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INTRODUCTION 

In '1912 Brouwer [3] proved his by now classical theoren which 

states that then-cell Chas the fixed point property ( _ .p.p.) for 

continuous mappings, i.e. for every continuous mapping f : c-,,,c 
there exists a point x 0 E C such that f(x 0 ) = x 0 • This result was ex­

tended to compact convex suiJsets of 

(i) certain function spaces, e.g. L2 [o,"1] and cn[o,1] 

Birkhoff and Kellogg [1] ( 1922); 

by 

(ii) 'i,:,:rnch spaces, oy Scilauder [1,2] (1927, 1930); 

(iii) locally convex topoloBical linear spaces, by Tychonoff [1] 
(1935). 

All these theorems are included in Lefschetz's fixed point 

theorem (Lefschetz [1] (1 )), or in extensions of it, e.g. Lef­

schetz ,6] ( 1942). F'ro1:1 Lefschetz' s the ore,, it follows e .::; . that 

an acyclic compact metric absolute retract has the f.p.p .• Lef­

schetz [s J ( 191t2) also gave sufficient conditions for the exisi;ence 

of coincidence points under two continuous mappings of one space in­

to another. These results are discussed in se tion 1 of Chapter I. 

The second section of Chapter I is a survey of U;e Leray-0chau­

de:c theory of the local fixed point index (Leray-Schauder [1 J ( 1 

especiaLLy of Browder•s extension of this theory (Browder [s] ( 
Lefschetz I s fixed po:1.nt tr1eorem is in turn contained in ~ Ler2:r­

Schauder theory as extended by Browder. 

Brouwer' s fixed point theorerc1 for ·:he n-cell was also extended 

to upper semi-continuous mappiD£S of a compact convex subse-:: of a 

locally topological linear space into the fa~ily of its non-eNpty 

::losed convex subse s (Kal.::utani [2] ('191+1), Bohnenblust and Karlin 

[1] ("1950), Fan J ('1952) and GHc\:sberg ] (1952)). These theo­

rems are included in the extension of Lefschetz's fixed point theo­

reQ to upper se 111i-continuous mappings of a compact le-space (see P~ 

43) into the family of its non-ecipty closed acyclic subsets (Eilen­

berg and Mont:;0111ery J (1 ), :Segle [3] (1950)). In a recent pu­

blication Fan [3] (1961) gave sufficient conditions for the exist­

ence of coincidence points under upper semi-continuous mappings 

8 HEusdorff space into the f ~-lY of non-empty ca~1pact conv~x s~h­

se'-s of a topolosicEl linear space~ His theorems in8lude Tychonoff's 



theorem (Tychonoff [1] ), but they do not include the above-mention­

ed extensions of Tychonoff's theorem, nor are they included in these 
extensions. 

It is unknown whether a compact convex subset of an arbitrary 

topological linear space has the f.p.p.~ even when the space is me­
trizable. 

Another unsolved problem bearing on section 7 of Chapter I was 

referred to by Isbell [ 1] ( 1957): If F is a commutative family of 

continuous mappings of a tree Tinto itself, does there exist a 

poi.nt XO E. T such that f( XO) = XO for a 11 f E. F? 

In Chapter II Scherrer's theorem (Scherrer [1] (1926)), which 

states that a dendrite has the f.p.p., and its generalizations to a 

wider class of spaces and mappings are surveyed. An unsolved problem 

in this field is the question whether a tree-like continuum has the 

f. p. p. (Bing [ 2] ( 1951)). It is also unknown whether a plane conti­

nuum which does not separate the plane has the f.p.p. 

Chapter III contains miscellaneous fixed point thi0"orems and a 

general Dnpression is best obtained from the section headings. 

If f is a (not necessarily continuous) mapping of a topological 

space X into itself, and f(x) cJ x for all x;;: X, then it might be of 

importance to know whether there exists a point x 0 E X which in some 

sense is "near" to its image f(x 0 ). We would prefer an "almost fixed 

point property" which can be considered as an extension of the f. p. p., 

e.g. so that it coincides with f.p.p. in the case of compact spaces 

and continuous mappings. Existing theorems on almost fixed points 

are discussed in section 10 of Chapter III, and in Chapter IV we 

prove the following theorems on almost fixed points in the Euclidean 

plane. 
THEOREM "1. Let C( be a finite covering of the Euclidean plane by 

r, ,, 

convex open sets, and let f : E"--·-·➔ E" be continuous. Then there is a 

member UE:ll( such that Un r[u] -} \if, or equivalently: ther·e exists a 

point "' E2 such that x 0 and f'( lie in the same member of Cl. • 

2 THEOREM 2. Let ot be a finite covering of E by arcwise connect-· 

ed sets, and let f : be topologically equivalent to an orien­

tation preserving isometry, i.e. there is a homeomorphism h of E2 on­

to itself and an orientation preserving isometry g : E 2-➔ E 2 such 

that f = h- 1gh. Then there exists a member U£0\ such that Unf[U]f r;t. 
In particular this is true when 0\ is a finite covering consisting of 

connected open sets. 



THEOREM 3. Let X be a ut1.tcoherent topological space and oc a 
covering of X which consists of three connected open sets. Let 

f : X--+ X be continuous. Then there exists a member U £ (l( such that 
u n f [u] f cf. 

An example is given wl1ich shows that "orientation preserving" 

cannot be missed in theorem 2, and that theorem 3 cannot be extended 

to coverings consisting of more than three sets. The mapping of this 

example is a transflection, i.e. a reflection followed by a trans­

lation in the direction of the axis of reflection, and the covering 

consists of four connected open sets { ui} i=i such that n U j (:i1/j) 
has countably infinitely many components. Note that a transflection 

reverses tl1e orientation. Thus we l1ave the following 

PROBLEM. Let Ci. be a finite open covering of tl1e Euclidean plane 
2 2 ' 2 E , and let f : E -E be continuous. Does there exist a member 

Uf,<t such tl1at Unf[u] f cf in one or both of the following cases: 

(i) f is an orientation preserving homeomorphism onto; 
(ii) the intersection of each pair of members of m has at most 

a finite number of components? 

The results of Chapter IV will also be published elsewhere (de 

Groot, de Vries and van der Wa 1 t [ 1 ] ) . 

We did not survey the numerous applications of,fixed point theo­

rems. Therefore we mention l1ere a few examples and references.Arnold 

[--i (1949) used B~uwer's fixed point theorem to obtain an elegant 

proof of the fundamental theorem of algebra. In a description of a 

model of the brain, Zeeman (-1962) gave an interesting applica-

tion of Brouwer's fixed point theorem for then-cell. For expositions 

of applications to functional analysis, the reader is referred to 

Graves (1935), k1I[1J ( ), Rothe [s] (1939), Miranda [1] 

(-1949), Leray [5] ('1950) and Fuller [3] (1962); for more detailed 

results, see e.g. Kyner [1.,2] (1956_, -1958), Marcus [1,2] (1956), 
Browder ( ·1957), Stokes [1] ( -1960) and Cesa r'i [--i] ( "1960) . 

I wish to express my gratitude to Professor J. de Groot who 

suggested tl1is study, in particular the problems which are discussed 

in Chapter IV. I am grateful to the Potchefstroom University for 

C.H.E. and the University of Amsterdam, at both of which institutions 

I studied for several years. I am indebted to Professor R.D. Anderson 

and Professor V.L. Klee for valuable remarks. I wish to thank the 

Potchefstroom University for C.H.E. and the South African Council 

for Scientific and Industrial Research, from both of whom I received 
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bursaries during my stay in Amsterdam. I am grateful to the Mathe­
matical Centre, Amsterdam, for the privilege of being appointed a 
guest member of their staff, and for the most helpful cooperation 

that I received from them. 



CONVENTIONS AND DEFINITIONS 

The empty set will be denoted by¢. If X and Y are sets, and 

every element of Xis an element of Y, we shall write Xe Y. It will 

be explicitly stated whenever Xis meant to be a proper subset of Y. 
If X and Y are sets, then the set of all points of X which do not 

belong to Y is denoted by X \ Y. 

A nej_s):1bourhood of a point [subset] of a topological space j_s 

an 02,m set containing the point [ subset J . If A is a subset of a 

metric space X with metric r, and t is a positive number, then { x E. 

there exists a point a.,_ A such that p(x,a)< i:} will be denoted by 

Ut(A). If A is a subset of a topological space X, then A will denote 
the closure of A in X. A topological space will be called compact if 

every open covering of it has a finite subcovering. A compact metric 
space is called a compactum. 

A continuum is a compact connected Hausdorff space. A continuum 
is decomposable if it is the union of two proper subcontinua; other­
wise it is indecomposable. A connected topological space Xis unico-

herent if, whenever X "" Au B, A /, B ,/4 with both A and B con-

nected and closed in X, it follows that An B is connected, A contin­

uum is hereditaril~ decomposable [indecomposable, unicoherent] if 
each of its non-degenerate subcontinua is decomposable [indecompos­

able, unicoherent] '. 
A Peano continuum is a Hausdorff space which is the continuous 

image of the closed interval [o, (with the usual topology). It is 

well-known that the class of Peano continua coincides with the class 
of locally connected metric continua, and that a Peano continuum is 

arcwise connected, 
A dendrite is a Peano continuum which contains no ,Jordan curve. 

If A,B and Care three mutually disjoint subsets of a topological 

space X, then C separates A and B in X H' X \ C can be split into two 
disjoint sets, each of which is closed in X \ C, and re.spectively con­

tains A and B. A tree is a continuum in which each pair of distinct 
points is separated by a third point, In this terminology, a dendrite 
ls a metric tree (Whyburn [ 1, p. 88]). A continuum is a tree H and 

only if it is locally connected and hereditarily unicoherent 
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The te:'.'rnS rna.ppin[F , function a:i.d transformati:)'1 w:l 11 be used 

synonymously, and a mapping f of a set X tnto a set Y will be deno­

ted by f: X--➔ Y. Further, U AcX and BcY, then r[A]= {f(a)jaeA}, 

r-1[B] = {xeX j f(x)E B}. 
Let X and Y be topolog:l cal spaces, and let Jr (Y) denote the 

famtly of all non-empty subsets of Y. The upper semi-finite (u.s.f.) 

topology for jf(Y) has as a basis for its open sets 211 sets of the 

form {AE,fr(Y) I Ac:U}, where U is an ope:1 subset of Y. The lower 

semi-finite (1.s.f.) topology has as a b2sis for its open sets all 

sets of the forrn {t1c.it(Y)IA nu I¢}. The fL1ite topolof'.Y for ,;J/,(Y) 

has as a subbasis the sets e:df(Y)j.\c:U, P,nv I¢}, with U and V 

open in Y. 

A mapping f: X-► Jf(Y) is called UlJDer semi-continuous (u.s.c.) 

[1ov1er semt-continuous (l.s.c.) 1 c_smtinuous] if and only if it is 

continuous in the usual sense with respect to the upper serJi--finite 

[lower semi--flnite, finite J topolo,:,:y for fi(Y). This means that f 

is continuous if and only if it 1.s both u.s.c. and l.s.c., and that 

f is u.s,c. [Ls.c.J if and only j_f, fnr each point x E: X and for 

each open set U of Y coiotcJining f(x) .-such that f(x) n U /. ¢ J, there 

exists a neighbourhood V of x such th'.;t z)c U z)n U I 0'] for 

an z EV. 

If .J'( is a subfamily of df(Y), a map;::,inc f : ::-➔ ..Y'(Y) is 

called u.s.c. [1.s.c., continuous] if it is contj_nuous with res­

pect to the reJ.aUve topolo3:y for ..t'(Y) induced bJr Jf(Y) endoHed 

with the u.s.f. [Ls.f., finite] topolor;y. 

Various other definitions of uppe~ and lower semi-continuity 

exist ( see e ,g. Strother ['1 J and the references given there), but 

they are nearly all equivalent when X and Y are ca~0act Hausdorff 

spaces and ::t'( is the fami J.y of 211 '10:1-e,,1pty closed subsets of Y. 

!,, 0,1appinc f' X......,,. Y'(Y) is also callecl 8 multi-valued or a set-

valued ~appinc; for instance, if Y'(Y) is the family or all non­

e~pty closed subsets of Y, then f is referred to as a "closed set­

valued 

If' P.c:X, ::3cY., 

= {x E:Xjf(x)n ::=, I 
{(. I e:X, yEY, 

cmd tl:e 0 rau_b_ G( f) of f is defined to be 

7'"- f( } • Thus r[0,Ja,~c1 r;(f') are dPfinRd as su 

sets of Y 8ncl Xx Y respectJvely, ,nd y,t ')I ,:/(Y) and Xx ) . 
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Let X and Y be sets and let lf(X) and J(Y) denote families 

of non-empty subsets respectiv:ely of X and Y. Let f : X--+ :7(Y) 

and g : y _,,. f(X) be mappinf;S. A col ncidence po_int of X and Y un-

der f and g is a point (x 0 ,y0 )e: XxY such that x 0 ~g(y 0 ) and y 0 ef(x0 ). 

We may also consider mappings f : X---,,. J(Y), g : X-+ Y'(Y), defined 

in the same direction. Then a coincidence point of X under f and g 

is a point EX such that f(x) n g(x) / ¢. In the special case 
0 0 

when Y X and g is defined by g(x) = {x} for 211 xi:: X, is 

called a fixed ooint of X under f. If~ is a family of functions, 

each of which is on X to the same family ~(X) of subsets of X, 
and if X has a fixed point under each member f e: Cf]: , then X is said 

to have the fixed point property (f.p,p.) for the family ~. 

If x 0 is a fixed point of X under f : X-➔ Y'( , we sha 11 

also say that the mapping f has a fixed point in X; also, that 

is an f-invariant point. 

For the sake of completeness, we note that a mapping 

f : X--+ Y induces a mapping f* : X _,,. cr(Y) = {{Y} I ye: Y} in the 

obvious way, and by a fixed point of X under f we shall mean a 

fixed point of X under f*. An analo£Y,ous remar1{ applies to coincie­

dence points. 

A topological space X will be said to lack the f.p,D. i th~e 

exists a continuous mappinz f X-► X such that f( /c x for all 

X € X. 

Let X be a Hausdorff space and Ha homology theory for X over 

a group CL Then X is called acyclic~ (with respect to if the ho-• 

mology groups Hn(X,G) (n=0,1,2, ... ) are trivial, (X,G) being 

taken augmented. A continuum is he1•edi tarily acyclic if eacn of 

its subcontinua is acyclic. 

A topological space X is an absolute retract [absolute neio:h­

bourhood retract] if., for each norrnal space Y and eac\1 closed sub-

set X1 of Y which is homeomorphic to X, X1 is a retract igh-

bourhood retract] of Y. A necessary anci sufficient condition for 

a compact metric space to bear absolute retract bsolute neigh­

bourhood retract] is that it possesses a topological image in the 

Hilbert cube I w which is a retrac'.: C.1eic;hLourhoocl retr2 of Iw. 

(Borsu:,c [--1]). A compact metric absolute retrsct lute neiz; 11 .• 

bcur11ood retract J will be den~Jed :;y J , :; space which 

is ho:r'.e r~ [ne,_chliourhood of a Tycho-

*J. 
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Euclidean n-space will always be denoted by En, and then-
. n+1 n sphere in E by S . 

The topological structure of the topological groups and topo­

logical linear spaces to be considered will be Hausdorff, and the 

linear spaces will be real. 

For other terms in general topology, homology theory and lin­

ear analysis, the reader is referred to Alexandroff-Hopf [1] , Dun­

ford and Schwartz [ 1] , Eilenberg and Steenrod [ 1] , Kelley [ 4] ., 
Kuratowski [1] , Lefschetz [5,6,7] , Whyburn [1] and Wilder [1] . 
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CHAPTER I 

The fixed point theorems of Brouwer, Lefschetz, 

Schauder, Leray, Tychonoff and Kakutani 

1.1. Single-valued mappings 

In one of a series of papers on curves defined by differential 

equations, Poincare [1] (1885) considered a continuous vector field 
over a closed surface and assignecl an integer as index to each iso­

lated singular point. He proved that if the surface is orientable 

and of genus/ 1, then there exists at least one singular point. 
Around 1910 Brouwer [l- 3] discovered the degree of a contin­

uous mapping of one n-manifold into another. He used it to extend 
Poincare 1 s definition of 'che index from two ton dimensions, and 
to prove his well-known fixed point theorems for then-cell, the 
n-sphere and the projective plane: 

B1, Then-cell has the f.p.p. for continuous mappings. 

B2. Then-sphere has the f.p,p, for continuous mappings of 
degree-/ (-1)n. 

B3. The projective plane has the f,p.p, for continuous map­
pings, 

In 1922 Alexander [1] gave new proofs -of B1 and B2, under 

the impression that they were proved for homeomorphisms only. He 

also extended B3 to projective 2n-space. Almost simultaneously 
Birkhoff and Kellogg [1] (1922), under the same impression as 
Alexander, gave another proof of B1, and showed that it may be ex­
tended to special function spaces, namely to compact convex sub­

sets of en [o,1] and L2 [0,1] • (See Dunford and Schwartz [1] for 
definitions.) A short and eleBant proof of B1 was given by Knaster, 

Kuratows\ci and Mazurkiewicz [1] (1929). 
Another major step in the history of fixed poin~ theorems was 

the formula of Lefschetz [1] (1926). Let f be a continuous mapping 
of an orientable n-manifold M, without boundary, into itself. Let 

i~ (i=1,2, .•• ,pr; r=0,1, ••• ,n) be a besis of the r-th homology 
group Hr(M) of M, taken over the rationals as coefficients, and 
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let 

where f*r denotes 
r 

the hommorphism of ·Hr(M) into itself insuced 
r r 

rational numbers. Let trace f ¾r = 12;;1 a1i, by f, and thenaij are 

and A (f) = L (-1)r 
r=O 

trace f¾ r • 

Lefschetz's theorem now asserts that /\(f) 7' O is a suffi­
cient condition for the existence of fixed points of Munder f. 

Lefschetz [2] (1927) almost immediately generalized this 
result to manifolds with a boundary. It was then extended to 

finite polyhedra by Hopf [1] (1929), and again by Lefschetz [4] 
(1937) to the AR's and ANR 1 s, and eventually also to the HLC~­

spaces and the quasi-complexes (Lefschetz [5] (1942)). Lefschetz 
also obtained analogous formulas giving sufficient conditions for 

the existence of coincidence points of manifolds under continuous 
mappings. A full account of these results is given in Lefschetz 

[5,6] . 
Each of the spaces considered above is a compact Hausdorff 

space, with all its rational Bett~~ numbers finite and all but a 
finite number of them zero. From the extended Lefschetz formula 
it follows, for example, that every ANR which is acyclic over the 
group of rational numbers, has the f.p,p. for continuous mappings. 

The property of being acyclic alone is not enough to ensure the 

existence of fixed points, as was shown by Borsuk [5] (1935) who 
constructed an acyclic Peano continuum in E3 which can be mapped 

topologically onto itself without fixed points. Vercenko [1] 
(1940) constructed a 3-dimensional continuum in E4 which has the 
properties of the space in Borsuk's example and in addition is 
simply connected. On the other hand, it has been proved by Cart­
wright and Littlewood [1] (1951) that if a topological mapping of 
a plane acyclic continuum X can be extended to a homeomorphism of 

the whole plane, then X must have fixed points under such a map­

ping. The mapping in the example of Borsuk [-5] can be extended to 
a homeomorphism of E3, so that this additional condition is insuf­

ficient to ensure the validity of the theorem in three dimensions. 

The fixed point formula of Lefschetz [1] ( 1926) included al­
most all tlle fixed point theorems existing at the time of its pu­

blication, e.g., the above mentioned results of Brouwer [1-3] 
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There are, however, fixed point theorems which escape the formula 

and its extensions, e.g., the Poincare-Birkhoff-theorem 

(G.D. Birkhoff [1] (1912)). This theorem states that if f is a 

homeomorphism of a plane annular ring bounded by two concentric 

circles c 1 and c2 , which moves all the points of c1 in one direct­

ion and all those of c 2 in the opposite direction, then either 

some Jordan curve J exists in the ring surrounding the circle 

which does not meet its image f~J. or else there are exactly two 

fixed points, and this in spite of the fact that A(f) = 0 here 

(Lefschetz [?, p .16]) . (For extensions of the Poi ncare-Birkhoff­

theorem, see G.D. Birkhoff [2] (1931) and Hey Pastor [1] (1945),) 

In contrast to the homology arguments used in estabUshing 

the Lefschetz fixed point formula, various authors used convexity 

arguments to extend the Brouwer fixed point theorem for the n--cell 

to compact convex subsets of linear spaces. Thus, in '1927 Schauder 

[1 J extended the results of' Birkhoff and Kellogg J to metric to­

pological l:!.near spaces hav:!.ng a l:!.near base. This assumption was 

then dropped, and in 1930 Schauder [) J obtained the following re­

sults: 

S1. A compact convex subset of a Banach space has the f.p.p. 

for continuous mappings. 

S2, A convex, weakly compact subset of a separable Banach 

space has the f.p.p. for weakly continuous mappings. 

A result of Mazur [1] ( 1930) stSttes that the convex closure 

of a compact subset of a Banach space is compact. Krein and 

Smulian [1] ( 191W) extended this resnl t by showing that the convex 

closure of a weakly compact subset or a Banach space is weakly com­

pact, and they used it to establish the following improved form of 

32 

32a. I:f H :Ls a closed convex subset of a Banach space., and 

f : H----0H is weakly continuous such that f[tU ts separable and the 

weak closure of f [t-1] is weakly compact, then H has a fixed point 

under f. 
Let X be a Banach space, With th2 assumption of Mazur's theo­

rem mentioned above, theorem 31 may be stated in any one of the 

following three equivalent forms: 
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S1a. If f : X--,,.X is continuous and such that rLxJ is bounded, 

and the image of each bounded set has a compact closure, then X 

has a fixed point under f. 

S1b. If H is a closed convex subset of X and f : X-+X :Ls 

continuous and such that f[HJ :Ls compact, then H has a f:l.xed point 
under f. 

S1c. If H :Ls a compact convex subset of X and f 

continuous, then H has a fixed point under f. 

S1c and S1b was extended to locally convex topological linear 

spaces by Tychonoff [1] (1935) and Hukuhara [1] (1950) respective­

ly. Using the fixed point formula for ANR's (Lefschetz [5]), 
Browder [3] (1959) obtained the following extens:Lons of S1a and 

S1b, in which the hypothesis about the mapping is replaced by a 

corresponding hypothesis about one of the iterates of the mapping: 

S1a 1 • If f : X~X is continuous and such that for some posi­

tive integer m the set fm Cx] is bounded, and the image of each 

bounded set has a compact closure, then X has a fixed point under 

f. 
S1b 1 • Let H and R1 be open convex subsets of X, H0 a closed 

9.S2.!}Y_ex subset of X, H0 c. H1 c H, f : H---..:;.X continuous and such that 

f[H] is compact. Suppose that for a positive integer m, is well--
m 

defined on H1 , 1\;/0 fi [H0 ] c H1 , while GT.J.1] c H0 • 1.l'hen has a 

fixed point unaer f. 

Browder [3] observed that the methods applied in the proofs 

generalize directly to locally convex topological linear spaces 

and give extensions of Tychonoff's generalization of Schauder's 
theorem to locally convex spaces. The following interesting con­

sequence of the Lefschetz fixed point theorem is stated for com­

parison with form S1c of Schauder's theorem (Browder [3]): 
Let A be an ANH, or a quasi.:com;:ilex 1n the sense of Lefschetz 

[5] • Let f : A~A be continuous and suppose that for some posi­

tive integer m, fm [ii J :i.s contained in a closed acyclic subset B of 
A. Then A has a fixed point under f. 

We conclude this section w:l.th tLe remark that it is not !mown 

whether a compact convex subset of an arbitrary topological linear 

space 1ias the f ,p .p., not even when the space is metr:i.zable (Klee 

[6 , p. 7, p. ), and that Lefachetz's proof for the asser­
tion that a compact convex subset of a metric l:i.near space has the 
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1) 

f.p.p. ( Lefschetz [6, p.119]) is in error, as was pointed out by 

Klee [9] . 
If His a compact convex subset of a metric linear space X, 

then (Klee [ 6] ) : 
(i) His a compact subset of a metric space X; 

(ii) every neighbourhood of H in X contains an open [ and 

also a closed J neighbourhood which is contractible, 

(iii) 

(iv) 

locally contractible [and an 

His contractible; 

His locally contractible. 

An example of Borsuk [6] (1948) shows that a space may satis­

fy all four cond1.tions without being an AR. Kinoshita [2_] (1953) 

constructed a space which satisfies (1), (ii) and (iii) but lacks 

the f.p.p. It seems to be unknown whether the Lp.p. for H follows 

from (i), (i and (iv), or from (1), (Hi) and (iv). However, if 

a space satisfies (i), (iii) and (iv), and in addition is finite­

dimensional, then Lefscl1etz 1s proof (Lefschetz [6, p.'119 J) is in 

order (Klee [ 9 J ) ; such a space then is an AR and hence has the 

f,p.p. for continuous mappings. 

For arbitrary topological linear spaces, we have the follow­

ing result (Klee [7 J ) ; 
Let X be a topological linear space and Ha compact retract 

of X which admits arbitrary small continuous displacements into 
f1nite dimensional subspaces of X, i.e., for each neighbourhood U 

of the origin in X there is a f1ni te-d:1.mens1onal subspace L of X 

and a continuous mapping g : H---'P-L such that g [HJ is compact and 

g [HJ c H + U, 
Then H has the f.p.p. for continuous mappings. 

1.2. The Leray--Schauder tneory cf the fixed point index and 

its extensions 

Except for minor changes, this sect:i.on ls taken verbally from 

Browder [s] 
In the class1cal fixed point theory of continuous mappings, 

culm1nating in the Lefschetz fixed point theorem (Lefschetz [1,2JL 

one is concerned with the algebraic number of fixed points of' a 

'I). However, see the remark preceding the last theorem of this section. 
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continuous mapping f of a compact, locally well-behaved space X 

into itself. Beginning with the work of Leray and Schauder [-1] and 

Leray ~] in 1934 on the local degree for completely continuous 

displacements 1)in a Banach space, the problem has arisen of local­

izing this index of fixed points, i.e. of def:l.ning an algebraic 

measure of the number of fixed points of the mapping f on each 

open subset of X whose boundary does not intersect the fixed point 

set and of doing so in a way which preserves the principal proper­

ties that make such a measure useful in the growing number of ap­

plications which the fixed point theory has found in analysis. 

The principal results in this direction are to be found in 

the papers of Leray [2, 3, 4- J , written during the Second World War 
and published shortly afterwards, in which he constructed a theory 

of the fixed point index for continuous mappings of convexoid 

spaces, a class of spaces sharing some of the properties of finite 

polytopes and of finite unions of compact convex sets in linear 

spaces. Their precise definition is the following: 

A compact topological space Xis said to be convexoid if it 

has a covering { U t} having the following properties (Leray 

[2,3,4]): 
V 

(a) Each Ut is closed and acyclic (with respect to Cech co-

homology theory). 
(b) The intersection of any fj_ni te number of the 

the collection if it is non-empty. 

lies in 

(c) Each point of X possesses arbitrarily small neighbour-

hoods each of which is the union of a finite number of 

the sets u~ , 

Leray 1 s theory in its initial form, though definitive for 

the class of spaces which he treats, suffers from the disadvantage 

that the class of convexoid spaces fits in poorly with the usual 

classification of topological spaces by their local regularity 

properties (i.e, local n-connectedness in the sense of homology or 

homot • In a sense, the requirement that a space be conve:xoid 

is a condition ana1ogous to riangulability for a manifold, since 

1) Let X be a Banach space, A a subset of X and j_ : A-,,A the iden-
tity mapping. A mapping f A~A is a completely continuous 
d:i.splacement if f is continuous and ( i--f) [ A J has a compact 
closure in X, 
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it requires that one should be able to build up the space by past­

ing together regular pieces ( no longer simplexes, but col10mologic­

ally trivial sets) in such a fashion that their intersections 

should also be regular. The difficulty can be illustrated by the 

fact that it is not clear wl1eti1er an .Euclidean manifold (i.e. one 

without differentiability or triangulabllity conditions) is con­

vexoid. 

