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Preface 

In the realm of scientific computing there is an increasing demand for high
performance computers in applications that involve the solution of very large 
systems or the processing of complex and massive control information and 
data under strict timing constraints. New advances in computer technology 
and design have led to the availability of several very fast special purpose pro
cessors and 'supercomputers' that are now being installed at an increasing 
number of industrial facilities and computation centers. Several prototypes of 
even faster special purpose and general purpose computers are being designed 
and tested in a number of research centers over the world. 

The advanced architectures of this new breed of computers are all centered 
around the concept of parallel processing. Vector computers, array processors 
and multiprocessors can all be viewed as parallel computers with some particu
lar underlying architectural approach. The advent of parallel computers poses 
a large number of new problems for the scientific programmer in order that 
the extraordinary amount of (parallel) processing power can be fully utilized 
and exploited. Research efforts are under way to design and analyze new 
(parallel) algorithms for parallel computers and to develop libraries of software 
for the current applications in e.g. weather forecasting and aerodynamics simu
lations. 

In the fall of 1983 a series of eight lectures was organized at the University 
of Utrecht to focus attention on the new developments in 'parallel computers 
and computations'. Eight experts of different backgrounds were invited to sur
vey or describe an aspect of this field of research. The lectures covered con
crete supercomputer architectures . and their programming, the new challenges 
for systems programming, the design of numeric and non-numeric parallel al
gorithms, and the complexity of parallel computations. 

This volume contains the full versions of the papers that were presented in 
the lecture series. We thank CDC/The Netherlands for its cooperation, the au
thors for their timely contributions to this book, and G.A.P. Kindervater for 
his editorial assistance. 

J. van Leeuwen 
J.K. Lenstra 
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ABSTRACT 

Parallel Computers and Algorithms 

J. van Leeuwen 
University of Utrecht 

A variety of technological developments and algorithmic insights have 

led to the current designs of computing systems based on a small or large 

n1.J111ber of separate but cooperating processing units and data stores. Aim is 

to increase the overall processing speed and to allow that more and larger 

size scientific problems can be solved. We describe some of the algorithmic 

principles that underly many parallel algorithms. 

1 • INTRODUCTION 

Ever since computers are being built, researchers and manufacturers have 

looked for ways of designing faster machine·s. Greater speed was obtained by 

improving the technology of individual components and applying techniques of 

instruction overlap and pipelining (see LORIN [37]) and by insisting on a 

sufficiently low level of programming to obtain efficient code. The insight 

developed that there are three essential ingredients to the overall speed of 

a computing system: 

(i) the speed at which electronic circuits and wires can "switch" and 

transport information (signals), 

(ii) the organisation and interconnection of the functional components 

in the hardware (architecture), 

(iii) the efficiency of data transfers between processor(s) and memory 

and between memory and background stores (I/O). 

The current, advanced computing systems have resulted from revolutionary 

developments in technology and algorithm design in each of these three direc

tions. Hardware speed and compactness is enhanced by the advent of LSI- and 

of VLSI-technologies, which make it possible to have the power of a complete 

CPU in a few chips or on one board. It has stimulated the idea of having a 
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large supply of "processors" that cooperate in a computation. Secondly, al

ready in the nineteen sixties it became apparent that the traditional von 

Neumann-type computer architecture would have to be changed to achieve sub

stantial further speedups in execution. SCHWARTZ [SO] wrote in 1965: "The 

approach of present day computers to speeds at which the velocity of light 

becomes a significant design factor, and the continued fall in the price of 

computer components have directed attention to the use of parallelism as a 

device for increasing computational power." Presently a number of computers 

exist (see e.g. HOCKNEY & JESSHOPE [22]) that consist of a small or even a 

large number of "interconnected" processing units and memories. The ideas are 

also recognized in the approaches to large software systems viewed as systems 

of cooperating and communicating processes (see e.g. DIJKSTRA [12], HOARE 

[20]). Thirdly, the efficiency of instruction execution and data transfer is 

enhanced by letting processors act "in one sweep" on entire vectors of data 

that are available from special vector-registers (as in the CRAY-1 machines) 

or that are piped in from memory (as in the CYBER-205). I/0 problems are 

(usually) solved by incorporating the "parallel" device in a host computer, 

or by providing a machine with suitable "front ends". 

By now a number of different architectures of parallel computers have 

emerged, all based on some notion of how computations are to proceed and of 

how components in the architecture interact. A summary of the correspondences 

for present day architectures is given in figure 1 (from BOHM [2]). 

Model of Computation 

A. Sequential control on 

scalar data 

B. Sequential control on 

vector data 

C. Independent, communicating 

processes 

D. Functional and data-driven 

computation 

Corresponding Computer Architecture 

A1. von Neumann-type computer 

A2. Multifunction CPU 

A3. Pipelined computer 

B1. Vector computers 

B2. Array processors 

C1. Shared memory multiprocessors 

C2. Ultra computers 

C3. Networks of small machines 

D1. Reduction machines 

D2. Dataflow machines 

Figure 1. Computer architectures and their underlying computational model 
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The following five broad categories of parallel computers are often dis

tinguished: 

(i) pipelined processors (including e.g. the CRAY-1 and CYBER-205), 

(ii) SIMD machines (including multiprocessor designs such as the 

ILLIAC IV and the Burroughs BSP), 

3 

(iii) array processors (a distinguished class of SIMD machines including 

e.g. the ICL-DAP and the AP-120B), 

(iv) MIMD machines (distributed processor arrangements such as exem

plified in the Denelcor HEP), 

(v) shared memory computers (a class of MIMD machines including e.g. 

the CRAY-XMP). 

The distinction between SIMD ("single instruction - multiple data") and MIMD 

("multiple instruction - multiple data") machines is originally due to FLYNN 

[13] (see also STONE [56]), and refers to the distinction between all proces

sors receiving the same stream of instructions (from a master processor) or 

possibly different ones. Many additional distinctions can be made (cf. HOCKNEY 

& JESSHOPE [22}),for example with respect to the amount of local memory avail

able to each processor and/or the way global memory is shared (if there is a 

global memory at all) and the particular interconnection pattern used for the 

processor(s) and the memories. 

All parallel computers fit the global form suggested in figure 2, 

processor section I~ ~ (host control) 

0 i::: 
0 

j~ 
..... 

transport & alignment 
.., 
<) 
a, 

"' 

0 .... 
0 
i... .., 
i::: 

~ D m~rG•HD ~ ~ 
0 
<) 

¢=;> input/ output 

Figure 2. Global block diagram of a 
parallel computer 
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with many differences in the ways the various "sections" are realized. For ex

ample, in some machines the "processor section" will consist of one or two 

highly effective CPU's (as in vector/pipeline computers) and in other machines 

it will be an arrangement of 16 or more interconnected processors (as in ar

ray computers). The "transport section" is a highly pipelined data channel in 

some computers and a single stage or multi-stage processor/memory intercon

nection network (such as the shuffle-exchange network) in other designs. Me

mory is almost always partitioned into some M separate (but perhaps "inter

leaved") modules or "banks". In some machines Mis a suitable power of two 

(M=8 or 16 for the CYBER 205, M=16 for the CRAY-1) whereas in other designs 

M was specifically chosen to be a prime number (M=17 in the Burroughs BSP). 

An excellent, brief survey of supercomputer organizations is given by HWANG, 

SU & NI [24]. 

The development of parallel computers and distributed systems has direct 

underpinnings in the theory of algorithms. A large number of studies (see e.g. 

KUCK [32] for an early example) have attempted to show the advantages and pos

sible gains of a particular parallel architecture for scientific computation. 

Also~ a sizeable literature developed on concrete parallel methods for use in 

e.g. numerical linear algebra (see e.g. the surveys by HELLER [19] and SAMEH 

[46]), sometimes under highly idealized assumptions about the capabilities of 

a parallel computer. In recent years the scope of this work has extended to 

all domains of discrete computing (see e.g. KINDERVATER & LENSTRA [26]). 

Parallelism has become a new dimension in algorithm design and analysis, of 

which the mathematical aspects are only beginning to be understood and for 

which the descriptional tools (viz. for programming) are still rather primi

tive. (Most parallel computers exploit a vector extension of FORTRAN, see 

PERROTT [42] for a possible alternative.) In this paper we shall present a 

brief impression of the new stimuli for algorithm research and the interac

tion with the ongoing development of parallel and distributed computing sys

tems (see also VAN LEEUWEN [60]). In short 5 new classes of algorithms are 

arising because of this development: 

(i) vectorized algorithms - the (re)formulation of (existing) algo

rithms in terms of uniform operations on vectors of data, 

(ii) systolic algorith~s - highly regular methods for dense processor 

arrays originally meant for implementation on a VLSI chip, 

(iii) parallel processing algorithms - the formulation of algorithms as 

they are performed by a set of processors with a given interconnection pat-
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tern or network, 

(iv) parallel algorithms - methods for a set of processors that can com

municate freely (and usually operate synchronously), 

(v) distributed algorithms - methods for processors that communicate by 

exchanging messages (and usually operate asynchronously). 

The distinction follows from the different domains of application of each of 

these classes and the different cost criteria used to evaluate algorithm per

formance. In the subsequent sections the distinctions between these types of 

algorithms will become clear. 

2. INVITATION TO PARALLELISM 

It is important to have a feeling for the ways parallelism can be dis

covered in a problem. Sometimes it is very hard or even impossible (cf. sec

tion 3). An example is the problem of computing the gcd of two n-bit numbers 

A and B by Euclid's algorithm: 

{pre: o ~ A, B ~ 2n} 

{post: a= gcd (A,B)} 

a: A· 
' 

b: B· 
' 

while bf o do 

It is well-known (Lame's theorem, (271) that Euclid's algorithm takes O(n) 

steps, where each step involves a division of two O(n)-bit ni.nnbers. It is 

open whether a parallel algorithm can compute the gcd any faster, in area

sonable model of computation. At the bit-level one can do better than the 

O(n2) time-units of Euclid's algorithm. BRENT & KUNG [5) proposed the follow

ing method: 

{pre: A odd, Bf o, and IAl,IBI ~ 2n} 

{post: a= gcd (A,B)} 

a := A; 

b .- B; 

{use 6=a-S with lal i 2a, lbl ~ 26 and observe decrease of a,S} 
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6 := o; 

repeat 

while b even do begin b .:= b div 2; 6 .:= 6 + 1 end; 

if 6 ~ o then begin swap (a,b); o := - 6 end; 

if (a+ b) mod 4 = o then b :=(a+ b) div 2 

else b := (a - b) div 2 

until b o; 

J. van Leeuwen 

The algorithm can be implemented by "streaming" A and B through the cells of 

a systolic array, low order bits first. The arithmetic on a and bis more or 

less done "in place", o is represented by a separate sign bit and its absolute 

value in unary (a string of at most nones). The algorithm terminates after 

at most 2n+1 iterations (because a+ S strictly decreases during each round 

except possibly the first). 

Theorem 2.1 The gcd of two, n-bit nwnbers can be computed in linear time on 

a systolic array of O(n) cells. 

Fortunately it is not always this tricky to come up with a fast(er) parallel 

method. We shall discuss a number of important paradigms and the underlying 

techniques. We assume that processors are available in unlimited supply. 

The best known examples of parallelism probably are the computations 

of xn and of a + ..• +a 1, both in O(logn) time. Both follow by the pro-
o n-

cess of recursive doubling, which consists of the evaluation of subterms of 

size 2i for i from o to logn. The true effect of parallelism is that in the 
{ 2 3 n} same time-bound one can compute the values x,x ,x ., •.•••. ,x and {a , a + 

n-1 o o 

a 1, a0 + a 1 + a 2 , •••••• ,_L ai}. There are several ways to see this. Consi-
1.=o 

der a function f (x,n) defined as follows: 

f(x,o)=g(x) 

f(x,n)=h(x,n,f(x,n-1)) for n > o 

with g and h "simple" functions. (One may recognize this as the defining 

scheme of primitive recursion.) It will be helpful to represent the evalu

ation off (x,n) by a graph: 
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h h h f(x,o) 

f (x,n) = A I\ /\ 
X n X n-1 X 

Definition. A function h(x,n,z) is calles strongly reductive if there are 

"simple" functions j and k such that for all i 1 ,i2, n 1, n2 and z we have 

h 

11.'ke x1 z + x2 
Functions 

x 3 Z + x4 

are strongly reductive. 

h h 

\ j 2 I 
and V x + z (provided they are non-degenerate) 
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Definition. A function h(x,n,z) is called :r>eductive if there are "simple" 

functions p and q and a strongly reductive function h' such that h(x,n,z) = 
h'(p(x,n),q(x,n),z). 

Theorem 2.2 Let f be defined by primitive recursion using a :r>eductive func

tion h. Then the values {f(x,o), f(x,1), .... , f(x,n)} can be computed by a 

pa:r>allel algo:r>ithm in O(logn) time. 

(The result is a slight extension of KOGGE & STONE [28].) In this way recur

sive doubling is applicable in a large number of instances. Figure 3 is taken 

from STONE [56]. In most cases O(n) processors suffice. 

Theorem 2.3 The LU-decomposition of an n x n t:r>idiagonal matrix (assuming it 

exists) can be computed in O(logn) time, using n processors. 
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Function 

xi=xi-1+ ai 

xi=xi-1x ai 
x.=min(x. 1 ,a.) 

l i- l 

x.=max(x. 1,a.) 
l 1- l 

xi=aixi-1+ bi 

xi=aixi-1+ bixi-2 

xi=aixi-1+ bixi-2 +··· 

x.=(a.x. 1 + b.)/(a.x. 1+ d.) 
l l 1- l l 1- l 

x. =a. + b . / x. 1 l l l 1-

x.= \j(x. 1) 2 + (a./ 
l 1- l 

J. van Leeuwen 

Description 

Sum the elements of a vector 

Multiply the elements of a vector 

Find the minimum 

Find the maximum 

First order linear recurrence, 

inhomogeneous 

Second order linear recurrence 

Any order linear recurrence, 

homogeneous or inhomogeneous 

First order rational fraction 

recurrence 

Special case of first order rational 

fraction 

Vector norm 

Figure 3. Functions suitable for recursive doubling 

Proof. 

The result is due to STONE [55]. Write A as 

d1 f1 u1 f1 
e2 d2 f2 (/J m2 (/J u2 

A ... 
' ' L.U. ' ' f 

n·-1 C 

(/J 
L 
n-1 e d (/J 

D n m u n n 

then the following recursions are obtained: 

e. / (2 ~ i ~ n) mi= l ui-1 and u1 d1 
e. fi-1/ 

d. l 
(2 n) u. ui-1 ;;; i ;;; 

l. l 
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The m.'s can be computed in one parallel time-step once the u. 's are avail-l. ]. 
able. Define {v.} <. < by v = 1, v1 = d1. and for i ~ 2 vl..= dl.. vl.._ 1 -

i o - l. - n o 
eifi-l vi_2 • Then the vi's are computable in O(log n) time and n processors 

using recursive doubling, and one easily verifies that ui= vi/vi_ 1(1~i~n). □ 

The result can be extended to show that a tridiagonal linear system Ax=b can 

be solved in O(log n) time, using n processors. A rather more involved appli

cation of recursive doubling is used in the following result due to CHEN & 

KUCK [8] (also SAMEH & BRENT [47]) and, as for part (ii), to GREENBERG et.al. 

[ 17] . 

Theorem 2.4 Let L be a non-singular triangular n x n - matrix with bandwidth 

m + 1. Then 

(i.) there is an algorithm for solving a system Lx=b in O(log n. log m) 
2 time using O(n m) processors, 

(ii) 

time using 

efficient, 

there is an algorithm for solving a system Lx=b in O(log n. log m) 
a-1 

O(nm · /log n. log m) processors where "a" is the exponent of an 

i.e., O(na) matrix multiplication algorithm. 

The theorem is important for its connection to the evaluation of mth order 

linear recurrences. The best exponent a presently known is about 2.49. 

A second technique to exploit parallelism is to decompose a problem into 

a ntnllber of independent sub-problems of which the solutions compose into the 

answer of the original problem, and to elaborate the sub-problems recursively 

in parallel by the same method. It is the well-known paradigm of divide-and

conquer, in a parallel setting. Using divide-and-conquer it is possible to 

understand the result expressed in theorem 2.4 for m=n-1. 

Proposition 2. 6 A non-singular t1°iangular Zin ear system Lx 

in O(log2n) time, using 0(n3) processors. 

Proof. 

b can be solved 

-1 
Compute L as follows. Decompose (split) L into four equal size parts 

and observe that 
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where A and Care again non-singular and triangular. Note that parallel matrix 

multiplication needs only O(log n) time on O(n3) processors, using recursive 

doubling to evaluate . f . A-l all component expressions. Hence, a ter computing 
-1 

and C recursively in 
3 

parallel only O(log n) further steps on O(n) proces-
-1 

sors suffice to obtain L . Altogether an algorithm of the desired complexity 

results. □ 

The implicit inversion method for triangular matrices can be viewed as a (very) 

special case of a much harder result due to CSANKY [11]. 

Theorem 2.7 A non-singular n x n -matrix can be inverted in O(log2n) time, 

using O(n4) processors. 

It is open whether the 0(log2n) bound can be improved. PREPARATA & SARWATE 

[43] have shown that Csanky's algorithm can be implemented using O(na+½/log2n) 

processors, where a is the exponent of a matrix multiplication algorithm. 

As another example of divide-and-conquer, consider the evaluation of an 
th . n n-1 n degree polynomial anx + an_ 1x + ·; •. + a 1x + a0 which, as is well-known, 

takes O(n) steps using Horner's method. 

Theorem 2.8 A polynomial of degree n can be evaluated in O(log n) time using 

n processors. 

Proof. 

Assume n = 2k-1. Write p(x) of degree n as q(x). x(n+l)/2+ r(x) for suit

able polynomials q and r of degree 2k-l_1, and evaluate q and r by the same 

method recursively in parallel. In composing the answers from the "bottom" up

wards, compute the necessary powers of x in 0(1) extra time per level. The 

entire computation takes about 2 log n "steps", using n processors. (This is 

Estrin's algorithm, see e.g. MUNRO & PATERSON [39] for more efficient split

tings.) □ 

Divide-and-conquer algorithms suggest to organize a computation in a tree of 

processors, where we start with the undivided problem at the root (figure 4.a) 

and send off the "halved" instances of the problem to the son processors 

(figure 4.b) until sufficiently "simple" instances are obtained. The need to 

transfer data is solved by providing the "tree machine" with global memory, 

or sufficiently powerful "data paths". See HOROWITZ & ZORAT [23] for details. 
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(a) 

(b) 

Figure 4 

Observe that a computation on a problem P (n a power of two) requires a tree 
n 

of 2n-1 processors, of which at most n will be active at the same time. BOHM 

[2] had made the following observation: 

Theorem 2.9 A divide-and-conquer algorithm for a problem of "size" n can be 

irrrplemented on a tree machine of n processors. 

A third technique of constructing parallel algoritms is the discovery of 

independent subexpressions. Given the fact that expressions are often given by 

parse-trees, one can try to extract sub-expressions that lead to a balanced 

decomposition for parallel evaluation. The following result is due to BRENT 

[4]. 

Theorem 2.10 An arithmetic expression inn variables and constants using+, 

* and I and any depth of parenthesis nesting can be evaluated in O(log n) 

time using O(n/log n) processors. 

The technique has also been exploited for the evaluation of multivariate po

lynomials. Improving on a result of HYAFIL [25], SKYUM & VALIANT [52] proved 

the following remarkable fact. 

Theorem 2.11 A multi-variate polynomial of degreed that can be corrrputed 

sequentially in C steps, can be corrrputed in parallel in O(logd.log C + log2d) 

steps using a number of processors polynomial in C.d. 
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It follows, for example, that the determinant of an x n matrix can be evalu

ated in Olog2n) time using polynomially many processors. (This can also be 

derived from Csanky's results [11], see theorem 2.7.) 

A fourth, and very common technique in parallel methods is the change of 

the order of evaluation (usually in complicated expressions). This is done 

very often in "vectorizing" existing software, but there are other applica

tions too. An important example is the problem of computing the product C=A.B 

of two n x n matrices, which can be described by the n2 expressions 
n 

Cik (1 ~ i,k ~ n) with C.k = L A .. B.k or pictorially as 
1 j =1 1J J 

Direct evaluation would not take advantage of any vector-processing capabi

lity and also suggests that A and Bare stored in different modes, row-wise 

and column-wise, which is not likely. There is a simple method, known as the 

"middle product" method (cf. HOCKNEY & JESSHOPE [22]), which computes C 

column-wise when A is stored column-wise and Bis stored in any fashion: 

+ 

A, ,n 

A 
nn 

(1 ~ k ~ n). The algorithm can be implemented as a scalar multiply of then 

vectors of A followed by a vector add, and thus takes about n2 multiplica

tions and n.(n-1) vector additions. The algorithm is not very useful for e.g. 

banded matrices. MADSEN, RODRIGUE & KARUSH [38] have shown that in this case 

a reasonable vector algorithm can be designed based on the diagonals of A 

and B, requiring only about 2m+1-k vector multiplications and additions for 

accumulating all coefficients of a kth column (m + 1 is the assumed band-
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width). Storing matrices diagonal-wise has the added advantage that the trans

pose of a matrix is very easy to obtain. Finally it is possible to view C as 

the sum of n matrices of the form 

X 

, the multiplication taken component-wise, which can be advantageous for use 

on an array processor with rapid row- and column-transfer operations. 

A fifth technique, specific to banded linear system solvers, is known as 

cyclic reduction or odd-even reduction. It is best explained using the ex

ample of a tridiagonal system Ax=b, where we assume A as in theorem 2.3 and 

of size 2k-1. The method was apparently first used by HOCKNEY [21], and will 

be described without explicit mention of the necessary operations on b. Write 

A as follows 

X 
0 

e 
2k-2 

d 

e 

2k-2 

2k-1 

X k X k 
2 -1 2 

f 
2k-2 

d 
2k-1 

where e, and f k are added for consistency and use the convention that 
'.c:. -1 

x0 = x2k = o. Bij a sweep using the odd-numbered equations we zero thee and 

f coefficients in the even-numbered equations, to obtain a aystem of the 

form 
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X x, x2 x3 X4 X 
2k-1 

X 
2k 0 

e 1 d' 
1 f 1 

e, 
1 0 d' 2 

0 f' 
2 

e3 d' 
3 f3 

e, 
4 

0 d' 
4 

0 f' 
4 

Now observe that of we have the values of x0 , x2 , x4 , ... then the values of 

x1, x3 , .•. follow in one further step from the odd-numbered equations. But 

the even-numbered equations form a tridiagonal system on the x0 , x2, x4 
separately and we can continue recursively until a single equation in x, 

. 0 

x. k-l and x k remains (assuming the algorithm nowhere degenerates). Since 
2 2 

x0 and x 2k were defined o we can solve for x 2k-l, and "backsolve" at all le-

vels of the recursion. Clearly, when it works, cyclic reduction solves a tri

diagonal system in O(log n) time using n processors. The method has been ex

tended to block-tridiagonal systems by SWEET [57] and to arbitrary banded 

linear systems by RODRIGUE, MADSEN & KARUSH [45] (who also gave conditions 

for the method to work). 

A sixth method for constructing parallel algorithms is called broadcas

ting, although it is implicit already in some of the techniques we have seen. 

We rather use the term to denote the continued distribution of computed re

sults throughout the stages of an algorithm to all processors. An example is 

the "column sweep" algorithm for solving a non-singular triangular linear 

system Lx=b (compare theorem 2.4). 

Theorem 2.12 A non-singular triangular n x n system Lx=b can be solved in 

O(n) time using n processors. 

Proof. 

(Observe that the time bound is worse than given in theorem 2.4 but the 

method will use fewer processors and is appreciably simpler.) Rewrite the 
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system into the form x = Lx + b with L lower triangular. Clearly x1 = b1. 

Now use processors Pi (2 iii n) and assume that after eliminating xj-l 

15 

(j ?; 2) the Pi with i ?; j have the value 9i 1 x1 + ... + 9.ij-l xj-l in store. 

In the next cycle P. can compute x .• It subsequently broadcasts the value to 
J J 

all P. with i 
1 

accumulate. □ 

> j, which compute a x and add it to the partial sum they 
ij j 

Broadcasting is often used in distributed algorithms. 

A seventh technique to exploit parallelism is pipelining. It is encoun

tered in all systolic algorithms (see e.g. KUNG [34] and KRAMER & VAN LEEUWEN 

[30]) and in several methods for parallel sorting. As an example we consider 

a sorting method due to TODD [58], based on the idea of merge sort. 

Theorem 2.13 A set of n elements can be sorted in O(n) time using O(log n) 

processors. 

Proof. 
k Assume n = 2 . Merge sort can be represented in a perfect binary tree, 

with the leaves holding the single elements to be sorted and the nodes at 

level i (i ~ 1) having queues of size 2i in which the (sorted) queues of the 

sons can be merged. Assign a processor Pi to every level of the tree. Pi 

merges "pairs" of consecutive queues into a block in P. 11 s store. P. 1 starts 
:1+ . 1 1+ 

as soon als Pi has produced one complete block (of length 21 +) and the first 

element of the next block, and continues at the same speed until all elements 

from level i+1 are merged upwards. One can verify that Pi+j never needs to 

wait for elements and (hence) that the Pi's form a perfect pipeline. It takes 

about 2. 2 i + 1 . b f P d . . d time steps e ore a i+l can start, an it is guarantee to 

finish in another n steps. The entire "pipeline" delivers the set as a single 

sorted queue in about 2n time. □ 

A similar method was recently used by CAREY & THOMPSON [7] to obtain a paral

lel dictionary algorithm that can "pipeline" searches, insertions and dele

tions using O(log n) processors (n is the number of elements in the set). 

They assign a processor to each level of 2-3-4 tree, for which a one-pass 

topdown update algorithm is known to exist. Faster parallel sorting methods 

exist but require more processors. The following classical result is due to 

BATCHER [1] (see also STONE [54]). 
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Theorem 2.14 A set of n elements can be sorted in O(log2n) time using (O(n) 

processors. 

VALIANT (59] has shown that O(log n. loglog n) parallel comparisons are suf

ficient to sort. An excellent survey of parallel sorting algorithms was given 

by FRIEDLAND (14]. 

An eighth technique for obtaining parallel methods is often found in 

graph algorithms and is known as collapsing. It normally consists of the pro

cessors cooperating in someway to accumulate information about larger and 

larger chunks of a graph, with processors effectively collapsing the infor

mation of a "neighborhood" of diameter 2i for i from o on increasing into a 

single node. It explains (i.e., intuitively) why many graph algorithms have 

O(log2n) time bounds when many processors are used, because they involve log n 

phases of O(log n) parallel time each. See e.g. SAVAGE & JA'JA (48], or the 

survey by QUINN & DEO (44]. The algorithms are very sensitive to the way a 

graph is represented, in coIIll!lon memory (as is usually assumed) or by an adja

cency map on a processor array (which leads to slower algorithms because of 

the communications over a grid, cf. KOSARAJU (29]). As an example of a col

lapsing (or "shrinking") algorithm we consider the following result of 

LEVIALDI (36]. 

Theorem 2.15 Let some of the processors of an n x n processor array be mar

ked. Connectivity of the marked processors can be recognized in O(n) steps. 

Proof. 

We only consider connectedness by shared "edges". Denote a marked pro

cessor by "m". Let the processors apply the following transformations in pa

rallel: 

The transformations preserve connectivity, and have the effect of shrinking 

a connected part towards the bottom right corner of the rectangle circum

scribing it. In fact, the maximum rectilinear distance of this corner to a 

marked processor decreases by 1 at every iteration and a marked component 

will have shrunk to a single m-cell within 2n steps. Once an m-cell finds 
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itself without marked neighbors it must verify by broadcasting that it is the 

only marked processor left, which takes another O(n) steps. □ 

It is open whether a linear time algorithm exists for testing the connectivi

ty of a marked set in an n x n x n processor cube (cf.KOSARAJU [29]). 

3. ISSUES TOWARDS REALIZATION 

There are a number of reasons why parallel computers can be slower than 

anticipated in a theoretical analysis, slower perhaps than the fastest "sequen

tial" computers. To obtain the optimum performance of a parallel computer one 

may have to decompose a problem and arrange a computation in a very machine 

dependent manner and "tune" an algorithm with due attention for processor 

structure, co111I11unication costs and data distribution. We will discuss the al

gorithmic aspects of some of the issues that arise. 

The desired effect of having p processors available instead of just one 

is the speed-up of a computation by a factor of about p. The required distri

bution of work cannot always be achieved, and there even are problems for 

which no parallel algorithm can be substantially faster than the best sequen

tial algoritm. (A simple example is the computation of xn in O(log n) steps.) 

The following result is due to KUNG [33]. 

Definition. Let f(x)= p(x)/q(x) be a rational function with p(x) and q(x) 

polynomials that are relatively prime. Then Deg(f)= max {deg p,1 + deg q}. 

Theorem 3.1 The computation of a rational function f requires at least log 

Deg (f) time, regardless the number of processors used. 

An interesting application (also from KUNG [33]) can be obtained for the eva

luation of first order recurrences of the form 

XO= y 

xi+1= (!)(xi) 

with (I) rational. 

Definition. Let (l)(x)= p(x)/q(x) be a rational function with p(x) and q(x) 

polynomials that are relatively prime. Then deg (I)= max {deg p, deg q}. 
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Theorem 3.2 The computation of the nth term of a first order recurrence 

with <P rational requires at least n.log deg (j) time, regardless the nwnber of 

processors used. 

Proof. 

We use the following fact: when (j) and Ware rational in x, then 

deg ~ow= deg (j). deg W• Now observe that x = (j)n(y)= ~(y) with 
n 

deg w=(deg <P)n, hence Deg(~)~ (deg (J))n. By theorem 3.1 the computation of 

x must require at least n. log deg (j) time. □ 
n 

As an example the computation of Va using the recurrence x0 = a, xi+l= 

112(x.+a/x.) cannot be sped up by more than a constant factor, no matter how 
l. l. 

many processors are supplied. 

In section 2 we have always assumed that processors are available in 

unlimited supply ("unbounded parallelism"). This is clearly not the case in 

practice, but the assumption can be justified by a simple result known as 

"Brent's Lemma" (from [4]). 

Theorem 3.3 Assume a computation consisting of a total of b operations can 

be carried out in time t using unbounded parallelism. The the computation can 

be carried out with p processors in approximately t + (b-t) /p steps. 

Proof. 

Suppose si operations are performed in parallel during step i 
t 

( 1 ;;; i ;;; t) , 

rsi/ l time. 
p 

with b=L s .. Using p processors we can simulate step i in 
1 l. 

The entire computation is thus rescheduled and takes a number 

of steps bounded 

+ (b-t)/ 0 p. 

t t t 
by rrsi/ l;;; I (s.+ p-1)/p = (1-1/p) t + 1/p-L s. = t 

1 p 1 l 1 l 

In most parallel algorithms (viz. those based on the assumption of un

bounded parallelism) the cost for communicating information is not taken in

to account. A better model is obtained if we view an algorithm as a directed 

acyclic graph in which the nodes represent operations, the edges are data 

paths and the levels represent stages of parallel activity. We assume that 

nodes have in-degree o (inputs) or, say, 2. An algorithm representation of 

this kind is called a circuit. If the algorithms can have a variable number 

of inputs n, then we normally want the corresponding circuits to be defined 

in a "uniform" manner for all admissible n. (For a more formal approach, see 
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COOK [9].) The important measures for circuits are the sizes (the number of 

nodes), the depth d (the length of the longest path) and the number of levels 

t. BORODIN [3] has argued that circuitdepth is an adequate measure of "paral

lel time". We show this using a simple result due to GREENBERG et.al. [17]. 

Theorem 3.4 A circuit of size s and depth d can be "evaluated" in time 

O(d) using f s/dl processors. 

Proof. 

Consider the circuit and define S. to be the set of nodes that are i 
i 

edges away from the farthest input node (o ~ i ~ d). Clearly S0 consists of 

the input nodes, and the nodes of S. can be evaluated once the nodes in 
i-1 i 

US. are. Thus the circuit can be "evaluated" in the order S, s 1, ••••• 
0 J . . . Is. I . . 0 

Evaluation of the nodes ins. takes r i /pl time using p processors. The 
d i d 
L 11si,/pl i L (ISil+p-l) /p = (1- 1/p) d + 
0 0 

entire computation takes 
d 

1/p ~ !Sil = d + (s-d) /p steps. Choose p about s/d so the total amounts to 

O(d). □ 

"Practical" parallel methods should use at most polynomially many processors 

and, in view of the results from section 2, O(logkn) time for some k. This 

has led to the study of the class NC of problems that have polynomial size 

circuits of poly-log depth. See COOK [9] (or [10]) for an introduction. 

The next step to understanding the complexity of parallelism requires 

a suitable model of a parallel computer. Closest to our present assumptions 

is the MIMD-model where processors communicate information through a global 

memory but can execute different programs. It immediately leads to the issue 

of conflicting read and/or write instructions. Usually simultaneous reads of 

a location are allowed, but simultaneous writes are not. See e.g. KUgERA [31] 

and VISHKIN [62] for comments on this problem. Almost always it is assumed 

that the processors in the model are synchronized and even there is a global 

master - CPU. A very general and representative model of this kind was re

cently proposed by GOLDSCHLAGER [15] and is called the "SIMDAG" model, which 

combines the SIMD concept of a set of parallel processing units (PPU' s) and 

global memory (see figure 5) and encompasses many earlier models. All pro

cessors have a full RAM-instruction set (no multiplication primitive), the 

CPU "contains" the program and occasionally broadcasts "parallel" instruc

tions to all PPU's. Each PPU has its own index stored in a special signature 
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CPU 

f 
MEMORY I 

i i i 
~ ~ 

Figure 5 

register (which thus provides a way to distinguish or mark processors). 

Simultaneous writes to a same location in global memory are resolved by 

giving priority to the lowest numbered PPU. Define SIMDAG-TIME (T(n)) as the 

class of problems solvable in (parallel) time T(n) on a SIMDAG, and define 

SPACE (S(n)) as the class of problems solvable in space S(n) on an ordinary 

random access machine. GOLDSCELAGER [15) proves the following "parallel com

putation thesis" for the SIMDAG-model: 

Theorem 3.5 For every SIMDAG computable function T(n) ~ logn one has 

U SIMDAG-TIME (Tk(n)) U SPACE (Tk(n)). 
k k 

The result supports the thesis that "parallel time" is equivalent (within a 

polynomial increase) to space on a Turing machine, which holds for other 

models of parallel computers that are sufficiently general too (see e.g. 

SAVITCH & STIMSON [49)). 

Memory in a parallel computer is normally divided into a number of 

banks so complete "vectors" of data items from different banks can be fet

ched in one cycle. Assuming there are M banks, one can fetch vectors of up 

to M data items in every "cycle". Larger vectors must be broken up in chunks 

of size i Mand are retrieved by multiple parallel fetches. If the elements 

of an M-vector are not alle stored in different banks, then we say that a 

"conflict" occurs. KUCK [32) (see also BUDNIK & KUCK [6]) has shown already 

in the late nineteen sixties that the optimal benefit from "parallel memo

ries" requires non-trivial distributions of the data and address-calcula

tions, in order that vectors and blocks of data that are needed in the cour

se of an algorithm are indeed available from distinct banks (and can be 

found!). For example, storing a N x N matrix (Ni M) with one column 
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in every bank allows conflict-free access to every row and every diagonal in 

one cycle but forces sequential access for retrieving the elements of every 

column. On the other hand, a "skewed" organization as shown in figure 6 

(with N = 4 and M = 5) alleviates these difficulties at least for rows, co

lumns, and forward and backward diagonals. Any storage schemes that maps 

Figure 6. Storing a 4 x 4 matrix into 

5 memory banks. 

the elements of an N x N matrix into M memory banks (M ~ N) and provides for 

the conflict-free access to various vectors of interest is called a "skewing 

scheme". (We do not discuss the skewing of higher dimensional matrices.) 

