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INTRODUCTION

In 1912 Brouwer [3] proved his by now classical theorem which
states that the n-cell C has the fixed point property (!.p.p.) for
continuous mappings, i.e. for every continuous mapping f : C—C
there exists a point X € C such that f(xo) = Xy This result wag ex-
tended to compact convex subsets of

(1) certain function spaces, e.g. L, [0,1] and Cn[p,ﬂj . by
Birkhoff and Kellogg [1] (1922);

(11) Benach spaces, by Schauder [1,2] (1927, 1930);
(111) locally convex topological linesr spaces, by Tychonoff'[ﬂj
(1935).

All these theorems are included in Lefschetz's fixed point
theorem (Lefschetz [1] (1926)), or in extensions of it, e.g. Lef-
schetz [5,6] (1942). From Lefschetz's theorew it follows e.g. that
an acyclic compact metric absolute retract has the f.p.p.. Lef-
schetz [5] (1942) also gave sufficient conditions for the existence
of coincidence points under two continuous mappings of one space in-
to another. These results are discussed in section 1 of Chapter I.

The second section of Chapter I is 2 survey of the Leray-schau-
der theory of the local fixed point index (Leray-Schauder [ﬁ] (1934)),
especially of Browder's extension of this theory (Browder [5] (1960)).
Lefschetz's fixed point theorem is in turn contained in ¥¢he Leray-
Schauder theory as extended by Browder.

Brouwer's fixed point theorem for the n-cell was also extended
to upper semi-continuous mappings of a compact convex subset of a
locally topologicel linear space into the family of its non-enpty
~losed convex subsets (Kakutani [2] (1941), Bohnenblust and Karlin
[1] (1950), Fan [1] (1952) and Glicksberg [1] (1952)). These theo-
rems are included in the extension of Lefschetz's fixed point theo-
ren to upper semi-continuous mappings of & compact lc-space (see p.
43) into the family of its non-ernpty closed acyclic subsets (Eilen-
berg and Montzomery [1] (1046), Begle [3] (1050)). In a recent ou-
blication Fan [3] (1061) zave sufficient conditions for the exist-
ence of coincidence polnts under upper semi-continuous mappings of
a Heusdorff space into the family of non-empty compact convex sub-

sets of a topologicel linear space. His theorems include Tychonoff's
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theorem (Tychonoff [1] ), but they do not include the above-mention-
ed extensions of Tychonoff's theorem, nor are they included in these
extensiéns.

It is unknown whether a compact convex subset of an arbitrary
topological linear space has the f.p.p., even when the gpace is me-
trizable,

Another unsolved problem bearing on section 7 of Chapter I was
referred to by Isbell [1] (1957): If F is a commutative family of
continuous mappings of a tree T into itself, does there exist a
point x_e T such that f(xo) = x, for all feF?

In Chapter II Scherrer's theorem (Scherrer [ 1] (1926)), which
states that a dendrite has the f.p.p., and its generalizations to a
wider class of spaces and mappings are surveyed. An unsolved problem
in this field is the question whether a tree-like continuum has the
f.p.p. (Bing [2] (1951)). It is also unknown whether a plane conti-
nuum which does not separate the plane has the f.p.p.

Chapter III containg miscellaneous fixed point theorems and a
general impression 1s best obtained from the section headings.

If f is a (not necessarily continuous) mapping of a topological
space X into itself, and f£(x) # x for all xe X, then it might be of
importance to know whether there exists a point X, € X which in some
sense is "near" to its image f(xo), We would prefer an "almost fixed
point property" which can be considered as an extension of the f.p.p.,
€.g. S0 that it coincides with f.p.p. in the case of compact spaces
and continuous mappings. Existing theorems on almost fixed points
are discussed in section 10 of Chapter III, and in Chapter IV we
prove the following.theorems on almost fixed points in the Euclidean
plane.

THEOREM 1. Let « be a finite covering of the Euclidean plane by
convex open setsg, and let f : Eg-u—«aE2 be continuous. Then there 1s a
member Ue o such that U N f‘ﬁﬂ ¢, or equivalently: there exists a
point X, & E2 such that X, and f(x ) 1lie in the same member of « ,

THEOREM 2. Let ¢ be a finlte covering of E by arcwise connect-

ed sets, and let f : E2—-¢E2 be topologically equivalent to an orien-

tation preserving isometry, i.e. there 1s a homeomorphism h of E2 on-
to itself and an orientation preserving ilsometry g : E2—~~>E2 such

that £ = h™lgh. Then there exists a member Ue« such that Un £[U]# ¢.
In particular this is true when « 1s a finite covering consisting of

connected open setfs.
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THEOREM 3. Let X be a unfcoherent topological space and o a
covering of X which consists of three connected open sets. Let
T : X— X be continuous. Then there exists a member Ue« such that
untlul # ¢.

An example is given which shows that "orientation preserving”
cannot be missed in theorem 2, and that theorem 3 cannot be extended
to coverings conslsting of more than three sets. The mapping of this
example is a transflection, i.e. a reflection followed by a trans-
lation in the direction of the axis of reflection, and the covering
consists of four connected open sets {Ui}iz1 such that Uyn Uy (1#3)
has countably infinitely many components. Note that a transflection
reverses the orientation. Thus we have the following

PROBLEM. Let « be a finite open covering of the Euclidean plane
EE, and let f : E2—~a£2 be continuous. Does there exist a member
Uea such that Unf[U] # ¢ in one cor both of the following cases:

(1) £ is an orientation preserving homeomorphism onto;

(11) the intersection of each pair of members of ® has at most

a finite number of components?

The results of Chapter IV will also be published elsewhere (de
Groot, de Vries and van der Walt [1] ).

We did not survey the numerous applications of fixed point theo-
rems. Therefore we mention here a few examples and references.Arnold
[1] (1949) used Bpuwer's fixed point theorem to obtain an elegant
proof of the fundamental theorem of algebra. In a description of a
model of the brain, Zeeman [1] (1962) gave an interesting applica-
tion of Brouwer's fixed point theorem for the n-cell. For expositions
of applications to functional analysis, the reader is referred to
Graves [1] (1935), Nemy&kiY[1] (1936), Rothe [5] (1939), Miranda [1]
(1949), Leray [5] (1950) and Fuller [3] (1962); for more detailed
results, see e.g. Kyner [1,2] (1956, 1958), Marcus [1,2] (1956),
Browder [6] (1957), Stokes [1] (1960) and Cesari [1] (1960).

I wish to express my gratitude to Professor J. de Groot who
suggested this study, in particular the problems which are discussed
in Chapter IV. I am grateful to the Potchefstroom University for
C.H.E. and the University of Amsterdam, at both of which institutions
I studied for several years. I am indebted to Professor R.D. Anderson
and Professor V.L. Klee for valuable remarks. I wish to thank the
Potchefstroom University for C.H.E. and the South African Council
for Scientific and Industrial Research, from both of whom I recelved
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bursaries durlng my stay in Amsterdam. I am grateful to the Mathe-
matical Centre, Amsterdam, for the privilege of being appointed a
guest member of their staff, and for the most helpful cooperation
that I received from them.
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CONVENTIONS AND DEFINITIONS

The empty set will be denoted by ¢. If X and Y are sets, and
every element of X is an element of Y, we shall write X< Y. It will
be explicitly stated whenever X is meant to be a proper sﬁbset of Y.
If X and Y are sets, then the set of all points of X which do not
belong to Y is denoted by X\ Y.

A neighbourhood of a point [subset] of a topological space is
an open set containing the point [subset] . If A is a subset of a
metric space X with metric e and ¢ is a positive number, then {xe.X[
there exists a point ae¢ A such that p(x,a)<&} will be denoted by
UE(A)_ If A is a subset of a topological space X, then A will denote
the closure of A in X. A topological space will be called compact if
every open covering of it has a finite subcovering. A compact metric
space is called a compactum.

A continuum is a compact connected Hausdorff space. A continuum
is decomposable if it is the union of two proper subcontinua; other-
wise it is indecomposable. A connecfted topological space X is unico-
herent if, whenever X = AuB, A # @, B # ¢, with both A and B con-
nected and closed in X, it follows that An B is connected. A contin-
uum is hereditarily decomposable [indecomposable, unicoheren;] if
each of its non-degenerate subcontinua is decomposable [indecompos—

able, unicoherent] .

A Peano continuum is a Hausdorff space which is the continuous
image of the closed interval [0,1] (with the usual topology). It is
well-known that the class of Peano continua coincides with the class
of locally connected metric continua, and that a Peano continuum is

arcwise connected.

A dendrite is a Peano continuum which contains no Jordan curve.
If A,B and C are three mutually disjoint subsets of a topological
space X, then C separates A and B in X if X \ C can be split into two
disjoint sets, each of which is closed in X\ C, and respectively con-
tains A and B. A free is a continuum in which each pair of distinct
points is separated by a third point. In this terminology, a dendrite
is a metric tree (Whyburn [1, p.88)). A continuum is a tree if and
only if it is locally connected and hereditarily unicoherent (Ward

[2]).
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The terms mapping , function and transformation will be used

synonymously, and a mepping f of a get X into a set Y will be deno-
ted by £ ¢+ X—>Y. Further, if AcX and Bc Y, then f[@]= {f(a)’aé A},
f_/][:B]:{xeX'f(x)eB}. '

Let X and Y be topological spaces, and let H(Y) denote the
family of 211 non-empty subsets of Y. The upper semi-finite (u.s.f.)

topology for A(Y) has as e basis for its open sets 21l sets of the
form {A E\#(Y)l AcU}, where U is an open subset of Y. The lower
semi-finite (1.s.f.) topology has ss a basis for its open sets sll
sets of the form {A e.ﬂ'(Y)[A NU # ¢} . The finite topology for JHY)
has as a subbasis the sets {AedK¥)|icU, AnV £ ¢}, with U and ¥

open in Y.

A mapping f : X—» A(Y) is called upper semi-continuous (u.s.c.)

[1ower semi-continuous (l.s.c.), oontinuous] if and only if it is

continuous in the usual sense with resvect to the upper semi-finite
[iower semi-finite, finite] topolozy for HA(Y). This means that f
is continuous if and only if it i1s both u.s.c. and l.s.c., and that
f is u.s.c. [1,s.c.] i1f and only if

each open set U of Y contsining f(x) Lsuch that £{x)nU # d:], there
exists a neighbourhood V of x such thut £(z)c U [f(z)n U # d] for
all zeV.

Ir (YY) is a subfamily of (YY), a8 mepping £ : X—> F(Y) is
called u.s.c. [las.c@, continuous] if it is continuous with res-
pect to the relative topology for (YY) induced by HA(Y) endowed
with the u.s.f. [ﬁ.s,f., finite] topology.

Various other definitions of upper and lower semi-continuity

, for each point xe ¥ and for

exist (see e.z. Strother [ﬁ] and the references given there), but
they are neerly all equivalent when X and Y sre compect Hausdorff
spaces and J(Y) is the family of all non-empty closed subsets of Y.
A mapping £ ¢ X— ¥(Y) is also called e multi-valued or a set-
valued mapping; for instance, 1if (YY) is the family of 211 non-
empty closed subsets of Y, then f is referred to as 2 "closed set-
valued nepping”. Occasionelly it will Znen be convenient to refer
to & mepping ¢ : X—> VYV 25 "single-valued",
Ir AcX, BeyY, then £[8] = U{r(x)|xer}, o7 [2]-

={xeX|f(x)nB # @}, and the graph a(f) of £ is defined to be
{(x,y) zeX, ve¥Y, ve f(x)} . Thus f[}]and a(r) are defined as sub-

sets of ¥ and X xVY respectively, and not of FP(V) and XxFY).
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Let X and Y be sets and let ¢(X) and J(Y) denote families
of non-empty subsets respectively of X and Y. Let £ : X—> T(Y)
and g : Y— P(X) be meppings. A coincidence point of X and Y un-

der f and g is 2 point (xo,yo)e X x Y such that xoeg(yo) and yef(x,).
We may also consider mappings £ : X—> J(Y), g : X—> P(Y), defined

in the same direction. Then a coincidence point of X under f and g

is @ point x_e X such that f(xo) n g(xo) # ¢#. In the special case
when Y = X and g is defined by g(x) = {x} for 211 xeX, x, 1s
called a fixed point of X under f. If ¥ is a family of functions,
each of which is on X to the same family &(X) of subsets of X,
and if X has a fixed point under each member fe % , then X is said

to have the fixed point property (f.p.p.) for the family &F
If x  1s a fixed point of X under f : X—> P(X), we shall
also say that the mapping f has a fixed point in X; also, that X,

1s en f-invariant point.

For the sake of completeness, we note that & mapping
f : X—>Y induces a mapping £* : X — O(Y) = {{y}[ Ve Y} in the
obvious way, and by a fixed point of X under f we shall mean a
fixed point of X under £*. An enalogous remark applies to coinci~
dence points.

A topological space X will be said to lack the f.p.p. if there

o

exists a continuous mepping £ : X— X such that £(x) # x for all
xeX,

Let X be a Hausdorff space and H a homology theory for X over
a gréup G. Then X 1s called acyclic (with respect to G) if the ho-
mology groups Hn(X,G) (n=0,1,2,...) are trivial, HO(X,G) being
taken augmented. A continuum is hereditarily acyclic if eacn of

its subcontinua is acyclic.

A topological space X is an absolute retract [ébsolute neigh-~
bourhood retractj if, for each normal space Y and each closed sub-

set X* of Y which is homeomorphic to X, X' is & retract [neigh—
bourhood retract] of Y. A necessary and sufficient condition for
a compact metric space to be an shsolute retract [ahsolute neigh-
bourhood retract] is that it possesses & topologicel imsze in the
Hilbert cube I“ which is 2 retract [peighbourhood retrsct] of I”.
(Borsuk [ﬁ]). A compact metric absolute retract |elsolute neigh -
bourhood retract] will be dencted by AR [ANRJ , £nd ¢ space which
is homeonorphic to a retrsct [ﬁeighbourhood retract] of a2 Tycho-

noff cube I by AR™[mR*].
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Euclidean n-space will always be denoted by E?, and the n-
sphere in Em'1 by s™.

The topological structure of the topological groups and topo-
logical linear spaces to be considered will be Hausdorff, and the
linear spaces will be real.

For other terms in general topology, homology theory and lin-
ear analysis, the reader is referred to Alexandroff-Hopf [1] , Dun-
ford and Schwartz [1] , Eilenberg and Steenrod [1] , Kelley [4],
Kuratowski [1] , Lefschetz [5,6,7] , Whyburn [1] and Wilder [1] .
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CHAPTER I

The fixed point theorems of Brouwer, Lefschetz,
Schauder, Leray, Tychonoff and Kakutani

1.1, Single-valued mappings

In one of a series of papers on curves defined by differential
equations, Poincaré [1] (1385) considered a continuous vector field
over a closed surface and assigned an integer as index to each iso-
lated singular point. He proved that if the surface is orientable
and of genus # 1, then there exists at least one singular point.

Around 1910 Brouwer Ehﬁﬂ discovered the degree of a contin-
uous mapping of one n-manifold into another. He used it to extend
Poincaré's definition of the index from two to n dimensions, and
to prove his well-known fixed point theorems for the n-cell, the
n-sphere and the projective plane:

B1. The n-cell has the f.p.p. for continuous mappings.

B2. The n-sphere has the f.p.p. for continuous mappings of
degree # (-1)"™.

B3. The projective plane has the f.p.p. for continuous map-

pings.

In 1922 Alexander [ﬁ] gave new proofs of B1 and B2, under
thé impression that they were proved for homeomorphisms only. He
also extended B3 to projective 2n-space. Almost simultaneously
Birkhoff and Kellogg [1] (1922), under the same impression as
Alexander, gave another proof of B4, and showed that it may be ex-
tended to special function spaces, namely to compact convex sub-
sets of cP [0,1] and Ly [b,ﬂ] . (See Dunford and Schwartz [1] for
definitions.) A short and elegant proof of B4 was given by Knaster,
Kuratowski and Mazurkiewicz [ﬁ] (1929) .

Another major step in the history of fixed point theorems was
the formula of Lefschetz [1] (1926). Let f be a continuous mapping
of an orientable n-manifold M, without boundary, into itself. Let
2; (i=1,2,asa,pr; r=0,1,...,0n) be a basis of the r-th homology

group HP(M) of M, taken over the rationals as coefflcients, and
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let

p
. T .
=1y r =] B
f%l"(zl") - j§’1 aij ZI" (i_1925°abxpr):

where f  denotes the homomorphism of'Hr(M) into itself inguced
by £, and the al, are rational numbers. Let trace f__ = > a .,

a 9 *P {9 ii
and A () = = (-1)¥ trace fp -

r=0
Lefschetz's theorem now asserts that A(f) # 0 is a suffi-

cient condition for the existence of fixed points of M under f.

Lefschetz [2] (1927) almost lmmediately generalized this
result to manifolds with a boundary. It was then extended to
finite polyhedra by Hopf [1] (1929), and again by Lefschetz [4]
(1937) to the AR's and ANR's, and eventually also to the HL.c*-
spaces and the quasi-complexes (Lefschetz [5] (1942)). Lefschetz
also obtained analogous formulas giving sufficient conditions for
the existence of coincidence points of manifolds under continuous
mappings. A full account of these results is given in Lefschetz
[5.6] .

IFach of the spaces considered above is a compact Hausdorff
space, with all 1ts rational Betti numbers finite and all but a
finite number of them zero. From the extended Lefschetz formula
1t follows, for example, that every ANR which is acyclic over the
group of rational numbers, has the f.p.p. for continuous mapplings.
The property of beilng acyclic alone is not enough to ensure the
existence of fixed points, as was shown by Borsuk [5] (1935) who
constructed an acyclic Peano continuum in E- which can be mapped
topologically onto itself without fixed points. Vercenko [1]
(1940) constructed a 3-dimensional continuum in E' which has the
properties of the space in Borsuk's example and in addltion is
simply connected. On the other hand, i1t has been proved by Cart-
wright and Littlewood [1] (1951) that if a topological mapping of
a plane acyclic continuum X can be extended to a homeomorphism of
the whole plane, then X must have fixed points under such a map-
ping. The mapping in the example of Borsuk [5] can be extended to
a homeomorphism of E3, so that this additional condition is insuf-
ficlent to ensure the validity of the theorem in three dimensions.

The fixed point formula of Lefschetz [1] (1920) included al-
most all the fixed point theorems existing at the time of its pu-
blication, e.g., the above mentioned results of Brouwer [ﬁ—B] .
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There are, however, fixed point theorems which escape the formula
and its extensions, e.g., the Poincaré-Birkhoff-theorem
(G.D. Birkhoff [ﬁ] (1912)). This theorem states that if f is a
homeomorphism of a plane annular ring bounded by two concentric
circles C,l and 02’ which moves all the points of Cq in one direct-
ion and all those of 02 in the opposite direction, then either
some Jordan curve J exists in the ring surrounding the circle C1
which does not meet its image f[?], or else there are exactly two
fixed points, and this in spite of the fact that A(f) = O here
(Lefschetz [7,p.167]) . (For extensions of the Poincaré-Birkhoff-
theorem, see G.D. Birkhoff [27] (1931) and Rey Pastor [1] (1945).)

In contrast to the homology arguments used in establishing
the Lefschetz fixed point formula, various authors used convexity
arguments to extend the Brouwer fixed point theorem for the n-cell
to compact convex subsets of linear spaces. Thus, in 1927 Schauder
[1] extended the results of Birkhoff and Kellogg [1] to metric to-
pological linear spaces having a linear base. This assumption was
then dropped, and in 1930 Schauder [?] obtained the following re-
sults:

S1. A compact convex subset of a Banach space has the f.p.p.
for continuous mappings.

S2. A convex, weakly compact subset of a separable Banach
space has the f.p.p. for weakly continuous mappings.

A result of Mazur [ﬁ] (1930) states that the convex closure
of a compact subset of a Banach space is compact. Krein and
Smulian [1] (1940) extended this result by showing that the convex
closure of a weakly compact subset of a Banach space 1s weakly com-
pact, and they used 1t to establish the following improved form of
S52:

S2a, If H is a closed convex subset of a Banach space, and
f ¢ H—=H is weakly continuous such that f[ﬁ] is separable and the
weak closure of f[H] is weakly compact, then H has a fixed polnt
under .

Let X be a Banach space. With thz assumption of Mazur's theo-
rem mentioned above, theorem S1 may be stated in any one of the
following three equilvalent forms:
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S1a. If £ : X—X is continuous and such that f[X] is bounded,
and the imdge of each bounded set has a compact closure, then X
has a fixed point under f.

S1b. If H is a closed convex subset of X and f : X—X is
continuous and such that f[HJ is compact, then H has a fixed point
under f.

S1c. If H is a compact convex subset of X and f : H-—>H is
continuous, then H has a fixed point under f.

S1c and S1b was extended to locally convex topological linear
spaces by Tychonoff [1] (1935) and Hukuhara [17] (1950) respective-
ly. Using the fixed point formula for ANR's (Lefschetz [5]),
Browder [ 3] (1959) obtained the following extensions of S7ia and
S1b, in which the hypothesis about the mapping is replaced by a
corresponding hypothesis about one of the iterates of the mapping:

Stat, If £ ¢ X—>»X 1s continuous and such that for some posi-
tive integer m the set fm[kj is bounded, and the image of each
bounded set has a compact closure, then X has a fixed point under

f.
S1bt,. Let H and H,I be open convex subsets of X, HO a closed

convex subset of X, HOC»Hﬁ cH, f : H—»X continuous and such that

f[ﬁ] is compact.mSuppose that for a positive integer m, ™ is well-
U o1 . m

defined on H,, ¢, £ [H] < Hy, while £ [H,] ¢ H . Then H_ has a

fixed point under f.

Browder [3] observed that the methods applied in the proof's
generalize directly to locally convex topological linear spaces
and give extensions of Tychonoff's generalization of Schauder's
theorem to locally convex spaces. The following interesting con-
sequence of the Lefschetz fixed point theorem is stated for com-
parison with form S1c of Schauder's theorem (Browder [3]);

Let A be an ANR, or a quasi-complex in the sense of Lefschetz
[5 . Let £ : A—>A be continuous and suppose that for some posi-
tive integer m, fm[A] is contained in a closed acyclic subset B of
A. Then A has a fixed point under f.

We conclude this section with tkhe remark that it is not known
whether a compact convex subset of an arbitrary topological linear
space nas the f.p.p., not even when the space is metrizable'(Klee
[6 , P.235;5 7, p*291]), and that Lefschetz's proof for the asser-
tion that a compact convex subset of a metric linear space has the
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n
f.p.p. ( Lefschetz [6, p.119] ) is in error, as was pointed out by

Klee [9] . »
I7 H is a compact convex subset of a metric linear space X,
then (Klee[:6] )

(i) H is a compact subset of a metric space X;

(ii) every neighbourhood of H in X contains an open [and
also a closed:] neighbourhood which is contractible,
locally contractible [and an AR] ;

(iii) H is contractible;
(iv) H is locally contractible.

An example of Borsuk [6] (1948) shows that a space may satis-
fy all four conditions without being an AR. Kinoshita [é] (1953)
constructed a space which satisfies (i), (ii) and (iii) but lacks
the f.p.p. It seems to be unknown whether the f.p.p. for H follows
from (i), (ii) and (iv), or from (i), (iii) and (iv). However, if
a space satisfies (1), (iii) and (iv), and in addition is finite-
dimensional, then Lefschetz's proof (Lefschetz [6, p,119:J) is in
order (Klee[:9:]); such a space then i1s an AR and hence has the
f.p.p. for continuous mappings.

For arbitrary topological linear spaces, we have the follow-~
ing result (Klee [?] ):

Let X be a topological linear space and H a compact retract
of X which admits arbitrary small continuous displacements into
finite dimensional subspaces of X, i.e., for each neighbourhood U
of the origin in X there is a finite-dimensional subspace L of X
and a continuous mapping g : H—>L such that g[HJ is compact and
g[H] «H + U.

Then H has the f.p.p. for continuous mappings.

1.2. The Leray-Schauder taeory cf the fixed point index and

its extensions

Except for minor changes, this section is taken verbally from
Browder [5] (1960).

In the classical fixed point theory of continuous mappings,
culminating in the Lefschetz fixed point theorem (Lefschetz [1,2]),
one is concerned with the algebraic number of fixed points of a

DHowever, see the remark preceding the last theorem of this section.
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continuous mapping f of a compact, locally well-behaved space X
into itself. Beginning with the work of leray and Schauder [ﬁ] and
Leray [1] in 1934 on the local degree for completely continuous
displacements )in a Banach space, the problem has arisen of local-
izing this index of fixed points, 1.e. of defining an algebraic
measure of the number of fixed points of the mapping f on each
open subset of X whose boundary does not intersect the fixed point
set and of doing so in a way which preserves the'principal proper-
ties that make such a measure useful in the growing number of ap-
plications which the fixed point theory has found in analysis.

The principal results in this direction are to be found in
the papers of Leray [?53,4] , written during the Second World War
and published shortly afterwards, in which he constructed a theory
of the fixed point index for continuous mappings of convexoid
spaces, a class of spaces sharing some of the properties of finite
polytopes and of finite unions of compact convex sets in linear
spaces. Thelr precise definition 1s the following:

A compact topologlcal space X is said to be convexoid if it
has a covering {Ut} having the following properties (Leray
[2,3,4]):

(a) Each Ug 1s closed and acyclic {with respect to Cech co-

homology theory).

() The intersection of any finite number of the U§ lies in

the collection if it is non-empty.

(c) Each point of X possesses arbitrarily small neighbour-

hoods each of which is the union of a finite number of
the sets U§ .

Leray's theory in its initial form, though definitive for
the class of spaces which he treats, suffers from thevdisadvantage
that the class of convexoid spaces fits in poorly with the usual
classification of topological spaces by their local regularity
properties (i.e. local n-connectedness in the sense of homology or
homotopy). In a sense, the requirement that a space be convexoid
is a condition analogous to triangulability for a manifold, since

1) Let X be a Banach space, A a subset of X and 1 : A—>A the iden-
tity mapping. A mapping f : A-—>A is a completely continuous
displacement if f is continuous and (i-f) [A] has a compact
closure in X.
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it requires that one snould be able to build up the space by past-
ing together regular pieces (no longer simplexes, but cohomologic-
ally trivial sets) in such a fashion that their intersections
should also be regular., The difficulty. can be 1llustrated by the
fact that it is not clear whether an Euclidean manifold (i.e. one
without differentiability or triangulability conditions) is con-
vexoid.

