
' ; -,, 
' " ' 

j, - " 
' ' ,, 

, r 
' ' . . . ' ... ,."'!, (,,, 

' " . 

,,, 
'§Y:/,:, 
' 

' 

MATHEMAT'l,CAL CENTRE TRACTS 
. ' . . . ' ' . 

T. VAN DER WALT 

)/( 
;;-

' -;>'f 
•,{,_: 

' 

;:; 
'Ji/'.: 

---:er· 
i . , ,, 

"' 

)-
' _;_f,o 



MATHEMATICAL CENTRE TRACTS 

1 

BY 

MATHEMATISCH CENTRUM AMSTERDAM 

1963 



CONTENTS 

Introduction 

Conventions and definitions 

Chapter I. The fixed point theorems or Brouwer, Lefschetz, 
Schauder, Leray, Tychonoff and Kakutani 

1. Single-valued mappings 

2. The Leray-Schauder theory of the fixed point index and its 
extensions 

3. Multi-valued mappings such that the image of each point is 
acyclic 

4. Multi-valued mappings such that the image of each point is 
non-acyclic 

5. Mappings r : X- ► Y such that X c Y and f X X 

6. Spaces with a finite number of holes 

9 

13 

17 
17 

21 

30 

55 
59 
60 

7. Common fixed points 61 
8. The Lefschetz fixed point forr11ula for non-locally connected 

compact spaces 64 

Chapter II. The Scherrer fixed point theorem and related fixed 
point theorems 66 

1. Definitions and introductory remarks 66 
2. Single-valued mappings 68 
3. Multi-valued mappings 74 
4. Fixed end points 76 

Chapter III. Miscellany 
' 

1.. .parti.ally ordered sets and spaces 
2. The product of spaces 

3. Hyperspaces 
4. Non-continuous mappings 

5. Compactness and fixed points 
· 6. Fixed point classes and essential fixed points 

7. Cont~active mappings 
8. Mappings of spheres into Euclidean spaces 

9. Periodic mappings 
' , 

10. Almost fixed points 

Chapter IV. Almost fixed point theorems for the Euclidean 
plane 

Bibliography 

78 
78 
84 
85 
85 
89 
94 
97 
97 
98 
98 

101 

109 



ERRATA 

page line 

9 15 for absolute retract read absolute neighbourhood retract 

9 ?6 for locally topological read locally convex topological 

11 

21 

23 
63 
66 
89 
94 

~3 r. 

8 

33 
8 

27 
30 
15 

for theorem to read theorem for the two-cell to 

for and an AR read and an absolute retract 

for rest read latter 

for admits re~d admit 

for continuum read metric continuum 

for 0,1 rend 0,1) 

for fixed. rend fixed 



9 

INTRODUCTIOi~ 

In 1912 Brouwer 3 prr..")ved l·1is by now classical theorerr1 v1l1ich 

stat es tr1at the n-ce 11 C l1as t11e fixed point property ( i' .. p .. p .. ) for 

continuous mappings, i.e. for every continuous mapping f: C· >C 

there exists a point x EC such that f(x) = x
0

• This result was ex-o 0 

tended to compact convex subsets of 

(i) certain function spaces, ecg. L2 
Birkhoff and Kellogg 1 (1922); 

(ii) 
(iii) 

Banach spaces, 

locally convex 

(1935). 

topolo0 ical 1 

All these theorerns are included 1 n Lefschetz 's fixed poi11t 

theorer11 {Lefscr1etz _1_, (1926)), or in extensions of it., e.g .. Lef

schetz _5.,6_ (1942). Fro1n Lef'scr-1etz• s theore,:1 it f'oll.ows e.g .. that 

an acyclic compact metric absolute retract has the f.p.p •• Lef

schetz _5_ (1942) also gave sufficient conditions for the existence 
of coincidence points under tv.ro i';ont inuous rnappi ngs of one space in

to another. These results are discussed in section 1 of Chapter I. 

The second secti·on of' Ct1apter I is a survey of the Leray-Schau

der theory of the loca 1 fixed point index (Leray-Schauder 1 ( 1934))., 
especially of Browder ts extension of' this theory (Browder 5 ( 196.o)). 
Lefschetz•s fixed point theorem is in turn contained in the Leray
Schauder theory as extended by Browder. 

Brouwer's r1xed point theorem for then-cell was also extended 
to upper semi-continuous mappings of a compact convex subset of a 
locally topological linear space into the family of its non-empty 

closed convex subsets (Kakutani 2 (1941), Bohnenblust and Karlin 

1~ (1950), Fan 1 (1952) and Glicksberg 1 (1952)). These theo-
• 

rems are included in the extension of Lefschetz's fixed point theo-
rem to uppe1-i set11i-cont inuous t11appings of' a compact le-space ( see p. 
43) into the family of its non-empty closed acyclic subsets (Eilen
berg and Montgornery ..... 1 ( 1946), Begle ._3__. ( 1950)) .. In a recent pu
blication Fan ..... 3~ (1961) gave sufficient conditions for the exist
ence of coincidence points under upper semi-continuous mappings of 

a Hausdorfr space into the family of non-empty compact convex sub
sets of a topological linear space. His theorems include Tychonoff's 
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theorem (Tychonoff [1] ), but they do not include the above-mention

ed extensions of Tychonoff's theorem, nor are they included in these 
extensions. 

It is unknown whether a compact convex subset of an arbitrary 

topological linear space has the f.p.p., even when the space is me
t rizable. 

Another unsolved problem bearing on section 7 of Chapter I was 

referred to by Isbell 1 (1957): If Fis a commutative family of 

continuous mappings of a tree Tinto itself, does there exist a 

point x
0

t T such that f(x ) = x for all f E.F? 
0 0 

In Chapter II Scherrer's theorem {Scherrer [1] (1926)), which 
states that a dendrite has the f.p.p., and its generalizations to a 

., 

w~der class of spaces and mappings are surveyed. An unsolved problem 

~n this field 1s the question whether a tree-like continuum has the 

r.p.p. (Bing 2 (1951)). It is also unknown whether a plane conti
nuum which does not separate the plane has the f.p.p. 

Chapter III contains miscellaneous fixed point theorems and a 
general impression is best obtained from the section headings. 

If f is a (not necessarily continuous) mapping of a topological 

space X into itself, and f{x) /. x for a 11 x ~ X, then it might be of' 

importance to know whether there exists a point x
0 

f. X which in some 

sense is ''nea r 11 to 1 ts image f ( x
0
). We would prefer an '1a lmost fixed 

point property'' which can be considered as an extension of the f.p .. p . .,_ 

e.g. so that it coincides with f.p.p. in the case of compact spaces 

and continuous mappings. Existing theorems on almost fixed points 

are discussed in section 10 of Chapter III, and in Chapter IV we 

prove the following theorems on almost fixed points in the Euclidean 

plane. 

THEOREM 1. Let a be a finite covering of the Euclidean plane by 

convex open sets, and let f : E2 ► E2 be continuous. Then there is a 

member U, cx such that U n f [u] f, ¢, or equivalently: there exists a 

THEOREM 2. Let~ be a finite covering of E by arcwise connect-
2 2 ed sets, and let f: E >E be topologically equivalent to an orien-

2 tation preserving isometry, i.e. there is a homeomorphism h of E on-

to itself and an orientation preserving isometry g: E2 ► E2 such 

that f = h-1gh. Then there exists a member U E. 0(. such that U f"\ f [u] i ¢. 
' 

In particular this is true when~ is a finite covering consisting of 

connected open sets. 
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THEOREM J. Let X be a unicoherent topological space and oc a 

covering of X which consists of three connected open sets. Let 

f : X ➔ X be continuous. Then there exists a member U E. « such that 
u n r [u] -I r;J • 

.An example is given \'1hich shows that ''orientation preserving'' 

cannot be missed in theorem 2, and that theorem 3 cannot be extended 

to coverings consisting of more than three sets. The mapping of this 

example is a transflection, i.e. a reflection followed by a trans

lation in the direction of the axis of reflection, and the covering 

has countably infinitely many components. Note that a transflection 

reverses the orientation. Thus we have the following 
• 

PROBLEM. Let« be a finite open covering of the Euclidean plane 
2 2 ' 2 E, and let f: E ~E be continuous. Does there exist a member 

U E- cc. such that Un f [u] != r;5 in one or botr1 of the fol lo~1ing cases: 

(i) f is an orientation preserving homeomorphism onto; 
(ii) the intersection of each pair of members of« has at most 

The 

a finite number of 

results of Chapter 
and van der 

c 01nponent s? 

N will also be published elsewhere 

\tJa 1 t [ 1 J ) . 
(de 

Groot, de Vries 

We did not survey the numerous applications of fixed point theo-

rems. Therefore we mention here a few examples and references.Arnold 

[1] (1949) used Brouwer 1 s fixed point theorem to obtain an elegant 
• 

proof of the fundamental theorem of algebra. In a description of a 

model of the brain, Zeeman [1] (1962) gave an interesting applica

tion of Brouwer's fixed noint theorem for then-cell. For expositions 
• 

of applications to functional analysis, the reader is referred to 

Graves [1] (1935), Nemyckil[1 (1936), Rothe 5 (1939), Miranda 1 

(1949), Leray 5 (1950) and Fuller J] (1962); for more detailed 

results, see e.g. Kyner 1,2 (1956, 1958), Marcus 1,2 (1956), 
Browder 6 (1957), Stokes 1 (1960) and Cesari 1 (1960). 

I wish to express my gratitude to Professor J. de Groot who 

suggested this study, in particular the problems which are discussed 

in Chapter DI. I am grateful to the Potchefstroom University for 

C.H.E. and the University of Amsterdam, at both of which institutions 

I studied for several years. I am indebted to Pro~essor R.D. Anderson 

and Professor V.L. Klee for valuable remarks. I wish to thank the 

Potchefstroom University for C.H.E. and the South African Council 
for Scientific and Industrial Research, from both of whom I received 
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bur-,••~ies during my atay 1n Amaterdaa. I am grateful to the Mathe
matioel Centre, Am,aterdara., tor the privilege or being &{)pointed a 

gu@et ••mb•tt of their start, and for the most helpf'ul cooperation 
that I received fra,1 them. 



CONVENTIONS AND DEFINITIONS 

The empty set will be denoted by 0. If X and Y are sets, and 

every element of X is an element of Y, vJe shall write X c. Y. It wi 11 

be explicitly stated whenever Xis rneant to be a E~oper subset of Y. 

If X and Y are sets, then the set of all points of X which do not 

belong to Y is denoted by X \. Y. 

A ~eighbourho9~ of a point subset] of a topological space is 
an ope~ set containing the point subset . If A is a subset of a 

metric space X with metric f, and f is a positj.ve number, then {xE.. X 
there exists a point a~ A such that f(x,a)< t \vill be denoted by 

Ut(A). If A is a subset of a topological space X, then A will denote 

the closure of A in X. A topological space will be called c9mpac~ if 

every open covering of it has a finite subcovering. A compact metric 

space is called a comp~ctµm. 

A continuum is a compact connected Hausdorff space. A continuum 

is gecomposable if it is the union of two proper subcontinua; other

wise it is indecomposable. A connected topological space Xis unico-

herent if, whenever X = f\ u B, fa. ~ ¢, 1) t ¢, wi tr1 both A and B con-

nected and closed in X, it follows that An B is connected. A contin

uum is t1eredi t?,ri ly de~ornposable [ indecomeo~ab~e, unicoherent if 

each of its non-degenerate subcontinua is decomposable [indecornpos
able, unicoherent] . 

A Peano continuum is a Iiau~dorff space which is the continuous 

image of the closed interval [0,1] (with the usual topology). It is 

well-known that the class of Peano continua coincides with the class 

of locally connected metric continua, and that a Peano continuum is 

arcwise connected. 

A dendrite is a Peano continuum which contains no Jordan curve. 

If A,B and Care three mutually disjoint subsets of a topological 

space X, then C s,eparates A and B in X if X \ C can be split into two 

disjoint sets, each of which is closed in X \ C, and respectively con

tains A and B. A tree is a continuum in which each pair of distinct 

points is separated by a third point. In this terminology, a dendrite 

is a metric tree (Whyburn [1, p.88]). A continuum is a tree if and 

only if it is locally connected and hereditarily unicoherent (Ward 
[2]). 
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The tertns mapping , function and tra11sformation will be used 

synonymously, and a mapping f of a set X into a set _Y will be deno

ted ii-by f : X ) Y. Further, j_f Ac X and B c Y, then f A = f( a) a e: A , 

r-1 -B = X€X f(x)e.B • 

Let X and Y be topoJ.ogical spaces, and let Jt(Y) denote the 

family of all non-empty subsets of y; The upper semi-finite u.s.f. 

_toEo,l~,gY for df(Y) has as a basis for its open sets all sets of the 

f'orm A e: dl-(Y) Ac U} , where U is a11 open subset of Y. The lower 
_semi-finite (1.s .f .) topo

1
logy has as a basis for its open sets all 

sets of the form A€: .1t(Y) A n U I ¢ • The finite topolog~ :ror dt( Y) 

has as a subbasis the sets AE:"4{Y) AcU, AnV /. ¢ , with U and V 
• 

open 1.n Y. 

A mapping f : X ► ~(Y) 1s called up er semi-continuous u.s.c. 
lowe~, se_mi-continuous (1.s.c.)., con~inuo_:uf? if and only if' it is 

• $ $ 

c_ontinuous in the usual sense with respect to the upper semi-finite 
lower semi-finite, finite topology for Jf(Y). This means that f·· -

~s continuous if and only if it is both u.s.c. and 1.s.c., and that 

f' is u.s.c. l.s.c._, if and only if, for each_ point x f. X and for 

each open set U of Y containing f(x) such that f(x) n U :/ ¢ _, _ther~ 

exists a neighbourhood V of x such that f(z)c U f(z)n U /¢~for 

all z EV. 

If jO(Y) is a subfamily of df_(Y), a mapping f : x-~ cY(Y) is 

called u.s.c. 1.s.c., continuous_ if it is continuous with res
pect to the relative topology for jP(Y) induced by dl(Y) endowed 

with the u.s.f. _1.s.f., finite topology. 

Various other definitions of upper and lower semi-continuity 
exist ( see e-.g. Strother ._1 __ and the references given there), but 

they are nearly all equivalent when X and Y are compact Hausdorff 
spaces and ~(Y)· 1s the family of all non-empty closed subsets of Y. 

A mapping f : X > cJ"(Y) is also called a ,nulti-valued or a set

valued mapping; for instance, if (J"(Y) is the family of all non
empty closed subsets of Y, then f is referred to as a "closed set
valued mapping". Occasionally it will then be convenient to rerer 
to a mapping g : X-)r Y as ''single-valued''. 

If AcX, BcY, then f A = U f(x) XE A , r- 1 B = 
x £X f(x) n B :/ <t, and the grapp G(f) of f is ·aefined to be 

(x,y) x £ X, y E Y, ye: f(x) • Thus f A and G( f) are defined as sub-

sets of Y and Xx Y respectively, and not o:r cY(Y) : and JC; x :J'(Y). 
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Let X and Y be sets arid let if(X) and V(Y) denote families 
of non-empty subsets respectively of X and Y. Let f: X ) J(Y) 

and g : Y · > 2f'(X) be n1appi ngs. A 9.?.i ncJ.dence point of X and Y un-
de11 f aD,d g is a point ( x

0 
,Y

O
)€ Xx Y such that x 0 E.g{y 0) and y 0e.:f (x

0
). 

We may also consider mappings f : X .. ➔ J(Y), g : X m > ~(Y), defined 

in the same direction. Then a coin,c,!.~~~ce point of X und~~ f and g 
. 0 

is a point x
0

E X such that f(x
0

) n g(x
0

) I¢. In the special case 
when y ::;::: X and g i s de f'i ne d by g ( X ) = { X } f Or 0 11 X €. X , XO 1 s 

called a fixed point of X under f. If fF is a family of' functions, 
1 o T II .,. II I I ns • 11 

each o.f which is on X to the san1e family jO( X) of subsets of X, 

and if' X has a fixed point under each member f£cy.·, then Xis said 

to have the fixeq pqint_ pro:eerty {.f .• p .. p._). f~r~ th_e_ fam_il;t: 1F • 
If x

0 
1s a fixed point of X under f : X > ~(X), we shall 

also say that the mapping f has a fixed point in X; also, that x
0 

is an f-invariant point. 
For the sake 

f: X->·Y induces 

of completeness, we note that a 
' 

a mapping :r* : X ) a'(Y) = {Y} 

mapping 

y E Y in the 
obvious way, and by a fixed point of X under f we shall mean a 
fixed point of X under f*. An analogous remark applies to coinc~
dence points. 

A topologi ca 1 space X wi 11 be said to lack the , r,,.,,•P .. p !,, if there 
exists a continuous mapping f: X--+-X such that f(x) Ix for all 
XE'. X. 

Let X be a Hausdorff space and Ha homology theory for X over 
• 

a group G. Then X is called acyclic (,,11th respect to G) if the ho-
mology groups Hn(X,G) (n=0,1,2, ••• ) are trivial, H

0
(X,G) being 

taken augmented. A continuum 1s her~~i~api~l-~.Cl9.lic if each of 
its subcontinua is acyclic. 

A topological space Xis an absolute retract absol~te neigh= 
bourhood retract if, for each norr11al space Y and each closed sub

set x• of Y which 1s homeomorphic to X, X' is a retract neigh
bourhood retract of Y. A necessary a11d sufficient condition for 

a compact metric space to be an absolute retract ~absolute neigh

bourhood retract..... is that it possesses a topological image in the 
w 

Hilbert cube Iw which is a retract ~neighbourhood retract~ of I. 
' 

{Borsuk 1 ). A compact metric absolute retract absolute neig~ -

bourhood retract will be denoted by AR ~ANR , and~n space which 

1s homeomorphic to a. re 1cract .... neighbourhood retract_ of a Tycho-
A * * noff cube I by AR ANR ~. 



16 

Euclidean n-space will always be denoted by En, and then

sphere in En+1 by Sn. 

The topological structure of the topological groups and topo

logical linear spaces to be considered will be Hausdorff, and the 

linear spaces will be real. 

For other terms in general topology, homology theory and lin-

ear analysis, the reader is referred to Alexandroff-Hopf 

ford and Schwartz 1 , Eilenberg 

Kuratowski [1] , Lefschetz [5,6,7 

• 

and Steenrod [1] , Kelley 

, Whyburn [1] and Wilder 

, Dun-

4 , 
[1] . 
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• 

• 
CHAPTER I 

The f'ixed point theorems of' Brouwer.,. Le fs chetz, 
Schauder, Leray, Tychonoff' and Kakutani 

1 .. 1. Single-valued mapping~-
•• 

• 

In one of a series of papers on curves defined by differential 

equations, Poincare 1 (1885) considered a continuous vector field 

over a closed surface and assigned an integer as index to each iso

lated singular point. He proved that if the surface is orientable 

and of genus I 1, then tl1ere exists at least one singular point. 

Around 1910 Brouwer 1-3 discovered the degree of a contin

uous mapping of one n-manifold into another. He used it to extend 
,, 

Poincare•s definition of ·._l1e 111.dex from two ton dimensions, and 

to prove his well-lcnown fixed point theorems for the n-cell., the 

n-sphere and the projective plane: 

• 

B1. Then-cell has ti1e f.p.p. for continuous mappings. 
B2. Then-sphere has the f.p.p. for continuous mappings of 

degree f ( - 1 ) n • 

B3. The projective plane l1as the I'.p.p. for continuous map

pings. 

In 1922 Alexander gave new proofs of B1 and B2., under 

the impression that they were proved for homeomorphisms only. He 

also extended B3 to projective 2n-space. Almost simultaneously 

Birkhoff and Kellogg ~1 (1922), under the same impression as 

Alexander, gave another proof of B1, and showed that it may be ex
tended to special function spaces, namely to compact convex sub

sets of en 0,1_ and L2 0,1_. (See Dunford and Schwartz 1 for 

definitions.) A short and eleeant proof of B1 was given by Knaster, 

Kuratowski and Mazurkiewicz 1 (1929). 

Another major step in the history of fixed point theorems was 

the formula of Lefschetz [1] (1926). Le_t f be a continuous mapping 

of an orientable n-manifold M, without boundary, into itself. Let 
-1 c· ) , z 1=1,2, ••• ,p; r=0,1, ••• ,n be a basis of the r-th homology r r 
group Hr(M) of M, taken over the rationals as coefficients, and 
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where f*r 
by f, and 

denotes the 
r the a .. are 

n 1J 

r=O 

18 

homomorphism of Hr(M) 
ratio11.al nu111bers. Let 

into itself in uced 
r r 

trace f *r == L a11 , 
i=1 

Lefschetz 1 s theorem 110w asserts that A (f) -:/ O is a suffi-
• 

cient condition for the existence of fixed points of Munder r. 
Lefschetz [2] (1927) almost immediately generalized this 

result to manifolds with a boundary. It was then extended to 

finite polyhedra by Hopf 1 (1929), and. again by Lefschetz 4~ 
* {1937) to the AR 1 s and AN11.'s., and eventually also to the HLC -

spaces and the quasi-complexes (Lefschetz [5] (1942)). Lefschetz 
also obtained analogous forr:iulas giving suf'ficient conditions for 

the existence of coincidence points of manifolds under continuous 

mappings. A full account of ti··1ese results is given in Lefschetz 
• 

5 ,6 • 
Each of the spaces considered above 1s a compact Hausdorf~ 

space, with all its rational Betti numbers finite and all but a 
:finite number of them zero. From the extended Lefs chetz :f orrnula 

it follows, for example, t1-1at every Al'ffi which is acyclic over the 
group of' rational numbers, t1as the f.p.p. for continuous mappings. 

The property of being acyclic alone is not enough to ensure the 
existence of fixed points, as was shown by Borsuk 5 (1935} who 

constructed an acyclic Peano continuum in E3 which can be mapped 
topologically onto itself without fixed points. Vercenko 1 
(1940) constructed a 3-dimensional continuum in E4 which has the 
properties of the space in Dorsuk's example and in addition is 

simply connected. On the other t1and, it has been proved by Cart
wright and Littlewood [1 J ( 1951) that if a topological mapping of 
a plane acyclic continuum X can be extended to a homeomorphism of 

the whole plane, then X must h.ave fixed points under such a map

ping. The mapping in the example of Borsuk 5 can be extended to 

a homeomorphism of E3 , so that this additional condition is insuf'

ficient to ensure the validity of the theorem in three dimensions. 
The fixed point formula of Lefschetz 1 (1926) included al

most all tl1e f'ixed point theorems existing at the time of' its pu-

blication, e.g., the above mentioned results or Brouwer 1-3 • 
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There are, however, fixed point theorems which escape the formula 
,, 

and its extensions, e.g., the Poincare-Birkhoff-theorem 

(G.D. Birkl1off 1 (1912)). This theorem states that if f is a 

homeomorphism of a plane annular ring bounded by two concentric 

circles c 1 and c 2 , which moves all the points of c1 in one direct

ion and all those of C 2 in tl·1e opposite dire ct ion, then either 

some Jordan curve J exists in the ring surrounding the circle c1 
which does not meet its image f~J~, or else there are exactly two 
fixed points, and this in spite of the fact that /\(f) = O here 

(Le.fschetz 7,P .16 ) . (I?or extensions of the Poincare-Birkhoff

theorem, see G.D. Birkhoff [2] (1931) and Rey Pastor _1 (1945).) 
In contrast to the homology arguments used in establishing 

the Lefschetz fixed point formula, various authors used convexity 

arguments to extend the Brouwer fixed point theorem for then-cell 

to compact convex subsets of linear spaces. Thus,_in 1927 Schauder 
1 extended the results of Birkhoff and Kellogg _1 to metric to

pological linear spaces having a linear base. This assumption was 

then dropped, and in 1930 Schauder 2 obtained the :following re
sults: 

S1. A compact convex subset of a Banach space has the f.p.p. 
for continuous mappings. 

S2. A convex, weakly compact subset of a separable Banach 

space has tl1e f .p .p. for weal<:ly continuous mappings. 

A result o:f Mazur 1 (1930) states that the convex closure 
of a compact subset of a Banach space 1s compact. Krein and 
V 

Smulian [1] (1940) extended this result by showing that the convex 
• 

closure o:f a weakly compact subset of a Banach space 1s weakly com

pact, and they used it to establish the following improved form o.f 
S2: 

S 2a ... If H is a 

f: H •His weakly 
weak closure off -
under f. 

closed co11vex subset of a Banach space, and 

continuous such that f H is separable and the 
is weakly compact, then H has a ~ixed point 

Let X be a Banach space. With the 
rem mentioned above, theorem S1 may be 
following three equivalent :forms: 

assumption of 

stated in any 
Mazur's theo

one of the 
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S1a. If f : X ➔ X is continuous and such that f,__X-' is bounded, 
and the in1age of each bounded set has a compact closure, then X 

has a fixed point under f. 

S1b. If His a closed convex subset of X and f: X-a~X is 
continuous and such that f[HJ is compact, then H has a fixed point 

under f. 

S1c. If His a compact convex subset of X and f : H >H 1s 

continuous, then H has a fixed point under f. 

S1c and S1b was extended to locally convex topological linear 

spaces by Tychonoff 1 (1935) and Hukuhara ~1 (1950) respective
ly. Using the fixed point forrnula for ANR' s (Lef'schetz ._5 ) , 
Browder .~3 (1959) obtained the following extensions of S1a and 
S1b, in which t}1e hypothesis about the mapping is replaced by a 

corresponding hypotl1esis about one of the iterates o:f the mapping: 

tive 

S1a 1 • If f: X· >Xis continuous and such that for some posi-
tn integer m the set f 1 X 

--' 
is bounded, and t~1e image of each 

bounded set has a compact closure, tl1er1 X has a fixed point under 

f. 
S1b'. Let Hand H1 be open convex subsets of X, H

0 
a closed 

convex subset of X, H
0

c H1 c H, f : H ➔X continuous and such that 
f~H is compact. Suppose that for a positive integer m, fm is well

m i 
defined on H1 , ~Yo f H

0 
c H1 , while fm H1~ c H0 • Then H0 has a 

fixed point under f. 

Browder 3 observed that the methods applied in the proofs 
generalize directly to locally convex topological linear spaces 
and give extensions of Tychonoff's generalization of' Schauder's 
theorem to locally convex spaces. 11he following interest:tng con
sequence of the Lefschetz fixed point theorem is stated for com

parison with form S1c of Schauder's theorem (Browder 3 ): 
Let A be an ANR, or a quasi-complex in the sense of' Lefschetz 

5 • Let f: A >A be continuous and suppose that for some posi
tive integer m, fm A is contained in a closed acyclic subset B of 
A. Then A has a fixed point under f. 

We conclude this section with the remark that it is not known 
whether a compact convex subset of an arbitrary topological linear 
space has the f.p.p., not even when the space is metrizable· (Klee 

• 

6 , p. 285; 7, p. 291 ) , and that Le rs:che tz' s proof :for the asser-
tion that a compact convex subset of a metric linear space has the 
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f.p.p. ( Lefschetz 
Klee 9 • 

--6, p.119 ) is in 
1) 

e1,..r>or., as 

convex subset of a metric linear space X, 
then 

If His a compact 
(Klee 61 ) : 
(i) 

( i 1) 

( iii) 
(iv) 

• • 

subset of a metric space X; 
every nc-! J.gl1bourl1ood of H in X contains an open .... and 

also a cl<)Sed] neigl1bourr1ood \·1l1ich is contractible, 
locally contractible and an AH ; 

His contractible; 

His locally contractible. 

An example of Borsul-:: '--6 ( -194,3) sl1ows tl1at a space may satis-
fy all four co11d.it1011s wi,ci1ou-:- beinL an Alt. Kinoshita 2 (1953) 
constructed a space wr1icl1 satisfj_es (i), (ii) and (iii) but lacks 

the f.p.p. It seems to be u1-il-::nov1n wl1etl1er the f.p.p. for H follows 

from (1), (ii) and (iv}, or from (1), (iii) and (iv). However, i.f 

a space satisfies (1), (iii) cli1d (iv), and in additic)n ·.ls fi11::t.te

dimensional, then Lefscr1etz'sproof (Lefscl1e::z 6, p .... 119 ) is ·j.n 
• 

order (Klee - 9 ) ; su~i1 a space then is an AR and hence has tl1e 

f.p.p. for continuous mappings. 

