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PREFACE 

to the first edition 

In the years between 1945 and 1949 L. Schwartz developed the 

theory of distributions by giving a synthesis, a generalization and a 

rigorous foundation of the work of many authors, who had already used 
• 

the concept of a distribution in a more or less cryptic way. 

Among these there are also mathematicians and physicists who were led 

to the use of distributions in connection with their investigations in 

applied mathematics or theoretical physics; here we mention in partic

ular the names of Heaviside, Dirac, Leray, Sobolev. Courant and Hil-

bert. After the publication of Schwartz's monograph 
,. ,, 
Theorie des Dis-

'' tributions a large number of papers and books about the theory of 

distributions and its applications to partial differential equations 

appeared of which the latter are of special importance for the applied 

mathematician. 

Therefore considering the history of the theory of distributions it 

may be expected that this theory can be apllied successfully to pro-
• 

blems in mathematical and theoretical physics. 

However, the great advantages of the use of distributions are not al

ways exploited·as it should be. In fact this is the case in several 

rather recent articles in which the mathematical derivations can be 
' 

simplified considerably or made more rigorous by using distributions. 

Examples may be found for instance in fluid- and quant,Jr11 mechanics. 

The aim of this tract is to demonstrate the value of the theory 

of distributions for probl~s in mathematical and theoretical physics; 

for this purpose we have chosen illustrative applications to problems 

from quite different branches of mathematical physics. 

Before discussing these applications a review of the theory of 

distributions is given in an introductory chapter. All concepts and 

theorems, used later on, are treated here and no a priori knowledge 

of distributions is ass,~aued. 



The first application, given in chapter II, concerns the well

known problem of the diffraction of a cylindrical ~ulse by a semi-

infinite screen. 

The second one, treated in chapter III, is taken from theoretical aero 

dynamics. The boundary value problems, occurring in the theory of 

supersonic flow around thin wings, are usually solved in a rather com

plicated way. Using distributions the theory becomes muc~ simpler; in 

fact all boundary value problems may be fo:rmulated in tenris of one 

single integral equation which can easily be inverted. 

In this connection the attention of the reader may be drawn also to 

the work by P. Gex~ain and R. Sauer (cf. chapter III). 

The next two chapters IV and V are devoted to applications in 

modern theoretical physics. While the problems in the two preceding 

chapters may also be treated, at least in principle, in a classical 

way, actually this is no longer possible for the problems of the 

chapters IV and V. 

The investigations in chapter IV concern the derivation of Lorentz

invariant Green's functions for the so-called Klein-Gordon equation 

which is of fundamental importance in quantum field theory. Distri

butions concentrated on surfaces in four dimensional space play an 
0 

important role in this theory. This problem has been studied in recent 

years also by other authors using methods different from the one 

given here; we mention the work by P.D. Methee, L. Garding and J. La

voine.In the last application, given in chapter V, we deal with the 

regularization of divergent convolution integrals as they occur in 

quant11m electrodynamics·~ A general method is developed for dealing 

with these divergencies. Although it is not claimed that the investi

gations of this chapter yield new results in field theory, a unifying 

method has been found for definink the above-mentioned divergent in

tegrals, which includes as special cases the devices used by e.g. 

N.N. Bogoliubov and 0. Parasiuk, A.J. Achieser and W.B. Berestezki, 

and H. Breme1·n1ann. 
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PREFACE 

to the second edition 

The second edition differs from the first one in so far that the 

first and the fourth chapter have undergone some alterations. 

In chapter I some incomplete and inaccurate statements have been 

detected and these are corrected. 

A basic fonoula used in chapter IV can be proved in a much more 

elegant way than has been done in the previous edition. This results 

in a clearer and shorter exposition of the derivation of the element

ary solution of the Klein-Gordon equation. 

Amsterdam, March 1969 E.M. de J. 
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Chapter I 

THE THEORY OF DISTRIBUTIONS 

1. Introduction 
• 

In 1927, in a paper on the physical interpretation of quantum dy

namics [1] , the great physicist P.A.M. Dirac introduced a ''function'' 

o(x) which was postulated to have the following properties! o(x) 

should be zero everywhere except at the point x=O at which it is in

finite and such that 

(1.1) o(x)dx = 1. 

Unfortunately, it can easily be shown that no function exists which 

is zero almost everywhere while its integral from-= to+~ does not 

vanish. 

Dirac however treated his so called delta function as if it were a 

well behaved even differentiable function. 

Putting 

(1.2) X 6(x) = 0, 

he obtained by forxnal differentiation the foI"litula 

(1.3) 

Moreover it follows from (1.1) that 

X 
(1.4) 

--

where e(x) is the Heaviside unit-step function defined as 

(1.5) 0(x) = 
1 for x>O, 

O for x<O. -
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Differentiating one gets again fonnally 

(1 .. 6) 
d0(x) 

dx 
= o(x). 

Dirac also required that the·delta function should have the sifting 

property 

+co • 

(1. 7) f(x)o(a-x)dx = f(a), 

where f(x) is a continuous function, defined in a neighbourhood of 

x=a. 

When f(x) ism times differentiable, integration by parts yields 

(1.8) 
+oe> 

f(x)o(m)(a-x)dx = f(m)(a). 
-oo 

Since the delta function was introduced by Dirac it has found 

many applications in applied mathematics, where one often deals with 

''delta-like'' dis tri bu tions of mass, force, electrical charge or other 

physical quantities. 

Formulae related to those given above are applied, and despite the 

fact that the derivations are by no means mathematically correct, they 

lead to correct results. 

In this situation one expects that some proper justification may be 
• 

possible of the delta function and the processes yielding for instance 

formulae such as {1.2) - (1.8). This justification is given in what is 

l h fl • fl cal ed nowadays t e theory of distributions • The name refers to dis-

tributions of certain physical quantities. 

The theory of distributions had already in the thirties its roots 

in the work of Bochner, Leray, Sobolev, Courant, Hilbert and many others 

- • 

In particular, the work of Sobolev 4] should be mentioned. He inves

tigated functionals of the type 

+oo 
(1. 9) <f,,> = f(x) t(x)dx, 

-oo 



3 

where f(x) is locally integrable and t(x) is a function with bounded 

support and continuously differentiable a certain nwnber of times • 
• 

Th ff '' ( ) e genera1ized derivative off x, which may be a discontinuous 

function, is defined by the functional 

(1.10) '4>(x)> = -
+m 

f(x) 
dq> 
dx 

dx = - <f, d<P > 
dx • 

Using this definition the for11,ula (1.6) 1s readily established where 

differentiation must be taken in generalized sense. 

Moreover, Sobolev showed also that any locally integrable function can 

be considered to be a so called weak limit of infinitely differentiable 

functions; this means that any locally integrable function f(x) satis

fies for a11 functions t(x) the relation 

(1.11) <f,4>> = lim 
m+m 

< f '(p > 
m 

cc 
where the sequence of functions f (x) is a sequence of C functions. 

m 
• 

In the years between 1945 and 1949 L. Schwartz developed the 

theory of distributions by giving a synthesis, a generalization, and a 

foundation of the work of many mathematicians who had already used the 

concept of distribution in a more or less hidden way. 

Schwartz introduced a distribution as a continuous linear functional on 
' 

a suitable space of so called test functions. The foundation of the 
• 

theory arises from the consideration of the space of test functions as a 

topologica1 vector space, whereas the space of distributions is the 

dual of this space. The operations to be perfo1·11aed on distributions are 

defined by transposition to the test functions, cf. formula (1.10). 

After the publications by Schwartz many papers and books about 

the theory of distributions appeared; among these are the well known 

books by Ge1fand and Shilov in which a clearly written introductio~ 

to the theory is presented • In these textbooks a distribution is 

also defined as a continuous linear functional on a suitable space of 

test functions. 
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It can be proved that every distribution may be obtained as the 

weak limit of a sequence of infinitely differentiable functions. This 

theorem may also be taken as the starting point for defining distri

butions. In the same way as irrational numbers may be defined as fun-

damental sequences of rational numbers (Cantor), distributions can be 

obtained as sequences of infinitely differentiable functions. This 

has been done by J. Mikusinski and he has described in ref. a 

theory of distributions equivalent to that of L. Schwartz. In this 

connection we mention also the works by J. Mikusinski and R. Sikorski 

, J. Korevaar [10 , G. Temple [11] and M.J. Lighthill [12] . 
Another important theorem in the theory of distributions states 

that every distribution can be considered as the generalized deriva

tive of a continuous function. Therefore a distribution inn varia

bles may also be defined by a continuous function and a set of n non

negative integers denoting the order of differentiation with respect 

to each variable. This process for defining distributions is given by 

J. Mikusinski and R. Sikorski [9 and by S. e Silva • 

Another important approach to the definition of distributions is 

due to H. Tillmann, H.Bremermann, L. Durand and H.A. Lauwerier 

, LJ. ; these authors have shown that a distribution, defined 

for example on the real axis, can be extended to functions holomor-
, 

hi '' . ft p c in the upper and lower complex half planes, such that the Ji1mp 

across the real axis again represents the distribution. In this way, 

distributions may be defined by a pair of functions holomorphic in the 

upper and lower complex half planes. 

It may be remarked finally, that there already exists an extens

ive literature on applications of distributions to partial different-

ial equations; we only mention here the books by Horrnander, Friedman 

and Gelfand-Shilov - • 

In this chapter, a review is given of the theory of distributions, 

also called generalized functions; they are defined here as continuous 

linear functionals. We emphasize mainly the aspect of the calculus, 

needed by the applied mathematician, the physicist or the engineer. 
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The most important definitions and theorems are presented, but the 

proofs are mostly rather concise and they are even omitted in a few 

cases; otherwise, this introductory chapter would become too lengthy. 

However, the reader will always be referred to literature in which 

he can find more details and additional material; besides, the text 

is illustrated by many examples. 

For the sake of completeness some remarks are made concerning the 

topological foundation of the theory in the last section of this chap

ter; this section may be omitted by anyone who is interested mainly in 

the practical side of the theory. 

The following subjects are treated in consecutive sections: de

finitions of test functions and distributions; various operations to be 

performed on distributions; regularization of functions of one varia

ble with an algebraic singularity; the convolution of two distribu

tions; the Fourier transfo:nnation; distributions concentrated on sur

faces inn-dimensional Euclidean space; regularization of functions of 

several independent variables with an algebraic singularity; applica

tions to partial differential equations and, finally, some remarks on 

the topological foundation of the theory of distributions. 

2. Test functions and Distributions 

2.1 .. The spaces D and Sand their ?Uals D' and S' 
I I 4 

Let us consider a family of infinitely continuously differentiable 

complex valued functions $(x) = $(x1 ,x2 , ... ,xn), defined in every point 

of then-dimensional space Rn. 

We suppose, that the family~ is a linear space and that there can be 

introduced in~ a rule, which defines the convergence to zero of a se

quence of functions cp (x) belonging to~. m=1,2, ••.. The functions 
m 

$(x) are called test functions. 

A distribution may be defined as a continuous linear functional on 

~ • This means, that a distributions, say f, assigns to any function 

q> (x) G. <I> a complex number, denoted by <f ,cp>, with the properties: 



6 

"1alid for any ~
1 

and ¢>
2

; a
1 

and a 2 are arbitrary real or complex num

bers .. 

for any sequence {4» }, m. 

lim 
~ 

< f A, > 
,'+' m = o, 

converging to zero. 

The set of all distributions, which can be defined on the space$, 

is called the dual space oft and it is denoted by q,'. Any linear com

bination of two distributions f 1 and f 2 is defined by the rule 

{2 .3) 

where a
1 

and a2 are arbitrary complex numbers and a1 ,a2 denote their 

complex conjugates. 

Therefore the space~• is a linear space. 

One can also introduce in the space ct> ' the concept of convergence. 

A sequence of distributions f E. ¢> ', m=l ,2, ... , is said to converge to 
m 

a distribution f E. ¢ •, when the following relation holds for every 

test function 4>(x) E. q, 

(2.4) 

This type of convergence is called weak convergence .. 

The properties of the space 4>' depend of course on the proper

ties of the space~-

We give two important examples of spaces of test functions and distri

butions, which will appear to be very useful in later considerations. 

1. The SEaces D and D' 
111 ,.,: •• $ , •• ,, 11 0 

The space D consists of all complex valued infinitely continuously 
00 

differentiable (C) functions 4>(x) = <J>(x1 ,x2 , ••. ,xn)' defined in every 

point of the space 8n and vanishing outside a bounded subset of Rn. 
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The closure of the bounded region in which q>(x) does not vanish, is 

called the support of the test function. 

A sequence { 4! (x)}, m=l, 2, ••• , converges in D to zero, when the sup
m 

ports of the functions 4> (x) all lie within the same bounded set of 
m 

R and when the <I> (x) and also all their derivatives converge unifonn-n m 
ly to zero with respect to x. The space of all distributions, which 

can be defined on D, is denoted by D'. 

E~a111ples 

An example of a test function belonging to the space D is given 

by 

exp -
(2.5) cp(x;a) = 

0 

2 ..... 
a 

2 2 
a -r 

for r < a 

' for r > a .. 
2 2 2 

where r = Ix I = x1 +x2 + ••• +xn and a some real DtJmber • 

1 
The sequence of functions -,(x;a) (m=l,2, ••• ) converges in D to zero, 

m 1 X 
in contrast to the sequence -~(-;a) which does not converge to zero m m 
in D. 

Consider a real or complex valued locally Lebesgue integrable function 

f(x) , f(x1 ,x2 , ••• ,xn), defined on Rn; by means of this function we 

foz111 the functional <£,; > defined by 

+co 
(2 .6) f (x) q>(x) dx, 

-co 

where the integration should be perfor1ned over the support of the 

· test :function ,ex) &. D and f (x) denotes the complex conjugate o:f f (x) • 
' 

• 

It is clear, that <f,<P> is a continuous linear functional on D and 

hence this functional defines a distribution, belonging to D'. 

The set of all values <f, 4> > , where 4> may be any element of n. defines 

the function f(x) almost everywhere in R. 
n 

Hence every locally integrable function may be identified with a dis-

tribution belonging to D' and so the distributions in D' are a gener

alization of the locally Lebesgue integrable functions. Another exam

ple of a distribution belonging to D' is the distribution defined by 
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• 

(2.7) < f, q, > = t (0) • 

This distribution is called the delta function of Dirac. 

Instead of the symbol < f, cp > we write also: 

+oo 

(2. 8) 
o(x) $(x)dx = $(0,0, •.• ,0) = ~(O). 

-CO 

It may be remarked, that the integral appearing in (2.8) is only a 

symbolic notation, which has nothing to do with an integral as de

fined in the sense of Riemann or Lebesgue. 

This can be shown by taking the test function 4>(x;a) (2 .5) with a ➔ o. 

2. The spaces Sand S' 
00 

The space S consists of all complex valued C functions 

~(x) = ,cx
1

,x
2

, ••• ,xn) defined in Rn with the property that 4>(x) to

gether with all its derivatives decrease for xi+ m stronger than any 

negative power of )xi. 
This may be expressed by the following inequalities which hold for 

every testfunction cp(x) E. S: 
• 

(2.9) 

where k = (k
1

,k2 , ••• ,kn) and q = (q1 ,q2 , ••• ,qn) are n-tuples of non

negative integers and Ckq is a constant, depending on k,q and t• 
xk and D4 t(x) are short notations for the expressions: 

(2.10) 
k 

X 

k 
n 

= 

A sequence {~m}, m=l,2, ••• , is said to converge in S to zero, if the 

f 11nctions cpm (x) and all their derivatives converge to zero unifor111ly 

with respect toxin every bounded region of R and if, moreover, the 
n 

numQers Ckq' occurring in (2.9), can be chosen as independent of m, 

i.e. 

(2.11) 

• 
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for all values of m. 

The space of all distributions, which can be defined on S, is denoted 

by S'. 

~amples 

An example 
2 

ct>(x) = exp -r 

of a test function belonging to Sis the function 

• 

1 
The sequence of functions ct> (x) = - exp -r , m=l,2, ... , converges in m m 
S to zero in contrast to the sequence {cp (x)}, which does not converge 

mm 
to zero, because the relations (2.11) are not satisfied by the latter. 

Consider a locally Lebesgue integrable function f(x) of finite alge

braic growth at infinity, i.e. one which does not increase at infinity 

stronger than any positive power of jxj. Due to the inequalities 

(2. 9) we can again fo1·m the functional < f ,q,>, defined by 

(2.12) <f,<f,> = f (x) cp(x) dx, 
a •oo 

where the integration is perfo11ned over the whole space R. 
n 

It is obvious, that (2.12) defines a continuous linear functional on S 

and hence this functional defines a distribution, belonging to S'. The 

set of all values <f,g>>, where cp may be any elanent of S, defines the 

function f(x) almost everywhere in R. 
n 

Therefore every locally integrable function of finite algebraic growth 

at infinity may be identified with a distribution belonging to S' and 

so the distributions of S' are a generalization of the functions of 

this class. 

The delta function of Dirac as defined by (2.7) is also a dis

tribution in S'. 

It is clear that every test function in the space D also belongs 

to the space S; the space Dis even dense in S. This can be proved 
' 00 

easily as follows. Take the C function e(x), which equals 1 for r < 1 

and which is identically zero for r > 2. When cp(x) E S, then the func

tions~ (x) = e(x) cj>(x) (m-1,2, •.. ) are test functions belonging to D, m m 

with the property that the, (x) converge to cj>(x) in Sand hence Dis 
m 
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• 

dense ins. 

It follows from the definitions of convergence in D and in S, that a 

sequence { ~ } , converging in D to the function cp E. D, also converges 
m 

to ♦ in S. 
' 

Therefore every continuous linear functional on Sis a priori a con

tinuous linear functional on D and hence S'c D'. However, not every 

distribution in D' is a distribution in S'. 

f t . [r2 . It will appear in the next section, that the unc ion exp ~ is an 

example of a distribution in D' but not in S'. 

From the definition of weak convergence it follows immediately, that 

a sequence of distributions 

converges also in D' to the 

f, converging in S' to a distribution f, 
m 

distribution f. 

Therefore convergence in D implies convergence in Sand conver

gence in S' implies convergence in D'. 

2 .2. ,The_ space Z and ,~.ts ~ual Z' 

In the beginning of this section we introduced the general space 
co 

of C functions, defined on R. It is also possible to take a 
n 

space of entire complex functions ~(z) = W(z1 ,z
2

, ••• ,zn), defined 

in every point of then-dimensional complex 

p=l, 2, ... , n. 

space C; 
n Z = X + iy, 

p p p 

In the same way as before distributions, i.e. continuous linear func

tionals, may be defined on the space, ; the space of all distributions, 

which can be defined on t, is denoted by J'. We give the following 

ex:a.mple. 

The,, ,,s,paces Z and z ' 
11,i I 

The space Z consists of all entire complex functions w(z) = 

=ti,(z1 ,z2 , .... ,zn), defined on Cn and satisfying the following inequal
ities: 

(2.13) exp 
' 

where k may be any n-tuple of non-negative integers {k k k ) 
k _ kl k2 kn 1 ' 2 ' • • • ' n ' 

z - zl z2 ••• zn and Ck and ap (p::1,2, ••• ,n) are positive numbers 
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depending respectively on 1/J and k and 1/J only. 

A sequence{$ {z)}is said to converge to zero, when the functions m 

1/J (x) converge to zero unifo1111ly with respect to x in every bounded m 

region of the space Rn and when moreover for each 1/Jm{z) inequalities 

0£ the type (2.13) hold, where the constants Ck and ap do not depend 

on the index m of the function ~m(z). 
' 

The space of all continuous linear functionals, defined on z, is de-

noted by Z'. 

It may be remarked already, that every test function of z is the 

Fourier transform of a test function of D; the spaces Z and z' play an 

important role in the theory of the Fourier transfonnation, see sec

tion 6. 

2 .3. -~~al and global. properties, of distributions 

We shall consider in the sequel mainly distributions belonging to 

D' or S'. Many definitions and theorems are completely analogous for 

both cases and therefore we shall not always make an explicit distinc

tion when it is not necessary to do so. 

A distribution <f,q>>, which can be written in the fonn 

I oo 

(2.14) f {x) cp (x) dx, 
-oo 

where the integral is a Lebesgue integral is called a regular distr~

bution; all other distributions are called singular. E.g. the o-func

tion of Dirac is a singular distribution. 

Two distributions f 1 and f 2 are said to be equal, if for every test 

function <I> the following relation holds: 

Two locally Lebesgue integrable functions, which are equal almost every· 

where, define the same distribution. 

A distribution f is equal to zero in a neighbourhood U of a point x
0

, 

if < f ,<P> = 0 for a.ny test function vanishing outside U. 
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A distribution f is equal to zero in a domain 

in some neighb,ourhood of every point of n. 
n of R, if f is zero n 

By restricting a distribution to test functions which support in a 

neighbourhood of a certain point we obtain inforn1ation about the 

local behaviour of the distribution at that point. 

Also conversely, the global behaviour of a distribution is dete1:·n1ined 

by its local behaviour. This follows from the lemma of the decomposi

tion of the unity. 

Dec~meosition o~ the unity. Let there be given a locally finite cover-
• :z ii . l 

ing of Rn by bounded neighbourhoods u1 , u2 , ••. , Un, ... , i.e. the 

whole space Rn is covered by the union of all neighbourhoods u1 , while 

every point of R is covered by only a finite n11mber of neighbourhoods. 
n oo 

It is possible to construct C functions a (x) with the properties: 
m 

a) 0 < a (x) < 1 
m 

b) a (x) = O outside U (m=l,2, ... ) 
m m 

c) 

• 

00 

m=l 
a (x) = 1. 

m 

Proof: see 6. Vol.I, Ch.I. §2, p.22 or 7 Vol I Ch I App 1 ,, , , . ' . ' . , 
p .143. 

Let us assume, that the local behaviour of the distribution f is known 

in every point of R ; this means, that every point x c R has a neigh-n n 
bourhood V(x) with the property, that the values of <f,cp> are known 

for every 4> with support in V(x). The system of neighbourhoods V(x) 

covers the whole space Rn and according to the theorem of Heine-Borel 

one can take from this system a countable set of neighbourhoods 

Ul ,U2, .. ··,Um·•·, such that every sphere I xJ < p is covered by only a 

Applying the le1nma, 1 t is easily shown, that every test function belong
ing to D may be written in the fo1m 

(2.16) 
M 

cp(x) = lim I 
M >00 m=l 

c/> (x) = 
m 

m=l 
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where cp (x) = a (x)cp(x) and where the limit is taken in the sense of m m 
the convergence as defined in D; the functions 4> (x) 

m 
have their support 

within U and in the sum of (2 .16) only a finite number of te1111s occurs. m 

Hence for every distribution f E.D' or S' and for every test function 

<P E.D we may write 

(2.17) 
m=l 

<f ,<P > 
rn 

and it follows that every distribution f E. D' is det~nnined by its local 

behaviour in the 

Dis dense in S, 

. ('' '') neighbourhoods U recollement des morceaux . Because m 

the values of < f ,¢> with f E. S' and cp E. S ' are det er1nined 

by the values of < f ,<f>> with ¢ E: D and hence also every distribution out 

of S' is defined by its local behaviour. 

In particular it follows that a distribution which is zero in a certain 

neighbourhood of every 

(2.18) 

for each cf>. 

point x£R is n 

<f,cp> = 0 

also the zero distribution, i.e. 

A point x0 is said to be an essential point of a distribution when there 

does not exist a neighbourhood of x 0 in which the distribution is equal 

to zero. The collection of all essential points is called the support 

of the distribution; e.g. the support of the o-function of Dirac is a 
• 

single point. 

In this section several operations, defined in a well-known way 

for functions, are generalized for distributions. 

The definitions are chosen in such a way as to preserve their classical 

meaning in case the operations are applied to distributions, which are 

at the same time also ordinary functions. 
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Definitions 

a) Distributions are added according to the rule: 

(3.1) 

b) Distributions can be multiplied by infinitely continuously different

iable functions a(x); in the case of S', a(x) should be of finite 

algebraic growth at infinity; we have the rule: 

(3 .. 2) 

where a is the complex conjugate of a. 

c) For every set of n real numbers h = 

of the distribution f(x) = f(x1 ,x2 , ... ,xn) is defined by 

or 

(3.3) <f(x-h), cp(x)> = <f(x), cp(x+h)>. 

d) The reflection of a distribution f(x) is denoted by f(-x) and it 

satisfies the relation: 

(3.4) <f(-x), cp(x)> = <f(x), cp(-x)>. 

e) The similarity transfo1mation is defined by 

xl x2 
<f(-

Cl ' 0. ' • • • ' 

--

or 

(3.5) 

where a is some real n11mber. 
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A distribution is said to be homogeneous of degree A, if 

f(a.x) A 
= a f(x) for each a> O, 

or what a.mounts to the same, if 

(3.6) 

Hence o(x) = o(x1 ,x2 , ... ,xn) is homogeneous of degree -n. 

f) A general linear transfo1mation A of the independent variables 

x 1 ,x2 , ... ,xn is applied to distributions according to the fo:r·inula: 

(3.7) <f(Ax), <t>(x)> = 1 -1 
A <f(x), ¢(A x)>, 

where 
-1 

A is the inverse transformation and IAI the absolute value 

of the determinant of the transfo11nation. 

g) A sequence of 

bution f, if 

distributions f, 
m 

m=l, 2, ... converges to the distri-

(3.8) lim 
m-+<» 

< f cp> = m' < f ,¢> for each test function q,. 

f is called the distributional or the weak limit of the sequence 

of the distributions 

distributions f E. n• 
m 

f. It is 
m 

or S' has 

remarked, that when a sequence of 

the property, that the numbers 

<fm, 4>> converge for every q, € D resp • S , then the limit, say 

f(cp), is also a distribution belonging to D' resp. S'. 

This fact is important enough to state it in a theorem. 

Theorem 1. The spaces D' and S' are complete with respect to weak con-

vergence. 

Proof: This theorem is usually proved by aid of the topological 

structure underlying the spaces D and Sand their duals D' and S'. 

However for the case o~ D' a more elementary proof understandable 

for any reader, not familiar with the theory of topological vector 

spaces, is given by Gelfand and Shilov in , Vol.I, Appendix, p.354. 

• 



~amples (1 independent variable) 

lim 
1T 

e: ➔ I 0 
2 

X + e: 

16 

2 

(3.10) 
1 

~;:::::::; exp ( -lim 
t++O 2 

(3.11) lim l 
1f 

1Tt 

sin mx 
m 

= o (x). 

h) The differentiation of distributions is defined as follows: 

(3.12) ~> 
d X. 

l. 

• 

This definition of the so called distributional derivative has some 

immediate consequences which are stated in the following two theo

rems .. 

Theorem 2. Every distribution is infinitely differentiable. 

For distributions in more variables one has always the relation 

(3.13) 

Proof: Follows immediately from the definition (3.12). 

Theorem 3. The operations of differentiation and passing to the limit 

may always be interchanged, i.e. 

(3 .. 14) 

Proof: 

lim 
~ 

= - lim 
lJl+00 

lim f = f implies 
m 1n ➔ co 

af 
<~ ,cf>>. 

oX. 
l. 

We give now some examples of the application of the distributional de

rivative to distributions of one independent variable; the resulting 

fo1,nulae are easily verified and this is left to the reader. 



Example~ 

1. 

(3.15) 

17 

d8(x) 
dx 

= <S(x), 

where 8(x) is the unit-step function of Heaviside (see (1.5)). 

2. 

(3.16) 1 
X , 

1 
where the distribution - is defined as the Cauchy principal value of 

X 

+(X) cp (x) 
dx • 

-n 
3. The distribution x (n=2,3, ... ) is defined by the recursive 

relation 

(3.17) 

and hence 

(3.18) 

4. Defining 

(3 .19) 

and 

(3.20) 

-n 
X 

-n 
X 

1 d -n+l 
= - -n---1 dx X ' 

(-l)n-1 
= ----------( n-1) ! 

dn-1 1 
• n-1 X 

dx 

log(x + iO) = lim log(x+iy), 
Y-++O 

1 
X + iO 

1 = lim 
X + iy 

Y-++0 

one finds by means of the distributional derivative of log(x+iO) the 

result 

(3.21) 1 =---x + iO 
= l + i1To(x). 

X 
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3 .2 .. Distributions and continuous fu~ctions 
L 1a I bl I I I 

11!■ 11 t #¾ti Iii I I -- I 

The concept of the distributional derivative is not only a very 

useful tool in distribution calculus, it is also of essential import

ance for the relation between distributions and continuous functions . 

This relation reveals the true nature of distributions and it will be 

given in the next theorem. 

Theorem 4. Every distribution belonging to D' is in every domain n 0£ 

R with com.pact closure n equal to some distributional derivative 0£ a 
n 

continuous function with support in an arbitrary neighbourhood of n. 
• 

This may be expressed in a shorter way by saying that every distribu 

tion out of D' is locally equal to a distributional derivative of a 

continuous function. Hence for every f E. D' and al 1 <P .._D with support 

inn, there exist a continuous function F and an-tuple p of non 

negative integers (p1 , p2 , 

(3.22) 

with 

... , p ) such that 
n 

' 

F(x) rf cp (x) dx 1 

and I Pl = 

• • • 

n 

i=l 
p .. 

1 

Proof: A rather simple proof is given by Schwartz and Gelfand-Shilov 

using the well-known representation theorem of Riess, valid for con

tinuous linear functionals defined on the space of functions contin

uous in some bounded interval. Since some knowledge of the topological. 

foundations of the theory of distributions is needed, we postpone the 

proof to section 10.3 of this chapter. See also 6 , Vol.I, Ch.III, 

§61 p.82 and 7, Vol.II, Ch.II, §4, p.92-97. 

In the case of distributions in S' the for1nulation o:f the theorem 

should be a little bit modified. Then it runs as follows: 

' 
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bis 
Theorem 4 . Every distribution belonging to S' is a distributional 

derivative of a continuous function of finite algebraic growth at in

finity. 

Proof: See 6, Vol.II, Ch.VII, §4, p.95 and 7, Vol.II, Ch.II, §4, 

p.92-97. 

A fo1mula analogous to (3.22) holds of course again. 

Due to the validity o~ the latter theorem the distributions of S' are 
r2 . called ft '' • tempered distributions. For instance, the function e is not 

a distribution belonging to S', but it does belong to D'. With the aid 
bis 

of the theorems 4 and 4 one may finally prove the following state-

ment: 

Theorem 5. A distribution belonging to S' or D', which has its support 

in a single point x 0 , is a finite linear combination of o(x-x
0

) and 

some of its derivatives. 

Proof: We give the proof only for the case of one independent variable 

x. For more independent variables the demonstration runs along more or 

less the same lines. 

The distribution, say f(x), is the derivative of a certain order, say 

p+1, of a continuous function F(x). Hence 

f(x) = 
dp+l 

+l F(x). 

Since f(x) vanishes for x > x 0 and x < x 0 , F(x) must 

vals a polynomial of at most degree p; assume F(x) = 
x > x 0 and F(x) = 

q=O 
• 

while a
0 

be in these inter

a (x-x )q for 
q 0 

q=O 
= b . 

0 

Differentiating (p+l) times yields the required result 

(3.23) f(x) = 

with c = (a -b )(p-q)! 
q p-q p-q 

p-1 

q=O 



20 

on distributions of Z' 
' 

' 

j q p HI I L 

' 

Apart from some modifications operations on distributions belong

ing to z' can be defined in an analogous way as for distributions be-

longing to D' or S'. 

The operations of addition, translation, reflection, similarity trans-

fo1uation, taking the limit of a sequence of distributions and dif

ferentiation are defined as in the forn1ulae (3 .1), (3 .3) - (3 .5), (3 .8) 

and (3 .12). The multiplication by a function h(z) = h(z1 ,z2 , ... ,zn) is 

again defined as 

However, this definition implies that h(z) w(z) should be again a test 

function out of Z, otherwise the right hand side of (3 .24) is meaning-

less. 

Therefore h(z) should be an analytic function, satisfying an equal-

ity of the form 

(3.25) 

where C b. and q 11 i . . 1 are arbitrary real constants. 

4 .. -~,fi!!,lS;~iz~t,~ol!., .~f ~u~c~i~n~ .. with a~ge~raic s1ng~1a.ri ~.ies 

Consider a function f(x) which has a non integrable singularity 

in only a finite set of isolated points. A regularization of this func

tion f(x) is a distribution with the property, that for test functions 

♦ (x) with support not containing any of the singular points, it is de

fined by the integral 

+oo 
(4.1) f (x) cp (x)dx. 
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• 

A regularization is, in case it exists, uniquely dete1·111ined apart 

from a linear combination of o-functions and their derivatives con

centrated at the singular points of f(x). 

