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PREFACE 

In the years between 1945 and 1949 L. Schwartz developed the 

theory of distributions by giving a synthesis, a generalization and a 

ri. go1 .. ous foundation of the work of ma11y authors, who ha<i already used 

the concept of a distribution in a more or less cryptic way . 

.i\mong these the.re are a 1 so ma thema ti ci ans and ph}1si ci sts who were led 

to the use of distributions in connection witl1 their investigations in 

app.lied matl1e1natics 01· tl1eo1·etical J.Jhysics; t1erc we• mention i.n }-)artic

ula1· the na1nes of· Heaviside, Di l'ac, Leray, S<)bole\.r, Courant and Hi 1-

bert. After the publication of Schwartz's monograph ''Theorie des Dis

tributions 11 a large number of papers and books about the theory of 

distributions and its applications to partial differential equations 

appeared, of which the latter are of special imJJOrtance for the applied 

ma thema ticiar1. 

Therefore, considering the history of the theory of distributions, it 

may be expected that this theory can be applied successfully to pro

blems in mathematical and theoretical physics. 

However, the great advantages of the use of distributions are not al

ways exploited as it should be. In fact, this is the case in several 

rather recent articles, in which the mathematical derivations can be 

simplified considerably or made more rigorous by using distributions. 

Examples may be found for insta11ce in fluid- and quantum mecha11ics. 

The aim of this tract is to demonstrate the value of the theory 

of distributions for problems in mathematical and theoretical physics; 

for this purpose we have chosen illustrative applications to problems 

from quite different branches of mathematical physics. 

Before discussing these applications a review of the theory of 

distributions is given in an introductory chapter. All concepts and 

theorems, used later on, are treated here and no a priori knowledge 

of distributions is assumed. 



' 
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The first application, given in chapter II, concerns the well

known problem of the diffraction of a cylindrical pulse by a semi-
• 

infinite screen. 

The second one, treated in chapter III, is taken from theoretical aero

dynamics. The boundary value problems, occurring in the theory of 

supersonic flow around thin wings, are usually solved in a rather com-

plicated way. Using distributions the theory becomes much simpler; 

fact all boundary value problems may be formulated in ternts of one 

single integral equation which can easily be inverted. 

In this connection the attention of the reader may be drawn also to 

the work by P. Gennain and R. Sauer (cf. chapter III). 

The next two chapters IV and V are devoted to applications in 

modern theoretical ph}1 Sics. While the problems in the two precedir1g 

chapters may also be treated, at least in principle, in a classical 

way, actually this is no longer possible for tl1e problems of the 

chapters IV and V. 

• 
in 

The investigations in chapter IV concern the derivation of ;Lorentz

invariant Green's functions for the so-called Klein-Gordon equation, 
' which is of fundamental importance in quantum field theory. Distri-

butions concentrated on surfaces in four dimensional space play an 

important role in this theory. This problem has been studied in recent 

years also by other authors, using methods different from the one 

given here; we mention the work by P.D. Methee, L. Garding and J. La

voine.In the last application, given in chapter V, we deal with the 

regularization of divergent convolution integrals as they occur in 

quantum electrodynamics. A general method is developed for dealing 

with these divergencies. Although it is not claimed that the investi

gations of this chapter yield new results in field theory, a unifying 

method has been found for defining the above-mentioned divergent in-. 

tegrals, which includes as special cases the devices used by e.g. 

N.N. Bogoliubov and O. Parasiuk, A.J. Achieser and W.B. Berestezki, 

and H. Bremennann. 
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Chapter I 

THE THEORY OF DISTRIBUTIONS 

1. Introduction 

In 1927, in a paper on the physical interpretation of quantum dy-

namics [1] , the great physicist P.A.M. Dirac introduced a 11 • I t 
function 

6(x), which was postulated to have the following properties: o(x) 

should be zero everywhere, except at the point x=O 

finite and such that 

+oo 

(1.1) o(x)dx = 1. 
-cc 

at which it is • in-

Unfortunately, it can easily be shown that no function exists, which 

is zero almost everywhere, while its integral from-~ to+~ does not 

vanish. 

Dirac, however, treated his so called delta function as if it were a 

well behaved, even differentiable function. 

Putting 

(1.2) X O(x) = 0, 

he obtained, by fon11al di fferen tia tion, the formula 

(1.3) 
d 

x dx O(x) = - 6(x). 

Moreover, it follows from (1.1) that 

X 
(1.4) 6(E;.)d' = 0(x), 

-oo 

where e(x) is the Heaviside unit-step function, defined as 

(1.5) 0(x) = 
1 for x > O, 

0 for x < 0. 
== 



2 

Differentiating, one gets again formally 

(1.6) d0(x) 
dx 

= c5(x). 

Dirac also required that the delta function should have the sifting 

property 

+oo 
(1. 7) f(x)o(a-x)dx = f(a), 

-oo 

where f(x) is a continuous function, defined in a neighbourhood, at 

least, of x=a. 

When f(x) ism times differentiable, integration by parts yields 

(1. 8) 
+oo (m) 

f(x)6 (a-x)dx = f(m)(a). 

-oo 

Since the delta function was introduced by Dirac, it has found 

many applications in applied mathematics, where one often deals with 

,rdel ta-like'' distributions of mass, force., electrical charge or other 

physical quantities. 

Fon11ulae related to those given above are applied, and despite the 

fact that the derivations are by no means mathematically correct, they 

lead to correct results. 

In this situation one expects that some proper justification may be 

possible of the delta function and the processes yielding for instance 

forinulae such as (1.2) - (1.8). This justification is given in what is 

called nowadays the ''theory of distributions''. The name refers to dis

tributions of certain physical quantities. 

The theory of distributions had already in the thirties its roots 

in the work of Bochner, Leray, Sobolev, Courant, Hilbert and many others 

[2 - [s • 

In particular, the work of Sobolev [4] should be mentioned. He inves

tigated functionals of the type 

+oo 
(1. 9) <f,c/>> = f(x) <P(x)dx, 

-oo 

• 
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where f(x) is locally integrable and q>(x) is a function with bounded 

support and continuously differentiable a certain number of times. 

The ''generalized'' derivative of f (x), which may be a discontinuous 

function, is defined by the functional 

+oo 

(1 .. 10) , 9(x)> - --
-00 

f (x) d¢ dx = 
dx 

- < f , dq> > 
dx • 

Using this definition, the formula (1.6) is readily established, where 

differentiation must be taken in generalized sense. 

Moreover, Sobolev showed also that any locally integrable function can 

be considered to be a so called weak limit of infinitely differentiable 

functions; this means that any locally integrable function f(x) satis

fies, for all functions ~(x), the relation 

(1 .11) <f,$> = lim < f , 4> > 
rn 

go 

where the sequence of functions f (x) is a sequence of C functions. 
m 

In the years between 1945 and 1949 L. Schwartz developed the 

theory of distributions by giving a synthesis, a generalization, and a 

foundation of the work of many mathematicians who had already used the 

concept of distribution in a more or less hidden way. 

Schwartz introduced a distribution as a continuous linear functional on 

a suitable space of so called test functions. The foundation of the 
• 

theory arises from the consideration of the space of test functions as a 

topological vector space, whereas the space of distributions is the 

dual of this space. The operations to be performed on distributions are 

defined by transposition to the test functions, cf. fo1·111ula (1.10). 

After the publications of Schwartz, many papers and books about 

the theory of distributions appeared; among these are the well known 

books by Gelfand and Shilov, in which a clearly written introduction 

to the theory is presented • In these textbooks a distribution is 

also defined as a continuous linear functional on a suitable space of 

test functions. 
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damen tal sequences of rational numbers (Cantor), distributions can be 

obtai:p.ed as sequencesS 
-' 

of infini t~ly. di;f.fe!'enti.1a...ble functions. Th~~, 
, ,. ; ·•- , -{ 

1 
I ,, 
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The most important definitions and theorems are presented, but the 

proofs are mostly rather concise and they are even omitted in a few 

cases; otherwise, this introductory chapter would become too lengthy. 

However, the reader will always be referred to literature, in which 

he can find more details and additional material; besides, the text 

is illustrated by many examples. 

For the sake of completeness, some remarks are made concerning the 

topological foundation of the theory in the last section of this chap

ter; this section may be omitted by anyone who is interested mainly in 

the practical side of the theory. 

The following subjects are treated in consecutive sections: de

finitions of test functions and distributions; various operations to be 

perfo1·111ed on distributions; regularization of functions of one varia-
• 

ble with an algebraic singularity; the convolution of two distribu

tions; the Fourier transfo1·r11a ti on; distributions concentrated on sur

faces inn-dimensional Euclidean space; regularization of functions of 

several independent variables with an algebraic singularity; applica

tions to partial differential equations and, finally, some remarks on 

the topological foundation of the theory of distributions. 

2. Testfunctions and Distributions 

2.1. The spaces D and Sand their duals D' and S' 

Let us consider a family~ of infinitely differentiable complex 

valued functions ~(x) = ~(x1 ,x2 , ... ,xn), defined in every point of the 

n-dimensional Euclidean space R. 
n 

We suppose, that the family~ is a linear space and that there can be 

introduced in~ a rule, which defines the convergence to zero of a se

quence of functions~ (x) belonging to$, m=l,2, ••.• The functions 
m 

cf) (x) are called test functions. 

A distribution may be defined as a continuous linear functional on 

$. This means, that a distribution, say f, assigns to any function 

~(x) ~ ~ a complex number, denoted by <f,~> , with the properties: 
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1. 

(2.1) 

valid for any cp
1 

and cp
2

; a
1 

and a 2 are arbitrary real or complex num

bers. 

2. 

(2. 2) 

for any sequence {cp }, 
m 

1 im < f, ¢ > = O, 
m 

m-+oo 

converging to zero. 

The set of all distributions, which can be defined on the space¢, 

is called the dual space of¢ and it is denoted by¢'. Any linear com

bination of two distributions f
1 

and f 2 is defined by the rule 

(2.3) 

where a
1 

and a
2 

are arbitrary complex numbers and a
1

,a2 denote their 

complex conjugates. 

Therefore the space~• is a linear space. 

One can also introduce in the space¢' the concept of convergence. 

A sequence of distributions f €. ¢', 
m 

m=l,2, .•. , is said to converge to 

a distribution ft ¢', when the following relation holds for every 

test function q>(x) £. 11) 

(2.4) lim 
m -+oo 

<f ,¢> = <f,<P> 
m • 

This type of convergence is called weak convergence. 

The properties of the space ¢' depend of course on the proper

ties of the space$ . 
• We give two important examples of spaces of test functions and distri-

butions, which will appear to be very useful in later considerations. 

1. The spaces D and D' 

The space D consists of all complex valued infinitely different-
oo 

iable (C) functions ~(x) = ¢(x1 ,x2 , •.. ,xn), defined in every point of 

the Euclidean space Rn and vanishing outside a bounded subset of R. 
. n 
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The closure of the bounded region, in which ¢(x) does not vanish, is 

called the support of the test function. 

A sequence {~ (x) }, m=l,2, ... , converges in D to zero, when the sup
m 

ports of the functions ¢ (x) lie all within the same bounded set of 
m 

R and when the ¢ (x) and also all their derivatives converge uniforrn-n m 
ly to zero with respect to x. The space of all distributions, which 

can be defined on D, is denoted by D'. 

Examples 

An example of a test function, belonging to the space D, is given 

by 

exp -
(2.5) ¢,(x; a) = 

0 

2 
a 

2 2 
a -r-"' 

for r < a 

for r > a 
= 

2 2 2 
where r = lxl = x1+x2 + ••• +xn and a some real number. 

The sequence of functions 
1

~(x;a) (m=l,2, ... ) converges in D to zero, 
rn 1 X 

in contrast to the sequence rn¢(m;a), which does not converge to zero 

in D. 

Consider a real or complex valued locally Lebesgue integrable function 

f(x) = f(x1 ,x2 , ... ,xn), defined on Rn; by means of this function we 

form the functional <f,¢> , defined by 

+ 00 

(2. 6) <f,¢>= f(x) ¢(x)dx, 
-oo 

where the integration should be performed over the support of the 

testfunction ~(x)~ D and f(x) denotes the complex conjugate of f(x). 

It is clear, that <f,¢ > is a continuous linear functional on D and 

hence this functional defines a distribution, belonging to D'. 

The set of all values <f, ¢ > , where ¢ may be any element of D, defines 

the function f(x} almost everywhere in R. 
n 

Hence every locally integrable function may be identified with a dis-

tribution, belonging to D 1 and so the distributions in D' are a gener

alization of the locally Lebesgue integrable functions. Another exam

ple of a distribution, belonging to D', is the distribution defined by 
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(2. 7) < f, 4> > = cp (0) • 

This distribution is called the delta function of Dirac. 

Instead of the symbol < f, <P > we write also: 

(2. 8) 6(x) $(x)dx = $(0,0, ••. ,0) = $(0). 
-0:> 

It may be remarked, that the integral, appearing in (2.8), is only a 

symbolic notation, which has nothing to do with a~ integral, as de

fined in the sense of Riemann or Lebesgue. 

This can be shown by taking the test function $(x; a) with a -+ O. 

2. The spaces Sand S' 
Q0 

The space S consists of all complex valued C functions 
• 

• 

$(x) = ¢(x1 ,x2 , •.• ,xn), defined in Rn with the property, that <P(x) to-

gether with all its derivatives decrease for xi ➔ Q0 stronger than any 

negative power of lxj. 
This may be expressed by the following inequalities, which hold for 

every testfunction q>(x) € S: 

(2 .9) 

where k = (k1 ,k2 , ••• ,kn) and q = (q1 ,q2 , ..• ,qn) are n-tuples of non

negative integers and Ckq is a constant, depending on k,q and q,. 

xk and Dqq,(x) are short notations for the expressions: 

(2 .10) 
k 

X 

k 
n and Dq $ (x) = 

• 

A sequence {<P }, m=l,2, ••• , is said to converge in S to zero, if the m 
.functions <Pm (x) and all their deri va ti ves converge to zero unifor1nly 

with respect toxin every bounded region of R and if, moreover, the 
n 

numbers Ckq' occurring in (2.9), can be chosen as independent of m, 
• 1.e. 

(2.11) 

• 
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• 

for all values of m. 

The space of all distributions, which can be defined on S, is denoted 

by S'. 

Exam.El e_~ 
; I a 

An example 

= exp [-r 

of a test function 1 belonging to S, is the function 

• 
1 [ c:r, • The sequence of functions ¢ (x) = - exp -r , m=l, 2, •.• , converges m 

m m 
S to zero,in contrast to the sequence{¢ (x)}, which does not converge 

mm 
to zero, since the relations (2.11) are not satisfied by the latter. 

Consider a locally Lebesgue integrable function f(x) of finite alge

braic growth at infinity; i.e. one which does not increase at infinity 

stronger than any positive power of lxl . Due to the inequalities 

(2.9) we can again fo1·111 the functional <f,¢>, defined b)' 

+oo 

(2.12) <f J ¢ > = 
-oo 

where the· integration is perfor111ed 

f(x) q,(x)dx, 

over the whole space R. 
n 

It is obvious, that (2.12) defines a continuous linear functional on S 

and hence this functional defines a distribution, belonging to S'. The 

set of all values <f,¢> , where 

function f(x) almost everywhere • 1n 

Therefore every locally integrable 

may be any element of S, defines the 

R • 
n 

function of finite algebraic growth 

at infinity may be identified with a distribution, belonging to S', and 

so the distributions of S' are a generalization of the functions of 

this class. 

The delta function of Dirac, as defined by (2.7), is also a dis

tribution in S'. 

It is clear, that every test function in the space D also belongs 

to the space S; the space Dis even dense ins. This can be proved 
00 

easily as follows. Take the C function e(x), which equals 1 for r<l -
and which is identically zero for r > 2. When 4> (x) e. S, then the func

tions cf> (x) = e (x) cp (x) (m=l, 2, •.• ) are test functions belonging to D, m m 
with the prop,erty that the cf> (x) converge to cp (x) in S and hence D 

m 
• 
1.S 
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dense ins. 

It follows from the definitions of convergence in D and in S, that a 

sequence { 4> } , converging in D to the function 4> e. D, also converges 
m 

to 4) in S. 

Therefore every continuous linear functional on Sis a priori a con

tinuous linear functional on D and hence S'c D'. However, not every 

distribution in D' is a distribution in S'. 

It will appear in the next section, that the function exp [r
2] is an 

example of a distribution in D' but not in S'. 

From the definition of weak convergence it follows immediately, that 

a sequence of distributions 

converges also in D' to the 

f, converging in S' to a distribution f, 
m 

distribution f. 

Therefore convergence in D implies convergence in Sand conver

gence in S' implies convergence in D'. 

2.2. The space Zand its dual Z' 

In the beginning of this section we introduced the general space 
00 

of C functions, defined on R. It is also possible to take a 
n 

space of entire complex functions ~(z) = ~(z1 ,z2 , •.• ,zn), defined 

in every point of then-dimensional complex 

p=l, 2, ... , n. 

space C; 
n 

• 
Z = X + 1y, p p p 

In the same way as before distributions, i.e. continuous linear func

tionals, may be defined on the space, ; the space of all distributions, 

which can be defined on 1 , is denoted by ,,. We give the following 

example. 
• 

The spaces Zand Z' 

The space Z consists of all entire complex functions w(z) = 

=~(z1,z2,···,zn), 

i ties: 

defined on C and satisfying the following inequal
n 

(2 .13) 

where k may be any n-tuple of non-negative integers (k1 ,k
2

, ••• ,k ), 
k kl k2 kn n 

z = z 1 z 2 ••. zn and Ck and ap (p=l,2, .•. ,n) are positive numbers 
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depending res pee ti vely on tr and k and 'fl only. 

A sequence {tt, (z)} is said to converge to zero, when the functions 
m 

t4J (x) converge to zero unifor111ly with 1·espect to x in every bounded 
m 

region o.f the Euclidean space R 
n 

and when mo1·eover for each lJJ (z) 

equalities of the type (2.13) hold, where the constants 

not depend on the index m of the function~ (z). 
m 

m 

Ck and a 
p 

• in-

do 

The space of all continuous linear functionals, defined on Z, is de-

noted by Z'. 

It may be remarked already, that every test function of Z is the 

Fourier transfOI"llt of a test function of D; the spaces Z and Z' play an 

important role in the theory of the Fourier transfor·111a ti on, see sec-

tion 6. 

2.3. Local and global properties of distributions 

We shall consider in the sequel mainly distributions belonging to 

D' or S'. Many definitions and theorems are completely analogous for 

both cases and therefore we shall not always make an explicit distinc

tion, when it is not necessary to do so. 

A distribution <f,~> , which can be written in the for·rr1 

+oo --
(2.14) < f ,¢> -- f(x) ¢,(x)dx, 

_oo 

where the integral is a Lebesgue integral is called a regular distri

bution; all other distributions are called singular. E.g. the o-func-
' 

tion of Dirac is a singular distribution. 

Two distributions f 1 and f 2 are said to be equal, if for every test 

function$ the following relation holds: 

(2 .15) 

Two locally Lebesgue integrable functions, which are equal almost every

where, define the same distribution. 

A distribution f is equal to zero in a neighbourhood U of a point 
I 

if <f, <P> = 0 for any test function vanishing outside U. 

X , 
0 

' 
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A distribution f is equal to zero in a domain 

in some neighbourhood of every point of n. 
n of R , if f 

n 
• 1s zero 

By restricting a distribution to testfunctions with support in a 

neighbourhood of a certain point, we obtain information about the 

local behaviour of the distribution at that point. 

Also conversely, the global behaviour of a distribution is determined 

by its local behaviour. This follows from the lemma of the decomposi

tion of the unity. 

Dec?mpositio~ of the u~ity. Let there be given a locally finite cover

ing of Rn by neighbourhoods u1 ,u2 , ... ,Un,···, i.e. the whole space Rn 

is covered by the union of all neighbourhoods U., while every point of 
1 

R is covered by only a finite number of neighbourhoods. n 
00 

It is possible to construct C functions Ct. (x) 
m 

with the properties: 

a) 0 < a (x) < 1 

b) 

c) 

- m -

a (x) = 0 outside U (m=l ,2, .•• ) 
m m 

CX) 

m=l 
a (x) = 1. 

m 

Proof: see [6], Vol.I, Ch.I, §2, p.22 or [1] , Vol.I, Ch.I, App.1, 

p .. 143. 

Let us assume, that the local behaviour of the distribution f is known 

in every point of R ; this means, that every point x E.. R has a neigh-
n n 

bourhood V(x) with the property, that the values of <f,¢> are known 

for every~ with support in V(x). The system of neighbourhoods V(x) 

covers the whole space 

one can take from this 

R and according to the theorem of Heine-Borel n 
system a countable set of neighbourhoods 

lxl <pis covered by only a -
finite number of the neighbourhoods u1 ,u2 , ..• ,Um,··· • 

Applying the lemma, it is easily shown, that every test function belong

ing to Dor Smay be written in the form 

(2.16) cp (x) = lim 
M-+- oo 

M 

I 
m=l 

CX) 

m=l 
cp (x) , 

m 
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where¢ (x) = a (x) ¢(x) and where the limit is taken in the sense of 
m m 

the convergence as defined in D resp. S; the functions 

their support within 

Since 

(2 .17) 

u . 
m 

< f ,ct,> --
00 

I 
m=l 

< f ¢ > , m J 

¢ (x) 
m 

have 

it f'ollows that the value of <f,¢> is deterrr1ined by the local beha

viour of f in the neighbourhoods U (''recollernent des morceaux''). In 
m 

particular, it follows that a distribution, which is zero in a certain 

neighbourhood of every point x f. R , 
n 

is also the zero distribution,i.e. 

(2 .18) = 0 

for each¢. 

A point x is said to be an essential point of a distribution, when 
0 

there does not exist a neighbourhood of 

is equal to zero. The collection of all 

x in which the distribution 
0 

essential points is called the 

support of the distribution; e.g. the support of the 6-function of 

Dirac is a single point. 

3. Operations on distributions 

3.1. Operations on distributions in D' or S' 

In this section several operations, defined in a well-known way 

for functions, are generalized for distributions. 

The definitions are chosen in such a way as to preserve their classical 

mea~ing in case the operations are applied to distributions, which are 

at the same time also ordinary functions. 

Definitions 

a) Distributions are added according to the rule: 

(3.1) <f + f ,¢> = <f ,¢> + 
1 2 1 

b) Distributions can be multiplied by infinitely differentiable func

tions a(x); in the case of S', a(x) should be of finite algebraic 
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growth at infinity; we have the rule: 

(3.2) <af,¢,> -- < f, acp > , 

where a is the complex conjugate of a. 

c) For every set of n real numbers h = (h ,h , ••. ,h) a translation 
1 2 n 

of the distribution f(x) = f(x1 ,x2 , ••• ,xn) is defined by 

• 

or 

(3.3) <f(x-h), <P(x)> = <f(x), ¢(x+h)> • 

.. 
d) The reflection of a distribution f(x) is denoted by f(-x) and it 

satisfies the relation: 

(3 .4) <f(-x), ~(x)> = <f(x), q,(-x)> • 

e) The similarity transforiliation is defined by 

' Ct 

or 

(3.5) 

, ... ' 
X 

n 
a 

where a is some real number. 

A distribution is said to be homogeneous of degree A, if 

A 
f (ax) = a f (x) for each a> o, 

or what amounts to the same, if 

(3 .6) < f (x), A +n 
= a < £ (x) , <P (x)> • 

• 
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Hence 6(x) = c(x1 ,x2 , ••• ,xn) is homogeneous of degree -n. 

f) A general linear transfo1·1nation A of the independent variables 

x 1 ,x2 , ... ,x
0 

is applied to distributions according to the formula: 

(3.7) . 1 -1 

-1 
where A is the inverse transformation and jAJ the absolute value 

of the determinant of the transformation. 

g) A sequence of 

bution f, if 

distributions f, m=l,2, ... 
m converges to the distri-

(3. 8) lim 
m -+00 

<f ,¢> = <f,¢,> 
m for each test function <P • 

f is called the distributional or the weak limit of the sequence 

o~ the distributions f • It is 
m remarked, that when a sequence of 

distributions f E 
m 

< f ,¢> 
m 

converge 

D' or S' has the property, that the numbers 

for every ¢ e. D resp. S, then the limit, say 

f (cp) ' is also a distribution belonging to D' resp. S'. 

This fact is important enough to state it in a theorem. 

Theorem 1. The spaces D' and S' are complete with respect to weak con-

vergence. 

Proof: This theorem is usually proved by aid of the topological 

structure underlying the spaces D and Sand their duals D' and S'. 

However, a more elementary proof understandable for any reader, not 

familiar with the theory of topological vector spaces, is given by 

Gelfand and Shilov in [7] , Vol .I, Appendix, p.354. 

Examples (1 independent variable} 

(3.9) lim 
e: ➔ +O 

(3 .10) lim 
• t ➔ +O 

(3 .11) lim 
1 
7T 

1 
1T 2 2 

X +£ 
= o(x) 

1 
exp(-

2 
X 
4t) = c(x) 

• sin mx 
m 

= o (x). 

• 

• 



16 

h) The differentiation of distributions is defined as follows: 

(3.12) <af(x) , <P(x)> 
ax. 

1 

= - <f(x), acp > • ax. 
1 

The definition of the so called distributional derivative has some 

immediate consequences which are stated in the following two theo-

rems. 

Theorem 2. Every distribution is infinitely differentiable. 

For distributions in more variables one has always the relation 

(3.13) --

Proof: Follows immediately fron1 the definition (3 .12). 

Theorem 3. The operations of differentiation and passing to the limit 

may always be interchanged, i.e. lim 
m -+00 

(3 .14) 

Proof: lim 
m ➔ CX) 

af 
< m 
ax. 

1 

lim < 
m ➔ 00 

af 
m 

ax. , 
l 

= - lim 
m ► 

• 

<f 
m' 

f = f implies 
m 

a f 
ax. ,q, > 

1 
• 

> = - <f, -- <-ax. J 
1 

We give now some examples of the application of the distributional de

rivative to distributions of one independent variable; the resulting 

fo11nulae are easily verified and this is left to the reader. 

Examples 

1. 

(3.15) d0 (x) 
dx 

= o (x), 

where 0(x) is the unit-step function of Heaviside (see (1.5)). 

2. 

(3 .16) 

where the 

d 
dx log lxl = 1 , 

X 

1 
distribution xis defined as the Cauchy principal value of 

• 



3. The distribution 

(3 .17) 

and hence 

(3.18) 

4. Defining 

(3 .19) 

and 

(3 .20) 

-n 
X 

• is 

-n 
X 

-n 
X 
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4>(x) 
,_ .......... dx . 

X 
-<X> 

defined by the recursive relation 

- --
1 

n-1 

(-l)n-1 
-
- (n-1)~ 

d 
dx 

-n+l 
X 

n-1 
d 1 

, 

n-1 X • 
dx 

log(x + iO) = lim log(x+iy), 
y -+ +O 

1 
X ·t iO 

= lirn 
y -++O 

1 
• x+iy 

one finds by means of tl1e distributional derivative of log(x+iO) the 

result 

(3. 21) 
d 

dx log(x + iO) = 
1 

X + 
--iO 

1 
+ i 1T 6 (x) • 

X 

. 

3.2. Distributions and continuous functions 

The concept of the distributional derivative is not only a very 

useful tool in distribution calculus, it is also of essential import

ance for the relation between distributions and continuous functions. 

This relation reveals the true nature of distributions and it will be 

given in the next theorem. 

Theorem 4. Every distribution belonging to D' is in every domain Q of 

R with compact closure n equal to some distributional derivative of a 
n 

continuous function with support in an arbitrary neighbourhood of n. 
This may be expressed in a shorter way by saying that every distribu

tion out of D' is locally equal to a distributional derivative of a 

continuous function .. Hence for every f E. D' and every q,E-D, there exist 

a continuous function F and a non-negative integer m, such that 

• 
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+m 

(3.22) --
mn 

F(x) D ¢,(x)dx, 
-co 

with • 

Proof: A rather simple proof is given by Schwartz and Gelfand-Shilov, 

using the well-known representation theorem of Riess, valid for con

tinuous linear functionals, defined on the space of functions contin

uous in some fixed interval. Since some knowledge of the topological 

foundations of the theory of distributions is needed, we postpone the 

proof to section 10.3 of this chapter. See also [s],vol.I, Ch.III, 

§6, p.82 and [1] , Vol.II, Ch.I, §3, p.30. 

In the case of distributions in S' the 1·orn1ulation of the theorem 

should be a little bit modified. Then it runs as follows: 

bis 
Theorem 4 • Every distribution belonging to S' is a distributional 

derivative of a continuous function of finite algebraic growth at in

finity. 

Proof: See [2] , Vol.II, Ch.VII, §4, p.95 and [6], Vol.II, Ch.II, §4, 

p.92-97. 

A fo1·1nula analogous to (3 .22) holds of course again. 

Due to the validity of the latter theorem the distributions 

cal 1 ed '' tempered'' dis tri bu ti ons . For instance, the function 

of S' are 
r2 . 

e 1s not 

a distribution belonging to S', but it does belong to D'. With the aid 
bis 

of the theorems 4 and 4 one may finally prove the following state-

ment! 

Theorem 5. A distribution belonging to S' or D', which has its support 

in a single point x, is a finite linear combination of c(x-x) and 
0 0 

some of its 'derivatives. 

Proof: We give the proof only for the case of one independent variable 

x. For more independent variables the demonstration runs along more or 

less the same lines. 
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The distribution, say f(x), is the derivative of a certain order, say 

p+l, of a continuous function F(x). Hence 

f(x) = 
dp+l 

dxp+l 
F(x). 

Since f(x) vanishes for X>X 
0 

and x < x , F(x) 
0 

must be in 
• 

vals a polynomial of at most degree p; assume F(x) = 
x >x and F(x) = 

0 
q=O 

q q=O 
b (x-x ) for x < x , while a =b • 

q O O O 0 

Differentiating (p+l) times yields the required result 

(3 .23) 
p-1 

r<x> = I 
q=O 

with c = (a -b )(p-q)! 
q p-q p-q 

(q) 
c 6 (x-x ) 

q O ' 

3.3. Operations on distributions of Z' 

these inter

a (x-x )q for 
q 0 

Apart from some modifications operations on distributions belong

ing to Z' can be defined in an analogous way as for distributions be

longing to D' or S'. 

The operations of addition, translation, reflection, similarity trans

formation, taking the limit of a sequence of distributions and the dif-

ferentiation are defined as • 
1n the formulae (3.1), (3.3)- (3.5), (3. 8) 

and (3.12). The multiplication by a function h(z) = h(z1 ,z2 , •.. ,zn) is 

again defined as 

(3 .24) < h(z)g(z), \JJ (z)> = < g(z), h(z) tlJ (z) > • 

However, this definition implies that h(z) ~(z) should be again a test 

function out of Z, otherwise the right hand side of (3.24) is meaning

less. 

Therefore h(z) should be an analytic function, satisfying an inequal

ity of the form 

' 
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(3. 25) • 

where C, b. and q. are arbitrary real constants. 
l. 1 

Every distribution belonging to Z' is not only infinitely dif

ferentiable, but it is also an analytic distribution. This means, in 

the case of one independent variable, that any distribution g(z) ~ Z' 

s a ti sf i es the f o 1·111 u 1 a 

00 

(3.26) g(z+h) = 
m=O m ! ' 

where his an arbitrary complex constant. 

The proof is simple and can be found by applying the rule of differ-

entiation; namely, 
00 

< 
m=O 

M 

we may write 

hm 
. ,,. ( z) > = 

m ! . '+' 
lim 

M-+ oo 

~1 

m=O 

(n1) ( ) <g z 

lim 
M ➔ 00 

l <g(z}, 
m! 

(111) ( ) 
\JJ. z>= < g ( z ) , tµ ( z -11 ) > = 

m=O 

= <g(z+h), ~(z)> . 

--

For the case of more independent variables a formula analogous to 

(3.26) holds and the proof runs along the same lines. 

4. Regularization of functions with algebraic singularities 

Consider a function f(x) which has a non integrable singularity 

in only a finite set of isolated points. A regularization of this func

tion f(x) is a distribution with the property, that for test functions 

~(x) with support not containing any of the singular points, it is de

fined by the integral 
• 

(4 .1) f {x) <P (x) dx. 
. ' • 
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A regularization is, in case it exists, uniquely dete1·1r1ined apart 

from a linear combination of o-functions and their derivatives con

centrated at the singular points of f(x). · 

In this section a particular regularization will be given of 

functions f(x) of one 

gularity; e.g. f(x) = 

independent variable and with an algebraic sin
). 

x with ). complex and Re A < -1. 

Let us take the function of one variable x~, defined as 

,\ 
for X>O X 

(4.2) ). 
X+ --•« 

0 for-x<O, -

where). is a complex parameter. 

This function defines for Re A > -1 a regular distribution, viz. 

(4.3) A 
<x , q>(x)> = 

+ 
A 

x ¢ (x) dx. 
0 

The distribution def'ined i·or values of A with Re A < -1 by ana-

lytical continuation of (4.3) with respect to X. 

Hence for Re,\ >-2 and Ai-1 one obtains the formula 

(4.4) " <x , 
+ 

4> (x) > --
I 

1 

0 

A 
X {¢(x)- qi(O)} dx 

00 

>.. 
+ X 

1 

,..,_(x)d.x + ¢(0) 
'+' X+l. , 

and more generally for Re A > -n-1 and A ~-1, -2, •.• , -n. 

A 
1 

). 
(4. 5) ¢ (x) > {4>(x)- ¢(0)-x 4>' (0) ••• <x, - X --+ 

0 n-1 
¢,(n-l)(O)}dx X - (n-1.) ! 

+ 
). 

x ti>(x)dx + 
1 

n 

k=l 

cp (k-1) (O) 

(k-l)!(A+k) • 

In the strip -n-1 < Re <-n we have the result 
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(4.6) .X 
<x , cp(x)> = 

+ 
x A { cp (x) - cp (0)-x 4>' (0)- ..• -

n-1 
X 

(n-1)! 
'tl(n-1) (O)} dx • 

Jo 
The function <xA, ¢> is an analytic function of the complex variable .:\ , 

+ 
having simple poles in the points A =-k (k=l, 2, ... ) with residue 

~(k-1)(0) . A 
(k-l)! . This may be expressed by saying that the distribution x+ 

has for A=-k a simple pole with residue 

( 4 7) _;..____ k=l ,2,... . 
. (k-1)! 

It follows from the principle 
A 

dx 
+ 

of analytic continuation that 

{4. 8) dx 
A-1 

= Ax 
+ • 

In the same way the distributions 
). 

x may be defined; this distribution -
corresponds for Re A>-1 with the function 

IX I 
,\ 

for x < 0 

(4. 9) X ---
0 forx~O. 

,. , Moreover, we have also the relation 

A • 
(4.10) <x, <P(x)> = 

). 
<x , 

+ 
cp(-x)> . -

By means 

those of 

From the 

Ix I A and 

of this 
A 

relation the prOJlerties of >.. 
X are easily derived from -

X . 
+ 

distributions 
A x and 
+ 

). 
X one can form the new distributions 

lxlA sign x, defined 

(4.11) 

( 4 .12) 

-
as 

). 
X 

+ 
). 

+ X -

sign x = 
>. 

The distribution lxl has simple poles 
5(2k)(x) , 

with residues 2 (2k)~ ; the poles of 

in the points A=-2n, (n=l,2, ... ). Hence 

A 
X 

+ 
>.. 

