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INTRODUCTION ANDS RY 

• 

The present treatise has the goal of setting forth the basic aspects 
• 

of the theory of topological semigroups. 

A topological semigroup Sis a sernigroup endowed with a Hausdorff topo

logy for which the mapping (x ,y) -+ xy of S x S into S is continuous. 

There are many differences between topological groups and arbitrary 

topological semigroups. One striking difference is that we may intro

duce in any Hausdorff space Sa continuous associative multiplication 

under which Sis a topological semigroup. Hence it seems reasonable to 

study first those semigroups which are either algebraically or topolo

gically easy to handle. 

We will restrict our attention primarily to the theory of compact semi

groups unless it requires no further effort to state a result for lo

cally compact or more general topological semigroups. 

In Chapter I we present a number of elementary concepts. The existence 

of maximal subgroups in a semigroup was noted first by Schwarz [12], 

Wallace (1J and Kimura (l]. It is of great interest to dete1·111ine con

ditions under which a semigroup Swill be a topological group. In par

ticular it is important to find topological restrictions on a semi

group that are sufficient to insure that it will be a group. Some re

sults of this kind stern from Koch and Wallace [6], Hudson and Mostert 

[3], Wallace (5]. Mostert [3] proved that if a semigroup Sis locally 

compact and if His a subgroup of s. then His a topological group if 

and only if His locally compact. The fundamental equivalence relations 

L,R and H, defined in section 1.1 were first introduced and studied by 

Green [1). Wallace [12] examined them for topological semigroups and 

used them to prove that the kernel Kofa compact semigroup Sis a re

tract of s. In a compact semigroup these equivalences define upper 

semi-continuous decompositions. With some additional assumptions on S 

it is possible to give a completely topological definition of K, 

Wallace [6]. 
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flle sstru.cture theorem for completely simple semigroups was first proved 

by Susohkewitsch { ll in a spe,cial case. With the publication of his 

paper he r·eally started the theory of semi groups. He showed that every 

finite semi group· contains a kernel and he determined the structure of 

finite siaple semig:roups. His results were extended by Rees [ l] to com

pletely si•ple semig:roups. The only difficulty to prove this theorem 

for compact s,imple semigroups is that of selecting the various canon

ical aepp:lngs so that they are continuous. 

We a1s,o introduce in s,ecti·on 1. 3 the concept of the Rees factor semi

rroup. In •••eral, congruences on a semi group are not dete1·1uined by any 

single congruence class as they are for groups. The congruence on a 

group, d•terained by its uni t-cOR1ponent has a semi group-theoretic 

version. lf S is a locallJr compact semigroup such that each component 

is c·oapact, then the compo,nent space of S can be made in an obvious 

way into a topological seaigroup which is totally disconnected. 

In section 1.4 the co1nccpt of a maximal ideal is intr,oduc,ed. With the 

aid o,f SOiiie results which involve maximal ideals o,ne can prove for 

example the following theorOl'ls: 
2 

If Sis compact with S ·=Sand such that S has at most one idempotent, 

t:hea S is a group. 

If Sis compact with unit u and if S~ is not a group, then S has a unique 

aaxiaal proper ideal J and J = S \ H(u). 

Let S be a coane,cted com.pact semi group having at least one left unit 

amd sup,pose that S ls not right simple. Then every subgroup H(e), with 

e a left unit lies in the bo,undary of the maximal right ideal. 

Se,ction 1.5 is devoted to the study of open prime ideals in compact 

semi groups. It is proved that each open prime ideal P has the form 

where e is a non minim.al idempotent and 

maximal ideal of S contained in S \ {e }. 

J ( S \ { e } ) i s the 
0 

The results o,f this section are due to Numakura [ 4] and for commu ta ti ve 

$a&igroups to Schwarz [6]. 

In Chapter II we investigate the structure of some semigroups with zero 

or identity. The notion of nilpotent elements in a semigroup with zero 

was first intro,duced by Numakura [1]. He proved that if the set of nil-
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potent elements of a locally compact semigroup Sis not open, then o 
is a clusterpoint of the set of non-zero idempotents. 

The characterization of minimal non-nil (left, right) ideals of a com

pact semigroup S with zero as the sets SeS (Se,eS) withe a non-zero 

primitive idempotent was given by Koch 1_. The complete determination 

of all possible completely a-simple semigroups was given by Rees. The 

Rees-theorem faithfully represents a completely a-simple semigroup as 

the semigroup of all matrices over a group with zero having at most 

one non-vanishing element and multiplication by means of a certain ma

trix. 

In section 2.3 we give a topological extension of this theorem in the 

case of a compact a-simple semigroup. The essential difficulty of 

course, is that of finding a cross-section of the a-minimal left ideals. 

contained in a a-minimal right ideal. 

In section 2.4 attention is given to connected semigroups, · although we 

stick mainly to the realm of connected semigroups with an identity. The 

theorem of Faucett that if the minimal ideal Kofa compact connected 

semigroup has a outpoint, then every element of K is a left or right 

zero·, has been ,generalized by Wallace [18] to relative ideals. 

Mostert and Shields ..._8 have studied connected semi groups S with iden

tity u in which the maximal subgroup containing u is open. They proved 

that this class includes the semigroups with identity on a manifold 

(theorem 2.4.9). This theorem is not true for general locally convex 

linear spaces. 

Perhaps the most natural example of a compact connected semigroup is 

the closed unit interval I with the usual multiplication. Simple exam

ples show that the space I admits many semigroup structures. These 

semigroups need not be abelian, may not have a zero element and may ad

mit both idempotents and nilpotents. 

In section 2.5 the semigroup structures with which the space I may be 

provided is-analysed. The systematic study of I-semigroups was initiated 

by Faucett _2_. The general structure is given in theorem 2.5.4 and is 

due to Mostert and Shields [7] . It should be noted that nearly all theo

rems and proofs of section 2.5 and 2.6 generalize to arbitrary compact 
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connected linearly ordered topological spaces. 

The object of 

groups S with 

section 2.6 is to characterize compact 

s2 =Son an interval. Partial results 

connected semi

in this connect-

ion have been found by several authors. Cohen and Wade (4] have des

cribed compact connected semigroups with an identity and a zero, for 

which the underlying space· is an interval. The class of compact con

nected interval semigroups with idempotent endpoints has been studied 

by Clifford [3], [4]. In addition the case when zero is an endpoint and 

S = s2 has been described by Storey [1]. 

In this connection we also mention the work of Mostert and Shields (6], 

who gave a description of semigroups defined on the interval [o,~) in 

which ''zero'' and ''one'' play their usual roles. 

In Chapter III attention is given to compact commutative semigroups. 

Most of the results about compact monothetic semigroups are due to Koch 

( 2] and Hewitt [ 1] . 

By a decomposition of a semigroup S we mean a partition of S into the 

union of disjoint subsemigroups. For this to be of any value the sub

semigroups should be semigroups of some more restricted type than s. 
An ex · ple of such a decomposition is given by Schwarz [ 6] who proved 

that every compact commutative semigroup is a semilattice of subsemi-
• 

groups containing exactly one idempotent. 

We also study the embedding of a commutative cancellative semigroup in 

a group (Gelbaum, Kalisch, Olmsted (1]). The usual procedure for doing 

this, by means of ordered pairs is just like that of embedding an inte

gral domain in a field. In fact it is easier, since there is only one 
' 

binary operation to consider. 

In section 3.3 characters on commutative semigroups are considered. 

The Pontryagin duality theorem asserts that a locally compact abelian 

group G can be identified in a natural way with its second dual. For 

discrete commutative semigroups S the Pontryagin duality holds if and 

only if S has an identity and is a union of groups. For compact 

abelian semigroups Sa less complete result is obtained. Most of the 

results obtained in this section are due to Austin [ 1] • 

In the fourth chapter we are concerned with the theory of invariant and 
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subinvariant measures on compact semigroups. In the theory of semi

groups we are troubled for a lack of something like Haar measure. With

out this we will be at a loss for representation theorems. A measureµ 

on a semigroup Swill be called right invariant if for every Borel set 

B ~Sand a£ S for which Ba is also a Borel set, u(Ba) = u(B) holds. 

u is right subinvariant if u(Ba) < u(B) • 
• 

The investigation of subinvariant measures was suggested by Prof.dr • 
• 

J. de Groot. • 
In section 4.1 it is proved that right invariant measures exist only 

if the minimal ideal K is a minimal left ideal. Right invariant means 

are also considered and it is proved that a mean is right invariant if 

and only if it is right subinvariant. If u is the regular Borel meas

ure deterniined by a right invariant mean, then l.J has the property that 

u(B) = u(B) where B = {xix Es, xa c a a 
is typical. This set seems indicated as 

B} • The use of sets like B 
a 

a replacement for the set Ba-1 , 

with which B should be identical were s a group. Furthe11nore the sup
a 

• 

port of~ is the kernel K of s. I 

, 

In section 4.2 we study subinvariant measures on simple semigroups. 

The principal result is contained in theorem 4.2.4 which states that 

if S is a compact simple mob such that S = (Se
1 

n E) x H(e
1

) x (e
1 
Sn E) , 

then S has a right subinvariant measure if and only if the compact 

space e1 S n E has a regular nolined Borel measure IJ such that u ( { e}) = 

u({e'}) for all points e1 ,e• £ e
1
s n E. Some applications of this theo

rem to special kinds of semigroups are given. 

Section 4.3 is devoted to the investigation of subinvariant measures 

on a certain class of semigroups, semigroups of type O. This class con

tains the semigroups S with the property that Ua is open in S for all 

a£ Sand all open sets Uc S. 

A reasonably complete survey of the literature on the theory of topo

logical semigroups is·listed at the end of the treatise. 

I wish to express my gratitude to the Mathematical Centre, Amsterdam, 

which gave me the opportunity to carry on the investigations which are 

dealt with in this treatise. I also wish to express my sincere thanks 

to Prof.ctr. J. de Groot to whom I am deeply indebted. This tract would 
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• 

never have been written but for his never failing and stimulating en

oourag ent .. 

I am indebted to P.C. Baayen and M.A. Maurice for many stimulating 

discussions . 

• 

• 

• 

• 
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CONVENTIONS 

In this section we explain some of the notation and te:nninology used 

throughout the text. 

The empty set will be denoted by 0. The symbols c and::) mean ordinary 

inclusion between sets, they do not exclude the possibility of equali

ty. If A and Bare sets, then A\ B will denote the set of points of A 

which do not belong to B. Mappings will be considered as left operators 

and written on the left of the argument. If f is a mapping of X into Y 
• 

and Ac X, B c Y, then 

f (A) = { f(a)la c A} 
-1 

, f ( B) = { x · F: X I f (x) t B} • 

A semigroup Sis a non-void set together with an associative multi-
• 

plication. We do not assume the existence of an identity or the vali

dity of any cancellation law. Let A and B be subsets of a semigroup S. 

The symbol AB denotes the set {abja c A, b E B}. We write AA as A2 , 
3 . . 

AAA as A etc . 
• 

If s1 and s2 are topological scmigroups, then s1 and s
2 

are called iso

morphic if there is a one-one correspondence between their elements 

which is a semigroup isomorphism and a space homeomorphism. 

For further info:n11ation on abstract semigroups see e.g. E.S. Ljapin [1] 

and A.H. Clifford and G.B. Preston (5). 

If A is a subset of a topological space X, then A will denote the 

closure of A in X and AO the interior of A in X. A covering IJt of a 

space Xis a refinement of a covering n 
subset of a member of n. 

• 
if each member of Qt. • 1S a 

A topological space will be called compact if every open covering of 

it has a finite subcovering. 
• 

• 

A continuum is a compact connected Hausdorff space. A continuum is de-

composable if it is the union of two proper subcontinua, otherwise it 

is indecomposable. 
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If X and Y are topological spaces, then Xx Y will denote the product 

space. 

We reserve the symbol E for Euclidean n-space. 
n 

For further topological concepts see J.L. Kelley [1]. 

If X is a locally compact space and C is the family of all compact ·sub

sets of X, then the family of Borelsets'B in Xis defined as the small

est o -algebra of sets containing C. A Borel measure µ on X is an ex

tended real valued non-negative and countably additive set function 

defined on ~, and such that w (0) = 0. 

u is called regular if for all Ac we have both 

u(A) = inf {iJ(V).I V open and Ac V, V cf>} and 

u(A) = sup {u(F) I F is compact and F c A} . 

For further info1·1na tion on Borel measures and for some of the te1·1nino

logy and notation used in Chapter IV we refer to P.R. Halmos (1]. 
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I SUBSEMIGROUPS 

1.1. Subgroups and subsemigroups 
• 

Definition. A topological semigroup (''mob'') is a space S together with 

a continuous function f: S x S ➔ S such that: 

a) Sis a Hausdorff space, 

b) f is associative. 

If we write f(x,y) = xy , then b) becomes the more familiar 

(xy)z = x(yz) for all x,y,z ~ S. 

A mob may be thought of as a set of elements which is both an abstract 

semigroup and a Hausdorff space, the operation of the semigroup being 

continuous in the topology of the space. 
• 

Familiar examples are the topological groups and the closed unit inter

val with the usual multiplication and topology. Further11tore if X is any 

Hausdorff space, then a continuous associative multiplication may be 

introduced by 

a) xy = x 

b) xy = y 

all x,y £ X · or 

all x,y EX. 

Definitions. A subsemigroup of a mob Sis a non-void set ACS satis-
2 

fying A c A. 

A non-void set Ac Sis called a subgroup of S if xA =Ax= A for all 
• x EA. 

Of course this defines an abstract group in the customary sense. A, with 
• 

• 

the relative topology, then becomes a topological semigroup, 

it need not be a topological group since the function g with 
-1 

(x,x EA) need not be continuous. 

although 
-1 

g(x) = X 
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1.1.1. Theorem. Let S be a mob with more than one element. Then S 

contains a submob S' such that S' ~ S. 

Proof: 

Suppose each submob S' of Sis equal to Sand let a c S. Since Sa and 

as are submobs of S we have Sa= S = as. 

Hence Sis a group. If e is the identity of S, then {e} is a submob of 

S, and {e} ~ S. This contradicts the nsswnption that each submob of S 

is equal to S. 

• 

1.1.2. Lemma. Let A be a submob of the mob S. Then A is a submob of S. 

Proof: 

Suppose for x,y EA, xy t A. Then since A is closed, there exist 

neighbourhoods V of x and W of y such that VW n A = ~-

Since x,y £ A, there is an a
1 

£ V n A and a
2 

£ W n A. 

This implies a1a 2 £ VW and a 1a 2 t A which is a contradiction. 

1~1.3. Theorem. Each subgroup of a mob Sis contained in a (unique!) 

maximal subgroup, and no two maximal subgroups of S intersect. 

Proof: 

Let A be a subgroup of Sande the identity of A. 

Let A be the set of all a£ 
0 -1 

there exists an element a 

S such that ae 

E S with aa -l = 

= ea 
-1 

a a 

= a and such that 
-1 -1 -1 

= e, a e = ea = a 

Then it is immediately clear tl1.a t 

taining A. 
A 

0 
is a maximal subgroup of S con-

Suppose now that A1 and A2 are maximal subgroups 

a £ A1 fl A2 -# ~- Let e1 and e
2 

be the identities 
-1 -1 i vely, and let aa
1 

= e
1 

, aa
2 

-1 -1 
Then e 1aa2 = e

1
e

2 
= aa

2 
= e

2 
Hence e1 = e2 . 

Sine~ A1 is maximal, A
1 

-1 -1 -1 
a a= aa = e

1
, a e

1 

contains all a 
-1 

= a . Thus A1 

with ae1 = 
=A. 

2 

of Sand 

and A 2 respect-

e 1a = a and 

It may happen that a mob S contains no subgroups at all. Consider 

for example the open unit interval I= (0,1) with the usual multi-

• 
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plication. I contains no subgroups. Or let N be the set of all 

positive integers with the discrete topology under addition. Then N 

contains no subgroups. 

1.1.4. Lemma. Let_s be a mob and let A= {aA}A £ A' B = {bA}A EA with 

Ac Sand Ba compact subset of S . 
• 

Then for every a£ A there exists a b £ B such that ab t C with 

C = {al.bl.}l. £ A· 
Proof: 

Suppose that such a b does not exist. Then we have for every b £ B, 
a 

ab 
a 

t c. The continuity of multiplication implies the existence of 

neighbourhoods U of a and V of b such that a a a · U V n C = 0. 
Cl a 

The set {v
0

} 0 constitutes an open covering of the compact set B. 

There exists therefore a finite subcovering say v1 ,v2 , ... ,Vn.n 

Let U = 1 U. U is an 
i= - i 

and hence usn c = ~-

U however contains at least one element aA ~ A, since a£ A. 
0 

We have therefore aA bl. £ UB and aA bA £ C. 
0 0 0 0 

This contradiction proves the lemma. 

1.1.5. Theorem. If Sis a compact mob, then each maximal subgroup of S 

is closed. 

Proof: 

Let A be a maximal subgroup of S. Then aA = Aa = A for all a e: A, 

hence AA= A2 
= A and the continuity of multiplication implies that 

- -AA = A. Thus Ax c:. A and xA c A for all x c A. 

On the other hand suppose A¢ xA for x e: A. Then there is an a
1 

£ A 

with a
1 

¢ xA, and the continuity of multiplication together with the 

compactness_of A imply the existence of a neighbourhood V of x such 

that· a 1 ¢ VA. Since x £ A there is an a 2 EA n V and then a
1 

E a
2

A 

leads to a_contradiction. 

Thus A c xA for all x £ A, and hence A c xA. 

Analogously we have A cAx. 

Therefore Ax= xA = A for all x EA, and A is a subgroup of S. 
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Since A is maximal we have A = A. 

If Sis not compact, then the maximal subgroups of Smay fail to be 

closed. Lets be the mob [o,~) with the usual multiplication. 

A= (O,oo) is a maximal subgroup of S which is not closed. 

1.1 .. 6. Lemma. Let S be a locally compact mob and an abstract group. 
-1 -1 

Let A be a countable subset of Sand x £A.Then x £ A . 

Proof: 
co 

Let B = u (A U {x})n. Then B is a countable 

B2 c. B. 

subgroup of Sand the 

continuity of multiplication implies 

Let V be a compact neighbourhood of the-identity and let b £ B. Since 

Sis a group, bV is a neighbourhood of band bV n B # 0. 

This implies that b t BV-l and hence B c BV-1 . 

Thus B = U bV-l f"\ BJ = U b(V-l n B) . 
bE B -l b £ B -l 

By 1.1.4 V _is closed since V is compact and hence b(V n B) is 

closed. Moreover Bis a closed subset of Sand hence locally compact. 

Baires category theorem implies that the interior relative to B of one 
-1 

of the sets b(V n B) is not empty. 

Hence there exist an open set U with B n U # 0 and an element b 
0 

£ B 

such that u n B c b ( v-1 n B) . 
0 -1 -1 -1 Let c c B n u._Then xc cu n B) = XC Un B and XC U = u 

0 
is open. 

U n A C U n B C XC -l (U r\ B) c xc-lb V- 1 . 
0 o o -1 -1 -1 

Hence (U .fl A) c Vb ex = C with C compact. 
Q 0 

Then by 1.1. 4, there exists for every a E U n A an element 
0 

b £ (U n A)-l with ab the identity. 
0 

Since x £ u fl 
0 

A it follows also that -1 
X 

1.1.7. Lemma. Let S be a locally 

Let A be a compact subset 

Proof: 

compact mob and an abstract 
-1 

of S. Then A is compact. 

-1 From 1.1.4 it follows that A is closed. 

group. 

-1 
Suppose that A 
-1 

xi V, with V any 

cannot be covered by a finite number of compact sets 

compact neighbourhood of the identity, x. £ A. Then 
l. 



there is 

Let E = 
n 

-1 co 
a sequence {x } 

n n=l 
{xk I k > n}. Since 
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n-1 
£ A-l such that -l -l X X. V. 

n l. 

Since y £ E1 , there is 

A is compact, there exists a y E 

-1 -1 
x £ Vy 1 whence y £ x V. 

m -1 -1 m 

co 

n 
n=l 

E . 
n 

Moreover y £ E 1 implies by 1.1.6 y £ E 
1

. Thus 
-1 m+ -1 m+ 

there is an 
-1 00 

n > m 

such that x £ x V which contradicts the choice of n m { X ) 1 • n n= 

1.1.8. Theorem. Let S be a locally compact mob and an abstract group. 

Then Sis a topological group. 

Proof: 

Let Ube an open neighbourhood of the identity u of Sand {V } 
a. a 

the 

collection of compact neighbourhoods of u. 

Suppose that for every V , v-1 t u. Then v- 1 
fl S , U ~ 0, and 

_ 1 a _1 a a 
rtv () S '\ U ~ 0 since V is compact. 
a a a 

But n V-l n S \ Uc() V-l = {u} implies that u £ S ' U, which is a 
a a a a 

contradiction. 

Hence for every neighbourhood U of u there exists a neighbourhood V of 
• 

-1 
u, such that V C U. Therefore Sis a topological group. 

Let S be the additive group of real numbers. We define a topology in S 

by means of a base B consisting of all half open intervals ~,b). Sis 

a mob and an abstract group. S however is no topological group, for 
1 

there is no neighbourhood U of 1, with - U E -1,- 2). 

2 
Definition. An element e of a mob Sis called an idempotent if e = e . 

• 

We shall denote by Ethe set of idempotents in S. 

If S contains an idempotent e, then { e} is a subgroup of S, and is 

contained in a maximal subgroup. 

By H(e) we shall denote the maximal subgroup of S containing the 

idempotent e. 

An element O is ter1ned the zero of S if Ox = xO = 0 for all x E S. It 

is easily seen that the zero of S, if it exists is uniquely defined. 

It is also immediately clear that it is an idempotent. 

An element u is termed the identity of S if ux = xu = x for all x £ S. 
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The identity of S, if it exists is uniquely defined and is an 

idempotent. 

A mob Sin which the product of any two elements is zero we term a 

zero semigroup. 

1.1.9. Lemma. The set E of all idempotents of a mob is closed. 

Proof: 

If B = 0 the lemma is trivial. 

Suppose now x £ E and x2 # x, then there exists a neighbourhood V of x 

such that v2 
fl v = 0. 

Since x £ E, there is an e £En V and hence e 

a contradiction. 

= e 
2 c v2 n V which is 

1.1.10. Theorem. Let S be a compact mob. Then S contains a subgroup 

and hence at least one idempotent. 

Proof: 

Let a £ s and let K(a) denote the set of cluster points of the 
00 n oo • 

K(a) n {a l I n} . { a } • sequence • - l > , -. n=l n=l -
Then since s is compact, K(a) • compact and the continuity of multi-l.S 

plication implies that K(a) is a commutative submob of S. 

Suppose now xK(a) ~ K(a), x c. K(a). Then there exists z e: K(a) such 

that z 1,, xK(a). 

Therefore there are neighbourhoods V, 0 and U such that VO n U = ~, 

x £ V, K(a} C O, z £ U. 

Since x,z t K(a) there are 

(1=1, 2, .... ) . 

n 
am e: Vanda i £ U with 

n -m 

n. 1 > 
l.+ 

i CID 

Let b be a cluster point of the sequence {a }. . 
l=l n.-m 

n. 
l. 

Then b E K(a) C O and hence there is a j such that a J £ 0. 

Thus a manj-m -- anj 
£ VO, a contradiction. 

> m 

Hence xK(a) = K(a). In the same way we prove K(a)x = K(a), and it 

follows that K(a) is a subgroup of S. 

Corollary. Let S be a mob and S' a compact submob. Then ifs is an 

abstract group, S' is a subgroup. 
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Proof: 

By 1.1.10 S' contains an idempotent which must be u 

S). 

(the identity of 
• 

Again by 1.1.10, applied to xS', x £ S', there is an idempotent in xS'. 

Thus u £ xS ' and S ' = us' c xS' . 

Hence since xS' C S', xS' = S' for all x £ S'. • 

Analogously S'x = S'. 

1.1.11. Lemma. Let G be a compact group and Sa submob of G. lf Sis 

either open or closed, then Sis a compact sub"group of G. 

Proof: 

If Sis closed the preceding corollary implies that Sis a subgroup of 

G. 

Next let S be open. Then Sis a closed submob of G and hence a sub

group of G. This implies that the identity u of G is contained in S. 
' 

-0 
We now prove that S = S. For let 

~ x ~ V CS, where 

hood of x. Then there exists a neighbourhood 0 of u 
-1 

xO C 

Vis 

with 

a neighbour

xO-l C V. 

Since u £ S we 

is open, hence 

have On 

xw-1 n s 

-1 
S = W 'F- " and xW c 

-1 -/. 0 . Let s £ xW n s , 
x = sw with w £ W = 0 n S. Hence 

Since Sis open we also have Sc. 

x £Sand we 

s° and hence 

V. Moreover 

thens= 
-1 

xw and 
~ 

have S c. S. 
-::-0 s = s . 

-1 
xW 

From this it follows that S = s0 = S, since any subgroup of a topo

logical group having a non-void interior is an open and closed sub

group·. 

' 

1.1.12. Theorem. Each locally compact submob Sofa compact group G 

is a compact subgroup of G. 

Proof: 

Since Sis a closed submob of G, S is_a compact group. Furthennore S 

is a dense locally compact subset of S, hence Sis open in S, so that 
' 

Sis a compact open subgroup of S, i.e. S = S. 
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Definition. If Sis a mob and a c S, then we shall denote by r(a) the 

{ n}oo . closure of the set a n=l ; i.e. 

n}oo r(a) = {a . 
n=l 

From 1.1.10 it follows that if f(a) is compact, it contains an idem-

potent. Moreover r(a) = K(a) u n oo 
{a } n=l , K(a) with K(a) a group. 

Hence we see that r(a) contains in that case exactly one idempotent. 

1.1.13. Lemma. Let S be a mob and let A be a compact part of S, such 

that Ax c A, with r(x) compact. 

Then 

Pro•of: 
00 

Let s t ('\ Axn. Then 
n=l 

2 
s = a x = a x = 

1 2 

£ r(x). 

• • • • a. t A, 
1 

i=l , 2, . . . . 
ao 

Hence it f 011.ows from 1.1.4 that there is an element a £ {a.}. 
1 l. 1= 

such 

thats= 
• 

ae; thus 
k t. Ax • 

CD 

n= 
Then 

Axn C Ae. 

we can find a neighbourhood V of e such Now let ae 
k 

aV n Ax = ~. But since e £ f(x), there is a 
ko k 

k 
0 

> k sucl1 that 

that 
ko 

X 

and hence ax ¢Ax. This is a contradiction 
ko k 

since Ax c A implies 

Ax C. Ax . 

Thus Ae C Axk and 
CIO 

('\ Axn = Ae. 
n:::l 

1.1.14. Theorem. Let S be a mob and A a compact submob of S. 

• 

Then for every 

* 
a£ A there exists a unique maximal submob 

£ V 

A C A with the 
2 

* * * '2t. property A a= A; and A = r \ Aan = Ae with 
n=l 

e=e £ r(a). 

Proof: 

(Ae)a = n 
( Aa )a c 
n= 

n+l 
Aa ::: Ae. 

Now let x E Ae and 
n= 

let A 
n 

- I n - {y ya = x; y EA}, n=l,2, .... 

Then A is compact and 
OD D 

·A an-1 -# 0. 

n-1 k-1 
Ana = Aka for every k. Hence ll== 

n= 
Let 

n co oo 
n-1 n n-1 _ 

2 Aa -n= 
It remains to show that Ae is the 
* * Aa=A. 

Ae. Then ya= x 

greatest submob 

and thus Ae c (Ae)a. 
* 

A C A such that • 
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* Let A be any submob with this property, then * A * =Aac Aa and hence 

* A * n n = A a c. Aa , n=l , 2, . . . . 
* 00 

Thus the theorem is proved. 

Now let S be a mob and a£ S such that f(a) is compact. 

Then since r(a)an = {ai I i > n+l} = anr(a), we have 
• 

c:, ao 

K(a) = () r(a)an = () anr(a) = er(a) = r(a)e with e = 
n=l n=l 

e 2 
E r(a). 

And thus K(a)a = K(a) = aK(a). 

1.1.15. Theorem. Let S be a compact mob with two-sided cancellation 

(i.e. ax= bx implies a= b, a,b,x £Sand xa = xb implies 

a= b, a,b,x £ S). 

Then Sis a topological group. 

Proof: 

Let x £ S. Then xS c Sand 1.1.13 implies that eS c. xS c S, 
2 

e = e £ r(x). 

Since S has two-sided cancellation, the mapping~: s ➔ es, s £Sis a 

one-to-one continuous mapping of S onto eS. 

On the other hand 9 is the identity mapping on es and hence es= S = 

xS. Analogously we have S = Sx. 

Let S be a mob and define (a, b) £ 't , a, b e:: S to mean that 

{a} u Sa = {b} u Sb. Clearly 't is an equivalence relation such that 

if (a,b) £ r, then (ac,bc) £ f for all c £ S. 

By L 
a 

we shall mean the set of all elements of S which are 

valent to a. Thus L = 
a 

{ b I { a} u Sa = { b} u Sb; b £ S} . 

equi-

Dually we 

R = {b 

define (a, b) £<fl, a, b £ S to mean { a} u aS = { b} u bS and 

a 
I { a} u as = { b} u bS ; b e:: s}. 

define ~ = 't. n ~ and H Finally we a 

• 

If e £ E, then H(e) = H. 
e 

For let x £ H(e), then x =ex= xe and 

= L n 
a 

-1 
xx 

R • 
a 

-1 = X X = e. 

Hence {x} u Sx c {e} u Se; {x} u xS c {e} u eS and {e} u Sec {x} u Sx, 

{ e} u es c { x} u xS. 



Thus H(e) C B . 
e 
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Mow let x £ H
8

-
Then since x £ ({e} u Se) n ({e} U eS) we have 

xe = ex = x, and since e £ ({x} u Sx) t1 ({x} u xS), x has a left and 

right inverse, hence x E H(e). 

If s is compact I then r J ~ 
Of S X $. 

and'£ are compact subsets 

Proof: 

Let r .-,. s X s and let (x I y) £ s )( s ' "I:. . 
Then we nay ass,me x t Sy u { y} (or y t Sx. u { x}). 

Hence V n (Sy u { y }) = fl for some open set V containing x, since S is 

regular and Sy u { y} closed. Since S is compact there is an open set U 
-containing y such that V n ( SU v U) = 0. 

Bence (U ,c V) n 't. = r1 and we may infer that is closed . 

. Similarly R is clos,ed and hence ';ft = 't: fl R is closed. 

1 .. 1.17. Theorem. If S is co,mpact then H = V {H(e) I e £ E} is closed. 

If x c H let a(x) be the unit of the unique maximal subgroup 

co•ntaining x and let 8 (x) be the inverse of x in this group. 

Then a: H + E is a retraction and 8: H + H is a homeo

morphism. 

Proof: 

Let 11: S ·11e S + S be the mapping defined by n (x, y) = x. 

Then H = ;u { H( e) l e t E} = lJ ( ~ I\ s )( E) . 

Since 1r is e,ont inuous and cl' and E are closed , H is closed. 

Furthermore let B = { (x,a(x)) I x £ H} and f : s )( s ➔ s, f(x,y) = xy. 
,.. -1 

We now show th.at B = 4t- n H x H n f (E) . 

For let (x,a(x)) £ B, then x,S(x) E H and xS(x) = 
e 

e, hence 

(x,s(x)) c tit n H x H n f-1(E). 

If on the other hand (x, y) e:: 2 n H x H n f-l (E), then xy = 
• 

a:tld (x. y) E 'lt .hence 

Purth.ermvre x, y E H 

Hence H = H = 
X y 

Since .'Z, H x H 

H = H • 
X y 

implies H = H 
x e1 

= H(e
1

) and thus 

for some e e: E. 
1 

xy = e and y = 
l 

a(x). 

e £ E 
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Furthermore nJB is one-to-one and continuous and hence topological. 
-1 

Thus (n I B) : x + (x,a(x)) is continuous, and we may infer that a is 

continuous. 

a is continuous since a(x) = xB(x). 

1.2. Ideals 

Definitions. A non empty subset A of a mob Sis called a left ideal 

if SA c A, a right ideal if AS CA and an ideal if it is both a left 

and a right ideal. 

A minimal left (right) ideal of Sis a left (right) ideal containing 

no other left (right) ideal. 

We shall denote by t'(S) and ~ (S) respectively the collections of all 

minimal left and all minimal right ideals of S. 

In general these may be empty collections. 

The intersection of all ideals of Sis called the kernel of Sand 

denoted by K. 

If K is non-empty it is clearly the smallest ideal of S. 

· 1.2.1. Lemma. Let A be an ideal of a mob S. Then A is an ideal of S. 

Proof: 

Since SAC A and AS c A, the continuity of multiplication implies 

SAC A and AS CA. 

Hence A is an ideal of S. 

An analogous result holds for left and right ideals. 

If a ES we let J(a) = {a} u Sau as u SaS, 

L(a) = {a} u Sa, 

R(a) = {a} u as. 

Thus J(a) is the smallest ideal of S which contains a . 
• 

L(a) and R(a) are respectively the smallest left and right ideal of S 

which contain a. 

If Ac S then we define J (A) to be the null-set if A contains no ideal 
0 
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of s and J (A) is the union of all ideals contained in A in the 
0 

contrary case. L (A) (R (A)) is the null-set if A contains no left 
0 0 

(right) ideal of Sand L (A) (R (A)) is the union of all left (right) 
0 0 

ideals contained in A in the contrary case. 

It is clear that 

contained in A. 

if J {A)~ 0, then J (A) is the largest ideal of S 
0 0 

Also if L (A) #, fl and R (A) #- 0 then L (A) is the largest left and 
0 0 0 

R (A) is the largest right ideal of S contained in A. 
0 

then J (A), L (A) and R (A) are 
O O 0 

1. 2. 2. Lemma. If A C S is closed , 

closed. If A is open and S 

are op,en. 

compact, then J (A), L (A) and R (A) 
O O 0 

Proof: 

We only prove the lemma for J (A). 
0 

Suppose J (A) # '1, then since J (A) c A we have J (A) C A. 
___ o o ___ o 

Now J (A) is an ideal of S and hence J (A) c J (A) if A = A. 
0 0 0 

Suppose now that Sis compact and A is open. 

Let X £ J (A) , then { x} U xS u Sx u 
0 

SxS c J (A) c A and there exists 
0 

an open set V, x e: V, satisfying Vu VS U SV U SVS C A • 

Now this set is an ideal of S, hence is contained in 

Therefore x e: V c J (A) completing the proof. 
0 

J (A). 
0 

1.2.3. Theorem. Let S be a compact mob; then any proper ideal of Sis 

contained in a maximal proper ideal of S, and each maximal 

proper ideal is open. 

Proof: 

If the ideal I -f. S, then 1. 2.2 shows that J
0 

(S \ {x}) is an open proper 

ideal containing I for any x £ S, I. 

Let {T} be a linearly ordered system of open proper ideals containing a a 
I. 

If S = U T = 
a a 

Since {T} is 
a a 

contradiction. 

T, then S is the union of a finite nt1mber of 

linearly ordered, there is an a with s = T , 
Cl 

T 's. 
Cl 

which is a 
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Hence T = U T is a proper ideal of S. 
a a 

Using Zorn's lemma there is a maximal element in the collection of all 

open proper ideals containing I. 

Each maximal proper ideal Mis open, since M = J (S \ {x}), 
0 

An analogous result holds for left and right ideals. 

X t M. 

Thus if Sis compact, then any proper left (right) ideal of Sis con

tained in a maximal proper left (right) ideal and each maximal proper 

left (right) ideal is open. 

Corollary. If Sis a compact connected mob and J a maximal proper ideal 

of S, then J is dense in S. 

Proof: 

Since J is open and Jan ideal of S, the maximality of J and the 

connectedness of Simply J = S. 

Let S be the multiplicative semigroup of real numbers, with the usual 

topology. Then {O} is the only proper ideal of S. Hence {O} is a 

maximal proper ideal which is not open. Furthermore if A= (-1,1) 

then J (A)= {O}. 
0 

1. 2. 4. Lemma. If S is a compact mob, then J{a) is compact for each a£ S. 

The same holds for L(a) and R(a). 

Proof: 

Since Sis compact {a}, as, Sa and SaS are compact subsets of S. 

1.2.5. Theorem. Is Sis a mob and S has a minimal left and minimal 

right ideal, then S has a minimal ideal Kand 

• 
A1 n A

2 
¢ ~ then A1 = A

2 
. 

2) If L e: t (S) then La = Sa = L for all a E L. 

If R e: ~ (S) then aR = as = R for all a e: R. 
' ' 

3) K = U { L I L E t (S)} = U { R ( R e: '1 (S)}. 
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Pro,of: 

1) If A
1 

is a left 

ideal of S and thus A1 = A1 n A2 = A2 • 

2) If a£ L, La is a left ideal contained in L, hence Lac Sac L, 

which implies La= Sa= L. 

The same argument holds for right ideals. 

and a £ S, then L
1

a is a left ideal of Sand 

• 

For if L were a left ideal 
0 

properly contained in L1_a, then 
• 

L n { x l. xa t L } would be a left ideal properly contained in 
1 .. o 

Thus U { L1 a I a E S} == L1 S is a union of minimal left ideals and is an 

ideal of S. 