For arbitrary topological linear spaces, we have the follow
ing result (Klee 7 ): 

Let X be a topological linear space and Ha compact retract 

of X which admits arbitrary small continuous displacements into 

finite dimensional subspaces of X, i.e., for each neighbourhood U 

of the origin in X there 1s a finite-dimensional subspace L of X 
and a contin1.1ous mapping g : H >L such that g H is compact and 
g c::H+U. 

Then H has the f6p.p. for continuous mappings. 

1.2. The Leray~~chauder t:·1_eory ,of ;:11,e f'~~-e,d _point. index a~,d 

its extensions 

Except .for minor changes, this section is taken ~11erbalJ.y from 
Browder 5 (1960). 

In the classical fixed point theory of continuous mappings, 
culminating in the Lefschetz fixed point theorem (Lefschetz ~1,2 ), 
one is concerned with the algebraic number of fixed points of a 
---------------
1) 

However, see the remark preceding the last theorem of this section. 
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continuous mapping f of a compact, locally well-behaved space X 
into itself. Beginning with tl1e work of Leray and Schauder 1 and 
Leray 1 in 1934 on tl1e local degree for completely continuous 
displacements 1)in a Banach space, the problem has arisen of local

izing this index of fixed points, i.e. of defining an algebraic 

measure of the number of fixed points of the mapping f on each 
open subset of X whose boundary does not intersect the fixed point 

• 

set and of doing so in a way which preserves the principal proper-

ties that make such a measure useful in the growing number of ap
plications which the fixed point theory has found in analysis. 

The principal results in this direction are to be found in 
the papers of Leray 2,3,4-, written during the Second World War 
and published shortly afterwards, in which he constructed a theory 
of the fixed point index for continuous mappings of convexoid 
spaces, a class of spaces sharing some of the properties of finite 
polytopes and of finite unions of compact convex sets in linear 
spaces. Their precise definition is the following: 

A compact 
has a covering 
·2,3,4 ): 

topological space 

U t having the 

Xis said to be convexoid if it 
following properties (Leray 

" (a) Each Ut 
homology 

is closed and acyclic 
theory). 

V 

(with respect to Cech 

the collection if it is non-empty. 

co-

(c) Each point of X possesses arbitrarily small neighbour
hoods each of which is the union of a finite number of 
the sets u~ . 

Leray's theory in its initial foI~111, though definitive for 
'• 

' 

the class of spaces which he treats, suffers from the disadvantage 
that the class of convexoid spaces fits in poorly with the usual 
classification of topological spaces by their local regularity 
properties (i.e. local n-connectedness in the sense of homology or 

homotopy). In a sense, the requirement that a space be convexoid 

is a condition analogous to triangulability for a manifold, since 

---------------
1)Let X be a Banach space, A a subset of X and i : A ➔ A the iden

tity mapping. A mapping f: A ➔ A is a completely continuous 
displacement if f is continuous and (i-f) A has a compact 
closure in X. · 
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it require~ that one should be able to build up the space by past

ing together regular pieces (no longer simplexes, but cohomologic

ally trivial sets) in such a rashion that their intersections 
' sr1ould also be regular. Tl·1e difficulty can be illustrated by tl1e 

.fact that it is not clear wl1etl1er an Euclidean manif'old (i.e. one 
without differentiability or triangulability conditions) is con
vexoid. 

Motivated by t~ie desire to co11struct a theory o-t: the :fixed 
point index in a context similar to that in which Le:fschetz _5~ 
has proved his fixed poi r1 t tl1eorern, Browder 1 ( 1948) in l1is 

Princeton Doctoral thesis (written under the joint sponsorship of 
Lefschetz and Hurewicz), established a theory of' the fixed point 
index for ANR*•s usi~ as a tool Leray's tl-1.eory as applied to 

finite polytopes. (See als() Browde1" 2 ) • ) The results and the 
general philosophy of BrovJder 1 are summarized by Bourgin 

1, p.229-235 • In his M.I.T. Doctoral thesis of 1953 {written .... 
under Hurewicz), O'Neill 1~ rederived the principal results of 

results of o•Neill's paper, Bourgin 2 (1955) has recently re-
. * 

established tl1e tr1eory o:C :·11e fixed point index for ANR • s, along 

lines similar to those of Browder 1 • 
• 

Leray ... 5 ( 1950) poi11ted out the possibility of extending his 
theory from convexoid spaces to retracts or convexoid spaces 
(which include the ANR~'s. ~uch an extension has recently been 
carried tl1rough in detail by De lea nu 3 ( 1959) who also applies 

some sharpened forms of Leray• s results gi\'en by Leray ._6 ( 1959). 

The theory of the loc a 1 f"ixed poi 11t index, as 1 ni tia ted by 

Leray-Schauder 1 ( 1934) and developed arnongst otr1ers by Leray 

(1950), Nagumo 2 {1951) and Altman 2,3_ (1958) is appli
cable to loca,l~y C?nvex. topological linear space,....s. For Banach 

spaces, a homotopy extension tl·1e orem of Granas ..... 1...,, ( 1959} yields 

many of the useful conclusions of the Leray-Schauder theory while 
avoiding tt1e more complicated 11otions of the rest. Klee 7 __ ( 1960) 
showed that it is possible to expand to an arbitrary topological 

linear space both the Leray-Schauder theory and the homotopy ex
tension approach of Granas. 

of reference of ANR 1 s 9r of retraction properties in general, and 
• 

to take up the theory of t1-1e fixed point index on the combinatorial 
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or homology level on whicr1 it is treated by Leray 4..... but under 
more general hypotheses, similar in their nature to (though not 
identical with) hypotheses made by Lefschetz 5,p.322-327_ in his 
treatment of the Lefschetz f'ixed point theorem f'or t·he class of 
quasi-complexes. Intuitively, one should expect that the fixed 
point index, or algebraic number of fixed points, as the latter 
name implies, should be a combinatorial or homology concept de
f'ined in a class of spaces which are defined by combinatorial 
restrictions rather than by restrictions upon continuous mappings. 
Basically, as in the case of finite polytopes treated in the last 
chapters of Alexandroff-Hopf 1 .... , his idea is to identif'y the 
fixed point index with a _count of the number of times some sort of 
element is mapped back on itself by the given mapping f. He ob

tains such a count in a very natural form, namely the alternating 
sum of the traces of' ir1duced chain mappings of nerves of X. The 
general approacl1 goes back to Lefschetz 5 • Browder' s proof was 
announced in Browder 2 ( 1951). The basic problem is to f"ind the 
appropriate algebraic analogues of the properties of the f'ixed 
point index for chain mappincs into a dif'ferential graded module 

G of a differential graded submodule F. 
Browder 5_ introduces an axiomatic fixed point index in the 

.following way: We are given a category of' compact topological 
spaces X and of permissible continuous mappings h : X· ➔ X. By a 
.fixed point index on this category the following is meant: i.f X is 

. ,l , ~ I IUI 14 I, ; LU t ii 11!1 ~I 

a space 
mapping 

teger i 

in the category, O an open subset of X, f any continuous 
- -of O into X, then if f has no fixed points on 0\0, an in-

(r ,o) is defined having the following four properties: 
' 

( a) If ft, O ~ t ~ 1, is a homotopy of f 
O 

to f 1 , where all the 
ft are mappings of O in~o X and none l1ave any fixed points on o\o., 
then i (f0 ,0) = 1 (r1,o). (Invariance under homotopy.) 

' 

(b) If O contains a finite family of mutually disjoint open 
sets contains no fixed points of 

the mapping r : 5- > X, tl1en 

where each 
restricted 

' 

i (f,O) = i (f.,Oj) 
j=1 

of tr1e summands on tl1e right denotes the index of the 
- -mapping f oj. In particular, if O itself contains no 
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fixed points off, then i {f',O) = o. (Additivity of the index.) 

( c) If' O = X, then i ( f", 0) = A ( f), the Lefschet z number of -
f, where /\(f) = Z:-r> 0 (-1)r trace (f ) , and f' is the endo-*r *r 
~orphism of Hr(X) induced by f'. (Hr(X) is the r-th dimensional 

Cech homology group of X with rational coefficients.) In particu

lar, (unless we adopt a generalized definition of trace as in 

Leray [6] ) , one must assume tl·1at X has finitely generated homo
logy groups, all but a finite number of which are trivial. 

(Normalization}. 

( d) Let x1 and x2 be two spaces or the category, h a pe!'tnis

sible mapping of x1 into x2 , o2 an open subset-of x2 , fa con-
-tinuous mapping of o2 into x1 . Let o1 = 

-has no fixed points on o2 \ o2 • Then 

(Commutativity). 
The property 
( d 1 ) Suppose 

and the injection 

• 

i (hf,02 ) = i (fh,01 ). 

(d) includes as a special case, the following: 
• 

X and X' are members of' the category and XcX 1 

mapping j: X' >Xis permissible. Let Obe an 
-open 

:r 0 

subset of X, :r: O ➔ X a continuous mapping such that 

on 6 \ o. Then c X' • Suppose f has no fixed points 

Browder 5 
point index f'or 

i (f',O) = i (f., X' () 0). 

proceeds to establish the existence of a f'ixed 

* more general categories than the ANR •s. The cate-
gories which he considers are subcategories of the categories or 
semi-complexes and semi-complex mappings. One such includes all 

HLC* spaces in the sense of Lef'schetz 5 , and all their contin
uous mappings. The def'inition of a semi-complex is motivated by 

deriving its properties from well-known properties of ANR's 
(Lefschetz 6 ). Unlike the latter, however., the structure of this 
class of spaces is restricted by conditions on chain mappiq.gs and 
not on continuous mappings • 

• • 

. DEFINITIONS (Browder 5_ ): Let X be a compact, locally con
nected Hausdorff' space, and let Sl. be the family of all finite 

open coverings of X. For oc., p e. n., write p > ex if ~ is a ref'inement 
of ex. For OC.€.0.., let Nee. be the nerve of ex., and Cn(Na) the vector• 
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space of oriented n-chains with rational coefficients. 

The suppo~,t. or a, ,simP~.ex_ a e:: Na , Su£( o-}_, is de fined to be the 
union of the closures of the open sets of o- which are vertices of 

er. The ,,support ,of a ch,ain g e Cn(Ncx), Sup(5), is de:fined to be the 
union of the supports of tl1ose simplexes of NOL whict1 have non-null 
coefficients in the expansion of g. 

Let C(Na) be the differential graded module of oriented 
chains of Na with rational coef'ficients, let doc. be the dif.feren
tial of C(Na), which is of degree (-1) .. In the following defini
tion, by a chain mapping of C(?lcx) into C(N13 ) is meant a graded 
homomorphism h of degree zero over the rationals for which, as 

usual, d~ h = h dtt, but in addition, it is also assumed that h 
carries integral chains of Np into integral chains of N~. Two 
chain mappings h and h1 of C {Na) into C ( Np) are -~haiq, homo.topi,c 
with chain homotoP¥,,D if Dis a graded homomorphism of C(Not) into 

C (Np) of degree { +1) such that h-h1 = d~ D + D d cc. • 

Let X be a compact., locally connected Hausdorff space.Xis 

said to be a ~e~i-cQ~Pl~x if there is a ~~~i-~9~plex structur~ 
defined on X, where by the latter is meant the following: (A) 1 For 

each A ~ ..n. there exists cx.
0 

(X) e .n and a family C7-,. = ccx () of one 

or more chain mappings ca.p : Cn(Np) > cn(Ncc.) for 0<.> p >Ol0 (A) and 
all n ~O., such that the following properties hold for these chain 

mappings: 

of' .. 

Cn(N~) into Cn(Nt) induced by one of the natural injections or N~ 
into Np, then for every cx>p>~>~(;>,..), the cl1ain mapping coc.13- is 
chain homotopic to c~, j,~ with a chain homotopy small of order 

every simplex 

O"ENp and the corresponding elementary n-chain g with coefficient 
1, 

Sup(g) U Sup(c«~ 

is contained in a single element of A • 

(ii) For ~>oc.>p>cx.
0

(A) the chain mapping c<XP 

topic to j oc~ 

is chain homo
that 

is contained in a single element of A for each elementary n-chain 

g of Np. 

• 
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(iii) If p>E;>Ol
0

(A), then for every n~O the chain mapping 

cpt jt~ induces an endomorphism of Hn(Np) which is idempotent and 
whose image is the submodule of Hn(Np) consisting of coordinates 

of elements of Hn{X). 

(iv) If A'> A, tl1en cx.
0

(A')>~(X) and C)I., is a subfamily of 
C-x. 

The most important differences between the definitions of the 
quasi-complexes (Lefschetz 5, p.323 ) and the semi-complexes can 

be summarized ..... in order of increasing_ importance as follows (Brow
der 5, p • 26 9 ) : 

( 1) In tl1e de f"ini ti 011 of' t11e semi- complexes much more detail

ed 

s che t z ca 11 s ch a in de riv at 1 o ns ) t 11 an i 11 t r1 e def i nit ion of a quasi -

complex, where for exainple the cha in mappings c °'P are assumed homo

logous ( which for ra t101-ial coefficients 1s equivalent to being 

chain homotopic) while here it is assumed that they are chain ho-, 
motopic with small cl1ain l1omotopies. 

(2) In a quasi-complex, condition (iii) is replaced by the 

stronger condition that c~~ jtP (at least fqr a cofinal subset of 
r-, and~) induces an +_s<?rn.o.rphj_sn1 of Hn(Np) onto itself. It follows 

immediately from this (as was first noted by Dyer 1_) that a· 
quasi-complex has isomorphic homology groups with the nerve of any 

, 

sufficiently f'ine covering p. Consequently it is unclear (despite 

tl1e statement in Lefsc11etz 5., p.322 ) that the class of quasi

con1plexes does include tr1e class of ANR' s or the more g~neral 

class of compact spaces whicl1 are uniformly locally connected in 

all dimensions in the sense of homology, the HLC* spaces of Lef
schetz. {See for the last, Lefscr1etz 5 .... , Wilder 1 ) • On the 

other hand, the axioms for tt1e semi-complexes are rather obviously 
* satisfied by tl-ie HLC spaces. 

Definition of .. ,.,t,he,, ,f,i~~-d Eoin_t inde_x (Browder 5, p.277 ) • 
' 

Let X be a compact Hausdorff space which is a semi-complex. 

Let O be an open subset of X. Suppose we are given a continuous 

mapping f : O >X without any fixed points on O \o. 
Let ex. £...0.. We construct a closed sub-polytope N'(:)(. of Noc. cor

respondi11g to the open set O, 1rvr1ere N:X is the smallest closed sub

polytope of !-Joe. containi1--ig all tr1e vertices of N~ which cor1.,.,espond ., 
4' II to elements Ucof ex which are contained in o. The boundary NO( of N!:x_ 
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in tt1e simplicial complex N~ consists of the smallest closed sub
complex of Nt« spanned by vertices corresponding to elements U of 
ex. such that tl1ere exists u1 eoc. with Un u1 -/: ¢ and u1 n {X\.O) I ¢. 

-1( ) -1 Let p e _n_, and let f ~ = f U U ie: r . For each 
ex.> 
N~ in the following way: For eacl1 vertex qu of Nh , let 

f ~ex can be extended to a simplicial mapping o'I' Nh into Np and 
any two such mappings are contiguous in NP and hence homotopic 
with homotopy paths lying in simplexes of Np • 

Let q°" denote the standard projection of C(Ncx.) onto C(N'«), 
and let fpa also denote the anti-chain mapping obtained 
simplicial mapping f (?>OC. , as follows: For each elementary 
of C (N'c,. ) corresponding to an n-simplex O", we set 

0 if f(o-) has dimension less than n 

from the 
chain g

0 

whe~e gf(a) is the elementary cr1ain in C(Np) corresponding to the 
n-simplex f(o). We extend the homomorphism fpa by linearity, and 
the result is trivially an anti-chain mapping •. 

THEOREM (Browder 5, p.278 ) . Let AE..n, with A composed of 
connected open sets V. Consider the family of mappings c~p in CA 
satisfying the conditions (A)1 (p.26). Let 

We define 

1 
°'P 

f P.°' J 

i(f,O). It is independent of A and e<.
0

(A), for A sufficiently fine. 
The. fixed point index i{f'.,O) as defined above depends upon a 

given structure of a semi-complex on X, i.e. a system of chain 

there could very well be several such distinct structures on the 
space X, it is not clear a priori that this index as de.fined is 
unique, nor how one can pass from the properties of the index on 
one semi-complex x1 to those on another, x2 • To avoid the second 
dif'ficulty, the rollowing definition is made 



29 
DEFINITION (Browder 5, p.286 ): Let x1 and x2 be two com

pact spaces., each equipped with the structure of a semi-complex. 
Let the chain mappings of the first semi-complex be denoted by 

h : x1----::>X2 is said to be a .s.~mi,: cp~plex ~appins with respect to 
the given semi-complex structures on x 1 and x 2 ir, given an open 
covering A of x2 , there exists an open covering A' of x1 such 
that the following 1s true: 

If 
t > ~ > cx.

0 
( A) , 

ex > r > C\, ( ?\• ) , 

Ol > h- 1 (';)., 

and if the simplicial mappings h,a of N~, 1 into Nt, 2 (N~, 1 the 
nerve or x as a covering or x1 , N t, 2 the nerve of l; as a covering 
of x 2 ) and h1:p of N 13 , 1 into N~, 2 are induced by the continuot1Js 

map-ing h., and it: c( 1 ) is a cl1ain mapping lying in the ramily 
1 ap . . 

responding to the covering A in the semi-complex structure on x2 , 

then the chain mapping 

with a chain homotopy D, such that for every elementary chain g of 

Np ., 
h(Sup(g)) U Sup{D9) 

is contained in a single member of A • 

A category of compact spaces and continuous mappings is said 
to be a category of semi-complexes if each space has a specified 
semi-complex structure and if all the continuous mappings are semi-

.) 

complex mappings. 

REMARK (Browder 5, p.287 ): For a member X of the family of 
HLC* spaces there is a largest semi-complex structure which is es
sentially unique, and all continuous mappings are semi-complex map
pings with respect to this structure for given spaces x1 and x2 • 
With this prescription, the category of HLC * spaces and all their 



30 

continuous mappings is a category of semi-complexes. 
Browder 5 showed that the fixed point tndex as defined above 

is unique for the category of semi-complexes, and satisfies proper
t 1 es ( a ) , ( b ) , ( c ) and ( a ) st a t e d on p . 2 4 . In pa rt 1 cu 1 a r , the Le f -

schetz fixed point theorem holds for such spaces. 

1.3. ~ulti-va_lue9 ~appwings such _that th_e image ~f' ea,c_h EO~!')t 

is acyc lie 
' 

In 1941 Kakutani 2 extended Brouwer's fixed point theorem 
for then-cell to multi-valued mappings by proving that a compact 
convex subset of the Euclidean space En has the f.p.p. for upper 

semi-continuous closed convex set-valued mappings. 
In 1946 Eilenberg and Montgomery 1 showed that a Lefschetz 

number can also be defined for certain multi-valued mappings of an 
AR into itself. In doing so, they made essential use of the Vieto
ris mapping theorem {Vietoris 1 ). If X and Y are compacta, then 
a continuous mapping f : X, .,y is said to have property (V_~ if., for 

each y £Y, the set r- 1 (y) is acyclic with respect to Vietoris homo

logy. (See Lefschetz 5, p.240 or Vietoris 1 .) The mapping theo
rem of Vietoris states that if f: X- ~Y satisfies property {V), 

then the induced homomorphism f* r : Hr(X) , Hr(X) is an isomorphism 
onto, for a 11 r ~ 0. Thus aided, the following theorems a re proved: 

EM1. {Eilenberg and Montgomery 1 ). Let X be an ANR and Ya 
compactum. Let g,h : Y ~x be continuous functions, of which g sat is -
fies property (V). Let /\ (g,h) = L( -1 )r trace (h g-1 ). If A (g.,h)!O., . *r -r 
then there exists a point y

0 
£ Y such that g(y

0
) = h(y

0
). 

EM2. (Ellenberg and Montgomery (1] ) . Let X be an ANR and 
f : X ,,,. "~ t;(x) upper semi-continuous, where ~(X) denotes the family 

of non-empty closed acyclic subsets of X. Let 
Y = ( x ., x 1 

) , X x X I x ' ~ f ( x ) . Define the ma 1-, pings g , h : Y , ~ X a s 
follows: g(x,x•) = x, h(x,x') = x'. Then g satisfies property (V) 
(g-1 (x) is homeomorphic to f(x)), and t.-Je can form the Lefschetz 

number A (f) = A(g,h) = 2:(-1)r trace (h g- 1 ). Then, i.f /\ (f) IO, 
*r *r 

there exists a point x
0

e. X such that x
0
~f(x

0
). 

This implies the following generalization of Kakutani's theo
rem: 

EM3. 
and f : X 

(Eilenberg and Montgomery [ 1 J ) .. Let 
, > 'C(X) upper semi-continuous, where 

X be an acyclic ANR 
' 

~(1X) denotes 
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the family o:f non-empty closed acyclic subsets of X. Then there 
exists a point x

0
e X such that x

0
€ f(x

0
). 

Using convexity arguments, Bohnenblust and Karlin 1 (1950), 
extended Kakutani's theorem to Banach spaces, and it was then 

extended to locally convex topological linear spaces simultaneous
ly by Fan ~1~ and Glicksberg 1 in 1952. 

Let X be a Banach space and ~ (X) the family of non-empty 

closed convex subsets of X. Browder [3] (1959) called a mapping 
f : X > ~ (X} ,c,omplete ly, contini;i.ot1;s if the :following conditions 
hold: 

(1) The graph off, G(f) = (x,y) x,ye;X, y€f(x)}, is a 
closed subset of" X x X. 

(11) For every bout1ded subset S of X, there exists a compact 
subset Ks of X such that f(x) n Ks I ¢ for x £ S. 

(111) Let Kand K1 be compact subsets of X such that 
f(x)nK1 :/ rtf for xeK. Let x

0 
be a point of Kand£ a positive 

constant. Then there exists 6 > O such that, for x E. K with 
x-x0 < 6 , we have f(x) n K1 c UE ( f(x}) (l K1 and 

f ( x O ) n K1 c U t: ( :f ( x ) ) n K1 • 

Browder 3 showed that if f: X> ~(X) is a completely 
continuous mapping such that, for some positive integer m, 
fm X is a bounded set, tl1en X has a fixed point under r. 

In 1952, Begle 2_ proved a very general form of the fixed 
point :f'orr,1ula which includes the results of Eilenberg and Mont
gomery 1 , and those of Fan 1 and Glicksberg 1]. The proof 
uses only homology theory and none of the homotopy properties in
volved in the notion of an ANR. Consequently, the theorem is 
shown to hold for a much larger class of spaces, which he calls 

~ le spaces. The le spaces of Begle 3 are the same as the HLC 

spaces of Lefschetz _5 • (Also see Lefschetz _6,p.123-126~ and 

Begle 1~ .) The proof also makes essential use of the Vietoris 
mapping theorem, for which he gives an extension to compact 
spaces, using a generalized form of Vietoris cycles. 

We now proceed to state and prove Begle's theorems as in 
Begle [2,3] . 

' 
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DEFINITIONS (Begle 2 ): ' 

Only compact Hausdorff spaces are considered. By a covering 
µ of a space X we shall always mean a finite covering consisting 
of open sets. In this section we shall write V<JJ ifv is a re-
finement of p. If A is a subset of X, we denote by St A the 

* set U U e p I A n U /: ¢ } , and by St ..____. _ or p we denote the 

covering St (U, ~) U e. r4 • If rt*< v, we say that p. is a star 
refinement of v, and we write t.J < * ·v. Every covering has a star 
refinement ( Tuckey 1,p .1+7 ) • For each covering \-A , we choose one 

. . 

of its star refinements and denote it by ~p. 
Ann-simplex on of Xis a set of n+1 points of X, and these 

are the-vertices of an. If~ is a covering and A a subset of X, 
we write diam A < ~ if there exists U E:. f-J such that A c U. X{ p) 
is the simplicial complex consisting of all simplexes o- such that 
diam o < ~ • Clearly, if v < rt, then X{v) is a sub complex of 
X( t-1) • If A is a subset of X, then x(p) n A 1s the subcomplex of 

X{ p) consisting of all the simplexes of X( p) which are contain
ed in A. 

We shall consider only finite chains on the complexes X( p). 
The coefficients, unless otherwise stated, are in an arbitrary 

• 

· Abelian group. If c is such a chain., we denote by c the finite - n n 
s1mpl1c1al complex consisting of all the simplexes on which en 
has non-zero coefficients together with all their faces. 

In what follows we make frequent use of the Cartesian pro
duct_of a s1mplic1al complex Kand the closed un~t interval 
I= 0,1, so we recall here the definition of this product 
(Lefschetz 5,p.307....1). Let the vertices of K be simply ordered 

m 
. in an arbitrary fashion. Let a1 i=1 be a copy of the collection 

m 
a1 of vertices of K. For each n-simplex a =(a ,a1 , ••• ,an) 

1=1 n o 
of K, consider the n+1 simplexes of the form 

(a0 ,a1 , ••• ,a1 ,a{,···,a~). The collection of all such simplexes, 
together with all their faces, constitute the product K x I. K is 
called the base or K >< I, and the set of all simplexes of K x I, 

all of whose vertices are primed, is called the top of K x I. 

For iiach simplex crn = ( a
0

, a 1 , ••• , an) of K, let 

1=0 n n 

' 

For any chain en of K, a direct calcula-
tion shows that · 
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+ DF(c) = c' - C, n n n 

where c~ is the chain in the top of K x I fo1•t11ed by replacing each 
vertex of each simplex of en by the corresponding primed vertex, 
and Fis the boundary operator. l!ence, if z is a cycle of K, n 

1.e. z ru z ' on K x I • n n 

In one place (lemma 3) it will be convenient to consider 
K x I as a cell complex rather than as a simplicial complex. Thia 
time the elements of Kx I are all the cells of the form 0)(.0, 

crx1 or axI, where o runs through the simplexes of K. The 

boundary relations in K x I are: 
F{O-x o) = (Fa) x o, F(cr x 1) = (Fo) x 1, and F(axI) = 

(Fa) x I+ (ox1) - (crx 0). Then for any cycle z on K, we have 
F( z )( I) = ( z x 1) - ( z x o), i.e. z x 1 rv z x O on K x I. 

A collection zn = zn( p) of n-cycles of X, one for each 
covering ~ of' X., is a generalized Vieto~_i,;>, n-c:ycle {n:-:V-cyc_~.~) 

if zn( ) is a cycle of' X( p) and if, whenever v < p , 
zn(v) N zn( p) on X( t,.t). The cycles zn( p) are the coordinates of 

zn. If zn and z~ are two n-V-cycles, then zn+z~ is the n-V-cycle 
whose coordinate on X{ t-,1) 1s zn( p) + z~( r4). Further., znN O if 

zn ( p ) N O on X ( p. ) for every p . The n-dimens ional Vietoris homo
logy gro~p of X., H~{X), is the factor group of the group of n-V
cycles of X by the subgroup of those which bound. 

Let X and Y be two spaces and f' : X -- ➔ Y a continuous mapping. 

a covering of X. Clearly, f maps each simplex of X( p) onto a sim
plex of Y(v), and hence is a simpl1c1al mapping of X( fl) into Y(v). 

We define f(z) to be the n-V-cycle of Y whose coordinate on Y(v) 
n V 

is f{zn(p )). This clearly induces a homomorphism of Hn{X) into 

H~{Y). 
The Vietoris homology groups defined above do not give any 

new homology properties of X. If Xis compact metric, it is easy 
to see that H~{X) is isomorphic to the ordinary Vietoris homology 
group. In the general case 3 these groups are isomorphic to the 

'V 

corresponding Cech groups, as we now show. 

• 
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Given a covering t,.t of X, let v = *p . For each ver~ex a of 
X(v), choose an element V€ v such that a e. V and then choose an 

element Ue p such that St (V,v) c U. Set 8{a) = u. Then Sis a 

simplicial mapping of X(v) into the nerve N( p) of f-l· 
Next, given a covering v, let ~ = *v • For ea ch element We. ; , 

let ~(W) be a point in W. Then f is a s1mpl1c1al mapping of N{~) 
into X(v). 