In this section a particular regularization will be given of 

functions f(x) of one independent variable and with an algebraic sin

gularity; e.g. f(x) = xA with A complex and Re">..< -1. 

(4.2) 

Let us take the function of one variable 

X A -+ -
xA for x > O 

0 for X<O, 

where ">.. is a complex parameter. 

as 

This function defines for Re A> -1 a regular distribution, viz. 

(4.3) A 
<x+, <P (x)> = 

0 

l . The distribution X+ l.S defined for values of A with Re A < -1 by ana-

1ytical continuation of (4.3) with respect to l. 
• 

Hence for Re · A >-2 and l1'-1 one obtains the fo1·111ula 

(4.4) 
A <x , 
+ 

cp (x) > --
1 

0 

l 
X 

+ 
00 

1 

"'(x) dx + ♦ (O) 
'fl' A+l ' 

and more generally for Re l > -n-1 and ). ~-1, -2, ••. , -n. 

(4.5) >.. <x , 
+ 

4> (x) > = 
1 

0 

l 
X {4>(x)- ♦ (O)-x ♦ '(O) ••• -

CIO 

+ 
1 

:In the strip -n-1 < Re 

-

>.. 
X 4>(x)dx + 

n 

k=l 

n-1 
x f(n-l)(O)}dx 

(n-1) ! 

♦ (k-1) (O) 

(k-l)!(A+k) • 

<-n we have the result 

' 



(4.6) 
.\ 

<x , ,<x)> = 
+ 
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00 

x A { cp(x)- ¢, (0)-x <P' (0)- .. . -

0 

n-1 
X 

(n-1)! 
cp(n-1) (O)} dx. 

• 
• 

A 
The function < x , ¢,> is 

+ 
an analytic function of the 

the points A =-k (k=l, 2, ... ) 

complex variable A , 

with residue having simple poles in 
. (k-1) 

'P (O) This may be expressed by saying that the distribution 
(k-1)! . 

has for k-k a simple pole with residue 
k-1 

(4. 7) 

It follows 

(4.8) 

(-1) 0(k-l) ( ) 
(k-1)! x' 

k=l, 2, . . . . 

principle of analytic continuation that from the 

dxA 
+ 

dx 
= AXA-l A -/! -k (k = 

+ ' 
1, 2, •.. ). 

). 
X 

+ 

).. 
In the same way the distributions x_ may be defined; this distribution 

corresponds for Re A>-1 with the function 

Ix I A for x < 0 
A 

(4.9) X - . -- 0 for X ~0. 

Moreover, we have also the relation 

(4 .10) 
A 

<x, 'P(x)> = -
A <x , ,<-x)> . 
+ 

By means of this relation the properties of 
A 

A 
X are easily derived from -

those of x. 
+ 

From the distributions 
). 

x and A 
X one can fornt the new distributions -

lxl.\ and JxJA sign x, 
+ 

defined as 

(4.11) 

(4.12) sign X 
A 

= X 
+ 

A 
- X - • 

o<2 )(x) ).. .\ 
with residues 2 (2 k)! ; the poles of x+ and x_ cancel each other 

in the points A==-2n, (n=l ,2, ... ) . Hence the distribution Ix( A has a 
• 

meaning for values of A equal to -2n and then it is written as x - 2 n. 
A 

The distribution Ix sign x has simple 1 f ' 2k (k 1 2 ) 
1 po es or I\=- = , •.•• 

c5( k- )(x) 
and xA cancel now each 2k-l. + · -

other in the points A=-(2n+l), (n=0,1,2, •.• ) and so the distribution 

• 
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of l equal to -(2n+l); in this 
. -(2n+1) case it is written as x . 

-n Therefore the distribution x is defined for all integer values of n; 

moreover we have the relation 

(.4 .13) 
d -n 

dx X 
-n-1 

= -nx 

which is in agreement with forn1ula (3 .17) of the foregoing section. 

may be nor1nalized by con-

sidering the distributions 

A 
X 

(4.14) + - and - • 

These nonnalized distributions have the '' property that their function-
~ 

rt + ( } al values (e.g.<A! , • x > are entire functions of the complex varia-

ble A. 

For instance we have the fo1111ulae 
A A 

X X 
o(n-l)(x) + -

(4 .15) and - IT :\.! -
"=-n 

• l=-n 

Other important combinations of the distributions 

distributions 
l 

' 

(n-l)(x) • (-l)n---

and xA are the -

(4.16) (x + iO)l = lim ( 2 2)2 
X +y 

i.l. 
e 

arg(x+iy) - A 
X 

.±i Aw + e 
.l. 

X 

y -++0 

with-~< arg(x+iy) < ~. 

. A 
By expanding <x , q,> 

+ 
neighbourhood of the pole A=-n (n=l,2, ••• ), one 

poles occurring in both tel'.·ms of the right hand 

each other. In this way one obtains the result 

(4.17) 
-n 

(x + iO) -n = X 
- i,r(-l)n-1 
+ (n-1)! 

- + -

finds again that the 

side of (4.16) cancel 

o(n-l)(x). 

The method of analytical continuation, which has been used in this 

section for defining integrals of functions with non integrable alge-

' 
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braic singularities, plays an important role in the calculus of dis

tributions; it was already discovered by J. Hadamard, when~he intro

duced the concept of the ''fini te'1 part of an integral ( [20 , Book III, 

Ch.I, section 2). The principle of analytical continuation will also 

be applied in order to define distributions which correspond to func

tions of several independent variables with algebraic singularities 

(see section 8 and Chapter IV, section 3). 

5. The convolution of distributions 

Let g(x) be some distribution belonging to D' or S'. To any test

function ~(x)~ Dor S one may apply the operator g*, which is called 

the convolution of g and~ and which is defined by 

(5.1) 

The distribution g(x) is called a convolutor, if g* is a continuous 

linear operator in D respectively s. This means that q> ~ D or S implies 

g * <PtD resp. S and cf> -+- O 
m 

in Dor S implies 0 in D resp. s. 
The adjoint operator in D' or S' defines the convolution in D' or S'. 

Hence the convolution of a distribution f(x) with the convolutor g(x) 

is given by 
-

(5.2) 

or more explicitly 

(5.3) <f(x)*g(x), cf>(x)> = <f(x), <g{E;), 4>(x+f;)>>. 

It follows immediately, that, when g is a convolutor, also 

convolutor and one has the relation 

(5.4) a 
ax. 

1 

(f*g) = f * 

ag 
ax. 

1 

• 1S a 

Theorem 6. Every distribution with bounded support belonging to D' or 

S' is a convolutor. 



Proof: According to theorem 4 and 

1/J(x) = g(x) ~ q>(x) in the form 

(5.5) 
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bis 
4 we may write the function 

V 

where G(~) is a continuous function, Va bounded region of R, con
n 

taining the support of g(x), and ~(p) a derivative of order p of the 

test function q>(x). 
.)( 

From this equation it follows, that the operation g is a continuous 

linear mapping of D (or S) into itself. The proof of this statement 
. 

for the case of Dis simple; for the case of Sit is a little bit 

complicated and the reader is referred to lit. 27 , Ch.II, §2.2. 

Ex,ampl~ 

o(x) is a convolutor and has the relation 

(5.6) f(x) * o(x) = f(x). 

It is possible to define the convolution product of two distributions 

which are not both convolutors in the strict sense as given above. 

The following conditions are each sufficient for defining a convolution 

product of distributions f and g belonging to D'. 

1. The support off or g is bounded. 

2. The intersection of the supports of f(x) and g(~-x) is bounded 

for each finite~-

The convolution may again be defined by fo1:,11ula (5 .2); however the 
00 

C function g(x) ,c- q>(x) = <g(~), <f>(x+t)> = <g(~-x), 4>(~)> need not to 

be a test function out of D, but due to the conditions 1 or 2 the 

intersection of the supports of g(x) +E-<p{x) and the distributionf(x) 

is bounded and hence g(x) * q>(x) can be made a test function with the 

aid of a suitable cut-off factor. 

In the case that f and g belong to S' the first condition is again 

sufficient for defining f * g, but the second one is no longer sufficient 

in general; however, there are important e7arnples for which the second 

condition suffices to define the convolution f * g. In view of later 

applications (section 8.2 and section 9) we consider the example that 
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f and g are distributions belonging to S' and concentrated respectively 

in the 
ft ., 

fo1·ward 

with a> 0 and b 

b > 0). 

cones x1 
> O, but 

> a ... + X 

a and b not simultaneously zero (we take 

It is clear that the intersection of f(x) and g(~-x) is bounded for 

each finite~

Using theorem 

' 

4bis we have 

f(x) = 'ff F(x) and g(x) = Dq G(x), 

where F(x) and G(x) are continuous functions of finite algebraic 

growth at infinity and if and Dq denote generalized differentiation 

of order IP I respectively I q I (confer fo1"ffiula (3 .22)). 

Therefore we obtain formally: 

--

--

--

<f(x) * g(x), ~(x)> = <f(x), <g(~), ~(x+~)>> = 

-0) 

+00 

-oo 

F(x) rf <g(~), ~(x+~)>dx = 
X 

F(x) 

F(x) { G(~) 
-cc -oo 

or according to Fubin1 1 s theorem: 

(5 .. 7) 

{ F(x) G(~ -x) dx} ~ • 
ClO 

n 

The region of integration of the inner integral is certainly contained 
2 

(~2-x2) + . .. . + <, -x) n n 
with x1 > O; hence it is also contained in h . a sp ere with centre ~ 

1 
and radius ~1 l ·+ 2 · Because moreover F(x) and G(x) are continuous 

b 
functions of finite algebraic growth for fxl +~,it follows that the 
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inner integral of (5.7) will also be of finite algebraic growth for 

l~l ~ m. Finally due to the strong decrease of <J>(t) at infinity the 
' 

convolution product <:f(x) * g(x), cp(x)> has a meaning for all cp(x) E. S 

and it may be represented by the right hand side of (5.7). 

For all convolution products in case they exist the following useful 

fo1m.ulae hold: 

(5 .8) 

(5. 9) 

(5.10) 

(f * g) * h = f * (g * h) 

a 
ax. 

l. 

(f * g) = * g. 

The proof is given by writing the convolution products in the form of 

(5.7); (5.8) and (5.10) are shown to be valid by interchanging F and G 

and (5.9) by applying Fubini's theorem. 

The convolution operator in the strict sense is not only a 

continuous operator in the space of test functions, but also in the 

space of distributions. This is expressed in the following theorem. 

Theorem 7. If a sequence of distributions f converges in D' or S' to 
m 

the distribution f, then also the sequence f * g converges in D' resp. 
m 

S' to the distribution f * g, if one of the following conditions is 

satisfied: 

1. The distributions :f have a uniformly bounded support. 
m 

2. The distribution g has a bounded support. 

Proof : 1 im < f * g, 4> > = lim < f , g * cp > = < f , g * cp > = < f * g, ~ > • m m 
m ► oo 

This theorem has an important consequence, which will be given in the 

next theorem. 

Theorem 8. Each distribution out of D' or S' may be obtained as the 

limit of a sequence of test functions belonging to D. 

Proof: Consider the 

the fo:.:'Dlula 

sequence of test functions cp (x) £ D, 
m 

defined by 



with K 
m 

--

4> (x) = 
m 

1 
K 

m 

0 
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2 2 
m r 

exp( 2 2 ) 
m r -1 

2 2 
for r = x 1 + • · · +xn 

1 
for r > -m 

2 2 m r 
-1 exp( 2 2 )dx; m=l ,2, . . . . 

r<m m r -1 

1 
< - 4 

m 

It is obvious that the sequence{$ (x)} has the distributional limit 
m 

o (x). Therefore, according to theorem 7, every distribution f(x) e. D' or 

S' satisfies the relation 

(5.11) f(x) = lim 
Dfr<X> 

$ (x) 
m 

* f(x). 

00 

The functions~ (x) = $ (x) 
m m 

f(x) are C functions; introducing finally 

the infinitely differentiable cut-off factor e(x) which is identically 
X 

1 for r < l and which vanishes for r > 2, the functions e(-) q; (x) (with m m 
m=l ,2, ... ) constitute a sequence of test functions out of D', which 

meets the requirements of the theorem. 

It may be remarked that Sobolev constructed already in 1936 the 

same sequence of functions cp (x) in order to obtain a sequence of 
m 

smooth functions converging weakly to an arbitrary integrable function 

• 

Example 

Let us consider the integral equation of Abel, viz.: 

(5.12) g(x) 
1 =---(-a.)~ 

X 

0 

with x > 0 and O < a < 1 . 

As is well known, the solution of this equation is given by the 

expression: 

(5.13) f(x) 
1 =---

(Cl -1) ! 
0 
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Considering the functions f and gas distributions, the solution (5.13) 

follows very easily from (5.12) and also the restriction O <a< 1 can 

be released. For this purpose we introduce the distribution of one in

dependent variable ~A(x), defined as: 

(5.14) 
• 

.:\.-1 
·x 

+ 
' 

where is an arbitrary complex n11mber (see section 4). 

These distributions enjoy the following properties: 

(5.15) 

(5.16) 

(5.17) ~ = o ( n) ( x) , n=O , 1 , 2 , • • . • 
-n 

The relations (5.16) and (5.17) follow from the theory of section 4; 

the relation (5.15) may be verified by proving it first for Re A> 0 

and Reµ> 0 and applying consecutively the principle of analytical 

continuation. 

Abeld integral equation, in generalized form, may now be written 

as: 

(5.18) g (x) = f (x) ~ ~ 
1 

, 
-o. 

where a may be any arbitrary complex number. 

Taking the convolution of both sides of the equation (5.18) with the 

dis~Tibution ~ 1 , we obtain i ediately 
a-

(5.19) f(x) = g(x) 

which is a generalization of the solution (5.13). 

It will appear in section 10, that the distributions ~A with the pro-
• 

perties (5.15) - (5.17) can be generalized to distributions in more , 

variables. 
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6. The Fourier transfo1·ma tion 

6.1. General theory 

Let ~(x) be a test function of D and vanishing for lxi 

i=l, 2, ... ,n. 

Its Fourier transfo1"111 is defined by 

(6.1) --
+a 

-a 

is~ 
e 

and s = a+iT. 

> a. , 
1 

After some considerations, involving only classical analysis, it fol

lows from (6.1), that tµ(s) belongs to the space Zand, moreover, when 

~(x) + 0 in D then also tµ(s) + 0 in z. (Confer lit. 

§1.1 - §1.3). 

, Vo 1 .. I , Ch . I I , 

Conversely, we have the inverse transfo1111ation 

(6.2) 

with 

cp (x) 

crx = o1x1 
+ 0 in D. 

1 =---
(2'rr )n 

f 00 

-iox 
e 1J; (a) dcr, 

JO 

+ ... +ax ; it follows that tJ;(s) + 0 in Z implies 
n n 

Hence the Fourier transfo1.,na tion is a continuous linear 

1-1 mapping of D onto Zand conversely. 

Let ~(x) now belong to the space Sand consider its Fourier trans

fo:n11 

(6.3) = F q>(x) --
• iax 

e <f>(x)dx, 
-cc 

are real. 

(6.4) -1 
cf> (x) = F tJ; (cr) 1 =---

(21T) n 

I oo 
-icrx 

e tJ; (cr ) da .. 
-oo 

Using the definition (6.3) and (6.4) it is not difficult to show, that 

the Fourier transfo11nation and its inverse are also continuous linear 

1-1 mappings of S onto itself (confer lit. 7, Ch.II, §1.6). 
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The Fourier transfor111 of a test function cp will also be denoted by the 
-

symbol cp. 

-
The Fourier transfo1111 F 

by Parseval's equality, viz. 

or f of a distribution f D' is defined 

(6.5) 

~ -
where cp (s) • Z and f (s) 4 Z'. 

The Fourier transfo2~n of distributions of S' are defined in the same 

way: 

(6.6) 1 
< f(x), cp (x)> = ---

(21r )n 

~ ~ 
where cp(cr) and f(a) belong again to S respectively S'. 

It is clear, that these definitions are in accordance with the classic

al theory in case, that f(x) is an absolutely integrable function. 

Therefore the Fourier transfor1nation, as defined by (6 .5) or (6 .6) for 

distributions, generalizes the operator of the Fourier transfo1·mation 
. 

for functions which are no longer absolutely integrable. 

Let {f (x)} be a sequence, which converges in D' or S' to the dis
m 

tribution f. It follows from (6.5) and (6.6), that now also these-
~ ... 

quence {f} converges in Z' or respectively S' to the distribution f. m - -
Also the converse is true, namely f ➔ f implies f ➔ f. Hence we have 

m m 
the following important theorem: 

Theorem 9. The Fourier transformation is a continuous linear 1-1 map

ping of the spaces D, S, D' and S' onto respectively the spaces Z, S, Z' 

and S'; the same is true for the inverse transfo.1·111ation. 

For all test functions belonging to D we have the following well

known relations 

(6. 7) 

(6 .8) 

a 
· · · ' ax ) <I> (x) 

n 

a a 
= P(a ' a · S S 

, 
1 2 

a ..• , as ) F q> (x) , 
n 
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where P(x
1

,x
2

, ... ,xn) is an arbitrary polynomial .inn independent 

variables. By transposition we obtain for distributions of D' the same 

results, viz. 

(6 .9) F 

(6 .10) 

a a 
<ax J ax ' 

1 2 
. . . ' 

n 

a 
as' 

2 
.... , 

For test functions and distributions of Sand S' one has of course the 

same formulae, if one replaces the complex variables s1 by real varia

bles, say a .. 
1 

Other useful fo1-mulae which can be derived easily from the definitions 

are 

(6 .11) 
+ia•s -= e • f (s) 

(6.12) 
ia•x ] ~ 

Fe f(x) = f(s + a) 

(6.13) 

where A is a non singular linear transfoi,nation of the independent 
T 

variables x1 , x2 , ... , xn and A the transpose of A.a.sand a•x denote 

resp. a1s 1 + a2s 2 + ... + ansn and a1 x1 + a2x2 + ... + anxn. 

Examp~es 

Using the definition (6.5) and the rules (6.9) and (6.1.0) - (6.12) one 

veri£ies easily the following fonnulae 

ia.s 
= e 

(2 )n 
= '~ {o(s+a)+o(s-a)} 

• 

(27r) n 
21 { o (s+a)-o (s-a)} . --

6.2. The.structure of dis~ribu~io~s belonging to Z' 

The distributions in D1 and Z' are related to each other by Par

seval's rule (6.5). Hence it follows, that the properties of the dis-
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tributions in Z' Jl,re completely deten11ined by those in D'. In this 

section the structure of the distributions in Z' will be derived from 

the fact, that every distribution in D' is the derivative of a con

tinuous function. 

Every distribution g(s)~ Z' may be represented as follows 

(6.15) F(x)Dm ct> (x) dx, 

-1 
where f(x) = F (s)_ , cp (x) 

-1 
= F 

V 

and f(x) = F(x) 

with F(x) continuous; Vis a 

port o:f ¢> (x) • Instead of Dm 

(6 .16) 

finite region in R containing the sup
am n 

q>(x) = --=------ ¢(x) we may write 

1 

m1 mn ax1 , .... ,axn 

R 
n 

m -icrx (-icr) ~(cr)e dcr, 

Substitution of (6.16) into (6.15) and application of Fubini's theorem 

yields 

(6.17) <g(s), 1lJ (s)> --
R 

n 

( . )m -ia IJ, (o) dcr 
V 

-iax -----e F(x)dx. 

The function G(o) = 
·a 

e 1 x F(x)dx is a bounded analytic function of g, 

which can be continueX analytically in the whole complex n-dimensional 

space C • 
n 

Hence we obtain the result 

(6 .18) <g(s), IJ) (s)> --
R n 

H(o) 'lJ(o)da , 

where H(o) = (ia)m G(a) is an analytic function of a, which is of fi

nite algebraic growth at infinity and which can be continued analytic-

ally in the whole space C. 
n 

Thus we have the theorem 

Theorem 10. Every distribution in the space Z' may be written in the 

forn,: 

(6.19) 
• 

<g(s), lP(s)> = 

. - . 

R 
n 

H(O) llJ(O)da = <H(a), w(a)>, 
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where H(s) = H(a+iT) is an entire complex function of sand H(o) is 

of finite algebraic growth for fa( ➔ m. 

6. 3. The Fourier transfox·m of distributions with compact support 

The Fourier transform !(a) of a distribution f(X)~ S' with bound

ed support V may be represented as follows: 

(6 .20) 

F(x) JD- cf> (x)dx, 
V 

where F(x) is a continuous function. 

Substituting again 

we obtain 

(6.21) 

R n 

We introduce now a test function ~(x) = 
iox 

= e for x e. V, and 

= 0 for x V+£ , 

V 

iO 

do , 

iOx 
e F(x)dx. 

, defined as 

where V+E is an arbitrary neighbourhood of V • 
• 

With this convention (6.21) may be written in the fonn 

• 

(6.22) ( ) [eia 
> = <f X , > • -

Hence we may state the theorem! 

Theorem 11. A distribution f(x), belonging to S' and having bounded 
... 

support, has a Fourier transfor111 f (a), which may be written as: 

- -- . 
f (o ) = < f (x) , [ e 10 

-' > • 

This Fourier transform is an analytical function of a, which is of 

finite algebraic growth for lcrl ➔~ and which can be continued analytic-
• 

• 
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ally in C • n The analytical continuation is the entire function: 

- -
(6.23) f(s) isx 

e F(x)dx, 
V 

withs= a+ i-r. 

The result (6.23) is of course also valid for distributions with 

bounded support, which belong to D'. 

6.4. Multiplicatio~ and -~01;1v,o~ution 

One of the very useful properties of the Fourier transfonnation 

is, that in the case of two square integrable functions convolution 

is transfonued into multiplication and vice versa. 

This property holds also in the case of two distributions, for which 

the convolution or the multiplication may be perfoz,ned. 

A function f(x) is called a multiplicator in S', if for 

every test function ~(x)~ S the function f(x) $(x) also belongs to 

S, while f•~ ➔ 0 in S, whenever~ ~ 0 in S. A multiplicator ins• 
~ _ m m 

is a C function of finite algebraic growth at infinity. 

Consider a dis tri bu ti on f (x) E'. S ' with compact support ; according 

to theorem 6 the distribution f(x) is a convolutor and according to 
.... 

theorem 11 its Fourier transform f(a) is a multiplicator. Moreover, by 

applying Parseval's rule one obtains 

or 

1 
<f(~), ~(~+x)> = ---

(2,r)n 

-
<f (a), 

l e -ixa l (a)' ~ (a) do = 
-00 

-ixO ... 
e cp(a)> = 

(6. 24) F _f(x) *·♦ (x) = f (o) •~(o). 

• 

Hence for every distribution g(x) E. S', we have the relation 
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<g(x) * f(x), 4>(x)> = <g(x), f(x) *4> (x)> = 

- ... 
<g(o) f (a), , or 

(6. 25) F (x) * f (x)J = g(o) • !(a). 

This fo1·u1ula shows, that the Fourier transfor1r,ation transfo:rms con-
• 

volution into multiplication, if the convolutor is a distribution of 

bounded support. ... 

Conversely, let us consider now a function f(x), which is a multipli

cator in S'; it follows, that f(x) • cp(x) is a test function in S, when

ever 4>(x)i S. Therefore, we may write 

• F[ f (x) 4> (x)] = 
ixO 

e f (x) cp (x) dx 
ixO 

= <f(x), e cp(x)> = 
_co 

... ... 
<f(a'), q,(a+a')> , or 

(6 .26) F[ f (x) ¢, (x)] = 1 ... ... 
f (O)* ¢, (0) • 

Because the Fourier transfo1·1nation is a linear continuous 1-1 mapping 
-of S onto itself it follows now immediately from (6.26) that f(o) is 

a convolutor in S'. 

·Hence for every distribution g(x) t. S' we get the relation 

<g(x) f(x), ¢,(x)> = <g(x), f(x) 4>(x)> = 

(6.27) 

1 -----
(2n)n 

... 
<g(o)' 

1 - ... 
f(O)* cp(o)> = 

• 

1 ... ... ... 
= --- <g(a) * f (o), t (o)> , or 

(2n)2n 

F [g {x) f (x)] = - 1-
(2n) n 

... ... 
g(o) * f (a). 

This fo1,r1ula shows, that the Fourier transfor111a tion trans f o:r,ns al ways 

multiplication into convolution. 

Summarizing, we have obtained the theorem 
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Theorem 12. If f(x) is a convolutor of bounded support in S', then its 

Fourier transform is a multiplicator in S' and we have the relation 

• 

F [f * • 

If f(x) is a multiplicator in S', then its Fourier transfo1·m is a 

convolutor ins• and we have the relation 

F f • F *F • 

In general not all distributions are multiplicators and so in 

general we cannot multiply distributions • This is reflected in 

the space of the Fourier transfor,11s; not all distributions are convo

lutors and so we cannot always fo11n the convolution product of two ar

bitrary distributions. 

However, in practical calculations, such as e.g. in electrodynamics, 

multiplications of distributions occur; the fon11al Fourier transfonns 

of these products give rise to the appearance of convolution integrals 

which diverge (see chapter V). 

For a more profound treatment of the connection of convolution and mul

tiplication the reader is referred to [6] , Vol.II, ch. VII, §5, p .. 99 

and §s, p. 124. 

6. 5 •. s?~.e examples of Fourier transforn1s 

In section 4 we have treated distributions corresponding with func

tions with an algebraic singularity. Their Fourier transfor1ns are given 

in this section; the results are equally valid, whether they are con

sidered as distributions in D' or S'. The proofs are omitted; they may 

be found 

F _, 

F 

F -

, Vol.I, 
iA 'If 

= i e 2 

ch.II, §2, p.167-171. 

-A-1 
(a+iO) , 

-i' 'ff l\w -A -1 
= -i e .e. (a-10) , 

.m m-1 
-

1 
11' a s i gn • a , m=l , 2 , • • • • 

- (m-1)! 
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7. Distributions on surfaces 

Distributions concentrated on hypersurfaces inn-dimensional 

space are very important for the applications, as will appear 

later in sections 8 and 9 of this chapter and in chapter IV. We 

introduce these distributions using an elegant method due to 

R.T. Seeley • 

The distribution 8(P) is defined as 

(7.1) <Q(P), <P(x)> = <P(x)dx, 
p> 0 

00 

is some surface in R and Pis a C function 
oP n 
--) nowhere zero on {P=O} • ax n 

The distribution 6(P) is now introduced with the aid of the distribu-

tion 9(P), viz. 

(7.2) <6(P), •<x)> = lim 
c-+ 0 

_l <8(P+c) 
C 

- 9(P), <P (x)> --

lim 1 

C-+ 0 C 
<P {x1 , x2 , • • . , x ) dxl dx

2 
• . • dx • 

-c < P < 0 n n -
The existence of this limit presents no difficulty, since we may 

write for the latter integral (see fig.l) 

(7 .3) <o (P) , q, (x)> = lim 1 do 
VP 

where do is the 

• dx 
n 

C 
C + 0 

surface measure 
da 

= YdCJ = c Vp • 

on {P=O} and 

,Ex~mples 

--
P=O 

{(VP, VP) 

da 
VP 

, 

1. Consider the distribution o(x 2-r2 ),where 
2 2 2 2 o 

r = x1 +x2 +x3 and x
0 

is some parameter. 

fig.1 
x1 ,x2 ,x3 may be regarded as space coordi-

nates and x
0 

as a parameter, denoting the 
time. Hence o(x 2-r2 ) cone t t d 

coordinates xi= rw1 (i=l,2,3), we obtain dcr = r 2 dO with d'2 the sur-



Substitution into (9.3) yields 

(7.4) 
2 2 <o (x -r ) , 

0 

• 

2. Consider the 4-dimensional 
2 2 2 2 2 

x = x
0 

-x1 -x2 -x3 and m 

ed as space coordinates and x 
0 
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--

-- • 

distribution o(x2 -m2
) where 

is some constant.x1 ,x2 ,x3 
as time coordinate. This 

may be regard

distribution 

is concentrated on a hyperboloid in R
4

• Instead of x1 ,x2 ,x3 we use 

again spherical coordinates 
2 

r w. (i=l, 2, 3) 
l. 

with 
2 2 2 

X = 
i 

r = x1 +x2 +x3 ; · 

hence = r dr ds-2 • 

Instead of x 
0 

we take the new coordinate p = 

The 

2 2 2 x -r -m and thus 
0 

dxodxldx2dx3 = -
2 2 - 2 distribution 9(P) can 

be written as 

<8(P) , ct, (x) > = 2 2 -l 2 ( P+ r +m ) r cp dr dP ctn • 
P>O 

Hence 

now 

dP dr2 ; 

after taking the limit with c 0 we obtain finally: 

2 2 
<o<x -m >, <t><x>> = l 

2 2 
X -m =0 

= l 
2 2 

r +m )dr df2 
0 

+ l 2 2 r +m )dr dr2. 
0 

Perfo1·ming the integration with respect to d0 we get 

2 2 
(7.5) <o(x -m ), <t,(x)> = 

where 4> (r ,x ) = 
0 

+ 

Q0 

0 

2 2 -½ 2 
(r +m ) r 

• 

2 2 -½ 2 
(r +m) r <t,(r,-

2 2 r +m )dr + 

2 2 · 
r +m )dr, 

+ 
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i.e. ¢(r,x
0

) is, apart from a constant, the 

sphere with radius r in (x1 ,x2 ,x3 )-space. 

If in (7.5) we take the limit form~ O, we 

centrated on the ''light cone'
1 

x 2 = r
2

, viz. 
0 

00 

mean value of¢ on a 

obtain a distribution con-

00 

(7.6) 
2 

< o (x ) , q> (x) > = r <P ( r , + r) dr + ½ r q> ( r , - r) dr . 
0 0 

The distributions o (x2-m2) and 6 (x2 -m2), which are concentrated only 
+ - 2 2 

on the upper respectively the lower sheet of the hyperboloid x -m =0, 

are given by the f 01·111ulae 

(7.7) 

and 

(7.8) 

2 2 
<& (x -m ), ¢(x)> = 

+ 

2 2 <o (x -m ), ¢(x)> = -

2 2 
r +m )dr, 

0 

2 2 
r +m )dr .. 

0 

The distribution o(x
2

) can be splitted in the same way into two dis

tributions o (x
2

) and o (x
2), which are concentrated on the forward 

+ -
respectively backward Tl • tl 

light cone ;they are given by the expressions 
(X) 

<6 (x2 ), (7.9) 'P(x)> = ½ r q>(r,+r)dr, 
+ 

0 
and 

CIO 

<o (x2), (7 .10) q>(x) > - r cfl ( r , - r) dr • --
0 

on {P = o} are defined by the rule 

(7.11) 

Example· 

lim 1 
C c~o 

, k=O, 1, 2, •••• 

We calculate the first derivative of the three-dimensional distribution 
2 2 

6(x -r ), where x is considered as a parameter. 
0 0 
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{7.12) 

(1) 2 2 <o (x -r ),q,> 
0 

lim 
C-+- 0 

-

The d . t. f .t' (k) eriva 1ve o u 
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--

--

the independent variables x. is given by the chain rule 
l. 

(7.13) ax. 
1 

o (k) (P) = o .(k+l) (P) a p 
d X. 

l. 

, I 'v P I ;ai O on P} = 0. 

It follows from (7.3) that P o(P) = O; repeated differentiation of this 

equation with respect to P yields the useful fo1·mula 

(7.14) (k) (k-1) 
Po (P) = -k o (P), k=0,1,2, .... 

8 •. ~egl-1;1arization of functions ,?f s~veral_ independent variables wi t,h an 
m I af 

algeb.raic singularity 

8.1. A The distributions r 

In section 4 we studied the regularization of functions of one 

variable with an algebraic singularity; this led to the introduction 

of 

In this section we consider a generalization in so far as we deal now 

with the regularization of functions of more variables. 