The simplest and most commonly used skewing schemes are the "linear 

skewing schemes" defined by formulae of the type 

s(i,j)=ai + bj (mod M) 

, for suitable integers a and b. We assume thats uses all memory banks and 

(hence) that (a,b,M)=1. Skewing schemes of this kind will be called "proper". 

(The convention is for theoretical purposes only, in practice one may want 

to store up to (a,b,M) distinct matrices in an interleaved manner using the 

same scheme with suitable shifts.) WIJSHOFF & VAN LEEUWEN [63] prove the 

following result 

Theorem 3.6 In order to have conflict-free access to rows, columns, and 

non-circulant forward and backward diagonals using a linear skewing scheme,_ 

the smallest number of memory banks required is 
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M • r + 

if 2 IN and 3 IN 

if 2 I N and N = 0, 1 (mod 3 

N + 2 if 2 I N and 3 IN 

N + 3 if 2 I N and N = 2 (mod 3) 

Mor>eover, it is possible to achieve this in all cases using the scheme 

s(i,j) "' i + 2j (mod M). 

The result extends an observation of BUDNIK & KUCK [6] (see also LAWRIE [35]) 

that there is no linear skewing scheme to store an N x N matrix into N memo

ry banks and have the desired types of conflict-free access when N is even. 

Clearly different conditions arise when the set of vectors of interest 

is changed. Using linear skewing schemes most vectors will be stored with a 

fixed increment between the bank-numbers of consecutive elements. 

Definition. Ad-ordered k-vector is a vector of k elements whose i th logical 

element (o ~ i < k) is stored in memory bank c + di (mod M), for some con

stant c. 

The following elementary result is essentially due to LAWRIE [35] (see also 

[63]). 

Theorem 3.7 Ad-ordered k-vector can be accessed conflict-free if and only 

if M ~ k.gcd(d,M). 

Proof. 

*• Consider ad-ordered k-vector and assume it can be accessed conflict

free. It means that for all o ~ i 1, i 2 < k, i 1 i i 2 , we have c + di 1 ¢ c + 

di2 (mod M) hence d.i ¢ o (mod M) for every o < i < k. This implies 

M > k ( ) gcd(d,M) = , or M ~ k.gcd d,M • 

., • Observe that all steps in the given argument can essentially be 

reversed. □ 

WIJSHOFF & VAN LEEUWEN [63] prove a slightly more general result for the 

case of multiple parallel fetches: 

Theorem 3.8 Ad-ordered k-vector can be accessed in precisely 

1 + L (k-l)g~d(d,M) J conflict-free fetches, and this is best possible. 
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Given a linear skewing scheme s(i,j)= ai + bj (mod M) for storing an N x N 

matrix it is easily seen that (i)rows are b-ordered N-vectors, (ii) columns 

are a-ordered N-vectors, (iii) non-circulant diagonals of length k are 

(a+b)-ordered k-vectors (1 ~ k ~ N) and (iv) non-circulant anti-diagonals 

of length k are (a-b)-ordered k-vectors. Yet d-ordered vectors are only of 

limited scope. For example, the full circulant diagonals and anti-diagonals 

cannot be viewed as d-ordered N-vectors. Independently SHAPIRO [51] and 

HEDAYAT [18] proved the following result (compare theorem 3.6): 

Theorem 3.9 There exists a (proper) linear skewing scheme using M=N memory 

banks that provides conflict-free access to rows, columns, and all circulant 

diagonals and anti-diagonals if and only if 2 IN and 3 IN. 

In general one may want to retrieve more general "templates" of matrix cells 

(e.g. blocks or L-shapes). For the practical case that M < N and vectors must 

be retrieved by multiple fetches WIJSHOFF & VAN LEEUWEN [63] prove the fol

lowing result: 

Theorem 3.10 There exists a linear skewing scheme to store an N x N matrix 

in M memory banks such that every rookwise connected template oft cells can 

be retrieved by means of at most l _t_ J + 1 conflict-free fetches of vectors 
VM 

from the M memory banks. 

A survey of the general theory of skewing schemes was recently given by 

VAN LEEUWEN & VAN WIJSHOFF [61]. 

In SIMD-type architectures the processors (or perhaps even the proces

sors and the memories) are connected in an interconnection network and yet 

another component is added to the problem of realizing a parallel computa

tion, namely the problem of distributing a computation over the network and 

providing for the fast communication of intermediate results to the proces

sors that need it (over the wires of the network). This leads to the pro

blem of routing single data items from a source address to a destination 

address and to the (harder) problem of routing a number of source-destina

tion pairs simultaneously, which is the routing problem for arbitrary per

mutations. A routing algorithm should route all messages in parallel with no 

queueing or conflicts, and essentially provide for the right switch settings 

at every stage to let the messages receive their destinations fast. 
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Processors could be interconnected by a simple crossbar switch, but in 

a number of designs more sopl1isticated networks have been used that use fewer 

than N2 switches (N the number of processors). 

Theorem 3.11 Every network that realizes all connections between N pro

cessors must have Q(N log_N) switches. 

Proof. 

To route all permutations the network must admit at least N! different 

internal settings. If the network has s switches that can be inc states 

each (c some constant) then it can have at most cs internal setting. Thus 

c 8 ~ N!, ands~ log Nl/log c = ~(N log N) for any network. □ 

Let N=2n, and assume that processors are indexed by n-bit binary num

bers. Most networks are designed with some idea in mind of how to route in

formation from address a= an-l an_2 •.. a0 to address b = bn-l bn_2 •·· 

b (with o ~ a,b, < N). The simplest idea is to put the processors at the 
0 

vertices of a binary N-cube and to use the edges as wires. In log N = n 

iterations (at most) one can turn every·bit of a into the corresponding bit 

of band do the desired routing, but a disadvantage is that in every node 

n edges meet and thus n "switches" are put together. It is not possible to 

survey all networks here that have been proposed as alternatives with a 

bounded degree (e.g. 2) at every node, but many are essentially equivalent 

to the cube (see PARKER [40]). We shall only digress briefly to introduce 

the omega network that has received most attention. 

Define the "shuffle" as the mapping CT defined by o(a 1 a 2 •.. a)= n- n- o 
an_2 ... a0 an-land define the (single stage) shuffle-exchange network as 

the "graph" of s with the edges leading pairwise into N /2 switches that can 

pass the data on or "exchange" it on the outgoing pair of lines. Effective

ly a switch either applies the identity of does an exchange e defined by 

e(an-l an_2 .•. a 1 a0 ) = an-l an_ 2 ... a 1 a0 , i.e., it flips the last bit. 

Note that a message can be routed from a to bin (at most) log N n 

shuffle-exchange steps, by simply rotating and flipping a's binary form 

into b's binary form. This suggests to either allow up ton iterations (or 

more) through the shuffle-exchange graph (as in STONE [54]) or to unfold it 

to an n-stage network of shuffle-exchange "steps" (as in LAWRIE [35].) The 

latter is known as the omega network, and shown in figure 7 for the case 

N=16. PARKER [40] has given the following characterization of the class 

~N of permutations that can be routed in the omega network: 
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Figure 7. 

The omega network 

for N=16 

stage o stage 1 stage 2 stage 3 

Theorem 3. 12 Let TI be a permutat1:on mapping a' s to b 's ( as above), then 

TI E ltN if and only if there are n boolean functions {f.} of n-1 
l. o ::a i < n 

variables such that for aU o ::a i < n hit bi of b can he expressed as 

bi ai@ fi (bn-1' .... , bi+1' ai-1' ... , ao). 

25 

(© is addition modulo 2.) The analysis of the class ltN is a tedious one. The 

following theorem combines deep results of PEASE (41], PARKER (40], and WU & 

FENG (64]. Let SN be the permutation group on N elements and let p be the 

hit-reversal permutation, i.e., the permutation defined by 

a ) 
0 

Theorem 3.12 

( i) -1 
SN :: ltN o 

(ii) SN:: ltN o 

(iii) SN :: It~ 

StN 

p 0 StN 

(Recent results of STEINBERG (53] have simplified some of the proofs.) The 

theorem expresses the interesting result that every permutation can be rou

ted in e.g. three forward passes through the omega network. WU & FENG (65], 

and also STEINBERG [53], have given an explicit algorithm to set the switches 

for a routing in~ 3 log N steps. It is conjectured that SN:: It~, i.e., that 

at most two passes through the omega network suffice to route every permu

tation. (This is known as "Parker's probtem".) 

For computational purposes the shuffle-exchange network (or an iterated 
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form of it such as the omega network) appears to be very powerful as an in

terconnection network of "intelligent" processors that do a moderate amount 

of processing at every stage. To demonstrate this it is useful to consider an 

other network suggested by PEASE [41] first, the socalled indirect binary 

n-cube. Define the i th order "butterfly" permutation (1 ~ i ~ n) as the per

mutation which interchanges the first and i th bits of the address. The indi

rect binary n-cube consists of log N stages of N processors (in blocks of 

two) like the omega network, with the i th order butterfly permutation connec

ting the (i-1) st and the i th stage (1 ~ i ~ n) and an inverse shuffle at the 

end. The indirect binary n-cube for the case N=16 (n=4) is shown in figure 8. 

Let CN denote the class of permutations that can be routed on the indirect 

binary n-cube. The following result is due to PEASE [41] and PARKER [40]: 

Theorem 3.13 CN 

(pis the bit-reversal permutation.) It expresses the intriguing fact that 

the indirect binary n-cube is topologically equivalent to the "inverse" omega 

network, which itself is not much different from the omega network (with an 

added bit-reversal at the beginning and at the end). While the omega network 

is more regular in topology, the indirect binary n-cube may be handier for 

designing algorithms (in which the "boxes" do some processing of the data as 

well). This can be seen from the structure of the network (see figure 8), 

which suggests an intimate connection to the recursive doubling and divide

and-conquer paradigms. As an example we show that the N-points FFT can be 

evaluated in O(log N) time, in one pass, through the omega network. Recall 

that the FFT ("Fast Fourier Transform") can be viewed as a mapping: 

Figure 8. 

The indirect binary 

n-cube for N=16 

N~ 1 sk for o < < N 1 t ck w = s = - , w a 
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Theorem 3.14 The N-points FFT aan be evaluated in O(log N) time on P° CN or, 

equivalently, on nN° p. 

Proof. 

View the N-points FFT as the problem of evaluating p(x) on 

2 N-1 {1,w,w , ••• ,w }. Write p(x) 

N N 
2 1 2i 2 1 

S C2i X + X, ~ 
2i 2 

c2i+1x = pl(x) + 

2 x. p2 {x ) , where p 1 (x) and p2 (x) N are the polynomials of degree 2 - 1 corres-

ponding to the even and odd indexed coefficients respectively. It follows 

that the FFT on N points can be computed from two I - points FFT's which pro-
2 2 2 duce the necessary values of p1(x) and p2(x ). (Note that w is indeed a 

· · · N th f · ) O ' f 1 '11 b ff' ' primitive 2 root o unity. ne pair o p 1, p2 - va ues wi e su icient 
N . 2 + j 

to compote both p(wJ) and p(w ) 

P1AP1+ 
j P (wj) w ·P2 C 

0 
N j cl FFT j 2 + 

Pz p - w ·Pz p(w ) c2 1 on 

(a) c3 C o' c2, 

(b) 

Figure 9. The FFT on 
FFT 

N points 
on 

cl' c3, 

Using processing elements as shown in figure 9(a) the N-points FFT can be 

computed with a network of the recursive structure shown in figure 9(b), 

which is exactly the indirect binary n-cube. The coefficients must be put in 

reverse binary order before they can be input to the network. Thus the FFT 

can be evaluated in log N stages of computation on po CN. Using theorem 

3.13 it follows that the computation can be scheduled also on po CN = 

po (ponNop) = nNop. □ 
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A multi-stage network is ideally suited for pipelined computations, with 

0(1) periods. STONE [54] has shown that Batcher's sorting algorithm on 

N data items can be implemented to run in O(log2N) time on a shuffle

exchange network, or in log N passes through the omega network. Many other 

examples of fast algorithms exist. The omega network has been proposed as 

the underlying interconnection network of the NYU ultracomputer (see e.g. 

GOTTLIEB et.al [16]). 

The study of parallel _processing algorithms leads to many intricate 

problems of algorithm design and forces to take all aspects into account 

that make an algorithm costly when run on a ·parallel computer. 
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Comparative Performance Tests of Fortran Codes 
on the Cray-1 and Cyber 205 

ABSTRACT 

HA van der Vorst 
University of Technology, Delft 

The supercomputers CRAY-] and CYBER 205 are among the most powerful 

numbercrunchers that are connnercially available at the moment. Both types 

are so-called vector computers (pipelined processors) and therefore very 

well suited for many linear algebra computations. It has been recognized 

widely that most well-known algorithms have been designed for serial (or 

scalar) computers and that therefore one usually has to reformulate them, or 

to replace them by more suitable algorithms, in order to exploit the capabi

lities of the vector computers. 

In spite of the evident similarities of both the CRAY-] and CYBER 205, 

their mutual differences are so substantially that the selection of an algo

rithm for a given computational task and its Fortran implementation may be 

quite different for each of both supercomputers if one seeks for optimal per

formance (this may be even so for different configurations of the same com

puter type). 

In this contribution we consider some relevant features of both super

computers and we discuss their effects on the approach of a number of rather 

basic problems in numerical linear algebra in a Fortran programming environ

ment. 

I . INTRODUCTION 

In the course of 1984 the Dutch scientific community will get the possi

bility of access to a CYBER 205 (SARA·-Amsterdam) as well as to a CRAY-I (SHELL·

Rijswijk). This motivated us to collect some experience on both computers in 

order to be able to support future users of these systems. 
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Of course, much testing experience has been reported already (e.g., see 

[1,2,3,4]), mostly for more complex algorithms or even for complete Fortran 

codes. On relevant places we will refer to these results. In [5] it is shown 

in detail how two specific Fortran codes have been modified in order to 

achieve better execution rates for the CRAY-I as well as for the CYBER 205. 

In the coming sections we will consider the approach of a number of very 

elementary linear algebra algorithms rather than more complex ones and we 

will restrict ourselves to Fortran implementations of these algorithms. As 

we will demonstrate, the performance of the implementations of these algo

rithms may differ largely for each supercomputer, depending on their basic 

features. These features will be described globally in section 2. In section 

3 we discuss some possible Fortran implementations of basic linear algebra 

algorithms and we analyse their performance, as it is observed in actual com

putation. 

Finally we consider in section 4 how this works out for a more complex 

algorithm, namely the preconditioned conjugate gradient method, We will then 

also demonstrate that the differences between both computers, though classi

fied in the same group, may lead to a different choice of algorithm for sol

ving a given problem on each of them. 

2. SOME FEATURES OF THE CRAY-I AND THE CYBER 205 

Before we consider a number of algorithms in more detail, some of the 

features found in both supercomputers will be described. We will restrict 

ourselves to those features that are relevant for the Fortran implementation 

of numerical algorithms. 

Both the CRAY-1 and the CYBER 205 share a number of properties, by which 

they can be distinguished from other architectures: 

- vector instructions, i.e., vectors can act as operands for some functio

nal units. 

segmented functional units (pipelined processors), by which it is possi

ble to deliver a result of certain vector operations each clock cycle 

(after a start-up time, which depends on the functional unit). 

overlap of vector instructions, e.g., Load VJ from memory and VO=V1+V2 

can be executed almost simultaneously. 

64 bits words (floating point 48 bits precision}. 

8 or 16 bank memory (important with respect to memory bank conflicts). 
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8 Vector re 0 isters b 

(64 words) 

Functional units 

I Vector MEMORY ~ I units I 
I 

¼M - ' ---
4M 64- V/S 

BIT WORDS units 

- ---
Scalar 

~ 
units 

Scalar 
-

Registers 

Figure I. CRAY-I Vector Register Concept 

On the other hand they have a number of different features and some of 

these may require different implementations in Fortran in order to be exploi

ted: 

CRAY-) CYBER 205 

- clock cycle time ·12. 5 ns - clock cycle time 20 ns 

- bank cycle time 50 ns - bank cycle time 80 ns 

- 8 vector registers (64 words - I, 2 or 4 vector pipes (figure 2) 

each, see figure I) - direct memory access (figure 2) 

- only I path to memory (figure 3) - 3 paths to memory: 2 loads and I 

(store cannot overlap any opera- store (figure 4) 

tion using the same register) 

stride (constant) - contiguous vectors (stride=)) 

- chaining: e.g., Load VO, V2=Vl+VO, - linked triad capability 

V3=V2xS simultaneously (figure 5) 

- vector code can be generated by 

special directives in collllllent 

lines 

- vector code can be obtained using 

CDC Fortran vector syntax (exten

sion to Fortran) 
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Figure 2. CYBER 205 Vector pipes and Direct Memory Access 
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Figure 3. CRAY-I Chaining: operations with the same number can overlap 
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A common measure for the speed of vector computers is the amount of 

MFLOPS that can be achieved (MFLOPS = 106 floating point operations per se

cond; in our case the operations are add and multiply). 

Since the add and multiply vector operations can almost completely over

lap, the maximum execution rate for the CRAY·-) is 160 MFLOPS. For the CYBER 

205 the maximum execution rate depends on the number of available vector 

pipes: I-pipe 100 MFLOPS, 2-pipe 200 MFLOPS and 4-pipe 400 MFLOPS. 

Most experience reported in litterature is concerned with the 2-pipe version. 

It is also possible to execute floating point operations on the CYBER 205 in 

half precision (32-bit mode), this doubles the maximum possible execution 

rates. 

As we will see it is not so easy to achieve the maximum execution rate 

for the CRAY-1 with Fortran code. The maximum rates for the CYBER 205 are 

only achieved for linked triads (see 3.1). In practice the terms scalar speed, 

vector speed and super vector speed are frequently used in order to classify 

the actual performance for (a part of) a code. 

Super vector speed is reached when in average at least one functional 

floating point unit is constantly in use (e.g., for the CRAY-1: 50 - 150 

MFLOPS). Vector speed is achieved when in average at most J floating point 

result is delivered each clockcycle, in situations where the vector instruc·

tions dominate (e.g., for the CRAY-I: 10 - 50 MFLOPS). Scalar speed results 

when almost no vector instructions are issued (e.g., for the CRAY-1: less 
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MEMORY 

VI 

Figure 5. CRAY-I Chaining Concept: Assuming that VI and scalar Shave been 

loaded previously, the 3 operations execute in parallel. 

than 10 MFLOPS). Due to loop overhead and start-up times, the above given 

example rates are slightly less than their theoretical values. In order to 

get some feeling for the actual performance of a supercomputer we refer to 

DUFF and REID [6] , who conclude from their investigations that 30 MFLOPS may 

be considered as a good rate for Fortran code and 100 MFLOPS is a good rate 

for assembler code (both rates are for the CRAY-I). 

In the analysis of the performance of algorithms on vector computers, 

the term chime is often used. One chime denotes the number of clock cycles 

required to execute a given vector instruction, apart from start-up time. 

E.g., the vector instruction VO=Vl+V2 takes I chime (assuming that VI and V2 

are available from vector registers on the CRAY-I). 

Since many testing results do depend on variables such as compiler version, 

we give here the main characteristics of the testing circumstances. 

CRAY-IA 

CYBER 205 

ECMWF, Shinfield Park, Reading, U.K. 

16-Bank Memory 

Operating System COS 1.12 

Fortran Compiler CFT 1.11, options ON=CELMPQRSTV 

Control Data France, Paris, France (accessed through Control Data 

CYBERNET) 

2-pipe, 8-Bank Memory 

Operating System VSOS V20L575H 

Fortran Compiler FORTRAN 2.1 Cycle OTS21N, options O=BOUV 



Comparative performance tests on the Cray-1 and Cyber 205 

3. AN ANALYSIS OF SOME SIMPLE ALGORITHMS 

3.1 Vector Summation 

We consider the summation of two vectors as defined by 

DO 10 I=LN 
C ( D=M D+B ( D 

10 CONTINUE 

39 

For the CRAY-) the execution of the instructions generated by the Fortran 

compiler can be represented schematically as: 

load A load B store C 

A+B 

and we see that this operation takes 3 chimes, or more precisely, for 1~4, 

29+3N clockcycles. 

On the CYBER 205 these instructions can be executed in parallel: 

load A 

load B 

A+B 

store C 

which takes only J chime, or more precisely, 5l+N/n clockcycles, where n 
p p 

denotes the number of vector pipes (1, 2 or 4). 

It follows that, though the number of chimes for the CYBER 205 is 1/3 

of that for the CRAY-I, the 1-pipe CYBER 205 only beats the CRAY-1 when N 

is larger than 37. For the 2-pipe CYBER 205 the turnoverpoint is N=23. We 

see for this rather extreme example that the CYBER 205 is slower than the 

CRAY-) for short vectors, but (much) faster for (very) long vectors. 

3.2 Linked Triads 

A linked triad is an operation involving 2 vectors, 1 scalar, I add, 1 

multiplication and with a vector result, like 

DO 10 I=LN 
C( D=A< I )+B( I )*D 

10 CONTINUE 
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This type of operation plays a role in, e.g., gaussian elimination, the 

updating of vectors in iterative processes, etcetera. 

On the CRAY-I, with the present compiler, the execution of the above 

statements can be represented in chimes as follows 

load B load A A+DxB() store C 

DxB() 

Though the add operation is a candidate for chaining with the load operation 

of A, it has to wait for the result of DxB(), which slightly overlaps the 

load of A. Since the possibility of chaining is only checked at the time that 

the first result of a vector operation comes available, and since the DxB() 

overlap is just beyond that point, the add instruction comes too late and 

has to waite until the load of A has been completed, therefore 4 chimes. 

Though in principal this situation could be detected during the compilation 

and then could be easily repaired, e.g., by issuing one superfluous instruc

tion immediately before the load A instruction, this is not done by the 

present compiler. However, the instruction sequence can be changed by inser

ting parentheses: 

0010 I=LN 
CCD=<AC D )+BC D*D 

10 CONTINUE 
which leads to 

load A load B 

B()xD 

A+B()xD 

store C 

: 3 chimes. 

These 3 chimes involve 2 floating point vector operations and thus the 

maximum execution rate is (2/3)x80=53 MFLOPS. The memory references in this 

case (and similar situations) form the bottleneck and for this reason the 

CRAY-1 is often called memory limited. 

The CYBER 205 offers the possibility of 3 simultaneous memory referen

ces and this leads to the execution sequence that is represented schemati

cally as follows 
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load B 

load A 

* 
+ 

The result of the multiply is sent directly to the 
add unit without being stored in memory 

store C 
: I chime (!) 

Here there are 2 floating point vector operations in I chime and hence 

the maximum execution rate for the CYBER 205 is n xIOO MFLOPS (n =1,2 or 4). 
p p 

3.3 The Innerproduct 

We consider the following Fortran statements, representing the computa

tion of an innerproduct: 

SUM=O. 
DO 10 I=l,N 
SUM=SLJftt;-A( D*B( D 

10 CONTINUE 

The summation of vector elements is not a vector operation by itself, 

but if the vectors are long enough, then the summation can be arranged in 

parts and rather fast (vector) code can be generated for the CRAY-1, taking 

only 2 chimes, see JORDAN [1]. This has been realised for the CRAY-] by the 

subroutine SDOT (see [12]). 

For the CYBER 205 rather fast code could be obtained by a Folding Tech

nique as described by SCHREIBER and TANG [71: first compute c.=a.xb- (a vec-
1. l. l. 

tor operation), then add the second half part of c to the first half part 

and do this repeatedly until some minimum vector length is reached, the 

remaining part is summed in scalar mode. It can be shown that code based 

on this technique could compute the innerproduct in 2 chimes and therefore 

could have an execution rate of n xSO MFLOPS (n = the number of vector pipes). 
p p 

Actually innerproduct computations on the CYBER 205 can be done with a special 

hardware instruction, which can be generated by a call to QBSDOT (see [13]). 

The Fortran compilers of both computers recognize the above Fortran sta

tements and replace it by the appropriate in-line vector code. However, for 

N=SOOO the CRAY-I achieves an execution rate of 29 MFLOPS for the Fortran 

code, whereas SDOT does the computation with a rate of 72 MFLOPS. The diffe

rence is due to some rather strange overhead generated by the compiler in 

this situation. 
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For the CYBER 205 the actual execution rate for the above Fortran code, 

which is replaced by the compiler by an inline special hardware instruction, 

for N=5000, is 95 MFLOPS for the 2-pipe model. If one replaces the code by 

the corresponding call to Q8SDOT then the rate is precisely the same. We 

observe that this rate is quite close to what one might ultimately expect 

when using the Folding Technique. 

3.4 Matrix-Matrix Multiplication 

There are 6 possibilities to carry out the full matrix multiplication 

A=BxC, where A, Band Care assumed to be full square matrices of order N. 

We will describe these possibilities graphically by diagrams (for details 

see DONGARRA [8)) and comment on them briefly. In the diagrams* denotes a 

scalar operand, - denotes a vector operand. 

a. 

b. 

[ 
A 

*** 

* * * 

* * * 

-

-

[ . l [ 111 II l 
. l I l 

B X C 

CRAY-I: The performance of a and b will be at vectorspeed at most, because 

of the innerproducts. Possibly there can be memory bank conflicts, 

depending on the rowdimension of B. 

On the CYBER 205 the performance will be low (scalar speed), because of the 

stride unequal to I in the required elements of B. 

c. 

-
d. 

[Ill Ill -
A - B X C 
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CRAY-I In both cases c and d the entire matrix A is loaded and stored in 

each outer loop and therefore vector speed at most. 

CYBER 205: The rows inc degrade the performance (stride f I). Because of 

e. 

f. 

CRAY-I 

CYBER 205 

linked triads dis potentially fast. 

I 
I l -

A --
[Ill 11 l [ 

B X C 

* * * l 
Because of the column structure inf, this possibility should be 

preferred. The Fortran compiler does not recognize the possibi-

lity of accumulating the result vector in a vector register, 

before storing it. Therefore vector speed at most. Super vector 

speed can be reached either in CRAY Assembler Language or by a 

loop unrolling technique as proposed by DONGARRA and EISENSTAT 

[9], in that case performance rates close to 150 MFLOPS are 

feasible. The loop unrolling technique will be explained in 3.5. 

Fore we may again expect only scalar speed (stride f 1), but f 

can be done at super vector speed (linked triads) 

For both computers CRAY-I and 2-pipe CYBER 205 we list the actually observed 

execution rates in MFLOPS in Table I. 

N matrix mult. version CRAY-I CYBER 205 

100 a 38 5.7 
f 34 55 

200 a 37 5.8 
a, with row dim. 201 49 

f 37 86 

300 a 57 5.8 
f 41 106 

Table I. Execution rates in MFL0PS for the matrix multiplication 



44 H.A. van der Vorst 

3.5 Matrix-Vector Product 

This operation is in fact the kernel in the matrix multiplication as 

described in 3.4f. We consider the following Fortran statements, which do the 

matrix vector multiplication: 

DO 10 I=LN 
Y(D=O, 

10 CONTINUE 
DO 30 J=LN 
00 20 I=LN 

20 Y<D=(Y(I) )+X(J)*A<LJ) 
30 CONTINUE 

Since X(J) is a constant in the innermost DO-loop (DO 20 loop), the 

expression there is a linked triad. As is shown in 3.2 the linked triad 

takes 3 chimes on a CRAY-I and therefore the performance will be bounded by 

53 MFLOPS, whereas the 2-pipe CYBER 205 has its execution rate in this case 

bounded by 200 MFLOPS. In actual computation the CRAY-I achieves 41 MFLOPS 

and the CYBER 205 achieves 106 MFLOPS, for N=300. 

As is mentioned in 3.4 the CRAY-1 Fortran compiler does not recognize 

the possible savings in loads and stores for the Y--vector. DONGARRA and 

EISENSTAT [9} propose to unroll the DO 30 - loop, e.g., for a depth of four: 

DO 30 J=LL NA 
DO 20 I=LN 
YCI)=(( C <YO) )+A(LJ-3)*XCJ-3) )+A<LJ-2)*XCJ-2) )+ 

$ A(LJ-l)*X(J-1) )+ACLJ)*XCJ) 
20 CONTINUE 
30 co~rr IMUE 

Since the X-elements act as scalars in the DO 20 - loop, there are now 

6 memory references (for vectors) for each 8 f\oating point vector operations 

and therefore the maximum execution rate is 107 MFLOPS. In actual computation 

a rate of 96 MFLOPS has been observed, for N=300 and an unrolling depth of 

16, see [9}. In CAL (Cray Assembler Language) the execution rate can be as 

high as 148 MFLOPS (for N=300, using the CAL-coded subroutine MXV, see [12}). 

3.6 Band Mattix-Vector Products 

As an example we consider the case that A is a pentadiagonal s.ymmetric 

matrix of order 2000. The three relevant non-zero diagonals of the upper 

triangular part of A are denoted by a(i,l), a(i,2) and a(i,3), respectively, 
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where i is counted rowwise. The typical statement to be executed for the 

matrix-vector product b=Ax looks like 

b(i)=a(i-2,3)*x(i-2)+a(i-l,2)*x(i-l)+a(i,l)*x(i)+ 

a(i,2)*x(i+l)+a(i,3)*x(i+2) 
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Because of the sparsity of A, an approach similar as in 3.5 is not very 

useful here and an approach that exploits the diagonalwise structure has to 

be preferred [15]. The CYBER 205 Fortran compiler apparantly recognizes 

that this vector statement can be done in 9 chimes on this machine, whereas 

the CRAY-I Fortran compiler does not detect that it can be done in 11 chimes 

on the CRAY-I and generates a code that requires 14 chimes. This explains 
14 that the CRAY-I achieves 46 MFLOPS and the CYBER 205 (2-pipe) about 1.25x9 

times as much: 88 MFLOPS (for N=2000). 

The CRAY-I Fortran compiler can be forced to generate better code by 

inserting parentheses: 

N2=N-2 
DO 10 I=3)J2 
B(D=( ( ( (,l\.(l-2)3)*X(l-2) )+A(l-l,2)*X<I-1) )+ 

$ A<LD*XCD )+A( L2)*XCI+l) )+ACL3)*X<I+2) 
10 CONTINUE 

The execution now takes 11 chimes and the actual observed execution rate 

is 58 MFLOPS (for N=2000). 

A vector register serves as an operand to the vector functional units 

and we cannot access the individual elements in such a register. Therefore 

the same register cannot be used to deliver both X(I-2) and X(I-1) in the 

above statement (i.e., in Fortran this is not possible yet, in CAL one could 

use vector shift instructions in this case, see JORDAN[!]). 

Note, however, that the register which contains the vector X(I-1) could 

act as an operand in the computation of B(I+l). This is also the case for the 

registers containing A(I,2), X(I), X(I+l) and X(I+2). For the CRAY-I this 

can be used in order to reduce the number of vector loads, by unrolling the 

DO 10 - loop: 

DO 10 I=3,N2)2 
B(D= 
B<I+l)= , 

10 CONTINUE 
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Since there are only 8 vector registers available for storing the requi

red vectors and the intermediate results, one has to rearrange the order of 

computation very carefully and then it appears to be possible to get the de

sired code (we have not considered the general m-diagonal case): 

00 10 I=3)l2,2 
B(D=( ( ( <A0-2,3)*X(l-2) )+AU-1,2)*X(I-l) )+A(Ll)*X<D )+ 

$ A<L2)*X(I+l))+A(L3)*XU+2) 
B<I+l)=( ( ( (A(L2)*X(D )-IA(l-i-1,2)*XU+2) )+A(I+LD*X(I+l) )+ 

$ A<I-l,3)*XU-D )+A(I+l,3)*XU+3) 
10 CONTINUE 

Now a code is generated for the CRAY-1 that takes 17 chimes for each 

18 vector floating point operations and therefore super vector speed may be 

expected. And indeed, actually we observe an execution rate of 68 MFLOPS. 

In this case the CRAY-I features can not optimally be used in Fortran, 

as they can be in Cray Assembler Language. JORDAN [l] describes a technique 

for similar sparse matrix vector produc.ts that could lead to MFLOPS rates 

of 100 and more. 

3.7 The Vector Formula b.=x.-a,*(x. 1-a. 1*x. 2) 
i i i i- i- i-

on the CYBER 205 this vector statement requires 4 chimes for execution, 

as is schematically given by: 

load xi_2 load xi-I 

load ai-1 load Rl 

* 

store R1 store Rl 

load a. 
i 

load RI 

* 

store R1 

load x. 
i 

store b. 
i 

There are 4 vector floating point operations in these 4 chimes and hence 

the maximal execution rate for the 2-pipe CYBER 205 will be 100 MFLOPS. The 

actually observed rate for N=IOOO is 83 MFLOPS. 

The CRAY-I Fortran compiler generates a code that takes 7 chimes: 

load xi_2 load ai-l load xi-I 

* load a. 
i 

* 

load x. 
i 

store b. 
i 
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Both add instructions can not be chained to the previous loads due to over

lap problems (see also 3.2). In CAL this could be remedied, e.g., by inser

ting one instruction immediately before the load instruction, which reduces 

the sequence to 6 chimes. 

There are 4 vector floating point operations for 7 chimes in Fortran 
4 and therefore the execution rate is bounded by r80=46 MFLOPS. For N=IOOO 

we actually observe 40 MFLOPS. By loop-unrolling, as in 3.6, the number of 

vector loads can be reduced on the CRAY-I: 

DO 10 I=3J~L2 
B<D=<X<D )-A(D*( (X(l-1) }-A(l-D*X0-2)) 
B<I-:•l)=(X<J+l) )-,l\(J+l)*(X<J}-A(D*X0-1)) 

10 CONTINUE 

It is left to the reader to check that this can be carried out in 9 

chimes (of vector length N/2). The actually observed execution rate in this 

case is 58 MFLOPS, for N=IOOO. 

For most scalar computers relatively fast code is generated for: 

DO 10 1=3)! 
Xl=X<D 
AN=A<D 
B<D=Xl-AN*<X2-AP*X3) 
X3==X2 
X2=Xl 
AP=.l\N 

10 CONTINUE 

(with the appropriate initialisations, of course). 

For the CYBER 17 5-100 this scalar code takes 1820 micros.ec., whereas the 

original "vector" statement requires 2.120 microsec.,for N=!OOO. On the CRAY-I 

the "scalar" loop costs 577 microsec., the CYBER 205 (2-pipe) takes 598 micro

sec. and we observe that in scalar mode both supercomputers are about equally 

fast, though the central processor of the CRAY-I is. J .6 times faster than the 

CYBER 205 central processor. 
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4. VECTORIZATION OF A COMPLICATED ALGORITHM 

In this section we consider the vectorization of the ICCG algorithm 

(vectorization of this algorithm has been considered many times, see, e.g., 

[J,16,17]). The .!_ncomplete ~holeski ~onjugate ~radient algorithm for the 

iterative solution of the linear system Ax=b arises when the conjugate gra

dient method is applied to the preconditioned system K-1Ax=K-1b, where K is 

an incomplete Choleski decomposition of the symmetric positive real matrix 

A [ 10]. As a model problem we will consider the linear system Ax=b, where A 

has the structure as shown in figure 6. 