Now let I be any ideal of S, tl1en L1 = IL1 c I, hence I contains L1 

and thus L
1 

S = U { L
1 

a I a £ S} , which must by definition be the kernel 

K of S. 

Furtherntore any L
2 

£ 't (S) must be contained in K. 

So by 1) L
2 

must be equal to L1a for some a e: S. 

ThusK=U{L t L tt(s)}. 

In the same way we prove K = U {R I R £ ~(S)}. 

Let S be the multiplicative semigroup of real numbers x, 0 < x < 1, 

with the usual topology. 

The kernel K of Sis empty, since for any a£ S, the set (O,a) is an 

ideal of S, and hence K = () (O,a) = 0. 
0 <a <1 

On the other hand let S be the cube 

S = { (x,y) IO < x _ < 1, 0 < y < l} , -

in E2 , i.e. 

and define a multiplication in S 

by (x1 ,Y1).(x2 ,y2) = (O,y2). Then Sis a compact mob and the minimal 

left ideals are precisely the points (0,y), while the set 

R = {(O,y) I O < y < 1} is the only minimal right ideal and K = R. 

1~2.6. Theorem. If S satisfies the conditions of 1.2.5, then 

1) If L £ '[ (S) and R £ fl (S), then L n R is a subgroup of S. 

2) I e £ K fl E}. 

3) K = U {H(e) I e e: K n E} and for e t K n E, H(e) = eSe. 
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Any pair H(e1 ), H(e2) of subgroups with e
1

,e
2 

£En Kare 

isomorphic. 

Proof: 

1) Choose L £ 'f (S) and R E ~ (S). 

Then RLC LI'\ R, so L nR # 0. Furthennore if a EL n R, then 

(L n R)a = L n Rand a(Ln R) = Ln R. 

For it is clear that (L n R)a c. L n R, and if the inclusion were 

proper then La= U{(L n R)a I R £ fl (S)} .~ U{(L I'\ R) I R £ flcs)} = 

L =Lais a contradiction. 

The equality a(L n R) = (L n R) follows similarly and hence L n R is 

a subgroup of S. 

2) Let e be the unit element of L n R, then 1. 2. 5 implies L = Le = Se 

and R = eR = es. 
3) L n R =Sen es~ eSe = eL ~ e(L n R) = L n R. 

Hence L n R = eSe. 

Now let H(e) be the maximal subgroup containing e £En K. 

Then H(e) = eH(e)e c eSe = L n R, so H(e) =LA R = eSe and 

K = U { L I L E r, ( S) } = U { R I R c .R ( S) } = U { H ( e) I e E E n K} . 

We shall now prove that any pair H(e
1
), H(e

2
) with e

1 
,e

2 
£ E n K are 

topologically isomorphic. 

It is clear that if H(e1 ) c L and H(e
2

) c L, then e
2

e
1 

= e
2

f = e
2 

for 

any f £ E n L. 

Let ,i,: H(e
1

) + L be defined by ~ (x) = e
2

x and suppose e
2

x E H(f), 

f £ E n L. 

Let x be the inverse of e 2x in H(f). Thus e 2xx = xe2x = f. 
2 

And so e 2 f = e 2xx = f, hence f = e 2 . 

It is clear then that tis a map of H(e1 ) onto H(e2 ) and we easily 

verify that is a homomorphism. 

If e 2x 

Hence 
• 

Since 

= e 2y, then e 1 e 2x = e 1e2y, 

~ is an isomorphism. 
-1 

~ (x) = e 1x; x £ H(e2), t 
and H(e

2
) are isomorphic. 

-1 
and, are both continuous and 

In the same way both 

isomorphic. 
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Suppose now H(e1) = L
1 

n R1 and H(e2) = L2 n R2 , then H(e1) is iso

morphic with L
1 

n R
2 

and H(e
2

) isomorphic with L
1 

r\ R
2 

and it follows 

that H(e1 ) and H(e
2

) are isomorphic. 

1.2.7. Theorem. Let S be a compact mob. Then each left ideal of S 

contains at least one minimal left ideal of Sand each minimal 

left ideal is closed. The same holds for right ideals. 

Proof: 

Let L be any left ideal of Sand let T be the collection of all closed 

left ideals of S contained in L. Tis partially ordered by inclusion 

and is non-void, since if x t L, Sx is a closed left ideal contained 

in L. 

Suppose {T} is a linearly ordered subcollection of T. 
a a 

Then {) T is non-empty since S is compact and so is an ideal in L. 
a a 

Thus {T } 
a a 

has a lower bound and Zorn's lemma assures the existence of 

a minimal L in T. 
0 

Now let L1 be a left ideal contained in L and let x £ L1 . 
0 

Then Sx is a closed left ideal. Furtherr11ore Sx c L
1 

c L
0 

and since L
0 

= L1 . Thus L
0 

is a minimal left ideal. is minimal in T we have Sx 

The proof of the assertion 

= L 
0 

for right ideals is completely analogous. 

Corollary. Each compact mob S has a minimal ideal K, and if Sis 

commutative, then K is a compact topological group. 

Proof: 

If Sis commutative and J 1 and J 2 are minimal ideals then J 1 n J 2 is 

non empty since it contains J 1J 2 . 

Thus J 1 = J 2 and J1 n J 2 = J 1 _1s a subgroup of S. 

Since K = J 1 , K is a subgroup of S. Further111ore K is compact and hence 

a topological group . 

• 

1.2.8. Lemma. Let S satisfy the conditions of theorem 1.2.5. 

Then K =(Sen E).eSe.(eS n E), e e: En K. 

Proof: 

Since e £ K, we have (Se n E). eSe. (es n E) c. K. 



Now let k £ K. Then kc 

Suppose n fS 

Then g 1 e = g
1

, eg
2 

= g
2

. 

have g 1 f = f, fg2 = f. 
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H(f) with f £En K. 

and H(g2 ) = Sf n es, g 1 ,g
2 

£En K. 

Furthermore since fS = g Sand Sf= 
1 

Sg
2 

we 

Hence k = fkf = g 1 fkfg 2 = g
1

kg
2 

= g
1

ekeg
2 

£ (Sen E).eSe.(eS n E). 

This implies that K =(Sen E).eSe.(eS n E). 

1.2.9. Theorem. Let S be a compact mob, and let K be the kernel of S 

and let e £ K n E. 

* Let K =(Sen E) x eSe x (es n E), with the multiplication 

(x1,Y1,z1).(x2,Y2,z2) = (xl,ylzlx2y2,z2). 

* * Then K is a compact mob and K is isomorphic with K. 

Proof: 

According to lemm~ 1.2.8 K =(Sen E).eSe.(eS n E). 
* Define ♦: K + K by ~(x,y,z) = xyz. Then, is clearly a continuous 

* mapping of K onto K. 

Next let xlylzl = X2Y2Z2, with xl,x2 E Sen E, Y1,Y2 £ eSe, 

z1 ,z2 £ es n E. 

Then since x 1 s and x 2 s are minimal right ideals with x
1
s n x

2
s #~.we 

have x 1 s = x 2 s and thus x 1x 2 = x
2

. 

Furthennore since Se= Sx1 = Sx2 , x
1

e = x
1

, x
2

e = x
2

, ex
1 

= ex
2 

= e. 

Hence x 2 = x 1 x 2 = x 1ex2 = x 1e = x 1 . 

In the same way we prove z = 
1 

and so y 1 = y
2

. 

* Hence~ is a one-to-one continuous map of K 

Since t<x1 ,y1 ,z1 ). ♦ (x2 ,Y2 ,z2) 

~{(x1 ,y1 ,z1 ).(x2 ,y2 ,z2 )} we 

isomorphic mobs . 

• 

onto K. 

1.2.10. Theorem. If Sis a compact mob, then the minimal ideal K is a 

retract of S. 

Proof: 

Define f : S + K by f(x) = a(xe).exe.a(ex), e £En K, where a(xe) is 
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the unit of the unique maximal subgroup containing xe. 

Then by theorem 1.1.17 and lemma 1.2.8 we may conclude that f is a 

continuous map of S into K. 

Now let k £ K, then k = 

g2e - e, egl - e. - -
ke - g 1ekeg

2
e - g1eke £ g

1
H(e) - -

ek - eg1ekeg2 - ekeg c H(e)g
2 - - 2 

eke= eg1ekeg2e = eke. 

with g £ 
1 

Sen E and g 2 E es n 

= H(g1). Hence a(ke) = g 1 . 

= H(g2). Hence a(ek) = g 2 . 

E and 
• 

Thus if k £ K, then f(k) = g1 ekeg2 = k and f is a retraction of S onto K. 

Corollary: If Sis compact and S has the fixed point property then 

KC E. 

Proof: 

Let e £ K. Then H(e) = eSe is a retract of S. Hence H(e) is a topo-

logical group with the fixed point property and thus H(e) = e. 

1.2.11. Theorem.. Let S be a compact mob and let e £ E. Then the 
--- . 

following conditions are equivalent: 

1) Se is a minimal left ideal. 

2) SeS is the minimal ideal of S. 

3) eSe is a maximal subgroup. 

Proof: 

1) + 2). If Se is a minimal left ideal, then Sec K by theorem 1.2.5, 

hence e £ K. Since SeS is an ideal of Sand SeS c. K we have SeS = K. 

2) + 3). If SeS = K, then e c Kand 1.2.6 implies that H(e) = eSe is 

a maximal subgroup. 

S) + 1). Let L be a left ideal contained in Se, 

Then since a£ Se I\ eS = eSe, there is an element 
-1 

a a= e. 

Henc.e a -la = e £ a -lL c:. L. Thus Se c L and L = Se. 

Remark. 

and 
-1 

a 

let a £ L n es. 
£ eSe such that 

If the mob S contains a zero element 0, then theorem 1.2.5, 1.2.6, 

1.2.9 and 1.2.11 become trivial, since then {O} is the minimal 

(left, right) ideal of S. 
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1.3. Simple semigroups 

Definitions. A mob Sis called (left, right) simple if S does not 

contain a proper (left, right) ideal. 

The theory of simple mobs S with a zero element becomes trivial, 

because in this case Sis simple if and only if S = {O}. 

For this reason we introduce the notion of 0-simplicity. 

' 

A mob S with zero is called (left, right) 0-simple if {O} is the only 

proper (left, right) ideal of Sand s2 ~ {O}. 

If Sis a mob with zero, such that {O} is the only proper ideal, then 

either Sis a-simple or Sis the zero semigroup of order two . 
• 

For evidently Sis 0-simple or s2 = {O}. In the latter case, if 

S = {O}, then {O} is not a proper ideal of S, hence S ~ {O}. 

But then if a is any element¢ 0 of S, {O,a} is an ideal of Sand so 

S = {O,a}. 

1.3.1. Lemma. A necessary and sufficient condition for a mob S to be 

(0-)simple is that SxS = S for all non-zero x of S. 

Proof: 

The condition is sufficient, since if I is a non-zero proper ideal of 

Sand if x ~ 0, x EI we have SxS c I, which contradicts SxS = S. 

Suppose now that Sis (0-)simple and that the· condition is not satis-

fied. Then there exists an element x 0 such that SxS = {O}, since 

SxS is an ideal of S. Let X be the set of all such x. Then clearly 

XS C X and SX c X. Thus Xis an ideal of S which contains x ~ 0, hence 

X = S. 

But then sxs = { O} ' 
2 

sos = {O} a contradiction. 

An analogous condition holds for a left or right (0-)simple mob, i.e. 

Sis.left (right) (0-)simple if and only if Sx = S (xS = S) for all 

non-zero x of S. 

Further1nore it follows that S is both left and right simple if and 

only if Sis a group. 

• 
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1. 3. 2. Theorem. If S is a right 0-simple mob, then S , { O} is a 

right simple submob of S. 

Proof: 

Suppose that a,b £ S, {O} and that ab= 0. Then the set of all x in 

s such that ax= O is a non-zero right ideal of S, hence coincides with 

S. But then as= {O}, contrary to le a 1.3.1. 

Thuss, {O} is a submob of S. Since as= S = a(S \. {O}) u {O} for all 

a c S , { O}, it follows that a(S \ { O}) = S , { O} , and we conclude 

that S , {O} is right simple. 

Theorem 1.3.2 shows that there is no essential difference between 

right simple and right 0-simple, since every right 0-simple semigroup 

arises from a right simple semigroup by the adjunction of a zero 

element. (The topology, however,.need not be the sum topology). 

On the other hand we have that every simple mob with zero adjoined 

is a 0-simple mob. The converse however does not hold. 

Definition. An idempotent e of a mob Sis called primitive if 

f
2 

= f £ eSe implies f = 0 or f = e. 

Definition. A mob Sis called completely (0-)simple if Sis (0-)simple 

and contains a non-zero primitive idemp·otent. 

If Sis a commutative (0-)simple mob then Sis a group or a group with 

zero (1. e. S = G U { O} , where G is an abstract group and Og = gO = O 

for all g £ G). 

Furthermore we see that in the latter case S contains exactly one 

non-zero idempotent, hence Sis completely (0-)simple. 

Corollary. If K ~ 0 is the kernel of a mob S, then K is a simple mob. 

For .. since K is the minimal ideal of S and KaK an ideal of S contained 

in K for all at K, we have KaK = K, a£ K. 

If moreover K is compact, then K is completely simple. 

For let e and f be two idempotents in K, withe~ f. Then either 

Sen Sf=~ or es n fS =~and hence either fe ~for ef # f. 
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1. 3. 3. Lemma. If S i.s (0-) simple and e an idempotent of S, then eSe 

is (0-)simple. 

Proof: 

If eSe = {O},then the lemma is trivial. 

Suppose now eSe ~ {O} and let exe be any non-zero element of eSe. Then 

since Sis (0-)sim~le S = Sexes. 

Hence eSe = eSexeSe = (eSe).exe.(eSe) and lemma 1.3.1 implies that eSe 

is (0-)simple. 

1.3.4. Lemma. If Sis (0-) simple and e is a primitive idempotent, 

then eSe is either a group or a group with zero. 

Proo:f: 

Since eSe is (0-)simple there exist non-zero elements a ,b £ eSe 
X X 

such that a xb = e for any x ~ 0, x £ eSe. 
X X 

Then xb a and b ax are non-zero idempotents in eSe. 
XX XX 

Hence .xbxax = e and bxaxx = e. This, however, implies that eSe \ {O} 

is a group. 

1.3.5. Theorem. If Sis completely (0-)simple, then all idempotents 

of Sare primitive. 

Proo I: 

Let e, f be two non-zero idempotents of S with e primitive. 

Since Sis simple there exist elements a,a' £ S such that aea' = f. 

We may a sswne fa = ae = a , a ' f = ea ' = a ' . 

Furthermore (a'a)(a'a) = a'(aea')a = a'fa = a'a. Hence a'a is an idem

potent contained in eSe, which implies a' a = e. 

Now the correspondence x + x' , where x E eSe and x' £ fSf, which is 

de:fined by the equivalent relations x = a'x'a and x' = axa' is an 

algebraic· isomorphism between eSe and fSf. 

Hence fSf is a group or a group with zero, and thus f primitive. 

Corollary. A completely (O-)simple mob S with identity u is either a 

group or a group with zero. 
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For by theorem 1.3.5 u is primitive and hence lemma 1.3.4 implies 

that usu= Sis a group or a group with zero. 

1.3.6. Theorem. A compact (0-)simple mob Sis completely (0-)simple. 

Proof: 

Let a-/;. O be any element of S. Then a= bac for suitably chosen 
n n 

b, c £ S. Hence a = b ac , n=l , 2 , . . . . 
2 

Let e = e £ r(b). Then by lemma 1.1.4 there is an element 

c' £ {ci ( 1=1,2, ... } such that eac' = a. 

Hence ea= a and e # O. 

Now let f-# 0 be any idempotent in eSe. Then since eSe is a compact 

(0-)sim.ple mob, we can again apply 1.1.4. 

Hence there is an idempotent g £ eSe and an element g' such that 

gfg' = e. 

Since e is the identity of eSe we have g = ge = ggfg' = gfg' = e and 

fg' = efg' = gfg' = e. 

Henceforth f = fe = ffg' = fg' = e. 

Thus e is the only idempotent~ 0 contained in eSe and e must be 

primitive. 

Let I be an ideal of the abstract semigroup S. Then the Rees quotient 

SI I is the abstract semigroup which consists of the set S, I 

together with an element 0. 

The multiplication o in S / I is defined in the following way 

a.b = ab 

a.b = 0 

a.b = 0 

if a,b,ab £ S 'I, 

if ab£ I, • 

if a= 0 orb= 0. 

If Sis a mob and I a closed compact ideal of S, then we can make S / I 
• 

into a mob such that the natural map of S onto S / I is continuous. 

We take for S / I the space which we get from S by identifying I to a 

single point O, with the quotient topology. 
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* 1.3.7. Theorem. Let S be a mob and let J and J be ideals of S 

* with J c J such that there is no ideal of S lying properly 

* between them. Then J / J is either an abstract 0-simple 

semigroup or a zero semigroup. 

Proof: 
* 2 Since J U J is an ideal of Sand * J C * J u 2 2 * J c J we have J c J 

* 2 J u J = J. 

If J 2 
C J* 

* Next let J 

* then J / J is 
2 

u J = J, then 

I~ {O}. 1* = (I '{O}) u J* 

* * * Hence since I u SI U I S 

a zero semigroup. 

* 3 J u J = J. Let I be an ideal of J / 

is an ideal of J properly containing 

* U SIS is an ideal of S, we have 

* J , 

* J . 

* * * * * * * * I U SI U I S U SI S = J and thus JI J U JSI J U JI SJ U JSI SJ = 
* 3 JI J= J. 

* * * 3 This implies that J u JI J = J u J = J. 

* * * * 

or 

On the other hand we have J u JI J c I , hence I = J and it follows 

* that J / J is a 0-simple semigroup. 

Corollary. An ideal J of a mob Sis a maximal proper ideal of S if and 

only if S / J is either a 0-simple semigroup or the zero semigroup of 

order two. 

Proof: 

It follows from theorem 1.3.7 that if J is maximal, then S / J is 

0-simple or a zero semigroup. 

Suppose now that S '\ J contains more than one element and that 

( S I J) 
2 

= { 0} . Let a £ S '\ J, then J U { a} is a proper ideal of S 

containing J, which is a contradiction. 

1.3.8. Theorem. Let J be a maximal proper ideal of the compact mob S. 

Proof: 

Then S / J is either the zero semigroup of order two or else . 

completely 0-simple. 

Let S / J be 0-simple. Then by 1. 3.1 we have (S / J)a(S / J) = S / J for 

every a£ S / J, a i O. 

Thus xay = a for suitably chosen x,y £ S, J and it follows that 
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n n 2 x ay = a, n=l, , .... 
2 

Hence a= eay' withe= e £ f(x), y' £ r(y). 

Since e £ 8 \ J we conclude thats/ J contains a non-zero idempotent. 

Now let f 2 = f e: e. s ; J. e. Then since e. S / J. e is 0-simple and e. S / J. e 

/ J l.·t follows in the same way that there are isomorphic with eSe e e, 

elements a and b such that e = afb with a= af. 
n n 

Furthermore aeb = afeb = afb = e. Hence e = a fb , n=l, 2 ,· · · · 
2 

Thus e = gfb' with g = g £ r(a), b' e: r(y). 

' fb' fb' = e, we have f = fe = Since g = ge = ggfb' = e and fb = e = g 

ffb' = e. 

Henceforth e is primitive and S / J completely 0-simple. 

1.3.9. T,emma. Let S be a mob without zero having at least one minimal 

left ideal L. Then Sis the sum of its minimal left ideals if 

and only if Sis simple. 

Proof: 

Let S be simple. According to 1.2.5, the sum of all minimal left ideals 

of Sis an ideal I of Sand thus I= S. 

Conversely if S is the s11m of its minimal left ideals, then again by 

1.2.5 Sis its own minimal ideal and hence simple. 

1.3.10. Theorem. Let H be a compact topological group and X and Y two 

compact Hausdorff spaces. Let ♦: Y x X -+ H be a continuous 

function and denote by [ X, H, Y, ♦] the space X x H x Y with the 

multiplication (x1 ,h1 ,y1)(x2 ,h2 ,y) = (x ,h 9(y ,x )h ,Y ). 
2 1 1 1 2 2 2 

Proof: 

Then [X,H, Y, ♦] is a compact simple mob. 

On the other hand if Sis a compact simple mob and e ES n E, 

then Sis isomorphic with [se A E,H(e),eS "'E,4>] where 

£ es n E, e 
2 

£ Se I) E. 

The second part of 

Next let [x,H, Y ,~] 

the theorem follows imxnediately from theorem 1.2.9. 

be given. The multiplication defined in [X,H,Y,$] 

is clearly continuous and associative. 

Thus [x ,H, Y, ct>] is a compact mob. 
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Now let (x,h,y) and (x' ,h' ,y') E [x,H,Y,t]. Choose elements y E Y 
0 

and x £ X and let h and h' be such that h ~(y ,x)h~(y,x )h' = h'. 
0 0 0 0 0 0 O 

Then (x ' , h , y ) (x , h , y) (x , h ' , y ' ) = (x ' , h ' , y ' ) • 
0 0 0 0 

Hence X,H, Y,~_ (x,h,y) [x,H,Y,~] = [X,H,Y,~] for all (x,h,y) and 

henceforth [x, H, Y, ,] is simple. 

1.3.11. Lemma. If Sis a compact mob and A a (left, right) simple 
< - < 

submob, then A is also a (left, right) simple mob. 

Proof: 

A is a submob of S, hence AxA c A for all x £ A. 

Now let A be simple and suppose there exists an x £ A such that 

AxA # A. 

Then there exist_y £ A, f ¢ AxA and neighbourhoods V of x and W of y 

such that W n AVA= 0. 

Since_y,x £ A there are elements a 1 £An V and a 2 £ A /'\W with 

a 2 i Aa1A. This contradiction concludes the proof. 

A similar argument applies to right and left simple mobs. 

< 

1.3.12. Theorem. Let S be a compact left simple mob. Then the right 

Proof: 

translation p: x 
a 

xa is a homeomorphism. 

According to theorem 1. 2. 6 S = U { H( e) I e £ E} , while from Se = S for 

all e £Ewe infer that e is a right unit 
-1 

Let a be 

for S. 

the inverse of a in H(e), Now suppose xa = ya, a£ H(e). 
-1 -1 

then xaa = yaa , hence xe = ye and thus x = y. 
-1 

On the other hand since (xa )a= x it follows that is a mapping of 

S onto S. 

If we recall that Sis compact, it follows that P is a .homeomorphism. 
a 

1.3.13. Theorem. Every left simple submob of a mob Sis contained in a 

maximal left simple submob of Sand each two maximal left 

simple submobs are disjoint. 

If Sis compact each maximal left simple submob is closed. 
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Proof: 

* Lets be a left simple submob of S 

left simple mobs containing 
* collection and T =UT. 

a a 

* s. Let 

and let T be the collection of all 

{T} be a linearly ordered 
a a 

* 

sub-

* Then T is left simple, for if x & T, then x £ T for some a and 
a 

* hence T0 x = T
0

. Thus since T 

* * 
= U {TB I T

0 
C TB} we have 

Using Zorn's lemma there is a maximal element in the collection of all 

* left simple mobs containing S. 

Next let s1 and s
2 

be two maximal left simple submobs and suppose 

x £ s1 n s2 • Let A be the mob generated by s1 and s2 ; i.e. A is the 

collection of all finite products s 1 s 2s 3 ... sn with si £ s1 or s2 , 

i=l, 2, ... , n. 

Let y1 ,yi £ s1 and y2 c s2 , then S1y1 = S1y{ = s
1

x = s
1 

and s
2

x = s
2

. 

Hence y1 = s
0

y 1 , x = s 1 y 1 and y 2 = s 2x, s
0
,s1 £ s

1
, s

2 
E s

2
. 

Thus y 2 = s2s1y 1 and we have s1 c. Ay1 c A, s
2 

c Ay
1 

c A, and it follows 

that A= Ay1 since Ay1 is a submob of S containing s 1 and s
2

. 

In the same way we prove A= Ay2 and thus that A= Aa for every a EA. 

Since A is left simple and s1 and s2 are maximal, we have s1 = s
2 

= A. 

Analogously it is possible to prove that every simple submob of a mob 

Sis contained in a maximal simple submob. But here two maximal simple 

submobs may have a non empty intersection. 

Let for instance S = {a1 ,a2 ,a3 ,a4 ,a5} with the following multiplication 

table 

al a 
2 a3 a4 a5 

al as al ~5 a3 as 

a2 as a2 a5 a4 as 
a 

3 al al a3 a3 as 

a4 a2 a2 a4 a4 a5 

as as as as as a5 
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Then Sis a completely 0-simple mob 

s -2 - are two maximal simple 

with zero a. S - {a a} 
5 1 - 2' 4 

submobs with 8
1 

n 8
2 

-1, ~. 

and 

1.3.14. Theorem. Let e be an idempotent of the compact mob S without 

zero, then the following conditions are equivalent: 

1) e is primitive. 

2) Se is a minimal left ideal. 

3) SeS is the minimal ideal. 

4) eSe is a maximal subgroup. 

5) Each idempotent of SeS is primitive. 

Proof: 

1)-+ 2). If Se is not minimal, then there exists an idempotent f with 

Sf c Se and Sf a minimal left ideal (1.2.6 and 1.2.7). Hence fe = f and 

since (ef)(ef) = eff = ef, ef is an idempotent contained in eSe. Thus 

ef = e and we have e £ Sf which implies Se C Sf. 

3) -+ 4) + 2). Theorem 1. 2. 11. 2) 

4) 1). Since eSe is a group, eSe contains only one idempotent and it 

follows that e is primitive. 

5) 1). Trivial. 

1) + 5). Let f £ SeS, then since SeS = K, we have SfS =Kand thus 

f primitive. 

Remark. 

In a compact mob without zero, idempotents are primitive if and only if 

they are contained in K. 

1.3.15. Theorem. Let S be a compact simple mob and let S' be a locally 

compact submob of 8. 

Then S' is a locally compact simple mob. 

Proof: 

Since S = U {H(e) I e £ E} 

= H(e) f'"\ S' #. ~. * Let H (e) 

we have S' = U { H( e) () S' I 
' 

Then since H(e) is compact, 

locally compact submob of the compact group H(e). 

* Theorem 1.1.12 implies that H (e) is a compact group. 

• 

e £ E}. 

* H (e) is a 
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* be a minimal left ideal of Sand let L 
a • 

* is obvious that L is a left ideal of S'. 
a * 

We now prove that L is a minimal left ideal of S'. 
* a 

For let L c L be a left ideal of S'. Then since L 

= L n 
a 

= U {H(e) 

• 

lecEnL} a * a * * a 
we have L = U {H (e) I e £ E n L } and consequently 

a * * a 
there is an idem-

potent e' t L such that L fl H (e') '# fa. a . 
Since a group contains no proper left ideals we have 

hence e' e: L. Thus S 'e' C L. 

On the other hand we have e' E L 
a 

and it follows that 

identity for L. 
a 

This proves that 

Hence 

* L is 
a 

* * L = L e ' C s 'e t C L. 
a a 

a minimal left ideal of S'. 
• 

* H {e ') C Land 

• 

e' is a right 

Since S' 

a simple 

* = U {L I L £ ~ (S)} it follows by lemma 1.3.9 that S 1 is 
a a 

submob. 

Example. Let S be the additive group of real numbers mod 1 with the 

usual topology and let Q be any irrational number, 0 <a< 1. 
co 

Then S' = {na}· is a-submob of S. S' is not locally compact and not 
n=l 

simple since S' + a J S' . 

• 

1.4. Maximal ideals 

We have seen in 1.3, that if Sis a compact mob which contains properly 

a (left, right) ideal, then it contains a maximal proper (left, right) 

ideal J which is open. 

1.4.1 .. Lemma. Let S be a compact mob and suppose Eis contained in a 

maximal proper ideal J, then s2 c J. 

Proof: 
·.JI§_., It till JI if II 1$6 

lt to~lows f:tuan 1.3.8 that S / • l:s GttuD:'P oempletely u-simple or the 

zero semigroup of order 2. 

Since EC. J, SI J contains no idempotent other 

S I J ::::t 0 2 , i. e. S = J u {a} with a 2 c. J. 
2 2 And --

than O and hence 
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Corollary. Let S be compact with s2 = S, then SES= s. 
For if SES is a proper subset of S, we have since SES is an ideal 

, 

that SES and hence Eis contained in a maximal proper ideal. Lemma 

1.4.1 then implies that S = s2 
CJ; a contradiction. 

1.4.2. Theorem. Let S be a compact mob with s2 =sand suppose that S 

has a unique idempotent . 

Then Sis a topological group. 

Proof: 

Let e = 
2 

e , then e c Kand K is a group. The preceding corollary 

implies that S = SeS = K, completing the proof. 

Definition. A mob S has the (left, right) maximal property if there 

exists a maximal proper (left, * * * right) ideal (L ,R )J containing 

every (left, right) ideal of S different from S. 

1.4.3. Lemma. Let S be a mob and A a compact 
' 

r(x) compact, then A= Ax= Ae withe 

part of S. If AC Ax with 
2 

= e C f (x). 

Proof: 

A c. Ax c 
2 

Ax C .. . . . 
k Suppose now Ax ¢ Ae withe= e 2 c r(x). Then there is an a £ 

k such that ax ¢ 

A with 
k 

ax ¢ Ae, and there is a neighbourhood W of e 
n oo 

since e is a cluster point of {x }n=l' there is a 

Hence 
2 

k 
0 

> k with 

But 

£ w. 

We now have Ac Ax c Ae, where e = e; therefore A= Ae and A= Ax= 

• 

It follows that for every a E K(x), we have Aa = Ae = A. 

Now let y £ r (x). Then since K{x) = er (x), we have Ay = (Ae) y = A. 

Hence we have for ally£ f(x), A= Ay. 

Furthermore the mapping p : a -+ ay, a e: A, is a homeomorphism. 
y 

p is clearly continuous and also one-to-one. For 
y 

since a1 e = a 1 and 
-1 

y be the inverse 

a 2e = a 2 , we have a 1y 

in K(x) of (ey), then 

if a 1y = a 2y,_ then 

= a
2

(ey). Now let 
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-1 -1 a
1

(ey)y = a 2 (ey)y : ~~ a1e = a 2e 

Since A is compact it follows that • p 1S a 
y 

homeomorphism . 

1.4.4. Lemma. Let S be a mob with a ~ight unit element e and at least 

one proper left ideal. Then S has the left maximal property • 
• 

Proof: 

* Let L 
• 

* be the union of all proper left ideals. Then L 

* a left ideal of S such that e ~ L. 

* ~" and L is 

* For if e £ L • then e e: L for some proper left ideal. But since e is 

a right unit, we have S =Sec L, a contradiction. 

* * Therefore L ~ S, and it is obvious that L is the maximal left ideal 

of S. 

We remark that 1.4.4 holds if right is replaced by left and vice versa. 

Also a similar argument shows that if S has a left or right unit and 

at least one proper ideal, then S has the maximal property. 

From the proof of the lemma it also follows that in this case if S has 

* * * a left unit, 
* * 

then R exists and J C R ; if S has a right unit then 

J C L ; and if s * * * has a unit, then J C L () R . 

1.4.5. Theorem. Let s be a compact * mob. Then if L exists, there 
* * * exists also J and we have L - J - • 

(The * * theorem also holds if L • replaced by R ). 1S 

Proof: 

Since for every a t S, 
* 

* * * La is a left ideal of S, we have Lac L or 

La= S. 

* Lemma 1.4.3 implies that if La= St then Sa= S = Se, and hence 
* * 2 Le= L withe= e £ r(a). 

group and it follows from theorem 1.1.14, applied to r(a), that 

ae £ K(a). 

* 

• 
l.S a 

Let a be the inverse of ae in K(a). Then we have * La= Sand thus 
* * L aea * = Sea * * ·: > L e = L * = Sa 

* * 

• 

• 

Since e E Sa, we have e £ L and hence S:::: 

• 

* Se C L , a contradiction . 
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* * Thus Lac L for all a£ S. 

* * * But then it follows that LS CL. Hence L is an ideal of S which 
* must be J, since every proper ideal of Sis a proper left ideal of s 

* and is contained in L . 

1.4.6. Theorem. Let S be a compact mob and let P be the set of those 

elements a£ S satisfying as= s. 

Then Pis a closed submob of Sand the left translation 

p: x + ax, a£ P, x ES, is a homeomorphism of S. 
a 

Further1nore S , P is an ideal of S and P = U {H(e) I e E E n P}, 
• 

while all H(e), e EE f"\ P, are isomorphic . 

Proof: 

Let a 1 ,a2 E P then a 1a 2s = a 1s = S, and thus a
1

a
2 

t P. 

To show that Pis closed take x t Pandy i xS. 

Then we can find an open set U, with x EU and such that y i US. Then 

x £UC S' P. 

Now let ax= ay, x ~ y, a£ P, then S =as= 

and e is a left unit for S. 

es withe = e 
2 

E r(a) 

From ex= x and ey = y we infer the existence of an open set U inclu

ding e such that Ux ~Uy= 0. 
n n n 

Since e E f(a), we know that some a £ U. But since ax= a y we must 

have x = y. 

Now let ab£ P, then abS =Sand lemma 1.4.3 implies that bS =Sand 

b c P. But then since abS = S = as, a E P, and it follows that S \Pis 

an ideal. 

We now prove that P = U {H(e) I e E E f"\ P}. 
2 

Let a E P, then S =as= es withe= e £ r(a) and hence e £ P. 
n oo 

Now let K(a) be the set of cluster points of {a }n=l· T~en 

K(a) = er(a) = r(a) c H(e), since e is a left unit for S. 

* Henc~ a£ H(e) and since for each h £ H(e), a= hh for suitably chosen 

* h £ H(e) we have H(e) GP. 

Therefore P = U {H(e) I e E E n P}. 

Now let e,f £En P and let~: H(e) ~ H{f) be the mapping defined by 

qi(x) = xf. 
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xf c H(g), g £En P and let * X be It is clear that xf E P. Suppose now 

* the inverse of xf in H(g). Then x xf = g and thus gf = g. But since g 

is a left unit we also have gf = f. Hence f = g. 

Furtherrnore since for each y £ H(f) we have ye £ H(e) and 4> (ye) = yef = 
• ,,. 

yf = y. We see that• i.s onto.• is one-to-one since if x 1 f = x 2 f, then 

x1 fe = x2 fe, which implies i 1 = x2 . 
• • . . ' ' 

We can also easily verify that• is a homomorphism. 

Since H(e) and H(f) are both compact, it follows that is topological. 

P is a right simple submob. For we know that aS = S, a £ P, and hence 

there exists b' such that ab'= b for every b £ P. 

Theorem 1.4.6 then implies that b' £ P and thus aP = P. 

1.4.7. Theorem. Let S be a compact mob and let S # P # 0. 

* Then S \Pis the maximal proper ideal J of S. 

Proof: 

S \ P is an ideal of S. Let e be an idempotent contained in P. 

* Then e is a left unit of Sand 1.4.4 implies that J exists and 
* * S , P C. J . Furthermore we see that since P is simple P n J must be 

* empty. Therefore S, P = J. 

Corollary. If Sis compact with unit u and if Sis not a group, then 

* J ::: S 'H(u). 

Proof: 

Since S = us we have H(u) C P. Now let e £En P, then e is a left 

identity of Sand hence eu = u = e. Therefore P = H(u) and 

* J = S 'P = S 'H(u). 

. * 1.4.8. Theorem. Let S be a compact mob and suppose that R exists. 

• 

* Then R * is open and if S, R has more than one element or 
, 

* if Sis connected, then S \ R = P. 

Proof: 

* Let a e: S \. R • 

* 

• 

Then since as u { a} is a right ideal of s not contained 

in R, we have aS u {a}= s. 

• 

• 



• 
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* * Hence as= R or as= S. If S, R has more than one element, as 

* cannot be equal to R, hence aS = S. 

If S is connected, then S = as u { a} if and only if a £ aS and hence 

if as = s. 
* So we have in both cases as = S for a £ S , R • 

* Moreover it is clear that if x £ S, with xS = S, then x ES, R and 

* hence S , R = P. 

* Coro1lary. Let S be a compact connected mob with R. Then S contains 

at least one left unit element. 

1.4.9. Theorem. The necessary and sufficient condition that a connected 

* compact mob S contains R is S has at least one left unit 

element and is not right simple. 

Proof: 

* The necessity of the condition follows from the definition of R and 

the above corollary. 

That the condition is sufficient follows from lemma 1.4.4. 

* 1.4.10. Theorem. Let S be a compact mob and suppose that S, L and 
* S \ R have more than one element. 

Then 1) S has a unit u. 

* * * 2) L = R = J. 

* 3) S 'L = H(u). 

Proof: 

According to theorem 1.4.9 S has a left unit e 1 and a right unit e 2 . 

Hence • unit element of S. e1e2 = el - e l.S a -
2 

* * * That L = R - J follows from theorem 1.4.5 and since S - contains a 

* * 
. 

unit and s is no group, we have H(u) - s 'J - s 'L - - • 

1.4.11. Theorem. Let S be a connected compact mob, having at least one 

left unit and suppose Sis not right simple. 

Then every subgroup H(e), withe a left unit lies in the 
. * boundary of the maximal right ideal R. 
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Proof: 
* * * Since R is open and R a right ideal of S, we have R =Sand 

• * S \. R = U {H(e) I e a left unit} = boundary R • 

* 1.4.12. Theorem. Let S be a compact mob and suppose that J exists. 

