof:
wera = (A aaMac N aa™ -
€8 = a1 2 n=1 - i'
MNow let x € Ae and let An = {y | ya = x; y e A}, n=1,2,...
-1 -1
Then An is compact and e Anan = Akak for every k. Hence

= n-1

L Aa" " #£4.

p=2 n ps n-1 - n=-1

Let y ¢ rl A a e () aa = fe. Then ya = x and thus Ae < {Ae)a.
n=2 n n=2 ®

It remains to show that Ae is the greatest submob A € A such that

* *
A a = A
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* * *
Let A be any submob with this property, then A = A a € Aa and hence
* *
A =A a"c Aa", n=1,2,...
o

* n n
Thus A < n=1 Aa = Ae and the theorem is proved.

Now let S be a mob and a € S such that I'{a) is compact.

Then since I'(a)a” = {a® | 1> n+l} = a"r(a), we have

K(a) = Af& r(a)a"™ = Af& ar(a) = er(a) = r(a)e with e = ez e T(a).
And thus K(a)a = K(a) = aK(a).

1.1.15. Theorem. Let S be a compact mob with two-sided cancellation
(i.e. ax = bx implies a = b, a,b,x € S and xa = xb implies
a=>b, a,b,x € 8).
Then S is a topological group.

let x € S. Then xS ¢ § and 1.1.13 implies that eS <« xS & S,

e = e2 e I'(x).

Since S has two-sided cancellation, the mapping ¢: s - es, s € § is a

one~-to~one continuous mapping of S onto eS.

On the other hand ¢ is the identity mapping on eS and hence eS = S =

%8. Analogously we have S = Sx.

Let S be a mob and define (a,b) g f, a,b € S to mean that
{a} U Sa {pb} U Sb. Clearly ¥ is an equivalence relation such that

if (a,b) € f, then (ac,bc) ¢ £ for all c e S.

i

By La we shall mean the set of all elements of S which are Zf equi-
valent to a. Thus L, = {b | {a} u Sa = {b} U Sb; b ¢ S}.

Dually we define {(a,b) 59?, a,b € S to mean {a} ¥ aS = {b} U bS and
R ={b | {a}u as = {b} U bS; b ¢ S}.

a

Finally we define & = £ n % ana H =1L nR

a .

If e € E, then H{e) = He.
- -1
For let x ¢ H{e), then x = ex = xe and Xx 1 =X x = e.
Hence {x} U Sx ¢ {e} u Se; {x}uv xSc {elu eS and {e}u Se < {x}u Sx,

{e} v eS ¢ {x} U x8S.
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Thus H{e) & He.
Now let x € He' Then since x ¢ {({e} U Se) N ({e} U eS) we have
xe = ex = x, and since e ¢ {({x}uU Sx)n ({x} U xS), x has a left and

right inverse, hence x ¢ H{e).

1.1.186. _I_.e;m_rgg. If S is compact, then If, .‘R and 9? are compact subsets
of 8§ x 8.

Let £ #S x S and let (x,y) ¢ Sx S NR&.

Then we may assume x ¢ Sy U {y} f(or y ¢ Sx wu {x}).

Hence V M (Sy u{y}) g for some open set V containing x, since S is

regular and Sy & {y} closed. Since S is compact there is an open set U
containing y such that V A (SU v U) = @.

Hence (U x V) N Z = @ and we may infer that £ is closed.

Similarly .R is closed and hence X =Zn R is closed.

1.1.17. Theorem. If S is compact then H =U{H(e) | ee E} is closed.
If x ¢ H let a(x) be the unit of the unique maximal subgroup
containing x and let B{(x) be the inverse of x in this group.
Then «: H-+ E is a retraction and f8: H -+ H is a homeo~-
morphism.

Let 7: S x S -+ 8 be the mapping defined by n(x,y) = x.

Then H = U {H(e) | e ¢ E} = (s x E).

Since mw is continuous and &o and E are closed, H is closed.

Furthermore let B = {(x,8(x)) | x ¢ H} and f : S x S+ 8, f(x,y) = xy.

We now show that B = Z’n Hx Hn f_l(E).

For let (x,B(x)) € B, then x,8(x) ¢ He and xB{(x) = e, hence

x,8(x) e Hx HALE.

If on the other hand (x,y) e . N Hx HN f'l(E), then xy = e ¢ E

and .(x,y) ¢ & hence Hx =H .

y

Furthermore x,y ¢ H implies Hx = He for some e1 ¢ E.

Hence H = H = H = H(e_) and thus xy = e, and y = B(x).
X y ey 1 1

-1
Since g, H x H and f (E) are closed, B is compact.
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Furthermore WlB is one-to-one and continuous and hence topological.
-1

Thus (mu [B) o x + {x,8(x)) is continuous, and we may infer that B is

continuous.

a is continuous since a{x) = xB(x).

1.2, Ideals

Definitions. A non empty subset A of a mob S is called a left ideal

if SA < A, a right ideal if AS € A and an ideal if it is both a left
and a right ideal.

A minimal left (right) ideal of S is a left (right) ideal containing
no other left (right) ideal.

We shall denote by ¥ (S) and R (S) respectively the collections of all
minimal left and all minimal right ideals of S.

In general these may be empty collections.

The intersection of all ideals of S is called the kernel of S and
denoted by K.

If K is non-empty it is clearly the smallest ideal of S.

1.2.1. Lemma. Let A be an ideal of a mob S. Then A is an ideal of 8.
Since SA € A and AS C A, the continuity of multiplication implies
SA ¢ A and AS C A.

Hence A is an ideal of S.

An analogous result holds for left and right ideals.
If a £ S we let J(a) {a} U Sa U aS U Sas,
L{a)

R{a)

]

{a} U 8a,

{a} U as.
Thus J{a) is the smallest ideal of S which contains a.
L{a) and R{a) are respectively the smallest left and right ideal of 8

which contain a.

If A ¢ S then we define JO(A) to be the null-set if A contains no ideal
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of S and JO(A) is the union of all ideals contained in A in the
contrary case. LO(A) (RO(A)) is the null~set if A contains no left
{right) ideal of S and Lb(A) (RO(A)) is the union of all left (right)
ideals contained in A in the contrary case.

It is clear that if JO(A) # @, then JO(A) is the largest ideal of S
contained in A.

Also if LO(A) # @ and RO(A) # @ then LO(A) is the largest left and
RO(A) is the largest right ideal of S contained in A.

1.2.2. Lemma. If A ¢ S is closed, then JO(A), LO(A) and RO(A) are
closed. If A is open and S compact, then JO(A), LO(A) and RO(A)
are open.

We only prove the lemma for JO(A).

Suppose JO(A) # @, then since JO(A) « A we have JO(A) < A.

Now JO(A) is an ideal of S and hence JO(A) [t JO(A) if A = 4.

Suppose now that S is compact and A is open.

Let x ¢ JO(A), then {x} U %S U Sx U Sx8 JO(A) < A and there exists
an open set V, x € V, satisfying VU VS U SV U SVS < A.

Now this set is an ideal of S, hence is contained in JO(A).

Therefore % ¢ V & JO(A) completing the proof.

1.2.3. Theorem. Let S be a compact mob; then any proper ideal of §S is
contained in a maximal proper ideal of S, and each maximal
proper ideal is open.

Proot:

If the ideal I # S, then 1.2.2 shows that JO(S N {x}) is an open proper

ideal containing I for any x ¢ S \ 1.

Let {Ta}a be a linearly ordered system of open proper ideals containing

I.

If 8 = E’ Th = T, then S is the union of a finite number of Ta's.

Since (Ta}a is linearly ordered, there is an ¢ with S = Ta’ which is a

contradiction.
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Hence T = UJ Th is a proper ideal of S.

a
Using Zorn's lemma there is a maximal element in the collection of all
open proper ideals containing I.

Each maximal proper ideal M is open, since M = JO(S N\ {xh), x ¢ M.

An analogous result holds for left and right ideals.
Thus if S is compact, then any proper left {right) ideal of S is con~
tained in a maximal proper left {(right) ideal and each maximal proper

left (right) ideal is open.

Corollary. If S is a compact connected mob and J a maximal proper ideal
of S§, then J is dense in S.
Since J is open and J an ideal of S, the maximality of J and the

connectedness of S imply J = S.

Let 8 be the multiplicative semigroup of real numbers, with the usual
topology. Then {0} is the only proper ideal of S. Hence {0} is a
maximal proper ideal which is not open. Furthermore if & = (~1,1)

then JO(A) = {0}.

1.2.4. Lemma. If S is a compact mob, then J{a) is compact for each ac¢ S.
The same holds for L{a) and R(a).
Proof:

Since S is compact {a}, aS, Sa and SaS are compact subsets of S.

1.2.5. Theorem. Is 8§ is a mob and S has a minimal left and minimal
right ideal, then S has a minimal ideal K and
1)y If Al and A2 are both in /\:(S) or both in ﬂ(s) and
Al n A2 # @ then A1 = A
2) 1f Le X (S) then lLa
If R ¢ ?? (S) then aR aS = R for all a ¢ R.
3) K=U {L]LeX(®} =U{rR]|ReR®}.

9
Sa = L for all a ¢ L.

i
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Proof:

1y If A1 and A2 are in r(S) and Aln Az # @, then Aln A2 is a left

ideal of S and thus A1 = A1 s A2 = A2'
2) If a ¢ L, La is a left ideal contained in L, hence La € Sa € L,
which implies La = Sa = L.

The same argument holds for right ideals.

3) If L1 € Zf(S) and a £ S, then Lla is a left ideal of 8 and
Lace X(s).
For if LO were a left ideal properly contained in Lla, then

L1 N {x { Xa ¢ LO) would be a left ideal properly contained in Ll.
Thus U{La | a ¢ 8} = L;S is a union of minimal left ideals and is an
ideal of S.

Now let I be any ideal of S, then L1 = IL1 < I, hence I contains Ll
and thus LlS = L}{Lla [ a g S}, which must by definition be the kernel
K of S.

Furthermore any L2 ¢ £ (S) must be contained in K.

So by 1) L2
Thus K = U{L | L € £(8)}.

In the same way we prove K = U{R | R e R(syy.

must be equal to Lla for some a € S.

Iet 8 be the multiplicative semigroup of real numbers x, ¢ < x <1,
with the usual topology.

The kernel K of S is empty, since for any a ¢ S, the set {0,a) is an

ideal of S, and hence K = M {0,a) = ¢.
0 <a <1
On the other hand let 5 be the cube in E2, i.e.

8 = {{x,y) |0 <x <1, 0 <y f_l}, and define a multiplication in 8
by (xl,yl).(xz,yz) = (O,yz). Then S is a compact mob and the minimal
left ideals are precisely the points (0,y), while the set

R = {{(0,y) l 0 < y < 1} is the only minimal right ideal and X = R.

1.2.6. Theorem. If S satisfies the conditions of 1.2.5, then
1) If L e £ (s) and R ¢ 52(8), then L A R is a subgroup of 8.
2) Z(s)=1(se| eecknEl, 91(s) ={eS | ec K NE}.
3) K=U{H(e) | ee K NE} and for e ¢ K 0 E, H(e) = eSe.
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Any pair H(el), H(ez) of subgroups with e ,e2 ¢ Emn K are
isomorphic.

Proof:

1) Choose L ¢ £(S) and R e R (S).

Then RLC L /AR, so L AR # @. Furthermore if a ¢ L n R, then

(LmMR)a = LAaRand a(Ley R) = L M R.

For it is clear that (LM R)a¢ LR, and if the inclusion were
proper then La = U{(L AR)a | Re RN £ UL AR | Re RN =
L = La is a contradiction.

The equality a{L @ R) = (L nR) follows similarly and hence L MR is
a subgroup of S.

2) Let e be the unit element of L M R, then 1.2.5 implies L = Le = Se
and R = eR = eS.

3) LNR=SeneS neSe = eL3e(LNR) = LNR.

Hence L N R = eSe.

Now let H{e) be the maximal subgroup containing e € E N K.

Then H{e} = eH(e)e < eSe = LN R, so H(e) = L N R = eSe and
K=U{L]| Le Z()} =UR|Re R()) =U(H(e) | ec E nK}.

We shall now prove that any pair H(el), H(ez) with e .8, € E N K are

topologically isomorphic.

It is clear that if H(el) < L and H(ez) C L, then e,ey = ezf = e, for

any £ € E n L.

Let ¢: H(el) + L be defined by ¢(x} = e, x and suppose e.x € H(f)},

2 2
f e EnL

Let X be the inverse of ezx in H(f). Thus ezx§ = xe2x = f.

2 - .
And so ezf = ezxx = f, hence f = e2.

It is clear then that ¢ is a map of H(el) onto H(ez) and we easily
verify that ¢ is a homomorphism.

1f e2x = ezy, then elezx = elezy, SO elx = ely and x = y.

Hence ¢ is an isomorphism.

-1 -1
Since ¢ {(x) = e.X; x € H(ez), ¢ and ¢ are both continuous and

1
H(el) and H(ez) are isomorphic.
In the same way H(el) and H(ez) both in R implies H(el) and H(ez)

isomorphic.
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Suppose now H(el) = Ll R, and H(ez) =L, N R

1 2 2’
and H(ez) isomorphic with li s RZ and it follows

then H(el) is iso-
morphic with L1 ) Rz
that H(el) and H(ez) are isomorphic.

1.2.7. Theorem. Let S be a compact mob. Then each left ideal of S
contains at least one minimal left ideal of § and each minimal
left ideal is closed. The same holds for right ideals.

Let L be any left ideal of S and let T be the collection of all closed

left ideals of S contained in L. T is partially ordered by inclusion

and is non-void, since if x ¢ L, Sx is a closed left ideal contained

in L.

Suppose {Ta}a is a linearly ordered subcollection of T.

Thenlg Ta is non-empty since S is compact and so is an ideal in L.

Thus (Tm}a has a lower bound and Zorn's lemma assures the existence of

a minimal Lo in T.

Now let L1 be a left ideal contained in Lo and let x € Ll'

Then Sx is a closed left ideal. Furthermore Sx < L:L c Lo and since Lo

is minimal in T we have Sx = LO = L . Thus Lo is a minimal left ideal.

1
The proof of the assertion for right ideals is completely analogous.

Corollary. Each compact mob S has a minimal ideal K, and if § is
commutative, then K is a compact topological group.

If S is commutative and J1 and J2 are minimal ideals then Jl rst is
non empty since it contains J1J2.

Thus J1 = J2 and J1 n J2 = Jl is a subgroup of S.

Since X = Jl’ X is a subgroup of S. Furthermore X is compact and hence
a topological group.

1.2.8. EEEE&- Let S satisfy the conditions of theorem 1.2.5.
Then K = (Se N E).eSe.{(eSn E), ec EnK.
Since e € K, we have (Se n E).eSe.{(eS N E) € K.
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xnayn =a, n=1,2,...

Hence a = eay' with e = e2 e T'(x), y' e T(y).

Since e € S \ J we conclude that S / J contains a non-zero idempotent.
Now let f2 = f ¢ e.8/J.e. Then since e.S /J.e is O-simple and e.S/J.e

isomorphic with eSe / ede, it follows in the same way that there are

elements a and b such that e = afb with a = af.
n_n
Furthermore aeb = afeb = afb = e. Hence e = a fb , n=1,2,...
2 1
Thus e = gfb' with g = g € I'(a), b' e T'(y).
Since g = ge = ggfb' = e and fb' = efb’' = gfb' = e, we have f = fe =
ffb' = e.

Henceforth e is primitive and § / J completely O-simple.

1.3.9. Lemma. Let S be a mob without zero having at least one minimal
left ideal L. Then S is the sum of its minimal left ideals if
and only if S is simple.

Let S be simple. According to 1.2.5, the sum of all minimal left ideals

of S is an ideal I of S and thus I = S.

Conversely if § is the sum of its minimal left ideals, then again by

1.2.5 S is its own minimal ideal and hence simple.

1.3.10. Theorem. Let H be a compact topological group and X and Y two
compact Hausdorff spaces. Let ¢: Y ¥ X - H be a continuous
function and denote by [X,H,Y,¢] the space X x H x Y with the
multiplication (xl,hl,yl)(xz,h2,y2) = (xl’hlo(yl'xz)hz’y ).

Then [X,H,Y,¢] is a compact simple mob.

On the other hand if § is a compact simple mob and e € S N E,

then § is isomorphic with [Se N E,H(e),eS n E,$| where

¢(e1,92) = e_e,

189 e1 € eS NE, 62 € Se N E.

The second part of the theorem follows immediately from theorem 1.2.9.
Next let [X,H,Y,§] be given. The multiplication defined in [X,H,Y,¢]
is clearly continuous and associative.

Thus [X,H,Y,¢] is a compact mob.
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Now let (x,h,y) and {(x',h',¥y"'} ¢ [X,H,Y,¢]. Choose elements v, € Y
and X, € ¥ and let ho and h0 be such that ho¢(yo,x)h¢(y,xo)ho = h',
Then (x',ho,yo)(x,h,y)(xo,hé,y') = {x",h",y").

Hence [X,H,Y,¢] (x,h,y)[X,H,Y,¢] = [X,H,Y,6] for all (x,h,y) and
henceforth [X,H,Y,$] is simple.

1.3.11. Lemma. If S is a compact mob and A a (1eft,.right) simple
submob, then A is also a (left, right) simple mob.

& is a submob of 5, hence Bxh ¢ A for all x ¢ K.

How let A be simple and suppose there exists an x g A such that

Axh # A.

Then there exist y € K, y ¥ AxA and neighbburhoods YV of #x and W of v

such that W n AVA = @.

Since v,% ¢ A there are elements al e AnVoand a_ g A NW with

2
az 4 KalK. This contradiction concludes the proof.

A similar argument applies to right and left simple mobs.

1.3.12. Theorem. Let 8 be a2 compact left simple mob. Then the right
translation oa: %+ xa is a homeomorphism.

According to theorem 1.2.6 S = U{H(e) | e ¢ E}, while from Se = § for

all e ¢ B we infer that e is a right unit for S.

Now suppose xa = ya, a ¢ H{e). Let a-1 be the inverse of a in H{e),

then xaaml = yaaml, hence xe = ye and thus x = y.

On the other hand since (xa—l)a = % it follows that pa is a mapping of

5 onto 8.

If we recall that 8 is compact, it follows that pa is a homeomorphism.

1.3.13. Theorem. Every left simple submob of a mob S is contained in a
maximal left simple submob of S and each two maximal left
simple submobs are disjoint.

If 8 is compact each maximal left simple submob is closed.
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Proof:
E 3
Let S be a left simple submob of S and let T be the collection of all
%
left simple mobs containing S . Let {T;}a be a linearly ordered sub-
*
collection and T =\U T .
* a a #
Then T is left simple, for if x ¢ T , then x € Tm for some ¢ and
*
hence T x = T . Thus since T = LJ{TB | TmC: TS} we have
5 £
T =U{rx | T T} =T=x.
{ g l o 8}
Using Zorn's lemma there is a maximal element in the collection of all
3
left simple mobs containing S

Next let S1 and S_ be two maximal left simple submobs and suppose

2

X € S1 [al Sz. Let A be the mob generated by S1 and 82; i.e. A is the
collection of all finite products slszss...sn with si € S1 or S2 .
i=1,2,...,n.

Let yl,y1 € S1 and y2 € SZ’ then Sly1 = Sly1 = Slx = S1 and Szx = Sz.

Hence y1 = soyl, X = Slyl and y2 = szx, so,sl € Sl, 52 [3 Sz.

Thus v, = s_8 v  and we have S, C Ay, ¢« A, 8_« Ay < A, and it follows
2 1 1 1

2171 2
that A = Ayl since Ay1 is a submob of & containing S1 and 82‘
In the same way we prove A = Ay2 and thus that & = Aa for every a € A.
Since A is left simple and S1 and S2 are maximal, we have Sl = 82 = A.

Analogously it is possible to prove that every simple submob of a mob
5 is contained in a maximal simple submob. But here two maximal simple

submobs may have a non empty intersection.

Let for instance S = {al,az,a3,34,a5} with the following multiplication
table
81 %3 B3 By %
43 1% %1 % %3 %
az as 32 a5 8.4 a5
%3 | %1 2y 33 2z a4
a, a, 3, a, a, a
25 | % %5 P %5 Bp
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Hence aS = R* or aS = 8. If S\ R* has more than one element, aS
cannot be equal to R*, hence a8 = S.

If S is connected, then 8 = aS U {a} if and only if a ¢ aS and hence
if af = S.

So we have in both cases aS = § for a € § %\ R*.

Moreover it is clear that if x ¢ 8§, with x8 = 8, then x ¢ § \ R* and

&
hence S \ R = P.

&
Corollary. Let S be a compact connected mob with R . Then S contains

at least one left unit element.

1.4.9. Theorem. The necessary and sufficient condition that a connected
compact mob S contains R* is 8 has at least one left unit
element and is not right simple.

The necessity of the condition follows from the definition of R* and

the above corollary.

That the condition is sufficient follows from lemma 1.4.4.

E
1.4.10. Theorem. lLet B be a compact mob and suppose that 5 \ L and
*
S \ R have more than one element.
Then 1) S has a unit u.
* # *
2) L =R =J
*

3) S NL = H(u).

Proof:

According to theorem 1.4.9 S has a left unit ey and a right unit 82'
e = = i it .

Hence :1 9 = el = e2 is a unit element of 8§

That L =R = J follows from theorem 1.4.5 and since 8 contains a

* #
unit and § is no group, we have H{u) = S \NJ =8 \L .

1.4.11. Theorem. Let S be a connected compact mob, having at least one
left unit and suppose S is not right simple.
Then every subgroup H{e), with e a left unit lies in the

. *
boundary of the maximal right ideal R .
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Now let L be a m1n1ma1 left ideal of S and let L = La n S £ B It
is obvious that La is a left ideal of S'.

We now prove that Lu is a minimal left ideal of S'.

For let L c;_ L be a left ideal of §'. Then since L = U {H(e) [eeEnL}
we have L = LJ(H (e) [ eeg E n L } and consequently there is an idem-
potent e' ¢ L such that L n H (e )y # 8.

Since a group contalns no preper left ideals we have H {e'Y ¢ L and
hence e¢' ¢ L. Thus S'e' € L.

On the other hand we have e’ e L and it follows that e' is a right
identity for La' Hence LZ = L e’ c S'e' ¢ L.

This proves that LGE is a minlmal left ideal of S'.

Since 8' = U {L: | L e € (S)} it follows by lemma 1.3.9 that S' is

a simple submob.

Example. Let S be the additive group of real numbers mod 1 with the
usual topology and let o be any irrational number, 0 < o < 1.

Then §' = {na}:=1 is a submob of §. §' is not locally compact and not
simple since S' + o £ S'.

1.4, Maximal ideals

We have seen in 1.3, that if S is a compact mob which contains properly
a {left, right) ideal, then it contains a maximal proper {(left, right)

ideal J which is open.

1.4.1. Lemma. Let S be a compact mob and suppose E is contained in a
maximal proper ideal J, then 52 < oJ.

it follows from 1.3.8 that § / J is either completely O-simple or the

zero semigroup of order 2.

Since E C J, 8 / J contains no idempotent other than 0O and hence

S/J-:‘:‘Ozz c !

And thus 8" = J U Ja U ad u{a '} C J.

, i.e. 8 = J U {a} with az c J.
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Corollary. Let S be compact with 82 = S, then SES = S.
For if SES is a proper subset of S, we have since SES is an ideal
that SES and hence E is contained in a maximal proper ideal. Lemma

2
1.4.1 then implies that S = S C J; a contradiction.

1.4.2. Theorem. Iet S be a compact mob with S2 = 5 and suppose that S
has a unique idempotent.
Then S is a topological group.

Let & = ez, then e ¢ K and K is a group. The preceding corollary

implies that S = SeS = K, completing the proof.

Definition. A mob S has the {left, right) maximal property if there

: ¥k %
exists a maximal proper {(left, right) ideal (L ,R }J containing

every (left, right) ideal of S different from S.

1.4.3. Lemma. Let S be a mob and A a compact part of §. If A < Ax with
I'{x) compact, then A = Ax = Ae with e = e2 e I'(x).

Ac Ax c Ax2C

Suppose now Axk ¢ Ae with e = 92 € I'{x). Then there is an a ¢ A with

axk ¢ Ae, and there is a neighbourhcod W of e such that axk 4 Aﬁ. But

ncn
since e is a cluster point of {x }n— there is a ko > k with x © e W.

1V
k ko
Hence ax ¢ Ax , which is a contradiction.
2
We now have A < Ax C Ae, where € = e; therefore A = Ae and A = Ax =

Ae.

it follows that for every a ¢ K(x), we have Aa = Ae = A.

i
=

Now let y € I'{x). Then since K(x) = el (x), we have Ay = (Ae}y
Ay.

i

Hence we have for all y e I'(x), A
Furthermore the mapping py: a-< ay, a ¢ A, is a homeomorphism.

py is clearly continuous and also one~to-one. For if aly = azy, then
since a_e = a_ and a_ e = a2, we have a

-1 1 1 2 1
y = be the inverse in K{x} of {(ey), then

y = al(ey) = az(ey). Now let
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a_(ey) "l a, (ey) -1 e = a_e a_ = a
o)y T o= aylen)y = ae = =>a, = a,.

2 2
Since A is compact it follows that py is a homeomorphism.

1.4.4. Lemma. Let S be a mob with a right unit element e and at least
one proper left ideal. Then S has the left maximal property.

Let L* be the union of all proper left ideals. Then L* # @ and L* is

a left ideal of 8§ such that e ¢ L*.

For if e ¢ L*, then e ¢ L for some proper left ideal. But since e is

a right unit, we have S = Se ¢ L, a contradiction.

Therefore L* # 8, and it is obvious that L* is the maximal left ideal

of S.

We remark that 1.4.4 holds if right is replaced by left and vice versa.
Also a similar argument shows that if S has a left or right unit and
at least one proper ideal, then S has the maximal property.

From the proof of the lemma it also follows that in this case if S has
a left unit, then R* exists and J* C R*; if S has a right unit then

* * # * #
J C L ; and if S has a unit, then J C L N R .

#
1.4.5. Theorem. Let S be a compact mob. Then if L exists, there
* * *
exists also J and we have L = J .
& Ed
{The theorem also holds if L is replaced by R }.
Proof:
* * *
Since for every ag S, L a is a left ideal of 8, we have L a ¢ L or
&
La=8.
*
Ilemma 1.4.3 implies that if L a = S, then Sa = S = Se, and hence
* * P)
Le=1L with e =¢ ¢ I'(a).
Now let K{(a) be the set of cluster points of {an}i_l‘ Then K(a) is a
group and it follows from theorem 1.1.14, applied to TI'(a), that
ae ¢ K(a).
* *
Let a be the inverse of ae in K{(a). Then we have L a = S and thus
* * * * * *
I aesa = Sea == LLe = L = Sa

* * *
Since e € Sa , we have e ¢ L and hence S = Se ¢ L , a contradiction.
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* *
Thus L a ¢ L for all a € S.
* * *
But then it follows that L S € L . Hence L is an ideal of S which
E
must be J , since every proper ideal of S is a proper left ideal of S

&
and is contained in L .

1.4.6. Theorem. Let S be a compact mob and let P be the set of those
elements a ¢ S satisfying aS = S.
Then P is a closed submob of S and the left translation
pa: X <+ ax, a ¢ P, x ¢ §, is a homeomorphism of S.
Furthermore 8 \ P is an ideal of S and P = U {H(e) | e ¢ En P},
while all H(e), e ¢ E " P, are isomorphic.
Let al,az ¢ P then alazs = als = 8, and thus ala2 € P.
To show that P is closed take x ¢ P and y ¢ xS.
Then we can find an open set U, with x ¢ U and such that y ¢ US. Then
*x e UC SNP.
Now let ax = ay, x # y, a ¢ P, then 8 = aS = eS8 with e = 92 e T'{a)
and e is a left unit for S.
From ex = x and ey = y we infer the existence of an open set U inclu-
ding e such that Ux n Uy = @.
Since e ¢ I'{a), we know that some an ¢ U. But since anx = any we must
have x = y.
Now let ab € P, then abS = S and lemma 1.4.3 implies that bS = S and
b € P. But then since abS = 8 = a8, a ¢ P, and it follows that S \ P is
an ideal.
We now prove that P = UJ{H(e) | e ¢ E n P}.
et a ¢ P, then S8 = a8 = eS8 with e = e2 ¢ I'{(a) and hence e € P.
Now let K{a) be the set of cluster points of {an}:zl. Then
K{a) = el{a) = I'{a) ¢ H(e), since e is a left unit for S.
Hence a ¢ H{e) and since for each h ¢ H{e)}, a = hh* for suitably chosen
h* € H(e) we have H(e) ¢ P.
Therefore P = {J {H(e) ] e € E n P}.
Now let e,f ¢ E n P and let ¢: H{e} - H(f) be the mapping defined by
o{x) = xf.
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It is clear that xf € P. Suppose now xf ¢ H(g), g ¢ E N P and let x* be
the inverse of xf in H(g). Then x*xf = g and thus gf = g. But since g
is a left unit we also have gf = f. Hence f = g.

Furthermore since for each y ¢ H(f) we have ye ¢ H(e) and ¢(ye) = ye{ =

yf = y. We see that ¢ is onto. ¢ is one~to~one since if xlf = x_%, then

2

xlfe = xzfe, which implies Xl = x2.
We can also easily verify that ¢ is a homomorphism.

Since H(e) and H(f) are both compact, it follows that ¢ is topological.

P is a right simple submob. For we know that a8 = 8, a ¢ P, and hence
there exists b' such that ab' = b for every b ¢ P.

Theorem 1.4.6 then implies that b' ¢ P and thus aP = P.

1.4.7. Theorem. Let S be a compact mob and let S # P # @.
Then 8 \ P is the maximal proper ideal J* of 8.
S\P is an ideal of 8. Let e be an idempotent contained in P.
Then e is a left unit of S and 1.4.4 implies that J* exists and
S \NPa J*. Furthermore we see that since P is simple P n J* must be

*
empty. Therefore 8 \ P = J .

