
' 

' 

' 

' 

T. VAN DER WALT 
' 

' 

' 

MATHEMATICAL CENTRE TRACTS 1 



MATHEMATICAL CENTRE TRACTS 1 

T. VAN DER WALT 

MATHEMATISCH CENTRUM AMSTERDAM 1975 



• 

• 

AMS(MOS) subject classification scheme (1970): 54H25, 55C20 

1st 
2nd 
3rd 

.. . 
printing 

• • printing 
• • printing 

1963 
1967 
1975 

ISBN 90 6196 002 9 • • 



CONTENTS 

Introduction 9 

Conventions and definitions 13 

Chapter I. The fixed point theorems of Brouwer, Lerschetz, 
Schauder, Leray, Tychonoff and Kakutani 17 

1. Single-valued mappings 17 
2. The Leray-Schauder theory of the fixed point index and its 

extensions 21 

3. Multi-valued mappings such that the image of each point is 
acyclic 30 

4. Multi-valued mappings such that the image of each point is 
non-acyclic 55 

5. Mappings f: X .y such that XcYand f X X 59 
6. Spaces with a finite number of holes 60 
7. Common fixed points 61 
8. The Lefschetz fixed point for•rnula for non-locally connected 

compact spaces 64 

Chapter II. The Scherrer fixed point theorem and related fixed 
point theorems 66 

1. Definitions and introductory remarks 66 
2. Single-valued mappings 68 
3. Multi-valued mappings 74 
4. Fixed end points 76 

Chapter III. Miscellany 
• 

1. -parti.ally ordered sets and spaces 
2. The product of spaces 
3. Hyperspaces 
4. Non-continuous mappings 
5. Compactness and fixed points 
6. Fixed point classes and essential fixed points 

7- Contractive mappings 
8. Mappings of spheres into Euclidean spaces 

9- Periodic mappings 
. . 

10. Almost fixed points 

Chapter IV. Almost fixed point theorems for the Euclidean 

78 
78 
84 
85 
85 
89 
94 

97 
97 
98 
98 

plane 101 

Bibliography 109 



ERRATA 

page line 

9 15 for absolute retract read absolute neighbourhood retract 

9 ?6 for locally topolo~ical read locally convex topological 

11 ?3 for theorem to read theorem for the two-cell to 

21 8 for and an AR read and an absolute retract 

23 33 for rest read lntter 

63 8 for admits read admit 

66 27 for continuum read metric continuum 

89 30 for 0,1 rend 0,1) 

94 15 for fixed. read fixed 



9 

In 1912 Br·ouwer 13 
L 

states that then-cell C 

prt1ved 11 is by now classical theorem \'Jhich 
l1as tl:1e fixed point property (i'.p.p .. ) for 

continuous mappings, i.e .. for every continuous mapping f : C ~--·· C 

there exists a point x e: C such that f(x ) = x . This result was ex-o O 0 
tended to compact convex suusets of 

(1) certain function spaces, e.g. L2 0,1_ and en 0,1 , by 
Birkhoff and Kellogg 1 (1922); 

• 

(11) Banach spaces, 

(111) locally convex 

( 1935) .. 

by S l!·: ,auder 

topolo~:ical 
1,2 (1927, 1930); 

-
linear spaces, by Tychonoff 1 

All these theorems are included in Lefschetz•s fixed point 
theore,11 (Lefscr1etz "-1 ..... (1']26)), or in extensions of it, e.g. Lef

schetz '-5,6 (1942). Fro1n Lefsc'r1etz 1 s theoreri1 it follows e.g. that 

an acyclic compact metric absolute retract has the f.p.p •. Lef

schetz 5 (1942)also gave suffi~ient conditions for the existence 
• 

of' coincidence points under tvJo 1.:ontinuous mappings of one space in-

to another. These results are discussed in section 1 of Chapter I. 
The second sect 1·on of' c1·1apter I is a survey of the Leray-Schau

der tr1eory of the loca 1 fixed point index (Leray-Schauder 1 ( 1934))., 
especially of' Browder's extension of this theory (Browder 5 (196_0)). 

LefschP.tz 1 s fixed point tr1eorer11 is in turn contained in the Leray

Schauder theory as extended by Browder. 
Brouwer's fixed point theorem for then-cell was also extended 

to upper semi-continuous mappir€S of a compact convex subset or a 

locally topological linear space into the family of its non-empty 

closed convex subsets (Kakutan1 2 (1941), Bohnenblust and Karlin 

rems are included in the extension of Lefschetz•s fixed point theo

rem to upper ser11i-cont inuot.1s mappings of a compact le-space ( see p. 
43) into the ~amily of its non-empty closed acyclic subsets (Eilen

berg and Mont6 omery [1 (1946), Begle 3~ (1950)). In a recent pu

blication Fan 3 (1961) gave sufficient conditions for the exist
ence of coincidence points under upper semi-continuous mappings of 

a Hausdorff space into the fa~ily of non-empty compact convex sub

sets of a to1)ological linear space. His theorems include Tychono:rf's 

• 
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theorem (Tychonoff [1] ), but they do not include the above-mention

ed extensions of Tychonoff's theorem, nor are they included in these 
extensions. 

It is unknown whether a compact convex subset of an arbit~ary 
topological linear space has the f.p.p., even when the space is me
t riza ble. 

Another unsolved problem bearing on section 7 of Chapter I was 
referred to by Isbell 1 (1957): If Fis a commutative family of 
continuous mappings or a tree Tinto itself, does there exist a 

point x
0 

e T such that f( x
0

) = x
0 

for a 11 r E. F? 

In Chapter II Scherrer's theorem (Scherrer (1] (1926)), which 
states that a dendrite has the f.p.p., and its generalizations to a 

• 

wider class of spaces and mappings are surveyed. An unsolved problem 

in this field is the question whether a tree-like continuum has the 

f.p.p. (Bing 2 {1951)). It 1s also unknown whether a plane conti
nuum which does not separate the plane has the f.p.p. 

Chapter III contains miscellaneous fixed point theorems and a 
general impression is best obtained from the section headings. 

If f is a (not necessarily continuous) mapping of a topological 

space X into itself, and f(x) ;i x for all x £ X, then it might be of 
importance to know whether there exists a point x

0
~ X which in some 

sense is ''near'' to its image f(x
0
). We would prefer an ''almost fixed 

point property'' which can be considered as an extension of the f.p.p .. .,._ 
~ .. 

e.g. so that it coincides with f.p.p. in the case of compact spaces 
and continuous mappings. Existing theorems on almost fixed points 
are discussed in section 10 of Chapter III, and in Chapter IV we 

prove the following theorems on almost fixed points in the Euclidean 
plane. 

THEOREM 1 .. Let a be a finite covering of the Euclidean plane by 

convex op,en sets, and let r : E2, ► E2 be continuous. Then there is a 
member U, IX such that Un f [u] f ¢, or equivalently: there exists a 

THEOREM 2. Let~ be a finite covering of E2 by arcwise connect
ed sets, and let r: E2 •E2 be topologically equivalent to an orien
tation preserving isometry, i.e. there is a homeomorphism h of E2 on-

2 2 to itself and an orientation preserving isometry g : E ,- E such 

that f = h - 1gh. Then there exists a member U, ct sue h that Un :r [U] ;i </. 
In particular this is true when~ 1s a finite covering consisting or 
connected open sets. 
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THEOREM 3. Let X be a unicoherent topological space and oc a 
covering of X which consists of three connected open sets. Let 
f : X . ) X be continuous. Then there exists a member Uc oc. such that 
u n r [u] ;i ¢. 

An example is given \-Jhich shows that ''orientation preserving'' 
cannot be missed in theorem 2, and that theorem 3 cannot be extended 
to coverings consisting of more than three sets. The mapping of this 

• 

example is a t~ansflection, i.e. a reflection followed by a trans
lation in the direction of the axis of reflection, and the covering 

has countably infinitely many components. Note that a transflection 
• 

reverses the orientation. Thus we have the following 
• 

PROBLEM. Let« be a finite open covering of the Euclidean plane 
2 2 , 2 

E, and let f: E •E be continuous. Does there exist a member 
U E. a. such that Un f [u] ~ <;I in one or both of the following cases: 

(1) f is an orientation preserving homeomorphism onto; 
(11) the intersection of each pair of members of« has at most 

a finite number of components? 
The results or Chapter DI will also be published elsewhere (de 

Groot, de Vries and van der Walt [1] ). 
We did not survey the numerous applications of·fixed point theo

rems. Therefore we mention here a few examples and references.Arnold 
(1] (1949) used Brouwer's fixed point theorem to obtain an elegant 

• 

proof of the fundamental theorem of algebra. In a description of a 
model of the brain, Zeeman [1] (1962) gave an interesting applica
tion of Brouwer•s fixed point theorem for then-cell. For expositions 
of applications to functional analysis, the reader is referred to 

Graves [1] (1935), NemyckiI 1 (1936), Rothe 5 (1939), Miranda 1 
( 1949), Leray :5 ( 1950) and Fuller 3 ( 1962); for more detailed 
results, see e.g. Kyner 1,2 !1956, 1958), Marcus 1,2 (1956), 
Browder 6 (1957), Stokes 1 (1960) and Cesari 1 (1960). 

I wish to express my gratitude to Professor J. de Groot who 
suggested this study, in particular the problems which are discussed 
in Chapter IV. I am grateful to the Potchefstroom University for 
C.H.E. and the University of Amsterdam, at both of which institutions 

• 

I studied for several years. I am indebted to Prbfessor R.D. Anderson 
and Professor V.L. Klee for valuable remarks. I wish to thank the 
Potchefstroom University for C.H.E. and the South African Council 
for Scientific and Industrial Research, from both of whom I received 
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bursaries during my stay 1n Amsterdam. I am grateful to the Mathe

matical Centre, Amsterdam, for the privilege of being appointed a 
guest member of their staff, and for the most helpful cooperation 

that I received fr•om them .. 

• 

• 



CONVENTIONS AND DEFINITIONS 

The empty set will be denoted by¢. If X and Y are sets, and 

every element of Xis an element of Y, we shall write Xe Y. It will 

be explicitly stated whenever Xis meant to be a pro2er subset of Y. 

If X and Y are sets, then the set of all points of X which do not 
belong to Y is denoted by X, Y. 

A neighbo~rhgod of a point subset] of a topological space is 

an ope~ set containing the point subset . If A is a subset of a 

metric space X with metric f, and t is a positive number, then { x E. X 

there exists a point a 1. A such that p(x, a)< i ,..,i 11 be denoted by 

U1 (A). If A is a subset of a topological space X, then A will denote 

the closure of A in X. A topological space will be called compact if 

every open covering of it has a finite subcovering. A compact metric 
space is called a 9ompactum. 

A continuum is a compact connected Hausdorff space. A continuum 

is d~Qompqsable if it is the union of two proper subcontinua; other

wise it is indecomposable. A connected topological space Xis unico

herent if, whenever X = f\ u B, A /.: ¢, B ~ ¢, with both A and B con

nected and closed in X, it follows that An B is connected. A contin

uum is hereditarily deco~eosable ~inde9omposab~e, unicoherent if 

each of its non-degenerate subcontinua is decomposable [indecompos
able, unicoherent] . 

A Peano continuum is a HuuGdorff space which is the continuous 

image of the closed interval [0,1] (with the usual topology). It is 

well-known that the class of Peano continua coincides with the class 

of locally connected metric continua, and that a Peano continuum is 
arcwise connected. 

A dendrite is a Peano continuum which contains no Jordan curve. 

If A,B and Care three mutually disjoint subsets or a topological 

space X, then C ¥>epar~tes A and B in X if X \ C can be split into two 

disjoint sets, each of which is closed in X \ C, and respectively con

tains A and B. A tree is a continuum in which each pair of distinct 

points is separated by a third point. In this terminology, a dendrite 

is a metric tree (Whyburn [1, p.88]). A continuum is a tree if and 

only if .it is locally connected and hereditarily unicoherent (Ward 
[2]). 
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The 'c er111s 111appinr: , fun ct ion and tra11s format ion wi 11 be used 

synonymously, and a mapping f of a set X into a set _Y will be deno
ted ..... b:.,r f : X - > Y. Further., 1. f A c X and B c Y., then f A = f( a) a € A 

r-1 B = x e: X f ( x) e. D • 

Let X and Y be topoJ.ogi c~al spaces., and let fi ( Y) denote the 

family of all non-err1pty subsets of Y. The ).IPI?er ... semi-finite {u.s.f.) 

top9log~ for Jf(Y) has as a basis for its open sets all sets of the 

f orrn A e: JI.( Y) Ac U } , where U 1 s ar1 open subset of Y. The lower 

se!!li-fintt.~ { 1 :-~ .• r .. } to;e,o,logx has as a basis for its open sets all 
sets of the form A£.it(Y) Anu-/ ¢ • The fini~e .. topology. for J1-(Y) 

a I 

has as a subbasis 
open in Y. 

the sets A c~Y) Ac:. U, An V /. ¢ 
• 

, with U and V 

A mapping f : X > fi(Y) is called upper .semi,-,.~9.ntinuous (~ .. s.c,.), 
lowe~ ~~mi-c_ontinuous (l.s.c.), cont~,nuous_ if and only if it 1s 

continuous in the usual sense with respect to the upper semi-finite 

lower semi-finite, finite_ topology for Jl-(Y). This means that f · 
is continuous if and only if it is both u.s.c. and l.s.c., and that 

f 1s u. s .c. l .s .c. if and only if, for each point x E X and for 
• 

each open set U of Y containing f(x) such that f(x) fl U / ¢ , there 

exists a neighbourhood V of x such that f( z) c U f( z) n U /. ¢ for 

all z € V. 

If ~(Y) is a subfamily of uf{Y), a mapping r : x-~ .Y(Y) is 
called u.s.c. _1.s.c., continuous if it is continuous with res
pect to the relative topology for .:f (Y) induced by J1(Y) endowed 

with the u.s.f. 1.s.f., finite topology. 

• 

Various other definitions of upper and lower semi-continuity 
exist {see e.g. Strother _1_ and the references given there), but 
they are nearly all equivalent when X and Y are compact Hausdorff 
spaces and ~(Y) is the family of all non-empty closed subsets of Y. 

A mapping f : X .. ~ cY(Y) is also called a multi-valued or a set-

1alued mapping; for instance, if ~(Y) is the family of all non

~mpty closed subsets of Y, then f is referred to as a ''closed set
valued mapping''. Occasionally it will "chen be convenient to refer 

to a mapping g : X ) Y as ''single-valued''. 

If' A c X, B c Y, then f .... A = U f ( x) x e A , r- 1 B = 
= x E: X f(x) n B :/ ¢, and the S;t',,~Ph G(f) of f is defined to be 

( x , Y) x £ X, Y £ Y, y E f ( x) • Th us f A and G( f) are de :Cine d as SU b
f 

sets of Y and Xx Y respectively, and not of cf (Y) . and ~ lt t'(Y). 
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Let X and Y be sets and let tf(X) and V(Y) denote families 
of non-empty subsets respectively of X and Y. Let f : X ) ~(Y) 

and g : Y >· c;°(X) be mappings. A coinc.~denc,e point of X and Y un-

de~ f ?ind ,g is a point (x
0

,y0 )E: XxY such that x
0
":g(y

0
) and y

0
E.t'(x

0
). 

We may also consider mappings f : X ) J(Y), g : X > ~(Y), defined 

in the same direction. Then~ coing!~e?ce point pf X under f and g 
is a point x £ X such that f(x) n g{x) I¢. In the special case 

0 0 0 
when Y = X and g is defined by g(x) = {x} f"or ell XG: X, x

0 
is 

called a fixe~ Pe.int of X.~nder f. If~ is a family of functions, 
each of which is on X to the same family ~(X) of subsets of X, 
and if X has a fixed point under each member fc'tt, then Xis said 

to have the fixed, po,irit prppe_~ti ( f •E,•P'!.).,, for the f,a,,p-iil~ ~ ,• 

If x
0 

1s a fixed point of X under f: X--;► cY'(X), we shall 

also say that the mapping f has a fixed point in X; also, that x
0 

is an ~-invariant point. 
For the sake or completeness, we note that a mapping 

f : X--. Y induces a mapping f * : X ·i. a'( Y) = {Yj y E: Y in the 
obvious way, and by a fixed point of X under f we shall mean a 
fixed point of X under r*. An analogous remark applies to coinci
dence points. 

A topological space X will be said to lack 
I RI I al 

exists a continuous mapping f: X-1 X such that 
XE X. 

the f_.p.p. if there 
¢ I 

f(x) -I x for all 

Let X be a Hausdorff space and Ha homology theory for X over 
• 

a group G. Then Xis called acycli9 (with respect to G) if the ho-
mology groups Hn(X,G) (n=0,1,2, ••• ) are trivial, H

0
{X,G) being 

taken augmented. A continuum is heredi tari_ll acyc,lic if each of 

its subcontinua 1s acyclic. 
A topological space Xis an absolute retract absolute neigh

bourhood retract if, for each normal space Y and each closed sub

set x• of Y which is homeomorphic to X, X' is a retract neigh
bourhood retract of Y. A necessary a11.d sufficient condition for 

a compact metric space to be an absolute retract absolute neigh

bourhood retract_ is that it possesses a topological image in the 

Hilbert cube I w which is a retract _neighbourhood retract_ of Iw. 

(Borsuk 1 ). A compact metric absolute retract absolute neig~ -

bourhood retract will be denoted by AR _ANR , ana_o space which 

is homeolnorphic to a,.... reJ.:ract · neighbourhood retract__, or a Tycho-
A * * nor:r cube I by AR ANR • 
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Euclidean n-space will always be denoted by En, and then
sphere in En+1 by sn. 

The topological structure of the topological groups and topo
logical linear spaces to be considered will be Hausdorff, and the 
linear sp~ces will be real. 

For other terms 1 n ge11era 1 topology, homology theory 
ear analysis, the reader is referred to Alexandroff-Hopr 
ford and Sch\..rartz 1 , Eilenberc; and Steenrod 1 , Kelley 
Lefschetz _5,6,7 , Whyburn 1 Dnd Wilder _) • 

and lin-

1 , Dun-

4 , 
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• 

CHAPTER I 

The fixed point theorems of Brouwer, Lefachetz, 

Schauder, Leray, Tychonoff and Kakutani 

In one of a series 
, 

equations, Poincare 1 
of papers on curves defined by differential 
(1835) considered a continuous vector field 

over a closed surface and assigned an integer as index to each iso

lated singular point. He proved that if the surface is orientable 

and of genus I 1, tr1en tl1ere exists at least one singular point. 
Around 1910 Brouwer 1-3 discovered the degree or a contin

uous mapping of one n-ma11ifold into another. He used it to extend 
~ 

Poincare I s definition of l1e i 11dex from two to n dimensions., and 
to prove l1is well-lcnown fixed point theorems for the n-cell, the 
n-sphere and the projective plane: 

B1. Then-cell has tr1e f.p.p. for continuous mappings. 

B2. Then-sphere has the f.p.p. for continuous mappings of 
degree,' (-1)n. 

B3. The projective plane l1as the f .p.p. for continuous map
pings. 

-In 1922 Alexander ~1 gave new proo.fs of B1 and B2, under 

the impression that they were proved for homeomorphisms only. He 

also extended B3 to projective 2n-space. Almost simultaneously 
Birkhoff and Kellogg 1 (1922), under the same impression as 
Alexander, gave another proof of B1, and showed that it may be ex

tended to special function spaces., namely to compact convex sub

sets of en 0,1- and½ 0,1 • (See Dunford and Schwartz 1 .for 
definitions.) A short and eleGant proof of B1 was given by Knaster, 
Kuratowski and Mazurkiewicz 1 (1929). ' 

Another major step in the history of fixed point theorems was 
the for1nula of Le.fschetz [1] (1926). Le_t f be a continuous mapping 

of an orientable n-manifold M, without boundary, into itself. Let 
z1 {1=1,2, ••• ,p; r=0,1, ••• ,n) be a basis of the r-th homology r r 
group Hr{M) o.f M, taken over the rationals as coerficients, and 

• 
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let 

where f*r denotes the homomorphism of Hr(M) 
by f', and Let 

~n r 
and A ( :r} = Z: ( -1 ) trace f ))if r . 

into itself in uced 
~ r 

trace f *r = L- aii' 
i=1 

r=O 
Lefschetz • a theorem 110w asserts that /\ ( f) # 0 1 s a suffi-

• 

cient condition for the existence of fixed points of Munder r. 
Le£schetz [2] (1927) almost immediately generalized this 

result to manifolds with a boundary. It was then extended to 
finite polyhedra by Hopf 1 (1929), and again by Lefschetz 4_ 

* (1937) to the AR's and ANR's, and eventually also to the HLC -

spaces and the quasi-complexes (Lefschetz [5] {1942)). Lefschetz 
also obtained analogous for~ulas giving suf'ficient conditions for 

the existence of coincidence points of manifolds under continuous 
mappings. A full account of these results is given in Lefschetz 

5 .,6 • 
Each of the spaces considered above is a compact Hausdorff 

space, with all its rational Betti numbers finite and all but a 
finite number of them zero. From the extended Lefschetz fo111tnula 

it follows, for example., ti1at every ANR which 1s acyclic over the 
group o:r rational numbers, t1as the f .p .p. for continuous mappings. 

The property of being acyclic alone is not enough to ensure the 

existence of fixed points, as was shown by Borsuk 5 (1935) wl10 

constructed an acyclic Peano continuum in E3 which can be mapped 
V 

topologically onto itself without fixed points. Vercenko 1 
(1940) constructed a 3-dimensional continuum in E4 which has the 
properties of the space in l3orsuk 1 s example and in addition is 
simply connected. On the other r1and, 1 t has been proved by Cart
wright and Littlewood [1] (1951) that if a topological mapping of 
a plane acyclic continuum X can be extended to 
the whole plane, then X must have fixed points 

ping. The mapping in the example of Borsuk 5 
a homeomorphism of E3 , so that this additional 
ficient to ensure the validity of the theorem 

The fixed point formula of Lefschetz 1 

a homeomorphism of 

under such a map
can be extended to 

condition is insuf-

in three dimensions. 

(1926} included al-
most all tlie fixed point theorems existing at tr1e time of its pu-

blication, e.g., the above mentioned results of Brouwer 1-3 
---' 

• 
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There are, however, fixed point theorems which es cape the for·•1i1ula 
,, 

and its extensions, e.g., the Poincare-Birkhoff-theorem 

(G.D. Birlc110.ff 1 ( 1912)). This theorem states that if f is a 

homeomorphism of a plane .annular ring bounded by two concentric 
circles c 1 and c2 , which moves all the points of. c1 in one direct
ion and all those of c 2 in tl1e opposite direction, then either 
some Jordan curve J exists in the ring surrounding the circle c1 
which does not meet its image f J_, or else there are exactly two 

• 

fixed points, and_this in spite of the fact that /\(f} = O here 
{Lefschetz 7,p.16 ) • (For extensions of the Poincare-Birkhoff
theorem, see G.D. Birkhoff [2] (1931) and Rey Pastor ~1 (1945).) 

In contrast to the homology arguments used in establishing 

the Lefschetz fixed point formula, various authors used convexity 
arguments to extend the Brouwer r1xed point theorem for then-cell 
to compact convex subsets of linear spaces. Thus,_1n 1927 Schauder 

1 extended the results of Birkhoff and Kellogg _1~ to metric to
pological linear spaces having a linear base. This assumption was 

then dropped, and in 1930 Schauder 2 obtained the following re

sults: 

S1. A compact convex subset of a Banach space has the f.p.p. 

for continuous mappings. 
S2. A convex, weakly compact subset of a separable Banach 

space has tr1e r.p.p. for weal<:ly continuous mappings. 

A result of Mazur 1 (1930) states that the convex closure 
of a compact subset of a Banach space is compact. Krein and 
..., 
Smulian [1] (1940) extended this result by showing that the convex 

• • 

closure of a weakly compact subset of a 

pact, and they used it to establish the 

S2: • 

Banach space is weakly com

following improved form of 

S2a. If His a closed convex subset of a Banach space, and 
f : H •H is weakly continuous such that f .... H is separable and the 
weak closure of r H is weakly compact, then H has a fixed point 

under f. 
Let X be a Banach space. With the assumption of Mazur•s theo

rem mentioned above, theorem S1 may be stated in any one of the 
following three equivalent forms: 

• 

' 
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s 1a. If r : x > x is continuous and such that r.__x-' is bounded, 

and the 1mage of each bounded set has a compact closure, then X 

has a fixed point under f. 

S1b. If His a closed convex subset of X and r : X--i Xis 
continuous and such that f[HJ is compact, then H has a fixed po~nt 

under f. 

31c .. If H is a compact convex subset of X and f : H · J: H is 

continuous, then H has a fixed point under f. 

S1c and S1b was extended to locally convex topological linear 
spaces by Tychonoff (1935) and Hukuhara 1_ (1950) respective-

ly. Using the fixed p-o1nt foI•mula for ANR • s (Lefschetz 5 ) , 
Browder ·. 3 · (1959) obtained the following extensions of S1a and .. 
S1b, in wh1ch t,1e hypothesis about the mapping is replaced by a 
co:t•responding hypotl1esis about one of the iterates o'f the mapp1ng: 

S1a 1 • If r : X__,itX is r·or1tinuous and such that for some pos1.

t1ve integer m the set rm X__, is bounded., and the image of each 
bounded set has a compact closure, then X has a fixed point under 

r. 
S1b'. Let H and H1 be open convex subsets of X, H0 a closed 

convex subset of X, H
0
c: H1 cH., f : H >X continuous and such that 

f H · is compact. Suppose that for a positive integer m., f'm is well-
m 1 m 

defined on H1, 1S'o f . H....,.. c H1, while f H1-' c Ho. Then Ho has a 

fixed point under f. · 

Browder 3 observed that the methods applied in the proofs 

generalize directly to locally convex topological linear spaces 

and give extensions of Tychonoff' s generalization or S chauder • s 

theorem to locally convex spaces. The following interesting con

sequence of the-Lefschetz fixed p-oint theorem is stated for com

?&r1son with fo1•m S1c of Scl1auder' s theorem (Browder 3 ) : 
Let A be an ANR, or a quasi-complex in the sense o-r Lef'schetz 

-
·. 5 • • Let r : A· ►A be continuous and suppose that for some pos1-... 
tive integer m, fm A· is contained in a closed acyclic subset B of 
A. Then A has a fixed point under r. · 

W-e conclude this section with the remark that it is not known 

whether a compact convex subset of an arbitrary topological 11.near 

space has the f.p.p., not even when the space is metr1zab1e· (Klee 

6 , p.285; 7, p.291 ), and that Lefs:Ohetz•a proof for the ·asser-
,, 

tion that a compact convex subset of a metric linear space has the 
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r.p.p. ( Le~schetz ~6, p.119_ 
1) 

) 1s in error, as was pointed out by 

Klee 9_ .. 

Il""' H is a com;;act cor1vex subset of a metric linear space X, 

then (Klee 6 ): 

(i) 

(ii) 

(iii) 
(iv) 

H is a ,··•.)mpac ,_ subset of a metric space X; 
• 

every rie1.6 l1bourhood of H in X contains 

also a closed neigl1bourl'1ood 

locally contractible _and an 

H 1s contractible; 
His locally contract1.ble. 

• 

1.·1hich is 
. ;_; 

i ..... 

an open .__ and 

contractible, 

An exarnple of Borsu'.( 6 ( 1948) s~1ows tl1at a space may sat1s
ry all four co11d.it1.011s wi~i1ou· beinc::; an Afl. Ki11oshita 2 (1953) 
constructed a space w, ii cl1 sa t:I.c fl es ( i), ( 11) and ( i 11) but lacks 

the f" .p .p. It seerns to be u11.l-:r1ov1n wl1etl1er the f .p .p. for H follows 

rrom (1), (11) and (iv), or fror. (i), (iii) and (iv). However, if 

a space satisfies (1), (iii) a11d (iv), and in additic)n is :finite

dimensional, then Lefscr1etz's proof (Le:fscl1e:z 6, p.119 ) is in 

order (Klee 9 ) ; suc11. a space then is an AR and l1ence has tl1e 

r.p.p. for continuous mappings. 
For arbitrary topological linear spaces, we have the follow

ing result (Klee 7 ): 
Let X be a topological linear space and Ha compact retract 

o~ X which admits arbitrary small continuous displacements into 

rinite dimensional subspaces of X, i.e., for each neighbourhood U 
of the origin in X there is a finite-dimensional subspace L of X 
and a continuous mapping g: H )L such that g_H 1s compact and 

g._H CH+ U. 

