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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1. Introduction and summary

The theory of infinitely divisible probability distributions plays an impor-
tant role in theoretical problems, such as in the study of limit theorems,
more so than in practical situations, though applications do occur, especial-
ly in statisticalmodelling (cf. Katti (1977), Thorin (1977) and Ahmad &
Abouammoh (1977)) . The first stage of its development ended around 19530; the
basic properties, such as canonical representations, derived especially by
P. Lévy and I.A. Khintchine, and the important applications in the theory of
limit distributions of sums of independent random variables, have been formu-
lated, for instance, in the books by Lévy (1937) and by Gnedenko & Kolmogo-
rov (1949). In the next two decades research on this field has been carried
out along many lines; especially, much attention has been paid to factoriza-
tion problems and stable distributions, as is apparent from the survey paper
by Fisz (1962) and from the books by Linnik (1960) and Lukacs (1970). For
more recent information we refer to Petrov (1972).

During the last ten years more research has been done on the often difficult
problem how to decide whether a given probability distribution is infinitely
divisible or not. On the one hand new methods of constructing infinitely di-
visible distributions have been introduced; for instance, the methods of
compounding and mixing are very useful, as has been shown by Steutel (1970),
Kelker (1972) and others. On the other hand many necessary and (or) suffi-
cient conditions for infinite divisibility have been obtained in terms of
the probabilities themselves, rather than in terms of the corresponding cha-
racteristic functions, the most obvious tool in this field; this is evident
from the survey paper by Steutel (1973).

In this monograph this tendency is continued in the following sense: most

of the classes of infinitely divisible probability distributions that we
introduce, are characterized by means of functional equations for the proba-
bilities themselves; furthermore, we study properties of distribution func-
tions and densities in these classes, like asymptotic behaviour, absolute
continuity, complete monotonicity, etc.

Our starting point is the "gap" between the class Co of compound geometric
distributions onINo and the class Cl of compound Poisson distributions on

m%, i.e. (cf. Peller (1968), ch. XII) the class of all infinitely divisible



distributions on]No with factors in]No. It is known that Co g Cl(cf. Lukacs
(1970), ch. 5). Furthermore, the classes Co and C1 can be characterized by
means of recurrence relations as follows (cf. Steutel (1970) and Katti
(1967)): a probability distribution {pn}: onjmo with P, > 0 is in Co iff
there exist nonnegative quantities rn(O) (n E]NO) such that

n

(1.1.1)  p .= kZO pr, o (0 (n eN) ;

similarly, {pn} is in C1 iff there exist nonnegative quantities rn(l) Ulen%)

such that

n
(1.1.2)  (n+D)p ., = kZO pr (1) (n en) .

Now, in order to fill the gap between CO and C1 we interpolate between

(1.1.1) and (1.1.2) by means of a set of recurrence relations of the follow-

ing form:
n
(1.1.3) cn(ct)pn+1 = 2 pkrn_k(a) (n e]NO) B
k=0
where cn(O) =1, Cn(l) =n+1 (n sZNO) and cn(a) is nondecreasing in both n

and a € [0,1]. Introducing for 0 < a < 1 the class Ca as the set of distri-
butions {pn}: with P, > 0 and satisfying (1.1.3) with nonnegative rn(a)'s,
we wish to choose cn(a) in such a way that the Cu’s vield a classtification
of Cl’ i.e. such that Ca depends monotonically on o € [0,1]. The most ob-~
vious choices for cn(a) do not have this property, but in chapter 2 we show

that the choice
(1.1.4)  c_(a) = (1= /(1= (n M ; 05 ox 1)

produces classes Ca that give a classification of Cl' Rather surprisingly,
perhaps, we did not find any other. It would seem that these Cu's are "clo-
ser" to Co than to Cl, but as aglcu is dense in Cl in the sense of weak con-
vergence, the situation is not too bad. Also in this chapter we briefly con-
sider some other classifications.

Furthermore, the classes Ca give rise to a number of other interesting ob-
servations. The equations defining the probability generating functions of
distributions in Ca suggest several other classes of decomposable distribu-
tions; these are studied in chapter 3. One of these gives rise to discrete

analogues of the well known concepts of self-decomposability and stability



(cf. Lukacs (1970), ch. 5 and Feller (1971), ch. XVII), concepts which were
restricted to absolutely continuous distributions.

In chapter 4 we investigate the recurrence relations (1.1.3) with cn(a) gi-
ven by (1.1.4) for sequences {pn} that are not necessarily probability dis-
tributions. Several properties can be proved that are analogous to proper—
ties of the sequences studied by Kaluza (1928) and DeBruijn & Erdds (1951).
Also, we show a fruitful relation with renewal theory; it turns out that

the case o = 0 is strongly related to the renewal sequences (cf. Kingman
(1972)), while for 0 < a < 1 the bounded sclutions of (1.1.3) with nonnega-
tive rn(a)‘s can be considered as delayed renewal sequences. Although, es—
pecially from these relations, several properties can be obtained, it turns
out that the case 0 < a < 1 is often difficult to handle; in many respects
this case seems to inherit the difficulties of both the cases a=0 and a=1.
In chapter 5 the classification of Cl’ obtained by means of the classes Ca'
is extended to all infinitely divisible distributions on [0,»), by replacing
the system ofrecurrence relations (1.1.3) for P, by the analogous functional
equation for the distribution function. As, contrary to the discrete case,
we also have to consider distributions on [0,) without a jump at zero, the
proofs are more delicate and the analogy with the discrete case is not per—
fect. At this point it is interesting to note that the resulting classes de-
termine a limiting class Fm that can be considered as the analogue of Cofor
distributions on [0,®), just as the class of all infinitely divisible dis-
tributions on [0,%) is the analogue of Cl. A good deal of chapter 5 is de=-
voted to investigating the structure and properties of this class va It
turns out that the absolutely continuous elements of Foo contain the standard
p-functions of Kingman (1972) as a subclass. Finally, in the last section

of chapter 5 we briefly discuss the classification of the infinitely divisi-

ble distributions onlR, and on [0,«} 2 , by means of functional equations.

The remainder of the present chapter contains definitions and preliminary
results. After some notations and conventions in section 2, in section 3 we
introduce the concepts of absolute and complete mohotonicity, which we shall
use frequently. The concept of infinite divisibility and its basic proper-—
ties are introduced in section 4, where also some attention is paid to com-
pound distributions. In sections 5 and 6 we study the infinitely divisible
distributions on]NO and on [0,=), respectively, in more detail. Finally,

in section 7 we' give a survey of ‘canonical representations for infinitely

divisible distributions and the relations between them.



1.2. Notations and conventions

First we give a list of general symbols and notations, which we shall use

throughout this monograph.

N : the set {1,2,3,...} of natural numbers,INo :=IN y {0}.
4 : the set of integers.
R : the set of real numbers.
¢ the set of complex numbers.
A2 the cartesian product of the set A with itself; for instance:
&, w2, [0,%)°.
(a,b) : the open interval {x ¢ R | a < x < b}.
[a,b] : the closed interval {x ¢ R [ a £ x £ b}; similarly (a,b],
fa,b).
# (A) : the cardinality of the set A.
1A : the indicator function of the set A,
@ : the empty set; z a =0, T a_ :=1,
n n
ney ney
: i.e. 6, =1 §, = if i # 7.
i, the Kronecker symbol, i.e ii 1 and i, 0 if i # 3
£ (x+) := Jim f(x+h), £f(x~) := lim £(x~h), £(®) := lim £(x),
ht0 hv0 X0
£(=®) := lim f(x).
x—)-—-OO
O : indicates the end of the proof.

We shall frequently make use of generating functions, Laplace transforms
and Fourier transforms; we shall use the following notation for these.
If a e ¢ for n €W _, then the generating function (gf) of the sequence
{an}: is denoted by the corresponding capital, so

o

A(z) = 2 anzn ’

=0
for those z e ¢ for which the power series converges. A probabtility generat—
ing function (pgf) is the gf P of a probability distribution {pn}z on N_.
Such distributions will be called lattice distributions; their pgf's are
always defined for iz] < 1.
If U Z 0 is a function onIR that is nonnegative, nondecreasing and right-

continuous, and if %(U), the left extremity of U, defined by

L(U) := inf{x e R | U(x) > 0} ,



is finite, then the Laplace-Stieltjes transform (LST) U of U is defined by

G(r) = f e au(x) = } e auix) ,
(_°°1°°) [/Q»(U) 1°°)

for those 1t € IR for which the integral is finite. If U is a distribution
function, then U is called the probability Laplace~Stieltjes transform (PLST)
of U. The corresponding small letter u will be used for the (probability)
density function of U in case of absolute continuity; the ordinary (proba—

bility) Laplace transform ((®)LT) of u is then also denoted by U, so

(1) = ;. enrxu(x)dx .
(2 (U) ;)

Finally, if U is a right-continuous, nondecreasing and bounded function on
R with U(~») = 0, then the Fourier-Stieltjes transform (FST) U of U is de~

fined by

Ty o= }' S au(x)

(o0, )

which exists for all t ¢ IR. Analogous to the LT, we define the ordinary Fou-
rier transform (FT). If F is a distribution function on IR, then the FST F

is called the characteristic function (chf) of F. As F is continuous and
F(0) = 1, there exists a neighbourhood of the origin where F is different
from zero. So, the principal branch of the logarithm of f, denoted by

log F(t), can be defined uniquely in that neighbourhood.

Besides the abbreviations gf, pgf, LST, PLST, LT, PLT, FST, FT and chf, just

introduced, we shall use the following:

rv random variable

df distribution function

pd£f probability density function
n-div n~divisible, n-divisibility

inf div infinitely divisible, infinite divisibility
abs mon absolutely monotone, absolute monotonicity
comp mon completely monotone, complete monotonicity
d equal in distribution

iff if and only if.



If U and V are nonnegative, nondecreasing and right-continuous functions on

IR, then the convolution U % V of U and V is defined by

(UxV) (x) := } U(x-y)av(y) = } Vix=-y)du(y) (x eR) ,

(=0, c0) (o0, 0}

which is again a nonnegative, nondecreasing and right-continuous function.
For n € N the n~fold convolution of U with itself is denoted by U*nu IfF
is an inf div df, then for y > 0 F*Y denotes the df with chf fqg

If {an}z is a sequence with a, # 0 and with gf A, then for y > O the se-

quence {a:Y}: is defined by its gf as follows:

©
z ainn = A(z)Y .

n=0
Unless stated otherwise, throughout this monograph we only consider proba-
bility distributions onIR that are not concentrated at zero. For instance,
as in case of a lattice distribution {pn}: we often take P, > 0 (cf. sec~
tion 5), it is then tacitly assumed that 0 < P, < 1.
if {pn}: is a lattice distribution in some class C with pgf P, then we shall
also say that P ¢ (. Similar conventions hold for F and F.
Finally, if C is a class of probability distributions, then a family
(C, | £ ¢ T of subclasses of C is said to define a classification of C, if
T can be totally ordered in such a way that the classes Ct are nondecreas-—
ing in the ordering of T. It follows that for t1 < t2 < el < tn the clas~

ses Ct ,Ct \Ct ,M.,Ct \Ct ,C\Ct form a partition of C.
1 2 1 n n~1 n

1.3. Absolute and complete monotonicity

In the sequel we shall characterize several classes of probability distri-
butions by making use of the concepts of absolute and complete monotonicity
(cf. Widder (1946), ch. IV and Feller (1971), ch. VII and XIII). Since we

only need absolute monotonicity on intervals of the form [0,p) and complete
monotonicity on (0,), we usually do not mention these intervals. We start

with considering absolutely monotone functions.

DEFINITION 1.3.1. A function R is said to be absolutely monotone on [0,p)

if it is continuous there and possesses derivatives of all orders on (G,p)

with



d .n
(-d—?j) R(z) 20 (n EINO,O<z<p) .

R is said to be absolutely monotone (abs mon) if there exists p > 0 such
that R is abs mon on [0,p).

When proving the abs mon of a function, we shall often utilize the follow-

ing characterization (cf. Widder (1946), ch. IV).

THEOREM 1.3.2. A function R is abs mon on [0,p) iff there exist T,z 0
(n elNO) such that

¢

(1.3.1)  R(z) = ) rz" (0 <2z < p)
n
n=0
in this case the quantities ¥ are given by r, = R(n)(0+)/ni (n eINO).

Thus, an abs mon function R on [0,p) can be extended analytically to the
disk [z] < p.
There exists a number of simple properties of abs mon functions that we

shall use in the sequel without further comment; the following lemma con-

tains some of them.

LEMMA 1.3.3.

(d) R is abs mon iff R(0) = 0 and R'(z) is abs mon.

(ii) If R is abs mon, then so are R(oz) and R(z) - R(az) for all ge (0,1).

(iii) If R and S are abs mon, then so are R(z) + S(z) and R(z)S(z).

(ivy If Rn is abs mon on [0,p) (n eW) and if R{z) = lim Rn(z) exists for
z ¢ [0,p), then R is abs mon on [0,p). e

(v) If R is abs mon on [0,p) and if S is abs mon on [0,0) with S(z) < p
(0 < z < 0), then R(5(z)) is abs mon on [0,0). For instance:
(a) If S is abs mon, then exp[S(z)] is abs mon;
(b) If S is abs mon with S(z) < 1 in some interval [0,0), then

{1 ~ S(z)}—"1 is abs mon.

The following lemma, and simple extensions of it, will be used particular-—

ly in chapter 3.

LEMMA 1.3.4. Let P be a pgf with P(0) > 0, and let Q be a pgf. If the func-
tion R, defined by



R(z) := Q(z)/P(z) ,

is abs mon, then R coincides, at least in ]z] < 1, with a pgf.

PROOF. As R is abs mon, by theorem 1.3.2 there exist p > 0 and rn >0
(n em%) such that

(1.3.2) R(z) = ] rz" (lz] <o
n=0

Since P(0) > 0, we may assume that P(z) # 0 for Izl < p, and hence, if P
and Q are the pgf's of {pn}: and {qn}:, respectively, then
n

g = z P (n elN ) .
n k=0 kK n-k o)

Summing over n we get

n [e] © o]

Doopoe=1 7 Loe =1 =

(=]
1=
n=0 k=0 k=0 n=k k=0

i.e. {rn}: is a probability distribution. Now, let A denote the set of poles
of R in ]z] < 1, then, as P has finitely many zeros in [z[ < 1, we have

# (B) < =, while by analytic continuation we see that the equality in (1.3.2)
holds in {|z]

in

X n . s
1}\A. However, since Ernz is bounded in [z] < 1, we neces-

sarily have A = (§, and the lemma is proved. 0

Finally, we state the continuity theorem for pgf's, which we shall need se~

veral times. It can be found in Feller (1968), ch. XI.

THEOREM 1.3.5. Suppose that for every n ¢ N the sequence {pk(n)}:=o is a
probability distribution with pgf Pﬁn

(i) If P = lim pk(n) exists for all k e IN_, then P(z) := lim P_(z) exists
oo ¢) e B
for all z ¢ [0,1], while

(1.3.3)  P(z) = | Pz 0 <z<1) .
k=0

co
If in addition {pk}o is a probability distribution, then P is the pgf
of {pk} (in fact, as is easily shown, P(z) := lim Pn(z) exists for

[z] <1 and (1.3.3) holds for |z| < 1). e



(ii) If P(z) := lim P_(2z) exists for all z ¢ (0,1), then P, = lim pk(n)
n»o o N>
exists for all k e:mo, while (1.3.3) holds. If in addition P is left-

continuous in z = 1, then {pk}: is a probability distribution with
pgf P.

Next, we consider completely monotone functions.

DEFINITION 1.3.6. A function g on (0,») is said to be completely monotone

(comp mon) if ¢ possesses derivatives of all orders on (0,*) with

10 E % 2 0 (el ;t>0 .

The comp mon functions can be represented as LST's; this result is known

as Bernstein's theorem (see e.g. Feller (1971), ch. XIII).

THEOREM 1.3.7. A function ¢ on (0,») is comp mon iff there exists a nonne-
gative, right-continuous and nondecreasing function U with £(U) = 0 such

that ¢ = ﬁ, i.e. such that

p{t) = f e *au (x) (t > 0) .
[Or‘”)

In the following lemma we summarize the principal properties of comp mon
functions {cf. Feller (1971), ch. XIII); they will be used without further

comment.

LEMMA 1.3.8.

(i) 9 is comp mon iff -¢'(r) is comp mon and ¢(x) = 0.

(ii) If ¢ is comp mon, then so are g¢{At), g(t+XA) and ¢(t) =~ ¢(t +A) for
all x> 0.

(iii) If ¢ and y are comp mon, then so are ¢ + ¥ and ¢y.

(iv) If o, is comp mon (n € W) and if ¢(1) := lim mn(r) exists for v > O,
then ¢ is comp mon. e

(v) If R is abs mon on [0,p) and if ¢ is comp mon with ¢(t) < p (1 > 0),
then R(g(t)) is comp mon. For instance, if ¢ is comp mon, then
explo(r)] is comp mon, and if in addition p(t) <1 (t > 0), then

{1 - (p(r)}“1 is comp mon.
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(vi) If ¢ and y' are comp mon and if P (0+) = 0, then ¢(yY(1)) is comp mon.
For instance, if ' is comp mon and Y(0+) = 0, then exp[~y(t) ] and

{1+ 111(1:)}‘-1 are comp mon.

We also mention two relations between the LST U (comp mon if 2(U) = 0) and

the function U, which we shall use repeatedly.

LEMMA 1.3.9. Let U # 0 be a nonnegative, right-continuous and nondecreasing

function on IR with 2(U) > -« and such that U(t) exists for T > T, Then

(1.3.4) U(L(u)) = lim 6(T)eE(U)T ,
>

and, if &(U) = O,

(1.3.5)  U(0) = lim G(1) .

T
If TO < 0, then also

(1.3.6) U(®) = lim U(1) .
40

PROOF. In view of the definition of U we can write

2(U) T e—f(x—E(U))

U(1)e = U(e(u)) + / du(x) ,

(2(U) , )

from which (1.3.4) follows by the dominated convergence theorem. Similarly
we obtain (1.3.5). Finally, applying the monotone convergence theorem, we

see that

Lim U(t) = f du(x) = lim U(x) = U(=) . 0
o [L(0) =) e

Finally, we give a definition of comp mon for sequences and a representa-
tion of such sequences, which is due to Hausdorff (cf. Feller (1971), ch.

VII).

DEFINITION 1.3.10. A sequence {an}z of real numbers is called comp mon if

n,n
{(~1) A ak >0 {(n,k EIN\O) .

= ~ o L n o _ n-1
where Aak 1= ak+1 ak, A ak 1= ak and A7 := A(A ).
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THEOREM 1.3.11. A sequence {an}: is comp mon iff there exists a finite mea-

sure v on [0,1] such that

(1.3.7) a_= }( N (dx) (nem ) .
e} o
[0,1]

1.4, Definition and basic properties of infinitely divisible distributions
on R

The concept of infinite divisibility can be introduced as follows.

DEFINITION 1.4.1. For n ¢ N a ¥v X is said to be n~divisible (n~div) if
there exist independent and identically distributed rv's Xn 1'”””'Xn n such
i &

that

A rv X is said to be infinitely divisible (inf div) if X is n-div for all

nel.

In fact, inf div is a property of the distribution of X; therefore we call
the df, pdf, chf, etc., corresponding to an inf div rv X, inf div too. Thus,

a chf F is inf div iff for every n ¢ N there exists a df Fn such that

F(t) = {x?n(tn“ (t eR) .

Next we list a number of basic properties of inf div distributions that we
need in the following chapters; they can be found in Lukacs (1970). The
first three of them have obvious analogues for pgf's and PLST's.

THEOREM 1.4.2. If F and G are inf div chf's, then FG is an inf div chf.

THEOREM 1.4.3 (Closure theorem). A chf which is the limit of a sequence of

inf div chf's, is inf div.

THEOREM 1.4.4. A nonvanishing chf F is inf div iff F' is a chf for all y>0
(or for all v = 1/n, n € N, or for all y = 2—n’ n e M),

THEOREM 1.4.5. An inf div chf has no real zeros.
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THEOREM 1.4.6. If the rv X is nondegenerate and bounded, then X is not inf

div.

THEOREM 1.4.7 (Lévy canonical representation). A function ¢ onIR is an inf
div chf iff ¢ has the form
2 it ity
(1.4.1)  o(t) =explita~%0°t%+ ] (™1 - = Sham(x) ] (t eR) ,
+
R\{0} bhx

where a ¢ IR, 02 > 0 and M is a right-continuous function on IR\{0} with the
following properties: M is nondecreasing on (~»,0} and on (0,x), M(-x) =

= M(») = 0, and

(1.4.2) [ aM(x) < » .
(-1, 1)\{0}

REMARK 1.4.8. If a chf F has a representation of the form (1.4.1), where M

violates the monotonicity condition of the theorem, then F is not inf div.

The canonical representation (1.4.1) can be somewhat modified to obtain
other well known representations. For instance, in the Lévy-Khintchine re-
presentation an inf div chf F has the form

_itx }1 + x2

1+x2 x2

(1.4.3) g(t) =explita + [ {eitx- i~ do (x) ] (t eR) ,

(_co'oo)

where a ¢ R and © is a right-continuous, nondecreasing and bounded function
onIR with O(-») = 0 (for x = 0 the integrand is defined by continuity: —lztz) .
The canonical representations (1.4.1) and (1.4.3) are generalizations of

the following representation, due to Kolmogorov, which is valid only for

chf's of inf div distributions with finite second moment:

(1.4.4) F(t) =explita+ f {ei'tx~ 1 - itx}}—zm dr(x) ] (t e R) ,

(=0, 0) *

where a € R and K is a right-~continuous, nondecreasing and bounded function
onR with K(-«) = 0. We prefer the Lévy canonical representation, as it has
the clearest relations with the canonical representations known for inf div
distributions on [0,») and on ]NO, which are sgpecial cases; this will be cla-

rified in section 7.
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Simple examples of inf div distributions are provided by the degenerate,
Poisson, negative-~binomial (and hence geometric), gamma {(and hence exponen~
tial), normal and Cauchy distributions; their inf div is easily verified
from their chf's. Considerably harder to prove is the inf div of the log-
normal and the Student distributions; this has recently been done by Thorin
(1977) and Grosswald (1976), respectively.

There are several methods to construct new inf div distributions from given
ones; the best known are convolution, compounding and mixing. As an example
of the method of mixing we state the following theorem of Feller (1971), ch.
XVII (see also Steutel (1970)), and we note that in section 6 mixtures of

exponential distributions are considered.

THEOREM 1.4.9. If G and H are inf div df's on [0,»} and IR, respectively,
then

(1.4.5) G(~log H(t)) = fﬁ(t)xdc(x) (t ¢ R)
[0,=)

is an inf div chf.

COROLLARY 1.4.10. If G is an inf div df on [0,»), then the following mix-

ture of normal chf’s is inf div:

(1.4.6) jh exp[~t2x]dG(x) (t eR) .
[Ol“’)

Finally, we pay some attention to compound distributions. Here we use the
terminology of Feller; such distributions are also called generalized dis—

tributions by some authors (c¢f. Gurland (1957) and Johnson & Kotz (1969)).

DEFINITION 1.4.11. A probability distribution is called a compound distri-

bution if its chf F can be written in the form
(1.4.7)  F(t) = P(G(L)) (t e® ,

where P is a pgf and G is a d4df.

A rv X with chf F given by (1.4.7) can be represented as

d
X = Yl +Y2 +oo ot YN ’

where N’Yl'YZ"" are independent, N has a lattice distribution with pgf P
and Yl'Y2'"”“ are identically distributed with 4df G.
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EXAMPLE 1.4.12.
(i) A compound Poisson chf F is a chf of the form

(1.4.8) F(t) = exp[u(G(t) - 1] (t eR) ,

where p > 0 and G is a df.

(ii) A compound geometric chf F is a chf of the form

(1.4.9) F() =—2P (£t em ,
1 - pG(t)

where 0 < p <1 and G is a df.

REMARK 1.4.13. Foxr a chf F Z 1 of the form (1.4.8) or (1.4.9) it is possi-
ble to choose the df G in such a way that G is continuous at zero. We shall
always do so; the representations (1.4.8) and (1.4.9) are then unique, and
we will refer to them as compound-Poisson~(U,G) and compound-geometric—

{(p,G) distributions, respectively.

The compound Poisson and the compound geometric (more general: compound
negative-binomial) distributions are known to be inf div (cf. Lukacs (1970),
ch. 5). In fact, this is a consequence of the following propertyof compound

distributions.

LEMMA 1.4.14. If P is an inf div pgf with P(0) > 0, then for all dffs G the

compound chf E(t) = P(a(t)) is compound Poisson and hence inf div.

PROOF. As we shall see in theorem 1.5.1, if P is an inf div pgf with P(0) >0,

then P is compound Poisson, so

P(z)

i

explu(Q(z) - 1)] (|z] < 1),

with p > 0 and Q is a pgf with Q(0) = 0. It follows that

i

F(t) = P(G(t)) = explu(Q(G(t)) -~ 1)7 ,

i.e. F is compound-Poisson-(u,H), with H(t) := O(G(t)). 0

In sections 5 and 6 compound distributions on:No and on [0,®) will be consi-
dered in more detail. We conclude this section with De Finetti's observa-
tion, that every inf div distribution can be obtained as the weak limit of

compound Poisson distributions (cf. Lukacs (1970), ch. 5).
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THEOREM 1.4.15. & chf F is inf div iff F has the form

(1.4.10) F(t) = lim exp[un<6n(t) - 11 (t em) ,

oo

where y, > 0 and Gn is a df (n e IN). In this case we may take w, =0 and
_ F*1/n

G

n (n € W),

1.5. Inginitely divisible Lattice distrnibutions

Let {pn}: be a lattice distribution, i.e. a probability distribution oniN_.
When investigating the inf div of {pn}, we shall always require that

0 < P, < 1; the condition "p > 0" ensures that, in case of inf div of {pn},
*1/k}oo /
n n=0 it
INO. It is not an essential restriction: for all y ¢ IR, P{e ") is an inf div

the distribution {p {(with pgf P(z)1 k) is again a distribution on
. ity it, . . .

chf iff e P(e” ) is an inf div chf. Further we note that log P(z) and

P(z)Y (y € R) are always uniquely defined in a neighbourhood of zero if

P, > 0.

For an inf div pgf P we have the following representation theorem (cf. Fel-

ler (1968), ch. %II).

THEOREM 1.5.1. A pgf P, with 0 < P(0) < 1, is inf div iff P is compound

Poisson, i.e. iff P has the form
(1.5.1)  P(z) = explu(Q(z) - 1)] (Jzl =1,

where p > 0 and Q is a pgf with Q(0) = 0. The representation (u,Q) is uni-

que .

COROLLARY 1.5.2. An inf div pgf P with P{0) > 0 has no zeros in the closed

unit disk.

Feller (1968) reformulates theorem 1.5.1 to obtain a criterion for inf div.
We shall now do so in a slightly different way, using the concept of abso-
lute monotonicity (cf. definition 1.3.1). Additionally we obtain a slightly
different representation for inf div pgf's, which is sometimes more conve-

nient.

THEOREM 1.5.3. A pgf P, with 0 < P(0) < 1, is inf div iff the function Rl'
defined by
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(1.5.2) Rl(z) 2= P'(z)/P(2) ,

is abs mon, or, equivalently, iff there exist nonnegative quantities rn(i)
(n eJNO) satisfying
o rn(l)

(1.5.3) )

n=0

< ©
n+ 1

such that P has the form

© r (1)
(1.5.4) P(z) = exp[ |
n=0

~—————n+1(zn+1—1)] (Jz] < 1 .

PROOF., If P is inf div with 0 < P(0) < 1, then P has the form (1.5.1) and
hence Rl(z) = uQ*(z) is abs mon.

Next, let R, be abs mon. Then there exist p > 0 and rn(l) >0 (n € INO) such

1
that

@

(1.5.5)  P'(z2)/p(z) = | r (1)z" (lz] <o) .
n=0

Integrating this equation from O to z (]z! < p), we obtain

- rn(l) n+1
(1.5.6) log{P(z)/P(O0)} = ) ST 2 (lz] <o) .
n=0

From (1.5.5) we get the following relations:

n
(n+)p ., = E pr, (1) (nem) ,

k=0
from which by the nonnegativity of the rn(l) 's it can be shown (cf. lemma
1.5.6) that (1.5.3) holds. Hence the power series in (1.5.6) is convergent
for ]z[ < 1, and by analytic continuation it follows that the equality in
(1.5.6) holds for |z| < 1. Taking z = 1, one sees that

© r (1)

(1.5.7)  -log P(0) = ] == ;
=0

hence P takes the form (1.5.4).
Finally, if P has the form (1.5.4) with nonnegative rn(l) 's satisfying
(1.5.3), then defining
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oy (1) o ¥ (1)
n 1 n n+1
o= sz = <
(1.5.8) w = ) ——7 and Q(2) =3 ! = Tz (lz| =1,
n=0 n=0
we see that P takes the form (1.5.1) and hence is inf div. 0

REMARK 1.5.4. To some quantities we add an index 1 or 0 in order to fit them
in the more general notation of the next chapter. For instance: Rl’ rn(l),

and, presently, R, and rn(O).

0
The sequence {rn(l)} from the preceding theorem is uniquely determined by P,
its gf R

1
quence of the inf div pgf P; its relation with the Lévy canonical representa-

satisfies (1.5.2). Therefore {rn(i)} is called the canonical se~

tion (a,cZ,M) for P(elt) will be shown in section 7.
From theorem 1.5.3 one easily verifies the following theorem, due to Katti
(1967), which gives a characterization of the inf div lattice distributions

in terms of the pn's themselves.

COROLLARY 1.5.5. A lattice distribution {pn}: with 0 < p_ <1 is inf div iff
there exist nonnegative quantities rn(l) (n sZNO) such that

n

(1.5.9) (n+ L)p = pr
n+1 k=0 k n-k

(1) (n E]NO) .
It is useful to consider the recurrence relations (1.5.9) in some more de~-

tail.

LEMMA 1.5.6.
(i) 1f {pn}: is a lattice distribution with P, > 0, then there exists a

unique sequence {rn(l)}: satisfying (1.5.9); its gf R, has a positive

1
radius of convergence, while for ]z[ sufficiently small

(1.5.10) Rl(z) = P'(z) /P(z) .
If, in addition, all rn(l)'s are nonnegative, then necessarily

o oy (1)

n
(1.5.11) } e <
n=0

(ii) If {rn(l)}o is a sequence of nonnegative numbers satisfying (1.5.11),
then there exists a unique lattice distribution {pn}:, with P, > 0,

satisfying (1.5.9).
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PROOF .

(i) Evidently, the first n+ 1 equations in (1.5.9) determine ro(l),rl(l),.,
...,rn(l). As po > 0, the function Rl' defined by (1.5.10), is analy-
tic in a neighbourhood of zero, and therefore has a power-series expan-
sion with coefficients ro,rl,..., say. But from (1.5.10) it follows
that the rn's satisfy (1.5.9), so r = rn(l) (n eimo), and R1 is the
gf of the seqguence {rn(l)}.

If, in addition, all rn(l)'s are nonnegative, then we can write

0 (5] 1 n
1-p, = nz Pyt = nEO n o+ 1 kzo SRRt
020 @ rn(l) © rn(l)
= P e > P R
20 k n=0 n+1+k ] =0 n + 1

and hence
0 rn(l) 1 ~-p

nr1 - T
=0 ° Py

(ii) Clearly, there exists at most one probability distribution {pn}: with
po > 0, satisfying (1.5.9) for given rn(i). Now, if rn(l) > 0 (n eimo)
and if (1.5.11) holds, then it is seen that the function P defined by
(1.5.4) is abs mon with P(1) = 1, i.e. P is a pgf. It follows that if

R, is the gf of {rn(l)}, then P satisfies (1.5.10), i.e. the coeffi-

1
cients p of P satisfy (1.5.9). 0

The following result about zeros of an inf div {pn}: can be derived from

corollary 1.5.5 (cf. Steutel (1970)).

THEOREM 1.5.7. If {pn} is an inf div lattice distribution with 0 < p, < 1,

then for all n e]NO and all k eZNO the following implication holds:
[pn > 0 and By > 0] = P > 0 .
Consequently, if py > 0 then p, > 0 for all n eiNog

Next we turn to the compound geometric lattice distributions, i.e. (cf.

example 1.4.12(ii)) distributions with pgf P of the form

-l
(1.5.12) P(2) = 705 (Jz] <1,

where O < p < 1 and Q is a pgf with Q(0) = 0. These distributions are inf
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div (cf. lemma 1.4.14) and have properties similar to those of the compound

Poisson lattice distributions.

THEOREM 1.5.8. A pgf P with O < P(0) < 1 is compound geometric iff the func-
tion Ro' defined by

1
(1.5.13) Ro(z) = 2{1 - P(0)/P(2)} ,

is abs mon.

PROOF. The necessity of the condition immediately follows from (1.5.12). So,
let R.O be abs mon, i.e. there exist p > 0 and rn(O) >0 (n e:No) such that
Ro has a power—series representation for [z| < p with coefficients rn(O).

Then from (1.5.13) it follows that

0

(1.5.14) P(2)/P(0) = {1 - 7§ rn<0)z““}'1 (z| <o
n=0
and that
n
pn+1 = kZO Pkrn-«k(o) (n EJNO) :

From these relations it can be shown (c¢f. lemma 1.5.10) that X rn(O) < 1,
n=0
and hence the right-hand side of (1.5.14) is an analytic function on ‘z[s 1.

It follows that the equality in (1.5.14) holds for [zl < 1. Taking z = 1 we
see that

(1.5.15) P(0) =1 ~ ) r (0) ,
n=0 o

and hence P takes the form (1.5.12) if we define

oo o

(1.5.16) p = ] r_(0) and Q(z2) :=-§; L or (02"
n=0 n=0

! (lz] <1y . O

From theorem 1.5.8 one obtains the following analogue of corollary 1.5.5

{cf. Steutel (1970)).

COROLLARY 1.5.9. A lattice distribution {pn}: with 0 < P, < 1 is compound

geometric iff there exist nonnegative guantities rn(O) (n eINO) such that

n

(1.5.17) p . = | prx_, (0 (nemN) .
k=0
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The following lemma is the analogue of lemma 1.5.6 for the recurrence rela-

tions (1.5.17).

LEMMA 1.5.10.
(1) 1If {pn}: is a lattice distribution with P, > 0, then there exists a
unique sequence {rn(O)}: satisfying (1.5.17); its gf Ro has a positive

radius of convergence, while for lz{ sufficiently small
(1.5.18) R_(2) = 2{1 - P(0)/P(2)} .

If, in addition, all rn(O)'s are nonnegative, then necessarily

(1.5.19) ) x (0) <1 .
n
=0
(ii) If {rn(O)}: is a sequence of nonnegative numbers satisfying (1.5.19),
then there exists a unique lattice distribution {pn}:, with p, > 0,

satisfying (1.5.17).

PROOF .
(i) The proof of the first part is similar to that of lemma 1.5.6. If
rn(O) > 0 for all n e]{o, then we can write

I~ © n ©
L=p,= ) P = 1 1 pr (0= 1] xr(,
k=0 n=0
from which (1.5.19) follows.

(ii) If rn(O) > 0 for all n and if (1.5.19) holds, then it is seen that the
function P, defined by (1.5.14) with P(0) given by (1.5.15), is abs
mon with P(1) = 1. It follows that P is the pgf of a lattice distribu=~
tion {pn}: that satisfies (1.5.17). The uniqueness of {pn} is evident

from (1.5.17). a

To conclude this section we mention two more classes of inf div lattice dis-
tributions: the classes of comp mon and log~convex lattice distributions.
Comp mon has been introduced in definition 1.3.10; from theorem 1.3.11 one

easily deduces the following lemma.

LEMMA 1.5.11. A lattice distribution {pn}: is comp mon iff {pn} is a mix~
ture of geometric distributions, i.e. iff there exists a df G on [0,1) such

that
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(1.5.20) p_= } (1 -p)p dG(p) (nem) .
[0,1)

Log-convexity can be introduced as follows.

DEFINITION 1.5.12. A lattice distribution {pn}: is said to be log-comvex if

2
(1.5.21) P < PP (n em™ .

Let us define the following four classes of lattice distributions {pn}:
. . 0.
with po 0:
{pn} € A if {pn} is comp mon,
{pn} e B if {pn} is log-convex,
fpn} e C if {pn} is compound geometric,

{pn} € C1 if {pn} is compound Poisson, i.e. if {pn} is inf div.

Then the family (A,B,CO,CI) defines a classification (c¢f. the end of section
2) of Cl' as will be apparent from the following relations (cf. Kaluza

(1928), Goldie (1967), Steutel (1970) and Warde & Katti (1971)).
THEOREM 1.5.13. A < B ¢ Co c Cl' where all inclusions are strict.

REMARK 1.5.14. "CO c C1" also easily follows from theorems 1.5.3 and 1.5.8
by use of the following relation between Ro and Rlz

(1.5.22) Rl(z) = {1 - zRo(z)}—1 g;{zRo(z)] .

1.6. Infdinitely divisible distributions on [0,«)

The inf div distributions on [0,®) can be characterized in the following

way (cf. Feller (1971), ch. XIII).

THEOREM 1.6.1. A positive function ¢ on [0,») is the PLST F of an inf div
df ¥ on [0,®) iff ¢(0) = 1 and the Ffunction 0 defined by

(1.6.1) g (1) := - g? log 9 (t) (x>0 ,

is comp mon, or, equivalently, iff there exists a right-continuous, nonde-

creasing function KO onIR, satisfying
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(1.6.2) } idxo(x) <o,

(1,)
such that ¢ has the form
(1.6.3)  o(1) = expl / (e ™
[Olm)

-l w1 (t20) .
x (o]

We can (and will) choose the function Ko such that Ko vanishes on (-,0).
As we then also have Ko = Qs with Oy given by (1.6.1), the function KO is
uniquely determined by ¢ = F; K, is called the canonical function of the
inf div 4f F. Its relation with the Lévy canonical representation (a,cz,M)
will be shown in the next section.

Before giving some properties of Ko' we state a characterization of the inf
div df's on [0,») in terms of the df's themselves, which has been used by
Steutel (1970), and can be obtained by inverting the expression for Q‘mﬁ'

in (1.6.3).

THEOREM 1.6.2. A df F on [0,») is inf div iff there exists a right-continu~

ous, nondecreasing function KO such that

(1.6.4) y dF (y) = Fx - y)dKO(y) (x 2 0) .
[0,x] {C,x]

CORCLLARY 1.6.3. A pdfl £ on (0,«) is inf div iff there exists a right-con-

tinuous, nondecreasing function KO such that

(1.6.5) xE(x) = } fx - y)dKo(y) {almost all x > 0) .
[0,x]

Now we can prove the following properties of the canonical function Kon

LEMMA 1.6.4. Let F be an inf div df with £(F) 2 0 and canconical function KO.
Then

1) K (0) = 2(F);
(ii) f i dKO(x) < o iff F(L(F)) > 0, in which case the following rela-
(0,)
tion holds:
! .
(1.6.6) ;- = dKO(x) = ~log F(L(F)) ;

(0,)
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(iii) K is bounded iEf g e= [ ® aF(x) < «, in which case
{0, )
(1.6.7) jéf aK (%) = uy -
[0,)
PROOF. Define the df G by G(x) := F(x+2(F)) (x ¢IR), then G is again inf

div, with 2(G) = 0 and canonical function Lo, say. According to theorem

1.6.2, we have for all x > 0

G(xIL_(0) < } G(x - y)dn_(y) = } vdG(y) < xG(x) ,
[0,x] [0,x]

and hence, as 2(G) = 0, LO(O) = (0, Using the representation (1.6.3) for é,

we can write

eV EVTE () < expl-g(F) T+ } (ewa—l);i; L (01 (x

(0,)

v

F(r) = 0.

But as E can also be represented by (1.6.3), the uniqueness of the canonical

function implies KO(O) = {F). In view of (1.6.3) we can now write

K(F)T} -

log{F (1) e @ -l (t20) ,
x [o]

(0,=)

from which, letting Tt - ® and using (1.3.4) and the dominated convergence
theorem, we obtain part (ii) of the lemma. Finally, using (1.3.6) and the
fact that io = 0y with R given by (1.6.1), we obtain part (iii) as follows:

dKo(x) = lim KO(T) = lim - F? (1) /F{t) = Hy (< ») 0

[0,%) ™50 ™0

Part (iii) of the preceding lemma can be generalized to obtain necessary
and sufficient conditions for the existence of higher moments of inf div
distributions on [0,»). This has already been done by Wolfe (1971lb) for ge~
neral inf div distributions, but in our case the proof is very simple and

we obtain a relation with the class C1 of inf div lattice distributions.

THEOREM 1.6.5. Let F be an inf div df on [0,«) with canonical function Ko,
Then for all n e]{o

. .
(1.6.8) u - Hlar(x) < © o UNEE xndKo(x) <o,

n+1
[0,) [0,=)
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in which case
n

n
u = ) (uv . ;
n+l k=0 k' "k n-k

(1.6.9)

if w, < @ for all n € N, then {un/n!}: satisfies the recurrence relations

(1.5.9) for Cl’ with rn(l) = vn/nl (n e:No).

PROOF. If U is a nonnegative, right—continuous, nondecreasing function with

(U} = 0, then obviously for all n eZNO

(1.6.10) 1lim <m1)”(§~onﬁ(r) = }' x7au (x) (< @) .
o ' [0;%)

Since the canonical function Ko of an inf div df F on [0,») satisfies

~F' (1) = F(1)K (1) (cf. theorem 1.6.1 or (1.6.4)), we can write

n
n+l . d  n+i- n n d k= d | n-k.
(1.6.11) (=17 (G F(D = (=1) kzo G FOHE TR (0] .
Now, using the fact that uk <o (k= 0,1,...,n) if un+1 < o and the same

property of {vn}:, and letting t + 0 in (1.6.11) (cf. (1.6.10)), we see the

assertions of the theorem to be true. ]

If ¥ is an inf div 4f on [0,») with F(0) > 0, then the representation

(1.6.3) for F can be simplified as follows.

THEOREM 1.6.6. A df F on [0,») is inf div with F(0) > 0 iff F is compound

Poigson, i.e. iff § has the form
(1.6.12) F(t) = expfu(G(r) - 1)] (t 20} ,

where u > 0 and G is a df with G(0) = 0.

PROOF. Let F be an inf div df on [0,*) with F(0) > 0. Then 2(F) = 0, and if

KO is the canonical function of F, it follows by lemma 1.6.4(ii) that

1
o= "}-{-dKO(X) < «
(0, )
Now if we define

Glx) =yt f %-dko(y) x=0) ,
(0,x]
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then G is a 4f with G(0) = 0, and it is easily seen that the representation
(1.6.3) for F can be rewritten in the form (1.6.12).