A first example is the function rl with r 

gularization of this :function is given by 

:for Re X>-n by the integral 

2 2 2 
= x1 +x2 + ... +x • 

n l 
the distribution r 

(8.1) 
l 

r <P (x) dx. 
R n 

• 

The re-

, defined 
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). 
For values of) with ReA < -n the distribution r is defined by the 

). 
analytical continuation of <r ,$> with respect to X. For this pur-

pose we write (8.1) in the form 
co 

(8 .. 2) 0 
n 

0 

X+n-1 
r Sq>(r)dr, 

where S~(r) is the mean value of the function ~(x) on the surface of 

a sphere in R with center in the origin and radius r; n is the area 
n n 

of the unit sphere in R. 
n X 

The analytical continuation of <r ,~> into the region ReX< -n pro-

ceeds now in more or less the same way as in section 4. We omit the 

details of the calculations; for this the reader is referred to 

Vol.I, ch.I, §3.9, p.78. 

The result is that the distribution <rx,~> can be defined in the whole 

complex A-plane With the exception of the points X=-n-2k (k=0,1,2, .. . ), 
X 

where <r ,,> has simple poles with residues 

(8 .. 3) n 
n 

S(2k)(O) 
t 

(2k) ! • 

The distributions r). may be no:t·n1alized by introducing 

(8.4) A 
R = 

n < n 
X+n-2), • 

2 • 

The functional 

tain the fo11uula 

A 
<R , q>> is an entire function of ). ; using (8 .3) we ob-

(8.5) -n 
R = o(x). 

By repeated application of the Laplace operator ~, it can easily be 

verified, that 

(8.6) k 
2 (A+2)(A+4) .. (>..+2k)R R)..+2k, k = 1, 2, ... 

and hence 
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(8. 7) -n-2k 
R " k 

(+i; n(n+2) ... (n+2k-2) 

8.2. The distributions of Marcel Riesz 

(8.8) 

Consider in R the hyperbolic distance 
n 

P= 

, k = 1, 2, ... • 

As to the applications it may be illustrative to consider in this sec-

tion x1 as the time 
). 

The distribution P 

coordinate and x 2 , .... ,xn as the space coordinates. 

with ReA > -2 is defined with the aid of the inte-

gral 
• 

• 

(8.9) 
A 

<p ,cf>> = A. ) 
P 9(x dx. 

• 

P~O 

For values of A with Re A,-2 the distribution PA is again defined by 

the method of analytical continuation. 

This case is a little bit more complicated than that of the preceding 
.X ' ,, section, since p with ReA < 0 is singular on the whole forward light 

,, 2 2 
cone x1 = x 2 + ••• +xn. 

We restrict our treatment by giving here again only the results of the 

calculations, for which the reader is referred to [6 , Vol.I, ch.II, 

53 , p. 49, [6 , Vol. II, ch. VI, §5, p.32, 
• 

, Vo 1 • I , ch . I I I , § 2 , 
• 

p.236 and especially 27] , Ch. II, §4 .3. The functional <p A, cf,> , 

considered as function of A• is analytic in A for all complex values 

of A with the exception of the following values: 

1. X= -2k (k=l,2, •.. ), 

2. X= -n-2k (k=0,1,2, ••• ). 

For n even, it is possible that A belongs to both sequences; in that 

case A=-n-2k is a pole of the second order ox <pA,~>; in the other 
.l. 

cases the points X=-2k and .l.=-n-2k are simple poles of <p ,~>. 
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A 
h A> d fo n odd the residue of <p ,~> in the a) for n even wit -nan r 

simple poles A= -2k equals 

(8.10) 
A -1 Res <p ,<P> = _______ _,;;;:;,__ ______ _ 

A=-2k 2k-l(k-l) !(n-2)(n-4) . .. (n-2k) 
• 

,¢>, k = 1, 2, • • • 

where o denotes the wave operator 

n 

6(x -1 
2 2 '' - '' . gh d · + x ) equals one inside the forward 11 t cone an 

· x2 + · · · n 

is identically zero outside this cone; hence it is clear that 

k 2 ... + x2) is a distribution concentrated on the for
n 

ward light cone. 

b) For n odd the residue 
A 

of <p ,cp> in the simple poles A= -n-2k is 

n+2k-l n 

0. .11) Res 
;\=-n-2k 

A (-1) 2 ,r2 
<p 'cp> = ..;....._..;,. _____ _ o, 1., 2, • • • • 

1 For n even with A< -n the 

sequences 1 and 2. In this 

singularities A= -n-2k belong to both 
). 

case <p ,¢> has a pole of the second 

order in A= -n-2k (k=0,1,2, ... ). The coefficient of the first term 
A 

of the Laurent expansion of <p , ¢> in the neighbourhood of 

A= -n-2k equals 

(8.12) 
2(-1) 

n+2k-2 
2 

1T 

n - 1 
2 

k <o cS (x), q,>, k ::;:: o, 1, 2, ..... 

The distributions P).. may be noz·malized by the introduction of 

suitable factors. Putting 

1 µ-n 
(8.13) z µ =-:r-----------in-1 p ' 

'1T 

the functional <z ,~> becomes µ 

riable µ. These distributions 

an entire function of the complex va-

Zµ have been treated already by M. Riesz; 

they enjoy remarkable properties and play an important role in wave 

theory 4 . 
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For (µ-n} not singular the support of Z is the closure of the inter

ior of the fo1·ward cone x1 = + x2 + ... +xn; forµ = -2k (k=0,1,2, ... ) 

its support is the origin and for µ=n-2k (k=l,2, ••. ) with ui o,-2, 

-4, ••• its support is the surface of the forward light cone. 

For non negative integral values of k we have the relation 

(8.14) . k k 
Z-2k = (-1) 0 o(x). 

Moreover, one has for all values of 

(8.15) oz = -z 
µ lJ-2 

and 

and hence in particular 

• 

(8.16) k k z 
O 

= c5 (x) , D z2 = - o (x) and D z
2

k = ( -1) o (x) .. 

The convolution property, as given by equation (5.13) for the distri-

butions tA(x), is also valid for the distributions 

(8.17) • 

z 
1J 

• , i.e. 

This relation can be verified by proving (8.17) for Re u,v > n and 

applying consecutively the principle of analytical continuation. The 

fo:t·n1ulae (8.14) - (8.17) are of fundamental importance for the theory 

of the wave equation. 

9. Some appli,c~tions of dis~ribution theory to partial differential 

equations 

The applications of distribution theory to partial differential 

equations are only illustrated in this section by giving some examples. 

Consider a partial differential equation 

(9.1) L f(x) = g(x), 

where Lis an arbitrary linear differential operator with constant 

coefficients, which is applied to a distribution f(x) of n independent 

variables. 

The relevant differentiations are taken in the distributional 

• 

• 
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sense; the right hand side g(x) may be a distribution. 

A solution of this inhomogeneous equation is obtained with the aid 

of a so called elementary solution E(x), which satisfies the 

equation 

(9.2) L E (x) = o (x) • 

Assuming that g(x) is such a distribution that E(x) • g(x) exists, then 

a solution of (9.1) is given by 

(9.3) f (x) = E (x) * g (x) , 

where E(x) is an arbitrary solution of (9.2). 

This technique to obtain solutions of partial differential 

equations has many applications in applied mathematics. 

In particular, let us consider as a rather general example a linear 

partial differential equation with constant coefficients of order m; 

viz. 

(9.4) L f(x) = 
am 

+ 
ax

1 
m I Pl < m 

with p 

pl< m 
al PI --

ax1 

pl 
ax2 

P2 

DP f(x) a 
p 

ax 
Pn 

• • • n 

= o, 

and fpf = 
n 

i=l 
P .• 

1 

The function f(x) is supposed to be differentiable up to the order m 

outside the surface x1 = 0 and to satisfy (9.4) for x
1 

~ O. We assume 

further, that the unknown function f(x) and its derivatives with 
respect 

face x 
1 

denoted 

(9.5) 

to x
1 

= o. 
by 

up to the order m-1 have prescribed jumps across the sur

These jumps, taken in the positive direction of x
1

, are 

M ( 0, x 2 , ... , xn) 

af 

- - - - - - - --. - - - - - - - - -
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The functions 

conditions of differentiability, otherwise the function f(x) cannot 

be m times differentiable outside the plane x1 = O. 

It is rather difficult to give these conditions of differentiability 

for the general case considered here. 

Therefore we shall not enter into a discussion of these conditions, 

but we assume that the functions fv are sufficiently smooth, such that 

the differentiability of f(x) will not be violated (see also example 3 

of this section). 

When the function f(x) is considered as a distribution F(x) be-

longing2to D' or S', we may write instead of the classical derivatives 
af a f 
ax ' 2 ' etc. 

1 ax1 
af aF 

a x1 
=--

(9.6) - - - - - - -

--

•••• •·•. 

a2 F 
, 2 etc. denote now distributional derivatives. 

3x1 
Substituting 

difterential 

(9 .6) .into (9 .4) one obtains for the distribution F(x) the 

equation 

• 

(9.7) L F(x) = 

' where H(x) is the distribution 

+ 
<m 

a 
p 

F(x) = H(x), 

' 



(9.8) H(x) = 
m 

a 
p 

• • 

-p 
1 
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The distribution H(x) represents a layer of poles, dipoles and multi

poles, concentrated at the plane x1 = 0. The distribution F(x) satisfies 

now the differential equation (9.7) in the whole space Rn. 

According to the beginning of this section, a general solution of 

equation (9.7) is given by 

(9 .9) F(x) = H(x) * E(x), 

where E(x) is an elementary solution of the equation 

L E(x) = o(x). 

The distribution F(x) coincides outside the plane x 1 
tion f(x), and therefore a solution satisfying (9.4) 

(9.10) f(x) = H(x) * E(x), x1 ~ O. 

= 0 with the func

and (9.5) is given by: 

The distribution E(x) corresponds with theso-called Green's function 

of classical analysis. 

This procedure may be generalized to the case that the functions 
\j 

f (x2 , ••• ,xn) are no longer smooth functions; instead it may even be 

assumed thatthey are distributions. 

The distribution F(x) = H(x)*E(x) again satisfies outside the plane 

x1 = 0 the differential equation (9.4), where the differentiations are 

now of course taken in the distributional sense. In general, F(x) will 

not coincide for x1 ~ 0 with an m times differentiable function (see 

also example 3 of this section). 

When we take instead of the coordinate x1 the time variable t, 

the above sketched technique may be applied for solving initial value 

problems. As~11ming f (x, t) identically equal to zero for t < O, the jumps 

at t=O are given by the initial conditions, to which f(x,t) is subject. 

As to the uniqueness of the solution of initial value problems the reader 

is referred to the second example which we give below. 
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. Other important applications are found in potential theory, when 

the potential or one of its normal derivatives should have a j mp 

across a certain surface, which is a layer of poles, dipoles or multi

poles. It is obvious, that the determination of elementary solutions 

is of the utmost importance in the theory of partial differential 

equations. 

Examp_les 
I I 

1. ~~ La~lac~ op~~at~r 

The elementary solution of the Laplace operator in 

follows i1n11,ediately from the :fot"Jl1ulae (8.4) - (8.6). 

We have the relation 

(9.11) 

with r = 2 2 2 
xl +x2 + ••• +xn. 

n (n-2) 
n 

-n+2 r . = 6(x), 

R 
n 

• 

withn>2 

The Newtonian potential in R3 due to a mass distribution ~(x
1

,x2 ,x
3

) 

satisfies the differential equation 

(9.12) 

and hence 

(9 .13) 

2. The wave operator 
a " 

According to form~la 

(8 .16) 

Af(x) = µ(x), 

f(x) -1 
= 41rr * JJ(x). 

( 8 .16) , viz • 

□k(-l)kZ . = o(x), 
2k 

the distribution k (-1) z2k is an elementary solution of the k-times 

iterated wave equation; this elementary solution is the only one,which 
• 

vanishes for x1 < O. This follows from the fact, that the equation 

(9 .14) Dm :f (x) = g(x)' 
• 

• 

with the distributions f(x) and g(x) identically equal to zero for x1 < 0, 

has always a unique solution. This unique solution is 

• 



• 
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(9.15) 
m 

f(x) = (-1) z2m* g{x). 

This follows easily from the following implications 

m m m m () () f(X) = (-1) z
2

m * g(x) =>□ f(x) = 0 (-1) z2m* g X = g X 

m m m f(x) = □m(-l)m D f (x) = g{x) : :-(-1) 

= f (x) = (-l)m z2m * g(x) • 

It has been shown in section 5 that m 
the convolution product (-1) z

2
m~(x) 

always exists, whenever g(x) is concentrated in the region x1 > O. 

When we have an initial value problem for the iterated wave equation 
m a f(x) = o, the initial data give to the right hand side of (9.14) a 

contribution, which is concentrated at the surface x1 = O (confer (9.8)). 

Hence, every initial value problem for the iterated wave equation has 

always a unique solution. 

3. The vibrating string 

The differential equation for the vibrating string is 

(9.16) 
--

Suppose the initial conditions are 

u(x,O) = u (x) and au 
o at (x,O) = u1 (x). 

According to (8.13) and (8.16) the elementary solution 

z2 (x, t) - for t > l XI - , 

z2 (x, t) - 0 for t <IX I - • 
• 

Applying (9.8) and (9.10) we obtain the solution 

• 1S ! 

(9.17) u(x, t) = z2 (x, t) * { u (x) cS' (t) + u (x) 6 (t) 
0 1 • 

In the case 

duces to 

that u1 (x) is an integrable function, this expression 

(9 .18) 
u (x+t)+u (x-t) 

u(x,t) = _o __ ~_o __ _ 
2 + ½ 

x+t 

x-t 

re-

' 
' 

' 
' 
' 

\ 

' ' 

i 
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which is nothing else as the well-known for111ula of d 'Alembert. 

When it is assumed, that u0 (x) is two times and u
1

(x) is one 

t.ime differentiable in classical sense, the solution u(x, t) is a twice 

differentiable function, satisfying (9.16) in classical sense. 

However, when u
0

(x) and u1 (x) are no longer subject to these con

ditions, the solution (9.17) is not twice differentiable and it satis

fies (9.16), for t>O, only in the distributional sense. 

If we take for instance for u (x) a function with a discontinuity at 
0 

x=a, the solution u(x,t) has a jump across the characteristics x+t=a. 

It may also be assumed, that u
0

(x) and u1 (x) are distributions. When 

e.g. u = o(x) =------~;taking 
0 

u
0

: 0 and u1 = o(x), the solution becomes u(x,t) = z 2 (x,t). 

4. Other applications 

In chapter III we shall consider functions f(x,y,z), which have 

plane z=O and which are solutions of the prescribed j11mps across the 
a2 f a2f a2 f 

2 + 2 + 2 
ax ay az 

equation - = o. 

In chapter IV we shall investigate extensively the elementary solutions 

of a generalized wave equation, namely the equation of Klein-Gordon • 

• 

10. The topological foundations of the theory of distributions 

This section is devoted to a concise description of the topologic-
' 

al foundation of the theory of distributions. This foundation has been 

given by Schwartz and Gelfand - Shilov in different ways, which are 

both presented here for comparison. 

10.1. The topol!-)gic_al foundat,ion as g:i ven b,Y Schwartz 

a. 

We consider first the subspace DKcD, consisting of all infinitely 

differentiable functions with fixed bounded support K. A topology is 

introduced in this space by the following system of zero-neighbourhoods • 
• 
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V(m;c;K) is the set of all functions belonging to DK with the proper

ty that al 1 its deri va ti ves of order p < m are absolutely bounded by £, 

• 1.e. 

(10.1) IDP cp(x) I= 
• • • 

A system of no1·1ns, which defines the same topology, is given by 

(10.2) II, II p = Sup I nP 4> (x) I 
XE. R 

n 

., 

DK is a locally convex topological space with a countable basis of 

zero-neig~bourhoods; it is very easy to show that DK is complete with 

respect to the topology defined above. Therefore DK is a socalled 

Frechet-space, i.e. a locally convex complete topological vector space 
• 

with a countable basis of zero-neighbourhoods. 

Consider now a sequence of neighbourhoods in 

(10.3) 

where Q is 
" 

n = n 
0 

the open sphere Jxf = 

-- ' 

R , 
n 

• 
Vl.Z • 

Let sequence of decreasing positive numbers, 

approaching zero for v ~~and sequence of 
increasing non-negative integers approaching~ for v ~ ~. 

A system of zero-neighbourhoods in Dis given by the neighbourhoods 

V({m};{E}), which are defined as the sets of all functions <PE.D satis-

fying for every v and xtn 
\) 

the relation 

(10.4) I DP cp (x) I < E , if p < m • 
\) - V 

A system of no1·ms, defining the same topology, is given by 

(10.5) = Sup Sup 
v lxl > v, P < m 

V 

• 

The neighbourhoods V({m};{E}) consist of all functions 4> ~D with 
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(10.6) 
' 

It follows, that the space Dis a locally convex topological space 

with a non-countable basis of zero-neighbourhoods. 

It is not difficult to show that the definition of convergence with 

respect to this topology coincides with that introduced in section 1 

of this chapter. Moreover, the space Dis complete with respect to 

this convergence. 

If we consider only test functions belonging to DK, the topology in D 

induces in the subspace DK the same topology as was defined above by 

the neighbourhoods V(m;E;K). 

D is the so-called ''inductive'' limit of the spaces DK. 

In every topological vector space the concept of bounded subsets is 

very important. The bounded subsets of D may be identified with the sets 

B({M} ,K), consisting of all ¢, 6 DK, which satisfy the relations 

(10. 7) M for p < m , m=O, 1 , 2 , ••• 
m 

where M is an element of a sequence {M} of increasing positive num-
m 

hers M
0

,l\,M2 , ... . 

It can be proved that every bounded set B of Dis relatively compact and 

vice versa; this means, Bis bounded if and only if every family of open 

sets covering B contains a finite subfamily, which covers also B. 

The space Dis an example of aso-called Mantel-space. 

b. ~e topology of th,e, space D' 

A topology is defined in the dual space D', i.e. the space of 

distributions, with the aid of the bounded sets B of D. A neighbour

hood V(B,£) of the zero-distribution is the set of all distributions f 

with the property, that f < f ,ct,> I < e for all 4> e B, where B is an 

arbitrary bounded set of D. 

Hence D' is a locally convex topological space with a non-countable 

basis of zero-neighbourhoods. • 

A system of noims is introduced by 

(10 .8) 
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A set B' in D' is bounded, if for any bounded subset B of D 

(10.9) Sup 
fE:B',4> 

I <f,<t>> I< oo. 

B 

The properties of the space D' can now be established by applying 

directly the theorems of the theory of the topological vector spaces 

• 

Some important consequences are the following. When a sequence of dis

tributions f '- D' has the property, that for every cp E. D the sequence 
m 

{ <f , ♦>} converges to say f(cp), then the functional :f(q,) is also a 
m 

distribution belonging to D'; the space D' is complete in the weak 

sense. 

Every b•ounded set B' of D' is relatively compact and vice versa; the 

space D' is again a Montel-space. 

c. The topology of the spaces Sand S' 

The topology, introduced in the space S, is simpler than that in 

D. A system of zero-neighbourhoods is defined by the sets V(m;k;£), 

where m and k are non-negative integers and E > O; cp(x) E. V(m;k;e:), if 

♦ E.. S and if 

(10.10) for p< m. 

Hence Sis a locally convex topological vector space with countable 

basis. A sequence of no1·1ns is given by 

(10.11) ll ♦ II = Sup Ix k DP rp(x)J , 
m fkf<m;p<m 

X€R 

kl k2 k 
n 

k n 
with n I k I X - X x2 • • • X and - ki. - 1 -n 

i=l 

The bounded sets B of Smay be identified with the sets of test functions 

¢ (x) ES, which satisfy relations of the type 

(10.12) lnP <P{x) I< k k(x), 
p ,. 

where k(x) is a continuous function, decreasing for lxl-+ m stronger 
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than any negative power of lxl, while k is an element of a sequence 
p 

of positive constants k
0

,k1 ,k2 , .... 

It can again be shown that Sis complete and that bounded sets are 

relatively compact and vice versa. 

A topology is introduced in the dual space S' by means of the bounded 

sets B of S; this can be done in the same way as in the case of D'. 

The properties of S' follow again from the theory of the topological 

vector spaces. S' is complete in the weak sense and bounded sets are 

again relatively compact. 

For a detailed treatment of the topological foundation of the theory 

of distributions, as given by Schwartz, the reader is referred to 

Vol.I, ch.III, p.63-103 and [6] , Vol.II, ch.VII, §3 - §4, p.89-99. 

10.2. The topological foundation as given by Gelfand and Shilov 

Let us consider a general linear space X with elements x, for 

which there can be defined an increasing sequence of norms 

(10.13) II xii < llxll1 < • • .< ltxl ( < • • • o- - - m- • 

Moreover it will be assumed, that each pair of no.1·1ns of the sequence 

are coordinated; this means, that whenever {x} is a Cauchy se-
n 

quence in X with respect to two norn1s and { x } is convergent to zero 
n 

in one of the no1·111s, then it is also convergent to zero in the other 

nor111. The space X is called a sequentially no1·1ned space. 

A topology is introduced by a system of zero-neighbourhoods V(m;c), 

which consist of the elements x with 

(10.14) 

• 

Denoting the completion of the space X with respect to the th 
m norm by 

X, one 
m 

(10.15) 

obtains a decreasing sequence of Banach spaces 

X ::, x1 • • • => X ::. . . • ::> X • o m 

It can be proved, that the space Xis complete, if and only if X coin

cides with the intersection of all the Banach spaces X. 
m 

Together with the Banach space X one may consider also its 
m 

conjugate 

, 
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X', consisting 
m 

defined on X. 
m 

of all continuous linear functionals, which can be 

In this way an increasing sequence of Banach spaces 

X' is obtained, 
m 

(10.16) 

while 

(10 .. 17) 

• viz. 

X ~ C xi C ••• C x~ C ••• C X , , 

CIO 

X' = u 
m=l 

X' . 
m 

If a functional f belongs to X', it certainly belongs to some 

consequently also to X' with p ~ 1 . 
m+p 

In x• ,X' 
1

, ••• it has the following norms 
m m+ 

X' 
m 

and 

(10.18) llfll m = < f ,x> I , 11 f 11 m+l 
-- Sup I <f ,x> I, ... , 

llxll 1 =1 m+ 

and hence 

(10.19) m m+ 

The space X' is the union of an increasing sequence of complete no:r·1ned 

spaces with no1"U1s becoming weaker and weaker. 

The subset B of a sequentially no1med space is called bounded, if and 

only if 

(10.20) (m=O , 1 , 2 , ••• ) 

for all x ~ B. 

The topology in the space X' is again defined with the aid of the 

bounded subsets of X; the neighbourhoods V(B;E) are defined as the 

sets of those f E. X', for which 

(10.21) Sup J<f,x>I < £. 
XE.. B 

The subset B'CX' is bounded, if for every bounded subset B of X 

(10.22) Sup I < f, x > I < co. 

f£.B';xe.B 
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Gelfand and Shilov have introduced a large class of spaces of test 

functions, which may be considered as sequentially nor1ned spaces. 

Moreover, these authors have given also a sufficient condition for 

these spaces of test functions in order to have the property, that all 

their bounded subsets are compact. If this property is fulfilled for a 

sequentially nonned space of test functions, the space is called per

fect. 

The spaces D(a) and Sare very special examples from this general class 

of spaces of test functions; D(a) is the space of all test functions 

belonging to D with support I xi < a. 
The sequence of norms to be defined in the space D(a) is given by 

(10.23) Sup l DP ¢ (x) I 
lxl.sa;p~m 

, m=O, 1, 2, . . . • 

The space D(a) coincides with the intersection of all the completions 

of D(a) with respect to the norms II • II (m=O , 1 , 2 , ••• ) 
m 

and therefore 

D(a) is complete. The space D(a) is also perfect. 

The sequence of no:r,ns to be defined in the space Sis given by 

(10.24) -- Sup (xk DP ¢(x)I 

(kl~m;p~m 
, rn=O, 1 , 2 , • • • • 

x~ R 
n 

It can again be shown, that the space Sis complete and perfect. 

The properties of the dual spaces D'(a) and S' are established with 

the aid of the theory of linear topological vector spaces. 

The spaces D'(a) and S' are complete with respect to weak convergence, 

i.e. if <f .~> converges for every test function out of D(a) or Stoa limit m . 
f(~), then f(~) is again a linear continuous functional belonging to 

D'(a) respectively S'. 

Finally, let there be given an increasing sequence of linear topo

logical spaces 

(10.25) 
(1) (2) (m) 

X C X C ••• ex C •••• 

It is assumed, that with each inclusion convergence is preserved. 
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The union 

The space 

(m) . 
of all spacex X 1s 

(w) 
indicated by X • 

X(w) is not considered 

following type of convergence is 

as a topological space, but only the 

introduced. The sequence {x} is said n 

1 ·t 1.·f all elements to converge to the imi x, X n 
and x 
x<m). 

belong to some 

of subspace X(m) and if x ~ x in the topology 
n (w) (w)' 

All continuous linear functionals on X fonn the dual space X . 
(w)' X is said to converge to the func-The sequence of functionals f ~ 

tional f, if for each x f. X (w) 
n 

(10.26) lim 
n -+ co 

<f ,x> 
n 

= <f,x> , (weak convergence). 

This principle of for1ning the union of topological vector spaces is 

applied to the spaces D(a) with a= 1,2,3, ..•. 
• 

In this way Gelfand and Shilov define the space of test functions D 

and D' is obtained as the dual of the union of the spaces D(a). The 

space D' is complete with respect to the weak convergence as defined 

in (10.26). 

In contrast to the theory of L. Schwartz, the space Das defined 

by Gelfand and Shilov is not considered as a topological vector space. 

In this respect the presentation of the topological foundation of the 

theory of distributions as given by Schwartz is to be preferred to that 

presented by Gelfand and Shilov. On the other hand the theory as given 

by Gelfand and Shilov in literature 7],Vol. II, ch. I and II, p. 1-102, 

is easier to understand by those who are not too well f iliar with 

the theory of topological vector spaces. 

10.3. Distributions and continuous functions 

In the present chapter we have used s·everal times the important 

property that every distribution may be considered as a distributiona.1 

derivative of a continuous function; therefore, we shall give here a 

short proof of this theorem for the case of distributions of one varia

ble and belonging to the space D1
: confer theorem 4. 

Consider a distribution f(x) E. D'; hence it is also a priori a distribution 

belonging to D' (a), where a may be any real number. D' (a) is the union of 

• 
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all the spaces D'(a), which are the conjugates of the 
m 

spaces D (a), 
m 

while D (a) 
m 

is the completion of D(a) with respect to the norrn ll<t,II m. 

This means, that there exists a certain integer p, such that f(x) is a 

continuous linear functional on D (a). 
p 

The space D (a) consists of the functions q,(x), which have continuous 
p 

derivatives up to the order p and which vanish outside (-a,+a). 

To any <t>(x)~ D (a) we may associate the continuous function 

of D (a) 
p 

on a subspace of the space C(a), consisting of all functions continu-

ous in the interval (-a,+a). Therefore f(x) is equivalent to a continu

ous linear functional g(x), defined on a subspace of C(a), with 

• 

According to the theorem of Hahn-Banach (see , ch.III, §21, p. 

106) this functional can be extended to the whole space C(a). 

Using the representation theorem of Riesz (see .[26] , ch.III, §22, p. 

112), it is clear, that there exists a function of bounded variation 

u(x), such that +a 
-- ip (x) d u (x) , 

-a 
or 

--
+a 

(p) 
4> (x) d lJ (x) . 

-a 

Integration by parts yields finally 

(10.27) 
+a 

F(x) q,(p+2 ) (x) dx, 

-a 

where F(x) is a continuous function. 
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1. Introduction 

Chapter II 

THE DIFFRACTION OF A CYLINDRICAL 

PULSE BY A REFLECTING HALF-PLANE 

In this chapter we consider a special problem from the theory of 

diffraction. 

In the case of the diffraction of acoustic or sci smic disturbances the 

state of the medium may be described by a so-called wave or potential 

function. This potential is defined as the function the gradient of 

which yields the displacement vector of the medium. 

In the case of the diffraction of light it is not allowed to use such 

a potential function, since an electromagnetic field, owing to the pro

perty of polarization, cannot be represented by a single scalar poten

tial. Instead of the potential function one may take now one of the 

components of the electric or magnetic vector. 

In order to fix our ideas we restrict our attention to the case 

of the diffraction of acoustic or seismic disturbances. The treatment 

of electromagnetic disturbances is fo11nally quite the same; only the 

various mathematical symbols represent other physical quantities. 

The wave function satisfies the wave equation and a boundary con

dition at the surface of some obstacle which causes the diffraction. 

An analytical solution of this boundary value problem has been found 

for only relatively simple geometrical configurations such as a half

plane and in two dimensions a wedge. 

The case of harmonic plane waves disturbed by an absorbing or re

flecting half-plane was solved in 1896 by Sommerfeld, who introduced 

the concept of Riemann spaces in diffraction theory, [1] • 
Carslaw too used this concept in order to give the solution for the 

diffraction of ha1111onic cylindrical waves expanding from a line source 
• 
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parallel to the edge of the half-plane, [2]. 

The method of Sommerfeld has been applied also by Cagniard for the 

case of spherical waves of rather general shape, [3] . 
Turner and Lauwerier have discussed the diffraction of a cylindrical 

pulse expanding again from a line parallel to the edge of the half

plane, [4] , [s] . Turner applies consecutively the transformations of 

Laplace and Kantorovich-Lebedev , with the aid of which the wave 

equation is reduced to a simple ordinary differential equation of the 
• 

second order. Lauwerier too I uses the Laplace transfor1nation and the 

transfonned boundary value problem is reduced to a Hilbert problem. 

As to the application of the Laplace transfo1·1nation, used by Tur

ner and Lauwerier, it may be remarked, that this method is more or less 

a detour for finding the wave function. 

The boundary value problem is transfonned and after obtaining the so

lution of this transformed problem one has to determine the inverse 

transfo1·1n of this solution. In this process many calculations concern

ing special functions occur, which however do not appear in the final 

solution; cf. 4] and [5] . 
In this chapter we present another way, very simple and more direct, 

for obtaining the wave function corresponding to the diffraction of a 

cylindrical pulse expanding from a line parallel to the edge of a re

flecting half-plane. The case of an absorbing half-plane can be treated 

quite similarly. 

The boundary value problem is formulated in section 2. 

In section 3 a tentative solution is given, which is based mainly on 

physical considerations and which satisfies the boundary condition at 

the half-plane. Finally it is shown in section 4, that _this solution is 

actually a solution of the wave equation. This will be done by calcul

ating directly Of with the aid of the theory of distributions, where 
0 

f is the proposed tentative solution and D the wave operator. 

For additional literature on diffraction theory the reader is re

ferred to the textbooks by Baker and Copson and by Friendlander, [7] , 

[s]. • 
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The author is indebted to Prof. Lauwerier for suggesting the 

method, presented in this chapter. 

The use of the theory of distributions may show, that this theory can 

be applied successfully in solving diffraction problems. 

2 .. Formulation of the diffraction problem 
i J;'.t J 11 dirt Fl PIIIIJIC 1191Pf I I lf lb I J 

We consider a pulse, producing a cylindrical disturbance which 

expands .from a line parallel to the straight edge of a semi-infinite 

reflecting or rigid screen. 

Introducing Euclidean rectangular space coordinates x,y and z and the 

tine t, we suppose that the edge of the screen coincides with the z

a,xis, while the screen itself lies in the plane y=O with x < O, see fig. 

The pulse is ass11med to start at time t=O from the 

through the point 

line 1 passi.ng 

(x ,Y ,O) and 
0 0 

(2.1) Ot a2 f a2 f - + - -2 2 ax ay 
c}2f -
at2 -

parallel to the z-axis. The pro

blem to determine the correspond

ing wave function is obviously 

two dimensional and therefore the 

wave function may be written as 

f(x,y,t). The pulse is represented 

by the delta-function 

o(x-x ,y-y ,t) and the wave funco 0 

tion f(x,y,t) satisfies the follow-

ing differential equation 

-21T o(x-x o•y-yo,t), ' 

where the propagation velocity of the disturbances 

to 1. 
has been put equal 

The function f(x,y,t) is of course zero for values of t < O, while the 
y-component of the displacement vector vanishes at • 

the screen, due to 
the condition of reflection. 

the additional conditions 
This means that f(x,y,t) is ·subject to 

(2.2) f (x, y, t) = 0 for t < o, 



• 

and 

(2 .3) 
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af 
(x, y, t) = 0 for y=O and x < O. ay 

As to the solution of this boundary value problem it should be 

remarked that due to the appearance of the delta function in the 

right hand side of (2.1), the function f(x,y,t) cannot be twice dif

ferentiable everywhere in the (x,y,t)-space. Actually, there are cer

tain characteristic surfaces, across which f(x,y,t) and its derivat

ives are discontinuous. Therefore, the differentiations occurring in 
• 

(2.1) are to be taken in distributional sense and the wave function is 

to be considered essentially as a distribution in the neighbourhood of 

these characteristic surfaces. 