* Then if S '\ J has more than one element or if S is connected 
• 

* s , J = {a I Sas = s}. 
Proof: 

* Let a £ S , J , then since Sas U { a} is an ideal of S not contained in 

* J , we have Sas u { a} = S. 
* * Hence Sas = J or Sas = s. If S , J has more than one element then 

* * Sas# J. If Sis connected, then since Sas is closed and J is open, 
• 

we again have SaS * # J . 

On the other hand it is clear that if a£ S, with Sas= S, we have 

* ai,J. 
• 

• 

Corollary. A necessary and sufficient condition that a compact 

* connected mob S contains J is S has at least one idempotent with 

S = SeS and Snot simple. 

Proof: 
* 2 * If S contains J, then S =Sand thus S / J completely O-simple. 

* Hence S ~ J contains an idempotent e, and S = SeS. 

If on the other hand Sis not simple and S = SeS for an idempotent 

e £ E, then if Q = {a I Sas= S}, we have Q #~and 

Furthennore it is clear that S '\ Q is an ideal of S 

' 

s 'Q # "· 
* and that J = s \Q. 

Let S be the closed interval of real n,.1mbers [-1, 1] , with the usual 

topology. Define a multiplication on Sin the following way 

• 

X•Y = xy 

X•Y = 0 

x.y = -xy 

if X > 0, y > 0, 

if x < 0, y > 0 or x > 0, y < O, 

if X < 0, y < 0, 

where xy is the usual product of x and y. 

With this multiplication S becomes a compact mob. 

The sets [-1, 1) and (-1,1] are both maximal ideals of s. 
* J however does not exist in S . 

• 

• 
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I 

1.8. Prime ideal, 

• 
Definitions. A (ri1ht, left) ideal P of a mob Sis said to be prime 

if A.BC P implies that AC. P or BC P, A and B bei111 ideals of S. 
• . • * 

An ideal P is co~pletely pr,ime if ab t: P implies that a £ P or 
I 

* b c P , a,b £ S. 

An 1deal which is completely prime is prime, but the converse is not 

1enerally true. 

Let for instance S • {e1 ,e2 ,a,b,O} with multiplication table 
' 

el •2 a b 0 

•1 el 0 0 b 0 

•2 0 e2 a 0 0 
• 

a a 0 0 e2 0 
' 

b 0 b el 0 0 

0 0 0 0 • 0 0 

Then {O) is a prime ideal which i ■ not completely prime. 

In the case of commutative mobs, however, this concepts coincide. For 

let P be a prime ideal in a commutative mob and let ab c P. Then 
• 

({a} u aS)({b} u bS) = {ab} u abS c. P and hence {a} u as c:. P or 

(b} U bS c:. P. 

Thus a£ P orb t P. • 

' 

1.8.1. Lemma. If Pis a left ideal of S, then the following conditions 
• 

are equivalent: 

1) Pis a prime left ideal. 

2) If aSbS C P, then a c P orb£ P. 

3) If R(a)R(b) c. P, then a t P or b t P. 

• 
4) If R1 , R2 are right ideal• of S such that R1 a2 

c:. P, then 

Rl C. p or Ra C p. 

Proof: 

1) • 2). Let aSbS 

Then R(a) 2R(b) 2 
C. 

C P. ' 

• 

aSbS C. P. 
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--
R(a) 2R(b) 2 U SR(a) 2R(b) 

2 
C P. 

2 
If J(a) c P, then J(a) c P and hence a E P. 

2) + 3). If R(a)R(b) C. P, then aSbS C: P, hence a £ P or b E P. 

3) + 4). Let R
1

R
2 

C P and suppose a E R1 ' P and b £ R2 ' P. 

Since R(a) c a1 and R(b) c. a
2 

we have R(a)R(b) c P, and thus a E P or 

b £ P a contradiction. 

Thus either R
1 

C P or R
2 

C P. 

4) + 1). Trivial. 

A similar proof shows that lemma 1.5.1 holds, if we replace right by 

left and vice versa. 

Condition 2 then becomes: If SaSb c P then a E P orb E P. 

For two-sided ideals we have an analogous system of conditions. 

Condition 2 then becomes: If aSb C P then a E P orb£ P. 

1.5 .. 2. Theorem. Let S be a mob and suppose E -#. 0 and let e c E. 

Proof: 

Then each of J (S '\ { e}) , 
0 

prime if it is not empty. 

R (S 
0 

, {e}) and L (S , { e}) is 
0 

Suppose that a ¢ J (S '\ {e}) and b i J (S , {e}). Then since J (S, {e}) 
0 0 0 

is maximal e £ J(a) and e E J(b). This implies that e c J(a)J(b) and 

hence J(a)J(b} CJ (S , {e}). 
0 

This shows that J (S , {e}) is a prime ideal. 
0 

The statement for R (S ,{e}) and L (S, {e}) can be proved in the same 
0 0 

way. 

If E -J. 0, we can define a partial ordering in E as follows: for e, f c E, 

e < f if and only if ef = fe = e. 

It is clear that the relation< thus defined is reflexive and anti

sy1nmetric. 

Now let e < f and f < g. Then ef = fe = e and fg = gf = f. 

Hence eg = (ef)g = e(fg) = ef = e and ge = gfe = fe = e. 

This implies that e < g and the relation < is transitive. 

• 
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If Sis a mob without zero, then the minimal elements of E are the 

primitive idempotents. 

If S has a zero, then the non-zero primitive idempotents are the atoms 

of the partially ordered set E. 

Furthermore, if S has a unit u, then u is the maximal element of E. 

1.5.3. Lemma. Let P be an open prime right (left) ideal of a compact 

mob S. If A is a left (right) ideal of S which is not contained 

in P, then A contains an idempotent e with Se¢. P. 

Proof: 

Let P be an open prime right ideal and let a c A ,P. 
Then L(a) is a compact left ideal with L(a) c A, L(a) 1t, P. 

Now let L1 ::> L2 ::> • • • be a linearly ordered sequence of compact left 

ideals with L. CA, L. <;! P, i=l,2, •... 
00 1 1. 

1= 1 
the L. compact, L ¢ P. Now 

l 

using Zorn's lemma there exists a minimal member L of the set of all 

compact left 

Next let a£ 

idea 1 s L with L C A, 
a Cl 

L, P and suppose Lac 

Then ( { a} u La) ( { a} u La) c. La C. P. 

L ~ P. a 
P. 

Hence by the dual of lemma 1.5.1 {a} U Lac P; a contradiction. Thus 

La 9! P. 

Since Lac Land Lis minimal La= L. 
2 

Thus L =La= Le withe= e £ r(a) c L. 

Since Se = Se.e t Le we have Se = Le = L ¢. P. 

Corollary. Let P be an open prime ideal of the compact mob S. If A is 

a right or left ideal of Snot contained in P, then A, P contains a 

non-minimal idempotent. 

Proof: 

Let A be a left ideal . 
• 

Then it follows from lemma 1.5.3 that there exists e £ A and a£ A\ P 

with a e Se¢. P. 

Thus ae = a and since Pis an ideal, it would follow from e £ P that 

ae = a £ P. Hence e £ A \. P. 
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Furthermore it is clear that et K, since Kc. P. 

If Sis a mob without zero, then e is non-primitive and hence non

minimal. 

If S has a ze.ro, then since K = { 0 J, we have e #. 0 and thus e > 0. · 

1.5.4. Theorem. If Sis compact, then each open prime ideal P #. S, has 

the for1n J ( S , { e}) , e non-minimal. 
0 

Proof: 

If conversely e is a non-minimal idempotent, then 

is an open prime ideal. 

J (S' {e}) 
0 

Let P be an open prime ideal. Then we can find just as in lemma 1.5.3 

a minimal ideal J1 , J1 ~ P. 

The above corollary shows that J 
1 

\ P contains an idempotent e and 

hence J 1 = 

* Now let P 

J(e). 

= J (S ' { e}) , 
0 

* then P is an open prime ideal and P * p . 

Again using lemma 1.5.3 if P # 

with J
2 

= J(f) ¢. P. 

* P, we can find an idempotent f E * p \ p 

Since e,f t P, J(e)J(f) = 

is minimal 

Hence J 1 = * p ; 

J 1J
2 

¢. P. Furthermore 

a contradiction. 

J J C 
1 2 

J
1 

and since J
1 

Conversely if e is non-minimal, then et Kand 

consequently an open prime ideal. 

hence J (S, {e}) I 0 and 
0 

1.6. Notes 

Many of the theorems of chapter I are found in one or more of the 

, following papers: Faucett, Koch and Numakura 

Numakura [1] , (2] , Schwarz [2] , [10] , Wallace 

[3], Koch and Wallace 

1 , [2] , [9] and Wright [1] . 
It is pointless to trace every source of every theorem and we will not 

attempt to do so. However,the following primary sources of results in 

chapter I may be of interest. 

Let S be a mob and an abstract group. Under what conditions on Scan 

we assert that Sis a topological group? Some results of this kind 

stem from Montgomery 1] t Ellis [1] , [2] and Moriya [1] . The latter's 
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theorems were extended by Wallace [9]. Theorem 1.1.8 is due to 

Ellis [2. Wallace [3] ,[4 also examined the structure of S related to 

its maximal subgroups. Theorems 1.1.14 and 1.1.15 first appear in 

Wal lace [12] . Theorem 1. 1.10 has been used by Wendel [1] to show Haar 

measure exists on a compact group. 

Theorems 1. 2. 5 and 1. 2. 6 go back to Suschkewi tsch [1] and Rees [1] . In 

this fo1 .. m, however, they are due essentially to Clifford [1]. For the 

case of a compact mob see Numakura [2]. Theorems 1.2.8 and 1.2.9 are 

topological extensions, Wal lace 10] , of a theorem of Rees-Suschkevi tsch, 

Rees [1] . 

For the algebraic results of section 1.3 we refer to the monograph of 

Clifford and Preston [sJ. Theorem 1.3.15 is a generalization to locally 

compact submobs of a theorem of Schwarz [10] . 
Maximal ideals have been studied by many authors. The results about 

the unique maximal ideals are due to Schwarz [ . 

The statements of section 1. 5 appear in Numakura [ 4]. 
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• 

II SEMIGROUPS WITH ZERO AND IDENTITY 

2.1. Semigroups with zero 

Definitions. Let S be a mob with O and a an element of S. If 
n 

a -+ 0 
• 

i.e. if for every neighbourhood U of O there exists an integer n 
0 

that an £ U if n > n ' 0 
then a is termed a nilpotent element. 

We denote by N the set of all 

An ideal (right, left) A of S 

nilpotent ideal. 

nilpotent elements of S. 
n 

with the property A ➔ 0 is called a 

such 

A nil-ideal A is an ideal consisting entirely of nilpotent elements. 

It is clear that every nilpotent ideal is a nil-ideal and that the join 

of a family of (right, left) nil-ideals is again a (right, left) nil

ideal of S. 

Let S be the unit interval with the usual multiplication. 

Then l = ,1) is an ideal consisting entirely of nilpotent elements. 

I, however, is not a nilpotent ideal, since In= I for all n. 

2.1.1. Lemma. Every right (left) nil-ideal of Sis contained in some 

nil-ideal of S. 

Proof: 

Let A be a right nil-ideal of S. Then SA is an ideal of S. 

Suppose x = sa E SA, and let Ube any neighbourhood of O. 

Then there exists a neighbourhood V of Osuch that sVa c U. 

As A is a right nil-ideal of S, 

Hence if m > -
m 

n +l we have (sa) 
0 

as EA, and 
m-1 

= s(as) a 

n 
(as) £ V for n > 

e: sVa c:: U. 

n . 
0 

Therefore SA 

containing A. 

is a nil-ideal of S, and hence Au SA is a nil-ideal of S 

Definition. The join R of all nil-ideals of a mob S with zero is called 

the radical of S. 

According to lemma 2.1.1 Risa nil-ideal which contains every right 
• 

and every left nil-ideal of S. ·• 

• 
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Hence R is the maximal right and the maximal left nil-ideal. 

If S consists only of nilpotent elements, i.e. if S = R = N, then Sis 

called a nil-semigroup. 

2.1.2. Theorem. Let S be a mob with zero, with f(a) compact for every 

a c S. Then every (right, left) ideal of Sis either a (right, 

left) nil-ideal or contains non-zero idempotents. 

Proof: 

Let a be a non-nilpotent element of the ideal I. Then e = e 2 
£ r(a) is 

not equal to zero. For if e = Ot then K(a) = er(a) = {O}. Since K(a) 

is the set of cluster points of the sequence 
n 

, we would have 

a + 0. 

Further111ore aK(a) = K(a) and thus K(a) c I, which implies e E I. 

Corollary. A compact mob is either a nil-semigroup or contains non-zero 

idempotents. 

2.1.3. Theorem. Let e be a non-zero idempotent of the compact mob S 

with zero. Then the following conditions are equivalent; 

1) eSe, N is a group. 

2) e is primitive. 

3) Se is a minimal non-nil left ideal. 

4) SeS is a minimal non-nil ideal.· 

5) Each idempotent of SeS is primitive. 

Proof: 

1) + 2). If eSe, N is a group, then e is the only idempotent 

eSe '\ { O} , since no idempotent ~ 0 can be nilpotent. 

2) + 3). Let L be a non-nil left ideal contained in Se. 

• in 

Then there is an idempotent f £ L, f ~ 0. Since f £ Se we have fe = f 

and (ef)(ef) = ef. Thus ef is a non-zero idempotent contained in eSe. 

Since e is primitive ef = e. Thus ef = e £ eL c. L, which implies L = Se. 

3) + 4). Let I be a non-nil ideal, I c SeS. 

Then there exist an idempotent f £ I, f # 0, and elements a,b £ S, such 

that aeb = f and bf= b. 
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Let g = bae, then 
2 g = baebae = bfae = bae = g. 

Furthermore g ¢ O, since otherwise O = gb = baeb =bf= b. 

Now g £ Se and g E SfS. Hence by 3) Sg =Sec SfS and we conclude 

SeS = SfS = I. 
2 

4) ➔ 5) .. Let f be a non-zero idempotent of SeS and let g = g ~ 0, 

g £ fSf. Since f,g £ SeS, we have SgS = SfS = SeS and f £ SgS. Hence 

f = agb, and we may assume ag = a, gb = b. 

Sin.ce gf fg = g, this implies afb - agfb - agb - f. - - - -- . 

' n n * *2 * { bn} co Renee f - a gb and f - g gb' with g. - g £ f(a) and b' £ - - - n=l 
* * * * * * * We note that g g g hence g f - f - g gf - g and f - g - g g -- - - -- - -- ' 

fg = g. 

• 

5) 1). Since every idempotent in SeS is primitive, e is primitive 

and hence Se= Lis a minimal non-nil left ideal. Now let a£ eSe, N, 

then a £ { Se n es} \ N. 

Since L is minimal a = ea £ La = L. Hence there is a e: L, such that 
!' ,. 

aa = e. Let ea = a' , then a' E eSe and a' a = e. Further111ore (aa') (aa •) = 
aea 1 = aa', and aa' is an iclemp,otent contained in eSe , N, thus aa' = e. 

s.o we can find for every a t eSe '- N an element a' £ eSe such that 

aa' = e = a'a. 

This implies that eSe \ N is a group, since a• t N. 
n For if a' e: N, then · 1 S(a') 

n= 
This is contradictory to aa' = 

= S.O = {O} by,lemma 1.1.13. 
2 2 n n a (a') = a (a') = e. 

• 

Definition. A mob S with zero is said to be an N-semigroup if its 

nilpotent elements form an open set. 

2.1.4. Lemma. Let S be a mob with zero, and let a£ s. 
n 

If a is nilpotent for some n > 1, ~hen a itself is a nilpotent 

element. 

Proof: 
• 

Let U be an arbitrary neighbourhood of O. Then since a JO = o, there is 
• 

a neighbourhood V of O, such that aJV c U (j=l, 2, ... , n). 

Since an is nilpotent, there exists an integer k > 1, such that 
n k . nk nk . o 

(a) £ V fork> k. Thus aJa = a +J ~ u · 1 2 o 11:. , J= , , •.. , n, k > k . 
0 
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N 
a £ U, hence a is nilpotent. 

2.1.5. Theorem. If a mob S with O has a neighbourhood U of O which 

consists entirely of nilpotent elements, then Sis an N-semi

group. 

Proof: 
• n 

Let p £ N, then there is an n such that p E 

n 
neighbourhood V of p such that V c U. Hence 

U. Therefore there is a 

every point of Vn is 

nilpotent. 

Lemma 2.1.4 then implies that Ve N. 

2.1.6. Theorem. A locally compact mob S with O having a neighbourhood U 

of O which contains no non-zero idempotents is an N-semigroup. 

Proof: 
• 

Since Sis locally compact and Hausdorff, Sis regular and we can find 

a neighbourhood W of 0, such that W c U and W compact. The continuity 

of multiplication and the compactness of W imply, that there is a 

neighbourhood V of O with VW c W; V c W. 
2 

Hence V c: VW c 
n 

W and V c W , n= 1 , 2 , • • • • 
CID • 

Now the set A= 

compact mob contained in U. Since A contains no non-zero idempotents, 

A is a nil-semigroup. 

Hence V consists entirely of nilpotent elements, and by theorem 2.1.5 

Sis an N-semigroup. 

Corollary. A locally compact mob with 0, which is not an N-semigroup 
• 

contains a set of non-zero idempotents with clusterpoint O . 
• 

2.1.7. Theorem. The radical of a compact N-semigroup is open. 

Proof: 

Since RC N, R is the largest ideal of S contained in N. 

Hence R = J (N) and J (N) is open (1.2.2). 
0 0 
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Let S be the half line [O,oo) under the usual multiplication of real 

numbers. 

Sis an N-semigroup, since N = [0,1) is open. The radical of S, 

however, is not open, since R = {O}. 

2.1.8. Theorem. Let S be a compact N-semigroup, which is not a nil

semigroup. Then any non-nil-ideal I of S contains a minimal non-

nil-ideal M. Furtht:r1nore ~ = M" R is the 

is a maximal proper ideal of M with M / ~ 

radical of Mand 

completely 0-simple. 

Proof: 

Let T be the collection of all closed non-nil-ideals of S contained in 

I.Tis non-void since if e = e 2 ~ 0 £ I, SeS is a closed non-nil-ideal 

contained in I. 

Now let {T} be a linearly ordered subcollection of T. 
a a 

Then I =() T is non-empty, since Sis compact. 
o a a 

Further11tore I is an ideal of S contained in I and I 
0 

¢ N> since N is 
0 

and T compact , 
a 

T ft. N. 
a 

open 

Thus {T} has a 
a a 

lower bound and Zorn's lemma assures the existence of 

a minimal closed non-nil-ideal Min I. 
* * Now let M be a non-nil-ideal contained in M. Then M contains a non-

* zero idempotent f and SfS c M c M. 

Since SfS is a closed non-nil-ideal and Mis minimal in T, we have 
* SfS = M = M. 

Thus Mis a minimal non-nil-ideal and M = SeS withe primitive. 

Now we shall prove that RM= Mn R. 

of M, we have Mn R c \i· 
M3 = If s~s = M, then MS~SM --

Since MAR is a nil-ideal 

Furtherrnore S~S c SMS c M. 

therefore M = MS\iSM C. M C. 1\t. This contradicts the fact 

a non-nil-ideal. 

Hence S~S is an ideal of S properly contained in M. 

This implies that s~s must be a nil-ideal,i.e. s\ts 
Hence \i. is a nil-ideal of S, thus ~ c M n R. 

C R • 
M 

M, and 

that M is 

Since there is no ideal of S lying properly between Mand~' 

theorem 1. 3. 7 implies that M / ~ is either a 0-simple semigroup or a 
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zero semigroup. Since M contains a non-zero idempotent M /~is a 

0-simple semigroup. Hence it follows from the corollary to 1.3.7 that 

~ is a maximal proper ideal of M, and thus M / \t completely 0-simple. 

A similar proof shows that if Lis a non-nil left ideal then L contains 

a minimal non-nil left ideal L. 
0 

Furthermore L 
0 

contains no non-nil-ideals 

the maximal proper ideal of L. 

Hence L 
0 

0 

/ RL is completely 0-simple. 
0 

and the radical RL of 
0 

L 
0 

is 

Corollary. Let S be a compact mob with zero; then S contains a non-zero 

primitive idempotent if and only if there is a non-zero idempotent e 

with eSe, N closed. 

Proof: 

If e is primitive, then eSe \ N is a maximal subgroup and hence closed. 

On the other hand if eSe, N is closed and e 0, then eSe n N is the 

set of nilpotent elements of eSe and hence eSe is a compact N-semigroup. 

We then conclude from theorem 2.1.8 that eSe contains a non-zero 

primitive idempotent. Hence so does S • 

• 

. 

2.1.9. Theorem. Let e be a non-zero primitive idempotent of the compact 
• 

mob S with zero. Then Se, N and Sen N are submobs and Se\ N 

Proof: 

is the disjoint union of the maximal groups 

runs over the non-zero idempotents of Se. 

e Se , N where e 
a a o 

Suppose a,b £Se, N, then 
n n 

a ,b £ Se' N. Now let ab£ N. 

Then since Se is a minimal non-nil left ideal, we know that 

San= Sbn = Se, n=l,2, .... Hence Sab = Sb2 = Se. 
n 00 n 

Thus S(ab) = Se, which implies Se= r\s(ab) =SO= {O}. 
n=l 

This is a contradiction, since e # 0. 

Suppose now a,b £Sen N and ab t N. Then 

Since a E Se, we have Sa C: Se 

Hence Sa~ Se= Saf, with f = 

= Sab. 
2 

f £ f(b). 

2 
(ab) t N and hence Sab = Se. 

Since b EN, f = 0 and thus 
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Se= Sao = {O}, a contradiction. 

Finally let a £ Se ' N. Then Sa - Se. -
Let f = f

2 
E f(a), then Sf - Se - Sa and - -

• 

Now let K(a) be the set of cluster points 

group and K(a) = fr(a) = r(a)f = r(a). 

f is a right 

of 
n 00 

{ a } n=l · 

unit for se·. 
Then K(a) is a 

Hence r(a) is a group and Se\ N is the union of groups. 
2 

For any e = e a a ~ 0, e 
a 

E Se we have Se 
a 

= Se, so that ea is primitive 

and e Se \ N a a a group. 

Now the maximal group containing e is contained in e Se , and more-
a a a 

over since any group which meets N must be zero, we conclude that 

e Se \ N is a maximal group. 
a a 

• 

2.2. 0-simple mobs 

As in 1.3 we call a mob S 
2 

with zero 0-simple if S ~ {O} and {O} is the 

only proper ideal of S. Sis completely 0-simple if Sis a-simple and 

contains a non-zero primitive idempotent. 

Hence if Sis completely 0-simple S cannot be a nil-semigroup. 

If on the other hand Sis a non-nil-semigroup and if Sis a-simple, 

then every (right or left) nil-ideal of Sis the zero ideal {O}, since 

every right or left nil-ideal of Sis contained in some nil-ideal of S. 

Thus in this case R = {O}. 

We shall call a (left, right) ideal I of a mob S with zero, a-minimal 

if I# {O}, and {O} is the only (left, right) ideal of S properly 

contained in I. 

Hence every minimal non-nil left ideal of a non-nil 0-simple mob is a 

0-minimal left ideal and conversely. 

2.2.1. Lemma. Let L be a 0-minimal left ideal of a 0-simple mob Sand 

). let a £ L \ 0. Then Sa = L. 

Proof: 

Since Sa is a left ideal of S contained in L, it follows that Sa= {O} 

or Sa= L. 

If Sa= {O}, then SaS = {O}, in contradiction with Sas= s. 
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If Sis compact, then every non-nil (left, right) ideal of S contains 

a non-zero idempotent. So·in this case if Lis a minimal non-nil left 

ideal of S, then there is an idempotent e £ L with Se= L. 

2.2.2. Lemma. Let L be a 0-minimal left ideal of a 0-simple mob Sand 

lets£ S. Then Ls is either {O} or a 0-minimal left ideal of S. 

Proof: 

Assume Ls¢ {O}. Evidently Ls is a left ideal of S. Now let L be a 
0 

left idea 1 of S contained in Ls, L c Ls. 
0 

Let A be the set of all a£ L with as£ 

Then As= L 
0 

Hence SA c A 

and Ac L. Furthermore SAs 

and A is a left ideal of S. 

L . 
0 

c. SL c. 
0 

L and SA c. SL c. L. 
0 

From the minimality of Lit follows that either A= {O} or A= Land 

we have correspondingly L = {O} or L = Ls. 
0 0 

2.2.3. Theorem. Let S be a 0-simple mob containing at least one 

0-minimal left ideal. Then Sis the union of all 0-minimal left 

ideals. 

Proof: 

Let A be the union of all 0-minimal left ideals of S. Clearly A is a 

left ideal of Sand A# {O}. Now we show that A is also a right ideal. 

Let a EA ands£ S. Then a£ L for some 0-minimal left ideal L of S. 
\ 

By lemma 2.2.2 Ls= {O} or Ls is a 0-minimal left ideal. 

Hence Ls c A and as t A. Thus A is a non-zero ideal of S, whence A = S. 

Corollary. Let S be a compact 0-simple mob. Then Sis the union of all 

0-minimal left ideals of S. 

Proof: 

Since Sis compact, Sis completely 0-simple and hence contains a non

zero primitive idempotent e. 

2.1.3 then implies that Se is a minimal non-nil left ideal. 

Since minimal non-nil left ideals and 0-minimal ideals are the same in 

a compact 0-simple mob, Se is a 0-minimal left ideal and the corollary 

follows. 

• 

• 
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2.2.4. Lemma. Let Land R be ·0-minimal left and right ideals of a 

0-simple mob, such that LR {O}. Then RL =Rn Lis a group 

with zero and the identity e of RL '\ {O} is a primitive idem

potent of S .. 

If LR= {O}, 

R n L ~ {O}. 

2 
then (Rn L) = {O} and in both cases we hav€ 

Proof: 

Since LR is a non-zero ideal of S, we must hav~ LR -= s. 
since S = s2 = LRLR. Furtherr,nore 

Now let a c 

RL ~ {O}, 

RL \ {O}, then a C L \ { O} .:1nd a C R \ { O} , henCE:: Sa :· l, 

and aR = {o} or aR = R (lemma 2.2.1 and 2.2.2). 

Since S =LR= SaR, it follows that aR ~ {O}. Consequently aRL = RL. 

In the same way we can prove that RLa = RL. 

From this we conclude that RL is a group with zero. 

Now let e be the identity of RL. Tl1en since R = es and L = Se we havf> 

Rn L = es n Se= eSe and RL = eSSe = eSe. 

Since eSe is a group with zero, c is primitive. 

If LR= {O}, then since L n R c L 
2 

(L n R) c LR = {O} which implies 

and L n R c R, we have 
2 

(L n R) = {O}. Moreover if 

a £ L ' { O} and b c R \ { 0 '► , then SaS = S and SbS = S, Sa = L and 
2 

bS ': R. Hence SbSSaS = S -# {O}, and thus bSSa ~ {O}. Since 

bSSa c L n R. we have L n R # {O}. 

2.2.5. Theorem. Let S be a 0-simple mob. Then Sis completely 0-simple 

if and only if it contains at least one 0-minimal left and one 

0-minimal right ideal. Moreover L is a 0-minimal left j_r:Jea 1 of 

S if and only if L = Se withe primitive. 

Proof: 

If Sis completely 0-simple it contains a non-zero primitive idem

potent e, and we have eSe a group with zero. 

Now let L b•e a non-zero idea 1 contained in Se. 

Then SeSLS = SLS = S and hence eSL # ·{ O} and since eSL c L n es 
/ 

:. t"l es~ {O}. Next le~ a ... L "es, {O}. Then a £ eSe '\ {O}, and there· 
. -1 -1 -~ an a such that a a ',• e. 
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EL and Sec L c Se. Thus Se is a 0-minimal left ideal 

Dually we can prove that es is 0-minimal. 

Conversely assume that S contains at least one 0-minimal left ideal L 

and at least one 0-minimal right ideal R. 

Since SRS = S, we have SR# {O}, and thus s 1R # {O} for some s
1 

£ S. 

Since Sis the union of 0-minimal left ideals, s
1 

E L
1 

for some 

0-minimal left ideal L1 and evidently L1R # {O}. 

It then follows from lemma 2.2.4 that S contains a primitive idempotent 

e, with es= R. 

2.2.6. Theorem. Let S be a compact 0-simple mob and let e and f be 

non-zero idempotents of S. Then the maximal subgroups H{e) and 

H(f) containing e and f respectively are isomorphic compact 

groups. 

Proof: 

Since each idempotent e # 0 of Sis primitive, Se and Sf are 0-minimal 

left ideals and es and fS 0-minimal right ideals and it follows from 
• 

lemma 2.2.4 that eSe, {O} and fSf \ {O} are groups. 

Since H(e) c eSe , { O} , we have H(e) = eSe , { O} and H( f) = fSf \ { O} . 

Further1nore es o Sf # { O} • Now let O # o. E es I"\ Sf. Then ea = a = af. 

Since es= aS and Sf= Sa (2.2.1), there exist a 1 and a
2 

£ S such that 

e = aa1 , f = a
2
a. 

Now let b = fa1 e, then b # 0 and ab= afa1 e = aa
1

e = ee = e; ba = fba = 

a aba = a ea= a a= f. · 
2 2 2 

From this it follows that bS = fS and Sb= Se. 

We now prove that the mappings cp: x -+ bxa and tJ,: y -+ ayb are mutually 

inverse one-to-one mappings of H(e) and H(f) upon each other. 

For let X £ H(e), then bxa £ bS n Sa = fS I"\ Sf = H(f) u { o} . 

Similarly y £ H(f) implies ayb £ as n Sb= es n Se= H(e) u {o}. 

And if x £ H(e), then a(bxa)b = exe = x. 

Moreover is an isomorphism, since (bx
1
a)(bx

2
a) = bx

1
ex

2
a = bx

1
x

2
a. 

If we recall that both H(e) and H(f) are compact Hausdorff spaces it ... 

follows that, is a topological isomorphism. 
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• 

s '\ {o} is the 

• , 
• 

Corollary. Let S be a compact 0-simple mob. Then 

disjoint union of sets Lan a6 , {O}, where La 

)r'(s) and R'cs) being respectively the sets of all 0-minimal left 

and 0-minimal right ideals of S. 

All sets L n R , {O} are homeomorphic, while L n R
8

, {O} 1s either 
a B 2 a 

a maximal subgroup of S or.(La /'\ RB) = {O}. 

Proof: • 

~t ½_ and L
2 

be two 0-minimal left ideals of Sand suppose 
• 

O ~ a c ~ n L
2

, then it follows from lemma 2.2.1 that L1 =Sa= L2 -

Hence ½_ n L
2 

= {O} or L1 = L2 . Analogously we have for a-minimal right 

ideals R
1 

n R2 ·= {O} or R
1 

= R2 . 

Thus S '-{O} is the disjoint union of the sets Lan R
8 

\ {O}. 

We know already that all sets L fl RB , {O}, with L I'\ RB.'\ { O} a group 
Cl O 2 

are homeomorphic and that in the other case (Lan R
8

) = { O}. 

Now let A = Lex n RS '\ {O}, with L
0 

= Se and let a £ A. 

Then the mapping~: x +axis a homeomorphism of H(e) onto A. 

* For if ax1 = ax2 ,. then sin~e e = a a 

* 
* for suitable a 

= X • 
2 

ES, we have 

Furth&rmore ♦ is onto since for each b t A we have b = as and hence 

be= b = aese = ax with x = ese t H(e). 

Since ; is continuous,, is top,ological. 

• 

Corollary. Let S be a commutative compact 0-simple mob. Then Sis a 

group with zero. 

Proof: 

By le1rnna 2.2.4 we 2 have S = S =Sn Sis a group with zero, 

both a 0-minimal left and right ideal. 

since Sis 

2. 2. 7. Theorem. Let J be a maximal proper ideal of the compact mob S. 

Then the following conditions are equivalent: 

1) S \ J is the. disjoint union of groups. 
• 

2) For each element of S \ J, there exists a unit element. 

3) a e: S , J implies a2 
t S , J. 

4) J is a completely prime ideal. 
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5) S ,J contains an idempotent and the product of any two 

idempotents of S, J lies in S \ J. 

Proof: 

1) ➔ 2). Obvious. 

2) ➔ 3). Let a ES, J and ax= xa = a. Then ae =ea= a for 
2 

e = e e: r (x) . Thus e e: s \ J and S/ J 

At3 
2 Furthermore a E H(e) which implies a 

is completely 0-simple. 
2 

Hence by 
lemma 2.2.4 s \ J = H(e ) U u , with A c J. 

B 
E H(e) and hence a

2 
£ S, J. 

3) 4). Let a,b ES\ J and suppose ab E J. Then I = {x I x t S, xb £. J} 

is a left ideal with Jc I. 

Next let x EI, xs t I, then xsb t J and hence 2 
(xsb) t J. 

This implies that bx t J and thus bxbx 1 J. From this it follows that 

xb t J which is a contradiction. 

Hence we have proved that I is an ideal of S containing J and we 

conclude that I= S. 
2 Since I= {x Ix£ S, xb E J} we have b E J, a contradiction. 

4) ➔ 5). This follows from the fact that J = J (S '- {e}) (1.5.4). 
0 

5) ➔ 1). Since e e: S , J, we have S / J completely 0-simple and 

S , J = U H(ea) U 
0. i..: 

Now let a E A 6 , then a E.. Se and a £ fS with SefS c: J or else it 

would follow from lemma 2.2.3 that a£ Se n fS , J 

Since ef t J we have, however, SefS ¢ J. Thus 

union of groups. 

A = fiJ 
B 

= H(e ). 
a 

and S \ J is the 

From the theorem it immediately follows .that S, J is a group if and 

only if S, J contains a unique idempotent. 

2.2.8. Theorem. Let S be a compact 0-simple mob and S' a locally 

compact submob of S with O ¢ S'. Then S' is a simple submob . 

Proof: • 

Since O is an isolated point of S (2.3.1), S' is a closed submob of S 

with O t S'. 

Let S = U {L I 
a 

Then S' = U {L' 
a 

a EA}, L running through all a-minimal left ideals. 
a 

= Lan -S-' ja e: A}. 
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Clearly the closed set L' #: 0 a 
• l.S a left ideal of S' and L~ contains a 

ea. non-zero primitive idempotent 

Hence S'ea is a minimal left ideal of S' and since L e 
a a 

= L we have 
a 

L' = L' e C S ' e c L' . Hence L' = S ' e and S ' is a aa a a a a' -
the union of its 

minimal left ideals, which implies that S' is simple. 

Since S' is a locally comp.act submob of the compact simple mob S' , 

theorem 1.3.16 implies that S' is simple. 

Let S = {e
1

,e
2

,a,b,O} be the 0-simple mob given by the multiplication 

table 

el 

a 

e 
2 

b 

0 

e 
1 

el 

a 

0 

0 

0 

a 

0 

0 

a 

el 

0 

b 0 

0 b 0 

0 e2 0 

e2 0 0 

b 0 0 

0 .0 0 

Then S' ;;:: {e
1

,a,O} is a submob. S', however, is not simple since {O,a} 

is a non-zero proper ideal of S'. 

1.3. The structure of a compact (completely) 0-simple mob 

We have seen in 2. 2 that each compact 0-simple mob S is the union of 

all 

Let 

O·-m.in im.a l 

* {L I a E a· 

left (right) 
* A} and {R I 
p 

ideals of S respectively. 

* * Let L = L '\ { 0}, R = R 
a a b ~ 

Then it follows from 2.2.4 

a = {O}. If Hae 

identity of Haf>. 

ideals. 

ts E. B} be the 0-minimal left and right 

\. { 0 } and H = L fl R . 
a~ o. 6 

that H is either a maximal 
Clb 

is a group, we shall denote by 

subgroup of S 

eaB the 

Furthermore for every two different sets and we 
have RB = 0). 

2 
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Now let H -- and 

H' = 

Then Sis the disjoint union of H, H' and {O}. 

2.3.1. Lemma. Let S be a compact 0-simple mob. Then O is an isolated 

point of S. 

Proof: 

Let V be an open neighbourhood of O with V # S. Then since Sis compact 

and SOS= {O}, there exists a neighbourhood W of Osuch that SWS CV. 

Since for all a# O, a£ S we have Sas= S, it follows that W = {O}, 

i.e. 0 is isolated. 

2.3.2. Lemma. Let S be a compact 0-simple mob. Then, with the notation 

just introduced, the following assertions are true: 

Proof: 

1) For each a£ A there exists a £ B such that H is a as 
group, and dually for each S £ B there exists an a£ A 

such that H. is a group. 
Cl~ 

2) Hand H' are both open and closed sets of S. 

1) For each a E: A, there is a primitive idempotent e a such that 
* * Qµ 

ea~£ L (2.2.5). Hence R, = e 00S is a 0-minimal right ideal. Thus 
µ a b 2 2 2 

e"' 6 £ L /"\ RB = H and since e .. = e £ H 6 we have H S -1- { O}. ""' a a~ etb aB a a 
The same argument applies to right ideals. 