Motivated by the desire to construct a theory of the fixed
point index in a context similar to that in which Lefschetz |5
has proved his fixed point theorem, Browder [1] (1948) in his
Princeton Doctoral thesis (written under the joint sponsorship of
Lefschetz and Hurewicz), established a theory of the fixed point
index for ANR®'s using as a tool Leray's theory as applied to
finite polytopes. (See alsoc Browder [2} ).) The results and the
general philosophy of Browder [1] are summarized by Bourgin
[ﬁ, p.229—235] . In his M.I.T. Doctoral thesis of 1953 (written
under Hurewicz), O'Neill [ﬁ] rederived the principal results of
Leray's theory for the special case of finite polytopes. Using the
results of 0O'Neill's paper, Bourgin [2] (1955) has recently re-
established the theory of the fixed point index for ANR 's, along
lines similar to those of Browder [ﬁj .

Leray [5] (1950) pointed out the possibility of extending his
theory from convexoilid spaces to retracts of convexoild spaces
(which include the ANR%'S. Such an extension has recently been
carried tiurough in detail by Deleanu [3] (1959) who also applies
some sherpened forms of Leray's results given by Leray [6] (1959).

The thneory of the local fixed point index, as initiated by
Leray-Schauder [ﬂ] (1934) and developed smongst others by Leray
[5] (1950), Nagumo [2] (1951) and Altman [2,3] (1958) is appli-
cable to locally convex topological linear spsces. For Banach

spaces, a nomotopy extension theorem of Granas [ﬁ] (1959) yields
many of the useful conclusions of the Leray-Schaﬁder theory wnile
avolding the more complicated notions of the rest., Klee [T] (1960)
showed that 1t 1s possible to expand to an arbitrary topological
linear space both the Leray-Schauder theory and the homotopy ex-
tenslon approach of Granas.

Browder's objective (Browder [5]) is to go outside tue franme
of reference of ANﬁ%S or of retraction properties in general, and

to fake up the theory of the fixed point index on the combinstorisl
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or homology level on which it is treated by Leray [{} but under
more general hypotheses, similar in their nature to (though not
identical with) hypotheses made by Lefschetz [5,p.322-327] in his
treatment of the Lefschetz fixed point theorem for the class of
quasi-complexes. Intuitively, one should expect that the fixed
point index, or algebraic number of fixed points, as the latter
name implies, should be a combinatorial or homology concept de-
fined in a class of spaces which are defined by combinatorial
restrictions rather than by restrictions upon continuous mappings.
Basically, as in the case of finite polytopes treated in the last
chapters of Alexandroff-Hopf [ﬁ] , his idea is to identify the
fixed point index with a count of the number of times some sort of
element is mapped back on itself by the given mapping f. He ob-
tains such a count in a very natural form, namely the alternating
sum of the traces of induced chain mappings of nerves of X. The
general approach goes back to Lefschetz [5] . Browderts proof was
announced in Browder [2] (1951), The basic problem is to find the
appropriate algebraic analogues of the properties of the fixed
point index for chain mappings into a differential graded module

G of a differential graded submodule F,

Browder [5] introduces an axiomatic fixed point index in the
following way: We are given a category of compact topological
spaces X and of permissible continuous mappings h : X—»X. By a
fixed point. index on this category the following is meant: 1if X 1is

a space in the category, O an open subset of X, f any continuous
mapping of 0 into X, then if f has no fixed points on 5\0, an in-
teger 1 {f,0) is defined having the following four properties:

(a) If i, 0£t<1, is a homotopy of f_ to f,, where all the
ft are mappings of 0 into X and none have any fixed points on 6\0,
then 1 (fo,o) = i (fq,O). (Invariance under homotopy.)

(b} If O contains a finite family of mutually disjoint open
sets Oj (j=1,2,...,8) and if 0 \3§H Oj contains no fixed points of
the mapping £ : O—>X, then

i {f,0) = é; i (f,oj)
j=
where each of the summands on the right denotes the index of the
restricted mapping f|6j° In particular, if 0 itself contains no
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fixed points of f, then i (f,O) = 0. (Additivity of the index.)

{(c) If 0 = X, then 1 (f,0) A(f), the Lefschetz number of
f, where N(f) = zirzzo (-1)T trace (r *r)’ and £ 1is the endo-
morphism of HP(X) induced by f. (H.(X) is the r-th dimensional
Cech homology group of X with rational coefficients.) In particu-
lar, {(unless we adopt a generalized definition of trace as in
Leray [6] ), one must assume that X has finitely generated homo-
logy groups, all but a finite number of which are trivial.
(Normalization).

(d) Let X1 and X2
sible mapping of X,I into X2, O2 an open subset of XE’ £ a con-
. =1 A
p into X;. Iet 04 = h [02] . Suppose that hf
has no fixed points on 02\\02. Then

be two spaces of the category, h a permis-

tinuous mapping of O

i (hf,Og) = 1 (f‘h,O,‘).

(Commutativity).
The property (d) includes as a special case, the following:
(d7) Suppose X and X' are members of the category and XcX!
and the injection mapping J : X' X is permissible. Let O be an
open subset of X, f : 0—X a continuous mapping such that
f[p] c X'. Suppose f has no fixéd points on 0 \ 0. Then

i (f,0) =1 (f, X'NnO0).

Browder [5] proceeds to establish the existence of a fixed
point index for more general categories than the ANR*'S. The cate-
gorles which he considers are subcategories of the categories of
semi-complexes and semi-complex mappings. One such includes all
HLc® spaces in the sense of Lefschetz [5] , and all their contin-
uous mappings. The definition of a semi-compleXx is motivated by
deriving its properties from well-known properties of ANR's
(Lefschetz [6]), Unlike the latter, however, the structure of this
class of spaces is restricted by conditions on chain mappings and
not on continuous mappings.

DEFINITIONS (Browder [5] ): Let X be a compact, locally con-
nected Hausdorff space, and let L)L be the family of all finite
open coverings of X. For a,f3eil, write p>o if g is a refinement
of &, For e, let N, be the nerve of & , and Cn(Na) the vector
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space of oriented n-~chains wiith rational coefficients.

The gupport of a simplex oeN_ , Sup(o), is defined to be the
union of the closures of the open sets of ¢ which are vertices of
o. The support of a chain g eCn(Na), Sup(g), is defined to be the
union of the supports of those simplexes of Ny which have non-null

coefficients in the expansion of g.

Let C(Nu) be the differential graded module of orilented
chains of N, with rational coefficients, let d, be the differen-
tial of C(Ng), which is of degree (-1). In the followlng defini-
tion, by a chain wapping of C(Ng) into C(Np) is meant a graded
homomorphism h of degree zero over the rationals for which, as
usual, dp h = h dg , but in addition, 1t is also assumed that h
carries integral chains of Np into integral chains of N, . Two

chain mappings h and h, of C(Ng) into C(Np) are chain homotopic
with chain homotopy D if D is a graded homomorphism of C(N,) into

C(NP) of degree (+1) such that h-h, = dﬁ D+Dady .

Let X be a compact, locally connected Hausdorff space. X is

sald to be a seml-complex 1f there 1s a semi-complex structure
defined on X, where by the latter is meant the followling: (A)1 for
each Ae . there exists o (A)e Q and a family Cp= {c(,((5 } of one
ap Cn(NP)<—>Cn(N¢) for o> p>a (N) and
all n=0, such that the following properties hold for these chain

or more chain mapplings c

mappings:

(i) If for p,Ee1 , with P>§ , jép is the chain mapping of
Cn(Nﬁ) into Cn(Ng)_induced by one of the natural injections of N,
into NP’ then for every a>p>§>o%(%), the chain mapping c is
chain homotopic to Cug Jgp With a chain homotopy small of order

A, i.e. with a chain homotopy Du; such that for every simplex
CJ’eNp and the corresponding elementary n-chain g with coefficient
1,

1
wp. (2)) U sun(00) (e))

is contained in a single element of A .

Sup(g) U Sup(c

(11i) For §>cc>p>o5(K) the chain mapping Cap is chain homo-
topic to jug Cep with a chain homotopy D EF such that

2
wp (2)) U sup (02 (2))
is contained in a single element of A for each elementary n-chaln

g of NP .

Sup(g) U Sup(c
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(iii) If p> E> ab(A), then for every n2 0 the chain mapping
Cpt Jgp 1nduces an endomorphism of Hn(NP) which is idempotent and
whose image i1s the submodule of Hn(Np) consisting of coordinates
of elements of Hn(X). .

(iv) If N> A, then o (M) > (A) and Cy, is a subfamily of
Cy

The most important differences between the definitions of the
quasi-complexes (Lefschetz [5, p.323:}) and the semi-complexes can
be summarized in order of increasing importance as follows (Brow-

der [5, p.269]):

(1) In the definition of the semi-complexes much more detail-
ed restrictions are assumed for the chain mappings c, (which Lef-
schetz calls chain derivations) than in the definition of a guasi-
complex, where for example the chain mappings cap are assumed hiomo-
logous (which for rational coefficients is equivalent to being
chain homotopic) while here it is assumed that they are chain ho-
motopic with small chain homotopies.

(2) In a quasi-complex, condition (ii1) is replaced by the
stronger condition that Cpt Jep (at least for a cofinal subset of
p and £) induces an isomorphism of Hn(NP) onto itself. It follows
immediately from this {(as was first noted by Dyer [ﬁ]) that a
quasi-complex has isomorphic homology groups with the nerve of any
sufficiently fine covering pe Consequently it is unclear (despite
the statement 1In Lefschetz [5, p@322]) that the class of quasi-
complexes does include the class of ANR's or the more general
class of compact spaces which are uniformly locally connected in
all dimensions in the sense of homology, the HLC*'spaces of Lef-
schetz, (See for the last, Lefschetz [5], Wilder [ﬂ]). on the
other hand, the axioms for the semi-complexes are rather cbviously
satisfied by the HLC™ spaces.

Definition of the fixed point index (Browder [5, p@277]),

Let X be a compact Hausdorff space which is a seml-complex.
Let O be an open subset of X. Suppose we are given a continuous
mapping £ : O0—X without any fixed points on 0 \O.

Let cte 2, We construct a closed sub-polytope N, of Ng cor-
responding to the open set 0, where N[ 1s the smallest closed sub-

polytope of N, containing all the vertices of N_ which correspond

o
to elements U of o which are contained in 0. The boundary N&c}f N;
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in the simplicial complex Ny consists of the smallest closed sub-
complex of N', spanned by vertices. corresponding to elements U of
o such that there exists Ujex with UnU, £ @ and Uyn (X\0) # d.
The "bounding edge" N(O) of Ny in N 1s the star of N'g in N \Ni.
Let pery, and let f'“(P) = {r ' [u] |Uep} . For eacn
x> f'q(P), we define a family of simplicial mappings of NL into
N(3 in the following way: For eacih vertex qU of NY, , let
fP“ (qU) = q (p)’ where the latter is the vertex in N correspond-
ing to some element Ve P for which f[UJC‘V. By a standard argument
fpm can be extended to a simplicial mapping of N} into Np and
any two such mappings are contiguous in N(3 and hence homotopic
with homotopy paths lying in simplexes of Ng .
Let g, denote the standard projection of C(N,) onto C(N'_ ),
and let fpa. also denote the anti-chain mapping obtained from the

simplicial mapping f as follows: For each elementary chain &o

O(."
of C(N}x) corresponding to an n-slmplex O , we set
(c) = {O if f(o) has dimension less than n
por 280’ 7

(-n" Ee(o)” if f(o) has dimension n,
where ¢ (o) is the elementary chain in C(NP) corresponding to the

[50(

the result is trivially an anti-chain mapping.

n~-simplex f(o). We extend the homomorphism f by linearity, and

THEOREM (Browder [5, p.278]). Let Aef2, with A composed of
connected open sets V. Consider the family of mappings cg, in Cy
£ (p) -

satisfying the conditions (A), (p.26). Let m}p><xo(h), o> £
We define :

im‘3 (£,0) = trace (q_ C“P fpu.)"

Then i, (f,0) is the same for all choices of &, B,c, . and
£, » With a>[3>c£o(%), ad>f'1(p). This common value is denoted by
1(f,0). It is independent of A and ao(A), for A sufficiently fine.

The fixed point index i(f,0) as defined above depends upon a
given structure of a semi-complex on X, i.e. a system of chain
mappings c, satisfying the axioms (A),l for each Ae (L . 3ince
there could very well be several such distinct structures on the
space X, 1t 1s not clear a priori that this index as defined is
unique, nor how one can pass from the properties of the index on
cne semi-complex X,l to those on another, X2. To avoid the second
difficulty, the following definition is made
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DEFINITION (Browder [5, p.286]): Let X, and X,
pact spaces, each equipped with the structure of a seml-complex.

be two com-

Let the chain mappings of the first semi-complex be denoted by

c(q&p and those of the second by c(ggc; Then a continuous mapping
h : Xﬂ——>X2 is said to ve a seml-complex mapping with respect to

the given semi-complex structures on X1 and X2 if, given an open
covering A of X2’ there exists an open covering A' of X,l such
that the following is true:
Ir
€>2 >0 (N,
Q>P>%JNL

x> n (&),

p > n(2),

and 1f the simplicial mappings hg, Of Ny 4 into Ny , (N, 4 the
3 3 3
nerve of x as a covering of Xq, NE o the nerve of & as a covering
3

of Xz) and hy, of N into N are induced by the continuous

£, ¢,2

map§ing h, and if c(1) is a chain mappling lying in the family

ng corresponding to the covering Al in the seml-complex struct-
ure on Xq, and if c(gé is a chain mapping in the family C(f) cor -

responding to the covering A in the semi-complex structure on Xg,

then the chain mapping

(1 : (2)
h&a c is chain homotopic to ¢ E2 h

p op
with a chain homotopy D, such that for every elementary chain g of
Np 5

n(Sup(g)) U Sup(D9)

is contained in a single member of A.

A category of compact spaces and continuous mapplngs is said
to be a category of semi-complexes if each gpace has a specified
semi-complex structure and if all the continuous mappings are semi-
complex mappings.

REMARK (Browder [5, p.287]): For a member X of the family of
HLC* spaces there is a largest semi-complex structure which is es-
sentially unique, and all continuous mappings are semi-complex map-
pings with respect to this structure for given spaces X,l and X2e
With this prescription, the category of HLC™ spaces and all their
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continuous mappings is a category of semi-complexes. :

Browder [5] showed that the fixed point index as defined above
1s unique for the category of semi-complexes, and satisfies proper-
ties (a), (b), (c) and (d) stated on p.24. In particular, the Lef-
schetz fixed point theorem holds for such spaces,

1.3. Multi-valued mappings such that the image of each point
is acyclic

In 1941 Kakutani [2] extended Brouwer's fixed point theorem

for the n-cell to multi-valued mappings by proving that a compact
convex subset of the Euclidean space En has the f.p.p. for upper
semi-continuous closed convex set-valued mappings.

In 1946 Eilenberg and Montgomery [1] showed that a Lefschetz
number can also be defined for certaln multi-valued mappings of an
AR into itself. In doing so, they made essential use of the Vieto-
ris mapping theorem (Vietoris [1] ). If X and Y are compacta, then
a continuous mapping f : X—=Y is said to have property gvg if, for
each y ¢ Y, the set f_q(y) is acyclic with respect to Vietoris homo-
logy. (See Lefschetz [5, p.240] or Vietoris [1] .) The mapping theo-
rem of Vietoris states that if f : X—Y satisfies property (V),
then the induced homomorphism f . : HP(X)~—§HP(X) is an isomorphism
onto, for all r2 0. Thus aided, the following theorems are proved:

EM1. (Eilenberg and Montgomery [1] ). Let X be an ANR and Y a
compactum. Let g,h : Y- X be continuous functions, of which g satis-
fies property (V). Let A (g,h) = 2(-1)7 trace (hwg;;). Ir A (g,h)#40,
then there exists a point y_e Y such that g(yo) = h(yo).

EM2. (Eilenberg and Montgomery [1] ). Let X be an ANR and
£ : X~ §(X) upper semi-continuous, where ¥(X) denotes the family
of non-empty closed acyclic subsets of X. Let
Y = {(xjx’)e XxX|x'e f(x)} . Define the mappings g,h : Y=—3 X as
follows: g(x,x') = x, h(x,x') = x'. Then g satisfies property (V)
(g—q(x) 1s homeomorphic to f(x)), and we can form the Lefschetz
number A (f) =A(g,h) = 2(-1)F trace (h%rg;;). Then, if A(f) # 0,
there exists a point x_e X such that xoef(xo).

This implies the following generalization of Kakutani's theo-
rem:

EM3. (Eilenberg and Montgomery [1] ). Let X be an acyclic ANR
and f : X-— G(X) upper semi-continuous, where ¥©(X) denotes
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the family of non-empty closed acyclic subsets of X. Then there
exists a point x_ e X such that x_e f(xo).

Using convexlty arguments, Bohnenblust and Karlin [ﬁ] (1950),
extended Kakutani's theorem to Banach spaces, and it was then
extended to locally convex topological linear spaces simultaneous-
ly by Fan [1] and Glicksberg ["] in 1952.

Let X be a Banach space and & (X) the family of non-empty
closed convex subsets of X. Browder [3] (1959) called a mapping
f : X— & (X) completely continuous if the following conditions
hold:

(1) The graph of f, G(f) = {(x,y)l x,yeX, yef(x)} , is a
closed subset of XxX.

(11) For every bounded subset S of X, there exists a compact
subset Kg of X such that f(x) nKg # ¢ for xe S.

(1ii) Let X and K, be compact subsets of X such that
f(x) Nk, # @ for xe K. Let x, be a point of K and € a positive
constant. Then there exists & >0 such that, for xe K with
]hkaé ,mlmwrﬁﬁancUdfwﬂﬂanm
f‘(xo)fIK,I c U (£(x)) NK,.

Browder [3] showed that if f : X— & (X) 1s a completely
continuous mapping such that, for some positive integer m,
fm[?] is a bounded set, then X has a fixed point under f.

In 1952, Begle [2_"] proved a very general form of the fixed
point formula which includes the results of Eilenberg and Mont-
gomery [1] , and those of Fan [1] and Glicksberg [1] . The proof
uses only homology theory and none of the homotopy properties in-
volved in the notion of an ANR. Consequently, the theorem is
shown to hold for a much larger class of spaces, which he calls
lc spaces. The lc spaces of Begle [3] are the same as the HLC *
spaces of Lefschetz [5] . {(Also see Lefschetz [6,p.123~126] and
Begle [ﬁ] .) The proof also makes essential use of the Vietoris
mapping theorem, for which he gives an extension to compact
spaces, using a generalized form of Vietoris cycles.

We now proceed to state and prove Begle's theorems as in
Begle [2,3] .
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DEFINITIONS (Begle [2]):
Only compact Hausdorff spaces are considered. By a covering
M of a space X we shall always mean a finite covering consisting
of open sets. In this sectlon we shall write V<M ifvis a re-

finement of . If A is a subset of X, we denote by St (A the
K ' Sy L)
set U{Uep | AnU # ¢}, and by St (ngg) or Y we denote the

covering {St (U, ) |vep} . 1r W<V, we say that u is a star
refinement of v, and we write M <Ky, Every covering has a star
refinement ( Tuckey [1,p.47]). For each covering M , we choose one
of its star refinements and denote 1t by *[.

An n-simplex Oﬁ of X is a set of n+1 points of X, and these
are the vertices of T, . If 4 is a covering and A 3 subset of X,
we write diam A <p if there exists Ue p1 such that A ¢ U. X(fx)
is the simplicial complex consisting of all simplexes © such that
diam O < p . Clearly, if V< M then X(v) is a subcomplex of
X(kl)a If A is a subset of X, then X(H) N A is the subcomplex of
X(’J) consisting of all the simplexes of X( | ) which are contain-
ed in A.

We shall consider only finite chains on the complexes X(}i).
The coefficients, unless otherwise stated, are in an arbitrary
“Abelian group. If ch is such a chain, we denote by |cn[ the finite
simplicial complex consisting of all the simplexes on which cn
has non-zero coefficients together with all their faces.

In what follows we make freguent use of the Cartesian pro-
duct of a simplicial complex K and the closed unit interval
I= [0,1], so we recall here the definition of this product
(Lefschetz [5,p.307] ). Let the vertices of K be simply ordered
in an arbitrary fashion. Let {a!} ?=1 be a copy of the collection

1
m .
{ai} - of vertices of K. For each n-simplex On=(ao,aq,.&m,an)

of K, consider the n+1 simplexes of the form
(ao,a,],...,ai,a{,...,a;l). The collection of all such simplexes,
together with all their faces, constitute the product K xI. K is
called the base of K xI, and the set of all simplexes of Kx1I,
all of whose vertices are primed, is called the top of KxI.

For gach si?plex o, = (80’81"‘°’an) of K, let .
= - E = J
D(o,) .%i) (-0° (ag,aq,..0,25,8],...,al), and if c_ = Zegyoy,

1= 0
let D(Cn) = Z:gj D(Ug). For any chain c_ of K, a direct calcula-
tlon shows that
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FD(Cn) + DF(cn) =cl - cps

where cgl is the chain in the top of KxI formed by replacing each
vertex of each simplex of Ch by the corresponding primed vertex,
and F is the boundary operator. Hence, if z, is a cycle of K’,

FD(zn) =z! - 2.,
i.e. znmzlf1 on Kx I,

In one place {lemma 3) it will be convenient to consider
KxI as a cell complex rather than as a simplicial complex. This
time the elements of Kx I are all the cells of the form oxO0,

Ox1 or oxI, where ¢ runs through the simplexes of K. The
boundary relations in Kx I are:

F{erx 0) = (Fo) x 0, F(o x1) = (FO) x1, and F{oxI) =

(FO) x I + (0x1) - (ox0). Then for any cycle z on K, we have
FlzxI) = {(zx1) - (zx0), i.e. 2x1mzx0 onKxI.

A collection z = {Zn('J)} of n-cycles of X, one for each
covering H of X, is a generalized Vietoris n-cycle (n-V-cycle)
if zn( } 1s a cycle of X( ,.A) and 1f, whenever V< 4,

Zn(v) v zn( F) on X{ }.l)e The cycles Zn( P.A) are the coordinates of
Zy o Ir Z, and z;l are two n-V-cycles, then szr.'zlfl is the n-V-.cycle
whose coordinate on X( r.&) is zn(}x) + zf‘l( rJ) Further, z a0 if
Zn( E.A) 0 on X( H) for every H . The n-dimensional Vietoris homo-
logy group of X, HX(X)’ is the factor group of the group of n-V-
cycles of X by the subgroup of those which bound.

Let X and Y be two spaces and £ : X—Y a continuous mapping.
Let z, be an n-V-cycle of X. For each covering V of Y, ;J=f"1(v)is
a covering of X, Clearly, f maps each simplex of X( y) onto a sim-
plex of Y(V), and hence is a simplicial mapping of X{ H) into Y(v).
We define f(zn) to be the n-V-cycle of Y whose coordinate on Y(v)
is £z ( ,u))@, This clearly induces a homomorphism of H:,’l(X) into
Hy (Y).

The Vietoris homology groups defined above do not give any

new homology properties of X. If X is compact metric, it is easy
to see that HE(X) is isomorphic to the ordinary Vietoris homology
group. In the general case, these groups are lsomorphic to the
corresponding Eech groups, &85 we now show.
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Given a covering V of X, let v = *H . For each vertex a of

X(v), choose an element Ve v such that aeV and then choose an
element Ue i such that St (V,v) c U. Set ©(a) = U. Then@is a
simplicial mapping of X(V) into the nerve N( ’J) of Mo

Next, given a covering v, let §=*v . For each element We E ,
let @(W) be a point in W, Then ¢ is a simplicial mapping of N(t)
into X(v). '

Now, let Yn be an n-V-cycle. For each covering Mo, let
v=*pvand define zn(}x) to be 0O yn(v) . We assert that z_ = {zn(t))}
is a Cech cycle and that O induces an isomorphism of H‘TZ(X) onto
H:I(X) , the n-dimensional éech homology group of X.

To see that Zh is a Cech cycle, let PE < Mg be two cover-
ings of X, Let vy o= M4 and Vo= *HQ’ and choose a common refine-

ment v of V4 and Voo By the definition of Zys We have

Zal pa) = 84 v, (vq),
Zl’l( Hg) = 62 yn( Ve)e

Since \1<v,],
Y (V) vy (V) on X(v,).

Therefore
0,17, (V) v Oy, (V) on N(py).

Similarly, since V< Vo s

Oy (Vv O (v,) on N(p,),
and hence
TT@eyn(V)NT(O2yn( Vg) on N(H 1):

where T 1s the projection of N{ HE) into N( P") . Thus it will be
sufficient to show that

(1 W@eyn(v) v O,Iyn(v) on N(r_x,l)o

In order to show this, let K = |y (v)| . We define a simpli-
cial mapping ¢ of K xI into N{( p,]) . For each vertex a of the base
of KxI, let y(a) = TTOz(a), and for each vertex a‘' of the top
of KxI, let y(a') = @1(3).

To see that this is indeed a simplicial mapping, let
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(ao,a,],...,ai,ai,e“,ag) be a simplex of Kx I. By the definition
of @2, there is, for 0 j<i, a set VEJ
set U = Oz(aj)s Mo containing St (v

€ v, containing a,, and a
5 \)2). By the definition

23 2J
of T, there is a set U’IJ = W@E(aj)e pq containing U2'j . Simi-
larly, for i £k <n, there is a set V,"k &V, containing ay and a

set U} = q/(al'{) containing St (v:]k ,vq).

Since (ao,...,an) is a simplex of X(v), there is a set Vev

containing a_,...,a . Therefore, since V<v,, Ve St (v ,VE) for

0=j 21, and consequently Ve U,‘J for 0< j<i. Similarf&jj since
V<, Ve 5t (v%k ,v,l) and hence Ve U} for 15 k<n. Therefore
UyonUgqNeee NUNU4 0.0 U4 # @ Thus y maps the vertices of
(ao,a..,ai,a{,“@,aé) into the vertices of a simplex of N{ }J,]) and
therefore is simplicial.

Now yn(v) ~ yr'l(v) on Kx I. By the definition of vy,
Yy, (v)) = Mo, (y,(v)) and y(yi(v)) = ©,(y,(v)), and this proves
(1.