Conversely, it is well known (and trivial) that a PLST of the form (1.6.12)
is inf div with F(0) > O. g

The compound geometric distributions on [0,»), which are also compound Pois-
son (cf. lemma 1.4.14), can be characterized by a functional equation simi-
lar to (1.6.4) (cf. Steutel (1970)). We use a notation that will be clari-

fied in chapter 5.

THEOREM 1.6.7. A df F on [0,») is compound geometric, i.e. has a PLST F of
the form

(1.6.13) F(r) = ———B (t 2 0)
1 - pG(T)

7

where O < p < 1 and G is a df with G(0) = 0, iff F(0) > 0 and there exists

a right-continuous, nondecreasing function K_ such that

(1.6.14) F(x) - F(0) = / F(x - y)dk_(y) (x 2 0) .
[0,x]

From (1.6.14) one easily proves the following result about moments of com-

pound geometric df's on [0,») (cf. (the proof of) theorem 1.6.5).

THEOREM 1.6.8. Let F be a compound geometric df on [0,®), and let K, be the

function in theorem 1.6.7. Then for all n e N

]

(1.6.15) u_ := X AF (%) < ® & v
[0,x) [0,=)

xnde(x) < oy,

in which case

n
(1.6.16) u_= ) (Huv  ;
n k=0 k' "k n-k

©0
if I < o for all n ¢ N, then {un/nl}o satisfies the recurrence relations

. _ -1 .
(1.5.17) for Co' with rn(O) = F(0) vn+1/(n-+1). (n gimo).

Finally, as in the discrete case (cf. section 5), we consider the follow-

ing classes:

D: the class of df's on [0,») with a comp mon density,
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E: the class of df's on [0,*) with a log—convex density.

Here log-convexity is defined as follows.

DEFINITION 1.6.9. A positive pdf f on (0,®) is said to be log-comvex if

log £ is convex, i.e. if

(1.6.17) £0x+ (1-Ny) < £(x) e(y) A (x>0, y>0,0<Ac<1) .

In view of Bernstein's theorem (theorem 1.3.7) one easily verifies that the

following characterization of the class D holds.

LEMMA 1.6.10. A pdf £ on (0,») is comp mon iff f is a mixture of exponential

distributions, i.e. iff there exists a df G on (0,») such that

(1.6.18) £(x) = / ve M ac () (x > 0) .
(0, )

The df's in the classes D and E are inf div; this has been proved by Goldie
(1967) and by Steutel (1970), respectively. In fact, denoting the class of
all inf div df's on [0,®) by Fo' we have the following partial. analogue of

theorem 1.5.13.
THEOREM 1.6.11. 0 ¢ E ¢ FO,

In chapter 5 we shall introduce an analogue of the class CO for distribu-
tions on [0,®); this class, called Fw, will £ill the gap between E and Fo’
i.e. it will have the property that

EcF < F .
® (o]

It follows that the family (D,E,Fw,FO) defines a classification of Fo,which
can be considered as an analogue of the classification of Cl’ defined by

(A,B,CO,CI) (cf. section 5), for distributions on [0,®).

1.7. Properties of and nelations betfween canonical hrepreseniations

In theorem 1.4.7 the chf F of an inf div df F on IR has been characterized

by the Lévy canonical representation (a,cz,M):

(1.7.1a) F(t) = explita- 4ot + (™1 - g an(x) ] (t e®) ,
1+ x

wr\{0}
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where a ¢ IR, 02 2 0 and M is a right-continuous function on R\{0} with the
following properties: M is nondecreasing on (-«,0) and on (0,®), M(~») =

= M(®) = 0 and

(1.7.1b) / xsz(x) < oo
(-1, 1\{0}

The chf F of an inf div df F on [0,®) can be represented by means of its ca-

nonical function KO (cf, theorem 1.6.1):

(1.7.2a) F(t) = expl (et

[0,

- 1};1{— &K _(x) ] (t eR) ,

where Ko is a right-continuous, nondecreasing function, vanishing on (-=,0)

and satisfying

(1.7.2b) [ é-dKo(x) < o
(1,“))

mew,memfgﬁmMﬁﬁvﬁmeommFM)>OmsmeEMWMg
form (cf. theorem 1.5.3):

{eit(n+1) -1} 1

(1.7.3a) F(t) = expl J )

rn(l)] (t em) .,
n=0

where {rn(l)}: is a sequence of nonnegative numbers, satisfying
o 1
rn( )

(1.7.30) )
n=0

< o
n + 1

In fact, the three classes of df's, considered in (1.7.1a), (1.7.2a) and
(1.7.3a), respectively, define a classification of the class of all inf div
df's onIR. Now we want to investigate under what conditions on the canonical
quantities an inf div df belongs to one of the subclasses and what relations
exist between the canonical representations. Not all of this is new, but it
seems useful to collect the available information, together with a few ad-
ditions, and, sometimes, simpler proofs.

First we modify (1.7.2a) in such a way that we get a representation for all

inf div df's F with L(F) > «o,

THEOREM 1.7.1. A function ¢ onIR is the chf F of an inf div df F with
L{F) > ~x iff p has the form
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(1.7.4a) o(t) = explity + {eitx - 1}AN(x) ] (t eR) ,

(0, )

where Y € R and N is a right-continuous, nondecreasing function on (0,«)

with N(®) = 0 and satisfying

(1.7.4b) / xdN (%) < o ,
(0,11

The representation (y,N) is unique, and necessarily L(F) = vy.

PROOF. Let F be an inf div 4df with 2(F) > ~«, The df Fl' defined by
Fl(X) c= F(x + L(F)) (x eR), is inf div with Q(Fl) = (0, and hence 51 has
the form (1.7.2a) with KO(O) = Z(Fl) = 0 (cf. lemma 1.6.4(i)). It follows

that

F(t) = exp[itl(F) + {eitx - 1}§-dKo(x)] (t eR) .

(0,)

Because of (1.7.2b) we can define a function N on (0,«) by

N(x) = - / %‘dKo(y) (x > 0) .

(x,%)

Then N is right-continuous and nondecreasing, and satisfies (1.7.4b):

xdN (x) = / dKO(x) = Ko(l) < oy,
(0,17 (0,11

while ¥ takes the form (1.7.4a) with y = L£(F). The representation (y,N) is
unique as KO is unique.
Conversely, if a function ¢ has the form (1.7.4a), then ml(t) = e_ltY

has the form (1.7.2a) with KO defined by (cf. (1.7.4b))

o(t)

Ko(x) s f vaN (y) (x >0) .
(0,x]

By theorem 1.6.1 and lemma 1.6.4(i) it follows that ] is the chf of an inf
div af F, with £(F,) = 0, and hence p(t) = eltle(t) is the chf of an inf
div df F with 2(F) = v. 0

COROLLARY 1.7.2. If F is an inf div df with 2(F) 2 0, then the following

relation holds between its canonical function KO and its representation
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(y,N) from (1.7.4a):

(1.7.5) KO(x) =y + } ydN (y) (x 2 0) .
(0,x]

Using theorem 1.7.1 we can give necessary and sufficient conditions for an
inf div df F to have a support that is bounded from below, i.e. 2(F) > -,
This has also been done by Baxter & Shapiro (1960) (see also Feller (1971),
Ch. XVII), but our method of making use of the representation (l1.7.2a) for
inf div df's on [0,»), instead of using only (1.7.1a), simplifies matters.
Also, the expression for 2(F) to be given in (1.7.7) follows much more di-

rectly than in Tucker (1961).

THEOREM 1.7.3. Let F be an inf div df with Lévy canonical representation
2

(a,0%,M) . Then L(F) > - iff 0° = 0, M = 0 on (~»,0) and
(1.7.6) j xdM(x) <  ,
(0,11

in which case necessarily

—«—i‘«-—z« am(x) .
1+ x

(1.7.7) L(F) = a =
(0, )

PROOF. Let R(F) > ==, Then by theorem 1.7.1 F has the representation (y,N)
from (1.7.4a) with, because of (1.7.4b),

X

1+ x2

AN (x) < o
(0,)

It follows that F can be written in the form

F(t) =explit{y + f s aN(x) )+ {eitxwwi%}dmx)],
(0 1) 1+x (00) 1+

from which by the uniqueness of the representation (a,o2,M) it is seen that

02 =0, M £ 0 on (~»,0) and

(1.7.8) M = Non (0,9, a =y + X

(0,)

5 dn (%) .
1+x

) 2 I
Conversely, if (a,0”,M) satisfies the conditions of the theorem, then the
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integral in (1.7.7) is finite. Hence the representation (1.7.la) for F can
be written in the form (1.7.4a) with y given by the right-hand side of
(1.7.7) and N = M on (0,®). By theorem 1.7.1 it now follows that L(F) > -,
and as &(F) = vy, we have (1.7.7). 0

COROLLARY 1.7.4. If F is an inf div df with 2(F) 2 0, then the following re-

lations hold between its canonical function Ko and the Lévy representation

(a,Oz,M) :
(1.7.9) Ko(x) = {a - = 5 am(x) } + [ ydm(y) (x 20) ,
(0,w) 1TE (0,x]

and, conversely,

1 1
(1.7.10) a = AR (%), M(x) = - / — dK_(y) (x > 0) .

1+x2 °© Y ©
[0, =) (x,°)

PROOF. Use the relations (1.7.5) and (1.7.8). 0

Using the same technique as in the proofs of lemma 1.6.4(ii) and theorem
1.6.6, we obtain a generalization of these results to all inf div df's F

with 2(F) > =,

THEOREM 1.7.5. Let F be an inf div df with Lévy representation (a,UZ,M) and
with L(F) > =, Then F(L(F)) > 0 iff M is bounded, in which case

(1.7.11)  =~log F(&(F)) = M(0+) ,
and F is a shifted compound Poisson df on [0,»), i.e. E has the form

Lt (F)
= e

(1.7.12) F(t) expln(G(t) -~ 1)] (t em) ,

where p > 0 and G is a df with G(0) = 0.

COROLLARY 1.7.6. If F is an inf div df with 2(F) > -», then F is continuous

at 2(F) iff F is continuous everywhere.

PROOF. If F is continuous at 2(F), then by the preceding theorem M is un-
bounded. Now, by a result of Blum & Rosenblatt (1959) (our theorem 1.7.9)

it follows that F is continuous everywhere. O
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We now consider the class of inf div lattice distributions {pn}: with po:>0
as a subclass of the class of inf div distributions on [0,°). Comparing the
canonical representations (1.7.2a) and (1.7.3a), and the conditions (1.7.2b)

and (1.7.3b), we are immediately led to the following result.

THEOREM 1.7.7. Let F be an inf div df on [0,») with canonical function KO.
Then F is the df of a lattice distribution {pn}: with P, > 0 iff K is a
step function with discontinuities restricted toIN; in this case the follow-

o8]
ing relations exist between K and the canonical sequence {rn(l)}O of {pn}:

= U ;
(1.7.13) Ko(x) =} rn—l(l)l[n,W)(x) (x e R) ,
n=1
and, conversely,
(1.7.14) rn(l) = Ko(n-fl) - Ko(n) (n eZNO) .

COROCLLARY 1.7.8. Let F be an inf div df with Lévy representation (a,cz,M)n

Then F is the df of a lattice distribution {pn}: with Po > 0 iff 62 = 0, M

is a step function with discontinuities restricted to IN and

(1.7.15) a = ] X aMm(x) ;

2
(0, ) 1+x

in this case the following relations exist between M and the canonical se-

quence {rn(l)}o of {pn}:

o rn(l)

(1.7.16) M(x) = - ) ——0r Lo, ne1) X (x > 0) ,
n=0

and, conversely,

(1.7.17) rn(l) = (n+ D {Mn+1) - M(n)} (n e]NO) .

The first part of this corollary is a special case of part (i) of the fol-

lowing result, due to Blum & Rosenblatt (1959).

THEOREM 1.7.9. Let F be an inf div df with Lévy representation (a,GZ,M).

Then

2

(1) F is discrete iff 0“ = 0, M is bounded and M is a step function,

(ii) F is continuous iff 02 > 0 or M is unbounded.
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Also, for an inf div df to be absolutely continuous, necessary and suffi-
cient conditions are known (cf. Tucker (1964)). We confine ourselves to the
following simple sufficient conditions (cf. Tucker (1962) and Fisz & Varada-

rajan (1963)), and return to this in chapter 5.

THEOREM 1.7.10. Let F be an inf div df with Lévy representation (a,02,M),
If 02 > 0 or if there exists € > 0 such that M is unbounded and absclutely

continuous on (~£,0) or on (0,¢e), then F is absolutely continuous.

Finally, we consider two more classes of inf div df's for which the repre-

sentation (1.7.la) has a simpler form. Let F be an inf div df without a
L - . 2

normal component, i.e. with 02 = 0 in its Lévy representation (a,o ,M). The

function M satisfies (cf. (1.7.1b))

(1.7.18) ] x2aM(x) < @ ,
(-1,1)\{0}

and now we want to consider the special cases where

(1.7.19) f |x]am(x) <« ,
(~1,1)\{0}

oxr

(1.7.20) f dM(x) < = (i.e. M is bounded) .
(-1,0\{0}

If ¥ 20 on (~~,0), then, according totheorems 1.7.3 and 1.7.5, (1.7.19)
and (1.7.20) give rise to the inf div df's F with L(F) > ~» and to the
shifted compound Poisson distributions on [0,®), respectively. In the gene-
ral case we have analogous results, the first of which we shall need in

the last section of chapter 5.

THEOREM 1.7.11. Let F be an inf div df with Lévy representation (a,02,M)e

Then there exist inf div df's F1 and FZ on [0,») such that

(1.7.21) F(t) = %1(t>52(~t) (t ¢ IR)

iff 0°=0 and (1.7.19) holds.

PROOF. Let F satisfy (1.7.21) with F, and F, inf div dffs on [0,»). Then

2
by theorem 1.7.1 for j = 1,2 Fj has the representation (Yj,Nj) given by
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(1.7.4a), and hence

(1.7.22) E(t)::exp[it(ylmyz)+ J[ (eitx—l)dNi(x)+ }(a’lt"-l)dnz(x)].
(0,) (0, )

. 2 .
Now by (1.7.la) it follows that the Lévy representation (a,c” ,M) of F satis-
fies

Nl(X) , if x>0 9 “
(1.7.23) M(x)={ , 0 =0, a=y1~y2+ } 5 daM(x) ,

"-N2(—x«), if x < 0 ®\{0} 1+x

so that 62 = 0 and M satisfies (1.7.19), because of (1.7.4b).

The converse can be shown in a similar way; we choose the df's F1 and F2 in
(1.7.21) by giving their representations (Yl'Nl) and (YZ'NZ)’ where we note
that N, and N, are completely determined by M, but that the nonnegative

1 2
quantities Yq and y2 only need to satisfy the equality in (1.7.23). |

. . . . . . 2
COROLLARY 1.7.12. Let F be an inf div df with Lévy representation (a,o ,M).

Then there exists an inf div df ¥, on [0,») such that

1
(1.7.24) F(r) = El(t)ﬁl (~t) (t e )
iff a=:02 =, M(x) = =M(-x~) {(x > 0) and

xdM(x) < =« ,
(0,1]

in which case F can be given the following form:

(1.7.25) F(t) = exp[2 f (cos tx-1)am(x) ] (t e .
(0,)

THEOREM 1.7.13. Let F be an inf div df with Lévy representation (a,oz,M).

Then F is a shifted compound Poisson df, i.e. F has the form
~ ity ~
(1.7.26) F(t) = e Texp[p(G(t) -~ 1)] (t emw) ,
where ¥ ¢IR, 4 > 0 and G is a 4f continuous at zero, iff 02 = 0 and {1.7.20)

holds. The representation (y,u,G) in (1.7.26) is unique.

PROOF. If 02 = 0 and (1.7.20) holds, then it is easily verified that (1.7.1a)

takes the form (1.7.26) by putting
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(1.7.27) Y:=a- X

r\{0}

(x) .

1
5 dM(x), uz= f am(x) , G(x) :~I M(x) +1[0’m)

r\{0}

1+x=

Conversely, if F satisfies (1.7.26), then, comparing this equation with

(1.7.1a), we see that

X

2
(~co, e0) 1+x

(1.7.28) a =y + u aG(x), 02=0, M(x) = p{G(x) ~ 1

[0, ) (x)} ,

so that 02 = 0 and M is bounded. .
Finally, suppose that F can be represented by (1.7.26) in two ways: by
(Yl,ul,Gl) and (Y2’“2’G2)' say. Then necessarily

ity1+u1(G1(t) - 1) =ity,+ u2(G2(t) - 1) + 2kmi (t eR; k ¢ 4) .
Taking t = 0 and using the continuity of 51 and 52, we get
(1.7.29) 1t(Y1-Y2) = uz(Gz(t)-l) - ul(Gl(t)-1) (t eR) .
It follows that

by =vollel < 20 +uy) (t e®) ,

and hence Y= Y2- Now, as the jump of a df G at zero is given by (cf.
Lukacs (1970}, ch. 3)

(1.7.30) G(0) - G(0-) = lim = f G(tydat ,

2T
("T.'T)
and as G1 and G2 are supposed to be continuous at zero, it follows from
(1.7.29) with Yy= Yy that By = Mo and hence G, = G2, ]

Combining theorems 1.7.9(ii) and 1.7.13, we obtain the following result.

COROLLARY 1.7.14., An inf div 4df F that is not continuous, has a chf F of
the form (1.7.26).
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CHAPTER 2
CLASSTFICATION OF THE INFINITELY DIVISIBLE LATTICE DISTRIBUTIONS

In section 1.5 we introduced four classes of inf div lattice distributions:
the classes Cl' CO, B and A of compound Poisson (i.e. inf div), compound
geometric, log~convex and comp mon distributions, respectively. Also, we
noted that, as in this order these classes contain increasingly special dis-
tributions (cf. theorem 1.5.13), they define a classification (cf. the end
of section 1.2) of the inf div lattice distributions. The distributions in
A and B, and to some extent in CO, are often easily recognized as such. Now,
in orxder to get a better understanding of the class Cl\co' we want to clas-
sify the distributions in this class.

To obtain such a classification, in section 1 we introduce classes of lat~
tice distributions characterized by means of recurrence relations. These re-
lations depend on certain seqguences {cz(a)}, and the main problem will be

to choose c;(a) in such a way that the resulting classes yield a classifi-
cation of C1 (section 2). This turns out to be possible by choosing a spe-
cial sequence {c;(u)}; in section 3 the classes Cu (0 £ o £ 1), resulting
from this special choice, are shown to be increasing with a. It turns out
that an important role is played here by the compound geometric distribu-
tions. Properties of the Ca’s are proved in section 4, where also some exam-
ples are given. In section 5 two other classifications of C1 are discussed.
Specifically, we consider the classes of compound negative-binomial distri~

butions, which turn out to have properties similar to those of the Cu’sh

2.1. Intenpolating between Co and ¢

The class C1 of inf div (i.e. compound Poisson) lattice distributions {pn}Z’
with 0 < po < 1, can be characterized as follows (cf. corollary 1.5.5):

{pn} € C1 iff there exist nonnegative guantities r (1) (n e ) such that

n
Py g (1) (nem) .

(2.1.1) (n+)p =
n+1 k=0

Similarly, in corollary 1.5.9 the class Co of compound geometric lattice
distributions {pn}: is characterized by the nonnegativity of quantities

rn(O) satisfying

n
(2.1.2)  p_. =}

n+l o (0) (n €]NO) N

pkrnwk
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We know that Co c C1 (cf. theorem 1.5.13), and the recurrence relations
(2.1.1) and (2.1.2) now suggest the idea of generalizing them in order to
obtain classes of lattice distributions that f£fill the gap between Co and Cl'
Proceeding in such a way, for 0 < o < 1 we consider sequences {c;(u)}z with
the following properties:

c;(O) =1, c;(l) = n+1 (n eINO)

(2.1.3)
c;(a) is nondecreasing in both n and o .

For any choice of {c;(a)} satisfying (2.1.3) we introduce classes C;
(0 £ o< 1) as follows.

DEFINITION 2.1.1. For 0 £ ¢ < 1 a lattice distribution {pn}:, with p_ > 0,

<
* v . *
is said to be in the class Ca if there exist nonnegative quantities rn(u)

(n e]NO) such that

n
* *
(2.1.4)  c_(a)p_,, = kzo pr (o) (nem) .

* *
REMARK. The symbol * is added to the quantities cn(a), rn(a) and C; to ena~
ble us to use the notation without * for the special situation that will be
considered from section 3 on. Further, as already noted in section 1.2, if

*
{pn} € CZ with pgf P, then we shall also say that P ¢ Ca'

Clearly, taking o = 0 and o = 1 in definition 2.1.1, we get CZ = CO and
CI = Cl' For these cases the recurrence relations (2.1.4) have been consi-
dered in detail in section 1.5. Now, before choosing a special sequence
{c;(a)}, we discuss some general properties of (2.1.4) with an arbitrary

o e [0,1]. We need the following notation (cf. (2.1.3)):

(2.1.5) ¢ (o) := lim c;(a) (cw; 0<as<1),
N>

and for a given lattice distribution {pn}z

e

* *
(2.1.6) A (2) := ] c_(a)p .,z
n=0

n (|z] <1; 0<a=<1) .



37

LEMMA 2.1.2. Consider a fixed sequence {c:(u)k: satisfying (2.1.3), and a

fixed o € [0,11

(i) Let {pn }: be a lattice distribution with p_ > 0. Then there exists a
unique sequence {r:(a)}s satisfying (2.1.4), and its gf has a positive
radius of convergence. If r;(a) 20 for all n eWN_ (i.e. if {pn} € C:),

then

(2.1.7) ¥ rz(a)/c;(u) < e
n=0

*
if furthermore ¢ (o) is finite, then

(2.1.8)  § r(w < .
n
n=0
(ii) Let {r:(a)}: be a sequence of nonnegative numbers satisfying (2.1.7),
or, if c*(u) is finite, (2.1.8). Then there exists a unique lattice

distribution {pn}z with p_ > 0, satisfying (2.1.4).

PROOF .
(i) Let {pn}: be a lattice distribution with p_ > 0. Then, rewriting (2.1.4)
in the form

n
* * *
Pory (@) = Cpl®Pyy = kzl pkrn—k(u) (neMN)
we see that the sequence {r;(a)}:, recursively defined by this equation, is
the unique solution of (2.1.4). Further, as P, > 0, the function RZ, defined

by

R (z) :=a"(2)/P(z) ,
61 ¢

is analytic in lzl < ¢ for some € > 0. It follows that the coefficients in
the power-series expansion of R; satisfy (2.1.4), and hence are equal to the
rz(a)‘s. So, for |z| < € the gf of {rZ(a)} coincides with RZ and therefore
has a positive radius of convergence.

* . .
If all rn(a)‘s are nonnegative, then we can write

©0 o n
* -1 *
1-‘p=Z P =X c_(a) z P x () =

© n=o M onp ® =0 * n7K

o] o0

* *

= ) p ) r(w/e (o) .

k=0 k =0 n n+k
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From this it follows that

fee)
* *
L xr (a)/c (@) < (1=p)/p, <=,
n=0
* .. *
while, in case ¢ (a) is finite, by the monotonicity of cn(a) we conclude

that

o«
*
J r (0 < (1-p)c™(a) <c (o) .
n o
n=0
*
(ii) Let {rn(a)Ls be a sequence of nonnegative numbers satisfying (2.1.7).
*
As Aa, defined by (2.1.6), is not expressible in terms of P, it is not pos—
sible to use the method applied in the cases a = 0 and o = 1; we have to
work with the recurrence relations themselves. First consider the quanti-

ties Yk’ for k eimo defined by

F* &
= z rn(a)/cnﬂi(w .

c s * . .
Because of the monotonicity of cn(a) the Yk's form a nonincreasing sequence
of nonnegative numbers. Using the dominated convergence theorem one easily

sees that lim Yk = 0, if c*(a) is infinite, and that lim Yk < 1, if c*(a)
koo kK -»o0
is finite and (2.1.8) holds. It follows that in both cases it is possible

to choose v < 1 and K ¢ IN such that Y Y for all k > K. Next we note that
for any choice of P, > 0 (2.1.4) has exactly one solution {pn}: with, ne-

cessarily, 1= 2 0 for all n. Considering such a solution, for N > K we can

write
N+1 N * -1 B N N N . .
L Py = nZO c (o) kzo pkrn“k(a)==k§o Py nzk (/e @) <
¥ X N K N+
) kZO By = k=z:0 Pkl k=1}<:+1 Bl = o kZO B +Yk£1 Py -

Hence, as vy < 1,

N+1

A

Yo
2 — ] P N > K,
el n 1=~y k=0 k

from which it follows that for all solutions {pn}: of (2.1.4) with P, 0

we have
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o
Zopn<oo_

Finally, every solution {pn} can be written as p = u p_ (n € N_), where
{un}: denotes the solution of (2.1.4) with starting value 1. By choosing
p, = {Zun}_l, the corresponding solution {pn}: becomes a probability distri-

bution. O

REMARK. Part (i) of the preceding lemma enables us to speak Of the sequence
{r;(a)}:, and its gf R;, corresponding to a given lattice distribution {pn}z
with P, > 0. In the sequel we shall do so without further comment.

Part (ii) enables us to construct examples of distributions in C;, by start-
ing from an arbitrary sequence {r;(a)}: of nonnegative numbers satisfying

(2.1.7) oxr (2.1.8).

In order to obtain a classification of the inf div lattice distributions,
*
we wish to choose the sequence {cn(a)} in such a way that

(2.1.9) C:cC;ifa<8 0O<a<1,0<Bs<1),
and we shall say that in this case {c;(a)} satisfies (2.1.9). In the next
section we shall investigate if sequences satisfying (2.1.9) do indeed exist.

Here we give a few more properties that hold for every choice of {c;(a)}@

THEOREM 2.1.3. Let {pn} € Co' Then the r:(a)'s corresponding to {pn} satis-

fy

(2.1.10) rz(a)/cz(a) P4 rn(O) (0 <o < 1;‘n € E%) .

. * * . . .
Furthermore, if cn+1(a)/cn(a) is nondecreasing in a for all n, then so are

* * *
both rn(a)/cn(a) and rn(a).

PROOF. In the first place we note that for the rz(a)'s corresponding to a

general {pn} the following relation holds:

n

n
* * * *
2.1.11 = . ne .
( ) kzo c(@p x| (8) kzo c (Bl yx (@) (0 =a, B<1;nelN);

in fact, this is a consequence of the following relation (cf. (2.1.6)):

*

* ) * *
B(Z>R&(z) (= P(Z)Ra(Z)RB(Z)) .

A* * B
a(z)RB(Z) = A
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Now, let {pn} € Co’ so rn(O) > 0 for all n. Then, applying (2.1.11) with

B = 0, we can write

n-1
* * *
porn(a) = cn(a)Pn+1 - z pk+1rn—1—k(a) N
k=0
* n~1 *
= cp(@pyyy - kZO Cp (P Ty (O

so that

pO{rz(u) - c;(a)rn(O)} =

. nil nil %
= ¢ (a) Pt 4. (0) ~ c, (a)p, ,x_ ., . (0) =
n k=0 k+1 " n-1~k k=0 k k+1 n~-1-k
n-1
* *
= L PpyqTpotox (O e (@) = (@} .

*
Now by the monotonicity of cn(a) it follows that (2.1.10) holds.
* *
Next, let us consider sequences {cZ(a)} for which cn+1(a)/cn(a) is nonde-

creasing in o for all n, or, equivalently,
* * * *
(2.1.12) Cn(B)Ck(a) 2 Cn(a)ck(B) (0o <B=<1;n e]No; ke {0,1,..,n}).

Applying first (2.1.4) and then twice (2.1.11) with B = 0 and o = 0, respec-

tively, we can write
* * * *
po{cn(a)rn(s) - cn(B)rn(a)} =

" n—}-:l " . n-}-jl N
c_(B) P, Y . (o) = c (a) PpoX 4 o (B) =
n k=0 k+1 n~1~k n 2o k+1 " n-1-k

it

n-1
* k3 * *
Z Ppi1Fne1g (0l (BIc, () = ¢ (a)e (B)} ,
which is nonnegative on account of (2.1.12) for a < f. It follows that
rz(a)/c;(a) is nondecreasing in o for all n. Finally, from this we obtain

*
the same property for rn(u), using the monotonicity of c:(a) in «. O

From the preceding theorem it follows that definition 2.1.1 can only gene-

*
rate classes Ca with CO as a subclass. We state this as a corollary.

*

COROLLARY 2.1.4. For every choice of {c;(u)} and for all o ¢ [0,1]: CO cC
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*
To conclude this section we prove a simple property of Ca' which is already

known for o = 0 and o = 1.

* (y) @ %
THEOREM 2.1.5. If 0 < o £ 1 and {pn} € Ca, then {pn }o € Ca for all
Y € (0,1), where

p(Y)

_.n
n =y pn/P(y) (n e ]No) .

PROOF. It is easy to see that, if {pn} satisfies the recurrence relations
+
(2.1.4), then {pI(lY)} satisfies (2.1.4) with r;(a) replaced by y" 1r:;(0t) . Bs

*
these quantities are nonnegative if the rn(a)'s are, the theorem follows. []

2.2. The choice of c:l(on)

Clearly, there are many sequences {c:(a)}: satisfying (2.1.3). Examples.of
such sequences are easily obtained by a simple interpolation between

c;(O) =1 and c:(l) = n+ 1. Rather more sophisticated, one may try to inter-
polate between C;(Z) = (1—-z).-1 and CI(Z) = (1—uz)_2, where c: denotes the

gf of {c;(a)}. Of both methods we give three examples.

EXAMPLE 2.2.1. The following sequences {c;(a)} are easily seen to satisfy
(2.1.3):

(i) c;(a) =1 4+ on ,
(ii) el = (1em®,
(iii) c:;(a) = (1+an)” ,
(iv) iz = (-2, so Flaw) = (Y,
a n n
(v) C:(z) = -2 0-0n7t, so c;(oc) =lta+t...+a= (1-a"h/(1-0),
n
(vi) c*(z) = (1-—z)m1(1-uz)_a, so ¢ (a) = 2 (a+k~1)0tk .
¢ n k=0 k

Next we want to investigate which (if any) of the sequences {c;(a)}, listed
above, satisfy the desired monotonicity property (2.1.9). Not able to give
useful sufficient conditions for (2.1.9), we look for simple necessary con-
ditions, in order to check them for the c;(a)'s in example 2.2.1. To this

end we introduce a special distribution, which is in a way a critical one.
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DEFINITION 2.2.2. For a given sequence {c;(a)} satisfying (2.1.3), the boun—
dary distribution with parameters a ¢ [0,1] and vy ¢ (0,¢*(0)) is the lattice
distribution {ﬁn}:, defined by

n-1 % -1
I ck(on) (n e W) .
k=0

This distribution {Sn} can be obtained by choosing in lemma 2.1.2(ii)
* *
(2.2.2) r (o) =y, r (a) =0 (n eN) ,

which (see also example 3 on p. 57) explains the name "boundary distribu-

tion". It follows that
~ [oe *

(2.2.3) {pn}o € Ca .

Computing the rZ(a)'s corresponding to the boundary distribution {ﬁn}: with

parameters ao and vy, we obtain

n

* -1 o * k * -
I c,(a) =~ J r (ay T c (a) '
0=0 Lo ket P k L]

* * n+i
rn(u) = cn(a)Y

from which it successively follows that

*

ro(a) =Y

r:(a) = Yz{c:(a)/CI(uo) ~ 1},

rZ(u) = Y3c:(ao)—l{c;(a)/c;(ao) - c:(a) + c:(ao) -1} .

* ~
Now, if {cn(a)} satisfies (2.1.9), then, as {pn} € C: , the r;(a)'s have to
fo)
be nonnegative for all a ¢ [uo'lj” This condition is satisfied for n = 0

and n = 1, but not generally for n = 2. Working out the conditions

* L d %
r,(1) 2 0 and 3 x,(a) lu:ao =20,

respectively, we get the following lemma (where ey has been replaced by a).

*
LEMMA 2.2.3. For {cn(a)} to satisfy (2.1.9) the following conditions are

necessary:
(2.2.4) c’l‘(a)c;‘(a) > 3(c§(a) - 1) 0 < a<1)

and
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a * S * é_ *
(2.2.5) o cz(a) 2 cz(a)da cl(a) (0 <o <1) ,
where in the latter case C: and c; are supposed to be differentiable.

For the examples of {c:(a)} given in example 2.2.1 it is not difficult to
check whether or not they satisfy (2.2.4) and (2.2.5). Therefore we state

the mostly negative results without proofs.

LEMMA 2.2.4.

(i) c;(a) 1 + an violates (2.2.4) iff % < o < 1, and (2.2.5) iff
<o < 1.

(1 + n)a violates (2.2.4) if 0.7427 < o < 1, and (2.2.5) iff

it

(ii) c;(a)
°log®log 3 (~ 0.6645) < a < 1.
(1 + on)® violates (2.2.5) if 0.7573 < a < 1.

(“:“) violates (2.2.4) iff V3 - 1 (~0.7321) <o < 1, and

it

(1i1) ¢’ (a)

it

(iv) c;;(oo
(2.2.5) iff %(/5 ~ 1) (~ 0.6180) < a < 1.
(1—anﬂ)ﬂ1~aMausﬁesbmm (2.2.4) and (2.2.5).

it

(v) c:l(ot)

n
¥l X Violates (2.2.4) if 0.9344 < o < 1, and (2.2.5)
k=0

k
if 0.8907 < a < 1.

it

(vi) cz(a)

+
It is a pity that (1+nm and (unn) (~ n*/T(a+1), n >~ ») do not have the
required properties, as they seem to be more interesting, especially with

+1
regard to asymptotic behaviour, than the only choice left: c;(a)= (I«Aan )/

1 . .
(n > «) . It would be interesting

(1-a), for which we have c (o) ~ (L-a)~
to know whether other choices of {c;(a)} exist, satisfying (2.1.3) and
(2.1.9), with a more attractive limit behaviour, e.g. cg(a) ~ n% (n > .
It might be possible to obtain more interesting c;(a)'s by weakening some-
what the condition (2.1.3). Dropping, for example, the monotonicity of
c:(a), we may consider c:(a)'s like (nAba)d and the one obtained by means
of “fractional differentiation” as follows:

-1 - - b
2z -7 = ST I "=
n=

C*(Z)
[6)

_ za—l X T'{n + 1) n=0,

- Z 4
n=1 T'(n=a+1)

S0
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% o (n+ 1 1 n+l-a, -1
(2.2.6) Cn<“) T Tn+2-0a) P(l-a)( n+l ) ’

It turns out, however, that also these two choices fail to satisfy (2.1.9);

1)

if cZ(a) = (n + a)a, then computing rz(l) corresponding to the boundary
distribution {ﬁg}: with parameters o and y, we obtain, for instance for

o = 0.6 and vy = 1: rz(l) ~ -0,0089; if c;(a) is given by (2.2.6), then r;(i),
corresponding to {ﬁn}, turns out to satisfy: r;(l) < 0 iff 3-/5 (~ 0.7639)

<o < 1.

Although (2.2.6) does not satisfy (2.1.9), it suggests a class of other pos-

sible choices of c;(u). If we rewrite (2.2.6) as

(2.2.7) ¢l (@ =?i2~13’:—51-‘-)~ / (1 -u) " *u"qu (neN; 0<a<l),
(0,1)

then by (2.1.4) it follows that the gf R: of {r;(a)}:, corresponding to a

given lattice distribution {pn}:, is given by

*(2) = e -~ B (uz)
(2.2.8) Ra(z) T -0 / (L -~u) 5(2) du (0 < a< 1) .
(0,1)

Now (2.2.7) and (2.2.8) can be generalized in the following way:

(2.2.9) c;(a) = cZ(a)(n-&l) } ga(u)undu (n e]NO; 0<ac<1)
(0,1)
and
*(2) =" P! (uz)
(2.2.10) Ra(z) = co(u) j ga(u) () du (0 <a<1),
(0,1)

where for all o ¢ [0,1) 9y is a pdf on (0,1) with the property that

(u) and lim ga(u) = Gi(u)

g (u) =1
© . atl

(cS1 is Dirac's delta function at 1). It is not clear though, under what con-
. * *
ditions RB would be abs mon if Ra is abs mon and a < f. Rather curiously,

as

1 - an+1 1 n
s +1 .
T o (n+1) flmuudu (ne]No,OSoz<1),
(a,1)

1 .
) My thanks are due to L.G.F.C. van Bree, who did the programming needed

here and in some other cases.
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*
the only remaining example of c:(a) from lemma 2.2.4, i.e. cn(a) =
= (1—0Ln+1)/(1—0.), is of the form (2.2.9) with gu the uniform pdf on (o,1).

We shall not pursue this in this monograph.

*
We now restrict our attention to the only remaining candidate, cn(a) =
= (1 - an+1)/(1 - a) . This choice, which we shall consider in detail in the

next section, is supported by the following lemma.

LEMMA 2.2.5. If ci(a) and c;(u) are linear and quadratic functions, respec-
tively, then for (2.2.4) and (2.2.5) to hold it is necessary and sufficient
that

A
Q
IA

c;‘(u)=1+a, c;(a)=1+u+oc2 © 1) .

PROOF. Because of (2.1.3) c* and c*

1 5 have necessarily the form

* * 2

cl(u) = 1 + o, cz(a) =14+ (2-b)a + ba" ,
where -2 < b < 1, b # 0. The sufficiency of the condition has already been
shown in lemma 2.2.4. Suppose therefore that (2.2.4) holds. Then it is easy
to see that

bz (2a~-1)/{a(2-a)} O0O<as<l),

from which it follows that b > 1. Hence b = 1, and the lemma is proved. 0

2.3. The classes Ca; basic properties

From now on we shall consider the c;(a) from lemma 2.2.4(v), and we shall
show that it satisfies indeed (2.1.9). For this special case we use the no-
tation without %, so we have

1 -0 Tk
c (@) =~ = z o (nem ; 0<as<i),

1-a k=0

while the corresponding classes Ca are defined as follows.

DEFINITION 2.3.1. A lattice distribution {pn}:, with pO > 0, is said to be

in the class Ca if there exist rn(a} =2 0 (n eZNO) such that

1~ an+1 v
(2.3.1) T Py = kZO Pr, (@) (nemN) .
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Applying lemma 2.1.2 to our special situation, we easily obtain the follow-
ing properties of (2.3.1). We only note that c(a) and Aa' defined by (2.1.5)
and (2.1.6), respectively, are now given by

P(z) - P(az)
(1 -~ a)z

cla) = T A (2) =
- O a

LEMMA 2.3.2. Consider the recurrence relations (2.3.1) for a fixed o e [0,1).
(i) For every lattice distribution {pn}: with P, > 0 there exists a unique
sequence {rn(u)}: satisfying (2.3.1). The gf R of {rn(a)} has a posi-

tive radius of convergence, while in a neighbourhood of zero
(2.3.2) (1-a)zRa(z) =1 - P(az)/P(2) .
Furthermore, if rn(a) > 0 for all n (i.e. if {pn} € Ca)' then
o

1
(2.3.3) Lo (@) <
n=0

(ii) For every sequence {rn(a)}: with rn(a) 2 0 for all n and satisfying
(2.3.3) there exists a unique lattice distribution {pn}: with 15 >0,

satisfying (2.3.1).

As noted in section 1, we shall speak of the sequence {rn(a)} corresponding
to {pn}, when considering the solution of (2.3.1) for {rn(a)}. We shall re-
fer to its gf R, as the Ra—function of {pn} or P. It is now obvious that
we have the following useful characterization of Ca in terms of pgf's (cf.

definition 1.3.1).

LEMMA 2.3.3. For 0 < o < 1 a pgf P, with P(0) > 0, is in Cu iff the Rd~func—

tion of P, given by (2.3.2), is abs mon.

Taking o = 0 in the preceding lemma, we get theorem 1.5.8, while the first

part of theorem 1.5.3 is a limiting case in the following sense:

. e 1 P(z) -~ P(az) _P'(z) _
ii? Ra(z) - ii? P(z) Zz - oz T P(z) Rl(z) -

As an illustration of the usefulness of lemma 2.3.3 we prove corollary 2.1.4

in our situation using gffs. Rewriting (2.3.2) for o = 0 as

(2.3.4) P(z) = P(0)/{1 - zRo(z)} ,



47

and substituting this in (2.3.2), we obtain for 0 < a < 1 the following re-
lation between the RO— and Ra—function of a pgf P:

(2.3.5) (1-a)Ra(z) . {Ro(z) - uRO(az)}/{l-azRo(az)} .

It follows that Ra is abs mon if RO is abs mon. Hence we have proved

C ¢ (0£ac<t) .
(o] (¢4

We now turn to the general monotonicity property (2.1.9). As a first step

we prove that for every a ¢ [0,1) the distributions in Ca are inf div.

THEOREM 2.3.4. For all o ¢ [0,1) the following inclusion holds:

Ca « C1 .

PROOF. Let 0 €< a < 1 and P ¢ Ca. Then according to (2.3.2) and (2.3.3) for

]z] < 1 we can write
(2.3.6) P(z) = {1 - (1 - ot)zRa(z)}mlP(cxz) .

Iterating this egquation we obtain for every n € IN

n~1
P(z) =p@"2) T {1~ (1 - a)akzaa(akz)}"
k=0

! tjz] =1 .

Taking z = 1 we see that

n-1
P = T {1-(1-adR 5},
k=0 ¢
and so
k k
_ P(anz) n-1 1 - (I1-a)a Ru(a )

P(z) i (Jz] £ 1; n e .

P(o™) k=0 1 - (1«0L)0Lszu(o¢kz)

From this, by letting n = «, the following expression for P in Ra is ob=-
tained:
© 1= (-a)e'R (65

(2.3.7)  P{z) = 1 = - (lz] = 1),
k=0 1 - (1 -oa)a 2R (07z)

where it is easily verified that the infinite product is absolutely conver-—
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X
gent. Now define m_ := (1-0L)0ckRa(ak) and @ (z) := 2R (a2) /R (o*) . Then P

takes the form

o 1 — ﬂk l l
P(z) = T o (z| < 1),
k=0 17 M ()

where M € [0,1) because of (2.3.3) and Qk is a pgf because of the abs mon
of Ra (lemma 2.3.3). It follows that P is the limit of a sequence of pro-
ducts of pgf's in Co c Cl’ and hence by theorems 1.4.2 and 1.4.3 we conclude

that P € Cl. {l

Eguation (2.3.7) entails a representation theorem for Cq (cf. the represen-

tations (1.5.1) and (1.5.12) for C1 and Co' respectively) .

THEOREM 2.3.5. For 0 < o < 1 a pgf P, with P(0) > 0, is in Cq iff P has the
form
o

k
(2.3.8) P(z) = T _1_:__2_9_(_%_,2_
k=0 1~ pQ(a z)

7

where p ¢ (0,1) and Q is a pgf with Q(0) = 0. The representation (p,Q) is

unique.