Then H has the f.p.p. f"or continuous mappings • 

• 
1.2. Tqe Leray-Schauder t~1eory of tl-ie .. fixe~. point ,+nd~x .~~-9: 

its exte11sions 

Except for minor changes, this section 1s taken verbally rrom 

Browder 5 ( 1960) • 
In the classical fixed point theory of continuous mappings, 

culminating in the Lerschetz fixed point theorem (Lefschetz -1,2 ), 
one is concerned with the algebraic number of fixed points of a 
-------------
1) However, see the remark preceding the last theorem of this section. 
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continuous mapping f of a compact, locally well-behaved space X 
into itself. Beginning with tl1e work of Leray and Schauder 1 and 

Leray 1 in 1934 on tl1e local degree for completely continuous 
displacements 1>1n a Banach space, the problem has arisen of local
izing this index of fixed po111ts, i .. e: of' defining an algebraic 
measure of the number of fixed points of the mapping f on each 

open subset of X whose boundary does not intersect the £ixed point 
• 

set and of doing so in a way which preserves the principal proper-
ties that make such a measure useful in the growing number of ap
plications which the fixed point theory has found in analysis • 

• ' 

The principal results in this direction are to be :round in 

the papers of Leray 2.,3.,4 , written during the Second World War 
and published shortly afterwards, in which he constructed a theory 
of the fixed point index for continuous mappings of convexoid 
spaces, a class of spaces sharing some of the properties of r1nite 

polytopes and of finite unions of compact convex sets in linear 
spaces. Their precise definition is the following: 

A compact topological space Xis said to be convexoid 1£ it 
• 

has a covering U t having the fol lowing properties (Leray 
2,3.,4 ): 

(a) Each Ut 
homology 

is closed and acyclic 
theory). 

(with respect 

the collection if it is non-empty. 

y 

to Cech co-

( c) Each point of X possesses arbitrarily small neighbo1Jr

hoods each of which is the union qr a finite number of 

the sets ut. 

Leray• s theory in 1 ts 1n1 tial f'ox,n, though def1n1 tive :ror 
• 

the class of spaces which he treats, suffers from the disadvantage 
that the class of convexoid spaces fits in poorly with the usual 
class1ficat1on of topological spaces by their local regularity 
properties (i.e. local n-connectedness in the sense of homology or 
homotopy). In a sense, the requirement that a space be convexoid 
is a condition analogous to triangulability for a manifold, since 

--------.-----~--
'1) Let X be a Banach space, A a subset of X and i : A - ) A the iden

tity mapping. A mapping f: A ·· ► A is a completely continuous 
displacement if f is continuous and (1-f) A has a compact 
closure 1n X. 
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it requires that one should be able to build up t1·1e space by past

ing together regular pieces (no longer simplexes, but cohomologic

ally trivial sets) in sucl1 a fashion that their intersections 

sl:1ould also be regular. Tl·1e difficulty can be illustrated by tl-1e 

fact tl1a t i ·t is not clear wl1e'c lier an Euclidean manifold (i.e. one 

without diffe1°entiabili t;y· or triangulabili ty conditions) is con

vexoid. 

Motivated 

point index in 

by t~ie desire to co11struct a 

a context Sirr1ilar t-;) that i1-i 

has proved his fixed poir1t tl1eorem, Browder 
• 

theory of the fixed 

which Lefschetz 5 
1 (1948) in his 

Princeton Doctoral thesis (written under .the joint sponsorship of' 

Lefscl1etz and liurewicz), estal>lisl1ed a theory of the fixed point 

index for ANR* • s usi t1L as a t o,·)J. Leray' s t l1eory as applied to 

finite pol:y topes. (See alst) Br(·. v1de 1·· 2 ) . ) The results and the 

general philosophy of Browder 1 ure summarized by Bourgin 

1, p.229-235 • In his M.I.7. Doctoral thesis of 1953 {written 

under Hurewicz), O'Neill 1 rederived the principal results of 
Leray' s theor;,r for the special cnse of finite polytopes. Using tl·1e 

results of 0' Neill's paper, nour[;it1 2 __ ( 1955) has recei1tly 1..,e_ 
. * 

establisr .. ed ti1e tr1eory of' ·1 .. e fi:;:ed point index for ANR Is, along 

11 nes similar to those of Br,)~:der 1 • 

Leray 5 ( 1950) poj_ 11·ceu out tr1e poss l bi 11 t y of extending his 

tl1eory from convexoid spaces to retracts of convexo1d spaces 

(which include the AI.JR~'s. 3uch an extension has recently been 

carried tl1rough in detail by Deleanu 3 ( 1959) who also a.pplies 
• 

some sharpened forms of Leray• s results gi\'en by Leray __ 6_,, ( 1959). 

The theory of tl:1e loc; al fixed poir1t ir1dex, as 1 ni tiated by 

Leray-Schauder _1 ( 1934) a1'1d developed amongst otl-1ers ·o:y Leray 

5 (1950), Nagumo ._2 .... (1951) and Altmat1 _2,3~ (1958) is appli

cable to lo.cally conve?C. topolo[·~i ~a., linear sp&ces. For Banach 

spaces, a ; 1omot opy extension +-~·1eorem ()f Granas 1 ( 1959) yields 

1nany of' the useful conclusio11s of tl1e Leray .. Schauder theory while 

avoiding tl1e more complicated notions of tr.Le rest. Klee 7 ( 1960) 

showed that it is possiblf) to expand to an arbitrary topological 

linear space both the Leray--3chauder theory and the homotopy ex
tension approach of Granas. 

Brovvder's objective (Browder 5 ) is to go outside ti1e frame 

* of reference of ANR' s 01.., of retr-ia ct ion p1..,opert ies in general, and 
• 

to take up trie theory of t1-1e fi:;-;e<i point index on the combinatorial 
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or homology level on whicr1 it is treated by Leray 4 but under 
more general hypotheses, similar in their nature to (though not 
identical with) hypotheses made by Lefschetz 5,p.322-327~ in his 

treatment of the Lefschetz fixed point theorem for t·he class of 

quasi-co·mplexes. Intuitively, one should expect that the fixed 

point index, or algebraic number of fixed points, as the latter 

name implies, should be a combinatorial or homology concept de

fined in a class of spaces which are defined by combinatorial 
• 

restrictions rather than by restrictions upon continuous mappings. 

Basically, as in the case of finite polytop·es treated in the last 
chapters of Alexandroff-Hopf ~1 , his idea is to identify the 

• 

fixed point index with a count of the number of times some sort of 
element is mapped back on itself by the given mapping f. He ob
tains such a count in a very natural form, namely the alternating 

sum of the traces of induced chain mappings of nerves of X. The 

general approacl1 goes back to Lefs chetz 5 • Browder' s proof was 

announced in Browder 2~ (1951). The basic problem is to find the 

appropriate algebraic analogues of the properties of the fixed 
. point index for chain mappinc;s into a differential graded module 

G of a differential graded submodule F. 
Browder 5 introduces an axiomatic fixed point index in the 

following way: We are given a category of compact topological 

spaces X and of per1r1issible continuous mappings h : X >X. By a 
f~xed point index on this category the .following is meant: if X is 
a space 
napping 

teger i 

in the category., O an open subset of X, f any continuous 
- -of o into X1 then if r has no fixed points on 0\0, an in-

(f,O) is defined having the following four properties: 
• 

( a) If ft, 0 ;:!; t :s; 1, is a homotopy of f 
O 

to f 1 , where all the 

ft are mappings of o in~o X and none have any fixed points on o\o, 
then 1 (f0 ,0) = 1 (f1 ,o). {Invariance under homotopy.) 

(b) If O contains a finite family of mutually disjoint open 
' - s 

sets contains no fixed points of 

the mapping f : 5- > X, tr1en 

s 
1 (f,O) 

j=1 

where each of' the summands on tl1e right denotes the index o.f the 
- -restricted mapping f Oj. In particular, if o itself contains no 

• 
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fixed points of r, then 1 ( r ,o) • o. (Addi ti vi ty of the index.) 

(c) If O • X., then 1 (!,O) • l\(f), the Lefschetz nt111t1ber of 

t, where 

morphism of H (X) induced by :r. (Hr(X) is the r-th dimensional ..., r 
Cech homology group of X with rational coefficients.) In particu-
lar, (unless we adopt a generalized definition of trace as in 
Leray [6] ) , one must assume tl·1at x' haa fin1 te ly generated homo

logy groups, all but a finite number of which are trivial. 

(Normalization) .. 

(d) Let x1 and x2 be two spaces of 
' 

a1ble mapping of x1 into x2 , o2 an open 
-t1nuous mapping of o2 into x1 • Let o1 = 

-
has no fixed points on o2 \ o2 • Then 

• 

the category> ha 

subset _or x2 , r a 

h - 1 0 S 
2...,. uppose 

1 (hf,02 ) • 1 (fh,01 ) .. 

(Coamutativ1ty) .. 

pex•m1s

con
that hf 

The property (d) includes as a special case, the following: 
' 

(d') Suppose X and X1 are members of the category and Xe x• 
and the injection mapping j : X ,.., ➔ X is peran1ss1ble. Let O be an 

-open subset of X, f : O , .. )X a continuous mapping such that 

r o c X 1 • Suppose f has no fixed points on O \ O. Then 

Browder 5. 
point index for 

, 

1 (r ,o) - i (:r., X' no). 

proceeds to establish the existence of a fixed 
,Mo 

more general categories than the ANR •s. The cate-
gories which he considers are subcategories of the categorie's of 

semi-complexes and semi-complex mappings. One such includes all 
HLC* spaces in the sense of Lefschetz 5 , and all their contin
uo1.1.s mappi11gs. The definition of a semi-complex is motivated by 

, 

deriving its properties from well-known properties of ANR 1 a 
(Lefachetz 6 ). Unlike the latter, however, the structure of this 
class of spaces is restricted by conditions on chain mappings and 
not on continuous mappings • 

• 

DEFINITIONS (Browder 5 ) : Let X be a compact., locally con

nected Hausdorff space, and let ..0.. be the family of all finite 

open coverings of X. For ot., p e ..n, wr1 te p > a if p is a refinement 

of a. For cx.s.n.., let Nee. be the nerve of Ct, and Cn(N«) the vector 
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space of oriented n-chains with rational coefficients. 

The ~uppo~.~. of ~ simple_;x a e Na , ~uE.(<Y), 1s de.fined to be the 
union of the closures of the open sets of O' which are vertices of 

a. The .~.~pp~r.t of ~- chain g • Cn(Ncx), Sup(g)_, is defined to be the 
union of the supports of those simplexes of N« which have non-null 

coefficients in the expansion of g. 
Let C(Na) be the differential graded module_ of oriented 

chains of Not with rational coe.fficients, let dcx be the di.ff'eren

tial of C(N~), which ia of degree (-1). In the following de.fini

tion, by a chain mapping of C(N~) into C{N~) is meant a graded 

homo-morphism h of degree zero over the rationals for which, as 

usual, dp h = h dee., but in addition, it is also assumed that h 

carries integral chains of Np into integral chains of' Na • Two 
chain mappings h and h1 of C(Na) into C(N,i) are qh~i~ homoi;:o;ei .. c 

Wi~h ~-h~1n h_om,ot .. opY D if D is a graded homomorphism of C (Na.) into 

C(Np) of degree (+1) such that h-h1 = a, D + D d«. 

Let X be a compact, locally connected Hausdorff space.Xis 

said to be a s~.:n+-co~plex if there is a semi-complex. struq,tur~ 
~ 

defined on X, where by the latter 1s meant the following: (A) 1 For 
each A~ n there exists a

0
(X) e n and a family CA= cQ 11 of one 

or more chain mappings c«p : Cn(Np)ii Cn{N«) for a> p>Q.
0

(X) and 

all n ~ O, such that the following properties hold for these chain 
mappings: ' 

of · 

Cn(N,) into Cn(Nt) induced by one of the natural injections of' N, 

chain homotopic to c•t j '" with a chain homotopy small of order 

every simplex 
0-E. ~p and the corresponding elementary n-chain g with coef.ficient 
1, 

Sup(g) U Sup(c 
Ol{J 

1s contained in a single element of A • 

topic to 
(ii) For ~>oc.>p>ot

0
(A) the chain mapping c 

. 2 «p 

. ~p 

is chain 

that 

• 

homo-

is contained in a single element of A for eacr1 elementary n-chain 
g or NP. 

• 
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(iii) If p > ~ > oc.0 (.?\), then for every n ~ O the chain mapping 

cp~ jtp induces an endomorphism of Hn(Np) which is idempotent and 

whose image is the submodule of H (Nn) consisting of coordinates 
r1 , .. 

of elements of lin(X). 

(iv) If A'> A, tl1en 0<0 ( A')> °'o(A) and c", is a subfamily of 

C " • 

The most important differences between the definitions of the 

quasi-cotnplexes (Lefschetz 5, p.323 ) and the semi-complexes can 

be summarized in order of i11creasing importance as follows (Brow

der 15, p. 269 ) : 
L 

(1) In ti1e definitio11 of tl1e semi-complexes much more detail-

schetz calls chain derivations) trian i11 tr·1e definition of a quasi

complex, where for exainple the chain mappings c0<p are assumed homo

logous (which :for ratio11al coefficients is equivalent to being 

chain homotopic) while 11.ere i "c is assumed that they are chain ho-
" mo topic with small cl1ai n r1omotopies. 

(2) In a quasi-complex, condition (111) is replaced by the 

stronger condition that cpt jtP (at least fQr a cofinal subset of 

r, and ~) induces an J,-,s9.,!11~rP.hj_ s~ of Hn ( Np) onto 1 tse lf .. It follows 

immediately from this (as was first noted by Dyer 1) that a· 

quasi-complex has isomorphic homology groups with the nerve of any 

sufficiently fine coverine (3 .. Consequently it is unclear (despite 

tl1e statenent in Lefsct1etz 5~ p.322) that the class of quas1-

con1plexes does include tr:e class of ANR' s or the more general 

class of compact spaces which are unifonr1ly locally connected in 

all dimensions 1.11 the ser1se of riomology, the HLc*_spaces of Le .... '"'

schetz. (See for tl1e last, Lefscr1etz 5 , Wilder 1 ) • On the 

other hand, the axioms .for tr1e semi-complexes are rather obviously 
satisfied by ti~ie HLC* spaces. 

Defini~ion of ,~-h~, fixed 2oint index (Browder 5, p.277_). 

Let X be a compact nausdorff space which is a semi-complex. 
Let O be an open subset oI' X. Suppose we are given a continuous 

mapping f : O ➔ X without any fixed points on O \o. 
Let CX.£fl. We construct a closed sub-polytope N'oc. of' N« cor

respond i 11g to t he ope n set O ., v-J 1· 1. ere :ti~ i s the s ma 11 es t c 1 o s e d sub -

pol~.·tope of 1-Joc. containj~11g all tl·1e vertices of N°' which cor1 ... espond .. 
4 II -co elements Ucof ex which are contained in O. The boundary Ncx of N6'. 



28 

in tr1e simplicial complex Not consists of the smallest closed sub

con1p;~ex of N 'cc. spanned by vertices correspond:!.ng to e le men ts U of 

The 1'bour1ding edge'' N(o) of N'oi. in NOl is the star of N
1!x in No<.\N~. 

~,,, r- 1 (~), we define a family of simplicial mappi.ngs of 1'1~~ j_r1to 
• 

~,., ir1 the following way: For eaci1 vertex qU of N~ , let 

and 

any two such mappings are contiGuous in N~ and hence homotopic 

with homotopy paths lying in simplexes of Np .. 
Let qO(. denote the standard project ion of C (Ncx) onto C (N'0<.), 

and let f PO(. also denote tr1e anti-chain mapping obtained 

s1mpl1c1al mapping f ~01.. , as follows: For each elementary 

of C{N~) corresponding to an n-simplex er, we set 
O if f{a) has dimension less than n 

from the 
chain g

0 

where gf(a) 1s the element;ary cl1ain in C(Np) corresponding to the 

the result is trivially an anti-chain mapping. 

THEOREM (Browder 5, p. 273 ) • Let A E...!1, with A composed of 

connected open sets V. Consider the family of mappings cc:s.p, in C7, 

satisfying the conditions (A) 1 (p.26). Let O\.>f3> cx.0 (i\.), 
• 

Wo define 

1 {f,O) = trace (q c ~p ~ ap f (l 0( ) • 

.· 1 «p 
l.,P.'et , With oc. > f' > oc. 

0 
( A) , Ol > f- (fl) . T11is common value is denoted by 

i(f,O). It is independent of A and cx.
0

(A), for A sufficiently fine. 
The fixed point index i(f,O) as defined above depends upon a 

given structure of a semi-complex on X, i.e. a system of chain 
1nappi ,,.gs ccxp satisfying tl·1e axioms (A) 1 for each A E. ..iL • Since 

~~ere could very well be several sucl1 distinct structures on the 
spscP. X, it is not clear a priori that this index as defined is 
unique, no1• l1ow one can pass from the properties of the index on 

one semi-complex x1 tc those on another, x2 . To avoid the second 

di fficu.l ty, the foll :)Wi.ng 1efin1 tion is made 
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DEFINITION (Browder ... 5, p.286 ) : Let x1 and x2 be two com

pact spaces, each equipped with the structure of a semi complex. 
Let the chain mappings of the first semi-complex be denoted by 

h : x1 >X 2 is said to be a semi-c_o;:npl~x mappiDg with respect to 

the given semt-complex structures on x1 and x2 if, given an open 

covering A of x2 ., there exists an open covering A' of x1 such 
that the following 1.s true: 

If 

t > ~ > 0<.
0 

( A) , 

ex > p > °a ( )\• ) " 

ex. > h-1(~), 

and if tr.te simplicial mappings hl!oa of Ncx., 1 into Nt!, 2 (Na., 1 the 
nerve of x as a covering of x1 ., N~, 2 the nerve of~ as a covering 

of x 2) and h~~ of N~, 1 into N~, 2 are induced by the continuous 

map"'"'ing h, and if cC 1 ) 1s a cl1ain mapping lying in the f'amily 
1 ~~ 

responding to the covering A in the semi-complex structure on x 2 , 
then the chain mapping 

with a chain homotopy D, such that for every elementary chain g of 

N ~ , 

h(Sup(g)) U Sup(D9) 

is contained in a single member of A. 

A category of compact spaces and continuous mappings is said 
to be a category of semi-complexes if each space has a specified 

semi-complex structure and if all the continuous mappings are semi-
' complex mappings. , 

H~M.ARK (Browder ~5, p.287~): For a member X of the family of 
HLC* spaces there is a largest semi-complex structure which 1s es

sentially unique, and all continuous mappings are semi-coroplex map

pings with respect to this structure for given spaces x1 and x2 • 

With this prescription, the category of HLC * spaces and all their 

• 
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continuous mappings 1s a category of semi-complexes .. 

Browder 5 showed that the fixed point j_n de x a s def 1 ne d a b ov e 

1B unique for the category of se~i-complexes, and satisfies p~oper

ties (a), (b), (c) and (d) stated on p.24. In particular, the Lef

schetz fixed point theorem holds for such spaces. 

• 
1.3. ~ulti-valued m~ppi,t:J~~ ~uch that the i~~ge o:f ea9h, point 

' 
ia a,c y9 lie 

In 19,41 Kakutani 2 extended Brouwer' s fixed point theorerr1 

for the n-cell to multi-valued mappings by proving that a compact 
"' 

convex subset of the Euclidean space En has the f.p.p. for upper 

semi-continuous closed convex set-valued mappings .. 

In 1946 Ei lenberg and Montgomery 1 showed that a Lefschet z 

number can also be defined for certain multi-valued mappings o:f an 

AR into 1 tself. In doing so, they made essentia 1 use of the Vieto

ris mapping theorem (V1etor1s 1 ) . If X and Y a re compac ta, then 

a continuous mapping f : X ,y is said to have proper_t~ {V) if, for 

each y t.Y, the set r- 1(y) is acyclic with respect to Vietoris homo

logy .. (See Lef'schetz ·· 5., p .. 240 or Vietoris 1 . ) The mapping theo

rem of Vietoris states that if f : x .. ,,.,y satisfies property {V), 

then the induced homomorphism fttr : Hr(X} 111 Hr(X) 1s an isomorphism 

onto,. for all r 1 O .. Thus aided, the following theorems are proved: 

EM1 .. (Ellenberg and Montgomery 1 ) • Let X be an ANR and Y a 

compactUM. Let g,h : Y , )X be continuous functions, of which g sat is -

fies property (V). Let /\ (g,h) = L(-1)r trace (h g- 1 ) .. If A (g,h);i&O, · · *r ~r 
then there exists a point y 

O 
& Y such that g( y 0) = h ( y 

O
). 

EM2. (Ellenberg and Montgomery [ 1] ) .. Let X be an ANR and 

r : X , • lt(X) upper semi-continuous, where ~(X) denotes the family 
of non--.empty closed acyclic subsets or X. Let 

Y • ;(x,x 1
), X xX I xt, f'(x)· . Define the mappings g,h : Y >X as 

' 

follows: g{x,xt) = x, h(x,x') = x'. Then g satisfies property (V) 

{I· 1 ( i:) 1a homeomorph 1 c to f { x ) ) , and we can f o rrn the Le rs ch et z 

number I\ ;( f) • A ( g, h ) = I:( -1 ) ~ trace ( h g - 1 ) . Then , 1 f /\ ( f ) /. O , 
*r .-r 

there exists a po1nt x
0 

a X su,ch that x
0
c f( x

0
). 

Thie implies the following generalization of Kakutani 's theo-

,Rf;. (H11enberg an,d Montgomery (1] ) . Let 

and I = % ,, ··• C(X) upper semi .,continuous, where 
X be an acyclic 
ic(x) denotes 

ANR 
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tl1e f'arnily of non-empty closed acyclic subsets of X. Then there 
exists a point x

0
e X such that x

0
e f(x

0
). 

Using convexity arguments, Bohnenblust and Karlin 1 (1950), 
extended Kakutani's theorem to Banach spaces, and it was tl1en 

extended to locally convex topological linear spaces simultaneous
ly by Fan 1 and Glicksberg 1 in 1952. 

Let X be a Banach space and ~ (X) the family of non-empty 

closed convex subsets of X. Browder [3 (1959) called a mapping 

f : X > ~ (X) ,~orp.pl~.t_e ly .. c.~)ntinuou_s if the following conditions 
hold: 

(1) The graph of 1·, G(f) = {(x,y) x,y e X, ye: f{x)} , is a 
closed subset of X x X. 

(ii) For every bour1ded sub~e t S of X, tl1ere exists a compact 

subset Ks of' X such tr1at f(x) nKs I¢ for Xt S. 

(111) Let Kand K1 be compact subsets of X such that 
f(x) n K1 -/ ¢ .for x €. K. Let x

0 
be a point of' K and € a positive 

constant. Then there exists 6 > O such that, :for x E. K with 

x-x
0 

< 6 , we have f(x) n K1 c UE ( f{x)) n K1 and 
f' (XO ) n K 1 c U E ( f ( X ) ) 11 K1 • 

Browder 3 showed that if f : X > r; (X) is a completely 

continuous mapping such 
fm X 1s a bounded set, 

In 1952, Begle 2 

that, for some positive integer m, 
then X has a fixed point under f. 
proved a very general form of the fixed 

point forrnula wr1ich includes the results of Ellenberg and Mont

gomery 1 , and those of' Fan 1 and Glicksberg 1_. The proof 

uses only homology tl1eory and none of the homotopy properties in

volved in the notion of' an ANR. Consequently, the theorem is 

shown to hold :for a n1uch larger class of spaces, which he calls 

le spaces. The le spaces of Begle 3 are the same as the HLC * 
spaces of Lefschet z _5__. • ( Also see Lefschetz ...... 6, p .123-126__, and 
Begle 1 .) The proof also makes essential use of tbe Vietoris 
mapping theorem, for whicl1 he gives an extension to compact 

spaces, using a generalized form of Vietoris cycles. 

We now proceed to state and prove Begle's theorems as in 

Begle [2,3] . 
• 
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' 

(Begle 2 ) : 

Or'ily cc..?mpact Hausdorff spaces are considered. By a covering 

jJ of a apace x we shall always mean a f1n1 te covering consistj_ng 

of open sets. In this section we shall write v < }-l if vis a re-

fi n•ement of w. • If A is a subset of X, we denote by St A the 
. I ~ 

set u.· u II p l A ()U ,' ¢} , and by St .......-.t::!__. or p we denote the 

covering . St (U, p) . U E. tJ • If tJ~ < V, we say that f-1 is a star 

refinement of v, and we write p < * v. Every covering has a star 

refinttment (truokey .1,p.47 }. For each coveringµ, we choose one 

of 1ts star refinements and denote it by *~. 
An n-aimplex on of X is a set of n+1 points of X, and these 

are the vertices of a-n. If f-1 is a covering and A a subset o:f X, 

1a the simplic1al complex consisting of all simplexes o- such that 

diam o < p. .. Clearly, if v < t-J, then X(v) is a sub complex of 

X( p) .. Ir A is a subset of X, then x(p) f'\ A is the subcomplex of 

X( p) ·eons1sting of all the simplexes of X( p) wh1.ch are contain

ed in A. 
We shall consider only finite chains on the complexes X( p). 

Tt .. e eo•rr1c1ents, unless otherwise stated., are in an arbitrary 

lbel1an group. If en is such a chain., we denote by en the finite 

a1mpl1o1•l complex consisting or all the simplexes on which en 

haa non-sero coefficients together with all their :faces. 
In what follows we make frequent use of the Cartesian pro

d'uc t or• simpl1c1al complex Kand the closed unit interval 

I • .. O., 1 , ao we recall here the def1n1 tion of this product 

( I..etsehets : 5, p .307 ....l ) .. Let the vertices of K be s :l.mply ordered 

• , • 1 ·. ·· ot vertices of K. For each n-simplex a =( a a a ) 
· · 1•1 n o' 1' • • • ' n 

of I, consider the n·!--1 simplexes of the form 

(•0 , 111, •••,•1,a1, ... ,a:i). The collection of all such simplexes, 
togeth,er with all their faces, conati tute the product K x I. K 1s 

eal,led the bate of K :i< I, and the set of all simplexes of' K x I, 
ttll or whose vertices a.re primed, is called the ~op of K x I. 

let 
if C = 1•0 n n 

' 

·~· . n For any chain en of K, a d1.rect calcula-
t !on •hows tt1at 
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+ DF(c) = c 1 - C, n n n 

where c~ is the chain in the top or K x I fo11r1ed by replacing each 

vertex of each simplex of en by the corresponding primed vertex, 
and F 1a the bo11ndary operator .. IIence, if zn is a cycle of K., 

1 .e. z ru z ' on K x I • n n 

In one place (lemma 3) it will be convenient to consider 
K x I as a ce 11 complex rather than aa a s 1mpl1c1al complex. This 
time the elements of K x I are all the cells of the form a)(. o, 
crx1 or ox I, where o runs through the simplexes of K. The 
boundary relations in K x I are: 

F(ax 0) = (Fo) xO, F(o x 1) = (Fo)x1, and F(axI) = 

(Fa) x I + (ox 1) - (ax o). Then for any cycle z on K, we have 

P( z x I) = ( z x 1) - ( z x 0) , i .e. z x 1 N z ,c O on K x I. 

A collection zn = zn( ~) of n-cycles of X, one for each 
covering p of X, 1s a generalized V_1etori~_,,:n_-cycle {n-V-_c;t_cl_e) 

if z 0 ( ) is a cycle of X( p) and if, whenever v < tJ- , 
zn(v) N zn( p) on X( p). The cycles z

0
( ~) are the coordinates of 

z. If z and z 1 are two n-V-cycles, then z +z 1 is the n-V-cycle n n n n n 
whose coord1n9te on X( t-') is zn ( p ) + z~ ( f-.A ) • Further., zn ru O if 

_l9gz _gr~uE of X, Hn(X), is the factor group of the group of n-V
cycles of X by the subgroup of those which bound. 

Let X and Y be two spaces and f: X >Ya continuous mapping. 

a covering of X. Clearly, f maps each simplex of X( p) onto a sim

plex of Y(v), and hence is a simplicial mapping of X( p) into Y(v). 

We define f(zn) to be the n-V-cycle of Y whose coordinate on Y(v) 

V n 
Hn(Y). 

The Vietoris homology groups defined above do not give any 
new homology properties of X. If Xis compact metric, it is easy 

V 
to see that Hn(X) is isomorphic to the ordinary Vietoris homology 
group. In the general case, these groups are isomorphic to the 

V 

corresponding Cech groups, as we now show. 
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* Given a covering t" of' X., let v = p. • For each vertex a of 

X(v), choose an element V£ v such that a E. V and then choose an 

element Ue t,J. such that St {V,v) c U .. Set 6(a) = U. Then01s a 

simplicial mapping of X(v) into the nerve N( ~) of P· 
Next, given a covering v, let ~ = *v • For each element We. ~ , 

let ~(W) be a point in w. Then~ is a simplicial mapping of N(~) 
into X(v) .. 

Now, let y be an n-V-cycle .. For each covering p, let 
~ n 

V= pvand define z 0 (p) to be 9 yn(v). We assert that zn = zn(p) 
is a Cech cycle and that 9 induces an isomorphism of H~(X) onto 

C . v 
Hn(X), the· n-dimensional Cech homology group of X. 

V 

To see that zn is a Cech cycle, let p 2 < f"A 1 be two cover-
* -ings of X. Let v1 = p 1 and v7 p 2 , and choose a common refine-

ment v of v1 and v2 • By the definition of zn, we have 

zn{p1) = 81 Yn(v1), 

zn( P2> == 62 Yn( v2) • 

Therefore 

Similarly, since v < v2 , 

and hence 

TT 02y n { v) ,u 1T 82y n ( v 2 ) on N( rl 1 ), 

where TT is the projection of N( rt 2 ) into N( p 1 ). Thus 1 t will be 
sufficient to show that 

• 

(1) 

In order to show this, let K = yn(v) • We define a s1mpli-

c1al mapping 4' :,f K x I into N( JJ1 ) • For each vertex a of the base 

of K x I., let 4' (a) = Tr 02 ( a), and for each vertex a I of the top 
of K x I, let q; (a') = 01 (a). 