Ifr ynmo, then clearly znmo also. Suppose now that z, ™ 0.
We shall show that ynruO.y Given any covering , letwv =*|_1 and let
§="v. Since y () v y,( B) on X(p), 1t will be sufficient to
show that yn(E) w0 on X( }_1). Now zn(v) = yn(‘g)ru 0 on N(v). Hence

(p@yn({;) w0 on X{ H)g so we are reduced to proving

(2) Vu(8) v 9Oy (2) on X(p).

Let K = ]yn(g) . We define a simplicial mapping w of K x1I
into X( H) in the following way: For each vertex a in the base of
KxI, let w{a) = a, and for each vertex a' in the top of K xI,
“let wla') = @O(a). '

To see that w is simplicial, let (ao,aqﬂ..,ai,a:{,,”,arﬁl)
be a simplex of Kx1I. By the definition of 0O, there is a set
WL'{ € ¥ containing ay and a set Vllc e v containing St (Wllc’ E ).

By the definition of w, kp(Vli_)eV' .

Since (ao,aq,.e.,an) is a simplex of X(&), there is a set
02345 c0.,a,) . Hence We St (Wl'{, E) for isksn
and therefore W e Vi. Thus V! n VL # @, 1sks<n, so Vie St (Vr’l}v)e
Since V=", there is an element Ue p which contains St (Vi,v),

We & containing (a

and hence each V). Consequently «p@(ak) c U, 1< k< n. But
We VieU, so (aoﬁa,zﬂm,an)c U. Hence all the vertices of
(ao,a,l,a”,aij a{,.”.,,alfl) are carried by w into vertices contained
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in one element of { and hence into the vertices of a simplex of
X( P)J and therefore W is a simplicial mapping.

Now yn(g)niyé(g) on KxI. By the definition of w,

w(y,(8)) =y, (&) and W (yl(E)) = ¢&(y,(E)), so we have proved
(2).

Thus far we have shown that Oinduces an isomorphism of HE(X)
into Hg(X). To complete the proof we must show that this isomor-
phism is onto, i.e. that for every Cech cycle z, there is an n-V-
cycle y, such that @ynngn. But, given z_ and a covering M, let
v =" . Define Yol p) to e ¢(z (v)). Then y = {y( P)} is an
n-V-cycle and Oynnjzn. We omit the proofs of these last two state-
ments since they are analogous to those above.

Let X and Y be compact spaces. A continuous mapping £ :X-—Y

is a Vietoris mapping of order n if for each covering B of X and
each point ye Y there is a covering § = E( [ ,y) of X, with §<ru
such that any k-cycle, O£k <n, on X(E)r]f"q(y) bounds on
x(p)neT ().

We can now formulate the Vietoris mapping theorem needed in
the proof of the fixed point theorem.

THEOREM 1 (Begle [2] J. If £ : X—Y is a Vietoris mapping of
order n of X onto Y, then the homomorphism of HX(X) into Hg(Y) in-
duced by f is an isomorphism and is onto.

The hypothesis of the theorem can be put in a more convenient
form if the coefficlent group is restricted to lie in eilther of
two classes of groups, the class of fields and the class of elemen-
tary compact topological groups (Steenrod [1, p.672]). The latter
class consists of the character groups of discrete groups with
finite bases, and hence contains all finite groups as well as the
group of real numbers mod 1.

THEOREM 2 (Begle [2] ). If the coefficient group is an ele-
mentary compact topological group or is a field, and £ is a map-
ping of X onto Y such that for each point ye Y, and for each inte-
ger k, 0<k £n, the augmented Vietoris homology group Hi(fﬂ(y)) is
trivial, then the homomorphism of Hn(X) into Hn(Y) induced by f is
an isomorphism and is onto.

A number of lemmas will be neede..
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LEMMA 1 (Begle [2] ). If £ is a Vietoris mapping of order n
of X onto ¥, then for each covering M of X and each covering v of
Y there is a refinement Y= Y¥( H,v) of Vv such that if B is a sub-
set of Y with diam B < ¥ then there 1s a point ye¥Y such that

1) St (y,v) =B;
2) st (£7 (), *e) =27 (B),

where & = E( H,y) .

PROOF: For each ye ¥, let A_ = X \St (£77(y), €). Then Ay 18
closed, hence compact, so f[Ay:[ is closed and ys}:f[ﬁ.y] . Since Y
is normal, there is an open set By such that yeB, and Bynf[Ay] =
= @, We may choose By to be 1In a set of v which contains y. Now a
finite number of the sets By cover Y, and these constitute the
covering ¥ .

LEMMA 2 (Begle [:2]) . If £ is a Vietoris mapping of order n of
X onto Y, then for each covering H of X and each covering v of ¥
there is a covering 1 = 7/ M ,V) of Y, with n< v, and a chain map-
ping t of the (n+1)-skeleton of Y(h) into X( }J) such that for any
k-simplex o of Y(n), Osk<n+1, £t O, is a barycentric subdivi-
sion b O of o with diam |b oy [ < V.

¥

PROOi. Let Masq = M and v, 4 =V. Let y = y( f"n+1’vn+’l) and
let vn = Xn‘ For each element Qni of Y no diam Qni < ¥ SO by
lemma 1, there is an associated point Vi Let E ;= E(PnM’yni)
and let Mn be a common refinement of the coverings Eni' Next,

- o * = ¥

let Y, 4 = Y(Vn’ vn) and let v 4 ="y, 4. Let {yn_,“isl be the
points associated, by lemma 1, with the elements of Xn—’l’ and let

Enﬂ,i = & pnjyh_qji)@ Let M _4 be a common refinement of the
#
coverings Enuq’iu
Proceeding in this fashion, we construct a sequence {Hk} of
coverings of X and a sequence {vk} of coverings of Y, together
with the associated sets {yki} , such that

0 Veoq = *Xk-’l; Yeeq = ¥(F e Vs

2) Mg < TE(P Vieaq,1) -

We assert that the covering Vo wlll serve for n ( \J,\})g To
prove this, we must construct the chain mapping t. First, let <,
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be a vertex of Y(vo). Let Sq be an arbitrary point of f
define t(so) to be s . Then t(ab) is a null-chain of X(}AO), and
ft ¢ = ¢ .

o o

Now suppose that t has been defined for all simplexes m in
Y(yo) with m< k in such a way that t(wm) is a chain of X(ﬁAm) and
ft &, 1s a barycentric subdivision bey of o, with diam Ibqn]< -

Let 6, be a k-simplex of Y(vo). Then t is defined on Fe), and
tFo, 1is a chain of X(ﬁLk_q). Now consider fltFGk' . Since o 1is in
Y(vo), there is an element V_ of v_ which contains oy If & 4 ap-

pears in Fe, , then ftak q = wk—ﬂ contains a vertex of Sk' But

Y,._q) contains f[tF5k| . But

-1
(66),and

diam |bey ,|< Vg S0 SE(V_,

¥
Vo€ Vieoq < )/k—’l’ so diam fltFG’k]<{K_,] =f(ﬁ* K’ Vk)' Let yk—/l,’] be

the corresponding point of Y, so that St(yk 1.9 Vk) contains
fttF ’ and St(f~ 1(yk 1 1)j f) contains f- 1fftP6‘I , which in turn

contalns ItFGk | , where ¥= %( }lk’yb 1, 1)

Denote now the cycle tFGk by Zyqs and let K = |zk"1l . We de-
fine a simplicial mapping Y of KxI into X(§) by first setting
X(a) = a for each vertex a in the base of K xI. Next, let a' be a
vertex in the top of Kx I, and let a be the corresponding point in
the base, so that a is a vertex of |tF6 I Since St(f~ (yk 1, 1) )
contains ItFakl , there is a set *W of § which meets £~ 'l(yk_“1 1)
and also contains a. Let X (a') be a polnt in *wa £~ (yk—1,1 . If
now (aoﬁq..,ai,a',...,aQ_q) is a simplex of K xI, then (ao"‘°’ak—1)
is a simplex of TtFﬁkl and hence is contained in some element Uk~1
of M, ,. For each j, 1¢]¢k-1, %{(a!') is a point of %Wj, where

a, € *wj, and therefore X(ao""’ai’ai"'“’a&—ﬂ) =

J
W N
= (ao,«.o,ai, X(ai)j.,,, x(a&_q)glis in St(Uk_q, ?), and hence in
some element of f , since Mo q ¢ ?. Thus X maps K ®I simplicially
into X(§).
1
Now let s, = X(Dzk_q), so that Fu =

Lz 1)-7&( ) -
The cycle X(ZL'(wq Js on (§
2

1
K-
n yqu)

= - d
=Kzl q) - 2 "] an
since § = ?(ﬁkk,yk 4 1) there is a chain s on X(p )0 £ (yk—151)

such that Fs X (z . Let 5 = si - 8, and set to, = s, . Then

Ftak = tkay so t is a chain mapping.
Finally, observe that each vertex of { k‘ is elther a vertex of

|tFak! or is a vertex in f 1(yk_,l 1) and f maps all the latter on
3

the single polnt Yyo1.1° Hence fsK is the Join of ykaﬂ,ﬂ with
5
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ftFO' = bFo, and thus 1s a barycentric subdivision bG of o

k K Since
St(yk-’l,'l’ :

v,) contains £|tFo, | , diam |bo | < v,

Thus we can continue extending the definition of t until it is
finally defined on all of the (n+’l)—ske'1eton of Y( vo), and we have
therefore completed the proof of the lemma.

LEMMA 3 (Begle [2]). Let s and & be coverings of X, with B <p,
and let ¥ and ¥V be coverings of Y. Let 7 =7M(K,v) and T] N(p,v).
Let t and t be the corresponding chain mappings. Then there is a
common refinement A of 1) and'r} such that for any cycle z_ on Y(N),
£z, ™ tz on X(pm).

PROOF: We first recall the sequences {f}'k} and {Vk} of cover-
ings which were constructed in the proof of lemma 2. Suppose now
that we construct new sequences {/“1'{} and {Vll} by first choosing

i 1
/‘LnM to be any refinement of M and V D41 to be any refinement of
¥ . Then, at each step, choose ,k to be a common refinement of J’k_
LR
and of ](,ukm, Vk+1) and Vﬂ: to be a common refinement of /k
and of Vk' Let {yki} be the set of points of Y associated with

gl:c’ and let /J«IL be a’common refinement of M and of the coverings
§hy o where Spo = B(py vl ).

Now we can repeat the argument of lemma 2 to obtaln a chain
mapping t' of Y(v') into X()ur']M) such that for o, in Y(\z'('j)3 troy,
is a chain of X(/.»k) We assert that for any cycle z_ on Y(V(;),
tzn t'z on X(p).

Befor-e proving this assertion, we show that the lemma follows
from it. For we can choose /ulfc and FL1'< to be the same”cover’ing of X
for each k, and similarly for Vll: and V1'4‘ Then vc'),z Vé: and we take
this to be N . Now, if z, 1s a cycle on Y(N), tz~ t'z  on XSJ:!) by
our assertion, and similarly, tz ~ t'z on X(,u.) Bu t' and t' are
the same chain mapping, and X(m ) is a subcomplex of X{m), so
tz ~ tz on X(m). ,

Returning now to the assertion above, let z, be a cycle of
Y(v!) and let K = lznl . We shall define a chain mapping u of the
cell complex K xI into X(m). For a cell of KxI of the form ¢ % O,
let u(eo x 0) = t'(o), and for a cell of the form o x 1, let
u(o x 1) = t(o). Now consider a vertex o of K. t(cr ) = s, and
t'(c’ ) = s' are, by construction, ver-tices f /](o’o and ft(cr ) =
= ft‘( ) o, . There is a point, y_,, such that St(yoz, O) contains

o, and St(f 1(y02, %) contains f“q(O'O), where €= ‘g(/.xq,yoz). Let

1
0]
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cy = tcro—t'co, a cycle, and let LO = ]col . We map the simplicial
complex L, X I into X(%) by 2 mapping @, such that wo(a) = a for
any vertex a in the base of L_x I, and wo(a') is a point of
f’q(yog) such that St(wo(a'),*‘f) contains a. That there exists
such a point follows from the fact that St(f‘_q(yoz),*f) contains L.
It is clear that wo is a simplicial mapping of LOXI intq X(f)‘ Let
c:]] =wO(DcO), so that cjl is a chain of X(§) and F(le) =wo(cé)—co.
Now wo(cc')) is a cycle of X(§)n f-/l(yoz), so there is a one-chain 0,2]
of X(,u.,])nf—’](ycz) such that Fcj :wo(c(’)). Then c, = c? - c:]l is a
chain of X(,u,l) and Fe, = c . Clearly flcqi is the join of o and

Yop- We define u(o‘o xI) to be c,. Then Fu(c‘oxI) =c, = to-tlo, =
= u(m’O x1)—u(0'0x0) = F(cox I).

Now suppose that u has been defined on every cell of KxI of
the form o x I, for all m<k, in such a way that u(c’mxI) is a chain
of X(,um_,]? and diam fﬂ]u(c‘mxI)|< Vypq- Let oy be a simplex of Y(vé).
Then u is defined on F(o) x I), and we wish to consider the set
elur(o, x 1) |. But F(oy x I) = (F(ey) x I) + (o x1)-(o x0), so0

fluF(G‘kXI)l is contained in
rlu(r(ey,) x )| U rltey | v rler o |

Let VC'] be an element of v! which contalns o). Since diam fitakl<vk,
st(V!, v,) contains flto‘kl. Similarly, since w! < ¥, St(V/6,v,)
contains flt'cs’kl. Also, for any simplex U‘k‘ﬂ in Fo’k, diam f}u(o"k’,lxl)!
< v, and flu('o'k_,] xI)I contains a vertex of o, so St(VC'),vk) also

* ¥
contains flu(F(c’k)x 1)| . But Vi< [ where [fo = ‘“F‘kﬂ’ ka), so
diem flu F(o x )] < f .

Therefore there is a polnt, say ¥, such that St(ykg,*vkﬂ)
contains f!uF(crkx 1)| and St(f”q(ykg)ﬂ*g) contains f'qfluF(o'kx )| =
]uF(c‘kxI)l , where €= §<Pk+1’yk2)~

Now let ¢, = uF(oy xI), and let L, = [ckl . We can define a sim-
plicial mapping w, of the simplicial complex L, x I into X(%) in the
same way that we defined w _, so that ka(Dck) =wk(cf{)~ck, and

-1
w, (cy) 1s a cycle of X(§)N £ (y,,). Let c?{m =w, (Dc, ) and let
2 . -1 2 - '
Cp4q be @ chain of X(pkm)r\gf (yke) such that F(Ck+1) =0 (ck).
Then set u(e X I) = Cra1 = %pe1 Cue We have Fu(o » I) = Fe,  1=C\=

= uF(akx I), so u commutes with F. Also, flu(c‘kx I)l is the join of

* ry
f‘]uF(c‘kx I)f and y,,. Since St(ykz’ Vk+1) contains f]uF(o‘kx I)],
diam ftu(o’kx I)[< Vieiq- BY construction, u(o”kx I) is on X(/.LKH).
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We can therefore continue extending the definition of u un-
til it is defined on all the cells of KxI. Now F(znx I) =
= (znx 1) - (an 0) in K xI, so uF(zn‘x I) = Fu(znx I) =
=u(z,x 1) - u(z, x0) =tz - t'z . Since u(z x1I) is a chain of

X(HnM) = X( |.A), tz ntiz on X( P), which completes the proof
of the lemma.

PROOF OF THEOREM 1: We show first that under the homomorphism
induced by f, each element of Hﬁ(Y) is the image of an element of
H‘r’l(x).

For each covering H of X we choose a covering v of Y such
that | is a refinement of f*/‘(v) and if Y = f"/l(v)for' some VvV, we
choose this v. Let z = {z(v)} be an n-V-cycle of Y. For each
covering |..(of X, we define yn(p) to be tzn(rl), where 1 = 7](}_1 SV)
Vv being the covering associated with P as above, and t being the
chain mapping of Y( 1) into X( H) given by lemma 2.

We assert that the collection {y (M )} is an n-V-cycle. For,
let pbe a refinement of p, and let V be the covering of Y as-
s‘ociatid_with M. Then Io(p) = tz () and To(R) = ’tzn(ﬁ), where
n= T](’A,V). Let A be the common refinement of 1 and T] given by lem-
ma 3. Then tzn(k)mtzn(k) on X(M). Since z,  1s an n-V-cycle,
fn(7\) Nzn(’q) on Y(m). Hence tzn(?\) mtzn(n) on X( u). Similarly,
tz (A) wtz () on X(FA). But X(P) is a subcomplex of X(H), 50
yn( R o= Ezn(ﬁ) Nth( n) = yn( V) on X( }x), which proves that
{yn(p)} is an n-V-cycle.

Next, fy wmz . For a given covering VvV of ¥, let M = f'/}(\/).
Then yn( ’.1) = tzn('r,), where 1 = M(M, V). Also, fyn(fvl) = ftzn(q) =
= bzn(“q), a barycentric subdivision of zn(n) such that for each
simplex ¢ of !zn(q)l , diam !bonl < V., The standard argument for
showing that a cycle is homologous to its barycentric subdivision
applies here to show that zn(n) mftzn(‘q) on Y(V). But z, 1s a n-V-
cycle, so zn('q) mzn(v) on Y(v). Therefore zn(v) ) ftzn(n) =
= fyn(f.t) on Y(v). v

Thus we have shown that f induces a homomorphism of Hn(X) onto
HE(Y).; To complete the proof, it is only necessary to show that if
fynru 0, then ynm 0.

Let then M be a covering of X, and let ¥ be the associlated

covering of Y, so that M < £~ (v). Let N="(p ,v) and let §=r7

n)-
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Now recall the sequence {F*k} of coverings of X constructed in the
proof of lemma 2, and choose a common refinement & of ¥ and ﬁxo

Since y, 1s an n-V-cycle, yn(é)m yn(S) on X(}). Hence
fyn(é)m fyn(§) on ¥(1)). But if z, = fy MO on Y, then zn(n) =
= fy (g)m 0 on Y¥(n). Therefore, £y, (8)n 0 on ¥(7) and tfy (8)m 0 on
X(p), since t is a chain mapping. We wish now to show that Yy (&) ~
6Ly, (&) on X(m).

Let L = 'yn(é)l, and let L XI be considered as a cell complex.
Define a chain mapping u on the base and the top of L xI by
u(th 0) =T, and u(tk:x1) = tfT, for any simplex T, of L. If we
now examine the proof of lemma 3, we see that, after substitution
of tf“tk for tﬁk and Ty for t'ek, this proof applies without change
to show that u can be extended to a chain mapping of all of L &I
into X(u). Thus u(yn(é) xI) 1s a chain of X(p) such that Fu(yn(é)xl)z

= u(y, (&) x 1)-(y,(8) x 0) = £y (8)-y (&), i.e. tfy (&)~ y (&) on X(p).

Now, since tfyn(é)AJO on X(pu), we have y (&)~ O on X(u). But v,
is an n-V-cycle so yn(é)A)yn(ﬂ) on X(M). Thus yn(p)ﬂlo on X(m), so
ynnro. This completes the proof of theorem 4.

PROOF OF THEOREM 2: Let pl be a covering of X and y a point of

Y. Let V = ;A, and let ¢ be the simplicial mapping, defined on p.
34, of N(V ) into X(p). We now consider v, as a covering of the
compact set f”q(y). Since the coefficient group is an elementary
compact group or a field, there is (Steenrod [1g p,678] and Lefschetz
[5, p.216]) a refinement v, of v, such that if z, is a cyele of N(Vz)
on qu(y) then Trzk is the coordinate on N{v 1) of a Cech cycle of

- (y) Let Y= V2. We assert that any cycle y,, O£k £n, on (%)

1(y) bounds on X{p)n £~ (y) '

Let ©@ be the simplicial mapping of X(}) into N(V2) defined on
p.34% . Then & v, 1s a cycle of N{v ) on f—q(y). Therefore, 8 yk is
the coordinate on N(v } of a Cech cycle of f 1(y). Since HS ( ( ) )=
k(f ( )) =0, this Cech ¢cycle bounds and T@ y,,M O on N(v ). Then
@7fe‘ykm 9 on X(M)N £~ 1(y), But it is easy to see, as in the proof
that the Cech and Vietoris homology groups are isomorphic, that
WOy, vy, on X(p)r\qu(y). Now we can choose f(p,y) to be ¥ , and
the hypothesis of theorem 1 is satisfied. This proves theorem 2.
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VEFINITIONS (Begle [3] ).

Iet K be a finite simplicial complex. A realization of K in
X(ox) is a chain mapping Tof Kinto X(«). If @ 1s another covering
of X, we write norm T < p 1f for each simplex o of K, diam |tci< ps
i.e. if there is a member of [ which contains the complex |Tol.

A partial realization T' of K is a realization of a subcomplex
L of K which contains all the vertices of K. We write norm <T'< p
if for each simplex © of K there is a member of [ which contains

all the complexes IT' 0"! for those faces ¢' of o which are in L.

A compact Hausdorff space X is lc if for each covering €& of X
there 1s a refinement K = k(&) and for each covering p there is a
refinement o= 0(("5,5) such that if K is a finite simplicial complex
and T' a partial realization of K in X(&) with norm <T'< K, then
there is a realization T of K in X(p), with norm T <& and such that
To= T'o whenever the latter 1s defined.

We now derive those properties of lc spaces which we need in
the statements and proofs of the theorems.

LEMMA 4 (Begle [3}). If X is lc, there is a covering v of X
such that if z is a V-cycle and if z(V) w0 on X(V) for some V< Vos
then z w0,

PROOF: Let & be the covering corsisting of the single open set
X, and let v_ = k(&) . Now suppose z(V) n 0 on X(v) for some V<V .
Let v, be any refinement of v and let v, = v,],a)a Since z is a
V-cycle, z(vg) wz{(v) on X(v). Therefore, z(vz) w0 on X(v). Let ¢ be
a chain on X(Vv) such that F(c) = z(V,) . :

We define a partial realization <T' of |c| in x(vg) by setting
To=0 if o is in lz(vg)f or is a vertex of |c| . Clearly,
norm T'< V<V o= K(€&). Therefore, there is a realization Tof |c]
in X( v,l), and To= T'0 whenever the latter is defined. Thus,
Fr(c) =1tF(c) = t(z( VE)) = T'(z(vy)) = z(vg), and so z(vg)mo on
X(V’l)” But z(vg)mz( v,]) on X(vj), so z(v,l)ruo on X(v,]). Since v, is
an arbitrary refinement of v, this proves the lemma.

LEMMA 5 (Begle [3] ). If X is lc, then its homology groups are
isomorphic to the corresponding groups of a finite complex.
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PROOF: Let Vo be the covering of lemma 4, and let Vg = %‘vo.
For each element Ue v, let ¢(U) be a point in U. Thengis a sim-
plicial mapping of N(v,) into X(v ). Let K = (p[N(v,]):]‘ K is a
finite subcomplex of X(v ). Next, let v, ="v,. For each vertex
xe‘X(vz), choose an element Ve v, such that xeV and then choose an
element We v, such that St (V,v2)c W, Let ©(x) = W. Then O is a
simplicial mapping of %(vz) into N(Vq). In the proof of the fact
that the Vietoris and Cech homology groups are isomorphic, we have
shown that, if z is any cycle on X(vg), then ¢0{c)mnec on X(\b).
(See p.35.)

Let z now be a V-cycle of X. Let w(z) = q7®(z(v2)). Then w in-
duces a homomorphism of Hn(X) into Hn(K)’ for all n2 0. We assert
that this homomorphism is actually an isomorphism, For if w(z) =
= ¢0(z(Vv,)) w0 on K, then ¢0(z(Vv,)) w0 on X(V,), since KeX(v,).
But z(vg)nj @@(z(vg)) on X(vo) and z(vg)ruz(vo) on X(Vb), since z
is a V-cycle. Thus Z(VO)RJO on X(vo) and so, by lemms %, znvO, Thus
the homology groups of X are isomorphic to subgroups of the homolo-
gy groups of K, and this proves the lemma.

LEMMA 6 (Begle rBJ). If X is lc, then each covering M of X
has a normal refinement p', i.e., 2 refinement such that, if c¢ is
a cycle on X( M'), then there is a V-cycle z such that z(y) = c.

PROOF: Let €& be the covering of X consisting of the single
open set X, and let & = K(&) and €, = k(7 61). It is sufficient to
prove the lemma for the case F‘< 52. We assert that for any such
covering we can choose ' to be a(p,*aq)@

Suppose then that ¢ is a cycle on X(fﬁ')a For each covering
Mg< pt, let Mo = o Vq;*tq): and define a partial realization
! of |c| in X(fxz) by setting r'cro =0, for each vertex 9, of‘c
Since H'<p < €, = K(%Eq), norm T'< r<(*61)° Hence there is a

-

realization T of |c| in X( H1) with norm 1'<*61. In the special
case where Hﬂ = P" we can and do choose T to be the ldentity
chain mapping.

Now for each refinement ’41 of H" we have a cycle y(fxq) =
Te on X( H1)“ This collection of cycles does not necessarily form
a V-cycle, but it does have the property that if vy and Vo are re-
finements of a(fxq,e), then y(vq)n/y(vg) on X( Hﬂ)’ To see that
this is so, consider the cartesian product K = |c| x I. We define
a partial realization 0! of K in X (o ( HW’E)) by defining Q' on
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the base of K to be the chain mapping tfrom lc‘ to X(\H) and on the
top of K to be the chain mapping from ‘c| to X(vz)a Since the norm
of each of these mappings is less than *51, norm p'< &4 = k(e). Con-
sequently, there is a realization P of K in X(Hq)a Denote by ¢4 the
copy of ¢ in the base of K and by o the corresponding copy in the
top of K. Then cqwc, on K, so P(Cq)NP(Cg) on X( V1)° But p(cq) =

= y(v4) and pley)= y(v,), and so y(vy)w y(vy) on X( py).

Now consider the family of all coverings & such that o(¥,e)< e
This is a cofinal family, and so, in defining a V-cycle, it is suf-
ficient to give its coordinates on this family. For each such E, de-
fine z(&) to be y(x(¥,e)). If we can show that this collection of
cycles forms a V-cycle, then we have proved our lemma, for Z(V) =
= yla(p,e)) = y(p) = c.

Suppose that &, < &,. Let v, =rd(E1,£) and v, = a(Eg,a), and
let v, be a common refinement of V4 and Vo Then, by what was shown
above, y(vy)wy(v,) on X(&;) and y(vg)w y(v,) on X(v,). But
X(E) e X(Ey), so z(8)) = y(vy)wy(v,) = z(E,) on X(&,), so {z(8)}
is a V-cycle, and the lemma is proved.