I 
I 

- -

I I ' 

I ' ' I 

- - ' - - - ..:. ' - - - - -1- - - - - -
1,,' I 
I ...._, ' I 
I ,, ' ' 

' I ,' ' ,, ,1 

1' I ,, 
I ' ' 

--'~~, I 

- - ,_ - - - - J. -
I 

Figure 6. Structure of A 

\ 

A very simple incomplete decomposition of A is defined by the splitting 

A L D-I LT - R, where 

(i) the strictly lower triangular part of Lis equal to the corres

ponding part of A 

(ii) diag(L D-J LT) diag(A) (4.J) 

(iii) diag(L) = D, Dis a diagonal matrix. 

Let the diagonal elements of A be denoted by a. 1, the first codiagonal ele-
1.' 

ments to the right by a. 2 and the elements of them-th codiagonal to the 
1., 
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right by a. 3 . We can partition the unknown vector x in parts, each part 
1.' 
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consisting of m successive unknowns, corresponding to the blockwise struc-

ture of the matrix; the blocks of the matrix A are also of dimension m. 

From (4.1) the elements of D can be easily computed, 
-1 

[10,11]. As a preconditioning matrix for A we choose K , 

for details see 

where K = L D-I 

K- 1 explicitly, At this point we note that it is not necessary to compute 
-I 

we only need an algorithm that generates the vector K z, for any given z. 

In order to improve the efficiency of the ICCG algorithm we scale the matrix 

A in such a way that D =I.The ICCG algorithm is given by the following 

scheme. 

x0 is an arbitrary 

r 0 = b - Ax0 , Po 

for i = 0,1,2, •.• 

o<. 
1. 

-I 
(r.,K r.) 

1. 1. 

xi+I= xi +O\pi 

initial approximation to x 
-1 = K r 0 

until llri+lll 2 < E,: 

-1 
(ri+l 'K ri+I) 

-I 
(ri'K ri) 

(4. 2) 

The innerproducts (see 3.3), vector updates (see 3.2) and the computa

tion of Api (see 3.6) have been discussed already and they introduce no 

special vectorization problems. The bottleneck in this algorithm, with res

pect to vectorization, is the computation of K-lri+I in the i-th step. The 

computation of Din (4.1) is also not easily vectorizable (but it can be 

done, see e.g., JORDAN[!]). It has been neglected here because it has to be 

done once and it takes relatively only little computing time 

We will now consider three different approaches to vectorizing the com
-I 

putation of z=K y' for a given input vector y. The output vector z is com-

puted by solving Kz=y, which is done in two successive steps: 

I. compute z from Lz=y, by forward elimination 

2. compute z from LTz=z, by backward elimination. 
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4.1 Straight-forward Computation of z 

If we assume all vectors to be partioned inn successive parts of length 

m (corresponding to the block structure of A), then the components of z, in 

the k-th part, can be computed from 

(4. 3) 

with j = (k-l)*m+I, (k-l)*m+2, .•• , k*m. 

Since the z. represent the already computed elements in the (k-1)-th 
J-m 

part, the piece y. = y. - a. 3z. vectorizes, so that we are left with 
J J J-m, J-m 

the problem of computing z. from 
J 

zj = yj - aj- 1, 2zj-I (4 .4) 

This is a forward recursion so that vectorization is inhibited, however 

optimized code for (4.4) is available for both the CRAY-I (subroutine FOLR, 

see [12]) and the CYBER 205 (subroutine Q8SM011, see [13]). In this phase 

we have not considered the implementation of cyclic reduction or recursive 

doubling techniques, see, e.g., [16]. The computation of z from LTz=z can be 

done analogously. 

4.2 Changing the Order of Computation of the Unknowns 

If we still assume the vector elements to be partioned in successive 

parts of length m, then zj is computed by (4.3) from previous elements zj-l 

and z. , as is shown schematically in figure 7. 
J-m 

(k+l)-th part of z 

k-th part of z 

(k-1)-th part of z 

Figure 7. Dependency of unknowns 

We see that in this case we can also compute the unknowns in a diagonal 

wise order, as is indicated by the dotted lines, and then each unknown is 

computed from already available elements on the previous diagonal. At the 

cost of twice as many DO - loops (with respect to the row-wise computation), 
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each loop now vectorizes on a CRAY-I (constant stride), whereas on a CYBER 

205 we still have problems (stride I I). 

The stride problems can be solved by Gather-Scatter techniques, which 

can be applied either once (introducing problems in the computation of Ax), 

or for each DO - loop apart (introducing a considerable overhead). The stride 

problems can also be solved by renumbering the unknowns explicitly, which 

again introduces problems in the computation of Ax. 

4.3 An Approximate Solution of Kz=y 

We now return to the row-wise computation of the vector z. By VAN DER 

VORST [14] it is proposed to compute the elements z. approximately from (4.4). 
J 

Therefore we observe that (4.4) represents the solution of a bidiagonal sys-

tem (I+B)'z1< =~'where z1< and fare the k-th parts of the vectors z and y, 
and Bis them-th order matrix that consists of only the first subcodiagonal 

in the k-th diagonal block of L. Formally the solution of (4.4) can be 

written as 

----lz c = (I - B + B2 B3 )·---k - + ••• y • (4.5) 

It is shown in [14] that if we compute z1< only approximately, by trun

cating the Neumann series in (4.5), then this results effectively in a per

turbed preconditioning matrix, which differs only slightly from the original 

one, even if the truncation is carried out after a few terms, say 2 or 3. 

The computation of (I - B + B2)f (truncation after 2 terms) or of 

(I+ B2)(I - B)~ (truncation after 3 terms) is completely vectorizable, 

avoiding the stride problems for the CYBER 205 (see 4.2). The truncation 

after 2 terms leads to the vector formula which has been analysed in 3.7. 

4.4 Timing Results 

For a system of order 3540 (59 rows with 60 unknowns, m=60) we have 

measured the computer CPU-times that are required to achieve a certain accu

racy. In this case 99 ICCG iterations have been carried out. 
' -1 

For the computation of Ax, K y, the innerproducts and the updating of 

iterands, we have selected those Fortran implementations which led to the 

highest MFLOPS rates, as described in section 3. The CPU-times observed for 

the different approaches in section 4.1, 4.2 and 4.3 are listed below. 

a. The standard ICCG algorithm, with the non-vectorized expression (4.3). 

CRAY-I : 0.455 seconds CYBER 205 : 0.681 seconds 
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b. The expression (4.3) replaced by the partly vectorizable expression 

(4.4), in combination with either FOLR (CRAY-I) or QSSMOII (CYBER 205). 

CRAY-I 0.392 seconds CYBER 205 0.512 seconds 

c. The use of a 2-term truncated Neumann series, as is described in 4.3. 

The matrix B2 was not computed explicitly, in fact the following expres

sion has been used: 

Expressions of this type have been considered in 3.7. With this trunca

tion 104 iterations were necessary in order to achieve a similar accu

racy as achieved by the standard ICCG algorithm in 99 iterations. 

CRAY-I : 0.269 seconds CYBER 205 0.218 seconds 

d. Computation of the unknowns in a diagonal wise order, as is outlined in 

4.2. For the CRAY-1 one should be aware of possible memory bank conflicts 

(not in this case: stride= 59). Because of the stride f 1, we decided 

for the CYBER 205 to renumber the unknowns explicitly according to the 

diagonal wise ordering. 

CRAY-I : 0.247 seconds CYBER 205 0.442 seconds 

From the above results we conclude that apparantly the CRAY-I reaches 

the best performance for our problem when the unknowns are computed in the 

diagonal wise ordering (with standard ICCG), this in contrast to the CYBER 

205 which is most efficient when we use the modified ICCG algorithm. 
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Parallel Algorithms in Computational Linear Algebra 
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ABSTRACT 

In this paper some techniques for exposing parallelism in a problem 

are surveyed and some new parallel algorithms for the direct and iterative 

solution of linear systems presented and compared with the existing 

sequential methods. Finally, a new explicit method for the finite differ

ence solution of parabolic partial differential equations is derived. The 

new.method uses stable asymmetric approximations to the partial differ

ential equation which when coupled in groups of 2 adjacent points (4 points 

for 2 dimensions) on the grid result in implicit equations which can be 

easily converted to explicit form and offer many advantages especially for 

use on parallel computers. By judicious use of alternating this strategy 

on the grid points of the domain results in new explicit parallel 

algorithms which pcssess unconditional stability. 

1. INTRODUCTION 

Parallelism can arise at many different levels within a computational 

problem, which if exposed can be efficiently exploited by parallel 
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computers. Some well known techniques of doing this are: 

1. Vectorising existing software. This is often achieved by changing 

the order in the evaluation of terms in a complicated expression 

so that a vector or matrix of components can be handled in one 

operation. 

2. To decompose the problem into a number of independent sub-problems 

all of which can proceed independently. The solutions of these 

sub-problems are then combined in some way to yield the answer of 

the original problem. This technique is usually known as a 

Divide and Conquer strategy or partitioning, e.g. for the eval
k 

uation of Ia.it is possible to decompose the problem in the 
i=l 1 

following manner. 

/ 
+ 

Thus, if tis the time unit for the addition operation, then the 

total times for the sequential and parallel computations are, 

Tsequential = (k-l)t, Tk = (log2k)t, 

while the speed-up of the computation due to parallel evaluation 

is determined as, 

This result is true if we neglect: 

i) the interconnection cost for S.I.M.D. computers, 
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ii) the synchronisation and shared memory conflicts for 

M.I.M.D. computers. 
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3. By the discovery of independent sub-expressions in the calculation 

which can proceed in parallel. Often this is termed Irrrplicit 

Parallelism and examples such as recursive decoupling and cyclic 

reduction are such that the extraction of these sub-expressions 

can lead to a more balanced decomposition for parallel evaluation. 

4. By developing new parallel methods such as the Quadrant Inter

locking Methods for Computational Linear Algebra which will be 

described in Sections 2 and 3. 

5. Another technique of achieving parallelism in a numerical 

algorithm is by the use of Explicit methods. Usually, such 

algorithms are the oldest methods for the solution of many 

problems. Unfortunately, they suffer from major defects such as 

poor stability and convergence characteristics and require 

unacceptable large solution times. Undoubtedly the more recent 

Irrrplicit Methods are better but often we are not able to exploit 

to the full any Implicit Parallelism within the algorithm. Thus, 

the discovery of new Explicit methods of solution as given in 

Section 5 is important for the development of parallel algorithms. 

6. Other techniques such as pipelining, broadcasting and streaming 

are more usually associated with hardware features of the computer 

and are not the subject of interest in this paper. 
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2. DIRECT METHODS FOR THE SOLUTION OF LINEAR SYSTEMS 

The usual approach for solving linear systems is by Gaussian 

Elimination or triangular decomposition. 

Given the matrix, A, 

all al2 al3 al4 

a21 a22 a23 a24 
-1 

i.e., A where det A /.0 so 
a31 a32 a33 a34 

that A is non-

a41 a42 a43 a44 singular. (2 .1) 

We now attempt to find the matrix factors L and u of the form: 

1 ull ul2 ul3 u1J 

.Q,21 1 0 u22 u23 u24 
L and U (2 .2) 

.Q,31 .Q,32 1 u33 u34 0 

.Q,41 .Q,42 .Q,43 1 u44 
:J 

such that, A= LU (2. 3) 

By equating the coefficients in the matrix product (2.3), the follow-

ing relations can be obtained to determine the coefficients of Land U. 

These are for rows 1,2 and 3, i.e., 

a 33 , etc. 

with similar results for the last row. 

These equations are essentially all sequential relations, since each 

of the unknowns£ .. and u .. are brought into the above relations one at a 
l,J l,J 

time recursively and then determined in a similar manner. 
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The reason why such a factorisation is sought specifically in L.U. 

form is that the matrix factors Land U are known as easily inverted 

matrix forms and so the solution of the linear system, 

Ax = b - - , 

can be obtained by making use of the substitution A 

problem to the solution of the coupled systems, 

and 

where ::l.. is an intermediate vector. 

LU to reduce the 

(2. 5) 

(2 .6) 

(2. 7) 

The linear systems (2.6) and (2.7) are easily solvable systems and 

can be solved by well known forward or backward substitution processes, 

i.e., 
LX = b , 

1 yl rbl 

i 1 0 
Y2 lb2 21 

i31 i 1 l' 
(2 .8) 

32 Y3 

i i i 1 Y4 b4 41 42 43 

can be solved as follows: 

yl bl + yl bl 

i2lyl+y2 b2 + Y2 b2-i2lyl (2. 9) 

i3lyl+i32y2+y3 = b3 + Y3 b3-i3lyl-i32y2 

i4lyl+i42y2+i43Y3+Y4 = b4 + Y4 b4-i4lyl-i42y2-i43Y3 

Similarly, for the system U~ = ::L· 

These relations are again all sequential processes. 

The question now is can we find a matrix factorisation that is more 

suitable for parallel computation? 
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Consider then a factorization of the matrix A of the form, 

A = wz , (2 .10) 

where, 
1 0 0 zll 2 12 zl3 2 14 

w21 1 0 w24 2 22 2 23 w and z 0 0 (2 .11) 

w31 0 1 w34 2 32 2 33 

0 
0 

1 2 41 2 42 2 43 2 44 

In general, the matrices wand Z will have the forms, 

w z 

and are termed the quadrant interlocking factors (Q.I.F.) of A. It can be 

noticed that they have a butterfly shape (Evans & Hatzopoulos, 1979). 

To determine the coefficients of Wand z we equate the coefficients of 

A and WZ in (2.10). Thus, for rows I and IV we have, 

I 

IV 

Whilst for row 2, we have the equations, 

II w21 2 ll+w24 2 41 = a21' w212 12+2 22+w24 2 42 = a22 ' 

w212 13+2 23+w24 2 43 = a23; w21 2 14+w242 44 = a24 · 

From the first and last equations we obtain w21 and w24 and by 

substitution in the 2nd and 3rd equations we obtain z 22 and z 23 . 

III 

Similarly for row 3, we have the equations, 

w312 11 +w342 41 

w3lzl3+w34z43 

w312 12+2 32+w34 2 42 

w31 2 14+w342 44 = a34 

(2 .12) 

(2 .13) 

(2 .14) 
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As before we obtain from the first and last equations the values of 

w31 and w34 and by substituting in the 2nd and 3rd equations, we obtain 

z 32 and z 33 . 

Thus, we can see that the first and last rows of z are given 

immediately. Then, (2X2) sets of linear equations are solved to obtain 

w. 1 and w. 4 for i=2,3. 
J.., l., 

Thus, the calculation proceeds as follows, 

11 ,....___ et____.c. I I 
where the outermost peripheral elements of the matrices Wand Z are 
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obtained. Then, the calculation proceeds to the innermost next layer of 

n-1 
elements. Thus only (-2-) stages are required to compute all the elements 

of Wand z. 

In comparison, the determination of the coefficients in the LU 

decomposition is given as, 

Solution of the Linear Systems 

Using the relationship 

then the linear system 

A wz 
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can now be reformulated as the solution of 2 related linear systems, 

WX = ,£. , and Zx = ;I. . 

To solve w.z = b we proceed as follows: 

l 0 0 Y1 bl 

w21 l 0 w24 Y2 b2 

w31 0 l w34 Y3 b3 

0 
0 l b4 Y4 

We see immediately, that, 

yl bl and Y4 = b4 ' 

w2lyl+y2+w24Y4 b2 and w31Y1+y3+w34Y4 b3 ' 
or Y2 = b2 (b2-w21Y1-w24Y4l 

,.. 
and Y3 = b3 (b3-w31Y1-w34Y4l 

The solutions for .J. are obtained in pairs working from the top and bottom 

components of the vector. 

Once the vector :i. has been determined then to solve the system Z~=x_ 

we proceed as follows, 

Starting at the centre we solve the (2X2) linear system, 

to evaluate 

Then, we proceed outwards and solve the (2X2) linear system, 
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to evaluate 

(yl-2 12x2-2 13x3) 

(y4-2 42x2-2 43x3) 
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Thus, the solution~ can be obtained in O(n) stages on a Parallel Computer 

2 
with O(n) processors. 

Thus, for general (nXn) matrices, a factorisation of the form, 

A= WZ 

is possible where Wand z have the matrix forms, 

w 

1 0 

1 0 1w 
, I 12,n 

\ I I 

w3 2' / I 
I , I 
I I\ I 

I 1 I 
I I ' ',I w ,, 
n-2 ,2 \ 

\ 
w / 
n-1,1 / 0 'w \n-1,n 

' o' 1 

, z 0 

/ 
/ 

/ - - - -
\ 

\ 

, ' 
2 n,l -- - - - - -zn,n 

where the elements of Wand Z are given by, 

W .• 
l,J 

1, i=j, 

O, i=l(l)n;l, j=i+l(l)n-i+l, 

. n+2 
O, l~(l)n, j=n-i+l(l)i-1, 

w. . otherwise. 
l,J 

Computation of the Matrices Wand Z 

By comparing terms of A and WZ we have: 

z .. 
l,J 

( . n+l 
z .. , i=l(l)-2-

j l,J , n+2(1) 
z .. ,i~2 n, 
l,J 

j=n-i+l(l)i 

0, otherwise, 

1. the elements of the first and last row of Z are given immediately 

and z . = a . for all i=l(l)n 
n,1.. n,i 

2. then the sets of (2X2) linear systems given by, 
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a. 
i,n 

are solved to obtain the values of w. 1 and w. for i=2(1)n-l. 
1, i,n 

D.J. Evans 

This then completes the first stage and the calculation of the outermost 

elements of the matrices Wand Z. 

n-1 
At least (-2-) such stages are required to compute all the elements 

of the matrices Wand z. 

Solution of the Linear System 

By using the relationship 

the linear system 

A= WZ , 

Ax= b, 

can be reformulated as the solution of the 2 related linear systems 

and wy b 

These are linear systems of the form, 

1 0 Y1 51 
I 

w2,l 1 0 / w 
Y2 52 

\ / I 2 ,n 
\ I 

w3 ,2', 
,, 

I 
' I I I 1 

I I \ I 
I I ,, I 

I I 

wn-1,1 
\ 

\ wn-1,n yn-1 s I n-1 
I 0 \ 

0 1 yn s 
n 

We see that y 1 and yn are calculated first then y 2 ,yn-l and so on in pairs 

working from the top and rear of the vector y and s=b. 

1 h .th 
In genera , at t e 1. step, we have, 

and we reset the s in the following manner, 
j 

sj = sj-wj,iyi-wj,n-i+lyn-i+l , j=i+l(l)n-i. 
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Similarly, the system, Zx y_ 

can be treated in a similar manner. 

For parallel computers with O(n2 ) processors - this is an O(n) method. 

Finally, it can be shown that by suitably chosen permutation matrices 

the method is identical to a (2X2) block Gaussian Elimination technique. 

3. ITERATIVE METHODS FOR THE SOLUTION OF LINEAR SYSTEMS 

Sequential iterative methods are derived using the principles of 

splitting the matrix into easily inverted forms. Thus, given a matrix A 

of the form, 

-1 
where det A 10. 

Then, the standard iterative approach is to assume the splitting, 

A = D - L - U , 

where, 

0 
D 

0 

(3.1) 
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0 ro, al2 al3 al4 \ 

' ' ' 
' ' a23 a24 

' ' 0 0 \ \ a34 
a21 ' -L and -u ' ' ' a31 a32 ' ' ' \ 

a41 a42 a43 0 0 

Then, to solve the linear system AlS = £_, the Gauss or Jacobi method can be 

written as, 
(n+l) 

D.Ji 

and the Gauss-Seidel method as, 

D~ (n+l) (n+l) (n) 
= +L~ + U~ + !:2,, 

or (D+L)~(n+l) = +U~(n) + .!2.. 

(3 .2) 

(3 .3) 

This is a sequential equation where the unknowns are brought in one at a 

time, i.e., 

(n+l) 
a22x2 

(n+l) 
a33x3 

(3 .4) 

Can we apply the Quadrant Interlocking approach of the previous section to 

de.rive a class of parallel iterative methods? 

Quadrant Interlocking Splitting (Q.I.S.) Methods 

Suppose we write A in the form, 

A = X - W - Z , (3.5) 

where Xis defined as, 
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all al4 

a22 a23 

a32 a33 

a41 a44 

and, 

0 
0 ,o 0 , al2 

' ' 
,I .... 

a21 ' 
/ 

a24 ' ,1 .... 
-W= and -z 0 1, 

a31 / ' a34 ,, 
/ C ', ,,, 

o" 0 O" a42 

Then, a parallel iterative method can be written as, 

(n+l) 
Xx -

similar to Jacobi form, and 

or 

similar to Gauss-Seidel form. 

(n) 
+Zx + .£. 

al3 0 ,, ,,. 
,,. 

/ .... ,,. 0 ,,.,, 
.... 

' ' a43' o_ 

Thus, the equations (3.7) in point form are given by, 

(n+l) (n+l) (n) (n) 
+ bl allxl + al4x4 -al2x2 - a 13x 3 

(n+l) (n+l) (n) (n) 
+ b4 a4lxl + a44x4 -a42x2 - a43x3 

followed by, 
(n+l) (n+l) (n+l) (n+l) 

+ b2 a22x2 + a23x3 -a2lxl - a24x4 

(n+l) (n+l) (n+l) (n+l) 
+ b3 a32x3 + a33x3 -a3lxl a34x4 
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(3.6a) 

(3 .6b) 

(3. 7) 

(3 .8) 

(3 .9a) 

(3.9b) 

This parallel method again requires the solution of (2X2) linear systems 

for each pair of equations within each iteration. 

Finally, for n=odd the centre element is treated by a separate 

equation. 
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In general, then, the matrix A can be written in the form, 

A = X - W - Z , 

where Xis defined as, 

with, 

-w 

0 0 
\ I 

' I 
a21 \ 0 / 1 ~2 ,n 
I 1 ' I I 1 
I I'\ 'il11 

I I I / II I 
1 I I •1\,, 1 1 

a 1 I I ~ ' I a 
[

n-1,1 1 0 \ n-1,n 

o1 'o 

a 
l,n 

a 
n,n 

and -z 

, ______ / 

/ 

0 0 

/ 

/- - - - - - ' 

Alternatively, the elements of X,W and Z can be given as, 

O.J. Evans 

( 3 .10) 

0 

j a .. 1 l., l. 
. [n-1 I 

l::J<L2J' j<i<n-j+l 

X , i=l, 2, ,. . ,. ,n; 
ln;2J <j<n, n-j+l<i<j 

0, elsewhere 
and (3 .11) 

-z 

0, elsewhere. 

Thus, we have split the coefficient matrix A into the sum of inter-

locking quadrant components A= X - W - Zand analogous to the familiar 

splitting A= D - L - U, (Varga, 1963) we can formulate the following 

parallel iterative methods: 

Simultaneous QI method: Xx (k+l) (W+Z)!. (k) + £. (3.12) 
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Successive QI method: (3 .13) 

Simultaneous Overrelaxation QI method: 
(k+l) 

x~ = 
(k) (k) 

(W+Z),!_ +(1-w)X~ +W£_, 

Successive Overrelaxation QI method: (k+l) 
(X-wW)2;_ 

(k}3 .14) 
(wZ+ (1-w) X)~ +W£_, 

(3.15) 

where k is the iteration index and w is the overrelaxation parameter 

chosen to maximise the convergence rate of the iterative method. 

The following properties of these methods can be established (Evans 

and Haghighi, 1982). 

1. The simultaneous QI method converges if A is diagonally dominant. 

2. The QI matrix splitting is a regular splitting of A. 

3. The successive QI method converges if A is irreducible and possesses 

weak diagonal dominance. 

4. The successive QI method converges if A is real and positive definite, 

and 

5. The successive overrelaxation QI method converges for O<w<2 and 

corresponds to a (2X2) block S.O.R. method. 

Finally, again it can be shown that these are nothing more than (2x2) 

block iterative methods and one is naturally bound to enquire whether there 

is an optimum size block where the extra computational effort of inverting 

the block is more than compensated by the increase in convergence rate of 

the method. 

4. EXPLICIT BLOCK ITERATIVE METHODS 

We now consider a novel approach where the blocks are inverted 
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explicitly and new iterative methods developed for the simple (4X4) system 

of linear equations, 

in the following manner. 

We sub-divide the system up into smaller (2X2) systems, i.e., 

allxl + al2x2 = bl-al3x3-al4x4 ' 

a2lxl + a22x2 = b2-a23x3-a24x4 'etc. 

which can be written in iterative form as, 

b:: 
and 

b:: 
or in Explicit form, 

bf 
[::r 

Now since A1 and A2 are small (2X2) systems then they can be inverted 

explicitly, i.e., 
-1 

Al 

(4 .1) 

(4 .2) 

(4 .3) 

(4 .4) 

(4 .5) 

(4 .6) 

(4. 7) 
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where (4 .8) 

Thus, for the linear system, 

~ = ,2., where A is sparse, and of large order 

and where the splitting 
A= D - L - U, with D=block diagonal is assumed 

then all previous implicit methods have used the assumption that D~ =,!2. 

can be determined by a simple efficient algorithm, i.e., 

(L+U)~(k) + £., the Block Jacobi method, (4.9) 

and 

D~(k+l) 

Dx(k+l) L~(k+l) + U~(k) + ,E_, the Block Gauss-Seidel 

method, (4.10) 

with their overrelaxation counterparts. Such schemes are well known, i.e. 

1-line, 2-line, k-line block methods (Varga, 1963). 

-1 -1 -1 
However, if we assume that D ,D Land D U are small block systems 

which can be explicitly determined, then new methods of Explicit Block 

form, e.g. 
X 

(k+l) -1 
(D L + D-lU)~(k) -+ b 

-(k+l) (LE+ E (k) 
or ~ u )~ + .E. the Explicit Block Jacobi 

method, 

and 
(k+l) E (k+l) E k ,., 

X L X +U~ + .2. the Explicit Block - Gauss-Seidel method, 

and their overrelaxation counterparts can be developed which will be 

appropriate for parallel implementation. 

(4.11) 

(4 .12) 

Now for what grouping of points can we determine D-lL and o-1u 

explicitly since when you invert the line block, the block fills up and 

sparsity disappears and the computational complexity of the method 

increases. However, for small (2x2) blocks this does not happen. So for 

the components x1 and x2 of the first block, we have, 
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[:] (kHI 

(4 .13) 

and similarly for x 3 and x 4 . 

Thus, multiplying out we obtain the new explicit block equations, 

(k) (k) 
(a22bl-al2b2)-[(a22al3-al2a23)x3 +(a22al4-al2a24)x4 l 

(k) (k) 
23)x3 +(-a2lal4+alla24)x4 l 

(k) (k) 
)xl +(a44a32-a34a42)x2 l 

(4 .14) 

which can be considered as a viable computational approach. 

The normal procedure is to precalculate these quantities and then 

solve the equations, 

(4.15) 

wh-ich leads to a new explicit Jacobi scheme which can then be developed 

into similar explicit block Gauss-Seidel and S.O.R. schemes. 

The new explicit block iterative schemes in certain circumstances 

(i.e. when A is diagonal dominant, etc.) will have a greater convergence 

factor but also will involve more computational work per iteration. So 

the total amount of computational work to achieve the solution will have to 
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be considered. The interesting question is for what block size is the 

maximum efficiency obtained. Preliminary investigations have confirmed 

that the largest gains are achieved for a (3X3) block size. 

5. CONVERSION OF IMPLICIT METHODS TO EXPLICIT FORM 

Another technique of achieving parallelism in a numerical algorithm 

is by the use of explicit methods. 

However these methods are the oldest methods and suffer from poor 

stability and convergence characteristics that require unacceptable 

computer solution times. 

The newer implicit methods are better but often we are not able to 

exploit to the full the implicit parallelism in the solution algorithm. 

Hence we must find new explicit methods with improved stability and 

convergence characteristics. 

Consider the simple heat-conduction problem, (Fig.5.1), 

73 

au a2u 
o:sx:sl, (5 .1) 

at 2 
, t>O , 

ax 

with initial conditions, u(x,O) f (x}, O(x:Sl, 

and boundary conditions, u(O,t) go(t), O<t::,T 

u(l,t) gl (t), O<t:;:T. 
t 

X 

FIGURE 5.1 
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The simplest explicit method uses a forward difference operation approx-

a a2u 
imation to a~ and a central difference operator approximation to --2 • The 

ax 
formula, (1 2 ) O(~t+~x2 ) rui-l,j+ - r ui,j + rui+l,j + 

(5.2) 

~t 
is well known (Fig. 5.2) but is unstable for values of r = --2 > ½. Hence, 

~x 
the algorithm is ideal for parallel application since every point on the 

grid can be evaluated at the same time. The method requires long solution 

times due to the small time step of integration. 

j+l 

j 

i-1 i i+l 

FIGURE 5.2 

An implicit method uses a backward difference operator approximation 

au a2u 
to at and a central difference operator approximation to - 2-. The 

ax 
equation, 

-ru. 1 . 1+(1+2r)u .. 1-ru. 1 . 1 ~ u .. , (5.3) 
i- ,J+ i,J+ i+ ,]+ i,J 

is also well known and is stable for all values of r (Fig.5.3). However, 

the algorithm requires the solution of a system of 3 term finite 

difference equations at every time step in which we are not able to 

exploit the parallelism to the full. 
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i-1 i 

FIGURE 5.3 

j+l 

i+l 

In order to facilitate the solution of these implicit equations, 

asymmetric techniques due to Saul'yev (1964) have been used, i.e. the 

computational molecule Fig. 5.4 representing the equation, 

is explicit if solved from left+ right and the computational molecule 

Fig. 5.5 representing the equation, 

ru +(l+r)u = (1-r)u .. + ru + 0(6t +6x2 - 6t) 
- i+l,j+l i,j+l i,J i-1,j 6x 

is explicit if solved from right+ left. 

j+l 

j 

i-1 i i+l i-1 i i+l 

FIGURE 5.4 FIGURE 5.5 

75 

(5.4) 

(5 .5) 

j+l 

These two schemes are often referred to as semi-explicit formulae. 
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A New Group Explicit Method 

If we now couple the use of the asymmetric equations (5.4) and (5.5) 

at 2 adjacent points, i.e., 

j+l 

j 

i-1 i i+l FIGURE 5.6 i+2 

then they result in a (2X2) set of implicit difference equations. 

For the group of two points, i.e. {i6x,(j+½)6t} and {(i+l)6x,(j+½)6t} 

in which equations (5.5) and (5.4) are used simultaneously to calculate the 

values of u at these points respectively. Therefore, at point {i6x,(j+½)6tl 

the solution is approximated by, 

-ru. 1 . 1 + (l+r)u .. 1 ~ ru. 1 . + (1-r)u .. , 
i+ ,J+ i,J+ i- ,J i,J 

whilst at point {(i+1)6x,(j+½)6t}, the solution is approximated by, 

-rui,j+l + (l+r)ui+l,j+l z (1-r)ui+l,j + rui+2,j 

If we now rewrite equations (5.4) and (5.5) in matrix form, 

i,J i- ,J 

(5.4a) 

(5.5a) 

r+r 
tr OJ lu. . ] ~u. 1 ~ + (5.6) 

1-r u. 1 . ru. 2 . 
i+ ,J i+ ,J 

in which the (2X2) matrix of coefficients can easily be inverted so that 

the equation can be written in explicit form as, 
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li,j+l ] 

ti+l,j+l 

[
l+r r] 1rl-r OJ r-- ] pu. l ~i 

r l+r Lo 1-r lu:::,j + ~u::,::j 

(5. 7) 

where A= 1+2r. This simplifies to, 

[ ] [ 
2 2 ~ u .. 1 r(l+r)u. ·l .+(1-r )u .. +r(l-r)u. 1 .+r u. 2 . 

l,J+ l 1- ,J 1 1 ] 1+ ,J 1+ ,J 

u. 1 . 1 = W r 2u. 1 .+r(l-r)u .. +(1-/)u. 1 .+r(l+r)u. 2 . 
1+ ,J+ 1- ,J 1,J 1+ ,J 1+ ,J-

(5.8) 

For any ungrouped (single) points near the right and left boundaries 

equations (5.4) and (5.5) can be used respectively, i.e. for the right 

boundary, 
1 

um-1,j+l = (l+r) (rum,j+l + rum-2,j + (l-r)um-1,j) ' 

and for the left boundary, 

Finally, equation (5.6) can be easily converted to explicit form 

resulting in the computational molecule (Fig. 5.7). 

j_-l i 

representing the equation, 

i+l 

FIGURE 5.7 

i+2 

j+l 

(5.9) 

(5.10) 

1 2 2 
u,,J'+l = -11 2 ) [r(l+r)u. 1 .+(1-r )u .. +r(l+r)u. 1 .+r u. 2 .] 
~ + r 1- ,J l,J 1+ ,J 1+ ,J 

(5.11) 
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and the molecule, 

i-1 

representing, 

i i+l 
FIGURE 5.8 

j+l 

j 

i+2 

r(l+r)u. 2 .] , 
1.+ ,J 

O.J. Evans 

(5.12) 

which when used in the alternating group explicit (AGE) method results in 

a stable explicit algorithm which is ideal for parallel application (Evans 

& Abduallh, 1983). 

The given problem (5.1) was solved using the AGE algorithm on the 

NEPTUNE 4 processor parallel MIMD system at Loughborough University and 

the results obtained when compared with the standard explicit method 

confirm its suitability for parallel implementation. 

TABLE 5.1 

The Explicit Method 
The Group Explicit 

No. of No. of Method 
points processors 

Speed-up Efficiency Speed-up Efficiency 

1920 0,1 1.93 0.9650 1.98 0.9900 

0,1,2 2.85 0.9500 2.95 o.9833 

0,1,2,3 3. 77 0.9425 3.91 0.9775 

The relative speed up = 
explicit 

=1.1619 
Group explicit 
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An Internal View of the Cyber 205 Operating System 

C.J. Purcell 
Control Data Corporation, St. Paul, MN 

1. THE COMPUTATIONAL REQUIREMENT 

The Control Data CYBER 205 system is manufactured and built to serve as 

the major computational facility within a network of diverse computer systems 

(see Figure 1). All of the design parameters have been selected so as to mini

mize the size and the overhead of the operating system while maximizing system 

user facilities. Thus, this paper will focus on those aspects of the hardware 

design which have helped to minimize various aspects of the operating system. 

This minimization includes the time required to perform operating system func

tions, as well as the memory space required to support the operating system 

functions. 

CYBER 205 

Figure 1. A typical network 

LOOSELY 
COUPLED 
NETWORK 

PDP 
11 

CYBER 
170 

IBM 
370 
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ESTABLISHED SYSTEMS 

SINGLE PROCESSOR 
SUSTAINED 

MODEL MEMORY PERFORMANCE 

CDC 6600 131K 2 MEGAFLOPS 

CDC 7600 512K 8 MEGAFLOPS 

CDC STAR-100 1M 16 MEGAFLOPS 

CDC CYBER 205 4M 100 MEGAFLOPS 

CANDIDATES FOR FUTURE REQUIREMENTS 

CYBER 2XX 

CYBER 2XY 

32M 

256M 

400 MEGAFLOPS 

1200 MEGAFLOPS 

Figure 2. Some representative computer .classes 

DATE 

1965 

1970 

1975 

1981 

1987 

? 

C.J. Purcell 

The requirement to efficiently perform systematic operations on large 

quantities of floating point operations was quickly recognized in applied 

scientific computing. The architecture of the Control Data STAR-100 com

puter system was established in 1965 in order to provide a means of effi

cient large scale computation for exactly this reason (Purcell [1]). 