Corollary. If S is compact with unit u and if S is not a group, then
J* = 8 N\ H{u).

Since S8 = uS we have H{u) € P. Now let e ¢ E n P, then e is a left
identity of 8 and hence eu = u = e. Therefore P = H{u) and

FF = s\pP=s8\HUW.

Then R* is open and if S \ R* has more than one element or
if § is connected, then S \ R* = P,
Let a ¢ S \ R*. Then since aS U {a} is a right ideal of S not contained

*
in R , we have a8 U {a} = 8.
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Hence a8 = R* or aS = 8. If S\ R* has more than one element, aS
cannot be equal to R*, hence aS = S.

If S is connected, then S = a8 U {a} if and only if a ¢ aS and hence
if a8 = S.

So we have in both cases aS = § for a € S \ R*.

Moreover it is clear that if x € S, with xS = 8, then x ¢ § \ R* and

*
hence S \ R = P.

*
Corollary. Let S be a compact connected mob with R . Then S contains

at least one left unit element.

1.4.9. Theorem. The necessary and sufficient condition that a connected
compact mob S contains R* is S has at least one left unit
element and is not right simple.

The necessity of the condition follows from the definition of R* and

the above corollary.

That the condition is sufficient follows from lemma 1.4.4.

*
1.4.10. Theorem. Let S be a compact mob and suppose that 8 \ L and
*
S \ R have more than one element.
Then 1) S has a unit u.
* * *
2) L =R =J.
*®

3) S \NL = H).

Proof:

According to theorem 1.4.9 S has a left unit e, and a right unit ey
Hence :182 i e1 : ez is a unit element of S.

That L. = R = J follows from theorem 1.4.5 and since S contains a

* *
unit and 8 is no group, we have H{u) = S \NJ =8 \L .

1.4.11. Theorem. Let S be a connected compact mob, having at least one
left unit and suppose S is not right simple.
Then every subgroup H(e), with e a left unit lies in the

sk
boundary of the maximal right ideal R .
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Proof: —

# * %
Since R is open and R a right ideal of S, we have R = S and

* *
S\ R = U{H(e) | e a left unit} = boundary R .

1.4.12. Theorem. Let S be a compact mob and suppose that J* exists.
Then if S \\J* has more than one element or if S is connected
s\ J" = {a | sas = 8}.

Proo:

Let a ¢ S\ J*, then since SaS U{al is an ideal of S not contained in

J*, we have SaS u {a} = S.

Hence SaS = J* or SaS = S. If 8§ \ J* has more than one element then

Sas # J*. If S is connected, then since Sa$S is closed and J* is open,

we again have SaSii J*.

On the other hand it is clear that if a ¢ S, with SaS = 8, we have

a ¢ J*.

Corollary. A necessary and sufficient condition that & compact
*
connected mob S contains J 1is S has at least one idempotent with
S = SeS and S not simple.
Proof:
* 2
If S contains J , then 8 = S and thus S / completely O-simple.

= SeS.

w h*

kS
Hence S N\ J contains an idempotent e, and

if on the other hand 8 is not simple and S
e ¢ E, then if @ = {a | SaS = S}, we have Q # @ and S \ Q # #.

*
Furthermore it is clear that S \ @ is an ideal of § and that J = S\Q.

SeS for an idempotent

Let S be the closed interval of real numbers [—1,1], with the usual

topology. Define a multiplication on S in the following way

Xey = Xy iftx >0,y >0,
Xey = O ifx <0, y>0 orx >0,y <0,
Xay = ~XY ifx <0, y 20,

where xy is the usual product of x and y.
With this multiplication S becomes a compact mob.
The sets [—1,1) and (—1,1] are both maximal ideals of S.

%
J however does not exist in S.
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1.5. Prime ideals

Definitions. A (right, left) ideal P of a mob S is said to be primé

if A.B € P implies that A ¢ Por B e P, A and B being ideals of S.

* * *
An ideal P is completely prime if ab ¢ P implies that ae¢ P or
3
be P, a,be 8.

An ideal which is completely prime is prime, but the converse is not

generally true.

Let for instance S5 = {el,ez,a,b,o} with multiplication table

e e2 a b ¢

ey ey 0 G b 0
ez 0 e2 a ¢ 0‘
a a C 0 e, 0
0 b e 0 0

6 ¢ o o

Then {0} is a prime ideal which is not completely prime.

In the case of commutative mobs, however, this concepts coincide. For

let P be a prime ideal in a commutative mob and let ab ¢ P. Then

{{a} u a8)Y{{b} U bS) = {ab} U abS ¢ P and hence {2} U a8 « P or
{b} U bS < P.
Thus a ¢ P or b e P.

1.5.1., Lemma. If P is a left ideal of S, then the following conditions

are equivalent:

1)
2)
k)
4)

Proof:

P is a prime left ideal.

If aSbS ¢« P, then a € Por b € P.

If R{(a)R{b) < P, then a ¢ Por b € P.

if Rl’Rz are right ideals of S such that RlRZ(: P, then

<
Rlc P or Rz P.

1) » 2). Let aSbhS < P.
Then R(a)?R(b)% ¢ asbs < P.
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Hence J(a)23(m? = (R@)? U sr(?) (R U sRW?) =

R(2) 2R U sr) R ? e p.

Since J(a)2 and J(b)2 are ideals of S we have J(a)zcl P or J(b)zC: P.
If J(a)zcz P, then J(a) ¢ P and hence a ¢ P.

2) » 3). If R(a)R(b) € P, then aShS ¢ P, hence a ¢ Por b ¢ P.

3) + 4). Let R.R_<C P and suppose a ¢ Rl \ Pand b ¢ R2 \ P.

12
Since R(a) € Rl and R(b) ¢ R2 we have R{a)R{b) € P, and thus a ¢ P or
b ¢ P a contradiction.
Thus either Rl & P or Rac P.

4y + 1). Trivial.

A similar proof shows that lemma 1.5.1 holds, if we replace right by
left and vice versa.

Condition 2 then becomes: If SaSb € P then a ¢ P or b ¢ P.

For two-sided ideals we have an analogous system of conditions.

Condition 2 then becomes: If aSbC P then a ¢ Por b ¢ P.

1.5.2. Theorem. Let S be 2 mob and suppose E # § and let e ¢ E.

Then each of JO(S N {el}), RO(S \ {e}} and LO(S N {e}) is

prime if it is not empty.
Suppose that a ¢ JO(S N {e}) and b ¢ JO(S N\ {e}). Then since JO(S‘\{e})
is maximal e € J(a) and e € J{(b). This implies that e ¢ J{a)J(b) and
hence J(a}J(b) & JO(S N {eh).
This shows that JO(S N {e}) is a prime ideal.
The statement for RO(S N {e}) and LO(S N\ {e}) can be proved in the same

way .

If E #£ 0, we can define a partial ordering in E as follows: for e,f¢E,
e < f if and only if ef = fe = e.

It is clear that the relation < thus defined is reflexive and anti-
symmetric.

Now let e < f and f <g. Then ef = fe = e and fg = gf = f.

Hence eg = (ef)g = e(fg) = ef = e and ge = gfe = fe = e.

This implies that e < g and the relation < is transitive.



53

If S is a mob without zero, then the minimal elements of E are the
primitive idempotents.

If S has a zero, then the non-zero primitive idempotents are the atoms
of the partially ordered set E.

Furthermore, if § has a unit u, then u is the maximal element of E.

1.5.3. Lemma. Let P be an open prime right (left) ideal of a compact
mob 8. If A is a left (right) ideal of S which is not contained
in P, then A contains an idempotent e with Se & P.

Let P be an open prime right ideal and let a ¢ A “\ P.

Then L{a) is a compact left ideal with L{a) < A, L{a) & P.

Now let 1,13 L2 D ... be a linearly ordered sequence of compact left

ideals w&th Li <A, L:i. &« P, i=1,2,...

Iif L= ].Ql Li , then because P is open and the Li compact, L ¢ P. Now

using Zorn's lemma there exists a minimal member L of the set of all

compact left ideals Lu with Lac A, Lu & P.

Next let a ¢ L \\ P and suppose La & P.

Then ({a} v La)({a} v La) e La C P.

Hence by the dual of lemma 1.5.1 {a} W La € P; a contradiction. Thus

La & P.

Since La € L and L is minimal La = L.

ThusL:La:Lewithe:eze r(a) « L.

Since Se = Se.e ¢ Le we have Se = Le = L & P.

Corollary. Let P be an open prime ideal of the compact mob S. If A is
a right or left ideal of S not contained in P, then A \ P contains a
non-minimal idempotent.

Let A be a left ideal.

Then it follows from lemma 1.5.3 that there exists e ¢ A and a € A\ P
with a € Se & P.

Thus ae = a and since P is an ideal, it would follow from e ¢ P that

ae = a¢ P. Hence eeg A \ P.
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Furthermore it is clear that e ¢ K, since K C P.
If S is a mob without zero, them e is non-primitive and hence non~-
minimal.

1f S has a zero, then since K= {0}, we have e # 0 and thus e > 0.

1.5.4. Theorem. If S is compact, then each open prime ideal P # S, has
the form JO(S \ {e}), e non-minimal.
If conversely e is a non-minimal idempotent, then JO(S N {e])
is an open prime ideal.
Let P be an open prime ideal. Then we can find just as in lemma 1.5.3
a minimal ideal Jl’ J1 Z P.
The above corollary shows that Jl \. P contains an idempotent e and
hence J1 : J(e). . i}
Now let P = JO(S N\ {e}}, then P* is an open prime ideal and P ¢ P*.
Again using lemma 1.5.3 if P # P , we can find an idempotent f ¢ P \ P
with J2 = J(f) & P.
Since e,f ¢ P, J(e}Jd(f) = JlJ2 ¢ P, Furthermore JlJz C,JL and since Jl
is minimal J . J, = Jl‘

172

#
= c ; a contradiction.

Hence Jl J1J2 J2 ¢ P, a contradiction

Conversely if e is non-minimal, then ¢ ¢ K and hence JO(S N\ {e}} # @ and

consequently an open prime ideal.

1.6. Notes

Many of the theorems of chapter I are found in one or more of the
following papers: Faucett, Koch and Numakura [3], Koch and Wallace [é],
Numakura [1],[2], Schwarz [2],[1d], Wallace [1],[2],[9] and Wright [1],
It is pointless to trace every source of every theorem and we will not
attempt to do so. However, the following primary sources of results in
chapter I may be of interest.

Let S be a mob and an abstract group. Under what conditions on S can
we assert that § is a topological group? Some results of this kind

stem from Montgomery [1], Ellis [1],[2] and Moriya [1]~ The latter's
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theorems were extended by Wallace [Q]. Theorem 1.1.8 is due to

Ellis [{]. Wallace [3],[4] also examined the structure of S related to
its maximal subgroups. Theorems 1.1.14 and 1.1.15 first appear in
Wallace [12]. Theorem 1.1.10 has been used by Wendel [1] to show Haar
measure exists on a compact group.

Theorems 1.2.5 and 1.2.6 go back to Suschkewitsch [1] and Rees [1]. In
this form, however, they are due essentially to Clifford [1]. For the
case of a compact mob see Numakura [2]. Theorems 1.2.8 and 1.2.9 are
topological extensions, Wallace [lQ], of a theorem of Rees-Suschkewitsch,
Rees [1].

For the algebraic results of section 1.3 we refer to the monograph of
Clifford and Preston [5]. Theorem 1.3.15 is a generalization to locally
compact submobs of a theorem of Schwarz [10].

Maximal ideals have been studied by many authors. The results about

the unique maximal ideals are due to Schwarz [2].

The statements of section 1.5 appear in Numakura f4}.
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II SEMIGROUPS WITH ZERO AND IDENTITY

2.1. Semigroups with zero

Definitions. Let S be a mob with O and a an element of S. If an -+ 0
i.e. if for every neighbourhood U of O there exists an integer n, such
that an ¢ Uif n > no, then a is termed a nilpotent element.

We denote by N the set of all nilpotent elements of S.

An ideal (right, left} A of S with the property A" + 0 is called a

nilpotent ideal.

A nil-ideal A is an ideal consisting entirely of nilpotent elements.

It is clear that every nilpotent ideal is a nil-ideal and that the join
of a family of (right, left) nil~ideals is again a (right, left) nil-
ideal of S.

Let S be the unit interval with the usual multiplication.

Then I = [0,1) is an ideal consisting entirely of nilpotent elements.

n
I, however, is not a nilpotent ideal, since I = I for all n.

2.1.1. kgmmg. Every right (left) nil-ideal of S is contained in some
nit~ideal of S.

Proot:

Let A be a right nil-ideal of S. Then SA is an ideal of S.

Suppose x = sa € SA, and let U be any neighbourhood of O.

Then there exists a neighbourhood V of 0 such that sVa <« U.

As A is a right nil-ideal of S, as ¢ A, and (as)n e V for n > no.

Hence if m > no+1 we have (sa)m = s(as)m_la e sVa « U.

Therefore SA is a nil~ideal of S, and hence A U SA is a nil-ideal of S

containing A.

Definition. The join R of all nil-ideals of a mob S with zero is called
the radical of S.
According to lemma 2.1.1 R is a nil-ideal which contains every right

and every left nil-ideal of S.
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Hence R is the maximal right and the maximal left nil-ideal.
If S consists only of nilpotent elements, i.e. if S = R = N, then S is

called a nil-semigroup.

2.1.2. Theorem. Let S be a mob with zero, with T'(a) compact for every
a ¢ S. Then every (right, left) ideal of S8 is either a {(right,
left) nil~ideal or contains non-zero idempotents.

Let a be a non-nilpotent element of the ideal I. Then e = ez ¢ I'(a) is

not equal to zero. For if e = 0, then K(a) = el{(a) = {0}. Since K{(a)

is the set of cluster points of the sequence {an}:~ we would have

n L
a - 0.

Furthermore aK{a)} = X{a) and thus K{a) ¢ I, which implies e € I.

Corollary. A compact mob is either a nil-semigroup or contains non-zero

idempotents.

2.1.3. Theorem. Let e be a non-zero idempotent of the compact mob S
with zero. Then the following conditions are equivalent:
1) eSe N\ N is a group.
2) e is primitive.
3) Se is a minimal non-nil left ideal.
4) SeS is a minimal non-nil ideal.
5) Each idempotent of SeS is primitive.
1} = 2). If eSe \ N is a group, then e is the only idempotent in
eSe \ {0}, since no idempotent # O can be nilpotent.
2) + 3). Let L be a non-nil left ideal contained in Se.
Then there is an idempotent f e L, f ¥ 0. Since f € Se we have fe = f
and {ef)(ef) = ef. Thus ef is a non-zero idempotent contained in eSe.
Since e is primitive ef = e. Thus ef = e € eL ¢ L, which implies L = Se.
3) - 4). Let I be a non-nil ideal, I C SeS.
Then there exist an idempotent f € I, £ # 0, and elements a,b € 8, such

that aeb = f and bf = b.
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Iet g = bae, then g2 = baebae = bfae = bae = g.

Furthermore g # 0, since otherwise 0 = gb = baeb = bf = b.

Now g ¢ Se and g ¢ SfS. Hence by 3) Sg = Se < SfS and we conclude
SeS = 8fS = I.

4) »+ 5). Let f be a non-zero idempotent of SeS and let g = g2 £ 0,

g ¢ £Sf. Since f,g € SeS, we have SgS = SfS = SeS and f ¢ SgS. Hence
f = agb, and we may assume ag = a, gb = b.

Since gf = fg =
Hence f = a'gb" and f = g*gb' with g*z = g* € T'(a) and b' ¢ {bn}zzl
We note that g*g = g*, hence g*f = f = g*gf = g* and f = g* = g*g =

g, this implies afb = agfb = agb = f.

fg = g.

5) - 1). Since every idempotent in SeS is primitive, e is primitive

and hence Se = L is a minimal non~nil left ideal. Now let a ¢ eSe \ N,
then a € {Se a eS} \ N.

Since L is minimal a = ea € La = L. Hence there is a ¢ L, such that

aa = e. Let ea = a', then a' ¢ eSe and a'a = e. Furthermore (aa'}{aa’') =
aea' = aa’', and aa' is an idempotent contained in eSe “ N, thus aa' = e.

So we can find for every a ¢ eSe \ N an element a' ¢ eSe such that

This implies that eSem\ N is a group, since a' ¢ N.
For if a' ¢ N, then nol s(a)™ = 8.0 = {0} by lemma 1.1.13.

This is contradictory to aa' = az(a')2 = an(a')n = e.

Definition. A mob S with zero is said to be an N-semigroup if its

nilpotent elements form an open set.

2.1.4. LEEEE' et S be a mob with zero, and let a € §S.
if an is nilpotent for some n > 1, then a itself is a nilpotent
element.
Let U be an arbitrary neighbourhood of 0. Then since ajO = 0, there is
a neighbourhood V of 0, such that ajV < U (j=1,2,...,n}).
1, such that

n
Since a is nilpotent, there exists an integer ko

>
(an)k € V for k > kox Thus a2 nk = ank+J e U, j=1,2,...,n, k > kg,
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This implies that for N > nko, aN ¢ U, hence a is nilpotent.

2.1.5. Theorem. If a mob 8 with O has a neighbourhood U of 0 which
consists entirely of milpotent elements, then S is an N-semi~
group.

Let p € N, then there is an n such that pn € U. Therefore thefe is a

neighbourhood V of p such that Vnc: U. Hence every point of Vn is

nilpotent.

Lemma 2.1.4 then implies that V< N.

2.1.6. Theorem. A locally compact mob S with O having a neighbourhood U
of O which contains no non-zero idempotents is an N-semigroup.

Since S is locally compact and Hausdorff, S is regular and we can find

a neighbourhood W of 0, such that Wc U and W compact. The continuity

of multiplication and the compactness of W imply, that there is a

neighbourhood V of 0 with VW < W; V< W.

Hence V> ¢ Vil © W_and Ve w, n=1,2,...

Now the set A = ;:& Vi is a mob contained in W. Therefore A is a

compact mob contained in U. Since A contains no non-zero idempotents,

5 is a nil-semigroup.

Hence V consists entirely of nilpotent elements, and by theorem 2.1.5

S is an N-semigroup.

Corollary. A locally compact mob with O, which is not an N-semigroup

contains a set of non-zero idempotents with élusterpoint 0.

2.1.7. Theorem. The radical of a compact N-semigroup is open.
Proof:
Since R< N, R is the largest ideal of S contained in N.

Hence R = JO(N) and JO(N) is open (1.2.2).
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Let S be the half line [O,m) under the usual multiplication of real
numbers.
S is an N-semigroup, since N = [0,1) is open. The radical of S,

however, is not open, since R = {0}.

2.1.8. Theorem. Let S be a compact N-semigroup, which is not a nil=~
semigroup. Then any non-nil-ideal I of S contains a minimal non-
nil-ideal M. Furthermore RM = MNR is the radical of M and RM
is a maximal proper ideal of M with M/RM completely O-simple.

Let T be the collection of all closed non-nil-ideals of S contained in

I. T is non-void since if e = e2 # 0 € I, SeS is a closed non~nil-ideal

contained in I.

Now let {Ta}u be a linearly ordered subcollection of T.

Then I0 :c; Tu is non-empty, since S is compact.

Furthermore I0 is an ideal of S contained in I and I0 & N, since N is

open and Ta compact, Ta ¢ N.

Thus {Ta}a has a lower bound and Zorn's lemma assures the existence of

a minimal closed non-nil-ideal M in I.

Now let M* be a non-nil-ideal contained in M. Then M* contains a non-

zero idempotent f and SfS < M* < M.

Since SfS is a closed non-nil-ideal and M is minimal in T, we have

SfS = M* = M.

Thus M is a minimal non-nil-ideal and M = SeS with e primitive.

Now we shall prove that RM =M MNR.

Since M n R is a nil~ideal of M, we have M n R « RM'

Furthermore SR S ¢ SMS< M. If SRMS = M, then MSR _SM

M M
therefore M = MSRMSM < MRMM < RM. This contradicts the fact that M is

M3 = M, and

a non-nil-ideal.

Hence SRMS is an ideal of S properly contained in M.

This implies that SRMS must be a nil-ideal,i.e. SRMS c RM.
Hence RM is a nil~ideal of S, thus RM<: M n R.

Since there is no ideal of S lying properly between M and RM’

theorem 1.3.7 implies that M,/RM is either a O-simple semigroup or a
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zero semigroup. Since M contains a non-zero idempotent M / RM is a
O-simple semigroup. Hence it follows from the corollary to 1.3.7 that

RM is a maximal proper ideal of M, and thus M / RM completely O-simple.

4 similar proof shows that if L is a non-nil left ideal then L contains
a minimal non=-nil left ideal Lo.

Furthermore Lo contains no non-nil-ideals and the radical RL of L0 is
the maximal proper ideal of Lo. ©

Hence LO / RL is completely O~simple.
[+)

Corollary. Iet 8 be a compact mob with zerc; them § contains a non-zero
primitive idempotent if and only if there is a non-zero idempotent e
with eSe \ N closed.

If e is primitive, then eSe \ N is a maximal subgroup and hence closed.
On the other hand if eSe % N is closed and e # 0, then eSe n N is the
set of nilpotent elements of eSe and hence eSe is a compact N-gsemigroup.
We then conclude from theorem 2.1.8 that eSe contains a non-zero

primitive idempotent. Hence so does S.

2.1.9. Theorem. Let e be a non-zero primitive idempotent of the compact
mob S with zero. Then Se \ N and Se N N are submobs and Se \ N
is the disjoint union of the maximal groups eaSeu N\, N where eu
runs over the non~zero idempotents of Se.

Suppose a,b € Se N\ N, then an,bn € Se \\ N. Now let ab ¢ N.

Then since Se is a minimal non-nil left ideal, we know that

sa® = sb™ = Se, n=1,2,... . Hence Sab = Sh° = Se.

Thus S(ab)" = Se, which implies Se =n?jls(ab)“ = 80 = {0).

This is a contradiction, since e # O‘_

Suppose now a,b € Se n N and ab ¢ N. Then (ab)z g N and hence Sab = Se.

Since a € Se, we have Sa ¢ Se = Sab.

Hence Sa = Se = Saf, with f = fz € '{b). Since b ¢ N, £ = 0 and thus
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Se = 8a0 = {0}, a contradiction.

Finally let a ¢ Se \ N. Then Sa = Se.

let f = fz € '(a), then Sf = Se = Sa and f is a right unit for Se.

Now let K(a) be the set of cluster points of {an}:zl. Then K{a) is a
group and K(a) = fl'(a) = r{a)f = r(a).

Hence I'(a) is a group and Se \ N is the union of groups.

For any ea = ej % 0, ecx e Se we have Sea = Se, so that eq is primitive
and eaSea \ N a group.

Now the maximal group containing em is contained in eaSea , and more-
over since any group which meets N must be zero, we conclude that

eaSea \ N is a maximal group.

2.2. O-simple mobs

As in 1.3 we call a mob S with zero O-simple if 82 # {0} and {0} is the
only proper ideal of S. S is completely O-simple if S is O-simple and
contains a non-zero primitive idempotent.

Hence if S is completely O~simple S cannot be a nil-semigroup.

If on the other hand S is a non-nil-~semigroup and if § is O-simple,
then every (right or left} nil-ideal of S is the zero ideal {0}, since
every right or left nil-ideal of S is contained in some nil-ideal of S.
Thus in this case R = {0}.

We shall call a {(left, right) ideal I of a mob S with zero, O-minimal
if 1 # {0}, and {0} is the only (left, right) ideal of S properly
contained in I.

Hence every minimal non-nil left ideal of a non-nil O~simple mob is a

O-minimal left ideal and conversely.

2.2.1. Lemma. Let L be a O-minimal left ideal of a O-simple mob S and
let a ¢ L \ 0. Then Sa = L.

Since Sa is a left ideal of S contained in L, it follows that Sa = {0}

or Sa = L.

If Sa {0}. then 8aS = {0}, in contradiction with SaS = S.

]
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If 8 is compact, then every non-nil (left, right) ideal of S contains
a non-zero idempotent. So-in this case if L is a minimal non-nil left

ideal of S, then there is an idempotent e ¢ L with Se = L.

2.2.2. LEEEE' Let L be a O-minimal left ideal of a O-simple mob S and
let s ¢ S. Then Ls is either {0} or a O-minimal left ideal of S.

Assume Ls # {0}. Evidently Ls is a left ideal of S. Now let LO be a

left ideal of S contained in Ls, LO < Ls.

Let A be the set of all a € L with as ¢ LO.

Then As = Lo and A € L. Furthermore SAs < SL0 < LO and SA < SL < L.

Hence SA « A and A is a left ideal of S.

From the minimality of L it follows that either A = {0} or A = L and

we have correspondingly L0 = {0} or LO = Ls.

2.2.3. ZESSEEE' Let S be a O-simple mob containing at least one
O-minimal left ideal. Then S is the union of all O-minimal left
ideals.

ILet A be the union of all O-minimal left ideals of S. Clearly A is a

left ideal of S and A # {0}. Now we show that A is also a right ideal.

let a ¢ A and s € S. Then a ¢ L for some O-minimal left ideal L of S.

By lemma 2.2.2 Ls = {0} or Ls is a O-minimal left ideal.

Hence Ls € A and as € A. Thus A is a non~zero ideal of $, whence A = S.

Corollary. Let S be a compact O-simple mob. Then S8 is the union of all
O-minimal left ideals of S.

Since S is compact, S is completely O-simple and hence contains a non=-
zero primitive idempotent e.

2.1.3 then implies that Se is a minimal non-nil left ideal.

Since minimal non-nil left ideals and O-minimal ideals are the same in
a compact O-simple mob, Se is a O-minimal left ideal and the corollary

follows.
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2.2.4. Lemma. Let L and R be O-minimal left and right ileals of @
O-simple mob, such that LR # {0}. Then RL = R n L is a group
with zero and the identity e of RL N\ {0} is a primitive idem=-
potent of S.

If LR = {0}, then (R L)Z = {0} and in both cases we have
R nNnL# {0}.

Since LR is a non-zero ideal of S, we must have LR = §.

Furthermore RL # {0}, since S = S2 = LRLR.

Now let a ¢ RL \ {0/}, then a ¢ L \{0} and a ¢ ® \ {0}, nhence Sa 1

and aR = {0} or aR - R (lemma 2.2.1 and 2.2.2).

Since 8 = LR = SaR, it follows that aR # {0}. Consequently aRL = RL.

In the same way we can prove that RLa = RL.

From this we conclude that RL is a group with zero.

Now let e be the identity of RL. Then since R = eS8 and L = Se we have

BERmL =e8 N Se = eSe and RL = e¢5Se = eSe.

Since eSe is a group with zero, ¢ is primitive.

If LR = {0}, then since LN R ¢ L and L n R « R, we have

(L n R)2<: LR = {0} which implies (L N R)z = {0}. Moreover if

a2 € L \N{0}) and b ¢ R \ 0, then SaS = S and SbS = 8§, Sa = L and

DS = R. Hence SbSSaS = 52 # {0}, and thus bSSa #¥ {0}. Since

bSSa ¢ . R we have L, " R # {0}.

2.2.5. Theorem. Let S be a O-simple mob. Then S is completely O-simple
if and only if it contains at least one O-minimal left and one
O-minimal right ideal. Moreover L is a O-minimal left ideal of
S if and only if L = Se with e primitive.

If 8 is completely O~simple it contains a non-zero primitive idem -

potent e, and we have eSe a group with zero.

Now let L be a non-zero ideal contained in Se

Then SeSLS = SLS - S and hence eSL # {0} and since eSL < L 1 eS

i eS # {0}. Next let a - L neS \ {0} Then a ¢ eSe \ {0}, and ther

& oan a such that amlu S



65

Hence e = a—la ¢ L and Se < L < Se. Thus Se is a O-minimal left ideal
of S.

Dually we can prove that eS is O-minimal.

Conversely assume that S contains at least one O-minimal left ideal L
and at least one O-minimal right ideal R.

e S.

Since SRS = 8, we have SR # {0}, and thus is # {0} for some sy

Since 8 is the union of O-minimal left ideals,sl € L1 for some
O-minimal left ideal L1 and evidently LlR £ {0}.
It then follows from lemma 2.2.4 that S contains a primitive idempotent

e, with S = R.

2.2.6. Theorem. Let S be a compact O-simple mob and let e and f be
non-zero idempotents of S. Then the maximal subgroups H{e) and
H{f) containing e and f respectively are isomorphic compact
groups.

Since each idempotent e # 0 of S is primitive, Se and Sf are O-minimal

left ideals and eS and fS5 O-minimal right ideals and it follows from

lemma 2.2.4 that eSe N\ {0} and fSf \ {0} are groups.

Since H{e) € eSe \ {0}, we have H(e) = eSe \ {0} and H{f) = £Sf \ {0}.

Furthermore €S n Sf # {0}. Now let 0 #¥ a ¢ €S n Sf. Then ea = a = af,

Since eS8 = a8 and Sf = 8a (2.2.1), there exist a, and a_. ¢ S such that

1 2
e = aal, f = aza.
Now let b = fale, then b # 0 and ab = afale = aale = ee = e; ba = fba =
azaba = azea = aza = f.

From this it follows that bS = fS and Sb = Se.

We now prove that the mappings ¢: x + bxa and ¢y: y + ayb are mutually
inverse one~to-one mappings of H{e) and H{f) upon each other.

For let x ¢ H(e), then bxa € bS n Sa = £8 N Sf = H(f) v {0},
Similarly y € H(f) implies ayb € a8 m 8b = e8§ n Se = H(e) u {0}.

And if x ¢ H{e), then a(bxa)b = exe = Xx.

