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CHAPTER 1 

INTRODUCTION AND PREUMIMARIES 

1 . 1 • I nvw due,,ao n and 1, umma11.y 

The theory of infinitely divisible probability distributions plays an impor

tant role in theoretical problems, such as in the study of limit theorems, 

more so than in practical situations, though applications do occur, especial

ly in statistical modelling (cL Katti (1977), Thorin (1977) and Ahmad & 

Abouammoh (1977)), The first stage of its development ended around 1950; the 

basic properties, such as canonical representations, derived especially by 

P. Levy and I.A. Khintchine, and the important applications in the tlleory of 

limit distributions of sums of independent random variables, have been formu

lated, for instance, in the books by Levy (l.937) and by Gnedenko & Ko.1.mogo

rov (l.949). In the next two decades research on this field has been carried 

out along many lines; especially, much attention has been paid to factoriza

tion problems and stable distributions, as is apparent from the survey paper 

by Fisz (1962) and from the books by Linnik (1960) and Lukacs (1970). For 

more recent information we refer to Petrov (1972). 

During the last ten years more research has been done on the often di.fficul t 

problem how to decide whether a given probability distribution is infinitely 

divisible or not. On the one hand new methods of constructing inf.i.n.itely di

visible distributions have been introduced; for instance, tlle methods of 

compounding and mixing are very useful, as has been shown by Steutel (1970), 

Kelker (1.972) and others. On the other hand many necessary and (or) suff.i.-

c ient conditions for i.nfini te di. visi.bili ty have been obtained in tenns of 

the probabil.i. ties themselves, rather than in terms of the corresponding cha

racteristic functions, the most obvious tool in th.is field; this is evident 

from the survey paper by Steutel (1973). 

In this monograph this tendency i.s continued in tl1e following sense: most 

of the classes of infinitely divisible probability distributions that we 

introduce, are characterized by means of functional equations for the proba

bili t.i.es themselves; furthermore, we study properties of distribution func

tions and densities in these classes, like asymptotic behaviour, absolute 

continuity, complete monotonicity, etc. 

Our starting point is the "gap" between the class C of compound geometric 
0 

d.i.stri.butions on JN 0 and the class C1 of compound Poisson di.stri.buticns on 

, Le. (cf. Feller (1968), ch. XII) the class of all infinitely divisible 
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distributions on lN with factors 
0 

in JN • It is known tha.t C ~ C1 (cf. Lukacs 
0 0 

(1970), ch. 5). Furthermore, the classes C0 and C1 can be characterized by 

means of recurrence relations as follows (cf. Steutel (1970) and Katti 

(1967)): a probability distribution {p }00 onlN with p > 0 is in C iff 
n o o o o 

there exist nonnegative quantities rn (0) (n E JN0 ) such th.at 

(Ll.1) 
n 

Pn+1 = l pkrn-k(O) 
k=0 

similarly, {pn} is in C1 iff there exist nonnegative quantities rn (1) 

such that 

( 1 .1. 2) (n + l)pn+l (n EN ) 
0 

(n ,:JN ) 
0 

Now, in order to fill the gap between C0 and C1 we interpolate between 

(LL1) and (LL2) by means of a set of recurrence relations of the follow

ing form: 

(1.1.3) 
n 

cn(o:)pn+l = l pkrn-k(a) 
k=0 

(n E JN ) , 
0 

where cn(0) = 1., cn(l) = n+ 1 (n E :N0 ) and cn(a) is nondecreasing in both n 

and a E [0,1]. Introducing for 0 <a< the class C as the set of distri
o: 

butions {p }''' with p > 0 and satisfying (LL3) with nonnegative rr1 (a)'s, 
no _ o 

we wish to choose c (ct) .in such a way that the C 's yield a elaseification 
D Cl 

of C1 , Le. such t.hat Ca depends monotonically on a E [0,1]. 'l'he most ob-

vious choices for c n ( a) do not have this property, but in chapter 2 we show 

that the choice 

(LL4) (n E JN ; 0 S Ci. S 1) 
0 

produces classes Ca that give a classification of C1 . Rather surprisingly, 

perhaps, we did not find any other. It would seem that these C •s are "clo-
a 

ser" to C0 tha.n to C1 , but as a~l Ca is dense in C1 in the sense of weak con-

vergence, the situation is not too bad. Also in this cbapter we briefly con

sider some other classifications. 

Furthermore, the classes C give rise to a nlliDber of other interesting ob
a 

servations. The equations defining the probability generating .functions of 

distributions in C suggest several other classes of decomposable distribu-a -
tions; tr,ese are studied in chapter 3. One of these gives rise to discrete 

analogues of the well known concepts of self-decomposability and stability 
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(cf. Lukacs (1970), ch. 5 and Feller (1971), ch. XVII), concepts which were 

restricted to absolutely continuous distributions. 

In chapter 4 we investigate the recurrence relations (1.1.3) with cn(a) gi

ven by (1.1.4) for sequences {pn} that are not necessarily probability dis

tributions. Several properties can be proved that are analogous to proper

ties of the sequences studied by Kaluza (1928) and DeBruijn & Erdos (1951). 

Also, we show a fruitful relation with renewal theory; it turns out that 

the case a= 0 is strongly related to the renewal sequences (cf. Kingman 

(1972)), while for O <a< 1 the bounded solutions of (1.1.3) with nonnega

tive rn(a) 'scan be considered as delayed renewal sequences. Although, es

pecially from these relations, several properties can be obtained, it turns 

out that the case O <a< 1 is often difficult to handle; in many respects 

this case seems to inherit the difficulties of both the cases a= 0 and a= 1. 

In chapter 5 the classification of C1, obtained by means of the classes Ca' 
is extended to all infinitely divisible distributions on [0, 00), by replacing 

the system ofrecurrence relations (1.1.3) for pn by the analogous functional 

equation for the distribution function. As, contrary to the discrete case, 

we also have to consider distributions on [0, 00 ) without a jump at zero, the 

proofs are more delicate and the analogy with the discrete case is not per

fect. At this point it is interesting to note that the resulting classes de

termine a limiting class F00 that can be considered as the analogue of C0 for 

distributions on [0, 00), just as the class of all infinitely divisible dis

tributions on [0, 00 ) is the analogue of C1 • A good deal of chapter 5 is de

voted to investigating the structure and properties of this class F00 • It 

turns out that the absolutely continuous elements of F00 contain the standard 

p-functions of Kingman (1972) as a subclass. Finally, in the last section 

of chapter 5 we briefly discuss the classification of the infinitely divisi

ble distributions onlR, and on [O , 00 ) 
2 , by means of functional equations. 

The remainder of the present chapter contains definitions and preliminary 

results. After some notations and conventions in section 2, in section 3 we 

introduce the concepts of absolute and complete monotonicity, which we shall 

use frequently. The concept of infinite divisibility and its basic proper

ties are introduced in section 4, where also some attention is paid to com

pound distributions. In sections 5 and 6 we study the infinitely divisible 

distributions onJN0 and on [0, 00), respectively, in more detail. Finally, 

in section 7 we'give a survey of ·canonical representations for infinitely 

divisible distributions and the relations between them. 
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1.2. No;ta,tiovv., and eonven;tlonJ., 

First we give a list of general symbols and notations, which we shall use 

throughout this monograph. 

lN the set {1.,2,3, •.. } of natural nmllbers, JN0 :=JN u {O}. 

i the set of integers. 

IR the set of real numbers. 

¢ the set of complex numbers. 

A2 the cartesian product of the set A with itself; for instance: 

]R2 ' ]N2 ' [ 0 '00) 2 • 

(a,b) 

[a,b] 

# (A) 

0 

'j 
f(x+) 

D 

0 

the open interval {x lR I a < x < b}. 

the closed interval {x E IR a 5 x 5 b}; similarly (a,b], 

[a,b). 

the cardinality of the set A. 

the indicator function of the set A. 

the empty set; L a := 0, 
nE0 n 

]] 

nE0 
a 

n 

the Kronecker symbol, i.e. 
,i 

= 1 and Ii . . = 0 if i f j . 
l,J 

: 0= Hm f(x + h), f(x··) 
h-1-0 

f(- 00 ) := lim f(x). 
){+-00 

:= 1.im f(x··h), f(co) 

h+O 

indicates the end of the proof. 

lim f(x), 

we shall frequently make use of generating functions, Laplace transforms 

and Fourier transforms; we shall use the following notation for these. 

If an E ¢ for n E JN0 , then the generating fune-tion (gf) of the sequence 

{a }00 is denoted by the corresponding capital, so 
n o 

A(z) L 
n=O 

for those z E ¢ for which the power series converges. A probabi Zi ty generat-

ing (pgf) is the gf P of a probability distribution {p } 00 on 
n o 

Such distributions will be called lattice distributions_; their pgf' s are 

always defined for Jzl 5 l. 

If U t. 0 is a function on JR that is nonnegative, nondecreasing and right

continuous, and if ,Q, (U), the Zeft extremity of u, defined by 

Pv(U) ,~, inf{x E 1R I U(x) > O} , 



is finite, then the La:place-Stieltjes transform (LST) U of U is defined by 

U(T) := f e-,xdU(x) 

(-00,00) 
f 

(.Q,(U) ,oo) 

5 

for those TE lR for which the integral is finite. If U is a distribution 

function, then u is called the probability Laplace-Stieltjes transform (PLST) 

of U. The corresponding small letter u will be used for the (probability) 

density function of u in case of absolute continuity; the ordinary (proba

bility) Laplace transform ((P)LT) of u is then also denoted by u, so 

f -,x 
e u(x)dx. 

(R, (U) ,oo) 

Finally, if U is a right-continuous, nondecreasing and bounded function on 

lR with u (-00 ) = 0, then the FoUl'ier-Stie ltjes transform (FST) u of u is de

fined by 

u<tl := f itx 
e dU(x) , 

(-oo, oo) 

which exists for all t ElR. Analogous to the LT, we define the ordinary Fou

rier f;ransform (FT) . If F is a distribution function on lR, then the FST F 

is called the characteristic function (chf) of F. As~ is continuous and 

F{O) = 1, there exists a neighbourhood of the origin where Fis different 

from zero. So, the principal branch of the logarithm of F, denoted by 

log F(t), can be defined uniquely in that neighbourhood. 

Besides the abbreviations gf, pgf, LST, PLST, LT, PLT, FST, FT and chf, just 

introduced, we shall use the following: 

rv random variable 

df distribution function 

pdf probability density function 

n-div n-divisible, n-divisibility 

inf div infinitely divisible, infinite divisibility 

abs mon absolutely monotone, absolute monotonicity 

comp mon completely monotone, complete monotonicity 
g equal in distribution 

iff if and only if. 
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If u and V are nonnegative, nondecreasing and right-continuous functions on 

lR, then the convolution u * V of u and V is defined by 

(U *V) (x) := U(x- y) dV(y) = f V(x - y)dU (y) (x ElR), 

(-co, oo) 

which is again a nonnegative, nondecreasing and right-continuous function. 

For n ElN then-fold convolution of u with itself is denoted by u*n. If F 

is an inf div df, then for y > 0 p*Y denotes the df with chf ~-

If {a }00 is a sequence with a 0 f O and with gf A, then for y > 0 these
no 

quence {a*Y}00 is defined by its gf as follows: n o 

2 A(z) y • 
n=0 

Unless stated otherwise, throughout this monograph we only consider proba

bility distributions on JR that are not concentrated at zero. For instance, 

as in case of a lattice distribution {p } 00 we often take p 0 > 0 (cf. sec-
no 

tion 5), it is then tacitly assumed that 0 < p 0 < 1. 

If {p }00 is a lattice distribution in some class C with pgf P, then we shall no 
also say that PE C. Similar conventions hold for F and F. 
Finally, if C is a class of probability distributions, then a family 

(Ct I t ET) of subclasses of C is said to define a alassifiaation of C, if 

T can be totally ordered in such a way that the classes Ct are nondecreas

ing in the ordering of T. It follows that for t 1 < t 2 < < tn the clas

ses Ct ,Ct \Ct , ••• ,Ct \Ct ,C\Ct form a partition of C. 
1 2 1 n n-1 n 

1.3. AbMltde a.n.d c.omple.:te mono.torucLty 

In the sequel we shall characterize several classes of probability distri

butions by making use of the concepts of absolute and complete monotonicity 

(cf. Widder (1946), ch. IV and Feller (1971), ch. VII and XIII). Since we 

only need absolute monotonicity on intervals of the form [0,p) and complete 

monotonicity on (0, 00), we usually do not mention these intervals. We start 

with considering absolutely monotone functions. 

DEFINITION 1.3.1. A function R is said to be absolutely monotone on [0,p) 

if it is continuous there and possesses derivatives of all orders on (0,p) 

with 



R is said to be absoZuteZy monntor~ (abs mon) if there exists p > 0 such 

that R is abs mon on [0, p). 

When proving the abs mon of a function, we shall often utilize the follow

ing characterization (cf. Widder (1946), ch. IV). 

THEOREM 1. 3. 2. A function R is abs mon on [0, p) iff there exist rn e: 0 

(n E 1N ) such that 
0 

(1. 3 .1) R(z) I 
n=O 

n r z 
n 

in this case the quantities 

(0 5 z < p) 

are given by rn (0+)/n! (n E 

Thus, an abs mon function Ron [0,p) can be extended analytically to the 

disk lzl < p. 

'rhere exists a number of simple properties of abs mon functions that we 

shall use in the sequel without further comment; the following lemma con

tains some of them. 

LEMMA 1.3.3. 

(i) R is abs man iff R(O) 2 0 and R' (z) is abs mon. 

7 

(ii) If R is abs mon, then so are R(az) and R(z) - R(az) :for all a E (0, 1). 

(iii) If R and S are abs man, tl1en so are R(z) + S (z) and R(z) S (z). 

(iv) 

(v) 

If R is abs mon on [O,p) 
n 

(n E IN) and if R(z) ~ J.im R (z) exists for 
n 

z E [O,p), then R is abs mon on [O,p). 
n.._ 

If R is abs man on [0,p) and if Sis abs mon on [O,cr) with S(z) < p 

(0 5 z < er), then R(S(z)) is abs mon on [O,cr). For instance: 

(a) If Sis abs mon, then exp[S(z)] is abs mon; 

(b) If S is abs mon with S (z) < 1 in some interval [O,cr), then 

{ S(z) 1 is abs mon. 

The following lemma, and si.mple extensions of it, will be used particular

ly in chapter 3. 

LEMMA 1.3.4. Let P be a pgf with P(O) > 0, and let Q be a pgf. If tl1e func

tion R, defined by 



8 

R(z) := Q(z)/P(z) , 

is abs mon, then R coincides, at least in I z I 5 1, with a pgf. 

PROOF. As R is abs mon, by theorem 1 • 3 • 2 there exist p > 0 and :o: 0 

(n E JN ) such that 
0 

(1.3.2) R(z) I 
n=0 

n r z 
n < lz I < P> • 

Since P (0) > O, we may 

and Qare the pgf's of 

assume that P(z) ;e 0 for jzj < p, and hence, if P 

{p }00 and {q } 00
, respectively, then 

no no 

(n E lt-l ) 
0 

Summing over n we get 

oo n oo oo 

1 l l rkpn-k = l rk l pn-k 
n=0 k=0 k=0 n=k 

I 
k=0 

Le. {r }'" is a probability distribution. Now, let A denote the set of poles 
n o 

of R in JzJ 5 1, t11en, as P has finitely many zeros in jzj 5 1, we have 

# (Al < 00 , while by analytic continuation we see that the equality in (1.3.2) 

holds in { J z J :; 1} \A. However, since L'.r zn is bounded in J z J :; 1, we neces-
n 

sarily have A !11, and the lemma is proved. O 

Finally, we state the continuity theorem for pgf's, which we shall need se

veral times. It can be found in Feller (1968) , ch. XL 

THEOREM L3.5. Suppose that for every n EJN the sequence {pk(n)}==O is a 

probability distribution with pgf P ri. 

(i) If pk:= lim pk(n) exists for all k E JN0 , then P(z) := lim Pn(z) exists 
n➔oo n➔oo 

for all z E [0,1], while 

( 1. 3. 3) P(z) (0 :; z < 1) • 

If in addition {pk}: is a probability distribution, then P is tJ-ie pgf 

of {pk} (in fact, as is easily shown, P(z) := lim Pn(z) exists for 

J z I 5 1 and ( 1 • 3 • 3) holds for I z I 5 l) • n-+= 



(ii) If P(z) := lim Pn(z) exists for all z E (0,1), then pk:= lim pk(n) 
n.._ n.._ 

exists for all k E 1N0 , while (1.3.3) holds. If in addition P is left-

continuous in z = 1, then {pk}: is a probability distribution with 

pgf P. 

Next, we consider completely monotone functions. 

DEFINITION 1.3.6. A function qi on (0, 00 ) is said to be completely monotone 

(comp mon) if cp possesses derivatives of all orders on (0, 00 ) with 

The comp man functions can be represented as LST's; this result is known 

as Bernstein's theorem (see e.g. Feller (1971), ch. XIII). 

THEOREM 1. 3. 7. A function qJ on (0, 00 ) is comp mon iff there exists a nonne

gative, right-continuous and nondecreasing function U witl1 Q,(U) ?: 0 such 

that [jl ~, U, i.e. such that 

cp(T) = f 
[O ,oo) 

-tx 
e dU(x) (T > 0) • 

In the following lemma we summarize the principal properties of comp mon 

functions ( cL Feller ( 1971) , ch. XIII) ; they will be used without further 

comment. 

LEMMA 1.3.8. 

(i) cp is comp mon iff -cp' (t) is comp mon and cp(oo) ?: 0. 

(ii) If cp is comp mon, then so are cp(At), cp(T + \) and cp(t) - ((J(T + \) for 

all \ > 0. 

(iii) If ((J and tjJ are comp mon, then so are ((J + i)! and (()1µ. 

(iv) If ((Jn is comp mon (n EThl) and if qJ(r) ,~ lim (t) exists fort> 0, 

then ((J i.s comp mon. 

(v) If R is abs mon on [0,p) and if ((J is comp mon with ((J(t) < p ('C > 0), 

then R(((J(T)) is comp mon. For instance, if ((J is comp mon, then 

exp[(() (t)] is comp mon, and if in addition ((J (,:) < 1 (r > 0), then 

{1 - [jl(T)}-l is comp mon. 

9 
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(vi) If q, and lj;' are comp mon and if 1/J(O+) ? 0, then qJ(l/J(-r)) is comp mon. 

For instance, if lj;' is comp mon and 1µ(0+) ? 0, then exp[-1µ(-r) J and 
-1 

{1 + lj;(t)} are comp mon. 

We also mention two relations between the LST U (comp mon if J!,(U) ? 0) and 

the function U, which we shall use repeatedly. 

LEMMA 1.3.9. Let U j 0 be a nonnegative, right-continuous and nondecreasing 

function on JR with J!,(U) > - 00 and such that U(T) exists for T > Then 

(1.3A) (f(U)) um fi<,l (U) T 

and, if J!,(U) ? 0, 

(1.3.5) U(O) lim u(TJ 
T->co 

If :S 0, then also 

(L3.6) U( 00 ) = lim U(T) 

T+0 

PROOF. In view of the definition of U we can write 

u<,l (Ult 
U(J!,(U)) + J 

(Q,(U) , oo) 

from which ( L 3 .4) follows by the dominated convergence theorem. Similarly 

we obtain (1 3.5). Finally, applying the monotone convergence theorem, we 

see that 

lim U(T) 

-r+0 
J dU(x) 

[J!,(U),oo) 

lim ,U(x) U (co) 

x-+ro 

Finally, we give a definition of comp mon for sequences and a representa

tion of such sequences, which is due to Hausdorff (cf. J;•eller (1971), ch. 

VII). 

DEFINITION 1. 3 .10. A sequence {a } co of real numbers is called comp mon if 
n o 

(n,k E 

where and 

□ 
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THEOREM 1.3.11. A sequence {a }00 is comp mon iff there exists a finite mea
n o 

sure v on [0,1] such that 

(1.3. 7) a 
n 

f xnv(dx) 

[0,1] 

1.4. Ve.6,[n,.l.,ti,on a.nd ba.Lifr pJWpeM:,le6 o0 ino,lnU.uy dfau,ible. dl6Afbu;t[on,6 

on 1R 

The concept of infinite divisibility can be introduced as follows. 

DEFINITION 1.4 .1. For n EJN a rv X is said to be n-divisible (n-div) if 

there exist independent and identically distributed rv's X 1, ••• ,x such n, n,n 
that 

X ~ X + .•• + X 
n, 1 n,n 

Arv Xis said to be infinitely divisible (inf div) if Xis n-div for all 

n ElN. 

In fact, inf div is a property of the distribution of X; therefore we call 

the df, pdf, chf, etc., corresponding to an inf div rv X, inf div too. Thus, 

a chf Fis inf div iff for every n ElN there exists a df F such that 
n 

F<t> (t E lR) • 

Next we list a number of basic properties of inf div distributions that we 

need in the following chapters; they can be found in Lukacs (1970). The 

first three of them have obvious analogues for pgf's and PLST's. 

THEOREM 1.4.2. If F and Gare inf div chf's, then FG is an inf div chf. 

THEOREM 1.4.3 (Closure theorem). A chf which is the limit of a sequence of 

inf div chf's, is inf div. 

THEOREM 1.4.4. A nonvanishing chf F is inf div iff '.F'Y is a chf for all y > 0 

(or for all y = 1/n, n E lN, or for all y = 2-n, n E lN). 

THEOREM 1.4.5. An inf div chf has no real zeros. 
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THEOREM 1.4.6. If the rv Xis nondegenerate and bounded, then Xis not inf 

div. 

THEOREM 1.4. 7 (Levy canonical representation) . A function cp on IR is an inf 

div chf iff cp has the form 

(L4 .1) ( ) [ • 1 2 2 
cp t = exp 1 ta - ":!CT t + I 

IR\ {O} 

itx itx 
{e - 1 - ---2 }dM(x) J 

l+x 

where a E IR, 0 2 ~ O and M .is a right-continuous function onIR\{O} with the 

following properties: M is nondecreasing on (- 00 ,0} and on (0,oo), M(-oo) 

= M( 00 ) = O, and 

(1.4.2) f x2dM(x) < 00 • 

(-1, 1) \{O} 

REMARK .1.4.8. If a chf F has a representa.tion of the form (L4.1), where M 

violates the monotonicity condition of the theorem, then F is not inf div. 

The canonical representation ( 1. 4. 1) can be somewhat modified to obtain 

other well known representations. For instance, in the Levy-Khintchine re

presentation an inf div chf F has the form 

(L4.3) F (t) = exp[ita + f 
(-00,00) 

(t E IR) , 

where a E JR and 8 is a right-continuous, nondecreasing and bounded function 

on IR. with 0(-00 ) 
. . l t2) 0 (for x = 0 the integrand is defined by cont1.nu.1.ty: - ~ · . 

The canonical representations (L4.1) and (1.4.3) are generalizations of 

the following representation, due to Kolmogorov, which is val.id only for 

chf' s of inf div distributions w.ith finite second moment: 

(L4,4) F(t) = exp[.ita + f 
(-00,00) 

{eitx - 1 - itx}.!:_- dK(x) J 
2 

X 

(t ElR), 

where a E JR and K is a right-continuous, nondecreasing and bounded function 

on JR with K(- 00 ) 0, We prefer the Levy canonical representation, as it has 

the clearest relations with the canonical representations known for inf div 

distributions on [0, 00) and on 

ri:Eied in section 7, 

, which are special cases; this will be cla-
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Simple examples of inf div distributions are provided by t11e degenerate, 

Poisson, negative-binomial (and hence geometric), gamma (and hence exponen

tial), normal and Cauchy distributions; their inf div is easily verified 

from their chf' s. Considerably harder to prove is the inf div of the log-· 

normal and the Student distributions; this has recently been done by Thorin 

(1977) and Grosswald ( 1976), respectively. 

There are several methods to construct new inf div distributions from given 

ones; the best known are convolution, compounding and mixing. As an example 

of the method of mixing we state the following theorem of F'eller (1971), ch. 

XVII (see also Steutel (1970)), and we note that in section 6 mixtures of 

exponential distributions are considered. 

'I'HEOREM L4.9. If G and Hare inf div df's on [0, 00 ) and:JR, respectively, 

then 

(1.4.5) G(-log H(t)) f (t E JR) 

[O I oo) 

is an inf div chf. 

COROLLARY L4.l0. If G is an inf div df on [0, 00 ), then the following mix

ture of normal ch.f's is inf div: 

(l .4 .6) f (x) (t E JR) • 

[O, oo) 

.Finally, we pay some attention to compound distributions. Here we use t.h.e 

terminology of Feller; such distributions are also called generalized dis

tributions by some authors (cL Gurland (1957) and Johnson & Kotz (1969)). 

DEFINITION 1 .4 .11. A probability distribution is called a 

bution if its chf F can be written in the form 

(1 LL7) t) ~ p 

where Pis a pgf and G is a df. 

A rv X with chf F given by (1 .4. 7) can be represented as 

X ~ 

distri-

where are independent, N has a lattice distribution with pgf P 

and , ... are identically distributed with df G. 
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EXAMPLE 1 • 4 • 12 • 

(i) A compound Poisson chf F is a chf of the form 

(L4.8) F(t) exp[µ (G<tl - 1) J (t E 1R) 

whereµ> 0 and G is a df. 

(ii) A co"rpound geometric chf Fis a chf of the form 

(L4.9) 
1 - p 

1 - pG(tl 
(t E 1R) 

where O < p < 1 and G is a df. 

REMARK L4.13. For a chf F j 1 of the form (1.4.8) or (L4.9) it is possi

ble to choose the df G in such a way that G is continuous at zero. We shall 

always do so; the representations (1.4.8) and (1.4.9) are then unique, and 

we will refer to them as compound·-Poisson- (µ ,G) and compound-geometric

(p,G) distributions, respectively. 

The compound Poisson and the compound geometric (more general: compound 

negative-binomial) distributions a.re known to be inf div (cf. Lukacs (1970), 

ch. 5). In fact, this is a consequence of the following property of compound 

distributions. 

LEMMA 1.4.14. If P is an inf div pgf with P(O) > 0, then for all df's G the 

compound chf F ( t) ,= P (G ( t)) is compound Poisson and hence inf div. 

PROOF. As we shall see in theorem LS.1, if P is an inf div pgf with P(O) > 0, 

then Pis compound Poisson, so 

P (z) exp[µ(Q(z) - 1)] 

with J.l > 0 and Q is a pgf witl-, Q(O) 0. It follows that 

Ft) P(G(t)) = exp[p(Q(G(t)) - 1)] 

Le. Fis compound-Poisson-(µ,H), with H(t) := Q(G(t)). □ 

In sections 5 and 6 compound distributions on JN0 and on [0, 00 ) will be consi

dered in more detail. We conclude this section with De Finetti' s observa

t:i.on, that every inf div distribution can be obtained as the weak limit of 

compound Poisson distributions (cf. Lukacs (1970), ch. 5). 



'TIIBOREM 1.4 .15. A chf F' is inf div iff F' has the form 

(L4.10l F t) = lim exp[µ 
n 

(t) - 1) J (t E JR) , 

where !In > 0 and Gn is a df (n E JN) • In this case we may take 

G = F*l/n (n E JN) . 
n 

1. 5. 1 n6hu.tely cuvJ./2,i.,bfe. £aWc.e. cu6Vubution1., 

15 

n and 

Let {p }00 be a lattice distribution, Le. a probability distribution onJN • 
n o o 

When investigating the inf div of {pn}' we shall always require that 

0 < p 0 < 1; the condition > 0" ensures that, in case of inf div of 

the distribution {p*l/k} 00 

0 (with pgf P(z) l/k) is again a distribution on 
n n= 

It is not an essential restriction: for all y E JR, P(e1 t) is an inf div 

ch£ iff eit., P (eit) is an inf div chf. Further we note that log P (z) and 

P (z) y (y E JR) are always uniquely defined in a neighbourhood of zero if 

> o. 

For an inf div pgf P we have the following representation theorem (cf. Fel-· 

ler (1968), ch. XII). 

THEOREM LS.L A pgf P, with 0 < P(0) < 1, is inf div iff Pis compound 

Poisson, i.e. if£ P has the form 

(LS.l) P(z) =exp[µ(Q(z) - ll] < I z I " 1 l , 

whereµ> 0 and Q is a pgf with Q(O) = O. The representation (p,Q) is uni

que. 

COROLLARY 1. 5. 2. An inf div pg£ P with P ( 0) > 0 has no zeros in the closed 

unit disk. 

Feller (1968) reformulates theorem 1.5.1 to obtain a criterion for inf div. 

We shall now do so in a slightly different way, using the concept of abso

lute monotonicity (cL definition L3.1) .. Additionally we obtain a slightly 

different representation for i.nf div pgf's, which is sometimes more conve

nienL 

THEOREM 1.5.3. A pg£ P, with 0 < P(0) < 1, is inf div i.ff the function 

def:Lned by 
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(1.5 .2) R1 (z) := P' (z)/P(z) , 

is abs mon, or, equivalently, iff there exist nonnegative quantities rn(1) 

(n E N 0 ) satisfying 

(i .5.3) 
oo r (1) 
l n < co , 

n=O n + 1 

such that P has the form 

(1.5.4) P(z) < I z I s 1) • 

PROOF. If Pis .inf div with O < P(O) < 1, then P has the form (1..5.1) and 

hence R1 (z) = µQ' (z) .is abs mon. 

Next, let R1 be abs mon. Then there exist p > 0 and r n ( 1) ?: 0 (n E JN 0 ) such 

that. 

(L5.5) P'(z)/P(z) 

Integrating this equation from O to z ( I z I < p), we obtain 

(L5.6) log{P(z)/P(O)} c I 2 I < p) • 

E'roru (LS.5) we get the fol.lowing relations: 

(n + 1) 

n 

l pkrn-k (1) 
k=O 

(n E JN ) 
0 

from which by the nonnega ti vi ty of the r n ( 1) 's it can be shown (cf. lemma 

1.5.6) that (1.5.3) holds. Hence the power series in (1.5.6) is convergent 

for I z J s 1, and by analytic continuation it follows that the equal.i ty in 

( LS .6) holds for I z f s L Taking z = 1, one sees that 

(LS .7) -log P(O) 
I rn (1) 

n=O n + 1 

hence P takes the form (LS.4). 

Finally, if P has the form ( 1 . 5. 4) with nonnega Live 

(1.5.3), then defining 

( 1) 's satisfying 
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(1.5.8) and Q(z) := I 
µ n=O 

1) ' 

we see that P takes the form ( 1.5 .1) and hence is inf div. □ 

REMARK L5.4. To some quantities we add an index 1 or O i.n order to fi.t them 

in the more qeneral notation of the next chapter. For instance: (1) ' 

The sequence {rn ( 1)} from the preceding- theorem is uniquely determined by P, 

its gf satisfies ( .5.2). Therefore (1)} is called the canonical, se-

quence of the inf div pgf P; its relation with the Levy canonical represent.a-· 

( 2 it 
ti.on a,cr ,M) for P(e ) will be shown in section 7. 

From theorem 1. 5. 3 one easily verifies the following- theorem, due to Katti 

(1967), which gives a characterization of the inf div lattice distributions 

in terms of the 's themselves. 

COROLLARY 1.5.5. A lattice distribuUon {p }°0 witJ1 0 < p 0 < 1 is inf div iff 
11 0 

there exist nonnegative quantities ( 1) (n E JN0 ) such that 

(L5.9J 
11 

l pkrn-k (1) 
k=O 

(n E JN ) 
D 

It is useful to consider the recurrence relations (1.5. 9) in some more de-· 

tail. 

LEMMA 1.5.6. 

(i.) If {p }''" i.s a lattice distribution with p > 0, then there exists a n o , o 
unique sequence {r (1) }°'' satisfying (1.5.9); its gf R has a positive 

n o 1 
radius of convergence, while for Jzl sufficiently small 

(L5.10) R1 (z) = P' (z) /P(z) . 

If, in addition, all r 11 (1) 's are nonnegative, then necessarily 

(L5 .11) I 
n=O 

r ( 1) 
11 

n + 1 
< 

(ii) If (1) }"'' is a sequence of nonnegative numbers satisfying (L5.11), 
0 

then there exists a unique 'lattice distribution 

satisfying (1.5.9). 

, with > 0, 
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PROOF. 

(i) Evidently, the first n+ 1 equations in (1.5.9) determine 

.. .,rn(l). As p 0 > 0, the function , defined by (L5.l.O), is analy

tic in a neighbourhood of zero, and therefore has a power-series expan

sion with coefficients r 0 ,r1 ,. .. , say. But from (1.5.10) it follows 

that the rn's satisfy (1.5.9), so rn rn(1) (n ElN0 ), and R1 is the 

gf of the sequence {r n (1) L 
If, in addition, all rn(l) 's are nonnegative, then we can write 

(1) 

2 po z: n:-+T, 
n=0 

and hence 
r (1) I _n __ < 

n=0 n + 1 ·-
< co 

(ii) Clearly, there exists at most one probability distribution {p }''" with 
n o 

p 0 > 0, satisfying (L5.9) for given rn(1). Now, if rn(:l) 2 0 (n E JN0 ) 

and if (1.5.11) holds, then it is seen that the function P defined by 

(L5.4) is abs mon with P(l) = 1, Le. P is a pg£. It follows that if 

R1 is the gf of {rn(l)}, then P satisfies (1.5.10), Le. the coeffi-

cients pn of P satisfy (1.5.9). 

~he following result about zeros of an inf div {p }00 can be derived from 
n o 

corollary LS.5 (cf. Steutel (1970)). 

THEOREM 1.5.7. If {pn} is an inf div lattice distribution with O < < 1, 

then for all n E JN0 and all k E JN0 the following implication holds: 

Consequently, if 

Next we turn to the compound geometric lattice distributions, i ,e, (cf. 

example 1.4.12(ii)) distributions with pgf P of the form 

( . 5 .12) P ( z) ~ __ 1 ...::.....E._ 
1 - pQ(z) <I zl ,,; 1) 

where 0 < p < 1 and Q is a pgf with Q(0) 0. These distributions are inf 

□ 
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div (cf. lemma 1.4.14) and have properties similar to those of the compound 

Poisson lattice distributions. 

THEOREM 1.5.8. A pgf P with O < P(Ol < 1 is compound geometric iff the func

tion R0 , defined by 

is abs mon. 

PROOF. The necessity of the condition immediately follows from (1.5.12). So, 

let R 
0 

R has 
0 

be abs mon, i.e. there exist p > 0 and rn(O) ~ 0 (n E :JN0 ) such that 

a power-series representation for lzl < p with coefficients r (OJ. n 
Then from (1.5.13) it follows that 

(1.5.14) P(z)/P(O) {1 - I < I zl < P> , 
n=O 

and that 

From these relations it can be shown (cf. lemma 1.5.10) that I rn(O) < 1, 
n=O 

and hence the right-hand side of ( 1 . 5 .14) is an analytic function on J z I 5: 1. 

It follows that the equality in (1.5.14) holds for lzl 5: 1. Taking z = 1 we 

see that 

(1.5.15) P(O) i - I 
n=O 

r (0) 
n 

and hence P takes the form (1.5.12) if we define 

(1.5.16) p := I 
n=O 

r (0) 
n 

and 
00 

Q<z> == ½ I 
n=O 

r (0) zn+l 
n 

1) • 

From theorem 1.5.8 one obtains the following analogue of corollary 1.5.5 

(cf. Steutel (1970)). 

COROLLARY 1.5.9. A lattice distribution {p }00 with O < p 0 < 1 is compound 
n o 

geometric iff there exist nonnegative quantities rn(O) (n E ]N0 ) such that 

n 
(1.5.17) Pn+1 l pkr -k(O) 

k=O n 
(n E :JN ) 

0 

D 
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The following lemma is the analogue of lemma 1.5.6 for the recurrence rela

tions (1.5.17). 

LEMMA l.5.1.0. 

(i) If {p }00 is a lattice distribution with p > 0, then there exists a 
n o o 

unique sequence {r (0)} 00 satisfying (LS.17); its gf R0 has a positive 
n o 

radius of convergence, while for lzJ sufficiently small 

(1.5.18) R (z) = _!_{1 - P(O)/P(z)) 
0 Z 

If, in addition, all rn(0) 's are nonnegative, then necessarily 

(1.5.19) l rn(0) < 1 . 
n=0 

(ii) If {r (0) } 00 is a sequence of nonnegative numbers satisfying (1.5.19), 
n o 

then there exists a unique lattice distribution {p } 00
, with p > 0, 

n o o 
satisfying (1.5.17). 

PROOF. 

(i) The proof of the first part is similar to that of lemma 1 .5 .6. If 

r (0) ?. 0 for all n E JN , then we can write 
n o 

1 -

from which ( L 5. 19) follows. 

I 
n=0 

r (0) 
n 

(ii) If (0) ?. 0 for all n and if (1.5.19) holds, then it is seen that the 

function P, defined by (1.5.14) with P(0) given by (1.5.15), is abs 

mon with P(l) = 1. It follows that Pis the pgf of a lattice distribu

tion {p }°'' that satisfies (1.5.17). 'l'he uniqueness of {p11 } is evident 
. 11 0 

from ( L 5 • 1 7) • D 

'.Po conclude this sect.ion we mention two more classes of inf div lattice dis

tr.ibutions: the classes of comp mon and log-convex lattice distributions. 

Comp mon has been introduced in definition 1. 3 .10; from theorem 1. 3 .11 one 

easily deduces the following lemma. 

LEMMA .5 .11. A lattice distribution is comp mon iff is a mix-

ture of geometric distributions,· i.e. iff there exists a df G on [0,1) such 

that 



( 1.5 .20) pn / (1 - p) pndG (pl 

[O, 1) 

(n E JN ) 
0 

Log-convexity can be introduced as follows. 
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DEFINI'l'ION L5.12. A lattice distribution {p }°'' is said to be log-convex if 
n o 

( 1.5 .21) (n E JN) 

Let us define the following four classes of lattice distributions {p }00 

n o 
with p 0 > 0: 

{pn } E A if {pn } is comp mon, 

{pn} E B if {pn } is log-convex, 

{pn} E C if {pn } is compound geometric, 
0 

{pn} E. Cl if {pn} is compound Poisson, Le. if {pn} is inf div. 

Then the family (A,B,C0 ,C1) defines a classification (cf. the end of section 

2) of C1 , as will be apparent from the following relations (cf. Kaluza 

(1928), Goldie (1967), Steutel (1970) and Warde & Katti (1971)). 

THEOREM 1. 5 .13. A c B c: CO c C 1 , where all inclusions are strict. 

REMARK 1.5.14. "C0 c C1" also easily follows from theorems 1.5.3 and LS.El 

by use of the following relation between R0 and R1 : 

(1.5.22) Rl (z) = {1 - ZR (z) }-l ~d ZR (z) J 
0 Z 0 

The inf div distributions on [O,ro) can be characterized in the following 

way (cf. Feller (1971), ch. XIII). 

-THEOREM L6.L A positive function cp on [0, 00 ) is the PLST F of an inf div 

df Fon [0, 00 ) iff (JJ(O) = 1 and the function (JJ 0 , defined by 

(L6.1) (T > 0) , 

is comp mon, or, equivalently, iff there exists a right-continuous, nonde

creasing function K0 on JR, satisfying 
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(1.6.2) f 
(1,oo) 

.!_ dK (x) < oo , 
X 0 

such that IJ) has the form 

(1.6.3) ip(T) = exp[ / 

[0,oo) 

( T :2: 0) • 

We can (and will) choose the function K0 such that K0 vanishes on (- 00,0). 

As we then also have K = IJ), with IJ) given by (1.6.1), the function K is 
0 0 0 0 

uniquely determined by IJ) = F; K is called the canonical function of the 
0 

inf div df F. Its relation with the Levy canonical representation (a,o2,M) 

will be shown in the next section. 

Before giving some properties of K0 , we state a characterization of the inf 

div df's on [0, 00 ) in terms of the df's themselves, which has been used by 

Steutel ( 1970) , and can be obtained by inverting the expression for IJ)' = F' 

in (1.6.3). 

THEOREM 1.6.2. A df Fon [0, 00 ) is inf div iff there exists a right-continu

ous, nondecreasing function K0 such that 

(1.6.4) f y dF(y) = 
[0,x] 

f F(x - y)dK0 (y) (x :2: 0) • 

[0,x] 

COROLLARY 1.6.3. A pdf!. f on (0, 00 ) is inf div iff there exists a right-con

tinuous, nondecreasing function K0 such that 

(1.6.5) xf(x) = f f(x - y)dK0 (y) 

[0,x] 

(almost all x > 0) • 

Now we can prove the following properties of the canonical function K0 • 

LEMMA 1.6.4. Let F be an inf div df with 2(F) :2: 0 and canonical function K0 

Then 

(i) K0 (0) = 2(F); 

(ii) J ~ dK0 (x) < 00 iff F(2(F)) > 0, in which case the following rela-
(0,oo) 

tion holds: 

(1.6.6) f 
(0 ,oo) 

1 
- dK (x) 
X 0 

-log F (2 (F)) 
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{iii) K0 is bounded iff µ 1 := f 
(0 ,co) 

x dF(x) < 00 , in which case 

(1.6.7) / dK0 (x) 

[O, oo) 

PROOF. Define the df G by G(x) := F(x+ R.(F)) (x ElR), then G is again inf 

div, with R.(G) = 0 and canonical function L0 , say. According to theorem 

1.6.2, we have for all x > 0 

G(x)L0 (0) ~ f G(x-y)dL0 (y) 

[0,x] 

f ydG(y) ~ xG(x) , 

[0,x] 

and hence, as R.(G) 

we can write 

0. Using the representation (1.6.3) for G, 

F(T) =e-R.(F)TG(T) =exp[-R.(F)T+ f 
(0, oo) 

-TX 1 
(e -1)- dL (x)J 

X 0 

But as F can also be represented by (1.6.3), the uniqueness of the canonical 

function implies K0 (0) = R.(F). In view of (1.6.3) we can now write 

J -TX 1 
(e - 1)- dK (x) 

X 0 
(T 2: 0) , 

(0 ,oo) 

from which, letting T ➔ 00 and using (1.3.4) and the dominated convergence 

theorem, we obtain part (ii) of the lemma. Finally, using (1.3.6) and the 

fact that K 
0 

~o with ~o given by (1.6.1), we obtain part (iii) as follows: 

f 
[0,oo) 

dK (x) 
0 

lim K (T) 
-r+0 o 

lim - F' (T) /F (T) 
T+0 

□ 

Part (iii) of the preceding lemma can be generalized to obtain necessary 

and sufficient conditions for the existence of higher moments of inf div 

distributions on [0, 00). This has already been done by Wolfe (1971b) forge

neral inf div distributions, but in our case the proof is very simple and 

we obtain a relation with the class C1 of inf div lattice distributions. 

THEOREM 1.6.5. Let F be an inf div df on [0,oo) with canonical function K0 • 

Then for all n E lN 
0 

(1.6.8) := J < 00 ' 

[0 ,oo) 
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in which case 

(1.6.9) 

if µn < 00 for all n ElN, then{µ /n!} 00 satisfies the recurrence relations 
n o 

(1.5.9) for C1, with r (1) = V /n! (n E lN ) • n n o 

PROOF. If U is a nonnegative, right-continuous, nondecreasing function with 

t(U) :2: 0, then obviously for all n E JN0 

(1.6.10) n d n..-: 
lim (-1) (-d) u(-r) 
,,1,0 T 

Since the canonical function K0 of an inf div df Fon [0, 00 ) satisfies 

-F' (-r) = F(-r)K0 (-r) (cf. theorem 1.6.1 or (1.6.4)), we can write 

(1.6.11) 
n 

c-1i n I 
k=0 

Now, using the fact that µk < 00 (k = 0,1, ••. ,n) if µn+l < 00 and the same 

property of {v }'", and letting -r ,I, 0 in (1.6.11) (cf. (1.6.10)), we see the no 
assertions of the theorem to be true. 

If Fis an inf div df on [0, 00 ) with F(0) > 0, then the representation 

(1.6.3) for F can be simplified as follows. 

THEOREM 1.6.6. A df Fon [0, 00 ) is inf div with F(0) > 0 iff Fis compound 

Poisson, i.e. iff F has the form 

(1.6.12) F(-r) = exp[µ(G(-r) - 1)] (, :2: 0) ' 

whereµ> 0 and G is a df with G(0) 0. 

□ 

PROOF. Let F be an inf div df on [0,00 ) with F{0) > 0. Then i(F) = 0, and if 

K0 is the canonical function of F, it follows by lemma 1.6.4(ii) that 

µ := J 
(0,co) 

Now if we define 

1 x dKo(x) < co 

J 
(0,x] 

1 . 
- dK (y) y 0 

(x :2: 0) , 
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then G is a df with G(O) = 0, and it is easily seen that the representation 

(1.6.3) for F can be rewritten in the form (L6.12). 

Conversely, it is well known (and trivial) that a PLS'I' of the form (L6.12) 

is inf div with F(O) > 0. □ 

The compound geometric distributions on [0, 00 ), which are also compound Pois

son (cf. lemma 1.4. l.4) , can be characterized by a functional equation simi-· 

lar to (1.6.4) (cf. Steutel (1970)). We use a notation that will be clari

fied in chapter 5. 

THEOREM .6.7. A df Fon [0, 00 ) is compound geometric, i.e. has a PLST F of 

the form 

(1.6. 13) F(T) 
1 - ,P 

1 - pG(T) 

(T 2: 0) , 

where 0 < p < 1 and G is a df with G(0) = 0, iff F(0) > 0 and there exists 

a right-continuous, nondecreasing function K
00 

such that 

( .6.14) F(x) - F(O) f F' (x - y) dK00 (y) 

[O,x] 

(x 2: 0) • 

From (L6.14) one easily proves the following result about moments of com-· 

pound geometric df's on [O,oo) (cL (the proof of) theorem L6.5). 

THEOREM. L6.8. Let F be a compound geometric df on [0, 00 ), and let K00 be the 

function in theorem 1.6. 7. Then for all n E lN 

in which case 

(1.6.16) j.l 
n 

:= f 
[O,oo) 

ndF ( ) f xndK (x) X X < oo ¢,:. \) := 
n oo 

< 00 ' 

[ 0 100) 

if µn < 00 for all n E JN, then 

(1.5.17) for C0 , with (0) = 
! } 00 satisfies 

-1 0 

the recurrence relations 

F(0) vn+/ (n + 1) ! 