To see tha: this is indeed a simplicial mapping, let 

• 
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(a

0
,a1 , ••• ,a1 ,a1, ... ,ari) be a simplex of Kx I. By the definition 

• Simi

larly., for 1 ~ k .s n, there is a set v1k e v1 containing ak and a 
set u1k = ~(ak) containing St (v1k ,v1). 

Since ( a
0

, ••• ,an) is a simplex of X(v), there is a set VE.. v 
containing a

0
, ••• , an. Therefore., since v < v2 , Ve St (V 2 J ,v2 ) for 

O .:S j ~ 1, and consequently Ve. u1 J for O ~ j ~ i. Similarly, si nee 

"< v1 , Ve St (V 1 lt , v1 ) and hence V c u1k for 1 :'5 k ~ n. Therefore 

u10 n u11 n • • • n u11 n u11 n ••• u1n I ¢. Thus 4' maps the vertices of 
(a

0
, ••• ,a1 ,a1 , ••• ,a~) into the vertices of a simplex of N( ~ 1 ) and 

therefore is simplicial. 

Now yn(v) ru y~(v) on K x I. By the definition or 4', 

4'(Yn(v)) = TT02 (yn(v)) and 4-'(y~(v)) = 81 (yn(v)), and th:ts proves 
( 1) • 

• 

We shall show that y n (\JO. Given any covering p- 11 let v = p and let 

sh ow that y n ( ~) rv O on X ( f-l ) • Now z n ( v ) == y n ( ~ ) ru O on N ( v ) • Hence 

<.p 0 yn(E;) NO on X( ~), so we are reduced to proving 

( 2) 

Let K = yn(~) • We define a simplicial mapping w of K:x:I 

into X( ~) jn the following way: For each vertex a in the base of 

K x I, let w {a) = a., and for each vertex a• in the top of K x I, 

· let w ( a 1 ) = cp 0( a ) • 

To see that w is simplicial, let (a
0
,a1 , ••• .,a1 ,ai, .•. ,a~) 

be a simplex of K x I. By the definition of 0, there is a set 

Wk€ ~ containing ak and a set Vk €, v containing St {Wk, ~ ) . 
By the def'1ntt1on or t.p, <.p(Vk)evk. 

Since {a
0
,a1 , ••• ,an) is a simplex of X(~), there is a set 

W € ~ containing ( a 0 ., a 1 , ••• ,an). Hence W c::: St (Wk, ~) for 1 ~ k .'.Sn 

and therefore W c vk. Thus v:i n vk I: ¢, 1 ~ k ~ n, so Vkc St (v;,v). 
Since V=~f-1, there 1s an element Ue:. t,-A. which conta:tns St (V~,v), 

• 

and hence each Vk. Consequently (fl0(ak) c U, 1~ k~ n. But 

W c V~ c U, so ( a
0

, a 1 , ••• , an) c U. Hence all the vertices of 

(a
0

,a1 , ••• ,a1 , a1, ..• ,a~) are carried by w into vertices contained 
I 

• 



36 

in one element of p and hence into the vertices of a simplex of 

X( ~), and therefore w is a simplicial mapping. 

Now yn(~)ru y~(') on KxI. By the de~inition of w, 

w(yn(~)) = yn(~) and w(yA(~)) = (fS(yn{~)), so we have proved 

( 2). 
Thus far we have shown that 81nduces an isomorphism of H~{X) 

into Hc(X). To complete the proof we must show that this isomor-n V 

phism is onto, i.e. that for every Cech cycle zn there 1s an n-V-
cycle y such that 0y N z • But, given z and a covering L1 , let n n n n ,-
v =~~.Define yn( ~) to be tp(z

0
(v)). Then yn = {Yn( ~) is an 

n-V-cycle and 0y N z • We omit the proofs of these last two state-
n n 

ments since they are analogous to those above. 
Let X and Y be compact spaces. A continuous mapping r: X ➔ Y 

is a V_i~_t .. o~1s, map:e.1ng p_f qrde.r. n ir for each covering JJ or X and 
each point y €. Y there is a covering ~ = ~( f-1 ,y) of X, with ~ < p, 
such that any k-cycle, Of k ~ n, on X(~) n r- 1 (y) bounds on 

We can now formulate the Vietoris mapping theorem needed in 

the proof of the fixed-point theorem. 

THEOREM 1 (Begle 2 ). If f : X >Y is a Vietoris mapping of 
order n of X onto Y, then the homomorphism of Hv(X) into Hv(Y) in-n n 
duced by f 1s an isomorphism and 1s onto. 

The hypothesis of the theorem can be put in a more convenient 

form if the coefficient group is restricted to lie in either of 
;wo classes or groups, the class of fields and the class of elemen

;ary compact topological groups (Steenrod 1, p.672 ). The latter 
class consists of the character groups of discrete groups with 
finite bases, and hence contains all finite groups as well as the 
group of :real numbers mod 1. 

THEOREM 2 (Begle 2 ). If the coefficient group is an ele
mentary compact topological group or is a field, and f is a map

ping of" X onto Y such that for each point ye:. Y, and for each inte-

trivial, then the homomorphism of H (X) into H (Y) induced by f is n n 
an isomorphism and is onto. 

A n11rnber of lemmas wi 11 be needed 111 ~ 
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LEMMA 1 (Begle 2~). If f is a Vietoris mapping of order n 

of X onto Y, then for each covering p of X and each covering v of 

Y there is a refinement }f =- t( p.,v) of v such that if B is a sub

set of Y with diam B < 1f, then there is a point y £ Y such that 

1) St (y,v) :::> B; 

2) St (f-1 (y).,*~)=>f-1 (B)J 

where l; = ~( p ,y). 
• 

PROOF: For each Then Ay is 

closed, hence compact, so f Ay 1.s closed and y ff Ay • Since Y 

1.s normal, there is an open set BY such that y E. BY and BY n f Ay_, 

finite number of the sets B cover Y, and these constitute the y 
covering t . 

--

LEMMA 2 (Begle ~2 ). If f is a Vietoris mapping of order n of 
X onto Y, then for each covering~ of X and each covering v of Y 

there is a covering 'r) = 11 ( p , v) of Y, with 11 < v, and a chain map

ping t of the ( n+1 )-skeleton of Y( '1) into X( p) such that f'or any 

k-simplex Ok of Y(T)), 0 .s k ~ n+1, ft Ok is a barycentric subdivi

sion b 0-k of O'k with diam b CYk < v. 

let v
0 

= * 't n• For each element Qni of ~ n' diam Qni < t n-' so by 

lemma 1, there is an associated point Yni. Let ~ ni = ~( tJn+1 "Yni) 

points associated, by lemma 1, with the elements of tn_1 , and let 

~ 1 1 
= ~( u ,y 1 1 ). Let u 1 be a common refinement of the n - . , r · n n - , ,- n -

n- ' 
Proceeding in this fashion, we construct a sequence Pk or 

coverings of X and a sequence { vk} of coverings of Y, together 

with the associated sets yki ., such that 

1 ) Vk-1 = >;' k --1 ; k-1 = ';! k' k ' 

2 ) J-lk-1 < 

We assert that the covering v
0 

will serve for 11 ( p ., v) • To 
prove this, we must construct the chain mapping t. First, let o-0 



#"'+ - !(j ,.i w I'm · w ., '· • 

0 0 
Nol, euppt:1se that t ha I t).eer1 c.1e f ir,ed re) r a 11 e 1,mt) le xe s a- 1 r1 

m 
Y(Yf.,) with r1 ( k 1.r1 11.Jch a way that t~(crm) 1t1 a chair·i <)f X( u, ) and 

V • ,. ffl 

ft ff' 1a a barycer1t,r~1c tstlbd1.v1e1c,n t)cr t)f q., with diam · btr < Y .. m m rn m m, 
!At trk be a k-simplt~x or Y( .,0 )., Then t is def'i.r1ecJ on Ptrk" ar1tj 

tPcrk 11 e cha1r1 i)f' X(ftk_,1). Not, cor,eider t"' t:Fcrk . Since erk ia 1n 

Y ( Y' 
0 

) ., the re 115 an e 1 e men t V
O 

o f YO wh 1 ch c c; n ta 1. n a erk . I f erk _ 1 a p -

pea rs 1n Fd".k, ·then ft "k ~, 1 fl erk_ .,1 c onta 1 ns a vertex of O"' k.. .But 

dt.tm b•k .. 1i<~k .. 1 , 10 St(V0 , >'k_.1 ) conta1ris r tFO"kl . But 

,' * Let 

Denote now the cycle tFak by zk_ 19 and let K • zk_ 1 · .. We de·

flne a e1mp11c1al mapping i or K x I into X( l) by f.1rst sett1.ng 

X (a) • e for each vertex a in the base or K -. I. Next, let a• be a 
vertex in the top or K x I., and let a be the corresponding po.int in 

the blue, so tt:aat 
contains I tP,k I , 

I· ( -1( , *', e 1a a vertex or 1 tPa-k I .. Since St r Y k- 1 1 , , l ) 

* * 1 , there 11 a set W of J which meets r- { Yk_ 1 1 ) 

and 
:, 

now ( a O, ••• ., 8 i, a ' 1 ,. ,. .. , 8 k- 1 ) 1s 8 ti imp lex of JC X I, ..th en ( 8 0 , .... , a k-1 ) 

), and hence in 
or ? , a1nce ;t k- 1 < · • Thus "t maps K x I s1mp11cially 

Now let 
on 

,. . 2 . ' . 2 1 •. ·. . .. 
auch that Pak • ~ (zk:_ 1 ) 41 Le?t ek • sk - sk" and set tcrk • ak. Then 

Ft<r'k • tFa-k" so t 1a a chain mapping. 
Finally, observe that ea oh vertex of 

;\I 

I tFer, .. } or 11 a vertex in f .. 1 (;1 1 .. ,., "1J) and 
i\ K.-.,, latter on 

--
1~1,,. ~~nqle r,,,,1nt Y.~,,,-i. Hence f$~,,, 1s tt1e jo1.r1 of yk- 1 , 1 with 
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ftF~k = bFak and thus is a barycentric subdivision b~k of qk. Since 

tFo-k , diam 

Thus we can continue extending the definition oft until it is 

finally defined on all of the (n+1)-skeleton of Y(v
0
), and we have 

therefore completed the proof of the lemma. 

LEMMA 3 (Begle 2 ) • Let p. and~ be coverings• of_X., with 'fi <}L, 
t .... - ---

and let >' and Y be coverings of Y. Let ,i = 'Y1 (J-L, v) and 11 = Y) ( µ..., Y) .. 

Lett and t be the corresponding chain mappings. Then there is a 

common refinement )\ of ,i and 'Y} such that :ror any eye le z on Y{'X), 
- n 

tzn "' tz 0 on X( ~) . 

PROOF: We first recall the sequences fik and Vk of cover
ings which were constructed in the proof of lemma 2. Suppose now 

that we construct new sequences ..,u.k and 

JJ-~+1 to be any refinement of fJ-, and V ~+1 to be any refinement of 
Y. Then, at each step, choose rk to be a common ~ef1nement of lk 

It 
and of J'(t'-Lk+1 , *vk+1 ), and vk to be a common refinement of /k. 
and of Yk. Let yki} be the set of points of Y associated with 

fk, and let p..k be a common refinement of fA-k and of the coverings 

! k i ' where ~ ki = ! ( ,u k+1"' Y ki ) · 
Now we can repeat the argument of le1nma 2 to obtain a chain 

mapping t' of Y(v~) into X(fl~+1 ) such that for erk in Y{v~), t•crk 

is a chain of X(,u.k). We assert that for any cycle zn on Y(a>~), 

tzn"' t' zn on X( p.) . 
Before proving this assertion, we show that the lemma follows 

-from it. For we can choose JJ-1-c and fJ- k to be the same covering of: X 
- -

for each k, and similarly for vk and vk. Then v~ = v~, and we take 
this to be J\. Now, if zn 1s a cycle on Y(A), tznrv t'zn on X(µ) by 

our assertion, and similarly, tz "'t'z on x(µ..). Butt' and t' are n n 
the same chain mapping., and X(fJ-) is a subcomplex of X(µ.), so 

-
tznN tzn on X(p.) . 

Retu~ning now to the assertion above, let z be a cycle of n . 
Y(v 1 ) and let K = I z I . We shall define a o n 
cell complex K x I into X(,u). For- a cell of K x I of the form fJ x O, 

' 

chain mapping u of the 

1 et u ( er x O ) = t 1 ( er ) , and f · r a c e 11 of the 1' o rm u x 1 , let 

u{cr x 1) = t(~). Now consider a vertex <T0 of K. t(~0 ) = s 0 and 

=ft•(~)=~. There is a point, y 02 , such that St(y02 ,v0 ) contains 
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c 0 = t0"0 -t'o-0 , a cycle, and let L
0 

= c
0 

• We map the simplicial 

complex L0 XI into X(~) by a mapping w
0 

such that w
0
(a) ==a.for 

any ver-tex a in the base of L x. I, and w (a') is a point of 
f'-1 o,. o 

Lo. 
It is clear that w is a s imp lie ia 1 mappi~g of L x. I into X{?) • Let 

1 0 1 0 1 

of X µ 1 ri f (y 02 ) such that Fc 1 = w
0
(c~). Then c 1 = c 1 - c 1 is a 

chain of X( µ. 1 ) and Fc 1 = c
0

• Clearly f c 1 is the join of c;
0 

and 

Y02 . We define u(o-
0

xI) to be c 1 . Then Fu(cr
0

xI) = c
0 

= t0"
0
-t'cr

0 
= 

= u(0"'
0 

x 1) -u{c- x O) = F(cr x I). 
0 0 

Now suppose that u has been defined on every cell of K x. I of' 

the form O' x I , for a 11 m < k , 1 n such a way th a t u ( o- x I ) 1 s a cha 1 n m m 
of X(,.u.m+1 ) and diam flu(a-m,c.I)f<vm+ 1 . Let erk be a simplex of Y(v~). 

Then u is defined on F(o-k x. I), and ~ve wish to consider the set 

so 

f uF(crk x I) l is contained in 

r u ( F ( o-1< ) x I ) u r t erk u r t I c,- k . 

Let V~ be an element ot· v' \•1h!.ch contains O"k. Since diam f to-k < Vk' 

S t ( V ~ , v k ) c on t :1 ins f t er. • S 1 TTN.. la r 1 y , s 1 n c e v k < V tc , S t ( V ~ ., v k ) 

contains f t'~k . Also, for any simplex ~k- 1 in F~k' diam rfu(~k_ 1 xI) 

< Yk and rtu(o-k_ 1 x I) contains a vertex of erk' so St(V~,vk) also 

c on ta 1 n s f u { F ( u k) x I ) ( . But aJ k < • / k , wh e re / k = I ( fik + 1 , * v k + 1 ) , s o 

diam f u F(a-kx I) < dk· 

· uF(crk x I) , where ~ = '(JAk+1 ,Yk2 ) • 

Now 1 e t c k = uF ( O"' k x I ) , a n d 1 et Lk = ck • We ca n def 1 ne a s im

p 11 c ia l mapping wk of the simplicial complex Lk x I into X(l) in the 

same way that we defined w
0

, so that Fwk(Dck) =Wk{ck)-ck, and 

let 

= wk ( ck) . 

Then set u(a'k x I) = ck+1 = ck+1 -ck+1 . We have Fu(o-k ,c. I) == Fck+1=ck= 

= uF(O"k x I), so u commutes with F. Also, r u(c:,-k x I) is the join or 
~ 

f uF(<rk x I) and yk2 . Since St{yk2 , Vk+1 ) contains f uF(O"k x I), 

diam f u(O"'kX I)< vk+1 . By construction, u{«Yk,c I) is on x(p. k+1 ) • 

• 

• 
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• 

We can thererore continue ext.encl1ng the def'1n1tion of u un

til it 1.s defined on al.l tt1e cells of K x I. Now F(zn x I) • 

,. (znx 1) - (znx 0) in K x I, so uF(znx I) s Fu(zn x I) • 

• u(z x 1) - u(z x 0) • tz - t•z • Since u{z x I) is a chain of 
n n n n n 

X( p n+1 ) • X( ~), tzn N t 11 zn on X( p), whict1 completes the proof 

of the lemma. 

PROOF OF 

induced by f, 

Hv(X). 
n 

THEOREM 1: We show first 

each element of Hv(Y} is n 

that under the homomorphism 

the image of an element of 

For each covering ~ of X we choose a covering v or Y such 
and if p = r- 1 ( v) for some v, we 

choose this v .. Let zn ~ z(v)} be an n-V-cycle of Y .. For each 

covering ~ of X, we define yn(JJ) to be tzn(~), where 17 = -r,( p ,v}, 
v being the coveri np: associated with p as above, and t being the 

chain mapping of Y( f] ) into X( p) given by lemma 2 .. 

We assert that the collection ~rn( p) is an n-V-cycle. For, 

let p be a refinement of p, and let v be the covering of Y as

sociated with ~. Then yn(p) 2 tz
0

(1l) and yn(p) = tzn(T)), where 

~ • 11( p, ~). Let A b: the cor1mon refinenent of 'land ~ given by lem
ma 3. Then tz (A) ru tz (1') on X(t1) .. Since z is an n-V-cycle, n n r n 
:n(X) ruzn(r,) on Y(T)). Hence tzl1(A) rvtzn(ll) on X( p). Similarly, 

tzn( A) N tzn( fj) on X( p). Rut X ( p) is a subcomplex of X( p), so 

Yn(fi) • tzn(ij) rvtzn( l')) = y
0

( p) on X( t--4), which proves that 

Yn(p)} is an n-V-cycle. 

Then yn( p) = tzn('l), wl1ere 11 = 11(p,v) .. Also, fyn(p) = rtzn(11) = 

• bz
0
(~). a barycentric subdivision of zn{~) such that for each 

simplex on of z
0

(T))· , diam ban < v. The standard argument for 
showing that a cycle is romolor·c,us to its barycentric subdivision 

applies here to show that zn( T}) ru ftzn (11) on Y( v). But zn is a n-V

cy c le , so z n ( 71) nJ z n ( v) on Y { v ) • There fore z n ( v) ru ft z n ( 11) = 

• fy (u) on Y{V) .. n r 
Thus we have shown that r induces a homomorphism 

H~(Y) .. To complete the proof, it is only necessary to 

onto of H~(X) 
show that if 

fy nN O, then y n"' 0 . 
L,et then JJ. be a covering of X, and let V be the associated 

covering of 
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Now recall the sequence p. k of coverings of X constructed in the 

proo.f of lemma 2, and choose a common refinement l:J of ~ and fl 
O

• 

Since y is an n-V-cycle, y (b)ru y (~) on X(~). Hence n n n J J 
fy n ( b ) I\J fy n ( ~ ) on Y ( l'}) • But 1 f z n = fy n N O on Y, then z n ( 11 ) = 
= fyn(S )"' O on Y(71). Therefore, fyn(b)N O on Y(TJ) and t.fyn(6) NO on 

X(p), since tis a chain mapping. We wish now to show that Yn(b) ru 

tfy
0 
(o) on X(JJ). 

Let L = y (b) , and let L x I be considered as a cell complex. 
n 

Define a chain mapping u on the base and the top of L x I by 

u('t k x O) = 't k and u('t k x. 1) = tf-rk for any simplex -r; k of L. I.f we 
now examine the proof of lemma 3, we see that, a.fter substitution 

of tf~k for t~k and ~k for t'<rk, this proof applies without change 

to show that u can be extended to a chain mapping or all of L ~I 

into X(,u). Thus u(yn(b) x I) 1s a chain of X{µ) such tl1at Fu(yn(~)xI)= 
= u{y

0
{h) x 1)-(yn{6) x 0) = tfy

0
(c5)-y

0
{b), i.e. tfyn(O)N yn(S) on X(µ). 

Now., since tfyn(~)NO on X(µ.), we have y
0

{~)ru0 on X(µ). But y
0 

is an n-V-cycle so yn(h)N y
0

(µ) on X(JJ) .. Thus y
0

(µ)rv O on X(J-,A), so 

y
0

N 0. This completes the proof of theorem 1. 

PROOF OF THEOREM 2: Let /J be a covering of X and y a point of 

Y. 

34, or N(v1 ) into X(µ). We now consider v1 as a covering of the 

compact set r- 1 (y). Since the coef'ficient group is an elementary 

compact gr-oup or a field, ther-e is (Steenr-od 1, p.678 and Lefschetz 
5, p.216) a refinement v2 of v1 such that if zk is a cycle of N(v2 ) 

r- 1 (y) bounds on X(µ)n f- 1(y). 

Let 0 be the simplicial mapping of X( ) into N(v 2 ) defined on 
p.34. Then El yk is a cycle o[ N(v2 ) on f- (y). Therefore, ve yk is 

V 1 ~ K 
= H k ( f - ( y ) ) = 0 , th is Cech c y c le bounds and Tr 8 y k"' 0 on N ( V 1 ) • Th en 

that the Cech and Vietoris homology groups ar-e isomorphic, that 

· (µ,y) to be f, and 
the hypothesis of theorem 1 is satisfied. This proves theorem 2 .. 

• 



DEFINITIONS (Begle 3 ) • 
Let K be a finite simplicial complex. A realization of Kin 

X(0<.) is a chain mapping -rof K into X(oc.). I:f r, is another covering 

of X, we write norm ,:- < ~ if for each simplex a of K, diam t' a < ~, 

i.e .. i.C there is a member of ~ wl1ich contains the complex T cr • 
A partial rea11za,tion --r• of K is a realization of a subcomplex 

L of K which contains all the·vertices of K. We write norm T 1 < ~ 
if for each simplex oo~ K there is a member of p which contains 

all the complexes -c' Cf' for those races 0 1 of a which are in L. 

A compact Hausdorff space X 1a le if for each covering f. of X 

there is a refinement K = K(e) and for each _covering ~ there is a 

refinement o.= cx(p, £) such that if K is a finite simplicial complex 

and '"'C1 a partial realization of Kin X{a) with norm -c' < K., then 

there is a realization "t of K in X(p), with norm T < E and such that 

-c a = "t'1 O' whenever the latter is de :fined • . 

We now derive those properties of le spaces which we need in 

the statements and proo~s of the theorems. 

LEMM.A 4 (Begle 

such that if z is a 
ther1 Z NO• 

3 ). If Xis le, there is a covering 

V-cyc le and if z (v) OJ O on X ( v) :ror some 

• 

PROOF: Let f. be the covering consisting of' the single open set 

X, and let v = K( E.) • Now suppose z(v) rv O on X(v) for some 
0 

V < V • 
0 

Let v1 be any refinement of v and let v 2 =cx(v1 ,i). Since z is a 
V-cycle, z( v2 ) rv z(v) on X(v). Therefore, z( v2 ) ru O on X(v). Let c be 

a chain on x(v) such that F(c) = z( v2 ). · 

We define a partial realization ~• of c in X(v2 ) by setting 

1:'1 o = CF if a is in z ( v2 ) or is a vertex of c • Clearly, 

norm -c 1 < v < v = K ( t) • Therefore, there is a realizat:ton ""t of I c I 
0 

in X( v1 ), and TO-= -c• o- whenever the latter is de:f1ned. Thus, 

F -c ( c) = tF ( c) = t( z ( v2) ) = T' ( z ( v 2 ) ) = z ( v2) ., and so z ( V2) ru O on 

X(v1 ). B·,,t z(v2 ) N z( v 1 ) on X(v1 ), so z(v1 ) ru O on X(v1 ). Since v 1 1s 

an arbitrary refinement of v, this proves the lemma. 

LEMMA 5 (Begle 3 ). If Xis le, then 
isomorphic to the corresponding groups of a 

its homology groups are 

finite complex • 

• 



• 
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* PROOF: Let \Jo be the covering o:f lemma 4., and let v 1 = V O • 

For each element U € v 1 , let <.p(U) be a point in U .. Thenfia a sim

plicial mapping of N(v1 ) into X( v
0

) .. Let K = q, N( v1 ) • K is a 

* finite subcomplex of X(v
0

) .. Next., let v 2 = v1 • For each vertex . 

x € X{ v 2 ), choose a,1 element Ve V 2 such that x € V and then choose an 

element W € v1 such that St {V, v2 ) c W. Let 0(x) = W. Then 0 is a 

s1mpl1cial mapping of ~( v2 ) into N( v1 ). In the proof of the .fact 

that the Vietoris and Cech homology groups are isomorphic, we have 

shown that, if'~ is any cycle on X(v2 ), then <.p 0(c) ru ~ on X( v0 ) • 

(See p .35) 
Let z now be a V-cycle of X. Let w(z) = c.p 0 (z(v 2 )). Then w in

duces a homomorphism of H (X) into H {K), for all nl: O. We assert n n 
that this homomorphism is actually an isomorphism. For if w(z) = 
= Cf)0(z(v2 ))rv0 on K., then f6(z(v2 ))ruo on x(v

0
)., since KcX(v0 ). 

But z ( V 2) ru <.p 0( z ( V 2) ) 0 n X ( VO) and z ( V 2) (\) z ( VO ) 0 n X ( VO ) , sin Ce z 
is a V -eye le • Thus z ( v 

O
) ru O on X ( v 

O
) and so, by 1 emma 4, z ru O. Thus 

the homology groups of X are isomorphic to subgroups of the homolo

gy groups of K, and this proves the lemma. 

LEMMA 6 (Begle 3 ) • If X is le., then each covering fJ of' X 

has a normal refinement p', i .e_. a refinement such that, if c 1s 

a cycle on X( p 1 )., then there is a V-cycle z such that z(p) = c. 

PROOF: Let c be the covering of X consisting of the single 
open set X., and let t 1 = K(e-) and E,2 = K( * e. 1 ). It 1s sufficient to 

prove the len1t11a for the case p < t:.2 • We assert that for any such 

covering we can choose p' to be o.(~,*,1 ). 

Suppose then that c is a cycle on X( f-' '). For each covering 

p1 < fJ •, let pt 2 = ex.( p 1 , *e1 ), and define a partial realization 

T 1 of I c I in X( p 2 ) by setting T' CT = a for each vertex o: of: c • * 0 o,.. 0 
Since p' < p < E 2 = K( e:.1 ), norm --er< K ( e.1). Hence there 1s a 

realization i:- of I c I in X( p1) with norm ,:- < *e1 • In the special 

case where p1 = p'., we can and do choose -r to be the ident 1 ty 

chain mapping. 

Now for each refinement p 1 of p•, we have a cycle y( p 1 ) = 
"t'C on X( t-t1 ). This collection of cycles does not necessarily fortn 

a V-cyc le, but 1 t does have the property that 1 f v 1 and v 2 are re -

finements of ex.( f-' 1 , £), then y( v1 ) rv y( v 2) on X( p 1). To see that 

this 1s so, consider the .cartesian product K = jc Ix I. We define 

a partial realization p 1 of K in X(oc.( · 1 ., e:)) by defining p, on 
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the base of K to be the chain mapping ,:-from c to X(v1 ) and on the 

top of K to be the chain mapping from c to X(v2 ). Since the norm 

of each of these mappin0 s is less than ~c1 , norm p' < e1 = K(E). Con

sequently, there is a realization p of Kin X(~1 ). Denote by c 1 the 

copy of c in the base of Kand t,y c 2 the corresponding copy in the 

t Op Of K • Then C 1 nJ C 2 0 n I(, s O p ( C 1 ) IV p( C 2 ) 0 n X ( t-11 ) . But p ( C 1 ) = 
= y(v1 ) a11d p(c 2 )= y(v2 ), and so y(v1 )ru :i-'"(v2 ) on X( p- 1 ). 

Now co11sider the fomilJr of all coverine;s ~ such that ex.(~, E) < ~
This is a cofinal family, and so, in defining a V-cycle, it is suf

f 1 c i en t to :. ,: 1 v e i t s coordinates on t his fa mi 1 y . For ea ch s uc 11 ;. , de -

fine z(~) to be y(~(~,e)). If we can show that this collection of 

cycles forms a V-cycle, then we have proved our lemma, for z(f) = 
= y ( a.{ t-4, E,) ) == y ( p-' ) = C • 

Suppose that ~ 1 < ~2 • Let v 1 = o:(~1 ,t) and v 2 = a(~2 ,~), and 

let v3 be a common re fi ner.1e11t of v 1 and v2 . Then, by what was shown 

above, y(v3 ) ruy(v1 ) on X(~1 ) and y(v3 )ru y(v2 ) on X(v2 ). But 

X ( ~1) c X ( ~2), so z ( ~1) = y( v 1 ) n., y( v 2 ) = z ( ~2) on X ( <;2), so { z ( ~)} 

is a V-cycle, and the J.e~na is proved. 

REMARK (Begle 3 ). It is clear that an analogous formula ... 
holds for Cech cycles. The interest in this remark lies in the ~act 
that the proof of this lem1·,1a holds for any coefficient group. There

fore, in an le space, any -~Jverinr; has a normal refinement no mat

ter what the coefficient r·roup 1s. 

