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PREFACE 

Each year the WISKUNDIG GENOOTSCHAP, founded in Amsterdam in 1778, organizes 

a mathematical congress to stimulate research in mathematics and provide 

opportunities for personal contacts among Dutch mathematicians. On the oc

casion of the bicentennial celebration of the WISKUNDIG GENOOTSCHAP the 

14th Dutch Mathematical Congress, to be held in Amsterdam in 1978, was to 

have a special festive character. 

To achieve this goal it was decided by the organizing committee to have the 

major fields of mathematics currently practised in the Netherlands repre

sented by invited speakers. As a consequence of this decision much greater 

emphasis was given to invited papers than is customary at Dutch Mathematical 

Congresses. Moreover, the third BROUWER Memorial Lecture, to be delivered 

by A. BOREL, was also incorporated in the congress. Together with the fes

tive address of H. FREUDENTHAL, president of the WISKUNDIG GENOOTSCHAP at 

this time, these lectures were judged to be of sufficient interest to be 

published in the form of Proceedings. 

In approaching speakers the program committee had to take into account that 

some prominent Dutch mathematicians were already overburdened by the orga

nization of the bicentennial celebration and that others had recently acted 

as invited speakers at one of the last two Dutch Mathematical Congresses. 

Nevertheless, the invited papers represent a comprehensive cross section of 

contemporary pure and applied mathematics. The committee is pleased to note 

the important contributions of several speakers from abroad; without their 

papers a broad coverage of many domains of mathematics would have been far 

more difficult. 

At the bicentennial congress the participants received a preliminary edition 

of these Proceedings. That edition was incomplete, e.g. the Presidential 

address and the BROUWER Memorial Lecture were missing (for obvious reasons). 

Also, some of the lecturers received their invitation rather late, and could 

not meet the dead-line for the preliminary publication. Some of the papers 

absent in the preliminary publication of these Proceedings are also publish

ed in the "NIEUvl ARCHIEF VOOR WISKUNDE", the journal of the WISKUNDIG GENOOT

SCHAP. 

One very much appreciated lecture remains unwritten: B.L. van der WAERDEN's 

plenary talk on "Algebraic geometry in Holland between 1918 and 1928; remi

niscences from my student's days". It was understood from the outset that 

this lecture would not be represented by a paper; the editors are happy, 
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however, that the lecturer himself does find a (pictorial) representation in 

these Proceedings. 

The publication of these Proceedings would not have been possible without 

the invaluable assistance of Mrs. S.J. Kuipers-Hoekstra. In this computer 

,age we have become used to external memories: Mrs. Kuipers, in addition to 

being a living sample of this concept, also embodies the concept of an exter- · 

nal conscience. Always cheerful, she managed to keep both authors and organi

zers at their tasks. 

A tremendous lot of work for the bicentennial celebration of the WISKUNDIG 

GENOOTSCHAP was done by the Reproduction and Publishing service of the Math

ematical Centre (apart from these Proceedings, several other publications 

had to be taken care of, all with the same dead-linef .. The editors thank 

Mr. D. Zwarst and Mrs. R.W.T. Riechelmann-Huis and all their staff for the 

work they did to get these Proceedings typed and printed, meticulously and 

well within the time schedule. 

P.C. BAAYEN 

D. van DULST 

J. OOSTERHOFF 
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ORGANIZATION OF THE CONGRESS 

The Bicentennial Congress of the WISKUNDIG GENOOTSCHAP was organized jointly 

by the Mathematical Institute of the Free University, the Mathematical Insti-

,tute of the University of Amsterdam and the Mathematical Centre. These three 

Institutes together appointed the Organizing Committee whose members were: 

P.C. Baayen (Chairman), H. Bart, Tj. Blanksma, J.M. Buhrman, D. van Dulst, 

W.T. van Est, mrs. S.J. Kuipers-Hoekstra (secretary), J. Nuis, J. Oosterhoff, 

E. Slagt (Deputy Chairman), G.L. Wanrooij. 

The congress was held in the main building of the Free University, at 29, 

30 and 31 March, 1978. 

At the occasion of the congress and the Bicentennial Celebration two exposi

tions on the history and the cultural significance of mathematics were orga

nized by a committee consisting of: F. van der Blij (Chairman), 

B.R.T. Arnold, F. Cohen, J. van de Craats, S.B. Engelsman, Mrs. M. Fournier, 

R. Frederik, K.W. Gnirrep, R.H. de Jong, P.H. Krijgsman, E. Thomas, 

G. Veeneman, Joh.H. Wansink. 

One exposition was held in the same building as the Congress; a 100 page 

catalogue was published entitled "Tweehonderd jaar onvermoeide arbeid". 

Editors were R.H. de Jong, T.W.M. Jongmans and P.H. Krijgsman. 

The other exposition, which was arranged around the 1694 edition of Abraham 

de Graaf's book "De Geheele Mathesis of Wiskonst", was aimed for a more 

general public and could be visited in Amsterdam, in the Library.of the 

University of Amsterdam from 23 March to 26 April, in Utrecht, in the Uni

versity Museum from 16 May to 21 June, and in Leiden, in the Museum Boer

haave from 10 July to 2 October, 1978. 

In addition to the important support given by the two Amsterdam Universities 

and the Mathematical Centre, mention must be made of financial contributions 

from DSM Heerlen, Shell Nederland B.V., N.V. Philip's Gloeilampenfabrieken, 

I.B.M. Nederland N.V., the Actuarial Society of the Netherlands and Schel

tema, Holkema, Vermeulen, booksellers. 

Material contributions were presented by Control Data B.V. in Rijswijk. 

For the two expositions personal as well as material assistance was presented 

by the Museum Boerhaave (Leiden), the Mathematical Institute of the Universi

ty of Utrecht, the University Museum of Utrecht, the University Library of 

Amsterdam, the Free University of Amsterdam and the I.o.w.o. (the institute 

for development of mathematical education). 
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Some impressions from the Bicentennial congress 

of the 

Wiskundig Genootschap 
-~en onvermoeide ar/Jeid komt al/es te /Jove11, .. 
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TELKENS VIJFTIG JAREN 

H. Freudenthal 

TELKENS VIJFTIG JAREN 

1778 - twee eeuwen geleden - dood van Rousseau, dood van Voltaire -
1) 

vooravond van de patriottentijd - ancien regime. Wisten de geregeerden 

van toen wel dat ze onder een ancien regime leefden? Konden zij bevroeden 

dat elf jaar later de Bastille bestormd zou worden, Condorcet 2), de secre-
3) 

taire perpetuel van de Academie des Sciences, Lavoisier , grondlegger van de 

scheikunde, dat zij, de voortrekkers, in de gevangenis en op de guillotine 

hun leven zouden laten? Wat was er dan wel het gesprek van de dag? Eise 

Eisinga's 4 l planetarium S), de trots van Franeker en Friesland? Welneen, 

het functionneerde al, maar het was nog niet af. Dat een Wiskundig Genoot

schap werd opgericht onder de zinspreuk "Een onvermoeide arbeid komt alles 

te boven"? Wel, er werden in die tijd om de haverklap en onder velerlei zin

spreuken genootschappen opgericht 6 ) - althans in de Zeven Provincien. 

Misschien dat een tijdgenoot als belangrijkste feit genoteerd zou heb-
7) 

ben de aankomst uit Wenen in Parijs van Mesmer op het hoogtepunt van zijn 

roem. Of wist U niet wie '•!esmer was? Hij heeft zijn naam gegeven aan wat men 

Mesmerisme of dierlijk magnetisme ging noemen. Hij was, meen ik, de eerste 

in een reeks, die zich nog steeds voortzet, in een lange stoet aan de zelf

kant van de wetenschap. 

1778 - wat was er toen in de wiskunde aan de hand? In 1778 verscheen 

de eerste publicatie van iemand, die er straks vermaardheid door zou ver

werven als schepper van een nieuwe wiskunde: Karl Friedrich - niet Gauss, 

die toen een jaar oud was, maar - Hindenburg 8), stichter en grootmeester 

van de combinatorische school. Nooit van gehoord? Terecht! Sic transit glo

ria mundi - vooral als die roem onverdiend was. Niet alleen achteraf bezien, 

maar van meet af aan: gewichtigdoenerij met trivialiteiten - en toch ver

maard. Dat kan ook in de wiskunde. 
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1778 - nog iets van belang? Johann Karl Schultze's 9 > tafelwerk in 

twee delen lO) - een verschijnsel karakteristiek voor dat tijdperk, dat 
11) 

afgesloten zou worden, enkele jaren later, met de tafels van Vega , 

een naam die U vermoedelijk wel iets zegt. Het was het tijdperk niet alleen 

van de genootschappen, maar ook van de tafelwerken. Om dit te staven: de 

wederwaardigheden van de Oostenrijker A.F. Felkel 12 ), uitvinder van een 

factorenmachine, een gewone rekenmachine, een leesmachine, een taalmachine, 

een meetinstrument. In 1777 werd zijn factorentafel, tot 144000 gevorderd, 

uitgegeven en voortzetting tot 20 000 000 aangekondigd; van het tot 

2 000 000 voltooide manuscript werd het deel tot 408 000 op staatskosten 

gedrukt, maar bij gebrek aan afzet tijdens de Turkse oorlog (1788) tot in

fanteriepatronenpapier verwerkt - wederom: sic transit gloria mundi. 

In 1778 deelde de secretaire perpetuel van de Academie des Sciences, 
13) 

Condorcet, mede dat drie jaar eerder 

L'Academie a pris ••• la resolution de ne plus examiner aucune solution 
du Probleme de la duplication du cube, de la trisection de l'angle ou 
de la quadrature du cercle, ni aucune machine annoncee comme un mouve
ment perpetuel 

en hij lichtte dit besluit toe met uitspraken, die prematuur en voor die 

tijd nauwelijks verantwoord waren: Immers dat de derdegraadsvergelijkin-

gen van de eerste twee problemen niet met vierkantswortels konden worden 

opgelost, kon in die tijd zeer waarschijnlijk worden geacht, maar een bewe

zen feit was het allerminst; evenmin dat voor de kwadratuur van het cirkel

segment transcendente functies onvermijdelijk waren; het is waar dat Condor

cet t.a.v. TI en het perpetuum mobile l 4 ) nog slagen om de arm hield. 

Daar maakten de mensen zich toen dus druk om. Misschien mist U in Con

dorcet's lijst het parallellenpostulaat en de algebraische vergelijkingen 

van hogere dan de vierde graad. Voor echte belangstelling in meetkunde was 

het nog een halve eeuw te vroeg. Maar wat grote en wijdse problemen aan

gaat, dan lijkt het, als men de literatuur van toen doorbladert, alsof het 

er drie waren: alle algebraische vergelijkingen oplossen, alle integralen 

uitrekenen, alle differentiaalvergelijkingen integreren. En dat laatste dan 

als formele bezigheid - nog niemand dacht er aan, differentiaalvergelijkingen 

in het kader te plaatsen van begin- of randwaardeproblemen. 

De algemene algebraische vergelijkingen oplossen - zelfs Bezout lS) 

kwam er niet uit. Maar zijn inspanningen werden anderszins beloond- in 1779 

zou zijn hoofdwerk 16 ) verschijnen, de eliminatie-theorie, als het ware het 



beginpunt van de algebraische meetkunde. Hoewel, de grote doorbraak, die 

beslissend zou blijken, was enkele jaren eerder in stilte geschied: 

5 

Lagrange's Reflexions 17 ), die Ruffini, Abel en Galois zouden inspireren: 

het inzicht in de opbouw van resolventen door middel van wat we nu de sym

metrische groep noemen, en het resignerend besef dat de tot en met de vier

de graad succesrijk gebleken methoden vanaf de vijfde graad zouden falen. 
18) 

Wat deed Laplace rond 17787 Onnoemelijk veel. Vooral werkte hij 

aan zijn Systeme du Monde, dat ik altijd nog eens zou willen bestuderen. 

Enkele bladzijden eruit, net nog in december 1778 gefiatteerd, - de voort

planting van golven in kanalen 19 ) - trokken mijn aandacht, toen ik me met 

Cauchy bezig hield, want ze waren de eerste aanzet tot diens indrukwekkende 

. d k 1 20) Jeug wer over go ven . 

Hoewel druk bezig met kansrekening - vooral met het exploiteren van 

Bayes' principe- is Laplace in 1778 nog niet aan de normale verdeling toe, 

. · 21 ) · d d f zoals zeal aan de Moivre bekend was, en evenmin aan e goe e outenwet. 
22) 

Wel is in 1778 de oorsprong van de Laplace-transformatie te zoeken, of 

veeleer het idee om Lagrange's formele opvatting van differentie en diffe

rentiatie als operator analytisch te rechtvaardigen door voortbrengende 

functies, waaruit later de voortbrengende integralen zouden ontstaan 23 ). 

De differentiaalvergelijking van Laplace - ook hiervoor is het nog te 
24) 

voreg . Maar het idee van de potentiaal is er al, 1777, dankzij 
25) 

Lagrange , zelfs van continu verdeelde massa's. 

Bezout, Lagrange, Laplace - ik zou er nog enkele namen aan kunnen toe-
26) 

voegen. Een heeft er in elk geval tot hier toe ontbroken: Euler , oud en 

blind, maar ongeremd productief als een jongeling. De twee verhandelingen 

waarin hij de kwadratische reciprociteitswet formuleerde, vermoedelijk in 

1772 geschreven, werden in 1783 gepubliceerd 27 ), en als ik het gemiddelde 

neem van deze twee j aartallen, kom ik - hoe kan het beter? - zowat in 1778 

terecht. Jammer voor Legendre 
28) 

die de wet in 1785 opnieuw moest ontdek-

ken. Pas Gauss zou hem echt bewijzen. 
29) 

Zonder een rekenkundige true kan ik in Eulers productie iets dichter 

bij 1778 aanwijzen en dan nog iets dat als beginpunt de aandacht van de his

toricus trekt. Het is met 1777 gedateerd 30) en als ik er aan toevoeg dat 
31) 

Lagrange in 1779 hetzelfde onderwerp behandelde, kom ik weer gemiddeld 

in 1778 terecht. Het is het eerste optreden van begrip en term "afbeel

ding" - latijn "repraesentatio" - algemeen afbeeldingen van het bolopper

vlak op het vlak, en dan gespecialiseerd tot conforme afbeeldingen, die 
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ook complex geschreven worden - een idee dat in antler verband, zeals ook 
32 de Cauchy-Riemann differentiaalvergelijkingen, teruggaat tot d'Alembert ). 

* * * 

"Jubileum" komt van het hebreeuwse joveljaar, dat met de periode 50 

werd gevierd. Wiskundig Genootschap jubileerde dus voor 't eerst in 1828. 

Wat valt er over 1828 te vertellen? De aardappelziekte, de uitvinding van 

de feuilletonroman? Neen, ik bedoel in de wiskunde. 

In 1828 verschenen van de hand van Alphonse Quetelet 33 ) de "Instruc-
34) 

tions populaires sur le calcul des probabilites" , een klein, en zeals 

de titel zegt, populair boekje. Het zou niet de moeite waard zijn ervan te 

reppen, als de jonge auteur niet in 't zelfde jaar, nog net in de december

vergadering van de Brusselse Akademie 35 ) de aanzet had gegeven tot het le

venswerk dat hem beroemd zou maken- "De eerste ontmoeting tussen de wiskunde 
36) 

en de sociale wetenschappen" heb ik het elders genoemd. 

1828, de geestelijke geboortedatum van Quetelet de statisticus, de -

ondanks voorlopers - eerste statisticus. In 1835 zou zijn grote werk ver

schijnen, Sur l'homme et le developpement de ses facultes - essai d'une 

physique sociale 37 ). Het werk maakte furore. Waarom? Als catalogus van 

cijfers, als portret van de gemiddelde mens, l'homme moyen? Neen, wegens 

een passage, volgende op een uittreksel uit de Franse criminaalstatistiek 38 ) 

Cette constance avec laquelle les memes crimes se produisent 
annuellement dans le meme ordre et attirent les iremes peines dans les 
memes proportions, est un des faits les plus curieux que nous apprennent 
des statistiques des tribunaux; je me suis particulierement attache a 
la mettre en evidence dans mes differents ecrits; je n'ai cesse de 
repeter chaque annee: Il est un budget qu'on paie avec une regularite 
effrayante, c'est celui des prisons, des bagnes et des echafauds; c'est 
celui-la surtout qu'il faudrait s'attacher a reduire; et chaque annee 
les nombres sont venus confirmer mes previsions, a tel point, que 
j'aurais pu dire, peut-etre avec plus d'exactitude: Il est un tribut 
que l'homme acquitte avec plus de regularite que celui qu'il doit a 
la nature ou au tresor de l'Etat, c'est celui qu'il paie au crime! 
Triste condition de l'espece humaine! Nous pouvons enumerer d'avance 
combien d'individus souilleront leurs ma.ins du sang de leurs semblables, 
combient seront faussaires, combien empoisonneurs, a peu pres comme on 
peut enumerer d'avance les naissances et les deces qui doivent avoir 
lieu. 

La societe ren.ferme en elle les germes de taus les crimes qui 
vont se commettre, en meme temps que les facilites necessaires a leur 
developpement. C'est elle, en quelque sorte, qui prepare ces crimes, 
et le coupable n'est que l'instrument qui les execute .•• 

Cette observation, qui peut paraitre decourageante au premier 
abord, devient consolante au contraire quand on l'examine de pres, 
puisqu'elle montre la possibilite d'ameliorer les hommes, en modifiant 
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leurs institutions, leurs habitudes, l'etat de leurs lumieres, et en 
general, tout ce qui influe sur leur maniere d'etre. Ellene nous pre
sente, au fond, que ]'extension d'une loi deja bien connue de tousles 
philosophes. . • c 'est ce que tant que les memes causes subsistent, on 
doit attendre le retour des memes effets .•• 

Inderdaad had Quetelet deze uitspraak zowat jaar aan jaar herhaald, na

dat hij hem voor 't eerst - ongeveer net zo - in december 1828 had gedaan, 

en hij zou hem blijven herhalen tot de oren van zijn tijdgenoten ervan zou

den tuiten. De standvastigheid van lret aantal misdaaen, volgens soorten op

gesplitst - waarop was deze uitspraak gebaseerd toen Quetelet hem voor 't 

eerst in 1828 deed? Op drie jaren statistiek - het was veeleer een voorspel

ling, aangedurfd door iemand die de wet van de grote getallen op zijn duimp

je kende. Quetelet zou een der grote 19e eeuwers worden, opgehemeld en ver

guisd. Van de emoties, die hij zou opwekken, was hijzelf het eerste slacht

offer - een geengageerd wiskundige, zou men heden zeggen. Maar er waren er 

ook spoedig die roken wat voor vlees ze met Quetelet in hun kuip hadden: 

een vinnige aanval van ene den Tex 39 ) al in 1829: 

Ik ben verre van de toepassing van getalberekeningen, daar waar die 
gepast is, af te keuren. Ik mag lijden, dat men berekent, welke waar
schijnlijkheid er is, dat uit een zeker getal nummers een bepaald num
mer worde getrokken, hoeveel waarschijnlijker het is, dat uit 10 witte 
en 2 zwarte boonen er eene witte dan eene zwarte zal getrokken worden. 
Ik erken de nuttigheid van het berekenen van waarschijnlijkheden voor 
alle soorten van assurantien, maar om te zeggen, dat onze meeste kennis 
slechts op waarschijnlijkheden berust, en dat men daarom overal die 
waarschijnlijkheid moet berekenen; 
••• om aldus door getallen uit te drukken de waarschijnlijkheid, dat 
een regterlijk vonnis regtvaardig of onregtvaardig, dat een afgelegd 
getuigenis waarheid of leugen bevat, zoo dit alles, ik erken het, op 
het voetspoor van anderen, door denzelfden Hoogleraar Quetelet ge
schied is; neen, ik kan en mag mijne vrees, van op die wijze al de 
waarde van pligten en zedeleer te zien verloren gaan, niet verbergen. 
Men mbest nog maar gaan berekenen, welke waarschijnlijkheid er is, dat 
een pas geboren kind een dief, moordenaar enz. zal worden, om dan, 
wanneer hij dit werkelijk geworden moge zijn, zich met de force irre
sistible des nombres te verdedigen •.. 

Wel, nog in 't zelfde jaar heeft Quetelet de "penchant au crime" inge

voerd - misschien is den Tex het geweest die hem op dit idee heeft gebracht -

en uitgerekend: 0,00003621 - fatsoenlijken en onfatsoenlijken uiteraard over 

een kam geschoren. He, met zo'n beetje "penchant au crime" bega je toch geen 

misdaad en voor een oppassend iemand is zelfs dit te veel! 

Maar Quetelet had ook zijn aanhangers en leerlingen - de merkwaardigste: 

Florence Nightingale, "The Lady with the Lamp" volgens de romantische tradi

tie, maar daarnaast een zeer reele "tante", die de dood ging bestrijden in 
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de lazaretten van de Krim, met sterftestatistieken en met Quetelet's sociale 

fysica als tweede deel van Gods openbaring. 

Zoveel kostbare tijd aan Quetelet besteed! Valt er echt niets anders 

over 1828 te vertellen? Ja, een heleboel - alleen het is zo'n beetje trivi

aal. 

Op 12 augustus 1828 schreef Legendre in de voorrede tot het eerste sup-

1 t . . T . -" d f ' 11' · 4o) p emen van ziJn rait~ es onctions e iptiques : 

••• a peine man ouvrage avait-il vu le jour .•. que j'appris avec 
autant d'etonnement que de satisfaction, que deux jeunes geometres MM. 
Jacobi de Koenigsberg et Abel de Christiania, avaient reussi a perfec
tionner considerablement la theorie des fonctions elliptiques dans les 
points les plus eleves. 

Stoort het U dat ik name breedvoerig met Quetelet bezig te hebben ge

houden, dit onder de trivialiteiten rangschik? Wel, er zal geen wiskundige 

in de zaal zitten die de namen van Abel 4 l) en Jacobi 42 ) niet kent. Maar 

hoevelen onder U zegt de naam van Quetelet iets? 

Zijn elliptische functies dan zo belangrijk? Ze waren het, als oefen

terrein, als startpunt voor complexe functietheorie in het groat, voor 

Riemann oppervlakken, voor abelse integralen, thetafuncties, algebraische 

meetkunde. 

1828, een annus mirabilis in de wiskunde! In en rond 1828: het theo-
43) 

rema van Abel , het onmogelijkheidsbewijs voor de Se graadsvergelij:.. 

king 44 ), de oplossing van vergelijkingen met commutatieve Galoisgroep, 
45 

waar het woord "abels" voor "commutatief" vandaan komt ), het eerste 

diepgaande voorbeeld van epsilontiek in Dirichlets bewijs van de Fourier

reeks 46 ) Moebius' Barycentrische Calcuul 47 ), Plucker's homogene co6rdi

naten 48 ), Sturm's ketens 49 ), Cauchy midden in de uitwerking van de elas

ticiteitstheorie SO) - en, last not least, de niet-euclidische meetkunde 

van Bolyai Sl) en Loba6evski 52 ) - voorwaar een annus mirabilis. 

Niets omtrent Gauss? Wel degelijk - de differentiaalmeetkunde 53 ) van 

de oppervlakken, met de kromming van Gauss, geodetische lijnen, curvatura 

integra en theorema egregium. Aan wie moet ik de prijs van dat jaar toeken-
54) 

nen? Ik denk aan iemand die je anders zou vergeten: George Green , geen 

wiskundige, maar een natuurkundige. Vereist dit een toelichting? Ik dacht 

van neen. De naam "Green" spreekt voor zichzelf. 

* * * 
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En dan met een kangoeroe-sprong van 50 jaar naar 1878. Ik pak een naam 

die U allen kent, omdat elke catalogus van tweedehandse wiskunde ermee be

gint: E.A. Abbott, auteur van "Flatland, a romance of many dimensions, by 

a square" 55 >. u kent zeker ook het idee van het boekje: een flatlander in 

drie dimensies te laten denken en bijgevolg ons in vier dimensies. "Vier 

dimensies" is lang een geliefkoosd populair mathematisch onderwerp geweest, 

mystieke wiskunde als het ware, zeals vele boeken getuigen 56). 

De belangstelling voor meer dimensies, gekromde ruimten en niet-eucli

dische meetkunde bij filosofen en geletterde leken was gewekt door 

Helmholtz 57 > en aangewakkerd door zijn interpreten. Dat Gauss deze gehei

men in zijn graf had mee willen nemen, kwam er nog bij om de nieuwsgierig

heid te prikkelen. Er heerste nog~l verwarring over de verschillende onder

we~-pen onderling en ook met de projectieve meetkunde, waar - hoe zot - pa

rallellen elkaar snijden. De mensen waren er veelal tegen. Maar sommigen 

waren er gelukkig mee, vooral met de vierde dimensie. 

Een ervan, in 1878, die de vierde dimensie te pas kwam, was de Leipzigse 
58) hoogleraar Zollner , die na aanvankelijk verdienstelijk astrofysisch werk 

al wat steken had laten vallen toen hij in de ban raakte van William Crookes 

en tenslotte van het amerikaanse medium Henry Slade, die een tournee door 

Europa maakte. 

Felix Klein 59 > bekent dat hij het geweest is, die zonder er erg in 

te hebben, Zollner op het spoor van de vierde dimensie heeft gezet, toen 

hij hem vertelde, dat een in onze ruimte verknoopte gesloten kromme in vier 

dimensies vanzelf ophoudt een knoop te zijn 60 >. Zollner zag er een middel 

in om experimenteel te toetsen of spiritistische verschijnselen via de vier

de dimensie plaats vinden. Hij stelde Slade de proef voor, die er met het 

gebruikelijke "we will try it" op reageerde, en ziedaar 61 ): 

Dieser Versuch ist mir nun mit Hilfe des amerikanischen Mediums 
Hr. Henry Slade zu Leipzig am 17. DezenIDer 1877 Vormittags 11 Uhr 
innerhalb einer zeit von wenigen Minuten gelungen. Die nach der Natur 
gezeichnete Abbildung des mehr als 1 Millimeter starken und festen 
Bindfadens mit den 4 Knoten •••• ist auf Tafel IV dargestellt •••• 
wHhrend ich die Schurzung nur eines Knotens gewiinscht hatte, waren nach 
wenigen Minuten die auf Taf. IV abgebildeten vier Knoten in dem Bind
faden. 

Jammer dat Alexander de Grote geen Slade tot zijn beschikking had, aldus 

Zollner, hij had de Gordiaanse knoop dan niet met zijn zwaard behoeven door 

te hakken 62 ). Want wat is er niet allemaal via de vierde dimensie mogelijk: 

Spirits schrijven in diverse talen in een gesloten lei, magnetiseren een

zijdig een breinaald, laten tafels verdwijnen en ineens van 't plafond 
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vallen. Alleen een proef om twee uit verschillende houtsoorten gedraaide 

ringen in elkaar te schakelen lukt niet en evenmin de omzetting via de vier

de dimensie van rechtsdraaiend wijnsteenzuur in linksdraaiend druivenzuur. 

Felix Klein vertelt nog dat Slade later ontmaskerd werd - ik heb het 

niet na kunnen trekken. Ook constateert hij hier het begin van de 

grosse Mystifikation ... , die bald in Verbindung mit Hypnotismus, 
Suggestion, religiosem Sektierertum, popularer Naturphilosophie usw. 
lange Zeit die Kopfe beherrschte. 

Waarvoor de wiskunde toch niet allemaal goed - of slecht - is. Nog in 

mijn jeugd was "die vierde dimensie" zowat synoniem met wat toen spiritisme 

heette. Oat duurde - meen ik - tot de vierde dimensie nieuw emplooi vond in 

de populariteit opeisende relativiteitstheorie. Maar in 1878 was Einstein 

pas -1 jaar oud, hetzelfde jaar trouwens, waarin Michelson 63 ) het instru

ment van zijn befaamde proef afmaakte. 

Het lijkt een ironie dat het jaar, waarin de vierde dimensie voor 't 

eerst te algemenen nutte werd aangewend, tevens het jaar was waarin de di

mensie als zodanig wiskundig werd afgeschaft - althans voorlopig. In 1878 

publiceerde Georg Cantor zijn eerste grootse ontdekking 64 ): de gelijkmach

tigheid van continua van alle "dimensies" - ook het begrip machtigheid duikt 

hier voor 't eerst op. Toen kwam dus het aloude begrip "dimensie" op de 

tocht te staan - om het met een modewoord te zeggen - en bleef zelfs nog 

langer op de tocht dan de lichtsnelheid na Michelson, te weten tot Brouwer 

de topologische invariantie van de dimensie bewees 65 ). 

Wat was er anders nog aan de hand in en rond 1878? Dedekinds lle sup-
66) 

plement bij Dirichlet groeide naar zijn definitieve vorm toe. Voor 

Kronecker heb ik voor dat jaar een artikel opgescharreld, dat nu niet karak

teristiek Kronecker is, hoewel het over de Kroneckerse karakteristiek han

delt 67 ). Felix Klein werkte met veel verbeeldingskracht en noeste vlijt 

aan zijn automorfe functies, nog onbewust van het feit dat binnen drie a 
vier jaar een vuurpijl de lucht in zou schieten, Poincare 68 ) genaamd, die 

Klein's gloeiwormpjes zou doen verbleken. Lie 69 ) zat middenin het schep-
70) 

pingswerk van zijn 

neue Theorie, die ich die Theorie der Transformationsgruppen nenne. 

71) 72) 
Sylvester publiceerde in 1878 18 papers, maar Cayley overtrof 

hem met een 24-tal. Als ik echter niet tel, maar ook weeg, moet ik de prijs 

van het jaar toekennen aan een jong, veelbelovend wiskundige: Frobenius 73 ), 

met het idee de compositie van bilineaire vormen als product van lineaire 



afbeeldingen te interpreteren, met de karakterisering van het kwaternio

nenlichaam als nuldelervrije algebra, met de bilineaire covariant van 

Pfaffse vormen - de opmaat van de lineaire groepentheorie. 

11 

Nog iets. Maar dan van 1879, Schubert's Kalkul der abzahlenden Geome

trie 74) - een boeiend fantastisch algoritme, na een eeuw ondanks Van der 
75) . 76) 77) waerden , Severi en Gerretsen nog niet als zodanig gerechtvaar-

digd - ik bedoel als naieve methode, dus niet alleen wat de uitkomsten be

treft. In 1942 heb ik, in de ban van het Schubert-Kalkul, een prijsvraag 

van Wiskundig Genootschap oplossende, beloofd de lacune te vullen. Belofte 

maakt schuld - met dit haast 100 jaar slapende werk wilde ik ook mijn ei

gen geweten wakker schudden. 

* * * 

Weer een halve eeuw verder: 1928. Wie ik dan allereerst ontmoet: mij

zelf temidden van een kring van toekomstige en gevestigde wis- en natuur

kundigen. Na drie keer uit een historisch perspectief te hebben gekeken, 

laat ik de vierde keer een ooggetuigenis afleggen. 

1928 - de jojo-rage was even vlug verdwenen als hij verschenen was, 

maar de relativiteitstheorie-rage had een taaier bestaan. Dankzij Spengler's 

"Untergang des Abendlandes" was de taalschat met de woorden "functie" en 

"functioneel" verrijkt. In de meetkunde waren "Ricci-Kalkul" en Blaschke 

school "still going strong" met de nadruk op "still". Hardy en Littlewood 

hadden 16 publicaties in 1928, maar geen over analytische getallentheorie, 

die door Van der Corput, Schnirelman en Vinogradov belet werd de zachte 

dood te sterven, die sommigen onder ons haar toewensten. In felle kleuren 

bloeide nog de Duitse varieteit complexe functietheorie, waarvan heden als 

laatste nabloei het Bieberbach-vermoeden getuigt. O quae mutatio rerum 

sinds een Landau-titel als "Uber die Blochsche Konstante und zwei verwandte 

Weltkonstanten" 
78) 

de wereld kon doen wankelen. Weet je wel, oudje, die nog 

opwinding bij Landau's bewijs 79) 
in 6 regels van de irreducibiliteit van 

de vergelijking voor de cirkelverdeling en het nog eenvoudigere, al was het 

h 1 bl d ' . I ' S h 90) E I ' S h ' 1 b . ' 81 ) over een e e a ziJ, van ssai cur • n ssai curs simpe ewiJs 

voor de stelling van Stickelberger dat de discriminant van een algebraisch 

getallenlichaam congruent O of 1 mod 4 is? Of de nieuwe bewijzen voor de 

analyticiteit van oplossingen van elliptische differentiaalvergelijkin-
82) gen? Of, zekere dinsdag, Eberhard Hopf's bewerking dat de - later naar 

hem genoemde - singuliere integraalvergelijking geen oplossing had, en de 
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volgende dinsdag ziJn colloquiumvoordracht met de oplossing van dezelfde 

vergelijking? 83 ). Of op hetzelfde Colloquium Von Neumann 84 ) over Gesell

schaftsspiele 85 ) of over de verdeling van het boloppervlak in drie con

gruente deelverzamelingen, waarvan twee, geschikt verdraaid, ook al het 
86) 87) 

boloppervlak opvullen? Of even vreemd als indrukwekkend C.L. Siegel 

die op slinkse manier werd overgehaald, de eed te breken, geen tijdschrift

artikelen meer te publiceren. 

Wat deden we zo in die tijd? De een dook diep in Hilberts Zahlbe

richt 88 ), de ander in Julia's iteraties 89 ) anderen in eindige groepen of 

hun voorstellingen, weer een ander, dankzij Karl Loewner 90} in de conti

nue tegenhanger ervan, de continue groepen van Sophus Lie over Elie 

91) 1 92) 1 ubl' . 93) d't Cartan tot Hermann Wey - Wey s grootse p icaties op 1 ge-

bied waren nog kersvers, terwijl hijzelf met deze wetenschap al de quantum

mechanica was binnengestapt. Ook die maakte furore bij ons: Schrodinger 

als opvolger van Planck en Heisenberg in het Physikalische Kolloquium. Al-
94) 

leen wat Van der Waerden straks Moderne Algebra zou noemen, deed het 

nog niet bij ons ondanks een fanatiekeling voor p-adiek - ik denk niet dat 

ik v66r een uitstapje in 1930 naar Artin in Hamburg ooit Steinitz 95 ), 

Emmy Noether 96 ) en Krull 97 ) gelezen heb. Grondslagen ja - dankzij Von 

Neumann. Hilbertruimte ja, dankzij Erhardt Schmidt 98 ) en Von Neumann. 
99) 

En dan natuurlijk topologie. Maar niet in de stijl van G.T. Whyburn 

· · k' lOO) L lOl) d 1 'k 1928 26 18 Sierpins 1 , W .. Ayres , e o ympi ers van met resp. , 

en 12 publicaties. Ook niet in de stijl van een periode die in 1928 afge-
102) 

sloten werd met Karl Menger's boek Dimensionstheorie , maar veeleer 

langs de lijn die Heinz Hopf doortrok vanuit Brouwer over Erhardt Schmidt. 

Ik zou nog een poos kunnen doorgaan met te vertellen wat je in 1928 

las en wat je hoorde, op colleges, colloquia en in de wandeling. Over het 

meest opwindende uit die tijd heb ik nog gezwegen. Het gesprek van de dag -

bij ons en buiten - was wat - na de politieke revolutie van 1918 - een re

volutie in de wiskunde leek. Of was het maar - na de Kapp-Putsch van 1920 -

een tot falen gedoemde putsch? Ik bedoel het intuitionisme. Is het Hilbert 

geweest die het als een "putsch" had afgedaan? In elk geval voor wie er 
103) 

mee sympathiseerden, was "putschist" een geuzennaam . In 1927 had 

Brouwer in Berlijn college gegeven; in 1928 hield hij zijn indrukwekkende 

1 ' l0 4 ) h H' lb d H mb 1 ' l05 } Weense ezing en verse een 1 erts twee e a urgse ezing met 

Hermann Weyls repliek 
106) 

Overdrijf ik als ik deze affaire het meest opwindende rond 1928 noem? 

Ik neem Hilbert zelf tot getuige, ik citeer uit zijn lezing l0 7) 
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Ich staune unter diesen umstanden daruber, dass ein Mathematiker an 
der strengen Gultigkeit des Tertium non datur zweifelt. Ich staune 
noch mehr daruber dass, wie es scheint, eine ganze Gemeinde van Mathe
matikern sich heute zusammengefunden hat, die das gleiche tut. Ich 
staune am meisten uber die Tatsache, dass uberhaupt auch im Kreise der 
Mathematiker die Suggestivkraft eines einzelnen temperamentvollen und 
geistreichen Mannes die unwahrscheinlichsten und exzentrischsten 
Wirkungen auszuuben vermag. 

En dan beklaagt Hilbert zich bitter over mensen die durven twijfelen aan 

zijn bewijs van de "Widerspruchslosigkeit" en aan zijn oplossing van het 
108) 109) 

continuumprobleem, waarvoor immers alleen nog Bernays en Ackermann 

enkele hulpstellinkjes hoeven aan te dragen. 

Nog drie jaar en dan verschijnt G6dels vermaarde artikel llO) - de on

beslisbaarheidsstelling. De zeepbel van wat Von Neumann eens Hilberts 

slechte geweten heeft genoemd, wordt doorgeprikt. Brouwer zelf zweeg. 

Et le combat cessa, faute de combattants. 

* * * 

En nu vandaag de dag, 1978. Of moet ik de tijdmachine laten doorrazen 

tot 2028? Het zou op hetzelfde neerkomen - de naaste toekomst of de verste. 

Het meest opzienbarende in het laatste verleden was ongetwijfeld de oplos-

. h . kl bl ll l) 1 h . sing van et vier eurenpro eem , en nog we met grootsc eepse assis-

tentie van de computer. Misschien even opzienbarend: de constructie van een 

onbreekbare code 112 ) - elementaire getallentheorie, maar wederom geassis

teerd door de computer. Wel, dit was al weer gisteren. Het heden telt al

leen voorzover het drachtig is met de toekomst. 

Ik heb met deze flitsen niet alleen op de toppen van de wiskunde ge

mikt. Hoe komt de wiskunde op anderen over - was een impliciete vraag: Lo

garitmentafels en cirkelkwadratuur, statistieken, vierde dimensie, grond

slagenstrijd - was achtereenvolgens het antwoord. Hoe zou het antwoord heden 

luiden? Computers - supersnelle met reusachtige geheugens, en zakcomputers 

(zoals er zakagenda's zijn) om de eerbied voor de grote computers wat af te 

zwakken. 

De Wiskunde is afgedaald uit ivoren torens naar het marktplein. Ik 

denk dat ik het niet te zeer mis heb, als ik beweer, dat productie en pro

ducentental, consumptie en consumentental en het aantal hunner die wiskunde 

onderwijzen en leren - dat elk van deze groepen in elke halve eeuw sinds 

de oprichting van Wiskundig Genootschap met een factor tien is gegroeid. 

Ten onzent komt thans de meerderheid van de jeugd tot 16 jaar met een soort 

wiskunde in aanraking. Wiskundigen enwiskunde penetreren diep in wetenschap, 
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techniek en maatschappij. Getalsmatig bekeken lijken we spoedig aan ver

zadiging toe. Laten we ons niet zelf bedriegen. De factor 10 per halve 

eeuw, waarmee ik de expansie van de wiskunde heb willen beschrijven, is 

zeker niet toepasselijk op de groei van begrip en goed gebruik van de wis

kuride. Integendeel, met de expansie van de wiskunde zouden waribegrip en 

misbruik zelfs kunnen zijn toegenomen. 

Hoe komt de wiskunde op anderen af? U kunt er zich een idee van vormen 

als Ude examenvraagstukken MAVO, HAVO, VWO ter hand neemt. Een carricatu

raal beeld? Ja, want onderwijs is in de regel beter dan de examens die die

nen om het te toetsen. Desniettemin, de kloof tussen echte wiskunde en dat 

soort wiskunde is enorm. Hebben wij, op 't hoogste niveau, iets misdaan of 

iets nagelaten in het kweken van begrip voor wat wiskunde wezenlijk is en 

wat je wezenlijk met wiskunde kunt doen? 

Het is niet een kwestie van de hand in eigen boezem steken. Onze cul

tuur in de breedte toegarikelijk maken, is een algemeen pedagogisch en so

ciaal probleem - alleen meen ik dat de bijdrage die de wiskundige hiertoe 

kan leveren, paradigmatisch zou zijn. Een taak voor de volgende halve eeuw. 

Totzover het waribegrip. En dan het misbruik van de wiskunde, dat trou

wens veelal voortvloeit uit wanbegrip of dankzij wanbegrip welig kan tieren. 

Beweringen staven, hard maken met cijfers, is een goede zaak, althans als 

de cijfers deugen en er niet mee geknoeid wordt. Geen onderdeel van de wis

kunde wordt zo critiekloos toegepast als de mathematische statistiek, die 

expres uitgevonden werd, omempirische gegevens critisch te bewerken. Van 

het hoge aanzien van de wiskunde profiteert de pseudo-wiskunde; wiskunde is 

thans een ritueel op tal van wetenschapsgebieden: wiskundige franje om de 

geloofwaardigheid en respectabiliteit van onderzoek te verhogen. Kunnen wij 

het ons als wiskundigen permitteren, ons er niets van aan te trekken? Een 

rhetorische vraag waar we in de volgende halve eeuw het antwoord op ver

schuldigd zijn. Laten we inmiddels afspreken: geen wetenschapsbeoefenaar 

draagt zo grote verantwoordelijkheid in wat hij doet en laat, voor onder

wijs en voorlichting, als de wiskundige. 

Op vijf tijdstippen in de historie, gescheiden door vier keer een hal

ve eeuw ben ik mijn zoeklicht gaan richten. Leek het soms of ik de draak 

stak met de wiskunde of met wat pretendeerde wiskunde te zijn? Wel, als het 

een carnavalsoptocht was, dan is toch met een boetepreek geeindigd. 

Als wiskundige mag jewel, moet je zelfs, de draak steken met het 

tientallige stelsel. Het getal 200 is geen wiskunde, maar feest. Wiskundeis 
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altijd feest, dagelijks feest. En een heel groot feest, als zoveel wiskun

digen bijeen zijn. Feesten zijn er om gevierd te worden. En dit feest vooral. 
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In his letter of invitation to give this lecture, Professor Freudenthal 

pointed out that two choices had been made, first of a field, and then of 

a mathematician having worked in it. In the present case, the field 

is Lie groups. Accordingly, I shall devote this lecture to the award win

ning field, so to say, and take as my main theme some aspects of the devel

opment and role in mathematics of Lie groups. In doing so, I shall view 

"Lie groups" in a rather broad sense, including not only the classical real 

or complex Lie groups, but linear algebraic groups and p-adic Lie groups 

as well. 