- X - • 

for A= -(2k+l) (k=0,1,2, ..• ) 

xA and xA cancel each other 
+ -

the IXI A 
distribution has a 

meaning for values of A equal to -2n and it is writ ten as x - 2n. 

poles for ).=-2k (k=l,2, ... ) 
. . o( k-l)(x) 

and xA cancel now each -
other in the points A=-(2n+l), (n=0,1,2, ... ) and so the distribution 
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Ix I A sign x has a meaning for values of >. equal to - (2n+l); it is 
-(2n+l) 

written as x . 

Therefore the distribution 
-n 

X is defined for all integer values of n; 

moreover we have the relation 

( 4 .. 13) 
d 

dx 
-n 

X 

• 

-n-1 
= -nx 

which is in agreement with formula (3.17) of 

sidering the distributions 

the foregoing section. 

may be no1·1nalized by con-

(4.14) and 
lx!Asign x 

, X 
(2) ! 

• 

These no1·111al ized dis tri l>u ti ons have the property tl1a t their '' function-
xA 

tt + ) al values (e.g.<i1 , ¢(x > are entire functions of the complex varia-

ble .X. 

For instance we have the f 01·1nu lae 
). ). 

X 
o(n-l)(x) 

X 
+ -

(4 .15) and -
" ! 

- .l. ' 
).=-n • .X=-n 

Other important combinations of the distributions 

distributions 
A 

--

.l. 
X 

+ 

(4.16) (x + iO)). = lim 
y -++0 

( 2 2)2 i.A 
X +y e 

arg(x+iy) 

). 

(-l)n-

and A 
X -

(n-l)(x) • 

are the 

>.. ±i >. n >.. 
= X + e X 

+ -

By expanding <x ,~> 
+ 

and 
+iATr ,\ 

<e·- X , ¢,> in a Laurent-series in the -
neighbourhood of the pole A=-n (n=l,2, ... ), one finds again that the 

• 

poles occurring in both terxns of the right hand side of (4.16) cancel 

each other. In this way one obtains the result 

(4.17) -n 
(x + iO) 

-n 
= X o(n-l)(x). 

The method of analytical continuation, which has been used in this 

section for defining integrals of functions with non integrable alge-
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braic singularities, plays an important role in the calculus of dis

tributions; it was already discovered by J. Hadamard, when he intro

duced the concept of the ''finite'' part of an integral ( [20] , Book III, 

Ch.I, section 2). The principle of analytical continuation will also 

be applied in order to define distributions which correspond to func

tions of several independent variables with algebraic singularities 

(see section 8 and Chapter IV, section 3). 

5. The convolution of distributions 

• Let g(x) be some distribution belonging to D' or S'. To any test-

function ~(x)~ Dor S one may apply the operator g*, which is called 

the convolution of g and¢ and which is defined by 

(5.1) 

The distribution g(x) is called a convolutor, if g* is a continuous 

linear operator in D respectively S. This means that ¢ ~ D or S implies 

g* ¢tD resp.Sand¢ -+ 0 in Dor S implies g*¢ ➔ 0 in D resp. S. 
m m 

The adjoint operator in D' or S' defines tl1e convolution in D' or S'. 

Hence the convolution of a distribution f(x) with the convolutor g(x) 

is given by 

(5.2) 

or more explicitly 

(5. 3) <f(x)*g(x), ¢i(x)> = <f(x), <g(,)., q>(x+f;)>> • 

It follows immediately, that., when g is a convolutor, also 

convolutor and one has the relation 

(5.4) 
a 

ax. 
J. 

f * 
ag 

ax. 
J. 

• 

a g 
ax. 

J. 

• 
l.S a 

Theorem 6. Every distribution with bounded support belonging to D' or 

sr is a convolutor • 



25 

Proof: According to theorem 4 and 4bis we may write the function 

'1J (x) = g(x) * ¢> (x) in the fo1-m 

V 

' 

where G(E,.) is a continuous function, Va bounded region of R, con
n 

taining the support of g(x), and ¢(p) a derivative of order p of the 

testfunction ¢(x). 

From this equation it follows easily, that the operation 

tinuous linear mapping of D (or S) into itself . 

. ~xample 

6(x) is a convolutor and one has tl1c relation 

(5.6) f(x) * a(x) = f(x). 

is a con-

It is possible to defi11e tl1c co11volt1tion product of two distributions, 

which are not both convolutors in the strict sense as given above. 

These distributions, say f'(x} a11d g(x), shottld then be subjected to one 

of the following conditions: 

1. The support off or g is bounded; 

2. The intersection of the supports of f(J,) and g(x-~) is bounded for 

each x. 

The convolution is again defined by formula (5.2); however, the func

tion g(x) _. ¢ (x) need not to be a test function, but by virtue of tne 

conditions 1 or 2 it may be made a test function with the aid of a suit

able cut-off factor. The following useful fo1·1nulae hold for the convo

lution product 

(5.7) 

(5.8) 

(5.9) 

(f ~ g) * h = f * (g * h) 1 

X. 
1 

af 
= "' * g. 

{JX. 
l. 
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Proof: Acco.rdi ng to theorem 4 and 
bis 

4 we may write 

~nere F(x) and G(x) are continuous functions 

differentiations of order p respectively q. 

and D(p) and D(q) denote 

Therefore, 

<f(x)* g(x), ¢(x)>= <f(x), <g((), ¢(x+~)>> = 

<g((), ¢,(x+~)> dx = 

p = {-1) . 
-1\110 

-m 

F(x) 

F(x)dx G( F,) 
-00 

Application of Fubini's theorem yields 

( ) ( ) A ( ) :::::: (-1} p+Q <f X * g X , '+' X > F(x) 
_00 _oo 

-00 

= < g(x) * f (x), <P (x) > , and hence f (x) ~ g(x) = g(x) ~ f (x). 

The second for1nula (5. 8) fol lows immediately from the definition 

(5.3), while the third one (5.9) may be derived from the equations 

(5.4) and (5.7). 

The convolution·operator is not only a continuous operator in the 

space of test functions, but also in the space of distributions. This 

is expressed in the following theorem. 

Theorem 7. If a sequence of distributions 

the distribution f, then also the sequence 

S' to the distribution f * g, if one of the 

satisfied: 

f converges in D' or S' to 
m 
f ~ g converges in D' resp. 
m 

following conditions is 
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1. The distributions f have a uniformly bounded support. 
m 

2. The distribution g has a bounded support. 

3. The intersections of the supports off(') and g(x-~) are bounded 
m 

uniformly with respect tom for every x. 

Proof! lim <f * g,cp > == lim <f , g * ¢>= <f ,g * ¢> = <f * g,¢> 
ffi ➔ ao m m-+oo m • 

This theorem has an important consequence, which will be given in the 

next theorem. 

Theorem 8. Each distribution out of D' or S' may be obtained as the 

limit of a sequence of test functions belonging to D. 

Proof: Consider the sequence of 

the for1r1ula 
• 

(5 .10) 

1 
exp( 

K 
(x) <Pm - m m -

0 

m 

2 

test functions ¢ (x) E. D, 
m 

2 2 
r 
2 

r -1 
) for r = 

for 1 
r~

m 

with K 
m 

--
2 2 

m r 
exp( 

2 2 ) dx; m=l , 2, . . . . 

r,m -1 m r -1 

defined by 

It is obvious that the sequence{¢ (x)} has the distributional limit 
m 

o(x). Therefore, according to theorem 7, every distribution f(x)~ D' or 

S' satisfies the relation 

(5 .11) f (x) = lim ¢ (x) * f (x) . 
m-+a, m 

CXl 

The functions lJ; (x) = ¢ (x) * f (x) are C functions; in traducing finally m m 
the infinitely differentiable cut-off factor e(x), which is identically 

1 for r < 1 and which vanishes for r > 2, the functions e (x) tJJ (x) (with 
m m 

m=l,2, ••• ) constitute a sequence of tes1: .. functions out of D', which 
' 

meets the requirements of the theorem. 

It may be· remarked that Sobolev constructed already in 1936 the 

same sequence of functions¢ (x) in order to obtain a sequence of . rn 

smooth functions converging weakly to an arbitrary integrable function 
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Ex am e_ l e 
I I lidf1L ; o HI& iJO 

Let us consider the integral equation of Abel, • • viz •. 

X 

(5.12) g(x) 
0 • 

with x > 0 and O < et < 1 • 

As is well known, the solution of this equation is given by the 

expression: 

(5.13) f(x) 
1 -- (et-1)! 

X 

0 

( [ 21] , p. 229) . 

Considering the functions f and gas distributions, the solution (5.13) 

:follows very easily from (5.12) and also the restriction O <ex< 1 can 

be released. For this purpose we introduce tl1e distribution of one in

dependent variable ~.>,.(x), defined as: 

(5.14) 

).-1 
X 

+ 
.p 11 (x) = ().-1) ~ ' 

where A is an arbitrary complex number (see section 4). 

These distributions enjoy the following properties: 

(5.15) 

(5.16) d $ ¢ 
dx ). = A -1 ' 

(5.17) n=O, 1, 2, . . . . 

• 
The relations (5.16) and (5.17) follow from the theory of section 4; 

the relation (5.15) may be verified by proving it first for Re A> O 

and Re u > 0 and applying consecutively the principle of analytical 

continuation. 

Abels integral equation, in generalized form, may now be written 

as: • 

(5.18) g(x) = f (x) ~ 4l
1

_
0

, 

• 
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where a. may be any arbitrary complex number. 

Taking the convolution of both sides of the equation (5.18) with the 

distribution¢ 
1

, we obtain immediately 
a-

(5 .19) f(x) = g(x)*<l.> a-1 
- dg 
- dx 

which is a gep.eralization of the solution (5.13). 

It will appear in section 10, that the distributions ~A with the pro

perties (5.15) - (5.17) can be generalized to distributions in more 

variables. 

6. The Fourier transformation 

6.1. General theory 

Let ¢ (x) be a test function of D and vanishing for Ix.I> a., 
1 1 

i=l , 2, ... , n. 

Its Fourier transform is defined bv -
+a 

(6.1) tJ; ( s ) ::::"' · F (x)] -- , 
-a 

withs~= s 1 ~1 + s 2 ~2 + ... +sn,n ands= o+i1 . 

After some considerations, involving only classical analysis, it fol-

lows from (6.1), that tJJ(s) belongs to the space Zand, moreover, when 

~(x) ➔ 0 in D then also ~(s) ➔ O in Z. 

Conversely, we have the inverse transformation 

(6 .2) 
1 -icrx 

e lJ; (cr)dcr , 
-00 

with ox= o
1

x
1

+ ••• +o x ; it follows that ~(s) ➔ 0 in Z implies 
. n n 

~{x) ➔ 0 in D. Hence the Fourier transformation is a continuous linear 

1-1 mapping of D onto Zand conversely. 

Let ¢(x) now belong to the space Sand consider its Fourier trans

fo11n 
+oo • 

(6.3) \JJ (a) = F [¢ (x)J == 
l.OX 

e q, (x) dx, 
-(lO 
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0 X · n n' 
The inverse transfor1na tion is given by 

(6.4) 1 

are real. 

-iOx 
e \l; (0) d·O • 

Using the definition (6.3) and (6.4) it is not difficult to show, that 

the Fourier transformation and its inverse are also continuous linear 

1-1 mappings of S onto itself. 

The Fourier transfo1·1n of a test function¢ will also be denoted by the 
-

symbol¢. 

-The Fourier transform F [f] 

by Parseval's equality, viz. 

or f of a distribution ft. D' is defined 

(6. 5) <f(x), ¢,(x)> = 1 -<f(s), 
-
¢(s)> ' 

~ -where ¢ (s) e. Z and f (s) E. Z' . 

The Fourier transfon11 of distributions of S' are defined in the same 

way: 

(6.6) <f(x), <i>(x)> = 1 ... 
<f(o), -¢(0)> J 

where ¢(0) and f(o) belong again to S respectively S'. 

It is clear, that these definitions are in accordance with the classic

al theory in case, that f(x) is an absolutely integrable function. 

Therefore the Fourier transformation, as defined by (6.5) or (6.6) for 

distributions, generalizes the operator of the Fourier transformation 

for functions which are no longer absolutely integrable. 

Let {f (x)} be a sequence, which converges in D' or S' to the dis-. 
m 

tribution f. It follows from (6.5) and (6.6), that now also these-
. -

quence {f} converges in Z' or respectively S' to the distribution f. 
m 

Also the converse is true, namely 

the following important theorem: 

- .. 
f -+ f implies 

m 
f -+ 

m 
f. Hence we have 

Theorem 9. The Fourier transformation is a continuous linear 1-1 map

ping of the spaces D,S,D' and S 1 onto respectively the spaces Z,S,Z' 

\ 

• 
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and s 1 ; the same is true for the inverse transrormation. 

For all test functions belonging to D we have the following well

known relations 

(6. 7) F 
n 

(6. 8) 
a 

' as 
2 

, 

where P(x
1

,x
2

, ... ,xn) is an arbitrary polynomial inn independent 

variables. By transposition we obtain for distributions of D' the same 

results, 

(6 .. 9) 

(6.10) F 

• 
Vl.Z. 

a 
, c)x 

2 

a 
, ••• , c,X )f(x)J 

n 

, . . . , a )F 
as n 

f (x}] 

f (x)J 

For test functions and distributions of Sand S' one has oi course the 

same formulae, if one replaces the complex variables by a real varia

ble, say o. 

Examples(for distributions in one independent variable). 

Using the definition (6.5) and the rules (6.9) and (6.10) one verifies 

easily the fol lowing fo1·1r1ulae 

(6 .11) F [o (x)] = 1 

(6 .12) F [1] = 2n6 (s) 

(6.13) 

(6.14) 

F [P(x)] 

F 

d = 2n P(-i ds) o(s) 

c5 (x)] = P(-is). 

6.2. The structure of distributions belonging to Z' 

The distributions in D' and Z' are related to each other by Par

seval's rule (6.5). Hence it follows, that the properties of the dis

tributions in Z' are completely determined by those in D'. In this 

section the structure of the distributions in Z' will be derived from 

• 

\ 

• 
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the fact, that every distribution in D' is the derivative of a con

tinuous function. 

Every distribution g{s)~ Z' may be represented as follows 

(6.15) <g(s), 1.jJ(S)> 
n 

= (2n) <f(x), 

where f (x) = F -l [g( s)J , ¢> (x) 
-1 

= F 

with F(x) continuous; Vis a finite region 

(m) 
F(x)D ¢ (x) dx, 

V 

m (m) 
and f(x) = (-1) D F(x) 

in R containing the sup

port of $(x). Instead 
(m) 

of D ¢(x) = 
am n 

~(x) we may write 

(6.16) 

• • • 0 
n 

m 
n 

1 

R 
n 

a o a ' l' 2, ... , n 

m -iax 
(-ia) iµ(o)e ctcr , 

are real. 

Substitution of (6.16) into (6.15) and application of Fubini's theorem 

yields 

(6.17) <g(s), iµ(s)> --
R 

n 

• -1.ax 
e F(x)dx. 

V 

The function G(o) = 
·a 

e 1 x F(x)dx is a bounded analytic function of a, 
• 

which can be continueX analytically in the whole complex n-dimensional 

space C • 
n 

Hence we obtain the result 

(6 .18) <g(s), i.J;(S)> --
R 

n 

H(a) iµ(cr) do , 

where H(a) = (ia)m G(o) is an analytic function of a, which is of fi

nite algebraic growth at infinity and which can be continued analytic-

ally in the whole space C. 
n 

Thus we have the theorem 

Theorem 10. Every distribution in the space Z' may be written in the 

fonn: 

(6.19) <g(s), t/J(s) > = 
R 

n 

H(cr) ~(a)ctcr = <H(cr), ~(cr)>, 
• 
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where H(s) = H(a+iT) is an entire complex function of sand H(o) 

of finite algebraic growth for lol ➔ 00 • 

6.3. The Fourier transform of distributions with compact support 

• 
1S 

The Fourier transform f(a) of a distribution f(x)~ S' with bound

ed support V may be represented as follows: 

(6. 20) <f(o), ¢(a)>= (2n)n <f(x), ¢(x)> = 

V 

where F(x) is a continuous function. 

Substituting again 

1 

we obtain 

R 
n 

(m) 
F(x) D q,(x)dx, 

• - -iax 
¢(o)e do , 

(6.21) iO'X 
e F(x) dx. 

V 

= reiO We introduce now a test function ¢(x) ~ 

e 

= 0 

• 
10X 

for x ~ V, and 

for x V+E , 

where V+£ is an arbitrary neighbourhood of V. 

, defined as 

With this convention (6 .21) may be written in the fo.t·1n 

• 

(6.22) F [f(x)] = ) [elO 
= <f(x, > -

Hence we may state the theorem: 
' 

• 

Theorem 11. A distribution f{x), belonging to S' and having bounded 
-

support, has a Fourier transform f(o), which may be written as! 

• 
- -~ 10 
f (o) = < f (x) , [ e > • 

• 

This Fourier transform is an analytical function of o, which is of 

finite algebraic growth for Io I-+- (X) and which can be continued analytic-
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C " n 
The analvtic.al continuation is the entire function: 

V 

(6.23) l<s> '----·· -= <f(x), 
is [e 

withs::: o+ it . 

n1e result (6 .23) 1.s of course also valid for distributions with 
• 

bounded suppt)rt, which belong to D • . 

Or1e of the very useful properties of the Fourier transfo1·1nation 

is, that in the case of two square integrable functions convolution 

is transformed into multiplication and vice versa. 

This property holds also in the case of two distributions, for which 

the convolution or the multiplication may be performed. 

A function f(x) is called a multiplicator in S' (or D'), if for 

every test function Q (x} 4 S (or D) the function f (x) <P (x) also b_elongs 
-

to S (or D), while f. ♦ + O in S (or D), 
m 

An example of a multiplicator in S 1 is a 

braic growth at infinity. 

whenever¢ 
m 

➔ 0 in S (or D). 
(ll) 

C function of finite alge-

Consider a distribution f (x) £. S' with compact support; according 

to theorem 6 the distribution f(x) is a convolutor and according to 
-

theorem 11 its Fourier transform f(a) is a multiplicator. Moreover, by 

applying Parseval's rule one obtains 

or 

(6.24) 

1 
n 

(2rr) 

-ixo 
e 

.. 
<f(o), 

-ixo -
e $(a)>= 

F [f(x) * ♦ (x) = f(o)•$(o). 

Hence for every distributi.on g(x)€.S 1
, we have the relation 
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<g(x) * f (x), ¢ (x) > = <g(x), f (x) * 4> (x) --

1 -<g(o) 
~ 
f(o), , or 

(6. 25) 

This fo1·1nula shows, that the Fourier transformation transfonr,s con

volution into multiplication, if the convolutor is a distribution of 

bounded support. 

Conversely, let us consider now a function f(x), which is a multipli

ca tor in S' ; it fol lows, that f (x) • ¢(x) is a test function in S, when-
• 

ever ¢(x)i S. Therefore, we may write 

F[ f (x) ¢ (x)] = 
ixO 

e f (x) 4> (x) dx 
ixO 

= <f(x), e ¢(x)> = 

1 -- -<f(O'), -¢ (o+o' )> , or 

(6.26) F[f(x) ¢(x)] = 
1 - -

f (o) * ¢> (a) . 

·Hence for every distribution g(x) E. S' we get the relation 

<g(x) f(x), ¢>(x)> = <g(x), f(x) ¢(x)> = 

1 -- -<g(a), 1 - -f(O)*¢(a)> = 

1 --
(2n)2n 

- .... -
< g(o) * f (o), ¢(a)> , or 

(6.27) F [g (x) f (x)] = 
1 

g(cr)*f(a). 

This fo11nula shows, that the Fourier transformation transforrns always 

multiplication into convolution. 

Analogous results hold also for distributions in D'. 

Sununarizing, we have obtained the theorem 

• 
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Theorem 12. If f(x) is a convolutor of bounded support, then its 

Fourier transform is a multiplicator and we have the relation 

F [f * • 

If f(x) is a multiplicator, then its Fourier transfor111 is a convolutor 

and we have the relation 

F [f • g] = 
1 

(27T) ll 

In general not all distributions are multiplicators and so in 

general w,e cannot multiply distributions [22] . This is reflected in 

the space of the Fourier transforms; not all distributions are convo

lutors and so we cannot always form the convolution product of two ar-

bitrary distributions. 

However, in practical calculations, such as e.g. in electrodynamics, 

multiplications of distributions occur; the formal Fourier transfo11ns 

of these products give rise to the appearance of convolution integrals 

which diverge (see chapter V). 

For a more profound treatment of the connection of convolution and mul-

tiplication the reader is referred to[~ , Vol.II, ch. VII, 

and §8, p. 124. 

6.5. Some examples of Fourier transforms 

§5, p.99 

In section 4 we have treated distributions corresponding with func

tions with an algebraic singularity. Their Fourier transfo1·1ns are given 

in this section; the results are equally valid, whether they are con

sidered as distributions in D 1 or S'. The proofs are omitted; they may 

be fourfcl1in [7] , Vol.I, ch.II., §2, p.167-171. 
X A .A1T 

. 
1 2 -A-1 

F -- 1 e (o+iO) , 

X A -i).1T 

• 

• 

= 
1 + no (a), 
a 

--
. m 
l. 1T 

(m-1)! 
m-1 

a sign.a , m=l, 2, . . . . 

• 
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7. Distributions on surfaces 

Distributions concentrated on hypersurfaces inn-dimensional 
• Euclidean space are very important for the applications, as will ap-

pear later in sections 8 and 9 of this chapter and in chapter IV. We 

introduce these distributions using an elegant method due to 

R. T. Seeley [23] • 

The distribution 8(P) is defined as 

(7.1) <e(P), ¢(x)> = Q>(x)dx, 
p> 0 

00 

is some surface in R 
n 

and Pis a C function 

) nowhere zero on {P=O} • 
1 x2 axn 

a P 

The distribution 6(P) is now introduced with the aid of the distribu-

tion 8(P), viz. 

(7.2) 
1 

<6 (P), ¢ (x)> = lim - <8(P+c) - 8(P), ¢ (x)> 
C 

c ➔ 0 

. 

--

lim 
1 

¢ (x
1

, x
2 

, •.• , x ) dx
1 

ctx
2 

••. dx . 
-c < p < 0 n n 

The ~xistence of this limit presents no difficulty, since we may 

write for the latter integral (see fig.1) 

• 

(7 .. 3) <cS (P), ct, (x)> = lim 
1 
C 

C ➔ 0 

where do is the surfa·ce measure on {P=O} and 
da 

dx1 dx2 • • . dxn = YdO = c,. j VPI . 

P=O Examples 

l'vPj = ✓('vP,VP) ;6. O· 
J 

do 
VP 

, 

,___.---- P=-C 1. Consider the distribution o(x 2
-r

2
), where 

2 2 2 2 . o 
r = x

1 
+x

2 
+x

3 
and x

0 
is some parameter. 

fig.1 

x
1

,x
2

,x
3 

may be regarded as space coordi-

.. 
time. Hence 

coordinates 

nates and x as a parameter, denoting the 
2 2 o 

o(x -r) is concentrated on a sphere in 
0 

x. = rw. (i=l,2,3), we obtain do= r
2 dn 

1 1 

• 
R3 • Using polar 

with dO the sur-

face element of the unit sphere in R3 and I 'vpl = 2r. 

• 

' 



Substitution into (9.3) yields 

(7 .. 4) 
2 2 

<6(x -r ) 
0 ' 

2. Consider the 4-dimensional 
2 2 2 2 2 
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--

distribution 
2 2 

6(x -m ) where 

x = x
0 

-x1 -x2 -x3 and m 

ed as space coordinates and x 
0 

is some constant.x1 ,x2 ,x3 
as time coordinate. This 

may be regard

distribution 

is concentrated on a hyperboloid 

again spherical 

hence 

coordinates x. = 
2 1 

= r dr dQ • 

in R
4

• Instead of 

r w. 
1 

(i=l,2,3) with r = 

Instead of x we take the new coordinate p = X 
0 

2 2 2 
-r -m and thus 

o 2 2 - 2 
dP drl . The distribution 9(P) can 

be writ ten as 

<8(P), (JJ(X)> = I 2 2 -½ 2 ( P+ r +m ) r ¢ dr dP drl · • 
P>O -

Hence 

now 

C 2C dP du · 7 

-c < P < 0 -
after taking the limit with c ➔ 0 we obtain finally: 

--
0 

0 

2 2 
<o(x -m ), ¢(x)> = ½ 

2 2 
X -m =0 

Performing the integration with respect to dQ we get 

. 2 2 
(7.5) <o(x -m ), $(x)> = 

-where q,(r,x) = 
0 

0 

2 2 -½ 2 (r +m) r 

2 2 -½ 2 
(r +m) r 

¢(r,+ 2 2 
r +m )dr + 

q>(r,- 2 2 
r +m )dr, 

• 
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i.e. ,(r,x) is, apart from a constant, the mean value of¢ on a 
0 

sphet"e with radius r in (x1 ,x2 ,x3 )-space. 

If in (7.5) we take the limit form ➔ O, we obtain a distribution con-

''1· ht '' 2 2 . centrated on the 1g cone x = r , viz. 
0 

- -
(7 .. 6) 

2 
<o(x ), ¢;(x)> = r ¢,(r,+r)dr + ! r q>(r,-r)dr. 

0 0 

2 2 2 2 
The distributions 6 (x -m) and 6 (x -m ), which are concentrated only 

+ - 2 2 
on the upper respectively the lower sheet of the hyperboloid x -m =0, 

are given by the for1nulae 
00 

(7.7) 
2 2 cp (x) > 

2 2 -½ 2 - 2 2 <o (x -m ), - (r +m) r ¢(r,+ r +m )dr, -+ 0 

and 
00 

2 2 2 2 -½ 2 2 2 
(7. 8) <6 $(x)> <P(r,-(x -m ) , - (r +m) r r +m )dr. -- 0 

2 
The distribution 6(x) can be splitted in the same way into two dis-

~ ( 2 ) d .r (x2 ) , hi h tributions ~ x an u w c are concentrated on the forward 
+ -

I t I I 

respectively backward light cone ; they are given by the expressions 

00 

<6 (x
2 ), (7. 9) ¢(x)> - i r ¢(r,+r)dr, -

+ 
0 

and 
00 

2 
(7 .10) <6 c;i (x) > ¢(r,-r)dr. (x ) ' - r --

0 

The derivatives 6(k)(P) of the distribution o(P) are defined by 

the rule 

(7.11) lim c o (P+c)-o (P)], k=0,1,2, •••• 
C -+ 0 

Example 

We calculate the first derivative of the three-dimensional distribution 
2 2 

o(x -r ), where x is considered as a parameter. 
0 0 



• 

• 

• 

(7.12) 

(1) 2 2 . <o (x -r ),$> 
0 

--

lim 
C -+- 0 

--

1 { 
C 

2 
X +c •ql ( 

0 
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2 
x

0 
+c • w

2
, 

2 
X +C • W ) -

0 3 

--

• 

The with respect to one of 

the independent variables 

(7.13) • ax. 
l. 

x. is given by the chain 
l. 

a P 
ax . 

l. 

rule 

• 

It follows from (7.3) that P o(P) = O; repeated differentiation of this 

equation with respect to P yields the useful for111ula 

(7.14) 
(k)· (k-1) 

P 6 (P) = -k 6 (P), k=0,1,2, .•.• 

8. Regularization of functions of several independent variables with an 

algebraic singularity 

8.1. The distributions rA 

.In section 4 we studied the regularization of functions of one 

variable with an algebraic singularity; this led to the introduction 

of 

In this section we consider a generalization in so far as we deal now 

with the regularization of functions of more variables. 

A first example is the function rA with r 

gularization of this function is given by 

for Re X>-n by the integral 

2 2 2 
= xl +x2 + ••• +xn. 

the distribution rA 

(8.1) 
A 

r ¢> (x) dx. 
R 

n 

The re-

' 'defined 

• 

• 
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A 
For values of A with ReA < -n the distribution r is defined by the 

analytical continuation of 
A 

<r ,¢> 

pose we write (8 .1) in the fo1·111 

(8.2) 
A 

<r ,¢> = n 
n 

co 

0 

with respect to A. For this pur-

A+n-1 
r Sq>(r)dr, 

where S~(r) is the mean value of the function ¢(x) on the surface of 

a sphere in 

of the unit 

R with center in the origin and radius 
n 

sphere in R • 
n 

r· Q ' n is the area 

The analytical continuation region ReA< -n pro-

ceeds now in more or less the same way as in section 4. We omit the 

details of the calculations; for this the reader is referred to [7] , 
Vol.I, ch.I, §3.9, p.78. 

The result is that the distribution <r>.. 1 4>> can be defined in the whole 

complex A-plane with the exception of the points A=~n-2k (k~0,1,2, ... ), 
A 

where <r ,~> has simple poles with residues 

(8.3) 

The distributions 

(8.4) 

Q 
n 

S (2k) (0) 
4> 

(2k) ! • 

A 
r may be nor1nalized by introducing 

A+n-2), • 
2 • 

• 

The functional 

tain the for1r1ula 

A 
<R ,¢> is an entire function of).; using (8.3) we ob-

(8.5) 
-n 

R = 6 (x). 

By repeated application of the Laplace operator ~, it can easily be 

verified, that 

(8.6) 
k A 

2 (.'.\+2)(A+4) •.. (A+2k)R 

and hence 

' 

• 



(8.7) 
-n-2k 

R --
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k (+2) n(n+2) ••.. (n+2k-2) 

8.2. The distributions of Marcel Riesz 

(8.8) 

Consider in R the hyperbolic distance 
n 

P= 

2 2 
x2 + •.• +xn • 

.. 

As to the applications it may be illustrative to consider in this sec-

tion x1 as the time 
A 

The distribution P 

coordinate and x
2

, •.• ,xn as the space coordinates. 

with ReA > -2 is defined with the aid of the inte-

gral 

. .:\ . 
P 9 (x) dx. (8.9) 

P~O 

For values of A with Re A,-2 the distribution PA is again defined by 

the method of analytical continuation. 

This case is a little bit more complicated than that of the preceding 
>. 

section, since p with ReA < 0 is singular on the whole forward "light 
" 2 2 cone x1 = x2 + .•• +xn. 

We restrict our treatment by giving here again only the results of the 

calculations, for which the reader is referred to , Vol.I, ch.II, 

§ 3, p.49, [6] 1 Vol.II, ch.VI, §5, p.32 and [7], Vol.I, ch.III, §2, 
• A 

p.236. The functional <p ,~> , considered as function of A, is analyt-

ic in>. for all complex values of>. with the exception of the following 

values! 

1. A= -2k (k=l,2, •.. ), 

2. A= -n-2k (k=0,1,2, ..• ). 

For n even, it is possible that A belongs to both sequences; in that 

case A=-n-2k is a pole of the second order of <pA,¢> ; in the other 
A cases the points A=-2k and A=-n-2k are simple poles of <p ,~> . 
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a) For n odd and for n even with A> -n the residue of 

simple poles A=-2k equals 

(8.10) 
>.. 

Res <p , 

A=-2k 

(-l)k-1 

(k-1)! 

• 

< 6 (k-1) (p) 
+ ' 

• 

I\ 
<p ,¢> • in the 

2 2 2 
with P = x

1 
-x2 •.. -xn; c+(P) is the surface distribution, concentra-

2 2 
ted on x1 ; + x 2 + ... +xn , see section 7 . 

• 

>. 
b) For n odd the residue of <p , ¢> in the simple poles :\.=-n-2k is 

(8.11) 
. A 

Res <p , ¢> 
A=-n-2k 

n+2k-l n 

(-1) 2 TI 2 
--

where D is the wave operator -
a2 

ax 2 
1 

+ 
2 a 

c) For n even with A < -n - the singularities 

,sequences 1 and 2. In this case A 
<p ,¢> 

k 
< □ o(x) ,4>> 

+ • . • + 
2 a 

ax n 

2 . 

, 

>-=-n-2k belong to both 

has a pole of the second 

order in A=-n-2k (k=0,1,2, ... ). 
• 

term of the Laurent expansion of 

The coefficient of the first term 
). 

<p ,¢> in the neighbourhood of 

A= -n-2k equals 

(8.12) 2(-1) 

n+2k-2 
2 

TI 

n -1 
2 

2kk, (n+2k-2), 
2 • 2 . 

k <O cS(x), ¢>. 

The distributions PA may be normalized by the introduction of 

suitable factors. Putting 

(8.13) z 
lJ 

-- !n-1 
1T 

1 u-n 
p ' 

the functional <Z ,¢> 
lJ 

becomes an entire function of the complex va-

riable u. These distributions Z 
µ 

have been treated already by 

M. Riesz; they enjoy remarkable properties and play an important role 

in wave theory [24] . 
For (u-n) not singular the 

ior of the forward cone x 1 

support of Z is the closure of the inter-
2 2 

= + x2 + ... +xn; for u=-2k (k=0,1,2, ... ) 

• 

• 
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its support is the origin and for U=n-2k (k=l,2, ... ) with ui 0,-2, 

-4, ... its support is the surface of the forward light cone. 

For non negative integral values of k we have the relation 

(8.14) 
k k 

z_2k = (-1) 0 o(x). 

Moreover, one has for all values of lJ 

(8.15) DZ = -Z and 
u u-2 

and hence in particular 

(8.16) 

The convolution property, as given by equation (5.13) for the distri-

butions 

(8.17) 

~ (x), is also valid for the distributions 
>,. 

= z 
u+v • 

z 
lJ 

• 

, 1. e. 

This relation can be verified by proving (8.17) for Re u,v > n and 

applying consecutively the principle of analytical continuation. The 

forr11ulae (8.14) - (8.17) are of fundamental importance for the theory 

of the wave equation. 

9. Some applications of distribution theory to partial differential 

equations 

The applications of distribution theory to partial differential 

equations are only illustrated in this section by giving some examples. 

Consider a partial differential equation 

(9.1) L f(x) = g(x), 

where Lis an arbitrary linear differential operator with constant 

coefficients, which is applied to a distribution f(x) of n independent 

variables. 

The relevant differentiations are of course taken in the distributional 
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sense; the right hand side g{x) may be also a distribution. 

The general solution of this inhomogeneous equation is obtained with 

the aid of these-called elementary solution E(x), which satisfies the 

equation 

(9.2) L E(x) = 6(x). 

Assuming that g(x) is such a distribution that E(x)*g(x) exists, then 

the general solution of (9.1) is given by 

(9.3) f (x) = E (x) * g (x) , 

where E(x) is the general solution of (9.2). 

This technique to obtain the solutions of partial differential 

equations has many applications in applied mathematics. 

In particular, let us consider as a rather general example a linear 

partial differential equation with constant coefficients of order m; 

viz. 

(9.4) L f(x) = 

with p = --

DP f(x) = O, 

and IPI = 

• • • 

n 

i=l 
p .• 

1 

The function f(x) is supposed to be differentiable up to the order m 

outside the surface x 1 = O. We assume further, that the unknown func

tion f(x) and its derivatives with respect to x 1 up to the order m-1 

have prescribed jumps across the surface x1 = 0. These jumps, taken in 

the positive direction of x 1 , are denoted by 

(9.5) 

M(O,x2 , ... ,xn) 

at 

0 
= f (x

2 
, .•. , X ) , 

n 
1 

= f (x2, ... 'xn) ' 

- - - - - - - - - - -------
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The functions 

conditions of differentiability, otherwise the function f(x) cannot 

be m times differentiable outside the plane x1 = O. 

It is rather difficult to give these conditions of differentiability 

for the general case considered here. 

Therefore we shall not enter into a discussion of these conditions, 

but we assume that the functions fv are sufficiently smooth, such that 

the differentiability of f(x) will not be violated (see also example 3 

of this section). 