THEOREM 3 (Begle [3 
cyclic. Let ~(X) denote 

and let f : X > ~( X) be 

). Let X be a compact le space which is a

the family of closed, acyclic subsets o~ X, 

unoer semi-continuous. Then there exists a - . 
point XO€ X such that x e: .f( x ) • 

0 0 

Theorem 3 is derived frnm a nore general theorem, a generali

zation of Lefschetz' s fixed point theorem ( Lefschetz _5 ) whicl1 

also includes theorem EM2 (p.jC) of Eilenberg and Montgomery 1 • 

Consider a compact space X which is le (but not necessarily acyclic), 

and an upper semi-continuous n1apping f as above. Let 

Y = (x.,x')e: X xX x' e: f(x)J • Since f is upper semi-co11.tinuous, Y 

is a closed subset of X x X anr1 hence is compact. We define two map

pings g,h: Y·· ➔ X by g{x,x') = x and h(x,x') = x', for all 

( r) -1 x,x e: Y. Clearly, f = hg • 

For each x in X, g-1 (x) is homeomorphic to f(x), which is a

cyclic. Since the coefficient group is a field, theorem 2 applies 
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to show that g induces an isomorphism g *r : Hr(Y)~>Hr(X) onto, 
for r~ o. Therefore, g-1 is an isomorphism defined on Hr(X). Since 

*r 
h : Y ... ➔X is continuous, it induces a homomorphism 

~r r r *r *r r 
momorphism. By lemma 5, H (X) has a finite basis, and hence the 

*r *r j=O 
h g-1 • By lemma 5, H (X) = O for sufficiently larger, and so 
*r *r r 
A{ f) exists. We now state 

THEOREM 4 (Begle 3 ). Let X be a compact le space. Let b(X) 

denote the family of closed, acyclic subsets of X, and let 
f: X > ~(X) be upper semi-continuous. If A(f) I 0, then there 

exists a point x e: X such that x e: f(x ) • 
0 0 0 

It is easy to derive theorem 3 from theorem 4. For, if Xis 
acyclic, then Hr(X) = O for r > o., and H

0
(Y) has just one generator, 

so A( f) = 1 and theorem 2 applies. 

PROOF OF THEOREM 4 ,: In order to prove theorem 4, we need an 

explicit method for calculating A(f) in terms of the V-cycles of' 
X. We obtain this by first recalling hot'l the mappings g and h of' Y 

into X induce the homomorphisms g*r and h*r of Hr(Y) into Hr(X). 

Let z be an r-V-cycle of X. For each covering ~ of Y, choose 

v, choose this v • Let y( p) = tz( 11), where ll = 1]( p, v) is the re
finement of v given by lemma 2, and t is the corresponding chain 
mapping of X{YJ) into Y( p). Then, as was shown in the proof of theo
rem 2, y = { y(p) is an r-V-cycle of Y, which we now denote by 

the 

*r r r 1 It appears at a first glance that y = g; (z) depends 011 the 
order of gas a Vietoris n1apping, since the construction of ~(p,v) 
in the proof of lemma 2, depends on the order of g. However, the 
homology class of y is independent of this order, since the homo

morphism g*r: Hr(Y) ➔ Hr{X) determined by g is uniquely defined. 
Therefore, in the above construction, we may take g to be of any 
convenient order k ~ r. 

Next, given any r-V-cycle y of Y, for any covering v or Y let 
1 ' 

rt = h - ( V) , and let z ( V ) = h ( y ( p ) ) . Then z ~ { z ( v ) } 1 s an r -V -
cycle of X, which we denote by hr(y), and the transforma.tion 

• 
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y - > hr(y) :tnduces the ho1nomorphism h*r : Hr(Y) · > Hr{X). 

Thus the transformation z ➔ h g-1 (z), where z is an r-V-cycle 
r r 

of X, induces the homornorphism h g- 1 : H (X) >H (X). Let *r ~r r r 
z 1 ,z 2 , ••• ,zk be a homolosy basis for the r-V-cycles of X, i.e. a 

maximal set of r-V-cycles wl1ich are independent with respect to 110-

mology. Then, for each . -1 r 

r r l-c rr = L. (-1) trace (n .. ) = L L (-1} a11-
r ~ 0 J. J r ~ 0 i =1 

But now /\( f ) = /\( g , h ) 

Next we show that tr1e calculation of A( f) can be reduced to a 

similar calculation for a ci1ai11 1·11apping of a finite cornplex into it

self. 
* Let f be an arbitrary covering of X, and let ~ 1 = K(E) and 

~2 = K(t1 ), where the notation refers to the definition of an le 

space. Let v be a co1nr,1on re fine1:1ent of f 2 and of the covering v0 of 

lemma 4, and let K be tl:1e finite subcon1plex (.f N(*v) of X(v). 

We are going to define a cr1ain mapping v : K ➔ K. Before 
doing this, we note that if z is an r-V-cycle of X, then tl1e coor-

where r,1 = 17( J-l 1 , v1 ). Recall that 11 1 depends on the order of" the 
Vietoris mapping g. Choose an integer which is greater than the di

mension of K and which is sucl-1 that the homology groups of X for 

dimensions greater than this integer are all zero. Take this to be 

the order of' g in constructing 11 1 , and in the construction of 11 2 
below. 

*~ To define the chain mapping v, set V' = v, and choose a 

normal refinement v2 of V' ( len1ma 6} • Let 

17 2 = l')( r4 2 , v2 ). Since v 2 < v, JJ 2 < p1 • 'Eherefore, by lemma 3, tl1ere 

is a common refineri1ent A1 of ri 1 and 11 2 such that t 1 (x) n.1 t 2 (x) 01-i 

Y ( p 1 ) f' or any cy c 1 e x of' X ( A 1 ) , v1he re t 1 : X ( Y} 1 ) > Y ( ~ 1 ) and 

t 2 : X( 71 2 ) 1 Y( JJ- 2 ) are i.:l1e cl1ain mappings of lemma 3. Let 

A2 = o.(A1_,c). 
~ 

Now let T' be the identity ~apping of the null-skeleton of K, 
so that -c' is a parti a 1 realization of K in Y ( A3), wr1ere 

A 3 = a( A2 , £1 ) • S inc e v < e..2 ::.: K( e.1 ) , norm T' < I< ( t 1 ) . Hence t l1e re 1 s 

a realization -r: K = ➔ X( '-) of norr11 < t 1 , and such that for eacl1 ver

tex o-
0 

of K, we r1ave To- = -C' O' = er . 
0 0 0 
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chain mapping, and ht2 -r: K➔ X(v2 ) c X(v•) 1s a chain mapping. Let 

rr denote the transformation 'f0 : X( v•) > K. De:fine the chain map

ping v to be Trht 2 -r • 

Let /\(v) = L (-1)r trace v , where v r: Hr(K) >Hr(K) is 
r ~ 0 . *r * -1 

the homomorphism induced by v. We now assert that trace h*rg*r = 
trace v *r· for each r ~ O, and hence that /\(f') = /\( v). To prove this, 

let z1, ••• ,zk be a homology basis for the r-cycles of X. These 
cycles may be chosen such that, for each 1, zi(v) = ~0z1 (v•) o:f K. 
For., z 1 ( v•) AJ z 1 (v) on X(v), s~nce z 1 is a V-cycle. Also, 

t.p0(z1 (v')) ru z 1 (v•) on X(v). ··Hence~if the coordinate zi(v) of' z 1 
is replaced by ,p0(z1 ( v

1 ) ), the resulting V-cycle is homologous to 

the original one. 

Now we construct a homology basis for the r-cycles of K. Let 
t.p 0( z1 ( V')) = ci. Since the eye les z 1 , ••• , zk are independent on X., 

and since vis a refinement of tl1e covering v of lemma 4, the coor-o 
dinates c1 , ••• ,ck are independent on X(v) and hence on K. Thererore, 
a homology basis for K can be obtained by adding independent cycles 

ck+1 , ••• ,c1 to the set c 1 , ••• ,ck. 

Since vis f chain mapping, v(x 1 ) is an r 1cyc le on K ( 1 ~ 1 ~l}., 

2: b~ 1 , so we have to 
1=1 k j=1 J 

r 1 r show that L. a11 = L b11 • 
i=1 1=1 

is a cycle of X( v2 ) ( 1 .s 1 ~ l). By the choice of' v 2 , there is an 

r-V-cycle zi such that z1 ( V') = ht2 -r(x1 ). Since z 1 , ••• , zk forrl1S a 
k 

k =1 
N L cI . z ( V' ) on X v' ) • Therefore 

j =1 J . k 
1Tht 2t(x1 ) N ~ 

J=1 

Thus, v ( x 1 ) ( 1 ~ i ~ 1) 

of the homology basis 

on K. 

is linearly dependent on the first k elements 

for K. Therefore, the lastkl-k columns of' ma-

1=1 
To finish the proof of our assertion, it is sufficient to show 

that r r 
bij = aij for 1,j = 1, ••• ,k. To do this, consider any cycle 
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xi (1=1, ••• ,k), and let z! be the r-V-cycle defined above such 
1 1 

that z1(v') = ht 2~(x1 ). Let z~ be the r-V-cycle hrg; (z1 ). 

We wish to prove that z 1 N z 1. By lemma 4, it 1s sufricient to 

show that z1 (v) ,v z1(v) on X(v). We start by proving tr1at 

z 1 ( A2 ) N T x 1 on X ( A 1 ) • S inc e z i 1 s a V - cy c 1 e , z 1 ( A 2 ) ru z 1 ( v ) = x 1 
on X(v). Let c be a chain of X(v) such that F(c) = z 1 (A2 ) - x1 • 
Define a partial realization p• of jcl into X(A

2
) by letting 

p• ~Lon lx1 1 and the identity on z 1 (A2 )1 and on the vertices of 

lcl \ ( I z 1 (A2 )1 U I x 1 I). Since norm i; < f. 1 = *K(t:.), and since 

\J < t 1 , norm p' < K.( e.) • Also, A2 = ex( X1 , e,) • Therefore, there is a 

realizatior1 p: le I >iX(A1 ) with norm p < t. Now F p{c) = pF(c) = 
= p( z 1 ( A2 )) - "t' x 1 , since p = p' \al he never p I is defined. Thus 

z i ( A2 ) ru -r xi on X ( A1 ) • 

Since t 2 is a chain mappi11g, t 2 ( z 1 (i\2 )) N t 2 T xj •:>n Y( t,J- 2 ). 

By the choice of A1 , t 2 (z1 (A2 )) ,u t 1 (z1 (A2 )) on Y( rt 1 }, and since 

Y ( fJ 2 ) c Y ( p 1 ) ., we have t 2 -c ( x 1 ) ru t 1 ( z 1 ( )..2 ) ) on Y ( t,J 1 ) • Als o , since 

A2 < 17 1 , z 1 ( A2 ) ru z 1 ( "l 1 ) o r1 X ( 11 1 ) and s o t 1 ( z 1 ( A2 ) ) ru t 1 ( z 1 ( 11 1 } ) 

on Y( t-,-t 1 ) • Since h 1s a simplicia 1 mapping., ht2 T(x1 ) N ht 1 ( z 1 ( 17 1 )) 

on X(v). 
But ht 1 ( 2 i ( 111)) = 

z1(v) on X(v), 

Now since z 11 

1 

z. and 
J 

Consequently, 

But 

z~(v) and ht 2 -c(x1 ) = z1( v'). Since 

z1(v) ru z1(v) and hence z 1 N z1. 
K 
L ar z j, we have 

on X{ v•). 
J=1 

on K. 

( 1, j ==1, ••• , k) . 

This completes the proof of the assertion that /\(f) = A(v). 

Finally, since K is a finite complex and since the coefficient 

group is a field, there is anotl1er method for calculating A(v) and 

hence I\( f) .. For each :-sirnplex ar of K, let ar. be the coefficient 

Let /\1 (v) = L (-1 r trace d~ ·i. Then 
. -, r > 0 v 

!\ ( v ) = A• ( v) ( Le f s c he t z _5 , p • 19 3_, ) • -
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We are now ready to prove theorem 4. Suppose that x ♦ :r(x) for 

all x e X. Then there is a covering ~o o:f X such that St (x, e.
0

) n 
St (f'(x)., e

0
) = ¢ for all X£ X. We now specif'y the covering t; in

volved in the definition of K to be this covering e
0

• 

Let a be any simplex of IC. By construction, -r(o-} ia a chain 

of X( A2 ) such that diam T ( o) < E- 1 < t., • Choose an arbitrary sim

plex o-• of· X(A2 ) in -r(a) , and let x be a vertex of' a'. Then 

CYc St {x,e). By the construction of t 2, in the proof of lemma 2, 

C 

St (f(x),v2) and so 1Tht 2 (o') c: St (f(x},v)cSt (f(x),l). Since 

o c:: St (x, E)., o does not meet any simplex of 1T ht 2( O") .. But a• 
was an arbitrary simplex of T(o) , so o does not meet any sim
plex of' 1fht2"t"(O) = v( a). Tl1us, for every r and 1, aI1 = 0 and so 

.. \'(v) = o. But /\'(g) = ;\(g) = /\(f) /. 0 1 and so the assumption, 

that x f :f(x) for all x e. X., leads to a contradiction. 

In 1961 Fan 3 , using convexity arguments, obtained results 
which generalize the fixed point theorem 0£ Tychonoff [1], but 
they neither include Kakutan1 1 s theorem (Kakutani ~ ), nor are 
they included in the generalizations of Kakutani's theorem by . 
Bohnenblust and Karlin 1 , Fan [1 , Glicksberg 1 and Begle 3 ·• 
Fan's results do not invoke any known fixed point theorem, and 
they are all derived directly .from the theorem of Knaster - Kura
towski - Mazurkiewicz [1], which was used in their well-known 
proof of Brouwer•s theorem. The Knaster - Kuratowski - Mazurkie
wicz theorem is reformulated in the following generalized form: 

LEMMA 7 (Fan 3 ). Let X be a subset of a topological linear 
space Y. For each x e X, let a closed subset F(x) of Y be given 
such that the following conditions are satisfied: 

(1) The conve~ hull of any finite subset x 1,x2 , ••• ,xn} of X 
is contained in U F(x1 ). 

1=1 
(ii) F(x) is compact for at least one XE: X. 

Then n{F{x) Xe. X} ~ ¢. 

PROOF: Because of condition (11), it suffices to show that 
n 
(') F(xi) :/ ¢ for any f'ini te subset {x1 ,x2, ..• ,xn} of X. Given 

1=1 
x 1 ,x2 , ••• ,xn} c X, consider the closed {n-1)-s1mplex 

• 

• 
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S = (v1 ,v2 , ••• ,vn) in En with vertices v 1 = (1,0, •.• ,0), 

continu

ous mapping tp: S > Y by t.p( L.ociv1 ) = z:. oc.1x 1 for o.1 ~ O, 
1=1 1=1 

n 
L ex = 1. Consider the n closed subsets G1 = 

i=1 i 

-1 
((1 

{1=1,2, ••• ,n) of S. By (i), for any 

the (k-1)-simplex (v1 ,vi , ••• ,vi) 
1 2 k 

indices 1 i 11 < 1 2 <k ••• < ik!S n, 
is contained in U G11 • Ac

j=1 j 
theorem, · this cording to the Knaster - Kuratowski - Mazurkiewicz 

n n 
implies that n Gi I¢, and so n F(xi) ~ ¢. 

i=1 1=1 

Let Z be a topological ~roup and let ~(Z) be the family of 

all non-empty compact subsets of Z. B(Z) is topologized as fol
lows: For A E: e(z) and for each neighbourhood V o:f t_he identity e 

N 

of Z, let V(A) ={BE e(z) BcAV, AcBV • The ~amily of all sets 
• I\J 

of the form V(A), where V runs through the neighbourhoods of e, is 

taken as a basis for the neighbourhood system of A in ~(Z). 
Let X be a topological space, and Z a topological group. With 

e(z) topologized as above, a mapping f: X > 5(Z) is continuous 
if and only if, f'or any x

0 
£ X and any neighbourhood V of e e Z, 

there is a neighbourhood U of x
0 

in X such that f(x)c f(x
0

).V and 
• 

f(x ) c f(x) .V for all x € U. In the remainder of this chapter a 
0 . 

transformation g : X > ~{Z) will be called upper sem1-cont1nuo~s. 

if and only if, f'or any x
0 

£ X and for any neighbourhood V of e E: Z, 

there is a neighbourhood U of x
0 

in X such that g(x)cg(x
0

).V ~or 

all xc. U. (When Z is compact, this definition of upper semi-con-

tinuity coincides witl1 the one given on p.14.) · 

LEMMA 8 (Fan [3] ). Let X be a topological space and Z a to

pological group. Let f, g : X · · , ➔ e ( Z) be upper semi-continuous. If 

Fis a non-empty closed subset of Z, then 

E = { x E: X F. f( x) n g( x) I ¢} 

is closed in X. 

PROOF: Take x
0

€ X"E. Since f(x
0

) is compact and Fis closed, 

F.f(x) is closed. Since the compact set g(x) 1s disjoint from 
0 0 

the closed set F .f'(x
0
), there is a neighbourhood V of e € Z such 

that F.f(x
0

) .V ng(x
0

) .v = ¢. Choose a neighbourhood U of x
0 

in X 

such that f(x) c f(x ) .V and g(x) c g(x ) .v for all x e: U. Then for 
. 0 0 
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' 

x e: u we have F .f(x) n g(x) = ¢, 1.e. x €. X"E for x EU. Hence E is 

closed in X. 

LEMMA 9 Fan 3 ). Let X be a topological space and Z a to

pological group. Let f' : X -• ► > 6(Z) be continuous. If G 1s an open 

subset of Z, then 

• H= X£X f(x)nG=¢} 

is closed in X. 

PROOF: Take x t: X \H., and z te: f(x ) n G. Then V = G-1 z is a 
0 0 

neighbourhood of e in Z. Choose a neighbourhood U of x 0 in X such 

that f(x
0

) c f(x) .v for all x £ U. Then for each :x c U., z E. :f{x
0

) c 

f(x).V, so f(x) nzv-1 ,'~,i.e. f(x)nG ,'¢.Thus HOU=¢ and H 

is closed 1n X. 

THEOREM 5 (Fan [3]). Let X be a compact convex subset of a 
topological linear space Y. Let Z be a topological group and let 

6(Z) be the family of all non-empty compact subsets of Z, topolo

gized as above. Let f : X" ➔ e(z) be continuous and g : X > '5( Z) 

be upper semi-continuous, such that the following conditions are 

:ruJ.f°illed: 
(1) For each x • E:. X, there 1s an x 11 £ X such that 

f(x') n g(x") f ¢ . 
• 

{ 11) Given any neighbourhood of the 1dent1 ty e E. Zi there 15 a 

ne~ghbourhood W of e with the following property: For every point 

:x:0 £ X and for any finite subset {x1 ,x2 ,. •a,xn} of X, the relations 
W .£(x0 ) n g(x1 ) ,' ¢ ( 1=1., ••• ,n) imply V .r(x

0
) n g(x) ~ ¢, :ror any 

poi.nt x in the convex hull of { x 4 , ••• ,xn} • 
Then there exists a point X € X such that f(x) (1 g(x) I ¢0 

PROOF: Let U denote the family of a 11 neighbourhoods of e E: Z • 
For each V€ 'U, let 

<p(V} -
= {xE X v .f(x) n g(x) ~ ¢ 

By lemma 8, ~(V) is closed in X. If we can prove th&t 

<.p(V) r ¢ for ,very Ve V , then it will :roJ J,ow that 

for any finite number of members v1,v2 , •• o,Vn of U. The cdmpact

ness of X will then imply that n { <.p (V) VE. U.} I= 9$. Since every 
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point x ~ n <p(V) IV € U} s a tis :fies :f(~) n g( i) ~ ¢, it remains to 
show that <p(V) -I ¢ :for every Ve. U • 

Consider an arbitrary :f'ixed V €. U • For this v, choose a W €. U 
with the property stated in (11) of the theorem. For each x £.X., 
let 

F(x) = cp{V) u y~ X W.f(y) n g(x) = ¢}. 

s 1 n ce W . f ( y) n g ( x) = ¢ is equiv a 1 en t to r ( y) n w- 1 . g ( x ) = ¢ 

9. Hence F(x) is compact. We claim that L a 1 x 1 e: U F(x 1 ) for any 
1=1 1=1 n 

:finite subset { x 1 ,x2 , ••• ,xn of X and for any a 1 ~ 0 with L a 1 =1. 
n 1=1 

so, 

by our choice of W, for at least one index 1, we have 

there 1s an x•e. n {F{x) x€X}. By (1), we can choose X 11 €. X such 

that f(x 1 )ng(x 11
) I¢. Then W.f(x•) ng(x'1

) /.¢and x'«F(x'') imply 

X 1 £ ~(V). Hence f(V) / O and the theorem 1s proved. 

When g is a continuous mapping of X into Z, it may be consi-
• 

dered (in an obvious way) as an upper semi-continuous mapping 

g: X > e(z). In this case, condition (11) of theorem 5 may be re

stated as follows: Given any neighbourhood V of the identity e € Z., 

there is a neighbourhood W of e such that, for every x
0 

E: X, the 

THEOREM 6 (Fan [3]). Let X be a compact convex subset of a 

topological linear space Y. Let Z be a locally convex topological 

linear space and let X (Z) be the subfamily of 8(2) consisting of 

all non-empty compact convex subsets of Z. Let f' : X >- X ( Z) be 
-

continuous with respect to the relative topology of X (Z) induced 

by the topology or e {Z), and let g : X ► Z be continuous. Let f 

and g satisfy the following conditions: 

(1) f(x)ng X -/:¢for every xE:X. 

(11) For every closed convex subset C of Z, g-1 C is convex 

(or empty). 
• 

. Then there exists a point xe:X such that g(x) E f(x). 

PROOF: By the local convexity and regularity of Z, for any 

neighbourhood V or the null-element of Z, we can find a convex 
-neighbourhood W of the null-element of Z such that We V. Then, for 
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is convex. g- v + f(x
0

) contains the convex set_ 
.. 

Thus condition (ii) of theorem 5 is satisfied { see the remark pre

ceding theorem 6). 

COROLLARY .. If f : x .. ··➔ X is continuous and g : X > X is the 

identity mapping, theorem 6 reduces to the :fixed point theorem of 

Tychonoff 1 . 

We now replace the topological group in theorem 5 by a uni

form space Z, but we consider continuous mappings f ,g : X · .. > Z only. 

THEOREM 7 (Pan .... 3]). Let X be a compact convex subset of a 

topological linear space Y, and let Z be a uniform space. Let &(Z) 
denote the family of all non-empty compact subsets of Z. Let 
f .,g : X , •• Z be continuous mappings satisfying the following con

d1 t1ons: 
(1) f X cg X 

(11) For any eqtourage 
ouch that for any z £ r X , 

V of Z, there is an entourage W 
any finite subset x 1 ,x2 , ••• ,xn 

n 

of' Z 

o:r X 

and for any a1 ~ 0 (1=1.,2, ••• ,n) with Z: o 1 = 1, the relations 
1==1 n 

(z,g(x1 i}:c W (1=1.,2, ••• ,n) imply --{z.,g( L 0t
1

x1 )) E:. V. · 
1=1 

Then there exists a point X € X such that g(x) = f(x). 

PROOF: The proof is similar to that of theorem So Let Ude

note the family of all those entourages of Z which are open in 
Z x Z • For each V f. U , let 

cp(V) = X cX (f(x) .,g(x)) £ V} 

-where V denotes the closure of Z in Z x Z. tp(V) 

X : <.p(V) = r-1 _V(g(x)) , where V( g(x)) = ye x 
The theorem will be proved, if we can show that 
every Ve U. 

12 closed 1n 
{g(x) ,y) € V 

<p(V) I:¢ ror 

• 
• 

• 

For any fixed V f U , choose a W E: 'U with 

cr1bed in ooncfttion (11). For each x E. X, let 
the proPerty des-

F(x) = <p(V) U :Y-E X {f(y).,g(x))4 W}. 

Since W is open 1n Z x Z, {Y c X (f(y) .,g(x)) W} 1s closed 
1n X. Hence F(x) is compact. By lem,ma 7., there 1s a point 
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x' E n { F(x) Ix E: X} • Let x 11 .E: X be such that f(x') = g(x 11
). Then 

from x• e F(x'') it follows that x' e cp(V). 

Again, theorem 7 generalizes Tychonoff's fixed point theorem. 

In fact, when Y = Z is a locally convex topological linear space 

and g is the identity on X, condition (ii) of theorem 7 follows 
immediately from the local convexity. 

1.4. Mul,t,i.-va,~.~ed, mappings such that the i~~ge or each point 

is non-acyc,1:ic 

In this section, if Xis a topological space, then B(X) will 
denote the family of non-empty closed subsets of X. 

Hamilton [2] (1947) considered multi-valued mappings for 

which the image or a point was supposed connected, but not acyclic. 
Let en be an n-cell in En ( n ~ 2), and let f be a mapping such that 

for each x e en, f(x) 1s the boundary (n-1)-sphere of an n-cell in 
en. Then Hamilton [2] asserted that there exists a fixed point if 

either 
(1) f is continuous (i.e. f is upper semi-continuous and 

lower semi-continuous);or 
(ii) f is upper semi-continuous and there 1s an E >0 such that 

for each x E: en, the interior domain or f(x) contains an 

t-neighbourhood in En. 

However, Capel and Strother _2 (1957) and O'Neill [2] (1957)~ 
gave counter-examples to the £1rst of these assertions. Hamilton 

2 (1957) showed that the second assertion was valid, and this is 

confirr11ed by the following theorem of O'Neill 2 , of which it is 
a corollary: 

1 • ( O ' Ne 111 [ 2 J ) . Let X be an ANR 1 n En, and 1 et r : X , > l:( X) 

satisfy the following conditions: 
(1) If Xe X and U is a neighbourhood of f(x), there is a 

neighbourhood V of x such that if ye V then f(y)c U (i.e. 

f is upper semi-continuous), and each (n-1)-cycle on f(x) 
is homologous in U to a cycle on f(y) (augmented Cech ho

mology with a field or coefficients); 

( 1 i) If x € X and O .s r :S n- 2, then Hr ( f ( x) ) = 0 . 

Then X has a fixed point under f. 
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0 1 Neill 3 (1957) defined induced homology homomorphisms 

for multi-valued mappings and used it to define a Lefschetz num

ber for mappings under which the image of each point is discon

nected. Let H again denote Cech homology theory with coefficients 

in a field .. All spaces are assumed to be compact metric. Thus the 
~ 

group H(X) can be based on a group C(X) of projective chains (Lef-

schetz 5, pp .. 229., 231 .) .. Define the ~-~pport 9f _a ,coordin,,ate c 1 of 

c E: C(X) to be the union of the closures of the kernels of the sim

plexes appearing in c1 (Lefschetz ....,5., p .245__,). Then the intersec

tion of the supports of the coordinates of c is defined to be the 
s1:pEort c of c. Let A and B be chain groups with supports in 

' 

the compacta X and Y respectively, and let e. > O be g~ven .. Let l 

also denote the set-valued function defined by 

t ( x) = { x • E X p { x , x ' ) .s £ } , for a 11 x ~ X, where p denotes the me -
tric of X. A chain mapping <p: A > B is accurate with respect to 

a function f : X · ➔ ~(Y) provided that <p( a) c f I a I for each 

• 

a e: A. Further, tp is f.-accurate with respect to f provided <p is ac

curate with respect to the composite function E f c, • 

A ho•momorphism h : H ( X).,, ·ik- H( Y) is an 1 ndu_q,,~<;1. h_om9morp~-~~m of 
f : X ) ~(Y) provided that, given l > O, there is a chain mapping 

<p : C (X) ·, > C(Y) such that <p is f. -accurate with respect to f, and 

h = <p,,.,. where ~ is the homomorphism induced by c.p .. 
The set of all induced homomorphisms of an arbitrary function 

f : X .. > ~(Y} 1s a vector space under the usual operations. I:r hr 
and hg are induced homomorphisms of upper semi-continuous mappings 
f: _..,.. __., homomor-

phism of gf. If f : X > Y is a (single-valued) continuous mapping 

of a connected compactum into a compact polyhedron (for the lat

ter, see Lefschetz 5., pp.94, 308 ) , then the induced homology ho

momorphisms of f are exactly the scalar multiples or the Cech ho

mology homomorphism f* {O'Neill· 3 ). 

A homology homomorphism his non-trivial provided that the 

zero-dimensional component h
0 

: H
0

(X), ·· ► H
0

(Y) is not the zero ho
momorphism. 

We now :i.ave 
,, , 

' 

2 • { 0' Nei 11 [3]) . Let X be a compact polyhedron, £" : X> tS(X) 

upper semi-continuous and h : H(X) , ··>· H{X) the induced homology ho

momorphism off. Then the Lefschetz number /\(h) = L(-1)r trace 
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hr can be formed, and if /\(h) / O, then X has a fixed point under 

f. 
To be able to use this fact, it is necessary to produce an in

duced homology homomorphism off, which maps some r-cycle non-tri

vially ( r 2.- 0) .. 