Moreover ¢ is an isomorphism, since (bxla)(bxza) = bxlexza = bxlxza.
If we recall that bot@ H{e) and H{f) are compact Hausdorff spaces it

follows that ¢ is a topological isomorphism
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Corollary. Let S be a compact O-simple mob. Then 8§ “ {0} is the
disjoint union of sets L ARy \ {0}, where L ¢ ¥'(s) and Ry e R (s,
¥'(s) and 92'(8) being respectively the sets of all C-minimal left
and O-minimal right ideals of S.

All sets L n R N {0} are homeomorphlc while Lulﬁ R ™ {0} is either

8
a maximal subgroup of 8§ or. (L NnR ) = {0}.

Let Ll and L2 be two O-minimal left ideals of S and suppose

0 # ace L1 n Lz, then it follows from lemma 2.2.1 that Ll = Sa = Lz-
Hence L, N L2 = {0} or L, = L,. Analogously we have for O-minimal right
ideals R, N R, = {0} or R, = R,.

Thus S\ {0} is the disjoint union of the sets L fa RB N {0},

We know already that all sets L e RB w {0}, w1th L I RB N\ {0} a group
are homeomorphic and that in the other case (L n R ) = {0}.

Now let A = Lm n RB % {0}, with Lh = Se and let a e A.

Then the mapping ¢: %X » ax is a homeomorphism of H{e) onto A.

*

%
For if ax, = ax then since € = a a for suitable a ¢ 8, we have

. P T e
= a = QX nd thus = X, .
a ax, axz, exl exz a us x, 9
Furthermore ¢ is onto since for each b ¢ A we have b = as and hence
be = b = aese = ax with x = ese ¢ H{e).

Since ¢ is comtinpuous,¢ is topological.

Corollary. Let S be a commutative compact O-simple mob. Then S is a
group with zero.
By lemma 2.2.4 we have S2 =8 =8NS is a group with zero, since S5 is

both a O-minimal left and right ideal.

2.2.7. Theorem. Let J be a maximal proper ideal of the compact mob S.
Then the following conditions are equivalent:
1} 8 N\ J is the disjoint union of groups.
2} For each element of 8§ \ J, there exists a unit element.
3) aES\Jimpliesazes NJ.

4} J is a completely prime ideal.
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5) 8§ % J contains an idempotent and the product of any two
idempotents of 8\ J lies in S \ J.

1) + 2). Obvious.
2) +3). Let a € S \J and ax = xa = a. Then ae = ea = a for
e = e2 € M'(x). Thus ecS\J and S/ J is completely O-simple. Hence by
lemma 2.2.4 S\ J = U H(eDU lb) Ag , with A:c J. \
Furthermore a ¢ H{e) which implies a ¢ H{e) and hence a ¢ 8 % J.
3) *4). Let a,b € 8§ \ J and suppose ab € J. Then I = {x I *xe8, xbe J}
is a left ideal with J < I.
Next let x € I, xs £ I, then xsb ¢ J and hence (xsb)2 £ J.
This implies that bx £ J and thus bxbx ¥ J. From this it follows that
%b £ J which is a contradiction.
Hence we have proved that I is an ideal of S containing J and we
conclude that I = S.
Since 1 = {x | x ¢ S, xb € J} we have b2 ¢ J, a contradiction.
4) -+ 5). This follows from the fact that J = JO(S ~ {e}y (1.5.4).
5) + 1}. Since e ¢ S \\ J, we have § / J completely O-simple and
S\NJ= L&H(ea)u LL}AbwithAch.
Now let a € AB' then a ¢ Se and a ¢ fS with SefS ¢« J or else it
would follow from lemma 2.2.3 that a ¢ Se it £S N\ J = H(ea).
Since ef ¢ J we have, however, SefS & J. Thus AB = @ and § % J is the

union of groups.

From the theorem it immediately follows that S8 % J is a group if and

only if 8 N J contains a unique idempotent.

2.2.8. Theorem. Let S be a compact O-simple mob and S' a locally
compact submob of S with O ¢ 8'. Then S' is a simple submob.

Since 0 is an isolated point of S (2.3.1), 87 is a closed submob of §

with 0 ¢ S°.

Let 8 = U {La l o e 4}, La running through all O-minimal left ideals.

Then 87 = U (L] = L ,n 5" |a € A}.



68

Clearly the closed set L& # @ is a left ideal of S' and L& contains a
non-zero primitive idempotent ey
Hence ETea is a minimal left ideal of S' and since Laea = La we have
L& =L'e € S'e ¢ L'. Hence L' = S'e , and S' is the union of its

o o1 a [+3 a '~
minimal left ideals, which implies that S' is simple.
Since S' is a locally compact submob of the compact simple mob §T,

theorem 1.3.16 implies that S' is simple.

et 8§ = {el,ez,a,b,o} be the O-simple mob given by the multiplication

table
e1 a e2 b o]
e1 el o b (4]
a a (0] ] e2 4]
92 4] a e2 ] 4]
b 4] el b (4] 4]
8] 4] 0 0 0 0
Then S' = {el,a,O} is a submob. S', however, is not simple since {0,a}

is a non-zero proper ideal of S'.

2.3. The structure of a compact (completely) O-simple mob

We have seen in 2.2 that each compact O-simple mob S is the union of
all O-minimal left (right) ideals.

* *
Let {La | o ¢ A} and {R | g ¢ B} be the O-minimal left and right

D
ideals of S respectively.
* *

Let L =L N {0}, R =R N {O}and H =L N R .

o a 9 B afb a f5
Then it follows from 2.2.4 that Hab is either a maximal subgroup of S

2

or else Hab = {0}, 1¢f Ha is a group, we shall denote by e the

B8 aB

identity of Haﬁ‘

Furthermore for every two different sets L and L (R, and R, )} we
oy ey By B2
have L, NnL =6 (R, N R = @).
% % S
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i}

Now let H H H |
t ap l B
H U{Hablﬂabz{o};aeA,bsB}.

Then S is the disjoint union of H, H' and {0}.

a group; o € A, g ¢ B} and

i

2.3.1. Lemma. Let S be a compact O-simple mob. Then O is an isolated
point of S.

Let V be an open neighbourhood of O with V # S. Then since S is compact

and SO0S = {0}, there exists a neighbourhood W of 0 such that SWS C V.

Since for all a # 0, a € S we have SaS = S, it follows that W = {0},

i.e. 0 is isolated.

2.3.2. Lemma. Let 8 be a compact O-simple mob. Then, with the notation
Jjust introduced, the following assertions are true:
1) For each o ¢ A there exists a § ¢ B such that HGB is a
group, and dually for each B ¢ B there exists an g ¢ A
such that HCm is a group.
2) H and H' are both open and closed sets of S.
1) For :ach o ¢ A, there :s a primitive idempotent eaﬁ such that
€ L, (2.2.5). Hence RB = ey,S is a O-minimal right ideal. Thus

ab 2 2

: 2
egg € Lyn RB = Haﬁ and since €ub = €ap © HGB we have HQB # {0}.

The same argument applies to right ideals.

e

2) Suppose now for a € S, az # 0. Then there is an open set V with

a € V such that 0 ¢ Vz. This implies that Vn H' = ¢ and hence a ¢ H'.
Moreover, we have for all h ¢ H, h2 # 0, and hence H n H = %, which
implies H' = H'.

On the other hand HuU {0} is the set of all maximal subgroups of S,
hence H u {0} is closed.

If we recall that {0} is open, it follows that H must be closed.
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2.3.3. Lemma. Let S be a compact O-simple mob and let

eaB = eis € Larw RB'
Then LYeaB = La if and only if H 6 is a group, and
LYeaB = {0} if and only if HYB = {0}.

Let HYB be a group and suppose eYB € HYB. Then since RE = eYBS = eaBS
we have eYBea§ = €4 and easeYB = eYB'*
Furthermore LyeuB = SeYBemﬁ = Sem8 = Lu
Hence LaC Lyeas'
Since for each 1Y € LY R IYeaBeYB = 1erb = 1Y we have 0 £ LYeaB and

thus La = Lyeaﬁ'

P
Now let HY6= {0} and let a ¢ H Then since RB = e S = aS we have

YB° af

euB = as} for a suitably chosen s ¢ S.

* 2
Hence Lyeaﬁ c LYeaB = Saem5 = Sa s, = {0}, and thus LYeaB = {0}.

2.3.4. Lemma. Let S be a compact O-simple mob and let C be the set of

all x € S such that xem3

Then C = U{LYlyzA,H

€ L for all e €eEnL.
o Q

af
« H if Huﬁ <« H for all g € B}.

Yb
Proof:
2
Let x ¢ C and x ¢ L , and let e = e e H « H.
Y afs ofB ap

Furthermore xe . € L and it follows from lemma 2.3.3 that L e = L

: af o1 y aB o
and that H < H.

YB

Hence LY e C and H& is a group if Hu is a group.

B B
Suppose on the other hand that y € A is such that for all p
Hyﬁ is a group if Haﬁ is a group.

Then for each £ with e, a group and hence

L

€ EN L we have H
B [+]

= La' Thus LYc: C.

YB
vCag

2.3.5. Lemma. Let § be a compact O~simple mob and let D be the set of

2
all x € S such that xe = 0 for all e € E with HaB = {0}.

Y8 YB
Then D = U {L ¢ A, H CH' if H <H' for all B}.
: { Y { K YB ofB B e B
Prqg;:
let x € D, x ¢ L, and let H A &€ H'.
Y - af
Since Haﬁ = thﬁ RB and since RB contains a non-zero idempotent there
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%
is a Y such that HY*B is a group.

Then xe = 0 and it follows from lemma 2.3.3 that Lyey*ﬂ = {0} and

Y*8 o
hence that IH’C D and HYB = {0}.
On the other hand let L_ be such that HYB<:H' if HaB < H' and let
. 2

e xg €2E with H g = {o}.
Then HYB = {0} and lemma 2.3.3 implies that LYeY*B = {0} and hence
L < D.

Y

2.3.6. Theorem. Let S be a compact O-simple mob. Let ao £ A.
Then fa = U, |aeA, B ,andH  both in H or both in H'
° ° for all 8 ¢ B}
is an open and closed subset of S.
Let E be the set of all idempotents in S. Then E is closed, and since

*
S is compact, we have that Lu =L N {0} = Sa \ {0} with a ¢ La

o Go o

is closed, hence Ea = La n E is closed.

For each ea 8 € E O1et CZ be the set of all elements x of S such that
fo) (o]

xe e L and let Cc = ) {C | e ¢ E }.

B "La B aoB [

Since La = Sec‘08 for all eaoB € Eu , we have CBeaoB = Lao and

(s N\ CB)ea g = {0}, and the continuity of multiplication implies that
o

both C8 and S \ CB are closed. Thus C is closed.

Now let x € C. Then xe 8 # 0 for all e, g € Ea .

(o)
Since Ea is compact we can find a neighbourhood V of x such that

B

o
. . . > <
0 £ VEa0 which implies Veaos C L“o for all eao, € Eqb and thus V C

and C is open.
2
Now let H' = () {H_ |8 € B and H = {0} }. Then H' =L n H' and
v} o B a B o, o
(e} (o) (o) (e} o
hence closed.

* *
Furthermore let Ea = (E n H& 8) \ {0}. Then Ea is compact and is the

. o) o) 2 o
set of all idempotents eYB such that H(1 g~ {0}.
o
Let DYB be the set of all elements x of S such that XeYB = 0,
* *
e .eE andlet D=0 {D _|e  eE ).
¥8 % vB ' Y8 %
Then it follows that (S \ D__Je = L and hence both D _and S\ D
Y8 Y8 Y YB YB

are closed.

* *
Suppose now x € D. Then an = {0}. Since Ea is compact and {0} open,
) o
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we can find a neighbourhood V of x such that VE: = {0}, which implies
V < D and hence that D is open. ©
Now let Xa = C n D. Then Xo,: is an open and closed subset of S.
From lemma 8.3.4 and 2.3.5 it ?ollows that
=U (L |aea H,,CH ifﬂas
=U {L, |aea, H g€ H for all § ¢ B}

Hence %:CnD:U{LzaeA HBandHaBeitherbothinHor
o

< H for all B ¢ B} and
c H' if H
a

both in H' for all § ¢ B}.
Furthermore fa # 0, since clearly L, < fa

o o )
Since Z’ = Za if f [a) 7-’ # @ and S \ {0} is compact, we see

that S \ {0} is %he union of a f1n1’ce number of disjoint open and

closed sets X’ » Z D %

(o1 a a
[o) 1 n
A similar argument shows that S \ {0} is also the union of a finite

number of disjoint open and closed sets say YR R ﬂ. g
where ﬂB. = U {Rfj | 6 € B, Ho:b and H().b. either both in H or both Tn H'
J Y for a1l a e Al, (j=0,1,...,m).
From this it follows that S N\ {0, is the disjoint union of the sets
fa_ f\ﬁ , i=0.1,. ..,n, j=0.1,...,m, where each xa.nﬁshis
i i i

either con alned in H or in H'.

2.3.7. Theorem. Let S be a compact O-simple mob. Then § \ {0} is
homeomorphic to a topological product Yl x X x Y2 , where

Y, and Y_ are two compact Hausdorff spaces and X is homeomorphic

t(l) the uxzzderlying space of a maximal subgroup of S contained in
s\ {o}.
Proof:
Let H 6 be a maximal subgroup of S and let 7:' s e fa and
ﬁB . ﬂ be decompositions of S \ {0} asodescribed ig
m

theorem 2.3.6.
For each set f n J ¢ H' we choose an element a‘j € La a2} RB and
[e} (o] j
a set f N Jq C H. (Such a set always exists by lemma 2.3.2)‘.]
! 55
Let tb (x) = , x e L 0 ﬁ
ik % b5
We now prove that q‘) is a topological map of La [g] ﬁ onto La I} ﬁ .’
° J
such that ¢ (L n R ) =L n R, for each R e R J
ja B a B B B,
i k o k k 3
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* *

For let x e L 1 R = H , themxa_ e R, a,m L o« R, n L .

oy B oBy IR d % B o
Furthermore, if x is the inverse of x in Ha 8 we have

-1 ik
X xaj = ey 8 aj # 0 , by the dual of lemma 2.3.3.
ik
Hence an # 0 and we have ¢ (L N R )c L N RB
%o
On the other hand if y ¢ L r\ R then y € Sa, and thus y = s,a_,
o Bk J 13
which implies y = e = s.a,_ =e¢e s e a, = xa_ with
;iﬂk Cagby 1y T CagBy 1080 J
* 7 %8 %1% B, © aygy
Hence ¢J is a mapping of La 2 518 onto La 2 51
i .
How let x_a_ = x,a_., then since e J € S we have e = a 8, and
13 273 aiBj J iBJ ji2

thus xlajs2 = xzajsz q»xleaiﬁj = XZeaib. & X 1 = x2'
Thus ¢ is topological. J
Now let a = ¢, (eu 6 ). Then Aj = 1J {a | Ry © 5{ is a closed set

k
of S such that AJ C L and A N HOl B = a: for all Rb o 9Q
k
Let ¥, (Er\L)qu{A 'fani{cﬁ} £l

Y1 is the union of a f1n1te number of d1%301nt closed sets and hence

closed.
Moreover Y1 < Lh and Y1 has exactly one point in common with each
o
set H .
aob

In the same way we construct a set

v. =(EnRr Yu U (B | R A X < H'} such that Y, is closed
2 Bo i B oy 2

Y,= R and Y, has exactly one point in common with each set H .
2 Bo % 2 aBy

Now let § = Yl x H B x Y and let ¢(y h, Yy Y =y hy2

¢ is a mapping of S* onto 8 \ {o}.

For let x ¢ 8 “{0}, then x ¢ L,n R, and let Y N RS =y, and

YZ(\L :yz.

Then RB = ylS and hence x = ylsl' Furthermore if e ¢ La' then

X = xe =y s e
i = e = i = =

Since sle € La Sy2 we have sl 52y2 and thus x ylsle ylszy2

{y.e ¥s, (e V.} = y. hy, , h =g s e ¢ H .
17a B 2 %%2 172 a&oz%% %%
Furthermore ¢ is one-to-one.

# ok %K

ES
For if ylhy2 = ylh y2 = X € Lu:! RB’ then since yl and y1 :oth in Y1
and both in RB' we have Yy = Yq» and dually since Y, and Yo both in
*
Y2 and both in LOl we Qave y2 = y2.
Moreover there exist elements s, and s_. such that e = 8.y, and
1 2 a B 171

(eIt e]
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a oBo V98- - N
Hence slylhy2 9 = sly h yz 9 =3 ea 8 oBo = “ 8 o 8 - h h
Furthermore y hy2 #0 and ¢ is a one-tOwone contlnuous mapping of S

onto 8 % {0}.
If we recall that S % {0} is compact, it follows that ¢ is topological.

2.3.8. Theorem. Let H be a compact topological group, and let
H = H U {0} be the group with zero arising from H by the

adjunction of a zero element 0.

let X1 and X2 be two compact Hausdorff spaces and ¢ a continuous

mapping of X2 " Xl into Ho, with ¢(x2,X1)r1 H # @ and

¢(X2,x1) noH Z for all x, € X, and x, € X,.

Dencte by (XI,H ,X2,¢) the space Xl x H x thﬁ {0} with a

multiplication defined by

* (v, hoy,,yon ,ye) if ¢(y,,y.) # 0
) = { yyohelyy,ydh y ) if ¢ly,,y,

* k3
(yl,h,yz)(yl.h Y o 1
0 if ¢(y2,y1) =0

and .0 = 0.5 = 0 for all s ¢ (Xl,HO,X2,¢)<
Then (Xl,HO,Xz,¢) is a compact O-simple mob.
The multiplication defined in (Xl,HO,X2,¢) is clearly continuous and
associative
Hence (X ¢) is a compact mob.
Now let (x Jh, %, ) and (x *,x Y} e X x H x Xz.

Choose an element y? € X such that ¢(y ,xl) ¢ H and an element yl g X

2 1

such that ¢(x ,yl) € H. Flnally let h and h2 be such that
h ¢(y ,x )h¢(x Yy )h = h

2 * *
Then (xl, 1,yz)(xl,h],x )(yl, 2,x ) = (x ,xz), .
Hence we have proved that (Xl,ﬂ ,X2,¢)s(X1,H ,X2,¢) = (Xl,H ,X2,¢)
for all s # 0.
Thus (xl,H°,x2?¢) is O-simple.

2.3.9. Theorem. A compact mob is O~simple if and only if it is

isomorphic with a mob (Xl,HO,X2,¢).
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Proof:

It follows from theorem 2.3.7 that if 8§ is O~simple $ is homeomorphic
i <<
with Y1 ® H“oeo % Y2 Y {0}, where Yi [ Lh and Y2 R
Now let n be the mapping of Y
n(yz,yl o6
Moreover N has the property that n(yz,Yl) n Ha 8 # {0} and

n{Yz,yl)rx H, g # 10} for ally
o O O
aOB ’

Bo
& {0}, defined by

o]
% ¥, into H
1 GnBg

2
) =y,y, € Ry L < H g U {0}

ob

Q
Y. .
2 £ Y2 and y1 € 1

Hénce (Yl,H Yz,n) is a compact O-simple mob.

o o
i : i = h d
Since the mapping ¢: S - (YI,HQOBO,Yz,n) with ¢(y1,h,y2) y by, an
${0) = O clearly is an algebraic isomorphism, we see that
o
S (Y, ,H Y nd.
1" B8, 2

"

The "if" part of the theorem follows from theorem 2 3.8.

2.4. Connected mobs

2.4.1. lemma. If 8 is a connected mob, then each minimal (left, right)
ideal of 8§ is connected.
Let L be a minimal left ideal of 8§, then for any a ¢ L, Sa = L, and
hence L is connected.
If X is the minimal ideal of S, then K = 8a$§ for each a ¢ K.
Hence X = UJ {Sas | s ¢ S}.
¢} @
Since each SasOs is connected and meets the connected set aaS, it

follows that K is connected.

2.4.2. femma. If S is a connected mob, then each ideal of S is
connected, provided S has a left or right unit.
Let I be an ideal of 8. Then I = \J Sx, if S contains a left unit.

® €l
Since each Sx meets a8 with a € I, we have that I is connected.

Example:
Let 8 = {{x,y) |0 <% <1, 0 <y <1} with the usual topology.
For {xl,yl) and (xz,yz) € S define the product (xl,yl).(xz,yz) to be



76

(O,ylyz).
Then S is a compact connected commutative mob.
let I = {(x,y) | x=0,1, 0 <y <1}.
*
And T = {(x,y) |0 <x <}, §<x<1,0<y <1l
E3

Then I is a disconnected closed ideal, and I is a disconnected open

i

i

fA

ideal.

2.4.3. Theorem. If S is a connected mob and I an ideal of S, then one
and only one component of I is an ideal of S.

Let I* = SI W IS. Then I* is connected and the component of I which

contains I*.is an ideal of S.

Furthermore it is readily seen, that this is the only component of §

which is an ideal. We will call this ideal, the component ideal of I.

2.4.4. Lemma. Let S be a compact connected mob and U a proper open
subset of S with JO(U) # 8.
Let CO be the component ideal of JO(U), then Co intersects UNU.

Proof:

if Eo!% i} N U =@, then Eo<: U, and since Eo is an ideal, we have

C0 Ll JO(U) and Co = Co'

Furthermore JO(U) is open and we can find an open set V, with

Co [ A JO(U). Since C0 is a component of the compact set V of the

connected set 8, we have Colﬁ N # @ a contradiction.

Corollary. Let S be a compact connected mob and F a closed subset of
S N\ K with the property that if Fn I # @, then F ¢ I for any ideal I
of S. Then if C is the component of S \ F which contains X, then
F=CN\C.

Since C is closed in 8 \ F we have Cn S \ F = C, hence F D T\ C.
Furthermore it follows from 2.4.4 that if CO is the component ideal
of JO(S \ F), then X C C0 and C0 intersects (SN F) N (S\F) < F,
Hence F < Co o C.
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Since FM C = ¢ we have FC C N\ C.

2.4.5. Theorem. Let S be a compact connected mob, and e ¢ E \ K.
If C is the component of S \ H{e) which contains K, then
H(e) = C \ C.
This follows immediately from the preceding corollary, if we take
F = H{e), and from the fact that if H{e) m I # @, then H{e)e 1 for
any ideal I of S.

It follows from theorem 2.4.5 that if S is a compact connected mob,

then H{e), with e € E %4 K can contain no inner points.

2.4.6. Theorem. Let S be a compact connected mob. If K is not the
cartesian product of two non-degenerate connected sets, then
either K is a group or the multiplication in K is of type {(a)
or {(b).

{a) Xy = X all %,y € K.

(b) =xy all x,y € K.

i
B

From theorem 1.2.9 it follows that K is homeomorphic to

{Se n E} x H{e) x {eS n E}, and since K is connected, each of H{e},
{Se v E) and (eS » E} must be connected.

Hence at least two of the factors must consist of single elements.
If eSn E
If eSNE

i

Se N E = e, then K = eSe = H{e) a group.

i

eSe = e, then K = Se, and if %,y € K we have xy = {xe){ve) =
x{eye) = xe = x.

If Sern E = e8e = e, then the multiplication is of type (b).

Corollary. Let S be a compact connected mob. If K contains a cutpoint,
then the multiplication in K is of type {a) or {(b).
If K contains a cutpoint, then K is not the cartesian product of two

non-degenerate connected sets.
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Hence from 2.4.6 it follows that K is a group or the multiplication is
of type (a) or (b).
Since a compact connected group contains no cutpoints, the corollary

follows.

2.4.7. Theorem. Let S be a compact connected mob, with 82 = S.

Then each maximal proper ideal J is connected.
Let a ¢ S\ J, then J = JO(S N\ {a}) and if CO is the component ideal
of J, then a gvpo.
Since 'c'o U §7{¥'an ideal of S, we have Eo UJd=Sand S\ Jc '60 \c.
Furthermorg we know that SJ U JS is connected and CO ~n (SJ UJS) £ ¢
hence JS U SJ ¢ C .

2 N 2 - o
Since S8° = S, we have S = (S \NJ UJIS C CO. Hence C0 = 8.

Since C0 < Jc Eo, we have J connected.
Definition. A clan is a compact connected mob with a unit element.
2.4.8. Lemma. Let B be the solid unit ball in Euclidian n-space and

let f be a continuous mapping of B into itself, such that

|x~£(x)] < % for all x € B. Then 0 ¢ £(B).

Proof:
Let x = (xl,.._,xn), f(x) = (fl(x),...,fn(x)).
We now consider the mapping h(x) = (xl,...,xn) - (fl(x),...,fn(x)).

This mapping transforms the ball Ix] < } into itself and hence by
* *
Brouwers fixed point theorem there is a point x for which hi(x )} = x ,

* * * * * * *
ie, (x,,...,x ) = (x,,...,x ) - (£ (x),...,f (x)). Hence £f(x ) = 0.
1 n 1 n 1 n

2.4.9. Theorem. Let S be a mob with unit element u having a ¥uclidean
neighbourhood U of u.
Then H{(u) is an open subset of S and is a Lie=-group.

We identify U with E -and let Fg = {x | Ju-x| < €}.

Since the multiplication on Fa is uniformly continuous there is a §
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such that |x-xy| < v x-yx| o< ; » whenever |u-y| < 8.

€

£

2

By lemma 2.4.8 u ¢ ng and u € yFe, hence y has an inverse y in F
y- is continuous.

and the mapping y -+
Therefore H{u) is a topological group and since it contains an open
set, it must be open in 8.

Furthermore H{u)} is locally Euclidean and hence a Lie-group.

Corollary. If 8 is a clan having a Euclidean neighbourhocod of the
identity, then 8 is a Lie-group.
By theorem 2.4.9 H{u) is open. Furthermore H{u) is closed since § is

compact, and hence H{u) must be all of 8.

Thus if & is a clan and S8 is an n-~sphere, then S is a topological group
and hence n=0,1 or 3.
In general a compact manifold which admits a continuous associative

multiplication with identity, must be a group.

Corollary. Let S be a clan and F a closed subset of S, such that S 4\ F
is locally Buclidean. Then either S is a group or H{u) € ¥,

it h ¢ H{u) and h £ F. Then h has a Euclidean neighbourhood V. Since
hwlv is a Buclidean neighbourhood of u, it follows from the preceding
corellary that 8§ is a group.

In case § is a subset of Buclidean space, then it follows that

H{u) ¢ boundary of 8§ or S a topological group

if 8§ contains interior points, then it cannot be a group and we have

H{u)} ¢ boundary of 8.

Definition. A subset C of a space ¥ is a C-set provided that C # X and
if M is a continuum with C A M # @, then M C or C € M.

It can easily be shown that if C is a C-set of a compact connected
Hausdorff space then the interior of C is empty and C is connected.

For let % be an interior point of C, then there is an open set V
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with x e Ve Ve C.

Now let y € X \ C. Then the component M of y in X \ V has a non-empty
intersection with the boundary of X \ Vc V.

Hence M is a continuum with M A C # @ and C ¢ M, M & C.

Suppose now C = C, U C with C, and C_, both open and closed in C and

1 2’ 1 2

C1 N C2 = @. Then if x € Cz, there is an open set V in X such that

x €V, VA C, = . Hence there is an open set U such that x € Uc Uev.

1

If M is the component of y € C, ifi ¥ \ U, then M has a non-empty inter-

section with the boundary of Xl\ Uc U.

Since y € M and x § M, we have M ¢ C and hence there is a point x* of
Cz-in M. Since M is connected this is a contradiction and it follows
that C is connected.

2.4.10. Theorem. Let G be a compact Lie-group which acts on a
completely regular space X. Let p € X such that g(p) # p
unless g is the identity; g € G.
Then there exists a closed neighbourhood N of p and a closed
subset C of N, such that the orbit of every point of N has
exactly one point in common with C.

See Gleason: Proc. Amer. Math. Soc. 1, 1950, p.p. 35-43.

2.4.11. Lemma. Let G be a compact group and let U be an open neighbour-
hood of the identity.
Then U contains an invariant subgroup H of G, such that G / H
is a Lie-group.

See Montgomery-Zippin: Topological transformation groups, p. 99.

2.4.12. Theorem. Let S be a clan, S no group and G a compact invariant
subgroup of H{u) = H, such that H / G is a Lie-group.
Then S contains a continuum M, such that M meets H and the

complement of H, and such that u e M 0 H C G.
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We can consider H as a transformation group acting on S.

let H' = H / G and 8' the space of orbits of G. Then H' is a compact
Lie-group acting on S'.

By theorem 2.4.10 there exists a closed neighbourhood N of u' = uG and
a closed set C € N such that nH'n C is a single point for each n ¢ N,
Now let S" be the space of orbits under H. Then we have the following
canonical mappings a: 8 + 8', p: §' + 8", y: 8§ » 8", with y = Ba.
Since 0o and Y are open maps, p is also open.

Let N° be the interior of N, then bNo is open and p{u') ¢ B(No).

Let P be the component of p{(N) which contains p{u'}.

Then P meets the boundary of p(N) and hence P is non-degenerate.

Now let n* = | C. Then since nH' N C is a ‘single point for each

n e N, it follows that p* is a homeomorphism between C and H(N).
b*ul(P) is a continuum which meets H' only at C M H' and hence b*“l(P}
also meets the complement of H'.

Now let K be a component of umlt*—l(P). Since « is an open mapping,

we have a(K) = b*nl(P). Hence X is a continuum which meets H and the
complement of H and K" H < u-l(c), where ¢ = C N H'.

Now let h ¢ K nmH, then X n H € hG. Suppose now M = hmlx, then
ueteMnHand M HCG.

If k € XK and k ¢ H, then hglk e M, h*lk ¢ H, since 8 \ H is an ideal
of S, q.e.d.

2.4.13. Theorem. Let S be a clan which is no group.

Then the identity u of S belongs to no non-trivial C-set.
Let u ¢ C, with C a C~set. We first prove C < H{u).
If x £ C, then since xS is a continuum which meets C, we have C « %8
or x8 € C.
If u € x8 ~ Sx, then x has an inverse and is thus included in H{u).
Now let u ¢ xS, then x8 <« C; %8 # C and there is an open set V with
®¥BCV;, CNY #£ 8.