Motivated by t;,e desire to construct a theory of the fixed 

point index in a context similar to that in which Lefschetz 

has proved his fi,ced point theorem, Browder [1] ( 1948) in °1is 

Princeton Doctoral thesis (written under the joint sponsorship of 

Lefschetz and Hurewicz), establish.ed a theory of the fixed point 

index for Atm* 1 s using as a tool Le:::-'ay's theory as applied to 

finite polytopes. (See also Browder [2] ) . ) The results and the 

general philosophy of Browder ~] are summarized by Bourgin 

Q, p.229-235] • In his M.I.T. Doctoral thesis of 1953 (written 

under Hurewicz), 0' Neill [1] rederived the principal results of 

Leray's theory for the special case of finite polytopes. Using the 

results of O'Neill's paper, Bourgin ~] (1955) has recently re-
¾ 

established the theory of the fixed point index for ANR s, along 

lines similar to those of Browder [1] • 

Leray [5] (1950) pointed out the possibility of excending his 

theory from convexoid spaces to retracts of convexoid spaces 

* ( which include the ANR I s. Z3uch an ex tens ion has recently been 

carried t~rough in detail by Deleanu DJ (1959) who also applies 

some sharpened forms of Leray 1 s results given by Leray [6] (1959). 

The tiieory of the local fixed point index, as initiated by 

Leray-Schauder ( 19311) and developi;d &mongst others by Leray 

[s] (1950), Nagumo [2] ('1951) and Altman ,3] (1 ) Ls appli­

cable to lor:ally convex topologlcal l~_near spaces. For Ba:1acl1 

spaces, a (;omotopy extension theorem of Granas [1] (1959) yields 

many of the useful conclusions of tlle Leray-Schauder theory vfr1ile 

avoidin;:; t,1e more complicated noti.ons of the rest. Klee [7 J ( 
showed that it is possible to expand to an arbitrary topolo~lcal 

linear space both the Leray--Schauder tneory and the hor10topy ex­

tension approach of Granas. 

B~owder's objective 

of referet1ce s 

[5]) is t0 go outside ,::,e frane 

of retraction properties in general, and 



or homology level on which it is treated by Leray[~ but under 

more general hypotheses, similar in their nature to (though not 

identical with) hypotheses made by Lefschetz [s,p.322-327] in his 

treatment of the Lefschetz fixed point theorem for the class of 

quasi-complexes. Intuitively, one should expect that the fixed 

point index, or algebraic number of fixed points, as the latter 

name implies, should be a combinatorial or homology concept de-­

fined in a class of spaces which are defined by combinatorial 

restrictions rather than by restrictions upon continuous mappings. 

Basically, as in the case of finite polytopes treated in the last 

chapters of Alexandroff--Hopf [1] , his idea is to identify the 

fixed point index with a count of the number of times some sort of 

element is mapped back on itself by the given mapping f. He ob­

tains such a count ic1 a very natural form, namely the alternating 

sum of tl1e traces of induced chain mappings of nerves of X. The 

general approaci1 goes back to Lefschetz [s] • Browder's proof was 

announced in Browder [2] (1951). The basic problem is to find the 
appropriate algebraic analogues of the properties of the fixed 

point index for chain mappine;s into a differential graded module 
G of a differential graded submodule F. 

Browder [5] introduces an axior:1atic fixed point index in the 
following way: We are given a category of compact topological 

spaces X and of permissible continuous mappings h : X---+X. By a 

fixed point. index on this category the following is meant; if X is 

a space in the category, O an open subset of X, f any continuous 

mapping of O into X, then if f has no fixed points on 6\0, an in­

teger i (f,O) is defined having the following four properties: 

(a) If ft, Os~ s 'I, is a homotopy of f 0 to f 1 , where all the 

ft are mappings of O into X and none have any fixed points on o\o, 
then i (f 0 , i (f4,o). (Invariance under homotopy.) 

) If O contains a finite family of mutually disjoint open 

sets Oj (j=1,2, •.• ,s) and if O \j94 contains no fixed points of 

the mapping f O··-► X, then 

i ( f' = i (f,O.) 
j=1 ,] 

where each of the summands on the right denotes the index of the 

restricted mapping fl . In partlcular, if O itself contains no 
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fixed points off, then i (f,O) O. (Additivity of the index.) 

( c) If O = X, then i ( /\(f), the Lefschetz number of 

f, where /\(f) = 2- -o (-1)r trace (f ), and f is the endo-re::: *r ¾r 
morphism of H (X) induced by f. (H (X) is the r-th dimensional 
v r r 
Cech homology group of X with rational coefficients.) In particu-

lar, (unless we adopt a generalized definition of trace as in 

Leray [6] ) , one must assume t'.iat X has finitely generated homo­

logy groups, all but a finite nur1ber of which are triviaL 

(Normalization). 

(d) Let x1 and x2 be two spaces of 

sible mapping of x1 into o2 an open 

tinuous mapping of 62 into x1 • Let o1 
has no fixed points on 62 \ o2 • Then 

(Commutativity). 

the category, ha 

subset of f a 

h- 1 [o2] • Suppose 

pennis­

con-• 

that hf' 

The property (d) includes as a special case, the following 

( d 1 ) Suppose X and X I are members of the category and X c: X r 

and the injection mapp:Lng j X 1-----P X is permiss:Lble. Let O be an 

open subset of X, f : 0---ll>X a continuous mapping such that 

f [o] c X 1 • Suppose f has no fixed points on o \ O, Then 

i ( f'' 

Browder [5] proceeds to establish the existence of a fixed 

po:tnt index for more general categories than the 's. The cate-

gor:Les which he considers are subcategories of the categories of 

semi-complexes and sem:t-complex mappings. One such includes all 

HLC* spaces in the sense of Lefschetz [s] , and all their contin­

uous mappings. The defin:ttion of a semi-complex is motivated by 

deriving its properties from wel1-1mown properties of ANR's 

(Lefschetz [6]). Unlike the latter, however, the structure of this 

class of spaces :ts restricted by conditions on chain mappings and 

not on continuous mappings. 

DEFINITIONS (Browder ) : Let X be a compact, locally con-

nected Hausdorff' space, and Jet n be the fami1y of all finite 

open coverings ofX, For<X,peI2., write f->>°' if p i.s a ref'i.nenent 

of o:. For ct€Sl, Jet be the nerve of C<., and Cr/ the vector 
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space of oriented n-chains wi~h rational coefficients. 

The support of a simplex a e No:. , Sup(cr), is defined to be the 

union of the closures of the open sets of er which are vertices of 

er. The support of a chain geCn(N0 J, Sup(g), is defined to be the 

union of the supports of those simplexes of Nm which have non-null 

coefficients in the expansion of g. 

Let C(Nm) be the differential graded module of oriented 

chains of Na with rational coefficients, let dot be the differen­

tial of C(N,x), which is of degree (-1). In the following defini­

tion, by a chain mapping of C(No:) into C(Np) is meant a graded 

homomorphism h of degree zero over the rationals for which, as 

usual, dr,, h = h do:., but in addition, it is also assumed that h 

carries integral chains of Nr,, into integral chains of Na. Two 

chain mappings hand h1 of C(Nm) into C(Np) are chain homotopic 

with chain homotopy D if Dis a graded homomorphism of C(N0 ) into 

C(Np) of degree ( +1) such that h-•h1 = dr., D + D da.. 

Let X be a compact, locally connected Hausdorff space.Xis 

said to be a semi-complex if there is a semi-complex structure 
defined on X, where by the latter is meant the following: (A) 1 For 

each i\ €- n there exists cx0 (i\) e n and a family C;,, = { c°' !l } of one 
or more chain mappings c<>.a C (N,.) -+ C (N"") for <X> r3 > ex. (A) and 

,- Dr· n r o 
all n >. 0, such that the followi.ng properties hold for these chain 

mappings 

(i) If for ~,i;"'n, wHh p>~, j~~ is the chain mapping of 
en( ) into Cn(N 1) induced by one of the natural injections of N1; 

into Np, then for every CX>f3><;>~(i\), the chain mapping c°'~ is 
chain homotopic to c., j,r with a chain homotopy small of order 

i.e. with a chain homotopy n~p such that for every simplex 

OeNP and the corresponding elementary n-chain g with coefficient 

Sup(g) 

is contained in a single element of A , 

(ij_) For e;;,CX.>(3>0t0 (A) the chain mapping cczr-, is chain homo­

topic to jo:1; c/; 13 with a chain homotopy D(~~ such that 
( 2) Sup(g) U Sup( c"'/3 ( ) U Sup ·"'f' (g)) 

is contained in a single element of A for each elementary n-chain 

6 of 
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(iii) If p> ~> cx0 (;>,.), then for every 112: O the cha1.n mapping 

cpi; j~f-l induces an endomorphism of Hn(N13 ) which is idempotent and 

whose image is the submodule of Hn(Np) consisting of coordinates 

of elements of H (X). n 
(iv) If /\1 > A, then ex (A')> ex (A) and c~, is a subfamil~r of 

0 0 A 

The most important differences between the definitions of the 

quasi-complexes (Lefschetz [5, p.323 J) and the semi---complexes can 

be summarized in order of increasing importance as follows (Brow­

der [5, p.269]) : 

(1) In the definition of the semi-complexes much more detail­

ed restrictions are assumed for the chain mappings cQP (which Lef­

schetz calls chain derivations) than in the definition of a quasi­

complex, where for example the chain mappings c 01 f-l are assumed homo­

logous (which for rational coefficients is equivalent to being 

chain homotopic) while here it is assumed that they are chain ho­

motopic with small chain homotopies. 

(2) In a quasi-complex, condition (iii) is replaced by the 

stronger condition that cpt jtP (at least for a cofinal subset of 

p and~) induces an isomorphism of Hn(Np) onto itself. It follows 

immediately from this (as was first noted by Dyer DJ) that a 

quasi-complex has isomorphic homology groups with the nerve of any 

sufficient fine covering ~. Consequently it is unclear (despite 

the statement in Lefschetz [5, p.322]) that the class of quasi­

complexes does include the class of ANR's or the more general 

class of compact spaces which are uniformly locally connected in 

all dirne:1sions in the sense of homology, the HLC* spaces of Lef­

schetz. (See for the last, Lefschetz [5], Wilder [1]), On tr,e 

other hand, the axioms for the semi-complexes are rather obviously 

satisfied by tlie HLC* spaces. 

Definition of the fixed point index (Browder [5, p.277]), 

Let X be a compact Hausdorff space which is a semi-complex. 

Let O be an open subset of X. Suppose we are given a continuous 

mapping f : O .....-,,,x without any fixed po1-nts on O \o. 
Let cxe:_n_, WP construct a closed sub-polytope N'°' of cor-

respondin6 to trie open set 0, where ' is the smallest closed sub-

polytope of containing all tbe vertises of 

':o elements U of ex which are contained in 0. ThP bcundar;y 
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in Lie simplicial complex NOt consists of the smallest closed sub­

complex of N'ct spanned by vertices corresponding to elements U of 

a. such that there exists u1e:0t with Un f ¢ and u1 n (X\O) f ¢. 
The "bounding edge" N(o) of N\,. in Nc. is the star of N':X in Not\ 

Let rs.n., and let C 1 (~) = {f- 1 [u] /ue:13}. For each 

ex.> f- 1 (p), we define a family of simplicial mappings of N~ into 

Nr-, in the following way: For eac;1 vertex qU of N'cx_ , let 

fP°' (qu) = q·(!l)' where the latter is ti1e vertex in Nr-, correspond­

ing to some ¥1ement V,;, p for which r[u}::: V. By a standard ar6ument 

f r-,cx can be extended to a simplicial mapping of N'cx into N(3 and 

any two such mappings are contiguous in NP, and hence homotopic 

wi.th homotopy paths lying in simplexes of Np . 
Let qm denote the standard projection of C(N()() onto C(N•~), 

and let fpm also denote the anti-~hain mapping obtained from the 

simplicial mapping fr-,0t, as follows: For each elementary chain 

of C(N'0t) corresponding to an n-simplex er, we set 

D ) = { O if' f(o-) has dinension less than n 
l f!Ot 

(-1)n gf(a)• if' f'(a) has dimension n, 

where gf(a) is the elementary chair. in C(Nf,) corresponding to the 

n-simplex f(a). We extend the homomorphism fp0t by linearity, and 

the result is trivially an anti-chain mapping. 

THEOREM (Browder [5, p.27:JJ). Let 'Aen., with A composed of 

connected open sets V. Consider the family of mappings in C~ 

sat:lsf'ying the conditlons (A) 1 (p.'.26), Let (?--), oo 1 (13). 

We define 

i (f,O) = trace (q c fl'.~'). 
°'fl <X °'f> ,- ,-

Then i°'r (f',O) is the s:me for all choices of ex, (-3,c"'i> and 

f\J°' , with co r,> cx 0 (A), 0<.> f 1 (r). This common value is denoted by 

i(f,O). It is independent of~ and cx.0 (~), for~ sufficiently fine. 

The fixed point index i(f,O) as defined above depends upon a 

given structure of' a semi-complex on X, i.e. a system of chain 

mappings c"'f' satisf'yin0 the axioms (A) 1 for each A E. .It... :Hnce 

there could very well be several such distinct structures on the 

space X, it is not clear a priori that this index as defined is 

unique, nor how one can pass from the properties of' the index on 

one semi-complex x1 to those on another, x2 • To avoid the second 

difficulty, the following definition is made 
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DEFINITION (Browder [5, ·p.286]): Let x1 and x 2 be two com­

pact spaces, each equipped with the structure of a semi-complex. 

Let the chain mappings of tl1e first semi-complex be denoted by 

c( 1lr and those of the second by c( 2il';·. Then a continuous mapping 

h : x1---?X 2 is said to be a semi-co:nplex mapping with respect to 
the given semi-complex structures on x1 and x2 if, given an open 

covering~ of x2, there exists an open covering \ 1 of x1 such 

that the following is true: 

If 

t > ~ > 0<.0 ( A) , 
CX.:> p > ex.a( ... N), 

Ct> h-\J;), 

p > h--\l;), 

and i.f the simplicial mappings h1;a of 1 into Ni;, 2 (Ncx, 1 the 

nerve of x as a covering of x1 , N t;., 2 the nerve of e, as a covering 

of x2) and h~p of 1 into 2 are induced by the continuous 

mapping h, and if c( 1 is a chain mapping lying in the family 
C \;) corresponding t:~ the covering A' in the semi-complex s truct­

ure on X1 , and if c( n is a chain mapping in the family C(~) cor­

responding to the covering A in the semi-complex structure on x2, 

then the chain mapping 

with a chain homotbpy D, such that for every elementary chain g of 

Np , 
h g)) U Sup(D9) 

is contained in a single member of /\ . 

A category of compact spaces and continuous mappings is said 

to be a category of semi-complexes if each space has a specified 

semi-comp1ex structure and if all the continuous mappings are semi­

comp1ex mappings. 

REMARK (Browder [5, p. : For a member X of the family of 

HLC * spaces there is a largest semi-complex structure which is es-­

sential1y unique, and all continuous mappings are semi-complex map-

pings witl1 respect to this structure for given spaces and 

With this prescription, the category of HLc-* spaces and all their 
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continuous mappings is a category of semi-complexes. 

Browder [5] showed that the fixed point index as defined above 
is unique for the category of semi-complexes, and satisfies proper­

ties (a), (b), (c) and (d) stated on p_.24. In particular, the Lef­
schetz fixed point theorem holds for such spaces. 

1.3. Multi-valued mappings such that the image of each point 
is acyc lie 

In 1941 Kakutani [2] extended Brouwer's fixed point theorem 
for then-cell to multi-valued mappings by proving that a compact 

convex subset of the Euclidean space En has the f.p.p. for upper 

semi-continuous closed convex set-valued mappings. 
In 1946 Eilenberg and Montgomery [1] showed that a Lefschetz 

number can also be defined for certain multi-valued mappings of an 
AR into itself. In doing so, they made essential use of the Vieto­

ris mapping theorem (Vietoris [1] ). If X and Y are compacta, then 
a continuous mapping f : x--Y is said to have property (V) if, for 
each y,, Y, the set r 1(y) is acyclic with respect to Vietoris homo­

logy. (See Lefschetz [5, p.240) or Vietoris [1) .) The mapping theo­
rem of Vietoris states that if f : x_.,y satisfies property (V), 

then the induced homomorphism f*r : Hr(X)-+Hr(X) is an isomorphism 
onto, for a 11 r ~ 0. Thus aided, the following theorems a re proved: 

EM1. (Eilenberg and Montgomery [1] ). Let X be an ANR and Ya 
compactum. ·Let g,h : Y~X be continuous functions, of which g satis­
fies property (V). Let/\ (g,h) = ~(-1)r trace (h rg- 1 ). If/\ (g,h),'O, 

;,, -1>1'.' 

then there exists a point y0 iY such that g(y 0 ) = h(y 0 ). 

EM2. (Ellenberg and Montgomery [ 1] ) . Let X b.e an ANR and 
f : X---+ ~(X) upper semi-continuous, where ~(X) denotes the family 

of non-empty closed acyclic subsets of X. Let 
Y = {(x,x') E: X xX Ix' f. f(x)} . Define the mappings g,h : Y~X as 
follows: g(x,x') = x, h(x,x') = x'. Then g satisfies property (V) 
(g-1 (x) is homeomorphic to f(x)), and we can form the Lefschetz 
number /\ (f) = /\(g,h) = L(-1)r trace (h g- 1). Then, if /\ (f) ,} 0, ;,,r ;,,r 
there exists a point x0 e X such that x 0 tf(x 0 ). 

This implies the following generalization of Kakutani 's theo­

rem: 
EMJ. (Ellenberg and Montgomery [1] ). Let X be an acyclic ANR 

and f : X--+ t(x) upper semi-continuous, where 'C:'(X} denotes 
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the family of non-empty closed acyclic subsets of X, Then there 

exists a point x 0 e X such that € f(x 0 ). 

Using convexity arguments, Bohnenblust and Karlin [1 J ( 1950), 

extended Kakutani's theorem to Banach spaces, and it was then 

extended to locally convex topological linear spaces simultaneous­

ly by Fan [1] and Glicksberg [1] in 1952. 

Let X be a Banach space and I'.; (X) the family of non--empty 

closed convex subsets of X. Browder [3] (1959) called a mapping 

f : X-'> 13 (X) completely continuous if the following conditions 

hold: 

(1) The graph off, G(f) = {(x,y) J x,ys YE ) } , is a 

closed subset of Xx X. 

(11) For every bounded subset S of X, there exists a compact 

subset Ks of X such that f(x) nK3 /. ¢ for x.;: S. 
(Hi) Let Kand K1 be compact subsets of X such that 

f(x) n K1 /. ¢ for xe K, Let x 0 be a point of Kand t a positive 

constant, Then there exists 6 > O such that, for x e K with 

< 6, we have f(x)n K1 c UE(f(x))n K1 and 

f ( x O ) (1 K1 c Ur ( f ( x) ) (l K1 • 

Browder [3] showed that if f : X--► t;, (X) is a completely 

continuous mapping such that, for some positive integer m, 
fm [?c] is a bounded set, then X has a fixed point under f. 

In 1952, Begle [2] proved a very general form of the fixed 

point formula which includes the results of Ellenberg and Mont­

gomery [1] , and those of Fan [1] and Glicksberg [1] , The proof 

uses only homology theory and none of the homotopy properties in­

volved in the notion of an ANR. Consequently, the theorem is 

shown to hold for a much larger class of spaces, which he calls 

le spaces. The le spaces of Beg le [3 J are the same as the HLC * 
spaces of Lefschetz • (Also see Lefschetz [6,p.123-126] and 

Begle ~] .) The proof also ~akes essential use of the Vietoris 

mapping theorem, for which he gives an extension to compact 

spaces, using a generalized form of Vietoris cycles. 

We now proceed to state and prove Begle's theorems as in 

Begle [2,3] , 
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DEFINITIONS (Begle [2]): 

Only compact Hausdorff spaces are considered. By a covering 

p of a space X we shall always mean a finite covering consisting 

of open sets. In this section we shall write V < p if v is a re­

finement of p . If A 16 a subset of X, we denote by St (A,µ) the 

set U{Ue !-1 J A nu/,¢}, and by St ( f!,.}lJ_ or fJ""" we denote the 

covering {St (u, /--<) JUE. j..1} • If rt.,..< v, we say that p is a star 

refi.nement of v, and we write f-A <* V. Every covering has a star 

refinement ( Tuclcey [1,p.47]). For each covering µ, we choose one 

of its star refinements and denote it by -*~. 

Ann-simplex 0-n of Xis a set of n+1 points of X, and these 

are the vertices of q1 • If fJ- 1s a cover1ng and A a subset of X, 

we write diam A < ~ if there exists Uc f-1 such that A c U. X( p) 
is the simplic1al complex consisting of all simplexes a such that 

diam o- < fJ- • Clearly, if v < p, then X(v) is a sub complex of 

X( fJ). If A is a subset of X, then x(p) n A is the subcomplex of 

X( 1-1) consisting of all the simplexes of X( p) which are contain­

ed in A. 
We shall consider only finite chains on the complexes X( p). 

The coefficients, unless otherwise stated, are in an arbitrary 

Abelian group. If en is such a chain, we denote by j cnl the finite 

simplicial complex consisting of all the simplexes on which en 

has non-zero coefficients together with all their faces. 

In what follows we make frequent use of the Cartesian pro­

duct of a simplicial complex Kand the closed unit interval 

I = [o, 1 so we recall here the deflni tion of this product 

(Lefschetz [5,p.307] ). Let the vertices of K be simply ordered 

in an arbitrary fashion. Let { } ~= 1 be a copy of the collection 

{ } m of vertices of K. For each n-simplex a =(a ,a1 , •.• , 
i=1 n o 

of K, consider the n+1 simplexes of the form 

(a 0 ,a1 , •••• ,a{, ..• ,a~). The collection of all such simplexes, 

together with all their faces, constitute the product K x L K is 

called the p~ of K x I, and the set of all simplexes of K x I, 

all of whose vertices are primed, is called the !2.P_ of K x L 

For each simplex a = ( a a,.,, ..• , an) of K, let n , n o , 
D ( on) = . L ( - 'I) i ( a O , , • ._ , , ••• , a~), and if 

l=O 
let D( 

tion shows that 

D(aJ). For any chain 
n of K, a direct calcula-
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where cri is the chain in the top of K x I formed by replacing each 

vertex of each simplex of en by the corresponding primed vertex, 

and Fis the boundary operator. Hence, if zn is a cycle of K, 

i.e. znrvzri on KxI. 

In one place (lemma 3) it will be convenient to consider 

K x I as a cell complex rather than as a simplicial complex. This 

time the elements of K x I are all the cells of the form ox o, 

crx1 or ox I, where o runs through the simplexes of K. The 

boundary relations in K x I are: 

F(ox 0) = (Fa) xO, F(a x 1) = (Fo; x1, and F(axI) 

(Fo)xI + (ox1) 1
- (axo). Then for any cycle z on K, we have 

F( z x I) = ( z x 1) - ( z x o), Le. z x 1 ,v z x o on K x I. 

A collection zn = {zn( p )} of n-cycles of X, one for each 

covering p of X, is a generalized Vietoris n-cycle (n-V-cycle) 

if zn( r) is a cycle of X( jJ,) and if, whenever V < t,,t , 
zn(v) N zn( p) on X( i,t). The cycles zn( p) are the coordinates of 

zn. If zn and zri are two n-V-cycles, then zn+zri is the n-V-cycle 

whose coordinate on X( ~) is zn(p) + zri(j.A), Further, znNO if 

zn ( r4 ) rv O on X( r4) for every p . The n-dimens ional Vietoris homo­

logy group of X, H~(X), is the factor group of the group of n-V­

cycles of X by the subgroup of those which bound. 

Let X and Y be two spaces and f : X ~ Y a continuous mapping. 
. 1 

Let zn be an n-V-cycle of X. For each covering v of Y, t,t=f- (v) is 

a covering of X. Clearly, f maps each simplex of X( p) onto a sim­

plex of Y(v), and hence is a simplicial mapping of X( ~) into Y(v). 

We define f(zn) to be the n-V-cycle of Y whose coordinate on Y(v) 

is f( zn ( i,t ) ) • This clearly induces a homomorphism of H~ (X) into 

H~(Y). 

The Vietoris homology groups defined above do not give any 

new homology properties of X. If Xis compact metric, it is easy 

to see that H~(X) is isomorphic to the ordinary Vietoris homology 

group. In the general case, these groups are isomorphic to the 

corresponding Cech groups, as we now show. 



Given a covering j.l of X, let v = *r1 . For ea ch vertex a of 

X(v), choose an element V€ v such that a c V and then choose an 

element Uert such that St {V,v) c U. Set 0(a) = U. Then0is a 

simplicial mapplng of X(v) into the nerve N( r1) of p, 
Next, given a coverlng v, let ~ = "'-·v • For each element W"' c; , 

let <p(W) be a polnt in W. Then <p is a simpllcial mapping of N(s) 
into X(v}. 

Now, let y be an n-V -cycle. For each covering )-J· , let 
* n 

V= r1., and define zn(~) to be 0 yn(v). We assert that zn = { zn(p)} 

1s a Cech cycle and that 0 induces an 1somorph1sm of H~(X) onto 
C V 

H (X), the n-d1mensional Cech homology group of X. 
n V 

To see that zn ;s a Cech cy~le, let p 2 < ~ 1 be two cover-

1 ngs of X. Let v1 = 1-" 1 and v2"" p 2 , and choose a common refine­

ment v of v1 and v2 • By the definltion of zn' we have 

zn( !--') = 81 yn( v1)' 

2 n( \-12) = 82 yn( v2) · 

Since \J <v1 , 

Therefore 

Similarly, slnce v < v2 , 

and hence 

where 1T is the projection of 

sufficient to show that 

(1) 

In order to show this, J.et K = J yn(v) I . We define a simpli­

cial mapping t.j.1 of K x I into N( p1), For each vertex a of the base 

of K x I, let y,;(a) = Tf02(a), and for each vertex a of the top 

ofKxI, let lj)(a') = 01(a). 

To see that tM.s is indeed a simplic:lal mapping, let 
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(a0 ,a,p•••,ai,a1, ... ,a~) be a simplex of KxI. By the definition 

of 82 , there is, for O s j s i, a set V 2 j € v 2 containing a j, and a 

set u2j = 82 (aj)e r'-2 containing St (v2j , v 2 ). By the definition 

of TT, there is a set u1j TT0 2 (aj)0 ~.1 1 containing u2j • Simi­

larly, for is k s n, there is a set v1 k s v1 containing ak and a 

set u1k tjl(a~) containing St (v1k , v1). 

Since (a 0 ,. •• ,an) is a simplex of X(v), there is a set VE-v 

containing a0 , ••• ,an. Therefore, since V<V2 , Ve St (v2 j ,v2 ) for 

Osj Si, and consequently VcU1 j for Oi j~i. Similarly, since 

v < v1 , Ve St (v1 It , v1 ) and hence V c u1k for i 5 ks n. Therefore 

u.10 n u11 n .•• n u11 n u1 i n ••• u1n I ¢. Thus lfi maps the vertices of 

(a 0 ,. .. ,ai'ai,. .. ,a~) into the vertices of a simplex of N( fJ.-,) and 

therefore is simpliciaL 

Now yn(v) rv y~(v) on K x L By the definition of 4', 

\j.l(Yn(v)) = 1T82 (yn(v)) and lj!(y~(v)) = 01 (yn(v)), and this proves 

( 1) • 

If ynruO, then clearly znrvo also. Suppose now that znrvO. 

We sl:all show that ynrvo. G:tven any covering~, letv=*p and let 

~ = "'-v. Since y (~) nJ y ( u) on X( u), it will be sufficient to n n r- 1 

show that yn(~) NO on X( ~1). Now zn(v) = yn(t) rv O on N(v). Hence 

(fJ 0 yn(~) ru O on X( ~), so we are reduced to proving 

( 2) 

Let K = IYn(~) J. We define a simpliclal mapping w of K xI 

into X( p) in the following way: For each vertex a in the base of 

K x I, let w (a) = a, and for each vertex a' in the top of K x I, 

let w(a 1 ) = 'f)0(a). 

To see that w :ts simplic:lal, let (a 0 ,a1 , ... ,a1'a1, H .,a~) 

be a simplex of K x L By the definition of' B, there is a set 

Wk€ 1; containing a1{ and a set Vk E, v containing St (W{e ~ ) . 
By the definition of' <.p, <.p(Vk)eVk. 

Since (a 0 ,a1 , ••• ,an) is a simplex of X(~). there is a set 

WE: l; containing (ao,a1, ... ,an)· Hence We St (Wk, s) for i.::: ksn 

and therefore W c vk. 'rhus V~ n Vk ,i ¢, i;,;. k;,; n, so Vkc St (V1~_,v). 
Since v=*~l, there is an element UE:. JJ· which contains St (V~,v), 

and hence each Vk. Consequently <.p0(ak) c U, i;; ks; n. But 

W c V~c U, so (a 0 ,a1 , ... ,an)c U. Hence all the vertices of 

(a 0 ,a1 , ••• ,ai, a{, ..• ,a~) are carried by w into vertices contained 



in one element of p and hence into the vertices of a simplex of 

X( p), and therefore w is a simplicial mapping. 