3. ( 0 1 Neill [3]). An upper semi-continuous mapping f : X > <3 (Y) 

has a non-trivial induced homomorphism in either of the following 

cases: 
(1) X and Y are compact polyhedra such that for all x € X, f(x) 

• 

is either acyclic or else consists of exactly n acyclic 

components; 
. 

(11) Xis a compact one-dimensional polyhedron with first Betti-

numbers 1, and Y is a compact polyhedron. 

From this we-have theorems 4 and 5 below. 

4. (O'Neill 3]). Let X be a compact polyhedron and n a fixed 
positive integer. Let f: X > ~(X) be continuous such that, for 

all x £ X, f(x) is either acyclic or else consists of exactly n a
cyclic components. Then f has a non-trivial homomorphism h such that 
if /\(h) f O., then X has a fixed point under f. Further, if Xis a
cyclic, then there is a fixed point. 

Analogous, but weaker results were earlier obtained by Magenes 

2 (1950), Darbo 1~ (1950) and Dal Saglio 1 (1956). 

For n = 1 theorem 2 1s the polyhedral fo1·tn of the theorem o-r 
Ellenberg and Montgomery [1] (1946), except that the requirement 
that f be lower semi-continuous is then superfluous. However, if 

n>1, upper sen1i-continuity alone is insufficient. For example, con
sider the mapping or the interval -1,1 for which r(o) = {-1,1}, 
f(x) = {1} for x ~o, f(x) = {-1 for x,. o. Also., if n > 1 the space 
of induced homomorphisms need not be one-dimensional as in the case 

n = 1. 
. 

It does not appear that this result can be generalized by al-

tering the number o-r components f(x) 1s permitted to have. For, if 

Sis any finite set of positive integers - except certain·seta or 

the .foI11t'i1 2, n and necessarily, 1, n - there is a continuous map
ping :r : c2 > ~ ( c2 ), c 2 being the 2-cell, which has no fixed points 
and wh~ch is such that for each point x the number of points in r(x) 

-
occurs in S (O'Neill 3~ ). 
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5. (O'Neill _3 ). Let X be a compact one-dimensional polyhe
dron with first Betti-number R1 :Si 1. Every continuous mapping 

f: X > ~(X) has a non-trivial induced homomorphism h such that 

if A(h) ~ O, then X has a fixed point under f. 

Corollary (Plunkett 1 ). A dendrite has the f.p.p. ror con-
tinuous closed set-valued mappings. 

Ward '-7 (1958) obtained the following extension o.f Plunkett•s 
result which is not included in theorem 5: 

6. (Ward 7 ) • An arcwise connected, heridi tarily uni.coherent, 

hereditarily decomposable metric continuum has the f.p.p. for con

tinuous closed set-valued mappings. 

The restriction on the Betti-number in theorem 5 cannot be 

omitted. For let X be a compact one-d1mens1onal polyhedron with

out end points and such that R1 > 1. If f > O is sufficiently small, 

the function r : X-) e(x) defined by f(x) = {YE X, p(x,y) = £ 

will be continuous if pis a suitable metric, and any induced ho

momorphism off will be a scalar multiple of the identity homomor

phism of H(X). Thus a non-trivial induced homomorphism of such a 
function would have a non-zero Lefschetz number, contradicting 
theorem 2. 

The condition that the space be one-dimensional 1s also es

sential. Strother L1~ (1953) showed that no Tychonoff cube with 
more than one factor has the f.p.p. for continuous closed set

valued mappings. Thus it is necessary to place further conditions 

on functions defined on spaces of dimension~ 2. In addition to 

the restrictions stated in 0 1 Ne111 1 s theorems (O'Neill ~3 ), we 
have the follow1ng_poss1b111t1es: 

7. {Strother 1_ ). Let X be a retract of a Tychonoff cube 
T = IA. Let f : X - ) t;(X) be continuous such that, for every x € X, 

f(x) is the product or subsets of I. Then X has a fixed po~nt un
der f. 

8. (Strother 1- ). Let X be a retract of a Tychonoff cube 
T = 

f : X · > t3 (X) be continuous such that., for some fixed f3 £ A and 

for all x e: X., there is only one point in f(.x) which projects onto 
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In each case the proof proceeds by constructing a trace off, 

i.e. a continuous f'unction f' : X ► X such that f' (x) e: f(x) for 

all Xe X .. 

1.5. ~appings f : _ X ➔ Y such that X c Y and f [X] X 

So far we have been concerned with mappings of a space into 
• 

itself. We now consider a more general situation: If Xis a proper 

subset of a space Y, what conditions must be imposed to ensure the 

existence or f'ixed points under a mapping f : X > Y such that 

f X \X -/ ¢ ? 

As an example, we have the following extension of Brou

. ·wer•s fixed point 'theorem for then-cell: 

1. {Knaster, Ku.ratowski and Mazurkiewicz 1 (1929)). Let en 
be an n-cell in En, and f : en•> En continuous such that f maps 

the boundary of en into C 11 
.. Then en has a fixed point under f .. 

For two dimensions Sperner _1 (1934) proved the existence of 

fixed points under slightly weaker assumptions: 

2. {Sperner 1 (1934)) • Let c2 be a two-cell in E 2 and 

f : c 2 ➔ E 2 continuous. Then c2 has a fixed point under f 1:r the 
boundary of c2 contains a11 arc A such that ( 1) A contains all the 

accumulation points of f~C 2 \c 2 , and (11) f A~ c c2 . 

Fixed point theorems of the same spirit ( and for the two-di

mensional case) have been given by Scorza Dragoni 1,2 (1941, 

1946)_, Volpato 1,2 (1946., 1948), Dolcher [1] (1948), and Trevi

san 1 ( 1950) • 

The Knaster-Kuratowski-Mazurkiewicz theorem was extended to 

Banach spaces: 
3. (Rothe 3 (1938)). If Xis a Banach space and fa conti

nuous mapping of the closed unit ball C = x e X x ~ 1} into 
X such that r[c] is compact and the boundary of C is mapped into 

C, then C has a fixed poi n '\: 1.tnder f. 

For multi-valued mappines we have the following result: 
4. (Eilenberg and Monteomery [1] ( 1946)) • Let C n be an n-ce 11 

in En, and 'C:;{En) the family of non-empty compact subsets of En. 

Let f: en ➔ ~(En) be an upper semi-continuous mapping which maps 

the boundary of en into en. If there exists a non-trivial coeffi

cient group with respect to which each f(x) is acyclic (Vietoris 
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homology), then en has a fixed point under f. 

It is to be expected that theorems 3 and 4 also hold for lo
cally convex topological linear spaces (with the obvious changes 

in wording). 

It is natural to ask the following question: If en and Dn are 

n-cells such that en is Eroperl3 contained in Dn, 

t1nuous mapping of en onto Dn, does there exist a 

general 

and f." is a con
fixed point un

not true ( Hamil-der ~? For continuous mappings this is in 

ton 3 (1948)),but for interior mappings 
mappings) we have the ~ollowing results: 

{i.e. continuous, open 

5. (Hamilton 3 (1948)). If f is an interior mapping or a 

locally connected unicoherent plane continuum M onto a two-cell 
containing M, then M has a fixed point under f. 

Corollary. Let f be an interior mapping of a locally connect

ed plane continuum M, which does not separate the plane, onto a 
two-cell containing M. Then M has a fixed point under~-

6. (Hamilton _3~ (1948)). Let f be an interior mapping of a 
two-cell C into the plane, such that Cc f C • Then Chas a fixed 

point under r. 

1.6. Sp.a_ces ~1th. ,a fi!}i te 1:umb_~r of h.o,l~s 

Bourgin 3~ (1957), using his results on the index of a con
vexoid space (Bourgin 2_ {1955)), proved a number of theorems 

giving sufficient conditions for the existence of fixed points un
der continuous mappings of a space with a finite number of holes: 
His main results are: 

1. (Bourgin 3 ) • Let X be an * AR (1.e. a space which is ho-

meomorphic to a retract of a Tychonoff cube), and Y1 ,Y2 , ••• ,Y 
- - n 

(n > 1) open subsets of X such that Yi n Y j = ¢ (1 F j) and such 
* n that Yi (i=1.,2, •• • ,n) is a11 AR • Set G = U Yi. Let f : X"-.G > X 

1=1 
be a continuous mapping such that the boundary of Y1 is mapped in-
to Y 1 ( 1=1, 2, ••• , n). Then X \ G has a f'ixed point under f. 

This theorem 

(1919), Alexander 
generalizes previous 

1_ (1922) and Feigl 
results by Brouwer 

1 (1928). 
5 



2. (Bourgin 3 ). Let Ebe a reflexive Banach space and 

disjoint closures which are AR 1 s. Set G = 1l!1 Y1 • Let 

f : E"G > E be a continuous mapping which sends the boundary of 
- m Y1 into Y1 (1=1,2, ••• ,n), and is such that f' '--E'-.._G is contained 

in an open ball in E for some integer m ~ 1 .. Then E""-.G has a fixed 

point under f. 

Gohde 1 (1959) obtained the following partial extension or 
• 

theorem 2: 

3. {Gohde 1 ). Let X be a closed ball in an infinite-di-

mensional Banach space, and let Yi (1=1,2, ••• ,n) be mutHally dis
joint open balls which are contained in X .. Set G = X"" U Y1 • Let 

1=1 
f : G ➔ G be continuous such that f.__G is compact. Then G has a 
fixed point under f. 

For results on the existence of fixed point;:i when an annular 
ring 
hoff 

is mapped into itself, the reader is referred to G.D. Birk-

1,2_ (1913, 1931), Kerekjarto 1,2~ (1921, 1923) and Rey 
Pastor 1 (1945). (Also see p.19.) 

1.7. Common fixe~ P2!nts 

The following theorem is due to Markov 1 (1936) and Kakuta

ni L-1 ( 19 3 8) : 
1. (Markov 1 , Kakutani 1 ). Let K be a compact convex sub

set of a locally convex topological linear space, and let F be a 
commutative family of continuous affine transformations of K into 
itself. Then K has a common fixed point under F, i.e. there is an 
X CK such that f(x) = X for all f E: F. 

This theorem was f'irst proved by Markov _1 , who used the 
Tychonoff fixed point theorem (Tychonoff 1 ). Kakutani 1 then 

• 

sketched a direct proor, and he also outlined a proof of the fol-
lowing theorem: 

2. (Kakutani 1 ). Let K be a compact convex subset of a lo
cally convex topological linear space and let G be a group of equi
continuous affine transformations of K into itself. Then K has a 
common fixed point under F. 

• 

Despite the similarity in appearance, the theorems are proved 
along different lines. (For proofs of these theorems, see Dunford 

-and Schwartz 1, p.456-457 ) • 
....J 

• 
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The Markov-Kakutani theorem was extended to a larger class of 

families of functions by Day [ 2 ( 1961) .. He noted that if x E. K is a 
• 

fixed point under f, then it is also a fixed point under every ite-

rate off, i.e. xis fixed under the smallest semigroup of operators 

on K which includes f. Similarly, xis fixed under every function f 
of a family F of functions of K into itself, if and only if xis al
so fixed under every finite product o f 1 of functions from F. 

i:S n 
Thus, in the Markov-Kakutani theorem, F may be? replaced t,y ~ (F}., 

the smallest semigrour) of continuous affine ;naI)pings of K into it

self which contains F. Ir1 this case the commutativity of F is car

ried to the semigroup L(F), so the theorem above 1s equivalent to 
. 

that obtained by replacj.ng the word ''family'' by ''semigroup'1
• In or-

der to forrriulate Day• s extension of theorem 1, we briefly de fine a 
few concepts .. 

Let~ be a semigroup, and m( L) the Banach space of all bound

ed, real-valued mappings x on.L,, with xii= sup lx(g)l g E. L. .. 
Let e be that element of m(L) for which e(g) = 1 for every g a i:, . 

Let m(~) ~ be the ad,Joi.nt space of m( 2). A mean on L is an element 

JJf;m(Z:)* such that JJ )( = 1 = JJ (e). 

The right left re~,~la,r ~ep~e-~enta ti,on of~: over m( >::) is the 

homomorphism antihomomorphism defined on L. into the multiplica

tive semigroup of the algebra of bounded linear mappings of ~(L) 
into itself by: For each hE- L, fh [~h] is that linear mapping de
fined by: For each ff. m( L.) and each g ~ L 

A mean ,-,. on L 1s ca lle~ 

f, m(."-) and each h E. L 
right left invariant if for each 

µ (p h f ) = fJ ( f ) -

A mean is invariant if it is both right and left invariant. 2-
is called amenable if there exists an invariant mean on L.. If we 

express this in terms of adjoint mappings of the linear mappings fh 

)r A.h, a mean is a right, or le ft., or two-sided, 
I, 

:1nd only if p. 1s a fixed point of every f g, or 

respectively. 

invariant mean if 

* every '°)\g, or both, 

The extended theorem can now be fot•t11ulated as follows: 
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3 (Day 2 ). Let K be a compact convex subset of a locally 

convex topological linear space, and let L be a semigroup of con-
, 

tinuous affine mappings of K into itself. If Lis amenable, or 

even of it has a left invariant mean, then K has a common fixed 

point under L . 
Every Abelian semi~roup is amenable (Day ~1] (1942)), so this 

theorem is indeed an extension of the Markov-Kakutani theorem. The 
arguments used in the proof of theorem 3 admits the following ge

neralization: 
4. (Day 2_ ). Let A(K) be the semigroup of all affine con

tinuous mappings of K into itself, and let A(K) have the topology 

of pointwise convergence. Let S be any sem1group with a topology 

in which multiplication is continuous in each variable, and let 
C{S) be the space of bounded, continuous real-valued functions on 
S, with the least upper bound norm. If there is a left-invariant 

mean on C(S), then for each continuous homomorphism T: S--+-A(K), 

K has a common fixed point under "'t S • 

Since Haar measure defines a left invariant mean on any com

pact group (see e.g. Halmos 1 ), this theorem includes the case 
where Sis a discreet Abelian semigroup or a compact group • 

• 

A still unsolved problem concerning_the existence of common 

fixed points was referred to by Isbell 1 (1957): If Tis a tree 
and F is a commutative family of continuous functions f : T > T, 

does there exist a common fixed point under F? The answer is in 
the affirmative provided that the members of Fare homeomorphisms 
(Isbell l.c.), but otherwise little seems to be known, even when 
Tis a compact interval and F contains only two functions. However, 

it seems that the restriction that F does not contain many func

tions only adds to the difficulties, for 
5. (Myskis ~1 (1954). If Pis a finite polyhedron with non-· 

. vanishing Euler characteristic and F 1s a one-parameter semigroup 
of continuous mappings of Pinto itself, then P has a common fixed 

point under F. 
6. {Hedrl!n 1,2_ (1961, 1962). Let F be a commutative semi-.... 

group of continuous mappings of the closed unit interval I= 0,1 

into itself which contains the identity mapping. Suppose that, for 

some a£ I, the orbit F(a) = {f(a) fe F} is a connected set. Then 

I has a common fixed point under F. 
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-7. (Baayen 1 (1963)); also see Hedrlin 2, p.38J (1962)). 

Let F be a commutative group of contit1uous mappings o:f a topulo

gical apace X into itself, and let F contain the identity mapping. 

Let F be maximal as a group, 1.e. let F be contained in no other 
• 

transformation group G : X > X. Then X has a common fixed point 
~ 

under F if and only if Fis not a maximal commutative semi0 rou2. 

8. (Hedrl{n 3 (1962)). Let F be a commutative semigroup of 

continuous mappings of a topological apace X into itself, and let 
F contain the identity mapping. Then X has a common fixed point 

under F if ,and only if the orbit F(a) of some a€ X is a compact 
' 

space which has the f.p.p. for continuous mappings. 

1.8. The Lefschetz f1x~d po_~nt f_o_~r11ula ~_or. n_on-locall~ 
I 4 

connected continua 

We remark here that a quasi-complex (Le_fschetz 5, p.323) 

need not be locally connected, e.g. Dyer 2_ (1956) proved that 

the finite product of chainable continua (for the latter., see 
p.66) is an·acyclic quasi-complex and hence has the f.p.p. for 
continuo11s mappings. Also, :·/ilder 2 (1957) showed that under ad

di t1onal assumptions on tl1e mappings, the Lefschetz fixed point 

formula can be applied to another class of non-locally connected 
continua. 

A compact Hausdorff space is n-lc at x E: X if., given any neigh

bourhood U of x, there is a neighbourhood V of x contained in U 

such that every n-dimenaional aech-cycle on V bounds on U. Xis lcn 
at x 1 :r 1 t is r-1 c at x for a 11 r :s n, and 1 t 1 s 1 c co at x if it 1 s 

r-lc at x for all r. 
If X fails to be· 1c00 at x., then x is an lc 00 -singular E~int 

• 

of X. An lc00 -prime P,art of X is a component of the closure of the 
00 ' set of all le -singular points of X. 

Wilder 2 proved the following theorems: 
1. (Wilder 2 ). Let X be a compact Hausdorff space o~ fi

nite dimension all of whose Betti numbers are finite and whose lc00
-

prime parts are acyclic (~ech homology with coefficients in a field). 
If f :: X > X is continuous and maps each lc00 -prime part into an 
lc00

- prime part, and if the Lefschetz number /\(f) Io, then there 
CX) • 

is an le - prime part of X which is mapped onto itself. In parti-
oo . 

cular, if the le - prime parts of X have the f.p.p. for continu-
ous mappings, then X has a fixed point under f. 



2.{Wilder 2 ). Let X be as in theorem 1. Let f be an upper 

semi-continuous mapping such that the image o:f each point x E. X is 

the union P(x) o:f a collection of lc00 
- prime parts of X, such 

that this union is acyclic and such that if x and y are in the 

same lc00 
- prime part of X, then P(x) = P(y). Let A(:r) be de

fined as in Begle 2_ (also see p.46). Then, if A(f) / o, there 

is an x € X such that x e: f(x). 

Wilder 2 conjectured that these theorems also hold if the 

restriction that the mapping sends lc00 
- prime parts into 1c 00 -

prime parts is dropped, provided that the lc00 ·- prime parts are 

acyclic. 
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CHAPTER II 

The Scherrer fixed point theorem and 
related fixed point theorems 

2 .1. pefini tions and intro?,:uc~ory rema~k_s 

We first defl11e some of the concepts which wi 11 be .used in 

this chapter. 

A space will be called geaener_ate_ if it contains one point 
only; otherwise, a space will be said to be non-degenerate. 

Let X be a connected topological space. A point e of Xis an 
en9 poin~ of X if, for each neighbourhood U of e, there is a neigh
bourhood V of e such that Ve U and v\ V consists of a single point. 

A point c of X is a cut point of X if X \ c is disconnected. Two 

points x and y of X are c,o.nJuE_ate, ppint~ (written x rvy) if no point 

of X separates x and yin X. If pe Xis neither a cut point nor an 
end point of X, then the set M(p) = x e X x rvp is a simple link 

of X. A. subset of X is an ~-set of X provided that 1 t is ma:ximal 

with respect to the property of being a connected ,ubset without 

cut points.Xis ser.1i loca_+_ly con~,,e~ted (s.l.c.) if., for each 
point x e. X and each neighbourhood U of x., there is a neighbourhood 

V of x such that Ve U and X \ V has only a finite nun1ber of compo

nents. If X is s. 1. c. then the simple lir1l{s coincide with the, E
0 

-

sets. A cyclic element or Xis either an end point, a cut point or 

a simple link of the space. An end element of Xis a cyclic ele

ment E of X with the property that~ if U is a neighbourhood of E, 
then there is a neibhbourhood V of E such that Ve U and V V con

sists of a single point. 

A curve is a one-dimensional continuum. 

The reader is referred to Whyburn 1 for information on me

tric continua and cyclic element theory. 

A chain in a topological space is a finite number of open 

if 1-j ~ 1. The sets u1 are. called the links of the chain. A cha.1n 
n 

u 1 i=1 is said to connect two points x and y if X£U1 and ye.Un-> 
~ continuum is chainable if each of its open coverings has a re-

• 



finement which is a chain. A metric chainable continuum is called 

snake-J.1.l:::e. Lach snal<e-lil-ce continuutn is 1mbeddable in the plane 

{Bing 2 ). 

Bing 1 proved that any two non-de~e11erate hereditarily in-
• • decomposable snake-like continua are horneomorphic. Such a conti-

nuum is called a J2Seudo ar,c. 

A circular chain is a finite collection of at least three non

empty open sets u1 .,u2 , ••• ,Un s,.lch that u1 nun /¢,and otherwise 

u1 n Uj ;fr/ if and only if 1-j :S. 1. A collection G of sets 1s co
herent if, for each proper subcollection Hof G, an element of H 

has a non-empty intersection with ar1 element of G"H. A finite co

herent collection of open sets 1s a tree chain if no three of the 
sets have a poi llt in comrnon and 110 subcolle ct ion is a circular 

chain. A continuu1.1 is tree-lil{e if each of its open coverings has 

a refinement which is a tree chain. The tree-like continua include 

among others the trees and certain ir1decompos~ble continua. Each 
plane continuum which does not contain 

the plane., is tree-11 lee. ( See Bing 2 

a continuum which separates 

for information on tree-
like continua.) 

If X and Y are t,Jpological 

f: x~► Y is called monotone if 

• 

spaces, then a continuous mapping 
f- 1 (y) is a connected subset of X 

for every y E Y. f ls pset:i.do-n1onotone if, whenever A and B are 

closed connected subsets_resp~ctively of X and Y, and Be f-&.,.A ,then 
some component of A n C'- 1 3 is rnapped or1to B by f. In e;eneral the 
notion of a pseudo-mo11otone mapping is independent of the notion 

of a n1011otone mappin~, but 1r X 1.s a hereditarily unicoherer1t con

tinuum, and f: X ➔ Y 1s monotone, then it is pseudo-monotone 
(Ward 10 ). 

The following two unsolved problerjs play an interesting role 

in the set-up of this chapter: 

( 1) Does a plane contintlUr11 which does not separate the plane 
have the f.p.p.? 

(ii) Does a tree-like metric continuum have the f.p.p.? (Bing 

2 ) • 

Most of the results to be surveyed in this chapter can be in
terpreted as partial solutions of one or both of these problems or 

as eeneralizations of such partial solutions to either non-metric 

spaces er multi-valued mappings. This seems to be true even though 

tnany of the ''partial results'' were obtained before either problem 
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was explicitly formulated in the literature. The two problems are 
in fact different, but the second problem seems to be the more 
general one, as there exists manJr tree-1 ike metric continua which 

are not 1mbeddable in the plane. 
For the sal~e of clarity, the results for single-valued map

pings are erouped tocether in section 2, even when they were formu

lated directl~r f()1 1 ri1ult1-valuea 11:appings in the orir;inal publica

tions. The results for n1ul ti-valued 1:1appinc:s a1.,e surveyed in sec-

tion 3. 
If a 1nappinc of a continuum into itself leaves an end point 

fixed, the question arises whether there are other fixed points. 

Results answering questions of this nature are collected 1n section 

4. 

2. 2. s~ nel~_"'.",va lued maEP.i !1BS 

One of the main results to be stated in this section is 
1. A tree has the f.p.p. ror continuous mappings. 

The history of this theorem is as follows: In 1926 Scherrer 
1 proved ti1at a dendrite has tr1e i'. p. p. for continuous mappings. 

Nobeling 1 (1932) extended this result to continuous mappings,and 
another proof was given by Borsuk 3 (1932). It also follows (for 
a dendrite and continuous mappings) i'rom tr1e fol lowing result due 

to Hopf 2 , in the proof of whi~h he made use of the structures 
of the nerves of the coverings of the considered space: 

2. (Hopf 2 (1937)). If Cl is a covering of order 2 of a uni
coherent locally connected continuum X by closed sets, and 

f : X 31' X is continuous, then there exists a member u~ ex such that 

unr u_ f: ¢. 
Wallace 1 .... ( 1941) showed that tl1e techniques introduced by 

Hopf could also be applied to show that a tree has the f.p.p. for 
continuous mappings, and other proofs of this result were given by 

-
Ward •4 (1951) and Capel and Strother 3 (1958), by means of the 
order- theoretic characterization of trees due to Ward 2 ( 1954) • 
Ward 4_ (1957) also defined a 5eneralized ~r~e in terms of partial 

order for which l.e proved a fixed point theorem. Finally, theorem 1 

follows from Lefschetz' s fixed point formula (Lefschetz _5_, ( 1942)) • 

. -Ayres 1 ( 1930) gave several extensions of Scherrer 1 s theorern 

to arbitrar:y· Peano continua. His first theorem contains a general 
• 

• 



result on tl1e cyclic structure of Peano continua: 

3. ( Ayres 1 ( 1930)). If' X is a Peano cont 1n·.1um and 

h : X > X a hor11eo1~1orpl1i sm, tr1en tr1ere ex is ts a eye 11 c element C of 

X such that h C Cc. 
From this, 

4. (Ayres 

tl1ree generalizations of Scherrer's theorem follow: 

1 (1930)). If every cyclic Element of a 

Peano continuur'1 X i1as t r1e f. p p. -ror i1omeomorph1s ms, then X has the 

same property. 

5. (Ayres 

tinuum Xis an 

ments), then X 

6. ( Ayres 

1 (1930)). If every cyclic element of a Pesno con

n-dimensional simplex (n may vary for different ele

has the f. p. p. for l1or.1eomorphi sms. 

1 ( 1930)) .. Ii' a Pea no continuum lies in the plane 

and does not separate the pla11e, tl1en it has the f .p.p. for homeo
morpni.sns. 

Borsu1c 3_ (1932) showed that 11 r1omeornorphisms'' in theorems 4 
6 may be rer.Jlac.ed by ''continuot1s ri1appings'' to give stronger results 
in the case of ti1eorems 5 and 6. 

Kelley 1 (1939) extended theorem 3 to non-locally connected 

metric continua: 

7.{Kelley 1 (1939)). If Xis a metric continuum and 

h : X >X a homeomorphism, then tl1ere exists a subcontinuum Y of X 

such that h Y = Y and Y has ;10 cut points. 

From this follows 

8. (Kelley 1~ (1939). Ir Xis a metric continuum and 

h -: X ) X a horneo·~·iorphism, then there exists either a fixed point 

in X or else an E
0
-set Y such tr1at h Y c Y. 

9. (Kelley 1 (1939)). If every E0 -set in a metric continuum 

X has the f.p.p. for homeomorphisms, so also l1as X. 
If Xis semi locally connected, then the E

0
-sets and the cy

clic elements coincide, and thus theorems 8 and 9 imply theorems 3 
and 4 respectively. 

In 1940 Kelley 2 obtained related results for continuous 

n"lappings. 

10. (Kelley 2 {1940)). If f is a continuous mapping of a me

tric continuum X into itself, tl1en tl--iere exists a continuum Y which 
is a subset of a simple link of X such that f Y ~ Y. Ir Y 1s de

generate, then there 1s a fixed point: Hence, if f : X > X is co11-
tinuous, then there exists either a fixed point in X or else a sim

ple link C such that C n f C is a non-degenerate continuum. 
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11. (Kelley 2 ( 1940)) • If f is a continuous mappi r1g of a me -
tric continuun1 X 

of a simpl~ 111~{ 
' 

· 12 • ( ICe 11 e~r 2 

into itself, then 'there exists a compact subset A 

of X 3UCh tl1cJt f f·l = A. 

( 1940)). If f is 2 C1:>nt inUOllS r:1appi11g Of9 a me-. 
' 

tric continuuin X ii1to itse'1r whi1~h carries eact1 sir!lf)le link into a 
' ♦ 

sir11ple lintc ( e .e:. if the i11verse <.1f t10 poi11t separates a simple 

linlr 1 n X), the11 there exists c1 sir.:j_Jle 1 inl 1: C of X such that 
r c c c. 

For Pea:10 (:O"t1tj.nua, theorei1 12 ir·,1plies lheore111 3, a11d the 

fixed point theore1~ fur dendrites follows fro~~ theorem 10. Ward 
-3,10 (1956, 1962) showed that theorem 7 holds for arbitrary con-... . 

tinua and fo1., monotone and pseudo-;-;;011otone mappin0 s. 

Hamil ton 1 ( 1·938) extended Jcheorem 6 to a class of non-lo
cally connected 111etr1 ic c·o11tinua a11d proved theorer:1s re lated to theo
rems 3 - 5 for this class of continua • 

• 

13. ( Han1il to11 1 ( 1938)) • If X in a deco1:1posable non-degener-

ate metric continuu•.: and h : X ··> X a ho 1r1eor:orpl1isr11, then there 

exists a Erope_r_ sub...!ontinuu1·1 Y of X such th;:-1 1
~ Y ().f Y I¢. 

14. ( Ha1nil ton 1 ( 1938)). If :,: is a deco:11~<Jsnble and heredi
tarily uni coherent non-de~en.era te r.;etric con ti nuun1 and h : X--.. X a 

homeomorphism, then there exists a 2roP!.r. subcontlnuum Y of X such 
that h Y c Y. 

15. (Hamilton 1 (1938)). A hereditarily decomposable and here
ditarily unicoherent metric continuum has the f.p.p. for homeomor

phisms. 