Now, let yn be an n-V-cycle. For each covering p , let 

is a Cech cycle and that 8 induces an isomorphism of H~(X) onto 
C . ""' 

Hn(X), the· n-d1mensional Cech homology group o~ X. 
¥ 

1nga of X. Let v1 = t--'1 and v~ p 2 , and choose a common refine
ment \J of v1 and v2 • By the definition of zn, we have 

zn( P1) = 6 1 Yn( v1)' 

zn( t,A2> = 92 Yn( v2) • 

Since v < v1 , 

Therefore 

Similarly, since v < v2 , 

and hence 

TT 02y n ( v) AJ 1f 82Y n ( v 2 ) on N ( ~ 1 ) , 

where TT is the projection of N( t,t 2 ) into N( p 1 ) • Tr:s.1:s 1 t will be 
sufficient to show that 

• 

(1) 

In order to show this, let K = yn{v) • We define a s1mpl1-
cial mapping 4-' of K x I into N( 1--11). For each vertex a of the base 
of K x I, let 4J ( a) = TT 02 ( a)., and for each vertex a• of' the top 
of K x I, let 4-1 (a') = 01 (a) • 

To see that this is indeed~ simplicial mapping, let 
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(a0 ,a1 ., ••• ,ai,a1, .... ,a~) be a simplex o:f K x I. By the definition 

of e2 , there is, :ror O ~ j ~ 1., a set V 2J € v 2 containing a j, and a 

• Simi

larly, for i .:5 k s n, there is a set v1 k ~ v1 containing ak and a 

set U 1k = tfi ( ak ) cont a 1 ni ng St ( V 1 k , v 1 ) • 

Since ( a 0 , .... , an) is a simplex of X(v), there is a set VE., v 
containing a 0 ., .... , an. Therefore, since v < v2 ., Ve St (V 2 j .,v2 ) :f'or 

0 ~ j ~ 1, and consequently Ve u1 j for O :5. j ~ 1. Similarly, since 

\J<v1 , Ve St (v1k ,v1 ) and hence Vcu1k for 1:Sk!=n .. Therefore 

u10 n u11 n ••• n·u1 i n u11 n ••• u1n I¢. Thus 4' maps the vertices of 

(a0 , .... .,a1 ,a1, ... ,a~) into the vertices of a simplex of N{ p 1) and 
therefore is simplicial. 

Now y n ( v ) N y ~ ( v ) on K x I • By the def in 1 t ion of 4-' , 

ll'(Yn(v)) = 1T e2 (yn(v)) and 4'(y:i(v)) = 01 (yn(v)), and this proves 
( 1) • 

We shall show that yn rv o. Given any covering p, let v = p and let 

show that y ( ~) ru O on X ( u ) • Now z ( v) = y (~ ) ru O on N( v) • Hence . n r~ n n 
~ 0 Yn (~) rv O on X( rt), so we are reduced to proving 

( 2} 

Let K = Yn(~) • We define a simplicial mapping w of K x I 

into X( p) in the following way: For each vertex a in the base o:f 

KxI., let w(a) = a, and for each vertex a' in the top of KxI, 
· let w ( a 1 ) = <p0( a) . 

To see that w is simplicial, let (a
0
,a1 , .•• ,a1 ,a{,···,a~) 

be a simplex of K x I. By the definition of 0, there is a set 

Wk e: " containing ak and a set Vk £- v containing St {Wic, ~ ) • 
By the definition of <.p, tp(Vk)e:Vk. 

Since (a 0 ,a1 , ••• ,an) is a simplex of X(~), there is a set 

We; l; containing (a 0 ,a1 , ••• .,an). Hence W c St (Wk., ~) for i !S k ~ n 

and therefore W c vk. Thus V~ n Vk :I ¢, 1 ~ k ;;:S; n, so Vir_c St (V~,v). 

Since V= * p., there 1s an element U £ tJ, which contains St (v-:i,v), 
and hence each Vk. Consequently c.p0(ak) c U, 1~ k~ n. But 

W c v:i_ c U, so ( a
0

, a 1 , ••• , an) c U. Hence all the vertices of 

(a0 ,a1 , ••• ,a1 , ai, .•• ,a~) are carried by w into vertices contained 



in one element of p and hence into the vertices of a simplex of 

X( p), and therefore w is a simplicial mapping. 

Now yn(~) Ny~(~) on K x I. By the definition of w, 

w (yn(,)) = yn(~) and w(y:i(~)) = (f'0(yn(,)), so we have proved 

(2). 
Thus far we have shown that 0induces an isomorphism of H~(X) 

into Hc(X). To complete the proof we must show that this isomor-n V 

phism is onto, i.e. that for every Ce ch eye le zn ·there is an n-V-
cycle y such that 0y rv z • But., given z and a covering Ll , let n n n n r-
v =*p.. Define yn(p) to be qJ(zn{v)). Then Yn = {Yn( t-J.) is an 
n-V-cycle and 0ynnJzn. We omit the proofs of these last two state

ments s·1nce they are analogous to those above .. 
Let X and Y be compact spaces. A continuous mapping f :X ➔ Y 

is a Vi~tor~s. ~app_ing of, or,d~r ~ if for each covering p of X and 

each point ye.. Y there is a covering ~ = ~( r1 .,y) o:f X., with ~ < f-A, 
such that any k-cycle, o ~ k ~ n, on X{l;) n r- 1 (y) bounds on 

We can now formulate the Vietoris mapping theorem needed in 
. 

the proof of the fixed point theorem. 

THEOREM 1 (Begle 2 ) • If f : X -. Y is a Vietoris mapping of 
order n of X onto Y, then the homomorphism of Hv(X) into Hv(Y) in-n n 
duced by f is an isomorphism and is onto. 

The hypothesis of the theorem can be put in a more convenient 
forrn if the coefficient group is restricted to lie in either of 
two classes of groups, the class of fields and the class of elemen
tary compact topological groups (Steenrod 1, p.672). The latter 
class consists of the character groups of discrete groups with 
finite bases, and hence contains all finite groups as well as the 
group of I'eal numbers mod 1. 

THEOREM 2 (Begle 2 ). If the coefficient group is an ele-
• 

mentary compact topological group or is a field, and f is a map-
ping or X onto Y such that .for each point ye Y, and .for each 1nte-

tr1vial, then the homomorphism of Hn(X) into Hn(Y) induced by f is 
an isomorphism and is onto • 

• 

A ntvnber of' le~mas will be needed... . 

• 
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LEMMA 1 (Begle 2 ). If f is a V1etor1s mapping of order n 

of X onto Y, then for each covering p of X and each covering v of 

Y there .is a refinement }f = t( p.,v) of v such that if B is a sub

set of Y with diam B < if, then there is a point y € Y such that 

1) St (y.,v) ::, B; 

2) St (f-1 (y),*~)=>f-1 (B), 

where ~ = ~( f-1,Y) .. 
• 

PROOF: For each _ 1s 

closed., hence compact, so f Ay 1s closed and y 'f f Ay .. Since Y 

is nor1nal, there 1s an open set BY such that ye. BY and BY n f AY 

=¢.We may choose By to be in a set of v which contains y. Now a 

finite number of the sets B cover Y, and these constitute the y 
covering l .. 

• 

= 

LEMMA 2 (Begle 2 ). If f 1s a Vietoris mapping of order n of 
X onto Y, then for each covering p of X and each covering v of Y 
there is a covering r, = l) ( p , v) of Y, with 17 < v, and a chain map

ping t of the (n+1)-skeleton of Y(~) into X( p) such that for any 
k-simplex crk of Y(T)), O :S ks n+1, ft Ok is a barycentric subdivi

sion b 0-k of Ok with diam b o-k < v. 

let vn = * '6 n. For each element Qni of }J' n' diam Qni < 't n' so by 

lemma 1, there is an associated point Yni• Let ~ni = ~(~+1'Yn1 ) 

and let ~n be a common refinement of the coverings l;. ni. Next, 

points associated, by lemma 1, with the elements of tn_ 1 , and let 

~ 1 1 = ~( u ,y 1 1 ). Let u 1 be a common refinement of the n- , r· n n - , ,- n -

Proceeding in this fashion, we construct a sequence ~k 

coverings of X and a sequence { vk} of coverings of Y, together 
with the associated sets yki , such that 

2 ) J--!k-1 

of 

We assert that the covering v
0 

will serve for 11 ( \-1 ., v) • To 
p~ove this, we must construct the chain mapping t. First., let cr0 



• 

. be a vertex of 

define t(~
0

) to be s
0

• Then 

ft tr = ~ . 
0 0 

t(c,-
0

) is a null-chain of X( µ
0

), and 

Now suppose that t has been defined for all simplexes ~min 

Y(v 0 ) with m < k in such a way that t(o-m) is a chain of X( f-Am) and 

ft e-m 1 s a ba ry centric s u bd 1 v 1 s ion b er-m of a-m , with d i am b O"' m < v m . 
Let ~k beak-simplex of Y(y

0
). Then tis defined on F~k' and 

tFo-k 1s a chain of X(p..k_ 1 ). Now consider f tFcrk . Since crk is in 
Y(~0 ), there is an e~ement V0 of y 0 which contains ~k. If ~k-1 ap

pears in F~k' then ft~k- 1 = ~k- 1 contains a vertex of ~k. But 

diam b«rk_ 1 <vk_ 1 , so St(V
0

, vk_ 1 ) contains f tFa-kl .. 

the corresponding point of Y, so that St(yk_1 1 , *vk) 

But 

Let yk- 1 , 1 be 

contains 

which in turn tFcrk I , 

Denote now the cycle tFak by zk_ 1 , and let K = zk_ 1 . We de
fine a simplicia 1 mapping X of K x I into X( l) by f'irst setting 

J- (a) = a for each vertex a in the base of K x.I. Next, let a' be a 
vertex in the top of K x I, and let a be the corresponding point in 
the base, so that 

I I * * 1 J contains tFuk , there is a set W of l which meets r- (yk_1 1 ) 

a. Let 

now (a 0 , .... ,a1 ,a•, ... ,ak_1 ) is a simplex of K XI, ..then (a
0

, .... ,ak_ 1 ) 

is a simplex of tF~kl and hence is contained in some element Uk_ 1 

aj, wj, and therefore ~(a
0

, ••• ,a 1 ,a 1, ... ,ak:_ 1 ) = 

) , and hence in 

into X( ) . 
' . 

- X(zk-1) = 
on and 

such that Fsk = X (zk_1 ). Let sk = sk - sk., and set tcrk = sk. Then 
Ft<rk = tFo-k, so t is a chain ·mapping. 

Finally, observe that each vertex of 

and 

the single point yk-1 , 1 . Hence fsk is the 

(sk is either a vertex of 

f maps all the latter on 

join of yk- 1 , 1 with 

• 



ftF~k = bFak and thus is a 

St(yk- 1 , 1 , *·vk) contains f 
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barycentric 

tFcrk , diam 
subdivision 

bcrk < Yk. 

Since 

Thus we can continue extending the definition oft until it is 
finally defined on all of the (n+1)-skeleton of Y(~

0
), and we have 

therefore completed the proof of the lemma. 
-

LEMMA 3 (Begle 2 ) • Let p. and fJ.. be coverings of X, with p. <~, 
j ....... - -

and let v and v be cove rings of Y. Let '"Y') = 11 (J-1, v) and 17 = T) ( fl , v) .. 

Lett and t be the corresponding chain mappings. Then there is a 

common_ refinement X of Y) and~ such that for any cycle zn on Y(°A.), 

tzn N tzn on X{ jJ-). 

PROOF: We first recall the sequences JJ,,k and Vk of cover
ings which were constructed in the proof of lemma 2. Suppose now 

and 

fl-~+1 to be any refinement of p.- and V ~+1 to be any refinement of 
y. Then, at each step, choose rk to be a common refinement of lk 

-and or i ( µ.k+1' •i1k+'l), and V k to be a common refinement of f k 
and of vk. Let yki} be the set of points of Y associated with 
/?:_, and let ,u.k: be a-' common refinement of f'-k and of the coverings 

! k 1 ' whe re ~ k 1 = ~ ( ,U. k + 1 ' Y k i ) · 

Now we can repeat the argument of lernma 2 to obtain a chain 

mapping t' of Y(v~) into X(JJ-~+1 ) such that for ~kin Y(v~), t•ak 

is a chain of X(JJ,,k). We assert that for any cycle zn on Y(v~), 

tzn"' t'zn on X(p.) .. 
Before proving this assertion,_we show that the lemma follows 

from it. For we can choose fLk: and 1-1 k to be the same covering of X 
- -for each k, and similarly for vk and vk. Then v~ = v~, and we take 

this to be"-. Now, if zn is a cycle on Y(A), tznrv t'zn on X(µ) by 

our assertion, and similarly, tz N t 1 z on x(µ.). Butt' and t' are n n. 
the same chain mapping, and X(fJ-) is a subcomplex of X(µ), so 

-
tznN tzn ·on X(µ.) . 

Returning now to the assertion above, let z be a cycle of n . 
Y(v~) and let K = lznl . We shall define a chain mapping u of the 
cell complex K x I into X(fJ-). For a cell of K x I of the form (j x O, 
let u( er x O) = t ' ( o-), and for a ce 11 of the form u x 1, let 

' 

u(~ x 1) = t(a). Now consider a vertex 0-0 of K. t(~
0

) = s 0 and 

. 0 0 0 
= ft'(a) =~.There is a point, y 2 , such that St(y 2 ,v) contains 

0 0 0 0 0 
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c 0 = to-0 -t'o-0 , a cycle, and let L

0 
= c

0 
• We map the simplicial 

complex L0 x. I into X( S) by a mapping w 
O 

such that w 
O 

(a) = a for 

any vertex a in the base of L x I, and w (a') is a point of 
-1 0 • O 

f (y02 ) such that St( w 
0

(a '), ) contains a. That there exists 

Lo. 
It is clear that w is a s1mplic1al mapping of L x I into X(!). Let 

1 0 0 

chain of X(,,u, 1 ) and Fc 1 = c
0

• Clearly f c 1 is the join of a
0 

and 

y 02 • We define u ( a-
0 

x I) to be c 1 . Then Fu( a-
0 

x I) = c 
O 

= t cr
0 
-t 'o-

0 
= 

= U ( a' 0 X 1 ) -u ( O'" 
0 

X O) = F ( a 
O 

x I) . 

Now suppose that u has been defined on every cell of K ~I of 

the form a- x I, for all m < k, in such a way that u(c,- x I) 1s a chain m m 
of X(,um+1 ) a;nd diam f(u(O"mx.I))<vm+ 1 . Let c-k be a simplex of Y(v~). 
Then u is defined on F(<Tk ><.I), and we wish to consider the set 

so 
f uF( O" k x I) l is contained in 

f u(F(O"k) XI) U f t<rk V ft' erk .. 

Let V~ be an element of v~ which contains ~k. Since diam f ta-k <Yk' 

St ( V ~ , v k) c on ta ins f t er. • Si~ la r 1 y , s 1 n c e v k < v l( , St ( V ~ , v k) 

contains f t'~k. Also, for any simplex ~k- 1 in F~k' diam flu(~k_ 1 xI) 

< Yk and f )u(ak_ 1 x I) contains a vertex of O"k, so St{V~, vk) also 

contains f u(F(c:rk) x I) . But vk < */k, where i'k = /{f4k+1 ,*vk+1 ), so 
d 1am f u F ( o-k x I) < j k . 

uF(o-k x I) , where ~ = ~ (f1k+1 ,Yk2 ) · 

Now let ck = uF{o-k x I), and let Lk = ck . We can define a sim

plicia l mapping wk of the simplicial complex Lkx I into X(s) in the 

same way that we defined w 
0

, so that F wk(Dck) = wk( ck)-ck, and 

let 

= wk (ck). 

= Fck+1=ck= 
= uF(o-kxI), sou commutes with F. Also, f u(o-kx.I) is the join of 

* f uF(O"k x I) and yk2 . Since St ( yk2 , V k+1 ) contains f' uF(O" k x I), 

d ia m f u (erk X I ) < V k + 1 . By CO n st ru Ct ion J u ( O" k )( I ) is On X ( p. k + 1 ) . 
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We can therefore continue extending the definition of u un

til it is de:fined on all the cells of K x I. Now F(z x I) = n 
= ( Zn x 1) - ( Zn x o) in K x I, so uF ( Zn x I) = Fu( Zn x I) = 

= u ( zn x 1 ) - u( z x O) = t z - t ' z • Since u ( z x I ) 1 s a chain of n n n n 
• 

X( t,l n+1 ) = X( ~), tzn N t I zn on X( p), which completes the proof 

of the lemma. 

PROOF OF THEOREM 1: We show first that under the homomorphism 

induced by f, each element of H~(Y) is the image of an element of 

H~(X). 
For each covering r4 of X we choose a covering v of Y such 

choose this v. Let z = z(v) be an n-V-cycle of Y. For each n 
covering p of X, we define yn (p) to be tzn (1])., where l1 = 17( t--J , v), 

~being the covering associated with pas above, and t being the 

chain mapping of Y{ Y)) into X( ) given by lemma 2. 

We assert that the collection yn{ p) is an n-V-cycle. For., 

let p be a refinement of ~, and let v be the covering of Y as

sociated with p. Then yn(p) = tzn(17) and yn(P) = tzn(ii), where 

ii= T)(p,~). Let Ab: the common refinement of fl and ~ given by lem

ma 3. Then tzn(X)rutzn(X) on X(p). Since zn is an n-V-cycle, 
z (A)ruz (n) onY(n). Hence tz (A)rutz (n) on X(u). Similarly, _ n n · , ·, n n · , r 9 

tz
0

(A) ,v tzn(ii) on X( p) • But X( p) is a sub complex of X( p), so 

Yn(fi) = tzn(~)rutzn(17) =yn(t,J) onX(p), which proves that 

Yn{p) 1s an n-V-cycle. 
. 1 

Next, fynNzn. For a given covering v of Y, let p = f- (v). 

Then yn( ~) = tzn(~), where~= ~(p,v). Also, fyn(p) = ftzn(~) = 
= bzn(~), a barycentric subdivision of z

0
(~) such that for each 

simplex on o:r zn(71) , diam ban < v.. The standard argument for 

showing that a cycle is homolo~ous to its barycentric subdivision 

applies here to show that zn(l")) ru ftzn(11) on Y(v) .. But zn is a n-V

cycle., so zn ( 17) ru zn( v) on Y(v) • Therefore zn ( v) N ftzn ( 71) = 
= fyn(p) on Y(v). 

Thus we have shown that f induces a homomorphism 

Hv(Y). To complete the proof, it is only necessary to 
n 

onto of H~(X) 
show that if 

fynru O, then -ynN O. 
Let thenµ be a covering of X, and let V be the associated 

covering of Y, so 



42 
Now recall the sequence p. k of coverings of X constructed in the 
proof of lemma 2, and choose a common refinement h of~ and JJ- 0 • 

· Since Yn is an n-V-cycle, yn(S)ro y
0

(S) on X(S). Hence 
fyn(b)N fyn(~) on Y(7l). But if zn = fy

0
ru O on Y, then zn(11) = 

= fy
0

(S )"' 0 on Y(71). Therefore, fy
0

(b)/'\J O on Y(17) and tfyn(6) NO on 
X(p), since tis a chain mapping. We wish now to show that Yn(o) N 

t fy n ( b ) on X ( µ.) • 
Let L = y (b) , and let L x I be considered as a cell complex. 

n 
Define a chain mapping u on the base and the· top of L XI by 

u("tkXO) ='tk and u(i;kx.1) = tf-rk for any simplex ,;k of L~ I:f we 

now examine the proof of lemma 3, we see that, after substitution 

of tf,:;k for t erk and -ck for t 'cr-k, this proof a pp lies with out change 
to show that u can be extended to a chain mapping of all of L ~I 

• 

1 n t O X (fl) . Th us U ( y n ( ~ ) X I ) i S a cha in Of X ( JJ. ) S UC h th a t Fu ( y n ( ~ ) X. I ) = 
= u(yn(~) x 1)-(yn(6) x O) = tfyn(o)-yn(b), i.e. t:ryn(O)N y0 (5) on X(µ). 

Now, since tfyn(~)N O on X(µ), we have yn(S)ru O on X(µ.). But Yn 
is an n-V-cyc le so Yn (h) N y n (µ) on X(,U) .. Thus Yn (µ)NO on X(p.), so 
YnN 0. This completes the proof of theorem 1. 

PROOF OF THEOREM 2: Letµ be a covering of X and ya point of 
* Y. Let v1 = fl, and let t.p be the simplicial mapping, defined on p. 

34, of N( v1 ) into X(JJ). We now consider v1 as a covering of the 
compact set r-1(y). Since the coefficient group 1s an elementary 
compact group or a field, there is (Steenrod 1, p.678 and Lefschetz 
5, p.216) a refinement v2 of v1 such that if zk is a cycle or N(v 2 ) 

r-1 (y) bounds on X(µ)n r- 1(y). 

Let e be the simplicial mapping of X( ) into N(v2 ) defined on 

p.34 .. Then e yk is a cycle of N(v2 ) on r- (y). Therefore, ire yk is 
.... 

--

that the Cech and Vietoris homology groups are 
Now we can choose 

the hypothesis of theorem 1 is satisfied. This 

isomorphic, that 

(µ,y) to be f, and 
proves theorem 2. 
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DEFINITIONS (Begle 3 ). 
Let K be a finite simplicial complex. A realization of Kin 

X(0<.) is a chain mapping ,: of K into X(cx.). If P> 1s another covering 

o:f X, we write norm -r < p if f'or each simplex a of K, diam l:' a < ~, 

i.e. if there is a member of P> wl1ich contains the complex -r a • 
A partial realiza~io~ L 1 of K is a realization of a subcomplex 

L of K which contains all the vertices of K. We write norm T' < ~ 

if' for each simplex o- or K there is a member of' f which contains 
all the complexes ~• er• for those faces o• of crwhich are in L. 

A compact Hausdorff space X is le if for each covering f.. of X 

there is a refinement K = K( e) and for each covering p there is a 

refinement Ct= o.(p,t) such that if K is a finite simplicial complex 

and "'C9 a partial realization of' K in X{et) with norm T' < K, then 
there is a realization -r of Kin X(~), with norm -r <E. and such that 
"t cr =- -c•o- whenever the latter is defined. 

We now derive those properties of le spaces which we need in 

the statements and proofs of' the theorems. 

LEMMA 4 (Begle 

such that if z is a 
then z rvO. 

3 ). If Xis le, there is a covering 

V-cycle and if z (v) NO on X( v) for some 

PROOF: Let~ be the covering consisting o~ the single open set 
X, and let v

0 
== K{ e,). No~1 suppose z(v) rv O on X{v) for some v < v

0
• 

Let v1 be any refinement of v and let v 2 = ex( v 1 , g) • Since z is a 

V-cycle, z(v2 ) ruz(v) on X(v). Therefore., z(v2 ) rvO on X(v). Let c be 
a chain on X(v) such that F(c) = z(v2 ). · 

· We define a partial realization Lt of le in X(v2 ) by setting 
1:'1 o- = a if o is in z( v2 ) or is a vertex of' c • Clearly, 
norn1 "'C 1 < v < v 

O 
= K.( t:) • Therefore, there is a realization -c of I c I 

in X(v1 ), and TO'= -c•c::r whenever the latter is def'ined. Thus,. 
F -c-{c) = i:F(c) = -c(z( v2 )) = T'(z(v2 )) = z(v2 ), and so z(v2 ) ru O on 
X(v1 ). But z(v2 ) rv z( v1 ) on X{v1 )., so z(v1 ) ru O on X(v1 ). Since v 1 is 

an arbitrary refinement of' v, this proves the lemma. 

LEMMA 5 (Begle 3 ). If Xis le, then its homology groups are 

isomorphic to the corresponding groups of a finite complex. 
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PROOF: Let' v 
O 

be the covering of lemma 4, and let v 1 = * v 
O

• 

For each element U e v 1 , let c.p(U) be a point in U. Then~is a sim-

finite subcomplex of X(v
0
). Next, let v2 = v1 . For each vertex 

x €. X( v
2
), choose an element VE v 2 such that x € V and then choose an 

element W€v1 such that St (v,v2)cW. Let 0(x) = W. Then 01s a 

simplicial mapping of X(v2) into N(v1 ). In the proof of the fact .., 
that the Vietoris and Cech homology groups are isomorphic, we have 
shown that, if ~ is any cycle on X( v 2 ), then 4) 0(c ) rut? on X( V

0
). 

{See p .35.) 
Let z now be a V-cycle of X. Let w(z) = <.p0(z(v 2 )). Then win-

duces a homomorphism of Hn(X) into Hn(K), for all nz o. We assert 
that this homomorphism is actually an isomorphism. For if w(z) = 
= tp0(z(v2 )) ruO on K, then tp0(z(v2)) ru O on x(v

0
), since ICc X( v0 ). 

But z ( V 2) tV q,6( z ( V 2 ) ) 0 n X ( VO ) and z ( V 2) (\J z { VO ) 0 n X ( VO) , sin Ce z 

is a V-cycle. Thus z(v
0

) ru O on X{v
0

) and so, by lemma 4, z ru o. Thus 
the homology groups of X are isomorphic to subgroups of the homolo

gy groups of K, and this proves the lemma. 

• 

LEMMA 6 (Begle 3 ) • If X is le, then each covering t,J of X 

has a normal refinement p', i.e,. a refinement such that, if c is 
a cycle on X( p'), then there is a V-cycle z such that z(~) = c. 

PROOF: Let E. be the covering of X consisting of the single 
open set X, and let i 1 = K(&) and t 2 = K(* i 1). It is su~ficient to 

prove the lemma for the case ~ < e.2 • We assert that for any such 

covering we can choose p' to be cx.(~,*t 1). 
Suppose then that c is a cycle on X( p '). For each covering 

p1 < p ', let f-.l 2 = et{ p 1 ., *E 1 ), and define a partial realization 
i:-' of I cl in X( p 2) by setting ,:-• a = er for each vertex a0 of c • 

* o o¾lf-
Since p' < r-' < E- 2 = K( e.1), norm ""C 1 < K.( E-1). Hence there is a 

case where ~1 =~•,we can and do choose~ to be the identity 

chain mapping. 

Now for each refinement p 1 of t--1', we have a cycle y( p 1 ) = 
Tc on X( p.1 ). This collection of cycles does not necessarily form 

a V-cycle, but it does have the property that if v 1 and v2 are re

finements of' ex( ,-,t 1 , £), then y ( v1 ) rv y( v 2 ) on X( ~ 1 ) • To see that 
this is so, consider the _cartesian product K = jc Ix I. We define 
a partial realization p• of Kin X(cx.( 1 ,t)) by defining p' on 

• 
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the base of K to be the chain mapping-r:rrom c to X(v1 ) and on the 

top of K to be the chain mapping from c to X(v2 ). Since the norrn 

of each of these mappings is less than *c1 , norm p'< c1 = K(E). Con
sequently, there is a realization p of K in X( r1"1 ). Denote br c 1 the 
copy of c in the base of Kand hy c 2 the corresponding copy in the 

t Op Of K • Then C 1 (\) C 2 0 n I<::., s O p ( C 1 ) t\J p( C 2) 0 n X ( ~ 1 ) • But p( C 1 ) = 
= y(v1 ) a11d p(c 2 )= y(v2 ), and so y(v1 )ru ::ir(v2 ) on X( t-1 1 ). 

Now co11sider the family of all coverings~ such that a(~,E)< ~
This is a cofinal family, and so, in defining a V-cycle, it is suf

ficient to ~~ive its coordinates on this family. For each such,, de

fine z(~) to be y(a(~,E)). If we can show that this collection of 
cycles f'orms a V-cycle, then v1e have proved our lemma, for z(p-) = 
= y(a.(~,~)) = y(~') = c. 

Suppose that ~ 1 < ~2 • Let v 1 = o(~1 ,e) and v2 = a(~2 ,~), and 
let v3 be a common re fi net:1e11.t of v 1 and v2 . Then, by what was shown 

ab O Ve , y ( V 3 ) N y ( V 1 ) 0 n X ( ~1 ) a nd y ( V 3 ) (\) y ( V 2 ) 0 n X ( V 2 ) • But 
X(~1 )c X(~2 ), so z(~1 ) = y(v1 )rv y(v2 ) = z(~2 ) on X(l;2 ), so {z(~)} 
is a V-cycle, and the J.emma is proved. 

REMARK (Begle 3 ). It is clear that an analogous formula 
y 

holds for Cech cycles. The interest in this remark lies in the fact 

that the proor of this lem1~1n holds for any coefficient group. There
fore, in an le space, any ~overing has a normal refinement no mat
ter what the coefficient r:·roup is. 