Now yn(~) ru y~(n on K x L By the definition of w, 

w(yn(l;)) = yn(~) and w(y~(~)) = (f0(yn(U), so we have proved 
( 2) • 

Thus far we have shown that 01nduces an isomorphism of H~(X) 

into Hc(X). To complete the proof we must show that this isomor-n V 

phism is onto, i.e. that for every Cech cycle zn there is an n-V-

cycle Yn such that Gyn {\) zn. But, given zn and a covering p , let 

v = *1--4. Define yn( p) to be cp(zn(v)). Then yn = { fJ)} is an 
n-V-cycle and 0yn N zn. We omit the proofs of these last two state­
ments since they are analogous to those above. 

Let X and Y be compact spaces. A continuous mapping f : X->Y 

:Ls a Vietoris map2_:\,ng of order n 1.f for each covering fl of X and 

each po1.nt y s Y there is a cover1.ng ~ = f;( p, of X, with ~ < rJ, 
such that any k---cycle, O;,; '.{ ~ n, on X(~) n r\y) bounds on 

p) n r 1 

We can now formulate the Vietoris mapping theorem needed in 

the proof of the fixed point theorem. 

THEOREM 'I (Begle [2] ) . If f : x-Y is a V1.etoris mapp:Lng of 
order n of X onto Y, then the homomorphism of Hv(X) into Hv( in-

n n 
duced by f is an isomorphism and is onto. 

The hypothesis of the theorem can be put in a more convenient 

form if the coefficient group is res~ricted to lie in either of 

two classes of groups, the class of fields and the class of elemen­

tary compact topological groups (Steenrod , p.672]). The latter 

class consists of the character groups of discrete groups with 
finite bases, and hence contains all finite groups as well as the 

group of real numbers mod 'I, 

THEOREM 2 (Begle [2] ) • If the coeffic:Lent group is an ele­

mentary compact topological group or is a f:Leld, and f is a map­

ping of X onto Y such that for each point ye Y., and for each inte­
ger k, O .<o. ks n, the augmented Vietori.s homology group ( f-·'1( is 

trivi.al, then the homomorphism of into Y) induced by f is 

an isomorphism and is onto. 

J\ number of lemmas wi. 
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LEMMA 1 (Beg le [ 2 J ) . If f is a Vietoris mapping of order n 

of X onto Y, then for each covering~ of X and each covering v of 

Y there is a refinement ){ = t( r', v) of v such that if B is a sub­

set of Y with diam B < 'Ii', then there is a point y € Y such that 

1) St (y,v) :::, B; 

2) St ( C 1 (y), *f;):::, f-'l (B), 

where ~ = ~( p,y), 

PROOF: For each ysY, let AY = x\st (f- 1(y),*~). Then is 

closed, hence compact, so f [A J is closed and y if f I! J . Since Y 
y y [ J is normal, there is an open set By such that y € BY and BY n f AY = 

=¢.We may choose to be in a set of v which contains y. Now a 

finite number of the sets B cover Y, and these constitute the y 
covering t . 

LEMM.A 2 (Begle [2]), If f is a Vietoris mapping of order n of 

X onto Y, then for each covering~ of X and each covering v of Y 
there is a covering Y] = T] ( ~ , v) of Y, with 17 < v, and a chain map­

ping t of the (n+1)-skeleton of Y(~) into X( p) such that for any 

k-simplex of 11), O s k:; n+-1, ft is a barycentric subdi vi­

sion b ak of o-k with diam lb ak J < v. 

PROOF: Let fln+'l = p and vn+'l 0= v. Let 'tn = f( f-An+'l;vn+'l) and 

let vn = * l( n. For each element Qni of IJ n' diam Qni < )( n' so by 

lemma 1, there is an associated point y ni, Let ~ ni = ~( JJn+'l 'Y ni) 

and let u be a common refinement c,f the coverings ~ ni. Next, 
In * 

let tn-1 = )(( i-,tri• Vn) and let vn_ 1 °= *¥n-'l" Let {Yn-'l,d be the 
points associated, by lemma 1, with the elements of in_1 , and let 

~n-1 , i = ~( f-A , i). Let ~ n-'l be a common refinement of the 

coverings * ~ n-'l i. 
J 

Proceeding in this fashion, we construct a sequence { } of 

coverings of X and a sequence { } of coverings of Y, together 

with the associated sets { } , such that 

1) ; t k-1 )((pk' *Vk) 

< *~( ~k' yk-1,i). 

We assert that the covering v0 will serve for Y] ( ~ ,v). To 

prove this, we must construct the chain mapping t. First, let 
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be a vertex of Y(v ). Lets be an arbitrary point of f- 1((:r) and 

0 0 O ' 
define t(~0 ) to be s 0 • Then t(u0 ) is a null-chain of X( µ. 0 ), and 

ft Cio = <>o. 

Now suppose that t has been defined for all simplexes (J" in 
m 

Y( v 0 ) with m < k in such a way that t(o-m) is a chain of X( f'm) and 

ft um is a barycentric subdivision be, of fJ" , with diam I btr I< v . m m m m 
Let ~k beak-simplex of Y(v 0 ). Then tis defined on FfJ"k' and 

tFffk is a chain of X(p.Lk_ 1 ). Now consider fltFffkl. Since ffk is in 

Y(v0 ), there is an element V0 of \10 which contains ~k. If (Tk_1 ap­

pears in Fffk' then fto-k_ 1 = o-k_ 1 contains a vertex of (>k. But 

diam I be-k_ 1l<vk_ 1 , so St(V0 , vk_ 1 ) contains f[tFO"kl . But 

y 0 < vk_ 1 < yk_ 1 , so diam f ltFcrk I< J'k_ 1 = J'(p. k' *vk). Let yk- 1 , 1 be 
at 

the corresponding point of Y, so that St(yk_ 1 1 , Yk) contains 

r\tF<rk I and St(f- 1(yk- 1 , 1 ), *!) contains f- 1rf tFo-kl , which in turn 

contains I tFtfk I, where l = !( )J-k,Y~:- 1 , 1 ) • 

Denote now the cycle tFo-k by zk_ 1 , and let K = I zk_ 1 I . We de­

fine a simplicial mapping X of K x I into XO) by first setting 

'J,(a) = a for each vertex a in the base of K llI. Next, let a' be a 

vertex in the top of K x I, and let a be the corresponding point in 

the base, so that a is a vertex of I tFo-k I . Since St( f- 1 (yk_ 1 1 ), *~) 

I I * * 1 ' contains tFo-k , there is a set W of ~ which meets f- (yk_ 1 1 ) 

and also contains a. Let X (a') be a point in *w n r 1(yk_ 1 1 L If 

now (a 0 , ... ~ai,at', ... ,ak_1 ) is a simplex of KXI, then (a 0 , •• :,ak_ 1 ) 

is a simplex of tFukl and hence is contained in some element Uk_ 1 
* of p.k_ 1 . For each j, i~j~k-1, ~(aj) is a point of Wj, where 

aj e:*wj, and therefore }:(a 0 , ... ,ai,a1, ... ,ak_ 1 ) = 

= (a 0 , ... ,ai, X,(aI), ... , )'.{ak_ 1 )) is in St(Uk_1 , *!), and hence in 

some element of ~, since JJ..k_ 1 < *!. Thus "J, maps K x.I simplicially 

into X( p. 
Now let si = )l(Dzk_ 1 ), so that FBi = X, (zk:_ 1 ) - X:(zk_ 1 ) = 

=X(zk_ 1 ) - zk_ 1 . The cycle )'.(zk_) is on xq)Ar 1 (yk- 1 , 1 ), and 

since t= f(fl-k,Yk 11 ), there is a chains~ on X(p.k)f'lf- 1 (yk_11 ) 
2 -, 2 1 ' 

such that Fsk = X (zk_). Let sk = sk - sk' and set t<rk = sk. Then 

Fto-k = tFak' sot is a chain mapping. 
Finally, observe that each vertex of I sk I is either a vertex of 

I tFukl or is a vertex in f- 1 (yk- 1 , 1 ) and f maps all the latter on 

the single point yk- 1 , 1 . Hence fsk is the join of yk- 1 , 1 with 
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ftFc.rk = bFcrk and thus is a barycentric subdivision bcrl{ of o-k. S:tnce 

St(yk- 1 , 1 , *vk) contains rl tFak I , diam I b<r1,I < Yk. 

Thus we can continue extending the definition oft until it is 

finally defined on all of the (n+1)-skeleton of Y(v0 ), and we have 

therefore completed the proof of the lemma. 

LEMMA 3 (Beg le [ 2] ) . Let JJ and jj. be coverings of X, with p. < µ,, 

and let v and v be coverings of Y. Let 11 =11(),l,V) and;;, =11(µ.,v). 
Lett and t be the corresponding chain mappings. Then there is a 

common refinement \ of 11 and -rj such that for any cycle zn on Y(A.), 
tz N tz on X( u). n n r-

PROOF: We first recall the sequences {t•iJ and {vk} of cover­

ings which we re cons true ted in the proof of lemma 2. Suppose now 
'! } that we construct new sequences {,,uk} and l v k by first choosing 

,U~+i to be any refinement of p. and V ~+1 to be any refinement of 

y . Then, at each step, choose r k to be a common refinement o! lie 

and of i ( _µ. k+ 1 , * fl \~+'1), and v k to be a common refinement of f k 

and of vk. Let { y' } be the set of points of Y associated with kl 
lie and let p.k be a 1 common refinement of f-k and of the coverings 

! ki ' where 51c1 = ~( p. k+'l'ykl ) . 

Now we can repeat the argument of lemma 2 to obtain a chain 

mapping t' of Y(v~) lnto X(JJ-~+1 ) such that for erk ln Y(v~), t 1 crk 

is a chain of X(µ..k). We assert that for any cycle zn on Y(v~), 

tznn; t I zn on X( p. ) . 
Before provlng this assertlon, we show that the lemma follows 

from :Lt. For we can choose JJ,?:_ and pk to be the same cover:Lng of X 

for each k, and sim:Uarly for vk and vk. Then v ~ ,, v ~• and we take 

thls to be~. Now, if zn ls a cycle on Y(~), tznN t'zn on X(µ) by 

our assertion, and similarly, tz11N t'zn on X(jl). Butt' and t' are 

the s~me chain mapping, and X(~) ls a subcomplex of X(µ), so 

tz N tz on X(a). n n r· 
Returnlng now to the assertion above, let zn be a cycle of 

Y( v 1 ) and let K = I z I . We sha 11 define a cha in mapping u of the o n 
cel1 complex K x I lnto X(µ.). Fop a cell of K x I of the form r:;- X 0, 

let u(crxO) = t'(o-), and for a cell of the form CJ' x 1, let 

u(cr x 1) = t(a). Now conslder a vertex er of K. t(u) = s 0 and 
0 -1 0 

t • (er ) = s I are by construct:Lon, vertices f (& ) and ft(cr ) = 
O O ' 0 0 

= ft'(0'0 ) = cr0 . There is a point., y 02 , such that St(y02 ,v0 ) contains 

cr 0 ancl St(r-'l(y 02 , * ~) contalns r-- 1 (cr0 ), where ~ = ~( p.1'y 02 ). Let 
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co= too-t'o-o, a cycle, and let Lo I col . We map the simplicial 

complex L XI into X(I::) by a mapping w such that w (a)= a for 
0 ) 0 0 

any vertex a in the base of L x I, and w (a') is a point of 
1 0 ¼ 0 

f- (y 02 ) such that St( w (a'), ) ) contains a. That there exists 
0 1 * such a point follows from the fact that St(f- (y 02 ), r) contains L0 . 

It is clear that W 0 is a simplicial mapping of L0 ~I into xn), Let 

c~ =W 0 (Dc 0 ), so that c~ is a chain of X(~) and F(c 11 ) =W (c')-c . 
1 0 0 0 2 

Now w 0 (c 0') is a cycle of X(s)n f- (y ,,,), so there is a one-chain c 1 
. -1 2 Oc_ , 2 1 . 

of X( µ 1 ) n f (y 02 ) such that Fc 1 = w 0 (c 0 ). Then c 1 = c 1 - c 1 is a 

chain of X(p- 1 ) and Fc 1 = c 0 • Clearly flc.11 is the join of o-0 and 

y 2 . We define u(q xI) to be c,1. Then Fu(cr xI) = c = tO'-t'o- = 
0 0 0 0 0 0 

"" u{a-0 x 1) -u(cr0 ll O) = F(cr-0 x I). 

Now suppose that u has been defined on every cell of K xI of 

the for-m crm x I, for all m < k_, in such a way that u{o-rn x I) is a chain 

of X(u +.,) and diam fju(<r xI)j<v 1 . Let erk be a simplex of Y(v'). r-m , m m+· o 
Then u is defined on F(crk x. I), and we wish to consider the set 

rluF(crkxr)I. But F(crkxI) = (F(o-k)xI) + (o-k111)-{<1kll0), so 

fl uF(crk x I) I js contained in 

rju(F(a-k) x Il[ u rjtai,J u rjt 1 a-k I . 
Let v~ be an e]ement of' v~ which contains o--k. Since diam rlto-kj<Vk, 

St(V~, vk) contains fltcrk~. SimUarly, since v 1~ < 1--\, St(V~,vk) 

contains rlt'C1'k\. Also, for any simplex crk-'1 in F<rk, diamf'Ju(crk-'lxr)i 

< vk and flu(crk_ 1 x I)I contains a vertex of cr'k' so St(V~,vk) also 

contains f!u(F(erk) K I)I But vk<•fk, where dk = J'(fk+'l'*vk+1 ), so 

diam f ju F ( tr k x I) I "' J" k · 

such that St(yk2 ,*vk+1 ) 

contains f- 1 f JuF(crk ll I)j ::.) 
Therefore ther-e is a point, say yk2 ' 

contains f'juF(a-kx I)j and St(f'- 1 (yk2 ),*~) 

juF(crk x I)! , where ~= \(flic+1 ,Yk2 ), 
Now let ck = uF(crk x I), and let Lk = J ck I . We can defl_ne a sim­

plicial mapping wk of the simplicial complex LkXI into X(5) in the 

same way that we defined w 0 , ~o that Fwk(Dck) =Wk(ck)-ck, and 

wk(ck) ls a cycle of X(5)n f- (yk2 ), Let ci+1 =Wk(Dck) and let 

c~ 1 be a chain of X(f 1 1 )n r-\yk2 ) such that F(c~+1 ) =Wk (ck). 
+ · {+ 2 1 -

'I'hen set u(0'1,x I)= ck+'l = ck+'1-ck+'1' We have Fu(cr-kl'- I)= Fc 1n 1=ck= 

= uF(<T1 x I), sou commutes with F. Also, fJu(cr-kx. I)j is the join of 

fiuF(<r';x r)j and y 1{2 . Since St(yk2 ,*vlc+'l) contains fjuF(crkx I)j, 
diam flu(J'kX r)j<1'k+'I' By construction, u(D"1cx I) is on X( 1uk+1 ). 
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We can therefore continue extending the definition of u un­

til it is defined on all the cells of K x L Now F( z x I) = n 
= (z x1) - (z xO) inKxI, souF(z xI) =Fu(z xI) n n n- n 
= u(znx 1) - u(znx 0) = tzn - t'zn. Since u(znx I) is a chain of 

X( j-.! n+1 ) = X( p), tzn N t 1 zn on X( r'), wl1ich completes the proof 

of the lemma. 

PROOF OF THEOREM 1: We show first that under the homomorphism 

induced by f, each element of H~ (Y) is the image of an element of 

H~(X). 
For each covering ~ of X we choose a covering v of Y such 

that ~• is a refinement of r- 1 (v) and if p = r\v) for some v, we 

choose this v. Let zn = {z(v)} be an n-V-cycle of Y. For each 

covering p of X, we define yn(!-') to be tzn(~), where 17"' 11(1-J ,v), 
v being the covering associated w:Lth r1 as above, and t being the 

chain mapping of Y( 17) into X( p) given by lemma 2. 

We assert that the collection { y n ( p ) } is an n-V-cycle. For, 

let p be a refinement of p, and let v be the covering of' Y as­

sociated with ~. Then yn(f-A) = tzn('rJ) and yn(P) = tzn(YjL where 

~ = 17(p,;g). Let/\ b: the common refinement of ~and YJ given by lem­

ma 3. Then tz (A) n;tz p,) on X(u), Since z is an n-V-cycle, n n 1-· n 
zn(A) n1zn(TJ) on Y(l]), Hence tznO,.) Ntzn(YJ) on X( fA), Similarly, 

tzn(i\) N tzn(rj) on x(p). But x(p) is a subcomplex of X(/-'), so 

y ( u) = tz (ii) rvtz ( n) = y ( u) on X( u), which proves that n 1·· n t n I n 1 1 · 

{Yn(p)} is an n~v~cycle. 
-·1 

Next, f'ynNzn. For a given covering v of Y, let f,J. = f (v), 

'rhen yn( 1-<) = tzn(71), where Tj = ,1(p,v), Also, fyn(~) = f'tzn(71) = 
= bzn(11L a barycentric subdivisio:1 of zn(r,) such that for each 

simplex q1 of lzn(11)1 , diam jbcrnj < v. The standard argument for 

show:l.ng that a cycle is homologous to its barycentric subdivision 

applies here to show that z (T')) ru ftz ('1'1) on Y(v). But z is a n-V-n n · 1 n 
cycle, so z (n) ruz {v) on Y(v). Therefore z (v) rv ftz (n) = n ·1 n n· n ·, 
= fyn(p) on Y(V). 

Thus we have shown that f induces a homomorphism of H~(X) onto 

Hv(Y). To complete the proof, it is only necessary to show that if 
n 

fynN O, then ynN O. 

Let thenµ be a covering of X, 

covering of Y, so that /J < r- 1 (v). 

and let V be the associated 
- '1 Let 11'' 11 ( }1 ,v) and let S 0.,f (YJ). 
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Now recall the sequence 1/J kJ of coverings of X constructed in the 

proof of lemma 2, and choose a common refinement 6 of ~ and p 0 • 

Since y;nis an n-V-cycle, Yn(b)royn(S) on X(S). Hence 

fyn(b)N fyn(n on Y(TJ). But if Zn = fYnN o on Y, then zn(11) 

= fyn(n"' O on Y(17). Therefore, fyn(b)N o on Y(11) and tfyn(6)NO on 

X(µ), since tis a chain mapping. We wish now to show that yn(b) N 

tfyn(o) on x(µ). 

Let L = IYn(b)I, and let L XI be considered as a cell complex. 

Define a chain mapping u on the base and the top of L XI by 

u(,;kxo) =°'Ck and u(i;kx.1) = tf't'k for any simplex ,:;k of L. If we 
now examine the proof of lemma 3, we see that, after substitution 

of tf~k for t~k and ~k for t'<rk, this proof applies without change 

to show that u can be extended to a chain mapping of all of L ~I 

into X(p.). Thus u(yn(~) x I) is a chain of X(µ) such that Fu(yn(b)x.I)= 

= u(yn(o) x 1)-(yn(6) x 0) = tfyn(O)-yn(b), i.e. tfyn(O)Nyn(o) on x(µ). 

Now, since tfy (S)N O on X(u), we have y (cS)rv O on X(11). But y n r n r n 
is an n-V-cycle so yn(a )N yn(µ) on x(,u). Thus yn(µ),v O on X(p.), so 

ynN 0. This completes the proof of theorem 1. 

PROOF OF THEOREM 2: Letµ be a covering of X and ya point of 

* Y. Let V 1 = µ , and let~ be the simplicia l mapping, defined on p. 

34, of N(v1 ) into X(µ). We now consider v1 as a covering of the 

compact set f- 1(y). Since the coefficient group is an elementary 

compact group or a field, there is (Steenrod [1, p.678] and Lefschetz 

[5, p.216]) a refinement v2 of v1 such that if zk is a cycle of N(v 2 ) 

on f- 1(y), then irzk is the coordinate on N(v 1 ) of a Cech cycle of 

f- 1(y). Let J=*v2 . We assert that any cycle yk, O~k::.n, on X(~) 

f- 1(y) bounds on X(µ)n f- 1 (y). 

Let e be the simplicial mapping of X(J) into N(v 2 ) defined on 

p.34 . Then 0 yk is a cycle o[ N(v2 ) on f-'1(y). Therefore, 1f0 yk is 

the coordinate on N(v1 ) of a Cech cycle of f- 1(y). Since H~(f- 1(y))= 

= H~(f- 1 (y)) = O, this Cech cycle bounds and 11'0 ykN O on N(v 1 ). Then 

<p1T8ykN? on X(JJ)n r- 1 (y). But it is easy to see, as in the proof 

that the Cech and Vietoris homology groups are isomorphic, that 

cp1r0ykNYk on X(j,!)nf- 1(y). Now we can choose 5(µ,y) to bet, and 

the hypothesis of theorem 1 is satisfied. This proves theorem 2. 



DBFINITIONS (Begle [3]). 
Let K be a finite simplicial complex. A realization of Kin 

X(cx) is a chain mapping -rof K into X(0c). If ~ is another covering 

of X, we write norm T < r, if for each simplex a of K, diam 11: a I<~· 
i.e. if there is a member of~ which contains the complex !Tai. 

A partial realization T1 of K is a realization of a subcomplex 

L of K which contains all the vertices of K. We write norm T 1 < [~ 

if for each simplex o- of K there is a member of ~ which contains 

all the complexes I -r 1 cr' j for those faces 0 1 of a which are in L. 

A compact Hausdorff space X is le if for each cover:i.ng f, of X 

there is a refinement K = K( £) and for each covering r, there is a 

refinement a= a(p,t) such that if K is a finite simplicial complex 

and 1:1 a partial realization of Kif'. X(a) with norm 1: 1 < K, then 

there is a realization T of K in X(p L with norm , < £ and such that 

whenever the latter is defined. 

We now derive those properties of le spaces which we need in 

the statements and proofs of the theorems. 

LEMMA 4 (Begle [3 J). If X is le_, there is a covering v O of X 

such that if z is a V-cycle and if z(v) NO on X(v) for some V< 
then z NO. 

PROOF: Let E- be the covering cor.sist:i.ng of the single open set 

X, and let v0 = K.(t). Now suppose z(v) I\J O on X( for some v< v0 , 

Let be any refinement of v and let v 2 = cx.(v1 ,cL Since z is a 

V-cycle, z(v2 )Nz(v) onX(v). Therefore, z(v2 )NO on v). Let c be 

a chain on X(v) such that F(c) = z(v2 ), 

We define a partial realization T' of !cl in X( by setting 

T 1 er= o- if CJ is in I z( v2 ) I or is a vertex of I c I , Clearly, 

norm -c 1 < v < v O = K( £). Therefore, there is a realization T of I c I 
in X( v1 ), and TO"= -c 1 er whenever the J.atter is defined, Thus, 

F t(c) = tF(c) = t(z( v2)) = T'(z(v2 )) = z(v2 ), and so z(v2 ) I\.J O on 

X(v1 L But z(v2 )Nz(v1 ) on X(v), so z( )ruo on X( ). Since v 1 is 

an arbitrary refinement of v, this proves the lemma. 

LEMMA 5 (Begle [3] ) , If X is le, then its homology groups are 

isomorphic to the corresponding groups of a finite complex. 



PROOF Let v0 be the covering of lemma 4, and let v 1 * v 0 • 

For each element U E v 1 , let ~(U) be a point in U. The a sim-

plicial mapping of N(v,.,) into X(v ). Let K = cp[N( )]. K is a 
1 0 * 

finite subcomplex of X( v0 ), Next, let v2 = v1 • For each vertex 

xEX(v2 ), choose an element VE- v 2 such that xE-V and then choose an 

element We:v1 such that St (v,v 2 )cW, Let 0(x) = W. Then 0 is a 

simplicial mapping of ~( v2 ) into N( ) . In the proof of the fact 

that the Vietoris and Cech homology groups are isomorphic, we have 

shown that, if~ is any cycle on X(v2 ), then ,pO(c) 1\1 c on V0 ). 

(See p.35.) 

Let z now be a V--cycle of L Let w(z) = <j)0(z(v 2 )). Then win­

duces a homomorphism of Hn(X) into Hn(K), for all n.?. O. We assert 

that this homomorphism ls actually an isomorphism. For if w(z) = 
= tp0(z(v2 ))NO on K, then sp0(z(v2 ))NO on X( ), since KcX(v0 ). 

But z(v 2 ),v tp0(z( )) onX( ) and z(v,,)ruz(v onX(v), since z 
c. 0 0 

is a V-cycle, Thus z(v0 ) NO on X(v 0 ) and so, by lemma 4, z ruo. Thus 

the homology groups of X are isomorphic to subgroups of the homolo­

gy groups of K, and this proves the lemma. 

LEMMA 6 (Begle I)]). If x is Jc, then each coverinc; r.l of x 
has a normal refinement p', i.e. a refinement such that, if c is 

a cycle on X( p•), then there is a V-cycle z such that z( = c. 

PROOF Let c be the covering of X consisting of the single 

open set X, and let i) and 02 = K(* E-,). It is sufficient to 

prove the lemma for the case p < c:, 2 . We assert that for any such 

. h I +- b ( * ) covering we can c oose p uO ,e a p, E1 • 

Suppose then that c is a cycle on X( p 1 ). For. each covering 

ri1 < !J 1 , let i-,t 2 = o:.( i-, 1 ,*c,1), and deflne a partial realization 

T' of lcl inX(fJ,) by setting T. 1 CT =cr for each vertex ofjcj. _ * o o* 
Since p < p < e. 2 = ·e.1 ), norm T' < K ( e,1 ). Hence there is a 

realizatfon T of I c I in X( p1 ) wi.th norm T < *E1 • In the special 

case where ~ 1 =~••we can and do choose T to be the identity 

chain mapping. 

Now for each refinement p1 of r1''• we have a cycle p 1 ) 

Tc on X( ). This collection of cycles does not necessarily form 

a V-cycle, but it does have the property that if v 1 and v2 are re-

flnements of <X(f1 1 ,i;;), theny( )rvy( onX(p 1 ).Toseethat 

this is so, consider the cartesian product K = /c I x I. We define 

a partial realization p of Kin ( r1,t:.)) by defining p1 on 
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the base of K to be the chain mapping "T from J c I to X ( v1 ) and on the 

top of K to be the chain mapping from Jcl to X(v2). Since the norm 
of each of these mappings is less than ~t1, norm p'< i 1 = K(E). Con­

sequently, there is a realization p of Kin X(~1). Denote by c1 the 

copy of c in the base of Kand by c2 the corresponding copy in the 

top of K. Then c1 ru c2 on K, so p(c 1 )1Up(c 2 ) on X( r4 1 ). But p(c1 ) = 
= y(v1) and p(c 2)= y(v2 ), and so y(v1 )ru y(v2 ) on X( ~ 1). 

Now consider the family of all coverings~ such that a(~,E) < ~· 
This is a cofinal family, and so, in defining a V-cycle, it is suf­

ficient to give its coordinates on this family. For each such~. de­

fine z{~) to be y(a(;,c)). If we can show that this collection of 
cycles forms a V-cycle, then we have proved our lemma, for z(p) = 
= y(a(p,c)) = Y(j-!') = c. 

Suppose that ~1 < ~2 • Let v1 = ()((~1 ,e) and v2 = a(~2,t), and 
let v3 be a common refinement of v1 and v2 • Then, by what was shown 

above, y(v3)Ny(v1) on X(~1) and y(v3 )111 y(v2 ) on X(v2 ). But 
X(~1)c X(~2), so z(~1 ) = y(v1 )ru y(v2 ) = z(~2) on X(~2 ), so {z(~)} 
is a V-cycle, and the lemma is proved. 

REMARK (Begle [3]). It is clear that an analogous formula ... 
holds for Cech cycles. The interest in this remark lies in the fact 
that the proof of this lemma holds for any coefficient group. There­
fore, in an le space, any covering has a normal refinement no mat­

ter what the coefficient group is. 

THEOREM 3 (Begle [3]). Let X be a compact le space which is a­
cyclic. Let ~(X) denote the family of closed, acyclic subsets of X, 

and let f : x- t3(X) be upper semi-continuous. Then there exists a 
point x0 E- X such that x 0 E. f(x 0 ). 