Since xK ¢« K we have K n C # ¢. If u ¢ X, then S is a group, hence
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u ¢ K which implies K< C.

Now we can find an open set W, with x ¢ W, WS < V.

Since C contains no inner points, there exists a y ¢ W \ C with
yS « V. Clearly yS is a continuum which meets both C and S \ C and
C ¢ yS,a contradiction.

Hence u ¢ xS and u ¢ Sx and thus x ¢ H{u) which implies C < H{u).
Now let U be a neighbourhood of u such that C ¢ U.

By lemma 2.4.11 there is a subgroup G € U such that H / G is a Lie~
group and C & G.

Theorem 2.4.12 implies the existence of a continuum M such that
u e Mn HCG and such that M meets the complement of H. Hence

M AN C # ¢ and since C <« H, M meets the complement of C. Thus C ¢ M.

However, M N H « G and C ¢« G, which implies C & M,a contradiction.

Example:
Let A = {(x,y) | vy = sin i , 0 <x <1},
B = {(2-x,y) | (x,y) ¢ A} ,

c =10,y v 2y | -12y=1},
and let S = A w B u C.
We will show that S does not admit the structure of a clan.
For suppose that S is a clan. Since S is not homogeneous, S cannot be
a topological group and hence S # H(u).
Then 8 \ H{u) = J # @ is the maximal proper ideal of S. Since J is
open, dense and connected, we have A U B € J and hence u ¢ C. But

since C is the union of two C-sets u cannot be in C.

2.4.14. lemma. Let S be a clan and C a non-trivial C-set of S.
iIf g is an idempotent with g ¢ K, then g ¢ C.
Proof:
Suppose g € C. Since gSg is a continuum we have C < gSg or gSg « C.
g is the identity of the clan gSg and gSg is not a group since g ¢ K.
Hence theorem 2.4.13 implies that C & gSg.
Now suppose gSg < C. ?hen KNnC# @ and since g e C, C \K # @. Let U
and V be neighbourhoods of K with SK = K< U« T V, while g ¢ V.
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Since S is compact, there is a neighbourhood W of K such that SW < U.
SW is a continuum and hence SW € C. Furthermore W < SW and this would

imply that C contains inner points, a contradiction.

2.4.15. Theorem. Let S be a clan and C a non-trivial C-set of 8§,
then C < X.

From the proof of the preceding lemma it follows that if K n C # @,

then C C X.

Suppose now C MK = @ and let x ¢ C and U a neighbourhood of x with

C-\NU#4@.

et e be a minimal member of the partial ordered set E with xe = x.

e exists since Ex = {e | e2 = e, Xe = %} 1is non-empty and compact.

Furthermore e £ K, since x ¢ K.

Hence H{e) # eSe and we can find a neighbourhood V of e such that

xV « U and a continuum M € eSe such that e ¢ M € V and

M {eSe \H{e)} # @#. Since x ¢ xM we have xM « C.

Let m ¢ M n {eSe \ H{e)}, then C ¢ xSm. This implies that x = Xs_ m =

xes,em = xp, with p ¢ {eSe \2H(e)}, since eSe \ H(e) is an ideallof
eSe. Hence x = xf with £ = f ¢ ['(p) € eSe and thus ef = fe = f, i.e.
f < e. But since e is minimal we have f = e.

Furthermore pe = p = ep and thus pf = p = pf, which implies

p € H{f} = H{e) a contradiction.

2.4.16. Theorem. If $ is a clan and if K is a C-set, then K is a
maximal subgroup of S.

If 8 = K, then S is a group and the result follows.

If S # K, then K has no interior point since K is a C-set.

—Pe,

Let {aA | A & A} be a directed set of points of S\ K with ay

2
where € = e £ K.

Since K n aAS # 6, K I‘BSaA # @ and a, € aAS s SaA we have K < axs (¥SaA.
Hence X © eS8 ¢ Se = eSe. But since e ¢ K implies H{e) = eSe we see

that K = H{e).
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2.4.17. Theorem. If a clan is an indecomposable continuum, it is a
group.

If S = K, then S is a group.

Suppose now S # K. Then there exists an open set V with K« Ve v # 5.

Let Jb(V) be the maximal ideal of S contained in V, then JO(V) is open

and connected, anqm§ cJ (V) JO(V) # S.

Since S = EZTVT v S\ 3;?77 and S is indecomposable we have S \ EETVY

not connected.

Let S\ J (V) =AUB, ANB =0, A, B open.

Then we have JO(V)tI A connected and JO(V) U B connected and hence §

not indecomposable, a contradiction.

2.5. I-semigroups

Definition. Let J = [a,b] denote a closed interval on the real line.
If J is a mob such that a acts as a zero-element and b as an identity,
then J will be called an I-semigroup.

We will identify J usually with [O,l], so that Ox = x0 = 0 and

Ix = x1 = x for all x v J.

Example:
Jl = [0,1] under the usual multiplication.
J, = [4,1] with multiplication defined by xeoy = max (},xy), where xy

denotes the usual multiplication of real numbers.
J, = [0,1] with multiplication defined by xoy = min (x,y).
J1 and Jz have just the two idempotents zero and identity, but in J
every element is an idempotent.

3

Furthermore every non-idempotent element in J, is algebraically nil~

2

n
potent, i.e. for every x € J2 there exists an n such that x is equal

to zero.

2.5.1. Lemma. If J is an I-semigroup, J = [0,1], then xJ = Jx = [0,x]
for all x € J.
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Proof:
Since xJ is connected and 0,x € xJ we have [O,X] e xd, and by the
same argument Jx [O,X].
J ([O,X)) = J 1s open and connected and hence x € J and § an ideal
o o _ _ o o
of J. Hence Jx < J§_< § ¢ [0,x] and xJ < [0,x].
o o
Thus xJ = Jx = [0,x].

Corollary. If J is an I~-semigroup, then x X y and w < v implies xw < yv.
Since x £ y there is a =z such that x = zy. Hence xw = z{yw) < yw.
In the same way we can prove yw = yv and thus xw < yv.
2.5.2. Theorem. If J is an I-semigroup with just the two idempotents
0 and 1 and with no {(algebraically) nilpotent elements, then J
is isomorphic to Jl
Proof:
We first show that if xy = xz # 0, then y = =z.
Assume y < 2. Then by lemma 2.5.1 there is a w such that y = zw.
Hence xy = xzw = xyw and thus xy = (xy)wn for every n=1,2,...
Thus xy = {xy)e with e = e2 e M{w).
Since 1 £ ['{w), we have e = 0 and thus xy = 0,a contradiction.
We now prove that if x # 0, then x has a unigue square root.
The function f: J » J defined by f(x) = x2 is continuous and leaves 0
and 1 fixed. Hence f is a map of J onto J so that square roots exist
for every element.
Assume 32 = bz # 0 and let a < b. Then by lemma 2.5.1 az < ab < bz

2
and ab = a which implies a b.

This establishes that for x # 0, x has a unique square root and by

n
induction that x has unique 2 ~th roots.
p

Let xn be the Zn-th root of x # 0 and for r = p / 2" define x5 = xn.

. r s r+s .
Then it is easy to prove that x x = x , where r,s are positive

s
dyadic rationals. Furthermore if r <« s, then xr > x . For by lemma

s res o
x , then x = 1,a contradiction.

2.5.1 xr 2 x° and if_xr

This implies that lim x = 1. For since x_ < X , lim x  exists.
n n n+l n



86

Assume lim x =y # 1.
i )
Then since y - 0, there is an no such that y < X,
Hence y < Xn , a contradiction.
0
Now let D = {xr | r a positive dyadic rational}.
Then D is a commutative submob of J and D = J.
Assume D # J. Then there is an open interval P ¢ J \ E, P = (a,b) and
b € D.
Now since x, > 1, xnb + b and xnb < b by lemma 2.5.1.
If xnb = b, then xn = 1, a contradiction. Hence xnb < b and xnb e P
for n sufficiently large.
Since b ¢ D and xl € B, we have x b ¢ B,a contradiction, and thus D= J.
¥ n r
! b

g{D) is dense in J1 and g is one~to-one continuous and order preser-

Now let g: D ~ J, be defined by g(xr)

i

ving.

Hence g can be extended to a topological isomorphism of J onto Jl'

2.5.3. Theorem. If J is an I-semigroup with just the two idempotents
0 and 1 and with at least one nilpotent element, then J is
isomorphic to Jl.
Let d = sup {x l xz = 0}. Then d # 0, for let y # 0 be nilpotent, then
yn = 0, ynm1 # 0 for some n > 1.

-1, 2
Clearly (yn l) = 0. Hence d j_yn

-1
As was shown in theorem 2.5.2, d has a unique 2n~th root, and if r and
s are positive dyadic rationals, then dr < dS if r > s and dS # 0,
and d'da° = a""%,

Now let D = {dr] r a positive dyadic rational}. Then by the same type
of argument used in the proof of theorem 2.5.2 we can prove that D = J.
We define g: D =+ Jz by g(dr) = (fl)r. Then g is one~to-one and
continuous and is an isomorphism.

Moreover g(D) is dense in J_ and since g is order preserving it can be

2

extended to an isomorphism of J onto JZ'
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2.5.4. Theorem. Let J be an I-semigroup. Then E is closed and if
e,f € E, then ef = min (e, f).
The complement of E is the union of disjoint intervals. Let P
be the closure of one of these. Then P is isomorphic to either
J1 or J2. Furthermore if x € P, y ¢ P, then xy = min {(x,y).
let e,f ¢ E, e < £f. Then by lemma 2.5.1 ee < ef and thus e < ef.
Since ef < e we have e = ef.
Now let @ = [e,f]. Then for any (x,y) ¢ [e,f] we have ee < xy < ff.
Hence Q is a submob of J.
Furthermore if e < x, then e > ex > ee = ¢ and hence ex = e. In other
words e acts as a zero for [e,l].
If x < f, then x = fy and thus fx = x, which implies that f acts as
an identity for {O,f].
So we have in particular P an l-semigroup with only two idempotents
and hence P is isomorphic either to Jl or J2'
Ifx € P, y# P, x <y then there is an e ¢ E with x < e < y.

Hence xy = {(xe)y = x{ey) = xe = x.
From theorem 2.5.4 it follows that every I-semigroup is commutative.

2.5.5. Theorem. Let S be the closed interval [a,b]. If % is a mob
such that a and b are idempotents and 8§ contains no other
idempotents, then S is abelian.

let e € E n K. Then € = a or b. Since S has the fixed point property

K € E. Furthermore K is connected and thus K = a or K = b.

If X = a, then a is a zero for S and g an identity since g8 = Sg = 8.

Thus § is an I-semigroup and hence abelian.

2.5.6. Theorem. Let S be the closed interval [a,b]. If § is a clan
such that both a and b are idempotents, then S is abelian if

and only if S has a zero.
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Let S be commutative. Then K is a group and since S has the fixed
point property, we see that K consists of only one element, a zero.
Now let S have a zero. If either a or b is the zero element, then the
other is obviously a unit and the result follows from theorem 2.5.4.
Now let a < 0 < b. Then S' = [a,Q] is a submob of S. For suppose there
exist x,y € S' with xy ¢ (O,b]. Then since a acts as a unit on §', we
have [x,xy] [ x[a,y].

Hence there is an s ¢ [a,y] with xs* = 0.

Since [s*,OJ € s*S' we have y = s*q and xy = xs*q = 0, a contradiction.
In the same way we can prove that 8" = [O,b] is a submob of 8 and both
S' and S are commutative since they are I-semigroups.

It also follows that the unit of S is either a or b.

Suppose b is the unit element. Then, in the same way as above, we can

prove that a8" = §"a = [O,a].

Hence if x" € 8", then ax' = y"a = (y"a)a = a{x"a) = a(az") = az" =
x"'a.

Furthermore if x' € S' and x" ¢ 8", then x'x" = (x'a)x" = x'{ax") =
(ax")x' = (x"a)x' = x"'x'

2.5.7. Theorem. Let S$ be the closed interval [a,bj. if S is a mob
such that a and b are idempotents, then S is abelian if and
only if S has a zero and ab = ba.

If S is commutative, S has a zero by the same argument as in theorem

2.5.6 and obviously ab = ba.

Now let S have a zero and let ab = ba. Then again the result follows

if either a or b is a zero.

If a <0 < b, then 8' = Ea,O] and S" {O,b] are abelian submobs of S.

H

Suppose now ab € 5', then bS' = baS’ abS' = [ab,O] = 8'b by lemma

i

2.5.1, Hence bS = 8b = [ab,b] and [ab,b] is an abelian submob by
theorem 2.5.6.
To prove the theorem.it suffices to show that if x ¢ [a,ab] and

y £ [ab,b] then Xy = yx.
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Now xy = (xa){(by) = (xab)y and xab ¢ [ab,O].
Hence (xab)y = y(xab) = y(xb) = (yb){(xb) = y{bxb) = ybbx = yx.

2.6. Interval mobs with 82 = 8

In what follows S will always be a mob on an interval [a,b]. The kernel
of 8 is connected and hence either a point or an interval. We will
assume that kl is the left hand endpoint of X and k2 the right hand
endpoint.

Furthermore K consists of either all left zeroes or all right zeroes

of 8. By passing to the product-dual of S if necessary, we can assume
that the former is the case.

Throughout this paragraph, K will consist of all left zeroes of S.

Let A be the interval [a,k ] and B the interval [k,,b].

Then we have the following diagram for S.

A K B

Definition. Let T be a submob of S. A mapping f of T into S will be

called left invariant if f(xl) = f(xz), xl,x ¢ T, implies

2

f(txl) = f(txz) for all t ¢ T.

Notice that for instance all right translations oa: X -+ %a, x £ T,
a € 8, are left invariant.

Furthermore all homomorphic mappings of T into S are left invariant

and also all one~to-one mappings.

2.6.1. Lemma. Let S be an interval mob and let T = [O,u] be an
I-semigroup contained in S.
Let £f: T » S be a continuous left invariant mapping.
Then for t e T, either £ ~(£(t)) = {x | £(x) = £()} = {t}
or f~l(f(t)) is an interval submob [e,t*] with e2 = e.

Hence f is a continuous monotone mapping of T into S.
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Define an order relation in T by x < y if x ¢ [O,y] and suppose

fi(x) = £(t), x # t.

Let e = inf {x | f(x) = £(t), x € T} and t* = sup {x| f(x)= £(t), x€ T}.
Since f is continuous we have f(e) = f(t*) = f(t).

From 2.5.4 it follows that either et* = e or e,t* both contained in a
submob P = [el,ez] which is isomorphic to either Jl or J2.

If et* = e, then f(t*) = f(e) implies f(et*) = f(e?) = f(e). Since

e2 « e it follows that e2 = e.

*
In the other case there exists a p € P such that e = pt

* * n ¥ *
Thus f(e) = f(pt ) = f(t ) and we have f{(p t ) = f(t }.

* *

Since pn -+ el the continuity of f implies that f(elt ) = £(t ) = f(e).
But elt = e1 and e, < e, so we have e1 = e and e = ez.

* * *

Now for any x € [e,t J, x = qt for some q ¥ e, and since f{e) = f(t )

it

E3
f{qt ) = f(e).
- ®
This shows that f 1(f('t)) = [e,t ] and hence f is monotone.

we have f{(qe)

It follows from the above lemma that each continuous left invariant
mapping of T determines a partition of T into disjoint closed inter-
vals, such that the lower endpoint of cach non~degenerate interval is

an idempotent.

2.6.2. Lemma. Let S be an interval mob and T an I-mob contained in S.
Let f be a continuous left invariant mapping of T into S.
Let g: T x £(T) - f(T) be given by g{(x,y) = £ (xf—l(y))
and h: £(T) x £{(T) - £(T) by h(x,y) = £ (f—l(x)fnl(Y))-
Then g and h are well defined and continuous.

Proof:

Let y' and y" € fﬁl(y) and x € T, then f(y') £{y'") and hence
flxy') = f(xy'").

Iif z' and z" € fnl(z) then f(z'y') = f(z'y'") = f(y"2'} = £(y"z2") =
£(z"y"), since T is abelian and f left invariant. Hence h and g are
well defined. .

-1
Now let U be a neighbourhood of h{x,y). Since f is continuous f ~{U}
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is open and by continuity of multiplication in T, we have open inter-
* * - - # % -1
vals V and W containing f 1(x) and f 1(y) with VW ¢ £ (U).
-1 * -1 * *
Let f (xl = [el,x ] and f (y)*: {ez,y ] and let*xl,x2 eV,
yl,y2 £ W with x14< el, x2 > X, y1.< ez, yz Sy
Then f(x;) # £(x) # f(x,) and {(y;) # £(y) # f(yz).
Since f is monotone we have f(xl) # f(xz) and f(yl) # f(yz).
Now let V be the open interval (f(xl),f(xz)) and W the open interval
(£(y,),£(5,)) .
1 2 -1 -l * %
Then x € V, y ¢ Wand h(V x W) = £t (W& W) e t{vw ) <
7w = v

In the same way we prove that g is continuous.

Now let S be an interval mob [a,b] with 82 = 8. Then either 8 = X or
S contains a maximal proper ideal M such that S / M is a completely
O-simple semigroup.

Since each maximal proper ideal is connected we have the following

4 cases.

2
2.6.3. Lemma. Let S be an interval mob [a,b] with 8§ = 8. Then one of
the following cases holds:
1} S = K and the multiplication is trivial.

2) 8 contains exactly one maximal ideal M = (a,b).

. . 2
Then either 1) az =a, b =a, ab = ba = b {or dually

2 2 2 2

a b, b~ = b, ab = ba = a}, or ii} a~ = a, b" = b, ab = a,

H

ba = b {or dually ab = b, ba = a}.
3) S8 contgins exa;tly two maximal ideals M1 = [a,b), M2 = (a,b].
Then a = a, b = b and b # ab ¥ a, b # ba # a.
4) 8 contains exactly one maximal ideal M = (a,b].
Then a2 = a and a is a left or right unit for S.
Furthermore ab # a # ba, b2 # a (or dually M = [a,b) e )
Since each maximal ideal of 5 is connected and dense in S, the
maximal ideals in S can only be {a,b}, (a,b] and [a,b) and we can only

have the four cases mentioned.
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If M = (a,b), then S / M = {0,a,b} is completely O-simple and hence

S / M a group with zero or S / M left (right) O-simple.

Thus a2 = a, b2 = a, ab = ba = b or az = a, b2 = b, ab = a, ba = b.

If M = (a,b] is the only maximal ideal, then § / M = {0,a} and az = a.
Furthermere b € SaS8 = SaaS.

If both Sa # S and aS # S, then we have for instance aS € Sa and

SaaS <€ SaSa <« Sa, a contradiction.

Hence we have either Sa = S or aS = § and thus a a left or right
unit. Furthermore a £ Ma and a £ aM, hence ba #¥ a # ab.

Case 3 follows analogously.

Lét S be [—1,1] with the usual multiplication of real numbers. Then 8

belongs to case 2i).

X
If we define a multiplication by xey = l;Ixy then S belongs to
case 2ii).
x J x
If we define a multiplication by Xe.y = max (|xj[y|,0) | x| xy then

S belongs to case 3).

If S = [0,1] with the usual multiplication, then S belongs to case 4).

2.6.4, Lemma. Let S = [a,b] be any interval mob with a < k_ < k < b

1 2

and let a = 32. Then A = [a,kl] is an I-semigroup.
Since akl,kla € K we have [a,k1]<: Aa N aA and hence a is an identity
for A.
Now let x,y ¢ A and suppose xy ¢ A. Then kl € [x,xy] < x[a,y] and
k1 = xt, with t ¢ [a,y]. We also have y ¢ [t,kl] < t{a,kll and hence
y = tr with r € A.
Thus xy = xtr = klr = ko € K.
Since kl € [y,xy] c,[a,x]y we have kl = t'y, t' ¢ [a,x], and
X € ft',kl] < [a,kl]t' which implies x = r't', r' € A.
Hence xy = r't'y = r'k1 = ko'
Thus ko = klr = r'k1 and kok1 = kO = klko' This implies that ko = k
i.e. xy € A.

1’

Since k1 is a zero element for A, A is an I-semigroup.
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2.6.5. Theorem. Let S = [a,b] be any interval [a,b] with a < 0 < b.

Let A = [a,O] be any I-semigroup and f a homeomorphism of A

onto B = [0,b] with £(0) = 0.

Define a multiplication ¢ on S as follows:

Xey = Xy, UaV = f_l(u)fml(v), Kot = Use X = f(xf_l(u}),

X,y € A, u,v € B.

Then (S,e¢) is a mob belonging to case 2i) and each such mob

can be so constructed.
Let m: S x § + 8 be defined by m(slgsz) = slo sz. -
m-is well defined since m(0,s) = Oes = 0s = £71(0)s = sf " (0) = m(s,0).
m is continuous sincem | A x A, m | Ax B, m | Bx A andm | Bx B are
continuous. Furthermore m is commutative and the associativity of m

follows from

(xoy)ou = £f{xyf ~(uw) f(xf”l(f(yfl(u)))) = xo(you).

(xeu)o v = f(xf-l(u))q v o= xf_liu)f_l(v) = xef{uev).

{uev)ow = (fwl(u)f—l(v))o w o= f(f_l(u)fuk(v}fml(w)) =uel{ve w),
Thus {S,¢) is an interval mob with a2 = a and b2 = ful(b)fﬁl(b) = u.
boa=£(t " (ba) = f(a) = b = acb.

Thus S belongs to case 2i).

Conversely if 8 is any interval mob [a,b] belonging to case 2i}, then

: b
a k1 kz

Since aS = Sa = 8, a is a unit element of S and lemma 2.6.4 implies

we have S = " N y with a < kl < k2 < b.

that A = {a,kll is an I-semigroup.
Let klkz = k;‘ The mapping f: x -+ bx, x € A is continuous and one-to-

. ‘ 2 2 . .
one, for if bxl = bx2 then b x1 = b xz, i.e. xl = Yy Furthermore

[k,,p] < bA. Hence k, = bx, x € A, and thus bk, = bxk =k =k,

Since £ is a monotone mapping we have bA = B = [kz,b}, and since

k,b = k;, [k ,b] < Ab. This implies that k, = xb with x € A. Hence

2
k2 = k2b = xb" = x and k1 = kz.

Theorem 2 5.7 implies that S is abel:ian and hence f is 2 homeomorphism

- ] -1 -
of A onto B with xu = ux = f(xf 1(u,) and uv = f {u)f l(v)°



94

Definition: An Ik—mob is an interval mob [a,k] with unit element a and
k e K.

It is clear that all I-semigroups are I -mobs with K = {0}.

k
Let S = [-1,1] and define a multiplication on S by xey = xy,

-Xey = =X, =Xe -y = =X, Xo¢ «y = =Xy, where x,y € {0,1] and xy is the
usual product of real numbers.

Then (8,¢) is an Ik-mob with non degenerate kernel [-1,0].

2.6.6. Lemma. let S = [a,kz] be any interval with a < kl < k2° Let
A = [a,kl] be an I-mob with unit a and f a continuous left
invariant mapping of A onto K = [kl,kz] with f(kl) =k
f(a) = kz.

1!

Define a multiplication ¢ on S§ as follows:

Xxey = xy, keSS = k, xek = f(xf-l(k)), x,y € A, k ¢ X.

Then (S,e) is an Ik—mob with kernel K and each such mob can be

so comstructed.
Let m: 8§ x § + § be defined by m(sl,sz) =s°s,. Then m is well
defined since m(k ,x) = k;x = k; and m(k ,k) = f(kl(f"lck))) = f(k
kl. o
Furthermore m(x,kl) = f(xf (kl)) = f(kl) = kl = xk1 and m(k,kl) = K.
Lemma 2.6.2 implies that m | A x K is continuous, m | A x A and

P =

m | K %x 8 are continuous and hence (S,o) is an interval mob.

Moreover K is clearly the kernel of S and a the identity.

If on the other hand [a,kz] is an Ik-mob, with K all left zeroes, then
A = [a,kl] is an I-semigroup and the mapping p : x » xk_ is clearly a

left invariant mapping of A onto K with xek = fk (Xp;l(k)).
2 2

2.6.7. Theorem. Let S = [a,b] with a < k <k
[a,ks] = A be an I

3 < k4 < kz < b and let

k—mob with kernel [kl’ks] consisting of all
left zeroes.
Let f be a homeomorphism of A onto B = [k4,b] with f(k3) =k

f(kl) =k

4'
f(a) = b and g a continuous mapping of [k K ]

2’ 3’74
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into [kl’k3] with g(ks) = g(k4) = k3_
Define a multiplication ¢ on S by:

-1 -1 -1
x 0%y = XXy, Yoy, = £(6T T (y), xey, = xE (),

yie %, = f(f_l(yl)xl) , kos =k, sek = seg(k),
X%, € A, ¥,y B, ke [k k]
Then S belongs to case 2ii) and each such mob can be so
constructed.

We first show that the multiplication m: 8 x § -+ §, m(sl,sz) = 8,0 8,y
is well defined.
Since k3 e K we have k3o s = k3, and since k3 € A we have k3° s =
L : [
kBS = k3 with s' € A.

On the other hand se k3 = 8 9g(k3) = se k3 and m is well defined for
k

3
Anai;gously we have for k4, since k4.c K, k4° s = k4 and k4o s =

f(f m{k4)s ) = f(ka) = k4 with s' € A and s:>k4 = Se g(k4) = sc:ks =
seof (k4).

Sincem [A xA, m [ BxB, m |[AxB, m |BxA, m |KxS§8 and

m l S x K are continuous, m is continuous.

Furthermore elementary calculations show that m is associative.
Thus 8 is an interval mob with az = a, b2 = f(fnl(b)fﬁl(b» = f{a) = b,
boa = f(aob) = f(af"l(b)) = b, aeb = a and S belongs to 2ii).
Conversely if 8 = [a,b] belongs to 2ii) then both [a,kl] and [kz,b]
are I-mobs. Furthermore [a,kl]c a[kz,b] and hence there exists an
X € [kz,b] with ax = k.

But then bax = bx = x = bk1 ¢ K, which implies x = k2 and akz = kl.
In the same way we may prove bkl = bak2 = bk2 = kz.

Now let aS = [a,ks] and bS = [k4,b].

< < i = d =
Then k1 < k3 and k_ < kz since ak k. an bkz k

4 1 1 2’

Furthermore if k4 < k3, there is an x < k4 with k4 < bx < k3 and we

have abx = bx = ax = x, a contradiction.

A
A

Hence k k. < k k. and A = [a,ks] is an I, -mob.

1= "3~ "4 - "2
The mapping f, : A > B = [k4,b] with f(x) = bx is one~to-one and

continuous, with f(kl) = kz.
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~1
f is onto since bA = baS = bS = B. Furthermore f ~(y) = ay.
Let g: [ky k] > [kl,ka] be defined by g(k) = ak.
Then g is continuous and g(ks) = g(k4) = k3'

We moreover have y_y, = b(ylyz) = (bayl)y2 = (bayla)y2 =

172
/-1 -1
(e G )
xy = xay = xf 1(y).
yx = bayx = b(ayx) = f(f—l(y)x).
ks = k, sk = (sa)k = s{ak) = sg(k).

Construction:

Let a < k1 < k2 < b. We define a collection of mobs we call S{c) with
c € (a,b) as follows:

1) k2 < ¢ < b.

Define a multiplication on [a,kl] = A and {c,b] = B, making them into
I-semigroups with identity elements respectively a and b.

Let 6 be an idempotent a < 0 < kl and f a left invariant mapping of A

t k_, ith f(k = k_, 0) = , f = C.
onto [ 1 c] wi ( 1) 1 £(0) k2 (a) c
Define a multiplication ¢ on S by
xlo x2 = xlxz ) , xl,x2 € A ,
Xj0y, = f(xlf W) Vy:Yg € [k .e]
xlo z1 = X o-; . , zl,z2 € B y
v, e X = £t (yl)x ), x* € [3,9] )
yy° x°0 = f(f_l(yl)ﬁ) , x° € [e,kL] )
° = o f—l( )
Y1099 =¥y y2 ’
V9o F =0 ¢ ’
z 0 S = C o S R
Z.oe Z_ 0=

1° %2 7 P1%
To verify that "o " is associative and well defined on § is mainly
routine and utilizes the associativity in A and B.
Thus S is a mob and it is straightforward to verify that a2 = a, bz =
boa =aeb = c.

Hence S belongs to case 3.
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2} a < ¢ < kl.
Then let a < ¢ < k1 < k3 < k5 < k6 < k4 < kz < d < b.
Let C = [C’kB] be an I, -mob with kernel [kl’k3] and f a homeomorphism

K
of Conto D = [k,,d] with £(c) = d, £(k)) = k,, £(kg) = k,.

Let gl be a continuous mapping of [ks,ke] intg [kl'ksj with

gl(ks) = k3, gl(ks) = k5 and g, 2 continuous mapping of [ks’kG] in
(kg k,] with gy(kg) = ki, g,(k.) = k,, such that

i) g (k) € [ky, k] if and only if g, (k) © [k.,x,],

6
i1) g,o(k) = fg (k)  if g (k) ¢ {kl,kS).

s

Now let § = [c,d] be the mob of class 2ii) with kernel [k ,k,|, such
- * ¢

that ¢§ =C, dS = D and
dx = f{x} if x € C ,
ck = ky if k € [1<3,k5] U [kﬁ,k4],
ck = cgl(k) if k € [ks,ks].
Let [a,c] = A and [d,b] = B be two I-mobs with identity elements a and
b respectively and h1 a continuous left invariant mapping of A onto
[kS’kB] with hl(a) = ks, hl(c) = k3 and h2 a left invariant mapping of
B onto [k4,k6] with h,(b) = kg, hz(d) =k,

Define a multiplication e on § = [a,b] by
%

X%o xz = x%xz if xl,x2 : A, xl,xz e B or xl,xz £ 3
s e x = 8§ if s*¥ €8, x€eAUB ,
X ey =coy
-1 * ) ,
x ok =h (xh] (0) p xch, yes VBN [k k], ke [kgok], ke [k k],
% o k' = X ogl(k')
x ey =dey
-l * ,
x ok =hy(xn () | xeB, yes uaN[kg k], ke [k k], ke [kﬁ,k6].
% e k' ::Xogz(k')
We again omit the proof that S is an interval mob with az = @, bz = b,

aeb = ¢, bea =d and that S belongs to case 3.