2 
2) Suppose now for a£ S, a # 0. Then there is an open set V with 

a£ V such that O t v2 . This implies that V n H' = and hence a i H'. 
2 

Moreover, we have for all h £ H, h ~ O, and hence Ho H' = 0, which 

implies H' = H' . 

On the other hand Hu {O} is the set of all maximal subgroups of S, 

hence Hu {o} is closed. 

If we recall that {O} is open, it follows that H must be closed. 
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2.3.3. Lemma. Let S be a compact 0-simple mob and let 
2 

L n RS. e - ea6 e: a8 - a 
if and only if • a group, and Then Le B - L 1S -Y a a 

Le S - {O} it' and only if H = {o}. - y8 Y a 
Proof: 

* Let HyS be a group and suppose eyS £ Hys· Then since R = e S 
B yB 

we have 

Furthex·more Lyeo, 6 = Sey Beas = Se aS = La • 

= e S 
aB 

Hence Lac LyeaS. 

Since for each ly £ L y , I e ae 1./. y Clµ yµ = 1 e = 1 y y(:S y we have O i L e 
8 

and 
Y a 

thus L0 = Lye aB. 
2 

Now let Hys= {O} and let * a e: Hyb· Then since a 6 = ea6s = as we have 

Hence 

= as1 for a suitably 

* Lyeaa c LyeaB = SaeaB = 

chosen s £ S. 
21 

Sa s 1 = {O}, and thus LyeaS = {O}. 

2.3.4. Lemma. Let S be a compact 0-simple mob and let C be the set of 

£ L for all e 
8 

£En a a L . 
a 

• 

all x £ S such that xeaB 

Then C = U { L I y £ A , 
y H c H if H c H for 

Yb a~ 
all S e: B}. 

Proof: 
• 

Let X & C and X £ L. 
2 

and let e
0

fs = e 08 e: Ha~ C H. 
. -- y 

Furthe1,nore xe 8 £ L . • a a and it follows from lemma 2.3.3 that Le a 
y (lp 

= L 
a 

and that HyS c H. 

Hence L c C and H B y y is a group if HaB is a group. 

Suppose on the other hand that y £ A is such that for all £) 

HyS is a group if H
0

A is a group. 

Then for each S with e o.B 

L e 08 = L • Thus L C C. 

£ EI'\ L 
a we have HYB a group and hence 

~Y . . . a Y 

2.3.5. Lemma. Let S be a compact 0-simple mob and let D be the 
' 

all x £ S such that xeYS = 0 for all e c E with H2 -yB -as 
u Then D = {L I y e: A, H 

y$ 
CH' if H c. H' for all s • y as • 

Proof: 

Let x £ D, x t L and let H S t! H ' . Y - a 

set of 

{O}. 

e; B}. 

Since HaB =· L0 n RS and since RS contains a non-zero idempotent there 

• 
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* is a y such that Hy*B is a group. 

Then xey*a = O and it follows from lemma 2.3.3 that 
2 

hence that L C D and H a = {O}. 
y y 1-J 

• 

On the other hand let L be such 
2 y 

that HyB cH' if H CH' aB and let 

EE with Hae= {o}. ey*B 
The = {O} and hence 

L C D. y 

2. 3. 6. Theorem. 

Then '-t 
ao 

Let S be a compact 0-simple mob. Let a 
0 

£ A. 

Ha 6 and 
. 0 

in Hor both in H' 

for all 6 £ B} 

is an open and closed subset of S. 

Proof: 

Let Ebe the set of all idempotents in S. Then Eis closed, and since 

S is compact, we 

is closed, hence E = L f\ 
a a 

have that L 
ao 

E 

* = L '{O} =Sa' {O} with a E 
ao 

is closed. 
• • 

E 0 1et 
ao 

be the set of all elements x of S such that 

xe0 0 e: L and let C = E E } • 
oµ * ao 0 o 

Since L = Se 6 for all e 8 £ E , we have CLJe 
8 

= L 
cxo ao ao a µ ao ao 

and 

implies 

both c 8 and S \ c 8 are closed. Thus C is closed. 

Now let x EC. Then xe
0 

a~ 0 for all e a£ E . 
o l,,J ao P ao 

Since E 
ao 

is compact we can find a neighbourhood V of x such that 

that 

0 t. VE which implies 
ao 

for all ea 8 
0 

and thus V c C 

and C is open. 

Now let H' = 
().0 

hence closed. 

U {H a I 8 £ B and 
aoµ 

Then H' H' and 
°a 

* Furthermore let E =(En H'S)\ {O}. 
ao ao 

* Then E is compact and is the 

set of all idempotents eyB such that 
2 

Ha B = 
0 

ao 
{O}. 

Let D 8 be the set of all elements x y . of S such that xe 
8 Y. 

= 0, 

* * e a £ E and 1 et D = n {D B j e B e: E } . 
ya.;, cx.o Y Y a.o 

Then it follows that (S \ D 
13
)e B = L and 

y y y 
are closed. 

* * E Suppose now x e: D. Then xE = {O }. Since 
Cl (l 

0 0 

hence both Dye and S' DYS 

is compact and {O} open, 
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we can find a neighbourhood V of x such that * VE = {O}, which implies 
ao 

V c D and hence that D is open. 

Now let t._ = C n D. Then t is an open and closed subset of S. 
i ao 

From lemma 2.3.4 and 2.3.5 it follows that 

C - u {L
0 

I a t A, H CH if H !-s c. H for all B £ B} and - ai3 ao 
£ B} D - u {La la e: A, H c H' if H c H' for all B • - a8 a

0
S 

~ = U {L la either both in Hor Hence C fl D = £ A, H B and H f3 a % a a0 
E B}. both in H' for all t3 • 

X'a -,I. 0, since clearly L
0 

c Furthermore 

Since ~ = a. ~o if ~ I'\ '( ,i 0 ° and a a.
0 

a
1 

is compact, we see 
0 

that S \ {O} is he union of a finite number of disjoint open and 

clos,ed sets , 't0 , • • - , ~ a · 
o 1 n 

A similar arg11ment shows that S \ {O} is also the union of a finite 

D.lJTD.ber of disjoint open and closed sets, 
o 1 m 

U {R" I b E B, H "' and H either both in Hor both in H' 
j P O.µ Clb j 

for all a e: A}, (j=O,l, ... ,m). 

From this it follows that S , {O} is the disjoint union 

i .. 
either conlained in Hor in H'. 

where each 't 
ai 

sets 
• 
l.S 

2.3. 7. Theorem. Let S be a compact 0-simple mob. Then S , {O} is 

homeomorphic to a topological product Y
1 

x X x Y
2 

, where 

Y1 and Y2 are two compact Hausdorff spaces and Xis homeomorphic 

to the underlying space of a maximal subgroup of S contained in 

S \ {O}. 

Proof. 
• • 

Let Ha B be a maximal subgroup of 
0 0 . 

o m 
theorem 2.3.6. 

be decompositions 

S and let 4t , . . . , "t 
ao an 

of S, {O} as described in 

and 

5{ C H' For each set <t. n 
a 

" ~ 0 a siet ,.. () .7'\ c. ~ H. · (Such 

we choose an element a EL 
j 0. J 

by lemma 2.3.2). a set always exists a.i B • . . . J 

. o.i pj 
We now prove that ·cp is a topological map of 

j. 
such that f. (La I'\ RB ) = La n Ra for each 

J i k o µk 

and 
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For let x £ La. 
l. 

Furthermore, if 
-1 i J ~k J ao 

x is the inverse of x in H we have 
-1 

x xa. = e a a.~ 
J ai..,k J 

aiSk 
0 , by the dual of lemma 2.3.3. 

Hence xa. ~ 0 and we 
J 

On the other hand if 

which implies y = e y 
ai6k 

x=e 0 se a e:H a. a . µk 1 a. µ • a . µk 
1 1 J 1 

onto 
J . ai j ao 

thus y 

xa. 
J 

Now let x 1a. = x 2 a., then since e B E a.S we 
J J (ii j J 

J 
have ea.S. = 

1 J --
. 1 J 

Thus$ is topological. 

= X . 
2 

* 

* 

Then A. = U 
J * k J 

is a closed set 

of S such that A. C L and 
J a 

Let Y = (E I"\ L ) U {A. 
1 ao 

Y1 is the union of a numbe~ of diijoint closed sets and hence 
J 

finite 

closed. 

Moreover Y 1 c 

set H ts • 
ao 

L and Y1 has exactly one point 
ao 

In the same way we construct a set 

in common with each 

o 1 o 0 1 

H' } such that Y2 is closed 

Y2 c R8 and Y
2 

has exactly one point in common with each set H a • 
a.Po 0 * 

Now let S = Y1 x Ha b x Y
2 

and let ~(y
1

,h,y
2

) = 
*o o 

$ is a mapping of S onto S ~ {O}. 

y hy. 
1 2 

For let x c S ,{o}, then x e; L
0

n Rb and let Y
1 

f'\ RB= y
1 

and 

y2 f'\ 

Then and 

x = xe = y1 s 1e. 
* 

hence x = y
1

s
1

. Furthermore if e c L , 
a 

then 

Since s 1e £La= Sy
2 

we have s
1

e = s
2

y
2 

and thus x = y
1

s
1

e = 

= ylhy2' h = e S s2ea B e; Ha B. 
0 o o o o o o 

Furthermore¢ is one-to-one. 
* * * For if y1hy2 = Y1 h Y2 = X E L ,, 

a* 
then since y 1 and * y1 both in Y

1 
and both in R

8
, we have y

1 
= y1 , and 

* 
dually since y 2 and y* both in 

2 
= y . 

2 
Y2 and both in La we ~ave y 2 
Moreover there exist elements s 1 and s 2 such that = s

1
y

1 
and 



8 or. S = Y28 2· 
0 0 

Hence s1y1hy2s2 = 

Furthermore y1hy2 
onto s \ {o} . 

• 

* slylh y2s2 

-#- 0 and$ 
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* + e he a = e B h e B + h 
0.0 80 ao..,o 0 o.o o.o o . · 

is a one-to-one continuous mapping 

* = h . 

* of S 

If we recall that S \ {O} is compact, it follows that ~ is topologica1 • 
• 

2.3.8. Theorem. Let H be a compact topological group, and let 

H
0 = HU {O} be the group with zero ari•sing from H by the 

adj1mction of a z.ero element O. 

• 

Let x1 and x2 be two comp.act Hausdorff spaces and ~ a cpntinuous 

and 

♦ (X:2 ,x1 ) n H #- 11 for all x
1 

£ x
1 

the space {O} with a 

multiplication defined by 

* * * (y1 ,hf(Y2 ,y1 )h ,y
2

) if 

0 

and s.O = O.s = 0 for alls£ 

is a compact 0-simple mob. 

= 0 

The multiplication defined in is clearly continuous and 
associative. 

is a compact mob. 
. . • * * 
How let (x1 ,h 1 x2) and (x

1 
,h ,x

2
) £ x

1 
x H x x

2
. 

Choose an eleaent y 2 t x 2 such that ~(y
2

,x
1

) £. H and an element 

be such that 
h1♦ (y2 ,x1 )h♦ (x2 ,y1 )h = h . 
. . . . * .. . 2 * * * * 

for alls#, o. 
Thus ·(X a0 X •) 

l' '2'" is 0-simple. 

--

• 

:2. 3 . 9 . flleorem. A c,ompact mob is 0-sim.ple if and only if it is 

isomorphic witn a m.ob (X ,H0 X tt.). 1 , 2~'t' . 

• 
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Proof: 

It follows from theorem 2.3.7 that if Sis 0-simple Sis homeomorphic 

with Y 1 x H u x Y U { 0} , where Y c L and y c R . 
aoµo 2 1 ao 2 Bo 

Now let n {O}, defined by 

Moreover n has the property that n(y
2

,Y
1

) n H 
8 

~ {O} and 
a.o o 

n(Y2 ,y1 ) n H0 a ~ {O} for all y
2 

£ Y
2 

and y £ y . 
0 0 0 1 1 

Hence (Y1 ,H0 6 ,Y2 ,n) is a compact 0-simple mob. 
0 0 O 

Since the mapping~: S ~ (Y1 ,H B ,Y
2

,n) with $(y ,h,y); 
0 o o 1 2 

~(O) = 0 clearly is an algebraic isomorphism, we see that 

s_ 0 

The ''if'' part of the theorem follows from theorem 2. 3. 8. 

2.4. Connected mobs 

ylhy2 and 

2.4.1. Lemma. If S is a connec.ted mob, then each minimal (left, right) 

ideal of Sis connected. 

Proof: 

Let L be a minimal left ideal of S, then for any a£ L, Sa= L, and 

hence Lis connected. 

If K is the minimal ideal of S, then K = SaS for each a£ K. 

Hence K = U { Sas I s E S}. 
a a 

Since each Sas is connected and meets the connected set aaS, it 
a 

follows that K is connected. 

2.4.2. Lemma. If Sis a connected mob, then each ideal of Sis 

connected, provided S has a left or right unit. 

Proof: 

Let I be an ideal of S. Then I = U Sx, if S contains a left unit. 
X £ I 

Since each Sx meets as with a£ I, we have that I is connected. 

Example: 

Let S = { (x,y) I O < x < 1, 0 < y < 1} with the usual topology. 
~ 

' , 

For (x
1

,y
1

) and (x
2

,y
2

) Es define the product (x
1

,y
1
).(x

2
,y

2
) to be 
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(O,yly2). 

Then Sis a compact connected commutative mob. 

Let I = {(x,y) 

* 
l X = 

I o 

0 1 0 < y < 1}. , > 

And I = { (x , y) < X < t, i < X < 1, 0 < y < 1}. 

* Then I is a disconnected closed ideal, and I is a disconnected open 

ideal. 

2.4~3. Theorem. If Sis a connected mob and I an ideal of S, then one 

and only one component of I is an ideal of S. 

Proof: 
* * Let I =SIU IS. Then I is connected and the component of I which 

*' contains I is an ideal of S. 

F11rther1nore it is readily seen, that this is the only component of S 

which is an ideal. We will call this ideal, the component ideal of I. 

2.4.4. Lemm.a. Let S be a compact connected mob and U a proper open 

subset of S with J (U) # ~-
o 

Let C be the component ideal of J (U), then C intersects U ,u. 
0 0 0 

Proof: 

If C n U \ U = J1, then C C U, and since C is an ideal , we have 
0 _ 0 0 

C e J ( U) and C = C . 
0 0 0 0 

Furthermore J (U) is open and 0 . we can find an open set V, with 

• 

C C V C V C J (U) . 
0 0 

Since C 
0 

is a component of the compact set V of the 

connected set S, we have C n 
0 

V, V # J1 a contradiction. 

Corollary. Let S be a compact connected mob and Fa closed subset of 

S \ K with the property that if F n I #- J1, then F c. I for any ideal I 

of S. Then if C is the component of S ,F which contains K, then 

F = C' C. 

Proof: 

Since C is closed in S, F we have ens, F = c, hence F::::, C, C. 

Furthermore it follows from 2.4.4 that if C is the component ideal 
0 

of J (S \ F), then K C C and C intersects (S ' F) ' (S ' F) C F. 
0 _ _ • 0 0 

Hence FCC CC. 
0 
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Since F n C = ftf we have F c C , c·. 

2.4.5. Theorem. Let S be a compact connected mob, and e £ E ,x. 

Proof: 

If C is_the component of S, H(e) which contains K, then 

H(e) = C 'C. 

This follows immediately from the preceding corollary, if we take 

F = H(e), and from the fact that if H(e) n I ~ 0, then H(e) c I for 

any ideal I of S. 

It follows from theorem 2.4.5 that if Sis a compact connected mob, 

then H(e),, withe EE\ K can contain no inner points. 

2.4.6. Theorem. Let S be a compact connected mob. If K is not the 

cartesian product of two non-degenerate connected sets, then 

either K is a group or the multiplication in K is of type (a) 

or (b). 

Proof: 

(a) xy = x 

(b) xy = y 

all x,y £ K. 

all x,y £ K. 

From theorem 1. 2. 9 it follows that K i,s homeomorphic to 

(Sen E) x H(e) x (eS A E), and since K is connected, each of H(e), 

(Sen E) and (eS n E) must be connected. 

Hence at least two of the factors must consist of single elements. 

If es~ E =Sen E = e, then K = eSe = H(e) a group. 

If es " E = eSe = e, then K = Se, and if x, y e: K we have xy = (xe) (ye) = 

x(eye) = xe = x. 

If Sen E = eSe = e, then the multiplication is of type (b). 

Corollary. Let S be a compact connected mob. If K contains a cutpoint, 

then the multiplication in K is of type {a) or (b). 

Proof: 

If K contains a cutpoint, then K is not the cartesian product of two • 

non-degenerate connected sets. 
' 
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• 

Hence from 2.4.6 it follows that K is a group or the multiplication is 

of type (a) or (b). 

Since a compact connected group contains no cutpoints, the corollary 

follows. 

2 .. 4.7. Theorem. Let S be a compact connected mob, with s
2 

= S. 

Then each maxim.al proper ideal J is connected. 

Proof: 

Let a £ S , J,. then J = J (S , {a}) and if C is the component ideal 
0 0 

of J, then a E C • 
0 

Since C U J is an ideal of 

that SJ 

S, we have C U 
0 

J = S and S \ Jc C \ C. 
0 0 0 

Furthermore we know u JS is connected and C r-. ( SJ U JS) # {cl 
0 

hence 

Since 

JS U SJ CC .. 
2 ° 2 

S = S, we have S = (S, Ju J)S 

Since C C JC C 1 we have J connected. 
0 0 

cc. 
0 

Hence C 
0 

= s. 

Defin1 tion. A clan is a compact connected mob with a unit element. 

2.4.8. Lemma. Let B be the solid unit ball in Euclidian n-space and 

let f be a continuous mapping of B into itself, such that 

Ix - f(x) I < i for all x E: B. Then O c f(B). 

Proof: 

Let x = (x1 , ..• ,xn)' f(x) = ( f (x) , ... , f (x)) . 
1 n 

We now consider the mapping h{x) = (x1 , .... ,xn) - (f
1 

(x), ... , fn {x)). 

This mapping transfc,1·111s the ball fxl < l into itself and hence by 

* * * Brouwers fixed point theorem there is a point x for which h(x ) = x , 

* * * * * * * i.e. (x1 , .•. ,xn) = (x1 , ... ,xn) - (f
1

(x ), ... ,fn(x )). Hence f(x) = O. 

2.4.9. Theorem. Let S be a mob with unit element u having a Euclidean 

neighbiourhood U of u. 

Then H(u) is an open subset of Sand is a Lie-group. 

Proof: 

We identify U with En•and let Fe.= {x I lu-xl < E}. 

Since the multiplication on F is uniformly continuous there is a o 
£ 
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£ 
such that I x - xy I < 2 , Ix - yx I 
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t 
< 2 , whenever I u - y I < o. 

By lemma 2.4.8 -1 u £ Fey and u e yF£, hence y has an inverse y in 
-1 \ 

and the mapping y + y is continuous. 

Therefore H(u) is a topological group and since it contains an open 

set, it must be· open in S. 

Furtheru1ore H(u) is locally Euclidean and hence a Lie-group. 

Corollary. If S is a clan having a Euclidean neighbourhood of the 

identity, then Sis a Lie-group. 

Proof: 

By theorem 2.4.9 H(u) is open. Furthern1ore H(u) is closed since S is 

compact, and hence H(u) must be all of S. 

Thus if Sis a clan and Sis an n-sphere, then Sis a topological group 

and hence n=O,l or 3. 

In general a compact manifold which admits a continuous associative 

multiplication with identity, must be a group . 

• 

Corollary. Let S be a clan and F a c'losed subset of S, such that S , F 

is locally Euclidean. Then either Sis a group or H(u) c F. 

Proof: 

Leth E H(u) and ht F. Then h has a Euclidean neighbourhood V. Since 

h-
1v is a Euclidean neighbourhood of u, it follows from the preceding 

corollary that Sis a group. 

In case Sis a subset of Euclidean space, then it follows that 

H(u) c boundary of S or S a topological group. 

If S contains interior points, then it cannot be a group and we have 

H(u) c boundary of S. 

Definition. A subset C of a space Xis a C-set provided that C ~ X and 

if Mis a continuum with CI"\ M 0, then MC C or CC M. 

It can easily be shown that if C is a C-set of a compact connected 

Hausdorff space, then_ the interior of C is empty and C is connected. 

For let x be an interior point of C, then there is an open set V 

I 

• 
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with x e: V C V C C • 

intersection with the boundary of X, V c V. 

Hence M is a continu1.1m with M n C #. ftJ and C ¢ M, M ¢:. C. 

Suppose now C = c1 u c2 , with c1 and c2 both open and closed in C and 

c1 r"\ c2 =~-Then if x c c2 , there is an open set Vin X such that 
-x e: V, VI"'\ c

1 
= (1. Hence there is an open set U such that x e: Uc Uc V. 

If M is the co,mponent of y t c
1 

in X '\ U, then M has a non-empty inter-

section with the boundary of X \ U c U. · 

* Since y £Mand x ¢ M, we have Mc C and hence there is a point x of 

c2. in M. Since Mis connected this is a contradiction and it follows 

that C is connected. 

2.4.10. Theorem. Let G be a compact Lie-group which acts on a 

• 

Proof: 

' 

completely regular space X. Let pc X such that g(p) # p 

unless g is the identity; g £ G • 
• 

Then there exists a closed neighbourhood N of panda closed 

subset C of N, such that the orbit of every point of N has 

exactly one point in common with C. 

See Gleason: Proc. Amer. Math. Soc. l, 1950, p.p. 35-43. 

2.4.11. Lemma. Let G be a compact group and let Ube an open neighbour

hood of the identity. 

Proof: 

Then U contains an invariant subgroup Hof G, such that G / H 

is a Lie-group. 

See Montgomery-Zipp in: Topological transfor1na tion groups, p. 99. 

2.4.12. Theorem. Let S be a clan, S no group and Ga compact invariant 

subgroup of H(u) = H, such that H / G is a Lie-group. 

Then S contains a continuwn M, such that M meets Hand the 

complement of JI, and such that u £Mn H c G. 
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Proof: 

We can consider Has a transformation group acting on S. 

Let H' = H / G and S' the space of orbits of G. Then H' is a compact 

Lie-group acting on S'. 

By theorem 2.4.10 there exists a closed neighbourhood N of u': uG and 

a closed set Cc N such that nH' n C is a single point for each n £ N. 

Now let s'' be the space of orbits under H. Then we have the following 

canonical mappings a.: S-+ S', 1-): S' -+ s'', y: S-+ s'', with y = Ba. 

Since a and y are open maps, ~ is also open. 

Let N° be the interior of N, then bN° is open and p(u') 0 
£ ~ (N ) . 

Le_t P be the component of ~ (N) which contains p (u'). 

Then P meets the boundary of ~(N) and hence Pis non-degenerate. 
' 

* Now let D = I.) I C. Then since nH' n C is a single point for each 

* n £ N, it follows that~ is a homeomorphism between 
-1 

b* (P) is a continuum which meets H' only at C n H' 

also meets the complement of H'. 

C and b(N). 
-1 

and hence b* (P) 

-1 *-1 
Now let K be a component of u t.. (P). Since a is an open mapping, 

h (K) "'*-l (P). H K . we ave a = µ ence 1s a continuum which meets Hand the 
-1 

complement of Hand KAH cu (c), where c =Cr. H'. 

Now let h £Kn H, then KOH c hG. Suppose now M = h-1K, then 

u €. M n H and M n H C G. 

If k £Kand kt H, then 

of S, q.e.d. 

-1 
h k L M, • since 

2.4.13. Theorem. Let S be a clan which is no group. 

S, His an ideal 

Then the identity u of S belongs to no non-trivial C-set. 

Proof: 

Let u £ C, with Ca C-set. We first prove Cc H(u). 

If x EC, then since xS is a continuum which meets C, we have C c::xs 

or xS c C. 

If u E xS Sx, then x has an inverse and is thus included in H(u). 

Now let u ¢ xS, then xS c C; xS ~ C and there is an open set V with 

xS c V; C '- V ~ 0. 
• 

Since xK c K we have Kn C ~ 0. If u £ K, then Sis a group, hence 
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u ¢ K whi·ch impl.ies K c C. 

Now we can find an open set W, with x £ W, WS c V. 

Since C contains no inner points, there exists a y £ W \ C with 

yS c V. Clearly yS is a continuum which meets both C and S \ C and 

C ¢yS,a contradiction. 

Hence u £ xS and u ~ Sx and thus x £ H(u) which implies Cc H(u). 

Now let U be a neighbourhood of u such that C ~ U. 

By lemma 2.4.11 there is a subgroup G c U such that H / G is a Lie

group and C C. G. 

Theorem 2.4.12 implies the existence of a continuum M such that 

u.£ Mn H c G and such that M meets the complement of H. Hence 

MI'\ C ~ 0 and since Cc H, M meets the complement of C. Thus Cc M. 

However, M n H c G and C ¢ G, which implies C ¢. M, a contradiction. 

Example: 

Let A { (x' y) I 
1 

0 < 1} • < X - y - sin - - ' 
, 

X 

B - { (2-x ,y) I (x,y) t. A} - , 

C - { (0, y) \J (2,.y) I -1 < y < 1} - , -
and let S =Au Bu C . 

. 

We will show that S does not admit the structure of a clan. 

For suppose that Sis a clan. Since Sis not homogeneous, S cannot be 

a topological group and hence S ~ H(u). 

Then S \ H(u) = J ~~is the maximal proper ideal of S. Since J is 

open, dense and connected, we have Au B c. J and hence u £ C. But 

since C is the union of two C-sets u cannot be in C. 

2.4.14. Lemma. Let S be a clan and Ca non-trivial C-set of S. 

If g is an idempotent with g t K, then g ¢ C. 

Proof: 

Suppose g E C. Since gSg is a continuum we have Cc gSg or gSg c C . 

g is the identity of the clan gSg and gSg is not a group since gt K. 

Hence theorem 2.4.13 implies that C iZ!:gSg. 

Now suppose gSg c C. Then Kn C ~ 0 and since g £ C, C, K ~ 0. Let U 
• 

and V be neighbourhoods of K with SK = K c: U c:: U c V, while g ¢ V. 
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Since Sis compact, there is a neighbourhood W of K such that swc. U. 

SW is a continuum and hence SW c C. Furthermore W c SW and this would 

imply that C contains inner points, a contradiction. 

2.4.15. Theorem. Let S be a clan and Ca non-trivial C-set of S, 
I 

then Cc K. 

Proof: 

From the proof of the preceding lemma it follows that if Kn C ~ ~' 

then Cc K. 

Suppose now C n K =~and let x £ C and U a neighbourhood of x with 

Let e be a minimal member of the partial ordered set E with xe = x. 
2 

e exists since E = {e I e = e, xe = x} is non-empty and compact. 
X 

Furthern1ore e i K, since x t K. 

Hence H(e) eSe and we can find a neighbourhood V of e such that 

xV c. U and a continuum Mc eSe such that e L Mc V and 

Mn {eSe \ H(e)} # G. Since x L xM we have xM c C. 

Let m c Mn {eSe \ H(e)}, then Cc xSm. This implies that x = xs1m = 

xes1 em = xp, with p £ {eSe \ H(e) }, since eSe \ H(e) is an ideal 0£ 
. 2 eSe. Hence x = xf w1.th f = f t.: I'(p) c eSe and thus ef = fe = f, i.e. 

f < e. But since e is minimal we have f = e. 

Further1nore pe = p = ep and thus pf = p = pf, which implies 

p E H(f) = H(e) a contradiction. 

2.4.16. Theorem. If Sis a clan· and if K is a C-set, then K is a 

maximal subgroup of S. 

Proof: 
. 

If S = K, then Sis a group and the result follows . 

If S 

Let {aA 

where e 

K, then K 

I A e: A} 
2 

= e EK. 

• 

has no interior point since K is a C-set. 

be a directed set of points of S \ K with a ~ e, . A 

Since Kn a AS ~ ~, Kn Sa A #- 0 and aA e: a).S f'\ Sa>. we have Kc aAS f"'\ SaX. 

Hence Kc es n Se= eSe. But since e e: K implies H(e) = eSe we see -
that K = H(e). 
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2.4.17. Theorem. If a clan is an indecomposable continuum, it is a 

group. 

Proof: 

If S = K, then Sis a group. 

Suppose now S ~ K. Then there exists an open set V with Kc:. Ve V ~ S. 

Let J (V) be the maximal ideal 
0 

and connected, and Kc J (V) c 
9 

of S contained in V, then 

.J (V) ~ S. 
0 

J (V) 
0 

• 1.s open 

Since S = J (V) u S , J (V) 
0 0 

and Sis indecomposable we have S \ J (V) 
0 

not connected. 

Let S \ J (V) =AU B, An B =~,A, B open. 
0 

Then we have J (V) u A connected and J (V) U B connected and hence S 
0 0 

not indecomposable, a contradiction. 

2.5. 1-semigroups 

Definition. Let J = [a,b denote a closed interval on the real line. 

If J is a mob such that a acts as a zero-element and bas an identity, 

then J will be called an I-semigr<>Up. 

We will identify J usually with [o,l , so tl1at Ox= xO = 0 and 

lx = xl = x for all x L J. 

Example: 

J
1 

= [0,1] under the usual multiplication. 

J 2 = [i,1] with multiplication defined by x.y = max (1,xy), where xy 

denotes the usual multiplication of real numbers. 

J
3 

= [0,1 with multiplication defined by xoy = min (x,y). 

J 1 and J 2 have just the two idempotents zero and identity, but in J 3 
every element is an idempotent. 

Furthermore every non-idempotent element in J 2 is algebraically 

potent, i.e. 

to zero. 

nil

equal 

2.5.1. Lemma. If J is an I-semigroup, J = [0,1], then xJ = Jx = O,x 

for all x €: J. 
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Proof: 

Since xJ is connected and O,x E xJ we have [o,x] c xJ, and by the 

same argument Jx ~ [0,x. 

J (o,x) = J is open and connected and hence x E J and J an ideal 
0 0 _ _ 0 O 

of J. Hence Jx c JJ c J c [o,x and xJ c [o,x . 
0 0 

Thus xJ = Jx = [o,x]. 

Corollary. If J is an I-semigroup, then x < y and w < v implies xw < yv. 

Proof: 

Since x < y there is a z such that x = zy. Hence xw: z(yw) < yw. 

In the same way we can prove yw < yv and thus xw < yv. 

2.5.2. Theorem. If J is an 1-semigroup with just the two idempotents 

0 and 1 and with no (algebraically) nilpotent elements, then J 

is isomorphic to J 1 
Proof: 

We first show that if xy = xz # 0, then y = z. 

Assume y < z. Then by lemma 2.5.1 there is a w such that y = zw. 

Hence xy = xzw = xyw and thus 
n 

xy = (xy)w for every n=l,2, .... 

withe= e 2 e: f(w). Thus xy 

Since 1 

= (xy)e 

rcw), we have e = 0 and thus xy = O,a contradiction. 

We now prove that if x # 0, then x has 

The function f: J ~ J defined by f(x) = 

a unique square root. 
2 

x is continuous and leaves 0 

and 1 fixed. Hence f is a map of J onto J so that square roots exist 

for every 
2 

Assume a 

and ab = a 

element. 

= h
2 

# 0 and let a< b. Then by lemma 2.5.1 
2 

which implies a= b. 

2 
a < ab 

This establishes that for x # 0, x has a unique square root and by 
n 

induction that x has unique 2 -th roots. 

Let x be the 2n-th root of x # 0 and for r = p / 2n define xr = xP_ 
n n 

rs r+s h ·t· Then it is easy to prove that xx = x , were r,s are pos1. 1.ve 
r s 

dyadic rationals. Furthermore if r < s, then x > x. For by lemma 

2.5.1 
r s r 

X > X and if X -
This implies that lim X 

n 

s r-s = x, then x = 1,a contradiction. 

= 1. For since X 
n 

< x 1 lim x 
n+l n 

exists. 



Assume lim 

Then since 

X 
n n 

y 

= y # 1. 

➔ O, there is an n 
0 

86 

such that 

Hence y < x 1 a contradiction. 
no 

Now let D = {.xr I iti d di t · 1} r a pos ve ya c ra iona . 

Then Dis a commutative submob of J and D = J. 

< x. 

Assume D # J. Then there is an open interval Pc J \ D, P = (a,b) and 

b ED. 

Now since x -+ 1, x b ➔ band x b < b by lemma 2.5.1. 
n n n 

If x b = b, then x = 1.a contradiction. Hence x b <band x b c P 
n n n n 

for n sufficiently large. 

Since b ED and x ED, we have 
n 

x b c D,a contradiction,and thus D = J. 
n 

Now let g: D ➔ J 1 be defined by ( r 1 r_ 
gx) =2 

g(D) is dense in J 1 and g is one-to-one continuous and order preser

ving. 

Hence g can be extended to a topological isomorphism of J onto J 1 . 

2.5.3. Theorem. If J is an 1-semigroup with just the two idempotents 

-0 and 1 and with at least one nilpotent element, then J is 

isomorphic to 

Proof: 

J . 
1 

Let d = 
n 

sup {x I 
yn-1 # 0 

n-1 2 
(y ) 

2 
x = O}. Then d # 0, for let y # 0 be nilpotent, then 

y = 0, for some n > 1. 

Clearly n-1 ::: 0. Hence d > y • 

As was shown in theorem 2.5.2, d has a unique 2n-th 

s are positive dyadic rationals, then dr < d 5 if r 

and drds = dr+s_ 

root, and if rand 
s 

> s and d # 0, 

Now let D = {drl r a positive dyadic rational}. Then by the same type 

of arg11ment used in · the proof of theorem 2. 5. 2 we can prove that D = J. 

continuous and is an isomorphism. 

Moreover g(D) is dense in J 2 and since g is order preserving it can be 

extended to an isomorphism of J onto J 2 . 
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2.5.4. Theorem. Let J be an I-semigroup. Then Eis closed and if 

e,f EE, then ef = min (e,f). 

Proof: 

The complement of Eis the union of disjoint intervals. Let P 

be the closure of one of these. Then Pis isomorphic to either 

J
1 

or J
2

. Furthermore if x c P, y ¢ P, then xy = min (x,y). 

Let e,f c E, e < f. Then by lemma 2.5.1 ee < ef and thus e < ef. 

Since ef <ewe have e = ef. 

Now let Q = [e,f. Then for any (x,y) £ [e,f] we have ee < xy < ff. 

Hence Q is a submob of J. 

Furthermore if e < x, then e >ex> ee = e and hence ex= e. In other -
words e acts as a zero for [e,1]. 

If x < 1 1 then x = fy and thus fx = x, which implies that facts as 

an identity for [o,f]. 

So we have in particular Pan I-semigroup with only two idempotents 

and hence Pis isomorphic either to J 1 or J 2 . 

If x E P, y ¢ P, x < y then there is an e £ E with x < e < y. 

Hence xy = (xe)y = x(ey) = xe = x. 

From theorem 2.5.4 it follows that every I-semigroup is commutative. 

2.5.5. Theorem. Let S be the closed interval a,b. If Sis a mob 

such that a and bare idempotents and S contains no other 

idempotents, then Sis abelian. 

Proof: 

Let e EE n K. Then e = a orb. Since S has the fixed point property 

Kc E. Furthermore K is connected and thus K = a or K = b. 

If K = a, then a is a zero for Sand g an identity since gS = Sg = S. 

Thus Sis an I-semigroup and hence abelian. 

2.5.6. Theorem. Let S be the closed interval (a,b]. If Sis a clan 

such that both a and bare idempotents, then Sis abelian if 

and only if S.has a zero. 
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Proof: 

Let S be commutative. Then K is a group and since S has the fixed 

point property, we see that K consists of only one element, a zero. 

Now let Shave a zero. If either a orb is the zero element, then the 

other is obviously a unit and the result follows from theorem 2.5.4. 

Now let a< O < b. Then S' = [a,o] is a submob of S. For suppose there 

exist x,y ES' with xy E (O,b. Then since a acts as a unit on S', we 

a,y. 

* ans t 

* 
[aiy] with ~s* = 0. 

* 

have 

Hence 

Since 

there is 

s* ,o] c s S' we have y =sq and xy * = XS q = 0, a contradiction. 

In the same way we can prove that S 11 = (o,b] is a submob of S and both 

S' and s'' are commutative since they are I-semigroups. 

It also follows that the unit of Sis either a orb. 

Suppose bis the unit element. Then, in the same way as above, we can 

prove that as''= s''a = [o,a]. 
• ft It 11 

Hence if x c S, then ax If 

= Y a = (y''a)a = a(x''a) = a (az '') = f I az --
'' X a. 

Furthex·1·,1ore if x' c- S ' a nd x '' S ' ' t l ' '' ~ ~ , · 1en x x = ( x ' a) x '' = x ' ( ax '' ) = 

( ax I I) X t = ( X, 'a) X r = I I t 
X X . 

2.5.7. Theorem. Let S be the closed interval (a,b]. If Sis a mob 

such that a and bare idempotents, then Sis abelian if and 

only if S has a zero and ab= ba. 

Proof: 

If Sis commutative, S has a zero by the same argument as in theorem 

2.5.6 and obviously ab= ba. 

Now let Shave a zero and let ab= ba. Then again the result follows 

if either a orb is a zero. 

If a < 0 < b, then S' = [a,o] and s'' = [o,b are abelian submobs of S. 