The theory of "finite and continuous groups", later called Lie groups, 

was built from about 1873 on by the Norwegian mathematician Sophus Lie. It 

arose out of his work on differential equations and contact transformations, 

and he had a main goal in mind, namely to develop a Galois theory of differ

ential equations, in which these groups would play the role of the Galois 

group of an algebraic equation. It seems to me that, from that point of 

view, Lie groups offer a, by no means unique, example of a theory created 

for a certain purpose, but not fulfilling it up fully. However, it then 

went off into many directions, so much so that, one hundred years later, 

J. Dieudonne was led to write: "Les groupes de Lie sont devenus le centre 

des mathematiques; on ne peut rien faire de serieux sans eux" l). Such a 

drastic statement was of course quickly challenged and, even to me, seems 

too sweeping. But I do share the view that Lie groups, as understood here, 

play a major, even central role in an important and ever spreading part of 

ma thematics. 

In only one hour, I cannot present in a comprehensive manner all the 

evidence to back up such a claim. Without trying to be systematic, I shall 

1) 
J. Dieudonne, "Orientation generale des mathematiques pures en 1973", 

Gazette des Mathematiciens, Oct. 1974, p. 73-79, Soc. Math. France. 
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concentrate on some developments which seem to me to have been crucial in 

increasing the scope of the theory and of its connections with other parts 

of mathematics. In a topic with such a rich history, even the choice of 

those is not necessarily unique, and may depend upon one's own perspective. 

From mine, I would like to single out three: 

(1) Global Lie groups and Riemannian symmetric spaces. 

(2) Linear algebraic groups. 

(3) Buildings and p-adic symmetric spaces. 

Before taking them up, I should make some remarks on the first fifty years 

of the theory of Lie groups. 

1. It is a simple matter nowadays to define a real or complex Lie group, 

as a real or complex analytic manifold G endowed with a group structure 

such that the map G x G ➔ G given by (x,y) 1➔ x•y-l is analytic. But S. Lie 

could not say that, and this definition differs from his in two respects. 

First, he considered only transformation groups. The notion of abstract 

group was not familiar at the time, and even later, when it had become more 

widespread, F. Klein had some misgivings about putting it in the foreground 

(Entwicklung der Mathematik I, 335-336). But S. Lie had a notion of isomor

phism, called "Gleichzusammensetzung", which focussed attention on the law 

of composition, and he knew that each isomorphism class could be represented 

by the group acting on itself by left or right translations. So the differ

ence here is more one of terminology than of substance. The second one is 

more important: his groups were local; G was in fact a neighborhood of the 

origin in en (mostly, occasionally Rn), the law of composition was defined 

for elements sufficiently close to the origin, and given by convergent power 

series. As you know, the thrust of the general theory was to reduce problems 

on such local groups to algebraic ones on what is now called the Lie alge

bra of G, that is, the vector space of left invariant vector fields, endow

ed with the bracket operation of infinitesimal transformations. Lie's 

approach was analytic, and much influenced by his work on contact transform

ations. For instance, it seems that an important step for him was the inter

pretation of the Poisson bracket of two functions as the bracket of two 

infinitesimal contact transformations. The purely algebraic problems to 

which his theory led were later solved mostly be other mathematicians, not

ably by W. Killing and, above all, by E. Cartan. 

During this first period, the theory was not purely local, however. 

Lie and his contemporaries were familiar with the classical groups; namely 

the special or general linear group SLn(C) or GLn(C), the orthogonal and 
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symplectic groups O(n,C) and sp2n(C), except that they viewed them.usually 

as groups of projective transformations rather than of homogeneous linear 

ones. Furthermore, a number of investigations were frankly global in charac

ter, as for instance Hurwitz's construction of invariants for SLn(C) or 

SO(n,C) by integration over the compact groups SU(n) and SO(n) (1897). Also, 

I should not miss this opportunity to allude to the work of L.E.J. Brouwer 

on Lie groups and on Brouwer's correspondence with F. Engel (1909-1911), 

in which Brouwer clearly has a global picture of Lie transformation groups. 

2. In spite of this, I would still say that the global theory really got 

off the ground with H. Weyl's famous Math. Zeitschrift papers (1925-26). 

There, H. Weyl combined two approaches to representation theory which until 

then had progressed unaware of one another: the infinitesimal one of 

E. -Cartan and the Frobenius-Schur theory of characters of finite groups, 

which had been transposed to some classical compact groups by I. Schur, 

using Hurwitz's integration trick. Particularly striking was the fact that 

a topological result, the finiteness of the fundamental group of a compact 

semi-simple group, played a key role in the proof of an algebraic theorem, 

namely the full reducibility of the finite dimensional representations of 

the complex semi-simple Lie algebras. This work led a bit later to the 

Peter-Weyl theorem, and also paved the way for the applications of Lie group 

representations to physics, which have steadily gained in importance since 

then. 

The work of H. Weyl also had a considerable and almost immediate impact 

on E. Cartan. At that time, the latter was working on a seemingly unrelated 

problem, the classification of Riemannian manifolds in which the curvature 

tensor is invariant under paralleltransport, and had noticed a strange 

relationship with the classification of simple real Lie algebras he had 

carried out ten years earlier. His approach had been local. Under the 

influence of H. Weyl, he recast the question in global terms, explored it 

further and built up a beautiful theory of semi-simple Lie groups and 

symmetric spaces in which both were inextricably linked. Apart from flat 

factors, these spaces are homogeneous spaces of semi-simple groups, and are 

products of quotients G/K, where either G is compact semi-simple, K the 

fixed point set of an involution of G and G/K has positive curvature, or G 

is simple non-compact with finite center, K is a maximal compact subgroup, 

and G/K has negative curvature. A beautiful illustration of the interplay 

between groups and differential geometry is the proof of the conjugacy of 

the maximal compact subgroups of a semisimple group via a fixed point 
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theorem asserting that any compact group of isometries of a complete simply 

connected Riemannian manifold with negative curvature has a fixed point. 

For about thirty years, this was the only one. 
2 

For G compact, E. Cartan also extended the results of H. Weyl on L (G) 
, 2 

to L (G/K), and began the study of the real homology of G/K via invariant 

differential forms. This is the origin of the "de Rham theorems", which he 

conjectured on that occasiom, and of Lie algebra cohomology. Later on (from 

the late forties on), the topology of compact Lie groups, of the 

Grassmannians, and representation theory also became prominent in fibre 

bundle theory, in particular in the study of characteristic classes. 

At this point, we can see t.hat Lie group theory, which started as a 

chapter of analysis and differential equations, then turned to algebra, had 

become linked with topology and differential geometry. But the significance 

of this development went beyond this, already because certain symmetric spaces 

or homogeneous spaces occur in many parts of mathematics. On the compact 

side, these spaces include in particular such well known ones as the spheres, 

the projective spaces and the Grassmannians over the real, complex or 

quaternionic numbers, the Cayley projective plane, and many projective 

varieties, for instance the flag manifold3 (see below), which play a basic 

role in Schubert's enumerative calculus. Among the non-compact symmetric 

spaces are to be found the Poincare upper half-plane and its manifold gener

alizations: then-dimensional hyperbolic space, the space SLn(R)/SO(n) of 

positive non-degenerate quadratic forms of determinant one on Rn, the space 

O(p,q)/(O(p) xo(q)) of Hermite minimal ma~.orizing forms of an indefinite 

quadratic form of index (p,q) on Rp+q, the, Siegel upper-half plane 

sp2n(R)/U(n). This, and the classification of the bounded symmetric domains 

carried out a bit later by E. Cartan, made it clear that semi-simple groups 

and symmetric spaces offered a natural framework to study reduction theory 

with respect to arithmetic groups and automorphic forms in several variables, 

developed notably by C.L. Siegel in the thirties and the forties. A number of 

quotients of bounded symmetric domains by arithmetic groups were seen later 

to parametrize families of abelian varieties, generalizing the relationship 

between the upper half-plane, the modular group and elliptic curves. This 

link between semi-simple groups and moduli problems in algebraic geometry 

was reinforced much later by P. Griffiths' theory of the period mappings 

for families of smooth projective varieties, whose target spaces are quo

tients of certain homogeneous spaces of semi-simple groups by arithmetic 

groups. 
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The forties also saw the beginning of the study of infinite dimensional 

unitary representations of semi-simple groups, a topic which grew into a 

fullfledged harmonic analysis on semi-simple groups, including in particular 

the spectral decomposition of L2 (G) (the Plancherel formula) by Harish

Chandra. The Weyl-Cartan theory was again an indispensable preliminary to 

this. In particular a basic step towards the Plancherel formula was the 

solution of the analogous problem for L2 (G/K), where K is the maximal com

pact subgroup of G, i.e. the study of the so-called spherical functions on 

non-compact symmetric spaces. 

I could still go on a long way describing further outgrowths of the work 

of Cartan and Weyl discussed above, but I would now like to pass to a quite 

different set of ideas, originating in algebraic geometry. 

3. Let K be an algebraically closed field. A subgroup G of the general 

linear group GLn(K) is said to be algebraic if there exists a set of poly

nomials in n2 indeterminates 

(1) P E K[(X. ,)l<' "< ], a iJ -l,J-n 
(a E I), 

with coefficients in K, such that 

(2) G {g = (g .. ) E:GL (K) Ip (gll 'q12' .•• ,g ) iJ n a · nn 
0, (a E I)}. 

In analogy with the above definition of a Lie group, one can also proceed 

more intrinsically and define an affine algebraic group over K as an affine 

variety over K which is endowed with a group structure such that the map 
-1 

(x,y) ~ x•y is a morphism of affine vari=ties. There is no substantial 

difference between the two notions. If K = C, these groups are complex Lie 

groups. As such they were already studied :'.n the 19th century, chiefly by 

E. Picard and L. Maurer. The former had in mind to build up a Galois theory 

of linear differential equations; this led to the Picard-Vessiot theory. 

Maurer's motivations were different, in part invariant theory, in part the 

investigation of Lie groups in which the composition was given by algebraic 

functions (in suitable coordinates), rather than just by analytic functions. 

After that, and a Comptes Rendus Note by E. Cartan (1894), the topic seems 

to have fallen into oblivion for about fifty years. To me this is a mildly 

curious fact, since the Weyl-Cartan theory pertained first of all to semi

simple groups, which are essentially algebraic. Interest in them was re

vived in the early forties, first by C. Chevalley, then by E. Kolchin. At 
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that time, the emphasis was on groups over fields as general as possible. 

Chevalley used an analogue of the exponential mappings of the classical 

theory to go from the Lie algebra to the group, and was limited to character

istic zero. The first significant results valid in arbitrary characteristic 

w&re obtained by E. Kolchin (194~). Interestingly enough, this important 

step was also motivated by the wish to develop a Galois theory of differen

tial equations, more precisely, a generalization to algebraic differential 

equations in characteristic p of the Picard-Vessiot theory. Kolchin proved 

an analogue of Lie's theorem on solvable linear groups now known as the 

Lie-Kolchin theorem: "every connected solvable algebraic subgroup of GLn(K) 

can be put in triangular form", as well as several other results which con

tained implicitely a rather complete structure theory for solvable groups. 

However, in the early fifties, the growing importance of certain algebraic 

homogeneous spaces and the development of abstract algebraic geometry made 

the need of a more general theory of linear algebraic groups rather widely 

felt. To go further, some different methods had to be found. They were devel

oped from 1955 on, and led to results and points of view which were new 

even over C. To try to give an idea of the flavor of those, I would like to 

sketch the starting point of this theory. For this we may assume that our 

groundfield K is just C. Let then G be a linear algebraic group which oper

ates on an algebraic variety V, the action being described by a morphism 

G x V + V of algebraic varieties. To make matters simple, assume that 

V c PN(C) is a projective variety on which G operates by projective trans

formations, but it could be any variety. Then the "closed orbit lemma" 

asserts in this case the existence of an orbit G•x (x EV) which is itself 

a projective variety. In fact, if v EV, then the orbit map g ~ g•v is a 

rational map of G into V. By a well-known fact, the complement of the image 

G•v of this map in the smallest algebraic variety Cl(G•v) containing it 

(its Zariski-closure) is contained in an algebraic variety of strictly 

smaller dimension. Therefore, if we take x EV such that Cl(G•v) has the 

smallest possible dimension, there is no room left and G•v is equal to its 

closure. (For a general V, this argument shows the existence of a Zariski

closed orbit). As a counterpart to that lemma, think of an irrational line 

Gin a two-dimensional torus T. It acts by translations on T and all the 

orbits are dense. In fact, this example pertains to real analytic groups, 

but it can easily be made complex, showing that there is no closed orbit 

lemma in the complex analytic case. This lemma thus pinpoints a difference 

between algebraic and analytic groups and, as simple as it is, is the 
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cornerstone of the theory of linear algebraic groups. Assume now G to be 

connected, commutative. Let x be as above and H the subgroup of G fixing x. 

Then G/H is on one hand a linear algebraic group, hence an affine variety, 

and on the other hand a connected projective variety. It is then reduced 

to a point, hence G has a fixed point on V. Using induction on dimension, one 

then deduces that any connected solvable group G acting on a projective 

variety has a fixed point. If G c GLn(K), we may then in particular take 

for V the variety Fn of full flags in Kn, (i.e. the projective variety 

whose points are increasing sequences of subspaces {v1 c .•. c V 1} in K , 
n- n 

where dim V. 
1. 

i), and deduce that Gleaves one flag stable. This is equiva-

lent to saying that G can be put i.n triangular form, and proves anew the 

Lie-Kolchin theorem. In this sketch, I have slurred over some technical 

points, but the proof is in essence valid as is over any algebraically 

closed field. 

I hope this gives some idea of the global arguments which replaced 

Lie algebra considerations. The theory was rather quickly developed in this 

framework. A major achievement was the classification of simple algebraic 

groups by C. Chevalley, which he proved to be independent of K: 

The simple groups over Kare classified by the root systems and lattices, 

in the same way as over C. It is well-known that the classical groups can 

be written over Z, i.e. by equations such as (2) above with integral co

efficients. C. Chevalley also showed that every type of complex simple group 

could be so described by conditions over Z, which made sense and defined 

the corresponding simple group over any K. 

4. The next step was to extend the theory to non-algebraically closed 

groundfields. If k is a subfield of K, let us say that the linear algebraic 

group G c GLn(K) given by (2) above is defined over kif the ideal of all 

polynomials PE K[(X .. )] which vanish on G is generated, as an ideal, by 
1.J 

elements with coefficients ink. If so, set G(k) = G n GLn(k). If k = R, 

K = C, then G(k) is a (special kind of) r,~al Lie group. If k is finite, then 

G(k) is a finite group. In fact, Chevalley's construction over Z yields, 

for every K, a group defined over the prime field of K, hence over any field. 

In an earlier paper (1955), Chevalley had performed such an explicit con

struction starting from complex simple algebras and had shown that the 

groups G(k) thus obtained were simple, as abstract groups. Fork finite, 

this yielded some new series of finite simple groups, attached to the 

exceptional simple Lie algebras, the first new finite simple groups since 

E. Dickson. Some variations of his construction (by R. Steinberg, R. Ree, 
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M. Suzuki, J. Tits) led to some others. As a result, a solid connection be

tween algebraic groups and finite simple groups was established. As you 

know, it is rather generally conjectured by the experts on finite simple 

groups, that apart from those groups and the alternating groups there are 

only finitely many simple non-commutative finite groups, the so-called 

sporadic groups. An important part of this classification program is played 

by the properties and various characterizations of the above simple groups, 

often called of Lie type or of Chevalley type. 

The general study of the groups G(k) was developed from about 1957 on. 

It led notably to a structure theory of semi-simple, (or, slightly more 

generally, reductive) groups over arbitrary fields by J. Tits and myself 

in the early sixties. The notions of Cartan subgroups, roots, Weyl groups, 

Bruhat decomposition of the classical theory have suitable analogues, but 

I shall not attempt to describe it more precisely. 

5. Tits and I came to it for different reasons. My main motivation was 

to find in G(k), when k is a number field, subgroups which would allow one 

to generalize to fundamental domains of arbitrary arithmetic groups the 

familiar notion of cusp of a fundamental domain of a fuchsian group; J. Tits 

had been led to this theory by his investigations of various geometries and 

by the role of the Bruhat decomposition in Chevalley's of 1955 referred to 

above. Heobtained a far reaching axiomatization which allowed him to give 

a unified treatment of many known geometries as well as to construct new 

ones. As you know, according to Klein, a geometry on a space is the study 

of properties invariant under a given group of transformations. From that 

point of view, the geometry is governed by the properties of, and the 

relations between, the isotropy groups of the objects under consideration. 

Tits turned this around by defining a geometry starting from an aggregate 

P of subgroups of a group G with suitable properties. The key notion is 

that of a (B,N)-pair T, now generally called a Tits system. It consists 

of two subgroups B,N of G satisfying some rather simple conditions (in 

fact surprisingly simple, considering the amount of information which can 

be extracted from them). In particular, H = B n N is normal in N and 

W = N/H, called the Weyl group of T, is a Coxeter group. The elements of 

P, the "parabolic subgroups" of T, are then those which contain a conjugate 

of B. To T there is associated a simplicial complex X, now called a 

building. The vertices of X are the maximal elements of P different from 

G, ands+ 1 vertices P0 , •.. ,Ps span ans-simplex if and only if their 

intersection is in P. The group G operates on the building X by 
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conjugation and the isotropy groups of the various simplices are just the 

elements of P. This is the geometry associated to T. If G = GLn(k), Bis 

the group of upper triangular matrices, N the group of monomial matrices, 

then P consists of the stability groups of the flags in kn (strictly in

creasing sequences of subspaces of dimension f O,n). If we replace any 

PEP by the flag which it stabilizes, then we may view X as the "building 

of flags in kn": the vertices are the non-zero proper subspaces of kn, and 

vertices {v0 , ... ,Vs} span a simplex if and only if, after renumbering, they 

form a flag. This complex thus describes the incidence relations among the 

subspaces of kn, or of the projective sp~ce P 1 (k); by the fundamental 
n-

theorem of projective geometry, it allows one to recover essentially pro-

jective geometry, at any rate for n 2:: 3. 

The Tits system just described has analogues in the groups G(k), where 

G is semi-simple defined over k. The geometries associated to them include 

many classical ones, as well as new ones attached to the exceptional groups. 

This now related algebraic groups with "abstract" geometry, or rather with 

many geometries such as projective or polar geometry over arbitrary fields. 

In these first applications of Tits systems and buildings, the Weyl group 

W had been in most cases a finite euclidean reflection group. It could be 

in principle also infinite. However, this possibility remained little ex

ploited, until it was noticed that another type of Tits systems was the key 

to a problem which had been rather baffling until then, the study of maximal 

compact subgroups of p-adic semi-simple groups. 

6. To explain the background to this problem, I have to backtrack a little. 

I already pointed out that the symmetric spaces offered a natural frame

work for a general theory of automorphic forms with respect to arithmetic 

groups, But I was then implicitly referring mainly to its analytic aspects. 

However, it also has deep arithmetic ones, as exemplified by the work of 

E. Hecke or C.L. Siegel, for instance. Now in algebraic number theory we are 

taught to treat as symmetrically as possible all the completions of a number 

field; a convenient tool for this is the formalism of adeles and ideles, 

which was extended to algebraic groups in the late fifties. This led to 

consider, besides real or complex groups, also groups of the form G(k), 

where k is a non-archimedean local field, say the field Q of p-adic numbers, 
p 

p prime, in particular for semi-simple G. 

To study these groups, the first idea was naturally enough to see 

whether some properties of real groups would carry over, mutatis mutandis. 

After the development of the theory of algebraic groups, it was realized 
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that Cartan's results on the structure of real semi-simple groups were 

really of two kinds: some, suitably reformulated, could be viewed as special 

cases of theorems on algebraic groups while the others, such as the conju

gacy of maximal compact subgroups and the properties of symmetric spaces, 

were topological or differential geometric in nature. In other words, some 

depended on the Zariski topology and the others on the ordinary topology 

and the cm-structures associated to R. The former were now available over 

non-archimedean fields, and there remained to see whether the others also 

had some counterpart. With respect to the structures inherited from k, these 

groups can be viewed as locally compact totally disconnected groups or as 

Lie groups over k (the definition being the same as over R or C, based on 

the notion of an analytic manifold over a non-discrete complete valued field) • 

A priori, as a topological group, such a group seems quite different from 

a real or complex group. Still some simple examples led one to hope for the 

existence of some significant similarities. The first item of business was 

the determination of the maximal compact subgroups. They were shown to 

exist in general, and were first determined effectively in some classical 

cases. They were not necessarily conjugate, but at any rate formed finitely 

many conjugacy classes. For instance, if G(k) = SL (Q) these conjugacy 
n p 

classes are represented by the stability groups of then lattices in Qn 
p 

spanned over the ring Z of p-adic integers by the vectors 
p 

(i 1,2, .•• ,n). 

It was difficult at first to see any general principle behind this. Further

more, these subgroups are open, so that ,~he quotient G/K of G by one of 

them is a countable discrete space, hardly a candidate to play the role of 

a Riemannian symmetric space. The breakthrough came here with the discovery, 

by N. Iwahori and H. Matsumoto, that in certain cases the maximal compact 

subgroups could be described as the maximal elements in the set P of "para

bolic subgroups" associated to a suitable Tits system Tin G(k). This was 

then shown to be a general phenomenon by F. Bruhat and J. Ti ts. Moreoever, the 

building X associated to this Tits system supplied a space which turned out 

to be amazingly analogous to the symmetric spaces of the real theory. In this 

case, the Weyl group of the Tits system is an infinite reflection group in 

some affine euclidean space A. The building Xis a union of spaces naturally 

isomorphic to A, endowed with the tesselation defined by the reflection 

hyperplanes of W. It is contractible, the metrics on the copies of A combine 
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to define a complete metric on T, such that any two points are joined by a 

unique shortest geodesic segment. There is a metric inequality for geodesic 

triangles which, in the Riemannian syllimetric case, follows from negative 

curvature, and can be used again to prove that any compact group of iso

metries has a fixed point. In fact, the proof is valid without change both 

in the p-adic and the real case. The fixed point theorem is used in an 

essential way to insure that the maximal elements of Pare exactly the maxi

mal~compact subgroups. As in the real case, a geometric fixed point theorem 

is the key to the description of the maximal compact subgroups. 

This theory is one striking evidence of a close analogy one keeps dis

covering between real and p-adic semi-simple (or reductive) groups. At 

first, the real case supplied the clues to the p-adic case, but this has 

since become a two-way street, almost a shuttle, and many results on real 

groups have been suggested by properties of p-adic groups. This analogy is 

not formal, but is more in the form of some sort of dictionary, built little 

by little and still growing. Some remarkable illustrations of this principle 

are provided by harmonic analysis (for instance the Plancherel theorem or 

the classification of irreducible admissible representations can be given 

an essentially common formulation) or by the cohomology of discrete cocom

pact subgroups. 

7. The theory of Lie groups and algebraic groups has now attained a con

siderable degree of completeness and has found many applications. Its use

fulness is nowhere more in evidence than in the present study of automorphic 

forms and of their connections with arithmetic and algebraic geometry. In 

the last twelve years or so, Lie groups, algebraic groups, arithmetic groups, 

have become the framework of a vast program, often referred to as "Lang

lands' philosophy", in which infinite dimensional representations are 

brought to bear on the study of Artin L-functions, Hasse-Weil zeta functions 

of projective varieties, and non-abelian extensions of local or global 

fields. The full realization of this program does not appear to be in sight, 

but the old and recent results which illustrate it are so striking and pro

mising that I could not resist alluding to it at this point. 

8. For lack of time, I have now to stop this survey, as incomplete as it 

may be. Still, the entity "Lie groups-algebraic groups" has been related to 

many parts of mathematics: analysis, differential equations, algebra, topo

logy, differential geometry, fibre bundle theory, arithmetic groups, auto

morphic forms, algebraic geometry, moduli, finite simple groups, geometry, 

L-functions, to name the main ones we have met. This may give the impression 
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that I am trying subrepticiously to prove that, after all, Lie groups are 

the center of mathematics. But this is not my intention at all. Clearly, 

some other topics could give rise to a rather similar picture. In fact, I 

would rather schematize the structure of mathematics by a complicated graph, 

where the vertices are the various parts of mathematics and the edges de

scribe the connections between them. These connections go sometimes one 

way, sometimes both ways, and the vertices can act both as sources and 

sinks. The development of the individual topics is of course the life and 

blood of mathematics, but, in the same way as a graph is more than the 

union of its vertices, mathematics is much more than the sum of its parts. 

It is the presence of those numerous, sometimes unexpected edges, which 

makes mathematics a coherent body of knowledge, and testifies to its fund

amental unity, in spite of its being too vast to be comprehended by one 

single mind. I hope this lecture has made plausible my belief that Lie 

group theory is a topic of great vitality and interest both in its own 

right and by the remarkably important role it has played and is playing in 

the ongoing process of expansion and unification of mathematics so well 

described by D. Hilbert in his 1900 Paris address, as a meeting and testing 

ground for many disciplines and as a starting point, tool, and framework 

for many incursions into other parts of mathematics. 
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ADDRESS TO PROFESSOR A. BOREL 

at the occasion of the Brouwer Memorial Lecture 

delivered by Prof.A. Borel March 30, 1978 

W.T. van Est 

Dear Professor Borel, 

After having witnessed your brilliant lecture it is the task of the 

present speaker to account for the reasons that moved the board of the 

Wiskundig Genootschap and the Brouwer Lecture committee for selecting the 

special subject and candidate for the 1978 Brouwer Memorial Lecture. 
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Although the Brouwer Memorial Lecture has not yet a tradition of long 

standing, such an account seems natural and has been part of the two previous 

ceremonies. 

Let me recall therefore that there are no specific restrictions imposed 

on the choice of the topic of the Brouwer Lecture, although it seems to me 

that it ought to be a field of mathematics of sufficient general interest. 

Furthermore, the selected speaker should be a mathematician who has made 

outstanding contributions to the subject involved. 

Quite understandably, the first two Brouwer Lectures were in, or at 

least closely related to, fields in which Brouwer had done paramount work 

himself, to wit Topology and Foundations of Mathematics. It might seem 

therefore that in choosing the subject of the 1978 Lecture the board of 

the Wiskundig Genootschap was again led by a preference for the fields in 

which Brouwer has worked. It is true that Brouwer did interesting work in 

the field of Lie groups by solving a special case of Hilbert's fifth problem. 

However, more relevant reasons for the choice made can be given. I rather 

think that the choice of Lie groups, algebraic and arithmetic groups, is 

fully jusitified because of the general interest of the subject in the 

sense that there is hardly any other field of mathematics in which so many 

mathematical disciplines meet. 

Let us try to bring out again more specifically this cross-road posi

tion o¾ the subject of Lie groups, although your lecture has already made 
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*) this plain enough. 

The classical work of Sophus Lie, Felix Klein and Elie Cartan has re

vealed the connections between Lie groups and the classical geometries such 

as projective geometry, Euclidean geometry, M6bius geometry, etc. on the 

one hand and differential geometry on the other hand. Klein's Erlanger 

Programm conceived the classical geometries as a theory of invariant proper

ties relative a suitable group. In Cartan's conception the study of a partic

ular type of differential geometry was the study of principal fibre bundles 

with structural group from a given class of Lie groups, thus extending the 

scope of the Erlanger Programm. Hence, via the principal fibre bundles the 

theory of characteristic classes, a topic which is at the heart of algebraic 

topology, is directly connected with Lie groups and their topology. 

Analysis makes its contacts with Lie groups in various ways. The theory 

of invariant differential operators on Lie groups constitutes an interesting 

chapter of the general theory of partial differential operators. The theory 

of orthogonal polynomials and special functions is connected with Lie group 

theory via representation theory. Speaking about representation theory, 

Fourier analysis, automorphic functions and automorphic forms, subjects well 

rooted in 19th century analysis, come to mind. In the theory of automorphic 

functions and forms one has to deal with double coset spaces of Lie groups 

with respect to a maximal compact subgroup and a discrete subgroup. The 

subject of discrete subgroups is connected in various ways with algebraic 

number theory. 

These few indications to which could have been added more, may suffice 

to support the general contention about the cross-road position of Lie 

group theory. In fact Lie group theory and its ramifications is, it seems, 

an expanding universe, expanding to the past by constantly encompassing 

classical subjects and expanding to the future in bringing up new topics 

of mathematical research. 

Your work, Professor Borel, reflects faithfully the many-sidedness of 

the subject. The papers you have written in collaboration with mathematicians 

working in different fields bring out very clearly the meeting ground 

character that Lie group theory has for various mathematical disciplines. 

This address having been prepared independently, it was unvoidable that 
the following account partly overlaps the preceding address. 



In every corner of Lie group theory where you worked, you have made 

fundamental contributions. 
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In the topology of Lie groups and principal fibre bundles you showed 

how to extend the Hopf description of the cohomology ring of a group mani

fold for arbitrary fields as coefficient domains. On the basis of this you 

were able to calculate the universal characteristic ring in a number of 

cases. Likewise you made extensive calculations on the cohomology ring of 

a Lie group manifold. Your joint work with Hirzebruch on characteristic 

classes of homogeneous spaces is just one example of joining forces from 

different fields. 

The theory of algebraic linear groups advanced by your work considera

bly beyond the Maurer-Chevalley theory and quoting Chevalley: "C'est au 

memoire fondamental de Borel que la theorie des groupes lineaires alge

briques sur un corps algebriquement clos de caracteristique quelconque doit 
**) l'aspect de doctrine harmonieuse et coherente qu'elle revet ajourd'hui.". 

In joint work with Harish Chandra you showed how the theory of algebraic 

linear groups could be made to bear on the classical reduction theory of 

quadratic forms which is a particular instance of the problem of finding a 

fundamental set of a real algebraic group with respect to an arithmetic 

subgroup. This approach permitted to unify and to carry further results of 

a classical branch of research in which among others Hermite, Poincare and 

Siegel had left their marks. 

One of the surprising by-results of this work is the theorem on the 

existence of compact Clifford-Klein space forms for every type of symmetric 

space. 

In recent years the arithmetic groups are still in the centre of your 

interest. The classical question of compactification of fundamental domains 

has been taken up in joint work with Baily and Serre. In the cohomology of 

arithmetic groups you obtained deep results, partly in collaboration with 

Serre, and your work on this topic is still continuing. 

Professor Borel I have concentrated on only a few aspects of your work. 

I have passed over your work on Kahlerian and Hermitian geometry, your work 

on transformation groups and fixpoint theory, your work on Chevalley groups 

and many special questions in algebraic groups. I have also passed over your 

C.Chevalley: Pree.Int. Congr. of Math. 1958 (Edinburgh), p.65. 
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occasional excursions into topology (like the Smith fixpoint theorems), into 

algebraic geometry and complex manifolds. I should have given credit also 

to the many mathematicians with whom you cooperated. However, this occasion 

does not call for a meticulous analysis of all the facets of your work. 

But there is one aspect of your activities that I should like to focus 

attention on for a moment. These are the many expository talks and papers 

by which you brought current or classical work of others to the attention 

of the mathematical public. The Bourbaki Seminar Notes, Springer Lecture 

Notes, Princeton Mathematical Surveys, Bulletin de la Societe Mathematique 

de France, all bear testimony of these activities by which you rendered a 

great service to the mathematical community. 

From this brief exposition it appears quite clearly that you touched 

on many fields in mathematics. Rather than to a vacillating interest of a 

restless mind, this is due to the nature of the problems you treated - a 

nature which is shared by many problems in mathematics, namely the lack of 

respect for the man-made artificial subdivision of mathematics into dif

ferent fields, by requiring for their solution techniques and viewpoints 

borrowed from different mathematical disciplines. These are the built-in 

safeguards in mathematics against falling apart into disciplines which other

wise would go by a common name for somewhat accidental historical reasons. 

The mathematicians who by their work bring out this nature of mathe

matics are thereby, in my opinion, influencing the development of mathe

matics for some time to come. 

Just as the work of Brouwer has been, and still is, carrying fruit, 

we think, Professor Borel, that your work will continue to inspire mathe

maticians of new generations. 

This is the account of the reasons for inviting you to deliver the 

Brouwer Lecture for this occasion. Consider the Brouwer medal also as a 

token of our high esteem for your work. 







HARMONIC ANALYSIS ON SEMI-SIMPLE LIE GROUPS 

J.J. Duistermaat 

1. INTRODUCTION 
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My doorway to the subject of the title is the beautiful formula of 

KOLK and VARADARAJAN [13] for the spectrum of a compact quotient of a sym

metric space of non-compact type. This formula fills an important gap in 

the collection of specific examples where one can determine in what way 

one might go beyond the generalities about spectra of arbitrary positive 

elliptic operators on compact manifolds, such as given in DUISTERMAAT and 

GUILLEMIN [2], for instance. 

For the proof Kolk and Varadarajan use a considerable part of the har

monic analysis on semi-simple Lie groups of Harish-Chandra. Trying to under

stand this from a more differential geometric point of view and using an 

oscillatory integral trick which I learned from Guillemin at a conference 

in Durham in 1976, I got proofs of some the basic results which I think 

are much simpler than the original ones. I do not know yet how far this 

attempt of "rewriting Harish-Chandra" will succeed, but every result which 

makes this monumental work more accessible is worth trying. 

In this talk I will try to explain the formula of Kolk and Varadarajan, 

and only at the end give some indications about the theorems of Harish

Chandra for which I believe to have new proofs. 

2. INVARIANT OPERATORS ON SYMMETRIC SPACES 

Perhaps the simplest description of the symmetric spaces of non-com

pact type is the one in the spirit of MOSTOW [15]. One starts with the 

identity component G of an algebraic group of linear transformations in a 

Euclidean space V (= vector space provided with an inner product h) such 

that 
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i) The Lie algebra g of G is semi-simple, and 

ii) For each x E G the adjoint x' with respect to h belongs to G. 

Write K = {x E G; xis h-orthogonal} and P = {x E G; xis symmetric and 

po_sitive with respect to h}. 

A lemma of CHEVALLEY [ 1] says that x t E P if x E P, t E JR • It follows that 

for each x E G there are uniquely determined k EK, p E P, such that x=k.p, 

namely p (x'.x)½, k = x.p- 1 , this is called Cartan decomposition. The 

mapping (k,p) 1+ k.p is a diffeomorphism: K x P + G, so that P can be iden

tified with the homogeneous space K\G, for the action of G on Pone can 

take pf+ x' .p.x (xEG). 

The only reasonable G-invariant system L of lines in P consists of the 

curves t + x'.exp tX.x, here x E G and X belongs to 

p {x E g; Xis symmetric with respect to h}. 

The length of this curve as t runs from Oto 1 is defined as (Tr x2)½. 

One easily verifies that each two points of Pare joined by a unique line 

EL, the length of which is called the distance between the two points. 

This distance function satisfies the triangle inequality, from which it al

so follows that the lines EL are the shortest curves between given points. 

Here the length of an arbitrary curve is defined as the integral of the 

length of the velocity vector, the length of tangent vectors being deter

mined by assigning to the velocity of the above curve EL the length 

(Tr x 2 )½. 
-1 

The reflection p 1+ p in the identity element is an isometry: P + P. 

Because G acts transitively on P the reflection at any point of P, revers

ing the geodesics through that point, is an isometry as well, this is the 

defining property of symmetric spaces according to E. Cartan. Using this 

one can now give an elementary proof of the fact that each compact group 

of isometries in P has a fixpoint in P (see FREUDENTHAL and DE VRIES [3], 

65.4), which implies that for each compact subgroup U of G there is some 
-1 

p E P such that p.U.p c K. That is, all maximal compact subgroups of G 

are conjugate to K, for this reason K is called the maximal subgroup of G. 

The algebra of G-invariant continuous linear operators: C00 (P) + C00 (P) 

is naturally isomorphic to the convolution algebra E'(K\G/K) of compactly 

supported distributions u in G which are invariant under left- and right-



multiplication by elements of K, the so-called spherical distributions on 

G. The isomorphism consists of assigning to u E E1 (K\G/K) the convolution 
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-1 
operator u* defined by (u*f) (x) = JG u(x.y ) f(y) dy, which indeed assigns 

to each left-K-invariant function on G (element of C00 (P)) a left-K-invari

ant function on G. The G-invariant differential operators on Pare the U* 

such that the support of u is contained in K, the G-invariant smoothing 

operators(=operators: V'(P) + C00 (P)) correspond to the u E C00 (K\G/K) 
C 

= f'(K\G/K) n C00 (G). 

3. THE HOROSPHERICAL TRANSFORMATION 

Let a be a maximal abelian sub Lie algebra of g such that a c p. Then 

the exponential map is a Lie isomorphism from (a,+) to a vector subgroup A 

of G, in geometric terms A is a maximal flat subspace of the symmetric 

space P which passes through e. The dimension of A, resp. a is called the 

rank of the symmetric space P, and will be denoted by r. 

The mappings Y ~- [X,Y], XE a form a commuting set of symmetric linear 

mappings: g + g, so they can be simultaneously diagonalized with real eigen

values. That is, there is a finite set R of linear forms a: a+ lR, and 

corresponding linear subspaces ga of g, such that 

i) [X,Y] = a(X).Y for XE a, y E ga, and 

ii) g I R ga, dim ga i O for all a ER. 
UE 

The a ER are called the rootforms on a. 

* Choose a hyperplane in a containing no non-zero rootforms, call all 

rootforms at one side of it the positive rootforms, and write 

Then S = exp(a+n) is a connected solvable Lie group, and 

¢: (X,Y) ~ exp X.exp Y is a local diffeomorphism: ax n + S. S acts local

ly transitively on K\G, hence transitively because K\G is connected. So¢ 

induces a covering: ax n + K\G, which is a diffeomorphism because K\G is 

simply connected. It follows that~: (k,X,Y) I+ k. exp X. exp Y is a dif

feomorphism: K x ax n + G. Writing N = exp n this implies that 

x: (k,a,n) 1+ k.a.n is a diffeomorphism: K x Ax N + G, its inverse is cal

led the Iwasawa decomposition of G. 
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The nilpotent group Nin the Iwasawa decomposition has the following 
+ geometric characterization. The set a {XE a; a(X) > 0, Va> 0} is call-

ed the positive chamber in a. For each XE a+ the geodesics yin P such 

that the distance between y(t) and exp tX converges to Oas t + 00 are just 

the geodesics of the form ti+ n'.exp tX.n, n EN, that is the geodesics ob

tained from t I+ exp tX by applying an element of N. For this reason N is 

called the horospherical group of the positive chamber a+ 

The walls of a+ are just the null spaces of the positive rootforms, 

the group generated by the orthogonal reflections in the walls is finite 

and is called the Weyl group W of a. 

For u E C00 (K\G/K), XE a, write 
C 

(Au) (X) = ep (X) f u(exp X.n) 

N 

dn, here p(X) 
a>0 

It is a classical observation by Gelfand that A is an injective homomorphism 

from the convolution algebra C00 (K\G/K) to the convolution algebra C00 (a), 
C C 

commuting with the reflections (x I+ x- 1) in G, resp. a. But in fact we have 

the much stronger theorem of GANGOLLI [4] that A is actually a topological 

isomorphism between 

functions on a. The 

C00 (K\G/K) and the space C00 (a)W of W-invariant 
C -1 C t t 

inverse is given by A (v) = A(b*v), here A 

test 

= trans-

posed of A and bis a tempered distribution on a. The Fourier transform B 

of bis called the Plancherel measure for spherical functions, it is a 

rational function of exponential functions explicitly determined by 

GINDIKIN and KARPELEVIC [7]. These results are based on previous work of 

HARISH-CHANDRA [9], see also ROSENBERG [16]. 

A extends to a topological isomorphism between the corresponding dis

tribution spaces E• (K\G/K) and E'(a)w. Under this isomorphism the spheri

cal distributions with support c K correspond to v E E'(a)W with support 

c {0}, that is v = Do, here Dis a W-invariant partial differential oper

ator in a with constant coefficients. Identifying the convolution algebras 

on both sides with the corresponding algebras of translation invariant oper

ators, one has obtained an isomorphism between the algebra of G-invariant 

continuous linear operators: C00 (P) + C00 (P) and the algebra of translation

and W- invariant operators: C00 (a) + C00 (a). Under this isomorphism the G

invariant differential operators on P correspond to the W-invariant dif

ferential operators on a with constant coefficients, and the G-invariant 

smoothing operators on P correspond to the convolutions by W-invariant 



test functions on a. Because of its relation with the horospherical group 

N,A is called the horospherical transformation of the group G. 

Every continuous homomorphism from the convolution algebra C00 (a)W to 
C 
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C (algebra with the usual multiplication) is equal to testing by a function 
, A (X) * 

of the form EA: XI+ e for some A Ea~. As a typical application of the 

horospherical transformation one obtains that every continuous homomorphism 

from the algebra of G-invariant 

U* 1+ <u,¢A>, where ¢A= tAEA is 
-1 

smoothing operators on P to~ is equal to 
(A-p) (TI(x,k)) dk h 

given by ¢A(x) = JK e , ere 

TI: G + a is defined as~ : G + K x ax n followed by the projection to a. 

The ¢A are exactly the left- and right- K-invariant common eigenfunctions 

for all left-K- and right-G-invariant differential operators on G which 

moreover are equal to 1 ate E G, they are called the elementary spherical 

functions on G. A theorem of HELGASON and JOHNSON [11] states that the 

bounded elementary spherical functions are exactly the ¢A such that the 

* real part of A belongs to the convex hull C of the s {p), s E W. 

4. THE SPECTRUM OF K\G/f 

Let now r be a discrete subgroup of G acting properly and effectively 

on P with compact orbit space X = P/r = K\G/r, which then is a compact C 

manifold. Regarding functions on X as r-invariant functions on P, or as 

left-K- and right-r-invariant functions on G, any G-invariant smoothing 

operator on P leaves C00 (X) invariant, so leads to an operator on X which 

can be written as (Tuf) (x) = JX Ku(x,y)f(y)dy, f E C00 (X), where 

( 4. 1) I 
yd 

-1 
u(x.y.y ), u € C00 (K\G/K). 

C 

00 

The effect of the summation over r is that Ku is left-K- and right-f-in

variant as a function of both x and y, and therefore can be regarded as a 
00 

C function on Xx X. Note also that for given u with compact support the 

sum is actually finite because the action of r is proper. By a continuous 

extension to u E E'(K\G/K) a similar characterization holds for all con

tinuous linear operators: C00 (X) + C00 (X) coming from G-invariant operators 

on P, this time Ku E E1 (xxx). 