THEOREM 3 (Begle [3]). Let X be a compact le space which is a

cyclic. Let ~(X) denote the family of closed, acyclic subsets of X, 

and let f : X ➔ t3(X) be upper semi-continuous. Then there exists a 
point x

0 
e. X such that x £ r( x ) • 

0 0 

Theorem 3 is derived :from a more general theorem, a generali

zation of Lefschetz•s fixed point theorem (Lefschetz _5) which 
also includes theorem EM2 (p.JC) of Eilenberg and Montgomery 1 • 

Consider a compact space X which is le (but not necessarily acyclic), 
and an upper semi-continuous mapping fas above. Let . 
Y = { ( x., x ' ) e: X x X x ' e .f ( x) } • Since f is upper s em 1 - co 11 tin uous ., Y 
is a closed subset of Xx X and hence is compact. We define two map

pings g,h : Y >X by g{x,x 1 ) = x and h(x,x 1 ) = x', for all 
( x, x 1 ) e: Y • C 1 early., f = hg - 1 . 

For each x in X, g-1 (x) is homeomorphic to f(x), which is a

cyclic. Since the coefricient group is a field, theorem 2 applies 
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to show that g induces an isomorphism g : H (Y), >H {X) onto, *r r r 
for r2: o. Therefore, g-1 is an isomorphism defined on H {X). Since 

*r r 
h: Y ·>Xis continuous, it induces a homomorphism 

r r *r *r r 
momorphism. By lemma 5~ H (X) has a finite basis, and hence the r oo 

r r j=O 
and so 

/\(f) exists. We now state 

THEOREM 4 (Begle 3]). Let X be a compact le space. Let ~{X} 
denote the family of closed, acyclic subsets of X, and let 
f : X > ~(X) be upper semi-continuous. If A( f) I- O, then there 

exists a point x
0 

e. X such that x
0 

e. f(x
0

) • 

It is easy to derive theorem 3 from theorem 4. For, if X 1.s 

acyclic, then Hr{X) = O for r > o, and H
0 

(Y) has just one generator, 

so A{ f) = 1 and theorem 2 applies. 

PROOF OF THEOREM 4: In order to prove theorem 4, we need an 
' 

explicit method for calculating A(f) in terms of the V-cycles of 

X. We obtain this by first recalling hoi1 the mappings g and h of Y 

into X induce the homomorphisms g*r and h*r of Hr(Y) into Hr(X). 

Let z be an r-V-cycle of X. For each covering ~ of Y, choose 

v, choose this v • Let y( t-') = tz( l)), where fl = 'Y]( p, v) 1.s the re
finement of v given by lemma 2, and t is the corresponding chain 
mapping of X(Y)) into Y( p). Then, as was shown in the proof of theo -

rem 21 y = y(p) is an r-V-cycle of Y, which we now denote by 

transformation z. the 

It appears at a first glance 
order of gas a Vietoris mapping, since the construction of ~(p,v) 
in the proof of lemma 2, depends on the order of g. However, the 
homology class of y is independent of this order, since the homo

morphism g*r: Hr(Y) >Hr{X) determined by g is uniquely defined. 
Therefore, in the above construction, we may take g to be of any 

convenient order k ~ r. 
Next, given any r-V-cycle y of Y, for any covering v of Y, let 

z ~ 

cycle of X, which we denote by hr(y), and the transformation 



47 

y - )hr(y) induces the homomorphism h*r: Hr(Y) - >Hr(X). 

Thus the transformation z----..>11 g-1 (z), where z is an r-V-cycle r r 
o.f X, induces the homomorphism h g- 1 : H (X) ➔ H (X). Let 

*r *r r r 
z 1 ,z2 , ••• ,zk be a homology basis for the r-V-cycles of X, i.e. a 

maximal set of r-V-cycles which are independent with respect to ho-

mology. 11.'hen, for eacl1 4 -1 r 

--
J. J r 2; O 1=1 

But now /\( f ) = /\( g , h ) = 
r~O 

Next we show that tr1e calculation of ;\( f) can be reduced to a 

similar calculation for a cl1ai11 t·11apping of a finite complex into it
self. 

* Let! be an arbitrary covering of X, and let ~ 1 = K(e) and 

e2 = K(~1 ), where the notation refers to the definition of an le 

space. Let v be a cotnri1on re.fi11er:1ent of f 2 and of the covering v0 of 

lemma 4, and let K be t r1e finite subcon1plex <.p N(*v) of X(v) • 
We are going to define a cr1ain mapping v : K > K. Before 

doing this, we note that if z is an r-V-cycle of X, then the coor-

where 111 = l') ( p 1 , v1 ) . Recall that 11 1 depends on the order of the 
Vietoris mapping g. Choose an integer which is greater than the di

mension of K and which is sucl·.L that the homology groups of X for 

dimensions greater tt1an this integer are all zero. Take this to be 

the order of g in constructing 11 1 , and in the construction of' 17 2 
be low. 

To define the chain mapping v, set V' = *-i(, v , and choose a 

normal refinement v2 of 

r, 2 = 11( p 2 , v2 ) . Since v 2 < v., p 2 < p1 . rrhere :fore., by lemma 3, tl1ere 

is a common refinen1ent .\1 of 17 1 and T) 2 such that t 1 (x) ru t 2 (x) 011. 

Y( JJ 1 ) f'or an~- cycle x of X(A1 ), where t 1 : X(Y] 1 )- ➔ Y( rA 1 ) and 
t 2 : X ( 11 2) · ) Y ( t-,t 2 ) are "'che ct1ain mappings of lemma 3. Let 

X2 = ex ( A1 , l. ) • 
-

Now let T' be the identity mapping of the null-skeleton of K, 
so that T' is a partial realization of Kin Y(A3 ), where 

A3 = ex( A2 , e.1 ) . Since v < c 2 = K( ~1 ), norm 't'' < K( t 1 ) . Hence tl1ere is 

a realization T: K • >X{ .,..,.) of norm < i 1 , and such that for each ver

tex 0-
0 

of K, we have -r o- = 1:1 a- = o- • 
0 O 0 

• 
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Since A2 < A1 , t 2 is def'ined on X( A2), so t 2 i: : K > Y( J-t 2 ) is a 
chain mapping, and ht2 T: K >- X(v2 ) c X(v•) is a chain mapping. Let 

TT denote the transformation c.p0 : X( V') • :> K. De:fine the chain map
ping v to be 1Tht2 -r • 

Let A(v) = L (-1)r trace v , where v : H (K) ➔ Hr(K) is 
. *r *r r r ~ o -1 

the homomorphism induced by Vo We now assert that trace h*rg*r = 
trace v *r· for each r ~ O, and hence that A( f) = A( v). To prove this, 

let z1 , ••• ,zk be a homology basis :for the r-cycles of X. These 
cycles may be chosen such that, for each i, z1 (v) = ~0z1 (v') of K. 
For., zi ( V') "' z1 ( v) on X(v), s~nce z1 is a V-cycle. Also, 
"()0(z1 (v' )) ru z1 ( V') on X{v). ·· Hence; if the coordinate zi (v) of z1 
is replaced by ~0(z1 (v•)), the resulting V-cycle is homologous to 
the original one. 

Now we construct a homology basis for the r-cycles o:f K. Let 
tp 0( zi ( V')) = ci. Since the eye les z1 , ••• , zk are independent on X, 
and since vis a refinement of the covering v of lemma 4, the coor

o 
dinates c 1 , ••• ,ck are independent on X(v) and hence on K. Therefore, 

a homology basis for K can be obtained by adding independent cycles 
ck+1 , ••• ,c1 to the set c 1 , ••• ,ck. 

Since vis f chain mapping, v(xi) is an r 1cycle on K (1~1~1), 

Z: bri' so we have to 
1=1 k J-

. r 1 r show that L. a11 = L. b11 • 
i=1 1=1 

r We first show that bij = O for k+1 ~ 1 ~ 1. Recall that ht 2-c-xi 
is a cycle of X{ v2) ( 1 s i ~ 1}. By the choice of v2 , there is an 
r-V-cycle z1 such that z1(v') = ht2~(xi). Since z 1 , ••• ,zk forms a 

l{ r 

k =1 J 
(\) L er. z( v•) on X v'). Therefore 

j=1 J . 
. k r k r 

Tf ht 2-r(x1 ) N ~ 
J=1 J J j=1 

X. 
J 

on K. 
• 

Thus, v ( x 1 ) ( 1 ~ i ~ 1) 

of the homology basis 
trix 

is linearly dependent on the first k elements 

for K. Therefore, the lastkl-k columns of ma-

that 
To finish 

r r 
bij = aij 

i=1 
the proof of our assertion, it is sufficient to show 
for i,j = 1, ••• ,k. To do this, consider any cycle 
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x 1 (1=1, ••• ,k), and let 

that z1(v•) = ht 2~(x1 ). 

z! be the r-V-cycle defined above such 
i 1 

Let z~ be the r-V-cycle hrg~ (z1 ). 

We wish to prove that z1 ru z1. By lemma 4, it is sufficient to 

show that z1 ( v) N z~ (v) on X( v). We start by proving that 

z 1 ( A2 ) ru T xi on X ( A1 ) • Since z 1 is a V - cycle , z i ( A 2 ) ru z 1 ( v) = xi 

on X(v). Let c be a chain of X(v) sucl-1 that 17 (c) = z 1 (A2 ) - xi. 

Define a partial realization p' of lcl into X(A 2 ) by letting 

P' =~on Ix. I and the identity on z 1 (A2 ) and on the vertices or 

V < e:1 , norm p' < K.(e). Also, A2 = cx(A1 ,t). Therefore, there is a 

realization p: le I • >X( A1 ) with norm p < f.. Now F p( c) = pF( c) = 
= p( zi ( X2 )) - -c xi., since p = p' whenever p' is defined. Thus 

z1 ( A2 ) rv T xi on X ( A1 ) • 

Since t 2 is a chain mapping, t 2 (z 1 (A2 )) N t 2 Tx1 on Y( t-,-t 2 ). 

By the choice of A1 , t 2 (z1 (A2 )) tU t 1 (z1 (:X.2 )) on Y( p 1 ), and since 

Y ( JJ 2) c Y ( p 1 ) , we have t 2 --r ( xi ) ru t 1 ( z 1 ( A2 ) ) on Y ( p 1 ) • Also ., s 1 n ce 

A2 < 11 1 ., z i ( .>..2 ) ,v z 1 { 11 1 ) on X ( 71 1 ) and so t 1 ( z 1 ( A2 ) ) ru t 1 ( z 1 ( T\ 1 ) ) 

on Y( p 1 ). Since h is a simplicia 1 mapping, ht 2 -r(x1 ) rv ht 1 ( z 1 ( 11 1)) 
on X(v). 

But ht1 (z1 ( 11 1 )) = = z1( v'). Since 

z1(v 1 ) ru z1(v) on X{v), 

Now since z'' 1 

z .. and 
J 

Consequently, 

But 

r 
, so a1 j 

z1(v) and hence z1 ru 
K r 
L a 1 j zj, we have 

j==1 k 

J=1 

k 
= L 

j=1 
on K. 

( i, j =1 , ••• , k) • 

Z 
It 

1· 

on X( v•). 

This completes the proof of the assertion that A(f) = A(v). 

Finally, since K is a finite complex and since the coefficient 

group is a field, there is another method for calculating A(v) and 

hence /\(f). For each r-simplex a of K, let dr1 . be the coefricient 
j . r 

r ~ r r > 0 
A ( v ) = /\1 ( v) ( Le :rs c he t z 5 , p • 19 3 ) • -
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We are now ready to prove theorem 4. Suppose that x ~ f(x) for 
all x £ X. Then there is a covering t

0 
of X such that St (x., e.0 ) n 

St (f(x), e
0

) = ¢ for all XE. X. We now specify the covering e:, in

volved in the definition of K to be this covering e . 
0 

Let o- be any simplex of lC. By construction, -c (o-) is a chain 

of X( A2 ) such that diam -r ( o) . < E. 1 < i . Choose an arbitrary sim-
• plex o-' of x(J\2 ) in -r (a). , and let x be a vertex of er' • Then 

er c: St (x., e). By the construction of t 2 , in the proof of lemma 2, 

C 

St (f(x), v2) and so 'Trht 2 ( 0 1 ) c St (f(x) ,v) c St (f(x) ,f:). Since 
a c St (x,e), a does not meet any simplex of 1Tht 2(cr'). But a' 
was an arbitrary simplex of '"t (c) , so o- does not meet any sim
plex of 1Tht2T(O') = v(a). Thus, for every r and i, aI 1 = 0 and so 
1\.1 (v) = o. But /\' (g) = /\(g) = /\(f) I o., and so the assumption., 

that x f f(x) for all x E. X, leads to a contradiction. 

In 1961 Fan 3 , using convexity arguments, obtained results 
which generalize the fixed point theorem of Tychonoff [1], but 
they neither include Kakutan1 1 s theorem (Kakutani ~ ), nor are 
they included in the generalizations of Kakutani's theorem by . 

Bohnenblust and Karlin 1 , Fan [1 , Glicksberg [1] and Begle 3 • 
Fan's results do not invoke any known fixed point theorem, and 
they are all derived directly from the theorem of Knaster - Kura
towski - Mazurkiewicz [1], which was used in their well-known 
proof of Brouwer's theorem. The Knaster - Kuratowski - Mazurkie
wicz theorem is reformulated in the following generalized form: 

LEMMA 7 (Fan 3 ). Let X be a subset of a topological linear 
space Y. For each x £ X, let a closed subset F (x) of Y be given 
such that the following conditions are satisfied: 

( i) The convex hull of 
is contained in 

n 
U F(xi) • 

1=1 

any finite 

(ii) F(x) is compact for at least one X€. X. 

Then (l { F ( X) X e_ X } -I ¢. 

of X 

PROOF: Because of condition (11)., it suffices to show that 
n 
n F(x1 ) f ¢ for any finite 

1=1 
x 1 ,x2 , ••• ,xn} c X, consider 

• 

• 

' 

subset {x1 ,x2, ••• ,xn} of X. Given 

the closed {n-1)-simplex 

• 
• 
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S = (v1 ,v2 , ••• ,vn) in En with vertices v 1 = (1,0, ••• ,o), 
v 2 = (0,1,0, ••• ,0), ••• , v = (o,o,o, .•. ,1), and define a continu-

n n n 
ous mapp 1 ng tp : S .. .,. Y by ~( Z: oc. v 1 ) = z::. ex. x 1 for 0< i ~ O, 

i=1 l i=1 i 

n 

i=1 
(i=1,2, ••• ,n) of S. By (i), for any 

the (k-1)-simplex (v1 ,v1 , ••. ,v1 ) 
indices 1 :5. 1 1 < 1 2 <k ••• < ik f n., 

is contained in U G-~• Ac
j=1 1.j 1 2 k 

cording to the Knaster - Kuratowski 
n n 

implies that n Gi F ¢, and so n F(xi) I¢. 
1=1 i=1 

theorem, · this - Mazurkiewicz 

Let Z be a topological group and let ~(Z) be the family of 
all non-empty compact subsets of z. B(Z) is topologized as fol

lows: For A £ e(z) and for each neighbourhood V of t_he identity e 
IV 

o:f Z, let V( A) = i B c ~(Z) B c AV, Ac BV f • The family of all sets 
. t\J 

of the rorm V(A)., where V runs through the neighbourhoods of e, is 
taken as a basis for the neighbourhood system of A in ~(Z). 

Let X be a topological space, and Z a topological group. With 

e(z) topologized as above, a mapping f: x .. ➔ B(Z) is continuous 

if and only if, f'or any x E. X and any neighbourhood V of e e Z, 
0 

there is a neighbourhood U of x
0 

in X such that f(x)c f(x 0 ).V and 
f'(x

0
) c f(x) .V for all x E: U ~ In the remainder of' this chapter a 

transformation g : X > t3(Z) will be called uppe~ sem1;-coq.t,ipuou.~. 
if and only if, for any x

0 
e. X and for any neighbourhood V of e e Z, 

there is a neighbourhood U of x
0 

in X such that g{x)c g{x 0 ).V for 

all x c. U. ( When Z is compact, this definition o.f upper semi-con

tinui ty coincides with the one given on p.14.) 

LEMMA 8 (Fan [3] ) . Let X be a topological space and Z a to

pological group. Let f,g: X > e(z) be upper semi-continuous. If 

Fis a non-empty closed subset of Z, then 

E = {x e:X F.f(x) n g(x) I-¢} 

is closed in X. 

PROOF: Take x E: X"E. Since f(x ) is compact and F 1s closed, 
0 - 0 

F.f(x) is closed. Since the compact set g(x) is disjoint from 
0 0 

the closed set F .f(x
0
), there is a neighbourhood V of e € Z such 

that F.f(x
0

).Vng(x
0

).V =¢.Choose a neighbourhood U of x 0 in X 

such that f(x) c f(x ) .V and g(x) c g(x ) .V for all x e: U. Then for 
• 0 O 
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x e: U we have F.f(x) n g(x) = ¢, 1.e. XE. X"E for x € U. Hence E is 

closed in X. 

LEMMA 9 Fan 3 ). Let X be a topological space and Z a to

pological group. Let f: X ➔ 8(Z) be continuous. If G is an open 

subset of Z, then 

• H = X €. ~'{ f ( x) (\ G = ¢ } 

is closed in X. 

PROOF: Take x c X \H., and z E: f(x ) n G. Then V = G-1 z is a 
0 0 

neighbourhood of e in Z. Choose a neighbourhood U of x
0 

in X such 
that f(x

0
) c f(x) .V for all x EU. Then for each x f; U., z e. f(x

0
) c 

f ( X) • V., s O f ( X) n zv-1 -/- ¢, i • e • f ( X) (1 G I- ¢. Th us H nu = ¢ and H 

is closed in X. 

THEOREM 5 (Fan [3]). Let X be a compact convex subset of a 
topological linear space Y. Let Z be a topological group and let 
~(Z) be the family of all non-empty compact subsets of Z, topolo
gized as above .. Let f : X ) e(z) be continuous and g : X · ➔ \S(Z) 

be upper semi-continuous, such that the following conditions are 

fulfilled: 
( i) For each x • e. X, tl1ere is an x 11 e: X such that 

f ( X f ) ('\ g ( X If ) I ¢ • 

(11) Given any neighbourhood of the identity e E. Z, there is a 
neighbourhood W of e with the following property: For every point 

x
0

£ X and for any finite subset {x1 ,x2 , ••• ,xn} of X, the relations 
W .f(x

0
) n g(x1 ) /. ¢ {1=1, ••• ,n) imply V .f(x

0
) n g(x) /: ¢, for any 

point x in the convex hull of {x1 , ••• ,xn} • 
Then there exists a point XE: X such that f(x) n g(x) I ¢ • 

PROOF: Let U denote 
For each V € U, let 

• 

the family of all neighbourhoods of e e: Z .. 

• 

<p(V) = xe. X V .f(x) n g(x) /. ¢ • 

By lemma 8, ~(V) is closed in X. If we can prove that 
<.p(V) I= ¢ for every Ve U , then it will follow that 

• 

for any finite number of members v1 ,v2 , ••• ,Vn of U. The compact
ness of X will then imply that n{ <.p(V) Ve. U} I:¢. Since every 

• 
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point x e. n { c.p ( V) ( V € U } s at is f"i es f ( x) n g ( x) -/: ¢, 1 t re ma 1 ns to 
show that ~(V) -/: ¢ ror every Ve U. 

Consider an arbitrary fixed V € U . For this V, choose a W €. U 
with the property stated in (ii) of the theorem. For each x £X., 
let 

F{x) = cp(v) u y€X W.f(y)ng(x) = ¢}. 

. -1 
Since W .f(y) n g(x) = ¢ is equivalent to f( y) n W .g(x) = ¢ 

9. Hence F(x) is compact .. We claim that L cx1x 1 e:. U F(x1 ) for any 
i=1 1=1 n 

finite subset x 1 ,x2 , ..• ,x of X and for any a 1 z. 0 with Lot. =1. 
n n 1=1 1 

J=1 J J 
so, 

by our choice of W, for at least one index 1, we have 

7, 
there is an x' e n {F(x) Ix EX} .. By (1), we can choose x''e. X such 
that f(x 1 ) n g(x 1

') /.¢.Then W .. f(x•) ng(x'') ~~and x' 4E F(x'') imply 

X 1 E ~(V). Hence ~{V) / O and the theorem is proved. 
When g is a continuous mapping of X into Z, it may be consi-

• 

dared (in an obvious way) as an upper semi-continuous mapping 
g : x .. > e(z) .. In this case, condition (11} of theorem 5 may be re

stated as follows: Given any neighbourhood V or the identity e £ Z, 
there is a neighbourhood W of e such that, for every x 0 £ X, the 

' - 0 

THEOREM 6 (Fan [3]). Let X be a compact convex subset of a 

topological linear space Y. Let Z be a locally convex topological 

linear space and let X (Z) be the subfamily of '6(Z) consisting of 
all non-empty compact convex subsets of Z. Let f : X · ► X (Z) be 

-
continuous with respect to the relative topology of X(Z) induced 

by the topology of 6(Z), and let g : X ► Z be continuous .. Let f 

and g satisfy the following conditions: 

( i) f(x) n g .... x] f ¢ for every x e: X. 
(11) For every closed convex subset C of Z, 

(or empty) .. 

-1 g ,._c is convex 

Then there exists a point i € X such that g(x) E: f(x) .. 

PROOF: By the local convexity and 

neighbourhood V of the null-element of 

neighbourhood W of the null-element of 

regularity of Z, for any 

Z, we can find a convex 
-Z such that W c V .. Then, for 

, 



-any x
0 

e X 8 W + 

Thua condition 
ceding theorem 

r(x
0

) is closed and convex, and therefore, by (11), 

. . -1 .• , which contains the convex hull of g W + r(.x
0

) ., 

(11) of theor,em 5 1s satisfied (see the remark pre-
6) .. 

COROL,LARY.. :rr r : X ,, ~ X is cont inuoua and g : X,,, .. ,. X is the 

identity mapping, theorem 6 reduces to the fixed point theorem of 
Tychonof:f [1 • 

We no• replace the topological group in theorem 5 by a uni
tona space Z, but we consider continuous mappin.gs f, g : X-,,.,,> Z only .. 

ffiEOR.E.M 7 (Pan [3 •·). Let X be a compact convex subset of a 

topological linear- space Y, and let Z be a uniform space .. Let l:1(Z) 

denote the faily of all non-empty compact subsets of Z .. Let 

f' ,s; : X· , ► Z be continuous mappings satisfying the following con
ditions: 

( 1) f X c g X. 

{11} Por any entourage V of Z, there 1.s an entourage W of Z 

such th,at tor any z € f X , any f1ni te subset x 1 ., x 2 , .... ,xn of X 
n 

and tor any a1 ~ O (1=1,2, ••• .,n) with Z: o 1 = 1, the relations 
1=1 n 

(s~g(x1 )) t: W (1•1,2, ••• ,n) imply (z,g( L cx
1

x1 )) £ v. 
· ia1 

Then there exists a point XE: X such that g(x) = f(x). 

PftOOP: The proof 1a similar to that of theorem 5. Let Ude

note the fant1ly or all those entourages of Z which are open in 
Z x z. For each VE. U., let 

({)(V) ~xe.X. (f(x).,g(x))e.V} 

wh,ere V denotes the elo5ure of Z in Z x Z. <.p(V) is closed in 

X : tp( V) • r -1 V ( g ( x) ) , where v ( g ( x ) ) == y e x ( g ( x) , y ) e v 
The theorem will be· proved., if we can show that <.p (V) I: ¢ for 
every VE U .. 

' 

Por any fixed Vt: U, choose a W c U with the proPerty des-

cribed in condition {11) .. For each xE.X, let 

F(x) - q>(V} u YE X. (f(y) ,g(x)),. w} • 

Since W 1a open 1n Z x z, {YE: X · (f{y) ,g(x)) 

in X. Hence F(x) is comp,act. By lemma 7, there is 
W} is closed 

a point 
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x• € n {F(x) x e X} • Let x 11
£ X be such that :r(x') = g{x 11 ). Then 

from x • e F( x 11
) 1 t follows that x' e <p(V) • 

Again, theorem 7 generalizes Tychonoff's fixed point theorem. 
In fact, when Y = Z is a locally convex topological linear space 
and g is the identity on X, condition (11) of theorem 7 follows 
immediately from the local convexity. 

1.4. Multi-valued mappings 
is non-acyclic 

t • 

such that the image of eacp po~nt 
' 

In this section, if Xis a topological space, then 8{X) will 

denote the family of non-empty closed subsets of X. 

Hamilton [2] (1947) considered multi-valued mappings for 

which the image of a point was supposed connected, but not acyclic. 
Let en be an n-cell in En ( n ~ 2), and let f be a mapping such that 

:ror each xc:Cn, f(x) is the boundary (n-1)-sphere of an n-cell in 
en. Then Hamilton [2] asserted that there exists a fixed point if 
either 

• 

(1) f is continuous (1.e. f is upper semi-continuous and 
lower semi-continuous);or 

( 11.) f is uppe1-1 semi-continuous and there is an t. > O such that 

for each x e: en, the interior domain of f (x) contains an 
t-neighbourhood in En. 

However, Capel and Strother _2] (1957) and O'Neill [2] (1957), 
gave counter-examples to the first of these assertions. Hamilton 

2~ (1957) showed that the second assertion was valid, and this is 
confirrned by the following theorem of O'Neill 2], of which it is 
a corollary: 

1 • ( 0 1 Ne 111 [ 2] ) • Let X be an ANR 1 n En, and let f : X ➔ }g( X) 

satisfy the rollowing conditions: 

{ :1) If x e: X and U is a neighbourhood of f ( x), there is a 

neighbourhood V of x such that if ye. V then f(y)c U (i.e. 

f is upper semi-continuous), and each (n-1)-cycle on f(x) 
V 

is homologous in U to a cycle on f(y) (augmented Cech ho-
mology with a field of coefficients); 

( i 1.) Ir x € X and o ~ r :S n- 2, t hen Hr ( f ( x) ) = O • 

Then X has a fixed point under f. 
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O•Neill 3 (1957) defined induced homology homomorphisms 
for multi-valued mappings and used it to define a Lerschetz num
ber for mappings under which the image of each point is discon-

..... 
nected. Let H again denote Cech homology theory with coefficients 

in a field. All spaces are assumed to be compact metric. Thus the 
~ 

group H(X) can be based on a group C(X) of projective chains (Lef-

schetz 5, pp.229, 231 ). Define the ~upport ~fa co~rdin~te c1 of 
c € C(X) to be the union of the closures of the kernels of the sim

plexes appearing in ci (Lefschetz ~5, p.245~). Then the intersec

tion of the supports of the coordinates of c is defined to be the 

~µppoFt c of c. Let A and B be chain groups with supports in 
the compacta X and Y respectively, and let e > O be given. Let f... 

also denote the set-valued function defined by 

e:(x) = {x 1 e X p{x,x 1 ) ~ E}, for all xe: X, where p denotes the me

tric of X. A chain mapping q>: A > B is accurate with respect to 
a function f : X ) G(Y) provided that cp( a) c f I al f'or each 

a EA. Further., t.p is e.-accurate with respect to f provided tp is ac

curate with respect to the compost te function E. ft: • 

A homomorphism h : H ( X) > H(Y) is an induce_d hom'?rri,orpl}.ism of 

f : X ➔ e(Y) provided that, given l > O, there is a chain mapping 
<p: C(X) > C{Y) such that cp is t-accurate with respect to f, and 

h =~*' where f* is the homomorphism induced by~. 
The set of all induced homomorphisms of an arbitrary function 

f: X ·> ~{Y) is a vector space under the usual operations. If hf 
and hg are induced homomorphisms of upper semi-continuous mappings 

f : X · > e(z), and g : Y > ~(Z), then hghf is an induced homomor
phism of gf'. If f : X ) Y is a (single-valued) continuous mapping 
of a connected compactum into a compact polyhedron (for the lat

ter, see Lefschetz 5, pp.94, 308 ), then the induced homology ho
momorphisms off are exactly the_scalar multiples of the Cech ho
mology homomorphism f* (O'Neill 3 ). 

A homology homomorphism his non-trivial provided that the 
zero-dimensional component h

0
: H

0
(X) >H

0
(Y) is not the zero ho

momorphism. 
We now have 

2. (O'Neill [3]). Let X be a compact polyhedron, f: X > 8(X) 

upper semi-continuous and h : H(X) .. > H(X) the induced homology ho
momorphism off. Then the Lefschetz number /\(h) = L(-1)r trace 
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... hr can .be formed., and if /\(h) I- O., then X has a fixed point under 
; f. ' 

, To be able to use this fact,•it is necessary to produce an in
duced homology homomorphism off, which maps some r-cycle non-tri
vially (r ~ o). 