PROOF. If P ¢ Cu’ then P can be represented by (2.3.7), which takes the
form (2.3.8) if we put p = (1 - a)Ra(l) and Q(z) = ZRu(z)/Ra(l)'
Conversely, a pgf P of the form (2.3.8) has an Ra—function given by

jr

- B
(2.3.9) R (z) = 75— =

Q(z) ,

N

which, as Q(0) = 0, is an abs mon function. Hence by lemma 2.3.3 P ¢ Ca.
The uniqueness of the representation (p,Q) follows from (2.3.9) and the

uniqueness of R . 0

In order to prove the general monotonicity property (relation (2.1.9)) by
using lemma 2.3.3, we need a convenient relation between the Ra— and RB—
function of a pgf P. Such a relation is rather hard to find, but the fol-~
lowing alternative proof of theorem 2.3.4 suggests relation (2.3.13), which
is the key to the proof of the main theorem. On account of (2.3.2) we can
write for 0 € a<1 (cf. (1.5.2))

P(a
P(z

(1—a)%z[zRa(z)] = - g—z[P(OLZ)/P(Z)]= )Z)—{Rl(z) - oR, (az)} ,
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and so

P(z)
P(oz)

d
(2.3.10) Rl(z) - uRl(az) = (1-a) EE{ZRa(z)] .

Now, let 0 < <1 and P ¢ Cu. Then Ra is abs mon, which by (2.3.6) implies
the abs mon of P(z)/P(az). It follows that the left-hand side of (2.3.10),

and hence R, is abs mon too, and so P ¢ Cl'

REMARK. Equating the coefficients of z% in (2.3.10) we obtain the following
analogue of (2.1.10): if {pn} € Ca’ then the rn(u)'s corresponding to {pn}
satisfy (cf. corollary 2.3.8 and its proof)

(2.3.11) rn(a)/cn(a) < rn(i)/(n'kl) {n eJNO) .

In the proof of the main theorem we shall need the following lemma.

LEMMA 2.3.6. If P ¢ Cl’ then P(z)/P(yz) is abs mon for 0 < y < 1. In fact,
P(y)P(z)/P(yz) is a pgf in Cl'

PROOF, If P ¢ Ci, then P has the form (1.5.1), from which it follows that
P(Y)P(z)/P(yz) = explu{Q(z) - Q(yz) + Q(y) - 1}] .

For 0 < y £ 1 this is again of the form (1.5.1), so P(y)P(z)/P(yz) ¢ Cl‘ O

THEOREM 2.3.7. C(1 is nondecreasing in a ¢ {0,1], i.e. for all o,B e [C,1]

C «¢C, if o < B .
o B8

PROOF. The theorem has been already proved in the case 0 < o £ 1, B = 1;
so, in view of lemma 2.3.3, it remains to show that, if 0 < o < B < 1 and

if Ra is abs mon, then R, is abs mon. To do so, from (2.3.2) we subtract

B
the same equality with z replaced by Bz, and we obtain

P{aBz) P(oz)

2(1 - )R (2) - BR (B2)} = goe™ = o
or, dividing by P(oaz),

z(1 - a) ; - —2lafz) 1
(2:3.12) Fiamy (R, (2) ~ BR (B2)} = orooves ~ 507 -

The right-hand side of (2.3.12), and hence the left-hand side of (2.3.12),

is symmetric in o and B, from wﬁich it follows that for 0 < g < 1 and
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0 < B < i we have

1 - a P(Bz)
1

Qo
(2.3.13) RB(Z) - OLRB(OLZ) =_—:-EP(OLZ){ROL(Z) - SROL(BZ)} B

Now suppose that a < B and P ¢ Cu. Then by theorem 2.3.4 P € Cl' and from

lemma 2.3.6 we conclude that P(z)/P({a/B}z), and so P(Bz)/P(az), is abs mon.
From the abs mon of Ra we obtain the abs mon of Ra(z) - BRQ(BZ), so that by
(2.3.13) it follows that RB(Z) - aRB(az), with coefficients (1-—an+1)rn(6),

is abs mon. Hence R, is abs mon, and the theorem is proved. O

B
Looking somewhat more precisely at the identity (2.3.13), we obtain a gene-

ralization of the inequalities (2.1.10) and (2.3.11).

COROLLARY 2.3.8. If O < @ < 1 and if Pfgca , then rn(a)/cn(u), and hence
)
rn(u), is nondecreasing in o € [uo,l] for all n e]NO, i.e.

(2.3.14) rn(a)/cn(u) < rn(B)/cn(B) (n eINO; ol <o < B <) .

PROOF. Let P ¢ Ca and, in view of (2.3.11), a < o< g8 < 1. Then by theo~
o
rem 2.3.7 also P € Ca, and hence (cf. the proof of theorem 2.3.7)

P(Bz) /P(0z) can be written as

co

P(Bz)/P(az) = ] s (a,8)2" ,
n=0

where sn(a,B) > 0 for all n and so(a,B) = 1. Now, equating the coefficients

of zZ" in (2.3.13), we see that

=i

c (w)r () = kZo ¢ (B)ry (a)s__, (a,B) (nem) ,

from which (2.3.14) follows. Finally, as cn(a) < cn(B) (n e]NO), we conclude

from (2.3.14) that rn(a) < rn(B) (n e]NO). J

We restate theorem 2.3.7 as a property that generalizes a result of Goldie

(1967) , who proved, in fact, our result in case o = 0 and 8 = 1.

COROLLARY 2.3.9. If for a given distribution {pn}:, with p_ > 0, the quan-

tities rn(a), for a fixed o ¢ [0,1) and n eimo defined by
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n
2 n
(2.3.15) (l+oa+a +”‘+“)ﬁw1"]£05kﬂwkM) (nem) ,

are all nonnegative, then also the quantities rn(B), defined by (2.3.15)

with o replaced by B, are nonnegative for all n e:No and all B with a<B8<1.

2.4. Furthen progerties and examples

In view of theorem 2.3.7 the classes Ca define a classification (cf. the
end of section 1.2) of Cl' In this section we shall compare the properties
of the separate Ca‘s with those known for Cla To this end the characteriza-

tion of Ca’ given by lemma 2.3.3, is frequently used, and, for notational
(y)

convenience, we denote by Ra

the Ra—function of a pgf, PY' depending on
a parameter Y.

We start with a generalization of the closure property of C1 (theorem 1.4.3).

THEOREM 2.4.1. For 0 £ o < 1 the class Ca is closed under weak convergence,
i.e. a pgf P, for which there exist pgf's Pn € Ca (n € W) such that P(z) =

= lim P_(2) (0 £ z £ 1}, is in C .
v n o

PROOF. Let O € o < 1, and let P be a pgf for which P(z) = lim Pn(z) with

begad
Pn € Ca (n € W) . Then Rén) is abs mon for all n, and as on account of
(2.3.2) the Ra—function of P satisfies R (z) = lim R(n)(z), it follows by
o o &
lemma 1.3.3(iv) that R, is abs mon, too. Hence P ¢ Cu' |

In the following theorem we state some properties of Cu that are well known,

or trivial, if all C-classes are replaced by Cl'

THEOREM 2.4.2. For 0 < g < 1 the class Ca has the following properties.
(i) IfP ¢ Ca and 0 £ v £ 1, then P(yz)/P(y) ¢ Ca.

(i) I£P e C_ and 05y <1, thenP(z)) ¢ ¢ .

(1i1) I£ P ¢ C and 0

IN
-

< 1, then P_(z) := P(y)P(z)/P(yz) € Ca.

(iv) I£PeC, n el and oM<y <1, then

-1 x k
2.4.1 P = .
( ) n,y # kzo Py 2)/P(y") e cY
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PROOF. In all four cases we apply lemma 2.3.3.
(i) In fact, this result has already been proved in theorem 2.1.5, but it
also follows from the following obvious relation:

(v)

(2.4.2) Ra

(z) = YRa(Yz) .

(y)

(ii) For the Ra—function Ra of PY we have

a . (v) __ 4 Yo o
dz[(1 @) ZR (z)]= dz[(P(aZ)/P(Z))J

=~y (p(az) /p(2)) ' LAp(aa) p(2) T
and so

a . _(y) _ 1-y a_
(2.4.3) dz[ZRu (z) ] = y(P(2)/P(az)) dZEZRa(Z)] .

Now, if P ¢ Cu' then P € Ci, and by lemma 2.3.6 we know that P(a)P(z)/P(az),
and hence {]?(oz)P(z)/]?(OLz)}1"Y for 0 < y £ 1, is a pgf in Cl' It follows
that {P(z)/!?(ocz)}lnY is abs mon for 0 < y < 1. As Ra is abs mon too, we oOb-
tain the abs mon of R;Y) from (2.4.3).

(iii) First, note that, if P ¢ Ca then for 0 < y < 1 PY is indeed a pgf

(cf. lemma 2.3.6). Calculating the Ra~function of PY we obtain

_ (v)
(1 u)zRu

_P(az) P(yz) Plyz) rP(uyz)_np(az)}

(2) =1 - SlavD) B(2) ~Plavz) Blyz)  B(2)

and so

™) _Plyz) _
(2.4.4) R ' (2) = E?E&z){Ru(z) YRa(YZ)} .

As according to lemma 2.3.6 P(yz)/P(oyz) is abs mon, we obtain the abs mon

of R(Y)
[¢)

(iv) We calculate the RY—function of Pn v and we get
14

from that of Ru' using (2.4.4).

(n,v) =
(2.4.5) R, (z) = Cn—l(Y)RYn(Z) .

By hypothesis, this is abs mon for yn = a, and hence by theorem 2.3.7 for

Yn 2 0. 0

Taking a = 0 in part (iv) of the preceding theorem, we see that for every
n ¢ IN the product of the first n factors in the canonical representation

(2.3.8) of a pgf in Cu also is a pgf in Ca' We state this as a corollary.
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COROLLARY 2.4.3, If 0 £ o <1, n elN, 0 S p <1 and if Q is a pgf with
Q(0) = 0, then

n-1 k
(2.4.6) 1 —R2L) o

k=0 1 - po (o z) @’

Next we prove a property of the Ca's, showing that, though many inf div dis-

tributions axe in Cl\ U Ca (cf. example 2 on p. 56), the situation is
O<ax<l
not too bad: we prove that U € is dense in C1 in the sense of weak con-

O<a<i
vergence.

THEOREM 2.4.4. If P ¢ Ci' then there exist an increasing sequence {an}T,

with lim an = 1, and a sequence of pgf's Pn € Ca (n ¢ ), such that
o n

(2.4.7)  P(2) = lim P_(2) (Jz| < 1) .

n->e

PROOF. Let P ¢ Cla Then by theorem 1.5.1 P has the form

(2.4.8) P(z) explu(Q(z) - 1)7 ,

where 4 > 0 and Q is a pgf with Q(0) = 0. Take o = 1 - n—2, and for n > yu
define the pgf's Pn by

n-1 1 - {u/n}Q(a];)
Pn(z) s= ] .
k=0 1~ {u/n}Q(anz)

From corollary 2.4.3 we know that Pn € Ca . We rewrite Pn as

n
n-1
(2.4.9) P (2) = {1 +5@Q@ -0 T {1+ 9, (@}
k=0
with
n - uQ(a]:l) 1
Gy, n () = K T/t -1 ¢
n- uQ(unz) =

1 - Q(oc]:l) +Q(a}:lz) -Q(z) + {u/n}Q(u];z) (Q(z) - 1)
= u -
[n - uQ(X2) 101 + {u/n}(Q(z) - 1)]

It follows that for !z! s 1, n sufficiently large and k < n we have
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2 k k 2
|9 n(@ | < 21— |+ otaia) -0 | + 321 .
Since for lzl <1l and k <n

loa¥z) -0z | =] ZO q (@P- 02" < ] g (1-a =
me=

m=0
4 k _ n
=1 Q(an) <1 Q(un) ;

we obtain an upperbound for lgk n(z)l that is independent of k and z:
r

4
(z) | < “nli{l - Q(ocﬁ) + -ﬁ-} .

!gk,n
Finally, from lim Q(z) = 1 and lim ag = 1im (1--n_2)n = 1 it follows that
zH1 e 11>
lim Q(an) = 1, and so, for n sufficiently large,
100 n
; - o ;
(2.4.10) Vke{O,i,...,n} Vlz]sl lgk,n(z)I ey with n ™ O(n) (n=> ) .

Now, observing that for n sufficiently large

[1og{1 + gk’n(z)}] < -log{l - ]gk,n(z)l} <

< lgk’n(z)l/{l - [gk’n(z)l} < Zng’n(Z)l ,

we can estimate as follows:

n~1 n-1 n-1
log kzo {1-+gk’n(z)}]:£kzo Ilog{1~+gk’n(z)}]$ 2 kzo ]gk,n(z)] <
< 2n€n,
which by (2.4.10) becomes arbitrarily small for n -+ «. Hence
n-1
iig kzo {1 + gk’n(z)} =1,
and (2.4.7) immediately follows from (2.4.8) and (2.4.9). 0

Before turning to some examples, we mention a characterization of C in
o

terms of C .
o

THEOREM 2.4.5. Let P be a pgf, with P(0) > 0, let 0 < o < 1 and let Pa be
defined by
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(2.4.11) Pa(z) := P(a)P(z) /P(az) .

Then P «¢ C_ iff the function P is a pgf in C_.

PROOF. First we note that if P ¢ Ca then by lemma 2.3.6 Pa is a pgf. Next,

consider the case that Pa is a pgf. Then the Ronfunction of Pa is given by

Rz =1 -2 01/ ()} = (1 - AR (2) .
o zZ [0 o o}

Hence Réa) is abs mon iff Ra is abs mon, from which the theorem follows. [J
Using theorem 2.3.7 we can now improve theorem 2.4.2(iii) in the following

way .

COROLLARY 2.4.6. If P ¢ Cu and if 0 < y £ 1, then Py' defined by (2.4.11),

is a pgf, while PY € Ca for 0 < vy < a, and PY € CO for a £y £ 1,

Theorem 2.4.5 is not only convenient to prove properties of the Cd's, e.g.
the properties in theorem 2.4.2(i), (ii) and (iv), but it also provides
examples of distributions in Ca' This will be clear from the following ob-

vious reformulation.

COROLLARY 2.4.7. Let Q be a pgf with Q(0) > 0, and let 0 < a < 1. Then

Q€ C_ iff P(z) := T 0(%2) /0(¢®) is a pgf in C,-
=0

Combining corollaries 2.4.3 and 2.4.7, we get for all a ¢ (0,1)

-l oy k
(2.4.12) Qe C_ = T Qo z)/Q() e C (n e u {=})
o o
k=0
This will be used presently to construct examples of distributions in Ca»
Note that on account of theorem 1.5.13 for Q we may take the pgf of any

comp mon or log-convex distribution.

Now, we list a number of examples of (inf div) lattice distributions in the
various classes Caa If the proofs of the statements made are straightfor-—

ward, we only give brief indications.
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1. Consider the Poisson distribution with parameter u > 0

e (n EJNO), or P(z) = explu(z ~ 1)1 .

It:

Ph®n

Calculating the rn(OL) ‘s corresponding to {Pn} we see that

(2.4.13) explu(z - )] ¢ U C (u >0) .
O<a<1 ©

2. The negative~binomial distribution with parameters p ¢ [0,1) and u > O

is defined by

(2.4.14) p, = (n+§—1)(1__P)upn (n eINO), or P(z) = (———‘P-i _—-pz)u .

For u = 1 {pn} is comp mon, hence by theorem 2.4.2(ii) we have

(2.4.15) (%7fé£p“ e C, (O<us<1;0<p<1) .

However, if u exceeds 1, the classes Ca (0 < a < 1) are skipped over:

1 - u
(2.4.16) (—By% ¢ y ¢ (u>1; 0<p<1) .
1 ~pz 0<a<t o

To prove this, we put u = 1 + ¢ with € > 0 and obtain for the Ra—function

of P
(1 ~0)zR (2) =1__(1._--__p_§_)1+s=1_{1_ﬂ_}_:_a_)_z_}1+€ .
o 1 - poz 1 -~ paz

Expanding this in a power series in z and putting x = (1-a)/a, we see that

for n e N

-n B n-1 1+¢ k., k
(1-..@) (Pa) rn_l (()L) = ("1) Z ( k )(n_k)X =
k=1
n
I R S N E ol

For the case 0 < ¢ £ 1 it follows that

1 k=2~¢

n
Z k(k—l)( k-2 ‘
=2

(1-0) (pe) e (@) = (1+e)x~ (1+e)e ) ) (T <

< (1l+e)x = Z~z(r1-—1)(1+z2)€x2 .

which tends to -» for n - «. Hence (2.4.16) is proved for 1 < u < 2.
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Next, suppose u > 2 and that {(1~-p)/{1-pz) Mo Coc for some a ¢ [0,1).
Then according to theorem 2.4.2(ii) it would follow that for all v ¢ (1,2]

1 ~-pv_ (1 =-puwv/u
(1_pzl "{(1_sz } Ecu

¢

but this contradicts the result above.

3. Consider the boundary distribution {ﬁn} with parameters o e [0,1] and

Yy e (0, (1~ ao)—l) (cf. definition 2.2.2); it satisfies
n -1 -1
(2.4.17) p_=p vy I e (a) (n em) .
n ) k=0 k' o

For o, = 0 we get the geometric distribution with parameter vy, and for
o, = 1 the Poisson distribution with parameter vy, which has been considered
in example 1. Now, take oy € (0,1). By (2.2.2) and (2.2.3) we know that
{ﬁn} € ch with R, = Y. Hence by (2.3.7) we have for the pgf P of {ﬁn}

[o} o}

- I (1—ao)ya};
(2.4.18) P(z) = @I ——= (Jz] < 1) .
k=0 1 - (1—ao)yuoz

In order to check whether P « Cu for some o < O, We calculate

© ] - (I"OLO)’Y(X];Z
(1-oc)zRa(z) =1 - I W .
k=0 1=~ (1 =0 )ya oz
o o

from which it follows that for m ¢ N

m~1

(1-u:)zR L8 =1- 1 {1- (l—ao)yakz} 5
o k=0 ©
o
As this is a polynomial in z of degree m, we must have rn(az) = 0 for

n=mmtl,..., or, equivalently,

v Y Ty =0 .
new me{l,...,n} rn(ao) 0
From (2.4.17) and the recurrence relations (2.3.1), however, we see that
rn(a) is a polynomial in o of degree n with leading coefficient
n
n+1

Y I ck(oto)"l, so that
k=0
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(2.4.19) rn(a) =Y g (n €]No; 0<acx<1l) .

From this we obtain (take n = 1) for every choice of the parameters N and y

(2.4.20) {Sn} eC ,@a2a .

4. The logarithmic distribution with parameter 6 ¢ (0,1), given by

1 .n#l 1 _
T ] (n eimb), or P(z) = iz log(1 6z) .

1
(2.4.21) p =g

4

n

where b := ~log(l -~ 6), is comp mon, and hence in Co“ The following related
distribution, which will be called the semi-logarithmic distribution with

parameters a > 0 and 06 ¢ (0,1), is more interesting:

a 1 i n
T5a'Pn " +a)bn (n e

(2.4.22) p_ =

where again b := ~log(l - 6). Its pgf P is given by

(2.4.23) P(2) = 72—(1 - ".;'E log(l - 82)} .

This distribution is also considered by Katti (1967), who proves that {pn}
is inf div iff ab > 1, and by Steutel (1970), who notes that {pn} is log-
convex (and so in CO) if ab 2 2. For the case 1 < ab < 2 we now prove the
following result:

2
1 + 0

(2.4.24) {pn} € Ca @ ab > (0<a<1) .

To this end we consider the recurrence relations (2.3.1) rather than the re~

lation (2.3.2) for pgf's, and obtain

n+l n 9k
cn(a)n+1 = ab rn(a) * kzl ® rn—k(a) (n e ]No) !
or, defining r (o) := e—n_lr (a)
2 L.ng n = n 4
n+ 1 - 21 -
(2.4.25) 1 = E;m{ab r (o) + kzl % oo ()} (nem) .

For n = 1 we get ab ;1(a) = %(1 + o) - (ab)-l; hence the condition in the
right~hand side of (2.4.24) is necessary. To prove its sufficiency, from

(2.4.25) we subtract the same relation with n replaced by n~ 1, and obtain
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- t ! n cn(u) -
b r= ] GTTRiT e @ Kk
k=2 1
c (o)
+[n$1cf1( yoab - tlr ,(a) .

By the monotonicity of cn(a) in n the coefficients of the ;n«-k(a) s are all
positive; therefore it is sufficient to prove that under the condition in

(2.4.24) the following holds:

n+1 1-o°

n 1- O‘n+1

ab 2 =:dn(0t) (n eWN; 0 <o < 1) .

This immediately follows from the fact that dl(a) = 2/(1+0) and that

dn(ot) < dl(ot) for all n e W and all o ¢ (0,1). The last assertion is easily
verified by noting that for the function £, defined on (0,1) by £f(a) :=
2(1«un+1)/(n+1) - (1+a)(1—an)/n, one has £(0) > 0, £(1) = 0, £f* < 0 on
0, 1).

5. & product of two geometric pgf's can be written as

1 - 1 -
(2.4.26) P(z) = '1—_5%'1—:“‘55:2{? ;orp = (1-p)(l-py)c ()P (new ) ,

where 0 < p <1 and 0 £ v £ 1. From the Ra—function of P we find

N » B n+l n-1
ro(e) = (1+v)p, r (o) -{Cn+1(Y)0L Yo, (1) Ip e (n em).

Now, the =zero a, = ch—i(Y)/cn-f-l (y) of rn(a) is nondecreasing in n and

lim o = v, from which it follows that
e

1-pl-py ;
(2.4.27) ].—pzl—pYzéCocﬁdZY (0<p<1; 0<y <)

6. For a product of three geometric pgf's we find in a similar way

1l-pi-pyl-pys .
(2.4.28) TPz T-pyz 1-pydz © Cmax(y,é) (0sp<1; 0<y<1; 0<8<1).

The following examples are special cases of (2.4.12).

n=1 k
1 -
7. n———iu;ec (0 <p<i;nelu =} .
k=0 1 ~pa 'z

Note that for n = ® we get the boundary distribution from example 3.
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n-1 k
8. 1 Y- log(l~- 6d z)

k=0 y - log(l =~ 8a%)

e C (0 <8 <1; Yy22;nelNuy {=}) .

9. Lamperti (1958) notes that tan z/(z tan 1) is a pgf in Cou Hence

n-1
Il

tan(akz)
———
k=0 z tan o

10. It is easy to see that the quotient of two geometric pgf's with parame-
ters p and g, respectively, is again a pgf iff p > g. In that case it be-
longs necessarily to CO‘ Hence we have

n-1 k

k
p l=pe ,lopye o (0<p<i1; 0<y<i;nemu{eh.
k k
k=0 1 - po 2z 1 -pyo z

The characterization of Cu by CO, given in theorem 2.4.5, only holds for
o < 1, In the case o = 1, however, there also exists such a characteriza-
tion; in fact, we have the following analogue of theorem 2.4.5 and corolla-

ry 2.4.7.

THEOREM 2.4.8. Let P be a pgf with P(0) > 0. Then
(i) PeC, iff {1 - log p(z)}! is a pgf in c.,
(ii) P ¢ C0 iff expll ~ P(z)-lj is a pgf in Cl'

PROOF. The theorem immediately follows from the following two observations.

If P is compound-Poisson~(i,Q), then

{1 - 1og P(2)} Y = {1 = n(o(z) - DI = {1 +u =o)L,

which is compound-geometric— (p,Q) with p = /(1 +u).

Conversely, if P is compound-geometric-—(p,Q), then

expll ~ P(2) 17 = expl1 - (1 - pQ(2))/(1 - p) 1,

which is compound-Poisson~(u,Q) with u = p/(i -~ p). 0

Using simple properties of Cl’ from the preceding theorem we obtain some
operations, under which CO is closed. Closure under operations on the pn's

themselves will be discussed in section 4.1.
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THEOREM 2.4.9.

(1) IfP ¢ Co and u > 0, then u/{u ~ log P(2)} ¢ Co'

(ii) IfP € Co and vy > 0, then P(z)/{y + (1 -~ y)P(2)} € CO,,
(iii) IfF P e C and 0 < p £ 1, then p + {1-p)P(z) ¢ CO.

[e]
(iv) If P, ¢ CO and P, ¢ Co' then Pl(z)Pz(z)/{Pl(z) +P2(z) -Pl(z)Pz(z)} eCo.

1 2

PRCOF .
(i) If P ¢ Co' then by theorem 1.4.4 we have Pl'/u € C1 for all u > 0. The

result follows by application of theorem 2.4.8(i).
-1
(ii) Using theorem 2.4.8, we see that if P ¢ Co’ then Q(z) :=exp[l-P(2) "],

and hence for all vy > 0 QY, is a pgf in Cl‘ It follows that

-1 P(z)

-1
{i=-y(l-p(z) )} =TT -yP @

{1-1log o(z) Y17

is a pgf in Co.

(iii) Let P ¢ Co and 0 < p < 1. Then for the RO-function R(p)

- of p+ (1 -p)P

we have

P,y P A-pPIPO) P(z)
2R, (2) =1 p+ (1-p)P(2) ( p)p+(1--p)P(z) Ry (2)

which is abs mon because of (ii). Hence p+ (1-p)JP ¢ Co'
(1v) If B, € C (3 = 1,2), then also Q,(z) ==exp[1-pj(z)‘1] eC, (3=1,2).
It follows that QIQZ € Cl, and hence the following function is a pgf in CO:

1

{1-1og @ (2)0,(z)}"" = {1 = [1 =B (217" ] -~ [1 -2 (2) ']} =

= P1(Z)P2(Z)/{P1(Z) +Py(z) - P1(Z)P2(Z)} . 0

As in the case a < 1, it is possible, by use of theorem 2.4.8, to construct
examples of inf div distributions from specially chosen distributions in CO,
and conversely. In the following theorem we mention a general class of inf

div distributions, obtained in such a way.

THEOREM 2.4.10. For every df G on [0,1) the function Q, defined by

(2.4.29) Q(z) := expl[l - { ] %::EgdG(p)}_lj '
[0,1)

is a pgf in Clu
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PROOF. According to lemma 1.5.11 the pgf of a comp mon lattice distribution
{p_}" has the form
n° o

©

P(z) = ) (1-p)p dc(p)z” = / ﬁdc(p) ,
=0 10,1 [0, 1)

where G is a df on [0,1). As by theorem 1.5.13 P ¢ CO, the theorem follows
from theorem 2.4.8(ii). 0

Next we list a few examples, which are all obtained by using theorem 2.4.8.
1. Considering the semi-logarithmic distribution (cf. (2.4.22)), we get

-b - log(l - 6z) .
exP{ab-log(l — 1 € C1 iff ab = 2 ,

where a > 0, 0 < 6 <1 and b := ~log(l - 8).

2. As noted in example 9, p. 60, tan z/(z tan 1) is a pgf in Co' Hence

exp[l - z tan 1/tan z] ¢ C1 .

3. Taking the semi~logarithmic distribution with ab = 1, we get

1 - log(l - 0z)3-1 _

{1 - log =T — %) o "

l+pz 1 - p . . .
4. As T+p 1-pz is a pgf in Cl (and not in Cu for a < 1), we have

{1 - log = RLlipzn-1 o,
1 +pl - pz o

Finally, we mention a property of Co that ensures the product of a geometric
pgf and a pgf from a large subclass of CO to be again in Co. Note, that in
general the product of two Co—pgf's does not belong to Co (cf. (2.4.27)).
This property is suggested by replacing the exponential distribution by its
discrete analogue, the geometric distribution, in a similar property of the

analogue of Co for distributions on [0,»), the class FOo (cf. theorem 5.4.19).

THEOREM 2.4.11. If P/Py and p, € [0,1) and if Q is a pgf, then

1 -p
(2.4.30) P(z) := L 1-p e C  ifp, < p. .
l-p,z 1-9{(1-p2)/(1—pzz)}9(z) o 1 2
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PROOF. It is no restriction to suppose that Q(0) = 0, as a pgf P of the form
(2.4.30) can be written in the same form with different p and Q, such that

Q(0) = 0. For the Rowfunction of P we can write now

i -p
_ 4 RO _ . _ T2 -
zR (z) =1 - gy =1- (1-pz2){l-p -5,z Q(z)}
1-912
=p,z+p(l~p,)y 5,z Q(z) =
l-p

2
=pz+pll-p,i0olz) +plp,~pylz T:-Fz—z- Q(z)
which is an abs mon function, if Py < Py Hence P ¢ Co“ 0

2.5, Other classifications

The classes Cu, introduced by means of recurrence relations, were seen to
consist of infinite products of certain compound geometric pgfis. We will
now start from classes of similar pgf's, the classes Cg of the compound ne—
gative~binomial pgf's with parameter u = 0 (cf. (2.4.14)). Also these clas-
ses define a classification of Cl' but there is no characterization by means

of recurrence relations of type (2.1.4).

DEFINITION 2.5.1. For u 2 0 a lattice distribution {Pn}:' with p, > 0, is
said to be in the class Cz if its pgf P has the form

- {l=p ,u
(2.5.1)  P(z) {1_pg(z)} .

where 0 < p < 1 and Q is a pgf with Q(0) = 0.

Clearly, CZ only consists of the degenerate distribution at zero, Ci = CO

and C: =4 C1 for all u 2 0. The following obvious criterion is useful.

LEMMA 2.5.2. Let P be a pgf with P(0) > 0, and let u > 0. Then P ¢ cg iff

Pl/u is a pgf in Cos

It is now easily shown that the classes Cg define a classification of the

inf div lattice distributions.
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THEOREM 2.5.3. Cg is nondecreasing in u ¢ [0,»), i.e. for alluand v €[0,®)

u v o,
CCelC ifu<v.
o o

PROOF. Let 0 < u < v and P ¢ CZ. Then Pl/u is a pgf in CO, so that accord-

o
ing to theorem 2.4.2(ii) also Pl/v = (Pl/u)u/v

is a pgf in C_. Hence P¢ cv.0

o o
In fact, interpolation between (1 -p)/(1-pQ(z)) ¢ CO and exp[u(Q(z) -1)Je C1
is most easily achieved by considering pgf's of the form

1 - u/u }u

Pu(Z) = {1 = (p/u)Q(z)

(u > ) .

u .
Using these pgf's we easily see that, like U C , U Co is dense in Cl-

o
. \ Osoax<1 u>0
We state this in the following theorem.

THEOREM 2.5.4. If P ¢ Cl' then there exists a sequence of pgf's Pn € Cﬁ
(n ¢WN) such that P(z) = lim P (z) for |z] < 1.

100
Although little can be said about the relation between the Cg's and the
Ca's (cf. (2.4.16)), the Cg's possess the same sort of properties the Ca's
have. In this respect the functions Pl/u for Cg, and P(z)/P(az) for Ca,
play analogous roles. The following properties of CS are very similar to
those of Ca (cf. theorem 2.4.2), and are easily verified by using lemma

2.5.2 and theorem 2.4.2 with o = 0.

THEOREM 2.5.5. Let u > 0.
(i) If a pgf P is the limit of a sequence of pgf's Pn € Cz, then also
P e C%
° u u
(ii) If P € Co and 0 < v £ 1, then P(yz)/P(y) € CO.
(iii) If P ¢ Cg and v 2 0, then pY ¢ Cgu.
(iv) I£P e CYand 0 <y <1, then P(Y)P(2)/P(y2) ¢ cg.

Next, we briefly consider classes of gf's that turn out to be closely relat-
ed to the classes Cg. They are suggested by the characterization of Cl by
means of the abs mon of Rl(z) = P'(z)/P(z) (cf. theorem 1.5.3) and the fol-

lowing characterization of CO,

LEMMA 2.5.6. A pgf P, with P(0) > 0, is in CO iff - g——P(z)—i = P'(z)/p(z)2

dz
is an abs mon function.
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-1
PROOF. According to theorem 1.5.8 P is in CO iff Ro(z) =z {1-P(0)/P(2)}
is abs mon. Clearly, this is equivalent to the abs mon of g;[zko(z)], and

the lemma is proved. 0

DEFINITION 2.5.7. For vy e R a gf P, with P(0) > 0 and P(1) = 1, is said to
be in the class HY if the function Sy' defined by

(2.5.2) 5 (2) := P (z)/p(2) 1YY,

is abs mon.

The function SY in (2.5.2) can be written in the following form:

a . _
e log P(z), ify=20
2.5.3 S (z) =

( ) Y( )

P(z) 7Y, Ify #£0 .

e

S
Y
Although we do not require the coefficients of a gf P ¢ HY to be nonnegative,

the classes HY' with vy 2 0, turn out to contain only pgf's.

Considering first the case y = 0, we solve (2.5.3) for P and obtain

(2.5.4) P(z) = P(0)expl [ So(u)du] .
(0,z]

It follows that if P « HO then by lemma 1.3.3(v) P is a pgf. Hence, as
SO = Rl' we conclude that

(2.5.5) H =¢C, .
o 1

Denoting the coefficients in the power-series expansion of SY by sn(y)
(n e]No), we obtain from (2.5.2) for all y ¢ IR a characterization of HY by
means of relations that, like (2.1.4), generalize the known recurrence rela-

tions (2.1.1) for Cl' but are much less attractive than (2.1.4).

LEMMA 2.5.8. For y ¢ R a sequence {pn}:, with P, > 0 and Ip, = 1, is in HY
iff there exist sn(y) 20 (n eZNO) such that

Tk (1+y)
(2.5.6)  (n+l)p_ ., = kZO P, s (1) (nemw) .
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The case Y < 0 is not very interesting, as is apparent from the following

properties, which we give without their, simple, proofs.

LEMMA 2.5.9. If vy <0, then a gf P, with P(0) > 0 and P(1) = 1, is in HY

IYI is abs mon.

iff the function P
LEMMA 2.5.10.

(i) For all y < O: C1 = HO S Hy'

(ii) For n e WN: H—l/n = {pgf P | P(0) > 0 and P is n-div].

(ii1) For n eW: H__ = {gf P | P(0) > 0 and P” is a pgfl).

The case Yy > 0 is more interesting, because (HY ] vy 2 0) turns out to define

a classification of Cl'

THEOREM 2.5.11. For v > O the following relation holds:

In fact, if vy > 0 then a gf P, with P(0) > 0 and P(1) = 1, is in HY iff pY

is a pgf in Co”

PROOF. Let v > 0, and let P be a gf with P(0) > 0 and P(1) = 1.
First we show that if P ¢ HY then P’ is a pgf. So, let SY be abs mon. Solv-

ing (2.5.3) for PY, we obtain

P(z)! = P(O)Y{l - YP(O)Y / SY(u)du)}_l ’
(0,2]

from which by lemma 1.3.3(v) we see that p' is abs mon. Since the Somfunc~

tion of P can be written as

s (z) = P'(2)/P(2) = sY<z)P<z>Y ,

it follows that So is abs mon, and hence by (2.5.5) that P is an inf div
pgf. In view of theorem 1.4.4 we conclude that also Pl is a pgf.

Next, consider the case that PY is a pgf. From (2.5.3) the following rela-
tion between the $, ~function Siy) of P’ and the Symfunction SY of P is easi-

1
ly seen to hold:

5,7 (2) = vs (2)
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from which by definition it follows that P ¢ HY iff P' € Hl' on the other

v

hand by lemma 2.5.6 we have P’ ¢ Co iff PY € Hl’ and hence the theorem is

proved. [

Thus, the HY's yield the same classification of C1 as the C§|S' For in~
stance, it follows that a gf P in HY' with vy > O, has the (canonical) repre-
sentation (2.5.1) with u = 1/y, and that the compound negative-binomial lat-
tice distributions with parameter u = 1/y can be characterized by means of

the relations (2.5.6).
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CHAPTER 3
DECOMPOSITIONS OF LATTICE DISTRIBUTIONS

The classes Ca from the previous chapter lead us to consider in general the
pgf's P that have P(oz)/P(0) as a factor. These pgf's, which will be called
a—decomposablel), are briefly studied in section 1 together with the some-
what larger class of the so-called o~factorizable pgf's P, which are of the
form Q(z)Q(oz) /Q(a) with Q a pgf.

In view of a notational analogy to the well-known self-decomposable distri-
butions (onIR; cf. the end of section 1), also called distributions of class
£, it is then natural to consider (this is done in section 2) the classes of
pgf's that are o~decomposable and a-factorizable, respectively, for all

o € (0,1). The former class turns out to coincide with Cl' while the latter
contains Cl as a proper subset, but nevertheless shares a number of basic
properties with Cl'

In section 3 we introduce a new class of inf div lattice distributions,
which is a close analogue of the class of (absolutely continuous) self-decom-
posable distributions on [0,%); in fact, we consider pgf's P that have

P{l - a+oz)as afactor foralloe {(0,1). As a subclass of this we obtaina lattice
analogue of the (absolutely continuous) stable distributions.

Finally, in section 4 we briefly consider pgf's P that have 1 - g+ oP(z) as

a factor. This gives rise to a new characterization of Co.

3.1. a~decomposable and o-gactorizable Lattice distriibutions

Clearly, the characterization of Ca' given by theorem 2.4.5, can be refor—

mulated as follows: if P is a pgf with P(0) > 0 and if 0 < ¢ < 1, then

Plaz)
P(a) Pa(z)

(3.1.1) P e Cu € EP C P(z) =
a o

Dropping the condition that the factor Pa be in Co' we can generally consi-
der pgf's P that have P{az)/P(a) as a factor. To this end we give the fol~-

lowing definition.

DEFINITION 3.1.1. For O < a < 1 a pgf P, with P(0) > 0, is said to be o~de-
composable (a-dec) if there exists a pgf Pa such that

O . »
This concept is not related to the "o~decompositions" considered in chap-
ter 10 of Lukacs (1970).
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P(az)

(3.1.2) P(z) = B ()

P (2) (lz] <1 .

The following property of Ca, similar to (3.1.1) (cf. theorem 2.4.2(iv),
with ¢ = 0 and n = 2):

.- 9(az)
(3.1.3) Q « Co = P(z) := Sl Q(z) € Ca ‘

raises the following question: is the converse of (3.1.3) also true, i.e.
can every P ¢ Cu be represented as Q(z)Q(az)/Q(x) with Q € Co? This problem,
which will be solved in lemma 3.1.8, lead us to consider the g~factorizable

pgf's, introduced as follows.

DEFINITION 3.1.2. For 0 < o < 1 a pgf P, with P(0) > 0, is said to be a-fac—
torizable (o-fact) if there exists a pgf “P such that

_ TPlaz) a

P (a)

(3.1.4) P(z) P(z) (lz] = 1) .

First, let us consider the a-dec pgf's. The factor Pu in (3.1.2) is unique-

ly determined by P, as in a neighbourhood of zero we have
(3.1.5) Pd(z) = P(a)P(z)/P(az) .

For a general (not necessarily o~dec) pgf P with P(0) > 0, the function in
the right-hand side of (3.1.5) is always defined in a neighbourhood of zero,
and throughout sections 1 and 2 we shall denote this function by Pa' Apply-

ing the mapping P - Pa to P_, we see that, with an obvious notation,

8

(3.1.6) (P) = (P) (0 <aq<1, 0<p<1).
B a a’ B

In view of lemma 1.3.4 we have the following criterion for a pgf to be a-

dec.

LEMMA 3.1.3. If O <o < 1 and if P is a pgf with P(0) > 0, then P is a-dec

iff Pa is abs mon.

Looking for a general representation of a-dec pgf's, we solve (3.1.2) for
P and we see that P has the form of an infinite product. We now introduce

the following notation: if P is a pgf with P(0) > 0, then
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fed
(3.1.7) 10 p(z) := T 2(X2)/p(a) 0 <a<1) .
ol
k=0
It is not difficult to prove that this infinite product is absolutely and

uniformly convergent in ]zl < 1, and that HaP is again a pgf, with

(3.1.8) HB(HQP) = Ha(HBP) (0 <o <1; 0<B<1) .

Furthermore it is seen that HuP , defined similarly as (3.1.7), is absolute-

B

ly and uniformly convergent in some neighbourhood of zero, with

(3.1.9) HaPS = (HuP)B and Hapa =P .

Now the following representation lemma for a—~dec pgf's is easily verified.

LEMMA 3.1.4. If O < a < 1 and if P is a pgf with »(0) > 0, then P is a a-dec
iff P has the form P = HaQ, where Q is a pgf. The representation is unique:

=P
Q o
Turning to the a-fact case, we give the following characterization.

LEMMA 3.1.5. Let 0 < o < 1 and let P be a pgf with P(0) > 0. Then P is a-
fact iff there exists a pgf Q with Q(0) > 0 such that

(3.1.10) Pu = Q P
O .

or, equivalently, iff II 2P is a-dac; in this case the factor %p of P is gi-
o

ven by

oo 2k 2k
o _ _ Pa"z)/P(a)
(3.1.11) P(z) = 1 2Pa(z) = 1 pg) Seal "

o k=0 P (o z) /P (a )

PROOF. Let P be a~fact. Then, iterating (3.1.4) once, we get

%p(z) = P(2)%P(a) /*P(az) = *P(a®2)P(2) /P(az) .

From this and the fact that P(a) = OLP(OLZ) (take z = a in (3.1.4)), we obtain
(3.1.10) with @ = P, By (3.1.9) it now follows that

(I 2P)u =1 ZPa = 1 29 5 =9y
o o oo

and hence by lemma 3.1.3 II P is’ a-dec.

o
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Conversely, let I _P be a-dec. Then Q := I Pa is a pgf, for which

2 2
o o
(3.1.12) Q 5 = (Il ZPa) 5 = ] 2(Pa) 5 = Il 2(P Z)a = (II 2P 2)OL = Pa .
o [0} o a o [¢ ) o [¢) O
As P(o) = Q(az), it follows that for all n e N
n~-1
P(2) = {0(2) /0 (%) }P(az) =P (a"2) 1 Q(c*z) /0" 22) =
k=0
=P(unz)~—2ézlgigg%r—— .
Q(a"z)0(a z)

Letting n = «, we get
p(z) = P(0)Q(2)0(az) /Q(0)°

from which it is seen that P(O)/Q(O)2 = Q(a). It follows that P is o-fact
with factor P = Q. 0

Thus we have shown that the factor ®p of an a-fact pgf P is uniquely deter—
mined by P. Furthermore it follows that the class of a~dec pgf's is a pro-

per subset of the class of a-~fact pgf's.

LEMMA 3.1.6. If a pgf P with P(0) > O is o~dec, then P is a~fact. In fact,

P is a~dec iff P is o~fact with az—dec factor ’p.

PROOF. Let P be a-dec. Then Pa' and hence 1l ZPq’ is a pgf, so that I 2P is
o

a~dec. By lemma 3.1.5 it now follows that P is o~fact and its factor

% = Pa is azmdec because of (3.1.12).