When the function f(x) is considered as a distribution F(x) be-

longing to D' or S', we may write instead of af 
ax ' 

1 
, etc. 

(9.6) - - - ~ - - - - - - - - - - - - - - - - - - - - - - - - - -

aF 
where dX , 

1 

Substituting 

• 

--

• • • • • • • 

a2 F 
2 etc. denote now distributional derivatives. 

ax
1 

(9.6) into (9.4) one obtains for the distribution F(x) the 

differential equation 

(9.7) L F(x) = + F(x) = H(x), 

where H(x) is the distribution 



(9. 8) H(x) = 

+ 
p 

m 

v=l 

-p 
1 
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The distribution H(x) represents a layer of poles, dipoles and multi

poles, concentrated at the plane x 1 = 0. 

According to the beginning of this section, the general solution of 

equation (9.7) is given by 

(9. 9) F(x) = H(x)*E(x), 

where E(x) is an elementary solution of the equation 

L E(x) = o(x). 

The distribution F(x) coincides outside the plane x 1 = 0 with the func

tion f(x), and therefore 

(9.10) f (x) = H(x) * E(x), x
1 

i. 0. 

The distribution E (x) corresponds with tl1e so-cal led Green• s function 

of classical analysis. 

This procedure may be generalized to the case that the functions 
\) f (x

2
, ••• ,xn) are no longer smooth functions; instead it may even be 

assumed thatthey are distributions. 

The distribution F(x) = H(x)* E(x) again satisfies outside the plane 

x
1 

= 0 the differential equation (9.4), where the differentiations are 

of course taken in the distributional sense. In general, F(x) will not 

coincide for x
1 

i O with an rn times differentiable function (see also 

example 3 of this section). 

When we take instead of the coordinate x 1 the time variable t, 

the above sketched technique may be applied for solving initial value 

problems. Assuming f(x,t) identically equal to zero for t < O, the jumps 

at t=O are given by the initial conditions, to which f(x,t) is subject. 
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Other important applications are found in potential theory, when 

the potential or one of its normal derivatives should have a jump 

across a certain surface, which is a layer of poles, dipoles or multi

poles. It is obvious, that the deter1nina tion of the elementary solu

tion is of the utmost importance in the theory of partial differential 

equations. 

Examples 

1. The Laplace operator 

The elementary solution of the Laplace operator in 

follows immediately from the for·1·11ulae (8.4) - (8.6). 

We have the relation 

(9.11) [-

with r = 

1 
n (n-2) 

n 
6 (x) , 

R 
n 

with n > 2 

The Newtonian potential in R
3 

due to a mass distribution u(x1 ,x2 ,x3 ) 

satisfies the differential equation 

(9.12) 

and hence 

(9 .13) 

2. The wave operator 

tf (x) = JJ (x} , 

f(x) = -1 * JJ(x). 
47Tr 

According to formula (8.16), viz. 

(8.16) Ok(-l)kZ = o(x), 
2k 

is an elementary solution of the k-times 

iterated wave equation; this elementary solution is the only one,which 
' 

vanishes for x
1 

< O. This follows from the fact, that the equation 

(9 .14) om f (x) = g(x)' 

with f(x) and g(x) identically equal to zero for x1 < O, has always a 

unique solution. This unique solution is 
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(9.15) 

This follows easily from the following implications 

m m m m 
f(x) = (-1) z2m * g(x) ~>o f(x) = 0 (-1) z2m* g(x) = g(x) 

Om f(x) = g(x) >(-l)m m m m z2m* □ f (x) = □ (-1) z2 m * f(x) = 

= f(x} 
m 

= ( -1 ) Z 2 m * g ( X) • 

When we have an initial value problem for the iterated wave equation, 

the initial data give to the right hand side of (9.14) a contribution, 

which is concentrated at the surface x1 = O. Hence, every initial 

value problem for the iterated wave equation has always a unique solu

tion. 

3. The vibrating string 

The differential equation for the vibrating string is 

(9.16) --

Suppose the initial conditions are 

According to (8.13) and (8.16) the elementary solution is: 

for t > Ix j 

z2 (x, t) = o for t < Ix I . 

Applying (9.8) and (9.10) we obtain the solution 

(9.17) u (x, t) u
1 

(x) o(t)} . 

In the case that u
1 

(x) is an integrable function, this expression re

duces to 

(9 .18) u(x,t) = 
u (x+t)+u (x-t) 

0 0 

2 

x+t 

J 
x-t 
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which is nothing else but the well-known formula of d'Alembert. 

When it is assumed, tl1a t u (x) is two times 
0 

and u1 (x) is one 

time differentiable, the solution u(x,t) is a twice differentiable 

function, satisfying (9.16) in the classical sense. 

However, when u
0

(x) and u 1 (x) are no longer subject to these con

ditions, the solution (9.17) is not twice differentiable and it satis

fies (9.16), for t > O, 011ly in the distributional sense. 

If we take for instance for u (x) a function with a discontinuity at 
0 

x=a, the solution u(x,t) has a jump across the characteristics x+t=a. 

It may also be assumed, that u
0

(x) and u 1 (x) arc distributions. When 
6(x+t)+o(x-t) 

e.g. u = 
0 

0 (x) and u 1_ O, one obtains u(x,t) = 
2 

; taking 

u = 
0 

0 and u1 = o(x), the solution becomes u(x,t) = z2 (x,t). 

4. Other applications 

' 

In chapter III we shall consider functions f(x,y,z), which have 

plane z=O and which are solutions of the prescribed jumps across the 
a2r a2f a2r 

2 + 2 + 2 
ax ay az 

equation - - 0 - . 

In chapter IV we shall investigate extensively the elementary solutions 

of a generalized wave equation, namely the equation of Klein-Gordon. 

10. The topological foundations of the theory of distributions 

This section is devoted to a concise description of the topologic

al foundation of the theory of distributions. This foundation has been 

given by Schwartz and Gelfand - Shilov in different ways, which are 

both presented here for comparison. 

10.1. The topological foundation as given by Schwartz 

a. The topology of the space D 

We consider first the subspace DKc D, consisting of all infinitely 

differentiable functions with fixed bounded support K. A topology is 

introduced in this space by the following system of zero-neighbourhoods. 
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V(m;e:;K) is the set of all functions belonging to DK with the proper

ty that al 1 its deri va ti ves of order p < m are abso 1 u tel y bounded by e::, -
• 
i • e. 

(10 .1) 

A system of nor1r1s, which defines the same topology, is given by 

(10.2) 
ll<P II p = Sup 

X €. R 
n 

DK is a locally convex topological space with a countable basis of 

zero-neighbourhoods; it is very easy to show that DK is complete with 

respect to the topology defined above. Therefore DK is a socalled 

Frechet-space, i.e. a locally convex complete topological vector space 

with a countable basis of zero-neighbourhoods. 

Consider now a sequence of neighbourhoods in R ' n 
• viz. 

(10.3) 

where n 
\) 

= { n 
0 

--

Let {e:}= 

is the open sphere 

{ £ ' e:1 J ••• ' £ ' ••• } 0 \) 
be a sequence of' positive numbers, ap._ 

proaching zero for v ~ ro and {m} 

increasing non-negative integers 

= {m ,m1 , ... ,m , ... } a sequence of 
0 \l 

approaching~ for \l ➔ ~. 

• 

A system of zero-neighbourhoods in Dis given by the neighbourhoods 

V({m}; {e:}), which are defined as the sets of all functions ¢ E. D satis-

fying for every \land xfQ 
V 

the relation 

(10. 4) I DP 4> (x) I < f.: , if p < m • \l \) 

A system of norms, defining the same topology, is given by· 

(10. 5) = Sup 
V 

Sup 

Ix!> V, p < m 
\l 

• 

The neighbourhoods V( {m}; { E }) consist of all functions q> E.. D with 

• 
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(10.6) 

It follows, that the space Dis a locally convex topological 

with a non-countable basis of zero-neighbourhoods. 

It is not difficult to show that the definition of convergence with 

respect to this topology coincides with that introduced in section 1 

of this chapter. Moreover, the space D is complete ···i th respect to 

this convergence. 

If we consider only test functions belonging to DK, the t0pology in D 

induces in the subspace DK the same topology as was defined above by 

the neighbourhoods V(m;£;K). 

D is the so-called ''inductive'' 1 imi t of the spaces DK. 

In every topological vector space the concept of bounded subsets is 

very important. The bounded subsets of D may be defined as the sets 

B({M} ,K), consisting of all ¢ 6 DK, which satisfy the relations 

(10. 7) M for p < m, m=O, 1, 2, ••• 
m 

• 

where M is an element of the sequence {M} of increasing positive num-m 
bers M

0
,M1 ,M2,... . . 

It can be proved that every bounded set B of Dis compact and vice ver

sa; this means, Bis bounded if and only if every family of open sets 

covering B contains a finite subfamily, which covers also B. 

The space Dis an example of aso-called.Montel-space. 

b. The topology of the space D' 

A topology is defined in the dual space D', • i.e. the space of 

distributions, with the aid of the bounded sets B of D. A neighbour

hood V(B,e) of the zero-distribution is the set of all distributions f 

with the property, that I < f, q> > I ~ e: for all ¢ E. B, where B may be any 

bounded set of D. 

Hence D' is a locally convex topological space with a non-countable 
• 

basis of zero-neighbourhoods. 

A system of nonr1s is introduced by 

(10. 8) llfjj B = Sup I 
¢ E. B 

<f,$> 1. 
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A set BT in D' is bounded, if for any bounded subset B of D 

(10.9) Sup 
f€:.B',¢ 

I <f,¢> I< co. 

B 

The proper~ies of the space D' can now be established by applying 
' . 

directly .the theorems of the theory of the topological vector spaces 

[25 

Some important consequences are the following. When a sequence of dis

tributions f E. D' has the property, that for every ¢ E. D the sequence 
m ✓ 

{ <f ,¢>} converges to say£(¢), then tl1e functional f(¢) is also a 
m 

distribution belonging to D'; the space D' is complete in the weak 

sense. 

Every bounded set B' of D' is compact and vice versa; the space D' is 

again a Montel-space. 

c. The topology of the spaces Sand S' 

The topology, introduced in the space S, is simpler than that in 

D. A system of zero-neighbourhoods is defined by the sets V(m;k;E), 

where m and k are non-negative integers and£> O; ¢(x) t V(m;k;c), if 

¢ c. Sand if 

(10.10) 

Hence Sis a locally convex topological vector space with countable 

basis. A sequence Qf norms is given by 

(10.11) 

with 
k 

X 

llct>II m 

• • • 

= Sup lxk DP ¢(x)I , 

I k I ~m; p < m 
X €. R 

n 
k 

x n and lkl = 
n 

n 

i=l 
k .• 

1 

• 

The bounded sets B of Smay be defined as the sets of test funct~ons 
• 

<P (x) E. S, 

(10.12) 

which satisfy relations of the type 

I DP ¢ (x) I < k k (x) , 
p 

where k(x) is .a continuous function, decreasing for \xi ➔ 00 stronger 
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than any negative power of lxl, while k 
p 

is an element of a sequence 

of positive constants k
0

,k1 ,k
2

, ...• 

It can again be shown that Sis complete and that bounded sets are 

compact and vice versa. 

A topology is introduced in the dual space S' by means of the bounded 

sets B of S; this can be done in the same way as in the case of D'. 

The properties of S' follow again from the theory of the topological 

vector spaces. S' is complete in the weak sense and bounded sets are 

equivalent to compact sets. 

For a detailed treatment of the topological foundation of the theory 

of distributions, as given by Schwartz, the reader is referred to 6] , 
• 

Vol.I, ch.III, p.63-103 and [6] , Vol.II, ch.VII, §3 - §4, p.89-99. 

10.2. The topological foundation as given by Gelfand and Shilov 

Let us consider a general linear space X with elements x, for 

which there can be defined an increasing sequence of no1·1ns 

(10.13) • 

Moreover it will be assumed, that each pair of no1·1ns of the sequence 

are in concordance; this means, that whenever {x} is a Cauchy se-
n 

quence in X with respect to two no1·111s and { x } is convergent to zero 
n 

in one of the no1·ms, then it is also convergent to zero in the other 

norm. The space X is called a sequentially nor1ned space. 

A topology is introduced by a system of zero-neighbourhoods V(m;e:), 

which consist of the elements x with 

(10.14) < £ .. 

Denoting the completion of the space X with respect to the 

X, one obtains a decreasing sequence of Banach spaces 
m 

( 10 • 15 ) X ::, x1 . . . ::> X ::> • • • ::> X . 
o m 

th 
m nonn by 

It can be proved, that the space Xis complete, if and only if X coin

cides with the intersection of all the Banach spaces X • m • 
Together with the Banach space X one may consider also its 

m conjugate 
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X', consisting of all continuous linear functionals, which can be 
m 

defined on X. In this way an increasing sequence of Banach spaces 
m 

X' is obtained, viz. 
m 

(10.16) 

while 

(10.17) 

X ~ C X{ C •.. C X ~ C •.• C X ' , 

Cl) 

X' = u 
m=l 

X' . 
m 

If a functional f belongs to X', it certainly belongs to some 

consequently also to X' with p ~ 1 .. 

X' 
m 

and 

m+p 
In X' , X' 

1
, . . . it has the fol lowing no1·111s 

m m+ 

(10 .18) llfll m = I< f ,x> I 

and hence 

(10.19) 
m m+ 

' 11£11 m+l = Su J) I < f , x> I 
llxll 1 =1 m+ 

' ... ' 

The space X' is the uni on of an increasing sequence of complete no1·1ned 

spaces with norms becoming weaker and weaker. 

The subset B of a sequentially no1·rr1ed space is called bounded, if and 

only if 

(10.20) llx 11 < C (m=O, 1 , 2 , ••• ) 
m m 

for all XE. B. 

The topology in the space X' is again defined with the aid of the 

bounded subsets of X; the neighbourhoods V(B;E) are defined as the 

sets of those f E. X', for which 

(10 .21) Sup I < f , x> I < e: • 
X E.. B 

The subset B'CX' is bounded, if for every bounded subset B of X 

(10.22) Sup I < f, x > I < 00. 

f'-B';xt.B 
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Gelfand and Shilov have introduced a large class of spaces of test 

functions, which may be considered as sequentially no2·med spaces. 

Moreover, these authors have given also a sufficient condition for 

these spaces of test functions in order to have the property, that all 

their bounded subsets are compact. If this property is fulfilled for a 

sequentially no1med space of test functions, the space is called per-

fect. 
. 

The spaces D(a) and Sare very special examples from this general class 

of spaces of test functions; D(a) is the space of all test functions 

belonging to D with support I x I < a. 

The sequence of nonns to be defined in the space D(a) is given by 

(10.23) Sup I DP ¢ (x) I 
lxl .$ a;p~m 

, m=O, 1, 2, ... • 

The space D(a) coincides with the intersection of all the completions 

of D(a) with respect to the no1·111s II • II (m=O, 1 , 2 , ••• ) 
m 

and therefore 

D(a) is complete. The space D(a) is also perfect. 

The sequence of norms to be defined in the space S 

(10.24) -- Sup lxk nP ~(x)i 
}kl~m;p~m 

xi:.R 
n 

• 
1S given by 

, m=O, 1, 2, ... • 

It can again be shown, that the space Sis complete and perfect. 

The properties of the dual spaces D'(a) and S' are established with 

the aid of the theory of linear topological vector spaces. 

The spaces D'(a) and S' are complete with respect to weak convergence, 

i.e. if <f ,~> converges for every test function of D(a) or Stoa limit 
m 

f(~), then f($) is again a linear continuous functional belonging to 

D'(a) respectively S'. 

Finally, let there be given an increasing sequence of linear topo

logical spaces 

(10.25) • 

It is assumed, that for each inclusion convergence • 1s preserved. 
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The union of all spacex X(m) is indicated by X(w). 

The space X(w) is not considered as a topological space, but only the 

following type of convergence is introduced. The sequence {x} is said 
n 

to converge to the limit x, if all elements x and x belong to some 
(m) n (m) 

subspace X and if x ➔ x in the topology of X . 

the dual 

X(w)' is said to converge to the func-The sequence 0£ functionals f ~ 
n 

tional £, if for each x €. X (w) 

(10.26) lim 
n ➔ oo 

<f ,x> = 
n 

<f,x> , (weak convergence). 

This principle of forming the union of topological vector spaces is, 

applied to the spaces D(a) with a= 1,2,3, .... 

In this way Gelfand and Shilov define the space of test functions D 

and D' is obtained as the dual of the union of the spaces D(a). The 

space D 1 is complete with respect to the weak convergence as defined 

in (10.26). 

In contrast to the theory of L. Schwartz, the space Das defined 

by Gelfand and Shilov is not a topological vector space. 

In this respect the presentation of the topological foundation of the 

theory of distributions as given by Schwartz is to be preferred to that 

of Gelfand and Shilov. On the other hand the theory as given by Gelfand 

and Shilov in literature [7] , Vol. II, ch.I and II, p.1-102, is easier 

to understand by those, who are not too well familiar with the theory 

of topological vector spaces. 

10.3. Distributions and continuous functions 

In the present chapter we have used several times the important 

property that every distribution may be considered as a distributional 

derivative of a continuous function; therefore, we shall give here a 

short proof of this theorem for the case of distributions of one varia

ble and belonging to the space D': confer theorem 4. 
' 

Consider a distribution f(x)~ D'; hence it is also a distribution be

longing to DT(a), where a may be any real number. D'(a) is the union of 
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all the spaces D'(a), which are the conjugates of the 
m 

spaces D (a), 
m 

while D (a) 
m 

is the completion of D(a) with respect to the norm l~tPII m • 

This means, that there exists a certain integer p, such that f(x) is a 

continuous linear functional on D (a). 
p 

The space D (a) consists of the functions ¢(x), which have continuous 
p 

derivatives up to the order p and which vanish outside (-a,+a). 

To any 

"'(x) = 

~ (x) €. D ( a) we may associate the continuous function 

This defines a continuous one to one mapping of D (a) 
p 

on a subspace of the space C(a), consisting of all functions continu

ous in the interval (-a,+a). Therefore f(x) is equivalent to a continu

ous linear functional g(x), defined on a subspace of C(a), with 

• 

According to the theorem of Hahn-Banach (see , ch.III, §21, p. 

106) this functional can be extended to the whole space C(a). 

Using the representation theorem of Riesz (see [26] , ch.III, §22, p. 

112), it is clear, that there exists a function of bounded variation 

l-l (x)' such that 
+a 

< g ,tµ> - tJ, (x} d lJ (x) , -
-a 

or 
+a 

cp (m) (x) <f ,¢> - d lJ (x) . -
-a 

Integration by parts yields finally 

(10.27) <f,¢> = 
+a 

(m+2) 
F(x) ¢ (x) dx, 

-a 

where F(x) is a continuous function. 
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1. Introduction 

Chapter II 

THE DIFFRACTION OF A CYLINDRICAL 

PULSE BY A REFLECTING HALF-PLANE 

In this chapter we consider a special problem from the theory of 

diffraction. 

In the case of the diffraction of acoustic or seismic disturbances the 

state of the medium may be described by a so-called wave or potential 

function. This potential is defined as the function the gradient of 
~ 

which yields the displacement vector of the medium. 

In the case of the diffraction of light it is not allowed to use such 

a potential function, since an electromagnetic field, owing to the pro

perty of polarization, cannot be represented by a single scalar poten

tial. Instead·of the potential function one may take now one of the 

components of the electric or magnetic vector. 

In order to fix our ideas we restrict our attention to the case 

of the diffraction of acoustic or seismic disturbances. The treatment 

of electromagnetic disturbances is for1r1ally quite the same; only the 

various mathematical symbols represent other physical quantities. 

The wave function satisfies the wave equation and a boundary con

dition at the surface of some obstacle which causes the diffraction. 
' 

An analytical solution of this boundary value problem has been found 

for only relatively simple geometrical configurations such as a half

p1ane and in two dimensions a wedge. 

The case of har111onic plane waves disturbed by an absorbing or re-

" f1ecting half-plane was solved in 1896 by Sommerfeld, who introduced 

the concept of Riemann spaces in diffraction theory, [1] . 
Carslaw too used this concept in order to give the solution for the 

• 

diffraction of harmonic cylindrical waves expanding from a line source 
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parallel to tl1e t}dge of the half-plane, [2]. 

The aethod (:>f Stlfflmerfeld has been applied also by Cagniard for the 

c•se o! spherical waves of rather ge11eral shape, [3] .. 

Turni,1~ and Lauwe1"'ier have disct1ssed the diffraction of a cylindrical 

pu.lse expar1ding again from a line parallel to the edge of the half

plane, [~1] ~ [s] .. Turnc:~r applies consecutively the transforrnations of 

l.iaplace and Kantorovich-Lebedev [6] , with the aid of which the wave 

equation is reduced to a simple ordinary differential equation of the 

second order. Lauwerier too uses the Laplace tra11sformation and the 

transfor•ed boundary value problem is reduced to a Hilbert problem. 

As to the application of the Laplace transf 01·1r1a tion, used by Tur

ner and Lauwerier, it may be remarked, that this method is more or less 

a detour for finding the wave function. 

The boundary value problem is transfo11ned and after obtaining the so

lution of this transformed problem one has to deterinine the inverse 

transfox·m of this solution. In this process many calculations concern

ing special functions occur, which however do not appear in the final 

solution; cf. [ 4] and [5] • 

In this chapter we present another way, very simple and more direct, 

for obtaining the wave function corresponding to the diffraction of a 

cylindrical pulse expanding from a line parallel to the edge of a re

flectin.g half-plane. The case of an absorbing half-plane can be treated 

quite similarly. 

The boundary value problem is formulated in section 2. 

In section 3 a tentative solution is given, which is based mainly on 

physical considerations and which satisfies the boundary condition at 

the halt-plane. Finally it is shown in section 4, that this solution is 

actually a solution of the wave equation. This will be done by calcul

ating ,,di,~ectly Of with the aid of the theory of distributions, where 

f is the proposed tentative solution and D the wave operator. 

For additional literature on diffraction theory the reader is re

ferred to the textbooks by Baker and Copson and by Friendlander, [7] , 

[8]. 
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The author is indebted to Prof. Lauwerier for suggesting the 

method, presented in this chapter. 

The use of the theory of distributions may show, that this theory can 

be applied successfully in solving diffraction problems. 

2. Formulation of the diffraction problem 

We consider a pulse, producing a cylindrical disturbance which 

expands from a line parallel to the straight edge of a semi-infinite 

reflecting or rigid screen. 

Introducing Euclidean rectangular space coordinates x,y and z and the 

time t, we suppose that the edge of the screen coincides with the z

axis, while the screen itself lies in the plane y=O with x < O, see fig. 

1. The pulse is assumed to start at time t=O from the line 1 passing 

X 

1 

!1 gure l 

(2 .1) -

through the point (x ,Y ,O) and 
0 0 

parallel to the z-axis. The pro

blem to dete1·11tine the correspond

ing wave function is obviously 

two dimensional and therefore the 

wave function may be written as 

f(x,y,t). The pulse is represented 

by the delta-function 

6(x-x ,y-y ,t) and the wave func-
o 0 

tion f(x,y,t) satisfies the follow-

ing differential equation 

= -21T o(x-x ,y-y ,t), 
0 0 

where the propagation velocity of the disturbances has been put equal 

to 1. 

The function f (x,y, t) is of course zero for values of t < O, while the 

y-component of the displacement vector vanishes at the screen, due to 

the condition of reflection. This means that f(x,y,t) is subject to 
• 

the additional conditions 

(2.2) f (x, y, t) = 0 for t < 0, 
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af 
(x, y, t) = 0 for y=O and x < 0. ay 

As to the solution of this boundary value problem it should be 
i 

remarked that due to the appearance of the delta function in the 

right hand side of (2.1), the function f(x,y,t) cannot be twice dif

ferentiable everywhere in the (x,y,t)-space. Actually, there are cer

tain characteristic surfaces, across which f(x,y,t) and its derivat

ives are discontinuous. Therefore, the differentiations occurring in 

(2.1) are to be taken in distributional sense and the wave function is 

to be considered essentially as a distribution in the neighbourhood of 

these characteristic surfaces. 

The relation (2.3) makes only sense for those points of the screen, 

the neighbourhood of which f(x,y,t) may be considered as a function 

with a continuous derivative with respect toy; therefore, the condi-

• 
in 

tion (2.3) should be restricted to the points of the screen, which do 

not lie on the above-mentioned characteristic surfaces. 

3. Tentative solution of the boundary value problem 

The potential due to a pulse, starting at time t=O and expanding 

from the point (x ,Y) into a region free from obstacles, is given by 
0 0 

the generalized function z 2 , except for a factor 2n defined by (8.13), 
Ch.I, 
(3.1) 

where 

(3.2) 

• viz. 
2 2 -

R == { (x-x ) 2 + 
0 

R denotes the distance between the observer at the point (x,y) and the 

source at the point (x ,Y ); see figure 2, where we present the situao 0 

tion in the (x,y) plane at some time t. 

Introducing polar coordinates 

(3.3) x=r cos cp , y=r sin q> ; X =r COS q>, 
0 0 0 

. <P Y =r sin 
o o o' 
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with -n < q,<+1r, -1T < ¢ 
0 

< + 1T, we may write (3. 2) also in the fo11n 
' 

(3 .4) R = {r
2 + r 2 

- 2rr 
0 0 

The distribution z2 has been treated in chapter I, section 8.2, and 

acqording to formula (8.16) it satisfies the wave equation (2.1). 

Because the reflection at the screen has to be taken into account, it 

is useful to consider also the potential due to a pulse located in 

(x ,-y ) • 
0 0 

This potential is given by the generalized function 

(3 .5) 

where 

(3 .6) 

• 

Z' 
2 

1 2 '-, ¢=1r-cpo I 

' 
' ' 

' ' II , 
P(x,y) '-

/ 
/ 

III 

/ 
/ 

/ 
/ 

/ 
/ 

1 / ct>=-n+cP 
3/ 0 

I 

/ 

, 

2 2 
{ r +r -2rr 

0 

/ 
/ 
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y 
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We divide the (x,y)-plane into three regions, denoted by I, II 

and III, see fig.2. 

The first region I, where - TT+¢ <<P< n-cp , is 
O 0 

lines 1 2 and 13 ; the second region II, where 

'' t' bounded by the shadow 
ft n-cp <¢ < n, by the sha

o 
dow'' line 1

2 
and the screen 11 

-n < <P < -n+¢ 
0

, by the screen 1
1 

(x ,Y) is observed only in 

and finally the third region III, where 

and the '' shadow'' line 13 • The pulse at 

0 0 
the regions I and II, while the reflected 

one at (x ,-y) is observed only in the region II. 
0 0 

Therefore, the direct pulse gives to the potential f(x,y,t) in the re-

gions I and II a contribution which is equal to z2 , whereas the re

flected pulse gives to the potential f(x,y,t) in the region II still 

another contribution, which is equal to z
2

•. Neither the direct pulse 

nor the reflected one can give in the region III any contribution to 

the potential f(x,y,t). 

However, the solution f(x,y,t) should be continuous almost everywhere 

across the ''shadow'' lines 1
2 

and 1
3

• In order to satisfy this condition 
11 t I we introduce an edge effect with the property that the total poten-

tial due to the direct pulse, the reflected pulse and this edge effect 

is continuous almost everywhere in the (x,y)-plane. 

Observing that the edge of the screen disturbs the wave, expanding 

from the point (x ,Y ), 
0 0 

of influence is bounded 

only after the time 

by the cone r=t-r, 
0 

t=r and that its region 
0 

it is to be expected that 

the potential due to the edge of the screen contains tenns of the fo.1·1r1 

(3. 7) 2 2 -½ 0(t-r-r )(t -R' ) • 
0 

These functions are infinitely differentiable at all points inside and 

outside the cone r=t-r; however, they have a finite jump across the 
0 

surface of this cone, except along the generators with respectively 

R = r+r and R' = r+r, where this jump is infinite. 
0 0 

I. In 

(3. 8) 

So we try the following solution of our boundary value problem: 

the region I, where - n + cp < cf> < n- ¢ 
o- - 0 

2 2 - 2 2 -½ + 0(t-r-r ){A (t -R) 
0 1 

• 
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The potential consists of two parts, namely the direct disturbance 

due to the pulse at 

the screen. 

(x ,Y) and a diffraction term due to the edge of 
0 0 

II. In the region 

(3.9) f(x,y,t) = 

I I , where n - q> < ¢ < + 1T 
0 

+ 0(t-r-r) 
0 

The potential consists of three parts, namely the direct disturbance 

due to the pulse at (x ,Y ), 
0 0 

the disturbance due to the reflection at 

the screen and a diffraction te1·111 due to the edge of the screen. 

III. In the region III, where -n< < - 1T + ¢ 
0 

(3.10) f(x,y,t) 2 2 -½ = 0(t-r-r) {A (t -R) 
0 3 

The potential is now only due to diffraction. 

The coefficients A. and B. (i=l,2,3) are assumed to be constant and 
l 1 

independent of the location of the pulse. They are deter1nined in such 

a way that the boundary condition at the screen and the condition of 
I I I t 

continuity across the shadow lines are satisfied. 

The first condition yields 

(3.11) 

while the second one gives the simple equations 

(3.12) 

(3.13) 

These six equations for A. and B. are not independent and we need still 
l. l. 

another condition to find the coefficients A. and B .• 
1 l. 

Taking the pulse in a point of the positive x-axis, the regions II and 

III disappear and the solution of the diffraction problem is simply 
' 
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2 2 -½ 
f(x,y,t) = 0(t-R)(t -R) • 

Hence it follows, that we have also the relation 

(3.14) 

Solving finally (3.11) - (3.14) we obtain 

(3 .15) 

Thus we have found the tentative solution 

I. 

(3 .16) f(x,y,t) = 

valid for - 1r + ¢ < qi < + n - ¢ • 
o- - 0 

II. 

(3 .17) f(x,y,t) = 0(t-R)(t2 -R2 )-½+0(t-R')(t2-R' 2 )-½ -

valid for n -cp <qi< n. 
o-

III. 

(3 .18) 

valid for -n < ¢ < - TI + ¢ • 
- 0 

0 

We note that we have in particular 

(3.19) 

for t > r+r 
0 

It is clear, that this proposed solution is twice differentiable 

.almost everywhere outside the screen. The only exceptions are the cha

racteristic conical surfaces t=R with - 11 + ¢ < cf>< TI, t=R' with 
o-

n-cp < cp <rrand t=r+r with -n< cf> <+n .. 
o- 0 

It can easily be verified that the solution (3.16) - (3.18), which va-

nishes for t < 0 1 satisfies the differential equation (2 .1) and the 

boundary condition (2.3) in respectively all points of the (x,y,t)-
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space and the screen, which do not lie on the above mentioned character

istic surfaces. 

In the next section we shall show, that the proposed solution satis

fies the differential equation (2.1) in the distributional sense every

where outside the screen • 
• 

The whole situation is illustrated by figure 3, where the conical 

regions of influence belonging to the pulse, the reflected pulse and 

the edge of the screen are shown. 

P' 
0 

Q, (x , -y ) 
0 0 0 

X 

• 

t 

A 

• 

figure 3 

-Q 

r 
0 

--.-....p 
0 

Q (x ,Y) 
0 0 0 

• 

y 
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These conical regions are denoted by respectively r ,r' and r. The 
0 0 

cone r has its vertex in the common point of intersection of the t-

axis and the cones r and f'; the t-coordinate of this point Q is 
0 0 

t=r. Further, the cone r is tangent tor and f' and the common 
0 0 0 

generators pass through respectively the points D and C. 

Finally a cross section of this figure with a planet= constant is 

presented in figure 4. 

The influence of the direct 

pulse is confined to the 

parts of the regions I and 

II which lie within the 

circle with centre (r ,¢ ) 
0 0 

and radius t. 

The influence of the re

flected pulse is confined 

to the part of region II which 

lies within the circle with 

centre (r ,-$) and radius t. 
0 0 

Finally, the influence of the 

edge effect, • i.e . the diffraction 
. 

ter1n, is confined to the whole 

interior of the circle with the 

edge O of the screen as centre 

and with radius t-r. 
0 

' 
' 

J 

' ...... 
' 0 

' C 
Il ' 1 

', I :,t-r ,, 
• 0 , ' . , ' . , lJ , • 1 to . , 

' .. 
' .. .. .. 

I 

J 

I 
I t 
I 
t 
I 

' • ! ,✓ ... 0 . ,, . , . , . , 
P (r • ♦ ) 

0 0 0 

' p' (r -~ ) , o o' o .. 

figure 4 

4. The verification of the proposed solution 

(4.1) 

(4.2) 

(4 .3) 

(4 .4) 

Introducing the functions 

• 

J 

we may express our proposed solution (3.16) - (3.18) into one single 
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formula, • viz. 

(4 .5) 

• 

The function f(x,y,t) and also the functions g
1

,g
2

,g
3 

and g
4 

will 

be considered in this section as distributions belonging to D'. 

The support of g1 (t,R) is the closure of the interior of the 

cone t=R and that of g 2 (t,r,R,R') in the closure of the interior of 

the cone t-r =r. 
0 

The support of the distribution g
3

(t,r,R) is bounded by the screen 

and the characteristic surfaces t=R and t-r =r, while the support of 
0 

g4 (t,r,R') is bounded by the screen and the characteristic surfaces 

t=R' and t-r =r. 
0 

The intersection of the support of the distribution g1 resp. g
2 

with 

the (x,y)-plane at some time tis the region bounded by a circle with 

(x ,Y) resp. (O,O) as centre and with radius t resp. t-r, see fig.4. 
0 0 0 

The intersection of the support of g
3 

with the (x,y)-plane is the tri-

angular region ABD and that of g4 is the triangular region ABC, see 

fig.4. 

The distributions g. (i=l,2,3,4) have the property that they are 
l 

integrable functions, finite in the interior of their support, but in

finite in certain points of the boundary of their support. In fact 

g1 (t,R) is infinite in all points of the boundary of its support, while 

g 2 (t,r,R,R') becomes inf"i11ite along the generators CQ and DQ, see 

figure 3. 

The function g
3

(t,r,R) respectively g
4

(t,r,R') is infinite in all 

points of tl1e boundary which is f or111ed by the cone t=R res pee ti vely 

t=R'. 

According to chapter I, for1nula (8.16), the distribution g
1 

(t,R) 

satisfies the differential equation (2.1). Hence there remains to show 

that the other terms of (4.5) satisfy outside the screen the homogen-... 

eous equation 

(4 .6) Oh == - = o, 
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where the differentiations are taken in distributional sense. 

We shall prove (4.6) for the tenns containing R; the reasoning for 

the te:t·n1s co11 tai ning R' is completely the same .. 

We introduce now the distribution 

(4. 7) g = 

where G is either the • b,ounded by the cone t-r =r or the region region 
0 

bounded b:;' the screen and the cones t=R and t-r =r. 0(G) - 1 for -
0 -

(x,y,t)4G and S(G) 0 elsewhere; G • the • G, including its - 1S region -
boundary. 

Because we have to prove the validity of (4.6) in every (x,y,t)

neighbourhood not intersecting the screen, we shall show that 

(4 .8) 

for every test function <P belonging to D and having a support, which 

does not contain points with x < 0 and y=O. 

When the support S of does not intersect the boundary of G the vali-

dity of (4.8) follows immediately from differentiation in the classical 

sense. Therefore, we assume that S intersects the boundary of G. 

Instead of the distribution g we consider the distribution g(a), 

defined as 

(4. 9) 

The functional <g(o.) ,¢> is an analytic function of a. for Re a.> -1. 