3. ( 0' Neill [3]). An upper semi-continuous mapping f' : X> ~ (Y) 
has a non-trivial induced homomorphism in either of the following 
cases: 

, (1) ' ' ' , 

X and Y are compact polyhedra such that :ror all x € X, f(x) 
, 

is either acyclic or else consists of exactly n acyclic 
components; 

' 

(11) Xis a compact one-dimensional polyhedron with first Betti-
number ~ 1, arid Y is a compact polyhedron. 

From this we have theorems 4 and 5 below. 

4. {O'Neill [3]). Let X be a compact polyhedron and n a fixed 
pos1.tive integer. Let r : X > ~(X) be contiquous such that, for 
all x E. X, f(x) is e1 ther acyclic or e,lse consists of exactly n a-

• 

cyclic components. Then f has a non-trivial homomorphism h such that 
' , . 

if' /\(h) :/. O, then X has a fixed point under f. Further, if X l.s a-
cyclic, then there is a fixed point. 

Analogous., but weaker results were e:arlier obtained by Magenes 
2 ( 1950)., Darbo · 1 '. ( 1950) and Dal Saglio 1 ( 1956). 

For n = 1 theorem 2 is' the polyhedral for1·n of the theorem of 
Ellenberg and Montgomery [1] ( 1946), except that the· requirement· 
that f be lower semi-continuous is then superfluous. However, if 

n>1,·upper semi-continuity alone is insufficient. For example, con-
. ' 

sider the mapping of the interval · -1,1_ for which f{O) = {-1,1}, 
' 

:r(x) = { 1} :ror x < o·, f (x) = { -1· for x > o. Also, if n > 1 the space 
o·f · induced homomorphisms need not be one-dimensional as in the case 
n = 1. · · • 

It does not appear that this result can be generalized by al
ter:l.ng'the number of' components :r(x) is permitted to have. For, ·1:r 

. ' 

Sis any f'inite set of positive integers - except certain sets of' 
, . 

· the forn1 2, n · and necessarily, 1, n ....; · there 1s a continuous map-

ping f : c 2 > ~(c2 ), c 2 being t·he 2-cell, which has no fixed points 
, ' . , ' 

and which is such that ~or each poiht x the number of points in f'(x} 
, 

occurs in S ( 0' Neill · 3 · · ) • ' ' 
• 

. ' ' 

• 



5. (O'Neill 3·). Let X be a co,mpact one-dimensional polyhe

dron with f"irst Betti-number R1 ~ 1. Every continuous mapping 
f : X > t>(X) has a non-trivial induced homomorphism h such that 

if A(h) ~ O, then X has·~ fixed point under f. 

Corollary (Plunkett 1- ). A dendrite has the f.p.p. for con

tinuous closed set-valued n1appings. 

Ward 7 (1958) obtained the following extension of Plunkett•s 

result which is not included in theorem 5: 

6. (Ward 7 ). An arcwise connected, heriditarily unicoherent, 

hereditarily decomposable metric continuum has the f.p.p. for con

tinuous closed set-valued mappings . 

. The restriction on the Betti-number in theorem 5 cannot be 
omitted. For let X be a compact one-dimensional polyhedron with
out end points and such that R1 > 1. If e > O is sufficiently small, 

the function f : X· > e(x) defined by f(x) = {Y€ X, p(x,y) = E.. 

will be continuous if pis a suitable metric, and any induced ho
m9morphism off will be a scalar multiple of the identity homomor-

. 

phism of H(X). Thus a non-trivial induced homomorphism of such a 
. ' 

function would have a non-ze1.,o Lefschetz number, contradicting 

theorem 2. 
The condition_that the space be one-dimensional 1s also es-

sential. Strother 1 (1953) showed that no Tychonoff cube with 
more. than one factor ha~ the f.p.p. for continuous blosed set-

, 

valued mappings. Thus it 1s necessary to place further conditions 
on functions defined on spaces of dimension~ 2. In addition to 
the restrictions stated in O'Neill's theorems (O'Neill 3 ), we 

• 

have the following possibilities: 
7. (Strother 1 ). Let X be a retract of a Tychonoff cube 

T = IA. Let f : X ► ~(X) be continuous such that, for every x E: X, 
' 

f(x) is the product of subsets of I. Then X has a fixed point un-

der f. 
8. (Strother· 1 ). Let X be a retract of a Tychonoff cube 

T = ➔ I (ex € A) 

f : X · -> ~(X) be continuous such that, for some fixed f3 e: A and 
for all x e: X, there is only one point in f(x} which projects onto 
sup 

" 
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In each case the proof proceeds by constructing a trace off, 

i.e. a continuous function f' : X ➔ X such that f' (x) € f(x) for 
all x e: X. 

1 .5. M,appi nt5s f_ : _ X - ➔ Y such that X c Y and f ~Xj]J.....:X~ 

So far we have been concerned with mappings of a space into 
itself. We now consider a more general situation: If Xis a proper 
subset of a space Y, what conditions must be imposed to ensure the 

existence of fixed points under a mapping f : X > Y such that 
:f X \X -/ ¢ ? 

As an example, we have the following extension of Brou
. ··wer•s fixed point ·theorem ror the n-cell: 

1. (Knaster, Kuratowski and Mazurkiewicz 1 (1929)). Let en 
be an n-cell 

the boundary 

n in E, and 
of en into 

r : Cn , ➔ En 

c 11
• Then en 

continuous such that f maps 
has a fixed point under f. 

For two dimensions Sperner ~1 (1934) proved the existence of 

£ixed points under slightly weaker assumptions: 

2. (Sperner 1 (1934)) • Let c2 be a two-cell in E2 and 
~: c 2 > E2 continuous. Then c2 has a fixed point under f if the 
boundary of c 2 contains an arc A such that (1) A contains all the 
accumulation points of r~c 2 \c2 , and (ii) f A c c2 • 

Fixed point theorems of the same spirit (and for the two-di
mensional case) have been given by Scorza Dragoni 1,2~ (1941, 
1946), Volpato 1,2 (1946, 1948), Dolcher ~1 (1948), and Trevi
san 1 (1950). 

The Knaster-Kuratowski-Mazurkiewicz theorem was extended to 
Banach spaces: 

3. (Rothe 3~ (1938)). If Xis a Banach space and fa conti
nuous mapping of the closed unit ball C = x € X x s 1} into 
X such that f [c] is compact and the boundary of C is mapped into 
C; then C has a fixed poini: "L1nder f. 

• 

For multi-valued mappings we have the following result: 
4. (Eilenberg and Monteomery [1 J ( 1946)) • Let en be an n-ce 11 

:1n En, and '3(En) the family of non-empty compact subsets of En. 
Let f: en ➔ ~(En) be an upper semi-continuous mapping which maps 

the boundary of e0 into en. If there exists a non-triv1al coeffi
cient group with respect to which each f(x) 1s acyclic (Vietoris 
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homology), then en has a fixed point under r . 
• 

It is to be expected that theorems 3 and 4 also hold for lo
cally convex topological linear spaces (with the obvious changes 
in wording). 

It is natural to ask the following question: If en and Dn are 
n-cells such that en is Erop~rly contained in Dn, and f 1s a con
tinuous mapping of en onto Dn, does there exist a fixed point un

der f? For continuous mappings this is in general not true (Hamil
ton 3 (1948)),but for interior mappings (i.e. continuous, open 
mappings) we have the following results: 

5. {Hamilton 3 (1948)). If f is an interior mapping of a 
locally connected unicoherent plane continuum M onto a two-cell 
containing M, then M has a fixed point under f. 

Corollary. Let f be an interior mapping of a locally connect
ed plane continuum M, which does not separate the plane, onto a 
two-cell containing M. Then M has a fixed point under f. 

6. (Hamilton 3_ (1948)). Let f be an interior mapping of a 
two-cell C into the plane, such that Cc f C • Then Chas a fixed 
point under f. 

1.6. Spa9e_s ~~ th a, finite n~mber or h~}.ea 

Bourgin _3 · (1957), using his results on the index of a con

vexoid space (Bourgin 2~ (1955)), proved a number of theorems 
giving sufficient conditions for the existence of fixed points un
der continuous mappings of a space with a finite number of holes: 
His main results are: 

1. (Bourgin 3 . ) • Let X be an * AR (i.e. a space which is ho-

meomorphic to a retract of a Tychonoff cube), and Y1 ,Y2 , ••• ,Yn 

* n that Yi•(i=1,2, ••• ,n) is an AR. Set G = U Y1 • Let f: X'-...G· >X 
i=1 

be a continuous mapping such that the boundary of Y1 is mapped in-
to Y1 ( i=1., 2, ••• , n). Then X \ G has a fixed point under f • 

This theorem 
(1919), Alexander 

generalizes previous 
~1 · {1922) and Feigl 

. 

results by Bro_uwer 5 
1 ( 1928) • 



2. (Bourgin 3 ). Let Ebe a reflexive Banach space and 

Y1 ,Y2, ••• ,Yn (n >1) open sets in the weak togology with mutually 

f : E"'-G > E be a continuous mapping which sends the boundary of -
Y1 into Y1 (i=1,2, ••• ,n), and is such that fm.._E"-.G is contained 
in an open ball in E for some integer m ~ 1 .. Then E "- G has a fixed 
point under f. 

G6hde 1 (1959) obtained the following partial extension of 
theorem 2: 

3. (G6hde _1 ). Let X be a closed ball in an infinite-di
mensional Banach space, and let Y1 (1=1,2, ••• ,n) be mutHally dis

joint open balls which are contained in X. Set G = X'-.. U Y
1

• Let 
1=1 

f : G > G be continuous such that f.._G__,, 1s compact. Then G has a 
fixed point under f. 

F.or results on the existence of fixed points when an annular 
ring is mapped into itself, the reader 1s referred to G.D. Birk

hoff ~1,2~ (1913, 1931), Kerekjarto 1,2 (1921, 1923) and Rey 

Pastor ~1 (1945). (Also see p.19.) 

1.7. Co~mon fixed points 

The rollowing theorem is due to Markov 1 (1936) and Kakuta
ni 1 ( 1938): 

1. (Markov 1 , Kakutani [1_,). Let K be a compact convex sub

set of a locally convex topological linear space, and let F be a 

commutative family of continuous affine transformations of K into 
itself. Then K has a common fixed point under F, i.e. there is an 
x e: K such that f(x) = x for all fe F. 

This theorem was r1rst proved by Markov _1 , who used the 
Tychonoff fixed point theorem (Tychonoff 1 ). Kakutani 1 

• 

sketched a direct proor, and he also outlined a proof of the 
lowing theorem: 

then 
fol-

2. (Kakutani ~1 ). Let K be a compact convex subset of a lo
cally convex topological linear space and let G be a group of equi
continuous affine transformations of K into itself. Then K has a 
common fixed point under F. . 

Despite the similarity in appearance, the theorems are proved 

along different lines. (For proofs of these theorems, see Dunford 

and Schwartz 1, p.456-457~). 
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The Markov-Kakutani theorem was extended to a larger class of' 

families of functions by Day ( 2 J ( 1961). He noted that if x c K is a 
• 

fixed point under f, then it 1s also a fixed point under every ite-

rate off, i.e. xis fixed under the smallest semigroup of operators 

on K which includes f. Similarly, xis fixed under every function f 
of a family F of functions of K into itself, if and only if xis al

so fixed under every finite product o r1 of functions from F. 
1~ n 

Thus, in the Markov-Kakutani theorem, F may be replaced by ~ (F), 

the s ma 11 est s e mig ro u [} of continuous a ff in e :na I) pings of K into it -

self which contains F. Ir1 this case the commutativity of F is car

ried to the semigroup L(F), so the theorem above is equivalent to 

that obtained by replacj_ng the word ''family'' by ''semigroup 11
• In or

der to forrr1ulate Day's extension of theorem 1, we briefly def'ine a 

., few concepts. 

Let~ be a semigroup, and m( L) the Banach space of all bound
ed, real-valued mappings x on L , with x II = sup I x(g)I g ~ L . 
Let e be that element of m('L) for which e(g) = 1 for every g a L . 

* Let m(L) . be the adjo:i.nt space of m( ~). A mean on L is an element 
* }Jf- m(L) such that JJ (I = 1 = p (e). 

The right left _regul~ ~ repre~entation of;::·:: over m( 2:,.) 1.s the 

·homomorphism [antihomomorphism] defined on L. into the multiplica

tive semigroup of the algebra of bounded linear mappings of m(~) 

into itself by: For each h" L, rh [ Ah] ls that linear mapping de

fined by: For each fem{~) and each g~ 2: 

• 

'• 

A mean p. on L ls called r,ight_ left invariant if for each 
• 

fem(.,Z:) and each hE.L_ .. . 

.. 

A mean is invariant if it is both right and left invariant.~ 

is called amenable if there exists an invariant mean on L . If we 

express this in terms of adjoint mappings of the linear mappings ph 
or Ah' a mean 1s a right, or left, or two-sided, invariant mean 1:r 

* ,* and only if 1-1 is a fixed point of every Pg' or every "g' or both, 
respectively., 

The extended theorem can now be for·rnulated as follows: 
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3. (Day 2 ). Let K be a compact convex subset of a locally 
convex topological linear space, and let L be a semigroup of con
tinuous affine mappings of K into itself. If Lis amenable, or 

even of it has a left invariant mean, then K has a common fixed 
point under L.. • 

Every Abelian semi8roup is amenable (Day [1] (1942)), so this 
theorem is indeed an extension of the Markov-Kakutani theorem. The 

arguments used in the proof of theorem 3 admits the following ge
neralization: 

4. (Day 2_ ). Let A(K) be the semigroup of all affine con
tinuous mappings of K into itself, and let A(K) have the topology 

of pointwise convergence. Let S be any semigroup with a topology 
~n which multiplication is continuous in each variable, and let 
C(S) be the space of bounded, continuous real-valued functions on 
S, with the least upper bound norm. If there is a left-invariant 

mean on C(S), then for each continuous homomorphism T : S ► A(K), 

K has a common fixed point under -r .._s • 
Since Haar measure defines a left invariant mean on any com

pact group (see e.g. Halmos 1 ), this theorem includes the case 
where Sis a discreet Abelian semigroup or a compact group • 

• 

A still unsolved problem concerning~the existence of common 
~ixed points was referred to by Isbell 1 (1957): If Tis a tree 

and F is a commutative family of' continuous functions f : T > T, 

does there exist a common :rixed point under F? The answer is in 
the affirmative provided that the members of Fare homeomorphisms 
(Isbell l.c.), but otherwise little seems to be known, even when 
Tis a compact interval and F contains only two functions. However, 
it seems that the restriction that F does not cor.ltain ma.ny func
tions only adds to the difficulties, for 

5. (Myskis 1 (1954). If Pis a finite polyhedron with non

. vahishing Euler characteristic and Fis a one-pararneter semigroup 
o:r continuous mappings of P into itself, then P has a common fixed 
point under F. 

6. {Hedrlin 1,2_ (1961, 1962). Let F be a commutative semi
group of continuous mappings of' the closed unit inter~val I = O, 1 .... 
into i tsel:f which cor-itains the identity mapping. Suppose that, for 

some a€I, the orbit F(a) = {f(a) :feF} is a connectt7d set. Then 
I has a common fixed point under F. 
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7. (Baayen 1 ( 1963)); also see Hedrl:!n 2, p .38_ ( 196 2) ) • 
Let F be a commutative grouE of continuous mappings of a topolo
gical space X into itself, and let F contain the identity mapping. 

Let F be maximal as a group, i.e. let F be contained in no other 

transforn1ation group G : X > X. Then X has a common fixed point 

under F if and only 

8. (1-Iedrl!n 3 
if F is not a maximal commutative se~izroup. 

" 

(1962)). Let F be a commutative semigroup of 
continuous mappings of a topological space X into itself, and let 
F contain the identity mapping. Then X has a common fixed point 
under F if and only if the orbit F( a) of some a E. X is a compact 
space which has the f.p.p. for continuous mappings. 

1.8. The Le_fsc~e~z f.i?Ced __ point 
connected continua 

forrr1ula for non-loca_lly 
F 101 I Z 

We remark here that a quasi-complex (Lefschetz 5, p.323) 
need not be locally connected, e.g. Dyer 2~ (1956) proved that 

the finite product of chainable continua (for the latter, see 

p. 66 ) is an ·acyclic quasi-complex and hence has the f .p .p. for 
continuous mappings. Also, :·Jilder 2 (1957) showed that under ad

ditional assumptions on tl1e mappings, the Lef'schetz fixed point 

f'orrnula can be applied to another class of non-locally connected 
continua. 

A compact Hausdorff space 1s n-lc at x E: X if, given any neigh

bourhood U of x, there is a neighbourhood V of x contained in U 

such that every n-dimensional ~ech-cycle on V bounds on U. Xis lcn 

at x if 1 t is r-1 c at x for a 11 r :5 n, and 1 t 1 s 1 c 00 at x i r it is 
r-lc at x for all r. 

If X fails to be lc00 at x, then x is an 1~ 00 -~.ingular poin.~ 

of X. An lc00 -prime_pa~t. of Xis a component of the closure of' the 
set of all lc00 -singular points of X. 

Wilder _2 proved the following theorems: 
1. (Wilder 2 ) • Let X be a compact Hausdorff' space of' :fi

nite dimension all of whose Betti numbers are finite and whose lc00-

prime parts are acyclic (~ech homology with coefricients in a field~ 
If' :f . : X ) X is continuous and maps each lc00 -prime part into an 
lc00 

.... prime part., and if the Lefschetz number ;\( r) I o., then there 
is an lc00 - prime part of X which is mapped onto itself. In parti

cular, if the lc00
- prime parts of' X have the f.p.p. for continu

ous mappings, then X has a fixed point under f. 



2.{Wilder 2 ). Let X be as in theorem 1. Let f be an upper 
semi-continuous mapping such that the image of each point x E. X is 

the union P(x) of a collection of lc00
- prime parts of X, such 

that this union is acyclic and such that if x and y are in the 

same lc00 - prime part of X, then P(x) = P(y). Let A(r) be de

fined as in Begle 2~ (also see p.46). Then, if /\(r) Io, there 

is an xe: X such that x e: f{x). 

Wilder ~2 conjectured that these theorems also hold if the 
restriction that the mapping sends lc00 

- prime parts into lc00 
-

prime parts is dropped, provided that the lc00
- prime parts are 

acyclic. 

• 

• • 

• 
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CHAPTER II 

The Scherrer fixed point theorem and 

related fixed point theorems 

2.1. Definitions and introductory remarlcs 
1ft • II ,mo • I ■ - I 

We first defl11e some of the concepts which will be used in 
this chapter. 

A space will be called deaenerate if it contains one point 

only; otherwise, a space will be said to be non-d~genera,t_e,. 

Let X be a connected topological space. A point e of Xis an 

en<i point, of X if, for each neighbourhood U of e, there is a neigh

bourhood V of e such that Ve U and v\ V consists o:r a single point. 

A point c of X 1s a cut poinJc of X if X \ { c} is disconnected. Two 

points x and y of X are co~juc;.~~e P,s,int~ (written x rv y) if no point 
of X separates x and yin X. If pe X 1s neither a cut point nor an 

end point of X, then the set M(p) = x e X x rvp is a simpl~. link 

of X. A. subset of X is an ~-set of X provided that 1 t is maximal 

with respect to the property of being a connected ,ubset without 

cut P•oints. Xis semi local~Y .. ~,,o~necte~ .(s.l.c.) if, f'or each 

point X£X and each neighbourhood U of x, there 1s a neighbourhood 

V of x such that Ve U and X V has only a finite nun1ber of compo

nents. If X is s. 1. c. then the simple lir1l{s coincide with the E
0 

-

sets. A cyc,lic element of X is either an end point, a cut point or 

a simple link of the space. An end element of' Xis a cyclic ele

ment E of X with the property that, if U is a neighbourhood of E, 
then there is a neighbourhood V of E such that V c U and V V con
sists of a single point • 

• 

A curve is a one-dimensional continuum. 

The reader is referred to Whyburn 1 for information on me
tric continua and cyclic element theory. 

A chain in a topological space is a finite number of open 

if' i-j ~ 1 • .Lhe sets u1 are. called the links of' the chain. A chain 
n 

u 1 i=1 is said to connect two points x and y if x c. u 1 and ye. Un .. 
A continuum is chainable if ~ach of its open coverings has a re-

• 



~inement which is a chain. A metric chainable continuum is called 
snake-lilce. Each sna1ce-lil<e continuuln is imbeddable in the plane 

( Bing 2 ) • 

Bing 1 proved that any two non-deEenerate hereditarily in-,. , 

decomposable sna1(e-li1<:e conti11ua are horneomorphic. Such a conti-
nuum is called a pseud_o,, arc. 

A circular chain is a finite collection of at least three non

empty open sets U 1 , u2 , •.• , U
11 

s1..1ch that u1 n Un ../: ¢, and otherwise 

u1 n U j -/ </ if and only i:f i-<.i ~ 1. 1~ collection G of sets is co
herent if, for each proper subcollection Hof G, an element of H 

has a non-empty intersection with ar1 element of G,H. A finite co

herent collection of open sets is a tree chain if no three of the 

sets have a poi11t in comri1on and t10 sub col le ct ion is a circular 

chain. A continuu1~1 is tree- lilce if each of 1 ts open coverings has 

a refinement which is a tree chain. The tree-like continua include 

among others the trees and certain indecompos?ble continua. Each 

plane continuum \"1hich does not (;ontair1 a continuum which separates 

the plane, is tree-lilce. (See Bing 2 for information on tree-
, 

like continua.) 

If X and Y are t1Jpoloeical spaces, then a continuous mapping 

f : X > Y is called monotone if r- 1 ( y) is a connected subset of X 

f'or every y E Y. :f ls pse.1.1do.-n~<?notone if', whenever A and B are 
closed connected subsets respectively of X and Y, and B cf A , then 

some component o:f An r-1 D is r11apped onto B by f. In general the 

notion of a pseudo-monotone mappinG is independent of the notion 

of a monotone mappin~, but if X 1.s a hereditarily unicoherent con

tinuum, and f : X ► Y is monotone, then 1 t is pseudo-monotone 

(Ward 10 ) • 

The following two unsolved probler·ns play an interesting role 

in the set-up of this chapter: 
(i) Does a plane continuum which does not separate the plane 

have the f.p.p.? 

(ii) Does a tree-like metric continuum have the f.p.p.? (Bing 

2 ) • 

Most of the results to be surveyed in this chapter can be in

terpreted as partial solutions of one or both of these problems or 

, as generalizations of such partial solutions to either non-metric 

spaces or multi-valued mappin~s. This seems to be true even though 

many of the ''partial results'' were obtained before either problem 
' 
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was explicitly formulated in the literature. The two problems are 
in fact different, but the second problem seems to be the more 
general one, as there exists man~r t1.,ee-lil{e metric continua which 
are not imbeddable in the plane. 

For the sal1::e of clarj.ty, the results for single-valued map

pings are crouped tocether in section 2, even when they were formu

lated directly fr)l' r11ul ti-valued 1!:appings in the orir;inal publica

tions. The res1..1lts for nlul ti-valued j:1appinr,3 a1"e surveyed in sec

tion 3. 
If a mappinc of a continuum into itself leaves an end point 

fixed, the question arises whether there are other fixed points. 
Results answerinG questions of this nature are collected in section 
4. 

2.2. Sin~le-valued mappings 
4 L I 

One of the main results to be stated in this section is 
1 • .A tree has the f .p .p. f'or ccJntint1ous mappings. 
The history of this theorem is as follows: In 1926 Scherrer 

1 proved ti1at a dendrite has tr1e 1'. p. p. for contit1uous mappings. 

Nobeling 1 (1932) extended Jchis result to continuous mappings.,and 

another proof' was given by Borsuk 3 (1932). It also follows {for 
a dendrite and con.;t..: inuous mappings) i'rom tr1e following result due 

to Hopf 2 ., in the proof of whil.!t1 he made use o:f the structures 
of the nerves of tl1e coverings of" the considered space: 

2. (Hopf 2 (1937)}. If o.. is a covering o:f order 2 of a uni
coherent locally connected continuum X by closed sets, and 

f : X- > X is continuous, then there exists a member Ue ex such that 
unr_u ~ ¢. 

Wallace 1 (1941) showed that the techniques introduced by 

Hopf could also be applied to show that a tree has the f.p.p. :for 
continuous mappings, and other proo:fs of this result were given by 

~ 

Ward 4 (1951) and Capel and Strother 3 (1958)., by means of the 

order-theoretic characterization of trees due to Ward 2 (1954). 
Ward 4_ (1957) also defined a generaliz~d tree in terms of partial 

order for wt1ich l~e proved a I'ixed point theorem. Finally, theorem 1 
follows from Lefschetz's fixed point formula (Lefschetz 5 (1942)) • 

. ~ Ayres 1 ( 1930) gave sever a 1 extensions of' Scherrer' s theorern 

to arbitrary Peano continua. His first theorem contains a general 
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result on tr1e cyclic structure of Peano continua: 

3. (Ayres 1 (1930)). If'X is a Peano continuum and 
h : X · > X a hon1eor:1orpl1ism, tt1en tr1ere exists a eye lie element C of 
X such that h C Cc. 

From this., 
4. (Ayres 

Peano continuui11 

same property. 

three generalizations of Scherrer 1 s theorem follow: 

1 (1930)). If every cyclic element of a 

X i1as t1'1e f .p.p. for itomeomorphisms, then X has the 

5. (Ayres 1 ( 1930)) • Ii' eve11 y eye lie element of a Pea no con

tinuum X is an n-din1ensional s:irr1plex ( n rnay vary for different ele

ments), then X has the f. p. p. for l1oroeomorphisms .. 

6. (Ayres 1 (1930)). If' a Peano continuum lies in the plane 

and does not separate the pla11e, tiien it has the f .. p.p. for homeo
morphisms. 

Borsulc 3 ( 1932) showed that 1'r1omeomorphisms'1 in theorems 4 -
6 may be replaced by 11 continuotlS ri1appings'' to give stronger results 

in the case of theorems 5 and 6. 
' 

Kelley 1 (1939) extended theorem 3 to non-locally connected 
metric continua: 

?.(Kelley 1 (1939)). If Xis a met~ic continuum and 

h : X ., )X a homeomorphism, then there exists a subcontinuum Y of X 

such that h Y = Y and Y has no cut points. 
From this follows 

8. (Kelley _1 (1939). If Xis a metric continuum and 
h : X ➔ X a homeo 111orphism, then there exists either a fixed point 

in X or else an E
0
-set Y such tt1at h Y c Y. 

9. (Kelley .... 1 ... {1939)). If every E0 -set in a metric continuum 

X has the f.p.p. ?or homeomorphisn1s, so also l1as X. 

If Xis semi locally connected, then the E
0
-sets and the cy

clic elements coincide, and thus theorems 8 and 9 imply theorems 3 
and 4 respectively.· 

' -In 1940 Kelley 2 obtained related results for continuous 

n1appings. 
10 • ( Ke l ley 2 {1940)). If f is a continuous mapping of a me-

tric continuum X into itself, then there exists a continuum Y which 

is a subset of a simple lin1-c or X such that f Y . ::> Y. If Y is de'

gen.erate, then there is a :fixed point: Hence, if f : X ➔ X is con

tinuous, then there exists eitl1er a fixed point in X or else a sim

ple link C such that C n f C is a non-degenerate continuum • 

• 

• 
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11. (Kelley 

tric continuum X 

of a simple li111-c 

12. ( ICe lle~.r 2 

2 ( 1940)). If' f is a continuous mappi r1g 
' 

into itself, the11 there exists a compact 

of' a me
subset A 

of X such tl18t f A = A. 
( 1940)) • Ir r is ~ C()nt inuo1.1s r;·1ap pi 11g of a me- ' 

tric continuutn X i11Jco itselr whi1~h carries ea('r, sir:1rJle link into a 

simple lintc ( e .e;. if the it1verse c.1f 110 

linlr: in X), then there exists ~ sir.:i_)le 
f C Cc. 

point separates a simple 
• 

linlc C of X such that 

For Pea:10 eo11t1.nua, theorei1 12 i111plies theore111 3, a11d the 

fixed point theorem for dendrites £allows fron1 theorem 10. Ward 

3,10 (1956, 1962) showed that theorem 7 holds for arbitrary con-
• 

t1nua and fo1"' monotone and pseudo-r~o11otone mappinc;s. 

Hamilton 1 (1938) extended theorem 6 to a class of non-lo

cally connected 1,1etr"'ic c:::>11tinua a11d proved theorerr1s related to theo-

rems 3 - 5 for this class of continua. 