The computational capability provided by the STAR-100 can be compared to 

other classes of systems (see Figure 2). Various members of the CYBER 200 

family are carrying the concepts of the STAR-100 further. 

Engineers and scientists access this systematic capability within a 

FORTRAN language environment. FORTRAN is not an ideal language from the 

standpoint of computer science. The simplicity of FORTRAN, however, has 

attracted usage and utility throughout the world, especially as a method of 

information exchange. FORTRAN is also used in a large number of universal 

application packages. Use of these packages does not require any knowledge 

of FORTRAN at all. The only requirement is the need to enter data within 

specific format structures and the ability to understand the resultant data. 

This facility defines to large extent the requirement for the operating 

system, especially for the purposes of engineers and scientists. In addi

tion, the owner of the computational resource requires that the many users 

are identified, counted, billed and protected, all at minimum disturbance 

of the overall system productivity. 
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Experience within Control Data Corporation led to an early implemen

tation of the concept of distributed processing whereby each support process 

is to be performed at a level that is least expensive in terms of either 

main processor time or hardware expense. The main processor is designed to 

perform the computational function. Other functions are distributed to a 

variety of support units ("functional parallelism") as implemented in a 

number of auxiliary processors. In addition to a computational processor, 

functional parallelism requires facilities for queued access, batch prepa

ration, telecommunication, output display, file support, and maintenance/ 

monitor functions. 

The operating system is distributed in a manner which closely follows 

the distribution of the hardware. Thus, there are operating system functions 

in each support processor as well as in the central processor. The connecting 

links between the several processors are controlled by a diverse set of 

system messages, so that message handling becomes of great importance in the 

distributed system. 

The development of the message philosophy over the last 20 years in 

Control Data Corporation has resulted in standard products of this type of 

facility. The product family is known as the "Loosely Coupled Network" with 

remote host facility. A remote host facility is any structure of hardware 

and software elements that supports Control Data local computer networks 

consisting of Control Data and non-Control Data hosts. The objectives of the 

remote host facility are: 

- to support a local network of distributed hosts, 

- to distribute network supervision tasks among host computer systems, 

- to provide remote host access to local host system applications without 

concern for network topology, 

- to provide efficient and effective use of network resources, and 

- to ensure network integrity and maintainability. 

All functions needed to implement the distributed functions required in the 

concept are readily available as three kinds of transfer mechanisms: queue 

files, permanent files and interactive files. 

2. THE CYBER 205 

The CYBER 205 with its immediate storage is simply another processor 

within the system, now identified as one of many "hosts" and in no way 

equipped with any extra authority. The only authority that it does have is 
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to process requests for service as directed by the message formats placed 

in the CPU memory. The support hardware provided within the CYBER 205 in 

order to facilitate the implementation of a minimum overhead operating 

system includes: 

- monitor mode vs. job mode execution state, 

- interrupt processing, 

- virtual memory organization, 

- variable size page structure, 

- monitor mode instructions, and 

- masked vector search instruction. 

See the CYBER 205 Reference Manual ([2], Section 5) for a complete descrip

tion of the various instructions and support features of the CYBER 205 hard

ware and software system. 

The central operating system operates in a privileged state located in 

the beginning of memory. At the time of system initialization, the operator 

causes a master program to be written into that beginning of memory, then 

starts execution. Extensive hardware properties are provided in conjunction 

with an auxiliary processor (for maintenance purposes) so that the first 

instruction to be executed is found in a location specified by the contents 

of Register 6. The first eight registers of the 256 program registers have 

similar identified roles, as indicated in Figure 3. 

REGISTER 0: TRACE REGISTER (OF LAST BRANCH) 
REGISTER 1: DATA FLAG RETURN ADDRESS 
REGISTER 2: DATA FLAG BRANCH ADDRESS 
REGISTER 3: JOB MODE ILLEGAL ............... TO MONITOR ADDRESS 
REGISTER 4: MONITOR MODE ILLEGAL ..•........ TO MONITOR ADDRESS 
REGISTER 5: JOB EXIT FORCE ................. TO MONITOR ADDRESS 
REGISTER 6: EXTERNAL INTERRUPT ..•...•...•.. TO MONITOR ADDRESS 
REGISTER 7: JOB PAGE FAULT ................. TO MONITOR ADDRESS 

Figure 3. Monitor mode registers 

Virtual memory is organized to provide each of 4096 potential users 

with a full address range of 48 bits. The use of a very large address space 

has precluded the need for segment tables for mapping virtual to real 

memory addresses. Thus, an associative search mechanism was developed in 

order to establish the location of "virtual" locations within "real" 
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(a) 

(b) 

(c) 
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ADDRESS CODE 

VIRTUAL 
ADDRESS 

!--ASSOCIATIVE SEARCH--( 

BLOCK K USER PAGE 

18 3 12 31 

----, 
LINE I 

1s I ____ .,! 

TO FORM: REAL ADDRESS = BLOCK, LINE = 31 BITS 

FROM: VIRTUAL ADDRESS = PAGE, LINE = 48 BITS 

WITH: USER ADDRESS = USER, VIRTUAL • 80 BITS 

0 

15 
18 

K = CONTROL (PAGE SIZE AND ACTIVITY) 

ASSOCIATIVE 
REGISTERS 

IN 
SCALAR UNIT 

SPACE TABLE 
IN 

MAIN 
MEMORY 

END'---------' 

Figure 4. (a) Associative word (b) Page table entry format 

(c) Page table format 

85 

memory. Figure 4 shows the format of the associative words and of the page 

table entries. The associative search is implemented so as to reorder the 

list in order to force the most recently used entries at the top of the list. 

The oldest entries are caused naturally to fall to the bottom of the list 

where they become prime candidates for replacement by more desirable page 

entries. A specific vector search instruction is provided for the operating 

systems to facilitate associative space table management (the "cc" instruc

tion). 

Figure 5 summarizes the organization of the CYBER 205 virtual memory 

system and Figure 6 lists some of the salient parameters. The maximum real 

memory size was established at 32 million words (of 256 million bytes) in 

1965. This grand goal seemed to be sufficient at that time to carry us to the 

year 2000. We face implementation of this amount of memory by 1985, instead. 

I do not believe we will ever need the full 48 bits, however. 
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REAL 
MEMORY 

LARGE 
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PAGE 
TABLE VIRTUAL MEMORY MAPS 

USER2MAP 

SMAUPAGE 

~ 
Figure 5. CYBER 205 virtual memory management (overview) 

• LOCK AND KEY PROTECTION 

• 16 VIRTUAL ADDRESS REGISTERS PLUS PAGE TABLE 

• ADDRESS SPACE: 2 X 1012 WORDS 

• SELECTABLE PAGE SIZES 
- SMALL PAGE SIZES: 512, 2048, AND 8192 WORDS 
- LARGE PAGE SIZE: 65,536 WORDS 

• TRANSPARENT TO USER 

DISKS 

Figure 6. Some features of the CYBER 205 virtual memory system 
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Interrupt processing in the CYBER 205 is facilitated by categories 

established in conjunction with the information found in the previously 

noted registers for use in the monitor mode assignments. The interrupts 

transfer control as follows: 

- page fault ••. to monitor, 

- external interrupt •.. per channel, 

- data fault ••. to own program, 

- job time out ..• to monitor, 

- monitor time out ... to accounting, 

- hardware fault ••. to maintenance by time out. 

The system recovers from interrupts without loss of function or data. A 

partial interrupt (suspension) is required in order to allow for the asso-
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ciative page table search within the span of execution of the memory-to

memory instructions of the CYBER 205. Full interrupt is supported by re

tention of all necessary restart "user program" parameters, at the expense 

of time and hardware but in exchange for substantial convenience. 

3. OPERATING SYSTEM IMPLEMENTATION 

There are four levels of program to be found within the CYBER 205. 

These levels include the central operating system operating in (absolute 

addressed) monitor mode, system tasks running in virtual mode, user ser

vices running in virtual mode and user programs in virtual mode. The time 

required to perform any identified function performed for or by a specific 

user, is charged to that user as much as possible. 

The generalized configuration required to support a multi-programming 

environment with a large number of users is shown in the idealized net

working scheme of Figure 7. The configuration of the CYBER 205 system is 

shown in more detail in Figure 8. Distributed processing is achieved by 

providing a computation facility with lower level processors. The CYBER 

205 handles large scientific computation, with minimal support and I/0 

activity. Front-end processors handle unit record and tape I/0, remote 

access and data communication, and data management. The tape subsystem 

handles high performance tape I/0, and the disk subsystem handles high 

performance disk I/0. 

Data flow for each user's program is managed by either the system or by 

the user, in conjunction with files primarily found in the disk system. This 

data is managed by the system when data and code spaces are referenced within 

HIGH-LEVEL 
CPU DEMANDS 

LOW-LEVEL 
FUNCTIONS 

CYBER 
200 

FRONT-END 
SYSTEM IS) 

MINI 

Figure 7. CYBER 205 distributed processing 
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Figure 8. CYBER 205 general configuration 
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the rules of virtual memory. This mode; called demand paging, can work well 

for casual development of potential production codes. 

Actual production code performance can be improved, as necessary, by 

manual operations such as "advise" or "buffer". These manual operations are 

invoked by specialists in performance programming whenever the cost or the 

time duration of a given production code becomes excessive. We have imple

mented the "advise" function so that the requested program or data can be 

retained or removed virtually with reasonable efficiency. Classical Control 

Data buffer operations {BUFFIN or BUFFOUT) require real memory operations 

in order to preserve compatibility with older practices, at some expense 

in efficiency. 

Performance measurements on the CYBER 205 have been performed on a 

variety of user codes in both mono-programming and multi-programming en

vironments. Successful programs have been reported by many scientists out

side of Control Data Corporation. Information concerning operating system 

performance is usually difficult to establish outside or inside the com

pany. An average efficiency of the current VSOS 2.1.5 has been measured 

by use of special instrumentation covering several multi-programming mixes 

at 75 percent CPU delivered to the user community. Figure 9 summarizes some 

of the results. The average time utilized by the system (not allocatable to 

specific users) is 10 percent. The average time spent in unoverlapped input/ 
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AVERAGE RANGE 
CPU DELIVERED TO USER 75% 55-95% 
OPERATING SYSTEM OVERHEAD 10% 18-2% 
NONPRODUCTIVE 1/0 WAIT 15% 27-3% 
NEED FOR MORE REAL MEMORY 100% 
NEED FOR INCREASED DISK SUPPORT 100% 
VECTOR UNIT AVAILABLE FOR MORE WORK 

Figure 9. CYBER 205 performance measurements 

output wait is 15 percent. These averages are established over a large 

number of cases and do not represent any specific case. The measurement 

technique includes analysis of system day files, CPU instrumentation, and 

the use of two pipe/ four pipe performance comparisons. 
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The direction of the CYBER 200 Operating System Development is clear. 

The future requirements include the need for developing more support 

facilities in order to deliver more computa~ions to the ever increasing 

simulation requirements of engineers and scientists (see Figure 10). 

We are told by the user community to develop faster processors, larger 

memories, bigger disk systems, more extensive terminal facilities and com

prehensive graphics. All of this while reducing the cost of each computa

tion and minimizing operating system overhead. Operating system utilities 

will be greatly expanded by means of the development of various command lan-

• ADVANCED DISK SUPPORT (ACCESS AND TRANSFER) 

• EXPANSION TO LOOSELY COUPLED NETWORK FACILITIES 

• GATEWAYS TO LOW SPEED NETWORKS 

• GREATLY INCREASED INTERACTIVE SUPPORT 

• AUTOMATIC DEMAND PAGING HARDWARE SUPPORT 

• INTELLIGENT FILE ACCESSES 

• MULTIPLE ACCESS PRODUCTIVITY IMPROVEMENTS 

• UNIVERSAL OPERATING SYSTEM WITH 
COMMAND LANGUAGE SHELLS 

Figure 10. Future possibilities CYBER 200 
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guage "shells" as UNIX, NOS and VSOS. Operation system efficiency will be 

greatly increased by additional hardware support functions which will im

prove queue, dequeue, request, accept, reject, wait, post, link heap, 

stack, etc., all along the lines of current developments in the theory of 

operating systems. 
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1. INTRODUCTION 

Fifth generation computers must be fast, reliable, and flexible. One way to 
achieve these goals is to build them out of a small number of basic modules that 
can be assembled together to realize machines of various sizes. The use of multi
ple modules can make the machines not only fast, but also achieve a substantial 
amount of fault tolerance. The system architecture and software for such 
machines are described below. 
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1.1. System Architecture 
The price of processors and memory is decreasing at an incredible rate. Extra
polating from the current trend, it is likely that a single board containing a 
powerful CPU, a substantial fraction of a megabyte of memory, and a fast net
work interface will be available for a manufacturing cost of less than $100 in 
1990. Our intention is therefore to do research on the architecture and software 
of machines built up of a large number of such modules. 

In particular, we envision three classes of machines: (1) personal computers 
consisting of a high-quality bit-map display and a few processor-memory 
modules; (2) departmental machines consisting of hundreds of such modules; 
and (3) large mainframes consisting of thousands of them. The primary 
difference between these machines is the number of modules, rather than the 
type of the modules. In principle, any of these machines can be gracefully 
increased in size to improve performance by adding new modules or decreased 
in size to allow removal and repair of defective modules. The software running 
on the various machines should be in essence identical. Furthermore, it should 
be possible to connect different machines together to form even larger machines 
and to partition existing machines into disjoint pieces when necessary, all in a 
way transparent to the user level software. 

This model is superior to the oft-proposed "Personal Computer Model," in a 
number of ways. In the personal computer model, each user has a dedicated 
minicomputer, complete with disks, in his office or at home. Unfortunately, 
when people work together on large projects, having numerous local file systems 
can lead to multiple, inconsistent copies of many programs. Also, the noise gen
erated by disks in every office, and the maintenance problems generated by hav
ing machines spread all over many buildings can be annoying. 

Furthermore, computer usage is very bursty: most of the time the user does 
not need any computing power, but once in a while he may need a very large 
amount of computing power for a short time (e.g., when recompiling a program 
consisting of 100 files after changing a basic shared declaration). The fifth gen
eration computer we propose is especially well suited to bursty computation. 
When a user has a heavy computation to do, an appropriate number of 
processor-memory modules are temporarily assigned to him. When the compu
tation is completed, they are returned to the idle pool for use by other users. 

1.2. System Sqftware 
A machine of the type described above requires radically different system 
software than existing machines. Not only must the operating system effectively 
use and manage a very large number of processors, but the communication and 
protection aspects are very different from those of existing systems. 

Traditional networks and distributed systems are based on the concept of two 
processes or processors communicating via connections. The connections are 
typically managed by a hierarchy of complex protocols, usually leading to 
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complex software and extreme inefficiency. (An effective transfer rate of 0.1 
megabit/ sec over a 10 megabit/ sec local network, which is only 1 % utilization, is 
frequently barely achievable.) 

We reject this traditional approach of viewing a distributed system as a collec
tion of discrete processes communicating via multilayer ( e.g., 1s0) protocols, not 
only because it is inefficient, but because it puts too much emphasis on specific 
processes, and by inference, on processors. Instead we propose to base the 
software design on a different conceptual model - the object model. In this 
model, the system deals with abstract objects, each of which has some set of 
abstract operations that can be performed on it. 

Associated with each object are one or more "capabilities" [ 1] which are used 
to control access to the object, both in terms of who may use the object and 
what operations he may perform on it. At the user level, the basic system primi
tive is performing an operation on an object, rather than such things as estab
lishing connections, sending and receiving messages, and closing connections. 
For example, a typical object is the file, with operations to read and write por
tions of it. 

The object model is well-known in the programming languages community 
under the name of "abstract data type" [5]. This model is especially well-suited 
to a distributed system because in many cases an abstract data type can be 
implemented on one of the processor-memory modules described above. When a 
user process executes one of the visible functions in an abstract data type, the 
system arranges for the necessary underlying message transport from the user's 
machine to that of the abstract data type and back. The header of the message 
can specify which operation is to be performed on which object. This arrange
ment gives a very clear separation between users and objects, and makes it 
impossible for a user to directly inspect the representation of an abstract data 
type by bypassing the functional interface. 

A major advantage of the object or abstract data type model is that the 
semantics are inherently location independent. The concept of performing an 
operation on an object does not require the user to be aware of where objects are 
located or how the communication is actually implemented. This property gives 
the system the possibility of moving objects around to position them close to 
where they are frequently used. Furthermore, the issue of how many processes 
are involved in carrying out an operation, and where they are located is also 
hidden from the user. 

It is frequently convenient to implement the object model in terms of clients 
(users) who send messages to services. A service is defined by a set of commands 
and responses. Each service is handled by one or more server processes that 
accept messages from clients, carry out the required work, and send back replies. 
The design of these servers and the design of the protocols they use form an 
important part of the system software of our proposed fifth generation comput
ers. 
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As an example of the problems that must be solved, consider a file server. 
Among other design issues that must be dealt with are how and where informa
tion is stored, how and when it is moved, how it is backed up, how concurrent 
reads and writes are controlled, how local caches are maintained, how informa
tion is named, and how accounting and protection are accomplished. Further
more, the internal structure of the service must be designed: how many server 
processes are there, where are they located, how and when do they communi
cate, what happens when one of them fails, how is a server process organized 
internally for both reliability and high performance, and so on. Analogous ques
tions arise for all the other servers that comprise the basic system software. 

2. COMMUNICATION PRIMITIVES AND PROTOCOLS 

In the literature about computer networks, one finds much discussion of the ISO 

OSI reference model [ 12] these days. It is our belief that the price that must be 
paid in terms of complexity and performance in order to achieve an "open" sys
tem in the ISO sense is much too high, so we have developed a much simpler set 
of communication primitives, which we will now describe. 

2.1. Transaction vs. Stream Communication 
Most distributed systems have a connection mechanism that is based on the idea 
of two processes going to some effort to set up a connection, using the connec
tion, and then tearing it down. The assumption is that a connection will be used 
for a stream of information so long that the overhead needed to set it up and 
tear it down are basically negligible. Most streams will consist of a file of one 
kind or another - a source program, a binary program, an input file, and so on. 
To see how long the average file is, we have conducted some measurements on 
the UNIXt system used in our department by the faculty and staff for research 
(no students, thus). The results of these measurements show that 34% of all files 
are less than 512 bytes, 52% are less than lK bytes, 67% are less than 2K bytes, 
79% are less than 4K bytes, 88% are less than 8K bytes, and 94% are less than 
16K bytes. 

The above considerations have led us to a different approach [8]. With pack
ets of even 2K bytes, two thirds of all files fit into a single packet. Consequently, 
it is much simpler to adopt a "Request-Reply" or "Transaction" style of com
munication, in which the basic primitive is the client sending a request to a 
server and the server sending a reply back to the client. The client uses trans 
and the server getreq and putrep. Trans sends a request, and blocks until a 
reply is received. Getreq blocks the server until a request is received, which can 
then be processed, after which a reply can be sent using putrep. Each request
reply pair is completely self-contained, and independent of any other ones that 

t UNIX is a Trademark of Bell Laboratories. 
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may previously been sent. In other words, no concept of a "connection" exists. 
Not only is this conceptually much more appropriate for use in an operating sys
tem, but it is much simpler to implement than a complex 7-layer protocol, not 
to mention offering lower delay. Henceforth we will refer to a request-reply pair 
as a transaction , which is not to be confused with transactions with a data base. 

2.2. Basic Communication Protocol 
Instead of a 7-layer protocol, we effectively have a 4-layer protocol. The bot
tom layer is the Physical Layer, and deals with the electrical, mechanical and 
similar aspects of the network hardware. The next layer is the Port Layer, and 
deals with the location of services, the transport of (32K byte) datagrams (pack
ets whose delivery is not guaranteed) from source to destination and enforces the 
protection mechanism, which will be discussed in the next section. On top of 
this we have a layer that deals with the reliable transport of bounded length 
(32K byte) requests and replies between client and server. We have called this 
layer the Transaction Layer. The final layer has to do with the semantics of the 
requests and replies, for example, given that one can talk to the file server, what 
commands does it understand. The bottom three layers (Physical, Port and 
Transaction) are implemented by the kernel and hardware; only the Transac
tion Layer interface is visible to users. 

Since systems of the kind we are describing will use high-speed, highly reliable 
local networks, few, if any, of the complex mechanisms designed for flow- and 
error-control in long-haul networks are useful here. Among other things, a sim
ple stop-and-wait protocol is sufficient. The main function of the Transaction 
Layer is to provide an end-to-end message service built on top of the underlying 
datagram service, the main difference being that the former uses timers and ack
nowledgements to guarantee delivery whereas the latter does not. 

The Transaction Layer protocol is straightforward. When the client does a 
trans, a packet, or sequence of packets, containing the request is sent to the 
server, the client is blocked, and a timer is started (inside the Transaction 
Layer). If the server does not acknowledge receipt of the request packet before 
the timer expires ( usually by sending the reply, but in some special cases by 
sending a separate acknowledgement packet), the Transaction Layer retransmits 
the packet again and restarts the timer. When the reply finally comes in, the 
client sends back an acknowledgement (possibly piggybacked onto the next 
request packet) to allow the server to release any resources, such as buffers, that 
were acquired for this transaction. Under normal circumstances, reading a long 
file, for example, consists of the sequence 

From client: request for block 0 
From server: here is block 0 
From client: acknowledgement for block O and request for block 1 
From server: here is block 1 
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etc. 

The protocol can handle the situation of a server crashing and being rebooted 
quite easily since each request contains the capability for the file to be read and 
the position in the file to start reading. Between requests, the server has no 
"activation record" or other table entry whose loss during a crash causes the 
server to forget which files were open, etc., because no concept of an open file or 
a current position in a file exists on the server's side. Each new request is com
pletely self-contained. Of course for efficiency reasons, a server may keep a 
cache of frequently accessed i-nodes, file blocks etc., but these are not essential 
and their loss during a crash will merely slow the server down slightly while they 
are being dynamically refreshed after a reboot. 

2 .3. The Port Layer 
The Port Layer is responsible for the speedy transrruss10n of 32K byte 
datagrams. The Port Layer need only do this reasonably reliably, and does not 
have to make an effort to guarantee the correct delivery of every datagram. 
This is the responsibility of the Transaction Layer. Our results show that this 
approach leads to significantly higher transmission speeds, due to simpler proto
cols. 

Theoretically, very high speeds are achievable in modern local-area networks. 
A typical speed for DMA transfers is 1 byte/ µsec, and the typical transmission 
speed of a 10 Mbit local-area network is also 1 byte/ µsec. Since DMA transfer 
and network transfer cannot overlap, but DMA at the destination host can overlap 
with the DMA of the next packet at the source host, an upper bound for the 
transfer rate of a typical local-area network is 500,000 bytes/sec point-to-point. 

In practise, however, speeds of 100,000 bytes per second between user 
processes have rarely been achieved. Obviously, to achieve higher transmission 
rates, the overhead of the protocol must be kept very low indeed, while an effort 
must be made to overlap DMAS at both communicating parties. To achieve this, 
we have chosen a large datagram size for the Port Layer, which has to split up 
the datagrams into small packets that the network hardware can cope with. 
This approach allows the implementor of the Port Layer to exploit the possibili
ties that the hardware has to offer to achieve an efficient stream of packets. 

Our implementation of the Port Layer interfaces to a 10 Mbit token ring that 
allows scatter-gather; that is, a packet can be sent to or from the interface in 
several DMA transfers, and then transmitted over the network separately. This 
allows us to do two important things to speed up the protocol. First, when a 
packet is received, the header can be inspected separately, so the protocol can 
decide where in memory the packet must go. The protocol driver can then 
transfer the packet directly from the interface to the right place in memory, 
without having to copy it. A copy loop would halve the transmission speed. 
Second, the separation of DMA and transmission allows the driver to prepare a 
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transmission by doing the DMA. The transmission can then be initiated immedi
ately when the signal is received that the receiver is ready. In our implementa
tion of the Port Layer, these considerations have resulted in the protocol that 
will now be described. 

The transmitter begins by transferring and sending the first 2K of the 
datagram to be transmitted (2K is the maximum packet size allowed by the 
hardware). Immediately after the transmission is complete, the DMA for the next 
2K bytes is started, but they are not yet transmitted. In the mean time, the 
receiver is interrupted by the arrival of the first packet. It extracts the header, 
examines it and decides where the body of the packet should go. Then the body 
of the packet is transferred from the interface to its final location in memory. 
While this is being done, the receiver prepares a tiny acknowledgemeni packet to 
tell the transmitter it is prepared for the next packet. As soon as the DMA 

transfer of the previous packet has finished, this acknowledgement is sent back to 
the transmitter. When the transmitter receives it, the transfer of the next packet 
to the interface will have finished, so it can then be sent immediately. This 
sequence is continued until the whole datagram is transmitted. 

2.4. The Transaction Layer 
It is the responsibility of the Transaction Layer to guarantee the arrival of 
requests and replies. The Transaction Layer makes use of the Port Layer and 
timers to achieve this. 

The interface to the transaction layer basically consists of three calls, one for 
clients, and two for servers. All calls use a small datastructure, called Mref, 
which contains a pointer to a small fixed-size out-of-band buffer for the 
transmission of commands and parameters to the server, a pointer to the main 
body of data to be transferred, and the length of the main body of data (0 to 
32768), as follows: 

typedef struct Mref { 
char *M oob; 
char *M-buf; 
unsigned M=len; 

} Mref; 

typedef struct Cap { 
Port C_port; 
char C_private[10J; 

} Cap; I* capability *I 

The client, in order to do a transaction calls 

trans(cap, req, rep); 
Cap •cap; 
Mref *req, •rep; 

I* 6-byte port *I 
I* 10-byte private *I 

The server receives requests and sends replies with 
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getreq(port, cap, req>; 
Port •port; 
Cap •cap; 
Mref •req; 

putrep(rep); 
Mref •rep; 

A.S. Tanenbaum, S.J. Mu/lender 

In principle, the Transaction Layer works as follows: When a client calls 
trans, the Transaction Layer generates a reply-port to enable the server to send a 
reply. The server port is deduced from the capability; the first 48 bits of the 
capability for an object identify the service that controls the object. The request 
is then sent, using put, and a retransmission timer is started. 

The server, which previously had made a call to getreq, receives the request; 
the capability is filled in, and the received message is put in the buffers referred 
to by req. As soon as the request is received, the server's Transaction Layer 
starts a piggyback timer . When the server has not sent a reply before this timer 
expires, a separate acknowledgement is sent to put the client at ease, and stop its 
retransmission timer. When the server sends a reply to the client the same thing 
happens, more or less, with the role of client and server reversed. When a client 
makes a sequence of transactions with a single server, a subsequent request will 
acknowledge receipt of the previous reply. 

The client maintains one more timer, the crash timer. This timer is set when 
the server's acknowledgement to a request has been received, and is used to 
detect server crashes. Whenever this timer expires, the client sends an "are you 
still alive?" packet to the server, to which the server replies with an ack
nowledgement. 

When transactions occur quickly, one after the other, no extra acknowledge
ments are sent at all. Only when transactions take a long time (say, longer than 
a minute), acknowledgements are sent, and when transactions take much longer 
than that (say, ten minutes) then "are you still alive" messages begin to be sent. 

2.5. Timer Management 
If the timers are started and stopped in exactly the way described above, the 
Transaction Layer would become unacceptably slow. Per ( quick) transaction, 
two retransmission timers and two piggyback timers would have to be started 
and stopped, eight timer actions altogether. 

There is a much more efficient way of dealing with timers, one that makes use 
of a sweep algorithm. This algorithm does not implement very accurate timers, 
but accuracy of the timer intervals is not very important to the correct and 
efficient operation of the protocol. 

The sweep algorithm is run every N clock ticks. N must be chosen such that 
N ticks is about the minimum timer interval needed (the piggyback timer inter
val). Whenever the algorithm is called, it makes a sweep over all outstanding 



An overview of the Amoeba distributed operating system 99 

transactions. If the state of a transaction has changed, the new state is recorded. 
If it has not changed, a counter is incremented, telling for how long the state has 
remained the same. If the (state, counter) combination has reached a certain 
value, the sweep algorithm carries out the appropriate actions, usually sending 
an acknowledgement, retransmitting a message, or aborting a transaction. 

Because this algorithm is used there is no code needed in the transaction code 
itself, reducing the overhead of the Transaction Layer significantly. In this way, 
the code executed in the Transaction Layer is optimised for the normal case (no 
errors). 

2.6. Blocking vs. Non-Blocking Transaction Primitives 
Most services need to be able to handle multiple requests from different clients 
simultaneously. It therefore seems natural to implement non-blocking calls for 
interprocess communication, as this will allow a service to react to events in the 
order they occur. When blocking communication calls are used, a server is 
forced to wait for the specific event that unblocks the call. 

Because it is rather difficult to write correct code for a process which has to 
handle multiple flows of control indeterministically, the Amoeba system provides 
the concept of tasks , sharing an address space. A number of tasks in one address 
space forms a cluster , and specific rules govern the scheduling of tasks within a 
cluster: only one task can run at a time, and . a task runs until it voluntarily 
relinquishes control (e.g., on trans and getreq calls). 

A server can thus easily be structured as· a collection of co-operating tasks, 
each task handling one request. This model has greatly simplified the structure 
of services, as each task making up the server cluster now has a single thread of 
execution. The model also obviated the need for non-blocking transaction calls, 
with their complicated (and slow) extra interface for handling interrupts. 

2.7. Results 
Two versions of the algorithm have now been implemented. The one described 
has been implemented on the Amoeba distributed operating system, and achieves 
over 300,000 bytes a second from user process to user process (using M68000s 
and a Pronet* ring). It is now being implemented under UNIX where we expect 
to obtain more than 200,000 bytes/sec, assuming the communicating processes 
are not swapped. 

An older version of the protocol, using 2K byte datagrams, now gets 90,000 
bytes/sec across the network between two VAX-750s running a normal load of 
work, without causing a significant load on the system itself. 

Several services, implemented under UNIX, are using the Transaction Layer 
interface, and it is our experience that these services are easy to design and that 

* PRONET is a trademark of Proteon Associates, Inc. 
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they work efficiently. 

3. PORTS AND CAPABILITIES 

3.1. Ports 
Every service has one or more ports [7] to which client processes can send mes
sages to contact the service. Ports consist of large numbers, typically 48 bits, 
which are known only to the server processes that comprise the service, and to 
the service's clients. For a public service, such as the system file service, the port 
will ,be generally made known to all users. The ports used by an ordinary user 
process will, in general, be kept secret. Knowledge of a port is taken by the sys
tem as prima facie evidence that the sender has a right to communicate with the 
service. Of course the service is not required to carry out work for clients just 
because they know the port, for example, the public file service may refuse to 
read or write files for clients lacking account numbers, appropriate authoriza
tion, etc. 

Although the port mechanism provides a convenient way to provide partial 
authentication of clients ("if you know the port, you may at least talk to the ser
vice"), it does not deal with the authentication of servers. The basic primitive 
operations offered by the system are trans, putreq and getrep. Since 
everyone knows the port of the file server, as an example, how does one insure 
that malicious users do not execute get reqs on the file server's port, in effect 
impersonating the file server to the rest of the system? 

One approach is to have all ports manipulated by kernels that are presumed 
trustworthy and are supposed to know who may getreq from which port. We 
reject this strategy because some machines, e.g., personal computers connected to 
larger multimodule systems may not be trustworthy, and also because we believe 
that by making the kernel as small as possible, we can enhance the reliability of 
the system as a whole. Instead, we have chosen a different solution that can be 
implemented in either hardware or software. First we will describe the hardware 
solution; later we will describe the software solution. 

In the hardware solution, we need to place a small interface box, which we 
call an F-box (Function-box) between each processor module and the network. 
The most logical place to put it is on the VLSI chip that is used to interface to 
the network. Alternatively, it can be put on a small printed circuit board inside 
the wall socket through which personal computers attach to the network. In 
those cases where the processors have user mode and kernel mode and a trusted 
operating system running in kernel mode, it can also be put into operating sys
tem software. In any event, we assume that somehow or other all packets enter
ing and leaving every processor undergo a simple transformation that users can
not bypass. 

The transformation works like this. Each port is really a pair of ports, P, and 
G, related by: P = F(G), where F is a (publicly-known) one-way function 
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[14, 10,3] performed by the F-box. The one-way function has the property that 
given G it is a straightforward computation to find P, but that given P, finding 
G is so difficult that the only approach is to try every possible G to see which 
one produces P. If P and G contain sufficient bits, this approach can be made 
to take millions of years on the world's largest supercomputer, thus making it 
effectively impossible to find G given only P. Note that a one-way function 
differs from a cryptographic transformation in the sense that the latter must 
have an inverse to be useful, but the former has been carefully chosen so that no 
inverse can be found. 

F-box also says 
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send to P 
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Using the one-way F-box, the server authentication can be handled in a sim
ple way, illustrated in FmuRE 1. Each server chooses a get-port, G, and com
putes the corresponding put-port, P. The get-port is kept secret; the put-port is 
distributed to potential clients or in the case of public servers, is published. 
When the server is ready to accept client requests, it does a getreq(G, cap, 
req). The F-box then computes P = F(G) and waits for packets containing P 
to arrive. When one arrives, it is given to the appropriate process. To send a 
packet to the server, the client merely does trans(cap, req, rep), where 
the port field of cap is set to P. This will cause a datagram to be sent by the 
local F-box with P in the destination-port field of the header. The F-box on the 
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sender's side does not perform any transformation on the P field of the outgoing 
packet. 

Now let us consider the system from an intruder's point of view. To imper
sonate a server, the intruder must do get req CG, · · · ) . However, G is a 
well-kept secret, and is never transmitted on the network, Since we have 
assumed that G cannot be deduced from P ( the one-way property of F) and 
that the intruder cannot circumvent the F-box, he cannot intercept packets not 
intended for him. Replies froin the server to the client are protected the same 
way, only with the client's Transaction Layer picking a get-port for the reply, 
say, G', and including P' = F(G') in the request packet. 

The presence of the F-box makes it easy to implement digital signatures for 
still further authentication, if that is desired. To do so, each client chooses a 
random signature, S, and publishes F(S). The F-box must be designed to work 
as follows. Each packet presented to the F-box contains three special header 
fields: destination (P), reply (G'), and signature (S). The F-box applies the 
one-way function to the second and third of these, transmitting the three ports 
as: P, F(G'), and F(S), respectively. The first is used by the receiver's F-box to 
admit only packets for which the corresponding getreq has been done, the 
second is used as the put-port for the reply, and the third can be used to authen
ticate the sender, since only the true owner of the signature will know what 
number to put in the third field to insure that the publicly-known F(S) comes 
out. 

It is important to note that the F-box arrangement merely provides a simple 
mechanism for implementing security and protection, but gives operating system 
designers considerable latitude for choosing various policies . The mechanism is 
sufficiently flexible and general that it should be possible to put it into hardware 
with precluding many as-yet-unthought-of operating systems to be designed in 
the future. 

3.2. Capabilities 
In any object-based system, a mechanism is needed to keep track of which 
processes may access which objects and in what way. The normal way is to 
associate a capability with each obJect, with bits in the capability indicating 
which operations the holder of the capability may perform. In a distributed sys
tem this mechanism should itself be distributed, that is, not centralized in a sin
gle monolithic "capability manager." In our proposed scheme, each object is 
managed by some service, which is a user ( as opposed to kernel) program, and 
which understands the capabilities for its objects. 