F l f . th R "' < 1 th d . t . b t . ( a ) . d f . b or va ues o a w1 e ~-- e 1s ri u ion g 1s e 1ned y ana-

lytic continuation of 

(4.10) -- III 
G 

The distributions g and 

lation 

(4.11) 

(a) . 
g · ¢ (x, y , t) dx dy d t, Re Cl > -1. 

(a) 
g are connected with each other by the re-

-- lim 
Cl+-½ 

• 
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Since the operations of taking the limit and of differentiation may be 

interchanged (chapter I, theorem 3), it follows from (4.11) that 

(4.12) <Dg,¢> = lim <Og(a),¢> 

a-+-½ 
• 

Hence we have to prove that 
• 

(4.13) lim < Og(a.) ,¢> = o. 
a-+-½ 

A simple calculation yields for Re a> 2 

(4.14) 

(4.15) 

G 

figure 5 

2 2 a 2 2 a-1 
0 ( t - R ) = -2a ( 2a. + 1 ) ( t - R ) • 

s 
As the intersection O of the region G 

and the support S of¢ is bounded on 

the one hand by characteristic sur

faces and on the other hand by a part 

of the boundary of S (see fig.5), we 

have also on n for Re a> 2 
• 

0(f)(G) (t2 -R2 ) 0 = Og(a) = -2a(2a+1)0(G) (t2 -R2 )a-l _ 

The factor 0(G) does not yield a contribution to the right hand side of 

(4.15), because the differential operator is an internal differenti

ation along the boundary r (see fig.5). 

Thus we have for Re a. > 2 the relation 

(4.16) □ (a) (a) D 
< g , ¢ > = <g , ¢> = 

(a.-1) 
-2a(2a+l)< g ,¢>. 

Since this relation is certainly valid for Re et> 2, it is also valid 
• 

for its analytic continuation with respect to a. 

Therefore there remains to show 

(4.17) (a-1) J lim _-2a. (2a.+1) < g , ¢ > = O. 
a-+-½ 

The functional 
(a-1) 2 2 a-1 

< g ,¢> = <0(G) (t -R ) , cp> is an analytic 

function of a for Re et > O • 
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For Re a.> 0 we may write 

I 
2 2 a-1 . 

(t -R) <P(x,y,t)dx dy dt = 
(4 .18) 0 

I 
2 2 rx-1 . 

( t - R ) { ~(x , y , t) - ¢ ( x , y , R) } dx dy dt + 
0, 

2 2 (t-1 
+ f (t -R) 4(~,y,R)dx dy dt. 

n 
The first te:rm of this expression is an ~nalytic function of a for 

Re a>-1. Using inst~ad of th~ coordinate t the coordinate i1=t-R, we 

can write the second te1·1r1 of ( 4 ,.18) in the f or111 

(4.19) 

u 
2 

f a-1 
(u+2R). 9(x,y,R)dx dy, 

s (tJ) 

where u1 and 1; 2 are some real numbers with u2 > u
1 

> O and where 

the area formed by the intersection of ~l and the cone ll=t-R. 

S (u) is 

actually equal to zero, if the boundary of 0 contains one or more 

points of the cone t=R. 

Putting 

(4.20) ff a-1 
( t1+2R) ¢ (x, y, R) dx dy = ~ ( u, rt) , 

s (u) 

we remark that ~(u,a) is an analytic function of~ for all values of a. 

(u+2R = t+R is positive.) 

Substitut~ng (4.20) into (4.19), we obtain 

(4.21) JJJ (t2 -R2 ) rt-],.¢, (x, y, R) dx dy dt --
r? 

u2 
a-1 

u {~(u,a) - ¢(0,a)} du+ 
• 

valid for Re Ct > o. 

t1 2 
a-1 

tl 1> ( u , ~, ) d l.J 

( 
Ct 

µ -
2 

---

The first te11n of this expreElsion is again an analytic function of a. 

for Re a > -1; the second term is analytic for all values of fl whenever 

u1 > 0, but this term has a simple pole at n=O with residue <f>(O,O) if 

u1 = O. 
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Summarizing, we have now obtained the result 
(a-1) 

that <g ,cf>> • is an 

analytic function of a for Re a> -1 with the possible exception of 

a=O, where it may have a simple pole. 

Hence 

( 4 .16) 
(a) (0.-1) 

<Dg ,<t>> = <-2a(2a+l)g ,¢> 

is an analytic function of a for Re (:t > -1. 

Taking finally the limit for o. ➔ -½, we get 

(4. 22) < □ g, <;,> = lim □ (a) < g '> 
' 4-

= o. 
C.t ► -½ 

Thus we have proved, that outside the screen g satisfies the -
homogeneous differential equation (4.6) in the distributional sense. 

Therefore the proposed solution (4.5) satisfies the differential 

equation (2.1) in the distributional sense and we may conclude that 

(4.5) satisfies the boundary value problem, which has been posed in 

section 2. 
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Chapter III 

SUPERSONIC WING THEORY 

1. Introduction 

As is well-known the behaviour of a steady supersonic irrotation

al non-viscous flow around bodies may be described with the aid of a 

so-called velocity potential, the gradient of which yields the velo

city vector of the flow. In the case of a very thin nearly flat wing, 

moving with constant speed at a small angle of incidence, the veloci

ty potential satisfies approximately a linear hyperbolic differential 

equation in three space variables, which is formally the same as the 

wave equation. 

Since the elementary solutions of this equation are singular at the 

so-called characteristic Mach cone, it is expected that in the deri

vations expressions will occur, which can not be defined in a satis

factory way in terms of classical analysis. 
• 

In papers and textbooks, such as e.g. the encyclopedic work 

''General theory of high speed aero-dynamics'', edited by W.R. Sears 

[1] , the difficulties are overcome by using the concept of the ' 1 fi

ni te part'' of an integral, as introduced by Hadamard [2] . However, 

the calculations are complicated, tedious and lengthy. 

The theory can be developed in a much shorter and more elegant 

way by employing the theory of distributions. 

Applying this theory we present in this chapter a rather complete 

and systematic treatment of linearized steady supersonic wing theory. 

It appears that the classical theory, as presented by Heaslet and 

Lomax in their detailed contribution to reference [1] , can be great

ly simplified. 

The mathematical theory of linearized steady supersonic flow 

around wings amounts essentially to solving boundary value problems 
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for the velocity potential. This potential has to satisfy the above

mentioned linear hyperbolic differential equation and it is subject 

to certain boundary conditions at the surface of the wing. A large 

variety of b,oundary value problems is obtained according to the plan

form of the wing surface and the prescribed boundary conditions. How

ever, all the results of this chapter are derived from a single basic 

for·1n.t1la which relates the velocity potential at the plane of the wing 

to the velocity component no1:·111al to this plane. 

In this way a very simple and unified theory of the supersonic flow 

around wings is obtained. 

Already in 1954 Sauer emphasized in[~ that it is worthwhile to 

introduce the theory of distributions in supersonic aerodynamics. 

Actually, in reference [4] he solved one of the problems treated in 

this chapter by using distribution techniques. 

In this connection, the work of Dorfner [5] should also be mentioned. 

Dorfner uses distributions for establishing the basic general equa

tions, but his calculations for deriving expressions for the potential 

of the flow around actual wings again run more or less along classic-

In section 2 we give a general outline of the theory of super

sonic flow around wings. The boundary conditions are represented by a 

layer of poles and dipoles, concentrated at the plane of the wing. 

The differential equation for the velocity potential is taken in the 

sense of distributions and contains an extra te1·1n due to this layer; 

cf. chapter I, section 9. 

The general solution of this differential equation is given in section 

3. 
In sections 4,5 and 6 we deal with the problem of calculating 

the pressure distribution on wings with given geometrical properties 

such as planforn1, thickness, camber and angle of incidence. 

An intere~ting case is the calculation of the influence of wing tips 

on the lift distribution. 

The inverse problem of calculating the geometry of the wing sur

face from a given pressure distribution has been solved by Sauer with 

l) W11ile this sectit1n was be.ing printed, the author's attention was drawn to an 
imp<.1rtar1t paper [11] by Ger111ain, who employs ,also distributions in supersonic~ 
aerodynamics. Genna in uses the Laplace transformation, whicl1 is not aJJplied 
in the t1·ea tmen t given here. 
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the aid of distributions [4] . 
A simplified version of this solution is given in section 7. 

Finally, in section 8, we consider so-called t
1mixed 11 problems. 

This means that the pressure distribution is given on only one part 

of the wing surface, while the geometry of the wing is prescribed on 

the remaining part. The problem is to find an expression for the pres

sure distribution valid at the whole surface of the wing. These pro

blems occur in lift cancellation technique, which is a useful tool 

for calculating the lift distribution on airfoils of rather general 

planfoi·m. 

For additional literature about the theory of supersonic flow 

around wings the reader is referred to [1 J , [6] and [7] • 

2. Supersonic flow around wings; the differential equation for the 

velocity potential 

Consider a unifo1·111 steady supersonic flow which is disturbed by 

a very thin nearly flat wing, set at small incidence to the oncoming 

stream. 
• 

Introducing Euclidean rectangular coordinates (x,y,z), we take the 

positive x-axis in the direction of the undisturbed flow, while the 

wing lies approximately in the plane z=O. The origin of the coordinate 

system is chosen in the most forward point of the wing; see figure 1. 

Assuming that the resulting 

flow is irrotational, a 

·perturbation velocity 

potential f(x,y,z) may be 

defined. This function 

has the property, that its 

gradient yields the pertur

bation velocity vector; i.e. 

(2 .1) 'v f 

u 
I ; ► 

• 

I 
I 

figure 1 

\' 
• 

- -
::::::= w -- - - W' -

- - -w· - --
-----------

(u,v,w), 

where u,v and ware the components of the perturbation velocity vec-
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tor in respectively the x-,y- and z-direction. 

Because the wing has been taken as very thin, nearly flat and 

at small incidence to the oncoming stream, u,v and w may be assumed 

small in comparison with the velocity U of the undisturbed flow. 

Therefore, the relevant equations can be linearized; tl1is means that 

terrr1s non-linear in u,v or w will be deleted. 

Then it follows from the equations of motior1 and the equation of con

tinuity, that f(x,y,z) satisfies the linearized differential equation 

(2.2) 
a2 
--2 ] f(x,y,z) = 0, 
dZ 

where Mis the so-called Mach number, defined as Ula 
00 

with a
00 

as the 

velocity of sound at infinity (cf. lit. [1] , [6] and [7] ). In the 

case of supersonic flow 

ential equation (2.2) is 

U is larger than a and hence the differ-
oo 

of hyperbolic type. Taking another scale for 

the x-coordinate, one obtains the nonnal form 

(2.3) - = 0. 

This equation is formally the same as the wave equation, where the 

role of the time is played by the space coordinate x . 
• 

The function f(x,y,z) is subject to several conditions, re-

sulting from mathematical and physical considerations. 

1. The function f(x,y,z) is twice continuously differentiable 

outside the wing and its wake, with the exception of certain charac

teristic surfaces across which the external derivatives of f(x,y,z) 

may have a jump. These characteristic surfaces are circular cones 

with the axis in the direction of the x-coordinate - so-called Mach 
' 

cones - or envelopes of these cones. 

One distinguishes between a forward and a backward Mach cone. The 

forward Mach cone with vertex (x ,Y ,z) is the conical surface, 
0 0 0 

characterized by the equation 

(2.4) x-x 
0 

- --
2 

(y-y ) . 
0 

2 
+ (z-z) , 

0 
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while the backward Mach cone is given by the equation 

(2. 5) x-x = + 
0 

2 
(y-y) + 

0 

2 
(z-z ) • 

0 

2. Because the wing has no influence on the flow in upstream 

direction, f(x,y,z) vanishes identically in all points lying upstream 

of the characteristic surface n , which is the boundary of the region 

of influence of the wing. f(x,y,z) and its internal derivatives vanish 

at Q , while the external deri va ti ves may have a jump across Q • 

As to the shapeof this characteristic surface Q there are several pos

sibilities according to the forrn of the wing. 

An edge of a wing is called subsonic respectively supersonic in a 

point, if the component of the stream velocity no1·111al to the edge at 

this point is respectively smaller or larger than the speed of sound. 

If an edge is subsonic in a certain point, say P, then all points of 

the edge in a sufficiently small neighbourhood of P lie within the 

Mach cone with Pas vertex. If an edge is supersonic in P, then all 

points of a neighbourhood of P lie outside the Mach cone with Pas 

vertex. 

An edge is shortly called subsonic or supersonic, if it is respective-

ly subsonic or supersonic in all its points. 

In the case of a subsonic leading edge, the surface D coincides with 

the backward Mach cone with vertex at the nose of the wing; if, how

ever, the leading edge is supersonic, the surface D consists partly 

of the envelope of all Mach cones with vertex at the leading edge of 

the wing. 

3. Because the direction of the velocity in points at the wing 

surface is tangent to this surface, the derivatives of the function 

f(x,y,z) satisfy a boundary condition at this surface. 

The wing has been assumed very thin and at small incidence to the 

oncoming stream, while its surface is nearly plane. Therefore this 

boundary condition may be prescribed at the projection W of the wing 

surface onto the plane z==O (see fig.1). W is called the planforrr1 of 

the wing. 
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If the upper and lower surface of the wing is given by respectively 

the equations 

(2.6) and 

z = S (x,y), 
+ 

z = S (x,y), -

the boundary condition may be written in linear approximation as 

(2.7) and 

af 
(x,y,+O) = U az 

df az (x,y,-0) = U 

( c:f • 1 i t . [ 1] , [ 6] and [7] ) . • 

c)S 
+ 

ax 

as -

for (x,y) E. W, 

for (x,y) E. W. 

It follows from (2.7), that the 
, a f 

function az, representing the ver-

tical velocity component, is in general discontinuous across the 

plane z=O in all points, lying within the region W. 

in all points of the plane 

z=O, which lie outside the region W. 

4. The pressure p(x,y,z) follows immediately from integrating 

Euler's equations of motion; this gives within the linear approxi

mation 

(2. 8) p-p - --
00 

where p 
co 

• 
1S the density and p 

00 
the pressure in the undisturbed flow . 

If we consider a lifting wing, there is a pressure difference be

tween the upper and lower surface of the wing. Hence, in linearized 

. th a f . d · · wing eory ax 1s iscontinuous across the plane z=O in all points 

continuous across this plane 

in all points outside W. 

It follows that the velocity potential f(x,y,z) itself is discon

tinuous in all points of the plane z=O, which lie in W or in the pro

jection W' of the wake onto the plane z=O (see fig.l). 

Considering a general situation, we put 
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• 

lim f(x,y,z) - f (x,y), -
+ 

+O z + 

(2. 9) 
lim f(x,y,z) f (x,y), -- -

z + -0 
and af 

lim (x,y,z) w (x,y), --az + 
+O 

(2 .10) 
z + 

af 
lim (x,y,z) (x ,y). - w -az --o z -+ 

If the ordinary derivatives in the differential equation (2.3) are 

replaced by the distributional derivatives, one obtains the differ

ential equation 

(2.11) - = (w -w ).8(z) 
+ -

+ (f -f )-o'(z). 
+ -

This equation should now be taken in distributional sense and it is 

valid everywhere in the (x,y,z)-space. The function w -w 
+ - vanishes 

outside Wand 

A useful 

the function f -f 
+ -

vanishes outside W+Wt. 

property of thin wing theory is the fact that the geo-

metry of the wing can be assumed to consist of two parts, namely a 

nonlifting or symmetric part and a lifting or anti-symmetric part. 

Besides the equations (2.6) for the upper and lower surface of the 

wing we consider the surfaces 

(2.12) ' 
and 

(2.13) z = S (x,y) = ½ {S (x,y) + S (x,y)} 
C + -

Due to the linearity of the differential equation the problem of the 

calculation of the velocity potential for an arbitrary wing with up

per and lower surface z = S (x,y) resp. z = S (x,y) may be reduced to 
+ -

the calculation of the velocity potential ft(x,y,z) for a wing with 

upper and lower surface z = St(x,y) resp. z = -St(x,y) and to the 

calculation of the velocity potential f (x,y,z) for an infinite1y thin 
C 

cambered wing, for whicl1 the upper and lower surfacescoincide with 

the surface z = S (x,y). 
C 

The velocity potential f(x,y,z) of the original wing is then obtained • 
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as the sum of the potentials ft(x,y,z) and fc(x,y,z). 

(2.14) + f (x,y,z). 
C 

The first ter1r1 of the right-hand side is symmetric with respect to z 

and this part of the potential accounts for the thickness distribu

tion of the wing. The second te1·1n is anti-symmetric with respect to z 

and this part accounts for the angle of incidence and the camber of 

the wing. The lift distribution of the wing is only due to the second 

term f (x,y,z). 
C 

The differential equation (2.11) becomes now for the case of the non-

lifting wing with 

(2.15) -

where 

(2 .16) 

symmetric cross-section 

a2
f a2 t a2

f 
t t t 

--2 + 2 + 2 = 
ax ay a z 

w (x,y) = 
+ 

lim 
z ➔ +O 

2w. 
+ 

• 

o(z), 

The function w (x,y) vanishes at all points of the plane z=O, which 
+ 

lie outside the region W. 

For the case of the infinitely thin lifting airfoil we obtain the 

equation 
a2 t a2

f a2
f 

(2.17) C C C 
2f o' (z), - + + - • 

ax
2 2 2 - + ay az 

where 

(2.18) f (x,y) 
+ 

= lim f (x,y,z). 
C 

The functions f (x,y,z) and 
C 

coordinate z. 

z -+ +O 
af 

C ax (x,y,z) are odd with respect to the 

Therefore, it follows from (2.8) that the lift distribution ~p(x,y) 

at the wing surface is given by the expression 

(2 .19) 

Putting 

(2.20) 

2p U 
00 

~p(x,y) = -

lim
0 Z ➔ + 

c1f 
C 

ax (x,y,z) = 

lim 
z-+ +O 

u (x,y) 
+ 

at 
C 

ax (x,y,z). 
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it is clear that the lift distribution at the wing is proportional to 

the velocity component u (x,y). 
+ 

Since there cannot be a pressure jump at the plane z=O outside the 

planform of the wing, we have always for lifting wings the boundary 

condition that u (x,y) = 0 outside W. 
+ 

The function f (x,y) vanishes outside the region W+W'; it is indepen
+ 

dent of the coordinate x in the wake W'. 

The cases of the nonlifting wing with thickness and the lifting 

airfoil without thickness may be treated by using the same differen

tial equation. 

For this purpose it is remarked that the calculations may be restrict

ed to the upper half-space z > O; the results for the lower half-space 

follow easily by considering the symmetry with respect to the plane 

z=O. 
• 

We introduce the velocity potential f (x,y,z), 
+ 

which lS defined as 

(2.21) 

f (x,y,z) = 
+ 

f (x,y,z) = 0 
+ 

or 
ft(x,y,z) 

f (x,y,z) 
C 

for z < 0. 

for z > 0, 

Substituting this into the differential equation (2.3) and replacing 

ordinary derivatives by distributional derivatives, we obtain the 

differential equation 

(2.22) -

with 

and 

~) 2 f ;) 2 f 
+ + 

+ + 
2 2 

dX ay 

a2 f 

3z 

+ 
2 

;) f 
+ 

• c5 (z) - w -
+ 

w (x,y) = 
+ 

lim 
z ➔ +O dZ 

(x,y,z), 

f (x,y) = 
+ 

lim f (x,y,z). 
z + +O + 

f 6'(z), + • 
+ 

In the case of a nonlifting wing with symmetric cross-section w (x,y) 
+ 

vanishes outside Wand f (x,y) vanishes outside the region of in
+ 

fluence of the 

foil u (x,y) = 
+ 

wing. In 
3f+ 
ax (x,y) 

the case of an infinitely thin lifting air-

vanishes outside W, while w (x,y) vanishes 
+ 
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outside the region of influence of the wing. 

As has been shown in chapter I, section 8.2, the differential 

equations (2.15), (2.17) and (2.22) determine ft(x,y,z), 

and f (x, y, z) uniquely in te1·1r1s of their boundary values 
+ 

f (x, y) • 
+ 

3. The general solution of the differential equation 

f (x,y,z) 
C 

w (x,y) and 
+ 

The differential equations (2.15), (2.17) and (2.20) are solved 

with the aid of the.elementary solution E(x,y,z), satisfying the 

equation 

(3.1) 

with 

(3.2) 

(-
2 

3 
2 + 

dX 

2 
3 ) 

2 :) z 
E(x,y,z) = 6(x,y,z), 

E(x,y,z) = 0 for x< 0. 

According to the equations (8.13) and (8.16) of chapter I, section 

8.2, the distribution E(x,y,z) is given by the expression 

-
(3.3) E(x,y,z) = 

0 

for x > 

for x < 

2 2 
Y +z 

2 2 
y +z • 

The support of the distribution Eis the closure of the interior of 

the backward Mach cone with vertex at the origin. 

Using the theory of chapter I, section 9, it follows from (2.15) that 

for a wing, with cross-section symmetric with respect to the plane 

z=O, the velocity potential is given by the equation 

(3.4) +2w (x,y) 
+ 

o (z) * E (x, y, z) .. 

This equation represents a potential due to a distribution of sources 

in the region W of the plane z=O. 

Further, it follows from (2.17) that for a lifting wing without thick

ness the velocity potential is given by 

(3.5) f (x,y,z) = 2f (x,y) 
C + 

= 2f (x,y) 
+ 

c ' (z) * E (x, y, z) 

aE 5 (x) * ..,;._.. (x,y ,z). az 

I 

I 
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• 

This equation represents a potential due to a distribution of dipoles 

in the region W+W' of the plane z=O. 

In the same way we obtain finally with tl1e aid of (2 .22) for the po

tential f (x,y,z) the expression 
+ 

(3 .6) 

= w (x,y)t5(z) ~E(x,y,z) + 
+ . 

+ 

f (x,y)o'(z)* E(x,y,z) 
+ 

Since w , f and E vanish for x < 0 and since tl1e support of E is the' 
+ + 

closure of the interior of the backward Mach cone with vertex at the 

origin, the existence of the convolution products, appearing in (3.4), 

(3.5) and (3.6), is assured. 

As f (x,y,z) = 0 for z < 0, we l1ave the relation 
+ 

w+(x,y).6(-z)*E(x,y,-z)- az f (x,y).6(-z)*E(x,y,-z)] = 0 
+ 

for z > 0. 

Because o(z) and E(x,y,z) are even in z, we obtain the following in-

teresting relation between the potential 

w (x,y) in the plane z=+O, namely 
+ 

( ) 
It 11 f x,y and the downwash 

+ 

(3. 7) 
a 

az 
f' (x,y).o(z)*E(x,y,z)] = w (x,y)-6(z)*E(x,y,z). 

-+ + 

Substitution of (3.7) into (3.6) yields immediately the important 

result 

(3. 8) 

Assuming 

as given 

f (x , y , z) = 2w (x , y) o ( z) * E ( x , y , z) • 
+ + 

w (x,y) integrable and applying the definition of convolution, 
+ 

by formula (5.3) of chapter I, section 5, it can easily be 

shown that this relation may also be written as 

(3. 9) 
1 

f (x,y,z) = -
+ TT' + 

A 

where A is the region of the (~,n)-plane lying within the forward 

• 



• 

Mach cone from the point (x,y,z); 

see figure 2. Letting z approach 

+o, we obtain for the potential 

at the upper side of the (x,y)

plane the expression 

(3.10) f (x,y) 
+ 

1 - --
71' 

B 
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(x,y,z) -----

figure 2 

dr1 1 

where Bis the triangular region bounded uy the half-lines n-y=~-x 

and n-y=-,+x with E: < x; see figure 3. 

It is useful to 

introduce at this 
' 

stage the character-

istic coordinates 

r - x-y -
(3 .11) 

x+y s -- • 

Using these coor-
• 

dinates, we can write 

(3 .10) in the fo11n 

(3.12) 

(x ,y) 

figure 3 

' 

where we have applied the distribution ·-t> ,, (x), introduced in chapter I, 

section 5. In view of its frequent use, we repeat here its definition 

and most important properties • 

• 



(3 ,.13) 

(3.14) 

--
X 

+ 
).-1 
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().-1) ~ ' 
$ (x) = o(x), 

0 

4> ( x) == <I> (x) , 
\J ). +µ 

4> ).-1 (x) • 

If the downwash w (r,s) is given within the triangle B, we have 
+ 

obtained by aid of (3.12) an expression for the potential at the up-

per surface of the wing. However, in most cases of practical interest 

the data are not so simple; nevertheless also in these cases the equa

tion (3.12) can be used as the basic fo1·111ula, from which we start our 

calculations for deriving an expression for the potential, the pres

sure distribution or another physical quantity we are interested in. 

Due to the properties of the distribution $).(x), stated in (3.13) 

and (3.14),the equation (3.12) can easily be inverted by taking the 

convolution of both sides with the product ¢_,(r). ~-½(s}. The result 

• 
1S 

(3 .15) 

This fo1·1nula expresses the downwash at the plane of the wing in the 

potential at this plane. 

In the literature on supersonic wing theory the inversion of the equa

tions (3.12) and (3.15) gives rise to difficulties. One relies on the 

theory of integral equations with singular kernels (cf. [1] , section 

D.12); this introduces lengthy calculations, which are now avoided 

with the aid of the distributions tA (x). 

4. Non1ifting wings with symmetrical sections; lifting airfoils with 

superso~i~ lead~~g ~dge 
• 

In this section we treat nonlifting wings with a given thickness 

distribution and symmet:r·ic with respect to the plane z=O; as to the 

planform of these wings no restrictions need be made. In this case 

the function w is given in the whole plane z=+O. It is dete1·r11ined in 
+ 

the region W by the thickness distribution of the wing, while it 
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vanishes outside W. 

The same situation occurs, if one considers an infinitely thin lift

ing airfoil with supersonic leading edge and with prescribed surface 

slope. Moreover, it is assumed in this case, that the airfoil extends 

to infinity, so that no wake is present. 

The velocity 

the wing is given 

potential f (r,s) in points at the upper surface of 
+ 

by forrnula (3.10). Using characteristic coordinates, 

we obtain the result 

(4 .1) 
1 

f+(r,s) = - 2 1T 
-t· 

B 

y where the area Bis the part 

• 

of the region W, enclosed with

in the forward Mach cone with 

B 

' • ✓ 
-v 

P(r,s) 
s 

X 

figure 4 

vertex at the point (r, s, 0) ; 

see figure 3. 

If the airfoil with • supersonic 

leading edge has a trailing 

edge, then the formula (4.1) 

is valid for all points at the 

upper wing surface, which lie outside the region of influence of this 
• 

trailing edge. 

The pressure distribution at the wing can easily be obtained by ap-
a a 0 

plying the differentiation 0x = ar + ai to the right-hand side of 

equation (4.1); cf. equation (2.8). 

This differentiation will be carried out for the case of an infinite

ly thin airfoil with supersonic leading edge. 

This edge is denoted by the equation 1. ... == l(s); since the edge is su

personic, l(s) is a monotonic function of sand therefore the edge 

may also 

Applying 

(4.2) 

be represented by the inverse functions= m(r). 
a a 

Car+ as) to (3.12), we obtain 

<f>1.(s). 
2 
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The differentiation is taken in the distributional sense; this means, 

that we have to take into account the jump of the function w (r,s) 
+ 

across the edge of the wing. 

Assuming that l(s) and 

may write 

w (l(s),s) 
+ 

are infinitely differentiable, we 

s + 
3 
d ){w (r,s) + 0(r-l(s)).w (l(s),s)} + 

s + + 

(4 .3) 

where the differentiation in the right-hand side may now be taken in 

the ordinary sense. 

The distribution 0(r-l(s)) and o(r-l(s)) are defined as 

<0(r-l(s)), ¢(r,s)> = ff ¢(r,s) dr ds, 

r > 1 (s) 
and 

+oo 

<o(r-l(s)),¢(r,s)> = cf> ( 1 ( s) , s) ds , 

where ~(r,s) is some test function belonging to Dor S; cf. chapter I, 

section 7. 

Substitution of equation (4.3) into equation (4.2) gives the result 

(4.4) 

with 

• 

u (r,s) 
+ 

T(r,s) 

- --
1 
2r. 

B 

= -½ w (l(s),s)-(1-
~+ 

This term is reduced as follows. 

a 
+ 

3 
)w (p,o)} 

0 + 
-½ -½ • (r-p) (s-o) do 

+ T(r,s), 

6 ( r-1 ( s ) ) * ~.l ( r) 4>.1 ( s) = 
2 2 

The convolution product between the brackets vanishes for r< l(s), 

while it can be written for r > 1 (s) in· the form 

do+ 



1 
.. F-
Y 1T 

w (l(s),s).(1-
+ 
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0 

(1-
dl -

s + 

Hence we obtain for the terrn T(r,s) the expression 

(4. 5) T(r,s) - --
1 
2n 

s 
(1-

m(r) 

dl (o)) • 
d CT + 

--

This integral is an integral along the leading edge from Q to R (see 

fig. 4) . 

For the case of thin wings with cross-section symmetric with 

respect to z=O, the velocity 

or less the same way. 

compo11ent u ( r, s) may 
+ 

5. Infinitely thin airfoils with tips 

5.1. Tip effects 

be obtained in more 

In the previous section we have treated all nonlifting wings 

with given thickness distribution and also infinitely thin lifting 

airfoils of given shape, but with the restriction that the leading 

edge should be supersonic. 

Therefore, we are now led to tl1e discussion of infinitely thin air

foils for which the leading edge is no longer supersonic. 

In this section we discuss airfoils for which the edge is partly su

personic and partly subsonic; see figure 5. 

Suppose s=l1 (r) and s=l2 (r) are the equations for respectively the 

supersonic and the subsonic part of the leading edge. 

In the sequel it will always be assumed that wing planforms are 

bounded by curves, given by monotonic functions s=l(r), so that the 

edges may also be represented by r=m(s), where r=m(s) is the inverse 

of the function s=l(r). 

In the part of the wing with s < 0 (or y < -x) the forward Mach cone 

from a point P' at the wing surface cuts from the airfoil a triangular 

region A'P'B' 1 in which the downwash w is given by the slope of the 
+ 
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' 
' I 

' I ' ' { 

I ' 
' _J 

P(r,s) 

figure 5 

wing and we may apply again formula (4.4). 

' 

s 

s=l
2 

(r) 
r=m

2
(s) 

In the part of the wing with s > 0 (or y > -x) this is no longer true. 

Application of fo1·1·11ula (3 .10) gives rise to a convolution integral 
• over the area OAPBCO (see figure 5). However, the function w (r,s) 

+ 
l.S 

now given by the slope of the wing only over the region OAPBO, while 

it is unknown in the region OBCO. In the latter region the function 

(5.1) 

vanishes. 

We have now the problem to 

region s > O, while w (r, s) 
+ 

u (r,s) ::0 for s >1
2
(r). . + 

dete1·111ine the function u (r, s) in tl1e 
+ 

is given for 1
1 

(r) < s < 1
2 

(r) and 

Problems of this kind are important for calculating the influence of 

wing tips on the lift distribution at the surface of the wing. 
It • f I 

Two different cases are distinguished, viz. the raked-in 

with ) 
dl2 ,, ,, . . ) 

1
2 
(r < r and dr < 1 and the raked-out tip with 12 (r >r and 

tip 
dl 2 
dr 

In the first case the edge s=l2 (r) is a subsonic trailing edge and 

therefore the Kutta condition should be satisfied at s=l2 (r). 

> 1. 

This condition states that the flow at both sides of the wing is tan

gential to the wing surface at the edge and that there is no flow 

around this edge. This means that the downwash distribution w (r,s) + 
is continuous across s=l

2
(r), while the lift distribution vanishes at 
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s=l2 (r), i.e. u + (r, 12 (r)) = 0. In the second case the edge is a sub

sonic leading edge. There is now a flow around this edge from the 

lower side to the upper side of the wing surface. Since the edge is 

infinitely sharp and since the flow is assumed tangential to the sur

face of the airfoil, the lift distribution must become infinite at the 

edge; i.e. u+(r,s) becomes infinite at s=l
2

(r). 

These two cases will be treated in the next two sections 5.2 and 5.3. 

" 

5.2. The raked-in tip 

u 

---

~ 

' - ' ,, 
I ,, 
I 

I ' '-

s 

Wake 

Using the basic formula 

(3.12), we can carry out 

the following reduction. 

p: ' ' ' 
--------.&(r,s , , , , 

s=l
1 

(r) 

r==m1 (s) 

Hence 

(5.2) 

r 
s=l (r)'' ' ' ' 

2 
r=m

2
(s) 

figure 6 

f (r,s) * ~ 1 (r)o(s) = 
+ -2 + 2 -

--

•{¢½(s)* O(s)} = 
== -½w+ (r ,s) * tf>.1 (s). o (r). 

2 

After differentiating with respect to x we obtain 

(5.3) 

• 

--
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Due to the Kutta condition the function w (r,s) is continuous ac1:·oss 

is as-
' 

-l,. 
' 

the line s=l 2 (r). If moreover the given downwash distribution 

sumed to be bounded at the wing surface, the right-hand side of equa

tion (5.3) is locally integrable in the neighbourhood of s=l
2

(r) 

(r=m2 (s)). Because u+(r,s) vanishes for r <m
2

(s), s> O, the rigl1t

hand side of equation (5 .3) is also zero for r < m
2 

(s), s > 0. 

Hence after taking the convolution of both sides of (5.3)with 

~+½(r)o(s), we obtain 

(5.4) 

u ( r, s) 
+ 

- --
1 

21T 

= -½ 

r 

r 
¢A (r-p) 

2 m
2

(s) 

(r-P)-½ { (~a 
d µ 

m
2

(s) 

valid for O < s < 1
2 

(r) . 

+ a ) as 
s 

w + ( p , o ) <P ~ ( s -o ) do } dp = 
11 (p) 

s 
w (~) , tJ ) ( s -o ) -½do } 

+ 
dp' 

11 ( p) 

The integral is an integral over the area APBC and the lift in P does 

not depend on the slope of the airfoil 

is usually stated as Evvard's rule [8] . 

the region OBC. This fact 

5.3. The raked-out tip 

A 

u 

............. -..-

s=1
1
(r) 

r=m1 (s) 

for s > 1 2 (r). 

r 

figure 7 

s 

s 

On the other hand we have in general 

Because u (r,s) vanishes for 
+ 

r <m
2

(s), s >0 we have also 

f (r,s) =0 for 
+ 

r<m (s) s >O· 2 ' ) 

see figure 7. Hence it fol l.ows 

from equation (5.2), that 

for r< m2 (s), s> 0. This means 

1
2 

(r) 
w+(r,o) t½(l2 (r)-a)do 

1
1 

(r) 

-/:. 0 

and therefore 
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s 

w+(r,a) ¢½(s-o)da 
1

1 
(r) 

is a discontinuous function of s along the leading edg0· P=1 9 (r). The 
,;;;., 

(compare 5.3) will now introdt1ce a 11 line 1
' 

distribution concentrated at the edge s=l 2 (r). 

We introduce 

(5.5) 

the function 
1

2
(r) 

F(r) = f 
1

1 
(r) 

w (r,o) 
+ 

If we assume the slope and the edges of the wing surface infinitely 
(x:) 

dif.fere·r1tiable, the function F(r) is a C functior1 101" r > 0. 

Applying equation (5.3) we obtain 

(5 .. 6) d -½(- + ar cl ) Lr as 

u+(r,s)+.-¢_½(r)6(s) = 

s 

f w+(r,o) 
1

1 
( r) 

(1-
dl 2 
dr) · F ( r) 

dF 
dr ' 

+ 

wher(~ the differentiatio11 

sense. 