< <
3) kl <c = kz.
Then let kl 3 4 9

<c <k < d 2k, and let A = [a,k;] and B = [k,,b]
be two 1k~mobs with unit a and b and kernel [kl’ks] and £k4,k2

<k
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respectively.
Let fl be a continuous mapping of [k3,k4] into [ka’kl] with
fl(k3) = kg, fl(k4) = ¢ and fz a continuous mapping of [kS'k4] into

(k,.k,] with £,(k) = k,, £,(ky) = d.

Define a multiplication o on S by

xlo x2 = x1x2 if xl,x2 € A or xl,x2 € B,
X ey =XocC }

Vyox =yod x e A, vy € B,

k os =k

x ok = xf (k) x €A, yeB, ke [kyk,].
y'ok :yfz(k)

Then (S,o) is an interval mob belonging to case 3 with aeb = c,

boa = d.

2.6.8. Theorem. Let S = [a,b] be a mob belonging to case 3,
then S & S{c).

Proof:

2 2
Since a = a, b = b, we have [a,kl] = A and [kz,b] two I-semigroups.

Suppose now ¢ = ab € (kz,b).
Then k, = ak, and bab = ab, thus ba ¢ [k ,k,].

2 2

If ba € (a,kl), then kl 3 [kz,b]n which implies k., = xa, X ¢ [kz,b]‘

1

Hence klkz = xakz = xk2 = k2. Since kl is a left zero of S, we have

kl = k2 and by passing to the product dual of S we get the case

ab € (a,kl).
So we may assume ba € (kz,b) and bab = ab = ba = c.
2 2 2
Furthermore ¢ = abab = a b = ab = ¢ and hence [c,bl = B an I~semi=-

group.
Since Ab = [kl,c], we have k2 = xb, x € A.
Now let 6 = max {x ] x € A, xb = kz}, then 62 > 6 and sz = Okz =

R a2
6bk2 = k2 =k thus 0 = 07,

27

Moreover if x € [a,e] then xb € [kz,c], hence xb = bxb = bx and
b0 = 6b = kz.

Thus for all x' ¢ [S;kl] we have bx' = b0x' = k2 and the mapping

£ A - [kl,c] with f(x) = xb is a left invariant mapping with
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f(kl) =k,, £(8) = kz, f{a) = ¢, which satisfies the conditions of

11
construction 1}.
Suppose now ¢ = ab € (a,kl), then ab = aba and thus ba £ K.
If ba € (a,kl) we get the previous case by passing to the order dual
of §. Hence we may assume ba = d ¢ (k_,b).

2 2 2 2 *
Since ¢ = abab = ab = ¢, d =d, dc = d, cd = ¢ and [c,d] =8 is a
mob belonging to case 2ii).
Now let c8 = [c,kz], d8 = [k4,d] and suppose aS = [a,ks], b8 = [kG’b]'

Then k, 2k, <k, <k for if k5 = bk, = ak k, = ck, = dk_. and thus

3~ "5~ "6 = "4’ 5 5' 5 5 5
ky =k, = kg = k.
19k € [ky k], ky € [a,c]k and cky = k, € cfa,c]k = ck, hence

ey k] = kg
Analogously we have d[ks,k4] = k4 and c[k6,k4] = cd[ks,k4] = ck4 = k3,
dfig k] = k.

Consider the function gy: [ks,kﬁl + [kl’kS] and gy! [ks’kgj hd [ks,kzj,
defined by gl(k) = ak, gz(k) = bk.

1f ak ¢ [k,,kg], bak = dak = dbk = k, and bk [k6,k4]‘

1f ak ¢ [k ,kp), bak = dak ¢ [k,,k,) and bk = dk = bak.

By defining hy: [a,c] » [ky,k;] and hy: [a,0] + [kg,k,] througn

hlix) = XRS'
that 8 € S{¢}, a <¢ <k

hz(y) = ykG, it is easy to complete the verification

X
Finally let kl e < kz,
If as = [a,k,], bS = [k,,b] and ba = d we have k

For if k = ak = bk, k = bak = abk = ba = ab.

1 cc < k3 < k4 :_d < k2'

a8 and bS are Ik—mobs with kernel [kl’k3] and [k4,k2] respectively.

?urthermore the mappings flz [k3’k4] -+ [kl,k3] and fzz [ks,k4] > [k4,k2]
with fl(k) = ak, fz(k) = bk, have the desired properties and it is

straightforward to verify that S e S{c¢}, k1 <c < kz.

Definition. Let Tl and 'I‘2 be submobs of an interval clan 5. Two

functions £ and g on Tl and T2 respectively are called comultiplicative

if and only if f(Tl) = g(Tz) and f(xl) = g(yl), f(xz) = g(yz), imply

f(xlxz) = g(ylyz) .

Suppose now T, = [a1,1] and T, = [az,l], a, =0 or $, a, =0 or %,
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isomorphic to either Jl or J2 and let f be a continuous left invariant
mapping of T1 into S with f_l[f(al)l = [al,r}, a, <r<i1, r#0.

Then we can construct to each s # 0, a_ < s < 1, a continuous left

invariant mapping g of T, into S such ihat g and f are comultiplicative
and such that g_l[g(az)] = [az,s].

For let g[az,s] = f[al,r] = f{r). Since g((/s)z) = f((/r)z) we must
have g(/s) = £(¥/r) and thus g(sp/zn) = f(rp/zn).

Since the set (sp/2n | p=0,1,...;n=1,2,...} is dense in [s,l] and g is

p/2n p/2"

order preserving with g{s } = f{r } dense in f(Tl), we can extend

g to a continuous function of T, onto f(Tl).

2
Moreover it is clear that each g is completely defined by the set

-1
g [ga,)].
If r = 0 then f is a one~to-one mapping of [0,1] into S and we can
find a comultiplicative continuous left invariant function g if and
only if T2 is isomorphic to Jl.
In this case g must be one-to-one and g is completely defined by the
condition f(x) = g(y), x ¢ Tl' 0 <x <1,y c¢ T2, 0 <y < 1.
Now let A be any I-semigroup, A C S, and let P be the set of all sub-
semigroups [eal,eaz] of A with [eal,eazjisomorphic either to J1 or Jz.
Let f be a continuous left invariant mapping of A into S and let

@

P = {[ea ey ] I [ea ey ] <P, fle ) # fle, ) 1.

f 1 %2 1. 02 1 2
Let E be the set of all idempotents of A.

2.6.9. Lemma. Let g be a continuous monotone mapping of A onto f(A)

such that

1) g(E) = £(E).

2) 1if [e e ] € P., then there is a [e‘ ,e ] € P with

oy’ e f B8 82
g(eel) = f eal), g(eB ) = f(eaz), such that g | [esl,eez]

and f I [e ,€ ] are comultiplicative.
%1 O
Then g is a left invariant mapping with f and g comultiplicative.
Conversely, every left invariant mapping g with f and g comulti-

plicative satisfies condition 1) and 2).
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Proof:

Let g satisfy the conditions of the lemma. Define an order relation in

A such thi: xlxz < X, for all X oKy E A.

Now let g (g(x)) # x and let y = inf {z | g(z) = g(x)}.

Suppose v £ E. Then y € [el,e ] e P and g(e Y # gly).

Hence there is a [ 1,e2] £ Pf with f(e ) = g(e ¥, f(e } o= g(e }, and
[e:,e*], g | [ €y 2] comultiplicatlve.

If gly) = g(e ) = f(e*) then g(yn) = f(eZ) = g{y)} hence gly) = g(el).

Now let z € [ 1 ;] with f{z) = gly) = g{x), z « ey

Since x$> y, we hav: V4 =*xt with y 2 ¢t < e, .

Let £{z ) = g(t), z <e,, then g(y) : gi{xt) = f{zz i = f{z}.

But since zz < z we have g(y) = f{zz )} = f(z) = f(el) = gley).

Hence g_l(g(x)) = {x} or g—l(g(x)) = [e,x*] and g is left invariant.

Now let g{x) ¢ f{E) and let g{(x) = f{y). Then there exist ey and e, € B

with g{x) = g(el) = f(ez) = £{y}.

if g(xl) = f(yl) and % 2 e, then Yy > e,

gle x)) = gle)) = fley)) = fleyy)) = flyy,).

and g(xxl) = g(elxl) = g(xl) = f(yl)

it

and we have g(xxl)

if x L€, then y, e
tly,e,) = flyy).
1f g{x) £ £(E) and g(x) = £{y), then x ¢ [el,ezl < P and

% ) * #
y € [el,e2] [ Pf with g(el)._ f(el), g(ez) = f(ez). .
Furthermore g and f are comultiplicative on [el,ezj and [el,ez].

2

®
Now let g(xl) = f(yl) with %, 2 ey then v, 2 e, and g(xlx) = g{x) =
f(y) = £y, v).
#
i = f .
If x, <e, theny, <e (v} S

Let conversely g be a left invariant mapping with f and g comultipli-

and g(xlx) = g(xl)

cative. Then if g{x) = f{e), we have g(xn) = f{e) and thus g(el) = e}

with e, € E, e, < x. Hence g{E) = £(E).
it [e @ J € Pf then let 651 =max {e | e ¢ E, gle} = f(eal)} and
882 = min {e | ecE, gle) = f(ea ¥},

Then [esl,eﬁz] € P and g and f comultiplicative on [eml,eazl, Leﬁl,eﬁzl.
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Construction:
Let a < k; < k, < b and define a multiplication on A = [a,k1] making
it into an I-mob with identity a. We define a collection of mobs we

call S{c,r) with c,r € (a,b] by extending the multiplication on A to S.

1) k, < ¢ < b, k, <r <c.
2-"=" T2-" = N
Let 6 and 6 be idempotents with a < 8 < 8 < k1 and £ a left iy~

f(0) = k_,

variant continuous mapping of A onto [kl’b] with f(kl) - kl 9

*
£(6 )
Let t = max {x | £(x) = r, x ¢ A} and e = max {x | x = azﬁ x < th.
* *
Suppose f (x) f{x), x ¢ [6 ,91
* *
f(x) =c¢ , X € [a,e ]

and let g be a left invariant continuous mapping of [a,e] onto [kzyc]

i}

C.

f

% %
with f (x) = g(x), x > e, and f and g comultiplicative.

Define a multiplication ®» on S by

xlo x2 = xlx2 » , xl,x2 € A N
X0 yi = folf (yl))* , Y, ¥, € [kl,b] ,
yex =1 (yleglx) x* ¢ [a,8]
] —1 1
yox' = £t (Y1;6) : xt e [0k ],
yio ¥y = v, 0 (t7H(y,))
E
1)k, <c<bh, k, <1 < C,.
2~ ¥ 2 - -
Let © and 6 be as in 1) and f a left invariant continuous mapping of
A onto [kl,c] with f(kl) = kl’ f(6) = k?

2
t =max {x | £(x) = r, x ¢ A) and e = max {x | x = x" . x < t}
Let g be a left invariant continuous mapping of [a,e] onto [k2 b]
*

with g(0 ) = ¢, g{x) = £f(x), 6 > x > e and such that if

* *

g (x) = g(x), x e [0,0]

* *
g (x) =c ,xe [a0]

e
then g and f i [a,e] are comultiplicative.

i

it

Define a multiplication ¢ on S by

xlq x2 = xlxz y xl,xz € A s
koS =k ) k ¢ [k k]
* -1 * 172 *
yiex =gle x ) vy € [kyb] . x e [a,6]

ylo x' = kZ , x' € [9,1(2]
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. -1

% ok =i@&f ) ,

= f(x,)o g_l(y )
*1° Y 1 1’
vie v, = (8 (yl)t)o v,

< < = .
2) k2 <c <b,ac<r < kl' k1 : kz )
Let 6% be an idempotent with 6 < r and e, = min {x | x==x", x> r},

2

e, =max {x | x = x, x < r}.

2
Let f be a left invariant continuous mapping of A onto [kl’b] with

f(kl) = kl’ f(e*): ¢ and such that f | [el'kl] is one-~to-one and
[f"l(f(el))1r = e
Let f*(x) f(x), x ¢ [6*,k1]

f*(x) = ¢ , X € [a,e*]

i}

and let g be a left invariant mapping of A onto [kl,c] with
* *
f (x) = gx), x ¢ [kl,ez] and f and g comultiplicative.

Define a multiplication o on S by

xlo x2 = xlxz ., s xl,x2 e A s

xpey, = f(x, £ (y)) y.0v, € [k,0]
ox. = £ Yy Yo g(x.)

Y10 % 1 1’

-1 -1
Yoy = f (yl)f (yz)r.

3) a<cz<k;; 1Sk ik, 2k,

2
Let e, = min(xlx =x"; x>clh. e, = max{xlx =x ; x<c}

Let f be a continuous left invariant mapping of A onto [kz,b] with

k,<r<b. k <k,<k,<k
2="-) -

f(kl) = kg, f(c) = r and such that f |[e1,kl] is one-to=-one and
-1

[f (f(el))]c = e
g is a continuous left invariant mapping of A onto [kl’kB] with
g(kl) = kl.
Let h be a continuo:s mapping of [kl,k3] onto [k4,k2] with h(kl) = kz,
such that hg(x) = h f(x) with h a continuous mapping of [kz,b] onto
[kz,k4] . Furthermore h has the following properties

1) nTme) = ix} for x ¢ [k ,8(e)))
ii)  if gle;) # g(c) then h(x) # h(y); xe [g(ez),kg] , VE [g(el),g(ez))
iii) if g(g—l(xi}.c) # g(el); X, € [g(el),g(ez)),i=1,2, then

h(Xl) # h(xz), xl'# X, -
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Moreover let ¢ be a continuous mapping of [kB’kcl] in [kl’kS] with

¢(k ) k3, ¢(k4) = g(c) and define
1 2 = Xlxgl l,x €A

X, ° k' = g(g " (k")x) k' e[kl,ks]

X, ° k = x ° ¢(k ) k: e[ks,k4}
1ok =)ﬁcog T ok e (kK]

X 0y, = xlcf (yl) Vi1Yg € [kz,b]
keS =k ) ke [k k]
ylo x1 = f{x_ f (yl))

v,k =h(f " (y)e k)
_ -1 -1
yloy2 = f(f (yl)f (yz)c).
< < <
4)k1“c__r_k2
Let kljj:ik3_§k4f_r:~k2 and f a left invariant continuous mapping of
A onto [k ,b] wi th f(kl) = k,, g a continuous left invariant mapping

of A onto [k k3] with g(kl) = kl. Assume furthermore that there

exist continious mappings
hy ot (kg k] > [k k] with h (k) = ¢, h (k) = kg
hy, [kl,ka] > [x,, kz} h, (k) = k,
h; : [kz,b] > [k4,k2] h,g(x) = h3f(x).
Define a multiplication e on S by
xln xz = 2 2 xl,x2 €A
x 0 k' = glg Lk )xy) k' € [kl,ks]
%, © K = X, © hl(k ) k; a[ka,k4]
1ok =xecC k € [k4,k2].
Xpey, = xlo c YyYg € [kz,b]
keS = k B k [kl,kz]
vy x = £f(f (yl)xl)

-1
y ok =h, (f (yl)ok)
¥y Y9 = ¥y €.

We omit the proof, that if S € S(c¢,r) then S belongs to case 4.

2.6.10. Theorem. Let S = [a,b] be a mob belonging to case 4, then
S € S(c,r).
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Proof:

Let (a.b] be the maximal ideal of S and let a be a left unit of S;

kl 7 k2. )

Since a = a , we have A = [a,kl] an I-mob and [kz,b] [ [a,k1] b
i.e. k2 = xb, x A,

Let © = max {x iszkz, xe A} and suppose r = b2 € [a,kzj .

Then 6b% = kyb = k, and since [a,kll b2 = [kl,sz it follows that

b2 = k2' Hence b2 £ [kz,b] and in the same way we prove ¢ = bac sz,b] .
Furthermore k2 € b [a,kll , which implies k2 = bkl and sz = Okz =

= 9bk1 = kz. Thus since U is maximal, ¢ is an idempotent.

Let 6% = max {x|xb = ba, x ¢ A} , then 6% = 6*2.

2 2
Moreover we have b € [kz,ba ]b < [kz,b ] , hence bzf_ba.

Now let t = max {x|xb = b2; xeA} and
*
t = max {x|bx = bz; xehl} .

Then t < v and we have for each x ¢ [a,O] R
2
bxb = x'b = x'th = tx'b = tbx = bzx and
2 % EE * % %
bxb = bxba = b x = bt x = bx t = xbat = xb

z}gbzx = xb2 = bxb.

# #
Suppose now t # t , and let e <0 be an idempotent with t >e >t , then

2 %

% %*
be:bte:bezebzzetb tb = bt and we have e = t

Analogously we have if e = c' <b, t:@‘zeit, e = t and it follows that
if t # t$, £ and ’c]L§= both in {:ez,el], a subsemigroup of A isomorphic
to Jl or J2. . ) )
Furthermore we have for all x, 0>x >eq bx = bt x = b x = xb =

= xtb = xb. Now let f(x) = xb; g{(x) = bx and f*(x) = xba; x € [a,f)].
Then f and g are comultiplicative left invariant mappings of [a,@]

onto [k ba]

2]
2 2
Moreover we have bel = elb = bze1 and b ey = b
%
Ifb2=bze =he,,then t = t = e, .
9 1 1 1

. 2 2
: 2:x5e1$w1th b [ez,x) = (bel,b ]
_ _ 2 2 % #

For each y ¢ [ez,x) we have by = byb = y b° = b*y" and thus y = y

If b # be,, then there is an x, e

¥
i.e. by = yb.

n
Since for all z € [ez,el) we have z ¢ [ez,x) we have bz = zb and

*
t =t . It is now easy to verify that S e S(c,r) with kzir :cf_b.
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Now let a be a right unit of S and let k_<c = ab <b.

2

Let 6= max {x|xb = ky, xeA}
I; r o= b2 a[alJ%J , then 8b2 = k2 € [a,kll bz = [bz,klj and we have

2
b = k2 or b~ €A and k2 = kl.

2
If b E[kz,b] , then we can prove in the same way as before that the
%
mappings £ : x->xb; g : x » bx; g : x - abx, x € {a,@] satisfy the

*
conditions of construction 1 and hence S € S(c¢,r).

Now suppose b2 € [a,kl] , k2 = k and let

* L x2 * 2 2 %
8 = max {x|bx = ab, xe¢ A} ; b6 = ab® = a b = ab; hence 6§ = 0
2 2 ¥ . . . 2 *
Moreover we have b = bab = b 6 , which implies b 3_0.
2
Let e = min {xix = %, x_ir}
2
e, = max {x|x = x", x<r}
If < <k d b = b thnb%:ﬂiﬁx and hence %, = x
e <%, X, <k, an X = x2é e ) 1= 2 e 1 = X
Furthermore if bx = bel, then b 'x = b e = e and for each x ¢ A there
# ok &
exists an x and x such that xb = bx*, x*b = bx* .
* 2 2 _*%
Hence bx b = xb = b x .
If x >e,, then x = x$* and hence bx = xb.
1 2 2 2 2
Moreover we have b e =€ and b e, = b”. If b” # e then there is a
2 2
Vs e, <y Zeg with b [ez,y) = [b ,el) and we have for each x € [ez,y),
2*2** 2
xh® = b7x = b

X, i.e. x = x** and bx = xb. Since [e ,q)@ LJ [e ,y)n
2 1 2

n=

we have bx = xb, x>e

>

. 2'

* *

Now define f,g and f by f(x) = bx; g(x) = xb; f (x) = abx.
* *®

Then f and g are comultiplicative with f (x) = g(x), x >e,.

To verify that S e S(c,r) with a<r ikli ¢ <b is now mainly routine.

Next we consider the case ¢ = ab € (a,kI]

We then have r = bzs b [a,kl] = [kz,b] . Let ey and e, be defined as

in construction 3).
<
If e; XX

X2 <k, and bx1 = bxz, then abx, = abx, and hence x, = x

1’ 1 1 2 1 2°
Furthermore if bx = bel, then abx = abe] = e1
Now let aS = [a,ks] ; bS = [k4,b]

Si k, = = : < <
Since bkl k2 and akz kl we have k1-k3—'k2’ and klf_k4.§k24

Since bS = baS and bk, = k_ there is a k € aS with

<
Now suppose k4m_k3. 1 2
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% *
bk = k3 and bk # k3, k <k.

But bk = k3 implies abk = k3

*
Now let f,g,h,h and ¢ be defined by

= <
<k and k = k3. Hence k3—'k4'

f(x) = bx x €A

g(x) = xk3 X€eA

hik) = bk ke [k k]
h (y) = ykg y € [kz,b]
¢(k') = ak' ke [ky,k,]

These mappings satisfy the conditions of construction 3 and elementary

calculations show that S € S(c,r).

2
Finally let ¢ = ab ¢ [kl,kz] . We then have r = b° = bab ¢ [kl,kz] .

2

If b2 <ab, then b2 = ab? = abb = ab. Hence ab< b".

>k, or else

4 3

Furthermore if as = [a,k,] , bS = [k,,b] , then k
k :r:kT

k4 = ak4:=abx: ab = 3° 1

%
Let f,g,hl,h2 and h be defined by

Hence k icf_k3f_k4

f(x} = bx x €A

g(x) = xks x €A

hy (k) = ak ke [kgik,]

hg(k) = bk k' € [kl,k3]
hy(y) = vk, v e [kyp] .

It can be easily verified that in this case S €S(c,r) with kljﬂcix'ikz.

Notes

The concept of nil-ideals was introduced by Numakura [1]. An am-
plification of his results was given by Koch [1]. O-simple mobs have
been studied by many writers. Most of the results of section 2.2 are
due to Clifford [2], Faucett, Koch, Numakura [ 3], Schwarz [10].

The results of section 2.3 seem to be new.

Wallace [11], Faucett [1], Koch and Wallace [8], Mostert and
Shields [8] have all contributed to the theory of connected mobs. The
position of C-sets in compact mobs was studied by Wallace [8] and

Hunter [7].
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I-semigroups were first studied by Faucett [2] who proved theorems
2.5.1, 2.5.2, 2.5.5 - 2.5,7, Mostert and Shields |7] extended their
results and gave a complete characterization of an I-semigroup.

The contents of section 2.6 are an extension to mobs with S = 82
of results by Cohen and Wade [4], Clifford [3], [4], Mostert and

Shields [7], Philips [1].
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III COMMUTATIVE SEMIGROUPS

3.1. Monothetic semigroups

Definition. A mob S is called monothetic if for some ae¢ S the set
nCO
{a }nzl

In the group case it is customary to use both positive and negative

is dense in S. The element a is called a generator of S.

powers to define monotheticity; i.e. a group G is monothetic if for
some ge¢ G the set {g“}:=-mis dense in G. However, it can easily be seen
that the two notions agree in a compact group. For lei g be an ele-
ment of the compact group G such that {gn):;_m is dense in G. Since
Mg) = {gn}::l is a compact subsemigroup of G, theorem 1.1.11 implies
that T'(g) is a compact subgroup of G. Hence {gn};;_m cl(g) i.e.

Mgl = G. It is obvious that a monothetic mob is commutative.

3.1.1. Theorem. Let S be compact and monothetic with generator a. Then
the cluster points of the sequence {an}:;l form a group K(a).
K(a) is the minimal ideal of S and S contains exactly one idem-

potent, namely the unit of K(a).

Proof: -
Since K(a) = gja {alli >n}, 1.1.10 implies that K(a) is a compact
group.

oo
n=1"’
and it follows that S contains exactly one idempotent. Now let K be

Every idempotent e ¢ S must be a cluster point of {an} hence e ¢ K(a}
the minimal ideal of S. Then K = H(e} since e is the only idempotent
in S and hence K(a) € H(e) = K. Now let b ¢ H(e) and suppose b no
cluster point of {an}:=1' Then b = a for some integer n and ane = an
For every neighbourhood W(b) there is a neighbourhood V(e} such that
b.V(e) ¢ W(b). Hence a"V(e) c W(b).

Since V{(e) contains arbitrarily high powers of a, W(b) contains arbi-

trarily high powers of a and b ¢ K(a). Thus K = K(a) = H(e).
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3.1 2. Theorem. If S = I'(a) is compact, then K is a monothetic group.
Proof:
n.*® n_,w n, o
S . . - .
ince {a }n=1 is dense in S, the set {a e}n:1 {(ae) }n=1 is dense

in Se = K Hence K is monothetic.

Cor llary. If u is a unit for the compact monothetic mob S, then S is
a group.

For in this case we have K = H(u) = uSu = S.

3.1.3. Theorem. A monothetic mob with unit u is either a finite group
or is dense in itself.

Proof -

Let S = I'(a). If there are integers m and n with am = an, then S is

finite and hence compact and the corollary implies that S is a group.

In the other case if some element s € S is an isolated point, then

s = a" for some integer m. Using the fact that {an}:21 clusters at u ,

n+m }°° m m

we conclude that {a nel clusters at ua = a

Corollary. Let S be compact and monothetic with generator a. If a is
not an isolated point, then S is a topological group.
Proof

Since {an}sll clusters at a we have I'(a) = K(a) = S.

3 1.4. Tteorem. Let S be a compact monothetic mob with two distinct
gener tors. Then S is a compact group.

Proof -

Let S = I'(a) = T'(b), a # b. If either a or b is not an isolated point,

then S is a group by the preceding corollary.

q

If both a and b are isolated, then a = bp and b = a® for some inte-

pq

gers p and q. Hence a = a where pq >1 and it follows from the pre-

ceding cor-llary that S is a group.

The stru-~ture of finite monothetic semigroups is quite simple. If S

2 3 .
is such a mob, then S = {a,a",a”,. '} and there must be repetition
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among the powers of a.

Let p be the smallest positive integer such that ap = aq, 1<q<p.

Let r be the unique integer such that g <r = n{p-q} <p-l. Then the set

+ -1 T
{aq,aq 1,...,ap } = H is a cyclic group with unit element a

Furthermore S = H U {a,a2,...,a% )

3.1.5. Theorem. The only possible algebraic and topological structures
for the compact monothetic mob S = I'(a) are the following:
1) All powers of a lie in H(e) = K(a), in which case S is a

compact monothetic group.

2
2) There is a positive integer q such that a,a ,.,.,aq lie out-
1 2
side H(e) and a%" ,aQ+ ,... all lie in H(e). In this case
2 2
S\ H(e) = {a,a”,...,a%) and all elements a,a ,...,aq are

isolated points in S.
3) All powers of a lie outside H(e). In this case S % H{e)
= {a,az,...} and all powers of a are isolated points.
Proof :
(1) and (3) are trivial.
{2) If a is not in H(e) = K(a) and some power ab e H(e}, then we have
2P L aPlat g H(e), since H(e) is an ideal. Hence there is a greatest
power a% such that a% 4 H(e).
3.1.8. Theorem. Let H be a compact monothetic group with unit e and
let b € H be such that {b"}” | is dense in H.
Let g be a positive integer and let a,az,...,aq be g distinct
objects not in H. Then there is one and only one way to make
S =H U {a,az,...,aq} into a compact monothetic mob such that
1) H with its given topology and multiplication is an ideal of
S.
2) ai.aj = ai+j i+j‘:q.
3) a.a? ¢ H.

Define a multiplication in S by the rules
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i i
ax =bx
Xai - Xbi } for x ¢ H, i=1,2,...,q
at.ad = a2t i+j <g €
al.aJ = b1+J i+j>q
Xy is as in H for x,y e¢H.

2
Let S be topologized so that a,a ,...,aq are isolated points and H has

its original topology.

Since the continuity of multiplication is obvious, the fact that S is
a mob is established simply by verifying that the associative law
holds in all cases. Furthermore S evidently satisfies the conditions
(1) - (3).

Now let S = H U{a,az,...,aq} be a mob which satisfies the conditions
of the theorem.

Since e ¢ H and H an ideal, we have ea = (e¢a)e = ae € H. Let b = ae.
Then for x ¢ H and i <q we have aix = ai(cx) = (aie)x = (ae)ix = bix

g+1

and analogously xa' = x(ea)1 = xb". Next a.a% ¢ H implies that a € H

q+le _ )q+1 a g+1

and hence a (ae b . By finite induction we infer that

a’ = b’ for all r >q. Thus the multiplication in S is that given by (%)
with b = ae. This shows that the algebraic structure of S is unique.
Furthermore also the topological structure is unique. For since H is
compact it must be closed in S and as SYH is finite and open, the
points a,az,..‘,aq must all be isolated.

We now prove that with the multiplication defined by (x) S = ['(a).
Since ae = b and ai = bi for 1 >q it suffices to show that

1 2
{(p%* ,bq+ ,...} is dense in H.

+1 +2
If H is finite, then {b% " p%"* ...} = H.
If H is infinite, then since H has no isolated points, the removal of
2 @
the finite set {b,b ,..,,bq} from {bn}n_l does not affect its proper-

ty of being everywhere dense in H.

3.1.7. Theorem., Let H be a compact monothetic group with unit e and

nm
let {b} be dense in H.
n=1

be a countably infinite set of distinct elements

Let {a"}"
n=1

not in H.



113

Then there is one and only one way to make S = H U {an};:l into
a compact monothetic mob, such that
1) H with its given multiplication and topology is an ideal of

5

Proof:

Define a multiplication in S by the rules

i i
ax = b x
i i for x € H and i=1,2,
xa = Xb
i i+J ..
at.ad =2 55 =1,2,3,. ., (%)

xy is as in H for x,y ¢ H.