Theorem 3 is derived from a more general theorem, a gene1•ali­

zation of Lefschetz 1 s fixed point theorem (Lefschetz [5]) which 
also includes theorem EM2 (p.30) of Eilenberg and Montgomery [1] . 
Consider a compact space X which is le (but not necessarily acyclic), 

and an upper semi-continuous mapping fas above. Let 

Y = {(x,x 1 )€XxX jx'e:f(x)}. Since f is upper semi-continuous, Y 
is a closed subset of X xX and hence is compact. We define two map­
pings g,h: y__,.,,x by g(x,x') = x and h(x,x 1 ) = x', for all 
(x,x 1 )e:Y. Clearly, f = hg-1 , 

For each x in X, g-1 (x) is homeomorphic to f(x), which is a­
cyclic. Since the coefficient group is a field, theorem 2 applies 
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to show that g induces an tsomorphism g : H (Y) ...._H (X) onto, 
-1 *r r r 

for r 2: o. Therefore, g is an isomorphism defined on H (X). Since 
*r r 

h : Y --l>X is continuous, it induces a homomorphism 

h : H (Y)--H (X), r?. O. Thus, h g · -'1 : H (X)->H (X) is a ho-
¾r r r *r ¾T r r 

momorphism. By lemma 5, H (X) has a finite basis, and hence the 

trace of h. g;1 is defin~d. Let /\(f) = /\(g,h) = :;t:: (-1)r trace 
*r r j=O 

h*r g;; • By lemma 5, Hr(X) = O for sufficiently larger, and so 

;\(f) exists. We now state 

THEOREM 4 (Beg le [3]). Let X be a compact le space. Let ~(X) 
denote the family of closed, acyclic subsets of X, and let 

f : X - t;(X) be upper semi-continuous. Ii' A( f) t O, then there 

exists a point x e:. X such that x e:: :~(x ) • 
0 0 0 

It is easy to derive theorem 3 from theorem 4. For, if Xis 

acyclic, then Hr(X) = O for r > 0, and H0 (Y) has just one generator, 

so /\( r) = 1 and theorem 2 applies. 

PROOF OF THEOREM' 4,: In order tc prove theorem 4, we need an 

explicit method for calculating A(f) in terms of the V-cycles of 

X. We obtain this by first recalling how the mappings g and h of Y 
into X induce the homomorphisms g*r and h*r of Hr(Y) into Hr(X). 

Let z be an r-V-cycle of X. For each covering t-' of Y, choose 
-1( ) -1( ) a covering V of X such that r1 < g './ , and if f-' = g V for some 

v, choose this v • Let y( I") = tz( r1), where 17 = YJ( p, v) is the re­

finement of v g:lven by lemma 2, and t is the corresponding chain 

mapp:lng of X(Y]) :i.nto Y( p). Then, as was shown in the proof of theo -

rem 2, y = { y(f-1)} is an r-V-cycle of Y, which we now denote by 
-1() --1() gr z , and the transformation z-,, gr z induces precisely the 

isomorphism g-1 : H (X)---0- H (X). 
*r r r -1 

It appears at a f:trst glance that y = gr (z) depends on the 

order of gas a Vietoris mapping, since the construction of 1(f-1,V) 
in the proof of lemma 2, depends on the order of g. However, the 

homology class of y is independent of this order, since the homo-

morphism g : H (Y) --·~ H (X) determined by g is uniquely defined. 
*r r r 

Therefore, in the above construction, we may take g to be of any 

convenient order k 2: r. 

Next, given any r-V-cycle y of Y, for any covering v of Y, let 

p= h-1 (v), and let z(v) = h(y(p)). Then z •~ {z(v)} is an r-V­

cycle of X, which we denote by hr(y), and the transformation 
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y .-hr(y) induces the homomorphism h-ll-r : Hr(Y) -Hr(X). 

Thus the transformation Z--:,-h g- 1 (z), where z is an r-V-cycle 
r r 

of X, induces the homomorphism h g- 1 : . H (X)---'.>-H (X). Let *r ¥-r r r 
z1 ,z 2, ••• ,zk be a homology basis for the r-V-cycles of X, i.e. a 

maximal set of r-V-cycles which are independent with respect to ho­

mology. Then, for each integer i, 1 ,s i. ,s k, h g;1 (z.) rv L ar. ZJ .• 
r l [r J 

But now /\(f) = /\(g,h) = L (-1)r trace (a:.) L f:. (-1)rari" 
r ?. O l J r ~ O i =1 

Next we show that the calculation of /\(f) can be reduced to a 

similar calculation for a chain mapping of a finite complex into it­

self. 
* Let ! be an arbitrary covering of X, and let E 1 = K(E) and 

E2 = K(E1), where the notation refers to the definition of an le 

space. Let v be a common refinenent of c: 2 and of the covering v0 of 

lemma 4, and let K be the finite subcomplex lf[N(""v)J of X(v). 

We are going to define a chain mapping v : K .- K. Before 

doing this, we note that if z is an r-V-cycle of X, then the coor­

dinate of h g- 1 (z) is obtained by first choosing a covering v1 such 
r r 1 1 

that f-1 1 < g-1(v,,), where 1--' 1 = h- (v). Then hrg; (z(v)) = ht1 (z(171 )), 

where 111 = 17 ( I-' 1 , v1 ). Recall that 11 1 depends on the order of the 

Vietoris mapping g. Choose an integer which is greater than the di­

mension of Kand which is such that the homology groups of X for 

dimensions greater than this integer are all zero. Take this to be 

the order of g in constructing ri 1 , and i.n the construction of Y] 2 
be low. 

To define the chain mapping v, set V' = ¾* v, and choose a 

normal rennement v2 of V' (lemma 6). Let ~J. 2 = h-1( v2 ), and 

17 2 = 17( )-! 2 ,v2 ), Since v2 <v_, ~ 2 < ~1 • Therefore, by lemma 3,L1e2e 

is a common refinement A,1 of 17,1 and 7] 2 such that t 1 (x) tV t 2 (x) on 

Y( ~1 1 ) for any cycle x of x(71 1 ), where t 1 : X(r] 1 )--'>-Y( f-' 1 ) and 

t 2 X( 11 2 ) -Y( r1 2 ) are the chain mappings of lemma 3, Let 

112 = o.(A,1, c). 

Now let T' be the identity r:iapping of the null-s\,eletcm of "' 

so that T 1 is c1 partio.l realization of K in Y( ),,~), where 
.J 

\ 3 = cx().2 , c1 ), Since v < c.2 = K( l,1), nor,n T' < K( t,1), Hence tl1e1~e is 

a realization T: K ......;.X(A2 ) of norm < 1;. 1 , a;1d such that for cac,1 ver-

':ex a0 c:,f K, we riave T0-0 = --i;, 0-0 0-0 • 
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Since A2 <A1 , t 2 is defined on X(A2), so t 2-c: K-+Y( i-,l 2 ) is a 

chain mapping, and ht 2 T : K➔ X( v2 ) c X( V') is a chain mapping. Let 

lT denote the transformation 418 : X( v1 )-+ K. Define the chain map­

ping v to be TTht2 T • 

Let /\(v) = L (---1)r trace v , where v : H (K)·-+H (K) is 
r?: 0 *r *r r r 

the homomorphism induced by v. We now assert that trace h g-1 = 
*r -lfr 

trace v*r for each r?: O, and hence that /\(f) = /\(v). To prove this, 

let z 1 , ••• ,zk be a homology basis for the r-cycles of X. These 

cycles may be chosen such that, for each i, zi(v) = ~0zi(v•) of K. 
For, z.( v•) ru z1 (v) on x(v), since z1 is a V-cycle. Also, 

l ~ 

l.{J0(zi(v 1 )) ru z.(v') on X(v)., Hence,if the coordinate z.(v} of z_. 
- l l l 

is replaced by tp8(z. ( v1 )), the resulting V-cycle is homologous to 
l 

the original one. 

Now we construct a homology basis for the r-cycles of K. Let 

~0(z1 (v•)) = ci. Since the cycles z 1 , ••. ,zk are independent on X, 

and since vis a refinement of the covering v of lemma 4, the coor-
o 

dinates c 1 , ••• ,ck are independent on X(v) and hence on K. Therefore, 

a homology basis for K can be obtained by adding independent cycles 

ck+1 , ••• ,c1 to the set c 1 , ••• ,ck. 

Since vis a chain mapping, v(xL) is an r 1cycle on K (1~1~1), 
l r · Y' r 

and so v(x.) rv L b1 . x .• Now trace (b1 .) = :Z::: b 1 ., so we have to 
l k j=1 - t J J 1=1 l 

show that L ari = L bri 
1=1 1=1 

We first show that b:. = O for k+1 i j_ s 1. Recall that ht 2:rx. 
lJ l 

ls a cycle of X( v2 ) ( 1 :Si :s: 1). By the choice of v2 , there is an 

r-V-cycle z! such that zJ(v1 ) = ht 2 T(x.). Since z 1 ,H.,zk forms a 
l k .L l C 

homology bas ls, z 1• N L c: ,z: and sc ht 2T(x.) = z11 (v) 
k Y' j=1 J_J J 1 

N L c·: . z( V1 ) on X( v1 ). Therefore 
J=1 l,J lT 

TT l1t 2 t( ) rv f 
j=1 

r 'cc r 
C •. Tr z . ( V' ) = L C •• X • 
lJ J j=1 lJ J 

on K. 

Thus., v(x1 ) ('1:;; i::: 1) is linearly dependent on the first le elements 

cf the homology basis for K. Therefore, the lastkl-k columns of ma-
r r - · r 

trix (b 1 j) consist of zeros, and trace (biJ.) = ::z:_ b11 , 
1=1 

To finish the proof of our assertion, it is sufficient to show 

tliat b:. a:. for i,J = 1, .•• ,k. To do this, consider any cycle 
J. J ]_ J 



xi (1=1, ••• ,k), and let zl be the r-V-cycle defined above such 

that z! ( V') = ht 2-r(x.). Let z'.' be the r-V-cycle h g-\z.). 
l l l rr l 

We wish to prove that zl 1v z';_. By lemma 4-, it is sufficient to 

show that z1 ( v) rv z~ (v) on X( v). We start by proving that 

z1 p,2 ) 11J T x1 on X( i\). Since zi is a V--cycle, zi (),2 ) 11J z1 (v) = xi 

on X(v). Let c be a chain of X(v) such that F(c) = zi(A2 ) - xi. 

Define a partial realization p' of lei into X(~2 ) by letting 

p1 = 1: on I xi I and the identity on J zi (A2 ) J and on the vert:Lces of 

lei\ (lzi(A2 )1 U !xii). Since norm T < i:, 1 = *K(E), and since 

v < c1 , norm p' < K(E). Also, t- 2 = a(A1 ,i::). Therefore, there is a 

realization p: lei -x(A1) with norm p< E.. Now F p(c) =pF(c) 

= p(zi(A2)) -.:-xi' since r= P' whenever P' is defined, Thus 

zi(),2 ) rv -rxi on X(i\1 ). 

Since t 2 is a chain mapping, t 2 (zi (A2 )) rv t 2 Tx 1 on Y( 1-1 2 ). 

By the choice of A-,, t 2 (z1 (),,2 )) rv t 1 (zi(t,.2 )) on Y( f-1 1 ), and since 

Y( i-,t 2 )c:Y( fJ 1 L we have t 2i:(xi) rv t 1 (zi('X2 )) on Y( p 1 ). Also,since 

A2 < 17.1, z1 (:,\2 ) rv z1_( 71 1 ) on X( 11 1 ) and so t 1 (zi()..2 )) rvt 1 (zi( 11 1 )) 

on Y( p). Since h 1.s a simplicial mapping, ht 2T(xi) rvht 1 (z 1 ( 71 1 )) 

on X( v) • 

z~(v) and ht 2 T(x1 ) = z1(v'), Since 

zl (v 1 ) 1u zl(v) 

Now since 

on x(v), zl(v) ru 

z'.' = h g-1(z.) f\J 

z'.'(v) and hence z1 nJ z'.', 
[c r l 

L ai . z . , we have 
i r r i 

k 
j=1 J J 

k 
'·s;-r d z. N L- ai . z . an z1(v 1 )ruht2t(xi) N _L aIJ· zJ.(v') on X(v•), 

J=1 l j='I -J J 

Consequently, 

k 
1Tht 0 -,;-(x .. ) 

L .L 
V ( X. ) ru L. ar J" 7T ( Z J.• ( V 1 ) ) 

l j=1 

But 
k 

v(x.)N L brl X., so a~J- =bIJ· (i,j=1, •• ,,k), 
l j =1 . J 

Thi.s completes the proof of the assertion that A(f) 

c;roup 

hence 
of aj 

r 
/\ ( V) 

Finally, since K is a finite complex and since the coefficient 

1s a field, there :Ls another method for calculating /\(v) and 

/\( f) , For each :-s impJ.ex err of K, let dI .• be the coefficient 

i,1 the chain v(a~). Let /\• (v) = L (-1~r trace d: .• Then 
.L [ r > Q lJ 

= N(v) (Lefschetz 5, p,'193]). - ' 
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We are now ready to prove theorem 4. Suppose that x ¢ f(x) for 

all x c X. Then there is a covering c: 0 of X such that St (x, ) n 

St (f(x), e0 ) = ¢ for all Xe X. We now specify the covering c:, in­

volved in the definition of K to be this covering c0 • 

Let a be any simplex of K. Dy construction, ,(a) is a chain 

of X( A2 ) such that diam 1-r ( o) j < E 1 < E. • Choose an arbitrary sim­

plex 0- 1 of X(A2) in I i:(a) j , and let x be a vertex of o- 1 • Then 

o- c St (x, e). By the construction of t 2 , in the proof of lemma 2, 

t 2 (x)E g-\x), and also jt2 (o- 1 )1 c St (g-'1(x),p 2 ). 'l'herefore, 

ht2 (x) E. h 6 - 1 (x) = f(x) and, since ~ 2 = h- 1 (v2 ), Jht 2 (o)J c 

St (f(x),v2 ) and so 11Tht 2 (0 1 )J c 8t (f(x),v)cSt (f(x),c:). Since 

o- c St , E.), o does not meet any s ir,1plex of 1T ht,,( 0 1 ) , But 0- 1 

was an arbitrary simplex of I -r(a) j, so a does not meet any sim­

plex of 1Tht 2T(O) = v(cr). Thus, for every r and i, dri = 0 and so 

/\'(v) = o. But /\'(g) = /\(s) 0= /\(f) ,JO, and so the assumptfon, 

that x ¢ f(x) for all x e. X, leads to a contradiction. 

In 1961 Fan [ , using convexity arguments, obtained results 

which generalize the fixed point theorem of Tychonoff [1], but 

they neither include Kalcutani' s theorern (Kakutani [2] ) , nor are 

they included in the generalizations of Kakutani's theorem by 

Bohnenblust and Karlin [1] , Fan [1] , Glicksberg ['1] and Legle [3], 
Fan's results do not invoke any known fixed point theorem, and 

they are all derived directly from the theorem of Knaste".' -- Kura­

towski - Mazurlziewicz [1] , which was used in their well-lmown 

proof of Brouwer I s theorem. The Knas ter - Kura tows ki - Mazurlzie -

wicz theorem is reformulated in the following generalized form: 

LEMMA 7 [3])' 
space Y. For each x E. X, 

Let X be a subset of a topological linear 

let a closed subset F(x) of Y be given 

such that the following conditions are satisfied: 

(i) The convex hull of any finite subset { 
n 

is contained in U F( ). 
i="l 

(ii) F(x) is compact for at least one XE. X. 

'I'hen n{F(x) I X€. X} f ¢, 

of X 

PROOF Because of condition (ii), it suffices to show that 
n 
n F( ) f ¢ for any finite suiJset 

1 , , , ,,, } c X, consider the closed (n-1)-simplex 
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S = (v 1 ,v 2 , ... ,vn) in En with vertices v 1 = (1,0,. °",o), 
v 2 = (0,1,0, ••• , ,.,q v = (o,o,o, .. ,,1), and define a continu-

n n n 
ous mapping lf): s-,,y by(()( La.v.) = L Ot.x. for ;::o, 

i=1 l l i=1 l l 

n 
L 01. = 1. Consider the n closed subsets G. 

i=1 l l 

(i=1,2, ••• ,n) of S. By (i), for any 

the (k-1)-simplex (vi ,v. , ••• ,v. ) 
1 1 2 1 k 

indices 1 i L, < i 2 < , •• < 
' - le 

is contained in U G ..• Ac-

cording to the Knaster - Kuratowski - Mazurkiewicz 
j=1 l,j 

theorem, this 
n n 

implies that n G. I and so n F(x.) ~ ¢. 
i=1 l i=1 l 

Let Z be a topological group and let tS(Z) tie the family of 

all non-empty compact subsets of Z. G(Z) is topologized as fol­

lows: For A E: e (Z) and for each neighbourhood V of t.he iden'city e 

of Z, let V(A) =1Be e'(Z)!BcAV, AcBV}. The family of all sets 

of the form V(A), where V runs through the neighbourhoods of e, is 

taken as a basis for the neighbourhood system of A in G(Z). 

Let X be a topological space, and Z a topological group. With 

e(z} topologized as above, a mapping f : x--,,. t3(Z) is continuous 

if and only if, for any x e. X and c:.ny neighbourhood V of e e Z, 
0 

there is a neighbourhood U of x 0 in X such that f(x)c f(x 0 ).V and 

f(x 0 ) c f(x) .V for all xE: U, In the remainder of this chapter a 

transformation g : X~ i'.3(Z) will be called .t]pper semi-continuous 

if and only if, for any x 0 e; X and f'or any neighbourhood V of e e: Z, 

there ls a neighbourhood U of x 0 ir:. X such that g(x) cg ) .V for 

all X<. U. (When Z is compact, this definition of' upper se111i•-con­

tinuity coincides with the one given on p.14.) 

LEMMA 8 (Fan [3] ). Let X be a topological space and Z a to­

pological group, Let f,g: x~ 1'.;(Z) be upper semi-continuous. If' 

F :ts a non-empty closed subset of' Z, then 

is closed in X. 

PROOF: Take EX , Since f( ) is compact and F is closed, 

F,f'( ) is closed. Since the compact set g(x 0 ) is disjoint from 

the closed set F ,f( ) , the1•e is a neighbourhood V of' e € Z such 

that F ,f'( ) .V n ) .V = ¢. Choose a neighbourhood U of in X 

such that f(x) cf{ ) .V and x) c ) .V for all x EU, 'J.>hen for' 
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x € U we have F .f(x) n g(x) 

closed in X. 

¢, i.e. X€.X"'E for xeU. Hence .C.: is 

LEMMA 9 Fan [3]). Let X be a topological space and Z a to-­

pological group. Let f; X---+ l3(Z) be continuous, If G is a,1 open 

subset of Z, then 

H { X E X I f ( ;c) (1 G 

is closed :Ln X, 

-1 PROOF: Take x 0 e X \H, and z E f(x 0 ) n G, Then V = G z is a 

neighbourhood of e in Z, Choose a neighbourhood U of in X such 

that f(x )cf(x),V for all xe:U, Then for each xr,; U, ze ) c 
0 1 

f(x).V, so f )nzv- I- Le. f(x)nG I¢. Thus HnU =¢and H 

is closed in X. 

THEOREM 5 (Fan [3]), Let X be a compact convex subset of a 

topological linear space Y. Let Z be a topological group arnl let 

1'5(Z) be the family of all non-empty compact subsets of Z, topolo-­

gized as above. Let f : X----+ B(Z) be continuous and g : X----c► \S(Z) 

be upper semi-continuous, such that the following conditions are 

fulfilled: 

(i) For each x 1 Ee X, there is an x"e X such that 

f(x') n g(x") I¢. 

( ij_) Given any neighbourhood of the identi.ty er,; Z_, there is a 

neighbourhood W of e with the following property: For every poin~ 

x 0 e: X and for any finite subset {x1 ,x 2 , H ., of X, the 2:·elations 

W,f( )ng(x 1 ) 1¢ (i=1, ... ,n) implyV.f(x )ng(x) I for a:iy 
- 0 

point x in the convex hull of { x 1 ,,,. ,xn} • 

Then there exists a point X € X sucl1 that f(x) n g( f ¢. 

PROOF: Let U denote 1:he fat:1ily of all neighbourhoods of e E: Z. 

For each VE:: U, let 

(fl(V) {xE.X/V.f(x)ng(x) 1¢}. 

By le~ma G, is closed in X. If we can prove that 

(jl(V) I ¢ for every VE: U, tl1en it will follow that 

n 
n cp ( 

i=1 

for any finite number of r.,enibers ,v2 , .•. ,V of U. The conpa 

nes,3 of X v1ill then imply :hat n{ tp(V)!Vs Ur ¢. Si.nee every 
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point X €. n { <p(V) IV Eu} satisfies f(x) n g(x) f ¢, it remains to 

show that ~(V) f ¢ for every Ve U. 
Consider an arbitrary fixed V € U. For this V, choose a W € U 

with the property stated in (ii) of the theorem. For each x e:X, 

let 

F(x) = cp(V) u { YE. xjw.f(y) n g(x) = ¢}. 

Since W .f(y) n g(x) = ¢ is equivalent to f(y) n w- 1 .g(x) = ¢ 

and W- 1g(x) is open, {yeXjW.f(y)ng(x) =n¢} is cJi°sed, by lemma 

9. Hence F(x) is compact. We claim that L C\Xi E- U F(xi) for any 
1=1 1=1 n 

finite subset { x 1 ,x2 , ••• ,xn} of X and for any cx1 .?. 0 with L cx1 =1. 
n i=1 

In fact, if L cx.xj4<f(V), thenV.f(Lcx.xj)ng(l:cxjx.) =¢;so, 
j=1 J J J 

by our choice of W, for at least one index i, we have 

W .f( L ex jx j) n g(x1 ) = ¢ and therefore L ()( jx j e: F(x1 ). By lemma 7, 
there is an X1 E:. n {F(x) Ix EX} • By (i), we can choose X11 € X such 

that f(x 1 ) n g(x") f ¢. Then W.f(x 1 ) ng(x") f ¢ and x' e: F(x") imply 

x 1 € ~(V). Hence f(V) f O and the theorem is proved. 

When g is a continuous mapping of X into Z, it may be consi­

dered (in an obvious way) as an upper semi-continuous mapping 

g : x~ e(z). In this case, condition (ii) of theorem 5 may be re­

stated as follows: Given any neighbourhood V of the identity e e: Z, 

there is a neighbourhood W of e such that, for every x 0 e: X, the 

convex hull of g- 1[w .f(x0 )] is contained in g-1[v .f(x0 )]. 

THEOREM 6 (Fan [3]). Let X be a compact convex subset of a 

topological linear space Y. Let Z be a locally convex topological 

linear space and let X (Z) be the subfamily of 'e(Z) consisting of 

all non-empty compact convex subsets of z. Let f : X-¼X(Z) be 

continuous with respect to the relative topology of X(Z) induced 

by the topology of t; (Z), and let g : X - Z be continuous. Let f 

and g satisfy the following conditions: 

(i) f(x)ng[X] I¢ for every xe:X. 

(ii) For every closed convex subset C of Z, g- 1 [c]is convex 

( or empty). 

Then there exists a point X € X such that g(x) e: f(x). 

PROOF: By the local convexity and regularity of Z, for any 

neighbourhood V of the null-element of Z, we can find a convex 

neighbourhood W of the null-element of Z such that We V. Then, for 
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any x 0 e X, W + f(x) is closed and convex, and therefore, by (ii), 
1 ° -1 g- [W + f(x )] is convex, g [v + f(x )] contains the convex set 
1 - 0 0 1 

g- [w + f(x 0 )] , which contains the convex hull of g- [w + f(x 0 )]. 

Thus condition (ii) of theorem 5 is satisfied (see the remark pre­

ceding theorem 6). 

COROLLARY. If f : x- X is continuous and g : X-;.-X is the 

identity mapping, theorem 6 reduces to the fixed point theorem of 

Tychonoff [1] . 

We now replace the topological group in theorem 5 by a uni­

form space Z, but we consider continuous mappings f', g : x- Z only. 

THEOREM 7 (Fan [3]). Let X be a compact convex subset of a 

topological linear space Y, and let Z be a uniform space, Let c?(Z) 

denote the family of an non-empty compact subsets of Z. Let 

f,g x- Z be continuous mappings satisfying the following con­

ditions: 

(1) f[x] c g[x] 
(11) For any entourage V of Z, there is an entourage W of Z 

such that for any z E. r[x], any finite subset {x 1 ,x 2 ,... } of X 

and for any o.i ?:. O (1=1,2, ... ,n) with cx 1 = 1, the relations 
1=1 n 

(z,g(xi)) e W (1=1,2, .•• ,n) imply (z,g( L ))E-, V. 
1=1 

Then there exists a point £EX such that g(x) = f(x). 

PROOF The proof is similar to that of theorem 5. Let Ude­

note the family of all those entourages of Z which are open in 

ZxZ. For each Ve. U, let 

where V denotes the closure of Zin Zx Z. ~(V) is closed in 

X: = r-1 [v(g(x))], where V(g(Jr)) = {yEXI( ,y)E. v} 
The theorem will be proved, if we can show that ~(V) /¢for 

every VE U. 

For any fixed VE U, choose a W c V. with the property des­

cribed j_n condHion (ii). For each x E. X, let 

F(x) (!)(V)U{yE.XI( y),g(x))tW} 

Since Wis open in Zx Z, {YE XI (f(y), x)){ W} is closed 

in X. Hence F(x) is compact. By lemma 7, there is a point 
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x 1 € n {F(x)I x EX} • Let x"E X be such that f(x 1 ) 

from x 1 E F(x") it follows that x 1 e: ({J(V). 

g ) • Then 

Again, theorem 7 generalizes Tychonoff s fixed point theorem. 

In fact, when Y = Z is a locally convex topological linear space 

and g is the identity on X, condition (ii) of' theorem 7 f'ollows 
immediately from the local convexity. 

1.4. Multi-valued mappings such that the image of each point 

is non-acyclic 

In this section, if' Xis a topological space, then B(X) will 

denote the family of non-empty clo:3ed subsets of X. 

Hamilton [2] (1947) considered multi-valued mappings for 
which the image of a point was supposed connected., but not acyclic. 
Let en be an n-cell in En ( n ~ 2), and let f be a mapping such that 

for each x e: en, f(x) is the boundary ( n-1)-sphere of an n-cell in 
en. Then Hamilton [2] asserted that there exists a fixed point if 

either 

(i) f is continuous (i.e. f is upper semi-continuous and 
lower semi--continuous) ;or 

(j_i) f is upper semi-continuous and there is an E. > 0 such that 

for each x e en, the interior domain of f(x) contains an 
t-neighbourhood in En. 

However, Capel and Strother [i] ( 1957) and O I Neill [2] ( 1957), 
gave counter-examples to the first of these assertions, Hamilton 

[2] (1957) showed that the second assertion was valid, and this is 
confirmed by the following theorem of O'Neill [2] , of which it is 
a corollary: 

1. (O'Neill [2]). Let X be an ANR ln En, and let f : X--> ~(X) 

satisfy the following condltlons: 
( i) If x E X and U is a neighbourhood of f( , there is a 

neighbourhood V of x such tnat if YE V then y)c U (i.e, 

f is upper semi-continuous), and each (n-1)-cycle on f(x) 
ls homologous in U to a cycle on f(y) (augmented ~ech ho­

mology with a field of coefficients); 

(ii) If XEX and O:,; r.:Sn-2, then Hr(f(x)) O. 

Then X has a fixed point under f. 
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O'Neill [3] ('1957) defined induced homology homomorphisms 

for multi-valued mappings and used it to define a Lefschetz num­

ber for mappings under which the image of each point is discon­

nected. Let H again,denote Cech homology theory with coefficients 

in a field. All spaces are assumed to be compact metric. Thus the 

group H(X) can be based on a group C(X) of projective chains (Lef­

schetz [5, pp .229, 231]). Define the support of a coordinate c 1 of 

c E C(X) to be the union of the closures of the kernels of the sim­

plexes appearing in (Lefschetz [s, p.245]). Then the intersec­

tion of the supports of the coordinates of c is defined to be the 

support lei of c. Let A and B be chain groups with supports in 

the compacta X and Y respectively, and let I:> O be given, Let c 

also denote the set-valued function defined by 

E(x) = {x'E XI p(x,x 1 ) sq, for all XE X, where p denotes the me­

tric of X. A chain mapping qi: A--c>-B is accurate with respect to 

a function f: X-c> l':>(Y) provided that lq:i(a)lc f[lal] for each 

a EA. Further, I.fl is E-accurate with respect to f provided i.p is ac­

curate with respect to the composite function C: f c • 

A homomorphism h : H (X)···-> H(Y) is an induced homomorph:l.sm of 

f : X -➔ t::(Y) provided that, given c > 0, there is a chain mapping 

<p: c(x)-,,. C(Y) such that <p :i.s £-accurate with respect to f, and 

h = , where (f'* :i.s the homomorphiBm :i.nduced by <.p • 

The set of all induced homomorphisms of an arbitrary function 

f X-➔ e(Y) is a vector space under the usual operations. If hf 

and are induced homomorphisms of upper semi-continuous mappings 

f -➔ e( , and g : y-,,. tS(Z), then hghf is an :lnduced homomor-

ph:lsm of gf. If f : X---'> Y is a ( single-valued) cont:lnuous mapping 

of a connected compactum into a compact polyhedron (for the lat­

ter, see Lefschetz [5, pp.94-, 308]), then the induced homology ho­

momorphisms off are exactly the scalar multipleB of the Cech ho­

mology homomorphlsm f * ( 0 1 Neill [3]). 