2
o
Conversely, if P is a~fact with a2—dec factor 0LP, then by (3.1.10)
P, = (%p) , is a pgf, and hence P is o~dec. O
o

From lemma 3.1.4 and (3.1.4) it is evident that the classes of a-dec and
o~fact pgf's are too large to have much structure. Therefore we want to re—
strict them, and a first way to do so is by imposing conditions on the fac-
tors Pa and OtP, respectively.

The most obvious condition is the inf div of Pa and aP. It turns out, how-—
ever, that for all o ¢ (0,1) we then get the same class, namely Cl, both in

the a~dec and a-fact case.
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THEOREM 3.1.7. Let P be a pgf with P(0) > 0. Then

(1) P € C1 iff for some, and then for all, o ¢ (0,1) P is o~dec with factor
P(X € Cl;

(ii) P ¢ C1 iff for some, and then for all, o € (0,1) P is o~fact with fac-

tor % e Cl'

PROQF. First, let P ¢ Cl‘ In lemma 2.3.6 it is shown that then for all
o € (0,1) Pa is an inf div pgf. Hence for all o € (0,1) P is o~dec with fac-

tor Pa € C,. Now, by lemma 3.1.6 it follows that P is also o~fact for all

o € (O,l),lwhile in view of (3.1.11) the factor % is the limit of a se-
quence of inf div pgf's, so by the closure theorem % Cl.

Next, let P be oa-dec with factor Pa € Cl, for a fixed a ¢ (0,1). Then apply-
ing the closure theorem once more, from lemma 3.1.4 we see that P ¢ Cl‘
Finally, if P is o=~fact with factor % ¢ C1 for a fixed o ¢ (0,1), then the

inf div of P immediately follows from (3.1.4). 0

Next, let us consider the cases that Pa and % are compound geometric. In

view of (3.1.1) we have

(3.1.13) Pe( &P o~dec with P ¢ C .
a a o

Using this, one easily verifies that the classes Ca can also be obtained as
follows:

(3.1.14) P e C_«@P a-fact with % ¢ ¢ 5 -
[o)

Now, as for 0 < a < 1 CO is a proper subset of ( 9 (cf. section 2.4), from
o
(3.1.14) it follows that the question that led us to consider the a~-fact

pgf’s, has to be answered in the negative. In fact, we can say the follow-

ing about the set of o~fact pgf's with compound geometric factor %p.
LEMMA 3.1.8. If O < o < 1, then C, ¢ f{o~fact ? | P e C } ¢ C

PROOF. In view of (3.1.14) we only need to prove the first part of the lem~
ma. So let P € Co' Then by theorem 3.1.7(ii) P is o~fact, and, as from co-
rollary 2.4.7 we see that

I P € C 5 © Ca ;
o a
it follows from (3.1.13) that the factor “P = 1 _p = (I ZP)a is in Co.

27 a
o o
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Now, take Q(z) := (1 -p)/(l-pz), and define the pgf P by
P(z) :=Q(z)Q(az) /Qla} ,

then P is oa~fact with factor % = Q € Co. In view of (2.4.27), however, we

see that P ¢ C \ U C(C_, and hence P ¢ C . ]
% 6y B o]

Of course, many other conditions might be imposed on Pa or aP to obtain sub-—
classes of the classes of a~dec and o-fact pgf's. We mention one result: the
classes Aa g’ say, of o~dec pgf's with factor Pa € CB define a classifica~-

¥

tion of Cl; A is nondecreasing in both o and B, with

a,B

A = A >C u(
o

a,B B B’

as can be seen from the following characterization:

P(oz)P(Bz)
P e A@,B &1 - ETETE?EEET.abS mon .

A second way to restrict the classes of a-dec and a~fact pgf's is to require
o~dec and o-fact fqr all a ¢ (0,1). This is suggested by a notational analo-
gy to the so-called self-decomposable chf's: a chf F is said to be self-de-
composable (self-dec) if for every a e (0,1) there exists a chf Eu such that

(3.1.15) F(t) = 'ﬁ(at)ﬁa(t) (t eR) .

These chf's were introduced by Lévy and Khintchine (cf. Lévy (1937)). For a
survey of their main properties we refer to Lukacs (1970), ch. 5. Here we
only mention that the class of self-dec distributions contains the well~
known stable distributions and is itself a proper subclass of the class of

all inf div distributions.

3.2, Totally decomposable and totally factornizable Lattice distributions

DEFINITION 3.2.1. Let P be a pgf with P(0) > 0. Then P is said to be total-
ly decomposable (tot dec) if P is a-dec for all o e (0,1). Similarly, P is
called totally factorizable (tot fact) if P is o-fact for all o e (0,1).

We start with studying the tot dec pgf's. From theorem 3.1.7(i) we know that
every inf div pgf is tot dec. It will turn out that the converse is also
true. Though simpler proofs exist (to be given later), we shall show this

in a way, very similar to the proof of the inf div of a self-dec chf (cf.



75

Lukacs (1970), ch. 5), thus showing that the analogy, noted at the end of
section 1, is not merely notational. Proceeding in this way, we first prove

the following lemma.

LEMMA 3.2.2. A tot dec pgf has no zeros in the closed unit disk |z| < 1.
PROOF. We need the following inequality:
(3.2.1)  Jolez) | < Jo(z)]| + 1 - Q(w) (Q is pgf; 0 < o < 1; |z| < 1) ,
which can be proved as follows:
w
lotaz) | < [o2) | + [o(z) - Qaz) | < Jo(z) [+ [ q_(1-a®) |z]" <

n=0
<o | +1 -9 .
Suppose the assertion of the lemma not to be true. Then we can find pe (0,1]
and z_ € ¢ with izol = p such that

P(z) = 0 and P(z) # 0 (z[ <o) .

From (3.1.2) it now follows that for all o ¢ (0,1) the factor Pa of P satis~
fiesg

P, (z;) =0 and P (z) # 0 (lz] <o) .
As ]%zo[ < p, we have on the one hand

1im Pa(%zo) = lim P(u)P(%zO)/P(%azO) =1,
atl atl

whereas on the other hand from the inequality (3.2.1) it follows that
- - P - 3 e
]Pa(%zo)l < ]Pu(zo)| +1-P () <1-P(0)=1-Pl),

which tends to zerc as o t 1. Thus we have obtained a contradiction, and

the lemma is proved. 0

In the self-decomposable case one makes use of the theorem (see e.g. Gneden-
ko & Kolmogorov (1949)) that, if a chf ¢ can be written as
n

e(t) = lim Il
nreo k=i

tpn’k(t) (t em) ,

where the ¢y k‘s form an infinitesimal system of chf's, then ¢ is inf div.
1
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Here a system (mn X ! nemN; k € {1,...,n}) of chf's is called Infinitesi—
ks
mal if

lim sup o O 1] =0 (t eR) .
nse isk<n

Translating this to pgf's, we obtain the following result.

THEOREM 3.2.3. A pgf P, with P(0) > 0, is inf div iff there exist pgf's

P (n eN; k ¢ {1,...,n}) satisfying
n.k

(3.2.2) lim 4inf P k(O) =1,
noe i<ks<n
such that

n
(3.2.3)  P(z) =1lim T P_  (z) (Jz| = 1) .
nro k=i

We are now ready to prove the announced result.
THEOREM 3.2.4. A pgf P, with P(0) > 0, is inf div iff P is tot dec.

PROOF. As already noted, in view of theorem 3.1.7(i) we only need to show
that a tot dec pgf is inf div. So let P be tot dec. Then by lemma 3.2.2 it
is seen that for the Ffactors Pu (0 < a < 1) relation (3.1.5) holds for all

|z] < 1. If we define the pgf's P o, forn el and k ¢ {1,...,n} by

k
k k
Prk® = Pa iy G APy (Jz] <1,
then it follows that
P 2 /e "
P (z) = (lz] = 1) ,
n,k k - 1 k -~ 1
P z) /P =)
and hence
n
P(z) = k1=11 P (2 (new; |z < 1) .

Now from theorem 3.2.3 we obtain the inf div of P, as soon as we have proved

(3.2.2), which in our case is equivalent to

(3.2.4)  lim inf Py <
n n

n>® 1<k<n
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Because of the uniform continuity of P on [0,1], for all ¢ > 0 one can find

N € W such that

ko= 1 k
- P(=) | <
anN Vke{l,..,,n} IP( n ) P(n)| € s
or
k -1 k
(o W, < N
VnZN Vke{l,...,n} IP( n )/P(n) 1' e/P(0)
From this (3.2.4), and hence the theorem, immediately follows. ]

The following two corollaries are obtained by using theorem 3.1.7(i) (or

lemma 2.3.6) and lemma 3.1.3, respectively.

COROLLARY 3.2.5. The factors Pa (0 <o < 1) of a tot dec pgf P are all inf
div.

COROLLARY 3.2.6. Let P be a pgf with P(0) > 0. Then P ¢ C1 iff for all
a ¢ (0,1), or, equivalently, for all o ¢ (1-~¢,1) (some ¢ > 0), the function

P(z)/P(az) is abs mon.

The characterization of Cl’ just given, can also be proved as follows. The
necessity of the condition has already been shown in lemma 2.3.6. Suppose
therefore that ¢ > 0 and that P(z)/P{az) is abs mon for all o ¢ (1~¢e,1).
As P(z)/P(az) is equal to 1 for z = 0, for all a ¢ (1-¢,1) the function

1
I - o

(3.2.5) T (2) := p(2) /P (0z) - 1)

is abs mon. But then so is the following function:

1 P(z) - P(az)
P(az) Z - oz

lim T (z) = lim

o = P'(z)/P(z) ,
otl atl

from which by theorem 1.5.3 it follows that P ¢ Clw

In view of lemma 3.1.3 this alternative proof now yields a simpler proof of
theorem 3.2.4. Furthermore we note that another proof of this theorem can
be given along the lines of the proofs of theorems 3.3.3 and 3.4.5.

The Ru«function of a pgf P can be expressed in the function Tu from (3.2.5)

as follows:
(3.2.6) Ra(z) = Ta(z)P(az)/P(z) B

Now, apart from (3.1.13), from this relation it can be clearly seen that Ca

is a subclass of the class of a~dec pgf's, the latter being characterized by the
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abs mon of Ta'
Finally, denoting the coefficients in the power-series expansion of Ta by
tn(a) (n EINO), from corollary 3.2.6 we get the following characterization

of C1 by means of recurrence relations (cf. those defining the classes Ca)'

LEMMA 3.2.7. A lattice distribution {pn}:, with p, > 0, is in C1 iff for all
o€ (0,1) (or o € (1=-¢€,1), some € > 0) there exist nonnegative quantities

t (o) (n e W ) such that
n e}

1 - an+1 n Kk
(3.2.7) 1T a  Pp < kZO o pktnuk(a) (n en%Q .

We now turn to the tot fact pgf's. By theorem 3.1.7(ii) we know that all inf
div pgf's are tot fact. Although an o-fact pgf is more general than an o~dec
pgf (cf. lemma 3.1.6), and the tot dec pgf's coincide with the inf divpgf's,
all tot fact pgf's might be inf div. In order to decide this, we study the
tot fact pgf's in more detail, and start with the behaviour of the factorxr

% for o + 1 and a + O.

THEOREM 3.2.8. A tot fact pgf P is 2-div; in fact, the factor aP of P satis~

fies

(3.2.8)  lim %P(a"z) = P(2) " (lz] < 13 n eW) ,
atl

and furthermore

(3.2.9)  lim “P(2z) = P(2) and lim “P(a"z) = P(0) (l]z] < 1; n e .
at0 at0

PROOF. Let P be tot fact. Taking z = o in (3.1.4), we get OLP(oaz) = P(a),

. 2
and hence lim 0LP(on ) = 1. As OLP(OLZ) < aP(a) < 1 for O < a<1, it follows

atl
that lim uP(&) = 1, and hence
atl
lim “p(2)%P(az) = P(z) (lz] < v .
atl

Now, let {pk}o and {pk(a)}: be the lattice distributions with pgf P and P,
respectively. Then by the continuity theorem for pgf's (theorem 1.3.5) we

have
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k .
(3.2.10) lim ) épj@%ij =, (k em ) .
atl =0 7 J
1
Taking k = 0 in this relation, we see that lim po(a) = p;. Suppose that
atl
p (1) := lim p (&) exists for n = 1,...,k-1; then from (3.2.10) it follows
n ot
that also

k=1

lim pk(OL) = l*zpj:{pk -3 pj(l)pk__j(l)}
=1 -

otl 3j

exists, and hence (mathematical induction): pk(l) = lim pk(a) exists for

[s+] 1
all k el _, while {p, (1)} satisfies ot

k
jzo py(p_ (1) =P, (k ew) .

Applying the continuity theorem in the other direction, we conclude that

lim “P(z) = Q(=z) (lz] <1) ,
atl

where Q(z) := Z'pn(l)zn is a pgf satisfying Q(z)2 = P(z). Hence P is 2-div,
and (3.2.8) is proved for n = 0. Replacing z by o’z in (3.1.4), we get

Q. n+

(3.2.11)  “pa™ 2y = % (wp(a®z) /% (o"2) ,

from which by use of mathematical induction (3.2.8) follows for all n e]NO.
Finally, let o ¥ 0. Taking z = o and z = az in (3.1.4) successively, one

sees that

lim % (0%) = P(0) and lim ®P(a®)/%P(w) =1 .
av0 at0

As for 0 < a < 1 we have “P(a°) /%P(a) < %P(0?)/®P(a) < 1, it follows that

lim uP(a2)/aP(d)
at0

i
.
-

and hence

lim %P(0) = P(0) .

o¥0
Observing that for 0 < z £ 1 and 0 < o < z we have 0Ll?(oa2) < 0‘P(oaz) < OLP((;L),
we conclude that for all z ¢ (0,1], and hence by the continuity theorem for
all |z| < 1,
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1im %P (az) = P(0) .

oY0
The second part of (3.2.9) is now easily obtained from (3.2.11) by mathema-
tical induction, while the first part follows from (3.1.4). 0

In view of the preceding theorem one might conjecture that the tot fact
pgf’s coincide with the 2-div ones. Consider, however, the pgf P(z) =

= (1+z) /4; obviously, P is 2-div, but P is not o~fact for any a ¢ (0,1).
In fact, if P would be a~fact, then 0LP is necessarily of the form OLP(z) =
= ca(l + yaz) with c, > 0, Y > 0., But if we look at the zeros of P, then
we see that Ya has to satisfy: Ya = uya = 1, which is impossible for

a € (0,1).

A similar observation with respect to the zeros of P yields a property that

the tot fact pgf's share with the inf div ones (cf. theorem 1.4.6).

THEOREM 3.2.9. If P is a tot fact pgf, then the corresponding lattice dis-

tribution {pn} has an infinite support.

PROOF. Let P be tot fact and suppose that the support of {pn}: is finite.
Then P, and its factors 0LP (0 <o < 1), are polynomials. Let z be a zero
of the factor lﬁP, then, as P, > 0, z # 0, and from (3.1.4), which now holds
for all z ¢ ¢, it follows that P(zo) = P(ZZO) = 0, Taking a = 1/k

(k = 2,3,...) in (3.1.4), we then see that 1/kp(zo) =0 or 1/kp(zo/1<) =0,

and hence

P(kzo) = (0 or P(zo/k) = Q (k e N) .

As zo # 0, we have thus obtained an infinite sequence of different zeros of
P, which contradicts the fact that P is a polynomial. It follows that the
support of {pn} has to be infinite. 0

REMARK 3.2.10. If P is a-fact for only a finite number of o's, then the sup-
port of {pn} may be finite. To show this, let a;,...,a_ e (0,1), and let P
be the pgf that is equal to a polynomial with An as its set of zeros, where

An is recursively defined by

A := A4 U {aglx I X € Ak—l} (k e {1,...,n}), A e={~1} .

Then Pn is of degree 2n, and it is easily seen that:Pnis ak—fact for all
ke {t,...,n}.
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Apart from being 2-div and having infinite support, the tot fact pgf's
share a third property with the inf div pgf's, viz. having no zeros in the
open unit disk |z| < 1 (cf. corollary 1.5.2). It is not clear if a tot fact

pgf may have zeros for fz[ = 1.
THEOREM 3.2.11. If P is a tot fact pgf, then P(z) # 0 for all |z| < 1.

PROOF. Let P be tot fact, and suppose the assertion not to be true. Then we
can find p € (0,1) and z, € ¢ with ]zof = p, such that

P(z) =0 and P(z) # 0 (lz] <o) .
From (3.1.4) it follows that for all o ¢ (0,1) the factor % of P satisfies

0‘P(zo) = 0 and OLP(z) # 0 (]zl < p) .

Now, take a ¢ (p,1), then P(zo/a) is well defined, and according to (3.1.4)

P(z /a) = “p(zo/a>“p<zo)/“9(a) =0 ;
hence
P(Yzo) = 0 (1 <y < 1/p) .

However, as P is analytic on Iz[ < 1, this would imply that P = 0, so we

L. 0

A

have obtained a contradiction, and hence P(z) # 0 for all ]z[

If P is tot fact, then the coefficients pk(a) ;, say, in the power-series
expansion of the function OcP, given by (3.1.11), have to be nonnegative for

all a ¢ (0,1). Now, from (3.1.4) we easily see that
2
(3.2.12) [Vae(O,l) p2(a) > 0] » 4pop2 2Py -

We compare this condition with the condition rl(l) > 0 (cf. corollary 1.5.5),

necessary for P to be inf div, for which we have
r. (1) 20 2p p. > p2
1 ’ o 2 ~ Fti°

As the latter condition is more restrictive and as the same phenomenon seems
to occur at further coefficients, we are led to look for examples of tot
fact pgffs that are not inf div.

To this end the following characterization of an a-fact pgf (and hence of a

tot fact pgf) is useful.
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LEMMA 3.2.12. Let P be a pgf with P(0) > 0, and define the sequence {an}f
by

n
a z .

(3.2.13) log{p(z)/P(0)} = 0
1

fl ~18

n

)

Then for 0 < a < 1 P is oa~fact iff the function Q(u , defined by

(a) _ v _°n
(3.2.14) 9% (z) := exp[ J

n=1 1 + «

n
4
—2"1,

is abs mon, in which case necessarily Q(a)(z) = OLP(z)/OLP(O)',,

PROOF. Let P be a pgf with P(0) > 0, and let O < o < 1. Then, using (3.2.13),

we can write

w0 o a o a
P(z)/P(0) =exp[ z anzn]=exp[ 2 —-B——-H P X —-—-——1-’1-—n»(ocz)n] ’
n=1 n=1 1+ a n=1 1 + ¢

from which it follows that P can be written as (cf. (3.2.14))

(3.2.15) 2(2)/2(0) = 0 (200 (az) .

Now, if P is a~fact with factor %5, then P(0)%P(a) = {aP(O)}Z, which, to-

gether with (3.2.15), implies that 0% (z) = ®p(z)/%P(0); hence o' s abs

mon.

(a)
Conversely, let Q
it follows from (3.2.15) that Q

0 (1)

from (3.2.15) that P is a-fact with factor "P. 0

be abs mon. Then similarly to the proof of lemma 1.3.4

(u)(z) is convergent for |z] < 1, with

(o)

(0) = 1/P(0). Now, defining %P (z) := 0¥ (2)/0/™ (1), we see

For a pgf P to be inf div it is necessary and sufficient that the guanti-
ties an, defined by (3.2.13), are all nonnegative (cf. theorem 1.5.3).
Hence, in view of lemma 3.2.12, in order to obtain a tot fact pgf that is
not inf div, we need an example of a power series Q with at least one nega-
tive coefficient such that explQ(z)] is abs mon. The simplest example of
this type is provided by a polynomial of degree 4, as was shown by Lévy
(1937), ch. VII. We state his result as a lemma.

LEMMA 3.2.13. For given a > 0, ¢ » 0 and d > 0 there exists a (unique) real

3-+dz4] is abs mon

number m(a,c,d) > 0, such that F(z) z= exp[az—-bzz4-cz
iff b £ m(a,c,d). Furthermore, in this case the pgf P{(z) := F(z)/F(1) is

indecomposable iff b = m(a,c,d).
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Now we are ready to prove the existence of tot fact pgf's that are not inf

div.

THEOREM 3.2.14. The class C1 is a proper subset of the class of tot fact
pgfis.

PROOF. Choose arbitrary positive numbers a a_, and a4, and define m(a) by

1" 73
m(a) = m(al/(l-+a),a3/(1-fa3),a4/(1~+a4)) (0 £ a <)

(cf. the preceding lemma). It is easy to show that the function m(a,c,d) is
nondecreasing in a, ¢ and d, and hence m(a) is nonincreasing in o ¢ [0,1].
Now, take € > 0 such that € < m(1l), then € £ m(0) and by lemma 3.2.13 it
follows that

(3.2.16) P(2)/P(0) = expla,z - e2? + a323 + a4z4]

defines a pgf. As its R, ~function is not abs mon, we have (cf. theorem

1
1.5.3) P ¥ Cl' But by the monotonicity of m(a), we have

e/(1+a%) < e < m(l) < m(a) ©0<a<1),
and hence, applying lemma 3.2.13 once more, we see that

a a a
EXptl,:a 7 - € Z2 + 3 z3 + ___Q_Z 24]

1+ a2 1 + a 1 +a

is an abs mon function for all o ¢ (0,1). From lemma 3.2.12 it now follows

that P is tot fact, and thus the theorem is proved. 1

REMARK 3.2.15. In view of the preceding proof one can replace the condition

€ < m(l) by the weaker condition

e £ inf (1 + az)m(a) R
O<ax<l

It follows that if the function m(a) is such that

2m(l) < (1 + az)m(a) (0 £ o< 1),

then one could choose € = 2m(1), in which case the pgf P from (3.2.16) is
i .

such that its factor P(z) * is Zndecomposable (cf. the last part of lemma

3.2.13). "
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In order to construct real examples of tot fact pgf's that are not inf div,
it is necessary to have an expression, or at least a positive lower bound,
for the function m(a,c,d). Lévy does not give any information of this type,
but Lukacs (1970), ch. 8 notes that if Q(z) := 1+—az-bzz-+cz3-+dz4 is such
that b < %az and Q2 and Q3 are abs mon, then exp[Q(z) ] is abs mon. Elabora-

ting this, one easily verifies the following lemma.

LEMMA 3.2.16. For given a > 0, ¢ > 0 and d > 0 the function

3

exp[az-b224~cz 4*dz4] is abs mon, if b < min{a2/3,c/a,ad/(2c),cz/(Bd)}.

It follows that, for instance, the function P defined by

P(z) = expl6z ~ 2% + 6z3 + 6z4 - 177 ,

is a tot fact pgf that is not inf div.

To conclude this section, we return to chf's. Analogous to self-dec chf's
(cf. the end of section 1) we defined tot dec pgf's. Now, having introduced
tot fact pgf's, we could reverse matters and consider totally factorizable

chf's, i.e. chf's F that satisfy

(3.2.17) F(t) = Ea(at)ﬁa(t) (t eR; 0 <o < 1),

where Ea is a chf. Or, in terms of rv's: X is said to be tot fact if

it

¥
(3.2.18) X% Xa + axa (0 <a<1),

where Xa and X& are independent rv's with the same distribution. As an]NO—
valued rv X # 0 cannot satisfy (3.2.18), we see that an inf div chf is not
necessarily tot fact (cf. theorem 3.1.7(ii)). Furthermore, proceeding in a
way similar to lemmas 3.1.5 and 3.1.6, we can show that the class of self-
dec chf's is a proper subset of the class of tot fact chf's, and the ques-
tion arises whether the latter class is a subset of the class of inf div
chf’s, i.e. whether all tot fact chf's are inf div. We will not go further
into this now. We only note that e.g. the rectangular distribution is o-
fact in this sense for infinitely many a's; in fact, the chf of the rectan-
gular distribution on (~1,+1) can be written as (cf. Lukacs (1970), ch. 6)

o

= 0 cos(t/2%)
k=1 .

sin t
t

F(t) =

from which it is seen that F is 2“n~fact for all n ¢ N,
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3.3. Discrete self-decomposability and stability

As noted at the end of section 1, a chf F is said to be self-decomposable

(self-dec) if 5 satisfies

(3.3.1)  F(t) = E(ut)Ea(t) (t eR; 0 <o < 1),

with Ea a chf. For the corresponding rv's this means that

d

(3.3.2) X oX + Xa (0 <a<1),

where X and Xa are independent. Vervaat (1978) considers equations of the
form (3.3.2), where also the factor a is a rv. Clearly, except X = 0, no]NO—
valued rv X can satisfy (3.3.2); in fact, all nondegenerate self-dec distri-
butions are known to be absolutely continuous (cf. Fisz & Varadarajan (1963)).
Now in this section we propose analogues of the concepts of self-decomposa-
bility and stability (cf. (3.3.20)) for lattice distributions. A slightly
condensed version of the results of the present section can be found in
Steutel & Van Harn (1978). It turns out that the discrete self-dec distri-
butions and the discrete stable distributions share the basic properties
with their continuous counterparts. The discrete self-dec distributions, for
instance, are unimodal (cf. Wolfe (1971a) and Yamazato (1978)), and the dis~

crete stable distributions are very similar to their continuous analogues on (0,%) .

Loocking for analogues of (3.3.2) that operate within the set ofJNovvalued

rv's, we consider equations of the form
a
(3.3.3) x=aox+xa (0O <a<1),

where the operation o is such that o o X is anJNO—valued rv. In terms of
pgfis:

(3.3.4)  P(2) = (T P)(2)P (2) (|z] <1; 0 <o <1),

where the operator Ta is such that TuP is a pgf. Now we want to choose a o X
or TuP in such a way that they have properties as in ordinary scalar multi-

plication. We mention three examples, which satisfy

P) =T P

TP =1, TP =P, T (T 8

1 B
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EXAMPLE 3.3.1.

]

(i) (T P (2) P(oz)/P(a) .

it

(ii) (TaP)(z) 1-oa+0P(z), or a © X = X1 R XN ,

where P(N = 1) = 1 - P(N = 0) = q, Xk 2 X (k e N), all rv's being in-

dependent.

(iii) (TaP)(z) =P(l~a+toaz), or a o X =N +...+ N,
where Nk g N (k € N) with N as in example (ii), all rv's being inde-
pendent.

It is easy to see that only examples (i) and (iii) satisfy

Tm(PQ) = (TaP) (TaQ) v

and that only examples (ii) and (iii) satisfy

Ta(yP + (1~v)Q) = YTaP + (1-y)TaQ (0 <y < 1)
and

(TaP)'(l) = aP* (1) .

Thus, example (iii) seems to be most similar to ordinary scalar multiplica-
tion. Indeed, it will turn out that using this example in (3.3.4), we obtain
a class of lattice distributions that can be considered as the lattice ana-
logue of the class of self-dec distributions. When using example (i) in
(3.3.4), we get the class C1 (cf. theorem 3.2.4), and, as we shall see in
the next section, the class of pgf's P that satisfy (3.3.4) with TaP given

by example (ii), coincides with Co'

DEFINITION 3.3.2. A pgf P, with P(0) > 0, is said to be discrete self-decom—

posable if P satisfies
(3.3.5)  P(2) =P(l-a+az)P (2) (lz2] £1; 0<a<1),

with Pa a pgf.

REMARK 3.3.3. A relation that suggests the analogy of discrete self-dec
pgf’s to self~dec chf's in another respect, is the relation that H(z) :=

:= P(1 - 2) satisfies:
(3.3.6)  H(z) = H(az)H_(2) C(t-z] £ 1;0<a< 1),

with Ha(z) = Pu(l— Z) .
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In the present section the notation Pa is no longer used for the function

in (3.1.5); it will now dencte the following function (cf. (3.3.5)):
(3.3.7) Pa(z) := P(z)/P(l - a+az) ,
which is always defined in a neighbourhood of zero.

Before establishing the canonical representation of the discrete self-dec

pgf’s, we state an auxiliary lemma.

LEMMA 3.3.4. If P is a pgf, then
Lim (1-x)P*(x) =0 .
b

PROOF. As P' is nondecreasing on [0,1), we can write for all x ¢ [0,1)
0 £ (1-x)P*(x) < f PP (yldy = 1 - P(x) ,
(x,1)

which tends to zero as x + 1. Hence the lemma is proved. [

THEOREM 3.3.5. A pgf P, with 0 < P(0) < 1, is discrete self-dec iff P has

the form

(3.3.8) P(2) = exp[-u j L}:%(»u—’—du],
(z,1)

where p > 0 and Q is a pgf with Q(0) = 0; the representation (u,Q) is uni-
que. Equivalently, P is discrete self-dec iff P is inf div and has a canoni-

cal sequence {rn(l)} (cf. theorem 1.5.3) that is nonincreasing.

PROOF. Let P be discrete self-dec, i.e. let the function Pa' defined by

(3.3.7), be a pgf. For 0 £ z < 1 we can write

P(l=-oa+a0z) -~ P(2) = (1~a)(l-2)P'(z2) + of(l~a) (o 4+ 1) ,
and hence
Pa(z) = {1+ (L-0a)(1- z)P' (z) /P(z) + O(l-—u)}_l (a & 1) .
Let v > 0, and take a_ such that vy/(l=~a ) =n eWN, i.e. a_ = 1 - y/n. Then
n ) n n
for all n ¢ W {Pa (z) 1 " is a pgf, for which
n
v/ (1=0_) .
(3.3.9) s (2) :=lim {p_ ()} "= lim {1+-1(~(1»z)—fq(—zm)—w(i)}"”Jrl =
e n n-e n z) o

= expl~y (1~ 2)P"(2)/P(2)] .
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Since Sy(z) + 1 as z * 1 (cf. lemma 3.3.4), it is seen by theorem 1.3.5

1
an inf div pgf, and hence (theorem 1.5.1) there exist u > 0 and a pgf Q

that SY is a pgf for all vy > 0. As {Sl}Y = SY' it follows that S := §, is

with Q{(0) = 0 such that S is compound-Poisson~(u,Q). From (3.3.9) it is now

seen that the Rl—function of P is given by

- -log S(z) B 1 - Q(z)

(3.3.10) Rl(z) = P'(z)/P(2) T T2

7

which yields (3.3.8). Furthermore, if Q is the pgf of {qn}:, from (3.3.10)
it follows that the rn(l)'s corresponding to P are given by

o0

(3.3.11) r (1) =u ) g (n e ) ;
n k o
k=n+1
hence rn(l) 2 0 for all n c]NO (so P ¢ Cl) and rn(l) is nonincreasing.
Conversely, let P ¢ C1 with a nonincreasing canonical sequence {rn(l)}, and
let o ¢ (0,1). In view of the second part of theorem 1.5.3, for the function

Pa we can write

(3.3.12) Pa(z) = exp[- ;‘ Rl(u)GUJ ;
(z, 1-o+0z)
so that
d
i log Pa(z) = Rl(z) - aRl(l-a-kaz) R

This function has a power-series expansion with the following coefficients:

o

r (1) =™t ] (];)(1—u)k"nrk(1>Zrn(l){l—a

1 v ok
n+ n
Iy
k=n k=0

y(1-a)®) =

+1 ) (ml)k(-—r}l(-l

=r (D{1-a" y(1-m® =0,
where we have used the fact that rn(l) is nonincreasing. It follows that
log{Pa(z)/Pa(O)}, and hence P is abs mon. Finally, Pu(z) + 1 as z + 1,

i.e. Pa is a pgf, so P is discrete self-~dec. ]

COROLLARY 3.3.6. The factors Pa (0 < a < 1) of a discrete self-dec pgf P

are all inf div.

COROLLARY 3.3.7. If {pn}: is discrete self-dec with 0<<po< 1, then p, > 0
for all n ¢ ]NO.. .
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PROOF. If Py would wvanish, then ro(i) = pl/pO = 0, and hence, as rn(l) is

nonincreasing, rn(l) = 0 for all n eINO, which is only possible if p, = 1.

It follows that Py > 0, but then P, > 0 for all n e]NO by theorem 1.5.7.

The unimodality of discrete self-dec distributions is a corollary to the

following theorem (cf. corollary 1.5.5).

0

THEOREM 3.3.8. Let {pn}z and {rn}: be sequences of real numbers with P, > 0,

anO (n € IN) , rn

(3.3.13)

Then {pn}: is unimodal, i.e. P "D,

nonincreasing and such that

(n+1)pn+1 =

j

k=0

pkrn—k

©
{p_} is nonincreasing iff r
n o o

<

(n eIN_ ) .
o

1
1.

changes sign at most once (put P_y

0);

PROOF. Our proof is suggested by the proof of Wolfe (1971a) for self-decom-

posable densities on (0,»). First we introduce the sequences {dn}: and {An}:

by

d

n

i=p - P

n-1’

A

n "

Because of the monotonicity of {rn} we have An >

(3.3.14)

xr
n

nil
r - A
o k=0 k

(n e ™) .

From (3.3.13) we obtain by subtraction

(3.3.15)

(n+1)dn+1 =

n-1

(r =1)p = E AP
o n k=0 k¥ n=k=1

and hence dn < 0 for n e W iff ro < 1. Now let ro

there exist ny ¢ N and n

(3.3.16)

d

2

Then we have, putting = 3

1 >0:d,20,..0,d
. < (J
nyd R
< . (3
ﬂl 3] ﬂz ]

1

(n eZNO)

0 (n E]No), while

(n enN) ,
Q

> 1, and suppose that

+m (some m ¢ IN) such that

n
zo,dnl+1<0,...,dn
0 if j > n,

1,2,...,m)

m+l,m+2,...) .

2

<0,d4

2

n,+1

>

0
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From (3.3.15) and {3.3.16) it is seen that on the one hand

n1~1
(3.3.18) (n1+-1)dn1+1 = (ro-l)pnl - kzo xkpnl_k_l <0,
and on the other hand
n2~1
(3.3.19) (n2+1)dn2+1 = <ro-1)pn2 - kZO Akpnz—k~1 >0
From (3.3.19) it follows that
m-1 ny1
(ro-l)pn2 g kzo Akpnz * kZm Akpnz—k—l !
and hence, because of (3.3.14),
n2—1
(rmmvl)pnz g kzm Akpnzmknl )

Now, using this and (3.3.17), we can estimate in the following way:

nl*l mil n§—1
Y Ap_ ., < Ap + AP . <
B o Tt St VIS S e S

< - - - . = -
(ro rm)pn * (rm l)pn2 < (ro rm)pn1 * (rm 1)pn1 (ro 1)pn1'

which contradicts (3.3.18). It follows that (3.3.16) is impossible. 0

COROLLARY 3.3.9. A discrete self-dec distribution {pn}: is unimodal; it is
nonincreasing iff ro(l) = pl/pO < 1. Equivalently, an inf div lattice dis~
tribution with P, > 0 is unimodal if its canonical sequence {rn(l)} is non-

increasing; it is nonincreasing iff in addition ro(l) < 1.

REMARK 3.3.10. The unimodality of discrete self-dec distributions can be
used to give a slightly simpler proof of the unimodality of self-dec distri-
butions on [0,*). The latter distributions have a Lévy function M (cf. theo~
rem 1.4.7) that is absolutely continuous with xM'(x) nonincreasing on (0,«),
i.e. (cf. corollary 1.7.4) its Ko—functions are concave on [0,»). Now, such
a Ko—function can be approximated by step functions for which the step
heights form a nonincreasing sequence, and hence (cf. theorem 1.7.7} by mak-

ing the lattice finer it can bé seen that a self-dec distribution on [0,)
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is the limit of discrete self-dec distributions. This procedure amounts to

a more drastic discretization than that used by Wolfe (1971a).

REMARK 3.3.11. In theorem 3.3.8 the rn‘s are not supposed to be all nonnega-
tive,i.e. we seem to find a sufficient condition for unimodality of more ge-
neral sequences than inf div lattice distributions. For nonnegative pn’s,
however, rn nonincreasing implies rn 20 (n gINO), which can be shown as
folllows.

First, let {pn} be nondecreasing. Suppose that there exists nO ¢ N such that

rn < 0, then for all n > no we have
©

n -1
o)
< <
(n~+1)pn+1 ) “%Pn-k = FooPn f

k=0
which contradicts the fact that {pn} is nondecreasing.
If {pn} is not nondecreasing, then, as {pn} is unimodal, {pn} is bounded:
P < M, say, for all n EIQD. Suppose that not all rn's are nonnegative, then
there exist ¢ > 0 and n, e N such that T, < -c for all n 2 - It follows

that

n -1 n-n
o) o}

(n+1pp <5 20 Ppk = L P -
k= k=0

Now, if an = ©, then we can choose N ¢ IN such that for n sufficiently large
+ 1 < - < ;
(n )Pn+1 r nM - cN 0 ;

similarly, if an =: & < o, then we can choose € > 0 and § > 0, such that

for n sufficiently large

(n+1nm+lsr&%e—<ﬂk—6)<0.

Thus in both cases we have obtained a contradiction to the fact that P 20

for all n e W .
o

The class of self-dec distributions contains a very important subclass, viz.
the class of stable distributions, which can be introduced as follows (cf.
Feller (1971), ch. VI): a rv X is said to be (strictly) stable with expo-

nent Yy (necessarily ¢ (0,2]) if
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1/YX d Sl/YX . Sl/YX

1 % tsy % >0

(3.3.20) (sl-ksz) (s1 > 0; s

2

where X1 and x2 are independent rv's with the same distribution as X. We re-~

write (3.3.20) as

(3.3.21) x ax, + (1-aY)1/YX2 0 <a<1),
or in terms of chf's
(3.3.22) F(t) = ﬁ(ut)?((lm-aY)l/Yt) (t eR; 0 <a < 1) .

Now, analogous to the definition of discrete self-dec distributions, we in-
troduce discrete stable distributions by replacing axl in (3.3.21) by « ox1
as given by example 3.3.1(iii), and similarly for the other term in (3.3.21).

In terms of pgf's we then obtain the following definition.

DEFINITION 3.3.12. A pgf P with O < P(0) < 1 is said to be (strictly) dis—

crete stable with exponent vy > 0 if it satisfies

(3.3.23) P(z) =P(l-a+az)P(l - (1-aN) /Y (1-2)) (|z] < 1; 0 <a < 1),

Comparing the defining relations (3.3.5) and (3.3.23), we see that, as in

the continuous case, the following theorem holds.

THEOREM 3.3.13. A discrete stable distribution is discrete self-dec, and

hence unimodal.

Next we establish the canonical representation of a discrete stable distri-

bution.

THEOREM 3.3.14. A pgf P with 0 < P(0) < 1 is discrete stable with exponent
Yy iff P has the form

(3.3.24) P(2) = expl-p(l-2)"] =: Qi(z) (lz] <1,

where u > 0. The exponent Yy necessarily satisfies 0 < y < 1.

PROOF. Let P be discrete stable with exponent y. As for 0 < z < 1 we can

write

P(l-o+0z) - P(z) = (1-a)(l-2)P°(z) + of{l -a) (a + 1),



93

1
it follows from (3.3.23), with u, = (1 - aY) /Y, that

A AL 1 P(1-o+az) - P(z)
oA I - a wbl Pl ~ o+ az) I~aq

i

(1~ 2)P* (z)/P(2) ,
or, equivalently,
l-P(lmua(lfz))

(3.3.25) lim
atl u

i

L(i—z)P'(z)/P(z) (0 <z < 1) .
Y Y

o

As for 0 € z < 1 we have o + 1 iff v := ua(lmz) 4 0, we can rewxrite (3.3.25)

in the form

(3.3.26) 1im ~=BL=¥) Lo vy /e (0 <z <1) .

v{0 vY Y
As the left-hand side, and hence the right~hand side, of (3.3.26) is inde=-
pendent of z ¢ [0,1), we get, by taking z = 0 in (3.3.26),

Py y-1
(3.3.27) P'(z)/P(z) = —=(1~2) (02 <1) .
Po
Integrating this equation and observing that the resulting function is ana-

lytic in !zl < 1, we see that P has the form (3.3.24), with py given by
(3.3.28) =v /o =x (1)/
.3. W= py/pg = xg Y .

Conversely, if P = Qs, then it is easily verified that P satisfies (3.3.23),
i.e. P is discrete stable.

Finally, as P*(1) > 0 (possibly infinite) unless P(0) = 1, from (3.3.27) it
is seen that 0 < vy < 1. 0

COROLLARY 3.3.15. A discrete stable distribution {pn}: has a finite first

moment iff its exponent y is equal to 1, in which case {p_ } is Poissonian.
q P,

REMARK 3.3.16. From (3.3.27) we see that the canonical sequence {rn(l)} of
Q$ is given by

-1

n -1,

- - _ n-y
(3.3.29}) rn(l) = py{(=-1)7( n! = uy ( 0 ) (n ¢ m%) .

As rn(l) = 0 for all n (Q$ is inf div), we see also from (3.3.29) that ne-

cessarily 0 < vy £ 1.
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The discrete stable pgf's, i.e. the pgf's Q$ (0 <y £ 1; u>0) from(3.3.24),
are quite similar to the PLST's of the stable distributions on [0,») (cf.
Feller (1971), ch. XIII): a df ¥ on [0,») is stable with exponent y (neces-
sarily e (0,11) iff F has the form

(3.3.30) F(1) = exp[~utr'] =: é$(r) (t = 0) ,

where U > 0. Rather curiously, in the discrete case the Poisson distribution
replaces the degenerate one (cf. corollary 3.3.15).
A df F on [0,») is said to be in the domain of attraction of G$ if there

exist oy (n ¢ W) such that

(3.3.31) lim {F(a_ 1) }™ = &" (1) (t = 0) ,
e n i

or, if X;,X), ... are independent rv's with df F and if Y _has df G$,

Sy .

lim o (X, +...+ X )
n 1 n Y

n-e

As shown in e.g. Feller (1971), ch. XIII, only a stable PLST appears as a
limit like in the left~hand side of (3.3.31). Furthermore the un*s necessa-

rily satisfy
(3.3.32) o~ am Y (n > ) .

Now, similarly, a lattice distribution {pn}z with P, > 0 is said to be in

the domain of discrete attraction of Q$ if there exist a_ (n ¢ W) such that

(3.3.33) lim {P(1-a_+a 2)}" = Q$(z) (|z] < 1) .

n>o

Taking un such that (3.3.32) holds, we see that Q$ belongs to its own domain

of attraction. Furthermore we have the following property.

THEOREM 3.3.17. Every lattice distribution with finite first moment belongs
to the domain of discrete attraction, of QT, i.e. of the Poisson distribu-

tion.