Suppose now ab ES', then bS' = baS' = abS' = [ab,O] = S'b by lemma 

2.5.1. Hence bS =Sb= [ab,b and ab,b] is an abelian submob by 

theorem 2.5.6. 

To prove the theorem~it suffices to show that if x E [a,ab and 

y E [ab,b] then xy = yx. 
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Now xy = (xa)(by) = (xab)y and xab E [ab,O. 

Hence (xab)y = y(xab) = y(xb) = (yb)(xb) = y(bxb) = ybbx = yx. 

. 2 
2.6. Interval mobs with S = S 

In what follows Swill always be a mob on an interval a,b. The kernel 

of Sis connected and hence either a point or an interval. We will 

assume that the left hand endpoint of Kand k the right hand 
2 . 

endpoint. • 

Furthennore K consists of either all left zeroes or all right zeroes 

oi S. By passing to the product-dual of S if necessary, we can assume 

that the former is the case. 

Throughout this paragraph, K will consist of all left zeroes of S. 

Let A be the interval a,k1 and B the interval k 2 ,b. 

Then we have the following diagram for S. 

A K B 

a b 

Definition. Let T be a submob of S. A mapping f of Tinto Swill be 

called left invariant if f(x1 ) = f(x
2
), x

1
,x2 ~ T, implies 

f(tx1 ) = f(tx2 ) for all t £ T. 

Notice that for instance all right translations 

a ES, are left invariant. 

p ; x ~ xa, x ET, 
a 

Furthermore all homomorphic mappings of Tinto Sare left invariant 

and also all one-to-one mappings. 

2.6.1. Lemma. Let S be an interval mob and let T = O,u be an 

I-semigroup contained in S. 

Let f: T-+ S be a continuous left invariant mapping. 

Then forte: T, either f-1 lf(t)) = {x. I f(x) = f(t)} = 
-1( or f f (t)) is an interval submob 

* 2 e,t withe = e. 

Hence f is a continuous monotone mapping of Tinto S. 

{t} 
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Proof: 

Define an order relation in T by x-< y if x £ [o,y and suppose 

f(x) = f(t), X ~ t. 

Let e = inf {x I f(x) = f(t), x c T} and t* = sup {x I f(x)= f(t), XE T}. 

* Since f is continuous we have f(e) = f(t) = f(t). 

* * From 2.5.4 it follows that either et = e or e,t both contained in a 

submob p el,e2 which • isomorphic to either Jl or J2. - l.S -
* * * f(e 2 ) f(e). If et - e, then f(t) f(e) implies f(et ) - - Since -- - - -

2 2 e ..( e it follows that e - e. -
* In the other case there exists a p £ P such that e = pt . 

* * n * * Thus f(e) = f(pt) = f(t) and we have f(p t) = f(t ). 

S
. n ince p el 

* * the continuity off implies that f(e t) = f(t) 
1 2 

= f(e). 

* But e 1 t = e 1 and e 1 -< e, so we 

[ *] * Now for any x £ e,t , x = qt 

* we have f(qe) = f(qt) = f(e). 

have e 1 = e and e = e. 

for some q ► e, and since f(e) = 

This shows that f-l f(t) * = [e,t ] and hence f is monotone. 

* f(t) 

It follows from the above lemma that each continuous left invariant 

mapping of T deter11tines a partition of T into disjoint closed inter

vals, such that the lower endpoint of each non-degenerate interval is 

an idempotent. 

2.6.2. Lemma. Let S be an interval mob and Tan I-mob contained in S. 

Proof: 

Let f be a continuous left invariant mapping of Tinto S. 
-1 

Let g: T x f(T) ➔ f(T) be given by g(x,y) = f (xf (y) 

and h: f(T) x f(T) ~ f(T) by h(x,y) = f f-l(x)f-l(y) . 

Then g and hare well defined and continuous. 

Let y' and y'' 
-1 

E f (y) and x e: T, then f (y •) = f(y'') and hence 

f (xy') = f (xy''). 
-1 

If z' and z'' £ f {z) then f(z'y') = f(z'y'') = f(y''z') = f(y''z'') = 
' 

f(z ''y''), since T is ·abelian and f left invariant. Hence h and g are 

well defined. . 

Now let Ube a neighbourhood of h(x,y). Since f is continuous f-l(U) 
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is open and by continuity of multiplication 

* vals V and * w -1 -1 
containing f (x) and f (y) 

in T 1 we have open inter
** -1 with V W Cf (U). 

Let f-l (x) = * -1 * 
1 ,x and f (y) = e 2 ,y and let x 1 ,x2 

* Y1,Y2 t: W 

Then f(x1 ) 

* * with x 1 <. e 1 , x 2 >- x , y 1 < e 2 , Y 
2 

>- Y • 

~ f(x) ~ f(x2 ) and f(y1 ) # f(y) ~ f(y2). 

* e:: V , 

Since f is monotone we have f(x1 ) # f(x
2

) and f(y
1

) # f(y
2
). 

Now let V be the open interval f(x1 ),f(x
2

) and W the open interval 

f(yl),f(y2) . 

Then x EV, y c Wand h(V x W) 
-1 

ff (U) = U. 

In the same way we prove that g is continuous. 

C 

Then either S =Kor 

S contains a maximal proper ideal M such that S 

a-simple semigroup. 

/Mis a completely 

Since each maximal proper ideal is connected we have the following 

4 cases. 

2.6.3. Lemma. Let S be an interval 

the following cases holds: 

mob [a,b with S. Then one of 

1) S =Kand the multiplication is trivial. 

2) s contains exactly one maximal ideal M - (a,b). -

Then either i) 2 b2 ab ba b (or dually a - a' - a, - -- - - -
2 b2 b, ab ba a), ii) 

2 b2 b, ab a - b, - - - or a - a, - -- - - - - - -
ba = b (or dually ab= b, ba = a). 

a, 

3) S contains exactly two maximal ideals M
1 

= a,b), M2 = (a,b. 
2 2 

Then a = a, b =band b #ab# a, b # ba ¢ a. 

4) S contains exactly one maximal ideal M = (a,b. 
2 

Then a = a and a is a left or right unit for S. 

Furtherrnore ab# a# ba, b 2 ~ a (or dually M = [a,b) .•. ) 

Proof; 

Since each maximal ideal of Sis connected and dense in S, the 

maximal ideals in Scan only be (a,b), (a,b and a,b) and we can only 

have the four cases mentioned. 
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If M = (a,b), then S / M = {a,a,b} is completely a-simple and hence 

S I M a group with zero or s I M left (right) a-simple. 
2 2 2 b2 b b, ab ba Thus a = a, b = a, ab = ba or a - a, - - a, -- - - - --

(a,b] {O ,a} and If M • the only maximal ideal, then S / M = a 1S --
Furthermore b E Sas= Saas. 

If both Sa~ Sand as~ S, then we have for instance aS c Sa and 

Saas c SaSa c Sa, a contradiction. 

2 

Hence we have either Sa= Sor as= Sand thus a a left or right 

unit. Furthermore at Ma and at aM, hence ba #. a ab. 

Case 3 follows analogously. 

b. 

-- a . 

Let S be [-1,1] with the usual multiplication of real nwnbers. Then S 

belongs to case 2i). 
X 

If we define a multiplication by xoy 

case 2ii). 

= lxlxy then S belongs to 

X y X 
If we define a multiplication by x.y = max I x 1 I Y I , a I x I xy then 

S belongs to case 3). 

If S = 0,1 with the usual multiplication, then S belongs to case 4). 

2.6.4. Lemma. Let S = 
2 

and let a= a. 

Proof: 

a,b] be any interval mob with a< k
1 

Then A= a,k1 is an 1-semigroup. 

< k < b 
2 

Since ak1 ,k1a £ K we have a,k1]c Aa n aA and hence a is an identity 

for A. 

Now let x,y c A and suppose xy i A. Then k 1 £ [x,xy] c. x a,y and 

k = xt, with t 
1 E (a,y. We also have y E and hence 

y = tr with r £ A. 

Thus xy = xtr = k1r = k
0 

£ K. 

Since k1 e: [y,x c a,x y we have k 1 = t'y, t' £ [a,x], and 

x e: [t' ,k1 C a,k t' which implies x = r't', r' £ A. 

Hence xy = r't'y = r'k1 = k
0

• 

Thus k
0 

= k1 r = r'k1 and k
0

k 1 = k
0 

= k
1

k
0

. This implies that 

i.e. xy e: A. 

Since k 1 is a zero element for A, A is an 1-semigroup. 

k 
0 
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2.6.5. Theorem. Let S = [a,b] be any interval a,b with a< O < b. 

Let A= [a,O be any I-semigroup and fa homeomorphism of A 

onto B = [o,b with f(O) = O. 

Define a multiplication • on S as follows: 
-1 -1 -1 

x • y = xy, u • v = f (u) f (v), x • u = u • x = f xf (u) , 

x,y £ A, u,v EB. 

Then (S,o) is a mob belonging to case 2i) and each such mob 

can be so constructed. 

Proof: 

= S O S . 
l 2 

Let m: S x S ~ S be defined by m(s1 ,s2 ) 

m ·is well defined since m(O, s) = 0 • s = Os= f-1 (0)s 
-1 

= sf (0) = m(s,O). 

mis continuous since m I Ax A, m J Ax B, m I Bx A and m I Bx Bare 

continuous. Furthermore mis commutative and the associativity of m 

follows from 

(x o y) o u = f(xyf-l (u)) = f 
-1 

(x o u) o v = f (xf (u) o v = 

-1 -1 
xf f yf (u) = X o (you). 

-1 -1 
xf (u) f (v) = x o (u o v). 

(u o v) ow = (f-1 (u)f-1 (v)) o 
-1 -1 -1 

w = f f (u) f (v) f (w) = u o (v o w) . 

Thus (S,•) is an 

= f f- 1 (b)a 

2 2 -1 -1 
interval mob with a = a and b = f (b)f (b) = a. 

= f (a) = b = a a b. 

Thus S belongs to case 2i). 

Conversely if Sis any interval mob [a,b belonging to case 2i), then 

we have s = • 
a 

• , , I 

' 
., 
b 

Since as= Sa= S, a is a unit element of Sand lemma 2.6.4 implies 

that A= [a,k is an I-semigroup. 

Let k1 k2 = k
1

. The mapping f: x ~ bx, x £ A is continuous and one-to-

b 2 b 2 · F th one~ for then x
1 

= x
2

, 1 • e. x
1 

= x
2

. ur ennore 
• 

Hence k 2 = bx, x £ A, and thus bk1 = bxk1 = k2k1 = k2 . 

Since f is a monotone mapping we have bA = B = [k2 ,b], and since 

k 1 b = kl, [k1 , b] c Ab. This implies that k 2 = xb with x £ A. Hence 
2 

k 2 = k 2b = xb = x and k 1 = k 2 . 

Theorem 2.5.7 implies that Sis abelian and hence f is a homeomorphism 

of A onto B with xu = ux = f xf-1 (u) and uv = f- 1 (u)f-1 (v) . 

• 
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Definition: An Ik-mob is an interval mob (a,k with unit element a and 

k £ K. 

It is clear that all I-semigroups are Ik-mobs with K = {O}. 

Let S = [-1,1 and define a multiplication on S by x o y = xy, 

-x O y = -x, -x o -y = -x, x o -y = -xy , where x, y E [0,1 and xy is the 

usual product of real numbers. 

Then (S,o) is an I -mob with non degenerate kernel 
k 

2.6.6. Lemma. Let be any interval with a < k 
1 

Proof: 

A= (a,k1 be an I-mob with unit a and fa continuous left 

invariant mapping of A onto K = [k1 ,k
2

} with f(k1 ) = k
1

, 

f(a) = k 2 . 

Define a multiplication o on Sas follows: 

( 
-1 

x o y = xy , k o S = k , x o k = f x f ( k} , x , y E A , k e: K. 

Then (S,o) is an Ik-mob with kernel Kand each such mob can be 

so constructed. 

Let m: S >< S ➔ S be defined by m(s1 ,s2 ) = s
1

o s
2

. Then mis 

( -1 ) 

well 

defined since m(k1 ,x) = k1x = k1 and m(k
1

,k) = f k
1 

f (k) 

-1 
Furthermore m(x,k1 ) = f xf (k1 ) = f(k

1
) = k

1 
= xk

1 
and m(k,k

1
) = k. 

Lemma 2.6.2 implies that m I Ax K is continuous, m j Ax A and 

m \ K ><Sare continuous and hence (S,o) is an interval mob. 

Moreover K is clearly the kernel of Sand a the identity. 

If on the other hand a,k2 is an Ik-mob, with Kall left zeroes, then 

A= a,k1 . is an I-semigroup and the mapping pk: x ➔ xk
2 

is clearly a 
2 -1 left invariant mapping of A onto K with x • k = pk xpk (k) . 

2 2 

2.6.7. Theorem. Let S = (a,b with a< k < 
1 

a,k3 =Abe an Ik-mob with kernel 

left zeroes. 

k3 < k4 < k 2 <band let 

k1 ,k3] consisting of all 



Proof: 

95 

Define 

= k . 
3 

x1 , x2 £ A, y l, y 2 t: B, k £ k 3 , k 4 . 

Then S belongs to case 2ii) and each such mob can be so 

constructed. 

We first show that the multiplication m: S x S ~ S, m(s1 ,s
2

) = s 1 o s
2 

is well defined. 

S:fnce k
3 

£ K we have k
3 

o s and since 

k
3 

with s ' £ A . 

A we have k o s = 
3 

k 3 s• = 

On the other hand sok 
3 

so k
3 

and m is well defined for 

Analogously we k o s 
4 

= k
4 

and k
4 

• s = 

-1 

have for k
4

, since 

= f(k3 ) = k
4 

withs' so k 4 = so g(k4 ) = so k3 = 

s o :f (k
4
). • 

Since m I A x A, m I B x B, m j A x B, m ( Bx A, m j K x Sand 

m l S x Kare continuous, mis continuous. 

Further11tore elementary calculations show that m is associative. 

Thus Sis an interval mob with a 2 = a, b
2 = f(f-1 (b)f-1 (b) = f(a) = b, 

b o a = f(a ob) = f af-l (b) = b, a o b = a and S belongs to 2ii). 

Conversely if S = a,b belongs to 2ii) then both a,k1 ] and k
2

,b 

are I-mobs. Furthermore [a,k1]c a k 2 ,b and hence there exists an 

x £ 2 ,b with ax= k1 . 

But then bax =bx= x = bk1 £ K, which implies x = k 2 
In the same way we may prove bk1 = bak2 = bk

2 
= k 2 . 

Now let as= [a,k
3

] and bS = k 4 ,b]. 

< k 
3 

and k
4 

Furthermore if k 4 < 

have abx =bx= ax= 
• 

< k 2 sine~ ak1 = k1 
k

3
, there is an x < 

x, a contradiction. 

= k . 
2 

k
4 

< bx 

and A= a,k3 is an Ik-mob. 

• 

< k 3 and we 

Hence k 1 < k 3 < k 4 < k 2 
The mapping f : A + B- = 

b 
with f(x) = bx is one-to-one and 

continuous, with f(k1 ) = • 
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-1 
f is onto since bA = baS = bS = B. Furthermore f (y) = ay~ 

k
1

,k
3 

be defined by g(k) = ak. 

Then g is continuous and g(k
3

) = g(k
4

) = k
3

. 

We moreover have y
1

y
2 

= b(y
1

y
2

) = (bay1 )y
2 

= (bay
1
a)y

2 
= 

-1 -1 
ff (y1)f (y

2
) . 

xy = xay = xf-1 (y). 

( ) = f f -l(y)x . yx = bayx = b ayx 

ks= k, sk = (sa)k = s(ak) = sg(k). 

Construction: 

Let 

C £ 

a< k < k < b. We define a collection of mobs we call S(c) with 
1 - 2 

(a,b) as follows: 

1) k
2 

< c < b. 

Define a multiplication on [a,k1] = A and [c,b = B, making them into 

I-semigroups with identity elements respectively a and b. 

Let e be an idempotent a< e < k1 and f a left invariant mapping of A 

onto [k1 ,c with f(k
1

) = k
1

, f(6) = k
2

, f(a) = c. 

Define a multiplication 

x
1 

o x
2 

xl o yl 

x
1 

o z
1 

* yl o X 

0 y o X 
1 

y 0 
1 

Y1 o zl = y o C 
1 

= C o S 

z1 o z
2 

= z
1

z
2 

, 

, 

, 

, 

• 

• on S 

' 

' 
z

1
,z

2 
EB , 

X* £ a 0 , , 

XO E [0,k , 

To verify that '' o '' is associative and well defined on S is mainly 

routine and utilizes the associativity in A and B. 

Thus Sis a mob and it is straightforward to verify that 

b o a = a ob = c. 

Hence S belongs to case 3. 

2 
a 



97 

2) a< c < k
1

. 

Then let a< c < k 1 < k3 < k5 < k
6 

< k
4 

2 k
2 

< d < b. 

Let C = [c,k3] be an Ik-mob with kernel (k
1

,k
3

] and fa homeomorphism 

of C onto D f(k
3

) = k
4

. 

Let g 1 be a continuous mapping of [k
5

,k
6

] into k
1

,k
5

] with 

g 1 (k6 ) = k3 , g 1 (k5 ) = k5 and g 2 a continuous mapping of [k
5

,k
6 

in 

[k6 ,k2 with g 2 (k6 ) = k
6

, g 2 (k
5

) = k
4

, such that 

i) g 1 (k) £ [k3 ,k5] if and only if g
2

(k) £ [k
6

,k
4 

, 

ii) g
2 

(k} = fg
1 

(k) if 

Now 

that 

* let S = [c,d] be the mob of class 2ii) with kernel 

= D and * * cS = C, dS 

if X £ C , 

if k £ [k3 ,k5 ] U [k
6

,k
4
], 

if k e; [k
5

, k
6

] . 

dx = f(x) 

ck= k3 
ck= cg1 (k) 

Let [a, C] = A and [d,b] = B be two I-mobs with identity elements a and 

b respectively and h 1 a continuous left invariant mapping of A onto 

[k3 ,k5 ] with h 1 (a) = k 5 , h 1 (c) = k 3 and h 2 a left invariant mapping of 

B onto [k4 ,k6] wi·th h 2 (b) = k
6

, h
2

(d) = k
4

. 

Define a multiplication • on S = [a, b] by 

if * x 1 ,x2 e: B or x 1 ,x2 e: S 

X o y 

XO k 

= Coy 

-1 
= h

1 
xh

1 
(k) 

X O k' = X O gl (k f) 

X o y 

X O k 

XO k' 

= do y 
-1 

= h 2 xh
2 

(k) 

=XO g2(k') 

e: A u B , 

. 

* ye:S uA,[k
5

,k
4
], kE 

We again omit the proof that Sis an interval mob with 

a o b = c, b o a = d and that S belongs to case 3. 

3) kl< c < k
2

. 

2 
a 

' 

Then let kl·< c < k < k < d < k and let A= a,k
3

] and B = [k
4

,b 3-_ 4- - 2 
be two Ik-mobs with unit a and band kernel k

1
,k

3 
and k

4
,k 
• 
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respectively. 

f 1 (k3 ) = k
3

, f
1

(k
4

) = c and f
2 

a continuous mapping of 

[k4 ,k2] with f 2 (k4) = k4 , f 2 (k3 ) = d. 

Define a multiplication o on S by 

x
1 

o x
2 

- xlx2 -
X 0 y - X o C -

yod y 0 X --
k o s = k 

x o k = xf1 (k) 

y·o k = yf
2

(k) 

if x1 ,x2 
( A 

X £ A, y (. B, 

or xl,x2 ( B, 

with 

into 

Then (S, o) is an inte1 .. val mob belonging to case 3 with a ob = c, 

boa = d. 

2.6.8. Theorem. Let S = [n,b be a mob belonging to case 3, 

then Se: S(c). 

Proof: 

• 

S . 2 b 2 b I ince a = a, = , we 1ave two I-semigroups. 

Suppose now c = ab c (k
2

,b). 

Then k 2 = ak2 and bab = ab, thus ba ¢ k1 ,k2 . 

If ba E (a,k1), then k1 c [k2 ,b]a which implies kl= xa, x c [k
2
,b. 

Hence k1 k2 = xak2 = xk2 = k 2 . Since k1 is a left zero of S, we have 

passing to the product dual of S we get the case 

• 

So we may assume ba £ (k2 ,b) and bab =ab= ba = c. 

Further1nore c 
2 

= abab = a 
2

b 
2 

= ab = c and hence c, b = B an I-semi-

group. 

Since Ab= [k1 ,c], we have k2 = xb, x EA. 
2 2 

Now let 8 = max {x Ix£ A, xb = k2}, then 8 > 6 and 0 b = 8k2 = 
2 

8bk2 = k 2 

Moreover if x e: [a,e] then xb £ [k2 ,c], hence xb = bxb = bx and 
b6 =Sb= k 2 . 

Thus for all x' e: 

f: A 

e ;k
1
] we have bx' = 

f(x) = xb is a left 

b0x' = k and the mapping 
2 

invariant mapping with 
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f(k1 ) = k 1 , f(6) = k 2 , f(a) = c,.which satisfies the conditions of 

construction 1). 

Suppose now c = ab E (a,k1), then ab= aha and thus bat K. 

If ba E (a,k1 ) we get the previous case by passing to the order dual 

Hence we may assume ba = d £ (k
2

,b). 
2 2 2 

of S. 

Since c = abab = ab = c, d = d, de= d, cd = c and ,d * = s is a 

mob belonging to case 2ii). 

Now let cS = [c,k3], dS = [k4 ,d 

Then < k5 < k6 < 

= k5 = k6. 

k
3 1 k

5
], k 3 E 

and suppose as= , bS = k
6
,b. 

= dk
5 

and thus 

a,c k and ck3 = 

c 3 ,k5 = k3. 

Analogously we have d k 6 ,k4 - k - 4 

d 3 ,k5 = k4. 

Consider the function gl: k5 ,k6] -+ 

g
2

(k) = bk. de:fined by g 1 (k) = ak, 

If ak E [k3, ks]' bak = dak = dbk = 

c(a,c k = ck, 

• 

If ak E 1 ,k
3
), bak = dak £ k 2 ,k

4
) and bk= dk = bak. 

hence 

By defining h 1 : [a, c] -+ [k3 , k 5 ] and h 2 : [d, b] -+ [k6 , k 4 ] through 

h 1 (x) = xk
5

, h
2

(y) = yk6 , it is easy to complete the verification 

that S E S ( c) , a < c < k
1 

. 

Finally let k 1 < c < k
2

. 

If aS = [a, k 3 , bS = [k4 , b and ba = d we have k 1 < c < k 3 < k 4 < d < k 2 . 

For if k = ak = bk, k = bak = abk = ba = ab. 

aS and bS are Ik-mobs with kernel k 1 ,k3 and k 4 ,k2 respectively. 

Further111ore the mappings f
1

: k3 ,k4 -+ [k1 ,k3 and f 2 : k 3 ,k4 k
4

,k
2 

• 

with f
1 

(k) = ak, f 2 (k) = bk, have the desired properties and it is, 

straightforward to verify that SE S(c), k 1 < C < k . 
2 

' 

Definition. Let T1 and T
2 

be submobs of an interval clan S. Two 

functions.f and g on T1 and T 2 respectively are called comultiplicative 

if and only if f(T
1

) = g(T
2

) and f(x1 ) = g(y
1
), f(x

2
) = g(y

2
), imply 

f(xlx2) = g(yly2). · 

Suppose now T1 = [a1 ,1] and T2 = [a2 ,1 , a 1 = 0 or i, a 2 = O or i, 
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isomorphic to either and let f be a continuous left invariant 

mapping of T 
1 

into S 

Then we can construct to each s ¢ 0, 

-- a 1 ,r, a 1 < r < 1, r # O. 

a
2 

< s < 1, a continuous left 

invariant mapping g of T
2 

into S such that g and fare comultipli~ative 
-1 [ and such that g g(a

2
) = a 2 ,s. 

2 
For let g(a2 ,s] = f[a1 ,r] = f(r). Since g ( ✓s) we must 

p/2n . 
Since the set { s I p=O, 1, ... ; n=l, 2, ... } is dense in s, 1 and g is 

p/2n P/2n 
order preserving with g{s } = f{r } dense in f(T1), we can extend 

g to a continuous function of T2 onto f(T1 ). 

Moreover it is clear that each g is completely defined by the set 
-1[ g g(a2) . 

If r = 0 then f is a one-to-one mapping of 0,1 into Sand we can 

find a comultiplicative continuous left invariant function g if and 

only if T2 is isomorphic to J
1

. 

In this Qase "g must b.e one-to-qne and g is completely defined by the 

cond"iti•orr• f(x) = g(y) 1 x c: T
1

, O < x < 1, y e: T
2

, O < y < 1. 

Now let A be any 1-semigr<>up, A C S, and let P be the set of all sub-

semigroups 

Let f be a 

ea , eci of A wi tl1 [ e , e ] isomorphic either to 
1 2 °1 a.2 

continuous left invariant mapping of A into Sand 

Pf= { ea ,eci 
1 2 

Let Ebe the set 

.. 
ea ,ea C P, f(ecx ) ~ f(ea ) }. 

1 2 1 2 
of all idempotents of A. 

J 1 or 

let 

2.6.9. Lemma. Let g be a continuous monotone mapping of A onto f(A) 

such that 

1) 

2) 

g(E) = f(E). 

t Pf, then there is a e 8 ,e 6 
If [e ,e a 1 a 
g(ea ) = f 

1 
and f I 

1 2 
e ), g(e 8 ) = f(e ), such that g 

Cll 2 a2 
e e 
a1' a2 

are comultiplicative. 

E P with 

I 

Then g is a left invariant mapping with f and g comultiplicative. 

Conversely, every left invariant mapping g with f and g comulti

plicative satisfies condition 1) and 2). 
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• 

Proof: 

Let g satisfy the conditions of the lemma. Define an order relation in 

A such that x 1x 2 < x 1 for all x
1

,x
2 

EA. 

Now let g-l g(x) ~ x and let y = inf {z I g(z) = g(x)}. 

Suppose y t E. Then y £ e 1 ,e2 e: P and g(e) ~ g(y). 

* * * 1 * Hence there is a (e1 ,e2 e: Pf with f(e1 ) = g(e
1
), f(e

2
) 

* * f I e 1 ,e2 ], g I (e1 ,e2 ] comultiplicative. 

* If g(y) = g(e
2

) = f(e
2
), 

* * 
n * then g(y) = f(e2 ) = g(y) hence g(y) = 

Now let z E (e1 ,e
2

] with f(z) = g{y) = g(x), z < e
2

. 

Since x > y, we have 

* * Let f(z) = g(t), z 

* But since zz < z we 

y = xt with y < t 

* < e
2

, then g(y) = 

* 

< e2. 

g(xt) = 

have g(y) = f(zz) = f(z) 

* f(zz) = f(z). 

Hence g -l (g (x)) = * = (e,x and g is left invariant. 

Now let g(x) £ f(E) and let g(x) = f(y). Then there exist e
1 

and 

with g(x) = g(e1 ) = f(e
2

) = f(y). 

If g(x1 ) = f(y1 ) and x 1 > e 1 , then y 1 > e 2 and we have g(xx
1

) = 

g(e1x 1 ) = g(e1 ) = f(e
2

) = f(e
2

y
1

) = f(yy
1
). 

If x 1 < e 1 , then y 1 < e 2 and g(xx1 ) = g(e
1

x
1

) = g(x
1

) = f(y
1

) = 

f(yle2) = f(yyl). 

If g(x) t f(E) and g(x) = f (y), tl1en x e:: [e
1

, e
2

] c: P and 

y E 

Further111ore 

* * CP with g(e) = f(e
1
), g(e

2
) = f(e

2
). 

f 1 * * 
g and fare comultiplicative on [e1 ,e

2
] and e

1
,e

2
. 

* Now let g(x
1

) = f(y
1

) 

f(y) = f(y1y). 

with x1 > e 2 , then y1 > e 2 and g(x
1
x) = g(x) = 

* 
• 

If x 1 < e 1 , then ·y1 < e 1 and g(x
1
x) = g~x

1
) = f(y

1
). = f(y

1
y). 

Let conversely g be a left invariant mapping with f and g comultipli-
n 

cative. Then if g(x) = f(e), we have g(x ) =. f(e) and thus g(e
1

) = f(e) 

with e 1 £ E, e 1 
If e ,e 

al a2 

Then 
1 2 

< x. Hence g(E) = f(E). 

= max {e I e EE, g(e) 

e £ E, g(e) = f(e )}. 
,CX.2 

. 

e: P and g and f comultiplicative 

= f(e )} 
al 

and 

• 

• 
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Construction: 

Let a< k1 ~ k 2 ~band define a multiplication on A= [a,k
1 

making 

it into an I-mob with identity a. We define a collection of mobs we 

call S(c,r) with c,r £ (a,b by extending the multiplication on A to S. 

< b k < r < c. , 2 - -
* . * 

1) k2 < c 

Let 8 and e be idempotents with a< e < e < k 
1 

and f a left in-

variant continuous mapping of A onto k 1 ,b with f(k
1

) = k
1

, f(8) = k
2

, 

* f(8) = c. 

Lett= max {x I f(x) = r, 

* Suppose f (x) = f(x), x £ 

* f (x) = C , X £ 

x £ A} 

* e ,e 
* [a,8] 

and e = max {x I x 
2 

= X , 

and let g be a left invariant continuous mapping of [a,8] 

* with f (x) = * g(x), x > e, and f - and g comultiplicative. 

Define a mul t ipl ica t ion • on S by 

x
1 

o x 2 - xlx2 xl ,x2 £ A - , • 
-1 [k1 ,b xl o yl - f(x

1 
f (y

1
) yl ,Y2 £ - ' , 

* -1 * 
x* £ [a, a] yl o X - f (y

1
)og(x) - , 

' 
y o X' -1 ) [8,k1 

f f (y1) 8 I . 
£ - X - , , 1 

Y1 o Y2 - y 1 o (tf-1 (y
2
)) - • 

* 1 ) k < c < 
2- -

X < t}. · 

onto 

* Let 8 and 8 be as in 1) and f a left invariant continuous mapping of 

A onto [k1 ,c 

t = max {x I 
with 

f(x) = r, x 

= k, f(8) 
1 

e: A} and e = max {x J x 

Let g be a left invariant continuous mapping of 

* 

2 
= X , X < 

a,8] onto 

with g(8) = c, g(x) = f(x), 8 > x > e and such that if -
* g (x) = g(x), x £ * e ,e 
* g (X) = C X £ * [a, e ] 

* then g and f I a,8 are comultiplicative. 

Define a multiplication o on S by· 

xl ~ x2 - xlx2 xl,x2 £ A - , , 

k 0 S - k k £ [kl ,k2] - , 

* -1 * * [a, e] Y1 o X - g g (yl)x Y1,Y2 £ k
2

,b X £ -
' , 

Y1 o x' - k2 x' £ 0,k2 - ' ' 

, 
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-- ' -1 
y 1 = f(x

1
) o g (y

1
) , 

y2 = 

2) k < c < b a < r < 
2 - - ' -

Let e* be an idempotent 
2 

<rand {x I x 
2 

= X ' X > r}, 

e
2 

= max {x j x = x , x < r}. 

Let f be a left invariant continuous mapping of A onto 

f(k1 ) = k 1 , 

r f-1 ( f ( e 1)) 

* Let f (x) = 

* 

* f(0 ) = C 

r = e . 
1 

f(x), 

f (x) = C 

and such that f one-to-one and 

and let 

* 
g be a left invariant mapping 

* g(x), x E [kl,e2] and f 

of A onto (k1 ,c] with 

f (x) = and g comultiplicative. 

Define a multiplication o on S by 

X o X - X x
2 xl,x2 e: A - , 

' 1 2 1 -1 
[ k1 , b] x 1 o yl - f (x1 f (y l) Y1,Y2 ~ - , 

-1 
yl o xl - f (y

1
) o g(x

1
) - , 

-1 -1 
yl o Y2 - f (y1 )f (y

2
)r. -

3 ) a < c < kl ; k2 .: r < b . kl ~ k 3 ~ k 4 ~ k
2 

. 
2 

x ~ c} . e 2 = max {x Ix = x ; X < C} . -
Let f be a continuous left invariant mapping of A onto [k2,b] with 

f(k1 ) = k2 , f(c) =rand such that f I e
1

,k
1 is one-to-one and 

[f-1 )1 f(e1 ) c = e
1

. 

g is a continuous left invariant mapping of A onto k
1

,k
3 

g(kl) = kl. 

with 

Leth be a continuous mapping of [k1 ,k
3

] onto [k
4

,k
2

] with h(k
1

) 
• such that hg(x) = h f(x) with 

[k2 , k4 . Furtheri11ore h has the following properties 

for x £ 

= k ' 2 
onto 

ii) if g(e1 ) ~ g(c) then h(x) ~ h(y); x £ (g(e
2

) ,k
3 

, y £ (g(e
1

) ,g(e
2

)) 

iii ) xi e: [g ( e 1 ) , g ( e 2 ) ) , i =l , 2 , th en 

h(x1 ) i h(x2 )~ x
1

· i x
2

• 
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Moreover let~ be a continuous mapping of [k3 ,k4] 

~(k3) = k3 , $(k4 ) = g(c) and define 

X O k' 
1 

xlx2 
= g(g-l(k')x) 

= x o q>(k
0

) 

* 1 -1 * 
k = x

1 
co h (k ) 

-1 
xl o Y1 = :xlcf (yl) 

k o S = k 
-1 --

x
1 

,x
2 

c.A 

k I ( [kl, k3] 

ko e: [k3,k4] 

* k t k 4 ,k2 ] 

-
y 1 'y 2 E. lk2 f b 

k E k 11 k
3 

y 1 ok=h(f (y
1
)ok) 

-1 -1 
y

1 
o y

2 
= f(f (y

1
)f (y

2
)c). 

4) kl < c < r :::_ k
2 

• 

in with 

Let k
1 
~ c < k

3 
~ k 4 < r ~ k

2 
and f a left invariant continuous mapping of 

A onto [k2 ,b] with f(k1 ) = k2 , g a continuous left invariant mapping 

exist continuous mappings 

: (k3,k4] 

: [k
1

, k
3 

kl,k3 

[k4, k2] 

[k4,k2] 

furthe11nore that there 

with h1 (k4 ) = c, h1 (k3 ) = k
3 

h2(kl) = k2 

h2g(x) = h;f(x). 

Define a multiplication o on S by 

= x2x2 
-1 

= g(g (k')x1 ) 

= x
1 

o hl (k•) 

= X o C 1 . 
x 1 o y

1 
= x

1 
o c 

k o S = k 
-1 

y 
1 

o x
1 

= f ( f (y 
1

) x
1

) 
-1 

y
1 

o k = h
2 

(f (y
1

) o k) 

Y1 o Y2 = yl o c. 

Y1 ,Y2 £ k 2 ,b 

k £ [k1 ,k2 

We omit the proof, that if Sc S(c,r) then S belongs to case 4. 

2.6.10. Theorem. Let S = [a,b] be a mob belonging to case 4, then 

S e: S(c,r). 
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Let (a,b 

kl-/- k2. 

Since a 
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be the maximal ideal of Sand let a be a left unit of S; 

2 
= a ' we have A an I-mob and 

i.e. k
2 

= xb, x £..A. 

it follows that 

Hence and in the same way we prove c = ha£ [k
2
,b. 

2 , which implies k
2 

= bk
1 

and Ob= Ok
2 

= 

= 8bk1 = k2 . Thus since O is maximal, O is an idempotent. 

Let e* = max { x I xb = ba, x t A} , then e * = e* 2 • 
2 

Moreover we have b e: [k
2

, ba J b C 

2 ' Now let t = max 

* t = max 

{xlxb 

{xjbx 

Then L < 0 and we have -

= b ; x t.. A j and 

= b
2

; x E. A } • 

for each X e: [a,o] 

- tx'b - tbx - b
2 x and - - -

, hence 

, 

2 
b < ba. 

bxb 

bxb 

= x'b2 = x'tb 

2 * = bxba =bx * bt * * bx * * t xbat 

2 2 
2 ♦b x = xb = bxb. 

xb - X - - -- - - -
* * Suppose now t -I: t 

' 
and let e < 0 be an idempotent with t > e > t , then - -

* b
2 e eb2 * * be - bt e - - - etb - tb - bt and we have e - t - - - - - - - • 

2 * Analogously we have if e - e < (,, t > e > t e - t and it follows that - -
- - J 

* * [e2, el]' if t ~ t t and t both • , in 

to J1 or J 2 . 

Furthermore we have for all x, 0 > x -
= xtb = xb. Now let f(x) = xb; g(x) 

a subsemigroup 

> e , 
- 1 
= bx 

* bx= bt x = 

* and f (x) = 

of A isomorphic 

2 2 
bx= xb --
xba; x £ 

Then and g are comultiplicative left invariant mappings of a,e 
onto 

Moreover we have be1 = 
2 

If 

If 

-
be1 ,then there • 1.s an x, 

2 
=be and 
* 1 

t = e1 . 
2 2 

• 

For each y £ have 2 b y 

e 2 < x < e
1 

with 

= byb = y*b2 = b2y* * and thus y = y, 

i.e. by= yb. 

Since for all z e: [ e
2

, e
1

) we have 

* t = t . It is now easy to verify 

Z C 

that S £ S ( c , r) 

have bz = zb and 

wi th k2 < r ~ c < b . 
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Now let a be a right unit of Sand let k < c = 
2-

Let 6= max {xlxb = k2 , x e:A} . 