+ may now be taken in the ordinary 

The distributions O(s-1 2 (r)) a11d ~(s-1
2

(r)) are defined as 

(5.7) 

and 

(5. 8) 

< 0 ( s-1 ( r)) , •-ti ( r, s) > = 
2 I (~ ( r, s) dr ds , 

00 

-00 

where q, is some test functio11 belonging to D or S and having its sup

port in the region r > O; cf. chapter I, section 7. The left-ha11d sj4:l,;,:: 

and hence also the right-hand side of (5 .6) vanishes for r < m
2 

(s), 

s > O; taking the convolution of both sides of equation (5 .6) with 

~½ (r) cS (s), we obtain for O < s < 12 (r) the result 



(5.9) 

u (r,s) = 
+ 

1 --
2n 

m
2

(s) 

• 
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a ) 
as 

3 
+ ds ) 

s 

11 (p) 

w (p, a) 
+ 

where the function T(r,s) is given by the expression 

(5 .10) T(r,s) (1- · F (r) 

+ T(r,s), 

Apart from the extra term T(r,s), we have obtained the same result as 

for the ' 1 raked-in' 1 ti p , given by eq u at i on ( 5 • 4) . 
' 

The term T(r,s) will be reduced as follows. 

Instead of the distribution 6(s-1
2
(r)) we may write 

dm2 
c5(r-m2 (s)) -- , 

ds 

and we obtain for r> m
2

(s), s> 0 

T(r,s) = 

1 

2/2 

1 

2 ✓7T 

dm2 
½o(r-m2 (s)).( ds -1) 

dm2 
( d s 

-1) 

r 

J 
m

2
(s)-0 

Substituting the expression (5.5), we finally get 

(5.11) 1 
T(r,s) = 

dm2 
( ds 

-½ -1 ) { r-m ( s) } • 
2 

1
1 

(m
2

(s)) 

--

The integral in the right-hand side is an integral along the line CB. 

If the point Pat the wing approaches the point 

wing, the 

expected. 

velocity component u (r,s) behaves as 
+ 

Bat the edge of the 
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6. Airfoils with subsonic leading edge 

Having treated the airfoil with partly supersonic and partly 

subsonic leading edge, it would be interesting to deal now with the 

case of a completely subsonic leading edge. 

However, this case is essentially much more difficult than that of 

the preceding section. This is due to the fact that there is a mutual 

influence of the downwash fields at both sides of the wing; see figure 

• 

s 
• 

X 

figure 8 

y 

8. Actually, the problem to 

determine the lift distribu

tion of an arbitrary airfoil 

with subsonic leading edge 

has not been solved up till 

now in a satisfactory way. A 

solution has been construct

ed only for the special case 

of a triangular wing with 

straight edges, while the downwash distribution at the wing surface 

is of the form 

(6.1) 

where g is a sufficiently differentiable function [s] . 
• In this connection we refer the reader also to the theory of conical 

flows; see for example reference • 

Since the difficulties for obtaining a general solution are outside 

the scope of distribution theory, we shall not deal with this problem 

in this general treatment. 

7. Wings with prescribed pressure distribution 

We consider in this section the case that instead of the down

wash the pressure distribution is given at the wing surface, and the 

geometry of the wing (i.e. thickness distribution or camber and angle 

of incidence} is to be determined. 

For infinitely thin wings this problem is tantamount to the problem 

of the determination of the downwash distribution w (r,s) from the 
+ 
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velocity component u (r,s), which 
+ 

is prescribed at the wing surface W 

and which vanishes outside W. 

In the language of distributions this is a very simple problem. 

(7.1) 

We first introduce the function V(x,y,z), defined as: 

V(x,y,z) = 

1 
+ 27T 

0 

Arcosh[----
+(y +z) 

2 2 ! 
X > + (y +z ) , 

2 2 ½ for x < + {y +z ) . 

This function is known as Volterra's solution of the wave equation 

[10]; the coordinate x plays again the role of the time. 

One can easily verify that the function V(x,y,z) and the elementary 

solution E(x,y,z), given by equation (3.2), are connected with each 

other by the relation 

(7.2) 
3V 
dX 

= E(x,y,z). 

Taking z=O and using again characteristic coordinates (r,s), we ob-
' 

tain a function, denoted by ~(r,s) and given by the expression 

(7.3) V(x,y,0) = ~(r,s) 

Moreover, we have the relation 

(7.4) a ) 
as 

1 
= 

2
n0(r) 0(s) Arcosh 

r+s 
r-s • 

In order to calculate the slope of the surface of an airfoil from 

its prescribed lift distribution we have to determine the downwash w 
+ 

at the wing surface from the values of u , given in the plane z=+O. 
+ 

We start again from our basic formula (3.11), viz. 

(3.12) 

or in equivalent form 

(7.5) 

f (r,s) 
+ 

w (r,s) 
+ 

= -2f (r s) * ¢ 1 (r) · + ' -2 

we may write 



• 

100 

(7.6) 

Substituting (7.6) into (7.5), using 

u (r,s) = 
+ 

a 
<ar + 

a 2 -

f (r,s) 
+ 

and aJJplying the relation (7.4), we obtain the result 

(7.7) 

w (r,s) 
+ 

a 
+ (- -

:)r 
u (r,s)* 

+ 
a ) 
as '¥(r,s). 

Equation (7.7) yields the downwash at the plane of the airfoil in 

tenns of the function u (r,s), which is proportional to the lift dis-
+ 

tribution at the airfoil. 

Reducing (7.7) to an expression with ordinary integrals we should be 

careful in integrating across the edge of the wing, since u (r,s) may 
+ 

be discontinuous at this edge and the differentiations give rise to 

the appearance of a-functions concentrated along the edge of the air

foil. When u (r,s) is infinite at the edge (e.g. in the case of sub-
+ 

sonic leading edge), the calculations become even more complicated. 

We can avoid these complications by writing 

(7.8) 

Substituting 

(7 .,9) 

w (r,s) = 
+ 

-

we obtain finally the result 

(7 .10) 

w (r,s) 
+ 

1 
+ 2,r 

- -- 1 a 
2n <ar 

a ) 
as 

a ) 
dS 

[u (r,s)* 
+ 

'i'(r,s) = 1 (rs)-½ 2:rr 

a ) 
+ as ff 

PAOB 
+ 

PAOB 

-½ -½ u (r-p,s-a)p a 
+ 

'f (r,s)] 

s+r 
s-r 

• 

do 

dp do , 

where the second integral should be considered in the sense of the 

. ' 
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Cauchy principal value. As to the region PAOB see figure 9. It is to 

be noted that the equation 

r 

0 

' ' ~ 
V 

P(r,s) 

X 

figure 9 

y 

s 

(7.10) is valid for infinite

ly thin airfoils with arbi

trary leading edge, while the 

prescribed lift distribution 

is only restricted by the re

quirement, that the integrals 

in the right-hand side of 

(7.10) exist. 

The fo1·11tula (7 .10) may also 

be applied for calculating the thickness distribution of a nonlifting 

wing, symmetric with respect to the plane z=O, while its leading edge 

should be supersonic. 

However, if its leading edge is subsonic, the given function 

u (r,s) must be subject 
+ to an extra condition, since the function 

w (r,s) vanishes identically outside the wing surface. Moreover, the 
+ 

solution w (r,s) is no longer u11iquely determined, because in this 
+ 

case the equation 

has a nonvanishing solution (cf. [1] , D 13). 

8. Mixed problems 

Another class of important problems are the so-called mixed pro

blems. They occur in lift cancellation technique, which is a useful 

tool for the calculation of the lift distribution on infinitely thin 

airfoils of rather general planform. 

Consider an airfoil at the surface of which the downwash and the 

lift distribution are already known; let us * assume u (r,s) = u (r,s) 
+ 

and w (r,s) 
+ 

* * * = w (r,s), where u and w are given functions of rands. 

The leading edges of the airfoil are 

(r-m
0

(s)) and s=11 (r) (r=m
1 

(s)); see 

given by the equations s=l (r) 
0 

figure 10a. The edges s=l (r) and 
0 

s=11 (r) are supposed.to be respectively supersonic and subsonic. 
• 
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Now, consider a second airfoil, travelling at the same speed and 

having the same planform as the first one, but its surface is con

structed in such a way, that to the left of a certain line s=l
2

(r) 

(or r=m2 (s)) the downwash distribution w (r,s) equals zero and that 
+ 

to the right of this line the lift distribution is the same as that 

on the first wing. However, the lift distribution is now unknown at 

points to the left of s=1 2 (r), while the downwash distribution is un-
b 

known at points to the right of s=l 2 (r); see figure 10. If the boun-

dary values for the second wing are subtracted from those of the 

first, there result the boundary values for a third wing with plan-· 

form bounded by the lines s=l
0

(r}, s=l
1 

(r) and s=l 2 (r) and with a 

downwash distribution, which coincides at the surface of the wing 

with that prescribed on the first wing. 

Therefore the influence of cutting off an edge of a given wing can be 

determined by solving the second boundary value problem, which is an 

example of a mixed boundary value problem. 

We have to distinguish here again between the two cases, whether 

the new edge is 
If • 11 II 11 raked-in or raked-out . 

In the first case the new edge is a trailing edge and therefore the 

Kutta condition, u+=O, should be satisfied at the edge s=l 2 (r). Hence 

u+(r,s) must be continuous across the line s=l 2 (r) in the boundary 

value problem, corresponding with figure 10b. 

In the second case, the new edge is part of the leading edge and 
_l 

u+(r,s) behaves at the wing surface as {1 2 (r)-s} 2 for (r,s) in the 

neighbourhood of s=l 2 (r). It follows now that,in the boundary value 

problem of figure 10b, u (r,s) is discontinuous across the line 
+ 

s=l2 (r). 

The case of the raked-in edge will be treated first. 

The origin of the coordinate system is translated to the point 

of intersection (r ,s) of the leading edge s=l 1 (r) and the new edge 
0 0 

s=l2 (r); one obtains the coordinate system (r' ,s'), in which the 

edges are given bys'= 

tain a simple notation, 

1:(r'), i=0,1,2. However, in order to main-
1 

we shall omit the primes in the sequel. 

The influence of the new edge s=l
2

(r) is only restricted to the region 
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s > 0 and for calculating the influence on the lift distribution we 

need only to determine 

see figure 11. 

the function u (r,s) in the 
+ 

region O < s < 1
2 

(r) ; 

u =0 
+ 

u 

w =0 
+ 

0 

I 
~ 
,, 

+ =0 I 

I 
u =0 =? e 

,.. - - - - - - - _+ _ ..... -. ___ + - _, 
P(r,s) 

r 

' 

figure 11 

According to formula (3.12) we may write 

s 

u =0 
+ 

(8.1) w+ (r,s) * ¢½ (s) o (r) = -2f + (r,s) * <f> _½ (r)o (s). 

Since w+ (r,s) = 0 for s < 12 (r), it follows immediately that 

(8.2) f+ (r,s) * ct>-½ (r) · o(s) = 0, 

for O<s <1
2

(r). 

Applying the operator 

obtain 

( a + a) 
ar as to the left- hand side of (8. 2) we 

(8.3) 
• 

u (r,s) * ¢ 1 (r)6(s) = O, 
+ -2 

for O < s 

Because u+(r,s) is continuous across the line r=m
2

(s) and because 

u + (r, s) vanishes for r < m
1 

(s), we may write 
• 

(8.4) u (r,s) = 0(r-m2 (s))u (r,s) + {G(m (s)-r) - 0(m (s)-r)}· 
+ + 2 1 

* .u (r,s). 

• 
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We introduce now the distribution q(r,s), defined as 

(8.5) q ( r , s) = 0 ( r-m2 ( s) ) u + ( r , s) * ¢ -½ ( r) c ( s) , s > 0. 

Obviously, this distribution vanishes for r < m (s), s > O; substitution 
2 

of (8.4) into (8.3) gives for r>m
2

(s), s>O the result 

+1 m2(s)* -3/2 
( 8 . 6 ) q ( r , s) = - J u (p , s ) ( r-P ) d P . 

2/n m
1 

(s) 

Thus the distribution q(r,s) is dete1·rrlined everywhere in the half

plane s > 0 with the exception of the 1 ine r=m
2 

(s). 

Hence q(r,s) is known apart from a finite linear combination of the 

distribution 6(r-m
2

(s)) and its derivatives. 

This linear combination is denoted by 

(8.7) d(r,s) = 
i=O 

a. (s) 
l. 

where the coefficients a. (s) 
J. 

of s. Taking the convolution 

are infinitely differentiable functions 

of q(r,s) with ¢½(r)o(s) we obtain the 

result 

u (r,s) = 
+ 

+ 

1 
2TI 

p 

i=O 

valid for r > m
2

(s), s > 0. 

a. (s) 
1 

a 
• 
l. 

• 

m
2

(s) 

m
1 

(s) 

This fonnula can be simplified by interchanging the order of inte-

+ 

gration and calculating consecutively the inner integral. Then we get 

u (rs)= 
1 m2(s) 

+ , TI 

(8.8) 
p 

valid for r> m2 (s), s >O. 

a. (s) 
1 ar 

• 
l. 

* u (p,s) 

r-p 

It is not difficult to show that the first te1·1rt of the right-hand side 

* of (8.8) tends to u+(m2 (s),s) for r ➔ m2 (s). 
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In the case that u+(r,s) is continuous across the line r4r12 (s), all 

coefficients a. (s) are necessarily equal to zero. 
]. 

Hence the final result for the ''raked-in'' tip becomes 

(8.9) u (r,s) 
+ 

1 ½ = - {r-m (s)} 
11' 2 

valid for O <S< 1
2

(r). 

In the case of the t t I I 
raked-out 

continuous across the line r=m
2

(s), 
• 

* u (p, s) 
r-p 

tip the function 

in contrast with 

-½ 
d p ' 

u (r,s) is not 
+ 

the potential 

f (r,s) which 
+ 

is certainly continuous across this line. 

The values of 

* ting u (r,s) 

f+ (r,s) for 1
2

(r) < s < 11 (r) can be obtained by integra

in the direction of the x-coordinate. This integration 

is possible, since s=l2 (r) is part of the leading edge of the airfoil. 

* Denoting these values off (r,s) by f {r,s), we can now calculate 
+ 

f (r,s) in the same way as u (r,s) in the case of the ''raked-in'' edge 
+ + 

* * by replacing u by f, u by f and omitting the differentiation 
+ + a a ·<a r + as). 

" • t I TI We obtain for the case of the raked-out edge 

(8 .10) 
+ 1T 

valid for O < s < 1
2
(r). 

a c, 
Applying the differentiation ar + as 

(8.11) u (r,s) 
+ 

= 1 < a 
n a r + a ) as 

* f (p, s) 

r-P 

, we get finally the result 

• 

* f (p, s) 
• r-p 

valid for O <s < 1
2

(:r). 

• 
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1. Introduction 

Chapter IV 

THE LORENTZ-INVARIANT SOLUTIONS 
OF THE KLEIN-GORDON EQUATION 

The solutions, invariant under a proper Lorentz transfo1·1nation, of 

the homogeneous and inhomogeneous Klein-Gordon equation 

(1.1) 

(1. 2) 

(□ -m 
2

) f ( X) = 0, 

(0-m
2 ) g(x) = -6 (x), 

play an important role in relativistic field theory (see e.g. ref.[1], 
[2] and [3] ) .. 

The function f(x) or g(x) is the wave function connected with a par

ticle of mass m. The symbol x denotes the set of coordinates 

(x1 ,x2 ,x3 ,x
0

) of a point in the four-dimensional space R
4

; (x
1

,x
2

,x
3

) 

are space coordinates and x is the time coordinate. 
0 

The. symbol D stands for the diff ere11tial opera tor 

(1. 3) - 2 J ax 
0 

and o(x} denotes the four-dimensional Dirac function concentrated in 

the origin of the coordinate system. 

In the case of m=O the equations (1.1) and (1.2) reduce to the ordin

ary wave equations in three-dimensional space and the functions f(x) 

and g(x) are wave functions connected with a photon. 

In textbo9ks on field theory the solutions of (1.1) and (1.2) 

are usually obtained in a rather for1nal way, see e.g. [1] , [2] and 

[3] . They are determined by applying a Fourier transforina tion to 

(1.1) and (1.2). The Fourier 

satisfies the equation 

(1.4) 

.... 
transforn1 of e.g. f (x) , denoted by f (k), 

.... 
f(k) = O, 

• 
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with k
2 

= k 
2
-k 2 -k 2 -k 2 

o 1 2 3 . 

General Lorentz-invariant solutions of (1.4) are linear combinations 

of the Diract function 6 (k
2

-m
2 ) and 6 (k2 -m2 ) which are concentrated 

+ -
on the upper respectively lower 

inverse transforms of c (k2-m2 ) 
+ 

2 2 
sheet of the hyperboloid k -m =O. The 

2 2 
and o-(k -m) are obtained by purely 

formal calculations; for example divergent integrals are converted 

into convergent integrals by merely interchanging the operations of 

differentiation and integration (see [1] , §15 .1; [2] , §15. b). It is 

obvious that this rather fonnal procedure cannot claim any mathema

tical rigour. The difficulties stem essentially from the fact that 

the Dirac functions o (k
2 -m2

) are not functions in the classical 
+ 

sense; they are generalized functions or distributions and they should 

be treated as such. To obtain the Lorentz-invariant solutions of (1.1) 

and (1.2) in a rigorous way one needs essentially the theory of dis

tributions and the calculations have to be performed within the frame

work of this theory. 

The object of this chapter is to present a rigorous derivation 

of the Lorentz-invariant solutions of the Klein-Gordon equations (1.1) 

and (1.2) by means of the theory of distributions. 

This problem has been treated in recent years by some other authors, 

who have used procedures different from those given here; we mention 

the work by Methee [4] - [6] , Roos and Garding [7] and Lavoine [s] . 
Methee applies a mapping of then-dimensional space 

line R, given by the transformation 

(1.5) u = X 
0 

2 - 2 
x. 

1 • 

R on the 
n 

Using pairs of distributions defined on the space of test functionsD, 

Lorentz-invariant solutions of the Klein-Gordon equations inn dimen

sions are derived. Asymptotic expansions of distributions, concentra

ted on the hyperboloid u=E , in the neighbourhood of E=O play an im

portant role in the theory. 

A simplified version of this theory is due to J.E. Roos and 

L. Garding,. [7] . These authors use the following transfo1·1nations for 

the test functions ~(x): 

• 
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(1.6) 

and 

(1. 7) 

with 
2 

X 

{Mcp) (T) = 

2 2 2 2 
= xo -xl -x2 -x3 . 

110 

2 q>(x)O(T-x )dx, 

2 . 
~(x)o(T-x )s1gn.x dx, 

0 

Linear homeomorphisms are established between the spaces of even and 

odd Lorentz-invariant distributions and the duals of the spaces of the 

functions (M4>)(T) respectively (M1~)(T); hence the necessary calcula

tions can be perfo1·1tted in these dual spaces. 

It should be remarked that the solutions obtained in [4] and [7] are 

distributions belonging to the space D'. 

y 

In this chapter we present another procedure for obtaining the 

Lorentz-invariant solutions of (1.1) and (1.2). As in the fo1·1nal ap

proach of [1] and [2] we apply again a Fourier transfo1·111ation to the 
• 

equations (1.1) and (1.2) and deter1t•ine the Lorentz-invariant distri-

butions satisfying the relations 

(1. 8) 

respectively 

(1. 9) 
2 2 A 

(k -m) g(k) = -1. 

Consecutively, the inverse transforms of these distributions are de

ten1·1ined, needless to say with due observance of the rules of the 

theory of distributions. 

Whereas Methee, Roos and Garding use distributions belonging to D', 

we consider only tempered distributions belonging to S'. This results 

in the fact that the solutions obtained in this chapter, contrary to 

those of and [?] , do not have exponentially increasing ternts. 

Moreover, due to this behaviour at infinity these terms are usually 

disregarded by the physicists (see also [s] ). We have confined our 

treatment to four dimensions, but apart from technical details the ex

tension of the theory ton dimepsions is not essentially different. 
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In section 2 a modified Fourier transformation is introduced such 

that the image of a Lorentz-invariant distribution is again Lorentz

invariant and vice versa. This Fourier transfo1·rna tion is applied to 

the Klein-Gordon equations (1.1) and (1.2) and it turns out that the 

modified Fourier transform of the general Lorentz-invariant solution 

of (1.1) can be written as 

(1.10) 

where c and c are arbitrary constants. 
+ -

A particular solution of the modified Fourier transfor1rt of the inhomo-

geneous Klein-Gordon equation is 

(1.11) g(k) = 
-1 

2 2 ' 
k -m 

where the distribution< 
1 --

2 2 , q>(k)>is defined as the Cauchy prin-
k -m 

cipal value 

e: .. +O \ k -m I > e: 

,,._ 

<J> (k)_ 

k2-m2 
dk. 

The following sections 3,4 and 5 are devoted to the inverse Fou-

rier transformation of the (k2-m2)-1, I (k2-m2) and distributions u 
+ • 

c (k2 -m2 ). In section 3 we establish the relation -

(1.12) 

where o(k2 -m2 ) is concentrated on both sheets of the hyperboloid 
2 2 2 2 2 2 2 2 

(k -rn) = O; i.e. o(k -m) = o (k -m) + 6 (k -m ). 
+ -

The inverse Fourier transform of { (k2 -m
2

) +iO} -l is dete1·111ined in sec-

tion 4 by aid of the principle of analytic continuation; those of 

(k2 -m2 )-l and o(k2 -m2 ) follow now easily by virtue of (1.12). 
2 2 2 2 

The transforms of the distributions o (k -m) and o (k -m) are derived 
+ -

in section 5; they follow from the transform of the distribution 

o(k2 -m2 ) by using a well-known property of functions, holomorphic in 

the upper or the lower complex half-plane. 
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J. Lavoine [ has given the Lorentz-invariant solutions of the 

equations (1.1) and (1.2) by applying also the Fourier transfo1·111ation. 
2 2 2 2 

The inverse transformation of the distributions o (k -m ),o (k -m) + -
and (k2-m2 )-l are obtained by calculating the inverse transforms of 

2 2 2 2 k2+k2+k2+m2). 
1 2 3 

.(k2 -m2)-l and by taking consecutively the limit for 8 ~ 0. 

In section 6, by which this chapter is concluded, we determine 

the following Lorentz-invariant solutions of (1.1), viz.: 

Jordan function A(x), its positive and negative frequency 
-

6 (x) and the distribution 

fl (l) (x) :::: + tJ. (x)-
-

t:i. (x). 

the Pauli-
+ parts A (x), 

It is shown in section (6.2), that the distribution 8(x) is the 

Green's function of the Caucl1y initial value problem for the homogen

eous Klein-Gordon equation. 

In (6.3) we derive finally the following invariant solutions of the 

inhomogeneous Klein-Gordon equation: the advanced and retarded Green's 

functions !JA (x) and !JR(x), vanishing for x
0 

> 0 respectively 

the causal Green's functions !JC(x) and ~AC(x). 

x < O,and 
0 

2. The Lorentz-invariant solutions of the Klein-Gordon equation 

2 .1 .. The Fourier transforn1ation 

A Lorentz transfor1nation is a linear transformation of the coor

dinates which leaves the hyperbolic distance 

(2.1) 2 
X = x.x 

invariant and which does not reverse the direction of time. 

We are concerned only with the so-called proper Lorentz transfor1n

ations, which means that we do not consider reflections and so the de

ter1ninant of the transforI11a tion equals al ways +1. 

By a Lorentz-invariant function f(x) we understand a function 

which is invariant under every proper Lorentz transformation A, i.e. 
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(2. 2) f(Ax) = f(x), 

for any proper Lorentz transfo1·rnation A. 

A distribution f(x) is called Lorentz-invariant, if 

• 

{2.3) 
-1 = <f(x), ¢(A x)> = <f(x), <P(x)> , 

for any test function cp(x) and for any proper Lorentz transformation A. 

When one deals with Lorentz-invariant distributions, it is ad

vantageous to use a slightly modified version of the Fourier transfor1n

ation of chapter I, section 6.1. As will appear later on, this modi-

* fied Fourier transfo:r·111a tion denoted by F has the property that the 
. 

image of a Lorentz-invariant distribution is again Lorentz-invariant 

and vice versa. 

For absolutely integrable functions belonging to the class L(-~,+00
) 

it is de:fined by 

(2.4) F* [f(x) = f(k) = 
-00 

with the Lorentz type inner product k.x = k
0

x
0
-k1 x 1 -k2x 2-k3 x 3 and 

dx = dx
0

dx
1

dx
2

dx
3

; the integration is performed over the whole four-

dimensional space R4 • 
..,.-1 

The inverse transfo1·11ta tion F , in case it exists, is given by 

(2 .. 5) f(x) * ::= F 
-1 

[f (k)] = 
1 

(2n) 
4 

fO) 

w 

-ik.x 
e 

..... 
f(k)dk. 

* The Fourier transform F of a distribution f(x) is defined by the re-

lation 

(2.6) 

With the aid of (2.4) one can easily check the formula 

(2. 7) 

According to the definition of transformation of the independent 

variables we have the relation 

<f(Ax) ,<P (x)> 
-1 

::= < f (x) , cp (A x) > , 
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and therefore 

.... ... -1 ~ ~ -1 
<f(x), $(A x)> = <f(k), ¢(A k) : - < f ( Ak) • ¢ ( k) > ,, , 

Hence we have also for any distribution 

(2. 8) 

When the distribution f(x) is Lorentz-invariant, the relation (2.3) 

is valid and hence 
... .... 

= <f(k) ,¢ (k)> .. 

Thus a Lorentz-invariant distribution f(x) has a Lorentz-invariant 
.... 

modified Fourier transform f(k); the converse statement is of course 

also true. 

It may be remarked, that for any test function ¢(x) 

(2. 9) 
+oo 

e i ( k ' x) i ( k) dk = F [ $ ( k )] , 
-CO 

When the Fourier transformation F, in the usual sense, is applied 
.... 4 

to~(k), we obtain (21r) ~(x
1

,x
2

,x
3

,-x
0
). 

According to Parseval's equality we have for the Fourier trans

formation F the relation 

<F [f(k}] ,F[i(k)]> = (21r)
4 

<f(k) ,~(k)>, or 

<F 

and so we have • 

(2 .10) F 

By aid of (2.6) we obtain finally 
• 

(2.11) 
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2.2. Lorentz-invariant solutions of the homogeneous Klein-Gordon 

equation 

Applying the modified Fourier transformation to the homogeneous 

Klein-Gordon equation 

(1.1) 

we obtain 

(2.12) 2 2 ~ 
(k -m) f(k) = O, 

with 

(2.13) k.k = 

It is clear that a solution of (2.12) is a distribution cpncentrated 

at one sheet or at both sheets of the hyperboloid 

(2 .14) 2 2 
k -m = 0. 

Outside the two sheets of this hyperboloid f(k) ~ 0. 

Because the only subsets of the hyperboloid, invariant under the group 

of proper Lorentz trans fo1111a tions, are its upper and its lower sheet, 

it is obvious that the general Lorentz-invariant solution of (2.12) 

can be written as 

(2.15) 
,. 
f (k) 

2 2 2 2 
= c 6 (k -m) +co (k -m ), 

+ + - -

2 2 r 2 2 
where c+ and c_ are arbitrary constants; o+(k -m) and u_(k -m) are 

distributions concentrated on the upper respectively lower sheet of 
. 2 2 

the hyperboloid k -m = O; they are defined by the equations (7.7) and 

(7.8) of chapter I and we may write 

(2.16) 

with 

00 

= ½ 
0 

2 2 2 2 
x =kl +k2 +k3 ; denotes the unit sphere in 
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and dO its surface measure. 

tis defined analogously to for111ula (7. 5) of chapter I, • Vl.Z • 

(2.17) 

For c 
+ 

(2.12). 

... 
♦ (x,k) = 

0 

... 2 2 
= c = 1 we obtain f(k) = o(k -m) -

• 

as a special solution of 

In order to obtain the general Lorentz-invariant solution of the 

homogeneous Klein-Gordon equation it is according to the preceding 

section (2 .1) sufficient to dete11tline the Fourier transfo1·rn of the 

two distrib,utions 6 (k2
-m

2 ) and 6 (k2 -m
2 ). This will be carried out 

+ -
in section 5. 

2.3. Lorentz-invariant solutions of the inhomogeneous Klein-Gordon 

equation 

The general Lorentz-invariant solution of the inhomogeneous 

Klein-Gordon equation 

(1.2) 

is a linear combination of the Lorentz-invariant solutions of the 

homogeneous equation (1.1) and a particular Lorentz-invariant solution 

of (1.2). The latter can be obtained by applying again the modified 

* Fourier transformation F to (1 2) Transf """'" t· · f (1 2) · Id . . orn,a 1.on o • yie s 

(2 .. 18) 2 2 A 

(k -m )g(k) = -1. 

A Lorentz-invariant solution of (2.18) is 

(2 .19) .... 1 
g(k) = -2-. -2 . 

m -k 

The distribution 

value 

2 2 -1 1. 
<(m -k) ,v(k)> is defined as the Cauchy principal 

p 
.... 
♦ (k) 

dk = 2 2 
m -k 

lim 
e:-+ +O I 2 2 

m -k I>£ 
dk. 

• 
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The existence of this principal value is shown in the next section. 
2 2 -1 By aid of the Fourier transform of the distribution (m -k) we get 

a Lorentz-invariant particular solution of (1.2). 

Hence, in order to obtain the solutions of (1.2), invariant under the 

group of proper Lorentz transformations, it is sufficient to determine 
2 2 2 2 the Fourier transforms of the distributions 6 (k -m ), 6 (k -m) and 

+ -
· 2 2 ) - l Th · · 1 b d . th 4 5 (m -k . is w1 1 e one in e sections · and . 

3. The distribution (m2+P+i0)-l 

We consider for the moment the one-dimensional distribution 

ln(k+iO). It is defined by 

ln(k+iO) = lim 
£-+ +O 

ln(k+i£) = lnlkl +in6(-k). 

Differentiation of this distribution to k yields 

(3.1) 1 --
k+iO 

lim 
e:: -+- +O 

1 
k+ie: 

--

The functional d ln lkl can be reduced as follows 
dk 

-ino(k). 

+oo 

< d ln I k I 
dk 

, ~ ( k ) > = - < 1 n I k I , ¢ ' ( k) > = J 1 n I k I ~ ' ( k) dk = 

• 

Hence 

(3.2) 1 
k+iO 

and in the same way 

(3.3) 1 
k-iO 

-CD 

f lnj kl 
.... 

= - lim cp ' (k) dk --
I k I >c e: ➔ +O 

-£ .... 
+ ln I k I cp (k) 

,00 

= lim 
e: -+ 0 

= lim 
1 

k+iE e:-+ +O 

1 
= lim 

k-ie: 
e:-+ +O 

--

--

00 ..... 
i (k) - f k 

+e: I k I > E: 

dk. 

dk] --
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where the distribution <1/k,i(k) has to be interpreted as a principal 

value of Cauchy. 

This wel 1-known 1·esul t can be generalized for the distribution 

2 -1 
(m +P(k) + iO) , 

where P(k) is some real quadratic f or111 in k
1 

, k
2

, ..• , kn• 

. ..._ 2 2 2 2 Since we need here only the special fo11n P(k) = k
1

+k
2

+k
3
-k

0 
= 

= K
2
-k

2 
we shall confine our considerations to this case. We define o' 

the distribution (m2 
+P+iO) A for Re .>.. > -1 by -

(3.4) (m
2 +P+iO)" -

with 

(3.5) 

and 

(3.6) 2 A 
(m +P) - -- 0 

2 )._ 
(-m - P) 

+1r J.. i ( 2 P) ). + e m + , 

f'or 

for 

for 

for 

-

2 
m +P > 0, 

2 
m +P < 0, 

2 
m +P > 0, 

2 
m +P< 0. -

It is clear that the functional 2 A .... 
< (m +P+iO) , ¢(k)> • 

1S an analytic func--
tion of ). for Re l > -1 . 

• 

2 .l. 
The distribution (m +P+iO) with Re "< -1 is defined by the ana--2 ). .... 

lytic continuation of <(m +P+iO) ,~(k)> as function of the complex -
variable A. 

This 

tinuation 

analytic continuation will be 
2 ). ..... 2 A 

obtained by the analytic con-
of <(m +P) ,~> and <(m +P) , 

+ -
..... 
cp > • 

For Re A>-1 we may write 

(3.7) 2 ). ,... 
4>(k) dk. 

m +P> 0 -
2 A ... It is also clear that 

Re A>-1.·we introduce 

<(m·+P) 
1
~> is 

+ an analytic function of A for 

2 2 2 i=l,2,3, K = k
1

+k
2

+k
3 

olar coordinates for k
1

,k
2 

and instead of k we take 
0 

or k = + 
0 

2 2 
K.+m -Q; 

k. = 
1 

KW. , 
1 
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hence dk1 ctk2 ctk3 ctk
0 

= 2 2 -½ 2 +½ (K +m -Q) K dK dQ dn , where is the sur-

face 

(3. 8) 

element on the unit sphere in (k
1

,k
2

,k
3
)-space. 

Substitution into (3.7) yields! 

2 A .... 
< (m +P) ,._>= 

+ ' 't' 

00 

0 

CIO 

+ ½ f 
0 

2 2 
K +m 

I 
0 

2 2 
K +m 

f 
0 

... 2 2 
QA cf>(K,- K +m -Q) 

K2+m2-Q 
dQ 

2 
K dK' 

-.... 
where the integration to ctn 

(2.17). 

has been carried out and 4> is defined by 

(3.9) 

The right-hand side of (3.8) may be written for Re A>-1 as 

2 >i. ,.. 
<(m +P) ,¢>= 

+ 
2 2 

K +m 

C. I 
0 0 

2 2 
00 K +m 

+ ~ I [ 
0 0 

1 
A+l 

0 

Q 
). 

-
A 2 2 
cf>(K,+ K +m -Q) 

... 2 2 
$(K,+ K +m) -

/K2+m2-Q /42+m2 

- 2 2 ~ 2 2 
$(K,- K +m -Q) ~ t(K,- K +m) dQ 

. K2+m2-Q /42+m2 

2 2 
K +m + 

2 
K dK + 

The first two terms are analytic f'unctions of A for Re X> -2, while the 

third term is an analytic f'unction of .X for all values ot· A except 

pole. A=-1, where it has a simple 

Hence the distribution 
2 A .... 

< (m +P) , t> is defined for Re A> -2 by 
+ 

( ) (m
2+P)A. does not 3.9 with the exception of ).=-1; the distribution 

2 A ,... + 
exist for A=-1, since <(m +P) ,cp> has a pole in A=-1. According to 

+ 2 -
(2.16) the residue in this pole equals <6(m +P),$>. 