REMARK (Begle [3])@ It is clear that an analogous formula
holds for Cech cycles. The interest in this remark lies in the fact
that the proof of this lemma holds for any coefficient group. There-
fore, in an lc space, any covering has a normal refinement no mat-
ter what the coefficient group is.

THEOREM 3 (Begle [3]). Let X be a compact lc space which is a-
cyclic. Let B(X) denote the family of closed, acyclic subsets of X,
and let f : X— 8(X) be upper semi-continuous. Then there exists a
point x_ e X such that xoe,f(xo)e '

Theorem 3 is derived from a more general theorem, a generali-
zation of Lefschetz's fixed point theorem (Lefschetz [5]) which
also includes theorem EM2 (p.30) of Eilenberg and Montgomery [1] .
Consider a compact space X which is lc (put not necessarily acyclic),
and an upper semi-continuous mapping f as above. Let
Y = {(x,x")e X xX ]x‘e f(x)} . Since f 1s upper semi-continuous, Y
is a closed subset of X xX and hence is compact. We define two map-
pings g,h ¢ Y—=X by g(x,x') = x and h{x,x') = x7, for all
(x,x*)e¥. Clearly, f = hg“qg

For each x in X, g"q(x) is homeomorphic to f(x), which is a-
cyclic. Since the coefficient group is a field, theorem 2 applies
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to show that g induces an isomorphism g . : Hr(Y)—~>Hr(X) onto,
for r= 0, Therefore, g;; is an isomorphism defined on Hr(X)& Since
h : Y—X is continuous, it induces a homomorphism

h ¢ Hr(Y)——aHr(X), r20. Thus, h g*-r_ : Hr(X)-——:vHr(X) is a ho-
momorphism. By lemma 5, Hr(X) has a finite basis, g?d hence the
trace of h_ g;; is defined. Let A(f) = Alg,h) = > (-1)¥ trace

- §=0
he. g*; . By lemma 5, Hr(X) = O for sufficiently large r, and so

A(f) exists. We now state

THEOREM 4 (Begle [3]). Let X be a compact lc space. Let &(X)
denote the family of closed, acyclic subsets of X, and let
f : X—> B(X) be upper semi-continuous. If A(f) # O, then there
exists a point x_e X such that xoe.f(xo).

It is easy to derive theorem 3 from theorem 4., For, if X is
acyclic, then HT(X) = 0 for r »0, and HO(Y) has just one generator,
so A(f) = 1 and theorem 2 applies.

PROOF OF THEOREM 4: In order tc prove theorem 4, we need an
explicit method for calculating A(f) in terms of the V-cycles of
X. We obtain this by first recalling how the mappings g and h of Y

into X induce the homomorphisms g . and h . of Hr(Y) into HT(X).

T

Let z be an r-V-cycle of X. For each covering “ of Y, choose
a covering v of X such that p < g'q(v), and if b= g“q(v) for some
v, choose this v . Let y( V) = tz(n), where n = q(y,v) is the re-
finement of v given by lemma 2, and t 1s the corresponding chain
mapping of X(n) into Y(}A)° Then, as was shown in the proof of theo-
rem 2, y = {y(p)} is an r-V-cycle of Y, which we now denote by
g; (z), and thi transformation z->g;1(z) induces precisely the

e Hr(X) —»Hr(x) .

It appears at a first glance that y = g;q(z) depends on the

order of g as a Vietoris mapping, since the construction of q(p,v)

isomorphism g;

in the proof of lemma 2, depends on the order of g. However, the
homology class of y is independent of this order, since the homo-
morphism g, . : Hr(Y)—»}%jX) determined by g is uniquely defined.
Therefore, in the above construction, we may take g to be of any
convenilent order k2>r,

Next, given any r-V-cycle y of Y, for any covering v of ¥, let
po= h—q(v), and let z(v) = h(y(H)). Then z = {z(V)} is an r-V-
cycle of X, which we denote by hr(y), and the ftransformation
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y-—»hr(y) induces the homomorphism h . : Hr(Y)——}Hr(X).

Thus the transformation z—~>hrg;1(z), where z is an r-V-cycle

_1_
ur .,HT(X)——>Hr(X). Let

Zgslpsecesly be a homology basis for the r-V-cycles of X, 1.e. a
maximal set of r-V-cycles which are independent with respect to ho-

of X, induces the homomorphism h*rg

mology. Then, for each integer i, 1<1i <k, hrggq(zi)m Zf’iij 25

But now A(f) = Alg,h) = = (-1)7 trace (al.l".) = X Z(—’I)raii,
r>0 J r>0 1i=1

Next we show that the calculation of A(f) can be reduced to a
similar calculation for a chain mapping of a finite complex into it-
self.

Let & be an arbitrary covering of X, and let €, = K(g) and
€y = K(51), where the notation refers to the definition of an lc
space. Let v be a common refinement of 52 and of the covering Vs of
lemma 4, and let K be the finite subcomplex w[N(*v)] of X(v).

We are going to define a chain mapping v : K—>K. Before
doing this, we note that if z is an r-V-cycle of X, then the coor-
dinate of hrg;q(z) 1s obtained by first choosing a covering v, such
that <g'1(V1), where M, = h"q(v). Then hrg;q(z(v)) = htq(z(qq)h
where n, = n(}x1,v1)¢ Recall that 7, depends on the order of the
Vietoris mapping g. Choose an integer which is greater than the di-
mension of K and which is suclh that the homology groups of X for
dimensions greater than this integer are all zero, Take this to be
the order of g in constructing nq, and in the construction of No
below.

To define the chain mapping v, set V' = 9"“v,‘and choose a
normal refinement v, of V! (lemma 6). Let Mo = h—q(Vé), and
Ny = W(}‘z’vz)’ Since V,<V, M, < M. Therefore, by lemma 3,there
is a common refinement Aq of mM4 and T, such that tq(x)m tg(x) on
¥ Pq) for any cycle x of X(Aq), where t, : (M 1)—+vY(’41) and
ty Z( ng)-—*Y(fJe) are the chain mappings of lemma 3. Let
Ay = a(Ag,8).

Now let T' be the identity mapping of the null-skeleton of I,
so that =<' is a partial realization of K in Y(A,), where
XB = a(kg,aq)@ Since V< &, = K(&,), norm T'< k(). Hence there is
a realization T: K m&X(Xz) of norm <g,, and such that for each ver-
tex CB of K, we have TO% = T 06 = Ob”
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Since A2< Aj» t, is defined on X(A)), so t,T : K—>Y( p,) is a
chain mapping, and ht,T : K— X(v2) < X(v') 1s a chain mapping. Let
T denote the transformation @O : X(V')— K. Define the chain map-
ping v to be TTthT'. '

- r . R cor)
Let A(v) = T?EO (-1)" trace V,ps Where v . H (K)—H,(K) is
-1

the homomorphism fﬁduced by v. We now assert that trace h*rg*r =
trace v__.for each r 20, and hence that A(f) = A(v). To prove this,
*Tr

let Zgsaees? be a homology basis for the r-cycles of X. These

cycles may bg chosen such that, for each i, zi(v) = szi(v') of K.
For, zi(v'):uzi(V) on X(v), since zy 1s a V-cycle. Also,
Lp@(zi(v')) N zi(v') on X(v).  Hence,if the coordinate zi(v) of z;
is replaced by W@(zi(v')), the resulting V-cycle is homologous to
the original one.

Now we construct a homology basis for the r-cycles of K. Let
9O(z,;(v')) = c;. Since the cycles z,,...,%,
and since Vv is a refinement of the covering Vs of lemma 4, the coor-

are independent on X,

dilnates CqsesesC are independent on X(v) and hence on XK. Therefore,
a homology basis for K can be obtained by adding independent cycles
Clrgqs e»esCq to the set CqsovosCpn

Since v is 2 chain mapping, V(Xi) is an rycycle on K (1<1<1),

and so V(Xi) v = bt Xy Now trace (bij) = 2 bpl,, so we have to

. .
e =M 1= 11
show that 2. af. = 2_ b¥. .
S ii _ ii
i=1 i=1

We first show that bi, = 0 for k+1<1 <1, Recall that htérxi

is a cycle of X(VE) (1=1<1). By the choice of Vo
[~ i 1 I — Qs

r-V-cycle z! such that]zi(v ) htgt(xi). Since z4,...,2, forms a

there is an

k
. . . r o o
homology basis, z{ w %51 o5 5% and sc htZT(xi) zi(v)

k
N2 cgj z( V') on X(v'). Therefore
J=1

1. 1,
: S T
TThLET(xi) v ;z% cij'sz(v ) = jg% cjj X5 on K.

Thus, v(xi) (121 21) is linearly dependent on the first k elements

of the homology basis for K. Therefore, the last, 1-k columns of ma-

r

it

To finish the proof of our assertion, it is sufficlent to show
r

that b;7 = a3 . for i,j = 1,...,k. To do this, consider any cycle
J J

<
trix (bij) consist of zeros, and trace (bij) = Z b
1=1
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Xy (i=1,...,k), and let z} be the r-V-cycle defined above such
-1
g 1y u R
that Zi(v) htET(Xi)' Let z; be the r-V-cycle h g, (Zi)’

We wish to prove that zf mz;e By lemma 4, it is sufficient to

show that z}(v)wzi(v) on X(v). We start by proving that

zi(?\z) v Tx; on X( A,). Since z; is a V-cycle, zi(7\2) vz (V) =x
on X(v). Let ¢ be a chain of X(v)} such that F(c) = zi(>\2) - X
Define a partial realization p' of [c| into X(?\E} by letting
p! = T on lxi| and the identity on Izi(7\2)] and on the vertices of

lel N (lz, (M) U Ix,1). Since norm © < ¢, = *k(&), and since
ive i 1

V<, norm p' < K(E). Also, >\2 = a(A,,€). Therefore, there is a
realization p: le| —X(A,) with norm p < &. Now F P(C) = pF(c) =
= p(zi()\g)) - Tx;, since p= p' whenever p' is defined. Thus

z; (M) v Tx; on X(}\,]) .

Since t, is a chain mapping, te(zi(?\e)) not, Txy on ¥( Hg)o
By the choice of A, te(ziO\E)) n t1(zi(>‘2)) on Y(m,), and since
v( H2)<:Y( H’l)’ we have tgr(xi) ] t,](zi()\z)) on Y( H,‘)e Also,since
)\2 < Mg zi(?\e) n zi(q,l) on X( m,) and so t1(zi()\2)) mt,l(zi(q,l))
on ¥( }J,]). Since h is a simplicial mapping, htgr(xi)mht,‘(zi( q,l))
on X(v).

But ht’l(zi( n,])) = z;(v) and htgr(xi) = zi'(v'). Since

zi(v') a z_i(v) on X(v), zi(v) n z! (V) and hence z} m z;&

. "o -1 S 1
Now since z = h g (Zi) v j2=:’l 8y 24, we have
Kk
i r § r i i
zimfi‘ aj; z; and z] (V') v ht,T(x,) NJZ:’I 2 5 zj(v } on X{(Vvi).

Consequently,

Wﬂth(Xi) = v(x;)w 2 aF Tr(zj(v')) = Ei_' a¥. on K.

j=1 H =1
But
L T T
V(Xi)mjz;/] bij Xy, 50 a3 =-bij (1,3=1, .c0,k).

This completes the proof of the assertion that A(f) = A(v).

Finally, since K is a finite complex and since the coefficient
group is a field, there is another method for calculating A(v) and
hence A{f). For each r-simplex O, of K, let di be the coefficient
of 01‘1 in the chain v(ollq). Let A(v) = Z  (-1)7 trace djij. Then
A(v) = N(v) (Lefschetz [5, p.193]). r20
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We are now ready to prove theorem 4. Suppose that x ¢ f(x) for
all xe X. Then there is a covering €, of X such that St (x,eo) )
st (f£(x), eo) = @ for all xe X. We now specify the covering & in-
volved in the definition of K to be this covering €y -

Let o be any simplex of K. By construction, <T(o) is a chain
of X(A,) such that diam IT(O)|< €,< & . Choose an arbitrary sim-
plex ©' of X(Az) in |T(O)i , and let x be a vertex of of. Then
U< St (x,8). By the construction of t,, in the proof of lemma 2,
tz(x)e g"q(x), and also ltg(c')| c St (g_1(x),p2), Therefore,
htg(x)e,hg"q(x) = f(x) and, since Bo = h”q(ve), ht2(c) <
8t (£(x),v,) and so |TTht2(o*)! ¢ 8t (£(x),v)e 8t (f(x),e). Since
o < St (x,8), ¢ does not meet any simplex of TThtE(oq), But o

T(o)l, so o does not meet any sim-
plex of 'WhteT(G) = v(o). Thus, for every r and i, d?i = 0 and so
A (v) = 0. But  A'(g) = A(g) = A(f) # 0, and so the assumption,
that x ¢ f(x) for all xe X, leads to a contradiction.

was an arbifrary simplex of

In 1961 Fan [3] s using convexity arguments, obtained results
which generalize the fixed point theorem of Tychonoff [1], but
they neither include Kakutani's theorem (Kakutani [2] ), nor are
they included in the generalizations of Kakutani's theorem by
Bohnenblust and Kerlin [1] , Fan [1] , Glicksberg [1] and Begle [3].
Fan's results do not invoke any known fixed point theorem, and
they are all derived directly from the theorem of Knaster - Kura-
towski - Mazurkiewicz [1] , which was used in their well-known
proof of Brouwer's theorem. The Knaster - Kuratowski - Mazurkie-~

wicz theorem is reformulated in the following generalized form:

LEMMA 7 (Fan [3]). Let X be a subset of a topological linear
space Y. For each xe X, let a closed subset F(x) of Y be given
such that the following conditions are satisfied:

(i) The convex hull of any finite subset {Xﬂ’xg"""xn} of X
is contained in _EA F(xi).

1
(ii) F(x) 1s compact for at least one xe X.
Then n{F(x)l xe X} # .

PROOF: Because of condition (i1), it suffices to show that

F(xi) # @ for any finite subset {xq,xeyeas,xn} of X. Given

H
Mo D
-

{"q:ng*°°’Xn} < X, consider the closed (n-1)-simplex
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-

S = (vq,vg,age,vn) in E” with vertices vy = (1,0, «.0,0),

v, = (0,1,0,¢06,0), 00, v =n(0,0,0,a@.,1), and define a continu-
n

ous mapping : S— Y by w(ézaaivi) = izq o,x, for o, 20,

n
2 o, = 1. Consider the n closed subsets G, = ¢ [ F(x;)]
1=1 i i i

(i=1,2,...,n) of S. By (i), for any indices 1< 1<, S

<
the (k-1)-simplex (v, ,V. ,...,v. ) is contained in U G, .. Ac~
i1 1, 1 521 1J
cording to the Knaster - Kuratowskil - Mazurklewicz theorem, this
n n
implies that A G, £ @, and so N F(xi) # 0.
i=1 1=

<],.'<i <n,

Let Z be a topological group and let ©(Z) be the famlly of
all non-empty compact subsets of Z. 8(Z) is topologized as fol-
lows: For A € &(Z) and for each neighbourhood V of the identity e
of Z, let v(ﬁ) ={Be €(Z)IB<:AV, AcBV} . The family of all sets
of the form V(A), where V runs through the neighbourhocods of e, is
taken as a basis for the neighbourhood system of A in &(Z}.

Let X be a topological space, and Z a topological group. With
G(Z) topologized as above, a mapping £ : X-—> B(Z) is continuous
1f and only if, for any xoe.X and eny neighbourhood V of ee¢ &,
there 1s a neighbourhood U of x_ in X such that f(x)c:f(xo)@V and
f(xo)c:f(x).v for all xe U, In the remainder of this chapter a
transformation g : X—> B(Z) will be called upper semi-continuous
if and only if, for any X € X and for any neighbourhood V of e€ Z,
there is a neighbourhood U of x_ ir X such that g(x)c g(xo),v for
all xe U. (When Z is compact, this definition of upper semi-con-

tinulty coincides with the one given on p.14.)

LEMMA 8 (Fan [3] ). Let X be a topological space and Z a to-
pological group. Let f,g : X—> 8(Z) be upper semi-continuous. If
F 1s a non-empty closed subset of Z, then

E={xeX

F.o(x)ng(x) # @}

is closed in X.

PROOF': Take x_ € XNE. Since f(xo) is compact and F is closed,
Fof(xo) is closed. Since the compact set g(xo) is disjoint from
the closed set F,f(xo), there is a neighbourhood V of ee Z such
that F.f(xo),Vlﬁg(xo)@V = ¢. Choose a neighbourhood U of x_ in X
such that f(x)c:f(xo)av and g(x)c:g(xo)sv for all xe€ U. Then for
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xeU we have F.f(x)Ng(x) =@, 1i.e. xe X\E for xeU. Hence = is
closed in X.

LEMMA 9 Fan [3]). Let X be a topological space and 4 a to-
pological group. Let f : X—> B(Z) be continuous. If G is an open
subset of Z, then

H={xeX !f(x)ﬂG =g}

is closed in X.

PROOF: Take x_€ X \H, and zef(x_)NG. Then V = ™'z is a

neighbourhood of e in Z. Choose a neighbourhood U of X in X such
that f(xo)c £(x).V for all xe U, Then for each xe U, ze.f(xo) c
£(x).V, so £(x) Nz £ @, 1.e. £(x)NG £ . Thus HNU = ¢ and H
is closed in X.

THEOREM 5 (Fan [3]). Let X be a compact convex subset of a
topological linear space Y. Let Z he a topological group and let
B(Z) be the family of all non-empty compact subsets of Z, topolo-
gized as above. Let f : X —> B(Z) be continuous and g : X—> B(Z)
be upper semi-continuous, such that the following conditions are
fulfilled:

(i) For each x'€ X, there is &n x"e X such that
f(x') ng(x") # 4.

(i1) Given any neighbourhood of the identity ee Z, there is a
neighbourhood W of e with the following property: For every point
X, € X and for any finite subset {xq,xg,...,xn} of X, the relations
W.f(xo)(1g(xi) # @ (i=1,...,0) imply V.f(xo)(\g(x) £ @, for any
point x in the convex hull of {xq,,a.,xn} .

Then there exists a point %€ X such that £(X)ng(R) # g.

PROOF: Let U denote the family of all neighbourhoods of eeg 4.

For each Ve U, let

e(V) = {xeX V.r(x)ng(x) # 68 }-

By lemma §, @(V) is closed in X. If we can prove that
@(V) # @ for every Ve U, then it will follow that

n n
N oe(v) > o( N V) # 6
i="1 - i=1

for any finite number of members Vq,Vg,..,,Vrl of U . The compact-
ness of X will then imply that ﬂ{<P(V)|Veli} # @. Since every
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point X e N {cp(V)|V €U} satisfies £(X)ng(X) # &4, 1t remains to
show that @(V) # ¢ for every Ve U,

Consider an arbitrary fixed Ve U, For this V, choose a We U
with the property stated in (ii) of the theorem. For each xeX,
let

F(x) = @(V)u {yeX|u.f(y)ng(x) = ¢} .

Since W.f(y) Ng(x) = ¢ 1is equivalent to f(y)n w_q.g(x) = ¢
and W'1g(x) is open, {yeX]W.f(y) N g(x) =n¢} is c%osed, by lemma

9. Hence F(x) is compact. We claim that 2 o.x. e \J F(x,) for any
I
finilte subset {x,,X,,....% } of X and for any o > O with Zai=’le
n

n {=1

L.

In fact, if %1 O(J.xj¢cp(v), then V.f( 2. oaJ.xJ.) ne(Z ajxj) @: so,

by our choice of W, for at least one index 1, we have
W.h{Z «,x.)Nn g(x;) = @ and therefore 2. o %€ F(x,). By lemma 7,
there is an x'e N {F(x)|xeX} . By (1), we can choose x"e X such
that f{xtyng(x") # @. Then W.f(x') ng(x") # @ and x' e F(x") imply
xte (V). Hence (V) # O and the theorem is proved.

When g is a continuous mapping of X into 2, it may be consi-
dered (in an obvious way) as an upper semi-continuous mapping
g : X—» B(Z)., In this case, condition (ii) of theorem 5 may be re-
stated as follows: Given any neighbourhood V of the identity ee?Z,
there is a neighbourhood W of e such that, for every Xy € X, the
convex hull of g'q[waf(xo)] is contained in g“q[V,f(xo)],

THEOREM 6 (Fan [3]). Let X be a compact convex subset of a
topological linear space Y. Let Z be a locally convex topological
linear space and let X (Z) be the subfamily of B(Z) consisting of
all non-empty compact convex subsets of Z. Let f : X—-—-}K(Z) be
continuous with respect to the relative topology of X (Z)} induced
by the topology of &{Z), and let g : X—>Z be continucus. Let f
and g satlsfy the following conditions:

(1) £(x)ng[X] # @ for every xeX.

(i1) For every closed convex subset C of Z, g'q [C]is convex

(or empty).
Then there exists a point X € X such that g(X) e £(X).

PROOF: By the local convexity and regularity of Z, for any
neighbourhood V of the null-element of Z, we can find a convex
neighbourhood W of the null-element of Z such that We V. Then, for
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any x € X, W o+ f(x ) is closed and convex, and therefore, by (ii),
g w + f£(x.)] is convex. e 'V + £(x o)] contains the convex set
1[w + f(x )] , which contains the convex hull of g~ [W + Px )]

Thus condition (ii) of theorem 5 is satisfied (see the remark pre-

ceding theorem 6).

COROLLARY, If f : X— X 1s continuous and g : X—=X is the
identity mapping, theorem 6 reduces to the fixed point theorem of
Tychonoff [1]

We now replace the topological group in theorem 5 by a uni-
form space Z, but we consider continuous mappings f,g : X-— Z only.

THEOREM 7 (Fan [3]). Let X be a compact convex subset of a
topological linear space Y, and let Z be a uniform space. Let ©(Z)
denote the family of all non-empty compact subsets of Z. Let
f,g ¢ X— 2 be continuous mappings satisfying the following con-
ditions:

(1) £[x] ¢ g[X]

(1i) For any entourage V of Z, there is an entourage W of 2

such that for any z ef[k] any finite subset {xq,xg,.g.,xn} of X

and for any o 20 (1=1,2,...,n) with 2: o, = 1, the relations

; 1
i=1 n

(z,e(x;)) e W (1=1,2,...,n) imply (z,g(izqoclxi))eV.
Then there exists a point % € X such that g(%) = £(X)

PROOF: The proof is similar to that of theorem 5. Let U de-
note the family of all those entourages of Z which are open 1n
Z%x Z. For each Ve U, let

(V) ={xeX | (£{x),&(x))e T}

where V denotes the closure of Z in Zx Z. (V) is closed in
x : @(v) = £ [F(e(x))], where T(g(x)) = {yeX|(e(x).v)e T} .
The theorem will be proved, if we can show that @ (V) # ¢ for
every Ve U,

For any fixed Ve U, choose a We U with the property des-

cribed in condition (ii). For each xe X, let
P(x) = @(V) U {yeX | (£(x)e(x)) eV} .

Since W is open in Zx Z, {ye Xi (f(y),e(x))¢ W} 1is closed
in X. Hence F(x) is compact. By lemma 7, there is a point
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x'e n{F(x)|xeX} . Let x"e X be such that £(x') = g(x"). Then
from x'e F(x") 1t follows that x'e @(V).

Again, theorem 7 generalizes Tychonoff's fixed point theorem.
In fact, when ¥ = Z is a locally convex topological linear space
and g is the identity on X, condition (ii) of theorem 7 follows
immediately from the local convexity.

1.4, Multi-valued mappings such that the image of each point
is non-acyclic

In this section, if X is a topological space, then 8(X) will
denote the family of non~empty closed subsets of X.
Hamilton [2] (1947) considered multi-valued mappings for
which the image of a point was supposed connected, but not acyclic.
Let C" be an n-cell in E™ (nx 2), and let f be a mapping such that
for each x e C", £(x) is the boundary (n-1)-sphere of an n-cell in
c™. Then Hamilton [2] asserted that there exists a fixed point if
elither
(i) f is continuous (i.e. f is upper semi-continuous and
lower semi-continuous );or

(1i) £ is upper seml-continuous and there is an ¢ >0 such that
for each x e C", the interior domain of f(x) contains an
€-neighbourhood in E".

However, Capel and Strother [2] (1957) and O'Neill [2] (1957),
gave counter-examples to the first of these assertions. Hamilton
[2] (1957) showed that the second assertion was valid, and this 1s
confirmed by the followlng theorem cf O'Neill [2] , of which it is
a corollary:

1. (0'Nei1l [2]). Let X be an ANR in E”, and let f : X—> 8(X)
satisfy the following conditions:

(1) If xe X and U is a neighbourhood of f(x), there is a
nelghbourhood V of x such tnat if ye V then f(y)c U (i.e.
£ is upper semi-continuous), and each (n-1)-cycle on f(x)
1s homologous in U to a cycle on f(y) (augmented Cech ho-
mology with a field of coefficients);

(ii) If xe X and O< r<n-2, then Hr(f(x)) = 0,

Then X has a fixed point under f.
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0'Neill [3] (1957) defined induced homology homomorphisms
for multi-valued mappings and used it to define a Lefschetz num-
ber for mappings under which the image of each point is discon-
nected. Let H again denote Cech homology theory with coefficients
in a field. All spaces are sssumed to be compact metric. Thus the
group H(X) can be based on a group C(X) of projective chains (Lef-
schetz [5, pp.229, 231]). Define the support of a coordinate c; of
¢ € C(X) to be the union of the closures of the kernels of the sim-
plexes appearing in c; (Lefschetz [5, p.245]). Then the intersec-
tion of the supports of the coordinates of c¢ is defined to be the

support ]c[ of c. Let A and B be chain groups with supports in

the compacta X and Y respectively, and let £€> 0 be given. Let ¢
also denote the set-valued function defined by

e(x) = {x'e X lp(x,x‘)s £}, for all xe X, where p denotes the me-
tric of X. A chain mapping @: A-=B is accurate with respect to

a function £ : X—> G&(Y) provided that I@(a)lc f[{a{] for each

ae A, Further, @is £-accurate with respect to f provided @ is ac-
curate with respect to the composite function € fe .

A homomorphism h : H(X)-— H(Y) is an induced homomorphism of

f @1 X B(Y) provided that, given & > O, there is a chain mapping
¢: C(X)—> C(Y) such that @ is €-accurate with respect to f, and
h =@, , where ¢, is the homomorphism induced by ¢ .