If 

ab< b. -

-- and we have 

If , then we can prove in 

• bx; g : 

the same way as before that the 

mappings f : x -+xb; g : X -+ x + abx, X E a,e satisfy the 

* conditions of construction 1 and hence Se: S(c,r). 

Now 

* 

2 
suppose b e: , k2 = kl and let 

.2 * e = max {xlbx = ab , x £ A } ; b 6 = ab 6 
2 

=ab= ab; hence 

Moreover we have 

{x Ix 

= max {x Ix 

If e
1

..::,x
1

, x
2

<k
1 

Further1nore if bx 

• exists an x and 

* 2 Hence bx b = xb 

2 2 * b = bab = b e 
2 

=x, x>r} -
2 

= X , X < r} . -
and bx1 = bx2 , 

2 
= be1 , then bx 

** x such that xb 

2 ** = b X • 

2 * 
b > e . , which implies -

2 2 and hence then b x1 - b x
2 -

2 
and for each - b e1 - el, - -

* * bx •• - bx, X b = - • 

** If x >e
1

, then x = x and hence bx= xb. 

xl --
X£.A 

* = e . 

x2. 

there 

2 2 b2. Moreover we have b e1 = e 1 and b e 2 = If 

and we have 
2 2 ** 2 . ** 

e1 , then there is a 

for each x~e: e
2

,y), 

xb =bx =bx, 1.e. x = x and bx= xb. Since [e2 ,E\)c LJ 
n=l we have bx= xb, X > e2 • 

* f,g and f by Now define * f(x) = bx; g(x) = xb; f (x) = abx. 

* Then f * and g are comul tiplica ti ve with f (x) = g(x), x > e
2 

. 

n 
e2,y) 

To verify that Se:S(c,r) with a<r.::_k1 ,:: c<b is now mainly routine. 

Next we consider the case c = ab e: (a,k1 . 

We then haver= 

in construction 3). 

I f e1 < x 1 , x 2 ~ 1½_ 

Furthennore if bx 

Now let as= 

and bx1 = bx2 , then abx
1 

= be1 , then abx = abe1 = 

; bS = [k4 , b . 

e 1 and e 2 be defined as 

= abx 
2 

el. 

and hence x 1 = 

Since bk1 = k 2 and ak2 = kl we have kl .::_ k3 < k
2

, 

Now suppose k 4 < k
3

• Since bS = baS and bk
1 

= k
2 

and k < k < k 
1- 4- 2· 

there is a k £ as with 
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* k < k. bk= k 3 and 

But bk - k - 3 implies abk = and k 

Now * let f,g,h,h 

f(x) - bx -
g(x) - xk

3 -
h{k) - bk -
• h (y) - yk3 -

q>(k') - ak' -

and~ be defined by 

X e:A 

XEA 

k e: [k1 ,k3] 

y e: [k2, b] 
k' e: [k3,k4] • 

These mappings satisfy the conditions of construction 3 and elementary 

calculations show that Se: S(c,r). 

Finally let c = ab e: [k1 ,k2 ] . We then have 

If b2 <ab, then b
2 = ab2 = abb = ab. Hence 

2 
r = b = 

2 
ab< b . 

Furthe1·1nore if as 

k 4 = ak4 = abx= 

Let f,g,h1 ,h2 
f(x) = bx 

ab 

and 

--
= k . 

• 3 
h be 

, bS = , then k
4 

> k
3 

or else 

Hence kl _< c <_ k 3 _< k 4 < r < k 2 . 

g(x) = xk3 

h
1 

(k) = ak 

h
2

(k) = bk' 

* h2(y) = yk3 

X EA 

xtA 

defined by 

k e: [k3 ,k4 ] 

k' E. [k1 ,k3 ] 

ye: k 2 ,b] . 

It can be easily verified that in this case S e: S(c, r) with k 1 ~ c < r < k 2 . 

Notes 

The concept of nil-ideals was introduced by Numakura [1]. An am

plification of his results was given by Koch [l]. 0-simple mobs have 

been studied by many writers. Most of the results of section 2.2 are 

due to Clifford [2], Faucett, Koch, Numakura [3], Schwarz [10]. 

The results of section 2.3 seem to be new. 

Wallace (11], Faucett [1], Koch and Wallace [SJ, Mostert and 

Shields [8] have all contributed to the theory of connected mobs. The 

position of C-sets in compact mobs was studied by Wallace (8] and 

Hunter [7]. 
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I-semigroups were first studied by Faucett [2] who proved theorems 

2.5.1, 2.5.2, 2.5.5 - 2.5.7. Mostert and Shields {7] extended their 

results and gave a complete characterization of an I-semigroup. 

The contents of section 2.6 are an extension to mobs with S = s2 

of results by Cohen and Wade [4], Clifford (3], [4], Mostert and 

Shields (7], Philips [l]. 

• 
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III COMMUTATIVE SEMIGROUPS 

3.1. Monothetic semigroups 

Definition. A mob S is called monothetic if for some a E S the set 
n oo 

{a }n=l is dense in S. The element a is called a generator of S. 

In the group case it is customary to use both positive and negative 

powers to define monotheticity; i.e. a group G is monothetic if for 
n oo 

some g e: G the set {g } is dense in G. However, it can easily be seen 

that 

ment 

f(g) 

that 

n=-oo 
the two notions agree in a compact group. For let g be an ele

is dense in G. Since of the compact 

__ { n }00 

n oo 
group G such that {g} 

n=-00 
g is a compact subsemigroup of 

n=l 
f(g) is a compact subgroup of G. Hence 

' 

G, theorem 1.1.11 implies 
D OD 

{g } C f{g) i.e. 
n=- 0() 

f(g) = G. It is obvious that a monothetic mob is commutative. 

3 .. 1 .1·. Theorem. Let S be compact and monothetic with genera tor a. Then 

Proof: 

the cluster points of the sequence 
n o-i 

{a }n=l form a group K(a). 

K(a) is the minimal ideal of Sand S contains exactly one idem

potent, namely the unit of K(a). 

00 

Since K(a) = n 
n=l 

{ a i I i > n } , 1 .1 . 10 imp 1 i es that K (a) i s a compact -
group. 

Every idempotent e c S must be 
n oo 

a cluster point of {a }n=l' hence e £ K(a) 

and it follows that S contains exactly one idempotent. Now let K be 

the minimal ideal of S. Then K = H(e) since e is the only idempotent 

in Sand hence K(a) c H(e) = K. Now let b £ H(e) and suppose b no 
n ~ n 

cluster point of {a }n=l· Then b = a for 
n n 

some integer n and a e =a. 

For every neighbourhood W(b) there is a neighbourhood V(e) such that 

b. V(e) C W(b). Hence anV(e) C W(b). 

Since V(e) contains arbitrarily high powers of a, W(b) contains arbi

trarily high powers of a and b £ K(a). Thus K = K(a) = H(e). 
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3.1.2. Theorem. If S = f(a) is compact, then K is a monothetic group. 

Proof: 
n oo 

Since {a }n=l is dense ins, the set 
n (lQ 

{a e}n=l 
n oo 

= {(ae) }n=l is dense 

in Se= K. Hence K is monothetic. 

Corollary. If u is a unit for the compact monothetic mob S, then Sis 

a group. 

For in this case we have K = H{u) =usu= S. 

3.1.3. Theorem. A monothetic mob with unit u is either a finite group 

or is dense in itself. 

Proof: 

Let S = f(a). If 
m n 

there are integers m and n with a =a, then Sis 

finite and hence compact and the corollary implies that Sis a group. 

In the other case if some elements c Sis an isolated point, then 
m 

s = a for some integer m. 
n co 

Using the fact that {a }n=l clusters at u, 
m m 

{an+m} 00 

we conclude that n=l clusters at ua =a. 

Corollary. Let S be compact and monothetic with generator a. If a is 

not an isolated point, then Sis a topological group. 

Proof: 

Since 
n 00 

{a }n=l clusters at a we have r(a) = K(a) = s. 

3.1.4. Theorem. Let S be a compact monothetic mob with two distinct 

generators. Then Sis a compact group. 

Proof: 

Let S = r(a) = f(b), a i b. If either a orb is not an isolated point, 

then Sis a group by the preceding corollary. 

If both a and bare isolated, then a= bp and b = aq for some inte

gers p and q. Hence a= aPQ where pq > 1 and it follows from the pre

ceding corollary that Sis a group. 

The structure of finite monothetic semigroups is quite simple. If S 

is such a mob, then S = {a,a2 ,a
3

, ... } and there must be repetition 
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among the powers of a. 

Let p be the smallest positive integer such that ap = aq, 1 < q < p. 

Let r be the unique integer such that q < r = n(p-q) < p-1. Then the set 

{ q q+l p-1 . . r 
a ,a , ... ,a } =His a cyclic group with unit element a . 

2 q-1 
Furthermore S = H U { a, a , ... , a } . 

3.1.5. Theorem. The only possible algebraic and topological structures 

for the compact monothetic mob S = f(a) are the following: 

Proof: 

1) All powers of a lie in H(e) = K(a), in which case Sis a 

compact monothetic group. 

2) There is a positive integer q such that a,a2 , ... ,aq lie out-
. q+l q+2 

side H(e) and a ,a , ... all lie in H(e). In this case 
2 q 2 q S, H(e) = {a,a , ... ,a} and all elements a,a , . .. ,a are 

isolated points in S. 

3) All powers of a lie outside H(e). In this case S, H(e) 
2 

= {a,a , ... } and all powers of a are isolated points. 

(1) and (3) are trivial. 

(2) If a is not in H(e) = K(a) and some power aP £ H(e), then we have 

ap+r = ap-ar E H{e), since H(e) is an ideal. Hence there is a greatest 

power a q such that a q t H(e). 

3 .1 . 6 . Theorem. Let H be a compact monotheti c grou1) with unit e and 

let b £ H be such that {bn}:=l is dense in H. 

Let q be a positive integer and let a,a
2

, ..• ,aq be q distinct 

objects not in H. Then there is one and only one way to make 

Proof: 

S =HU {a,a2 , ... ,aq} into a compact monothetic mob such that 

1) H with its given topology and multiplication is an ideal of 

s .. 

2) 
i J. i+j 

a .a = a i+j < q. 

3) a.aq F. H. 

Define a multiplication in S by the rules 
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• • 
l. 

b
1 x a X --

i • for 
xb1 X C H, i=l, 2, .... , q 

xa --
• • • • 
l. .aJ 1+J 

i+j a - a <q -
• • 

bi+j 1 .aJ i+j a - >q -
xy is as in H for x,y cH. 

Let S be topologized so that 

its original topology. 

(*) 

2 q 
a,a , ... ,a are isolated points and H has 

Since the continuity of multiplication is obvious, the fact that Sis 

a mob is established simply by verifying that the associative law 

holds in all cases. Further111ore S evidently satisfies the conditions 

(1) ➔ (3). 

Now let S = 
2 q 

H U {a, a , ... , a } be a mob which satisfies the conditions 

of the theorem. 

Since et Hand Han ideal, we have ea= (ea)e = ae c H. Let b = ae. 
i i i i i 

Then for x c Hand i <q we have ax= a (ex)= (a e)x = (ae) x =bx 

and analogously xa1 = x(ea) 1 = xbi. Next a.aq c H implies that aq+l£ H 

and hence aq+le = (ae)q+l = bq+l_ By finite induction we infer that 
r r 

a = b for all r >q. Thus the multiplication in Sis that given by <•> 
with b = ae. This shows that the algebraic structure of Sis unique. 

Furthe1,r,ore also the topological structure is unique. For since H is 

compact it must be closed in S a11cl as S \ H is finite and open, the 
2 q 

points a,a , ... ,a must all be isolated. 

We now prove that with the multiplication defined by <•) S = f(a). 
• • 

Since ae =band a 1 = b
1 

for i >q it suffices to show that 

{bq+l,bq+2, ... } is dense in H. 
q+l q+2 

If His finite, then {b ,b , ... } = H. 

If His infinite, then since 

the finite set {b,b2 , ... ,bq} 

H has no isolated points, the removal of 
n oo 

from fb }n=l does not affect its proper-

ty of being everywhere dense in H. 

3.1.7. Theorem. Let H be a compact monothetic group with unite and 

l t {bn}m b d . H e n=l e ense 1n . 

Let {an}m 
n=l be a countably infinite set of distinct elements 

not in H. 
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Then there is one and only one way to make S =HU 

a compact monothetic mob, such that 

{an }cxi 
n=l 

into 

1) H with its given multiplication and topology is an ideal of 

s 

= a 
i+j 

i,j = 1,2,3, ... 

Proof: 

Define a multiplication in S by the rules 
• 
l. a X 

• 
1 

xa 
for x £ H and i =1 , 2 , .•. 

i+j 
= a • • 

l. ' J = 1,2,3, ... 
' 

xy is as in H for x,y £ H. 

Checking the associative law is again a routine matter. Now let S be 
• 

topologized as follows. Every point a 1 is isolated. For x EH and an 

arbitrary neighbourhood U(x) in H define u*(x) as u*(x) = U(x) U{aili>n 
. *n n 

and b 1 
£ U(x)} . The family of all sets U (x) for all neighbourhoods 

n 
U(x) in Hand all positive integers n is a complete family of neigh-

bourhoods of x in S. 

It is easy to see that S with this topology is a Hausdorff space. 

We now check the continuity of multiplication in S. 
i j i+j 

Given a product a .a = a , then multiplication is certainly con-

tinuous 
i j i j 

at a ,a as a ,a are isolated points. 
• 

* Next consider a product xy where x,y c H. Let U be a neighbourhood 
n 

of xy. Then 

• Hence V (x) 
p 

there are V{x) and W(y) in H such 

if p+q > n. 

that V(x).W(y) C U(xy). 

• • W (y) C U (xy) 
q n • • 

Finally we consider a product 
1 

a X 
l. 

= b x, where x E H. Let • u 
n 

be any 
• . l. 

neighbourhood of bx. 

Since multiplication is continuous in H, there is a neighbourhood 
• 
l. 

V(x) of x in H. such that b V(x) C U. Further1r1ore 
• • r 

b e: V(x) and b 1 . br = bi+r € U. Thus 

Hence Sis a topological semigroup. 

i+r 
a £ * u 

n 
and 

then r * if a £ V (x), 
. n 
l. • * a V (x) c U • 

n n 

Furthern1ore S is compact. For let C be any open covering of S. Then 

• every x £His contained in some U (x) £ C. Hence the neighbourhoods 
n 

U(x) fonn an open covering of H. 

Let U(x1 ), ... ,U(xr) be a finite subcovering of Hand let 
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* * U (x
1
), ... ,U (x) be the corresponding neighbourhoods 

n1 n r r r . 

r J= 

This implies that the complement 

C admits a finite subcovering. 

* U (x .) 
n. J r 

J 

i > n. 

* U {x.) 
n. J 

J 

in C. 

is finite and 

Moreover we have S = r(a) since every neighbourhood in S contains an 

element 
i 

a . 

Now let S be a compact monothetic mob S 

satisfy the conditions (1) and (2). 

2 
=HU {a,a , .•. },and let S 

Then it can be shown just as in 3.1.6 that the algebraic structure of 

Sis unique and that the multiplication in S must be that given by<•> 

with b = ae. 
• We now show that the topological structure is unique. Let T be the 

topology for S described above, and let Shave a topology T. 

Since H is 
n oo 

of {a }n=l 

the minimal ideal of S, H must be the set of cluster points 
• 

and hence every point a 1
, i=l,2, ... must be isolated. 

Now let Ube an arbitrary neighbourhood of x in H. Then· there is a 

neighbourhood U' in S such that U'n H = U and there is a V(x} in S 

such that V(x)e c. U'. 

Since V(x)e c: H we have V(x)e c U. 
- . . . . 

In particular if a
1 e: V(x), then b

1 
= a 1

ecU and a 1 e: U u{a1 
• 

bl.e: U} • 

• We 
2 n-1 

Moreover for every integer n >l, we have 

• V(x)\{a,a , ... ,a }cu. 
n 

Hence every T-neighbourhood of x contains 

a T-neighbourhood. 

* Consequently every T -open set is also T~open, and the identity mapping 

of S onto itself is continuous in passing from the T topology to the 
* • 

T topology. However, since Sis compact Hausdorff in both T and T 
• topology, this mapping is a homeomorphism and T = T. 

We can now summarize the preceding constructions. 

Every compact monothetic mob Sis one of the following types. 

1) Sis a compact monothetic group 

2) S consists of an arbitrary compact monothetic group H, with gener-

ating element b, 

which ae =band 

and a finite 
q+l 

a £ H. The 

number of 1 t 2 q f e emen s a,a , ... ,a, or 

algebraic and topological structure 

• 
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' 

are totally deterrnined by q and the choice of b, as described in 

3.1.6. 

3) S consists of an arbitrary compact monothetic group H, with gener

ating element b, and a countably infinite submob {a,a2 , ... } for 

which ae = b. 

The algebraic and topological sutructe of Sare totally determined 

by the choice of bas described in 3.1.7. 

3.1.8. Lemma. Let S be a locally compact mob with a compact kernel 

Ki 0; then for any open V containing K, there is an open set J 

with Kc Jc V and J an open submob of S. 

Proof: 

Let U be an open set having compact closure with Kc.Uc.Uc. V. Since 

KU = Kc U, w.a may find an open set W with Kc We U and WU c U. Since 
2 3 

W c U, we have W c U, W c U, . • • and t1ence 
·--

U ~cu. 
n 

Further111ore U w11 is a compact sullmob of S. 
n ---

Now let J = J (W) 
0 

be the largest ideal of Uw° contained in W. Then J 
n 

is a submob of Sand J is open (1 . 2. 2) . Furthe1"1r1ore, since K c W we have 

K CJ. 

3.1.9. Theorem. Let S be a locall)· compact monothetic mob, and suppose 

S has a kernel K ~ 0; thc11 S is compact. 

Proof: 

Since Sis commutative, K is the unique minimal left and minimal right 

ideal, hence K is a group. Now let e be the unit of K, then K = Se and 

is a retract of S. Hence K is locally compact, and it follows that K 

is a topological group (1.1.8). 

Next let a be a generator of s, then r(a) =Sand hence r(ae) = Se. 

Thus K is monothetic with generator ae. 

Then K must be either compact or a copy of the group of integers. 

Since the group of integers is not generated by the positive powers of 

an element, K is compact. 

Lemma 3.1.8 implies the existence of an open mob J with compact closure 

containing K. 

Some power of a say 
r a lies • in 

r 
J, hence r ( a ) c J and is compact. 



Since S = r(a) = {ai } r 
i=l 

3.2. Ideals in commutative mobs 
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is compact. 

We have seen in 1.2, that if Sis a commutative compact mob, then K 

is a comp,act topological group. An analogous result holds for locally 

compact commutative mobs. 

3.2.1. Theorem. Let S be a locally compact commutative mob which con

tains a minimal ideal K. Then K is a locally compact topologic

al group. 

Proof: 

Since K is the unique minimal left and minimal right ideal K =Ka= aK 

for every a e: K. Hence K is a group. Further111ore K = Se, with 
2 

e = e EK, and hence K is a retract of S, thus closed and locally com-

pact. This shows that K is a topological group. 

• Now let e be the identi t)r of K. Then we have for every e E: E, 
* • 

ee = e e = e. Thus e is the minimal idempotent of S, and it follows 

that in a conmiuta ti ve compact mob there always exists a unique minimal 

idempotent. 

Now let S be a mob and let Z = {xlxs = sx for alls ES} be the centre 

of S. The continuity of multiplication implies that if Z i ~ then z is 

a closed submob of S. 
• 

Definition. A mob S is cal led no1·n1al if for every x £ S we have xS = Sx. 

3.2.2. Lemma. In a no1mal mob S the set of all idempotents E is con-

tained in the centre Z of S. 

Proof: 

Let e e: E, then es= Se implies that es
1 

= s
2

e and s
1

e = es
3 

for each 

s 1 ES and suitably chosen s
2

,s
3 

c S. 

But then (es1 )e = s 2e = e(s1e) = es
3

, and hence es
1 

= s
1

e. 

3.2.3 .. Lemma. Let S be 
2 

e 1 = e 1 E f(a), 

a compact mob with E c Z and let a, b e: S. If 
2 

e2 = e2 E f(b) then e e E r(ab). 
1 2 
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Proof: 

It follows from 1.1.4 that e = e
1

e
2 

L 

similarly 

According 

ae2 e = ae 

Now let f 

that e 1 e 2 ~ f(e
1
b). 

to 1.1.14 we have 

£ H(e), e1 be = eb 
2 

= f £ f(ab). Since fe E 

Moreover if xis the inverse of abf 

C H ( e) , I, (el b) e C H ( e) 

Thus aeeb = abe £ H(e). 

and hence 

{ n }00 
(ab) e n=l c H(e) we have fe = e. 

in the group H(f) then abfx = abx 

• 

= f. This relation implies that f = 2 2 2 
f = fabx = afbx = a (bx) , and by 

n 11 
induction f = a (bx) for every integer n > 1. 

* * n m 
Thus f = e 1 b , with b E {(bx) \i=l . We have therefore e

1
f = f and 

similarly e 2 f = f. These relations together with fe = fe
1

e
2 

= 

imply f = e
1 

e
2 

. 

This proves lemma 3.2.3. 

Now let S be compact and let P = {x]x £ S, c c f'(x)}. Then 
a ~ 

P f\ Pa = 0 if e 
a i.• a 

i e and S 
Q 

can be written as tl1e class sum of the . ' 
disjoint sets P. 

a 
In general 

, 

P neecl not be a sL1bmob of S. However if 
a 

S satisfies the condition of lemma 3.2.3 {this is for instance the 

case if Sis commutative) then each set P is a submob of S. 
Cl 

3.2.4. Theorem. Let S be a compact mob with E c Z. Then Sis the union 

Proof: 

of disjoint submobs 

idempotent. 

P , where each P 
Ct fl 

contains exactly one 

Let a, be: P , then e e: r (a), e f(b) ancl according to the pre,1ious 
a a a 

lemma we have e = e e E ~ab). Thus ab£ P. Moreover it is clear 
a. o n o 

that each P contains exactly one idempotent which proves our theorem. 
Cl 

3.2.5. Lemma. Let S be a compact mob and let H(e) be the maximal sub
a 

group containing the idempotent e . Then H(e) c P and 
a a. a 

H(e) =Pe= e P. 
a a. a ex a 

Proof! 

Let x E H(e ) . Then since H(e ) is compact, we have r (x) c H (e
0
), 

ex a 
which implies e e: r (x) . Thus x c P . a a. 
Furthe11nore we have for each x £ P Cl, f(x) e C 

a 
H(e ) , hence 

0. 
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X 0. 
and thus P e c a a H(e ). Since H(e )c P it follows 

CL a 
that P~e = H(e ). 

u. a a 
In the same way we can prove H(e) = e P. 

Cl Cl Cl 

Corollary. Since each H(e) 
Cl 

Furthe1·1nore if e 
a is a left 

and Pcx is a compact group. 

is closed we have H(e) 
a 

or right identity of S, 

3.2.6. Lemma. If Sis a compact mob and p " a 
e..._ € P \ P 
~ Cl a 

Proof: 

and 
' 

p (\ 
Cl 

p = 0. p 

= e P = 
Cl a 

then P 
Cl 

e P . 
0. Cl 

= H(e ) 
Cl 

Let a e: p (\ p 
u p and let U and V be neighbourhoods of n 

a and a respect-
n 

ively such that UC V, 11 > 1. Let b t.: UAP n 
. Then b £ f(b) and thus 

- Cl 

f (bn) c f (b). Hence e £. I' (b11 ) , whicl1 impli cs 
a 

n 
b £ p . 

CL -Since we also have bn £ V it follows n 
that a £ P. Thus f(a)c P and 

- a Cl 

we have e, £ f(a)c P . Since e, e P it follows that e e: P \ P . 
l:i 0. P U ~"'.l Cl Cl 

The preceding corollary implies that e c £ H(c )--t thus e e. = e e e 
2 Clp o. a'5 a Ba 

and (e ek)(e ek) = e e = e0 ea. Since H(e) contains only one idem-a..., Clµ 0 ::-- µ u. 
potent we have e e. = e and analogously e e = c . 

u p u ~ a a -
Suppose now that P r. P. i 0, tl1cn it \Vould follow in the same way that 

Cl I:, 

e e = e.e = e,, i.e. e = e., a contradiction. Clb jja p Ct. p 

3.2.7. Theorem. If eu is a maximal idempotent of the com1Jact mob S, 

then P is closed. 
Cl 

Proof: 

Let x c 

Since e 
a 

Pa fl PP .. Then eb c Pa. and it follows from lemma 3.2 .6 that 

= e 
a 

• 
1. .e. e < 

a-
e. .. p 

is maximal , ea. = eb and the theorem is proved. 

3.2.8. Theorem. Let S be a compact mob and let Pa = S. Then the kernel 

K of S is eq ua 1 to H ( ~ ) . 

Proof: . 

Since Pr..: () P ;t. 0 for each e B we have e e. = 
µ Cl Cl ~ 

minimal idempotent of Sand it follows that 

e e = e . 
b a. Cl 

K = H(e ). 
(). 

Hence e 
a 

• 1S the 
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3.2.9. Theorem. ·Every open prime ideal P oJ. a compact commutative mob 

Sis a union of subsemigroups P
0

• 

Proof: 

Pf\Pa. Then since P
0 

is a mob we have xea£ Pf'\ Pa. On the 

other hand xe £Pe = H(e ), which implies the existence of an ele-
a a a a 

Let Xe: 

ment * X * such that x xe = e. Hence e E P. 
a o. a 

Next let ye: P n 
Cl 

(S '\ P) .. Si nee S, P is a closed submob, we have 

f (y) C S' P and thus 

Thus if P n P -1:. 0, 
a 

e e: S , P, a contradiction. 
Cl 

then P c. P i . e. P =- U P . a a a 

3.2.10. Theorem. If e is a non-minimal idempotent of the compact com
a 

mutative mob Sp tl1en 

J (S, { c } ) = U {P I c e 
o o b u b 

is an open prime ideal of S. 

Proof; 

c e. e: E } 
(l p 

Theorem 1 . 5. 5 implies tl1a t J ( S \. l c } ) is an open prime ideal of S. 
o a 

Furthe1·111ore we have for an~, idempotent c e: J (S \.. {e }) , 
p o a 

ea e b E J
O 

( S \ {ea} ) and thus e 
O 

c P 

Hence J ( S \ { e } c U { P. I e c 
o a p a o 

Now let e ae~ i e Cl , then for any 

• would imply since e 0 eye6 
- e e - a a 

e . 
(l 

e , e c E} = P. 
Cl Lj 

idempotent e 
y 

e: E, 

C e - e e - e - - • 
~ a y b (l 

we have 

Thus if 

e e e
8 

~ e 
Cl y 

X £ P, SES 

a' 

with e~ E f(x) and e e:: r(s) t then eye b £ r(sx) with e e e
6 
~ e • Hence 

sx e: P and P 

This implies 

y 
is an ideal not containing e . 

a 
that PC J (S, {e }) and the theorem 

0 (l 

Ci. y a 

is proved. 

Since by 1.5.4 every open prime ideal of S has the form 

we have also that every open prime ideal of the compact 

J (S'\. {e }) 
o a 

mob S has the form U {P P I e 
0

e b ~ ea' 

J (S, {e }) = U {P le e #: 
o a y a y 

For if and eyeB = el$, then e e = e 
a 6 a 

Hence J (S' {e } ) C Jo(S\ {eb} ) . 
o a 

If on the other hand J (S \ {e } ) C. 
0 a 

commutative 

e < e,.; then a-µ 

e , e c E} c U{ P le. e ~ 
a y y b y 

e e ef> - e e - eaeB - e - - -y a. y a 

J (S' {e ,. } 
0 ~ 

) ' then 

• a 

E}. 
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e t S \ J (S \. { e } ) and hence e e. = e i.e. e .2 e . 
b o a. ab a a c. 

Corollary. If J (S '\ {e } ) and J (S \. { e"'}) are two open prime ideals 
o a o µ 

of the compact commutative mob S, then 

J (S \. {e e ,}) c J (S \ { e }) n J (S \.{ e. }) , and there does not exist 
o Cl6 O Cl O b 

an open prime ideal P of S with J
O 

(S \. { e 
O 

e 
6

}) c. P C. J O (S \ {ea}) " 

J ( S '\ { e B } ) with P # J { S \ { e e } ) . 
o · o a b 

Proof: 
• 

Since eaeS, _<er.and e e
8

< e we have J (S \ { e e.})c J cs, {e }) A 
..,. a - b o nb o a 

J
0
(s,{e

8
}). Next let 

Pc J (S '\. { e } ) A 
0 ex. 

P = J ( S \ { e } } wi th 
0 y 

e e <e < e , e e, < e < e u. 
Q. t,- y - U Cl p - y - µ 

Then 

Thus 

e < 

e e = e and e e = 
y Cl y y B 

e which implies e e e = e e = e . Hence 
y y<1t:5 yb y 

y -
e et.; • Since e e < e 

a IJ <l t)- Y 
we have e = e e and P = J (S \ { e e } ) . 

y ab o a.B 

Definition. A mob S is called complete if every element a t S has roots 

of every degree > 0 in S, i. c. i 1· .for every a £ S and n > 0 there exists 

a ES with a= 
n 

n 
a . 

n 

3.2.ll. Theorem. In a compact conunutative mob S the set of· elements 

having roots of ever~' degree > 0 forms a complete compact sub

mob. 

Let S = {anla e: S} 
n n = 1,2, ... 

Then S is closed since Sis compact and for a finite number of n S 's 
n 

say S , .... S n ~ n. 
1 K 

we have 

CIO 

Hence (\ S 
n=l n 

• = s 

k 
.n 
i=l 

s . 
n. 

1 

• Furthermore S is a closed submob of S since each s 
n 

is a closed sub-

mob of S. 
* 2 3 Now let a£ S, then a= a = a = 2 3 ... 

Let A = {xjx £ S, xn = a}. Then A is 
fut k n • 

a = a wi th a k£ A n Sk. Hence A n S 
nk n n n 

for suitable chosen a. E S. 
1 

closed and A " s '#- 0 since 
n * k 

i 0. Thus a£ S has roots of 

d · s* s* 1 · every egree 1n . a so is a compact complete submob of S. 
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• Moreover it is clear that S the set of elements having roots of 

every degree .. 

3.2.12. Theorem. Let S be a complete compact mob and e an idempotent 

from S. Then H(e) is a complete compact group. 

Proof: 

Let a c H(e) and a= 

e e: f(a) c r(a ). 
n 

n 
a . 

n 

Hence a e £ H(e) and a e 
n n 

This proves that H(e) is 

Then since e e: f(a) and a c 

= ea e. Thus (a e)n 
n n 

a complete group. 

n 
= a e = n 

r(a) 
n 

we have 

ae = a. 

If U is an open subset of a mob Sand x in S, then xU need not be open 

in S. If Sis a compact connected commutative mob with this property, 

then it follows that Sis a group. However the following theorem holds. 

3 . 2 .13. Theorem. Let S be a corn.mu ta ti ve mob wi t11 i den ti t)1 u. Then 

there is a stronger topology u11der wl1ic!1 S is a mob such that 
' 

1) if U is open in Sand x £ S, tl1cn xU open in S 

2) the neighbourhoods at u are tl1c same u11der these two topo

logies. 

Proof: 

Let T
1 

denote the given 

open sets at u. Let B = 

topology of Sand let {V} A be a basis of 
(), a £ 

{xV I x t. S, u. c A}, and define the topology 
0. 

T
2

on S by requiring that B be an open basis. We now verify that Bis 

really a basis for a topology. Let xV, yV £ B 
a. b 

and let z c xVAyV . 
a. B 

We then have z - xv - 1 v 1 e; Vu and v 2 = yv
2 

where £ V • 
L1 

The continuity 

such that 

of multiplication implies the existence of sets V and 
y 

we have zV c zV n 
£ y 

Hence given xVa' yV$ 

that zV c xV f"\ yV. , 
e: 0. p 

gy. • 

and v2 V0 c v
8

. Choosing VE 

xv
1

V f1 yv
2

V c xV n yV . 
y 6 a ~ 

such that V £ c Vy n V 0 

£ B with z £ xVan yV
0

, there exists a V£ such 

which shows that Bis an open basis for a topolo-

We now show that multiplication is continuous in the T2-topology. 
2 

Let a,b 

bV 
B 

e: Sand ab e: abV. 
2 a 

= abV c abV . 
t:s a 

If v
8 

is such that V p C V Ct , then 



Furthermore T is 
2 

there is a V such 
a 

The T2 -topology of 

• 
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stronger than T1 , because if U E. T1 and a e: 

that av c u. 
a 

S obviously satisfies condition 1) and 2). 

U, then 

Definition. We shall call a mob S embeddable in a topological group G, 

if there is a submob S' of G such that S' is topologically isomorphic 

to S. 

3.2.14. Theorem. Let S be a commutative mob with cancellation. If S 

has the property that U open implies au open for each subset U 

of Sand each a£ S, then Sis embeddable in a topological. 

group. 

Pro-of: 

Let fl be the relation in S x S defined by (a, b) ~(c, d) if and only if 

ad= be. The fact that Sis commutative and is a mob with cancellation 

implies that R is an equivalence relation. 

Let G = S x S~ be the family of equivalence classes with the quotient 

top,ology. 

Each equivalence_class A is a closed set ot· S )( S. f"'or let (a,b) e: A 

and let ( c, d) E: A. If ad i be, th en there are neighbourhoods U ( c) and 

U{d) "such that aU(d) n bU(c) = 0. Hence for all (x,y) c U(c) x U(d) we 

have ay #- bx, i.e. U(c) x U(d) n A = 0, a contradiction. 

Let P be the projection of S x S on to G. We now show that P is open. 

Let (a, b) £ S x S and let (a, b) £ U{a) x U(b) = U with U(a) and U(b) open. 
• -1 • t:J 

Let U = P (P(U)) and {x,y) c: U . Then (x,y) .n(c,d), (c,d) e: U and we 

have (x,y)fl(c,d),i(xc,yc) = (xc,xd). 

Furthe1more let U(x) = {x* lx*c t xU(a)} and 

\ 

Then 

* y C = 

Hence 

* * u (y) = { y I y C €: xu (b)} . 

• •• • U(x) and U(y) a·re open and if (x ,Y ) E: U(x) x U(y), then x c = xp, 

xq, (p,q) e: U(a) >< U(b). 

* * D t::>· * (x ,Y )Jl(xp,xq)7\{p,q) and U(x)x U(y)c U. Since pis open and 

the relation~ is closed, G is a Hausdorff space. 

Moreover G is a group if we define multiplication by A•B= c, where C 

is the equivalence class of (a1 a 2
, b

1 
b

2
) with (a

1
, b

1
) e: A, (a

2
, b

2
) e: B. 
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We now show that G is a topological group. 

Let U be a neighbourhood of C = A • B. Then there are neighbourhoods 

U(a1 a 2 ) and U(b1 b 2 ) with P(U(a1 a 2 )x U(b1 b
2
))c U. Let U(a

1
),U(a

2
),U(b

1
) 

and U(b2 ) be such that U(a1 ) U(a2 ) c U(a
1 

a
2

) and U(b
1

) U(b
2

) c U(b
1 

b
2
). 

Hence P(U(a
1

) x U(b
1

)) P(U(a
2

) x U(b
2
))c U. Since Pis open 

P(U(a1 ) x U(b1 )) and P(U(a
2

) x U(b
2
)) are open neighbourhoods of A and B 

respectively, and it follows that multiplication is continuous. 
-1 -1 

Since P(U(a) x U{b)) = P(U(b) x U(a)) , the mapping C -+ C is contin-

uous and hence G is topological. 

Now let a : S + G be defined by o.(a) = P(a2 ,a). Then a is an isomor

phism since Sis commutative and satisfies the cancellation law. 

Furthe1,nore o. is open since a(U(a)) = P(U(a) U(a) x U(a)) and o. is con

tinuous since if V(a) V(a) c U(a2
) and W(a) c V(a) n U(a), then 

2 a(W(a)) ~ P( W(a)W(a) x W(a)) c P(U(a )x U(a)). 

Hence a is topological and the theorem is proved. 

3. 3. Characters of commu ta ti ve n1obs 

In this section S will alwa)rs denote a commutative mob . 
• 

Definition. Let S be a mob and let x be a complex valued continuous 

function on S such that 

x(ab) = x<a) x(b) fo1· all a,b c S. 

If X is also bounded and not identically zero, x is called a semi

character of S. 

If the absolute value 

of S. 

I x(a) I = 1 for all a e:: S, x is called a character 

If semicharacters of S, the product Xo.XB is defined 

as the ordinary pointwise product 

X X -- (a) = 
o. b 

is either a semicharacter 

if e is an idempotent e ES, then 

x(e) = o or x(e) = 1. 

x (a) Xa(a) • 
O'. .. .., 

of Sor is identically zero. Moreover 
. ' 

x(e
2

) = x(e)x(e) = x(e) implies 
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In particular, if s has an identity u, then x (u) = 1 for a11 semi

characters of s. Hence in this case the set of all semi characters is 

a com.utati ve semi group S. The set of al 1 characters s* of S clearly 

is an abelian group with identity element the unit character x1 and 
-1 

X = X• 

3. 3 .1 .. Theorena. Let X be a semi character of Sand let 

I (x) - {al lx<a)\< 1, a £ S} - • 

B{x) = {al lx(a)I= 1 , a £ S} . ' 

Then S = I <x) u B(x), while I (x) is an open prime ideal of S 

if I (x) .J. 0 and B(x) a closed submob if B(x) -/:. 0. 