? A " 
The Laurent expansion of <(m-+P) ,cf>> in the neighbourhood of the 

+ 
point A=-1 is 

• 

(3 .10) 
2 X -

< (m + P) ' ct>> = 
+ 

where the distribution 

1 2 ,. 
A+l <6 (rn +P) , ¢>+ 

2 -1 ,.. 
<(m +P) ,~> is defined by 

+ 

+ O'(A+l) 1 



2 -1,.. 
< (m +P) ,q,> = 

+ 

Q) 

= ½ f 
0 

2 2 
log(K +m ) 

2 2 
K +m 

2 
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• - -2 2 A 

K +m )+ ¢, (K ,-
2 2 2 

K +m ) }K· dK + 

-
CD K 

(3.11) +½J [12 
2 -1 

(m +P) 
.... 2 
q>(K,+ K -P) -

-:: 2 2 
cp(K,+ K +m) 2 

dP] K d K 

0 -m 

CD 

+ ½ f 
0 

K2 

-m 

(m2+P)-l 

2 
K -P 

-::. 2 
4> (K ,- I( -P) 

2 
K -P 

2 2 
K +m 

-:::: 2 2 
_ q> ~K 1 - K +m )_ 

2 2 
K +m 

2 
K dK. 

Needless to remark that the distribution (m2+P)-l is not the distri-
. 2 }._ 2 -1 ,. + 

bution (m +P) for A=-1, but <(m +P) ,~> is the value of the regular 
➔· + A .... 

part of the Laurent expansion of <(m2+P) ,~> in the point A=-1. 
2 A .... + 

The Laurent expansion of <(m +P) ,4>> for). in the neighbourhood -
of the point A=-1 can be found in the same way. 

For Re A> -1 we may write 

2 A ... 
< (m +P) ,~> = 

2 A ... 
2 (-m -P) ,<k)dk = 

). ... 
Q 4> (k) dk, -

2 2 2 2 
with Q=-m -P=k -K -m . 

0 

m +P !i 0 Q>O -

We introduce again the new 
2 

coordinates k. =Kw., i=l,2,3 
l l. 

dk1 dk2 dk3=K dK dQ ; integrating with respect to dQ yields 

2 A ... 
<(m +P) ,¢> = - I 

Q~O 

Instead of K we use now the coordinate Q with K= 

2 ). .... 
< (m +P) , ¢,> -

-m 
= ½{ f + 

_co 

(3 .12) k 2 2 

0 

+m 
• 

2 2 
-Q-m k ) 

0 1 0 

dk. 
0 

2 2 
k -Q-m dQ] 0 • 

The right-hand side of (3.12) may be written for Re A>-1 as 

with 



2 X "" 
< (m + P) , cp > = ½ { -

• 

k 
0 -

-m +00 

I + 
-oo +m 

2 2 
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} dk 
0 

• 

2 2 :;:- 2 2 k -Q-m k) 
0 ' 0 

k -Q-m -4>( 
0 

k -m ,k) + 

0 

1 
+ ½ A+l { 

-m 
+ 

-«> 

After substitution of k = + 
0 

00 

1 
½ A+l 

and we obtain for Re A> -1 

+ 

0 0 

+m 

2 2 
K +m the second term is reduced to 

- 2 .... 
q>(K,+ K 

1 
½ A+l 

2 
2 K dK 

+n1 ) + 
2 2 

K +m • 

00 

2 (A+l) -
J 

A 

q> (K ' -K 

0 

2 
K 

2 
+m) 

2 2 
K +m 

2 A ... 
< (m + P) , cp > = - { + f } elk . 

0 
-00 +nl 

j 

(3.13) • 
2 2 

k -Q-m k ) 
0 ' 0 

2 2 -
k -Q-m - q>( 

0 

2 2 
k -m ,k) 

0 0 

2 2 , 
k -m }dQJ 

0 

00 

1 
+ 

X+l ½ J 
0 

2(A+l)I( 
K '+' K,+ 

2 2 
K +m) 

2 
K dK 

2 2 
K +m 

+ 

2(A+l)¢,...( 
K K -

' 0 

2 2 
K +m) 

2 
K dK -·--

2 2 
K +m 

The right-hand side of (3.13) is an analytic function of A for 

• 

Re A>-2 with the exception of the point A=-1, where it has a simple 

pole. According to (2.16) the residu in this pole equals 
2 A 

< o (m +P) , ¢ (k) > • 

The right-hand side of (3.13) gives the analytic continuation of 

2 A "' 
<(m +P) ,cp> - in the region of Re A> 

Hence the Laurent expansion of 

of the point A=-1 runs as follows 

-2. 

2 " ... <(m +P) ,cf>> in the neighbourhood -
• 

(3 .14) 
2 A .,.. 

< (m + P) , 4> > = 1 2 ,.. 
<o(m +P),4>>+ 2 -1 

<(m +P) ,¢>+ ~(A+l), --
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2 -1 ... 
where <(m +P) ,¢>> is again the value of -2 A ,.. 
<(m +P)_,$> with A=-1. The distribution 

the regular part of 
2 -1 .... 

<(m +P) ,~> is defined by -

(3 .15) 

2 A .... 
<(m +P) ,(f>> = -

= ½ { 

-m 
-½{ f + 

-oo 

-m +oo -
J } 

.,.. 

+ ¢> ( 
2 2 

k -m ,k) 
0 0 

2 2 2 2 
k -m ·log(k -m )dk 

0 0 0 
-00 +m 

+00 -m2 
2 -1 

(m + P) .. }dk [ 
0 -k 2 +m 

2 
k +P, k ) 

O 0 

0 

2 -;:
k +P-¢( 

0 

2 2 
k -m , k ) 

0 0 

The Laurent expansion of 

2 A ... 
< (m +P+iO) , ¢> 

2 A -
= <(m +P) ,cfl>+ 

-+· 

,r Ai 
e 

2 A .... 
<(m+P) ,¢>> -

in the neighbourhood of A==-1 can 110w easi 1)1 be obtained by aid of' 

(3.10) and (3.14). 
2 A .... 

The poles of <(m +P) ,¢>> cancel each other and the 1·esult is 
+ -

-

? -1 2 -1 ~ 
<(m_. +P) - (n1 +P) , ¢> 

. 2 1 
- ,r 1 < 6 ( m + p , '+' > + <1( A .,.1 ) • 

+ -

Thus < (m2 +P+i·O)A ,;> is an analj1 tic f'unction of A in tl1e neighbourhood 

of A=-1 and for A=-1 we get the result 

(3.16) 
2 -1 ~ 

< (m +P+iO) - , ¢>> 

where the distributions 

2 -1 2 -1 ~ 2 -
:::: <(m +P) -(m +P) ,¢>>-TTi<6(m +P) ~> 

+ - ' 

2 -1 ,... 
<(m +P) ,ct,> are defi11ed by (3.11) and (3.15). 

+ 
In order to reduce further the right-hand side of (3 .16) we con-

2 -1 ,.. 
sider once again the distributions <(m +P)+ ,~> . 

The right-hand side of (3.11) can be reduced as follows 

2 -1"' 
< (m +P) , 4>> :::: 

+ 

co 

00 

½ f 
0 

+ i lim f K
2

dK 
£ -++o o 

2 2 
log(K +m) 

(m2 +P) -1 
2 -m +L 

00 

2 2 :::-
K +m )+<f>(K,-

-
-½ I 2 2 

log(K +m) 
,.. 2 2 
4>(K, + K +m ) 

/K2+m2 0 

2 
K dK + 

-



+ ½ lim 
2 

K dK 
£-+ +0 '-- 0 

2 
K 2 -1 

(m +P) 
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.... 2 
<P (K ' - K -P) 

/K2-p 
dP + 

_._ 2 2 
cj>(K,- K +m) 

K2+m2 

00 ,.., 2 2 
2 2 p(K,- K +m) 2 -½ log (K +m ) . - . K dK = 

= ½ lim 
£-+ +O 

00 

f K
2

dK 
0 

2 -1{ (m +P) 

0 

-,., 
q>(K,+ 

2 A 
K -P)+<fi(K,-

2 
K -P 

} d'P + 

- 2 2 ~ 

+loge--'"'--~= 
2 2 

K +m ) } J • 

By virtue of (2.16) we get finally 

(3.17) 

2 -1 
< (m +P) 

+ 

..... 
, ¢> = lim 

£-+ +O 

..... 2 - 2 

00 

2 f K dK 
0 

K2+rn2 

2 
K 

2
! 

-m +c 

2 -1 
(m +P) • 

• 

• 
cj>(K,+ K -P)+¢(K,- K -P) 

/42-p 

2 .... 
dP +log c<o(m +P),¢> 

We can reduce in the same way equation (3.15) 

2 -1" 
<(m +P) _ ,¢,> = 

-m 
= ½{( f + 

2 2 
k -n1 , k ) 

0 0 

00 2 2 2 2 
k -m log(k -m )dk} -

0 0 0 
-oo +m 

• 

-½ lim 
e:-+ +O 

2 
k +P, k ) · 

0 0 

-m 
-½{ ( f + 

-oo 

00 

+m 

-..... 
)ci> ( 

-CIO 

• 
2 

k +P 
0 

-,,.._ 

dP-log E -$ ( k 2 -m2 
k) 

0 ' 0 

2 2 
k -m , k ) 

0 0 

2 2 2 2 
k -m log(k -m )dk} 

0 0 0 

and hence with the aid of the relation 

-m co 

( f + f 2 2 
k -m k )· 

0 ' 0 
_o:, +m 

we obtain 

• 

• 

2 
k -m 

0 
-

• 
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oo -m2-£ 

- lim ) dk { J (m 2 + P) - l f ( 2 
k +P, k ) • 

0 0 e: + +O 
(3 .18 

,___ o -k 2 
+ m +£ o 

·dP }-log 
2 £.<o(m +P),$> 

Combining (3.17) and (3.18) we obtain finally 

• 

2 -1 2 -1 ~ 
<(m +P) -(m +P) ,~>= lim 

2 
K dK 

2 -1 
(m +P) • 

+ . - £-+ +O 
0 

(3 .19) . { 
2 

K -P) 
+ 

00 

-CIO 2 
• + m +£ 

-m2-e: 

I 2 -1-::::-
. { (m +P) <P ( 

-k 2 

2 
k +P, k ) 

0 0 

0 

However, the right-hand side of (3 .19) is notl1ing else than 

and hence 

(3. 20) 

I 2 -1 ... 
lim (m +P) cp(k)dk, 

e:-++O lm2 +Pl>e: 

2 -1 2 -1 1 
<(m +P) -(m +P) ,~(k)>:::: 

+ -
1 

< 2 
m +P 

• 

, 

where the distribution <l/(m2
+P),l(k)> has to be considered as the 

Cauchy principal value of 

Combining equations (3.16) and (3.20) we obtain 

(3.21) 
2 -1 .... ·. 1 ... 2 "" 

< (m + P+ i O) , cf> (k) > = <(" 
2 

, cp { k) > - ,r i < o (m + P) , cf> ( k) > • 
m +P 

We have, of course, in the same way the relation 
• 

(3.22) 
2 -1 "' 1 

< (m +P-iO) ,4> (k)> = < 
2 

m +P 

2 .... 
,ri <o(m +P),ct>(k)> • 
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• 

The fortnulae (3 .21) and (3 .22) are generalizations of the one-dimen

sional forrr1ulae 

(3.2)(3.3) <(k+iO) -l, $(k) > 
..... 

+ ni<o(k),~(k)> . 

From (3.21) and (3.22) it follows that 

(3.23) < 
1 ,._ 2 -1 A 2 -1 

2 , <t,(k)> = ½<(m +P+iO) ,~(k) > + ½<(m +P-iO) ,~(k)> , 
m +P 

and 
2 

<6(m +P)~(k)> = 
(3.24) 

1 2 -1 - 1 2 -1 "' = 2ni < (m +P-iO) ,~ (k)> - 21ti < (m +P+iO) ,<fl (k)> . 

To obtain Lorentz invariant solutions of the homogeneous and inhomo

geneous Klein-Gordon equation we have to determine a.o. the Fourier 
2 -1 2 

transforms of (m +P) and 6(m +P). This can be done by aid of the 
2 -1 

Fourier transforr11 of (m +P+iO) ; therefore we shall turn now our at-

tention to the Fourier transform of the distributions (m
2
+P+i0)-

1
• 

This Fourier transfo11n will be determined by aid of the method of lit. 

, Vol.l, chapter III. 

2 -1 
4. The Fourier trans f'orm of (m +P+iO) 

4.1. The 
2 >.. 

Fourier transform of (m +9) -------------------
Let D be a positive definite quadratic forrn ink. The Fourier 

f (m2 +n)A wi·th Re'< -2 1·s transfor111 o I\ 

+00 

(4.1) I 
-oo 

where 

(4.2) 

We write Din the form 

2 ). 
(m +D) 

3 

i(x,k)dk e . , 

(4.3) D = (k,Gk) = 1 g k k 
rs rs' 

r,s::::0 

where G denotes the matrix of the coefficients grs· 

• 

• 

----··--------
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Making a transformation k=Tk' .to principal axes, the quadratic 

forrn D can be written as 

D=(k,Gk) = (k' ,T*GTk') = (k',k'), 
' * where the matrix T is the adjoint of the matrix T. 

T* GT=l and ITl 2=1/lal, where ITI and IGI are the determinants 

of the matrices T resp. G. 

Hence 
* +oo 

1 { m 2 + ( k t ' k ' )}A e i ( T x , k ' ) dk , --
'GI _a:, 

1 
+oo 

{ m 2 + ( k ' 'k ' ) } A e i ( x ' , k' ) dk , f --
t GI -00 

with * x'=T x. 

It is clear, that F[(m2+D)AJ depends only on the length lx'I of 

the fourvector x'. Taking x'=(lx'l ,0,0,0), we obtain 

(4.4) --
1 dk I. 

I GI -(X) 

To reduce further the right-hand side of (4.4) we introduce spherical 

coordinates 

k{ = K cos $ 1 , k2 = K sin ~l cos ~2 , k3 = K sin ~l sin ~2 cos ~ 3 
and kO = K sin ,

1 
sin $

2 
sin ¢3 . 

2 3 2 
K = and dk' = K sin ~l dK d¢1ctn, where 

dO is the surface element of the unit sphere in R
3

. 

Perforrning the integration with respect to ctn we obtain 

00 00 
4,r 

I al 
f J 
0 0 

Using the following integral relations for Bessel functions 

and 
co 

I 
0 

2 -- x' 
• 

--

).+l 

TT 

K X 
1 

2+A 
m 
r(-A) 

• 



127 

where J 1 is the Bessel function of the first kind and K the 
2+)., 

modified Bessel-function (see lit. , we get the result 

(4.5) 
A+2 

1 

* Since x'=T x, we have 

I x 1 1
2 

= (x' , x ') = 
* -1 

(x,TT x)=(x,G x)= 
3 

r,s=O 

rs 
g X X . 

r s 

2 
Hence I x'l is a positive definite quadratic form, whose coefficients 

form a matrix which is the inverse of the matrix of the coefficients 

of the positive quadratic form D. 

Put ting 

(4.6) 

we obtain finally 

(4. 7) [ 
2 ). 

F (m +D) --

3 

I 
1·, S=O 

2 
2TT 

I GI 

1·s 
g X X = E, 

r s 

By aid of the principle of analytic conti11uution one proves easily 

that this result, obtained for Re A< -2, is also valid for all other 
• 

complex values of A. 

We have derived formula (4.7) with the asst1mption that Dis a 

positive definite quadratic form. 

The left-and right-hand side of (4.7} is also an analytic 

function of the coefficients grs' belonging to the quadratic form 

D, and this is true for those ranges of g , where Dis positive 
rs 

definite. 

We continue now the left-and right-hand side of (4.7) analytic-

ally with respect to the coefficients g into those ranges of 
rs 

complex values of g where the so obtained new quadratic form 
rs' 

has either a positive- or negative definite imaginary part. 

The function 

plex .5J -plane. 

has a cut along the negative real axis of the com-

The function (m2 +D)A is defined as 
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(4. 8) 

2 2 
with O<arg(m +S)<n or -n<arg(m +Eb) <o. - -

Using again the principle of analytic continuation, we have for 

the complex quadratic forms and all values of A the formula 

(4.9) -- 2m 
.X+2 

is the discriminant of the quadratic form • 

a quadratic form in x, whose coefficients form a matrix 

which is the inverse of the matrix of' the coefficients of 9 . 

When~ has a positive or negative definite imaginary part, 

has a negative respectively positive definite imaginary part; when 

S itself is positive or negative definite, 'l. is also positive respec

tively negative definite. 

Hence the function ~ ½, appearing in f'ormula (4. 9) l1as a cut 

along the negative real axis of tl1e complex 't.-plane. 

4.2 The Fourier transfor111s of (m2 +P+iO) -l, 2 -1 2 
(m +P) and o(m +P) 

In section 3 we have defined the distribution (m 2 +P+iO)A. 

For Re ). > -1 we have 

(3. 4) 
2 . A 

(m +P+1.0) +n .Xi ( 2 ) ). +o-- m +P . -

For other values of X the distribution (m2 +P+iO)A is defined by the 
2 · A 

analytic continuation of <(m +P+iO) ,l(k)> with respect to A. 

Another method to define the distribution (m2+P+iO)A is as fol

lows; for Re A> Owe define (m2+P+iO)A as .. 

( 4 .10) 
2 ). 

(m +P+iO) = lim 
e:-+ +O 

where P 1 is the positive definite quadratic forn1 and 
where 
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2 
with O <arg(m +P+ic:P )<n 

- 1 
and -n < arg(m2 +P-i£P ) < o. 

21 == A 
For other values of A the distribution (m +P+iO) is defined 

as the analytic continuation of 

lim 
€: ➔ +O 

with respect to A. 

The right-hand sides of the formulae (3.4) and (4.10) are equal to 

each other for Re A > 0 and hence due to the principle of analytic = 
continuation both definitions of the distributions (m

2
+P+iO)A are -

equivalent. 

For the complex quadratic formS we take 8 =D+i£D1 , where Dis 

an arbitrary non-degenerate real quadratic form and D1 the positive 
2 2 2 2 

def~nite quadratic form k 1 +k 2 +k 3 +k0 . 

Substituting tl1is into (4.9) and letting consecutively£ go to 

+ O, we obtain due to the continuity of tl1e Fourier transformation 

(4.11) 
A+2 

m ' • 

The matrix of the coefficients of E is of course again the inverse of 

the matrix of the coefficients of D. 

In particular we take now A=-1 and 

Hence 

(4.12) 

and 

(4.13) 
3 +ni 

(l+iO) (-l+iO)=e . 

Putting (4.12) and (4.13) into (4.11) we get finally the result 

( 4. 14) 
2 -1 F[ (m +P+iO) = + • 
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By aid of (3.23) and (3.24) we obtain 

(4.15) 

and 

(4.16) 

2 F[o (m +P)] =2rrm 

F 
1 
2 

m +P. 

• 

2 
::::2n im 

+ , 

• - ------- • 

In the special case that m=O, we find by taking the limit form 

going to zero 

( 4 .1 7) F[o (P)] =2n 
.,_ 

( 4 .18) 1 2 
F p =2n i 

1 
+ Q+iO 

1 

Q-iO -

4lT 
= -Q J 

1 _ 1 ::::41T36 (Q) _ 
Q+iO Q-iO 

Since {Q+iO)j ha~ a cut along the negative axis of the complex Q

plane we have 

.l .l 1 ±(1T/2)i .1 
(Q+iO) 2 =Q2 for Q > 0 and (Q+iO) 2 =e (-Q) 2 for Q < 0. 

Using the relations 

where 

write 

(4.19) 

and 

(4.20) 

K (z 
1 

i(n/2) (2) . 
e )=-jnH1 (z)=-½rrJ

1 
(z)+½inY

1 
(z), 

e-i(n/2~=-½nH (l)(z)=-½rrJ (z)-jinY (z), 
1 1 1 

is the Hankel- and Y1 the Neumann-function, we can also 

2 
F [o(m +P)]==4111n ---- for Q > 0, i.e. outside the light cone 

. 2 
=1n m ------------- for Q<O, 

• 1.e. inside the light cone . 

It follows from (4.15) that for small values of jQj 
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1 1 
+ Q+iO Q-iO 

• 

where the distribution <1/Q,$(x)> is taken in the sense of the pnn

cipal value of Cauchy. 

Hence for any testfunction q,(x) we may write 

(4.22) 
. 2 

+in m 
Q<-e: 

e:-+ +O Q>e:: Q 

-
1
------

1
------ 4> (x) ctx] . 

In the same way we find 

(4.23) F 

(4.24), F 
1 
2 

m +P ~ 

= 0 fc)r Q > 0, i.e. outside the light cone 

---
3 

2n m 

i.e. inside the light cone. 

For small values of IQI we have 

(4.25) F 

Thus we may 

(4.26) F 

or 

(4.27) <:"F 

1 
2 

m +P 

write 

1 
2 

m +P 

1 

2 
m +P 

• 

2 
2. 

= TI l -1 1 
+ O'(ln IQI) = 

Q+iO Q-iO 

= 4n
3

o(Q)+ &(ln IQI}. 

3 3 
c(Q), =-2,r m 0(-Q) +41T • 

~(x)> 
3 

=-211 m <P(x)dx + ' ( -Q·) ½" Q<O 

3 
+ 4n <o(Q), ~(x)> . 

is an analytic function of x inside the light cone, it 

vanishes outside the light cone and on the light cone it is highly 

• 
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singular, where it must be considered as the distribution 4n
3 o(Q). 

Having obtained the Fourier transforms of the distributions 

o (m2 +P) and (m2 +P)-l, we have still only to deter111ine the Fourier 
2 

transforms of the distributions o+(m +P); this will be done in the 

next section. 

5. The Fourier transfon11 of 

5.1. Lemma 

To dete1·1nine the Fourier transforms of the distributions 
2 6 (m +P) we need a lemma, which is formulated as follows: 

+ 
Let g(u

1
,u2 , ••• ,u ,w) = g(u

1
,u2 , •.• ,u ,u +iv) be holomorphic 

n o n o o 
in the upper half plane v > 0 or in the lower half plane v < 0 for any 

0 0 

set of real values (u1 ,u2 , ... ,un). 

g(u1 ,u2 , ... ,u ,u +iv) is assumed for any v 
n o o o 

ly integrable over any finite region of the space 

~ 0 to be absolute

R 1 of the varia
n+ 

bles ul 'u2' •.. 'un, u o .. 

There exist a positive constant C and positive integers 

p
1

,p
2

, .•• ,pn,p
0

, the latter independent of v
0

, such that for suf

ficiently large values of u. (i=l,2, ... ,n,O) the function 
1 

g(u
1

,u2 , ... ,u ,u +iv) is majorated as 
n o o 

n 

lg(u1,u2,···,un,uo+ivo)I < C {i=.l 
2 Pi Po 

(1-tu. ) }ju +iv I . 
l O 0 

The constant C may depend on v, but we suppose that it 
0 

is bounded in 

every bounded interval of v, not containing v =0. When it is further 
0 0 

assumed that lim g(u
1

,u2 , ... ,u ,u +iv) exists in the distribution-
v -++O n o o 

al sense on thi space of test functions belonging to S, then 

lim 
O 

g(u
1

,u2 , •.. ,u ,u +iv) is the (n+l)-dimensional Fourier trans-
v ~+ n o o 

respectively 

Proof: 

X > 0. 
0 

Assume g(u11 u2
, ••• , un, w 

0
) holomorphic in the upper half-plane 

According to the assumptions there exist positive integers 

independent of V , 
0 

such that the function 

V > 0. 
0 
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h(u1 ,u2 , ... ,u ,u +iv)= n o o 

n 

== {i=l 

-p -1 -p -2 
( 2) i }( ) o g(u1 , •.• ,u ,u +iv) l+u. u +iv n o o 

1 0 0 

is absolutely integrable over the whole 

V > 0. 

space R 1 for any value of 
n+ 

0 

We now consider the integral 

1 
+00 

( 2 ,r)n+l 
f ... f 

-00 

1 
• • • 

-oo -oo 

e 
-i{x

1
u

1
+ ... +x u +x (u +iv)} 

n n o o o 
• 

· h(u1 ,u2 , ... ,u ,u +iv )du1 du2 ••• du du 
11 o o n o 

+oo -ix (u +iv) 
• f C 0 

0 0 0 
-oo 

Since the function his holornorphic in the upper half-plane v > O, 
0 

--

this integral is 

this integral by 

independent of v and vanishes 
0 

for x < O. We denote 
0 

* f (x1 ,x2 , ... ,x ,x) and hence 
+ n o 

-v X 
r. o o * ),l -F Le f (x1 ,x2 , ... ,x ,x J -

+ n o 

-v X 

11 ( t1
1 

, u
2 

, •.• , u , u +iv ) . 
n o o 

Applying to e 0 0 * f (x
1 

, x
2

, ..• , x , x ) 
+ n o 

the operator 

we obtain 

or 

D == 1 -

-V X 

2 ax. 
1 

p.+1 
1 } 

[ 
00* .7 F De f (x1 ,x2 , .•. ,x ,x >_i = 

+ n o 

' 

-p -2 
( . ) o g(u1 ,u2 , ... ,u ,u +iv), 

= u +iv n o o 
0 0 

g(u1 ,u2 , .•. ,u ,u +iv)= 
n o o 

= F • 
1 ax 

0 

+iv 
0 

I 

p0 +2 -v X 

e 0 0 * ) Df (x1 ,x2 , ..• ,x ,x 
+ n o • 
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Taking the limit for v ➔ +Owe get due to the continuity of the 
0 

Fourier transfor1nation 

lirn 
V ➔ +O 

0 

g(u
1

,u2 , •.. ,u ,u +iv)= n o o 

(5.1) 
= F lirn { 

+O 
0 

• 
l ax 

• + 1V 
0 

p +2 -v X 
0 0 0 * } e Df (x1 ,x2 , .•• ,x ,x) 

+ n o 
C, 

* Since f vanishes for x < 0, lim g(u1 , ••. , u , u +iv ) is the Fourier 
+ o n o o 

V ➔ +O 
0 

transfo11n of a distribution vanishing 
• 

for x < O. 
0 

One can prove in the same way 

function, holomorphic in the lower 

that the distributional 

half-plane, for v -+ -0 
0 

limit of a 

is the 

Fourier transforrn of a distribution vanishing for x > O. 
0 

It may be remarked that in the case of distributions defined on 
00 

(C) 

functions with compact support one can omit in the lemma the assump

tion of the existence of the distributional limit 

lim g(u1 ,u2 , •.• ,u ,u +iv); the latter follows then easily from 
0 

n o o 
V ➔ + 

0 -
the existence of the limit in the right-hand side of fo1mula (5.1); 

one has again the result that 

lim 
V ➔ +O 

0 

g(u1 ,u2 , ... ,u ,u +iv) 
n o o 

is the Fourier transfo11n of a distribution vanishing for X < 0 
0 

respectively x >O. (See ret·. 
0 

.) 

5.2. The Fourier transform of o (m
2+P) 

+---

• 

• viz. 

(7. 7) -

and 

(7.8) 
00 2 .... 

<o_(m +P),,(k)> = ~ f 
0 

with 

2 2 
K +m )dK, 

• 
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Hence the distribution 
2 

6 (m
2

+P) is concentrated on 
+ 

the upper sheet of 

the hyperboloid 

bution c (m
2

+P) 

m +P = 0 and vanishes for k < m, whereas the distri
o 

- is concentrated on the lower sheet of this hyperboloid 

and vanishes for k > -m. 
0 2 

The distribution c(m +P) is the sum of these 

the latter are the result of the unique splitting 

positive and negative ''frequency'' parts. 

distributions and 
2 

of o(m +P) into its 

We consider now the Fourier transform 
2 

of o(m +P) and we put 

Let it be possible to make a Hilbert splitting of the distribu

tion X(x1 ,x2 ,x3 ,x
0

) as follows 

+ 

• 

lim 
y ➔ -0 

0 

where the limits are taken in the distributional sense and where 

x
1 

(x
1 

,x
2 

,x
3 

,x
0 

+iy 
0

) is a holomorpl1ic function in the upper half-plane 

of the(x
0
+iy

0
~plane and x 2 (x1 ,x2 ,x3 ,x

0
+iy

0
) is a holomorphic function 

in the lower half of this plane. 

Moreover, we assume that x1 and x2 satisfy the conditions of the 

lemma with n=3. 

From the lemma it follows that 

fork <0 
y ➔ -0 

0 

X 

-1 
F 

y -+ +O y -+ -0 

lim 
y -+ +O 

0 

is a distribution 

is a distribution vanishing 

X = 0 (m
2 +P), the distribu-

-1 0 0 

tion F [ lim x
1
] is concentrated on 

y -+ +O 

the upper sheet of the hyper-

0 

boloid and the plane k =0, whereas 
0 

F-l [ lim 
y ➔ -0 

0 

x
2
]is concentrated on 

the lower sheet of the hyperboloid and the plane k =0. 
0 

If we succeed in making a decomposition of the Lorentz-invariant 

lim O x2 are also 
y ➔-

0 
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Lorentz-invariant, the part of the distributions F 

-1 

-
lim x1J and 

y .++0 
0 

F [ lim X2 
y +-0 

which is concentrated on the plane k =0 does not occur, 
0 

0 

since a distribution concentrated on the plane k =O can11ot be Lorentz
o 

invariant. Any Hilbert decomposition is unique apart from a polynomial 

and we wish to make such a decomposition that this polynomial does not 

appear. Since the separation of 6(m2 +P) into its positive and negative 

frequency parts is unique, we have obtained the results 

-

or F [o (m
2 

+P)] = 
+ 

and F [o (m
2 

+P)] = -

y ~ -0 
0 

lim x
2 

y + -0 
0 

Hence to obtain the Fourier transforms of 6 (rn
2 +P) and cS (m2 +P) we 

+ -

, 

• 

have to make a Hilbert splitting of the distribution X(x
1

,x
2

,x
3

,x
0

) 

into two holomorphic functions with the above-mentioned properties. 

In chapter 4 we have shown that the distribution X(x
1

,x
2

,x
3

,x
0

) 

can be written as 

(4.19) 

and 

(4 .20} 

X(r,x ) 
0 

X(r,x) = F 
0 

2 
= F [6(m +P)] = '1 n n1 

2 o (m +P)] = 

. 2 1 1 

for r > Ix I 
0 ' 

= J. lf m ------· -1-------·-·-·-· for 
(-Q) 

where 

(4.12) 

We consider now the 

Since Q½ has a 

2 2 
Q = r -x 

0 • 

complex z -plane with z =x +iy. 
0 O O 0 

cut along the negative Q-axis of the complex Q-

plane, we have to introduce two cuts along the real axis of the z -
0 

plane, viz. x > r and x < -r. 
0 0 

' 
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We denote the function Q with z instead of x by 
0 0 

2 
Q(r z ) = r -x 

' 0 0 

2 2 . 
+y -21 

0 
X y • 

0 0 

Since the asymptotic behaviour of the modified Bessel function K1 (z) 

is given by 

it is clear that 

X(r,z);:;:: 
0 

4nm I d 

0 

is holomorphic in the whole strip 

Hence for Ix I < r we have 

I x < r of the z -plane. 
0 0 

0 

(5. 3) 2 n m 
K

1 
[m{Q(r,z

0
)} 

' • 

0 

We continue now the function x1 (r,z
0

) analytically to the regions 

X > r, 
0 

y > 0 and x < -r, y > 0, while the function 
0 0 0 

is con-

tinued analytically to the regions x > r, y < O and 
0 0 

X < 
0 

-r , y < o. 
0 

Using the relations 

(5.4) 

and remembering the asymptotic fo1·n1ulae 

1 - -i3.n iz 
- ,r < arg z < +2n , 

(5.5) 
2 - +i 3 n -iz 

z<+ 1r, 

we find that the analytical continuations of x1 (r,z
0

) are 

2 x1 (r,z
0

) =-nm 

(5.6) and 0 

2 
H1 m{e Q(r,z

0
)} 

= -n m · 

0 

in the region 

X > r, 
0 

y > o, 
0 

in the region 

X < 
0 

-r, y > O, 
0 
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while those of x
2

(r,z
0

) are 

2 -in 
2 

= -n m -------.------

0 

in the region 

X > r, y < 0 
(5.7) and 0 0 " 

2 
= -n m -------:;------

o 

in the region 

X < -r y < Q 
0 " 0 • 

It can be shown very easily that the functions X1 (r,z
0

) and x
2

(r,z
0

) 

satisfy the conditions of the lemma; in particular the existence of 

the distributional limits for y -+ +O will become clear, when in the 
0 

following these limits are actually calculated. 

Taking the limit for y -+ +O respectively y-+ -0 we obtain with 
0 2 2 2 2 2 o 

Q = r -x = x +x +x -x 2 tl1c 
o l 2 3 o results 

(5. 8) 

(5.9) 

lim 
y -+ +O 

0 

lim 
y -+ +0 

0 

lim 
y -+ -o 

0 

lim 
y .. -o 

0 

lim 
y .... -o 

0 

X (r,z) 
1 o 

2nm 

i.e. outside the light 

H (l){m(-Q)½} 
. 2 l f = - 1 n m ---· ---=ir----- or x > r , 

(-Q)~ 0 

i.e. insiclc the forward 

. 2 
= +1,r m ----~--

H (2){m(-Q)½} 
1 

for x < -r, 
0 

cone, 

l. C. , 

i.e. inside the backward l.c., 

2 111n --1--- for I x I < r, 
Q2 0 

• 1.e. outside the 
1. C. , 

H ( 2 ){m(-Q)½} 
. 2 1 

= +in m ---~r---

1.e. 

. 2 
= -1 n m ------:=----

( -Q) ½ 

for x > r, 
0 

inside the forward l.c., 

for x < -r, 
0 

i.e. inside the backward l.c. 

The whole situation is illustrated in figure 1. 
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• 

2 Hl (2) {m(-Q)!} 

+i 'II, m • • A i • • • • • 
(-Q) 

2nmK 

... 14lfl!li'V! 4 & it Ml f~& 01 f -r r 

-

fi Kure l 

It follows from ( 5. 3) tl1a t for values of Ix I in the neighbourhood of· 
0 

lx
0

j = r we have the formulae 

(5 .10) 

(5 .11) 

lim 

y ➔ +O 
0 

and 

lim x2 (r,z
0

) = 
y -+ -o 

0 

--

1 in1 
y -+ +O 

0 

1 in1 
y ♦+ -0 

0 

lim 
)' ♦+ -0 

0 

2n 
+ '1 { 1 og I Q ( r, z ) I } = 

0 Q(r,z) 
0 

2rr 
2 . 2 

r - (x +1y ) 
0 0 

2rr 

Q(r,z) 
0 

2n 
2 . 2 

r -(x +iy) 
0 0 

The reduction of the right-hand sides of (5.10) and (5.11) can be 

carried out as follows 

lim 
y ++ +O 

0 

(5 .. 12) 

2 ( . )2 r - X +1y 
0 0 

2,r 
= 2n 

= 2TT 

= 2n 

lim 
y ➔ +O 

0 

a 
ax 

0 

a 
ax 

0 

a 
ax 

0 

[lim 
y ➔ +O 

0 

1 
r+(x +iy) 

1 
2r log 

r+x 

r-(x +iy) 
0 0 

r+(x +iy ) 
0 0 J = 

r-(x +iy) 
0 0 

__ o I+ 
r-x 

0 

in 
2r 

2 2 ] {1-8(r-x )} • 
0 

0 
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By aid of partial integration it can be shown, that 

(5.13) a 
ax 

0 

1 
2r logl 

r+xo 1 
I= -2--2 , 

r -x r-x 
0 

0 

2 2 -1 . 
where <(r -x ) ,,(x)> should be considered as a principal value of 

0 

Cauchy. By aid of the chain rule one has the fo11nula 

(5.14) 
2 2 

e(r -x ) 
0 

Substitution of (5.13) and (5.14) into (5.12) yields 

(5 .15) lim 
Y

0
+ +O 

and hence 

21r 
2 2 

r -(x +iy) 
0 0 

2n 

-- 2n ---·+ 
2 2 r -x 

0 

(5.16) lim x1 (r,x
0

) = 
y + +O 2 + 0 - 0 r -x 

0 0 

valid for values of Ix I in tl1e nci ghbourhood of Ix I = r. 
0 0 

In the same way we obtain also 

(5 .17) 21r 
2 + 0 - 0 r -x 

0 

valid for values of I x
0
I in the neighbourhood of 

+ (i{log IQ)} , 

Ix I = r. 
0 

It can be verified without difficulty that lim 

lim O x2 (r,z) 
y + - 0 

0 

that 

(5.18) F 

and 

(5 .19) F 

y -+ +O 
0 

are Lorentz-invariant and therefore we 

--

2 
(m +P ---

lim 
y + +O 

0 

lim 
Y +-o 

0 

and 

may conclude 
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Collecting the results (5.8), (5.9), (5.16) and (5.17) we obtain 

finally 

F 

(5.20) 

and 

F 

+ 0 (Q) 2TTm 
IQ 

-

H ( l) (m/:Q) 

-e(-Q)in
2
m{8(x) -

1
---

o 
- 8(-x) 

0 

H ( 2 )(m -Q) 
1 

-Q 
} , 

H ( 2 ) (m~) 

+ e(-Q)in
2

m {e(x) -
1----

0 /:"Q 

K
1 

(m/Q) 

0(Q)2nm ---- + 
IQ 

- 6(-x) 
0 

H (l) (m ---Q) 
1 } . 