A homology homomorphism his non-trivial provided that the 

zero-dimensional component h 0 

momorphism. 

We now have 

is not the zero ho-

2.(0 1 Nei11 ) • Let X be a compact polyhedron, f : X--> t:5(X) 

upper semi-continuous and h : H(X) ·-> H(X) the induced homology ho­

momor·phism of f. Then the Lefschetz number /\(h) = Z:(-'l)r trace 
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hr can be formed, and if /\(h) / O, then X has a fixed point under 

f. 

To be able to use this fact, it is necessary to produce an in­

duced homology homomorphism off, which maps some r-cycle non-tri­

vially (r;;; o). 

3. ( 0 1 Neill [3]) . An upper semi-continuous mapping f X -0<- l'.5 (Y) 

has a non-trivial induced homomorphism in either of the following 

cases: 

(:L) X and Y are compact polyhedra such that for all x E: X, f(x) 

is either acyclic or else consists of exactly n acyclic 

components; 

(ii) Xis a compact one-dimensional polyhedron with first Betti­

number:;; 1, and Y is a compact polyhedron. 

From this we have theorems 4 and 5 below. 

4. ( 0 1 Neill [3]). Let X be a compact polyhedron and n a fixed 

positive integer. Let f : X-c> l'.s(X) be cont:Lnuous such that, for 

all x € X, x) is either acyclic or else consists of exactly n a-

cyclic components. 'Then f has a non-trivial homomorphism h such that 

if /\(h) I O, then X has a fixed point under f. Further, 1f X is a­

cycl1c, then there 1s a fixed point. 

Analogous, but weaker results were earl:Ler obtained by Magenes 

[2] (1950), Darbo [1] (1950) and Dal Saglio [1] (1956). 

For n = 1 theorem 2 is the polyhedral form of the theorem of 

Eilenberg and Montgomery [1] (1946), except that the requirement 

that f be lower semi-continuous is then superfluous. However, if 

n > 1, upper semi-continu:l.ty alone is insuff:Lcient. For example, con-

sider the mapp:Lng of the :Lnterval [-1,1] for which f( = {--1,1}, 

f(x) = {1} for xs::O, f(x) = {-·1} for X>O, Also if n>1 the space 

of 1nduced homomorphisms need not be one-dimens:l.onal as in the case 

n = 1. 

It does not appear that this r•esult can be generaHzed by al­

tering the number of components f(x) is permitted to have. For, :Lf 

S :i.s any finite set of posit:Lve integers - except certain sets of 

the form { n} and necessar:Lly, {1,n} - there is a continuous map-

ping f : C e(c 2), c2 being the 2-cell, wh:Lch has no fixed points 

and wh:Lch is such that for each point x the number of po:Lnts :tn f( 

occurs :in S ( 0' Neill J ) , 
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5. (o Neill [3}). Let X be a compact one-dimensional polyhe­

dron with first Betti-number R1 s 1. Every continuous mapping 

f : X---,,. !3(X) has a non-trivial induced homomorphism h such that 

if /\(h) ,/ O, then X has a fixed point under f. 

Corollary (Plunkett [1] ). A dendrite has the f.p.p. for con­

tinuous closed set-valued mapp:l.ngs. 

Ward [7] ( 1958) obtained the following extens:l.on of Plunkett's 

result which is not included in theorem 5: 

6. (Ward [7]). An arcwise connected, heriditarily unicoherent, 

hereditarily decomposable metric continuum has the f'.p.p. for con­

t:l.nuous closed set-valued mappings. 

The restriction on the Betti-number in theorem 5 cannot be 

omitted. For let X be a compact one-dimensional polyhedron with­

out end points and such that R1 > 1. If c. > O is sufficiently small, 

the function f : x---,,. e(x) defined by f(x) = { y E: X, p(x,y) = E} 
will be continuous :l.f pis a suitable metric, and any induced ho­

momorphism off will be a scalar multiple of the identity homomor­

phism of H(X). Thus a non-triv:l.al induced homomorphism of such a 

funct:ton would have a non-zero Lefschetz number, contradict:Lng 

theorem 2. 

The condition that the space be one-dimensional is also es­

sential. Strother [1] { 1953) showed that no Tychonoff cube with 

more than one factor has the f.p.p. for continuous closed set­

valued mappings. Thus it is necessary to place further conditions 

on functions defined on spaces of dimension .:c: 2. In addition to 

the restrictions stated in O'Neill's theorems (O'Neill [3] ), we 

have the following possibilities: 

7. (Strother [1] ) . Let X be a retract of a Tychonoff cube 

1: = • Let f : X -➔ e(x) be continuous such that, for every x E.: X, 

f(x) is the product of subsets of L Then X has a fixed po:Lnt un-

der f"' 

8. (Strother [1 J ) . Let X be a retract of a Tychonoff cube 

'f Let ·rr(X: X-·"' I (ex E: be the natural pro,ject:Lon. Let 

f X.........,. cs( be continuous such that, for some fixed (3 c A and 

for all x £ X, there is only one point in f(x) wh:Lch projects onto 

sup {Yr E 1TI"' [ f(x)]}• Then X has a fixed po:Lnt under f. 
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In each case the proof proceeds by constructing a trace off, 

i.e. a continuous function f 1 : x- X such that f' (x) E f(x) for 

allxEX .. 

1.5. Mappings f : x-,. Y such that X c Y and f[XLJ_! 

So far we have been concerned with mappings of a space into 

itself. We now consider a more general situation: If Xis a proper 

subset of a space Y, what conditions must be imposed to ensure the 

existence of fixed points under a mapping f X -PY such that 

f [x]\x f. ¢ ? 

As an example, we have the following extension of Brou­
wer1s T'ixed point ·theorem for the n-cell: 

1. (Knaster, Kuratowski and Mazurkiewicz [1] ( 1929)). Let en 

be an n-cell in En, and f : en--;.. En continuous such that f' maps 

the boundary of en into en. 'rhen has a fixed point under f. 

For two dimensions Sperner [1] ( 193~-) proved the existence of 

fixed points under slightly weaker assumptions: 

2. (Sperner [1] (193~·)) . Let c2 be a two-cell in and 

f ; e 2- E2 continuous. Then e 2 has a fixed point under f if the 

boundary of c2 contains an arc A such that (i) A contains all the 
r~ 2] 2 2 accumulation points of fLC \c , and (H) r[AJ c C • 

Fixed point theorems of the same spirit (and for the two-di­

mensional case) have been given by Scorza Dragoni [1,2] (1941, 
191~6), Volpato [1,2] (1946, 1948), I;olcher [1] (1948), and Trevi­

san [1] ( 1950). 

The Knaster-Kuratowski-Mazurkiewicz theorem was extended to 
Banach spaces: 

3- (Rothe [3] (1938)). If Xis a Banach space and fa conti­

nuous mappin~-~ the closed un:l.t ball e = {x E: X !!xii,:, 1} into 
X such that f [9] is compact and the boundary of C is mapped into 

e, then e has a fixed point under f. 

For multi-valued mappings we have the following result: 

4. (Ellenberg and Montgomery [1] ( 19!+6)) • Let be an n-ce 11 
in En, and 'e(En) the family of non-empty compact subsets of 

Let f en-> l:i( be an upper semi-continuous mapping which maps 

the boundary of en into en. If there exists a non-trivial coeffi-

cient group vlith respect to which each f(x) is acyclic oris 
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homology), then en has a fixed point under f. 

It is to be expected that theorems 3 and 4 also hold for lo­

cally convex topological linear spaces (with the obvious changes 

in wording). 
It is natural to ask the following question: If en and Dn are 

n-cells such that en is proEe~ly contained in Dn, and f is a con­

tinuous mapping of en .£_nto Dn, does there exist a fixed point un­

der f? For continuous mappings this is in general not true (Hamil­

ton [3] (1948)),but for interior mappings (Le. continuous, open 

mappings) we have the following results: 

5. (Hamilton [3] (1948)). If f is an interior mapping of a 

locally connected unicoherent plane continuum M onto a two-cell 

containing M, then M has a fixed point under f. 

Corollary. Let f be an intericr mapping of a locally connect­

ed plane continuum M, which does not separate the plane, onto a 

two-cell containing M. Then M has a fixed point under f. 

6. (Hamilton [3] (1948)). Let f be an interior mapping of a 

two-cell C into the plane, such that C c f[c]. Then C has a fixed 
point under f. 

1,6, .Soeces with a finite number of holes 

in [3] ( 1957), using his results on the inc1ex of a con­

vexold space (Bourgin [2] ( 1955)), proved a number of he orems 

giving sufficient conditions for the existence of fixed points un­

der continuous mappings of a space with a finite number of holes: 

His main results are: 

1. (Bourgin [3]). Let X be an AR* (i.e. a space which is ho­

meomorphic to a retract of a Tychonoff cube), and ,Y 2 p H 

(n>'1) open subsets of X such that:;;'; n Y, = ¢ (i / j) and such 
- J 

that Y. (1=1,2, ... ,n) is an AR* • .Set G = U Y1 .• Let f : X""-G·-·+ X 
J_ i=1 

be~ continuous mapping such that the boundary of Y1 is mappec1 in­
to Y1 (1=1,2,,,,,n). Then X\G has a fixed point under f, 

This theorem generalizes previous results by Brouwer 

( 1 , Alexander [1] ( 1922) and Feigl ['1] ( 1928). 
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2. (Bourgin [3] ). Let Ebe a reflexive Banach space and 

Y1 ,Y2, ••• ,Yn (n > 1) open sets ~n the weak togology with mutually 
disjoint closures which are AR 1 s. Set G = 1~1 Yi. Let 
f : E"-.G-:1> E be a continuous mapping wnich sends the boundary of 
Y1 into :s\ (1=1,2, •.• ,n), and is such that fm[}:'\.,_G] is contained 
in an open ball in E for some integer m 2: 1. Then E '\.,_ G has a fixed 
point under f. 

Gohde [1] (1959) obtained the following partial extension of 
theorem 2: 

3. (Gohde [1] ). Let X be a closed ball in an infinite-di­
mensional Banach space, and let Yi (1=1,2, ••• ,n) be mutgally dis­
joint open balls which are contained in X. Set G = x'\.,_ .U Yi. Let 

1 =1 
f : G-¼ G be continuous such that f[G] is compact. Then G has a 
fixed point under f. 

For results on the existence of fixed points when an annular 
ring is mapped into itself, the reader is referred to G.D. Birk­

hoff [1,2] (1913, 1931). Kerekjart6 [1,2] (1921, 1923) and Rey 
Pastor [1] (1945). (Also see p.19.) 

1.7. Common fixed points 

The following theorem is due tc Markov ['.!] (1936) and Kakuta­

ni [1] (1938): 
1. (Markov [1], Kakutani [1]). Let K be a compact convex sub­

set of a locally convex topological linear space, and let F be a 
commutative family of continuous affine transformations of K into 
itself. Then K has a common fixed point under F, i.e. there is an 
x e: K such that f(x) = x for all fi;; F. 

This theorem was first proved by Markov [1], who used the 
Tychonoff fixed point theorem (Tychonoff [1]). Kakutani [1] then 
sketched a direct proof, and he also outlined a proof of the fol­
lowing theorem: 

2. (Kakutani [1]). Let K be a compact convex subset of a lo­
cally convex topological linear space and let G be a group of equi­
continuous affine transformations of K into itself. Then K has a 
common fixed point under F. 

Despite the similarity in appearance, the theorems are proved 
along different lines. (For proofs of these theorems, see Dunford 

and Schwartz [1, p .456-457 J ) . 
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The MaPkov-Kakutani theopem was extended to a laPger class of 

families of functions by Day [ 2 J ( 1961). He noted that if x f. K is a 

fixed point under f, then it is also a fixed point under every ite­

rate off, i.e. xis fixed under the smallest semigroup of operators 

on K which includes f. Similarly, x is fixed under every function f 

of a family F of functions of K into itself, if and only if xis al­

so fixed under every finite product .o f. of functions from F. 
1::: n 1 

Thus, in the Markov-Kakutani theorem, F may be replaced by (F), 
the smallest semigroup of coritinuous affine mappings of K into it­

self which contains F. In this case the commutativity of F is car­

ried to the semigroup :[: (F), so the theorem above is equivalent to 

that obtained by replacing the word "family" by "semigroup". In or­

der to formulate Day's extension of theorem 1, we briefly define a 

few concepts. 

Let be a semigroup, and m( ) the Banach space of all bound-

ed, real-valued mappings x on with llxll = sup {lx(g)j Jg£ 
Let e be that element of m( ) fop which e(g) =, 1 for every g€.L_. 

Let )* be the ad,joint space of m('2:). A mean on~ is an element 

JH, ) such tl1at !l1-1 II ,. 1 = f-1 (e). 

The ri~ J regular r-epresentation of Lover m( I:) is the 

homomorphism [antihomomorphism] defined on L into the multiplica­

tive semigroup of the algebra of bounded Unear mappings of m(':~=:) 

lnto :i.tself by: For each h6 L, Ph [)..h] is that linear mapping de­

fined by For each f;; m( ~) and each g;; :E: 

(phf)(g) = f(gh) [(Xhf)(g) = f(hg)] 

A mean /J- on :E: is called right_ [_left] lnvariant if for each 

f"' ) and each h,:, 

A mean ls invariant if it is both right and left 1nva riant. SC 
is called amenable 1f there exists an invariant mean on . If we 

express this in terms of adjoint mappings of the linear mappings 

or~h' a mean 1s a right, or left, or two-sided, invariant mean if 
I, 

and only if p. is a fixed point of every fg, or every , or both, 

respectlvely. 

The extended theorem can now be formulated as follows: 
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3. (Day [2] ) . Let K be a compact convex subset of a locally 

convex topological linear space, and let :Z:: be a semigroup of con­

tinuous affine mappings of K into itself. If Lis amenable, or 

even of it has a left invariant mean, then K has a common fixed 

point under L 
Every Abelian semigroup is amenable (Day [1] (1942)) so this 

theorem 1.s indeed an extension of the Markov-Kakut ani theorem. The 

arguments used in the proof of theorem 3 admits the following ge­

neralization: 

4. (Day [2 J ) . Let A(K) be th,e semigroup of all affJ.ne con­

tinuous mappings of K into itself, and let A(K) have the topology 

of pointwise convergence. Let S be any semigroup with a topology 

in which multiplication is continuous in each variable, and let 

c(s) be the space of bounded, continuous real-valued functions on 

S, with the least upper bound norm. If' there is a left-invariant 

mean on C(SL then for each continuous homomorphism -r: S --+A(K), 

K has a common fixed point under T =s] 
Since Haar measure defines a 1,2ft invariant mean on any com­

pact group (see e.g. Balmos 0]), this theorem includes the case 

where Sis a discreet Abelian semigroup or a compact group. 

A still unsolved problem concerning the existence of common 

fixed points was referred to by Isbell [1] ( 1957): If 'r is a tree 

and F is a commutative family of continuous functions f : T➔ T, 
does there exist a common fixed point under F? The answer is in 

the affirmative provided that the members of Fare homeomorphisms 

(Isbell Le.), but otherwise little ,rnems to be known, even when 

Tis a compact interval and F contains only two functions. However, 

it seems that the restriction that F does not contain many func­
tions only adds to the difficulties, for 

5. (Myskis [1] (1954). If P is a finite polyhedron wj_th non­
vanishing Euler characteristic and Fis a one-parameter semigroup 

of cont:l.nuous mapp:l.ngs of Pinto itself, then P has a common fixed 

point under F. 

6. (Hedrl{n Q,2] (1961, 1962). Let F be a commutative semi­

group of continuous mappings of the closed unit interval I = [o, 1] 

into itself which contains the identity mapping. Suppose that, for 

some ac I, the orbit F(a) = {f(a) I fE F} is a connected set, 'l'hen 

I nas a common fixed point under F. 



7. (Baayen [1J ('1963)),; also see Hedrl:tn [2, p. ] (1962)). 

Let F be a commutative ~UI2_ of continuous mappings of a -::opolo­

gical space X into itself, and let F contain the identity ~appin~. 

Let F be ma.ximal as a group, i.e. let F be contained :in no other 

tr,nsfornation group G : x- X. Then X has a common f:~xecl point 

under F j_f and only if F is i1CJ!_ a maximal commutative 

3. (l~drl!n [3] (1962)). Let F be a commutative sem~group of 

continuous mappings of a topological space X into itself, and let 

F contain the identity mapping. Then X has a common fixed ~oint 

under :5' if and "Jnly :i.f tl--.e or'b:i. t F( a) of some a e X is a <:or;-,pact 

space which has the f .p .p. for cont:i.nuous mappinz,'l. 

1.3. The Lefschetz fixed point formula for non-locally 

connected continua 

We remark here that a quasi-complex (Lefschetz [c:,, p.3 

neec'. not be locally connected, e.g. Dyer [2] (1956) proved th8t 

thP finite prodnct of chainable co1tinua (for the latter, see 

p.66) is an acyclic quasi-complex a 1d hence has the f.p,p, for 

continuous mapp:l.ngs. Also, "!ilder c~J ('1957) showed that under ad­

d:Ltional assumptions on the niappingc:, the Lefschetz fixed point 

formula can be applied to another class of non-locally connected 

cont:Lnua. 

A compact Hausdorff space is n-lc at x € X if, given 2ny neigh­

hou~hood U of x, there is a neighbourhood V of x contained in U 

such that every n-dimensional ~ech-cycle on V bounds on U. X :Ls 1d1 

2t x if it is r-lc at x for all rsn, and it is lc00 at x if it is 

r-lc at x for all r. 

If X fails to be lc00 at x, then x :Ls an lc 00 -singular oo:Lnt 

of X. An lc 00 -prime part of Xis a component of the closure of the 

set of all 1 -singular po:i.nts of X. 

Wilder [2] proved the following theorems 

'I. ( Wi J.der [2 J ) , Let X be a compact Hausdorff sp2ce of f'i­

nlte dimension all of whose Betti numbers are flnite and whose lc00-

rr:tme parts are acycl:Lc ( ch homology with coefficlents in a 

If f X------Js- X is continuous and maps each lc 00 -pr:lme part in",:o an 

1c00 - prime part, and if the Lefschetz number /\(f) to, then there 

s an l - prime par~ of X which is mapped onto itself, In parti-

culer, i_f the lc 00 - pririe parts of X heve the f.p.p. for continu­

ous mappings, then X has a fixed point under f. 



2.(Wilder [2] ). Let X be as in theorem 'L Let f be an upper 
semi-continuous mapping such that the image of each point x € X is 

the union P(x) of a collection of lea::,- prime parts of X, such 

that this union is acyclic and such that if x and y are in the 

same lc00 - prime part of X, then P(x) = P(y). Let A(f) be de-

fined as inBegle [2] (also see p.46). Then, if/\( IO, there 

is an X€ X such that x € f(x). 
Wilder [2] conjectured that these theorems also hold if the 

restriction that the mapping sends lea::, - prime parts into lc 00 -

prime parts is dropped, provided that the lc 00 - prime parts are 

acyclic. 
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CHAPTER II 

The Scherrer fixed point theorem and 

related fixed point theorems 

2.1. Definitions and introductory remarks 

We first define some of the concepts which will be used in 
this chapter. 

A space will be called degenerate if it contains one point 
only; otherwise, a space will be said to be non-degenerate. 

Let X be a connected topological space. A point e of Xis an 
end point of X if, for each neighbourhood U of e, there is a neigh­

bourhood V of e such that Ve U and V \ V consists of a single point. 
A point c of Xis a cut point of X if X\{c} is disconnected. Two 
points x and y of X are conjugate points ( written x NY) if no point 
of X separates x and yin X. If pc Xis neither a cut point nor an 

end point of X, then the set M( p) = { x e. X I x Np} is a simple link 
of X. A subset of Xis an ~-set of X provided that it is maximal 

with respect to the property of being a connected ~ubset without 

cut points.Xis semi locally connected (s.l.c.) if, for each 
point x € X and each neighbourhood U of x, there is a neighbourhood 

V of x such that Ve U and X \ V has only a finite number of compo­

nents. If Xis s.l.c, then the simple links coincide with the E0 -

sets. A cyclic element of Xis either an end point, a cut point or 
a simple link of the space, An end element of Xis a cyclic ele­
ment E of X with the property that, if U is a neighbourhood of E, 
then there is a neighbourhood V of E such that Ve U and V \v con­

sists of a single point. 
A curve is a one-dimensional continuum. 
The reader is referred .to Whyburn [1 J for information on me­

tric continua and cyclic element theory. 
A chain in a topological space is a finite number of open 

subsets u1 ,u2, ... ,Un of the space such that u1 n u, 'f ¢ if and only 
if li-jl:,; 1. The sets ui are -called the links of the chain. A chain 

{ui} ~=1 is sa:.d to connect two points x and y if x,;:U1 and ye.Un. 
A continuum is chainable if each of its open coverings has a re-



finement which is a chain. A metric chainable continuum ~.3 ca1led 

snake-li 1:e. Each snake-like continuur,i is imbeddable i'l the ;:;lane 

(Bing[2]). 

Bing [1] proved that any two non-dec:enerate heredi tarily in-­

decomposable snake-like continua are homeomorphic. Sucb a conti­

nuum is called a pseudo arc. 

A circular chain is a finite collection of at least three non­

empty open sets u1 ,u2 , •.. ,Un such that u1 n -I¢, and otherwise 

u1 n Uj -I (j if and only if Ii-- I:,; 1. P, co11ecti.on G of sets is co­

herent if, for each proper subcollection Hof G, an element of H 

has a non-empty intersection viith an eleraent o~· J\H. A finite co­

herent collection of open sets is a tree chain if no three of the 

sets have a point in common and no subcollection is a circular 

chain. A continuum is tree-like if each of its open coverinc:s has 

a refinement which is a tree chain. '11he tree--1:Lke continua include 

among others the trees and certain indecomposable continua. Each 

plane continuum which does not contain a continuum which separates 

the plane, is tree-like. (See Bing [2] for information on tree­

like continua.) 

If X and Y are topological spaces, then a continuous mapping 

f: X-+Y js called r.1onotone i.f f- 1 (y) is 2 connected subset of X 

for every y E Y. f is Dseudo-monotone if, whenever t, and c1r" 

closed connected subsets respectively of X and Y, and :Sc f ['\], then 

some component of An f- 1 [BJ is mapped onto B by f. In genersl ~he 

notion of a pseudo-monotone mappinc is independent of the no_ian 

of a monotone mappin~, but if X 13 E hereditarily unicoheren~ con­

tinuum, and f : x-Y is monotone, then it is pseudo-r,1onotone 

(I-lard [10] ) . 
The following two unsolved proble8s play an interestinc role 

in the set-up of this chapter: 

(i) Does a plane continuum which does not separate the plane 

have the f.p.p.? 

(ii) Does a tree-like metric continuua, have the Lp.p.':' 

) . 
Most of the results to be surveyed in this chapter can he ~n­

terpreted as partial solutions of one or both of these pr □ 

as =eneralizations of such parti8l sc~lutions 

spaces er multi-valued mappin~s. This seems to be true even th 

,;ian;,r of the 11 partial results" He:0 e obtained tefore e!ther prol17_ern 



was explicitly formulated in the literature. The two problems are 

in fact different, but the second problem seems to be the more 

general one, as there exists ':!any tree-like 'lletric continua which 

are not imbeddable in the plane. 

For the sake of clarity, the results for single-valued map­

pings are grouped together in section 2, even when they were forou­

lated directly for multi-valued mappings in the original publica­

tions. The results for multi-valued mappings are surveyed in sec­

tion 3. 
If a mapping of a continuum into itself le2ves an end point 

fixed, the question arises whether there are other fixed points. 

Results answering questions of this nature are collected in section 

L\ • 

2.2. Single-valued mar:ipine;_s_ 

One of the main result,s to be stated in this section is 

1. A tree has the f.p.p. ,or con':inuous mappings. 

The history of this theorem is as follows: In 1926 Scherrer 

[1] proved t,rnt a dendrite has tlle f'.p.p. for continuous mappings. 

Nobe ling [1] ( 1932) extended this result to continuous mappings, and 

another proof was given by Borsuk [3] (1932). It also follows (for 

a dendrite and continuous mappings) from the following result due 

to Hopf [2 J , in the proof of which he made use of the structures 

of the nerves of the coverings of the considered space: 

2. (Hopf [2] (1937)). If' o. is a covering of order 2 of a uni•· 

coherent locally connected continuun X by closed sets, and 

f : X_,,.X is continuous, then there exists a member UE: 0\ such triat 

unr[u] le¢. 
Wallace [1] ( 1 ) showed that the techniques introduced by 

Hopf could also be applied to show that a tree has the f.p.p. for 

continuous mappings, and other proofs of this result were given by 

Ward [i~J ( 1951) and Cape 1 and Strother [ 3] ( 1958), by means of the 

order-tneoretic characterization of trees due to Ward [?] (1951+). 
Ward (1957) a1so defined a generalized tree in terms of partia 

order for whi::h i,e proved a fixed point theorem. Finally, theore:n 1 

fo1lows from Lefschetz's fixed point formula (Lefschetz [ (1942)). 

Ayres [1 J ( 1930) gave several extensions of Scherrer' s the ore 

to arbitrar~ Peano continua. His first theorem contains a general 
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result on the cyclic structure of Peano continua: 

3. (Ayres [1] (1930)). If Xis a Peano continuum and 

h X-* X a l,omeomorpi!l srn, then triere exists a eye li c e le men t C of' 

X such that 11[c] cc. 
From this, three generalizations of Scherrer's theorem follow: 

4. (Ayres [1] (1930)). If every cyclic element of a 

Peano continuum X r1os the Lp.p. for homeomorphisms, then X has the 

same property. 

5. (Ayres [1] (1930)). If every cyclic element of a Peono con­

tinuum Xis an n-dimensional simplex (n may vary for different ele­

ments), then X has the f.p.p. for homeomorphisms. 

6. (Ayres [1] ( 1930)), If a Peano continuum lies in the plane 

and does not separate the plane, tLen it has the f.p.p. for homeo­

morphisms. 

Borsuk [3 J ( 1932) showed that "homeomorphisms" in theorems 4 -

6 may be replaced by "continuous mappings" to give stronger results 

in the case of theorems 5 and 6. 
Kelley [1] ( 1939) extended theorem 3 to non-locally connected 

metric continua: 

7,(Kelley [1] (1939)). If X is a metric continuum and 

h X-➔X a homeomorphlsm, then there exists a subcontinuur;1 Y of X 

such that h [Y] = Y and Y has no cut points. 

From this follows 

8. ( Kelley [1] ( 1939). If X is a metric contlnuum and 

h : x___,x a homeomorphism, then there exists either a fixed point 

in X or else an E0 -set Y such that h[Y] c Y. 

9. (Kelley [1] (1939)). If every E0 -set in a metric continuum 

X has the f.p.p. for homeomorphisms, so also has X, 

If Xis semi locally connected, then the E 0 -sets and the cy­

clic elements colncide, and thus theorems 8 and 9 imply theoretns 3 
and Lf respectively. 

In 1940 Kelley [2] obtained related results for continuous 

mappings. 

'IO. (Kelley ( 1940)). If f is a continuous mapping of a ue-

tric continuum X into itself, then there exists a continuum Y 

is a subset of a simple link of X such that f[Y] ~ Y. If Y is de-

generate, then there is a fixed point: Hence, if f x~ X is on-

tinuous, then there exists el~her a fixed point ln X or else a sim­

ple link C such that C n f [c] is a non-degenerate continuum. 
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11. (Kelley [2] (1940)). If f is a continuous mappin;; of a 

tric continuum X into itself, then there exists a compact subs A 

of a simple lin1c of X such that = A. 