The relation (2.3) makes only sense for those points of the screen, in 

the neighbourhood of which f(x,y,t) may be considered as a function 

with a continuous derivative with respect toy; therefore, the condi

tion (2.3) should be restricted to the points of the screen, which do 

not lie on the above-mentioned characteristic 
I - - • 

• 

surfaces. 
• 

3. :Tentative solution of, the boundary value proble~ 

The potential due to a pulse, starting at time t=O and expanding 

from the point (x ,Y) 
0 0 

into a region free from obstacles, is given by 

the generalized 

Ch.I, viz. 
(3.1) 

' ' ' 

where 

(3.2) 

function z2 , except for a factor 2n defined by (8.13), 

' 

2 

R = {(x-x ) 2 
0 O 

R denotes the distance between the observer at the point (x,y) and the 

source at the point (x ,Y ); see figure 2, where we present the situao 0 

tion in the (x,y) plane at some time t. 

Introducing polar coordinates 

(3 .3) x=r cos cp , y=r sin cp ; X =r 
0 0 

• 
COS· f O, y O =r O . ♦ sin. . 

o"' 
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' 

with -n < tp<+n, -n < ¢ 
0

;_ + 1T, we may write (3 .2) also in the fonn 

(3 .. 4) R = {r2 + r 
2 

- 2rr 
0 0 

The distribution z
2 

has been treated in chapter I, section 8.2, and 

aoQording to formula (8.16) it satisfies the wave equation (2 .1). 

Because the reflection at the screen has to be taken into account, it 

is useful to consider also the potential due to a pulse located in 

(x ,-y ) • 
0 0 

This potential is given by the generalized function 

(3.5) 

where 

(3.6) 

11 

III 

/ 
/ 

/ 
/ 

/ 
/ 

13 / ,$=-n+¢i 
/ 0 

/ 

Z' 
2 

r' $ 

' 
/ 

/ 
/ 

/ 
/ 

I 

y 

.. 
• • 

R 

¢0 

• .. 
• • .. 

• .. 
• 

R' 

figure 2 

2 2 {r +r -2rr 
0 0 

• 

0 

.. .. 
• • .. 

• 

P (x. ,y ) 

I 
I I 
I 
I 

I 
I 
I 
I 

P' (x o'-yo 0 

X 

) 

• 
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We divide the (x,y)-plane into three regions, denoted by I, II 

and III, see fig.2. 

The first region I, where - 1T +4> < ¢< n-cp is 
o o' 

lines 12 and 1 3 ; the second region II, where 

t' '' bounded by the shadow 
tt 

1r-¢ <q;i < 1T, by the sha
o 

dow'' line 12 and the screen 11 
-Tr <cp < -n+ct,

0
, by the screen 1

1 

and finally the third region III, where 

and the '' shadow'' line 

(x ,Y) is observed only in the regions I and II, while the reflected 
0 0 

one at (x ,-y) is observed only in the region II. 
0 0 

Therefore, the direct pulse gives to the potential f(x,y,t) in the re-

gions I and II a contribution which is equal to z
2

, whereas the re

flected pulse gives to the potential f(x,y,t) in the region II still 

another contribution, which is equal ~o z
2
'. Neither the direct pulse 

nor the reflected one can give in the region III any contribution to 

the potential f(x,y,t). 

However, the solution f(x,y,t) should be continuous almost everywhere 

'' '' . across the shadow lines 12 and 13 • In order to satisfy this condition 
• If t I we introduce an edge effect with the property that the total poten-

tial due to the direct pulse, the reflected pulse and this edge effect 

is continuous almost everywhere in the (x,y)-plane. 

Observing that the edge of the screen disturbs the wave, expanding 

from the point (x ,Y ), only after the time 
0 0 

of influence is bounded by the cone r=t-r, 
0 

the potential due to the edge of the screen 

t=r and that its region 
0 

it is to be expected that 

contains ten11s of the fo1·1n 

(3. 7) 2 2 -½ 0(t-r-r )(t -R') • 
0 

• 

These functions are infinitely differentiable at all points inside and 

outside the cone r=t-r; however, they have a finite jump across the 
0 

sur~ace of this cone, except along the generators with respectively 

R = r+r and R' = r+r, where this jump is infinite. 
0 0 

I. In 

(3 .8) 

So we try the following solution of our boundary value problem: 

the region I, where - n + 4> < . o-

2 2 -

q> < TI- ¢, 
0 
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The potential consists of two parts, namely the direct disturbance 

due to the pulse 

the screen. 

II. In the region 

(3.9) f(x,y,t) = 

at (x , y ) and a diffraction te1·111 due 
0 0 

I I , where 7f - <P < $ < + n 
0 

+ 0(t-r-r) 
0 

to the edge of 

The potential consists of three parts, namely the direct disturbance 

due to the pulse at (x ,Y ) , 
0 0 

the disturbance due to the reflection at 

the screen and a diffraction ten1t due to the edge of the screen. 

III. In the region III, where -n< 

(3.10) f(x,y,t) = 0(t-r-r) 
0 

The potential is now only due to diffraction. 

The coefficients A1 and Bi (i=l,2,3) are assumed to be constant and 

independent of the location of the pulse. They are detennined in such 

a way that the boundary condition at the screen and the condition of 

t • fl t t con 1nuity across the shadow lines are satisfied. 

The first condition yields 

(3.11) 

while the second one gives the simple equations 

(3 .12) 

(3 .13) 

These six equations for A. and B. are not independent and we need still 
1 1 

another condition to find the coefficients A. and B .• 
l. 1 

Taking the pulse in a point of the positive x-axis, the regions II and 

III disappear and the solution of the diffraction problem is simply 
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2 2 -½ f (x,y, t) = 0 (t-R) {t -R ) • 

Hence it follows, that we have also the relation 

(3 .14) • 

Solving finally (3.11) - (3.14) we obtain 

(3 .15) 

Thus we have found the tentative solution 

I. 

(3 .16) 

valid for - n + <f, < ct> < + n - ¢ • o- 0 

II. 

(3 .17) 

2 2 -½ 2 2 -½ 
- 1 0(t-r-r ){(t -R) +(t -R' ) } 2 0 , 

valid for n - c:p < ¢ < n. 
0 

III. 

(3 .18) 

valid for -,r < ¢ < - ,r + ct> • 
- 0 

We note that we have in particular 

(3 .19) 

:for t > r+r 
0 

It is clear, that this proposed solution is twice differentiable 

almost everywhere outside the screen. The only exceptions are the cha-
~ 

racteristic conical sur:faces t=R with - n + «p < 4> < n, t=R' with 
o-

n-4> < ¢ < n and t=r+r with -n< 4> <+n. o- 0 

It can easily be verified that the solution (3.16) - (3.18), which va-

nishes for t < O, satisfies the differential equation (2.1) and the 

boundary condition (2.3) in respectively all points of the (x,y,t)-
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space and the screen, which do not lie on the above 1nentioned character

istic surfaces. 

In the next section we shall show, that the proposed solution satis

fies the differential equation (2.1) in the distributional sense every

where outside the screen. 

The whole situation is illustrated by figure 3, where the conical 

regions of influence belonging to the pulse, the reflected pulse and 

the edge of the screen are shown. • 

• 

' 

p• 
0 

X 

t 

A 

figure 3 

-Q 

r 
0 

p 
0 

y 
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These conical regions are denoted by respectively r
0

,r~ and r. The 

cone r has its vertex in the common point of intersection of the t

axis and the cones r and f'; the t-coordinate of this point Q is 
0 0 

t=r. Further, the 
0 

cone r is tangent to f and r• 
0 0 

and the common 
• 

generators pass through respectively the points D and C. 

Finally a cross section of this figure with a planet= constant is 

presented in figure 4. 

The influence of the direct 

pulse is confined to the 

parts of the regions I and 

II which lie within the 

circle with centre (r
0

,$
0

) 

and radius t. 

The influence of the re

flected pulse is confined 

to the part of region II which 

lies within the circle with 

centre (r ,-~) and radius t. 
0 0 

Finally, the influence of the 

edge effect, i.e. the diffraction 

terin, is confined to the whole 

interior of the circle with the 

edge O of the screen as centre 

and with radius t-r. 
0 

' 
' 

\ 
\. 

4. !}le veri.~~cation of the pr_oposed so~u~io~ 

Introducing the functions 

2 2 -

Ill 

l 

I 

' .. 
' " ' 

I 

' ' 

figure 4 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

0 0 

· 0 O 

I 
I 
I t 
• t 

' • I /.,_• 
• , 0 . .,, 
I , 
I , , 

P (r ••) 
0 0 O 

, p~ (r o•-,.o) 

' 

I 

we may express our proposed solution (3.16) - (3.18) into one single 
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formula, viz. 

( 4. 5) f (x, y, t) = ~ ( t, R) -

The function f(x,y,t) and also the functions g1 ,g2 ,g3 and g 4 

be considered in this section as distributions belonging to D'. 

will 

The support of g
1 

(t,R) is the closure of the interior of the 

cone t=R and that of g
2

(t,r,R,Rt) in the closure of the interior of 

the 

The 

cone t-r =r. 
0 

support of the distribution 

and the characteristic surfaces 

g
3

{t,r,R) is bounded by the screen 

t=R and t-r =r, while the support of 
0 

g4 (t,r,R') is bounded by the screen and the characteristic surfaces 

t=R' and t-r =r. 
0 

The intersection of the support of the distribution g1 resp. g 2 with 

the (x,y)-plane at some time t is the region bounded by a circle with 

(:x ,y ) resp. (O,O) as centre and with radius t resp. t-r , see fig.4. 
0 0 0 

The intersection of the support of g3 with the (x,y)-plane is the tri-

angular region ABD and that of g4 is the triangular region ABC, see 

fig.4. 

The distributions g1 (i=l,2,3,4) have the property that they are 

integrable functions, finite in the interior of their support, but in

finite in certain points of the boundary of their support. In .fact 

g1 (t,R) is infinite in all points of the boundary of its support, while 

g2 (t,r,R,R') becomes infinite along the generators CQ and DQ, see 

figure 3. 

The function g3 (t,r,R) respectively g4 (t,r,R') is infinite in all 

points of the boundary which is forined by the cone t=R respectively 

t=R'. 

satisfies the differential equation (2.1). Hence there remains to show 

that the other terms of (4.5) satisfy outside the screen the homogen

eous equation 

(4.6) -
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where the differentiations are taken in distributional sense. 

We shall prove (4.6) for the te1·1ns containing R; the reasoning for 

the te1·1ns containing R 1 is completely the same. 

We introduce now the distribution 

(4. 7) g 

where G is either the region bounded by the 

bounded by the screen and the cones t=R and 

cone t-r =r or the region 
0 

t-r =r. 0(G) = 1 for 
0 

(x,y,t), G and 0(G) = O elsewhere; G is the region G, including its 

boundary. 

Because we have to prove the validity of (4.6) in every (x,y,t)

neighbourhood not intersecting the screen, we shall show that 

(4.8) 

for every test function ♦ belonging to D and having a support, which 

does not contain points with x < O and y=O. 

When the support S of does not intersect the boundary of G the vali-

dity of (4.8) follows immediately from differentiation in the classical 

sense. Therefore, we assume that S intersects the boundary of G. 

Instead of the distribution g we consider the distribution g(a), 

defined as 

(4.9) 

The functional <g(a) ,~> 

For values of a with Re 

lytic continuation of 

(4.10) < (a) ""> g ,.., --
G 

The distributions g and 

lation 

(4.11) 

• 

is an analytic function of a 
(a) 

a<-1 the distribution g is 

for Re a> -1. 

defined by ana-

g (a)· ~ (x , y , t) dx dy d t, Re a> -1. 

(a) 
g are connected with each other by the re-

= lim 
Q-11- -½ 

• 
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Since the operations of taking the limit and of differentiation may be 

interchanged (chapter I, theorem 3), it follows from (4.11) that 

(4.12) <Dg,cf, > = lim 
a-.-i 

< □ (a) ,., > 
g ''t' • 

Hence we have to prove that 

(4.13) lim < □g (a) ,4>> = O. 

a'"*"-1 

A simple calculation yields for Re a > 2 

(4.14) 

G 

figure S 

(4 .15) 

2 2 a 2 2 a-1 
0 (t -R ) = -2a (2a+l) {t -R ) • 

·s 
As the intersection n of the region G 

and the support Sox¢, is bounded on 

the one hand by characteristic sur

faces and on the other hand by a part 

of the boundary of S (see fig.5), we 

have also on n for Re a> 2 

The factor e(G) does not yield a contribution to the right hand side of 

(4.15), because the differential operator is an internal differenti

ation along the boundary r (see fig.5). 

Thus we have for Re a > 2 the rel a ti on 

(4.16) □ (a) (a) □ < g ,¢,> = <g ' ♦ > = 

Since this relation is certainly valid for Re a> 2, i ~ is also valid 

for its analytic continuation with respect to a. 

Therefore.there remains to show 

(4 .17) lim ._-2a (2a+l) < g (a-l), ¢, > = o. 
a'"*" -½ 

The functional 

function of a for Re a > O. 

is an analytic 

• 
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For Re a > 0 we may write 

<g , ¢,> = (t -R ) cp(x,y, t)dx dy dt = 

(4.18) 
$1 

· 2 2 rt-1 
ff (t -R) {¢,(x.,y,t)-cp(x,y,R)} dx dy dt + 
n 

2 2 (1-1 
+ f ( t - R ) ¢ (x, y ,. R) dx dy d t. 

Q 

The first te1·m of this expression is an analytic function of a for 

Re a>-1. Using instead of the coordinate t the coordinate u=t-R, we 

can write the second term of (4 .18) in the for1n 

l-12 

(4.19) f 
a-1 

(u+2R) ¢(x,y,R)dx dy, 

S(u) 

where u1 and lJ2 are some real n11mbers with u
2 

> u
1 

> 0 and where s (u) is 

the area fo.1,ned by the intersection of n and the cone ll==t-R. u
1 

is 

actually equal to zero, if the boundary of n contains one or more 

points of the cone t=R • 

Putting 

(4.20) 

• 

ff 
s (u) 

a-1 
( i1+2R) ¢ (x., y, R) dx dy = t ( u, r-1) , 

we remark that ~(u,o) is an analytic function of a for all values of a. 

( u+2R = t+ R is positive • ) 

Substituting (4.20) into (4.19), we obtain 

(4.21) 
2 2 a-1 

(t -R) 4(x,y,R)dx dy dt = 

a-1 
u 

valid for Re a > O. 

+ 

u2 
a-1 

u 

ul 
¢(0 u) , 

() 

' 

4> ( u, a) du --

0 Ct. 
) , <u2 - µ1 

The first te1,11 of this expression is again an analytic function of a 

for Re a > -1; the second te11n is analytic for all values of a whenever 

l-1
1 

> o, but this tern1 has a simple pole at et=O with residue <l>(O,O) if 

1.11 = o. 

• 
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(ri-1) . 
• 

Summarizing, we have now obtained the result that < g , ;~> is an 

analytic function of a for Re r1. > -1 with the possible exception of 

,'.1=0, where it may have a simple pole. 

Hence 

(4 .16) 

is an analytic function of a for Re o > -1. 

Taking finally the limit for o -+ -i, we get 

(4.22) 
(J. · ► -½ 

Thus we have proved, that outside the screen g satisfies the 

homogeneous differential equation (4.6) in the distributional sense. 

Therefore the proposed solution (4.5) satisfies the differential 

equation (2.1) in the distributional sense and we may conclude that 

(4.5) satisfies the boundary value problem, which has been posed in 

section 2. 
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Chapter III 

SUPERSONIC WING THEORY 

1. Introduction 

As is well-known the behaviour of a steady supersonic irrotation

al non-viscous flow around bodies may be described with the aid of a 

so-called velocity potential, the gradient of which yields the velo

city vector of the flow. In the case of a very thin nearly flat wing, 

moving with constant speed at a small angle of incidence, the veloci

ty potential satisfies approximately a linear hyperbolic differential 

equation in three space variables, which is formally the same as the 

wave equation. 

Since the elementary solutions of this equation are singular at the 

so-called characteristic Mach cone, it is expected that in the deri

vations expressions will occur, which can not be defined in a satis

factory way in terms of classical analysis. 

In papers and textbooks, such as e.g. the encyclopedic work 

''General theory of high speed aero-dynamics'', edited by W.R. Sears 

1] , the difficulties are overcome by using the concept of the ''fi

nite part'• of an integral, as introduced by Hadamard [2] • However, 

the calculations are complicated, tedious and lengthy. 

The theory can be developed in a much shorter and more elegant 

way by employing the theory of distributions. 

Applying this theory we present in this chapter a rather complete 

and systematic t~eatment of linearized steady supersonic wing theory. 

It appears that the classical theory, as presented by Heaslet and 

Lomax in their detailed contribution to reference [1] , can be great-
ly simplified. . 

The mathematical theory of linearized steady supersonic flow 

around wings amounts essentially to solving boundary value problems 
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for the velocity potential. This potential has to satisfy the above

mentioned linear hyperbolic differential equation and it is subject 

to certain boundary conditions at the surface of the wing. A large 

variety of boundary value problems is obtained according to the plan

form of the wing surface and the prescribed boundary conditions. How

ever, all the results of this chapter are derived from a single basic 

fu1·111ula which relates the velocity potential at the plane of the wing 

to the velocity component no11nal to this plane. 

In this way a very simple and unified theory of the supersonic flow 

around wings is obtained. 

Already in 1954 Sauer emphasized in that it is worthwhile to 

introduce the theory of distributions in supersonic aerodynamics. 

Actually, in reference [-0 he solved one of the problems treated in 

this chapter by using distribution techniques. 

In this connection, the work of Dorfner [5 should also be mentioned. 

Dorfner uses distributions for establishing the basic general equa

tions, but his calculations for deriving expressions for the potential 

of the flow around actual wings again run more or less along classic

al 

In section 2 we give a general outline of the theory of super

sonic flow around wings. The boundary conditions are represented by a 

layer of poles and dipoles, concentrated at the plane of the wing. 

The differential equation for the velocity potential is taken in the 

sense of distributions and contains an extra tenn due to this layer; 

cf. chapter I, section 9. 

The general solution of this differential equation is given in section 

3. 
In sections 4,5 and 6 we deal with the problem of calculating 

the pressure distribution on wings with given geometrical properties 

such as planforin, thickness, camber and angle of incidence. 

An interesting case is the calculation of the influence of wing tips 

on the lift distribution. 

The inverse problem of calculating the geometry of the wing sur

face from a given pressure distribution has been solved by Sauer with 
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• 

the aid of distributions 

A simplified version of this solution is given in section 7. 

Finally, in section 8, we consider so-called 't • '' mixed prob1ems. 

This means that the pressure distribution is given on only one part 

o! the wing surface, while the geometry of the wing is prescribed on 

the remaining part. The problem is to find an expression for the pres

sure distribution valid at the whole surface of the wing. These pro

blems occur in lift cancellation technique, which is a useful tool 

for calculating the lift distribution on airfoils of rather general 

planf 01111. 

For additional literature about the theory of superson~c flow 

around wings the reader is referred to J ' J and [7] . 

2. Sup~rsoni(? flow aroun~_ .'Y~ngs i. 

-~~-~~~i tl'.' ,;e2~e~ t~~~ 

the differential equation for the 
S I l MT; I Is 

Consider a unifonn steady supersonic flow which is disturbed by 

a very thin nearly flat wing, set at small incidence to the oncoming 

stream. 

Introducing Euclidean rectangular coordinates (x,y,z), we take the 

positive x-axis in the direction of the undisturbed flow, while the 

wing lies approximately in the plane z=O. The origin of the coordinate 

system is chosen in the most forward point of the wing; see figure 1. 

Asstim.ing that the resulting 

flow is irrotational, a 

perturbation velocity 

potential f(x,y,z) may be 

defined. This function 

has the property, that its 

gradient yields the pertur

bation velocity vector; i.e. 

(2.1) Vf 

z 
\' • 

- -
-w·--- ---

X 

--w-- ---w·---

figure 1 

(u,v,w), 

• 
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tor in respectively the x-,y- and z-direction • 
• 

Because the wing has been taken as very thin, nearly flat and 

at small incidence to the oncoming strea.m, u,v and w may be assumed 
• 

small in comparison with the velocity U of the undisturbed flow. 

Therefore, the relevant equations can be linearized; this means that 

ter111s non-linear in u, v or w will be deleted. 

Then it follows from the equations of motion and the equation 0£ con

tinuity, that f(x,y,z) satisfies the linearized differential equation 

(2.2) f(x,y,z) = O, 

where Mis the so-called Mach number, defined as U/a 
co with a

00 
as the 

velocity of sound at· infinity (cf. lit. 1] , [ and [7] ) • In the 

case of supersonic flow 

ential equation (2.2) is 

U is larger than a and hence the differ-
oo 

of hyperbolic type. Taking another scale for 

the x-coordinate, one obtains the no:r·n1al foxm 

(2.3) -
2 a f 

2 + 
ay 

= o. 

This equation is formally the same as the wave equation, where the 

role of the time is played by the space coordinate x. 

The function f(x,y,z) is subject to several conditions, re-

sulting from mathematical and physical considerations. 

1. The function f(x,y,z) is twice continuously differentiable 

outside the wing and its wake, with the exception of certain charac

teristic surfaces across which the external derivatives of f(x,y,z) 

may have a jump. These characteristic surfaces are circular cones 

with the axis in the direction of the x-coordinate - so-called Mach 

cones - or ~nvelopes of these cones. 
• 

One distinguishes between a forward and a backward Mach cone. The 

forward Mach cone with vertex (x ,Y ,z) is the conical surface, 
0 0 0 

characterized by the equation 

(2.4) 
' 

x-x 
0 

- -- 2 
(y-y) + 

0 

2 
(z-z) , 

0 

• 
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while the backward Mach cone is given by the equation 

(2.5) x-x = + 
0 

2 
(y-y ) 

0 
+ (z-z ) 2

• 
0 

2. Because the wing has no influence on the flow in upstream 

direction, f(x,y,z) vanishes identically in all points lying upstream 

of the characteristic surface n , which is the, boundary of the region 
• 

of influence of the wing. f(x,y,z) and its internal derivatives vanish 

at Q, while the external derivatives may have a jump across n. 
As to the shapeof this characteristic surface n there are several pos

sibilities according to the form of the wing. 

An edge of a wing is called subsonic respectively supersoµic in a 

point, if the component of the stream velocity no1,nal to the edge at 

this point is respectively smaller or larger than the speed of sound. 

If an edge is subsonic in a certain point, say P, then all points of 

the edge in a sufficiently small neighbourhood of P lie within the 

Mach cone with Pas vertex. If an edge is supersonic in P, then all 

points of a neighbourhood of P lie outside the Mach cone with Pas 

vertex. 

An edge is shortly called subsonic or supersonic, if it is respective-

ly subsonic or supersonic in all i·ts points. 

In the case of a subsonic leading edge, the surface coincides with 

the backward Mach cone with vertex at the nose of the wing; if, how

ever, the leading edge is supersonic, the surface n consists partly 

of the envelope of all Mach cones with vertex at the leading edge of 

the wing .. 

3. Because the direction of the velocity in points at the wing 

surface is tangent to this surface, the derivatives of the function 

f(x,y,z) satisfy a boundary condition at this surface. 

The wing has been assumed very thin and at small incidence to the 

oncoming stream, while its surface is nearly plane. Therefore this 

boundary condition may be prescribed at the projection w of the wing 
• 

surface onto the plane z=O (see fig.1). W is call·.ed the planfoi·in of 

the wing. 
• 

• 
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If the upper and lower surface of the wing is given by respectively 

the equations 

(2 .6) and 

z = S (x,y), 
+ 

z = S (x,y), -

the boundary condition may be written in linear approximation as 

(2. 7) and 

af 
(x,y,+O) = U az 

df 
az (x,y,-0) = U 

(cf. lit. [1] , [6] and [7] ) . • 

as 
+ 

ax 

as -
ax 

It follows from (2.7), that the function 

for (x,y) E. W, 

for (x, y) e. W. 

tical velocity component, is in general discontinuous across the 

plane z=O in all points, lying within the region W. 

in all points of the plane 

z=O, which lie outside the region W. 

4. The pressure p(x,y,z) follows immediately from integrating 

Euler's equations of motion; this gives within the linear approxi

mation 

{2. 8) 
p u 

00 
p-p - --

00 

where p is the density and p the pressure in the undisturbed flow. 
00 00 

If we consider a lifting wing, there is a pressure difference be

tween the upper and lower surface of the wing. Hence, in linearized 

wing - the plane z=O in all points 
X 3f 

lying within the region W, while ax is continuous across this plane 

in all points outside W. 

It follows that the velocity potential f(x,y,z) itself 1s discon

tinuous in all points of the plane z=O, which lie in W or in the pro

jection W' of the wake onto the plane z=O (see fig.1'). 

Considering a general situation, we put 

• 



(2.9) 

and 

{2.10) 

lim f(x,y,z) 
z + +O 

lim f(x,y,z) 
z ~ -0 
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= f (x,y), 
+ 

= f (x,y), -

af lim - (x,y,z) az 
z -• +O 

= w (x,y), 
+ 

elf 
lim az (x,y,z) 

z .. -o 
= w (x,y). -

• 

If the ordinary derivatives in the differential equation (2.3) are 

replaced by the distributional derivatives, one obtains the differ

ential equation 

(2.11) - = (w -w ).o(z) + (f -f )•o'(z). 
+ - + -

This equation should now be taken in distributional sense and it is 

valid everywhere in the (x,y,z)-space. The function w+-w- vanishes 

outside Wand the function f -f vanishes outside W+W'. 
+ -

A useful property of thin wing theory is the fact that the geo-

metry of the wing can be assumed to consist of two parts, namely a 

nonlifting . or symmetric part and a lifting or anti-symmetric part. 

Besides the equations (2.6) for the upper and lower surface of the 

wing we consider the surfaces 

(2.12) z = St(x,y) = ½ { S (x, y) - S (x, y)} , 
+ -

and 

(2.13) z = S ( x, y) = ½ { S (x, y) + S (x, y) } • 
C . + -

Due to the linearity of the differential equation the problem of the 

calculation of the velocity potential for an arbitrary wing with up

per and lower surface z = S {x,y) resp. z = S (x,y) may be reduced to 
+ -

the calculation of the velocity potential ft(x,y,z) for a wing with 

upper and lower surface z = St(x,y) resp. z = -St(x,y) and to the 

calculation of the velocity potential f (x,y,z) for an 
C infinitely thin 

cambered wing, for which the upper and lower surfacescoincide with 

the surface z = S (x,y). 
C 

The velocity potential f(x,y,z) of the original wing is then obtained 
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as the sum of the potentials ft(x,y,z) and fc(x,y,z). 

(2.14) + f (x,y,z). 
C 

The first tenn of the right-hand side is symmetric with respect to z 

and this part of the potential accounts for the thickness distribu

tion of the wing. The second te1·1n is anti-symmetric with respect to z 

and this part accounts for the angle of incidence and the camber of 

the wing. The lift distribution of the wing is only due to the second 

tel'Ill f (x ,Y 'z) . 
C 

The differential equation (2.11) becomes now for the case of the non-

lifting wing with 

(2.15) -

where 

(2.16) 

symmetric cross-section 

a2 £ 

ax 
t 

a2 f t 
+ 

2 2 
ay 

w (x,y) = 
+ 

a2 f t 
+ --2 az 

lim 
z + +O 

2w o (z), • 
+ 

• 

The 

lie 

function w (x,y) vanishes 
+ 

at all points of the plane z=O, which 

outside the region w. 
For the case of the infinitely thin lifting airfoil we obtain the 

equation 

(2.17) 

where 

(2 .18) 

The functions 

coordinate z. 

-
a2:f a2 f a2

f 
C 

ax2 + 

f (x,y) 
+ 

C 
+ 

ay2 az 

= lim 
z-.. +O 

at 

C 
2f o'(z), -- • 2 + 

f (x,y,z). 
C 

f (x, y ., z) and 
C 

C 
ax (x,y,z) are odd with respect to the 

Therefore, it follows from (2.8) that the lift distribution 6p(x,y) 

at the wing surface is given by the expression 

(2.19) 

Putting 

(2.20) 

2p U 
ClO 

~p(x,y) = -

lim
0 Z ➔ + 

r)f 
C 

ax 
(x,y,z) 

lim 
z + +O 

= u (x,y) 
+ 

elf 
C 

ax (x, y, z) • 
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it is clear that the lift distribution at the wing is proportional to 

the velocity component u (x,y). 
+ 

Since there cannot be a pressure jump at the plane z=O outside the 

planfor1n of the wing, we have always for lifting wings the boundary 

condition that u (x,y) = 0 outside W. 
+ . 

The function f (x,y) vanishes outside the region W+W'; it is indepen
+ 

dent of the coordinate x in the wake W'. 

The cases of the nonlifting wing with thickness and the lifting 

airfoil without thickness may be treated by using the same differen

tial equation. 

For this purpose it is remarked that the calculations may be restrict

ed to the upper half-space z > O; the results for the lower half-space 

follow easily by considering the symmetry with respect to the plane 

z=O. 

We introduce the velocity potential f (x,y,z), 
+ 

which is defined as 

(2.21) 

and 

f (x,y,z) = 
+ 

f (x , y , z) ~ O 
+ 

or 
ft(x,y,z) 

f (x,y,z) 
C 

for z < o. 

for z > o, 

Substituting this into the differential equation (2.3) and replacing 

ordinary derivatives by distributional derivatives, we obtain the 

differential equation 

(2.22) -

with 

and 

a2 f 

2 ax 
+ 

+ = w •c (z) + 
+ 

w (x,y) = 
+ 

lim 
z ➔ +O 

(x,y,z), 

f {x,y) = 
+ lim f (x,y,z). 

z-+ +O + 

f • 
+ 

o ' (z) , 

In the case of a nonlifting wing with symmetric cross-section w (x,y) 
+ 

vanishes outside Wand f (x,y) vanishes outside the region of in
+ 

fluence of the 

foil u (x,y) = 
+ 

wing. In 
af+ 
3x (x,y) 

the case of an infinitely thin lifting air-

vanishes outside W, while w (x,y) vanishes 
+ 
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outside the region of influence of the wing. 

As has been shown in chapter I, section 8.2, the differential 

equations (2.15), (2.17) and (2.22) deterniine ft(x,y,z), fc(x,y,z) 

and f (x,y,z) uniquely in terms of their boundary values w (x,y) and 
+ + 

f (x ,y). 
+ 

3. The general solution of the differential equation 

The differential equations (2.15), (2.17) and (2.20) are solved 

with the aid of the elementary solution E(x,y,z), satisfying the 

equation 

(3.1) E(x,y,z) = o (x,y ,z), 

with 

(3.2) E (x, y, z) = 0 for x < 0. 

According to the equations (8.13) and (8.16) of chapter I, section 

8.2, the distribution E(x,y,z) is given by the expression 

(3.3) E(x,y,z) = 
0 

for x > 

for x < 

2 2 
y +z 

2 2 y +z. 

The support of the distribution Eis the closure of the interior of 

the backward Mach cone with vertex at the origin. 

Using the theory of chapter I, section 9, it follows from (2.15) that 

for a wing, with cross-section symmetric with respect to the plane 

z=O, the velocity potential is given by the equation 

(3 .4) +2w (x,y} 6 (z) * E (x,y ,z). 
+ 

This equation represents a potential due to a distribution of sources 

in the region W of the plane z=O. 

Further, it follows from (2.17) that for a lifting wing without thick

ness the velocity potential is given by 

(3.5) f (x,y,z) = 2f (x,y) 
C + 

= 2f (x,y) 
+ 

o'(Z)*E(x,y,z) 

(x,y,z). 

• 

• • 
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This equation represents a potential due to a distribution of dipoles 

in the region W+W' of the plane z=O. 