PROOF. Let P be a pgf with P (1) =: u < «, and let z ¢ [0,1). Then for all

n ¢ N there exists En € (1—-%(1~—z),1) such that

1 - P(i-%(1-z)) =

5

(1-z)Pt(E ) .
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Now, as lim P*(& ) = p, it follows that for O < z < 1, and hence by the con-
n-> n
tinuity theorem for all ]zl <1,

hm{PM—%U~ZH}n=Mm{1—%U—Z)+M%Hn=eniﬂz~ﬂ]. ]

> n-w

A general theory of attraction could easily be developed. The domains of
discrete attraction, however, are completely determined by their continuous

counterparts. In fact, for‘every Y € (0,1] and u > 0 we have

it

Q$(1—r> é‘;m (t20) ,

and as for every 1 2 0
n n
{Px(l ~un1)} = {E exp[X log(1 unr)]}
~ {8 exp[—anrx]}n = {ﬁx(anT)}n (n +» o) ,
where X is an]No—valued rv with pgf PX and df FX' it follows that

) _ n_ M ) -
Llim {Px(l ocn+otnz)} Qy(z) @ lim {F

(@} =c"n ,
n Y
n-»oo >0

X

i.e. animé-valued rv X is in the domain of discrete attraction of Q$ 1ff

it is in the domain of attraction of Gu.

3.4. a-decomposable (1) Lattice distributions

In this section we briefly consider pgf's P that have 1 ~o+oP(z) as a fac-
tor (cf. example 3.3.1(ii)). Proceeding as in sections 1 and 2 for a-dec
pgf's (which have P(az)/P(c) as a factor), we obtain properties that are
similar to those of the a-dec pgf's. The main purpose is to give an analo-

gue of theorem 3.2.4 for Co'

DEFINITION 3.4.1. For O < o < 1 a pgf P with P(0) > O is said to be o~decom-
posable(1) (a~dec(l)) if there exists a pgf P such that

(3.4.1)  P(2) = {1-a+ap(2)}P (2) (lz] < 1) .

P is called totally~decomposable(1) if P is a~dec(1l) for all a e (0,1).

For an arbitrary pgf P with P(0) > 0 and for a ¢ (0,1) we denote by Pa the
following function (cf. (3.4.1)):
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(3.4.2) Pa(z) = P(z)/{l~a+aP(z)} ,

which is always defined in some neighbourhood of zero. Obviously, we have
the following criterion (cf. lemma 1.3.4) and representation lemma (solve

(3.4.1) for P).

LEMMA 3.4.2. For 0 < o < 1 a pgf P with P(0) > 0 is a-dec(l) iff Pa is abs

mon.

LEMMA 3.4.3. If 0 < a <1 and if P is a pgf with P(0) > 0, then P is a-dec (1)
iff P has the form

_ 1-a
(3.4.3) P(2) = yoorgy 2(2) (lJz] = v,

where Q is a pgf. The representation is unique: Q = Pan

Thus, an a~dec(l) pgf P has a compound geometric factor. It turns out that
the factor Pa of P is in Co iff P ¢ Co. We state this in the following lemma,
which is easily verified by using theorem 2.4.9(ii) and the following rela-

()

tion between the Ro-functions Ro and Ro of P and Pu’ respectively:

o
1 -«

- (a)
R (z) = {1 + P(O)}Ro (z) .

LEMMA 3.4.4. If P is a pgf with P(0) > O, then P ¢ Co iff for some, and then
for all, a € (0,1) P is a-dec(l) with factor Pa € Cou

By expressing P8 in Pu one obtaine the following implication:

(3.4.4) [P a-dec(l), 0 < B < a < 1] =P B-dec(l) .

It follows that the classes of a-dec(l) pgf's are decreasing in o. Now the
limiting class (a 4 1) turns out to be CO, i.e. we have the following ana-
logue of theorem 3.2.4 for CO.

THEOREM 3.4.5. A pgf P with P(0) > 0 is in Co iff P is tot-dec(l).

PROOF. In view of lemma 3.4.4 we only need show that a tot-dec(l) pgf is
in COK So let P be tot-dec(l), i.e. let Pa be a pgf for all a ¢ (0,1). Re-

write Pa as follows

P (2) = {1+ (1-a)lp(z) ' - 17371,
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let vy > 0 and take a_ = 1 -~ y/n (n e N). Then it follows that

{Pa (Z)}Y/(l—an) is a pgf (n ¢ W), which satisfies
n
v/ (1~a } _ -
S (z) :=lim (P (2)} Y= tim {1+ Xeca) Vo
Y e e
= exp[—y(l?(-z)"1 - 1071 .

Since SY(z) +~ 1 as 2z 4 1, by theorem 1.3.5 it is seen that SY is a pgf for

all vy > 0, and hence

Sl(z) = expll -~ P(z)_lj

is an inf div pgf. From theorem 2.4.8(ii) it now follows that P ¢ Co' 0

COROLLARY 3.4.6. The factors Pa (0 < a < 1) of a tot~dec (1) pgf are all in

C ..
o

Finally, we note that (cf. sections 1 and 2) we might consider a~fact(l)
pgf's, i.e. pgf's P of the form {1 -a+ad(z)1}0(z), but we shall not do so

here.
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CHAPTER 4

THE CLASSES Ca IN RELATION TO RENEWAL THEORY

In chapter 2 we introduced the classes Ca (0 £ ¢ £ 1). Most of their proper-
ties, given there, were most easily formulated in terms of pgf’s. Now, in
the present chapter, we want to derive properties of the probabilities them~
selves; in particular, we consider inequalities, asymptotic behaviour and
closure properties.

The recurrence relations by means of which C0 can be characterized (cf. co-
rollary 1.5.9), are very similar to those defining the so-called renewal
sequences (class Ro). This class RO has many well-known properties, which
are often easily obtained by a probabilistic interpretation (cf. Feller
(1968), ch. XIII and Kingman (1972), ch. 1). Now, using the relation be-
tween CO and Ro’ we obtain similar properties for Co (section 1). In sec~
tion 2 we consider the case 0 < ¢ < 1. We introduce classes Ra of generali-
zed renewél sequences that are related to the Ca's in the same way as Ro is
related to Co’ and we investigate to what extent the properties of Ro can
be extended to the Ra's, Specifically, we look for a probabilistic inter-
pretation of the sequences in Ra. We do find interpretations, but these are
rather complicated and yield only few results. Finally, in section 3 we

briefly consider an extension Rl of Cim

4.1. The class . and discrete-tLime nenewal theony

The class CO of compound geometric lattice distributions {pn}: can be cha~
racterized by means of the recurrence relations

(4.1.1a) (0) (n emN ) ,
Q

E

p = P
n+l k=0 k" n-k
where the sequence {rn(O)}: satisfies

oo
'

(4.1.1b) r (0) 20 (n el ), x(0) := } r (0) <1 .
n [} n
n=0
Now, the recurrence relations (4.1.l1a) are very similar to those defining
the so-called renewal sequences (cf. Kingman (1972), ch. 1): a sequence
o«
{un}o, with u = 1, is said to be a renewal sequence (or of class RO) if

it satisfies
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£

(4.1.2a) u = . Pk (n €emN) ,

k

[ =]

where the sequence {fn}l is such that
(4.1.2p) £ >0 (nem, f := Yo£ <1 ;

0
in this case {un} is called the renewal sequence associated with {fn}l' In

fact, we have the following relation between CO and Ro.

LEMMA 4.1.1.
i : i = R {u } i
(i) 1If {pn} € C0 and if u_ : p/p, (n €W ), then {un} ¢ R and tu ) is

associated with {fn}:’ givenby £ =r_ _ (0) (n €.

n=-1
(ii) If {un} € Ro’ associated with {fn}, then
a) If £ < 1 and Pn = (1—-f)un (n 61NO), then {pn} € Co with rn(O) =

= fn+1 (n EINO); n
b) If £ =1 and p :=y u /Uly), where y € (0,1), then {pn} €, with

n+1

rn(O) =Y £ (n € ]NO) N

n+l
PROOF .

(i) immediately follows by comparing (4.1.1a) with (4.1.2a), and (4.1.1b)
with (4.1.2b).

(ii) Let {un} € Ro, associated with {fn}. If £ < 1, then, as we shall see

)

in theorem 4.1.2(i), 2 un = (1~-f)_1 is finite. Hence (cf. (i)), if pn =

n=0 v © @ n

.= (1-f)u, then {p } €eC . If £ =1, then ) u_ ==, but Uly) = ) uy <=
n n (o] =0 n = n

for all y € (0,1) (cf. lemma 4.1.3). It follows that {pn}o, with p =

= Ynun/U(Y), is a probability distribution that satisfies (4.1.l1a) with

. n+1 > { }

= 2 0. € . u
rn(O) Y fn+1 0. Hence P CO
The recurrence relations (4.1.2a) have been studied by several authors, e.g.
by Kaluza (1928), DeBruijn & Erdds (1951), Lamperti (1958), Kendall (1967),
Fellexr (1968) and Kingman (1972). The main properties of these relations
will be given in the remainder of this section. Using lemma 4.1.1 we can
transfer most of these properties to CO, but we shall do so only if this is
of special interest.
In the next section we want to investigate to what extent the properties

that can be obtained for Co’ can be extended to Ca (0 < o < 1). As, to this
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end, the sequences in CCL will be related to the so-called delayed renewal
sequences, we consider recurrence relations that are slightly more general

than those in (4.1.2a).

Our starting point is the theory of recurrent events of Feller (1968), ch.
XIII, but we prefer a formulation similar to the one usual for renewal theo-
ry in continuous time (cf. Feller (1971), ch. XI). Let us introduce two se-
(o] >
quences {bn}o and {fn}1 satisfying
o [o=]
(4.1.3) b_20 (nelN ), O<b:= ) b <o, £ 20 (nelN), 0<f:= ) £ <x .
n (o) n n n
n=0 n=1
Then the (discrete) remnewal equation associated with {bn} and {fn}, is de~

fined by

(4.1.4) v =D + Z £V . (meN) .

It is called pure if b =6, and delayed otherwise. Clearly, the renewal
7 fee]

equation has a unique solution {vn}o, and its gf V satisfies

(4.1.5)  V(z) =B(z)/{1-F(a)} ,

ox, if {un}: is the solution of the pure renewal equation associated with
{£_1,

n
(4.1.6) V{(z) = B(z)Uu(z) .

The period d of a sequence {an}: of real numbers (not all a  (n €M) zero)

is defined as follows:
(4.1.7)  d :=gcd{n em | a_ # 0} .
Here ‘the value of a_ is not relevant; the period of a sequence {an}? is al-

so defined by (4.1.7). Of course, (4.1.7) is equivalent to the definition
of Feller (1968), who defines the period of {an} by

d := max{k e W | Vneli[an # 0 = kln]}

If d = 1, then the sequence {an} is called aperiodic. Now we are ready to
state the following basic result, which is known as the rewnewal theorem (cf.

Feller (1968), ch. XIII).

THEOREM 4.1.2. Suppose (4.1.3) and that {fn}T is aperiodic. Then the solu-

tion {Vn}o of the renewal equation associated with {bn} and [fn} has the



102

following properties:

(1) £ <1iffv:= ] v_ <=, inwhich case v =b/(1-£);
=0 co
(ii) If £ =1, then v_ := lim v_ exists, and v_ = b/p with y := ) nf
(£ ) e n=1

(iii) If £ > 1, then lim x'v_ = B(x )/{xF'(x )}, where x_ ¢ (0,1) is such
o'n o) o o
-
that F(xo) =1,

We shall frequently use the following characterization of the bounded solu-

tions of the renewal equation.

LEMMA 4.1.3. The solution {vn}: of the renewal equation (4.1.4) is bounded
< b

iff £ < 1, in which case Vn for all n E]NO.
PROOF. Let {vn} be bounded. Then its gf V exists, and does not vanish, on

{(0,1). Hence by (4.1.5) we have
F(x) = 1 - B(x)/V(x) < 1 (0 < x < 1) ,

from which, letting x 4+ 1, we see that £ = F(1) < 1.

Conversely, let £ < 1. Considering first the solution {un}z of the pure re-
newal equation associated with {fn}, from (4.1.4), using mathematical induc-—
tion, we see that un < 1 for all n e:mo. Now, equation the coefficients of

zn in (4.1.6), we obtain

n
Vo= Z b

n
<
n k'n-k ) k> P

k=0 k=0

and the lemma is proved. O

We are particularly interested in certain bounded solutions of (4.1.4),
which frequently occur in probability theory, viz. the delayed renewal se-
quences, as they will provide a probabilistic interpretation of the sequen-
ces in Cu. If {bn} and {fn} are sequences satisfying (4.1.3) with b £ ! and
£ £ 1, then the solution {vn}: of the renewal eqguation associated with {bn}
and {f } is called the delayed remewal sequence associated with {bn} and
{fn}. The set of such sequences is denoted by R. We note that a renewal se-
quence (cf. the beginning of this section) can be considered as a delayed

renewal sequence for which bn = do n Hence we have

(4.1.8) R R,
o
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and in order to distinguish the Ro-sequences from those in R\RO we occasio-

nally call them pure renewal sequences.

The (delayed} renewal sequences owe their name to their interpretation in
renewal processes. For ease of reference we first give the definition of

such processes for discrete time.

DEFINITION 4.1.4. Let {bn}:and{fn}T be two sequences satisfying (4.1.3)
with b € 1 and £ £ 1., If To’Tl’T2'“°' are mutually independent,]No—valued
(possibly defective) xv's such that {bn} is the distribution of TO and {fn}
that of Ty for k ¢ N, then the sequence {Sn}:, defined by

S=ZT (ne]NO),

is called the (discrete-time) renewal process associated with {bn} and {fn}a
The rv Sn is called the n~th renewal epoch, and Tk the k~th life time. If

£ = 1, then the mean recurrence time u is defined by

o0
Woi=ET, = ) nf (£ @) .
n=1
Finally, {sn} is called pure if b =6 (delayed otherwise), and persis—
7
tent 1f b = £ = 1 (transient otherwise) .

ool
THEOREM 4.1.5. A sequence {vn}O igs in R i£ff there exists a (discrete~time)

renewal process {Sn}z such that

(4.1.9) S, = n) (nelN ) .
o

Vo = POy Sk
o}

If {Vn} is associated with {bn} and {fn}, then {Sn} is associated with the

same sequences, and conversely. Finally, {vn} is pure (e RO) iff {Sn} is

pure.

In addition to the interpretation of {vn} e R, just given, there exists an-

other one in terms of a Markov chain. A (discrete-time) Markov chain with

stationary transition probabilities is a sequence {Xn}: of rv's, taking va-

lues in a countable state space S and satisfying the Markov property

P(X =3 Xo'xl'""’xﬁ-ﬂ =P(X =] | xnml) (helN; jes),
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such that the transition probabilities

pyy = P(X = J | x = i) (i,3 ¢ S)

do not depend on n. In fact, we have the following characterization of (de-

layed) renewal sequences (cf. Kingman (1972)).

THEOREM 4.1.6.
(i) A sequence {un}: is inARo iff there exist a Markov chain {Xn}: and a

state j € S such that

(4.1.10) u =P(X =3 | % =9 (nemN) .

The sequence {fn}, {un} is associated with, is then the recurrence time

distribution of j € S:

(4.1.11) fn = P(X1 # j,...,Xn___1 # 3, X_ =73 X = j) (n ¢ W) .

n [e}

(ii) A sequence {vn}: is in R\Ro iff there exist a Markov chain {Xn}: and

two distinct states i,j € S such that

(4.1.12) v =P(X , =] | x, = 1) (neN) .

The sequences {bn} and {fn}, {Vn} is associated with, then satisfy

(4.1.11) and

(4.1.13) bn = P(X1 # j,...,Xn # j,Xn+1 =3 X = i) (n EJNO) .

These interpretations can be used to obtain the following inequalities and
closure properties for Ro (cf. Kingman (1972)). An analytic proof of (i) in
a slightly less general situation has been given by DeBruijn & Erdds (1951),

but for (ii) and (iii) such proofs seem nonexistent.

THEOREM 4.1.7.
(i) If {un} € RO, then LIV uguk + 1 - u for all n,k €W .
(ii) If {un} € Ro and k ¢ N, then {ukn}n=0 € RO.

(iii) If {u_ } ¢ R and {v.} ¢ R, then also {u v } ¢ R .
n o n o n n o

By lemma 4.1.1 we successively obtain from the preceding theorem the follo-
wing results for Co” Only part (i) of the first corollary immediately fol~

lows from (4.1.1a) by mathematical induction (cf. lemma 4.1.3):
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oo

n n
p .= ) r(Op <p ) r(0) <p } xr(0) <p_ .
k=0 k n-k © 2o k © =0 k o

COROLLARY 4.1.8. The following inequalities hold for {pn} € CO:
. < .

(i) p, <P, for all n € IN;
ii - 1 k 3

(i1 PP S PPry = PPy * po(Po pn) for iil noko e,
e n _ R

(iidi) Po(Pi/po) Sp, S P, (e, pl)(pl/po) for all n e WM.

COROLLARY 4.1.9. If {pn} € CO and k ¢ N, then {c ¢ Co, where c¢_ is

}00
Pkn n=0 k
a suitable norming constant. In particular, if k = 2, then in terms of pgf's

(4.1.14) {P(Z%) + P(wz%)}/(l + P(-1)) € Co .

COROLLARY 4.1.10. If {pn} € CO and {qn} € CO, then also {cpnqn} € CO (c is

a norming constant) .

In view of a result of Lamperti (1958), theorem 4.1.7(iii), which also holds

if Ro is replaced by R, can be generalized as follows.

THEOREM 4.1.11. If {u } ¢ R and {v } ¢ R, then {w } ¢ R for all o = O,
n [s} n [o} n e}

B 20, vy =20 (not all zero), where wn is defined by

n z nt

~—~—--alBiju

{(4.1.15) Wn o= (G+B+Y) :'L!:]'.k!

L LV, (n emW ) .
+3 i

i+i+k=n I3 ik ©
PROOF, According to the result of Lamperti, {(a+AB4vy)nwn} is a solution of
the pure renewal equation. It easily follows that then also {wn} is a solu-
tion of the pure renewal equation, and as u < 1 and Vo < 1 (lemma 4.1.3),
we see that W < 1. Applying lemma 4.1.3 in the reverse direction, we con-

clude that {w } ¢ R . 0
n °

REMARK 4.1.12. If o # 0 or B # 0 and if Zun < ®, then {wn}, multiplied with

a suitable constant, is a lattice distribution in CO:

B
[

-1 o n n-2 &
(+B+y) 0 ) Dy )

L g 8-7
$ralg™ vy
2=0 j=0 J

<
n-2+3

%

=1 n,’ L ne
(Q)ul(a~+6) Y ’

In

(0 + B +v)

il o1

=0
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and hence

Jow s ul(a+8)9" ) (E)Yn_z(a+6+v)_n=
n=0 2=0 n=1
- 1 gernt T CEhenPerpen T =
2=0 =0
= 2 Y -1 -% _a+B+y o
= ) u, (a+8) (1-—m) (o +B+7Y) e+ B ) Y.

2=0 2=0

Of course, by lemma 4.1.1 we can also obtain properties of Ro from known
properties of CO. We give one example on mixtures of renewal sequences; the
result seems to be new, but in fact it is a special case of theorem 4.1.7
(iii) (take v, = péo,n + (1~ p) there; then {vn} € Ro’ as it is associated

with {fn}, given by £ = (1-p)pn_1)-

THEOREM 4.1.13. If {un} € Ro and 0 < p < 1, then also {wn} € Ro, where

(4.1.16) W= pao,n + (1~-p)un (n e]NO) .

PROOF. Let {un} € Ro and 0 < p < 1. Then for {wn}, defined by (4.1.16), we

have wo = 1 and 0 < wn <1 (n eWN), and its gf W satisfies
W(z) =p + (1-pU(z) (Jz] <1 .

Choose Yy ¢ (0,1), and define the lattice distributions {pn} and {qn} by
P =Y /U0, = YW M) (new ) .

Then, considering their pgf's, we have

p + (1 -p)U(yz)
p+ (1-p)U(y)

Q(z) = W(yz)/W(y) = =p; + (1~p1)P(z) p

where p, := p/{p + (1-pP)U(Y)} € (0,1). Since {pn} € C0 (lemma 4.1.1(ii)),
from theorem 2.4.9(iii) it now follows that also {qn} € CO, and hence, by
lemma 4.1.1(i), {ann} € Ro' But then {wn} satisfies the pure renewal equa-

tion, and as w, < 1, it follows by lemma 4.1.3 that {wn} € Ro' |

Next we consider the asymptotic behaviour of a renewal sequence. Of course,
the strong result in this area has been already given in the renewal theorem

(theorem 4.1.2), of which parts (i) and (ii) can be applied. If, however,
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u, == lim u_= 0, one can ask how fast u tends to zero. The following theo-
no
rem {(cf. Kingman (1972)) gives an answer to this question.

THEOREM 4.1.14. Let {un} € RO be associated with {fn}?. Then the period 4 of
w1~ is equal to that of {f 17, and
n o n 1

(4.1.17) # ({n em | u g=0h <=
Furthermore 6 := Llim ulé(nd) exists in (0,17, and
e
n
(4.1.18) un <6 (n GJNO) .

COROLLARY 4.1.15. If {un} € Ro' then the radius of convergence p of the gf

@, . ) n o
U of {u } is finite. Furthermore, if v. := pu_ (n e ), then {v.} ¢ R_.
n'o n n o n o o

PROCF. We have
l/n}ul

p = {limsup u
n-e n

Since in view of theorem 4.1.14

limsup ul/n = limsup ul/(nd) = lim ul/(nd) =0 >0,
n nd nd
n-—w 1> nro
it follows that
-1
(4.1.19) p =18 < o
Now, if v o= pnun, from (4.1.18) it is seen that v <1 (n e:No), and, as

{vn} obviously satisfies the renewal equation, we conclude by lemma 4.1.3

that {vn} € Ro' 0

Now, applying the renewal theorem to the sequence {vn}, thus obtained, we
can improve on the second part of theorem 4.1.14 in some sense. We state
the results in the following theorem. They are interesting only if p > 1,

«©
which implies that | u <=, i.e. in fact we consider Coh
n=0

THEOREM 4.1,16. Let {un} € Ro' associated with {fn}j and with radius of con-

vergence . Then p < ® and F(p) < 1, while
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(1) F(p) < 1 iff U(p) < ®, in which case lim pnun = 0;
-0

(ii) If F(p) = 1 and {fn}; is aperiodic, then lim pnun = 1/yu, where yu is gi~-
ven by e
o)
W= ] nEp" = oF'(p) (<@ .

REMARK 4.1.17. Theorem 4.1.16 and the second part of theorem 4.1.14 have
been proved previously by De Bruijn & Erdds (1951) in a slightly less general
situation; they consider general solutions of the pure renewal eqguation, but
suppose the fn's to be all positive. For this case they show furthermore
that the quantities p and 0 can be expressed in terms of the fn's as fol-

lows:

(4.1.20) p =0t = suplx >0 | F(x) < 1} .

However, this relation holds for all renewal sequences, as will be shown in

a more general situation in the next section.

The class Ro contains two easily recognizable subclasses, viz. the class of
comp mon seguences {un}: (cf. definition 1.3.10) with u, = 1, and the class
of bounded Kaluza sequences. Here a sequence {an}: is called a Kaluza se-
quence if a, = 1, an > 0 (n ¢eN) and {an}: is log-convex, i.e.

2

a” < a a
n n-1"n+1

(n e W) .

Note that in this case an = 0 for all n ¢« W oxr an > 0 for all n e N, and
that {an} is bounded iff it is nonincreasing. Kaluza (1928) proved the fol-
lowing theorem, the analogue of which for CO has been already given in theo-

rem 1.5.13.

THEOREM 4.1.18. A comp mon sequence {un}: with u, = 1 is a bounded Kaluza

sequence, and a bounded Kaluza sequence is in RO.

The bounded Kaluza sequences can be characterized as a subclass of RO in
two somewhat similar ways. The first one is given by Kendall (1967), the se-

cond one seems to be new.
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THEOREM 4.1.19. Let {un}: be a sequence of positive numbers. Then {un} is a
bounded Kaluza sequence iff for all t > 0 (or, equivalently, for all t=1/m,
m € IN) {uﬁ} € Ro' in which case {ui} is also a bounded Kaluza sequence for

all t > 0.

n
Translating this result for {pn} € Co' we have to consider y p_ for some

Yy € (0,1) rather than P since Zprt1 is not necessarily finite for all t > O.

THEOREM 4.1.20. Let {un}: be a sequence of positive numbers. For { ¢ N _ de-
fine the sequence {un(ﬂ.) }: by

un(l) :=u, . _/u

t+n (n e]NO) .

%

Then {un} is a bounded Kaluza sequence iff {un(ﬂ.)} € Ro for all £ eN_, in

which case {un(Z)} is also a bounded Kaluza sequence for all £ Emo‘

PROOF. Let {un} be a bounded Kaluza sequence and take £ e]NO fixed. As
{un}:: is nonincreasing, un(z) is bounded by 1. Furthermore, {un(l)} is log-
convex, as is seen from (n ¢ W)

-2 2 -2

2 - -
N TP P R

1(51,)un+1 (.

Conversely, let {un(l)} € Ro for all & ¢N_. Taking £ = 0, we see that
{un} € Ro' and hence {un} is bounded. The sequence {fn(k) }T, with which
'[un(l)} is associated, consists of nonnegative numbers. Now, calculating
f2(SL) , we get

2 -2 2
fz(ﬁ) = u, (L) - ul(l) = u, {u2u2+2 - qu} ,

from which it follows that the nonnegativity of f2(SL) for all 2 « ]No implies

o«
the log-~convexity of {un}o. Hence {un} is a bounded Kaluza sequence. 0

REMARK 4.1.21. If we define the sequence {un(JL)} somewhat differently, viz.

u () =1, u (4 =u mem

24n

then we get a weaker result: {un} is a bounded Kaluza sequence iff {un(SL) }:

is a bounded Kaluza seqguence for all 2 « ]NO.

Finally, we consider the occurrence of a compound geometric lattice distri-

bution in a stochastic process. By lemma 4.1.1(i), theorems 4.1.5 and 4.1.6
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(i) yield, rather artificially, an interpretation of {pn} € Co in a pure,
transient renewal process and in a Markov chain, respectively. In the first
case, however, we can say a little more. Using the notation of definition
4.1.4, we denote the (pure) renewal sequence corresponding to {Sn} (cf. theo-

oo
rem 4.1.5) by {un}o, and define
N:=#({na]N|Sn<°°}):

i.e. N is the total number of renewal epochs (SO = 0 not counted). Then N

is finite with probability one:

. I -
. < o) =1im f 0 .

P(N=ow) =P(V S < o) =1L1im P(V T
ne n 00 k<n 130

w
In fact, N has a geometric distribution with parameter f:

=K
o, Tk+1 = w) = ({-f)f (k eJNO) .

Now we can define the duration D of the process {Sn} as D = S_. Its distri-

N
bution is easily calculated:

L P(Sy=mn; N=k = ]| P(S =n; T, = =

P(D = n)
k=0 k=0 krl

it

L p(s
k=0 &

it
i

n(it-£f) = (1-£fu (nelN ) ,
n o
from which by lemma 4.1.1 we obtain the following interpretation of {pn}e Co'

THEOREM 4.1.22. Let {pn}: be a lattice distribution. Then {pn} € CO iff
there exists a pure, transient renewal process {Sn}: such that {pn} is the

distribution of the duration D of the process.

4.2. Generalized nenewal sequencesd; classes Ra (0 < a<1)

In this section we study the distributions in Ca for 0 < o < 1, by consider—
ing slightly more general classes Raq As these are defined in such a way
that there exists a relation between Cm and Ra (to be given in lemma 4.2.4),
similar to that between CO and Ro' we can (and will) confine ourselves to
studying the Ru's. As in section 1, the properties of Ra can easily be
translated into properties of Ca. We define the following classes Ru' em-

ploying the notation used for the Ca's rather than that used fox RO.



DEFINITION 4.2.1. For 0 < a < 1 a sequence {un}: of real numbers with uou-i
is said to be in the class Ru if there exist nonnegative guantities rn(a)
(n €N_) satisfying

=)

1
(4.2.1) (@ = ] r (0 7T,
n=0
such that
1__an+1 n
(4.2.2) T Y T kzo rk(a)unwk (n e]NO) .

We could consider more general classes by dropping condition (4.2.1). Many
results to be proved for Ru will also hold in that case. But in view of pro-
babilistic interpretations and because for a sequence {un} that satisfies
(4.2.2) and has a gf with positive radius of convergence, we can choose

Yy € (0,1) such that {Ynun} is bounded and still satisfies (4.2.2), we will
only consider bounded sequences {un}. This results in the classes Ra’ as is

seen from the following lemma.

LEMMA 4.2.2. Let 0 < o < 1 and let {un}: be a sequence with u, = 1 and sa~
tisfying (4.2.2) with nonnegative rn(a)'s (n €W ). Then {un} is bounded iff
(4.2.1) holds (i.e. {un} € Ru)’ in which case for all k e N

k g -1 g -1
(4.2.3) u.kS I (1-a") (< T {l-a") < w)

f=1 f=1

PROOF. Let {un} be bounded. Then its gf U exists on [0,1). Taking gf's in
(4.2.2) we get

L u(z) - Uaz) _
(4.2.4) W = U(Z)ROL(Z) (0 2z <1y ,
and hence
zROL(z) = {1-U(az)/U(z)}/{(1-0a) < 1/(1~aq) (0 <z < 1) .

Letting z t 1, by the monotone convergence theorem we see that r(a) <1/(l-a).
Conversely, let r(a) < 1/(1-a). Suppose (4.2.3) to be true for k = 1,...,n.
Then

n n+1
r (I (1-a9)tenm -aht,

1 Q=1



which is less than

(1-a2)-1 = expl Z X i-azj] < exp[a(l-—u)_zj <@ 0
1 9=1 j=1 J

=8

REMARK 4.2.3. The inequality (4.2.3) cannot easily be improved, as is seen
from the following example (cf. the boundary distribution from definition
2.2.2). Define {ﬁn}: as the sequence in Ra corresponding to ro(a)z 1/(1=a),
rn(oc) =0 (n el .

Then from (4.2.2) it follows that

n+l, ~ ~
(4.2.5) (1~ )un+1 =u, (n GR%Q B
and hence
n
(4.2.6) & = 1 (1-o971 (nem) .
no o

One easily verifies that Ca is related to Ra in the following way (cf. lem-

ma 4.1.1).

LEMMA 4.2.4. Let 0 < o < 1.
(1) 1f {pn} € Ca and u :=p /p (n e:NO), then {un} € Ra'
Y

o
u_/U(y), where 0 < y < 1, then {pn} € Ca'

(ii) If {un} € Ra and p  := N

It may be noted that if r(a) < 1/(l1-0a), then in (ii) we can take vy = 1.
This follows from the following property of Ra&

THEOREM 4.2.5. Let 0 < o < 1 and let {un} € Ra' Then u := 2 u is finite

iff r(a) < 1/(1-0), in which case n=0

(4.2.7) u=U(a) /{1 - (1-a)r(a)} .

PROOF. Let 0 < a < 1 and let {un} € Ra' Then relation (4.2.4) holds for all

Izl < 1, and can be written in the form
u(z) = {1 - (1-w)zR (2)} 'v(az) (z] < 1) .

Now, letting z t+ 1 and applying the monotone convergence theorem concludes

the proof. : 0
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Studying the Ra's further, we first observe that many properties of the
Ca's can be extended to the Ru'se For instance, using lemmas 4.2.4 and

4.2.2, one easily shows that

(4.2.8) RaCRB (0 s o< B <l) .

Specifically, it follows that every Ra contains RO as a subclass, i.e. the
sequences in Ru can be considered as generalized renewal sequences. Now, in
the remainder of this section, we mainly investigate to what extent the prop=-
erties of Ro' summarized in the preceding section, can be generalized to the
larger classes Ra' To this end we first state a useful relation of Ra with
the (pure) renewal seqguences, and next a more direct relation between R,

and certain delayed renewal sequences.

THEOREM 4.2.6. Let 0 < o < 1, and let {un}: be a sequence with uo = 1 and
gf U. Define the seguence {un(a)}: by its gf Ua(z) = U(z)/U{az), or recur—
sively by

n

(4.2.9) u_= kZO Fuu (o) (nem) .

Then {un} € Ra iff {un(u)} € ROB

PROOF. Let {un} € Ra and take vy ¢ (0,1). Then by lemma 4.2.4 the relation

be tween Ca and Co’ given by theorem 2.4.5, implies that {Ynun(a)} € Rov It
follows that {un(u)} satisfies the pure renewal equation. Furthermore, since
{un} is bounded (lemma 4.2.2) and as by (4.2.9) we have un(u) Su (n siNO),
{un(a)} is bounded, and on account of lemma 4.1.3 we conclude that

{un(a)} € R .

Conversely, let {un(a)} € Ro“ Then, similarly, it can be shown that

{Ynun} € Ru for all v ¢ (0,1), and hence {un} satisfies (4.2.2) with nonne-
gative rn(a)'sﬁ Now, in view of lemma 4.2.2, for {un} to be in Ra it is suf-
ficient that {un} is bounded. To show this, we prove (4.2.3), or, equiva-
lently, u, < Hn (cf. remark 4.2.3). By (4.2.5) and mathematical induction,
{ﬁn} is seen to satisfy

ok
(4.2.10) © = Z oG, (nem) .

k=0

Hence, assuming that U = ﬁ% for 'k = 0,1,...,n~1, by (4.2.9) and the fact

that un(a) < 1 (n aiwo) we can estimate un as follows:
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n, -1 nil k n, -1 nil k
u = (1-a) cuu L (a)<(l-a) o u, =
n Lok nk Lo Tk
n, ~1l~ o~
= (1~a) Uo_q =4 -
It follows that {un} is bounded, and the theorem is proved. 0

THEOREM 4.2.7. Let 0 < o < 1.
(i) 1If {u} € R and if v- := u /U(0) (n eI ), then {v_} ¢ R, associated
n° " o W h n o no
with {bn}o and {fn}1 given by

n
(4.2.11) bn =0 v, (n EJNO), fn = (1-0L)rn (a) (n eW) .

-1

(ii) If {vn} e R is associated with {bn} and {fn} such that b_ > 0 and
n . _
bn =o'y, (n eINO), and if u = Vn/vo (n e]NO) , then {un} € Ru'
PROOF. Let {un} € Ra and v, o= un/U(a) (n eJNO) . Then by definition 4.2.1
{vn};0 is easily seen to satisfy the renewal equation (4.1.4) with {bn} and
{fn} given by (4.2.11). It follows that b =1 and £ = (1 ~0a)xr(a) < 1, and
hence that {vn} e R.

Finally, (ii) can be shown in a similar way. 0

REMARK 4.2.8. For {vn} ¢ R, associated with {bn} and {fn}, the condition

bn = otnvn (n € ]NO) can be reformulated as a relation between {bn} and {fn}:

n
(4.2.12) (1-aMb_= ) oFfp (n e M)
n k' n-k
k=1
(i.e. in case v_ > 0 and V(a) = 1: {bn}: € Ca with corresponding rn(a) ‘s
given by rn(a) = (1—a)“1un+1fq+1) . This can be seen from (4.1.5) (replace

z by az).

REMARK 4.2.9. Using theorem 4.2.6 one easily proves the following implica-

tion:
(4.2.13) U e Ro = W(z) := U(z)U(0z) e Roc .
Now, in view of (4.1.6), the sequences {wn} in Ra' thus obtained, are of

the form w_ = U(a)vn, where {vn} € R is such that the sequences {bn} and

{fn}, that {vn} is associated with, satisfy B(z) ={1-F(a)}/{1~F(az)}, i.e.
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n

(4.2.14) b = (1-F(ao” ) £ (n em) .
n n o
k=0

Relation (4.2.14) seems somewhat more tractable than (4.2.12), but, unfortu-
nately, not all sequences in Ra can be obtained in this way, i.e. the conver-
se of (4.2.13) is not true. Indeed, every W ¢ Ra can be writtenas U(z)U(az),
but generally U will belong to R 5 and not necessarily to Ro (cE€. (3.1.14)

and lemma 3.1.8). ¢

The relation between Ra and R in theorem 4.2.7 yields interpretations of

{un} € Ra in a renewal process and Markov chain (cf. theorems 4.1.5 and

4.1.6(ii)) . J. Wijngaard (personal communication) gave a third interpreta-
tion, where u  appears as the expected number of particles at time n in a
complicated "Markov branching-process”. Although theorem 4.2.7 will be ap-
plied when we consider the asymptotic behaviour of {un} € Ra' these inter-
pretations do not yield easy proofs of inequalities or closure properties

for Ra of the kind one has for RO. For instance, if {u(l)} € Ru (i = 1,2)

(1) () S (i) o
and v 2= ou /Ui(a) (i = 1,2; n eiwo), then {vn } e R(i=1,2), and
hence, by the Markov-chain interpretation, also {vn} ¢ R, where v, i
D (2 ) | . . )
= v v (n e:mo). But since the [bn} and {fn}, that {vn} is associated

with, are not tractable, we cannot go back to Ra°
Using the relation between Ra and Ro from theorem 4.2.6, we can say a little
more, but the results are only formal and rather obscure. We give one exam-

ple, where we make use of theorem 4.1.7(iii).

THEOREM 4.2.10. If {un} and {vn} € Ra, and if {un(a)} and {vn(u)} are de-

fined by
n n
k k
u = z o ukun_k(a), v,o= 2 o vkvn_k(a) (n e:mo) ’
k=0 k=0
then the sequence {wn}:, defined by
. .
w_o=1, w = z ukw u . (a)v__ (a) (n e W)
o " "n ke k n-k n-k ‘

is also in Ra'

Not able to prove inequalities for {un} € Ru using a probabilistic interpre-

tation, we adapt the analytic proof of the first inequality in theorem
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4.1.7(1i). To this end we need the following lemma from DeBruijn & Erdds

(1951) .

LEMMA 4.2.11. If {vn}z is a sequence of real numbers with v, = 1 and satis~

fying

(n EINO) ]

n
(4.2.15) v_ . = E e nVnek

n+1 k=0

where r >0 (k ¢ ]NO; n =k,k+1,...) and x is nondecreasing in n for

k,n
all k eINO, then for n e]No

k,n

(4.2.16) v > v v

n+k nk x EJNO) N

PROOF. We use mathematical induction with respect to n. For n = 0 {4.2.16)

is trivial. Now suppose that (4.2.16) holds for n = 1,...,N, then for all

k eN
e}
N-+k N
Vietak T L Ty k-0 © ) Lotk n-2Vk Z
2=0 2=0
N
> =
= Vk Z rl,NvN—R VN+1Vk 7
2=0
and (4.2.16) is proved for n = N+ 1. i

Before stating the generalized inequality, we introduce the following nota-
tion:

n
(4.2.17) h_(a) := 1 (nelN ; 0<ac<l).
n o

k=1

THEOREM 4.2.12. If 0 < o < 1 and {un} € Roa' then the following inequality
holds:

hn+k (@)

(4.2.18) Il:lm(a)hk((l) un+k = unuk

(n,k € JNO) .

PROOF. Let {u_} ¢ R . pefine v_ :=h (a)u_ (n e N ), then v_ = 1 and by
n a n n n o o
(4.2.2)
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n+1 n h_(a)

1-aqa n
= h_(0) e g = z r, (@)= V__ (nem™ ) ,
n 1 -0 n+1 k=0 k hn_k(a) n~k o

v
n+l

i.e. {Vn}: satisfies (4.2.15) with r,  given by

k,
k-1 1- 0tn—j
= = ——— ; n=k,k+l,..).
rk,n rk(a)hn(a)/hn_k(a) rk(u)jEO = (k 51%)' n=k,k+1,..)
Obviously, LN is nonnegative and nondecreasing in n, from which by lemma
4.2.11 it follows that (4.2.16), and hence (4.2.18), holds. 0

COROLLARY 4.2.13. If 0 £ o < 1 and {un} € Ra' then u_ can be bounded as fol-
lows:
n -n
1 < < (1-a)
h_ (o) n h (a)
n n

u

(4.2.19) (n e]NO) .

PROOF. The first part of the inequality follows by iteration of (4.2.18),

while the second part is a reformulation of (4.2.3). 0

We note that both inequalities in (4.2.19) become equalities if u = ﬁn (cf.
remark 4.2.3). Further, theorem 4.2.12 implies the following result about
the zeros of {un} € Ra' It can also be cbtained from theorem 1.5.7 and the
fact that Ra c Rl’ where Rl is an extension of C1 to be defined in the next

section.

COROLLARY 4.2.14. If 0 < g < 1 and {un} € Ra, then the following implication
holds:

[un > 0 and U > 0] = U >0 (n,k eZNO) .

Consequently, if u, > 0 then u > 0 for all n e:m%.

1

The upper bound for un, given in (4.2,19), is independent of {un} € Ra. Now,
using the relation between Ra and R, given in theorem 4.2.7, and observing

that v. £ 1 (n eWN ) if {v_} ¢ R, we see that if {u } ¢ R then
n o n n a
(4.2.20) u_ < U(a) (n e N ) ,
n o

i.e. we have an upper bound for u . independent of n e]NO.
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Furthermore, theorem 4.2.7 can be used to generalize the renewal theorem
for R (theorem 4.1.2(i) and (ii) with b = 60 ) to the R,'s. The first

L
part has already been generalized in theorem 4.2.5, the second part will be

considered after the following lemma concerning the period of {un} € Ra'

LEMMA 4.2.15. Let 0 < a < 1, let {un} € Ra' and suppose that the rn(u)‘s,
corresponding to {un}, are not all zero. Then the period d of {un} is equal

to that of the sequence {rﬁ_l(a)}T, and

(4.2.21) #({neW | u =0} <= .
nd

PROOF. Let {un} € Ra with period d, and let § be the period of {rn—1<a)}?'
Since by (4.2.2) the following inequality holds:

- oLn+1

Too Y TR el

we have
fnew | r_ (>0 ci{nenw|u >0},
n-1 n
and hence § 2 d. As in the proof of theorem 2.3.4, by iteration of (4.2.4)

we obtain the following expression for U in terms of Ra:

(4.2.22) U(z) = T {1 - (1-a)ozr (F2)17t .
k=0 ¢

Now, as rnnl(a) = 0 unless § divides n (n € N), we see that each factor in

the right-hand side of (4.2.22), and hence U, is a power series in z6, i.e.