12.(Kelle,r [2] (1940)). If' f is , cc:mtinuous •:1apping of 8 !'.'>· 

tric continuum X into itself which carries each simple link lnto a 

simple link (e.c. if the inverse of no point separates a simple 

lint in X), then there exists a si!:,ple lin~, C of X such t11at 

:r[::::Jcc. 
For Peano continua, theoren 12 implies theorem 3, and the 

fixed point theorem for dendrites follows from theorem 10. Ward 

[3,10] (1956, 1962) showed that theorem 7 holds for arbitrary con­

tinua and for monotone and pseudo-monotone mappinrs. 

Hamilton [1] (1938) extended theorem 6 to a class of non-lo­

cally connected metric continuB and proved theorems related to theo­

rems 3 - 5 for this class of continua. 

13. (Hamilton [1] (1938)). If Xis a decomposable non-detener­

ate metric continuu,11 and h : X-> X a ho•neonorphiS"!l, then there 

exists a proper subcontinuur:i Y of :X: such that Y n f [Y] cf ¢. 
14. (Hamilton [1] (1938)). If Xis a decomposable and heredi­

tarily unicoherent non-degenerste uetric continuum and h : X......-,,, X 

homeomorphism, then there exists a proper subcontinuum Y of X such 

tlrnt h[Y] c Y. 
15, ( Hamilton ['I] ( 1938)). A heredi tariJy decomposable 2nd here­

ditarily unicoherent metric contimJ.um has the f.p.p, for homeouor­

phisms. 

Theorem 15 admits as application in the plane: 

16. (Hamilton [1] (1938)). f, hereditarily decomposable plane 

continuum which does '1ot separate the plane and whi.ch contains no 

domain, has the f.p.p. for homeomorohisms. 

17. (Hamilton [1] (1933)). If Dis a bounded, si11ply connected 

plane domain whose closure does not separate the plane end whose 

boundary is hereditarily decomposable, then D has the f.p.p. for 

homeomorphisms. 

It is un1:·•o,H, whether a plane co:1tinuum wh:t ch does not sepa ··· 

rate the plane has the f.p.p., even for homeomorphisms. Choquet ~] 

(1941) showed that :tf C is any plane continuum which does not se92-

rate the plane and h : C.......,,, C is 8 hm,1eomorphism wl1L2h ~s exten;3::.ble 

to a hoLleomorphisn of ).he plane onto itself end if his periodic 

with period cf 2, then 
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Littlewood [1] (1951) proved that a plane acyclic continuum has 
the f.p.p. for homeomorphisms which are extensible to homeomor­

phisms of the plane onto itself. 

Theorem 15 was extended to hereditarily decomposable and uni­

coherent (non-metric) continua and monotone and pseudo-monotone 

mappings (Ward [10] (1962)). In particular, a continuum each of 

whose non-degenerate subcontinua has a cut point, has a fixed 

point under a pseudo-monotone mapping. 

Borsuk [7] (1954) partially extended theorem 15 to continuous 
mappings: 

18. (Borsuk [7] (1954)). An arcwise connected, hereditarily 

unicoherent metric continuum has the f.p.p. for continuous map­

pings. In particular, an arcwise connected, hereditarily acyclic 

curve has the f.p.p. f'or continuous mappings. 

Borsuk l.c. proved that an arcwise connected, hereditarily 

unicoherent cont1nuum is hered1tarily decomposable. Thus, for ho­

meomorphisms his result is included in Ham1lton's theorem (theorem 

15 above). Theorem 18 was extended to non-metric cont1nua by Young 

[2] (1960). 
A corollary of theorem 18 is that a contractible curve has 

the f.p.p. for continuous mappings. Kinoshita [2] (1953), however, 

gave a counter-example to the w1dely held conjecture that every 

contractible continuum must have the f.p.p. for continuous mappings. 

The join of the space in his example w1th a point is a cone wh1ch 

lacks the f.p.p. 

We now consider generalizations of the fixed point theorem for 

trees to non-compact, non-locally connected spaces. Young [1] (1946) 

defined a generalized dendrite as a locally connected Hausdorff 

space X such that if x,y,: X and and L2 are two chains of con-

nected subsets from x toy, then some member of L1 1ntersects some 

member of L2 outside [x,y}. If Xis compact, this is equivalent 

with X being a tree. Young proved that every two distinct points x 

and y of a generalized dendrite X are the non-cut points of a unique 

compact, connected and locally connected set P such that each point 

of P , { x,y} separates x and y in X, and he called such a set P a 

arc". To avoid confusion with the term pseudo arc as defined 

on p.67, we shall use the term generalized arc instead of 

arc\". Young l.c. obtained the following generalizations of the fixed 

point theorem for trees: 
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19, (Young [1] (1946)). If Xis an arcwise connected general­

ized dendrite such that the union of any monotone increasing se­

quence of generalized arcs of Xis contained in a generalized arc 

then X has the f.p.p. for continuous mappings. Conversely, if Xis 
an arcwise connected generalized dendrite which has the f.p.p. for 

continuous mappings, then the union of any monotone lncreasing se­

quence of generalized arcs of Xis contained in a generalized arc. 

By the introduction of local connectivity by a change of topo­

logy, Young used theorem ·18 to deduce 

20. (Young [1] (1946)). If Xis an arcwise connected Hausdorff 

space such that the union of any monotone increasing sequence of 

arcs is contained in an arc, then X has the f.p.p. for continuous 

mappings. 

Ward [8] (1959) obtained a result that includes the above-­

:nentioned theorems of Borsuk and Young ( theorems 18, 19 ( first 

part) and 20). A ~o;eological chain is a contlnuum whlch has exactly 

two end points. A topological space is said to be ~.12:Y 
chained if, for every two distlnct points x,yE X, there is a topo­
logical chain in X which contains both x and y. Let X be a topolo­

gically chained space in which the topological chains are unique, 

1.e. every two distinct points x,yE. X are the end points of 

precisely one topological chain, denoted by [x,y]. A ray with end 

~ e of Xis the union of a max1mal nest of chains which have e 

as common end point. If R is a ray with end point e and x E X, let 

Consider the condition 
(Fe) If Risa ray with end point e, then KR has the f.p.p. 

for continuous mappings. 
We now state Ward's results. 

21. (Ward (1959)). If Xis an arcwise connected Hausdorff 

space in whlch the union of any nest of arcs is contained in an arc, 

then the arcs in X are unique and X satisfies (Fx) for each x EX. 

22:- (Ward [s] (1959)). An arcwise connected, heredttar:lly uni­

coherent continuum satisfies (Fx) for each x E. X. 

23, (Ward [8] (1959)). Let X be a topologically chained space 
with unique chains and suppose there exists a point eE X such that 

(Fe) is satisfied. Then X has the f.p.p. for continuous mappings, 
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From theorems 21 and 22 it follows that the class of continua 

for which theorems 18, 19 and 20 hold, is contained in the class 

for which theorem 23 holds. 

Hamilton [4] (1951) introduced a riew technique by making ex­
plicit use of the fact that a chainable continuum has arbitrarily 

fine open coverings, each of whose (finite collection of)elements 

are totally ordered, to present an elegant proof of 

24. (Hamilton [4] (1951)). A chainable continuum has the f.p.p. 
for continuous mappings. 

Actually Hamilton proved the theorem for snake-like continua 

only, but a slight modification of h:1.s arguments yields a proof of 
theorem 211 .• 

Dyer [2] (1956) obtained the following extension of Hamilton's 
result: 

25. (Dyer [2] (1956)). The topological product of an arbitrary 
family of chainable continua has the f.p.p. for continuous mappings, 

Theorem 24 was generalized in another direction also. A sna 1{,e-­

like continuum is, by definition, the inverse limit of a system of 
arcs, and it is not hard to prove that if a space is the inverse 
limit of a system of arcs, then it is a chainable continuum, as was 
observed by Rosen [ 1] ( 1959). However, it is unknown whether a 
chainable continuum is the inverse limit of a system of arcs. Rosen 
established the following partial extension of theorem 24: 

26. (Rosen [1] (1959)). Let X and Y be the inverse limits of 
systems of arcs over directed sets A and A' respectively (defini­
tions as in Ellenberg and Steenrod [ 1] ) , and let cp : A-,,. A I be an 

isomorphism, i.e. <fl is one-to-one-, o. s; r in A implies <p(Ol) _s; <p(~) 
in A1 and cp[A] is cofinal in A1 • Let f,g: X-+Y be continuous 
mappings of which g is onto. Then X has a coincidence point under 

f and g, i.e. there exists a point x 0 e X such that f(x 0 ) = g(x0 ). 

Theorem 26 was in turn partially extended (and pro,erly ex­

tended in the special case where Y = X and g : X - X is the iden­
tity mapping): 

27. (Mioduszewski and Rochowski [1] (1962)). Let {x()\,lT(l(~•A} 
be an inverse system of compact polyhedra {x 01 }0t .. A over a directed 
set A, where the projections lT cxp : X (> - X0 (ex s; (3) are continuous 
and onto, and such that, for every continuous mappin; f of Xr on­

t~ Xcx, there is a point x~ E: Xp such that f(xp) = lTcxp (xp). 



74 

Then the inverse limit of the syste {x"' , TTar, ,A} has the f .p.p, 

for continuous mappin::_;s, 

Both theorem 26 and theorec1 27 L1ply 0:he fi;:ed p'.)int theorer.: 

for snake-like continua. Theorem 27 also has the follouing interest­

ing corollary: 

23. (Mioduszwes1ci c1nd Rochows 1:i [1] (1962)). Let { lT°'P'A} 
be an inverse s;:rster.i of compact polyhedra such that c: Xp for 

all ex, p € A with cx.s; F· Let {1TO(p Ioc,~e:J\ be retractions, Le. Trc<r-,I 
is the identity mapping on X°', End let e8ch X 0 (ae: A) have the 

f~P!>P~ fo:' continuous napptngs,. r.r;·1cn t:'1e i~r1er.se lir;iit of 

{xa, 1Tocr-,'A} has the f,p,p. for co:1:·:nuous ·1appings, 

Mioduszweski and Rochowst;:i ['I _j stated the :t"'ollowing probleri 

which includes the question whether 3 tree-11'.,e continuu:n h3s the 

f,p.p,: If all the Xe< :i.n the inverse syste,n {x0t,TTa1 ,fa,} have the 

f. p. p, for continuous •nappings, and the 1r"'f; are c, does the in··· 

verse limit of the system have the J'. )J. p.? 

2 ,J. Multi-valued mapplE_~ 

Wallace showed that the techni.cues introduc,0;d by liopf [2](see 

theorem 2 of section 2) could be apr~ied to extend the fixed point 

theorem for trees to a certain cless of mult:i.-valued mepp:i.ngs. 

"'L (Wallace [1] (1941)). A tree has the Lp,p, for uppe1° semi­

:,ontinuom, continuum--valued r,1appinr:,;s. 

Capel and Strother [3] ( ) used order-theoretic methods to 

give another proof of theorem 1, Theore7 1 also follows from Begle'c 

extension of the Lefschetz f::.xed point t'"ieore,1 (Dec;le [ 1 J ( 1950); 

see section 3 of Chapter I). 

Attention has aJ.reedy been drawn to the fact that, to ensure 

~he existe~cc of fixed poii1ts under ort~~r8r:r loserl set-v2luea 

.ncppinz_s, j_ 5.s 1~ccess2ry tc i.r.1pose 1.r;:r,eT Sf?'.T1l-cc,nti·LTuity 

lower semi-continuity on the mappings (O'Neill [3] (1 see 

section 4 of Chapter I). Furthermore, the spcces which have the 

fgp. ~ for continuous losed set--vEl11cd !~99,1.~ss cc:1stitute 2 fr __ r­
ly sr::sll subcloss of tl·':ose wr.ich hcive -~:··1 e f.,p'"'p°' for (sin.cle--vJ8liJCC) 

continuous mappincs. For exa~ple: 

2, (Pluc1kett [1] (1956)). (a) dendrite has the f.p.p, for 

:::ontinuous closed set-valued u2ppi1r1:i, 
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(b) Conversely, if a Peano continuum hc:s t 1,e f .p.p. _:'01· cc 

tinuous closed set-valued mappings, tJ;en it is a dendrite. 

Theorem 2(2) was extended to non-metric continua: 

J. (Ward [1] (1958)). A topologically chained 1), hereditari­

ly unicoherent and hereditarily decomposable continuum has the 

f.p.p. for continuous closed set-valued □appings. In particular, 

since an arcwise connected, here di tarll:,r unicoherent continuum 

contains no indecomposable contim;.um (0. 0 • 3orsu1= [7,p,17]L suer 

a space has the f.p.p. for continuous closed set-valued nappings. 

The arc1·,ise connected metric continua which have the f .p.p. 

for upper semi-continuous continuum-valued r.1appings are character­

ized by hereditary unicoherence: 

4. (Ward [9] (1961)). An arcwise connected metric cont1nuur'1 

has the f ,p.p. for upper semi-continuous continuum-valued mappL1gs 

if and only if it is hereditarily unicoherent. 

Thus, for Peano continua the class of spaces which have the 

f.p.p. for continuous closed set-valued mappings coincides with 

the class of spaces possessing the f.p,p. for upper semi-continu­

ous continuum-valued mappings. 

We now turn our attention t'.:l snake-like continua. Ward [6] 
(1958) showed that Hamilton's arrument in the case of single­

valued mappings (Hamilton [1+] (1S51)) can also oe applied to con-­

tinuous set-vnlued mappings. In fact it c2n be extended to choin-­

able continua, as was observed by Rosen [1] (1959). 
5, (Ward [6] (1958), Rosen [1] (1959)). A chainable con+:i:rnm1 

has the f,p.p. for continuous closed set-valued mappings. 

Rosen l,c. established results which in the metric case are 

generalizations of theorem 5 both with respect to the class of map­

pinc:s and the class of spaces. 

6. (Rosen [1] (1959)). Let X anr3 Y be the inverse limit 0° 

systems of arcs over directed sets A and A' respectively (defini­

tions as in Eilenberg and Steenrod [1] ) . Let cp: f\ ~A I be 8;1 Lrn­
morphisc,, Le. '-P is one-to-one, Ol,; r i:1 A implies (p(cx) :'S: cp(r.J) :'.n 

A I and cp [!' J is co final in A 1 • Let ;f( denote tloe '."e1;1i l.y of ,:or,­

empty closed subsets of Y., and let ;,C : X----;; J'(Y) be upper setd.­

ccmtinuous mappings such that :.:; is ont::i and the c;raphs of f and ;_~ 

are connected subse'.;s of Xx Y. T11en X h2s a co-l_.1clde;1ce p•J:i. 

1) See p. 72 for the definitfo·:·. 
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f and g, i.e. there exists a point x 0 ~ X such that f(x 0 )n g(x 0 ) / ¢. 
Corollary. Let X be a snake-like continuum and f : X~J'(X) an 

upper semi-continuous mapping such that the graph off is connected. 

Then X has a fixed point under f. 

7. (Rosen [1] (1959)). Let X and Y be as in theorem 6. Let~ 
denote the family of non-empty subcontinua of Y, and let f,g: 

X --➔ i'(Y) be upper semi-continuous mappings of which g is onto. Then 

X has a coincidence point under f and g. 

Corollary. A snake-like continuum has the f.p.p. for upper semi­

continuous continuum-valued mappings. 

8. (Rosen [1] (1959)). Let X and Y be as in theorem 6. Let 
f : X---+ J'(Y) be continuous, and g : X __ .....,. d'(Y) upper semi-continuous, 

onto and such that the graph of g is connected. Then X has a coin­

cidence point under f and g. 

Theorem 8 implies theorem 5 in the case of snake-like continua. 

2.4. Fixed end points 

There are a few isolated results in the literature of fixed 
point theory which state sufficient conditions for the existence of 

more than one fixed point when the existence of at least one is 

known. 

1. (Schweigert [1] (1944), Wallace [2] (1945), Ward [1,3] 
(1954, 19~6)). Let X be a continuum, and E an end element containing 

no cut points of X. Let f be a monotone mapping of X onto itself 

such that f [E] = E. Then X \ E contains 2. non-empty subcontinuum with­

out cut points. 

Corollary. If X is a tree and E 0- { e } , e being 2,n end point of 

X, then there exists a fixed point off distinct from e. 

2. [1] (1946)). Let X be a generalized dendrite 4 ) such 

that the union of any monotone increasing sequence of generalized 

arcs 4 ) is contained in a generalized arc. Leth be a homeomorphism 

of X onto itself, and ea point of X which is fixed underhand 

which is an end point of every generalized arc containing it. Then 

there exists a point x / e which is fixed under f. 
0 

In particular, the conclusion of the theorem holds if 

ized dendrite" is replaced by "arcwise connected Hausdorff space" 

and "generalized arc" by "arc". 

-··----~~~1::l~-t~_'.:nalogous to the Markov-Kakutani theorem (see section 

1) See p.71 for the definitions. 



77 

7 of Chapter I) was obtained by Wallace [3] (1949) and Wang [1] 
(1952). Wallace Le. considered a continuum X and a group Z which 

is required to be a topological space (but not necessarily a topo­

logical group). Let a continuous function f : Z X x-x be given 

which satisfies: 

(i) f(e,x) = x, for all x e.X, where e is the unH element of Z; 

(H) f(z,f(z',x)) s= f(zz',x), for all xE-X and all z,z 1 E- Z. 

For each z.;. Z, set z(x) = f(z,x), for all x E:. X. Then Z can be 

considered ("somewhat incorrectly") as a group of homeomorphisms 

acting on X. 

A subset A of Xis called Z-invariant provided that z[A] = A 
for all z e Z. Wallace proved 

3. (Wallace [3] (1949)). 
(a) If Z is Abelian, then there is a non-empty Z-invariant sub­

continuum of X which has no cut points. Moreover, there e::ists ~ 

non-empty Z-invariant cyclic element in X. 

(b) If Z is Abelian and no proper subcontinuum of Xis Z-in­

variant, then X has no cut points. 

(c) If Z is connected and metric, then every end point and 
every non-degenerate cyclic element of Xis Z-invariant. 

Wallace Le. raised the following question: If X is 2. Peano 

continuum and G is a compact transformation group of X such that an 

end point of Xis G-invariant, do there exist other G-invariant 

points of X? Wang [1] (1952) solved the problem for spaces ~nuch r:10re 

general than Peano continua by proving the following theorem: 

4. (Wang [1] (1952)). Let G be a transformation group of an 

arcwise connected Hausdorff space X, and let e be a G-invariant end 

point of X. Then there is no other G-invariant point of X if and 

only if, for each neighbourhood U of e, the set G[u] = u{g[u]/gE-G} 

coincides with X. If G is also compact, then there exists a G-inva­

riant point of X distinct from e. 
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CHAPTER III 

Miscellany 

3 .1, Partially ordered sets and spaces_ 

3.1.1. Ordered sets 

A relation$ on a set Pis a quasi-order on P if it is re­

flexive and transitive. If it is also anti-symmetric on P, i.e. if 

x 5 y and y .:': x can never occur simultaneously, then _:,; is a partial 

~ on P. If for every x,yE P we have either x5y or y~x, then 

Sis a total (also, linear) order on P. We write x<y if x-s,y and 

x / y. A mapping f : P----:l> P is isotone provided f(x) .s f(y) for all 

x,y£P such that xsy. 

The fixed point theorems of Abian and Brown [1] ( 1961 )( hence -

forth referred to as AB [1]) for partially ordered sets include 

most of the previously known results as well as the more or less 

simultaneously published results of Pelczar [1] (1961). Their 

proofs are based entirely on the definHions of partially and well­

ordered sets, and except in the case of theorem 1r and corollary 1.1 

below, make no use of any form of the axiom of choice. 

Let P be a set, partially ordered by~ • Let f : P---+ P be a 

mapping, For each a E: P, an a-chain Cr is a subset of P satisfying 

the following cond.it ions ( AB [1]) : 

(1) Cr is well ordered, with a as its first and r as its last 

element; 

(2) if z E. C and z I- r, then f(z) € C , z < f(z), and there r r 
exists no y € Cr for which z < y < f(z); 

(3) if T is a non-empty subset of Cr, then sup T' exists and 

is an element of Cr, 

Let W(a) ""·{re: PI 3 an a-chain Cr having r as its last element}, 

From (2) it follows that W(a) = {a} except when a< f(a), The 

set a) has the following properties (AB [1 
(i) If r E. W(a) and Cr is an a-chain with last element r, then 

crcw(a), 
(U) If r€ W(a) and r < f(r), then E. a) , 
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(iii) If r,se W(a) and Cr is an a-chain with last element r, 

then either s e Cr or r < s. 

(iv) If re W(a), there is just one a-chain Cr with last ele-

ment r, namely {x e W(a) I x s r} • 

Thus, for given P, f and a, Cr is uniquely determined by r. 

We now state the main results of AB [1] • 

1. (AB [1]). Let P be a partially ordered set, f a mapping of 

Pinto itself, and a an arbitrary element of P. Then 

(4) W(a) is well ordered with a as first element. 

Moreover, if c = sup W{a) exists, then 

(5) W(a) is an a-chain with cits last element, and 

(6) c{f(c). 

2. (AB [1J ; also see Pelczar [1] ) • Let P be a partially 

ordered set in which 

(7) if W is a non-empty well orde:'.'ed subset of P, then sup W 

exists. 

Let f : P~ P be an isotone mapping such that 

(8) there exists an element a.;: P such that as. f( a). 

Then there exists at least one element c e: P such that 

c = f(c}. In fact, c = sup W(a) is such an element. 

Corollary 1. (AB [1], Knaster [1] (1928), Tarski [1] (1955); 

also see G. Birkhoff [1, p.54] ) • Let f : P-4- P be an isotone map­

ping of a complete lattice into itself. Then x 0 = f(x 0 ) for some 

XO£ p • 

Corollary 2. (AB [1J ; also see Pelczar [1] ) • Let P be a 

partially ordered set in which 

(9) every non-empty well ordered subset W of P which is bounded 

above has a sup. 

Let f: P~P be isotone and let there exist two elements a,beP 

such that 

(10) a ;:!;f(a):!> f(b)~ b. 

Then there exists ce:P such that f(c) c and a!'.cs.b, In 

fact, c = sup W{a) is such an element. 

Corollary J. (AB [1],a.Birkhoff [1, p.54, example 4] ). If f 

is an isotone mapping of a conditionally complete lattice into it­

self and if there exist two elements a, b € P such that 

asf(a)::; f(b)~b, then f(c) = c for some ce.P with a,;;csb. 
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3. (AB [1],G.Birkhoff [1, p.1+1r, example 4] ), Let P be a par­

tially ordered set in which 

(11) sup of every non-empty well ordered subset W of P exists. 

Let f : P - P be a mapping such that 

(12) x :s f(x), for all x E P, 

Then there exists at least one element c E P such that c=f( c). 

In fact, for each a E P, c = sup W(a) is such an element, 

4. (AB [1] ) , Let P be a partially ordered set in which 

( 13) each non-empty well ordered subset W c P which is bounded 

above has a sup. 

Let g P- P be a mapping such that 

(14) if g(x)-<g(y), then x< y for every two elements x,yE P, and 

(15) for x,y,s E P, if g(x) s s sg(y), then g-1(s) f ¢, 
Let f P->P be isotone, and let 'shere exist a,b E P, with a <b, 

satisfying 

g ( a) :S f ( a) and f ( b) ~ g ( b) • 

Then there exists at least one element c E P such that as c,:;; b 

and f(c) = g(c). 

Corollary lt, (AB [1] ). If in theorem 4 instead of (14) we 

assume that g is isotone, then the conclusion of theorem 4 remains 

valid prov:!.ded P is linearly ordered, 

The results of Pelczar [1] actually are sJ.ightly weaker than 

those of' AB [1] , e .g, instead of ( it is assumed that the sup 

of every non-empty subset of' P exists. 

The foJ.lowing generalized form of' corollary 1 above was 

proved by Tarski [1] ( 1955): 

5. ( Tarski [1] ) • Let L be a complete lattice and F a commu­

tative f'amiJ.y of isotone mappinBS of L into itself. Let Q be the 

set of all common fixed points of L under F, i.e. 

Q ,~ { x E: L j f'( x) = x for all f E F } • Then Q is a non-empty complete 

lattice, 

Davis [1] (1955) showed that the property of having the Lp,p, 

f'or isotone mappings is also sufficient for a lattice to be com­

plete. 'l'hus 

6. (Davis [1] ) . A lattlce ls complete if and only if it has 

the f'.p.p. for continuous mappings. 



81 

Wolk [1] ( 1957) obtained an analogous characterizatfon for a 

class of partially ordered sets which includes the lattices. Let P 

be a partially ordered set with a greatest and a least element. A 

subset S of P is up-directed [down-directed J if each pair of ele­

ments of S has an upper bound [a lower bound J in S. P is Dedekind 

complete if each up-directed subset of P has a sup in P and each 

down-directed has an inf in P. 

For AC P, let 

A*= {x E p \ a :c:: x for all a E A } , and 

A+ = {XE p j x,:;; a for all a£ A} , 

Pis uniform if is a down-directed set for every up-direct-

ed subset A, and if B+ is an up-directed set for every down-direct-· 

ed subset B. An isotone mapping f : P- P is directable if 

{ x E. P I x s; f(x)} is an up-directed subset of P. 
It is easy to verify that a complete lattice is a Dedekind 

complete, uniform, partially ordered set with a least and a great­

est element, and that every isotone mapping of a lattice into it-­
self is d:Lrectable. Thus the following theorems of' Wolk [1] :Lnclude 

the theorems of Tarski [1] (for the special case when F in theorem 
5 above consists of a single mapping) and Davis [1] 

7. (Wolk [1] ) . If P is a part'..ally ordered set such that each 

up-directed_ subset of P has a sup in P, then P has the f.p.p, for 

directable functions, 

8, (Wolk [1] ) . If P is a unifcrm partially ordered set which 

has the f.p.p, for directable functions, then Pis Dedekind com­

plete. 

Hence we have 

9, (Wolk [1] ) . A uniform partially ordered set is Dedekind 

complete if and only if' it has the f',p,p. for directable functions. 

Theorem 7 :Ls a direct consequence of theorem 2 (Abian and 

Brown [1] ) . 
Ward obtained a necessary and sufficient condition 

for a class of partially ordered sets, which includes the lattices, 

to be compact (in the interval topolo:::;y) ln terms of' the f.p,p, for 

isotone mappings. A partially ordered set P ls a semi-lattice if 

each pair of elements of P has an inf ln P. A semi-lattice is co111.::. 

if each non-empty subset of P has an inf in P. ,mrd 1 s results 
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are 
10. (Ward [5] ) . Let P be a semi-lattice and f : P-+P iso­

tone. If Pis compact in the interval topology, then the set Q of 
fixed points of P under f is non-empty~ If Pis a complete semi­
lattice, and QI¢, then Q is a complete semi-lattice. 

11. (Ward [5] ) . A semi-lattice Pis compact in the. interval 
topology if and only if P has the f.p.p. for isotone functions. 

3.1.2. Ordered spaces 

Let X be a topological space endowed with a quasi order :S. 

The quasi order is lower [upper] semi-continuous if, whenever a :$ b 

[b ~ a] in X, there is a neighbourhood U of a such that if x e. U, 

then x:_$b [b~x]. The quasi order is semi-continuous if it is 
both upper and lower semi-continuous. It is continuous if, when­
ever a~b in X, there are neighbourhoods U and V of a and b res­
pectively, such that if x e: U and y€ V then x :j;y. A quasi ordered 
topological space (QOTS) is a topological space together with a 
semi-continuous quasi order. If the quasi order is a partial or­
der, then the space is a partially ordered topological space 

(POTSl, 
For x e: X, let L(x) == { a e: XI a~ x} , M(x) == { a e: X j x ~a} , 

E(x) == L(x) n M(x). 
Clearly, the statement that Xis a QOTS is equivalent to the 

assertion that L(x) and M(x) are closed sets, for each x e: X. 
A chain of a quasi-ordered set Xis a subset of X which is 

totally ordered by the quasi order. A maximal chain is a chain 
which 1is prope:il-ly contained in no other chain. 

For information on ordered topological spaces, see Ward [1] 
and the papers quoted there. 

In 191r5 Wallace [2] proved the following fixed point theorem, 
which he applied to obtain an extension of the Schweigert theorem 
(Schweigert [1] ) : 

1. (Wallace [2] ). Let X be a compact Hausdorff QOTS, satis­
fying: 

(i) there exists a unique element e £ X such that es; x for all 
X £ X; 

(ii) each set L(x) is totally ordered; 



(iii) for every two elements x and y distinct from e, there 
exists an element z e: X such that z ::' x and z :Sy. 