A capability typically consists of four fields, as illustrated in FIGURE 2: 

1. The put-port of the service that manages the object 
2. An Object Number meaningful only to the service managing the object 
3. A Rights Field, which contains a 1 bit for each permitted operation 
4. A Random Number for protecting each object 
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SERVER RANDOM 

FIGURE 2. 

The basic model of how capabilities are used can be illustrated by a simple 
example: a client wishes to create a file using the file service, write some data 
into the file, and then give another client permission to read (but not modify) 
the file just written. To start with, the client sends a message to the file service's 
put-port specifying that a file is to be created. The request might contain a file 
name, account number and similar attributes, depending on the exact nature of 
the file service. The server would then pick a random number, store this 
number in its object table, and insert it into the newly-formed object capability. 
The reply would contain this capability for the newly created (empty) file. 

To write the file, the client would send a message containing the capability 
and some data. When the write request arrived at the file server process, the 
server would normally use the object number contained in the capability as as 
index into its tables to locate the object. For a UNIX like file server, the object 
number would be the i-node number, which could be used to locate the i-node. 

Several object protection systems are possible using this framework. In the 
simplest one, the server merely compares the random number in the file table 
(put there by the server when the object was created) to the one contained in the 
capability. If they agree, the capability is assumed to be genuine, and all opera
tions on the file are allowed. This system is easy to implement, but does not dis
tinguish between read, write, delete, and other operations that may be 
performed on objects. 

However, it can easily be modified to provide that distinction. In the 
modified version, when a file (object) is created, the random number chosen and 
stored in the file table is used as an encryption/decryption key. The capability 
is built up by taking the Rights Field (e.g;, 8 bits), which is initially all ls indi
cating that all operations are legal, and the Random Number Field (e.g., 56 
bits), which contains a known constant, say, 0, and treating them as a single 
number. This number is then encrypted by the key just stored in the file table, 
and the result put into the newly minted capability in the combined Rights
Random Field. When the capability is returned for use, the server uses the 
object number (not encrypted) to find the file table and hence the 
encryption/decryption key. If the result of decrypting the capability leads to the 
known constant in the Random Number Field, the capability is almost assuredly 
valid, and the Rights Field can be believed. Clearly, an encryption function 
that mixes the bits thoroughly is required to ensure that tampering with the 
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Rights Field also affects the known constant. Exclusive or'ing a constant with 
the concatenated Rights and Random fields will not do. 

When this modified protection system is used, the owner of the object can 
easily give an exact copy of the capability to another process by just sending it 
the bit pattern, but to pass, say, read-only access, is harder. To accomplish this 
task, the process must send the capability back to the server along with a bit 
mask and a request to fabricate a new capability whose Rights Field is the 
Boolean-and of the Rights Field in the capability and the bit mask. By choosing 
the bit mask carefully, the capability owner can mask out any operations that 
the recipient is not permitted to carry out. 

This modified system works well except that it requires going back to the 
server every time a sub-capability with fewer rights is needed. We have devised 
yet another protection system that does not have this drawback. This third 
scheme requires the use of a set of N commutative one-way functions, 
F0, F 1, · · · , FN-I corresponding to the N rights present in the Rights Field. 
When an object is created, the server chooses a random number and puts it in 
both the file table and the Random Number Field, just as in the first scheme 
presented. It also sets all the Rights Field bits to 1. 

server gives 
client capability 

containing R 

R, all rights 

client turns off 
bit i and 

gives cap. to X 

FIGURE 3. 

X turns off 
bitj and 

gives cap. to Y 

Y gives cap. to server 
server applies F, and F1 

to R in object to verify 

A client can delete permission k from a capability by replacing the random 
number, R, with Fk(R) and turning off the corresponding bit in the Rights 
Field. When a capability comes into the server to be used, the server fetches the 
original random number from the file table, looks at the Rights Field, and 
applies the functions corresponding to the deleted rights to it. If the result 
agrees with the number present in the capability, then the capability is accepted 
as genuine, otherwise it is rejected. The mechanism is illustrated in FIGURE 3. 
Note that although the Rights Field is not encrypted, it is pointless for a client to 
tamper with it, since the server will detect that immediately. In theory at least, 
the Rights Field is not even needed, since the server could try all tv combina
tions of the functions to see if any worked. Its presence merely speeds up the 
checking. It should also be clear why the functions must be commutative - it 
does not matter in what order the bits in the Rights Field were turned off. 
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The organization of capabilities and objects discussed above has the interesting 
property that although no central record is kept of who has which capabilities, it 
is easy to retract existing capabilities. All that the owner of an object need do is 
ask the server to change the random number stored in the file table. Obviously 
this operation must be protected with a bit in the Rights Field, but if it succeeds, 
all existing capabilities are instantly invalidated. 

3.3. Protection without F-Boxes 
Earlier we said that protection could also be achieved without F-boxes. It is 
slightly more complicated, since it uses both conventional and public-key 
encryption, but it is still quite usable. The basic idea underlying the method is 
the fact that in nearly all networks an intruder can forge nearly all parts of a 
packet being sent except the source address, which is supplied by the network 
interface hardware. To take advantage of this property, imagine a (possibly 
symmetric) conceptual matrix of conventional (e.g., DES) encryption keys, with 
the rows being labeled by source machine and the columns by destination 
machine. Thus the matrix selects a unique key for encrypting the capabilities in 
any packet. The data need not be encrypted, although that is also possible if 
needed. 

Each machine is assumed to know its row and column of the matrix, and 
nothing else (how this will be achieved will be discussed shortly). With this 
arrangement, intruder / can easily capture packets from client C to server S, 
but attempts to "play them back" to the server will fail because the server will 
see the source machine as / ( assumed unforgeable) and use element M1s as the 
decryption key instead of the correct Mes. No matter what the intruder does, he 
cannot trick the server into using a decryption key that decrypts the capabilities 
to make sense, that is, to contain random numbers that agree with those stored 
in the file tables. 

To avoid having to run the encryption/decryption algorithm frequently, all 
machines can maintain a hashed cache of capabilities that they have been using 
frequently. Clients will hash their caches on the unencrypted capabilities in the 
form of triples: (unencrypted capability, destination, encrypted capability), 
whereas servers will hash theirs in the form of triples: (encrypted capability, 
source, unencrypted capability). 

To set up the matrix initially, the following procedure can be used. A public 
server, such as a file server, makes its put-port and a public encryption key 
known to the whole world. When a new machine joins the network (e.g., after a 
crash or upon initial system boot), it sends a broadcast message announcing its 
presence. Suppose, for example, the file server has just come up, and must (1) 
prove that it is the file server to other processes, and (2) establish the conven
tional keys used for encrypting capabilities in both directions. 

A client machine, C, which receives the broadcast from the alleged file server, 
F, picks a new conventional encryption key, K, for use in subsequent C to F 



106 A.S. Tanenbaum, S.J. Mu/lender 

traffic and sends it to F encrypted with F's public key. F then decrypts K and 
replies to C by sending a packet containing both K and a newly chosen conven
tional key to be used for reverse traffic. This packet is encrypted both with K 
itself and with the inverse of F's public key, so C can use K and F's public key 
to decrypt it. If the decrypted packet contains K, C can be sure that the other 
conventional key was indeed generated by the owner of F's public key, thus con
vincing C that he is indeed talking to the file server. Both of the above
mentioned conditions have now been fulfilled, so normal communication can 
now take place. Note that the use of different conventional keys after each 
reboot make it impossible for an intruder to fool anyone by playing back old 
packets. 

4. THE AMOEBA FILE SYSTEM 

The file system has been designed to be highly modular, both to enhance relia
bility and to provide a convenient testbed for doing research on distributed file 
systems. It consists of three completely independent pieces: the block service, the 
file service, and the directory service. In short, the block service provides com
mands to read and write raw disk blocks. As far as it is concerned, no two 
blocks are related in any way, that is, it has no concept of a file or other aggre
gation of blocks. The file service uses the block service to build up files with 
various properties. Finally, the directory service provides a mapping of symbolic 
names onto object capabilities. 

4.1. Block Service 
The block service is responsible for managing raw disk storage. It provides an 
object-oriented interface to the outside world to relieve file servers from having 
to understand the details of how disks work. The principle operations it per
forms are: 

- a L Locate a block, write data into it, and return a capability to the block 
- given a capability for a block, free the block 
- given a capability for a block, read and return the data contained in it 
- given a capability for a block and some data, w r i te the data into the block 
- given a capability for a block and a key, lock or unlock the block 

These priinitives provide a convenient object-oriented interface for file servers to 
use. In fact, any client who is unsatisfied [11,13] with the standard file system 
can use these operations to construct his. own. 

The first four operations of a L Locate, free, read, and write hardly 
need much comment. The fifth one provides a way for clients to lock individual 
blocks. Although this mechanism is crude, it forms a sufficient basis for clients 
(e.g., file systems) to construct more elaborate locking schemes, should they so 
desire. One other operation is worth noting. The data within a block is entirely 
under the control of the processes possessing capabilities for it, but we expect 
that most file servers will use a small portion of the data for redundancy 
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purposes. For example, a file server might use the first 32 bits of data to contain 
a file number, and the next 32 bits to contain a relative block number within the 
file. The block server supports an operation recovery, in which the client 
provides the account number it uses in a L Lo ca t e operations and requests a list 
of all capabilities on the whole disk containing this account number. (The block 
server stores the account number for each block in a place not accessible to 
clients.) Although recovery is a very expensive operation, in effect requiring 
a search of the entire disk, armed with all the capabilities returned, a file server 
that lost all of its internal tables in a crash could use the first 64 bits of each 
block to rebuild its entire file list from scratch. 

4.2. File Service 
The purpose of splitting the block service and file service is to make it easy to 
provide a multiplicity of different file services for different applications. One 
such file service that we envision is one that supports flat files with no locking, in 
other words, the UNIX model of a file as a linear sequence of bytes with no inter
nal structure and essentially no concurrency control. This model is quite 
straightforward and will therefore not be discussed here further. 

A more elaborate file service with explicit version and concurrency control for 
a multiuser environment will be described instead [6]. This file service is 
designed to support data base services, but it itself is just an ordinary, albeit 
slightly advanced, file service. The basic model behind this file service is that a 
file is a time-ordered sequence of versions, each version being a snapshot of the 
file made at a moment determined by a client. At any instant, exactly one ver
sion of the file is the cu"ent version. To use a file, a client sends a message to a 
file server process containing a file capability and a request to create a new, 
private version of the current version. The server returns a capability for this 
new version, which acts like it is a block for block copy of the current version 
made at the instant of creation. In other words, no matter what other changes 
may happen to the file while the client is using his private version, none of them 
are visible to him. Only changes he makes himself are visible. 

Of course, for implementation efficiency, the file is not really copied block for 
block. What actually happens is that when a version is created, a table of 
pointers (capabilities) to all the file's blocks is created. The capability granted 
to the client for the new version actually refers to this version table rather than 
the file itself. Whenever the client reads a block from the file, a bit is set in the 
version table to indicate that the corresponding block has been read. When a 
block is modified in the version, a new block is allocated using the block server, 
the new block replaces the original one, and its capability is inserted into the 
version table. A bit indicating that the block is a new one rather than an origi
nal is also set. This mechanism is sometimes called "copy on write." 

Versions that have been created and modified by a client are called uncommit
ted versions . At a particular moment, the current version may have several 
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(different) uncommitted versions derived from it in use by different clients. 
When a client is finished modifying his private version, he can ask the file server 
to commit his version, that is, make it the current version instead of the then 
current version. If the version from which the to-be-committed version was 
derived is still current at the time of the commit, the commit succeeds and 
becomes the new current version. 

1.1 

1.2.1 

L2 
current 

1.2.2 

FIGURE 4. 

1.3 

1.2.3 

As an example, suppose version 1 is initially the current version, with various 
clients creating private versions 1.1, 1.2, and 1.3 based on it. If version 1.2 is 
the first to commit, it wins and 1.2 becomes the new current version, as illus
trated in FIGURE 4. Subsequent requests by other clients to create a version will 
result in versions 1.2.1, 1.2.2, and 1.2.3, all initially copies of 1.2. 

The fun begins when the owner of version 1.3 now tries to commit. Version 1, 
on which it is based, is no longer the current version, so a problem arises. To 
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see how this should be handled, we must introduce a concept from the data base 
world, sen'alizability [2, 9]. Two updates to a file are said to be serializable if the 
net result is either the same as if they were run sequentially in either order. As a 
simple example, consider a two character file initially containing "ab." Client 1 
wants to write a "c" into the first character, wait a while, and then write a "d" 
into the second character. Client 2 wants to write an "e" into the first character, 
wait a while, and then write an "f' into the second character. If 1 runs first we 
get "cd"; if 2 runs first we get "ef." Both of these are legal results, since the file 
server cannot dictate when the users run. However, its job is to prevent final 
configurations of "cf' or "de," both of which result from interleaving the 
requests. If a client locks the file before starting, does all its work, and then 
unlocks the file, the result will always be either "cd" or "ef," but never "cf' or 
"de." What we are trying to do is accomplish the same goal without using lock
ing. 

The idea behind not locking is that most updates, even on the same file, do 
not affect the same parts of the file, and hence do not conflict. For example, 
changes to an airline reservation data base for flights from San Francisco to Los 
Angeles do not conflict with changes for flights from Amsterdam to London. 
The strategy behind our commit mechanism is to let everyone make and modify 
versions at will, with a check for serializability when a commit is attempted. 
This mechanism has been proposed for data base systems [4], but as far as we 
know, not for file systems. 

The serializability check is straightforward. If a version to be committed, A , 
is based on the version that is still current, B, it is serializable and the commit 
succeeds. If it is not, a check must be made to see if all of the blocks belonging 
to A that the client has read are the same in the current version as they were in 
the version from which A was derived. If so, the previous commit or commits 
only changed blocks that the client trying to commit A was not using, so there is 
no problem and the commit can succeed. 

If, however, some blocks have been changed, modifications that A's owner has 
made may be based on data that are now obsolete, so the commit must be 
refused, but a list is returned to A 's owner of blocks that caused conflicts, that is, 
blocks marked "read" in A and marked "written" in the current version ( or any 
of its ancestors up to the version on which A is based). At this point, A 's owner 
can make a new version and start all over again. Our assumption is that this 
event is very unlikely, and that is occasional occurrence is a price worth paying 
for not having locking, deadlocks, and the delays associated with waiting for 
locks. 
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4.3. Directory Service 
Because it is frequently inconvenient to deal with long binary bit strings such as 
capabilities, a directory service is needed to provide symbolic naming. The 
directory service's task is to manage directories, each of which contains a collec
tion of (ASCII name, capability) pairs. The principal operation on a directory 
object is for a client to present a capability for a directory and an ASCII name, 
and request the directory service to look up and return the capability associated 
with the ASCII name. The inverse operation is to store an (ASCII name, capabil
ity) pair in a directory whose capability is presented. 

5. PRocEss MANAGEMENT 

Like any other operating system, this one must also have a way to manage 
processes. In our design, processes are created and managed by the process ser
vice, which consists of three major subsystems, the generic server, the process 
server, and the boot server. 

5.1. Generic Server 
The idea behind the generic server is that much of the time a user wants a cer
tain program to be run, but does not care about where it is run or on which CPU 

type. For example, a user might have a Pascal program to be compiled, and 
wants a Pascal compiler that produces, say, Motorola 68000 code. However, he 
does not care whether the compiler itself runs on a 68000, a VAX or any other 
CPU. We speak of this as a generic Pascal compiler. 

The generic server's job is to locate a suitable hardware/software combination 
and start it up. This can be done by maintaining internal tables of locations 
where the appropriate service is likely to be located. By sending a message to 
the chosen service, the generic server can see if the corresponding server is 
currently available and willing to take on the offered work. If so, it can begin; 
if not, the generic server can broadcast a request for bids to see if someone else 
can be located. If no willing server exists, the generic server will have to cause 
one to be created by invoking the process server. 

5.2. Process Server 
The process server's job is to take a process descriptor sent to it, locate a free 
processor, and send sufficient information to the processor to allow the processor 
to run. The process descriptor must contain at least the following information: 

1. The CPU type desired. 
2. A capability for the binary file to be executed. 
3. Capabilities for process environment. 
4. Accounting information. 

The CPU type and binary file capability are obvious. The third item has to do 
with things like the file descriptors and environment strings in UNIX. When a 
UNIX process is started up, it inherits certain parameters from its parent, among 
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these are usually file descriptors for standard input, output, and diagnostic, and 
possibly other files as well. In our design, a process can inherit capabilities for 
standard input, standard output, and standard diagnostic, as well as other ones. 
By using these, one can implement UNIX pipes and filters easily, as well as more 
general mechanisms (e.g., passing capabilities to third parties, storing them in 
files for later use, etc.). 

Another area that the process service must deal with is scheduling. It must 
allocate processes to processors, and possibly control migration and swapping 
among processors as well. By introducing the concept of a "process image" 
which contains all the information necessary to run a process (e.g., its memory, 
registers, capabilities, etc.) it becomes straightforward to handle process migra
tion and swapping in a unified way. When a process is swapped out to a disk 
somewhere, there is no need to have it swapped back to the same machine that 
it originated on. 

5 3. Boot Service 
Many services must achieve high availability. Our approach to this issue is 
using fault tolerance, rather than fault intolerance. In the former, one expects 
hardware and software to fail, and makes provision for dealing with it; in the 
latter, one assumes that they are perfect and that no such provision need be 
made. Since many services are faced with the same problem: how to provide 
high availability in the face of occasional crashes, we have abstracted out a com
mon part of the crash recovery mechanism and put it into a separate service, the 
boot service. 

Any service that wants to provide a continuous availability can register with 
the boot service. Such registration entails providing a polling message to send 
the service periodically, the expect reply, the polling frequency, and a prescrip
tion of what to do in case of failure. The boot service then sends the polling 
message to the service at the requested frequency. As long as the service contin
ues to send the appropriate reply, all is well and the boot service has nothing 
else to do. 

However, if the service fails to reply properly, or fails to reply at all within an 
agreed upon time interval, the boot service declares the service to be out-of
order, and goes to the process service to start up a new version of it. Of course, 
the boot service itself must not crash, but it consists of a number of server 
processes that constantly check each other, and if need be, replace sick members 
with healthy ones. 

6. RESOURCE MANAGEMENT 

In keeping with our general philosophy of making the system kernel as small as 
possible, we have devised a way to put the resource control and accounting out
side the kernel. Furthermore, a clear distinction is made between policy and 
mechanism, so that subsystem designers can implement their own policies with 
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the standard mechanisms. 
Traditionally, accounting was used by the management of a computer center 

to levy charges for the use of the computer center's resources: CPU time, file 
space, lineprinter paper. This method worked quite well in the past, when 
hardware resources were expensive compared to the software used. Nowadays, 
hardware is cheap, software expensive. However, in the traditional approach 
there is usually no possibility to bill users for the use of a particular piece of 
software, or to have one user bill another for using his services. 

Additionally, distributed systems need not be under control of one centralized 
management any more; private, personal computers can be plugged into the 
network and both use and offer services to the rest of the network. The account
ing mechanisms in a distributed systems must be able to handle this new view on 
operating systems and allow any user that sets up a service to gather information 
about who uses his service. 

6.1. Bank Service 
The bank service is the heart of the resource management mechanism. It imple
ments an object called a "bank account" with operations to transfer virtual 
money between accounts and to inspect the status of accounts. Bank accounts 
come in two varieties: individual and business. Most users of the system will just 
have one individual account containing all their virtual money. This money is 
used to pay for CPU time, disk blocks, typesetter pages, and all other resources 
for which the service owning the resource decides to levy a charge. 

Business accounts are used by services to keep track of who has paid them and 
how much. Each business account has a subaccount for each registered client. 
When a client transfers money from his individual account to the service's busi
ness account, the money transferred is kept in the subaccount for that client, so 
the service can later ascertain each client's balance. As an example of how this 
mechanism works, a file service could charge for each disk block written, deduct
ing some amount from the client's balance. When the balance reached zero, no 
more blocks could be written. Large advance payments and simple caching 
strategies can reduce the number of messages sent to a small number. 

Another aspect of the bank service is its maintenance of multiple currencies. 
It can keep track of say, virtual dollars, virtual yen, virtual guilders and other 
virtual currencies, with or without the possibility of conversion among them. 
This feature makes it easy for subsystem designers to create new currencies and 
control how they are allocated among the subsystems users. 

6.2. Accounting Policies 
The bank service described above allows different subsystems to have different 
accounting policies. For example, a file or block service could decide to use 
either a buy-sell or a rental model for accounting. In the former, whenever a 
block was allocated to a client, the client's account with the service would be 
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debited by the cost of one block. When the block was freed, the account would 
be credited. This scheme provides a way to implement absolute limits (quotas) 
on resource use. In the latter model, the client is charged for rental of blocks at 
a rate of X units per kiloblock-second or block-month or something else. In this 
model, virtual money is constantly flowing from the clients to the servers, in 
which case clients need some form of income to keep them going. The policy 
about how income is generated and dispensed is determined by the owner of the 
currency in question, and is outside the scope of the bank server. 

7. SUMMARY 

This paper has discussed a model for a fifth generation computer system archi
tecture and its operating system. The operating system is based on the use of 
objects protected by sparse capabilities. An outline of some of the key services 
has been given, notably the block, file, directory, generic, process, boot and bank 
services. 
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Trace Theory 
and the Design of Concurrent Computations 

M. Rem 
University of Technology, Eindhoven 

ABSTRACT 

After a brief introduction to trace theory, programs are discussed 

that consist of communicating subprograms. Trace structures are used to 

characterize the concurrent computations that may be evoked under control 

of these programs. In a number of examples the design of such programs 

from their formal specifications is discussed. 

1. INTRODUCTION 

In this article we discuss the design of concurrent computations. 

Concurrent computations may be looked upon as computations brought about 

by compositions of mutually communicating machines. It is well-known that 

finite-state machines can be characterized by regular expressions (MINSKY 

[4]). Thus, compositions of machines may be characterized by compositions 

of regular expressions. If these compositions are nonrecursive the ensuing 

machines are still finite-state machines. We want to discuss recursive 

compositions as well, thus leaving the realm of finite-state machines. 

We extend the theory of regular expressions to make it more suitable 

for our purposes. This extended theory is called trace theory. Based on 

trace theory we introduce a program notation to express the programs under 

control of which the concurrent computations may take place. How exactly 

these computations may be evoked, i.e. how our notation may be implemented 

- though an interesting subject - falls outside the scope of this article. 

A VLSI implementation for a subset of the programs in our notation is pre

sented in VAN DE SNEPSCHEUT [7]. 

While we know of a number of good design techniques for sequential 

computations (DIJKSTRA [2], GRIES [3]), the same is not true for concurrent 
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computations. Trace theory provides a mechanism that may be used to advan

tage when designing programs for concurrent computations. In order toil

lustrate this and to investigate the suitability of our approach for program 

synthesis, we discuss a number of example computations. In each example we 

try to derive, as systematically as we can, the program from the specifica

tion of the computation. Although programming is difficult and the deriva

tion of programs from specifications may not be expected to become an auto

matism, the examples we present do identify some effective techniques for 

program synthesis. 

2. TRACE THEORY 

This section contains a brief and sometimes informal introduction to 

trace theory. For a more comprehensive treatment the reader is referred to 

REM, VAN DE SNEPSCHEUT & UDDING [SJ, UDDING [6J, VAN DE SNEPSCHEUT [BJ. 

An example of a very simple machine, or component as we like to call 

them, is the binary semaphore (DIJKSTRA [1]). A binary semaphore can be 

involved in two events only: P-operations and V-operations. These events 

must occur alternately and the first occurrence, if any, must be a V-opera

tion. We formalize this description by saying that it has an alphabet of 

two symbols, p and v say, and that its behaviour is characterized by 

* * the regular set generated by the expression (vp) + (vp) v The latter 

is the set of all finite-length alternations of v and p that do not 

start with a p. We shall characterize every component by such a combina

tion of an alphabet of symbols and a set of finite-length sequences of sym

bols. 

A tPace stI'UctU'l'e T is a pair <~T , !_T> , in which aT is a finite 

set of symbols and !_TS (~T) * A* denotes, as usual, the set of all fi-

nite-length sequences of elements of A, including the empty sequence g 

Finite-length sequences of symbols are called t:l'aces. aT is called the 

alphabet of T and tT its t:l'ace set. 

The trace structure captures all possible "behaviours" of a component. 

An initial segment of a possible behaviour is, of course, a possible beha

viour as well. Therefore, our components will have prefix-closed trace 

structures. With the definition 

PREF(T) = <~T, {ti (3u: ue: (~T)*: tuE!_T)}> 

a trace structure T is called pPefix-closed if PREF(T) T. 
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We wish to compose components into larger components. If trace struc

tures characterize behaviours of components, how then can we compose them to 

characterize "joint behaviours"? Consider two trace structures T0 and T1 

with ~TO= {x,y} 

regular expression 

and ~T1 = {x,z}. Let 

(xy)*(e:+x) and .!:_Tl 

!To be the set generated by the 

the set generated by (xz) * (e: + x). 

Every trace in the composite trace set must be in accordance with both reg

ular expressions, i.e. the symbols x and y in it must alternate and the 

symbols x and z in it must alternate. Phrased differently: for every 

trace in the composite its projection on {x,y} must be in !To and its 

projection on {x,z} in !T1 • This way of composing is called weaving. 

The weave of two trace structures T0 and T1 , denoted as T0 !!. T1 , is 

defined by 

To !!. Tl = <~To u ~Tl 

, {t I tf(~T0 ) €tT0 A t[(~T1) €!T1}> 

In the above tfA denotes the projeation of trace t on alphabet A. It 

is defined as follows. 

e:f A 

(ta)f A 

(ta)f A 

e: 

(tfA)a 

tfA 

if a€ A 

if al A 

For a trace structure T , Tf A denotes the trace structure < ~T n A , 

{ tf A I t € !T}> • In the example above the trace set of T0 !!. T 1 is the set 

generated by the regular expression 

(xyz + xzy}*(e: + x + xy + xz) 

The weaving operation expresses "joint behaviour". We have found this 

operation so useful that we have added it (in our program notation) to the 

operators that are traditionally used to form regular expressions. (The 

weave of two regular sets is again a regular set.) Weaving, however, is not 

the operation we have in mind to express composition of components. The 

symbols that are common to the different trace structures, as the x in our 

example, serve as a synchronization and communication means between the com

ponents. We wish to hide this "internal traffic" from the trace structure 

of the composite. For that reason we introduce a second composition opera

tion, called blending, which is weaving followed by the elimination of com

mon symbols. The bZend of two trace structures T0 and T1 , denoted as 

T0 ~ T1 , is defined by 
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where + stands for symmetric set difference, i.e. A+ B = (Au B) \ (An B) • 

(Symmetric set difference is associative.) In the example given earlier the 

trace set of T0 ~ T1 is the set generated by the regular expression 

(yz + zy) * (£ + y + z) 

Weaving is associative, but blending is not. If ~T0 n ~T1 n ~T2 = f6 
we have, however, 

Whenever employing the blending operation, we will see to it that each sym

bol occurs in at most two alphabets of the constituting trace structures. 

Under this restriction blending is associative. Weaving and blending have 

<f6 , {£}> as a unity. 

We can introduce a partial order s on the set of all trace structures: 

T0 sT1 means that ~T0 =~T1 A !ToS!T1 • Weaving and blending are monoton

ic, i.e. if T0 ST1 then, for any trace structure u , T0 !. u s T1 !. u 

As a consequence, recursive equations involving 

weaving and blending have a least fixpoint. 

We discuss a few trace structures. The first one is SEMi(x,y) , in 

which i is a natural number and x and y are two distinct symbols. It 

is defined by 

~EMi(x,y) 

.!:_SEMi (x,y) 

= {x,y} 

{t€ {x,y}* I (Vt0,t1: t=tot1: OSt~-t~Si)} 

in which tNx stands for the number of occurrences of symbol x in trace 

t. The trace structures T0 and T1 in our earlier example were 

SEM1 (x,y) and SEM1(x,z) respectively. Notice that SEM is ascending in 

its subscript, i.e. for all i , i ~ 0 , 

SEMi (x,y) s SEMi+1 (x,y) 

A generalization of SEM is 

defined by 

SYNC 

aSYNC. k(x,y) = {x,y} 

The trace structure SYNci,k(x,y) is 

- 1., 

.!:_SYNci,k (x,y) {t€ {x,y}* I (Vt0,t1: t=tot1: -kSto!'!x-t~Si)} 

Notice that 

scripts. 

SYNC is ascending in both sub-

An example of a trace structure that is not regular, i.e. of a trace 

structure whose trace set is not a regular set, is DEL. DEL(x,y) is the 
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union of the ascending sequence (SEMi (x,y))i:O It is defined by 

{x,y} ~EL(x,y) 

!:_DEL (x,y) {tE {x,y}* I (VtO,tl: t=totl: to~x 2c to!:!_y)} 
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We fonnulate a number of properties for these trace structures. For 

i+j2'.1Ak+l2'.1 

(2. 1) SYNci,j(x,y) ~ SYNck,l(y,z) 

and, hence, for i 2c 1 A k 2c 1 

SYNC. k . 1 (x,z) 
1.+ ,J+ 

(2.2) SEMi+k (x,z) 

Furthermore, 

(2. 3) DEL(x,z) DEL(x,y) ~ SEM1 (y,z) 

SEM1 (x,y) ~ DEL(y,z) 

3. A PROGRAM NOTATION BASED ON TRACE THEORY 

In this section we introduce the program notation we use for the repre

sentation of components. The components we discuss in this article are fully 

characterized by their trace structures. Thus far we have introduced trace 

structures by giving regular expressions. For regular trace structures we 

can indeed do so, but our notation for regular expressions differs slightly 

from the standard way. Rather than just juxtaposing terms we use the semi

colon as the concatenation operator. We, furthennore, use the vertical bar 

instead of the plus for the union. As an additional operator we have the 

comma, which denotes weaving. We call such expressions commands. Examples 

of connnands are 

(x; y) * 
(x, y) * 
(x I yl * 
(x ; y) * , (x ; z) * 

The same commands written as standard regular expressions would be 

(xy) * 
(xy + yx) * 
(x + y) * 
(xyz + xzy) * 

Of the three dyadic operators (comma, semicolon, bar) the comma has the 
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highest priority and the bar the lowest. 

If S is a command, TR(S) denotes its associated trace structure. 

The alphabet of TR(S) consists of all symbols occurring in S Just a 

command by itself is not a complete program. The simplest form a program 

can have is 

com C(A): S moc 

In the above S is a command and A a list of symbols such that ~TR(S)=A. 

The text represents a component called C whose trace structure TR(C) is, 

by definition, PREF(TR(S)) • Examples of such components are 

com sem1 (x,y): (x; yi * ~ 

com sync 1 1 (x,y): (x , y) * moc , 

com sem2 (x,y): x ; (x , y) * moc 

The reader is encouraged to check that the programs above indeed have as 

their trace structures SEM1 (x,y) , SYNC 1 , 1 (x,y) , and SEM2 (x,y) respec

tively. 

In general a component will be composed of subcomponents. Such a com

ponent is represented by a program text of the following form. 

~ C(A): sub s 0 : c0 , ... , sn-l: Cn-l 

ao=bo ' .•• 'am-1 =bm-1 
s 

moc 

Component C has n subcomponents named so , ... , s n-1 Subcomponent 

s. is said to be of type c. C. is a component. The next line of the, 
l. l. l. 

program text contains the equalities. We will come to them shortly. s is 

again a command. The trace structure associated with C is, by definition, 

the blend of n + 1 trace structures: 

( 3. 1) 

If T is a trace structure then s.T denotes the trace structure T in 

which each symbol a e: aT is (both in aT and in !_T ) replaced by s. a 

(read "sits a"). Thus the n trace structures si.TR(Ci) have disjoint 

alphabets. Let B denote the union of the n + 1 (disjoint) alphabets in

volved: 

We require that 
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~TR(S) .£B ; 

in each equality a. = b. the symbols 
] ] 

ent alphabets of those constituting B 
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and belong to two differ-

each symbol in B occurs either in exactly one equality or in ~TR(S) • 

An equality aj = bj expresses that the two symbols aj and bj should be 

treated as the same symbol. Thus the equalities make the alphabets consti

tuting B nondisjoint, thereby increasing the amount of synchronization 

between the n+ 1 trace structures involved. Due to the restrictions above 

we have ~TR(C) = A It is, furthermore, allowed to omit the command S in 

the program text. In that case TR(S) = <~ , {e:}> is understood. 

Let component sem1 be defined as earlier. Consider the following 

example of a program. 

~ sem4 (x,y): sub sO , s1: sem1 

sO.y = s1.x 

(x; sO.x) * , (s1.y; y) * 
moc 

"sO, sl: sem111 is short for "sO: sem1 , sl: sem111 • ) We show how trace 

xxxx may be obtained from traces of the trace structures of the subcompo

nents and of the command: 

S: X sO.x X sO.x X sl.y sO.x X 

sO: I sO.y sol.x 

J.y 

sO.y sol.x sO.x 

sl: sll.x sll.x 

The top line is a trace of PREF(TR(S)) I s denoting the command of sem4 

The next two lines are traces of s0.TR(sem1) and s1.TR(sem1) respective

ly. Equal symbols that are cancelled by blending have been placed vertical

ly under each other. The trace that remains is xxxx. Notice that the 

only possible next symbol is y 

We now discuss the example more formally. According to VAN DE SNEP

SCHEUT [8] PREF distributes through w for trace structures with disjoint 

alphabets: if ~T0 n ~T1 = ~ 

Therefore, 

PREF (TR ( S)) 

Hence, by (3.1) , 

PREF(T0 ) ~ PREF(T1) 

PREF(T0 ) ~ PREF(T1) 

SEM1 (x, sO.x) ~ SEM1 (sl.y, y) 

. 
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SEM1 (x, sO.x) ~ SEM1 (sl.y, y) 

~ s0.TR(sem1) £ s1.TR(sem1) 

SEM1 (x, sO.x) £ SEM1 (sl.y, y) 

£ SEM1 (sO.x, sO.y) £ SEM1 (sl.x, sl.y) 

Using sO. y"' sl. x and (2. 2) "vP- find 

M. Rem 

Components having SEMi (x,y) , for i 2: 1 , as their trace structures 

may be represented in the following way, Let sem1 be defined as earlier, 

and let for i 2: 1 semi+l be given as follows. 

~ semi+l (x,y): sub s: semi 

((xi s.y) ; (yl s.x)) * 
moc 

Without proof we mention that 

PREF(TR(S)) £ SEMi (s.x, s.y) 

in which S denotes the command of 

ponent semi+l 

SEMi+l (x,y) 

TR(semi+l) "' PREF (TR (S)) £ s. TR(semi) 

Equation (3.1) reads for com-

Hence, by induction we obtain that TR(semi+l) "'SEMi+l (x,y) . 

An interesting generalization of this example is the following one. 

com del(x,y): subs: del 

( (xls.y) ; (y]s.x) i* 

moc 

With S denoting the command of component del equation (3.1) now reads 

TR(del) PREF(TR(S)) £ s.TR(del) 

This is a recursive equation in TR(del) • Since blending is monotonic, 

(3.1) has a least solution. If all commands involved have nonempty trace 

sets (3.1) also has a least nonempty solution. By definition, the latter is 

the trace structure of the component. According to UDDING [6] this yields 

in our example TR(del) "'DEL(x,y) • Since blending is continuous from below, 
00 

this solution may be obtained as the limit of the ascending sequence (Ti)i=O 

defined by 

<{x,y} , {d> 

PREF(TR(S~) b s.TR(T.) 
J. 
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Then Ti= SEMi(x,y) . This example demonstrates how recursion allows the 

representation of nonregular trace structures. 