The set of all induced homomorphisms of an arbitrary function
f ¢ X— 8(Y) is a vector space under the usual operations. If he
and h_ are induced homomorphisms of upper semi-continuous mappings
f:X— B(Z), and g : Y— 8B(Z), then h h, is an induced homomor-
phism of gf. If £ : X—Y is a (single-valued) continuous mapping
of a connected compactum into a compact polyhedron (for the lat-
ter, see Lefschetz [5, pp.9L, 308]), then the induced hom?logy ho-
momorphisms of f are exactly the scalar multiples of the Cech ho-
mology homomorphism f, (O'Neill [3]).

A homology homomorphism h is non-trivial provided that the
zero-dimensional component h_ : HO(X)M—>HO(Y) is not the zero ho-
momorphism.

We now have

2. (0'Neill [3]). Let X be a compact polyhedron, f : X-—> 8(X)
upper semi-continuous and h : H(X)— H(X) the induced homology ho-
momorphism of f. Then the Lefschetz number A(h) = meﬁ)r trace
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h, can be formed, and if A(h) # 0, then X has a fixed point under
f.

To be able to use this fact, it is necessary to produce an in-~
duced homology homomorphism of f, which maps some r-cycle non-tri-
vially {(r20).

3. (Ot'Neill [3])¢ An upper semi-continuous mapping £ :X-»8(Y)
has a non-trivial induced homomorphism in either of the following
cases:

(i) X and Y are compact polyhedra such that for all xe X, f(x)
is either acyclic or else consists of exactly n acyclic
components;

(11) X is a compact one-dimensional polyhedron with first Betti-
number =< 1, and Y is a compact polyhedron.

From this we have theorems 4 and 5 below.

4, (0'Neill [3]). Let X be a compact polyhedron and n a fixed
positive integer. Let f : X—> B(X) be continuous such that, for
all xeX, £(x) is either acyclic or else consists of exactly n a-
cyclic components. Then £ has a non-trivial homomorphism h such that
if A(h) # 0, then X has a fixed point under f. Further, if X is a-
cyclic, then there is a fixed point.

Analogous, but weaker results were earlier obtained by Magenes
[2] (1950), parbo [1] (1950) and Dal Saglio [1] (1956).

For n = 1 theorem 2 1s the polyhedral form of the theorem of
Eilenberg and Montgomery [1] (1946), except that the requirement
that £ be lower semil-continuous is then superfluous. However, if
n>1, upper semi-continuity alone is insufficient. For exauple, con-
sider the mapping of the interval [-1,1] for which £(0) = {-1,1} ,
f(x) = {1} for x <0, £(x) = {-1} for x » 0. Also, 1f n>1 the space
of 1Induced homomorphisms need not be one-dimensional as in the case
n =1,

It does not appear that this result can be generalized by al-
tering the number of components f(x) is permitted to have. For, if
S 1s any finite set of positive integers - except certain sets of
the form {E,n} and necessarily, {1,n} - there 1s a continuous map-
ping f @ ces 8(02), ce being the 2-cell, which has no fixed points
and which is such that for each point x the number of points in f(x)
occurs in S (O0'Neill [3] ).
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5. (0tNeill [3]). Let X be & compact one-dimensional polyhe-
dron with first Betti-number R1 < 1. Every continuous mapping
f @ X— G(X) has a non-trivial induced homomorphism h such that
if A(h) # 0, then X has a fixed point under f.

Corollary (Plunkett [1] ). A dendrite has the f.p.p. for con-
tinuous closed set-valued mappings.

Ward [7] (1958) obtained the following extension of Plunkett's
result which is not included in theorem 5:

6. (Ward [7]). An arcwise connected, heriditarily unicoherent,
hereditarily decomposable metric continuum has the f.p.p. for con-
tinuous closed set-valued mappings.

The restriction on the Betti-number in theorem 5 cannot be
omitted. For let X be a compact one-dimensional polyhedron with-
out end points and such that R1> 1. If € > 0 1s sufficiently small,
the function f : X—> B(X) defined by f(x) = {yeX, p(x,y) = 6}
will be continuous if pis a sultable metric, and any induced ho-
momorphism of f will be a scalar multiple of the identity homomor-
phism of H(X). Thus a non-trivial induced homomorphism of such a
function would have a non-zero Lefschetz number, contradicting
theorem 2.

The condition that the space be one-dimensional is also es-
sential. Strother [1] (1953) showed that no Tychonoff cube with
more than one factor has the f.p.p. for continuous closed set-
valued mappings. Thus it is necessary to place further conditions
on functions defined on spaces of dimension > 2. In addition to
the restrictions stated in O'Neill's theorems (O'Neill [3] Y, we
have the following possibilities:

7. (Strother [1] ). Let X be a retract of a Tychonoff cube
T = I, Let £ : X— B(X) be continuous such that, for every xe¢ X,
f{x) is the product of subsets of I. Then X has a fixed point un-
der f. '

8. (Strother [1] ). Let X be a retract of a Tychonoff cube
T = 1P, Let Ty: X—1I (x € A) be the natural projection. Let
X —> B(X) be continuous such that, for some fixed pe A and

)

for all x e€X, there is only one point in f(x) which projects onto

su {yp ] Vpe TTp [ f(x)]}@ Then X has a fixed point under f.

o]
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In each case the proof proceeds by constructing a trace of {,
i.e. a continuous function ff : X—X such that f'(x)e f(x) for
all xe X. .

1.5. Mappings £ : X—> Y such that XcV and £[X] ¢ X

So far we have been concerned with mappings of a space into
itself. We now consider a more general situation: If X 1s a proper
subset of a space Y, what conditions must be imposed to ensure the
existence of fixed points under a mapping f : X -—>Y such that
£ [X\X #4d 2

As an example, we have the following extension of Brou-
‘wer's Tixed point theorem for the n-cell:

1. (Knaster, Kuratowski and Mazurkiewicz [1] (1929)). Let c"
be an n-cell in En, and £ : C"— E" continuous such that f maps
the boundary of c™ into C". Then C" has a fixed point under f.

For two dimensions Sperner [ﬁ] (1934) proved the existence of
fixed points under slightly weaker assumptions:

2. (Sperner [1] (193%4)) . Let C° be a two-cell in E- and

o co%s E° continuous. Then c@ has a fixed point under f if the
boundary of c? contains an arc A such that (1) A contains all the
accumulation points of £[C2]\c?, and (11) r[a]c c2.

2

Fixed point theorems of the same spirit (and for the two-di-
mensional case) have been given by Scorza Dragoni [1,2] {1941,
1946), Volpato [1,2] (1946, 1948), Tolcher [1] (1948), and Trevi-
san [1] (1950).

The Knaster-Kuratowski-Mazurkilewicz theorem was extended to
Banach spaces:

3. (Rothe [3] (1938)). If X is a Banach space and f a conti-
nuous mapping of the closed unit bali C = {xeX i HXH < 1} 1into
X such that £[C] is compact and the boundary of C is mapped into
C, then C has a fixed point under f.

For multi-valued mappings we have the following result:

L. (Eilenberg and Montgomery [1] (1946)). Let C" be an n-cell
in E”, and B(E™) the family of non-empty compact subsets of BT,
Let £ : C"— B(E") be an upper semi-continuous mapping which maps
the boundary of ¢™ into C™. If there exists & non~trivial coeffi-
cient group with respect to which each f{x) is acyclic (Vietoris
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homology), then C" has a fixed point under f.

It is to be expected that theorems 3 and 4 also hold for lo-
cally convex topological linear spaces (with the obvious changes
in wording). '

It is natural to ask the following question: If C™ and D" are
n-cells such that C" is properly contsined in D", and f is a con-
tinuous mapping of c? onto Dn, does there exist a fixed point un-
der f? For continuous mappings this is in general not true (Hamil-
ton [3] (1948)),but for interior maeppings (i.e. continuous, open
mappings) we have the following results:

5. (Hamilton [31 (1948)). If £ is an interior mapping of a
locally connected unicoherent plane continuum M onto a two-cell
containing M, then M has a fixed pcoint under f.

Corollary. Let f be an intericr mapping of & locally connect-
ed plane continuum M, which does not separate the plane, onto a
two-cell containing M. Then M has a fixed point under f.

6. {(Hsmilton [3] {1048)). Let f be an interior mapping of a
two-cell C into the plane, such that C c £[C]. Then C has a fixed
point under f.

1.6. Speces with a finite number of holes

Bourgin [3] {(1957), using his results on the index of a con-
vexold space {(Bourgin [é] (1955)), proved a number of theorems
giving sufficient conditions for the existence of fixed points un-
der continuous mappings of a space with a finite number of holes:
His main results are:

1. (Bourgin [3])3 Let X be an AR (i.e. a space which is ho-
meomorphic to a retract of a Tychonoff cube), and Y,],YZ,.”,Yn
{(n>1) open subsets of X such that §i n §j =@ (1 # 3) and such

— n
that ¥, (1=1,2,...,n) 1s an AR™. Set G = U Y,. Let £ : X\G—>X

i=1
be a continuous mapping such that the boundary of Yi is mapped in-

to ?i (1=1,2,...,n). Then X \ ¢ has a fixed point under f.

This theorem generalizes previous results by Brouwer [5]
(1919), Alexander [1] (1922) and Feigl [1] (1928).
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2. (Bourgin [3] }. Let E be a reflexive Banach space and
PSS CPRRRYL (n >1) open sets in the weak togology with mutually
disjoint closures which are AR®'s, Set G = igg Yi’ Let
f : ENG—E be a continuous mapping which sends the boundary of
¥, into ¥, (1=1,2,...,n), and is such that f"[ENG] 1s contained
in an open ball in E for some integer m=-1. Then ENG has a fixed
point under f.

Gohde [1] (1959) obtained the following partial extension of
theorem 2:

3. (Ghde [1] ). Let X be a closed ball in an infinite-di-
mensional Banach space, and let Y1 (i=1,2,...,n) be mut%ally dis-
Joint open balls which are contained in X. Set G = X\\$g Yie Let
f : G—>G be continuous such that £[G] is compact. Then G has a
fixed point under f.

For results on the existence of fixed points when an annular
ring is mapped into itself, the reader is referred to G.D. Birk-
noff [1,2] (1913, 1931), Kerékjdrts [1,2] (1921, 1923) and Rey
Pastor [1] (1945). (Also see p.19.)

1.7. Common fixed points

The following theorem is due tc Markov B] (1936) and Kakuta-
ni [1] (1938):

1. (Markov [1], Kakutani []])e Let K be a compact convex sub-
set of a locally convex topological linear space, and let F be a
commutative family-  of continuous affine transformations of K into
itself. Then K has a common fixed point under F, i1.e. there is an
x € K such that f(x) = x for all feF,

This theorem was first proved by Markov [ﬁ] > who used the
Tychonoff fixed point theorem (Tychonoff [1]). Kakutani [1] then
sketched a direct proof, and he also outlined a proof of the fol-
lowing theorem: . :

2. (Kakutani [ﬁ])g Let K be a compact convex subset of a lo-
cally convex topological linear space and let G be a group of equi-
continuous affine transformations of K into itself. Then K has a
common fixed point under F.

Despite the similarity in appearance, the theorems are proved
along different lines. (For proofs of these theorems, see Dunford
and Schwartz [1, p.456-457]).
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The Markov-Kakutani theorem was extended to a larger class of
families of functions by Day [2] (1961). He noted that if xeK is a
fixed point under f, then it 1s also a fixed point under every ite-
rate of £, 1.e. x 1s fixed under the smallest semigroup of operators
on K which includes f. Similarly, x is'fixed under every function f
of a family F of functions of K into itself, if and only if x is al-
so fixed under every finite product ign fi of functions from F.
Thus, in the Markov-Kakutani theorem, F may be replaced by E:(F),
the smallest semigroup of continuous affine mappings of K into it-
self which contains F. In this case the commutativity of F is car-
ried to the semigroup S°(F), so the theorem above is equivalent to
that obtained by replacing the word "family" by "semigroup". In or-
der to formulate Day's extension of theorem 1, we briefly define a
few concepts.

Let 3. be a semigroup, and m(> ) the Banach space of all bound-
ed, real-valued mappings x on> , with | x| = sup {Ix(g)ll g e
Let e be that element of m(2]) for which e(g) = 1 for every gey .
Let m(§[)% be the adjoint space of m(Z ). A mean on 2. is an element
uarn(E:)* such thatl|p | = 1= p(e).

The right [left} regular representation of > over m(3 ) is the
homomorphism [antihomomorphism] defined on Z: into the multiplica-
tive semigroup of the algebra of bounded linear mappings of m(§:)
into itself by: For each he §_, P [Xh] is that linear mapping de-
fined by: For each fem(S ) and each ge >

(ppf)(e) = fgn) [, (e) = £(ng)] .

A mean p on >° is called right [1eft] invariant i1f for each
fem(3 ) and each he .

Flppt) = p (o) [pOy0) = p(0)]

A mean is invariant if it is both right and left invariant. S

is called amenable if there exists an invariant mean on E:_. If we

express this in terms of adjoint mappings of the linear mappings fn
or'Xh, a mean is a right, or left, or two-sided, invariant mean if
and only 1if M is a fixed point of every Pgﬂ or every 'k;, or both,
respectively.

The extended theorem can now be formulated as follows:
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3. (Day [éj ). Let K be a compact convex subset of a locally
convex topological linear space, and let Z be a semigroup of con-
tinuous affine mappings of XK into itself. If 2. is amenable, or
even of it has a left invariant mean, then K has a common fixed
point under 7. .

Every Abelian semigroup is amensble (Day [1] (1942)), so this
theorem 1s indeed an extension of the Markov-Kakutanl theorem. The
arguments used in the proof of theorem 3 admits the following ge-
neralization:

%, (pay [2]). Let A(K) be the semigroup of all affine con-
tinuous mappings of K into itself, and let A(K) have the topology
of pointwise convergence. Let S be any semigroup with a topology
in which multiplication is continuous in each variable, and let
C(S) vpe the space of bounded, continuous real-valued functions on
S, with the least upper bound norm. If there is a left-invariant
mean on C(S), then for each continuous homomorphism ¥ : S —>A(KX),
K has a common fixed point under T S] .

Since Haar measure defines a left invariant mean on any com-
pact group (see e.g. Halmos [1]), this theorem includes the case
where S is a discreet Abelian semlgroup or a compact group.

A st111 unsolved problem concerning the existence of common
fixed points was referred to by Isbell [1] (1957): If T is a tree
and F is a .commutative family of continuous functions f : T—> T,
does there exist a common fixed point under F? The answer is in
the affirmative provided that the members of F are homeomorphisms
(Isbell 1.c.), but otherwise little seems to be known, even when
T is a compact interval and F contains only two functions. However,
it seems that the restriction that F does not contain many func-
tions only adds to the difficulties, for

5. (MySkis [1] (1954). If P is a finite polyhedron with non-
vanishing Euler characteristic and F is a one-parameter semigroup
of continuous mappings of P into itself, then P has a common fixed
point under F,

6. (Hedrlin [1,2] (1961, 1962). let F be a commutative semi-
group of continuous mappings of the closed unit interval I = [b,ﬂ]
into itself which contains the identity mapping. Suppose that, for
some a€ I, the orbit F(a) = {f(a)] feF} 1is a connected set. Then
I has a common fixed point under F.
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7. (Baayen [1] (1963)); also see Hedrlin [2, p.38] (1962)).

Let F be a commutative group of continuous mappings of a topolo-

ical space X into itself, and let F contain the identity mapping.

;D* o]

t F be maximal as a group, i.e. let I be contained in no other
transformation group G : X— X. Then X has a common fixed point
under I' 1f and only if F is not & maximel commutative semigroup.
3. (Hedrlfn [3] (1962)). Let F be a commutative semigroup of
continuous mappings of a topological space X into itself, and let
F contain the 1dentity mepping. Then X has a common fixed noint
under ¥ if and only if the orbit F(a) of some se X is e compact

space which has the f.p.p. for continuous mappings.

1.3. The Lefschetz fixed point formula for non-locally

connected continua

We remark here that a quasi-complex (Lefschetz [5, p.323])
need not be locally connected, e.g. Dyer [2] (1956) proved that
the finite product of chainable coatinua (for the latter, see
p.66 ) is an acyclic quasi-complex aid hence has the f.p.p. for
continuous mappings. Also, /ilder E{] (1957) showed that under ad-
diticnal assumptions on the mappings, the Lefschetz fixed point
formula can be applied to another class of non-locally connected
continua.

A compact Hausdorff space is n-lc et xe X if, glven eny neigh-
bourhood U of x, there is a neighbourhood V of x contained in U
such that every n-dimensional 5ech~cycle on V bounds on U. X is lg?
et x if it is r-lc at x for all r=<n, and it is 1lc™ at x if it is
r-lc at x for all r.

If X fails to be 1% at x, then x is an lcdn—singular noint

of X. An 1ca)-prime part of X is a component of the closure of the

set of all 1coo~singular points of X.

Wilder [2] proved the following theorems:

1. (Wilder [2] ). Let X be a compact Hausdorff space of fi-
nite dimension all of whose Betti numbers are finite and whose 1c™-
prime parts are acyclic (fech homology with coefficients in a field)
If £ ¢ X—X 1is continuous and maps each 1c03~prime part into an
1~ prime part, and if the Lefschetz number A(f) # 0, then there
ig an 1e™@ - prime pari of X which is mapped onto itself. In parti-
cular, 1f the 1e® - prime parts of X have the f.p.p. for continu-

ous mappings, then X has a fixed point under f.
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2.(Wilder [2] ). Let X be as in theorem 1. Let f be an upper
semi-continuous mapping such that the image of each point xe¢X is
the union P(x) of a collection of 1¢®™ - prime parts of X, such
that this union is acyclic and such that if x and y are in the
same 1c¢® - prime part of X, then P(x) = P(y). Let A(f) be de-
fined as in Begle [2] (also see p.U6). Then, if A(f) # 0, there
is an xe X such that x e f(x).

Wilder [2] conjectured that these theorems also hold if the
restriction that the mapping sends 1¢%® - prime parts into 1c¢® -
prime parts is dropped, provided that the 1¢® - prime parts are
acyclic.
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CHAPTER IT

The Scherrer fixed point theorem and
related fixed point theorems

2.1, Definitions and introductory remarks

We first define some of the concepts which will be used in
this chapter.

A gpace will be called degenerate if it contains one point
only; otherwise, a space will be said to be non-degenerate.

Let X be a connected topological space. A point e of X is an
end point of X if, for each neighbourhood U of e, there is a neigh-
bourhood V of e such that Ve U and ﬁA\V consists of 2 single point.
A point ¢ of X is a cut point of X if X\\{c} is disconnected. Two
points x and y of X are conjugate points (written x~y) if no point

of X separates x and y in X. If pe X is neither a cut point nor an
end point of X, then the set M(p) = {xe X| x~p} is a simple link
of X. A subset of X is an EO:EEE of X provided that it is maximal
with respect to the property of being a connected subset without
cut points. X is semi locally connected (s.l.c.) if, for each

point xe X and each neighbourhood U of x, there 1s a neighbourhood
V of x such that Ve U and X\\V has only a finite number of compo-
nents. If X is s.l.c. then the simple links coincide with the Eo”
sets. A cyclic element of X is either en end point, & cut point or

a simple link of the space. An end element of X is a cyclic ele~

ment E of X with the property that, if U is 2 neighbourhood of E,
then there is a nelghbourhood V of E such that Ve U and V \V con-
sists of a single polnt.

A curve i1is a one-dimensional continuum.

The reader is referred .to Whyburn [1] for information on me-
tric continua and cyclic element theory.

A chain in a topological gpace is a finite number of open
subsets U, ,Up,...,U  of the space such that U;n U, # ¢ 1if and only
if ]1 j] 1. The sets U, are ‘called the links of' the chain. A chain
{U } 121 is said to connect two points x and y if ye‘Uq and ve U N
A continuum 1s chainable if each of its open coverings has a re-
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finement which is a chain. A metric chainable continuum i1s called
snake-like. Each snake-like continuum i1s imbeddable in the plsne
(Bing [2] ).

Bing [ﬁ] proved that any two non-degenerate herediterily in-
decomposable snake-like continua are homeomorphic. Such 2 conti-
nuum is called a pseudo arc.

A circular chain is 3 finite collection of at least three non-

empty open sets Uy,Up,...,U  such that UynU # ¢, and otherwise
U0 U # ¢ 1f and only if |1-3|<1. A collection G of sets 1s co-
herent 1f, for each proper subcollection H of G, an element of H

has a non-empty intersection with an element of G\\H. A finite co-
herent collection of open sets 1s a tree chain if no three of fthe
sets have a point in common and no subcollection is a circular
chain. A continuum is tree-like i1f each of its open coverings has
a refinement which is & tree chain. The tree-like continua include
among others the trees and certaln indecomposable continua. Each
plane continuum which does not contain & continuum which separates
the plane, is tree-like. (See Bing [2] for information on tree-
like continua.)

If X and Y are topological spazes, then a continuous mapping
£ ¢ X—>Y igs called monotone if f“q(y) is & connected subset of X

for every ye¥, £ is pseudo-monotone if, whenever A and B are

closed connected subsets respectively of X and Y, and Bcrf[Aj,then
some compohent of Arﬂf'q[B] is mapped onto B by f. In general the
notion of a pseudo-monotone mapping i1s independent of the notion
of a monotone mapping, but if X is & herediterily unicohereni con-
tinuum, and £ : X—Y is monotone, then 1t is pseudo-monotone
(Ward [10] ).

The following two unsolved problemns play an interesting role
in the set-up of this chapter:

(i) Does a plane continuum which does not separate the plane
have the f.p.p.? '

o

(i1) Does a tree-like metric continuum have the £.p.p.?

=]).

Most of the results to be surveved in this chapter can be in-

(Bine

terpreted as partisl solutions of one or both of these problens

as peneralizations of such partial solutions to either non-uetria

[

spaces cr multl-valued mappings. This seems to he true even thourh

i

many of the "partial results" were obtained before either problem
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was explicitly formulated in the literature. The two problems are
in fect different, but the second problem seems to be the more
general one, as there exists many tree-like metric continua which
are not imbeddable in the plane.

For the sake of clarity, the results for single-valued map-
pings are grouped together in section 2, even when they were foruu-
lated directly for multi-valued mappings in the original publica-
tions. The results for multi-velued mappings are surveyed in sec-
tion 3.

If a2 mapping of a continuum into itself lecves an end point
fixed, the question arises whether there are other fixed points.

Results enswering questions of this nature are collected in section
i,

2.2. Single-valued mappings

One of the main results to be stated in this section is

1. A tree has the f.p.p. for continuous mappings.

The history of this theorem is as follows: In 1926 Scherrer
[1] proved that a dendrite has the {.p.p. for continuous mappings.
N&beling [1] (1932) extended this result to continuous mappings,and
another proof was given by Borsuk [3] (1932). It also follows (for
a dendrite and continuous mappings) from the following result due
to Hopf [2] , in the proof of which he made use of the structures
of the nerves of the coverings of the considered space:

2. (Hopf [?] (1937)). If o is a covering of order 2 of & uni-
coherent locally counnected continuum X by closed sets, and
f : X—>X 1s continuous, then there exists a member Ue o such that
unr[u] £ d.

Wallace [ﬁ] {1941) showed that the techniques introduced by
Hopf could also be applied to show that a tree has the f.p.p. for
continuous mappings, and other proofs of this result were given by
Ward [4] (1951) and Capel and Strother [3} (1958), by means of the
order-tneoretic characterization of trees due to Ward [2] (1954) .
Ward [4] (1957) also defined a generalized tree in terms of partial

order for which Le proved a fixed point theorem. Finally, theorem 1
follows from Lefschetz's fixed point formula (Lefschetz [5] (1942)).
Ayres [ﬁ] (1930) gave several extensions of Scherrer's theore.

to arbitrary Peano continua. His first tneorem contains a general
o o
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s

result on the cyclic structure of Peano continua:

3. (Ayres [1] (1930)). I X is a Peano continuum and
h : X—X a nomeomorpunlsm, then there exists a cyclic element C of
X such that nf[c] < c. ,

From this, three generalizations of Scherrer's theorem follow:

4, (Ayres [1] (1930)). If every cyclic element of a
Peano continuum X hes the f.p.p. for homeomorphisms, then X has the
same property.

5. (Ayres [ﬁ] (1930)). If every cyclic element of a Pesno con-
tinuum X is an n-dimensional simplex (n may very for different ele-
ments), then X has the f.p.p. for homeomorphisms.

6. {Ayres [1] (1930)). If a Peano continuum lies in the plane
and does not separate the plane, thien it has the f.p.p. for homeo-
morphisms.

Borsuk [3] (1932) showed that "nomeomorphisms" in theorems 4 -
6 may be replaced by "continuous mappings" to give stronger results
in the case of theorems 5 and 6,

Kelley [1] (1939) extended theorem 3 to non-locally connected
metric continua:

7.(Kelley [ﬁ} (1939)). If X is a metric continuum and
h ¢ X-—>X a homeomorphism, then there exists a subcontinuum Y of X
such that h[Y] = Y and Y has no cut points.

From this follows

8. (Kelley [ﬂ] (1939). If X is 2 metric continuum and
h : X—>X a homeomorphism, then there exists either a fixed point
in X or else an E_-set Y such that h[Y]c V.

9. (Kelley [1] (1939)). If every E -set in a metric continuum
X has the f.p.p. for homeomorphisms, so also has X.

If X is semi locally connected, then the Eo—sets and the cy-
clic elements coincide, and thus theorems 8 and ¢ imply theorems 3
and 4 respectively.

In 1940 Kelley [2] obtained related results for continuous
mappings.

10. (Kelley [2] (1940)). If £ is a continuous mapping of a ne-
tric continuum X into itself, then there exists a continuum Y which
is a subset of a simple link of X such that f[Y]| > Y. If Y is de-
generate, then there is a fixed point: Hence, if f : X— X 1is con-
tinuous, then there exists either a fixed point in X or else a sin-
ple link C such that Cer[C] is a non-degenerate continuum.
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1. (Kelley [2] (1040)). If £ is a continuous mapping of 3 mc-
tric continuum X into itself, theu there exists a compact subse® A
of & simple link of X such that f[A] = A,

12.(Kellev [2] (1940)). Ir £ 15 ¢ continuous mapping of a ae-
tric continuum X into itself which carries each simple link into e
simple link (e.g. if the inverse of no point separates a simple
linlkt in X), then there exists 2 simple link C of X such that
rlc] e c.

For Peano continua, theorem 12 implies theorem 3, and the
fixed point theorem for dendrites follows from theorem 10. Ward
[3,10] (1956, 1962) showed that theorem 7 holds for arbitrary con-
tinua and for monotone and pseudo-monotone mappings.