Checking the associative law is again a routine matter. Now let 8 be
topologized as follows. Every point ai is isolated. For x € H and an
arbltrary neighbourhood U(x} in H define Un(x) as U (x) = U(x) U(ai|izp
and b € U{x}} . The family of all sets U (x) for all neighbourhoods
U(x) in H and all positive integers n is a complete family of neigh-
bourhoods of x in S.

It is easy to see that 5 with this topology is a Hausdorff space.

We now check the continuity of multiplication in S.

. i i+] A . . .
Given a product a .a] = a J, then multiplication is certainly con-

tinuous at ai,aJ as ai,aj are isolated points.

Next consider a product xy where x,y ¢ H. Let Ui be a neighbourhood
of xy. Then there are V(x) and W(y) in H such that V{(x} .W(y} < U(xy).
Hence V (x) W (y) < u* (xy) if p+q >n.

Flnally we con51der a product alx = bix, where xe H, Let Ui be any
neighbourhood of b X.

Since multiplication is continuous in H, there is a neighbourhood
Vi{x) of x in H such that b'V(x) € U. Furthermore Jf a'e V (x}), then
b’ e V(x) and b*.b" = b**T e U. Thus a**Te U and a Vn(x)c v

Hence S is a topological semigroup.

Furthermore S is compact. For let C be any open covering of S. Then
every x ¢ H is contained in some Ui(x) e C. Hence the neighbourhoods

U{x} form an open covering of H.

Let U(Xl)’""’U(Xr) be a finite subcovering of H and let
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L &
U (Xl)""’Un (Xr) be the corresponding neighbourhoods in C.
1 r i r %
Let n = max(n,,...,n ), then a e,L’ U (x.) i> n.
1 r J=1 n_"j§ 4 -

*
This implies that the complement of the set ;«g U (Xj) is finite and
= n.

C admits a finite subcovering. J

Moreover we have S = [(a) since every neighbourhood in S contains an
element ai.

Now let S be a compact monothetic mob S = H U {a,az,...}, and let S

satisfy the conditions (1) and (2).

Then it can be shown just as in 3.1.6 that the algebraic structure of
5 is unique and that the multiplication in S must be that given by (%)
with b = ae.

We now show that the topological structure is unique. Let T* be the
topology for $ described above, and let S have a topology T.

Since H is the minimal ideal of S, H must be the set of cluster points

of {an}:L and hence every point a’, i=1,2,... must be isolated.

Now let Ulbe an arbitrary neighbourhood of x in H. Then there is a
neighbourhood U' in S such that U'N H = U and there is a V(x)} in S

such that V(x)e cU'.

Since V(x)e ¢ H we have V(x)e < U.

In particular if ais V(x), then bi = aiec U and aic U U{ai | bia U} .
We therefore have V(x)< Ut. Moreover for every integer n »>1, we have
VI{x)\ {a,az,...,anml } e Un, Hence every Ttneighbourhood of x contains
a T-neighbourhood.

Consequently every T*—open set is also T-open, and the identity mapping
of S onto itself is continuous in passing from the T topology to the

& %
T topology. However, since S is compact Hausdorff in both T and T

topology, this mapping is a homeomorphism and T = T

We can now summarize the preceding constructions.
Every compact monothetic mob S is one of the following types.
1} S is a compact monothetic group

2) S consists of an arbitrary compact monothetic group H, with gener-

L 2
ating element b, and a finite number of elements a,a ,...,aq, for

+1
which ae = b and aq ¢ H. The algebraic and topological structure
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are totally determined by q and the choice of b, as described in
3.1.6.

3) S consists of an arbitrary compact monothetic group H, with gener-
ating element b, and a countably infinite submob {a,az,...} for
which ae = b.

The algebraic and topological sutructe of S are totally determined

by the choice of b as described in 3.1.7.

3.1.8. Lemma. Let S be a locally compact mob with a compact kernel
K # #; then for any open V containing K, there is an open set J
with K< J«V and J an open submob of S.

Let U be an open set having compact closure with KcUcUcV. Since

KU = Kc U, we may find an open set W with K<W< U and WUc U. Since

Wc:ﬁ, we havce ch U, W3c U,... and hence l# Wnc uU.

Furthermore gz:yris a compact submob of S.

Now let J = JO(W) be the largest ideal of ‘g w" contained in W. Then J

is a submob of S and J is open (1.2.2). Furthermore, since K<W we have

Kcd.

3.1.9. Theorem. Let S be a locally compact monothetic mob, and suppose
S has a kernel K # @; then S is compact.

Proof:

Since S is commutative, K is the unique minimal left and minimal right

ideal, hence K is a group. Now let e be the unit of K, then K = Se and

is a retract of S. Hence K is locally compact, and it follows that K

is a topological group (1.1.8).

Next let a be a generator of S, then TI'(a)} = S and hence T'(ae}) = Se.

Thus K is monothetic with generator ae.

Then K must be either compact or a copy of the group of integers.

Since the group of integers is not generated by the positive powers of

an element, K is compact.

Lemma 3.1.8 implies the existence of an open mob J with compact closure

containing XK.

Some power of a say a’ lies in J, hence r(a’)yc7d and (") is compact.
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Since S = I'(a) = {al} ;-l U{a1 };_1 F(ar), S is compact.

3.2. Ideals in commutative mobs

We have seen in 1.2, that if S is a commutative compact mob, then K
is a compact topological group. An analogous result holds for locally

compact commutative mobs.

3.2.1. Theorem. Let S be a locally compact commutative mob which con-
tains a minimal ideal K. Then K is a locally compact topologic-
al group.

Since K is the unique minimal left and minimal right ideal K = Ka = akK

for every a € K. Hence K is a group. Furthermore K = Se, with

2

e = e ¢ K, and hence K is a retract of S, thus closed and locally com-

pact, This shows that K is a topological group.

&
Now let e be the identity of K. Then we have for every e ¢ E,
#* *
ee = e e = ¢, Thus e is the minimal idempotent of S, and it follows
that in a commutative compact mob there always exists a unique minimal

idempotent.

Now let S be a mob and let Z = {x|xs = sx for all s ¢ S} be the centre
of S. The continuity of multiplication implies that if Z # @ then Z is

a closed submob of S,
Definition, A mob S is called normal if for every x € S we have xS = S8x.

3.2.2. Lemma. In a normal mob S the set of all idempotents E is con-

tained in the centre Z of S.

Proof:

Let e ¢ E, then eS = Se implies that es1 = 52e and sle = es3 for each
sy € S and suitably chosen 52,53 € S.

But then (esl)e = sye = e(sle) = esg, and hence es; = se.

3.2.3. Lemma. Let S be a compact mob with E C Z and let a,b € S, If

2 2
e e, € I'(ay, e, = e, E (b) then e e, e T'(ab).
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Proof:
It follows from 1.1.4 that e = e e, + {ae ,aze

1%2 9 . 1= f(aez) and
3 r(elb).

e
similarly that €8y ’
According to 1.1.14 we have T(aez)e < H(e), IKelb)e C H(e) and hence

ae,e = ae ¢ H(e), elbe = eb € H(e). Thus aeeb = abe ¢ H(e).

Now let f = fz e T'(ab). Since fe ¢ {(ab)"e 211CL H(e) we have fe = e.

Moreover if x is the inverse of abf in the group H(f) then abfx = abx

= f. This relation implies that f = f2 = fabx = afbx = az(bx)z, and by

induction f = an(bx)n for_every integer n> 1.

#* # o0
Thus f = elb , with b ¢ {(bx)" %_1 . We have therefore elf = f and
similarly ezf = f. These relations together with fe = fele2 = e e,

imply f = e e,-

This proves lemma 3.2.3.
Now let S be compact and let P = {x|x ¢ S, e ° I'(x)}. Then
o1
Par\ P,=0 if e # e,  and S can be written as the class sum of the
Il [0 "
disjoint sets Pa. In general Pﬂ need not be a submob of S. However if
S satisfies the condition of lemma 3.2.3 (this is for instance the

case if S is commutative) then each set P is a submob of S.
o

3.2.4., Theorem. Let S be a compact mob with E < Z. Then S is the union

of disjoint submobs Pa, where each P contains exactly one
[¢1

idempotent.
Let a,be Pa, then eOl e I'(a), ea ¢ [(b) and according to the previous
lemma we have e = e, ¢ [{ab). Thus ab ¢ Pa. Moreover it is clear

that each Pa contains exactly one idempotent which proves our theorem.

3.2.5. Lemma. Let S be a compact mob and let H(ea) be the maximal sub-
group containing the idempotent ea. Then H(ea) C Pa and
H{e }) = Pe=¢e P .
o o a o a
Proof!
Let x ¢ H{(e }. Then since H(ea) is compact, we have [(x)cC H(eu),
o
which implies e, € M(x). Thus x EP .

Furthermore we have for each x € P NG9 e < H(em), hence
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r i ce g
x TP, (x)euc H(ea), and thus Paea<: H(ea). Since H(e )c Pa it follows

that Paea: H(eu),

In the same way we can prove H(ea) = eaPa
Corollary. Since each H(e ) is closed we have H(e ) = e P=¢e P .
— o (63 o a a o

Furthermore if e, is a left or right identity of S, then P = H(e )
« a

and Pa is a compact group.

3.2.6. Lemma. If S is a compact mob and Ba/\ Pb £ 0, e, # e, then
e € P\ P and P n P, = 0.
3 o o1 o1 9
Proof:
Let a ¢ Eur\ Pb and let U and V be neighbourhoods of a and a” respect-
ively such that e V, n>1. Let b ¢ UnPu . Then b" ¢ I'(b) and thus
r'b™ ¢ I'(b). Hence e © I'(b"), which implies b" ¢ P .
o
Since we also have bn e Vit follows that ang P . Thus TI'(a)c P and
a o1
we have e ¢ [(a)c P . Since e ¢ P it follows that e ¢ P \ P .
S o1 b « B a a
The preceding corollary implies that e ¢ ¢ H(e ), thus e e = e e e
5 a Q a b a pa
and (eueb)(eueb) = c.e. = eep. Since H(Cu) contains only one idem-
potent we have e ¢ = e and analogously ¢ ¢ = ¢ .
o P <i [ €3
Suppose now that %Ln FL# @, then it would follow in the same way that

ee =ee =e¢ , i,¢e., ¢ = ¢ , a contradiction.
a P b oa [ 63 o)

3.2.7. Theorem. If e, is a maximal idempotent ol the compact mob S,
then Ql is closed.
Proof:

Let x € Eln 33. Then eb € EL and it follows from lemma 3.2.6 that

ee = ee =¢e l.e. e< e .
a g 5 [¢1 a— b
Since %1 is maximal, %x = eB and the theorem is proved.

3.2.8. Theorem. Let S be a compact mob and let ia = S. Then the kernel
K of S is equal to H(ql).
Since PN i;# @ for each ey we have ee =ee =e. Hence e is the

b oo
minimal idempotent of S and it follows that K = H(gx).
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3.2.9. Theorem. Every open prime i1deal P uf a compact commutative mob

S is a union of subsemigroups P, .

P=U P,
o1

Proof:
Let x € Pr\Pa. Then since Pa is a mob we have xeus PN Pu. On the
other hand xe € P e, = H(ea), which implies the existence of an ele-

E3
ment x such that x xe = e . Hence e € P.

a o a
Next let y ¢ PCl mn (S\P). Since S\ P is a closed submob, we have
I{ydc S\ P and thus e, S \P, a contradiction.
Thus if Pn P # @, then Pc Pi.e. P=U P .
o o a «

3.2.10. Theorem. If e, is a non-minimal idempotent of the compact com-
mutative mob S, then

J(S\{e})=U{P |ce #c e ¢k}
o] [ s} a P [¢3 [s)

13 an open prime 1deal of S.
Theorem 1.5.5 implies that JO(S\{ ca}) is an open prime ideal of S.
Furthermore we have for any idempotent cD 3 JO(S \ {eu}).

€ s 3
€ JO(S\{ea}) and thus e.cy * ey
Hence J (S\{e } ¢ U{P |eec #¢e¢ , c € E} = P.
o a i a B o1 18
Now let e e, # e , then for any idempotent e € E, we have e e e # e ,
a’B o1 Y ay B a

since e_e ey = e, would imply ee, = e = Ca' Thus if xe P, se S

ay [ ueyob
with e € I'(x) and e e I'(s), then e e, e '(sx) with e e e
b Y Y B a

Y b

# e . Hence
o]
sx € P and P is an ideal not containing ea

This implies that PcC JO(S AN {eu}) and the theorem is proved.

Since by 1.5.4 every open prime ideal of S has the form JO(S\ {ea})
we have also that every open prime ideal of the compact commutative

mob S8 has the form U{P_Iee #e , e c¢E}, If e <e then
b a b o b a— b

,eYe E}.

J 8N\ {e b = U{PY ]eaey;é ey ©F E}cC U{Pyiebey;é g

For if ee = e and e e = e then e ee =e e =ee = ¢ .
a B o Y B i Y o b Y o a B a

Hence JO(S\ {ea} ) K Jo(s\{eb} ).
If on the other hand JO(S\, {ea} y < JO(S\ {eb} }, then
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e € SNJ (S\{e }) and hence e e. = e i.e. e < ¢
s} o] 0] a a oo

Corollary. If JO(S\ {ea} ) and JO(S \{eB}) are two open prime ideals
of the compact commutative mob S, then
J(Sn{ee e J(SN{e DN J (S\{e }}), and there does not exist
o a b o a o) &
an open prime ideal P of S with JO(S\{eaeB})C P c;JO(S\ {e DO
o
J (8Nf{e ) with P £ J (S N{ee .
o B o a fs
Prootf:
Since e e, <e_ and e e
a’ - "o [o1

JO(S\ {eB} }. Next let

< e, we have J (S\{e e })c J (S\N{e }) n
- (e} a B o] Q

B8 b

J (S\{ee})e Pe J (S\{e })n J (8\{e }).
o a p [o] Q o [¢]

Yo @ a by B
Thus e.e = e and e e, = e which implies e e e = e e = e . Hence
Yoo Y Y B Y Y ab Y B Y
e < ee . Since e e <e_ we have e = c c and P =J (S\{e e }}.
Y U oah a By Y a b o a ¢

Then P = J (S\{e }) with e e <e¢ <e , ee <e <e
o Y o g

Definition. A mob 5 is called complete if every element a ¢ S has roots
of every degree >0 in 3, i.c. if for cvery a ¢ S and n> 0 there exists

. n
a € S with a = a
n n

3.2.11. Theorem. In a compact commutative mob S the set of clements
having roots of every degree > 0 forms a complete compact sub-
mob.

Let S_ = {a"lae S} n=1,2,...

Then Sn is closed since S is compact and for a finite number of Sn s

say Sn , ""Sn we have

k
b g S n & igl Sh.-
nyng ..oy =l "n,

&%
Hence N S =85S #£0.
n=l n

Furthermore S is a closed submob of S since each Sn is a closed sub-

mob of S.
) #* 2 3 .
Now let a E S , then a = a2 = a3 = ... for suitable chosen a, ¢ S,
Let An = {x|x ¢ S, = a}. Then An is closed and Anr\ Sk # @ since
* #
a = ank with ak € ANS . Hence A nS # @. Thus a ¢ S has roots of
nk nk n k n

every degree in S*. s* also is a compact complete submob of S.
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&
Moreover it is clear that S is the set of elements having roots of

every degree.

3.2.12. Theorem. Let S be a complete compact mob and e an idempotent
from S. Then H(e) is a complete compact group.

Let a ¢ H(e) and a = az. Then since e ¢ I'(a) and a ¢ F(an) we have

e e ['(a) ¢ T(an).

Hence ae ¢ H(e) and ae = eae. Thus (ane)n = aﬁe = ae = a.

This proves that H(e)} is a complete group.

If U is an open subset of a mob S and x in S, then xU need not be open
in S. If S is a compact connected commutative mob with this property,

then it follows that S is a group. However the following theorem holds.

3.2.13. Theorem. Let S be a commutative mob with identity u. Then
there is a stronger topology under which S is a mob such that
1) if U is open in S and x ¢ S, then xU open in S
2) the neighbourhoods at u arc the same under these two topo-
logies.
Proof :
Let 'I‘1 denote the given topology of S and let {va}ac A be a basis of
open sets at u. Let B = {xVai Xx e S, u € A}, and define the topology
Tzon S by requiring that B be an open basis. We now verify that B is
really a basis for a topology. Let xVa, be € B and let z ¢ xVéNyVG

We then have z = xv where v, € V(1 and v2 e V .
W)

17 Y2 1
The continuity of multiplication implies the existence of sets V and
Y

V. such that v.V <« V and v,V <« V . Choosing V such that V< V nVv
§ 1y o 20 g € € Y §
he zVe zVn zVe xv,V N yv V o xV Vo
we have ¢ Y & xvy y YVg S X an y 8

Hence given XVG, yv‘j ¢ Bwith z ¢ xV n be, there exic '3 a Vc such
o
that zVec: xVan be, which shows that B is an open basis for a topolo-

gy -

We now show that multiplication is continuous in the 7, -topology.

2
2
Let a,b € S and ab £ abV . If VL is such that V} < V , then
o bl ¥} 6]

av. bV = aszc abV .
g [§ s o
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because if U ¢ T, and a € U, then

Furthermore T, is stronger than Tl' 1

2
there is a Vu such that aVa c U.

The T2—topology of S obviously satisfies condition 1) and 2).

3.2.14. Theorem. Let S be a commutative mob with cancellation. If S
has the property that U open implies aU open for each subset U
of S and each a € 8, then there is a continuous isomorphism of 8
into a topological group.
Proof:
Let R be the relation in § x S defined by (a,b)R(c,d) if and only if
ad = bc. The fact that S is commutative and is a mob with cancellation
implies that R is an equivalence relation.
Let G = § x 8/R be the family of equivalence classes with the quotient
topology.
Each equivalence class A is a closed set of § x 3. For let (a,b) e A
and let (c,d) € A. If ad # bc, then there are neighbourhoods U(c) and
U{d) such that aU(d) n bU{c) = @. Hence for all (x,y) € Ulc) x U(d) we
have ay # bx, i.e. U(e) x U(d) n A = §, a contradiction.
Let P be the projection of $ X 8 onto G. We now show that P is open.
Let (a,b) € 8 x 8 and let (a,b) e U(a) x U(b) = U with U(a) and U(b) open.
fet U* = Pal(P(U)) and (x,y) € U*. Then (x,y)R{c,d), (c,d) € U and we
have (x,v)R(c,d)R(xc,yc) = (xc,xd).
Furtherr >re let U(x)

i

{x* I x'c ¢ xU(a)} and

uly) = {y" | ycexuml.

Then i) and U(y) are open and if (x*,y*) e U(x) x U{y}, then x*c = XD,
vie= ., (p,@) e Ua) x UD).

Hence lx*,y*)R(xp,xq)R(p,q) and Ux) x U(y) < U*a Since P is open and
the rels'ion R is closed, G is a Hausdorff space.

Moreover is a group if we define multiplication by A-B = C, where C

is the equ valence'class of (a1a2’b1b2) with (al'bl) € A, (azybz) e B.
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We now show that G is a topological group.

Let U be a neighbourhood of C = A*B. Then there are neighbourhoods
U(aiaz) and U(b1b2) with P(U(alaz) X U(blbz)) < U. Let U(al),U(az),U(bl)
and U(bz) be such that U(al) U(az) c U(a1a2) and U(bl) U(bz) < U(blbz)‘
Hence P(U(al) X U(bl)) P(U(az) X U(bz)) c U. Since P is open

P(U(ai) X U(bl)) and P(U(az) X U(bz)) are open neighbourhoods of A and B
respectively, and it follows that multiplication is continuous.

Since P(U(a) x U(b)) = P(U(b) x U(a))-l, the mapping C +‘C_1 is contin=-
uous and hence G is topological.

Now let o : § -+ G be defined by a(a) = P(az,a). Then o is an isomoxr=-
phism since § is commutative and satisfies the cancellation law.
Furthermore o is continuous since if V(a)Vv(a) < U(az) and W(a) c v(a) n u(a),
then o(W(a)) < P(w(a)w(a) x wW(a)) c P(U(a2) x Ula)).

Hence o is a continuous isomorphism and the theorem is proved.

3.3. Characters of commutative mobs

In this section S will always denote a commutative mob.

Definition. Let S be a mob and let X be a complex valued continuous

function on $ such that
X (ab) = x(a)x(b) for all a,b ¢ S.

If X is also bounded and not identically zero, X is called a semi-
character of S.

If the absolute value [ X (a) | = 1 for all a € §, X is called a character
of 8.

is defined

If xu and X, are two semicharacters of S, the product xax

B

as the ordinary pointwise product

B

X X (a) = xa(a)x (a).

B B

xaxs is either a semicharacter of S or is identically zero. Moreover

if e is an idempotent e & 8, then x(ez) = X{e)X(e) = x(e) implies

X{e) = 0 or x(e) = 1.
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In particular, if S has an identity u, then x(u) = 1 for all semi-
characters of S. Hence in this case the set of all semicharacters is
a commutative semigroup S. The set of all characters S* of S clearly
is an abelian group with identity element the unit character Xl and
=X
3.3.1. Theorem. Let x be a semicharacter of S and let

I(x) = {a] [x(@]<1, a e s}

B(x) {a] Ix(a)l= 1, a e S}

Then S8 = I(yx) & B(y), while I(yx) is an open prime ideal of S

if I(x) # & and B(x) a closed submob if B(x} # 8.

i

]

Proof:
Suppose for a € S, lx(a)l = ¢ >1. Then for every integer n we have
Ix(a)]n = ‘x(an)| = ¢ >c>1. Since x 1is bounded on S this relation

leads to a contradiction. Hence ‘X(a)li_l for all a € S and

S = I(Xx) U B(x). Next suppose I(x) # @ and let a ¢ I(x). Then

Ix@as)| = [x@] [x)] < [xea)]<1.

Furthermore if ab € I(x}, then |x(ab)|< 1 and hence lx(a)l< 1 or
|X(b)|< 1 i.e. I(x) is a prime ideal of S,
Since the function le is continuous I(x) is open. Moreover

B(x) = S\NI(x) and it follows that B(yx) is a closed submob of S,

Remark.
It follows from 3.2.9 that if S is compact, both I(x) and B(yx) are

unions of submobs POl where

P ={x|xe S, e = e2 e T(x)}
o a a

For every idempotent eae I(x) we have x(ea) = 0 and for every idem-
potent ey € B(x) we have x(eb) = 1.

Thus I(Xx) = (J{Pa [ X(ea) = 0} and B(x) = U {Pal X(ea) =1},

Both sets I(x) and B(x) may be empty. I(x) is empty if x is a char-
acter of S,

Let S be the multiplicative semigroup of real numbers x, 0< x:'% with

the usual topology. Then if y is the semicharacter defined by x(x) = x
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we have B(y) = ©. In this case, we have in particular B(x) = ¢ for all

semicharacters y # Xq -

3.3.2. Lemma. Let x € S and define the null set N(x) to be
N(x) = {a] x(a) = 0 a € S}.
If N(yx) # @, then N(y) is a closed prime ideal of S and
U{H(ea)l x(ea) = 0} ¢ N(Y.
Proof:
If a € N(x), s € S we have x(as) = x(a)x(s) = 0, 1i.e. as € N(x).
Since x(ab) = O implies x(a) = 0 or y(b) = 0, N(x) is a prime ideal
and N(x) is closed since x is continuous.
Now let x(ea) = 0, then for every he H(eu) we have x(h) = x(heu) =
= x(h) x(ea) = 0, Thus H(ca)(: N(OO.

It is clear that if S is compact and N(x) is given, both I(x) and B(y)
are uniquely determined. Furthermore it follows from the next theorem
that each semicharacter y is uniquely determined by its values on I(y)

if N # 1(x).

3.3.3. Theorem. Let I be an ideal of S and let y be a semicharacter of
I. Then there exists one and only one semicharacter § of § such
that x(x) = £(x) for all x ¢ I.

Let a € I be an element with x(a) # O.

If b is any element of S, we have ba ¢ I and we define {(b} by the re-

lation

x (ba)
£E(b) =

x{(a)

The function & is clearly continuous and for every b € I we have

x (ba) x{(b)x{(a)
x(a) x{(a)

]

£(b) = x(b).
Furthermore!

x (ba) x(ca)  x(vaca) _ y(beca) y(a)
x(a) x(a) ~ x(a) x(ay 7 x(a) x(a)

E(0)E(C) = = ¢(be).
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Hence since ¢ is bounded £ is a semicharacter of S, Next let El and &2
be two semicharacters of S with Cl(b) = €2(b) = x (b) for all b€ I.
Let ¢ ¢ S, then ac € I and we have ﬁl(ac) = Lz(ac), i.e. Ql(a) 51(c) =
= 52(3) Ez(C).

Hence €1(c) = £2(c) for every c € S and the theorem is proved.

Corollary.It follows from the proof of the theorem that if ¥ is any
character of I, then there is only one character & of S such that § is

an extension of X.

Now let N # S be a closed prime ideal of the mob S. Then there need
not exist a semicharacter x of S, such that N(x) = N.
Let, for instance S be the I-mob J_. Then {0} is a closed prime ideal

3

and every element of J_ is idempotent. Hence we have x(a) = 0 or

3
x{(a) = 1 for each a ¢ J3. From the continuity of x it now follows that

J3 has only one semicharacter, the unit character Xl'

Let N = N(X) be the null set of a semicharacter x . Define SN to be
the set of all semicharacters § ¢ §, such that N(£) = N.

Each SN obviously is*a semigroup. Furthermore if S is compact S¢ is
the charactergroup S of S.

Indeed if I(x) # @, then I(x) is an ideal of the compact mob S and
hence contains an idempotent e, and we have x(e) = O which implies

N(x) # 8.

3.3.4. Theorem. Let S be a commutative mob, Then § is the union of dis-

joint semigroups SN , where each S is a semigroup with cancel-

N
Q o
lation. If S is compact, S = s*

Proof:
Let x, &, y € SN and suppose Xt = x¥ . Then for every ace€ Nq we have
£(a) = y(a) = 0,%nd if a € S\ N, x(@ £@a) = x(a) y(a) with x(a)#0.
Hence &(a) = Y(a) for all ae S.

Corollary. If S is connected and Qx % §, then SN cannot be finite,

and SN does not contain an idempotent. ¢

[+
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Proof
Let x be an idempotent semicharacter x € SNa. Since x «can assume only
two values 0 and 1, it would follow that x(a) = 1, a € S\ Na' Hence Na
is a clopen set. This gives a contradiction with the connectedness of
S. Next if SN is finite, then SN with the discrete topology is a com-

o o
pact mob and hence contains an idempotent.

Now let N and N, be two null sets. If NalJ N6 # 8, then NG‘J NB is
o

8
again a null set.

For if x € Sy and yeS , then Naii Ng = {x| xx)vx) =0, x ¢ s}.

N 8

o
Hence SNaSN < SNQUN, .
It follows that § is a semigroup if and only if S # NaLJ NB for any
two null sets N& and NB' This is for instance the case 1f § contains a

unit element.

3.3.5. Theorem. Let N # S be a clopen prime ideal of a mob S. Then N

is a null set. Furthermore if S is compact, S is a group if and

N

only if N is clopen and each x € SN is of the form

0 for xeN
x(x) = @
d(x} for x € SYWNHN, where ¢ (SNWN) .

Proof:

Let S be a group. Then S contains an idempotent y and we have

N = fo) = 1(. Therefori N is clopen. Conversely let N # S be a clo~-
pen prime ideal. Then S \ N is a closed submob. Let ¢ E(S\AN): N{¢p} =g,
Then the function ¥ defined by

0 for x € N

x(x) = d(x) for x € S \ N

is a semicharacter of S.

It is clear that in this manner we obtain all semicharacters of SN‘
E 3
If S is compact and N(¢) = &, then ¢ € S .Hence in this case

#
S o (S\N) and S

. y 1s a group.

Corollary. Let S be finite. Then § is a union of disjoint groups.

Remark.
Now let S be a commutative mob such that S can be written as a union

of groups. In such a mob every ideal of S is itself the union of max-
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imal groups. Furthermore each Pa E] {xlx € S, ea = ei e I'(x)} is iden-
tical with the maximal group H(ea).
Hence if X is any semicharacter then I(yx) = L’{Paf X(ea) =0} =

U {H(ea) Ix(ea) = 0}< N(y). Thus I(x) = N(x) and 8 is a group.

N(x)

Definition. Let S be a commutative mob and x € S. Let C be a compact

subset of S, € >0 and define
U(C,e,x) = {v e 8§ | [¥(x) = x(x)|< ¢ for all x € c!}

We now define a topology on 8 by requiring that the set {U(C,e,x)} be
an open basis.
It is clear that if S is a semigroup, then S with this topology is a

commutative mob.

3.3.6. Theorem. Let S be a discrete mob with identity, then § is a com-
pact mob.

Since all compact subsets of S are finite, the topology of S is its

relative topology as a subspace of DS with the product topology (D is

the set of complex numbers z with ]z[f_l). S clearly is a closed sub-

S
set of D and hence compact.

3.3.7. Theorem. Let S be a compact mob and let S' = LJ{SNISN a group,
Sy < §1. |
Then S' is a discrete subspace of S.
Let X € S' and suppose ¢ # y , ¢ € S' n U(S,%,x). Since ¢ # x we have
¢(a) # x(a) for some a € S. Furthermore we have ¢(x) = O or l¢(xﬂ =1
and x(x) = 0 or ]x(x)l = 1 for all x € S,

If either ¢(a) or x(a) = O, then ¢ ¢ U(S,%,X). Hence we have

[Wa)| = [x)]=1.
Suppose now ¢(a) = e1X and x(@) = ely, y> x. Then there is a positive
integer n such that
n n inx in in(y-xJ}
[¢a) - xa)]| = e e y‘ = |1-e J [> 5.