Finally, as in the discrete case (cL section 5), we consider the fol.low-· 

ing classes: 

'D: the class of df's on [0, 00 ) w.ith a comp mon dens.i.ty, 
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E: the class of df's on [0, 00 ) with a log-convex density. 

Here log-convexity is defined as follows. 

DEFINITION 1.6.9. A positive pdf f on (0, 00 ) is said to be 

log f is convex, i.e. if 

if 

(1.6.17) f()cx+ (1-A)y) s f(x)Af(yll-A (x > 0, y > 0, 0 < \ < 1) . 

In view of Bernstein's theorem (theorem 1.3. 7) one easily verifies that the 

following characterization of the class V holds. 

LEMMA 1.6.10. A pdf f on (0, 00 ) is comp mon iff f is a mixture of exponential 

distributions, Le. iff there exists a df G on (0, 00 ) such that 

(1.6.18) f(x) f µe -µxdG(µ) 

(O,oo) 

(x > 0) . 

The df' s in t11e classes V and E are inf div; thi.s has been proved by Goldie 

(1967) and by Steutel (1970), respectively. In fact, denoting the class of 

all inf div df's on [0, 00 ) by 

theorem 1 . 5 . 13 • 

, we have the following partial. analogue of 

THEOREM 1..6 .1 . V c E c F • 
0 

In chapter 5 we shall introduce an analogue of the class C0 for distribu

tions on [0,"'); this class, called F00 , will fill the gap between E and F0 , 

Le. it will have t11e property that 

It follows that t11e family (V, E, F , F ) defines a classification of F , which 
00 0 0 

can be considered as an analogue of the classification of C1 , defined by 

(A,B,C0 ,C1) (cL section 5), for distributions on [0, 00 ). 

and 11.e.1,a.uow., be;twe.e.n c.anonic.al Jte.pltV.. e.n.:t_a.tLon6 

In theorem 1 .4. 7 the chf 1'' of an i.nf div df F on IR has been characterized 

by the Levy canonical representation (a, ,Ml: 

(1.7.la) [. l 2 2 
t) = exp . i ta - c;;CJ t + {eitx - 1 - ~-}dM(x)] 

1 + x 2 
(t E JR) , 
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where a E JR, a 2 2: O and M is a right-continuous function on JR\ {O} with the 

following properties: M is nondecreasing on (- 00,0) and on (0, 00), M(- 00) 

= M( 00) = 0 and 

(1. 7 .lb) f 
H,1)\{0} 

The chf F of an inf div df Fon [O,oo) can be represented by means of its ca

nonical function K. (cf. theorem 1.6 .1) : 

(1. 7 .2a) t) 

0 

exp[ f 
[O,oo) 

{eitx - 1 }l dK (x) J 
X 0 

( t E JR) , 

where K0 is a right-continuous, nondecreasing function, vanishing on (-00 ,0) 

and satisfying 

(1.7.2b) l < 00 

(1 'oo) 

Finally, the chf F of an inf div df Fon JN0 with F (0) > 0 has the following 

form (cf. theorem 1.5.3): 

( 1 . 7. Jal :i ( tl exp[ l {eit(n+l) 

n=O 
1}-,...1.-

n + 1 
(1) J (t EID.) , 

where {r (1) }°'' is a sequence of nonnegative numbers, satisfying 
n o 

(1. 7. 3b) < 00 • 

In fact, the three classes of df's, considered in (1.7.la), (1.7.2a) and 

(1.7.3a), respectively, define a classification of the class of all inf div 

df' s on JR. Now we want to investigate under what conditions on tJ1e canonical 

quantities an inf div df belongs to one o.f the subclasses and what relations 

exist between the canonical representations. Not all o.f th.is is new, but it 

seems useful_ to collect the available information, together with a few ad

ditions, and, sometimes, simpler proofs. 

First we modify (L7.2a) in such a way that we get a representation for all 

inf div df 1 s F with i(F) > 

'rHEOREM 1 . 7. 1 . A function (j) on 1R is the chf F of an inf div d.f F with 

9. (F) > - 00 iff (j) has the form 
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(1. 7 .4a) cp(t) exp[ity + f {eitx - 1}dN(x) J 

( 0' oo) 

(t E IR) , 

where y E IR and N is a right-continuous, nondecreasing function on (0, 00 ) 

with N ( 00) 0 and satisfying 

(1.7.4b) f xdN(x) < 00 • 

(0, 1] 

The representation (y,N) is unique, and necessarily J!,(F) y. 

PROOF. Let F be an inf div df with !!, (F) > - 00 • The df Fl' defined by 

(x) ,= F(x + J!,(F)) (x EIR), is inf div with J!,(F1 ) = 0, and hence F 1 has 

the form (1.7.2a) with K 0 (0) = £(F 1 ) = 0 (cf. lemma 1.6.4(i)). It follows 

that 

F<tl exp[itf(F) + J { itx 
e -

1 
1}- dK (x)] 

X 0 
(t E IR) • 

(0, oo) 

Because of (1.7.2b) we can define a function Non (0, 00 ) by 

N(x) := - f 
(x, oo) 

1 
- dK (y) 
y 0 

(x > 0) • 

'l'hen N is right-continuous and nondecreasing, and satisfies ( 1. 7 .4b) , 

f xdN(x) 

(0, 1] 
f 

(0, 1 J 

dK (x) 
0 

while F takes the form (1. 7 .4a) with y J!,(F). The representation (y,N) is 

unique as K0 is unique. 

Conversely, if a function cp has the form ( 1 • 7. 4a) , then cp 1 ( t) 

has the form (1.7.2a) with K0 defined by (cf. (1.7.4b)) 

K (x) := 
0 

J ydN(y) 

(O,x] 

(x > 0) . 

:= e -ity cp(t) 

By theorem 1 .6 .1 and lemma 1.6.4(i) it follows that cp 1 is the chf of an inf 

ity ( ) . :h div df F 1 with J!, (F 1) = 0, and hence cp (t) = e cp 1 t is t e chf of an inf 

div df F with J!.(F) = y. 

COROLLARY 1.7.2. If Fis an inf div df with J!,(F) ~ 0, then the following 

relation holds between its canonical function K0 and its representation 

D 



(y,N) from (1.7.4a): 

(1. 7 .5) K0 (x) = y + f ydN(y) 

(O,x] 
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(x <". 0) • 

Using theorem 1.7.1 we can give necessary and sufficient conditions for an 

inf div df F to have a support that is bounded from below, i.e. Jl(F) > - 00 • 

This has also been done by Baxter & Shapiro (1960) (see also Feller (1971), 

Ch. XVII), but our method of making use of the representation (1.7.2a) for 

inf div df's on [0, 00), instead of using only (1.7.1a), simplifies matters. 

Also, the expression for Jl(F) to be given in (1.7.7) follows much more di

rectly than in Tucker (1961). 

THEOREM 1.7.3. Let F be an inf div df with Levy canonical representation 

(a,cr 2 ,M). Then Jl(F) > -oo iff cr 2 = 0, M = 0 on (-00 ,0) and 

(1.7.6) f xdM(x) < oo , 

(0, 1 J 

in which case necessarily 

(1. 7. 7) Jl(F) = a - f -½ dM(x) 
1 + X 

(Q,oo) 

PROOF. Let Jl(F) > - 00 • Then by theorem 1.7.1 F has the representation (y,N) 

from (1.7.4a) with, because of (1.7.4b), 

f -½ dN(x) < oo • 

l+x 
(Q,oo) 

It follows that F can be written in the form 

F (t) = exp[it{ y + f -½ dN (x)} + f {eitx - 1 - itx 2}dN (x) J, 
(0,oo) l+x (0,oo) l+x 

from which by the uniqueness of the representation (a,cr 2 ,M) it is seen that 
2 

a = 0, M = 0 on (-00 ,0) and 

(1. 7 .8) M - Non (0, 00), a y + f -½ dN(x) 
l+x 

(0 ,oo) 

Conversely, if (a,a2 ,M) satisfies the conditions of the theorem, then the 
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integral in (1.7.7) is finite. Hence t.he representation (L7.la) for F can 

be written in the form ( L 7 .4a) with y given by the right-hand side of 

(1.7.7) and N =Mon (0, 00). By theorem L7.1 it now fol.lows that Jl,(F) > - 00 , 

and as Jl,(F) y, we have (L7.7). □ 

COROLLARY 1. 7 .4. If F' is an inf div df with !!, (F) ? 0, then the following re

lations hold between its canonical function K0 and the Levy representation 

(a, cr 2 ,M): 

(1. 7 .9) {a - J 
l + 

(0' oo) 

dM(x)} + / ydM(y) 

and, conversely, 

(L 7 .10) a f 
[O, 00) 

1 + 
dK0 (x), M(x) 

(O,x] 

f 
(x,oo) 

1 
- dK (y) 
y 0 

PROOF. Use the relations (1.7.5) and (1.7.8). 

(x ? 0) , 

(x > 0) • 

Using the same technique as in t.he proofs of lemma 1.6 .4 (ii) and theorem 

L6.6, we obtain a generalization of these results to all. inf div df's F 

with !!.(F) > -oo 

□ 

THEOREM L7.5. Let F be an inf div df with Levy representation (a,o-2,M) and 

with !!.(F) > - 00 • Then F(!!.(F)) > 0 iff M is bounded, in which case 

(L7.11) -log F(!!.(F)) = M(O+) , 

and F is a shifted compound Poisson df on [0, 00), Le. F has the form 

(1. 7.12) 
~ it!!.(F) ~ 
F (t) = e · · exp[µ (G(t) - 1) J (t E JR) , 

whereµ> 0 and G is a df with G(O) = 0. 

COROLLl".RY L7.6. If Fis an inf div df with .11,(F) > - 00 , then Fis continuous 

at J/,(F) iff Fis continuous everywhere. 

PROOF. If F is continuous at !!, (F) , t.hen by the preceding theorem M is un

bounded. Now, by a result of Blum & Rosenblatt (1959) (our theorem L7.9) 

it follows that Fis continuous everywhere. □ 
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We now consider the class of inf div lattice distributions {p }°'' with p > 0 
n o o 

as a subclass of the class of inf djv distributions on [0, 00 ). Comparing the 

canonical representations (1.7.2a) and (1.7.3a), and the conditions (1.7.2b) 

and ( 1. 7. 3b) , we are immediately led to the following result. 

THEOREM 1.7.7. Let F be an inf div df on [0, 00 ) with canonical function K. 
0 

Then F is the df of a lattice distribution {p }'" witl1 p > 0 iff K is a 
n o o o 

step function wiili discontinuities restricted to Thi; in this case the follow-· 

ing relations exist between K0 and the canonical sequs,nce {rn ( 1) 

( • 7 .13) (x) 

and, conversely, 

(L7.14) r (1) 
n 

(n + 1) - K (n} 
0 

(x E JR) , 

(n E JN ) 
0 

COROLLARY L7.8. Let F be an inf div df with Levy representation (a, ,M). 

Then F is the df of a lattice distribution {p } 00 with p > 0 iff a 2 O M 
n o o ' 

is a step function with discontinuities restricted to JN and 

(L7.15) a dM(x) 

in this case the following relations exist between M and the canonical se-

quence (1)}:of{pn}: 

( 1) 
(1.7.16) M(x) - I 

n=0 n + 
1 (0,n+1) (x) (x > 0) , 

and, conversely, 

( 1. 7 .17) (1) = (n+ 1){M(n+ 1) ... M(n)} (n E JN ) 
0 

T'he first part of this corollary is a special case of part. (i) of me fol

lowing result., due to Blum & Rosenblatt (1959). 

'l'HEOREM 1.7.9. Let F be an inf div df with Levy representation (a,a 2 ,M). 

Then 

(i) F is discrete iff 

(i.i) Fis continuous iff 

0, Mis bounded and Mis a step function, 

> 0 or M .is unbounded. 
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Also, for an inf div df to be absolutely continuous, necessary and suffi

cient conditions are known (cf. Tucker (1964)). We confine ourselves to the 

following simple sufficient conditions {cf. Tucker (1962) and Fisz & Varada

rajan (1963)), and return to this in chapter 5. 

2 
THEOREM 1.7.10. Let F be an inf div df with Levy representation (a,cr ,M). 

If cr 2 > 0 or if there exists c: > 0 such that Mis unbounded and absolutely 

continuous on (-E:,0) or on (0,E:), then Fis absolutely continuous. 

Finally, we consider two more classes of inf div df's for which the repre

sentation (1.7.la) has a simpler form. Let F be an inf div df without a 

normal component, i.e. with cr 2 = 0 in its Levy representation (a,cr 2 ,M). The 

function M satisfies (cf. ( 1. 7. lb) ) 

(1.7.18) f 2 ( x dM x) < 00 , 

(-1,1)\{0} 

and now we want to consider the special cases where 

(1.7.19) f lxJd.M(x) < 00 

(-1,1)\{o} 

or 

(L 7.20) f dM(x) < 00 (i.e. M is bounded) . 

(-1, 1) \{O} 

If M "0 on (-00 ,0), then, according totheorems 1.7.3 and 1.7.5, (L7.19) 

and (L7.20) give rise to the inf div df's F with .Q,(F) > - 00 and to the 

shifted compound Poisson distributions on [0, 00), respectively. In the gene

ral case we have analogous results, the first of which we shall need in 

the last section of chapter 5. 

2 THEOREM 1.7.11. Let F be an inf div df with Levy representation (a,o· ,Ml. 

Then there exist inf d.iv df's F1 and F2 on [0, 00 ) such that 

(1.7.21) F (t E JR) 

iff = 0 and (1. 7 .19) holds. 

PROOF. Let F satisfy (L7.21) wi_th F1 and F2 inf div df's on [Q,oo). '!'hen 

by theorem l. • 7 . 1 for j = 1 , 2 F. has the representation (y, ,N ,) g.iven by 
J J J . 
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(1.7.4a), and hence 

(1.7.22) f itx 
(e - 1)dN1 (x) + 

(0 ,oo) 

Now by (1.7.la) it follows that the Levy representation (a,cr2 ,M) of F satis

fies 

(1. 7 .23) 
if X > 0 

, cr 2 = 0, a= y - y + f 1 2 
if x < 0 JR\{0} 

so that cr 2 = O and M satisfies (1.7.19), because of (1.7.4b). 

X 
---2 dM(x) , 
l+x 

The converse can be shown in a similar way; we choose the df's F1 and F2 in 

(1.7.21) by giving their representations (y 1,N1) and (y 2,N2), where we note 

that N1 and N2 are completely determined by M, but that the nonnegative 

quantities y 1 and y2 only need to satisfy the equality in (1.7.23). D 

2 COROLLARY 1.7.12. Let F be an inf div df with Levy representation (a,cr ,M). 

Then there exists an inf div df F1 on [0,oo) such that 

c1. 7 .24l F<tl = F\ (tlF\ <-tl (t E JR) 

iff a= cr 2 0, M(x) = -M(-x-) (x > 0) and 

f xd.M(x) < co , 

(0, 1] 

in which case F can be given the following form: 

(1.7.25) F(t) = exp[2 f (cos tx-1)dM(x)] 

(0 ,oo) 

(t E JR) • 

THEOREM 1.7.13. Let F be an inf div df with Levy representation (a,cr 2,M). 

Then Fis a shifted compound Poisson df, i.e. F has the form 

( 1. 1 • 26 l F c tl ity ~ e exp[µ(G(t) - 1)] (t E JR) , 

where y ElR, µ > 0 and G is a df continuous at zero, iff cr 2 

holds. The representation (y,µ,G) in (1.7.26) is unique. 

0 and (1 • 7 . 20) 

PROOF. If cr 2 = 0 and (1.7.20) holds, then it is easily verified that (1.7.la) 

takes the form (1.7.26) by putting 
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(1. 7. 27) y := a - J ~ dM(x), µ := 

JR\{O} 1 + x 
J 

lR \ {O} 

1 
dM(x), G(x) :=- M(x) + l[O ) (x). p , 00 

Conversely, if F satisfies (1.7.26), then, comparing this equation with 

( 1 • 7 • 1 a) , we see that 

(1. 7. 28) a = y + µ f 
(-00,00) 

-~dG(x), i=O, M(x)=µ{G(x)-l[O,oo)(x)}, 
1+x 

so that a2 = 0 and Mis bounded. 

Finally, suppose that F can be represented by (1. 7 .26) in two ways: by 

(t E lR; k E \'(,) • 

"raking t = 0 and using the continuity of G1 and G2 , we get 

(t E JR) 

It follows that 

(t E JR) , 

and hence y1 = Now, as the jump of a df G at zero is given by (cL 

Lukacs (1970), ch. 3) 

(1.7.30) G(O) - G(O-) li.mJ_ 
T->oo 2T J G(t)dt 

(-T,T) 

and as G1 and G2 are supposed to be continuous at zero, i.t follows from 

(1.7.29) with y2 that µ 1 = µ 2 , and hence G1 = G2 . D 

Combining theorems 1. 7. 9 (ii) and L 7 .13, we obtain the following result. 

COROLLARY L7.14. An inf div df F tll.at is not continuous, has a chf F of 

the form (1.7.26). 
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CHAPTER Z 

CLASSIFICATION OF THE INFINITELY VIVISIBLE LATTICE VISTRIBUTIONS 

In section 1.5 we introduced four classes of inf div lattice distributions: 

the classes C1, C0 , Band A of compound Poisson (i.e. inf div), compound 

geometric, log-convex and comp mon distributions, respectively. Also, we 

noted that, as in this order these classes contain increasingly special dis

tributions (cf. theorem 1.5.13), they define a classification (cf. the end 

of section 1.2) of the inf div lattice distributions. The distributions in 

A and B, and to some extent in C0 , are often easily recognized as such. Now, 

in order to get a better understanding of the class C1\C0 , we want to clas

sify the distributions in this class. 

To obtain such a classification, in section 1 we introduce classes of lat

tice distributions characterized by means of recurrence relations. These re

lations depend on certain sequences {c*(a)}, and the main problem will be 
n 

to choose c*(a) in such a way that the resulting classes yield a classifi
n 

cation of C1 (section 2). This turns out to be possible by choosing a spe-

cial sequence {c*(a)}; in section 3 the classes C (0 $a$ 1), resulting 
n a 

from this special choice, are shown to be increasing with a. It turns out 

that an important role is played here by the compound geometric distribu

tions. Properties of the Ca's are proved in section 4, where also some exam

ples are given. In section 5 two other classifications of C1 are discussed. 

Specifically, we consider the classes of compound negative-binomial distri

butions, which turn out to have properties similar to those of the C's. 
a 

2.1. InteJr.po.e.a:ting be,,tween C0 and c1 

The class C1 of inf div (i.e. compound Poisson) lattice distributions {p }00
, 

n o 
with O < p 0 < 1, can be characterized as follows (cf. corollary 1.5.5): 

{pn} E C1 iff there exist nonnegative quantities rn(l) (n E JN0 ) such that 

(2 .1.1) (n E lN ) 
0 

Similarly, in corollary 1.5.9 the class C0 of compound geometric lattice 
{ }

co 
distributions pn O is characterized by the nonnegativity of quantities 

rn(O) satisfying 

(2.1.2) 
n 
l pkr -k(O) 

k=O n 
(n E JN ) 

0 
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We know that C0 c C1 (cf. theorem 1.5.13), and the recurrence relations 

(2.1.1) and (2.1.2) now suggest the idea of generalizing them in order to 

obtain classes of lattice distributions that fill the gap between C0 and C1 • 

Proceeding in such a way, for Os as 1 we consider sequences (a)} 00 with 
0 

the following properties: 

(2 .1.3) 
* cn(a) is nondecreasing in both n and a. 

For any choice of {c*(a)} satisfying (2.1.3) we introduce classes c* 
n a 

( 0 s a s 1) as follows. 

DEFINITION 2.1.1. For Os as 1 a lattice distribution {p }00
, with p > 0, 

no o 
is said to be in the class c* LE there exist nonnegative quantities r* (a,) 

a n 
(n E 1N ) such that 

0 

(2.L4) * (a) 

* * * REMARK. The symbol* is added to the quantities cn(a), rn(a) and Ca to ena-

ble us to use the notation without* for the special situation that will be 

considered from section 3 on. Further, as already noted in section J. • 2, if 

* wi tl1 pgf P, then we shall also say that P E Ca. 

Clearly, taking a~ 0 and a= 1 in definition 2.1.1, we get c* = C and 
0 0 

For these cases the recurrence relations (2.1.4) have been consi-

dered in detail in section 1.5. Now, before choosing a special. sequence 

{ c * (a) } , we discuss some general properties of ( 2 .1 .4) with an arbitrary 
n 

a E [0,1]. We need the following notation (cL (2.1.3)): 

(2.L5) c* (o:) := l.im c* (o:) 
n 

(S oo; 0 S o: s 1) , 

{ }
00 

and for a given lattice distribution p 11 0 

(z) := * (a) (\zl < 1; 0 s as 1) . 



LEMMA 2.L2. consider a fixed sequence {c*(a) }00 satisfying (2.L3), and a 
n o 

fixed a E [O, 1 l 
(i) Let {p }''° be a lattice distribution with p 0 > O. Then t.here exists a 

n o 
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unique sequence {r*(a,) }°'' satisfying (2.1.4), and its gf has a positive 
n o * 

radius of convergence. If rn ( a) ~ 0 for all n E JN0 (i.e. if {pn} E c), 
then 

(2.L7) < 00 

* if furthermore c (a) is finite, then 

(2.1.8) 

(ii) Let fr*(a) }00 be a sequence of nonnegative numbers satisfying (2.L7), 
n · o 

* or, if c (a) is finite, (2.1.8). 'l'hen there exists a unique lattice 

distribution {p }00 with p 0 > 0, satisfying (2.1.4). 
n o 

PROOF. 
{ } co 

(i) Let pn O be a lattice distribution with p 0 > O. Then, rewriting (2.L4) 

in tl1e form 

~-
p r (a) 

o n 
(n E lN ) 

0 

we see t.hat the sequence {r*(a)}00
, recursively defined by this equation, is 

n o 
the unique solution of (2.1.4). Further, as p 0 > 0, the function R:, defined 

by 

* R (z) := 
Cl 

A* (z) /P (z) 
a 

is analytic in I z I < E for some E > 0. It follows that tlte coefficients in 

the power-series expansion of R* satisfy (2.1 A), and hence are equal to the 
a 

r*(a}'s. So, for jzj <Ethe gf of {r*(a)} coincides w.i.th R* and therefore 
n n a 

has a positive radius of convergence. 

If all r*(a)'s are nonnegative, then we can write 
n 
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From th.is it follows that 

I 
n=O 

while, in case 

that 

(a) is finite, by the monotonicity of c* (a) we conclude 
n 

I 
n=O 

* r ( a) .s 
n 

(ii) Let {r * ( a) } 00 be a sequence of nonnegative numbers satisfying (2. L 7) . 
n o 

As defined by (2.L6), is not expressible in terms of P, it is not pos-

sible to use the met.hod applied in the cases a = 0 and a = 1; we have to 

work with the recurrence relations themselves. First consider the quanti-

ties for k E JN0 defined by 

I 
n=O 

* Because of the monotonicity of c n ( a) the yk' s fonn a non.increasing sequence 

of nonnegative numbers. Using the dominated convergence theorem one easily 

sees that lim Yk = 0, if c*(a) is infinite, and that lim yk < 1, if c*(a) 
k->m k.-

is finite and (2.1.8) holds. It follows that in bot.h cases it is possible 

to choose y < 1 and K E JN such that s: y for all k > K. Next we note that 

for any choice of p 0 > 0 (2.1.4) has exactly one solution {p }00 with, ne-· 
·no 

cessarily, pn?: 0 for all n. Considering such a solution, for N > K we can 

write 

N+1 N * -J 
n N N 

I I I * I I (a)/c*(a) p C (a) . pkrn-k (a) pk s n n n n=1 n=O k=O k=O n=k 

N K N K N+1 
5 I pkyk 5 I pkyo + I pky 5 yo I +y I 

k=O k=O k=K+l k=O k=l 

Hence, as y < 1, 

N+l K 

I pn SC l pk (N > K) , 
n=l 

-y 
k=O 

from which it follows t.hat for all solutions {p }00 of (2.l.4) with > O 
n o 

we have 
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I 
n=O 

Finally, every solution {pn} can be written as pn = unpo (n c ~ 0 ), where 

{u }00 denotes the solution of (2.1.4) with starting value 1. By choosing 
n o 

p = {l:u }-1 , the corresponding solution {p } 00 becomes a probability distri-
o n no 

bution. D 

REMARK. Part (i) of the preceding lemma enables us to speak of the sequence 

* 00 * co {rn (a) } 0 , and its gf Ra' corresponding to a given lattice distribution {pn}o 

with p 0 > 0. In the sequel we shall do so without further comment. 

Part (ii) enables us to construct examples of distributions in c* by starta' 
ing from an arbitrary sequence {r* (a)} 00 of nonnegative numbers satisfying 

n o 
(2.L7) or (2.LB). 

In order to obtain a classification of t.he inf div lattice d.istributions, 

we wish to choose the sequence {c* (al} in such a way that 
n 

(2.L9) c* cc* if a< s 
a 6 

(0 :,; a < 1, 0 < S :,; 1) , 

and we shall say that in this case {c *(a)} satisfies (2.1.9). In the next 
n 

section we shall investigate if sequences satisfying (2.1.9) do indeed exist. 

Here we give a few more properties that hold for every choi.ce of (c* (a)}. 
n 

THEOREM 2.L3, Let {pn} E C0 • 'I'hen the r~(a) 's corresponding to {p 11 } satis-

fy 

(2.L10) 

* * Furthermore, if cn+l (a) /en (a) is nondecreasing in a for all n, then so a.re 

boU1 r*(a)/c*(<1) and r*(a). 
n n n 

PROOF, In the first place we note that for the r *(a)' s corresponding to a 
n 

general {pn} the following relation holds: 

(2.1.11) 

in fact, this is a consequence of the following relation (cf. ( 2. 1 .6)) : 
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Now, let {p} EC, so (0) 2:: O for all n. Then, applying (2.1.11) with 
n o 

S = 0, we can write 

* p r (a) 
·on 

c* (a)p ···· 
n n+l 

so that 

p {r* (a) -·· c* (a)r (O)} 
o n n n 

n-1 
l pk 1r 1 k(O){c'"ta) - <(a)} 

k=O + n- - n 

Now by the monotonicity of c*(a) it follows 
n 

that (2.1.10) holds. 

Next, let us consider sequences {c* (a)} for 
n 

creasing in a for all n, or, equivalently, 

(2.L12) 

* which 

Applying first (2.1.4) and then twice (2.1.11) with S 

lively, we can write 

p {c* (a) r* (S) -
o n n 

( S) (a)} 

n-1 n-1 
= c*(S) l Pk+l<-1-k(a) - c*(a) l 

11 k,,;O n k=O 

n-1 
l Pk+lrn-i-k(O){<(S)<(a) - c~(a)<(B)} 

k=O 

(a) (a) is nonde-

0 and a= 0, respec-

(Sl 

which is nonnegative on account of (2.1.12) for a< S. It follows that 

r*(a)/c*(a) is nondecreasing i.n a for all n. Finally, from this we obtain 
n n 

the same property for r * ( a) , using- the monotonicity of c * { a.) in a,, D 
n n 

From the preceding theorem it follows that definition 2 .1. J. can only gene

rate classes c* wi tli C as a subclass. We state this as a corollary. 
Cl. 0 

COROLLARY 2 .1 A. For every choice of {c *(a)} and for all a E: [O, 1 J: C c c*. 
n o a 
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C* To conclude this section we prove a simple property of a, which is already 

known for a= 0 and a= 1. 

THEOREM 2.1.5. If O < a $ 

y E (0,1), where 

1 and {pn} E c*, then {p(y)}oo E c* for all 
a n o a 

PROOF. It is easy to see that, if {p} ·n 
(2.1.4), then {p~y)} satisfies (2.L4) 

satisfies tJ1e recurrence relations 

* n+l * with rn(a) replaced by y rn(a). As 

these quantities are nonnegative if the r*(a) ~s are, the theorem follows~ D 
n 

* 2.2. The QhoiQe 06 cn(a) 

Clearly, there are many sequences {c*(a)} 00 satisfying (2.1.3). Examples of 
n o 

such sequences are easily obtained by a simple interpolation between 

* * en (0) = 1 and en (1) 11 + 1. Rather more sophisticated, one may try to inter-

* polatE" between C0 (z) -1 * -2 * (1 - z) · and c1 (z) = (1 - z) , where ca denotes the 

gf of {c * ( a) } • Of both methods we give three examples. 
11 

EXAMPLE 2.2.L 

(2.L3): 

(i) * 
C (a) 

n 

(ii) * en (a) 

(iii) * C (a) 
n 

(iv) * C (z) 
Cl 

(v) * C (z) 
a 

(vi) C * (z) 
a 

'l'he following sequences {c* (a)} are easily seen to satisfy - n 

1 +an, 

( 1 + n) Cl , 

( 1 + om) a , 

··1-a * a+n (1-z) ,soc(a)=( ), 
n ·n 

(1-z)- 1 (1-az)-1 , so c*(a) =l+a+H.+an= (1-an+l)/(1-a), 
n 

-1 -a * (1-z) "(1-az) , soc (a) 
n 

Next we want to investigate which (if any) of the sequences {c * (G)}, listed . n 
above, satisfy the desired monotonicity property (2.1.9). Not able to give 

useful. sufficient conditions for (2.1.9), we look for simple necessary con

* di tions, in order to check them for the c n ( a) 's in example 2. 2. 1 • To this 

end we introduce a special distribution, which is in a way a critical one. 
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DEFINITION 2.2.2. For a given sequence {c* (a)} satisfying (2.1.3), the boun
n 

dary distribution with parameters a E [0,1] and y E (0 (a)) is the lattice 

distribution {p }00
, defined by 

n o 

(2. 2 .1) ( n E JN) • 

This distribution {pn} can be obtained by choosing in lemma 2.1.2(ii.) 

(2.2.2) (al = y, (a) = 0 (n E JN) , 

which ( see also example 3 on p. 5 7) explains the name "boundary dis tr ibu

tion". It follows that 

{2. 2. 3) 

Computing the * {a) 's corresponding to the boundary distribution {p } 00 with 
n o 

parameters a 0 and y, we obtain 

* r (ct) 
n 

* ( ) n+l en a y 

from which it successively fol.lows that 

(a) 

(a) 

2 * * y {c 1 (ct) /c 1 (a0 ) - 1} , 

3 * -1 * * * y c 1 (a0 ) {c 2 (ct)/c 2 (a0 ) - c 1 (a) + 

Now, if *(a)} satisfies (2.1.9), then, as {p } E c* , the (a.) 's have to 
n a 

0 

be nonnegative for all a E [a0 ,1]. '!'his condition is satisfied for n = O 

and n = 1, but not generally for n 2. Working out the conditions 

(1) ~ 0 and dd r*2 (ct) I 2 0, 
Cl Cl=Cl 

0 

respectively, we get the following lemma (where has been replaced by a). 

LEMMA 2.2.3. For {c*(ct)} to satisfy (2.1.9) the following conditions are 
n 

necessary, 

(2.2A) (a) -: 1) (0 < ct < 1) 

and 
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(2.2.5) (0 < a < 1) , 

* -:k where in the latter case c 1 and c 2 are supposed to be differentiable. 

For the exrunples of {c * ( a) } given in example 2. 2 .1 it is not difficult to 
n 

check whether or not they satisfy (2.2.4) and (2.2.5). Therefore we state 

the mostly negative results without proofs. 

LEMMA 2.2.4. 

(i) l + an violates (2.2.4) iff ½ <a< 1, and (2.2.5) iff 

(H) 

(Hi) 

(iv) 

(v) 

(vi) 

½ < a < L 

c*(a) (1 + n)a, violates (2 .. 2"4) if 0 .. 7427 <a< .1, and {2.,2".5) if£ 
2n 2 
log-log 3 (::::: 0.6645) <a< 1. 

(al 

c* (a) 
n 

(2. 2 .5) 

(a) 

(a) 

(l + an)a violates (2.2.5) if 0.7573 <a< L 

(a+n) violates (2.2.4) iff /"3- - 1 (::::: 0.7321) < a < l, and 
n 

iff ½(i!S - 1) (::::: 0.6180) < a < L 

(1 - an+l)/(1-· a)satisfi.es both (2.2A) and (2.2.5). 
n 
l (a+~-l)c/ viol.ates (2.2.4) if 0.9344 <a< 1, and (2.2.5) 

k"'O 
if 0.8907 <a< 1. 

It is a pity that (l+n)a and (a+n) (•~ na/f(a+l), n ➔ 00 ) do not have the . n 
requir(~d properties, as they seem to be more interesting, especially with 

n+1 
regard to asymptotic behaviour, than the only choice left: ( a) ~ ( 1 - a ) I 

* -1 ( 1 - a), for which we have en (a) ~ ( 1 - a) (n + 00 ) • It would be interesting 

to know whether other choices of {c* (a)} exist, satisfying (2.L3) and 
n 

(2.1.9), with a more attractive limit behaviour, e.g. c* (a) ~ na (n + 00). 

n 
It might be possible to obtain more interesting c* (a) 's by weakening some-n -
what th.e condition (2.L3). Dropping, for example, the monotonicity of 

(c1), we may consider (a) 's like (n + a) a and the one obtained by means 

of "fractional differentiation" as follows: 

(z) 

= z 

so 

a-1 l r (n + 1) 

nod r (n - ct+ 1) 

n-a 
z 



44 

* (2.2.6) (a) 
(n + 1) '. 

f(n + 2 - a) 

1 n+1-a -1 
r ( 1 - a) ( n+ 1 ) · 

It turns out, however, that also these two choices fail to satisfy (2.1.9); 
* Cl , 1) * if cn(a) = (n + a) , then computing r 3 (1) corresponding to the boundary 

distribution {p }00 with parameters a and y, we obtain, for instance for 
n o 

* * a= 0.6 and y = 1: r 3 (1) :'. -0.0089; if cn(a) * is given by (2.2.6), then r 2 (1), 

corresponding to {pn}' turns out to satisfy: (1> < o if£ 3 - rs (::: o. 7639) 

<a< 1. 

Although (2.2.6) does not satisfy (2.1.9), it suggests a class of other pos

* sible choices of c (a). If we rewrite (2.2.6) as 

(2. 2. 7) * C (a) 
n 

n 

n + 1 
f (1 - Cl) f 

(0, 1) 

-an 
(1-u) u du 

then by (2. 1.4) it follows that the gf R* of {r* (al }00
, corresponding to a 

Ct 11 0 

given lattice distribution {p } 00
, is given by · n o · 

(2.2.8) * R (z) 
Cl, I' (1 - a) J 

(0, 1) 

( 1 - u) -a .E.'.J_uz) du 
P(z) 

(0 <; a < 1) • 

Now (2.2.7) and (2.2.8) can be generalized in the following way: 

(2.2.9) * C (a) 
n 

* c (a) (n+ 1) 
0 J ga (u)undu 

(0, 1) 
and 

(2.2.10) ( z) * C (a) 
0 f g (u)P'(uz)_du 

a P(z) 
(0 ~ Cl < 1) , 

(0, 1) 

where for all a E [0,1) ga is a pdf on (0,1) with the property that 

g (u) = l(O l) (u) and lim g (u) 
0 ' atl a 

(o 1 is Dirac's delta function at 1). It is not clear though, under what con-

ditions would be abs mon if R* is abs mon and a< i3. Rather curiously, 
Cl, 

as 

1 - a,n+l 

1 - a 
(n+l) J 

(a, 1) 
- Ci 

1) . 
My thanks are due to L.G.F.C. van Bree, who did the programming needed 

here and in some ct.her cases. 



45 

* * the only remaining example of cn(a) from lemma 2.2.4, i.e. cn(a) 
n+i 

= (1- a )/(1- a), is of the form (2.2.9) with ga the uniform pdf on (a,l). 

We shall not pursue this in this monograph. 

We now restrict our attention to the only remaining candidate, c~ (al = 

= (1- an+i) / (1 - a). This choice, which we shall consider in detail in the 

next section, is supported by the following lemma. 

LEMMA 2.2.5. If c~(a) and c;(a) are linear and quadratic functions, respec

tively, then for (2.2.4) and (2.2.5) to hold it is necessary and sufficient 

that 

(a) 

* PROOF. Because of (2.1.3) c 1 and 

1 +a+ a 2 

have necessarily the form 

where -2 Sb s 1, bi 0. The sufficiency of the condition has already been 

shown i.n lemma 2.2.4. Suppos,, therefore that (2.2.4) holds. 'I'hen it is easy 

to see that 

b ? ( 2a - 1) / { a ( 2 - a) } (0 s a s 1) , 

from which it follows that b 2 1. Hence b ~ 1, and the lemma is proved.. D 

2. 3 • The dMJ.i e/2 C ; ba1:,J.,e, p!WpeJLtiu, 
a 

From now on we shall consider the c*(a) from lemma. 2.2.4(v), and we shall 
n 

show that it satisfies indeed (2.1.9). For this special case we use the no-

tation without *, so we have 

1 - an+l 

1 - a 

while the corresponding classes C are defined as follows. 
a 

DEFINITION 2.3.L A lattice distribution with p 0 > 0, is said to be 

in the class if there exist (a) ? O (n EJN) such that 

n 
(2. 3. 1) I 

k=O 
(a) 

0 

(n E JN ) 
0 
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Applying lemma 2 .1. 2 to our special situation, we easily obtain tJ1e follow-

ing properties of (2.3.1). We only note that c(a) and 

and (2.1.6), respectively, are now given by 

defined by (2.1.5) 

C (a) 
1 - Cl 

(z) 
P(z) - P(az) 

(1 a) z 
(0 <:a< 1; lzl <: 1) • 

LEMMA 2.3.2. Consider the recurrence relations (2.3.1) for a fixed a E [0,1). 

(i) For every lattice distribution {p }00 with p > 0 there exists a unique 
n o o 

sequence {r (a) } 00 satisfying (2.3.1). The gf R of (al} has a posi-· 
n O Cl 

tive radius of convergence, while in a neighbourhood of zero 

(2 .3. 2) (1-a)zR (z) = 1 - P(az)/P(z) • 
Cl 

Furthermore, if (a) 2 0 for all n (i.e. if {pn} E 

(2. 3. 3) I 
n=O 

(a) < 1 - a 

, then 

(ii) For every sequence {r (al } 00 with r (a) 2 0 for all n and satisfying 
n o n 

{ }
00 

(2.3.3) there exists a unique lattice distribution pn O with p 0 > 0, 

satisfying { 2. 3. 1) . 

As noted in section 1, we shall speak of the sequence {r (a)} 
n 

to {pn}' when considering the solution of (2.3.1) for {rn(a)}. We shall re-

fer to its gf Ra as the Ra of {pn} or P. It is now obvious that 

we have the following useful characterization of in terms of pgf's (cf. 

definition 1. 3 .1) • 

LEMMA 2.3.3. For O <:a< 1 a pgf P, with P(O) > 0, 

tion of P, given by (2.3.2), is abs man. 

is in C iff the 
a 

-func-

Taking ex = 0 in the preceding lemma, we get theorem 1.5 .8, while the first 

part of theorem 1 5. 3 is a limiting case in the following sense: 

lim 
atl 

(z) lim 
aH P 

P(z) - P(etz) 

z - az 

As an illustration of the usefulness of lemma 2. 3. 3 we prove corollary 2 .1.4 

in our situation using gf's. Rewriting (2.3.2) for a= 0 as 

(2 .3 .4) P(z) = P(0)/{1 - ZR (z)} , 
0 
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and substituting this in (2.3.2), we obtain for O <a.< 1 the following re

lation between the R0 - and Ra-function of a pgf P: 

(2.3.5) (1-a.)Rro(z) = {R (z) - aR (az)}/{1-a.zR (a.z)} 
~ 0 0 0 

It follows that Ra. is abs mon if R0 is abs mon. Hence we have proved 

C C C 
0 Of. 

(0 s a. s 1) • 

We now turn to the general monotonicity property (2.1.9). As a first step 

we prove that for every a E [0,1) the distributions in C are inf div. 
a. 

THEOREM 2.3.4. For all a E [0,1) the following inclusion holds: 

PROOF. Let Os a< 1 and PE C. Then according to (2.3.2) and (2.3.3) for 
OI. 

lzl S 1 we can write 

{2.3.6) P(z) = {1 - (1 - a)zR (z)}-1P(a.z) • 
a. 

Iterating this equation we obtain for every n E JN 

Taking z 

and so 

From this, 

tained: 

(2 .3. 7) 

P(z) 
n-1 

P(anz) TI {1 - (1 - a.)a.kzR (akz)}-l 
k=O a 

1 we see that 

n-1 
TI {1 - (1 - a)akR (a.kl} 

k=O a 

k k 
= P(anz) n-Til 1 - (1- ala Rex (a. ) 

P (z) ------k-"'----k-
P (a.n) k=O 1 - (1- cx)a. ZR (a z) 

a. 

by letting n ➔ "", the following expression 

00 1 - (1 - a.) akR (ak) 
P(z) TI 

a , I zl k k s 
k=O 1 - (1-a)a. zRa(a. z) 

< 1 zl s 1) • 

c I zl s 1; n E JN) • 

for P in R is ob-
a 

1) , 

where it is easily verified that the infinite product is absolutely conver-
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gent. Now define nk := (1 - a) c/Ra (c/) and Qk (z) 

takes the form 

P(z) ( I z I s n , 

where nk E [0,1) because of (2.3.3) and Qk :i.s a pg·f because of the abs mon 

of R (lemma 2.3.3). It follows that Pis the limit of a sequence of pro
a 

ducts of pgf's in C0 c C1 , and hence by theorems 1.4.2 and 1.4.3 we conclude 

□ 

Equation (2.3.7) entails a representation theorem for (cf. the represen-

tations (1.5.1) and (L5.12) for C1 and C0 , respectively). 

THEOREM 2.3.5. Por O <a< 1 a pgf P, with P(O) > 0, is in 

form 

iff P has the 

(2.3.8) P (z) 
k 

IT _; __ ~ pQ(a ) 
k , 

k=O 1-pQ(a z) 

where p E (0,1) and Q is a pgf with Q(O) 

unique. 

O. The representation (p,Q) is 

PROOF.'. If P E C , then P can be represented by (2. 3. 7) , which takes the 
Cl 

form (2.3.8) if we put p (1 - a)Ra(1) and Q(z) = zRa(z) (1). 

Conversely, a pgf P of the form (2.3.8) has an Ra-function given by 

(2 .3 .9) R (z) 
a 

1 
- a z Q(z) 

which, as Q(O) = 0, is an abs mon function. Hence by lemma 2.3.3 PE C 
a 

'l'he uniqueness of the representation (p,Q) follows from (2 .3 .9) and the 

uniqueness of Ra. 

In order to prove the general monotonicity property (relation ( 2. 1 . 9) ) by 

using lemma 2. 3. 3, we need a convenient relation between the - and 

□ 

function of a pgf P. Such a relation is rather hard to find, but the fol

lowing alternative proof of theorem 2.3.4 suggests relation (2.3.13), which 

is the key to the proof of the main theorem. On account of (2.3.2) we can 

writefor0Sa<1 (cf. (L5.2)) 

(1- a)~[zR (z) J 
dz 0, 

d P(az) 
- ~p (az) /P (z) J = p (z) -{R1 (z) - (az)} , 
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and so 

(2. 3 .10) R1 (z) - aR1 (az) 
P(z) d 

(1 - a)-(-) ;....{d ZR (z)] . 
Paz z a 

Now, let Os a< 1 and PE C Then R is abs mon, which by (2.3.6) implies 
a a 

the abs mon of P(z)/P(az). It follows that the left-hand side of (2.3.10), 

and hence R1 , is abs mon too, and so PE C1 • 

REMARK. Equating the coefficients of zn in (2. 3 .10) we obtain the following 

analogue of (2.1.10): if {p} EC, then the 
n a 

(a) 1 s corresponding to {prJ 

satisfy (cf. corollary 2.3.8 and its proof) 

In the proof of the main theorem we shall need the following lemma. 

LEMMA 2.3.6. If P E C1 , then P(z)/P(yz) is abs mon for O s y s L In fact, 

P(y)P(z)/P(yz) is a pgf in C1 • 

PROOF. If PE C1 , then P has the form (1.5.1), from which it follows that 

P(y)P(z)/P(yz) ~ exp[µ{Q(z) - Q(yz) + Q(y) - 1}] . 

For O sys 1 this is again of the form (1.5.1), so P(y)P(z)/P(yz) "c1 • O 

THEOREM 2.3.7. C .is nondecreasing .in a E [0,1], Le. for all rx,S E [0,1] 
Cl, 

PROOF. The theorem has been already proved in the case Os as 1, S 1; 

so, in view of lemma 2. 3. 3, .it remains to show that, .if O $ a < S < 1 and 

if R 
a 

is abs mon, then RS is abs mon,, To do so, from (2,.3 .. 2) we subtract 

the same equality with z replaced by Sz, and we obtain 

z(1 - a) {R (z) - SR (Sz)} 
a a 

or, dividing by P(az), 

z(l - a){R (z) _ 
P(az) a 

(Sz)} ,~ P (aSz) 
P(az)P(Sz) 

1 
P(z) 

The right-hand side of (2.3.12), and hence the left-hand side of (2.3. 2), 

is symmetric in a and S, from which .i.t follows that for Os a< land 
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0 s S < 1 we have 

Now suppose that a < S and P E: Ca. Then by theorem 2. 3 .4 P E C 1 , and from 

lemma 2.3.6 we conclude that P(z)/P({a/S}z), and so P(Sz)/P(az), is abs mon. 

From the abs mon of Ra we obtain the abs mon of Ra (z) - SRa (Sz), so that by 

(2.3.13) it follows that R8 (z) - aR8 (az), with coefficients (1- )rn(S), 

is abs mon. Hence RS is abs mon, and the theorem is proved. D 

Looking somewhat more precisely at the identity (2.3.13), we obtain a gene

ralization of the inequalities (2 .. 10) and (2.3.11). 