Hamilton [1] (1938) extended theorem 6 to & class of non-lo-
cally connected metric continua and proved theorems related to theo-
rems 3 - 5 for this class of continua.

13. (Hemilton [1] (1933)). If ¥ is a decomposable non-degener-
ate metric continuum and h : X— X a homeomorphism, then there
exlsts a proper subcontinuum Y of X such that Yr\f[Y] £ d.

14, (Hamilton [1] (1938)). If ¥ is a decomposable and heredi-
tarily unicoherent non-degenerate metric continuum end h : X— X a
homeomorphism, then there exists a proper subcontinuum Y of X such
that h[Y] e Y.

15. (Hemilton [1] (1938)). & hereditarily decompossble and here-
ditarily unicoherent metric continuum has the f.p.p. for homeomor-
phisms.

Theorem 15 admits os application in the plane:

16. (Hamilton [1} (1238)). & hereditarily decomposable plane
continuum which does not separate the plane and which contalns no
domain, has the f.p.p. for homecmorvhisms.

17. (Hamilton [1} (1938)). If D is & bounded, simply connected
plane domain whose closure does not separate the plane and whose
boundary is hereditarily decomposable, then D has the f.p.p. for
homeomorphisms.

It is unkrown whether a plane continuum which does not sepa-
rate the plane has the f.p.p., even for homeomorphisns. Choquet[ﬁ]
(1241) showed that if C is sny plezne continuum which does not seve-
rate the plane and h : C~—=>C is a homeomorphism which is extensible
to a2 homeomorphism of the plane onto itself z2nd 1f h is periodic

with period # 2, then C hss 2 Tixed point under h. Cartwright and
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Littlewood [1] (1951) proved that a plane acyclic continuum has
the f.p.p. for homeomorphisms which are extensible to homeomor-
phisms of the plane onto itself.

Theorem 15 was extended to hereditarily decomposable and uni-
coherent (non-metric) continua and monotone and pseudo-monotone
mappings (Ward [1d] (1962)). In particular, a continuum each of
whose non-degenerate subcontinua has a cut point, has a fixed
point under a pseudo-monotone mapping.

Borsuk [7] (1954) partially extended theorem 15 to continuous
mappings:

18. (Borsuk [7] (1954)). An arcwise connected, hereditarily
unicoherent metric continuum has the f.p.p. for continuous map-
pings. In particular, an arcwise connected, hereditarily acyclic
curve has the f.p.p. for continuous mappings.

Borsuk 1l.c. proved that an arcwise connected, hereditarily
unicoherent continuum is hereditarily decomposable. Thus, for ho-
meomorphisms his result is included in Hamilton's theorem (theorem
15 above). Theorem 18 was extended to non-metric continua by Young
[2] (1960).

A corollary of theorem 18 is that a contractible curve has
the f.p.p. for continuous mappings. Kinoshita [2] (1953%), however,
gave a counter-example to the widely held conjecture that every
contractible continuum must have the f.p.p. for continuous mappings.
The Jjoin of the space in his example with a point is a cone which
lacks the f.p.p.

We now consider generalizations of the fixed point theorem for
trees to non-compact, non-locally connected spaces. Young [1] (1946)
defined a generalized dendrite as a locally connected Hausdorff

space X such that if x,ye¢ X and L1 and L2 are two chains of con-
nected subsets from x to y, then some member of Lﬂ intersects some
member of L2 outside {x,y} . If X is compact, this is equivalent
with X being a tree. Young proved that every two distinct points x
and y of a generalized dendrite X are the non-cut points of a unique
compact, connected and locally connected set P such that each point
of P \{ x,y} separates x and y in X, and he called such a set P a
"pseudo arc". To avoid confusion with the term pseudo arc as defined
on p.67, we shall use the term generalized arc instead of "pseudo

arc”. Young l.c. obtained the following generalizations of the fixed

point theorem for trees:
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19. (Young [1] (1946)). If X is an arcwise connected general-
ized dendrite such that the union of any monotone increasing se-
quence of generalized arcs of X is contained in a generalized arc,
then X has the f.p.p. for continuous mappings. Conversely, if X is
an arcwise connected generalized dendrite which has the f.p.p. for
continuous mappings, then the unlon of any monotone increasing se-
quence of generalized arcs of X is contained in 8 generalized arc.

By the introduction of local connectivity by a8 change of topo-
logy, Young used theorem 18 to deduce

20, (Young [1] (1946)). If X is an arcwise connected Hausdorff
space such that the union of any monotone increasing seguence of
arcs 1s contained in an arc, then X has the f.p.p. for continuous
mappings.

Ward [8] (1959) obtained 2 result that includes the above-
mentioned theorems of Borsuk and Young (theorems 18, 19 (first
part) and 20). A topological chain is a continuum which has exactly

two end points. A topological space is said to be topologically
chained if, for every two distinct points x,ye X, there is a topo-
logical chain in X which contains both x snd y. Let X be a topolo-
gilcally chained space in which the topological chains are unique,
i.e. every two distinct points x,ye X are the end points of
precisely one topological chain, denoted by [x,y] . A ray with end
point e of X is the unlon of a maximal nest of chains which have e
as common end point. If R is a ray with end point e and xe X, let

a(R,x) =R\ [e,x] u{x}, Kz = n{a(R,x)|xex}.
Consider the condition

(Fe) If R is a ray with end point e, then Ky has the f.p.p.

for continuous mappings.
We now state Ward's results.

21. (Ward [8] (1959)). If X is an arcwise connected Hausdorff
space in which the union of any nest of arcs is contained in an arc,
then the arcs in X are unique and X satisfies (Fx) for each xe X,

22. (Ward [8] (1959)). An arcwise connected, hereditarily uni-
coherent continuum satisfies (Fx) for each xe X,

23, (Ward [8] (1959)). Let X be a topologically chained space
with uniogue chains and suppose there exlists 2 point ee X such that
{Te) 1s satisfied. Then X has the T.p.p. for continuous mappings.
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From theorems 271 and 22 it follows that the class of continua
for which theorems 18, 19 and 20 hold, is contsined in the class
for which theorem 23 holds.

Hamilton [4] (1951) introduced a new technique by making ex-
plicit use of the fact that a chainable continuum has arbitrarily
fine open coverings, each of whose (finite collection of)elements
are totally ordered, to present an elegant proof of

24k, (Hsmilton [4] (1951)). A chainable continuum has the f.p.p.
for continuous mappings.

Actually Hamilton proved the theorem for snske-like continus
only, but & slight modification of his arguments yields 8 proof of
theorem 2U,

Dyer [2] (1956) obtained the following extension of Hamilton's
result:

25, (Dyer [2] (19%6)). The topological product of an arbitrary
family of chainable continua has the f.p.p. for continuous mappings.

Theorem 24 was generalized in another direction also. A snake-
like continuum is, by definition, the inverse limit of & system of
arcs, and i1t is not hard to prove that if a space 1is the inverse
1imit of a system of arcs, then it is a chainable continuum, as was
observed by Rosen [1] (1959) ., However, it is unknown whether 2
chainable continuum 1s the inverse 1limit of 3 system of arcs. Rosen
established the following partisl extension of theorem 24:

26, (Rosen [1] (1959)). Let X and Y be the inverse limits of
systems of arcs over directed sets A and A!' respectively (defini-
tions as in Eilenberg and Steenrod [1] ), and let @ : A—>A' be an
isomorphism, 1.e. @ 1s one-to-one-,asp in A implies ¢la) < W(F)
in A' and w[A] is cofinal in AY, Let f,g : X—Y be continuous
mappings of which g is onto. Then X has a coincidence point under
f and g, 1.e. there exists 2 point x_e X such that f(xo) = g(xo),

Theorem 26 was in turn partially extended (and pronerly ex-
tended in the special case where Y = X and g : X—X is the 1lden-
tity mapping):

27. (Mioduszewski and Rochowski [1] (1962)). Iet {:{WTT% Jb}
be an inverse system of compact polyhedra {Xd}

&Fﬁ:

and onto, and such that, for every continuous mepping f of Xp on-

ver oo " :C
wep OVET 2 directed

set A, where the projections T XP'“*'Xa (e 5[3) are continucus

to X there is a point x,e X such that f{x =T X ).
> Feo pe Xp (xp ) = Mag (g
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Then the inverse limit of the systen {Xa ,Tﬂl ,A} has the f.p.p.

P
for continuous mappings.

Both theorem 26 and theorem 27 imply *the fixed pnoint theoren
for snske-like continua. Theorem 27 also has the following interest-

ing corollary:

28. (Mioduszweslii and Rochowsli [1] (1962)). Let {Xa,'W;P,A}
be an inverse system of compact polyhedrs such that < X for
aKLG,PG!\WiﬂldSPﬁIﬁt{T%P}%Piﬁ
is the identity mapping on X,, 2nd let each X, (€ A) have the

X
A
be retractions, i.e. T

X

f.p.p. for continuous meppings. Then the iaverge limit of
{Xa,T%P,A} has the f.p.p. for conf%nuous nappings.

Mioduszweskl and Rochowski [11 stated the following problen
which includes the question whether 2 tree-like continuum has the
£.p.p.: If 811 the X, in the inversz system {XajW&P ,A} nave the
f.p.p. for continuous mappings, and the‘ﬂg are onto, does the in-
verse limit of the system have the f.p.p.?

2.3. Multi-valued mappings

Wallace showed that the technicues introduced by lopf [2](see
theorem 2 of section 2) could be aprlied to extend the fixed point
theorem for trees to a certain cless of multi-vealued mappings.

1. (Wellace [1] (1941)). A tree has the f.p.p. for upper semi-
continuous continuum-valued mappings.

Capel and Strother {3] (1958) uszed order-theoretic methods to

~n

give another proof of theorem 1. Theorem 1 also follows from Beglefs
extension of the Lefschetz fixed polnt theovenm (Begle [4} (1950);
see section 3 of Chapter I).

Attention has already been drawrn tc the fact that, to ensure

e t
the existence of fixed points under orbitrary closed set-velued

nappings, 1t 1s necessery tc impose uprer semi-continuity and
lower semi-continuity on the mappings (0'Neill [3] (1957); see
section 4 of Chapter I). Furthermore, the spaces which have the
f.p.p. for continuous closed set-velued mepnings ceonstitute & feir-
1y swall subecless of those which have the T.p.p. for (single-valued)
continuous meppings. for example:

2. (Plunkett [1](1956)). (o) & Gendrite has the £.p.p. for

by

continuous clcsed set-valued meppin s,
[S)¢ -
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(v) Conversely, if a Peano continuum hes the f.pu.p. for ccn-
tinuous closed set-valued mappings, then it is a dendrite,.

Theorem 2(2) was extended to non-metric continua:

3. (Ward [7] (1958)). A topologically chained 1), herediters-
ly unicoherent and hereditarily decomposable continuum has the
f.p.p. for continuous closed set-valued nmappings. In particuler,
since an arcwise connected, hereditarily unicoherent continuum
contains no indecomposable continuum (e.z. Borsul: [7,p°17]), such
8 space has the f.p.p. for continuous closed set-valued mappings.

The arcwise connected metric continua which have the f.p.D.
for upper semi-continuous continuwum-valued mappings are character-
ized by hereditsry unicoherence:

4, (Ward [9] (1961)). An arcwise connected metric continuunm
has the f.p.p. for upper semi-continuous continuum-valued mappings
if and only if it is hereditarily unicoherent.

Thus, for Peano continua the class of spaces which have the
f.p.p. for continuous closed set-valued mappings coincides with
the class of spaces possessing the f.p.p. for upper semi-continu-
ous continuum-valued mappings.

We now turn our attention to snake-like continua. Ward [6]
(1958) showed that Hamilton's arpument in the case of single-
valued mappings (Hamilton [4] (1¢51)) can also be applied to con-
tinuous set-valued mappings. In fact it cen be extended to chain-
able continua, as was observed by Rosen [ﬁ] (1952).

5. (Ward [6:] (1958), Rosen [1] (1959)). A chainsble continuun
has the f.p.p. for continuous closed set-valued mappings.

Rosen l.c. established results which in the metric case are
generalizations of theorem 5 both with respect to the class of msp-
pings and the class of spaces.

6. (Rosen [1] (1959)). Let X and Y be the inverse limit of
systems of arcs over directed sets A and A' respectively (defini-
tions as in Filenberg and Steenrod [1] ). Let ¢: A-—>A' be an iso-
morphism, i.e. ¢ is one-to-one, a < in A implies @(o) = @(P) in
A" and @[A] 1s cofinel in A'. Let &F(¥) denote the Zamily of aon-
empty closed subsets of Y, and let [,z : X—> (V) be upper semi-
continuous mappings such that = is onto and the grephs of f and g
are connected subsets of X x Y, Then X has a coincidence poin® u~der

1) See p. 72 for the definition.
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f and g, i.e. there exists a point x_ & X such that f(xo)r\g(xo) £ 3.

Corollary. Let X be a snake-like continuum and f : X —> £ (X) an
upper semi-continuous mapping such that the graph of f is connected.
Then X has a fixed point under f. )

7. (Rosen [1] (1959)). Let X and Y be as in theorem 6. Let B(Y)
denote the family of non-empty subcontinua of Y, and let f,g :
X — f(Y) be upper semi-continuous mappings of which g is onto. Then
X has a coincidence point under f and g.

Corollary. A snake-like continuum has the f.p.p. for upper semi-
continuous continuum-valued mappings.

8. (Rosen [1] (1959)). Let X and Y be as in theorem 6. Let
f : X— 4 (Y) be continuous, and g : X — #(Y) upper semi-continuous,
onto and such that the graph of g is connected. Then X has a coin-
cidence point under f and g.

Theorem 8 implies theorem 5 in the case of snake-like continua.

2.4, Fixed end points

There are a few isolated results in the literature of fixed
point theory which state sufficient conditions for the existence of
more than one fixed point when the existence of at least one is
known.

1. (Schweigert [1] (1944), Wallace [2] (1945), Ward [1,3]
(1954, 1956)). Let X be a continuum, and E an end element containing
no cut points of X. Let f be a monotone mapping of X onto itself
such that f[E] = E. Then X\ E contains a non-empty subcontinuum with-
out cut points.

Corollary. If X is a tree and E :{ e }, e being an end point of
X, then there exists a fixed point of f distinet from e.

2. (Young [1] (1946)). Let X be a generalized dendrite 1) such
that the union of any monotone increasing sequence of generalized
arcs 1) is contained in a generalized arc. Let h be a homeomorphism
of X onto itself, and e a point of X which is fixed under h and
which is an end point of every generalized arc containing it. Then
there exists a point Xq # e which is fixed under f.

In particular, the conclusion of the theorem holds if "general-
ized dendrite" is replaced by "arcwise connected Hausdorff space"
and "generalized arc" by "arc".

Results analogous to the Markov-Kakutani theorem (see section

1) See p.71 for the definitions.
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7 of Chapter I) was obtained by Wallace [3] (1949) and Wang {1]
(1952). Wallace l.c. considered a continuum X and a group Z which
is required to be a topological space (but not necessarily a topo-
logical group). Let a continuous function f : Z X X~—sX be given
which satisfies: '
(i) f(e,x) = x, for all xeX, where e is the unit element of Z;
(ii) f(z,f(z',x)) = f(zz',x), for all xeX and all z,z'e Z.

For each ze?Z, set z(x) = f(z,x), for all xeX. Then Z can be
considered ("somewhat incorrectly") as a group of homeomorphisms
acting on X.

A subset A of X is called Z-invariant provided that z[A] = A
for all zeZ. Wallace proved

3. (Wallace [3] (1949)).

(a) If Z is Abelian, then there is a non-empty Z-invariant sub-
continuum of X which has no cut points. Moreover, there exists a
non-empty Z-invariant cyclic element in X.

(b) If Z is Abelian and no proper subcontinuum of X is Z-in-
variant, then X has no cut points.

(¢) If Z is connected and metric, then every end point and
every non-degenerate cyclic element of X is Z-invariant.

Wallace l.c. raised the following question: If X is a Peano
continuum and G is a compact transformation group of X such that an
end point of X is G-invariant, do there exist other G-invariant
points of X? Wang [1] (1952) solved the problem for spaces much more
general than Peano continua by proving the following theorem:

4, (Wwang [1] (1952)). Let G be a transformation group of an
arcwise connected Hausdorff space X, and let e be a G-invariant end
point of X. Then there is no other G-invariant point of X if and
only if, for each neighbourhood U of e, the set G[ﬁl = U {g[U]Ige G}
colncides with X. If G is also compact, then there exists a G-inva-
riant point of X distinct from e.
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CHAPTER III

Miscellany

3.1. Partially ordered sets and spaces

3,1.1. Ordered sets

A relation £ on a set P is a quasi-order on P if it is re-
flexive and transitive. If it is also anti-symmetric on P, i.e. if
x 2y and y£ x can never occur simultaneously, then £ is a partial
order on P, If for every x,ye P we have elther x<y or y<x, then
< is a total (also, linear) order on P, We write x<y if x<y and
x #y. A mapping f : P—> P is isotone provided f(x)= f(y) for all
X,y € P such that x=<y.

The fixed point theorems of Abian and Brown [1 ] (1961)(hence-
forth referred to as AB EI]) for partially ordered sets include
most of the previously known results as well as the more or less
simultaneously published results of Pelczar [1] (1961). Their
proofs are based entirely on the definitions of partially and well-
ordered sets, and except in the case of theorem 4 and corollary 4
below, make no use of any form of the axiom of choice.

et P be a set, partially ordered by < ., Let £ : P—> P be a
mapping. For each a € P, an a-chain Cr is a subset of P satisfying
the following conditions (AB [1]):

(1 C. is well ordered, with a as its first and r as 1ts last
element;

(2) ir zeC, and z # v, then f(z)e C., z <f(z), and there
exists no y eC, for which z<y <f(z);

(3) if T is a non-empty subset of C,, then sup T exists and
is an element of Cr'

Let W(a) = {reP | 3 an a-chain C, having r as its last element }-

From (2) it follows that W(a) = {a} except when a< f(a). The
set W(a) has the following properties (AB [1:]):

(i) If reW(a) and C, is an a-chain with last element r, then
C.cW(a).

(11) Ir reW(a) and r < £(r), then f(r)e W(a).
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(111i) If r,se W(a) and C,. 1s an a-chain with last element r,
then either s eCr or r<s.
(iv) If re W(a), there is just one a-chain C, with last ele-
ment r, namely {xe W(a) | x<r} .
Thus, for given P, f and a, Cr is uniquely determined by r.
We now state the main results of 2B [ﬁ] .

1. (AB [1J)ﬁ Let P be a partially ordered set, f a mapping of
P into itself, and a an arbitrary element of P. Then
(&) W(a) is well ordered with a as first element.
Moreover, if ¢ = sup W(a) exists, then
(5) W(a) is an a-chain with ¢ its last element, and
(6) c~*f(c)@
2. (AB [ﬁ] s also see Pelczar [ﬁ] Y. Let P be a partially
ordered set in which
(7) if W is a non-empty well ordered subset of P, then sup W
exists.
Let £ ¢ P— P be an isotone mapping such that
(8) there exists an element a ¢ P such that a<f(a).
Then there exists at least one element c e P such that
c = f{e¢). In fact, ¢ = sup W(a) is such an element.

Corollary 1. (AB [ﬁ] , Knaster [1] (1928), Tarski [1] (1955);
also see G. Birkhoff [1, p.54]). Let £ : P—> P be an isotone map-
ping of a complete lattice into itself. Then x, = f(xo) for some
X, € P.

Corollary 2. (AB [1] ; also see Pelczar [1]). Let P be s
partially ordered set in which
{9) every non-empty well ordered subset W of P which is bounded
above has a sup.
Let £ : P—>»P be isotone and let there exist two elements a,be P
such that
(10 a=fr(a)s F(b)< b.

Then there exists ce P such that f(c) = ¢ and a<c<b. In
fact, ¢ = sup W({a) is such an element.

Corollary 3. (AB [1], G.Birkhoff [1, p.5k, example 4 |). If
is an isotone mapping of a conditionally complete lattice into it-
self and 1f there exist two elements a,beP such that
asf(a)s f(b}= b, then f{c} = c for some ceP with a=c=b.
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3. (8B [1],G. Birkhoff [1, p.44, example 4] ). Let P be a par-
tially ordered set in which
(11) sup of every non-empty well ordered subset W of P exists.
Let £ ¢« P—> P be a mapping such that
(12) x =f(x), for all xeP,

Then there exists at least one element c ¢ P such that c=f(c).
In fact, for each aeP, c = sup W(a) is such an element.

b, (AB [1] }. Let P be a partially ordered set in which
(13) each non-empty well ordered subset Wc P which is bounded
above has a sup.
Let g ¢ P—> P be a mapping such that
(14) 1if g(x) <g(y), then x<y for every two elements x,ye P, and
(15) for x,y,seP, if g(x)<s <g(y), then g_q(s) £ 0.
Let £ ¢ P—>P be isotone, and let there exist a,b P, with a<b,
satisfying

g(a) < £(a) and f£(b)< g(b).

Then there exists at least one element c e P such that a<c<bd
and f(c) = g(c).

Corollary 4. (AB [h] ). If in theorem 4 instead of (14) we
assume that g is isotone, then the conclusion of theorem 4 remains
valid provided P is linearly ordered.

The results of Pelczar [ﬁ] actually are slightly weaker than
those of AB [1] , e.g. instead of (7) it is assumed that the sup
of every non-empty subset of P exists.

The following generalized form of corollary 1 above was
proved by Tarski [ﬁ] (1955) =

5. (Tarski [ﬁ] ). Let L be a complete lattice and F a commu-
tative family of isotone mappings of L into itself. Let Q be the
set of all common fixed points of L under F, i.e,

Q ={xel|f(x) =x for all fe F} . Then Q is a non-empty complete
lattice.

Davis [1] (1955) showed that the property of having the f.p.p.
for isotone mappings is also sufficient for a lattice to be com-
plete. Thus

6. (Davis [1] ). & lattice is complete if and only if it has
the f.p.p. for continuous mappings.
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Wolk [1] (1957) obtained an analogous characterization for a
class of partially ordered sets which includes the lattices. Let P
be a partially ordered set with a greatest and a least element. A
subset S of P is up-directed [down-directed ] if each pair of ele-
ments of S has an upper bound [é lower bound] in S. P is_Dedekind
complete if each up-directed subset of P has a sup in P and each

down-directed has an inf in P.
For Ac P, let

A*={xe}?lasx for all ae A}, and

A+={xePfxsa for all aeA}.

P is uniform if A* is a down-directed set for every up-direct-
ed subset A, and 1f Bt is an up-directed set for every down-direct-
ed subset B, An isotone mapping f : P— P 1is directable if

{xeP|x=f(x)}] 1s an up-directed subset of P.

It is easy to verify that a complete lattice is a Dedekind
complete, uniform, partially ordered set with a least and a great-
est element, and that every isotone mapping of a lattice into it-
self is directable. Thus the following theorems of Wolk [1] include
the theorems of Tarskil [j] (for the special case when F in theorem
5 above consists of a single mapping) and Davis [1] :

7. (Wolk [ﬁ] Y. If P is a partially ordered set such that each
up-directed subset of P has a sup in P, then P has the f.p.p. for
directable functions.

8. (Wolk [1] ). If P is a unifcrm partially ordered set which
has the f.p.p. for directable functions, then P is Dedekind com-
plete.

Hence we have

9. (Wolk [1] ). A uniform partislly ordered set is Dedekind
complete if and only if it has the f.p.p. for directable functions.

Theorem 7 is a direct consequence of theorem 2 (Abian and
Brown B] ).

Ward [5] (1957) obtained a necessary and sufficient condition
for a class of partially ordered sets, which includes the lattices,
to be compact (in the interval topology) in terms of the f.p.p. for
isotone mappings. A partially ordered set P is a semi-lattice if
each pair of elements of P has an inf in P. A semi-lattice is com-
plete if each non-empty subset of P has an inf in P. wJard's results
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are

10, (Ward [5] ). Let P be a semi-lattice and £ : P—>P iso-
tone. If P 1s compact in the interval topology, then the set Q of
fixed points of P under f is non-empty. If P is a complete semi-
lattice, and Q # ¢, then Q is a complete semi-lattice.

11, (Ward [5] ). A semi-lattice P is compact in the interval
topology if and only if P has the f.p.p. for isotone functions.

3.1.2. Ordered spaces

Let X be a topological space endowed with a quasi order < .
The guasi order is lower Lﬁpper] semi-~continuous if, whenever a$k)
[b£a]in X, there is a neighbourhood U of a such that if xeU,
then X$b [b 4;}(] . The quasi order is semi-continuous if it is
both upper and lower semi-continuous. It is continuous if, when-
ever a%b in X, there are neighbourhoods U and V of a and b res-
pectively, such that if xe U and ye€ V then x:ﬁye A guasi ordered
topological space (QOTS) is a topological space together with a

semi-continuous quasi order. Iff the quasl order is a partial or-
der, then the space is a partially ordered topological space
(POTS) .

For xe X, let L(x) ={an|a_<_x}, M(x) ={a€X ‘xﬁa} ,
E{x) = L{x) n M(x).

Clearly, the statement that X is a QOTS is equivalent to the
agsertion that L(x) and M(x) are closed sets, for each xe X.

A chain of a quasi-ordered set X is a subset of X which is
totally ordered by the quasi order. A maximal chain is & chain
which is propewly contained in no other chain.

For information on ordered topological spaces, see Ward [4]

and the papers quoted there.

In 1945 Wallace [2] proved the following fixed point theorem,
which he applied to obtain an extension of the Schweigert theorem
(Schweigert [ﬁ] )

1. (Wallace [é] }. Let X be a compact Hausdorff QOTS, satis-
fying: )
(1) there exists a unique element e e X such that e=<x for all
xe X
{11) each set L(x) is totally ordered;
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(1i1) for every two elements x and y distinct from e, there
exists an element z e X such that z<x and z<y.

If f is a homeomorphism of X onto itself such that both f and
f“q is isotone, then there exists an element x # e in X such that
both Xosf(xo) and f(xo)s.xoa

If = is a partial order on X, then X is a fixed point dis-
tinct from e.