The final example of this section may be appreciated as an i-place one

bit buffer. For i = 1 it is the following component. 

com bqueue 1 (xO,x1,yO,y1): (xO; yO I x1; y1}* moc 

When reading "input of value O" , "input of value 1" 

0" , and "output of value 1" for the symbols xO, x1 

"output of value 

yO, and y1 res-

pectively, it becomes clear why we may refer to bqueue 1 as a one-place one

bit buffer. For i > 1 we propose 

~ bqueuei (x0,x1,y0,y1): sub q: bqueuei-l 

xO=q.xO, x1=q.x1 

(q.yO; yO I q.y1; y1)* 

moc 

It consists of an (i-1)-place buffer q and a 1-place buffer between the 

outputs (q.yO, q.y1) of q and the outputs (yO, y1) of the component. 

Drawing a 1-place buffer between inputs {x0,x1) and outputs (y0,y1) as 

xO~yO 

x1~1 

we may depict component bqueuei as 

xO~ 

x1 ~ 
'-----------v---_______ ..,,,..1 

subcomponent q 

A number j ( 1 s j s i) in a box indicates that this 1-place buffer is 

brought about by the command of bqueue. 
J 

"q.yO = yO, q.y1 = y1" and the command by 

the following drawing. 

yO ~ 
y1~ 

If we replace the equalities by 

(xO; q.xO I x1; q.x1)* we obtain 

\,__-------.............,,-------
subcomponent q 
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4. FROM SPECIFICATIONS TO PROGRAMS 

In the preceding sections we have introduced a program notation for con

current computations and a formalism for expressing the effects of these com

putations. We now turn to the question how one could invent such programs. 

Given a characterization of the computation intended, how can one synthesize 

a program under the control of which the computation intended may be evoked? 

Such a characterization is usually referred to as a functional specification 

or just a specification. Phrased in terms of trace theory, our question be

comes: "Given a specification of a trace structure, how can we find a pro

gram that expresses a component with that trace structure?". This leads us 

first to the question what kind of specifications we have in mind. In Sec

tion 2 we have encountered our first specifications, viz. those of the trace 

structures SEM, SYNC, and DEL In these specifications we used the 

"counting operation" tNx. This has turned out to be a way of specifying 

that, if applicable, is well-suited to program derivation. As an example we 

discuss the construction of a bag of binary values. 

4.1. A BAG OF BINARY VALUES 

A bag of binary values is a component in which we can store an arbitra-

ry number of binary values. 

Storage of a value O or 1 

tively. Deletion of a value 

Each value stored can also be deleted again. 

is denoted by the symbol xO or xl respec-

0 or 1 is denoted by yO or yl respec-

tively. The four symbols xO, xl , yO, yl constitute the alphabet of the 

component bag. Of course, for each binary value the number of values de

leted should not exceed the number of values stored. This gives rise to the 

following specification. 

(4. 1) t: tNxO ;?: ~O 

A tNxl ;?: ~l 

By the above specification we mean that the trace structure of bag is the 

greatest prefix-closed trace structure for which all traces t in its trace 

set satisfy (4.1). 

According to (4.1) a bag is just a canbination of DEL(xO,yO) and 

DEL(xl,yl) : 
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By (3.1) 

~ bag (xO ,xl ,yo ,yl): 

sub dO, dl: del 

moc 

xO = dO.x , yO = dO.y 

xl = dl.x , yl = dl.y 

TR(bag) <¢ , { d> e_ DEL (dO .x , dO. y) e_ DEL (dl.x , dl. y) 

DEL (xO ,yO) e_ DEL (xl ,yl) 

DEL(xO,yO) ~ DEL(xl,yl) 

According to (2.3) 

DEL(xO,yO) = SEM1 (xO, dO.x) e_ DEL(dO.x, dO.y) e_ SEMl (dO.y, yO) 
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We may, consequently, replace the equalities by a command expressing the 

weave (and hence, by the disjointness of their alphabets, the blend) of the 

appropriate SEM1 's: 

com bag(xO,xl,yO,yl): 

sub dO, dl: del 

* * (xO; dO.x) , (dO.y; yO) 

(xl; dl.x)*, (dl.y; yl)* 

moc 

Such a replacement of equalities by repetitions in the command is a technique 

we use when we want to accommodate additional constraints in the specifica

tion. We demonstrate this in the following example, in which two of the 

four equalities are replaced by repetitions. 

4.2. A SORTER OF BINARY VALUES 

A sorter is a bag with the additional constraint that in deletions only 

the least value contained in the bag may be deleted. Such a component is 

sometimes referred to as a priority queue. This gives rise to the following 

specification for a binary sorter. 

(4.2) 

t: tNxO ;:,, ~O 

A tNxl ;:,, ~yl 

A (Vs: t = s yl 

Since the first two conjuncts express that a sorter is a bag, we start with 

a program for a bag and then manipulate it so as to have it satisfy the third 
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conjunct of the specification as well. 

A program for a bag was presented in Section 4.1. According to the 

third conjunct of (4.2) we need to restrict the selection of yl. In order 

to determine that the trace s thus far selected satisfies s~O = s~O , we 

replace component dO by a canponent "dal" , which is a del that signals, 

by a symbol e, when this equality holds. The alphabet of canponent dal 

is {x,y,e} and its specification is 

t: tNx ~ ~ 

A (Vs : t = s e: s~ = s~) 

Of course, we obtain the program for dal from that for del, which reads 

~ del(x,y): subs: del 

((x I s.y); (y I s.x))* 

moc 

An invariant of the repetition is that the trace t thus far selected sat

isfies 

tNx + t!'!_s.y ~ + tNs.x 

i.e. 

tNx - ~ tNs.x - t!'!_s.y 

and, hence, 

(4.3) (t!'!_x = ~) = (t!'!_s.x = t!'!_s.y) 

At the end of each step of the repetition the equality of the number of x 's 

and y 's for this component may thus be concluded from the same equality for 

the subcomponent. We shall add ( s. e ; e *) * at the end of the repeated ex

pression. At the semicolon we have 

tNx - ~ = 1 + t!'!_s. x - t!'!_s. y ~ 1 

and symbol e must not be selected. Of course, e may be selected prior 

to the repetition. We thus arrive at the following program for component 

dal 

~ dal(x,y,e): subs: dal 

e* ; ((x I s.y) (y I s.x) (s.e; e*>*>* 

moc 

we change in the component bag the type of subcomponent dO from 

del into dal, by which it remains a bag. But now we can see to the ob

servance of the third conjunct of (4.2). In order to guarantee that the 
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trace s thus far selected satisfies s!':!_XO = s~yO the selection of yl is 

* preceded by the selection of dO.e , yielding (dO.e; dl.y; y1) 

prevent that between dO.e and y1 the equality 

tNxO = ~O = tNdO.x = ~dO.y 

We must 

is destroyed. This could happen only if xO is selected. Therefore, we 

make the selections of "xO ; dO. x" and "dO. e ; d1. y ; y1" mutually exclu

sive: 

com sorter(x0,x1,y0,y1): 

sub dO: dal, d1: del 

yO=dO.y, x1=dl.x 

(xO; dO.x I dO.e; dl.y; y1)* 

moc 

4.3. A COUNTER 

The counter we consider records an integer value (negative values in

cluded). Its initial value is O and it can be incremented by 1 and dec

remented by 1 . The latter two operations are denoted by the symbols u 

and d respectively. Its value cannot be inspected, but we can inquire 

whether it is 0 

ification reads 

The alphabet of the component is {u,d,z} and its spec-

t: (Vs : t = s z : sNu = sNd) 

We again employ the technique of translating a count for the component into 

one for the subcOIIlponent c. We do so by having as our coIIlIIland a repeti

tion that maintains as an invariant for the trace t thus far selected 

tNu - tNd = tNc.u - tNc.d 

while selecting any sequence of u 's and d 's: 

((u I c.d) , (d I c.u))* 

The selection of z should then be preceded by the selection of c.z and 

it should exclude "(u I c.d) , (d I c.u)": 

cc.m counter(u,d,z): 

sub c: counter 

moc 

* z ((u I c.d), (d I c.u) I c.z; z*i* 
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4. 4. A OOUNDED BAG 

We now design a bag that can store at most k binary values. Its 

specification reads 

t: tNxO ,!: ~ 

A tNxl <!: ~1 

A (~xo + t!'!_xl) - (~O + ~1) s k 

This is equivalent to 

t: 0 s tNxO - ~O s k 

AO S tNxl - ~1 S k 

A O s (~xo + t!'!_xl) - (~O + ~1) s k 

Each conjunct expresses a SE~ Hence, the behaviour of the component is 

the joint behaviour of three SE~ 's. We express joint behaviour by weav

ing. So in a sense we are translating each II A II in the specification in-

to a 11 11 in the program text. 

For k = 1 we find 

~ bbag1 (x0,x1 ,yO,yl): (xO; yO) * 

, (xl ; yl) * 
, ((xOlxl); (yOlyl))* 

moc 

This may, by algebraic manipulation, be simplified to 

~bbag1 (xO,x1,yO,y1): (xO;yO I xl;yl)* moc 

which equals bqueue1 • 

For k > 1 we use three subcomponents of type s~ 

can bbagk (xO ,xl ,yo ,yl): 

sub b0,b1,b01: se~ 

(bO.x; xO I bO.y; yO) * 

, (bl.x; xl I bl.y; yl)* 

, (b01.x; (xOlxl) I b01.y; (yO!yl) >* · 

moc 

After a selection of xO the top line of the command guarantees that the 

trace t thus far selected satisfies 

tNxO tNbO.x A ~ = ~O.y 

Since bO is of type se~, we have 
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0 $ ~O.x - ~O.y $ k 

Hence, the first conjunct of the specification is satisfied. A similar rea

soning applies to the selection of other symbols in the alphabet of bbagk 

and to the other conjuncts of the specification. 

Also this component may be changed into a bounded sorter. This can be 

done in a way similar to the unbounded case. 

4.5. A STACK AND A QUEUE 

Thus far we were able to express the specifications by just using the 

counting operator N. That led to more or less straightforward deriva

tions of program texts. In this section we discuss two examples of more 

complicated specifications. 

The first one is an unbounded stack of binary values. Consider the 

language generated by the following production rule. 

S ::= (xO S yO \ xl S yl)* 

The trace set of the stack is the set of all prefixes of sentences in this 

language. Any such trace t satisfies 

tNxO ~ ~yo 

A tNxl ~ ~yl 

A stack is, therefore, some combination of DEL(xO,yO) and DEL(xl,yl) . 

Inspired by the program for component del we propose the following program 

text. 

com stack(x0,xl,y0,y1): 

subs: stack 

moc 

(xO s.yO) 

(xl s.yl) 

(yO s.xO) 

(yl s.xl) 

An invariant of the repetition is that every trace t thus far select

ed satisfies 

(4.4) tNxO - ~O 

A tNxl 

tNs.xO 

tNs.xl 

~s.yO 

~s.yl 

This may, somewhat loosely, be formulated as: subcomponent s contains all 

binary values stored in the component. At a semicolon, however, the appro-
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priate left-hand side is 1 greater than its right-hand side: there is one 

more value in the component than in the subcomponent. This value is con

sequently either output or, if a next input follows, transferred to the sub

component. 

We now turn to our next and last example: an unbounded queue of binary 

values. It has as its specification: 

(4.5) 

t: tNxO ;:: ~ 

A tNxl ;:: ~1 · 

A (tr{yO yl})yO,yl is a prefix of tr{xO,xl} 
' xO,xl 

(t)yO,yl denotes trace t with the symbols yO 
xO,xl and yl re-in which 

placed by xO and xl respectively. The third conjunct of (4.5) expresses 

that the sequence of values output is a prefix of the sequence of values 

input. The first two conjuncts show that, just like the stack, the queue 

is a combination of two DEL 's. The difficulty is that the value to be 

output is not simply the last one received. 

We again maintain (4.4) as an invariant. During one step of the repe

tition we store the next value to be output and produce that output. This 

value is either the last one received (this case occurs only if the compo

nent was empty upon reception of that value) or the value longest residing 

in the subcomponent. We, consequently, employ again a subcomponent of type 

dal so that, by interrogating whether the component is empty, we can dis

tinguish between these two cases. 

com queue (xO ,xl ,yo ,yl): 

subs: queue, d: dal 

(d.x;(xOlxl) I (yOjyl) 

(d.e ; xO s.yO) (XO; 

(d.e; xl s. yl) (xO; 

>* 
IT.QC 

* d.y) 

s.xO xl; * s.xl) ; yO 

s.xo xl; s.xli*; yl 

Because of the structure of the first part of the command we have for 

any trace t thus far selected 

(4.6) tNd.x ;:: tNxO + tNxl 

A tN_yO + tN_yl ;:: ~d.y 

Since subcomponent s is a queue, it satisfies (4.5). Hence, 
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tNs.x0 - ~s.y0 ~ 0 

A tNs.xl - ~s.yl ~ 0 

This canbined with (4.4) yields 

tNx0 + tNxl ~ t!'!)'0 + t!'!)'l 

By the above and (4.6) we obtain 

Therefore, when d.e is selected the component is indeed empty. 
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The second part of the command consists of two alternatives: storage 

and production of value 0 or of value 1 . Between storage and produc

tion arbitrary many inputs may occur; these are, by means of 

(x0; s.x0 I xl; s.xl)* 

transferred to the suncomponent. 

The stack and the queue are two examples of problems with specifica

tions that do not just consist of applications of the counting operator. 

As a result, the techniques for program synthesis employed earlier were 

less applicable in these examples. By - sometimes formally, sometimes in

formally - reasoning about the programs proposed we may have become con

vinced of their correctness. But in these two problems we did not succeed 

in systematically deriving the program texts from their specifications. 

5. CONCLUSIONS 

We have addressed two issues: how concurrent computations can be based 

on trace theory, and the amenability of such an approach to program synthe

sis. In a number of examples we were quite successful at deriving the pro~ 

grams fran their specifications. The reason for this is probably the suit

ability of trace structures to algebraic manipulation. 

We recall some of the techniques for program synthesis we have encoun

tered. If a specification consists of a number of conjuncts we may try to 

meet these conjuncts in succession. Thus, if we design a sorter we may 

start with a bag. Sometimes the program for the conjunctive specification 

may be obtained by weaving the program parts that correspond to the con

juncts. The bounded bag is a nice example of this technique. Sometimes 

the accommodation of additional conjuncts requires the replacement of equal

ities by repetitions in the command. The conversion of a bag into a sorter 
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contains an example of this. With specifications involving the counting 

operator it is often a good technique to introduce a repetition that main

tains as an invariant the same count for the subcanponent. W:! have encoun

tered a number of examples of this. Two problems, the stack and the queue, 

have been discussed in which we were less successful in deriving systemati

cally the programs fran the specifications. 
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The Second Machine Class: Models of Parallelism 

1 • INTRODUCTION 

P. van Emde Boas 
University of Amsterdam 

Computation theory knows a large variety of models of computing de

vices, or formal calculi for effective computation. This divergence has 

not led to a large variety of computability theories, due to the basic 

observation that within each formalism, each computation can be simulated 

some way or another by any of the other device types. 

A similar situation holds for the foundations of complexity theory, 

which has established itself as one of the prime pilars on which the buil

ding of computer science as we know it today is founded. There exist vari

ous models of computing devices like Turing machines(in various variants), 

random access machines (RAM's) with or without the possibility of modifying 

the program, reference machines, and several less known ones. Each of these 

models can be equipped with a reasonable measure for computation time and 

storage use, such that the following Invariance Thesis [36] can be made to 

be holding true: 

For each machine 

storage use Si 

simulating device 

Mi of one type having running time Ti and 

one can find in any other type of machinery a 

M! which simulates M. with polynomially 
J i 

bounded overhead in time and constant factor overhead in storage. 

The bounds on the overhead are more formally expressed by: if T! and S! 
J J 

are the run time and storage use of device 

for some suitable chosen constants C and 

M! in the other formalism, then 
J 
c' one has T!(n)~c.(T.(n))c 

J i 
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resp. s ! (n) ~ c'. S. (n) • The symbol n is used in this context to describe 
J l. 

the length of the input of the computation. (Clearly c and c' are inde-

pendent of n ). 

The important consequence of this fortunate state of the world is that, 

although the precise time and space bounds for solving concrete problems 

are highly dependent of the machine model used, a few fundamental complex

ity classes, which happen to be closed under the overhead factors mentioned 

above, are machine independent. These classes form the well known hierarchy: 

LOGSPACE c NLOGSPACE c Pc NP c PSPACE = NPSPACE c EXPTIME c NEXPTIME c 

where each inclusion hides the open problem of whether the inclusion is 

proper or not. 

I assume that the reader is familiar with the machine models and com

plexity classes mentioned above; see references [13,18,22,34,35]. 

The family of machine models which can be used when defining the above 

classes together represent a "reasonable" model for the concept of sequen

tial computation. It was to be expected. that a similar family of models 

would be invented for parallel computation. As it turns out this second 

machine class has even a wider variety of device types than the first one, 

where the parallelism can be made either fully explicit like in the case 

of the SIMDAG model of Goldschlager [15], it can be hidden in some tree of 

possible computations as in the alternation model [4], or it can be made 

completely invisible in the form of a sequential computation on unreason

ably long objects, as done in the multiplication RAM's [17]. 

Rather than by proving bounds on the relative simulation efficiencies 

by which these models simulate each other, the members of the second 

machine class are joined together in a family by the so-called parallel 

computation thesis. This thesis expresses the fact that for these machines 

a sequence of fundamental complexity classes can be defined as well. We 

indicate this sequence by prefixing the classes with the indicant// for 

* parallelism: 

//LOGSPACE c //NLOGSPACE c //PTIME c //NPTIME c //PSPACE c //NPSPACE c 

The sequence is moreover nothing but a shifted version of the sequence for 

the standard class of sequential devices. In fact one has with some minor 

exceptions 

* In the sequel// will be replaced by some indicant for the particular 
model being considered. 
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//LOGSPACE = P, //NLOGSPACE = NP, //PTIMF. = PSPACE, //NPTIMF. = NPSPACE, etc. 

As a consequence, by Savitch' theorem that PSPACE = NPSPACE (28] one ob

tains //PTIMF. = //NPTIMF.. 

In this survey I will concentrate on the equality //PTIMF. = PSPACE. 

I will present several of the members of the second machine class in some 

detail, and try to indicate the outlines of a proof of the above equality 

for the case of these models. For the other relations and models I have to 

refer to the extensive literature on this subject, since it seems quite 

feasible to give a one semester course on the details of this area of com

plexity theory. 

It is reasonable to ask wether the parallel computation thesis, as 

formulated above, is correct or not [2] If believed as an assertion on 

all possible models of parallel computers the thesis is probably false 

(unless PSPACE = EXPTIMF.). Instead I use the parallel computation thesis 

as a characteristic feature deliminating the second machine class. This is 

similar to the way the standard machine class is deliminated by requiring 

the invariance thesis to be valid. Machine models for which the parallel 

computation thesis might be false then can be gathered into an even more 

powerful third machine class. 

2. VARIATIONS ON A THEMF. COMPOSED BY SAVITCH 

Before investigating the unknown realm of the second machine class, 

we should be fully informed on the corresponding part of the picture in the 

world of sequential computation: the class PSPACE. Which problems are 

likely to belong to PSPACE, what is the background of Savitch' theorem 

that PSPACE = NPSPACE, and what are the standard complete problems for 

PSPACE? 

By definition a problem (which as a mathematical object is nothing but 

a set of strings or a language) belongs to the class PSPACE provided it 

can be recognized by some device (e.g., a multitape Turing machine) which 

has the property that input x is recognized using no more space than 

k.jxjk for some constant k independent of x; here jxj denotes the 

length of input x 

An elementary counting argument, on the number of possible Turing machine 

configurations with a bounded number of tape cells being used, learns that 
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the computation accepting x carmot be longer than some exponential quan

tity like 2 c.lxlk. We can consider a huge graph, whose nodes are the 

configurations of this Turing machine on input x which satisfy the space 

bound, and whose edges are the individual computation steps between a con

figuration and its successor in the computation (if defined). If the Turing 

machine is deterministic then this graph has nodes with outdegree at most 

one; it becomes the union of a number of components, each component being 

a single sink, or a cycle,. with in-trees converging into the sink or cycle 

(disregarding computation steps where the space bound gets violated). 

It is not difficult to modify the formalism in such a way that the 

accepting configuration of a computation becomes unique. Membership of the 

input x in the language can now be translated into the question, whether 

the initial configuration belongs to the component of the unique accepting 

sink. 

A similar translation is possible for nondeterministic computations 

as well. In this case the nodes in the graph have outdegree which may be 

larger than one, but without loss of generality one may assume that the 

maximal outdegree is two (binary choices only). Membership in the language 

now amounts to the question whether there exists a path in the graph from 

the initial node to the final node. Since such a path may be assumed to be 

cycle free (otherwise there exists a shorter path) the length of such a 

path is bounded by the number of nodes in the graph. 

The existence of such a path can be determined by a transitive closure 

computation. Under normal circumstances this would be an infeasible job, 

due to the exponential size of the graph involved. Still it is exactly this 

transitive closure algorithm which is the algorithm performed by various 

machines in the second machine class, when recognizing a member of PSPACE 

or NPSPACE in polynomial time. 

For better understanding we must be aware of the following facts 

relevant to this graph: 

Although the graph itself is exponential its nodes, i.e. the configu

rations of the Turing machineinvolved, are polynomially bounded; they can 

therefore be written down in polynomial time. We may even assume that they 

are encoded by simple binary numbers of polynomially bounded length. The 

coding used is such that it is easy to decide whether some node is a suc

cessor of another node. So the edges of the graph are recognizable in 

polynomial time as well. 

Next we consider the following transitive closure algorithm: 
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Input: A matrix M of size 2k by 2k such that M[i,j] = 1 iff i j 

or if there exists an edge form node i to node j , and O other

wise 

Output: The transitive closure M of the input matrix, stored in the same 

array M. 

Algorithm: 

for p to k do 

for all i,j in parallel do 

M[i,j] := 3k[ M[i,k] = 1 and M[k,j] 1 l 

od 

od 

If we have z3 ·k processors available then the inner loop and the 

evaluation of the existentially quantified expression can be performed in 

time 0(1). So the entire computation requires time O(k) Now in our 

application k stand for the length of the binary numbers used in the en

coding of the graph representing the given Turing machine computation; this 

length is, as we have seen,polynomially bounded by the length of the input. 

So our transitive closure algorithm uses polynomial time. 

Other algorithmic implementations of the transitive closure algorithm 

can be used for obtaining other interesting theoretical results. For example, 

one may consider the following recursive version: 

Proc path 

if p = 0 then i = j or i succ j # there is an edge from i to j # 

else 

fi 

bool found:= false; 

for node n from 0 to 2k-1 while not found do 

found:= found or ( path(p-1,i,n) and path(p-1,n,j) 

od; 

found 

Existence of a path between the initial configuration init and the 

accepting configuration accept now is computed by evaluating 

path(k,init,accept) . The recursion depth equals k where 2k is the size 

of the graph; this value of k therefore is proportional to the space 

used by the (nondeterministic) Turing machine used for accepting our set in 
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PSPACE . Note that the same k also measures the space needed for writing 

down the arguments of the recursive procedure. So this recursive procedure, 

which is a deterministic computation, requires space for k stack frames 

each of size O(k) , so its total space requirements are O(k2) . This 

construction is the main ingredient of the well known theorem of Savitch: 

THEOREM ( Savitch, 1970 [28]) If the language L is recognized by some 

nondeterministic Turing machine in space S(n) ;;a: log(n) 

recognised by some deterministic Turingmachine in space 

consequence PSPACE = NPSPACE. 

then it can be 
2 

S (n) • As a 

By another simple transformation of the above transitive closure algorithm 

we can establish the PSPACE completeness of the problem QUANTIFIED 

BOOLEAN FORMULAS (QBF) [24] 

QUANTIFIED BOOLEAN FORMULAS: 

INSTANCE: A formula of the form Q1x 1Q2x2 .... Qnxn[ P(x 1, ... ,xn) ] , where 

each Qi equals 3 or V and where P(x 1, ... ,xn) is a formula in the 

propositional calculus in the boolean variables x 1, ... ,xn. 

QUESTION: Is this formula true? 

Remember that the graph which we are considering consists of space bounded 

configurations of some Turing machine accepting our given language in 

PSPACE Each configuration can be encoded by a binary number of length 

k for some value of k bounded by some polynomial in the input length. 

Such a bit string can also be seen as a truth value assignment to a 

sequence of k boolean variables. From the proof of Cook's theorem, estab

lishing the NP-completeness of SATISFIABILITY (see e, g. [5] or [ 13] ) 

one can infer that there exists a propositional formula of length O(k) 

in 2.k propositional variabeles P0 (k for i and k for j) such 

that Po(x1···XkY1···Yk) iff i = j or i succ j . 

One can now define by induction formulas Pp(x 1 ... ~y1 ... yk) expressing 

the existence of a path from i to j of length ~2P. A naive descrip

tion would Pp have containing two copies of Pp-l but a standard trick 

from complexity theory allows us to reduce the number of occurrences of 

P 1 in P to p- p 

Pp(x 1 ... ~y1 ... yk) 3zi'''zk[Vu1 ... ukv 1 ... vk [ 

( (ui .. uk=x 1 .. xk and v 1 .. vk=z 1 .. zk) or (u 1 .. uk=z 1 .. zk and v 1 .. vk=y 1 .. yk)) 

imp Pp_ 1(u 1 ... ukv 1 ... vk) ]] 
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Substituting for x 1 ••• ¾ and y1 •.• yk the codings of the initial resp. 

final configuration of our machine in Pk(x1 •.. xky 1 •.. yk) we obtain a 

closed Quantified Boolean Formula whose validity expresses the existence 

of an accepting computation. From this observation and from the fact that 

it is not hard to see that Pk is a formula of length O(k2) in O(k2) 

variables, one concludes that QBF is PSPACE complete. 

One can consider SATISFIABILITY to be a type of a solitaire game: the 

player has to search for a truth assignment to the variables which makes 

the given formula true. Cook's theorem shows that it is in fact a rather 

difficult kind of solitaire game. Similarly QBF can be seen to be a two 

person perfect information game. Two players, Elias and Alice, in turn 

choose truth values for the variables quantified by 3 and V respectively 

in the order of the nesting of the quantifiers. Elias tries to establish 

the truth of the formula whereas Alice tries to prove that the given for

mula is false. If the formula indeed is true then Elias has a winning strat

egy; otherwise it is a win for Alice. 

The proof of PSPACE-completeness of ·QBF has inspired various 

researchers in complexity theory to investigate the complexity of endgame 

analysis of various (generalizations) of real life games. 

A useful intermediate game is GENERALIZED GEOGRAPHY [33] ; from 

there one can reach HEX, CHECKERS, GO (provided some termination rule is 

given forcing the game to terminate fast enough), and even the HEX game 

on the traditional hexagonal board; see [8,10,21,27,33] 

For people interested what has happened to CHESS this royal game is 

not in the list since its endgame analysis turns out to be even more com

plex than PSPACE [10] • 

The reader should not obtain the impression from the preceding remarks 

that in general solitaire games are at worst NP-hard in fact deciding 

whether a given directed acyclic graph can be pebbled using a given number 

of black pebbles is another example of a PSPACE complete problem [ 14] . 

This problem occupies a rather exceptional position in the zoo of 

PSPACE complete problems, for most animals in this collection either 

allow some direct encoding of space bounded computations (like e.g. Reif's 

generalized mover's problem [ 26]) or they show the alternating behavior 

of a two person game. 
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It should therefore be no surprise at all that "alternation" in fact forms 

the fundamental concept in one of the machine models in the second machine 

class. 

3. RANDOM ACCESS.MACHINES WITH UNBOUNDED PARALLELISM 

A model based on a RAM with unbounded parallelism has been described 

by L.M. Goldschlager (15] • There is a main RAM called the CPU and 

a possibly infinite sequence of subordinate RAM processors, called 

PPUO, ••• ,PPUm , •••••• These processors all operate on a common memory 

of (unbounded) RAM registers. 

The CPU is an ordinary RAM with the usual load instructions (numeric, 

direct and indirect), store instructions (direct and indirect), arithmetic 

instructions (addition, substraction, parallel bitwise boolean operations, 

and division by 2), accept and reject, and a conditional jump. It also can 

broadcast an instruction to all PPU's which then execute this instruction 

all simultaneously. 

The PPU's have beside the access to the main memory also some private 

registers. Their instruction code includes numeric, direct and indirect 

loading from private memory, indirect loading from global memory, direct 

and indirect store to private memory, indirect store to global memory 

and the same arithmetic instructions as the CPU. There is no accept 

or conditional jump for the PPU's • Some form of conditional instruction 

is needed, however, in order to make the proofs correct. For this reason 

the instruction which writes in global memory is made a conditional one. 

Clearly it is unwise to have a model where some computation step 

involves an infinite amount of work due to the fact that an infinite 

number of PPU's execute some instruction.simultaneously. Therefore some 

mechanism is needed to keep the PPU's, except for a finite set, inactive 

during an instruction. This mechanism is obtained by giving each PPU 

access to its index number, which is stored in some local register called 

its signature: this register is denoted SIG 

can be read by a PPU but not be overwritten. 

The contents of SIG 

Each instruction broadcasted by the CPU contains as a mandatory parameter 

a register, whose value is used as an upper bound for the PPU's which 

will perform this instruction: PPUk will execute the instruction in case 

its signature (equal to k) is less than or equal to this upper bound. 

Otherwise it will disregard the instruction. 
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The signatures are also used to solve the problem of simultaneous writes 

in global memory. If more than one processor writes in the same register 

the PPU with the lowest signature will find its value stored after 

the instruction; the other ones were overruled. For the effect of such a 

rule in real world life the reader is referred to [38) 

This model, called the SIMDAG, can be understood as the extreme of a 

SIMD machine. Each PPU executes the same instruction but due to the 

local data and the indirect addressing different PPU's can access dif

ferent parts of global memory in the same instruction. 

The crucial result which establishes the SIMDAG as a member of the 

second machine class can be formulated as follows (Th. 2.1 and 2.2 in 

[ 15] ) : 

THEOREM: Let 

NSPACE(T(n)) 

T(n) be a constructible time bound ;;, 

c SIMDAG-TIME(T(n)) c SPACE(T2(n)) . 

PSPACE = SIMDAG-PTIME. 

log(n) . Then 

Consequently 

The first inclusion is proved by implementing the transitive closure 

algorithm from section 2 in its parallel version. The implementation 

runs in two stages. Let <i ,j > be a pairing function from 1N x 1N onto 

1N. Again numbers of length c.T(n) =: K represent configurations of 

a Turing machine with space bound T(n) . During the first stage of the 

algorithm 

M[ i ,j] = 1 

PPU .. 
<1.,J > 

if i = j 

is instructed to compute the matrix element 

or i succ j Next for K iterations 

PPU . . k inspects the matrix elements M[i,k] and M[k,j] and puts <1.,<J, >> 
a 1 in M[i,j] if it finds a in both. This step of the algorithm 

requires the possibility of a conditional instruction in the PPU since 

otherwise it seems to be impossible that the positive information of the 

found by some PPU .. k <1.,<J, >> 
is not overruled by the negative 

some PPU .. k' with k' < k. <1.,<J, >> 

0 from 

The CPU now can decide to accept at the end of the computation by 

inspecting the matrix element M[ init, accept] . It is not difficult 

to see that both stages of the transitive closure algorithm require time 

O(T(n)) . This proves the first inclusion. 

The second inclusion is established by showing how to simulate a SIMDAG 

on a Turing.machine. Note that the number of PPU's invoked during a 

computation may grow exponential in T(n) . However, all values manipulated 

have lengths linear in T(n) . 
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Note that the contents both of the local registers of each PPU and of 

the global registers at time t are completely determined by their contents 

at time t-1 • Working out the rules for each instruction (where the paral

lel write turns out to be the most problematic one) one obtains a compli

cated recursive procedure expressing the content of register i at time 

t denoted WORD(i,t) resp. LOCAL(i,t,k) depending on whether it is a 

global register or a register of PPUk, in terms of WORD(i',t-1) and 

LOCAL(i',t-1,k') for various i' and k' • Some of dependencies may 

involve a nonconstant number of previous values like in the case of a write 

into global memory instruction executed by a number of PPU's, but in 

those cases a simple iterative scheme for evaluating this recursion is 

available. 

An analysis along these lines learns that the functions WORD(i,t) and 

LOCAL(i,t,k) are mutually recursive, but can be evaluated for time t 

by loading no more than a constant times t values and pending recursive 

calls in stackframes; so the memory requirements are bounded by T(n).T(n). 

For the simulation it is necessary that the same chain of ins.tructions is 

executed time and again. In order to obtain correct information on the 

instruction executed at time t the simulation begins by writing the 

entire trace of computation on a worktape. This trace is certified during 

the computation as being correct (if not the next trace is attempted) . 

In this way a simulation is obtained which even works for nondeterministic 

SIMDAG's. The simulator can accept after certifying a trace which ends by 

performing the accept instruction. This proves the second inclusion and 

the theorem. It should be noted that the proof for the second inclusion 

with some minor modifications, will be repeated for some other models in 

the sequel. 

4. MODELS WITH PARALLEL RECURSION 

The recursive transitive closure algorithm on which the Savitch 

theorem is based clearly is perfectly implementable on a machine model 

which supports recursive procedures. Now it is well known that using 

some form of a stack implementation traditional RAM's and Turing machines 

support recursion, but there is hardly any gain in efficiency compared 

to sequential computation. The cause of this lack of gain is the fact that 

recursive calls do not run in parallel on these models. Moreover, a machine, 

after having performed a recursive call, has to wait for the called 
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procedure to terminate before it can compute any further. 

The members of the second machine class based upon parallel recursion 

accommodate to this defect by allowing the calling procedure to go on, 

after having performed the call. The recursive call is performed on a 

newly created or activated copy of a device isomorphic to the calling 

device. The calling device can use its power to perform further recursive 

calls. Using a tree structure of recursive calls a single machine therefore 

can activate in linear time an exponential number of subordinate devices, 

all working in parallel. 

The most intricate part of setting up such a model is the choice of 

communication and parameter passing mechanisms. One possibility, related to 

the SIMDAG model discussed before, would be to use communication via 

global memory. This choice, however, turns out to be not the correct one -

the resulting machine would become so powerful that it exceeds the second 

machine class. I will return to this issue at the end of this survey. 

Instead one considers communication and parameter passing to be a local 

activity, to be performed under the responsibility of the called procedure 

and the calling process, inaccessible to anyone else. 

In order to be more specific I will go somewhat deeper in the details 

of the PRAM model introduced by Savitch and Stimson [30,31] . A k-PRAM 

is a version of a RAM which can issue upto k recursive calls in parallel. 

When calling a recursive subordinate machine it passes (a bounded number 

of) parameters by loading these values in the first registers of the 

recursively called machine. This subordinate machine then starts computing 

by executing its initial instruction; due to the presence of parameters 

its logical "task" can be different for different calls. The subordinate 

machine can perform recursive calls on its turn, thereby creating further 

offspring. 

When the recursive call is completed the subordinate machine terminates 

computation by loading its answer into a special purpose channel register 

which can be read by its parent (it cannot be written by the parent). 