COROLLARY 2.3.8. If 0 s a < 1 and if P " C ' then (a) /c (a), and hence 
0 a n 

0 

r (a), is nondecreasing in Ci E [a0 ,1] for all n E ]N 
o' 

Le. 
n 

(2.3.14) (a) /c (a) 
n 

s r (S) /c (S) 
n n 

(n E JN o; a s a s s s 1) 
0 

PROOF. Let P E C and, in view of (2.3.11), a :s: Ct s s < 1. Then by theo-
a 0 

0 

rem 2.3.7 also p E C a' 
and hence (cf. the proof of theorem 2.3.7) 

P ( Sz) /P (az) can be written as 

P(l3z)/P(az) I sn (a, 13) 
n=O 

where (a, 13) ?': 0 for all n and s (a, SJ 
0 

1. Now, equating the coefficients 

of 
n 

in z (2.3.13), we 

c (a) r (S) 
n n 

see that 

(n E JN ) 
0 

from which (2.3.14) follows. Finally, as (S) (n E JN ) , we conclude 
0 

(n E JN ) • 
0 

We restate theorem 2.3.7 as a property that generalizes a result of Goldie 

(1967), who proved, in fact, our result in case a = O and S = l. 

COROLLARY 2.3.9. If for a given distribution (p }00
, with p 0 > 0, the quan

n o 
tities , for a fixed a E [0.,1) and n c defined by 

17 



(2.3 .15) 
n 
l pkrn-k (a) 

k=0 

are all nonnegative, then also the quantities 

(n c:JN) 
0 

(13), defined by (2.3.15) 
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with a replaced by 13, are nonnegative for all n E JN0 and all 13 with a< S s 1. 

2. 4. Full..:theJL pl!,ope/1--tiV:i and e.x.a.mplV:i 

In view of theorem 2.3.7 the classes C define a classification (cf. the 
Cl 

end of section 1.2) of C1 • In this section we shall compare the properties 

of the separate Ca's with those known for C1 . To this end the characteriza

tion of Ca, given by lemma 2. 3. 3, .is frequently used, and, for notational 

convenience, we denote by R~y) the Ra-function of a pgf, Py' depending on 

a parameter y. 

We start with a generalization of the closure property of C1 (theorem L4.3). 

THEOREM 2.4.1. For O '.Sa 5 1 the class Ca is closed under weak convergence, 

Le. a pgf P, for which there exist pgf I s E Ca (n E 1N) such that P ( z) = 
lim P (z) 

n 
(0 '.S z '.S 1), is in C. 

a 

PROOF. Let O '.S a < 1, and let P be a pgf for which P (z) ·,0 lim P n (z) with 

p E C 
n Cl 

(2. 3. 2) 

(n E JN) • Then R (n) 
a 

t.he R -function of 
Cl 

is abs mon for all n, and as on account of 

P satisfies R (z) = lim R (n) (z), it follows by 
Cl Cl 

lemma 1.3 .3 (iv) that Ra is abs roan, too. Hence P E C • 
Cl □ 

In the following theorem we state some properties of C that are well known, 
Di 

or trivial, if all C-classes are replaced by C1 • 

•rHEORF ... M 2.4. 2. For 0 $ Cl '.S 1 the class C has the following properties. 
Cl 

(i) If p E C and 0 $ y 5 1, then P(yz)/P(y) E C 
Cl. Cl 

(i.i) If p E C and 0 '.S y $ 1, then P(z)y E C a Cl 

(iii) If p E C and 0 '.S y $ 1' then P (z) := P(y)P(z)/P(yz) E C 
Cl y Cl. 

(iv) If P E Ca, n E JN and '.S y 5 1, then 

(2.4.1) 
n-1 

( ) k / z := rr P(y zl P E 

k=O 
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PROOF. In all four cases we apply lemma 2.3.3. 

(i) In fact, this result has already been proved in ti1eorem 2.1.5, but it 

also follows from the following obvious relation: 

(2 .4. 2) 

(ii) For the R -function R(y) of PY we have 
a a 

d (y) d 
-[ (1- a)zR (z)] = - -[ (P(az)/P(z)) 
dz a dz 

y·-l d . 
=-y(P(az)/P(z)) · dz[P(az)/P(z)], 

and so 

(2.4. 3) (y) (z) J y(P(z)/P(az))l-y dd [zR (z)J. 
z Cl, 

Now, if P Ca' then P c C1 , and by lemma 2.3.6 we know tJ1at P(a)P(z)/P(az), 

and hence {P(a)P(z)/P(az) }1""Y for Os y s 1, is a pgf i.n C1 . It follows 

iliat {P(z)/P(az)}l-y is abs mon for Os y s 1. As is abs mon too, we ob-

tain the abs mon of R(y) from (2.4.3). 
Cl, 

(iii) First, note that, if P c C then for Os y s 
Cl, 

(cf. lemma 2. 3 .6) • Calculating the Ra -function of 

is indeed a pgf 

we obtain 

(l _ a) zR (y) (z) ,.~ 1 _ P (az) _ g (yz)_= P (yz) [P (ayz) .. _ p (az)} , 
a P(ayz) P(z) P(ayz) P(yz) P(z) 

and so 

(2.4.4) R(y) (z) = P;yz)) [R (z) - yR (yz)} . 
a P c,,yz a a 

As according to lemma 2.3.6 P(yz)/P(ayz) is abs mon, we obtain the abs mon 

of R~y) from that of Ra' using (2.4.4). 

(iv) We calculate the R -function of P , and we get 
y n,y 

( 2.4. 5) R(n,y) (z) 
y 

By hypothesis, this is abs mon for yn a, and hence by theorem 2.3.7 for 

Taking a= 0 in part (iv) of the preceding theorem, we see that for every 

n c JN tJ1e product of the first n factors in the canonical representati.on 

(2.3.8) of a pgf in also is a pgf in . We state this as a corollary. 

[I 



COROLLARY 2.4.3. If O :,; a:::; 1, n E:IN, 0 :::; p < 1 and if Q is a pgf with 

Q(O) = 0, then 

(2.4 .6) 
n-1 ~ 

II k E C 
k=O 1-pQ(a z) a 
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Next we prove a property of the Ca's, showing that, though many inf div dis-

tributions are in C1 \ U C (cf. example 2 on p. 56) , the situation is 
O::::a<l a 

not too bad: we prove that U C is dense in 
Cl 

in the sense of weak con-

vergence. 

THEOREM 2.4.4. If P E C1 , then there exist an increasing sequence {an}~, 

with lim an = 1, and a sequence of pgf' s P n E Ca (n E Th!) , such that 
n-J--Oo n 

(2.4. 7) P (z) lim P (z) 
n 

PROOF'. Let P E • Then by theorem 1.5.1 P has the form 

(2.4.8) P (z) exp[µ(Q(z) - 1)], 

where µ > 0 and Q is a pgf with Q(O) 

define the pgf' s P n by 

P (z) := 
n 

O. Take a 
n 

1 - -2 
n 

From corollary 2 .4. 3 we know that P n E Ca. We rewrite as 

(2.4 .9) 

wi.th 

(z) 
n-1 

11 
k=O 

n 

{ 1 + g ( z) } , 
·k,n 

n - µQ(ak) 
gk,11(z) := _____ n_ 1 - 1 

( k 1+{µ/n}(Q(z)-1) 
n- µQ anz) 

and for n > µ 

1-Q(ak) +Q(akz) -Q(z) + {µ/n}Q(akz) (O(z) -1) µ ____ n ___ .:.;n;.__ ________ .:.:;n;.___-___ _ 

[n - µQ(a!z)][l + {µ/n}(Q(z) - 1) 

It follows that for I z I :,; l., n sufficiently large and k < n we have 
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Since for lzl s 1 and k < n 

00 

IQ(ci:z)-Q(z) !=! I ~(C!~m-1)zml s 
m=O 

we obtain an upperbound for !gk (z) I that is independent of k and z: ,n 

Finally, from lim Q ( z) = 1 and lim an = li.m (1 - n- 2) n 
ztl n-+«> n n-+oo 

1 it follows that 

li.m Q = 1, and so, for n sufficiently large, 
n-+<x> 

(2.4 .10) { } \fj l"i jg (z) j st, with 0,1, ..• ,n z ~ k,n n 

Now, observing that for n sufficiently large 

llog{l + gk (z)}! s -log{l - lgk (zll} s ,n ,n 

s fgk (z) /!{1 - !gk (z) [} s 2lgk (z) I , ,n ,n ,n 

we can estimate as follows: 

n-1 n-1 n-1 

!log IT {i+g1 (z)}is I !1og{l+gk,n(z)}is 2 I jgk,n(z)j s 
k=O c, n k=O k=O 

which by (2.4.10) becomes arbitrarily small for n +°"·Hence 

n-1 
lim IT { 1 + g1 ( z) } 1 , 
n._ k=O c,n 

and (2.4.7) immediately follows from (2.4.8) and (2.4.9). D 

Before turning to some examples, we mention a characterization of in 

terms of C • 
0 

1'HEOREM 2.4.5. Let P be a pgf, with P(O) > 0, let O <a< 1 and let be 

defined by 



(2.4.11) P (z) := P(a)P(z)/P(az) . 
a 

'l'hen P E C iff the function P is a pg£ in C0 • 
a a 
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PROOF. First we note that if P E C then by lemma 2. 3 .6 P i.s a pgf. Next, 
a a 

consider the case that Pa is a pg£. Then the R0 -function of Pa is gi.ven by 

1 
-{l - P (0)/P (z)} 
z a a 

(1 - a)R (z) • 
a 

Hence R(a) is abs mon iff 
0 

is abs mon, from which the theorem follows. D 

Using t.heorem 2. 3. 7 we can now improve theorem 2 .4. 2 (iii) in the following 

way. 

COROLLARY 2.4.6. If P E C and if O s y s 1, then P , defi.ned by (2.4.11), 
a y 

i.s a pgf, while P 
y 

for Os y < a, and E C0 for as y s 1. 

'l'heorem 2. 4. 5 is not only convenient to prove properties of the Ca's, e.g. 

the properties in theorem 2.4.2(i), (ii) and (iv), but it also provides 

examples of distributions in Ca. 'I'his will be clear from the following ob

vious reformulation. 

COROLLARY 2.4.7. Let Q be a pgf with Q(O) > 0, and let O < a < L Then 

Q E C0 iff P(z) := IT Q(akz)/Q(ak) is a pgf in 
k=O 

Combining corollaries 2.4.3 and 2.4.7, we get for all a E (0,1) 

n-1 
(2.4.12) Q E co""' k~O Q(akz)/Q(ak) E ca (n E JN U { 00 }) • 

This will be used presently to construct. examples of distributions in Ca. 

Note that on account of theorem 1. 5 .13 for Q we may take the pgf of any 

comp mon or log-convex distribution. 

Now, we list a number of examples of (inf div) lattice distributions in the 

various classes . If the proofs of the statements made are straight.for-

ward, we only give brief indications. 
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1. Consider the Poisson distribution with parameter µ > 0 

exp[µ(z - 1) J 

Calculating the rn(a) 's corresponding to {pn} we see that 

(2.4.13) exp[µ(z - 1)] i U 
O:s;a<l 

C 
a 

(µ > 0) . 

2. The negative-binomial distribution with parameters p E [0,1) and u > 0 

is defined by 

(2.4.14) p = (n+u-1)(1-p)upn 
n n · 

(n E JN ) , or P(z) = (l....::.J2.) u 
o 1 - pz 

For u = 1 {pn} is comp mon, hence by theorem 2.4.2(ii) we have 

(2.4.15) ( l...::..J2.) u E C 
1 - pz o 

(0 < 11 :s; 1; 0 :s; p < 1) . 

However, if 11 exceeds 1, the classes C (0 <a< 1) are skipped over: 
a 

(2.4.16) cL...::...12.J u I. u c 
1 - pz · Qo;cx<l a 

(u > 1; O :s: p < 1) • 

'I'o prove this, we put u = 1 + E with E > 0 and obtain for the 

of P 

-function 

Expanding r.his in a power series in z and putting x = (1 - a) /a, we see that 

for n E JN 

-n 
(1 - ex) (pa) rn-l (a) (-l) n-1 

n 

I 
k=l 

11 

I 
k=l 

For the case O < E :s; it follows that 

-n ~ 1 k-2-E 
(1-a)(pa) rn-1(a)=(1+E)x-(1+E)E L k(k-1)( k-2) 

k=2 

which tends to - 00 for n + 00 • Hence (2.4.16) is proved for 1 < u:,; 2. 



Next, suppose u > 2 and that {(1-p)/(1-pz)}u e: C for some a E [0,1). 
a 
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Then according to theorem 2.4.2(ii) it would follow that for all v E (1,2] 

but this contradicts the result above. 

3. Consider the bound.ary distribution {p n} with parameters a0 E [O, 1] and 

y E (0, (1- a )-1) (cf. definition 2.2.2); it satisfies 
0 

(2 .4.17) 

For a 
0 

0 we get the geometric distribution with parameter y, and for 

a0 == 1 the Poisson distribution with parameter y, which has been considered 

in example 1. Now, take a0 e: (0,1). By (2.2.2) and (2.2.3) we know that 

{pn} E Ca with Ra = y. Hence by (2.3.7) we have for the pgf P of {pn} 
0 0 

c2.4.1s> :i?czl < lz I !, 1> • 

In order to check whether PE Ca for some a< a0 , we calculate 

k 
00 1 - (1- a0 )ya0 z 
JI k , 

k==O 1 - (1 - a0 ) ya0 az 
1 -

from which it follows that for m E lN 

m-1 
1 - JI 

k=O 

k {1-(1-a)yaz} 
0 0 

As this is a polynomial in z of degree m, we must haver (am) 
n o 

n == m,m+1, ••• , or, equivalently, 

0 for 

From (2.4.17) and the recurrence relations (2.3.1), however, we see that 

rn(a) is a polynomial in a of degree n with leading coefficient 

n+l n -1 
Y JI ck(a0 ) , so that 

k=O 
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(2.4.19) r ( o:) 
n 

n+l 
y 

k 
n o:-o: 

0 

]] -;--] (o: ) 
k=1 c o 

From this we obtain ( take n == 1) for every choice of the parameters 

(2.4.20) {p} EC 4>4 o: 2 o: 
n o: o 

4. The logarithmic distribution with parameter 0 E (0,.1), given by 

1 
- bz log(1 - ez) 

andy 

where b := -log(l - 0), is comp mon, and hence in C0 • 'l'he following related 

distribution, which will be called the semi-logarithmic distributlon with 

parameters a > 0 and 8 E (0,1), is more interesting: 

(2.4.22) 1 l en 
(l+a)b n 

{n E JN) 

where again b := -log(1 - B). Its pgf P is given by 

(2.4.23) 

'.['his distribution is also considered by Katti (1967), who proves that {pn} 

is inf div iff ab 2 1, and by Steutel (1970), who notes that {pn} is log

convex ( and so i.n CO ) i.f ab 2 2. For the case 1 s ab s 2 we now prove the 

following result: 

+ Cl 
(Oso:sl) 

To this end we consider the recurrence relations (2.3.1) rather than the re

lation (2.3.2) for pgf's, and obtain 

or, defining 

(2.4.25) l==~{ab
c (a) · 

n 
(n E JN ) 

0 

For n = 1 we get ab 
-1 

(o:) = i, ( 1 + o:) - (ab) ; hence the condi ti.on in the 

right··ha.nd side of (2.4.24) is necessary. To prove its sufficiency, from 

(2.4.25) we subtract the same relation with n replaced by n- 1, and obtain 
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n 1 n en (0t.) 1 -
ab r ( Ot.) = l [k - 1 n + 1 c ( 0t.) - k ]r n-k ( 0t.) + 

n k=2 n-1 

C (OI.) 
+ [-n- n ab - l]r 1· (0t.) 

n + 1 cn-l (Ot.) n-

By the monotonicity of cn(Ot.) inn the coefficients of the rn-k(Ot.) 's are all 

positive; therefore it is sufficient to prove that under the condition in 

( 2. 4. 24) the following holds: 

ab ;,: ~ 1 - Ol.n =: 
n 1 _ Ot.n+1 

d (0t.) 
n 

(n E JN; 0 < QI. < 1) • 

This immediately follows from the fact that d 1 (a) = 2/ (1 + 0t.) and that 

dn(OI.) $ d 1 (Ot.) for all n EJN and all a E (0,1). The last assertion is easily 

verified by noting that for the function f, defined on (0,1) by f(a) := 
n+l n 2(1-0t. )/(n+l) - (1+0t.)(1-a )/n, one has f(0) > 0, f(1) = 0, f' $ 0 on 

(0, 1). 

5. A product of two geometric pgf's can be written as 

(2.4.26) 1 - n 1 - ny P(z) = ~1 ~1 , or p 
- pz - pyz n 

(1-p)(l-py)c (y)pn 
n 

where 0 $ p < 1 and 0 $ y $ 1. From the ROl.-function of P we find 

(n E JN ) 
0 

(n E JN). 

Now, the zero an:= ycn-l (y)/cn+l (y) of rn(a) is nondecreasing inn and 

lim a 
n-+«> n 

y, from which it follows that 

(2.4.27) .!....::..R l....::...£r. E C * 0t. 2 y 
1 - pz 1 - pyz 0t. 

(0 $ p < 1; 0 sys 1) 

6. For a product of three geometric pgf' s we fi_nd in a similar way 

(2.4.28) .!....::..R l....::...£r. 1 - PYO E C 
1- pz 1 - p-Yz 1 - pyoz max(y ,o) (0 $ p < 1; 0SyS1; 0SoSl). 

The following examples are special cases of (2.4.12). 

7. 
n-1 k 

1 - pa 
II k 

k=0 1- pa z 
E C 

QI. 
(0 $ p < 1; n E JN U {"'}) • 

Note that for n = 00 we get the boundary distribution from example 3. 
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8. 
n-1 k 

y - log (1 - 0a z) E C 
IT k a 

k=O y - log(l - ea l 

(0 < 0 < 1; y :C: 2; n E JN U { oo}) • 

9. Lamperti (1958) notes that tan z/(z tan 1) is a pgf in C0 • Hence 

n-1 k 
IT tan(a z) E C 

k=O z tan ak a 

10. It is easy to see that the quotient of two geometric pgf's with parame

ters p and q, respectively, is again a pgf iff p::: q. In that case it be

longs necessarily to C0 • Hence we have 

n-1 1 _ k l k 
IT pa I - pya 

k k E (0 5 p < 1; 0 -s y 5 1; n cJNu{=}). 
k=O 1 - pa z 1 - pya z 

The characterization of Ca by C0 , given in theorem 2.4.5, only holds for 

a< 1. In the case a 1, however, there also exists such a characteriza

tion; in fact, we have the following analogue of theorem 2 .4. 5 and corolla-

'I'HEOREM 2.4.8. Let P be a pgf with P(O) > 0. Then 

(i) Pe C1 iff {1 log P(z) }-l is a pgf in C0 , 

(ii) PE C0 iff exp[1 - P(z)-l] is a pgf in C1 • 

PROOF. The theorem immediately follows from the following two observations. 

If Pis compound-Poisson-(µ,Q), then 

-1 1 
- log P(z)} = {1 - µ(Q(z) - 1)}- = {1 + µ - µQ(z) 

which is compound-geometric-(p,Q) with p ).1/(1 + JJ). 

Conversely, if Pis compound-geometric-(p,Q), then 

-1 
exp[1 - P(z) ] = exp[l - (1 - pQ(z))/(1 - p)], 

whi.ch is compound-Poisson- (11,Q) with µ p/(1-p). 

Using simple properties of C1, from the preceding theorem we obtain some 

operations, under which C0 is closed. Closure under operations on the 's 

themselves will be discussed in section 4.1. 

□ 
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'IHEOREM 2 .4 • 9 • 

(i) If p E C and µ > 0, thenµ/{µ - log P(z)} " C . 0 0 

(ii) If P E C and y > 0, then P(z)/{y + (1 - y)P(z)} E C . 
0 0 

(iii) If p E C and 0 5 p 5 1, then p + (1- p)P(z) E C • 
0 0 

(iv) If Pl EC0 andP2 E C0 , then (z)P2 (z)/{P1 (z) +P2 (z) - (z)P2 (z)} E C0 • 

PROOF. 
1/µ 

(.i) If P E C0 , then by theorem 1.4 .4 we have P E C1 for all ii > 0. The 

.result follows by application of tl1eo.rem 2.4.8(.i). 
-1 

(ii) Using theorem 2.4.8, we see that .if P E C0 , then Q(z) :=exp[1-P(z) ], 

and hence for all y > 0 Q Y, .is a pgf .in C1 • It follows that 

y -1 
{1- log Q(z) } 

-1 -1 P(z) 
{1-y(1-P(z) )} "'y+(1-y)P(z) 

.is a pg:E in CO • 

(iii) Let PE C and 0 
0 

5 p ,;; 1. 'l'hen for the R -function R (p) of p + ( 1 - p) P 
0 0 

we have 

ZR(p)(z)=l-p+(l-p)P(O) = (1-) P(z) zR (z), 
o p+(l-p)P(z) Pp+(l-p)P(z) o 

which is abs mon because of (ii). Hence p + (1- p)P E C . 
(iv) C 1,2), 

0 -1 
( j 1, 2) . If E (j - tllen also Qj (z.) := exp[ 1 - P. (z) ] E = 

0 . J 

It follows that Q1Q2 E Cl, and hence the following function i.s a pgf .in C : 
0 

□ 

As .in the case a< 1, it is possible, by use of theorem 2.4.8, to construct 

examples of inf div distributions from specially chosen distributions in C0 , 

and conversely. In the fol.lowing t..heorem we men ti.on a general class of inf 

div distributions, obtained i.n such a way. 

'l'HEOREM 2 .4 .10" For every df G on [O, 1) the function Q, defined by 

(2.4.29) Q(z) := exp[1 - { J 
[O, 1) 

.i.s a pgf in 

- -1 dG(p)} . ] , 
- pz 
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PROOF. According to lemma 1.5.11 the pgf of a comp mon lattice distribution 

{p }00 has the form · n o 

w 

P(z) = l f (1-p)pndG(p)zn 

n=O [O, 1) 

1 - n .::............_ dG(p) 
1 - pz 

where G is a df on [0,1). As by theorem 1.5.13 P E C0 , the theorem follows 

from theorem 2.4.S(ii). □ 

Next we list a few examples, which are all obtained by using theorem 2.4.8. 

L Considering the semi-logarithmic distribution (cL (2 .4 .22)), we get 

-b -· log(l - 8z) 
exp[ab- log(1 - 8z) ] E Cl iff ab 2c 2, 

where a > O, O < 8 < 1 and b : ~, -log ( 1 - 0) . 

2. As noted in example 9, p. 60, tan z/(z tan 1) is a pgf 

exp[l - z tan 1/tan z] rc C1 . 

in C. 
0 

3. Taking the semi-logarithmic distribution with ab 1, we get 

{ 1 - log(l - 8z)}-1 c C 
1 - log 1 - log ( 1 6) ~ o 

Hence 

4. As is a pgf in C1 (and not in for a< 1), we have 

{1 - log 

Finally, we mention a property of CO that ensures t.he product of a geometric 

pgf and a pgf from a large subclass of C0 to be again in C0 • Note, that in 

general the product of two C0 -pgf's does not belong to C0 (cf. (2.4.27)). 

This property is suggested by replacing the exponential distribution by its 

discrete analogue, the geometric distribution, in a similar property of the 

analogue of C0 for distributions on [0, 00), t.he class (cf. theorem 5.4.19). 

'l'HEOREM 2.4.11. If p,p1 and p 2 E [0,1) and if Q is a pgf, then 

(2.4.30) P (z) if 
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PROOF. It is no restriction to suppose that Q(O) = 0, as a pgf P of the form 

(2.4.30) can be written in the same form with different p and Q, such that 

Q(O) = 0. For the R0 -function of P we can write now 

ZR (z) 
0 

P(O) l - P2 
1 - P(z) = 1 - (1-p1z){1-p 1-p2z Q(z)} 

1 - pl z 
= p1z+p(1-p2\-p z Q(z) = 

2 

which is an abs mon function, if p 1 $ p 2• Hence PE C0 • 

2. 5. 0:theJL cl.a.6.6i6,[c.a:ti..on.6 

The classes C, introduced by means of recurrence relations, were seen to 
(l 

consist of infinite products of certain compound geometric pgf's. We will 

□ 

now start from classes of similar pgf's, the classes Cu of the aompound ne-
o 

gative-binomial pgf's with parameter u ~ 0 (cf. (2.4.14)). Also these clas-

ses define a classification of C1, but there is no characterization by means 

of recurrence relations of type (2.1.4). 

DEFINITION 2.5.1. For u ~ 0 a lattice distribution {p }00
, with p0 > 0, is 

no 
said to be in the class Cu if its pgf P has the form 

0 

(2 .5 .1) _ 1- p u 
P(z) - {1-pQ(z)} , 

where 0 $ p < 1 and Q is a pgf with Q(0) 0. 

Clearly, 

and Cuc: 
0 

C0 only consists of the degenerate distribution at zero, C1 = C 
0 0 0 

C1 for all u ~ 0. The following obvious criterion is useful. 

LEMMA 2.5.2. Let P be a pgf with P(O) > 0, and let u > 0. Then PE Cu iff 

Pl/u is a pgf in C. 0 

0 

It is now easily shown that the classes Cu define a classification of the 
0 

inf div lattice distributions. 
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THEOREM 2.5.3. Cu is nondecreasing in u E [0, 00 ), i.e. for alluand v E[0, 00 ) 

0 

u 1/u. 
PROOF. Let O < u < v and PE C0 • Then P is a pgf in C0 , so that accord-

ing to theorem 2 4 2 (ii) also Pl/v = (Pl/u) u/v is a pgf in C • Hence PE Cv • □ 
. • • 0 0 

In fact, interpolation between (J. - p) / ( 1 - pQ (z)) E C0 and exp[µ (Q (z) - 1)] E C1 

is most easily achieved by considering pgf's of the form 

(u > µ) 

Using these pgf's we easily see that, like 

We state this in the following theorem. 

u 
osa<l 

u 
u>O 

Cu C 
0 is dense in 1 • 

THEOREM 2.5.4. If P E C1 , then there exists a sequence of pgf's 

(n ElN) such that P(z) = lim P (z) for jzj s L 
n 

E d1 
0 

n-+m 

Al t.h.ough little can be said about the rel a.ti on between t.lle Cu's and the 
0 

C's (cf. (2.4.16)), the Cu's possess the same sort of properties the 
a o 

have. In this respect the functions 

play analogous roles. The following 

for Cu, and 
0 

properties of Cu 
0 

P(z)/P(az) for C , 
a 

are very similar to 

those of Ca (cf. t.lleorem 2.4.2), and are easily verified by using lemma 

2. 5 • 2 and U1eorem 2 .4 • 2 with a = 0 • 

THEOREM 2.5.5. Let u > 0. 

(i) If a pgf P is the limit of a sequence of pgf' s P n E C~, then also 

(ii) 

(iii) 

(iv) 

p 

If 

If 

If 

E cu. 
0 

p E 

p E 

p E 

cu and 0 :$ 
0 

cu and y 2 
0 

cu and 0 5 
0 

y :$ 1, then P(yz) /P (y) E cu. 
0 

o, then Py E cYu. 
0 

y :$ 1, then P(y)P(z)/P(yz) E cu. 
0 

's 

Next, we briefly consider classes of gf' s that turn out to be closely re.lat

ed to the classes C~. They are suggested by the characterization of C1 by 

means of the abs mon of R1 (z) = P'(z)/P(z) (cf. theorem 1.5.3) and the fol

lowi.ng characterization of C0 • 

LEMMA 2.5.6. A pgf P, with P(O) > 0, 

i.s an abs mon function, 

is in 
d -1 

C0 iff - dz P(z) P' ( z) /P ( z) 2 
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-1 
PROOF. According to theorem 1.5.8 P is in C0 iff R (z) = z {1- P(O)/P(z)} 

o d . 
is abs mon. Clearly, this is equivalent to the abs mon of aizR0 (z) ], and 

the lemma is proved. 

DEFINITION 2.5.7. For y E JR a gf P, with P(O) > 0 and P(1) 

be in the class H if the function S , defined by 
y y 

(2.5.2) S (z) := P' (z)/P(z) i+y , 
y 

is abs mon. 

1, is said to 

The function S in (2.5.2) can be written in the following form: 
y 

d 
log p (z) I :if y 0 

dz 
(2 .5 .3) S (z) 

y 
1 d -y 

- - --- P(z) if y 'F 0 
y dz ' 

□ 

Although we do not require the coefficients of a gf PE H to be nonnegative, 
y 

the classes H , with y :oc O, turn out to contain only pgf' s. 
y 

Considering first the case y = 0, we solve (2.5.3) for P and obtain 

(2 .5 .4) P(z) = P(0)exp[ S0 (u)du] 

(0 I 

It follows that :if P r: H0 then by lemma 1.3.3(v) P is a pgf. Hence, as 

SO ~ R1 , we conclude that 

(2.5.5) 

Denoting the coefficients in the power-series expansion of S by (y) 
y 

(n E JN0 ), we obtain from (2.5.2) for all y E lR a characterization of H by 
y 

means of relations that, like (2.1.4), generalize the known recurrence rela-

tions (2.1.1) for C1 , but are much less attractive than (2 .l.4). 

LEMMA 2 .5 .8. For y E lR a sequence {p }'"', with p 0 > 0 and 1:pn · n o 
iff there exist sn(y) :oc O (n E 

(2.5.6) 
n 
'*(l+y) 
l pk 

k=O 

such that 

(y) (n E JN ) 
0 

1, is in 
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The case y < 0 is not very interesting, as is apparent from the following 

properties, which we give without their, simple, proofs. 

LEMMA 2.5.9. If y < 0, then a gf P, with P(O) > 0 and P(l) 

i.ff the function P [ y [ is abs mon. 

LEMMA 2.5.10. 

(i) For all y < 0: Cl = H C H 
0 y 

(ii) For n E JN: H-1/n -· {pgf p I P(O) > 0 and p is n-di.v}. 

(iii.) For n E JN: H -- {gf p I P(Ol > 0 and Pn is a pgf}. 
-n 

1, is in H 
y 

'I'he case y > 0 is more interesting, because 

a classification of C1 • 

(H 
y 

I y 2: 0) turns out to define 

THEOREM 2.5.11. For y > 0 the following relation holds: 

H "" Cl/y 
y 0 

In fact, if y > 0 then a gf P, wit.h P(O) > 0 and P(l) 

is a pgf in C0 • 

1, is in H iff pY 
y 

PROOF. Let y > 0, and let P be a gf with P(O) > 0 and P(1) ~ L 

First we show that if P E H then Py is a pgf. So, let S be abs mon. Solv-
y y 

ing (2.5.3) for PY, we obtain 

P(z)y f 
(0, z] 

-1 
S (u)du)} 

y 

from which by lemma L3.3(v) we see that Py is abs mon. Since the S -func
o 

tion of P can be written as 

P' (z) /P(z) s (z)P(z)y, 
y 

it follows that S0 is abs mon, and hence by (2.5.5) that Pis an inf div 

pgf. In view of theorem 1.4.4 we conclude that also pY is a pgf. 

Next, consider the case that Py is a pgL From (2.5.3) the following rela

tion between the s 1-function Siy) of Py and the Sy-function Sy of Pis easi

ly seen to hold: 



from which by definition it follows that P E 

hand by lemma 2.5.6 we have Py EC iff Py E 
0 

proved. 

Thus, the H's yield the same classification 
y 

stance, it follows that a gf Pin H, with y 
y 

sentation (2.5.1) witJ1 u = 1/y, and that the 

Hy iff Py E H1 • On the other 

/·/ 1 , and hence the theorem is 

of C1 as the C~•s. For in-
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D 

> 0, has the (canonical) repre

compound negative-binomial lat-

tice distributions with parameter u = 1/y can be characterized by means of 

the relations (2.5.6). 
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CHAPTER 3 

VECOMPOS1TIONS OF LATTICE VISTRIBUTIONS 

The classes Ca from the previous chapter lead us to consider in general the 

pgf' s P that have P ( az) /P ( a) as a factor. These pgf' s, which will be called 

a-decomposable!), are briefly studied in section 1 together with the some

what larger class of the so-called ct-factorizable pgf's P, which are of the 

form Q (z) Q ( az) /Q ( a) with Q a pgf. 

In view of a notational analogy to the well-known self-decomposable distri

butions (on IR, cf. the end of section 1), also called distributions of class 

£, it is then natural to consider (this is done in section 2) the classes of 

pgf's that are ti-decomposable and a-factorizable, respectively, for all 

a E (0, 1). The former class turns out to coincide with C1 , while the latter 

contains C1 as a proper subset, but nevertheless shares a number of basic 

properties with c1. 
In section 3 we introduce a new class of inf div lattice distributions, 

which is a close analogue of the class of (absolutely continuous) self-decom

posable distributions on [0, 00); in fact, we consider pgf' s P that have 

P ( 1 - a + az) as a factor for all a E (0, 1) • As a subclass of this we obtain a lattice 

analogm, of the (al,solutely continuous) stable distributions. 

Finally, in section 4 we briefly consider pgf's P that have 1-· a+ aP(z) as 

a factor. This gives rise to a new characterization of C • 
0 

3 .1. and a-6ac.1:oJu..zable £.a..tu.c.e fu.vr.lbu.:uon.6 

Clearly, the characterization of C , given by theorem 2.4.5, can be refor
<¼ 

mulated as follows: if Pis a. pgf with P(0) > 0 and if 0 <a< 1, then 

(3.L1) p ,: P (z) = P (az) P (z) 
P(a) a 

Dropping the condition that the factor P be in C, we can general.iv consi.-
a o -

der pgf' s P that have P (az) /P (a) as a factor. To this end we give the fol-

lowing definition. 

DEFINITION 3 .. 1. For O <a< 1 a pgf P, with P(0) > 0, is said to be a-de-

(a-dee) if there exists a pgf such that 

1) h' . T 1.s concept 1.s not related to the "a-·decomposi tions" considered in chap-
ter 10 of Lukacs (1970). 
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( 3 .1. 2) P(z) P(az) P ( J 
P(a) a z 

The following property of Ca' similar to (3.1.1) (cL theorem 2.4.2(iv), 

with a= 0 and n = 2): 

(3 .1.3) Q E C ~ P(z) := Q(az) Q(z) E C 
o Q(a) a 

raises tl1e following question: is the converse of (3. 1. 3) also true, Le. 

can every P E C be represented as Q ( z) Q (a z) /Q (a) with Q E C ? 'rhis problem, 
Cl. 0 

which will be solved in lemma 3.1.8, lead us to consider the a-factorizable 

pgf's, introduced as follows. 

DEFINITION 3.L2. For O < a < 1 a pgf P, with P(O) > 0, is said to be a-fac

torizable (a-fact) if there exists a pgf ap such that 

(3.1 .4) 
a 

P(z) = P(az) (z) <lzl s: 1) • 
(a) 

First, let us consider the a-dee pgf' s. 'fhe factor Pa in (3 .1.2) is unique

ly determined by P, as in a neighbourhood of zero we have 

(3.LS) P (z) = P(a)P(z)/P(az) • 
a 

For a general (not necessarily a-dee) pgf P with P(O) > 0, the function in 

the right-hand side of (3.1.5) is always defined in a neighbourhood of zero, 

and throughout sections 1 and 2 we shall denote this function by Apply-

ing the mapping P ->- Pa to P 13 , we see that, with an obvious notation, 

(3 .1 .6) (0 < a < 1, 0 < 13 < 1) • 

In view of lemma 1. 3. 4 we have the following criterion for a pgf to be a

dec. 

LEMMA. 3.L3. If O < a < 1 and if P is a pgf with P(O) > 0, then P is a·-dec 

iff P is abs mon. 
Cl 

Looking for a general representation of a-dee pgf's, we solve (3.L2) for 

P and we see that P has the form of an infinite producL We now introduce 

the following notation: if P is a pgf with P (0) > O, then 



(3.L 7) II P(z) := 
Cl 

(0 < Cl < 1) • 

It is no;: difficult to prove that th.is infinite product .is absolutely and 

uniforml.y convergent in I z j :5 1, and that l\l .is again a pgf, w.i th 

(3.1.8) (0 <a< 1; 0 < B < 1) 
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Furthermore it is seen that llaPB, defined similarly as (3.1.7), is absolute

ly and uniformly convergent .in some neighbourhood of zero, with 

(3.1.9) 

Now the fol.lowing representation lemma for a-dee pgf's is easily verified. 

LEMMA 3.1.4. If O <a< 1 and if Pis a pgf with P(O) > 0, then Pis a a-dee 

iff P has the form P = 1109, where Q is a pgL '.I'he representation is unique, 

Q = p Cl 

Turning to the a-fact case, we give the following characterization. 

LEMMA 3.1.5. Let O <Cl< 1 and let P be a pgf with P(O) > 0. Then Pis a

fact iff there exists a pgf Q with Q (0) > 0 such that 

(3.1.lO) P 
Cl Q 2 ' 

Cl 

or, equivalently, iff IT 2P is a-d~c; in this case the factor ap of P is gi

ven by Cl 

PROOF. Let P be ci-fact. 'I'hen, iterating (3.L4) once, we get 

From this and the fact that P (a) aP(a 2 ) (take z = a in (3.L4)), we obtain 

(3.LlO) with Q = aP. By (3.1.9) it now follows that 

(IT 2P)a 
Cl. 

IT 2Pa = IT 2Q 2 = Q' 
Cl a Cl 

and hence by lemma 3.1.3 JT 2P is a-dee. 
a 
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Conversely, let IT 2P be a-dee. Then Q 
a 

:= IT 2P a is a pgf, for which 
a 

(3.1.12) Q 2 = (TI 
2 

a 

As P(a) 

a 

2 
Q (a ) , it follows that for all n E JN 

n-l 
P(z) 00 {Q(z)/Q(a 2z) }P(az) =P(anz) IT 

k=O 

=P(anz)· Q(z)Q(az) 
n n+1 

Q(a z)Q(a z) 

Letting n ·•· oo, we get 

P (z) 
2 

P(O)Q(z)Q(az)/Q(O) 

a 

k k+2 
Q (a z) /Q (a z) 

from which it is seen that P(O)/Q(O) 2 = Q(a). It follows that Pis a.-fact 

with factor ap = Q. □ 

Thus we have shown that the factor of an a-fact pgf P is uniquely deter--

mined by P. Furthermore it follows that the class of a-dee pgf's is a pro-· 

per subset of the class of a-fact pgf' s. 

LEMMA 3. 1. 6. If a pgf P with P ( 0) > 0 is a-dee, then P is a-fact. In fact, 

Pis a-dee iff Pis a-fact with a 2-dec factor aP. 

PROOF. Let P be a-dee. 'l'hen and hence IT 2P a' :i.s a pgf, so that IT 
a 

a-dee. By lemma 3.L5 it now follows that p is a-fact and its factor 

ap IT is 
2 
-dee because of (3.1.12). = a 

Conversely, if Pis a-fact with -dee factor , then by (3.Li0) 

p 
a 

i.s a pg£, and hence P i.s a-dee. 

is 

□ 

From lemma 3.L4 and (3.1.4) i.t is evident that the classes of a-dee and 

a-fact pgf' s are too large to have much structure. Therefore we want to re--

strict them, and a fi.rst way to do so is by i.mposi.ng condi.ti.ons on the :r:ac-

tors and , respecti.vely. 

The most obvi.ous conditi.on i.s the inf div of and ap. It turns out, how·--

ever, that for all a E (0, 1) we then get the same class, namely 

the a-dee and a-fact case. 

, both in 
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THEOREM 3.1.7. Let P be a pgf with P(0) > 0. Then 

(i) P E C1 iff for some, and then for all, a E (0,1) Pis a-dee with fact.or 

" c1 : 

(ii) P E C1 iff for some, and then for all, a E (0, 1) P is a-fact with fac-

tor 7J E C1 • 

PROOF. First, let P E C1 • In lemma 2. 3 .6 it i.s shown that then for all 

a E (0, ) is an inf div pgf. Hence for all a E (0,1) Pis a-dee with fac-

t.or E C1 • Now, by lemma 3.1.6 it follows that Pis also a-fact for all 

a.,: (0,1), while in view of (3.L11) the factor 

quence of inf div pgf' s, so by the closure tl1eorem 

is the limit of a se-

Next, l.et P be a-dee with factor Pa E C1 , for a fixed a E ( 0, l.) • Then apply

ing the closure theorem once more, from lemma 3 .1 .4 we see tl1at P E C1 . 

Finally, if P is a-fact with factor 7J E C1 for a fixed a c (0, l.), then the 

i.nf div of P immediately foJ.J.ows from (3.L4). 

Next, let us consider the cases that P and ap are compound geometric. In 
a 

view of (3.1.1) we have 

(3.1.13) P E ,;.; P a-dee with P E C 
a o 

□ 

Using this, one easily verifies that the classes Ca can also be obta.i.ned as 

follows: 

(3.l .1.4) P E .,,i, P a-fact wit.h ap E C 2 
a 

Now, as for O <a< C0 is a proper subset of C (cf. section 2 .4), from 

(3.1.14) it follows that the question that led us to consider the a-fact 

pgf's, has to be answered in the negative. In fact, we can say tl1e follow

ing about the set of a-fact pgf' s with compound geometric factor ap. 

LEMJViA 3.1.iL If O < a< 1, t.hen C0 ;, {a-fact P I ap E 

PROOF. In view of (3.1.14) we only need to prove the first part of tl1e lem-

ma. So let P E . Then by theorem 3.1.7(.i.i) Pis a-fact, and, as from co-

rollary 2.4. 7 we see that 

II ec C C C 
a 

:Lt follows from (3.L13) t.hat t11e factor txp II (JI i.s in 
Cl 
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Now, take Q(z) := (1-p)/(1-pz), and define the pgf P by 

P(z) :=Q{z)Q(az)/Q(a) , 

then Pis a-fact with factor ap Q EC. In view of (2.4.27), however, we 
0 

see that PE C \ U c13 , and hence Pi C0 • 

a S<a 
D 

Of course, many other conditions might be imposed on Pa or~ to obtain sub

classes of the classes of a-dee and a-fact pgf's. We mention one result: the 

classes A 0 , say, of a-dee pgf's with factor P E c13 define a classifica-a,µ a 
tion of C1; Aa,S is nondecreasing in both a and 13, with 

A 
a, 13 

as can be seen from the following characterization: 

PE A tt 1 - P(az)P(i3z) abs mon. 
a,13 P(z)P(ai3z) 

A second way to restrict the classes of a-dee and a-fact pgf's is to require 

a-dee and a-fact for all a E (0,1). This is suggested by a notational analo

gy to the so-called self-decomposable chf's: a chf Fis said to be self-de

corrrposable (self-dee) if for every a E (0,1) there exists a chf F such that 
a 

(3.L15J F(tl = F(atlF <tl {t E JR) 
a 

These chf's were introduced by Levy and Khintchine (cf. Levy (1937)). For a 

survey of their main properties we refer to Lukacs (1970), ch. 5. Here we 

only mention that the class of self-dee distributions contains the well

known stable distributions and is itself a proper subclass of the class of 

all inf div distributions. 

3.2. To.taii.y deeompoJable and :fJJ.taii.y 6ae:fJJJuzable la:t.:t[ee cli..6tJubu;t[on4 

DEFINITION 3.2.1. Let P be a pgf with P(O) > O. Then Pis said to be total

ly decorrrposable (tot dee) if Pis a-dee for all a E (0,1). Similarly, Pis 

called totally factorizable (tot fact) if Pis a-fact for all a E (0,1). 

We start with studying the tot dee pgf's. From theorem 3.1.7(i) we know that 

every inf div pgf is tot dee. It will turn out that the converse is also 

true. Though simpler proofs exist (to be given later), we shall show this 

.in a way, very similar to the proof of the inf div of a self-dee chf (cf. 
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Lukacs (1970), ch. 5), thus showing that the analogy, noted at the end of 

section 1, is not merely notational. Proceeding in this way, we first prove 

the following lemma. 

LEMMA 3.2.2. A tot dee pgf has no zeros in the closed unit disk JzJ s 1. 

PROOF. We need the following inequality: 

(3. 2.1) JQ(az) J s JQ(z) J + 1 - Q(a.) < Q is pgf; o < a < 1 ; I z I s 1) , 

which can be proved as follows: 

JQ(az) J s JQ(z) J + JQ(z) - Q(az) J s JQ(z) J + }: 
n=O 

s JQ<zi I + 1 - gcai . 

Suppose the assertion of the lemma not to be true. Then we can find p E (0, 1 J 

and z E ¢ with lz I= p such that 
0 0 

< lzl < p) • 

From (3.1.2) it now follows that for all a. E (0,1) the factor P of P satis
OI. 

fies 

< I z I < pl • 

As J~z J < p, we have on the one hand 
0 

lim P (½z ) = lim P(a)P(½z )/P(½az ) 1 , 
atl OI. 0 atl O 0 

whereas on the other hand from the inequality (3.2.1) it follows that 

IP (~z ) I s IP (z ) J + 1 - P (½) s 1 - P (0) = 1 - P (Oi.) , 
OI. 0 OI. 0 01. 01. 

which tends to zero as OI. t 1. Thus we have obtained a contradiction, and 

the lemma is proved. □ 

In the self-decomposable case one makes use of the theorem (see e.g. Gneden

ko & Kolmogorov (1949)) that, if a chf ~ can be written as 

n 
~(t) lim JI ~ k(t) 

n-+oo k=l n, 
(t E JR) , 

where the~ 's form an infinitesimal system of chf's, then~ is inf div. n,k 
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Here a system ( 

mal if 

j n E JN; k E {1, .. "'n}) of chf's is called 

lim sup 
n-+<~ 1 :SkS:n 

I <p l (t) - 11 n, C 
0 t E lR) 

Translating this to pgf's, we obtain the following result. 

'I'!-IBOREM 3.2.3. A pgf P, with P(0) > 0, is inf div iff there exist pgf's 

Pn,k (n EJN; k E {1, ..• ,n}) satisfying 

(3 .2 .2) lim inf (0) = 1 
' n-+m 1:SkS:n 

such that 

n 
(3.2 .3) P(z) lim TI (z) < I z I $ 1) 

n➔oo k=1 

We are now ready to prove the announced result. 

THEOREM 3.2.4. A pgf P, with P(0) > 0, is inf div iff Pis tot dee. 