Ward [1] (1954) continued along these lines and used the re-
sults to obtain fixed point theorems for continuous mappings of
hereditarily unicoherent continua (Ward [1,4,7,9,10] ), already
referred to in Chapter II. Je now state Ward's results:

2. {Ward [ﬁ] }. Let X be a Hausdorff QOTS with compact maxi-
mal chains and let £ : X—*X be continuous and isotone. A necessa-
ry and sufficient condition that there exist a non-empty compact
set KCZE(XO) for some x_& X, is that there exist xeX such that x
and f{x) are comparable, 1.e. such that either x sf(x) or f(x)=<x.

Corollary 1. If X is partially ordered, then a necessary and
gsufficlent condition that £ has a fixed point is that there exist
x e X such that x and f(x) are comparable.

If X is a partially ordered set with an element ee X such
that esx for all xeX, and A is a subset of X, we say that A is
bounded away from e provided there is ye X \E(e)} such that A<M(y).

3. (Ward [1] ). Let X be a Hzusdorff QOTS with compact maximal
chains and suppose there exist ee X such that e<x for all x eX.
Let £ ¢ X—+ X be a continuous and isotone mapping which also satis-
fies:

(1) there exists xe X \E{e) such that x and f(x) are compar-

ables

(11) if x satisfies (i), then either the sequence {fn(x)}glq is
bounded away from e, or there exists ye X such that
xe B(£(y)) end f(y)=7v.

Then there 1s an x € X \E{e) and a non-empty compact set
KcE(x, ) such that f [K] = K,

Corollary 2. If X is partially ordered, then there is a fixed
point under £ distinet from e.

Corollary’Bs Let X and f be as in theorem 2, and suppose X sa-
tisfies the equivalent conditions
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(1) there exists ue X such that L(u) = X,

(11) for x,y €X, there exists z e X such that x ¢ z and ysz.

Then there is a non-empty compact set Kc:E(xO), for some X, € X,
such that f£[K] = K.

Corollary 4. Let X and f be as in corollary 3, and let X be
partially ordered. Then X has a fixed point under f.

Corollary 5. Let X be a compact Hausdorff QOTS satisfying (i)
and (1i) of corollary 3, as well as

(111) there exists ee X such that e ¢ x for all xeX, and E(e)#X.

Let £ : X— X be continuous, isotone and onto. Then there is a
non-empty compact set Kc:E(xo), for some x_e€ X\E(e), such that
r[x] = x.

Corollary 6. Let X and f be as in corollary 5. If X is partial-
ly ordered, then there exists a fixed point distinct from e.

In concluding this section we remark that the "long line" has
the f.p.p. for continuous mappings, as follows from a more general
result by Young [1] (1946).

3.2. The product of spaces

If X and Y are topological spaces, each of which has the f.p.p.
for continuous mappings, does thelr topological product also have
this property? (Strother [1] (1953)). In general, this is not true
(Connell [1] (1959), Klee [5] (1960); also see section 5 of this
chapter). However, Cohen [1] (1956) showed that the answer 1s in the
affirmative if X and Y are totally ordered sets which are compact 1n
the interval topology. Since a compact, totally ordered space has
the f.p.p. for continuous mappings if and only if 1t is connected,

Cohen's result may be stated as follows:

1. (Cohen [1] ). If X and Y are compact connected totally or-
dered spaces, then thelr topological product has the f.p.p. for con-
tinuous mappings.

Since a compact connected and totally ordered Hausdorff space
is a chainable continuum (see p.66 for the latter), the above result
is a special case of the following simultaneously published result
of Dyer [2] (1956):

2. (Dyer [2] ). The topological product of an arbitrary family
of chainable continua has the f.p.p. for continuous mappings.

To prove theorem 2, Dyer first showed that the product of a
finite family of chainable continua has the f.p.p. for continuous

mappings. Theorem 2 then follows from this result and the following
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simple but useful fact:

3. (Dyer [2]). Let # be a family of compact Hausdorff spaces.
Then the topological product of the elements of F has the f.p.D.
for continuous mappings if and only if. the topological product of
each finite subfamily of % has the f.p.p. for continuous mappings.

Theorem 1 is related to a result of Ginsburg [1J (1954), who
proved that if X and Y sre totally ordered sets, each of which has
the f.p.p. for similarity transformations (i.e. one-to-one trans-
formations gggg), then also both the direct sum and the Cartesian
product X xY (ordered lexicograsphically) have the f.p.p. for simi-
larity transformations.

3.3. Hyperspaces

Let X be a continuum, and JL(X) [G(X)J the space consisting
of the non-empty closed [ﬁon-empty closed and connected] subsets
of X, with the finite topology.

1. (Kelley [3] (1942)). For any metric continuum X, & (X) 1is
an AR 1if (and only if) X is locally connected, Hence, if X is a
locally connected metric continuum, then ®B(X) has the f.p.p. for
continuous mappings.

2. (Capel and Strother [1 ] (1956), Hammond Smith [1] (1961)).
If X is an ANR¥, then both JF(X) and B(X) have the f.p.p. for con-
tinuous mappings.

3. (Segal [1] (1962)). If X is a snake-like continuum, then
E(X) 1is an acyclic quasi-complex in the sense of Lefschetz
[5, p.323] and hence has the f.p.p. for continuous mappings.

PROBLEM (Segal [1] }. For what class of continus is 8(X) a
quasi-complex (Lefschetz [5] } or & semi-complex (Browder [5])?

3.4, Non-continuous mappings

Nash [ﬂ] (1956) defined ‘a connectivity mapping of a space X
into a space Y as a mapping £ : X—> Y such that, if A is a con-

nected subset of X, then flA is a connected subset of X x¥; equl-
valently, £ ¢ X—»Y is a connectivity mapping if and only i1f the

induced mapping £*: X-—>Xx Y, defined by £ (x) = (x,f(x)) for all
x e X, transforms connected subsets of X onto connected subsets of
X =Y. Obviously, a continuous mapping f : X—>Y is a connectivity
mapping. On the other hand, there are connectivity mappings of the
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n-cell into itself, for each n=22, which are not continuous (Hamil-
ton [5] (1957)). Nash [ﬁ] inquired whether the n-cell has the f.p.p.
for connectivity mappings. Hamilton l.c. answered thils question af-
firmatively 1 , by introducing the concept of a peripherally con-
tinuous mapping. A mapping f : XY is said to be peripherally
continuous i1f, for each xe X and for each neighbourhood V of x and
each neighbourhood U of f(x), there exists a neighbourhood W of x
which is contained in V and such that f maps the boundary of W in-
to U. Hamilton [ 5] showed:

1. (Hamilton [5] }. A connectivity ma§ping of the n-cell into
itself, n2 2, is peripherally continuous.2

2. {Hamilton [5] . The n-cell, n=2, has the f.p.p. for peri-
pherally continuous mappings. :

It is easy to see that the one-cell has the f.p.p. for con-
nectivity mappings. Hence we have:

3. (Hamilton [5] }. The n-cell has the f.p.p. for connectivi-
ty mappings.

Tt is not known whether a peripherally continuous mapping of
the n~cell into itself, n=2, is necessarily a connectivity mapping.
The following is an example of a peripherally continuous mapplng of
the one-cell I = [bﬁ1] into itself which is not a connectivity map-
ping and which has no fixed point: for x rational, let f(x)} = g»,
and for x irrational, let £(x) = 2 . (Hamilton [5]).

Hamilton l.c. also gave an example of a mapping g of the n-
cell ¢ into itself, for any n>1, such that

(1) g cerries connected subsets of C" onto connected subsets

of Cn;
(ii) g* sends connected and locally connected subsets of ¢ on-
to connected subsets of CMx ¢
(1ii) g is not a connectivity mapping;
(iv) g is not peripherally continuous:
(v) ¢™ has no fixed point under g.

Stallings [1] (1959) observed an error in Hamllton's proof of
theorem 1. He remedied this defect and introduced other types of
non-continuous transformations for which he proved fixed point theo-
rems. We now state these definitions and theorems.

1).,2) As was noted by Stallings [W:LHamilton's proof of theorem
contains an error., However, Stallings l.c. showed that the theorem
is true.
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A function f : X— ¥ is a iocal connectivity mapping if there

exists an open covering {U} of X such that, for each ™eA,
flU is a connectivity mapping of Uy into Y.

A polyhedron P is understood to be a finite simplicial complex
K together with a geometrical realization IK . A subpolyhedron Q of
P is a subcomplex L of K, together with the geometrical realization
iL‘ which 1s identified with a subset of |K| in a canonical way,
The Cartesian product Px Q of the palyhedra P = (K,|K|) and

= (L, lLl) is given by the product Kx L of their respective com-

plexes (as defined in Eilenberg and Steenrod [’i,p.67] ), and a geo-
metrical realization |Kx L| which is identified in a canonical way
with |K| x |k xL| — |L]
are induced by simplicial mappings KxL =+ K, KxL-> L; and so that
the diagonal Aof |K|x|K| 1s the geometrical realization of a sim-
plicial complex D which is isomorphic to K, and (D, A) is a subpo-
lyhedron of Px P.

For convenience, the polyhedron P = (X, |K

so that the projections leLi—>

), the simplicial
complex K and the geometrical realization |K] will henceforth be
considered as one and the same.

If P 1s a polyhedron, then a subset N of P is a polyhedral
open set if P\ N is a subpolyhedron of P.

Let P and Q be polyhedra. A function f : P—>Q is polyhedrally
almost continuous if, for each polyhedral open subset N of P xQ
such that fc N, there exists a continuous function g : P— Q such
that g cN.

Let X and Y bé topological spaces. A function f : X—Y is
almost continuous if, for each subset N of X xY such that fc N,
there exists a function g : X-—>Y such that gcN,

A polyhedron P is locally peripherally connected if, for each

p € P and each neighbourhood U of p, there exists a2 neighbourhood V
of p, such that VcU and the boundary of V is connected.

Let ¥ denote the closed unit ball in EXY7, and 1let S¥ be
its bounding k-sphere. A metric space (X, p) is uniformly locally

n-connected if, for each &> 0, there exists a é >0 such that, for
each x ¢X and each integer k, O<k <n, and each continuous function
£ :8 —auUé(x) ={yeX | P(x,y) 6} , there is an extension of f to
a continuous mapping % : ck+ —> Uy (x).

Stallings [’1] proved the following theorems:
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L. (Stallings [1]). Let P be a polyhedron, N a polyhedral
open set In Px P. If P has a fixed point under every continuous
mapping g ¢ P—P for which gc N, then P has a fixed point under
every polyhedrally almost continuous mapping f : P— P for which
fcN.

5. (Stallings [1] y. Let X be a Hausdorff space and N an open
subset of X xX. If X has a fixed point under every continuous map-
ping g : X—>X for which g« N, then X has a fixed point under every
almost continuous mapping f : X— X for which fcN.

6. (Stallings [’l] ). If £ : P—>Y is a local connectivity map-
ping of a locally peripherally connected polyhedron P into a regu~
lar Hausdorff space Y, then f is peripherally continuous.

This 1s a generalization of Hamilton's theorem 1.

7. (Stallings [’!] ). Let P be a locally peripherally connected
polyhedron of dimension n and X a uniformly locally (n-1)-connected
metric space. Let £ : P—>X be peripherally continuous. Then f is
almost continuous.

Corollary 1. If P is a polyhedron of simplicial dimension n
which is of Menger-Urysohn dimension = 2, and £ : P—»X is a con-
nectivity mapping, where X is uniformly locally (n-1)-connected,
then £ 1s almost continuous.

Corollary 2., If P and Q are polyhedra and f : P-—Q is a con-
nectivity mapping, then f is polyhedrally almost continuous.

Combining corollary 41 and theorem 5, we have:

8. (Stallings [’l] }. Let P be a polyhedron of Menger-Urysohn
dimension = 2, and N an open subset of Px P, If P has a fixed point
under every continuous mapping g : P-+ P for which g <N, then P has
a fixed point under every connectivity mepping £ : P— P for which
fai.

Combination of corollary 2 and theorem I gives:

9. (Stallings [’1] ). Let P be an arbitrary polyhedron and N a
polyhedral open subset of Px P. If P has a fixed point under every
continuous mapping g : P—»P for which g< N, then P has a fixed
point under every connectivity mapping £ : P—>P for which f<N.

For the set N occurring in some of the above theorems we may
of course take the product space X x X (or Px P},
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3.5. Compactness and fixed points

In this section we shall consider single-valued mappings only,
and we shall say that s space X has the f.p.p. 1f 1t has a fixed
point under every continuous mapping f : X—X.

The question whether there exists a relation between compact-
ness and the f.p.p. was considered by Klee [2] (1955) and Connell
[1] (1959) . Although for most fixed point theorems the compactness
of the space 1s assumed, in general compactness and the f.p.p. are
only vaguely related. For example, there exists a Hausdorff space
which has no compact subsets except finite sets, and yet it has the
f.p.p. (Connell [1] ). De Grgot [1] (1959) obtained the result that
there exists a family J of 27 topologically distinct subsets of the
Euclidean plane (¢ denotes the potercy of the real number system),
each of which has potency ¢, is conrected and locally connected,
contains no compact subsets except countable ones and has the f.p.p.
These sets are rigid, i.e. if Xed and £ : X— X 1is continuous,
then either f is a constant mapping or the identity mapping.

However, in some cases it 1s possible to stipulate & necessary
and sufficient condition for the f.p.p. to hold in terms of com-
pactness. Thus Tychonoff [1] (1935) proved that a compact convex
subset of a locally convex topologiciol linear space has the f.p.p.,
and Klee [2] obtained the following partial converse of Tychonoff's
theorem:

1. (Klee [2} }. If X is a locally convex metric topological
linear space and K is a non~compact convex subset of X, then K
lacks the f.p.p.

It is unknown whether Tychonoff's theorem or theorem 1 holds
in an arbitrary topological linear space.

By a topological ray is meant a homeomorphlc image of the

half-open interval [0,1] with the usual topology. The following
fact follows easily from a slight extension of the Tietze mapping
theorem:

2. (Klee [2] Y. If S is a normal space which contains a topo-
logical ray as a closed subset, then there is a fixed point free
null-homotopic mapping of S into S.

Klee [2] applied this result to show that certain spaces lack
the f.p.p. e recall the following definitions in order to formu-
late these results: A subset B of 2 topological linesar space X is
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bounded if, for each neighbourhood U of the zero element of X,there
is a number t such that B&tU. A set is linearly bounded if its in-
tersection with each line 1s bounded. A topological linear space 1s
locally [1inear1y] bounded if it contains a non-empty [linearly]
bounded open subset.

3. (Klee [é] ). Let X be a topological linear space and H a
convex subset of X. Then 1if at least one of the following state-
ments 1s true, H must contain a topological ray as a closed subset:

(i) X is locally convex and H is unbounded;

(11) X is metric and H is not complete in the natural uniformi-
tys

(1i1) X is isomorphic to a subspace of a product of locally 1i-

nearly bounded topological linear spaces, and some bounded
subset of H fails to be precompact (for the latter, see
Kelley [4,p9198 ]);

{iv) H is closed, locally compact and unbounded;

(v) X is locally convex and metric, and H is non-compact;

{(vi) X is locally bvounded and H is non-compact.

Combining 2, 3 (v) and Tychonoff's theorem, we have:

L, (Klee [2] ). For a convex subset H of a locally convex me-
tric topological linear space, the following conditions are equiva-
lent:

(1) H is compact;

(11) H has the f.p.p.;
{(111) no closed subset of H is a topological ray.

Theorem 4 and its proof sre analogous to work of Dugundji [1]
(1951). He showed that if C and S are respectively the unit cell
and the unit sphere of an infinite-dimensional normed linear space,
then C can be retracted onto S, whence C must lack the f.p.p.
Kakutani [4J (1943) and Klee [1] (1953} showed that in & large
class of infinite-dimensional normed linear spaces, the unit cell
actually admits a homeomorphiém onto itself without fixed points.
In fact, for any infinite dimensional normed linear space X there
exists a homeomorphism of period two without fixed points of X on-
to X which maps C onto C. (Klee [4] (1956)). From a result of Klee
[é,theorem 5.3, p@44] it follows that every convex subset H of a
normed linear space such that H is non-compact, closed, locally
compact, and at least two-dimensional, admits a homeomorphism onto
1tself without fixed points. On the other hand, since the unit cell
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of a reflexive Banach space X 1s compact in the weak topology of X,
it has the f.p.p. for weakly continuous mappings.

Klee also established the following results:

5. (Klee [2] ). Let X be a non-compact, connected, locally
connected, locally compact metric space. Then X contains a topolo-
gical ray as a closed subset.

If X is a space which has the f.p.p., then X is connected, and
every retract of X also has the f.p.p. Hence

6. (Klee [2] ). If X is a non-compact, locally connected, lo-
cally compact metric space, then X lacks the f.p.p.

From 2, 5 and known properties of ANR's (Lefschetz [6} ), we
have

7. (Klee [2] ). Let X be a locally compact, connected metric
absolute neighbourhood retract. Then X is compact 1f and only if
every null-homotopic mapping of X into X has at least one fixed
point.

Connell [1} defined a chaln of arcs as a countable set of arcs
{s.} f;,, = {[bn,cn]}ff:,‘ such that c¢_ = b_, . for all n. The follow-
ing result of Connell is a consequence of theorem 5:

8. (Connell [1] ). If X is a metric space with the f.p.p.,then
every locally finlte chain of arcs is finilte.

For, if {An} is 8 _locally finite infinite chain of arcs in X,
then thelir union A = ngé An is a non-compact,connected, locally
connected, locally compact metric space. Hence A must contain a to-
pological ray T as a closed subset, by 5, and since A is closed in
X, T is closed in X. Hence X cannot have the f.p.p., according to
2.

We recall here the following fixed point theorem of Young [1]
(1946) for (not necessarily compact) arcwise connected spaces:

9. (Young [1] ). If X is an arcwise connected Hausdorff space
in which the union of every monotone increasing sequence of arcs
is contained in an arc, then X has the f.p.p.

Young [2] (1960) used this result to obtain the following ne-
cessary condition for a space not to have the f.p.p.:

10, (Young [2] ). Let M be an arcwise connected continuum which
lacks the f.p.p. Then M contains either

(1) a continuum N1 for which there is a continuous mapping
£~ s7 (the one-sphere in E2) which is onto and such that no

closed proper subset of N1 is mapped onto S,1 by f, and which is
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1 has a non-degenerate inverse,that

such that at most one point of S
inverse being connected; or

{(1i1i) a continuum N, which contains a subset R which is the one-
to-one continuous image of a half-open interval and which is dense
in Nzg but which has no interior relative to N2; or

(111) a continuum N3 which 1s the union of & set R which is the
continuous one-to-one image of a half-open interval, and a conti-
nuum B, and for which there is a continuous mapping f : N3~—%K, K
being the union of the circles x2 + y2 = % vy, n="1,2,3,..., such
that f is one~to-one on NB\\B’ such that f EB] = {(0,0)} , and such
that no closed proper subset of N3 is mapped onto K by f.

Examples.
(a) Conmell [1] . This is an example of » Hausdorff space which

contains_no compact subsets except finite sets and yet has the f.pp.
Let X = LO,1] and let U be the collection of all subsets S of X such
that there exists a set A, open in the usual topology of X, and a
countable (infinite or finite) set B so that S = A\B. Then (X, U}
is a topological space with the abovementioned properties.

That (X, U ) has the f.p.p. follcws from the following fact
{Connell [1] )

Iet X be a set and Ua topology for X such that (X, V) is a
regular space with the f.p.p. Let U be a stronger topology for X
{(i.e. Ae 1 implies Ae U ) such that if Re U, then the closure of R
is the same in both spaces. Then (X,U) has the f.p.p.

(v) Connell ET] . This is an example of a non-compact metric
space U which has the f.p.p. and yet Ux U lacks the f.p.p. U is lo-
cally compact at all but one point. Let f(x) = sin T?(ﬂux) for
0<x <1, £(1) = 1. Let U = {(x,7(x))] 0<x <1} and let U have the
relative topology as a subset of the plane.

It 1s easy to see that U has the f.p.p. To show that UxU lacks
the f.p.p., Connell constructed an infinite, locally finite chain of
arcs in Ux U {see theorem 8 of this section).

{c¢) Connell [1] . This is an example of a non-compact, sepa-
rable, locally contractible metric space V which has the f.p.p. Let

I, = {(x,y)e B | 0<x <1, y =0}, and for each integer nz 1, let
- 21, _ 1 B \
I, = {(x,¥)eE |x = =, 05ys1} . Let V = A T. It is not diffi-

cult .to prove that V has the f.p.p., and it glso follows at once

from theorem 9 above.
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(d) Connell [1] . This is an example of a non-compact plane
set W which has the f.p.p., while the closure of W lacks the f.p.D.
Let A be the square (not including its interior) with (0,-2},
(4,-2), (4,2) and (0,2) as its four corners. Let A! =
= A\{(O,y)‘ -1<y <1 } , B = {(x,y) 0<x €1, vy = sin %} and
W= A" UB. W has the f.p.p. Now, W = AUB, and if B is projected
onto {(O,y)| ~1<y <1 }, and A is rotated through 90 degrees, then
we have a continuous mapping of W into itself without fixed points.
(e) Klee [2] (1955), [5] (1960). Klee constructed a non-com-
pact plane set X which combines the properties of the spaces in the
examples (b) - (d)of Connell [1] (1959). In addition, X 1s an abso-
lute retract which is locally compact at all but one point.(Compare
theorem 6),
Let 12 be the Hilbert space consisting of all sequences

x = (x 1 %2, ...) of real numbers x> such that Z: ]x | <oo. Let Y
i=
be the set of all points y = (y ,ye,..@) of 12 such that y* £ 0 for

at most one i and always Osy <1, If ¥ 1s the origin (0,0,...) of
12 and 6 is the point of 12 such that &% = 1 and &F = 0 for i #n,
then ¥ is the union of the segments o, = Eﬂ 6 ] having the common
end point 9. Obviously Y is contractible and locally contractible.
Further, Y has the f.p.p. (The latter follows, e.g. from theorem Q
above.))

In the product space 12x 12, let P be the infinite polygon
whose vertices, in order, are as follows: (ﬁ;éq), (61,§?, (éﬂég),
(62,67,.@%3({%5n),_(6n,ﬁ),@.. . It 1s easy to verify that P is a
closed subset of ¥YxY , P a topological ray. Hence Y xY lacks the
f.p.pP., according to theorem 2 of this section.

It remains only to describe a bounded plane homeomorph X of Y
such that X lacks the f.p.p. For each te [O TT]and each positive
integer n, let x (t) (1 + —) cos t and y (t) = (-1 + t) sint.
Let T, denote the arc consisting of all points (x, (), Y (t)) for
t e [O T ]. Then each arc T, has (1,0) as an end pomnt and

X = kq r is homeomorphic with Y. But X contains the unit circle S
and admits a retraction onto S. Hence X does not have the f.p.p.

{£) Boland [1] . This example shows that "locally compact" in
theorem 6 cannot be replaced by "peripherally compact". (A topolo-
gical space is peripherally compact if each of its points has arbi-
trarily small neighbourhoods with compact boundaries.)
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For each integer n2>1, let Kn be the subset of E3 consisting
of all points {x,y,z) such that

x = v = B (o<p<a™,
2n
either < 0<y <1 or (x- 1y% 22 2 1
s 2n -
n
z = 0, z>0 .

Let K = {(X,y,z)e 20 ‘()ﬁx:sﬂ, y=0, z=0 },
o

A= U x

n=0 "n

Then A i1s a non-~locally compact, peripherally compact and lo-~
cally connected space which has the f.p.p. The latter follows,e.g.,
from theorem 9 above.

3.6. Fixed point classes and essential fixed points

Two fixed points %9 and X5 of a topological space X under a
continuous mapping f : X—>X are said to be in the same fixed point
class (with respect to f) if there exists & path P from x, to x,
such that P is homotopic to f[P] with the end points fixed. (Nielsen
[1] (1927)) . Nielsen's theory of fixed point classes for the orien-
table closed surfaces of genus > 2, the elementary parts of which is
summarized below, was generalized to the finite polytopes by Wecken
[1] (1939), using the Leray-Schauder theory of the fixed point in-
dex for these spaces (Leray-Schauder [1]). Browder [5] (1960}, re-
sorting to the theory of the fixed point index as extended by him-
self (see section 2 of hapter I), observed that these results may
be extended to Hausdorff spaces which are compact, connected, local-
ly pathwise connected and semi-locally simply connected, the latter
meaning that each sufficlently small Jordan curve 1s contractible.
Then each fixed point class is open in X, and since the set S(f) of
fixed points of X under f is compact, there are only finitely many
fixed point classes, and each component of S(f) is contained in a
fixed point class. Each fixed point class corresponds to the fixed
points of X which are covered by the fixed points of g, the univer-
sal covering space of X, under one of the mappings ? which covers .
Since each fixed point class is open in S(f), an index can be assig-
ned to it, and the classes with a fixed non-zero index are deformed
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into one another under homotopies of f.

The "stability" of a fixed point was studied by Fort [1]
(1950), Kinoshita [1] (1952), 0'Neill [1] (1953) and Browder | %]
(1960), Let X be a Hausdorff space and let X* denote the space of
continuous mappings £ : X—> X, with the compact-open topology. Let
pe X be a fixed point under fe XX, Then p is an essential fixed
point if, for each neighbourhood U of p, there exists a neighbour-
hood V of £ guch that U has a fixed point under g|U for all geV
(Fort [ﬁ] ). Then, e.g., the closed unit interval has no essential
fixed points under the identity maepping. Fort l.c. showed that if
fe XX, pe X and p has arbitrarily small neighbourhoods V such that
V has the £.p.p. and £ [V] ¢ V, then p is an essential fixed point
under f.

The notion of an essential fixed point was generslized by
Kinoshita [}] and O'Neill [1J : A component C of the fixed point
set S{f) is essential if all mappings g close to f in the compact-
open topology have fixed points in @ prescribed neighbourhood of C.

Kinoshita showed that every continuous null-homotopic mapping  of
an ANR into itself has an esgential fixed point. O0'Nelll extended
this result by showing the essentiality of any component of the
fixed point set of a mapping with non-zero index.