Because the algebra a of operators on X coming from G-invariant oper

ators on Pis commutative, invariant under taking adjoints and contains 

compact operators approximating the identity (namely the smoothing ones), 
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it follows that there is a Hilbert space decomposition L2 (X) = l• JN E., 
JE J 

such that n. = dim E. < 00 and TIE.= µ,(T).I IE. for all Te: a. But then 
J J J J J 

ul-+ µ,(T) is a continuous homomorphism: (E'(K\G/K),*) 1+ (IC,.) and there-
J u * 

fore of the form µ,{T) = <Au,E, > for some A. e: ac, uniquely determined 
J U Aj ]* 

up to the action of the Weyl group. The A, e: a /W, together with their mul-
J IC 

tiplicities n., are called the spectrum of K\G/f, because they represent 
J 

the common spectrum of all operators on K\G/f coming from G-invariant oper-

ators on K\G. 

PROPERTIES OF S 

i) Sis locally finite (if v e: C00 (a)W then v 
C 

Au and T is a compact 
u 

ii) 

operator, hence <v,e:A.> + 0 as j + 00 ). 

If A e: S then there eiists s e: W such that - A= s*(A). 

--- * * (µ,(T) = µ,{{T) ) = µ,{T *)=<Au ,EA·> 
JUJU JU J 

u* (x) = u(x-1) .) 

* 

<~ f.>, here 
J 

iii) If A e: S then ReA e: C=convex hull of the s (A), s E W. 
* 00 (If v e: Ej, v f 0, then¢: x ~ <(Ax} v,v>L2(G/f} e: C (K\G/K} 

and is bounded because (A >* is orthogonal in L2 (G/f}, here A 
X X 

plication from ta left by x. on the other hand Tu(¢}= µ.(T }. ¢ 
J u 

mul-

for all u e: E 1 (K\G/K}, so ¢/<v,v> is an elementary spherical function, 

which must be ¢Aj. So ¢Aj is bounded. Apply the theorem of Helgason 

and Johnson.} 

* From ii}, iii} it follows that Sis contained in the union of ia 
* - * -- * {A E a..,; - A = A} and the"fins" F = {A E a . - A = s {A), Re A E c}, 
._ s II:' 

s e: W, sf e. The Fs are strips in real r-dimensional linear subspaces of 

* the complex r-dimensional (= real 2r-dimensi~nal} vector space ac, with 

bounded distance to ia*. Sn ia*, resp. S\ia is called the principal, 

resp. complementary spectrum, using i} it follows that the complementary 

spectrum is finite if r = 1, but for r > 1 it is even unknown whether the 

complementary spectrum is ever finite. Note that always p e: S, correspond

ing to the constant function which obviously is a common eigenfunction. So 

the complementary spectrum is never void, and in fact contains an extremal 

element of the set Re A e: C. 
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5. THE FORMULA OF KOLK AND VARADARAJAN 

co 
If Xis a compact C manifold and Tis an integral operator on X with 

C00 kernel K(x,y), t~en T, regarded as an operator in L2 (x), is of trace 

class, and its trace is equal to JX K(x,x)dx. Because on the other hand 

the trace is equal to the sum of the eigenvalues, this is an important tool 

of getting more explicit information about spectra. Applying this to 

X = K\G/r, T = Tu, and using (4.1), this leads to 

I n .. µ. (T ) I vol(G /r ). I -1 
u(x.y.x )dx, 

j J J u [y J y y 
G/G 

y 
00 

for all u € Cc(K\G/K). Here G y' resp. r is the centralizer of y in G, 
y 

resp. rand [y] denotes the conjugacy class of yin r. The right hand side 

is obtained from JX l r u(x.y.x-1)dx, which is equal to the sum over the 
YE l 

r-conjugacy classes o of JG/I' lyEo u(x.y.x- )dx. So the sum of the eigen-

values is expressed as a sum of completely different terms, namely the in

tegrals over the conjugacy classes in G of the elements of r, this is the 

famous Selberg trace formula [17]. 

The very simple idea behind the formula of Kolk and Varadarajan is to 
-1 00 w 

write u = A v, v € Cc(a) , and consider the summands in both the left-

and right-hand side of the Selberg trace formula as functions of v, that 

is as W-invariant distributions in a: 

(5.1) 

here the W-invariant distribution T in a is defined by 
y 

(5.2) <V,T > 
y 

vol(G /f ). 
y y 

The sum in the left hand side of 

I -1 -1 (A v) (x.y.x )dx. 

G/G 
y 

(5 .1) converges only in the distribution 

sense (the summands being smooth functions), whereas the sum in the right 

hand side is locally finite. The real work now consists of giving a more 

explicit description of the distributions T , and then using the formula 
y 

(5.1) to obtain as much information as possible about both Sand r: infor-

mation about r leads to information about Sand vice versa, one could even 

hope that an iteration would lead to more and more refined results. 

The only a priori known element of r is y = e, in this case 
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(5.3) 

-1 
vol (G/I'). (A v) (e) 

T 
e 

vol(G/I') .b. 

vol (G/I'). tA (b*v) (e) vol(G/f) .<v,b>, so 

Using that 0 i supp(T) if y f e, this leads to the following asymptotic 
y * 

result about S. Regard the Fourier transform S of bas a function on ia 

(Plancherel measure). Then the number of elements of the principal spectrum 

(counted with their multiplicities) in big sets far away is asymptotically 

equal to the measure of such sets with respect to S, whereas the number of 

elements of the complementary spectrum in these sets is comparatively small. 

For the detailed estimates, see KOLK [13]. This results proves an old con

jecture of GELFAND [6], who disregarded the complementary spectrum. Noting 

that the eigenvalues of a differential operator on K\G/r coming from a G

invariant differential operator on K\G are equal to the values of a polyno

mial pin the points AES (p being the Fourier transform of some Au with 

support c {0}), one obtains asymptotic expansions for the spectrum of such 

differential operators. These can be compared with the known results for 

the positive elliptic operators among them. If r = 1, the algebra of G-in

variant differential operators on K\G is generated by only one element, 

the Laplace operator, which happens to be positive elliptic, but if r > 1 

the study of the Laplace operator only gives partial information about S. 

As we shall see in the next section, if r = 1 then for each y f e, T 

is equal to a real multiple of the Dirac measure (!) at a point ya Ea, 

called the a-part of y. The occurence of these measures has been observed 

in the case of G = SL(2,JR) by LAX and PHILIPS [14]. For r > 1 the T are 
y 

much more complicated generally. 

The only a priori known element of Sis p, the asymptotic behaviour 

of EP at infinity dominates that of the other EA AES. This can be used 

to obtain asymptotic estimates for r, for instance if r = 1 one recovers 

the results of HUBER [12] and GANGOLLI [5] in a somewhat sharper form. 

For r > 1 results in this direction still await their proper formulation. 

6. THE DISTRIBUTIONS T 
y 

y 

-1 
For x E G denote by Ad(x) the tangent mapping of y I+ x.y.x at y = e, 

this is a linear mapping: g ➔ g. The element xis called regular if the 

dimension of the null space of I - Ad(x), which is equal to the codimension 



of the conjugacy class of x, is minimal.xis called semi-simple if Ad(x) 

is diagonalizable over C. 

If xis regular and semi-simple then h = ker(I-Ad(x)) is an abelian 

sub Lie algebra of g, called a Cartan algebra in g. H = {y E G; Ad(y) lh 
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= ilh} is a closed abelian (but not necessarily connected) Lie group in G 

containing x, it is called the Cartan group in G corresponding to the 

Cartan algebra h, resp. the element x. The union of all Cartan groups in G 

is exactly equal to the set of all semi-simple elements in G, the regular 

semi-simple elements form an open dense subset of G. 

There are only finitely many conjugacy classes of Cartan algebras in 

g, each of which having an element h such that 

h (hnk) + (hnp), h n pc a, 

here k is the Lie algebra of the maximal compact subgroup K. Such his said 

to be in standard position. For the corresponding Cartan group Hone has 

H (HnK).(HnP), note that the exponential map is a diffeomorphism: 

h n p + H n P. so if y EH then y = k.exp x, k EH n K, XE h n p, xis 

called the a-part Ya of y. If y is an arbitrary semi-simple element of G 

then there is a unique conjugacy class of Cartan algebra in standard posi

tion h, such that y, conjugate toy, belongs to the Cartan group Hof h, 

and the dimension of h n pis minimal. This his called the fundamental 

Cartan algebra of yin standard position, the element Ya is determined up 

to the action of the Weyl group in a, and is again called the a-part ya of 

y. 

If y is a regular semi-simple element with Cartan algebra in standard 

position, then T is equal to integration over the linear variety 
y 

Ya+ (hnp)L, with density at Ya+ Y equal to µ(y,Y), if Y runs through the 

orthogonal complement (hnp)L of h n pin a. YI+ µ(y,Y) is a rational func

tion in exponential functions on (hnp)L without poles, and its coefficients 

can in principle be explicitly determined. 

There exists one conjugacy class of Cartan algebra h in standard posi

tion such that h n p =a.An element having such has fundamental Cartan 

algebra is called of Iwasawa type, it is necessarily regular. If y is of 

Iwasawa type then (hnp)L = 0 and it follows that T is equal to a real mul-
y 

tiple of the Dirac measure at Ya• If r = 1 then every y E f\{e} is of 

Iwasawa type and the description of the T, y Er is finished. 
y 
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In the general case all elements of rare semi-simple, but r might 

contain non-regular elements y t e. It then belongs to several conjugacy 
' 

classes of Cartan groups in standard position. Let H be the fundamental one, 

let y EH be conjugate toy and approximate y with regular elements y' EH. 

Then there exists a differential operator Q with constant coefficients in 

a, only depending on the Cartan algebras involved and not on the specific 

element y, such that 

(6 .1) T 
y 

T 
y 

lim 
y'+y, y' regular in H 

Q(T I)• 
y 

It follows that 

the derivatives 

the support of T again is contained in ya+ (hnp).L, but 
y .L 

in Q transversal to (hnp) make it more singular than just 

integration against a smooth density in this linear variety. Additional 

singularities are introduced because the density function of the T, devel-
y 

ope singularities due to zero's in the denominators, as y' + y. For more 

details, see KOLK [13], the complete explicit calculation of all the coef

ficients however is a formidable work still to be done. 

Applying the calculations toy= e one obtains a formula for b, or 

equivalently for the Plancherel measure S, in a way different from GINDIKIN 

and KARPELEVIC [7]. On the other hand the general case can be reduced to 

the case y = e by a passage to the centralizer of y. 

7. BACKGROUND OF HARISH-CHANDRA THEORY 

The description of the T ,y Er in the previous section is based on 
y 

the theory of HARISH-CHANDRA [10] of the transformation f I+ F: defined by: 

6(h). I 
G/H 

-1 
f(x.h.x )dx. 

Here His a Cartan group, ha regular element in H, f E C00 (G), and 6 a 
C 

smooth function on the set H' of regular elements in H, which can be chosen 

in such a way that 

a) For every left-and right-invariant differential operator Don G there 

is an invariant differential operator DH on H such that F~f DH(F:) 

for all f € C00 (G). 
C 

b) If His of Iwasawa type and f E c:(K\G/K) then F!oexp [ a is equal to 

some non-zero factor times Af (A= horospherical transformation). 
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Usually the proof of a) is given by passing to a complex group Ge 

where the formula is proved by reduction to the maximal compact subgroup 

of Ge and then using Weyl's character formula for compact groups. I think 

that an even more transparant proof is obtained by observing that in a 

complex group every Cartan group is of Iwasawa type. Then apply b) to the 

horospherical transformation in Ge and use that the horospherical trans

formation enjoys a property like al (even better, it is a homomorphism for 

arbitrary convolutions). 

) h h H . h h b d Property a can be used to sow tat Ff is smoot up tote oun ary 

of H' in H, see VARADARAJAN [18] for a complete proof. For certain bound

ary points y of H' (namely those for which the centralizer }(Yl of yin g 

satisfies V}(y) ~ .6!(2,lR) and h n V (y) consists of elliptic elements) 

there is another Cartan group H contfining y, called the adjacent Cartan 

group, such that 

c) 
H 

for some C -/- 0. + constant Here H ' H denote the two pieces of H' near the 

boundary pointy. The formula c) is called the jump relation, it is proved 

by a reduction to .6-l (2 ']R ) ' where it expresses the fact that the conjugacy 

class of± 
0-1 

to the conjugacy class of (0 o, e: "\, 0, e: < 1 o' converges ± as 
1 0 

whereas the union of these conjugacy classes is equal to the limit of the 
. 1 0 

conJugacy class of e:( 0 _1 ) as e + 0. 

The final basic result about the F: which is needed is: 

d) If His the fundamental Cartan group of e then there is a differential 

operator win H such that 

~ H f(e) lim (wFf{x) 
,H' 3x+e 

for all f E C00 (G). 
C 

The proof of BARISH-CHANDRA [10] (see also VARADARAJAN [18]) is long and 

deep, a much simpler proof using oscillatory integrals has been given for 

complex groups in GUILLEMIN and STERNBERG [8]. However, using the jump re

lations, a modification of their proof works also in the general case 

where more than one conjugacy class of Cartan group may occur. In fact the 

main problem is then to explain why only the fundamental Cartan group oc

curs in the formula for f{e). 

The computation of the T for regular and semi-simple y can be 
y 
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reduced to the problem of determining F; in terms of Af in the case that 

f E C00 (K\G/K) and H c K. After the reduction the group G is different from 
C 

the original one (not every semi-simple Lie group has compact Cartan groups), 

it has among others the effect that the subspace (hnp)i of a is replaced 

by"a. See KOLK [13]. The regular elements in the compact Cartan group Hare 

called regular elliptic. 

If y is a regular elliptic element then the restriction TT to the con-
y 

jugacy class of y of the projection TT: G + a is a fibration, and a trivial 

one because a is simply connected. This remarkable fact about regular el

liptic elements does not seem to have got much attention in the literature. 

Anyway, because Af is obtained by integration over the fibers of TT and 

F!(x) is obtained by integration over the fibers of TTY followed by integra

tion over a with respect to some smooth density in a, it follows readily 

that FHf(y) = <Af,µ > for some smooth densityµ in . Replacing f by Df and 
y y 

using a), and A(Df) = Da(Af) for some differential operator Da on a with 

constant coefficients, one obtains the differential equations DH µy(X) = 
= tD µ (X) for all bi-invariant differential operators Don G. Here DH, 

a ty 
resp. Da acts on the variable y EH, resp.XE a. It follows that the 

Fourier transform ofµ is, as a function of y, a common eigenfunction of 
y 

all the operators DH. Adding the relations at the boundary of H' in Hob-

tained by using the jump relations c) then leads to a determination of the 

µ • 
y 

For non-regular semi-simple elements ya reduction to the centralizer 

of y combined with an application of d) (in its centralizer y can be trans

lated to the identity element without harm) leads to (6.1), the operator 

Q being something like thew of the centralizer. These comments should at 

least give a vague idea of the tools which are used in the determination 

of the T. 
y 
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A SHORT HISTORY OF TRIANGULATION AND RELATED MATTERS 

N.H. Kuiper *) 

1. TRIANGULATION IN THE WORK OF L.E.J. BROUWER 

Real understanding in mathematics means an intuitive simple grasp of 

61 

a fact. Therefore the urge to understand will seek satisfaction in simplic

ity of stated theorems, simplicity of methods and proofs, and simplicity of 

tools. It is this simplicity which can give rise to a sensation of beauty 

that goes with real understanding. This does not exclude admiration for a 

proof that is difficult by necessity. 

Thus the specific interest of a geometrically-minded mathematician, 

who deals with figures like curves, surfaces, with structures like metric, 

group, and with relations like embedding, map, is influenced by this sim

plicity as well as by the success of methods and tools. Emphasis on exis

ting tools sometimes leads to unnecessary overgrowth. As a consequene the 

historical development of mathematics is irregular like that of other forms 

of life and creation. We can see this in the stream of developing mathema

tics, at the origin of which Brouwer's work on manifolds, related to trian

gulation, has a prominent place. 

POINCARE (1895) l) developed the analysis situs (the origin of algebraic 

topology) of algebraic manifolds V. He showed by examples that the BETTI 

(1871) numbers do not suffice for a complete topological classification. 

He defined Betti groups with the help of a division of V into embedded 

images of convex polyhedra. Aiming at a complete classification of objects 

like algebraic varieties, by fitting together simple building stones one 

was led to take as standard parts the embedded images of straight k-sim-
N 

plices of various dimensions k = 0,1,2, ••• , in number space JR • Any two 

ought to fit together in a simple way, namely by meeting, if at all 

*) The author acknowledges with gratitude the hospitality at the University 

1) 
of Warwick, where he prepared part of this survey in July 1977. 

Given years refer to dates of publication. 
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in one common subsimplex. The two parametrizations by barycentric coordin

ates with respect to the common vertices ought to be the same also. The 

division of V into such simplices is called a triangulation T. It is well

defined in so far as it consists of objects, namely simplices, whose only 

property is thus the dimension k, and with as relations only the incidence 

at certain vertices between simplices. The division can therefore be de

scribed by a "scheme" T consisting of the finite or countable set of ver

tices, together with the set of those finite subsets that carry a simplex. 

Nowadays we define a topological (=CO) triangulation as a homeomorphism 

T: !Tl+ V of a simplicial complex fTl, the "geometric realisation" of a 

finite or countable scheme T (realized say in m.N, and consisting of affine 

simplices), onto a topological space V. 

If T and T' are "schemes" and h: fT' I + fTI is a homeomorphism which 

sends every simplex of fT'f linearly into a simplex of !Tl, so that every 

vertex of T is an image of one vertex of T', and if T: ITI +V is a triangu

lation, then the triangulation Toh: IT'!+ Vis called a subdivision of T. 

The study of the topology of a real algebraic variety or manifold V 

aims first of all at the definition of invariants of the underlying topo

logical space top(V), and their calculation. At the beginning top(V) was 

considered too slippery to deal with. Therefore it was replaced by the tri

angulation T: fTf + V, or rather the "scheme" T. The dimension of Tis n, 

if n+l is the maximal number of vertices of simplices of T. Also the Euler

Poincare number is defined in terms of T, and so are the Betti numbers from 

the incidence matrices. But are all properties that are invariant under 

subdivision of a triangulation topological properties of V? They would be 

if the following crucial problems had a positive solution. 

The triangulation problem. Is there a triangulation for every algebraic 

variety? for every algebraic manifold? for every topological metrizable 

manifold? 

The Hauptvermutung. This is the affirmation of the following question. 

Call two triangulations T1 : 1T11 + V and T2 : JT21 ·► V TRI-equivalent in 

case there are subdivisions h1 : fT11 + !T1 f and h2 : fT2f + JT2 f for two 

realisations !T11 and 1T21 of one and the same "scheme" T = T1 = T2 *) 

*) In DEHN-HEEGARD (1907), the word homeomorph was still used as a synonym 
of TRI-equivalent between finite simplical or convex-polyhedral complexes. 
Compare also the definition of pseudo-manifold in SEIFERT-TRELFALL (1934). 
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Are any two triangulations of a given V TRI-equivalent? (Observe that the 

composition of homeomorphisms 

is only required to be a homeomorphism.) 

For many years people wrote inconclusive papers on these two problems. 

In 1911 (C,D) two papers of BROUWER on topology appeared, both out

standing in this century. In the first, only five pages long, he proves 

The invariance of dimension: If his a homeomorphism (1-1 continuous map) 

of an open set U c lRn onto an oJ;)en set h (U) c lRm, then m n. 

Broµwer's revolutionary idea and method was to approximate a continuous map 

f of an n-cube D c lRn (in the case at hand f = h) , into lRm by a simplicial 

(= piecewise linear= PL) map g: i.e. a map linear on each simplex of a 

triangulation of D by linear simplices. 

In his key lemma, the cube has sides of length one, m equals n, lRm= 

lRn, and f moves every point of D over a distance at most d < ½. If g is 

e-near to f for small e > O, then the image of g covers completely a con

centric cube D' with sides of length 1-2d-2e > O, becaus~, as he shows, the 

"Brouwer degree", that is the algebraic number of oriented n-simplices cov

ering. an image point in D', is almost everywhere one. Therefore also the 

image off covers such concentric discs D'. A simple argument completes the 

proof of the topological invariance of dimension. 

In the second paper Brouwer defines a closed n-manifold as a topolog

ical space V with (in our terminology) a finite triangulation T: ITI + V, 

of dimension n, whose simplices at a common vertex meet "like the linear 

simplices of a star in lRn". This is now called a Brouwer-triangulated man

ifold. He proceeds with the method of PL-approximation and defines the de

gree of a continuous map f: M + M' between closed orientable Brouwer trian

gulated n-manifolds. Then he proves the invariance of the degree under 

homotopy off, as well as the invariance under any modification of the 

Brouwer-triangulations of the topological spaces underlying Mand M'. This 

means that the degree is an invariant of a homotopy class of maps between 

Brouwer triangulable closed oriented n-manifolds. He applies degree theory 

to obtain the Brouwer fixed point theorem. 

The notions and tools in this work were new. The papers are clear now, 
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but they were found hard to understand at the time. Their influence became 
*) clear and effective only several years later • They were fundamental for 

later algebraic theories of topology. Brouwer assumed triangulations in his 

definitions of manifolds and he used them in an exemplary way to obtain pure

ly.topological results. He must have liked his definition of manifold to be 

rather constructive**). He also must have been aware of the difficulty of 

the triangulation problem. 

It was only many years later that S.S. CAIRNS (1934) gave in two papers 

the first proof that a smooth n-manifold (embedded in lRN, respectively ab

stractly given) has a topological Brouwer-triangulation. BROUWER (1939) pre

sented independently a proof in a lecture for the Wiskundig Genootschap in 

1937. This paper had not much impact, also because it had an unusual intui

tionistic terminology. It is interesting to observe that neither Cairns 

nor Brouwer showed interest in c 1-triangulations nor in the Hauptvermutung. 

FREUDENTHAL (1939), quoting Brouwer, extended the result and gave a proof 

of the existence of a Cq-triangulation T: ITI + M (q-times continuously 

differentiable on each simplex of ITI) for a Cq-manifold M, q ~ 1. 

J.H.C. WHITEHEAD (1940), went further and completed the work by proving 

uniqueness as well, obtaining the TRI-equivalence of any two Cq_ 

triangulations of M, q ~ 1. So he got a kind of smooth Hauptvermutung 

theorem for smooth manifolds. All TRI-triangulations obtained here were 

Brouwer triangulations. We denote the class of c 1-equivalence classes of 

c1-manifolds by c1 , and the class of TRI-equivalence classes of Brouwer 

triangulated manifolds (respectively simplical complexes) by PL (respec

tively TRI). Then the essence of the above theorems is expressed by the 

existence of a natural map concerning manifolds: 

( 1) Cl - PL c TRI 

CAIRNS ( 1940a) discovered non-Brouwer triangulations of IRn for n ~ 3, 

that admit Brouwer subdivisions. He (1940b) also proposed the smoothing 

problem for Brouwer-triangulated n-manifolds and solved it for n ~ 3. 

This concludes our short commentary on Brouwer's papers of 1911 and 

1939 concerning triangulation. 

*) 

**) 

Early, in the book of H. WEYL (1913) and in the work of J.W. ALEXANDER 
(1915) who proved the topological invariance of the homology groups. 

Not quite constructive because it still cannot be decided whether the 
double cone rcr 3J of a Brouwer-triangulated homotopy 3-sphere (mani
fold) r3 is Brouwer-triangulated, by lack of a solution of the Poincare 
conjecture in dimension 3. 
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2. MANIFOLDS, ALGEBRAIC VARIETIES, AND THEIR TRIANGULATIONS. 

We will recall various interesting theorems and facts more or less in 

the chronological order of their discovery. The main diagram below organ

izes the problems while giving their relations. Every arrow represents a 

map between one class of equivalence classes of spaces into another one. 

The main problems and discoveries concern the injectivity and the surjec

tivity of these maps. The conclusions often depend on dimension. 

We start from the topological analysis of real algebraic varieties, 

because this seems, also historically, the most natural problem. It is the 

study of the forget map from equivalence classes of real algebraic variet

ies to their underlying topological spaces, allowing singularities (as sug

gested in the notation by the letter S), 

(2) ALG(S)--+- TOP(S) 

that arises naturally by "forgetting" part of the structure. For manifolds, 

for which we delete the above letter Sin our notation, this map (2) fac

torizes with (1) and some natural forget maps to give-a diagram on manifolds 

(3) ALG - c"' - c1 1!.l.+ PL --+ TOP 

This is part of the main diagram: 

compactAmanifolds 
( algebraic ALG , ______ c ___ ➔ 

'F / 
Nash~ (Nash,Emb) 

~l1 smooth c ~c 

'\. 
triangulated PL c TRI-------➔ 

C 

topological 

l /Lipschitz 

/ }n ;' 4 
C TOP---------

,-___ c_o_m_P_,l!._ct spaces 

(ALG(S) real alg. varieties) 

? 

finite simplicial 
complexes 

TOP(S) compact metrisable 
top. spaces 

For manifolds of small dimension, the expected existence and uniqueness of 

triangulations for topological manifolds was obtained for n = 2 by T. RADO 
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(1925) and for n 3 a quarter of a century later by E. MOISE (1952): 

n $ 3: PL +--+TRI+--+ TOP bijections 

PAPAKYRIOKOPOULOS ( 1943) proved the uniqueness of the TRI-structure of sim

plicial complexes of dimensiun 2: 

n $ 2: TRI(S) --->- TOP(S) is injective. 

Geometric topology of combinatorial (= PL-) manifolds developed slowly. 

M.H.A. NEWMAN (1926) complained that it could not even be decided whether 

two subdivisions of a given Brouwer-triangulated manifold were TRI-equiva

lent. He started the foundations of "geometric topology", a topic much 

developed by CHR. ZEEMAN (1963). Compare HUDSON (1969) with important later 

work of M. Cohen in this field. 

In the course of time the need for triangulations and a solution of the 

Hauptvermutung decreased because new homology theories of Vietoris, Cech, 

Alexander and the singular theory permitted purely topological definitions 

of invariants, although subdivisions in simplices or cells remained useful 

for calculating them. A milestone in algebraic topology was the axiomatic 

theory of EILENBERG and STEENROD (1952), which covered all older (co-) 

homology theories. Category and functor, notions due to s. Eilenberg and 

S. Mac Lane appeared as new powerful tools. Naturally algebraic topology, 

including the fast developing homotopy theory, dominated the field, giving 

a wealth of new invariants distinguishing spaces, while most people hardly 

dreamed of the complete classification of manifolds. The results (1) con

cerning the smooth triangulation of smooth (say c 1-) manifolds were iso

lated. 

Of course manifolds existed since GRASSMAN and RIEMANN (1868),andfor 

dimension 2 the notion developed and became "more abstract" in H. WEYL's 

(1913) Idee der Riemannschen Flache. VEBLEN and WHITEHEAD (1932)formalized 

the definition of n-manifold M with structures as follows.Mis aconnect

ed metrizable topological space covered by images of embedded open JRn-sets 

given by charts hi: Ui + M, that are related in their intersections hi (Ui) 

n hJ. (UJ.) by homeomorphisms of open sets in JRn, h. . = h ~ 10h. , belonging to 
J.J J ]. 

some pseudo groups. In our present day applications, Scan be the pseudo-

group of homeomorphisms (TOP), c1- or C00
- or analytic diffeomorphisms, 

piecewise-linear homeomorphisms (PL), locally algebraic homeomorphism (Nash), 
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Lipschitz homeomorphisms, giving rise to most of the entries in our main 

diagram. As differentiable manifolds, embedded in IRN as well as abstract, 

became better understood, in particular under the influence of H. Whitney, 

it was not difficult to obtain a C00-structure, unique but for equivalence 

on any c 1-manifold: 

00 

C -<--->-Cl is bijective. 

Manifolds being "slippery" bothered mathematicians less and less. It became 

also clear that PL-manifolds have a Brouwer triangulat'ion, unique up to 

TRI-equivalence. 

. N 1 
J. NASH ( 1952) proved that every embedded (1.n IR ) compact C - (or 

C00
-) manifold can be approximated by adiffeomorphic manifold that is also a 

component of a real algebraic variety. He also proved that any two mutually 

diffeomorphic embedded Nash-manifolds, are related by a diffeomorphism which 

is algebraic, and which is locally defined by polynomial equations: 

(Nash, embedded)..(---)- C00 ~ c1 bijections 

There passed again a quarter of a century before A. TOGNOLI (1973) 

proved that every compact c1-manifold is diffeomorphic to a manifold that 

is a whole real algebraic variety: 

ALG--->- c1 is surjective. 

The Veblen-Whitehead definition of manifolds gives a larger class of Nash

manifolds: 

Nash 5 (Nash, embedded). 

An example of a non-embeddable Nash structure on the circle is obtained by 

identifying points in IR by the algebraic relation x' = x+l. Any function 

on the quotient space M yields a periodic function on lR and cannot be 

algebraic unless it is constant. Hence M cannot be Nash-embedded in JRN. 

It would be interesting to study all Nash structures on the circle. Perhaps 

all homogeneous ones admit compatible locally projective structures, as 

described by KUIPER (1953). The work of J. HUBBARD (1971) suggests that 

there may be so many non-equivalent Nash-structures that a complete class-
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ification is uninteresting. Is there more than one on the two sphere? 

J. MILNOR (1956) made the sensational discovery of a manifold M, which 

is homeomorphic and PL-equivalent to the usual 7-sphere s7 , without beirig 

diffeomorphic to it: 

c 1 -->- PL is not injective. 

This manifold M, a certain s 3-bundle over s 4 , is homeomorphic to s 7 because 

it has a non-degenerate function with exactly two critical points (maximum 

and minimum). In order to prove M not diffeomorphic to s7 , Milnor used 

HIRZEBRUCH's (1956) sophisticated theory and calculation of the index of 

a manifold in terms of Pontrjagin numbers with THOM's (1954) cobordism 

theory, both powerful and fundamental tools in the further development of 

manifold theory. 

R. THOM (1958) proposed an obstruction theory concerning the introduc

tion of a differential structure (or smoothing) on a PL-manifold. The ob

struction was to be in cohomology groups with coefficients in the group rn 

of smoothings of then-sphere with its usual PL-structure. As rn = 0 for 

n < 7 the first obstruction turned out to be in r 7 , a cyclic group with 28 

elements. A very hard case was r 4 = 0, proved by J. CERF ( 1962) . For the 

groups rn see M. KERVAIRE and J. MILNOR(1963). The ideas of Thom were made 

into a solid smoothing theory by J. MUNKRES (1960, 1964) and much improved 

by M. Hirsch. (See M. HIRSCH and B. MAZUR (1974)). M. KERVAIRE (1960) was 

the first to produce effectively a PL-manifold (of dimension 10) which 

could not have the structure of a smooth manifold: 

c 1 -->- PL is not surjective. 

J. EELLS and N. KUIPER (1961) and TAMURA (1961) gave simple examples in the 

lowest possible dimension 8. These are manifolds that can be obtained by 

compactifying IR8 by an s4 , as is the case with the smooth quaternion pro

jective plane. Although the PL-structures of the various exotic n-spheres 

are all the same, this does not mean that each has the same set of smooth 

triangulations. N. KUIPER (1965) proved that a smooth triangulation with 

n+1 vertices of an-sphere exists only for the customary differential 

structure. A triangulation of an exotic n-sphere requires many more vertices. 

We mention as a side remark that the number of vertices e 0 of a trian

gulation of a closed surface of Euler characteristic x obeys 
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e 0 ~ minimum {k E E: 2k ~ 7 + /49 - 24x} 

and equality can arise for many surfaces, but not for the Klein-bottle 

(x = 0, e 0 > 7). Compare RINGEL (1974). For the real projective 3-space a 

triangulation with 11 vertices exists and this seems to be the minimal number 

possible. E. BRIESKORN (1966) found that a complex algebraic variety with a 

singularity can have the topology of a manifold in some neighborhoodofthat 

singularity. For example the set 

o, Iz.z. :;; 1} c «h 
J J 

is homeomorphic to an 8-ball, and its boundary is the seven sphere with 

exotic differential structure k•y, exotic if k 1 0 (28), where y is the 
7 generator of r . So exotic sphers may have rather simple equations. N. KUIPER 

(1968) used Brieskorn' s examples and "generalized" NASH ( 1952) to obtain 

algebraic equations for all non-smoothable PL-8-manifolds. AKBULUT (1976) 

following TOGNOLI (1973) proved that every PL-8-manifold, (as well as some 

other PL-manifolds of higher dimensions) can be made into a whole algebraic 

variety and not only a component. Akbulut and Henry King at present are 

making progress in obtaining algebraic equations for many more PL-manifolds. 

MILNOR (1961) disproved the Hauptvermutung for simplicial complexes: 

the one point compactifications of L(7, 1) x m4 and L(7 ,2) x m4 (concern

ing lens spaces L(7,k), see H. SEIFERT and W. THRELFALL (1934)) are homeo

morphic without being TRI-equivalent 

TRI(S)-+ TOP(S) is not injective. 

The next most important phase in the study of manifolds started with 

the work of S. SMALE (1961) proving the Poincare conjecture for dimensions 

n ~ 5. (For n=5 with the help of J. Stallings and Chr. Zeeman). If f is a 

non-degenerate C00-function on a compact manifold M, then for increasing 

values oft, the submanifold {x: f(x)$t} changes at critical values, and 

these changes can be realized by attaching handles and thickening them. The 

Morse relations (See MILNOR (1963)) among the Betti numbers restrict the 

possible numbers of non-degenerate critical points of various indices on a 

given manifold M. Smale succeeded, for a function on a manifold M of the 

homotopy type of Sn in cancelling critical points (andhandles) until two 

remained (maximum and minimum). Therefore Mis seen to be homeomorphic as 
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well as PL-equivalent to Sn (n ~ 5): the Poincare conjecture, as well as 

the Hauptvermutung were proved for Sn, n ~ 5. 

A tremendous activity in manifold theory took place between 1960 and 

1970, in which the merging theories for smooth, PL- and topological mani

folds developed with new tools like surgery and handlebody theory (h- and 

s-cobordism theory (see MILNOR (1965)), transversality, microbundles and 

via homotopy theory to algebraic problems, which were particularly deep and 

hard for non-simply-connected manifolds (see C.T.C. WALL (1970)). It will 

be impossible to go into much detail. I might mentions. Novikov and 

W. Browder as leaders. Compare the contributions on topology in the proceed

ings of the International Mathematical Congress in Nice, in particular the 

paper of L. SIEBENMANN (1970). See also the proceedings of Manifolds Amster

dam (1970) and R. KIRBY and L. SIEBENMANN (1977). D. SULLIVAN (1967) proved 

the Hauptvermutung for simply connected PL-manifolds of dimension ~6, for 

which H3 (M;ZZ) has no 2-torsion. R. KIRBY (1969) made the final break

through by proving that every orientable homeomorphism of Sn onto itself is 

a product of homeomorphisms, each of which is identical on some open set. 

This was the crucial and longstanding stable manifold conjecture. It carried 

with it the positive answer to the annulus conjecture. R. KIRBY and 

L. SIEBENMANN (1969) (see SIEBENMANN (1970) then solved the triangulation 

problem and the Hauptvermutung for manifolds of dimension n ~ 5. They de

duced, using in an essential way results on homotopy tori of C.T.C. Wall and 

others, that there is exactly one well defined (by SIEBENMANN (1970) in a 
. 4 4 

counter example) obstruction 1.n H (M;TI 3 (TOP/0)) = H (M;ZZ 2 ) to imposing a PL-

structure on a topologically closed n-manifold Mn, n ~ 5, and, given one PL

structure, the equivalence (= isotopy-) classes of PL-structures biject onto 
3 

H (M;ZZ 2) • So for certain topological manii'olds no Brouwer-triangulation 

exists, and for certain PL-manifolds the PL-Hauptvermutung is false. 

PL->- TOP is neither injective nor surjective. 

It may be true still, and there is hope for the conjecture, that every 

topological manifold has some triangulation, which of course cannot always 

be a Brouwer triangulation (=PL). If true then one can hope for algebraic 

equations as well. R. EDWARDS (1976) constructed triangulations of Sn, 

n ~ 5, with the property that no subdivision is a Brouwer triangulation. 

So for manifolds: 

n ~ 5, PL c TRI is not bijective. 
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He uses B. MAZUR (1961) and V. POENARU (1960), who constructed long ago a 

contractible 4-manifold M with boundary 3M that is not simply-connected, 

although it necessarily has the homology of s 3 . Edwards proved, and this 

is hard, that the (n-3)-fold suspension 

n-4 
(obtained by joining every point of S by a line segment to every point 

of 3M), for n? 5, is homeomorphic to Sn. If we triangulate W then natural

ly Sn-4 c Wis triangulated by a sub complex of dimension n-4. Every n-4-

simplex in it has a copy of 3M (and not of s 3J as link, which shows that 

the triangulation of Wis not a Brouwer-triangulation. 

In the spirit of our interest in the topology of real algebraic varie

ties, we mention a real algebraic variety (which is due to C. Gordon), which 

is a Mazur-Poenaru 3-manifold, that is it bounds a contractible 4-manifold: 

3M 1} 

Siebenmann observed, and the reader can check that the double suspension o.f 

:lM is 

vs l2 ( 3M) { (zl ,z2,z3,z4) 
4 2 5 7 

E a: : zl + z2 + z 3 = O, 

l~=l z.z. 1}, 
J J 

an algebraic variety, which is homeomorphtc to s5 by Edwards, but whose 

natural triangulation is not PL for the scJJJe reasons as above. Observe that 

th . 1 1 e singu ar curve S with equations z 1 = z 2 z 3 = 0 in the topological 

5-sphere V has no normal microbundle. (compare P.S. on p.13). 

Let us recall here thats. LOJACIEWICZ (1964) was the first to give 

an accepted proof that every real algebraic variety can be triangulated. 

In order to define uniqueness one first of all has to distinguish certain 

triangulations of an algebraic variety to be natural, like smooth triangu

lations for smooth manifolds, and then to show that any two such natural 

triangulations are TRI-equivalent. Such a kind of uniqueness proof does 

not exist in the literature for n? 3, although there is some hope that it 

could be deduced from Lojaciewicz's work. (For n $ 2: PAPAKYRIOKOPOULOS 

(1943).) 
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It should be noted that the natural singular version of the triangula

tion conjecture is false: SIEBENMANN (1970), §3 gave explicit examples of 

compact locally triangulable spaces that are not traingulable. His example 

are even locally real algebraic. 

Vere recently (as I learned from L. Siebenmann and R. Stern) the tri

angulation problem for topological manifolds has again much advanced. 

J. Cannon showed, generalising EDWARDS (1975), that the double suspension 

~2 3 f h 1 3 h 3 . h h' 5 'th . b ' ~ W o every omo ogy -sp ere W is omeomorp ic to S. Wi Sie enmann s 

work this implies that all orientable topological 5-manifolds are triangu

lable, and there are many of them without any PL-structure. 

D. Galewshi and R. Stern, and independently T. Matumoto, even define 

an obstruction element TE H5 (M;p) such that the topological manifold Mn, 

n ~ 5, is triangulable if and only if T = O; and if Mis triangulable there 

are IH5 (M;p) I such triangulations up to "concordance". 

Unfortunately, although the group pis well defined it is also comple

tely unknown. Even so we can conlude that every simply connected topologic

al 6-manifold can be triangulated. It is also known now that necessary and 

sufficient for triangulability of all manifolds of dimension~ 5 is the 

existence of a smooth closed homology 3-sphere (manifold) with Roblin in

variant 1 (that is, bounding a parallelizable 4-manifold of index 8) such 

that the connected sum H # H bounds a homology 4-disc. 

Not every compact simplicial complex is homeomorphic to a real algebra

ic variety. Hardly anything is known about this question. D. SULLIVAN (1971) 

•discovered that in every triangulation of a real algebraic variety the link 

of a vertex or simplex has even Euler characterstic. For example a double 

cone on the real projective plane cannot be a real algebraic variety. Com

pact simplicial complexes of dimension one are algebraic if and only if an 

even number of edges meet at every vertex. Sullivan's condition is perhaps 

also sufficient to decide which simplicial complexes of dimension two are 

algebraic. For higher dimensions the problem is completely open. 

Smooth as well as PL-manifolds are Lipschitz manifolds: they can be 

covered with charts for which the transition functions h .. (see above) obey 
iJ 

the condition that locally 

llh .. (x) - h .. (y)II 
iJ iJ 

llx- yll 

is bounded away from O and from 00 • D. SULLIVAN (1977) proved that the struc

ture of every topological manifold can be strengthened as much: every closed 
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topological manifold of dimension f 4 has a Lipschitz structure, and it is 

unique up to equivalence. 

Every PL-structure on s4 has a unique smoothing and visa versa, but it 

still remains undecided whether there are more non-equivalent PL-structures 

on~4 or closed 4-manifolds in general: The Hauptvermutung and the triangu

lation conjecture remain open for 4-manifolds. With the Poincare conjecture 

for dimensions 3 and 4, the subject of the classification of 3- and 4-mani

folds is active, but the main interest in geometry and topology has shifted 

since 1970 to structures on manifolds like foliations, vector fields, 

differential equations, Riemannian metrics, functions and maps, their topo

logy and their singularities. The topology of complex algebraic varieties 

remains very active too. 

I mentioned that it was hard for me to do justice to all mathematicians 

involved in the subject. As it seems appropriate, I will go into some more 

detail concerning the tremendous development between 1960 and 1970. Several 

people helped me again to clarify points. 

In this decade, 1960 and 1970, the emerging theories of smooth, PL- and 

topological manifolds were developed using new tools such as surgery and 

handle body theory (see MILNOR (1965)), transversality, microbundles, and 

block bundles to transfer geometric questicns to homotopy theory and to 

algebraic questions, which were particularly deep for non-simply-connected 

manifolds. Following the work of KERVAIRE and MILNOR mentioned above, the 

powerful general theory of simply connected manifolds was developed by 

BROWDER and NOVIKOV, and the overall non-sirnply-connected theory was put 

into place by WALL. 

In a short space one cannot describe all the outstanding contributions 

made by the many talented mathematicians who worked in this area. Perhaps 

the most significant achievement was the resolution of the Hauptvermutung 

and triangulation problem for manifolds. S.P. NOVIKOV contributed the first 

striking step when he proved the topological :~nvariance of rational Pontrj agin 

classes. Together with the surgery exact sequence (the "Sullivan sequence"), 

this already implied the Hauptvermutung for some special cases. By developing 

a canonical version of Novikov's argument (with the aid of Siebenmann's 

thesis) LASHOF-ROTHENBERG and SULLIVAN were then able to prove the Haupt

vermutung for 4-connected manifolds of dimension~ 6. But, CASSON and SULLIVAN 

(independently) had developed such penetrating (and complete in the case of 

Sullivan) analyses of the classifying space G/PL that appears in the surgery 

sequence that they were able to extend the proof to cover all simply connect-
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ed manifolds for which H3 (M;?Z) has no 2-torsion. 