PROOF. As already noted, in view of theorem 3.1.7(i) we only need to show 

that a tot dee pgf is inf div. So let P be tot dee. 'I'hen by lemma 3. 2. 2 it 

is seen that for the factors (0 <a< 1) relation (3.1.5) holds for all 

lzl 5 1. If we define the pgf's Pn,k for n E1N and k,: {1, ... ,n} by 

then it follows that 

< I z I s: ii , 

and hence 

P (z) (n c:J.N; jzj s: 1). 

Now from theorem 3. 2. 3 we obtain the inf div of P, as soon as we have proved 

(3.2.2), which in our case is equivalent to 

lim inf P 
n-+m 1S:kS:n 

1 . 
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Because of the uniform continuity of Pon [0,1], for all£> 0 one can find 

N E Ji! such that 

or 

From this (3.2.4), and hence the theorem, immediately follows. 

The following two corollaries are obtained by using theorem 3.1.7(i) (or 

lemma 2.3.6) and lemma 3.1.3, respectively. 

COROLLARY 3.2.5. The factors Pa (0 <a< 1) of a tot dee pgf Pare all inf 

div. 

COROLLARY 3.2.6. Let P be a pgf with P(O) > O. Then PE C1 iff for all 

□ 

a E (0, 1), or, equivalently, for all a E (1 - £, 1) (some £ > 0), the function 

P(z)/P(az) is abs mon. 

The characterization of C1 , just given, can also be proved as follows. The 

necessity of the condition has already been shown in lemma 2.3.6. Suppose 

therefore that£ > 0 and that P(z)/P(az) is abs mon for all a E (1- £,1). 

As P(z)/P(az) is equal to 1 for z = O, for all a E (1-E:,1) the function 

(3.2.5) 1 1 
T (z) :=-1--..:.{p(z)/P(az) -1} 

a - a z 

is abs mon. But then so is the following function: 

lim T (z) 
at1 a 

lim _1_ P(z) - P(az) = P' (z)/P(z) 
at1 P(az) z - az 

from which by theorem 1.5.3 it follows that PE C1 • 

In view of lemma 3. 1. 3 this alternative proof now yields a simpler proof of 

theorem 3. 2. 4. Furthermore we note that another proof of this theorem can 

be given along the lines of the proofs of theorems 3.3.3 and 3.4.5. 

The Ra-function of a pgf P can be expressed in the function Ta from (3.2.5) 

as follows, 

(3.2.6) 

Now, apart from (3.1.13), from this relation it can be clearly seen that Ca 

is a subclass of the class of a-dee pgf' s, the latter being characterized by the 



78 

abs mon of T. 
a 

Finally, denoting the coefficients in the power-series expansion of Ta by 

t (a) 
n 

(n E1N0 ), from corollary 3.2.6 we get the following characterization 

of C1 by means of recurrence relations (cf. those defining the classes Ca). 

LEMMA 3.2.7. A lattice distribution {p }00
, witl1 p > 0, is in C1 iff for all 

n o o 
0. E (0,1) (or a E (1- c,1), some E > 0) there exist nonnegative quantities 

(a) (n E 

(3. 2. 7) 

such that 

1 _ an+l 

1 ·- a Pn+1 
(n E JN ) 

0 

We now turn to t.he tot fact pgf' s. By theorem 3. 1.. 7 (ii) we know that all inf 

div pgf' s are tot fact. Although an a-fact pgf is more general than an a-dee 

pgf (cf. lemma 3.1.6), and the tot dee pgf's coincide with the inf divpgf's, 

all tot fact pgf's might be inf div. In order to decide this, we study the 

tot fact pgf's in more detail, and start with the behaviour of the factor 

ap for at 1 and a+ 0. 

'l'HEOREM 3. 2. 8 •. A. tot fact pgf P is 2-di v; in fact, the factor 

fies 

(3 .2 .8) 

and furthermore 

of P satis-

( 3. 2 .9) lim 
a+O 

(z) P(z) and lim aP(anz) 
a+o 

P(O) ( I z I <; 1 ; 11 E J.N) • 

PROOF. Let P be tot fact. 'l'aking z = a in (3.1.4), we get = P(a), 

and hence lim aP(a2 ) = 1. As aP(a 2 ) <; (a) <; 1 for 0 < a< , it follows 

that lim 
aH 

(a) ~- 1, a.nd hence 

lim 
a+l 

(z) (az) P ( z) 

Now, let {pk}: and {pk (a)}~ be the lattice distributions with pgf p and 

respectively. Then by the continuity theorem for pgf's (theorem 1.3.5) we 

have 



(3. 2 .10) 

Taking k = O in this relation, we see that lim p O ( a) 
a+l 
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½ p O • Suppose that 

p (1) :=.limp (a) exists for n = 1, ••. ,k-·l; then from (3.2.10) it follows 
n atl n 

that also 

exists, and hence (mathematical induction) : 

all k cThl, while {pk(l) }"' satisfies 
0 . 0 

(l)pk . (1) = pl 
··J C 

(k E ]N ) 
0 

(1) lim pk ( a) exists for 
atl 

Applying th.e continuity theorem in the otller direction, we conclude that 

lim 
aH 

(z) = Q(z) ( I z I s 1i , 

where Q(z) := (1) zn is a pgf satisfying Q(z) 2 = P (z). Hence P is 2-·div, 

and (3.2.8) is proved for n = 0. Replacing z by a 11z in (3.1 A), we get 

.from which by use of mathematical induction ( 3. 2. 8) follows for all n E JN • 
0 

.Finally, let a + O. Taking z = a and z = a2 in (3.L4) successively, one 

sees that 

lim 
a+o 

P(O) and lim aP(a3)/aP(a) 
a+O 

1 . 

As for O <a< 1 we have (o:3) /1,P (a) s ap ((/) /aP (a) s 1, it follows that 

and hence 

Um 
cd·O 

(a) 

(a) 1 , 

P(O) . 

Observtng that for O < z s 1 and O <as z we have ap (u)' 

we conclude that for all z E (0 ,.1 J, and hence by the continuity theorem for 

all lz[ s 
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lim ap (az) 
a+O 

P(O) • 

The second part of (3.2.9) is now easily obtained from (3.2.11) by mathema-

tical induction, while the first part follows from ( 3 .1.4) . 

In view of the preceding theorem one might conjecture that the tot fact 

pgf' s coincide with the 2-di v ones. Consider, however, the pgf P ( z) = 
2 = (l+z) /4; obviously, P is 2-div, but P is not a-fact for any a E (0, 1). 

In fact, if P would be a-fact, then ap is necessarily of the form ap (z) = 

,~ ca(l + yaz) with ca > 0, ya > 0. But if we look at the zeros of P, then 

we see that ya has to satisfy, ya aya = 1, which is impossible for 

Ci E (0,1). 

D 

A similar observation wi tl1 respect to the zeros of P yields a property that 

the tot fact pgf's share with the inf div ones (cf. theorem lA.6). 

THEOREM 3.2.9. If P is a tot fact pgf, then the corresponding lattice dis

tribution {pn} has an infinite support. 

PROOF. Let P be tot fact and suppose that the support of {pn}: is finite. 

'I'hen P, and its factors ap (0 < a < 1) , are polynomials. Let z be a zero 
½ 0 

of the factor P, then, as p 0 > 0, z0 p O, and from (3.L4), which now holds 

for all. z E ¢, it .follows that P(z) = P{2z ) = O. "l'aking a= 1/k 
o o 1/k 

(k = 2,3 10 •• ) in (3.L4), we then see that l/kp(z ) = 0 or P(z /k) 0, 
0 0 

and hence 

P(kz) ~ 0 or P(z /k) ~ 0 
0 0 

(k E JN) 

As z0 r 0, we have thus obtained an infinite sequence of different zeros of 

P, which contradicts the fact t.hat P is a polynom.ial. It follows t..ha.t the 

support of {p } has to be infinite. 
11 

D 

REMARK 3.2.10. If Pis a-fact for only a finite nlll1Jber of a's, then the sup

port of {pn} may be finite. To show this, let a 1 , ... ,an E (0,1), and let Pn 

be the pgf that is equal to a polynomial with An as its set of zeros, where 

An is recursively defined by 

Then P n is of degree 2n, and it is easily seen that Pn is ak-fact for all 

k E {1, ... ,nL 
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Apart from being 2-div and having infinite support, the tot fact pgf's 

share a third property with the inf div pgf's, viz. having no zeros in the 

open unit disk [zl < 1 (cf. corollary 1.5.2). It is not clear if a tot fact 

pgf may have zeros for j z [ = 1 • 

THEOREM 3.2.11. If Pis a tot fact pgf, then P(z) f, 0 for all [z[ < 1. 

PROOF. Let P be tot fact, and suppose the assert.ion not to be true. Then we 

can find p E (0,1) and z0 c ¢ with 

p 0 and P(z) f. 0 

jz I= p, such that 
0 

From (3.L4) it follows t11at for all a c (0,1) the factor ap of P satisfies 

( I z I < ri · 

Now, take a c (p,1), then P(z0 /a) is well defined, and according to (3.L4) 

0 

hence 

0 ( 1 <; y <; 1/ p) 

However, as P is analytic on j z I <; 1, this would imply that P ... 0, so we 

have obtained a contradiction, and he.nee P (z) f. 0 for all j z j < 1. D 

If P is tot fact, then the coefficients pk (a) , say, in the power-series 

expansion of the function aP, given by (3.1.11), have to be nonnegative for 

all a E (0,1). Now, from (3.1.4) we easily see that 

We compare this condition with the condition (1) ? 0 (cf. corollary l.5.5), 

necessary for P to be inf div, for which we have 

As the latter condition is more restrictive and as the same phenomenon seems 

to occur at further coefficients, we are led to look for examples of tot 

fact pgf's that are not inf div. 

To this end the followi.ng characterization of an a-fact pgf (and hence of a 

tot fact pgf) is useful. 
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LEMMA 3.2.12. Let P be a pgf with P(0) > 0, and define the sequence {an}~ 

by 

(3.2.13) log{P(z) /P (0)} 
00 

I 
n=l 

n 
a z 

n 

Then for 0 <a< 1 Pis a-fact iff the function Q(a), defined by 

a 
(3.2.14) := exp[ l __ n_ zn]' 

n=1 1 + rt 

is abs mon, in which case necessarily Q(a) (z) 

PROOF. Let P be a pgf with P(0) > 0, and let 0 <a< 1. Then, using (3.2.13), 

we can write 

oo a oo a 
P(z)/P(0) =exp[ L 

n=1 

a zn] = exp[ l __ n_ zn + l __ n_(az) n] 
n n=l 1 + an n=l 1 + an 

from which it follows that P can be written as (cf. (3.2.14)) 

(3.2.15) P(z)/P(0) = Q(a) (z)Q(a) (az) • 

Now, if Pis a-fact with factor aP, then P(O)aP(a) = {~(0)}2 , which, to

gether with (3.2.15), implies that Q(a) (z) = aP(z)/aP(O); hence Q(a) is abs 

mon. 

Conversely, let Q(a) be abs mon. Then similarly to the proof of lemma 1.3.4 

it follows from (3.2.15) that Q(a) (z) is convergent for lzl 5 1, with 

Q(a)(1)Q(a)(a) = 1/P(0). Now, defining aP(z) := Q(a)(z)/Q(a)(l), we see 

from (3.2.15) that Pis a-fact with factor aP. □ 

For a pgf P to be inf div it is necessary and sufficient that the quanti

ties an, defined by (3.2.13), are all nonnegative (cf. theorem 1.5.3). 

Hence, in view of lemma 3.2.12, in order to obtain a tot fact pgf that is 

not inf div, we need an example of a power series Q with at least one nega

tive coefficient such that exp[Q(z)] is abs mon. The simplest example of 

this type is provided by a polynomial of degree 4, as was shown by Levy 

(1937), ch. VII. We state his result as a lemma. 

LEMMA 3.2.13. For given a> 0, c > 0 and d > 0 there exists a (unique) real 
2 3 4 number m(a,c,d) > 0, such that F(z) := exp[az-bz +cz +dz J is abs mon 

iff b 5 m(a,c,d). Furthermore, in this case the pgf P(z) := F(z)/F(l) is 

indecomposable iff b = m(a,c,d). 
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Now we are ready to prove the existence of tot fact pgf' s that are not inf 

div. 

THEOREM 3.2.14. The class C1 is a proper subset of tl1e class of tot fact 

pgf's. 

PROOF. Choose arbitrary positive numbers a 1 , a 3 and a 4 , and define m(a) by 

(05a51) 

(cL the preceding lemma). It is easy to show that the function m(a,c,d) is 

nondecreasing in a, c and d, and hence m(a) is nonincreasing in a E [0,1]. 

Now, take E > 0 such t.ha t E <; m ( 1) , then s <; m ( 0) and by lemma 3 . 2 . 13 it 

follows that 

(3.2.16) P(z)/P(O) 

defines a pgf. As its R1-function is not abs mon, we have (cf. theorem 

L5.3) P i C1 . But by the monotonicity of m(a), we have 

s/ (1 + < E 5 rn(1) <; m(a) (0 < a < 1) , 

and hence, applying lemma 3.2.13 once more, we see that 

z - 2 
z + 

1 + 

is an abs mon function for all a E (0,1). E'rom lemma 3.2.12 it now follows 

that P is tot fact, and thus the theorem is proved. □ 

REMARK 3.2.15. In view of the preceding proof one can replace the condition 

E <; m ( l) by the weaker condi ticm 

E <; inf 
OSa<l 

2 
(1 + a )m(a) 

It follows that if the function m(a) is such that 

(Q S Cl < 1) , 

then one could choose E: ~ 2m ( 1) , in which case the pgf P from ( 3. 2. 16) is 

such that its factor P(z)½ is 

3.2.13). 

(cf. the last part of lemma 
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In order to construct real examples of tot fact pgf's that are not inf div, 

it is necessary to have an expression, or at least a positive lower bound, 

for the function m(a,c,d). Levy does not give any information of this type, 

but Lukacs (1970), ch. 8 notes that if Q (z) := 1 + az - bz2 + + is such 
2 2 3 that b ,; ½a and Q and Q are abs mon, then exp[Q (z)] is abs mon. Elabora-

ting this, one easily verifies the following lemma. 

LEMMA 3.2.16. For given a> O, c > 0 and d > 0 the function 

exp[az-·bz2 +cz3 +dz4 J is abs mon, if b,; min{a2/3,c/a,ad/(2c),c 2/(3d)] 

It follows that, for instance, the function P defined by 

Z 2 + 6z 3 + 6" 4 - 17] , P(z) = exp[6z - _ 

is a tot fact pgf that is not inf div. 

'I'o conclude this section, we return to chf's. Analogous to self-dee chf's 

(cf. the end of section l) we defined tot dee pgf' s. Now, having introduced 

tot fact pgf' s, we could reverse matters and consider totally factorizable 

chf's, i.e. chf's F that satisfy 

( 3 .2 .17) tl = F catlF <tl (tElR;O<a<l), 
a a 

where Fa is a chf. Or, in terms of rv's: Xis said to be tot fact if 

(3.2.18) X £\ + (0 < a < 1) 

where Xa and X~ are independent rv' s with the same distribution. As an JN 0 -

valued rv X I O cannot satisfy (3.2.18), we see that an inf div chf i.s not 

necessarily tot fact (cf. theorem 3 .1. 7 (ii)) • Furt.lJ.ermore, proceed:Lng in a 

way similar to .lemmas 3. 1. 5 and 3. 1. 6, we can show that the class of self

dee chf's is a proper subset of the class of tot fact chf's, and the ques

tion arises whether the latter class is a subset of the class of inf div 

chf's, Le. whether all tot fact chf's are inf div. We will not go further 

into this now. We only note that e.g. the rectangular distribution is a

fact in this sense for infinitely many a' s; in fact, the chf of the rec tan-· 

gular distribution on (~1,+1) can be written as (cf. Lukacs ( 1970), ch. 6) 

F(t) 
t 

t rr cos 
k=l 

from which it is seen that F is 2- 11-fact for all n c JN. 



As noted at the end of section 1, a chf F is said to be self-decomposable 

(self-dee) if F satisfies 

(3.3.1) 

with 

(3. 3. 2) 

F(t) = F(ctt) ( t) ( t E lR; 0 < ct < 1) , 

a ch£. For the corresponding rv' s this means that 

d x ax+ x 
a 

(0 <Cl< 1) , 

where X and are independent. vervaat (l.978) considers equations of the 
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form ( 3. 3. 2) , where also the factor a is a rv. Clearly, except X = 0, no JN0 -

valued rv X can satisfy (3.3.2); in fact, all nondegenerate self-dee distri

butions are known to be absolutely continuous (cf. Fisz & Varadarajan (1963)). 

Now in this section we propose analogues of the concepts of self-decomposa

bili ty and stability (cf. (3. 3. 20) J for lattice distributions. A slightly 

condensed versio.n of the results of the present section can be found in 

Steutel & Van Harn (1978). It turns out that the discrete self-dee distri

butions and the discrete stable distributions share the basic properties 

with their continuous counterparts. 'rl:le discrete self-dee distributions, for 

instance, are unimodal (cL Wolfe (1971a) and Yamazato (1978)), and the dis

crete stable distributions are very similar to their continuous analogues on (0, 00 ) 

Looking for analogues of (3. 3. 2) that operate within the set of 

rv' s, we consider equa.tions of the form 

(3.3.3) (0 < a < 1) 

-valued 

where the operation o is such that ct o X is an JN0 -valued rv. In terms of 

pgf's: 

(3.3.4) P(z) (T P) (z) 
a 

(z) 

where the operator is such that 

([z[ <:: 1; 0 <a< 1) 

is a pgf. Now we want to choose a o x 

or in such a way that they have properties as in ordinary scalar multi-

plication. we mention three examples, which satisfy 
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EXAMPLE 3.3.1. 

(i) 

(ii) 

(iii) 

(Tell (z) 

(T P) (z) 
a 

where P(N 

dependent. 

P(az)/P(a) . 

1) 1 - P(N 0) d a, ~ X (k E JN), all rv' s being in-

where Nk d N (k E JN) with N as .in example (ii), all rv's being inde

pendent. 

It .is easy to see that only examples (i) and (.iii) sat.isfy 

(PQ) = 

and that only examples (.ii) and (iii) satisfy 

and 

T ( yP + ( 1 - y) Q) = 
a 

aP' (1) 

(0 ::; y ::; 1) 

Thus, example (iii) seems to be most similar to ordinary scalar multiplica

tion. Indeed, it will turn out that using this example in ( 3. 3 .4) , we obtain 

a class of lattice distributions that can be considered as the lattJ.ce ana

logue of the class of self-dee distributions. When using example (i) in 

(3.3.4), we get the class C1 (cL theorem 3.2.4), and, as we shall see in 

the next sect.ion, the class of pgf's P that satisfy (3.3.4) with TaP given 

by example (ii), coincides with C0 • 

DEFINI'rION 3. 3. 2. A pgf P, with P (0) > 0, is said to be discrete se l f-ckcom

if P satisfies 

(3.3.5) P (z) = P ( 1 - a+ az) ( z) <lzl::; 1; 0 <a< 1) , 

with Pa a pgL 

REMARK 3. 3. 3. A relation that suggests the analogy of discrete self-dee 

pgf's to self-dee chf's in another respect, is the relation that H(z) '"" 

: = P ( 1 - z) satisfies: 

(3 .3 .6) 

with 

H(z) = H(az)H (z) 
a 

(z) := (1 - z)" 



In the present section the notation Po: is no longer used for the function 

in (3.1.5); it will now denote the following function (cf. (3.3.5)): 

(3.3. 7) 

which is always defined in a neighbourhood of zero. 

Before establishing the canonical representation of the discrete self-dee 

pgf's, we state an auxiliary lemma. 

LEMMA 3.3.4. If Pis a pgf, then 

lim (1-x)P'(x) = 0. 
xtl 

PROOF. As P' is nondecreasing on [0,1), we can write for all x E [0,1) 

0 $ (1- x)P' (x) $ f P' (y)dy = 1 - P(x) , 

(x,1) 

which tends to zero as x t 1. Hence the lemma is proved. 

THEOREM 3.3.5. A pgf P, with O < P(O) < 1, is discrete self-dee iff P has 

the form 

(3. 3 .8) P(z) exp[-µ j 
(z, 1) 

1 - Q(u) 
1 - u du] , 
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□ 

whereµ> 0 and Q is a pgf with Q(O) = O; the representation (µ,Q) is uni

que. Equivalently, Pis discrete self-dee iff Pis inf div and has a canoni

cal sequence {r (1)} (cf. theorem 1.5.3) that is nonincreasing. 
n 

PROOF. Let P be discrete self-dee, i.e. let the function Po:' defined by 

(3.3.7), be a pgf. For O $ z < 1 we can write 

P(l - o: + o:z) - P(z) (1-o:)(1-z)P'(z) +0(1-0:) (o: t 1) , 

and hence 

Po:(z) = {1+(1-o:)(1-z)P'(z)/P(z) +o(1-o:)}-l (a t 1) • 

Let Y > 0, and take o: such that y/(1- o: ) = n E JN, Le. o: 
n I (1-o: ) n n 

for all n E JN {p (z) }y n is a pgf, for which 
0: 

1 - y/n. Then 

n 

(3.3.9) 
y/ ( 1-a ) 

Sy(z) :=lim {pa (z)} · n =lim {1+.I.(1-z)P'(z) +o(•!_-)}-n 
n->oo n n->oo n P(z) n 

= exp[-y (1 - z)P' (z) /P (z) J • 
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Since S (z) + 1 as z t 1 (cf. lemma 3.3.4), it is seen by theorem 1.3.5 y 
that Sy is a pgf for ally> 0. As {s 1}Y = Sy, it follows that S := s1 is 

an inf div pgf, and hence (theorem 1.5.1) there existµ> 0 and a pgf Q 

with Q(O) = 0 such that Sis compound-Poisson-(µ,Q). From (3.3.9) it is now 

seen that the R1-function of Pis given by 

(3.3.10) R1 (z) = P' (z)/P(z) 
-log S (z) 

1 - z 
µ 

1 - Q(z) 
1-z 

which yields (3.3.8). Furthermore, if Q is the pgf of {qn}:, from (3.3.10) 

it follows that the rn(l) 's corresponding to Pare given by 

µ I qk 
k=n+l 

(n E lN ) 
0 

hence rn(l) ~ 0 for all n ElN0 {so PE C1) and rn(i) is nonincreasing. 

Conversely, let PE C1 with a nonincreasing canonical sequence {rn(l)}, and 

let a E (0,1). In view of the second part of theorem 1.5.3, for the function 

P we can write 
a 

exp[- I Rl (u)du] , 

(z, 1-a+az) 

so that 

This function has a power-series expansion with the following coefficients: 

r (1) {1- an+l 
n I 

k=O 
0 , 

where we have used the fact that rn(l) is nonincreasing. It follows that 

log{Pa(z)/Pa(O)}, and hence Pa' is abs mon. Finally, Pa(z) + 1 as z t 1, 

i.e. Pa is a pgf, so Pis discrete self-dee. 

COROLLARY 3.3.6. The factors Pa (0 <a< 1) of a discrete self-dee pgf p 

are all inf div. 

COROLLARY 3.3.7. If {pn}: is discrete self-dee with O<p0 < 1, then pn > 0 

for all n E lN . 
0 

□ 
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PROOF. If p 1 would vanish, then r 0 (1) = p/p0 = 0, and hence, as ) is 

nonincreasing, rn (1) = 0 for all n E JN0 , which is only possible if = 1. 

It follows that p 1 > 0, but then pn > 0 for all n e:JN0 by tJ1eorem 1.5.7. D 

'l'he unimodali ty of discrete self-dee distributions is a corollary to the 

following tJ1eorem (cf. corollary 1.5.5). 

THEOREM 3.3.8. Let {p }00 and {r }00 be sequences of real nllIJlbers with p 0 > 0, 
n o n o 

2: 0 (n c JN), rn nonincreasing and such that 

(3. 3 .13) 
n 

(n+l)pn+l = l pkrn-k 
k=O 

(n E JN ) 
0 

Then [pn}: is unimodal, Le. pn-pn-l changes sign at most once (put p_ 1 =0); 

{p } 00 is noni.ncreasing iff r 5 1 . 
no o 

PROOF. Our proof is suggested by the proof of Wolfe (1971a) for self-decom

posable densities on (0, 00). First we introduce the sequences {d }°'' and {>. } 00 

n o n o 
by 

(n E ]N ) 
0 

Because of the monotonicity of {rn} we have An 2: 0 (n E JN0 ), while 

(3.3.14) r 
n 

r 
0 

n-1 

I (n E :IN) • 

k=O 

From (3.3.13) we obtain by subtraction 

(3. 3 .15) 
n-·1 

(ro··l)pn- l 
k=O 

(n E 

and hence dn 5 0 for n E: JN iff r 0 5 1. Now let r 0 > 1, and suppose that 

there exist n 1 E .1N and n 1 + m (some m E IN) such that 

(3. 3 .16) 

'.I'hen we have, putting pn-j = 0 if j > n, 

pn ··j :s: pn (j 1, 2, •.. ,m) 
(3. 3 .17) 1 1 

-j 
5 p . 

n2··J 
(j m-J-l,m+2, ... ) 
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From (3.3.15) and (3.3.16) it is seen that on the one hand 

n 1-1 

(3. 3 .18) I 
k=O 

and on the other hand 

(3.3.19) (n 2 +1)d l 
n2+ 

From (3.3.19) it follows that 

m-1 n2-l 

(r -l)p > I \P + l 
o n2 k=O - n2 k=m 

and hence, because of (3.3.14), 

(r -l)p > 
m n2 k=m 

Now, using this and (3.3.17), we can estimate in the following way: 

which contradicts (3.3.18). It follows that (3.3.16) is impossible. D 

COROLLARY 3.3.9 .. A. discrete self-dee distribution {p }'"' is unimodal; it is 
n o 

noni.ncreasing iff r 0 (1) = p 1/p0 <:: 1. Equivalently, an inf div lattice dis·· 

tribut.i.on with p 0 > 0 is unimodal if its canonical sequence {r (1)} is non
n 

increasing; it is nonincreasing iff in addition r 0 (1) s L 

REMARK 3.3.10. The unimodality of discrete self-dee distributions can be 

used to give a slightly simpler proof of the uni.modality of self··dec distri

butions on [0, 00). The latter distributions have a Levy function M (cf. tl1eo

rem 1.4.7) that is absolutely continuous with xM' (x) nonincreasing on (0, 00), 

Le. (cf. corollary 1. 7 A) its K0 -functions are concave on [0, 00 ). Now, such 

a K0 -function can be approximated by step functions for which the step 

heights form a nonincreasi.ng sequence, and hence (cf. tlteorem 1.7.7) by mak-· 

ing the lattice finer it can be seen that a self-dee distribution on [O,=) 
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is the limit of discrete self-dee distributions. This procedure amounts to 

a more drastic discretization than that used by Wolfe (1971a). 

REMARK 3. 3. 11 . In theorem 3. 3. 8 the r n's are not supposed to be all nonne,;a

ti ve, i.e. we seem to find a sufficient condition for unimodality of more ge

neral sequences than inf div lattice distributions. For nonnegative pn's, 

however, rn non.increasing implies ?. 0 (n E :W0 ) , which can be shown as 

folllows. 

First, let {p } be nondecreasing. Suppose that there exists n E JN such that 
11 0 

r < 0, t.hen for all n > n we have 
11 0 

0 

n -1 
0 

(n + 1) o; l rkpn-k o; ronopn ' 
k=O 

which contradicts the fact that {p n} is nondecreasing. 

If {p11 } is not nondecrea.sing, then, as {pn} is unimodal, {pn} is bounded: 

pn o; M, say, for all n E: JN0 • Suppose that not all rn's are nonnegative, then 

there exist c > 0 and E: 1N such that r o; -c for all n ?. n . It follows 

that 

-1 

p - C 
n··k 

11 0 

n-n 
0 

I 
k=O 

Now, if l:p 11 = 00 , then we can choose N E lN such that for n sufficiently large 

r n M - cN < 0 
0 0 

similarly, if l:p n =: 9. < =, tl1en we can choose r; > 0 and ti > 0, such that 

for n sufficiently large 

'I'hus in both cases we have obtained a contradiction to the fact that ? O 

for all n E 

The class of self-dee distributions contains a very important subclass, viz. 

the class of stable distributions, which can be introduced as follows (cf. 

Feller (1971), ch. VI): a rv X is said to be (strictly) stable with expo

nent y (necessarily E (0,2]) if 
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(3 .3 .20) > 0) ' 

where and are independent rv' s with the same distribution as X. We re-

write (3.3.20) as 

;• d (3.3.21) ",= ax:1 + (1- (Q < Cl < 1) , 

or in terms of chf's 

(3.3.22) t) (t(IR;0<a<l) 

Now, analogous to the definition of discrete self-dee distributions, we in-

troduce discrete stable distributions by replacing in (3 .3.21) by a o 

as given by example 3.3. (iii), and similarly for the other term in (3.3.21). 

In terms of pgf's we then obtain the following definition. 

DEFINITION 3.3.12. A pgf P with O < P(O) < 1 is said to be (strictly) dis

crete stable with exponent y > 0 if it satisfies 

(3.3.23) P(z) P (l - a+ az) P (1 - (1 -

Comparing the defining relations (3.3.5) and (3.3.23), we see that, as in 

the continuous case, the following theorem holds. 

Tf:lEOREM 3.3.13. A discrete stable distribution is discrete self-dee, and 

hence unimodal. 

Next we establish the canonical representation of a discrete stable distri

bution. 

'I'HEOREM 3.3.14. A pgf P with O < P(O) < 1 is discrete stable with exponent 

y iff P has the form 

(3.3.24) P(z) ~ (1 - z) ( I z I "' 1) , 

whereµ> 0. The exponent y necessarily satisfies O < y <: 1. 

PROOF. Let P be discrete stable with exponent y. As for O <: z < 1 we can 

write 

P ( l. - a + o:z) ·- P ( z) (1- o:) (1- z)P' (z) + 0(1 - a) (a t 1) , 



it follows from (3.3.23), with ua := (1- ay) l/y, that 

1 - P (1 - u0 ( 1 - z)l 
lim --------
at1 1 - a 

lim 1 
at1 P ( 1 - a+ az) 

P(1- a+ az) - P(z) 
1 - (l 

(1-z)P'(z)/P(z) , 

or, equivalently, 

(3.3.25) 
1-P(l-u (1-z)) 

lim _____ a __ ·'---= .!.(1- z)P' (z)/P(z) 
at1 Uy y 

(0 :S z < 1) • 

(l 
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As for 0 :S z < 1 we have a t 1 iff v := u (1- z) ,!, 0, we can rewrite (3.3.25) 
(l 

in the form 

(3.3.26) (0 :S z < 1) • 

As the left-hand side, and hence the right-hand side, of (3.3.26) is inde

pendent of z E [0,1), we get, by taking z = 0 in (3.3.26), 

(3.3.27) (0 :S z < 1) • 

Integrating this equation and observing that the resulting function is ana

lytic in lzl :S 1, we see that P has the form (3.3.24), withµ given by 

(3.3.28) 

Conversely, if P = Qµ, then it is easily verified that P satisfies (3.3.23), 
y 

i.e. Pis discrete stable. 

Finally, as P' (1) > 0 (possibly infinite) unless P(0) 

is seen that O < y :S 1. 

1, from (3.3.27) it 

□ 

COROLLARY 3.3.15. A discrete stable distribution {p }~ has a finite first 
no 

moment iff its exponent y is equal to 1, in which case {p} is Poissonian. 
n 

REMARK 3.3.16. From (3.3.27) we see that the canonical sequence {rn(l)} of 

Qµ is given by 
y 

(3.3.29) rn(l) = µy(-1)n(y~l) = µy(n~y) (n E ]N ) • 
0 

As rn(1) ~ 0 for all n (Q~ is inf div), we see also from (3.3.29) that ne

cessarily 0 < y :S 1. 
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The discrete stable pgf's, i.e. the pgf's Qµ (0 < y $ 1; µ > 0) from(3.3.24), 
y 

are quite similar to the PLST's of the stable distributions on [0, 00 ) (cf. 

Feller (1971), ch. XIII): a df Fon [0,oo) is stable with exponent y (neces

sarily E (0,1]) iff F has the form 

(3.3.30) 

whereµ> O. Rather curiously, in the discrete case the Poisson distribution 

replaces the degenerate one (cf. corollary 3.3.15). 

A df F on [0, 00 ) is said to be in the domain of attraction of ~ if there 

exist an (n E JN) such that 

(3.3.31) (-r ~ 0) , 

or, if x1,x2, ••• are independent rv's with df F and if Yy has df G~, 

d 
lim a (Xl + •.• + X) = Y 
n-+«> n n y 

As shown in e.g. Feller (1971), ch. XIII, only a stable PLST appears as a 

limit like in the left-hand side of (3.3.31). Furthermore the a 's necessa
n 

rily satisfy 

(3. 3.32) a 
n 

(n + co) • 

Now, similarly, a lattice distribution {p }00 with p > 0 is said to be in 
n o o 

the domain of discrete attraction of Q~ if there exist an (n E JN) such that 

(3.3.33) 

Taking a such that (3.3.32) holds, we see that Qµ belongs to its own domain 
- n y 

of attraction. Furthermore we have the following property. 

THEOREM 3.3.17. Every lattice distribution with finite first moment belongs 

to the domain of discrete attraction,of Q~, i.e. of the Poisson distribu

tion. 

PROOF. Let P be a pgf with P' (1) =: µ < 00 , and let z c [0,1). Then for all 
1 n E' JN there exists i;n E (1 - -;(1 - z), 1) such that 

1 - P ( 1 - .!.o - z) ) 
n 
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Now, as lim P' (I; ) = µ, it follows that for 0 s z < 1, and hence by t.he con
n n->oo 

tinuity theorem for all jz[ s 1, 

1 n µ 1 n 
lim {P(l--(1-z))} =lim {1--(1-z) +o } =exp[µ(z-1)] D 

n n n->oo n->oo 

A general theory of attraction could easily be developed. 'l'he domains of 

discrete attraction, however, are completely determined by their continuous 

counterparts. In fact, for every y E (0,1] andµ> 0 we have 

and as for every T?: 0 

(T ?: 0) , 

{E exp[X log(i - a T) J}n 
n 

(n + oo) ' 

where X is an JN0 -valued rv with pgf PX and df F X' it follows that 

lim {P (1 - a + a z) } n 
X n n 

i.e. an -valued rv X is in the domain of discrete attraction of Q1J iff 
y 

it is in the domain of attraction of Gµ. 
y 

3 .4. a-dec,omp0-6a.b.Ee ( 7) .Ea.ttic.e du,bubu;t(_rym, 

In this section we briefly consider pgf' s P that have 1 - a+ aP (z) as a fac

tor (cf. example 3. 3. 1 ( ii) ) • Proceeding as in sections 1 and 2 for a-dee 

pgf's (which have P(az)/P(a) as a factor), we obtain properties that are 

similar to t.hose of the a-dee pgf' s. The main purpose is to give an analo

gue of theorem 3.2.4 for C0 • 

DEFINITION 3 .4. 1. For 0 < a < 1 a pgf P with P (0) > 0 is said to be a-decom-· 

posalJl,e(l) (a-dec(1)) if there exists a pgf Pa such that 

(3.4.1) P(z) 

Pis called 

{1-o,+ciP(z)}P (z) 
a < I z I s i) • 

(1) if P i.s a-dee (1) for all a E (0, 1). 

For an arbitrary pgf P with P(0). > 0 and :Eor a E (0,1) we denote by the 

following function (cf. ( 3 .1 ) ) , 
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(3 .4 .2) 

which is always defined in some neighbourhood of zero, Obviously, we have 

the following criterion (cf. lemma 1. 3 .4) and representation lemma (solve 

( 3 • 4 • l) for P) • 

LEMMA 3.4.2. For O <a< 1 a pgf P with P(O) > 0 is a-dec(l) iff 

mon. 

is abs 

LEMMA 3.4.3. If O <a< 1 and if Pis a pgf with P(O) > O, then Pis a-dec(l) 

iff P has the form 

(3.4.3) P ( z) = 1 - a Q ( ) 
1-aQ(z) z 

where Q is a pgf. The representation is unique: Q p • 
a 

Thus, an a-dec(l) pgf P has a compound geometric factor. It turns out that 

the factor of Pis in C iff PE 
0 

. We state this in the following lemma, 

which is easily verified by using theorem 2.4.9(ii) and the following rela

tion between t.lle R -functions R and R (a) of P and P , respectively: 
o o o a 

{1 + P(O) }R(a) (z) 
- a o 

LEMMA 3.4.4. If P is a pgf with P(O) > O, then P E C0 iff for some, and then 

for all, a E (0,1) Pis a-dec(l) •.•ith factor P EC • 
a o 

By expressing in one obtains the following implication: 

(3.4.4) [P a-dec(l), 0 < S < a < 1] ""P S---dec(l) . 

It follows that the classes of a-dee ( 1) pgf' s are decreasing in a .• Now the 

limiting class (a t 1) turns out to be C0 , .i.e. we have the following ana

logue of theorem 3.2.4 for C0 • 

THEOREM 3.4.5. A pgf P with P(O) > D is in C iff Pis tot-dec(l), 
0 

PROOF .. In view of lemma 3. 4 .4 we only need show t:ha t a tot-dee ( 1) pgf i.s 

in C0 • So let P be t:ot---dec(l), i.e. let be a pgf for all a , (0, 1). Re-

wri. te as follows 

(z)={l+(l-a)[P(z) -1] 



let y > 0 and take an= 1 - y/n (n ElN). Then it follows that 

{P ( z) ( l-an) is a pgf (n E 1N) , which satisfies 
a n 

s (z) 
y 

:= lim {p 
a n-+m n 

y/ (1-a ) 
(z)} n 
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Since (z) + 1 as z t 1, by theorem 1.3.5 it is seen that S is a pgf for 
y 

ally> 0, and hence 

-1 
s1 (z) = exp[l - P(z) ] 

is an inf div pgL From theorem 2.4.8(ii) it now follows that P c· C0 • D 

COROLLARY 3.4.6. 1he factors Pa (0 <a< 1) of a tot-dec(1) pgf are all in 

C • 
0 

Finally, we note that (cf. sections 1 and 2) we might consider a-fact(i) 

pgf's, i.e. pgf's P of the form {1-a+aQ(z)}Q(z), but we shall not do so 

here. 
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CHAPTER 4 

THE CLASSES C IN RELATION TO REMEWAL THEORY 
Cl 

In chapter 2 we introduced the classes C (0 s a s 1). Most o.f t.he.ir proper..:. 
a 

ti.es, given there, were most eas.ily formulated .in terms of pg.f's. Now, in 

the present chapter, we want to derive properties of the probabilities them

selves; in particular, we consider inequalities, asymptotic behaviour and 

closure properties. 

The recurrence relations by means of which C0 can be characterized (cf. co

roll.ar]T 1. 5. 9) , are very similar to those defining the so-called renewal 

sequences (cl.ass R0 ). This class R0 has many well-known properties, which 

are often easily obtained by a probabilistic interpretation (cf. Fell.er 

(1968), ch. XIII and Kingman (1972), ch. 1.). Now, using the relation be

tween C0 and R0 , we obtain similar properties for C0 (section 1). In sec

tion 2 we consider the case O < o: < 1. We introduce classes R of generali-
a 

zed renewal sequences that are related to the C I s in the same way as R is 
a o 

related to C0 , and we investigate to what extent tl1e properties of R0 can 

be extended to the R 's. Specifically, we look for a probabi.li.sti.c inter
a 

pretation of the sequences in R • We do find interpretations, but these are 
a 

rather complicated and yield only few results. Finally, in section 3 we 

.briefly consider an extension R1 of C 1 . 

4 • i . The. ciao-5 C and clu., c.Jte.t.e.-.t,i..me. Jte.n.e.wai . .the.01ty 
0 

The class C0 of compound geometric lattice distributions {p } 00 can be cha
no 

racterized by means of the recurrence relations 

n 

l pkrn-k(O) 
k=O 

(n E lN ) 
0 

where tl1e sequence {r (0) } 00 satisfies 
n o 

r (0) 
n 

Now, the recurrence relations (4 .1. la) are very similar to those defining 

the so-called renewal sequences (cf, Kingman (1972), ch. 1), a sequence 

{ u } 00
, wi. th u = 1, is said to b_ e a 1°ene1,;al sequence ( or of class R ) if 

no o o 
it satisfies 
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(4.1.2a) ( n E 1N) , 

where the sequence {fn}7 is such that 

(4.1.2b) f? 0 (ne1N), f := 
n I 

n=l 
f ,:; 1 

n 

in t.his case { u } is called the renewal sequence associated wi Uz { 
n 

l. In 

fact, we have the following relation between C0 and R0 . 

LEMMA 4.LL 

(i) If {p } E C and if u := p /p (n E 1N ) , then 
n O oon n O 0 

associated with {fn}l given by fn rn-l (0) 

{u } E R 
n o 

(n E JN). 

(ii) If {u } E R , associated with {f } , then 
n o n 

and { u } is 
n 

a) If f < 1 and pn := (1- f)un (n e: JN0 ), then {pn} c C0 with rn(O) 

= fn+l (n E lN0 ); 

b) If f = 
r (0) 

n 

1 and p := ynu /U(y), 
n+l n n 

= Y f (n E ]N ) • 
n+l o 

where y E (0,1), then 

PROOF. 

(i) immediately follows by comparing (4.Lla) with (4.1.2a), and (4.Llb) 

with (4.L2b). 

(ii) Let {u } E R , associated with {f } . If f < 1, t.hen, as we shall see 
n o 00 n 

1 -1 
in theorem 4"1 .. 2(i)r L = (1-f) is finite .. Hence (cf,. (i)), if := 

n=O 
:= (1-f)un' t.hen {pn} E C0 • If f = l, then l 

n=O 
for ally E (0,1) (cf. lemma 4.1.3). It follows 

u 
n 

00 but U(y) = l u yn< 00 

, n:=:::O n 

that {p }00
, with p := 

no n 
a probability distribution that satisfies (4. . la) with 

? 0. Hence {p } E C • 
n o 

I] 

The recurrence relations (4.L2a) have been studied by several authors, e.g. 

by Kaluza (1928), De Bruijn & Erdos (1951), Lamperti (1958), Kendall (1967), 

Feller ( 1968) and Kingman (19 72) . The main properties of these relations 

will be given in the remainder of this section. Using lemma 4.1.1 we can 

transfer most of these properties to C0 , but we shall do so only if this is 

of special interest. 

In the next section we want to to what extent the properties 

that can be obtained for C0 , can be extended to (0 < CJ, < 1). As, to this 
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end, the sequences in C will be related to the so-called delayed renewal 
(1 

sequences, we consider recurrence relations that are slightly more general 

than those in (4.1.2a). 

Our starting point is the theory of recurrent events of Feller (1968), ch. 

XIII, but we prefer a formulation similar to the one usual for renewal theo

ry in continuous time (cL Feller (1971), ch. XI). Let. us introduce two se-

{b } 00 { }"" quences n O and fn 1 satisfying 

(4.L3) b ?:: 0 (n ElN ) , 0 < b ,= l b < 00 , f ?:: 0 (n ElN), 0 < f ,,,, l 
n o n=O n n ncol 

f < 00 
n 

Then the (discrete) renewal equation associated 1irith {bn} and {fn}, is de·-

fined by 

(4.L4) V 
n b + n 

It .is called pure if b = o , and delayed otherwise. Clearly, the renewal 
n o,n 

equation has a uni.que solution {v }°'', and .its gf V satisfies 
n o 

(4.L5) V(z) = B(z)/{1- F(z)} , 

or, if {u }00 is the solution of the pure renewal equation associated with n o 
{f }, 

Il 

(4. L6) V(z) = B(z)U(z) • 

'l'he period d of a sequence {a } 00 of real numbers (not all a (n c JN) zero) 
n o n 

is defined as follows, 

(4.L 7) d ,~ gcd{n EJN j a t O}. 
11 

Here ·the value of a .is not relevant; the period of a sequence {a } '° is al-
e n 1 

so defined by (4.L7). Of course, (4.L7) is equivalent to the definition 

of F'eller (1968), who defines the period of {a } by 
n 

a'"" max{k E:JN IV [a i O ""kjnJ}. 
nE:N n 

If d ~ 1, then the sequence {a} is called aperiodic. Now we are ready to 
n 

state the following ba.sic result, which is known as the reneuJal theorem (cf. 

Feller (1968), ch. XIII). 

THEOREM 4.1.2. Suppose (4.1.3) and that {fn}7 is aperiodic. Then the solu

tion {v }00 of the renewal equation associated with {b} and {f} has the 
n o n n 
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following properties: 

(i) f < 1 iff V ·= I V < 
n=O 

n 

(ii) If f 1, then V := lim 
00 

(<: C()); 
n->-<n 

(iii) If f > 1, then lim xnv 
o n 

00' in which 

V exi.sts, 
n 

case V 

and V 
00 

b/(1-f); 

b/JJ with 11 := l 
n=l 

nf 
n 

B (x ) /{xF' (x ) 1, where x c (0, 1) is such 
0 0 . 0 

We shall frequently use the following characterization of the bounded solu

tions of the renewal equation. 

LEMMA 4.1.3. The solution {v }00 of the renewal equation (4.1.4) is bounded 
11 0 

if£ f <: 1, in which case v <: b for all n E lN . 
n o 

PROOF. Let {vn} be bounded. Then its gf V exists, and does not vanish, on 

(0, 1). Hence by (4.1.5) we have 

F(x) = 1 - B(x)/V(x) <: 1 (0 < X < 1) , 

from which, letting x t 1, we see that f = F(l) <: 1. 

conversely, let f <: 1. Considering first the solution { u } 00 of tl1e pure re-n o 
newal equation associated with , from (4.1.4), using mathematical induc-

tion, we see t.h.at un <: 1 for all n ,: JN0 • Now, equation the coefficients of 

zn in (4.1.6), we obtain 

b ' 

and the lemma is proved. □ 

We are particularly interested in certain bounded solutions of (4 .1.4), 

which frequently occur in probability theory, viz. the delayed renewal se

quences, as they will provide a probabilistic interpretation of the sequen-

ces in . If {b} and {f} are sequences satisfying (4.1.3) with b s land 
n n 

f <: 1, then the solution of the renewal equation associated with 

and {fn} is called the delayed renewal sequence associated with {bn} and 

{fn}. The set of such sequences is denoted by R. We note that a renewal se

quence (cf. t11e beginning of this section) can be considered as a delayed 

renewal sequence for which 
,n 

Hence we have 

(4.1.8) C R , 
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and in order to distinguish the R0 -sequences from those in R\R0 we occasio

nally call them pu.re renewal sequences. 