{nemw [u >0} c{ks|kemw),

so that d 2 §. It follows that d = §. To prove (4.2.21) we apply theorem
4.2.6, according to which the sequence {un(a)}:, with gf U (z) :=U(2)/U(az),
o

is in Ro. The gf F of {fn}T, that {un(a)} is associated with, satisfies
F(z) =1 - l/Ua(z) =1 - Ulaz)/U(z) = (1-a)zRa(Z) ’

i.e. fn = (1 —ot)rn (a) (n € W). Now by theorem 4.1.14 it follows that the

-1
period of {un(a)} is equal to d, and since by (4.2.9) we have

u > un(u) (n e]NO) ’

we obtain (4.2.21) from the corresponding result for {un(a)} (cf. (4.1.17)) .0
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THEOREM 4.2.16. Let 0 < a <1 and let {un} € R(Xa Suppose that the rn(a)'s,
corresponding to {un}, are such that r(a) = 1/(1 - ¢}, and let {un} have pe-

riod d. Then u o= Lim u
o0

nd exists, and u_is given by

=1 d
(4.2.23) u_ = (1-o) U(a); ’
where

(4.2.24) wi= ] (a+l)r (a) (<« .
n=0

PROOF . Let {un} € Ra., By the preceding lemma we have

u =xr (@) =0if ns {14 | 2 em T .

n
Now, for the sequence {w }m, with w_ = u (n ¢eN ), it follows that for
no n nd [e]
n el
o
1 - (ad)n+1 . 1-al- 0L(n+1)d . _
d n+l d 1 -a (n+l1)d
1= q 1=aqa
n+1 n
1 - a 2 1 -
= r (a)u = z —— (a)w .
1mud 4=1 28~1 (n+1-2)d k=0 1-ud (k+1)a-1 n=k

Hence {w } ¢ R g and, if the rn(ad)“s, corresponding to {w,}, are denoted
o
- d
by rn(oz } (n eINO), then

- da 1 ~a
rn(a ) = 3 r(n+1)d__1(ot) (n e]NO) .
1-a
Now, according to theorem 4.2.7(i), the seguence {vn}:, with v, = wn/wmd)

(n ¢ INO) , 1s a delayed renewal sequence, associated with

nd 4d, - a
bn“ o v, (n e'.NO) and fn- [ )rn_l(cx) (n e N} .

) - a, w
Since {rnwl(a )}i’ and hence {fn}l’ is aperiodic, and as

t- L f=Gra ] rg @ = G-are =1,

by the renewal theorem (theorem 4.1.2}) it follows that v, = lim v, exists,
. fmacd
and that v, = b/ul, where ul = ann" Observing that in our case b = 1,
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wd) = u(e), and
v -1
wy = [ nf = (1—a>nzl nr_g (@ = (L-ad

with p given by (4.2.24), we see that u_ := lim und exists, and is equal to

n->re
the expression in (4.2.23). 0

If the rn(a)'s, corresponding to {un} € Ra' are such that either r(q) <
1/(L-0a) or r(a) = 1/(1~a) and u = Z(ni—l)rn(a) = «, then u + 0 as n » o,
In order to know how fast u may tend to zero, we generalize the results of
Kingman (1972) and DeBruijn & Erdds (1951) for RO (cf. theorem 4.1.14 and
remark 4.1.17) to Ra' It turns out that, as in the case o = 0, {un} € Ra

tends to zero not faster than exponentially.

THEOREM 4.2.17. Let 0 < o < 1 and let {un} € Ra. Suppose that the rn(a)'s,
corresponding to {un}, are not all zero, and that {un} has period d. Final-

ly, let p denote the radius of convergence of the gf of {un}:. Then

exists in (0,1}, p is finite, and

(4.2.25) 071 =p = suplx >0 | (1-awxr () < 1} = v, -

Furthermore (cf. (4.2.17))

n(t-a) "

(4.2.26) u, < 6 hn(u) (n e]No) B

so that also {p"u } e°R .
n o [

PROOF. Let {un} € Ra' We introduce the sequence {vn} by

v o= wlog{hnd(a)u I

n nd

which is well defined for n sufficiently large, as then u > 0 (cf.

d
(4.2.21)) . By inequality (4.2.18) it follows that {vn} is subadditive, i.e.

v S v+ WV
n+k n k ¢

and hence (cf. Pélya & Szegd (1970), I. Abschn.,Kap. 3) lim vn/n exists in
>0
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[~ew,®), and is equal to % := inf vn/n, It follows that
: 1/(nd) _ s _ ~
lim {hnd(a)und} = expl-lim vn/(nd)] = exp[~4/d] ,
n-»e oo

from which, observing that for 0 < a < 1

log hn(a) ~ =n log(l-a) (n + «) ,

we see that

1/ (nd)
m U

-+

= (1~ oa)exp[-2/d4] .

As 4 < =, we have 0 > 0. On the other hand, in view of (4.2.19) we canwrite

} = inf :rll" log(lwa)—nd = d log(l=-a) ,

=
I

. -1
inf - log{hnd(oc)und

and hence 6 < 1. Further, as vn/n 2 2 for all n, we have

1/(nd) 1

{hnd(a)u } < expl-2/d] = 6(1~a) =,

nd

which yields (4.2.26). In view of lemma 4.2.2 we may now conclude that also
(0™ 1" e R..

n o o
Finally, we turn to relation (4.2.25). As in the proof of corollary 4.1.15,
it can be shown that p = eml. As 6 > 0, p is finite. From (4.2.2) it is

seen that

(4.2.27) u = (1—0L)1‘n((]) (n E]NO) v

n+l

and hence the radius of convergence of Ra is at least p. Now by (4.2.4) it

follows that

(1—M§Jx)=l~UWxVUM)Sl (0 £ x <p),

and hence Yo 2 p. On the other hand, using mathematical induction, we prove
that for k ¢ ]NO

k
(4.2.28) ukstk To-odh7h

2=1

suppose that (4.2.28) holds for k = 1,...,n, then we can write

n+1u _.ntl 1 - a § r () -
Yo Pntt T Yy 1 RV S
1=q 7 k=0
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n . n-k _
< ya“+1 _E_ZE%T ) rk(a)Y;(n K a-dh7t e
I -q =) Q=1
n+l n+l
- -1
< (-wyRrR ()T (-t 1 (1-aY7h.
o a o
Q=1 2=1

It follows that there exists M > 0 such that u, < My;n for all n e:mO, and
hence p 2 Ya" Since we already showed that Yy > p, we get (4.2.25). O

REMARK 4.2.18. If {un} € Ra with u, > 0, then d = 1, and (4.2.19) yields a

1
sharper lower bound for 6 = lim u;/n than the value zero given in theorem

4.2.17: e

{4.2.29) 6 = (1«wa)u1 .

The first part of theorem 4.2.17 can be reformulated as follows:

}1/(nd)

: P nd ——
(4.2.30) 1im {p u g =1,

N0
Now, from the fact that {pnun} € Ra (cf. the last part of theorem 4.2.17),
we can obtain some more information about the asymptotic behaviour of
{pndu }*. In fact, applying theorems 4.2.5 and 4.2.16 to {pnun}, we get

nd o”
the following result, which, of course, is only interesting if p > 1.

THEOREM 4.2.19. Consider the situation from the preceding theorem, and let

dd denote the radius of convergence of Ru° Then Ya satisfies
1- R <1
( o) Y(l OL(YOL) I

while

(1) (1-0a)y R (y) <1 iff U(p) < =, in which case lim pnun = 0;
. n-)oo
(ii) If (1-a)yaRm(ya) = 1, or, equivalently, if either Ua =®or o < o

and (1-a)0aRu(0a) > 1, then

(4.2.31)  1im 0™ . = (1-o) toemd
nd Y
T
where
(4.2.32) w = § (a+Dr (o™ (< @) .

n=0
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To conclude the discussion of the Ra's, we give a sufficient condition in
terms of the rn(a) ‘s for {un} € Ra to be unimodal. This is suggested by
theorem 3.3.8, which gives, in fact, the same result for the extension Rl

of Cl’ to be defined in the next section.

THEOREM 4.2.20. Let 0 < o < 1 and let {un} € Ra' Suppose that the sequence

{rn(o.)}, corresponding to {un}, is such that {rn(a)/an}o is nonincreasing.

Then {u }co is unimodal, i.e. {u -u }m, with u := 0, changes sign at
n o n n-1"0 -1

most once. Furthermore, {un} is nonincreasing iff T (o) < 1.

PROOF. Let {un} € Ra and define the seguence {dn}: by
(n E]No) .

Replacing in (4.2.2) n by n~ 1, we can write

l_am»l 1-o" n-1
e (] 5 () u_ +u =ak_);o rk(a)un-—lukJrun .

1 - a n 1 -0 n n

From this and (4.2.2) we obtain by subtraction

1- 0Ln+1 n-1
(4.2.33) ———d ., = (r (@) -1u + kZO {r (@ ~on (@}a o (nel ).

Now, if the sequence {rn(cx)/an} is nonincreasing then
<
rn+1(a) < arn(a) (n e]NO) ’

and hence by (4.2.33) it follows that dn <0 (nemwW), i.e. {un}: is nonin-
creasing, iff ro(oc) < 1. FPinally, if ro(a) > 1, then, relation (4.2.33) be-~
ing very similar to (3.3.15), we obtain the unimodality of {un} along the

lines of the proof of theorem 3.3.8. 0

REMARK 4.2.21. Neither the condition that r(o) < 1/(1 ~a) nor the nonnega-
tivity of the rn(a) 's is essential in the preceding theorem. If, however,
the rn(a) 's are nonnegative, then {rn(a)/un} nonincreasing implies that the
radius of convergence Ua of Roz satisfies ca > 1/0. Hence, unimodality of

sequences {un} € Ra, for which 9, < 1/a, cannot be proved by theorem 4.2.20.

REMARK 4.2.22,. Though Ro contains many unimodal sequences, e.g. the bounded

Kaluza sequences (cf. theorem 4.1.18), there exists no obvious analogue of
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theorem 4.2.20 for Ro' However, as for {un} € RO we have u < 1 = u. a uni-
modal renewal sequence is necessarily nonincreasing. Hence (cf. (4.1.5)) a
necessary and sufficient condition in terxms of {fn}T for {un} € Ro to be

*k}oo

n
unimodal is that { ] £}

k=1

is nonincreasing, but this condition is not

very useful.

Finally, we mention an analogue of theorem 4.1.22 for Ca' Consider a delay-
ed, transient renewal procéss {Sn}:, associated with {bn}: and {fn}T such

that b = 1 (and so £ < 1). Let {vn}: denote the corresponding delayed rene-
wal sequence (cf. theorem 4.1.5). Then, as in the case of a pure, transient

renewal process (cf. the end of section 1), it can be shown that the rv

N:=#({ne]N|Sn<°°})

has geometric distribution with parameter £, and that the distribution

a
* . Y
o is given by

{pn} of the duration D = S

p_ = (1~f)vn (n EJNO) .

Now in view of the relation between R and Ra (cf. theorem 4.2.7 and remark
4.2.8) and the relation between Ru and Ca (cf. lemma 4.2.4), we easily ob-

tain the following characterization of Ca for 0 < a < 1.

THEOREM 4.2.23. For 0 < o < 1 a lattice distribution {pn}: is in C_ iff
there exists a delayed, transient renewal process {Sn}, associated with

{bn} and {fn} satisfying b = 1, b0 > 0 and
n
n k
(1~0L)bn«~ Z afkbn—k (n e N) ,

such that {pn} is the probability distribution of the duration of {Sn}.

4.3. An extension of Cl; the class Rl

In this section we briefly consider an extension Rl of Cl' The class C1 is
in many respects different from the classes C0£ for 0 < a < 1 (cf. chapter
2) . As a consequence, it is not clear how to define Rl analogous to Ra for
a < 1, i.e. how to characterize the boundedness of the Rl—sequences in terms

of the rn(l)'sb Therefore we define Rl as follows.



125

DEFINITION 4.3.1. A sequence {un}z with u =1 is said to be in the class Rl
if it is bounded and if there exist nonnegative guantities rn(l) {(n e:NO)

such that
n
(4.3.1)  (atliu = kZO r (Du (nem) .

M.L.J. Hautus suggested the following generalization of ocur result on the
boundedness of sequences {un} satisfying (4.3.1) with r (1) 2 0 (n € N_);

in fact, we proved the case En = 0 (n eimo).

LEMMA 4.3.2. Let {un}: be a seqnehce with u_ = 1 and satisfying (4.3.1) with
nonnegative rn(l)ﬁs (n eimb), Then {un} is bounded if there exist N ¢ Nand
a sequence {an}z satisfying

o

(4.3.2) € 20 (n el ), n'z~O e, <@

such that

(4.3.3) r, (1) =1 + €l (nz2N) .

T 1
n+ 1 k=0 k
PROOF. Define v, os= max{uo,ul,.ﬁ,,un}. Because of (4.3.3) we have for all
n==N

1 n
%wlﬁgferi)ﬂJ“umkg u+ern¢

oo
Since v = max{v_,u } v is now seen to satisf
n+l n’ n+i 7 { n}o = ¥

vn+1 < (1+:—:n)vn (n 2N ,
or also
n
v < v I (1+¢€) (n > N) .
+1
n k=N k
As Een < w, it follows that {vn}, and hence {un}, is bounded. ]

REMARK 4.3.3. If rn(l) < 1 for all n ¢ m%, or if there exist K ¢ N and y <1
such that rn(l) <y for n z K, then (4.3.3) holds and so {un} is bounded.
However, i1f, for instance, rn(l).= 1 + ¢ for all n eINO (¢ > 0), then it

follows that (use (4.3.5))
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l-g

u(z) = (L-2) ,

i

and hence

n
w o= (U e (Y - 1 (14e/k) (nemw) ,
n n - o

which tends to © ag n + «, Thus it turns out that condition (4.3.3) is not

too bad.

The gf's U and R1 of {un} € Rl and {rn(l)}, corresponding to {un}, exist for

izl < 1, because {un} is bounded and {rn(i)} satisfies

(4.3.4) rn(l) < (n+1)un+1 (n <:m%) .
From (4.3.1) it follows that
(4.3.5)  U'(2) = U(2)R(2) (lz] <1,

from which by integration and analytic continuation of the result we obtain
the following representation for U e Rl:

o r (1)

(4.3.6) U(z) = expl ) 'r;nj—]* 2" (|z] < v .
n=0 )

Letting z 4 1 we get the following analogue of theorems 4.1.2(i) and 4.2.5.

) © ¥ (1)
THEOREM 4.3.4. Let {u } ¢ R,. Then u := ) u_ < ® iff ) —2——0 < @, in
n 1 -0 B =0 B + 1
which case n= o
© r (1)
(4.3.7) z T = log u .
n=0

It is not clear how to get an analogue of theorems 4.1.2(ii) and 4.2.16,
because the conditions £ = 1 and r(a) = 1/(1 - a) have no obvious analogue
for a = 1. If, however, for a sequence {un} € R1 we suppose thatu_ ﬂ=lhnun

exists, then, using (4.3.6), we can 6btain this limit as follows: e

o pr (1)
u_ = lim (1-%x)U(x) = lim exp[log(l-3) + J ]k+ - &£y 2
xt1 11 k=0
o r (1) - 1
= exp[lim z —‘]S‘]-{—‘;’l*—‘ Xkdi‘:l «

x+1 k=0
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If in addition the rn(l)'s are such that

rk(l) -1

——— COTIVe Y ges

(4.3.8) T

[eed
k=0
then by Abel's theorem it follows that
© -1

rk(l)

(4.3.9) u_ = expl 2
k=0

k +1 1
Quite recently, however, Hawkes & Jenkins (1978) proved that the absolute
convergence of the series in (4.3.8) is also sufficient for the existence
of u = lim u_. In fact, they have the following results.
n—>°°n
THEOREM 4.3.5. Let {un}: be an aperiodic (cf. lemma 4.3.9) sequence with
u, = 1 and satisfying (4.3.1) with rn(l) >0 (n en%)@

(1) If v := lim rn(l) exists in (0,«), then {un} satisfies

n->®
Y1 o r (1) - vy
n k 1. k+1
(4.3.10) Lln N—I-,—('?)—‘exp[kzo W(l —--1:1-) 1 (n » «) ,

py !rk(l) - Yl

(ii) If 2 T < o for some y = 1, then
k=0
oyt @ or (1) -y
(4.3.11) un o~ W expl —T-:—l-“—] (n - =}

k=0

when vy = 1, then {un} is also of bounded variation, i.e.

(4.3.12) ) |u

PROQF. For the sake of completeness we give a proof of the result that is
most interesting for us, i.e. part (ii) with y = 1.

Define dn p=ou o~ U (n € m%), with u_, := 0. Then from (4.3.1) we obtain

n n-1
by subtraction

1

'

n

(4.3.13) (m+Dd = ] (r (1) - 1d__

(n eN ) .
n+l k=0 ©

k
Now, let {vn}: be the sequence with v, = 1 that satisfies (4.3.1) with r (1)
replaced by ’En(z) i= |rn(1) - 1] (n € N_). Then from (4.3.13) it follows

by induction that ]dnl < v, (n eINO), and as by theorem 4.3.4 we have
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Zvn < @, we conclude that {un} is of bounded variation. Hence {un} has a

limit u_, which is necessarily equal to the expression in (4.3.9). ]

REMARK 4.3.6. As noted by Hawkes & Jenkins, theorem 4.3.5(i) includes the

renewal theorem: if {un} is an aperiodic renewal sequence, associated with

{fn} such that p := Inf < =, then the rn(l)'s, corresponding to {un}, sa-
tisfy lim r (1) = 1 (cf. Port (1964)), and
neo O

) rk(l) -1
(4.3.14) lim )
n>o k=0

1 k+1 1
T

The limit theorems 4.1.14 for Ro and 4.2.17 for Ra (0 < 0 < 1) do have an
analogue for Rl' As in the case 0 £ o < 1, we need an inequality and an ob-
servation concerning the period of {un} € Rl' Since for the function hn(a),
defined in (4.2.17), we have
o= i = H
hn(l) := lim hn(a) nt (n e:No) B
otl
and as the discussion in the proof of theorem 4.2.12 also holds for o = 1,

we get the following inequality for {un} € Ri'

THEOREM 4.3.7. If {u_} e R,, then
n o 1
n+k
(4.3.15) ¢ 0 )un+k > u v (n,k E]No) o

COROLLARY 4.3.8. If {un} € Rl' then the following implication and inequali-
ty hold:

(4.3.16) [un > 0 and W > 0] = Uk 0 (n,k eINo) .

n ¥
(4.3.17) u > ul/n. (n eINO) .

We note that the inequalities in (4.3.15) and (4.3.17) become equalities

for {ﬁn} € Rl' corresponding to ?O(l) =qu > 0, ;n(l) =0 (n eWN), i.e.

(4.3.18) §_ = uW/nt (nem) ,

i.e. the Rl—analogue of the Poisson distribution (cf. {En} € Ra in remark

4.2.3).
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The period of {un} € Rl has properties similar to those in the case 0<oa <1

(cf. theorem 4.1.14 and lemma 4.2.15; see also Wright (1967)).

LEMMA 4.3.9. Let {un} € Ri and suppose that the rn(l) *s, corresponding to
{un}, are not all zero. Then the period d of {un} is equal to that of the

sequence {rn—l (1) }1 , and

(4.3.19) # ({n ew | U = 0N <

PROOF. Let {un} € Rl with period d, and let § be the period of {rn-«l(l) }T.

In view of (4.3.4) we have
mew | r_ (1) >0} c{new | u >0},
n-1 n
and hence § = d. Since rnml(l) = 0 unless § divides n (n e N), from (4.3.6)
it is seen that U is a power series in zé, i.e.
{neJN!un>0}C{k6 | x e} ,
so that d =2 §. It follows that d = §. To prove (4.3.19) we introduce the

set A = {kl'kZ"’“} as the set of k ¢ IN for which w g > 0. Then there exists
N € IN such that

ged A = 9Cd{k1r~“'kN} =1 .

It is well known that there now exists K ¢ N such that every k > K (k ¢ IN)

can be written as

where ‘mj emWN (j =1,...,N). By (4.3.15) it follows that for k > K

(4.3.20) (kd) :

=

Yeg =

3
m, 1 uk.d ’
(@t} J J J

==

j=1 .

which is positive, as ukjd >0 for j = 1,...,N. Hence ukd >0 for k 2 K. [

COROLLARY 4.3.10. If {un} € RI' and if {un} has period d, then also
fu }° R

Yna’ n=0
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PROOF. In view of the preceding lemma we have

u =xr (1) =0ifn¢{2d | g em} .

n
Define w_ := u (n eIN ), then it follows that for n eIN
n nd o [o)
1 n+l
(At Dy = DY a =g jzl *ja-1 MY (ne1-9)a =
= il %r(kﬂ)d—l(l)w -k -
k=0 m
. ) (d)
Hence {wn} € Rl’ with rn(l), corresponding to {wn} and denoted by r (1,
given by
(d) _ 1
o M =3 Tenar (n €M) - 0

REMARK 4.3.11. Theorem 4.1.7(ii) yields an analogue of corollary 4.3.10 for
Ro. In the case 0 < o < 1, however, we have (cf. the proof of theorem
4.2.16)

(4.3.21) {un} € Ra = {und} € Rud .

We are now ready to state the following result on the asymptotic behaviour
of {un} € Rl' By corollary 4.3.10 we can, and will, confine ourselves to

aperiodic sequences {un}.

THEOREM 4.3.12. Let {un} be an aperiodic sequence in Rl‘ Then

-log u_ - n log n
(4.3.22) 2 := lim n

n—»oo

n

exists in [-»,x), while

(1) 2 > == iff there exists Yy > 0 such that u < yn/ni (n elﬂo), in which

case
~log u ~-log u
. n n 2+ ol w
(4.3.23) Llim nlog o - 1 and 7 Tog n 1 = Togn (n » o) ;

(ii) If & = -«, then

(4.3.24) limsup o
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PROOF. Let {un} € Rl be aperiodic. Then, in view of (4.3.19), for n suffi-

ciently large we can define v, as follows:

im :
v, s log{n.un} .

On account of theorem 4.3.7, {v_} is subadditive, i.e. v <v + v, , from
n n+k n k

which (cf. PSlya & Szegd (1970), I. Abschn., Kap. 3) it follows that
lim-l v_ exists in [~»,») and is equal to &' := inf l-v . AS
n n n n
n-o .
n log n -~ log n! ~n (n » «), it is seen that also

~logu_ - nlogn 1 1
g := 1lim L = 1lim {~v_ - ~(n log n ~ log n!)} =
In n n n
n-ro n--w
=2 -1

exists in [~»,») ., Furthermore, if & > ~», then we have for n sufficiently

large

1 i
- > 0 =
P log{n.un} = L+1,

and hence un < Yn/n! (n e:mo) for some Yy > 0., It is easily seen that the
converse is also true, and that in this case (4.3.23) follows from (4.3.22).
Finally, if £ = ~=, then for all sufficiently large n we have

-log u - n log n < 0, and hence (4.3.24). 0

It can be proved that for an aperiodic {un} € R1 the limit

lim-log un/{n log n} always exists (cf. (4.3.23) and (4.3.24)), and its va-
n->e

lue can be calculated. This has been done by Steutel & Wolfe (1977) for
{un} € C1 with u, > 0. It is easily shown, however, that their proof also

holds for a general aperiodic {un} e C,. Finally, as for every {un} € Rl

T
there exists Y > 0 such that {unYn/U(Y)} € Cl' we get the following result.

THEOREM 4.3.13. Let {un} be an aperiodic sequence in le Then

~log u
(4.3.25) lim ———=> = L,
- n logn N
where N is the smallest integer (possibly infinite) such that rn(l) = 0 for

all n 2 N.

Combining this result with theorem 4.3.12, we obtain the following corolla-

ries (note that N=1 (cf. theorem 4.3.13) iff un==an, given by (4.3.18)).
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COROLLARY 4.3.14. Let {un} be an aperiocdic sequence in Rl' Then the limit &
in (4.3.22) is finite iff there exists p > 0 such that

n ¥
= M ™
u, = /n (n ¢ O) '

in which case necessarily £ = =-log u - 1.

COROLLARY 4.3.15, Let {un} be an aperiodic sequence in Rl' If u < yn/ni
(n eJNO) for some y > 0, then there exists pu > 0 such that u o= un/ni

(n E]%Q.

As Ca c Cl' we have also

(4.3.26) Ra = Ri (0 <0 < 1) .

Now, if 0 < o < 1 and if {un} is an aperiodic sequence in Ra' then by theo-
vem 4.2.17
~-log u
Lim et ~log 6 ¢ [0,»=) .
e n
It follows that the limit in (4.3.25) is zeroc, i.e. we have the following

result.

THEOREM 4.3.16. Let 0 € a<1 and let {un} be an aperiodic sequence in Ra'

Then the rn(l)'s, corresponding to {un}, satisfy

VNeIJBnZN rn(l) >0 .



CHAPTER 5
CLASSIFICATION OF THE INFINITELY DIVISIBLE DISTRIBUTIONS ON [0,

The first aim of this chapter is to extend the classification of C,, defined
by the classes Ca (cf. chapter 2), to all inf div distributions on [0, .
Here the difficulty arises that no analogue of Co is known for general df's
on [0,®), but generalizing a functional equation, by means of which the inf
div df's on [0,®) are characterized (cf. theorem 1.6.2), we obtain classes
FA (0 £ A < ®, which, by putting o = e-A, can be considered to be exten-
sions of the classes Ca (0 < a £1). This is done in section 1, which also
contains some preliminary results. These are necessary, because the proofs
of the monotonicity of F_ (section 2) and further properties (section 3)
turn out to be more deliéate than in the discrete case. This is mainly due
to the necessity of considering also distributions on [0,«) without a jump
at zero, as will be apparent from the proofs, which will only be given as
far as they are essentially different from those in the discrete case.

In section 4 we study the limiting class F00 = lim FA' In many respects,
Ao
this class turns out to be the analogue of CO for df's on [0,»). For in-

stance, the dffs F in Foo with F(0) > 0 correspond with the compound geome-
tric df's on [0,®), and Fw contains the log-convex, and hence the comp mon,
densities on (0,x) (c¢f. the end of section 1.6). Furthermore, we show that
the PLST's of df's in F_ have a canonical representation that is very simi-
lar to that of the LT's of continuous analogues of the renewal sequences
(class RO), the standard p-functions (class P) of Kingman (1972). The re-
sulting relation between P and (a part of) FDo is considered in section 5.
Many properties of P, often easily obtained by the probabilistic interpre-
tatiog of a p-~function, can be translated for the corresponding densities
in Fw. Also, the dffs in Fm have interesting relations with the renewal
functions (cf. Smith (1958)) and the potential kernels (c¢f. Berg & Forst
(1975) and Hawkes (1977)). However, we shall not investigate these relations
in detail in this monograph. .

In section 6 we show that two different interpolations between Fm and Fo
give both rise to classes of df's that are limits of compound hegative~bi~
nomial df's on [0,») (cf. section 2.5). These classes also define a classi-
fication of FO.

Finally, in section 7 we mention some further generalizations. Specifically,
we briefly discuss the classification of inf div distributions on IR and on

2
[0,») " by means of functional equations.
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5.1. The cLasses Fy; preliminaiies
In chapter 2 the classification of Cl' defined by the classes CG (0 = a<l),
was achieved by generalizing the recurrence relations by means of which C1
and C are characterized, i.e. the relations for a lattice distribution

o
{pn}o given by

(1) (n eiwo)

n
(5.1.1)  (m+p ;= L pr

k=0
and
n

n+l kZO Py pk (O (n el

(5.1.2) P

respectively. Now we want to give a similar classification of the class of
all inf div distributions on [0,®). The starting point for this is the ana-
logue of (5.1.1) for densities (cf. corollary 1.6.3): a pdf £ on (0,») is
inf div iff there exists a right-continuous, nondecreasing function Ko such
that
(5.1.3) xf (x) = f(x-—y)dKo(y) (almost all x > 0) .

[0,x]

For pdf's there is no obvious analogue of (5.1.2); this would be

(5.1.4) fix) = £{x ~y)dK(y) (almost all x > 0) ,
[0,x]

with a right-continuous, nondecreasing function K. However, (5.1.4) is sa-
tisfied by all pdf's if K is the unit-step function at zero and by none for
any other K. To overcome this difficulty we first generalize the classes

Cu for a > 0. The set of (absolutely continuous) distributions in the inter-
section of the resulting classes will then be considered as the analogue of
Co for (absolutely continuous) distributions on [0,®).

Proceeding as in the discrete case we replace the factor x in the left-hand
side of (5.1.3) by the function '
Y

(5.1.5)  c(x;A) = (1-e ) /(1-e" (0 <) <o x20) ,

with c(x%;0) := x (x =2 0). This function is obtained from cn(a) = (1 nan+1}/

(L =a) in (2.3.1) by replacing a with e_A; in fact, we have

(5.1.6) Cn(a) = c(n+1;~log a) (n EZNO; 0<a=<1),
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and, as in the discrete case, we define for A > 0

c. t= lim cGA) = (1-e 71,

A
pideacs]
Considering, more generally, df's rather than pdf's, we are led to the fol-

lowing analogues of the classes Cu for 0 < a < 1.

DEFINITION 5.1.1. For 0 € A < » a df ¥ on [0,») is said to be in the class
FA if there exists a right¥continuous, nondecreasing function KA' vanishing

on (-»,0), such that

(5.1.7) f c(y;A)dF(y) = i F(X-y)de(Y) (x 2 0) .

[0,x] [0,x]
If F € FX’ then we shall also say that F ¢ FA; similarly, f e FA if F e FA
has density f£. As we shall see from its LST, the function KA in definition
5.1.1 is uniquely determined by F ¢ FA; it will be called the KA—fUWCtion
of F ¢ FX"
It is convenient to introduce the following (disjoint) subclasses of FA for
0 € A < o

+

Foo= {FeFA|F(O) > 0},
(5.1.8) .

FA = {F ¢ FA | F is absolutely continuous} .

The classes F; contain the classes Cu; in fact, for O < a £ 1 we have

+
(5.1.9) Ca = {F ¢ F-lo_

F is concentrated onIN } .
g a o

This easily follows by showing that if F is the df corresponding to a dis-
tribution {pn}: onIN_ with p_ > 0 and if A = ~log a, then the recurrence
relations (2.3.1) and the functional equation (5.1.7) are equivalent: use

(5.1.6) and the following relation between the Kx_function of F and the

r (a)'s corresponding to {pn} (cf. theorem 1.7.7):

'
<)

Ky = ] r ()1
n=1

[n,w)(x) (x ¢ R) .

The classes F{ can be characterized as follows (cf. corollary 1.6.3).

THEOREM 5.1.2. For 0 £ A < ® g pdf £ on (0,®) is in F; iff there exists a

right~continuous, nondecreasing function KA such that
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(5.1.10) ci(x; M) £({x) = f(x-y)dKA(y) {almost all x > 0) .
[0,x]

PROOF. If F is a df on [0,») with pdf f, then for all x > 0 we have, on the

one hand

/ cly; M ar(y) = [ c(y; M f(y)dy .
[0,x] - [o,x]

and on the other hand (using Fubini's theorem)

f F(X—Y)dK)\(y) = f j{ f(u)du dKA(y) =
[0,x] [0,x] [0,x-y]

= f(v~-y)dv dKA(y) = f(v-y)de(y)dv .
[0,x] Ly,x] [o,x] [0,v]

Now, in view of (5.1.7), the theorem easily follows. 0

Taking A = 0 in definition 5.1.1, from theorem 1.6.2 one sees that Fo is

the class of all inf div df's on [0,»)., Purthermore, on account of theorem
1.6.6 it follows that FZ is the class of all compound Poisson distributions
on [0,*) . To obtain the compound geometric distributions on [0,»), we for-

mally let A + ® in (5.1.7). As

4] if x =0,
c{x;®) := lim c(x;A) =
A-po 1 if x>0,
we get
(5.1.11) F(x) - F(0) = F(x-—y)de(y) (x 2 0) .
[o,x]

If F(0) = 0, the same difficulty arises as in (5.1.4) for pdf's, but if

P(0) > 0, (5.1.11) makes sense; the df's F on [0,»), with F(0) > 0 and sa-
tisfying (5.1.11) with a right-continuous, nondecreasing function K _, corres—
pond to the compound geometric distributions on [0,2) (cf. theorem 1.6.7).
This class of distributions we denote by F: (cf. (5.1.8)), since it turns

out to be the subset of df's F with F(0) > 0 in a class Fm to be defined

later. Thus we have the following definition:

(5.1.12) F: := {df F on [0,®) ] F is compound geometric}
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We re@uire that the function K_ in (5.1.11) vanishes on (-~~,0). It is then

, +
uniquely determined by F € F:, and will be called the X _-function of F e F.

In order to obtain a characterization of FA (0 < A < ® and F:, analogous
to that of FO given in the first part of theorem 1.6.1, we take LST's in
(5.1.7) and (5.1.11) to cbtain

(5.1.13) ¢ {F(1) - Flr+N)} = (0K, (1) (t > 0) ,
and
(5.1.14) F(1) - F(0) = F(T)K_(T) (t >0) .

Now, for an arbitrary df F on [0,»), we define the mkwfunction of F as the
solution of (5.1.13) or (5.1.14) for ik’ i.e. we have the following defini-

tion.

DEFINITION 5.1.3. For an arbitrary df F on [0,®) the mxmfunction of F is de~-

fined by
9, (1) = c {1 - F(T+ A /F(1)} if 0 <A <®,
Go(T) += Lin g () = B (0 /F(D = - 2 log F(D)

and, if F(0) > O,

9,(T) = lim @, (1) =1 - F(0)/F(t) .

A0

We note that for 0 £ A < » the wxnfunction of a df F ¢ FA coincides with

the LST of the KA~function of F, i.e. wx = Rl'

By Bernstein's theorem (theorem 1.3.7) we immediately obtain the following

Similarly ¢ = ﬁm, if F ¢ sz
characterization of FK and F: (cf. lemma 2.3.3).

LEMMA 5.1.4.
(i) For 0 £ A <» g df F on [0,») is in FA iff its mxwfunction is comp mon.

(ii) A df F on [0,%) with F(0) > 0 is in F. iff its ¢_-function is compmon.

We shall need the limiting behaviour for Tt =+ « of the ¢A—functions of a df
F. For X > 0 this is obtained from the following lemma, which does not seem
to be generally known (cf. Van Harn (1977)). The quantity 2(F) is the left

extremity of F (cf. section 1.2);
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LEMMA 5.1.5. If a > 0 and if F is a df on [0,»), then the function
1;‘(1+a) /f‘(T) is nondecreasing, and satisfies

(5.1.15) lim F(T +a)/F(1) = expl-al(F)] .

T>®

PROOF. Let a > 0 and let F be a df on [0,®). As by Bernstein's theorem F is
comp mon, it is log-convex (use Schwarz's inequality; see also theorem
1.6.11), i.e. log F(t) is convex. It follows that the wo—function o, of F

is nonincreasing, and as
d = - ' - -
(5.1.16) a?{F(T-Fa)/F(T)} = {mO(T) ~ mo(r-+a)}F(T+~a)/F(1) .

it is seen that the function f(T%—a)/ﬁ(T), which takes values in (0,1], is
nondecreasing, and hence has a limit in (0,1] as t » .

The proof of (5.1.15) we give here, is due to W. Vervaat (see also remark
5.1.7). First, take &(F) = 0. Then for (5.1.15) it is sufficient to prove
that

(5.1.17) liminf F(t+a)/F(t) = 1 .
T->00

For every T > 0 and ¢ > 0

F(t+a) > e °F e ar(x) > e ¥ r(1) - 5} .
[0,¢e]

Since

0 < e_"TE“L;'(T)—1 < e_TE{ e_":xc”lF(x)}-‘1 < e_TE/ZF(e/Z)_1 .

[0,e/2]

it follows that for all € > O

liminf ﬁ(r4—a)/§(r) > o 2E ,

T>

which yields (5.1.17), and hence (5.1.15) with 2(F) = O.
Finally, using this result for the df G(x) := F(x+ &(F)), we easily obtain
(5.1.15) for an arbitrary df F on [0,«). 0

LEMMA 5,1.6. If O < X < « and if F is a df on [0,®) (with F(0) > 0 if A=),
then the mk—function of F satisfies (cf. (5.1.5))

(5.1.18) lim 9, (1) = c(L(F) ;) .

T
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PROOF, The result follows from (5.1.15) if 0 < A < =, and is trivial if
A = ®, To prove (5.1.18) for A = 0, we may restrict ourselves to df's F

with L(F) = 0 (cf. the proof of lemma 5.1.5). Then using the identity

F(t) = 71 ] e FF(x) dx (t >0 ,
(0,*)

we obtain for € > 0

9 (1) = ~-F' (1) /F(D) < { f " r(x)ax} xe F(x)dx <
(0,) (0,=)
< e + {F(e/2) [ e—Tde}_l [ xe"Txdx =
(e/2,%) (e,)
= € + F(E/Z)"l{e + 1/tlexpl~te/2] ,
which is less than 2¢ for T sufficiently large. Hence lim mo(r) = 0. il

o0
REMARK 5.1.7. Since for all T » 0 there exists 6{1) € (0,1) such that

log{F(t +a)/F(T)} = -ag_(t+6(1)a) ,

(5.1.15) also immediately follows from (5.1.18) with A = 0.

In (1.6.2) and lemma 1.6.4 some properties of the Ko—function (i.e. the ca-
nonical function) of an inf div df on [0,») are given. The Kk-function of
a df in FA has analogous properties. In the following lemma we prove two
of them by considering the LST kk of KA'

the functional equations (5.1.7) and (5.1.11). A third property of KA will

but they can also be obtained from

be given in lemma 5.2.2.

LEMMA 5.1.8. If O < A £ » and if F ¢ FA (with F(0) > 0 if A = »), then the

K, ~function of F satisfies

A

(5.1.19) K, (0) = c(X(F);N)

and

(5.1.20) K)\(m) = ; K, (x) = cx{l - F(A)} < S -

[0,)
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PROOF. If F € FA' then RA coincides with the mxwfunction of ¥, for which we

have lemma 5.1.6. Now from (1.3.5) it follows that

K,(0) = lim Rk(r) = c(L(F) ;N ,
T->o0
and from (1.3.6)
Ky (=) = lim K (1) = lim c>\{1-—}?“(T+ N/F(DY =c {1-F(V} . 0
A
40 ™40

Finally, we state a property of FO that we need in the next section to prove

the monotonicity of FA'

THEOREM 5.1.9. If F ¢ Fo and a > 0, then the function ¢, defined by

p(t) := Fla)F (1) /F(1+a) (t 2 0) ,

+
is a PLST in FO.

PROOF. Let F € Fo with canonical function KO. In view of theorem 1.6.1 we

calculate

a - -
-3 log (1) = KO(T) Ko(r+a) ’

which is a comp mon function. As furthermore ¢(0) = 1, it follows that ¢ is

the PLST of a df Fa in Fo' for which by lemma 5.1.5 we have

F_(0) = lim o(7) = F(a)exp[al (F)] > O . 0
T2

5.2, The monofonicity of FA, absolute continuity

In th;s section we show that the classes FA define a classification of the
inf div df's on [0,®), i.e. we show that FA depends monotonically on A. To

this end it is convenient to consider only df's F for which
(5.2.1) L(P) =0 ;

this is not an essential restriction (c¢f. theorem 5.3.2(i)). Now, for in-

stance, it follows that the mx—function of F satisfies lim mA(T) = 0 (cf.
T

lemma 5.1.6), and, if F ¢ Fx’ that X, (0) = 0 (cf. (5.1.19)).
First we prove that all distributions in the classes FA with 0 < ) < @ are

inf div.
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THEOREM 5.2.1. For all X ¢ (0,«) the following inclusion holds: FX c Fo'

PROOF. We use the method of proof of theorem 2.3.4. It will then be clear

that by iteration of (5.1.13) F can be written as

-1

B 11 - ¢TYRL (kA

g‘(r) = F(T+>\n>‘) nH ci\ X( : (1t 20; n elN) .
F(nh) k=0 1=} K, (T+KkN)

Now using the fact that F(t+nA)/F(n\) tends to 1 as n + ® (cf. lemma 5.1.5),

we obtain the following expression for F in its K, -function:

A
-]~
~ @ 1—Acx Kx(kx)
(5.2.2) F(t) = 1 P (t =2 0) ,
k=0 I"CA Kk(r+kx)
from which, as in the discrete case, it follows that F is inf div. 0

From (5.2.2) we obtain a characterization of F; for 0 < A < = in terms of
the Kx~function. It can be considered as an analogue of lemma 1.6.4(ii),

+
where Fo is characterized similarly.

LEMMA 5.2.2. Let 0 < A < ® and let F ¢ F,. Then F ¢ F;, i.e. F(0) > 0, iff

the Kx—function of F satisfies

(5.2.3) c(x;k)-lde(x) <o,
(0,)
in which case

(5.2.4) F(O) = T {1l-c¢
k=0

-1

\ Kx(kk)} .

PROOF., Let F € FA” Then (5.2.2) holds, from which, taking T = nA, we see
that

n-~1 '
(5.2.5)  F(nh) = T {1-c ' (kn)} (n e N)
=0 A A

As F(0) = lim ﬁ(nk), from (5.2.5) it follows that F(0) > 0 iff the infinite
n->w

product in (5.2.4) converges, or, equivalently, iff
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(5.2.6) I Rixh) <=
k=0

Since by (5.2.1) we have KA(O) = 0, we can write, using Fubini's theorem,

-1

“x

ZIEA(kX)=c_1 f kZ {e_xx}kdxx<x>= } C(x;l)mlde(x),

>\ o
k=0 (0, ¥=0 (0, )

and the lemma is proved. - 0

For the classes Fo’ FZ and F: we have already representation theorems (cf.
theorems 1.6.1, 1.6.6 and 1.6.7, respectively). Now, from (5.2.2) we easily

obtain the following representation for PLST's in FA'

THEOREM 5.2.3. For 0 < A < ®» a df F (with &(F) = 0) is in FA iff F has the
form

1 - pG(kA)

(5.2.7)  F(1) = T gy

k=0
where 0 < p < 1 and G is a df with G(0) = 0. The representation (p,G) is

unique.

PROOF. Apply the method of proof of theorem 2.3.5, and use the properties
of the K,-function of F from lemma 5.1.8. 0
Next we turn to the general monotonicity property. Once it has been proved
for F , it also follows for F,, F¥ ana C , and for every other set of clas-—
ses, ébtained from the FA‘S b; inéersecting them with a set of df's that
does not depend on A. We think it useful to give a full proof, although the

first part is analogous to the proof of theorem 2.3.7.

THEOREM 5.2.4. For all X ¢ [0,®) and p ¢ [0,») the following inclusion holds:

i >
FA c Fu if A = .
PROOF. The theorem has been already proved in the case A ¢ [0,®), u = 0.

So, in view of lemma 5.1.4(i), we have to show that, if 0 < u £ A < « and
if the mx-function of a df F on [0,®) is comp mon, then its @“—function is

comp mon. Now, according to definition 5.1.3, the wu—function of F satisfies
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(5.2.8) wu(r) - cpu(r+>\) = cu{f‘(1+)\+u)/£‘(‘r+>\) - F(t+w/F(D} .

If the right-hand side of (5.2.8) is divided by Cuﬁ(T'*U): it becomes sym-

metric in A and y, and so

F(t+n)

(5.2.9) cx{wu(T) - wu(ri-x)} = FY?TFXT'Cu{mk(T) - wA(T+'“)} .
If ?y is comp mon, then mA(T) - wk(r4-p) is comp mon too. Further, as

F € FA c FO (theorem 5.2.1) and as u < A, from theorem 5.1.9 it follows
that the function F(t)/F(t+A-1), and hence §(1~+u)/§(r-+x), is comp mon.
Thus, from (5.2.9) we conclude that @u(r) - QU(T-fk) is a comp mon function.
Now, using the fact that lim wu(r-bnk) = 0 (cf. lemma 5.1.6), for @u we can

. n=e
write

I o~18

muu)= {m“r+kM _mum+kx+m}.

k=0
It follows that mu is the limit of a sequence of sums of comp mon functions.