13. ( Han1il to11 1 ( 1938)). If X is a deco1·:1posa ble non-degener

ate metric co11tinuu,.: and h : X > X a ho 1neor.iorphisr11, then there 

exists a proper sub0ontinuu1··1 Y of X such th;:iJc Y n.f Y I, ¢. 
14. (Hatnilton 1 ( 1938)). If )~ is a deco:·11p(.)GcJble and heredi

tarily unicoherent non-degen.erate r.:etric continuun1 and h : X a. X a 

homeomorphism, then 'chere exists a p;i.~,op~r subco11t lnuum Y of X such 
that h Y c Y. 

15. (Hamilton 1 

ditarily unicoherent 

phisms. 

(1938)). A hereditarily 

metric continuum has the 

decomposable and here

f.p.p. for homeomor-

Theorem 15 adr:1i ts ns application in the plane: 

16 .. (Hatnilton 1 (1938)}. A 1-:e!"editarily decomposable plane 

continuum whicl1 does 11ot ser)arate i.:he plane a11d which contains no 

domain, has the f .p .p. for hon1eomor1Jhisn1s. 

17. (Ha1nilton 1 (1938)). If Dis a bounded, simply connected 

plane domain whose closure does not separate the plane and whose 
-boundary is hereditarily decomposable, then D has the f.p.p. :for 

horrleomorphisms. 

It is unl<nown whether 2 plo.11e e;o~-itinuum which does not sepa

rate the plane l,as the f. p. p • ., eve11 for homeomorphisms. Choquet ._1 

( 1941) sho~1ed tl1.at if C is a11~r plane continuum which does i:1ot sepa .... _ 

rate the plane and h : C , >- C is a hort1eomorphisrn 't"1hich is extensible 

to a homeomorphism of the pla11e onto itself and if h is periodic 

with period /. 2, then. C has a :fixed point u11.der h. Cartwright and 
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Littlewood (1951) proved that a plane acyclic continuum has 
the f.p.p. for homeomorphisms which are extensible to homeomor
phisms of the plane onto itself. 

Theorem 15 was extended to hereditarily decomposable and uni

coherent (non-metric) continua and monotone and pseudo-monotone 

mappings (Ward 10 (1962)). In particular, a continuum each of 

whose non-degenerate subcontinua has a cut point, has a fixed 

point under a pseudo-monotone mapping. 

Borsuk 7 (1954) partially extended theorem 15 to continuous 
mappings: 

18. (Borsuk 7 (1954)). An arcwise connected, hereditarily 
unicoherent metric continuum has the f.p.p. for continuous map

pings. In particular, an arcwise connected, hereditarily acyclic 
curve has the f.p.p. for continuous mappings. 

Borsuk l.c. proved that an arcwise connected, hereditarily 

unicoherent continuum is hereditarily decomposable. Thus, for ho

meomorphisms his result is included in Hamilton's theorem (theorem 
15 above). Theorem 18 was extended to non-metric continua by Young 

2 (1960). 
i corollary of theorem 18 is that a contractible curve has 

the f.p.p. for continuous mappings. Kinoshita 2 (1953), however, 

gave a counter-example to the widely held conjecture that every 

contractible continuum must have the f.p.p. for continuous mappings. 

The join of the space in his example with a point is a cone which 

lacks the f'.p.p. 

We now consider generalizations of the fixed point theorem for 

trees to non-compact, non-locally connected spaces. Young 1 (1946) 
defined a generalized dendrite as a locally connected Hausdorff 

space X such that i:f x,y €. X and L 1 and L? are two chains or con

nected subsets from x toy, then some member of L1 intersects some 

member of L2 outside x,y . If Xis compact, this is equivalent 

with X being a tree. Young proved that every two distinct points x 

and y of a generalized dendrite X are the non-cut points of a unique 

compact, connected and locally connected set P such that each point 

of P "-. x,y separates x and yin X, and he called such a set Pa 

''pseudo arc''. To avoid confusion with the term pseudo arc as defined 

on p .67, we shall use the term g~n.er.<=!-;ti-?ed arc instead of ''pseudo 

arc". Young l.c. obtained the following generalizations of the fixed 

point theorem for trees: 
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19. ( Young 1 ( 1946)) • If X 1.s an arcwise connected general
ized dendrite such that the union of a11y monotone increasing se

quence of generalized arcs of Xis contained in a generalized arc, 

then X has the f.p.p. for cont~nuous mappings. Conversely, if Xis 

an arcwise connected generalized dendrite which has the f.p.p. for 

continuous mappings, then the union of any monotone increasing se
quence of gene~alized arcs of Xis contained in a generalized arc. 

By the introduction of local connectivity by a change of topo

logy, Young used theorem 18 to deduce 

20. (Young 1 (1946)). If Xis an arcwise connected Hausdorf~ 

space such that the union of any monotone increasing sequence of 
arcs is contained in an arc, then X has the f.p.p. for continuous 
mappings. 

Ward 8_ (1959) obtained a result that includes the above

mentioned theorems of Borsulc and Young ( theore111s 18, 19 ( first 
part) and 20). A t_opolop;ical chai11 1s a contj_nuum which has exactly 

two end points. A topological space is said to be toE;:>fogi~,ally 
chained if, for every tv,o distinct points x,y£ X, there is a topo
logical chain in X which contains both x and y. Let X be a topolo
gically chained space in ,.-,hich the topoloGic:al chains are unique, 
i.e. every two distinct points x,ye X are the end points of 
precisely one topological chain, denoted by x,y . Ara~ ~1th end 
point e of X 1.s the union or a maximal nest of chains which have e 

' 

s common end point. If R is a ray ,·1i th end point e and x E: X, let 

A(R,x) = R, e,x U X ; KR :::: n A ( R, x ) X €. X • 

Consider the condition 
(Fe) If Risa ray with end point e, then KR has the f.p.p. 

or continuous tnappings. 
We now st<1te Ward's results. 

21. {Ward ·_8 (1959)). If Xis an arcwise connected Hausdorff 
ace in which the union of any nest of arcs is contained in an arc, 

en the arcs in X are unique and X sa.tisfies (Fx) :for ea ch x e X. 

22.· (Ward 8 (1959)). An arc,111ise connected, heredit'arily uni
oherent continuui·n satisfies (PJ;:) for ea ch x e X. 

23. (Ward 8 (1959)). Let X be a topolocically chained space 

11ith unique chains and suppose there exists a point e e. X such that 

(Fe) is satisfied. Then X has the f.p.p. for continuous mappings. 
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From theorems 21 and 22 it follows that the class of continua 
for which theorems 18, 19 and 20 hold, is contained in the class 

~or which theorem 23 holds. 

Hamilton 4 (1951) introduced a new technique by making ex
plicit use of the fact that a chainable continuum has arbitrarily 

rine open coverinGs, each of whose (finite collection of)elements 
are totally ordered, to present an elegant proof of· 

24. (Hamilton 4 (1951)). A chainable continuum has the f.p.p. 
ror continuous mappings. 

Actually Hamilton proved the theorem for snake-like continua 

only, but a slight modification of his arguments yields a proof of 

theorem 24. 

Dyer 2 (1956) obtained the following extension of Hamilton's 
result: 

25. (Dyer 2 (1956)). The topological product of an arbitrary 
family of chainable continua has the f.p.p. for continuous mappings. 

Theorem 24 was generalized in another direction •also. A snak,e~ 
• 

like continuum is, by definition, the inverse limit of a system or 
arcs, and it is not hard to prove that if a space 1s the inverse 
limit of a system of arcs, then it is a chainable continuum, as was 
observed by Rosen 1 (1959). However, it 1s unknown whether a 
chainable continuum is the inverse 11n1i t of a system of' arcs. Rosen 

established the following partial extension of theorem 24: 

26. (Rosen 1_ (1959)). Let X and Y be the inverse limits of 
systems of arcs over directed sets A and A1 respectively (defini-

• 

t ions as in Eilenberg and Steenrod 1 ) , and let cp : A .. >A' be an 

in A' and cp A 1s cofinal in A'. Let f,g : X > Y be cont:1_nuous 
mappings of which g is onto. Then X has a coincidence point under 

_ rand g, i.e. there exists a point x 0 € X such that f(x0 ) = g(x0 ). 

Theorem 26 was in turn partially extended (and properly ex

tended in the special case where Y = X and g : X > X is the iden-

tity mapping): · 
27. {Mioduszewski and Rochowski 1 (1962)). Let Xa,lfo.~~A 

be an inverse system o.f compact polyhedra xo,. .. c:xeA over a directed 

and onto, and such that, for every continuous mapping r of Xp on

to XO( , there is a 
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Then the inverse limit of the system Xa, 1T~p ,A has the f.p.p. 

for continuous mappings. 
Both theoren1 26 and theorem 27 itnply the .fixed point theorem 

for snake-like continua. Theorem 27 also has the following interest
ing corollary: 

28. (Mioduszweslci 1 ( 1962)) .. Let 

be an inverse system of compact polyhedra such that X~ c Xp for 

XOl 
is the identity mapping on Xo.., and let ea ch X O ( a. e:: A) have the 
f.p.p. for continuous mappings. Then the inverse limit of 

Xoc, lTcxp'A has the f .. p.p. for conti11.uous mappings. 
Mioduszweski and Rochowski 1 stated the following problem 

which includes the question whether a tree-like continuum has the 

f.p.p.: If all the X~ in the inverse system have the 
f .p .p. for continuous ~1appings, and the ir

0
p are onto, does the in

verse limit of the system have the f.p.p.? 

2.3. ~lti-valued ma£pings 
0 

Wallace showed that the techniques introduced by IIopf 2 (see 
theorem 2 of section 2) could be applied to extend the fixed point -
theorem for trees_to a certain class of multi-valued mappings. 

1. (Wallace 1 (1941)). A tree has the f .p.p. for upper semi
continuous continuun1-valued mappings. 

Capel and Strother 3 (1958) used order-theoretic 
give another proof of theorem 1. Theorem 1 also follows 
extension of the Lefschetz fixed point theorem (Beele 
see section 3 of Chapter I). 

methods to 

from Begle 1s 

1 (1950); 

A'ttention has already been drawn to the fact that, to ensure 
the existence of fixed points unde1-i arbitrary closed set-valued 
mappings, it is necessary to impose upper semi-continuity and 
lower semi-continuity on the mappings (O'Neill 3 (1957); see 
section 4 of Chapter I). Furthermore, the spaces which have the 

• 

f.p.p. for continuous closed set-valued mappings constitute a fair
ly small subcla.ss of those whi'ch have the f .p .p • .for ( single-va:lued) 
continuous mappings. For example: 

2. (Plunkett 1 (1956)). (a) A dendrite has the f.p.p. for 
continuous closed set-valued mappings • 

• 
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(b) Conversely, if a Peano continuum has the f.p.p. for con
tinuous closed set-valued mappings, then it is a dendrite. 

Theorem 2( a) was extended to non-metric contin11a: 
3. (Ward 7 (1958)). A topologically chained 1 )., hereditari

ly unicoherent and hereditarily decomposable continuum has the 
f'.p.p. for contit1uous closed set-valued mappings. In particular, 
since an arcwise connected, hereditarily unicoherent continuum 
contains no indecomposable continuum (e.g. Borsutc 7.,p.17 )., such 

a space has the f .p.p. for continuous closed set-valued n1appings. 
The arct-Jise connected metric continua which have the f.p.p. 

:for upper semi-continuous continuun1-valued mappings are character
ized by hereditary unicoherence: 

4. (Ward 9 (1961)). An arci:>.1ise connected metric continuum 
has the ~.p.p. for upper semi-continuous continuum-valued mappings 

~rand only if it is hereditarily unicoherent. 
Thus, ror Peano continua the class of spaces which have the 

f.p.p. for continuous closed set-valued mappings coincides with 

the class of spaces possessin~ the f.p.p. for upper semi-continu

ous continuum-valued mappings. 

We now turn our attention to snake-like continua. Ward _6 
( 1958) showed that Hamil ton• s argun1ent in the case of single

valued mappings (Hamilton ~4 {1951)) can also be applied to con
tinuous set-valued mappings. In fact it can be extended to chain-

• 

able continua, as was observed by Rosen 1 (1959). 
5. (Ward 6 (1958), Rosen 1 (1959)). A chainable continuum 

has the t'.p.p. for continuous closed set-valued mappings. 

• 

Rosen l.c. established results which in the metric case are 
generalizations of theorem 5 both with respect to the class of map

pings and the class of spaces. 
6. (Rosen 1 (1959)). Let X and Y be the inverse limit of 

systems·or arcs over directed sets A and A' respectively (defini

tions as in Eilenberg and Steenrod .... 1 ) • Let c.p : A ➔ A I be an iso

morphism, .... i.e. c.p is one-to-one, ex.~~. in A implies c.p(cx.) ~ <p( p) in 

A 1 and~ A_ is cofinal in A'. Let jP(Y) denote the family of non
empty closed subsets of Y, and let f, g : X > 2r(Y) be upper semi
continuous mappings such that g is onto and the graphs off and g 

are connected subsets of Xx Y. Then X has a coincidence point under 

----------------
1) See p.72for the ~efinition. 
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f and g, i.e. there exists a point x
0

~ X such that f(x
0

)t1 g(x 0 ) ~ ¢. 
Corollary. Let X be a snake-like continuum and r : X ➔ .rf (X) an 

upper semi-continuous mapping such that the graph or f is connected. 

Then X has a fixed point under f. 

7. (Rosen 1 (1959)). Let X and Y be as in theorem 6. Let ~(Y) 
• 

denote the family of non-empty subcontinua. of Y, and let f, g : 

XI ➔ e(Y) be upper semi-continuous mappings of which g is onto. Then 

X has a coincidence point under f and g. 

Corollary. A snake-llke continuum has the f.p.p. for upper semi

continuous continuum-valued mappings. 

8. (Rosen [1] (1959)). Let X and Y be as in theorem 6. Let 
f: X ) rf(Y) be continuous, and G: X ~ /(Y) upper semi-continuous, 

onto and such that the ~raph oft is connected. Then X has n coin

cidence point under f and L• 

Theorem 8 in1plies theorer.1 5 in the case of snake-like continua .. 

?.4. Fixed end noints 

There are a few isolated results in the J.iternture of fixed 

point theory which state sufficient conditions for the c::istence of 

more than one fixed point when the existence of at least one is 

knov1n. 

1. (Schv1eigert [1] (194lt-), l·lalla.ce ':' (1945), \·Jard 1,3 
• 

(1954, 1956)). Let X be a continuum, and E an end clement containing 

no cut points of X. Let f be a monotone mapping of X onto itself 

such that f E] = E. Then X \ E contains a non-e;;ipty subcontinuur:1 with
out cut points. 

Corollary. If Xis a tree and E = e , c being an end point of 
X., then there exists a fixed point of f distinct fron1 e. 

2. (Young 1 (1946)). Let X be a generalized dendrite 1 ) such 

that the union of any monotone increasing sequence of generalized 

arcs 1 ) is contained in a generalized arc. Leth be a homeomorphism 

of X onto itself, and ea point of X which is fixed underhand 

which is an end point of every generalized arc containinG it. Then 
there exists a point x ~ e which is fixed under f. 

0 

In particular, the conclusion of the theorem holds i.f '1general-
ized dendrite'' is replaced by ''arcwise connected Hausdor.ff space'' 

and '' generalized arc'' by '1 arc''. 

Results analogous to the Markov-Kakutani ---------------- theorem (see section 

1) See p.71 for the definitions. 
• 
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(1952). Wallace l.c. considered 
topological 
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Wallace 3 (1949) and \,Jang 1 

a continuum X and n group Z which 

space (but not necessarily a topo-is required to be a 

logical group). Let 
which satisf'ies: 

a continuous function f : Z x X- )X be given 

(i) f'(e,x) = x, f'or all x e.X, v-1here e is the unit element of Z; 

(ii) f' ( z., f ( z ' ., x) ) = f ( z z' , x) ., for a 11 x E. X and a 11 z, z' E. Z. 

For each z E. Z, set z(x) =:: f(z.,x)., for all x e. X. Then Z can be 

considered ( '1somewhat incorrectly'') as a Group of homeomorphisms 

acting on X. 
• 

A subset A of Xis c2lled Z-invari~nt provided that z A = A 

r or a 11 z 6 Z . \·J r:1112. c e prov c d 

3. (Wallace 3 (1949)). 

(a) If Z is Abelian, then there is a non-empty Z-invariant sub

continuum of X which has no cut pointB. Moreover, there exists a 

non-empty Z-invariant cyclic clement in X. 
(b) If Z is Abelian and no proper subcontinuum of Xis Z-in

variant, then X has no cut points. 
(c) If Z is connected and metric, then every end point and 

every non-degenerate cyclic clement of Xis Z-invariant. 

Wallace 1. c. raised the fol lo,·Ji n[! question: If X is e. Peano 

continuum and G is a compact trc:.nsforination group of X such that an 

end point of X is G-invariant, do there e~{ist other G-invarinnt 

points of X? Wo.ng 1 (195?) solved the problem for spaces much more 

general than Peano continua by proving the following theorem: 

4. (Wang [1] (1952)). Let G be a trrnsformi1tion group of an 

arcwise connected Hausdorff space X, und let e be a G-invariant end 
• 

point of X. Then there is no other G-invnriant point of X if and 

only if, :for each neighbourhood U of e, the set G [u = U g U g E. G 
coincides with X. If G is also compact, then there exists a U-inva-

riant point of X distinct from e. 
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• 

CHAPTER III 

Miscellany 

3 .1. Partia~_ly o_!'_de:red_ sets . and spaces 

3.1.1. Ordered sets 

A relation Son a set Pis a guas!-ord~r on P if it is re
flexive and transitive. If it is also anti-symmetric on P, i.e. if' 

x ~ y and y ~ x can never occur simultaneously, then < is a ;eartial 
order on P. If for every x,ye: P we have either x~y or y~x, then 

.sis a total (also, linear) order on P. vie write x< y if' x~y and 

x -/- y. A mapping f : P ~ P is isotone provided f{x) .s f(y) for all 

x, y c P such that x .s y. 

The fixed point theorems of Abian and Brown 1 (1961)(hence
forth referred to as AB 1) for partially ordered sets include 

most of the previously 1-cno,.-.Jn results as well_as the more or less 

simultaneously published results of Pelczar 1 (1961). Their 
proofs are based entirely on the definitions of partially and well
ordered sets, and except in the case of theorem 4 and corollary 4 
below, make no use of any form of the axiom of choice • 

• 

Let P be a set, partially ordered by ~ • Let f : P ), P be a 

mapping. For each a € P, an a-chain Cr is a subset of P satisfying 

the following conditions (AB [1]): 
" 

( 1) Cr is well ordered, t·1ith a as its first and r as its last 

element; 

( 2) 1 f z € Cr and z / r, then f ( z) € Cr, z < f ( z ) , and there 

exists no ye: Cr f'or which z < y < f ( z); 
(3) if Tis a non-empty subset of Cr, then sup T exists and 

is an element of Cr. 

Let W(a) = r E: P 3 a11 a-chain Cr having r as its last element . 

From ( 2) 1 t follows that vl( a) = a except when a< f (a). The 

set W(a) has the following properties (AB 1-): 

(1) If r € W(a) and Cr is an a-chain with last element r, then 

ere W(a). 
( ii) If r e: W ( a) and r < f ( r) , then f ( r) €. W ( a ) • 
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(:!..ii) If r.,s € W{a) and C is an a-chain with last element r, r 
then e:tther s e: Cr or r < s. 

( :t v) If re W( a), there is just one a-chain Cr with last ele

ment r ., namely x e: W (a) x ~ r . 

Thus, ~or given P, f and a, Cr is uniquely determined by r. 

We now state the main results of faB .. 

1. (AB 1 ). Let P be a partially ordered set, fa mapping or 
P :1.nto itself, and a an arbitrary element of P. Then 

(4-) W(a) is well ordered \<Jith a as first element. 

Moreover., if c = sup l·I( a) exists, then 

(5) W( a) is an a-chain 'lr'lfi th c its last element, and 
(6) C f(c) • 

2. (AB ; also see Pelczar ). I.et P be a partially 

ordered set in which 

{7) :Lr W is a non-empty 't'1ell ordered subset of P, then sup W 
exj_st s. 

Let :t' : P ➔ P be an isotone mapping suclr that 

(8) there exists an ele11ent a E: P such that a sf( a). 

Then there exists at leas~c one element c E: P such that 
C r ( c) • In fact, c = st1p vi( a) is S'llCh an element. 

Corollary 1. (AB 1 , Knaster 1 (1928), Tarski 1 (1955); 
also see G. Birkhoff 1., p .54 ) • Let f : P • ➔· P be an isotone map

Pi Y1g of a complete lattice into itself. Then x
0 

= f(x
0

) for some 

XO € p • 

Corollary 2. (AB 
partially ordered set 

• 

1 
• in 

; also 

which 

see Pelczar 1 ) • Let P be a 

(9) every non-empty well ordered subset 1/! of P which is bounded 

above has a sup. 

Let :r : P >P be isotone and let there exist two elements a,bt!. P 

s-i1ch that 

(10) a~f(a)sf{b)s:b. 

Then there exists c € P such that f( c) = c and a .s c ~ b. In 

f"'act, c = sup W(a) is sucl--i a11. element. 

Corollary 3. (AB 1 ,G.Birkhoff 1, p.54, example 4_ ). If f 

is an isotone mapping of a conditionally complete lattice into it

self'" and if there exist two elements a, be P such that 

a :s; :C (a)~ f(b) -s b, then r( c) = c for some c E. P with a·~ c s b. 
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3. (AB 1 ,G.Birkhoff 1, p.44, example 4~ ). Let P be a par

tially ordered set in which 

( 11) sup of every non-empty t"1ell ordered subset W of P exists. 

Let f : P > P be a mapping such that 

( 12) x s f(x), for all x e: P. 

Then there exists at least c)ne element c e: P such that c=f( c). 
In fact., for each a e: P, c = sup W(a) is such an element. 

4. ( AB 1 ) • Let P be a pnrtia l l~r ordered set in which 

( 13) each non-er:1pty well ordered subset W c P which is bounded 

above has a sup. 

Let g : P · > P be a mappin::; such tl1 At 

(14) if g(x)-< e;(y), then x< y fnr every two elements x,y € P, and 

( 15) for x, y, s e P, if g (x) :S s ~ ~ ( y), then g - 1 ( s) F ¢. 
Let f: P>P be isotone, and let tl-:ere exist a,beP, with a<b, 

satisfying 

g ( a) s f ( a) and f ( b) ~ e ( b) • 

Then there exists at least one element cc P such that a~ cs": b 

and f(c) = g(c). 

Corollary 4. (AB 1 ) • If in theorern 4 instead of { 14) we 

assume that g is,isotone, then the conclusion of theorem 4 remains 

valid provided Pis linearl~ ordered. 

The results of Pelczar 1 actually are slightly weaker than 

those of AB 1 , e.g. instead of (7) it is assumed that the sup 
of every non-empty subset of P exists. 

The following generalized form of corollary 1 above v1as 

proved by Tarski 1 (1955): 

5 • (Tarski 1 ) • Let L be a 

tative family of isotone r:1appin~:.s 

set of all common fixed points of 

Q = { x € L I f(x) = x for all f e: F 
lattice. 

complete lattice and Fa comrnu
of L into itself. Let~ be the 
L under F, i.e. 

• Then Q is a non-empty complete 

Davis _1 (1955) showed that the property of having the f.p.p. 

for isotone mappings is also sufficient for a lattice to be com-

plete. Thus 

6. (Davis _1 ). A lattj_ce is complete if and only if it has 

the f.p.p. for continuous mappings. 
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Wolk 1~ (1957) obtained an analogous characterization for a 
class of partially ordered sets which includes the lattices. Let P 
be a partially ordered set with a greatest and a least element. A 

subset S of Pis up-directed down-directed if each pair of ele-
, a 

ments of S has an upper bound a lower bound~ in S. P 1s Dedekind 

com2Jete if each up-directed subset of P has a sup in P and each 
down-directed has an inf in P. 

For AcP, let 

A * -- {x II: p , a ~ x for all a e A , and 

A+ = x E P x -5: a for all a e: A • 

Pis uniform if A* is a down-directed set for every up-direct

ed subset A, ar1d if B+ is an up-directed set for every down-direct
ed subset B. An isotone mapping f: P >,Pis directable if 

x e P I x :s; f'(x)} is an up-directed subset of P. 

It is easy to verify that a complete lattice is a Dedekind 
complete, uniform, partially ordered set with a least and a great

est element, and that every isotone mapping of a lattice into it
self is directable. Thus the following theorems of Wolk 1 include 
the theorems of Tarski ~1 (for the special case when Fin theorem 
5 above consists of a single mapping) and Davis _1 : 

7. {Wolk 1 ). If P 1s a partially ordered set such that each 

up-directed subset of P has a sup in P, then P has the f.p.p. for 

directable functions. 

8. (Wolk 1 ) • If Pis a uniform partially ordered set which 

has the f.p.p. for directable functions, then Pis Dedekind com

plete. 
Hence we have 
9. {Wolk 1 ) • A uniforr11 partially ordered set is Dedekind 

complete if and only if it has the f.p.p. for directable functions • 
• 

Theorem 7 1s a direct consequence of theorem 2 (Abian and 

Brown 1 ) • 
Ward 5~ (1957) obtained a necessary and sufficient condition 

for a class of partially ordered sets, which includes the lattices, 
to be compact (in the interval topolo~y) in terms of the f.p.p. for 

isotone mappines. A partially ordered set Pis a semi-lattice if 

each pair of elements of P has an inf in P. A semi-lattice is com
plete if each non-empty subset of P has an inf in P. wardts results 

• 
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are 

10. (Ward 5 .... ) . Let P be a semi-lattice and f' : P ➔ P iso
tone. If Pis compact in the interval topology, then the set Q of 
fixed points of P under f is non-empty. If Pis a complete semi

lattice, and Q F ¢, then Q is a complete semi-lattice. 

11. (Ward 5 ) • A semi-lattice Pis compact in the interval 

topology if and only if P has the f.p.p. for isotone functions. 

3.1.2. Ordered spaces 
I 4 

• 

Let X be a topological space endowed with a quasi order<. 

The gu~~i order is lower -UJ :,er] semi-continuous if, whenever a b 

b a in X, there is a neiehbourhood U of a such that if x E. U, 

then x~b b x_.. The guasi o_rder is semi-continuous i:f it is 

both upper and lower semi-continuous. It is continuous if, when
ever a:!fb in X, there are neighbourhoods U and V of a and b res
pectively, such that if x E. U and y€ V then x · y. A quasi ord~r~d 

I I 

to2ological sEace (QOTS)_ is a topological space together with a 

semi-continuous quasi order. If the quasi order is a partial or

der, then the space is a partiall~ order~~- topological spape 
(POTS),. 

For x € X, 1 et L( x) = a € X a :S x } , ~1 ( x) = a E: X x ~ a } , 
E(x) = L(x) n M(x). 

Clearly, the statement that Xis a QOTS 1s equivalent to the 

assertion that L(x) and M(x) are closed sets, for each x E: X. 

A chain of a quasi-ordered set Xis a subset oI' X which is 
totally ordered by the quasi order. A maximal chain is a chain 

which is properly contained in no other chain. 

For information on ordered topological spaces, see Ward _1~ 
and the papers quoted~there. 

In 1945 Wallace 2 proved the following fixed point theorem, 
which he applied to obtain an extension or the Schweigert theorem 
(Schweigert 1 ): 

1. (Wallace _2 ). Let X be a compact Hausdorff QOTS, satis
fying: 

(i) there exists a unique element e £ X such that e-< x for all 
XE. X; 

(ii) each set L(x) is totally ordered; 



(111) for every two elements x and y distinct from e, there 

exists an element z E: X such that z:: x and z s y. 
If f is a homeomorphism of X onto itself such that both f and 

both x s. :f (x ) and f (x ) < x • 
0 0 0 0 

Ifs is a partial order on X, then x is a fixed point dis
o 

tinct from e. 

Ward 1 (1954) continued along these lines and used the re

sults to obtain fixed point theorems for_continuous mappings of 
hereditarily unicoherent con~inua (Ward 1,4,7,9,10 ), already 

referred to in Chapter II. fe now state v!ard's results: 

2. (~Jard _1 ) . Let X be z. tiausdorff Q.OTS with compact maxi

mal chains and let f: X >X be continuous and isotone. A necessa

ry and sufficient condition that there exist a non-empty compact 
set Kc E(x ) for some x c X., is that there exist x E'. X such that x 

O 0 
and f(x) are. comparable, i.e. such that either x ~f(x) or f(x)!!: x. 