The (delayed) renewal sequences owe their name to their interpretation in 

renewal processes. For ease of reference we first give the definition of 

such processes for discrete time. 

DEFINITION 4.1.4. Let {b }~ and {f }'1'° be two sequences satisfying (4.1.3) 
no n 

with b $ 1 and f $ 1. If T0 ,T1,T2, ••• are mutually independent, JN0 -valued 

(possibly defective) rv's such that {bn} is the distribution of T0 and {fn} 

that of Tk for k E lN, then the sequence {s } 00
, defined by no 

s 
n 

is called the (discrete-time) renewal process associated with {b} and {f }. 
n n 

The rv Sn is called then-th renewal epoch, and Tk the k-th life time. If 

f = 1, then the mean recurrence timeµ is defined by 

I 
n=l 

nf 
n 

($ oo) • 

Finally, {s} is called pure if b = o (delayed otherwise), and persis-
n n o,n 

'tent if b = f = 1 (transient otherwise). 

THEOREM 4.1.5. A sequence {v } 00 is in Riff there exists a (discrete-time) no 
renewal process {s }00 such that 

n o 

(4.1.9) 

If {v} is associated with {b} and {f }, then {s} is associated with the n n n n 
same sequences, and conversely. Finally, {v} is pure (ER) iff {s} is 

n o n 
pure. 

In addition to the interpretation of {v} ER, just given, there exists an
n 

other one in terms of a Markov chain. A (discrete-time) Markov chain with 

stationary transition probabilities is a sequence {x } 00 of rv's, taking va
n o 

lues in a countable state space S and satisfying the Markov property 

P (x = j I x , x1 '° .. , x, 1 l = P (x = j I x 1 l n o n- n n- (n E lN; j E S) , 
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such that the transition probabilities 

(i,j E S) 

do not depend on n. In fact, we have the following characterization of (de

layed) renewal sequences (cf. Kingman (1972)). 

THEOREM 4.1.6. 

(i) A sequence {u }"" is in R iff there exist a Markov chain {X }°" and a 
n o o n o 

state j E S such tJ1at 

(4.L10J u 
n 

j) (n E JN ) • 
0 

The sequence {fn}, {un} is associated with, is then the recurrence time 

distribution of j Es, 

(n E JN) 

(ii) A sequence {v }"" 
no 

is in R\R0 iff there exist a Markov chain and 

two distinct states i,j E s such that 

(4.L12) V 
n "'P(Xn+1 j I X 

0 
i) (n E JN ) 

0 

The sequences {b} and {f} 
n n ' 

{vn} is associated with, then satisfy 

( 4 • 1 • 11 ) and 

j X 
0 

i) (n E JN ) 
0 

These interpretations can be used to obtain the following inequalities and 

closure properties for R (cf. Kingman (1972)). An analytic proof of (i) in . . 0 

a slightly less general situation has been given by DeBruijn & Erdos (1951), 

but for (ii) and (iii) such proofs seem nonexistent. 

THEOREM 4 • 1 • 7 • 

(i) If 

(ii) If {u } 
n 

(iii) If {u } 
n 

E 

E R 

E R 
0 

0 

then un\71: s un+k s unl\: + 1 - un for all n,k E: lli0 • 

and k Elli, then { l\:n} ~=O E R0 • 

and {vn} E R0 , then also {unv11 } E R0 " 

By lemma 4. l .1 we successively obtain from the preceding theorem the fol lo-

wing results for . Only part (i) of the first corollary immediately fol-

lows from (4.1.1a) by mathematical induction (cL lemma 4"L3): 
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n oo 

5 po l rk(O) s p l rk(O) <po. 
k=O o k=O 

COROLLARY 4.1.8. The following inequalities hold for {pn} E C0 : 

(i) Pn < Po for all n E JN; 

(ii) pnpk 5 PoPn+k 5 pnpk + p (p - p ) for all n,k E m0 ; 
o o n n-l 

(iii) po(P/Poln 5 pn s po - (po - P1) (p/po) for all n E ]N • 

COROLLARY 4.1.9. If {p } E C and k EJN, then {ckpk }00 O E C0 , where ck is n o n n= 
a suitable norming constant. In particular, if k = 2, then in terms of pgf's 

(4.1.14) 

COROLLARY 4.1.10. If {p} EC and {q} EC, then also {cp q} EC (c is n o n o n n o 
a norming constant). 

In view of a result of Lamperti (1958), theorem 4.1.7(iii), which also holds 

if R is replaced by R, can be generalized as follows. 
0 

THEOREM 4.1.11. If {u} ER and {v} ER, then {w} ER for all a~ 0, n o n o n o 
S ~ 0, y ~ 0 (not all zero), where wn is defined by 

(4.1.15) w 
n 

(n Em) 
0 

PROOF. According to the result of Lamperti, {(a+ S + y) nw } is a solution of 
n 

the pure renewal equation. It easily follows that then also {w} is a solu-
n 

tion of the pure renewal equation, and as un s 1 and v n s 1 (lemma 4 .1. 3), 

we see that wn 5 1. Applying lemma 4.1.3 in the reverse direction, we con-

clude that {w} ER. D 
n o 

REMARK 4.1.12. If a~ 0 or S ~ 0 and if run< 00 , then {wn}' multiplied with 

a suitable constant, is a lattice distribution in C: 

w 
n 

s (a+ S + y) -n 

0 

JI, 
\ JI, j Jl,-j 5 
l ( .)a S v n+· 

j=O J n-x. J 
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and hence 

00 00 

I I £ I (n) n•-Q, ( B 1-n w $ uQ(a+B) Qy a++y, 
n=O 

n Q,,,,Q n=Q 

00 

I u 2 (a+B) 
£ I (-£-1) (-y)m(a + B + y)-£-m 

£=0 m=O m 

Of course, by lemma 4. 1 .1 we can also obtain properties of R0 from known 

properties of C0 • We give one example on mixtures of renewal sequences; the 

result seerrIB to be new, but in fact it is a special case of ti1eorem 4.1.7 

(iii) (take v po + (1- p) there; then {v } E R , as it is associated 
n · o,n n-l n o 

with {fn}, given by fn (1- p)p ) • 

(4.1.16) w := po + (1-p)un n - o,n 

PROOF. Let {u11 } E R0 and 0 < p < L Then for {wn}, defined by (4.L16), we 

have J. and 0 :; wn :; 1 (n e:: :N), and its gf W satisfies 

W(z) = p + (1- p)U(z) c I z I < 1) • 

Choose y E (0,1), and define me lattice distributions {pn} and {qn} by 

p = n 

Then, considering their pgf's, we have 

Q(z) 

where 

W(yz)/W(y) =p + (J.-p)U(yz) 
p + (1- p)U(y) 

+ (1-p)U(y)} E (0,1). Since {pn} E (lemma 4 .• 1 (ii)), 

from theorem 2A.9(iii) it now follow:s mat also {q} E C , and hence, by 
·n o 

lemma 4. .1 (i), { ynw } E R . But men satisfies the pure renewal equa-
n o 

tion, and as wn s 1, it follows by lemma 4.1.3 that {wn} e:: R0 • D 

Next we consider the asymptotic behaviour of a renewal sequence. Of course, 

the strong result in this area has been already given in ilie renewal theorem 

(theorem 4.1.2), of which parts (i) and (ii) can be applied. If, however, 
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u := lim 
00 

= O, one can ask how fast tends to zero. The following theo-
n->-00 

rem (cL Kingman (1972)) gives an answer to this question. 

'I'HEOREM 4.1.14. Let {u} ER be associated with {f }"1'. '.l'hen t.he period dof n o n -

{un}: is equal to that of {fn};, and 

(4.1.17) # ({n ElN I und = O}) < '" ·· 

Furthermore 8 

(4.1.18) u $ 
n 

1/(nctl 
:= lim und exists in (0,1], and 

n+co 

(n E 

COROLLARY 4.L15. If {un} E R0 , then the radius of convergence p of the gf 

U of {u }00 is finite. Furthermore, if v := pnu (n E JN ) , then {v }00 
E R • 

n o n n o n o o 

PROOF. We have 

Since in view of theorem 'L1.14 

limsup 
1/n limsup 

1/(nd) 
u 11nd 11 n-+oo n-= 

lim u~~( nd) 
n-+oo 

0 > 0 , 

it follows that 

(4.L19) p 0-1 < 00 

Now, if v := pnu , from (4.L18) it is seen that v ::: 1 (n E JN ) , and, as 
n n n o 

{vn} obviously satisfies the renewal equation, we conclude by lemma 4.1.3 

that E R . D 
0 

Now, applying the renewal theorem to tl1e sequence { v } , thus obtained, we 
n 

can improve on the second part of theorem 4.1.14 in some sense. We state 

the results in the following theorem. They are interesting only if p > 1, 

which implies t.bat l 
n=O 

u 
n 

i.e. in fact we consider C. 
0 

THEOREM 4.L16. Let {u} E R. , associated with {f }00 and with radius of con-
n o n 

vergence P. 'l'hen p < ~ and F(P) ::: 1, while 
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(i) F(p) < 1 iff U(p) 

(ii) If F(p) 

ven by 

1 and 

µ := 2. 
n=1 

< 00 

' in which case lim 
n-+oo 

is aperiodic, then 

pF' ( p) ( $ oo) 

n O; p u = n 

lim 
n 

1/µ, where is gi-p u µ 
n n-'j-0:J 

REMARK 4 .1 • 1 7. 'I'heorem 4 • 1 .16 and the second part of theorem 4 • 1 • 14 have 

been proved previously by DeBruijn& Erdos (1951) in a slightly less general 

situation; they consider general solutions of the pure renewal equation, but 

suppose the 's to be all positive. For tllis case they show furthermore 

that the quanti ti.es p and O can be expressed in terms of the fn' s as fol

lows: 

-1 I (4.1.20) p = 8 = sup{x ~ 0 F(x) s 1} . 

However, this relation holds for all renewal sequences, as will be shown in 

a more general situation in the next section. 

The class contains two easily recognizable subclasses, viz. the class of 

comp mon sequences {u }'"' (cL definition 1.3.10) with u0 = 1, and the class 
· no 

of bounded Kaluza sequences. Here a sequence {a }00 is called a Kaluza se
n o 

quence if a 0 = 1, a ~ 0 (n E: IN) and {a } 00 is log-convex, Le. 
n n o 

2 a s 
n 

(n E JN) 

Note that in this case an O for all n E JN or an > 0 for all n E JN, and 

that {a } is bounded iff it is nonincreasing. Kaluza (1928) proved the fol
n 

lowing theorem, the analogue of which for C0 has been already given in theo-

rem 1:5.13. 

THEOREM 4 .1 • 18 • A comp mon sequence { u } 00 with u 
no o 

1 is a hounded Kaluza 

sequence, and a bounded Kaluza sequence is i.n R0 • 

'l:'he bounded Kaluza sequences can be characterized as a subclass of in 

two somewhat similar ways. The first one is given by Kendall ( 196 7) , the se

cond one seems to be new. 
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THEOREM 4.L19. Let {u }°'' be a sequence of positive numbers. Then {un} is a 
no 

bounded Kaluza sequence iff for all t > 0 (or, equivalently, for all t= 1/m, 

m E ."') {ut} R {ut} d l f ·"' n c 0 , in which case n is also a bounde Ka uza sequence or 

all t > 0. 

n 
Translating tJ1.is result for {pn} c C0 , we have to consider y pn for some 

y E (0, 1) rather than p n' since l:p: .is not necessarily f.ini te for all t > 0. 

THEOREM 4.1..20. Let {u }''' be a 
n o 

sequence of positive numbers. For i c JN0 de-

fine the sequence {u (£) }00 by 
n o 

(n E: JN ) • 
0 

Then { u } is a bounded Kal uza sequence iff {u ( £) } E R for all i E :N , i.n 
n n o o 

which case {u (JI,)} is also a bounded Kaluza sequence for all Q, E :JN • 
n o 

PROOF. Let {u } be a bounded Kaluza sequence and take i E lN fi.xed. As 
n o 

{un}: is non.increasing, un(Q,) is bounded by 1. FurtlJ.ermore, {un(t)} is log-

convex, as is seen from (n E JN) 

Conversely, let {u (£)} c 
n 

{u } E R , 
n o 

and hence {u} 
n 

R0 for all ,~ E 1N O • Taking i ~, 0, we see that 

is bounded. The sequence {fn(£)}7, with which 

Cu (£)} is associated, 
n 

consists of nonnegative numbers. Now, calculating 

from which .it follows that the nonnegativity of f 2 (9,) for all -~ E :N0 implies 

tlJ.e log-convexity of {u }00
• Hence {u} is a bounded Kaluza sequence. D 

n o n 

REMARK 4.1 .21. If we define the sequence {u (£)} somewhat differently, viz. 
n 

(n E JN) 1 

then we get a weaker .result: {u} is a bounded Kaluza sequence iff {u (£)} 00 

n n o 
is a bounded Kaluza sequence for all 9, c :N0 • 

Finally, we consider the occurrence of a compound geometric lattice distri

bution in a stochastic process. By lemma 4. 1.1 (.i.), t.heorems 4. l .5 and 4. 1 .6 



110 

(i) yield, rather artificially, an interpretation of {p n} E: CO in a pure, 

transient renewal process and in a Markov chain, respectively. In the first 

case, however, we can say a little more. Using the notation of definition 

4.1.4, we denote the (pure) renewal sequence corresponding to 

rem 4.LS) by {u } 00
, and define 

n o 

N := # ({n c: JN S < oo}) ' 
n 

(cf. theo-

i.e. N is the total number of renewal epochs (S0 

is finite with probability one: 

0 not counted) , Then N 

p (N = oo) = p (V . S < 00 ) ,~ lim P (Vksn 
n~JN n 

In fact, N has a geometric distribution with parameter f: 

P(N =k) = P ( 1 - f) 

Now we can define the duration D of the process {Sn} as D 

bution is easily calculated: 

00 

P(D n) I P(SN n; N k) z: P(Sk n; 
k=O k=O 

00 

I P(Sk n) ( - f) ( 1 - f) (n 
k=O 

SN. Its distri-

oo) 

E 

from which by lemma 4 .1.1 we obtain the following interpretation of {p } E 
n 

'.l:'HEOREM 4.1.22. Let {p }00 be a lattice distribution. 'l'hen {p } E: C iff 
n o n o 

there exists a pure, transient renewal process {s }'"' such that { } is the no pn 
distribution of the duration D of the process. 

4 • 2. Gen.eJ1£.tlized !Lenewal J.i eq uenev.,; ci:'.M-6 u R ( o < a < 1) 
a 

In this section we study the distributions in for O < a < 1, by consider-

ing slightly more general classes R, As these are defined in such a way 
a 

that there exists a relation between C and R (to be given in lemma 4.2A), 
a a 

similar to that between CO and R0 , we can (and will) confine ourselves to 

studying the 's. As in section 1, the properties of R can easily be 
Cl 

translated into properties of We define the following classes , em··· 

ploying the notation used for the 's rather tJ1an that used for 
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DEFINITION 4. 2. L For O < a. < 1 a sequence { u } 00 of real numbers with u = 1 
n o o 

is said to be in the class 

(n E JN0 ) satisfying 

(4 .2 .1) 

such that 

(4.2.2) 

r(a) := l 
n=O 

r (a) s: 
n 

if there exist nonnegative quantities 

1 
1 -- a ' 

(n E :IN ) 
0 

(a) 

We could consider more general classes by dropping condition (4.2.1). Many 

results to be proved for Ra will also hold in that case. But in view of pro

babilistic interpretations and because for a sequence {un} that satisfies 

(4.2.2) and has a gf with positive radius of convergence, we can choose 

y E (0,1) such that {ynu } is bounded 
n 

and still. satisfies (4 .2 .2), we will 

only consider bounded sequences { u } . 
n 

seen from the following lemma. 

This results in the classes , as is 

LEMMA 4.2.2. Let 0 < a < 1 and let {u }00 be a sequence with u 1 and sa-
n o · o 

tisfying (4.2.2) with nonnegative rn(a)'s (n E:Il'if0 ). 'l'hen is boundediff 

(4.2.1) holds (Le. {u } E R ) , in which case for all k E JN 

(4.2.3) ~ ,s; 

k 
II 

R-=1 

n a o 

( 1 -
-1 R, -1 

(1-a) <oo). 

PROOF. Let be bounded. Then its gf U exists on [0,1). Taking gf's in 

( 4 • 2. 2) we get 

(4.2.4) 
U(z) - U(az) 

(1 a) z 

and hence 

U(z) R (z) 
Cl 

(0 s: z < 1) , 

zRa(z) = {1-u(az)/U(z)}/(t-a) s: 1/(1--a) (0 s z < 1) 

Letting z -t 1, by the monotone convergence theorem we see that r(a) ,s; /(1-a), 

Conversely, let r(a) s: 1/(1-a), Suppose (4.2.3) to be true fork~ l,.H,n, 

'Ihen 

1 -a n n 
(a) un-k s n+1 l rk (a) II 

1. - a k=-0 Q,=1 

n , n+1 ,_ -1 
(1--a) s IT 

R-=1 
( 1 -
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which is less than 

00 

··2 !/, -1 I I 1 rr (1 ··· a ) exp[ ] s exp[a(1-a) "] < 00 

!l=l !l=1 j=l 
j □ 

REMARK 4.2.3. The inequality (4.2.3) cannot easily be improved, as is seen 

from the following example (cf. the boundary distribution from definition 

2.2.2). Define {un}: as the sequence in Ra corresponding to r 0 (a) = 1/(1-a), 

rn (a) = 0 (n E JN) • 

Then from (4.2.2) it fol.1.ows that 

(4.2.5) 

and hence 

(4. 2 .6) 

n+1 ~ 
O··a )u 

n+1 
u 

n 

u 
n 

n 
rr 

k,.0 1 

k -1 (1-a) 

(n E JN ) 
0 

(n E JN ) 
0 

One easily verifies that 

ma 4 .1 .1) . 

is related to Ra in the following way (cf. lem-

LEMMA 4.2.4. Let 0 < Cl < 1. 

(i) If {pn } E C and u := pn/po (n E ]NO)' then {u } E R . 
Cl n n Cl 

(ii) If {u } E R and pn :,;;:::: ynu /U(y) where 0 < y < 1, then {pn } E n Cl n ' 

It may be noted that if r (a) < 1/ ( 1 - a), then in (ii) we can take y 1. 

'I'his follows from the following property of Ra. 

'l'HEOREM 4 • 2 • 5 • Let 0 < a < 1 and let { u } E R • 
n Cl 

iff r(a) < 1/ (l - a), in which case 

(4 .2. 7) u = U(a) /{1 - (1-· a) r(a)} 

Then u := l 
n=0 

is finite 

PROOF. Let 0 < a < 1 and let {u } E R • Then relation (4.2.4) holds for all 
n Cl 

I z I < 1, and can be written in the form 

U(z) < I z I < 1 l 

Now, letting z t 1 and applying the monotone convergence theorem concludes 

the proof. □ 



Studying the Ra's further, we first observe that many properties of the 

C's can be extended to the R's. For instance, using lemmas 4.2.4 and 
a a 

4.2.2, one easily shows that 

(4.2.8) (0 !, a < i3 < 1) 
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Specifically, it follows that every Ra contains R0 as a subclass, i.e. the 

sequences in R can be considered as generalized renewal sequences. Now, in 
a 

the remainder of this section, we mainly investigate to what extent the prop-

erties of R0 , summarized in the preceding section, can be generalized to the 

larger classes Ra. To this end we first state a useful relation of Ra with 

the (pure) renewal sequences, and next a more direct relation between Ra 
and certain delayed renewal sequences. 

THEOREM 4.2.6. Let O <a< 1, and let {u }00 be a sequence with u = 1 and 
n o o 

gf U. Define the sequence {u (a)} 00 by its gf UN(z) := U(z)/U(az), or recur-
n o ~ 

sively by 

(4.2.9) u n 

Then {u} ER iff {u (a)} ER. 
n a n o 

(n E JN ) 
0 

PROOF. Let {u} ER and take y E (0,1). Then by lemma 4.2.4 the relation n a 
between C and C, given by theorem 2.4.5, implies that {ynu (a)} ER. It 

a o n o 
follows that {u (a)} satisfies the pure renewal equation. Furthermore, since n 
{u} is 

n bounded (lemma 4.2.2) and as by (4.2.9) we have un(a) !, un (n ElN0 ), 

{u (a)} 
n is bounded, and on account of lemma 4.1.3 we conclude that 

{u (al} E R • 
n o 

Conversely, let {u (a)} ER. Then, similarly, it can be shown that n o 
{ynu} ER for ally E (0,1), and hence {u} satisfies (4.2.2) with nonne-

n a n 
gative rn(a)'s. Now, in view of lemma 4.2.2, for {u} to be in R it is suf-

n a 
ficient that {u} is bounded. To show this, we prove (4.2.3), or, equivan 
lently, un !, un (cf. remark 4.2.3). By (4.2.5) and mathematical induction, 

{u} is seen to satisfy 
n 

(4.2.10) u n (n E JN ) 
0 

Hence, assuming that~!,~ for'k = 0,1, ••• ,n-1, by (4.2.9) and the fact 

that un (a) !, 1 (n E JN0 ) we can estimate un as follows: 
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u 
n 

u 
n 

It follows that {un} is bounded, and the theorem is proved. 

THEOREM 4.2.7. Let 0 <a< 1. 

D 

(i) If {u } E R and if v := u /U(a) (n E JN ) , then {v }''0 E R, associated 
n a n n o n o 

w.i th {b } 00 and { fn} 00

1 g.i ven by 
11 0 

(4 .2 .11) b 
n 

(.i.i) If { V n} E 

b = anv 
n n 

R .is associated with {b} and {f} such that b > 0 and 
n n o 

(n E JN0 ) , and if u : = v /v (n E lN ) , then { u } E R • 
n n o o n a 

PROOF. Let {un} E Ra and vn := un/U(a) (n c JN0 ). 'l'hen by definition 4.2.1 

{v }00 is easily seen to satisfy the renewal equation (4.1.4) with {bn} and 
n o 

{fn} given by (4.2.11). It follows that b = 1 and f = (1 ·· a)r(a) 5 l, and 

hence that {v } E R. 
n 

Finally, (ii) can be shown in a similar way. D 

REMARK 4.2.8. J<'or {v} E R, associated with {b } and{£}, the condition 
n n n 

b = ctv (n E JN ) can be reformulated as a. relation between {b } and { f } : 
n n o n n 

(n E JN) 

(Le. in case v > 0 and V(a) = 1: {b }°'' E Ca with corresponding rn(a) 's 
o _ 1 n+J. n_o 

given by rn(a) (1.-a) a fn+l). This can be seen from (4.1.5) (replace 

z by az) • 

REMARK 4.2.9. Using theorem 4.2.6 one easily proves the following implica

tion: 

(LL2.13) U E R => W(z) := U(z)U(az) E R 
o a 

Now, in view of (4.1.6), the sequences {wn} in Ra, thus obtained, are of 

t.he form w11 = U(a)v11 , where {vn} E R is such that the sequences {bn} and 

lf }, that {v} is associated w.ith, satisfy B(z) ~{1-F(a)}/{1-F(az)}, Le. 
n n 



(4.2.14) b n 

n 
( 1 - F ( a) ) i 1 l 

k=O 
f-« 

n 
(n E :N ) 

0 
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Relation (4.2.14) seems somewhat more tractable than (4.2.12), but, unfortu

nately, not all sequences in Ra can be obtained in th.is way, i.e. the conver·

se of (4.2.13) is not true. Indeed, every WE 1\,. can be writtenasU(z)U(az), 

but generally U will belong to R 2 and not necessarily to R0 (cf. (3. 1.14) 

and lemma 3.1.8). a 

The relation between R and R in theorem 4 .2. 7 yields interpretations of 
a 

{u } E R in a renewal process and Markov chain (cf. theorems 4. 1.5 and n a 
4.1.6(ii)). J. Wijngaard (personal col1Jlllunication) gave a third interpreta-

tion, where un appears as the expected number of pa.rticles at time n in a 

complicated "Markov branching-process". Although theorem 4.2.7 will be ap

plied when we consider the asymptotic behaviour of {u } E R , these inter-
n a 

pretations do not yield easy proofs of inequalities or closure properties 

for Ra, of t.he kind one has for R • For instance, .if { u ( i) } E R (i = 1, 2) 
(i) (i) o . . (.i)' n . a 

and vn ,= un /u1 (a) (i = 1,2; n EThl0 ), then {vn J ER (J. = 1,2), and 

hence, by the Markov-chain interpretation, also {v} c: R, where v := 
· n n 

:= v(1)v( 2) (n E :N ) . But since the {b } and {f }, that {v } .is associated 
n n o n n n 

with, are not tractable, we cannot go back to Ra. 

Using the relation between R and R from theorem 4.2.6, we can say a little 
a o 

more, but the results are only formal and rather obscure. We give one exam-

ple, where we make use of theorem 4.1.7(ii.i). 

THEOREM 4.2.1.0. If {un} and {vn} E Ra' and if {un(a)} and {vn(a)} are de

fined by 

u 
n 

then the sequence {w } 00
, defined by 

l1 0 

w 
0 

is also in R 

r k 
l a vkvn-k(a) 

k=O 
(n EN ) 

0 

(n E JN) , 

Not able to prove inequalities for {un} E Ra using a probabilistic interpre

tation, we adapt the analytic proof of the first inequality in theorem 



116 

4,1.7(i). To this end we need the following le!l1llla from DeBruijn & Erdos 

( 1951) • 

LEMMA 4.2.11. If {v }00 is a sequence of real nwnbers with v 1 and satis-
n o o 

fying 

(4.2.15) vn+l 
n 

l rk,nvn-k 
k=0 

(n C JN ) 
0 

where rk,n ?: 0 (k E JN0 ; n = k,k+l, ... ) and 

all k E JN0 , then for n E JN0 

(4 .2 .16) (k E JN ) 
0 

is nondecreasing inn for 
,n 

PROOF. We use mathematical induction with respect ton. For n = 0 (4.2,16) 

is trivial. Now suppose tJ,at (4.2.16) holds for n = 1,. .. ,N, then for all 

k E 

N+k N 

l rR.,N+kvN+k-t?: 
R.=O 

l rR.,N+kvN-.'cvk?: 
R.=0 

?: 

and (4.2.16) is proved for n N+ L □ 

Before stating the generalized inequality, we introduce the following nota-· 

tion: 

(4 .2 .17) h (a) := 
n - Cl 

Cl < 1) • 

THEOREM 4. 2 . 12 . If O S: a < 1 and { u } E R , then t11e following inequality 
n a 

holds: 

(4. 2. 18) 

PROOF. Let 

(4 .2.2) 

. Define 

(n,k E JN ) 
0 

(a) 1 and by 
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n 

n+l 
h ( a:) 1 - a 

n 1 - a un+l 

Obviously, rk is nonnegative and nondecreasing inn, from which by lemma 
,n 

4.2.11 it follows that (4.2.16), and hence (4.2.18), holds. D 

COROLLARY 4.2.13. If Os a< 1 and E R , then u can be bounded as fol-
a n 

lows: 

(4.2.19) 

n 
u 

__ 1_ < 
h (a) -

n 

(1 - a) -n 

un 5 h (a) 
n 

PROOF. 'l'he first part of the inequality follows by iteration of (4.2.18), 

while t11.e second part is a reformulation of ( 4. 2. 3) • □ 

we note that both inequalities in (4.2.19) become equalities if (cL 

remark 4.2.3). Further, theorem 4.2.12 implies the following result about 

the zeros of {u } E R • It can also be obtained from theorem 1,5. 7 and the 
n Cl 

fact that Ra c R1, where R1 is an extension of C 1 to be defined in tl1e next 

section. 

COROLLARY 4. 2 .14. If 0 s a < 1 and {u } E R , then the following impHcation 
n Cl 

holds: 

[un > 0 and~> OJ""' > 0 (n,k E 1N ) 
0 

Consequently, if > 0 then > 0 for all n E 

The upper 

using the 

that V s 
n 

(4 .2.20) 

bound for u 
n' 

given in 

relation between R and 

(n E JN ) 
0 

u $ U(a) 
n 

if 
Cl 

{v } E R, 
n 

(n E ]N ) 
0 

i.e. we have an upper bound for 

(4.2,19), is independent of 

R, given in theorem 4.2.7, and 

we see that if {u } E R then 
n a 

independent of n EJN0 • 

E Noi-.r, 

observj_ng 
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Furthermore, theorem 4. 2. 7 can be used to generalize the renewal theorem 

for R (theorem 4.1.2(i) and (ii) with b = 6 ) to the isv's. The first o n o,n ~ 

part has already been generalized in theorem 4. 2. 5, the second part will be 

considered after the fol.lowing lemma concerning the period of {u} ER. 
n a 

LEMMA 4.2.15. Let O <a< 1, let {u} c R, and suppose that the 
n a 

(cd 's, 

corresponding to {un}, are not all zero. 'l'hen the period d of {un} is equal 

to that of the sequence {rn-l (a)}7, and 

(4.2.21) # ( {n E ]N [ u = O}) < oo 
nd 

PROOF. Let {un} ,: Ra with period d, and let 6 be the period of {rn-l (al 1 • 

Since by ( 4. 2. 2) the following inequality holds: 

1 - an+l 

1 - a un+i 2 (a) 

we have 

{n c JN J rn-l (a) > O} c {n E 1'l I > O} , 

and hence o ?: d. As in the proof of theorem 2.3.4, by iteration of (4.2.4) 

we obtain the following expression for U in terms of Ra: 

(4.2.22) U(z) II 
k=O 

Now, as rn-l (a) = 0 unless 6 divides n (n c JN), we see that each factor in 

the right-ha.nd side of (4.2.22), and hence u, is a power series in z 0 , i.e. 

{n c JN I u > O} c {kci 
n 

k C JN} , 

so that d 2: ,L It follows tl1at d 6. To prove (4.2.21) we apply theorem 

4.2.6, according to which the sequence {u (a)} 00
, with gf U (z) :=U(z)/U(az), 

n o a 
is in The gf .F of 1 , that {un(a)} is associated with, satisfies 

P(z) = (z) 1 - U(az)/U(z) (1 -· a) (z) ' 

Le. fn (1-a)rn-l (a) (n E: JN). Now by theorem 4.1.14 it follows tJ1at the 

period of {u (a)} is equal to d, and since by (4.2.9) we have 
n 

(a) (n E 

we obtain (4.2.21) from the corresponding result for (a)} (cf.(4.1.17)). □ 
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THEOREM 4.2.16. Let O < a < 1 and let {un} E Ra. Suppose that the rn(a) 's, 

corresponding to {un}, are such that r(ct.) = 1/(1- a), and let {un} have pe

riod d. Then u 00 := lim und exists, and u 00 is given by 

(4.2.23) 

where 

u 
00 

n-+<>0 

-1 d 
(1- a.) U(a)

µ 

( 4. 2. 24) µ : = }: ( n + 1) r n: ( a) 
n=O 

{ :s; oo) • 

PROOF. Let {u} ER. By the preceding lemma we have 
n a. 

u = r 1 ( a) = 0 if n I. { R.d I i E lN } 
n n- o 

Now, for the sequence {wn}:, with wn := und (n ElN0 ), it follows that for 

n E lN 
0 

n 1 - a 
l --d r(k+l)d-1 (a)wn-k 

k=O 1 - a 

Hence {wn} ER d and, if the rn(ad) 's, corresponding to {wn}, are denoted 

- d a 
by rn (a ) (n E JN0 ), then 

- d 1 - a 
rn (a ) = -1 d r (n+l)d-1 (a) 

- CJ. 

Now, according to theorem 4 • 2. 7 ( i) , the sequence { v } 0°, with v : = w /W (ad) 
n o n n 

(n ElN0 ), is a delayed renewal sequence, associated with 

b n 
nd 

a, V 
n 

- d oo oo 
Since {rn-l (a )} 1 , and hence {fn} 1 , is aperiodic, and as 

f I 
n=1 

f 
n (1 - a) l rnd-1 (a) 

n==1 
(1 - a.) r (al 1 ' 

by the renewal theorem (theorem 4.1.2) it follows that v00 :== lim vn exists, 
n-+<>0 

and that v00 = b/µ 1, where µ1 := ~nfn. Observing that in our case b = 1, 
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U(a), and 

I 
n=l 

nf 
n 

00 

\ -1 
(1- a) l nrnd-l (a) = (1- a)d µ , 

n=l 

with p given by (4.2.24), we see that u00 := lim und exists, and is equal to 

the expression in (4.2.23). □ 

If the r (a)'s, corresponding to {u} ER, are such that either r(al < 
n n a 

1/(1 ·· a) or r(a) = 1/(1- a) and p = I:(n+ l)rn(a) = 00 , then un ➔ 0 as n ➔ 00 • 

In order to know how fast un may tend to zero, we generalize t11e results of 

Kingman (1972) and DeBruijn & Erdos (1951) for R0 (cf. theorem 4.L14 and 

remark 4.1.17) to R. It turns out that, as in the case a= 0, {u } E R 
a n a 

tends to zero not faster than exponentially. 

THEOREM 4.2.17. Let 0 <a< 1 and let {un} ,c Ra. Suppose that the rn(a)'s, 

corresponding to , are not all zero, and that {un} has period d. Final-

ly, let p denote the radius of convergence of the gf of 

1/(nd) 
0 := lim und 

n-+oo 

exists in (0,1], pis finite, and 

-1 I (4.2.25) 0 = p = sup{x ;:c O (1- a)xR (x) ~ 1} =: y • 
a a 

Furthermore (cf. (4.2.17)) 

(4.2.26) 
(1 - a) 

h (a) 
n 

-n 

{ nu}"" so that also p n O E: ·Ra 

(n E 

PROOF. Let {u} E 
11 

. We introduce the sequence 

V := -log{h d(a)u d}, 
11 11 n 

by 

. Then 

which is well d f. d f ff· . tl 1 th 0 I f e.1.ne or n su. J.cien y arge, as en und > ,c . 

(4.2.21)). By inequality (4.2.18) it follows that {vn} is subadditive, Le. 

and hence (cf. 

V + 
n 

& Szeg6 (l.970), I. .A.bschn., Kap. 3) lim 
n-+oo 

exists in 
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[-00 , 00), and is equal tot:= inf vn/n. It follows that 

lim {hnd(a)und}l/( nd) = exp[-lim vn/(nd)] 
n-- n--

exp(-t/d] , 

from which, observing that for O <a< 1 

log hn(a) ~ -n log(1- a) (n -+ oo) ' 

we see that 

(1 - a)exp[-t/d] • 

Ast< 00 , we have 6 > O. On the other hand, in view of (4.2.19) we canwrite 

d log(1-a.) 

and hence 6 s 1. Further, as vn/n ~ i for all n, we have 

e (1 - a.l 
-1 

which yields (4.2.26). In view of lemma 4.2.2 we may now conclude that also 

{6-nu f"' E R • 
no a 

Finally, we turn to relation (4.2.25). As in the proof of corollary 4.1.15, 
-1 

it can be shown that p = 0 • As 0 > O, pis finite. From (4.2.2) it is 

seen that 

and hence the radius of convergence of R0 is at least p. Now by (4.2.4) it 

follows that 

(0 $ X < p) , 

and hence ya~ p. On the other hand, using mathematical induction, we prove 

that for k E lN 
0 

(4.2.28) 
k 
IT 

t=1 

i -1 
(1 - a ) : 

suppose that (4.2.28) holds fork= 1, .•• ,n, then we can write 
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n n-k -1 n+l 1 - C! I (a)y-(n-k) JI ( 1 -;:; ya 
,,; 

1 - C! 
n+1 

k=O a J',=1 

n+l 
(1-aJ',)-l 

n+l -1 
,,; (1-a)y R (y) 1T ,,; 1T ( 1 -

a a a J',=l J',=l 

-n 
It follows tllat tl1ere exists M > 0 such that un,,; Mya for all n E1N0 , and 

hence p :o: Since we already showed that ya :o: p, we get ( 4. 2, 25) , D 

REMARK 4.2.J.8. If {un} E. Ra with u 1 > 0, then d"" 1, and (4.2.19) yields a 

sharper lower bound for 8 = l.im u 1/n than the value zero given in theorem 
n 

4.2.17: 

(4.2.29) 8 :o: ( 1 - a) u 1 . 

The first part of tl1eorem 4.2.17 can be reformulated as follows: 

(4 ,, 30 ) l'm [ nd }1/(nd) 1 
• ✓••• ~ • P und · 

n··>«> 

Now, from tlle fact that {p 11u} E R (cL the last part of theorem 4.2.17), 
n Cl, 

we can obtain 
nd 00 

{p u d} • In n o 

some more information about the asymptotic behaviour of 

fact, applying theorems 4.2.5 and 4.2.16 to {pnu }, we <JE!t 
n 

the following result, which, of course, is only interesting if p > 1. 

THEOREM 4.2.19. Consider the situation from me preceding tlleorem, and let 

denote the radius of convergence of Ra. Then satisfies 

while 

(1) (1 - a) 

(ii.) If (1-a)yaRa 

and (1 - a) o R ( 
Cl Cl 

(4 .2.31) 

where 

nd 
limp und 
n+ro 

< 1 iff U(p) < 00 , in which case lim 
n➔oo 

= 1, or, equivalently, if either o a 

?: 1, then 

-1 d 
(1 - a) · U(ap), 

]J 

(4.2.32) µ := I (n+ 1) 
n=O 

O; 

00 or o < 00 

Cl 
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To conclude the discussion of the R 's, we give a sufficient. condition in 
a 

terms of the (a) ' s for { u } E R t.o be unimoda L This is suggested by 
n a 

theorem 3.3.8, which gives, in fact, the same result for the extension R1 

of C1, to be defined in the next section. 

THEOREM 4.2.20. Let 0 <a< 1 and let {un} E Ra.. Suppose that the sequence 

}, corresponding to {u }, is such that {r (a)/an}°'' is nonincreasing. 
n n o 

Then {u }"'' is unimodal, Le. {u - u 1}''°, with u 1 := 0, changes sign at 
no n n- o -

most once. Furthenuore, {un} is nonincreasing iff r 0 (a.) :5 l. 

PROOF. Let { u } E and define tlle sequence { d }"' by n n a 

Replacing in (4.2.2) n by n- l, we can write 

1 - an+l 1 - an 
1 - a un = a 1 - a + 

From this and ( 4. 2. 2) we obtain by subtract.ion 

(4.2.33) 

Now, if the sequence {r (a)/a.n} is nonincreasing then 
n 

(a) s (a) (n E JN ) , 
0 

and hence by (4. 2. 33) it follows that dn :5 0 (n E lN), Le. { u } 00 is nonin
n o 

creasing, iff r 0 (a) s L Finally, if r 0 (a) 1, then, relation (4.2.33) be-

ing very similar to (3.3.15), we obtain the unimodality of {u} along the 
n 

lines of the proof of theorem 3.3.8. □ 

REMARK 4 • 2. 21 • Neither the condition that r (a) :,; 1 / ( 1 -· a) nor the nonnega

ti vi ty of the rn(a) 'sis essential in the preceding theorem. If, however, 

the (a) s are nonnegative, then {r (a)/an} nonincreasing implies that the 
n 

radius of convergence o a. 

sequences { u } E: R , for 
n a. 

of Ra satisfies oa ee 1/a. Hence, uni.modality of 

which oa < 1/a, cannot be proved by theorem 4.2.20. 

REMARK 4.2.22. Though R0 conta.ins many unimodal sequences, e.g. the bounded 

Kaluza sequences (cf. tlleorem 4 .1.18) , there exists no obvious analogue of 
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theorem 4.2.20 for R0 • However, as for {un} E R0 we have un s 1 = u0 , a uni

modal renewal sequence is necessarily nonincreasing. Hence (cf. (4.1.5)) a 

necessary and sufficient condition in terms of { f }°1" for {u } E 1?. to be 
n n o 

n *k co 
unimodal is that { l .fn } 1 is nonincreasing, but this condition is not 

k=l 
very useful. 

Finally, we mention an analogue of theorem 4.1.22 for C . Consider a delay-
. Cl 

ed, transient renewal process {S }°'', associated with {b } "' and {f } 00

1 such 
n o n o n 

that b = 1 (and so f < 1). Let {v }'" denote the corresponding delayed rene
n o 

wal sequence (cf. theorem 4.1.5). Then, as in the case of a pure, transient 

renewal process (cf. the end of section 1) , it can be shown that the rv 

N := # ( {n E 1N I s < oo}) 
n 

has a geometric distribution with parameter .f, and that the distribution 

{p } 00 of the durat.i.on D 
n o 

SN is given by 

(n E 1N ) • 
0 

Now in view of the relation between Rand R (cf. theorem 4.2.7 and remark 
Cl 

(cf. lemma 4. 2 .4), we easily ob-4.2.8) and the relation between 1?. and C 
Cl Cl 

tain the following characteri.zation of C 
a 

for O < Cl, < 1, 

THEOREM 4. 2, 23, For O < a < 1 a lattice distribution {p }"' is in C iff 
no a 

there exists a delayed, transient renewal process {Sn}, associated with 

{bn} and {fn} satisfying b = 1, b 0 > 0 and 

( n E: Th!) ' 

such that {pn} is the probability distribution of the duration of {Sn}. 

In t.his section we briefly consider an extension R1 of C1 . The class C1 is 

in many respects different from tl1e classes C for 
a 

2). As a consequence, it is not clear how to define 

Cl < 1, Le. how to characterize the boundedness of 

of the r n ( 1) 's. Therefore we define R1 as follows. 

0 ,; 

Rl 
the 

a < l (cf. chapter 

analogous to R for 
a 

R1 -sequences in terms 
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DEFINITION 4 • 3 .1 • A sequence { u } 00 with u = 1 is said to be in the class R1 no o 
if it is bounded and if there exist nonnegative quantities rn(1) (n ElN0 ) 

such that 

(4.3 .1) (n E lN ) 
0 

M.L.J. Hautus suggested the following generalization of our result on the 

boundedness of sequences {un} satisfying (4.3.1) with rn(l) <: 0 (n E lN0 ); 

in fact, we proved the case £n = 0 (n E JN0 ). 

LEMMA 4.3.2. Let {u }00 be a no 
nonnegative rn(l) 's (n E lN0 ). 

sequence with u0 = 1 and satisfying (4.3.1) with 

Then {u } is bounded if there exist N E :JN and 
n 

a sequence{£ }00 satisfying no 

00 

(4.3.2) £ ;,: 0 (n E JNo) ' l £n < oo ' 

n n=0 

such that 

(4.3.3) 1 + £ 
n 

(n 2: N) • 

PROOF. Define v := max{u ,u1, .•• ,u }. Because of (4.3,3) we have for all 
n o n 

n 2: N 

(1+£ )v • 
n n 

Since vn+i = max{v ,u 1}, {v }00 is now seen to satisfy n n+ no 

(n 2: N) , 

or also 

(n 2: N) • 

As r£ < 00 , it follows that {v }, and hence {u }, is bounded. 
n n n □ 

REMARK 4.3.3. If rn (1) S 1 for all n E lN0 , or if there exist K E JN and y < 1 

such that rn(l) s y for n 2: K, then (4.3.3) holds and so {un} is bounded. 

However, if, for instance, rn(1). = 1 +£for all n EJN0 (E > 0), then it 

follows that (use (4.3.5)) 
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and hence 

U(z) (1-z)-l-£, 

u 
n 

n 
TI (1 + £/k) 

k=1 
(TI E TuJ ) 

0 

which tends to 00 as n ➔ 

too bad. 

Thus it turns out that condition (4.3.3) is not 

'I'he gf's U and R1 of 

lzl < 1, because 

E R1 and {rn(l)}, corresponding to {un}' existfor 

is bounded and {r (1)} satisfies 

(4. 3 .4) 

From (4.3.1) it follows that 

(4.3.5) U' (z) = U(z) ( z) 

n 

(n E JN ) 
0 

( I z I < i) , 

from which by integration and analytic continuation of the result we obtain 

the following representation for U E 1;1 : 

(4.3.6) U(z) 
(l) 1 

[ I ll+. J 
exp l n + 

n=O 
< I z I < i) . 

Letting z t 1 we get the following analogue of theorems 4.1.2(i) and 4.2.5. 

'IHEO!IBM 4.3.4. Let {un} E 1\. Then u :== 

which case 

1) 
(4.3.7) I n + 

n=O 
log u. 

I 
n=O 

u 
n 

< 00 iff I < co, .in 
n=O 

It is not clear how to get an analogue of theorems 4.1.2(ii) and 4.2.16, 

because the conditions f = 1 and r (ci) == 1/ ( 1 - a) have no obvious analogue 

for a 0~ 1. If, however, for a sequence { un} E R 1 we suppose that u
00 

:= lim un 

exists, then, using (4.3.6), we can C:btain this limit as follows, 

lim (1-x)U(x) = lim exp[log(l-x) + 
xt1 xtl 

exp[lim l, 
xtl k=O 

n➔-oo 



If in addition the r (1) 's are such that 
n 

(4.3.8) 
oo rk ( 1) - 1 

k + 1 
converges , 

then by Abel• s theorem it follows that 

(4 .3 .9) 
oo rk ( 1) - 1 

exp[ I k + J 
k=O 
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Quite recently, however, Hawkes & Jenkins (1978) proved that the absolute 

convergence of the series in (4. 3 .8) is also sufficient for tJ1e existence 

of u 
00 

lim un. In fact, they have the following results. 
n-><o 

THEOREM 4.3.5. Let {u }"'bean aperiodic (cf. lemma 4.3.9) sequence with 
n o 

1 and satisfying (4.3.1) with rn(l) ?: 0 (n E lN ) • 
0 

(i) If y := lim (1) exists in (0, 00), then {u} satisfies 
n n-><o 

(4. 3.10) 
Y-1 00 rk(l) - y 

u ~, _n_ exp[ I ----(1 - -~)k+l] (n ➔ oo) • 
n r (y) k=O k + 1 n · 

<in u I 
k=O 

(4.3.11) 

when y 

(4. 3.12) 

-

I 
n=O 

1, then 

!un+l -

< 00 for some y 2: 1, t.hen 

(n ➔· oo) 

{u } is als:; of bounded variation, i.e. n 

u I < 00 

n 

PROOF. For the sake of completeness we give a proof of the result that is 

most interesting for us, i.e. part (ii) with y = 1. 