In the 

tential 

(3.6) 

same way we obtain finally with the aid of (2.22) for the po

f (x,y,z) the expression 
+ 

f ( ) W (X Y) ~ (z) * E(x y z) + f (x,y)o' (z)* E(x,y,z) x,y,z = , o , , + 
+ + 

= w (x,y)o (z) ~ E(x,y ,z) + 
+ 

+ a 
az f (x, y) o (z) * E (x, y, z )_ 

+ • 

Since w , f and E vanish for x < 0 and since the support of E is the 
+ + 

closure of the interior of the backward Mach cone with vertex at the 

origin, the existence of the convolution products, 

(3.5) and (3.6), is assured. 

appearing in (3.4), 
' 

As f (x,y,z) = 0 for z < O, we have the relation 
+ 

for z > O. 

f (x, y) • o ( - z) * E ( x , y 11 -z)] = 0 
+ 

Because o(z) and E(x,y,z) are even in z, we obtain the following in-

teresting relation between the potential 

w+(x,y) in the plane z=+O, namely 

( ) 
,, It 

f x,y and the downwash 
+ 

(3. 7) a 
oz f (x,y) • o(z) * E(x,y ,z)] = w (x,y) • o(z) * E(x,y ,z). 

+ + 

Substitution of (3.7) into (3.6) yields immediately the important 

result 

(3.8) 

Assuming w+ (x,y) integrable and applying the definition of convolution, 

as given by formula (5.3) of chapter I, section 5, it can easily be 

shown that this relation may also be written as 

(3 .9) f (x,y,z) 
+ 

l 
= - -

• 

A 

where A is the region of the (C,n)-plane lying within the forward 



Mach cone £rom the point (x,y,z); 

see figure 2. Letting z approach 

+o, we obtain for the potential 

at the upper side of the (x,y)

plane the expression 

(3 .10) f (x,y) = - 1 
+ ,r 

B 
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n 
• 

I 
' I \ 

I ' I •✓ 
I -

(x,y,z) 

figure 2 

2 2 -
dn, 

• 

where Bis the triangular region bounded by the half-lines n-y=t-x 
and n-Y=_;t+x with t < x; see figure 3. 

It.is useful to 

introduce at this 

stage the character

istic coordinates 

r = x-y 
(3.11) 

s = x+y. 

Using these coor

dinates, we can write 

(3 .10) in the forn1 

· (3.12) 
+ . + 

• 

n 

(x,y) 

• 

figure 3 

where we have applied the .distribution ~A (x), introduced in chapter I, 
. 

section 5. In view of its £requent use, we repeat here its definition 

and most important properties • 

• 



(3.13) 

(3.14) 

If the 

obtained by 

t). (x) 

X 
+ 

).-1 

90 

4» (x) 
0 

= o(x), 

downwash w (r,s) is given within the triangle B, we have 
+ 

aid of (3.12) an expression for the potential at the up-

per surface of the wing. However, in most cases of practical interest 

the data are not so simple; nevertheless also in these cases the equa

tion (3.12) can be used as the basic fo1·n1ula, from. which we start our 

calculations for deriving an expression for the potential, the pres

sure distribution or another physical quantity we are interested in. 

Due to the properties of the distribution tl(x), stated in (3.13) 

and (3.14),the equation (3.12) can easily be inverted by taking the 

convolution of both sides with the product t_1(r). t_1(s). The resu1t 

is 

(3.15) 

This formula expresses the downwash at the plane of the wing in the 

potential at this plane. 

In the literature on supersonic wing theory the inversion of the equa

tions (3 .12) and (3 .15) gives rise to difficulties. One relies on the 

theory of integral equations with singular kernels (cf. , section 

D.12); this introduces lengthy calculations, which are now avoided 

with the aid of the distributions t (x). 
A 

4. Nonli,f_t~ng wings ~i ~h ~l!'U?;~tri~al sections; lift1ne; airfoils_ with 

~upersoni~ ,leading edge 

In this section we treat nonlifting wings with a given thickness 

distribution and symmetric with respect to the plane z=O; as to the 

planfo:i,1• of these wings no restrictions need be made. In this case 

the function w+ is given in the whole plane z=+O. It is detennined in 

the region W by the thickness distribution of the wing, while it 
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vanishes outside W. 

The same situation occurs, if one considers an infinitely thin lift

ing airfoil with supersonic leading edge and with prescribed surface 

s1ope. Moreover, it is assumed in this case, that the airfoil extends 

to in£inity, so that no wake is present. 

The velocity potential f+(r,s) in points at the upper surface of 

the wing is given by formula (3 .10) • Using characteristic coordinates, 

we obtain the result 

(4.1) 

..... --a-

X 

' .:,:; 
'V 

P(r,s) 

figure 4 

B 
+ 

y 

s 

do ' 

where the area Bis the part 

of the region W, enclosed with

in the forward Mach cone with 

vertex at the point (r,s,O); 

see figure 3. 

If the airfoil with supersonic 

leading edge has a trailing 

edge, then the fo1·mula (4.1) 

is valid for all points at the 

upper wing surface, which lie outside the region of influence of this 

trai1ing edge. 

The pressure distribution at the wing can easily be obtained by ap-
a a a . 

p1ying the differentiation~ = a + a to the right-hand side of ax . r s 
equation (4.1); cf. equation (2.8). 

This differentiation will be carried out for the case of an infinite

ly thin airfoil with supersonic leading edge. 

This edge is denoted by the equation r = l(s); since the edge is su

personic, l(s) is a monotonic function of sand therefore the edge 

may also 

Applying 
• 

(4.2) 

be represented by the inverse functions= m(r). 
a a <ar + as) to (3.12), we obtain 
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The differentiation is taken in the distributional sense; this means, 

that we have to take into account the j,1mp of the function w (r,s) 
+ 

the wing. across the edge of 

Ass11ming that 1 (s) 

may write 

and w (l(s),s) 
+ 

are infinitely differentiable, we 

(4.3) 

a a )w (r,s) 
s + 

= (" + -ar s + + 

+ w (l(s),s)•(l- dl)• 6(r-l(s)), 
+ ds 

where the differentiation in the right-hand side may now be taken in 

the ordinary sense • 
• 

The distributionj0(r-l(s)) and_ 6(r-l(s)) are defined as 
•• 

<9(r-l(s)), f(r,s)> = cp ( r , s) dr ·ds , 

r > l(s) 
• 

·and 
+00 

<o(r-l(s)),cp(r,s)> = ~(l(s),s) ds, 
-,co 

+ 

where ;(r,s) is some test function belonging to Dor S; cf. chapter I, 

section 7. 

Substitution of equation (4.3) into equation (4.2) gives the result 

(4.4) 

with 

u (r,s) 
+ 

- -- 1 
21T 

B 

T(r,s) 1 dl = -2w (l(s),s) •(1- d )· 
+ s 

= -l w (l(s),s)•{l- dl)· 
+ ds 

This term is reduced as follows. 

• 

+ T(r,s), 

o (r-1 (s)) * ti (r) • o (s) 

* t 1cs>o<r>. 

The convolution product between the brackets vanishes for r < I (s), 

while it can be written for r > 1 (s) in· the for1n 

• 

da+ 



1 -r- w (l(s),s).(l
v1r + 

93 

0 

1 
(1-

dl -
7n s + 

Hence we obtain for the te:rm T(r,s) the expression 

(4.5) T(r,s) - -- 1 
2,r 

s 
(1-

m(r) d cr + 

--

This integral is an integral along the leading edge from Q to R (see 

fig.4). 

For the case of thin wings with cross-section sy111metric with 

respect to z=O, the velocity 

or less the same way. 

5.1. Tip e1:fects 
$ Ii 11,.. • 

component u (r,s) may 
+ 

be obtained in more 

In the previous section we have treated all nonlifting wings 

with given thickness distribution and also infinitely thin lifting 

airfoils of given shape, but with the restriction that the leading 

edge should be supersonic. 

Therefore, we are now led to the discussion of infinitely thin air

foils for which the leading edge is no longer supersonic. 

In this section we discuss airfoils for which the edge is partly su

personic and partly subsonic; see figure 5. 

Suppose s=l1 (r) and s=12 (r) are the equations for respectively the 

supersonic and the subsonic part of the leading edge. 

In the sequel it will always be assumed that wing planfor1ns are 

bounded by curves, given by monotonic functions s=l(r)J so that the 

edges may also be represented by r=m(s), where r-m(s) is the inverse 

of the function s=l(r). 

In the part of the wing with s < 0 (or y < -x) the forward Mach cone 

from a point P' at the wing surface cuts from the airfoil a triangular 

region A'P'B', in which the downwash w is given by the slope of the 
+ 
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' I 
' I 

' ' I 
' ' I . 

'"' 
I ' 

' _J 
P(r,s) 

figure 5 

wing and we may apply again f o.t1nula ( 4. 4) • 

s 

s=l
2 

(r) 
r=m2 (s) 

In the part of the wing with s > 0 (or y > -x) this is no longer true. 

Application of formula (3.10) gives rise to a convolution integral 
• 

over the area OAPBCO {see 

now given by the slope of 

figure 5). However, the function w (r,s) is 
+ 

the wing only over the region OAPBO, while 

it is unknown in the region OBCO. In the latter region the function 

(5.1) 

vanishes. 

u (r,s) = 
+ 

cJ ) 
+ dS f (r,s) 

+ 

We have now the problem to determine the function u+(r,s) in the 

region s > O, while w+ (r,s) is given for 11 (r) < s < 12 (r) and 

u (r,s): O for s > 12 (r). . + 
Problems of this kind are important for calculating the influence 0£ 

wing tips on the lift distribution at the surface of the wing. 

with 

Two different cases 
dl2 

12 (r) < r and dr <l 

are distinguished, viz. the '' f' raked-in 

and the ''raked-out'' tip with 12 (r)>r and 

tip 
dl2 
dr 

In the first case the edge s=12 (r) is a subsonic trailing edge and 
' 

therefore the Kutta condition should be satisfied at s=l2 (r). 

> 1. 

This condition states that the flow at both sides of the wing is tan

gential to the wing surface at the edge and that there is no flow 

around this edge. This means that the downwash distribution w (r,s) 
+ 

is continuous across s=l2 (r), while the lift distribution vanishes at 
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s=l2 (r), i.e. u + (r, 12 (r)) = O. In the second case the edge is a sub

sonic leading edge. There is now a flow around this edge from the 

lower side to the upper side of the wing surface. Since the edge 1s 

infinitely sharp and since the flow is a.ss11med tangential to the sur

face of the air:foil, the lift distribution must become infinite at the 

edge; i.e. u+(r,s) becomes infinite at s=l2 (r). 

These two cases will be treated in the next two sections 5.2 and 5.3. 

5 .2. T~e _ ra.ke~-~.!1. t~p 
' 

A 

u 

---

~ 

' 

• 

s 

, Wake 
.,, 
I ,, 
• 
I ' ' 

p: ' ' ' 
- - - - - - - -l(r,s , , '- , 

s=l1 (r) 

r=m
1 

(s) r 
s=l (r) ' ' ' ' ' 

2 r=m2 (s) 

figure 6 

f+(r,s) * ~-½(r)o(s) = 

Using the basic fo1·1nula 

(3.12), we can carry out 

the following reduction . 

--

= -½w + (r, s) * { t l (r) * t -l ( r) } • 

--
--

Hence 

(5.2) 

After differentiating with respect to x we obtain 

a 
(5.3) 

• 

• • 
• 
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• 

Due to the Kutta condition the function 
• 

w (r,s) is continuous across 
+-· 

the line s=l
2

(r). If moreover the given downwash distribution is as

s11med to be bounded at the wing surface, the right-hand side of equa

tion (5.3) is locally integrable in the neighbourhood of s=l2 (r) 

(r...:..m
2 
(s)). Because u + (r ,s) vanishes for r < m2 (s), s > O, the right

hand side of equation (5 .3) is also zero for r < m2 (s), s > O. 

Hence after taking the convolution of both sides of (5.3)with 

t+½(r)6(s), we obtain 

r s 

u (r,s) -½ {<a + a ) w (p , o ) t ½ ( s-a ) do} dp - -- ap as -
+ (p) + m

2
(s) 1 

' 

(5.4) 
1 

r -½ a a s 
' - - (r-P) { <ao + as> dp, - 2'11' . p + . 

m
2

(s) 11 (p) 

valid for O < s < 1
2 
(r). 

The integral is an integral over the area APBC and the lift in P does 

not depend on the slope of the airfoil in the region OBC. This fact 

is usually stated as Evvard's rule 

5.3. The raked-out tip 

s=l1 Cr) 
r=m

1 
(s) 

u 

for s > 12 (r). 

r 

figure 7 

On the other hand we 

l 
• 

and therefore 

• 

• 

s 
• 

• 

Because u (r,s) vanishes for + . 
r <m2 (s), s > 0 we have also 

f + (r, s) = 0 for r < m2 (s), s > O; 

see figure 7. Hence it follows 

from equation (5.2), that 

for r< m2 (s), s> O. This means 
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s 

w+(r,a) ¢>½(s-a)do 
1

1 
(r) 

is a discontinuous function of s along the leading edge s=l2 (r). The 

distribution concentrated at the edge s=l
2
(r). 

We introduce the function 
12 (r) 

(5. 5) 

'' '' 

If we assume the slope and the edges of the wing surface infinitely 
00 

differentiable, the function F(r) is a C function for r > 0. 

Applying equation (5.3) we obtain 

u + (r, s) * ¢> -½ (r )o (s) = 

(5.6) -½ < a + a > ar as 
s 

w+(r,cr) 4>1(s-o)do + 0(s-12 (r))•F(r) 
1

1 
(r) 

+ 

(1- · F(r) 

where the differentiation 

sense. 

a) may now be taken in the ordinary as 

The distributions 0(s-12 (r)) and o(s-I2 (r)) are defined as 

(5.7) 

and 

(5. 8) 

where 

<0(s-l (r)), cp(r,s)> = 
2 

00 

cp(r,s)dr ds, 

is some test function belonging to Dor Sand having its sup-

port in the region r > O; cf. chapter I, section 7. The left-hand side 

and hence also the right-hand side of (5 .6) vanishes for r < m2 (s), 

s > O; taking the convolution of both sides of equation (5.6) with 

4'½ (r) cS (s), we obtain for O < s < 1 2 (r) the result 



(5.9) 

u (r,s) = 
+ 

r 
1 --

2 ,r m {s) 
2 

r 
1 --

a 
<rp + 
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a 
rs > 

s 

11 (p) 

w (p,a) 
+ 

where the function T(r,s) is given by the expression 

+ T(r,s), 

(5.10) T(r,s) (1- · F(r) * 4l½(r) o(s). 

Apart from the extra term T(r, s), we have obtained the same result as 

for the ''raked-in'' tip, given by equation {5.4). 

The term T(r,s) will be reduced as follows. 

Instead of the distribution o(s-12 (r)) we may write 

dm2 
6(r-m2 (s)) ds , 

and we obtain for r > m
2 

(s) , s > 0 

dm2 
T(r,s) = fo(r-m2 (s)).( ds -1) · F(m2 (s))* ~1(r)o(s) = 

dm2 

( ds 

Substituting the expression (5.5), we finally get 

(5.11) T(r,s) 
1 dm2 i 

- - (- -l){r-m (s)}- • 
- 2n ds 2 · 

11 (m2
(s)) 

--

The integral in the right-hand side is an integral along the line CB. 

If the point P at the wing approaches the point B at the edge of the 

wing, the 

expected. 
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6. Airfoils with subsoni~ leadi~g __ edge 

Having treated the airfoil with partly supersonic and partly 

subsonic leading edge, it would be interesting to deal now with the 

case of a completely subsonic leading edge. 

However, this case is essentially much more difficult than that of 

the preceding section. This is due to the fact that there is a mutual 

influence of the downwash fields at both sides of the wing; see figure 

s 
• 

X 

figure 8 

y 

8. Actually, the problem to 

dete1·n1lne the 11 ft dis tri bu-

tion of an arbitrary airfoil 

with subsonic leading edge 

has not been solved up till 

now in a satisfactory way. A 

solution has been construct

ed only for the special case 

of a triangular wing with 

straight. edges, 

is of the fo:r,n 

• 

while the downwash distrib11tion at the wing surface • 

(6 .1) 

where g is a sufficiently differentiable function 5 • -
In this connection we refer the reader also to the theory of conical 

flows; see for example reference· 9 • 

Since the difficulties for obtaining a general solution are outside 

the scope of distribution theory, we shall not deal with this problem 

in this general treatment. 

7. Wings with prescribed ere~sure di:'trib~tion 
$ ,1 .. 

We consider in this section the case that instead of the down

wash the pressure distribution is given at the wing surface, and the 

geometry of the wing (i.e. thic~ness distribution or camber and angle 

of incidence) is to be deterinined. 

For infinitely thin wings this problem is tantamount to the problem 

of the dete1·1nination of the downwash distribution w (r,s) from the 
+ 
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velocity component u (r,s), which is prescribed 
+ 

at the wing surface W 

and which vanishes outside W. 

In the language of distributions this is a very simple problem. 

We first introduce the function V(x,y,z), defined as: 

1 
+ 211' Arcosh_ 

X for 2 2 

(7.1) V(x,y,z) = 
0 for 

2 2 

This function is known as Volterra's solution of the wave equation 
. 

10]; the coordinate x plays again the role of the time. 

One can easily verify that the function V(x,y,z) and the elementary 
• 

solution E(x,y,z), given by equation (3.2), are connected with each 
I 

other by the relation 

(7.2) 
av ax= E(x,y,z). 

Taking z=O and using again characteristic coordinates (r,s), we ob

tain a function, denoted by ~(r,s) and given by the expression 

(7.3) V(x,y,O) = !(r,s) 

Moreover, we have the relation 

(7.4) 

1 
= 2~0(r) 0(s) Arcosh 

r+s 
r-s • 

• 

• 

In order to calculate the slope of the surface of an airfoil from 

its prescribed lift distribution we have to determine the downwash w 
+ 

at the wing surface from the values of u, given in the plane z=+O. 
+ 

We start again from our basic formula (3.11), viz. 

(3 .12) 

or in equivalent foi:,n 

(7.5) 

f (r,s) = 
+ 

w (r,s) 
+ 

= -2f (r,s)*t 1 (r)• 
+ -2 

Instead of ~-i(r). ~-½(s) we may write 
• 
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(7.6) 

Substituting (7.6) into (7.5), using 

u (r,s) = 
+ 

a 
d) f (r,s) s + 

and applying the relation (7.4), we obtain the result 

(7.7) a + (- -ar 'l'(r, s) . 

Equation (7.7) y~elds the downwash at the plane of the airfoil in 

te1:-m.s of the function u (r,s), which is proportional to the lift dis-
+ 

tribution at the airfoil. 

Reducing (7.7) to an expression with ordinary integrals we should be 

careful in integrating across the edge of the wing, since u (r,s) may 
+ 

be discontinuous at this edge and the differentiations give rise to 

the appearance of o-functions concentrated along the edge of the air

foil. When u (r,s) is infinite at the edge (e.g. in the case of sub-
+ 

sonic leading edge), the calculations become even more complicated. 

We can avoid these complications by writing 

(7 .8) 

w (r,s) = 
+ 

Substituting 

(7. 9) 

ru (r s) * ( a -Ll + , ar 

1 
'i'(r,s) = -

we obtain finally the result 

(7 .10) 

w (r,s) 
+ 

1 
+ 2n 

- -- 1 ( a 3 ) 
2ir a r + as 

PAOB + 

a ) 
as 

• 

PAOB 

-i -i u (r-p,s-a)p a 
+ 

s+r 
s-r 

do 

dp do , 

where the second integral should be considered in the sense of the 
• 
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Cauchy principal value. As to the region PAOB see figure 9. It is to 

be noted that the equation 

0 

r 

---------

' ' ~ V 
P(r,s) 

X 

y 

5 

(7.10) is valid for infinite

ly thin airfoils with arbi

trary leading edge, while the 

prescribed lift distribution 

is only restricted by the re

quirement, that the integrals 

in the right-hand side of 

(7.10) exist. 

figure 9 The foI'tltula (7 .. 10) may also 

be applied for calculating the thickness distribution of a nonlifting 

wing, symmetric with respect to the plane z=O, while its leading edge 

should be supersonic. 

However, if its leading edge is subsonic, the given function 

u (r,s) must be subject 
+ 

to an extra condition, since the function 

w (r,s) vanishes identically outside the wing surface. Moreover, the 
+ 

solution w (r, s) is no longer uniquely deten1tined, because in this 
+ 

case the equation 

• 

has a nonvanishing solution (cf. [1] , D 13). 

8. Mixed problems 

Another class of important problems are the so-called mixed pro-

blems. They occur in lift cancellation technique, which is a useful 

tool for the calculation of the lift distribution on infinitely thin 

airfoils of rather general planfo1,n. 

• 

Consider an airfoil at the surface of which the downwash and the 

lift distribution are already known; let us * ass11me u (r,s) = u (r,s) 
+ 

and w (r,s) 
+ 

The leading 

' 

* * = w (r,s), where u and 

edges of the airfoil are 

* w are given functions of rands. 

given by the equations s=l (r) 
0 

a 
figure 10. The edges s=l (r) and 

0 

s=11 (r) are supposed to be respectively supersonic and subsonic. 
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* u =U ' + 
* \ 

w =w 

' + 

' 
u =U 

+ 

' 
<Mo 

w =w 
I + 

s--- 2 { r) 

f · 10a . 1 gure 

u =·? 
+ 

V,t =0 
+ 

figure 

u =? 
+ 

* w =w 
+ 

O'(r ,s) 
0 0 

\ 
\ 
\ 
\ U -==U.-. 

+ 
' w =? 
I + 

s=:l (r) 
2 

10 
b 

s~- 1 ( r) 
1 

O'(r ,s) 
0 0 

figure 10c 

u 
+ 

s 

=0 

* w =W 
+ 

s= 1 (r) 

s 

u =0 
+ 

s 
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Now, consider a second airfoil, travelling at the same speed and 

having the same planfo11rl as the first one, but its surface is con

structed in such a way, that to the left of a certain line s=12 (r) 

(or r.1n2 (s)) the downwash distribution w+(r,s) equals zero and that 

to the right of this line the lift distribution is the same as that 

on the first wing~ However, the lift distribution is now unknown at 

points to the left of s=l2 (r), while the downwash distribution is un-
b 

known at points to the right of s=l2 (r); see figure 10 • If the boun-

dary values for the second wing are subtracted from those of the 

first, there result the boundary values for a third wing with plan

fo11u bounded by the lines s=l
0

(r), s=l1 (r) and s=l2 (r) and with a 

downwash distribution, which coincides at the surface of the wing 

with that prescribed on the first wing. 

Therefore the influence of cutting off an edge of a given wing can be 

determined by solving the second boundary value problem, which is an 

example of a mixed boundary value problem. 
• 

We have to distinguish here again between the two cases, whether 

the new edge is ''raked-in'' or ''raked-out''. 

In the first case the new edge is a trailing edge and therefore the 

Kutta condition, u+=O, should be satisfied at the edge s=l
2

(r). Hence 

u+(r,s) must be continuous across the line s=l
2

(r) in the boundary 

value problem, corresponding with figure 10b. 

In the second case, the new edge is part of the leading edge and 

in the 

neighbourhood of s=l2 (r). It follows now that,in the boundary value 

problem of figure 10b, u (r,s) is discontinuous across the line 
+ 

S=l2 (r). 

The case of the raked-in edge will be treated first. 

The origin of the coordinate system is translated to the point 

of intersection (r0 ,s
0

) of the leading edge s=1
1

(r) and the new edge 

s=12 (r); one obtains the coordinate system (r',s'), in which the 

edges are given bys'= 11(r'), i=0,1,2. However, in order to main

tain a simple notation, we shall omit the primes in the sequel. 

The influence of the new edge s=l2 (r) is only restricted to the region 
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s > O and for calculating the influence on the lift distribution we 

need only to dete11nine 

see figure 11. 

the function u (r,s) in the 
+ 

u =0 
+ 

u 

w =0 
+ 

0 

+ =0. 
• 

u =0 =?, 
+ + .- ............ ..., ________ .., 

U'=U* 
+' 

' 

s 

u =O 
+ 

P(r,s) s=l (r)' 
2 ' 

r 

figure 11 

According to formula (3.12) we may write 

'-x 

region O < s < 1
2 

( r) ; 

(8.1) c5(r) = -2t <r,s> * ~ 1cr>o<s>. 
+ -

Since w+(r,s)EO for s<l2 (r), it follows immediately that 

(8.2) 

for O<s <1
2
(r). 

Applying the operator 

obtain 

(8.3) 

for O < s < 1
2 

(r) • 

• 

f + ( r , s) * 4> -½ ( r) · c5 ( s) = 0, 

( a + a> ar as to the left-hand side of (8.2) we 

u (r,s) *t 1 (r)o(s):O, 
+ -2 

Because u+ (r, s) is continuous across the line r-n1
2 

(s) and because 

u+ (r,s) vanishes for r < m1 (s), we may write 
• 

(8.4) 

* ,. u (r,s). 

• 
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We introduce now the distribution q(r,s), defined as 

(8.5) 

Obviously, this distribution vanishes for r < m2 (s), s > O; substitution 

of (8.4) into (8.3) gives for r > m
2 

(s), s > 0 the result 

m2(s)* -3/2 
( 8 . 6) q ( r, s) = + 1 f u (p , s) ( r-P ) d P • 

2/n m
1 

(s) 

Thus the distribution q (r, s) is dete1·1nined everywhere in the half

plane s > 0 with the exception of the line r-m2 (s). 

Hence q(r,s) is known apart from a finite linear combination of the 
, 

distribution o(r-m2 (s)) and its derivatives. 

This linear combination is denoted by 

(8. 7) d(r,s) = 
i=O 

where the coefficients a. (s) 
l. 

of s. Taking the convolution 

are infinitely differentiable functions 

of q(r,s) with ¢½(r)~(s) we obtain the 

result 
1 

u+(r,s) = 2 n 

+ 
p 

1=0 

valid for r > m
2 

(s), s > 0. 

r 

a. (s) 
1 

' 

m
2

(s) 
~ -3/2 

u (p',s)(p-p') dp' + 

This fo:rmula can be simplified by interchanging the order of inte

gration 

(8 .8) 

and calculating consecutively the 
1 m2(s) 

u (r,s) = -
+ n 

+ 
p 

i=O 
a. (s) 

1 . 

valid for r> m
2 

(s), s > O. 

inner integral. Then we get 

* 

It is not difficult to show that the first term of the right-hand side 
* of (8.8) tends to u+(m2 (s),s) for r ~ m

2
(s). 
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In the case that u+(r,s) is continuous across the line r~1
2

(s), all 

coefficients a. (s) are necessarily equal to zero. 
1. 

Hence the final result for the ''raked-in'' tip becomes 

(8.9) u (r,s) 
+ 

= 1 {r-m (s)}½ 
lT 2 

valid for O < s < 1
2

(r). 

In the case of the '' '! raked-out 

continuous across the line r-m
2

(s), 

* u (p, s) 
r-p 

tip the function 

in contrast with 

u (r,s) is not 
+ 

the potential 

f (r,s) which is certainly continuous across this line. 
+ 

The values of f+(r,s) for 12 (r)< s<1
1

(r) can be obtained by integra-

* ting u (r,s) in the direction of the x-coordinate. This integration 

is possible, since s=l2 (r) is part of the leading edge of the airfoil. 

* Denoting these values off (r,s) by f (r,s), we can now calculate 
+ . 

f (r, s) in the same way as u (r, s) in the case of the ''raked-in'' edge 
+ + 

* * by replacing u by f, u by f and omitting the differentiation + + a a 
<a r + as) . 

'' '' We obtain for the case of the raked-out edge 

(8 .10) 

valid for 

l f (r,s) = -+ ,r 

0 < s < 1
2 
(r). 

* f (p, s) 
r-p 

Applying the 
a a 

differentiation ar + as , we get finally the result 

(8.11) 1 a 
u (r, s) = - ( 

+ ar 

• 

valid for O < s < 1
2 
(r) . 

+ a> as • 

* f (p z s) 
r-P 

, 
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1. Introduction 

CHAPTER IV 

THE LORENTZ-INVARIANT SOLUTIONS 

OF THE KLEIN-GORDON EQUATION 

The solutions, invariant under all proper Lorentz transforinations, 

of the homogeneous and inhomogeneous Klein-Gordon equation (see e.g. 

(1.1) (a - m2 ) ( ) f X = 0, 

(1 .2) (0 - m2) ( ) ( ) gx =-ox' 

play an important role in relativistic quantum field theory. The 

function f(x) or g(x) is the wave function connected with a particle 

of mass m, x denotes the coordinates of a point (x0 ,x1 ,x2 ,x3) in R
4

; 

x 1 , x 2 , x 3 are space coordinates and x0 is the time coordinate. The 

symbo1 o stands for the differential operator 

(1.3) 

and o(x) denotes the four dimensional Dirac function concentrated in 

the origin of the coordinate system. 

In the case of m = 0, the equations (1.1) and (1.2) reduce to the 

ordinary wave equations in three dimensional space and the functions 

f(x) and g(x) are wave functions connected with a photon. 

In textbooks on field theory the solutions of (1.1) and (1.2) 

are usually obtained in a rather fo1·111al way, see e.g. 1], [2 . They 

are dete1:111ined by applying a Fourier transfo1·mation to (1.1) and (1.2). 

The Fourier transform g(k) of e.g. g(x) satisfies the equation 

(1.4) 
2 2 

(k - m) g(k) = - 1, 
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The general Lorentz-invariant solution of (1.4) is of the fonn 

(1.5) 
1 

2 
m -

2 
- k ) + 

2 CO (m - -

where 6 (m2 - k2) and o (m
2 - k2 ) are Dirac functions concentrated on 

+ - f m 2 - k 2 - 0 respectively the upper and lower sheets o the hyperboloid -

and c and c are arbitrary constants. 
+ - 2 2 2 2 . 

The inverse transfo1'l11s of c (m - k ) and o (m - k ) are obta1.ned by 
+ -

purely fo::t·n1al calculations; for example, divergent integrals are 

converted into convergent integrals by merely 

tions of differentiation and integration (see 

interchanging the opera-

1, § 15 .1 , , § 15. ) . 

It is obvious that this rather fo1111al procedure cannot claim sufficient

ly mathematical rigor. The difficulties stem essentially from the fact 
2 2 

that the Dirac-functions o (m - k ) are not functions in the classical 
+ 

sense; they are generalized functions or distributions and they should 

be treated as such. To obtain the Lorentz-invariant solutions of (1 .1) 

and (1.2) in a rigorous way one needs essentially the theory of 

distributions and the calculations have to be performed within the 

frame work of this theory. 

A proper derivation of solutions of (1.1) and (1.2) has been given by 

several authors, a. o. L. Schwartz 4, Vol . I I, pp . 33-36 , p . D. Me thee 

- , J. Lavoine , and the present author - • 

L. Schwartz has dete1mined the solution of (1 2) which vanishes for 

x0 < 0 • By using a convolution algebra it is not difficult to show that 

this solution is uniquely determined. The equation (1.2) is written 

in the for111 

2 ( a - m ) o (x) * g(x) = - o (x) 

and its solution as 

g(x) - -- 2 
(0 - m ) cS(x) • 

A f 011nal expansion yields 
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co 

(1.6) g(x) - --
k=O 

with tl~( +l) = O 6 (x) 

a*(O) = o(x) 

z
2

(x) is the Riesz-distribution given in Chapter I, section 8.2. In 

particular one has 
' 

□-w-(-k-1) = k+l 2k-2 
(1.7) (-l) Z2k+2 = 

Substitution of (1.7) into (1.6) yields a convergent series and so the 
I 

£ormal expansion is justified and after some elementary calculations 

the result becomes 

(1.8) g(x) 
2 

- X 1 
2 

- X -
2 

l(m 

with 1 as the Bessel function. 

As to 

m 
47T 

2 
- X 1 

2 
- X 

2 

2 2 
- X 

1 - X -
2 

- X ) 
3 

1 2 3 
reader is referred to Chapter I, section 7. For the derivation of 

fo11nula (1 .8) see also 10 , Chapter II. 

" Methee applies a mapping of then-dimensional space R on the 
n 

line R by aid of the transfo1•11ia tion 
• 

(1. 9) 
2 

U = X -0 

n-1 

1=1 
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Lorentz-invariant solutions of the Klein-Gordon equation inn dimensions 

are derived by means of pairs of distributions defined on the space D 

of test functions. Asymptotic expansions of distributions concentrated 

on the hyperboloid u =£,in the neighbourhood of e = 0, play an 

important role in this theory. 