If f is a homeomorphism of X onto itself such that both f and 
f- 1 is isotone, then there exists an element x 0 / e in X such that 

both x 0 s f(x 0 ) and f(x 0 )sx0 • 

If~ is a partial order on X, then x0 is a fixed point dis­

tinct from e. 
Ward [1] (1954) continued along these lines and used the re­

sults to obtain fixed point theorems for continuous mappings of 
hereditarily unicoherent continua (Ward [1,4,7,9,10] ), already 
referred to in Chapter II. .le now state Ward I s results: 

2. (Ward [1]), Let X be a Hausdorff QOTS with compact maxi­
mal chains and let f : x- X be continuous and isotone. A necessa­
ry and sufficient condition that there exist a non-empty compact 
set Kc E(x ) for some x .:. X, is that; there exist x.:. X such that x 

0 0 
and f(x) are comparable, Le. such that either x :Sf(x) or f(x)::x. 

Corollary 1. If Xis partially ordered, then a necessary and 
sufficient condition that f has a fixed point is that there exist 
x e X such that x and f(x) are comparable. 

If Xis a partially ordered set with an element e£ X such 
that e !!i: x for all x E: X, and A is a subset of X, we say that A is 
bounded away from e provided there is ye.X \E(e) such that AcM(y). 

3. (Ward [1] ) . Let X be a Haus,dorff QOTS with compact maximal 
chains and suppose there exist e e: X such that e,,; x for all x ..: X. 

Let f : X-+ X be a continuous and isotone mapping which also satis­
fies: 

(i) there exists x£X\E(e) such that x and f(x) are compar­
able; 

(ii) if x satisfies (i), then either the sequence {fn(x)J~=1 is 
bounded away from e, or there exists y€ X such that 
X€ E(f(y)) and f(y)~ y. 

Then there is an x0 e: X \ E( e) and a non-empty compact set 
Kc E(x 0 ) such that f [K J = K. 

Corollary 2. If Xis partially ordered, then there is a fixed 
point under f distinct from e. 

Corollary·3. Let X and f be as in theorem 2, and suppose X sa­
tisfies the equivalent conditions 
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(i) there exists u € X such that L(u) = X, 

(ii) for x.,ye:X, there exists ze:.X such that x:£z and y:£z. 

Then there is a non-empty compact set KcE(x 0 ), for some x0 E. X, 
such that r[K] = K. 

Corollary 4. Let X and f be as in corollary 3, and let X be 
partially ordered. Then X has a fixed point under f. 

Corollary 5, Let X be a compact Hausdorff QOTS satisfying (i) 
and (ii) of corollary 3, as well as 

(lU) there exists e €. X such that es x for all x f,X, and E(e)/X. 

Let f : X->X be continuous, isotone and onto. Then there is a 

non-empty compact set KcE(x 0 ), for some x 0 e:. X'.E(e), such that 

f[K] = K. 
Corollary 6. Let X and f be as in corollary 5. If Xis partial­

ly ordered, then there exists a fixed point distinct from e. 

In concluding this section we remark that the "long line" has 

the f.p.p. for continuous mappings, as follows from a more general 
result by Young [1] (1946). 

3,2. The product of spaces 

If X and Y are topological spaces, each of which has the f.p.p. 

for continuous mappings does their topological product also have 

this property? (Strother [1] (1953)). In general, this is not true 

(Connell [1] (1959), Klee [5] (1960); also see section 5 of this 

chapter). However., Cohen [1] (1956) showed that the answer is in the 

affirmative if X and Y are totally ordered sets which are compact in 

the interval topology. Since a compact, totally ordered space has 

the f.p.p. for continuous mappings if and only if it is connected, 

Cohen's result may be stated as follows: 

1, (Cohen [1] ). If X and Y are compact connected totally or­

dered spaces, then their topological product has the f.p.p. for con­

tinuous mappings. 
Since a compact connected and totally ordered Hausdorff space 

is a chainable continuum (see p.66 for the latter), the above result 

is a special case of the following simultaneously published result 

of Dyer [2] (1956): 
2. (Dyer [2] ). The topological product of an arbitrary family 

of chainable continua has the f.p.p. for continuous mappings. 

To prove theorem 2, Dyer first showed that the roduct of a 

finite family of chainable continua has the f.p.p. for continuous 

mappings. Theorem 2 then follows from this result and the following 
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simple but useful fact: 

3. (Dyer [2 ]) • Let rfe be a family of compact Hausdorff spaces. 

Then the topological product of the elements of Jr has the f.p.p. 

for continuous mappings if and onl~r if. the topological product of 

each finite subfamily of JJ, has the f .p.p. for continuous mappings. 

Theorem 1 is related to a result of Ginsburg [1 J ( 1954), who 

proved that if X and Y are totally ordered sets, each of which has 

the f.p.p, for similarity transformations (i.e. one-to-one trans­

formations 2.!}_to), then also both the direct sum and the Cartesian 

product XxY (ordered lexicographically) have the f.p.p. for simi­

larity transformations. 

3,3. ~perspaces 

Let X be a continuum, and Y'( 

of the non-empty closed [non-empty 

of X, with the finite topology. 

[~(x)] the space consistinr 

closed and connected] subsets 

1. (Kelley [3] ( 1911-2)). For any metric continuum X, t3 (X) is 

an AR if ( and only if) X :ls locally connected. Hence, :lf X is a 

locally connected metric continuum, then 6'(X) has the f .p .p. for 

cont:lnuous mappings. 

2. (Capel and Strother [1] (19':'i6), Hammond Smith [1] (1961)). 
If Xis an ANR*, then both J'(X) and t3(X) have the Lp.p. for con­

tinuous mappings. 

3. (Segal [1] (-1962)). If X is a snake-like continuum, then 

&(X) is an acyclic quasi-complex in the sense of Lefschetz 

[5, p.323] and hence has the f.p.p. for continuous mappings. 

PROBLEM (Segal [1] ) • For what class of continua is S(X) a 

quasi-complex (Lefschetz [5]) or a semi-complex (Browder ? 

3 .1+. Non-continuous mappJ~ 

Nash J (1956) defined a connectivity mapping of a space X 

into a space Y as a mapping f X-+ Y such that, if A is a con-

nected subset of X, then f /A is a connected subset of Xx Y; equi­

valently, f x-y is a connectivity mapping if and only if the 

i.nduced mapping f*: X----,.XxY, defined by f*(x) cc (x,f(x)) for all 

x"' X, transforms connected subsets of X onto connected subsets of 

Xx Y. Obviously, a continuous rnappi.ng f : X--►Y is a connectivity 

mapping. On the other hand, there are connectivity mappings of the 
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n-cell into itself, for each n 2: 2, which are not continuous (Hamil­

ton [5] ('1957)). Nash ['1] inquired whether the n-cell has the f.p.p. 

for connectivity mappings. Hamilton l.c. answered this question af­

firmatively 1 ), by introducing the concept of a peripherally con­

tinuous mapping. A mapping f : X--;,. Y is saj_d to be Eeripherally 

continuous if, for each x EX and for each neighbourhood V of x and 

each neighbourhood U of f(x), there exists a neighbourhood W of x 

which is contained in V and such that f maps the boundary of Win­

to U. Hamilton [5] showed: 

1. (Hamilton [5] ). A connectivity m~~ping of then-cell into 

itself, n-2: 2, is peripherally continuous. 

2. (Hamilton [r:s] L Then-cell, n;;,,2, has the f.p.p. for peri­

pherally continuous mappings. 

It is easy to see that the one-cell has the f.p.p. for con­

nectivity mappings. Hence we have: 

3. (Hamilton [s]). Then-cell has the f.p.p. for connectivi­

ty mappings. 

It is not known whether a peripherally continuous mapping of 

the n-cell into itself, n 2: 2, is necessarily a connectivity mapping. 

The following is an example of a peripherally continuous mapping of 

the one-cell I= 1] into itself which ls not a connectivity map­

ping and which has no fixed point for x rational, let f(x) =}, 
and for x irrational, let f(x) = ¾. (Hamilton [5]). 

Hamilton l.c. also gave an example of a mapping g of' then-

cell into j_tself', for any n 2: '!, such that 

(1) g carries connected subsets of onto connected subsets 
of en; 

( 11) g* sends connected and locaUy connected subsets of on-

to connected subsets of Cnx 

(iii) g is not a connectivity mapping; 

(iv) g is not peripherally continuous; 

(v) en has no fixed point under g. 

Stallings J (1959) observed an error in Hamilton's proof of 

theorem 1. He remedied this defect and introduced other types of 

non-continuous transformations for which he proved fixed point theo­

rems. We now state these definitions and theorems. 

1), As was noted 
contains an error. 
is true. 

] Hamilton's proof of theorem 'I 
l.c. showed that the theorem 



A function f : X-► Y is a local connectivity mappins if there 

exists an open covering { u .. } a€ A of X such that, for each Ol.: 

fju~ is a connectivity mapping of U~ into Y. 
A E9lyhedron Pis understood to be a finite simplicial complex 

K together with a geometrical realization jKj. A subpolyhedron Q of 

P is a subcomplex L of K, together with the geometrical realization 

IL I which is identified with a subset of I KI 1n a canonical way. 

The Carteslan product P x Q of the po]yhedra P = (K, I KI) and 

Q = (L, jLj) is given by the product K x L of' their respective com­

plexes ( as defined in Ellenberg and Steenrod [1, p ,67 J ) , and a geo­

metrical realization jK x LI which is identified in a canonical way 

with IK\x!LI, so that the projections jKxL/---PIKI, jKxL -ILJ 

are induced by simplicial mappings K x L ➔ K, K x L-➔ L; and so that 

the diagonal fl of j KJ x \KI is the geometrical realization of a sim­

plicial complex D which is isomorphic to K, and (D, I:::,) is a subpo­

lyhedron of P x P. 

For convenience, the polyhedron P = (K, jK\), the simplicial 

complex Kand the geometrical realization \Kl will henceforth be 

considered as one and the same. 

If Pis a polyhedron, then a subset N of Pis a polyhedral 

open set 1.f P \ N is a subpolyhedron of P. 

Let P and Q be polyhedra, A function f : P----+Q ls Q.?_lyhedrally 

almost continuous if, for each polyhedral open subset N of P x Q, 

such that f c N, there exists a contlnuous functlon g P-*' Q such 

that g c N. 

Let X and Y be topological spaces. A function f x-Y is 

almost continuous if, for each subset N of Xx Y such that f c N, 

there exists a function g : X - Y such that g c N. 

A polyhedron Pis locally peripherally connected if, for each 

p E P and each neighbourhood U of p, there exists a neighbourhood V 

of p, such that V c U and the boundary of V is connected. 

Let Ck+'I denote the k+'I k closed unit ball in E , and let S be 

its k-sphere. A metric space (X, p) is uniformly locally 

n-connected if, for each e > O, there exists a 6 > O such that, f'or 

each x e:. X and each :Lnteger k, O,; k 5 n, and each cont lnuous functlon 

f : sk--,,.u6 (x) = {YEX I p(x,y)<6{ , there is an extension off to 

a continuous mapping f* : ck+'I_➔ u,_ (x). 

Stallings proved the following theorems 
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4. (Stallings [1]). Let P be a polyhedron, Na polyhedral 

open set in P x P. If P has a fixed point under every continuous 

mapping g: P-P for which c;cN, then P has a fixed point under 

every polyhedrally almost continuous mapping f : p.....-,,. P f'or which 

f' c N. 

5. (Stallings [1]). Let X be a Hausdorff' space and Nan open 

subset of Xx X. If X has a f'ixed point under every cont:tnuous map­

ping g : x- X for which g c N, then X has a fixed point under every 

almost continuous mapping f : x-x for which fcN. 

6. (Stallings [1] ). If f: P-;,,Y is a local connectivity map­

ping of a locally peripherally connected polyhedron Pinto a regu­

lar Hausdorff' space Y, then f is peripherally continuous. 

This is a generalization of Hamilton's theorem 1. 

7. (Stallings [1] ),. Let P be a locally peripherally connected 

polyhedron of dimension n and X a u.1.iformly loca 1ly ( n-1) -connected 

metric space. Let f : P-·➔ X be peripherally continuous. Then f is 

almost continuous. 

Corollary 1. If Pis a polyhedron of simplicial dimension n 

which is of Menger-Urysohn dimension ;z 2, and f P-➔ X is a con­

nectivity mapping, where Xis uniformly locally (n-1)-connected, 

then f is a1rnost continuous. 

Corollary 2, If' P and Q are polyhedra and f : p---,,.Q_ is a con-­

necti vi ty mapping, then f is polyhedrally almost continuous. 

Combining corollary 1 and theorem 5, we have: 

8. ( Stallings [1] ) • Let P be a polyhedron of Menger-Urysohn 

dimension ;:.:: 2, and N an open subset of P x P. If P has a fixed point 

under every continuous mapping g : P-+ P for which g c N, then P has 

a fixed point under every connectivity mapping f : P--➔ P for which 

f C N' 

Combination of corollary 2 and theorem 4 gives 

9. (Stallings [1] ) . Let P be an arbitrary polyhedron and N a 

polyhedral open subset of P x P, If P has a fixed point under every 

continuous mapping g : P - P for which g c: N, then P has a fixed 

point under every connectivity mapping f : p........,,. P for which fc N. 

For the set N occurring in some of the above theorems we ~ay 

of course take the product space X x X ( or P x P). 
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3.5. Comnactness and fixed points 

In this section we shall consider single-valued mappings only, 

and we shall say that a space X has the f.p.p. if it has a fixed 

point under every continuous mapping f : x- X, 

The question whether there exists a relation between compact­

ness and the f.p.p. was considered by Klee [2] (1955) and Connell 

[1] ( 1959). Although for most fixed point theorems the compactness 

of the space is assumed, in general compactness and the f.p.p. are 

only vaguely related. For example, there exists a Hausdorff space 

which has no compact subsets except finite sets, and yet it has the 

f.p.p. (Connell [1] ) • De Grgot [1] (1959) obtained the result that 
there exists a farni1y ,J' of 2- topological1y distinct subset:3 of the 

Euclidean plane (£ denotes the potercy of the rea1 number system), 
each of which has potency£, is conrected and locally connected, 

contai.ns no compact subsets except countable ones and has the f .p ,p. 

T'hese sets are rigid, i.e. if XE ::f and f x- X is continuous, 

then e:L ther f is a constant mapping ::ir the identity mapping. 

However, in some cases it is possib1e to stipulate a necessary 

and sufficient condition for the f.p,p. to hold in terms of com­

pactness. Thus 'l'ychonoff [1] (1935) )roved that a compact convex 
subset of a locally convex topologic:11 linear space has the f.p.p., 

and Klee obtained the following partial converse of T'ychonoff 1 s 

theorem: 

1. ( Klee [ 2 J ) . If' X is a lo ca Ly convex metric topological 

linear space and K is a non-compact convex subset of X, then K 

lacks the f.p.p. 

It is unknown whether Tychonoff 1 s theorem or theorem 1 holds 

in an arbitrary topological linear space. 

By a topological ray is meant a homeomorphic image of the 

half-open :l.nterval [o,1Jwith the usual topology. 'rhe fo11owing 

fact follows easily from a slight extension of the Tietze mapping 

theorem: 

2. (Klee [2]). If S ls a norma1 space which contains a topo-

1ogica1 ray as a closed subset, then there is a fixed point free 

null-homotopic mapping of S into S. 

Klee [2] applied this result to show that certain spaces lack 

the f .p .p. ',ie recall the followine; definitions in order to formu­

late these results A subset B of a topo1ogical linear space Xis 
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bounded if, for each neighbourhood U of the zero element of X,there 

is a number t such that Be tu. A set is linearly bounded if 1 ts in­
tersection with each line is bounded. A topological linear space is 

locally [linearly] bounded if 1 t contains a non-empty [linearly] 
bounded open subset. 

3. (Klee [2 J ) . Let X be a topological linear space and H a 
convex subset of X. Then if at least one of the following state­
ments is true, H must contain a topological ray as a closed subset: 

(1) Xis locally convex and His unbounded; 
(11) Xis metric and His not complete in the natural uniformi­

ty; 

(111) Xis isomorphic to a subspace of a product of locally li­
nearly bounded topological linear spaces, and some bounded 
subset of H fails to be precompact (for the latter, see 

Kelley [4,p.198 J ); 
(iv) His closed, locally compact and unbounded; 
(v) Xis locally convex and metric, and His non-compact; 

(vi) Xis locally bounded and His non-compact. 
Combining 2, 3 (v) and Tychonoff's theorem, we have: 

4. (Klee [2] ), For a convex subset Hof a locally convex me­
tric topological linear space, the following conditions are equiva­
lent: 

(i) His compact; 
(ii) H has the f.p.p.; 

(iii) no closed subset of His a topological ray. 

Theorem 4 and its proof are analogous to work of Dugundji [1] 
(1951). He showed that if C and Sare respectively the unit cell 
and the unit sphere of an infinite-dimensional normed linear space, 

then C can be retracted onto S, whence C must lack the f.p.p. 

Kakutani [ 4] ( 194 3) and Klee [1] ( 1953) showed that in a large 
class of infinite-dimensional normed linear spaces, the unit cell 
actually admits a homeomorphism onto itself without fixed points. 
In fact, for any infinite dimensional normed linear space X there 
exists a homeomorphism of period two without fixed points of X on­
to X which maps C onto C, (Klee [4] (1956)). From a result of Klee 
[2, theorem 5 .8, p .44 J it follows that every convex subset H of a 
normed linear space such that His non-compact, closed, locally 
compact, and at least two-dimensional, admits a homeomorphism onto 
itself without fixed points. On the other hand, since the unit cell 
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of a reflexive Banach space Xis compact in the weak topology of X, 

it has the f.p.p. for weakly continuous mappings. 
Klee also established the following results: 
5. (Klee [ 2 J ) . Let X be a non-com.pact, connected, locally 

connected, locally compact metric space. Then X contains a topolo­
gical ray as a closed subset. 

If Xis a space which has the f.p.p., then Xis connected, and 

every retract of X also has the f.p.p. Hence 
6. (Klee [2] ). If Xis a non-compact, locally connected lo­

cally compact metric space, then X lacks the f.p.p. 

From 2, 5 and known properties of' ANR's (Lefschetz [6] ), we 

have 

7. (Klee [2] ). Let X be a locally compact, connected metric 
absolute neighbourhood retract. Then Xis compact if and only if 

every null-homotopic mapping of X into X has at least one fixed 

point. 
Connell [1] def1ned a cha1n of arcs as a countable set of arcs 

{ A} 00 1 = {[ .. b ,cJ}CXJ 1 such that c = b +" for all n. The follow-n n"' n r n= n n , 
ing result of Connell ls a consequence of theorem 5 

8. (Connell [1] ) . If X :i.s a r.1etric space with the f.p.p.,then 
every locally finite cha:i.n of arcs :ts fin1te, 

For, :i.f { 
then thelr unj_on A 

is aJocally fin1te :i.nf1nite cha1n of arcs in X, 
U is a non-compact,connected, locally 

n=1 
connected, locally compact metr:i.c space. Hence f, must contatn a to-
pological ray T as a closed subset, by 5, and since A is closed in 
X, T ls closed in X. Hence X cannot have the f.p.p., accord:i.ng to 

We recall here the following f:i.xed point theorem of Young [1] 
(1946) for (not necessarily compact) arcw1se connected spaces: 

9. (Young [1] ) • If X is an arcwise connected Hausdorff space 
in which the union of every monotone increas:i.ng sequence of arcs 
is contained in an arc, then X has the f.p.p. 

Young [2] (1960) used th:i.s result to obtain the following ne­
cessary condi ti.on for a space not to have the f. p. p.: 

10. (Young [2] ) . Let M be an arcw:i.se connected continuum wh:i.ch 
lacks the f.p.p, Then M conta:i.ns either 

(1) a continuum N1 for which there is a continuous mappins 
f : ----+ s1 (the one-sphere in E2) which 1s onto and such that no 

closed proper subset of N1 :Ls mapped onto s1 by f, and which is 
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such that at most one point of s1 has a non-degenerate inverse,that 
inverse being connected; or 

(11) a continuum N2 which contains_ a subset R which is the one­
to-one continuous image of a half-open interval and which is dense 
in N2, but which has no interior relative to N2; or 

(iii} a continuum N3 which is the union of a set R which is the 
continuous one-to-one image of a half-open interval, and a conti­
nuum B, and for which there is a continuous mapping f : N3-K, K 
being the union of the circles x 2 + y 2 = £ y, n = 1,2,3, ••• , such n 
that f is one-to-one on N3\B, such that f [BJ= {(o,o)}, and such 
that no closed proper subset of N3 is mapped onto K by f. 

Examples. 

( a) Connell [1] • This is an example of a Hausdorff space which 
contains no compact subsets except finite sets and yet has the f.p~. 
Let X = [o, 1] and let U be the collection of all subsets S of X such 
that there exists a set A, open in the usual topology of X, and a 
countable (infinite or finite) set B so that S = A\B. Then (X,U) 
is a topological space with the above·mentioned properties. 

That (X, U) has the f .p.p. follows from the following fact 

(Connell [1]): 
Let X be a set and V' a topology for X such that { X, V") is a 

regular space with the f.p,p. Let Ube a stronger topology for X 
(i.e. A£ V' implies A E: U ) such that if R ~ U, then the closure of R 
is the same in both spaces. Then (X,tl) has the f.p.p. 

(b) Connell [1] • This is an example of a non-compact metric 
space U which has the f.p.p. and yet UxU lacks the f.p.p. U is lo­
cally compact at all but one point. Let f(x) = sin 11"/(1-x) for 

0:fx <1, f(1) = 1. Let U = {(x,f(x))I O.Sx:f1} and let U have the 
relative topology as a subset of the plane. 

It is easy to see that Uhas the f.p.p. To show that UxU lacks 
the f.p.p., Connell constructed an infinite, locally finite chain of 
arcs in U x U (see theorem 8 of this section). 

(c) Connell [1]. This is an example of a non-compact, sepa­
rable, locally contractible metric space V which has the f.p.p. Let 
I = {(x,y)E E2 I 0:fxs1, y = O}, and for each integer n~1, let 

0 2 1 co 
I = {(x,y)E:E Ix= - , 0:fy~1}. Let V = U I. It is not diffi-n n n=O n 
cult .to prove that V has the f.p.p., and it also follows at once 
from theorem 9 above. 
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(d) Connell [1] • This is an example of a non-compact plane 

set W which has the f.p.p., while the closure of W lacks the f.p.p. 

Let A be the square (not including its interior) with (0,-2), 

(4,-2), (4,2) and (0,2) as its four corners. Let A1 = 
=A\{(o,y)l -1<y<1}, B={(x,y) O.sx:5:1, y=sin;} and 

W = A1 U B. W has th.e f.p.p. Now, W 0= A UB, and if B is projected 

onto {(o,y)I -1<y<1}, and A is rotated through 90 degrees, then 

we have a continuous mapping of W into itself without fixed points. 

(e) Klee [2] (1955), [5] (1960). Klee constructed a non-com­

pact plane set X which combines the properties of the spaces in the 

examples ( -- (d) of Connell [1] (1959). In addition, X is an abso­

lute retract which is locally compact at all but one point.(Compare 

theorem 6). 
Let 1 2 be the Hilbert space consisting of all sequences 

1 2 . 00 0 
x = (x ,x·, ••• ) of real numbers x 1· such that L I I c.< oo. Let Y 

be the set of all points y = ~ ,y2 , ... ) of such that y 1 f O for 

at most one i and always O.sy1 .:;;1. If {tis the origin (o,o,. .• ) of 

1 2 and 6 is the point of 12 such that 6n = 1 and 61 = 0 for i In, n n n 
then Y is the union of the segments crn = [ 'i:r, 6nJ having the common 

end point iJ', Obviously Y is contraetible and locally contractible. 

Further, Y has the f.p.p. (The latter follows, e.g. from theorem 9 

above.)) 
2 2 In the product space 1 x l, let P be the infinite polygon 

whose vertices, in order, are as follows: (i.'.r,61), (61 ,i'.r), (0-,62 ), 

(62 ,ir), •.• .,(t'./;611 ), (6n' ., •••• It is easy to verify that Pis a 

closed subset of Y x Y , P a topo logi ca 1 ray. Hence Y x Y lacks the 

f.p.p., according to theorem 2 of this section. 

It remains only to describe a bounded plane homeomorph X of Y 

such that X lacks the f.p.p. For each tE [o, TT]and each positive 

integer n, let xn(t) = (1 + ¾) cost and yn(t) = (-1f1(1 + ¾) sint. 

Let T 11 denote the arc consisting of all points ( t), yn(t)) for 

tE. lTJ Then each arc Tn has (1, as an end point and 

is homeomorphic with Y. But X contains the unit circle S 

and admits a retraction onto S. Hence X does not have the f.p.p. 

( f) Boland [1] • This example shows that II locally compact" in 

theorem 6 cannot be replaced by "peripherally compact". (A topolo­

gical space is peripherally compact if each of its points has arbi­

trarU.y small neighbourhoods with cor.1pa ct boundaries.) 



For each integer n ~ 1, let Kn be the subset of E3 consistinc; 

of all points ,y,z) such that 

either 

Let K 
0 

'I 2p+1 (O:sp:S F<~y::, r: 2n 

or .:L / + 2n 

z = o, z;,: 0 

{(x,y,z)E: E3 i 0:Sx :s1, y=O, Z=O}' 
CX) 

A = U K • n=O n 

1 
--2 
4n 

L 

' 

Then A is a non-locally compact, peripherally compact and lo­

cally connected space which has the f.p.p. The latter follows,e.g., 

from theorem 9 above. 

3.6. Fixed point classes and essential fixed points 

Two fixed points x 1 and of a topological space X under a 
continuous mapping f : x--,. X are said to be in the same fixed point 

class (with respect to f) if there exists a path P from x 1 to x 2 
such that Pis homotopic to f[P] with the end points fixed. (Nielsen 

~] (1927)). Nielsen's theory of fixed point classes for the orien­
table closed surfaces of genus 2 2, the elementary parts of which is 

summarized below, was generalized to the finite polytopes by Wed::en 

[1] ( 1939), using the Leray-Schauder theory of the fixed point in•­

dex for these spaces (Leray-Schauder [1]). Browder [s] (1960), re­
sorting to the theory of the fixed point index as extended by him­

self (see section 2 of hapter I), observed that these results may 

be extended to Hausdorff spaces which are compact, connected, local­

ly pathwise connected and semi-locally simply connected, the latter 

meaning that each sufficiently small Jordan curve is contractible. 

Then each fixed point class is open in X, and since the set S(f) of 

fixed points of X under f is compact, there are only finitely many 

fixed point classes, and each component of S(f) ls contained in a 

fixed point class. Each fixed point class corresponds to the fixed 
I\) 

points of X which are covered by the fixed points of X, the univer-
n.1 

sal covering space of X, under one of the 111appings f which covers f. 

Since each fixed point class is open in S(f), an index can be assis­

ned to it, and the classes with a fixed non-zero index are deformed 
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into one another under homotopies off. 

The "stability" of a fixed point was studied by Fort [1 J 
(1950), Kinoshita [1] (1952), O'Neill [1] (1953) and Browder [4] 
( 1960). Let X be a Hausdorff space and' let XX denote the space of 

continuous mappings f : x- X, with the compact-open topology. Let 

pe: X be a fixed point under fe: XX. Then p is an essential fixed 

point if, for each neighbourhood U of p, there exists a neighbour­

hood V of f such that U has a fixed point under gl U for all g e V 

(Fort ~]).Then, e.g., the closed unit interval has no essential 

fixed points under the identity mapping. Fort 1.c. showed that if 

f E: XX, p e: X and p has arbitrarily small neighbourhoods V such that 

V has the f,p.p, and f [v] c V, then pis an essential fixed point 

under f. 

The notion of an essential fixed point was generalized by 

Kinoshita [1] and O'Neill [1] : A component C of the fixed point 

set S(f) is essential if all mappings g close to fin the compact­

open topology have fixed points in a prescribed neighbourhood of C. 

Kinoshita showed that every continuous null-homotopic mapping f of 

an ANR into itself has an essential fixed point. O'Neill extended 

this result by showing the essentiality of any component of the 

fixed point set of a mapping with non-zero index. 

Browder [4] considered the following stronger question: Let X 

be a Hausdorff space, U an open subset of Xx I ( I denotes the 

closed unit interval [0,1] ), Fa continuous mapping of U into X. 

Let lf be the natural projection of Xx I into X, lVt the partial in­

verse of 1T defined by 4't(x) = (x,t) for all XE X. If f 0 = F ~ 0 , 

f 1 = F 4'1 , and we are given a component C of the fixed point set 

S(f0 ) of the mapping f 0 of 4' ~1 [UJ into X, does there exist a. con­

nected set c1 in Xx I which contains C x { 0} , intersect.s X x: { 1} , 

and is composed of points (x,t) e: c1 for which F(x,t) = x? 