Define 

by subtraction 

(4. 3 .13) (n + 1) 

Now, let be the 

replaced by rn(l) := 

by induction that 

n 

I (rk (1) - l)d 
k=O 

sequence witl1 

n-k 

= 1 that 

(n E JN ) 
0 

satisfies (4.3.1) with r (1) 
n 

oi - i I (n E lN ) • Then from (4.3.13) it follows 
0 

, and as by theorem 4.3.4 we have 
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l:v < 00 , we conclude that {u } is of bounded variation. Hence {u } has a. 
n n n 

limit u 00 , which is necessarily equal to the expression in (4. 3. 9) . D 

REM.Z\.RK 4. 3. 6. As noted by Hawkes & Jenkins, theorem 4. 3. 5 ( i) includes the 

renewal theorem: if {u} is an aperiodic renewal sequence, associated with 
n 

{fn} such that. µ , 0., l:nf < 00 , then the r (1) 's, corresponding to {u } , sa-
n n n 

tisfy lirn rn(l.) = 1 (cf. Port. (1964)), and 
n..;oo 

(4.3.14) lim I 
n·- k=O 

1 
µ 

The limit. theorems 4.1.14 for and 4.2,17 for R (0 <a< 1) do have an 
a 

analogue for i\. As in the case O :-; a < 1, we need an inequality and an ob-

servation concerning the period of {un} E R1 • Since for the function h 11 (a), 

defined in (4.2.17), we have 

(1) := lirn h (a) 
atl 11 

(n E JN ) 
0 

and as the discussion .in the proof of theorem 4.2.12 also holds for a 1, 

we get the following inequality for {un} E R1 • 

(4.3.15) 
n 

(n,k E 1N ) 
0 

COROLLARY 4. 3 .8. If { un} c R1 , then the following implication and inequali

ty hold: 

(4.3.16) 

(4.3.17) 

> O and~> OJ,,. un+k > 0 (n, k E JN ) , 
0 

We note that the inequalities in (4.3.15) and (4.3.17) become equalities 

for {u } ~ 
n corresponding t.o r (1) = µ > 0, ?' (1) 

o n 
0 (n cJN), Le. 

(4. 3 .18) u 
n (n E JN ) 

0 

Le. the R1-analogue of the Poisson distribut.ion (cf. {u } c 
n 

4 .2 .3). 

.in remark 
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The period of {un} E R1 has properties similar to those in the case O ~a< 1 

(cL theorem 4.L14 and lemma 4.2.15; see also Wright (1967)). 

LEMMA 4.3.9. Let {u} E R1 and suppose that the r (1) 's, corresponding to 
n n 

{un}, are not all zero. Then the period d of {un} is equal to that of the 

sequence {rn-l (1)}7, and 

(4.3.19) # ({n E 1N I und O}) < oo • 

PROOF. Let {un} E R1 with period d, and let 6 be the period of {rn-l (1) }:. 

In view of (4.3.4) we have 

{n E lN rn_ 1 (1) > O} c {n EJN I un > O}, 

and hence 6 ?: d. Since rn-l (1) = 0 unless 6 divides n (n c Th!), from (4.3.6) 
' . th . . . () . it is seen at U is a power series , .. n z , i.e. 

{n E JN I u > 0} c {ko 
ll 

so that d ?: cS. It follows that d 

k E JN} ' 

o. To prove (4.3.19) we introduce the 

set A {kl. ,k2 , .•. } as the set of k E JN for which l\d > 0. Then there exists 

N E JN such t.ha t 

It i.s well known t11at t11ere now exists K E Th! such that every k ?: K (k E JN) 

can be written as 

k m.k. 
J J 

where_mj EJN (j = 1" .. ,N). By (4.3.15) it follows that fork?: K 

(kd) : N m. 
(4.3.20) ?: IT J 

N ~d l\.d ' m. 
j=l 

IT {(k.d);} J J 

j=1 J 

which is positive, as uk .d > 0 for j = 1, ... ,N. Hence 1\a > 0 for k ?: K. D 
J 

COROLLARY 4,3.10. If {un} E R1 , and if {un} has period d, then also 

{und}:=0 E R1 · 
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PROOF. In view of tJ1e preceding lemma we have 

Define wn := und (n E lN0 ), then it follows that for n E 

Hence {w } € R1 , with r (1), corresponding to {w } and denoted by r(d) (1), 
n n n n 

given by 

(d) (1) = ¼ r(n+l)d-1 (1) (n E 1N ) 
0 □ 

REMARK 4.3.11. Theorem 4.L7(ii) yields an analogue of corollary 4.3.10 for 

f<0 • In the case O < a < 1, however, we have (cf. the proo.f of theorem 

4.2.16): 

(4.3.21) {un} E Ra ~ {und} E R. d 
Cl 

We are now ready to state the following result on the asymptotic behaviour 

of {un} E R1 . By corollary 4.3.10 we can, and will, confine ourselves to 

aperiodic sequences {un}. 

THEOREM 4 . 3. 12. Let { u n} be an aperiodic sequence in R1 . Then 

(4.3.22) 
-log un -· n log n 

9, := lirn ---------
n n-+«> 

exists in [-00 , 00), while 

(i) 9, > - 00 iff there exists y > 0 such that 

case 

(4.3.23) 

(ii) If R, 

(4 .3.24) 

-log u 
lirn n 
n-+oo n log n 

-oo 
' then 

-log 
l.imsup 

n log n~ 

u 
n 
n 

-log u11 
1 and----- 1 

n log n 

:s; 1 

9, + o(l) 
log n 

(n E 

(n ➔ oo) 

, in which 
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PROOF. Let {un} E R1 be aperiodic. Then, in view of (4.3.19), for n suffi

ciently large we can define vn as follows: 

On account of theorem 4. 3. 7, { v } is subaddi ti ve, Le. 
n vn+k ~ vn + from 

which 

uml 
(cf. P6lya &. Szego (1970), I. Abschn., Kap. 3) it follows that 

n-+oo n 
n log n 

[ 1 
exists in -· 00 , 00) and is equal to ,I/,' := inf ~ v . As 

n n 

- log n! ~ n (n ➔ 00), it is seen that also 

-log un - n log n 
,I/,:= lim ---------n 

,II,' - 1 

!en log n - log n!)} 
n 

exists in [-oo, 00). Furthermore, if .Q, > - 00 , then we have for n sufficiently 

large 

n 

and hence u ~ yn/n! (n EJN) for some y > 0. It is easily seen that tlie 
n o 

converse is also true, and that in this case (4.3.23) follows from (4.3.22). 

Finally, if ,I/,= - 00 , then for all sufficiently large n we have 

-log - n log n < 0, and hence (4.3.24). □ 

It can be proved that for an aperiodic {un} E R1 the limit 

lim-log u /{n log n} always exists (cf. (4.3.23) and (4.3.24) , and its va-
n 

n➔oo 

lue can be calculated. This has been done by Steutel Wolfe (1977) for 

{un} E C1 with u 1 > O. It is easily shown, however, that their proof also 

holds for a general aperiodic {un} E C1 . Finally, as for every {un} ,= 

there·exists y > 0 such that {unyn/U(y)} E C1 , we get the following result. 

THEOREM 4.3.13. Let {u} be an aperiodic sequence in 
n 

(4 .3.25) 
-log un 

lim---
n➔oo n log n 

1 
N 

. Then 

where N is the smallest integer (possibly infinite) such that rn(1) 

all n 2' N. 

0 for 

Combining this result with theorem 4.3.12, we obtain the following corolla-

ries (note that N~ 1 (cL theorem 4.3.13) iff given by (4.3.18)). 
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COROLLARY 4.3.14. Let {u} be an aperiodic sequence in 
n 

in (4 .3.22) is finite iff there exists p > 0 such that 

u 
n 

(n E lN ) , 
0 

in which case necessarily t -log JJ - 1. 

. Then the limit t 

COROLLARY 4.3.15. Let {un} be an aperiodic sequence in If un :S 

(n E1N0 ) for some y > 0, then there exists p > 0 such that un 

(n E JN0 ) • 

As Ca c C1, we have also 

(0 :S a < 1) 

Now, if O :S (J. < 1 and if { u } is an aperiodic sequence in R , then by theo-
n a 

rem 4.2.17 

lim -log un 
n 

-log 0 E [0, 00 ) • 

n➔oo 

It follows that the limit in (4.3.25) is zero, i.e. we have the following 

result. 

THEOREM 4.3.16. Let 0 :S a< l. and .let {u } be an aperiodic sequence in 
n 

Then the rn(i) 's, corresponding to {un}, satisfy 
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CHAPTER 5 

CLASSIFICATION OF THE INFINITELY DIVISIBLE DISTRIBUTIONS ON [o,~ 

The first aim of this chapter is to extend the classification of C1 , defined 

by the classes C (cf. chapter 2), to all inf div distributions on [0, 00). 

lY. 

Here the difficulty arises that no analogue of C is known for general df's 
0 

on [O,oo), but generalizing a functional equation, by means of which the inf 

div df's on [0, 00) are characterized (cf. theorem L6.2), we obtain classes 

FA (0 s l,_ < "'), which, by putting a = e""A, can be considered to be exten

sions of tl1e classes C (0 < a s 1) • Th.is is done in section 1, which also 
C\ 

contains some preliminary results. These are necessary, because the proofs 

of the monotonicity of F (section 2) and further properties (section 3) 
I\ 

turn out to be more delicate than in the discrete case, This is mainly due 

to the necessity of considering also distributions on [0, 00) without a jump 

at zero, as will be apparent from the proofs, which will only be given as 

far as they are essentially different from those in the discrete case. 

In section 4 we study the limiting class F00 := lim FA. In many respects, 
f\-XO . 

this class turns out to be the analogue of C0 for df's on [0, 00). For in-

stance, the df's Fin with F(O) > 0 correspond with the compound geome-

tric df's on [0, 00), and F00 contains the log••·convex, and hence the comp rnon, 

densities on (0,oo) (cf. tl1e end of section l.6). Furthermore, we show that 

the PLST's of df's in have a canonical representation that is very sim.i-

lar to that of t11e Ill'' s of continuous analogues of the renewal sequences 

(class R0 ), the standard p-functions (class Pl of Kingman (1972). The re

sulting relation between P and (a part of) F 
00 

is considered in section 5. 

Many properties of P, often easily obtained by the probabilistic interpre·· 

tation of a p-funct.ion, can be translated for the corresponding densities 

in F • Also, the df' s in F 
00 

have interesting relations with the renewa.1 

functions (cf. Smith (1958)) and the potential kernels (cf. Berg & Forst 

(197SJ and Hawkes (1977)). However, we shall not investigate these relations 

in detail in tit.is monograph. 

and F 
0 

In section 6 we show that two different interpolations between 

give both rise to classes of df's that are limits of compound negative-bi-

nomial df's on [0, 00 ) (cf. section 2.5). These classes also define a classi

fication of 
0 

Finally, in section 7 we mention •Some further generalizations. Specifically, 

we briefly discuss the classification of inf d.i v d.istri.butions on IR and on 
2 

[0, 00 ) by means of functional equations. 
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s . L T h.e. cJ'..a/2J.i v., I\_; ptLe.Umf..ncvuv., 

In chapter 2 the classification of C1 , defined by the classes (OSasl), 

was achieved by generalizing the recurrence relations by means of which C1 

and C are characterized, i.e. the relations for a lattice distribut.i.on 
0 

{p }00 given by 
n o 

(5.Ll) 

and 

(5 .1. 2) 
n 

l pkrn-k(O) 
k=0 

(n E 

(n E ]N ) 
0 

respectively. Now we want to give a similar classification of the class of 

all inf div distributions on [0, 00). 'I'he starting point for this is the ana

logue of (5.Ll) for densities (cf. corollary L6.3): a pdf f on (0, 00 ) is 

inf div iff there exists a right-continuous, nondecreasing function K0 such 

that 

(5.L3) xf(x) f f (x - y) dK0 (y) 

[0,x] 

(almost all x > 0) . 

For pdf's there is no obvious analogue of (5.L2); this would be 

(5 .1 .4) f(x) f f(x-y)dK(y) 

[0,x] 

(almost all x > 0) , 

with a right··continuous, nondecreasing function K. However, (5 .1.4) is sa

tisfied by all pdf's if K is the unit-step function at zero and by none for 

any other K. To overcome this difficulty we first generalize the classes 

for a> 0. The set of (absolutely continuous) distributions in the inter

section of the resulting classes will then be considered as the analogue of 

C for (absolutely continuous) distributions on [0, 00). 
0 

Proceeding as in the discrete case we replace the factor x in the left-hand 

side of (5.L3) by the function 

(5 .1.5) (0 < )I < 00 ; X ?: 0) , 

with c(x;0) := x (x?: 0). This function is obtained from c (a) 
n 

(1-a) in (2.3.1) by replacing a withe-\ in fact, we have 

(5 .1 .6) C (a) 
n 

c(n+ 1;-log a) (n E 0 < Cl S 1) , 

( 1 - l / 



and, as in the discrete case, we define for A > 0 

-A -1 
:=limc(x;A)=(1--e) 

x-= 
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Considering, more generally, df's rather than pdf's, we are led to the fol

lowing analogues of the classes Ca for O <as 1. 

DEFINITION 5 .1 .1. For O 5 A < 00 a df F on [O, 00) is said to be in the class 

FA if there exists a right-continuous, nondecreasing function 

on (- 00,0), such that 

(5.1 .7) f c(y;:\.)dF(y) 

[O,x] 

f F (x - y) dKA (y) 

[O ,x] 

(x 2 0) • 

If FE FA, then we shall also say that FE ; similarly, f E 

, vanishing 

if I' E 

has density f. As we shall see from its LST, the function KA in definition 

5 .1.1 is uniquely determined by F E FA; .i.t will be called the 

of FE F:\.. 

It is convenient to introduce the following (disjoint) subclasses of FA for 

O s A < oo, 

F+ := {F E F(O) > O} , 
(5 .1.8) 

A 

F' :!.';.".: {F E: F I F is absolutely continuous} 
A A 

F+ C The classes A contain the classes a; in fact, for O < a 5 1 we have 

(5 .1. 9) C 
a 

{!,' E F+ j F' is concentrated on JN } 
-log a o 

'rhis easily follows by showing that if F is the df corresponding to a dis-

tribution {p } 00 on JN 
!1 0 0 

relations (2.3.1) and 

with p 0 > 0 and if A= -log a, then the recurrence 

the functional equation (5.1.7) are equivalent: use 

(5, 1.6) arid the following relation between the KA -function of .F and tJ1e 

(a) 's corresponding to {p} (cf. theorem 1,7,7): 
n 

(x) (X E JR) • 

The classes can be characterized as follows (cf. corollary L6.3), 

THEOREM 5,L2. For O 5 J\ < 00 a pdf f on (0, 00 ) is in F{ iff there exists a 

right-continuous, nondecreasing function such that 
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(5.1.10) c(x;A)f(x) f f (x - y) dKA (y) 

[0,x] 

(almost all x > 0) . 

PROOF. If F is a df on [O, 00) with pdf f, t-Jien for all x > 0 we have, on the 

one hand 

f c(y;A)dF(y) f c(y;A)f(y)dy, 

[O,x] [O,x] 

and on the other hand (using Fubini's theorem) 

f F(x-y) (y) - f f f (u) du dKA (y) 

[O ,x] [O,x] [0,x-y] 

J f f(v -y)dv dKA (y) = f f f (v - y) dKA (y) dv . 

[O,x] [y,x] [O ,x] [O ,v] 

Now, in view of (5.1.7), the theorem easily follows. □ 

Taking A= 0 in definition 5.1.1, from theorem 1.6.2 one sees that F0 is 

the class of all inf div df's on [0, 00). Furthermore, on account of theorem 

1.6.6 .i.t follows that F+ is the class of all compound Poisson distributions 
0 

on [0, 00). To obtain the compound geometric distributions on [0, 00), we for-

mally let A + 00 in (5.1.7). As 

c(x; 00 ) := lim c(x;A) = f O 
)l+oo l 

if X = 0 

if X > 0 , 

we get 

(5.1.11) F(x) - F(O) J F(x-y)dK00 (y) 

[O,x] 

(x 2 0) • 

If F(O) = 0, the same difficulty arises as in (5.1.4) for pdf's, but if 

F(O) > O, (5.1.11) makes sense; the df's Fon [0, 00 ), wit.h F(O) > 0 and sa-

t.isfying ( 5. 1. 1.1) with a right-··continuous, nondecreasing function corres-

pond to the compound geometric distributions on [0, 00 ) (cf. theorem L6.7). 

This class of distributions we denote by (cf. (5.1.8)), since it turns 

out to be the subset of df's F with F(O) > 0 in a class 

later. Thus we have the following definition: 

(5.1.12) { df F on [O , 00 ) j F is compound geometric} . 

to be defined 
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we require that the function K00 in (5.1.11) vanishes on (-00 ,0). It is then 

uniquely determined by F E F:, and will be called the K00-funct1:on of F E F:. 
+ In order to obtain a characterization of FA (0 <A< 00 ) and F00 , analogous 

to that of F given in the first part of theorem 1 .6 .1, we take LST' s in 
0 

(5.1.7) and (5.1.11) to obtain 

(t) (T > 0) , 

and 

(5.L14) F(t) - F(O) F(tli< <rl 
00 

(t > 0) • 

Now, for an arbitrary df F on [0, 00 ), we define the cpA··function of F as the 

solution of (5.L13) or (5.1.14) for KA, Le. we have the following defini

tion. 

DEFINITION 5.1.3. For an arbitrary df Fon [0, 00) the 

fined by 

1 - F(t + A) ( T)} 

(t) ,= lim cpA (T) = -F' (t) 
HO 

and, if F(O) > 0, 

if O < A < oo , 

( t) 
d . " 

- dT log F(t) 

(J\,,(t) : = lim cpA ( t) 
A-+'<' 

1 - F(O)/F(t) . 

of Fis de-

We note that for O ,; A < 00 the q\ ··function of a df F E f';,_ coincides with 

the LS'I' of the KA·•functi.on of F, Le. qiA =KA. Similarly q, 00 = if F E F:. 
By Bernstein's theorem (theorem l. 3. 7) we Jmmediately obtain the following 

characterization of FA and F: (cf. lemma 2.3.3). 

LEMMA 5.L4. 

(i) For 0 ,; ;\ < 00 a df F' on [ 0 ,oo) is in F" iff its qi;\-function Js compmon, 

(ii) A df F on [O ,oo) with F(O) > 0 is in F+ iff its rp co -function is compmon, 
co 

We shall need the limiting behaviour fort ➔ 00 of the q,A-functions of a df 

F', For A> 0 this is obtained from the followJng lemma, which does not seem 

to be generally known (cL Van Harn (1977)). The quantity ,Q,(F') is the left 

extremity of F (cf, section 1.2), 
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LEMMA 5.1.5. If a> 0 and if Fis a df on [0, 00), then the function 

F ( T + a) /F ( T) is nondecreasing, a.nd satisfies 

(5.1.15) lim F(t+a)/F(T) = exp[-a,Q,(F)]. 
T--)-00 

PROOF. Let a> 0 and let F be a df on [0, 00 ). As by Bernstein's theorem F .is 

comp mon, it is log-convex (use Schwarz's inequality; see also theorem 

L6.11), i.e. log F(T) is convex. It follows that the qi 0 -function qi 0 of F 

is non.increasing, and as 

(5.1.16) 
d A A 

~F(T + a) /F(T)} {qi (T) - qi (-r+a)}F(T +a)/F(-r) , 
0 0 

it is seen that the function F(-r+a)/F(-r), which takes values in (0, J, is 

nondecreasing, and hence ha.s a limit in (0,1] as T ➔ 00 • 

The proof of (5.1.15) we give here, is due tow. Vervaat: (see also remark 

5.1.7). First, take J',(F) = 0. Then for (5.1.15) it is sufficient to prove 

that 

( 5. l • 1 7) liminf F ( T + a) /F ( T) 2 l • 
-r➔oo 

For every T > 0 and c > 0 

F(T + a) 2 

Since 

0 s e 

-ac 
e f 

[0,c] 

it follows that for all c > 0 

liminf F ( T + a) 
T➔OO 

e 

[O, 

(x) 

-TX 
e dF(x) 

which yields (5.1.17), and hence (5.1.15) with 9-(F) = 0. 

Finally, using this result for the df G(x) := F(x+,Q,(F)), we easily obtain 

(5.1.15) for an arbitrary dE Fon [0, 00). D 

LEMMA 5.1.6. If Os As and .if F .is a df on [0, 00 ) (with F(O) > 0 .if A= oo), 

then the qi.\-funct.ion of F satisfies (cf. (5.1.5)) 

(5. L 18) lirn !J).\ (T) c(J', (F) ;A) • 

T➔oo 
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PROOF. The result follows from (5.L15) if O < A < 00 , and is trivial if 

A= 00 • To prove (5.1.18) for A= 0, we may restrict ourselves to df's F 

with i(F) = 0 (cf. tl1e proof of lemma 5.L!,). Then using the identity 

F(T) = t f 
(0 ,"") 

we obtain for£> 0 

-TX e F(x)dx (t > 0) , 

cp ( T) 
0 

-F' (T) ('r) '.': { f e-TxF(x)dx}-l 

(0,oo) 

f xe -TXF (x) dx $ 

(0 ,co) 

$ E + {F(E/2) f e -Txdx}-1 

( E/2 , 00 ) 

= E + F(E/2)- 1{E + l/T}exp[-TE:/2] , 

-TX 
xe dx 

which is less than 2E for T sufficiently large. Hence lim cpO (T) = 0. D 
'[->-co 

REMARK 5. 1. 7. Since for all T > 0 there exists 0 (T) E (0, ) such tlrnt 

log{F(T + a) /F(T)} 

(5.1.15) also immediately follows from (5.1.18) with A 0. 

In (1.6.2) and lemma 1.6.4 some properties of the K0 -·function (Le. the ca

nonical function) of an inf div df on [0, 00 ) are given. The KA-function of 

a df in has analogous properties. In the following lemma we prove two 

of them by considering the LST KA of KA, but they can also be obtained from 

the functional equations (5.1.7) and (5.1.11). A third property of KA will 

be given in lemma 5.2.2. 

LEMMA 5.LB. If 0 < A$ 00 and if FE FA (with F(0) > 0 .if A 

KA-function of F satisfies 

(5.L19) KA (0) = c(J',(F) ;A) 

and 

(5.1.20) ( 00) 

oo) , then the 
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PROOF. If F E FA, then K11 coincides with the q, 11--function of F, for which we 

have lemma 5.1.6. Now from (1.3.5) it follows that 

(0) = lim KA(T) = c(l:,(F) ;A) , 
,-+= 

and from (1.3.6) 

KA ( 00) = lim KA (T) 
T+O 

lim cA {1 - F(T + >-) /F(T)} 
,+o 

□ 

Finally, we state a property of F that we need in the next section to prove 
0 

the monotonicity of F ii. 

THEOREM 5.1.9. If FE f and a> 0, then the function qi, defined by 
0 

rp(T) := F(a)F(T)/F(T+a) 

is a PLST in F+. 
0 

(T .2: 0) , 

PROOF'. Let F E F with canonical function K • In view of theorem 1 .6. 1 we 
0 0 

calculate 

d 
dT log qJ(T) = Ko(T) - Ko(T+a) , 

which is a comp mon function. As furthermore qi(O) = 1, it follows that qi i.s 

the PLST of a df 

F (0) 
a 

in F, for which by lemma 5.1.5 we have 
0 

lim qi(T) = F(a)exp[a£(F)] > 0 • 
,➔oo 

s. 2. Th.e. mono:ton,i,r.J.;ty a 6 F >-, abMR..u:t:e. c.on:tfou.,Uy 

□ 

In this section we show that the classes F;\ define a classification oft.he 

inf div df's on [0, 00), i.e. we show that FA depends monotonically on ii. To 

this end it is convenient to consider only df's F for which 

9.- (F) = 0 ; 

this is not an essential restriction (cf. theorem 5.J.2(i)). Now, for in

stance, it follows that the cr 11 -function of F satisfies lim rr;_ (T) = 0 (cf. 
'(➔oo 

lemma 5.1.6), and, if F F>-, that (0) 0 (cf. (5.1.19)). 

First we prove that all distributions Ln the classes 

inf div. 

w.ith O < /\ w are 
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THEOREM 5. 2. 1 . For all A E ( 0, 00) the following inclusion holds: F, c F . 
fi. 0 

PROOF. We use the method of proof of theorem 2.3.4. It will then be clear 

that by iteration of (5. l .13) F can be written as 

F( ,) ( T <'. 0 ; n E. JN) • 

Now using the fact that F ( i: + nA) /F (n;\) tends to l as n + 00 (cf. lemma 5 .1. 5) , 

we obtain the following expression for Fin its KA-function: 

(5. 2. 2) F(T) (i: :c: 0) , 

from which, as in the discrete case, it follows that Fis inf div. 

From (5.2.2) we obtain a characterization of F: for 0 <A< 00 in terms of 

the KA-function. It can be considered as an analogue of lemma 1.6.4(Li), 

where F+ is characterized similarly. 
0 

LEMMA 5.2.2. Let O < ;\ < 00 and let F E 

the KA-function of F satisfies 

(5.2.3) f 
(0, oo) 

in which case 

(5 .2. 4) F(O) JI 
k=O 

{ 1 - C 
A 

< 00 , 

(kA)} . 

. Then FE , Le. F(0) > 0, iff 

PROOF. Let F E 

that 

. Then (5.2.2) holds, from which, taking T nA, we see 

n-1 
(5 .2 .5) F(nA) JI { 1 - (kA)} (n E JN) • 

k=0 

□ 

As F(0) = lim F(nA), from (5.2.5) it follows that F(0) > 0 iff the infinite 
n+oo 

product in (5.2.4) converges, or, equivalently, iff 
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(5.2.6) (kA) < 00 • 

Since by (5. 2. 1) we have KA (0) = 0, we can write, lJ.Sing Fubini's theorem, 

00 

f -Ax k f -1 -1 I KA (kA) 
-1 I CA = CA {e } dKA (x) c(x;A) dKA(x), 

k=0 (0, oc) 
k=0 ( 0, oo) 

and the lemma is proved. □ 

For the classes , F+ and we have already representation tlleorems (cf. 
0 

theorems L6.1, L6.6 and L6.7, respectively). Now, from (5.2.2) we easily 

obtain the following representation for PLST's in 

THEOREM 5.2.3. For O <A<°' a df F (with i(F) 

form 

F(T) (T 2 0) , 

0) is in iff F' has the 

where Os p < 1 and G is a df with G(O) 

unique. 

0. The representation (p,G) is 

PROOF. Apply the method of proof of theorem 2.3.5, and use the properties 

of the KA-function of F from lemma 5.1.8. 

Next we turn to the general monotonicity property. Once it has been proved 

l] 

for F , it also follows for F', and C, and for every other set of cl.as-

ses, obtained from the FA's by intersecting them with a set of df's that 

does not depend on A. We think l t useful to give a full proof, alU1ough the 

first part is analogous to the proof of theorem 2.3.7. 

THEOREM 5.2.4. For all A E [0,"') and \.1 E [0, 00 ) U1e following inclusion holds: 

C F 
)1 

if A 2 µ • 

PROOF. •.rhe theorem has been already proved in the case A E [0, 00), ).1 0. 

So, in view of lemma 5.1.4(1), we have to show U1at, if O < JJ s A< m and 

if th.e qi,-·function of a df Fon [0, 00 ) is comp mon, then its qi -function is 
I\ )l 

comp man. Now, according to definition 5.1_3, the -function of F satisfies 
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(5.2.8) qi (T) - (jl (,+i\) = C {F(,+i\+µ) 
µ µ µ 

(T + i\) - F(, + µ)/F(t)} . 

If the right-hand side of (5.2.8) is divided by c F(,+µ), it becomes sym
µ 

metric in i\ andµ, and so 

(5.2.9) 

If qii\ is 

F E Fi\ C 

that the 

comp mon, then qii\ (t) - rpA (t + µ) is comp mon too. Further, as 

F (theorem 5.2.1) and as \1:,; A, from theorem 5.1.9 it follows 
0 

function F(T)/F(t+A-µ), and hence F(,+1-1)/F(t+A), is comp mon. 

Thus, from 

Now, using 

write 

(5.2.9) we conclude that m (t) - cp (t + A) is a. comp mon function. ~µ µ . 

the fact that lim cp (T + n;\) = 0 (cf. l12mrna 5.1.6), for qi we can 
n-+m 11 µ 

qi (T) 
)l I 

k=O 
{qi (t+ki\) - qi (T+kA+;\)} 

\1 µ 

It follows that cpµ is the limit of a sequence of sums of comp mon functions. 

Hence qiµ is comp mon, and the theorem is proved. □ 

By letting )c ➔"' in (5.2.9) we see that if cp 00 is comp mon, 

+ mon for allµ E (0, 00), so (cf. lemma 5.1.4(ii)) we have F
00 

c 

comp 

On the 

other hand (jl 00 

(5.2.10) 

lim cp)c is comp rnon, if all qi;\ are, and so 
i\·+00 

n 
)c <co 

'rhis allows us to define the classes F00 and F~ as follows (cL (5.1.8) and 

(5. L 2) l: 

(5. 2 .11) 

n 
)c <ro 

F 
)c 

lim F1_ , 
i\·+w 

F ~ {F E F00 I F is absolutely continuous} 

Of course, theorem 5.2.4 can now be supplemented with the case i\ 00 , 

µ E [Q,oo]. 

If F E Fi\, then theorem 5. 2. 4 ensures the existence of the -functi.ons of 

F for allµ E [0,i\]. From (5.2.9) we obtain the following properties of 

these functions. 
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THEOREM 5.2.5. Let O <A~ 00 and let FE FA (with F(O) > 0 if A= 00) with 

an absolutely continuous KA-function (density kA). Then for allµ E [0,A) 

the K -function of Fis also absolutely continuous (density k), and the 
µ µ 

following inequality holds: 

(x > 0) • 

PROOF. First takeµ E (0,A). As we saw in the proof of theorem 5.2.4, 

F(t+µ)/F(t+A) is comp mon, so by Bernstein's theorem there exists a right-

continuous, nondecreasing function K, , zero for negative arguments, such 
"•µ 

that F(t+µl/F(,+AJ KA,µ(tl. As ~A= KA and~µ K, from (5.2.9) it 
µ 

follows that for all x > 0 

(5.2.13) J 
[0,x] 

c (y; A) dK (y) 
µ J f c(u;µ)dKA (u)dKA,µ(y) . 

[O,x] [O,x-y] 

If KA has a density kA, then, substituting u + y = v in the right-hand side 

of (5.2.13) and then changing the order of integration, and noting that by 

lemma 5.1.5 

K, (0) 
"'µ 

lim F (-r + µ) /F (-r + A) 
,-+co 1 ' 

we obtain the absolute continuity of Kµ' with density kµ given by 

(5.2.14) k (x) 
µ 

-1 
c(x;A) {c(x;µ)kA (x) + / c(x-y;µ)kA(x-y)dKA,µ(y)} 

(O,x] 

For the caseµ= O, we letµ+ 0 in (5.2.9) to obtain 

(5.2.15) - - F(T) d -c, {K0 (T) - K (T +A)} = ~-- -_r -K (,:)] 
" o F(T+A) d'r A 

which·by (5.1.13) is equivalent to 

(5.2.16) f 
[O,x] 

c(y;A)dK0 (y) = f 
[0,x] 

y dKA (y) + f 
[0,x] 

It follows that K0 is absolutely continuous, with density k 0 given by 

(5.2.17) k (x) 
0 f 

[O,x] 

Finally, (5.2.12) is obtained from (5.2.14) and (5.2.17). □ 
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REMARK 5.2.6. In caseµ= 0 in the preceding theorem we can reverse matters. 

Suppose that the K0 -function of FE FA has a density k 0 , then from (5.2.16) 

it follows that the KA-function of F satisfies 

(5.2 .18) f 
[0,x] 

y dKA (y) = f 
[0,x] 

{c(y;A)k (y) -
0 

f (1 - e-A(y-z) Jk0 (y- z)dKA (z) }dy 

[0,y] 

Hence, as KA(0) = 0, KA is absolutely continuous and has a density kA, that 

satisfies (5.2.17). 

Thus we have proved that if FE FA, then the absolute continuity of the KA

function and that of the K -function of Fare equivalent. Furthermore, in 
0 

view of theorem 5.2.4 it now follows more generally that if FE FA and if 

0 $µ<A, then the KA-function of Fis absolutely continuous iff the Kµ

function of Fis absolutely continuous. 

The absolute continuity of the KA-function of FE FA is also sufficient for 

the absolute continuity of F(x) -F(0). This observation generalizes a theo

rem by Tucker (1962) or Fisz & Varadarajan (1963) (our theorem 1.7,10), if 

restricted to the half-line. In our case the proof is very simple. 

THEOREM 5.2.7. If 0 $A$ 00 and if FE FA (with F(0) > 0 if A= oo) has an 

absolutely continuous KA-function, then F(x) -F(0) is absolutely continuous. 

PROOF. If KA has a density kA, then the right-hand side of (5.1.7) or 

(5.1.11) is absolutely continuous with density u given by 

u(x) = f kA (x-y)dF(y) 

[0,x] 

(x > 0) 

As c(x;A) > 0 for all x > 0, from (5.1.7) or (5.1.11) it now follows that 

F(x) - F(0) = f dF(y) = 
(0,x] 

J 
(0,x] 

-1 
c(y;A) u(y)dy , 

and hence F(x) - F(0) is absolutely continuous with density f 0 given by 

(5. 2 .19) f kA (x - y) dF (y) (x > 0) • 

[0,x] 
□ 
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COROLLARY 5.2.8. Let Os; A< 00 and let FE FA. If the 

absolutely continuous with 

(5.2. 20) f -1 
c(x;A) dKA(x) 

( 0, co) 

then F is absolutely continuous, i.e. F c F ~. 

PROOF. Combine theorem 5. 2 • .7 and lemma 5 • 2. 2 • 

of Fis 

D 

REMARK 5.2.9. The K -function of a df F c F' satisfies (5.2.20) with A= 0, 
0 0 

but it is not necessarily absolutely continuous: 
. . K(l) (2) . th K(i) continuous part, i.e. K = + K wi 

if K0 has an absolutely 

nondecreasing ( i '·" 1, 2) 
(1) 0 0 0 o 

and KO p 0 absolutely continuous, then from (1.6.3) it is seen that F has 

an absolutely continuous component, and hence is itself absolutely continu

ous. By remark 5.2.6 it follows that also the KA-function of a df FE F~ 

may not be expected to be always absolutely continuous. 

5.3. FwahVL p~opeJt;Ueli :the FA' 1.;, exa.mpleli 

When considering properties and examples of df's in FA, we shall frequently 

use the characterization of FA given by lemma 5.1.4. The cpA-function of a 

df that depends on some parameter v, will then be denoted by cp~v), and we 

shall use the same notation without further comment in several different 

situations. 

We start with some properties of the classes FA. The first of them is well 

known for F ( cL theorem 1. 4. 3) . 
0 

THEOREM 5.3.L For 0 s; A s; 00 the class is closed under weak convergence, 

i.e. a df F on [0,oo), for which there exist F E I\ n 
(n f: JN) such that 

F(T) lim (T) (T ?: 

n->-oo 
0)' is again in F,_. 

PROOF. By the definition of F00 i.t is sufficient to consider the case 
(n) ' (n) 

0 < A < 00 • '.l.'he cpA -functions cpA of F n are comp mon, and as cpA + rp;\ if 

+ .F (n + 00), it follows that cpA is comp mon too. So F E D 

It turns out that every FA (0 s A s; 00 ) is closed under translations, but 

o.nd are closed under scale transformatiori..s. 



147 

THEOREM 5.3.2. If 0 $ A $ 00 and a > 0, then 

(i) A df F on [0 'oo) is in r, iff the df Fa (x) := F(x - a) is in FA; 

(ii) A df F on [O, oo) is in FA iff the df Fa(x) :::.::.: F(ax) is in F aA. 

PROOF. The theorem is known for !c ~ 0 and follows for !c ~ co as soon as it 

has been proved for finite A's. So let O < \ < co and a> O. In case (i) we 

have 

by which one easily obtains the following relation between the (!)A-functions 

of F and F: 
a 

(5. 3. 1) 

As ½~ qiA (t) 

mon iff qi~a) 

'" c(J!,(F) ;A) 2'.: O (cf. lemma 5.1.6), .it follows that 'l1A is comp 

is comp mon. Hence (i) is proved. In case (ii) F and F are re
a 

lated by 

F (T) 
a 

F'(-r/a) 

from which it is easily seen that 

(5.3 .2) 

(a) 
It follows that qi 11 is comp mon iff ipaA is comp mon, and (ii) is proved. D 

In view of part (ii) of the preceding theorem, for many purposes, such as 

asymptotic behaviour and properties of moments, it is sufficient to consi

der, apart from F and F , only, sny, the class F in stead of all classes 
0 co 1 

FA for O <A< 00 • Still, the monotonicity of FA is an interesting property, 

and an explicit definition of the f 's is needed to define the class F • ii oo 

Furthermore, we note that, if we want to consider specifically lattice dis··· 

tributions, Le. distributions on the fixed lattice 1N0 , then the transforma-
, -1 

t.ion Fa (x) = F(ax) is not possible (unless a E JN): the classes Ca (0 <; u. cS 1) 

are essentially distinct" 

In the following theorem we state some properties of the FA' s for O cS \ S 00 , 

which are well known or trivial for A= 0. 
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THEOREM 5.3.3. For O $A$ 00 the following properties hold: 

(i) If F E I\ and 0 $ \) < oo, then F(, + v) /F(v) E f\. 
FA and 0 $ \) 1, then 

~ \) 

FA. (ii) If F E $ F E 

(iii) If F E FA and 0 $ \) < oo, then F(vJF(tl/F(n vl E f\· 
n-1 

(iv) If F E F,., n E:JN and 0 $ \) $ Vn, then JI F( t+ kv) /F(kv) E F • 
k=O 

\) 

PROOF. It is sufficient to .consider the case O <A< 00 • The proof is then 

analogous to that of theorem 2.4.2 in the discrete case (use lemma 5.1.4).0 

The case A= 00 in (iv) can be used to construct examples of df's in F,.; we 

state it as a corollary. 

COROLLARY 5.3.4. If FE F00 and if O $A< 00 , then for all n E:JN 

(5. 3. 3) 
n-1 

JI F(t+kA)/F(kA) E FA • 
k=O 

We note that if F(O) = 0 then in (5.3.3) we cannot taken 

infinite product converges iff the series 

I {1-F(t+kA)/F(kA)} 
k=O 

-1 
C 

t I 
k=O 

K (kA) 
t 

oo. In fact, the 

is convergent, but in view of lemma 5.2.2 and (5.2.6) this can only be the 

case if F(O) > O. If FE F+, however, then from theorem 5.2.3 it is seen 
00 

that the infinite product yields a PLST in FA indeed. This also follows 

from the following characterization of FA in terms of F! (cf. theorem 2.4.5). 

THEOREM 5.3.5. Let F be a df on [0, 00), let O <A< 00 and define the function 

i/1,. by 

(5.3 .4) i/JA (t) := F'(A)F(t)/F(t + A) (t ~ OJ • 

a PLST in F4 • 
00 

Then FE FA iff ijJA is 

PROOF. If FE F,., then according to theorem 5.1.9 i/J,. is a PLST F,., say,with 

F,.(0) = F(A) exp[>.i(F)] > 0. In this case the ~00-function of F,. is given by 

(5 .3. 5) ~~A)(,:) = l _ eU(F) + eU(F) c~l~A (,:) , 
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and as ~A and ~!A) are both nonnegative functions, it follows that ~A is 

comp mon iff ~(A) is. Applying lemma 5.1.4 now proves the theorem. 0 
00 

co 
COROLLARY 5.3.6. A df Fon [0,co) is in F+ iff II F(T +kA)/F(kA) is a PLST co 

in FA. 
k=O 

Using theorems 5.2.4 and 5.3.5 we can improve part (iii) of theorem 5.3.3 

in the following way. 

COROLLARY 5.3.7. If OS AS 00 and if FE FA, then for all VE [0, 00 ) the 

function F(v)F(T)/F(T+V) is a PLST F, say, while F E F1 if v > A, and 
V V A 

F E F+ if 0 $ V $ A. 
V "' 

As a last property of the FA's we prove that U FA is dense in F in the 

sense of weak convergence. 
A>O o 

THEOREM 5.3.8. If FE F0 , then there exists a decreasing sequence {An} with 

A -+ 0 and there are F E F, (n E JN) such that 
n n " 

F(T) lim F (T) 
n 

n 

(T 2:: 0) • 

PROOF. As F+ coincides with the set of compound Poisson distributions on 
0 

[0, 00 ) (cf. theorem 1.6.6), for FE F+ we can give a proof along the same 
0 

lines as in theorem 2.4.4 for the discrete case. For an arbitrary F E F 
0 

this proof and the proof of De Finetti's theorem (theorem 1.4.15) suggest 
-2 the following choice: take An= n , and Fn such that for n 2:: 2 

(5.3.6) F (T) 
n 

-\- 2 
n-1 1 - n Gn (k/n ) 

II 

where Gn is defined by 

½ 
G (T) := F(T) l/n 

n 
(T 2:: 0) , 

(T 2:: 0) , 

which because of the inf div of Fis indeed a PLST. Using in corollary 
-½ 5.3.4 a compound-geometric-(n ,G) distribution, we see that F E F, . 

_ n n " 
Next we rewrite F as follows: n 

n 
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(5.3.7) F (T) 
n 

where 

(ne:JN; k=0,1, ••. ,n-1; T ~ 0) • 

Observing that for all T z-0 and all k E {0,1, .•• ,n-1} we have 

f e -,x{l - e -x/n}dGn (x) S 1 - Gn (1/n) 

[O,co) 

for lgk (,) I we obtain an upperbound, independent of k and,: ,n 

(5.3.8) I I ½ -1 -gk (,) s 2(n -1) {1 - G (1/n)} (ne:JN; k=0,1, ... ,n-1; tz0). 
,n n 

Now define cS := 1-F(l/n), then o E (0,1) and 
n n 

½ - ½ 1/n ½ 
n {1- G (1/n)} = n {1 - (1- cS ) } 

n n I 
k=l 

00 ½ 00 ½ ~ 
0 I _!_(1/n -1)(-o lk-1::;; 0 I (1/n -1)(-o JJl=cS (1-o ll/n -1 

n k=l k k-1 n n Jl=O Jl n n n 

which, as on= o(1) (n + 00), tends to zero as n + 00 • It follows that 

(n + co) , 

and hence by (5.3.8) 

(5.3.9) (n + co) • 

We can write now the following inequalities: 

n-1 
TI {1 + gk (T)} 

k=O ,n 

from which by the asymptotic behaviour of En it is easily seen that 

(5.3.10) lim 
n+oo 

n-1 
TI { 1 + gk, n ( T) } _ 

k=O 
(T ~ 0) • 
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Turning to the first factor in the right-hand side of (5.3.7) we write 

with 

= exp[n log(l -

:= n-½(1 - G (T)). Using the fact that 
n 

J ' 

-x - s log(l - x) s -x for Os x s 1i, 

and observing that ncn ➔ -log F(T) and nc~ ➔ 0 as n ➔ 00 , we see that 

(5. 3 .11) F(T) ( T 2: 0) • 

Combining this result with (5.3.10), from (5.3.7) we conclude that 

lim F (T) = F(T). 
n➔oo 

n 

To construct examples of df' s in FA we need, apart from lemma l . 3. B, the 

following lemma's on comp man functions. They can easily be proved by use 

of Bernstein's theorem and partial fraction expansions. 

LEMMA 5 .3 .9. For µ3 > 0 the function lp, defined by 

µ1 + µ2T 
(j) ( T) ·= (T > 0) 

' µ3 + T 

is comp man iff )12 2: 0 and µ1 2: 

LEMMA 5.3.10. For p3 > 0 and µ 4 > 0 the function (J), defined by 

(j)(T) (T > 0) , 

LEfv'LMA 5. 3. 11 . For > 0 and > 0 the function \O, defined by 

qi(T) := 

(]Jl + T) (]J2 + T) 

(]13 + T) (µ4 + T) 

is comp mon iff min(p 1 , 2: min 

(T > 0) , 

' p + 

□ 

Now we mention some simple examples of distributions in . In the next sec-

tion some more examples for will be given. 
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1. Consider the exponential distribution with parameterµ> 0; its pdf and 

PLST is given by 

f(x) = µe-µx (x > 0), and F(T) = __ µ_ 
µ + T 

Calculating the ~A-function of F, we obtain 

(5.3.12) __ µ_ E F' 
µ + T oo 

(µ > 0) • 

In fact, the KA-function of F has a density kA given by 

(x > 0; 0 SA< oo) • 

2. The gamma distribution with parameters µ > 0 and v > 0 has pdf and PLST 

given by 

µ \! V-1 - X ~ \! () µ ( 0) ) -- {-µ-} . f X = r(v) X e X > 'and F(T µ + T 

In view of theorem 5.3.3(ii), from example 1 we conclude that 

(5 .3 .13) {-j.l-}\) E F' 
µ + T co 

(µ > O; 0 < v s 1) , 

but, as for the discrete analogue of the gamma distribution (cf. example 2, 

p. 56), we have 

(5.3.14) (µ > O; v > 1) • 

To show this we put v = 1 + E: with E: > O, and we calculate the ~A-function 

of F: 

which can be written as the LT of a function kA that satisfies 

00 k-1-e (h) k 
L+E:-E:(l+E:) l ( k-1 )k(k+l)! 

k=l 

As for 0 < E: s 1 this is less than (1 + e) { 1 - E:Ax/2}, which tends to -oo as 

x ➔ co, (5.3.14) is proved for 1 <vs 2. Finally, from this and theorem 

5.3.3(ii) it is easily seen that (5.3.14) also holds for v > 2. 
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µ/(µ+ r) in corollary 5.JA to 

(5. 3 .15) 
n-1 

rr 
k=0 p+kA+ T 

E ( )1 > 0; n E JN; 0 $ A < 00) 

4. For a product of two exponential PLST's, which, obviously, can be given 

tJ1e form (5.3.15) with n = 2, we have 

__ P_ p + V F' ¢,} A 
(5.3.16) \1 +, µ+v+r E A $ v (µ > 0; v 2 0) • 

In fact, the cp;\--functi.on can easily be seen to be t11e L'r of the functi.on k;\ 

given by 

(x > 0) , 

from which .it follows that cp;\ is comp mon, or, equl.valently, kA (x) 2 0 for 

all x>O, iff ;\ $ v. 