Proof: 

for at S, Suppose 

lx<a>ln;:: 
= c > 1. Then for every integer n we have 

' 

n = C >C > 1. 

leads to a contradiction. Hence 

Since x is bounded on S this relation 

l X (a) I _: 1 for al 1 a £ S and 

S :.:: I (X) U B(X). Next suppose I (x) -#. 0 and let a e: I (x) . Then 
• 

lx<as)l = lx<a>I lx<s>I ~ lx<a)I< 1. 

Furthermore if ab e: I ( X), then l x(ab)I < 1 and hence lx(a)l< 1 or 

lx<b)I< 1 i .. e. I ( X) is a ' prime ideal of s. 
Since the function I X I • continuous I ( x) • Moreover 1S 1S open. 

B( x) = S '\ I ( x) and it follows that B( x> is a closed submob of S. 

Remark. 

It fo11.ows from. 3.2.9 that if S is compact, both I (x) and B(x) are 

11nioas of submobs P where a . 

P = {xfx £ S, e a o. 
2 

= e 
Cl 

c r (x)} . 

For every 

p0tent e,8 

Thus I(x) 

Both sets 

idempotent e £ I <x> we 
a 

have x(e) = 
a 

0. and for every idem-

£ B(X) we have x(et::>) = 1. 

== U{ P l x (e ) = O} and B(x) a a = U { P I X (e ) = 
a a 

I (x) and B(x) may be empty. I(x) is empty if x is a char-

aoter of S. 

Let S be the multiplicative semigroup of real n1.Jmbers x 
I 

O < x < ½ with 

the usual topology. Then if. x is the semi character defined by x(x) = x 
' 

• 

• 

• 

• 
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we have B(x) = 0. In this case, we have in particular B(x) = 0 for all 

semicharacters xi x1 . 

.... 
3.3.2. Lemma. Let x £Sand define the null set N(X) to be 

N(x) = {al x(a) = o a cs} . 
• 

If N(x) i 0, then N(x) is a closed prime ideal of Sand 

U{H(e ) I x<e ) = o} c. N(x). 
a a 

Proof: 

If a£ N(x), s ES we have x(as) = x(a)x(s) = 0, 

Since x(ab) = 0 implies x(a) = 0 or x(b) = O, N(x) 

and N(x) is closed since xis continuous. 

i.e. as EN(X) • 
• 

is a prime ideal 

Now let x(e) = 0, then for every h£ H(e) 
a a we have x(h) = x(he)::: 

a. 
= X(h) x(e ) = 0. Thus H(e ) C. N(x). u a 

• 

It is clear that if Sis compact and N(x) is given, both I(x) and B(x) 

are uniquely deter111ined. Furthe::1·1nore it follows from the next theorem 

that each semicharacter xis uniquely deterrnined by its values on I(x) 

if N <x> -i. 1 < x> . 

3.3.3. Theorem. Let I be an ideal of Sand let x be a semicharacter of 

I. Then there exists one and only one semicharacter t of S such 

that x(x) = C(x) for all x € I. 

Proof: 

Let a£ I be an element with x(a) i O. 

If b is any element of S, we have ba £ I and we define ~(b) by the re

lation 
x(ba) 

(:(b) = • 
X(a) 

The function C is clearly continuous and for every b EI we have 

Furthennore ~ 

f;(b) C (c) = 
x(ba) 
x(a) 

x(ba) 

x(a) 

x(ca) 
x(a) 

--
x(b)x(a) 

x(a) 

_ x(baca) 
- x<a) x(a) 

-- x(b). 

_ x(bca) 
- x(a) 

x(a) - ~(be). 
x(a) -
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H•nce since t is bounded is a semi character of S. Next let and r;.,
2 

be two semicharacters of S with E;. 1 (b) = ~2 (b) = X (b) for all b t I .. 

Let c E s, then ac e: I and we have ( 1 (ac) == , 2 (ac), i.e. ( 1 (a) t 1 (c) = 

= t
2 

(a) t
2 

(c)·. 

Hence t
1 

(c) = t
2

(c) for every c ES and the theorem is proved. 

Cor,ollary.It follows from the proof of the theorem that if X is any 

character of I, then there is only one character t of S such that ( i,s 

an extension of x. 

Now let N S be a closed 

not exist a seaicharacter • 

prime i dea.l of the mob S. Then there need 

x of S, such that N(x) = N. 

Let, for instance S be the I-mob J3 . Then {o} is a closed prime ideal 

and every element of J 3 is idempotent. Hence we have x(a) = O or 

x(a) = 1 fo,r each a£ J 3 . From the continuity of x it now follows that 

J
3 

has only one semi character, the unit character x1 . 

Let N::::: N(X) be the null set of a semicharacter X . Define SN to be 
... 

the set of all semicharacters t e: S, such that N(C) = N. 

Each SN obviously is a semi group. Furthenr1ore if S is compact s0 • 
• l.S 

the charactergroup S of S. 

Indeed if I (x) ~ f1, then I (x) is an ideal of the compact mob S and 

hence contains an idempotent e, and we have x(e) = 0 which implies 

..... 
3.3.4. Theorem. Let S be a commutative mob. Then Sis the union of dis-

joint sem.igroups SN , where each ~N is a semi group with cancel-

1 ti If Si O t s --··. s•. a . a .. oo. · . . . . s compac , 0 
Proof: . . 

Let X, t J l) 

((a) = t;(a) 

£ s 
N 

a. 
and suppose xt = x~ . Then for 

= o, and if a E: S \ N , 
a 

x(a) ~(a) = 
Hence t(a) = ,(a) f.or all a E: S. 

C~ro_lla:ry .. If S is oonneoted and N # 0, 
a 

and s 
N . . 

(l 

does not contain an id,empotent. 

then s 
N 
a 

every a E N we have 
a 

x(a) tJ.,(a) with x(a)¢0. 

cannot be finite, 
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Proof: 

Let x be an idempotent semicharacter x £ Since x can assume only 

two values O and 1, it would follow that = 1 , a E S \ N . Hence N 
Cl Cl 

is a clopen set. This gives a contradiction with the connectedness of 

s. Next if SN is finite, then 
a 

pact mob and hence contains an 

SN with the discrete topology is a com
a 

idempotent. 

Now let Na and NB be two 

null set. 

null sets. If N U 
a 

' 

For if XE SN and lf}ESN' then Nau NB= {xi x(x)~(x) = o, X £ s}. 
a. B 

Hence S N 
Cl f3 .... Cl 

It follows that S is a semigroup if and only if S i N
0 

U NB for any 

two null sets N0 and N8 . This is for instance the case if S contains a 

unit element. 

3.3.5. Theorem. Let Ni S be a clopen prime ideal of a mob S. Then N 

is a null set .. Furthe1·more if S is compact, SN is a group if and 

only if N i.s clopen and each x c SN is of the fo1·111 

x(x) = 

Proof: 

0 for x t N 

cp(x) for x c S \ N, where • q> £ (S' N) . 

Let SN be a group. Then SN contains an idempotent x and we have 

N = N( x) = I ( x). Therefore N is clopen. Conversely let N ¢. S be a clo-
-

pen prime ideal. Then S , N is a closed submob. Let 4> E (S \ N), N(<t>) = '1. 

Then the function X defined by 

0 for x e: N 
x(x) = 

<t>(x) for x E S , N 

is a semicharacter of S. 

It is clear that in this manner we obtain all semicharacters 

If Sis compact and N(~) = 0, then 

• SN :: (S '-N) and SN is a group. 

..... 

• 9 ES .Hence in this case 

Corollary. Let S be finite. Then Sis a union of disjoint groups. 

Remark. 

Now let S be a commutative mob such that Scan be written as a union 

of groups. In such a mob every ideal of Sis itself the union of max-

• 
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imal groups. Furthe11nore each Pa = { x Ix 
ti cal with the maximal group H(e

0
). 

E S , e 
a 

Hence if x is any semi character then I ( x> = U { P I 
. Cl 

U{H(e) lx<e) = o}c N(x). Thus I(x) = N(x) and 
o. a 

..... 

£ f(x)} is iden-

= O} = 

is a group. 

Definition. Let S be a commutative 

subset of S, c > 0 and define 

mob and x £ S. Let C be a compact 

U(C,c,x) = {tP £§I llf'(X) - x<x)I< C for all X (. c}. 
• 

We now define a topology on S by requiring that the set { U (C, e:, x) } be 

an open basis. 
~ ~ 

It is clear that if Sis a semigroup, then S with this topology is a 

co1,m,1u ta ti ve mob • 

.... 

I 

3.3.6. Theorem. Let S be a discrete mob with identity, then Sis a com-

pact mob. 

Proof: 
,., 

Since all compact subsets of S are finite, the topology of S is its 

relative topology as a subspace of 08 with the product topology (Dis 
... 

the set of complex numbers z 
s 

wi th I z I < 1 ) . S clearly is a closed sub--
set of D and hence compact. 

3. 3. 7. Theorem. Let S be a compact molJ and let §' = U { sNl SN a group, 

SNC S}. 
• 

A ~ 

Then S' is a discrete subspace of S. 

Proof: 
.,,. ... 

Let X e: S' and suppose q> i. x , cp € S' n U (S, ½, x> . Since 

♦ (a) ;6. X (a) for some a c S. Furthe1·11,ore we have 9 (x) = 

and x(x) = O or lx<x>f = 1 for all x £ s . 
• 

4> i X we have 

0 or jqi(x~ = 1 

If either ff> (a) or X (a) = 0., then ct, ;.. U(S ,½ ,x). Hence we have 

14(:a) I = IX (a) I = 1 • 

Suppose now $(a)= 

integer n such that 

e 
• 1X 

bus ♦ 1 U(S,i,x> and 

and 
• 

x(a) 
iy 

= e ' y > x. Then there is a positive 

• • 

( n) I I inx iny I - x a = e -e 

l. .... f we have U ( S , 2 , x) n S = {x}. 

• 
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3.3.8. Lemma. Let S be a discrete mob with identity which is a union 
........ 

of groups. Then S (the semigroup .... 
of semicharacters of S) is a 

union of groups and is discrete. 

Proof: 

The remark to theorem 3.3.5 and theorem 3.3.6 imply thats is a com-
.,,,.,......, "'"""""' pact mob which is the union of groups. Hence S = S ' is a union of 

groups and by theorem 3.3.7 SA is discreteo 

Now let a e: Sand define a by a(x) = x(a), x£S. 

It is obvious that each function i is a semicharacter of§. 

Now let S be a discrete mob which is a union of groups. Then 

are two idempotents of S, we either 

there is a clopen ideal N such that 

i e ore eu ~ a. a µ 

if ea i e 8 
e

8
. Hence 

e 6 i Nor vice versa. 
.... 

This implies the existence of a semi character X c S such that 

3.3.9. Lemma. Let S be a discrete mob with identity such that Sis a 
.... 

union of groups. Let 01. be a clopen prime ideal of S. Then there 

is one and only one idempotent e e: S such that a= N(e). 

Proof: 
.... ... 

Since Sis a union of groups SN and S compact, each open ideal is of 
Cl 

the forir1 (/(,::= U{SN je:
0

c
6 

~ £a}, where c 6 is the identity of SN (3.2.9). 
B B 

be closed, then there is an x i N such that X x) = O for all x e:: a. 
a 

For let x ¢ N
0 

and suppose there exists a XE O! with x(x) # O. Let 

C be any finite subset of S and let 6 > 0. Let C '\. N = {x
1

, ..• ,x } and a n 
C n N = { x l , ••. , x } . Then xl x2 .•. x i N and there is a x c (Jt such a n+ m n a 
that X(x1 ... xn) = X(x1 ) x(x2 ) ... x(xn) ~ 0. 

Let 4> = £ X X • Then $ e: Of. and cJ> (x. ) = e: (x. ) • ( i =1 , 2 , ..• , m) . a 1 _a 1 

£ U(C,6,£) I) Ol. and thus£ E Ol, which implies that UL is 
a a 

Hence 

not closed. 

Now let x i N , X (x) = 0 for al 1 X e: 01. 
a 

and let e be the idempotent a 

such that x £ H(e ).Then since N a a 
and X(e

0
) = 0 for all X £ 01.. 

is a union of groups we have e i 
a 

N 
a 
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Hence e (X) = 0 for all XE Of., i.e. (It, C N(e ). On the other hand we. a a 
have if X £ N(e

0
). then X(e) = O, thus N(X) ~ N which implies X £ fll. a a 

Thus Of.= N (e
0

) • 

Now let f #

er X such 

proved. 

e
0 

be 

that 

an idempotent of S. 

X(e
0

) i X(f). Hence 

Then there exists a semicharact-
,.,, "" 

N(e
0

) i N(f) and the theorem is 

Remark . 
. 

It follows from the lemma that if is 
... 

a clopen prime ideal of S, then 

e.e i N and 
~ a a For let e 6 be an idempotent eS t N

0
, then 

X(ebe
0

) = x<eb) x(e0 ) = o for all x £ ot. Hence since e 8e
0 

is an idem-

potent we have e 0 e = e. 
1-) a a 

Thus S \ Na = U {H(eb) I e 8e
0 

= e } 
a 

and it follows that H(e )is the min
a 

imal ideal of S \ N . 
a 

3.3.10. Lemma. Let S be as in 3.3.9. Then 

morphic with 

Proof: 

• (H{e )) . 
Cl 

is topologically iso-

Let ~ £ SN 
a 

ping 4> ➔ 4>' 

and~•=$ l H(e ).Then 3.3.3 and 3.3.5 imply that the map-
a * 

is an isomorphism of SN onto (H(e )) . 
a Cl 

Furthermore X E s \ N .. 
a 

Now let C be a compact subset of H(eu), then U(C,E,4>) is mapped into 

U(C,e:,~•). On the other hand if C is a compact subset of S, then 

(Cl\(S'Na))e
0

=C' is a compact subset of H(ea)and U(C',e:,4>') lies in 

the image of U(C,£,~). 

Hence the mapping~ ➔~• is a homeomorphism. 

From lemma 3.3.9 and theorem 3.3.5 it now follows that §"" == U {§N(e') I 
2 A 

· e = e £ s} , where each SN~) is a group and is the set of all semi-
,.. ,.,, 

characters of S with null set N(e) and 
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with S '- N(e) = 

""' Now let H(e) = 

3.3.11. Theorem. Let S be a discrete commutative mob with identity 

which is the union of groups. 

Then Sis topologically isomorphic to s under the natural 
-mapping x -+ x. 

Proof: 
.... 

Let x e: H(e) and X £ S. Then 
a 

follows that N(x) = N(e ). Thus 
Cl 

q,' = cp I SN • 
a 

Then ~• is a character of SN 

• 

X(x) = O if and only if x(e) = O and it 
a - - ~ 

H ( ea) c SN (e ) . Now let q, £ SN (e ) and 1 et 
a a 

and lemma 3.3.10 implies that 
* a 

SN •' (H (e ) ) under the mapping x ➔ x' with x(x) = x' (e x). 
a a *a 

Thus the function x' -+ 4>' (X) is a character of (H(eCt)). By the 

Pontrjagin duality theorem there exists an x £ H(e
0

) such that qi' (x) = 

= x ( X') = X' (x) = X (x) . 

Hence <P ' = x I SN . 
u .... 

Since SN is an ideal of S '\. N (eu) it 
....,,, Cl ..... .-.. ' ., = H(e ) and we have S = U {H(e ) I e 

Cl CL a. 

fol lows tl1a t <P= 

t s}. 

The converse of theorem 3.3.11 also holds. 

-x . Thus 
..... 

-3.3.12. Theorem. Let S be a discrete commutative mob, such that Sis a 

Proof: 

mob and such that S ~ S- under the mapping x ➔ x. Then Sis a 

mob with identity which is the union of groups. 

, 

Since§- has an identity so does S. 

Since the mapping x ~xis one-to-one there existsto each pair a,b ES 

a I: b' a X e:. § wi th a ( X) .f. b ( X) i . e • X (a) i X ( b) • 
ta tb 

Let X(a) = rae , x(b) = rbe , then ta i tb or ra i rb. If ta i tb 

then the mapping * 0 if x(x) = 0 

* * * x (b) and Ix (x) I= O or Ix (x) I= 1 for all x £ S. such that * X (a) 

If ra ~ rb then let¢ be any character of the multiplicative group of 

positive real numbers with q,(ra) ~ ¢(rb). 
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The mapping 

0 if x(x) = 0 
X 1 (x) = 

~(r) if r O is a semicharacter of S such 
X X 

that X'(a) ~ x'(b) and lx'(x)I = O or lx'(x) I= 1 for all x ES. 

Now let x' be the element such that x' = x (the complex conjugate of 

x) and let e =xx'. 

Then if x is such that lx<x) I = 0 or 1 for all x e: S, we have 

X(e) = lx<x>l 2 
and hence x(e) = 0 or x(e) = 1. In both cases we have 

X (ex) = X ( e) X( x) = X ( x) . 

Hence ex= x and it follows that e is an idempotent with x £ H(e). Thus 

Sis a union of groups. 

Now let S be a compact mob with identity which is the union of groups 
,. .,.,. 

such that S separates points of S. Then Sis a discrete mob with iden-

tity which is a union of groups and S is a compact mob which also is 

the union of groups. 

- --Now let a: x ~ x be the natural mapping of S into S . Then a is a topo-
.... ,.. 

logical isomorphism of S into S . 

a is clearly a homomorphism and a is one-to-one since for all x ~ y, 
... 

x,y E S there is a X £ S such that x(x) ~ x(y) i.e. x -P y. 
-Next let C be a compact subset of S, then C 

. 

is finite, since 
.... 
S is dis-

crete, C = { x1 , x2 , ... , Xn} and 1 et c > 0. Let V be a neighbourhood of x 

in S such that I X. ( x ) - X . ( y) I < c for a 11 y E. V , i = 1 , 2 , . . . , n . 
l. l 
~ Then a(V) c U(C,c,x) and it follows that a is continuous. Since Sis 

........ 
compact and S a Hausdorff space, we have that a is topological. 

2 3. 3 .13. Lemma. Let e 
8 

= e 
8 

£ S and 

closed} . Then e 6 EE 
6

. 

let Eu = { e I e < e , J (S, { e } ) 
'-> a a.· 8 o a 

Proof: 

Since the minimal idempotent of S belongs to E
6

, E
8 

is nonvoid. Since 

Sand a(S) are homeomorphic each neighbourhood ·U of is of the form 

i = 1,2, ... ,n 

1 for 1 < i < k - - 0 for k < i < n. Let 

""' 
, x.eS}. 

1 
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x1 x2 ... Xk = X. Then N(X) is a clopen prime ideal of s, hence 

N(X) = J (S ,{e } ) for some e £ S. Furthe1·1rlore we have x(ea) = 1 
o a a µ 

and hence N ( x) c J
O 

( S , { e t3}) i . e. ea < e 
8

• 

Since X
1
. (e,..) = 1 1 < i <k and x.(e) = x. (e eu> = o k< i <n we have 

~ l. 0. l. CXµ 

..... ,. 
3.3.14. Lem.ma. Every idempotent of S has the f 01·111 

Proof: 
......... 

,..,,. 
e , 

a 
2 

e = e £ S. 
a a. 

Let n be an idempotent such that J (S \{n }) 
a o a 

is closed. Then it fol-

lows from 3.3.9 and the remark to 3.3.9 that 
--2 

na, nf.j= nf:s E: S }, where n
8 

is the idem-
.... 

potent contained in Sot, • 
6 

ot = u { s IE: t.l e -t £ , 
0. N

0 
1-> Cl Cl 

c~ f.: s} = 
~ 

Hence n is the ch. aracteristic function of . Q 

s\CJL == U 
a 

Since N is a clopen prime ideal of S 
a 

we have N = J (S , { e } ) . Hence 
a o a 

n (x) = 1 if and only if 
a 

N ( X) C J ( S '\ { e } ) • Th us o a 
From lemma 3.3.13, applied 

X E. SN 
-b n = e 

Cl Cl 

to the 

with N
0

c N
0

, i.e. if and only if 

and na c a(S). 

mob 
""".,..,_ ~ .-. 
S (S is a compact mob with iden-

ti ty which is the union of groups a11d whose semi characters separate 
-

points) it follows that each idempotent of S is contained in the 

closure of a(S). Since a(S) is closed, the lemma follows. 

3.3.15. Theorem. Let S be a compact mob with identity which is the 
.... ,,.. ,.. 

union of groups, such that S separates points. Then Sand S 

are topologically isomorphic under the mapping x ~ x. 
Proof: 

AA ,._. ,V 

Since ea<#). i,4e111iPo.t~en:t .,of S is ,of' the f ot·m ea. , we have 

--
0 Now let X £ H(e) = {x IX E H(e)} • Then x(x) = 0 if and only if x(e) = o, 

thus N(e) = N(x) 

that J ( S"' \ {e}) 
0 

,.. 

Next let q> t: SN (e) 

is closed. Then$ is a character of 

and suppose 
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* SN :: (S \ N) . 

Since H(e) is an 
• * (H(e)) ~ (S,N) 

Thus the function 
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) = N } • 

is a character of SN and by 3.3.5 we have 

ideal of S \ N it follows from 3.3 .3 that 

under the mapping X -+ x' with x(x) = · x' (ex) • 

• X' + t'(X) is a character of (H(e)) . Hence there 

exists an x £ H(e) such that ~' ( X) = X(x). 
,.,,, ,.. ,.,, 

Hence ¢,' = xlsN and by theorem 3.3.3 we have 4> = x and SN(e) c H(e). 
A .,..-. 

Finally let 4> E. SN (e), where e is an arbitrary idempotent of S • Then 
,.,, 

by lemma 3.3.13 there is a net of idempotents e
0 

, such that 
-- N ,.,, - N N J (S \{e}) is closed and lime = e. Moreover e e = e . o a a a a 

A N 

Then ct, = 

<; £ a(S). 

-- we have 

- ¥ ~ ~ 

SN (e) we have 4> t H(e). Since all groups SN(~) are disjoint and H(e) c 

If Sis a compact mob with identity which is the union of groups, then 
,.. 

the statement that S separates points is not necessarily true. If for 
,.. 

instance S : J
3

, then S contains onl}1 the unit character. 

3.4. Notes 

The study of monothetic mobs has been initiated by several authors. 

The results contained in section 1 are due to Numakura [2], theorem 

3.1.1, Koch [2], theorem 3.1.2, 3.1.3, 3.1.4, 3.1.9 and Hewitt [1], 

theorem 3.1.5, 3.1.6, 3.1.7. 

The structure theory for commutative compact mobs contained in 

section 2 is due largely to Schwarz [4], [GJ. Theorems 3.2.12 and 

3.2.13 were proved by Gelbaum, Kalisch and Olmsted (1]. 

In [ 2] Hewitt and Zuckenr1an proved theorem 3. 3 .11 for finite com

mu ta ti ve mobs. The proof given here is based on Austen [1] who also 

proved theorems 3.3.12 - 3.3.15. 

Semi characters have also been studied by Schwarz [ 1] , [ 5] , [ 6] • 

He uses the terrr1 character and includes the zero character in his con

siderations. 
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IV. MEASURES ON COMPACT SEMIGROUPS 

4.1. Invariant measures and means 

Definitions: Let S be a compact mob. By a measure JJ on S we shall mean 

a a-additive, non-negative, real-valued regular set function defined 
• 

on the Borel subsets of S, such that u(S) = 1. 

The measure will be called right invariant if for every Borel set 

B c Sand a£ S for which Ba is also a Borel set µ(Ba)= µ(B) holds. 

We will call the measure u right subinvariant if for every Borel set 

B c Sand a ES for which Ba is also a Borel set, µ(Ba)< u(B) holds. 

The property Ba Borel set of Sand a in Simply Ba a Borel set of Smay 

fail in a semigroup. Let for instance Sc E2 be the set of all points 

of the closed square O ~ x < 1 , 0 < y ~ 1 , 

S = {(x,y) IO< x ~1, O< y < l} , with the relative 

topology .. 

Define a multiplication in S by 
• 

The multiplication is continuous and associative, hence Sis a compact 

mob. • 

It is known that in S there is a Borel subset B such that its project-

ion n(B) on the x-axis is not a Borel set (see C. Kuratowski. Topolo

gie, p.368). 
• 

For any (x,y) ES we have B{x,y) = ~(B) and hence Bis a Borel set, 

while B(x,y) is not a Borel set. 

For each element a of a compact group S left and right translations by 

a are homeomorphisms of S. Hence if B is a Borel set of S and a £ S, 

then Ba is a Borel set of S. A measure which is right invariant is right 

subinvariant, but the converse is not generally true. However, these 

concepts coincide in the case of compact groups. 

• 



• 

• • 

For let B be a Borel set, then 

it(B) > µ(Ba) > µ - = lJ(B). 

Moreover in this case such a right invariant measure is known to exist, 

namely the right Haar measure on the group. 

4 .1.1. Lemma. If a compact mob S has a right invariant measure µ , then 

s contains exactly one minimal left ideal, its kernel K, and 

µ (S \ K) = 0. 

Proof: 

Let L be a minimal left ideal of S. Then L = Sx with x £ Land hence 

µ(S) = µ(Sx) = ll(L). Thus µ(L) = 1 and µ(S \ L) = 0. Since this holds 

for any minimal left ideal and since no two minimal left ideals inter

sect, it follows that S contains only one minimal left ideal which must 

be the kernel of S. 

Corollary. If a compact mob S has a right and a left invariant measure, 
I ¥ 4 J 

then K is a group. 

The converse of lemma 4 .1.1 is not true. In fact, if S is a .compact mob 

with zero, with IS I > 2, then S has no right nor left invariant measure. 

For in this case {O} is the only minimal left and right ideal. Hence if 

µ is a right invariant measure on S, we would have µ({O}) = 1. 

On the other hand we have for all a ES, ao = O and thus 1 = lJ{{O}) = 

µ({a},0) < lJ({a}). This contradicts the fact thatµ (S\. {O}) = o. 

Now let C denote the set of all x c S such that µ(U) i O for each open 

set U about x. C is called the support of lJ. 

If x ¢ C, then there is an open set U with x E U, µ (U) = O. Hence 

Un C = 0 and it follows that C is closed. 

4.1.2. Lemma. If a compact mob S has a right invariant measureµ , then 

C is a closed right ideal of S with Cc K, lJ(C) = 1. 

Proof: 

Since K is compact, S , K is open. Further1r1ore µ (S \ K) = O, according 

to lemma 4.1.1 and it follows that Cc K. 
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. " 
Now let U be an open set such that Cc U. Then S, U is compact and can 

be covered by a finite number of open sets V., i = 1, ••. ,n, with 
l. 

~(V.) = 0. Hence µ(S, U) < µ(V1 ) + .•• + µ(V) = O and it follows that 
l. n 

U(U) = 1. The regularity ofµ implies that ~µ(C) = 1. 

We now prove that C is a right ideal. Since Ca is compact for all a ES, 

we have µ(Ca)= µ(C) = 1. If C Ca, then there is an x EC, x Ca 

and hence a neighbourhood U of x with U n Ca = 0. Since 1,.1 (U) > 0 it 
• 

would follow that µ(Ca) <1. Thus we have Cc Ca and by 1.4.3 C = Ca. 

4.1.3. Theorem. If a compact mob S has a right invariant measure~ , 

then the support C ofµ is the union of maximal subgroups H(e) 

withe£ K. 

Proof: 

Since S contains exactly one minimal left ideal, each minimal right 

ideal is a maximal subgroup and K = U {H(e) I e c E n K} . 

Since a group contains no proper right ideals we have either 

C n H(e) = 0 or H(e) c C and the theorem follows. 

If S is a compact mob such that (S , K) S ~ K and such that (S , K) a is 

open for each a£ S, then a converse of lenuna 4.1.1 is possible. 

4 .1.4. Theorem. Let S be a compact mob such that (S \ K)a is open for 

each a e: S. 

Proof~ 

A necessary and sufficient condition that S has a right invar

iant measure is that K is a minimal left ideal of Sand 

K ft! (S \ K)S. 

Let K be a minimal left ideal of S such that K ¢ (S \ K)S. Then 

K = U { H(e) I e £ E n K} and since (S , K)S is a right ideal of S we 

have for each H(e) c K either H(e) c (S , K)S or H(e) n (S, K)S = 0. 

Hence there is an H(e) = H such that H(e) n (S, K)S = 0. 

Now let " be the nor1ned Haar measure on H and let -µ(B) = v(B n H) for 

each Borel set B of S. It is obvious that µ is a measure on S. We now 

prove thatµ is right invariant. 
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Let B be a Borel set of S and a E S. Then 

Ba = (B n H)a u (B n S 'K)a U (B I"\ K 'H)a. 

Furthe1111ore (B n S, K)a C (S \ K)a c (S \ K)S C S 'H and 

(B n K\H)a c (K,H)a c K\H. 

Hence Ban H = (B n H)a n H = (B n H)a and we conclude that 

P(Ba) = v(Ba n H) = v((B n H)a) = v((B n H)ea) = v(B n H) = µ(B). 

Now suppose on the other hand that S is a compact mob which has a right 

invariant measure • Then K is a minimal left ideal by lemma 4.1.1 and 

P(S\K) = o. If Kc (S\K)S, then the set {(S'\K)a}ae: S constitutes an 

open covering of the compact set Kand we can find a finite subcovering 

(S,K)a
1

, ... ,(s,K)an. Since u is right invariant we have 

IJ(K) ~ LJ((S \ K)a1 ) + ••• + l,l((S\ K)an) = O. 

This contradiction completes the proof of the theorem. 

It follows from 4.1.4 that a sufficient condition that a compact mob S 

has a right invariant measure is that K is a minimal left ideal and 

K ¢ (S, K)S. This condition however is not necessary. 

Let for instance G be the additive group of real numbers mod 1 and let 

e be a symbol not representing any element of G. Extend the multipli

cation in G to one in S = G v { e} by defining ee = e and eg = ge = g for 

every gin G. Now let S be topologized so that e is an isolated point 

and G has its original topology. 

Then S is a compact mob with minimal ideal K = G and (S, K)S = eS = 
= S :::, K. Let v be the Haar measure defined on G and let ii be the measure 

on S defined by lJ (B) = v (B n G) for each Borel set B c S. 

Then~ is a right invariant measure. 

Definitions. Let S be a compact mob and C(S) the set of all real valued 

continuous functions on S. For a fixed element a£ Sand f E C(S) let 

be the function on S such that f (x) = f(xa) for all x Es. 
a 

Then f is called the right translate off by a. 
a 

The left translate f is the function defined by f(x) = f(ax). 
a a 

f 
a 
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A mean Mon C(S) is a real linear functional on C(S) having the proper

ty that 

i) M(f)>O whenever f c C(S) and f(x)>O for all x ES. -
ii) M(f) = 1 if f(x) = 1 for all x £ S. 

A right (left) invariant mean Mon C(S) is a mean such that 

= M(f) (M( f) = M(f)) for all f £ C(S), a c S. 
a 

M(f ) = 
a 

4.1.5. Theorem. Let S be a compact mob. Then there is a right invariant 

mean Mon C(S) if and only if the kernel K of Sis a minimal 

left ideal. 

Proof: 

Suppose that L1 and L2 arc two different minimal ideals of s. Then 

L1 n L2 =~and there is an f £ C(S) such that 

f(x) = 0 if x c. Ll 

1 if x t L2. 

If Mis a right invariant mean on C(S), then we would have 

M(f) = M(f ) = 
a 

0 if a £ L
1 

1 if a E. L
2

. 

This contradiction proves the ''onl:,' if'' part of the theorem. Now let S 

be a compact mob, such that K is a minimal left ideal. Then 

K = U { H(e) I e £ En K} , wl1erc cacl1 maximal subgroup H(e) is a minimal 

right ideal. Let I be the normed Haar integral on one of these groups, 

say H = H(e1 ), and let M(f) = l(f'), where f' = f!H. It is clear that 

Mis a mean on C(S). We now prove that Mis right invariant. 

Let x £Hand a cs, then xa = xe1 a £ H, where e 1a EH and hence 

f (xa) = f (xea) for al 1 x e: H, a £ S · i . e. f' = f' . Furthe1·1nore we have 
' a ea 

I(f~) = I(f') for all h EH and we conclude that 

M(f) = I(f') = l(f' ) = I(f') = M(f). 
a a ea 

4.1 .. 6. Theorem. Let S be a compact mob and let M be a mean on C(S) such 

that M(f ) < M(f) for all a £ S and f c C(S). Then M is right in
a -

variant. 

• 

• 
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Proof: 
• 

By the representation of linear functionals as integrals there is a 

regular Borel measure on S (as a space) such that M(f) = f(x)dlJ. 

Let L be a minimal left ideal of Sand suppose 
s 

l,!(L) < 1. Then by the 
• 

regularity of lJ we infer the existence of a compact subset F c S, 

F n L = 0, with lJ(F) > O. Now take f c C(S) such that 0< f (x) < 1; 

f(x) = 1 for x t Land f(x) = O for x £ F. Then we have for a EL 
• 

1 = M(f ) < M(f) < 1. · 
a -

Hence we conclude that U(L) = 1 and since this holds for all minimal 

left ideals it follows that S contains exactly one minimal left ideal. 

Furthenr,ore we have M(f) = J f(x)dlJ. 

Next let e be an idempotent 
L 

of S contained in L. Then L =Le= Se 

and e is a right identity of L. Moreover we have ,that for each a c S 1 

ea£ L. Since Lis the union of maximal subgroups H(e
0
), 

-1 -1 
there exists 

an ea such that ea E H(e
0

) and an element a with eaa 

If we put f = g, then we have for all x £ L 
a 

= e . 
a 

g -1 (x) = 
a 

-1 -1 -1 -1 
g(xa ) = f (xa ) = f(xa a)= f(xa ea)= f(xe) = f(x). 

a a 

Hence M(f) = f (x)dl-1 = J g _1 (x)dµ < f g(x)dµ = f (x)dlJ = M(f ) • 
L La L La a 

Thus M(f) = M(f) and the theorem is proved. 
a 

In the same way we can prove that Mis right invariant if M(f )> M(f)·. 
a -

From the proof of theorem 4.1.5 it follows that a right invariant mean 

on C(S) is not unique if the kernel K of S contains more than one min

imal right ideal. The next theorem however states that a two-sided in

variant mean on a compact mob is unique. 

. 

4.1.7. Theorem. Let S be a compact mob. Then the following conditions 

are equivalent • 
• 

1) K is a group. 

2) S has a two-sided invariant mean. 

3) S has a right and a left invariant mean. 

Furthennore if M is a two-sided invariant mean, then M(f) ~ 

-- f'dlJ, where f'd-µ is the Haar integral for the compact 
K K 



·141 

group K. 

Proof: 

1) ~ 2). From theorem 4.1.5 it follows that the Haar integral for K can 

be extended to a two-sided invariant mean on C(S). 

2) 3). Trivial. 

3) 1). Theorem 4.1.5. 

Next let M be an invariant mean on C(S), then it follows that 

M(f) = f fdlJ where lJ is a regular nor1r1ed Borel measure and lJ(K) = 1. 

Hence M(~) = ·J fdJJ , and since J f(xa)du = f f(x)du it follows that 

d~ is the Hfar integral for~ K 
K 

Let B be a subset of Sand a E S. By B we will denote the set of all a 
X £ s such that xa C B. 

B - {x l x c. S, xa £ BJ -a 

Since B 
a 

is closed (open) if Bis closed (open) and since B n C = 
a a 

= (B n C) , B u C = (B 
a a -a 

u C) 
a 

it follows that B 
a 

is a Borel set for 

each Bore 1 set B of S and a e: S. 

4.1.8. Theorem. Let S be a compact mob and Ma right invariant mean on 

C(S). Then M(f) = f(x)d~, with 
s 

sets B c S and a c S. 

u(B) = u(B) for all Borel 
a 

Proof: 

Since M can be represented as an integral we have M(f) = J f(x)dii ,where 

1J is a regular Borel measure on S. 

Now let F be any closed set of S. Then given t: > O, there is an open 

set V, F c C, such that ii (V) < lJ (F) + e:. Let f. e: C(S) be such that 

O < f ( x) < 1 for al 1 x £ s and f ( x) = 1 , x e: F; f {x) = 0 , x i V. Then we 

have 

u(F ) < f(xa)dµ = f f(x)dµ ~ µ(V) < µ'(F) + e:. 
a 

Since this holds for all Ewe have lJ (F ) < µ (F). Moreover we have 
a 

lJ (K) = 1, µ (S \ K) = O. Hence µ (F) = µ (F I\ K). Furthermore we have for 

all closed sets 

* * lJ(F ) < µ(F -l ) 
a a 

* F C 

* * a a < µ(F ) < µ(F ) . Thus we have for all closed sets F c S 
- a 
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µ(F) = 1.i(F n K) = IJ((F n K)) < µ(F ). This 
a - a 

• 

• 

together with l,l(F ) < lJ(F) 
a 

implies µ(F) = µ(F). Since this holds for all closed sets it also 
a 

holds for every Borel set and the theorem is proved. 