Browder [4] considered the following stronger question: Let X
be a Hausdorff space, U an open subset of X x I (I denotes the
closed unit interval [Ofﬂj Y}, F a continuous mapping of E into X.
Let T be the natural projection of X x I into X, We the partisal in-
verse of Il defined by Y(x) = (x,t) for all xe X. If £ = Fy_,
f1 = F Wq: and we are given a component C of the fixed poinu sev

(f } of the mapping £, of q/o [U] into X, does there exist a con-
nected set C1 in Xx T which contains C x { O} 5 1ntersects X % {1} 5
and is composed of p01nts (x,t) € C, for which P(x,t) =

Let U, = Wt [U1 = P(yL : Ut~@ X. The above question es-
sentially asks for a connected set of fixed points of U under ft’
05t <1, which contains the given component C of fixed points under
fow It 1s the natural generalization of the question of the exist-
ence of a continuous function ¢ : I—X such that ¢(t)€.ﬁt for all
teI, and 7 ( () = P(t), with ¢ (0) € C. There are trivial coun-
ter examples to the existence of such functions ¢ , for instance
small deformations of the identity mapping of an even dimensional
sphere.
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Browder [4] used the theory of the fixed point index to es-
tablish the following theorems, which encompasses the results of
Kinoshita [1] and 0'Nei1l [1]

1. (Browder [4] }. Let X be a Hausdorff space, U an open sub-

set of Xx I, F a continuous mapping of T into a compact Hausdorff
space Y lying in a category A for which a fixed point index 1is de-
fined. (Thus Y may be an ANR * , & neighbourhood retract of a con-
vexold space, or an HLC*spacee) Let G be a continuous mapping of
Yx I into X, H the mapping of U into X given by H(x,t)
= G(F(x,t),t). Let q/ be the natural injection of X into X x1I,
g (x) = (x,t), U, 1[_—U] h, = HY, mapping U, into X. Suppose
that h has no fixed points on the boundary of U,c for teI. Let
Ul = 1[:U:] ,ur = wiu] L £, =Fy,. g, = Gy, Suppose that
i(f‘o C),UC‘)) # 0. (In the case in which X itself lies in A, we may
make the simpler assumption that i(h_,U,) £ 0.)

Then there exists a connected set C’I in U intersecting both -

X x{o} and X x {1} such that h.(x) = x for all (x,t)e C,.

Corollary. Let X be an ANR*, 0 an open subset of X, f a con-
tinuous mapping of 0 into X having no fixed points on the boundary
of 0. Then if i(f,0) # O, f has an essential component of fixed
points in 0.

(Browder [4] ). Let X be a locally convex topological linear
space, U an open subset of X xI, F a continuous mepping of U into a
compact convex subset K of X. Suppose that ft = F Wi has no fixed
points on the boundary of U, = 1 [U] for te I, and i(f‘ U ) # 0,
Then there exists a compact cormected set C,] inU intersecting both
X x {0} and X x {1} such that £.(x) =x for all (x,t)e Cq.

(Browder [4] ). Let X be a Hausdorff space, U an open sub-
set of X XxI, F a continuous mapping of fl into a compact space lying
in a category A on which a fixed point index i1s defined, G a conti-
nuous mapping of ¥YxI into X, Let H be the continuous mapping of k]
into X given by H(x,t) = G(F(x,t),t), (x,t)e U. Let Uy =\VE/] I:U],
ht = HLyt.. Suppose that ht has no fixed points on the boundary of
Ut’ for all te I, Let C be a component of the fixed point set of hO
and suppose that the following condition is satisfied:

rrut =6 o] ,up =y o] enag, =0y, £, =Fy,_, the
mapping fo“o 1s defined on U' which is an open subset of Y. Let
Ct = g, [C] Then there e*clsts a neighbourhood V of C!' in Y such
that for any open subset V,] contained in V and containing C' for
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which fogo has no fixed points on the boundary of V1, we have
i(fe,,Vq) # 0.

Then there exists a compact connected set C1 in U which con-
tains C)({O} , 1s composed of points (x,t) for which ht(x) = x, and
intersects (X x {1} )u( xx {0} \ ¢ x{o}).

The condition of theorem 3 is expressed briefly by saying that
C has a non-null index with respect to hoe Theorem 3 then becomes
the statement that each component of the fixed point set of ho with
non-null index is contained in a component of S, the set of (x,t)eU
for which H(x,t) = x, which intersects X x{ﬂ} .

A particular case in which the condition of theorem 3 is satis-
fied is that in which C is a single point X with non-null index
with respect %o ho,

3.7. Contractive mappings

The following well-known theorem is due to Banach [ﬁ] (1932):

Let (X,p) be a complete metric space, and f : X—>X a continu-
ous mapping for which there exists a number k, O0<k <1, such that
P(f(x),f(y))‘<k P(X,y) for all x,ye€X. Then X has a unique fixed
point under f.

This theorem was extended in various ways, and has wide appli-
cations in analysis. An expository account together with a large
number of applications may be found in the paper of Nemyckil [1]
(1936) and in chapter 2 of Miranda [ﬂ] (1949). For more recent re-
sults the reader is referred to Deleanu [1] (1957), Luxemburg [1]
(1958), Albrecht and Karrer f’l] (1960), Monna [1] (1961) and Edel-
stein [1,2] (1961, 1962).

Brodskil and Milman [1] (1948) obtained fixed point theorems
for non-expansive and non-contractive mappings of a compact metric
space wlth normal structure into itself. (See Dunford and Schwartz
[1, p.459] for a summary of their results.)

3.8. Mappings of spheres into Fuclidean spaces

The following theorems have been the starting-point of extens-
ive investligations on the existence of coincidence points under map-
pings of spheres into Euclidean spaces:

1. (Borsuk [4] (1933)). If £ : 3% E” is continuous, then
there 1s a pair of antipodal polnts x,-xe S” such that f(x) = £(-x).
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2. (Lusternik-Schnirelmann [1] (1930), Borsuk [4] (1933)). For
every covering of s by n+1 closed sets, there is at least one mem-
ber of the covering which contains a pair of antipodal points.

3. (Kakutani [3] (1942)). Let £ : 5%~ E" be continuous. Then
there exist three orthogonal points a_,a,,ae S° such that
f(a,) = f(ay) = f(ae),

The reader is referred to Yang [1,2] (1954, 1955) for far-
reaching generalizations of these theorems and a complete biblio-
graphy of their development. Theorem 1 was also extended to multi-
valued mappings of S™ into E" (Jaworowski [1] (1956), and to Banach
spaces in the case of single-valued mappings (Krasnoselski{ [2]
(1950), Altman [1] (1958) end Grames [2 ] (1962)).

3.9. Periodic mappings

If Y is the set of all fixed points of a metric space X under
a periodic mapping of X into itself, what topological properties of
Y can be deduced from those of X? Considerable work in answering
this question has been done since 1934 by Smith (see e.g. Smith [j]),
The spaces most thoroughly studied have been the Euclidean spaces
and spheres. The motivating question is to determine to what extent
does a periodic homeomorphism of E® or of 3" resemble an orthogonal
transformation. In particular, is it equivalent to an orthogonal
transformation? Smith showed that for many homology properties and
prime periods, the conjecture is correct. Thus, if Y is the fixed
point set of a periodic homeomorphism of BN [Sn] , then Y is in
gome sense homologibally similar to E¥ [SrJ for some r <n. The
resder is referred to Smith [1,2] , Floyd [1,2,3] , Swen [1] and
Borel et al. [1] for further information.

In striking contrast with the results for Euclidean spaces is
Klee's result (Klee [3] (1956)) which stetes that if Y is a compact
[closed] subset of an infinite - dimensional Hilbert space X, then
X admits & perlodic homeomorphism whoge fixed point set is Y |is
homeomorphic to Y:].

3.10. Almost fixed points

There are several theorems to the effect that if f is 2 mapping
of a space X Into itself, then there 1s at leest one point X, € X

which in some sense is neer to its image f(x_). Usuelly either X is
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non-compact and lacks the f.p.p., or [ is non-continuous, and in
the compact case the property that there exists & point which is
"near" to its image is equivalent to the f.p.p.

The first three theorems below are.examples of the first men-
tioned possibility.

1, (Hopf [2] (1937)). Let X be a unicoherent topological space
and o a covering of order two of X by closed connected sets. Let
f : X—>X be continuous. Then there exists a member U of « such that
U nf[U] # 0, or equivalently: there exists a point x_ e X such that
x, and f(xo) lie in the same member of o .

2, (Fort [2] (1954)). Let G be 2 bounded open subset of the
Euclidean plane E2 which is homeomorphic to the open unit disk

D ={xe Eei ”x“ <1} and whose boundary is locally connected. Let
f ¢+ G—>G be continuous. Then for each &€ >0 there exists a point
x = x(&) € G such that “x—f(x)n <€,

Inspection shows that Fort's proof is equally valid for the
following assertion:

3. (Fort [2] ). Let d be a positive number and let
B" = {xe En] | x| <a} . Tet £ : B®>B" be continuous. Then for each
£ >0 there exists a point xe B" such that ”x~f(x)” < E.

Klee's results (Klee [8] (1961)) fall under the second catego-
ry. They extend the fixed point theorems for continuous mappings of
compact convex subsets of locally convex topologlcal linear spaces,
described in Chapter I, to "nearly continuous" mappings of such
spaces.

For ¢ >0, a mapping f of a topolcgical space X into a metric
space (M,p) is called é-continuous if each point xe X has a neigh-
bourhood U such that diam f[U]<e. For 62 0, a §-fixed point un-
der a mapping £ : M—>M 1s a point x € M such that p(x,f(x))<b; f
1s called a _§ -mapping if each point of M is & -fixed under f,
(Klee [8] (1961)).

Klee obtained the following results:

4. (Klee [81). Iet P be a compact convex polyhedron in a Eucli-
dean space, and £ ¢ P— P ¢ -continuous. Then there exists a conti-
nuous mapping g : P—>P such that “g(p)~f(p)” <& for all pe P. Con-
sequently some point of P is ¢€~fixed under f.

5. {Klee ]:8] }. Let C be a compact convex subset of a normed
linear space, f : C—>C g~continuous, and €' > £, Then some point
of C is ¢'-fixed under f.
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A metric space M is sald to have the proximate fixed point
property (p.f.p.p.) if, for each £>0 there exists T, > O such that
M has an e~fixed point under each T,~continuous mapping of M into
itself. .

6. (Klee [8] }. If a metric space M has the p.f.p.p., then so
has every compact retract of M,

7. (Klee [81 ). If a compact metric space has the p.f.P.D.,
then so has every metric homeomorph of M,

Since an AR is a retract of the Hilbert cube, it follows from
5 - 7 that

8. (Klee [8] ). Every AR has the p.f.p.p.

A compact metric space which hasg the p.f.p.p. evidently also

has the f.p.p. for continuous mappings. The converse need not be
true: Klee [8] gave an example of a plane continuum which has the
f.p.p. for continuous mappings, but lacks the p.f.p.p. Klee [ﬁo]
asked whether a Peano continuum which has the f.p.p. for continuous
mapplngs must necessarily have the r.f.p.p-.

Generalization of the above results 4 « 8 to uniform spaces
are almost immediate. Theorem 4 is easily extended to ‘'nearly upper
semi~continuous" mappings of P into the family of non-empty closed
convex subsets of P, The resulting gzneralization of Kakutani's
fixed point theorem {Kakutani [21 } zan be applied after the manner
of theorem 5 above to a compact convex subset of an arbitrary local-
1y convex topological linear space. This leads to an extension of
the fixed polnt theorem for multi-valued mappings of Fan [’1] and
Glicksberg [%] . From a rather special case of that extension, the
following fact can be deduced:

8. (Klee [8] ). Let X be a compact Hausdorff space which is an
absolute retract for such spaces. Then for each open coverlng o of
X there exists a finite open covering P of X which has the fcllow-
ing property:

If £ ¢ X—>X 1s any mapping such that each point x e X has s
neighbourhood U for which f[U] lies in some member of P , then there
exlsts a poilnt x_ e X such that x_ and f(xo) lie in the same member
of o,
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CHAPTER IV
Almost fixed point theorems for the Luclidean plane

DEFINITION. Let X be a topological space, F a family of map-
pings of X into itself and (2 a family of finite coverings of X.
Then X is said to have the almost fixed point property (a.f.p.p.)
with respect to F and (Q if, for every fe F and every we(Q, there
exists a member Ueot such that U{)f[U] £ 4.

Note that if X is a compact Hausdorff space, then X has the
f.p.p. if and only if X has the a.f.p.p. with respect to continuous

mappings and finite open coverings.

As was pointed out by Professor J. de Groot, it can be shown
that the Euclidean space E™ has the a.f.p.p. with respect to con-
tinuous mappings and finite coverings by open sets with compact
boundaries. This means that any continuous mapping of E" into it-
self elther has a fixed point or else there are points far away for
which the images also are far away, e.g. a translation.

THEOREM 1. The Euclidean plane E2 has the a.f.p.p. with res-

pect to continuous mappings and finite coverings by convex open
sets.
REMARKS, 1. It 1s easy to see that a corresponding theorem
does not hold for infinite (convex open) coverings.
2. It should be possible to generalize theorem 1 by
replacing E° by ED,

We shall use the following lemma (with n=2) in the proof of
theorem 1.

LEMMA 1. (Fort [2] ). Let d be & positive number and let
B = {xe ED illxil<d }. Let f : B B™ be continuous. Then for each

£ >0 there exists a point x e B” such that “x—f(x)” < &

PROCF: Let €>0 be given, We may obviously assume that € < d.
Let ¢™ = {x sffw "x“ £ d- 6},and define a retraction r : BU—>C"
by

1) The results of this chapter will also be published elsewhere
(de Groot, de Vries and van der Walt E1] ).
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r{x} = | {(d-¢€)x/ ”x“ for x e BR\(C",
b for xe C%,

Then rf'Cn; ¢"»c"is continuous and adizording to the Brouwer
fixed point theorem for the n-cell, there exists a point c e ™ such
that rf(c) = c. Since r(x)—x“ <& for all x e B", we have
“c—f(c)” = “rf(c)—f(c)“< €

DEFINITION. A strip is the closure of an open simply connected
set in E2 which is bounded by two parallel straight lines. Let S be
a strip bounded by the lines L, and L, and let L3 be a (closed) seg-
ment, perpendicular to Lﬂ and L2, which connects a point of L1 with
a point of LEB Then the closure of a component of S\L3 is called a
half-strip. The segment L, is called the base of the half-strips,
and the lines [rays:] bounding a strip [ha1f~strip] are called the
gides of the strip [half-strip] .

It is easy to verify that a convex subset K of E2 with in-
terior points has the following properties:

(1) If K° (the interior of K) contains a line, then it con-

tains a strip.

(11) If K° contains a ray, then it contains a half-strip.

2

PROOF OF THEOREM 1 : Let f : B —> E° be a continuous mapping

and o= {Ui} 2 finite covering of ES by convex open sets. We

i=1
may assume that E° does not belong to o . Since o is a finite
covering and E2 is unbounded, there exist pairs of different mem-
bers of o which have unbounded intersections. Such an intersection
satisfies either (1)} or (ii) above, and we choose, if possible, a
strip in each of these intersections; otherwise, we choose a half-
strip. Divide each strip in two half-strips, such that the inter-
section of the ensuing half-strips 1s their common base. Let
P1’P2’””“9Pk be the collection of half~-strips. We may choose them
such that PiﬂPj (1#3) is bounded, and we shall suppose that this
was done. Further, we choose an open disk 31 such that the follow-
ing conditions are fulfilled:

(1) 1r UiﬂU'j is bounded, then U

irinc B, (1,3=1,2,...,n).
(11) Py nPye By (1435 1,351,2,...,%).

(ii1) The bases of the half-strips as well as the points-of in-
tersection of the (prolongations of the)sides . of the
half-strips are all contained in By.
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Let B2 be an open disk, concentric with B1 and guch that
ch B,. We shall now construct a homeomorphism ¢: E —-%Bz such
that {@[Ui]} 2:1 can be extended to an open covering of Eéa

We shall assume that the collection of half-strips is cyclic-
ally ordered by the positive orientation of the boundary of Be,and
that this ordering is given by P ,P,, ..., P "modulo k". We also
assign an order to the sides of each P, (i21,2,...,k): if we tra-
verse the boundary of B2 in the positive direction, then we pass
from the "first side" of P, to its "second side".

Let Si denote the closure of that component of E2\
(B1U P1 Uooe UPk) which lies between the second side of Pi and the
first side of Pi+1 (1i=1,2,...,k). Pi
so that there exists a member Uj(i)e_a.with the property that

and S1 are thus constructed

(iv) P,US,UP, 4 < Usea) (1=1,2,.c0,k).

We are now ready to define the homeomorphism ¢ : E2——>'B2e It

will be done in such a way that Pi\\Bq is contracted ontoe

P, n (BQ\B,l), and S; onto $; N (B2\B,1) (i= 1,2,...,k), while 1’3‘1

is mapped identically onto itself.
zePblgq(151,&..”k)2Lm:Lﬂz)bethe1hw through z

parallel to the sides of P;, and let ri(z) = dist (Z,Li(z)r1bd(B1)L

where bd(Bq) denotes the boundary of B,. Define fi(z) to be the

point which divides Li(z)n (Bo Bﬂ) in the ratio

ri(z) s 1+ ri(z)* It is easy to verify that f, is & continuous

one-to=one mapping of P,\ B, onto Pir\(BQ\ Bq), and that its in-

verse is continuous.
zeS; (1=1,2,...,k): Let a; be the point in which the pro-
longation of the second side of P.l intersects the prolongation of

the first side of Pi+1’ and let 5;2 be the closed segment connect-
ing a, and z. Let Si(z) = dist(z,azﬁ Nbd(B,)), and define gi(z) to
be the point which divides E:Zf\(Bo\ B,) in the ratio
si(z) 1+ si(z)s Then g, is a continuous one-to-one mapping of
S, onto Si(W(Bg‘\Bq), and 1ts inverse is continuous. (If P, and
P1+1 are parallel, then we define 29 in the same way as fi was de-
fined.)

EJ&Eq : Let h : Eq—%>§1 be the identity mapping.

The functions fi’gi and h coincide on the boundaries of their
domains of definition and hence ¢, defined by
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9z) = (2,(2) (2B \B, 5 121,2,...,K),
gi(z) (zeSi; 1=1,2,...,k),
z (zeg,])

is a continuous mapping of E2 onto B2‘ ‘Similarly, (P_q is well-de-~
fined and continuous; hence @ is a homeomorphism.

n
For each Uje o, let Ul = kp[Ui] , and let (o) = {UJ} {_q-

For each U, .y satisfying (iv) (see p.0%), let V,j(i) = Uﬁ(i) U

J
((PiU S; U Pi+,])ﬂ bd(Be)). It is easily seen that the Vj(i)’ to-

gether with the remaining Uf'L’ form an open covering of Eg. Denote
. . _ m
this covering by p'—- {Wi} 1=1°
Let f' =@f¢@ . Then £f : By,—> By
ing to lemma 1, for each positive integer n, there exists a point

/]
¥,€ B, such that H yn«ff‘(yn)n < & . Let T be the Lebesgue number

is continuous and accord-

of -]52 with respect to p ,» and choose n such that ':1"<T . According
to the lemma of Lebesgue, there exists a set WKEP such that o
f'(yn)e W,. But vy, ,f'(y,)€ By, so that ¥, end f"(yn) lie in the

same member of ¢ (). Hence, if x, is that point of E? for which
(p(xn) = y,, then x  and f(xn) lie in the same member of o .

If the mappings are restricted to translations, then we can
require less of the covering sets to obtain a theorem similar to
theorem 1 : "convex open" may then be replaced by "arcwise con-
nected",

We shall need the following two lemmas. o

LEMMA 2. Let X,,X,,...,X  Dbe sets, let X = 1L=Jf1 X, and let

i
£ : X—>X be a mapping. Then there exists a set Xi and a positive

number k (1<1, k<n) such that X, N ¥ [x,] # 9.

PROOF: For each xe X, at least two of the n+1 elements x,
£{x), ..., (%) belong to one and the same set Xy; say
T (%), % (x) e X, (1sr< s<n). Then rF{x)e XN £8-r [Xi] .

LEMMA 3, Let A be an arcwise connected subset of Eg, and let
o EZ—> E2 be a translation, such that there exists a positive
integer k with Anfk[A] # ¢, Then A n f [A] # ¢ also.

PROOF: Let f be given by f(x) = x+a, for all xe EE, where

2 is a fixed vector. We may suppose that the positive X-axis

ae i
has the same direction as a. Let k be the smallest positive inte-
ger such that A N f‘k [A] # . Suppose k >1. We are going to derive
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a contradiction. There exists a point be A such that b+kae A also,
and we can find an arc J, contained in A, which connects b and
b+ka. Let

P
Q

{(x,y)eJl (u,v)eJ::}yav} , and
{(x,y)eJI (u,v)GJ@ySV} .

Since J is compact, P # ¢ and Q # @. (P and Q contain respect-
ively the "upper extreme" and "lower extreme" points of J.) Since
J N f[J] = @, J is not & segment, and since it is compact, we can
find a point pe P and a point g€ @ such that, if J, is the part of
J which connects p and q (including p and q), then J4NP = {p} 5
JunQ={a}, and p # q.

Let L,1 and L2 be straight lines parallel to the X-axis, pass-
ing through p and q respectively, &nd let S be the strip determined
by these lines. J1 separates S intc two disjoint sets, each of which
is simply connected and both open and closed in S. The same holds
for the images of Jq under the iterates of f.

Since J1 n f[?] = ¢ and f[J] is connected, any two points of
f[ﬁ], in particular b+a and g+a, lie in the same part of S with
respect to the separatlon by Jqﬁ Since £ 1s a translation, b+ka and
g+ka lie in the same part of S with respect to the separation by
fk"1 [J1] . Since g+({k-2)a and g+ka lie in different parts of S
with respect to this separation, b+ka and g+(k-2)a lie in different
parts. Alsd, q and g+(k-2)a lie in the same part of S with respect
to this separation and hence g and b+ka lie in different parts. But
q and b+ka are connected by J, and J € S, so that J n fk"q[ﬁqj # 7,
implying that A N fk"q[A] # @, in contradiction with the choice of
K

DEFINITION. Let X be a topological space. Two continuous map-
pings f,g ¢ X=X are said to be topologically equivalent if there
exists a homeomorphism h of X onto itself such that f = hmqgh. If

X is a metric space, then a mapping f : X=X is called a topolo-
gical isometry if it is topologically equivalent to a distance

preserving mapping of X into itself.

In the case of the plane we have the following criterium for
a mapping to be a topological translation (Sperner [1] (1934)): A
mapping £ : EE—% E2 is topologically equivalent to a translation if
and only if f is an orientation preserving homeomorphism such that,

for each set G C E2 which is the closure of s bounded domain and
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whose boundary is a Jordan curve, there exists a positive integer
N such that ¢nf" [G] = # for all integers n with |n]z N.
We now state and prove

THEOREM 2. The Euclidean plane has the a.f.p.p. with respect
to orientation preserving topological isometries and finite cover-
ings by arcwise connected sets.

PROOF: It is a well-known result that an orientation preserving
topological isometry of the Euclidean plane is topologically equi-
valent either to a rotation or to a translation. In the first case
there is a fixed point, and in the second case theorem 2 immediate-

ly follows from lemmas 2 and 3.

COROLLARY. The Euclidean plane has the a.f.p.p. with respect
to orientation preserving topological isometries and finite cover-
ings by connected open sets.

For, a connected open subset of a Euclidean space is arcwise
connected.

An example orally communicated by Professor R.D. Anderson
shows that theorem 2 cannot be extended to higher dimensions: There
is a covering o« of E3 by four non-empty connected open sets, and a
topological translation f : E3-»E3, such that Ur\f[U] = ¢ for all
Ueao,

A connected topological space trivially has the a.f.p.p. with
respect to arbitrary mappings and coverings consisting of two con-
nected open sets. A‘unicoherent topological space has the a.f.p.p.
with respect to continuous mappings and coverings consisting of
three connected open sets. Before showing this, we prove the fol-
lowing

LEMMA 4. Let X be a unicoherent topological space and
o ={ U,V,W} a covering of X by three non-empty connected open sets.
Then, if Nd = @, o« has two disjoint members.

PROOF: Suppose, on the contrary, that UnV £ @, UnW # ¢ and
VAW £ @#. Then

X Uu (Vuw) (connected summands)
Un (Vuw) (Unv)u (UnW) (connected summands), and
(UnvVv) n(UaW) =UnVvV AW =g,
contradicting the unicoherence of X.



107

THEOREM 3. A unicoherent topological space X has the a.f.p.p.
with respect to continuous mappings and coverings consisting of
three connected open sets.

PROOF: Let f : X-—>X be a continuous mapping and o= {U,V,W}
a covering of X by three connected open sets. We may suppose that
the empty set does not belong to o, and that Na = @. Let U and V
be the disjoint members of o given by lemma 4, Then U n W # &,
VN W#@, since X 1s connected. Suppose that W N £[W ]| = g. Since
£[W] 1s connected and UNV = ¢, either £[W]c Uor f[W]c V. In
either case the ftheorem is proved, e.g. if [w]c:U, then
f[U nw]c f[wi] < U and hence U n f‘[U:] # .

COROLLARY. E" has the a.f.p.p. with respect to continuous map-
pings and coverings consisting of three connected open sets.
For, E" is unicoherent (Borsuk [2] ).

The question arises whether a unicoherent topological space
has the a.f.p.p. with respect to continuous meppings and coverings
consisting of four {or more) connected open sets. Further, can
"orientation preserving’ be omitted from the hypotheses of theorem
29

Both these questions are answered negatively by the following
example, in which we have a covering of E2 by four connected open
sets U1,U29U3,U4y and a transflection (i,ea a reflection followed
by a translation in the direction of the axis of reflegtion) such
that U, N .‘E‘[Ui:' =@ (1=1,2,3,4).

Let

V= {(x,y) e | 0cx <, ~1gy<a}),
r(x,y) = (x,y) + (2,0), for all (x,y)e EE,
s{x,y) = (x,y) + (%,O)y for all {x,y)e Eg,

W= {(x,y)e E2| y<-1},

= nitj_oor“[v] , U=V, 0,

V=
Upm s[Uq]s U5 = s[uy]
U= {(x,7) € E9y>0}.

The transflection f is defined as fcllows:
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u(x,y) = (x,-y) for all (x,y)e E2,
t(x,y) = (x,y) + (1,0) for all (x,y)e E,
f = tu.

It is easy to verify that U; n f[U{] = ¢ (i=1,2,3,4). Note
that £ reverses the orientation and that each of the intersections
u; 0 Uj (i#3j) has countably infinitely many components.

PROBLEMS ,

1. Does the Euclidean plane have the a.f.p.p. with respect to
orientation preserving homeomorphisms onto and finite coverings by
connected open sets?

2. Does the Euclidean plane have the a.f.p.p. with respect to
continuous mappings and finite coverings by connected open sets
such that the intersection of each pair of members of the covering
is empty or has at most a finite number of components?
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