This represents the only way the offspring can inform the parent that it 

has completed computing. The parent can either ask for the value stored 

in the channel register, in which case the parent gets suspended upto 

the time the offspring is terminated if the situation arises that the 

answer asked for is not yet available; or the parent can inquire about 

the status of its son by performing a conditional instruction, having the 
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definedness of the channel register as a condition. Using this feature 

a machine can create two recursive sons, each processing some modification 

of the same task, and accept the answer provided by the son who happens 

to be the first in obtaining this answer. The same feature allows a parent 

to terminate or abort computation before all its descendants have termina

ted. 

The k-PRAM has beside the instructions needed for performing recur

sive calls, reading channel registers and testing for termination of off

spring, an instruction set containing the traditional RAM instructions 

for literal, direct and indirect loading, direct and indirect storing, and 

a conditional jump. Its arithmetic consists of addition and substraction 

only. 

Savitch and Stimson show that the deterministic version of the PRAM 

satisfies PRAM-PTIME = PSPACE, provided the bound on the number of recur

sive calls performed in parallel k is at least 2 . From the preceeding 

comments it is not difficult to see why this equality holds. 

To see that PSPACE c PRAM-PTIME one just should convince oneself 

that the recursive version of the transitive closure algorithm can be 

implemented on a k-PRAM whenever k ~ 2, in such a way that the recursive 

calls are performed in parallel. This would however yield an algorithm 

which still violates the polynomial time bound due to the fact that the 

intermediate node n introduced when performing the call path(p,i,j) by 

the recursive calls path(p-1,i,n) and path(p-1,n,j) has to cycle 

through 2k possible values. A possible solution is to use a nondeter

ministic PRAM version for the proof of this inclusion, establishing 

at a later time that the deterministic and nondeterministic versions of 

the PRAM have equal PTIME classes. This turns out to require a nontrivi

al proof. 

A more direct solution is to have the machine which is assigned to 

perform the call path(p,i,j) creating a tree of 2k offspring machines, 

each being given a different guess for an intermediate node n; once n 

is fixed the two recursive calls path(p-1,i,n) and path(p-1,n,j) are 

performed. This transformation increases the recursion depth from k to 

k2 . The time needed by each machine can be bounded as being linear in 

the size of the arguments dealt with. Hence the total time used by the 

simulation becomes of order k3 Remembering that k was proportional 

to the space used by the original PSPACE bounded Turing machine one 
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obtains the required inclusion. 

For the above simulation there is no problem concerning nonterminating 

behavior of the machines created during the simulation. Once k has been 

evaluated the ultimate running time is known. 

This is rather different from the situation where one wants to simulate 

an arbitrary T(n)-time bounded nondeterministic k-PRM-1 by a deterministic 

k-PRAfi with polynomial overhead in time. The basic trick is the same as 

in the above simulation. Instead of performing a single nondeterministic 

call a tree of 2T(n) deterministic simulations is initiated, each being 

equipped with a different oracle of length T(n) which tells it how to 

choose whenever a nondeterministic choice arise. In this general case there 

arise problems due to the fact that different choices of the oracle may 

lead to different answers appearing in the channel registers, and it is no 

longer clear which of these answers is the one which should be forwarded 

to the parents. Neither is it clear what to do about machines which have 

not yet terminated. How does one implement the test-on-termination instruc

tion issued by a father if its offspring which represents a single son 

actually consists of 2T(n) descendants? 

These and other problems are solved in the paper by Savitch and Stimson; 

the final result shows that for well behaved T(n) a deterministic 

2-PRAfi can simulate a T(n)-Time-bounded k-PRAfi in time O(T6(n)) 

for a polynomial overhead factor in machine model theory the exponent 6 

is unusually high. 

The proof of the inclusion PRAfi-PTIME c PSPACE is a straightforward 

sequential implementation of a parallel algorithm. Clearly the recursion 

depth is bounded by the running time of the PRM1. So if we know for sure 

that all calls terminate the standard stack implementation of recursion 

will yield a RAf1 computation whose space requirements are O(T3 (n)) 

for a T(n)-time-bounded PRAfi The exponent 3 is the rough upper 

bound based on the argument that in time T(n) the PRAfi can create 

copies upto recursion depth at most T(n) each consuming at most T(n) 

registers, filling them with values of length at most O(T(n)) 

The condition that all calls terminate is easy to satisfy by equip

ping all copies with a clock initialized at creation time, which will 

shut off the copy at time T(n) , reporting failure to its parent. Such 

clocks are needed anyhow, due to the fact that the father computes on 

after having created offspring - how otherwise can one determine in the 
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sequential simulation which one of two sons was the first to terminate? 

For more details on the rather intricate simulations I refer to the 

paper [31] . Although the basic ideas of the simulations seem to be 

simple the details are complex due to the fact that the model allows for 

rather ill-behaved machines, in particular for the nondeterministic variant. 

It should be mentioned also that a similar recursive machine model can be 

based upon the standard Turing machine model rather than on a RAM; Savitch 

has worked out such a model in [28] . 

5. MACHINES BASED ON ALTERNATION 

The concept of alternation has produced the family within the second 

machine class with the "cleanest" theoretical behavior. It was discovered 

independently by Stockmeyer & Chandra [3] and Kozen [20] ; these 

authors together composed a paper [4] for the JACM . It should be men·

tioned also that the discovery of this concept lead to the authors recei

ving an Outstanding Inovation Award by IBM - one of the few occasions 

where this award was granted to a purely theoretical result. 

As was the case with the models based upon parallel recursion, alter

nating models can be built on almost every machine. In fact an alternating 

machine is nothing but a nondeterministic machine with a modified mode of 

acceptance. In a deterministic machine there is just one computation, and 

the machine accepts iff this one computation is accepting. In the nonde

terministic mode there is a tree of possible computations and the machine 

accepts as soon as there exists an accepting path in the tree. One could 

therefore investigate the situation where acception occurs iff all pos

sible paths in the tree accept. One even can go further by interleaving 

both modes of accepting (universal and existential modes), and this is 

the essence of the alternation concept. 

An alternating machine is a nondeterministic device, the states of 

which are labeled either accepting, rejecting, negating, universal or 

existential. Accepting and rejecting states are terminal - they have no 

successor states. A negating state should have exactly one successor 

state, whereas universal and existential states should have one or more 

successor states. 

If one considers alternating Turing machines, then the state of such a 

machine clearly corresponds to the entire configuration of reading heads, 
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input head and worktape contents. The label ( existential, universal, 

etc. ) is determined completely by the finite control state in this con

figuration. 

Given some input the alternating device determines a unique tree in con

figurations, the paths in which represent possible computations. The root 

of the tree is the initial configuration, whereas the sons of some con

figuration are its successor states (without loss of generality each con

figuration has at most two descendants). Accepting and rejecting configu

rations are the leaves. 

Each node in the computation tree is assigned a quality from the set 

accept, reject, indef} where the quality indef is needed for dealing 

with infinite branches in the tree. The quality of an accepting (rejecting) 

leaf is accept (reject). For internal nodes the rules for determining the 

quality are as follows. The quality of a negating node is accept (reject) 

iff the quality of its unique descendant is reject (accept). The quality of 

an existential node is accept (reject) if one of its descendants has 

quality accept (all its descendants have quality reject). The quality of a 

universal node is accept (reject) if all its descendants have quality accept 

(one of its descendants has quality reject). All nodes whose quality cannot 

be decided based upon the above rules have quality indef. 

It is clear that for a finite computation tree the label indef 

occurs nowhere. But also in the case that the tree contains infinite bran

ches it is possible that the indef quality fails to propagate upwards, since 

the indef quality at some node is canceled by the accept (reject) 

quality of its brother in the case of an existential (universal) node. 

The input of the computation is accepted iff the root obtains the 

quality accept. 

The rules determining the quality of the nodes in the tree can be 

considered to be a recursive procedure for evaluating this quality. As a 

consequence this evaluation can be performed by evaluating the limit of 

a sequence of partial evaluations. In the first partial evaluation only 

the leaves obtain their quality. Next each existential node with an 

accept son obtains the quality accept, each existential node with all 

its sons being reject becomes reject, etc. If the root obtains a 
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quality at all it obtains one after finitely many iterations. As a con

sequence the quality of the root, if defined, depends on a finite subtree 

only, from which one infers that alternating machines accept recursively 

enumerable sets only. 

The time consumed by a computation of an alternating machine is the 

maximal length of a path in a finite subtree determining the quality of 

the root. The space consumed by this computation is the maximal space of 

any configuration in this _finite subtree. Based upon this definition one 

can obtain the space or time bounded complexity classes for alternating 

machines. 

In the sequel we will restrict ourselves to alternating Turing machines. 

In the first place we have the equality A-PTIME = PSPACE. The proof 

of this equality is not difficult compared to what we have seen before. 

To establish the inclusion PSPACE c: A-PTIME it suffices to show that 

the PSPACE complete problem QBF can be accepted in polynomial time on 

an alternating Turing.machine, but this is almost trivial: the machine 

can try out all 2m truth value assignments for the m quantified 

variables by making a nondeterministic choice for each of the variables 

in turn. If the quantifier is existential the choice will be performed by 

an existential node, and if the quantifier is universal a universal node 

will make the choice. If all variables have obtained a value the formula 

is evaluated. It is clear that such an alternating Turing.machine will 

accept QBF in quadratic time. 

The inclusion A-PTIME c: PSPACE is obtained as follows. Without loss of 

generality one can assume that the PTIME bounded alternating Turing 

machine has terminating computations only. As a consequence the quality 

of the root of a tree of computations can be decided by a simple tree 

traversal, and a stack implementation for this traversal will use no more 

space than the square of the running time of the given alternating Turing 

machine. 

It is interesting to have a look at the equalities A-LOGSPACE = P 

and A-PSPACE = EXPTIME as well. These equations are based upon the 

fact that alternating space is equivalent to deterministic time of the 

next exponental level, i.e., A-SPACE(S(n)) U DTIME( c S(n)). 
c>O 

A space bound on an alternating machine determines an exponential 

bound on the number of possible configurations. By making a list of all 

these configurations together with their labels (as determined by the 
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embedded state of the finite control) we can initiate a computation which 

will determine the quality of some configuration as soon as one has 

sufficient information on the quality of its (at most two) sons. By a 

repeated scan over the entire list, during which either a new quality is 

determined or it becomes clear that no further qualities can be determined 

at all, one can determine the quality of the initial configuration on the 

given input. The entire process takes time quadratic in the number of con

figurations. This proves the inclusion A-SPACE (S (n)) c U DTIME ( c S (n)) . 
c>O 

The converse inclusion is based upon the following construction. Let M 

be a T(n) - time bounded deterministic Turing machine. We must show how 

an alternating Turingmachine can accept L(M) in space O(log(T(n))). 

Consider an accepting computation of M We represent this computation 

in the usual way by giving a complete time-space diagram of the computation. 

This diagram has the property that its correctness can be certified by 

purely local conditions: the symbols in row i are completely determined 

by the three symbols in row i-1 located directly above this symbol. 

The contents of row O are nothing but the initial configuration of the 

computation simulated. Finally the computation accepts iff its bottom row 

contains somewhere an occurrence of the accepting state symbol. 

An alternating machine can now guess where this accepting state symbol 

occurs in the diagram; next it certifies this occurrence by guessing the 

three symbols above it (using existential choices) and certifying each 

of these three symbols (using universal configurations); moreover the 

machine certifies whether the three symbols are consistent with the symbol 

to be certified according to the program of M. 

The storage required for specifying this process consists of space for 

storing row and column numbers (both of which are boundedbyT(n) 

and the space for storing the symbols to be certified ( space 0(1) ) . 

This shows that the entire simulation requires space O(log(T(n))) 

The alternating machines provide also a simple representation of the 

polynomial time hierarchy [37] the layers in this hierarchy can be 

obtained by bounding the number of alternations along a computation path 

in the tree. The type of a class corresponds with the label of the initial 

state. Everything is fully natural. 

The naturalness of the alternation concept has lead to a large number of 

applications of these devices for establishing upper and lower bounds for 

the complexity of concrete problems; reference [4] already mentions 
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applications varying between propositional dynamic logic, combinatorial 

games and decision complexity bounds for fragments of mathematics. 

It is clear that the alternation concept should be included in the stan

dard introduction to complexity theory presented in the curriculum for 

computer science students. 

6. MACHINES WHICH MANIPULATE HUGE DATA IN UNIT TIME 

The final clan of machines in the second machine class which I want 

to discuss consists of RAM-like devices with powerful instructions where 

time is measured using uniform time measure each instruction is being 

charged one unit of time independent of the size of the values manipulated. 

The outstanding representatives of this group of machines are the vector 

machines as introduced by Pratt & Stockmeyer [25] , and the RAM's with 

multiplication and division as invented by Hartmanis & Simon [16, 17] . 

As proposed originally these machines require both the parallel bit 

manipulation instructions ( and , or , xor , not performed bitwise on 

very large numbers) and instructions which allow for the creation of 

exponentially large numbers in polynomial time. In the vector machine 

these huge numbers are obtained by shift instructions where the distance 

of the shift is read from a scalar register; the model allows for scalar 

registers only the use of standard arithmetic like + and . Hartmanis 

and Simon produce these large numbers by allowing for multiplications 

and divisions in unit time. Since shifts can be obtained by multiplications 

or divisions by pure powers of 2 it is directly clear that the multi

plication- division RAM's can simulate the vector machines with constant 

factor overhead in time. 

In fact one can forsake the right shift performed by a division; 

instead of shifting one register content k bits to the right, all other 

registers are shifted k bits to the left! This observation yields 

the consequence that multiplication in the context of the presence of 

bitwise logical instructions suffices for playing this game. This is the 

MRAM model described in [17] . It has been only recently established 

that having available both multiplication and division one can do without 

the parallel bitwise logical instructions; see Bertoni, Mauri & 

Sabadini [ 1 ] . 
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In order to establish the connection between these powerful RAM 

models and the class PSPACE we have to show two simulations. First we 

must show how to accept all PSPACE sets in polynomial time using the 

extended arithmetic of the model. It suffices to show this for the 

PSPACE-complete problem QBF Consider therefore an arbitrary closed 

quantified boolean expression q1x 1Q2x2 ... QkxkP(x 1, ... ,xk) where the 

length of the propositional expression P called m, can be assumed to 

exceed k 

First we indicate how our RAM in polynomial time can compute a 

single number which, if considered as a bit string, consists of the binary 

representations of the first 2k numbers each separated by a block of 

m zeros. 

2k ones 

As a side product a "mask" is obtained consisting of 

with k-m-1 zeros inbetween each pair of ones. This mask 

together with its translates can be used to and out of the number obtained 

the 2k corresponding digits in each of the binary representations. If 

we consider these binary representations to be the list of all possible 

truth value assignments to the k boolean variables from the given ex

pression, we see that the mask enables us to evaluate in parallel each 

variable for all assignments in unit time. 

Consider the following program fragment (where p k+m, the block length): 

mask:= 1 mult:= zP reps := 0 ; 

for i to k do x. := od 
1 

for j to k do 

for i to k do 

if i 'F j then x. := xi.(1+mult) fi 
1 

od; 

mask := mask. ( 1 +mul t) mult:= mult.mult 

od; 

for i to k do 
i-1 

reps :=reps+ 2 .xi od 

After executing this fragment mask is the intended mask, whereas reps 

contains the 2k binary representations on a row separated by m 0-s . 

Using similar tricks, involving the bitwise and and or instruction 

it now is possible to write in the block of zeros a copy of the 

propositional formula P with the truth values substituted for the 

variables in each block. Next, using masks and small shifts, one can 
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replace every occurrence of a logical connective in P by the truth 

value computed by this connective in the block. Finally this will lead 

to the parallel evaluation of P for all possible truth assignments. 

Another use of the mask will enable us to extract these 2k resulting 

values. 

In the third stage of our algorithm we will fold these answers to-

gether into a single answer. For i from k down to the list of 

2i remaining answers is split into two equal parts, the two parts are 

aligned by another multiplication with some power of 2 and the two 

strings are merged using a parallel and (or) depending whether 

Q. = V (Q. = 3) . After this folding operations the final result is 
1. 1. 

the single bit which remains. 

The above proof is a simplification of the proof given both by 

Stockmeyer & Pratt or the similar proof by Hartmanis & Simon: these 

original proofs give a direct simulation of the transitive closure algo

rithm from section 2 . A related shortcut is present in [ 1 ] 

The second simulation we must provide is the simulation in polynomial 

space on a Turing machine of one of these powerful RAM' s. Again the fact 

that the RAM is polynomial time bounded is used in setting up a recursive 

definition for the value of register i at time t in terms of register 

values at time t-1 . Note however that in the present case the register 

values itself become so huge that they no longer can be written in 

* polynomial space. Instead the recursive definition involves a third 

parameter: the bit position. So one writes down a recursive expression 

for the function FIND(i,t,p) representing the value of bit p in regis

ter i at time t . The fastest growing function which can be computed 

on this model is the function obtained by squaring a fixed register at 

every instruction, i.e.,the function c2t This shows that after t 

steps the largest register content has at most exponential size 2t.c, 

so the index of a bit position has length proportional to t. It can 

therefore be written down in polynomial space. 

One of the more difficult operations to implement in this bitwise recur

sive expression is the multiplication; the value of bit i in the product 

* By a standard trick we can use a block of consecutive registers only, 
and therefore the register addresses remain bounded. 
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depends of the first i bits in both arguments (due to the carry) so in 

order to evaluate it one must in fact perform the entire multiplication 

of both arguments modulo 2i+l Don't ask for the final running time 
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of the simulation. As with the SIMDAG model one must repeat the same 

instructions over and over again. To guide the process the entire trace 

of the computation is written down on a separate worktape, and the simu

lation will certify this trace by establishing that all conditional jumps 

are properly performed. If not the next trace is attempted. So again the 

simulation in the deterministic case is not essentially different from 

the one for the nondeterministic case. 

7. BEYOND THE SECOND MACHINE CLASS: THE NONDETERMINISTIC MIMD-RAM 

In their STOC 10 paper Fortune & Wyllie [ 9] describe a variant 

of a RAM model with full parallel recursion which somehow has a structure 

obtained by combining some elements of the SIMDAG and the PRAM as 

described in sections 3 and 4 • Since this machine is capable of 

setting up a large number of copies of itself, all operating on private 

memory and a joint global memory (as is the case with the SIMDAG), but 

not restricted to execute the same instruction in all active copies at 

the same time (as is the case with the PRAM), I will refer to this model 

under the name MIMD-RAM This is not the name used by the authors -

they refer to their machine under the name P-RAM but in the present 

paper this would be misleading. The MIMD-RAM is a synchronous model. 

In the MIMD-RAM there is an infinite set of registers used as global 

memory. Each individual processor has its private set of infinitely 

many local registers. Each machine has the usual RAM instructions for 

loading and storing (literal, direct and indirect), and the usual condi

tional jumps. The arithmetic is restricted to addition and subtraction. 

The parallelism is activated by a FORK instruction, which creates a new 

copy of the machine which starts by executing the initial instruction. 

Information is passed by initializing the accumulator of the newly created 

machine with the value of the accumulator of the machine copy performing 

the FORK instruction. This enables the machine both to pass parameters 

and to inform the newly created copy of the precise task it should perform. 

Information is passed back by writing in global memory. Simultaneous rea

ding from global memory is permitted. A simultaneous write is considered 

to yield an error condition - if such a write occurs the entire computation 
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jams and rejects. The machine accepts iff the oldest copy halts with a 

in the accumulator. The READ instruction is massaged in such a way that 

sublinear running times become feasible; for details of this trick I refer 

to the full paper. 

The deterministic version of this machine is a fair member of the 

second machine class. One has MIMD-RAM-PTIME = PSPACE. The inclusion 

PSPACE c MIMD-RAM-PTIME can be shown by simulating a 2-PRAM compu-

tat ion. One only needs to _simulate the channels by global memory registers, 

and this is not difficult - just make sure that different channels are 

simulated in different registers. One can also perform a computation which 

determines ink steps the zk-th power of the transition relation in the 

gr·aph of all space bounded configurations of a Turing machine, where k is 

linear in the space bound. 

The converse inclusion is proved by obtaining a recursive expression 

for the contents of register i of machine j at time t Since in 

t steps at most 2t machines are activated and values of size at most 

t are computed, all arguments for this recursive procedure can be writ

ten down in polynomial space. As before the depth of the recursion is 

bounded by t as well. The only problem presented by this model is that 

it is no longer possible to write down a complete trace of the entire 

computation since each of the exponentially many copies can perform a 

different sequence of instructions. For that reason at each instance in 

the recursion the instruction executed is guessed nondeterministically, 

creating the obligation to certify that indeed the instruction guessed is 

the right one. Since the machine simulated is deterministic one can prove 

by induction that for every machine at every time there exists just a 

single certifiable guess for the instruction performed. So also in the 

situation which is inevitable that each guess is made over and over again 

(and has to be certified every time anew) the guesses will be made in a 

consistent manner. Clearly the recursive expression for this machine will 

be far more complicated than for the simulations we have seen before. 

It seems that the nondeterministic variant of the MIMD-RAM is more 

powerful than the deterministic one. Fortune & Wyllie show that one has 

NP= NMIMD-RAM-LOGTIME and NEXPTIME = NMIMD-RAM-PTIME 

It is not difficult to show that with an exponential overhead in time an 

ordinary Turing machine can guess a complete computation record of some 
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NMIMD-RAM computation, write it down on a worktape and certify its correct

ness. This suffices for providing the inclusions in the direction indicated 

by NMIMD-RAM-LOGTIME c NP. In order to understand the reverse inclusion 

we have to show how to accept some NP-complete problem in logarithmic time 

on an NMIMD-RAM. For this problem we take the problem BOUNDED TILING 

(called SQUARE TILING (GP13) by Garey & Johnson [13] ): 

BOUNDED TILING: 

INSTANCE: A finite set of tiles (squares with colours given on their 

edges) T, and an N by N square with a given colouring of the 

4N edges on the border. 

QUESTION: Is it possible to tile the N by N square with copies of the 

tiles in T (without rotations or reflections) such that each pair 

of adjacent tiles have matching colours, and such that the tiles 

adjacent to the border have colours matching the given colouring of 

the border? 

Given an instance of BOUNDED TILING the. NMIMD-RAM will first (using 

its modified input convention) extract the value of N from the input in 

logarithmic time (note that the instance actually encodes N in unitary 

notation). Next it will create N2 copies of itself, each representing 

a square in the N by N square. This can be done in time log(N) since 

in constant time each machine can create two new ones. Each of these copies 

will guess the tile by which its corresponding square will be tiled (the 

only nondeterministic step in the entire computation). Finally these 

guesses will be written in global memory (each machine having its own· 

register) and next each machine will verify whether its edge colours match 

with the ones of its neighbours. If all verifications succeed this posi

tive information is collected by having each father in the tree writing 

an acknowledging value in his own register in global memory, after having 

verified that his two sons (if activated) have done so before. Collecting 

the positive information upwards in the tree again requires time 

O(log(N)) . 

Since the inclusion PSPACE c NEXPTIME is unknown to be proper the 

above result yields no certified proof that the NMIMD-RAM indeed exceeds 

the second machine class by being to powerful. It is however certain that 

these machines are more powerful than the standard class since 

NP f. NEXPTIME. 
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A similar behavior is shown by the LPRAM model introduced by 

W. Savitch [32] • This model is a hybrid of the k-PRAM and the MRAM 

since it combines recursive parallelism with vector instructions which 

manipulate huge objects in single registers. The model satisfies the 

equalities LPRAM-NLOGTIME = NP and LPRAM-PTIME = PSPACE. The first 

equality makes it plausible that the model does not belong to the second 

machine class. 

Finally I should mention in this section a recent note by Norbert 

Blum [ 2] . In this note Blum attacks the parallel computation axiom 

by providing a model for which one has NP c ll-LOGTIME. His model resem

bles the SIMDAG; however the convention for simultaneous writes is 

different. In fact Blum considers two distinct modes for dealing with 

simultaneous writes. In the note the key observation is that the detection 

of a path of length T(n) in the configuration graph requires 

O(log(T(n))) iterations of the transitive closure algorithm. However, 

in order to obtain the time bound O(log(T(n))) the initial transition 

matrix must be created in time O(log(T(n))) as well, and this issue is 

not discussed in the note at all. 

If we also have a space bound S(n) for the Turing machine computation 

to be simulated, using the standard arithmetic in the RAM a ti.me bound 

~(S(n)) is required for encoding/decoding S(n)-bounded configurations 

by bit strings. Blum suggested in a private correspondence several methods 

for reducing this time to O(log(S(n))) by distributing the pattern 

matching required for detecting a possible transition over O(S(n)) 

processors, but again it is difficult to see how this partitioning can 

be done, unless the arithmetic of the machine is extended by rather mild 

shift and masking instructions. A final possibility is to extend the hard-

ware in order that processor should have direct access to bit 

k in P. and P. 
L J 

Notwithstanding Blum's belief that "this is not a great extension of the 

machine model", these ideas seem to indicate that the borderline between 

the second and the third machine class is rather hard to locate exactly. 
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8. PARALLEL MACHINES WITH POLYNOMIAL BOUNDS ON THE AMOUNT OF HARDWARE USED 

It has been observed by many authors whose papers we have discussed 

in the preceding sections, that the power of the members of the second 

machine class is rooted in the possibility of activating an exponential 

amount of hardware in polynomial time. For example, a multiplication 

RAM with a polynomial bound on the length of the values used during the 

computation can be simulated in polynomial time by an ordinary Turing ma

chine. Similarly, a k-PRAM which is restricted to use no more than a poly

nomial number of registers altogether can be simulated in polynomial time 

by an ordinary RAM (Corr. 52. in [31]). For the NMIMD-RAM one has the 

result that the combination of a polynomial time bound and a polynomial 

bound on the total number of registers reduces the power to PSPACE (Th. 

in 3 in [ 9] ) • 

Still the above restrictions do not yield a finite bound on the hardware 

used by the components in the parallel computer, since each RAM register 

still can store an arbitrary large integer. The real restriction to finite 

components is enforced by considering parallel computers whose components 

are finite automata, which some way or another work together in performing 

a computation. 

An example of a machine with finite components is the alternating 

finite automaton as considered in [ 4 ] It is shown that these devices 

accept only regular languages; the gain is a doubly exponential blowdown 

in the minimal number of states needed for constructing the automaton 

(see section 5 in [ 4 ] ) • 

Goldschlager [15] introduces the model called conglomerate. This is 

a machine composed of finite controls with each control having k input 

channels and a single output channel. The topology of the network of com

ponents is described by a connection function f:{1, ••• ,k}* +lN U {i} . 

This function is defined inductively by: 

f (e:) 0 (the index of the root-component); 

f (sa) j iff for some k f(s) = k and M. 's output channel 
J 

is connected to input port a of ~; 
f(sa) = i iff no such k exists. 

Clearly one can encode hideous complex sets by using highly complex or 

even undecidable connection functions. One should therefore restrict 

oneself to connection functions with low complexity. 
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Goldschlager shows that conglomerates with a PSPACE connection function 

which are PTIME bounded recognize sets in PSPACE only. On the other 

hand it turns out to be possible to simulate a SIMDAG with quadratic 

overhead on a conglomerate with a LOGSPACE (universal) connection func

tion, so all of PSPACE can be accepted in this way. This shows that these 

devices composed from finite controls form a genuine member of the second 

machine class. There exists moreover a LOGSPACE computable universal 

connection function with the property that the conglomerate based on this 

connection function can s{mulate every other conglomerate with a most 

reasonable overhead (which depends on the parallel time required for com

puting the connection function of the simulated conglomerate), see Th. 5.1 

in [ 15 ] 

The AGGREGATE which was introduced by Dymond & Cook [ 7] is a 

related model of a parallel machine consisting of finite components. It 

shares with the reference machine [ 35] the power of modifying its 

topology during the computation. On the other hand it resembles a logical 

circuit in the sense that it is intended to work correctly for inputs of 

a fixed length only. Two relevant measures are time and hardware (number 

of components). The authors investigate a number of connections between 

these measures and the standard measures of time, space and reversals 

for the ordinary Turing machines. From circuit theory the issue of uniform 

circuit families vs. nonuniform families is inherited, further complicating 

the theory. The paper investigates classes defined by three simultaneous 

resource bounds. A detailed discussion would be far beyond the scope of 

this survey paper, so I refer to the literature. 

Finally, I would like to mention Galil & Paul's work on universal 

interconnection patterns for parallel networks [12] (this theory is being 

extended by Fr. Meyer auf der Heide [23]),andCook's survey paper on 

concrete problems which are recognized in POLYLOG time using a polynomially 

bounded number of processors [61. The latter paper reports research on 

two complexity classes which deal with parallelism and which are becoming 

quite popular. These classes are: 

NC: the languages recognizable by uniform logical circuits of polynomial 

size and polylog depth; 
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SC the languages recognizable by sequential devices simultaneously 

in polynomial time and polylog space 

Both of these classes are subsets of P, with all further reasonable 

questions on equalities or inclusions being unknown. So a more detailed 

introduction to these classes is outside the scope of this survey. 
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This is a tutorial introduction to the literature on parallel computers and algo
rithms that is relevant for combinatorial optimization. We briefly discuss theoret
ical as well as realistic machine models and the complexity theory for parallel 
computations. Some examples of polylog parallel algorithms and log space 
completeness results for '!J' are given, and the use of parallelism in enumerative 
methods is reviewed. 
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Parallel computing is receiving a rapidly increasing amount of attention. In 
theory, a collection of processors that operate in parallel can achieve substan
tial speedups. In practice, technological developments are leading to the actual 
construction of such devices at low cost. Given the inherent limitations of trad
itional sequential computers, these prospects appear to be very stimulating for 
researchers interested in the design and analysis of combinatorial algorithms. 

In this paper, we attempt to give a tutorial introduction to the literature on 
parallel computers and algorithms that is relevant for the area of combinatorial 
optimization. For a more complete survey which is reasonably up to date until 
July 1983, we refer to our annotated bibliography [Kindervater & Lenstra 
1985]. 

The organization of the paper is as follows. 
Section 1 is concerned with machine models designed for parallel computa

tions. Theoretical as well as practical models are described. While in many 
theoretical models the processors communicate through a common memory 
without delay, in more realistic models the communication is achieved through 
a specific interconnection network. Such networks are illustrated on the prob
lems of matrix multiplication, determining a transitive closure, and finding a 
minimum spanning tree. In later sections, we will restrict ourselves to theoreti
cal models, which can usually be simulated fairly efficiently by models with a 
specific interconnection network. 

Section 2 deals with the complexity theory for parallel computations. Given 
the basic distinction between membership of 'iP and completeness for ~':P in 
sequential computations, we consider the speedups possible due to the 



164 G.A.P. Kindervater, J.K. Lenstra 

introduction of parallelism. Within the class q]l, this leads to a distinction 
between 'very easy' problems, which are solvable in polylogarithmic parallel 
time, and the 'not so easy' ones, which are log space complete for qp_ 

Section 3 gives examples of polylog parallel algorithms for elementary prob
lems like finding the maximum and sorting, for finding shortest paths, and for 
two problems from scheduling theory. 

Section 4 discusses the log space completeness for qf of the linear program
ming problem and the maximum network flow problem. 

Section 5 reviews the use of parallelism in enumerative methods for 0Lq]l-hard 
problems, such as dynamic programming for the knapsack problem and 
branch and bound for the traveling salesman problem. 

The reader will not fail to observe that the algorithms presented in this 
paper do not rely on the sophisticated refinements for sequential algorithms 
developed in the past two decades but go back to the simple and explicit basic 
principles of combinatorial computing. In that sense (and recent, more 
advanced achievements notwithstanding), parallelism in combinatorial optimi
zation is still in its infancy and holds many promises for a further development 
in the near future. 

1. MACHINE MODELS 

Many architectures for parallel computations have been proposed in the litera
ture. Some of these machines actually exist or are being built. Other models 
are useful for the theoretical design and analysis of parallel algorithms, while 
their realization is not feasible due to physical limitations. 

The most widely used classification of parallel computers is due to [Flynn 
1966]. Flynn distinguishes four classes of machines ( cf. Figure 1 ). 

(1) SISD (single instruction stream, single data stream). One instruction is 
performed at a time, on one set of data. This class contains the traditional 
sequential computers. 

(2) SIMD (single instruction stream, multiple data stream). One type of 
instruction is performed at a time, possibly on different data. An 
enable/ disable mask selects the processing elements that are allowed to per
form the operation on their data. The ICL/DAP (Distributed Array Proces
sor) belongs to this class. 

(3) MISD (multiple instruction stream, single data stream). Different instruc
tions on the same data can be performed at a time. This class has received 
very little attention so far. 

(4) MIMD (multiple instruction stream, multiple data stream). Different 
instructions on different data can be performed at a time. There are two types 
of MIMD computers: the processors of a synchronized MIMD machine per
form each successive set of instructions simultaneously; the processors of an 
asynchronous MIMD machine run independently and wait only if information 
from other processors is needed. The Denelcor/HEP (Heterogeneous Element 
Processor) is an example of an asynchronous MIMD machine. 

If one considers the many types of algorithms that are suitable for execution 
on parallel computers, then both ends of the spectrum can be characterized in 
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FIGURE 1. The classification of Flynn. 
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a way that resembles the above distinction between the two types of MIMD 
machines. Systolic algorithms lead to highly synchronized computations, where 
the processing elements act rhythmically on regular streams of data passing 
through the (SIMD or synchronized MIMD) machine. Typical examples are 
the matrix multiplication algorithm introduced later in this section and the 
dynamic programming recursions in Section 5. Distributed algorithms lead to 
asynchronous processes, in which the processors perform their own local com
putations and communicate by sending messages every now and then. Branch 
and bound (see Section 5) lends itself to this approach. 

Flynn's classification is not concerned with the way in which information is 
transmitted between the processors. This is dealt with by Schwartz [Schwartz 
1980], who distinguishes between paracomputers and ultracomputers. 

In a paracomputer, the processors have simultaneous access to a shared 
memory, which allows for communication between any two processors in con
stant time. A further distinction is based on the way in which shared memory 
computers handle read and write conflicts, which occur when several processors 
try to read from or to write into the same memory location at the same time. 
Paracomputers are of great theoretical interest, but current technology prohi
bits their realization. 

In an ultracomputer, the processors communicate through a fixed interconnec
tion network. Such a network can be viewed as a graph with vertices 
corresponding to processors and (undirected) edges or (directed) arcs to inter
connections. Two parameters of the graph are important in this context: the 
maximum vertex degree d 1, which should be bounded by a constant on 
grounds of practical feasibility, and the maximum path length d2 (the 'diame
ter'), which should grow at most logarithmically in the number p of processors 
to ensure fast communication. 
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( i) Mesh connected 
network, q = 4. 

(iv ) Perfect shuffle 
network, d = 3. 

(ii) Cube connected 
network, d = 3. 
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(iii) Cube connected cycles 
network, d = 3. 

( v ) Binary trees 
network, d = 3. 

FIGURE 2. Five interconnection networks. 

Of the many interconnection networks that have been proposed, five are 
briefly described below. They are illustrated in Figure 2. 

(i) Two-dimensional mesh connected network [Unger 1958]. Each processor is 
identified with an ordered pair (i,j) (i,j = l, ... ,q), and processor (i,j) is con
nected to processors (i+ l,j) and (i,j+ 1), provided they exist. Note that 
d1 = 4 and d2 = 2(q-- l) = 0(Vp). 

(ii) Cube connected network [Squire & Palais 1963]. This can be seen as a 
d-dimensional hypercube with 2d processors at the vertices and interconnec
tions along the edges. Note that d 1 = d2 = d = logp. (All logarithms in this 
paper have base 2.) 