Thus ¢ £ U(S,%,x) and we have U(S,%,x) n §'= {x}.
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3.3.8. Lemma. Let S be a discrete mob with identity which is a union
of groups. Then §" (the semigroup of semicharacters of S) is a
union of groups and is discrete,

The remark to theorem 3.3.5 and theorem 3.3.6 imply that S is a com-

pact mob which is the union of groups. Hence §" = § is a union of

groups and by theorem 3.3.7 8" is discrete.

Now let a € S and define 3 by 3(x) = x(a), xeS.

It is obvious that each function 2 is a semicharacter of §.

Now let S be a discrete mob which is a union of groups. Then if ea # eB

are two idempotents of S, we either have e e, # e or e e, # e_ . Hence
o b o1 o f g8

there is a clopen ideal N such that eu€ N and eﬁ ¢ N or vice versa.

This implies the existence of a semicharacter X ¢S such that

X(ea) # X(eb)'

3.3.9. Lemma. Let S be a discrete mob with identity such that S is a
union of groups. Let ! be a clopen prime ideal of S. Then there
is one and only one idempotent e € S such that & = N(&).

Since $ is a union of groups SN and § compact, each open ideal is of

the form (= U {S_ |e ¢ # ¢ },%where ¢, is the identity of S_ (3.2.9).

Ny, aB o1 b NB

If eaesf €y then NB ra N, and hence o= U {SN INb fa Na} . Now let &

be closed, then there is an x £ NOl such that X?x) = 0 for all xe .

For let x ¢ N, and suppose there exists a X ¢ K with y(x) # 0. Let

C be any finite subset of S and let ¢ >0. Let C\‘Nm = {xl,...,xn} and
cn Nu = (xn+1,...,xm} . Then X Xgoo X 4 Na and there is a x ¢ O such
that X(xl...xn) = x(xl) X(Xz)“‘ x(xn) # 0.

Let ¢ = €ax'§ . Then ¢ e and ¢(xi) :_Ea(xi)“ (i=1,2,...,m}).

Hence ¢ € U(C,ﬂ,ea) N 0 and thus e, € O, which implies that (I is
not closed.

Now let x £ Na’ X(x) = 0 for all x e ¥l and let e, be the idempotent
such that % € H(ea).Then since Na is a union of groups we have ea £ Na

and X(ey ) = 0 for all x ¢ oL,
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Hence & (X) = 0 for all xe df, i.e. X c N(E&). On the other hand we
have if X € N(8 ), then x(e ) = 0, thus N(X) & N_ which implies X € a,
Thus 0[= N(S).

Now let £ # €y be an idempotent of S, Then there exists a semicharact-

er X such that X(ea) # X(£f). Hence N(ga) #“ N(%) and the theorem is

proved.
Remark.
It follows from the lemma that if # = N@) = U (s [NB €N} is
a g
a clopen prime ideal of S, then
2
N, = U {H(eB) {esea # e, €y = €€ S}

For let ey be an idempotent ey Z Na’ then eyl £ NQ and

x(ebea) = x(eb) X(ea) = 0 for all x € . Hence since ege, is an idem-
potent we have eﬁeaz e,
Thus S\ N = EJ{H(eb) ]eBeu = ea} and it follows that H(e )is the min-

imal ideal of S\ Na'

3.3.10. Lemma. Let § be as i: 3.3.9. Then SN is topologically iso-
morphic with (H(ea)) .

Proot :

Let ¢ € SN and ¢' = ¢ |H(ea).Then 3.3.3 and 3.3.5*imply that the map-

ping ¢ + ¢' is an isomorphism of SNOl onto (H(eu)) .

Furthermore ¢(x) = ¢'(xea), X £ S\ Na'

Now let C be a compact subset of H(eu),then U(C, ¢, ¢) is mapped into

U(C,e,¢'}. On the other hand if C is a compact subset of S, then

(C (S \Na))ea=:C' is a compact subset of H(ea)and U(C',e,¢"') lies in

the image of U(C,e,¢).

Hence the mapping ¢ + ¢' is a homeomorphism,

N |
is a group and is the set of all semi-

From lemma 3.3.9 and theorem 3.3.5 it now follows that 8 = L){é
e = e? ¢ 8) , where each S

N (%)

characters of S with null set N(&) and

~ o~ 0 N
SN('é‘) “ (SNN(E))
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with S\ N(8)

it

U{sN ]NBC N

o ~ B
Now let H(e) {x|x € H(e)}.

3.3.11. Theorem. Let S be a discrete commutative mob with identity

which is the union of groups.

Then S is topologically isomorphic to $” under the natural

mapping x ¥,

Proof:

Let x ¢ H(e& and X € §. Then X(x) = O if and only if X(ea) = 0 and it

follows that N(X) = N(Eu).Thus ﬁ(ea)c:é .Now let ¢ € S

o =0 | sy

Then ¢' is a character of SN and lemma 3.3.10 implies that
* o
SN = (H(eu)) under the mapping x -» x' with x(x) = x'(eax).
o

*
Thus the function X' + ¢'(x) is a character of (H(eu)). By the

N(2) N(&)
o o

Pontrjagin duality thecorem there exists an x EH(OG) such that ¢'(y)

= X(X') = X' (x) = x(x).

e o' = %S
Hence ¢ x] N

u s I o
Since S is an ideal of S\‘N(ou)it follows that ¢= x. Thus S xy =

N
= H(e&)a%d we have S = U {ﬁ(eu) }ca ¢ S}.

The converse of theorem 3.3.11 also holds.

and let

3.3.12. Theorem. Let S be a discrete commutative mob, such that S is a

mob and such that S 72 §  under the mapping x + %. Then S is a

mob with identity which is the union of groups.
Proof:

Since 8" has an identity so does S.

Since the mapping x - X is one-to-one there existsto each pair a,;b € 8

a £ b, axe$ with 3(X) # %’(x)ti.e. x(a) # x(b).

t
a b
Let x(a) = re ., x{(b} = re o, then ta # tb or r_ # . If ta # tb

then the mapping X _
" Otlf x(x}) = O
X (x) = %

e if X(x}# 0, is a semicharacter of S

* * # #
such that x (a) # x (b) and |x (x)| = 0 or |y (x)| =1 for all x ¢ S.

If r, # ry then let ¢ be any character of the multiplicative group of

positive real numbers with ¢(rq) # ¢(rb),
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The mapping
0 if x(x) =0

X' (x) =
¢(rx) if r # 0 is a semicharacter of S such
that x'(a) # x'(b) and |X'(x)| =0 or |x'(x)| = 1 for all x € S.
Now let x' be the element such that X' = X (the complex conjugate of

%) and let e = xx
Then if ¥ is such that |X(x)[ = 0 or 1 for all x € S, we have

x(e) = Ix(x)]z and hence x(e) = 0 or x(e}) = 1. In both cases we have
X(ex) = x(e) X(x) = x(x).

Hence ex = x and it follows that e is an idempotent with x ¢ H(e). Thus

S is a union of groups.

Now let S be a compact mob with identity which is the union of groups
such that § separates points of S. Then S is a discrete mob with iden-
tity which is a union of groups and § is a compact mob which also is
the union of groups.

Now let a: x + % be the natural mapping of S into §". Then q is a topo-~
logical isomorphism of S into §”.

a is clearly a homomorphism and o is one-to~one since for all x # y,
x,y€ S there is a X € § such that x(x) # x(y) i.e. % £ ¥.

Next let C be a compact subset of é, then C is finite, since § is dis-

crete, C = {xl,x .,xn} and let € >0. Let V be a neighbourhood of x

YRR
in S such that lXi(x) - xi(y)\ <t for all y €V, i =1,2,...,n.
Then o(V) ¢ U(C,€,X) and it follows that o is continuous. Since S is

compact and §" a Hausdorff space, we have that o is topological.

2
2.3.13. Lemma. Let e; = e, e~s and let E = {ea| e, S ep J (SN e 1
closed} . Then ey €EL.

Proof:
Since the minimal idempotent of S belongs to Eb’ E6 is nonvoid. Since
S and a(S) are homeomorphic each neighbourhood U of eB is of the form

>

U= {x] |xi(x) - Xi(eﬁ)l <e, 1i=1,2,...,n, x.¢€8}

Let Xj(eﬁ) = 1 for 1 <i <k and Xi(eﬁ) = 0 for k<i<n. Let
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X1X2...Xk = X. Then N(X) is a clopen prime ideal of S, hence

N{X) = JO(S \{ea} } for some e, € S. Furthermore we have X(eB) = 1

and hence N(x) € J (S\{e,}) i.e. e <e .
[} 8 o~ g

Since Xi(ea) =1 1<i<k and Xi(ea) = Xi(eaeB) =0 k<i<n we have

€
e, U.

3.3.14. Lemma. Every idempotent of 8  has the form Eu p e, = eie S.
Proof:
Let n, be an idempotent such that Jo(g‘\{nu}) is closed. Then it fol-

lows from 3.3.9 and the remark to 3.3.9 that
2

JO(S \{na} )} = lJ{SQ‘b lnbna # Ny’ nb: g € S }, where n8 is the idem-
potent contained in SUL
K
2 -
Uia = L}(SN |€Bsa # €ur £5= €5 € st = L){SN,] Nd z Na}‘

6 ]
Hence na is the characteristic function of

sva = U {sNB| Noo M)

Since N is a clopen prime ideal of S we have NOl = JO(S \{ea} }. Hence

ﬂu(x) =1 if and only if X €S

Z

with N < Na’ i.e. if and only if
B
N(X} € J (S\{e_} ). Thus n = % andn e a(8).
o o o u o
From lemma 3.3.13, applied to the mob S8~ (8§  is a compact mob with iden~
tity which is the union of groups and whose semicharacters separate
points) it follows that each idempotent of S~ is contained in the

closure of 0(8). Since o(S) is closed, the lemma follows.

3.3.15. Theorem. Let S be a compact mob with identity which is the
union of groups, such that 8 separates points. Then S and §”
are topologically isomorphic under the mapping x X.

Since each idempotent of § is of the form &, , we have

8" = U {8 2

e eS8} .
Now let % € H(e) = {% | xeH(e)} . Then X(x) = 0 if and only if x(e} = O,

thus N(8) = N(¥) and hence X ¢ éN(S)' Next let ¢ éN(%) and suppose

that Jo(éA\ {8}) is closed. Then ¢ is a character of
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S\&:L}&NJ%;JBS\{Q ) =N},

Furthermore ¢' = ¢|SN is a character of S and by 3.3.5 we have

%
SN ¥ (S\N) .

Since H(e) is an ideal of S\ N it follows from 3.3.3 that

N

# *
(H(e)) 2 (S\N) under the mapping X » X' with x(x) = x'(ex).
%*
Thus the function X' =+ ¢'(X) is a character of (H(e)) . Hence there
exists an x € H(e} such that ¢'(X) = X(x).

Hence ¢' = §]SN and by theorem 3.3.3 we have ¢ = X and § c H(e).

N(&)
Finally let ¢ ¢ SN(E)' where € is an arbitrary idempotent of $". Then

by lemma 3.3.13 there is a net of idempotents ga , such that

J (8"\{& } ) is closed and 1lim & = &. Moreover & & = & .

o o a i a a
Then ¢ = ¢& = lim ¢5a and since ¢§a € SN(Sa)c; H(em)c a(S) we have
¢ € a(S).

Since all groups S are disjoint and fite ) éN we have ¢e:ﬁ(e).

N(&) (&)
If S is a compact mob with identity which is the union of groups, then
the statement that S separates points is not necessarily true. If for

instance S X J then § contains only the unit character.

3Y

3.4. Notes

The study of monothetic mobs has been initiated by several authors.
The results contained in section 1 are due to Numakura [2], theorem
3.1.1, Koch [2], theorem 3.1.2, 3.1.3, 3.1.4, 3.1.9 and Hewitt [1],
theorem 3.1.5, 3.1.6, 3.1.7.

The structure theory for commutative compact mobs contained in
section 2 is due largely to Schwarz [4], [6]. Theorems 3.2.12 and
3.2.13 were proved by Gelbaum, Kalisch and Olmsted [1].

in [2] Hewitt and Zuckerman proved theorem 3.3.11 for finite com-
mutative mobs., The proof given here is based on Austen [1] who also
proved theorems 3.3.12 - 3.3.15.

Semicharacters have also been studied by Schwarz [1], [s], [e6].
He uses the term character and includes the zero character in his con-

siderations.
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IV. MEASURES ON COMPACT SEMIGROUPS

4.1, Invariant measures and means

Definitions: Let S be a compact mob, By a measure u on S we shall mean
& O-additive, non-negative, real-valued regular set function defined
on the Borel subsets of S, such that up(8) = 1,

The measure W will be called right invariant if for every Borel set
B« 5 and a € S for which Ba is also a Borel set u(Ba) = u(B} holds.
We will call the measure ¥ right subinvariant if for every Borel set

B« 8 and a € S for which Ba is also a Borel set, u(Ba) < u(B) holds.

The property B a Borelset of S and a in S imply Ba a Borel set of S may

fail in a semigroup. Let for instance S « E_ be the set of all points

2
of the closed square 0Sx <1, 0 <y<1,

S = {(x,y) |0<x<1l, 0<y<1l} , with the relative
topology.

Define a multiplication in S by
(xl,yl)w(xz,yzﬁ = (xl,OE‘

The multiplication is continuous and associative, hence S is a compact
mob.

It is known that in S there is a Borel subset B such that its project-
ion ®w({B) on the x~axis is not a Borel set (see C. Kuratowski. Topolo~

gie, p.368).

For any (x,y) € S we have B(x,y) = w(B) and hence B is a Borel set,

while B(x,y)} is not a Borel set.

For each element a of a compact group S left and right translations by
a are homeomorphisms of S. Hence if B is a Borel setof S and a € S,
then Ba is a Borel set of S. A measure which is right invariant is right
subinvariant, but the converse is not generally true. However, these

concepts coincide in the case of compact groups.
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Fcr let B be a borel set, then
-1
u(B) > u(Ba) > u(Baa ") = p(B).

Moreover in this case such a right invariant measure is known to exist,

namely tre right Haar measure on the group.

4.1.1. Lemma. I7 a compact mob S has a right invariant measure u , then
S contains exactly one minimal left ideal, its kernel K, and
U(3 VK) = 0.
Let L be a minimal left ideal of S. Then L = Sx with x ¢ L and hence
H(S) = u(Sx) = w(L). Thus w(L) = 1 and p(SNL) = 0. Since this holds
for any minimal left ideal and since no two minimal left ideals inter-
sect, it follows that S contains only one minimal left ideal which must

be the kernel of S.

Corollary. If a compact mob S has a right and a left invariant measure,

then K is a group.

The converse of lemma 4.1.1 is not true. In fact, if S is a compact mob

with zero, with IS( > 2, then S has no right nor left invariant measure.
For in this case {0} is the only minimal left and right ideal. Hence if
W is a right invariant measure on S, we would have u({0}) = 1.

On the other hand we have for all a € S, a0 = 0 and thus 1 = u({0}) =

u({a}0) < u({a}). This contradicts the fact that u(S\ {0} 0.

Now let C denote the set of all x € S such that p(U) # 0 for each open
set U about x%. C is called the support of u.
If x £ C, then there is an open set U with xe U, p(U) = 0. Hence

Un C=¢ and it follows that C is closed.

4.1.2, Lemma. If a compact mob S has a right invariant measure p , then

C is a closed right ideal of S with C « K, u(C) 1.
Froof:
Sinc> K is compact, S \ K is open. Furthermore u(S\K) = 0, according

to lemma 4.1.1 and it follows that C ¢ K.
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Now let U be an open set such that Cc U, Then S%U is compact and can

1,...,n, with

be covered by a finite number of open sets Vi’ i
M(Vi) = 0. Hence uH(S \N U} < u(Vl) oot u(Vn) = 0 and it follows that
1.

W({U)} = 1. The regularity of p implies that *u(C)
We now prove that C is a right ideal. Since Ca is compact for all a e S,
we have u(Ca} = u(C) = 1. If C & Ca, then there is an x ¢ C, x ¢ Ca
and hence a neighbourhood U of x with U » Ca = @. Since u(U)>0 it
would follow that wp(Ca) <1. Thus we have C « Ca and by 1.4.3 C = Ca.

4.1.3. Theorem. If a compact mob S has a right invariant measure u ,
then the support C of U is the union of maximal subgroups H(e)
with e € K.

Since S contains exactly one minimal left ideal, each minimal right

ideal is a maximal subgroup and K = k}{H(e)ie € E n K}

Since a group contains no proper right ideals we have elther

C n H(e) = @ or H(e) © C and the theorem follows,

If S is a compact mob such that (S % K)S & K and such that (S \K)a is

open for each a € 5, then a converse of lemma 4.1.1 is possible.

4.1.4. Theorem. Let S be a compact mob such that (SxK)a is open for
each a € S,
A necessary and sufficicent condition that S has a right invar-
iant measure is that K is a minimal left ideal of S and
K & (SNK)S.
Proof
Let K be a minimal left ideal of S such that K ¢ (S\K}S. Then
K= 4J {H(e)ie € Emn K} and since (S N\ K)}S is a right ideal of S we
have for each H(e) © K either H(e) © (S \ K)S or H(e) » (S\K)S = @.
Hence there is an H(e) = H such that H(e) » (S \ KIS = &,
Now let v be the normed Haar measure on H and let u(B) = v(B n H) for
each Borel set B of S. It is obvious that y is a measure on S. We now

prove that u is right invariant.
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Let B be a Borel setof S and a € S. Then
Ba = (Bn H)a U (Bn S\K)a U (Bn K\H)a.

Furthermore (B M S%ZK)a € (S\K)a € (S\K)S ¢ S\H and

(Bn K\NHa <« (K\NH)a« K\H.
Hence Ba m H = (Bmn H)a NnH = (B n H)a and we conclude that
U(Ba) = V(Ba m H) = v((B n H)a) = V((B~n H)ea) = V(B n H} = u(B).
Now suppose on the other hand that S is a compact mob which has a right
invariant measure ¥ . Then K is a minimal left ideal by lemma 4.1.1 and
W(S\NK) = 0. If K € (SNK)S, then the set {(S\K)a}a . g constitutes an

open covering of the compact set K and we can find a finite subcovering

(S‘\K)al,...,(S‘\K)an. Since W is right invariant we have
u(K).fu((S\‘K)al) + ...+ u((SN K)an) = 0,

This contradiction completes the proof of the theorem.

It follows from 4.1.4 that a sufficient condition that a compact mob S
has a right invariant measure is that K is a minimal left ideal and

K # (SN\K)S. This condition however is not necessary.

Let for instance G be the additive group of real numbers mod 1 and let
e be a symbol not representing any clement of G. Extend the multipli-
cation in G to one in S=G v {e}by defining ee = e and eg = ge = g for
every g in G, Now let S be topologized so that e is an isolated point
and G has its original topology.

Then S is a compact mob with minimal ideal X = G and (S%K}S = eS8 =

= S 2 K. Let v be the Haar measure defined on G and let pu be the measure
on S defined by u(B) = v(B n G) for each Borel setB « S,

Then M is a right invariant measure.

Definitions. Let S be a compact mob and C(S) the set of all real valued
continuous functions on S. For a fixed element a ¢ S and f ¢ C(S} let fa
be the function on S such that fa(x) = f(xa) for all x € S.

Then fa is called the right translate of f by a.

The left translate af is the function defined by af.(x) = f(ax}.
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A mean M on C(S) is a real linear functional on C(S) having the proper-
ty that

i) M(f) > 0 whenever f € C(S) and f(x) > 0 for all x ¢ S.

ii) M(f} =1 if f(x) =1 for all x ¢ S.

A right (left) invariant mean M on C(S) is a mean such that M(fa) =

= M(f) (M(af) = M(f)) for all f € C(S), a € S.

4,1.,5. Theorem. Let S be a compact mob. Then there is a right invariant
mean M on C(S) if and only if the kernel K of S is a minimal
left ideal.

and L, arc two different minimal ideals of S. Then

1 2
L.,nAn L, = @ and there is an f ¢ C(S) such that

12
£0x) :{o if x ¢ L

1 if x ¢ L2.

Suppose that L

If M is a right invariant mean on C(S}, then we would have
0 i €
{ if a L1

. ¢
1 if a L2.

M(f) = M(f ) =
a

This contradiction proves the 'only if' part of the theorem. Now let S
be a compact mob, such that K is a minimal left ideal. Then

K= U {H(e) | e € EnK} , where each maximal subgroup H(e) is a minimal
right ideal. Let I be the normedHaar integral on one of these groups,
say H = H(el), and let M(f) = I(f'), where f' = f|H. It is clear that
M is a mean on C(S). We now prove that M is right invariant.

a € H, where e,a ¢ H and hence

Let x € H and a ¢ S, then xa = xe 1

1
f(xa} = f(xea) for all x € H, a € S; i.e. f; =

I(fﬁ)

féa' Furthermore we have
I(f') for all h € H and we conclude that

i

M(Ef ) = I(£') = I(£' ) = I(f') = M(E).
a a ea

4.1.6. Theorem. Let S be a compact mob and let M be a mean on C(S} such
that M(fa)j.M(f) for all a € S and f € C(S). Then M is right in-

variant.
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By the representation of linear functionals as integrals there is a
regular Borel measure U on S (as a space) such that M(£f} = f f{x)dyu.
Let L be a minimal left ideal of S and suppose u(L) <1. Thensby the
regularity of U we infer the existence of a compact subset F < 3,

Fn L=g¢g, with u(F)>0. Now take f € C(S) such that 0< f(x} <1;

f(x) =1 for x € L and f(x) = O for x € F. Then we have for a ¢ L

1= M(fa) < M(f) <1.

Hence we conclude that u(L) = 1 and since this holds for all minimal
left ideals it follows that S contains exactly one minimal left ideal.
Furthermore we have M(f} = f f(x)du.

Next let e be an idempotent L of S contained in L. Then L = Le = Se
and e is a right identity of L. Moreover we have that for each a € 5,
ea € L, Since L is the union of maximal subgroups H(ea), there exists
an e such that ea € H(ea) and an element a_1 with eaa—l = e .

a o
If we put fa = g, then we have for all x € L

g ~1(X) = g(xanl) = fa(xaml) = f(xamla) = f(xﬂ‘lea) = f(xea} = f{x).
a
Hence M(f)

il

Jrooaw = [g _[Gddus [gdaw = [ £ ddu = M(£).
L L a L L

Thus M(fa) = M(f} and the theorem is proved.

In the same way we can prove that M is right invariant if M(fa)i M(£) .

From the proof of theorem 4.1.5 it follows that a right invariant mean
on C(S) is not unique if the kernel K of S contains more than one min-
imal right ideal. The next theorem however states that a two-sided in-

variant mean on a compact mob is unigue.

4.1.,7, Theorem. Let S be a compact mob. Then the following conditions
are eguivalent.
1) K is a group.
2} S has a two-sided invariant mean.
3) S has a right and a left invariant mean.
Furthermore if M is a two-sided invariant mean, then M(f) =

= f f£'dy , where f f'dy is the Haar integral for the compact
K K
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group K.
1) + 2). From theorem 4.1.5 it follows that the Haar integral for K can
be extended to a two-sided invariant mean on C(S).
2} - 3). Trivial,
3) + 1), Theorem 4.1.5,
Next let M be an invariant mean on C(S), then it follows that
M{£) = f fdu where M is a regular normed Borel measure and W(K) = 1.
Hence M(%) = 'f fdu , and since f f(xa)duy = f f{x)duy it follows that

f dy is the Hgar integral for KK K

K

Let B be a subset of and a € S, By Ba we will denote the set of all

S
x € S such that xa ¢ B.

B

2 {x|x €S, xa £ B}

it

Since Ba is closed (open) if B is closed (open} and since Ba!\ Ca =
= (BnC) ,B wC =(BuWC) it follows that B is a Borel set for
a’ "a a a a

each Borel set B of S and a ¢ S,

4.1.8, Theorem. Let S be a compact mob and M a right invarianﬁ mean on
C(S). Then M(f) = [ f(x)du , with u(B) = u(B)) for all Borel
sets B <« S and ae:S?

Proof:

Since M can be represented as an integral we have M({f} = ff(x)du ,where

4 is a regular Borel measure on S,

MNow let F be any closed set of S. Then given € >0, there is an open

set V, F< C, such that p(V) < u(F} + e. Let f ¢ C(S} be such that

0 <f(x)=<1 for all x ¢ S and £(x) =1, x ¢ F; £f(x} = 0, x ¢ V. Then we

have

W(F) < [fxaydy = [£(xddu < u(V) < u(® + €.

Since this holds for all £ we have u(Fa) < u{F}. Moreover we have

W(K) = 1, u(SHY K} = 0. Hence u(F) = p(F n K}, Furthermore we have for
* -1 * *

all closed sets F ¢ K and a € S an a €K such that F < F .y . Hence

* * # * a "a
WF ) < w(F -1 3= u(Fa) < w(F ). Thus we have for all closed sets F c S
a a
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WF) = W(F NnK) = u((F n K )< u(Fa). This together with u(Fa)f_u(F)
implies u(Fa) = p(F). Since this holds for all closed sets it also

holds for every Borel set and the theorem is proved.

4.2, Subinvariant measures on simple mobs

Let S be a compact simple mob. Then K = S and S clearly satisfies the

condition of theorem 4.1.,4. Hence it follows that a compact simple mob
S has a right invariant measure if and only if S is left simple.

In this section we will establish necessary and sufficient conditions

that a simple mob possess a right subinvariant measure.

It follows from theorem 1.3.10 that each compact simple mob S is iso~

morphic with the mob (Se n E) xH(e) x (eSnE), with ecEnK and multi-

plication defined by

Gpohy oy ) (Bp0hy0yo) = (xy by xohy,y5) .

4.2.1. Lemma. Let S be a compact simple mob. If S contains a finite
number of minimal left ideals, then S has a right subinvariant
measure.

Let S = (Se;n E) xH(e ) x (e;SnE) with |e,SAE| = n and let L be the

n E) xH(el) x e

minimal left ideal (Se Then S is isomorphic with the

1 1

*

mob S' = L X(eISn E)} with multiplication defined by (ll,e)(12ye } o=
%

= (11e12,e ).

We now identify S with S'.

the measure on

Let W, be a right invariant measure on L and

y

1 2
1

(elsnE) such that each point has measure o Let p = Wy X My be the pro-

duct measure on S.

All that remains to be shown is that p is right subinvariant. Let B be

any Borel set of S. Then

B = (B1 x{el}) v (B2><{e2}) (VIR (Bn x{en}),
: n
where Bicz L,i=1,...,n and {ei}izl = els n E.
Now let a = (l,ej) be any element of S, then

Ba = (Blell x{ej}) ] (Bzezl x(ej}) vo... U (Bnenl x{ej}).
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1 1
Thus u(Ba) < {w (Bje D+...+ u (B e 1)} == {u (B)+...+ u (B}
= W(B).

4.2.2, Theorem. Let S be a compact simple mob S = (Seln E) x H(el)x

x(els/wE) such that SAE| = n. Then S has a right subin-

e
1
variant measure and each such measure u is a product measure

U= U, x U is any regular normed Borel measure

1 2 1

on (Seln E}, uz is Haar measure on H(el) and “3 is the measure

on (elsr\E} such that each point has measure o

X u3, where u

Proof:
From lemma 4.2.1 it follows that S has a right subinvariant measure u
and that we can identify S with the mob L x(elsr\E), where
L o= (Seln E) x H(el) X{el}.
Define VvV on L by
v(B) = u(B X(elser))

for each Borel set B of L and define u,_, on (elSr\E) by

3
ua(A) = u(LxA).

Then it is clear that both U3 and v are regular Borel measures,
Furthermore u3({ej}) = p(L x{ej}) > u((L x{ej})(l'ei)) = wLx{e D) =
= us({ei}). Since this holds for all j=1,...,nand i = 1,...,n it

—

follows that ua({ei}) = i=1,...,n.

Moreover for each ej c(elsr\E) there is an lje L such that ejlj = e .

Hence .
u((B x{ej})(lj,ei)) = u(B x{e, D < u(Bx {ej}) )

and we conclude that u(Bx{e;}) = u(Bx {ej}) and so
v(B} = n., y (Bx {el}).
Now let 1 € L, then
V(B1) = n. u(Blx {e;}) = n.u((B x{el})(l,el)) < n.pBx {81}) = v(B).

1

Since there exist to each 1 € L an 1"1 with 11~ e1 ¢ (Se,n E} we have

-7 1
v(B1) > v(Bl.1 ") = v(B).

Thus v is a right invariant measure on L.
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Finally W clearly is the product measure v x u3, since for each B € L

{e. } # we have p(BxA) = puBx{e. }) +...+
Jio 1=l 1

n v(B) = v(B) u3(A)-

We now prove that the measure V on L also is a product measure.

and Ac eSnE, A

=

+ u(B x{ejk}) =

Since L = (Seln E) x H(el) we have for each 1 ¢ L, 1 = (e,h).

Define Ul on Seln E by

ul(B) V(B)<H(el))

and uz on H(el) by

U2(A) v((Seln E) x A},

where B and A are respectively Borel subsets of (Seln E) and H(el).
It is obvious that ul and uz are regular Borel measures. Furthermore
uz(Ah) = \J((Seln E) x Ah) = V(((Seln E) xA)(el,h)) = V((Sein E) x A) =

= UZ(A). Hence since uz(H) = V(L) = 1, u_ is actually the Haar measure

2
on H,

Now let B ¢ Seln E and define UB on H by UB(A) = V(Bx A). In a similar
fashion it can be shown that “B is a regular Borel measure such that
uB(Ah) = UB(A) for all h € H, Hence uB is a multiple of the Haar measure

M, and since uB(H) = V(B x H) we have

2
V(B xA) = UB(A) = V(B x H) UZ(A) = v(Bx H) v((Seln E) x A).

* *
We now define the product measure v = ulx u2 and we show that v = v .
Let B be a Borel set of (Seln E} and A a Borel setof H(el). Then

VB xA) = b (B). b, (A) = V(B xH)V((Se n E) xA) = v(B xA).