The final breakthrough began when R. KIRBY showed how to reduce the 

stable homeomorphisms conjecture to some questions about homotopy tori. This 

conjecture says that every homeomorphism of IRn to itself is the product of 

homeomorphisms, each of which is the identity on some open set, and it also 

implies the well-known annulus conjecture. But HSIANG-SHANESON and WALL had 

just classified homotopy tori, and so they could easily resolve the ques

tions of KIRBY in the affirmative. 

With the same ideas plus topological immersion theory (LASHOF

ROTHENBERG (1968); LASHOF (1971)), KIRBY and SIEBENMANN (1969) and LASHOF 

and ROTHENBERG (1969) solved the triangulation and Hauptvermutung problems 

for n ~ 5. KIRBY and SIEBENMANN then deduced, still using the results on 

homotopy tori in an essential way, that there is exactly one well-defined 

(by SIEBENMANN (1970) in a counter-example) obstruction in H4 (M;n3 (TOP/0)) 
4 H (M;ZZ 2) to imposing a PL-structure on a closed topological n-manifold, 

n ~ 5 and, given one PL-structure, the equivalence (= isotopy) classes of 
3 

PL structures biject onto H (M;ZZ 2 ). So for certain topological manifolds 

no Brouwer trinagulation exists, and for certain PL-manifolds (e.g., the 

torus itself) the PL-Hauptvermutung is false. 

Institut des Hautes Etudes Scientifiques 

Bures-sur-Yvette, France 

September 1977 

P.S. Here are equations of Siebenmann of a topological 5-manifold that can 

be triangulated, but has no Brouwer-triangulation or PL-structure: 

- 5 
z.z.) 

J J 
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THE PENTAGON 

J.J. Seidel 

1. INTRODUCTION 

My favorite graph is the pentagon graph, or rather the graph on 6 

vertices consisting of a pentagon graph and an isolated vertex: 

3 4 
P-------<l 

0 1 

2 5 

6 

Also the dodecahedron with its 12 pentagonal faces should be of interest. 

However its dual, the icosahedron, suits ~e better. 

81 

The reason for my preference is the role of the graph as a first case 

for many combinatorial structures. It is the aim of the present paper to 

illustrate various aspects of our graph, which serve as a starting point 

for combinatorial structures such as conference matrices, error-correcting 

codes, geometric configurations, two-graphs, finite permutation groups, 

lattices, classical and spherical designs. In doing so, we shall touch 

several subfields of mathematics and its applications. Our strategy will be 

to name the sections after these subfields (sometimes with a certain under

statement), to start each section with our standard example, and to elabo

rate a little into the direction of current research. 

Note. The original publication of this paper is in the Annals of the New 
York Academy of Sciences, Second International Conference on Combinational 
Mathematics, 1978. 
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2. MATRICES 

2.1. First example 

The graph of section 1 is described by the matrix 

0 + + + + + 

+ 0 

+ 

+ + 

0 

+ + 

+ 

0 

+ + + 0 

+ + + 

+ 

+ 

whose elements c .. are defined to be -1, 1, 0, according as the vertices i 
iJ 

and j are adjacent, nonadjacent, coinciding (for convenience we write+ 

for 1 and - for -1). The first observation is that c 6 is an orthogonal 

matrix since 

where I denotes the unit matrix of size n. 
n 

2.2. Conference matrices 

A conference matrix of order n is an nxn matrix C with elements 0 on 

the diagonal and± 1 elsewhere, satisfying cct = (n-1)I. Necessary condi

tions for the existence of symmetric conference matrices are n = 2 (mod 4), 

and n - 1 is the sum of 2 squares of integers. They have been constructed 

for n - 1 = pr, pf 2 prime, and for other infinite series (including 

n = 46 and n = 226), cf. [13], [10], [18]. However, the general problem 

of existence and uniqueness is unsolved. Conference matrices are used a.o. 

in network theory and in weighing designs, cf. [1], [20], [24]. 

2.3. Hadamard matrices 

A Hadamard matrix of order n is an n x n matrix H with elements± 1 

satisfying HHt = nI. A necessary condition for its existence is n = 0 

(mod 4). It has been conjectured, but never proved, that this condition 

is also sufficient. A further conjecture is that for all n = 0 (mod 4) 
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there exists a Hadamard matrix of skew type, having the elements hii -1, 

and hji = -hij for all i # j from 1 ton. Here are a few examples of 

Hadamard matrices: 

+ + + C + I C - I 
n n n n 

+ 
H4 

+ 
H2n 

C - I -c - I 
+ n n n n 

where en is a symmetric conference matrix of the order n. 

3 . CODING THEORY 

3.1. First example 

Consider the elements of the 6 x 12 matrix 

as elements of the ternary field lF3 • The 6 row vectors of this matrix 

generate a linear subspace of dimension 6 of the vector space of dimension 

12 over :JF3 • The 36 vectors [code words] of this linear subspace [linear 

code] differ pairwise in 6, 9 or 12 posit~ons [have Hamming distance 6, 9 

or 12]. Indeed, the Hamming distances are divisable by 3 since 

over :JF3 , and it is easy to check that Hamming distance 3 does not occur. 

It follows that the linear (36 ,12,6)-code is 3-error-detecting and 2-error

correcting. The linear (36 ,11,5) Golay code, obtained by deleting any one 

coordinate, is 2-error-correcting and perfect. This means that the spheres 

of radius 2 around the vectors of the code are disjoint, and that the 

vectors of the code and the spheres exhaust the vector space: 

11 6 11 
3 3 (1+2xl1+4x ( 2 )). 
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These codes are related to the Mathieu groups M12 , M11 , and to the Steiner 

system 5-(12,6,1) cf. [4]. 

3.2. Symmetry codes. For q - -1 (mod 6), a symmetry code over lF3 is defin

ed'by its generator matrix 

I 1], q+ 

where C 1 is a conference matrix. These codes have been introduced and 
q+ 

investigated by PLESS [19], cf. also [4]. Examples for q = 5,11,17,23,29 

yield 5-designs. 

4. DESCRIPTIVE GEOMETRY 

4.1. First example 

2 
Since the matrix c6 of section 2 satisfies c6 

are Is and -Is, each of multiplicity 3. Hence 

SI 5 , its eigenvalues 

has the eigenvalues 1 and 0, each of multiplicity 3. It follows that we 

may write 

t 
HH, Wl.'th HtH I = 3' 

t 
for some 6 x 3 matrix Hand its transposed H. Indeed, by the spectral 

theorem, cf. for instance [14], any n x n symmetric matrix G may be brought 

into diagonal form A as follows: 

G S orthogonal. 

Now in the case that the eigenvalues of Gare ld and On-d we write, without 

loss of generality, 

0 7 
A s [H K] 
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with n x d matrix H. It then follows that 

G 

In our example the geometric interpretation is as follows. The 6 row vectors 

of H represent 6 vectors in 3-space, which are the orthogonal projections 

of the 6 vectors of an orthonormal frame in 6-space. The 6 row vectors of 

H have equal length 1/12, and are at mutual angles~ or u - ~, with 

cos~= 1//5. These 6 vectors span 6 lines which are equiangular, that is, 

the angle between each pair of lines is the same. We shall soon see how 

these vectors and lines can be realized in 3-space. 

4.2. Eutactic stars 

In a real vector space V of finite dimension d a finite spanning set of 

vectors is called a eutactic star if its vectors are the orthogonal projec

tions into V of the vectors of an orthonormal frame in a vector space U 

which contains Vas a subspace. It is known [23] that a set of vectors forms 

a eutactic star if and only if the matrix of the inner products of the 

vectors has exactly 2 distinct eigenvalues (essentially, the argument is 

the one given in the example). By use of this criterion it is not difficult 

to construct eutactic stars, cf. [23]. The notion of eutactic star goes 

back to SCHLAFLI, [7] p.261. Essentially, the existence of a eutactic star 

expresses the possibility for "axonometry", a projection method in descrip

tive geometry. Indeed, by axonometric projection, the geometry in space is 

described in the plane, and the 3 vectors of an orthonormal frame are pro

jected onto a eutactic star. 

4.3. Root systems 

The root systems provide examples of eutactic stars. For instance, the 

exceptional root system E8 consists of 240 vectors in Euclidean 8-space, 
2 6 1 8 112 of type (±1) 0, and 128 of type (±2) with an even number of minus 

signs. The inner products of these vectors are± 2, ± 1, 0. It turns out 

(cf. [3]) that the 240 x 240 matrix of the inner products has 2 eigenvalues, 

one of which is 0. Therefore, the vectors of E8 are the projections, onto 

8-space, of an orthonormal frame in 240-space, up to a factor. 
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5. SOLID GEOMETRY 

5.1. First example 

The regular icosahedron provides a natural setting for the graph of 

section 1 and its matrix c6 . To explain this, we first observe that the 6 

lines connecting the antipodal pairs of vertices of the regular icosahedron 

are equiangular. These diagonals provide the realization in 3-space an

nounced in section 4. Indeed, up to orthogonal transformations they con

stitute the only set of 6 lines in 3-space whose mutual angles are the 

same [12]. 

4 3 

3 
4' 

Along each of the 6 diagonals we select a vector of length 1/f2. As a first 

choice we consider the vectors 01, 02, 03, 04, 05, 06. The matrix of their 

inner products is precisely 

hence these 6 vectors represent the matrix c6 and our standard graph. T~e 

edges [non-edges] of the graph correspond to the pairs of vectors at obtuse 

[acute] angle. 

By a different choice of the 6 vectors different graphs may be obtained. 

For instance, the vectors 01, 02, 03, 04, 05, 06' yield the second graph of 

the figure below. Switching from 06 to 06' has the effect of multiplying 

by -1 the 6-th row and column of the matrix c6 . The new graph is said to 

be related to the old graph by switching with respect to vertex 6. One can 

switch with respect to any vertex, and with respect to any subset of the 

vertices. The graphs thus obtained are said to form a switching class of 

graphs. In our example any graph in the switching class is isomorphic to 

one of the following 4 (unlabelled) graphs: 
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5.2. Equiangular lines 

A set of equiangular lines in Euclidean space of dimension dis a set 

of lines (through one point) any pair of which has the same angle¢. To 

each set of equiangular lines there is attached a switching class of graphs. 

Conversely, let r be any graph on n vertices, let C denote its (±) adjacency 

matrix, and let n-d be the multiplicity of the smallest eigenvalue A of c. 

Then r defines a switching class of graphs, and a set of equiangular lines 

in lRd at cos¢= -1/L Here are some results, [17], [16], [21] pp.299-307, 

for the maximum number n (d) of equiangular lines in lRd at angle ¢: 

d 

n(d) 

-1 
(cos¢) 

2 3 4 5 6 7 

3 6 6 10 16 28 

2/s 3 3 3 3 

14 15 21 22 23 

28 36 126 176 276 

3 5 5 5 5 

41 

276 

5 

where, ford= 14 and d ~ 24, the numb~rs are still subject to some un

certainly. For sufficiently large d we have 

aids n(d) s ~d(d+l). 

6. CRYSTALLOGRAPHY 

6.1. First example 

The rhombic triacontahedron is a polyhedron in 3-space whose 30 faces 

are congruent rhombs. Its 60 edges fall into 6 sets of 10 parallel edges, 

parallel to the 6 diagonals of a regular icosahedron. Here is an incomplete 
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drawing, a view from above (from below) in which the 10 edges perpendicular 

to the plane of the drawing are missing ([8] p.63). 

If the rhombic triacontahedron is contracted in the direction of any one 

edge, so that the corresponding zone disappears, then a rhombic icosahedron 

is obtained. This polyhedron is again represented by our drawing, now in a 

more complete way (views from above and from below). Repeating this process 

of contraction with respect to a second parallel set of edges, we obtain 

a rhombic dodecahedron. Its edges are parallel to 4 of the 6 diagonals of 

the regular icosahedron, hence its rhombs have angles¢ satisfying 

cos¢= ±1//s. 

Fedorov, in the course of his crystallographic investigation in 1883, 

enumerated zonohedra (solids bounded by centrally symmetric polygons). 

Now his rhombic dodecahedron is different from the polyhedron of the same 

name explained above. Indeed, the edges of the official rhombic dodecahedron 

are parallel to the 4 diagonals of the cube, which are equiangular with 
1 

cos¢= 3. It was only in 1960 that Bilinski found the new type of rhombic 

dodecahdron (cf. [8]). 

6.2. Polyhedra and lattices 

For a star consisting of n vectors e 1 , ..• ,en in Euclidean a-space we 

consider the vectors 

Restriction to 0 ~ zi ~ 1, i = 1,2, ... ,n, leads to polyhedra; restriction 

to integer zi leads to lattices (which may or may not be dense). Special 

properties of the star (such as eutaxy, cf. section 4) yield special 



polyhedra and lattices. Therefore, the study of stars is useful for the 

theory of polytopes [7], and of lattices and quadratic forms [6]. 

6.3. The Korkine - Zolotareff, and the Leech lattice 

Following J. McKay we consider the lattice in 11/k consisting of the 

integral linear combinations of the columns of 

where Hk is a Hadamard matrix of skew type of order k having the constant 

diagonal -Ik, cf. section 2.3. This lattice is unimodular, that is, 

det B2k = 1 • Now 

implies the following, for all columns of B, whence for all vectors x of 

the lattice. Fork= 0 (mod 4) all inner products are integral. Fork= 4 

all (x,x) are even. Fork= 12 the minimum of (x,x) equals 4. 

89 

For k = 4 we obtain the lattice in JR8 which was first discovered by 

Korkine and Zolotareff in 1873, cf. [6]. The 240 minimal vectors, with 

(x,x) = 2, form the exceptional root system E8 mentioned in section 4.3. 

Fork= 12 we obtain the lattice in JR24 discovered by Leech in 1967. 

The 196560 minimal vectors, with (x,x) 4, are pairwise antipodal and 

form (~8) lines at angles t with cost E {0,~ 1 ~}. Their automorphism group 

is Conway's simple group of the order 4157776806543360000, cf. [SJ. 

7. TOPOLOGY 

7.1. First example 

In the set of the 6 diagonals of the regular icosahedron two kinds of 

triples may be distinguised. An odd triple of diagonals is a triple spanned 
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by 3 vectors at obtuse angles, such as 01', 02, 03. An even triple of diag

onals is spanned by 3 vectors at acute angles, such as 01, 02, 04. Any 

triple of diagonals either carries vectors of the obtuse type (odd triple) 

or of the acute type (even triple). 

2 
2 3 

1 I 

II' 
; I \ 

I \ 
i I ' ; I \ 

I \ 
I 

4 

For any graph_ in the switching class., the 3 vertices corresponding to any 

odd [even] triple carry an odd [even] number of edges. 

Among the 20 triples of diagonals there are 10 odd triples.. Any diag

onal is contained in 5 odd triples, and any pair of diagonals is contained 

in 2 odd triples. Furthermore, each 4 diagonals contain an even number of 

odd triples. We restate these facts in a more sophisticated language. The 

6 diagonals and their odd triples form a 2 - (6,3,2) block design. Further

more, the characteristic function of the odd triples is a 2-cocycle modulo 

2 of the simplex. Indeed, defining g(x,y,2,) = 1 or 0 according as {x,y,z} 

i~ an odd or an even triple, we have for each quadruple {x,y,z,t} of diag

onals the following relation: 

og(x,y,z,t) := g(x,y,z) + g(x,y,t) + g(x,z,t) + g(y,z,t) _ 0(mod 2). 

7.2. Two-graphs 

A two-graph (V,&) is a pair of a set Vanda subset & of the set v3 
of all unordered triples from V, such that every 4-subset of V contains an 

even number of triples from&. A two-graph is regular whenever each pair 

of elements of Vis contained in the same number of triples from&. 

For a survey of two-graphs we refer to [22]. Two-graphs, switching 

classes of graphs, and sets of equiangular lines are equivalent notions. 

For n vertices, the number of nonisomorphic two-graphs equals the number 
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of nonisomorphic Euler graphs. 

7.3. Cohomology over F 2 

The statements of the last paragraph are a consequence of the follow

ing isomorphisms between the F 2 vector spaces of 2-cocycles (two-graphs), 

of cosets of 1-cochains modulo 1-cocycles (switching classes of graphs), 

and of dual 1-cycles (Euler graphs): 

We refer to [2] for details. 

8. PERMUTATION GROUPS 

8.1. First example 

It is well-known [15] that the group of the rotations (direct orthog

onal transformations) which map the regular icosahedron onto itself is 

isomorphic to A5 , the alternating group on 5 letters of order 60. The 

elements of this group also map the set of the 6 diagonals of the icosahe

dron onto itself, and the group acts 2-transitively on the diagonals. How

ever, for any set of 6 vectors, one along each diagonal, there is only a 

subgroup which maps the set onto itself. For the set 01,02,03,04,05,06 

mentioned in section 5, this subgroup is isomorphic to the dihedral group 

D5 of order 10; for the set 01,02,03,04,05,06' to o 3 of order 6. 

This translates in terms of two-graphs and graphs as follows. The 

group of the permutations of the 6 vertices which map odd triples onto odd 

triples (the automorphism group of the two-graph) is isomorphic to A5 , and 

acts 2-transitively on the vertices. The 9roup of the permutations of the 

vertices of any graph in the switching class which map edges onto edges 

(the automorphism group of the graph) is isomorphic to either o5 or o3 . 

The above illustrates that o5 and o3 are subgroups of A5 . Furthermore, 

the two-graph (the set of the 6 diagonals) provides a structure which admits 

a doubly transitive representation for the finite simple group A5 . Finally 

we remark that the group of all orthogonal transformations (so including 

reflections) which map the icosahedron onto itself has 120 elements. This 

group is the direct product of {±I} and A5 . 
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8.2. Finite simple groups 

The notion of regular two-graphs was proposed by Graham Higman as a 

combinatorial setting for the doubly transitive representation of certain 

sporadic simple groups. Referring to the results in 5.2 above, and to [22], 

we mention the following examples of groups acting as an automorphism 

group of a regular two-graph: Sp(6,2) on regular two-graphs with 28 and 

with 36 vertices, U(3,q) on q3 + 1 vertices, the Higman-Sims group on 176 

vertices, and the Conway •3 group on 276 vertices. In fact, the last group 

is characterized by this property, since the non-trivial regular two-graph 

on 276 vertices is unique (up to taking complements), cf. [11]. 

8.3. Cohomology of groups 

Recently CAMERON [2] defined 2 invariants associated with a group of 

automorphisms of a two-graph, in terms of one-dimensional and two-dimen

sional cohomology groups, respectively. In our example the non-triviality 

of the first invariant expresses the fact that the two-graph has more 

automorphisms than any graph in its switching class. In our example the tri

viality of the second invariant expresses the fact that the automorphism 

group of the two-graph (the 6 diagonals) acts as an automorphism group on 

the icosahedron, that is, the semi-direct product of {±I} by A5 is a direct 

product. 

9. TRIGONOMETRY 

9.1. First example 

Let P denote the vertex set of a regular pentagon in the plane, in

scribed in the unit circle u. Let 

i 1, ... , 5 

denote the vertices of P, and their coordinates with respect to an ortho

normal frame. The elementary addition formula 

cos k(¢.-¢.) = cos k¢. cos k¢. + sin k¢.sin k¢., 
l J l J l J 

when summed over i,j 1, ... ,5, yields 
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for any k E JN. We observe that the left hand side is invariant under ro

tations of the pentagon; this is not necessarily true for each of the 2 sum

mands at the right hand side. Now it is easy to see that the left hand side 

equals zero fork t 0 (mod 5), hence 

5 
l cos k~i 

i=1 
0 

5 
l sin k~i' 

i=1 
fork 1,2,3,4. 

Remarkably, these relations remain valid if the pentagon is rotated, as a 

consequence of our observation above. 

9.2. Spherical designs 

The considerations above carry over to d-dimensional space. Again the 

main tool is the addition formula, which now is formulated in terms of 

Gegenbauer (ultraspherical) polynomials in one, and harmonic polynomials 

ind variables. Let Hom(k) denote the linear space of the homogeneous poly~ 

nomials ind variables of total degree k, restricted to the unit sphere U. 

Let Harm(k) denote the subspace of the harmonic polynomials, satisfying 

Laplace's equation. 

A spherical t-design is a finite subset P of the unit sphere U in lRd 

having the following property, fork= 1, ••• ,t: 

l h(p) 
PEP 

o, for all h E Harm(k). 

An equivalent formulation is that, for all f E Hom(k), 

l f(p) is independent of orthogonal transformations a of lRd. 
pEPcr 

We refer to [9] for further information. Some examples of spherical t

designs follow: the 5 vertices of the pentagon with t = 4, the 12 vertices 

of the icosahedron with t = 5, the 240 vectors of the root system E8 with 

t = 7, the 196560 minimal vectors of the Leech lattice in JR.24 with t = 11. 

Spherical 2-designs are spherical eutactic stars which are balanced. 
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10. MECHANICS 

10.1. First example 

The phenomenon described in the first example of section 9 admits an 

interpretation in terms of classical mechanics. Put equal masses on the 

vertices of the regular pentagon P, then the first, second, third and 

fourth moments, with respect to the centre of P, of the mass system are in

dependent of rotations of P. Indeed, the k th moments are defined as 

5 

I a + b k, a,b E lN, 
i=l 

and each (cos ¢)a (sin ¢)bis a linear combination of cos¢, sin¢, cos 2¢, 

sin 2¢, .•• ,cos k¢, sink¢. Fork= 1 this means that the centre of gravity 

of the mass system is in the centre of the unit circle U. Fork 2 this 

means that the inertia ellipsis a circle. It follows, that fork 1,2,3,4 
th I, th 

the k moments of the mass system equal the corresponding k moments of 

the circle on which the mass is homogeneously spread out, that is, 

1 5 

s I 
i=l 

a b 1 J (cos ¢.) (cos ¢.) = -
i i TT 

u 

for a+ b = k E {1,2,3,4}. This equation may be phrased as the tensor equa

tion below, fort= 4 and the present P and U. 

10.2. Symmetric tensors 

An equivalent definition for the notion of a spherical t-design is the 

following. 

A finite subset P of the unit sphere U in Euclidean space of dimension 

dis a spherical t-design whenever the following holds fork= 1, ... ,t: 

_1_ 1 k 
l ® p 

IPI pE:P 
1 J k 1uT ® p dw(p). 

u 
The equivalence with the definition in section 9 is evident. Indeed, if the 

1 
coordinates of pare (x 1 , ... ,xd), then the 2d(d+l) components of p ®pare 

xixj, is j form 1 to d, and the (d+:-l) components of ®kp are the monomi

als of degree kin x 1 , ... ,xd. 
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ALGEBRAIC GEOMETRY IN HOLLAND BETWEEN 1918 AND 1928; 

REMINISCENCES FROM MY STUDENT DAYS 

by B.L. van der Waerden 
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Under this title Professor B.L. van der WAERDEN presented a plenary lecture. 

Professor van der Waerden, who began his mathematics studies in Amsterdam 

in 1919, described in his lecture how his lifelong involvement with algebraic 

geometry originated in the general. interest in this field among Dutch mathe

maticians during his student days. He gave an impression of his teachers in 

Amsterdam, their interests and their approach to mathematics, and proceeded 

with a discussion of some concrete problems from algebraic geometry which 

drew his attention. Professor van der WAERDEN's reconstruction of his early 

work and the ideas and motivation behind it were highly illuminating. This 

early research soon led him to Gottingen and Emmy NOETHER; the great influ

ence of Emmy NOETHER on Van der WAERDEN's own work was described in detail. 

The program committee, on inviting professor van der WAERDEN for this ple

nary lecture, agreed that his talk would not be published. However, a tape 

recording of the lecture (which was held in the Dutch language) is preserved 

in the archives of the WISKUNDIG GENOOTSCHAP. 





LAPLACE INTEGRALS, FACTORIAL SERIES AND 

SINGULAR DIFFERENTIAL EQUATIONS 

B.L.J. BRAAKSMA 

0. INTRODUCTION 

101 

In this paper we are concerned with singular differential equations 

(0.1) X1-p~=f() dx x,y, 

where p E JN, p > O, y E ¢n and f(x,y) E ¢n is a polynomial in the compo

nents yj, j = 1, .•• ,n of y, with coefficients that are holomorphic in a 

region S = {x E ¢: lxl >Rand a< arg x < S} (a< S, 0 < R). Then 00 is 

a singular point of the differential equation of rank at most p. Let 

(0.2) f(x,y) 

We assume asymptotic expansions for the coefficients 

00 

(0.3) t -k 
a (x) ~ l av,k x as x + 00 ins. 

V k=0 

The construction of solutions of (0.1) near the singular point 00 

often consists of two parts: in the first part one constructs formal 

solutions and in the second part one shows that there are analytic solu

tions associated with the formal solutions. We will consider this analyt

ic part mainly. 

In several cases (0.1) has formal solutions 

(0.4) y(x) " X 

00 

t -k 
l ck x 

k=0 

h ' ¢ ¢n i'f k were A E , ck E 0,1,2, •.•• This means that substitution of 
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the formal series (0.3) in (0.2) and then substitution of the formal 

series for f and yin (0.1) gives an identity. If p = 0 and the coeffi-

cients a in 
p 

(0.2) are holomorphic in 00 then the formal series (0.3) and 

(0.4) converge and y represents a holomorphic solution according to a 

theorem of Briot and Bouquet. However, if p ~ 1 the formal series (0.4) 

for y need not converge, even if the series (0.3) converge. On the other 

hand, in several cases one may show that on a suitable subsector of S 

there exists a solution y(x) which has the righthand side of (0.4) as 

asymptotic expansion. For example, if a 0 (x) = 0 and 

(0.5) I A(x)y 
lvl=l 

where A(x) is an n x n matrix which is nonsingular if x ES, lxl suffi-

ciently large, and A -1 then such a solution exists in a subsector of 

S with central angle less than TI/p (cf. WASOW [15, p.58]) 

Here we are concerned with cases where the coefficients a are 
V 

representable as Laplace integrals in sectors with central angle at least 

TI/p. we consider two classes of Laplace integrals A1 and A2 which will be 

defined in sect. 1. If the coefficients a belong to A. and there exists 
V J 

a formal solution (0.4) of (0.1) then under certain conditions there 
-A exists a holomorphic solution y of (0.1) such that x y is of class A. 

J 
and the righthand side of (0.4) is the asymptotic expansion of y as x ➔ 

on S (cf. theorems 1 and 2 and their corollaries). 

The class A2 of Laplace integrals consists of functions which admit 

convergent factorial series expansions. The problem whether there exists 

a factorial series solution of (0.1) corresponding to a formal solution 

(0.4) is important since if the factorial series solution exists it may 

be calculated directly from the formal series (0.4). Hence in these cases 

we may calculate the solution to any degree of approximation from the 

formal series (0.4) which in general diverges. 

Solutions of (0.1) in the form of Laplace integrals have been 

studied by Poincare, Birkhoff, Horn, Trjitzinski, Turrittin and others. 

Following HORN ([3],[47,[5]) we transform the differential equation (0.1) 

by means of 

(0.6) y(x) I 
0 
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into a singular Volterra integral equation for w. We show that a solution 

of this integral equation exists in a suitable Banach space of holomorphic 

functions of exponential type in a sector. This leads to a solution of 

(0.1) with the desired properties (cf. sect. 2 for the linear case and 

sect. 3 for the nonlinear case). 

In the nonlinear case formal power series solutions of the form (0.4) 

do not always exist, though there may be formal solutions of the form 

0, 

(0. 7) y(x) 
t -;>.. 
l ck x k, Ak +"'ask+"'· 

k=O 

We show in sect. 3 that analytic solutions in the form (0.6) may be 

associated with these solutions.· 

In sect. 4 we give applications of sect. 2 and 3. Here we show when 

formal solutions of (0.1) exist to which correspond analytic solutions 

by means of the theorems in sect. 2 and 3. Furthermore an application to 

canonical forms of linear equations is given. The results are related to 

work by HORN [3],[4], MALMQUIST [10], TURRITTIN [11] and IWANO [7] (cf. 

also WASOW [15, ch. 11]). 

The linear case of (0.1) has been investigated by W.A. Harris Jr. 

and myself in [1], where also functional differential equations of a 

certain type are considered. 

1. LAPLACE INTEGRALS AND FACTORIAL SERIES 

We shall consider the differential system (0.1) with coefficients 

that belong to a class of Laplace integrals. We use two classes of Laplace 

integrals. They are defined as follows: 

DEFINITION 1. Let p be a positive integer, e1 ~ e2 , µ ~ 0 and define 

( 1.1) 

Then A1 (0 1,e2 ,µ,p) is the set of analytic functions F: G1 + ¢n such that 

<X>foi0 

(1. 2) F(x) J 
0 

n 
where F0 E ¢ and f has the following properties: 
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1-.!_ 
(i) Let s 1 = {t E ¢: 0 1 $ arg t $ 0 2}, then Pf E c(s 1 ,¢n) and if 

0 
0 1 < 0 2 , then f is analytic in the interior s 1 of s 1 (s 1 contains 0). 

ii) f(t) = O(eµiJtJ) as t + 00 on s1 for all µ 1 > µ. 

00 !!l-1 
iii) f(t) ~ l f tP as t + 0 on s1 where fm E ¢n, m 1,2, ... 

m=l m 

The class A2 (w,µ) where w E ¢, w f 0, µ ~ 0 is a subset of 

A1 (8,8,µ,1) where 8 -arg w. It is defined as follows: 

i8 
DEFINII'ION 2. Let G2 = {x E ¢: Re (xe ) >µ}.Then A2 (w,µ) is the set of all 

functions F: G2 + ¢n with the representation (1.2), 8 = -arg w, p = 1, such 

that F0 E ¢n and f has the following properties: 

i) 

ii) 

Let s2 (w) be the component of {t E ¢: 11 - e-wtl $ 1} that contains 

the ray: arg t = 8. Then f: s2 (w) ➔ ¢n is continuous and analytic 

in S~(w). 

f(t) = O(eµ1Jtll ( l as t ➔ 00 on s 2 w for all µ 1 > µ. 

For short we will often write A1 or A2 for the classes defined above. 

Moreover, we will use a similar definition for matrix functions. 

It is well known (cf. DOETSCH [2, p.45, 174] that FE A1 (8 1 ,82 ,µ,p) 

implies 

00 

(1.3) F(xl ~ F0 + I r(~lf 
m=l p m 

1 
on any closed subsector of G1 : - 2 11 

-m x as x ➔ 00 

For short we shall say in this case that \1.3) holds on closed subsectors of 

G1 . Conversely, if F is analytic on a clrn,,ed sector G such that G1 c GO and 

(1.3) holds on G, then F belongs to A1 (8 1 ,8 2 ,µ,p) for someµ~ 0. 

If FE A2 (w,µ), then Fis representable by a factorial series 

(1.4) F(x) 

where F E ¢n if m E IN (cf. DOETSCH [2, p.221]). 
m 

Conversely. if (1.4) holds, then F has a Laplace integral representa-

tion (1.2) with 8 = -arg w, p = 1 under somewhat weaker conditions on f than 

in definition 2: f(t) O(eµ 1 Jtl) as t ➔ 00 on I Im wtl $ f - E for all 
11 0 

µ 1 > µ, 0 < E < 2 and f is analytic in s2 (w). 
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If FE A2 (w,µ), then (1.3) with p = 1 holds as x + 00 on any closed sub-

t f I ie I < 1T ( 0 < 1T) 1 l.0 f F A ( ) sec or o G2 : arg xe - 2 - £ < £ _ 2 . Converse y, E 2 w,µ 

I i6 I 1T and (1.3) with p = 1 holds as x + oo on arg ~e _$ 2 - £, then we may 

construct the factorial series (1.4) from the asymptotic series: we may 

expand each term in (1.4) in an asymptotic power series, comparison with 

(1.3) now gives a recursion formula for the Fm+l· Alternatively we may 

write x-m as a factorial series; substitution in (1.3) and comparison with 

(1.4) gives also a recursion formula for Fm. For the explicit form of this 

formula cf. WASOW [15, p.330]. In this way we sum asymptotic series for 

functions in A2 (w,µ) by factorial series. This is a useful property since 

factorial series converge uniformly in half planes. This property will be 

used in the sequel where we encounter formal power series solutions which 

under certain conditions are asymptotic expansions of solutions in A2 (w,µ) 

and consequently may be summed to any degree of approximation by factorial 

series. 

If m > 1, then s2 (mw) c s2 (w) and so A2 (w,µ) c A2 (mw,µ). Consequently 

factorial series (1.4) also are representable by factorial series (1.4) on 

G2 with parameter row instead of w if m > 1. 

If F1, F2 E Aj then also F1F2 E Aj since f 1 * f 2 satisfies the condi

tion of definition j if fl and f 2 do so. 

2. THE LINEAR EQUATION 

We now consider the differential system in the case that it is linear 

and that it is a coupled system of a system with a singularity of the 

first kind and a system with a singularity of the second kind. 

To formulate this we partition n x n-matrices along the n 1-th row 

and column (0 $ n 1 $ n): 

where Mjh 

vectors f 

is ar nj x ~ matrix, n2 ~ n - nl. A corresponding 

= (!2) after the n1-th component will be used. 

splitting of 
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(2 .1) 

Now consider the system 

xl-p dy = A(x)y + b(x), 
dx 

where pis a positive integer, and concerning A and b we assume either 

case 1: A, b E A1 (8 1 ,e2 ,µ,p) or case 2: p = 1 and A, b E A2 (w,µ). 

Then we have representations 

(2. 2) A(x) 

and asymptotic expansions 

(2.3) A(x) ~ }: 
m=0 

in closed subsectors of Gl in case 

We assume 

All 0, A12 o, bl 
m m 

(2.4) 

I 
m=0 

1 and 

b 
m 

G2 

0 if m 

{ :2 
AO + pt! is nonsingular on S, 

J 

Then we have 

-m 
X 

in 

as x ➔ 00 

case 2. 

0, 1, ... ,p-1; 

in case j. 

21 
AO o, 

THEOREM 1. Suppose I; cm x-m is a formal solution of (2.1). Then there 

exists an analytic solution y of (2.1) which belongs to A1 (8 1 ,e2 ,µ,p) in 

case 1 and to A2 (w,µ) in case 2 such that 

(2 .5) y<x> ~ I 
0 

-m 
C X 

m 

as x-+ 00 on any closed subsector of G1 in case 1 and of G2 in case 2. 

The solution y with these properties is unique. 

-m 
REMARK. In case 2 we may sum the formal solution ~O c x to a convergent 

i8 m 
factorial series which satisfies (2.1) on Re(xe ) > µ (cf. sect. 1). 

N-1 
PROOF. Let u I 

0 

-m cmx , a partial sum of the formal solution. Then 
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xl-p: = A(x)u + b(x) - c(x), 

A 1 O -p-N 2 . -N 
where c E . and c (x) = (x ), c (x) = O(x ) as x + 00 on closed 

J 
subsectors of G .• Hence with y - u = v we get xl-p dv = A(x) v + c(x) 

, J dx 
as equation equivalent to (2.1). 

1 
So it is sufficient to prove the theorem in case bh = 0, h = 0, ... , 

2 
p + N - 1, bh = O, h = 0,1, ..• ,N-1 for a sufficiently large integer N. We 

assume this latter condition from now on or equivalently by (2.2) (cf. (1.3)) 

~-1 

l Sm tp as t + 0 in sj, s~ 
m=N 

(2. 6) S(t) OifN,,;h,,;N+p-1. 

-N 
We seek a solution y of (2.1) which is O(x ) as x + 00 , and which belongs 

to Aj. If y = LP~ is of class Aj then 

(2. 7) xl-p ~ = L (-pt(/)), A(x)y = LP (A00 + o. * \P) • dx p 

Hence (2.1) has a solution y = L <.p of class A. iff -ptl;l = A0~ + o. * <.p + S, 
p J 

and <.p satisfies the conditions in definition j for f(j = 1 or 2). This 

equation for tp is a singular Volterra integral equation. 
1- ! 

Ift pvEC(S_,¢n)wedefine 
J 

(2. 8) Tv 
-1 

- (AO + p t I) (o. * v). 

With 

(2. 9) 1/J 
-1 

- (AO + p t I) S 

the equation for(!) is equivalent to 

(2. 10) <.p=T<.p+i/J. 

The assumptions on A0 imply that 

(2 .11) 

and that 

(2 .12) (A22 + p tI )-land t(A + tI)-l 0 0 p 
n2 



108 

are uniformly bounded on sj. So if n 1 > 0 

We solve (2.10) in a Banach space V 
1- ~ N 

then Tis singular int= O. 

of functions v E C(S.,¢n) such 
J 

that v is analytic in S~, t p v is continuous in Sj and 

(2 .13) llvll = 
N 

sup 
tES, 

J 

1- ~ 
It P v(t> I 

-µ 1 It! 
e < "' 

Here µ1 is a fixed number, µ 1 > JJ where JJ is the parameter JJ in 

A1 (0 1,e2 ,µ,p) or A2 (w,µ). It is clear that VN is a Banach space with 

norm II • II N. A similar definition will be used for matrix-valued functions. 

Since b EA., it follows from (2.2) that S(t) = O(eJJ 1 !tl) as t +"' 
J 

in Sj. Using (2.9),(2.6),(2.11) and (2.12) we deduce t EVN. 

Next we show that T maps VN into VN. From the assumption A E Aj, 

(2.2) and (2.4) we deduce that a 1h E VP, a 2h E v 1 , h = 1,2. Since 

(2 .14) 
k-1 

t * 
m-1 B(k,m) t = tk+m-1 if Re k > 0, Rem> 0, 

N l- N+1 

we see that t p (a * v) 1 and t p 
(a* v) 2 are continuous on S. and 

0 J 
analytic in s. if V E VN. Moreover, if t E S. then 

J J 

It -1 (a * v) 1 (t) I 

Hence, by (2.11) 

(2.15) 

Similarly 

I (a * v) 2 (t) I 

and therefore 

II { (AO + 
-1 

v) /IIN 
1 N 

(2 .16) pt I) (a * ~ II all 11 vii B(-, -) 
1 N p p 

1 

ltP ( 22 
s~ AO 

tE j 
-11 + p tl ) . 

n2 

Hence with (2.8) and (2.12) we see that T maps VN into VN and that 

there exists a constant K independent of N such that 
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Choosing NO sufficiently large we see that Tis a contraction on 

VN if N ~ NO. Consequently there exists a unique solution of (2.10) in 

VN if N ~ NO• Now going backwards we easily verify that y 

(2.1) and y O(x-N) as x ➔ 00 in closed subsectors of G .. 
J 

L ~ satisfies 
p 

Hence, if N ~ NO and µ 1 >µthere exists a unique solution y = c0+LP(I) 

of the original equation (2.1), without assuming (2.6), such that lP is 
1 

0 1- 15 
analytic in sj, t ~ is continuous in Sj and 

N-1 c !!!_ -1 !! -1 
(l)(t) 2 _m_ tp 

m=1 r(m/p) 
+ O(tp ) as t + 0 in sj, 

Now the uniqueness implies that (I) does not depend on N. Hence we have 

a unique solution y E Aj with parameter µ 1 instead ofµ such that (2.5) 

holds. By variation of µ 1 we see that this solution y belongs to the 

class A. with parameterµ. D 
J 

COROLLARY. We make the same assumptions as in theorem 1 except that the 

cases 1 and 2 are modified as follows: Assume 

(2 .17) A(x) 

where¾• bh, h ~ O,1, •.. ,p-1, are of class A1 (0 1,02 ,µ,1) in case 1 

and of class A2 (w,µ) in case 2. Then, if L~ cm x-m is a formal solution 

,;p-1 -h yh(~) of (2.1), there exists an analytic solution y(x) lh=O x 

~,here yh 

- ½ - 02 

case 2. 

is of class A. and (2.5) holds as x ➔ 00 in 
J 

+ E ~ p arg x ~ f - 01 - E(E > 0), where 01 -arg w in 

This may be shown using a rank reduction scheme of TURRITTIN [12]: 

substitute 

X = ~T ~T T <Yo<s), ... ,yp-1<s>>' 

V (/;) 
~T ~T T 

CbO co, ... ,bp-l m > • 
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Then (2.1) is equivalent to 

(2.18) 

0 
where M(!;) 

From (2.4) we may deduce that M0 has n 1p rows of zeros and that 0 is 

eigenvalue of M0 with multiplicity n 1p. Hence M0 is similar to diag{O,M~2} 

where M~2 is nonsingular. So we may apply theorem 1 to (2.18) and the 

result follows. D 

3. THE NONLINEAR CASE 

We now consider the nonlinear analogue of theorem 1. We may write 

(0.1) in the form 

(3 .1) xl-p ~ = A(x) y + 
dx 

We assume either 

case 1: A, bv E A1 ce 1 ,e2 ,µ,p), or 

case 2: p = 1, A, bv € A2 (w,µ), where lvl = 0,2, ••. ,r. 

Then we have Laplace representations as in (2.2) with (2.3): 

(3.2) 

We assume 

All 
m 

(3.3) Iv I 

A22 
0 

00 

l bvmx-m as x + 00 in closed subsectors of Gj. 
m=0 

o, A12 o, bl 0 if m 0, ••• ,p-1 and m vm 

0,2, ••. ,r; A21 
0 

o, 

+ ptI is nonsingular on S, in case j. 
J 
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If these assumptions are satisfied we have 

,co -m 
THEOREM 2. Suppose (3.1) possesses a formal solution ll cmx . Then there 

exists an analytic solution y(x) of (3.1) such that (2.5) holds as x + 00 

on closed subsectors of Gj in case j and there exists a real number µ 1 > µ 

such that y E A1 (0 1,0 2 ,µ 1 ,p) in case 1 and y E A2 (w,µ 1) in case 2. 

PROOF. Let u = IN1-l c x-m. Then (3.1) may be transformed into an equivalent 
--- m 
equation for v = y-u. This equation is of the same type as (3.1) but with 

different coefficients A(x), bv(x) which still satisfy the conditions (3.2), 

(3.3) etc. above. Now 

(3.4) 

as x + 00 in closed subsectors of G .. Hence it is sufficient to prove 
J 

theorem 2 in the case that (3.4) holds with a suitably large N. Then 

boo = 0 and (2.6) holds with f3 replaced by so and Sm by Som· 

In the same way as in the proof of theorem 1 we see that y = L lP 
p 

is a solution of (3.1) which belongs to A. iff there exists a solution 
J 

lf) of (2.10) with 

Tv 

(3.5) 

1/i 

and lf) satisfies the conditions for fin d2finition j of sect. 1. In (3.5) 

v*V denotes the convolution of v 1 factors v 1 , v2 factors v2 etc. 

We solve (2.10) in a Banach space WN which arises from the space VN 

used in sect. 2 by replacing µ 1 by O and 8. by S. = s. n 6(0;E) where 
J J J 

6(0;E) is the disc in¢ with center O and radius E > 0. As in sect. 2 

we may show 1/J E WN using (2.6), (2.12) and (3.5). 