A simplified version of this theory is due to J.E. Roos and 

L. Girding 11 . These authors use the following transfonnations for 

the test functions ¢(x): 

(1 .10) 
2 

X ) , <p (x) > 

(1.11) 4> (x)> 

2 2 2 2 

Linear homeomorphisms are established between the spaces of even 

and uneven Lorentz-invariant distributions and the duals of the spaces 

of the functions (Mq,)(T) respectively (M14>)(T); hence the necessary 

calculations can be perfozmed in these dual spaces. 

Lavoine and the present author - follow the physicists 

and they solve the equations (1.1) and (1.2) by applying Fourier 

transfoiination. Whereas Methee uses distributions defined on the space 

D of test functions with compact support, Lavoine and the present 

author consider only tempered distributions. This results in the fact 

that the solutions obtained in this chapter and also in 7 , contrary 

to those obtained by Methee in , do not have te:r~1ns which increase 

exponentially at infinity; however terms of this kind are usually 

disregarded by the physicists. 

2. Outline of the method 

A pr_9l?er Lorentz-transfo1111ation is a linear transfoI·1nation of the 

space R4 leaving invariant the quadratic foz,n 

2 
X = X 

2 
0 

2 
- X 1 

2 
- X 2 

2 
- X 3 
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and not interchanging the forward and backward light cone; moreover 

its detenninant equals +l. In the sequel we shall always write Lorentz 

transforrnation instead of proper Lorentz transfo.1·111ation. In order to 

obtain the solutions, invariant under all such transformations, of the 

Klein-Gordon equations (1.1) and(l.2) we follow the physicists by 

applying to (1.1) and (1.2) a slightly modified Fourier transformation 
• 

)( 

F . This transfo11nation applied to a function of the class L - 00 , 100] 

is defined by 

.... 
(2.1) = f(k) = 

I oo 

-co 

ik•x 
e f (x) dx, 

with k•x = k0x0 - k1x1 - k2x 2 - k3x 3 . 

It is not difficult to show that for every Lorentz-transforruation 

A and :for every f(x) Ii. L - 00 ,+00 the following relation holds: 

..... 

(2.2) = f(Ak). 

Using the transfo1·mation rules for distributions and (2 .2) we obtain 

for every tempered distribution f(x) G. S' : 

* ..... 4 <F (Ax) , ~(k)> = (2n) <f(Ax), ¢(x)> = 

4 -1 .,.. .... -1 ..... .... 
(2n) <f(x), $(A x)> = <f(k), ¢(A k)> = <f(Ak), ~(k)>. 

Hence the relation (2.2) is also valid for distributions. It follows 

that if the distribution f(x) is invariant under a particular Lorentz 
... 

transformation A then also its Fourier transfo1·m f (k) is invariant 

under this transformation. The same is of course also true for the 
3( 1 

inverse transfc,1'm F . 

I£ one uses the usual Fourier transformation F, defined by 

+oo -
(2.3) F f(x) = f(k) = 

-oo 

it is again not difficult to show that we have for any Lorentz-trans

fortnation A and for all tempered distributions f(x) the fonnula: 
• 



with G being the matrix 

G= 
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1 0 

0 -1 

0 

0 

0 

0 

0 -1 

0 

0 

0 

0 0 -1 

• 

It follows that if the disyribution f(x) is invariant under a particular 

Lorentz transformation A then its Fourier transfox111 f(k) is invariant 

under the particular Lorentz-transfonnation GAG. 

Hence if f(x) is a distribution invariant under all Lorentz-transfonn

a tions A, then also its Fourier trans f 01111s F* f (x) and F f (x)] are 

invariant under all transfo11nations A and so Fourier transfo11nation 

preserves Lorentz-invariance; the sam~ applies for the inverse trans-
tf 1 -1 

fo1,nations F and F . 

The connection between the Fourier transfo:z1n F* and the Fourier 

transform Fis given by the formula 

(2.4) 

which is equally valid for integrable functions as well distributions. 
*' We now apply F to (1.1) and (1.2) and we get: 

• 

(2.5) 2 2 ~ (m - k) z(k) = O, 

and 

(2.6) ( 2 2) A 
m - k g(k) = +l. 

,w- )( 1 
Since F and F preserve Lorentz-invariance we have only to detex1nine 

the Lorentz-invariant solutions of (2 .5) and (2 .6) and to transfox111 the 

results again to configuration space. 

The general Lorentz-invariant solutions of (2.5) and (2.6) are 

readily obtained. A particular Lorentz-invariant solution of (2.6) is 

given by 



(2.7) 

value: 

(2.8) 
1 

< 2 2' 
m - k 
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1 
2 2 ' 

m - k 

¢ (k) 

A 

The general Lorentz-invariant solution f(k) of the homogeneous equation 

(2.5) is clearly concentrated in the hyperboloid (m2 - k 2) = O; it is 

zero outside the surface 

distributions see section 

Lorentz invariant subsets 

of the hyperboloid; for surface concentrated 

7 of Chapter I. Because 
2 

of the hyperboloid m 

the only properly 
2 

- k = 0 are its 

upper and lower sheet the general Lorentz invariant solution of (2.5) 

consists of one invariant distribution concentrated on the upper 

sheet and one invariant distribution concentrated on the lower sheet. 

In the same way as for distributions in one independent variable one 

can show that a distribution concentrated on a surface P = 0 is a linear 

combination of o(P) and its derivatives 6(k)(P). Because of the relation 

(2 .5) and the for1nula (7 .14) of Chapter I the only distributions which 

are to be considered for a Lorentz-invariant solution of (2.5) are 

o (m2 - k 2 ) and o (m2 - k2 ); these distributions have been defined 
+ -

exp1icitly in Chapter I, section 7, formulae (7.7) and (7.8). Hence we 

obtain 

(2 .9) 

and 

(2 .10) 

f(k) = C O (m
2 

+ + 
2 

- k ) + C O (m
2 

- -

A 2 2 -1 A 

g(k) = (m - k) + f(k). 

Due to the required Lorentz-invariance the coe£ficients c+ and c_ must 

be constants. For the sake 0£ completeness we recall here the expressions 

:for <o (m2 - k 2), i(k) > (see I (7. 7) and (7 .8) ) 
+ 



(2 .11) 

and 
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2 2 ... <o (m - k ), <P{k)> = 
+ 

l 
= -

--

2 

1 
2 

2 2 

0 

0 

2 2 
K + m )dKdn 

2 2 + K + m )dK, 

2 2 2 2 = o (m - k) + 6 (m - k). 
+ -

Q denotes the unit sphere in 

d0 its surface measure. 
... -

and 

~(K,k0 ) is apart from a constant the mean value of ~(k1 ,k2 ,k3 ,k0 ) on a 

sphere in (k1 ,k2 ,k3)-space with centre in the origin and K as radius. 

All that remains now is to detern1ine the inverse Fourier trans

forms of(m
2 - k

2)-l and o (m
2 - k 2). According to (2 .4) we have to 

+ 
calculate the usual Fourier transforms of these distributions and to 

In the determination of the Fourier transforms of (2.9) and (2.10) 

we use the following important for1nula; 

(2.12) 

1 

2 k2 ·o m - +1 

def 1 . 
= 1m 

1 

e-++O 

-- 1 - 2 2 
2 2 + i7ro (m - k ) . 

m - k 

This formula being a generalization of the well-known one dimensional 

equation 

(2 .13) 1 1 -
lim ic- = x + i1ro (x), (conf. Ch. I, (3 .21)) 
e:-++O X + c;;. 

will be proved in section 3 of this chapter. 
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Gelfand and Shilov have already given the Fourier transfoi·ins of 
2 2 -1 

(m - k + iO) (see 12 , Chapter III, §2.8). Using this result we 
2 2 -1 2 2 obtain, with the aid of (2.12), F (m - k) and F o(m - k) 

addition and subtraction. 

The only final problem is to dete1•mine F o (m2 
+ and 

F .s:- (m2 - k2) 
u_ • This will be done in section 4, but we give here 

a sketch of the method that will be used. Let us suppose for the 

that 

F o(m
2 - k 

by 

already 

moment 

then it will be shown that it is possible to make the Hilbert splitting 

where x1 and x2 can be continued analytically into the upper respecti

vely lower half of the complex (x
0 

+ iy0 )-plane. According to a theorem 

that the distributional limits g(x1 ,x2 ,x3 ,x
0 

+ iO) of a function 

g(x1 ,x2 ,x3 ,x0 + iy0 ) holomorphic in the upper or lower half plane, 

Yo > 0 respectively 

concentrated in the 

some reasoning that 

y O < 0, are Fourier transfc,1•1ns of distributions 

region k0 > 0 respectively k0 < 0, one finds after 

• 

and 

Finally we present in section 5.1 the following Lorentz invariant 

solutions of the homogeneous Klein-Gordon equation (1.1): the Pauli-
. 

Jordan function 6{x), its positive and negative frequency 
- (1) + -

and~ (x) and the distribution 6 (x) = ~ (x) - ~ (x). 

+ parts /:. {x) 

In section 5.2 we derive the following invariant solutions of the 

inhomogeneous equation (1.2): the advanced and retarted Green's 

< 0 
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and the causal Green's functions AC(x) and ~AC(x) • 

This chapter is concluded by treating the Cauchy problems for the 

Klein-Gordon equation. 

Remarks 

1. Lavoine has derived the Lorentz-invariant solutions of the 

equations (1.1) and (1.2) by applying also the Fourier-transformation. 
2 2 

The inverse transforination of the distributions o + (k - m ) , 

o (k2 - m2) and (k2 - m2)-l are obtained by calculating the inverse -
transf 01,ns of 

2 2 2 2 

and (exp - 6 2 2 2 -1 
k1 + k2 + k3 + m) • (k - m) and by taking 

consecutively the limit for$~ +O. 

, 
2. Methee has derived the Lorentz-invariant solutions of the 

equations (1.1) and (1.2) without using the Fourier transformation; 

in ref. he compares a.o. the results of with the formulae 

(2.9) and (2.10) of this section and he obtains in this way the 

Fourier transfoz,ns of (m2 - k2 ) -l, o (m2 - k2 ) and o (m2 - k 2 ) • 
+ -

In order to obtain the Fourier transforins of 
.s: (m2 - k2) v we shall use the formula 

(2.12) 1 def 
= lim 1 

m2 _ k2 + iO - e~+o 2 k2 + k2 + 3 + 

1 -- 2 
m - k 

and 

where (m2 - k2)-l 1·s t k i th a en n e sense of the Cauchy principal value. 

The proof of this fo1·mula is analogous to that of 

(2.13) 
X + 

1 1 
iO = i + i~o(x), (see Ch. I, (3.21)). 

The relation (2.13) is shown to be valid by writing instead 

log Ix J + i1T8 (-x) . 

1 
of--x + iO 
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The proof of (2.12) consists essentially in the replacement of the 

differential 
d operator dx by another suitable differential operator. 

Proof of (2.12). We introduce the differential operator 

(3.1) 

With lim 
e:-++o 

Putting 

(3.2) 
2 

m 

1 
1 + iE: 

L = a e: • 

2 . ( 2 - x + 1.e:: x1 

1 

1 + ie: 

2 2 . ( ) m - X + 1£ X ,X ,, ' e: 

with -n < arg ,e:: <+~,we obtain for all values of A (both e:. and m 

not zero) the relation 

or :for A -;6. -1 , 

= 4(A + l)(A + 
2 

- 4m A (A + 

exp 

A + 1 

2 -1 = 4(A + 2) - 4m A, . e: 

, 

After expansing the exponential function into a power series an.d taking 

the limit for A-+ -1 we get the identity 

(3.3) 

and thus 

(3.4) lim 1'-l = lim 
e:: e:-++O e:-++O 

L 
4m2 e: m 

The right hand side of (3.4) may now be reduced with the aid oI the 

theory of Chapter I, section 7, as follows: 



(3.5) 

2 2 
l m - X 

lim f- = 0 
E 2 

E: ► 10 4m 
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2 2 
log jm - x I 

2 2 
m - X 2 2) + 0 + ine(x - m 

4m2 

2 2 
m - X 

= □ 
4m

2 
log -

2 2 2 2 

- 1 
2 

m 

• 

The 
m - X 

distribution< 2 0 
4m 

log Im - x I , ip(x)> may be written as 

1 - <log 
4m2 

1 
lim-
6+0 4m2 2 2 Im -x I >o 

log 
2 2 2 2 

Im - x I} a (m - x )cp (x) dx. 

Applying Green's theorem to the right hand side of this equation we get: 

1 
lim-

2 o+O 4m 

1 
lim-
o+O 4m2 lm2-x2 l>o 

1 + lim 2 
o+O 4m. 

- lim -
1
-

o~ 4m2 

2 2 Im -x I ==o 

1 2 2 2 2 
1 log Im - x I} 0 (m - x )¢ (x) dx = 

log 

➔ • n do 

2 2 
(m - x }<f>(x) • 

-+ 
• n do, 

a 
ax , 

2 

a 
ax , 

3 

a 
dX, 

3 
-

+ 
where n is the nonnal on the surface I m2 - x 2 I = o and dcr its surface 

2 measure. Observing that the integrals over the surfaces m2 

cancel each other in the limit 6 +Owe obtain 

- X = + 0 
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2 2 
m - X <----a 

4m
2 

2 2 
log Im - x I , cp(x)> = 

lim 
o-+0 

1 

4m
2 2 2 Im -x I >a 

Clog lm2 - x21} 2 2 
• (m - x )$(x)dx. 

lim 
0~ I 2 2 

m -x I >o 
, p(x) 
2 2 

m - X 

'cp(x)> = 

dx + g, ex> cix 
2 

4 m 

• 

Substituting this result into the right hand side of (3.5) we have 

(3.6) 
.tft-1 

lim -.r = 
e:>10 £ 

h (m2 - x2)-l h d w. ere s oul be taken in the sense of the Cauchy principal 

va1ue. 

The result (3.6) is also valid form = 0 and the proof is rather similar 

to the one given above (see 14 } . 

As to the definition of the distribution 
2 

o(x) the reader is referred 

to Chapter I, section 7, fo1"U1ula (7 .6). 

Moreover for m -.i O the fo111tula (3. 6) may be generalized to an arbitrary 

n111nber o:f variables and to arbitrary negative integer values of the 

exponent (see 4 ) . 

Following the method of Gelfand and Shilov 

§2 . 8 , we dete1 .. mine now the Fourier transfoxms of 
2 2 -1 

from the results of which those of (m - k ) and 

2 , Chapter 

o(m2 - k
2

) 

1y follow by aid of the fo1111ula (3 .6) (or (2 .12)). 

immediate-

Let D be a positive definite quadratic form ink. The Fourier 

transforn1 of (m2 + D) A with Re A < - 2 is 

(3. 7) --
-oo 
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with (x,k) = x1 k1 + x2 k2 + x 3k
3 

+ x
0

k
0

. 

We write D in the fo11n 

(3. 8) 
3 

D = (k,Gk) = g k k, 
rs r s 

r,s=O 

where G denotes the matrix of the coefficients g rs· 
Making a transfonnation k = Tk' to principal axes the quadratic form 

D can be written as 

D = (k,Gk) * = ( k ' , T Grk ' ) = (k' ,k') 

* where the matrix T is the adjoint of the matrix T. 
* 2 . 

T GT = 1 and I Tl = 1/j al, where I Tl and I GI are the detez•1ninants of 

the matrices T resp. G. 

Hence 

* F (m2 + D)A] = ---;:1= 
+oo 

i(T x,k') 
e dk' 

lo -00 

1 
+oo 

= -:;::::=::; 

with x' = * T x. 

It is clear that 

fourvector x'. Taking x 1 

I GI -oo 

D)A depends only on the length 

= ([x'I, 0, O, O) we obtain 

1 
+oo 

(3 .9) =- 2 
m 

I GI -oo 

Ix' J of the 

dk'. 

• To reduce further the right hand side of (3.9) we introduce spherical 

coordinates 

k ' 
1 = K COS 

2 
K = (k I J k ') = 

k~ = K sin ¢1 cos ¢2 , k3 = K sin ~i sin <P2 cos ~
3 

and dk' 3 . 2 A= K sin 'fl 

dn is the surface element of the unit sphere in R
3

. 

• 
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Performing the integration with respect to dQ we obtain 

--,. 
00 n 2 2 A ilx'IK cos ~1 

(m + K) e 

Using the following integral relations for Bessel functions 

and 

7T cos 4>1 
e 

0 

00 

. 2~ • sin 'fl 
7T -

K x' 

K J1 (K x' ) (m + K ) dK = <-x-, .... ) 
0 

2+A 
m 

where ..1
1 

is the Bessel function of the first kind and x2+A the modified 

Bessel-function, (see lit. 15 , section 7.12, fo1·mula (9) and section 

7 .14. 2 fo:r:-mula (51) , we get the result 

(3.10) 

Since x' * T x we have 

2 Ix' I = (x' 'x ') = * (x,TT x) 

1 

-1 
= (x,G x) = 

3 

r,s=O 

rs 
g X X .. r s 

Hence Ix' ( 2 is a positive definite quadratic fo1·1n in x of which the 

coe:fficients for1n a matrix which is the inverse of the matrix of the 

coefficients of the positive quadratic for111 D. 

Putting 

3 

(3 .11) 
r,s=O 

we obtain finally 

rs 
g X X 

r s 
= E, 
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2 A 2m 1 
(3.12) F (m + D) 

;I r (-A) 

With the aid of the principle of analytic continuation one proves 

easily that this result obtained for Re A< - 2 is also valid for 

all other complex values of A. 

We have derived fo1"D1ula (3 .12) under the assumption that D is 

a positive definite quadratic fo1~. 

The left and right hand side of (3.12) is also an analytic function 

of the coefficients g belonging to the quadratic fo1m D and this is 
rs 

true for those ranges of g where Dis positive definite. 
rs 

We continue now the left and right hand side of (3.12) analytically 

with respect to the coefficients g into those ranges of complex rs 
values of g where the so obtained new quadratic form flJ has either 

rs 
a positive or negative definite imaginary part. The complex .0-plane 

has a cut along the negative real axis. 
2 A 

The :ft1nction (m + f>) is defined as 

(3.13) (m2 + l.T\) A __ I m2 + ""' I A 1 ( 2 a. ) ., w exp• ii\ arg m + .u , 

with - 1T < 2 arg(m + f>) < + 1T. 

Using again the principle of analytic continuation we have for the 

comp lex quadratic fo2·1ns fJ and all values of the f 01,nula 

(3.14) =-
Ii I 

2m 

E½ 

>.+2 1 

where If I is the determinant of the quadratic fo1·111 rJJ. £ is a quadratic 

fo11n in x whose coefficients form a matrix which is the inverse of the 

matrix of the coefficients of 0. 

When e has a positive or negative definite imaginary part then! has 

a negative respectively positive definite imaginary part; when 0 
itself is positive or negative definite then 6 is also positive 

respectively negative definite. Hence the complex !-plane has also 

a cut along the negative real axis. 
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Taking for A the value A = - 1, and for 0 the quadratic fo1in1 

2 = - k + iE: ( k, k) , 

and considering finally the limit for e: ➔ +O, one gets the result of 

Ge1fand and Shilov: 

(3.15) 

2 
Kl m(-

iO)-l 2 
X + 

2 k2 F (m - + - + 41T im II . ' ,, ½ I I - ll 2 
(- X + iO) 

with 
2 2 2 2 2 It follows immediately from the - X - xl + x2 + X3 - XO. now -

result (2.12) tl1at 

K1 {m(- x 
2 K1{m(- 2 

+ X -
(3 .. 16) 

1 2. 
F 21T 1m ' , , . , ' ~ ½' - I .. I I 

2 k2 2 
(- x2 + iO) (- X 10) m --

and 

K1{m(- 2 K
1 

{ m(-
2 

X + X -
2 k2) (3.17) c5 (m 21Tm +·· ... - ' F - - • - 2 2 

(-(- X + X -

Using the relations ( 15 , § 7 .2 .1) 

- -- 1 
2 

- --
1 + 
2 

1l iY
1 

(z) , 

where is the Hankel 

1 

Y the Ne1.Jmann function, we get and 1 

2 
= 0 for x < 0, 

i.e., outside the lightcone, and 

1 
F ------

2 _ k2 

2 
3 Jl (m x ) 

= - 211' m --
X 

i.e. , inside the l.ightcone. 

for 
2 

X > 0, 



:, 

.:!· ~, 
-) .. 

---":/ . 

. ·'- ' 
,.,;'" . 

" 

" 
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However, for x2 in a neighbourhood of 
2 

X = 0, we obtain from (3.16) 

2. = 21T l --2---
- X + iO 

1 1 +----
2 

X + iO 

3 2 = 47f c(x) 

Summarizing these results we may write 

(3.18) 
1 

In the same way we can reduce (3.17): 
• 

2 
X 

( -x2) 2 2 Kl m 
F o(m - k ) ] = 4·111n --;:=::::=,--

i.e., outside the lightcone, and 

. 2 

2 
-x 

+ O(log lx2 1). 

for 

3 2 + 4n o (x ) . 

2 
X < 0' 

=inm------------- for 
2 

X > 0 
2 

X 
' 

i.e., inside the lightcone. The square roots are to be taken positive. 
2 Further, it follows from (3.17) that, for small values of x , 

F o(m2 - k2 )] = 2n __ l __ - l 
2 2 -x + iO X + iO 

+ O(log lx2 1) 

2 . 
where 1/x should be interpreted in the sense of Cauchy. 

Finally, also these results may be s1:unmarized in one single for111ula, 
• Vl.Z. , 

(3 .19) 
2 -x) 

2 -x 

2 
X 

• 
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The results (3 .18) and (3 .19) yield the Fourier transfo1111s of 

( 2 _ k2)-1 2 2) 
m and o (m - k ; there remains now to dete1-mine the Fourier 

transforms of the distributions o (m2 - k2 ); this will be done in the 
+ 

next section. 

Lemma. Let 

be holomorphic in the upper half-plane v0 
values of (u1 , u2 , ... , u

0
) . The function 

majorized in any region v 0 > o > 0 as 

• 

we need first a le,,1,na. 

> 0 for any set of real 

u ' n 
can be 

... , u , 
n 

n 
rr 
i=l 

(1 + 

where the p. , i = 0, ... , n, are positive integers independent of 6. 
1. 

If 1im g(u
1

, u
2

, ... , un, u
0 

+ iv0 ) exists in the distributional 
V > 10 

0 
sense on the space S of test functions, then 

u ' n 

is the (n+l)-dimensional Fourier transfo11n of a distribution 

. . . , xn' x
0

) belonging to S' and vanishing for x0 

An analogous result holds of course 

hol.omorphic in the lower half-plane v 0 < 

tains that 

• 

for functions g(u1 , 

0. Mutatis mutandis 

is the (n+l)-dimensional Fourier transform of a distribution 

:f_(x1, 

< 0 . 

.... ' u ' n 
one ob-
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Remark. H.A. Lauwerier has shown that a function g(u + iv), holo-

morphic in the upper half-plane v > O and bounded by a polynomial 

unifo1·11aly in every half-plane v > > O, possesses for v ~ +O a distri-

butional limit g(u)£Z' which is the Fourier transform of a distribution 

f (x) E. D 1 vanishing for x < 0. 
+ 

E.J. Beltrami and M.R. Wohlers have proved the same theorem 

for distributions f(x), S'; however, in the latter case one needs an 

extra condition, Darnely, the existence of the distributional limit 

of g(u + iv) in S', which is no longer a consequence of the data as 

stated in the theorem of Lauwerier. In our case we deal with distribu

tions in more independent variables, and therefore we have to make a 

modification of the result of Beltrami and Wohlers. 

Proof of the lemma. According to the assumptions there exist positive 

integers p1 , p2 , ... , pn, p0 such that 

--
n 
n 

i=l 

is absolutely integrable over the whole space Rn+l(u1 , ... , un, u0) for 

any value of v0 > 0. We consider now the integral 

1 

( 2 ,r)n+l 
••• 

-oo 

(4.1) 

l ------
( 21T)n+l -oo 

1-CX) 

-<::O 

+oo 
exp 

-co 

-oo 

u , n 

XU 
n n 

+ ... + x u ) du1 ... 
n n 

u ' n 

du 
n 

Since his holomorphic in the upper half-plane v0 > 0, this integral is 

independent of v0 ; hence the left-hand side 0£ (4.1) is a function 
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depending only on x
1

, ... ,x ,x
0

;taking x0 < 0 and v0 ➔ +00
, it appears 

n )E 

that this function, denoted by f+(x1 , ... , xn' x0), must vanish for 

x
0 

< 0. It follows now immediately from (4.1) that 

. .. . , X ' n 

Introducing the operator 

D= 

we obtain 

F 

n 
rr 

i=1 
(1 -

• • . ' X , n 

u ' n 

, 

Taking finally the limit for v 0 ➔ +O, which by supposition exists on S, 

we obtain due to the continuity o:f the Fourier trans:fo11nation 

Finally, because 

. . . ' 

= F lim 

u , 
n 

V ➔+O 
0 

X , 
n • 

vanishes for x 0 < O, we obtain the result that 

lim g(u1 , ... , un' u0 + iv0 ) 
v0➔+0 

is the Fourier transfo11n of a distribution vanishing for 

+ iv
0

) is holomorphic for v0 

In the 

< 0 one shows case that g(u1 , . . . , 
quite similarly that 

a distribution vanishing 

•··, un' u0 - 10) is the Fourier 

for x 0 > 0. 

We consider now the function 

(4.2) 

2 
- X } K1 m 

21Tm------
2 

-x 

transfonn of 



with 
2 

X 
2 = X .. 
0 

2 2 2 
X - X - X < 

1 2 3 
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0 as a function of 

x
3 

are supposed to have fixed values. The square root is taken positive. 

Putting 

and introducing a complex z0 = x0 + iy0 plane with cuts along the real 

axis ' viz . , - 00 

g analytically 

< X 
0 

into 

<-rand +r < x0 <+~,we can continue the function 

the whole z0 -plane. Using the for1nulas 

- -- 1 (2) 
2 nHl (z) ' 

(4.3) 
1 (1) 
2 nH1 (z), - --

and the well-known expansions for K1 , H(l) d H( 2 ) f 11 d 1 
1 an 2 or sma an arge 

arguments 15, one finds after sane simple considerations that the 

analytic continuation of g(x1 , x 2 , x 3 , x0 ) is uniformly bounded in 

any region y0 > o > 0 and y0 < -o < 0. Applying again (4.3) we obtain 

the following limits: 

lim 
yO-+-+O 

(4.4) lim 
Yo) I 0 

and 

lim 
Yo> I 0 

2 
X 

2Tl'mK1 (m 

g(xl,x2,x3,x0 + iyo) = ----;:..-:..-:..---
2 

2 
-x) 

-x 

g(x1,x2,x3,xo + iyo) = ---------
2 

X 

• 

for x0 > r, 

:for x < -r 0 , 



lim 
y> 

0 

(4.5) lim 
Y +-o 

0 

lim 
Y +-o 

0 

131 

iyo) = ----:=;---

2 
-x 

2 
X 

2 
-x) 

. 2mH(l)( -1,r m 
1 

2 
X 

for I x 0 I < r, 

for x
0 

< -r. 

The square roots should of course again be taken as positive. We inves-
• 

tigate now the limits of g(x1 , x
2

, x
3

, x
0 

+ iy
0

) for x
0 

in the neigh

bourhood of x 0 = + r. 

For small values of x 0 +rand y0 , the function g(x
1

,x
2

,x
3

,x
0 

+ iy
0

) 

may be written as 

and we have 

(4.6) 

2 
r 

21T 

The limit of the first ter111 is reduced as follows: 

(4.7) lim 2 
Yo++O r 

211' --

--

= 2rr 

-211' ---- 2 
X 

1 
2r log 

<xo + iyo) + 

(x0 + iy0 ) - r 

1 
2r log 

1 
2r log 

r + X ··~·•· 0 
+ r - XO 

2 XO 2 
i: (x ) + 211T u 

r 

-21T 2 
= 2 + 211T 

X 
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where 1/x2 should be taken in the sense of Cauchy. The distributions 

o (x2) have been defined in Chapter I, section 7, fonnulae (7. 9) and 
+ 

(7.10). 

Inserting (4.7) into (4.6) we get for values of x 0 in the neigh-

bourhood of x
0 

= + r, 

(4.8) lim 
Yo> 10 

2 . 2 = + 1Tf 
21T 

2 
X 

The last two te1·ms of this expression are already contained in (4 .4) 

and (4.5); s1.lmmarizing the results (4.4), (4.5) and (4.8) we obtain: 

and 

(4.10) 

' 

i 2 H(l)( 
- Tr m m 

2 = 8(x ) 1 
8(x0 ) ------- + ec-x

0
) 

2 

2 
2 2 111nK

1 
(m -x ) 

+ 6(-x ) ------

lim 
y ► 0 

0 

2 -x 

X 

2 + 2i1T 

2 = e(x ) 

i 2mH(2)( 
Tr 1 m X ) 

2 
+ 8(-x ) 

2,artK
1 

(m 

2 -x 

X 

2 
-x) 

2 
- 21 ,r 

2 o (x ) -
+ 

2 
X 

2 
X 

The function 

and hence it 

g(xl,x2,x3,x0 

follows that 

satisfies all conditions of the le111111a 

(4.11) iO) = 

, 



133 

< 0 
and k0 > o. 

Moreover, it follows from the result (3.19) that 

and hence 

- + 

boloid m2 
- k 2 = 0 and 

further that 

concentrated on the upper sheet 

o_(m
2 

- k2) on its lower sheet, 

of the hyper

it follows 

(4.12) 

f (k) 
+ 

where h(k) is a distribution concentrated on the coordinate plane 

k = 0. 
0 

The distributions g(x1 ,x2 ,x3 ,x0 + iO) are invariant under all proper 

Lorentz transfol'.·1nations and since the Fourier transfo11nation F preserves 

this Lorentz-invariance the sameis true for the distributions 

f+(k1 ,k2 ,k3 ,k0 ). It follows now from (4.12) that the distribution 

h(k) is also properly Lorentz-invariant. A distribution which is 

properly Lorentz-invariant and concentrated on the plane k
0 

= 0 must 

be concentrated in the origin. Girding and Lions 11 showed that any 

Lorentz-invariant distribution concentrated in the origin has the fo:nn 

(4.13) RO o(k1 ,k2 ,k3 ,k0 ), 

, a2 
in a= + where R is arbitrary polynomial an 

ak2 
l Hence h(k) has the forin (4.13). 

Using fo1,nula (2 .11) we get 

(4.14) 2 <6 (m 
+ 

2 
= <o (m -

a2 a2 a2 
+ -

ak
2 

ak
2 

• 

ak
2 
2 3 0 
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Moreover it follows from (4.9), (4.10) and a fo:rmula, analogous to 

(4.14) with m = O, that 

and consequently 

(4.15) 

Substituting finally the results (4.14) and (4.15) into (4.12) we 

obtain 

and hence h(k) is odd in k0 . Since moreover h(k) is of the fo1'1n (4 .13) 

it follows that h(k) = 0. Hence 

(4.16) 

Combination of (4.9), (4.10), (4.11) and (4.16) yields finally the 

results 

(4.17) 

2 Kl(m 
+ 2irm6(-x) 

2 
-x) 

2 
-x 

2 2 
- iir m6(x) 6(x

0
) 

2 
X 

- 0(-x) 
0 

' 

2 
X 



• 

(4.18) -
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2 Kl(m 
2 

-x) 
+ 21rme(-x) -----+ 

2 
-x 

2 
X 

- 8(-x) 
0 

5. The Lorentz-:-invariant,, solution~ of, t~e K~ein-Gordon equatio.~ 

5 .1. 1?1e , ~olutions of th~ homoge11:~.ous -~qua tio11; 

2 
X 

It has been shown in section 2 (formula (2.9)) that the general 

Lorentz-invariant solution of the homogeneous Klein-Gordon equation 

can be written as= 

(5 .. 1) 

Putting 

(5.2) 

and 

(5.3) 

we may also write 

(5.4) 

>E 1 ~ (m2 = C F V + + 

)( 
-2,ri F 

>Ev 1 
+ c F -

-
t::,. (x) . 