5. A quotient of two exponential PLS'J." s wi. th parameters )1 > 0 and v > O, 

respectively, is again a PLS'f i.ff µ $ v (cL lemma 5.3.9). We then have 

(:i.3.17) (0 < µ s v) 

In fact, the K00-function has a dern;i.ty k 00 given by 

k 00 (x) 
-vx 

(v - p) e (x > 0) . 

6. Taking Fin corollaries :i.3.4 and 5.3.6 compound geometri.c, we get 

(5. 3 .18) (nEJNU { 00 }; 0Sp< l; G is df on [O,oo)). 

7. Choose in (5.3.18) a(,) p/(p + T), then it follows that 

n-1 pl kA + ld 
(:,. 3 .19) TI 

)11 + kA + T I 11 2 +kA-tT 
C: F 

k=0 
A 

Note that for n = 1 we get example 5. 

8. Finally, we want to show that for positive and µ 3 
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(5.3.20) 

First we note that according to lemma 5,3.11 for the function in (5.3.20) 

to be a PLST it is necessary and sufficient that µ 2 2 l,(µ 1 + µ 3). Calculat·· 

.i.ng the (jl 00"·function in that case, we find 

2 
from which by lemma 5.3.10 it follows that (j)00 is comp mon iff µ 2 - µ 1µ 3 2 

2 (2p 2 - µ 1 - p3 ) µ 2 , Le. (µ 3 - p 2 ) (p 2 - µ 1 ) 2 0, or µ 2 s max(µ 1 ,µ 3 ). 

5 .4. The. c..lMJ., F 00 

In this section we study the class F00 := lim FA in more detail, and we do 
7'-+«> 

so mainly for the following two reasons. In the first pl.ace, F00 seems to be 

the analogue of C0 for distributions on [0, 00). In fact, similarly to the 

way F00 is defined, C 
0 

can be obtained as the limit of the discrete analogues 

of the F 71 ' s, the classes Ca, for a + 0. Furthermore, it will turn out that 

F00 has properties, very similar to those of C0 , and F00 contains the com

pound geometric distributions on [0, 00) just as F contains the compound 
0 

Poisson ones. Secondly we study F00 because of its interesting relations 

with other classes of functions occurring in probability theory, such as 

the standard p···functions, the renewal densities and the potential kernels. 

'.r.hese relations will be discussed briefly in the next section. 

Our first aim is to look for some basic properties of F00 as available for 

F (cf. theorems 1.6.1 and 1.6.2). The relation between C and R (cf. sec-
o O 0 

tion 4 .1) suggests the existence of a relation between F"' and tJ1.e class of 

continuous analogues of the renewal sequences, the (standard) p-funct.ions 

(cf. section 5). By a met.hod used by Kingman (1972) 

derive a canonical representation fort.he PLST's in 

for this is t.h.e observation that r: ts dense in {F E 

for 

F 
00 

F 
00 

p-funct.ions, we can 

'I'he starting point 

I \',(F) -- O} in the 

sense of weak convergence (this can be considered as an analogue of De Fi.

net.ti's theorem (theorem 1.4.15) for F): if FE F
00 

with Jl(F) ~ 0, then by 

(5 .1.13) and lemma 5 .1. 5 we can write 

(5 .4 .1) F(T) ~ l.im 
/\-KU 

F(T + :\) l - pn 

Hm 1-p G(T) ' 
n~)-0) n n 
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where for n ElN pn := 1 - F(n) E (0,1) and G {,) := c- 1K (i:)/{1-F(n)} is n n n 
a PLST (cf. (5.1.20)). Using a different approach, however, we can derive 

the canonical representation much easier. We shall do so now, and start with 

a characterization of F00 by means of a comp mon function. To this end we 

give the following definition. 

DEFINITION 5.4.1. The w00-funation of a df Fon [0, 00) is defined by 

(' > 0) 

We note the following relations with the ~0 -function and, if F(O) > 0, with 

the ~00-function of F (cf. definition 5.1.3): 

(5.4.2) ~ (,) /F(,) and w (,) = -~• (,) /F(O) 
0 00 00 

As ~00 (,) ~ 0 (, > 0), the latter relation shows that (cf. lemma 5.1.4(ii)) 

a df F with F(O) > 0 is in F: iff the w00-function of Fis comp mon. This 

characterization of F: can be extended to F00 in the following way (cf. lem

ma 2.5.6). 

THEOREM 5.4.2. If Fis a df on [0, 00), then FE F00 with t(F) 

function of Fis comp man. 

0 iff the w00-

PROOF. Let FE F00 with t(F) = 0. Then by lemma 5.1.4(i) for all A< co the 

~A-function of Fis comp man, and is related to the t 00-function of Fas fol

lows: 

(5.4.3) 

Division by F(A), and use of the fact that c:i., ➔ 1, F(, + J..)/F(J..) + 1 (cf. 

lemma 5.1.5), and ~0 (-r + J..) + 0 (cf. lemma 5.1.6) as :i.. + co, show that 

(5.4.4) 

It follows that w00 is comp man, since it is the limit of a sequence of comp 

man functions. 

Conversely, let the t 00-function of a df Fon [0, 00 ) be comp man, and let 

0 < J.. < 00 As Fis nonincreasing, the function 

(5.4.5) 
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is nonnegative. Furthermore, it satisfies 

(5.4.6) 

from which it follows that cp;\ (T) /F(T + ;\), and hence cp;\ (T), is comp mon. 

Thus we have proved that FE F00 • In order to show that 9,(F) = 0, we note 

that lim ljJ00 (T) exists in [0, 00). Hence by lelllilla 5.1.6 and (5.4.2), £(Fl can 
t-+oo 

be obtained as follows: 

9-(F) lim cp 0 (t) lim lp
00

(T)F(T) F(O)lim lpoo (r) ' 
-r➔co '[-,-00 t-+oo 

from which it is seen that f, (F) = 0 if F(O) o. As trivially Q,(F) 0 if 

F(O) > 0, the theorem is proved. □ 

Using Bernstein's theorem, from theorem 5. 4. 2 we i1mnediately obtain a cha

racterization of F00 by a functional equation (cf. lemma 2.5.8, where a simi

lar result is given for C0 (= H1 ; cf. theorem 2,5.11)). 

COROLLARY 5.4.3. If Fis a df on [0, 00), then FE F00 with 9-(F) 

exists a right-continuous, nondecreasing function L such that 

f y dF(y) 

[O ,x] 
f 

[O,x] 

*2 
F (x -· y) dL (y) (x 2 0) • 

0 iff there 

Relation (5.4.6) gives rise to a daracterization of F00 in terms of the 

function for a fixed;\ E [0, 00). It :ahows in a sense which part of FA con

sists of F -distributions. 
00 

'I'HEOREM 5.4.4. If F is a df on [O,co,, then F E with £{F) = 0 iff for 

some, and then for all, A E [0, 00 ) the function cpA (T)/F(T + A) is comp mon. 

PROOF. First we note that if F E F 00 with Q, (F') = 0, then by theorem 5, 4. 2 

the l/! 00-function of Fis comp mon, and.hence (cf. the second part of the 

proof of theorem 5A.2) cpA (T) /F(T + ;\) is comp mon for all ;\ E [0, 00). F'rom 

(5.4,2) it now follows that for A ~ 0 the theorem reduces to theorem 5.4,2. 

Therefore we take a fixed A E (0 , 00 ) and suppose cp;\ (T) /F{T + ;\) to be comp 

mon. Then the limit 

(5.4.8) a,. := lim cp;\ (T)/F(T + A) 
'[-YD 



exists in [0, 00). For all T > 0 there exists e, E (O,l) such that 

F(T) - F(T + \) -·AF' (T + 8 ;\) 
T 

and hence, as F' is nondecreasing, 

or for T > A 

'(T) , 

F(T) - F'(T + A) 5 ,-;\F' (T) 5 F(, - ;\) - F'(T) 

157 

Now, dividing by F(-r) 2 , and using (5.4.8) and lemma 5.1.5, we see that 

satisfies 

(5.4.9) 
-1 -H(F) 

} aAe 5 liminf 1µ 00 (,) 

T--J-<0 

5 limsup lj!00 (T) 

T--J-<0 

If F would be such that .Q,(F) > 0 (and so F(O) = 0), 

lemma 5.1.6) 

would satisfy (cf. 

lim ~ (t)/F(T) = oo 
0 

which contradicts (5 .4 .9). It follows that .Q, (F) 

(5.4.10) lim lj! 00 (T) 

T--J-<O 

Now can be written as 

(T) (T +kA) -

0, and hence 

which by (5.4.6) implies the comp man of lj! 00 • Hence by theorem 5.4.2: FE f 00 .D 

Next, _from theorem .5 .4 .2 we derive a representation theorem for F 00 that can 

be considered as an analogue of theorem 2.4.8, where a relation between C0 

and C1 is given. 

THEOREM 5.4.5. A function~ on [0, 00 ) ts the PLST of a df Fe 

if£ there exists a df HE F0 such that~ has the form 

(5.4.11) ~(T) = {1 - log H(T) (T ? 0) • 

with .Q, (F) = 0 

PROOF. Let E with 9-(F) = 0, Then the -function of Fis comp mon. 

If we define the positive function ljJ on [0, 00 ) by 
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( T 2'. 0) , 

then it is seen that ijJ(O) 1 and that the function 

is comp mon. Now by theorem l. .6 .1 it follows that there exists a df B E F 

such that ijJ = ii:, and hence by (5.4.12) F can be represented in the form 

(5.4.11). 

Conversely, suppose that a function rp on [0, 00 ) has the form (5.4.11) with 

HE Then the rp 0 -function of H 

rp (H) (T) 
0 

d log H(T) 
dT 

0 

is comp mon, and as -log H(T) is nonnegative, by lemma L3.8(vi) it follows 

that rp is comp mon. Also rp (0) = 1, and hence by Bernstein's theorem rp is 

the PLST of a df F on [0, 00), for which the ijJ 00-·function 

- -1 (H) 
F'(T) = rp 0 (T) 

is comp mon. In view of theorem 5 .4. 2 we conclude that FE with i(F') =0.0 

COROLLARY 5.4.6. If FE F00 with t(F) = 0, then 

(5.4.13) H(T) - -1 exp[1 - F(T) ] (T 2'. 0) 

(H) . 
is the PLST of a df H in . The K0 -function K0 of H has the ijJ

00
-•funct.wn 

of Fas its LST, and is therefore related to the K -function K of Fas 

follows: 

(5.4.14) F K(B) 
0 

0 0 

By letting T-+ "" in (5.4.13), it is seen that F(O) > 0 if£ H(O) > O. Hence 

from the preceding theorem we obtain tl1e following relation between and 

which can also be established by use of the representations (1 .6 .12) 

and ( 1.6 .13) for and F!, respectively (cf. the proof of theorem 2.4.8). 

COROLLARY 5.4.7. A function rp on [0, 00 ) is the PLST of a df FE 

exis::s a df H E f°" such that (5A.11) holds. 
0 

iff there 
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We want to make the representation for PLST's in F00 , given by theorem 5.4.5, 

more explicit. We do so in the following theorem by introducing canonical 

quantities in such a way that several properties of are easily expressi-

ble in terms of them, and such that there exists a clear resemblance to the 

canonical representation for the LT of a standard p-function (cf. section 5). 

THEOREM 5.4.8. A function rp on [0, 00) is the PLST of a df FE F00 with t(F) =0 

iff there exist y;,, 0 and a right-continuous, nondecreasing function Non 

(0, 00 ) with N(oo) = 0 and satisfying 

(5A.15) f x dN(x) < 00 , 

(0, 1] 

such that rp has the form 

(5.4.16) rp(T) = {1 +YT+ f -TX ,,.1 
(1-e )dN(x)} (t ;,, 0) 

(0 'oo) 

the representation (y,N) for rp =Fis unique. 

PROOF. The theorem is an immediate consequence of the preceding theorem, 

and theorem 1.7.1, where a representation (y,N) is given for the chf of an 

inf div df with finite left extremity; using this representation for the df 

in (5.4.11), we get (5A.16,. 

It is useful to state the following corollary, which will be clear from 

corollary 1 . 7. 2. 

COROLLARY 5. 4. 9. If F E F00 with t (F) = 0, t11en between the representation 

(y,N) in (5.4.16) for F and the -function K(H) of the df H, defined by 
0 

(5 A .13) , the following relations hold: 

(5 .4. 17) y (H) (0) and N(x) = f 
and, conversely, 

(5 .4.18) K(H) (x) = y + 
0 

(x,oo) 

f y dN(y) 

(0 ,x] 

l dK(H) ( ) 
y O y 

(x ;,, 0) 

(x > 0) , 

D 
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The representation (y,N), given in (5.4.16), for the PLST of a df FE F00 

with i(F) = 0 will be called the canonicaZ representation of FE F00 • It has 

several simple properties, which we need in the sequel. They are summarized 

in the following lemma. 

LEMMA 5.4.10. Let FE r with t(F) 
00 

0 and canonical representation (y,N). 

Then 

(i) N is integrable on every finite interval, or, equivalently, 

(5 .4 .19) f N(y) dy < oo 

(0,x] 

(x > 0) • 

(ii) N is integrable on (0, 00 ) iff µ := f x dF(x) is finite, in which 

case [O ,oo) 

(5.4.20) µ y - f N(x)dx y + f x dN(x) 

(0 ,oo) (0 ,oo) 

(iii) The LT of N exists on (0 ,oo) and can be expressed in F as 

(5.4.21) J (t > 0) • 

(0 ,oo) 

(iv) y can be obtained from F by 

(5.4.22) y lim hF(tl }-1 . 
t+«> 

(v) The K0 -function of Fis related to (y,N) as follows: 

yF(x) + f F(x -y)y dN(y) (x ?: 0) 

(O,x] 

(vi) 0 and N is bounded, i.e. -N(O+) < 

PROOF. 

(i) For all x > O, using Fubini's th~orem, we can write 

(5.4.24) l N(y)dy = 
(O,x] 

f y dN(y) - xN(x) , 

(0,x] 

which by (5.4.15) is finite. 

(ii) By Fubini's theorem it fo~lows that 

follows: 



(5.4.25) / N(x)dx 

(0 ,oo) 

f x dN(x) , 

(0 ,oo) 
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where the integrals may be both infinite. Further, by (5.4.14) and (5.4.18) 

we can write 

µ = / 

(0 ,oo) 

xdF(x) =lim -F'(t)/F(ti2=lim K(H)(tl =y+ 
t+O t+O 0 f 

(0, oo) 

xdN(x), 

from which the assertion in (ii) immediately follows. 

(iii) From (5.4.19) it is seen that the LT of N exists on (0, 00). We calcu

late it from (5.4.16) with~= F, and obtain 

f 
(0 ,"') 

-1 
= t 

e N(x)dx = -tx J 
(0 ,co) 

f (1-e-ty)dN(y) 

(0 ,co) 

e-tx J 
(x,oo) 

(iv) This follows immediately from (iii). 

dN(y)dx 

(v) The assertion is a consequence of the relations (5.4.14) and (5.4.18). 

(vi) If His the df in F defined by (5.4.13), then according to corollary 
0 

5.4.7 we have FE F+ iff HE F+. Now, by lemma 1.6.4 it is seen that HE F+ 
00 0 0 

iff its K -function K(H) satisfies 
0 0 

0 and f 
(0 ,oo) 

.!._ lK (H) (x) 
X 0 

< 00 , 

which in view of (5.4.17) is equivalent to the condition that y 

is bounded. 

0 and N 

□ 

REMARK 5.4.11. From the canonical representation (5.4.16) for Fit is also 

easily verified that if y = 0 and N is bounded, then Fis compound-geometric

(p,G), with 

(5.4.26) p = -N(0+)/{1- N(O+)} and G(x) 1 - N(x)/N(O+) (x > 0) • 

The K00-function of F can then be expressed in (y,N) as follows: 

(5.4.27) K00 (x) = {N(x) - N(0+)}/{1 - N(O+)} (x > 0) • 

Thus we see that a df Fin F00 with ~(F) = 0 and for which y > 0 or N is 

unbounded, is necessarily continuous at zero, and hence is continuous every-
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where (cf. corollary 1.7.6). A further investigation of such distributions 

is simplified by the existence of a functional equation in terms of y and N, 

by means of which F00 can be characterized. In fact, rewriting (5.4.21) as 

F{-r){y+ f e--rx{l-N{x)}dx} 

(0 ,co) 

-1 
T 

and using the uniqueness theorem for LST's, we get the following result. 

THEOREM 5.4.12. If Fis a df on [0, 00), then FE F00 with t(F) = 0 iff there 

exist y ~ 0 and a function N satisfying the conditions for Nin theorem 

5.4.8 such that 

(5.4.28) X - yF(x) / F(x - y) {1 - N(y) }dy 

(O,x] 

(x ~ 0) • 

The quantities y and N are unique, and give the canonical representation 

of F. 

We can subdivide F00 in four subclasses, characterized by the following four 

possibilities for the canonical representation (y,N): y = 0 or y > 0 and N 

is bounded or not. The subclass F+ ={FE F with t(F) = 0 I y 0, N boun-
oo 00 

ded} is well known. Now, using theorem 5.4.12, we can completely analyze 

the two classes of df's, for which y > 0. To this end we state the follow

ing theorem. 

THEOREM 5.4.13. If FE F00 , with t(F) = 0, has a canonical representation 

(y,N) with y > O, then Fis absolutely continuous and has a continuous den

sity f which satisfies 

(5.4.29) 1-yf(x) = f f(x-y){1-N(y)}dy 

(0,x) 

(x > OJ • 

Furthermore, this density f has the following properties: 

(i) f(O+) = lim f(x) exists in (0, 00), and it satisfies 
xiO 

(5.4.30) f(O+) = 1/y > f(x) {x > 0) 

(ii) lim f(x) = O; 
x-+«> 

(iii) -f'(O) := lim -4f(O+) - f.(x)} exists in (0,oo], and is given by 
+ x,!,0 x 



(5.4.31) -f'(O) = {1 - N(O+) }/y2 
+ 
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PROOF. Let FE F00 with t(F) = O. Then F satisfies the functional equation 

(5.4.28), the right-hand side of which can be written as (cf. (5.4.19)) 

f f {1 - N(z) }dzdF(y) J f {1-N(u-y)}dudF(y)= 

[O,x] (O,x-y] [O,x] (y,x] 

f f {1..:.N(u-y)}dF(y}du. 

(0,x] [O,u) 

It follows that 

(5.4.32) YF(x) f {1 - w(u) }du 

(O,x] 

(x ;;;: 0) , 

where the function w is defined on (0, 00) by 

(5.4.33) w(x) := f {1- N(x - y) }dF(y) 

[O,x) 

(x > OJ • 

Now, suppose that y > O. Then from (5.4.32) it is seen that Fis absolutely 

continuous; the function f, defined by 

f(x) := {1 - w(xl }/y (x > 0) , 

is a density of F, and, because of (5.4.33), it satisfies (5.4.29). From 

this relation we obtain, using the monotonicity of N, 

(5.4.34) yf(x) s 1 - {1 - N(x)}F(x) (x > 0) 

It follows that f(x} < 1/y for x > O, and, if we let x + 00 , that (ii) holds. 

Now we can estimate as follows: 

0 s f 
(0,x) 

f(x-y){l-N(y)}dy s y- 1{x - f N(y)dy}, 

(O,x) 

which, because of (5.4.19), tends to zero as x + 0. From (5.4.29) it is now 

seen that 1 - yf(x) tends to zero as'x + 0, and (i) is proved. 

To prove the continuity off, or, equivalently, of w, we use the following 

well known property: 

(5 .4.35) [v'x>O f 
(O,x] 

jf(y) jay< 00 ] "@ [V O lim / jf(x+h} - f(x} jdx= OJ. 
a> h+O 

(0,a] 

Let x > 0 and h > 0, then for all x < x we have 
0 
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I w (x + h) - w (x) I ;; f j f (x + h - y) - f (x - y) I { - N (y) 

(O,x) 

+ J f(x+h-y){l-N(y)}dy;; 2y-l f {1-N(y) 

[x,x+h) (0 

+ 

+ 

+ { 1 - N (x0 ) } f 
(0,x-x0 ] 

lf(z+h) - f(z)jdz+{l-N(x)} J f(z)dz, 

(0 ,h] 

which by (5.4.19) and (5.4.35) becomes arbitrarily small, if we choose x 0 

sufficiently small. Proceeding for h < 0 in a similar way, we conclude that 

w, and hence f, is continuous. 

Finally, we prove (iii); since N is nondecreasing, we can write for x > 0 

{1-N(x)}F(x);; f f(x-y){1-N(y)}dy;:;{1--N(O+)}F(x) 

(O,x) 

from which by use of 

lim F(x)/x 
x+0 

it follows that 

Hm l{f(O+) 
x+0 x 

-1 1 
~ 0 y lim -

x+0 x 

f (0+) 

f (x)} y-l lim l.[1 - yf(x)} 
x+0 x 

f f(x ·-y) {1 -· N(y) }dy {1 - N(O+) }/y2 

(0,x) 

(;; 00) , 

From (5.4.32) we immediately obtain a characterization of ' and of {FE 

with Jc(F) = 0 j y = O} by a functional equation. 

COROLLARY 5.4.14. A pdf f on (0, 00 ) is the density of a df FE: with 

Jc(F) = 0 iff there exist y :;: 0 and a function N satisfying the conditions 

for N i.n tl1eorem 5.4.8 such that: (5.4.29) holds for almost: all x > 0. 

COROLLARY 5.4.15. If F i.s a df on [0, 00), then FE with Jc(F) = 0 and with 

y = 0 .in its canonical representation (5.4.16) iff there exists a function 

N satisfying the condi t:i.ons for N in theorem 5. 4. 8 such that 

(5.4.36) f {1-·N(x-y)}dF = 1 (almost all x > 0) 

[O ,x) 
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The subdivision of F00 in four subclasses, mentioned just before theorem 

5.4.13, can be characterized in terms of properties of the df's in F00 them

selves; this is easily verified from the preceding theorem and the follow

ing lemma. 

LEMMA 5.4.16. If a df FE F, with i(F) 
00 

0 and canonical representation 

(y,N), is absolutely continuous and has a density f, for which f(0+) exists 

in [0, 00 ], then necessarily f(0+) E (0, 00 ], and 

(i) f(0+) E (0, 00) iffy> 0, in which case f(0+) = 1/y; 

(ii) f (0+) 00 iffy= 0, in which case N is unbounded. 

PROOF. If a df Fon [0, 00) has a density f, for which f(0+) exists in [0,oo], 

then, as is easily verified, f(0+) can be obtained as follows: 

f(0+) = lim ,F(T) • 

-r-+<><> 

Now, if F E F' with i(F) 
00 

0, then in view of lemma 5.4.l0(iv) it is seen 

that f(0+) cannot be zero, and that f(0+) < 00 iffy> 0, in which case 

f(0+) = 1/y. Finally, if f(0+) 00 , then y = 0 and hence N is unbounded, as 

otherwise by lemma 5.4.l0(vi) we would have FE F+. co 

THEOREM 5.4.17. Let F be in F00 with i(F) = 0 and canonical representation 

(y,N). Then the following four cases can be distinguished: 

(i) y 0 and N is bounded iff F is compound geometric (F E F+l. co , 

(ii) y > 0 and N is bounded iff F is absolutely continuous and has a den-

sity f, for which f(0+l and -f~(0) exist in (0 ,co) ; 

(iii) y > 0 and N is unbounded iff F is absolutely continuous and has a den

sity f, for which f(0+) exists in (0,oo) and -f~(0) = oo; 

(iv) Y = 0 and N is unbounded iff Fis continuous and Fis either not ab

solutely continuous, or absolutely continuous such that no density of 

F has a finite limit as x + o. 

The following lemma provides a method to construct examples of distributions 

in each of the four subclasses of F00 from given inf div distributions on 

[O ,co) • 

LEMMA 5.4.18. If H E F , then {i - log H(-r) }-l is the PLST F of a df F E F 
0 00 

with l(F) = 0, and the canonical representation (y,N) of F satisfies 
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(i) y > 0 if£ Q, (H) > 0; 

(H) NisboundediffH(Q,(H)) >O. 

PROOF. The first part of the lemma follows from theorem 5.4.5. Further, 

from corollary 5.4.9 and lemma 1.6.4 it is seen that y = K~H) (0) = Q,(H) and 

that N is bounded i.ff 

f 
( 0, oo) 

l dK(H) (x) 
X 0 

Le. iff H(Q,(H)) > 0. 

< 00 ' 

Just as (cf. (5.4.1)), the subclass {FE F00 with Q,(F) = 0 I y > 0, N is 

bounded} is dense in {FE 

in fact, .if F E F 00 with Q, (F) 

Q,(F) = O} .in the sense of weak convergence; 

0 and canonical representation (y,N), then 

□ 

by the monotone convergence theorem it is seen that F ( T) = lim F ( T) , where 
n n-,co 

F n (n E JN) .is defined as the df with PLST (5 .4 .16) w.i th y and N replaced by 

y n ,,,, l y. 
1/n, if y 

ify>O 

0 

{ 
N(x), 

N (x) ·-
n .-_N(l/n), 

if N bounded or x ~ 1/n 

otherwise. 

Furthermore, this subclass of F00 turns out to consist of convolutions of an 

exponential distribution and a compound-geometric- (p ,G) one, where G has the 

same exponential distribution as a factor. We state this in the following 

theorem, and note that distributions of this type also occur as first··pas

sage time distributions in Miller ( 1967) • 

THEOREM 5.4.19. If Fis a df on [0, 00), then FE f 00 with .Q,(F) = 0 and having 

a canonical. representation (y,N) with y > 0 and N bounded iff F has the 

form 

(5.4.37) F(T) _IJ_ 1-
]J + T 1 - p{µ/(µ + T) }G(T) 

where µ > 0, 0 :$ p < 1 and G is a df ,on [0, 00 ). 

PROOF. Let the PLST F of a df Fon [0, 00 ) have the form (5.4.16) with y > 0 

and N bounded. 'rhen, defining 

(5.4.38) µ:={1-N(O+) , p := -N(O+) /{ 1 - N(O+)}, G(x) ,~ 1 - N(x) /N(O+), 

we see that F takes the form (5.4.37). 
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Conversely, the i/1 00-function of a df F with PLS'r given by (5.4.37) satisfies 

(T) 
d - -1 d -1 A 

-F'(T) =~d 1+{µ(1-p)} r+{p/(1-p)}(l-G(T))] dr T · · · 

{µ(1-p)}-l - {p/(1-p)}G'(T) 

which is comp mon. Hence by theorem 5.4.2 FE with 9,(F) = 0, and because 

of corollaries 5.4.6 and 5.4.9 it follows that the canonical representation 

is given by 

(5 .4.39) 
-1 

y={µ(l-p)} ,N(x) 

soy> 0 and N is bounded. 

-{p/(1-p)} (1- G(x)) (x > 0) , 

EXAMPLE 5.4.20. In (5.4.37) take G(T) = __ v_ / __ µ_with O < v ~µ;by 
V + T F + 1: 

example 5 on p. 153, this is indeed a PLST (in P"). Then it follows that 
00 

_µ_ v(l-p) / _v_ E 

11+1:v(J.-p)+T V+T 

D 

However, we can prove a little more: if µ 1 ,µ 2 and are all positive, then 

(5.4.40) 

First we note tliat by lemma 5 .3. 10 .F is indeed a PLST iff 

Calculating t11en the -function of F, we get 

-2 
+ T) . ' 

. Final

ly, we note that under these conditions Fis, in fact, a mixture of two ex

ponential PLST's: 

F'(T) = {11 ( 
2 

Hence (cL lemma 1.6.10) F has a comp mon density and therefore belongs to 

, as we shall see presently .. 

The subclass {F " f 00 with 9, (F) = 0 I y '·" 0, N unbounded} of 

rather obscure. Apart from PLST's of the form {1- log H(T)} 

is sti.11 

with HE 

and 9,(H) = H(9,(H)) = 0 (cf. lemma 5.4.18), it contains all pdf's f E 

for which f(0+) ~ 00 (cf. lemma 5.4.16(ii)). Before giving some examples, we 

st.ate an analogue of corollary 5.2.8. 
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THEOREM 5.4.21. If F E F00 with l',(F) = 0 and with canonical representation 

(y,N) such that y = 0 and N is unbounded and absolutely continuous, then F 

is absolutely continuous. 

PROOF. If y = 0 and N is absolutely continuous with density n, then from 

(5.4.23) it is seen that the K0 -·function of F is absolutely continuous with 

density given by 

k {x) 
0 

/ (x - y) n(x - y)dF (y) 

[0,x) 

(x > 0) • 

Now, by theorem 5.2.7 it follows that F(x) - F(OJ is absolutely continuous. 

If in addition N is unbounded, then necessarily F(0) = 0, and hence Fis 

absolutely continuous, with density f satisfying (cL (5.2.19)) 

(5.4.41) xf(x) ~- f *2 f (x-y)yn(y)dy (x > 0) • 

(0,x] 

REMARK 5.4.22. Also from (5.4.23) it is seen that, contra.ry to the case of 

a general inf div df in F' (cf. remark 5.2.9), the K -function of a df 
0 0 

F E F: with l',(F) = 0 is necessarily absolutely continuous. It follows that 

corollary 5. 2. 8 gives necessary and sufficient conditions in terms of the 

K0 -function for FE F00 to be absolutely continuous. However, such condi

tions are not easily obtained in terms of the function N. 

EXAMPLE 5.4.23. 

(i) Consider the gamma distribution wit.11 parametersµ> 0 and v > 0: 

f(x) 
µv v-1 -µx Nvl x e ( x > 0) , or F ( i:) 

□ 

By (5.3.13) we know that if O < v cS 1 then f c:: F:. If v < 

and hence in that case: y = 0 and N unbounded. Indeed, the 

is given by 

then f(O+) =oo, 

-function off 

and hence ( cf. corollaries 5 .4. 6 and 5. 4. 9) 

y 0 and N(x) r ( 1 - vJ 
-µydy (x > 0) • 
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(ii) Take for Hin lemma 5.4.18 a gamma distribution. 'rhen it follows that 

- -1 
F(T) ,= {1 + v log(l + pT)} E F: (v > O; p > 0) , 

with y = 0 and N unbounded. Here, F is absolutely continuous, because N is: 

the iµ 00-·function of F is given by 

(T) = pv/(1 + PT) , 

and hence 

N(x) -v f (x > 0) . 

(x,oo) 

(iii) '.Pake O < a < 1, and consider the function N on (0, 00), defined by 

N(x) := ( 1 - X (x > 0) • 

Then N is absolutely continuous and satisfies the conditions in theorem 

5.4.8, so that 

(5.4.42) F(T) := {1 + Cl f (1 "" e 

( 0, 1] 

in the canonical representation (y,N) of F, y = 0 and N is unbounded. The 

PLST (5.4.42) occurs in Feller (1971), ch. XIII (problem section) as the 

limiting PLST of t.he distribution of Sn/Mn' where Sn := x 1 + ... + 

:= max{x1 , ... , and x 1 ,x2 , ... are independent. rv's with common distri-

bution belonging to the domain of at.tract.ion of the st.able distribution on 

[O , 00 ) with exponent a. 

After having studied the structure and basic properties of F00 , we turn to 

analogues of some of the properties of C0 , mentioned :Ln theorems 1.5.13 and 

2.4.9, for 

As noted at the end of section L6, Goldie (1967) and St.eutel (1970) prove 

that the classes V and E of comp mon and log-convex pdf's, respectively, 

are subclasses of F0 • We now prove that they are subclasses of 

(5.4.43) V CE C F00 

THEOREM 5.4.24. If f is a log-convex pdf on (0, 00 ), then f E 
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PROOF. Let F be a df on [0, 00 ) with a log-convex density f. Then for every 

{ (h) }"', h > O there exists ch> 0 such that the sequence pn O defined by 

(n E ]N ) , 
0 

l:p(h) = { (h)} satisfies n 1.. As f is a log-convex function, pn is a log-convex 

sequence, and hence (cf. theorem 1.5.13) satisfies the recurrence relations 

(L5.17) with nonnegative r (0) 's. Now, consider {p(h)} as a probability 
n n 

distribution on the lattice {O,h,2h, ... }. Then by (5.1.9) with a = 0 it fol-

lows that {p(h)} E F+ for all h > 0. Since furthermore 
n oo 

F(x) lim 
h+O 

[x/h] 

I hf(½(2n+ )h) 

n=O 
(x 2: 0) , 

and as F 00 is closed under weak convergence (cf. theorem :i. 3. l) , we conclude 

that F E 

COROLLARY 5.4.25. If f is a comp mon pdf on (0, 00), then f 

ly (cL lemma 1.6.10), if G is a df on (0, 00), then the PLS'l' 

(5 .4 .44) I ___ \:1. ______ dG ( 11) 
µ + T 

F' 
00 

(0 ,oo) 

Steutel (1970) proves the following implication: 

(5.4.45) 

We can improve on this result as follows. 

D 

Equivalent-

THEOREM 5.4.26. If F E f 00 wi.t.h Jl(F) 

p + ( 1 - p) P ( T) E F: 
0 and if 0 < p < 1 , t.hen the PLST 

PROOF. We calculate the s\,, -function of p + ( 1 - p) F, and obtain 

(5 .4.46) 

Denoting the last :factor in the right-hand side of (SA.46) by {p(T), we can 
- -1 

write qi(T) (1 - log H(T)} , where accordi.ng to corollary 5.4.6 and theo-

rem l A.4 
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is the PLST of a df Hin F Now, by theorem 5.4.5 it follows that <p is the 
0 

PLST of a df in F Hence <pis comp mon, and applying lemma 5.1.4(ii) once 
00 

in each direction, we conclude from (5.4.46) that p + (1 - p) F E F+. D 
00 

COROLLARY 5.4.27. If G is a df on (0, 00), and if O < p < 1, then the PLST 

(5.4.47) p + (1-p) f 
(0 ,oo) 

REMARK 5.4.28. Starting with continuous df's Fin theorem 5.4.26, we cannot 

generate aZZ compound geometric PLST's. In fact, in view of the result to 

be given in corollary 5.4.30, it will be clear that for p E (0,1) a PLST F 
has the form 1-p+pH(T), where His a continuous df in F00 with R-(H) = 0, 

iff Fis compound-geometric-(p,G) with GE F00 , R-(G) = 0. 

The function <p from the proof of theorem 5.4.26 and the tot-dec(1) pgf's 

in section 3.4 suggest another closure property of F00 • 

THEOREM 5.4.29. Let F be a df on [0, 00), and define forµ> 0 the function 

ipµ by 

(5.4.48) iji ( T) := ---~µ __ _ 
µ ~ -1 (T 2: 0) • 

µ-l+F(T) 

Then: 

(i) ip µ is a PLST for allµ E (0,1]. 

(ii) If ip µ is a PLST, then iji" is a PLST for all 

(iii) 1/iµ is a PLST for all µ > 0 iff F E F 

for allµ> 0 the df Fµ, with Fµ 

PROOF. Since 1/J can be written in the form 
µ 

1/J (T) 
µ 

1-(1-µ) F(T) 
1 - (1- µ)F(t) 

with 
00 

(t 2: 0) 

A E (0,µ]. 

R.(F) = o, in which 

it is seen that ijiµ is a PLST for O < µ $ 1. Using the relation 

1/J (T) 
µ 

µ + (1 - µ) 1/J (T) , 
µ 

we obtain the following relation between ij,A and ijiµ: 

case 
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('r) ' 

from which (ii) follows. 

The "if" part of (iii) follows from the proof of theorem 5.4.26, where we 

showed that .if FE F00 with 9,(F) = 0 then 1µµ is a PLST Fµ .tn 

for allµ> 0. 

Therefore, suppose that 1/\1 is a PLST F µ for all µ > 0. Rewrite 

(T 2c 0) , 

w.ith 9,(F ) ,.~ 0 
µ 

as 

and let y > O. Then, tak.tng µn := n/y (n E JN), we see that the PLST 

{j (T)}n satisfies 
Pn 

fl ( T) • = lim {F ( ·r) } 11 ,, exp[y ( 1 - F ( T) -l) ] . 
y n-J-OO µn 

As f1 (0+) = 1, .tt follows by the continuity theorem for LST's that .ts a 
y 

PLST for ally> 0, and hence ii: 1 is an inf div PLST. From theorem 5.4.S we 

now conclude that F E with Q, (F) = 0. D 

COROLLARY 5.4.30. Let F' be a df on [0, 00), and let O < p < 1.. Then F e F00 

with 9.(F) = 0 Hf the following PLST G is in F00 with 9,(G) = 0: 

(5.4.49) G(T) ( T ?- 0) 

Steutel (1970) has similar results for chf's. For instance, he gives an ana

logue of theorem 5.4.29(i); furthermore, he obtains a result (stated in the 

following theorem) that immediately yields also an analogue of theorem 

5.4.29(iii) for chf's. 

THEOREM 5. 4. 31. Let ijJ be a funct..ion on JR. Then the function ij, , defined by 
µ 

p 
:= 

µ + 1jJ ( t) 
( t ( JR) ' 

is a chf for all p > 0 iff ~,(t) = -lcjg H(t) with Han inf div df on JR. 

COROLLARY 5.4.32. Let F be a df on JR. Then the function ljJP, defined by 

µ 
~ -·1 + F(t) 

( t ~ JR) ' 

is a chf for all 11 > 0 iff F(t) = {1-logH(t)}-l with Han inf div df onfil. 
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The preceding theorems provide examples of distributions 

a few of them. 

in F • We mention 
co 

EXAMPLE 5 . 4 . 3 3 . 

(i) Because of theorem 5.4.26 we have (cf. example 5, p. 153) 

( 0 < \) < µ) • 

(ii) Scale mixtures of gamma distributions with (fixed) second parameter 

v E (0,1] can be regarded as mixtures of exponential distributions (cf. 

Steutel (1970)); hence they are in For instance 

f \) -2 
JJ dµ 

( 1 'oo) 

(l+T)l-v _ 

(1 - \/) T 
E F' 

00 
(0 < v < 1) , 

and hence (take v == ½, and apply theorems 5.4.29(iii) and 5.4.26) 

(5.4.50) p + (1-p) 
r + 

r + 1 E F 
(l+T)½ 00 

(0 ,; p < 1; r > -1) . 

(iii) The density fr of Xr, where X has a gamma distribution with parameters 

µ > 0 and \! > 0, satisfies 

\) 

(x) = __ 11_ x v/r
rr (v) 

as it is .Log-convex j_ff r 2: max ( 1, v) . 

In the next theorem we state a property of F 00 that can be viewed a.s an ana

logue of the following closure property of F O (cf. theorem 1 . 4. 9) : 

(5.4.52) [GE F, HE F] ~ G(-log H(T)) is a PLST in 
0 0 

Here, the i.nf div of H ensures the function G(-log H(T)) to be a PLST. 

'rHEOREM 5.4.34. If G c 

(5 .4.53) G(-1.og H(T)) 

with il ( G) = 0, and if H E: F , then the function 
0 

• X 
H(T) dG(x) (t 2: 0) 

is a PLST in with left extremity equal to zero. 
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PROOF. As HE F, the function G(-log H(T)) is a PLST. Its 
0 

given by 

d - - -1 =:.-{d G(-log H(T))} = 
T 

- - -2 (H) d - I 
-{G(-log H(,))} <po (T) d0 G(CJ) 0=-log H(-r) 

-function is 

The <p 0 -function 

its 1/J 00-function 

of H is comp mon, as H E F • Since G E F with ,Q,(G) = 0, 
0 00 

is comp mon (cf. theorem 5.4.2), and as -log H(T) is 

nonnegative and has a comp mon derivative, we conclude from lemma 1.3.S(vi) 

that 1/J~G) (-log H(T)) i.s comp mon. It follows that l/! 00 is comp man, and the 

theorem is proved. 

In view of theorem 5.4.5 and corollary 5.4.6, (5.4.52) and theorem 5.4.34 

can be reformulated as follows. 

COROLLARY 5.4.35. 

(.i) If G E F and if H E F with ,Q, (H) 
O co 

0, then G(H(T)-l - 1) is a PLS'r in 

□ 

(U) If G E with 9-(G) 0, and if HE F00 with 9-(H) - -- -1 O, then G(H(T) -1) 

is a PLST in 

REMARK 5 .4. 36. If G is the df corresponding to a lattice distribution with 

pgf P and P(O) > 0, then in (5.4.52) and theorem 5.4.34 i.t is not necessa

ry to require the inf div of H; in fact, for all df's Hon [0, 00 ) 

(5.4.54) G(-log H(,)) =, P(H(T)) 

is the PLST of a compound distribution, and hence is in F+ or according 
0 

as PE C1 or Pc C0 (cf. lemma L4.14). Further, in view of (5.4.54), also 

for a non··-lattice df G on [0, 00), but with an inf div df H, G(-log H(t)) 

could be called the chf of a compoun« distribution. Since every F F with 
. -Joo 

.\',(F) = 0 can be written in the form G(-log H(T)) with G(T) = (1 + T) · (cf. 

theorem 5.4.5), it then follows that t.he distributions in F"" with left ex

tremity equa.1 to zero can be regarded a.s "compound exponential" distribu

tions on [0, 00). Similarly, the chf's 1/J , considered in theorem 5.4.31, cor-
).J 

respond to "compound exponential" distributions on IR. 
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To conclude this section, we return to functional equations. For A< 00 the 

FA•s have been defined by means of the equation 

(5.4.55) f c(y;A)dF(y) = 
[0,x] 

J F(x - y) dKA (y) 

[0,x] 

(x > 0) , 

with a nondecreasing function KA. Letting A ➔ 00 , we get (cf. theorem 1.6.7) 

the characterization of the class F+ by 
00 

(5.4.56) F(x) - F(0) = f F(x-y)dK00 (y) 

[0,x] 

with a nondecreasing function K00 • 

(x > 0) , 

Now, we want to know how from (5.4.55) or (5.4.56) the functional equation 

can be derived, by means of which F00 has been characterized (cf. theorem 

5 .4. 12): 

(5.4.57) x-yF(x) f F(x-y){l-N(y)}dy 

(0,x] 

(x > 0) , 

where y ~ 0 and N is a nondecreasing function with N(oo) 

J xdN(x) < 00 • 

(0,1) 

0 and 

First, let us consider the case that FE F+. Then y 
00 

0 and N is bounded, 

and from remark 5.4.11 it is seen that 

(5.4.58) 1- K00 (x) = F(0) {1 - N(x)} (x > 0) • 

Rewriting (5.4.56) as 

F(0) = F(x) - / F(x - y)dK00 (y) 

[0,x] 

and integrating this equation over [0,z], we get 

F(0)z f F(z - y) {1 - K00 (y) }dy 

[0,z] 

(x > 0) , 

(z > 0) , 

which by (5.4.58) is equivalent to (5.4.57) with y = 0. 

When considering a general FE F00 , we need the first relation in the follo

wing lemma. 

LEMMA 5.4.37. Let FE F00 with i(F) = 0. Then the following relations hold 

between the canonical representation (y,N) and the KA-functions of F: 
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(5.4.59) y + [1 - N(y)}dy, 

(0, 

(5.4.60) lim__,J_ f ydK;\ (y) y + f ydN(y) 
;\+oo F(;\) 

[0,x] (0,x] 

(5 .4.61) ~: fTff{ 1 
-1 

- c.\ KA (x)} l - N(x) 

PROOF. In view of (5.4.1) and (5.4.21) we have t.he following relation: 

(5.4.62) lim 
;\+oo 

y+ J e-T}{{l-N(x)}dx, 

(0,ro) 

from which by the continuity theorem for LST's (cf. Feller (1971), ch. XIII) 

(5.4.59) follows. 

By the canonical representation (5.4.16) for F we can rewrite (5.4.4) .in 

the form 

(5.4.63) lim y + 
-TX 

e xdN(x) . 
;\-l-00 

(0 

Applying the continuity theorem once more, we get (5.4.60). 

Fina.lly, rewriting the integrals in (5.4.59) as 

f {1 

[0,x] 

f ydKA (y) 

[O,x] 

and (cf. (5.4.24)) 

f {1 - N(y) }dy 

(0,x] 

x{l - N(x)} + / ydN(y) , 

(0,x] 

respectively, and using (5.4.59) and (5.4.60), we obtain (5.4.61). D 

Now, we are ready to derive (5.4.57) from (5.4.55). Rewrite (5.4.55) as 

f -\y -1 
e dF(y) = F(x) - CA f F(x - y) dKA (y) , 

[0,x] [0,x] 

then, integrating this equation over [O, z], we get 

f (z ·• y)e-AydF(y) = J F(z - y) {J - (y) 

[0,z] [0,z] 



or, dividing by F(A) and rewriting the left-·hand side, 

1 
z - F(A){z f 

( z ,oo) 

(5.4.64) 

-Ay 
e dF(y) + f -Ay 

ye dF(y)} 

[O,z] 

J F(z-y) 

[O,z] 
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Letting A -+ 00 , and using (5.4.59) and t.he fact that the absolute value of 

the second term in the left-hand side of (5.4.64) is less than -F' (A) /F(A), 

and hence tends to zero (cf. lemma 5.1.6), we get the functional equation 

(5.4.57). 

5. 5. The. cl.aof.i F 00 in '1..ela:tfon ,to 1.,.ta.nd.M.d p-61.mdioVi.1., 

The relation bet.ween C0 and the class R.0 of renewal sequences (cf. sect.ion 

4. 1) suggests the existence of relations between and the classes of p-

f unctions and renewal densities, both of which can be considered as conti

nuous analogues of R0 • 

Let us first give the definition and some properties of p-functions; they 

can be found in Kingman (.1972) • 

DEFINI'I'ION 5.5 •• A function p on (0, 00 ) is said to be a 

exists a {0,1}-valued stochastic process {Z(t) }t>O (called a 

phenomenon) such that 

(5 .5 .1) 
n 

1) JI p(tk···tl<-l) (0= 
k=l 

i.f there 

In a similar way one can define a discrete-·time regenerative phenomenon 

{Z(n)} • The sequence {u }°'' that then replaces the function p i.n (5.5.1), 
n~lN0 no 

can be shown to be a renewal sequence, and conversely. 