Let Ut = lj't [u] , ft = F 4't : Ut-+ X. The above question es­

sentially asks for a connected set of fixed points of i\ under ft, 

0 .$ t 5.1, which contains the given component C of fixed points under 

f 0 • It is the natural generalization of the question of the exist­

ence of a continuous fun ct ion cp : I~ X such that cp ( t) € t\ for a 11 

t e: I, and ft( <j,(t)) = cp(t), with ~ (o) € c. There are trivial coun­

ter examples to the existence of su,:·h functions cp, for instance 

small deformations of the identity mapping of an even dimensional 

sphere. 
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Browder [4] used the theory of the fixed point index to es­

tablish the following theorems, which encompasses the results of 

Kinoshita [1] and O'Neill [1] : 
1. (Browder [4] ). Let X be a Hausdorff space, U an open sub­

set of Xx I, F a continuous mapping of U into a compact Hausdorff 

space Y lying in a category A for which a fixed point index is de­

fined. (Thus Y may be an ANR"" , a neighbourhood retract of a con-

* vexoid space, or an HLC space,) Let G be a continuous mapping of 

Yx I into X, H the mapping of U into X given by H(x,t) = 
,= G(F(x, t), t). Let 4't be the natura.l in;jection of X into Xx I, 

~t(x) = (x,t), Ut = ~t1 [u], ht= H ~t mappinE Ut into X. Suppose 

that ht has no fixed points on the boundary of Ut for t E: L Let 

U' ~, G-1 ru] , U1 = \lf- 1 rur] , f = F 4J , . g = G 1.ji • Suppose that L' o o L' .. o o o o 
i(f g ,0 1 ) ~ o. (In the case in which X itself lies in A, we may 

0 0 0 
make the simpler assumption that i(h ,U) ~ o.) 

,) 0 

Then there exists a connected s•➔ t c1 in U intersecting both 

X x{o} and Xx{1} such that ht(x) = x for all (x,t)i:: c1 • 

Corollary. Let X be an ANR -U:, 0 ctn open subset of X, f a con­

tinuous mapping of 0 into X having no fixed points on the boundary 

of 0. Then if i(f,0) ,} 0, f has an essential component of fixed 

points in 0. 

2. (Browder [4] ) . Let X be a locally convex topological Hne2r 

space, U an open subset of Xx I, F a continuous mapping of U into a 

compact convex subset K of X. Sup~ose_ that ft = F \Jlt has no fixed 

points on the boundary of Ut = Y1t [ u_l for t E: I, and i( f 0 , U0 ) -/ o. 
Then there exists a compact connected set c1 in U intersecting both 

Xx{o} and xx{1} such that f,..(x) =x for all (x,t)e: c1 . 

3. (Browder [4] ) . Let x"be a Hausdorff space, U an open sub­

set of Xx I, F a continuous mapping of U into a compact space lying 

in a category A on which a fixed point index is defined, Ga conti­

nuous mapping of Y x I into X. Let H be the continuous mapp:i.ng of U 

i.nto X given by H(x,t) = G(F(x,t),t). (x,t)E: U. Let Ut = '-l1t 1 [u], 
ht= H ~t· Suppose that ht has no fixed points on the boundary of 

Ut, for all t E: L Let C be a component of the fixed polnt set of h0 

and suppose that the following condition is satisfied: 

If u1 = o~ 1 [u], u~ = 4'- 1 [u 1J and e; 0 = GI.IJ 0 , f 0 = F 4'o' the 

mapping f 0 g0 is de 0 lned on U~, which is an open subset of Y. Let 

C1 = g;1 [c]. Then there exists a neishbourhood V of C' in Y such 

that for any open subset v1 conta:tned in V and contBining c• for 
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which f 0 g0 has no fixed points on the boundary of 

1(f0 g 0 ,V1 ) / O. 

, we have 

Then there exists a compact connected set c1 in U which con­

tains Cx{O}, is composed of points (x,t) for which (x) = x, and 

intersects (Xx{1} )u( Xx{o} \c x{O}). 

The condition of theorem 3 is expressed bri.efly by saying that 

Chas a non-null index with respect to . Theorem 3 then becomes 

the statement that each component of the fixed point set of h0 with 

non-null index is contained in a component of S, the set of (x,t)EtU 

for which H(x, t) = x, which intersests X x { 1} . 

A particular case in which the condition of theorem 3 is satis-
fied is that i.n which C is a single point with non-null index 

with respect ~o h0 • 

3. 7. Contractive mappin~_ 

The following well-known theorem is due to Banach [1] ( 1932) 
Let (X, p) be a complete metric space, and f : X-J> X a continu-

ous mapping for which there exists a number k, 0 < k < 1, such that 

p(f(x),f(y)) <le p(x,y) for all x,yEX. 'I'hen X has a unique fixed 
point under f. 

This theorem was extended in various ways, and has wide appli­

cations in analysis. An expository account together with a large 

number of appHcations may be found in the paper of NemyckiI [1] 

( 1936) and in chapter 2 of Miranda [1] ( 1949). For more recent re­

sults the reader is referred to Deleanu [1] ( 1957), Luxemburg [1] 
( ), ll.lbrecht and Karrer [1] ( 1960), Manna [1 J ( 1961) and Edel-
stein [1, 2 J ( 1961, 1962). 

Brodskil and Milman [1] (1948) obtained fixed point theorems 
for non-expansive and non-contractive mappings of a compact metric 

space wit.h.normal structure into itself, (See Dunford and Schwartz 

[ 1, p ,l+59 J for a summary of their results.) 

3.8. Mappings of spheres into Euclidean spaces 

The following theorems have been the starting-point of extens-
1.ve investigations on the exlstence of coincidence points under map­

pings of spheres into Euclidean spaces: 

1, (:Sorsulc [Lr] (1933)), If f: 

there ls a pair of a.ntipodal points x, -x E. 

is continuous, then 

such that f(x) = -x) ' 
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2. (Lusternik-Schnirelmann [1] (1930), Borsuk [4] (1933)). For 
every covering of Sn by n+1 closed sets, there is at least one mem­

ber of the covering which contains a pair of antipodal points. 

3. (Kakutani [3 J ( 1942)). Let f : s2-----► E1 be conUnuous. Then 

there exist three orthogonal points , a1 , a2 e such that 

f(a 0 ) = f(a 1 ) = f(a 2). 

The reader is referred to Yang [1,2] (1954, 1955) for far-­

reaching generalizations of these theorems and a complete biblio­

graphy of their development. Theorem 1 was also extended to multi­

valued mappings of Sn into En (Jaworowski [1] (1956), and to Banach 

spaces in the case of single-valued mappings (Krasnoselskii [2] 

(1950), Altman [1](1958) and Granas [2]( 2)). 

3 .9. Periodic mappl_ngs 

If Y is the set of all fixed points of a metric space X under 

a periodic mapping of X into itself, what topological properties of 

Y can be deduced from those of X? Co~siderable work in answering 

this questfon has been done since 1934 by Smith (see e.g. Smith [1]). 
The spaces most thoroughly studied have been the Euclidean spaces 

and spheres. The motivating question is to determine to what extent 

does a periodic homeomorphism of or of resemble an orthogonal 

transformation. In particular, is it equivalent to an orthogonal 

transformati.on? Smith showed that for many homology properties and 

prime periods, the conjecture is correct. Thus, if Y is the fixed 

point set of a periodic homeomorphism of [sn], then Y is in 

some sense homologically similar to [ Sr J for some r '.Sn. The 

reader is referred to Smith [1,2], Floyd [1,2,3] , Swan and 

Borel et aL [1] for further information. 
In striking contrast with the results for Euclidean spaces is 

Klee 1 s result (Klee [3] (1956)) which states that if Y is a compact 

[closed] subset of an infinite - dimensional Hilbert space X, then 

X admits a peri.odic homeomorphism whose fixed point set is Y 

homeomorph1.c to Y J . 

J.10. Almost fixed points 

There are several theorems to the effect that if f is a rnappinc 

elf a space X into itself, 'che 'chere ls at leest one point £ X 

which in some sense is near to its image f( ) . Usuelly either Xis 
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non-compact and lacks the f.p.p., or f is non-continuous, and in 

the compact case the property that there exists a point which is 

"near• to its image is equivalent to the f.p.p. 

The first three theorems below are examples of the first men­

tioned possibility. 

1. ( Hopf [2] ( 1937)). Let X be 8 uni coherent topological space 

and~ a covering of order two of X by closed connected sets. Let 

f : x-,,, X be continuous. Then there exists a member U of a such that 

Un r[uJ /, ¢, or equivalently: there exists a point x0 e X such that 

x 0 and f(x 0 ) lie in the same member of ct • 

2. (Fort [2] (1954)), Let G be a bounded open subset of the 

Euclidean plane E2 which is homeomor:;ihic to the open unit disk 

D { x E E2 I II x JI < 1} and whose bounda:•y is locally connected. Let 

f G~G be contlnuous. Then for eaeh e>O there exlsts a polnt 

x "' x(e} e .G such that llx-f(x) II < s. 

Inspectlon shows that Fort's proof is equally valid for the 

following assertion: 

3. (Fort [2] ) . Let d be a positive number and let 

Bn = {xe Enj II xii <d}. Let f: En--,,. be continuous. Then for each 

£ > O there exists a point x E Bn such that ![x-f(x)IJ < £. 

Klee's results (Klee [s] (1961)) fall under the second catego­

ry. ThBy extend the fixed point theorems for continuous mappings of 

compact convex subsets of local1y convex topological linear spaces, 

described in dhapter I, to "nearly continuous" mappings of such 

spaces. 

For c.:>O, a mapping f of a topological space X into a metric 

space (M, p) is cal1ed £-continuous if each point x EX has a neigh­

bourhood U such that diam r[u]::Sc. For 6;,; o, a 6-nxed point un­

der a mapping f: M----+M is a point x€.M such that p(x,f(x)hb; f 

is called a 6 -mapping if each point of M is b -fixed uncler f. 

( Klee [ 8 J ( 1961)) • 

Klee obtained the following results: 

4. (Klee [s]L Let P be a compact convex polyhedron i.n a Eucli-

dean space, and f P-----0- P c: -continuous. 'rhen there ex:l.stcJ a conti-

nuous mapp:1.ng g P----0-P such that [\g(p)-f(p)II::; E. for all pE. P. Con-

sequently some point of P :l.s E -fixed under f. 

5, (Klee [3] ), Let C be a compact convex subset of a normed 

1:l.near space, f C----;;. C i::-continuous, and £ 1 > E, Then some point 

of C is £ 1-fixed under f. 
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A metric space Mis said to have the proximate fixed point 

property ( p .f .p .p.) if, for each E > 0 there exists "e > 0 such that 
M has an E-fixed point under each Te-continuous mapping of Minto 
itself. 

6. (Klee [BJ). If a metric space M has the p.f.p.p., then so 
has every compact retract of M. 

7. (Klee [s] ). If a compact metric space has the p,f,p.p., 
then so has every metric homeomorph of M. 

Since an AR is a retract of the Hilbert cube, it follows from 

5 - 7 that 
8. (Klee [s]). Every AR has the p.f.p.p. 
A compact metric space which has the p.f.p,p, evidently also 

has the f.p.p. for continuous mappings. The converse need not be 
true: Klee [BJ gave an example of a plane continuum which has the 

f.p.p. for continuous mappings, but lacks the p.f.p.p. Klee [10] 
asked whether a Peano continuum which has the f.p.p. for continuous 

mappings must necessarily have the r.f.p,p, 
Generalization of the above results 4 - 8 to uniform spaces 

are almost immediate. Theorem 4 is easily extended to "nearly upper 
semi-continuous" mappings of Pinto the family of non-empty closed 

convex subsets of P. The resulting g3neralization of Kakutani's 
fixed point theorem (Kakutani [2 J ) ::an be applied after the manner 

of theorem 5 above to a compact convex subset of an arbitrary local­
ly convex topological linear space. 'rhis leads to an extension of 
the fixed point theorem for multi-valued mappings of Fan [1] and 
Glicksberg [1]. From a rather special case of that extension, the 
following fact can be deduced: 

8. ( Klee [ 8 J ) . Let X be a compact Hausdorff space which is an 
absolute retract for such spaces. Then for each open covering oc. of 
X there exists a finite open covering r of X which has the follow­
ing property: 

If f : x- X is any mapping such that each point x e X has a 
neighbourhood U for which f[u] lies in some member of r, then there 

exists a point x0 e X such that x 0 and f(x 0 ) lie in the same member 
of ex • 
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CHAPTER IV 

Almost fixed point theorems for the .t:uclide,m plane 

DEFINITION. Let X be a topological space, Fa family of map­

pings of X into itself and .0. a family of fintte coverings of X. 

Then Xis said to have the almost fixed point property (a.f.p.p.) 

with respect to F and ..0. if, for every f E. F and every a.En., there 

exists a member U€ct such that Unf[u] (, ¢. 
Note that if X is a compact Hausdorff space, then X has the 

f.p.p. if and only if X has the a,f.p.p. with respect to continuous 

mappings and finite open coverings. 

As was pointed out by Professo~ J. de Groot, it can be shown 
that the Euclidean space En has the a.f.p.p. with respect to con­

tinuous mappings and ftnite coverincs by open sets w1th compact 
boundaries. Th1s means that any cont1nuous mapp1ng of En tnto it­

self either has a fixed potnt or else there are po1nts far away for 

which the images also are far away, e.g. a translation. 

THEOREM 1. 'L'he Euclidean plane E2 has the a .Lp .p. with res­

pect to continuous mappings and finite coverings by convex open 

sets. 

REMARKS. 1. It is easy to see that a corresponding theoreG1 

does not hold for infinite (convex open) coverings. 
2. It should be possible to generalize theorem 1 by 

2 n replacing E- by E • 

We shall use the following lemma (with n=2) in the proof of 
theorem 1, 

LEMMA 1. (Fort [ 2 J ) . Let d be s positive number and let 

En = { x E: En I [\ x II < d } , Let r : Bn---+ Bn be continuous. Then for each 

i:: > O there exists a point x E Bn such that II x x) II < L. 

PROOF: Let E..>0 be given. We rDay obv:lously assume that t:. < cL 

Let en = { x E: En\ \I x IJ '5 d- E } , and define a retract ion r : En---+ 
by 

1) The results of this chapter will also be published elsewhere 

( de Groot, de Vries and van der Walt [1 J ) . 
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r(x) for x 1. Bn \en, 

for xi:: en. 

Then rflcn: c'l....cnis continuous and a®ording to the Brouwer 
fixed point theorem for the n-cell, there exists a point c € en such 

that rf(c) = c. Since l\r(x)-xJ!<c. for all xe:Bn, we have 

llc-f(c)II = llrf(c)-f(c)II < f. 

DEFINITION. A strip is the closure of an open simply connected 
set in E2 which is bounded by two parallel straight lines. Let S be 
a strip bounded by the lines L1 and L2 and let L3 be a (closed) seg­
ment, perpendicular to L1 and L2, which connects a point of L1 with 
a point of L2 • Then the closure of a component of S \L3 is called a 
half-strip. The segment L3 is called the base of the half-strips, 
and the lines [rays J bounding a strip [}ialf-strip J are called the 
~ of the strip [half-strip J . 

It is easy to verify that a convex subset K of E2 with in­
terior points has the following properties: 

(1) If K0 (the interior of K) contains a line, then it con­
tains a strip. 

(ii) If K0 contains a ray, then it contains a half-strip. 

PROOF OFnTHEOREM 1 Let f: E2---?E2 be a continuous mapping 

and a.= { Ui} i=1 a finite covering of E2 by convex open sets. We 

may assume that E2 does not belong to 0\.. Since a is a finite 

covering and E2 is unbounded, there exist pairs of different mem­
bers of ex which have unbounded intersections. Such an intersection 
satisfies either (i) or (11) above, and we choose, if possible, a 
strip in each of these intersections; otherwise, we choose a half­
strip. Divide each strip in two half-strips, such that the inter­
section of the ensuing half-strips is their common base. Let 
P1 ,P2, ••• ,Pk be the collection of half-strips. We may choose them 
such that P1 n P j (ifj) is bounded, and we shall suppose that this 
was done. Further, we choose an open disk B1 such that the follow­
ing conditions are fulfilled: 

(i) If uinuj is bounded, then u1 nujcB1 (1,j=1,2, ... ,n). 

(ii) P1 n Pjc: B1 (ifj; 1,j=1,2,. •• ,k). 

( iii) The bases of the half-strips as well -as the' potnJ;s- of: in­
tersection of the (prolongations of the)sides of t~e 
half-strips are all contained in B1 , 
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Let B2 be an open disk, concentric with B1 and such that 

131 c B2 • We shall now construct a homeomorphism q,: E2~B2 such 

that { c.p [ui]} ~=1 can be extended to an open covering of B2 • 
We shall assume that the collection of half-strips is cyclic­

ally ordered by the positive orientation of the boundary of B2,and 
that this ordering is given by P1 ,P2, ••• ,Pk "modulo k". We also 

assign an order to the sides of each Pi (i.;;1,2, ••• ,k): if we tra­
verse the boundary of B2 in the positive direction, then we pass 

from the "first side" of Pi to its "second side". 
Let Si denote the closure of that component of E2 \ 

(B1 u P1 U ••• VPk) which lies between the second side of Pi and the 

first side of Pi +1 ( i = 1, 2, ••• , k). Pi and s1 are thus constructed 

so that there exists a member Uj(i)e:Ot with the property that 

(i::1,2, ••• ,k). 

We are now ready to define the homeomorphism <p : E2- B2 • It 
will be done in such a way that Pi \ B1 
Pin (B2 \ B1 ), and Si onto Sin (B2 \ B1) 
is mapped identically onto itself, 

is contracted onto 

(i= 1,2, •.• ,k), while B1 

ze:P1~ 1 (i::::1,2, ... ,k): Let Li(z) be the line through z 
parallel to the sides of Pi, and let ri (z) = dist (z,L1(z) n bd(B1 )), 
where bd(B1 ) denotes the boundary of B1• Define fi(z) to be the 

point which divides Li (z) n (B2 '\ B1 ) in. the ratio 

ri(z) : 1 + ri(z), It is easy to verify that fi is a continuous 
one-tot..pne mapping of Pi\ B1 onto Pin (B2 \ B1), and that its in­
verse is continuous. 

ze: Si (1= 1,2, ••• ,kJ: Let ai be the point in which the pro­
longation of the second side of l intersects the prolongation of 

the first side of Pi+1 , and let aiz be the closed segment connect­
ing ai and z. Let s 1 (z) = dist(z,a1z nbd(B1)), and define g1(z) to 
be the point which divides a 1z n (B,,, B-,) in the ratio 
s 1 (z) : 1 + si(z). Then gi is a continuous one-to-one mapping of 
Si onto Sin (B2 \ B1), and its inverse is continuous. ( If Pi and 
Pi+1 are parallel, then we define g1 in the same way as f 1 was de­
fined.) 

z e B1 : Let h : B1~ B1 be the identity mapping. 

The functions f 1 ,g1 and h coincide on the boundaries of their 
domains of definition and hence f, defined by 



tp( z) = ~ f i ( z) 
gj_ ( z) 
z 
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(zE.P1 \B1 ; 1=1,2, ... ,k), 

(zE.Si; i:1,2, ... ,k), 

( z e: i31 ) 

is a continuous mapping of E2 onto B2 . ·similarly, sp- 1 is well-de­

fined and continuous; hence <pis a homeomorphism. 

For each u1 € o:., let u1 = "P[ui] , and let q:i (ex.) = { U:J.} ~='1. 

For each Uj(i) satisfying (iv)(see p,103), let Vj(i) = Uj(i) u 
( (Pi u Si U Pi+1 ) n bd(B2)). It is easily seen that the Vj(i)' to-

gether with the remaining u1, form an open covering of i:\:,2, Denote 

th:i.s covering by p -~ { Wi} ~='1. 
Let f 1 = <pf r.p • Then f 1 : B2-~ B2 is continuous and accord-

ing to lemma ·1, for each pos:!.tive integer n, there exists a po:!.nt 

Yn€ B2 such that II yn-f 1 (yn)IJ < i . Let t be the Lebesgue number 
, 1 

of :i\ with respect to p , and choose n such that n < T , According 

to the lemma of Lebesgue, there exists a set Wk€ p such that Yn, 

f'(yn)E: Wk. But Yn,f'(yn)E B2 , so that yn and f'(yn) He in the 

same member of (fl (ex,). Hence, if xn is that point of E2 for whict1 

4>(xn) = Yn' then xn and f(xn) lie in the same member of Ol • 

If the mappings are restricted to translations, then we can 

require less of the covering sets to obtain a theorem similar to 

theorem 1 : "convex open" may then bii replaced by "arcwise con­

nected". 

We shall need the following two lemmas. n 
LEMJ.lf.lA 2. Let X,.,,X2, .•• ,xrl be sets, let X U X. and let 

1 1='1 l 
f : X-+X be a mapping. Then there exists a set X. and a positive 

number k. ('!.:". i, kin) such that X. n fk [x.J I ¢. 1 
l l_ 

PROOF: For each x e: X, at least two of the n+1 elements x, 

f(x),, •• ,fn(x) belong to one and the ,same set x1 ; say 

rr(x),f 8 (x)c x1 (1:s r< s5n). Then fr:x)E. x1 n rs-r [x1J . 
LEMJV!A 3. Let P. be an arcwise con1ected subset of E2 , and let 

f : E2 -+ E2 be a translation, such that there exists a positive 

integer k with An fk[A] I¢. Then An f' [I1] 'f ¢ also. 

PROOF: Let f be given by f(x) = x+a, for all XE. E2 , where 

a E: E2 is a fixed vector. We may suppose that the posltive X-axis 

has the same direction as a. Let k be the smallest positive inte­

ger such that A n fk [A] f ¢. Suppose k > '1. We are going to derive 
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a contradiction. There exists a point be: A such that b+ka € A also, 
and we can find an arc J, contained in A, which connects band 
b+ka, Let 

P {(x,y)e:J 

Q, {(x,y) £ J 

Since J is compact, P 

( U, V) € J ~ y 2! V } 

(u,v) e. J =} y:5v} 

I¢ and Q, I¢. (P and 

and 

Q, contain respect-

ively the "upper extreme" and "lower extreme" points of J.) Since 

J n f[JJ = ¢, J is not a segment, and since it is compact, we can 
find a point pc. P and a point q E: Q, such that, if J 1 is the part of 

J which connects p and q (including p and q), then J 1 n P = {P} , 

J 1 n Q = {q}, and p I q. 
Let L1 and L2 be straight lines parallel to the X-axis, pass­

ing through p and q respectively, &nd let S be the strip determined 

by these lines. J 1 separates S intc two disjoint sets, each of which 

is simply connected and both open and closed ins. The same holds 

for the images of J 1 under the iterates of f. 

Since J 1 n ftJ] =¢and f[JJ is connected, any two points of 
f[JJ, in particular b+a and q+a, lie in the same part of S with 
respect to the separation by J 1 , Since f is a translation, b+ka and 
q+ka lie in the same part of S with respect to the separation by 
fk-1 [J1] • Since q+(k-2)a and q+ka lie in different parts of S 
with respect to this separation, b+ka and q+(k-2)a lie in different 
parts, Also, q and q+(k-2)a lie in the same part of S with respect 

to this separation and hence q and b+ka lie in different parts. But 
q and b+ka are connected by J, and J. c S, so that J n fk- 4 [J 1] I ¢, 
implying that A n fk- 4 [A] I ¢, in contradiction with the choice of 

k. 
DEFINITION. Let X be a topological space. Two continuous map-

pings f ,g : X ➔ X are said to be topologically equivalent if there 
exists a homeomorphism h of X onto itself such that f = h-1gh. If 

X is a metric space, then a mapping f : x ..... x is called a topolo­
gical isometry if it is topologically equivalent to a distance 

preserving mapping of X into itself. 

In the case of the plane we have the following criterium for 

a mapping to be a topological translation (Sperner [1] (1934)): A 
mapping f : E2-+ E2 is topologically equivalent to a translation if 

and only if f is an orientation preserving homeomorphism such that, 

for each set G c E2 which is the closure of a bounded domain and 



106 

whose boundary is a Jordan curve, there exists a positive integer 

N such that G () f 11 [G] = ¢ for all integers n with In) ~ N. 
We now state and prove 

THEOREM 2. 'I'he Euclidean plane has· the a.f.p.p. wi.th respect 

to orientation preserving topological isometries and finite cover­

ings by arcwise connected sets. 

PROOF: It is a well-known result that an orientation preserving 

topological isometry of the Euclidean plane is topologically equi­

valent either to a rotation or to a translation. In the first case 

there is a fixed point, and in the second case theorem 2 immediate­

ly follows from lemmas ? and 3. 

COROLLARY. The Euclidean plane has the a.f.p.p. with respect 

to orientation preserving topological isornetries and finite cover­

ings by connected open sets. 

For, a connected open subset of a Euclidean space is arcwise 

connected. 

An example orally communicated by Professor R.D. Anderson 

shows that theorem 2 cannot be extended to higher dimensions: There 

is a covering oc of E3 by four non-empty connected open sets, and a 

topological translation f: E3-E3, such that Unf[U] =¢for all 
UE>OC. 

A connected topological space trivially has the a.f.p.p. with 

respect to arbitrary mappings and coverings consisting of two con­

nected open sets. A unicoherent topological space has the a.f.p.p. 

with respect to continuous mappings and coverings consisting of 

three connected open sets. Before showing this, we prove the fol­
lowing 

LEMMA tr. Let X be a unicoherent topological space and 

OL = { U, V, W} a covering of X by three non-empty connected open sets. 
Then, if n d. = oc has two disjoint members. 

PROOF: Suppose_, on the contrary, that unv / ¢, unw /¢and 

Vii W / ¢. Then 

X 

U ri (Vu 

(U () n (u n w) 

U u (V U W) (connected summands) 

(UnV) u (UnW) (connected summands), and 
UnV(lW= 

contradicting the unicoherence of X 
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THEOREM 3. A unicoherent topological space X has the a.f.p.p. 

with respect to continuous mappings and coverings consisting of 
three connected open sets. 

PROOF: Let f : X-+X be a continuous mapping and ex= {U,V,W} 
a covering of X by three connected open sets. We may suppose that 
the empty set does not belong to ot , and that no. = ¢. Let U and V 
be the disjoint members of a given by lemma 4. Then Un W / ¢, 
V n W /¢,since Xis connected. Suppose that W n f[w] =¢.Since 

f[w] is connected and Un v = ¢, either f[WJ cu or f [wJ c v. In 
either case the theorem is proved, e.g. if f [ W] c U, then 

f[u n w Jc: f [w J c u and hence u n f [u J r ¢. 

COROLLARY. En has the a.f.p.p. with respect to continuous map­
pings and coverings consisting of three connected open sets. 

For, En is unicoherent (Borsuk [2] ). 
The question arises whether a unicoherent topological space 

has the a.f.p.p. with respect to continuous mappings and coverings 
consisting of four (or more) connected open sets. Further, can 
"orientation preserving11 be omitted from the hypotheses of theorem 
2? 

Both these questions are answered negatively by the following 
example, in which we have a covering of E2 by four connected open 
sets u1,u2,u3,u4 , and a transflection f (i.e. a reflection followed 
by a transiation in the direction of the axis of refle.~tion) such 

that u1 n f[Ui] == ¢ (1=1,2,3,4). 
Let 

V 

r(x,y) 

{(x,y)€E2 j O<x<1, -1~y<1J 

(x,y) + (2,0), for all (x,y) € E2, 

s(x,y) (x,y) + (j,O), for all {x,y) e: E2, 

W {(x,y)€ E2 I y<-1}, 

v 1 = ~ rn [v] , u 1 = v 1 u 1'I, 
n--oo 

u2= s[u1], u3 = s[u2J , 
U4= {(x,y) e: E21 y > 0} • 

The transflection f is defined as follows: 



u(x,y) 

t(x,y) 

f = tu. 
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(x,-y) for all (x,y)" E2, 

(x,y) + (1,0) for all (x,y)& E2, 

It is easy to verify that ui n r[ui] = ¢ (i='l,2,3,l+), Note 
that f reverses the orientation and that each of the intersections 

Ui n ( i/j) has countably infj_nitely many components. 

PROBLEMS. 

1. Does the Euclldean plane have the a,f,p.p. with respect to 
orlentation preserving homeomorphisms onto and finite coverings by 

connected open sets? 

2, Does the Euclidean plane have the a .f .p .p. with respect to 

continuous mappings and finite coverings by connected open sets 
such that the intersection of each pair of members of the covering 

is empty or has at most a finite number of components? 
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