From theorem 4.2.2 it follows that right subinvariant measures are ex-
tremely non-unique. The measure u 1is determined by the measure My on
(Seln E). Since a regular normed Borel measure on a compact space is

unique if and only if the space consists of a single point it follows

that W is unique if and only if each minimal left ideal is a group.

4,2.3. Theorem. Let S be a compact simple mob S = (Seln E) x H(el) x
% (eISr)E) such that S contains an infinite number of minimal
left ideals. Then S has a right subinvariant measure if and only
if the space elsr\E has a normed regular Borel measure such that

each point has measure zero.
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Let ul be any normed regular Borel measure on (elsrvE) such that each
point has measure zero and let uz be any regular normed Borel measure
on L = H(el) x(Seln E).

Then u2 xul is a right subinvariant measure on S. For if B is a Borel
set of S and a € S, aeg L X{e*}, then Ba ¢ L.x{e*}and hence if Ba is a
Borel set we have M(Ba) < u(Lx {e*}) = UZ(L)Ul({e*}) = 0.

From this we conclude that u(Ba) < u(B).

Next suppose on the other hand that W is a right subinvariant measure
on S. Define ¥, on e, SNE by

1 1
Ul(B) = u(LxB).

Then in a similar fashion as in the proof of theorem 4.2.2 it can be

# #
shown that ul({e}) = ul({e }3 for all e,e ¢ eISr\E. Hence since

ieISnEl is infinite and u (e,;SNE) = 1 it follows that u ({e}) =0

for all e ¢ els ~ K,

Example.

Let S ¢ E, be the set S = {(x,9)]x =

with the relative topology.

<
(S
i
]
o

Define a multiplication on S by
(xl,yl)(xz,yz) = (xl,yz).
The multiplication is continuous and associative, hence 5 is a compact

mob. Since S(x }JS = S it follows that S is simple. Furthermore each

1291
set {(x,y)ix = ik; y = 0,%...} is a minimal left ideal and each set
{(x,y)lx = 0,5,. Ly o= Lk} is a minimal right ideal. Furthermore each
element of S is idempotent. Each minimal left ideal is a countable com-
pact Hausdorff space and hence has no normed regular Borel measure such

that each point has measure zero. Since this also holds for the minimal

right ideals S has no right nor left subinvariant measure.

We can now summarize the preceding theorems.

4.2.4. Theorem, Let S be a compact simple mob with S = (Seln E) x H(el)x

x (elser). Then S has a right subinvariant measure if and only
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if the compact space e.SnE has a regular normed Borel measure y such

1

that wu({e}) = u({e'}) for all points e,e' ¢ e, S N E.

Now let S be a compact O-simple mob, then by theorem 2.3.9 S is iso~

b3
morphic with a mob S = le H(e) x thJ{O}, where Yl

contained in a O-minimal left ideal and Y2 is a compact set contained

is a compact set

&
in a O~minimal right ideal. The multiplication in S is defined by
* k% *
® k% ( h h } if £ 0
(yl,h,yz)(yl,h ,yz)z { y]_’ y2y1 *,Yz y2y1
0o if Yoy, = 0.

and s*O = Os* = 0.

Now let ¥ be any right subinvariant measure on S. Then u{({0}} =

= u({s}0) < u({s}) for all s ¢ S and hence u({0}) = 0 if S is an in-
finite mob.

It is clear that each finitc mob has a right subinvariant measure p .

Let for instance u be the measure defined by u({s}) = 1/n for all

se S if |s}| =n.

4.2.5. Theorem. Let S be a compact O-simple mob S = Y_ x H(e)x Y  u {0},

1 2

Then if [Y2] is infinite S has a right subinvariant measure if
and only if there exists a regular normed Borel measure “2 on Y2
such that uz({yz}) =0 for all y,eV,.
Proof:

Let U be the Haar measure on the compact group H(e}, Wy any normed

&
regular Borel measure on Y, and let v =

1 By X Box Hg be the product

measure on le H(e) x Yz.

Furthermore let V be the measure on S defined by v(B) = v*(B\ {0}) for
all Borel sets B of S.

V is right subinvariant since

v(BO} = v({{o}) = v*(ﬁ) = 0 < v(B) and

v{B (yl,h,yz)) < \)(le H(e) x{yz}u{O}) = \)*(le H(e) x {yz}) =

= uy (V) x u(H) x uz({yz}) =0 < vwB).

If on the other hand V is a right subinvariant measure on S, then V

2

defined by vz(A) = v(Y1><H(e)x A) for all Borel setsA C.Yz is a normed

%
regular Borel measure on Y vz({yz}) = vz({yz}) since there exists

o
for each ya €Y such that Yo¥y £ 0,

2

%
aye Yl
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Hence v, ({y,)) = V(¥ X H() x y, D) 2 V(% (&) x (7, (5} o7 =
= V(Y xH(e) x{yz)): vty D

4,2.6. Theorem. Let S be an infinite compact O-simple mob

S = ¥, xH(e)x ¥, v {0} such that lef = n.

Then S has a right subinvariant measure and each such measure

W is such that pu({0}) = 0. Furthermore u is a product measure

on Y1 xH(e}y x Y, ,, u = My % Vv ox u2, where “1 is any normed

regular Borel measure on Yl’ v is the Haar measure on H(e) and
1

uz({yZ}) = 5 for all y,e ¥,.

Proof:

Let U be a right subinvariant measure. Define Hy» V and Vg respect-

ively by ul(B) = u(B x H(e) x Y2) s ISCYl
v({A} = U(leAsz) , A< H(e)
UZ(C) = u(Yl x H(e} x C} Cz:Yg.

Then it follows in a similar fashion as in theorem 4.2.5 that

1
ug({yz}) == for all y,eY,. .
Since there exists for ecach yzc Y2 a yle Yl and an h2 ¢ H{c) such that

&
y2y1h2 = ¢ we have
U(B x H(e) x {yz}) > (B x H(e) x {yz})(yz,h,y;) = (B x H(e) x {y;}) and

| Ay h.

analogously U(le A X{y2)) > u(y
1 1
Hence uW(B x H(e) X{yz}) = E~ufB) and u(le A><{y2}) = = v(A).

=

V is the Haar measure on H(e) since
*
V(Ah) = nu(Yl x Ah x {yz}) = nu((le Ax{yz})(yl,hzh,yz)z v{A).

It now follows in the same way as in theorem 4.2.2 that y =y, x vxu,.

1 2

If we take for ul the measure on Y1 defined by ul({e}) = 1 and
ul(Yl\ {e}} = 0, then it follows just as in theorem 4.1.4 that

®x Vv xld_ is a right subinvariant measure on S,

"1 2
4.2.7. Lemma. Let S be a compact mob with a finite number of idempo-
*
tents., Let S # K, § = s? and let J be a maximal ideal. Let S/J
*
be the Rees semigroup S/J with the following topology. S/J =
= 8% J v {0} where {0} is an isolated point and S\ J has the

E3
relative topology. Then S/J is a compact O-simple mob,
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Proof:
Since S/ J has 2 finite number of idempotents and thus a finite num-
ber of O-minimal left and right ideals we have

S/J = aS/J bva,S/Jb,u...u aS/Jbuvuas/Jbu...va
1 1 1 n 2

3/
9 1 S/J an{O}

1

where each ajS/J bi either is a group with zero or a set

(a S/J b.)2 = {0} .
J i

Let (a., S/J b)Y \ {0} A ... Then since A, = a Sb_\ J, A.., is closed.
J i Ji J1 J 1 Ji

Furthermore A . n A . =
Jji k1
Thus Aji is open in S/J .

g, (j,i) # (k,1) and hence Aji v J is open.

) * . 4
We now prove that multiplication is continuous in S/J - If ab = ¢ o,
then a€A, , be A  with A_ A n J = @, Next let V be an arbitrary
ji k1l Jji k1
neighbourhood of ¢ in S and let V(a} and V(b) be neighbourhoods of a
and b in S such that V(a).V(b) € V. Then (V(a)n Aji)(V(b)r\Akl)c Vn 8\ J.

K1’ then AJiAkl = {0} and if ab = 0, with a = 0O,

If ab=0 ae A _, beA
L gt * *
then 0 S/J = {0}, Hence multiplication in S/J° is continuous and S/J

is a compact O-simple mob.

4.2.8. Theorem. Let S be a compact mob with a finite number of idem~
potents. Then S has a right subinvariant measure,

If S = K, then S is a compact simple mob and lemma 4.2.1 implies that

S has a right subinvariant measure. If S # Sz, then let u* be any norm-

ed regular Borel measure on the set S\ Sz. Now define u on S by

WB) = 4 (B o (s\s?).

M is a regular Borel measure since S \ 52 is open. Furthermore p is

right subinvariant since up(Ba) = u*(Ba n S \52) = u*(ﬁ) = 0. Finally

let S # K, S = Sz. Then S contains a maximal proper ideal such that

S/J is completely O-simple and by lemma 4.2.7 s/3° is a compact 0-

simple mob,

* *
By theorem 4.2.6 there exists a right subinvariant measure u on S/J
*
such that u ({0}) = 0.
ES
Now let u be the measure on S defined by u(B) = u (B n SN\J)} for all

Borel sets B of S, u is right subinvariant since
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k
u(Ba) = W (Ban S\NJ) =0 if a € J and

H(Ba) u*(Ba S Ng)

#
il

u*((BnS\J)a)f_ u*(BnS\J) = u(B) if a ¢ J.

4.2.9. Theorem. Let S be a compact mob such that there is an x € S with
Sx = S, Then S has a right subinvariant measure.

The dual of theorem 1.4 7 implies that Q = {x|Sx = S} is a closed sub-

mob of S. Furthermore Q is a left simple submob and S\ Q is an ideal of

S.

Now let u* be any right invariant measure on @ and define u on S by

u(B) = u*(Bwa) for all Borel sets B of S.

B is right subinvariant since

W(Ba) = u*(BarWQ) _ u*((Br\Q)a) _ { 0 if a £ Q

W(BAQ) =u(B) if acQq.

4.2.10. Theorem. Let S be a compact commutative mob. Then S has a two-
sided subinvariant measure.

If S = K, then S is a group and the Haar measurc on S is invariant.

If 8 # S2 then it can be shown in a similar fashion as in the proof of

theorem 4.2.8 that S has a right subinvariant measure. Since S is com~

mutative the measure clearly is left subinvariant.

If S £ K, S = SZ, then S contains a maximal proper ideal such that S/J

is completely O-simple. Since S/J is commutative it follows that S/J is

a group with zero and hence that S\ J is a compact group.

The Haar measure on S\ J can now be extended to a two-sided invariant

measure on S,

4,2.11. Theorem. Let S be an interval mob S = [a,b]l. Then S has a right
or left stubinvariant measure,

Proot:

If S # 82, then any regular normed measure on S \82 can be extended to

a measure on S.



150

If S = K, then since K consists of either all left zeroes or all right
zeroes of 5, S is either right or left simple. Lemma 4.2.1 then im-
plies that S has either a left or a right subinvariant measure.
Finally if S = Sz, S # K, then according to lemma 2.6.3 S contains
a maximal ideal J such that the Rees semigroup S/J has a finite number
of idempotents. It now follows from lemma 4.2.7 and theorem 4.2.8 that

S has a right subinvariant measure.

4,3. Subinvariant measures on a certain class of mobs

Definition. A compact mob S with a minimal left ideal L such that for
each open set U of S and each element a € SV L., Ua is open in S will

be called a mob of type O.

It is clear that all finite mobs are of type O, in fact all compact
mobs S such that Ua is open for all open sets UC S and a € S are of
type 0. This class contains the compact groups and all simple mobs with
a finite number of minimal left ideals.

1
Let S be the set { n=1,2,...} U {0} with the natural topology,

n’
and the usual multiglication of rational numbers, then S is of type O.
We will show in this section that if S is a mob of type O, then S has a
right subinvariant measure., If S is a left simple mob then according to
4.2.1 S has a right subinvariant measure. Hence we will now restrict

our attention to mobs of type O with S # L.

4.3.1. Lemma. Let S be a mob of type O and let U be an open set of S
such that Ua is open in S, ae S\ L. If C is a compact set,
Cc Ua, then there is a compact set DcU with C = Da.
Proof :
Let CcUa and D' = {x]xi S, xa€ C}. Then D' is compact and (D'n U}a = C,
For each point x € D' U there is a neighbourhood V(x) of x with V(x)c U.

Since S is of type 0, each set V(x)a 1is open and the set

{vix)a |x ED'nU} constitutes a coveringnof C. Let V(xl)a,...,V(xn)a be
a finite subcovering of C and let D = ;:& V(xi)r)D‘. Then D is com~

pact, DecU and Da = C,
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Now let S be a mob of type 0, S # L. Let {Vul aeA} be the set of all

ings of S s = i
coverings o such that Va {Oabl B aBa} , where each Oaﬁ is an open
set of S such that for every a € SN L there is an O 2 Va such that
0 ,a8c¢O o

af o
ap

4.3.2, Lemma, Let S be a mob of type 0, S # L and let J be an open left
ideal of S, J # S.

For each compact set C< S and o € A let

A Q)= smallest number of Oa 's that will cover CJ
@ 7" smallest number of O  's that will cover S\J.

Then AG is a non-negative, f:nite monotone and subadditive func-
tion defined on the set of all closcd subsets of S.
Moreover Aa(Ca)j.AQ(C) for all a € S, Cc S,
Proof:
Since L # S, it follows from 1.2.3 that S contains an open left ideal
J, with J # S. Furthermore C%J and S NJ are compact sets, hence
0= AQ(C):_I, XG(L) = 0 and AG(S) = 1, Morcover it is clear that Auis
monotone and subadditive. If a €L, then since L is a left ideal Cac L

o= <
and hence Aa(Ca) 0_"Aa(C).

Next let a €S WL and let Oaﬁ ""'oab be a finitec subcovering of C\J.
Let O , € V_ be such that -~ 0 acO", , i = 1,2,...,n. Then

apy a [T aﬁi
O +,...,0 + is a covering of (C'vJ)a = CaxJ.

aBl ?
Hence Aa(Ca < AG(C)b

% *
Now let ¢ denote the set of all closed subsets of S, To each Ce¢ C we

make correspond the closed interval IC =[0,1]. Let I = TT be the

cer e
product of all these intervals. I is a compact Hausdorff space whose
points are real-valued functions f defined on C*, such that Of_f(C)j_l
for all C ¢ C$¢
Furthermore for each covering Va we have Aa e I.

Now let A(a) = { A .|V
o o

#
a refinement of va , a € A}

*
4.3.3. Lemma, Let {al,az,..,,an} be any finite subset of A. Then there

is an o € A such that A eA,)n...n Ale ).
o E 1 n
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Proof:

Let p € 5, then there is a set O, , € V such that p € O . Hence
1 %8 9y oy B

p € fw 0 = 0 , where O_ is “open in  S.
i=1 uiBi p p

For each a € S there are open sets Oi and O(a)c S such that
a
0p 0(a)c Opa' The set {O(a)[ae S} is an open covering of S.
n .
Let 0O(a,),...,0(a_) be a finite subcovering and let U = (10 *no .
1 n p i=l'p p
Since each Up is open in S, we have that the set of all Up, p e S to~
gether with all Upa a € S\ L constitutes a covering Vu of S such that
o

Va is a refinement of V., i = 1,2,...,n.
o

Thﬁs /\Ol EA(Gl)n...nA(G;).
o
4.3.4, Lenmma. Let A € M{A(a) | a €A}. Then X is a non-negative finite
monotone, additive and subadditive set function on the class C*
of all compact sets, with the property that A(C) > A(Ca}, C ¢ C*,
a € S, Moreover A(L)} = 0 and A(S) = 1.
Proot:
Since the class of all sets A(a) has the finite intersection proper-
ty according to 4,3.3, the compactness of I implies that there is a
point A € I with o
Ae N {A(a) |aceA}.
Furthermore it is clear that 0 < A(C)<1.

%
Next let C ¢ C and let HC be the projection of I onto I

c? i.e.
Wc(f) = f(C). Then ﬂc is a continuous function and the set
*
) ={f|n ()< n (£)} i DecC . If CecD X
c.p | ()< m ()} is closed, C,D € C . If C<D, then o € %.p
for all ¢ € A and hence A(a) < @C D’ Since @C D is closed it follows

that A € ¢C p 2nd thus that A(C) < MD).
?
The proof of the subadditivity of A is entirely similar to the above

argument. We just take for ¢C D the set
?
= m < m w .
¢ b | mg |, p8) S 7 () + 7 ()}

C,D
We now show that A is additive.

If C and D are two compact sets such that Cn D = ¢, then there is an

o € A such that Va = {Oub | B e Ba} is a covering of S with the pro-
perty that if C N O 8 # @ then D A Oab = (. For let a,p € S. We choose
a
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an open set 0«S such that pa € O and such that either O0nC = @ or
OnD = @. The continuity of multiplication implies the existence of
two sets U; and U(a}) open in S with p ¢ Ui, a £ U(a) and UZ U(ay< 0.
Since the set {U(a) | a € S, p fixed} is an open covering of S there
is a finite subcovering U(al),...,U(an).

Let U(p) be an open set with p EaU(p) such tgat either U(p)naC = @ or
U(p)nD = ¥ and let Op = U(p)nUpln el N Upn.

The set 0p has the following properties:

1) Op is open

2) OpnC = @ or opmn = @

3} Opa nC=¢ or Opar\D = @ for all a £ S.

From this it follows that there is an 0 ¢ A such that

[ S S =V .
{Oplp s} w {Opalp €S, ac S\L} .

&
Thus if C,D € C and CnD = @, then there is an & such that

Am(C(JD} = Aa(C) + A“(D). Moreover if V is a refinement of V“ we have

#
a
A = A A [} = =
a*(ClJD) a*(C) + a*(D). Now let c,D {f lnC\LD(f)
= W A(f) + T (f)} . CnD =@, ¢ is closed and there is an « ¢ A
c D c,b

such that -
A < ¢ A < .

(o) c,p and hence a e A(a) QC,D

Thus A(CUD) = X(C) + (D).
*

Finally we have that for all C ¢ C and a € S X(Ca) < X(C), since if
d = {1 W < . \ : = ¢

c {f | Ca(f) < ﬂc(t)} then A(o) € ¢C ¢C and hence A € ¢C'
Since for all @ € A we have AQ(L) = 0 and A“(S) =1 it is clear that

ALY = 0, A(8) = 1.

ES
Now let O denote the set of all open subsets of S. We define a func-

*
tion A, on O by

A, (0) = sup {x)lceco, c ¢ c*}

4.3.5. Lemma., X  is monotone, countably subadditive and countably ad-
ditive. Moreover if Oa is open for an open set O of S, then
Ap(0a) < A (0).

Proof:

* *
If U,0e 0 amiUCO,CCU,Ce:C,‘manAw)iA*m).Hmme
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sup {(MQ)|cecvu, Cce c*} = A, (U) 2 A, (0) and it follows that A, is
monotone.

Next let U,0 € 0* and let C € C*, CcUwO0. Then there are closed sets
D and E such that DeU, E<0 and C = DUE.

Hence according to the subadditivity of A we have

A 2 AM) + AE) S A (W) + A (0).

Thus sup {A(C)[CcUuLO, Ce C} = A (UUO) < A (U) + A, (0).

By induction it now foilows that A, is finitely subadditive.

Now suppose that C < ;:h Oi’ with Oi € O* i=1,2,... . Since C is

compact there is a positive integer n such that C e« |

O, and hence
i i

n

=1

C) n P

rey s a (Mo < T o) < a0,
i=1 i=1

This implies that

@ @

sup {A(C)|Cc < i&i Oi’ C e C*} = A (U

<
LY 00 igl 2 (0.

Suppose now that U,0 ¢ 0* and that Ums O = @, Then if C,D ¢ C* CeU,

DO we have CnD = @ and according to the additivity of A it follows
that

A(C) + A(D) = A(CuD) < A, (UuO) and hence that A, (U) + A, (0) =

= sup {A(C)lCc:U, Ce C*} + sup {A(D)|DcoO, D¢ D*} <A, (Uu0). Since
A* is subadditive it follows that A*(U) + A*(O) = A*(UtJO) and by

induction that A* is finitely additive.

@ &
If {Oi}i_1 is a sequence of disjoint open sets Oi € O , then
O 02U ;
N _ ) .
Ay 050 2 A, G, 00 = ) A, (0,). Since this holds for all n we

i=1

o0 o

have A*(;fl Oi) L) A*(Oi) and the countable additivity follows
B i=1

from the countable subadditivity.

Finally we prove that A*(Oa) S A, (0) if Oa e O*.

A*(Oa) = sup {M(C)|C<O0a, C ¢ C*) . If a € S\ L, then according to
lemma 4,3.1 there is a compact set D € C* such that D« O and Da = C.
Hence A(C) = A(Da) < A(D) < A, (0).

Thus sup {A(C) |C < Oa, C ¢ c*} = 1,(0) < A, (0).

If a € L, then Oa « L and hence
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*
A, (08) = sup {MC)|CcOacL, CeC } =0 < A (0).

Note that A _(S) = A(S) = 1 and that A (3) = 0.
E
Now let W be the function defined on all subsets of S such that if
ECS
* . R
W (E) = inf {A,_(0) |Ec0, 0€O0} .

ES

The function ¥ 1is an outer measure, since clearly

E 3
1) v (@) = 0.

*

2) If EcFeS and F€c O, 0 € O, then

* * #

B (E) £ A, (0) and thus u (E) < u (F).
3) 1f {E_}, 1

3
i is any sequence of sets, then there is an 0i e O such that
1 =
* .
)\*(0,) S u(E)) + e/2% for any € > 0. E.c O, .
i i i i

0 @ %
1)<l wED +e.
i=1 i=1

A

1 U B < U O
ence A

E 3
Since € is arbitrary this implies the countable subadditivity of y .

4.3.6. Theorem. Let S be a mob of type O, L # S, Then S has a right
subinvariant measure,.

Proof :

Let ¥ be the set function defined for all Borel sets B« S by

w(B) = u*(B). Then u is a regular Borel measure.

We first prove that every closed set is u$—measurable.

Let O ¢ O* and C € C*. Suppose that D ¢ C*, DeOn SNC and E ¢ C*,

EcOnSND.

Then DnE = @ and DUE « 0. Hence

W (0) = A, (0)> A(DUE) = A(D) + A(E).

Thus u*(O) > X(D) + sup (A(E)IEGOHS\D, E EC*} = MD) + A, (0OnSND)
= A(D) + W (OASAD) > A(D) + u (0nC).

From this it follows that
# * *
B (0) > sup {A(D)|DcONS\NC, DeC} + u (0OaC) =
* %* %*
= )\*(OnS\C) + p (0nC) = 4 (0SNG + u (OnC).

If A is any subset of S and A< O then
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* E 3 L 3 *
b (a) = inf {A,(0)|Ac0, 0 €0} 21 (OASN\C) + U (0nC) >

u*(AnS\C) + ;*(AnC).

Hence C is measurable and therefore all Borel sets are measurable.
The fact that W is regular follows from

u(B) = u*(B) = inf {A*(o)]Bco, 0 € 0*} = inf {M(0)|BcO, O ¢ 0*}
Finally we prove that u is right subinvariant.
If a € SNL and Ba a Borel set for a Borel set B then

u(Ba) = inf {k*(O)IBac:O, [o 3> 0*} <inf {**(Oa)chzo, O € O*} =
<inf {A,(0)|Bc0O, 0 €0} = u(®.
If a € L, then Ba ¢« L <« J and hence

W(Ba) S M) = A (I =0 < u(B).

M is normed, since u(S) = A {S) = (S} =1,

4.3.7. Theorem. Let G be a locally compact group with zero and let S
be a compact subsemigroup of G with non-empty interior. Then S
has a right subinvariant measure.
Proof :
If 0 £ S, then S is a compact group according to the corollary to theo-
rem 1.1.10. Hence in this casc S has a right invariant measure.
Now let O ¢ S and let y be the right Haar measure defined on G\ {0}
Let V be any open set of G, 0 ¢ V, such that S\ V has a non-empty in-

terior.

According to lemma 1.2.2 there is an open ideal J of S with 0 ¢ JeSnV,

We now define a measure v on S by Vv(B) = %%g‘%%% for all Borel sets B
of S,

Since J, B and S are Borel sets of G and since WM(SN\J) >0 it is clear
that v is a normed regular Borel measure on S.

Furthermore if a € S\J, then (B\J)a = Ba\Ja > Ba\J, hence

M(Ba\ J) . MBalJa)  u((BNJ)a) _ w(BNJ) _

W(S\Jy - u(s\NJI U(SNJ) T w(S\ND v(B).

v(Ba) =

If a € J, then Ba « J and hence

v(Ba) = 0 < v(B).
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Remark.

If S is a mob such that S has a right subinvariant measure M and I
any closed ideal of 8, with u(I) <1, then we can define a right sub-
invariant measure V on the Rees semigroup S/I with the quotient topo-

logy by
BN\ {0o})

EY)) B a Borel set of S/I.

v(B) =

4.3.8. Theorem. Let G be a compact transformation semigroup of
continuous open homomorphisms of a compact mob S of type 0 into
itself such that 1{(J) € J for an open proper left ideal con-
taining L and for all v ¢ G. Then there is a right subinvariant
measure b on S such that u(tB) < u(B) for each t ¢ G and each
Borel set B « S such that 1(B) is a Borel sect.

Proof:

Let V = {0 l s e B } be a covering of S with sets O such that

o ab ") afp
if a € SY L then there is an O a such that 0 ac< O a Next let

. afp
p € 8. For each 1 € G there argDO and O such thgé (p) €O and
abl ap,, aBl

pedO . -

ap
Since tge mapping (p,1) » T(p) is continuous simultaneously in p € S

and 1 ¢ G there are neighbourhoods 02 and V? such that p ¢ 02 < OaB ,

t e vP < G and vPOP) < 0 2
T T 1T uBl
The set {Vg lT € G} constitutes an open covering of G.
Let V$ ,.,.,V$ be a finite subcovering and let O = oP n el Y oP <
1 n P N "n
O .
ol

Op %as the property that for each 1 € G, there is an open set OaB € Va

such that (0 )« O
p af
The covering Va, = {Op,opa, T(Op), T(Op)a |pesS, aeS\L, 1 ¢ G)
is a refinement of VOl
Furthermore if O € V“,, a € SNL and 1t € G, then there are 0'¢ V , and
[+
0" ¢ Vv, such that Oa = 0' and 10 = 0" or 10c L.
For T(Opa) = T(Op)‘ta. If 1ta € L, then T(Opa) < L, and if ta ¢ L,
then 71(0 a) € V ,.
P 53

Finally we have Tl(Tz(Op)) = xlxz(op) € Va,.
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Now let J be the open left ideal containing L such that 7T(J) ¢ J and
let Aa' be defined as in lemma 4.3.2. Then we have for each compact
set CcS and T € G, Aa,(c) > AQ'(TC).
Let I be as in lemma 4.3.3 and ¢ = {f| fe1, £(C) > £(17C), C € c*,

T e Gt .
Then ¢ is closed and for each covering Vu there is a refinement Va,
such that Aa' €0,
Hence ¢ n A(o) # ¢ and it follows that g? N()n ¢ # @. We now choose
A€ C} T(aYy A ¢. For this choice of A we have A(CY > M(TC) for all
C e C*, T e G.
Finally let U be the right subinvariant measure induced by A . Then yu
has the desired property.
For let O be an open set of S and let 1 € G. For each C « 1(0) there
is a D e C* with 1T(D) = C. For each point p € Dn O there is a neigh-
bourhood Vp with Vpc 0. The set {t(Vp)Ip € DnO} is an open covering

of C. Let T(Vp Y,e.., T{(V_ ) be a finite subcovering and let
n 1 n

D' = L Vpn D. D' is compact D' ¢ O and t©(D') = C.
i

Hence A, (1(0)) = sup {rx(c) |[cec 10, C ¢ C*} =

sup {A(1D')|D'c O, D' € C*} < sup {A(D)|DcO, D e C}.
Finally since u(1(B)) = inf { A,(0) | tBcoO, O ¢ o*} <
< inf {A*(TO)IBCO, 0« o*} < inf {A_(0)[BcoO, O ¢ 0*} = u(B),

for each Borel set 1B, the theorem is proved.

Remark.

If S is a compact mob such that Ua is open for each open set U« S and
each a € S, then 4.3.8 holds for any compact transformation semigroup
of continuous open homomorphisms. For in this case we can define Aa, by

smallest number of O , 's that will cover C
smallest number of Oa,B's that will cover S, 1i.e,

A (¢
o

we let J be the empty set.

4,4, Notes

Invariant measures on semigroups were first investigated by Schwarz

[7], [8], [11] and Rosen [1].
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Let 22?(8) be the convolution semigroup of normalized regular non-
negative Borel measures on a compact topological semigroup S. Schwarz
[8] studied the structure of ZZ}(S) in the case that S is a finite
semigroup, and if right invariant measures exist on S, the role of
such measures in 77 (S).

In this connection we also mention the work of Wendel {1], Collins
[1],[2],[3],[4] and Glicksberg [1 ] who investigated the
structure of idempotent measures u ,u e;%%}(S). Right invariant meas-
ures on compact mobs S in which the implication, U open in S and

a ¢ S== Ua open in S, holds were studied by Schwarz [7] . He es-
tablished necessary and sufficient conditions that such a mob possess
a right invariant measure.

We prove in section 4.2 that on such a mob right subinvariant measures
always exist.

Rosen [11 established necessary and sufficient conditions for a com-
pact semigroup to possess an invariant mean. Theorem 4.1.6 however
seems Lo be new.

In section 4.2 we are concerned with right subinvariant measures on
(0~} simple compact semigroups. We establish necessary and sufficient
conditions that such a mob possess a right subinvariant measure. The

structure of such a measure is lhen determined.
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