From (5.5.1) it follows that a p-function p satisfies: 

(5 .5 .2) p ( t) = P ( Z ( t) = 1) (t > 0) , 

and hence 

(5 .5. 3) 0 s; p(t) s 1 (t > 0) • 

p-functions satis.fy many other inequalities; in fact, U1ey can be charac

terized as follows (cf. the definition of renewal sequences). 
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THEOREM 5.5.2. A function p on (0, 00 ) is a p-function iff p satisfies 

n 
I F(tl' ... ,tk;p) s; 

k=l 

for all n E 1N and O < t 1 < •.. < where 

+ I I 
1S:i<j<n 

p(t ) -
n I p( 

lsi<n 

COROLLARY 5.5.3. If pis a p-function, then 

p(t -
n 

(5 .5 .4) p ( s) p ( t) s p ( s + t) s; p ( s) p ( t) + 1 - p ( s) 

The following two properties are of special interest. 

+ 

(s, t > 0) 

THEOREM 5.5.4. If pl and 

fined by 

are p··functions, then so is the function p, de-

p(t) := pl (tl (t) (t > 0) 

THEOREM 5.5.5. If pis a p-function, if h > 0, and if 

u (h) : = 1, tJ1en 
0 

(h) } OO E R 
0 0 

(h) := p(nh) {n ,cJN), 

in which case (h)} is associated with fn(h) := F(h,2h, ... ,nh;p). 

We shall connect F 00 with the class P of standard p-functions, i.e. p--func

tions · p with the property 

(5 .5 .5) Um p(t) = 1 . 
t+O 

The class RO of renewal sequences coi,ncides with the class of diagonal tran

sition probabilities corresponding to any state in any (discrete-time) Mar

kov chain (cf. t½eorem 4 .. 6(i)). There exists only a partial analogue of 

this result for P. 

THEOREM 5.5.6. If {x(t)} t:C:O is a standard, continuous-time Markov chain on 

the countable state space S, if a c S, and if 



(5 .5.6) p(t) := P(X(t) a I X(0) a) (t > 0) , 

then p E P. 

The follow.ing theorem shows what functions can arise as L'r's of standard 

p-funct.ions. 

THEOREM 5. 5. 7. A function <p on ( 0, 00) is the LT of a function p ec P iff 

there exists a measure v on (0, 00 ] satisfying 

(5.5.7) J -x - e )v(dx) 

( 0 ' 00 J 

such that (Jl has the form 

(5.5. 8) (Jl(T) = h + / 
-TX -1 

(1 - e )v(dx)} (T > 0) 

(Q,oo] 

(v, which is unique, is called the canonical measure of p E P). 
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Before g.iving the relation between and P, we state some s.imple, but use-

ful properties of P. Let p E P with canonical measure v. Then from the in

equality (5.5.4) .it can be shown (put p(0) = 1) that p is positive and uni

formly continuous on [0, 00), and that p( 00 ) := lim p(t) exists in [0,1], 
t-+oo 

-p:(0) := lim {1 - p(t) }/t in [0, 00 ] and /l := lim {-log p(t) }/tin [0, 00), 

t+0 t-+co 

while furthermore 

(5.5.9) p(oo) = {1 + f -1 
XV (dx)} , -p;_ (0) v((0,oo]) 

( 0 ,oo] 

and 

(5.5.10) exp[p~(0)t] ,c; p(t) ,c; exp[-llt] (t > 0) • 

Finally, from (5.:,.8) it follows that 

which case 

(5.5.11) f p(t)dt 

( 0 ,oo) 

'rHEOREM 5 . 5 . 8 . 

J p(t)dt < oo .iff v({oo}) > 0, in 
(0 ,oo) 

( i.) Let F c F 00 with R, (F) = 0, and let y > 0 in the canonical nopresenta

tion ('/,N) of F (cf. (5.4.16)). Then F' has a continuous density f, 
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for which f(O+) exists in (0, 00), and 

p(x) := f(x)/f(O+) E P. 

(ii) Let p E P with canonical measure v, and let v( { 00 }) > 0. 'l'hen 

f(x) := v({ 00 })p(x) E F~. 

(iii) Let p E P, and let a > 0. Then 

PROOF. One easily obtains parts (i) and (ii) by using theorem 5.4.13 and 

(5.5.11), and by comparing the canonical representations (5A.16) for 

and ( 5. 5. 8) for P. Here the following relation holds between ( y, N) and v: 

(5.5.12) yv(dx) = dN(x) on (0, 00), yv({"',}) = 1 

To prove part (iii), we define rr(x) := e-axp(x) (x ?. 0). 'rhen in view of 

theorem 5. 5. 4 we have 7f E P. Since by ( 5. 5. 11) the canonical measure of 7f 

has mass P(a)-l > 0 at 00 , we can apply part (ii), and (iii) follows. D 

By means of theorem 5. 5. 8 it is possible to obtain proper ti.es of the class 

{FE F00 I .Q.(F) = 0, y > O} from those of P (and conversely), and one could 

try to extend these properties to the whole class or, if the property 

considered can be transfered to df's, to F00 • However, we shall restrict 

ourselves to the following interesting analogue of theorem 5.5.4 for 

(see also Hawkes (19Tl), who gives a similar result for potential. kernels 

(cf. the end of the present section)). 

THEOREM 5. 5. 9. Let f be the continuous density of a df F E F 00 with Ji, (F) = 0 

and y > 0 (i.e. f(O+) E (0, 00 )) in its canonical representation (y ,N) (cf. 

theorem 5.4.13), and let GE F with .Q.(G) = 0. Then there exists c > 0 such 

that the function 

(5.5.13) H(x) := C f f (y) dG(y) (x 2 0) 

[o,xJ 

is a df in with t(H) = 0. 

PROOF. First we note that by the boundedness off (cf. (5.4.30)) (5.5. 3) 

defines a df H for a sui.tably chosen c > 0. By the remark, following lemma 

5.4.18, there exist df's G11 (n E JN) in F00 with t(Gn) ~ 0 and witJ-i y > 0 i.n 
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their canonical representation such that G .is the weak limit of the sequence 

{G }. Since f is continuous and bounded, it follows by the extended version 
n 

of Helly' s second theorem that 

(5.5.14) fi(,l = lim c 
n+oo f 

[O, oo) 

-,x 
e f(x)dG (x) 

n 

By theorem 5.5.B(i), each of the df's has a continuous density gn' for 

which gn(x)/gn(O+) E P. Applying theorem 5.5.4, we see that also 

f(x)gn(x)/{f(O+)gn(O+)} E P, and hence (cf. theorem 5.5.8(ii)) f(x)gn(x) is, 

save for norming, a density in F:. By (5.5.14) it. now follows that. H is the 

weak limit of a sequence of df's in 

H E F • 
00 

and hence (cf. theorem 5.3.1) 

REMARK 5.5.10. If f i.s the densi.t.y of a df FE F:, for which f(O+) = 00 , 

then the .integral in (5.5.13) is not necessarily convergent. for every df 

G E F00 with J/,(G) = 0: take, for instance, a gamma df with second parameter 

\I = ½ for both F and G. 

□ 

'I'he renewal sequences have a second continuous analogue, the renez,Jal densi

ti.es. 'l'hi.s will be apparent from theorem 4 .1 .. 5 and the following definition 

and properties of (pure) renewal functions (cf. Smith (1958)). 

Let T 1 , '1'2 , ••• be nonnegative, independent rv' s with common df F. Then the 

sequence {sn}7, defined by 

s 
n 

(n E ]NJ , 

is called the renewal process associated w.ith F. The renewal 

sociated with F, .is defined by 

U(x) := EN , w.ith N : 00 # ({n E 1N J S 5 x}) . 
X X n 

U as-

Both {s } and U are called persistent if F is proper, and transient .if F' is n 
defective. The renewal function U i.s 'the solution of the renewal 

associated with F: 

(5.5.15) U(x) = F(x) + / U(x-y)dF(y) (X E JR) , 

[0,x] 

and U satisfies 
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(5. 5.16) U(x) (x) (x E IR) . 

If F has a density f, then U has a density u, the rene1;Jal 

satisfies 

which 

(5.5.17) u(x) f(x) + f u(x - y)f(y)dy 

[0,x] 

( almost all x E IR) . 

First, let us consider a transient renewal function U. It is associated with 

pF, for p E (0,1) and Fa proper df on [0, 00). By (5.5.15) it follows that 

the LST 6 of u satisfies 

(5.5.18) U(T) 
pF(T) 

1 - pF(T) ' 

from which, using corollary 5.4.30, we obtain the following relation with 

r . 
00 

THEOREM 5.5.11. Let Ube a transient renewal function, associated with pF 

(0 < p < 1). Then: 
-1-

(i) H(T) := (1-p)p U(T) is a PLST in F
00 

with 9,(H) 0 .iff F E with 

9,(F) = 0; 

(ii) (1 -p) {1 + U(T)} is a PLS'.l' in r:. 
Next, let us consider the persistent case. Then we have the following rela

tions for a renewal function associated with F: 

(5.5.19) U(T) 
F(T) 
_ F(T) and F(T) 

U(T) 
(T > 0) • 

Daley (1965) characterizes the renewal functions U for which µU is again a 

renewal function for all µ > 0. His result is not only most easily formula·

ted by means of the class F00 , but it also immediately follows from thf'o.rem 

5.4.29; one need only observe that if U is the renewal function associated 

with F and j_f vu i.s a renewal function, then (cf. (5.5.19)) vu ls associat

ed with Fµ, given by 

(5.5.20) F (T) 
)l 

)l 

This proves Daley's result., which we formulate as follows. 
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THEOREM 5.5.12. Let Ube a (persistent) renewal function, associated with 

F. Then: 

(i) µU is a renewa.l function for all µ E (0, l J; 

(i.i) \lU is a renewal function for all µ > 0 iff F E F00 with J/,(F) 

which case the df F that µU is associated wi tl1, is also in 
µ 

J/,(F ) = 0. 
].I 

0, in 

with 

Some authors (e.g. Feller (1971)) put S 0 0 and count this as a renewal 

epoch, Le. they consider 1[0,oo) (x) + U(x) in stead of U(x). In connection 

with this, Runnenburg (1965) notes that for most purposes it is sufficient 

to consider only renewal functions associated with a compound geometric df 

on [0, 00). In fact, he gives the following rather remarkable result (cf. 

theorem 5.5.ll(ii)), which is easily verified. 

LEMMA 5. 5 .13. If U i.s the renewal function associated with the df F, then 

the function 

(5.5.21) V(x) := l[Q,oo) (x) + U(x) (X E JR) 

+ is a renewal function associated with a df G E F00 , given by 

(5.5.22) G(T) (T 2 OJ • 

In view of theorem 5.5.12 this lemma can be generalized as fol.lows. 

THEOREM 5.5.14. If u is the renewal function associated with the df F, then 

for all 11 > 0 the function 

(x) := µ{l[O,oo) (x) + U(x)} (X E JR) 

is a. renewal. function associated w.i th a df in F:. 
If FE has canonical representation (y,N), t.hen by (5.5.19) the renewal 

function U, associated with F, satisfies 

(5.5.23) U(T) = + / (1 - e-Tx)dN(x) }-l 

(0 ,oo) 

(t > OJ • 

If Y > 0, then by theorem 5.5.7 and (5.5.11) it follows that has a conti-

nuous renewal density u, for which p(x) := yu(x) .is a standard p-function 

with J p(x)dx 0~ 00 • Obviously, the converse is also true, i.e. (cf. t.heo-
(0,oo) 
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rem 5.5 12) we have the following relation between renewal densities and 

p-functions (see also Daley (1965) and Kingman (1972)), which, by theorem 

5.5.B(iii), also yields a relation between renewal densities and F~. 

THEOREM 5.5.15. Let u be a continuous function on [0, 00 ) with u(O) 

µu is a (persistent) renewal density for allµ> 0 iff u E P and 

J u(x) dx = 
( 0, oo) 

l. Then 

Recently, Forst ( 1978) proved Daley's result by making use of the fa.ct that 

a nondecreasing function U, vanishing on (- 00 ,0), is a. persistent renewal 

function iff the measure µ, with df l[O,oo) (x) + U(x) (x E JR), is a potential 

kernel on [0, 00 ) with infinite mass. Here, a potential ke:r'nel on [O,oo) is a 

measureµ of the form 

(5.5.24) µ 

where (µt)t>O is a convolution semigroup of possibly defective probability 

measures on [0, 00 ) (see e.g. Berg & Forst (l.975)). 

'l'he potential kernels are intimately connected with the class F 00 • This is 

apparent from the canonical representations. In terms of LST's, (5.5.24) 

can be rewritten as 

J {-log p - log H(T) 

(0 ,oo) 

where O < p C: 1 and H E F O • Note that for p < 1 we have, save for norming, 

a special case of theorem 5.4.34: talce for Gin (5.4.53) an exponentiaJ df. 

Using for H the representation (y,N) from theorem 1.7.1, we obtain from 

(5.5.25) the canonical representation for the LST µ of a potential kernelµ: 

(5. 5. 26) 

where S 2: 0, y 

{S+n+ f 
(0 ,co) 

(T > 0) 

0 and N is a nondecreasing function on ( 0, 00 ) with N ( oo) = O 

a.nd J xdN (x) < 00 (not simuJtaneously S ~ 0, y = 0, N = 0) . In fact, 
(0, 1) 

(5.5.26) reduces to the canonical representations (5.4.16) for a.nd 

(5.5.tl) for P, :Lf we take 13 ~ 1 and y ~ 1, respectiveJy. Furthermore, i.f u 

is the renewal function associated with pF, where O < p .< 1 and F l.s a 

(proper) df on [0, 00 ), then, obviously, the LST 
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1 + fi(T) = {1 - pF(T)} (T > 0) 
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is of the form (5.5.26) with y = 0 and N bounded. Thus, properties of F00 , 

P and renewal functions can be obtained from known properties of potential 

kernels (cf. Berg & Forst (1978)). 

Finally, we note that the potential kernels correspond with more general 

renewal functions. The continuous-time analogue of the renewal process 

[Sn}7 (cf. p. 181), regarded as a discrete-time process, is an increasing 

process {st}t>O that is inf div, i.e. 

-TS 
Ee t = {pF(t)}t (t 2 0) , 

where O < p ,,; 1 and F E F O • Now, t.he analogue of the renewal function u is 

the function V, defined by ( :\ is the Lebesgue measure) 

V(x) f t ,st 
p F (x)dt, 

(0 ,"") 

whi.ch shows that the potential kernels, considered by e.g. Hawkes (1977), 

are identical to those defined in (5.5.24) or (5.5.25). 

In section 2.5 we introduced the classes Cu of compound negc1tive-binomial 
0 

lattice distributions with parameter u > 0. They define a classification 

of C1 , and can be characterized as follows: 

p E Cu <l'l> Pl/u is a pgf in C 
0 0 

Now, for the sake of completeness, we briefly consider the analogous clas-

ses of distributions on [0, 00). 

DEFINITION 5.6.1. For u > 0 a df Fon [0, 00 ) is said to be in the class F~ 

if Fl/u is a PLST in F. 
00 

If Fis a df on [0, 00), if y > 0 and if F1 is a PLST (of , then the 

function of p*Y is equal to that of F, multiplied by y. Hence, by lemma 

5.1.6 we have in this case 

(5 .6. l) 

Now, by theorem 5. 4. 5 it follows that a PLST F in F~ w.i t.h !!, (F) 0 has the 
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canonical form 

(5 .6. 2) (T 2: 0) , 

with H " F0 • 'l'hus, the df's Fin F~ with £(F) 

pound garrma 11 df's (cf. remark 5.4.36). 

0 can be regarded as "com-

Since F+ is the class of compound geometric distributions on [0, 00), the 
00 . 

class (Fu/ of df's F in Fu with F(O) > 0 coincides with the class of com-
co co 

pound negative-bin.omial distributions on [0, 00 ) with parameter u (cf. theorem 

1.6.6). Also, F: is dense in {F' E F00 I l',(F) = 0} in the sense of weal< con-

vergence (cf. (5.4.1)), and this result, together with (5.6.1), immediately 

yields the following characterization of F~ (cf. theorem 1.4.15). 

'THEOREM 5.6.2. For u > 0 a df F', with l',(F) = 0, is in Fu iff F :is the weal, 
co 

limit of compound negative-binomial df's with paran1eter u, Le. iff F has 

the form 

(5.6.3) (T ?:: 0) , 

where 0 < pn < 1 and is a df on [0, 00 ) (n ElN). 

'l'he family ( F~ I u > 0) defines a classification of F O : similar to t.he 

proof of theorem 2.5.3 it can be shown that 

(5 .6 .4) 

Furthermore, U 
u>O 

is dense in F0 ; in fact, if F 

limit of the sequence of df's Fn, defined by 

(5.6.5) F (,) := { n - }n 
n n - log F(T) 

(1 2: 0) , 

which (cf. ( 5 .6. 2)) is a PLS'r in (n JN) • 

F , then Fis the weak 
0 

Another interpolation between F 00 and F O is suggested by the relation (5 4 2) 

between the 1/J 00-function and the cp 0 -function of a df Fon [0, 00): we briefly 

indicate the analogues to the classes (y 2: 0) from definition 2 .. 5. 7. 

DEFINITION 5.6.3. For y 2 0 a elf Fon [0, 00 ) is said to be in the class 

if the function 



(5.6.6) '(T) 

is comp mon. 

1+y 
(T) (T > 0) 
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Obviously, L0 

let y > 0 and 

= F0 and L1 = {F E F00 J £(F) = O} (cf. theorem 5.4.2). Now, 

let F E L . Then the function in (5.6.6) has a. fin.i.te 1:i.mit 
y 

c, say, as , -+ 00 , and therefore by lemma 5. 1. 6 it follows that 

£(F) = lim -i•(,:)/i(,) = cF(O)y 
,:➔co 

and hence 

(5.6.7) F E L ~ £(F) 
y 

0 (y > 0) • 

Furthermore, if FE Ly, then F-y has a comp mon derivative; hence by lemma 

~ y {F-;-y}-1 1.3.B(vi) F is a PLST, and its ~\,,-function is comp mon. Now it 

easily follows that 

(5 .6. 8) F E L .,. 
y 

is a PLST in L l , 

which by (5.6.7) can be reformulated as follows. 

THEOREM 5.6.4. For y > 0 the following relation holds: 

L {FE F!1Y I i(F) = O} . 
y 

Thus, for df's Fon [0, 00 ) with i(F) = 0 the family (L J y > 0) defines the 
y 

same classification of F 
0 

as ( 

5 . 7 • F with Vt g en.V-Lilizatio 11/2 

I u > 01. 

In analogy to the investigations in chapter 3 we could consider tot dee, 

tot fact and tot-dec(1) PLST's. We only mention the following analogue of 

theorem 3.2.4, and note that the analogue of theorem 3.4.5 has already been 

given in theorem 5A.29(iii). 

THEOREM 5. 7 .1. A df F on [O , 00 ) is inf div iff for all :\ > 0, or, equivalent-· 

ly, for all :\ E (0,E) (some E > 0), there exists a df 

F can be written as 

F(,l F(T + ii) 
F(il) Fil (T) (t 2 0) • 

on [O , 00 ) such that 
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In chapter 4 we studied extensions of the C 's, the classes R of generalized 
a a 

renewal sequences. Similarly, one could consider the functional equations 

(5.1.7) for nondecreasing functions F that are not necessarily df's. This 

would give rise to classes of generalized p-functions, renewal functions 

and potential kernels. 

In view of a further generalization one might ask to what extent the results 

of this monograph can be extended to distributions on the whole real line. 

Trying to extend the classification of F0 by the FA's to df's on JR, one en

counters the difficulty that the PLST F ( r + A) /F ( A) , which plays an essential 

role for FA, has no obvious analogue for general df's; F(t+A)/F(A) is, in 

general, not a chf for A> 0. Also, no functional equations are known that 

characterize the class of all inf div df's on JR. 

Another possibility is writing an inf div chf Fas a function of chf's of 

df's on [0, 00), and then requiring that these df's are in FA. Of course, 

every chf F can be written as 

(5. 7 .1) (t E JR) , 

where O $ p $ 1, and F1 and F2 are df's on [0, 00). However, if F1 and F2 are 

in F, then Fis not necessarily inf div. 
0 

The following decomposition gives a better result. 

DEFINITION 5.7.2. For O $A$ 00 a df Fon JR is said to be in the class GA 

if there exist df's F1 and F2 in FA such that 

(5. 7 .2) F(tl (t E JR) 

Obviously, we have the desired monotonicity property: 

but G does not coincide with the class of all inf div df's on JR; in fact, 
0 

by theorem 1.7.11 it is seen that an'inf div df Fis in G0 iff its Levy re-

presentation (a,a2 ,M) satisfies 

(5. 7 .3) 
2 

a = O, f JxjdM(x) < oo • 

(-1,1) \{O} 

Therefore, for O $A$ 00 we introduce the classes GA of df's that are weak 

limits of df's in GA. Now, observing that the compound Poisson df's on JR 
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are in (cf. theorem 1.7.13 and (5.7.3)), we conclude from De Finetti's 

theorem (theorem 1.4.15) that G is the class of aU inf div df's on JR. As 
0 

obviously 

the family <<\ I O s :\ s 00) defines a classification of tlle inf div df's on 

JR. Unfortunately, this does not lead to a characterization of C\ by a sin

gle functional equation. 

We note that the classification of F0 given by ( F~ / u > 0) (cf. section 6), 

is easily extended to general df' s on lR: consider chf' s F of the form 

F(t) = {1 - log H(t) }-u (t E IR) , 

with H an inf div df on IR. 

Finally, we consider the multi.variate case. Generalizing the functional 

equations by means of which Horn & Steutel (1978) characterize the distri

butions of nonnegative multivariate inf div random vectors, we can obtain 

a classification of tl1ese distributions analogous to that of F0 by the F),'s. 

We illustrate this by giving this characterization for distributions on JN2 • 
. 0 

THEOREM 5. 7. 3. Let {pk' ,e_} be a probability 

Then there exists a unique solution {ak,,Q,} 

system of recurrence relations: 

distribution on:n'/ with p >0. 
0 O;O 

k ,Q, 

(k+l)pk+l,,Q, I I 
i=O j=O 

(5. 7 .4) 
k JI, 

(9, + l)pk,R-+1 I I 
i=O j=O 

with a = 0 of the following 
o,o 

( i + 1) a, l ,pk , ,Q, , 
i+ ,J -i, -J 

(k, R, E :JN ) 
0 

(j + 1) 
,Jl,-j 

Furthermore, {pk,QJ is inf div iff ,,Q, ?: 0 for all k,,Q, E JN0 , in which case 

k, ',Q, 
-log p < 00 • 

o,o 

Now, we can replace the factors k + 1 and JI, + 1 in ( 5. 7. 4) by 

k+1 ,Q,+1 
( 1 - a: ) / (1 - a) and ( 1 - a ) / ( 1 - a) , 

or by 
) I (1 - a) and ( 1 - (3 .R.+ 1 ) / ( 1 - 13) , (1 -

2 nsspecti vel.y, to obtain cl.a.ssifications of the .i.nf div distributions on :JN • 
0 



, 



191 

REFERENCES 

Ahmad, R. and Abouammoh, A.M. (1977). On the structure and applications of 

infinite divisibility, stability and symmetry in stochastic infe

rence, Recent developments in statistics, J .R. Barra et al. (edi

tors), North-Holland Publishing Company, Amsterdam, etc. 

Baxter, G. and Shapiro, J.M. (1960). On bounded infinitely divisible random 

variables, Sankhya 253-260. 

Berg, c. and Forst, G. (1975). Potential theory on locally compact abelian 

groups, Erg. der Math. Bd. 87, Springer, Berlin, etc. 

Berg, C. and Forst, G. (1978). Infinitely divisible probability measures and 

potential. kernels, to be published in: Lecture Notes in Math., 

Springer, Berl.in, etc. 

Blum, J .R. and Rosenblatt, M. ( 1959). On tl1e structure of inf:i.ni.tel.y di.vi.si.

ble distributions, Pacific J. Math. ~' 1-7. 

Bruijn, N.G. de and Erdos, P. (1951). Some linear and some quadrati.c recur

sion formulas I, Indag. Math. 11_(5), 374-382. 

Daley, D.J. (l.965). On a class of renewal functions, Proc. Carn. Phil. Soc. 

_61, 519-526. 

Feller, W. (1.968). An introduction to probability theory and its applica

tions, vol. 1, 3-d ed., Wiley, New York. 

Feller, W. (1971). An introduction to probability theory and i.ts applica

tions, vol. 2, 2-nd ed., Wiley, New York. 

Fisz, M. (1962). Infinitely divisible distributions: Recent results a.nd ap-

plications, Ann. Ma.th. Statist. 68-84. 

F'isz, M. and Va.ra.da.ra.ja.n, V.S. (1963). A condition for absolute cont.inui.ty 

of infinitely divisible distribution functions, Z. Wahrscheinlich

kei tstheori.e verw. Gebiete .!:_, 335-339. 

Forst, G. (.1978). Multiples of renewal functions; remark on a. result of 

D.J. Daley, to be published i.n: Lecture Not.es in Ma.th., Springer, 

Berlin, etc. 

Gnedenko, B.V. and Kolmogorov, A.N. (1949, English ed. 1954). Limit distri

butions for sums of in.dependent. random va.ria.bles, Addison-Wesley, 

Cambridge, Mass. 



192 

Goldie, C.M. (1967). A class of infinitely divisible distributions, Proc. 

Cambridge Phil. Soc. 63, 1141-1143. 

Grosswald, E. (1976). The Student t-distribution of any degree of freedom 

is infinitely divisible, z. Wahrscheinlichkeitstheorie verw. Ge

biete 36, 103-109. 

Gurland, J. (1957). Some interrelations among compound and generalized dis

tributions, Biometrika 44, 265-268. 

Harn, K. van (1977). Opgave 43, Statistica Neerlandica (problem section) 

_;ll,(4), 188-189. 

Harn, K. van and Steutel, F.W. (1977). Generalized renewal sequences and in

finitely divisible lattice distributions, Stochastic Processes 

Appl.~• 47-55. 

Hawkes, J. (1977). Intersections of Markov random sets, z. Wahrscheinlich

keitstheorie verw. Gebiete r!._, 243-251. 

Hawkes, J. and Jenkins, J.D. (1978). Infinitely divisible sequences, Scand. 

Actuarial J. ±_, 65-76. 

Horn, R.A. and Steutel, F.W. (1978). On multivariate infinitely divisible 

distributions, Stochastic Processes Appl.~. 139-151. 

Johnson, N.L. and Kotz, S. (1969). Distributions in statistics: discrete 

distributions, Houghton Mifflin Company, Boston. 

Kaluza, T. (1928). Uber die Koeffizienten reziproker Potenzreihen, Math. 

Zeitschrift ~. 161-170. 

Katti, S.K. (1967). Infinite divisibility of integer-valued random varia

bles, Ann. Math. Statist. 38, 1306-1308. 

Katti, S.K. (1977). Infinite divisibility of discrete distributions III, 

to be published. 

Kelker, D. (1972). Infinite divisibility and variance mixtures of the nor

mal distribution, Ann. Math'.. Statist. 42, 802-808. 

Kendall, D.G. (1967). Renewal sequences and their arithmetic, Symposium on 

Probability Methods in Analysis, Lecture Notes in Mathematics 31, 

Springer, Berlin, etc. 

Kingman, J.F.C. (1972). Regenerative phenomena, Wiley, London. 



193 

Lamperti, J. (1958). On the coefficients of reciprocal power series, Ameri

can Math. Monthly 65, 90-94. 

Levy, P. (1937). Theorie de l'addition des variables aleatoires, Gauthier

Villars, Paris. 

Linnik, Y.V. (1964). Decompositions of probability distributions, Oliver 

and Boyd, London. 

Lukacs, E. (1970). Characteristic functions, 2-nd ed., Griffin, London. 

Miller, D. (1967). A note on passage times and infinitely divisible distri

butions, J. Appl. Probability i, 402-405. 

Petrov, v.v. (1972, English ed. 1975). Sums of independent random variables, 

Springer, Berlin, etc. 

Pblya, G. and Szego, G. (1970). Aufgaben und Lehrsatze aus der Analysis, 

Bd. 1, 4-th ed., Springer, Berlin, etc. 

Runnenburg, J. Th. (1965). Discussion on Mr. Kingman's paper, W.L. Smith 

and W.E. Wilkinson (editors), Proceedings of the Symposium on 

Congestion Theory, The University of North Caroline Press, Chapel 

Hill. 

Smith, W.L. (1958). Renewal theory and its ramifications, J.R. Statist. Soc. 

B 20, 243-302. 

Steutel, F.W. (1970). Preservation of infinite divisibility under mixing, 

and related topics, Math. Centre Tracts 33, Math. Centre, Amster

dam. 

Steutel, F.W. (1973). Some recent results in infinite divisibility, Stochas

tic Processes Appl._!_, 125-143. 

Steutel, F.W. and Harn, K. van (1978). Discrete analogues of self-decomposa

bility and stability, to be published in: Ann. Probability. 

Steutel, F.W. and Wolfe, S.J. (1977). On the asymptotic behaviour of moments 

of infinitely divisible distributions, Memorandum COSOR 77-06, 

Department of mathematics, Eindhoven University of Technology, 

Eindhoven, The Netherlands. 

Thorin, 0. (1977). On the infinite divisibility of the lognormal distribu

tion, Scand. Actuarial J., 121-148. 



194 

Tucker, H.G. (1961). Best one-sided bounds of infinitely divisible random 

variables, Sankhya Ser. A ~' 387--396. 

Tucker, H.G. (1962). Absolute continuity of infinitely divisible distribu

tions, Pacific J. Math. g, 1125-1129. 

Tucker, H.G. (1965). On a necessary and sufficient condition that an infi

nitely divisible distribution be absolutely continuous, Trans. 

Amer. Math. Soc. 118, 316-330. 

vervaat, W. (1978). On a stochastic difference equation and a representation 

of nonnegative infinitely divisible random variables, to be pu

blished in: Adv. AppL Prob. 

Warde, W.D. and Katti, S.IC (1971). Infinite divisibiHty of discrete dis

tributions II, Ann. Matl1. Statist. 42, 1088-1090. 

Widder, D.V. (1946). The Laplace •rransform, Princeton Universi.ty Press, 

Princeton. 

Wolfe, S.,L (1971a). On the unimodality of L functions, Ann. Math. StatisL 

42, 912···918. 

Wolfe, S.J-. (1971b). On moments of infinitely divisible distribution func

tions, Ann. Math. Statist. 42, 2036-2043. 

Wright, E.M. (1967). A relationship between two sequences, Proc. London 

Matl1. Soc . .!:2, 296-304. 

Yamazato, rvr. (1978). Unimodality of infinitely divisible distribution func

tions of class L, Ann. Probability_§_, 523-531. 



OTHER TfflES lN THE SERIES MATHEMAT!CAl CENTRE TRACTS 

A leaflet containing an order-form and abstracts of all publications men
tioned below is available at the Mathematisch Centrum, Tweede Boerhaave
straat 49, Amsterdam--1005, The Netherlands. Orders should be sent to the 
same address. 

MCT 1 T. VAN DER WALT, Fixed and almost fixed points, 1963. ISBN 90 6196 
002 9. 

MCT 2 A.R. BLOEMENA, Sarrrpling f'l'Om a graph, 1964. ISBN 90 6196 003 7. 

MCT 3 G. DE LEVE, Generalized Markovian decision processes, par•t I: Model 
and method, 1964. ISBN 90 6196 004 5. 

MCT 4 G. DE LEVE, Generalized Mar•kovian decision pr•ocesBeB, pm't II: Pro
babil-istic background, 1964. ISBN 90 6196 005 3. 

MC'r 5 G. DE LEVE, H.C. 'I'IJMS & P.J. 1/illEDA, Generalized Markovian decision 
processes, Applications, 1970. ISBN 90 6196 051 7. 

MCT 6 M.A. MAURICE, Compact or•dered spaces, 1964. ISBN 90 6196 006 1. 

MCT 7 W.R. VAN ZWET, Convex tr>anej'ormations of random variables, 1964. 
ISBN 90 6196 007 X. 

MC'r 8 J.A. ZONNEVELD, Automatic numerical integration, 1964. ISBN 90 6196 
008 8. 

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6. 

MCT 10 .E.M. DE JAGER, Applications of' distributions in mathema-tieal physics, 
1964. ISBN 90 6196 010 x. 

MC'l' 11 A.B. PAALMAN-DE MIRANDA, Topo Zogica l semigr•oups, 1964. ISBN 90 
011 8. 

MCT 12 J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN 
WIJNGAARDEN, Fonnal properties of' neu.lspape1° Dutch, 1965. 
ISBN 90 6196 013 4. 

6196 

MCT 13 H.A. LAUWERIER, Asymp·totic expansions, 1966, out of print; replaced 
by MC'I' 54 and 67. 

MCT 14 l-LA. LAUWERIER, CaZ.culus of variations in mathematical physies, 1966. 
ISBN 90 6196 020 7. 

MC'r 15 R. DOORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5. 

MCT 16 J.W. DE BAIGCER, Formal definition of prograrrming languages ,;n:th an 
applicatfon to the dej'init-ion of ALGOL 60, 1967. ISBN 90 6196 
022 3. 

MCT 17 R.P. VAN DE RIET, Formula ma:nipu"lation en ALGOL 60, part I, 1968. 
ISBN 90 6196 025 8. 

MCT 18 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 0 
6' 1968. 

ISBN 90 6196 038 X. 

MC'.r 19 J. VAN DER SLOT, Some re lated to corrrnaebwss, 1968. 
ISBN 90 6196 026 6. 

MCT 20 P.J. VAN DER HOUWEN, Pinite methods for· so 
dzffer•ent'ial equations, 1968. ISBN 90 6196 027 4. 



MCT 21 E. WATTEL, The compactness operator in set theory and topology, 
1968. ISBN 90 6196 028 2. 

MCT 22 T.J. DEKKER, ALC,OL 60 procedures in numerical algebra, part 1, 1968. 
ISBN 90 6196 029 0. 

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in numerical algebra, 
part 2, 1968. ISBN 90 6196 030 4. 

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6. 

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective 
geometry, 1969. ISBN 90 6196 039 8. 

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968. 
ISBN 90 6196 031 2. 

MCT 27 EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969. 
ISBN 90 6196 040 1. 

MCT 28 J. OOSTERHOFF, Combination of one-sided statist'ical tests, 1969. 
ISBN 90 6196 041 X. 

MCT 29 J. V'.ERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8. 

MCT 30 H. BRANDT CORSTIUS, Excercises in computational linguistics, 1970. 
ISBN 90 6196 052 5. 

MCT 31 W. MoLENAAR, Approximations to the Poisson, binomial and hypergeo
metric distribution functions, 1970. ISBN 90 6196 053 3. 

MCT 32 L. DE HAAN, On regular variation and its application to the weak 
conve.Y'gence of sample extremes, 1970. ISBN 90 6196 054 1. 

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing 
and related topics, 1970. ISBN 90 6196 061 4. 

MCT 34 I. JUHASZ, A. V'.ERBEEK & N.S. KROONENBERG, Cardinal functions in 
topology, 1971. ISBN 90 6196 062 2. 

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 0. 

MCT 36 J. GRASMAN, On the birth of boundary layers, 1971. ISBN 9061960649. 

MCT 37 J .W. DE BAKKER, G.A. BLAAUW, A.J .W. DuIJVESTIJN, E.W. DIJKSTRA, 
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN 
ARETZ, W.L. VANDERPOEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES & 

G. ZOUTENDIJK, MC-25 Informatica Symposium, 1971. 
ISBN 90 6196 065 7. 

MCT 38 W.A. V'.ERLOREN VAN THEMAAT, Au-tomatic analysis of Dutch compound words, 
1971. ISBN 90 6196 073 8. 

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6. 

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972. ISBN9061960754. 

MCT 41 A. V'.ERBEEK, Superextensions of topological spaces, 1972. ISBN 90 
6196 076 2. 

MCT 42 W. V'.ERVAAT, Success epochs in Bernoulli trials (with applications "n 
number theory), 1972. ISBN 90 6196 077 o. 

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence, 
1973. ISBN 90 6196 081 9. 

MCT 44 H. BART, Mer>omorphie operator> valued f'u.11eticns, 1973 .. ISBN 906196 082 7. 



MCT 45 A.A. BALKEMA, Monotone ty,ansformaUons and limit lmJs, 1973. 
ISBN 90 6196 083 5. 

MCT 46 R.P. VAN DE RIET, ABC ALGOJ,, A pOY'table language for for'T11Ula manipu
lation systems, pa,y,t 1: The fonguage, 19 7 3. ISBN 90 6196 084 3. 

MCT 47 R.P. VAN DE RIET, ABC ALGOL, A portahle language for formula manipu
lation systems, paY't 2: The compiler, 1973. ISBN 906196 0851. 

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J .W. 'l'EN HAGEN & H.L. OUDSHOORN, An ALGOL 
60 compiler in ALGOL 60, Text of the MC-compiler• for the 
EL-XS, 1973. ISBN 90 6196 086 X. 

MCT 49 H. KOK, Connected orderable spaces, 1974. ISBN 90 6196 088 6. 

MCT 50 A. VAN WIJNGAARDEN, B.,T. MAILLOUX, J .E.L. PECK, C.H.A. KOSTER, 
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER 
(Eds), Revised Peport on the algor1:thmic lcmguage AI,GOI, 68, 
1976. ISBN 90 6196 089 4. 

MCT 51 A. HORDIJK, Dynamic prog1•amrning and Markov potential theory, 1974. 
ISBN 90 6196 095 9. 

MC'.f' 52 P.C. BAAYEN (ed.), 1'opological st.mctureB, 1974. ISBN 90 6196096 7. 

MCT 53 M.J. FABER, Metrizability in gener•alized ordered spaces, 1974. 
ISBN 90 6196 097 5. 

MCT 54 H.A. LAUWERIER, Asymptotic analysis, part 1, 1974. ISBN90 6196 098 3. 

MCT 55 M. HALL ,JR. & J .Fl. VAN LIN'l' ( Eds) , Combinatorics, part 1: Theory 
of deBigns, finite geometry and coding theory, 1974. 
ISBN 90 6196 099 1. 

MCT 56 M. HALL JR. & J .H. VAN LIN'r ( Eds) , Combinat01,ic,s, part 2: graph 
theo1°y, foundations, partitions and combinatorial geometry, 
1974. ISBN 90 6196 100 9. 

MCT 57 M. HALL JR. & ,T .H. VAN LIN'l' (Eds), Combinatories, pa.Pt 3: Combina
torial group theory, 1974. ISBN 90 6196 101 7. 

MCT 58 W. ALBERS, Asyrrrptotic e:i;pam:ions and the defic-iency concept in sta
tistics, 1975. ISBN 90 6196 102 5. 

MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975. 
ISBN 90 6196 107 6. 

MCT 60 F. GoBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108 

* MCT 61 P. VAN EMDE BOAS, AbBtr•act r•esou.rce-bound cZassesf port ] . 
ISBN 90 6196 109 2. 

* MCT 62 P. VAN EMDE BoAS, Abstr•aet r•esour•ce-bound classes, part ') 
6. 

ISBN 90 6196 110 6. 

MC'l' 63 J.W. DE BAKKER (ed.), PoundationB of corrrputer science, 1975. 
ISBN 90 6196 111 4. 

MCT 64 W.J. DE SCHIPPER, Symmetric closed categories, 1975. ISBN 90 6196 
112 2. 

MCT 65 J. DE VRIES, Topological t1°anBformation gr•oups 1 A eategorical ap-·· 
proach, 1975. ISBN 90 6196 113 0. 

MCT 66 H.G.J. PIJLS, Locally carivex algehl0 as in spectr•al theory and eigen
function expansions, 1976. ISBN 90 6196 114 9. 

4. 



* MCT 67 H.A. LAUWERIER, Asymptotic analysis, pa.r>t 2. 
ISBN 90 6196 119 X. 

MCT 68 P.P.N. DE GROEN, Singula1°ly perturbed differential operators of 
second order, 1976. ISBN 90 6196 120 3. 

MC'l' 69 J .K. LENSTRA, Sequencing by enumex•ative methods, 1977. 
ISBN 90 6196 125 4. 

MCT 70 W.P. DE ROEVER J·R., Recursive program schemes: semant1:cs and proof 
theory, 1976. ISBN 90 6196 127 0. 

MCT 71 J.A.E.E. VAN NtJNEN, Contracting Markov decision processes, 1976. 
ISBN 90 6196 129 7. 

MCT 72 J·.K.M. JANSEN, Sinrple periodic and nonperiodic Lwne .functions and 
thei.r applications in the theory of conical 1<Javeguides, 1977. 
ISBN 90 6196 130 0. 

* MC'I' 73 D.M.R. LEIVAN'I, Absoluteness of intultionistie logfr. 

;, 

ISBN 90 6196 122 x. 

MCT 74 H.J.J. TE RIELE, A theoretical and computational study of gene1°al
ized aliquot sequences, 1976. ISBN 90 6196 131 9. 

MCT 75 A.E. BROUWER, Tx•eelike spaces and related connected topological 
spaces, 1977. ISBN 90 6196 132 7. 

MCT 76 M. REM, Associons and the closu.re statement, 1976. ISBN 90 6196 135 L 

MCT Tl N.C.M. KALLENBERG, Asymptotic optimality of likeUhood 1-atio tests uz 
e;q;onent1:az f'amilies, 1977 ISBN 90 6196 134 3& 

MCT 78 E, DEJONGE, A.C.M. VAN ROOIJ, Int1-oduction to RieBZ spaces, 1977. 
ISBN 90 6196 133 5. 

MCT 79 M.C.A. VAN ZUIJLEN, Empirical distribuUons and rankBtatistics, 1977. 
ISBN 90 6196 145 9. 

MCT 80 P.W. HEMKER, A nwnerical study of stiff ti,10-point boundm'y problems, 
1977. ISBN 90 6196 146 7. 

MCT 81 K.R. APT & J.W. DE BAKKER (eds), Foundations of computer sc1,ence II, 
part I, 1976. ISBN 90 6196 140 8. 

MCT 82 K.R. APT & ,J.W, DE BAKKER (eds), Foundations of compute1' science TI, 
part II, 1976. ISBN 90 6196 141 6. 

MCT 83 L.S. VAN BENTEM JU'ITING, Checcking Landau's "Grundlagen" in the 
AUTOMATH system, ISBN 90 6196 147 5. 

MCT 84 H.L.L. BUSARD, The ~1-anslation o.f the elementB of Euclld fmm U1e 
A-,,abic into Latin by flePmann of Can'.n/;Jn'.a (?) booi<s vU-:cU, 19T7. 
ISBN 90 6196 148 3. 

MC'l" 8.5 J. VAN MILL, Supercompactness and Wal ?.man spaces, 1977. 
ISBN 90 6196 151 3. 

MCT 86 S.G. VAN DER MEDLEN & M. VBLDHORST, Torrix I, 1978. 
ISBN 90 6196 152 L 

,. MCI' 87 S.G. VAN DER ME:ULEN & M, VBLDHORST, :To.1•1v(x II, 
ISBN 90 6196 153 x. 

MCT 88 A. SCHRIJVER, Matroid.s and linking systems, 1977. 
ISBN 90 6196 154 8. 



MCT 89 J.W. DE RoEVER, Complex Fou:ner transformation and analytic 
functionals with unbounded carriers, 1978. 
ISBN 90 6196 155 6. 

* MCT 90 L.P.J. GROENEWEGEN, Characterization of optimal strategies in dy-
namic games, . ISBN 90 6196 156 4. 

* MCT 91 J.M. GEYSEL, Transcendence in fields of positive characteristic, 
• ISBN 90 6196 157 2. 

* MCT 92 P.J. WEEDA, Finite generalized Markov programming, 
ISBN 90 6196 158 O. 

MCT 93 H.C. TIJMS (ed.) & J. WESSELS (ed.), Mark0t1 decision theory, 1977. 
ISBN 90 6196 160 2. 

MCT 94 A. BIJLSMA, Simultaneous approximations in transcendental number 
theory, 1978. ISBN 90 6196 162 9. 

MCT 95 K.M. VAN HEE, Bayesian control of Markov chains, 1978. 
ISBN 90 6196 163 7. 

* MCT 96 P.M.B. VITANYI, Lindenmayer systems: structure, languages, and 
growth functions, 1978. ISBN 90 6196 164 5. 

* MCT 97 A. FEDERGRUEN, Markovian control problems; functional equations 
and algorithms, 1978. ISBN 90 6196 165 3. 

MCT 98 R. GEEL, Singular perturbations of hyperbolic type, 1978. 
ISBN 90 6196 166 l 

MCT 99 J.K. LENSTRA, A.H.G. RINNOOY KAN & P. VAN El1DE BOAS, Interfaces 
between computer science and operations research, 1978. 
ISBN 90 6196 170 X. 

* MCT 100 P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (Eds), Proceedings bicenten
nial congress of the Wiskundig Genootschap, part 1, 
ISBN 90 6196 168 8. 

* MCT 101 P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (Eds), Proceedings bicenten
nial congress of the Wiskundig Genootschap, part 2, 
ISBN 90 9196 169 6. 

MCT 102 D. VAN DULST, Reflexive and superreflexive Banach spaces, 1978. 
ISBN 90 6196 171 8. 

MCT 103 K. VAN HARN, ClassifyiYl{J infinitely divisible distributions by 
functional equations,1978. ISBN 90 6196 172 6. 

* MCT 104 J.M. VAN WOUWE, Go-spaces and generalizations of metrizability, 
• ISBN 90 6196 173 4. 

* MCT 105 R. HELMERS, Edgeworth expansions for linear combinations of order 
statistics, . ISBN 90,6196 174 2. 

AN ASTERISK BEFORE THE NUMBER MEANS "TO APPEAR" 