Hence mu is comp mon, and the theorem is proved. 0

By letting X + « in (5.2.9) we see that if 9, is comp mon, then ¢ is comp
mon for all p ¢ (0,%), so (cf. lemma 5.1.4(ii)) we have F: c N F;. On the

other hand ¢_ = lim N is comp mon, if all 9, are, and so A

A~>00

(5.2.100 F_ = n F .
A<eo

This allows us to define the classes Fw and F; as follows (cf. (5.1.8) and

(5.1.12)):

F = Foo= 1
® )\Qm FA :)[\--J-;: F)\ '
(5.2.11)
F; i= {F e F_ | F is absolutely continuous} .

Of course, theorem 5.2.4 can now be supplemented with the case A = ®,

we [0,°].

If F e FA' then theorem 5.2.4 ensures the existence of the Kumfunctions of
F for all u ¢ [0,\X]. From (5.2.9) we obtain the following properties of

these functions.
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THEOREM 5.2.5. Let 0 < A £ » and let F ¢ FA (with ¥(0) > 0 if XA = «) with

an absolutely continuous K,-function (density kk)' Then for all u e [0, A)

A
the Ku—function of F is also absolutely continuous (density ku), and the

following inequality holds:

(5.2.12) ku(x)/c(x;u) 2 kx(x)/c(x;k) (x > 0) .

PROOF. First take p € (0,\). As we saw in the proof of theorem 5.2.4,
§(1-+u)/§(Tw+A) is comp mon, so by Bernstein's theorem there exists a right-

continuous, nondecreasing function K , zero for negative arguments, such

o Aew
that F(t+p) /Fl{r+A) = Rk,u”" As ¢, = Rx and o, =K, from (5.2.9) it
follows that for all x > 0
(5.2.13) ; C(y;l)dKu(y) = } C(u;u)de(u)de'u(y) .
[o,x3 [0,x] [0,x-y]

If KX has a density kA'

of (5.2.13) and then changing the order of integration, and noting that by

then, substituting u+y = v in the right-hand side

lemma 5.1.5

K, (0) = lim F(T+W) /F(t+)) = 1 ,
1 oo

we cbtain the absolute continuity of Ku, with density ku given by
-1
(5.2.14) k_(x) = c(x;A) {elxrwk, (%) + clx-ysuk, (x~y)dKk, (y)} .
u A A s
(0,x]

For the case p = 0, we let y ¥+ 0 in (5.2.9) to obtain

- = __F(r) 4, -
(5.2.15) ¢, {K (1) - K (t+0)} = Ty ekl
which by (5.1.13) is equivalent to
(5.2.16) } c(y;)\)dKo(y) = ; v dKA(y) + } KA(x-y) (1 - e_)\y)dKo(Y) .
[0,x] [0,=] [0,x]

It follows that Ko is absolutely continuous, with density ko given by

-1 -
(5.2.17) k_(x) = clun) Mk, (0 + ;’ Ky G- y) (1= ax_ )}
[0,x]

Finally, (5.2.12) is obtained from (5.2.14) and (5.2.17). 0
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REMARK 5.2.6. In case U = 0 in the preceding theorem we can reverse matters.
Suppose that the Ko—function of F € FA has a density ko' then from (5.2.16)

it follows that the wafunction of F satisfies

(5.2.18) f y K, (y) = f {c(y;A)ko(y)—
[o,x1 [0,x]

- (1-e 22

[0,v]

)ko(y - z)de(z) tay .

Hence, as KA(O) = 0, K, is absolutely continuous and has a density k that

A 2’

satisfies (5.2.17).

Thus we have proved that if F e FA’ then the absolute continuity of the KA—
function and that of the KO-function of F are equivalent. Furthermore, in
view of theorem 5.2.4 it now follows more generally that if F € FA and if

0 £ u < A, then the mefunction of F is absolutely continuous Zff the Ku~

function of F is absoclutely continuous.

The absolute continuity of the Ky-function of F ¢ FA is also sufficient for
the absolute continuity of F(x) -F(0). This observation generalizes a theo-
rem by Tucker (1962) or Fisz & Varadarajan (1963) (our theorem 1.7.10), if

restricted to the half~line. In our case the proof is very simple.

THEOREM 5.2.7. If 0 £ A € » and if F ¢ F;\ (with F(0) > 0 if X = ») has an

absolutely continuous mefunction, then F(x) ~ F(0) is absolutely continuous.

PROOF. If KA has a density kA’

(5.1.11) is absolutely continuous with density u given by

then the right-hand side of (5.1.7) or

u(x) = } kx(x-y)dF(y) (x > 0) .
[o,x]

As c{x;A) > 0 for all x > 0, from (5.1.7) or (5.1.11) it now follows that

'

F(x) -F(0) = f drF(y) = } c(y;X)mlu(y)dy ’
(0,x] (0,x]

and hence F(x) - F(0) is absolutely continuous with density fO given by

(5.2.19) fo(x) = c(x;\) kx(x-y)dF(y) (x > 0) . 0
[0,x]
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COROLLARY 5.2.8. Let 0 £ A < « and let F ¢ FX' If the Kx~function of F is

absolutely continuous with

(5.2.20) / c(x;A)—ldKA(x) =,
(0,)

then F is absolutely continuous, i.e. F ¢ F;.
PROOF. Combine theorem 5.2.7 and lemma 5.2.2. f

REMARK 5.2.9. The K -function of a df F ¢ F; satisfies (5.2.20) with A = O,
but it is not necessarily absolutely continuous: if K _has an absolutely

IR E) (1)
o

continuous part, i.e. Ko + KO with KO nondecreasing (i = 1,2)

and Kél) Z 0 absoclutely continuous, then from (1.6.3) it is seen that F has
an absolutely continuous component, and hence is itself absolutely continu-

ous. By remark 5.2.6 it follows that also the K,-function of a df F € Fi

A
may not be expected to be always absolutely continuous.

5.3. Futthen propernties of the F)\'b’ examples

When considering properties and examples of df's in FA’ we shall frequently
use the characterization of FA given by lemma 5.1.4. The ml—function of a

;v)’ and we

df that depends on some parameter v, will then be denoted by ¢
shall use the same notation without further comment in several different
situations.

We start with some properties of the classes FA' The first of them is well

known for Fo (cf. theorem 1.4.3).

THEOREM 5.3.1. For 0 £ A £ » the class FA is closed under weak convergence,
i.e. a df F on [0,»), for which there exist Fn € FA (n ¢ W) such that
F(1) = lim ﬁn(r) (t 20), is again in F,.

10

PROOF. By the definition of F, it is sufficient to consider the case
(n) )

0 < XA < «», The wxmfunctions @An of Fn are comp mon, and as win - 0y if

%n +F (n + ©), it follows that Py is comp mon too. So F ¢ FA’ 0

It turns out that every FA (0 £ A £ © ig closed under translations, but

only Fo and F_ are closed under scale transformations.
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THEOREM 5.3.2. If 0 £ A £ » and a > 0, then

(1) A df ¥ on [0,») is in FA iff the d4f Fa(x) c= F{x~a) is in FA;
(ii) A df F on [0,») is in FA iff the daf Fa(x) := Fax) is in Fal'

PROOF. The theorem is known for A = 0 and follows for A = « as soon as it
has been proved for finite A's. So let 0 < X < » and a > 0. In case (i) we

have

o o=e *TR(T) ,
a

by which one easily obtains the following relation between the @A-functions
of F_ and F:
a

(a)

(5.3.1) @y

(1) = c(a;A) + e—aA@A(T) .

As l%g @A(T) = c(L(F);A) 2 0 (cf. lemma 5.1.6), it follows that 0y is comp
T ) - “
mon Lff mkd is comp mon. Hence (i) is proved. In case (ii) F and Fa are re-

lated by

%a(r) = F(t/a) ,

from which it is easily seen that

(5.3.2) @éi)(f) = {c_,/cy}o, (1/a) .

It follows that Py is comp mon iff méi) is comp mon, and (ii) is proved. []

In view of part (ii) of the preceding theorem, for many purposes, such as
asymptotic behaviour and properties of moments, it is sufficient to consi-
der, apart from Fo and F_, only, say, the class Fl in stead of all classes
FA for 0 < A < o, Still, the monotonicity of FA is an interesting property,
and an explicit definition of the FA'S is needed to define the class Fm.
Furthermore, we note that, if we want to consider specifically lattice dis-—
tributions, i.e. distributions on the fixed lattice]No, then the transforma-
tion Fa(x) = F(ax) is not possible (unless a‘l e IN) : the classes Cu (0<a<1)

are essentially distinct.

In the following theorem we state some properties of the FA'S for 0 A £ »,

which are well known or trivial for A = 0.
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THEOREM 5.3.3. For 0 £ A £ = the following properties hold:

IN
<
A

(1) If F € FA and O ®, then F(T+ V) /F(V) ¢ FA’

1, then B’ « FA'

In
<
IA

(ii) If F ¢ Fx and 0

w, then F(VF(1)/F(T+V) « FA'
n-1

(iv) If F € FA’ nelNand 0 < v < AMn, then I F(r+kv)/F(kv) e Fv'

k=0

In
<
A

(iii) If F € FA and 0

PROOF. It is sufficient to consider the case 0 < A < =, The proof is then

analogous to that of theorem 2.4.2 in the discrete case (use lemma 5.1.4).[]

The case A = ® in (iv) can be used to construct examples of df's in FA; we

state it as a corollary.

CORCLLARY 5.3.4, If F ¢ Fco and if 0 € A < o, then for all n ¢ N

n-1
(5.3.3) T F(t+kA)/F(kA) e F. .
k=0 A

We note that if F(0) = 0 then in (5.3.3) we cannot take n = «, In fact, the

infinite product converges iff the series

YAl = FlT kN /FRN ) = c;i

K_(kXA)
k=0 k=0

i ~18

is convergent, but in view of lemma 5.2.2 and (5.2.6) this can only be the
case if F(0) > 0. If F ¢ FI, however, then from theorem 5.2.3 it is seen
that the infinite product yields a PLST in FX indeed. This also follows

from the following characterization of FA in terms of F: (cf. theorem 2.4.5).

THEOREM 5.3.5. Let F be a df on [0,®), let 0 < XA < « and define the function
b, by

(5.3.4) 9, (1) := F(MF(T)/F(T+A) (t 2 0) .

) : . .ot
Then F ¢ FX iff ¥, is a PLST in Fo-

PROOF. If F ¢ FA’ then according to theorem 5.1.9 wk is a PLST ﬁx, say, with

FA(O) = F(X) exp[A(F)] > 0. In this case the ¢ ~function of F, is given by

A

5.3.5) oM (r) =1 - M) 4 ME) 1

A (PA(T) v
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and as oy and mix) are both nonnegative functions, it follows that ®A is

comp mon iff mix) is. Applying lemma 5.1.4 now proves the theorem. 0

o0
COROLLARY 5.3.6. A df F on [0,®) is in F: iff I ?(T-+kk)/§(kk) is a PLST
k=0

in FA'
Using theorems 5.2.4 and 5.3.5 we can improve part (iii) of theorem 5.3.3

in the following way.

COROLLARY 5.3.7. If 0 £ A € @ and if F ¢ FA, then for all v € [0,») the
function ?(v)ﬁ(T)/ﬁ(T+'v) is a PLST ﬁv' say, while Fv € F; if v > A, and

F e FPif0<v <.
'\) o]

As a last property of the FAES we prove that U FA is dense in Fo in the

A>0
sense of weak convergence.

THEOREM 5.3.8. If F ¢ Fo’ then there exists a decreasing sequence {An} with
An <+ 0 and there are Fn € FA (n € IN) such that
n

F(t) = lim F (1) (1 20) .
e

PROOF. As FZ coincides with the set of compound Poisson distributions on
[0,®) (cf. theorem 1.6.6), for F ¢ F; we can give a proof along the same
lines as in theorem 2.4.4 for the discrete case. For an arbitrary F e Fo
this proof and the proof of De Finetti's theorem (theorem 1.4.15) suggest

the following choice: take An = n—z, and Fn such that for n =2 2

) n-1 1 - 0 %G (k/n)
(5.3.6) F_(1) = T v 5 (t 20 ,
k=0 1-n Gn(T+k/n )

where Gn is defined by

ki
- - 1/n
Gn(r) := F(1)

which because of the inf div of F is indeed a PLST. Using in corollary
5.3.4 a compoundwgeometric~(n_%,Gn) distribution, we see that Fn € FX .

Next we rewrite %n as follows: n
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~ 1 . n-1
(5.3.7) F (1) = {l-n ‘(1= (N 1T {1+g (D},
n n k=0 k,n
where
- 2 - 2 -
G (‘r+k/n)—G(k/n)+1—Gn(r)
9 n(r);: n ” n (nelN; k=0,1,...,n~1; 1 20) .

n +Gn(T) -1
Observing that for all T 2.0 and all k ¢ {0,1,...,n~1} we have
- - 2 - -
- < - +1 =
Gn(r) Gn(r-+k/n ) Gn(r) Gn(r /n)

T m e Mg (x) < 1-G (1/n)
n n
[0,=)

for ]gk n(T)l we obtain an upperbound, independent of k and Tt:
L
L - .
(5.3.8) [gk n('r)l <2 -1 - G (1/n)} (nelN; k=0,1,...,n-1; ©20).
¥

Now define Gn = 1-—5(1/n), then Gn e (0,1) and

e

l2 ©
- 1
nH1-8 (/ml=nt1- -6y = § (M ek -
n n k n
k=1
o i 0 3 3
1 1/n°~1 k-1 1/n°-1 % 1/n°-1
=6 ) = Y(=6 )" <8 )« ) (=6 ) =8 (1-8 ) .
n ket k' k-1 n 0=0 2 n s n
which, as 6n = of(l) (n > «), tends to zero as n - «, It follows that
1 -8 = =
- n(1/n) = o(n °) (n » o)
and hence by (5.3.8)
. . o )
(5.3.9) Vke{o,l,,,.‘,,n—l} VTZO ]gk,n(r)l < € with €. = o(;) (n -+ @) .

We can write now the following inequalities:

n-1
<1-en)“s I {1 +g

(1)} < (1+en)n ,
k=0

k.,n

from which by the asymptotic behaviour of e it is easily seen that

n-1
(5.3.10) lim T {1 + g

(0} =1 (t 2z 0) .
nore k=0 :

k,n
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Turning to the first factor in the right-hand side of (5.3.7) we write

-

- n B
{1t - n *(1 - Gn(T))} = expln log(1 cn)] .

with c, = n-%(l - én(T)). Using the fact that

-x-—x2 < log(l - x) £ -x for 0 < x <%,

-~ 2
and observing that ne, -+ -log F(T) and nc +~ 0 as n + ©, we see that

(5.3.11) 1lim {1 - n”t

n-reo

(1 - éﬂ(r))}“ = P (1) (t 20) .

Combining this result with (5.3.10), from (5.3.7) we conclude that

lim F (1) = F(1). 0
n—>°°n

To construct examples of df's in FA we need, apart from lemma 1.3.8, the
following lemma's on comp mon functions. They can easily be proved by use

of Bernstein's theorem and partial fraction expansions.

LEMMA 5.3.9. For u3 > 0 the function ¢, defined by

U, + U,T
1
o(1) 1= ———2— (13> 0) ,

+
U3 T

is comp mon iff uz 2 0 and ul = u2u3.

LEMMA 5.3.10. For My > 0 and My > 0 the function ¢, defined by

Ul + HyT

o(T) (t >0) ,

(u3 + T)(u4 + T)

is comp mon iff u2 > 0 and ul > u2 min(u3,u4).

LEMMA 5.3.11. For My > 0 and u4 > 0 the function ¢, defined by

'

(u, + r)(u2 + 1)

1
(u3 + T)(u4 + T)

o(T) := (t >0) ,

is comp mon iff min(ul,uz) > min(u3,p4), u1u2 > u3u4 and u1-+u2 p< u3-+u4,

Now we mention some simple examples of distributions in Fl' In the next sec-

tion some more examples for Foo will be given.
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1. Consider the exponential distribution with parameter u > O0; its pdf and

PLST is given by

£F(x) = pe ™ (x> 0), and F(1) = —-%- .

Calculating the @A—function of F, we obtain

1Y t
(5.3.12) Tt € Fm (nw > 0) .

In fact, the Kx-function of F has a density kA given by

= (A+u) x

kx(x) = Acxe (x> 0; 0 £ X < ®

2. The gamma distribution with parameters p > 0 and v > 0 has pdf and PLST
given by

v
_u V-1 ~ux - _ B4V
f(x) = Ty ¥ © (x > 0), and F(1) = {ﬁwif;} .

In view of theorem 5.3.3(ii), from example 1 we conclude that

(5.3.13) (=" < F) (W>0;0<vs1),

but, as for the discrete analogue of the gamma distribution (cf. example 2,

p. 56), we have

(5.3.14) {(—2—V ¢ u F (W>0; v>1) .
u+ T )\>O)\

To show this we put v = 1 + ¢ with ¢ > 0, and we calculate the wk—function

of F:

1+¢
k

u o+ T 1+e

e R
HA+A+T K

A nFaeaeo ™,

i 0~18

0, (1) =c>\{1-( X

which can be written as the LT of a function kk that satisfies

1

oo k-
=1 (A+n) ~ 1+e, (=A%) _ .
A e Kk)\(x)—kz1 ( " )W—1v+c—e(l+€)

k-1-¢ (Ax)k

( k-1 )k(k-kl)i :

fo~18

k=1

As for 0 < € £ 1 this is less than (1+¢){1~¢eAx/2}, which tends to -» as
% >, (5.3,14) is proved for 1 < v £ 2. Finally, from this and theorem

5.3.3(ii) it is easily seen that (5.3.14) also holds for v » 2.
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3. In view of example 1 we can take F(1) = u/(u+ 1) in corollary 5.3.4 to
obtain

n-1
(5.3.15) 1 —HitKA g (W>0;nelN; 02 <o) .

k=0 H+kA+ T A

4. For a product of two exponential PLST's, which, obviously, can be given

the form (5.3.15) with n = 2, we have

H W+ v
U+ T U+ VHT

(5.3.16) eF;\@AS\) (p>0; v20 .

In fact, the mx—function can easily be seen to be the LT of the function kA
given by

e—(u+k)x

ky (x) = e Vo= + (vene ™ (x >0) ,

A

from which it follows that 0y is comp mon, or, equivalently, kx(x) =z 0 for

all x>0, iff X = v,

5. A quotient of two exponential PLST's with parameters p > 0 and v > 0,

respectively, is again a PLST iff p £ v (cf. lemma 5.3.9). We then have

(5.3.17) ﬁT/v:TeF: (0 <u<v .

In fact, the K _~-function has a density k_ given by

k_(x) = (v-we ¥ (x >0) .

6. Taking F in corollaries 5.3.4 and 5.3.6 compound geometric, we get

n-1
(5.3.18) i
k=0

1 ~ pG(kA) F

T—pG(T+k)\) €ry (neWu{e}; 0<p<l; G is df on [0,»)).

it

7. Choose in (5.3.18) é(r) uw/(p+ 1), then it follows that

n-1 Hy + kA My + kA
(5.3.19) it / F (n e N U {=}; 0 <y, <

k=0 ul-ka-fr uz-kkk-kr N A 1 )

)
Note that for n = 1 we get example 5.

8. Finally, we want to show that for positive “1’”2 and u3
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u u 3

1 3 2
(5.3.20) /1 }
u1+1: u3+T u2+r

2 )

€ F:@%(u1+u3) < p, < max (v

2 3

First we note that according to lemma 5.3.11 for the function in (5.3.20)
to be a PLST it is necessary and sufficient that u2 = %(ulﬂ-ua). Calculat~-

ing the wm—function in that case, we find
o_(t) = (u + 072wy 2u,mu, —uy T
2 2 173 2 1 3 !

from which by lemma 5.3.10 it follows that ¢_ is comp mon iff u§-ulu3 2

Z (2112—“111—113)112, i.e. (u3—u2) (u2~u1) 2 0, or M, < max(u1,u3).

5.4. The class F

In this section we study the class Fm := 1lim FA in more detail, and we do
A-rco
so mainly for the following two reasons. In the first place, Fm seems to be

the analogue of CO for distributions on [0,®). In fact, similarly to the
way Fm is defined, Co can be obtained as the limit of the discrete analogues
of the FA'S, the classes Cu' for o ¥+ O. Furthermore, it will turn out that
Fm has properties, very similar to those of Co’ and Fw contains the com-
pound geometric distributions on [0,») just as Fo contains the compound
Poisson ones. Secondly we study Fm because of its interesting relations
with other classes of functions occurring in probability theory, such as

the standard p~functions, the renewal densities and the potential kernels.

These relations will be discussed briefly in the next section.

Our first aim is to look for some basic properties of Fm as available for
Fo (cf. theorems 1.6.1 and 1.6.2). The relation between CO and RO (cf. sec-
tion 4.1) suggests the existence of a relation between Fw and the class of
continuous analogues of the renewal sequences, the (standard) p-functions
(cf. section 5). By a method used by Kingman (1972) for p-functions, we can
derive a canonical representation for the PLST's in Fm. The starting point
for this is the observation that F: is dense in {F ¢ Fw I &(F) = 0} in the
sense of weak convergence (this can be considered as an analogue of De Fi-
netti's theorem (theorem 1.4.15) for Fm): if F ¢ Fw with 2(F) = 0, then by
(5.1.13) and lemma 5.1.5 we can write

. = 1-p
(5.4.1)  F(1) = lim Lim —i) = lim o

-1 -1~
A0 1-—cA KA(T) Ao 1-cx KA(T) n->o

_F(reN)
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“ - -1
where for n €N p, = 1 - F(n) € (0,1) and Gn(T) = c

Rn(r)/{l-?(n)} is
a PLST {cf. (5.1.20)). Using a different approach, however, we can derive
the canonical representation much easier. We shall do so now, and startwith
a characterization of F0° by means of a comp mon function. To this end we

give the following definition.

DEFINITION 5.4.1. The y_-function of a df F on [0,=) is defined by

b0 =SB0 = FA@E 0.

We note the following relations with the woafunction and, if ¥(0) » 0, with

the ¢ _~function of ¥ (cf. definition 5.1.3):

(5.4.2) Y (1) = ¢_(0)/F(1) and ¥ (1) = ~¢!(v)/F(0) .

As mm(T) 2 0 (t > 0), the latter relation shows that {(c¢f. lemma 5.1.4(ii))
a df ¥ with F(0) > 0 is in F: iff the Y _~function of F is comp mon. This
characterization of F: can be extended to F_ in the following way (cf. lem-

ma 2.5.6).

THEOREM 5.4.2. If F is a df on [0,%), then F ¢ F_ with £(F) = 0 iff the b~

function of F is comp mon.

PROOF. Let F e F_ with &(F) = O. Then by lemma 5.1.4(i) for all A < = the
wk~function of F is comp mon, and is related to the Y ~function of F as fol-

lows:

(5.4.3) = S= 0y (0) = ¢ P+ N0 (0) - o_(t+N/FD] .

Division by F()A), and use of the fact that c, = 1, F(T+\)/F(\) ~ 1 (cf.

A
Llemma 5.1.5), and (pO(T+>\) + 0 (cf. lemma 5.1.6) as A - =, show that

(5.4.4) y_(1)

. d =
lim - a?'QA(T)/F(X) .
Ao

'

It follows that Y, is comp mon, since it is the limit of a sequence of comp
mon functions.
Conversely, let the Y ~function of a df F on [0,») be comp mon, and let

0 < A < », As F is nonincreasing, the function

1 1

(5.4.5) @A(T)/ﬁ(r-fk) = cx{ﬁ(r-+A)” - F(T) 7}
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is nonnegative. Furthermore, it satisfies
a . -
(5.4.6) - Lo, ()/Fr+ N1 =c {y (1) =y (t+D},

from which it follows that wx(r)/ﬁ(r-kk), and hence QK(T)' is comp mon.
Thus we have proved that F e Fm. In order to show that 2(F) = 0, we note

that lim wm(r) exists in [0,») . Hence by lemma 5.1.6 and (5.4.2), &(F) can
00
be obtained as follows:

2(F) = lim ¢ (t) = lim ww(T)ﬁ(T) = F(0)1lim ¢_(71) ,
>0 ° T-¥o0 T
from which it is seen that L(F) = 0 if F(0) = 0. As trivially () = 0 if
F(0) > 0, the theorem is proved. 0

Using Bernstein's theorem, from theorem 5.4.2 we immediately obtain a cha-
racterization of Fm by a functional equation (cf. lemma 2.5.8, where a simi-

lar result is given for Co (= Hl; cf. theorem 2.5.11)).

COROLLARY 5.4.3. If F is a df on [0,»), then F ¢ Fm with 2(F) = 0 iff there

exists a right-continuous, nondecreasing function L such that

(5.4.7) ]‘ y dF(y) = f F*Z(x-y)dL(y) (x 2 0)
[0,x] [o,x]

Relation (5.4.6) gives rise to a claracterization of F_ in terms of the 9y~
function for a fiwxed A ¢ [0,»). It shows in a sense which part of FA con-

sists of F_~distributions.

THEOREM 5.4.4. If F is a df on [0,»;, then F ¢ F.x, with £(F) = 0 iff for

some, and then for all, X ¢ [0,») the function mx(r)/ﬁ(r‘fk) is comp mon.

PROOF. First we note that if F ¢ F_ with 2(F) = 0, then by theorem 5.4.2
the ww~function of F is comp mon, and hence (cf. the second part of the
proof of theorem 5.4.2) mk(r)/ﬁ(rdvx) is comp mon for all A ¢ [0,®). From
(5.4.2) it now follows that for A = ( the theorem reduces to theorem 5.4.2.
Therefore we take a fixed X ¢ (0,~) and suppose wA(T)/ﬁ(T-+A) to be comp

mon. Then the limit

(5.4.8)  a, := lim @X(r)/ﬁ(wm = ¢, lim -
T+ T o
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exists in [0,®). For all t > 0 there exists 81 e (0,1) such that

F(1) - F(T+)) = -xf’-(werx) s

and hence, as Frois nondecreasing,
SAFT(T4+A) < F(T) - F(T+X) £ =AF' (1) ,
or for T > A
F(tr) - F(T+1) € =AF' (1) € F(r-1) = F(1)
Now, dividing by §(1)2, and using (5.4.8) and lemma 5.1.5, we see that y
satisfies

~AL(F) eXR(F).

-1
< liminf y (1) < limsup y_(1) < {ACA} a,
T+ T+

~1
(5.4.9) {XCA} a,e

If F would be such that &(F) > 0 (and so F(0) = 0), ¢y_ would satisfy (cf.
lemma 5.1.6)

lim ¥ (1) = lim ¢_(1)/F(1) == ,

T-ro0 T+

which contradicts (5.4.9). It follows that 2(F) = 0, and hence

. ~ -1
(5.4.10)  lim y_(1) = {ACX} ay -

T-r
Now wm can be written as

p(1) = {)\c)\}‘la)\ + ) W (THKA) - P _(t+kA+N])

which by (5.4.6) implies the comp mon of Yy . Hence by theorem 5.4.2: Fe Fw.D
Next, from theorem 5.4.2 we derive a representation theorem for Fm that can

be considered as an analogue of theorem 2.4.8, where a relation between CO

and C1 is given.

THEOREM 5.4.5. A function ¢ on [0,®) 4is the PLST of a df F ¢ Foa with &(F) =0

1ff there exists a df H ¢ Fo such that ¢ has the form

(5.4.11) o(t) = {1 - log A(t)} " (t 2 0) .

PROOF. Let F € Fw with £(F) = 0. Then the y_-function y_ of F is comp mon.

If we define the positive function ¥ on [0,») by
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1

(5.4.12) ¢(1) := expll - F(1) ] (t =20 ,

then it is seen that Y (0) = 1 and that the function

da _d a1
- S log ¥(n) = = F( T =y (0

is comp mon. Now by theorem 1.6.1 it follows that there exists a df H ¢ Fo
such that ¢ = #, and hence by (5.4.12) F can be represented in the form
(5.4.11) .

Conversely, suppose that a function ¢ on [0,%) has the form (5.4.11) with
H ¢ Fo' Then the wo—function of H

)

(B __4a_ -~
o, (1) = e log H(T)

is comp mon, and as =-log H(t) is nonnegative, by lemma 1.3.8(vi) it follows
that ¢ is comp mon. Also ¢(0) = 1, and hence by Bernstein's theorem ¢ is

the PLST of a df F on [0,»), for which the wm—function

_d - -1 _ (H)
Vo (1) = g F(1) © = g " (1)

is comp mon. In view of theorem 5.4.2 we conclude that Fesz with 2(F) =0.0

COROLLARY 5.4.6. If F ¢ Foo with 2(F) = 0, then

(5.4.13) f(1) = expll - eI (t = 0)

(H)
[]
of ¥ as its LST, and is therefore related to the Ko—function KO of F as

is the PLST of a df H in FO. The Kowfunction K of H has the ¥ _~function

follows:

(5.4.14) T x k) g |
- (o] Q

By letting 7 =+ = in (5.4.13), it is seen that F(0) > 0 iff H(0) > 0. Hence
from the preceding theorem we obtain the following relation between FZ and
+ .

Fw, which can also be established by use of the representations (1.6.12)

+
and (1.6.13) for Fo and F:, respectively (cf. the proof of theorem 2.4.8).

COROLLARY 5.4.7. A function ¢ on [0,») is the PLST of a df F « F: iff there
. +
exisis a df H ¢ Fo such that (5.4.11) holds.
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We want to make the representation for PLST's in Fw, given by theorem 5.4.5,
more explicit. We do so in the following theorem by introducing canonical

quantities in such a way that several properties of Fw are easily expressi-
ble in terms of them, and such that there exists a clear resemblance to the

canonical representation for the LT of a standard p-function (cf. section 5).

THEOREM 5.4.8. A function ¢ on [0,®) is the PLST of a df F ¢ F_ with &(F) =0
iff there exist Y 2 0 and a right-continuous, nondecreasing function N on

(0,%) with N(®) = 0 and satisfying

(5.4.15) f x dN(x) < =« ,
(0,11

such that ¢ has the form

(5.4.16) o(1) = {1 + vyt + } (1-e Fyan(x) 3} (t =2 0) ;
(0, )

the representation (y,N) for ¢ = F is unique.

PROOF. The theorem is an immediate consequence of the preceding theorem,
and theorem 1.7.1, where a representation (y,N) is given for the chf of an
inf div df with finite left extremity; using this representation for the df

H ¢ FO in (5.4.11), we get (5.4.16,. 0

It is useful to state the following corollary, which will be clear from

corollary 1.7.2.

COROLLARY 5.4.9, If F ¢ Fm with 2(F) = 0, then between the representation

(Y,N) in (5.4.16) for F and the Ko—function KéH) of the df H, defined by

(5.4.13), the following relations hold:

(H) 1 H
(5.4.17) v = Ko (0) and N(x) = - }’ ; dKé )(y) (x > 0) ,
(x,)
and, conversely,
(5) ~
(5.4.18) KO (%) = v + y dN(y) (x =2 0)

(0,x]
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The representation (y,N), given in (5.4.16), for the PLST of a df F ¢ Fw
with &(F) = 0 will be called the canonical representation of ¥ ¢ F_. It has
several simple properties, which we need in the sequel. They are summarized

in the following lemma.

LEMMA 5.4.10. Let F ¢ Fm with 2(F) = 0 and canonical representation (y,N).
Then

(i) N is integrable on every finite interval, or, equivalently,
(5.4.19)y -~ } N(y)dy < « (x > 0) .

(0,x]
(ii) N is integrable on (0,») iff p := j. x dF{(x) is finite, in which

case [0,)
(5.4.20) u =7y =~ } N(x)dx = vy + }‘ x dN(x) .
(0, ) (0, )
(1ii) The LT of N exists on (0,») and can be expressed in F as follows:
-TX, -1 -~ -1

(5.4.21) e “N(x)dx =y + 1 - {tF(1)} (t >0 .

(0, )

(iv) Y can be obtained from F by

(5.4.22) y = lim {tF(r)} " .

T>o0
(v) The Komfunction of F is related to (y,N) as follows:
(5.4.23) Ko(x) = YF(x) + } F(x-vyly dN(y) (x 2 0) .
(0,x]

(vi) F e F' iff y = 0 and N is bounded, i.e. -N(0+) < e.

PROOF .

(1) For all x > 0, using Fubini's theorem, we can write
(5.4.24) - ; N(y)dy = f y dN(y) - xN(x) ,
(0,x] (0,x]

which by (5.4.15) is finite,

(i1) By Fubini's theorem it follows that
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(5.4.25) -~ f N(x)dx = /. x dN{x) ,
(0,) (0,)
where the integrals may be both infinite. Further, by (5.4.14) and (5.4.18)

we can write

o= %dF(x) = 1lim -f"(T)/f‘(r)2=1im R(H) (1) =y + } xdN(x) ,

Q
(0 /) 740 740 (0 e)

from which the assertion in (ii) immediately follows.
(iii) From (5.4.19) it is seen that the LT of N exists on (0,«). We calcu-

late it from (5.4.16) with ¢ = ?, and obtain

- } e N(x)dx = f T f aN(y)dx =
(0,=) (0, ) (x,%)

-1 1

= T (1 —e_Ty)dN(y) = Tnl{ﬁ(T)w
(0, )

-1 - yt}

(iv) This follows immediately from (iii).

(v) The assertion is a consequence of the relations (5.4.14) and (5.4.18).

(vi) If H is the df in F_defined by (5.4.13), then according to corollary

5.4.7 we have F ¢ F' iff H ¢ F . Now, by lemma 1.6.4 it is seen that H ¢ F;

iff its Kowfunction KéH) satisfies

" (0) = 0 ana f L™ <o,
le] X fe]
(0,)

which in view of (5.4.17) is equivalent to the condition that vy = 0 and N

is bounded. O

REMARK 5.4.11. From the canonical representation (5.4.16) for F it is also
easily verified that if vy = 0 and N is bounded, then F is compound-gecmetric-

(p,G), with
(5.4.26) p = =N{0+)/{1-N(0+)} and G{(x) = 1 - N(x)/N(0+) (x> 0) .
The K _~-function of F can then be expressed in (y,N) as follows:

(5.4.27) K (o) = {N(x) - N(O+)}/{1 - N(O+)} (x > 0) .

Thus we see that a df F in Fw with 2(F) = 0 and for which vy > 0 or N is

unbounded, is necessarily continuous at zero, and hence is continuous every-
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where (cf. corollary 1.7.6). A further investigation of such distributions
is simplified by the existence of a functional equation in terms of y and N,

by means of which Foc can be characterized. In fact, rewriting (5.4.21) as

F(o){y + } 1 - N dax} = T L,

(0,)

and using the uniqueness theorem for LST's, we get the following result.

THEOREM 5.4.12. If F is a df on [0,»), then F ¢ Fw with 2(F) = 0 iff there
exist Yy 2 0 and a function N satisfying the conditions for N in theorem

5.4.8 such that

(5.4.28) x - YF(x) = } F(x -~ y){1 - N(y) }ay (x 2 0) .
(0,x]

The quantities vy and N are unique, and give the canonical representation

of F.

We can subdivide Fm in four subclasses, characterized by the following four
possibilities for the canonical representation (y,N): vy = 0 or vy > 0 and N
is bounded or not. The subclass F: = {F ¢ Fw with 2(F) = 0 I y = 0, N boun~
ded} is well known. Now, using theorem 5.4.12, we can completely analyze
the two classes of df's, for which vy > 0. To this end we state the follow-

ing theorem.

THEOREM 5.4.13., If F ¢ Fm, with &(F) = O, has a canonical representation
(y,N} with v > 0, then F is absolutely continuous and has a continuous den-—

sity £ which satisfies

(5.4.29) 1-~vyf(x) = ; f(x-y){1~N(y)Hdy (x > 0)
(0,x%)

Furthermore, this density f has the following properties:

(i) £(0+) = lim f(x) exists in (0,%), and it satisfies
%40
(5.4.30) £(04) = 1/y > £(x) (x > 0) ;
(ii) lim £(x) = 0;
Kroo 1
(iid) —f;(O) := lim ;{f(0+) - f(x)} exists in (0,~], and is given by

x40
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(5.4.31) ~£1(0) = {1 - N(O+) }/y2 (< @)

PROOF. Let F ¢ Fw with 2(F) = 0. Then F satisfies the functional equation
(5.4.28), the right-hand side of which can be written as (cf. (5.4.19))

{1 - N(z) }dzdF(y) = } {1 - N(u~y) }Jdudr(y) =
[0,x] (0,x~y] [0,x] (y,x]

= {1~ N{u~y) }aF(y)du .
(0,x1 [0,u)

It follows that
(5.4.32) YF(x) = } {1 ~w(u) }du (x 2 0) ,

(0,x]
where the function w is defined on (0,%) by
(5.4.33)  w(x) = } {1 ~N(x - y) }F(y) (x > 0) .

[0,x)

Now, suppose that y > 0. Then from (5.4.32) it is seen that F is absolutely

continuous; the function £, defined by
E(x) = {1 - w(x)}/y (x > 0) ,

is a density of F, and, because of (5.4.33), it satisfies (5.4.29). From

this relation we obtain, using the monotonicity of N,
(5.4.34) vyf(x) s 1 - {1 - N(x) }F(x) (x > 0) .

It follows that £(x) < 1/y for x > 0, and, if we let x -+ =, that (ii) holds.

Now we can estimate as follows:

0= } fx-y){l~N(y)}ldy < Y_l{x - } N(y)dy} .
(0,%) (0,x)

which, because of (5.4.19), tends to zero as x ¥ 0. From (5.4.29) it is now
seen that 1 - Yf(x) tends to zero as 'x ¥+ 0, and (i) is proved.

To prove the continuity of £, or, equivalently, of w, we use the following
well known property:

(5.4.35) [V } |£) [ay < =] = [V__, lim }{]f(x+h)~f(x)|dxzo],

x>0 0
(0,%7 _ 20 0/a]

Let x > 0 and h > 0, then for all xO < % we have
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lwix+h) - wix)| s [ |[f(x+h-y) - £(x-y) [{1-N(y)lay +
(0,x)

+ ] fx+h-y) {1 -N(y)ldy < 2\(”1 f {1 -N(y) }ay +
[x%,x+h) (O,XO)

+ M-N(xo)} f |f(z+h) - £(z) |az+ {1 -Nx)} f f(z)dz ,
(O,x-xO] (0,n]

which by (5.4.19) and (5.4.35) becomes arbitrarily small, if we choose X,
sufficiently small. Proceeding for h < 0 in a similar way, we conclude that
w, and hence £, is continuous.

Finally, we prove (iii); since N is nondecreasing, we can write for x > 0
{1 -N@) IF(x) < f F(x-y){1-N(y)}ay < {1 - N(O+) }F(x) (< ),
(0,x)
from which by use of

lim F(x)/x = £(0+)
x40

it follows that

1lim l«{f(o+) - f(x)} = y"l lim i{l - yf(x)} =
x40 * %40
-1 .1 2
=y lim — f flx-y) {1l ~N(y) }dy = {1 ~N(O+) }/y (g @) . [
x+0
(0,x%)

From (5.4.32) we immediately obtain a characterization of F; and of {FefF_

with &(F) = 0 | v = 0} by a functional equation.

COROLLARY 5.4.14, A pdf £ on (0,*) is the density of a df F ¢ F; with
2(F) = 0 1iff there exist y 2 0 and a function N satisfying the conditions

for N in theorem 5.4.8 such that (5.4.29) holds for almost all x > 0.

COROLLARY 5.4.15. If F is a df on [0,»), then F ¢ Fm with 2(F) = 0 and with
Y = 0 in its canonical representation (5.4.16) iff there exists a function

N satisfying the conditions for N in theorem 5.4.8 such that

(5.4.36) f {1 -N(x-y) FaF(y) = 1 (almost all x > 0) .
[0,x)
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The subdivision of Fm in four subclasses, mentioned just before theorem
5.4.13, can be characterized in terms of properties of the df's in Fm them-~
selves; this is easily verified from the preceding theorem and the follow-

ing lemma.

LEMMA 5.4.16, If a df F ¢ Fm, with £(F) = 0 and canonical representation
(y,N), is absolutely continuous and has a density £, for which £(0+) exists

in [0,»], then necessarily £(0+) ¢ (0,»], and

(i) £(0+) € (0,») iff y > 0, in which case £(0+) = 1/v;

(ii) £(0+) = o iff vy = 0, in which case N is unbounded.

PROOF, If a df F on [0,») has a density f, for which f(0+) exists in [0,=],
then, as is easily verified, £(0+) can be obtained as follows:
£(0+) = lim TF(1) .
>0
Now, if F € F; with 2(F) = 0, then in view of lemma 5.4.10(iv) it is seen
that £(0+) cannot be zero, and that £(0+) < « iff vy > 0, in which case
£(0+) = 1/y. Finally, if £(0+) = =, then y = 0 and hence N is unbounded, as

otherwise by lemma 5.4.10(vi) we would have F ¢ F:.

THEOREM 5.4.17. Let F be in Fw with 2(F) = 0 and canonical representation

(y,N) . Then the following four cases can be distinguished:

(1) Y = 0 and N is bounded iff F is compound geometric (F ¢ F:);

(i1) vy > 0 and N is bounded iff F is absolutely continuous and has a den-
sity £, for which £{(0+) and —f;(O) exist in (0,®);

(iii) v > 0 and Nisunbounded iff F is absolutely continuous and has a den-
sity £, for which £(0+) exists in (0,») and —fi(O) = oy

(iv) v = 0 and N is unbounded iff F is continuous and F is either not ab-
solutely continuous, or absolutely continuous such that no density of
F has a finite limit as x ¥ (.,

The following lemma provides a method to construct examples of distributions

in each of the four subclasses of Foo from given inf div distributions on

£O,).

LEMMA 5.4.18, If H ¢ Fo' then {1 - Log I':I(T)}_1 is the PLST F of a df F ¢ F

with &(F) = 0, and the canonical representation (y,N) of F satisfies
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(i) Yy > 0 iff 2(H) > O;
(ii) N is bounded iff H(R(H)) > O.