Corollary 1. If Xis partially ordered, then a necessary and 
sufficient condition that f has a fixed potnt is that there exist 
x e. X such that x and f ( x) are cor:1parable. 

If Xis a partiallJr ordered set with an elen1ent e£ X such 
that e ~ x for all x € X, 2nd I\ is a s,1bset of X, we say that A is 

bounded E;W_ay from e provided there is y E. X \. E ( e) such that Ac M(y) .. 

3. (Ward 1 ) • Let X be a 1-Iausdorff QOTS with compact maximal 

chains and suppose there exist e.: X such that e ~ x for all x £X. 

Let f : x-~ X be a contir11101...ts and isotone r.-1appir1c which also satis
f'ies: 

(i) there exists X£ X'\E(e) suc11 that x and f(x) are compar

able; 

(ii) if x satisfies (1), then either the sequence fn(x) 

bounded away from e, or there exists y€ X such that 

XE: E(f(y)) and f(~r)~ ~r,, 

Then there is an x
0

€ X \.E(e) and a non-empty compact set 

KC E(xo) such that f K = K. 

00 is n=1 

Corollary 2. If Xis partially ordered, then there is a fixed 

point under f distinct from e • 
• 

Corollary,3. Let X and f be as in theorem 2, and suppose X sa-

t~sries the equivalent conditions 
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(1) there exists u e X such that L(u) = X., 

(11) for x.,y € X., there exists z E. X such that x ~ z and y :s z. 

Then there is a non-empty compact set Kc E(x
0

)., for some x
0 

E. X, 

such that f K = K. 

Corollary 4. Let X and f be as in corollary J, and let X be 
partially ordered. Then X has a fixed point under r . 

• 

Corollary 5. Let X be a compact Hausdorff QOTS satisfying (i) 
and (ii) of corollary 3, as well as 

( 1 i 1 ) the re exists e E. X such th a t e ~ x f o r a 11 x E:. X , a n d E ( e ) ;ix . 
Let f: X ,X be continuous, isotone and onto. Then there is a 

non-empty compact set Kc.E(x
0
), for some x

0
£ X'-.E(e), such that 

f[K} = K. 
Corollary 6. Let X and f be as in corollary 5. If Xis partial

ly ordered, then there exists a fixed point distinct from e. 
In conclt1ding this section we rem.ark that the ''long line'' has 

the f.p.p. for continuous mappings, as follows f~o~ a more general 

result by Young [1] (1946). 

3.2. The product of spaces 

If X and Y are topological spaces, each of which has the f.p.p. 
for continuous mappings, does their topolocical product also have 

this.property? (Strother (1] (1J53)). In general, this is not true 

(Connell [1] (1959), Klee L5] (1960); also see section 5 of this 
chapter). However, Cohen [1] (1956) showed that the answer is in the 

affir1native if X and Y are totally ordered sets which are compact in 
the interval topology. Since a compact, totally orc3e~ed space has 
the f.p.p. for continuous mappings if and only if it is connected, 
Cohen's result may be stated as follows: 

1. ( Cohen [ 1 J ) . If X and Y a re c ompnct connected tot a J.ly or
dered spaces, then their topological product has the f.p.p. for con
tinuous mappings. 

Since a compact connected and totally ordered Hausdorff space 

is a chainable continuum (see p.66 for the latter), the above result 
is a special case of the following simultaneously publ1.shed result 

of Dyer [2] ( 1956)': 
2. (Dyer 2 ). The topological product of an arbitrary family 

of chainable continua has the f.p.p. for continuous mappings. 

To prove theorem 2, Dyer first showed that the product or a 

finite family of chainable continua has the f.p.p. for continuous 

mappings. Theorem 2 then follows from this result and the following 
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simple but useful fact: 

3. (Dyer 2 ___ ) • Let dr be a family of compact Hausdorff spaces. 

Then the topoloc;ical product of the eleme11ts of Jr has the f .p .p. 

for continuous mappings if and only if the topological product of 

each finite subfamily ofilt- has the f.p.p. for continuous mappings. 

Theorem 1 is related to a result of Ginsburg 1 (1954), who 

proved that if X and Y are totally ordered sets, each of which has 

the f.p.p. for similarity transformations (i.e. one-to-one trans

formations onto), then also both the direct s1lm and the Cartesian 

product Xx Y ( ordered lexicographically) have the f .p.p. for simi
larity transformations. 

3 .3. Hyper_spaces 

Let X be a continuu~, and Y(X) ~(X)~ the space consisting 

of the non-empty closed nc)n-empty closed and connected__. subsets 

of X, with the finite topolof~Y· 

1. (Kelley 3 { 1942)). Fo1., any metric contj.r1uum X, ~ (X) 1s 

an AR 1.:r (and only if) Xis loc2lly ~onnected. I!ei1ce., if Xis a 

locally connected n1etric continuu1t1, t11en l:5(X) has the f .p.p. for 
continuous mappings. 

2. (Capel and Strother 1 (1956), Hamr.·:<)nd Smith 1 (1g61)). 

If X is an ANR *, then l;r)th f{X) ar1d ~ (X) hc1ve the f .p .p. for con

tinuous mappings. 

3. (Segal 1__, ( 1962)). If X is a snalce-lil{e continuum, then 

~(X) is an acyclic Q~lcJsi-complex in the sense of Lefs chetz 

PROBLEM (Segal 1 ) • For ti'That class of' continua is 8(X) a 
quasi-complex (Lefschetz 5 ) or 8 seni-c0mplex (Browder 5 )? 

3 .4. }Jon-cont_inuo:us mappinr;_s 

Nash j.,..1 ( 1956) defi_ned a coi·1nectiv:J. ty mappin5 of a space X 

into a space Y as a ma11pine; f : X ► :,~ s1l.ch th0t, if A is a con

nected subset of X., then :f A is a connected subset of Xx Y; equi

valently., f.' : X--,j> Y is a connectivit;;r mat)l>ing if and only if the 

induced mapping f"~: X > Xx Y, defined by r*( x) = (x, f'( x)) for a 11 

x E: X, transforms connected subsets of X or1to connected subsets of 

XxY. Obviously, a continuous mapping f: X >Y is a connectivity 

mapping. On the other hand, there are connectivity mappings of the 

' 



86 

n-cell into itself., for each n 2: 2, which a.re not continuous {Hamil

ton '-5 ( 1957)). Nash 1 inquired whether the n-cell has the f .p .p. 

for connectivity mappings. Hamilton l.c. answered this question af

firmatively 1 ), by introducing the concep·;~ of a peripherally con

tinuous n1apping. A n1apping f : X,.,, > Y i.s said to be peripher,allY, 

continuous if, for eacl1 x € X and for each neighbourhood V of x and 

, each neighbourhood U of f(x), there exists a neighbourhood W of x 
which is contained in V and such 1:hat f maps the boundary of Win

to U. Hamilton 5 showed: 
1. {Hamilton '-5 ). A connectivity ma~ping of then-cell into 

itself, n~2, is peripherally continuo1.ls. 2 

2. (Hamilton 5 ). Then-cell, n~2, has the f.p.p. for peri

pherally continuous mappings. 
It is easy to see that the 011e-cell has the f.p.p. for con

nectivity 1nappincs. IIence we have: 

3. (Hamilton ~5 ) . The n-8ell has the f.p.p. for connectivi

ty mappings. 
It is not l{nown \A1hether a peri1Jhe1 .. all:,r continuous mapping of 

the n-cell into itself, r1 ~ 2, is necessarily a connectivity mapping. 

The following is an example of a peripherally continuous mapping of 

the one-cell I = O, 1 into itself v'Jhicl:1 is not a connectivity map

ping and which has no fixed point: for x ratio11al, let f(x) = J, 

" 

cell 

Hamilton l.c. also gave 

en into itself, for any 

(i) g carries connected 

ar1 exan.1ple of a t:1apping g of the n

n .2. 1 , s uc 11 t 11 at 
subset:s or· en onto connected subsets 

f" en. o_ , 

(ii) g* sends connected and locally connected 
to connected subsets of cnx en; 

(iii) g is not a connectivity mapping; 

{iv) g is not peripherally continuous; 

(v) en has no fixed point under~-

n subsets of C on-

Stallings ~1~ (1959) observed an error in Hamilton's proof of 
theorem 1. He remedied this defect and introduced other types of 

non-continuous transformations for which he proved fixed point theo-

rems. We now state these de~initions and theorems. 

---------------

contains an error. However, Stallings l.c. showed that the theorem 
is true. 
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A :function f : X- ➔ Y is a local ,90,nnectiv_ity, giapping if there 

exists an open covering Uce OC.€ A of X such that, for each Ci.E.A, 

f U~ is a connectivity mapping of U~ into Y. 

A Eolyhedrop Pis understood to be a finite simplicial complex 

K together with a geometrical realization K . A subpol~hedron Q of 

Pis a subcomplex L of K, together with the geometrical realization 

L which is identified with a subset of K in a canonical way. 

The C~r~~siaq product P x Q of the po]yhedra P = (K, I KI) and 
Q, = (L, L ) 1s given by the product K x L of their res_pective com

plexes {as defined in Eilenberg and Steenrod 1,p.67~), and a geo

metrical realization K x L which is identified in a canonical way 

with K x L , so that the project ions K x L - > K , K x L • > L 

are induced by simplicial mappings K x L · > K, K x L> L; and so that 
' 

the diagonal~ of K x K 1s the ~eometrical realization of a sim-
plicial complex D which is isomorphic tc, K, and (D, ~) is a subpo

lyhedron of P x P. 

For convenience, the polyhedron P = (K, K ), the simplicial 

complex Kand the eeometrical realization !Kl will henceforth be 

considered as one and the same. 

If Pis a polyhedron, then a subset N of Pis a po~yh~dral 

opeJ.l set if P \ N 1s a subpolyhedron of P. 

Let P and Q be polyhedra. A function f : P > Q is Eo.~yhe,drall,Y 

almost continuous if, for each polyhedral open subset N of P x Q 

such that f c N, there exists a continuous function g : P ➔ Q such 

that g c N. 

Let X and Y be topolozical spaces. A function f : X ·~ Y is 

almost continuous if, for each subset }T of Xx Y such that fc N, 

there exists a function g : X ➔ Y such that G c "i'J. 

A polyhedron Pis locally pe1~1ph~Fall~ cc)nnect~~ if, for each 
p e. P and each neighbourhood U of p, there exists a neighbourhood V 

of p, such that V c U and the boundary of V is connected .. 
k+1 1:+1 k Let C ' denote the closed unit ball in E , and let S be 

~ts bounding k-sphere. A metric space (X,p) is uniformly loc~llY, 

n-connected if, for each e > 0, there exists a 6 > O such that, for 

each x € X and each integer k, 0 ~ l<: ~ n, and each continuous function 

:r : s k ~ u 6 ( x ) = y £ X p( x, y) < 6 , there is an extension of f to 
· '""'* ck+1 ➔ u,:(x). a continuous mapping L : - ~ 

Stallings 1 proved the following theorems: 
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4. (Stallings 1 ). Let P be a polyhedron, Na polyhedral 
open set in P x P. If P has a fixed point under every continuous 

mapping g : P > P for which 13 c N, then P has a fixed point under 

every polyhedrally almost continuous mapping f: P~) P for which 

f' c N .. 

5. (Stallings 1 ). Let X be a Hausdorff space and Nan open 

subset of Xx X. If X has a fixed point under every continuous map

ping g : X > X for which g c N, then X has a fixed point u·nder every 

almost continuous mapping f : X - > X for which f c N. 

6. ( Stallings 1 ) • If f : P··-➔ Y 1s a loca 1 conne cti vi ty map

ping of a locally peripherally connected polyhedron Pinto a regu
lar Hausdorff space Y, then f is peripherally continuous. 

This is a generalization 

7. (Stallings 1 ). Let 

n and 
• 

of Hi1milton 1 s theorem 1. 

P be a locally peripherally connected 

X a uniformly locally (n-1)-connected polyhedron of dimension 
metric space. Let f : P ·>X be peripherally continuous. Then f is 

almost continuous. 

Corollary 1. If Pis a polyhedron of sj_mpl1cial dimension n 

which is of Menger-Urysohn dimension ~ 2, and f : P· ► X is a con

nectivity mapping, where X is un:J fo1~m1y locally ( n-1) -connected~ 

then f is almost continuous. 

Corollary 2. If P and Qare polyhedra and f : P· ► Q is a con

nectivity mapping, then f is polyhedrally aln1ost continuous • 
Combining corollary 1 and the,')rer:1 5., we have: 

8. {Stallings 1 ). Let P be a polyhedron of Menger-Urysohn 

dimension ~ 2, and N an open subset of P x P. If P has a fixed point 

under every continuous mappine; g : P > P for which g c I'J, then P has 

a f'ixed point under every connectivity mapping f : P · > P f'or which 
f C N. 

Combination of 

9. (Stallings 

corollary 2 
1 ). Let P 

polyhedral open subset of P x P. 

and theorem 4 gives: 

be an arbitrary polyhedron and Na 

If P has a fixed point under every 
continuous mapping g : P ) P for ~,1hich g c N, then P has a fixed 
point under every connectivity mapping f : P >- P for which .fc N. 

For the set N occurring in sorne of the above theorems we may 

of course tal-ce the product space X x X ( or P x P) . 
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3 .5. Compac.tness .... a_p.d fixed. p9ints 

In this section we shall consider single-valued mappings only, 
and we shall say that a space X has the f.p.p. if it has a fixed 
point under every continuous mapping f : X > X. 

The question whether there exists a relation between compact

ness and the f.p.p. was considered by Klee 2 (1955) and Connell 

1 (1959). Although for most fixed point theorems the compactness 

of the space is assumed, in general compactness and the f.p.p. a~e 
only vaguely related. For example, there exists a Hausdorff space 

which has no compact subsets except finite sets, and yet it has the 

~.p.p. (Connell 1 ). De Groot 1 (1959) obtained the result that 
C 

there exists a family .:f of 2 topc)lor;ically distinct subsets of the 

Euclidean plane (c denotes the pote11cy of the real number system), 

each of which has potency c, is connected and locally connected, 
contains no compact subsets except countable ones and has the f.p.p. 
These sets are rigid, i.e. if XE ;f and f : X > X is continuous, 

then either f is a constant mappinc or the identity mapping. 
However, in some cases it is possible to stipulate a necessary 

and suf~icient condition for the f.p.p. to hold in terms of com

pactness. Thus Tychonoff 1 (1935) proved that a compact convex 

subset of a locally convex topoloeical linear space has the f.p.p., 
and Klee 2 obtained the following partial converse of Tychono~f's 
theorem: , 

1. ( Klee 2 

linear space and 

lacks the f .p .p. 

). If Xis a locally convex metric topological 

K is a non-co1·:1pact convex subset of X, then K 

It is unknown whether Tychonoff's theorem or theorem 1 holds 

in an arbitrary topological linear space. 

By a topologica.l ra;y: is tneant a homeomorphic image of the 

halr-open interval 0,1 with the usual topology. The following 

fact follows easily from a slight extension of the Tietze mapping 

theorem: 

2. (Klee 2_). If Sis a normal space which contains a topo
logical ray as a closed subset, then there is a fixed point free 

null-homotopic mapping of S into S. 
Klee 2 applied this result to show that certain spaces lack 

the f .p .p. 1;fe recall the following definitions in order to f'ormu
late these results: A subset B of a topological linear space Xis 

• 
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bounded if, for each neighbourhood U of the zero element of X,there 
is a number t such that B c tU. A set is _linearly bounded if 1 ts in
tersection with each line is bounded. A topological linear space is 

lo call:__ linearl-:_ bounded if it contains a non-empty ._linearly...., 
bounded open subset. 

3. (Klee 2 ). Let X be a topological linear space and Ha 
convex subset of x. Then if at least one of the following state
ments is true, H must contain a topological ray as a closed subset: 

( i) X is locally convex and H is unbounded; 
( 11) X is n1etric and H is not complete in the natura 1 uniformi

ty,; 
(111) Xis isomorphic to a subspace of a product of locally li

nearly bounded topological linear spaces, and some bounded 
subset of H fails to be precompact (for the latter, see 
Kelley 4,p.198 ); 

(iv) His closed, locally compact and unbounded; 
{v) X 1s locally convex and metric, and His non-compact; 

{vi) Xis locally bounded and His non-compact. 
Combining 2, 3 (v) and Tychonoff's theorem, we have: 

• 4. (Klee 2_ ). For a convex subset Hof a locally convex me-
tric topological linear space, the following conditions are equiva
lent: 

(1) His compact; 
(11) H has the f.p.p.; 

(111) no closed subset of His a topological ray. 
Theorem 4 and its proof are analogous to work of Dugundji 1 

(1951). He showed that if C and Sare respectively the unit cell 
and the unit sphere of an infinite-dimensional normed linear space, 
then C can be retracted onto S, whence C must lack the f.p.p. 
Kakutani 4 (1943) and Klee 1 (1953) showed that in a large 
class of infinite-dimensional norn1ed linear spaces, the unit cell 
actually admits a homeomorphism onto itself without fixed points. 
In fact, for any infinite dimensional normed linear space X there 
exists a homeomorphism of period two without fixed points of X on
to X which maps C onto C. ( Klee 4 ( 1956)) • From a result of Klee 
2,theorem 5.8, p.44 it follo"'1s that every convex subset H of a 

normed linear space such that His non-compact, closed, locally 
compact, and at least two-dimensional, admits a homeomorphism onto 
itself without rixed points. On the other hand, since the unit cell 

• 
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of a ref'lexive Banach space Xis compact in the weak topology of X, 
it has the f.p.p. for weakly continuous mappings. 

Klee also established the following results: 
5. {Klee 2 ). Let X be a non-compact, connected, locally 

connected, locally compact metric space. Then X contains a topolo
gical ray as a closed subset. 

If Xis a space which hos the f.p.p., then Xis connected, and 
every retract 

6. (Klee 
of X also has the f.p.p. Hence 

2 ). If Xis a non-compact, locally connected, lo-
• 

cally compact n1etric space, then X lacks the f.p.p. 

From 2, 5 and known properties of ANR's (Lefschetz 6 ), we 
have 

7. (Klee ~2 ). Let X be a locally compact, connected metric 
absolute neighbourhood retract. Then Xis compact if and only if 

every null-homotopic mappine of X into X has at least one fixed 
point. 

Connell 1 defined a chain of arcs as a countable set of arcs 
00 CO 

An n=1 = bn,cn n=1 such that en= bn+1 for all n. The follow-
ing result of Connell is a consequence of theorem 5: • 

8. ( Connell 1...., ) • If X is a r.1etri c space with the f .p .p .·, then 

every locally finite chain of arcs is finite. 
For, if An is acJ-ocally finite infinite chain of arcs in X, 

then their union A= U A is a non-compact,connected, locally 
n=1 n 

connected, locally compact metric space. Hence A must contain a to-
pological ray T as a closed subset, by 5, and since A is closed in 
X, Tis closed in X. Hence X cannot have the f.p.p., according to 

2. 
We recall here the following fixed point theorem of Young ~1 

( 1946) for ( not necessarily cot11pa ct) arcwise connected spaces: 
9. (Young ~1~ ). If Xis an arcwise connected Hausdorff space 

in which the union of every monotone increasing sequence of arcs 

is contained in an arc, then X has the f.p.p. 
Young 2_ (1960) used this result to obtain the following ne

cessary condition_for a space not to have the f.p.p.: 
10. (Young 2 ). Let M be an arcwise connected continuum which 

lacks the f.p.p. Then M contains either 
(1) a continuum N1 for which there is a continuous mapping 

f' : 
1 closed proper subset of N1 is mapped onto S by f, and which is 

• 

• 



92 

such that at most one point of s1 has a non-degenerate inverse,that 

inverse being connected; or 
(ii) a continuum N2 which contains a subset R which is the one

to-one continuous ima~e of a half-open interval and which is dense 

in N2 , but which has no interior relative to N2 ; or 

(iii) a continuum N3 which is the union of a set R which is the 

continuous one-to-one image of a half-open interval, and a conti

nuum B, and fol"' which there is a co11tinuous mapping f : N3 :, K, K 
2 2 2 being the union of the circles x + y = - y, n = 1,2,3, ••• , such n 

that f is one-to-one on N3 B, such that f B = {o,o) , and such 

that no closed proper subset of N3 is n1apped onto K by f'. 

Exaqi:eles. 
( a) Connell 1 . This is a11 example 

contains no compact subsets except finite 

Let X = 0,1 and let Ube the collect1on 

of a Hausdorff space which 

sets and yet has the f .p.p. 

of all subsets S of X such 
• 

that there exists a set A, open in the usual topology o~ X, and a 
I 

countable (infinite or finite) set B so that S = A \B. Then (X, U) 
is a topological space with the abovementioned properties. 

That (X, U) has the f.p.p. follows from the following fact 

(Connell 1 ): 

Let X be a set and 'lJ' a topolor;y for X such that ( X, 1!') is a 

regular space with the f.p.p. Let Ube a stronger topology for X 

(1.e. A~ ty implies A€ U ) such that if R £ U, then the closure of R 

is the same in both spaces. Then (X,U.) has the f.p.p. 
-

(b) Connell 1 • This is nn exBmple of a non-compact metric 

space U which has the f.p.p. and yet Ux U lacl<s the f.p.p .. U is lo
cally compact at all but one point. Let f(x) = sin ,r/(1-x) for 

0;5; x < 1, f(1) = 1. Let U = { (x,f(x)) 0~ x ~ 1 and let U have the 

relative topology as a subset of the ~lane. 
It is easy to see that U has the f. p. p. To show that U x U lacks 

the f.p.p., Connell constructed an infinite, locally finite chain of 

arcs in U x U ( see theorem 8 of this section). 
{c) Connell 1 • This is an example of a non-compact, sepa

rable, locally contractible metric space V which has the f.p.p. Let 

I = (x,y) £ E2 O ~ x s 1, y = 0} , and for ea ch integer n ~ 1, let 
0 1 00 

• Let v not difri-
n n=O n 

cult .to prove that V has the f.p.p., and it also ~ollows at once 

from theorem 9 above. 
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(d) Connell 1 · • This is an example of a non-compact plane 

set W which has the f.p.p., while the clos~re of W lacks the f.p.p. 

Let A be the square (not including its interior) with (0,-2), 

(4,-2), (4~2) and (0,2) as its four corners. Let A' = 
= A ( O, y) -1 < y < 1 , B = ( x, y) O ~ x ~ 1, y = s 1 n 1 and 

. X 
W = A' U B. W has the f".p.p. Now, W = A uB, and if Bis projected 

onto (O.,y) -1 < y < 1 , and A is rotated through 90 degrees, then 

we have a continuous ,napping of vi into itself without fixed points. 

(e) Klee 2 (1955), ·5 (1960). Klee constructed a non-com

pact plane set X which cotnbines the properties of the spaces in the 

examples (b) - (d)of Connell 1 (1959). In addition, X 1s an abso-
• • 

lute retract which is locally coi·npact at all but one point.(Compare 

theorem 6).. . 
Let· 1 2 be the IIilbert space co11sisting of all sequences 

x = (x1 ,x2 , ••• ) of real numbers x 1 such that f xi 2 <oo. Let Y 

1 1=1 
be the set of all points y = (y ,y2 , ••• ) of 12 such that y 1 I O for 

• 
at most one i and always O :sy1 ~ 1. If {tis the origin (O,O, ••• ) of 

. . n n 
then Y is the union of the sec;rnents cr = tr, 0 having the common · . . . n n~ . 
end point ~- Obviously Y is contractible and locally contractible. 

Further., Y has the f.p.p. (The latter follows, e.g. from theorem 9 
; . 

abov.e.)) 
In the product space 1 2 x 12 , let P be the infinite polygon 

whose vertices, in order, are as fol lows: ( tT, 61 ) , ( 61 , ,.c}), ( tJ', 62 ), 

• It 1s easy to verify that Pis a 

closed subset of Y x Y , P a topological ray. Hence Y x Y lacks the 
• 

f.p.p., according to theorem 2 of this section. 
It remains only to describe a bounded plane homeomorph X of Y 

. . 

such that X lacl-cs the f .p.p. For each t e O, TT and each positive 
' . - .. 

Let Tn denote th~ arc consisting of all points (xn(t), yn(t)) for 
' . . . ' 

t E; o, .1T • Then each arc. tn ha~ (1,0) as an end point and 
co . - . 

X = .U. -,;. is homeomorphic with Y. But X contains the unit circle S 
n=1 n 

and admits a retraction onto s. Renee X does not have the f~P•P• 

( r) Boland 1 • This example sho1."1S that 11 locally compact•t in 

theorem 6 cannot be replaced by 1tperipherally compact". ( A topolo-
. . . . . 

g;ical space is P.eriph~:r;2_ally: c~mpact if 'each of its points has arbi-

~ trarily small neighbourhoods with compact boundaries~) 

• 
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i ntee;er n ~ 1, let 
(x,y,z) such that 

1 
X -- , n 

O~ys1, 

z == 0, 

( ) E3 x,y,z € 

A = 

y = 2p+1 
2n 

or (x- 2n 

• 

0 ~ X ~ 1 , y =0 , Z =0 

00 

U K . 
Tl :::::Q n 

(O~p~2n-1), 

z2 1 --
4n2 

, 

, 

Then A is a non-locally compact, peripherally compact and lo
cally connected space which has the f.p.p. The latter follows,e.g., 

from theorem 9 above. 

3.6. ~!xed po!.nt clas~es ~nd essential fixed points 

Two fixed points x1 and x 2 of a topological space X under a 

continuous r11apping f : X > X are said to be in the same fixed po.int 
class (with respect to f) if there exists a path P from x 1 to x 2 
such that P is homotopic to f P vii th the end points fixed. ( Nielsen 

1 (1927)). Nielsen's theory of fixed point classes for the orien
table closed surfaces of c;enus ~ 2, the elementary parts of which is 
summarized below, was ~eneralized to the finite polytopes by Wecken 

1 (1939), using the Leray-Schauder theory of the fixed point in
dex for these spaces (Leray-S~hauder 1). Browder 5 (1960), re
sorting to the theory of the fixed poj_nt index as extended by him
self (see section 2 of hapter I), observed that these results may 

' 

be extended to Hausdorff spaces ,,.1hi ch are compact, connected., local
ly pathwise connected and seni-locally simply connected, the latter 
meaning that each sufficiently small Jordan curve 1s contractible. 
Then each fixed point class is open in X, and since the set S(f) of 
fixed points of X under f is con1pa ct, there are only finitely many 
fixed point classes, and each component of S(f) is contained in a 
fixed point class. Each fixed point class corresponds to the fixed 

N 
points of X which are covered by the fixed points of X, the univer-

N 
sal covering space of X., under one of the lnappings f which covers r. 
Since each fixed point class is open in S(f), an index can be assig
ned to it, and the classes with a fixed non-zero index are deformed 
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into one another u11der homotopies of f. 

The ''stability'' of a fixed point was studied by Fort 

(1950), Kinoshita 1 (1952), O'Neill 1 (1953) and Browder 4 
(1960). Let X be a Hausdorff space and let XX denote the space of 

continuous mappinr;s f : X l- X, with the compact-open topology. Let 

Pe: X be a fixed point under f e: XX. Then p is an essential fixed 
• 

F.oin:t if', for each neighbourhood U of p, there exists a neighbour-

hood V o:f f such that U has a fixed point under g U for all g E. V 

{Fort 1 ). Then, e.g., the closed unit interval has no essential 

fixed points under the identity 1napping. Fort l.c. showed that if 

f'iEXx, pE.:X and p has arbitrarily sn1all neighbourhoods V such that 

V has the f.p.p. and f V c V, then pis an essential fixed point 

under f. 
The notion of an essential fixed p')int was generalized by 

Kinoshita 1 and O'Neill 1 : A con1Eone~t C of the fixed point 

set S(f) is essential if all rnappings g close to f in the compact

open topology have fixed poit1ts 1.n 8 prescribed neighbourhood of C. 

Kinoshita showed that every conti 11uous null-homotopic mapping f of 

an ANR into itself has an essential fixed point. O'Neill extended 
• 

this result by showing the essentialily of any component of the 

~ixed point set of a mapping with non-zero index. 