Theoren1 15 adt'.11 ts D s application in the plane: 
16. (Ha1nilton 1 (1938)). A 1-.e!.,editarily decomposable plane 

continuum Tl'lhich docs not ser)a11 ate 1.:he plD11e a11d which contains no 
domain, has the f.p.p. for hon1eomorphisms. 

17. ( Ha1nil ton __ 1 ( 1938)). If D is a bounded, simply connected 

plane domain whose closure does not aeparate_the plane and whose 
boundary is hereditarily decomposable, then D has the f.p.p. ror 
homeomorphisms. 

It is unknown whether e pla11e ~o~tinuum which does not sepa_

rate the plane has the f.p.p., even for homeomorphisms. Choquet 1 
(1941} shov-red tl1at if C is a11~r plane continuum which does i1.ot sepa
rate the plane and h : C ) C is a hon1eomorphism which 1 s extensible 

to a homeomorphism of the plane onto itselI' and if his periodic 
with period /. 2, the 11. C has a fixed point u11der h. Cartwright and 
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Littlewood 1 (1951) proved that a plane acyclic continuum has 
the f.p.p. for homeomorphisms which are extensible to homeomor

phisms of the plane onto itself. 
Theorem 15 was extended to hereditarily decomposable and uni

coherent (non-metric) continua and monotone and pseudo-monotone 
mappings {Ward 10~ (1962)). In particular, a continuum each of 

whose non-degenerate subcontinua has a cut point, has a fixed point 

under a pseudo-tnonotone mapping. 

Borsuk 7 (1954) partially extended theorem 15 to continuous 

mappings: 
18. (Borsuk 7 (1954)). An arcwise connected, hered1tar1ly 

un1coherent metric curve has the f.p.p. for continuous mappings. 
In particular, an arcwise connected, hereditarily ac,yclic curve 

has the f.p.p. for continuous mappings. 
Borsuk l.c. proved that an arcwise connected, hereditarily 

unicoherent curve is heredi taril:sr decomposable. Thus, for homeo
morphisms his result is included in Hamilton's theorem (theorem 15 
above) • Theorem 18 11Jas extended to non-1ne tric curves by Young 2 

(1960). 
A corollary of theorem 18 is that a contractible curve has 

the f.p.p. for continuous mappings. Kinoshita 2 (1953), however, 
gave a counter-example to the widely held conjecture that every 
contractible set must have the f.p.p. for continuous mappings. The 
join o~ the space in his example with a point is a cone which lacks 

the f.p.p. 

We now consider generalizations of the fixed point theorem 
for trees to non-compact, non-locally connected spaces. Young 1 

(1946) defined a gene:rali,z,ed dendrite as a locally connected Haus
dorff space X such that if x,y£ X and L1 and L2 are two chains of 
connected subsets from x toy, then some member of L1 intersects 
some member of L2 outside x,y • If Xis compact, this is equi
valent with X being a tree. Young proved that every two distinct 
points x and y of a g~neralized dendrj_te X are the non-cut points 
of a unique compact, connected and locally connected set P such 
that each point of P" x,y separates x and yin X, and he called 
such a set Pa ''pseudo arc''. To avoid confusion with the term 
pseudo arc as defined on p.67, we shall use the term generalized 

arc instead of ''pseudo arc''. Young l.c. obtained the following 

generalizations of the fixed point theorem for trees: 

• 
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19. ( Youns (1946)). If X 1.s an arcwise connected general-
izea dendrite such that the union of any monotone increasing se
quence of generalized arcs of X 1s contained in a generalized arc, 

then X has the f.p.p. for continuous mappings. Conversely, if Xis 
an arcwise connected generalized dendrite which has the f.p.p. for 

continuous mappings, then the union of any monotone increasing se
quence of generalized a1"'cs of X is contained in a generalized arc. 

By the introduction of local connectivity by a change of topo

logy, Young used theorem 18 to deduce 

20. (Young 1 {1946)). If Xis an arcwise connected Hausdorff 
space such that the union of any monotone increasing sequence of 

arcs is contained in an arc, then X has the f.p.p. for continuous 
mappings. 

Ward 8_ (1959) obtained a result that includes the above

~nentioned theorems of Borsul<: and Younr; ( theore111s 18, 19 ( first 

part) and 20). A topol9gical ch~in is a continuum which has exactly 

two end points. A topoloe;ical spa~e 1s said to be _topological,ly 

chained if, for every tv,o distinct points x,y£ X, there is a topo
logical chain in X which ,:onta:tns both x and y. Let X be a topolo
gically chained space in 1.-1hich the topolo~ic~nl chains are unique, 
i.e. every two distinct points x,y£ X are the end points of 

precisely one topological chain, denoted by x,y • A ray,wi~h end 
potnt e of X 1.s the union of a maximal nest of chains which have e 

as common end point. If R 1s a ray 1·11 th end point e and x € X, let 

A(R.,x) = R, e,x U X • 

Consider the condition 
(Fe) If Risa ray with end point e, then KR has the f.p.p. 

for continuous 111appi ngs. 
We now st8te Ward's results. 

21. (Ward _8 (1959)). If X 1s an arcwise connected Hausdorff 
space in which the union of any nest of arcs is contained in an arc, 

then the arcs in X are unique and X sa.tisfies {Fx) for each x e X. 

22 •· (Ward 8- (,1959)). ~L\n arc1111ise connected, here di t·arily uni

coherent continuut·,1 satisfies (F1~) for ea ch x e X. 

23. (Ward 8 (1959)). Let X he a topolocically chained space 

with unique chains and suppose there exists a point ec X such that 

(Fe) 1s satisfied. Then X has the f.p.p. for continuous mappings. 
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From theorems 21 and 22 it follows that the class of continua 
for which theorems 18, 19 and 20 hold, 1s contained in the class 

for which theorem 23 holds. 

Hamilton 4 (1951) introduced a new technique by making ex
plicit use of the fact that a chainable continuum has arbitrarily 
fine open coverincs, each of whose (finite collection of)elements 
are totally ordered, to present an elegant proof of· 

24. (Hamilton 4 (1951)). A chainable continuum has the f.p.p. 

for continuous mappings. 
Actually Hamilton proved the theorem for snake-like continua 

only., but a slight modification of his arguments yields a proof of 

theorem 24. 
Dyer 2 (1956) obtained the following extension of Hamilton's 

result: 
25. (Dyer 2 (1956)). The topological product of an arbitrary 

family of chainable continua has the f.p.p. for continuous mappings. 
Theorem 24 was generalized in another direction ·also. A snak,e-

• 

like continuum is, by definition, the inverse limit of a system of 
arcs, and it is not hard to prove that if a space is the inverse 
limit of a system of arcs, then it is a chainable continuum, as was 
0bserved by Rosen 1 (1959). However, it is unknown whether a 
chainable continuum is the inverse limit of a system o~ area. Rosen 
established the following partial extension o~ theorem 24: 

26. (Rosen 1~ (1959)). Let X and Y be the inverse limits of 
systems of arcs over directed sets A and A' respectively (defini-

• 

tions as in Eilenberg and Steenrod 1 ) , and let cp : A >A I be an 

isomorphism, 1 .e. <p is one -to-one-, o s r 1 n A implies c.p ( ex) ~ <.p( ~) 
in A' and cp._A is cofinal in A'. Let f,g: X >Y be continuous 
mappings of which g is onto. Then X has a coincidence point under 

rand g, 1.e. there exists a point x 0 € X such that f(x0 ) = g(x0 ). 

Theorem 26 was in turn partially extended (and properly ex
tended in the special case where Y = X and g : X· >Xis the iden

tity mapping}: 
27. {Mioduszewski and Rochowsk1 1 

be an inverse system of compact polyhedra Xa ~~A over a directed 
set A, where the projections 1f °'!3 : X ~ )' XOt (ex~ f3) are continuous 
and onto, and such that, for every continuous mapping f of Xp on-
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• 

Then the inverse limit of the system Xa .,TTap ,A has the :f.p.p. 
continuous mappincs. 

Both theorem 26 and theorem 27 imply the fixed point theorem 
for snaice-like continua. Theorem 27 also has the following interest
ing corollary: 

28. ( Miodus zwes1c1 and Rochot>1Jsl•::i 1 _ ( 1962)) • Let Xo., lf a.p , A 
be an inverse system of compact polyhedra such that Xa c Xp for 

is the identity mapping on X0t, and let each Xo. (a.E: A) have the 

f.p.p. for continuous mappings. Then the inverse limit of 

Xa, lTo:p'A has the f.p.p. for con1-111uous mappings. 
Mioduszweski and Rochowski 1 stated the following problem 

which includes the question whether a tree-like continuum has the 
f.p.p.: If all the X~ in the inverse system 
f .p .p. for continuous n1appings, and the 1T

0
P 

verse limit of the system have the f.p.p.? 

XO(, Tr 0<[3 , A have the 

are onto, does the in-

2.3. Multi-valued mappings 
1111 r a , , 

Wallace showed that the techniques introduced b~r lfopf 2 ( see 
theorem 2 of section 2) could be applied to extend the fixed point 

-
theorem for trees to a certain class of multi-valued mappings. 

1. (Wallace 1 (1941)). A tree has the f.p.p. for upper semi
continuous continuum-valued mappings. 

Capel and Strother 3 (1958) used order-theoretic 
give another proof of theorem 1. Theorem 1 also follows 
extension o~ the Lefschetz fixed point theorem (Beele 
see section 3 of Chapter I). 

methods to 

f'rom Begle's 

1 (1950); 

Attention has already been drawn to the fact that, to ensure 
the existence of' fixed points under arbitrary closed set-valued 
mappings, it is necessary to impose upper semi-continuity and 
lower semi-continuity on the mappings (O'Neill 3 (1957); see 
section 4 of Chapter I). Furthermore, the spaces which have the 

• 

f.p.p. for continuous closed set-valued mappings constitute a fair
ly small subclass of those whi-ch have the f .p.p. for {single-vaJued) 
continuous mappings. For example: 

2. {Plunkett 1_ (1956)). (a) A dendrite has the ~~PaP• for 
continuous closed set-valued mappings • 

• 
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t·1r1uo,.1.a clt)tted set-v&l\1ed rr1flppi.r1f;e, tt1en 1 .. t ts a (.1en<:ir1t:e .. 

T'heorern 2( a) was extenc1ed t··, r·1nr1.-rr1et:r"1 ,~ cont ir1 .1~ ~ 
". .· ,. ; . ,,' ·. ~ 7 , . ' . ' ' ' ,. , .. ~ . ,, . . * " ' . ·. ,., I" . . . 1 ) . . . '. " . . .. . -

sin·ce a1, a:r"'cw·taP ,,:;(: .. ~nnecte,1,. rie.t"edlt:ar:tly unicc,her-::nt CtJntinuum 

cc1r·1taina no ind,1:cornpoaable cont1.nuum (e.g .. Bor!!lulr 7,p.17 ), such 

space has the f.p .. p .. for continuous closed set-valued n1app1ngs. 

The arc,,11.ee <'..;onnected metric continua which have the r .p.,p. 

to1:~ upper serrii-,~c:>nt11··1t1ous continuun1-v,11ued mappings are character
ized by he1•ed1~ary un1coherence: 

'"' ·•' 

ii. {lrard 9 (1961)) .. Ar1 e1~c~,1ae connected metric continuum 
• 

has the !' .. p.p .. fc.>r 11.1ppe1' seml-co11tinu,'.'iuS .;ont1nuum-valued ma;,p1ngs 
•!• 

if and only if it is heredltarily un1coherent. 

Thus, f(:;r Pea.no continua the class of spaces which have the 

f .. p .. p. for cont:f.nuoua c loset1 set-valued mappinge co1nc ides w1 th 
the class of" spi~ ces posseaain13 the r .. p .. p .. for upper semi-cont inu-

01m cont1nuum-,,a lued mapp1 ngs. 

We now turn our attention to sn~ke-like continua. Ward ~6 
( 1958) sho1r1ed that Hamilton's argunlent in the case of single-

v e 1 ue d ma pp1 t1gs ( Ha.milt on · 4 ( 1951)) can a 1 so be a pp 11 e d to con

t 1 nuous set-valued mappings. In fact 1t can be extended to chain
able continua, as was observed by Rosen 1 (1959). 

5- { Wa.,,•d · 6 { 1958), Rosen 1 ( 1959)). A cha1nable continuum 
has the f.p .. p. for continuous closed set-valued mappings. 

Rosen l.c. established results which 1n the metric case iire 
genera11zat1one of theorem 5 both with respect to the class or map
P'lt\E,B and the ~lass ~)f spaces. 

6. {Rosen 1 ( 1959)) .. Let X a11d Y be the inver~se 11rn1 t of 

systems of arcs over directed sets t\ a:1d A' resp,ect1vely (defini

tions as in Eilenberg and Steenr•c)d 1 ) • Let c.p: A ► A I be an iso

r:raorphism., 1 .e.. <p 1 s c.,ne -to-one, a ~ p in A implies <p (a.) s cp ( p) in 

A' and q:, A is co final 1n A' .. Let iY(Y) denote the family of non
empty closed subsets of Y., and let f 11 g : X · mi> :f{ Y) be upper semi

continuous mappings such that g is onto and the graphs off and g 

are connected subsets of Xx Y. Ther1 X has a coincidence poir1t ur,deI" 
._ _______________ _ 
1) See p,. 72 for the dert n1 t ion .. 
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f and g, i.e. there exists a point x 0 ~ X such that f(x 0 )ng(x0 ) ~ ¢. 
Corollary. Let X be a snake-like continuum and f : X ➔ cf(X) an 

upper semi-continuous mapping such that the graph off is connected. 

Then X has a fixed ooint under f . • 

7. (Rosen [1] (1959)). Let X and Y be as in~theorem 6. Let ~(Y) 

denote the family of non-empty subcontinun of Y, and let f,g: 
X, > t(Y) be upper semi-continuous mappings of which g is onto. Then 

X has a coincidence point under f and g. 

Corollary. A snake-like continuum has the f.p.p. for upper semi-

continuous continuum-valued mappings. 
8. (Rosen [1] (1959)). Let X and Y be us in theoren1 6. Let 

f: X ~ ./(Y) be continuous, and CT: X--• l(Y) upper semi-continuous, 

onto and such that the Graph oft is connected. Then X h2s n coin-

cidence point 

Theorem 8 
under f nnd t• 

~ 

imnl i es theore~1 
• 

?.4. Fixed end :)oints 

5 in the case of snake-like continua. 

There are a fe,~ isolated results in the Jiternture of fixed 

point theory which state sufficient conditions for the c::i~tence o~ 

more than one fixed point when the existence of ~t least one is 

known. 
1. (Schv1eigert [1] (1941~), \•/t:.llacc ,; (1945), \·lard 1,3 

• 

(1954, 1956)). Let X be a continuum, and Eon end clement containing 

no cut points of X. Let f be a monotone mapping of X onto itself 

such that r[E] = E. Then X \ E contains a non-c:1pty subcontinuur~ with

out cut points. 
Corollary. If Xis a tree and E = e , c bcin~ an end point of 

X, then there exists a fixed point off distinct fron1 e. 

2. (Young 1 (1946)). Let X be a generalized dendrite 1 ) such 
that the union of any monotone increasing sequence of generalized 
arcs 

of X onto itself, and ea point of X which is fixed underhand 

which is an end point of every generalized nrc containins it. Then 

there exists a point x I e which is fixed under f. 
0 

In particular, the conclusion of the theorem holds if "general-

ized dendrite'' is replaced by 1'arcv1i se connected Hnusdorf'f soace '1 .. 
and '' generalized arc'' by ''a.re''. 
-----~~~~!~~-~nalogous to the Markov-Kakutani theorem (see section 

1) See p.71 for the definitions. 
• 
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7 of Chapter I) was obtained by Wallace ,] (19•9) and Weng .1] 

(1952) .. We.llace l.c .. considered a. continuum X: and i·i, grc)t'"zt) Z whicr1 
-"'~·--· iii 

is required to be a 
logical group) .. L~t 

which sat1sf:1.es: 

t opo 1061 cfi 1 s p£1ce ( but r1ot nee €3' ti liar 1. 1 :y i; t {.)po

a continuous function .r : z x :x" ,. X t,e ~iven 
-~«~"" 

(1) f(e,x) • x., for lill x 4 X, 11',Jhere e is t;t1e unit.~ el.ement of Z; 

( 11 ) f ( z, f ( z' ~ x) ) • f ( z z ' ,, x) ~ for ~ 11. x -. X anij a 11 z,, z t 11. z $ 

For each z 1. Z, Sf::t z(x) ~ .. f(z,x)., for all .x G.X:o Then Z can be 

considered ( "somewhat incorrectly") as a i::rot.1p of homeomorphi.:;ms 
acting on X. 

A subset A of Xis c~llcd Z-invnrt~nt provided that z A • A 
ror n 11 z 6 Z. \/('. l l i'~ce pro\,rcd 

3. (Wallace 3 (1949)). 
(a) If Z is Abelian, then there is a non-empty Z-invariant sub

continuum of X lihich hes no cut poir1t~:. Morec),.,',:1r, thcr"e exists a 

non-empty Z-invaricnt cyclic clernent in X. 

(b) If Z is Abelian and no proper ~ubcont1nuum of Xis Z-1n
variant~ then X has no cut points. 

(c) If Z is connected nnd metric, then every eRd point and 
every non-degenerate cyclic clement of Xis Z-invariant. 

Wallace l.c. rn~sed the fnllo,,intl qucction: If Xis e Peano 
continuum and G is a compnct trr.nsfori:tat1on group of X such that an 
end point of Xis 0-invariant, do there exist other G-invariont 
points of X? Wi .. ng · 1 ( 195~) sol \l'ed the oroblera !~or spaces much more 

general than Peano continua by proving the following theorem: 

4. (Wang [ 1] ( 195?)). Let G be a trr nsforr.1,1t ion group of an 

:::
0 rcwise connected Hausdor:ff space X, iind let e be n G-invariant end 

point or X. Then there is no other G-invnriant point of X if and 
only if:, for each neighbourhood U of e, 

coincides with X .. If G is also compact,.. 

riant point of X distinct from e. 

s;[u]s'-o• 
then there exists a G-inva-
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CHAPTER III 

Miscellany 

3 .1. _Pa~tiall:t ordere~ ... ~ets,, .. ~nd . spaces 

3.1.1. Ordered sets 

A relation~ on a set Pis a guasi-order on P if it 1s re
flexive and transitive. If it 1s also anti-symmetric on P, 1.e& if 

... 
x:5:y and y~x can never occur simultaneously., then~ is a parti.~±, 

order on P. If for every x,y E: P we have either x ~ y or y ~ x, then ··---
.s is a total (also, linear) order on P. We write x <. y if' x ~ y and 
x I- y. A mapp:tng f : p-,. P is isotone provided f(x) .:S f(y) for all 

x,y~P such that x~y. 
The fixed point theorems of Abian and Brown 1_ (1961)(hence

forth referred to as AB ._1) for partially ordered sets include 

most of the previously lcnown resul.ts as well as the more or less 

simultaneously published results c>f Pelczar ._1 (1g61). Their 

proofs are based entirely on the definitions of partially and well

ordered sets, and except in the case of theorem 4 and corollary 4 
below, make no use of any form of the axiom of choice. 

' 

Let P be a set, partially ordered by ~ • Let f : P· ~ P be a 

mapping. For each a£ P, an a-chain Cr is a subset of P satisfy1.ng 

the following conditions (Jill [1]): 
' 

(1) Cr is well ordered, with a as its first and r as its last 
element; 

( 2) if z £ Cr and z f. r, then f ( z ) £ Cr, z < f ( z ) , and the re 

~xists no y E: Cr for which z < y < f(z); 

(3) if Tis a non-empty subset of Cr, then sup T exists and 

is an element of Cr. 

Let W{a) = r £ P 3 a11 a-chain Cr having r as its last elemet1t • 

From (2) it follows that W(a) = a except when a< f(a). The 

set W(a) has the following properties (AB 1 ): 

(1) If r £ W(a) and Cr is an a-chain with last element r, then 

CrcW(a). 

(11) If rE. W(a) and r < f(r), then f(r) £ W(a). 

• 



(iii) If r, s e W( a) and c· it:. r 
then either s € C

1
,, or r < s. 

• • .,11.lS ·~ (iv) If r· e W(a), there i:3 1t~2 .1·· ·r1ain er with 1,:~ ., f•le-

ment r, namely x e: W (a) x ~ r7 
' 

I> • 
' 

Thus, for 13iven P, f an,:1 • • :.· . . J .. ~jquely determir•ZfJ b";,' r. l , ('' 
• 

• 

We now s t a t e t he in a 11, r 1"· :· 1 l t ., ~· ·· : ·;-i r 1 J . 
. ., 

1. (AB ·ij). Let P be A 1.,artial :-:;-· t" 4ered set, f a r71;.:"';;JJ..)1.r·1g of 

P into 1 ts elf, and a an arbi ~,1·a1"'y t:· :...':· "::: .. 1 i .lf P. Then 

(4) W(a) is well 0rderE~,j \•i5.t-'1 1 a:~ r··. 1 3t~ element. 

More0ver, 

(5) W(a) is an 

(6) C f(c). 

{- · l f-> r:1 e n t , a n d 

• • 
2. {AB 1 ; a 1 so sf.: e I> := : ~ z a 1·· , i ) • Le t P be a par t 1 a J. l y 

.• I 

ordered set in which 

( 7) if W is a non-empty ,.il: l. 1_ 

exists. 

'llt-. c- E· ►· ' .. 1 .. ..., : of P, then sup W 

Let f : P ➔ P he an isot:Jt1e r:-1£r·)pinr~ s· 'l~l. i: '·1at 

( 8) there exists an e le·,1er:t~~ a £ P ~ .•. 1cr1 tr1at a ~ f( a) • 

Then there exists at 'f•as~: '.11·,r .. e1e··ient c E: P such that 

c = f ( c) • In fa ct , c :.:. s l tr·, ,! ( c1 ) ~ : 1 s 1.1 ''. h an e 1 em en t . 
-

Corolla~y 10 {AB 

also see G. Rirkhoff 

1 • 
r~, K r1 a s i. , : 1 • • 
' -• 

"1 , ~) .. I 4 ) .. 
ping of a comple~e latt~ce 1 nto 1 

X € p • 
0 

Corollar~r 2. (AB 1 

partially ordered set in whi(·~l. 
' 

(9) every non-emp~y v1ell 01..,der,ed 

above has a sup • 

,_ 

~·,et 

{1928), 
f • p ·- )a p • • 

1 

Tarski 1 (1955); 
be an isotone map

= f ( x ) for !Jome 
0 

) • Let P be a 

Le t f : P • > P be 1 sot o r1 e a n, 1 1 e t t 1- • e r· t i?· -:--: ~ ~1 t two e 1 em e 11 t s a , l; E. P 
such that 

(10) a~ f(a) s f(b) :s; b. 

Then there exists c E P such that t'( c) = c and a .s c s b. I:1 

fact, c = sup W( a) is s1..1cl~ 2-i~-1 element. 

Co1"ollary 3. ( AB 1 , G. Dirkhoff 1, p .54, example 4 ) • If f 

is an isotone mapp1ng of a conditir)nally complete lattice into it

self and if there exist two eJ.emer1ts a, be P such that 

a ~ f( a)~ f(b) s b, then f ( c) = c for some c E. P with a :!: c s b. 



80 

3. ( AB [ 1 , o .. B1rkhoff [1, p .44, example 4 ) • Let P be a par

t11 lly or~ered set 1n which 
(11) sup of ever:f non-empty well ordered subset W of P exists. 

Let r : P , .. ,,-► P be a rr•a pp 1. ng aucr1 t l1a t 

( 12) x $ f(x), for all x f: P. 

Tr1er1 tt1ere ex 1a ts at leaa t c)ne element c e: P such that c•t" ( c). 

In ract, .ror each s c P, c • s1.1p W{a) is such an element. 

4. ( AB • 1 J ) .. Let P t;e a f)Drt 1.a 1.1.~r ordered set 1 n wh 1 ch 

( 13) eacr1 r1on-er,,pty well orderflld s ubeet W c P which is bounded 

above hae a sup .. 
Let g : P · > P be a map pi n :: s u c r"'.. t:, 11 ,; t 

(1-) lf E:(x) <~(y), then x<:1 fr,1r e\J11 ery two elements x,yttP, and 
( 15) for x, y, s e P, 1 r r: ( x) ~ s s ~: ( y) , then g ... 1 ( s) ,' ~. 

Let r : p.,. ¾li,P be isotone., end let tl:ere exist a,b e: P, with a <b., 

satisfying 
g (a) ~ r (a) and r( b) ~ e ( b) • 

Then there ex 1sts at least one element c c P such that a :si". c ~ b 

and f(c) • g(c) .. 

Corollary 4. (AB · 1 } • If in theorern 4 instead of ( 14) we 

assume that g is 1sctonef' then the conclusion or theorem 4 remains 

\ 1 &lid provided P is 11nearl:,· ordered. 
The results of Pelczar 1 • actually are slightly weaker than 

those of AB · 1 · , e.g. instead or (7) it 1s assumed that the sup 

of every non-empty subset 0f P exists. 

The following generalized form of corollary 1 above was 
proved by Tarski 1 (1955): 

5. (Tars~1 1 ). Let L be a 
tat1ve family of isotonP n8pp1n: s 
set of all common fixed :->oint s of 

Q • { :x E: L t f( x) = x for all ft: F 
lattice. 

complete lattice and Fa commu
of L into 1 tself. Let C'~ be the 

L under F, 1 • e • 

• Then Q is a non-empty complete 

Davis 1 . ( 1955) sho1r1ed that the property of having the f' .p .p. 

for isotone r.1appin.gs is also sufficient for a latti.ce to be com

plete .. Thus 

6. (Davis •· 1 · ) • A lattice is co,mplete if and only if 1 t has 

th,e :f'.p.p. for cont1n,1ous rr1appings. 
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Wolk 1~ (1957) obtained an analogous characterization for a 
' 

class of partially ordered sets which includes the latticee. Let P 
be a partially ordered set with a greatest and a least elen1ent. A 

subset S of P is up-;-di.r_ected down-directed __ if each pair of ele
ments of S has an upper bound a lower bound~ in S. P 1s Dedekind 
co.~plete,, if each up-directed subset of P has a sup in P and each 
down-directed has an inf in P. 

For Ac: P, let 

A*= { X E: p asx :for all a~A , and 

A+= X€P x~a for all a£A • 

Pis uniform if A* is a down-directed set for every up-direct-
+ ed subset A, ar1d if B 1s an up-directed set for every down-direct-

ed subset B. An isotone mapping f : P ► P 1s directable if 

x E. P I x ~ f(x)} is an up-di1~e cted subset of P. 
It is easy to verify that a complete lattice is a Dedekind 

complete, uniform, partially ordered set with a least and a great

est element, and that every isotone mapping of a lattice into it
self is directable. Thus the following theorems of Wolk 1 include 
the theorems of Tarsl<i _1 (for the special case when Fin theorem 
5 above consists of a single mapping) and Davis 1 : 

7. {Wolk 1 ). If Pis a partially ordered set such that each 

up-directed subset of P has a sup in P, then P has the f.p.p. for 

directable functions. 

8. {Wolk ~1 ) • If Pis a uniform partially ordered set which 
has the f.p.p. for d1rectable functions, then Pis Dedekind com

plete. 
Hence we have 
9. (Wolk ) • A uniforn1 partially ordered set is Dedekind 

complete if and only if it has the f.p.p. for directable functions. 

Theorem 7 1s a direct consequence of theorem 2 (Abian and 

Brown 1 ) • 
• 

Ward 5_ (1957) obtained a necessary and sufficient condition 
for a class of partially ordered sets, which includes the lattices, 
to be compact (in the interval topology) in terms of the f.p.p. for 

isotone mappinGs. A partially ordered set Pis a semi-lattice if 

each pair of elements of P has an inf in P. A semi-lattice is com
plete if each non-empty subset of P has an inf in P. ~vard's results 
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are 
10 .. ( Ward 5 ) .. Let P be a semi-lattiee and f : P ➔ P 1so

tone. Ir P 1s compact in the interval topology, then the set Q of 

fixed points of P under f is non-empty. If Pis a complete semi
lattice, and Q f ¢, then Q is a complete semi-lattice. 

11. (Ward· 5 ). A semi-lattice Pis compact in the interval 

topology if and only tf P has the f.p.p. for isotone functions. 

3.1.2 .. Ordere,¢1 spaces , 

Let X be a topological space endowed with a quasi order :s; • 

The gu,asi 9rd~r is lower u~ er] semi-continuous if, whenever a '4 b 

b a in X, there is a neiehbourhood U of a such that if x E. U, 
then x { b b x _, .. The guasi_ order is semi-continuous if 1 t 1s 

both upper and lower semi-continuous. It 1s continuous if, when
ever a~b in X, there are neighbourhoods U and V of a and b res
pectively, such that if x € U and yE V then x y. A quasi ordered 

tp2olo_g~-~al .~Pa.c.~ (Q.OT~). 1s a topological space together with a 
semi-continuous quasi order. If the quasi order is a partial or
der, then the space 1s a pa;rt __ ially ordered topological space 

' 

( POTS l. 
For x e X, 1 et L{ x) = a E X a !S x } , r-1 ( x) = a € X x < a } , 

E{x) = L(x) n M{x). 
Clearly, the statement that X 1s a QOTS is equivalent to the 

assertion that L(x) and M(x) are closed sets, for each x E: X. 