PROOF, The first part of the lemma follows from theorem 5.4.5. Further,
(H)

from corollary 5.4.9 and lemma 1.6.4 it is seen that y = KO (0) = 2(H) and
that N is bounded iff
Lax™ (x) <o,
X e}
(0, )
i.e. iff H(L(H)) > O. 0

Just as F: (cf. (5.4.1)), the subclass {F ¢ F_with &(F) =0 | y >0, N is
bounded} is dense in {F € F_ | 2(F) = 0} in the sense of weak convergence;
in fact, if F € FOo with 2(F) = 0 and canonical representation (y,N), then

by the monotone convergence theorem it is seen that F(r) = lim ﬁn(T), where
N>
Fn (n € IN) is defined as the df with PLST (5.4.16) with y and N replaced by

Y if y >0 N(x), if N bounded or x = 1/n
Y, o= ; Nn(x):=
i/n, if y =0 N(1/n), otherwise .
Furthermore, this subclass of Fm turns out to consist of convolutions of an
exponential distribution and a compound-geometric-(p,G) one, where G has the
same exponential distribution as a factor. We state this in the following
theorem, and note that distributions of this type also occur as first-pas-—

sage time distributions in Miller (1967).

THEOREM 5.4.19. If F is a df on [0,®), then F € F_ with &(F) = 0 and having
a canonical representation (y,N) with y > 0 and N bounded iff F has the
form

u 1-p

(5.4.37)  F(1) w+ Tl - plu/(p+n)ic(t) ’

where p > 0, 0 € p < 1 and G is a df on [0,®).

PROOF. Let the PLST F of a df F on [0,») have the form (5.4.16) with y > O
and N bounded. Then, defining

(5.4.38) p:={1-N(O+)}/y, p:==N(O+) /{1 -N(0O+H)}, G(x) :=1-N(x)/N(0+),

we see that F takes the form (5.4.37).
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Conversely, the Yy _-function of a df F with PLST given by (5.4.37) satisfies

ol s -p) e p/ (- F (1 =G T =

F(1) dt

fi

2|

v (1)

i

w-p 1t - e/t -p et (D),

which is comp mon. Hence by theorem 5.4.2 F € Fm with 2(F) = 0, and because
of corollaries 5.4.6 and 5.4.9 it follows that the canonical representation

is given by

(5.4.39) vy = {u(1-p)}7Y, N = ~{p/(1-p)}(1-G(x)) (x > 0) ,
so Yy > 0 and N is bounded. 0
EXAMPLE 5.4.20. In (5.4.37) take G(1) = ——— / —t— with 0 < v < yu; by

v + T u -+ T
example 5 on p. 153, this is indeed a PLST (in F:). Then it follows that

u v(l-mp) v ;
u+ T v(l-p) +r/v+r€Fw

However, we can prove a little more: if “1'“2 and u3 are all positive, then

-~ My 3 Mo P
R i < < .
(5.4.40) F(1) : TR / T —eF, @mln(ul,UB) w, max(ul,ll3)

First we note that by lemma 5.3.10 F is indeed a PLST iff uzzzmin(ul,u3).

Calculating then the wm~function of F, we get

-2
Vo (1) =1+ {1y =) () = u3) (W, + 1) '

. . . _ _ - . . < . _
which is comp mon iff (ul u2)(u2 u3) 2 0, i.e. iff uz_.max(ul,uB). Final
ly, we note that under these conditions F is, in fact, a mixture of two ex-
ponential PLST's:

My Hy

g ul(u3 - u2)

. -1
F(t) = {UZ(U3"U1)} {U3(U2'“u1)i“““~— + ;——;f;}
1 3

Hence (cf. lemma 1.6.10) F has a comp mon density and therefore belongs to

F;, as we shall see presently.

The subclass {F ¢ F_ with &(F) =0 | y = 0, N unbounded} of F_ is still
rather obscure. Apart from PLST's of the form {1 - lLog fi(r)}-1 with H € Fo
and %£(H) = H(&(H)) = 0 (cf. lemma 5.4.18), it contains all pdf's f ¢ F_,
for which £(0+) = « (cf. lemma 5.4.16(ii)). Beforegiving some examples, we

state an analogue of corollary 5.2.8.
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THEOREM 5.4.21. If F ¢ Fm with 2(F) = 0 and with canonical representation
(Y,N) such that vy = 0 and N is unbounded and absolutely continuous, then F

is absolutely continuous.

PROOF., If vy = 0 and N is absolutely continuous with density n, then from
(5.4.23) it is seen that the Ko—function of F is absolutely continuous with

density ko given by

ko(x) = f (x - y)n(x - y)dF(y) (x > 0) .
[0,x)

Now, by theorem 5.2.7 it follows that F(x) -~ F(0) is absolutely continuous.
If in addition N is unbounded, then necessarily F(0) = 0, and hence F is

absolutely continuous, with density f satisfying (cf. (5.2.19))

(5.4.41) xf(x) = [ 2 (x-y)yn(y)ay (x > 0) . 0
(0,x]

REMARK 5.4.22. Also from (5.4.23) it is seen that, contrary to the case of
a general inf div 4f in F; (cf. remark 5.2.9), the Ko—function of a df

F € F; with 2(F) = 0 is necessarily absolutely continuous. It follows that
corollary 5.2.8 gives necessary and sufficient conditions in terms of the
Ko—function for F € Fm to be absclutely continuous. However, such condi-

tions are not easily obtained in terms of the function N.

EXAMPLE 5.4.23.

(i) Consider the gamma distribution with parameters p > 0 and v > O:

uv v-1 ~ux u v
f(x) = TV X e )

Wt T

(x > 0), or F(1) = (

By (5.3.13) we know that if O < v < 1 then £ € F.. If v < 1 then £(0+) =,
and hence in that case: y = 0 and N unbounded. Indeed, the y_-function of £
is given by

1-v

v, u
u(u+T) ,

Y (1) =
and hence (cf. corollaries 5.4.6 and 5.4.9)

....\)
= S ) ~l-v_-uy
Y 0 and N(x) = 1=V j' y e dy (x > 0) .

(x,%)
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(ii) Take for H in lemma 5.4.18 a gamma distribution. Then it follows that
- -1
F(1) := {1 + v log(l + pT)} = € F; (v >0; p>0) .,

with y = 0 and N unbounded. Here, F is absolutely continuous, because N is:

the y_-function of F is given by
b (t) = pv/(L+p1) ,
and hence

-1
N(x) = -V / yﬂleﬁp ydy (x > 0) .

(x,)

(iii) Take 0 < a < 1, and consider the function N on (0,«), defined by

N(x) := (1 - x %) (%) (x > 0) .

L0,17

Then N is absolutely continuous and satisfies the conditions in theorem

5.4.8, so that

%, =a-1 -1

(5.4.42) F(1) := {1 + a j (1 ~-e Tx ax}
(0,17

¥
e F H

@

in the canonical representation (y,N) of F, vy = 0 and N is unbounded. The
PLST (5.4.42) occurs in Feller (1971), ch. XIII (problem section) as the
limiting PLST of the distribution of Sn/Mn’ where Sn o= X1 R Xn,
1,x2,... are independent rv's with common distri-
bution belonging to the domain of attraction of the stable distribution on

Moo= max{Xl,..a,Xn} and X
[0,») with exponent o.

After having studied the structure and basic properties of Fw, we turn to
analogues of some of the properties of Co’ mentioned in theorems 1.5.13 and
2.4.9, for Fm.

As noted at the end of section 1.6, Goldie (1967) and Steutel (1970) prove
that the classes D and E of comp mon and log-convex pdf's, respectively,

are subclasses of Fo' We now prove that they are subclasses of Fw, i.e.

(5.4.43) D cEc Foo .

THEOREM 5.4.24. If f is a log-convex pdf on (0,), then f ¢ F;.
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PROOF. Let F be a df on [0,») with a log-convex density £. Then for every

h > 0 there exists ch > 0 such that the sequence {pgh)}:, defined by
p™ = ¢ nE(h(2n+ 1) (nemw) ,
n h o
(h)

satisfies an = 1. As £ is a log-convex function, {péh)} is a log-convex
sequence, and hence (cf. theorem 1.5.13) satisfies the recurrence relations
(1.5.17) with nonnegative r_(0)'s. Now, consider {péh)} as a probability
distribution on the lattice {0,h,2h,...}. Then by (5.1.9) with a = 0 it fol-

lows that {péh)} € F: for all h > 0. Since furthermore

L] (h)
F(x) = lim ) hf(3(2n+1h) = lim ) bp

n (x =2 0) ,
h¥0 n=0 h¥0 nh<x .

and as Fw is closed under weak convergence (cf. theorem 5.3.1), we conclude

that ¥ e F_. J

COROLLARY 5.4.25. If f is a comp mon pdf on (0,%), then f ¢ F . Equivalent-
ly (cf. lemma 1.6.10), if G is a df on (0,®), then the PLST

. !
(5.4.44) f - dG(u) € Fw .
(0,)

Steutel (1970) proves the following implication:

- +
(5.4.45) F € D:Vpe(O,l) p+ (L-p)F(T) € Fo .

We can improve on this result as follows.

THEOREM 5.4.26., If ¥ ¢ Fm with 2(F) = 0 and if 0 < p < 1, then the PLST

p + (1-p)F(1) € F: .

PROOF. We calculate the 9 ~function of p + (1-p)§, and obtain

F(0), F(1)

_p+ (1-p)F(0)
F(r)'p + (L-p)F(1)

p+ (1-pF()

(5.4.46) ¢ (1) =1 (1-p){1-

Denoting the last factor in the right~hand side of (5.4.46) by ¢(t), we can
. -~ -1
write ¢(t) = {1 - log H(1)} ~, where according to corollary 5.4.6 and theo-

rem 1.4.4

H(1) := explp(l - ?(r)fl)]
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is the PLST of a df H in Fo' Now, by theorem 5.4.5 it follows that ¢ is the
PLST of a df in Fw. Hence ¢ is comp mon, and applying lemma 5.1.4(ii) once

in each direction, we conclude from (5.4.46) that p + (1 -p)F ¢ F:. O

COROLLARY 5.4.27. If G is a df on (0,»), and if O < p < 1, then the PLST

o
u o+ T

(5.4.47) p + (1-p) } aG(n) € Fr .

(0,=)

REMARK 5.4.28. Starting with continuous df's F in theorem 5.4.26, we cannoct
generate all compound geometric PLST's. In fact, in view of the result to
be given in corollary 5.4.30, it will be clear that for p ¢ (0,1) a PLST F
has the form 1~ p+pH(T), where H is a continuous df in Fm with 2(H) = 0,

iff F is compound-~geometric-(p,G) with G € Fw, 2(G) = 0.

The function ¢ from the proof of theorem 5.4.26 and the tot-dec(l) pgf's

in section 3.4 suggest another closure property of Fm.

THEOREM 5.4.29. Let F be a df on [0,»), and define for y > 0 the function
b
wu 4

(5.4.48) 1§ (1) := — — (t 2 0) .
= 1+F(1)
Then:
(i) wu is a PLST for all u e (0,1].
(ii) If wu is a PLST, then y, is a PLST for all A e (0,ul.
(iii) wp is a PLST for all w > 0 iff F ¢ F_ with 2(F) = 0, in which case
for all u > 0 the df F , with F = ¢ , is also in F_ with 2(F ) = 0.
u ! u o u

PROOF . Since wu can be written in the form

ot - (=)
VO s T Ry O (t 20),

it is seen that wu is a PLST for O < p £ 1. Using the relation

wu(T)

Flo =0y -, (0

we obtain the following relation between wk and wu:
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from which (ii) follows.

The "if" part of (iii) follows from the proof of theorem 5.4.26, where we
showed that if F ¢ F_ with &(F) = O then wu is a PLST ﬁu in F_ with %(FU)==O
for all u > 0.

Therefore, suppose that wu is a PLST %u for all u > O, Rewrite ?U as

1 1

- P - -
B o= {1 +u "[F(r) = - 11} (t 20 ,
and let y > 0. Then, taking un := n/y (n € N), we see that the PLST

{F (1)}" satisfies
Hp

1

ﬁY(T) := lim {?u (0" = exply(l - B(t)™ 57 .

s S 2] n
As ﬁY(O+) = 1, it follows by the continuity theorem for LST's that ﬁY is a
PLST for all y > 0, and hence ﬁ1 is an inf div PLST. From theorem 5.4.5 we
now conclude that F e F_ with 2(F) = 0. 0

COROLLARY 5.4.30. Let F be a df on [0,2), and let 0 < p < 1. Then F ¢ F_
with 2(F) = 0 iff the following PLST G is in Fm with 2(G) = O:
(5.4.49) &(1) i= —ePe B (1) (t 2 0)

U Tl -~ pF(T) -
Steutel (1970) has similar results for chf's. For instance, he gives an ana-
logue of theorem 5.4.29(i); furthermore, he obtains a result (stated in the

following theorem) that immediately yields also an analogue of theorem

5.4.29(iii) for chf's.

THEOREM 5.4.31. Let ¢ be a function onIR. Then the function wu, defined by

N
t) = e t €eR) ,
wu( ) uo+ P (t) (e ®
is a chf for all p > 0 iff Y(t) = ~ldg H(t) with H an inf div df on IR.

COROLLARY 5.4.32. Let F be a df on IR. Then the function wu, defined by

L R Y (t em) ,
K uo- 1+ F(O)

is a chf for all u > 0 iff F(t) = {1-1log A(t)}™' with H an inf div df on R.



173

The preceding theorems provide examples of distributions in Fm. We mention

a few of them.

EXAMPLE 5.4.33.

(i) Because of theorem 5.4.26 we have (cf. example 5, p. 153)

(0 < v <y .

(ii) Scale mixtures of gamma distributions with (fixed) second parameter
v € (0,1] can be regarded as mixtures of exponential distributions (cf.

Steutel (1970)); hence they are in F;. For instance

1-v
u v =2 _(1+71) -1 5
U+ o ow odn = (1-v)T e F,

(0 <v<1),
(1,%)

and hence (take v = %, and apply theorems 5.4.29(iii) and 5.4.26)

(5.4.50) p + (1-p)~—r—+—@—-——% e F

r + (1+71)

(0<p<l;r>-1) .

o0

(iii) The density fr of Xr, where X has a gamma distribution with parameters

# >0 and v > 0, satisfies

Y
u v/x~1 ~
T X exp[ ~ux

1/x

(5.4.51) £ (x) = JeF. (u>0;v>0; r2max(1,v)) ,

as it is log-convex iff r 2 max(1,v).

In the next theorem we state a property of Fm that can be viewed as an ana-

logue of the following closure property of Fo (cf. theorem 1.4.9):
(5.4.52) [Ge F, HeFJ=G(-log #(1)) is a PLST in F_ .

Here, the inf div of H ensures the function G(—log fA(t)) to be a PLST.

THEOREM 5.4.34. If G € Fm with 2(G) = 0, and if H ¢ Fo' then the function

(5.4.53) G(~log H(T)) = / (1) ¥ac(x) (t = 0)
[0,

is a PLST in Fm with left extremity equal to zero.
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PROOF., As H € Fo' the function é(—log H(t)) is a PLST. Its ww—function is

given by
a - . -1
p_(1) = EE{G(_lOg H(T))} ~ =
- - -2 (H) .4 = ~
= ~{G(-log H(1) } "o, " (1) gz G(O) o=-log H(1)

o (119l (109 E(x)) .

The @O—function méﬁ) of H is comp mon, as H € Fo. Since G ¢ Fw with 2(G) =0,

its ww~function wiG) is comp mon (cf. theorem 5.4.2), and as -log (1) is
nonnegative and has a comp mon derivative, we conclude from lemma 1.3.8(vi)
that w;G)(—log H(t)) is comp mon. It follows that Y, is comp mon, and the

theorem is proved. J

In view of theorem 5.4.5 and corollary 5.4.6, (5.4.52) and theorem 5.4.34

can be reformulated as follows.

COROLLARY 5.4.35.
P | . .
(i) If G € Fo and if H ¢ Fw with L(H) = 0, then G(H(t) ~~1) is a PLST in
F .
o PR -1
(ii) If G € F_ with £(G) = 0, and if H € F_with &(H) = 0, then G(H(T) "-1)
is a PLST in Fw.

REMARK 5.4.36. If G is the df corresponding to a lattice distribution with
pgf P and P(0) > O, then in (5.4.52) and theorem 5.4.34 it is not necessa-
ry to require the inf div of H; in fact, for all df's H on [0,«)

(5.4.54) G(-log H(1)) = P(H(1))

is the PLST of a compound distribution, and hence is in FZ or F: according
as P ¢ C1 or P ¢ Co (¢f. lemma 1.4.14). Further, in view of (5.4.54), also
for a non~-lattice df G on [0,»), but with an inf div df H, é(-log g(t))
could be called the chf of a compound distribution. Since every F e F_ with
2(F) = 0 can be written in the form é(—log ﬁ(r)) with G(1) = (1-4-1:)"l (cf.
theorem 5.4.5), it then follows that the distributions in Fw with left ex-
tremity equal to zero can be regarded as "compound exponential" distribu-
tions on [0,®). Similarly, the chf's wu, considered in theorem 5.4.31, cor-

respond to "compound exponential"” distributions on IR.
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To conclude this section, we return to functional egquations. For A < « the

FA'S have been defined by means of the equation

(5.4.55) } cl{y;A)dF(y) = f F(X“Y)dK)‘(Y) (x > 0) ,
[O:X] [O,X]

with a nondecreasing function K,. Letting A - =, we get (cf. theorem 1.6.7)

A
+
the characterization of the class F_ by

(5.4.56) F(x) - F(0) = F(x-y)dK_(y) (x > 0) ,
[0,x1

with a nondecreasing function K_.
Now, we want to know how from (5.4.55) or (5.4.56) the functional equation
can be derived, by means of which Fm has been characterized (c¢f. theorem

5.4.12):

(5.4.57) =-yF(x) = ; F(X"y){l'-N(y)}dy (x » 0) ,
(0,x]

where vy 2 0 and N is a nondecreasing function with N(«) = 0 and

f xdN(x) < o,
(0,1) .
First, let us consider the case that F ¢ Fm. Then vy = 0 and N is bounded,

and from remark 5.4.11 it is seen that
(5.4.58) 1-XK_(x) = F(0O){1 ~ N(x)} (x > 0) .
Rewriting (5.4.56) as
F(0) = F(x) - } F(x - y)dK_(y) (x>0 ,
[0,x]
and integrating this equation over [0,z], we get
F(0)z = -; Flz - y) {1 ~ K _(y)}ay (z >0) ,
[0,z]

which by (5.4.58) is equivalent to (5.4.57) with Y = 0.
When considering a general F € Fm, we need the first relation in the follo-

wing lemma.

LEMMA 5.4.37. Let F ¢ Fm with 2(F) = 0. Then the following relations hold

between the canonical representation (y,N) and the kafunctions of F:
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(5.4.59) 1lim e f {1 -~ c”lx (y)ldy = v + ‘f {1 -~ N(y) }ay ,
s F(A) AT
[O,X] (le]
(5.4.60) lim L ydK, (y) = v + f yaN(y) ,
Yoo F(X) A
[o,x] (0,x]

1 - N(x) .

il

. -1
(5.4.61) 1lim :——7{1 - o KA(X)}

A0

PROOF. In view of (5.4.1) and (5.4.21) we have the following relation:

1 -1 -1
500 © {1 ~ N

(5.4.62) 1lim

R0} =y + ¢ T - N(x) Jax
A0

(0, )
from which by the continuity theorem for LST's (cf. Feller (1971), ch. XIII)
(5.4.59) follows.

By the canonical representation (5.4.16) for F we can rewrite (5.4.4) in

the form

(5.4.63) lim - %?»ﬁx(r)/ﬁ(x) =y + " Fxan(x) .
)\,
’°° (0,%)
Applying the continuity theorem once more, we get (5.4.60).

Finally, rewriting the integrals in (5.4.59) as

-1 -1 1
{1 ~ , Kk(y)}dy = x{1 - N KA(X)} + ooy / ydKA(y)

[0,x] [0,x]
and (cf. (5.4.24))
{1 - nN(y)lay = x{1 - N(x)} + } vaN(y)
(0,x] (0,x]

respectively, and using (5.4.59) and (5.4.60), we obtain (5.4.61). g

Now, we are ready to derive (5.4.57) from (5.4.55). Rewrite (5.4.55) as

/ e_xde(y) = F(x) - cil f F(x -~ y)dKA(y) ;

[o,x] £0,x]
then, integrating this equation over [0,z], we get

(z - y)e_xde(y)«= / F(z - y){1 = cleh(y)}dy .
[0,2] [0,2]



177

or, dividing by F(\) and rewriting the left-hand side,

zZ - rj;w{z / enxde(y) + / ye_Ade(y)} =

F(A)
(z,%) [0,z]
(5.4.64) -1
1 - N Kk(y)
= F(Z“y)*——*ﬂﬂj\-}“‘w dy .
[0,z]

Letting A » ®, and using (5.4.59) and the fact that the absolute value of
the second term in the left-hand side of (5.4.64) is less than —ﬁ'(%)/ﬁ(k),
and hence tends to zero (cf. lemma 5.1.6), we get the functional equation

(5.4.57) .

5.5. The class F_ 4in nekation to standard p-functions

The relation between Co and the class RO of renewal sequences (cf. section
4.1) suggests the existence of relations between Fw and the classes of p-
functions and renewal densities, both of which can be considered as conti-
nuous analogues of Ro"

Let us first give the definition and some properties of p-functions; they

can be found in Kingman (1972).

DEFINITION 5.5.1. A function p on (0,®) is said to be a p-function if there

exists a {0,1}-valued stochastic process {Z(t)}t> (called a regenerative

0
phenomenon) such that

n
(5.5.1) P(z(tl) =...=Z(tn) = 1) zkzl p(tkwtk_l) (O=tO<t1 <...< tn; nelN) .

In a similar way one can define a discrete-time regenerative phenomenon

{Z(n)}ndN . The sequence {un}z that then replaces the function p in (5.5.1),
o

can be shown to be a renewal sequence, and conversely.

From (5.5.1) it follows that a p-function p satisfies:
(5.5.2)  p(t) = P(Z(t) = 1) (t >0 ,

and hence

(5.5.3) 0= p(t) =1 (t > 0) .

p-functions satisfy many other inequalities; in fact, they can be charac-

terized as follows (cf. the definition of renewal sequences).
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THEOREM 5.5.2. A function p on (0,») is a p-function iff p satisfies

n
F(ty ... t i) 20, kzl L G

for all n e W and O < t1 <...< tn, where

Ftys---st ip) = p(E) = Y p(t)p(t ~ty) +

n
n-1
+ ) ) pltoplt,-t)plt -t —...+ (1) ‘p(t) I plg-t ).
15i<j<n i 3 i n 3 1 k=2 tk tk 1

COROLLARY 5.5.3. If p is a p-function, then

(5.5.4) p(s)p(t) £ p(s+t) < p(s)p(t) + 1-p(s) (s,t > 0) .
The following two properties are of special interest.

THEOREM 5.5.4. If Py and p, are p~functions, then so is the function p, de-

fined by
p(t) == pl(t)pz(t) (t > 0) .
THEOREM 5.5.5. If p is a p~function, if h > 0, and if un(h) := p(nh) (nelN),
u {(h) := 1, then
o)
{Un(h) }O € RO 2
in which case {un(h)} is associated with fn(h) := F(h,2h,...,nh;p) .

We shall connect F_ with the class P of standard p-functions, i.e. p-func-
tions p with the property
(5.5.5) lim p(t) =1

t+0
The class Ro of renewal sequences coincides with the class of diagonal tran-
sition probabilities corresponding to any state in any (discrete-time) Mar-

kov chain (cf. theorem 4.1.6(i)). There exists only a partial analogue of

this result for P.

THEOREM 5.5.6. If {X(t)}t\o is a standard, continuous-time Markov chain on

the countable state space S, if a ¢ S, and if



(5.5.6) p(t) := P(X(t) = a | X(0) = a) (t >0 ,

then p € P.

The following theorem shows what functions can arise as LT's of standard

p—-functions.

THEOREM 5.5.7. A function ¢ on (0,®) is the LT of a function p ¢ P iff

there exists a measure v on (0,%] satisfying

(5.5.7) [ (1 - e ®)v(@x) <,
(0,=]
such that ¢ has the form
(5.5.8) o(t) = {1 + f (1 - ™y yax) 1t (t > 0)
(0,1

(v, which is unique, is called the canonical measure of p ¢ P).

Before giving the relation between Fw and P, we state some simple, but use-

ful properties of P. Let p ¢ P with canonical measure v. Then from the in-

equality (5.5.4) it can be shown (put p(0) = 1) that p is positive and uni-
formly continuous on [0,x), and that p(®) := lim p(t) exists in [0,1],
o
—p;(O) := lim {1 -p(t)}/t in [0,*] and & := lim {~-log p(t)}/t in [0,=),
t+0 teroo

while furthermore

(5.5.9) pl=) = {1 + [ 2 (d@x) 1, -pl(0) = v((0,=])

(0,=]

and
(5.5.10) exp[p;(O)t] < p(t) < expl-2t] (t > 0)
Finally, from (5.5.8) it follows that [ p(t)dt < » iff v({=}) > 0, in
which case (0,
(5.5.11) f p(t)dt = v({=h

(0,=)
THEOREM 5.5.8.
(i) Let F ¢ Fm with £(F) = 0, and let y > 0 in the canonical representa-

tion (y,N) of F (cf. (5.4.16)). Then F has a continuous density f,
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for which f(0+) exists in (0,«), and
p(x) := £(x)/£(0+) € P .
(ii) Let p € P with canonical measure v, and let v({~}) > 0. Then
£(x) = v({=hp(x) ¢ F. .

(iii) Let p € P, and let a > 0. Then

£(x) = e Tp(x)/Bla) € F .

PROOF. One easily obtains parts (i) and (ii) by using theorem 5.4.13 and
(5.5.11), and by comparing the canonical representations (5.4.16) for F.

and (5.5.8) for P, Here the following relation holds between (y,N) and v:
(5.5.12) yv(dx) = dAN(x) on (0,®), yv({=}) =1 .

To prove part (iii), we define m(x) := e™¥¥p(x) (x 2 0). Then in view of
theorem 5.5.4 we have m € P. Since by (5.5.11) the canonical measure of T

has mass 1’5(51)"1 > 0 at », we can apply part (ii), and (iii) follows. ]

By means of theorem 5.5.8 it is possible to obtain properties of the class
{FrekF, l L(F) =0, y > 0} from those of P (and conversely), and one could
try to extend these properties to the whole class F;, or, if the property
considered can be transfered to df's, to Fm" However, we shall restrict
ourselves to the following interesting analogue of theorem 5.5.4 for Fm
(see also Hawkes (1977), who gives a similar result for potential kernels

(cf. the end of the present section)).

THEOREM 5.5.9. Let f be the continuous density of a df F € Fm with 2(F) =0
and y > 0 (i.e. £(0+) € (0,)) in its canonical representation (y,N) (cf.
theorem 5.4.13), and let G € Fm with 2(G) = 0. Then there exists ¢ > 0 such
that the function

(5.5.13) H(x) := c [ £(y)aGly) (x> 0)
fo,x]

is a af in F_with &(H) = 0.

PROOF. First we note that by the boundedness of £ (cf. (5.4.30)) (5.5.13)
defines a df H for a suitably chosen ¢ > 0. By the remark, following lemma

5.4.18, there exist df's Gn (n € IN) in Fm with l(Gn) = 0 and with vy > 0 in
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their canonical representation such that G is the weak limit of the sequence
{Gn}. Since f is continuous and bounded, it follows by the extended version

of Helly's second theorem that

(5.5.14) A(1) = lim c [ e“Txf(x)dGn(x) ;

72 [0,

By theorem 5.5.8(i)}, each of the df's Gn has a continuous density 9, for
which gn(x)/gn(0+) ¢ P. Applying theorem 5.5.4, we see that also
f(x)gn(x)/{f(0+)gn(0+)} ¢ P, and hence (cf. theorem 5.5.8(ii)) f(x)gn(x) is,
save for norming, a density in F;. By (5.5.14) it now follows that H is the
weak limit of a sequence of df's in F;, and hence (cf. theorem 5.3.1)

H € Fm. 0

REMARK 5.5,10. If £ is the density of a df F ¢ F;, for which £f{0+) = o,
then the integral in (5.5.13) is not necessarily convergent for every df
G € Fw with 2(G) = 0: take, for instance, a gamma df with second parameter

v = % for both F and G.

The renewal sequences have a second continuous analogue, the renewal densi-
ties. This will be apparent from theorem 4.1.5 and the following definition
and properties of (pure) renewal functions (cf. Smith (1958)).

Let Tl,Tz,e.a be nonnegative, independent rv's with common df F. Then the

oo
sequence {Sn}l' defined by
n
S_ = )] T (nemw ,

is called the renewal process associated with F. The renewal function U as-—

sociated with F, is defined by
- i = <
U(x) ENx' with I\IX = # ({n em Sn x}) .
Both {Sn} and U are called persistent if F is proper, and transient if F is

defective. The renewal function U is 'the solution of the renewal equation

associated with F:

(5.5.15) U(x) = F(x) + U(x ~y)dF(y) (x e R) ,
[0,x]

and U satisfies
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(5.5.16) U(x) = | F (x) (x € R)

1f F has a density £, then U has a density u, the renewal demnsity, which

satisfies

(5.5.17) u(x) = £(x) + u(x - y)f(y)dy (almost all x € IR)
[o,x]

First, let us consider a transient renewal function U. It is associated with
pF, for p € (0,1) and F a proper df on [0,®). By (5.5.15) it follows that
the LST U of U satisfies

o(r) = PR __
(5.5.18) U(1) T-pb(0) *

from which, using corollary 5.4.30, we obtain the following relation with

F .

THEQOREM 5.5.11. Let U be a transient renewal function, associated with p¥F

(0 < p < 1). Then:

(1) H(1) = (1 —p)p"lﬁ(r) is a PLST in F_ with g(H) = 0 iff F ¢ F_ with
L(F) = O;

(ii) (1-p){l + 0(x)} is a PLST in F..

Next, let us consider the persistent case. Then we have the following rela-
tions for a renewal function associated with F:

U (1)

(5.5.19) O(1) 1+ 0(n)

and F(1) = (t > 0) .

Daley (1965) characterizes the renewal functions U for which pU is again a
renewal function for all p > 0. His result is not only most easily formula-
ted by means of the class Fw, but it also immediately follows from theorem
5.4.29; one need only observe that if U is the renewal function associated
with F and if WU is a renewal functign, then (cf. (5.5.19)) uU is associat-

ed with FU' given by

(5.5.20) F (1) = ——te (t 2 0)
H -1+ F(1)

This proves Daley's result, which we formulate as follows.
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THEOREM 5.5.12. Let U be a (persistent) renewal function, associated with

F. Then:

(i) WU is a renewal function for all p ¢ (0,11;

(ii) MU is a renewal function for all u > 0 iff F ¢ Fw with L(F) = 0, in
which case the df Fu that uU is aésociated with, is also in Fm with

) = 0.
(FM) Q

Some authors (e.g. Feller (1971)) put So = 0 and count this as a renewal

epoch, i.e. they consider 1 )(x) + U(x) in stead of U(x). In connection

[0,
with this, Runnenburg (1965) notes that for most purposes it is sufficient
to consider only renewal functions associated with a compound geometric Af
on [0,®). In fact, he gives the following rather remarkable result (cf.

theorem 5.5.11(ii)), which is easily verified.

LEMMA 5.5.13. If U is the renewal function associated with the df ¥, then

the function

(5.5.21) v(x) := 1[0’m)(x) + U(x) (x € R)

is a renewal function associated with a df G ¢ F:, given by

(5.5.22) &(1) = {2 - F(n)}? (t 2 0) .
In view of theorem 5.5.12 this lemma can be generalized as follows.

THEOREM 5.5.14. If U is the renewal function associated with the df F, then
for all p > 0 the function

Vu(x) r= i (x) + U(x)} (x e R)

Y0,

. N . . . . +
is a renewal function associated with a df in Fm.

If F ¢ Fw has canonical representation (y,N), then by (5.5.19) the renewal

function U, associated with F, satisfies

(5.5.23) T(t) = {yr + / (1 - " Fyan) 1! (t > 0) .
(0,)

If vy > 0, then by theorem 5.5.7 and (5.5.11) it follows that U has a conti-
nuous renewal density u, for which p(x) := yu(x) is a standard p-function

with f p(x)dx = <, Obviously, the converse is also true, i.e. (cf. theo-
(O’CG)
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rem 5.5.12) we have the following relation between renewal densities and
p-functions (see also Daley (1965) and Kingman (1972)), which, by theorem

5.5.8(iii), also yields a relation between renewal densities and F;.

THEOREM 5.5.15. Let u be a continuous function on [0,») with u(0) = 1. Then
Mu is a (persistent) renewal density for all u > 0 iff u ¢ P and

’{ u(x)dx = o,
(0, =)

Recently, Forst (1978) proved Daley's result by making use of the fact that
a nondecreasing function U, vanishing on (-«,0), is a persistent renewal

function iff the measure u, with 4af 1 (x) + U(x) (x eR), is a potential

[O,=)
kernel on [0,») with infinite mass. Here, a potential kernel on [0,») is a

measure U of the form

(5.5.24) u = utdt '
(0,)

where (ut)t>O

measures on [0,») (see e.g. Berg & Forst (1975)).

is a convelution semigroup of possibly defective probability

The potential kernels are intimately connected with the class Fw. This is
apparent from the canonical representations. In terms of LST's, (5.5.24)

can be rewritten as

(5.5.25) {i(1) = / {pﬁ(T)}tdt = {~log p ~ log ﬁ(r)}m1 ,
(0,)

where O < p £ 1 and H ¢ Fo' Note that for p < 1 we have, save for norming,
a special case of theorem 5.4.34: take for G in (5.4.53) an exponential df.
Using for H the representation (y,N) from theorem 1.7.1, we obtain from

(5.5.25) the canonical representation for the LST {I of a potential kernel y:

(5.5.26) (1) = {B + yt1 + (1 - e a1t (r > 0) ,
(G )

where B 2 0, v 2 0 and N is a nondecreasing function on (0,®) with N(®) =0

and j" xdN(x) < « (not simultaneously B =0, v = 0, N = 0). In fact,
(0,1)
(5.5.26) reduces to the canonical representations (5.4.16) for Fw and

(5.5.8) for P, if we take B = 1 and y = 1, respectively. Furthermore, if U
is the renewal function associated with pF, where 0 < p £ 1 and F is a

(proper) df on [0,), then, cbviously, the LST
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1+ O(t) = {1 - pﬁ(r)}—l (t > 0)

is of the form (5.5.26) with vy = 0 and N bounded. Thus, properties of Fm,
P and renewal functions can be obtained from known properties of potential
kernels (cf. Berg & Forst (1978)).

Finally, we note that the potential kernels correspond with more general
renewal functions. The continuous-time analogue of the renewal process
{SH}T (cf. p. 181), regarded as a discrete-time process, is an increasing

process {St}t>0 that is inf div, i.e.

=TS
ge © = {pF(0)}" (t 2 0) ,
where 0 < p £ 1 and F ¢ FO. Now, the analogue of the renewal function U is

the function V, defined by (A is the Lebesgue measure)

v(x) :=Ex({t > 0 | S, = x}) = / ptF*t(x)dt .
(0,%)

which shows that the potential kernels, considered by e.g. Hawkes (1977},
are identical to those defined in (5.5.24) or (5.5.25).

5.6. Other classdifications

In section 2.5 we introduced the classes Cg of compound negative-bincmial
lattice distributions with parameter u > 0. They define a classification

of Cl' and can be characterized as follows:

1
P e Cg @ P /a is a pgf in CO .

Now, for the sake of completeness, we briefly consider the analogous clas-

ses Fi of distributions on [0,=).

DEFINITION 5.6.1. For u > 0 a df F on [0,») is said to be in the class Fz

..ozl .
if F /a is a PLST in Fw.

'

If F is a df on [0,%), if y > 0 and if ' is a PLST (of F''), then the 0,
*
function of F ' is equal to that of F, multiplied by y. Hence, by lemma

5.1.6 we have in this case

(5.6.1)  2(EY) = vya(F) .

Now, by theorem 5.4.5 it follows that a PLST F in Fz with 2(F) = 0 has the
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canonical form
(5.6.2) F(1) = {1 - log (1)} " (t 2 0) ,

with H € Fo' Thus, the df's F in Fz with 2(F) = 0 can be regarded as "com-
pound gamma' df's (cf. remark 5.4.36).

Since F: is the class of compound geometric distributions on [0,®), the
class (F:f'of df's F in Fi with F(0) > O coincides with the class of com-
pound negative-binomial distributions on [0,®) with parameter u (cf. theorem
1.6.6) . Also, F: is dense in {F ¢ F_ | L(F) = 0} in the sense of weak con-
vergence (cf. (5.4.1)), and this result, together with (5.6.1), immediately

yields the following characterization of Fi (cf. theorem 1.4.15).

THEOREM 5.6.2. For u > 0 a df F, with 2(F) = 0, is in FZ iff F is the weak
limit of compound negative-binomial df's with parameter u, i.e. iff F has
the form

t-p

(5.6.3)  F(1) = lim {7 L

where 0 < p, < 1 and G, is a df on [0,°) (n elN).

The family (Fi l u > 0) defines a classification of FO: similar to the
proof of theorem 2.5.3 it can be shown that

(5.6.4) u<ve=FrcFY
[es) [ee]

Furthermore, U Fi is dense in Fo; in fact, if F ¢ Fo’ then F is the weak
u>0

limit of the sequence of df's Fn, defined by

n R

= Tog F(1) =0

(5.6.5) B (1) := {
n

which (cf. (5.6.2)) is a PLST in F. (n e ).

Another interpolation between F_ and Fo is suggested by the relation (5.4.2)
between the y_ -function and the mo—function of a df F on [0,®): we briefly

indicate the analogues to the classes HY (y 2 0) from definition 2.5.7.

DEFINITION 5.6.3. For v 2 0 a df F on [0,») is said to be in the class LY

if the function
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(5.6.6) -F' (1) /BT (t > 0)

is comp mon.

Obviously, Lo = Fo and L1 = {F ¢ Fm i L(F) = 0} (cf. theorem 5.4.2). Now,
let v > 0 and let F ¢ LY. Then the function in (5.6.6) has a finite limit

c, say, as T » « , and therefore by lemma 5.1.6 it follows that

L(F) = lim -F'(1)/F(1) = cF(0)' ,

T-re0
and hence
(5.6.7) F e LY = L(F) =0 (y > 0) .
Furthermore, if F € LY, then ﬁ_Y has a comp mon derivative; hence by lemma
1.3.8(vi) B = {ﬁ—y}—l is a PLST, and its §_~function is comp mon. Now it

easily follows that

v

(5.6.8) F ¢ LY @ F' is a PLST in Ly s

which by (5.6.7) can be reformulated as follows.

THEOREM 5.6.4. For vy > 0 the following relation holds:

Lo=treR/T 2w =o0.

Thus, for df's F on [0,») with 2(F) = 0 the family (LY I y > 0) defines the

same classification of FO as (Fz | u>o0).

5.7. Fuithen generalizations

In analogy to the investigations in chapter 3 we could consider tot dec,
tot fact and tot-dec(l) PLST's. We only mention the following analogue of
theorem 3.2.4, and note that the analogue of theorem 3.4.5 has already been

given in theorem 5.4.29(iii). !

THEOREM 5.7.1. A df F on [0,®) is inf div iff for all A > 0, or, equivalent-
ly, for all X € (0,e) (some £ » 0), there exists a df FA on [0,®) such that
F can be written as

_F(t+N) -

F(T) 00 FA(T) (t 2 0) .
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Inchapter 4 we studied extensions of the Ca's, the classes Ra of generalized
renewal sequences. Similarly, one could consider the functional equations
(5.1.7) for nondecreasing functions F that are not necessarily df's. This
would give rise to classes of generalized p-functions, renewal functions

and potential kernels.

In view of a further generalization one might ask to what extent the results
of this monograph can be extended to distributions on the whole real line.
Trying to extend the classification of Fo by the FA'S to dffs on R, one en-
counters the difficulty that the PLST F(t+ X)) /F()), which plays an essential
role for FX' has no obvious analogue for general df’s; E(t-kk)/f(k) is, in
general, not a chf for A > 0. Also, no functional equations are known that
characterize the class of all inf div df's on IR.

Another possibility is writing an inf div chf F as a function of chf's of
df's on [0,»), and then requiring that these df's are in FA“ Of course,

every chf ¥ can be written as

(5.7.1)  F(t) = (1 - p)ﬁl(t) + pEZ(-t) (t e®) ,

where 0 £ p £ 1, and Fl and F2 are df's on [0,x). However, if Fl and F2 are
in Fo' then F is not necessarily inf div.

The following decomposition gives a better result.

DEFINITION 5.7.2. For O £ A £ ©» a df F onIR is said to be in the class GX

if there exist df's F1 and F2 in FA such that

(5.7.2) F(t) = ﬁl(t)ﬁz(—t) (t € R)

Obviously, we have the desired monotonicity property:

GAcGuifOsus)\s«:,

but Go does not coincide with the class of all inf div df's on R; in fact,
by theorem 1.7.11 it is seen that an'inf div df F is in Go iff its Lévy re-

. 2
presentation (a,o” ,M) satisfies

(5.7.3) o° =0, f |xam(x) < o .

(-1, 1)\{0}

Therefore, for 0 £ ) £ ® we introduce the classes GA of df's that are weak

limits of df's in GA' Now, observing that the compound Poisson df's on IR
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are in GO (cf. theorem 1.7.13 and (5.7.3)), we conclude from De Finetti's
theorem (theorem 1.4.15) that @O is the class of qll inf div df's on IR. As

obviously

G)\ccuif0$us)\sm,

the family (GA | 0 £ A £ ») defines a classification of the inf div df's on
IR. Unfortunately, this does not lead to a characterization of GA by a sin-
gle functional equation.

We note that the classification of Fo given by (Fi { u > 0) (cf. section 6),

is easily extended to general df'‘s on IR: consider chf's F of the form

F(t) = {1 - log H(£)}'% (£ em) ,

with H an inf div df onIR.

Finally, we consider the multivariate case. Generalizing the functional
equations by means of which Horn & Steutel (1978) characterize the distri~-
butions of nonnegative multivariate inf div random vectors, we can obtain

a classification of these distributions analogous to that of FO by the F)“s.

We illustrate this by giving this characterization for distributions on lN(z).

THEOREM 5.7.3. Let {pk 9’} be a probability distribution on 'JNi with Py o 0.
[ ¥y

Then there exists a unique solution {ak SL} with a o = 0 of the following
1 7
system of recurrence relations:

)
(et 1)py gy = iZO jZO (L+Da, o gy

(5.7.4) - (k,2 e ) .
et _ .
+liey 04 iZO jZO G+Da; §11Pei, -

Furthermore, {pk ﬁ} is inf div iff ak 2 2 0 for all k,% € ]NO, in which case
1 7

kE,:JL T e

Now, we can replace thefactorsk+1 and 2+1 in (5.7.4) by

(1—0Lk+1)/(1-0(.) and (1—(124_1)/(1—&) ’
or by
(1—ak+1)/(1—-0t) and (1—B£+1)/(1~B) P

respectively, to obtain classifications of the inf div distributions on ]Nz.
o
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