1-Q 

6. The solutions of the Klein-Gordon equation 

6.1. The solutions of the homoge11eous equatio11 

It has been sl1own in section 2 tl1at the general Lorentz-invariant 

solution of the l1omogeneous Klein-Gordot1 equation can be written as 

(6.1) 

Putting 

(6.2) 

and 

(6.3) 

we may also write 

(6,4) 

*-1 
= C F 

+ 

-
~ (x) = +2ni " 1 F 

-
2 2 [o_ (k -m )] • 

, 

According to equation (2.10) the distribution ~+(x) satisfies the 

relation 

• 

(6.5) 
J. 

It follows from section 5.2 that the introduced holomorphic functions 

x 1 (r,z
0

)and x
2
(r,z

0
) are related to each other by 
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X (r,+z) = X?(r,-z ), 1 0 ~ 0 

X (r ,x +iO) 
1 o 

= X (r -x -iO). 2 , 0 

From this and equation (6 _ 5) it. is deduced tl1a t 

• 
l. 

3 
(211) 

X (r,-x +iO) .:.. 
1 o 

i 2 2;-i 
6 (k -m )_j , ... ' --• - - --

(2tr) 
3 -

and in the same way 

and so we have 

~(x) = + 

• 
1 

= + 
(2lf) 3 

• 
1 

3 
(2n) 

2 2] r., [6 {k -m ) 
+ 

Applyi11g tlie results (5.20) and (5.21) ,ve ot1luin the 1·01111ulac 

(6.6) 

and 

(6. 7) 

with 

(6.8) 

+ n (x) = - 1 6 (R2) + 
411 -

-
~ (x) 

8(x) 
0 

H ( 2 ) (mR) 
1 

R 
- 8(-x) 

0 

2 
- 6(-R ) 

• 1m 

41T2 

R 
2 

K
1 

(m -R ) 

- --

R 

2 2 2 2 2 2 
x -x -x -x = x -r and o 1 2 3 o 

- 0(-x) 
0 R 

• 
1m 

2 
K

1 
(m -R ) 

4TI
2 

2 2 
X -r 

0 
• 

-

' 

+ 

Other important solutions of the homogeneous differential equation 

are the solutions A(x) and A(l)(x), which are respectively odd and 

' 



• even in x. 
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They are defined as • 

(6 .9) + -6(x) = 6 (x)+ 6 (x) 

With the aid of the well-known relations 

(6 .10) and 
- H ( 2 ) (z) 

1 

-
/j (x)} 

it :follows immediately from the f'ormulae (6.6) a11d (6 .. 7), that 

6(x) 1 
0 - --

2n 
(6.11) 

and 

(6 .12) D. (1) (x) = 

(R2) 1 
+ 

2n + 

+ 0 (R
2

) 
m 
4n 

Y
1 

(mR) 

R 

-+ 
6.2. The Green's function 6(x,x) 

0 

6 (R2) + -

8(x) 
J

1 
(mR) 

0 

2 
+ 0(-R) 

R 
- 0(-x) 

0 

2 K1 (m -R) 

J
1 

(mR) 

R 

• 

• 

' 

The function 6(x), which is called the Pauli-Jordan function, 

has the important property that according to (6.11) it vanishes out

side the light cone. 

We consider now 6(x) as a distribution in the space variables 

x 1 ,x2 ,x3 , while 

positive values 

the time x 
0 

for x. 
0 

is taken as a parameter. We take only 

-+ This distribution is denoted by 6(x,x ). 
0 

(6.13) 
2 2 

6 (x -r ) + 
0 

2 2 m e (xo -r ) 4n 

X 
0 

2 2 
X -r) 

0 

2 2 
-r 

• 

Since differentiation of the right-hand side of (6.13) with respect 

to x is fonnally the same whether 
0 

the three-dimensional distribution 

x is a variable or a parameter, 
0 

+ 6(x,x) with parameter x satis-
o 0 
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fies also the Klein-Gordon equation which we write in the form 

(6.14) 
a2 

ax 2 
0 

-+ 
6(x,x) = 

0 

2 
a 2 

- m 
..,.. 

A (X, X ) • 
0 

' 

With the aid of the fonnula (7.4) of Chapter I it is clear, that 

lim 
X -+ +O 

0 

(6.15) 

-+ 6(x,x) 
0 

= 0 and so we write 

-+ 
6(x,O) = O. 

Since the order of the processes of differentiation and taking a limit 

is not essential for distributions we have also 

lim 
X-+ +O 

0 

and hence 

(6.16) 

a2 

ax 2 
0 

+ 
ti(x,x) = 

0 

a2 

dX 2 
0 

-+ 
6(x,O) = O. 

2 
- m 

-+ 
lim !:J.(x,x )=0, 

0 
X -+ +O 

0 

To investigate 

rule 

lim 
X -+ +O 

0 

..,.. 
6(x,x) 

0 
we write acco1·ding to the chain 

(6.17) 

Expanding 

lim 
X + +Q 

0 

a 
ax 

0 

➔ -1 
tJ. (X, X ) = 

0 TT 

+ lirn 
X ➔ +O 

0 

1 i111 

X -+ +O 
0 

+ lim 
X -+ +O 

0 

2 2 
J

1 
(m x

0 
-r ) 

/x 2_r2 
0 

[ 
(1) 2 2 ] 

x cS (x -r ) + 
0 0 

2 2 
O(x -r) 

0 

2 2 
J

1 
(m x

0 
-r -. 

X 2_r2 
0 

m 
4rr ax 

0 

+ 

2 2 
into a power series of (x -r) and using the relation Po(P)=O and the 

0 

fo1uula (7.4) of Chapter I, it is evident that the second and the third 

tenn of the right-hand side of (6.17) vanish; hence 

(6.18) 
' 

lim 
X -+ +O 

0 

a 
ax 

0 

• 

ll(~,x) = - l 
0 

lim 
X-+ +O 

0 

.r(l)( 2 2) 
X u X -r 

O 0 • 

• 
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With the aid of the expression (7.12) of Chapter I we may write 

0 (1) ( 2 2) 
X 

q, > == 
0 1 

{¢(rw1 ,rw2 ,rw3 )r} <x x -r , -2 2r ar -0 0 
• r=x 

0 
X 

aip acp cl¢ 0 - wl+ w + w3 dSl + - 4 dXl dX2 2 . ax3 r=x 
0 

and therefore lim 
(1) 2 2 

<x 6 (x -r ),¢> ~ 
0 0 

n¢(0,0,0) and consequently 

(6.19) 

Hence lim 
X -++O 

0 

(6 .20) 

X -++O 
0 

- 1 

lT 
lim 

X -+ +O 
0 

ax 
0 

-+ 
~(x,O) = -+ 

-6(x). 

By virtue of the properties (6.15), (6.16) and (6.20) the solution 
-+ 

q, (x,x) of the homogeneous Klein-Gordon equation with the initial 
0 0 

conditions 

(6.21) 

may be written as 

(6.22) -+ 
cp (x,x ) 

0 0 

-+ -+ 
¢ (x,O) = f (x) 

0 

ax 
0 

-+ ➔ 

¢(x,O) = g(x) 

• 
-+ -+ 

= - [ll(x,x ) * g(x) + 
0 

• 
ax 

0 

-+ -+ 
6 (x ,x ) * f (x) 

0 

where the convolution products should be taken with respect to the 
-+ 

three variables x 1 ,x2 and x
3

. The distribution ll(x,x
0

) is the Green's 

function for the initial value problem belonging to the homogeneous 

Klein-Gordon equation. Due to the representation of the function 
-+

<f> (x, x ) in 
0 

-+ 
~(x,x) is also called the propagator 

0 
the fonn (6. 22), 

function. 
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I 

6.3. The solutions of the inhomogeneous equation 
I I I z r 

We have shown in section 2 that the general Lorentz-invariant 

solution of the inhomogeneous Klein-Gordon equation (1.2) can be writ-

ten as 

(6 .23) 

ii 1 
= F 

• 

Special solutions are obtained by taking the fol) owi11g '\.1alues 01· c, 
-r-

and c. -

1. C = C = 0 
+ -

-The solution g(x) is now tlcno te(i b)· /1 (x) and we get acco1:~cti ng l,, •; 

fo1·1nula (2.10) 

-( ) 1 L~ 
~ xl,x2,x3,-xo = 4 r 

(21T) 

1 
• 

Applying the result (4.26) we obtain 

+ 

and since this distribution°is even in x, we have the result 
0 

(6.24) 
4n • 

This distribution has its support within and on the forward and back-· 

ward light cone and vanishes outside the cone. 

2 • C 
+ 

-= C = n1 -
We denote g(x) by ~c(x) and we obtain 

(6.25) 1 ~ 2 2 + TI'iu(m -k ) 1 
2 2 

m -k -iO 
.. 

By aid of section 6 .. 1, fo1·1nulae (6 .2), (6. 3) and (6. 9), we may write 

• 
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Using the formulae (6 .12) and (6. 24) the result becomes 

(6.26) ~ (x) ~-= 
C 

H <2 ) (mR) 
_ m 6 (R2) _1 ___ _ 

8n R 
2 

i 6 (-R ) 

3. C 
+ 

= C -
• = -1,r 

The distribution g(x) is denoted by ~AC(x) and we obtain 

(6.27) !:::.AC (x) 
ti 1 

= F 1 •• 1 
= F 

In the same way as in the foregoing case we write 

Using again (6.12) and (6.24),we get the result 

(6. 28) ~AC (x) = 
R 

-

4. C = -c = +in 
+ -

The distribution g(x) is denoted by ~R(x) and we obtain 

{6. 29) 

or by aid of (6.2), (6.3) and (6.9) 

Using now (6.11) and (6.24), the result becomes 

(6. 30) 

2 
J

1 
(mR) 

( ) = 
1 6 (R2 )- m e (R ) --- for x > O, 6 R x 271' + 41f R o 

:for x < 0. 
0 

• 

J 
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5. C 
+ -
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The distribution g(x) is denoted by AA(x) and we obtain 

(6.31) ' 

01' 

Using again (6.11) and (6.24),we get the result 

(6. 32) 

-
J

1 
(mR) 

R 

-

for x > 0 
0 

for x < 0. 
0 

From these results it follows immediately that A(x) has its support 

within and on the light cone, AR(x) within and on the forward light 

cone and AA(x) within and on the backward light cone, whereas the 

supports of AC(x) and AAC(x) have no boundaries at all. 

The following relations are easily verified: 

+ -6 (x) for 
(6. 33) ~c (x)= -6 (x) for 

-a(x) for 

0 for 

(6.35) 

X > 0 
0 1 

X < 0, 
0 

X > 0 0 ) 

X < 0 
Q l 

/:;. A (x) = 

--!J. (x) for 

!J.+(x) for 

0 for 

fl(x) for 

(6.36) i A (l) (x) = A - (x) -A 4 (x} A ( ) A ( ) = C x - AC x • 

X > 0 0 , 

X < 0, 
0 

X > 0 
0 ' 

X ( 0, 
0 

From the fo:x11tulae (6.25), (6.27), (6.29) and (6.31) useful and inter

esting relations follow for the positive and negative frequency parts 

of the distributions AC(x), ~C(x), 6R(x) and 6A(x). Denoting them by 
+ -Ac{x), Ac(x) etc., we have 
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- + - -
~c(x) - l:lR (x) , ilc(x) - 6.A (x) ' - -

(6.37) 
+ + - -

/J.AC (x) - ~A (x)' !::.AC (x) - CJ.A (x) • - -

The distributions 6R(x) and ~A(x) are called the retarded and advanced 

Green's functions; the distributions 6C(x) and 6AC(x) the causal and 

the anti-causal Green 1 s functions. 

In conclusion we consider once more the inhomogeneous Klein-Gor

don equation 

(6.39) 
2 . (0 -m ) cp (x) = - J (x) • 

The Lorentz-invariant solution of this equation can be represented in 

many ways, e.g. 

(6.40) cp (x) = 4> (x) + CJ. (x) * j (x) 
Cl a 

where we may write instead of a: R,A,C,AC; the convolution product is 

taken with respect to all variables x1 ,x2 ,x3 and x
0

• 

Taking a=R the function ~R(x) is the potential of the incoming 

field, whereas for ci=A the function cpA(x) is the potential of the out

going field. 

Taking a=C it can be shown by aid of (6.37) that $C(x) is the sum 

of the positive frequency part of the potential of the incoming field 

and the negative frequency part of the potential of the outgoing 

:field. 

For a=AC the potential cpAC(x) is the sum of the negative fre

quency part of the potential of the incoming field and the positive 

frequency part of the potential of the outgoing field. 

For these and many other interesting physical considerations the 

reader is referred to refs. [3] and [12] • 

• 

• 
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Chapter V 

DIVERGENT CONVOLUTION INTEGRALS IN ELECTRODYNAMICS 

1. Introduction 

Consider a scattering process at the beginning and at the end of 

which there are only particles that are widely separated from each 

other and may be considered to be free. If the probability amplitude 

of the initial state is denoted by t(-~) and that of the final state 

by~(;~), the scattering process is described by an operator S, the 

S-matrix, which is defined by the relation 

(1 .1} 

see e.g. [1] , chapte1' I I I , [2 J , chapter IV, [3] , chapter VI I. 

The elements of the S-matrix contain products of the so-called causal 
• 

function 6C(x) and its derivatives. The function AC(x) has been treat

ed in the preceding chapter, where it appeared to be essentially a 

distribution. 

However, as has been shown by L. Schwartz [4] , distributions cannot 

in general be multiplied with each other and therefore the elements 

of the 8-matrix are not well defined. 

By application of the modified Fourier transformation, the dis

tribution t.C(x) and its derivatives are transforrned according to for

mula (6.25) of chapter IV into distributional limits of rational func-

tions, • viz.: 

* F 

(1.2) 
lim 

e: ~ +O 

with 

(1.3) 

[P( a a a 
ax ax , 1 ' ax1 2 3 

P(ik1 ,ik2 ,ik3 ,-ik
0

) 

= k 2_ 
0 

a 
) 6 c(x -ax -

0 

-1 
J ' 

k 2 -m2 +ie:(k,k) 
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(1.4) (k,k) 

and where a a a > · Lo t · · t 1 , d , ~ , a 1S Some ren z-1nvar1an po ynom-

ial 

are 

. a 
ln .., • 

aX. 

trans !01·11ted 

x2 oX x 
its derivatives 

fonnally into distributional limits of convolution in-

tegrals, which turn out to be divergent. 

The impossibility of defining products of causal functions is reflect-

'' t' ed in the momentum space by the fact that the fo1·111al Fourier trans-

forms of these products are divergent convolution integrals. 

In the literature on quantum electrodynamics much attention has 

been paid to the meaning of these divergent convolution integrals and 

several devices have been developed for assigning to them a well-de

fined finite value. We mention here the method used by Bogoliubov and 

Parasi uk in [1] Ch. IV, [5] and [s] , that used by Achieser and Beres

tezki in [2] Ch.VII and a rather recent method developed by Bremer

mann in [7] . 

Bogoliubov and Parasiuk define a divergent convolution product, 

say f (k) * g(k) as the weak limit of a convergent convolution product 

on an appropriate space of test functions. The convergent convolution 

product consists of specially chosen factors, say fM(k) and gM(k), de

pending on a fictive mass M, such that fM(k) and gM(k) converge for 

M-+ ao weakly to f(k) and g(k), while fM(k) * gM(k) is convergent. 

Finally f (k) * g(k) is defined as the weak limit of fM(k) * gM(k) for 

M -+ oo • 

The replacement of f(k),g(k) and f(k) *g(k) by respectively fM(l~), 

gM(k) and fM(k) *gM(k) is called the regularization of f(k),g(k) and 

f (k) *g(k). 

However, this procedure is rather unsatisfactory since 

i) fM(k) and gM(k) are chosen in a very special way. 

ii) f(k) and g(k) are regularized with the aid of the same para

meter M. 

Achieser and Berestezki define the divergent convolution inte

grals also by means of a special limiting procedure. The integration 
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is performed over a finite volume V of the four dimensional space. If 

the limit is taken for V ➔ ~, the result is of course infinite, but 

it turns out that the divergencies are only contained in a certain po

lynomial ink. Disregarding this polynomial one obtains the so-called 
11 T I • 

regular part, which is taken as the definition of the divergent con-

volution integral. 

Finally Breme1·1nann defines the divergent convolution integrals 

by the requirement that they should satisfy certain sets of differen

tial equations. 

In this chapter we confine our investigations to the case of di

vergent convolution products containing only two factors. They are in

troduced in a very natural way as a functional defined on an appropri

ate space of test functions. The definition does not involve any 

limiting procedure as in tl1e definitions used by Bogoliubov-Parasiuk 

and Achieser-Berestezki. 

It appears that the results of the above-mentioned methods are 
' 

in agreement with the definition introduced in this chapter. Actually 

they are very special cases of the theory given here. For example the 

restrictions i) and ii) are quite irrelevant. Apart from presenting a 

theory for dealing with divergent convolution integrals we establish 

in this way also the equivalence of the above-mentioned methods. 

It may be remarked that Bogoliubov and Parasiuk have investigated 

in [s] and [6] the much more general problem of defining the product 

of causal functions containing an arbitrary number of factors. 

In fact, these authors have considered expressions such as 
• 

(1. 5) 

1 
where DC is the causal function or one of its derivatives; the pro-

duct is taken over all directed line segments occurring in an arbi-

trary graph connecting the points 

space of position and time. 

x .x , •.•. x in the four-dimensional 
l' 2 · ' n 

' It may be, that the method given here can be extended to this 
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much more general case. This is a suggestion for further research. 

In section 2 we introduce the convolution product of bounded ra

tional functions inn variables. Consecutively, several useful proper

ties of this product will be derived in section 3. 

In the next section 4 a summary is given of the methods, mention

ed above, which provide a well-defined meaning of the divergent convo

lution integrals. It is shown that they all are special cases of the 

definition of the convolution as given in section 2. 

The chapter is concluded by section 5, in which there are made 

some additional remarks. 

2. The convolution of bounded rational functions 

2.1. The boundedness of a convolution product 

We consider the class A of functions f(k) = f(k1 ,k2 , ... ,kn) which 

are defined and unifor1r1ly bounded in the whole n-dimensional space R . 
n' 

k=(k1 ,k2 , ..• ,kn) denotes a point of this n-dimensional space. For 

every function f(k), belonging to A, there exists a non-negative num

ber m (f) ~ 0 with the property that 

(2.1) 

is unifo1=mly bounded in the whole space R . 
n' 

It is clear, that there exists in this case a continuous set of values 

m(f) such that (2.1) is uniformly bounded in R. 
n 

The upper bound of all these values m(f) will be denoted by m(f) and 

we call m(f) the index of the function f(k). E.g. the function 

log(l+ k I) 
1+ k 

has index 1. Hence all functions of the class A have non-negative in

dex. 
• 
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Taking two functions f(k) and g(k), both belonging to A, one can fo11n 

the convolution of f(k) and g(k), viz. 

(2. 2) F(p) = .f(k)g(p-k)dk = f(p-k)g(k)dk, 
-co -00 

where the integration is perforr11ed over the whole space 

The integral converges absolutely for all finite values 

condition 

(2.3) m(f) + m(g) > n, 

is satisfied. 

R • 
n 

of p, if the 

The following lemma will be very useful in the development of the 

theory. 

Lemma 

If f(k) and g(k) belong to A, m(f) < n+v , m(g) < n+v with v > 0 and 

if 

(2.4) m(f) + m(g) > n+v, 

then F(p) belongs also_to A and the index of the function F(p) is at 

least equal to m(f) + m(g)-n-v. 

Proof: 

Due to the assumptions of the Lemma, there exists a positive num

ber rn(f) and a constant B(f), independent of k, such that 

I f (k) I < B (f) ' 
- {l+I kl }m(f) 

valid for all values of k; we may choose m(f) arbitrarely close to 

m(f). 

Therefore f(k) belongs to the class 

n+v+o 1 
q = -==7::'-;;:-- > 1 , 

1 m(f) 

where o
1 

is some quantity larger than zero. 

We choose m(£) such that 

m(f) 
m(f) 

with 
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Hence 

(2. 5) 
q 

jf (k) I l < {B(f)} 

In the same way, the function g(k) belongs to the class 

with 
n+v+o

2 
q = 

2 m(g) 

Moreover m(g) is chosen, such that 

> 1 and o
2 

> 0. 

q q -(n+v+½o) 
(2.6) lg(k) I 2 ~ {B(g)} 2

(1+lkl) 
2 • 

• 

Finally we put o1 = o2 = 6 and we take such a value for 6 tl1a t 

1 
+ - >1; due to the relation (2.4) this is always possible. 

q2 

From Holder's ineq~ality for three functions, viz. 

+aa 1 

I I 4> I a dk) a ( 
-co -oo 

where a+ B+y=l, a > 0, B > 0 and y > 0, one derives easily Young's in-

equality 

I f ( k) g ( k) dk I ~ { 

(2. 7) 

1 1 
a 8 by setting l«1>I =lwl 

1 -
1 

and B= 1 -
1 Y= 

ql q2 

' 
1 

+<D q q q 
I f I 1 I g I 2 dk t 1 

1 
1- -

-co 

+oo q 
I f' I l dk } 

1 
1+ 

() 

lxlr,li;,I B I f I ' I X I --

• 

• 

1- 1 
+oo q 

I g I 2 
dk} 

-00 

1+ a 
y 

I g I and --

Applying Young's inequality (2.7) to the function F(p) we obtain 

1 + 1 -1 
+~ q q q q 

If ( k) I 1 • I g ( p-k) I 2 dk t 1 2 • 

1 
1- -

-CIO 

1- 1 
+co q +co q 

• • 
-oo 

Since f(k) and g(k) belong to respectively 

' 
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there exists 

(2 .8) 

a constant c1 , independent of p such that 
1 + ...l,_ -1 

,~ q q q q 

• 

In virtue of (2.5) and (2.6) we can now make the following estimate, 

valid for all values u with O < lJ < n+v -
+~ q q 

lf(k)I l lg(p-k)I 2 dk < 
-co 

6 
-n-v- -

2 
(l+lp-kl) 2 dk < 

~CD 

0 
-n-v- - -n-v- -

+lp-kj)1J(l+lkl) 2 (l+lp-kl) 2 ctk < 
-oo 

0 
-n-'V-

1 p-k I \J ) ( 1 + I k I ) 
-n-v-

2 (1 + I p-k I) 
_go 

where c2 and c3 are constants independent of p. 

Hence it fol lows, that there exists a uni f 0111t constant C 
4

, such that 
' 

(2.9) 
-00 

Substituting (2.9) into (2.8) we obtain the result 

(2 .10) 

- (n+v) ( 

IF(p)I <C(l+lpl) 

n+v-

C(l+lpl) 

n+v 
n+v+o 

where C is again a constant. 

--

{m(f) + m(g)} 

In virtue of the relation (2.4), we can make 6 arbitrarily small with

out violating the condition 1 + 1 
> 1. Moreover, since m(f) + m(g)> 

ql q2 
>n+v, it is clear that F(p) belongs to the class A and has index 

• 

(2.11) m(F)> m(f) + m(g) - (n+v), q.e.d. 

The following corollaries follow immediately from the lemma. 
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Corollaries: 

1. If f(k)_and g(k) belong to the class A, m(f) < n, m(g) < n and 

m(f) + m(g) > n,_then F(p) belongs also to A and its index is at 

least equal to m(f) + m(g)-n • 

-
2 .. If f(k) and g(k) belong to the class A, m(f) > O, m(g) > 0 and m(f) 

or m(g) >n, then F(p) belongs also to A and its index is at least 

equal to min [m(f) ,m(g)J • 

It is to be noticed, tl1at the conditions m(f) > 0, m(g) > 0 in 

the second corollary may be omitted. Suppose e.g. m(f) = O, then 

m(g) > n. Because f (k) is uniforn1ly 

timate 
+oo 

bounded in R, 
n 

I f ( p-k) I . I g ( k) I dk < C 
-0:> 

we can make the es-

I g(k) I dk. 
-oo 

The third member of this relation is a finite nwnber, not neces

sarily zero. Therefore F(p) is unifon11ly bounded in R and its index 
n 

is at least zero. 

It follows that we may replace the second corollary by the slightly 
' 

more general statement 

bis 
2 . If f(k) and g(k) belong to the class A, m(f) or m(g) > n, then 

F(p) belongs also to A and its index is at least equal to 

min '"'" m ( f) , m ( g)J . 

2.2. Spaces of test functions C(q,r,n) and their dual spaces C'(q,r,n) 

The functions f(k),g(k) and F(p), belonging to the class A, will 

be considered as continuous linear functionals on certain spaces of 

test functions. 

For this purpose the following space C(q,r,n) of test functions is 

introduced; compare also ref. _ and . 

The space C(q,r,n) consists of all functions ~(k) = ~(k1 ,k2 , ••• ,kn), 

which are defined in R n 
their derivatives up to 

ducts 

and which are continuous together with all 

the q th order inclusive. Moreover all the pro-
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r 

n 
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p 
o q,(kl,k2,•·•,kn) 

I , 
pl P2 pn 

ak1 ak2 ••• <)kn 

are unifo1wly bounded for al~ values of k1 ,k2 , •.• ,kn; 

non-negative integers with p. = p < q and 
. 1 l 
l.= 

r,r1 ,r2 , •.. ~rn are non-

negative numbers (not necessarily integers), such that r . < r • 

This space is clearly a linear space; we introduce 

no1·11L by defining the nor1n of the element 4,(k) as 

{2.13) ll<t>II = 
r 1 .... r n 

pl .... pn 

r 
n 

p 
c3k l 

1 

j=l 
in this 

l. -

space a 

where the supremum is taken over allnvalues of k1 ,k2 , ... ,kn and over 

all combinations of r. and p. with p .. = p < q and r. < r. 
1 1 ·11. - 1 

1= i=l 
The topology is introduced in the usual way; a neighbourhood of 

the zero-element is the set of all test functions with 11 ~ 11 <E • It 

can easily be proved that the space C(q,r,n) is complete with res

pect to the no1·1n (2.13) and hence C(q,r,n) is a Banach-space. 

It is clear that we have for q 1 > q 2 and r 
1 

> r 
2 

the inclusion 

ql,rl,n q2,r2,n 

Therefore convergence in the space C(q
1
,r

1
,n) implies also convergence 

in the space C(q2 ,r2 ,n). 

The dual space consisting of all continuous linear functionals on 

C(q,r,n) is denoted by C'(q,r,n); the application of f(k) € C'(q,r,n) 

to 4>(k) £ C(q,r,n) is written as 

• 

(2 .14) < f (k) , 4> (k) > • 

If f(k) is a locally Lebesgue-integrable function, such that the in

tegral 
f(k) 4>(k)dk 

-co 

exists in the sense of Lebesgue, then f(k) considered as a continuous 

linear functional on C(q,r,n) is defined as 
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+oo 
(2 .15) < f (k) , ¢, (k) > = f (k) 4> (k) dk. 

-00 

In the dual space C' (q,r,n) one can introduce again a nor111. The 

norm of the continuous linear functional f(k) is defined as 

(2.16) llf (k) II = lim sup 
ll ♦ (k)II= 

I < f (k) ' cp (k) > I . 
1 

A sequence of functionals f (k)E.C'(q,r,n) 
n 

weakly to a functional f(k) £ C'(q,r,n), if 

(2.17) 1 im < f , ~ > = < f, cp > 
n n + co 

for all functions ct, E. C(q, r, n). 

' 

is said to converge 

A sequence of functionals f (k) t C'(q,r,n) is said to converge 
n 

strongly to a functional f(k) ~ C'(q,r,n), if 

(2 .18) 

This means that 

to f. 

f 
n 

lim llfn - fll = 0. 
n...., m 

converges strongly to f, if 
' 

f 
n 

• converges in nortn 

It is a well-known fact that C'(q,r,n) is complete with respect to 

the strong convergence and thus C'(q,r,n) is also a Banach space; see 

e • g • [ s] , § 19 • 

In the sequel we shall also need the derivative of a functional 
• 

on a Banach space. This concept cannot be introduced as easily as in 

the case of functionals, defined e.g. on the space Softest func

tions, which are infinitely many times differentiable and which fall 

off at infinity stronger than any negative power of !kl; see chapter I, 

section 3. 

In this case the functional is a distribution, say f(k), and its de

rivative is defined by the relation 

(2 .19) < 
ar 
ok. 

1. 

This definition is meaningful, since 

belongs to s. 

ck. 
1 

> • 

belongs to S, whenever ,Ck) 



.-----------------------------------------

161 

However, if ~(k) belongs to the Banach space C(q,r,n), then 

.a.4> . 
c}k_ 

1 

belongs no longer belongs to the space 
• 

1 

C(q-1,r,n); q is assumed to be larger than or equal to one. We modify 

now our definition of derivative in the following way. If f(k) is a 

functional, defined on the space of test functions ~(k), which can be 

wr1· t ten in the f orin ,,. ( k) = a¢, where 
'+' ak. ' 

q > 1 , then the '' functional'' d~ri va ti ve 

C(q,r,n) by the relation 

~(k) belongs to C(q,r,n) with 
af 
c,k. 

1 

is defined on the space 

(2 .20) = - <.f' dcp .. > 
dk . . 

1 

Hence, if f(k) is a functional on the space C(q-1,r,n), then its de-

. t· af t . 1 d f ( ) riva 1ve ak. cancer a1n y be e ined on the space C q,r,n, which is 
1 

a subspace of C(q-1,r,n). 

2.3. The convolution of bounded rational functions 

In this section we define the convolution of bounded rational 

functions, say f(k) and g{k), as a functional on some space of test 

functions. This will be done in such a way that the new definition 

generalizes the classical concept of convolution which has only a well 

defined meaning if m(f) + m(g) > n .. 

We confine our treatment to bounded rational functions, because the 

functions appearing in the applications to electrodynamics are of this 

type and because it will be seen in the sequel that the functions f(k) 

and g(k) are required to be subject to the condition that differen

tiation raises the index by one. 

The analysis will be facilitated by assuming that the indices of the 

functions f(k) and g(k) are positive. This is due to the fact that 

the first corollary 0£ the lemma applies only for functions with po

sitive index. If the index happens to be zero one obtains analogous 

results, but the proofs need only be a little bit modified; this is 

left to the reader. 

Let f{k) be_a rational bounded function with positive index; 

hence its index m(f) is a positive integer and we assume 1< m(f) < n. 

". ' . . . 

: __ i;: :::. :1: ; '._.: 

• ·!._:> -, '._... • 
•;;· . 
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Therefore f(k) can be considered as a functional on the space 

C(q 1 n-m(f)+~,n), where q may be any non-negative integer and o an ar

bitrary positive number. 

The functional <f(k), ~(k)> is defined as 

(2. 21) <f{k), <P(k)> = f(k) ~(k)dk, 
-00 

where the integration is perfor111ed over the whole space 

¢(k) belongs to C(q,n-m(f}+o,n). 

R and where 
n 

In the same way g(k) with index m(g), 1 < m(g) < n, may be considered as -
a functional on the space C(q,n-m(g)+o,n). 

Let us consider now the convolution F(p) of the functions f(k) and 

g(k), defined by 

+co 

(2.2) F(p) = f(k)g(p-k)dk = f(p-k)g(k)dk. 
-00 -00 

-For the moment we assume m(f) + m(g) >n+l and hence the integral (2.2) -
converges absolutely. 

According to the first corollary of the lemma of section (2.1) the 
' 

function F(p) belongs to the class A and the index of F(p) is at least 

equal to m(f) + m(g)-n. Therefore F(p) may be considered as a contin

uous linear functional on the space C(q,2n-m(f)-m(g)+o,n), where again 

o may be any positive number. Because C(q,r1 ,n)c C(q,r2 ,n) for r 1 > r 2 , 

we may assume without loss of generality that O < 6 < 2. 

Hence for any test function ~(p1 ,p2 , ... ,pn) belonging to 

C(q,2n-m(f)-m(g)+o,n) we obtain the functional 

fm I co 

(2 .22) <F(p), cp(p)> = F(p)4>(p)dp = 4> (p) dp f(k)g(p-k)dk = 
-co -co 

~(p)dp f(p-k)g{k)d.k. 
CJD -co 

In virtue of the absolute convergence of the integrals we may 

apply Fubini's theorem and we obtain 

I oo loo 

<F(p) ,4> (p)> = f(k}dk g(p)cp(p+k)dp = 
C10 co 

(2.23) 100 

-- g(k)dk f(p)4>(p+k)dp. 
C10 -00 
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Again with the aid of the corollaries of the lemma of section (2.1), 

the function 

(2.24) lP(k) = g(p)4>(p+k)dp = q,(k-p)g(-p)dp, 
-co -00 

has the property that it belongs to the class A and ~(k) has an index 
_, 

which is at least m(4>) + m(g)-n or m(g), according as m(<?) < n or m(<f>)>n. -
In case 4> has an index smaller than or equal ton, the index of is a 

at_least 2n-m(f)-m(g)+ 6 and hence ~(k) has an index which is at least 

n-m(f)+o. 

In case 4> has an index larger than n, ~(k) has an index which is at 

least m(g) and this number is larger than or equal to n+l-m(f). 

From the fact that ~(k) is q times continuously differentiable, it 

follows by a rather simple argument, that ~(k) is also q times con

tinuously differentiable. 

Hence the function ~(k) belongs certainly to the space C(q,n-m(f)+½o,n) 

with O < ½ o < 1 • 

Therefore it is allowed to write instead of (2.23) 

(2.25) <F'(p) ,cp (p)> = <f(k), 1-µ(k}> . 

-
Moreover, because the space C(q,2n-m(f)-m(g)+o,n) is included in the 

space C(q,n-m(g)+o,n), we may also write instead of ~(k) 

(2.26) q, ( k) = < g ( p) , cp ( p+ k) > • 

Substitution of (2.26) onto (2.25) yields finally 

(2 .27) 

Interchanging the role of f(k) and g(k) we obtain in the same way 

(2. 28) <F(p), ~(p)> = <g(k), <f(p), ~(p+k)>> . 

The for111ula (2 .27) or (2 .28) is now considered as the definition of 

the convolution of the functionals f(k) and g(k). The functional given 

by the right-hand side of (2.27) is denoted by f(k)*g(k) and similar

ly that of the right-hand side of (2.28) by g(k)*f(k). 