A chain of a quasi-ordered set Xis a subset of X which is 
totally ordered by the quasi order. A maximal chain 1s a chain 
which is properly contained in no other chain. 

For information on ordered topological spaces, see Ward 1 
and the papers quoted there. 

In 1945 Wallace 2· proved the following fixed point theorem., 
which he applied to obtain an extension of the Schweigert theorem 
(Schweigert 1 ): 

1. (Wallace ·2 ). Let X be a compact Hausdorff QOTS, satis
fyine;: 

(1) there exists a unique element e £ X such that e =" x fer all 
X £ X; 

(11) each set L(x) is totally ordered; 



(111) for every two elements x and y distinct from e, there 

exists an element z £ X such that z ~ x and z ~ y. 

If f is a homeomorphism of X onto itself such that both f and 
-1 ~ f is isotone, then there exists an element x , e in X such that 

0 
both x

0 
:s: f (x

0
) and f (x

0
) s x

0
• 

Ifs 1s a partial order on X, then x is a fixed point dis
o 

tinct from e. 

Ward 1 (1954) continued along these lines and used the re
sults to obtain fixed point theorems for continuous ~appings of 

hereditarily unicoherent con~inua {Ward 1,4,7,9,10 ), already 

rt:ferred to ir1 Chapter II. ie now state vlard's results: 

2. ( vlard ,._1 ) • Let X he z liausdorff QOTS with compact maxi-
mal chains and let f : X )', X be continuous and 1s otone. A necessa -· 

ry and sufficient conditj_on that there exist a non-empty compact 

set Kc E(x ) for some x c X, is that there exist x £ X such that x 
0 0 

and f(x) are. comparable, 1.e. such that either x ~ f{x) or f(x) ~ x. 

Corollary 1. If Xis p8rtia11~, ordered, then a necessary and 
sufficient condition that f has a fixed poi.nt is that there exist 
x £ X such that x and f ( x) ore cor.1parable. 

I.f X is a partia 11:r r::::->dered set 1.11 th an eler11en t e E. X such 

that e :!S x f'or all x €. X, 2nd !'I. is a s,1bset or X, ,..,e say that A is 

bounde_d away frotn e provided the"Yle 1s ye. X , E{ e) such that Ac M(y). 

3. {Ward 1 ). Let X be a Hausdorff QOTS with compact maximal 
chains and suppose there exist e c X sur.h th2t e :s; x for all x E:X. 

Let f : X · > X be a contir11.101..ls and isotone ,1Appir1t:.: which also satis
fies: 

(1) there exists XE: X \.E(e) such that x c1nd f(x) are compar
able; 

(ii) ir x satisfies (1), then either the sequence fn(x) 

bot111ded away rrom e, or there exists ye: X such that 
X€ E{f(y)) and f(:r)~ ;;r. 

Ther1 there is an 

Kc E(x
0

) such that f 

x e: X \E(e) 
0 

lC = K. 

and a non-empty compact set 

co 
n=1 is 

Corollary 2. If Xis partially ordered, then there is a fixed 

point under f distinct from e • 
• 

Corollary,3. Let X and f be as in theorem 2, and suppose X sa-
tisfies the equivalent conditions 

• 
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(1) there exists u e X such that L(u) = X, 

• 

( 11 ) for x , y £ x, the re exists z €. X such that x ~ z a .nd y ~ z • 
Then there is a non-empty compact set Kc E(x:0 ), for some x 0 E. X, 

such that f K] = K. 
Corollary 4. Let X and f be as in corollary J, and let X be 

partially ordered. Then X has a fixed point under f . 
• 

Corollary 5. Let X be a compact Hausdorff QOTS satisfying (1) 

and (11) of corollary 3, as well as 
{111) there exists e ~ X such that e .s x for all x £X, and E(e)/X. 

Let f: X ► X be continuous, isotone and onto. Then there is a 
non-empty compact set Kc.E(x

0
), for some x

0
£ X'-.E(e), such that 

f[K] = K. 
Corollary 6. Let X and f be as in corollary 5. If X is partial

ly ordered, then there exists a fixed point distinct from e . 
• 

In conclt1ding this section we remark that the ''long line'' has 
the f.p.p. for continuous mappings, ~s follows r~o~ a more general 

result by Young [1] (1946). 
• 

3. 2. ~e. E,roduct ?,f spaces 
If X and Y are topological spaces, each of which has the f.p.p. 

for continuous mappings, noes their topological product also have 

this property? (Strother (1] (1J53)). In general, this is not true 
{Connell [1] (1959), Klee L5] (1960); also see section 5 of this 
chapter). However, Cohen [1] (1956) showed that the answer is in the 
affirmative if X and Y are totally ordered sets which are compact in 
the interval topology. Since a compact, totally ordered space has 

the f.p.p. for continuous mappings if and only if it is connected, 
Cohen's result may be stated as follows: 

1. ( Cohen [ 1] ) . If X and Y a re c ompnc t connected totally or
dered spaces, then their topological product has the f.p.p. for con
tinuous mappings. 

Since a compact connected and totally ordered Hausdorft' space 
is a chainable continuum (see p.66 for the latter), the above result 
is a special case of the following simultaneously publ1.shed result 
of Dyer [2J ( 1956): 

2.. (Dyer · 2 ) . The topologica·1 product of an a rbit ra ry family 

of chainable continua has the f.p.p. for continuous mappings. 
To prove theorem 2, Dyer first showed that the product of a 

finite family of chainable continua has the f.p.p. for continuous 

mappings. Theorem 2 then follows from this result and the following 

• 
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simple but useful ract: 

3. (Dyer 2__,) .. Let c:/1 be a family of compact Hausdorff' spaces .. 

Then the topoloc;ical product of the eleme11.ts of cir has the f .p.p. 

for continuous mappings if and only if the topological product of 

each finite subf'amily of& has the f.p.p. for continuous mappings. 

Theorem 1 is related to a result of Ginsburg 1 (1954), who 

proved that if X and Y are totally ordered sets, each of which has 

the f.p.p. for similarity transformations (i.e. one-to-one trans

formations onto), then also both the direct s11m and the Cartesian 

product XxY {ordered lexicographically) have the f.p.p. for simi

larity transformations. 

3 .3. ?Ypersp_aces 

Let X be a continuu~, and jP(X) ~{X) the space consisting 

of the non-emptJr closed nc)n-empty closed and connected subsets 

of X, with the fin1 te topoloi:Y .. 

1. ( Kelley 3 ( 1942)). Fo1"" any metric contj_r1uum X., t; {X) 1s 

an AR if ( and only if) X is loc2 lly ~on11ec ted. ~Te!1ce, if X is a 

locally connected n1etric continuu,11, ti1en ~(X) has the f .p.p • .for 

continuous mappings. 

2. (Capel and 3trother 1 (1956), Harnr.:()t1d Smith 1 (1961)). 
If X is an ANR *., the11 l,r)th ..f(X) ar1d ~(X) hcive the f .p .. p. for con

tinuous mappinLs. 

3. (Seeal _1 ( 1062)). If X is a sna1-:e-lil<"e continuum, then 

~(X} is an acyclic C'!llc si-complex in the sensP nf Lefs chetz 

5, p.323 and hence-hes the f.p.p. for co?1tin~nus mappings. 

PROBLEM (Segal 1 ) • For ttrhat class n~ continua is tS(X) a 

quasi-complex (Lefschet:7, 5 ) or D serii-c,,M.plex (Bro't'1der 5 ) ? 

3 .4. 1'T.on:-cont1n,uou~ _ynappin~s 

Nash 1 ( 1956) def-J_ned a. coi·1pectiv:J. ty mappin,5 of a space X 

into a space Y BS a ma11pinr3 f : X .,;i,. :,~ S1lch that, if A 1s a con

nected subset of X, then f A is a connected subset of Xx Y; equi

valently, r: x-~Y 1s a connectivity Map~ing if and only if the 

ind.uced rnappi ng f~: X.,. X x Y, defined by r*( x) = (x, f( x)) for all 

x E: X, transforms connected subsets o:f X onto connected subsets of 

Xx Y. Obviously, a continuous mapping f : x~:,. Y is a connectivity 

mapping. On the other hand, there are connectivity mappings of the 

• 
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n-cell into itself, for each n~ 2, which are not continuous (Hamil

ton . 5 {1957}). Nash 1 inquired whether the n-cell has the f'.p.p. 

for connectivity mappings. !Iamilton 1.c. answered this question af

firtr1atively 1 ), by introducinr; the concep•:; of a peripherally con

tinuous mapping. A mapping f : X ➔ Y is said to be Ee,riprierally 

continuous if, for each x e: X and for each neighbourhood V of x and 

each neighbourhood U of f(x), ·there exists a neighbourhood \v o"f x 

which is contained in V and such t:l1at f maps the boundary of Win-

to U. Hamilton 5 showed: 
1. (Hamilton 5 ). A connectivity ma-ping of then-cell into 

2 
1 ta elf, n ~ 2, is peripherally continuous. 

2. (Hamilton 5 ). Then-cell., n~2, has the f.p.p. for peri-

pherally continuous mappings. 
It is easy to see that the one-cell has the f.p.p. for con-

nectivity tnappincs. Ilence we have: 

3. (Hamilton 5 ). The n-~ell has the f .. p.p. for connectivi-

ty mappings. 
It is not lcnown whether a per·i1Jhe1"ally continuous mapping of 

the n-cell into itself, r1 ~ 2, is necessarily a connect 1v1 ty mapping. 

The following is an example of a peripherally continuous mapping of 
• 

the one-cell I = n, 1 into itself whict'l. is not a connectivity map-

ping and which has no fixed poin1~: for x rat1011al, let f(x) = j , 
and for x irrational, let f( x} = . • (Tfar.111 ton 5 ) • 

cell 

Hamilton l.c. also ~ave 
n C into itself, for any 

ar1 exa111ple of a mapping g of the n

n ~ 1, sucl1 t11at 
(1) 

{ 11) 

( 111) 

(1v) 

{v) 

g carries connected 

of c0
; 

subset:s or· en onto connected subsets 

g* sends connected and locally connected 

to connected subsets of C nx en; 

g is not a connectivity mapping; 

g is not peripherally continuous; 

en has no fixed point under ~-

subsets of en on-

Stallings ·. 1 ·. ( 1959) observed an error in Hamilton I s proo:r of 

theorem 1. He rer1edied this defect and i11troduced other types o.f 

non-continuous transformations for 't'llhich he proved fixed point theo

rems. We now state these definitions and theorems. 

1}., 2) As 
contains 
is true 

• • 

was noted by Stallings 1 IIamil ton• s proof of theorem 1 
an error. 1Iowever, Stallings 1. c. showed that the theorem 
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Ji. {Stal lings 1 ) • Let P be a polyhedron, N a polyhedral 

open set in P x P. If P has a fixed point under every continuous 

mapping g : P ,,., ) P for which c; c N, then P has a fixed point under 

et"ery polyhedrally almost continuous mapping f : P iii P for which 

f c tl. 

5,. (Stallings 1 ) • Let X be a Hausdorff space and N an open 

subset of Xx X. If X has a fixed point under every continuous map

ping g : X- :. X for which 13 cr.J, then X has a fixed point under every 

almoat continuous mapping f: X ,x for which fcN. 

6. (Stallings 1 ) .. If f : P- > Y is a local connectivity map

ping of a locally peripherally connected polyh€dron P into a regu

lar Hausdorff space Y. then f 1a peripherally continuous. 

This is a generalization of H.:m11 ton's theorem 1. 

7. (Stallings 1. ). Let P be a locally peripherally connected 

polyhedron of dimension n and X a uniformly locally (n-1)-connected 
• 

metric space. Let f : P · :. X be peripherally continuous. Then f is 

almost continuous. 

Corollary 1. If Pis a polyhedron of sir.iplicial dimension n 

which 1s of Menger-Urysohn dimension z 2, find f : P Jt X 1s a con

nectivity mapping., where X is un1 fo1--:nly lo~vll.y ( n-1)-connected, 

then f is almost continuous. 

Corollary 2. If P and Q are polyhedra and f : P · .. )It Q is a con

nectivity mapp1 ng, then r is polyhcclrs lly a l111ost continuous. 

Combining corollary 1 and the•·)r~'~ 5, we have: 

8. (Stallings 1 · ) . Let P be a polyhedron of Menger-Urysohn 

dimension ct 2., and N an open stibset 01 ... P x P. If P has a fixed p,oint 

under every cont1 nuous mapp1 nc g : P ), P for wh1 ch g c tJ., then P has 

a fixed point under every connectivity mapping f : P .. ➔ P for which 

f c: N. 

Combination of coroll~ry 2 and theorem 4 Lives: 

9. (Stallings · 1 ) • Let P be an arbitrary polyhedron and N a 

polyhed.ral open subset of P x P. If P has a fixed point under every 

continuous mapping g : P--::. P for which g c N., then P has a fixed 

point under every connectivity mapping f: P~P for which rcN • 
• 

For the set N occurring in sotoe of the above theorems we may 

of course tel<:e the product space X x X ( or P x P) • 
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3.5. Compactness and fixed po_ints 
di<' l l I O 5 I U fl I P . P $d$ ,4 lillQ 

In this section we shall cons·1der single-val.ued mapp1ngs only, 
and we shall say that a space X has the r.p.p. 1f tt has a fixed 
po1.nt under every contit1uous mappil1.£; r : X ··· a X .. 

The questi.or1. whether there exist.s a relatior1 between cot11pact

ness and the f.p.p. was considered by Klee· 2 {1955) and Connell 

.1 · ( 1959). Alth<)ugh for most fixed point theoren1s the compactness 
of the space is assumed, in general compactness and the f.p.p. are 
only vaguelJ' related. For example, there exists a Hausdorff space 
which has no compact subsets except finite sets, and yet it has the 
f.p.p. (Connell 1 ). De Grgot 1 (1959) obtained the result that 
there exists a fan1il~· f of 2 topc>lr)c;ic!ally distinct subsets of the 
Euclidean plane ( c de1·1otes the pote11cy of the real number system), 

each of which has potency c, is c!onnected and locally connected, 

contains no compact subsets except cout1table ones and has the f .p.p. 

These sets are r15~d, 1 .e .. if X E:, and f : X > X ls continuous, 

then either f is a constant mappinc or the identity mapping. 

However, in some cases it is possible to stipulate a necessary 
and sufficient condition for the f.p.p .. to hold in terms of com
pactness. Thus Ty~honoff 1 (1935) proved that a compact convex 
subset of a locally convex topolocical linear space has the f.p.p., 
and Klee 2 obtained the following partial converse of Tychonoff's 
theorem: , 

1. (Klee 2 ). If Xis a locally convex metric topological 
linear space and K 1s a non-co,:1pact convex subset of X, then K 

la Ck s t he f • p • p • 

It is unknown whether Tychonoff's theorem or theorem 1 holds 
in an arbitrary topological linear space. 

By a topolog1ca_l -r_a"l., is 1neant a homeomorphic image of the 
• 

half-open interval 0,1 with the usual topology. The following 
fact follows easily from a slight extension of the Tietze mapping 
theorem: 

2. {Klee 2 ) • If Sis a normal space which contains a topo
logical ray as a closed subset, then there is a fixed point free 
null-homotopic mapping of S into S. 

Klee _2 applied this result to show that certain spaces lack 
the f .p.p. \·le recall the followine definitions in order to formu
late these results: A subset B of a topological linear space Xis 
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bounded if for each neighbo11rhood U 
. , 
is a number t such that B c tU. A set 

of the zero element of X, there 

is l+nearl_y, bound~,,d 1 .f' 1 ts in

teraection with each line is bounded. A topological linear space 

locall'-- inearl bounded if it contains a non-empty linearly~ 

bounded open subset. 
3. (Klee 2 ) • Let X be a topologica 1 linear space and H a 

is 

convex subset of x. Then if at least one or the following state
ments 1s true, H must contain a topological ray as a closed subset: 

(1) Xis locally convex and His unbounded; 
( ii) X is rnetric and H is not complete in the natura 1 un:lformi-

ty; 
(111) Xis isomorphic to a subspace of a product of locally li-

nearly bounded topological linear spaces, and some bounded 

subset of H fails to be precompact ( for the latter, see 
,, 

Kelley 4,p.198 ); 
(iv) His closed, locally compact and unbounded; 
(v) Xis locally convex and metric, and His non-compact; 

(vi) Xis locally bounded and His non-compact. 

Combining 2# 3 (v) and Tychonoff's theorem, we have: 

4. {Klee 2 ) • For a convex subset H of a locally convex me
tric topological linear space, the following cond1 tions are equiva

lent: 

(1) His compact; 
( 11) H has the f • p • p • ; 

( 111) no closed subset of I·I is a topological ray. 

Theorem 4 and 1 ts proof are analogous to work of Dugund ji 1 
(1951). He showed that if C and S are respectively the unit cell 

and the unit sphere of an infinite-dimensional normed linear space, 

then C can be retracted onto S, whence C must lack the f.p.p. 
Kakutani •• 4 · ( 1943) and Klee 1 ( 1953) showed that in a large 

class of 1nf1n1 te-dimens1onal norr11ed linear spaces, the unit cell 
' actu.ally admits a homeomorphism onto itself without fixed poi.nts. 

In fact, for any inf'ini te dimensional normed linear space X there 
exists a homeomorphism of period_two without fixed points o~ X on
to X which maps C onto C. ( Klee _4 ( 1956)) • From a result o-r Klee 

2, theorem 5 .8, p .44 . it follows that every convex subset H of a 

normed linear space such that H is non-compact, closed, local::Ly 

compact., and at least two-dimensional., admits a homeomorphism onto 

itself w1 thout :r1xed points. On the other hand, since the uni. t cell 
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of a reflexive Banach apace Xis compact in the weak topology of x. 
it has the f.p.p. for weakly continuous mappings .. 

Klee also established the following results: 

5., (Klee 21 ) .. Let X be a nol1-compact, connected, locally 
..JI 

cc:>r1.r1ected, lc--.1c~ally compact metric space .. Then X c~(,ntatns a tc)polo-

gical ray as a closed subset. 

If X ts a space which h~s the f.p .. p.; then Xis connected, end 
every retract c)f X also has the f .p .. p .. rience 

6. (Klee 2 ) .. Ir Xia a non-compact, locally connected, lo
cally compact metric space. then X lacks the f.p.p .. 

r . 
lrTom 2., 5 and known properties of' ANR I s ( Lefschetz · 6 ) , we 

have 

7. ( Klee 2 ...1 ) .. Let X be a locally compact, connected mietr1c 
1bsol 11te nei.ghbourhood retract .. Then X is compact 1 f and only if 

every null-homotopic mappinr; of X into X has at least one fixed 
point. 

Connell 1_ defined a chain of arcs as a countable set of arcs 
co .... co 

An n=1 = bn.,cn n=1 such that en= bn+1 for all n. The follow-
1r.g :r"esult of Connell is a conseque11ce or theorem 5: 

8 .. {Connell 1 } • If X is a netric space with th~ f'.p.p.,then 
every locally finite chain of arcs is finite. 

For, if An ,is a 
00

loca ll~r finite infinite chain of arcs 1n X, 

then their union A = nld, An is a non-compact, connected, locally 

connected, locally compact metric space. Hence I· must contain a to

pological ray T as a closed subset, by 5, and since A ls closed in 
X, Tis closed in X. Hence X cannot have the f.p .. p .. ., according to 
2 .. 

We recall here the followint; fixed point theorem of Young .1 

( 1946) for ( not necessarily COlilpa ct) arcwise connected spaces: 

9 .. (Young 1] ). If Xis an arcwise connected Hausdorff space 
in which the union of every monotone increasing sequence of arcs 
is contained in an arc, then X has the f.p.p. 

Young 2 (1960) used this result to obtain the following ne
cessary condition for a space not to have the f.p.p.: 

10. {Young 2 ). Let M be an arcwise connected continuum which 
lacks the f.p.p. Then M contains either 

( 1) a continuum N1 for \illhich there is a continuous mapping 
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such that at most one point of s1 has a non-degenerate inverse,that 

inverse being co11nected; or 
( 11) a continuum N

2 
which contains a subset R which is the one-

to-one cont111uous ir:1ac;e of a half-open interval and which is dense 

in N2 , but which has no interior relative to N2 ; or 
{iii) a continuum N

3 
which is the union of a set R which is the 

continuous one-to-one image of a half-open interval, and a conti

nuum B, and fo1"' which there is a continuous mapping f : N3 ~• K, K 

being the union of the circles x 2 + y 2 = 2 y, n = 1,2,3, ••• , such n 
B = 

that no closed proper subset of N3 is n1apped onto K by f. 

Exam2les • . , 
(a) Conne 11 1 • .. This 1s a 11 ex amp le 

contains_no compact subsets except finite 

Let X = 0,1 and let Ube the collection 

of a Hausdorff space which 

sets and yet has the f.p.p. 

or all subsets Sor X such 
• 

that there ,exists a set A, open in the usual topology or X, and a 

countable {infinite or finite) set B so that S = A \B. Then (X, U) 
1s a topological space with the abovementioned properties. 

That (X, U) has the f .p .p. follows from the fol lowing fact 

( Conne 11 .._1 _, ) : 

Let X be a set and 1.T a topoloc;y for X such that ( X, 11') 1s a 

regular space with the f .p .p. Let U be a stronger topology for X 

( 1.e. Ac. V" implies At: U ) such that if R < U, then the closure of R 

1s the same in both spaces.' Then {X, U) has the f. p .. p. 

(b) Connell 1 • This is an example of a non-compact metric 
space U which has the r .p.p. and yet U x u lacl<:s the f .p.p .. U is lo

cally compact at all but one point. Let r(x) = sin 'o/(1-x) for 

05 x < 1., f(1) == 1. Let U = {(x,f(x)) OS xi 1 and let U have the 

relative topology as a subset of the plane. 

It is easy to see that U has the f. p. p. To show that U x U lacks 

the f .p.p., Connell constructed an 1nfin1 te, locally finite chain of 
arcs in U x U (see_theorem 8 of this section). 

( c) Connell •• 1 • This is an example of a non-compact., sepa
rable, locally contractible metric space V which has the f .p .p. Let 

n = .. . ,Y · x = n , '.SY s. · .• Let V = I • It is not diffi-
.. . · n=O n 

cult .to prove that V has the f .p.,p., and it also follows at once 
rrom theorem 9 above. 
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(d) Connell 1 • This is an example of a non-compact plane 
set W which has the f.p.p., while the closure of W lacks the f.p.p. 

Let A be the square (not including its interior) with (0,-2), 
(4,-2), (4.,2) and (0,2) as its four corners. Let A' = 

= A - and 

W = A' U B. W has the f".p.p. Now, W = AUB, and if Bis projected 
onto (O,y) -1< y < 1 , and A is rotated through 90 degrees, then 
we have a continuous ,napping of vl into itself without fixed points. 

(e) Klee 2 (1955), 5 (1960). Klee constructed a non-com
pact plane set X which cornbines the properties of the spaces in the 
examples (b) - (d)of Connell 1 (1959). In addition, X 1s an abso-

• • 

lute retract whicr1 is locally co1;1pact at all but one point .(Compare 
theorem 6). 

Let 1 2 be the liilbert space consistin[:; of all sequences 
y 

1 1=1 
be the set of all points y = (y ,y2 , ••• ) of 12 such that yi IO for 

at most one i and a 1 ways O s y i :!; 1 • If {:t- 1 s t he or 1 g 1 n ( 0, 0, ••• ) of 
1 2 and 6 is the point of 1 2 such that 6n = 1 and 61 = O for 1 In, 

n n n 
then Y is the union of the see:rnents a = it, 6 having the common 

n n 
end point iT. Obviously Y is contractible and locally contractible. 
Further, Y has tl1e f.p.p. (The latter follows., e.g. from theorem 9 
above.)) 

In the product space 1 2 x 1 2 , let P be the infinite polygon 
• 

whose vertices, in order, are 

( 62 ., tr) , •.• , ( J; 6
11 

) , ( 6 n, 1'-) , . . . . It 1 s easy to verify that P is a 

closed subset of Y x Y , P a topolo[;ical ray. Hence Y >< Y lacks the 

f.p.p., according to theorem 2 of this section. 

It remains only to describe a bounded plane homeomorph X o~ Y 

such that X lacks the f .p.p._For each t e _o, TT and each positive 

n n n 
Let Tn denote th~ arc consisting of all points (xn(t), yn(t)) for 

t €. O., 1T • Then each arc T has (1,0) as an end point and 
co n 

X = UL is homeomorphic with Y. But X contains the unit circle S 
n-1 n 

and admits a retraction onto S. Renee X does not have the f.p.p. 

( f) Boland 1 • This example shoiAJS that '1 locally compact't in 

theorem 6 cannot be replaced by ''peripherally compact''. (A topolo

gical space is periph~ral!Y compact,. if each of its points has arbi
_trarily small neighbourhoods with compact boundaries.) 

• 
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K be 
11 

the subset of E3 consisting 

either 

Let 

1 
:x = - , n 

A --

or 

z 2: 0 • 

0 ~ X S 1 ., y=O, Z =0 

(() 

U K • 
r:=0 11 

n-1) (osp~2 , 

2 1 
z = 2 , 

4n 

Then A is s nor1-locally compact, peripherally compact and lo

cally connected space which has the f.p.p. The latter follows,e.g., 

from theorem 9 above. 

3 .6. ~!x~d 201r1.~ cla~,~,~~ .. !ind ~s~ery.tial fixed po~nts 

:rwo fixed points x 1 and x 2 of a topological space X under a 

cont1nuoua r{1apping f : X ·· > X are said to be in the same f1?(e,d poi~t 

claaa (with ,~espeat · to f) if there exlsts a path P from x 1 to x 2 
a,1ch that P is h(:>motopic t0 f P. t1i th the end points fixed. (Nielsen 

1 (1927)) .. li1elsen's theory of fixed point classes for the orien

table oloa.ed surfaces of c;enus ~ 2, the elementary parts of which is 

sufflffl&r1sed below, was generalized to tne finite polytopes by Wecken 
~ 

: 1 ( 1939}, usinb the Leray-Schauder theory of the f'ixed point in-

dex for theae spaces ( Leray-Schauder · 1 ) • Browder 5 ( 1960) , re -

sorting to the theory or the fixed point index as extended by him

aelr (aee aeotion 2 of hapter I), observed that these results may 

be extended to Hausdorff spaces lithich are compact, connected, local
ly pethw!1ae connected and seMi-loca lly simply connected, the latter 

•••ning that each auft1c1ently small Jordan curve :ls contractible. 

'rhen each fixed p,oint class is open in X, and since the set S(f) of 

t'1.x1td po1nt1 of :X under f is compact, there are only finitely many 

r:txed point classes, and each component of S( f) 1s contained in a 

f'1zed point class .. Esch fixed point class corresponds to the fixed 

po1nts of X which are covered by the fixed points or X, the univer

aal covering space of X, under one of the rnappings 'f which covers f. 

S1noe •·•ch fixed point class is open in s(r), an index can be assig
~d to it_. and tbe classes with a fixed non-zero index are deformed 

• 
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into one another u11der homotopies or f. 
The ''stability'' of a f1.xed point was studied by Fort 

(1950), Kinoshita 1 (1952), O'Neill 1 (1953) and Browder 4 
(1960). Let X be a Hausdorf"f space and let XX denote the space of 
continuous mappines f : X > X, v1ith the compact-open topology. Let 

p e: X be 8 f'ixed point under f e: XX. Then p is an essential fixed 

point if, for each neighbourhood U of p, there exists a neighbour

hood V o.f r such that U has a fixed point under g U for all g e. V 

(Fort 1 ). Then, e.g., the closed unit interval has no essential 

fixed points under the identity 1·.1apping. Fort 1 .. c. showed that if 

f e: XX, p EX and p has arbitrarily s111a ll neighbourhoods V such that 
-V has the r.p.p. and f V c V, then pis an essential fixed point 

under f. 
The notion of an essential fixed p~int was generalized by 

Kinoshita 1 and O'Neill 1 : A cor1!ponent C of the fixed point 

set S(.f) is essential if all ,~1appines g close to f in the compact

open topology have fixed poi11ts :i.n;:, prescribed neighbourhood of C. 

Kinoshita showed that every continuous null-homotopic mapping f of 

an ANR into itself has an essential fixed point. O'Neill extended 

this result by showing the essentialily of any component of the 
fixed point set of a mapping witr1 non-zero index. 

Browder 4 considered the following stronger question: Let X 
be a Hausdorff' space, U an oper1 subset of X x I ( I denotes the 

closed unit interval 0,1 ), ~ a continuous mapping of U into X. 