4.2. Subinvariant measures on simple mobs 

Let S be a compact simple mob. Then K =Sand S clearly satisfies the· 

condition of theorem 4 .1.4. Hence it follows that a compact simple mob 

s has a right invariant measure if and only if Sis left simple. 

In this section we will establish necessary and sufficient conditions 
' 

that a simple mob possess a right subinvariant measure. 

It follows from theorem 1.3.10 that each compact simple mob S is iso

morphic with the mob (Se n E) x H(e) x (eS n E), with e t E "K and multi

plication defined by 

4. 2 .1 • Lemma. Let S be a compact simple mob. If S con ta ins a finite 

number of minimal left ideals, then S has a right subinvariant 

measure. 

Proof: 

Let S = (Se1 n E) x H(e1 ) x (e1 Sn E) with I e 1 Sn EI = n and let L be the 

minimal the left ideal (Se
1

" E) x H(e1 ) x e
1

• Then S is isomorphic with 

* with multiplication defined by (11 ,e)(I2 ,e) = mob S' = L x ( e1 Sn E) 

* = (11el2 ,e ). 

fe now identify S with S' • 

• 

• 

..et µ1 be a right invariant measure on Land 1.12 the measure on 
1 

:e1snE) such that each point has measure n. Let µ = lJl x 1,1
2 

be the pro-

juct measure on S. 
: All that remains to be shown is that 

any Borel set of S. Then 

is right subinvariant. Let B be 

where B G L i 1 E i , = , ••• ,n • 
. 

Now let a = (1, e.) be any element of S, then 
J 

• • • \J (B n en 1 x { e j } ) . 
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4 .2 .2. Theorem. Let S be a compact simple mob S = (Se1 n E) x H(e1 ) x 

x (e1 Sn E) such that I e
1 
Sn E J = n. Then S has a right subin

variant measure and each such measureµ is a product measure 

J.J = u
1 

x µ
2 

x µ
3

, where µ 
1 

is any regular normed Borel measure 

on (Se
1 

n E), u 2 is Haar measure on H(e
1

) and ~ 
3 

is the measure 
1 

on (e1 Sn E) such that each point has measure n. 

I>roof: 

From lemma 4.2.1 it follows that S has a right subinvariant measureµ 

and that we can i den ti fy S with the mob L x ( e 1 S n E) , where 

L = (Se1 n E) x H(e
1

) >< {c
1 

}. 

l)efine v on L by 

for each Borel set B of L and define u3 on (e1 S" E) by 

Then it is clear that both u3 and v are regular Borel measures. 

F'l1rthe1·1nore u
3

({e .}) = u(L x{e .}) > u((L x {e.})(l,e.)) = µ(L x{e1 }) = 
J J - J 1 

u3 ({ei}). Since this holds for all j = 1, ... ,n and i = 1, .•. ,n it 

:f o 11 ows that - = 1 , ... , n • 
1 n 

Moreover for each e j E. (e1 S" E) there is an 1 j t L such that e jl j = e 1 . 

Hence 
lJ( (B >< { e . } ) ( 1 . , e. ) ) = µ(B x { e 

1
. } ) 

J J 1 

and we conclude that 

Now let 1 £ L, then 

µ (B x { e 1 }) = µ (B x { e j}) 

v(B) = n. u (Bx {e1 }). 

< µ(BX 

and so 

{e. }) , 
J 

V(Bl) = n. u(Blx.{e1 }) = n.JJ((B x{e1 })(1,e1 )) < n.µ(Bx {e1 }) == v(B). 

-1 -1 
E L an 1 with 11 = e

1 
£ (Se1 n E) Since there exist to each 1 

• 

we have 

V{Bl) > v(Bl.1-l) = v(B). 

*i"l:tus v is a right invariant measure on L. 
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Finally 1J clearly is the product measure v x µ 3 , since for each. B 

+ \J ( B x { ej } ) = -
k n 

We now prove that the measure v on L also is a product measure .. 

Since L == (Se
1 

n E) x H(e1 ) we 

Define lJ 
l 

and IJ on 
2 

on se
1 

n E by 

have for each 1 E L, 1 = (e,h). 

v((Se
1

n E) x A), 

CL 

where B and A are res pee ti vely Borel subsets of (Se1 n E) and H(el) • 

It is obvious that µ
1 

and lJ
2 

are regular Borel measures. Further11,ore 

IJ (Ah)= 
2 

= u
2

(A). Hence since u
2

(H) = V(L) = 1, u2 is actually the Haar measure 

on H. 

N-0w let B c se
1 

n E and define ia 8 on 

fashion it can be shown that ia B is 

H by U (A) = v (B >< A). In a similar 
B 

a regular Borel measure such that 

lJ
8

(Ah) = µ
8

(A) for all h £. H. Hence lJB is a multiple of the Haar measure 

v2 and si nee lJB (H) = v ( B x H) we have 

v(B xA) = u
8

(A) = v(B x H) u
2

(A) = v(B x H) v ((Se
1

n E) x A). 
. * * 

We now define the product measure v = l-1
1 

x lJ
2 

and we show that v = v • 

Let B be a Borel set of (Se
1

" E) and A a Borel set of H(e
1
). Then 

• 
V (B >< A) • ~l (B). u

2 
(A) = v(B x H) v( (Se

1 
n E) x A) = v(B x A) .. 

From theorem 4.2.2 it follows that right subinvariant measures are ex

tr-.ely non-unique. The measure lJ is deten11ined by the measure \Jl on 

(Se1 n B) .. Since a regular normed Borel measure on a compact space is 

unique if and only if the space consists of a single point it follows 

tl\at µ is unique if and only if each minimal left ideal is a group. 

4.2 .. 3,. ?hear•. Let S be a compact simple mob s = (Se n E) >< H(e ) x 
1 1 

x <•1 Sn E) such that S contains an infinite nwnber of minimal 

left ideals. Then S has a right subinvariant measure if and only 

1 f the space e1 Sn E has a normed regular Borel measure such that 

each point has measure zero. 



145 

Proof: 

Let µ1 be any nonr1ed regular Borel measure on (e s n E) such that each . 1 
point has measure zero and let µ

2 
be any regular nor111ed Borel measure 

on L = H(e
1

) x (Se
1 

n E) . 

Then µ2 x IJl is a 

set of Sand a£ 

Borel set we have 

right subinvariant measure on S. For if Bis a Borel 

* * S, a £ L x { e } , then Ba c L x { e } and hence if Ba is a 

* * 1J (Ba) < lJ ( L x { e } ) = IJ2 ( L) IJ l ( { e } ) = 0 • 

From this we conclude that lJ (Ba) < u (B). -
Next suppose on the other hand tl1at lJ is a right subinvariant measure 

' 

on S. Define lJ1 on e
1 
Sn E by 

IJl (B) = lJ ( L x B) . 

Then in a similar fashion as in the proof of theorem 4 .2. 2 it ca.n be 
* • 

shown that ia1 ({e}) = IJ
1 

({e }) for all e,e £. e
1
Sn E. Hence since 

infinite and IJl (e1 SnE) = 1 it follows that )Jl ({e}) = 0 

£or all e c e1 s o E. 

Exampl~

Let Sc E2 be the set S = {(x,y)jx 

with the relative topology. 

Define a multiplication on S by 

The multi plication is continuous and associative, hence S is a comp.act 

mob. Since S(x
1

,y
1

)s =Sit follows that Sis simple .. Furtht!t·more each 

I 1 1 set { (x,y) x = ::-k; y = 0 ,
2 
... } is a minimal left ideal and each set 

1 2 1 
{(x,y)jx = o,

2
, ••• ; y = -k} is a minimal right ideal. Furtherir,ore each 

2 
element of Sis idempotent. Each minimal left ideal is a countable com-

pact Hausdorff space and hence has no no1·n1ed regular Borel measure such 

that each point has measure zero. Since this also holds for the minimal 

right ideals S has no right nor left subinvariant measure. 

We can now summarize the preceding theorems. 

4 .2 .4. Theorem. Let S be a compact simple mob with S = (Se1 n E) x H(e1 ) x 

x (e
1 
Sn E). Then S has a right subinvariant measure if and only 

• 
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if the compact space e
1 
Sn E has a regular no1·med Borel measure u such 

that lJ({e}) = -µ({e'}) for all points e,e' E e1 So E. 

Now lets be a compact 0-simple mob, then by theorem 2.3.9 Sis iso

* morphic with a mob S = y
1 

x H(e) )( v
2 

u {O}, where Y1 is a compact set 

contained in a 0-minimal left ideal and Y2 
in a 0-minimal 

is a compact 

* in S is 

set contained 

defined by 

"'- 0 

* * ands O = Os = O. 

Now let be any right subinvariant measure on S. Then u({O}) = 
= u({s}O) ~ µ({s}) for alls ES and hence u({O}) = 0 if Sis an in

finite mob. 
• 

It is clear that each finite mob has a right subinvariant measureµ • 

Let for instance \J be the measure defined by u({s}) = 1/n for all 

s Es if jsl = n. 

4.2.5. Theorem. Let S be a compact 0-simple mob S = Y1 x H(e)x Y2 u {O}. 

Then if jY
2

j is infinite S has a right subinvariant measure if 

and only if there exists a regular nor,r,ed Borel measure u2 on Y
2 

such that lJ2 ( {y2 }) = 0 for all y
2 

e: Y2 . 

Proof: 

Letµ be the Haar measure on the compact group 

* regular Borel measure on Y1 and let v 

measure on Y1 x H(e) x Y2 . 

= \J )( µ 
1 

H ( e) , u 
1 

any no1·111ed 

x ~ 2 be the product 

Furthern1ore let v be the measure on S defined by v (B) 

all Borel sets B of S. 

vis right subinvariant since 
* V ( B 0) = V ({ O}) = v (0) = 0 < \I (B) and 

--
v(B (y1 ,h,y2 )) < v(Y

1 
x H(e) x {y

2
} u {O}) 

u1 (Y1 ) x lJ(H) x µ2 ({y
2

}) = O < v(B). 

for 

If on the other hand vis a right subinvariant measure on S, then v
2 

defined by v2 (A) = v (Y1 x H(e) x A) for all Borel sets A c. y is a normed 
* 2 

regular Borel measure on Y2 . v2 ({y2 }) = v2 ({y2 }) since there exists 

* * for each y 2 e: Y2 a y1 E: Y1 such that y
2

y
1 

;ii. O. 
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4.2.6. Theorem. Let S be an infinite compact 0-sirnple mob 

S = Y 1 x H(e) x Y
2 

u { 0} such that j Y
2 

j = n. 
• 

Then S has a right subinvariant measure and each such measure 

lJ is such that IJ ({ O}) = 0. Furtherrriore lJ is a product measure 

on Y 1 x H ( e) x Y 
2 

, µ = µ 
1 

x v x 

regular Borel measure on Y
1

, 
1 

µ
2

, where 

v is the 

µ 1 is any non11ed 

Haar measure on H(e) and 

lJ 2 ({y2 }) = n for all y
2

£ Y
2

• • 

Proof: 

Let µ be a right subinvariant measure. Define 
lJ 1 ' v and µ 2 respect-

ively by l.Jl (B) - lJ (B x H(e) x Y
2

) Bc.Y - , 
1 

v (A) - µ (Y l x A x Y 
2 

) Ac H(c) - , 

1J2 (C) - 1J (Y
1 

x H(e) x C) Cc. y • - ' 2 

Then it follows in a 
1 

µ 2 ({y2 }) = n for all 

similar fashion as in theorem 4.2.5 that 

Since there exists 

* 
and .. 1.11 11

2 
c H(c) such that 

y 2 y 1h 2 =ewe have 

* * * l.J(B xH(e) x {y
2

}) ~µ(Bx H(c) x {y
2

})(y
1

,h,y
2

) = lJ(ll x H(e) x {y
2

}) and 

analogously * lJ (Y l x A x { y 2 }) > lJ (Y l x A x { y 
2

}) • 

Hence 
n 

vis the Haar measure on H(e) since 
* V(Ah) = nµ(Yl x Ah x {y

2
}) = n1J((Yl x Ax{y2 }) (y

1 
,h2h,y2 ) > v(A). 

It now follows in the same way as in theorem 4 .2 .2 that ~ = \Jl x v x u2 . 

If we take for µ1 the measure on Y1 defined by µ 1 ({e}) = 1 and 

µ 1 (Y1 , {e}) = O, then it follows just as in theorem 4.1.4 that 

1-11 x " x µ 2 is a right subinvariant measure on S. 

4 .2. 7. Lemma. Let S be a compact mob with 
2 

tents. Let Si K, S = S and let J 

be the Rees semigroup S/J with the 

a finite number of idempo-

* be a maximal ideal. Let S/J 

* following topology. S/J = 

= s, J v {O} where {O} is. an isolated point and S \ J has the 

relative topology. Then S/J* is a compact 0-simple mob. 
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Proof: 

Since S / J has a finite number of idempotents and thus a finite num-
• 

her of 0-minimal left and right ideals we have 

where each a.S/J b. either is a group with zero or a set 
J l 

2 
• 

b U {O} 
n 

Let (a. S/J b_) , {O} = A ... Then since A .. = a .Sb., J, A .. is closed. 
J l. Jl. Jl. J l. Jl. 

Further1nore A .. " Akl = 0, (j,i) ~ (k,l) and hence A .. v J is open. 
Jl. * Jl. 

Thus A .. is open in S/J. 
Jl. 

We now prove that multiplication is continuous in * SIJ • If ab = c i O, 

then a£ Aji, b E Akl with AjiAkln J = 0. Next let V be an arbitrary 

neighbourhood of c in Sand let V(a) and V(b) be neighbourhoods of a 

and bin S such that V(a).V(b) c V. Then (V(a)n Aji)(V(b)nAkl)c Vfl S\J. 

If ab= 0 a e: A. 1 , be: Akl' then A .. A = {OJ and if ab= O, with a= O, 
* J ,J 1. k 1 • 

then O S/J = {O}. Hence multiplication in S/J* is continuous and S/J 

is a compact 0-simple mob. 

4.2.8. Theorem. Let S be a compact mob with a fini tc number of idem-

potents. Then S has a right subinvariant measure. 

Proof: 

If S = K, then Sis a compact simple mob and lemma 4.2.1 implies that 

S has a right subinvarian t measure. If S i. s2 , the11 1 et µ * be any no1·111-

ed regular Borel measure on the set S '\ s 2 .. Now define µ on S by 
* 2 lJ(B) = µ (B n (S '\ S ) • 

µ is a regular Borel measure since s, s2 

since * lJ(Ba) =µ(Ba fl 

is open. Further1nore µ is 
2 * 

S , S ) = µ (0) = 0. Finally right 

let S 

subinvariant 
2 "#. K, S = S . 

S/J is completely 

simple mob. 

Then S contains a maximal proper ideal such that 

• 0-simple and by lemma 4.2.7 S/J is a compact 0-

By theorem 4.2.6 there exists 

* 
* * a right subinvariant measureµ on S/J 

such that µ ({O}) = o. 
Now let µ be the measure on S defined by µ(B) = * µ (B " S '\ J) for all 

Borel sets B of S. µ is right subinvariant since 
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* = \.1 (Ba n S , J) = 0 if a t J and lJ (Ba) 

lJ (8a) * * * = Ii (Ba fl S 'J) = • µ ( (B n S \ J) a) < 1J (B n S, J) = 1J (B) if a i J. 

4.2.9. Theorem. Let S be a compact mob such that there is an x ES with 

Sx = S. Then S has a right subinvariant measure. 

Proof: 

The dual of theorem 1.4.7 implies that Q = {xlsx = S} is a closed sub

mob of S. Furthenitore Q is a left simple submob and S, Q is an ideal of 

s. • 

* Now let ~ be any right invariant measure on Q and define 1J on S by 

* lJ(B) = \J (B n Q) for all Borel sets B of s. 
~ is right subinvariant since 

' 

* * µ(Ba)= \J (BanQ) = u ((BnQ)a) = O if at. Q 

* lJ (Bn Q) =lJ(B) if a£ Q • 

• 
• 

4.2.10. Theorem. Let S be a compact commutative mob. Then S has a two

sided subinvariant measure. 

Proof: 

If S = K, then Sis a group and the Haar measure on Sis invariant • 

If S s2 then it can be shown in a similar fashion as in the proof of 

theorem 4.2.8 that S has a right subinvariant measure. Since Sis com

mutative the measure clearly is left subinvariant. 

If S-/: K, S = s2 , then S contains a maximal proper ideal such that S/J 

is completely 0-simple. Since S/J is commutative it follows that S/J is 

a group with zero and hence that S, J is a compact gro,up. 

The Haar measure on S, J can now be extended to a tw,o-sided invariant 

measure on S • 

4.2.11. Theorem. Let S be an interval mob S = [a,b]. Then S has a right 
' 

or left subinvariant measure . 
• 

Proof: 

If Si 
2 

then any regular no1-med measure on S , S can be extended to 

a measure on s. 
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If S = K, then since K consists of either all left zeroes or a11 right 

zeroes of S, S is either right or left simple. Lemma 4 . 2 .1 then 

plies that S has either a left or a right subinvariant measure. 

• im-

Finally if S 
2 

= s , Si K, then according to lemma 2.6.3 S contains 

a maximal ideal J such that the Rees semi group S/ J has a finite number 

of idempotents. It now follows from lemma 4.2.7 and theorem 4.2.8 that 

S has a right subinvariant measure. 

I 

4.3. Subinvariant measures on a certain class of mobs 

Definition. A compact mob S with a minimal left ideal L such that for 

each open set U of S and each element a £ S \ L. Ua is open in S will 

be called a mob of type O. 

It is clear that all finite mobs are of type O, in fact all compact 

mobs S such that Ua is open for al 1 open sets U c S and a £ S are of 

type 0. This class contains the compact groups and all simple mobs with 

a finite number of minimal left ideals. 
1 

{ O} with the natural topology, Let s be 

and the usual multi plication of rational numbers, then S is of type O. 

We will show in this section that if Sis a mob of type 0, then S has a 

right subinvariant measure. If Sis a left simple mob then according to 
• 

4.2.1 S has a right subinvariant measure. Hence we will now restrict 

our attention to mobs of type O with St L. 

4.3.1 .. Lemma. Let S be a mob of type O and let U be an open set of S 

such that Ua is open in S, a£ S \ L. If C is a compact set" 

CcUa, then there is a compact set DcU with C = Da. 

Proof: 

Let CcUa and D' == {xjx£ s, xa£ C} •. Then D' is compact and (D'n U)a = C. 

For each point x tD'nU there is a neighbourhood V(x) of x with V(x)c U. 

Since Sis of type o, each set V(x)a is open and the set 

{ V(x) a Ix £ D' n U} constitutes a covering of C. Let V(x1 )a, •.. ,V(x )a 
n --~ n 

a finite subcovering of C and 

pact, Dc:.U and Da = C. 

Then D is com-

be 

• 
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Now let S be a mob of type O, S -;i. L. Let {VCll a£A} be the set of all 

coverings of S such that V = {o t:i I S £ B } , where each O is an open 
a Oµ a aB 

set of S such that for every a £ S, L there is an O £ V such that 
a 

o O t3 a c. O .. , .. 
etb 

4 .3.2. Lemma. Let S be a mob of type O, S ~Land let J be an open left 

ideal of S, J ~ s. 
For each compact set Cc S and a £ A let 

A (C)= smallest 
Cl smallest 

number of 
=• ' • 

number of 
0 's that will 

that 
cover C '-J 
cover S '-J. 

Then A is a non-negative, finite monotone and subadditive func
a 

tion defined on the set of all closccl subsets of S. 

Moreover A (Ca) < ,\ (C) for al 1 a e:. S, Cc S. 
a - a 

Proof: 

Since L S, it follows from 1.2.3 that S contains an open left ideal 

J • with J ~ S. Furthe1,11ore C , J and S , J are compact sets, hence 

0 < A (C) < 1. X (L) = O and A (S) = 1. 1.1orcover it is clear that A is 
a a a a 

11l< ,no tone and subaddi ti ve. If a £ L, then since L is a left ideal Ca c L 

and hence A (Ca) = 0 < A (C) • a - a 
Next let a ES '\ L and let O ...: , ••• ,O '- be a fini tc subcovering of C '-J. 

O.,.il a~n 
I-• :t O £ V .. ' a 

a~i 
0 u'•···,o, a.JJ1 ab 
Hence A (caj 

a 

be such that O aco , , i = 1,2, ••• ,n. Then 
a~1 cibi 

is a covering of (C \ J)a = Ca, J. 

<). (C). 
a 

* Now let C denote the set of all closed subsets of s. To each * CcC we 

1na.ke correspond the closed interval IC= [0,1]. Let I IC be the 

product of all these intervals. I is a compact Hausdorff space whose 

* points are real-valued functions f defined on C , such that O < f(C) < 1 

* for all C E.C. 

F'l1rthern1ore for each covering V we have A £ I. a a 
Now let A(a) = {A* IV* 

a a 
* a refinement of V , a 

c,. 
£ A} . 

4 .3.3. Lemma. Let {a
1

,a
2

, •.• ,an} be any finite subset of A. Then there 

is an a £ A such that A
0 

£ A (a1)n ..• n A(an) • 
0 0 



Proof: 

Let 

p £ 

p £ S, then there is a n 
() . = 0 , p 

where 

• 

152 

set oa 8 . i 
£ V such that p £ 

a. 
. l. O 1.s open 

p 
l. 

in S. 

a. 
For each a £ S there are open sets O and O(a)c S such that p 
Oa O(a)c. o . The set {O(a) I a£ S} is an open covering of S. 

Hence 

P pa n ai 
Let O(a ) O(a )· be a finite subcovering and let U = 1n1o n Op. 1 , ••• , n P = P 
Since each U is open in S, we have that -the set of all U , p £ S to-

p p 
gether with all U a a £ S \ L constitutes a covering V of S such that 

P a 
V

0 
is a refinement of V , i a. 

0 l. 

Thus A £ A ( a
1 

) n ••• " A ( a ) • a n 
0 

= 1,2, ... ,n. 0 

4.3.4. kmma. Let). c 11{A(a).I acA). Then A is a non-negative finite 

* monotone, additive and subaddi tive set function on the class C 

* of all compact sets, with the property that A (C) > A (Ca), C £ C , 

a£ S. Moreover l(L) = 0 and A(S) = 1. 

Proof: 

Since the class of all sets A (a) has the finite intersection proper

ty according to 4.3.3, the compactness .of I implies that there is a 

point >.. £ I with 
£ ('\ {A (a) I a £ A} . 

Furthermore it is clear that O < A (C) < 1. 

* Next let C £ C and let nc be the projection of I onto IC, i.e. 

irc(f) = f(C). Then ,re is a continuous function and the set 

then). £ cp 
0 a C' 

for all a £ A and hence A(a) c $c,n· Since tC,D is closed it follows 

that A E <l>C,D and thus that A(C) ~ A(D). 

The proof of. the subaddi tivi ty of .l. is entirely similar to the above 

argument. We just take for <l>C,D the set 

~ = { f I 1f ( f) < 'ff ( f) + 1T ( f) } . 
C,D I C VD - C D 

We now show that .l. is additive. 

If C and D are two compact sets such that C I\ D = 0, then there is an 

a e: A such that V = { 0 8. l ts E B } is a covering of s with the pro-a a a 
perty that if C n O B i- 0 then D I\ 0 = 0. For let a ,P E S. We choose 

a ap 
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an open set O cs such that pa E O and such 

OnD = 0. The continuity of multiplication 
a a 

two sets U and U(a) open in S with pc U, 
p p 

Since the set { U (a) I a E S, p fixed} 

that either O n C = 0 or 

implies the existence of 

a £ U(a) and Ua U(a) co. 
p 

is an open covering of S there 

is a finite subcovering U(a1 ), •.. ,U(an). 

Let U(p) be an open set with p E U(p) such that either U(p)OC =~or 
al an 

U(p) n D = 0 and let o = U(p) n U n ..• I\ u . 
p p p 

The set O has the following properties: 
p 

1) 0 • 1S open 
p 

2) 0 rt C = 0 or 0 nD=0 
p p 

3) o a nc =0 or OanD=0 1·01" al 1 a t:. s. 
p p 

From this it follows that there is an atA such that 

{O IP £ S} U {O alp E S, a e: S \L} = V . 
p p a 

* Thus if C,D E C and C nD = f£1, then there is an a such that 

A (CUD)= .\. (C) + A (D). 
a a " 

Moreover if V * is a refinement of V we have 
a a 

A *(Cu D) = A * (C) + -- --
a. 0 

= nc(f) + 11
0

(r)} • c n ~C,D is closed and there is an u c A 

such that 

Thus A (CUD) = 

A ( a.) c. ~ C , D 

A (C) + .\. (D) • 

and hence 

Finally * we have that for all C £ C and a£ S 

11 (f) < 11 (f)} 
Ca - C 

then /\(a) 

Since for all a EA 

A(L) = O, A(S) = 1. 

* 

we have A (L) = 0 
a 

£ ~ = <l> 
C C 

and A (S) 
a. 

.\.(Ca)~ ,\.(C), since if 

and hence A£ ~c· 
= 1 it is clear that 

Now let O denote the set of all open subsets of S. We define a func-

* tion A* on ·o by 

A* (0) = sup { A (C) I Cc 0, C c * C } • 

4.3.5. Lemma. ).* is monotone, countably subadditive and countably ad-
• 

ditive. Moreover if Oa is open for an open set O of S, then 

Proof: 

* * If U, O e: 0 and Uc O, Cc U, C e: C , then A (C) < A* (0) • Hence 



sup {l(c)lc cu, c 

monotone. 

* £ C } = A*(U) 

* * 
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it follows that 

Next let U,O e: O and let C e: C , Cc. uuo. Then there are closed sets 

D and E such that D c U, E c. 0 and C = D u E • 

Hence according to the subadditivity of A we have 

A(C) < A(D) + l(E) < A*(U) + l*(O). 

* Thus sup { .A (C) IC c. U u O, C £ C } = A* (U u 0) ,:: l* (U) + A* (0) • 

By induction it now follows that .A* 
00 

Now suppose that C c .ul 0., with 0. 
1= 1 1 

compact there is a positive integer n 
n 

is finitely subadditive. 

* £. O i = 1, 2, • • . • Since 
n 

such that Cc .ul 0. and 
1= 1 

00 

C is 

hence 

o.) 
l. 

l*(O.). 
. 1 ]. 

This implies that 
00 

sup { l(C) Jc c u 
i=l 

* 0. , C E C } = 
l 

l= 

0.) < 
1 -

Q) 

I 
i=l 

* Suppose now that U, 0 E 0 * and that U" O = 0. Then if c, D £ c cc u, 
DcO we have CnD = 0 and 

that 

according to the additivity of it follows 

A(C) + A(D) = l(CUD) ~ A.(uuo) and hence that A.(u) + A*(O) = 

D c 

A* is subadditive 

induction that l* 

it follows that l.(u) + . A.(o) = A*(UUO) 

CiO 

If {O.}. l 
]. 1= 

00 

is finitely additive. 

is a sequence of disjoint open 
n n 

sets 0. £ 
1 

• o, then 

Since 

and by 

> - l*(0
1
.). Since this holds for all n we 

1 . 1 1= 
CO 00 

have A*(01 ) and the countable additivity follows 
i=l 

from the countable subadditivity. 

Finally we prove that A* (Oa) * < A*(O) if 0a £ 0 . 
• 

A*(Oa) = sup {l(c)lccoa, c E * C} • If a ES, L, then according to 
• lemma 4.3.1 there is a compact set DEC such that D c O and Da = c. 

Hence A{C) = l(Da) < A(D) 

Thus sup {A(C) I C c Oa, C 

< A* (0) • 
• 

£ C } = .A * ( Oa) ~ A* ( 0) • 

If a EL, then Oa c. Land hence 
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l. * ( Oa) = sup { l. ( C) I C c: Oa c L , 

Note that A*{S) = A(S) = 1 and that A*(J) = O. 

* Now let µ be the function defined on all subsets of S such that if 

E CS 
* µ (E) = inf * 0 E O } . 

• 

The function is an outer measure, since clearly 
. * 1) µ (0) = 0. 

2) If E c. F c: S and Fe 0, 0 £ 

* µ (E) < A*(O) and thus 
00 

* o, 
* µ ( E) 

then 

* < µ (F) . -
3) If {E.}._1 is any sequence of setsJ then there is 

1 1- * . 
A*(O.) < µ (E.) +· £./2 1 for any£> 0. 

1 00 1 GD 

E. c 0 .. 
l l. 

* u Hence µ (. 1 E.) 
1= 1 1= 1 

• 

CD Q0 

.:: l A.<oi) ~ l 
i=l i=l 

such that 

* µ (E. ) + E: • 
1 

Since£ is arbitrary this implies the countable subadditivity ofµ • 

4.3.6. Theorem. Let S be a mob of type 0, Li S. Then S has a right 

subinvariant measure. 

Proof: 

Let µ be the set function defined for al 1 Borel sets B c: S by 

* ~(B) = µ (B). Thenµ is a regular Borel measure. 

We first prove 

* Let O £ o and 

E cons,n. 
Then Dn E = 

* . 

* that every closed set is µ -measurable. 
* * * C E C • Suppose that D £ C , D c On S ' C and E £ C , 

and D u E c O. Hence 

* Thus µ (0) > A(D) + - sup {A(E) IE cons,n, 
* 

E t C } = A(D) + l.* (0 n S, D) 

* = A(D) + µ (On S, D) > A(D) + µ (OnC). 

From this it follows that 

* * * µ (O) > sup {l.(D) lncons,c, D £ c } + µ(one)= 

-- * * * µ ( o n C) = µ (On s , C) + lJ ( O n C) • 

If A is any subset of S and Ac O then 
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* * * * µ (A) = inf { A* (0) I Ac O, 0 c O } ~ ii (0" S, C) + µ (On C) > 

* * µ (An S , C) + µ (A n C) • 

Hence C is measurable and therefore all Borel sets are measurable. 

The fact thatµ is regular follows from 

* * I * µ(B) = µ (B) = inf {.\*(o)IBcO, O t: 0} = inf {i,(O) BcO, 0 E O}. 

Finally we prove thatµ is right subinvariant. 

If a £ S, L and Ba a Borel set for a Borel set B, then 

* £ 0 } 2. 
* < inf {A*(O) lac o, O £ O } = l.i(B). 

If at L, then Ba c L c J and hence 

ll(Ba) < lJ(J) = 0 < µ(B). -
µ is no1,ned, since ~ (S) = A* (S) == >.(S) = 1. 

4.3.7. Theorem. Let G be a locally compact group with zero and let S 

be a compact subsemigroup of G with non-empty interior. Then S 

has a right subinvariant measure. 
• 

Proof: 

If O t S, then Sis a compact group according to the corollary to theo

rem 1.1.10. Hence in this case S l1as a right invariant measure. 

Now let O £Sand let be the right Haar measure defined on G \ {O} • 
• 

Let V be any open set of G, 0 c V, such that S \ V l1as a non-empty in-

terior. I 

According to lemma 1.2. 2 there is an open ideal J of S with O £ Jc Sn V .. 

• 

We now define a measure v on S by 

of s. 
v(B) = 

i.i(B "\.J) 
µ(S\.J) 

for all Borel sets B 

Since J, B and S are Borel sets of G and since u (S , J) > O it is clear 

that v is a no1·n1ed regular Borel measure on S. 
' 

Furthe1111ore if a £ S \. J, then (B '\ J)a = Ba \ Ja :> Ba, J, hence 

V(B ) = µ(Ba\ J) < 
a µ(S \ J) 

JJ(Ba \ Ja) 
ucs,J) 

If a £ J, then Ba c J and hence 
• 

v(Ba) = 0 < v(B). 

• 

v(B). 
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Remark. 

If S is a mob such that S has a right subinvariant measure µ and I 

any closed ideal of S, with \J(l) < 1, then we can define a right sub

invariant measure " on the Rees semi group S/I with the quotient topo

logy by 

v(B) = Ba Borel set of S/I. 

4. 3. 8 .. Theorem. Let G be a compact transforrnation semigroup of 

continuous open homomorphisms of a compact mob S of type O into 

itself such that t(J) c J for an open proper left ideal con

taining Land for all T £ G. Then there is a right subinvariant 

Proo£: 

Let V 
a 

if a £ 

measure on S such that ii(tB) < u(B) for each t t G and each -
Borel set B c: S such that t(B) is a Borel set. 

= {O . I l'.S £ B } 
ab a 

be a covering of S with sets 0 
at> 

such that 

S, L then there is an 0 such that O a c O . Next let 

p £ S. For 
~a ab a 

each T £ G there arg O and O such thgf t(p) £ and . . . . 

p £ 0 as . 
a~l 0 ~2 

Since t e mapping (p,,) + T(p) is continuous 

and 

T E 

T £ G there are neighbourhoods and 

simultaneously in pt S 

such that p E oP e o 
,. aB2 ' 

T T T a l 

£ G} constitutes an open covering of G. The 

Let 

set {vP I T 
T 

p p 
VT , •.. ,v, be a finite subcovering and let 0 

p 
= oP n 

,.1 
• • • f'\ oP c. 

't 
1 n n 

0 as · 
O as the property that for each t e: G, there is an open set O c 

p aB 
V 

0. 

such that T(O ) c: 0 B • 
P a 

The covering V, = {O ,0 a, T(O ), -r(O )a 1 pc S, a£ s,L:, T £ G} 
a P P P P 

is a refinement of V 
a 

Furtherrn.ore if O £ 

o'' £ V , such that 
a 

V ', a 
Oa = 

a £ S , L and t E G, then there are 

O' and 1 0 = o'' or ,- 0 c L. 

O' £ V , 
a 

For i(O a) = T(O ) 'l" a. If Ta£ L, then ,. (0 a) 
p 

c. L, and if ta 
p p 

then T ( 0 a) E V , • 
P a 

Finally we have 'tl (T 2 (OP)) = t T (0 ) £ 
1 2 p 

V , • 
a 

and 

L ., 
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Now let J be the open left ideal containing L such that T (J) c J and 

let ). ' be defined as in lemma 4.3.2. Then we have for each compact 
a 

set ccs and -r E G, >.. ,(C) > A , (t C) • 
a a * {f I Let I be • lemma 4.3.3 and t = f E I, f(C) > f ( 1"C) , C £ C as 1.n 

' -
' 

T E G} • 

Then tis closed and for each covering V
0 

there is a refinement 

such that A, £ t. 
a 

V ' a 

Hence~~ A(a) i 0 and it follows that () A(a) f\ $ i 0·. We now choose 
a 

A E Q 'A( o.) n t. For this choice of ). we have 
* C £ C, T £ G. 

>.(C) > A(TC) for all -

Finally let~ be the right subinvariant measure induced by A. Then ~ 

has the desired property. 

For let O be an open set of Sand let T £ G. For each Cc t(O) there 

* is a D £ C with -r(D) = C. For each point p c D n O there is a neigh-

bourhood V with V c O. The 
p p 

set {,(V ) IP c 
p 

D n O} is an open covering 

of C. Let t(V ), .•• , t(V ) be a finite subcovering 
Pn n - P1 

D' C O and T (D') = C. D' = U V n D. D' is compact 
i=l p. 

1 • 
Hence A*(,(O)) = sup {A(C) IC c tO, C £ C } = 

and let 

* sup {>.(,D')ID'c 0, D' £ C} ~ sup {A(D)I De 0, 

* Final 1 y since µ ( t ( B) ) = inf { A* ( 0) I TB c O , 0 E O } 

* < inf {A*(tO) IBcO, 0 £ 0 } < inf {).*(0) IBcO, 0 c 

for each Borel set t B, the theorem is proved. 

Remark. 

< 

* 0 } = µ(B), 

D E C}. 

If Sis a compact mob such that Ua is open for each open set Uc Sand 

each a£ S, then 4.3.8 holds for any compact transformation semigroup 

of continuous open homomorphisms. For in this case we can define A, by 
a. 

A ,(C) = smallestnumberof0
0

, 8 's that,will cover_<?_ 
a smallest n,1mber of Oa•a's that will covers, • 

l. • e. 

we let J be the empty set. 

4.4. Notes 

Invariant measures on semigroups were first investigated by Schwarz 

[ 7] , ( 8] , [ 11) and Rosen [ 1] . 
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Let (S) be the convolution semigroup of normalized regular non-

negative Borel measures on a compact topological semi group S. Schwarz 

[8 studied the structure of (S) in the case that Sis a finite 

semigroup, and if right invariant measures exist on S, the role of 

such measures in (S). 

In this connection \l{e also mention the work of Wendel [1] , Collins 

[ 1] , [ 2 , 3 , 4 ] and Glicksberg . 1 ] who investigated the 

structure of idempotent measures u , u E (S). Right invariant meas-

• 

ures on compact mobs Sin which the implication, U open in Sand 

a E. S: :) Ua open in S, holds were studied by Schwarz • He es-

tablished necessary and sufficient conditions that such a mob possess 

a right invariant measure. 

We prove in section 4.2 that on such a mob right subinvariant aeasures 

always exist. 

• 

Rosen (1} established necessary and sufficient conditions for a 00111-

pact semigroup to possess an invariant mean. Theorem 4.1.6 however 

seems to be new .. 

In section 4.2 we are concerned with right subinvariant measures on 

(0-) simple compact semigroups. We establish necessary and sufficient 

conditions that such a mob possess a right subinvariant measure. The 
• 

structure of such a measure is then determined • 

• 
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