-

+ 
According to equation (2.4) the distributions tr-(x) satisfy the 

relation 

(5. 5) i 

• 



Setting 

= F 

--

we may write 

= + i (21T) 

= + i(2'rr) <6 -
+ 

-

(2ir) + 

Hence 

6. + (x) 

... 
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i(k
1

x
1

+k2x2 +k3x 3+k0x0 ) 
e 

-

-
~{k1 ,k2 ,k3 ,k0 )dk 

F(¢{k1 ,k2 ,k3 ,-k0 ) > 

.... -
<f> (kl ,k2 ,k3 ,-ko)> 

-... 
F ,Ck1 ,k2 ,k3 ,+k0 ) > 

- i 2 
= + 3 F o_(m 

(2n-) + 

Applying finally the results (4.17) and (4.18) of the foregoing section 

we obtain: 

+ (5. 6) 6 (x) 

and 

1 
= - -

+-
2 

X 

- 0(-x) 
0 

2 
-x) 

2 
-x -

2 
X 



-
(5.7) /j (x) - -- 1 

4n 
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2 
X 

• 
im 

411'2 

2 8(-x) 

- 8(-x) 
0 

2 
-x) 

2 -x 

2 
X 

• 

Other important solutions of the homogeneous differential equation are 

the solutions d(x) and ~(l)(x), which are respectively odd and even 
-in x

0
• 

They are defined as: 

-(5.8) + h. (x) 

With the aid of the well known relations ( 5 , §7.2.1) 

= 2 J1 (z) 

(5.9) and 

it follows immediately from the for1uulae (5 .6) and (5. 7), that 

(5.10) 

and 

(5.11) 

~(x) = -

~(l)(x) = 
• 

m 
4n ---- - a C-x0> 

2 
X 

-x 

2 
X 

2 
X 

• 

The distribution ~(x}, which is called the Pauli-Jordan propagator 

function, has the important property that it vanishes according to 

(5.10) outside the lightcone. It will become clear in section (5.3), 

why it is called a propagator function. 

• 
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5.2. The solutions of the inhomogeneous egu~tion 
iwa p l 

We have shown in section 2 (fonnula (2 .10)) that the general Lorentz

invariant solution of the inhomogeneous Klein-Gordon equation (1.2) is 

given by 

(5.12) 1 o (m2 
+ 

Special solutions are obtained by taking the following values 0£ c+ and 

C • -
= C - 0 - . -

The solution g(x) is now denoted by ~(x) and we get according to 

(5.12) and (2.4) 

Using the result (3.18) we obtain 

= - -
2 

X 

1 

and since this distribution is even in x0 we have the result 

- --
2 

X 

1 
+-

This distribution has its support in the closure of the foz·ward 

and backward light cone. 

2e. c+ = C - = ,ri. 

We denote g(x) by /:J. c<x) and we obtain 

(5.14) ( 2 k2)-1 + m -

)( 1 2 2 -1 
= F (m - k - iO) . 

• 
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Using (5.2), (5.3), (5.8) we get 

(5.15) 1 + -
l.::.(x) - 2 {~ (x) - ~ (x)} 

With the aid of the formulae (5.13) and (5.11) the result becomes 

(5.16) ~c<x) 1 2 = 4n o (x ) -

2 
2 

K
1 

(m -x ) 
e(-x) ----. 

• im 

3e. C 
+ -

2 
X 

(2,r} 2 2 -x 

The distribution g(x) is now denoted by ~AC(x) and we obtain 

(5.17) >(·l 2 2 -1 2 2 
~AC(x) = F (m - k) - ino(m - k) 

In the same way as in the foregoing case we may write 

(5.18) l.::.AC(x) = 6(x) + 

Using again the results (5.13) and (5.11) we get 

( 5 19) 6 () l o( 2 ) m 0(x2 ) 

2 
2 K1 (m -x) 

e(-x) . AC x = 41T x - 8,r 

4e. c+ = - C = +i,r. -

2 
X 

-

The distribution g(x) is denoted by l.::.R(x) and we obtain 

(5.20) LlR (x) 
)( 1 

= F 2 
(m -

or by aid of (5.2), (5.3) and (5.8) 

(5 .. 21) 6R(x) = 
1 

/.::.(x) - 2 
+ I.::. (x) 

2 
- k ) - . ( 2 1no m -

1 
= !).(X) -

2 
6(X). 

Using now the results (5.13) and (5.10) the result becomes 

(5.22) 
2 

X 

for x0 < O. 

2 -x 

• 
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5e. C = - C 
+ -

• = -1,r. 

The distribution g(x) is denoted by !::,,A(x) and we obtain 

(5.23) 
2 -1 

- k ) -
2 2 

i Tr c (m - k ) + 
+ 

or by aid of (5.2), (5.3) and (5.8) 

(5.24) 
1 
2 

ti (x) . ' 

Using again the results {5.13) and (5.10} we get the result 

(5 .. 25) 

2 
X 

for x 0 > O 

for x
0 

< 0. 

From these results it follows immediately that A(x) has its support 

in the closure of the forward and backward light cone, A R(x) in 

the closure of the forward light cone, AA(x) in the closure of the 

backward light cone, whereas the supports of AC(x) and AAC(x) 

have no boundaries at all. 

8R(x) is called the retarded Green's function, !).A(x) the advanced 

Green's function, Ac(x) the causal Green's function and finally 

8 AC (x) the anti causal Green's function. 

The following relations are easily verified: 

+ -

' 

- D. (x) for x
0 

> 0 - !::,, (x) for x0 > 0 

-
+ A (x) for x 0 < O 

- A (x) 

0 

for x
0 

> 0 

for x
0 

< O 
AA(x) 

(5.28) 2A(x) = AR(x) + 8 (x) = A (x) + A (x) 
A C AC • 

(5.29) •A(l) - + 
10 (x) = A (x) - A (x) = A (x) 

C 

--

+ ,.+(x) 0 u for x0 < • 

0 

A(x) 

for x0 > 0 

for x0 < 0. 
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From the formulae (5.14), (5.17), (5.20) and (5.23) useful and 

interesting relations follow for the positive and negative fr..equency 

parts (k0 > O resp. k
0 

< O) of the 

(5.30) 

11+ ( ) - 6.+ ) AC x - A(x' 

distributions 8c(x), 
-

!::,.C (x) etc. , we have 

We consider now the inhomogeneous Klein-Gordon equation 

(5.31) 

where j(x) is an arbitrary distribution with bounded support. The 

Lorentz invariant solution complying with conditions at infinity can 

be represented in several ways, e.g. 

(5.32) ~(x) = ~ (x) + 6 (x) * j(x), 
a a 

where we may write instead of a: R, A, C, AC; the convolution product 

1s taken with respect to all variables x 1 , x 2 , x 3 , and x 0 . Taking 

a= Rand x0 sufficiently small we find that ~R(x) must be the 

potential of the incoming field; on the other hand, taking a= A and 

x0 sufficiently large we obtain that <PA must be the potential of the 

outgoing field. 

We consider now the cases a= C and a= AC; taking Fourier transfot"tns, 

splitting into positive and negative frequency parts and using {5.30) 

we get 

.... - .... .... - .... 
(5.33) + rf,R + • • J + fl • J. R • 

(5 .34) 

(5. 35) 
A 

j = 

(5.36) 
.... .....+ 
4> = <PAC + 

-- .... --
• j + ~AC 

.... 
j + 

,..._ ... 
• j. 
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From these equations we derive easily: 

... + .... - ""'+ 
♦ + ~ + 6 • 
C C R 

A • • J • 

.... + .... • 
~ • J. 

A 

A 

• j . 

• 

Equating finally in each equation positive and negative frequency 

parts we obtain: 

(5.37) 

Bence +c(x) is the s11m of the positive frequency part of the potential 

of the incoming field and the negative frequency part of the potential 

of the outgoing field; <PAC(x) is the ~1,1m of the positive frequency 

part of the potential of the outgoing field and the negative frequency 

part of the potential of the incoming field. 

Fo:r these and many other interesting physical cGnsiderations the 

reader is also ref erred to refs . 

We consider the following classical Cauchy problem: the function 

♦(x) satisfies :for x0 > 0 the differential equation: 

(5.38) 

(5.39) 

2 
( D - m ) ,ex) == 0 , XO > 0 , 

lim 
X -++O 

0 
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where $0 and $1 are functions defined on R3 and of finite algebraic 

growth at infinity. We suppose further $0 and ¢1 sufficiently regular 

in order that this Cauchy problem has a twice differentiable solution 

(differentiable in classical sense). 

" According to Chapter I, section 9, we obtain the solution of this 

Cauchy problem by considering the differential equation 

(5.40) 

where the differentiations are now taken in distributional sense; for 

x
0 

< 0 one has still the condition q,(x) = 0. 

Similarly as in Chapter I, section 9, Example 2, for the wave equation 

one can show that there exists a unique solution of (5.40) with the 

condition cf,(x) = 0 for x
0 

< 0. This unique solution is given by 

(5.32) with ct= R, $R= 0 and j(x) =<t, 0 (x1 ,x2 ,x3)o'(x0 ) + 

+ cp
1

(x
1

,x
2

,x
3
)o(x0 ); hence 

or 

(5.41) q,(x) = 

In the latter equation the convolution should be taken with respect 

to the three space variables x1 , x 2 and x3 only. In the same way one 

may treat the Cauchy pro bl em : 

(5.42) 

ct,(x) = 0 for 

(5 .43) 

• 

X > 0 
0 

and for x0 

lim 
X ➔-0 

0 

lim 
X ➔-0 

0 

= O one has the conditions 
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where ¢
0 

and cp1 are again submitted to the conditions stated above. 

The solution of this problem is given by the solution of the partial 

differential equation 

(5.44) 

where the differentiations should now be taken in distributional 3ense, 

while $(x) is submitted to the condition ¢(x) = 0 for x 0 > 0. Using now 

(5.32) with a= A, ~A= O and j(x) = - cp0 (x1 ,x2 ,x3)o'(x0 ) - ~1 (x1 ,x2 ,x3 )o(x0 ) 

we obtain for the unique solution of the Cauchy problem (5.42), (5.43): 

cp(x) 

or 

(5.45) 

In the latter equation the convolution is again taken with respect to 

the space variables x1 , x2 and x
3 

only. 

Finally we consider the following problem: the function ¢(x) satisfies 

for x 0 > 0 and for x 0 < 0 the Klein-Gordon equation 

(5.46) 2 
(□ - m )cp(x) = O, 

while the function ~(x) for x 0 = 0 is submitted to the conditions 

where ¢0 and ¢1 satisfy the same conditions as before. 

Using now the results (5 ,41) and (5 .45) we ·obtain immediately for 

x0 ~ 0 
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or by aid of (5.22), (5.25) and (5.10) 

(5.47) cp (x) 

where 6(x) is the Pauli-Jordan propagator function. 

Hence the Pauli-Jordan function dete1'1nines the propagation of the values 

of solutions of the homogeneous K_lein-Gordon equation as function of 

place and time. 

In order that the solution (5.47) is invariant under proper Lorentz-

transfox·,11ations one should submit the functions <P0 (x1 ,x2 ,x3 ) and 

~
1

(x
1

,x
2

,x
3

) to some extra conditions; for this the reader is referred 

to a paper by Hustapha Rars [19 . 

• 
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Chapter V 

DIVERGENT CONVOLUTION INTEGRALS IN ELECTRODYNAMICS 

1. Introduction 

Consider a scattering process at the beginning and at the end of 

which there are only particles that are widely separated from each 

other and may be considered to be free. If the probabi 11 ty aapli tude 

of the initial state is denoted by t(-00) and that of the final state 

by <b( 1co), the scattering process is described by an operator s, the 

S-matrix, which is defined by the relation 

(1.1) 

see e.g. , chapter III, [2] , chapter IV, [3] , chapter VII. 

The e1ements of the S-matrix contain products of the so-called causal 

function lie (x) and its deri va ti ves. The function t:.C (x) has be-en treat

ed in the preceding chapter, where it appeared to be essentially a 

distribution. 

However, as has been shown by L. Schwartz [4 , distributions cann<:>t 

in general be multiplied with each other and therefore the elements 

of the S-matrix are not well defined. 

By application of the modified Fourier transfo1·n1ation, the dis-

mula (6.25) of chapter IV into distributional limits of rational func-

tions, • viz.: 
a a a * [P( a ) Ac(x -F ·-, ox ' ax3 ' 3x ax1 2 0 

(1.2) 
P(ik1 ,ik2 ,ik3 ,-ik

0
) 

-1 
lim 

k2-m2+i£(k,k) E++O 

with 

(1 .. 3) k2 2 2 k 2 k 2 
= ko -kl - 2 - 3' 
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(k,k) 

a a a ) is some Lorentz-invariant , ax , ax ' ax 
polynom-

its deri va ti ves 

forinally into distributional limits o:f convolution in-

tegrals, which turn out to be divergent. 

The impossibility of defining products of causal functions is reflect

ed in the ''•omentum space'' by the fact that the forn1al Fourier trans

forms of these products are divergent convolution integrals. 

In the literature on quantum electrodynamics much attention has 

been paid to the meaning of these divergent convolution integrals and 

several devices have been developed for assigning to them a well-de

fined finite value. We mention here the method used by Bogoliubov and 

Parasiuk in [1] Ch. IV, [s] and [6] , that used by Achieser and Beres

teaki in [2] Ch. VII and a rather recent method developed by Bremer-

11ann in · 

Bogoliubov and Parasiuk define a divergent convolution product, 

say t: (k) * g(k) as the weak limit of a convergent convolution product 

on an appropriate space of test functions. The convergent convolution 

product consists of specially chosen factors, say fM(k) and gM(k), de

pendins on a fictive mass M, such that fM(k) and ~(k) converge for 

K + • weakly to f {k) and g(k) , while fM (k) * gM (k) is convergent. 

Finally f (k) * g(k) is defined as the weak limit of f (k) * g (k) for 
M M 

M + • • 

~(k) and fM(k) •~(k) is called the regularization of f (k), g(k) and 
f (k) •g(k) .. 

However, this procedure is rather unsatisfactory since 

i) f14 (k) and ~(k) are chosen in a very special way. 
ii) .f (k) and g(k) are regularized w1·th th ·d e a1 of the same para-

meter M .. 

Achieser and Berestezki define the divergent convolution inte-
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is per~orined over a finite volume V of the four dimensional space. If 

the limit is taken for V +~,the result is of course infinite, but 

it turns out that the divergencies are only contained in a certain po

lynomial ink. Disregarding this polynomial one obtains the so-called 

'' '' regular part, which is taken as the definition of the divergent con-

volution integral. 

Finally Breme11uann defines the divergent convolution integrals 

by the requirement that they should satisfy certain sets of differen

tial equations. 

In this chapter we confine our investigations to the case of di

vergent convolution products containing only two factors. They are in

troduced in a very natural way as a functional defined on an appropri

ate space of test functions. The definition does not involve any 

limiting procedure as in the definitions used by Bogoliubov-Parasiuk 

and Achieser-Berestezki. 

It appears that the results of the above-mentioned methods are 

in agreement with the definition introduced in this chapter. Actually 

they are very special cases of the theory given here. For example the 

restrictions i) and ii) are quite irrelevant. Apart from presenting a 

theory for dealing with divergent convolution integrals we establish 

in this way also the equivalence of the above-mentioned methods. 

It may be remarked that Bogoliubov and Parasiuk have investigated 

in [s] and _6] the much more general problem of defining the product 

of causal functions containing an arbitrary number of factors. 

In fact, these authors have considered expressions such as 

(1.5) 

is the causal function or one of its derivatives; the pro

duct is taken over all directed line segments occurring in an arbi-

trary graph connecting the points 

space of position and time. 

x ,x , ••• ,x in the four-dimensional 
1 2 n 

It may be, that the method given here can be extended to this 

• 
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much more general case. This is a suggestion for further research. 

In section 2 we introduce the convolution product of bounded ra

tional functions inn variables. Consecutively, several useful proper

ties of this product will be derived in section 3. 

In the next section 4 a suJ11D1ary is given of the methods, mention

ed above, which provide a well-defined meaning of the divergent convo

lution integrals. It is shown that they all are special cases of the 

definition of the convolution as given in seetion 2. 

The chapter is concluded by section 5, in which there are made 

some additional remarks. 

2. The convolution of bounded rational functions 

2.1. The boundedness of a convolution product 

We consider the class A of functions f(k) = f(k1 ,k2 , ••• ,kn) which 

are defined and unifor.tnly bounded in the whole n-dimensional space R • 
n' 

k=(k1 ,k2 , ••• ,kn) denotes a point of this n-dimensional space. For 

every function f(k), belonging to A, there exists a non-negative nwn

ber m(f) > 0 with the property that 

(2.1) 

is unifo1"111ly bounded in the whole space R • 
n' 

• 

It is clear, that there exists in this case a continuous set of ·values 

m (f) such that (2 .1) is unifonnly bounded in R • 
n 

The upper bound of all these values m(f) will be denoted by m(f) and 

we call m(f) the index of the function f(k). E.g. the function 

log(l+ kl) 
1+ k 

• 

has index 1. Hence all functions of the class A have non-negative 

dex. 

• 
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Taking two functions f(k) and g(k), both b 1 e onging to A, one can for11 
the convolution of f(k) and g(k), viz. 

+co 
(2.2) F(p) = f(k)g(p-k)dk = f(p-k)g(k)dk, 

--
where the integration is perfor1ned over the whole space 

The integral converges absolutely for all finite values 

condition 

(2.3) m(f) + m(g) > n, 

is satisfied. 

R • n 
of p, if the 

The following lemma will be very useful in the development of the 

theory. 

Le11m1a 

I:f f(k) and g(k) belong to A, m(f) < n+v , m.(g) < n+v with v > O and -
if 

(2.4) m(f) + m(g) > n+v, 

then F(p) belongs also_to A and the index of the function f~(p) is at 

least equal to m(f) + m(g)-n-v. 

Proof: 

Due to the assumptions of the Lemma, there exists a positive ri,1111-

ber m(:f) and a constant B(:f), independent of k, such that 

I f(k) < m(f) ' 
{l+lkl} 

valid for all values of k; we may choose m(f) arbitrarely close to 

m(f). q 

There:fore f(k) belongs to the class L 1 ( • , +c») with 

n+v+o1 
q = -=::-:-::~ > 1 , 

1 m(f) 

where o is some quantity larger than zero. 
1 

We choose m(f) such that 

m(f) 
m(f) 
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Hence 

(2.5) • 

In the same way, the f11nction g(k) belongs to the class 

with 

Moreover m(g) is chosen, such that 

(2.6) 
q _ 42 -(n+v+½o2) 

Finally we put 6
1 

= o2 =6 and we take such a value for 6 that 

1 + 1 >1; due to the relation (2 .4) this is always possible. 
ql q2 

From Holder's inequality for three functions, viz. 

+• +m 1 

I ♦ "1 X dk I < ( I 'I o dk) a ( 
-c:io -GO _m 

where a+B+y=l, a > 0, B > 0 and y > 0, one derives easily Young's in

equality 
+ 1 -1 

I f (k) g(k) dk I !. { • 
-OD 

• 

(2. 7) 

_oo -CID 

1 1 1 

by setting 
1+ a 1+ a 

= If I , I xi y = 

Y= 1 -
1 and f3= 1 - 1 • 

· ql q2 

Applying Young's inequality (2.7) to the £unction F(p) 

1 1 
+Q) q q + -1 

-co 

1- 1 
+co q q +oo q 

• 
-- -oo 

Since f(k) ql 
and g(k) belong to L (-oo,+m) respectively 

and 

we obtain 

• 

1- 1 

• 
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there exists a constant c1 , independent of p such that 
1 + _,1_ -1 

(2 .8) 
luo q q q q2 

• 
• 

In virtue of (2.5) and (2.6) we can now make the £ollowing estimate, 

valid for all values \J with O < JJ < n+v 

+m q q 
lf(k)I l lg(p-k)I 2 dk < 

6 
-n-v- - -n-v-

(1+ lkl) 2 (l+lp-kl) 2 dk < 
-oo 

+lp-kl)u(l+ kl) 
-n-v- -n-v- -

2 (l+lp-kl) 
2 dk < 

-ao 

0 

lp-kllJ)(l+lkl) 
-n-v-

2 
(l+I p-kl) 

-n-v- -

-oo 

where c2 and c3 are constants independent of p. 

Hence it follows, that there exists a unifo:r:·n1 constant c4 , such that 

(2 .9) 
-00 

Substituting (2.9) into (2.8) we obtain the result 

1 
-(n+v) ( - + 

q 
IF (p) I < C (1+ I Pl ) l 

(2 .10) 

where C is again a constant. 

n+v 
n+v+c5 

--

{m(f) + m(g)} 

In virtue of the relation (2.4), we can make 6 arbitrarily small with-
1 1 

out violating the condition - + - >1. Moreover, since m(:f) + m(g)> 
ql q2 

>n+'V, it is clear that F (p) belongs to the class A and has index 

(2.11) m(F)> m(f) + m(g) - (n+v), q.e.d. 

The following corollaries follow immediately from the lemma • 

• 

• 
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Corollaries: 

1. If f(k) and g(k) belong to the class A, m(f) < n, m(g) < n and 
. 

m(f) + m(g) > n,_then F(p) belongs also to A and its index is at 

least equal to m(f) + m(g)-n • 

2. If f (k) and g(k) belong to the class A, m(f) > O, m(g) > 0 and m(f) 

or m(g} >n, then F(p) belongs also to A and its index is at least 

equal to min m(f) ,m(g) • 

It is to be noticed, that the conditions m(f) > O, m(g) > 0 in 

the second corollary may be omitted. Suppose e.g. m(f) = O, then 
--•s"• --..... , •a~'• •-•-••• ••,. - -

-- . . - . ~ •· . 

m(g) > n. Because f (k) is unifonnly bounded in R , 
n 

we can make the es-

timate 
+oo +cio 

l F(p) I < If (p-k) • I g(k) I dk < C I g(k) I dk. 
-co --

The third member of this relation is a finite n11Jnber, not neces-

sarily zero. Therefore F(p) is unifor·111ly bounded in 

is at least zero. 

R and its index 
n 

It follows that we may replace the second corollary by the slightly 

more general statement 

bis 
2 • If f (k) and g(k) belong to the class A, m(f) or m(g) > n, then 

F(p) belongs also to A and its index is at least equal to 

min. m(f) ,m(g) • • 
• 

2.2. Spaces of test functio~~ C(q 2 r_,n~ and the~r dual spaces C' (q,r,n) 

The functions f(k),g(k) and F(p), belonging to the class A, will 

be considered as continuous linear functionals on certain spaces of 

test functions. 

For this purpose the following space C(q,r,n) of test functions is 

introduced; compare also ref. and • 

The space C(q,r,n) consists of all functions ♦ (k) = ♦ (k1 ,k2 , .... ,kn), 

which are defined in R and n 
their derivatives up to the 

ducts 

which are continuous together with all 
th 

q order inclusive. Moreover all the pro-



(2 .12) 
r 

n 
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are uniformly bounded for al~ values of ~,k2 , ••• ,k
0

; 

non-negative integers with p = p < q and 
. 1 i 

r,r1 ,r2 , ••• ,r
0 

are non-
l.= 

negative numbers (not necessarily integers), such that r. < r. 

This space is clearly a linear space; we introduce 

no1:·1n by defining the nol111 of the element cp(k) as 

(2 .13) 
r n 

j=1 
in this 

l. -

space a 

where the supremum is taken over allnvalues of k1 ,k2 , ••• ,kn and over 

all combinations of r. and p. with p. = p<q and 
1 1 . l l 

l.= 

r
1 

< r. 
i=l 

The topology is introduced in the usual way; a neighbourhood of 

the zero-element is the set of all test functions ♦ with 11 ♦ 11<£. It 

can easily be proved that the space C(q,r,n) is complete with res

pect to the norm (2.13) and hence C(q,r,n) is a Banach-space. 

It is clear that we have for q1 > q2 and r 1 > r 2 the inclusion 

ql,rl,n q2,r2,n 

Therefore convergence in the space C(q1 ,r1 ,n) implies also convergence 

in the space C(q2 ,r2 ,n). 

The dual space consisting of all continuous linear functionals on 

C(q,r,n) is denoted by C' (q,r,.n); the application of f(k) E C' (q,r,n) 

to tCk) ~ C(q,r,n) is written as 

(2 .14) <f(k), ♦ (k)> • 

If f(k) is a locally Lebesgue-integrable function, such that the in-

tegral t co 

f(k) ♦ (k)dk 

--
exists in the sense of Lebesgue, then f(k) considered as a continuous 

linear functional on C(q,r,n) is defined as 
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+oo 

(2 .15) <f (k), ♦ (k)> = f(k) t(k)dk. 
-GD 

th d l C ' (q. r, n) one can introduce again a no1°n1. The In .. e ua space , 

norm of the continuous linear functional f(k) is defined as 

(2 .16) llf (k) fl = lim sup I < f (k), ~ (k) > ( • 
II ♦ (k)I = l 

A sequence of functionals fn (k) Gu. C' (q, r,n) is said to converge 

weakly to a functional f(k) E C'(q,r,n), if 

(2 .17) lim < f , ¢> > = < f, ♦ > , 
n n + OD 

for all functions ♦ c. C(q, r, n). 

A sequence of functionals f (k) E C' (q,r,n) is said to converge 
n 

strongly to a functional f(k) ~ C' (q,r,n), if 

(2 .. 18) lim II f - f 11 = 0. n n + CID 

This means that f converges strongly to f, if 
n 

to f. 

f n 
• converges in nort11 

It is a well-known fact that C'(q,r,n) is complete with respect to 

the strong convergence and thus C'(q,r,n) is also a Banach space; see 

e.g. [s] , §19. 

In the sequel we shall also need the derivative of a functional 

on a Banach space. This concept cannot be introduced as easily as in 

the case of functionals, defined e.g. on the space Softest func

tions, which are infinitely many times differentiable and which fall 

off at infinity stronger than any negative power of lkl; see chapter I, 

section 3. 

In this case the functional is a distribution, say f(k), and its de

rivative is defined by the relation 

(2 .19) a 
elk. 

l. 

> • 

This definition is meaningful, since ~0._ belongs to s, whenever ♦ (k) 
ak1 belongs to s. 
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However, if ~(k) belongs to the Banach space of C{q,r,n), then 
belongs no longer to ak. k belongs to the space 

1 . 
l. 

C(q-1,r,n); q is assumed to be larger than or equal to one .. We modify 
now our definition of derivative in the following way. I ) f f(k is a 

on the 

written in the fo1111 1P (k) = 

space of 
a 

ak. , where 
q > 1, then the ''functional '1 dirivative 

' 

C(q,r,n) by the relation 

♦ (k) belongs to C(q,r,n) with 
af ak is defined on the space 

i 

(2 .20) < .Jf 
ok. 

1 

= - <.f J > • 

Hence, if f(k) is a functional on the space C(q-1,r,n), then its de-
- t· af riva ive ak. can certainly be defined on the space C(q,r,n), which is 

1 a subspace of C(q-1,r,n). 

2 .3. The convolution of bounded rational functions 

In this section we define the convolution of bounded rational 

functions, say f(k) and g(k), as a functional on some space of test 

functions. This will be done in such a way that the new definition 

generalizes the classical concept of convolution which has only a well 

defined meaning if m(f) + m(g) > n. 

We confine our treatment to bounded rational functions, because the 

functions appearing in the applications to electrodynamics are of this 

type and because it will be seen in the sequel that the functions f(k) 

and g(k) are required to be subject to the condition that differen

tiation raises the index by one. 

The anal.ysis will be facilitated by ass1,uni.ng that the indices of the 

functions f(k) and g(k) are positive. This is due to the fact that 

the first corollary of the lemma applies only for functions with po

sitive index. If the index happens to be zero one obtains analogous 

results, but the proofs need only be a little bit modified; this is 

left to the reader. 
Let f(k) be_a rational bounded function with positive index; 

hence its index m(f) is a positive integer and we assume l!_ m(f) < n. 
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Therefore f(k) can be considered as a functional on the space 

C(q,n-m(f)+a,n), where q may be any non-negative integer and o an ar

bitrary positive number. 

The functional <f(k), ~(k)> is defined as 
• 

(2 .21) <f(k), q,(k)> = f (k) 'P (k) dk, 
-CO 

where the integration is performed over the whole space R and where n 
~(k) belongs to C(q,n-m(f)+o,n). 

In the same way g(k) with index m(g), 1 < m(g) < n, may be considered as -
a functional on the space C(q,n-m(g)+o,n). 

Let us consider now the convolution F(p) of the functions f(k) and 

g(k), defined by 

+co 
(2.2) F(p) = f(k)g(p-k)dk = f(p-k)g(k)dk. 

-co 

For the moment we assume m(f) + m(g) >n+l and hence the integral (2.2) 

converges absolutely. 

According to the first corollary of the lemma of section (2.1) the 

function F(p) belongs to the class A and the index of F(p) is at least 

equal to m(f) + m(g)-n. Therefore F(p) may be considered as a contin

uous linear functional on the space C(q,2n-m(f)-m(g)+o,n), where again 

o may be any positive n1unber. Because C(q,r1 ,n)e C(q,r2 ,n) for r 1 > r 2 , 

we may assume without loss of generality that O < 6 < 2. 

Hence for any test function ~(p1 ,p2 , ••. ,pn) belonging to 
... 

C(q,2n-m(f)-m(g)+o,n) we obtain the functional 

+-
(2.22) <F(p), q,(p)> = F(p)cp (p) dp = ¢, (p)dp f(k)g(p-k)dk = 

oc 11.QO 00 
I oo 

♦ (p)dp f(p-k)g(k)dk. • 

In virtue of the absolute convergence of the integrals we may 

apply Fubini's theorem and we obtain 

.. , 00 +-
< F (p) ,4> (p)> - f(k)dk g(p)~(p+k)dp -- - • 

OD 

(2.23) -+<io +co 
- g(k)dk f(p) ♦ (p+k)dp. -

0:, --
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Again with the aid of the corollaries of the lemma of section (2.1), 

the function 
+co +oo 

(2. 24) lJ,(k) = g(p),(p+k)dp = f(k-p)g(-p)dp, 
-- -CIO 

has the property that it-belongs to the class A and w(k) has an index 

which is at least m(4)) + m(g)-n or m(g), according as m(♦) < n or m(;)>n. 

In case, has an index smaller than or equal ton, the index of is a 

at_least 2n-m(f)-m(g)+ o and hence ~(k) has an index which is at least 

n-m(f)+o. 

In case, has an index larger than n, ~(k) has an index which is at 

least m(g) and this number is larger than or equal to n+l-m(f). 

From the fact that ~(k) is q times continuously differentiable, it 

follows by a rather simple argument, that ~(k) is also q times con

tinuously differentiable. 
-Hence the function ~(k) belongs certainly to the space C(q,n-m(f)+½o,n) 

with O < ½ o < 1 • 

Therefore it is allowed to write instead of (2.23) 

(2.25) <F(p), ♦ (p)> = <f(k), ~(k)> • 

Moreover, because the space C(q,2n-m(f)-m(g)+6,n) is included in the 

space C(q,n-m(g)+6,n), we may also write instead of ~(k) 

(2 .26) ~(k) = <g(p), ;(p+k)>. 

Substitution of (2.26) onto (2.25) yields finally 

(2 .27) <F(p), ♦ (p)> = <f(k), <g(p), ♦ (p+k)>>. 

Interchanging the role of f(k) and g(k) we obtain in the same way 

(2 .28) <F(p), 9(p)> = <g(k), <f(p), ♦ (p+k)>>. 

The fo11nula (2 .27) or {2 .28) is now considered as the definition of 

the convolution of the functionals f(k) and g(k). The functional given 

by the right-h.and side of (2 .27) is denoted by f (k) * g(k) and similar

ly that of the right-hand side of (2 .28) by g(k) * f(k). 

Hence we obtain the formulae 

• 
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<f (k) * g(k), 4> (k)> = <f (k), <g(p), 4> (p+k) >> , 

<g(k) * f (k), cp (k) > = <g(k) , <f (p), 4> (p+k) >> • 

Froa (:2.27) and (2.28) it follows immediately that the operation of 

i 1•o c-~utative and therefore we have the identity 
convolut on '"' ~"' 

(2 .. 31) f (k) * g(k) = g(k) * f (k). 

is meaningful as_long as <g(p), ♦ (p+k)> 

♦ {p+k)> E C(q,n-m(g)+u2 ,n), where µ1 and 

than zero.This is guaranteed, if the con

Our definition of convolution 

'i C(q, n-m (f) +iJ
1 

,n) and <f (p), 

u
2 

are some_quanti ties larger 

di tions l < m(f) < n, 1 < m(g) < n and m(f) + m(g) >n+l are satisfied. 
-

Su~ing up, one arrives at the following theorem 

Theorem 1. 