(iii) Cube connected cycles network [Preparata & Vuillemin 1981]. This is a 
cube connected network with each of the 2d processors replaced by a cyclicly 
connected set of d processors; each of them has two cycle connections and one 
edge connection. This yields d 1 = 3 and d2 = 0(logp). 

(iv) Perfect shuffle network [Stone 1971]. There are p = 2d processors with 
interconnections (i, 2i -1), (i +pl2,2i), (2i - l,2i) for i = l, ... ,p/2. The first 
two types of interconnections imitate a perfect shuffle of a deck of cards. 
Here, d 1 = 3 and d2 = 2d- l = 0(logp). 

(v) Binary trees network [Bentley & Kung 1979]. There are p = 3·2d -2 
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processors, interconnected by two binary trees with common leaves. The 2d 
processors corresponding to these leaves perform the actual computations. 
The other 2d -1 processors in the first tree (an out-tree) send the data down to 
their descendants, and those in the second tree (an in-tree) combine the results 
from their ancestors. An additional 'master processor' controls the network by 
providing the input for one root and receiving the output from the other. Note 
that d 1 = 3 and d2 = E>(logp). 

All these networks can simulate each other quite efficiently; see [Siegel 1977, 
1979) for details. Still, it appears that the cube connected cycles and perfect 
shuffle networks are reasonably versatile, while the mesh connected and binary 
trees networks have been designed for more restricted types of computations. 
Their suitability for their limited purpose will be demonstrated on some exam
ples below. 

The quality of the parallelization of an algorithm will be judged on the 
resulting speedup, which is the running time of the best sequential implementa
tion of the algorithm divided by the running time of the parallel implementa
tion using p processors, and the processor utilization, which is the speedup 
divided by p. The best one can hope to achieve is a speedup of p and a proces
sor utilization of 1. Note that these concepts are defined here relative to a 
given algorithm, irrespective of the possible existence of more efficient sequen
tial algorithms for the problem at hand. 

ExAMPLE 1. Matrix multiplication. Two n Xn matrices A = (au) and B = (b;j) 
can be multiplied in O(n) time on an n X n mesh connected network. The basic 
idea is the use of the skewed input scheme illustrated in Figure 3. At each step 
of the computation, matrix A makes one step to the right, matrix B goes one 
step down, and each processing element (i,j) multiplies its current values a;k 
and bkJ and adds the result into its accumulator (which starts at 0). It is easily 
verified that after 2n - 1 stages processor (i,j) contains the. required value 
~k a;kbkJ and that the procedure is best possible in terms of speedup and pro
cessor utilization. This is a typical example of a systolic algorithm performed 
on an SIMD machine and suitable for VLSI implementation. 

EXAMPLE 2. Transitive closure [Guibas, Kung & Thompson 1979). The transi
tive closure of a directed graph G has an arc (i,j) if and only if G has a path 
from i to j. If G has n vertices, the algorithm from Example 1 can be applied 
to find the transitive closure in O(n) time using n2 mesh connected processors. 
Starting with A given by the adjacency matrix of G (i.e., au = 1 if G has an 
arc (i,j) and au = 0 otherwise) and B =A, one executes the matrix multiplica
tion algorithm three times, with the modifications that addition is replaced by 
maximization and that any element au or biJ that passes through processor 
(i,j) is updated with the value of the accumulator. A correctness proof of this 
procedure can be found in the above reference. 

EXAMPLE 3. Membership testing. Given a set S of n elements and an element e, 
one can test whether e ES in O(logn) time on a binary trees network with 
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B: b44 

b43 b34 

b42 b33 b24 
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b31 b22 b13 
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b11 i 
A: a14 a13 a12 a11 
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a34 a33 a32 a31 

a44 a43 a42 a41 

FIGURE 3. Matrix multiplication on a mesh connected network. 

d = r1og n 1- Denote the processors corresponding to the common leaves by 
P; (i = l, ... ,2d) and suppose that P; stores the ith element e; of S (i -,;;:;,.n ). It 
takes d steps for the processors in the top tree to send e down, one step for the 
P;'s to check whether e; = e, and d steps for the processors in the bottom tree 
to compute the disjunction of the results. 

As an extension, one can test the membership of S for m elements 
e(l>, ... ,e<m) in O(m + logn) time by pipelining the flow of information through 
the network. As soon as e(ll leaves the first processor, e<2> is sent to it; and, in 
general, at each step all data are going down one level. 

By asking the processors in the bottom tree to do a bit more than comput
ing logical disjunctions, one can use the same model to find the minimum of n 
elements and to compute the rank of a given element in O(logn) time. We 
leave details to the reader. 

EXAMPLE 4. Minimum spanning tree [Bentley 1980). Given a complete 
undirected graph G with vertex set { 1, ... ,n} and a length cij for each ed~e 
{i,j}, a spanning tree of G of minimum total length can be found in O(n ) 
time by an algorithm from [Prim 1957; Dijkstra 1959). The algorithm is based 
on the following principle. Let T(V) be the collexion of edges in a minimum 
spanning tree of the subgraph of G induced by the subset V of vertices. If 
i* ~V and J* EV are such that c;•r = min;~V,JEv{cij}, then 
T(V LJ {i*}) = T(V) LJ { {i*,j*} }. 
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The algorithm starts with T( {I}) = 0. At each iteration, a minimum span
ning tree on a certain vertex set V with edge set T(V) has been constructed 
and, for each i ~ V, a 'closest tree vertex' }; E V and a corresponding distance l; 
are known, i.e., l; = c;j, = minj e v{ cij}. One selects an i* ~ V for which 
l;• = min;~v{l;}, adds i* to V and {i*,J;•} to T(V), and updates the values}; 
and l; for the remaining vertices i ~ V. There are n - 1 iterations, each requir
ing O(n) time. 

It is not hard to implement the algorithm on a binary trees network with 
d = flog n 7 . The master processor stores the set T of spanning tree edges. 
Processor P; keeps track of}; and l; and is able to compute any c;. in constant 
time. Each command that is sent down the tree is executed only by those P;'s 
that are turned on. 

We initialize by setting T = 0 and, for i = 2, ... ,n, turning on P; and set
ting }; = I and l; = c; 1• In each of the n - I iterations, we first apply the 
minimum-finding procedure to determine i* and add { i* ,};•} to T; we next 
send i* down in order to turn off P;• forever ( since now i* E V) and to turn off 
each P; with l; ~C;;• temporarily for the rest of this iteration (since no update 
is necessary); and we finally instruct all remaining P;'s to set }; = i* and 
l; = C;;•. 

Since each iteration takes O(log n) time, this parallel version of the algo
rithm has a running time of O(nlogn) using O(n) processors and hence a pro
cessor utilization of only 0(1/logn). We cannot improve on this by pipelining 
the loop, since each iteration needs ~ormation from the previous one. How
ever, we can use a smaller network with d = [1og(n/logn)l, in which each P; 
takes care of r1ogn l vertices and performs all computations for them sequen
tially. This modified algorithm still runs in O(nlogn) time, but now using 
O(n/logn) processors with a processor utilization of 0(1). 

In the remaining sections, we will restrict ourselves to the paracomputer 
model, which lends itself better to complexity considerations and to the expla
nation of parallel algorithms. The implementation of such algorithms on a 
specific ultracomputer model is usually straightforward. 

2. COMPLEXITY THEORY 

The purpose of this section is to present an informal introduction to those con
cepts from the complexity theory for parallel computing that may have some 
impact on the theory of combinatorial optimization. The interested reader is 
referred to [Cook 1981] for a more thorough exposition and to [Johnson 1983, 
Section 2] for a very readable review ( on which this section is largely based). 

Central to this area is a hypothesis known as the parallel computation thesis 
[Chandra, Kozen & Stockmeyer 1981; Goldschlager 1982]: time bounded paral
lel machines are polynomially related to space bounded sequential machines. That 
is, for any function T of the problem size n, the class of problems solvable by 
a machine with unbounded parallelism in time T(n )°<1> (i.e., polynomial in 
T(n)) is ~ual to the class of problems solvable by a sequential machine in 
space T(n) <1>. This thesis is a theorem for several 'reasonable' parallel machine 
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models and several 'well-behaved' time bounds; see [Van Emde Boas 1985) for 
a survey. 

The parallel computation thesis holds, for example, in the case that the 
machine model is a PRAM (Parallel Random Access Machine) and 
T(n) = n°<1> (i.e., a polynomial function of problem size). The PRAM is a 
synchronized machine with an unbounded number of processors and a shared 
memory, which allows simultaneous reads from the same memory location but 
disallows simultaneous writes into the same memory location. The computa
tion starts with one processor activated; at any step, an active processor can 
do a standard operation or activate another processor; and the computation 
stops when the initial processor halts. 

According to the parallel computation thesis, the class of problems solvable 
by a PRAM in polynomial time is equal to 0'sPACE, the class of problems solv
able by a sequential machine in polynomial space. In view of the apparent 
difficulty of many problems in 0'sPACE (such as the 0'SPACE-complete and 'VL0'
complete ones), the PRAM is an extremely powerful model. It is of interest to 
see how it affects the complexity of the problems in 0', which are solvable by a 
sequential machine in polynomial time. 

It turns out that many problems in 0' can be solved in polylog parallel time 
(log n )°()), i.e., in time that is polynomially bounded in the logarithm of the 
problem size n. Some examples are given in Section 3; other, more compli
cated, examples are finding a maximum flow in a planar graph [ Johnson & 
Venkatesan 1982) and linear programming with a fixed number of variables 
[Megiddo 1982). By the parallel computation thesis, these problems would 
form the class P0LYL0GSPACE of problems solvable in polylog sequential space. 
They can be considered to be among the easiest problems in 0', in the sense 
that the influence of problem size on solution time has been limited to a 
minimum. No single processor needs to have detailed knowledge of the entire 
problem instance. (It should be noted here that a further reduction to subloga
rithmic solution time is generally impossible. One reason for this is that a 
PRAM needs O(log n) time to activate n processors; a similar reason is that in 
any realistic model of parallelism a constant upper bound on the maximum 
'fan out' d I implies a logarithmic lower bound on the minimum 'communica
tion time' d2.) 

On the other hand, 0' contains problems that are unlikely to admit solution 
in polylog parallel time. These are the problems that have been shown to be 
log space complete for 0', i.e., that belong to 0' and to which any other problem 
in 0' is reducible by a transformation using logarithmic work space. Examples 
will be discussed in Section 4; they include general linear programming and 
finding a maximum flow in an arbitrary graph. If any such problem would 
belong to P0LYL0GSPACE, then it would follow that 0' C P0LYL0GSPACE, which 
is not believed to be true. Hence, their solution in polylog sequential space or, 
equivalently, polylog parallel time is not expected either. Any solution method 
for these hardest problems in 0' is likely to require superlogarithmic time and 
is, loosely speaking, probably 'inherently sequential' in nature. 

We have thus arrived at a distinction within 0' between the 'very easy' 
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problems, which can be solved in polylog parallel time, and the 'not so easy' 
ones, for which a dramatic speedup due to parallelism is unlikely. 

The picture of the PRAM model as sketched above is in need of some 
qualification. The model is theoretically very useful, but its unbounded paral
lelism is hardly realistic. The reader will have no difficulty in verifying that a 
PRAM is able to activate a superpolynomial number of processors in subpoly
nomial time. If a polynomial time bound is considered reasonable, then cer
tainly a polynomial bound on the number of processors should be imposed. It 
is a trivial observation, however, that the class of problems solvable if both 
bounds are respected is simply equal to 6J. Within this more reasonable model, 
hard problems remain as hard as they were without parallelism. 

Discussions along these lines have led to the consideration of simultaneous 
resource bounds and to the definition of new complexity classes. For example, 
Nick (Pippenger)'s Class qJ(/2, contains all problems solvable in polylog parallel 
time on a polynomial number of processors, and Steve (Cook)'s Class ~econ
tains all problems solvable in polynomial sequential time and polylog space. 
Some sort of extended parallel computation thesis might suggest that qJ(/2, = 
~e. This is a major unresolved issue in complexity theory, and outside the 
scope of this introduction. We refer to [Johnson 1983, Section 2) for further 
details and more references. 

3. POLYLOG PARALLEL ALGORITHMS 
We will now describe polylog parallel algorithms for six problems. Examples 5, 
6 and 7 deal with basic operations on a set of numbers, Example 8 discusses 
the shortest paths problem, and Examples 9 and 10 are concerned with the 
scheduling of a set of jobs on identical parallel machines. Other problems that 
are solvable in polylog parallel time have been mentioned in Section 2 and will 
return in Section 4. 

The algorithms will be designed to run on an SIMD machine with a shared 
memory. Simultaneous reads are permitted and simultaneous writes are prohi
bited; the former assumption is not essential but simplifies the exposition. We 
note that the polylog parallel algorithms referred to in this paper require a 
polynomial number of processors, so that the problems in question belong to 
qJ(/2,_ 

In the PIDGIN ALGOL procedures in this section, we write 

par [a=E;;i=E;;z) s; 

to denote that the statements s; are to be executed in parallel for all values of 
the index i in the given range. 

ExAMPLE 5. Maximum finding. Given n numbers, one wishes to find their max
imum. We assume, for convenience, that n = 2m for some integer m and that 
the numbers are given by an,an+l,···,a 2n-l· Consider the following procedure: 

for l+-m -1 downto Odo 
par [2':,;;;;;J:,;;;;;2'+ 1 -1] ai+-max{a2j,a2j+I }. 
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FIGURE 4. Maximum finding: an instance with n = 8. 

The computation is illustrated by means of a binary tree in Figure 4. At step /, 
the values corresponding to the nodes at level / of the tree are calculated. At 
the end, a I is equal to the desired maximum. 

The algorithm requires O(logn) time and n/2 processors. We can improve 
on this by applying a device similar to the one used in the last paragraph of 
Example 4: each processor has logn data assigned to it and computes their 
maximum sequentially, before the above procedure is executed. The resulting 
algorithm still runs in O(log n) time, but now using only r n /log n l processors 
with a processor utilization of 0(1 ). 

ExAMPLE 6. Partial sums [Dekel & Sahni 1983a]. Given n numbers 
an,an + 1, ••• ,a2n -I with n = 2m, one wishes to find the partial sums 
an+ ... + an+ 1 for j = O, ... ,n - 1. Consider the following procedure: 

for z-m -1 downto Odo 
par [21 ,;;;;j,;;;;2' + 1 -1] a1- a21+a11 + 1; 

b1-a1; 
for z- 1 to m do 

par [21 ,;;;;j ,;;;;2' + 1 -1] b1- if j odd then b(J- l)t2 else b112 -a1 +I· 

The computation is illustrated in Figure 5. In ·the first phase, represented by 
the solid arrows, the sum of the a/s is calculated in the same way as their 
maximum was calculated in Example 5. Note that the a-value corresponding to 
a non leaf node is set equal to the sum of all a-values corresponding to the 
leaves descending from that node. In the second phase, represented by the dot
ted arrows, each parent node sends a b-value ( starting with b 1 = a 1) to its 
children: the right child receives the same value, the left one receives that value 
minus the a-value of his brother. The b-value of a certain node is therefore 
equal to the sum of all a-values of the nodes of the same generation, except 
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FIGURE 5. Partial sums: an instance with n = 8. 

those with a higher index. This implies, in particular, that at the end we have 
bn +J = an+ ... +an +j for j = O, ... ,n -1. 

The algorithm requires 0(logn) time and n processors. As before, this can 
be improved to 0(logn) time and 0(n/logn) processors. 

EXAMPLE 7. Sorting [Muller & Preparata 1975]. Given n numbers a 1, ••• ,an, one 
wishes to renumber them such that a 1 ,s;;; ___ ,s;;;an. We assume, for simplicity, that 
a; =I= a1 if i =I= j. Consider the following procedure: 

par [l:s;;;;i,j:s;;;;n] PiJ- if a;:s;;;;a1 then 1 else O; 
par [l,s;;;j:s;;;;n] 1r1- sum{piJ I 1,s;;;i:s;;;;n }; 
par [l ,s;;;j ,s;;;n] a.,1 - a1. 

The algorithm is based on enumeration sort: the position 1r1 in which a1 should 
be placed is calculated by counting the a;'s that are no greater than a1. There 
are three phases: . 

(i) computation of the relative ranks P;/ n 2 processors, 0(1) time - or 
r n 2 /log n l processors, 0(log n) time; 

(ii) computation of the positions 77/ n r n /log n l processors, 0(log n) time 
(by application of the first phase of the algorithm of Example 6); 

(iii) permutation: n processors, 0(1) time. -
The algorithm requires 0(log n) time and O(n 2 /log n) processors. Simultane

ous reads occur in the first phase, but there is a way to avoid them within the 
same time and processor bounds. As sequential enumeration sort takes 0(n 2 ) 

time, the processor utilization is 0(1). 

EXAMPLE 8. Shortest paths [Dekel, Nassimi & Sahni 1981]. Given a complete 
directed graph with vertex set { l, ... ,n} and a length ciJ for each arc (i,j), one 
wishes to find the shortest path lengths for all pairs of vertices. In [Lawler 
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1976] an algorithm is given which requires O(n 3 logn) time. It is based on 
matrix multiplication. Let <1-;f denote the length of a shortest path from vertex 
i to vertex j, containing no more than / arcs. Since a path from vertex i to ver
tex j consisting of at most 2i arcs can be split into two paths of no more than / 
arcs each, we have that J,f> = mink E ( 1, ... ,n} { J,Q + 4)}. Taking into account 
that a shortest path, if it exists, contains at most n - I arcs, we obtain the fol
lowing algorithm: 

par [l~i,j~n] <1-;J>-cu; 
for m- 1 to jlogn 1 do 

1-2m 
par [l~i,j~n] J,J-min{d;f/2>+czfj2> I l~k~n}. 

Application of the routine of Example 5 with maximization replaced by 
minimization yields an algorithm which requires O(log2 n) time and 
O(n 3 /logn) processors, with a processor utilization of 0(1). 

EXAMPLE 9. Preemptive scheduling [Dekel & Sahni 1983b]. Given m machines 
M; (i = I, ... ,m) and n jobs Jj, each with a processing time pj (j = I, ... ,n ), one 
wishes to find a preemptive schedule of minimum length. A preemptive 
schedule assigns to each Jj a number of triples (M;,s,t), where I~i~m and 
0~s~t, indicating that Jj is to be processed by M; from times to time t. A 
preemptive schedule is feasible if the processing intervals on M; are nonover
lapping for all i, and the processing intervals of Jj are nonoverlapping and 
have total length pj for all j. It is optimal if the maximum completion time of 
the jobs is minimum. 

An optimal schedule can be found in O(n) time by the classical wrap around 
rule from [McNaughton 1959]. The algorithm first computes a value t* which is 
an obvious lower bound on the minimum schedule length. It then constructs a 
schedule of length t* by considering the jobs in an arbitrary order and 
scheduling them in the m periods (0,t*), carrying over the part of a job that 
does not fit at the end of the period on M; to the beginning of the period on 
M; + 1• More formally: 

t*-max{max{pj I l~J,s;;;n},sum{pj I t,;;;;J,s;;;n}/m}; 
s-0; i- l; 
for J- 1 to n do 

if s+pj~t* 
then assign (M;,s,s+pj) toJj, 

s-s+pj 
else assign (M;,s,t*) and (M;+ 1,0,pj-(t*-s)) to Jj, 

s-pj-(t*-s), i-i + 1. 

An example is given in Figure 6. There are two global parameters that are 
updated sequentially as the job index j increases: the starting time s and the 
machine index i of Jj. We can calculate all starting times and machine indices 
simultaneously in logarithmic time, using the parallel procedures for finding 
the maximum and the partial sums from Examples 5 and 6 as subroutines: 
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FIGURE 6. Preemptive scheduling: an instance with m = 3 and n = 5. 

t*+-max{max{pi 11 =E;;J=E;;n },sum{pi I 1 :E;;j=E;;n }Im}; 
par [l =E;;J=E;;n) qi+- sum{pk I l=E;;k=E;;J-1 }; 
par [ 1 =E;;J =E;;n] 

si+-qi mod t*, ii+-Lq/t* J + 1, 
if Sj + Pi :s.;; t* 
then ass~gn (M;1 ,sj,sj +pi) to Ji 
else assign (M;1 ,sj,t*) and (M;1+i,O,pi-(t* -sj)) to Ji. 

This algorithm can be implemented to require O(logn) time and O(n/logn) 
processors with a processor utilization of 0(1). 

ExAMPLE 10. Scheduling fixed jobs [Dekel & Sahni 1983b]. Given n jobs Ji, 
each with a starting time si and a completion time ti (j = l, ... ,n ), one wishes 
to find a schedule on a minimum number of machines. A schedule assigns to 
each Ji a machine M;. It is feasible if the processing intervals (sj,ti) on M; are 
nonoverlapping for all i; it is optimal if the number of machines that process 
jobs is minimum. The problem is also known as the channel assignment prob
lem: n wires are to be laid out between given points in a minimum number of 
parallel channels, each of which can carry at most one wire at any point. 

An optimal schedule can be found in O(nlogn) time by the following simple 
rule. First, order the jobs according to nondecreasing starting times. Next, 
schedule each successive job on a machine, giving priority to a machine that 
has completed another job before. It is not hard to see that, at the end, the 
number of machines to which jobs have been assigned is equal to the max
imum number of jobs that require simultaneous processing. This implies 
optimality of the resulting schedule. 

For a polylog parallel implementation, we need a more detailed sequential 
description of the algorithm [Gupta, Lee & Leung 1979). We introduce an 
array u of length 2n containing all starting and completion times in nonde
creasing order; the informal notation 'uk ~ si' ('uk ~ ti') will serve to indicate 
that the kth element of u corresponds to the starting (completion) time of Ji. 
We also use a stack S of idle machines; on top of S is always the machine that 
has most recently completed a job, if such a machine exists. 
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FIGURE 7. Scheduling fixed jobs: an instance with n = 5. 

sort (s,,t,, ... ,sn,tn) in nondecreasing order in (u1, ... ,u2n) whereby, 
if tj = sk for some J & k, tj precedes sk; 

S - stack of n machines; 
fork- 1 to 2n do 

if uk ~ sj then take machine from top of S and assign it to Jj, 
if uk ~ tj then put machine assigned to Jj on top of S. 

Figure 7 illustrates the algorithm as well as its parallelization, which is 
described below. There are four phases. 

(i) First, we calculate the number aj of machines that are busy directly after 
the start of Jj and the number -rj of machines that are busy directly before the 
completion of Jj, for j = 1, ... ,n: 

sort (s,,t,, ... ,sn,tn) in nondecreasing order in (u1, ... ,u2n) whereby, 
if tj = sk for some J & k, tj precedes sk; 

par [l~k~2n] ak- if uk ~sj then 1 else -1; 
par [l~k~2n] !3k- sum{ a1 I 1 ~/~k}; 
par [l~k~2n] · 

if uk ~ sj then aj-/3k, 
if Uk~ tj then Tj-/3k + 1. 

Note that the number of machines we need is eqJ.1al to maxj{ aj }. 

(ii) For each Jj, we determine its immediate predecessor J .,,(j) on the same 
machine (if it exists). The stacking mechanism implies that this must be, 
among the Jk satisfying Tk = aj, the one that is completed last before the start 
of Jj; if no such job exists, then it is convenient to take Jj as its own predeces
sor: 

par [l~j~n] 
find k such that Tk = aj & tk = max { t1 I t1 ~sj, -r, = aj}, 
7r(J)- if k exists then k else J. 
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(iii), I = I 

(iii), I = 2 

(iii),/ = 3 

FIGURE 8. Scheduling fixed jobs: finding the first preceding job 
on the same machine. 
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(iii) For each Jj, we now turn J 'IT(J) into its first predecessor on the same 
machine. This is done by simultaneously collapsing the chains formed by the 
arcs (j,,r(j)) in a logarithmic number of steps (cf. Figure 8): 

for 1~ 1 to flognl do par [l~j:E;;;n] w(j)~w('TT(j)). 

(iv) Finally, we use the w(j)'s to perform the actual machine assignments: 

par [l~j~n] assign M 0 ,(/) toJj. 

Using the maximum, partial sums and sorting routines from Examples 5, 6 
and 7, we can implement this algorithm to require O(log n) time and 
O(n2/logn) processors. 

4. LoG SPACE COMPLETENESS FOR 6J' 
The first log space complete problem in 6J' was identified by Cook [Cook 1974]. 
It involves the solvability of a path system and is proved log space complete by 
a 'master reduction' in the same spirit as Cook's ~6J'-completeness proof for 
the satisfiability problem. We will not define the path problem here and prefer 
to start from a different point. 

ExAMPLE 11. Circuit value [Ladner 1975; Gold~hlager 1977]. Given a logical 
circuit consisting of input gates, AND gates, OR gates, NOT gates, and a single 
output gate, and given a truth value for each input, is the output TRUE or 
FALSE? Cf. Figure 9. 

The circuit value problem is trivially in 6J'. Ladner indicated how to simulate 
any polynomial time deterministic Turing machine by a combinatorial circuit 
with only AND and NOT gates in logarithmic work space. It follows that the 
problem is log space complete for 6J'. 

Goldschlager extended this result to the cases of monotone circuits, which 
have only AND and OR gates, and planar circuits, which have a cross free 
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FIGURE 9. A logical circuit. 

planar embedding, by giving log space transformations from the circuit value 
problem. 

EXAMPLE 12. Linear programming [Dobkin, Lipton & Reiss 1979; Valiant 
1982). Given a finite system of linear equations and inequalities in real vari
ables, does it have a feasible solution? 

Linear programming is known to be in ~ [Khachian 1979). Dobkin, Lipton 
& Reiss established log space completeness for ~ of the problem by giving a 
log space transformation from the unit resolution problem, a variant of the 
satisfiability problem, that was already known to be log space complete for ~
Valiant gave a more straightforward transformation, starting from the circuit 
value problem. 

The idea is to associate a variable x1 with the Jth gate, such that x1 = l if 
the gate produces the value TRUE and x1 = 0 otherwise. More explicitly, 

if gate j is then we introduce the 

· an input gate with value TRUE, 

· an input gate with value FALSE, 

· an AND gate with inputs from gates h and i, 

· a NOT gate with input from gate i, 
· the output gate with input from gate i, 

equations and inequalities 
• Xj = l, 
• Xj = 0, 
· Xj .,;;; Xh, Xj ,,.;;; X;, 

Xj ~ 0, X1 ~ xh+x;-1, 

· x1 = l-x;, 
• Xj = X;, Xj = l. 

OR gates may be excluded. We leave it to the reader to verify that each feasi
ble solution is a 0-1 vector, that there exists a feasible solution if and only if 
the circuit value is TRUE, and that the transformation requires logarithmic 
work space. 
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Simple refinements of this transformation show that linear programming 
remains log space complete for <!J' if all coefficients are equal to - 1, 0 or 1, and 
each row and column of the constraint matrix contains at most three entries. 

ExAMPLE 13. Maximum flow [Goldschlager, Shaw & Staples 1982). Given a 
directed graph with specified source and sink vertices and with capacities on 
the arcs, and given a value v, does the graph have a flow from source to sink 
of value at least v? 

The maximum flow problem belongs to <!J' [Edmonds & Karp 1972). It was 
shown to be log space complete for <!J' by a transformation from the monotone 
circuit value problem. The transformation simulates the implications of 
boolean inputs through a circuit with n AND and OR gates by integer flows 
through a network with the gates and an additional source and sink as vertices 
and with arc capacities of 0(2n). 

We conclude this section by mentioning two related results of a more posi
tive nature. 

(i) The maximum flow problem is solvable in polylog parallel time in the 
case of planar graphs, due to the relation of this case to the shortest path prob
lem [Johnson & Venkatesan 1982). 

(ii) The problem is solvable in random polylog parallel time in the case of 
unit capacities and in the more general case that the capacities are encoded in 
unary. This follows, through standard transformations, from the result that the 
maximum cardinality matching problem is in '!it~ the class of problems solv
able by a randomized algorithm in polylog time on a polynomial number of 
processors [Karp, Upfal & Wigderson 1985). The complexity of the maximum 
cardinality matching problem with respect to deterministic parallel computa
tions is an open question, even for bipartite graphs. 

5. ENUMERATIVE METHODS 

The optimal solution to 'Dt<!J'-hard problems is usually found by some form of 
implicit enumeration of the set of all feasible solutions. In this section we will 
consider the parallelization of the two main types of enumerative methods: 
dynamic programming and branch and bound. We have already seen that, from 
a worst case point of view, intractability and superpolynomiality are unlikely 
to disappear in any reasonable machine model for parallel computations. In a 
more practical sense, parallelism has much to offer to extend the range in 
which enumerative techniques succeed in solving. problem instances to optimal
ity. Little work has been done in this direction, but we feel that the design and 
analysis of parallel enumerative methods is an important and promising 
research area. 

Dynamic programming algorithms for combinatorial problems typically per
form a regular sequence of many highly similar and quite simple instructions. 
Hence, they seem to be suitable for implementation in a systolic fashion on 
synchronized MIMD or even SIMD machines. This has been observed in 
[Casti, Richardson & Larson 1973; Guibas, Kung & Thompson 1979) and will 
be illustrated on the knapsack problem in Example 14. 



180 G.A.P. KindeNater, J.K. Lenstra 

Branch and bound methods generate search trees in which each node has to 
deal with a subset of the solution set. Since the instructions performed at a 
node very much depend on the particular subset associated with that node, it 
is more appropriate to implement these methods in a distributed fashion on 
asynchronous MIMD machines. An initial analysis of distributed branch and 
bound, in which the processors communicate only to broadcast new solution 
values or to redistribute the remaining work load, is given in [El-Dessouki & 
Huen 1980]. In a sequential branch and bound algorithm, the subproblems to 
be examined are given a priority and from among the generated subproblems 
the one with the highest priority is selected next. In a parallel implementation, 
it depends on the number of processors which subproblems are available and 
thus how the tree is searched. One can construct examples in which p proces
sors together are slower than a single processor, or more than p times as fast. 
These anomalies are analyzed in [Burton, Huntbach, McKeown & Rayward
Smith 1983; Lai & Sahni 1984] and illustrated on the traveling salesman prob
lem in Example 15. 

Ex.AMPLE 14. Knapsack. Given n items 1, each with a profit cj and a weight aj 
(j = l, ... ,n ), and given a knapsack capacity b, one wishes to find a subset of 
the items of maximum total profit and of total weight at most b. The problem 
is ~<!J>-hard [Garey & Johnson 1979]. 

It is convenient to introduce the notation 

C(m,n,b) = maxsc{m, ... ,n} {~jEScj I ~jESaj'.s;;;b }. 

According to Bellman's principle of optimality, one attains the maximum 
profit C(I,n,b) by excluding item n and taking the profit C(l,n - l,b) or by 
including item n and adding Cn to the profit C(l,n -1,b-an)- A recursive 
application of this idea gives the following dynamic programming algorithm 
[Bellman 1957]: 

for z-o to b do C(l,O,z)-0; 
for 1- 1 ton do 

for z- 0 to aj-1 do C(l,1,z)- C(l,1- l,z), 
for H--aj to b do C(l,1,z) -max{ C(l,1- l,z),C(l,1-1,z -aj)+c1 }. 

The algorithm runs in O(nb) time. (Note that this is exponential in the prob
lem size. Since it is polynomial in the problem data, it is called 'pseudopolyno
mial'.) The obvious parallelization is to handle the stages 1 (0,;;;,_1,;;;,_n) sequen
tially and, at stage 1, to handle the states (1,1,z) (O,;;;,_z,;;;,_b) in parallel [Casti, 
Richardson & Larson 1973]: 

ALGORITHM KSI 
par [O,;;;,_z,;;;,_b] C(l,O,z)-0; 
for 1- 1 ton do 

par [O..;;;z<aj] C(l,1,z)- C(l,1-1,z), 
[aj..;;;z..;;;b] C(l,1,z)-max{C(l,1-1,z),C(l,1-1,z -aj)+cj }. 
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This requires O(n) time and O(b) processors with a processor utilization of 
0(1). 

We can achieve a running time that is sublinear inn by observing that 

C(l,n,b) = maxo.;;;y.;;;b{C(l,m,b-y)+C(m + l,n,y)} 

for any m E { l, ... ,n -1 }. It is of interest to note that this more general recur
sion was proposed in [Bellman & Dreyfus 1962] in the context of parallel com
putations. If we choose m = n -1, the previous recursion results as a special 
case. If we choose m = n /2, then we get another dynamic programming algo
rithm for the knapsack problem (where it is assumed that n is a power of 2): 

ALGORITHM KS2 
par [I:o;;;;;f,s;;;;n] par [0:o;;;;;z<a1] C(j,J,z)~0, 

[a1:o;;;;;z:o;;;;;b] C(j,J,z)~c1; 
for,~ 1 to logn do 

k~i, 
par [0:o;;;;;J<nlk] par [O:o;;;;;z:o;;;;b] C(jk+ l,jk+k,z) 

~maxo.;;;y.;;;z{ C(jk + l,jk +½k,z -y)+ C(jk +½k + l,jk +k,y)}. 

The algorithm requires O(nb 2) time on a single processor and O(logn logb) 
time on O(nb2 !logb) processors. While the parallel running time is probably 
the best one can hope for (it might be called 'pseudopolylogarithmic'), the 
number of processors is huge. This number can be reduced by a factor of 
log n log b by application of the first algorithm to produce starting solutions for 
the second algorithm. The modified algorithm has three phases: 

(i) Separate then items into g groups of nlg items each. 
(ii) Apply Algorithm KSI to each group, in parallel: O(n!g) time, O(gb) 

processors. 
(iii) Apply Algorithm KS2, starting with g groups rather than with n items: 

O(logg logb) time, O(gb 2 /logb) processors. 
we now set g = r n I (log n log b) l to arrive at an algorithm that still requires 

O(logn logb) time but using 'only' O(nb 2 /(logn (logb)2)) processors. 

Ex.AMPLE 15. Traveling salesman [Pruul 1975]. Given a complete graph with n 
vertices and a weight for each edge, one wishes to find a Hamiltonian cycle 
(i.e., a cycle passing through each vertex exactly once) of minimum total 
weight. 

A traditional branch and bound method for .the solution of this '?)t,0>-hard 
problem uses a bounding mechanism based on the linear assignment relaxa
tion, a branching rule based on subtour elimination, and a strategy for select
ing new nodes for examination based on depth first tree search. The details are 
of no concern here and can be found in [Lawler, Lenstra, Rinnooy Kan & 
Shmoys 1985]. Figure lO(a) shows a search tree in which the nodes have been 
labeled in order of examination. 

Pruul designed a parallel version of this method for an asynchronous MIMD 
machine. Each processor performs its own depth first search; when it 
encounters a node that has already been selected by another processor, it 
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(a) Sequential search; node t is selected at time t. 

(b) Parallel search by three processors; 
node t Ip is selected at time t by processor p. 

FIGURE 10. Depth first tree search. 

selects in the subtree rooted by that node an unexamined node at the highest 
level. Figure IO(b) illustrates the process. 

The lack of parallel hardware forced Pruul to simulate the algorithm on a 
sequential computer. An empirical analysis for ten 25-vertex problems yielded 
average speedups that were greater than the number of processors. This may 
be confusing at first sight, but the explanation is simple and lies outside the 
area of parallel computing. The simulated parallel algorithm is nothing but a 
sequential algorithm that is based on a mixture of depth first and breadth first 
tree search. Such complex strategies have not yet been explored in any detail 
and might be quite powerful. 
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