From (2.14) we deduce (2.15) and (2.16) for v E WN in the same way 

as in sect. 2. Similarly we have using (3.3) and (2.2) 

II { -l } 1 11 < -1 II 1 11 II (A0 + p t I) (Sv * v ) S v II h N-N VphN 
and 

(3.6) ll{(Ao +ptI)-1 (sv * vh)} 2 IIN s 

slls11 1llvll B(.!.~)sup 
V h N p'p td'. 

J 
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If v 0 and w0 are scalar functions belonging to the corresponding 

space WN of scalar functions then we have in view of (2.14) 

(3.7) 

2N 

$ II V II II w II B (~ !:!.i t p 
0 N ON p'p 

and v 0 * w0 E WN. If v and ware n-vector functions in WN and lvl ~ 2 

then v*V - w*V may be written as a sum of terms (v. - w.) * w, where w 
J J 

is the convolution of some components of v and wand sow E WN. Hence 

we may infer from (3.7) that v*V satisfies a Lipschitz condition on sets 

{v E WN: llvllN s K0 } and that the Lipschitz constant tends to zero as £ 

tends to zero (cf. definition of Sj). In view of (3.6), (3.3) and (2.12) 

the same holds for the term 

in (3.5). 

-1 
(AO + pt I) 

r 
\ *V *V 
l (b vO v + f:\ * v ) 

lvl=2 

11 12 Because of (2.15) we now choose an integer N0>2{11a II +Ila II }. 
p p 

Next we choose an integer N ~ N0 and define 

1-~ 
sup{lt pw(t) I: t E s.,ltl s 1},B 

J £ 
K { v E W : II vii s 2K} . 

N N 

Combining (3.5) with (2.15), (2.16) and the remark above we see that Tis 

a contraction if£ is chosen sufficiently small. Hence there exists a 

unique solution~ of (2.10) on Sj if N ~ N0 . 

Now suppose the solution~ of (2.10) with (3.5) is known on S' = 
j 

sj n ~ (O;p 0 ) for some p0 > O. Choose t 0 E sj with½ p0 < lt0 1 < p0 . Let 
+ -

s; sj n (Sj-t0 ) and sj sj + t 0 . Here sj - t 0 means the set sj translated 

over -to. 

We transform the integral equation (2.10) on s'. using the following de
J 

composition of v * w for scalar functions v,w continuous on S' 
j 

+ 
u sj and 

analytic in its interior. 



to 

+ f w(to+tl -1:)v(T)dT, 

tl 

where the paths of integration [O,t1J and [t0 ,t1J belong to Sj. Applying 

this decomposition successively to the convolutions in (3.5) we may show 

that 
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if t 1 E Sj, 

(s-:-) O which 
J 

where x1 and x2 are functions continuous in Sj and analytic in 

only depend on the values of v in S!. 
J 

Hence (2.10) may be transformed into a linear Volterra integral equa-

tion for v = (j)(t0+•) in S~. It has a unique solution which is continuous in 

sj and analytic in (Sj)o_JHence it coincides with the known solution (j)(t0+•) 

on s; n (Sj-t0J. By variation of t 0 we get a unique solution of (2.10) on 

sj n ~ (0;3/2 p0), hence on Sj, which is continuous on sj and analytic ins~. 

Now we estimate (j) on Sj. Let µ0 >µand 

(3.8) g(p) sup{ l(l)(tl I: t E sj, ltl p}, if p <'. 0. 

Since A,b EA. we have with (2.2): 
\! J 

.!__ 1 

la(t) I, 11\(t) I :,; K pp exp(µ 0p), iftESj, ltl p. 

Here K is some positive constant. Now use this and (3.8) in (3.5) and 

(2.10). Then we see 

(3 .9) 

where 

µop r 
(T 1g) (p) = M{e + l 

m=2 

r 
*ID ' g (pJ + l 

m=l 

if p <'. 1 for some constant M. We choose M such that also sup{g(p): 

p E [0,1]} < M. Then (3.9) holds on JR+. 

Following Walter [14,p.17] we first solve v = T1v. If w = t 1v, then 

1 
-- r 

wm(x) + Mr(.!.) (x-µ 0) P l wm(x). 
P m=l 

w(x) 
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This equation has a unique solution win a neighbourhood V of 00 which is 

analytic in x 11P, positive for x > 0, x EV and 

1 

w(x) as~ ➔ 00 

Let V contain the half plane Rex~ µ1 where µ 1 > µ0 • Then 

v(p) (C 1 w) (p) 
1 

1 
M + 2rri 

px -1 
e {w(x) - Mx }dx, 

It follows that vis real-valued, v(O) = M (cf. [2,p.174]) and v(p) 

O(exp µ 1p) asp+ +00 • In particular we have g(O) < v(O). 

p ~ o. 

Suppose there exists p0 > 0 such that O < g(p) < v(p) if O < p < p0 and 

g(p 0 ) = v(p 0 ). Then (3.9) implies 

which gives a contradiction. Hence g < v on lI\ and so 

(3 .10) 

for some constant K0 . Consequently y = L ~ exists on G. and y is a solution 
p J 

of (3.1). In the same way as in the proof of theorem 1 we may showy EA. 
J 

with parameter µl instead ofµ and (2.5) as x + 00 on Gj. D 

COROLLARY. Similarly to the corollary of theorem 1 we may modify the 

cases 1 and 2 in theorem 2 as follows. Assume 

A(x) 
p-1 -h ~ P 
l x bvh (r), 

h=O 

where¾' bvh' h O, ... ,p-1 are of class A1 (6 1,e 2 ,µ,1) in case 1 and of 

class A2 (w,µ) in case 2. Then, if the other assumptions of theorem 2 are 
,n-1 -h ~ p 

satisfied, there exists an analytic solution y(x) = lh=O x yh(~-) where 

yh E A1 (6 1 ,e2 ,µ 1 ,1) in case 1, yh E A2 (w,µ 1) in case 2 for some µ 1 >µand 

(2.5) holds as x + in -½rr e2 +Esp arg x s ½rr - e1 - E(E > 0), where 

-arg w. 
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,"" -m REMARK. The case that (3.1) possesses a formal solution y = lo cmx with 

c0 f O may be reduced to the case of theorem 2 with c0 = 0 by substituting 

v = y - c0 . Then v satisfies an equation of the form (3.1) with new coeffi

cients A and b for which the conditions of theorem 2 have to be verified. 
\) 

In several cases (3.1) has formal solutions of the form 

(3.11) y(x) 

where k 

Re K. > 0 if j = 1, .•. ,g and 
J 

sect. 4 for cases where such 

(g a positive integer), K = (1,K1 , ... ,Kg)' 

k.K = ko + klKl+ ... +kgKg (we refer to 

formal solutions exist). In these cases we 

have the following generalization of theorem 2. 

THEOREM 3. Suppose the coefficients A and bv in (3.1) belong to 

A1 (0 1,0 2 ,µ,p) with (2.3), (3.2) and (3.3). Suppose (3.1) possesses a 

formal solution (3.11) as above. 

Then there exists a real number µ 1 >µand an analytic solution 

y = LpW of (3.1) on G1 where G1 = {x € ¢: 3 0 € (0 1 ,02] such that 
... 0 

Re(~ei) > µ1}, such that 

00 

y (x) ~ l dk x -k · K as x + 00 on closed subsectors of G1. 
lkl=1 

PROOF. The proof is similar to that of theorem 2. Let the set of numbers 

k.K with !kl ~ 1 be arranged in order of increasing magnitude of their 

real parts to the sequence A0 ,A 1,A2 , ... 

and Re Am+ 00 as m + 00 • Then (3.11) may 

. Hence O < Re AO~ Re Al~ ... 

,"" c x-Am. be rewritten as y(x) = Lo m 
,N-1 -A Let u = Lo cmx m, where N is chosen in such a way that 

Re AN-l < Re AN. Then (3 .1) may be transformed into an equivalent equation 

for v = y - u. This equation is of the same type as (3.1) but with new 

coefficients A(x) and bv(x) which need 

we still have A= AO+ Lpo., bv = bvO + 

and Svare analytic in S~, 

o.(t> ~ I 
0 

o. 
m 

not belong to A1 anymore. However, 

LS, where the new functions o. p \) 

1 1 
1- - AO 1- - Ao 

t + o in s 1 and t p o. (t), t p sv (tl continuous in s1. as are 

(3. 3) implies ~11 0, ~12 = o, ~1 = 0 if Re A and Moreover, o. = o. svm m < p, m m 
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A21 22 
0 and A0 are the same as before. Analogous to (3.4) we now have 

-;\ -p 
O(x N }, 

as ,x + 00 in closed subsectors of G1 • 

We now proceed as in the proof of theorem 2 with small modifications. 

The role of the number N is now played by "N· D 

4. APPLICATIONS 

'
00 -m of (2.1) with b lo cmx - 0 exists I A formal nontrivial solution 

if (2.4) holds, A12 = O, A11 c = O 11 
for some cf O and A + 

p 
m I is non-

p p 1 
singular form= 1,2, .... Now c 0 = c and theorem 1 applies. 

,oo -m 
A formal solution locmx of the inhomogeneous equation (2.1) 

exists if (2.4) holds and ~l + m I is nonsingular form= 0,1,2, ... 

II The homogeneous equation (2.1), b = 0, has a formal solution 
, 000 >..-m. 12 11 11 l c x if (2.4) holds, A 0, A c = AC for some cf o, A + (m -;\)I 

m p p p 
is nonsingular form= 1,2, .... Now we may transform to the previous 

" case by the substitution y(x) = x z(x). Then we may deduce that the 
,oo -m 

formal solution lo cmx corresponds to an analytic solution of the new 

differential equation. Hence the original equation (2.1) has a solution 
->.. . 

y(x) such that x y(x) EA. in case j of theorem 1. A corresponding result 
J 

follows from the corollary of theorem 1 (cf. [1]). 

III Assume A12 = 0 and there is no pair of eigenvalues of A11 which 
p p 

differ by a positive integer. If the hypotheses concerning the coefficient 

A in theorem 1 are satisfied and b - O, then there exists an n x n 1 
11 

matrix solution U(x} xAj;, of (2.1) where U E Aj, U as x + 00 in 

closed subsectors of G .• A corresponding statement holds if the assumptions 
J 

concerning A in theorem 1 are replaced by those in the corollary of theo-

rem 1. 

The proof may be given by introducing the differential equation for 

U and applying application I to this equation (cf. [1]). 

REMARK. If the condition A12 = O, m - 0 1 p used above, is not m - , , ••• , , 

satisfied we may transform (2.1) to an equation where this condition is 

satisfied without violating the other assumptions made above (cf. WASOW 

[ 15 , ch. 5] ) . 
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The applications above contain the results of TURRITTIN [11] concerning 

factorial series as solutions of (2.1) with b = 0. However, we get here as 

halfplane of convergence of these solutions in case 2 the same halfplane 

where the coefficients A and bare representable by factorial series, where

as 'rurrittin gets a smaller halfplane (cf. also VII below). 

IV The conditions of theorem 2 are satisfied if besides (3.3) we have 

i) bl 
op 

2 o, b00 = o. 
ii) if n 1 ~ 1, then there is at most one positive integer which 

is eigenvalue of -A11 ; if R, is such an eigenvalue, then 
1 2 p 12 22 -1 2 1 

b h o, b h 0 for h = 1, ••• ,R,-1 and A (Ao) b O = b 0 op+ 0 p Ok op+N 
~m -m Now it is easy to see that a formal solution li cmx of (3.1) exists. 

V The conditions of theorem 3 are satisfied if (3.3) holds and 

i) bl 0, b~O = 0. 

ii) i~pn1 ~ 1, then K1 , ••• ,Kg are eigenvalues of -A~1 with 

Re Kj > o, j = 1, ••• ,g and ko + k1K1+ ••• +kgKg is not an 

eigenvalue of -A~1 if k0 , ••• ,kg € lN and k 1+ ••• +kg~ 2 or 

k 1+ ••• +kg 1, kO > 0. 

iii)condition ii) of IV holds and R, € {K1 , ••• ,Kg}. 

An algebraic computation shows that in this case formal solutions of the 

form (3.11) of (3.1) exist. The·number of solutions we obtain in this way, 
11 depends on the dimensions of the nullspaces of A + K, I, j = 1, ••• ,g. 
p J 

We refer to HUKUHARA [6] who computed all formal solutions of systems (0.1). 

Cases like those above have been studied extensively by IWANO (cf. [7]). 

He considers cases where f(x,y) in (0.1) need not be a polynomial in y and 

h th t 11 i 1 f ll h t' 1 t e assumes a a e genva ues o A ave nega ive rea par. 
p 

The treatment in sect. 3 can be extended to cases where f(x,y) is 

not a polynomial in y. Also cases where the formal solutions contain 

logarithms like in IWANO [8] can be treated by using solutions u = L ~ 
p 

where the expansion of~ near the origin contains logarithmic terms. 

VI we may apply IV to obtain a block diagonalization for linear systems 

(4.1) 
1-p dv 

X :=... = C(x)y 
dx 

analogous to WASOW [15, theorem 12.2] and MALMQUIST [10, sect. 3]. 

THEOREM 4. Suppose C is of class Aj, C(x) ~ 
11 

Let A1, ••• ,Ar be the eigenvalues of c0 and 

~m -m 11 22 lo cmx , c 0 = diag{c0 ,c0 }. 
22 A +1, ••• ,A those of c . r n 0 
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Assume±.!... (A - Ah) i S. if g ~ r < h. 
p g J 

Then there exists a transformation y T(x)z which takes (4.1) 

into 

(4.2) xl-p dz 
dx 

C(x)z, C(x) 
~11 ~22 

diag{C (x),C (x)} 

such that T and 2 are of class A. with a value of the parameterµ which 
J 

differs from the parameterµ in the class A. to which C belongs. Moreover, 
~11 C11 ~22 22 12 21 J_N -N c0 0 , c0 c0 . If C (x), C (x) = O(x ), then T(x) =I+ O(x ). 

PROOF. First we substitute y = Q(x)w, where Q(x) 
Q12(x)) 
I . 

Then (4.1) is transformed into 

(4.3) 

iff 

(4.4) ell() 12 12 22() 12 21() 12 12() X Q - Q C X - Q C X Q + C X • 

11 12 12 22 . 
Now c0 Q - Q c0 defines a linear transformation in the linear space 

f . 12 
o matrices Q 

(cf. WASOW [15, 

with eigenvalues Ag - Ah, g = 1, ... ,r; h r+l, ... n 

sect. 11]). Hence we may use application IV with n 1 = 0, 

and a solution of (4.4) exists in A. with a different value of the para
J 

meterµ. In a similar way we may transform (4.3) to the form (4.2). D 

A special case of theorem 4 with j = 2 has been given by TURRITTIN 

[13]. Theorem 12.2 in WASOW [15] corresponds to theorem 4 with j = 1. 

However, the sectors considered by Wasow have central angle at most TT/p. 

VII Linear differential equations (4.1) may be transformed to a canonical 

form by a linear transformation of y with polynomial coefficients and a 

change of variable x 4 xq. The canonical form is 

(4.5) 
1-p dy -1-p 

X - = A(x)y + X B(x)y 
dx ' 

where the positive integer p need not be the same as in (4.1) and 

(4.6) A(x) + x-p A~ } 
k . 

Here P1 , ... ,Pk are polynomials of degree (p - 1) at most, which are 

mutually distinct, and A1 , ... ,~ are constant Jordan matrices such that 
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any two eigenvalues of A. do not differ by a positive integer (j = 1, ... ,k). 
J ~oo -k 

B(x) is analytic and has an expansion lo Bkx . One of the polynomials Pj 

may be identically zero. 

This canonical form is due to MALMQUIST [10] and TURRITTIN [11] and 

is'a refinement of canonical forms of Hukuhara and Birkhoff. It has been 

studied recently by LEVELT [9] from an algebraic point of view. 

Jx -1 p-1 
Replacing yin (4.5) by Eh(x)y where Eh(x) = exp O Ph(/; )I; 

we get (4.5) with P replaced by P - Ph, g = 1, ..• ,k. Let 
g g 

(4.7) 

Now. assume pgh =£,is independent of g, if g f h. Then we may apply III: 

Suppose BE A1 (e 1 ,e2 ,p -£,µ) or 

B(x) o, ... ,p-£-1, 

and cgh i Sj if g f h. Then there exists an n x nh matrix solution 

Uh(x)xAhEh(x) of (4.5), where Uh belongs to the same class as B, and 

Uh has rank nh. This includes results of TURRITTIN [11, thm III]. Malmquist 

has shown in [10, ch. 3] that there exists an analytic transformation 

Y = T(x)z which transforms (4.5) into xl-p dz= A(x)z which may be inte-
dx ' 

grated easily. This reduction may also be performed using theorem 4 and its 

analogue theorem 12.2 in WASOW [15], and the remark after definition 2 in 

sect. 1. The result is: Suppose in the notation of (4.7): 

s0 - a 0 > ~ - ~ arg cgh i (a0 + 2~ - 2~ 

g f h, and q > q0 ~ o, s0 - a 0 ~ (TI/q0 l -

, s0 + -2!.. - -2!..J if q 
2p 2q 

TI/p for some q0 . 

TI TI 
Suppose B(x) is analytic in the sector S: - 2P - s0 < arg x < 2P - a 0 

for sufficiently large lxl and B(x) ~ l~ Bmx-m as x + 00 on closed sub

sectors of s. Then the transformation mentioned above exists and 

T(x) ~I+ I7 Tmx-m as x + 00 on closed subsectors of S. 
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ON PREDICTION 
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1. The distinguishing characteristic of the randomizer introduced by 

Bemelrijk elsewhere in this volume is that the outcome of this device is 

completely unpredictable (BEMELRIJK 1978). Yet it is implied that most 

people would respond to such a machine by attempting the impossible, thus 

testifying to the widespread belief that prediction is in itself a good 

and useful activity. Scientists quote correct prediction as the ultimate 

aim and test of scientific pursuit, and policymakers call for predictive 

studies so that they can ward off undesirable developments by anticipatory 

action. So far, however, very little attention has been paid to the nature 

and problems of prediction. 

In the present paper we start off from Bemelrijk's analysis. Since 

he has convincingly shown that prediction is pointless in the case of a 

randomizer, we must change the terms of reference in order to retrieve the 

subject. We next consider a number of examples which refer to the weather 

and to social and economic phenomena. Most of the arguments are wellknown, 

and we do not advance beyond tentative conclusions. 

2. We use the word predictor indiscriminately for a method or a person. 

In Bemelrijk's definition a randomizer is completely unpredictable in the 

sense that all predictors perform equally badly, i.e. no two predictors 

differ systematically in their number of successes. In the case of a true 

six-faced die, for instance, all predictors that are restricted to the in

tegers 1, 2, •• · 6 in the long run score successes in one sixth of all 

cases. 
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Three aspects of this definition deserve closer examination. 

3. The first point is that all predictors use the available information 

in a sensible, rational or perhaps optimal manner; it is not enough that 

the possible outcomes of the randomizer are known, but this knowledge must 

also be used. In the case of the six-faced die we cannot admit a predictor 

who mistakenly tries to predict random digits from the full range 0,1, .• 9. 

This method is definitely inferior to calling the integers from 1 to 6, 

and the definition would not hold. 

4. The second point is that we must consider the systematic performance 

of predictors, presumably by continued repetition of the extended experi

ment which consists of matching a prediction with the randomizer's outcome. 

For any finite number of experiments the scores of various predictors will 

generally differ, and the definition would never apply unless we are pre

pared to disregard differences that are not statistically significant*). 

5. Thirdly the performance of a predictor is measured by the number of 

correct predictions. In order to define these unambiguously, the range of 

continuous variables must be divided into discrete intervals. This is 

largely a matter of conventional precision: in practice the prediction 

that retail prices will rise by 7 percent is readily understood to mean 

'between 6.5 and 7.5 percent'. 

By a natural extension of this criterion the systematic performance 

of a predictor would correspond to the limiting frequency of successes in 

an ever increasing number of repetitions. We return to this point shortly. 

6. At this stage we change the frame of reference. Wenolonger envisage 

prediction as a means for defining the probabilistic model, as Hemelrijk 

does, but consider predictions that are prompted by practical or commer

cial considerations instead. Such predictions are used as a substitute for 

*) It is a moot point whether one may use such fairly advanced statistical 
concepts in constructing the basis of the probability model, but we 
do not pursue this question further. 
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information when decisions have to be taken in uncertain situations. We 

retain the first two points that have been discussed - viz. the use of all 

information and the need for a systematic view of prediction - but not the 

third which identifies prediction performance with the frequency of suc

cess. 

7. We thus move to decision theory. Predictions are no longer classi-

fied as correct or erroneous, but it is acknowledged that some errors are 

worse then others. This is not so in games of chance that offer 'all or 

nothing', but it certainly applies to weather forecasts or to economic 

predictions that lead to action by farmers, businessmen or the government. 

The central variable is the prediction error; if this is zero the correct 

decision and the appropriate action are taken, but any nonzero error will 

lead to some loss, and this loss is generally related to the size of the 

error. 

The prediction is thus part of a sequence that runs as follows: 

predict; 

act as if the prediction were true; 

suffer some loss due to prediction error. 

The best predictor is the predictor that causes least loss. As before, 

however, we cannot go by a single case or even by any finite number of 

repetitions. The prediction error is a random variable, and so is the 

loss, if only because the predictions are matched against the outcome of 

a statistical experiment. Once more we must decide on a systematic charac

teristic. The standard prac~ice is to take the expected value of the loss 

associated with a predictor as a measure of its performance. 

8. This passage to mathematical expectations is often justified intui-

tively by referring to the average over a large number of repetitions of 

the extended experiment, which now consists of the sequence we have just 

given. Upon suitable definition this yields identically distributed los

ses, and their average will converge to the expected loss by Khintchine's 

theorem. 

This line of reasoning has the serious drawback that it raises the 

vexed question of repetition under identical conditions. The prediction of 

the 1978 unemployment rate, for instance, is so strongly affected by the 

unique circumstances of 1977 that a repetition of the experiment is incon-
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ceivable. The prediction of a strong rise of unemp~oymen~ would moreover 

be invalidated by remedial action by the public authorities. We cannot 

observe the prediction error of such self-defeating prophecies, and even 

if they are capable of repetition we cannot assess the corresponding loss, 

nor examine its long-term average. 

We therefore prefer to introduce the expected loss as a criterion 

without this particular justification. It must be regarded as an axiom, or 

it can again be derived from other axioms that together form a reasonable 

framework for the utility evaluation of both certain and uncertain events 

(VON NEUMANN & MORGENSTERN 1947). 

9. In order to complete the model we must still specify the loss as a 

function of prediction error. We do not even discuss the alternatives that 

readily come to mind and at once opt for the square. This can be regarded 

as a quadratic approximation in the neighbourhood of the point of zero 

prediction error and zero loss, further restricted by imposing symmetry. 

It follows that the expected loss associated with a predictor is propor

tional to its mean square prediction error. 

If this much is accepted, several conclusions can be drawn. First, 

the best predictor is the expected value of the random variable under 

consideration. Secondly, if this is known (as in the case of a randomizer 

with given N), there is still a nonzero loss associated with the extended 

experiment, and this minimum is proportional to the variance of the pre

dicament. This irreducible term reflects the unpredictable character of 

all nondegenerate random phenomena, and thus confirms Hemelrijk's view that 

random variables may be defined by the impossibility of prediction. 

In the third place completely specified experiments with known mean 

outcome are restricted to classroom usage. Whenever predictions are called 

for in practice, they must be obtained from empirical observations that 

are themselves random. We thus predict or estimate the nonrandom mean by 

a random variable, and this of course adds to the expected loss by a term 

that is again proportional to the mean square error. Hence least mean 

square error predictors are at a premium. 

10. The quest for estimators and predictors which have minimum mean square 

errors, or which are at least unbiased or consistent, is a major field of 

statistical theory. But in the real world of weather forecasts or the 
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somewhat less real world of social and economic predictions estimation is 

only part of the problem. In its most elaborate form prediction proceeds 

in three stages, viz • 

• the _specification of a model and the identification of variable 

parameters; 

the estimation of these parameters; 

the determination of additional information which is needed for 

the particular application in view. 

Examples may once more be taken from Hemelrijk's paper. The state

ment that a six-faced die is cast constitutes a model specification. Esti

mation and hypothesis testing is involved in determining whether the die 

is true or biased. The statement 'it is not six' would constitute addi

tional information that conditions the prediction. 

11. We now consider some practical examples against the background of 

this scheme. Although we occasionally refer to least squares regression we 

pay very little attention to estimation; it can safely be left to the 

textbooks. There are no textbooks of model specification nor of the deter

mination of additional information, yet both present major obstacles. 

Several examples are not up to scientific standards. The three 

stages which we have distinguished inextricably merge, vital assumptions 

are not clearly stated, and the underlying theory is not explained. The 

conditions of practical prediction should however be borne in mind. It is 

a dire necessity, rarely undertaken for pleasure, and an unrewarding acti

vity. Its practitioners are on the whole despondent and apologetic. If any

one can do better, let him try. 

12. The statement that real national income will grow by 3% per annum 

from 1980 to 2000 is a prophecy. This is an apparently unconditional pre

diction without any formal justification by a model or estimation. The 

predictor's method is introspection, nurtured by experience and perhaps 

tempered by discussions which will elicit some, but not all, of the implic

it assumptions. 

13. Prophecies offer a primitive example of the historical methods, 

whereby predictions are generated entirely from past observations of the 

variable concerned. There is no explicit causal model and the predictions 
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therefore are not conditional upon some outside variable. 

This description covers a wide range of methods of varying sophisti

cation. The simplest example is the prediction that things will remain as 

they are. If the same reasoning is applied to first differences, trend 

fitting and other types of extrapolation are in order. Random disturbances 

must be added to these mechanistic processes in order to permit an inter

pretation of the observed values, and if these random variables are them

selves incorporated into a dynamic process matters rapidly become quite 

complicated. At this extreme we find time-series analysis as practised by 

Box and Jenkins. The two stages of model specification and parameter esti

mation are fully developed; by the nature of the method, the need for the 

third stage does not arise. There are no outside variables that must be 

determined before the prediction can be made (BOX & JENKINS 1970). 

By their unconditional character time series predictions and prophe

cies perform the same function. The former draw nowadays heavily on the 

computer, whereas the latter are based on human reason and intuition. There 

is a tendency to use the former for short-term purposes - i.e. when the 

prediction period is short relatively to the observation period, in other 

words when we have long series of observations - and the latter for long

term prediction. It is not clear what underlying common model would ex

plain this preference. 

14. Analogue is used, together with other techniques, in preparing weath

er forecasts. The distribution of atmospheric pressure over a region or the 

development of the atmospheric circulation over a recent period is coded 

and then matched against past records by computer or by expert opinion. The 

subsequent weather conditions observed in similar cases then provide a ba

sis for the forecast (SCHUURMANS 1973). 

This is a clear example of the historical method of prediction, and 

the underlying model to the effect that similar conditions will produce 

similar results is clear*). 

15. All historical predictions illustrate the basic assumption of pre

diction that certain elements are constant and will occur in the future 

*) The technique is regarded as commonplace, and there is little written 
documentation available. 
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as they have occurred in the past. This may apply to the phenomenon consid

ered itself, or to its rate of change, or again to the implicit causal 

mechanism in the case of the weather. The same basic assumption is of 

course made when causal models are used, and the future course of events 

follows from relations that have been observed in the past. 

Historical prediction moreover ensures that the prediction is 

feasible in the sense that the same state of affairs (or something very 

much like it) has already occurred in the past. This rules out disastrous 

errors of model specification as in the case of a six-faced die that is 

mistaken for a random digit generator.In the case of composite predictions 

like weather forecasts or predictions of social and economic conditions 

it also ensures that the various elements are not mutually inconsistent. 

In the field of social phenomena especially we know so little of their 

interrelations or even of their mutual compatibility that there is a 

natural tendency to stay close to observed situations. Exactly the same 

argument explains why time-series analysts largely confine their models 

to stationary series with a constant variance. 

16. It will be clear that the basic assumption of some sort of conti

nuity of the real world is a matter of belief. Some social scientists have 

argued that in their field prediction is impossible since regularities and 

relations that have been observed may no longer hold in the future. In the 

same vein it is observed that so,,;ial phenomena are unpredictable because 

they depend on human behaviour (HENNIPMAN 1945, p. 449). 

It must be conceded that because of the absence of experiments the 

limits of social developments have never been explored; in this field the 

inconceivable may well happen. On the other hand such reservations are 

fruitless when one is called upo:1. to provide a prediction. Social phenomena 

and natural phenomena do differ in this respect, but this is not a matter 

of principle but merely the reflection of the vast difference in knowledge 

of these two fields. Whenever a relation is well established in the social 

sciences (and such cases are known), the objection that it may no longer 

operate in the future is no longer heard, and there is a general feeling 

of relief that there is at least something we can use. 

17. Causal methods, however simple, are generally held to be superior to 

the historical methods; but here also some unexpected problems may arise, 
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and disturb the neat scheme of three orderly stages that we have intro

duced above. A recent example is the backward extension of the time series 

of the Dutch winter climate by de Vries (DE VRIES 1977). Annual series 

of winter temperature have earlier been constructed from 1735 onwards by 

Labrijn (LABRIJN 1945), and these overlap the period from 1633 to 1839 

that horse-drawn boats were commonly used as public transport between 

Amsterdam, Haarlem and Leyden. The ledgers of the carriers survive and show 

for each year how many scheduled trips had to be cancelled because of ice. 

De Vries establishes a relation of winter temperature (Y) to the number of 

cancellations (X) by least-squ.ares regression and uses it to obtain estima

tes of winter temperature in the preceding century. 

This example has some interesting aspects. At first sight the model 

specification is wrong since it is evident that Y is the cause of X, and 

not the other way around. The regression equation is the wrong way around, 

and from the viewpoint of estimation inappropriate. Yet it may be shown 

that the prediction of expected winter temperature, conditional upon the 

observed number of cancellations, has at least some desirable statistical 

properties (JOHNSTON 1972, p.290). 

The second point is that in this case the value of the conditioning 

variable is known, and no uncertainty attaches to this information. When 

it comes to a prediction of the future we are not so fortunate. 

18. The last point constitutes the major weakness of causal models as 

predictors. Consider for instance a survey of the drinking habits of in

dividuals as a function of their income and the nervous stress to which 

they are subjected. In a least Lc.'.uares regression analysis of such data 

both variables may considerably contribute to a systematic explanation of 

alcohol consumption, and if they are orthogonal (as may well be the case) 

these contributions are additive. The individual variation in drink may 

therefore be split up in three separate components, viz. variation due to 

income differences, variation due to stress differences, and residual 

variation which must be regarded as random in the absence of further ex

planatory variables. 

When it comes to prediction, however, this analysis is of little 

help unless we know the values of the conditioning variables. If the 

drinking habits of a given individual are at issue, the prediction will be 

much reduced in variance if we know his income and his nervous stress; 
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but if we have to predict these variables in turn, the analysis does not 

contribute to the prediction at all, and it is easy to show that we arrive 

at exactly the same result that would follow from a survey that is restrict

ed to drink consumption alone. In the absence of additional information 

about the conditioning variables causal models yield exactly the same pre

dictions as historical methods. 

19. In the example just given the immediate solution is of course to find 

out the income, or the stress, or both of the individual concerned; but 

then we may as well establish his drinking habits directly. If different 

predictors are to be fairly compared such cheating must be avoided, and the 

only way to do so is to make them predict a future event. I am convinced 

that this is the main reason that even classroom examples require predic

tions to be made before the die is cast. 

In the actual practice of weather forecasts and economic predictions 

the need for prediction arises of course precisely because the future course 

of events is at stake. Yet causal models are used widely in both fields. We 

shall briefly examine why this is so. 

20. Ideally the problem may be resolved by a dynamic model specification 

which explicitly allows for a time lag between cause and effect. Since it 

is firmly believed that effects follow cause, it should be possible to link 

the future course of events ultimately entirely to present conditions. For 

this classical view of the final end of scientific analysis we may again 

return to Laplace. This idea is nowadays dismissed on theoretical grounds, 

and there is no question about it that it is of no practical important what

ever. Even the most elaborate economic models, for instance, do not con

stitute a completely dynamic system. In this case a major reason is that a 

complete model would require a complete coverage of the world economic sys

tem, as well as an extension to political and social phenomena. In practice 

causal models are restricted to a single domain. 

The result is that the actual predictors in this field are usually a 

mixture of causal models and of predictors of the conditioning variables 

based on even the crudest of historical methods. The fact that the latter 

are usually introduced as hypotheses and not as predictions does not alter 

the fact that they are materially the same. Thus the provision in the early 

post-war economic forecasts that they were conditional on the assumption of 

no worldwide armed conflict meant in fact that no war was expected. The 
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difference in wording served only to distinguish this prophecy from the con

ditional causal model prediction that followed. 

21. From this point of view, then, causal models are superior to histor

ical predictors only in so far as they rely on present and known conditions; 

to the extent that these are supplemented by prophecies and historical pre

dictions of future conditions, the result is no better than these basic in

gredients. It is true that causal models ensure the mutual consistency of 

the composite predictions that they yield, but as we have seen most histor

ical methods implicitly contain provisions to the same end. 

22. In conclusion it would seem that the various predictors vary in their 

degree of explicit elaboration rather than in fundamental methodological 

traits. As the underlying models are uncovered their similarity appears, and 

it must regretfully be concluded that we are as ignorant as ever of the 

future. 
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INTERPRETING INTUITIONISTIC LOGIC 

D. van Dalen 

Although formalizations of intuitionistic logic were put forward only 

in the late twenties, there must have been a certain amount of agreement on 

the meaning of the connectives in intuitionistic mathematics. In Brouwer's 

writings the use of logical symbolism is almost absent, his dislike for the 

formal aspects of mathematics even induced him to use a cumbersome private 

terminology (e.g. "absurdity of the absurdity of •• "). So it would be too 

much to expect a clear cut notion of meaning of the logical notions; one 

has to read between the lines to discover Brouwer's views on such notions 

as "negation", "implication", "disjunction". 

The development of intuitionistic logic was, in a sense, faithful to 

the spirit of the times. First, there were some explorations along formal 

lines in the papers of Glivenko and Kolmogoroff, culminating in Heyting's 

formalization (for the history of that part of intuitionistic logic, see 

Troelstra's contribution to Two decades of Mathematics in the Netherlands). 

Of no less importance for the study of intuitionistic logic was 

Heyting's interpretation of the logical constants, now known as the proof

interpretation. In 1930 he published his Sur la logique intuitioniste, in 

which he propounded his interpretation, mainly to clarify the properties 

of the negation. The interpretation is further elaborated in [13] and [14]. 

Heyting's point of departure is, following Brouwer: "A holds" (or, 

A is affirmed) if we have a proof for A, where a "proof" is understood to 

be a construction of a suitable sort. In terms of proofs the logical con

stants can be assigned the following meaning: 

a proof p of A AB is a pair of proofs p 1,p2 such that p 1 proves A and 

p 2 proves B, 

a proof p of AV B consists of a construction which selects one of the 

formulas A and Band yields a proof for that particular for

mula, 

a proof p of A+ Bis a construction which assigns to each proof q of A 
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a proof p(q) of B, plus a verification that p indeed satisfies 

these conditions, 

a proof p of 7A is a proof of A+ i, where i is some contradiction, 

a proof p of Vx A(x) is a construction which assigns to each object a (of 

the domain of discourse) a proof p(a) of A(a), plus a verifica

tion that p indeed satisfies these conditions, 

a proof p of 3x A(x) is a construction which selects an object a (of the 

domain of discourse) and yields a proof of A(a). 

Note that negation has been reduced to implication, quite in accordance 

with Brouwer's practice. The hard cases are here, and in most interpreta

tions, implication (negation) and universal quantification. In the case of 

the impiicat~on we are faced with a construction which operates on construc

tion (so, possibly on itself), which lends an impredicative character to 

the whole interpretation. The extra clause, requesting a verification that 

p does what it should do, is not particularly surprising. Anybody who has 

written programs, or built Turing machines, knows that there is always the 

supplementary task of proving the correctness. Fortunately, this correct

ness proof is of a simpler nature (although it may be tedious); in the par

ticular case of intuitionistic logic this is so because of the fundamental 

assumption (Kreisel) that "pis a proof of A" is decidable. 

The proof-interpretation contains in a nutshell the underlying idea of 

many other interpretations. It is extremely useful as a heuristic guiding 

principle in intuitionistic logic, and it probably is the most realistic 

representation of actual practice in intuitionism. 

KREISEL has at several occastions, [ 24], [ 2·5], tried to find a proper 

codification of Heyting's proof-interpretation. In one direction there is 

his proposal for a theory of constructions, worked out by GOODMAN [12], in 

another direction there is the project of a suitable arithmetization of 

the interpretation, which so far has born no (significant) fruits (for a 

result on the implicational fragment cf. [45]). 

Already in 1932 Kolmogoroff presented a related interpretation, in 

which formulas are interpreted as problems. The clauses for the various 

connectives are similar to Heyting's clauses, e.g. a solution of the prob

lem A+ B consists of a method for finding a solution of problem B, given 

a solution of problem A. 

Both Heyting and Kolmogoroff's interpretation were fundamental in 
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nature, i.e. they were intended as the "true" meaning of intuitionistic 

logic. Of the two, clearly Heyting's interpretation is foundationally the 

more important one. It is closest to Brouwer's conceptions of consequence, 

negation, etc., and it lends itself to technical elaborations. 

Semantics may also play a less lofty role, it can be used as a tool 

in the study of formal systems. In this sense it was already used by Heyting 

in his basic paper Die formalen Regeln der intuitionistischen Logik, to 

establish independence of the axioms. This kind of semantics - ad hoc truth 

tables - certainly had no claim to capture the meaning of intuitionistic 

logical constants. The truth table method was already well-established by 

that time, among others through the investigations of Post, Bernays, 

-1.ukasiewicz and Tarski. Th.e power of this method was convincingly demon

strated in 1935 by Jaskowski, who designed an increasing family of truth 

tables such that intuitionistic propositional logic was complete with re

spect to its join, i.e. derivability in Heyting's system corresponded ex

actly to truth in all of JASKOWSKI's tables [16]. 

In the early thirties Heyting's formalization of intuitionistic logic 

made itself felt. Those who, for whatever reason, did not feel like extract

ing the true intuitionistic logic from Brouwer's writings had a place to 

turn to. Here was a codification of intuitionistic logic by a regular stu

dent of Brouwer! Evidently this formalization could be relied upon. As a 

matter of fact all subsequent investigations, e.g. by Gentzen, Godel, 

Jaskowski, Tarski, are based on Heyting's system. 

The formal laws of intuitionistic logic soon suggested certain ana

logies in topology and lattice theory. TARSKI [40] and STONE [38] observed 

that the algebra of open subsets of a topological space under certa~n ope

rations behaves in a manner, similar to intuitionistic propositional logic. 

Define for open subsets.A, B of a space X 

AAB := AnB; AVB := AUB; A➔B =Bu Int(Ac); 7A := Int(Ac), 

where Int is the interior-operator. Then a simple calculation shows that 

all (substitution instances of) theorems of Heyting's system are valid, 

i.e. take the space X as a value. Tarski shows even more: Heyting's prop

ositional logic is complete for the topological interpretation, i.e. valid

ity in all topological spaces is equivalent to derivability in Heyting's 

system. 

In analogy to Boolean algebra an algebraic version of intuitionistic 



136 

logic was studied by various authors, Tarski, Birkhoff, McKinsey, Stone and 

others (cf. [34]). This generalization of Boolean algebra went under sever

al names: Brouwerian algebra, closure algebra, interior algebra, pseudo

Boolean algebra and Heyting algebra. Under the influence of the topos theo

rists the name Heyting algebra seems to stick. 

It took a while before Mostowski in 1948 extended the topological in

terpretation to predicate calculus. Mostowski showed the soundness of the 

interpretation (i.e. derivable formulas hold in all complete Heyting alge

bras) and the completeness was proved by Rasiowa and Henkin, independently. 

In order to extend the interpretation to predicate logic one needs two 

more clauses for the quantifiers.· 

Let us assume that to each closed atom A a value [A] in O(X), the al

gebra of open sets of X, is assigned, and that we have a given universe of 

individual objects, D. The values of sentences is inductively defined by: 

[AAB] := [A] n [B]; 

[AYB] := [A] U [B]; 

[A+B] := [B] U Int([A]c); 

[7A] : = Int[ A] c; 

[Vx A(x)] := Int n{[A(d)] d E D}; 

[3x A(x)] := U{[A(d)] I d E D}. 

Scott observed in [36a] that the topological interpretation can be 

motivated in a Heyting-like manner. 

For an extensive treatment of this interpretation see [34]. 

Whereas Heyting and Kolmogoroff tried to capture the true meaning of 

the logical constants, the algebraico-topological school of logicians were 

of a more modest (indifferent) sort. They were only interested in the for

mal properties of the logic and the interpretation was simply a tool. The 

foundational value of these researches was rather doubtful to intuitionists, 

if only because in the metamathematics classical (transfinite) reasonings 

were freely used. A closer investigation by KREISEL, [22], and SCOTT, [36], 

in 1958, 1957 showed that the completeness of propositional logic with 

respect to the topological interpretation could be shown in an intuition

istic metamathematics. 

In the meantime some new interpretations of intuitionistic logic had 

been proposed. E.W. BETH introduced in 1956 a class of models, now known 

as Beth models [1], for which he intended "to prove that these calculi are 
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complete with respect to intuitionistic arguments". In this claim Beht was 

somwhat overly optimistic as KREISEL showed later [23] [26], but Beth was 

rather close to success as later developments showed. Beth models are, as 

a matter of fact, a special kind of topological models, but they have a 

better heuristic motivation, It is a whim of history that very soon Beth's 

semantics was overshadowed by a similar semantics, that of Kripke. Even to 

the extent that genuine instances of Beth's semantics were called after 

Kripke (Kripke-Joyal). 

Before we go on with this kind of "semantic" interpretation, let us 

turn to interpretations of a more proof-theoretical nature. Kleene, who was 

the creator of recursion theory as a theory in its own right, conjectured 

that there should be a fairly close connection between recursion theory and 

Brouwer's intuitionism. Kleene exploited the idea that statements, e.g. 

3x A(x), are incomplete, in the sense that an element a has to be indicated 

such that A(a). Restricting himself to arithmetic, Kleene undertook to code 

the extra information needed to "complete" a statement A in a natural num

ber (for an account of the development of this idea, see [19]). He express

ed this by saying that "the number e realizes A". 