Browder 4 considered the following stronger question: Let X 

be a Hausdorff space, U an open subset of X x I { I denotes the 

closed unit interval 0,1 ), Fa continuous mapping of U into X. 
Let lr be the natural projectJ.on of Xx I into X, 4-'t the partial 1n

ve rs e of lT defined by \.fJ t ( x) = { x, t ) for a 11 x £ X • If f O = F 4J O ., 

f 1 = F ~ 1 , and we are given a cor,ponent C of the fixed point set 
con-

o O 0 
nected set c1 in X x I which contains C x O , intersec:tls X x 1 , 

and is composed of poi11ts (x.,t) € c1 for which F(x,t) = x? 
-1 -Let Ut = 4't u , ft = F 4' .le : Ut_....,> X. The above question es-

sentially asks for a connected set of fixed points of Ut under ft, 

O ~ t ~ 1, which contains the given component C of fixed points under 

r
0

• It is the natural generalization of the question of the exist-

ence of a continuous function : I ➔ X such that ..v(t)€Ut for all 

t E: I., and ft( <P(t)) = (t), with (o) E: C. There are trivial coun-

ter examples to the existence of suc:h functions , for instance 

small deformations of the identity mapping of an even dimensional 

sphere. 
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Browder 4 used the theory of the fixed point index to es
tablish the following theoren1s, which encompasses the results of 

• 

Kinoshita 1 and_O'Neill ~1 : 
1. (Browder 4 ) . Let X be a Hausdorff space, U an open sub-

i 

set of Xx I, F a continuous mapping of U into a compact Hausdorff" 

space Y lying in a category A for which a fixed point index is de
fined. (Thus Y may be an ANR ~, a neighbourhood retract or a con-

* vexoid space, or an HLC space.) Let G be a continuous mapping of 

YxI into X, H the mapping of U into X given by H(x,t) = 
= G(F (x, t), t). Let 4't be the natural injection_o:r X into X x I., 

that ht has no fixed points on the boundary of Ut for t E: I. Let 

U' = o-1 u , u• = 41- 1 U' , f == F 4.1 , g = G 1u • Suppose that 
0 O O O O To 

i(f g ,U') / o. (In the case in which X itself lies in A, we may 
0 0 0 

make the simpler assumption that i(h
0

,U
0

) / o.) 
Then there exists a connected set c1 in U intersecting both 

X x O and X x 1 such that ht ( x) = x for a 11 ( x , t ) E: C 1 • 

Corollary. Let_X be an ANR *, O an open subset of X, f a con
tinuous mapping of O intq X havi~ no fixed points on the boundary 

' 

of O. Then if i(f,O) IO, f has an essential component of fixed 
points in o. 

2. (Browder 4 ). Let X be a locally convex topological linear 
space, U an open subset of X xI, Fa continuous mapping of U into a 

compact convex subset K of X. Suppose that ft= F ~t has no r1xed 

Then there exists a compact connected set c1 in U intersecting both 

Xx O and Xx 1 such that ft(x) = :{ for all (x,t)e: c1 • 

3. {Browder 4 ). Let X be a Hausdorff space, U an open sub-
-

set of Xx I, F a continuous rnappin~ of U into a compact space lying 
in a category A on which a fixed point index is defined, Ga conti
nuous mapping of Y x I into X. Let H be the continuous mapping of U 

- -1 into X given by H(x,t) = G(F(x,t),t), (x,t)E u. Let Ut = ~t U~, 

ht= H~t· Suppose that ht has no fixed points on the 9~~ndary of 
~ 

Ut., for all t £ I. Let C be a component of the fixed point set of h
0 

and suppose that the following condi ti'on is satisfied: 

mapping f g 
1 0 0 

er= g- C 
0 • 

that for any 

• 

o U' o o o F 4' o, the 
is de Pined on U', l/Jhich is an open subset of Y. Let 

0 

Then there exists a neighbourhood V of C' in Y such 

open subset v1 contained in V and containing C1 for 

' 
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which f 0 g0 has no fixed points on the boundary of v1 , we have 
i ( f 

0
g

0
, v1 ) I o. 

Then there exists a compact connected 
tains C x { O , is composed of points (x, t) 
intersects ( X x 1 ) u ( X x { O} \ c x {O ) • 

set c1 in u which con

for which ht(x) = x, and 

The condition of theorem 3 is expressed briefly by saying that 
Chas a non-null index with respect to h. Theorem 3 then becomes 

0 

the statement that each component of the fixed point set of h
0 

with 
non-null index is contained in a component of S, the set of (x,t)cu 
for which H(x,t) = x, which intersects X x{1 . 

A particular case in which the co11dition of theorem 3 is satis
fied is that in ,;.-,hich C is a si11c;le point x

0 
with non-null index 

with respect to h. 
0 

3. 7. Ce:n.tract 1 v~ n~ap,pi nr;_s 

The following well-known theorem is due to Banach 1 {1932): 
Let (X., p) be a co~pl_ete r:1et1"'ic space, and f : X > X a continu

ous mapping for which there exists a number k, 0< k <1, such that 
p(r(x),f'(y)) < k p(x,y) for all x,y E: X. Then X has a unique fixed 
point under f. 

This theorer11 was extended in various ways, and has wide appli
cations in analysis. An expository account together with a large 
number of applications tltay be found in the paper of NemyckiI 1 

(1936) and in chapter 2 of Miranda _1 (1949). For more recent re
sults the reader is referred to Deleanu 1~ (1957), Luxemburg 1 
( 1958), P.lbrecht and Karrer _1 ( 1960), Mo11na 1 ( 1961) and Edel
stein 1,2 {1961, 1962). 

BrodskiI and Milman 1 {1948) obtained fixed point theorems 
' 

ror non-expansive and non-contractive mappings of a compact metric 

space with 

1, p.459 ,__ 

norrr1al structure into itself. (See Dunford and Schwartz 

for a summary of their results.) 

3 .8. J',1:appings o~ _sp_he_re~-- _into_ ~.~ .. elide an s:eaces 

The following theorems have been the starting-point of extens

ive investigations on the existence of coincidence points under map
pings of spheres into Euclidean spaces: 

1. (Borsuk 4 ( 1933)). If f : Sn > En is continuous, then 
there is a pair of antipodal points x, -x e: sn such that f(x) = r(-x) • 
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2. (Lusternik-Schnirelmann 1 
every covering of sn by n+1 closed 

ber of the covering wh:i.ch con 1cains 

3. ( Ka1rutani 3 ( 1942)) • Let 

(1930), Borsuk 4 (1933)). For 
sets, there is at least one mem

a pair of antipodal points. 

f : s2 ➔ E1 be continuous. Then 

there exist three orthogonal points 

f(a
0

) = f(a 1 ) = f(a 2 ). 

The reader is referred to Yang 1,2 (1954, 1955) for far

reaching generalizations of these theorems and a complete biblio
graphy of their development. Theorem 1 was also extended to mult1-
va lued mappings of Sn into En ( Jaworowski 1 ( 1956), and to Banach 

spaces in the case of single-valued mappings (KrasnoselskiI 2 

(1950), Altman 1 (1958) and Granas 2_(1962)). 

3.9. Periodic mappings 
a II a I i 

If Y is the set of all fixed points of a metric space X under 
a periodic mapping of X into itself, what topological properties o~ 

Y can be deduced from those of X? Considerable work in answering ... 
this question has been done since 1934 by Smith (see e.g. Smith 1~). 

The spaces most thoroughly studied have been the Euclidean spaces 

and spheres. The n1otivating question is to determine to what extent 
does a periodic homeomorphism of En ,Jr of Sn resemble an orthogonal 

transformation. In particular, is it equivalent to an orthogonal 
transformation? Sr11i th showed that for many hornology properties and 
prime periods, the conjecture is corre<~t. Thus, if Y is the f"ixed 
point set of a periodic homeo1:1orphi Si.il C)f En S 11 

, then Y is in 

some sense homologically similar 'Lo Er Sr-= for some r ~ n. The 

reader is referred to Smith ___ 1,2 , Floyd 1,2,3~ ~ Swan 1- and 
Borel et al. 1 for further information. 

In striking cqntrast with the results for Euclidean spaces is 

Klee's result (Klee. 3 (1956)) which states that if Y is a compact 

closed subset of an infinite - dimensional Hilbert space X, then 
X admits a periodic homeomorphism whose fixed point set is Y is 
homeomorphic to Y • 

3 .10. Almost fixed E.o~nt s 

There are several theorems to the effect that if f 1s a mapping 
of a space X into itself, then there is at least one point x e: X 

0 
which in some sense is near to its image f(x

0
). Usually either Xis 

• 
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non-compact and lacks the f.p.p., or f is non-continuous, and in 
the compact case the property that there exists a point which is 
It !9 
near to its ima.ge is equivalent to the f.p.p. 

The first three theorems below are examples of the first men
tioned possibility. 

1. (Hopf 2 (1937)). Let X be a unicohere11t topological space 

and o.. a covering o.f order two of X by closed co11nected sets. Let 

f : X > X be continuous. Then there exists a r.ie111ber U of a such that 
Un f U /: ¢, or equivalently: there exists a point x

0
E X such that 

X 0 and f (x0 ) lie in the same n1e1nber of CJ... • 

2. (Fort 2 ( 1954)) . Let ,} be c:i 1:)ounded open subset of the 

Euclidean plane E2 which is homeomorph1.c to the open unit disk 
2 D = x e E x < 1 and 't-Jhose boundary is locally connected. Let 

.f : G > G be continuous. The1'1 for each t > O there exists a point 

x = x(e) E: G such that x-f(x) < E-. 

Inspection shows that Fort•s proof 1s equally valid for the 

following assertion: 

3. (Fort 2 ) • Let d 

X <d 

there exists a 

Klee's results 
• 

• Let 

point 
(Klee 

be a positive number and let 
f : Bn > I3n be continuous. Then for each 

x e: Rn such that · x-f(x) < E. 

8 {1961)) fall under the second catego-._ 

ry. They extend the f:l_xed point theorems for continuous mappings of 

compact convex subsets of locally convex topoloeical linear spaces, 

described in Chapter I, to ''nearly continuous'' mappings of such 

spaces. 

For €. :>- 0, a mapping f of a topological space X into a metric 

space (M., p) 1s called £-continuous if each point x € X has a neigh
bourhood U such that diam f U ~ c. For 6?: O, a §-t:ixed 2oint un-, 

der a mapping f : M -,> M is a point x € M such that p(x., f(x) )~ & ; f 

is called a . 6 -n1apping if each point of M is b -fixed under f. 

(Klee ~8 (1961)). 
Klee obtained the following results: 
4 .- (Klee ,__B ) • Let P be a compact convex 

dean space_, and f : P .... > P E -continuous. Then 

nuous mapping g: P • ➔ P such that g(p)-f(p) 

polyhedron in a Eucli
there exists a conti

~ E- for a 11 p E: P • Con-

sequently some point of Pis E-fixed under f. · 
5. (Klee 8....1 ) • Let C be a compact convex subset of a normed 

linear space., f : C -- > C £-continuous, and e:. 1 
;:,, E. • Then some point 

of' C is e'-fixed under f. 
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A metric space Mis said to have the 2roximate fixed po,1pt 
proEerty (p.f.p.p.) if, for each t> O there exists Te> Osuch that 

I 

M has an £-fixed point under each Te-continuous mapping of Minto 
itself. 

6. (Klee 8 ). If a metric space M 
retract of f\1. 

has the p.f.p.p., then so 
has every compact 

7. {Klee 8 ). If a co~1pact metric space has the p.f.p.p., 
then so has every metric homeomorph of M. 

Since an AR is a retract of the Hilbert cube, it follows rrom 
5 - 7 that 

8. (Klee 8 .... ) . Every AR has the p.f .p.p. 

A compact metric space which has the p.f.p.p. evidently also 
has the f.p.p. for continuous mappings. The converse need not be 
true: Klee 8~ gave an example of a plane continuum which has the 
f.p.p. for continuous mappings, but lacks the p.f.p.p. Klee 10 

' _, 

asked whether a Peano continuum which has the f.p.p. for continuous 
mappings must necessarily have the p.f.p.p. 

Generalization of the above results 4 - 8 to uniform spaces 
are almost imn1ediate. Theorem 4 is easily extended to ''nearly upper 

semi-continuous'' mappings of P into the family of non-empty closed 

convex subsets of P. The resulting generalization of Kakutan~•s 
.fixed point theorem (Kakutani 2 ) can be applied after the manner 
of theorem 5 above to a compact convex subset of an arbitrary local
ly convex topological linear space. This leads to an extension of 
the fixed point theorem for multi-valued mappings of Fan 1~ and 
Glicksberg 1 • From a rather special case of that extension, the 
following fact can be deduced: 

8. (Klee -8 ) . Let X be a con1pact Hausdorff space which is an 
absolute retract for such spaces. Then for each open covering oc. o~ 

X there exists a finite open covering~ of X which has the f'ollow
ing property: 

If f : X ·) X is any mapping such that each point x e X has a. 

exists a point x 0 e X such that x
0 

and f{x
0

) lie in the same member 
or 0(. • 
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1) 
CHAPTER IV 

Almost fixed point theorems for the Euclidean plane 

DEFINITION. Let X be a topological space, Fa family of map

pings of X into itself and n a family of finite coverings of X. 
Then Xis said to have the almost fixed -oint -ro ert ;..._a.f.p.p.) 
w1.~h respect ,to ~ and .0. if, :for every f e F and every a. EQ, there 

exists a member U£ ~ such that Un f U :/ ¢. 
Note that if Xis a compact Hausdorff space, then X 

f.p.p. if and only if X has the a.f.p.p. with respect to 

mappings and finite open coverings. 

~ 

has the 

continuous 

As was pointed out by Professor J. de Groot, it can be shown 
that the EuclideaN:m space En has the a.f.p.p. with respect to con
tinuous mappings and finite coverings by open sets with compact 
boundaries. This means that any continuous mapping or En into it
selr either has a fixed point or else there are points far away ~or 
which the images also are far away, e.g. a translation. · 

THEOREM 1. The Euclidean plane E2 has the a.f.p.p. with res-
• .. 

pect to continuous mappings and finite coverings by convex open 

sets. 
REMARKS. 1. It is easy to see that a corresponding theorem 

does not hold ror infinite (convex open) coverings. 
2. It should be possible to generalize theorem 1 by 

replacing E 2 by En. 

We shall use the following lemma (with n=2) in the proof of 

theorem 1. 

LE:MMA 1. (Fort 2 ). Let d be a positive number and let . .. 

Bn = x e: En x < d • Let f : Bn~. > Bn be continuous. Th~n for ·eao.h 

f. > 0 there exists a point x e: Bn such that x-f(x) < l.-. 

PROOF: Let 
Let en = x £ Bn 

by 
_______ ,_,,, ________ _ 

f. > O be given. We may obviously assume that e. < d. 
x •. ~ d- e. , and de:fine a retraction r : Bn ) en 

' 

1) The results of this chapter will also be published elsewhere 

1 ) . , 
(de Groot, de Vries and van der Walt 
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r(x) = (d-E.)x/ X for X € Bn \en, 
n for x E C • X 

Then rf c0 : cn,>Cnis continuous and according 

fixed point theorem for then-cell, 

that rf( c) = c. Since r(x) -x < f 
c-f( c) = rf( c)-f( c) < €. 

there exists a 

for all x €.Bn, 

to the Brouwer 
point c €. en such 

we have 

DEFINITION. A }:lt~,ip is tr1e closure of an open simply connected 

set in E2 which is bounded by two parallel straight lines. Let S_be 

ment, perpendicular to 11 and L2 , which connects a point of L 1 with 
a point of L2 • Then the closure of a component of S \L3 is called a 

half-~trip. The segment L3 is called the base of the half-strips, 
and the lines rays bounding a strip half-strip~ are called the 

sides of the strip half-strip • 
It is easy to verify that a convex subset K of E2 with in

terior points has the following properties: 
(1) If K0 (the interior of K) contains a line, then it con-

tains a strip. 
(11) If K0 contains a ray, then it contains a half-strip. 

PROOF OF THEOREM 1 : Let f : E2 ; E2 be a continuous mapping 
n 

and ex.= 

may assume that E2 does not be lone to et • Since ex. is a finite 
covering and E2 is unbounded., there exist pairs of different mem
bers of a which have unbounded intersections. Such an intersect:ton 

satisfies either (1) or (11) above, and we choose, if possible, a 
strip in each of these intersections; otherwise, we choose a half

strip. Divide each strip in two half-strips, such that the inter
section of the ensuing half-strips is their common base. Let 
P1 ,P2, ••• .,Pk be the collection of l1alf-strips. We may choose them 
such that P1 n Pj (ifj) 1s bounded., and we shall suppose t~~ this 

was done. Further, we choose an open disk B1 such that the follow
ing conditions are fulfilled: 

(11) P1 nPjcB1 (ilj; i,j=1,2, ••• ,k). 

(iii) The bases of the half-strips as well as the points ot.9 in-
-

tersection of the (prolongations of the)sides of the 
half-strips are all contained in B1 . 
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Let B2 be an open disk, concentric with B1 and such that 

We shall assume that the collection of half-strips is cyclic
ally ordered by the positive orientation of the boundary of B2 ,and 
that this ordering is given by P 1 , P 2., ••• , Pk ''modulo k''. We also 
assign an order to the sides of each P 1 ( 1 = 1, 2., ••• , k): if we tra
verse the boundary o~ B2 in the positive direction, then we pass 
from the ''first side'' of P1 to its ''second side 11

• 

(B1 u P1 U. •• UPk) which lies between the second side of P1 and the 

first side of P i+1 ( 1 = 1, 2., ••• ., k) .• Pi and Si are thus constructed 
so that there exists a member Uj(i)£0l with the property that 

' 

(i•1,2, ••• ,k). 

We are now ready to define the homeomorphism <p : E2-+ B2 • It 

will be done in such a way that P1 \ B1 is contracted onto 
P1 n (B2 \B1 )., and Si onto sin (B2 \B1 ) (1111,2, ••• ,k), while ~1 
is mapped identically onto itself. 

z c Pi- B1, .(~ a 11 2 1 ••. , ,.k).: Let Li ( z) be the line through z 
parallel to the sides of P1 , and let r 1(z) = dist Cz»Li(z) n bd(B1 )), 
where bd(B1 ) denotes the boundary of B1 • Define :r 1 ( z) to be the 
point which divides t 1 (z) t1 (B2 , B1 ) in the ratio · · · 

r 1 (z) =. 1 + r 1{z). It is easy to verify that fi 1B a continuous 
one-to-.one mapping of Pi\ B1 onto Pin (B2 \ B1)., and that its in

verse is continuous. 

' 

zt: Si- ,(ia,,1 1 2, .•. •,•akl,: Let ai be the point in which the pro
longation of the second side of :i.-1ntersects the prolongation of 
the first side of P1+1, and let a1z be the closed segment connect

ing a1 and z. Let si ( z) • dist( z, ai z n bd(B1)), and define s1 ( z) to 
be the point which divides a1z n (B2 , B1 ) in the ratio 
si ( z) : 1 + si ( z) • Then g1 is a continuous one -to-one mapping of 
Si onto s1 n(B2 \B1 ), and its inverse is continuous. (If P1 and 
P1 +1 are parallel, then we define gi in the same way as fi was de

.fined.) 
z E: B1 : Let h : B1 · ► B1 be the ident1 ty mapping. 

,, 

The functions ri,gi and~ 001.r,icide on the boundaries of their 
domains of definition and henoe f, defined by 



q,(z) = r1 (z) 

gi(z) 
z 

is a 
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{z €. P1 '\B1 ; 1 1:,2, •.. .,k), 

(ze.S1 ; 1_1,2, ••• ,k), 

( z € B1 } 

-1 
'P 

fined and continuous; hence q, is a homeon1orphism .. 

is well-de-

n 
For each U1 €.or., let u1 = (?"-Ui , and let <{>(et.)= U:i_ i=1· 

For each U j ( 1 ) sat 1 sf yi ng (1. v) ( see p .1 o 3)., let V j ( 1 ) = U j ( 1 ) U 

( ( P 1 u s1 U P i+1 ) () bd(B2 )). It is easily seen that the V j ( 1 ), to-

gether with the remain1ne; u1, form an open covering of lJ.2 • Denote 
m this covering by p = W1 i=1 • 

accord-

ing to lemma 1, for each positive integer n, there exists a point 

n n n 
number 

- 1 of: B2 with respect to p , and choose n such that n < T • According 

to the lemma of Lebesgue., there exists a set Wk€? such that Yn, 
f'(yn)£ Wk. But Yn,f'(yn)t B2 ., so that yn and f'(yn} lie in the 

same member of t() (ex.). I-Iet1ce, if x is that point o'f E2 :for which T. n 
~(xn) = Yn, tt1en xn and f(x 0 ) lie in the same member of~. 

If the mappings are restricted to translations, then we can 
require less of the cover'ing sets to obtain a theorem similar to 
theorem 1 : 11 convex open'' may then be replaced by '' arcwise con-
nected'..,. 

'We shall need the foliowing two lemmas. 

LEMMA 2. Let X1 ,X2 , ••• .,Xn be s'ets, let 
r : X > X be a ,napping. Then there exists a 

• 

X 
n 

= U X 
ic:1 1 

set x1 and 

r ¢ . 

and let 

a positive 

PROOF: For each x £ X, at least two of the n+1 elements x, 
• 

• 

JEM.MA 3. Let A be an arcwise connected subset of E2 , and let 
r : E

2 > E2 be a translation., such that there exists a positive 
integer k with An fk A r ¢. Then A n f A 'F ¢ also. 

PROOF: Let f' be given by f(x) = x+a., for all x €. E2 , where 
2 

a EE is a fixed vector. We may suppose that the positive X-axis 

has the same direction as a. Let k be the smallest positive inte
k ,.. 

ger Such that A n f .... A I: ~. Suppose k > 1. We are going to derive 
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a contradiction .. There exists a point be A such that b+ka e. A also, 
and we can find an arc J, contained in A, which connects band 
b+ka .. Let 

P = {(x.,y) E J 

Q = (x., Y) e:. J 

(u,v)e.J~y~v 

( u, V) E. J ==} y ~ V 

and 

• 

Since J is compact, PI¢ and Qr¢. (P and Q contain respect
ively the ''upper extreme 11 and ''lower extreme 11 points of J .) Since 

J n f J = ¢, J is not a segment, and since it is compact, we can 
find a point P €. P and a point q £ Q such that, if J 1 is the part of 
J which connects p and q (including p and q), then J 1 n P = p , 
J 1 n Q = q , and p F q. 

Let L1 and L2 be straight lines parallel to the X-axis, pass
ing through p and q respectively, and let S be the strip determined 
by these lines. J 1 separates S into two disjoint sets, each of which 
is simply connected and both open and closed ins. The same holds 
for the images of' J 1 under the iterates of f. 

Since J 1 n f J =¢and f J is connected, any two points of 
f_J, in particular b+a and q+a, lie in the same part of S with 

respect to the separation by J 1 • Since r is a translation, b+ka and 
q+ka lie in the same part of S with respect to the separation by 
k-1 ( r J 1 • Since q+ k-2)a and q+ka lie in different perts of S 

with respect to this separation., b+ka and q+(k-2)a lie in different 

parts. Also., q and q+(k-2)a lie in the same part of S with resp,ect 
to this separation and hence q and b+ka lie in different p.arts. But 

k-1 .1 ri q and b+ka are connected by J, and Jc S, so that J n f J 1 r ~, 
implying that A n rk-1 A I ¢, in contradiction with the choice of 
k. 

DEFINITION. Let X be a topological space. Two continuous map-
pings f ,g : X➔ X are said to be :topq,logicall~ -~gu~val~pt if there 

-1 exists a homeomorphism h of X onto itself such that f = h gh. If 

Xis a metric space, then a mapping f: X •Xis called a t92ol,o: 
gical. 1s om~~r,y if it is topologically equivalent to a distance 
preserving mapping of X into itself. 

In the case of the plane we have the following criterium for 
a mapping to be a topological translation (Sperner 1 (1934)): A 
mapping f: E2 > E2 is topologically equivalent to a translation if 

and only if f is an orientation preserving homeomorphism such that, 

f'or each set G c E2 which is the closure of a bounded domain and 



whose boundary is 
N such that G f'\ fn 
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a Jordan curve, there exists a positive 

G = ¢ for al 1 integers n with n ~ N. 

We now state and prove 

integer 

THEOREM 2. The Euclidean plane has the a.f.p.p. with respect 

to orientation preserving topological isometries and finite cover-
ings by arcwise connected sets. 

• 

• 

PROOF: It is a well-known result that an orientation preserving 

topological isometry of the Euclidean plane is topologically equi

valent either to a rotation or to a translation. In the first case 

there is a. fixed point, und in t~e second c2.se theorem ? immediate
ly follows from lernmE .. G :'"' and 3-

COROLLARY. The Euc 1 idean pla.ne has the a. f. p. p. with respect 

to orientation preserving topological isornetries and finite cover

ings by connected open sets. 

For, a connected open subset of a Euclidean space is arcwise 
connected. 

An example orally communicated by Prt,fessor R.D. Anderson 

shows that theorem 2 cannot be extended to higher dimensions: There 

is a covering oc of E3 by four non-empty connected open sets, and a 

topological translation f : E3 ► E3 , such that U f"\ :f U = ¢ for all 
u E. 0(, • 

A connected topological space trivially has the a.f.p.p. with 

respect to arbitrary mappings and coverin6 s consisting of two con

nected open sets. A unicoherent topological space has the a.f.p.p. 

with respect to continuous mappings and coverings consisting of 

three connected open sets. Before showing this, we prove the fol
lowing 

LEMMA 4. Let X be a unicoherent topological space and 

« = U,V,W a covering of X by three non-empty connected open sets. 
Then, if (id..=¢, ct has tl.\/O disjoint members. 

PROOF: Suppose, on the contrary., that U fl V ~ ¢, U f\ W I= ¢ and 
vn w I= ¢. Then 

= U u (VU W) (connected summands) 
-

X 

U O (VuW) 

(U rt V) fl (Uri W) 
= (Un V) U (U fl W) ( connected summands), and 
= U fl V () W = ~, 

contradicting the unicoherence of X. 
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THEOREM 3. A unicoherent topological space X has the a.f.p.p. 

With respect to continuous mappings and coverings consisting of 
three connected open sets. 

PROOF: Let f' : X > X be a continuous mapping and ex.= U,V,W 
a covering of X by three connected open sets. We may suppose that 
the empty set does not belong to a , and that n a. = <;. Let U and V 

be the disjoint members of ex. given by lemma 4. Then Un WI¢, 
V n W ,' ¢, since X is connected. Suppose that w n f w = ,;. Since 
f' w_ is connected and Un V = ¢, either r .... w c u or f w c V. In 
e:1 ther _case the theorem is proved, e.g. if f W c U, then 

f _u n w __. c f w c u and hence u n r .... u -I ¢. 

COROLLARY. En has the a.f.p.p. with respect to continuous map
p:1ngs and coverings consisting of three connected open sets. 

For, En is unicoherent (Borsuk 2~ ). 

The question arises whether a unicoherent topological space 
.. 

has the a.f.p.p. with respect to continuous mappings and coverings 
consisting of .four (or more) connected open sets. Further, can 
•'orientation preserving 11 be omitted from the hypotheses of theorem 
2? 

Both these questions are answered negatively by the following 
example, in which we have a covering of E2 by four connected open 
sets u1 ,u2 ,u3,u4 , and a transflection f (i.e. a reflection followed 
by a translation in the direction of the axis o:f refle~tion) such 
that U. (l :f U. = ¢ ( 1=1, 2, 3, 4). 

1 1 
Let 

V = 

r(x,y) = 

s( x, y) = 

w = 

V1= 

u -2-

U4= 

(x,y)e:E2 O<x<1, -1.:s;y<1 ., 

(x, y) + ( 2., O), for all (x., y) e: E2 ., 

2 (x,y) + ...... for all (x.,y) e: E , 

) 2 {x, y e: E y < -1 , 

Y>O • 

The transflection f is defined as follows: 
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u(x,y) = 

t(x,y) = 

f = tu. 

• 
108 • 

(x.,-y) for all (x,y) e E2 , 

( x ., y) ·1- ( 1 ., 0) for a 11 ( x , y) E: 

It is easy to verify that Ui n f Ui = ¢ (1=1,2,3.,4). Note 
f reverses the orientation and that each of the intersections 

' 

Uj (i/j) has countably infinitely many components. 

PROBT,r~MS. 

1. Does the Euclidean plane have the a.f.p.p. with respect to 

orientation preserving homeomorphisms 

connected open sets? 
2. Does the Euclidean plane have 

onto and finite coverings by 
' 

the a.f.p.p. with respect to 
continuous mappings and finite coverings by connected open sets 
such that the intersection of each pair of members of the covering 

is empty or has at most a finite number of components? 

• 
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