Let 1T be the natural project j_oi1 of Xx I into X, 4't the partial in

verse of 1T defined by ~t(x) = (x,t) for all x£ X. If f 0 = F ~ 0 , 

r 1 = F ~ 1 , and we are given a conponent C of the fixed point set 
con-

o O 0 

nected set c1 in Xx I which cot1tains C x O , intersects X x 1 , 

and is composed o:f poi1-its (>:,t) E: c1 for which F(x,t) = x? 
-1 -

Let Ut = 'ft U , rt ;..· F '+' t : ut-·· ~> X. The above question es-

sentially asks for a connected set of fixed points of Ut under ft, 

O.St~1, which contains the given component C of fixed points under 

r
0

• It 1s the natural generalization of the question of the exist

ence of a co11tinuous funct lor1 .. .., : I> X such that 

t i:: I, and ft ( <P ( t ) ) = <p ( t ) , v! i. th { O) e: C . There 
( t) e. Ut for all 

are trivial coun-

ter examples to the existence r,:f su,::h functions , for instance 

small de:formations or the identity mapping of an even dimensional 
sphere. 
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Browder 4 used the theory of the fixed point index to es

tablish the following theoren1s, which encompasses_ the results of" 

K1nozh1ta 1 · and,....O'Neill 1 : 
1. (Browder · 4. ) • Let X be a Hausdor:C:f space, U an open sub-

set of xx I, F a continuous mapping of U 1nto
1 

a compact Hausdorff" 

spac,e y lying in a category A for which a :r1.xed point index is de

fined. (Thus y may be an ANR * , a neighbourhood retract of a con

vexoid space 
1 

or an HLC *space.) Let G be a continuous mapping of' 

Yx I into X, H the mapping of U into X given by H(x.,t) = 
• o(P(x, t), t) .. Let 4't be the natural inject :ton_of X into X >< I., 

that ht has no fixed points on the boundary of Ut for t E: I. Let 

u• • o-1 U ·.. u• = lll-
1 . U'. f = F lll g = G IU • Suppose that ·· • ' o .,,o , o To' o To 

1{r .g ,U') ~ o. ( In the case in which X 1 tself lies in A, we may 
0 0 0 

••k• the simpler assumption that 1{h
0

,U
0

) / O.) 
Tne,n there exists a connected set c1 1 n U intersecting both 

Xx O and Xx 1 such that ht(x) = x for all (x,t) 4L c1 . 
C,orollary .. Let_x be an ANR *, O an open subset of X, f a con

tinuous map·ping of O into X havint_: no fixed points on the boundary 
• 

ot O. Then if' 1(f ,o) ,' o, f has an essential component of f"ixed 

potnta 1n O. 

2. ( Brow<ier ) • Le".: X be a locally convex topological linear 
,pace, U an o~n subset of XxI, Fa continuous mapping of U into a 
compact convex sub.set K of X. Suppose that rt = F 'Vt has no f"1xed 

Then there ex1ats a compact connected set c1 in U 1ntersect1ng both 

I l< 0 and Xx, 1 such that ft(x) = x for all. (x,t)E: c1 • 

3.. (Browder : 4 ! ) • Let X be a Hausdorff' space., U an open sub-

1e,t ot X l( I., P a continuous mapping of U into a compact space lying 

1n • category A on which e fixed point index :ls defined, G a conti

n~oua aapiptng of Y x I into X. Let H be the continuous mapping of: U 

ht • H 'ft• Suppo,se that ht has no fixed points on the !?~~ndary of 
Ut,. tor ell tel. Let C be a component of the :fixed point set o-r h 
end • '> ,ee that the f'ollowin.g condition is sa.tisfied: 

0 

··-~" Ail!' r· .~ 1 !ft .A.a ""'1· n,& .,11, ;,,,.. u· f hi h 1 0 0 1~•,r~ ... ' .·• .. o~fo: ' - u~' ··. li.i('l!;l;\J vn .. 0 ~ w .· C . . s an open subset o-£ y. Let 
C' • -1 ,~ ·. ~- . ..· 

···· 10 ·· .,i.il '• Lw:)Nn th,ere exists a neighbourhood V of c, 1n y such 
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\>.Jhi ch f 0 g
0 

has no :fixed points on tl·1e boundary of V 1 , we have 

i ( f 
0

g
0

, V 1 ) I O. 

Then there exists a compact connected set c1 in U which con-

tains C x O , is composed of points (x, t) for which ht ( x) = x, and 
intersect a ( X x 1 ) U ( X x { O} \ C )( o ) • 

The condition of theorem 3 is expressed briefly by saying that 
Chas a non-null index with respect to h. Theorem 3 then becomes 

0 

the statement that each component of the fixed point set of h
0 

with 

non-null ~ndex 1s contained in a component of S, the set of (x,t)4U 

for which H(x,t) = x, which intersects X x{1 . 
A particular case in which the condition of theorem 3 is satis

fied is that in which C is a sincle point x with non-null index 
0 

with respect to h
0

• 

3. 7. 9ontract iv~ mappings. 

The :followinG well-known theorem is due to Banach 1 (1932): 
Let (X,p) be a _co.rnplete met1--1c space, and f : X ➔ X a continu-

1JUS mapping for which there exists a number k., 0 < k < 1, such that 

f)( f(:x), f(y)) < k p(x,y) for all x,y EX. Then X has a unique fixed 

r)oi nt under f. 

This theorem was extended in various ways, and has wide appli

~ations in analysis. An expository account together with a large 
1·1umber of applications may be found in the paper of Nemyckil 1 

(1936) and in chapter 2 of Miranda 1 (1949). For more recent re
sults the reader is referred to Deleanu 1 (1957), Luxemburg 1 
( 1958), Albrecht and Karrer 1 ( 1960), Mo11na 1 { 1961) and Edel

stein _1,2 (1g61, 1962). 
Brodakil and Milman 1 (1948) obtained fixed point theorems 

for non-expansive and non-contractive mappings of a compact metric 
space with.normal structure into itself. (See Dunford and Schwartz 

' 

1, p.459 for a summary of their results.) 

3 .8. Mappings of' spperes ,int_o ~:ic.~iqean space.~ 

The following theorems have been the starting-point of extena-
• 

ive investigations on the existence of coincidence points under map-
pings of spheres into Euclidean spaces: 

1. (Borsuk 4 (1933)). If f: sn~En is continuous, then 

tr1ere is a pa.ir of ant ipoda.1 points x., -x £ Sn such that f( x) = f( -x). 



2. (Lustern1k-Schnirelmann 1 
every covering of sn by n+1 closed 
ber of the covering which contains 

3.. { Ka\rutani 3 ( 1942)) • Let 

( 1930), Borsuk 4 

sets, there 1.s at least one mem-
• 

a pair of anti pedal po.int a. 

f : s2 > E1 be continuous .. Then 

there exist three orthogonal points 

f(a
0

) • f(s 1) = f{a 2). 
The reader is referred to Yang 1,2 (1954, 1955) for far-

reaching generalizations of these theorems and a complete biblio

graphy of their development. Theorem 1 was also extended t.o multi

valued ,napptnga of sn into En (Jaworowski 1 (1956), and to Banach 

spaces in the case of single-valued mappings {KrasnoselskiI 2 
II 

( 1950), Al tn1an 1 ( 1958) and Granas 2 ( 1962)) • 

3 .9 ... Perio9-_1 q,,, maJ2pit}fdB 

If Y is the set of all fixed points of a metric space X under 

a Pttr1od1c mapping of X into itself, what topolog:1 cal properties of 

Y can be deduced from those of X? Considerable work in answering 
• 

this question has been done since 1934 by Smith (see e.g. Smith 1 ). 

The spaces mo3t thoroughly studied have been the Euclidean spaces 
• ' 

and spheres. The motivating question is to determ1.ne to what e:xtent 
does a periodic hon1eomorphism or. En r.>r of sn resemble an orthogonal 

transformation. I11 particular, Ls it equivalent to an orthogonal 
transformation? Sr.11th showed that for~ many homology properties and 
pri.m.e periods, the conje~ture is· corre c~t. Thus, 1..C Y 1s the f'ixed 

point set of a periodic h.omeo11orphisrr1 of En . S11 
, then Y ia in 

some s.enae homolos,1ca1ly s1mi lar lo Er sr-= for some r :Sn. The , 

reader is referred to Sm1 th 1, 2 , Floyd 1, 2., 3 , Sv-1an 1 and 
• 

Borel et al •. 1: for further information. 
• • • 

In atr1k1ng cqntrest with the results for Euclidean spaces 1s 
' . 

lt.lee•s result (Klee , 3 •· ·(1956)) which states that :t£ Y is a compact 
. . ' ~ . ' 

·• eloaed · .. subset of an 1nf1n1 te - dimensional Hilbert space X., then 

X ad111ts • p•riodic homeomorphism whose fixed point set is Y 1s 
homreomorphie to Y • 

);.10. :Alm9st fixed {)01nts 
l;SJ Ji,? Ji Ai . . , d .ti'. Ii i IM_l!llj I ._" __ . t . t 

There are several theorems to the effect that if r is a mapping 
ot 8 1ipaoe X :1.nto itself, then there is at least one point x € x' 



99 

non-compact and lacks the .f.p.p., or f is non-continuous, and in 
the compact case the property that there exists a point which is 

''near'1 to its itnage is equivalent to the f .. p .p. 

The first three theorems below are exarnples of the first ~1en
tioned possibility. 

1. (Hopf 2 ( 1937)). Let X be a unicohere11t topological space 
·~ 

and ex. a covering o.f order two of X bJr closed co11nected sets. Let 

f : X ➔ X be continuous. Then there exists a r~e 1;1_ber U or ex such that 

Un f U -1- ¢, or equivalently: there exists a point x € X such that 
0 

x and f (x ) lie in the same n1e1nber of oc. • 
0 0 

2. (Fort 2 (1954)). Let ·1 be 8 bounded open subset of the 

Euclidean plane E2 which is homeorr1orph:Y_c to the open unit disk 
2 

D = x e: E x < 1 and whose boundary is locally connected. Let 

f : G · ) G be continuous. The11 .for each c. > O there exists a point 
' 

x = x(e) E: G such that x-f(x) < £.. 

Inspection shows that Fort's pr0of 1s equally valid for the 
following ~ssertion: 

3. ( Fort 2 ) • Let d 

x e En x < d • Let 

there exists a 

Klee ' s res u 1 i, s 

point 

( Kl-ee 

• 

be a positive number and let 
n n · 

f : B > I3 be continuous .. Then for each 

X E: B n s u Ch t ha t X - f ( .x ) < E • 

8~ (1961)) fall under the second catego-
ry. They exter1d the _r·j xed point theorems for continuous mappings of 

compact convex subsets of locally convex topoloeical linear spaces, 

described in Chapter I, to 1'nearly continuous'' mappings of such 

spaces. 

For c. > 0, a mapping f of a topological $pace X into a metric 

space (M, p) is called £-continuous if each point x € X has a neigh

bourhood U such that diam f' U ~£. For 6~ o., a 6-r1::i:::~a po~nt un

der a ma pp 1 ng f : M ) M is a. po 1 n t x e M such that p( x , f ( x ) ) < & ; f 

is called a 6 -n1app1ng if each point of M is b -fixed under :f. 

( Klee 8 ( 1961) ) • 
Klee obtained the follo,iinc results: 

4. ( Klee 8 ) .. Let P be a cornpa ct convex 

dean space, and :r : P ➔ P e: -cont 1nuous. Then 

nuous mapping g : P >P such that G(P)-f(p) 

polyhedron in a Eucli-
there exists a conti
~ E.. for a lJ. p e: P. Con-

sequently some point of Pis £-fixed under r. · 
5. (Klee 3 ) • Let C be a compact convex subset of a normed 

linear space, f : C ➔ C £-continuous., and E.' > E. • Then some point 

of C is c:'-fixed under f. . 
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A m,etric space M is said to have the proximate fixed point 
I o I l ,n; l 

pro}28rty (p.f .p.p.) if, for each E > 0 there exists ,:-t > O such that 

M has an E-f1xed point under each "'Ct-continuous mapping of M into 

itself. 
6. (Klee 8 ). If a metric space M has the p.f.p.p., then 80 

has every compact retract of M. 
7. (Klee 8 ). If a co~pact metric space has the p.f.p.p., 

then so has every metric homeomorph of M. 
Since an AR is a retract of the H11 bert cube, it follows from 

5 - 7 that 
8. ( Klee 8_ ) • Every AR has the p. f. p. p. 

A compact metric space which has the p.f.p.p. evidently also 
has the f.p.p. for continuous mappings. The converse need not be 
true: Klee 8 gave an example of' a plane continuum which has the 
f.p.p. for continuous mappings, but lacks the p.f.p.p. Klee 10 
asked whether a Peano continuum which has the f.p.p. for continuous 
mappings must necessarily have the p.f.p.p. 

Generalization of the above results 4 - 8 to uniform spaces 
are almost imn1ediate. Theorem 4 is eas1 ly extended to 11 nearly upper 

semi-continuous" mappings of Pinto the family of non-empty closed 
convex subsets of P. The resultini generalization of Kakutani's 
fixed point theorem (Kakutani 2 ) can be applied after the manner 
of theorem 5 above to a compact convex subset of an arbitrary local

ly convex topological linear space. This leads to an extension of 

the fixed point theorem for multi-valued mappings of Fan 1 and 

Glicksberg 1 • From a rather special case of that extension, the 

following fact can be deduced: 

8. (Klee ·. 8 ) • Let X be a co111pact Hausdorff space which is an 

absolute retract for such spaces. Then for each open cover1n.g ex. of 
X there exists a finite open covering ~ of X which has the follow
ing property: 

If f : X ··,. X is any mapping such that each point x e X has a 

neighbourhood U for which f U · lies in some member of p , th,n th,ere 
exists a point x

0
€ X such that x

0 
and f(x

0
) lie in the same member 

of ex • 
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CHAPTER 
1) 

IV 

Almost r1xed point theorems for the Euclidean plane 

DEFINITION. Let X be a topological space, Fa family of map

pings of' X into itself and .n a family of finite coverings of X. 

Then Xis said to have the almost fixed oint -ro ert;._a.r.~.p.~ 
with res2e ct to F and ..0. i.f, for every f E. F and every a.En, there 

I il 

exists a member U € Ol such that U n f U :/ <I. 
Note that if Xis a compact Hausdorff space, then X has the 

• 

f.p.p. if' and only if X has the a.f.p.p. with respect to continuous 
mappings and finite open coverings. 

As was pointed out by Professor J. de Groot~ it can be shown 

that the Euclideaa space En has the a.f.p.p. with respect to con
tinuous mappings and finite coverings by open sets with compact 
boundaries. This means that any continuous mapping of En into it
self either has a fixed point or else there are points far away for 
which the images also are far away~ e.g. a translation. 

TH.EOREM 1. The Euclidean plane E2 has the a.f.p.p. with res-
• J 

pect to continuous mappings and finite coverings by convex open 

sets. 
REMARKS. 1. It is easy to see that a corresponding theorem 

does not hold for infinite (convex open) coverings. 

2. It should be possible to generalize theorem 1 by 

replacing E 2 by E0
• 

We shall use the following lemma (with n=2) 1n the proof of 

theorem 1. 

LEMMA 1. (Fort 2 ). Let d be a positive number and let 
. 

Bn = x e En x < d • Let f : Bn > En be continuous. Then for eaQh 

e. > O there exists a point x e: Bn such that x-f(x) < ~ • 

PROOF: Let f. :> 0 

Let 
by 

-------.-----------

X 

be given. We may obviously assume that e. < d. 
~ d- e. ~ and define a retraction r : Bn ➔ en 

1) The results of this chapter will also 
(de Groot, de Vries and van der Walt 

be published elsewhere 

1 ) • 
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r(x) = ( d- e.)x/ X 

X 

for x £ Bn en, 
n for x e C • 

Then rf en: en ~Cnis continuous and according 

fixed point theorem for then-cell, 
that rr(c) = c. Since · r(x)-x < € 

c-f(c) = rf'(c)-f{c) < €. 

there exists a 

to the Brouwer 
point c e: en such 

for all x £ Bn, we have 

DEFINITION. A strip is tl1e closure of an open simply connected 
set in E2 which is bounded by two parallel straight lines. Let S be 
a strip bounded by the lines L1 and L2 and let L3 be a (closed) seg

ment, perpendicular to L1 and L2 , which connects a point or L1 with 

a point of L2 • Then the closure or a component of S \L3 is called a 

h_a+f.-~t,;rip. The segment 13 is called the base of the half'-strips., 
and the lines rays bounding a strip half-strip- are called the 
sides of the strip half-strip • 

It is easy to verify that a convex subset K of E2 with in
terior points has the following properties: 

and 

(1) If K0 (the interior of K) contains a line, then it con
tains a strip. 

(11) If K0 contains a ray, tt1en it contains a half-strip. 

PROOF OF THEOREM 1 : Let f : E2 ➔ E2 be a continuous mapping n 

may assume that E2 does not belon:_; to Ol.. Since a is a finite 
covering and E2 is unbounded, there exist pairs of different mem
bers or a which have unbounded intersections. Such an intersection 
satisfies either (1) or (11) above, and we choose, if possible, a 
strip in each or these intersections; otherwise, we choose a half
strip. Divide each strip in two half-strips, such that the inter
section of the ensuing half-strips is their common base. Let 
P1 ,P2 , ••• ,Pk be the collection of l1alf'-strips. We may choose them 
such that P1 n Pj (ilJ) is bounded, and we shall suppose tha..~ this 
was done. Further, we choose an open disk B1 such that the :follow
ing conditions are fulfilled: 

(11) P1 nPjcB1 (ilJ; i,j=1,2, ••• ,k). 

(111) The bases of the half-strips as well as the points of in
tersection of the (prolongations of the)sides of the 
half-strips are all contained in B1 . 
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Let B2 be an open disk, concentric with B1 and such that 

We shall assume that the collection of half-strips is cyclic
ally ordered by the positive orientation of the boundary of B2 ,and 

that this ordering is given by P1 .,P2 ., ••• .,Pk ''modulo k''. We also 

assign an order to the sides of each P1 (1:1,2, ••• ,k): if we tra

verse the boundary of B2 in the positive direction, then we pass 

from the 11 first side'' of P 1 to its ''second aide 11
• 

(B1 u P1 U ••• UPk) which lies between the second side of Pi and the 

first side of P i+1 ( i == 1, 2, ••• , k). Pi and Si are thus constructed 

so that there exists a member Uj(i)ea. with the property that 

(i 1.,2, ••• .,k). 

We are now ready to de:fine the homeomorphism <p : E2 ➔ B2 • It 

will be done in such a way that P 1 \ B1 is cor1.tracted onto 

Pin (B2 \ B1 ), and s 1 onto Sin (B2 \ B1 ) ( 1- 1., 2, ••• , k), while B1 ,, 

is mapped identically onto itself". 

z f! Pi- B1 . {1 '";, 1,.t 2.z ••• 1 k): Let Li ( z) be the line through z 
parallel to the sides of P1 , and let r 1 {z) = dist (z,Li(z) n bd(B1 )), 

where bd(B1 ) denotes the boundary of B1 • Define r1 (z) to be the 
-

point wh:1.ch divides L1 (z) n (B2 , B1 ) in the ratio 

r 1 (z) : 1 + r 1 (z). It is easy to verify that fi is a continuous 

one-to-one mapping of P1 \ B1 onto P1 f'\ (B2 \ B1 ), and that its in

verse is continuous. 

z e:. s1 ( 1 == 1 2 2-r •• ~, k): Let a 1 be the point in which the pro

longation of the second side of P1 intersects the prolongation of 

the first side of P1 +1 , and let a 1 z be the closed segment connect

ing a 1 and z. Let si{z) = dist{z,a1 z nbd{B1 )), and def'ine g 1 (z) to 

be the point which divides a 1z n (B2 , B1 ) in the ratio 

s1 (z) : 1 + si(z). Then g 1 is a continuous one-to-one mapping of 

s 1 onto Sin (B2 \ B1 ), and its inverse is continuous. ( If Pi and 

Pi+1 are parallel, then we define g 1 in the same way as f 1 was de

fined.) 
z € B1 : Let h : B1 >i B1 be the identity mapping. 

The f'unctions fi,gi and h coincide on the boundaries of their 

domains of definition and hence q>, defined by 



(f)( z) = f i ( z) 

gi(z) 
z 

is a continuous 
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fined and continuous; hence cp is a r1omeon1orphism. 

-1 
<f> is well-de-

= u;_ 

For U 

( (Pi u Siu P1 +1 ) n bd(B2 )). It is easily seen that the VJ{i)' to-

gether with the remainine u1, form an open covering of Jj:2 • Denote 

Let f' = <.pf c.p- • Then f 1 : B2 > B2 is continuous and accord-

ing to lemma 1, for each positive integer n, there exists a point 

Yn € B2 such that - number 
- 1 of B2 with respect to p , and choose n such that n < T • According 

to the lemma of Lebesgue, there exists a set Wk E p such that y 0 " 

r•(yn)E wk. But Yn,f'(yn)£ n2 , so that yn and f'(yn) lie in the 

same men1 ber 

1.p{.xn) = Yn, tr1en x and f(x ) lie in the same member of CL • n . 11 

If the mappings are restricted to translations, then we can 
require less of the cover•ing sets to obtain a theorem similar to 

theorem 1 : 11 convex open'' rnay then be replaced by '' arcwise con

nected'''. 

We shall need the following two lemmas. 

LEMMA 2. Let x1 ,x2 , .•• ,Xn be sets, let 

f : X ➔ X be a 1napping. Then there exists a 

• 

X 
n 

= U X 
1=1 1 

set x1 and 

r ¢ . 

and let 

a positive 

PROOF: For each x e: X, at least two of the n+1 elements x, 

• 

LEMMA 3. Let A be an arcwise connected subset of E2 , and let 

r : E2 ➔ E2 be a translation, such that tl1ere exists a positive 

integer k with Anfk A I:¢. Then An f A ~¢also. 

PROOF: Let f be given by f(x) = x+a, for all XE: E2 , where 

has the same direction as a. Let 1-c be the smallest positive inte-

ger· such that A n fk A -I= ¢. Suppose k > 1. We are going to derive 
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a contradiction. There exists a point b £ A such that b+ka €. A also, 

and we can find an arc J, contained in A, which connects band 

b+ka. Let 

P = {(x,y)€ J 

Q = (x., y) tt J 

(u,v)E.J~y~v 

(u,v) e. J =?' y ~ v 

., and 

• 

Since J is compact, P ~¢and Q F ¢. (P and Q contain respect

ively the 11 upper extreme '1 and '' lower extreme'' points of J.) Since 
J n f J = ¢, J is not a segment, and since it is compact, we can 

find a point p e. P and a point q E: Q such that, if J 1 is the part o:f 

J which connects p and q {including p and q), then J 1 nP = p 

J 1 n Q = q , and p F q. 

Let L 1 and L 2 be straight lines parallel to the X-axis, pass

ing through p and q respectively, and let S be the strip determined 

by these lines. J 1 separates S into two disjoint sets, each of which 

is simply connected and both open and closed in S. The same holds 

f'or the images or J 1 under the iterates of f. 

Since J 1 n f J =¢and f J~ is connected, any two points of 

f J, in particular b+a and q+a, lie in the same part of S with 
respect to the separation by J 1 • Since f is a translation, b+ka and 

q+ka lie in the same part of S with respect to the separation by 
k-1 ( ) f _J1 • Since q+ k-2 a and q+ka lie in different parts of S 

with respect to this separation, b+ka and q+(k-2)a lie in different 

parts. Also, q and q+(k-2)a lie in the same part of S with respect 

to this separation and hence q and b+ka lie in different parts. But 

q and b+ka are connected by J, 
implying that An fk-1 A I¢, in contradiction with the choice of 

k. 
DEFINITION. Let X be a topological space. Two continuous map-

pings f,g: X·•X are said to be topological~Y eguivalent if there 
-1 

exists a homeomorphism h of X onto itself such that f = h gh. If 

Xis a metric space, then a mapping f: X •Xis called a topo!2: 

gica~ ~sometry if it is topologically equivalent to a distance 

preserving mapping of X into itself. 

In the case of the plane we have the following criterium for 

a mapping to be a topological translation (Sperner 1 (1934)): A 

mapping f: E2 ) E2 is topologically equivalent to a translation if 

and only if f is an orientation preserving homeomorphism such that, 

for each set G c E2 which is the closure of a bounded domain and 

• 
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whose boundary is 
t'1' sucl1 that Gn fn 

a Jordan curve, there exists a positive integer 

G = ¢ for all integers n with n ~ N. 

We now state r1nd prove 

THEOREM~. The Euclidean plane has the a.f.p.p. with respect 

to orientation preserving topological isometries and finite cover

ings by arcwise connected sets. 

PROOF: It is a \'lell-kno'l1n result that an orientation preserving 

topological 1sometry of the Euclidean plane is topologically equi

valent either to a rotation or ton translation. In the first case 

t~t1ere is o fixed po_int, E:?.nd in the second case theorem ? immediate

ly fol lo\vS from leram,.G :' and 3 .. 

COROLLARY. The Euclidcf:.n plone has the a.f.p.p. v.rj_th respect 

to orientction preserving topological isometries and finite cover

ings by connected open setn. 
For, a connected open subset of a Euclidean space is arcwise 

connected. 
An example oral lJr communicated by Professor R. D. Anderson 

shows that theorem 2 cannot be extended to higher dimensions: There 
is a covering cc. of E3 by four non-empty connected open sets, and a 
topological translation f : E3 ~ E3 , such that U f'\ f U = ¢ for al_l 

u € cc. 
" 

A connected topological space trivially has the a.r.p.p. with 

respect to ~rbitrary mappings and coverin~s consisting of two con
nect~d open sets. A unicoherent topological space has the a.r.p.p. 
with respect to continuous mappings and coverings consisting of 
three connected open sets. Before showing this, we prove the fol
lowing 

LEMMA 4. Let X be a unicoherent topological space and 

« == U.,. V, W · a. covering of X by three non-empty connected open sets. 
Then, if n ct= ~, ct. has two disjoint members. 

PROOF: Suppose, on the contrary, that u rt v /: ¢, u n w -I= ¢ and 
vn w ,,' ¢. Then 

u 
(Un V) fl 

cont rad 1 at 1 r,.g 

X = U u (V u W) (connected summands) 

(VuW) = (UflV) u (UnW) (conn~cted summands), and 

(U f\ W) = U fl V f\ W = ¢, 
the unicoherence of X. 
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'l,HEOREf~ 3. A ur1ic•t,t·1erer1t tc.,polog.1cal space X l"ias the a .. 1"'.,p..,p. 

with respect to continuous mapp,1riga and cc>ver1ngs 1.".:ons1st1ng of 

t l1ree connec t;ed <)pen sets. 

PROOF': 1.iet f: X--.X be a continuc,,1s i,n:91pp1rig ant1 a=i {U,,V,W} 

Fi covering o.t" X by three cor1nected open sets .. 'we may euppose that 

tr1e empty ae t does r·10 t 't.>elor·1g to a , atld that n a • ¢ .. Let U and V 

t)e tt1e diajc)1nt members of a g1ven by lemma 4 .. Then U n W I '/;, 
V n W ~ ¢, slnce X 1s connected. Suppose that W n f W •¢.Since 

1· W is connei:::;ted s11d u n V • t;, ei.ther f W · c U or r W c V .. In 

(:1 ther case tl1e theorem. is proved, e.g. 1 !" r W c U, then 

~,, U n W c t .. W c U and hence U fl f U ,,' ¢ • 
• 

COROLLAf,Y. E0 has the a.f.p ... p .. with respect to continuous msp

tJinge and coverings consistir)g of three connected open mets. 

F'or, E'1 is uni coherent ( Borsuk 2. ) • 

The quest ion arises whet her a ·unicor1erent topological space 

l1as the a .. f .. p .p. w 1.tr1 reape,~t to t-:ontinuoua mappings and coverings 

consisting of four (or more) c-:onnected open sets. Further, car1 
1'orier1tation preserving'' be omitted from the hypotheses of theorem 

2? 

Both these questions are answered negatively by the following 
example, in which we have a covering or E2 b:;r four connected open 

sets u1 ,,u2 ,u3,u14., and a transflection f (1.e .. a reflection followed 

by a translation in the direction of the axis of reflection) such • • 

ttiat u1 n r u1 ~ ¢ (1-1.,2,3,4). 

Let 

V u 

V -= 1 

.· ( x., y) Ii E2 0 < x < 1, -1 ~ y < 1 , 

( X., y) + ( 2 ,. 0) , tor a 11 ( x , y) € E2 , 

(x.,y) + for all (x,y) E'. E2 , 

( X , y) E: E2 • y < -1 

u1 £ v1 U W., 
,.... 

:::t s LJ,')·· 
.... Jf,.. l... .,.,. 

y > 0 • 

'l'he transflection f is defined as r··ol lows: 
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u(x,y) = (x,-y) for all (x,y) £ E2 ., 

t(x,y) = (x,y) -~ (1,0) for all (x,y)€ E2 , 

f = tu .. 

• 

It is easy to verify that u1 n f~U1 = ¢ (1=1,2,3,4). Note 
r reverses the orientation and that each of the intersections 

• 

Uj (ilj) has countably infinitely many components. 

PROBJ.r:MS. 

1. Does the Euclidean plane have the a.f.p.p. with respect to 
orientation preserving homeomorphisms onto and finite coverings by 

connected open sets? • 

2. Does the Euclidean plane have the a.f.p.p. with respect to 
continuous mappings and finite coverings by connected open sets 

such that the intet•section of each pair of members of the covering 

is empty or has at most a finite number of components? 
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