Realizability for the simple case of Heyting's arithmetic, HA, is in

ductively defined as follows: (where e is the coding of the pair ( (e) 0 , Ce\)): 

e r A if A is a closed, t:~ue atomic statement, 

e E AAB if (elo E A and (e) 1 E B, 

e E AVB if (e) 0 0 and (e) l. EA, or (e) 0 t- 0 and (e) 1 E B, 

e r A➔B if for all n with n E A {e} (n) E B 

e r 3x A(x) if (e) 1 EA((e)O), 

e r Vx A(x) if for all n {e} (n) E A(n). 

This definition is perfectly acceptable from an intuitionistic point of 

view, and we may even note a certain similarity with the proof-interpreta

tion, e.g. in the case of the implication: there is an algorithm (even a 

recursive one) that transforms any information needed for A in information 

needed for B. Let us note, however, that Kleene explicitly states that the 

proof-interpretation did not help him to find the correct realizability 

clause for the implication [19]. 

Realizability differs in nature from semantic interpretations on sever

al accounts. For one, it essentially uses the natural numbers, which makes 

it suitable for arithmetic (and extensions), but less so for general 
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predicate logic. For another, it heavily relies on Church's Thesis: "each 

algorithm is a partial recursive function" (at least in motivation), which 

puts its stamp on the class of realizable (~-valid) sentences. This appears, 

e.g., from the fact that the first order version of Church's Thesis is re

alizable. Hence the realizability interpretation is not faithful. For, 

assume that Vx3y A(x,y) + 3e({e} is total A Vx A(x,{e}x)) is derivable in 

HA, then it is also derivable in Peano's arithmetic, PA, and so every de

finable set would be recursive, contradiction. 

A reason for considering realizability as a part of proof theory is 

that it gives a kind of translation of arithmetic in arithmetic (using the 

clauses shown above), hence its usefulness for studying aspects of provab

ility in arithmetics, cf. [19],[41]. Troelstra has shown that Kleene's 

original realizability is characterized by an extension of Church's Thesis, 

ECT0 , in the sense that A is realizable in HA iff it is a theorem of HA+ 
ECT0 , [41] p.196. The notion of realizability has been generalized in var

ious directions, e.g. to cover analysis. For an extensive treatment see 

[41]. One generalization, by LAUCHLI [28], can be considered as a mixture 

of semantics and proof theory. Indeed, predicate calculus is complete for 

it. 

GODEL's paper Uber eine bisher noch nicht benutzte Erweiterung des 

finiten Standpunktes (1958), [11],[41], also gave rise to a number of in

terpretations of arithmetic (and extensions), mainly in arithmetic of all 

finite types (and extensions). Like realizability these so-called function

al interpretations belong rather to proof theory than to semantics (like 

realizability, these interpretations are not faithful, in particular Godel's 

Dialectica Translation changes the illeaning of the connectives). 

Let us now return to the semantic interpretations. In 1965 KRIPKE pre

sented a new semantics for intuitionistic logic, [27], which turned out, 

in most respects, to be superior to the existing interpretations. Kripke 

provided a heuristic motivation for his models (cf. also [37]) which may be 

illuminating. Since it is most conveniently expressed in terms of knowledge, 

let us use the picture of the idealized mathematician M. Following Kripke 

we analyse the meaning of the logical connectives in terms of the knowledge 

of Mat various points in time. We schematically represent the various pos

sible stages of M's knowledge in time as a partially ordered set (usually 

a tree). Write a < S for "stage a (in time) precedes stage S", and a If- A 

for "M knows A at stage a". We suppose that M does not "loose" knowledge, 

i.e. if a If- A and a ~ S, then S If- A. 
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Now we consider the logical connectives: 

M knows AAB at a if he knows both A and B at a. 

M knows AVB at a if he knows A at a or if he knows Bat a. 

M knows A->-B at a if at any future stage 13 his knowledge of A implies 

his knowledge of B. 

M knows 7A if at no future stage 13 he will know A. 

To handle predicate logic we also have to consider the universe of in

dividuals, so we assume that M not only collects knowledge, but also con

structs (creates) individuals. The set of individuals constructed at stage 

a is denoted by D(a.). We now continue: 

M knows 3x A(x) at stage a if there is an individual a€ D(a.) such that 

he knows A(a) at stage a. 

M knows Vx.A(x) at stage a if he knows A(a) for all a€ D(/3) for all 

future stages /3. 

Note that the interpretation takes into account the potential charac

ter of M's state of knowledge and of the universe of individuals (in V, +, 

7). For a proper inductive definition of the relation Ir we also need a 

clause for the atomic statements (basic facts). We simply assume that a Ir A 

for atomic A if M knows (has evidence for) A at stage a, in a sense not to 

be specified here (one might think of "having a construction for" in the 

case of arithmetic, or "insight based on introspection", etc.). 

Let us now return to Beth's semantics and apply a similar considera

tion. In Beth's case Mis more liberal, his knowledge at certain stages in

duces truth at certain other stages. M, so to speak, has more grip on the 

future. This appears, for instance, from the fact that the universe of in

dividuals is fixed, no new individuals are created. So we have a fixed 

domain D. Let a Ir A denote "A is true" at stage a. The clauses for +, 7 

and A are identical to the above clauses. Consider the remaining clauses: 

a Ir A for atomic A if M, starting at stage a, eventually will know A. 

To be precise, if for each totally ordered path P through a there 

is a 13 € P such that M knows A at stage /3. 

One may think of M conducting his research. At each stage there may be var

ious ways to continue it in the future. Now a II- A, if, no matter how he 

continues his research, he will always find A. Similar clauses give us the 

truth of disjunctions and existential statements: 
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& Ir AVB if for every path P through a there is a S such that 

S II- A or S II- B. 

a Ir 3x A (x) if for every path through a there is a S such that 

s II- A(a) for some a E D. 

Finally the interpretation of Vis given by a simpler clause, because of 

the constant domain: 

et 11-Vx A(x) if et lf--A(a) for all a ED. 

Prima facie there is no reason to prefer Kripke models to Beth models, 

but a little experimenting shows that Kripke models are technically more 

convenient. For example, Beth models with a finite set of states satisfy 

tqe law of the excluded middle; hence for even quite simple counter examples 

one needs infinite models. On the other hand, Kripke models have the finite 

model property for a considerable class of logics, i.e. if A is not deriv

able, then there is a finite Kripke counter model. Kripke demonstrated the 

superior flexibility by using his semantics for a proof of the undecidabil

ity of monadic intuitionistic predicate calculus. 

As we already stated, there is a simple connection between Beth models 

and topological models. Consider a Beth model, with a tree as set of states. 

Let T be the topological space of paths of the tree and (the set of paths P 

passing through) nodes as basic opens. Define [AD = {P I 3a E P (a II- A)}, 

then we get a topological model. 

There is a simple connection"between Kripke models and Beth models: 

each Kripke (tree) model can be recursively transformed into a (tree) Beth 

model, [27]. The converse, however, does not hold, there is no algorithm to 

transform Beth models into elementarily equivalent Kripke models, [10]. 

This phenomenon relates to the problem of complexity of Kripke (or Beth) 

models. It is a classical result that classical predicate logic is com-
a 

plete for models, definable by n2 formulae in arithmetic. By means of trans-

lation of Kripke semantics in classical semantics one easily obtains a 

similar result for intuitionistic logic and Kripke models, however with a 

detour via the completeness theorem. Recently TROELSTRA [44] gave a direct 

proof of this fact and some related matters, e.g. a decidable (consistent) 

theory has a recursive Kripke (Beth) modela and a LO theory has a b.O Kripke 
1 2 

model with a recursive underlying tree. 

In the sixties the Kripke-Beth semantics had slightly run out of steam. 

Beth and Kripke (and Aczel and Thomason) had shown their semantics to be 
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complete for Heyting's predicate calculus, but Kreisel had pointed out that 

these completeness proofs were not intuitionistically acceptable. In a paper 

with Verena Dyson he showed that one needed an extra principle: Markov's 

principle [6], and in [23] he showed, following Godel, that completeness 

for internal interpretations (Dummett) implies Markov's principle. The mat

ter is that, whereas classical logic has a unique intended interpretation, 

it is far from clear what (if any) is the intended interpretation of intui

tionistic logic. We have argued that Heyting's proof-interpretation is the 

best candidate for an intended semantics. But so far no convincing codifi

cations have been presented to give it a status comparable to the two-valued 

interpretation for classical logic. The internal interpretation is the in

tuitionistic analogue of Tarski's semantics: Interprete statements in an 

inhabited domain, with relations (and operations) as in classical models, 

using intuitionistic reasoning at the meta level. The Godel-Kreisel result 

tells us that completeness for this semantics can only be obtained under 

Markov's principle: 

7 7 3x A(x) ➔ 3x A(x) 

for primitive recursive A. 

In a later paper KREISEL even showed that for the internal interpreta

tion completeness conflicts with Church's Thesis, [26],[2]. This seemed to 

be the end of semantics in an intuitionistic meta theory. 

On a more technical level, Kripke semantics had been fruitful in the 

domain of pure logic, but it barely influenced the subjects that by nature 

constitute the hard core of intuitionism, to wit arithmetic and analysis. 

So semantics seemed to be a hice pastime for logicians, but unsuitable for 

fundamental issues. 

On both issues things changed in the seventies. In 1974 VELDMAN pre

sented a modification of Kripke's semantics for which an intuitionistical

ly correct completeness proof indeed could be given [46]. The main innova

tion consists of allowing falsum (~) to be true at some stages. The tech

nical details are beyond this survey, for detailed expositions see [SJ, 

[42], H. DE SWART adapted the procedure to Beth models [39]. 

Let us now briefly consider the impact of semantic methods on arith

metic and analysis. In his thesis (1972) SMORYNSKI considers Kripke models 

of HA, and uses them to obtain proof theoretic results, cf. [37]. In view 

of the fact that proof theory has always been a rather exclusive field, 
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well-suited to the connoisseur of the finer details, it is surprising how 

elegantly and smoothly Smorynski managed to obtain significant results. 

Instead of going into the model theory for first-order arithmetic, let 

us move on to second-order arithmetic. Already in 1968 SCOTT presented a 

model for intuitionistic real analysis in the framework of the topological 

models, [36a]. Noting that the "function-objects" determined Dedekind Cuts 

in the rationals, when one fixes a point in the underlying topological space 

X, he showed that the reals in the model are precisely the continuous maps 

from X to IR. By considering the sheaf of continuous functions with open 

domains one is led to a generalization of models over a sheaf, [BJ, [33], 

[35]. Scott's model demonstrated that at least a model theoretic approach 

to second-order arithmetic was feasible. Moreover, the model had, intuition

istacally speaking, realistic properties, e.g. it satisfied Brouwer's con

tinuity theorem. In 1973 JOAN MOSCHOVAKIS published a topological model for 

an intuitionistic theory of choice sequences [32]. She had adapted Scott's 

approach by considering continuous mappings from Baire space into itself 

instead of real-valued continuous mappings. The model theoretic approach 

proved, so to speak, complementary to the proof theoretic approaches. Where

as the proof theoretic interpretations (e.g. realizability) introduce, as a 

rule, a certain measure of constructiveness, the semantic models tend to 

move the other way. In particular Moschovakis' model satifies Kripke's 

schema (which rules out Church's Thesis). From the properties of the model 

Moschovakis concluded that intuitionistic analysis (on the basis of Kleene's 

system FIM [20]) was consistent with relativized dependent choice (RDC), 

weak continuity without parameters (WCc) and WC!, i.e. 

Vs3!x A(s,x) + Ys3!x3yVn(~y = ny + A(n,x)), bar-induction (BI) and 

Kripke's schema (KS) 

At about the same time VAN DALEN adapted Scott's model to second-order 

arithmetic with species variables, HAS [3]. This model had, roughly speak

ing, the same features as Moschovakis' model. Instead of continuity (WC) 

it satisfied a corresponding version UP! of Troelstra's uniformity prin

ciple UP, i.e. 

VX3x A(X,x) + 3xVX A(X,x). 

A K;-if)ke_model for HAS was presented by Smorynski. He just took a tree with 

a constant numerical domain N, and with species given by "growing" families 

of subsets of N. Again the superior flexibility of the Kripke models was 
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demonstrated in a paper by DE JONG & SMORYNSKI [17]. Smorynski's model is 

a bit less intuitionistic, in the sense that it satisfies Markov's Principle 

(MP) and the independence of premiss principle (IP0 ). Moreover, this model, 

and all second-ordermodels mentioned in this survey, have a classical first

order part, i.e. for arithmetical formulae the excluded third holds. In 

[17] it is shown (among other things) that: 

(i) HAS has the existential definability properties for the numerical and 

species cases: HAS I- 3X A (X) - 3s HAS I- A (S); 

(ii) HAS is closed under the extended uniformity rule (EUR): 

HAS I- Vx (7 A (X) + 3y B (X,y)) ~ HAS I- 3yVx (7 A (X) + B cx,y)); 

(iii) HAS is closed under the extended rule of Church (ECR): 

HAS I-Vx(7 A(x) + 3y B(x,y)) ~ HAS I- 3eVx(7 A(x) + B(x,{e}(y))). 

In 1975 VAN DALEN adapted the usual Beth models to construct a model of a 

theory of choice sequences [4]. In fact the model turned out to be isomor

phic to Moschovakis' model. In addition to the results present in [32], it 

was shown that general weak continuity fails in the model. The Beth model 

technique, however, turned out to be well-suited for varying the class of 

choice sequences. Using Cohen forcing a model of the theory of lawless 

sequences (LS) was obtained, together with some independence results. Al-

though the consistency of LS was since long established, KREISEL, cf. [42], 

it was highly gratifying to have at least a concrete model of it. In the 

same paper an interpretation of the theory of the creative subject was ob

tained, thus settling the consistency problem for it. So far all of the 

above models were studied in a classical metamathematics. 

TROELSTRA has taken up this matter in his Choice Sequences [42],where 

he rebuilt the Moschovakis' model using an observation of Kreisel, that 

validity in the particular topological model should be equivalent to in

tuitionistic validity in all universes Ua (of continuous projections of a 

(lawless)). The results here are, as to be expected, essentially weaker 

than in the classical approach. In the case of LS, however, Troelstra found 

an intuitionistically acceptable model construction that yielded all the 

results obtained by the (classical) forcing method. His method is based on 

his earlier observation, that one lawless sequence codes a (countable) uni

verse of sequences satisfying LS, cf. [43],[42]. So, given a lawless se

quence we can construct intuitionistically acceptable models of subclasses 

of choice sequences. Indeed, lawless sequences seem to be prominent in the 

foundations of intuitionistic mathematics, as appears, for instance from 

their role in the various completeness theorems (cf. [5],[42]). 
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Recently s. Weinstein used a Kripke model approach in order to study 

analysis with sequences. His [47] establishes a number of metamathematical 

results e.g. DP and ED for some systems and also the independence of Kripke's 

strong schema from the weak version KS~. 

Intuitionistic logic has lately found applications in a, at first 

sight rather unlikely field: category theory. The fact is that certain 

categories, namely topoi, reflect higher-order intuitionistic logic. As an 

intermediate step let us have a look at Fourman and Scott's sheave models. 

In Scott's original model for intuitionistic analysis, reals were interpret

ed as continuous mappings from Baire space into lR. A next step is: consid

er the sheaf of continuous maps from opens of a topological space X into lR . 

The sections behave like reals on there domains. So, it seemed reasonable 

to consider relations and operations "locally". In particular each element 

could be assigned a "domain of existence", or "extent": Ea:= the domain 

of the section a. Generalising this idea to arbitrary sheaves Fourman and 

Scott designed a logic with an existence predicate and partial elements, 

[7]. This innovation in logic is plausible from an intuitionistic point of 

view. It is well-known that certain operations, e.g. the inverse on lR, are 

by nature partial. Classically this is not particularly interesting since 

every operation can be made total. For constructivists partial operations 

are, however, essential. So this logic draws the correct constructivistic 

conclusion by making all elements partial. Fourman gave in his thesis a 

detailed analysis of the sheave semantics, including higher-order logic and 

completeness theorems. Scott observed that this logic is the ideal frame

work for a description operator: Ix•A(x) (the unique x with the property A). 

Independently category theorists had discovered the need for intuitionistic 

logic. In topoi (categories with finite products, and a subobject classi

fier) one can mimick a good part of ordinary set theory; put otherwise the 

category of sets is paradigmatic for topoi. In particular a topos contains 

an object n, which can be viewed as the collection of truth values of the 

topos. In classical set theory n consists of the two truth values o and 1. 

In general, however, n turns out to be a complete Heyting algebra. Hence 

"the logic" of a topos is in general intui tionistic, cf. [ 8 ] . There is 

an immediate connection with the logic of sheaves: the category of sheaves 

(over a space X) is a topos, and its n is the algebra of open sets of X. 

In topos theory many familiar notions ty up. The reinterpretation of logical 

connectives given by Beth and Kripke, is in a natural way present in topoi. 

There is even a bonus for using this "internal logic" of a topos; whereas 
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products, monies, equalizers, etc. are defined by some universal property 

in the language of category theory, one can in the internal logic charac

terize these concepts in a straightforward, set-like, way, e.g. A~ Ci B 

is a product if Vx EA Vy EB 3'.z EC (p(z) = x A q(z) = y) holds in the 

topos (with topos-semantics). The initiator and main creator of the catego

ry-logic school is W. Lawvere, who not only studied categories with an open 

mind for its logical aspects, but also pointed out that topoi and their 

logic transcend the normal set theory by codifying the concept of "varia

ble set", known to us already from the models of Smorynski and Van Dalen, 

and inherently present in intuitionism. Categorical logic (or logical cate

gory theory) is a fast exploding chapter of mathematics. The reader may con

sult [8],[30] or the forthcoming proceedings of the Durham conference on 

Applications of Sheaf Theory to Logic Algebra and Analysis. 

The usefulness of these abstract methods has been demonstrated, e.g. 

by MULVEY [33] who obtained traditional algebraic results by using intui

tionistic proofs in the framework of the sheaf interpretation. ROUSSEAU 

[35] aplied similar techniques in the case of complex analysis. In quite 

another direction Fourman and Hyland used the sheaf interpretation over 

complete Heyting algebras to construct a model of intuitionistic analysis 

without the fan theorem [9]. 

The foregoing shows that the interpretations of intuitionistic logic 

have come a long way since Heyting's first proposals. Nonetheless, the 

basic problem remains: to give a satisfactory description of the intended 

interpretation of intuitionistic logic. 
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FUNCTIONAL INTERPRETATIONS OF HEYTING'S ARITHMETIC IN ALL FINITE TYPES 

Justus Diller, Munster, Germany 

Functional interpretations have proved to be a useful tool in proof 

theory. We are here concerned with "first-order" interpretations where the 

interpreting functionals are of finite type, e.g. modified realisability mr 

of KREISEL 1959 and Dialectica interpretation D of GODEL 1958 which was ex

tended to classical analysis using bar recursive functionals by SPECTOR 1962. 

TROELSTRA 1973, III, §§ 4 to 8, gives many applications of mr and D. 

We want to analyze common principles underlying these interpretations. 

This analysis starts with a natural deduction motivation for the A-interpre

tation of D-Nahm 1974: Given a deduction TI of a prenex formula 3yYz B from 

an assumption 3vYw A, we should be able to construct from TI, for any given 

v, an object y such that, for any z, every path in TI leading upwards to an 

occurence of the assumption 3vYw A gives us an object w which in this path 

is the reason for A to imply B; as different paths in TI may produce differ

ent objects w, the deduction TI as a whole only gives us a set W of objects 

(reasons) w such that TI contains a proof of B from assumptions A for all 

w E W. In short, from TI we obtain a proof of 

Yv3yYz3set W(Aw EWA+ B). 

The size of the set W depends on the ramification of the deduction TI. 

D-Nahm 1974 considers only finite ramifications. As we shall see in§ 3, 

decisions about the size of these "sets of reasons" W give special function

al interpretations. As long as we leave this decision open, we are led to 

an extension HAW of Heyting's arithmetic of finite types HAW by a fragment 
E 

of set theoretical language and a restricted universal quantifier Aw E w. 
Such extensions and general functional interpretations for arithmetic 

and analysis have been investigated at Munster in the last years. STEIN 1976 

and RATH 1978 give natural deduction systems for HAW leading finally to a 
E 

general and strong form of MINC' 1974 theorem: Given a closed deduction of 
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a formula 3x B[x], normalization and all special cases of the general in

terpretation lead to the same term c, but different proofs of B[c]. 

We give a Hilbert-style version of HAW in§ 1 which is fairly brief to 
E 

state, easy to handle, but probably weaker than RATH's 1978 natural deduc-

tion system. In§ 2, we introduce the general interpretation J using the 
J 

above motivation for the translation (A ➔ B) , and we prove the character-

ization and interpretation theorem for J. Our J corresponds to I' of RATH 

1978, Ch. I, section 4.2, and to K = 0 of STEIN 197?, § 2. In§ 3, we show 

that known interpretations like mr, D,A, and then-interpretations of STEIN 

1976, I, § 2 are special cases of J, by expanding arbitrary models of HAW 

to models of HAW in which J is equivalent to the given special interpreta-
E 

tion. 

An extension of these results to systems of analysis is in preparation. 

§ 1. HEYTING's ARITHMETIC OF FINITE TYPES WITH SET TERMS 

We start with a formulation of the theory HAw. 
E 

Inductive definition 1.1 of types. 

1. o is a type; 

2. If a and, are types, then (a+,) is a type; 

3. If, is a type, then 7 is a type. 

A type is called linear, if it is defined by 1 and 2 only; it is called a 

set type, if it is of the form,. 

p➔a➔, stands for (p➔ (a+,)). If a and, are type tuples a 1 , •.. ,am and 

, 1 , ••• ,,n resp., then a+, stands for the type tuple a 1+ ••• +am+, 1, ••• ,a1+ 

..• +am➔'n' and a stands for cr1 , •.• ,am. 

DEFINITION 1.2. A type structure is a family (M la is a type) of non-empty 
a 

sets as follows: 

(i) M is a set of (non-extensional) functions from M into M where 
~ a ' 

different elements of Ma+, may have the same graph c Max M,; 

(ii) M- is a set of subsets of M. 
' ' 

Similarly, a linear type structure is a family (M la is a linear type) of 
a 

non-empty sets such that (i) holds. 

DEFINITION 1.3. Basic terms are 
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L the numeral O of type o; 

2. the function symbol sue of type o-+o; 

3. for any type ,, a recursor R of type 
T· 

,+ ( o➔,+,) ➔o➔,; 

4. for type denumerably many variables x T T of type,. any ,, ,y , ... 

Inductive definition 1.4 of terms and their types. 

1. Any basic term is a term of the same type; 

2. If a and bare terms of type o+, and o resp., then a(b) is a term 

of type T; 

3. If a is a term of type T and o is a variable of type o, then (),x0 .a) X 

4. 

5. 

6. 

is a term of type (o+,); 

If a is a term of type ,, then {a} is a term of 
-n a and b are terms of type T, then au bis a 

If a and b are terms of type o and T resp., and 

not free in a, then U b is a term of type T. 
x0ea 

type T; 

term of type T; 

if the variable o is X 

Free and bound occurrences of variables and "bis substitutable for x 

in a" are defined as usual. a [b] is the result of substituting b for every 
X 

free occurrence of x in a. For this we write a[b], if confusion cannot arise. 

A functional is a term without free occurrences of variables. A numeral 

is a functional o, 1 := sue o, 2 := sue 1, etc. 

Inductive definition 1.5 of formulas. 

1. If a and bare terms of the same type, then a= bis a formula; 

2. If A and Bare formulas, then (A AB) and (A+ B) are formulas; 

3. Let a be a term of type cr, XO a variable of type o not free in a, Ba 

formula not containing a quantifier V or 3. Then Ax0 ea Bis a formula; 

4. If A is a formula and x0 is a variable, then Vx0A and 3x0A are formulas. 

A formula is quantifier-free (qf), if it does not contain a quantifier 

V or 3. The restricted quantifier Ax Ea (read: for all elements x of the 

set a) is not considered a quantifier in the proper sense, though it binds 

the variable x. 

Abbreviations. Let a - a 1 , ••• ,an and b = b 1 , ••• ,bm be term tuples of 

type tuples p and o resp. If pis of the form o+-r, then a(b) or ab stands 

for the term tuple a 1 (b1) ••• (bm), ••• ,an.(b1) ••• (bm) of type tuple,. If P=O, 

(hence n = ml, then a= b stands ·for the formula tuple a 1=b1, .•• ,an=bn. If 

p = a and x. is a tuple of variables x 1 , ••• ,xn of type tuple o, then A x € a 
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stands for the string Ax1Ea1 ..• AxnEan. 'Similarly for quantifier strings 

Vx and 3x. 

Axioms and rules for propositional logic. 

Al. A+A 

, A2. A, A+BJ--B 

A3. A+B, B+Cf-A+C 

A4. AAB+A 

AS. AAB+Cf-A+B+C 

A6. A+B+Cf-AAB+C 

A7. A+B, A+Cf-A+B A,C 

Axioms and rules for the restricted quantifier. 

Bl. Ax E {a} B + B [a] 
X 

B2 • AX E a u bC + AX EaC 

AX E au be + AX Ebe 

B3. Ay E U bC + Ax E a Ay E be (x not free in C) 
XEa 

B4. Ax Ea (B[x] + C[x]) + Ay E aB[y] + Az E aB[z] 

BS • A + B J-- A + Ax E aB 

Equality axioms. 

(x,y,z new variables) 

(x not free in A). 

Cl. AX.a[x] = Ay.a[y] (x, y new variables) 

C2. (Ax.a[x]) (b) = a[b] (b substitutable for x in a) 

C3. R, abO = a ( a ,b of types , , a+,+, resp. ) 

R,ab(suc t) = bt(R,abt) 

C4. a= b + F[a] + F[b] (a,b substitutable in F) 

Rule of induction. 

(IND) F[O], F[x] + F[suc x] f-F[ t] (t substitutable for x in F) 

Axioms and rules for quantification. 

Ql. Vx A[x] + A[b] 

Q2. A[b] + 3x A[x] 

Q3. A+ B !--A+ VxB 

Q4. B + A f- 3xB + A 

(b substitutable for x in A) 

(x not free in A). 

This concludes the definition of the theory HA;, a Hilbert-style version 
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0£ Heyting's arithmetic in all finite types, extended by a restricted quanti

fier Ax€ a. Its quantifier free fragment is denoted by TE, an extension of 

Godel's 1958 theory T of primitive recursive functionals of finite types by 

Ax€ a. To be precise, T has tile same types and terms as HAw, its formulas 
Ew € 

are the qf formulas of HA€, and its axioms and rules are those of HA: with-

out Ql to Q4. 

We define ~A by A-+0=1, A-+-¼- B by (A+B) A (B+A), and in the presence 

of the quantifier 3, we define Av B by 

3x((x=O + A) A (x~O + B)). 

Heyting's arithmetic of finite types HAW is the subsystem of HAW with 
€ 

linear types only, terms defined according to definition 1.4.1 to 1.4.3 

only, formulae without restricted quantifier and hence without axioms and 

rules B. An equivalent formulation is denoted N-HAw in TROELSTRA 1973, I, 

§ 6. It is outlined in D-Nahm 1974 that the usual rules of intuitionistic 

logic, including substitution rule and deduction theorem, hold in TE and in 

HAw. These rules are not destroyed by the new axioms and rules Bl to BS. In 
€ 

particular, we have: 

AB. B f- A+B by A4, AS, A2; 

BS'. B f- Ax € aB by AB, BS, O=O, A2; 

B6. Ay € a B[y] + Az € a B[z] (y,z new) by Al, BS', B4, A2; 

B7. A+B+Cf-A+Ax € aB+Ax € ac (x not free in A) 

by BS, B4, A3 (the formula A may also be missing); 

BB. A+B+cf- Ax € aA + Ax € aB + Ax € ac 

by B7, B4, A3; 

B9. Ax€ aA A Ax€ aB-+-¼- Ax€ a(A AB) 

from A+B+A AB by BB, A6, and by A4, B7, A7. 

Standard properties of primitive recursive functions are provable in 

TE just as in T (cf. TROELSTRA 1973, 1.6.9). We use functions+,~ etc. and 

write s s t for s ~ t = 0, and s < t fcir sue s ~ t = O. 

By D-SCHUTTE 1971, simultaneous recursion can be derived in TE: for 

any type tuple T, recursor tuples RT are definable in TE such that the tuples 

of recursion equations C3 are derivable. Of course, the same holds for simul

taneous A-abstraction. 

LEMMA 1. T f- Ax E aA A Ay E bB + Ax E a Ay E b (A A B) 
E 
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(x not free in B,b, and y not free in A). 

PROOF. From A ➔ B ➔ (A A B), we obtain by B7 

A-->- Ay € bB-->- Ay € b(A AB). 

We interchange the premisses, apply B7 to Ax€ a, and interchange premisses 

again. 

Inductive definition 1.6 of zero-functionals OT for every type T. 

1. o0 := O; 

2. ocr-->-T := (Axcr.OT); 
T T 3. o := {o } 

We have Ax€ OT A[x] ➔ A[OT] by Bl and ocr-->-T(b) 

lemma 1 holds only in the following form: 

OT by Cl. A converse of 

LEMMA 2. T f- Ax € a u O Ay € b u O (A A B) -->- Ax € aA A Ay E bB 
€ 

(x not free in B,b, and y not free in A). 

PROOF. By B2 and Bl, Ay Eb U O(A AB)-->- A. By B2 and B7, this gives the 

first half. Similarly, B2 and B9 give Ay Eb U O(A AB)-->- Ay E bB, and by 

B7, B2, and Bl, we get the second half. 

LEMMA 3. The following extended induction rule is admissible in TE: 

B[O,z], Aw E a B[x0 ,w] -► B[suc x 0 ,z] I- B[t,z], 

where z,w are disjoint tuples of variables of type tuple T, a is a term 

tuple of type tuple T, and tis substitutable in B. 

PROOF. Let W := Ax0 z.a, and define by simultaneous recursion (cf. D-SCHUTTE 

1971, Satz 3) 

g O t z = {z} 

g(suc x)tz = U W(t ~ sue x)u. 
uEgxtz 

From the. first assumption, we obtain by B5' 

( 1) Au E gttz B[O,u]. 
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By B3 and B6, the definition of g gives 

AuEg(suc x)tz B[t.:. sue x, u]-+ AuEgxtz Aw E W(t.:. sue x) u 

B[t .! sue x,w]. 

From this and a substitution instance of the second assumption we get by 

B7 and A3 

Au E g(suc x)tz B[t.:. sue x, u]-+ Au E gxtz B[suc(t.:. sue x) ,u]. 

Since x < t-+ suc(t.:. sue x) = t.:. x, this gives 

(2) x < t-+ Au E g(suc x) tz B[t .:. sue x,u] -+ Au E gxtz B[ t .:. x,u]. 

By an induction "from x=t down to x=O" (formally, we first substitute 

t.:. sue x for x in (2) and then apply induction) it follows from (1) and 

(2) 

Au E gOtz B[t.:. 0,u], 

that is Au E {z} B[t,u], which implies B[t,z] by Bl. 

§ 2. A GENERAL FUNCTIONAL INTERPRETATION OF HAW 
E 

We assign a prenex formula AJ to any formula A of HAW using the motiva
E 

tion given in the introduction (cf. D-VOGEL 1975, pp.56-57). 

Inductive definition 2.1 of a translation J. 

J maps any formula A of HAW into a formula AJ of 
E 

HAW of the form 
E 

3vVw AJ, where AJ is a qf formula, and v,w are disjoint tuples of variables 

distinct from the variables free in A. 

the names of bound variables. 

1. (a=b)J is a=b 

AJ is uniquely determined only up to 

Let AJ := 3vVw AJ and BJ:= 3yVz BJ with disjoint tuples v,w,y,z be already 

defined. Then: 

2. (A A B)J is t!v,yVw,z (AJ A BJ) 

3. (A ➔ B)J is 3Y,W Vv,z (AW E Wvz AJ .... B/Yv ,z]) 

4. (Ax E aB)J is AXE aB (B is qf) 

5. (VuA)J is 3V Vu,w AJ[u, Vu,w] 

6. (3uA)J is 3u, v Vw AJ 
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In 3, the tuple W has the same length as the tuple w. If w is empty, 

i.e. if AJ = 3v AJ, then 

In particular, if A is qf, then AJ is A, and 

For disjunction, this gives 

A formula A coincides with its translation AJ (up to names of bound variables), 

iff A is of the form 3v Vw B with B qf. Hence AJJ always is AJ. These prop

erties get lost if vis taken as primitive. 

we consider the following axiom schemata: 

Axiom of choice for types cr,,. 

AC Vxcr 3y' A[x,y] ➔ 3Ycr➔, Vx A[x,Yx] 
cr, 

AC denotes the union of all schemata AC cr, 

Independence of premisses 

IPE (VwA ➔ 3yB) ➔ 3y(VwA ➔ B) 

where the variables of the tuple y are not free in A, and A is a qf formula. 

Markov's principle 

ME (VwA ➔ B) ➔ 3W(Aw EWA ➔ B) 

where the variables of the tuple Ware not free in B, and A,B are qf formulae. 
w+ w 

HAE denotes the theory HAE+ AC+ IPE + ME. 

LEMMA 4. In HAW are derivable: 
E 

1. (a=b)J +-+ a=b 



2. {A A B)J +-+- AJ A BJ 

3. {Ax E aB)J +-+-AX€ a BJ 

4. {3u B)J +-+- 3u BJ 

5. {Vu B)J + Vu BJ 

6. 

7. 

8. 

{A+B)J + AJ + BJ; furthermore 

HAW + AC f- Vu BJ + {Vu B)J 
€ J J J 

HAW+ I- {A +B ) + (A+B) 
€ 
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PROOF. 1 to 4 are obvious, because in 3 Bis qf. We consider 6 and 8. Using 

the notation of definition 2.2, the following are derivable in HAW: 
€ 

J (A+B) +Vv 3y Vz 3W {Aw € WAJ +BJ) 

3W(Aw € WAJ_+BJ) + {VwAJ+BJ) 

Vz {VwAJ + BJ) +-+- (VwAJ + VzBJ) 

3y(VwAJ+VzBJ) + (VwAJ+BJ) 

Vv{VwAJ+BJ) +-+- (AJ+BJ). 

This gives 6. The implications missing to prove 8 are just AC, M€, and IP€. 

DEFINITION 2.2. Let AJ be 3v Vw AJ[v,w] with qf AJ. The formula A is called 

J-interpretable in T€, if there is a term tuple bin T€ containing free only 

the free variables of A such that T € I- A}b, w] • The term tuple b is then 

called {a tuple of) interpreting terms for A. 

Obviously, we then have HAW I- AJ. 
€ 

LEMMA 5. If AJ and BJ coincide up to names of bound variables, then A+B is 

J-interpretable in T€. 

PROOF. Let AJ be 3v Vw C[v,w] and let BJ be 3y Vz C[y,z] with C qf. By Bl, 

we have 

Aw€ {z} c[v,w] + c[v,z]. 

If we put Y := AV. v and W := Avz.{z}, it follows by equality axioms C2 

and C4 that Y,W are interpreting terms of A+B. 

THEOREM 1, characterization of the translation J. 

1. The theories HAw+ and HAW+ {A+-+- AJIA formula of HAW} are equivalent. 
€ € € 

2. If A is J-interpretable in T €, then im:+ I- A. 
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w+ J . 
PROOF. HA I- A ++ A follows from lemma 4 immediately by induction on the 

E 

length of A. Conversely, any instance D of the schemata AC, IP, and M is 
E E 

an implication A+B to which lemma 5 applies. Therefore, Dis J-interpretable 
w I- J w J in TE and HAE D , hence HAE + (D++D ) I- D. This proves 1 which immediately 

implies 2. 

THEOREM 2, interpretation theorem. Any theorem of HAW+ is J-interpretable 
E 

in T. 
E 

Proof by induction on deductions. Axioms Al and AC, IPE, ME and similarly 

C4 are J-interpretable by lemma 5. The qf axioms Bl to B4 and Cl to C3 are 

their own J-translations. A2 is almost a special case of A3. 

A3. A+B, B+C I- A+C. We assume that for all variables that occur free 

only in B, the corresponding zero functionals have been substituted. By 

induction hypothesis, we are given term tuples Y1 , w1, Y2 , w2 such that 

We substitute Y1v for yin the second formula and apply B7 to the first 

formula, writing a for w2 (Y1v)x, and obtain 

By an instance of B3 and two applications of A3, we have 

Aw E U W1vz AJ[v,w] + CJ[Y2 (Y1v),x]. 
ZEa 

If we choose W := AVX. z~a w1vz and Y := Av.Y2 (Y1v), we see by equality 

inferences, that 

and hence Y,W are interpreting terms of A+C. 

A4. A AB+ A. We look for tuples of functionals Y,W, and W' such that 
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Such functionals are Y := Avv'.v, W := Avv'z.{z}, and an arbitrary W', e.g. 

W' = 0, or if an empty set~ is available, W' := Avv'z.~. 

AS. A A B -+ C ~ A -+ B -+ C. By induction hypothesis, we have term 

tuples Y,W, and W' such that 

By lemma 1, we see that Y,W,W' are at the same time interpreting terms of 

A➔B➔C. 

AG. A-+B➔C ~ A A B➔C. By induction hypothesis, we have term tuples 

Y,W, and W' such that 

Aw€ Wvv'z A -+Aw'€ W'vv'z B -+ c [Yvv',z]. 
J J J 

By lemma 2, this implies 

Hence Y, Avv'z.(Wvv'z u 0), Avv'z.(W'vv'z u 0) are interpreting terms of 

A AB ➔ C. 

A 7. A-+B, A➔C ~ A-+BAC. By induction hypothesis, we have term tuples 

Y,W and Y', W' such that 

Then by B2, A3 and A7 

Hence, Y,Y',Avzz'.(Wvz u W'vz') are interpreting terms of A-+ BA c. 

BS. In the presence of quantifiers, BS may be replaced by VxB-+ Ax € aB, 

because this, Q2 and A3 give BS. This, however, has a as interpreting term, 

since Bis qf. 

(Ind) F[0], F[x]-+ F[suc x]~ F[t]. By induction hypothesis and C2, 

there are tuples v0 , Y, and W such that 
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By simultaneous recursion, we define a term tuple f by 

fO = v0 and f(suc x) = Yx(fx). 

Substituting fx for v, we get by C4 

F/0,fO,z] and 

Aw E Wx(fx)z FJ[x,fx,w] + FJ[suc x, f(suc x) ,z]. 

With FJ[x,fx,z] as B[x,z] and Wx(fx)z as a, these are the premisses of 

lemma 3. Hence, by lemma 3, FJ[t,ft,z] is derivable, and ft are interpreting 

terms of F[t]. 

The interpretation of Ql to Q4 does not present any difficulties. This 

finishes the proof of theorem 2. We state some simple corollaries to the 

theorem. 

COROLLARY 2.1. Let~ be a set of new basic functionals and r a set of formulae 

in the language of T +~-Then any theorem of HAw+ + r is J-interpretable 
€ € 

in T + r. 
€ 

The additional axioms in rare interpretable by themselves, because 

they are quantifier free. 

This corollary is the starting point for functional interpretations of 

intuitionistic analysis. In the principal application, ~ is the set of bar 

recursive functionals, and r is the set of their recursion equations. 

COROLLARY 2.2. HAw+ is a conservative extension of T . If T is consistent, 
€ € € 

then HAw+ is consistent. 
€ 

PROOF. If A is a qf theorem of HAw+, then A= 
€ 

T f- A. For A - 1 = 0, this is the relative 
€ 

J 
A = AJ. Hence, by the theorem, 

consistency of HAw+_ 
€ 

As we shall see, HAW is conservative over HAw, but it is an open ques
E 

tion whether TE is conservative over G6del's qf theory T. 

COROLLARY 2. 3. HA w is closed under Markov's rule rule-M : If f- Vw A + B 
€ € 

and A,B are qf, then there is a term tuple W such that f- Aw E W A + B. 

This is simply a special case of the theorem. 
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The theorem, as it stands, on the other hand, implies closures of HAW 
E 

under rule-AC and rule-IPE only for qf formulae A,B. To obtain these closure 

results in general, one introduces the hybrid Jq of the translation J which 

is inductively defined like J except for the following two cases: 

(A+B)Jq is 3Y,W Vv,z (Aw E Wvz A A A ➔ B [Yv,z]), 
Jq Jq 

(3uA)Jq is 3u,v Vw (A A A). 
Jq 

Following the proof of theorem 2, it is an easy exercise to prove a 

Jq-interpretation theorem for HAW only, in fact with the same interpreting 
E 

terms as before. In a slightly different context, STEIN 197? gives a uni-

fied treatment for a general functional interpretation and its hybrid. 

Because the conclusions of AC and IPE are existential formulae, and because 

I- (3uA)Jq + 3uA, the Jq-interpretation theorem immediately implies closure 

of HAW under rule-AC and rule-IP. 
E E 

§ 3. SPECIAL MODELS 

We introduced the notion of type structure in definition 1.2. A type 

structure carries little information in the sense that only application has 

a fixed meaning in it: If f,c are (names for) elements of Ma+,' MO: resp., 

then the term f(c) denotes in M, the value of the function fat argument c. 

The other basic functionals and operations are not yet interpreted. We close 

that gap by introducing models. 

DEFINITION 3.1. A classical .model of HAW is a type structure A= (MI, a 
E T 

type) together with a (semantic) interpretation of basic functionals, A-

abstraction and set forming operations in A such that A satisfies the axioms 

and rules of HA;: there is OE M0 , sue E Mo➔o' and for any T, R, E Ma with 

a% ,+(o➔,+,) ➔o➔,; if a[xa] is a term built from xa and (names of) elements 

of A such that a[c] EM, for every c E Ma' then AXa.a[xa] denotes in A one 

of the functions f EM for which f(c) = a[c] for all c EM. a+, a 

Furthermore, for any c EM,, there is {c} EMT, and for a,b EMT, 

there is au b EMT, and if f E Ma+T and a E M0 , then x~a f(x) EMT. 

An (intuitionistic) model of HAW is a Kripke tree A (K,~,(A la EK), 
E a 

((/)~ I a ~ 13)) of classical models Aa with homomorphismus (!)~ : Aa + A 13 (for 

details, see OSSWALD 1969, ch.I, § 2, also KRIPKE 1965). 



162 

A classical model of HAW is ~ow a linear type structure with the above 

properties, but without set forming operations, and a model of HAW is a 

Kripke tree of classical models of HAw. 

By correctness and completeness, the theorems of HAW are exactly the 

formulae valid in all models of HAW (cf. OSSWALD 1969, ch.I,§ 3). As the 

use of sets and the restricted quantifier in the theory HAW is weak, though 
E 

the properties of sets in the models defined above are quite substantial, 

the theory HAW is certainly correct with respect to these models, but it is 
E 

presumably not complete. 