Hence we obtain the for1nulae 
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(2.29) 

(2. 30) 

< f ( k) * g ( k) , ~ ( k) > = < f ( k) , < g ( p) , cp ( p+ k) > > 

< g ( k) * f ( k) , ~ ( k) > = < g ( k) , < f ( p) , cp ( p+ k) > > • 

From {2.27) and (2.28) it follows immediately that the operation of 

convolution is commutative and therefore we have the identity 

(2.31) f (k) * g(k) = g(k) +. f(k). 

Our definition of convolution is meaningful as_long as <g(p), f(p+k)> 

£ C(q,n-m(f)+µ 1 ,n) and <f(p), $(p+k)> E C(q,n-m(g)+u
2

,n), where u
1 

and 

u2 are some quantities larger than zero.This is guaranteed, if the con-
- -

ditions 1< m(f) <n, 1 <m(g) <n and m(f) + m(g) >n+l are satisfied. 
,_.. - - -

Summing up, one arrives at the following theorem 

Theorem 1 
• 

If f and g are bounded rational functions of k(k
1

,k
2

, •.. ,kn) with 

index m(f) respectively m (g), such that 1 < m( f) < n, 1 < m (g) < n and - -
... I I 

m(f) +_m(g) >n+l, then f(k) is a continuous linear functional on 

C(q,n-m(f)+o,n), g(k) is a continuous linear functional on 
' 

C(q,n-m(g)+o,n) and f(k)*g(k) is a continuous linear functional on 

C(q,2n-m(f)-m(g)+6,n). q may be any non-negative integer and 6 any 

arbitrary positive number. Moreover 

f(k)*g(k) = g(k)*f(k). 

The above stated theorem gives conditions for which the classic

al convolution of two bounded rational functions with indices between 

1 and n can be expressed as a continuous linear functional on acer

tain Banach space of test functions. We wish now to extend the con

cept of the convolution of bounded rational functions with positive 

index to the case where the classical integral definition ceases to 

have any meaning owing to the divergency of the integral. 

Therefore suppose that f(k) and g(k) are bounded_rational func

tions with indices m(f) > 1 and m(g) > 1, while m(f) + m(g) < n. Assume -
that m(f) + m(g) = n-s with O < s < n-2. • -
It is clear that the convolution 

' 

• 
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I co 

(2.2) F(p) = f(k)g(p-k)dk 

does not exist, since the integral diverges. 

Instead of the convolution of f(k) and g(k) 

convolution of the functions f(k) and g(s+l)(k), 

we consider now 

h g (s+l)(k) were 

notes any of the derivatives of g(k) of the order s+l. 

the 

de-

Since g(k) is a bounded rational function with index m(g), g(s+l)(k) 

is also a bounded rational function, but its index is raised by (s+l), 
(s+l) 

i.e. m(g ) = m(g)+s+l. 
(s+l) 

Therefore m(f) + m(g ) = n+l and we can apply Theorem 1. Hence 
(s+l) . . 

f (k) * g (k) is a functional on the space C (q, n-l+O, n) and we have 

according to (2.29) for any q,(k)€ C(q,n-1+6,n) the relation 

(2.32) 
(s+l) (s+l) 

< f ( k) * g ( k) , ¢> ( k) > = < f ( k) , < g ( p) , ¢> ( p+ k) > > • 

We take now for q the value s+l, i.e. we use the space of test func

tions <P(k) with the property that ~(k) and its derivatives up to the 

order (s+l) inclusive are 9ontinuous. 

By means of integration by parts it is clear that 
• 

(2. 33) (s+l) ( ) <g p , ~( ) (-l)s+l "' p+k > = < g ( p) ' 
(s+l) ( k) q, p+ > • 

Substituting this result into (2.32) we obtain 

<f(k), <g(p), 
(s+l) s+l (s+l) 

cp (p+k)>> = (-1) <f(k)*g (k), cp(k)>, 
• 

r according to the definition (2.29) of convolution 
- ' 

(2.34) 
(s+l) s+l (s+l) 

<f(k)•g(k), cp (k)> = (-1) <f(k)*g (k), cp(k)>. 
• • • 

Hence the convolution f(k)*g(k) exists as a functional on the space 

of test functions 

where $(k) belongs to the Banach space C(s+l,n-1+6,n) with 6 arbi-

trary positive. 

Because tJ,(k) belongs to C(O,n-1+6,n), it is clear that f(k) *g(k) 

is only defined as a functional on a linear subspace of C(O,n-l+o,n). 
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The properties of our convolution product f(k)* g(k) are deter

mined by the right-hand side of (2.34). 

If we take for 6 a positive number smaller than or equal to one, the 

convolution f(k) *g(k) is uniquely defined on the space of test func

tions $(k) = ~(s+l)(k) with ~(k)£ C(s+l,n-1+6,n). 

However, if we restrict our convolution product to a smaller space by 

choosing o larger than one, the convolution f (k) * g(k) is no longer 

uniquely defined; it is now only defined apart from a polynomial. The 

maximal degree of this polynomial is dete1·111ined by the chosen value 

of 6. 

For 1 ~ t < o.::, t+l ~ s+2 with t integer the degree of the polynomial is 

at most t-1 and for 6 >s+2 the degree is at mosts. 

The coefficients have to be deter11ained from extra conditions to be 

imposed on the convolution of f(k) and g(k); e.g. conditions resulting 

from physical considerations. 

The same arguments can be used after interchanging f(k) and g(k); 

therefore we have also the relation 
• 

(2. 35) <g(k) *f(k), 4> (s+l) (k)> = (-l)s+l <g(k) * f(s+l) (k), 4>(k)> ,. 

Instead of the right-hand side of equation (2.35) we may write 

(s+l) 
<g(k) M-f (k), ¢(k) > = 

+co +oa 
¢(p)dp g(k) f(s+l)(p-k)dk. 

-00 -00 

By means of integration by parts the inner integral may also be 

written as 
(s+l) 

g (k) f(p-k)dk. 

Hence we obtain the relation 

(-l)s+l 

(-l)s+l 

<g(k) * f (s+l) (k) , ~ (k) > = 
+co +oo 

$(p)dp g(s+l)(k) 
-co 

(-l)s+l (s+l) 
<g (k) * f (k) , cp (k) > • 

f(p-k)dk == 

• 
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Inserting this result into (2.35) gives finally 

<?(k)> == 

(-1) s+l < f (k) M- g (s+l) (k), ¢,(k) > = <f (k) * g(k), 

It follows that apart from a polynomial of at most degrees, the com

mutative property f(k)*g(k) = g(k)*f(k) is again valid. 
• 

Summarizing our results we obtain finally the following theorem. 

Theorem 2 

If f(k) and g(k) are bounded rational_functions with indices 

m(f) and m{g) such that 1 < m(f), 1 < m(g), m(f) + m(g) == n-s and -
0 < s < n-2, then the convolution f (k) * g(k) is defined on the space of 

test functions ~(k) with the property that ~(k) = ~(s+l)(k), where 

¢,(k) i C(s+l,n-1+6,n) and 6 is an arbitrary positive number. The convo

lution f(k) *g(k) is defined uniquely, apart from a polynomial of at 

most degrees, by the relation 

(s+l) 
(2 .34) < f (k) *g(k), $ (k)> = (-l)s+l <f(k) * g(s+l) (k), q,(k)> .. 

' 

Moreover the convolution satisfies the property 

(2. 36) f (k) * g(k) = g(k) * f (k) + P(k), 

where P(k) is an arbitrary polynomial of at most degrees. 

If f(k) and g(k) have indices m(f) respectively m(g) with 

1 < m(f) < n, 1 < m(g) < n, but m(f) + m(g) > n+l, then the convolution 
• 

f(k) *g(k) is defined by equation (2.29) on the space of test functions 

C(q,2n-m(f)-m(g)+~,n), where q is an arbitrary non-negative integer. 

Because in this case 2n-m(f)-m(g)+ o < n-l+o .. every test function be-
• 

longing to C(q,n-l+o,n) belongs also to C(q,2n-m(f)-m(g)+6,n) and 

hence f(k)* g(k) is also defined on C(O,n-l+o,n). According to the 

equations (2.29) and (2.30), we have for every ~(k) £ C(s+l,n-l+o,n) 

the relation 

\ 
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Integration by parts yields immediately 

<f(k)* g(k),q,(s+l)(k)> = (-1)s+l <f(k), (s+l)() 
<g p' q,(p+k)>> 

s+l (s+l) 
= (-1) <g(k), <f (p), ~(p+k)>> 

(2. 38) 
= (-1) 6 +l <f(k) *g(s+l) (k), ¢,(k)> 

= (-1) s+l < g (k) * f (s+l) (k) , 4> (k) > • 

Thus in the case of m(f) + m(g) > n+l the convolution of f(k) and g(k) 

satisfies also the relations (2.34) and (2.35}. 

Therefore the definition of the convolution of two bounded rational 
-functions with m(f) + m(g) <n,given by the fo1·1nulae (2.34) and (2.35), 

is really a generalization of the definition given by the fonnulae 

(2.29) and (2.30), which are only valid for bounded rational functions 

with m ( f) + m ( g) > n. 

Remark 

The diverging convolution F(p) has been defined as a continuous linear 

functional on the space of test functions w(k), which can be written 

as tJ, (k) = f$ (s+l) (k), where, f (k) £ C (s+l, 11-l+ o, n) with o arbitrary po-

sitive. 

This space is only a linear subspace of the Banach space C(O,n-l+o,n), 

but in virtue of the theorem of Hahn-Banach, [s] ,§21, the functional 

F(p) can be extended to the whole Banach space C(O,n-1+6,n). As to 

this extension the reader is referred to the paper s] by Bogoliubov 

and Parasiuk. 

3. Properties of the convolution 

In the previous section we have shown that it is possible to de

fine a convolution product of bounded rational functions f(k) and 

g(k) for which the sum of the indices needs not to be larger than 

the dimension n of the space R. This convolution product has several 
n 

interesting and useful properties which will be investigated in this 

section. 

We confine our investigation to the most important case, in which we 
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have the relation m(f) + m(g) < n; the other case m(f) + m(g) > n can be 

treated in the same way. 

3.1. The differential equation for f(k)~ g(k) 

In this section it is shown that the convolution f(k)* g(k) is 

the solution of a system of differential equations of the order (s+l). 

According to Theorem 2 the convolution f (k) * g(k) is defined on the 
(s+l) 

space of test functions ~(k) = $ (k), where ¢>(k)£ C(s+l),n-l+o,n); 

moreover, we have the equation 

(2. 34) <f(k)*g(k),¢,(s+l)(k)> = (-l)s+l <f(k)*g(s+l)(k), ¢>(k)>. 

The derivative of order (s+l) of the convolution f(k)*g(k) is defined 

on the space C(s+l,n-1+6,n) by means of equation (2.20) of section 2.2. 

The result becomes 

(3.1) <(f(k)*g(k))(s+l), ¢,(k)> = (-l)s+l <f(k)*g(k), q>(s+l)(k)>. 

Combining (2.34) and (3.1) we obtain for every ¢,(k)£C(s+l,n-l+o,n) 
• 

(3.2) <(f(k) * g(k)) (s+l), ¢,{k)> = <f(k) *g(s+l) (k), ¢,(k)> , 

or 

(3.3) (f (k) ~ g(k)) (s+l) = f (k) * g (s+l) (k) • 

From this result it is again evident, that f(k)*g(k) can only be de

termined apart from a polynomial of degrees. Hence we have obtained 

the following theorem. 

Theorem 3 

If f(k) and g(k) are bounded rational functions with index m(f) 

res pee ti vely m(g), such that m(f) > 1, m (g) > 1, m (f) + m(g) = n-s and - -
O < s < n-2, then the convolution f (k) * g (k) is a solution of the set 

of differential equations 

(f(k) *g(k)) (s+l) = f(k)* g(s+l) {k), 

defined on the space C(s+l,n-l+o,n), where o is an arbitrary positive 

number. 
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3.2. Limit properties of the convolution 

our convolution product has some limit properties wnich will turn 

out to be of great value for the applications of the theory. These 

limit properties are given in the theorems 4,5 and 6 of this section. 

Theorem 4 

Let f(k)_and g(k) be bounded rational functions with index m(f) 

respectively m(g), such that m(f) > 1, m(g) > 1, m(f) + m(g) = n-s and 

O < s < n-2. 

Let {fM(k)} be a set of bounded rational functions, depending on k and 

the real parameter M; the index m(fM) is independent of Mand it satis

fies the relation n ~ m(fM) ~ m{f). 

Moreover, the set {fM(k)} converges for M + m weakly on the space 

C(O,n-m(f) + o1 ,n) to the function f(k); o
1 

is some positive number 

with O < o
1 

< 1 . 

In the same way {gN(k)} is a set of bounded rational functions, depend

ing on k and the real parameter N; the index m(gN) is independent of N 

and n !_ m (gN) _! m (g). The s~t { gN (k)} converges for N + 00 weakly on the 

space C(O,n-m(g)+o2 ,n) to the function g(k); o
2 

is some positive num

ber with O < 62 <1. 

Under these assumptions the convolution fM(k)*gN(k) converges 

for Mand N ➔ m weakly to the convolution f(k)*g(k). The limit has to 

be taken as a repeated limit on the space of test functions ~(k) which 
. (s+l) 

can be written as ~(k) = ~ (k), while ~(k)~ C(s+l,n-l+o
3

,n) and 

o3 may be any positive number larger than max(61 ,o
2
). The limit is in-

dependent of the order of the repeated limit; • 
l. e. 

lim lim <fM(k) * gN(k), \µ(k) > = 
M + oo N -+ oo 

(3 .4) 

lim lim <fM (k) * gN(k), ~(k) > - <f (k) * g(k), ~(k) > - :~ 

N + OD M -+ co 

Proof: 

For any cf>(k)£ C(s+l,n-l+o3 ,n) we have the equation 

(s+l) (s+l) 
<fM(k) * gN(k), ¢, (k) > = <fM(k), <gN(p), cf> (k+p) >> = 

(s+l)() ( ) <gN p, cf> k+p >>. 

(3. 5) 

• 
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The function (s+l) 
<gN (p), <P(k+p)> is continuous ink and using the 

corollaries of the lemma of section 2.1, we see that it belongs to the 

class A. Its index is either at least m(gN)+s+l+m(~)-n or at least 

min{m(gN)+s+l, 

not. 

m ( (p) } ' according as m(gN)+s+l and m(~) are both <nor -

In the first case the . (s+l) 
index of <gN (p), ¢(k+p)> is larger than or 

equal to m(g)+s+l+n-l+o3-n = n-m(f)+o3 ; in_the second case the index 

is larger than or equal to min {m ( gN) +s+l , m ( qi) } ~ min {n-m ( f) +l, 
(s+l) 

n-m(f)+o3 }. Hence <gN (p), $(k+p)> belongs certainly to the Ba-

nach space C(O,n-m(f)+o1 ,n). Therefore we can take the limit for M-+<x> 

in the left- and right-hand side of equation (3.5) and we obtain 

(3 .6) 

lim 
M + ao 

--

( -l)s+l ( ) (s+l) ( ) ( ) <f k, <gN p, 4> k+p >> • 

The right-hand side of this equation can be written as 

(-1) 5 +l <f(k), ( s+l) ( ) 
<g p ) 

N 
IP ( k + p) > > = < f ( k) * gN ( k) , 

(3.7) 
• 

() f() A.(s+l)(k)> = < gN k .- k , .., 

Inserting (3.7) into (3.6) one gets 

q,(s+l)(k)> = 
<f(s+l)(p), 

$(k+p)>> . 

(s+l) 
1 i m < f M ( k) * gN ( k) , $ ( k) > = 

M + oo 
(3. 8) 

(-l)s+l <g (k), <f(s+l)(p), q>(k+p)>> . 
N 

The funct1. on <f (s+l) (p), A. (k+p) > · t · · k d · cord .., is con inuous in an again ac -

ing to the corollaries of_the lemma of section 2.1 it belongs to the 

class A. If m(f)+s+l and m(q,) are both <n, its index is at least -
m(f)+s+1 + m(4>)-n; if-m(f)+s+l or m(4>) is larger than n, then its in

dex is at least min {m(f)+s+l, m(~)} . 

f <f (s+l)(p), In the first case the index o ~(k+p)> is larger than or 

equal to n-m(g)+o
3

; in the second case the index is larger than or 

equal to min {n-m(g)+l,n-1+6} > min {n-m(g)+l,n-m(g)+o3}. 

Therefore in to the 
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• 

• 

Banach space C(OJn-m(g)+o2 ,n). Hence we can now take the limit for 

N +min the left- and right-hand side of equation (3.8) and we obtain 

the result 

lim lim 
N-+-coM+oo 

s+l (s+l) 
(-1) <g(k), <f (p), ~(k+p)>> , 

or in virtue of the definition (2.35) 

(3. 9) lim lim 
N-+ ooM + co 

N 

(s+l) 
= <f (k) * g (k) , , (k) > • 

Interchanging the role of f(k) and g(k) we could have taken also 

first the limit with respect to N and thereafter with respect to M. 

The arguments would be quite analogous and because our convolution 

product is commutative, we would have obtained the same result. 

Hence the order of the limits in (3.9) is not essential and we 

have the result 

(3 .10) lim lim 
M+ooN+oo 

lim lim 
N + ooM + c:o 

.P(k)> = 

l .d f 11 t t f t· (k) -- ~(s+l)(k). w1·th va i or a es unc ions~ ~ 

4>(k) E: C(s+l,n-l+o3 ,n) q.e.d. 

It may be remarked, that if the double limit, namely 

lim 
M-+ oo 

fM(k) ~gN(k), exists in the weak sense on the space of test 

N -+ co 

functions ~(k), then it is equal to lim lim fM(k)*gN(k). 
M + CION ➔ co 

Hence, in virtue of the theorem, the weak double limit is also equal 

to f(k) ..-g(k), provided that this double limit exists. 

Therefore the weak limit of fM(k) * gN(k) for M and N going to infinity 

is always unique and it is independent of the way in which the limit 

has been taken, provi'ded that the double limit exists. 

In the following theorem we give a sufficient condition for the 

existence of the weak double limit. 
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Theorem 5 

Let f(k),g(k),fM(k) and gN(k) satisfy the conditions of theorem 4. 

and if for Mor N +~the function 
(s+l) 

or <gN(p)-g(p), ~ (k+p)> converges to 

zero in the topology of C(O,n-m(g)+o2 ,n) respectively C(O,n-m(f)+o1 ,n), 

~hen the weak double limit lim fM(k) * gN(k) exists on the space of 
M -+ oo 

N -+ CD 

can be written as ~(k) = •(s+l)(k). test functions w(k), which 

Proof: 

With the aid of the corollaries of the lemma it can easily be 

(s+l} (k ) ¢ +p > 

• 

and shown, in a similar way as before, that
(s+l) 

<~(p)-g(p),_~ (k+p)> belong to the 

ively C(O,n-m(f)+o1 ,n). Without loss of 

space C(O,n-m(g)+o2 ,n) respect

generality we may assume that 

converges for N-+ ~ to zero in the topo-

logy of the space C(O,n-m(f)+o1 ,n). In the other case where 
(s+l) 

<fM(p)-f(p), ~ (k+p)> converges for M to zero in the topolo-

gy of the space C(O,n-m(g):6
2

,n), we can use the same argument after 

interchanging again the role of f(k) and g(k). 

For any ¢(k)e C(s+l,n-l+o3 ,n) we have the relation 

(s+l) (s+l) 
<fM(k)* gN(k),¢ (k)> = <fM(k), <gN(p},~ (k+p)>> = 

(3.11) (s+l) (s+l) 
<fM(k), <g(p),¢ (k+p)>> + <fM(k), <gN(p)-g(p),¢ (k+p)>>. 

The existence of both terms in the right-hand side of (3.11) can 

easily be proved by means of the corollaries of the lemma. 

Taking the double limit in both sides of (3.11) we obtain 

(3 .12) 

. (s+l) {s+l) 
~im < fM(k) * gN(k) ,q, (k)> = <f (k) M- g(k) ,cp (k+p)> + 

M-+ ao 

N-+- oo 

lim 
M -+- ao 

N -+- oo 

We consider now the remainder term in the right-hand side of 

(3 .12), • 
Vl.Z. 
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(s+l) 
Because the function <gN(p)-g(p),~ (k+p)> converges to zero in the 

* topology of C(O,n-m(f)+o1 ,n), we can find for every£ a number N, such 

* that for N > N 

(3.13) 
(s+l) * 

11 < gN ( P) - g ( P) , ¢ ( k + p) > 11 < e: for N > N . 

Since {fM(k)} is a weakly convergent set of continuous linear function

als on the Banach space C(O,n-m(f)+o1 ,n), the set {fM(k}} is uniformly 

bounded according to the principle of unifon11 boundedness of Banach

Steinhaus (see e.g. [s] , §19). Hence there exists a number, say C, 
. . 

such that 

(3 .14) 

valid for all values of M. 

Using the relation 

b for N > N* we o tain 

(s+l) 
<g (p)-g(p) ,4> (k+p)>> 

N 

and hence 

lim <fM(k), 
M -+ oo 

N-+ oo 

exists and is equal to 

zero. It follows finally from (3.12) that also lim <fM(k)*gN(k), 
M -+ 00 

• 

( 1) N -+ 
00 

( ) 

cb s+ (k) > exists and that it is equal to < f (k) * g(k), ¢ s+i (k)> • 
q.e.d. 

In the last two theorems we have considered the bounded rational 

functions f(k) and g(k) as weak limits of other bounded rational func

tions fM(k) respectively gN(k). However, it is not necessary to as

sume that fM(k) and gN(k) are always rational functions. 

We assume now that f(k) is the weak limit of a set of functions 

fM(k), which are only supposed to be functionals on an appropriate 

Banach space. Under certain conditions it is not difficult to prove 

that we have also in this case the property that lim fM(k)*g(k) = 
M-+ co 
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= f (k) * g (k) ; in fact, we have the fol lowing theorem. 

Theorem 6 

Let f(k) and g(k) be bounded rational functions with indices 

m(f) >1, m(g) >1, m(f) + m ( g) = n- s and O < s < n-2 • Let { f ( k) } be a 
- - lvl 

set of functions depending on k and the real parameter M; these func

tions may be considered as continuous linear functionals on 

C(O,n-m(f)+o1 ,n), where o1 is some positive number with O< o1 < 1. 

If, moreover, the set {fM(k)} converges for M-+ 00 weakly on the space 

C(O,n-m{f)+o1 ,n) to the function f(k), then the convolution 

fM(k) * g(k) converges for M -+ cio weakly to 

test functions ~(k), which can be written 

f (k) -.g(k) on the space of 

as ~(k) = ~(s+l)(k), while 

Proof 

The convolution of tl1e functions fM(k) and g(k) can be defined 

by the equation 

(3 .15) 
s+l (s+l) 

= (-1) <f (k), <g (p),~(k+p)>>, 
M 

\ 

which has a well-defined meaning for all test functions 

~(k) ~ C(s+l,n-1+6 2 ,n). If ~(k)c C(s+l,n-1+6
2

,n), the function 

since the function fM(k) may be considered as a functional on this 

space, the right-hand side of (3.15) is meaningful and therefore 

(3 .15) yields a definition for the convolution fM(k) .w. g(k) . 

Due to the assumptions of the theorem we can take in the left

and right-hand side of (3.15) the limit for M-+ ® and we obtain the 

result 
s+l s+l (s+l) ) lim = (-1) < f (k), < g (p) ,<P (k+p >> = 

M-+ co 

(3.16) 

= < f (k) * g(k) ,4> (s+l) (k)> • q.e.d. 
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4. Application of the theory to divergent convolution integrals in 

electrodynamics 

4.1. Divergent integrals in electrodynamics 

As has been pointed out already in the introduction, the deter

mination of the S-matrix involves the calculation of products, con

taining as factors the so-called causal function 6C(x) and its deriva

tives. The causal function 6C(x) has been treated in Chapter IV and it 

has been shown that this ''function'' is in fact a distribution on the 

space S. However, this distribution may also be obtained as a function

al on the Banach space C(q,r,4), provided q and rare chosen large 

enough. In this connection it may be remarked that Sis the intersec

tion of all spaces C(q,r,4) with q=l,2, •.• and r=l,2, •..• 

In order to give an illustrative example of the application of 

the theory of divergent convolution integrals, we consider interaction 

processes which involve the multiplication of the distributions 

(4.1) 

and 

(4.2) 

• + 1 
m 

411'2 

m 
811' 

H ( 2 ) (mR) 
6(R2) _1 __ _ + 

R 
2 

, 

where m denotes the mass of the particle under consideration, 
2 2 2 2 2 (2) 

R = x
0 

-x1 -x2 -x3 , 8i is the Hankel function of the second kind 

and K1 the modified Bessel function; see formula (6.26) of Chapter IV. 

Furtherznore a is a short notation for the operator 
3 

(4.3) 

n=O 

n 
y ax n 

, 

where 
n 

y denote the Dirac matrices; confer , § 6, § 7, § 14 and § 24. 

According to formula (6.25) of Chapter IV the causal functions (4.1) 

and (4.2) can be written in 

(4 .4) lim 
e:-+ +O 

'' ft momentum 

1 

-00 

representation as follows 

-ik.x 
e dk] , 



and 

(4. 5) lim 
e:-+ +O 

[- 1 
{2n) 4 

177 

+co 

-oo 

{m+k)e-ik.x 

k
2 -m2

+ie:(k,k) 
dk], 

with k.x 
2 2 

+k2 +k3 
..... 0 1 2 3 0 . . 0 

and k = y k -y k -y k -y k
3

; the l1m1. t for e:-+ +O should be 
0 1 2 

taken in the distributional sense. Multiplication of these causal func-

tions with each other leads in the momentum representation for1nally to 

convolution products of the bounded rational functions 

-
(4.6) -1 

~C(k;e:) = 2 2 ' 
k -m +ie:(k,k) 

and 
..... -

(4.7) k+m 
2 2 . 

k -m +ie::(k,k) 

It should be remarked that, in contrast with the notation of Chapter 
- -

IV, the symbols 6C and SC represent ''modified'' Fourier transfo1·1r1s. The 

limit for e::-+ +O is taken at the end of the procedure. It is evident 
' -that convolution integrals containing as factors 6 (k; £) 

C 
are divergent. These divergent integrals may now be defined by means 

of the theory of section 2, i.e. by considering them as functionals on 

an appropriate Banach space. 

Several physicists and mathematicians have inve11 ted other methods 

to define these divergent integrals; in particular we mention the 

methods used by Bogoliubov and Parasiuk in [1] , [5] and [6] , by 

Achieser and Beres tezki in [2] and by Bremer111ann • 

These methods will be reviewed shortly in the next sections and it 

will be shown that they are all special cases of the theory developed 

in this chapter. 

4.2. The method of Bogoliubov and Parasiuk 

(4. 8) 

We consider a convolution integral of the following kind 
+co 

F(p) = f(k)g(p-k)dk, 

where f(k) and g(k) are bounded rational functions inn independent 
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variables vanishing at infinity. 

The indices of f(k) and g(k) have the property that 

(4. 9) m(f)+m (g) =n-s, with O < s < n-2. 

The integration is performed over the whole n-dimensional space 

hence (4.8) diverges. Nevertheless, the convolution F(p) can be 

R and 
n 

defined 

in virtue of Theorem 2 as a functional on a certain space of test func

tions. 

Instead of f(k) and g(k) we take the bounded rational functions fM(k) 

and gN(k), which depend on a real parameter M respectively N. 

The functions fM(k) and gN(k) are assumed to have the following proper

ties 

1. The indices m(fM) and m(gN) are independent of M respectively N, 

while 

(4 .10) 

2. The functions fM (k) and gN (k) converge for M, N-+ m weakly to the 
' functions f(k) and g(k) on the spaces C(O,n-m(f)+o 1 ,n) respectively 

C(O,n-m(g)+6 2 ,n), where 61 and o2 are arbitrary numbers with 

O < (51 < 1 and O < o 2 < 1 • 

Since m(fM) + m(gN) > n, the convolution 

+oo 

(4.11) I<~ (p) = 
M,N fM(k)gN(p-k)dk 

-co 

exists. In virtue of theorem 4 the convolution FM N(p) converges for , 
Mand N going to infinity weakly to the convolution F(p). 

More precisely, we have the relation 

(4.12) lim lim 
M-+ 00 N-+oo 

FM N(p) = lim lim 
' N -+ coM -+ oo 

= F(p), 

where the repeated limits should be taken on the space of test func

tions 

o
3

>max (o1 ,o2 ). If moreover fM(k) or gN(k) satisfies the condition 
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(s+l) 
<fM(p) - f(p), ~ _ (k+p)~ converges for M ➔ ~to zero in the 

topology of C(O,n-m(g)+o 2 ,n), 

or 
(s+1) 

converges for N ➔ •to zero in the topolo-

gy of C(O,n-m(f)+o1 ,n), 

then, in virtue of theorem·s, also the double limit of FM N(p) 

' exists on the above-mentioned space of test functions w(k). 

Further, we have the relation 

(4.13) lim 
M ➔ 00 

N ➔ tlD 

F (p). 

It follows that we can determine our divergent integral F(p) by cal

culating the convergent integral FM N(p) and by taking consecutively , 
the weak limit for M,N ~~.The ultimate result is defined apart from 

a polynomial of at most degrees. 

The functions fM(k) and gN(k) are called the regularizations of f(k) 

and g(k). 

This method is essentially,the procedure by which Bogoliubov and Para-

siuk define in [1] , [s] and [6] 
occurring in electrodynamics. 

the divergent convolution integrals 

Let us consider for example the so-called electron self-energy, 
-

which leads to a convolution product containing as factors ~C(k;E) and 

, § 24; ] , § 4 7; , Ch. 9, § 4. 
- .. -

The indices of 6C(k;£) and SC(k;£) equal respectively 2 and 1; the 

convolution of these functions diverges since the sum of the indices 

is 3 while the dimension of the space is 4; hence s=l. 
-

Bogoliubov and Parasiuk use for the regularization of 8C(k;£) and 

• 

-
In its most simple for·1n this regularization yields for 6C(k;E) and 
-SC(k;£) the expressions 

(4.14) 
- 1 

Reg. 6c(k;£) = - 2--2----
k -m +iE(k,k) 

- 1 
2 2 ' 

k -M +iE(k,k) 

and 
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(4.15) 

A 1 
(k+m) [ _2_2 ___ _ 

k -m +iE(k,k) 

= (k+m)Reg 

1 
-2-2--J . 
k -N +i£(k,k) 

- .. 
The index of Reg. ~C(k;E) equals 4, while that of Reg. SC(k;E) equals 

3. 

It 
- .... ... 

can be shown that 6c(k;£), SC(k;E), Reg. Ac(k;E) and Reg. 

satisfy the conditions of theorem 4 and 5; see [1~ . 
Therefore the convolution 

.... -
of 6c(k;£) and Sc(k;t) may be dete1~1ined by 

.. 
calculating the converging convolution of Reg. 6C(k;£) and 

-Reg. SC(k;c) and by taking consecutively the limit for M,N ~ ~. 

In virtue of theorem 5 N may be taken equal to M. 

If the calculations are carried out, such as has been done in [1] , 
... 

§24, then it appears that the part of the convolution of Reg. 6C(k;£) 
.. ' 

and Reg. SC(k;E), which actually diverges for M ➔ ~, is contained 

only in a ter111 linear in p. This te1·111 is however immaterial, because 

the convolution product is considered as a linear functional on the 

' space of test functions •(p) which, due to the fact that s=l, can be 

written as 
a2 

"'(p) = _a _p_a_P_ ~ (p)' 

lJ \) 

where ~(p) - C(2,3+o,4} with o some number between O and 1. 

It may be remarked that in this case it is not necessary to regularize 
-and SC(k;£); it is already sufficient to regularize only 

one of these factors and the result will of course be the same. 

by 

Another example of a diverging convolution integral is furnished 

the photon self-energy; cf. [1 , §24, [2] , §47, [3] ,Ch.9, § 5. 
-In this case both factors are of the type SC(k;£) and s=2. The diver-

ging part of the regularized convolution integral is now contained 

only in a te1·111 which is quadratic in p. 

4.3. The method of Achieser and Berestezki 

Consider again the divergent convolution product 

F(p) = f (k) * g(k), 
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where f(k) and g(k) are bounded rational functions, vanishing at in

finity, while 

wi th O < s < n - 2 • -

m(f) + m(g) = n-s , 

Instead of F(p) we consider the integral 

(4 .16) f(k)g(p-k)dk, 

where the integration is now perfo1·rned over a finite volume V of the 

n-dimensional space R. 
n 

The integral Fy(p) can be calculated and it can be written as 

(4.17) 

where 

(4 .18) fv(k) = f(k) fork inside V, 

fv(k): 0 fork outside V. 

It is clear that f(k) is_the weak limit of fV(k) for V-.m on the space 

of test functions C(O,n-m\f)+61 ,n), where o
1 

may be any number with 

0 < o1 < 1 . According 

= f (k) * g(k) is the 

to theorem 6, the original convolution F(p) = 

weak limit of 

space of test functions ~(k) which can be 

where q> ( k) E. C ( s + 1 , n-1 + 6 
2 

, n) and 6 
2 

> 6
1 

• 

divergent convolution F(p) = f (k) * g(k) by 

taking consecutively the weak limit for V 

fv (k) * g(k) for V ~ 00 on the 
. (s+l) 

written as ~(k) = $ (k), 

Therefore we can obtain the 

calculating fv(k) ~ g(k) and 

-+ 00 • 

For the actual calculation of F(p) we consider the Taylor expans-

ion of F (p), viz. 
V 

n 
(4 .19) 

i=l 
n 

.•• + 
il , i 2, ••• , is =1. 

+ 

with O < 6 < 1. 

s+l a 

• 
p=O 

p. + •••••••••• 
1 
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Denoting the last te1,n of the right-hand side of (4 .19) by FV(p), we 

may write 

where P(p) is the polynomial of degx·ee s, obtai.ned by taking the fit•st 

(s+l) terms of the Taylor expa11sion of FV (p). 

Since the differentiations of FV(8p) 

out after the integration symbol, it 

with respect top. can be carried 
1 

is clear that FV(p) converges in 

the ordinary classical sense for V going to infinity. 

Hence it follows that the divergence of our original convolution in

tegral is contained only in a polynomial P(p) of at most degrees. 

If we take now the weak limit of FV(p) on the space of test functions 
. (s+l) 

W(k), with ~(k) = ~ {k) and ~(k)E C(s+l,n-l+o2 ,n), the polynomial 

P(p) is completely irrelevant and the divergence is removed. 

Thus one obtains finally 

(4. 20) F(p) = lim 
Vti• 

= l irrt 
V too 

This procedure is essentially the method used by Achieser and Bere

stezki in [2] , Ch.VII, §47.1; it appears again, that also this method 

is a special case of the theory developed in the sections 2 and 3. 

For actual computations concerning the electron and photon self-energy 

the reader is referred to [2] , Ch. VI I, §47, 1,2 ,3 .. 

4 .4. The method of Bremer1nann 

Bremermann has proposed in [11] to define divergent convolution 

integrals of the kind 

(4.21) F(p) = f(k)g(p-k)dk, 
-oo 

where f and g are bounded rational functions, as the solution of the 

set of differential equations 

(4.22) 
s+l a F(p) = 

-00 

s+l 
f(k) " 

.g(p-k)dk. 
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The right-hand side of (4.22) is supposed to be a convergent integral 

ands is chosen as small as possible. 

In virtue of theorem 3, formula (3.3), the convolution 

F(p) = f(k) *g(k) as defined in theorem 2 satisfies on the Banach 

space C(s+l,n-l+o,n) the set of differential equations (4.22). Hence, 

also Bremermann's method is included in the general theory of the pre

ceding sections. 

' 
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