If~ and g are bounded rational functions of k(k1 ,k2 , ••• ,kn) with 

index m(f) respectively m(g), such that 1 < m(f) < n, 1 < m(g) < n and 

i(f) + i (g) > n+l ~ then f (k) is a continuous linear functional on 

C(q,n-m(f)+o,n), g(k) is a continuous linear functional on 

C(q,n-a(g)+o,n) and f(k) * g(k) is a continuous linear functional on 

C(q,2n-m(f)-m(g)+6,n). q may be any non-negative integer and o any 

arbitrary positive n11mber. Moreover 

f(k) * g(k) = g(k) * f (k). 

The above stated theorem gives conditions for which the classic

al c.onvolution of two bounded rational functions with indices between 

1 and n can be expressed as a continuous linear functional on a cer

tain Banach space of test functions. We wish now to extend the con

cept of the convolution of bounded rational functions with positive 

index to the case where the classical integral definition ceases to 

have any m.eaning owing to the divergency of the integral. 

There:fore suppose that f(k) and g(k) are bounded_rational func

tions with .indices m(f) > 1 and m(g) > 1, while m(f) + m(g) < n. Assume 

that m(f) + m(g) = n-s with O < s < n-2. 

It is clear that the convolution 
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loo 
(2 .2) F(p) = f(k)g(p-k)dk 

does not exist, since the integral diverges. 

Instead of the convolution of f(k) and g(k) 

convolution of the functions f(k) and g(s+l)(k), 

we consider now the 

de-h g (s+l) (k) were 

notes any of the derivatives of g(k) of the order s+l. 

Since g(k) i.s a bounded rational function with index m(g), g{s+l) (k) 

is also a bounded rational function, but its index is raised by (s+l), 
. - (s+l) 
i.e. m(g ) = m(g)+s+l. 

(s+l) 
Therefore m(f) + m(g ) = n+l and we can apply Theorem 1. Hence 

f (k) * g(s+l) (k) is a functional on the space C(q,n-l+o ,n) and we have 

according to (2 .29) for any q, (k) E: C(q ,n-1+6 ,n) the relation 

(2. 32) 

We take now for q the value s+l, i.e. we use the space of test func

tions ,Ck) with the property that ,Ck) and its derivatives up to the 

order (s+l) inclusive are continuous. 

By means of integration by parts it is clear that 

(2. 33) (s+l) ( ) <g p, 
s+l 

,(p+k)> = (-1) <g(p), (s+l) ( k) 
' p+ > • 

Substituting this result into (2.32) we obtain 
• 

<f(k), <g(p), 
• 

r according to the definition (2.29) of convolut~o~ 
• 

(2.34) 
• • • 

s+l s+l (s+l) 
, 

Hence the convolution f(k) * g(k) exists as a functional 

of test functions ~(k) which can be written as ♦ (k) = 

♦ (k)>, 

on the space 
~(s+l)(k), 

where ♦ (k) belongs to the Banach space C(s+l,n-1+6,n) with 6 arbi

trary positive. 

) to C(o .. n-1+0,n), it is clear that f (k) * g(k) Because ~(k belongs , 
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flle properties of our convolution product f (k) * g(k) are deter

ained by the right-hand side of (2.34). 

If we take for 6 a positive n11mber smaller than or equal to one, the 

convolution f(k) *g(k) is uniquely defined on the space of test func

tions , (k) = ♦ (s+l) (k) with , (k) e C(s+l, n-1+6, n). 

However, if we restrict our convolution product to a smaller space by 

choosing 6 larger than one, the convolution f(k) * g(k) is no longer 

uniquely defined; it is now only defined apart from a polynomial. The 

maximal degree of this polynomial is dete2111ined by the chosen value 

of o. 
For l !. t < 6 < t+l ~ s+2 with t integer the degree o=f the polynomial is 

at most t-1 and for 6 > s+2 the degree is at most s. 

The coefficients have to be determined from extra conditions to be 

iaposed on the convolution of f(k) and g(k); e.g. conditions resulting 

from physical considerations. 

The saae arguments can be used after interchanging f (k) and g(k) ; 

therefore we have also the relation 

♦ (k) > • 

Instead of the right-hand side of equation (2 .35) we may write 

(-l)s+l 
+oo +• 

♦ (p)dp g(k) f(s+l) (p-k)dk. 
co 

By means of integration by parts the inner integral may also be 
written as 

(s+l 

Hence we obtain the relation 

(-l)s+l 

(-l)s+1 

• 

<g(k) *f(s+l)(k), ♦ (k)> = 
+. +• 

♦ (p)dp g(s+l)(k) 
-- -oo 

f(p-k) dk = 

• 
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Inserting this result into (2.35) gives finally 

<g(k) * f (k)' 41 (s+l) ,k)> = 

It follows that apart from a polynomial of at most degrees, the con1-

mu ta ti ve property f (k) * g (k) = g (k) * f (k) is again valid. 

Summarizing our results we obtain finally the following theorrnn. 

Theorem 2 

If f(k) and g(k) are bounded rational_functions with indices 

m(f) and m(g) such that 1 < m(f), 1 < m(g), m(f) + m(g) = n-s and 

0 < s < n-2, then the convolution f (k) * g(k) is defined on the space of 

test functions q, (k) with the property that IP (k) = ♦ {s+l) (k), where 

♦ (k) 6 C (s+l, n-1+6, n) and o is an arbitrary positive number. The convo

lution f(k) *g(k) 1~ defined uniquely, apart from a polynomial of at 

most degrees, by the relation 

(2.34) <f(k) *g(k), q> (s+l)(k)> = (-l)s+l <f(k)M-g(s+l)(k), ♦ (k)> • 

Moreover the convolution satisfies the property 

(2.36) f (k) * g(k) = g(k) * f (k) + P(k), 

where P(k) is an arbitrary polynomial of at most degree s. 

If :f(k) and g(k) have indices m(f) respectively m(g) with 

1 < m(f) < n, 1 < m(g) < n, but m(f) + m(g) > n+1, then the convolution 

f(k) *g(k) is defined by equation (2.29) on the space of test :functions 

C(q,2n-m(f)-m(g)+~ 1n), where q is an arbitrary non-negative integer. 
' 

Because in this case 2n-m(f)-m(g)+ o < n-l+o~ every test function be 

longing to C(q,n-1+6,n) belongs also to C(q,2n-m(f)-m(g)+6,n) and 
' 

hence :f (k) * g(k) is also defined on C(O,n-l+tS,n). According to the 

equations (2.29) and (2.30), we have for every ♦ (k) € C(s+l,n-l+o,,n) 

the relation 

(2 .37) <f (k) * g(k) , 

' 

♦ (s+l)(k)> = <f(k), <g(p), 

= <g(k), <f (p), 

--
♦ {s+l)(p+k)> • 
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Integration by parts yields innnediately 

<f(k)-1+ g(k),cp(s+l)(k)> = (-1)s+l <f(k), <g(s+l)(p), 

(2 .38) 
= (-i)s+l <g(k), <f(s+l)(p), 

= {-1) s+l <f (k) * g (s+l) (k)' 

<j>(p+k)>> 

4>(p+k)>> 

,Ck)> 

♦ (k)>. 

Thus in the case of m(f) + m(g) > n+1 the convolution of f (k) and g(k) 

satis:fies also the relations (2.34) and (2.35). • 

Therefore the definition of the convolution of two bounded rational 

.functions with m(f) + m(g) <n,given by the formulae (2.34) and (2.35), 

is rea11y a generalization of the definition given by the formulae 

(2 .29) and (2 .30), which are only valid for bounded rational functions 

with m(f) + m(g) >n. 

Remark 

The diverging convolution F(p) has been defined as a continuous linear 

functional on the space of test functions lJ,(k), which can be written 

as '1,, (k) cf> (s+i) (k), where t (k) '- C(s+l ,n-1+6 ,n) with cS arbitrary po-

sitive. 

This space :is only a linear subspace of the Banach space C(O,n-1+6,n), 

but in virtue of the theorem of Hahn-Banach, [s] , §21, the functional 

F(p) can be extended to the whole Banach space C{O,n-1+6,n). As to 

this extension the reader is referred to the paper 

and Parasiuk. 

3. Properties of the convolution 

by Bogoliubov 

In the previous section we have shown that it is possible to de

fine a convo1ution product of bounded rational functions f(k) and 

g(k) :for which the sum of the indices needs not to be larger than 

the dimension n of the space R • This convolution product has several n 
interesting and useful properties which will be investigated in this 

section. 

We confine our investigation to the most important case, in which we 
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have the relation m(f) + m(g) < n; the other case m(f) + m(g) > n can be 

treated in the same way. • 

3.1. The differential equation for f(k)• g(k) 

In this section it is shown that the convolution f(k)• g(k) is 

the solution of a system of differential equations of the order (s+l). 

According to Theorem 2• the convolution f(k) * g(k) is defined on the 
. (s+l) 

space of test functions ~(k) = ♦ (k), where t(k)£ C(s+l),n-l+o,n); 

moreover, we have the equation 

(2. 34) ♦ (k)> • 

The derivative of order (s+l) of the convolution f(k)*g(k) is defined 

on the space C(s+l,n-l+o,n) by means of equation (2.20) of section 2.2. 

The result becomes 

(3.1) < (f (k) * g(k)) (s+l), s+l q, (k)> = (-1) <f(k) * g(k), cp (s+l) (k)> • 

Combining (2.34) and (3.1) we obtain for every q,(k)EC(s+l,n-l+o,n) 

(3.2) <(f(k) *g(k)) (s+l), q>(k)> = <f(k) *g(s+l) (k), q,(k)> , 

or 

(3.3) (f (k) * g(k)) (s+l) = f (k) * g (s+l) (k). 

From this result it is again evident, that f(k)*g(k) can only be de

terroined apart from a polynomial of degrees. Hence we have obtained 

the following theorem. 

Theorem 3 

If f(k) and g(k) are bounded rational functions with index m(f) 

respectively m(g), such that m(f) > 1, m(g) > 1, m(f) + m(g) = n-s and 

o <s < n-2, then the convolution f(k) *g(k) is a solution of the set 

of differential equations 

(s+l) (s+l) 
(f (k) * g(k)) = f (k)* g (k), 

defined on the space C(s+l,n-l+o,n), where o is an arbitrary positive 

number. 
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3.2. convolution 
I I J T 

our convolution product has some limit properties which will turn 

out to be of great value for the applications of the theory. These 

limit properties are given in the theorems 4,5 and 6 of this section. 

Theorem 4 

Let f(k)_and g(k) be bounded rational functions with index m(f) 

respectively m{g), such that m(f) > 1, m(g) > 1, m(:f) + m(g) = n-s and 

0 < s < n-2. -
Let {fM(k}} be a set of bounded rational functions, depending on k and 

the real parameter M;_the index m(fM) is independent of Mand it satis

fies the relation n! m(fM) > m(f). 

Moreover, the set {fM(k)} converges for M -+ 00 weakly on the space 

C(O,n-m(f) + 6
1

,n) to the function f(k); o
1 

is some positive n11mber 

with O < 5
1 

< 1 • 

In the same way {gN(k)} is a set of bounded rational functions, depend

ing on k and the real parameter N; the index m(gN) is independent of N 

and n > m(gN) > m(g). The set {~(k)} converges for N -+ 00 weakly on the 

space C(O,n-m(g)+o2 ,n) to the function g(k); o
2 

is some positive n1.1m

ber with O < 62 <1. 

Under these assumptions the convolution fM(k) * gN(k) converges 

for M and N + co weakly to the convolution f (k) * g{k). The limit has to 

be taken as a repeated limit on the space 
(s+1) 

can be written as ~(k) = ♦ (k), while 

d3 may be any positive number larger than 

of test functions ~(k) which 

ip(k) E. C(s+l,n-l+o3 ,n) and 

max( o1 , o2 ). The limit is in-

dependent of the order of the repeated limit; • 1.e. 

(3.4) 

Proof: 

lim lim 
M+ooN+oo 

1p(k) > = 

<f (k) * g(k), ti,(k) > • 

For any ♦ (k)~ C(s+l,n-1+63 ,n) we have the equation 

(s+l) 

(3.5) 
(s+l) ( ) 

<gN P , 4,(k+p)>>. 

--
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The function (s+l) 
<gN (p), ♦ (k+p)> is continuous ink and using the 

corollaries of the lenuna of section 2.1, we see that it belongs to the 

class A. Its index is either at least m(gN)+s+1+m( ♦)-n or at least 

,min{m (gN)+s+l, m(ri,)}, according as m(~)+s+l and m(cp) are both ~n or 

not. 

In the first case the 

is larger than or equal to min {m (gN) +s+l , m ( ♦) } > min {n-m (f) +1, 
(s+l) 

n-m ( f) + 6
3

}. Hence <~ (p) , ♦ (k+p) > belongs certainly to the Ba-

nach space C(O,n-m(f)+61 ,n). Therefore we can take the limit for M...., 

in the left- and right-hand side of equation (3.5) and we obtain 

(3 .6) 

The right-hand side of this equation can be written as 

(3.7) 

(s+l) 
<f(k), <~ (p), 

<gN(k) M-f (k), ♦ (s+l)(k)> 

Inserting 

(3. 8) 

(3.7) into (3.6) one gets 

lim 
M + ac, 

♦ (k+p)>> = <f(k)* ~(k), 

♦ (k+p)>> • 

s+l) --

--

rrhe function is continuous ink and again accord-

ing to the corollaries of_the 

class A. If m(f)+s+1 and m(♦) 

lemma of section 2.1 it belongs to the 

are both 

m(f)+s+l + m(,)-n; if-m(f)+s+l or m( ♦) 

dex is at least min { m(f)+s+l, m((p)} . 

<n, its index is at least 

is larger than n, then its in-

(s+l)() ~(k+ )> is larger than or 
In the first case the index of <f P , ., P · 

t 
-( )+~ · in the second case the index is larger than or 

equal on-mg _0 3 , 

to min 

Therefore in both cases , 
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Banach space C(O,n-m(g)+o2 ,n). Hence we can now take the limit for 

N +~in the left- and right-hand side of equation (3.8) and we obtain 

the result 

lim lim 
N ➔ co M + co 

s+l (s+l) 
(-1) <g(k), <f (p), ~(k+p)>> , 

or in virtue of the definition (2.35) 

(3.9) lim lim 
N + coM + oo 

= <f (k) * g(k), tP (s+l) (k) > 

Interchanging the role of f(k) and g(k) we could have taken also 

first the limit with respect to N and thereafter with respect to M. 

The arguments would be quite analogous and because our convolution 

product is commutative, we would have obtained the same result. 

Hence the order of the limits in (3.9) is not essential and we 

have the result 

(3 .10) lim lim 
M ➔ ooN + co 

lim lim 
N -+ coM + oo 

ip(k)> = 

:..: <f (k) * g(k) , 11, (k) > , 

valid for all test functions ~(k) = ,cs+l)(k) with 

~(k) £ C(s+1,n-1+o3 ,n) q.e.d. 

It may be remarked, that if the double limit, namely 

lim 
M + OQ 

fM(k) *gN(k), exists in the weak sense on the space of test 

N -+ co 

functions •<k), then it is equal to lim lim fM (k) * gN (k) • 
M+ CION + co 

Hence, in virtue of the theorem, the weak double limit is also equal 

to f(k) •g(k), provided that this double limit exists. 

Therefore the weak limit of fM(k) * gN(k) for M and N going to infinity 

is always unique and it is independent of the way in which the limit 

has been taken, provided that the double limit exists. 

In the following theorem we give a sufficient condition for the 

existence of the weak double limit. 

• 
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Theorem 5 

Let f(k),g(k),fM(k) 

If t (k) '- C(s+l ,n-l+o
3 

,n) 

and gN(k) satisfy the conditions of theorem 4. 

and if for Mor N +~the function 
s+l (s+l) 

or <gN(p)-g(p), ~ (k+p)> converges to 

zero in the topology of C(O,n-m(g)+o2 ,n) respectively C(O,n-m(f)+6i,n), 

then the weak double limit lim fM(k) * gN(k) exists on the space of 
M -+ oo 

N -+ m 

test functions -,,(k), which can be written as t11(k) = ~ (s+l) (k). 

Proof: 

With the aid of the corollaries of the lemma it can easily be 
h f ( ) ( ) (s+l) (k ) sown, in a similar way as be ore, that· <fM p -f p, ~ +p > 

(s+l) -
and 

ively C(O,n-m(f)+o1 ,n). Without loss of generality we may assume that 

logy of the space C(O,n-m(f)+o1 ,n). In the other case where 
(s+l) . 

<fM(p)-f(p), t (k+p)> converges for M-+ 00 to zero 1n the topolo-

gy of the space C(O,n-m(g)+o
2

,n), we can use the same argument after 

interchanging again the role of f(k) and g(k). 

For any ,<k)e C(s+l,n-l+o3 ,n) we have the relation 

s+l s+l --
(3.11) (s+l 

The existence of both terms in the right-hand side of (3.11) can 

easily be proved by means of the corollaries of the lemma. 

Taking the double limit in both sides of (3.11) we obtain 

(3 .12) 

(s+l) {s+l) 
lim < fM(k) * gN(k) ,, (k)> = <f (k) * g(k) ,t (k+p)> + 

M + GO 

N + c» 

lim 
M + oo 

N + oo 

We consider now the remainder terin in the right-hand side of 

(3.12), • viz. 
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Because the function 
(s+l) 

topology of C(O,n-m(f)+o1 ,n), we can find for 

converges to zero in the 

* every£ a number N, such 

* that for N >N 

(3.13) * N > N . 

function

als on the Banach space C(O,n-m(f)+o1 ,n), the set { fM(k)) is uniforr11ly 

bounded according to the principle of unifoz'ln boundedness of Banach

Steinhaus (see e.g. [fil , §19). Hence there exists a number, say C, 

such that 

(3.14) 

valid for all values of M. 

Using the relation 

(s+l) 

(s+l) II II fM 11 • 11 < gN(p)-g(p) ,~ (k+p)> , 

for N > N* we obtain 

and hence 

lim 
M+co 

N+• 

s+l) 

exists and is equal to 

zero. It follows finally from (3 .12) that also lim < fM. (k) * gN(k), 
M + oo 

tb(s+l) (k) > 

q.e.d. 

N +oo 
s+l · exists and that it is equal 

In the last two theorems we have considered the bounded rational 

functions f(k) and g(k) as weak limits of other bounded rational func

tions fM(k) respectively ~(k). However, it is not necessary to as

sume that fM(k) and ~(k) are always rational functions. 

We assume now that f(k) is the weak limit of a set of functions 

fM(k), which are only supposed to be functionals on an appropriate 

Banach space. Under certain conditions it is not difficult to prove 

• 
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= f (k) • g(k); in fact, we have the following theorem. 

Theorem 6 

Let f(k) and g(k) be-bounded rational functions with indices 

m (f) -~ 1, m (g) > 1, m (f) + m (g) = n-s and O < s < n-2. Let { f (k)} be a 
M 

set of functions depending on k and the real parameter M; these func-

tions may be considered as continuous linear functionals on 

C(O,n-m(f)+o1 ,n), where o
1 

is some positive nlJmber with 0< 61 < 1. 

If, moreover, the set {fM(k)} converges for M +•weakly on the space 

C(O,n-m(f)+o1 ,n) to the function f(k), then the convolution 

fM (k) * g (k) converges for M + or, weakly to 

test functions ~(k), which can be written 

f(k) *g(k) on the space of 

as ~(k) = ♦ (s+l)(k), while 

Proof 

The convolution of the functions fM(k) and g(k) can be defined 

by the equation 

(3 .15) 
s+l (s+l) = (-1) <fM(k), <g (p), ♦ (k+p)>>, 

which has a well-defined meaning for all test functions 

q, (k) f. C(s+l ,n-1+6
2 

,n). If ♦ (k) f. C(s+1,n-1+c5 2 ,n), the function 

since the function fM(k) may be considered as a functional on this 

space, the right-hand side of (3.15) is meaningful and therefore 

(3 .15) yields a definition for the convolution fM(k) * g(k). 

Due to the assumptions of the theorem we can take in the left-
• 

• 
and right-hand side of (3.15) the limit for M+ • and we obtain the 

result 

lim 
M + co 

(3.16) 

s+l (s+l) 

= < f (k) * g{k) ,9 (s+l) (k)> . q.e.d. 
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4. Ap~lic~tion of the theory to diy~rge!l,t convolution integrals in 

electrodynamics 

4.1. Divergent integrals in electrodynamics 

As has been pointed out already in the introduction, the deter

mination of the S-matrix involves the calculation of products, con

taining as factors the so-called causal function 6C(x) and its deriva

tives. The causal function ~C(x) has been treated in Chapter IV and it 

has been shown that this ''function'' is in fact a distribution on the 

spaces. However, this distribution may also be obtained as a function

al on the Banach space C(q,r,4), provided q and rare chosen large 

enough. In this connection it may be remarked that Sis the intersec

tion of all spaces C(q,r,4) with q=l,2, ••• and r=l,2, •••• 

In order to give an illustrative example of the application of 

the theory of divergent convolution integrals, we consider interaction 

processes which involve the multiplication of the distributions 

(4.1) 

and 

(4.2) 

~c<x) = 1 6 (R2) - m 8 (R2) 
41f 811' 

+ i 

+ 
R 

2 

' 

where m denotes the mass of the particle under consideration, 

o 1 2 3 ' is the Hankel function of the second kind 

and K1 the modified Bessel function; see formula (6.26) of Chapter IV. 

Furthennore 

(4.3) 

A 

a is a short notation 
3 

n=O 

for the operator 

n 
y a 

ax , 
n 

\ 

where yn denote the Dirac matrices; confer [1] , §6, §7, §14 and §24. 

According to for1nula (6 .25) of Chapter IV the causal functions (4 .1) 

and (4.2) can be written in 

(4 .4) fic(x) = lim 
£ + +O 

It ti momentum 

1 
4 

(21r) , CD 

representation as follows 

-ik.x 
e 

2 2 
k -m +ic(k.,k) 

dk], 



and 

(4.5) 

with k.x 
2 2 

+k2 +k3 

lim 
E-+ +0 
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100 (m+k)e-ik.x 

k2-m2+iE(k,k) -co 

dk 

2 2 2 2 2 

, 

2 2 
(k,k) = k +k1 + 

taken in the distributional sense. Multiplication of these causal func

tions with each other leads in the momentum representation formally to 

convolution products of the bounded rational functions 

(4.6) 

and 
..... 

(4.7) k+m 
2 2 . 

k -m +iE(k,k) 

It should be remarked that, in contrast with the notation of Chapter 
1 ... ,, ,, 

IV, the symbols uc and SC represent modified Fourier transforms. The 

limit for £-++O is taken at the end of the procedure. It is evident 
- -that convolution integrals containing as factors dc(k;E) and SC(k;c) 

are divergent. These divergent integrals may now be defined by means 

of the theory of section 2, i.e. by considering them as functionals on 

an appropriate Banach space. 

Several physicists and mathematicians have invented other methods 

to define these divergent integrals; in particular we mention the 

methods used by Bogoliubov and Parasiuk in [1] , Ll and 6] , by 

Achieser and Berestezki in [2] and by Bremern:1ann in [7] . 

These methods will be reviewed shortly in the next sections and it 

will be shown that they are all special cases of the theory developed 

in this chapter. 

4.2. The method of Bogoliubov and Parasiuk 

We consider a convolution integral of the following kind 

(4. 8) F(p) = f(k)g(p-k)dk, 
-CO 

where f(k) and g(k) are bounded rational functions inn independent 

• 
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variables vanishing at infinity. 

The indices of f(k) and g(k) have the property that 

(4.9) m(f)+m(g) =n-s, with O < s <n-2. 

The integration is perfornted over the whole n-dimensional space 

hence (4.8) diverges. Nevertheless, the convolution F(p) can be 

R and 
n 

defined 

in virtue of Theorem 2 as a functional on a certain space of test func

tions. 

Instead of f(k) and g(k) we take the bounded rational functions fM(k) 

and ~(k), which depend on a real parameter M respectively N. 

The functions f.M(k) and ~(k) are ass11med to have the following proper

ties 

1. The indices m(fM) and m(~) are independent of M respectively N, 

while 

(4.10) 

2. The functions fM(k) and ~(k) converge for M, N+ 00 weakly to the 

functions f(k) and g(k) on the spaces C(O,n-m(f)+o
1

,n) respectively 

C(O,n-m(g)+c52 ,n), where o1 and 6
2 

are arbitrary n11mbers with 
• 

O < 01 < i_and o < o2 < 1. 

Since m(fM) + m(gN) > n, the convolution 

(4 .11) 
+co 

fM(k)~(p-k)dk 

exists. In virtue of theorem 4 the convolution F (p) converges for 
M.,N 

Mand N going to infinity weakly to the convolution F(p). 

Kore precisely, we have the relation 

(4 .. 12) 

where 

tions 

lim lim FM N(p) = lim lim FM N(p) = F(p), 
M + 00 

" N + 00 ' N -+ ooM + oo ' 

the repeated limits should be taken on 
(s+l) the space of 

♦ (k) '- C(s+l ,n-1+6
3 

,n) and ,(k) = ♦ (k) with 
test func-

condition 

• 
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converges for M +~to zero in the 
topology of C(O,n-m(g)+o

2
,n), 

or 

converges for N +•to zero in the topolo-
gy of C(O,n-m(f)+o

1
,n), 

then, in virtue of theorem 5, also the 

exists on the above-mentioned space of 
double limit of FM,N(p) 

test functions ~(k). 
Further, we have the relation 

(4.13) lim 
M+ 
N + OD 

It follows that we can determine our divergent integral F(p) by cal

culating the convergent integral FM N(p) and by taking consecutively , 
the weak limit for M,N + m. The ultimate result is defined apart from 

a polynomial of at most degrees. 

The functions fM(k) and gN(k) are called the regularizations of f(k) 

and g(k). 

This method is essentially the procedure by which Bogoliubov and Para-

siuk define in [1] , [s] and [6_] 
occurring in electrodynamics. 

the divergent convolution integrals 

Let us consider for example the so-called electron self-energy, 
... 

which leads to a convolution product containing as factors AC(k;£) and 

, §24; , §47; , Ch.9, § 4. 
... ... -

The indices of 6C(k;£) and SC(k;£) equal respectively 2 and l; the 

convolution of these functions diverges since the sum of the indices 

is 3 while the dimension of the space is 4; hence s=l. 

Bogoliubov and Parasiuk use for the regularization of 

• 

In its most simple form this regularization yields for 
• the expressions 

(4.14) 
- 1 

Reg. ~C(k;£) = -2-~2---- -
k -m +i£(k,k) 

1 
2 2 k -M +i£(k,k) 

and 

and 

and 

' 
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(4 .15) 

... 
= (K+m)Reg Dc(k;e:) = 

,,.. [ 1 
(k+m.) 2 2 

k -m +ie:(k,k) 

1 ---]. 
k2 -N2+i£(k,k) 

... 
The index of Reg. AC(k;t) 

... 
equals 4, while that of Reg. SC(k;£) equals 

3. 
Reg. sc(k;£) 

satisfy the conditions of theorem 4 and 5; see [1~ • 
... .... 

Therefore the convolution of Ac(k;£) and SC(k;e:) may be detennined by 
... 

calculating the converging convolution of Reg. Ac(k;£) and 
... 

Reg. SC(k;c) and by taking consecutively the limit for M,N + m. 

In virtue of theorem 5 N may be taken equal to M. 

If the calculations are carried out, such as has been done in 1] , 
-

§24, then it appears that the part of the convolution of Reg. 6C(k;£) 

and Reg. ~C(k;c), which actually diverges for M + •, is contained 

only in a tex'Dl linear in p. This te1·m is however immaterial, because 

the convolution product is considered as a linear functional on the 

space of test functions ,Cp) which, due to the fact that s=l, can be 

written as 
a2 

'Cp) = -a-p· _a_P_ '(p)' 
IA v 

where ♦ (p) 4 C(2, 3+6, 4) with 6 some n,imber between O and 1. 

It may be remarked that in this case it is not necessary to regularize 
... ... 

both AC(k;£) and s0 (k;c); it is already sufficient to regularize only 

one o.f these factors and the result will of course be the same. • 

Another example of a diverging 

by the photon self-energy; cf. [1 

convolution integral is furnished 

, §24, [2J , §47, 
-In this case both factors are of the type SC(k;t) and s=2. The diver-

ging part of the regularized convolution integral is now contained 

only in a tex·ut which is quadratic in p. 

4.3. The method of Achieser and Berestezki • 

Consider again the divergent convolution product 

F(p) = f (k) * g(k), 
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where f(k) and g(k) are bounded rational functions, vanishing at in

finity, while 
m(f) + m(g) = n-s, 

with O < s < n-2. 

Instead of F(p) we consider the integral 

(4.16) f(k)g(p-k)dk, 

where the integration is now perfoxmed over a finite vol11me V of the 

n-dimensional space R. 
n 

The integral Fv(p) can be calculated and it can be written as 

(4 .17) 

where 

(4.18) fv (k) = f (k) for k inside V, 

fv(k)E O fork outside v. 

It is clear that f(k) is_the weak limit of fv(k) for V+• on the space 

of test functions C(O,n-m(f)+o1 ,n), where &1 may be any number with 

0 <c51 < 1. According to theorem 6, the original convolution F(p) = 

= f(k) *g(k) is the weak limit of F (p) = fv{k) •g(k) for V + • on the 
. V (s+l) 

space of test functions ~(k) which can be written as ~(k) = ♦ (k), 

where q, (k) E. C (s+l, n-l+o2 , n) and 62 > c51 • Therefore we can obtain the 

divergent convolution F(p) = f(k) *g(k) by calculating fv{k) -M- g(k) and 

taking consecutively the weak limit for V + ~. 

For the actual calculation of F(p) we consider the Taylor expans-

n 

i=l 
• p. + •••••••••• 

l. 
p=O 

n 
••• + 

+ 

with 0<9<1. 
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Denoting the last tex"lll of the right-hand side of (4.19) by FV(p), we 

may write 
Fv(p) = Fv(p) + P(p), 

-

where P(p) is the polynomial of degree s, obtained by taking the first 

(s+l) tex,ns of the Taylor expansion of FV(p). 

Since the differentiations of FV(8p) with respect to pi can be carried 

out after the integration symbol, it is clear that FV{p) converges in 

the ordinary classical sense for V going to infinity. • 

Hence it follows that the divergence of our original convolution in

tegral is contained only in a polynomial P(p) of at most degree s. 

If we take now the weak limit of FV(p) on the space of test functions 
. (s+l) . 

lf; (k) , with "8 (k) = ♦ {k) and cp (k) E C ( s+l , n-1 +o 2 , n) , the polynomial 

P(p) is completely irrelevant and the divergence is removed. 

Thus one obtains finally 

(4 .20) F(p) = lim 
V+ao 

Fv(p) = lim Fv(p). 
V+co 

This procedure is essentially the method used by Achieser and Bere

stezki in [2] , Ch. VI.I, §47 .1; it appears again, that a1so this method 

is a special case of the theory developed in the sections 2 and 3. 

For actual computations concerning the electron and photon self-energy 

the reader is referred to [2] , Ch. VII, §47, 1,2 ,3. 

4 .. 4. The method of Bremermann 

Bremerm.ann has proposed in [11] to de:fine divergent convolution 

integrals of the kind 
I oo 

(4.21) F(p) = f(k)g(p-k)dk, 

where f and g are bounded rational functions, as the solution of the 

set of differential equations 

s+l 
(4.22) __ ,_,, _.g_,,_, --- F (p) = 

api clPi • • •oP1 
1 2 s+l --

s+1 
f(k) -.. -~0--------

oP1 aP1 ••• a Pi 
1 2 s+1 

• 
• g(p-k)dk . 

• 
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The right-hand side of (4.22) is supposed to be a convergent integral 

ands is chosen as small as possible. 

In virtue of theorem 3, for1nula (3 .3), the convolution 

F(p) = f (k) * g(k) as defined in theorem 2 satisfies on the Banach 

space C(s+l,n-l+o,n) the set of differential equations (4.22). Hence, 

also Bremennann's method is included in the general theory of the pre

ceding sections. 
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