In this section, we expand models A of HAW in certain standard ways 

to special models A E of HAW by essentially defining in terms of A what the 
E E E 

classes M of the type structure A are to be. We first describe the general 
T 

pattern of these expansions. 

REMARKS. 

(i) Any type T has either the form p-+o or the form p+cr where pis a type 

tuple uniquely determined by T. 

(ii) If a class ME or ME is a singleton, then 
a T 

any f E ME has only one 
a➔T 

value f(c) in M~, independent of 

identify f with its unique value 

of confusion. 

the argument c E ME, amd we may well 
E a E 

f(c) and put Ma➔T MT without danger 

DEFINITION 3.2. Let T be a new symbol. An expanding function is a map 

E {types} ➔ {linear types} u {T} 

such that 

1. E o = o; 

2. E(a➔T) Ea➔ET, if Ea and ET are linear types; 

3. E(a➔T) ET, if Ea T or ET = T. 

If A= (M IT linear type) is a model of HAW, we define an E-expansion 

AE 
E T 

= (MIT a type) as follows: 
T 

M~ MET' if ET is a linear type; 

ME_= {M} if Ecr = T. 
p➔a a , 

0, sue have the same meaning in A and in AE; if ET is linear, RT denotes in 

AE the same object as ¾Tin A. If Ea, ET are linear, and a[c] E MET for 

all c E MEa' then AXa.a[xa] denotes in AE the same element of ME M 
a➔T Ea➔ET 
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An expanding function Eis the identity on linear types and hence AE 

is in fact an expansion of A. To obtain a particular E-expansion of a given 

model A of HAw, we first have to define E for set types T and then fix a 

meaning for the set forming operations and the restricted quantifier. We 

want to show that in suitable classes of E-expansions, the translation J 

becomes equivalent to known functional interpretations. 

3.1. The trivial expansion: modified realisability 

As universe of type T, we take the singleton whose only element is the 

universe of type T. In such type structures, we always have 

Following the lines described above, this canonically determines the meaning 

of the set forming operations. 

DEFINITION 3.3. Let the map Ube the expanding function with 

U(T) = T for all types T. 

If A is a (classical) model of HAw, we call the U--expansion Au of A the 

trivial expansion of A. 

Given A, the trivial expansion is in fact uniquely determined by this 

definition: the set forming operations leading to terms of type T, necessari

ly yield the only object of type T, namely Mu. 
T 

LEMMA 6. Let A be a classical model of HAw. For any functional a of HAW of 
u € 

type T there is an a such that 

(i) if UT T, au is the empty string of symbols, 

(ii) if UT is linear, au is a functional of HAW of type UT denoting the 

same object in ~T as a. 

PROOF. 

(i) is a matter of convenience, and 

(ii) follows by a straight forward induction on the length of functionals a 

that are formed also from constants of Au, using (i). 
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THEOREM 3. If A is a (classical) model of HAw, then its trivial expansion 

AU is a (classical) model of HAW in which hold 
E 

(3) 3xTB ++Band B ++ VxTB, if UT= T, 

(4) Ax0Ea B ++ Vx0 B. 

PROOF. Let A be a classical model. If UT = T, MU is a singleton, and hence 
T - then Mu {MU} -

(3) holds. If T is a, so that any term a of type a is in-
T 0 I 

terpreted as the universe Mu of type a, and hence (4) holds. a 

Axioms and rules of groups A, Q, Ind hold in AU just as they do in A. 

Because of (4), Bl to BS hold in Au, as they reduce to valid laws on V. 
u 

Equality axioms C hold in A either trivially, if the equations are of a 

type T with UT= T, or otherwise by lemma 6 and since AU is au-expansion 

of A. 

If A is an intuitionistic model of HAw, any AU is a classical model of 
Ct 

HAW by the preceding, and any 
E U U 

homomorphism w; extends in the obvious way to 

a homomorphism from A a to AS. This proves the theorem. 

COROLLARY 3.1. HAW is a conservative extension of HAw. 
E 

PROOF. If HAW _jL A, there is a model A of HAW in which A is not valid. This 

model has a trivial expansion AU which by theorem 3 is a model of HAw. 
E 

Hence HAW ,f A. 
E 

We now turn to a comparison of the general interpretation J and modi

fied realisability. For formulae A of HAw, v mr A ("the tuple v modified 

realizes the formula A") is defined in KREISEL 1959 and in TROELSTRA 1973, 

§ 3.4. In our context we may say: 

DEFINITION 3.4. For formulae A of HAW, Amr (A" is modified realisable") is 
E 

inductively defined like AJ, except that the clause for implication now 

reads: 

(A+B)mr is 3Y Vv (Vw A [v,w] +Vz B [Yv,z]). 
mr mr 

If we write v mr A for Vw A [v,w], this is in fact the definition 
mr 

of TROELSTRA 1973. 

THEOREM 4. Let A be a formula of HA; and let AJ be 3v Vw AJ. If A is a model 

of HAW, the following are val.id in the trivial expansion AU of A: 



Vv(Vw AJ[v,w] +->- v mr A), hence 

AJ +->- Amr. 
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PROOF. By induction on the length of A. By lemma 4 and because mr and J 

have the same definitional clauses for equality, conjunction, restricted 

and existential quantification, the induction goes through for these cases. 

We consider only the case of implication. Let BJ be 3y Vz B[y,z]. We then 

have for all Y,W: 

+->- Vv (v mr A ➔ Yv mr B) by ind.hyp. 

+->- Y mr (A➔B) by defn. of mr 

+->- Y, W mr (A➔B) 

since by lemma 6, Y and Y,W denote the same tuple of objects in Au. 

In the class of trivial expansions, J-interpretation and modified 

realisability are equivalent. Furthermore, the same objects in these models 

interpret and modified realize a given formula. Because of (4), Markov's 

principle ME becomes a tautology, and IPE becomes IP3_free' independence of 

premisses in the case where 3 (and V) does not occur in the formula A. 

COROLLARY 4.1, characterization of mr. In HAw, the schemata A+->- Amr and 

AC+ IP3_free are equivalent. 

PROOF. By the above and theorem 1, the equivalence is valid in all trivial 

expansions AU and hence in all models A of HAw. By completeness, it holds 

in HAW. 

w COROLLARY 4.2, mr-interpretation theorem. Any theorem of HA +AC+ IP3_free 

is modified realizable in HAw. 

PROOF. If A is a theorem of HAW+ AC+ IP3_free' then by the above, A is a 

theorem of HAw+ + (4). By theorem 2 and lemma 4, A has interpreting terms 
E 
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(4) in HAW hence 
E' 

Let A be any model of HAw. Then AU is a model of HAW+ (4) by theorem 3, 
U E 

and by theorem 4, b mr A holds in A and hence in A. By completeness, 

HAW f- b mr A. 

In fact, Vw AJ[b,w] is derived in the 3-free fragment of HA;+ (4). 

To obtain b mr A already in the 3-free fragment of HAw, our model theoretic 

theorem 3 seems to be too crude. 

3.2. Expansion by finite sequences: A- and Dialectica-interpretation 

We now turn to models which prove the Dialectica-interpretation (GODEL 

1958) and the A-interpretation (D-NAHM 1974) to be special cases of J. Again, 

we start with an arbitrary classical model A= (MT IT linear) of HAW, and now 

we want~ the be the set of finite sequences of elements of MT. In a con

text where extensionality is assumed, finite sequences of objects of type-T 

may be coded into one element of type T. In an arbitrary classical model A, 
however, finite sequences c of elements of MT are given by a pair consisting 

of the length 1 of c and an element g of Mo+T such that c = <g0, ••. ,g(l-1)>. 

For linear T = cr-+o (cr a type tuple), this pair (1,g) may be coded into one 

element f of M such that f00° = 1 and f(suc x) = gx for all x EM. Since 
o-+-r o 

equality in MT is not necessarily extensional, we do not have to bother about 

a refined definition of equality between these codes in MO-+'r This construc

tion leads naturally to the following 

DEFINITION 3.5. Let the map A: {types} ➔ {linear types} be the expanding 

function with 

AT O ➔ AT. 

For any classical model A 

A A = (M . IT a type) • If f E 
AT 

defined by f(0) = Ax0 .lh(f) 

(MIT linear) of HAw, the A-expansion then is 
T 

MAT' the length off is the element lh(f) E M0 

(where T = cr-+o), and we call fa finite se-

quence if f = fl(lh(f)+l) (for the restriction functional I, cf. D-SCHUTTE 

1971, def. 8). 

1. For c E MAT' {c} is the finite sequence of length 1 with {c}(l) = c; 

2. For a,b EMA~' au bis the finite sequence of length lh(a) + lh(b) 

with 



(aub) (x) {
a(x) 

b (x-=-lh (a)) 

if O < x ,!: lh(a) 

if x > lh(a). 

3. For a E MAcr' f E MAcr+AT' u~a f(u) is the finite sequence of length 

O<ySih(a) lh(f(a(y))) with 

( U f(u)) (x) = f(a(y)) (x .:. L lh(f(a(z))) 
uEa O<z<y 

if L lh(f(a(z))) < x S L lh(f(a(z))). 
O<z<y O<zSy 

4. For a E MAT and any qf formula B[uT], 

(5) Au T E a B[u TJ holds iff \/x (x < lh(a) + B[a(x+l) ]) . 

It should be noted that A and AA differ only as families, but their 

unde~lying sets {M JT linear} are the same. 
T 
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By D-VOGEL 1975, (1.4) and (1.5), finite sequences f,g are equal, iff 

f(x) = g(x) for all x s lh(f), and fl (lh(f)+l) always is a finite sequence 

(of length lh(f)). Hence the finite sequences formed by set forming opera

tions are uniquely determined by 1,2, and 3 of definition 3.5, every func

tional of HA: denotes an element of AA, and by (5), f E MAT intuitively 

denotes the finite sequence <f(l), ••• ,f(lh(f))>. 

LEMMA 7. For every functional a of HAW of type T there is a functional aA 
E 

of HAW of type AT that denotes the same element in A as a denotes in AA. 

The proof uses the same induction as lemma 6. 

THEOREM 5. If A is a (classical) model of HAw, then its A-expansion AA is 

a (classical) model of HAw. 
E 

PROOF. If A is a classical model of HAw, AA satisfies the axioms and rules 

of HAw. We only have to check Bl to B5. Axioms Bl to B3 are just being taken 

care of by 1,2, and 3 of definition 3.5, because, using (5), c is an ele

ment of the finite sequence {c}, a and bate subsequences of the finite se-

quences au b, and for any c Ea, b[c] 

U b[u]. 
U€a 

Au.b[u](c) is a subsequence of 

Finally, because of (5), B4 is a special case of \/-distribution and B5 is a 

special case of Q3. 
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If A 

classical 
/I /I 

Aa to AS, 

is an intuitionistic model, then the homomorphisms~~ between the 

models Aa and AS extend in.·the obvious way to homomorphisms from 

since A and A11 have the same underlying set. 
a a 

We now compare the general interpretation J and the A-interpretation 

(D-NAHM 1974). We adapt the A-translation slightly to our present context. 

DEFINITION 3.6. For formulae A of HAw, A11 is inductively defined like AJ, 
" 

except that the clause for implication now reads: 

THEOREM 6. For any formula A of HA:, let AJ be 3vVw AJ and let A11 be 

3vVw A11 • If A is a model of HAw, the following are valid in the 11-expansion 

A11 of A: 

PROOF by induction on the length of A. Again, we consider the case of 

implication only. Let BJ be 3yVzBJ[y,z]. We then have for all Y,W,v,z: 

++ (Vx(x < lh(Wvz) + AJ[v,Wvz(x+l)]) + BJ[Yv,z]) by (5) 

++ (A+B) 11 by ind.hyp. 

The proof is more direct and gives a stronger result than in the case 

of trivial expansions. If (5) is taken as a formal definition, A11 and AJ 

are the same formulae. This is not surprising, since the A-interpretation 

was the prototype of the J-interpretation and in a way already embodies its 

general idea. 

Let IP A be IP E where A is qf only up to quantifiers Vy0 (y0 < t+ ... ), 

and let M11 be the corresponding schema: 

M11 (Vw A[w] + B) + 3W(Vx(x < lh(W) + A[W(x+l)]) + B) 

where the variables of the tuple Ware not free in B, and A,B are qf up to 

quantifiers Vy0 (y0 < t + ..• ). 

COROLLARY 6.1, characterization of 11. In HAw, the schemata A++A11 and 

AC+ IP11 + M11 are equivalent. 
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, A 
PROOF. Let A be a model of HAw. In its A-expansion A, IP and M are 

JE E A 
equivalent to IPA and MA by (5), and the schemata A~ A and A~ A are 

equivalent by theorem 6. Hence, the above equivalence holds in A A and there,

fore in A. By completeness, it holds in HAw. 

w 
COROLLARY 6.2, A-interpretation theorem. Any theorem of HA +AC+ IPA+ MA 

is A-interpretable in HAw. 

The proof is like that of corollary 4.2, except that it uses (5) and theorems 

5,6, instead of (4) and theorems 3,4. 

We turn to the Dialectica-interpretation of GODEL 1958. It is the follow

ing special case of the general interpretation: 

DEFINITION 3.7. For formulae A of HAw, AD is inductively defined like AJ E , 

except that the clause for implication now reads: 

Hence for A in HAw, AD is qf in the strict sense, and ADA and AD are 

identical. The finite sequence occurring in (A+B)A is reduced to one element. 

As is well known, the Dialectica-interpretation does not work for ~he theory 

HAW as it stands, but only for related theories in which all prime formulae 

are equivalent to equations between terms of type o. However, in these theo

ries, D and A are equivalent. This follows from theorem 3.5.10 in TROELSTRA 

1973 (cf. also YASUGI 1963) which we quote as 

THEOREM 7. If the formula A of HAW is built up from equations of type o, 

then 

We are interested in two consequences of this theorem. 

COROLARRY 7.1. If A is as above, then 

~ 

PROOF. A-interpreting A~ AD, corollary 6.2 gives HAW ~ (A~ AD)A which 

implies HAW r AA~ ADA by lemma 4. But ADA = AD. 

CORLLARY 7.2. Any theorem of HAW+ AC+ IPA+ MA that is built up from 

equations of type o is Dialectica interpretable in Godel's theory T. 
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PROOF. If A is such a theorem, then by theorem 7, AD is such a theorem too. 
D DA D 

By corollary 6.2, A has A-interpreting terms, and because of A =A, 

these are at the same time D-interpreting terms of A. 

It is in general not the case that the theorem A itself has the same 

A-interpreting and D-interpreting terms. 

The Dialectica interpretation appears here only as (the equivalent of) 

a restriction of the A-interpretation which in turn is a special case of 

the general interpretation J. This is of course not the place it deserves 

as Dis the only interpretation J where AJ is qf in the strict sense, and 

since D can be extended to classical analysis (cf. SPECTOR 1962). But Dis 

also the only interpretation that requires something like the equivalence 

of qf formulas with equations of type o (cf. the discussion in TROELSTRA 

1973, remark 3.5.6). It is exactly the A-interpretation that is close 

enough to D for corollary 7.1, and does not depend on the above requirement. 

In 1.6.15, TROELSTRA 1973 formulates a system which he calls HAw, the 

formulae of which are all built up from equations of type o. Theorem 7 with 

corollaries also holds with his HAW instead of ours. RATH 1978, ch. IV, shows 

that our HAW is conservative over Troelstra's. 

3.3. Inbetween: n-interpretations 

The search for unifying aspects of the known interpretations mr, D, and 

A led to a hierarchy of interpretations, one for each n > O, that fill a 

gap between A (corresponding ton= 0) and mr (corresponding ton 00 ). 

They were introduced in STEIN 1976 and are treated syntactically in the 

forthcoming STEIN 197?. We mainly describe the expansions in which J becomes 

equivalent to an n-interpretation. 

Inductive definition 3.8 of the degreed(,) of a type,. 

1. d(0) = 0 

2. d(er+,) max(d(er)+l, d(,)) 

3. d(r) = d(T). 

If we define pure types 0 := o and n + 1 := n + n, then the pure type 

n is of degree n. 

For fixed n > 0, we assume pairing functionals <,> er of type er->(n-1)-+(n-1) 

to be available for any linear type er with d(er)<n, together with inverses jl 

of type (n-1 )+er and j2 of type (n-l)+(n-1) such that ji<al,a2> = a .. If 
1. 
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extensionality is assumed, such pairing functionals are definable. 

DEFINITION 3.9. For fixed n > O, let the map Un be the expanding function 

with 

T for d(T) < n 

U (r) = (n-1) ➔ U (T) for d(T) <'. n. 
n n 

(For n = 00 , U = U.) Let An be the U -expansion of a classical model A of n n 
a HAW with pairing functionals. For d(T) ;c: n, we define 

1. If c E Mn, then {c} := AXn- 1 .c 
T 

2. 
n n 

If a,b EMT, then au b E Mf such that 

(aub) (z) 

3. 
n n n 

If a E Mcr, f E Ma+T' then u~a f(u) is an object g EMT such that 

g(z) if d(a) < n, 

if d(a) ;c: n. 

4. For a E ~ and any qf formula B, 

(6) 
T T n-1 n-1 

Au Ea B[u] holds iff Vx B[a(x )]. 

Given A, the Un-expansion An is again uniquely determined, if au b 

and u~a f(u) are constructed fr.om their defining equations in a standard 

way. For if d(T) < n, then Mn is the only object of type T, and we necessari
T 

ly have 

{c} =au b = U f(u) ~-
uEa T 

It is now routine to check 

THEOREM 8. If A is a (classical) model of HAW with pairing functionals, then 

its Un-expansion An is a (classical) model of HA; in which (3) and (4) for 

d(a) < n hold. 

Un-expansions are like trivial expansions at small types T(d(T) < n), 

and they are related to A-expansions at large types T(d(T) ;c: n). In the 

same way, n-interpretations stand between mr and A, 
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DEFINITION 3.10. For formulae A of HAw, An is inductively defined like AJ, 
E 

except that the clause for implication now reads 

n <n n-1 <n n-1 
(A+B) is 3Y,W Vv,z (Vw Vx An[v,w , Wvzx J + Bn[Yv,z]), 

where w<n is the subtuple of w consisting of the variables in w of degree 

< n. 

This n-interpretation is, except for a change of notation, the same 

as the n*-interpretation of RATH 1978, Ch. IV, § 1, which is there proved 

to be equivalent to then-interpretation of STEIN 1976. 

THEOREM 9. For any formula A of HA;, let AJ be 3v Vw AJ and let An be 

3v Vw A. If A is a model of HAW with pairing functionals, 
n 

hold in its U -expansion An. 
n 

The proof is like that of theorem 4. 

Let IPn be IPE, where A is qf up to quantifiers VuT with d(T) ~ n, and 

consider the following weak Markov-principles 

M (Vwcr A[w] + B) + 3Wn+cr (Vxn A[Wx] + B), 
n,cr 

where Wis not free in B, and A,B are qf up to quantifiers VuT with 

d(T) ~ n. 

M denotes the union of all schemata M with d(cr) > n. 
n n,cr 

The schemata IPn increase in strength with growing n, whereas the 

schemata Mn decrease. If we go to limits, IPw is just IP3_free' whereas 

Mw is a tautology. 

COROLLARY 9.1. For n E JN, the schemata A++ An+l and AC+ IP + M are 
n n 

equivalent in HAW with pairing functionals. 

COROLLARY 9.2. Any theorem of HAW+ AC+ IP + M with pairing functionals 
n n 

is (n+l)-interpretable in HAW with pairing functionals. 

3.4. A remark on weak Markov principles 

For n < d(cr), the principle M states that to infer B from VwcrA, we 
n,cr 

do not need A[w] for all w of type cr, but only for all win the image of a 
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suitable map W of type n+cr. Given cr, the schema M is the stronger, the 
n, cr 

smaller n is. Even M , however, is much weaker than M, or other usual 
o,cr " 

Markov principles. 

Let I be a functional interpretation mapping the formulae of HAW into 

themselves. We assume that we have an 

A of HA w an E-expansion A E which is a 

expanding function E and 

model of HAW in which AI 
E 

for any model 

+-+ AJ holds. 

This is the situation of all the special interpretations that we studied in 

this section. 

Given k, we ask for the smallest n such that the schema A+-+ AI implies 

M k" This amounts to asking for the number theoretic function g defined by 
n, 

g(k) := the smallest n such that HAW + {A+-+ AI} f- M 
n,k 

We call g the type reduction of I. 

For I= mr, g is the identity, and for I n+l, g is given by 

fork$ n, 

(7) g(k) 

fork> n. 

This is already the general situation. 

LEMMA 8. Let g be a type reduction. We then have for all natural numbers k: 

1. g(k) $ k; 

2. g(g(k)) = g(k); 

3. g(k) $ g(k+l); 

4. If g(k+l) = k+l, then g(k) = g(k). 

PROOF. 1. ~,k holds with W = AW.w. 2. Because AJJ - AJ, we have AII +-+ AI 

in HAW and hence 

HAW+M +M f-M 
n,k l,n l,k· 

Putting n g(k) and 1 = g(n) = g(g(k)), we get 1 ~ n by definition of g, 

hence 1 n by 1. 3. If we put proj := Aw.wO, we have proj(Axk.v) = v and 

therefore 

4. g(k) = k 

Now if {+l 

k+l . k+l k k f-
Vw A[proJ(w )] + Vv A[v ], so that M kl M k" n, + n, 

means that there is an E-expansion AE with the class { E ~

E EN' then 
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U {proj (w)} 
WEM_E 

k+l 

The function g is by this lemma bounded by identity, idempotent, monotonous, 

and the set on which g = id is convex. Such a function is necessarily one 

of the functions named above, as one easily sees. 

THEOREM 10. Let I be as above, and let g be the type reduction of I. Then 

there is an n E N u { 00 } satisfying (7). 

This suggests that our method of charaterizing functional interpreta

tions via E-expansions essentially yields the interpretations treated above. 

The known functional interpretations of HAw, however, may be viewed as one 

and the same functional interpretation looked at in models of HAW that 
E 

differ only in there semantic interpretation of the restricted universal 

quantifier. 
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ON THE INTERPLAY BETWEEN MATHEMATICS AND PROGRAMMING 
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This talk is delivered under confusing circumstances. And the only way 

I can think of, of assisting you in not getting confused by these complica

ting circumstances is describing them explicitly in my introduction. The 

complication is that, while I would prefer to give a completely technical 

talk, its moral is heavily loaded from a political point of view: it is a 

technical talk to be delivered against almost overwhelming political odds. 

In order to make you understand all this we have to go back to about ten 

years ago, when Programming Methodology became a topic of explicit concern. 

In the history of programming October 1968 has been a turning point. 

In that month a conference on the topic denoted by the newly coined term 

"software engineering" was held in Garmisch-Partenkirchen. The conference 

was sponsored by the NATO Science Committee. The conference was remarkable 

because a large fraction of the participants had positions so high in their 

local hierarchy that they could afford to be honest. As a result this was 

the first sizeable conference at which the existence of the so-called "soft

ware crisis" was openly admitted. The gloomy atmosphere of doom at that con

ference has been a severe shock for some of the participants; some left the 

place very depressed indeed. The majority, however, left the conference 

with a feeling of relief, some even in a state of great excitement: it had 

been admitted at last that we did not know to program well enough. I myself 

and quite a few others had been waiting eagerly for this moment, because 

now at last something could be done about it. For years we had already been 

worried by the consequences of the proliferation of error-loaded software, 

but there is very little point in trying to urge the world to mend its ways 

as long as that world is still convinced that its ways are perfectly ade

quate. It was at that conference in Garmisch-Partenkirchen, that the whole 

climate changed. Now, nearly a decade later, we can only conclude that the 

excitement was fully justified: it was indeed a turning point in the histo-
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ry of programming. Since that conference, programming has never been the 

same again. 

In reaction to the recognition that we did now know how to program 

well enough, people began to ask themselves how a really competent program

mer would look like. What would we have to teach if we wanted to educate a 

next generation of really competent programmers? This became the central 

question of the study that later would become known as "programming meth

odology". A careful analysis of the programmer's task was made, and program

ming emerged as a task with a strong mathematical flavour. As I have once 

put it "Programming is one of the hardest branches of applied mathematics 

because it is also one of the hardest branches of engineering, and vice 

versa". Why the programming task has such a strong mathematical flavour is 

something I shall indicate later. 

A lower bound for what the adequate education of a really competent 

programmer should comprise was very convincingly established, but it was 

not an easy message to sell, because it demonstrated by necessity the to

tal inadequacy of the education of what is known as "the average program

mer". The world today has about a million "average programmers", and it is 

frightening to be forced to conclude that most of them are the victims of 

an earlier underestimation of the intrinsic difficulty of the programmer's 

task and now find themselves lured into a profession beyond their intellec

tual capabilities. It is a horrible conclusion to draw, but I am afraid 

that it is unavoidable. 

The conclusion that competent programming required a fair amount of 

mathematical skills has been drawn on purely technical grounds and, as far 

as I know, has never been refuted. On emotional grounds which are only too 

understandable, many people have refused to draw the conclusion, and the 

conclusion is opposed to, not because its validity is challenged, but be

cause its social consequences are so unpleasant. 

The situation is immensely aggravated by changes in attitude towards 

science and technology in general, that took place during the sixties. In 

that decade we have seen a growing distrust of technology, a disillusion 

with science, which by the end of that decade caused political outbursts 

from which most universities haven't fully recovered yet. 

For those who had hoped that the explosive growth of universities and 

other research establishments would automatically bear fruits in proportion 

to that growth, the results have indeed been disappointing, because, while 
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the quantity grew, the average quality declined. Browsing through a scien

tific journal or attending a conference is nowadays rather depressing; 

there is no denying it: there is just an awfull lot of narrow mediocrity, 

of downright junk even. Many people seem to have failed to see, that it 

was not science itself, but only the explosive growth of the institutions 

that was to blame. Throwing away the child with the bathwater, they have 

declared war on science in its best tradition. They are openly antiscienti

fic, antiacademic, very much against rigour and formal techniques, and 

they propose to be agressively creative, gloriously intuitive and nobly in

terdisciplinary instead. The cruel love of perfection and excellence, that 

used to characterize the hard sciences, are but elitist relics to be abol

ished as quickly as possible, and progressive from now onwards shall mean 

soft. The political slogans of the late sixties cast these views in a jar

gon that is still alive and still causes confusion. 

The result of all this is that the message that "software", in spite 

of its name, requires a very hard discipline, is in many environments now 

politically unacceptable, and therefore fought by political means. In char

acteristically anonymous blurbs in periodicals of the Computer Weekly va

riety I find myself under political attack. "Dijkstra articulates the voice 

of reaction" is a mild one. "I am inclined to view Dijkstra[ ... ] as intel

lectual product of the Germanic system" is much worse. And I arouse the 

"suspicion that [my] concepts are the product of an authoritarian upbring

ing" coming as I do from a country having "social philosophies touched by 

authoritarianism and the welfare state" etc. Nice is also the choice of ad

jectives when my efforts are described as "directed into turning a noble 

art into a rigid discipline". The first time I found myself confronted with 

the opinion that adhering to a forrral discipline hampers creativity I was 

completely baffled, because it is absolutely contrary to my experience and 

the experience of the people I have worked with. I found the suggestion so 

ludicrous that I could not place it at all: it is so terribly wrong. Since 

then I have learned that as symptom of a political attitude it is quite 

well interpretable. 

Having thus -I hope- cleared the sky from political encumbrances, I 

shall now turn to the technical part of my talk. 

Why is programming intrinsically an activity with a strong mathemati

cal flavour? Well, mathematical assertions have three important character

istics. 
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1) Mathematical assertions are always general in the sense that they are 

applicable to many -often even infinetely many- cases: we prove something 

for all natural numbers or all nondegenerate Euclidean triangles. 

2) Besides general, mathematical assertions are very precise. This is al

ready an unusual combination, as in most other verbal activities general

ity is usually achieved by vagueness. 

3) A tradition of more than twenty centuries has taught us to present these 

general and precise assertions with a convincing power that has no equal in 

any other intellectual discipline. This tradition is called Mathematics. 

The typical program computes a function that is defined for an incred

ibly large number of different values of its arguement; the assertion that 

such and such a program corresponds to such and such a function has there

fore the generality referred to above. 

Secondly: the specification of what a program can achieve for us must 

be pretty precise, if it is going to be a safe tool to use. Regarded as a tool 

its usage can only be justified by an appeal to its stated properties, and 

if those are not stated properly its usage cannot be justified properly. 

And here we have the second characteristic. 

Thirdly: the assertion that such and such a program corresponds to 

such and such a function, although general and precise, is not much good if 

it is wrong. If the program is to be regarded as a reliable tool, our least 

obligation is a convincing case, that that assertion is correct. That pro

gram testing does not provide such a convincing case is well-known. The 

theoretically inclined can deduce this from the indeed incredibly large 

number of different argument values for which the function is typically 

defined; the more experimentally inclined can conclude this from more than 

twenty years of experience in which program testing as main technique for 

quality control has not been able to prevent the proliferation of error

loaded software. The only alternative that I see is the only alternative 

mankind has been able to come up with for dealing with such problems, and 

that is a nice convincing argument. And that is what we have always called 

Mathematics. 

Here we touch upon the major shift in the programmer's task that took 

place during the last ten years. It is no longer sufficient to make a pro

gram of which you hope that it is correct -i.e. satisfies its specifica

tions- you must make the program in such a way that you can give a convinc

ing argument for its correctness. Superficially it may seem that this shift 
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has made the task of the poor programmer only more difficult: besides mak

ing a program he has to supply a correctness argument as well. It may in

deed be hard to supply a nice correctness argument for a given program; if, 

however, one does not add one's correctness concerns as an afterthought, 

but thinks about the correctness argument right at the start, the correct

ness concerns have proved to be of great heuristic value. And the wise 

programmer now develops program and correctness argument hand in hand; as 

a matter of fact, the development of the correctness argument usually runs 

slightly ahead of the development of the program: he first decides how he 

is going to prove the correctness and then designs the program so as to fit 

the next step of the proof. That's fine. 

You may think that I have introduced a more serious difficulty by stat

ing that the programmer should make his program in such a way that he can 

give "a convincing argument" for its correctness. Convincing to whom? Well, 

of course, only to those who care. But couldn't those have very, very dif

ferent notions of what to regard as "convincing"? Has the programmer to 

provide as many different arguments as there may be people caring about 

the correctness of his program? That would make his task clearly impossible. 

The task is, indeed, impossible as long as we don't distinguish be

tween "conventional" and "convenient". What different people from different 

parts of the world have been used to varies so wildly, that it is impos

sible to extract a guiding principle from trying to present your argument 

in the most "conventional" way: their usual patterns of thinking are most 

likely inadequate anyhow. About convenience of a notation, about effective

ness of an argument, about elegance of a mathematical proof, however, I 

observed among mathematicians a very strong consensus -the consensus was, 

as a matter of fact, much greater than most of the mathematicians I spoke 

suspected themselves- and it is this consensus among mathematicians that 

has proved to be a very valuable guiding principle in deciding towards what 

type of "convincing argument" the programmer should be heading. 

Let me now try to sketch to you the type of mathematics involved in 

arguing about programs. One way of viewing a program is as the rules of be

haviour which can be followed by an automatic computer, which is then said 

"to execute" the program. The process taking place when a computer executes 

a program is called a "computation", and a computation can be viewed as a 

time-sequence or a long succession of different machine states. The part of 

the machine in which its current state is recorded is called the store -or: 
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the memory-; the store is very large because it must be able to distinguish 

between a huge number of different states. 

In arguing about programs we have to characterize the set of machine 

states that are possible at various stages of the computational process. 

Individual states are characterized by the values of variables in very 

much the same way as the position of a point in a plane can be character

ized by the value of its coordinates in a well-chosen coordinate system. 

There are in this analogy only two differences: while the coordinates in 

the Euclidean plane are usually viewed as continuous, the variables char

acterizing the state of the machine are discrete variables that can only 

take on a finite number of different values. And secondly: while in Euclid

ean plane geometry two coordinates suffice to fix the position of a point, 

in computations we typically need thousands or millions of different vari

ables te record the current machine state. 

In spite of the fact that that last difference is a drastic one, the 

analogy is yet a useful one. Everybody familiar with analytic geometry 

knows how specific figures, lines, circles, ellipses etc. can be character

ized by equations: the figures are regarded as the subset of the points 

whose coordinates satisfy the equa~ion. The analogy to the figure in ana

lytic geometry is the subset of possible states at a certain point of pro

gress of the computation, and in analogy to analytic geometry, such a sub

set is characterized by an equation: the subset comprises all states of the 

machine in which the values of the variables satisfy that equation. 

The analogy can even be carried a little bit further: we all know how 

the ease with which a proof in analytical geometry can be carried out often 

depends on the choice of our coordi.:i.ate system. The program designer has a 

similar freedom when he chooses the conventions according to which the vari

ables he introduced shall represent the information to be manipulated. He 

can use this freedom to speed up the computation; he can also use it to sim

plify the equations characterizing the sets of states he is interested in. 

If he is lucky, or gifted, or both, his choice of representation serves 

both goals. 

So much for the analogy; now for the difference. The number of vari

ables he is dealing with is much larger than the two coordinates of plane 

geometry, and the subsets of machine states he needs to characterize have 

very seldomly an obvious regularity as the straight line, the circle, and 

the ellipse that analytic geometry is so good at dealing with. This has 
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two immediate consequences. 

First of all we need a much richer framework and vocabulary in which 

we can express the equations than the simple algebraic relations that carry 

analytic geometry. The framework is provided by the first-order predicate 

calculus, and the vocabulary by the predicates the programmer thinks it 

wise to introduce. That the first-order predicate calculus was the most 

suitable candidate for the characterization of sets of machine states was 

assumed right at the start; early experiences, however, were not too en

couraging, because it only seemed practicable in the simplest cases, and 

we discovered the second consequence: the large number of variables com

bined with the likely irregularity of the subsets to be characterized very 

quickly made most of the formal expressions to be manipulated unmanageably 

long. 

Let me put it in other words .. The programmer is invited to apply the 

first-order predicate calculus; I am even willing to make a stronger state

ment: not knowing of any other tool that would enable to do the job, the 

programmer must apply the first-orcer predicate calculus. But he has to do 

so in an environment in which he is certain to create an unmanageable mess 

unless he carefully tries to avoid doing so (and even then success is not 

guaranteed'.). He has to be constantly consciously careful to keep his nota

tion as adequate and his argument as elegant as possible. And it is only in 

the last years that we are beginning to discover what that care implies. 

Let me give you a simple example to give you some feeling for it. 

To begin with we consider a finite undirected graph at each vertex of 

which a philosopher is located: phL_osophers located at vertices that are 

directly connected by one edge of the graph are called each other's neigh

bours and no philosopher is his own neighbour. For the time being the life 

of a philosopher exists of an endless alternation of two mutually exclusive 

states, called "thinking" and "tabled". 

In our next stage we allow edges to be marked or not, a marked edge 

meaning that the two philosophers at its two ends are both tabled, more 

precisely 

Pl: For any pair (A, B) of neighbours 

"both A and Bare tabled"= "the edge between A and Bis marked". 

We assume that the system is started in an initial state in which 

1) all edges are unmarked 
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2) all philosophers are thinking. 

As a result, Pl initially holds. Therefore Pl will continue to hold indefi

nitely, provided no philosopher transition from thinking to tabled intro

duces a violation of it. This is obviously achieved by associating with 

these transitions the following "point actions" -where no two different 

point actions are assumed to take place simultaneously-

Tl: < mark the edges connecting you to tabled neighbours and switch from 

thinking to tabled> 

T2: < unmark your marked edges and switch from tabled to thinking>. 

The first transition now introduces a mark for every pair of tabled neigh

bours introduced by it, the second one removes a mark for every pair of ta

bled neighbours disappearing as a result of it. With these conventions the 

permanent truth of Pl is guaranteed. 

From the above we see that a mark on the edge between the neighbours 

A and B has either been placed by A or by'B. In our next stage we shall in

dicate which of the two has placed the mark by representing a marked edge 

between A and B by a directed edge, i.e. by placing an arrow along the edge. 

In this representation relation Pl is rephrased as 

Pl: For any pair (A, B) of neighbours 

"both A and Bare tabled"= "the edge between A and Bis directed". 

The direction of the arrow is fixed, by rephrasing the transitions as 

Tl: < direct arrows pointing towards your tabled neighbours and switch 

from thinking to tabled> 

T2: < make all your edges undirected and switch from tabled to thinking>. 

We observe that transitions Tl create arrows and only transitions T2 de

stroy them. More precisely: each arrow is created as an outgoing arrow of 

its creator, hence, 

a philosopher without outgoing arrows remains without outgoing arrows 

until it performs itself its own transition Tl. 

We now subdivide the state "tabled" into the succession of two sub

states "hungry" followed by "eating", where the transition is marked by the 

observation 0£ absence of outgoing arrows, more precisely 

"philosopher A is tabled"= "philosopher A is hungry or eating" 

and the life of a philosopher now consists of a cyclic pattern of transi

tions 



Tl: <direct arrows pointing towards your tabled neighbours and switch 

from thinking to hungry > 
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Tl.5: <observe that you have no outgoing arrows and switch from hungry to 

eating> 

T2: < remove all your incoming arrows and switch from eating to thinking> 

and we establish the permanent truth of 

P2: For any philosopher A we have 

"philosopher A has no outgoing arrows"~ "philosopher A is hungry". 

In transition Tl the first term P2 may become false, but the second one be

comes certainly true; in transition Tl.5 the second term becomes false at 

a moment when the first term is true, a truth that cannot be destroyed by 

the other philosophers. In T2 the fact that initially the philosopher is 

eating tells us in combination with P2 that its arrows, if any, must be in

coming arrows; hence, removal of your incoming arrows is the same as remov

al of all your arrows. 

Relations Pl and P2 guarantee that no two neighbours can be eating si

multaneously: if they were, they would both be tabled, hence there would be 

an arrow between them (on account of Pl), for one of them it would be an 

outgoing arrow, but P2 excludes that an eating philosopher, which by defi

nition is not hungry, has outgoing arrows. 

(In addition we can prove that if the graph is finite and each eating 

period for each philosopher is finite, then each hungry period for each 

philosopher will be finite. This follows from the fact that the arrows nev

er form a directed cyclic path.) 

The way in which the above argument has been described illustrates one 

of the aspects of the "care" which is becoming typical for the competent 

programmer: "step-wise refinement" is one of the catchwords. Note that we 

have started the argument in terms of the still very simple concepts "ta

bled" and "marked". Only after the exhaustion of these two concepts, the 

state "marked" was split up into two mutually exclusive substates as repre

sented by the two possible directions of an arrow along the edge. And only 

when the consequences of that refinement had been explored, the state "ta

bled" was subdivided into two mutually exclusive states, viz. "hungry" and 

11 eating 11 • 

In the simple example shown such a cautious approach may seem exagger

ated, but for the trained programmer it becomes a habit. In a typical pro

gram so many different variables are manipulated that the programmer would 
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lose his way in his argument if he tried to deal with them all at once. He 

has to deal with so many concerns that he would lose his way if he did not 

separate them fairly effectively. He tries to keep his arguments simple 

compared to the final program by abstracting from all sorts of details 

that can be filled in later. 

In yet another respect the above argument is typical. I did not tell 

you the original problem statement, but that was phrased as a synchroniza

tion problem, in which no two neighbours were allowed to eat simultaneous

ly. The notion "hungry" has to be invented by the programmer; and then the 

argument is introduced by abstracting from the difference between "hungry" 

and "eating", in terms of.the notion "tabled" that did not occur in the 

original problem statement at all. Such abstractions must be performed: 

instead of "tabled" one can say "hungry" or "eating", but the translation 

of "a pair of tabled neighbours" gives you some hint of the clumsiness thus 

engendered. 

One last detail worth noticing is provided by our arrows. We had to 

introduce two different forms of marking: we could have done that with col

ours, say red edges and blue edges, but then we would have lost that my in

coming arrows are my neighbours outgoing arrows, and the whole argument 

would have lost its clarity. 

So much for the care needed to keep the arguments manageable: we can 

summarize it by stating that in programming mathematical elegance is not a 

dispensable luxury, but a matter of life and death. 

In the example sketched the argument could be rendered nicely and com

pactly essentially thanks to the introduction of the proper nomenclature, 

but quite often more drastic steps have to be taken. In order to formulate 

the equations characterizing sets of possible machine states it is quite 

often necessary to change the program by the insertion of additional oper

ations on so-called "auxiliary variables". They are not necessary for the 

computation itself, they are hypothetical variables whose values we can 

view as being changed in the course of the computational process studied. 

They record some aspect of the progress of the computation that is not 

needed for the answer, but for the argument justifying the program. Their 

values can appear in the characterizing equations in terms of which the 

correctness argument is couched. The introduction of the appropriate aux

iliary variables is a next step in the progress of "choosing an adequate 

nomenclature"; the role of the auxiliary variables in proofs of program 
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correctness is very similar to the role of auxiliary lines or points in geo

metrical proofs, and their invention requires each time a similar form of 

creativity. This is one of the reasons why I as a computing scientist can 

only regret that the attention paid to Euclidean geometry in our secondary 

school curricula has been so drastically reduced during the last decades. 

In a recent correctness proof I had to go still one step further. I 

had to introduce auxiliary variables, but their values did not occur direct

ly in our characterizing equations: in those equations occurred terms which 

had to be defined as the minimal solution of two sets of equations in which 

the auxiliary variables appeared as constants. As far as I am aware, that 

proof was the first one of its kind, but its discovery was a pure joy. It 

showed a counterexample to the commonly held but erroneous belief that for

mal correctness proofs for programs are only belabouring the obvious; it 

showed how th~ first-order predicate calculus was an indispensable and ade

quate tool, nut, most important of all, it showed how a careful analysis of 

the syntactic structure of the predicates quite naturally led to all the 

additional logical gear to be invented. 

In the int~rplay between mathematics and programming during the last 

ten years programming as an intellectual discipline has clearly been at the 

receiving end. A new area of intellectual activity has been discovered to 

be amenable to mathematical treatment, and thanks to the introduction of 

mathematical techniques we can now design programs that are an order of 

magnitude better than the ones we could design ten years ago. In the past 

the discovery of a new area of applicability of mathematics has always in

fluenced and stimulated mathematics itself, and it is reasonable to wonder 

about the question what influence on mathematics may be expected this time. 

I expect that the influence will be very wholesome. The programmer ap

plies mathematical techniques in an environment with an unprecendented po

tential for complication; this circumstance makes him methodologically very, 

very conscious of the steps he takes, the notations he introduces etc. 

Much more than the average mathematician he is explicitely concerned with 

the effectiveness of this argument, much more than the average mathemati

cian he is consciously concerned with the mathematical elegance of his ar

gument. He simply has to, if he refuses to be drowned in unmastered com

plexity. From the programmer's exposure and experience I can expect only 

one influence on mathematics as a whole: a great improvement of the taste 

with which formal methods are applied. This improvement may very well turn 
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out to be drastic. In texts about the philosophy of science from the first 

half of this century it is quite common to encounter a postulated antago

nism between formal rigour on the one hand and "understandability" on the 

other. Already now, whenever I see such a text it strikes me as hopelessly 

out of date, arguing as it does against formal rigour instead of against 

ugliness: in those days the two were evidently often regarded as synonymous. 

And I have some indication that this improvement in taste is not only the 

dream of an optimist. I have conducted a little experiment with students 

from all over the world, in which I asked them to prove a nice little the

orem from number theory that, although everyone can understand what the 

theorem states, happens to be unknown: the mathematicians with programming 

experience did markedly better than the mathematicians without that experi

ence. 
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"Statistics uses the empirical hypothesis that apparatus ('lotteries') 

exist, admitting random choices of one among any given number of elements. 

Such apparatus do not exist in absolute perfection and their degree of 

perfection can only be defined after development of their theory. Their 

role is analogous to that of rigid bodies in euclidean geometry and of 

perfect clocks in dynamics. Empirical interpretation of probability state

ments is only possible with reference to such random apparatus or to natu

ral phenomena empirically found to behave statistically sufficiently like 

these". 

D. van Dantzig (1957) 

1. INTRODUCTION 

The use of mathematical models is widespread and of an old date, 

but the general recognition of this fact is comparatively new. The question 

of how to choose a statistical mathematical model has led to considerable 

confusion and controversy, and still does. Mathematical statisticians wise

ly save their skins by using the axiomatic approach, leaving the controver

sy to others and the confusion to the users of their theory. For axioms, 

however useful, say nothing about their application. It seems to the author 

that the time has come to formulate rules for the choice of statistical 

models. In this paper a number of such rules are proposed. They will 

*) 
'Report nr SW 53 of the Dept.of Math. Statistics of the 
Mathematical Centre, Amsterdam. This paper appears also in Statistica 
Neerlandica E, nr. 3 (1978). 
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certainly not please everybody, if only because they are formulated from 

the classical, objectivistic, point of view. They may, however, strengthen 

and clarify this point of view and help the user of statistical theory in 

its correct use and interpretation. 

The subject is an extensive one, which can only be touched upon in 

a short paper. Therefore many details have to be taken for granted, the 

history of the subject is left aside and the controversy between objectiv

ists and subjectivists is ignored. 

In general a mathematical model is a simplification and an exacti

fication of a part of reality. The simplification is necessary because of 

the extreme complexity of reality and the exactification because of its 

vagueness. Reality is always a bit out of focus: equality, for instance, 

is usually approximate equality and therefore not strictly transitive. In 

a mathematical model transitivity of equality and other desirable proper

ties hold exactly and this makes it possible to develop extensive theories. 

But one should keep reality and model strictly apart. Confusing the two 

leads to baffling paradoxes - some of them well known - which can only be 

solved by disentangling reality and model. 

Statistical models are concerned with parts of reality which are 

subject to uncertainty and which we will call (statistical) experiments. 

The possible outcomes of a statistical experiment are usually known, but 

the actual results are in a higher or lesser degree unpredictable. Causal

ity does not seem adequate for analysing such experiments; instead the prob

abilistic approach is used. 

In the following sections rules for using this approach are formula

ted step by step. These rules are not part of mathematics. They are not 

theorems nor are they laws of nature. They may be seen as directions for 

use of statistical models. They are certainly not perfect (nothing is) and 

their use cannot be enforced. But th2y are useful as a guide for sensible 

application of statistical methods. 

2 • RANDOMIZERS 

Pure unpredictability in a statistical sense is found in a lottery, 

or randomizer. Everybody knows what a lottery is, but nevertheless it is 

suprisingly difficult to give a satisfactory description of its properties. 

A separate paper would be needed to this end. Let us just point out some 
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A randomizer is a machine which can be used repeatedly and which 

a) every time when it is activated gives one of a fixed finite set of 

results, but 

b) every time the result to be obtained is completely unpredictable in 

the sense that any method of prediction is just as bad as any other 

and knowledge of past results does not help at all. 
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The vagueness of this description is a nice and proper example of the 

vagueness of reality mentioned in section 1. The essence of a randomizer 

is negative: it is impossible to find two systems of prediction which 

differ systematically with respect to their number of sucesses. Nobody 

has succeeded in bringing this negative property of a randomizer in a pos

itive form, except in the framework of a mathematical model. 

Consider a randomizer with N possible results: the numbers 0, ... ,N-1, 

say. Call this an N-randomizer. Then the following properties hold: 

c) If an N-randomizer is activated n times in succession and the Nn 

n-tuples of possible results are considered as possible outcomes of 

this composite experiment, then an Nn-randomizer is obtained. 

d) If, with M < N, an N-randomize.r is activated until one of the numbers 

O, ... ,M-1 is obtained, (skipping all outcomes but the last one) this 

composite experiment constitutes an M-randomizer. 

These properties, follow logically from property b), but they can also be 

verified empirically if one wishes to take the trouble. It may be remarked 

that the experimental law of large numbers, the approximate long-run equal

ity of the relative frequencies of the N outcomes of a randomizer, also 

follows logically from property b). The reverse is not true: periodic pro

cesses (e.g. the hours indicated by a watch) obey the experimental law of 

large numbers but do not have property b). Thus the unpredictability of 

separate results is more fundamental than the experimental law of large 

numbers. 

3. THE BASIC STATISTICAL MODEL 

As far as the statistical model for a randomizer is concerned there 

is general concensus. The N possible outcomes are assigned equal probabili

ties 1/N in agreement with the classical probability definition of Laplace: 
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the probability of an event is equal to the ratio of the number of possible 

outcomes favorable for the event to the total number of possible outcomes. 

More precisely, if we call the activation of an N-randomizer: 

"drawing at random from 0, ... ,N-1", then the model for one random drawing 

consist of three elements: 

1) The space of (elementary) events: Q 

2) Composite events: all subsets of Q. 

*) {O, •.• ,N-1}. 

3) The Laplace-definition assigning a probability to every event: 

with N(Q') = the number of element of Q'. 

The basic threefold structure of this model holds for all statistical 

models, though usually in a more complicated form. It is also completely 

in harmony with the axiomatic set-up. We call this model a finite symmetric 

probability space and our first rule is: 

Rule 1. For one random drawing we use a finite symmetric probability 

space as mathematical model. 

Now consider a sequence of n random drawings, resulting in an n-vector 

of numbers from Q. According to property c) of section 2 this composite 

experiment is the same as one random drawing from the Nn possible n-vectors. 

Thus rule 1 also gives us the model for this sequence of drawings. If one 

works this out the result is the product probability space of n finite 

symmetric probability spaces, one for each of then random drawings. 

we omit the details; they are well-known to every statistician and we 

want to hurry on to more important points. But we do remark that the 

reasoning also holds for a sequence of random drawings from different 

randomizers and that we arrive thus at our second rule: 

Rule 2. For a sequence of n random drawings we use as a model the product 

probability space of then symmetric probability spaces of the 

separate drawings. 

Remark that the term "independent" need not yet be introduced at this stage; 

it is implicit in property b) and emerges explicitly in a natural way when 

later on conditional probabilities are introduced. At the present stage one 

"(possible) result", "(possible) outcome" and "elementary event" are 
used as synomyms. 



might say that a randomizer is independent of everything: it walks, 

like a cat, by itself. 

4. THE PRINCIPLE OF EQUIVALENCE 

The transition from rule 1 to rule 2 has been accomplished by 
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stating that - according to property b) - n random drawings from O, ... ,N-1 

"are the same as" one random drawing from 0, ... ,~-1 (after numbering the 

n-vectors in an arbitrary order). This expression "the same as" is not very 

accurate; the two experiments compared are not the same, but they both have 

the properties of a randomizer. In a certain sense they are equivalent with 

respect to their statistical properties. It is worth while to elaborate on 

this point because it leads us to one of the key-points of our set-up. 

Consider two repeatable experiments E' and E" with the same possible 

outcomes W' = rl") but otherwise possibly very different. Let the follow

ing information be supplied: 

1) an accurate description of E' and E", 

2) two sequences of results A and B from these experiments, however with

out identification; this means that it is not known whether A and E' 

(and B and E") belong together or the other way around. 

Additional information is supplied on request: 

3) further details about E' and E", 

4) extensions of the sequences A and B (again without identification), 

5) sequences C' from E' and C" from E". 

If in this situation there is no conceivable method of identifying the 

sequences A and B, then E' and E" are called (statistically) equivalent. 

Their statistical behaviour with respect to the possible outcomes consi

dered, is the same. The generalization to more than two experiments is 

straightforward and we can now formulate: 

The principle of equivalence. If experiments are equivalent in the sense 

described above, then the use of the same model for all of them is justi

fied. 

External reasons like practical importance and cost of time and money may 

lead to the use of different models when, statistically speaking, the use 

of the same model would be desirable. In this paper, however, we will 
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strictly adhere to the principle of using the same model for equivalent 

experiments. 

A lot more can be said about the concept of equivalence, but a 

practical example may at this point be more clarifying. Five experiments 

have, to this end, each been excecuted 221 times. They are 

*) 
E 1: recording the last digit of the hodometer 6f the authors car when 

he left the car for more than half an hour. 

E2 : recording at the same moments, the last digit of the sub-hodometer, 

which records the same distance in units of 100 m (mod 10 000). 

E3 : recording the last digit of the hodometers of cars in public parking 

lots. 

E4 : throwing a blue tensided die carrying the numbers 0, ••• , 9. 

ES: throwing a red tensided die with the same numbers. 

For every experiment the results of 221 excecutions were recorded in the 

order of their observation. The dice were well made and they were thrown in 

such a way that E4 and ES may be considered to be 10-randomizers. For these 

two experiments equivalence is clear: from property b) of section 2 it 

follows that all N-randomizers are equivalent (for any fixed N). It is not 

very plausible that E1 and E2 are equivalent to E4 and ES, but E3 might 

well be. For although E3 is much more complicated then E4 and ES it is 

difficult to imagine why it would be possible to find two systems of pre

dicting the next outcome of E3 ohe of which is better than the other. This 

might well be possible for E1 and E2 . 

It is clear that speculations of this kind are not a sufficient basis 

for deciding about equivalence. The observations themselves, however, may 

help. And one of the tasks of statistical theory is to provide methods to 

test equivalence of experiments and the goodness of fit of models to experi

ments. These methods are indeed available and one of them can be used in 

our case. In order to confuse the reader the five sequences have been 

assigned labels A, B, C, D, Eat random. Table 1 contains the observations 

in their original form. It is difficult to draw any conclusions directly 

from these date. They have been completely recorded in Table 1 in order 

to enable the reader to play around with them himself. A first step in· 

getting a better survey of the data is to arrange them in a frequency table. 

*) The hodometer crumulatively counts the distance covered by the car in km 
(mod 100 000). 
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This has been done in table 2, where two columns have been added, one for 

the well-known test statistic x2 and one for the right-hand tail-probability 

P. Extreme values of P indicate deviations from randomness; the number of 

degrees of freedom is 9, the hypothesis tested: randomness. 

Table 1. Five sequences of observations 

9 0 4 9 3 3 6 1 8 7 7 5 9 5 3 8 1 8 5 3 9 9 7 9 2 3 5 2 7 0 0 6 
4 6 5 5 1 9 4 5 4 7 0 4 2 5 1 7 8 5 6 3 1 4 6 1 3 3 4 7 3 1 9 3 
8 9 8 0 6 0 6 5 6 6 4 3 9 0 0 3 8 9 9 0 8 5 3 4 2 5 5 4 7 2 5 2 
0 8 7 3 7 0 6 9 6 4 9 1 3 2 3 9 7 0 3 2 6 6 2 8 9 6 8 8 2 8 1 0 

A 
8 5 3 3 8 8 0 5 7 7 2 4 7 1 0 6 6 0 5 5 6 6 4 4 9 9 0 7 8 3 7 4 
5 2 J 1 3 7 9 4 9 8 4 0 4 6 4 1 3 7 9 3 3 0 8 4 3 8 7 4 4 4 7 9 
3 8 8 7 9 1 2 7 4 6 1 8 2 7 7 8 8 7 8 3 3 4 7 8 9 3 2 2 7 

7 1 2 8 8 1 8 9 5 4 0 6 0 0 0 1 1 6 7 4 7 5 2 8 3 1 3 5 4 6 7 7 
2 9 4 9 9 9 1 2 4 7 3 1 6 4 9 7 6 3 8 8 3 6 8 9 6 9 5 9 3 8 5 1 
7 9 1 7 3 6 8 1 8 8 2 1 3 0 2 3 0 4 5 0 7 8 0 5 2 9 3 4 3 4 5 1 

B 8 6 1 3 8 5 3 2 0 1 3 9 6 7 9 2 4 6 4 0 4 6 3 9 5 7 8 4 1 6 1 2 
2 7 3 9 4 2 6 5 1 9 6 2 8 7 2 8 6 4 5 5 0 7 0 0 4 9 5 1 5 8 7 9 
4 8 3 9 3 2 3 2 6 6 8 5 1 5 2 9 8 2 7 7 5 2 0 2 0 6 1 9 5 1 7 4 
0 1 7 4 4 2 1 4 0 6 3 6 0 9 8 2 2 5 1 1 8 5 1 6 0 8 7 9 8 

4 5 7 9 0 2 7 3 7 3 0 1 1 0 9 5 5 4 0 9 2 3 4 1 9 8 8 8 6 0 6 3 
5 0 6 3 6 4 3 0 9 6 4 0 1 6 1 5 0 2 3 8 9 7 6 8 7 8 9 6 2 6 0 2 
5 5 8 8 3 9 3 2 2 0 5 2 1 2 7 1 0 1 7 8 9 2 0 1 3 8 2 1 1 3 6 1 

C 5 0 4 4 8 3 5 6 7 5 5 9 8 5 7 7 2 3 8 8 1 7 8 0 0 0 0 7 8 4 9 9 
9 5 0 1 6 7 1 5 8 2 9 2 3 6 4 9 6 5 5 5 9 1 9 2 6 5 6 1 7 9 7 3 
0 4 0 8 2 4 3 2 3 5 7 0 7 0 7 8 3 0 6 7 2 7 1 9 4 9 9 9 9 4 1 9 
7 6 9 2 1 5 8 3 7 1 0 2 0 6 6 4 1 2 1 0 0 9 0 6 2 7 1 5 1 

5 6 6 0 8 2 6 5 3 9 2 6 5 5 4 5 4 8 2 9 5 6 7 7 2 9 9 8 7 3 0 3 
5 9 2 9 3 2 2 4 1 5 9 6 2 8 5 1 1 4 7 9 3 3 4 6 4 8 4 7 4 0 4 8 
1 5 0 3 7 7 3 1 4 3 6 5 9 3 2 3 9 8 4 8 1 1 4 3 9 2 3 4 3 9 5 9 
2 9 6 4 5 9 5 7 3 8 3 6 0 6 2 3 4 5 4 1 6 0 4 7 1 7 3 7 1 2 4 4 

D 4 7 1 5 0 1 3 2 5 9 1 7 0 4 8 7 9 8 3 3 7 0 2 8 7 6 5 9 2 5 1 0 
1 9 3 6 5 6 8 8 4 9 2 8 1 9 3 6 5 1 4 2 6 0 3 3 2 7 7 0 4 8 1 5 
2 2 5 9 8 2 4 6 1 0 4 7 5 7 5 3 3 7 1 0 5 9 3 6 9 9 8 7 6 

7 3 9 5 9 5 1 3 4 7 0 0 0 9 5 1 9 6 5 9 0 1 9 6 9 4 4 1 6 3 7 0, 
0 4 9 0 7 8 6 7 3 3 1 0 8 7 3 2 5 i 9 7 9 1 0 4 7 9 6 2 1 4 2 2' 

2 9 9 3 5 9 6 2 1 8 1 0 1 9 4 1 0 3 7 6 3 4 3 1 8 8 9 8 8 8 0 5 
1 6 5 1 3 8 0 5 8 6 8 2 5 7 6 5 8 2 9 3 0 9 7 5 5 9 3 1 9 4 2 4 

E 4 3 5 5 3 8 9 7 0 1 4 6 2 5 3 4 7 0 1 0 5 9 4 4 4 6 3 0 0 9 4 9 
1 3 6 4 8 4 5 8 2 2 3 5 8 8 2 6 8 3 5 9 7 3 8 4 7 0 3 4 7 9 2 3 
7 3 3 8 8 7 9 9 2 5 4 1 9 2 1 4 9 2 1 6 0 3 4 6 6 5 3 4 0 
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Table 2. Frequencies of 0, ... ,9 in the five sequences 

:f:I :: 
I 29 

14 

C 

D 

25 

20 

E I 22 22 

2 

16 

23 

22 

22 

17 

3 

30 

20 

19 

28 

27 

4 

25 

21 

14 

26 

25 

5 

19 

21 

22 

26 

22 

6 7 

20 27 

22 21 

21 23 

20 22 
I 

17 i 18 

8 9 

27 24 

25 23 

20 26 

18 I 25 

21 : 30 

2 
X 

11.26 

1.94 

6.92 

7.46 

7.46 

p 

0.26 

0.992 

0.65 

0.59 

0.59 

None of the frequencies in table 2 deviates extremely from its mean 22.1. 

None of the values Pis very small. One, however, pertaining to sequence 

B, is very close to 1, indicating some source of regularity which cannot 

be expected in a randomizer. Thus B may well stem from E1 or E2 . But the 

result is still very undecisive. Therefore we go one more step in our 

analysis, aiming straightly at a point where E1 and E2 may well be very 

different from E3 , E4 and E5 . For every pair of consecutive results, x 1 

and x 2 say, we form the difference x 2-x 1 (mod 10). ThjE gives us five new 

sequences of 220 results each. We need not give a table of these in the 

form of table 1, because the read8r can easily write this down himself. 

The new sequence A would start wi~h: 1 4 5 4 0 ... This operation applied 

to successive results of a 10-randomizer gives again a 10-randomizer. This 

can easily be proved by means of 1:he model implied by rules 1 and 2. It 

can also be viewed as a property .,.ike c) and d) of section 2; the reader 

can easily verify this by some thinking. On the other hand it is very 

plausible that this does not hold at all for E 1 and E2 because the author 

often travels the distance from home to work by car. 

Table 3. Frequencies of 0, ... ,9 in differencies ruod 10 

A 

B 

C 

D 

E 

0 

28 

17 

24 

26 ! 22 21 

20 I 23 12 

29 ! 18 16 

18 I 24 I 20 

19 i 28 I 37 

25 28 122 

18 15 

23 19 

14 i 35 49 
I 

22 f 31 I 22 

10 

20 

26 

19 

' i 

7 I 8 

29 J 24 

28 f 18 

18 16 

9 

18 

18 

24 

11 11 31 

16 i 23 ' 25 

x2 
4.82 

21. 27 

9.36 

68.64 

6.82 

p 

0.89 

0.012 

0.40 
-9 2.6x10 

0.66 



The frequencies of the five new series are given in table 3. Now the 

situation is completely changed. In D the differences 3 and 4 are very 

predominant and in B the same holds, but less strongly, for 5, 6 and 7. 
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The value of Pis very small for D and small for B; there is little doubt 

that D and B stem from E1 and E2 , possibly even in this order. Additional 

information of the types 4) and 5) mentioned above would most probably lead 

to a decision in this question. Thus our conclusion is that E4 , E5 and E6 

may well be considered equivalent, but E1 and E2 certainly are not equiva

lent, neither to each other nor to the other three. If the reader would 

wish to try to identify E3 among A, C and E, he can provide additional 

observations of E3 himself. 

Anticipating an objection to the principle of equivalence we may 

concede that it will never be possible to prove conclusively that two exper

iments are equivalent. But then, absolute certainly about such things is 

not part of this life. If experiments are deemed equivalent for suffi

ciently sensible reasons and if observations in sufficient numbers do not 

contradict this, then the principle can be used. For on the other hand non

equivalence can be proved experimentally to a reasonable degree of certain

ty, as the example illustrates. 

5. PROBABILITY SPACES WITH illIBQUAL PROBABILITIES 

To arrive at probability spaces with unequal probabilities for the 

elementary events, the space of events Q of a symmetric probability space 

is partitioned into a set of non-overlapping subsets. These, together with 

their probabilities form a new probability space. The addition law for 

exclusive even.ts, which in the symmetric probability space follows from 

the Laplace-definition, is carried over to the new probability space and 

this leads us to finite discrete probability spaces. The principle of equi

valence then justifies the use of such a space as a model for experiments 

where a lack of symmetry does not suggest the use of equal probabilities 

at all. A simple example: let experiment E' be throwing a loaded six-sided 

die, E" using an N-randomizer with sufficiently big N with Q = { 0, ... ,N-1} 

partitioned into six subsets with unequal numbers of elements n 1 , ... ,n6 , 

carrying the numbers 1, ... ,6. The contention is that for suitably chosen 

N and n 1 , ... ,n6 the two experiments are equivalent, thus justifying the 

use of a discrete probability field for E'. Of course a suitable choice 
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of n 1 , ..• ,n6 (and N) would have to depend on observations of E' but that 

only emphasizes the need of testing the goodness of fit of a model which 

has been chosen on the basis of rules and practical considerations. We 

thus arrive at: 

Rule 3. If an experiment is equivalent to a suitably chosen partitioned 

randomizer then we use a discrete probability space as mathemati

cal model. 

6. STATISTICAL INDEPENDENCE 

At the end of section 3 it was remarked that the independence of 

successive uses of randomizers is implicit in the properties of a randomizer. 

It is expressed in property b) by means of the fact that the past does not 

help to predict the future. This concept must be generalized and more for

mally expressed: 

DEFINITION. Consider n experiments E1, ... ,En' each of which separately 

is adequately described by a completely specified probability space; if 

knowledge of the results of any part of these experiments (after they have 

been performed) does not influence the predictability of the results of 

any of the others, then the experiments are called statistically indepen

dent. 

This, again, is a practical concept of considerable vagueness, which needs 

exactification by means of a mathematical model. It is clear from the defi

nition and the previously formulated rules that the whole sequence (E 1, ... ,En) 

is equivalent ton random drawings from suitably chosen partitioned random

izers and thus rule 2 indicates the use of the product-space: 

Rule 4. If n statistically independent experiments are each described by 

a probability space the combined experiment (E 1 , ... ,En) is des

cribed by the product of these probability spaces. 

Omitting, in this rule, the term "completely specified", which figures in 

the above definition, only means a slight generalization. The term cannot 

be omitted from the definition: if there are unknown parameters involved 

previous experiments·- independent or not - may supply information about 

these parameters and thus influence the predictability of the other expe

riments. This would for instance occur in a sequence of throws of the 
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loaded die used as an example in section 5, where nevertheless successive 

throws would be independent. 

7. CONDITIONAL PROBABILITIES AND COMPOSITE MODELS 

From independence to dependence is only one step but a very important 

one. An example of statistical dependence is found in repetitions of E1 of 

section 4; line D of table 3 (which does in fact pertain to E1) clearly indi

cates that adding 4 to the previous result (mod 10) is certainly superior 

as a method of prediction to adding 5. To build models for dependent expe

riments we need conditional probabilities. 

Usually conditional probabilities are introduced in the model by 

means of a definition. Let n1 and n2 be subsets of the space of events n 

then the conditional probability of finding an element of n2 under the con

dition that an element of n1 occurs is 

where P(n1) must be positive. This definition in itself says nothing about 

the way it should be used in applications. We therefore present a justifi

cation of (2) based on our rules, which also leads to a new rule giving 

insight in the way it should be used for model-building. 

Consider the following two experiments. 

E': drawing one element at random from n 1 (using an N(n1)-randomizer for 

the purpose), 

E": drawing elements at random from n (by means of an N (n) -randomizer) 

until for the first time an element from n1 is obtained and considering 

this element as the outcome of the composite experiment. 

According to property d) of section 2 E' and E" are equivalent and thus we 

ought to use the same model for both of them. But according to rule 1 the 

model for E' is a symmetric probability space with n1 as space of events 

and with the Laplace-definition. This means that we should also use this 

model for E" and this is exactly what happens. The notation "in111 is used 

to indicate the conditioning on n1 in either of the two ways indicated by 

E' or E". The Laplace-definition applied to E' now leads straight to (2), 

for according to this definition we have 
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where the unconditional probabilities pertain to one random drawing from 

Q. Note that neither E' nor E" can be performed if NW1) = 0; thus the 

reasoning only holds if P(Q1) > 0. 

The equivalence of E' and E" seems rather evident but the following 

anecdote shows that this does not hold for everybody*)_ An advertising 

agency organized a quiz in order· to promote some product. The quiz consisted 

ot some simple questions and the response was overwhelming. Thousands of 

answers were received and, of course, the prizes had to be awarded at random 

among the correct solutions. To this end the agency hired a number of work

ing students in order to sift out the wrong answers (which were comparati

vely few). This took several weeks time and when this work was completed 

the winners were drawn at random from the correct solutions. This procedure 

corresponds to E' and it is perfectly correct. How much more simple and less 

time-consuming it would have been, however, to use procedure E"! 

The generalization of (2) to partitioned probability spaces is 

straightforward. we will skip it. It is also clear that from (2) the gener

al multiplication law and the theorem on composite probabilities follow 

and that statistical independence means that conditional probabilities are 

equal to the corresponding unconditional ones. 

After these preparations we want to formally introduce the use of 

conditional probabilities in building up models for stepwise experiments. 

Let E(l) be an experiment with Q(l) as its space of events and P(l) as its 

probability function on Q(l), all according to previous rules. Let E( 2) be 
(2) 

a second experiment with space of e~ents Q , but depending on the result 
(1) f (1) n (1) . (2) 

of E in the following sense: or every w €" an experiment E (1) 
(2) (2) 'w 

is given which has a probability function P (l) (on Q ), depending on 

w(l), again in accordance with previous rule~. The composite experiment 
(1) (2) . (1) (2) (1) . 

E = (E ,E ) is composed of E and E w(l)' where w is the event 

realized in E(l). In these circumtances E(2) is called statistically depen

dent on E(l) and Eis called a stepwise composed experiment. By induction 

*) H. Piller, personal communication. 
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we get any finite number of steps. 

The model for E must be in accordance with previous model-rules and 

to find such a model we again consider two equivalent experiments: 

E': one realisation of E(2~l) for given w(l); the probability for obtaining 

w<2 > E n< 2> is then w 

P (2) ( (2)) 
w<1) w • 

E ll • • (l) ' (l) d 1 k' h 1 f <2 > . : repeating E until E gives w an oo ing at t e resu to E in 
(1) .• 

that trial. This means:imposing the condition w on E, and thus the 

model for E must be such that the probability for obtaining w <2 ) € n (2 ) is 

The equivalence of E' and E" now leads to 

and together with the multiplication law, which must also hold in the model 

for E, we find that we have to build up this model on n(l) x n< 2> by means 

of 

This is the only possibility if we want to obey our previous rules and the 

principle of equivalence. This result can be summarized as follows. 

Rule 5. For stepwise experiments where for every step previous rules lead 

to a probability space depending on the results of previous steps, 

a model is built up by means of conditional probability spaces for 

the steps and by means of the multiplication law for simultaneous 

probabilities. 

8. CONDITIONAL PROBABILITIES AND INFORMATION 

Although some details were glossed over in section 7 the treatment of 

a seemingly obvious method may seem rather extensive to some readers. But 

one must be careful as the following example is meant to show. A player 

throws a good six-sided die and you are to guess the result. This is the 

situation of section 2: your guess does not really matter as long as it is 
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one of the numbers 1, ••• ,6; the die is a randomizer. But now the player 

throws the die, has a look at the result without enabling you to do the 

same and he gives you the following information: "it is not 6". Now let us 

suppose that he does not lie (that is another game), how does this infor

mation influence your guess? I asked a number of statisticians this question 
• 

and all of them agreed that the guess would now be made as if 1, ••• ,5 were 

equally probable. This would seem in accordance with property d) of section 

2 and with the use of conditional probabilities as in the previous section. 

But this method may be completely wrong. Suppose the player uses the follow

ing information-policy: if the result is 1 he says "it is not 6", if it is 

not 1 he says "it is not 1". Then he will in any case give true information, 

but it will be very misleading if the result is 1. Equal conditional proba

bilities are then not the right model. Without the information the model 

was clear: a random drawing from 1, ••• ,6. After the information one is 

completely muddled. Giving out information should be accompanied by the 

knowledge of the information-policy. 

DEFINITION. Information about the result of an experiment is only reliable 

if the receiver knows the information-policy used, i.e. if he knows which 

information would be given for every possible result of the experiment. 

This boils down to a partitioning of n into subsets of elements with 

the same information. The information then indicates in which of these known 

subsets the result occurs and then conditional probabilities can be used 

without fail. 

Rule 6. Information about the result of an experiment can only be expressed 

in the model by means of specified conditional probabilities if the 

information is reliable in the sense of the above definition. 

If information is not reliable it is unreliable. This is how some news 

media and politicians misinform people without actually telling lies: 

what they say is formally true but if one does not know their information

policy or forgets to keep it in mind, their truth is twisted and may be very 

misleading. 
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Lack of knowledge about the information-policy can be incorporated 

adequately in the model by introducing an unknown partitioning of n, i.e. 

unknown conditions for the conditional probabilities. In our example with 

the die this would, in case "it is not 6", lead to five possible outcomes 

with unknown probabilities, which can have only a finite number of different 

values because there are only a finite number of possible partitionings. 

Further knowledge about the actual values but also about the actual infor

mation-policy could then be gathered by observing repeated independent 

trials of the same experiment. On the other hand it may be remarked that 

one may remedy the situation by randomizing ones guess among the numbers 

1, ••• ,5. Then at least the probability of a right guess is 1/5. Thus per

haps, one should never read a newspaper without a die or a coin at hand. 

9. FINAL REMARKS 

Although up till this point we only have finitely many rational 

probabilities in a probability space the generalization to infinitely many 

real ones and to continuous probability spaces is of a less fundamental 

nature. It is all passing to the limit and approximating discrete situa

tions by means of continuous ones for the sake of mathematical convenience 

and greater generality. So we need not be sorry that the scope of this paper 

does not allow us to go over all that. It is a pity that the space allotted 

is too small to talk about some other things like: the interpretation of 

probabilities in order to go back from the model to reality after the anal

ysis in the model. is completed and ~o the phenomenon that statisticians 

do not only seek to predict the fut11re, but also the past: the example in 

section 7 is of that character just as e.g. the method of confidence inter

vals for unknown parameters. These things are interesting but they will 

have to wait. 
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Generic adjacency algebras of systems of homogeneous coherent configu

rations are defined analogously to the generic Hecke algebras studied by 

CURTIS, IWAHORI and KILMOYER [1] and can be viewed as generalizations of 

them. To treat common properties of ordinary and generic adjacency algebras 

we introduce virtual adjacency algebras. In particular, versions of theo

rems of Frame and Wielandt for ordinary adjacency algebras as in [4] and 

for generic adjacency algebras can be obtained as consequences of versions 

for virtual adjacency algebras. Details of the material outlined here will 

appear (amongst other things) in [5]. General references for coherent con

figurations are [3] and [4]. 

1. SYMMETRIC ALGEBRAS 

Let F be a field of characteristic 0 with algebraic closure F, and let 

/A be an associative F-algebra with identity element 1 and a fixed F-basis 

w1 , ... ,w which will be refered to as the standard basis. We have w.w. 
r · 1 J 

= lrk 1 a .. kwk with the structure constants a. "k € F. A good example to keep = 1J 1J 
in mind is the group algebra of a finite group G with the elements of Gas 

standard basis. 

Assume given a linear functionals: IA ➔ F such that the bilinear form 

(x,y) = s(xy), x, y € A, is symmetric and nondegenerate. We refers as a 

virtual trace on /A. Then /A is a symmetric algebra with dual basis w1, ... ,wr 

defined by s(w.w.) = o ..• In the case of a group 
1 J 1J 

be the trace of the regular representation, then 

algebra, if we 
1 -1 

g = 7cTT g 

takes to 

Now assume that/A is semisimple. Let 6 1 , ... ,6m be the inequivalent 

absolutely irreducible representations of /A in F, and let s 1 , ... , sm be the 

corresponding absolutely irreducible characters, with ss(1) = es so 

lm e 2 = r. Write 6 (w) = (a~.(w)) for w € /A and list the r coefficient 
s=l s s iJ 

functions a~j' 1 s i,j s es' 1 s s s m: a 1,a2 , ... ,ar. Put a~ 
s 

a .. 
J1 

if 
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a-= a~ .. For linear functionals~,~: 8F- ➔ F write (~,~) 
A lJ 

Then we have the Schur relations 

( 1) 

and the orthogonality relations 

(2) 
e 

s 
6st z 

s 

s 
a ..• 
lJ 

The constants zs depend on~ but not on the particular basis. These 

are the usual Schur and orthogonality relations in the case of a group al

gebra. 

2. COHERENT CONFIGURATIONS 

A combinatorial configuration (X,0) consists of a nonempty finite set 

X and a set O of nonempty binary relations on X, and (X,0) is coherent if 

(I) 
2 0 is a partition of X, 

(II) a E 0, a n 

(III) a E O * a* 

2 
f 0 *a~ 1, where 1 = lx is the diagonal subset of X, 

{(y,x) I (x,y) Ea} E 0, and 

(IV) ai, aj, ak E 0, (x,y) E ak * aijk 

(z, y) E a. }I is independent of the 
J 

:= l{z E X I (x,z) Ea. and 
l 

choice of (x,y) E ak. 

we also say that a partition O of x2 is coherent if conditions (II), (III) 

and (IV) are satisfied. 

If (X,0) is a coherent configuration (abbreviated CC), then r := IOI 
is the rank, the map O ➔ 0 * a ➔ a is the pairing, and the nonnegative in-

tegers aijk are the intersection numbers. (X,0) is symmetric if the pairing 

is trivial, i.e., if a= a* for all a E 0, and homogeneous if 1 E 0. Sym

metric CC's are necessarily homogeneous and are equivalent to association 

schemes as introduced by Bose and Shimamoto. 

We may think of a CC as a colored graph in which the vertices are col

ored as well as the (directed) edges. Conditions (I) through (IV) are read

ily visualized in these terms. 

Our interest in CC's stems from there frequent occurrence in combi

natorial and group theoretic situations and the availability of methods to 

study them. That CC's abound is clear from the following remarks. 



207 

2 
(a) Consider the lattice of all partitions of X, where 01 $ 02 means that 

01 is a fusion of 02 , i.e., that 02 is a refinement of 01 • If two par

titions 01 and 02 are coherent, then so is 01 A 02 • Thus any partition 
2 

of X generates a coherent one (cf. [6]. Weisfeiler's stable graphs are 

equivalent to our CC's). 

(b) If G is a finite group acting on X, then (x,x2/G) is coherent. We say 

that this configuration is group induced, and that it is induced or af

forded by the action of G on X. This is the group case. 

(c} Let X = An be the set of all words of length n in a finite alaphabet A. 

Define relations a 0 ,a1 , .•. ,an on X by (x,y) E ai if and only if x and 

y differ in exactly i coordinates. Thus i, the Hamming distance between 

x and y, is the number of errors if xis transmitted and y received. 

Then (X,0), 0 = {a0 , ..• ,an}, is a symmetric CC of rank n + 1 (i.e., an 

association scheme with n treatments) sometimes called the Hamming 

scheme. Of course (X,0) depends only on !Al and n. Fixing n we obtain 

a system of symmetric CC's of rank n + 1 paramatrized by IAI, the term 

system being used in the sense of the definition to be given in §4. For 

the importance of this and other association schemes in coding theory 

see Delsarte's work, e.g., [2]. (X,0) is induced by the action of 

2 wr I on X = An. 
A ln 

A basic method for studying CC's (X,0) is via their adjacency algebras 

(which are the Bose-Mesner algebras in the case of association schemes). 

Let O = {a1, ••• ,ar} and let wi be the matrix of ai. Then wiwj = l~=l aijkwk, 

so /A = <w1 , ••• ,wr>F is a subalgebra of Fr called the adjacency algebra of 

(X, 0) over F, and w 1 , ••• , w r is ca ,led the standard basis of A. Here we have 

an actual traces defined by s(w) = trace w for w EA, and the dual basis 

is given by 

( 3) w. 
1 

where a.* = (a.)*. Moreover, /A is 
1 1 1a 

can be applied. The number v. 1 
1 1x: 

semisimple so all the notations of §1 
I 

is the valency of the graph (X,ai), 

and is an intersection number (e.g., in the homogeneous case vi= aii*l if 

a 1 = 1). We find that 

m 

(4) s I 
s=l 

In particular, vi and zs are positive integers, called the valencies and 

multiplicities respectively for (X,0). It is often of interest to compute 
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the character-multiplicity table: 

wl ... ws ... w 
r 

1;1 zl 

(5) I;~ ••• I; (w.) •.. z 
s l. s 

z 
m 

Knowledge of this table is equivalent to knowledge of the intersection num

bers a. 'k" The crunch in a nonexistence proof often comes from the fact 
l.J 

that the zs (calculated, e.g., by the orthogonality relations (2)) must be 

rational integers, or from an application of the Krein conditions (cf.[3, 

4]). 

In the group case /A is the centralizer algebra of the permutation re

presentation and the zs are the degrees of the irreducible constituents of 

the permutation character. 

3. VIRTUAL ADJACENCY ALGEBRAS 

We now suppose that F,/A, w1 , ... ,wr and a. 'k have the same significance 
l.J * 

as in §1, and that there is given a pairing i ➔ i of {1,2, ..• ,r}, i.e., 

a permutation such that i** = i and 1* = 1. We call /A a virtual adjacency 

algebra over F with standard basis w1 , ... ,wr' structure constants aijk' and 

pairing i ➔ i*, if 

(6) 

(7) 

and 

(8) 

oik' 1 $ i,k $ r (i.e. if w1 is the identity ele

ment of ~), 

with vi f O and n := 

/A is semisimple. 

r 

I 
i=l 

v. f 0, 
l. 

We refer to the v. as the virtual valencies for /A. There is a virtual 
l. 

trace I; on /A defined by 



(9) 

The dual basis is given by 

-(10) 1 ~ i ~ r, 

and we find that 

m 
(11) L 

s=1 

In particular, ~ is an actual trace if and only if the 

tual multiplicities, are positive rational integers. 

z , 
s 
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called the vir-

If /A is the adjacency algebra of a homogeneous CC and the a. E Oare 
1 

so numbered that a 1 = 1, then /A satisfies the definition of a virtual ad-

jacency algebra,~ given by (9) is the actual trace, and the virtual char-

acter-multiplicity table is the ~ctual one. A formulation accomodating arbi

trary CC's requires an elaboration of the above notation which we will not 

go into here. 

4. SYSTEMS AND THEIR GENERIC ALGEBRAS 

Let F be a field of characteristic 0, i + i* a pairing of{1,2, ..• ,r}, 

and 6 an infinite subset of F. Suppose given for each q E 6 a virtual ad

jacency algebra/A(q) over F with standard basis w 1 , ••• ,w and pairing 
q qr 

i + i*. For /A(q), q € 6, we modify the notations of §§1 and 3 as follows: 

v 1 ~ i ~ r, are the virtual valencies. qi' 

nq l~=1 vqi' 

~qs' eqs' zqs' 1 ~ s ~ mq, are the absolutely irreducible characters, 

degrees, and the corresponding virtual multiplicites, respectively, and 

~(q) = lmq z ~ is the virtual trace. 
s=1 qs qs 

The family {/A(q)}qE6 will be called a system of virtual adjacency algebras 

over F if 

(12) vqi and zqs are positive rational integers for all i ands, 

and 
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(13) the structure constants for the ~(q), q e: t,., are given generical

ly in the sense that there exist polynomials aijk e: F[u], u 

an indeterminate, such that for all q e: t,., a .. k(q) are the 
J.J 

structure constants for/A(q). 

A family {(X(q),O(q))} • of homogeneous CC's of rank r will be called 
qe:u 

a system of homogeneous CC's if the intersection numbers are given generi-

cally. This means precisely that the corresponding adjacency algebras form 

a system as defined above since condition (12) is automatic for actual 

adjacency algebras. 

The generic adjacency algebra for a system {/A(q)} • is the F(u)-al
qe:u 

gebra A with basis w1 , ••• , w and the structure constants a .. k of ( 13) • By r J.J 
specialization it follows that 

(14) /A is a virtual adjacency algebra over F(u) with standard basis 

w1 , ••• ,wr and the given pairing. 

NOTE. If we specialize A at q e: F (or some extension of F), q 4 t,., the re

sult will be a virtual adjacency algebra, but condition (12) need not be 

satisfied. 

For the generic algebra/A-we use the notations of §§1 and 3, and 

prove 

(15) For all q e: t,., m = m and the, can be so numbered that q qs 
'qs =, f*' e = e and z = f*(z ), 1 s s s m. s qs s qs s 
Here f* is a suitable extension of the specialization F[u] + F, 

u + q, and 'sf*= f*(,s(wi)). 

For our final results we add the assumption 

(16) At most finitely many rational primes are not int,.. 

There are interesting systems which do not satisfy this. Assuming (16), as 

we do from no on, we have 

(17) for all i ands. 

The proof that zs e: 2[u] follows that in [l] of the corresponding fact for 
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generic Hecke algebras, based on an application of Hilbert's irreducibility 

criterion. 

Now we can state the generic versions of the Theorems of Frame and 

Wielandt. 

(18) 

(19) 

r 
Let Q = 

r 
TI n 

i=1 
Q € g;i[u], and, 

d € g;i{u]. 

m 

v/ TI 
s=1 

e2 
(z) s (the generic Frame quotient). Then 

s 

if l;;s (wi) € {l[u] for alls, i, then Q = d2 , 

If a primary polynomial q(u) in Q[u] divides z 
s 

for R. distinct 

values s 1 , ••• ,s.t of s, then q(u) divides nvi for 
2 2 

e + ••• + e 
Sl S,t 

distinct values of i. 

REMARK. Under suitable conditions, which hold; for example for systems of 
-2 

homogeneous CC's, Qin (18) can be replaced by Q0 = n Q. 

We prove (18) and (19) by otserving that the Schur relations (1) and 

Wielandt's arguments (cf. [4]) give versions of these results for virtual 

adjacency algebras. From these we obtain on the one hand the versions for 

(homogeneous) CC's as in [4], and on the other, the generic versions (18) 

and (19). The restriction to the homgeneous case is inessential and has 

been made here only to simplify the exposition. 
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