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PREFACE

These proceedings cover the lectures given in the seminar ''Mathematical
Structures in Field Theories", held during the academic year 1982-1983.
The first part concerns papers, related to "Quantum Field Theory", and the
second part is devoted to mathematical methods in connection with Yang-Mills

theories.

Chapter 1 by P.J.M. Bongaarts deals with the method of Feynman's path inte-
gral and its application to the anharmonic oscillator as a simplified model

for perturbative quantum field theory.

E.A. de Kerf treats in Chapter 2 topological solitons in several dimensions,
Derricks theorem and in particular, a gauge model in (1+2) dimension.
The first part of these proceedings is concluded with a contribution by
J. Buur and E.A. de Kerf, where a geometrical description of fields and La-
grangians is presented in order to define the generating functional for

Green's functions.

Chapter 4 and 5 by H.G.J. Pijls and J.W. de Roever are devoted to Ward's

construction of Yang-Mills potentials.

Chapter 6 by R. Martini is concerned with representations of holomorphic so-
lutions of the massless field equations; these solutions are viewed as ele-

ments of a cohomology group.

Because of the importance of cohomology for field equations Chapter 7 by
J.W. de Roever, gives a survey of cohomology theory, in particular, coho-

mology of sheafs.

The same author treats in the final Chapter the Penrose transformation, which
is a very suitable tool for solving linear as well as nonlinear field equations.
The author points out the relation between this transformation and the Ward

construction.

Finally, we thank the Centre for Mathematics and Computer Science for the

excellent technical production of this book.

The editors,

E.M. de Jager
H.G.J. Pijls






FEYNMAN'S PATH INTEGRAL. THE ANHARMONIC OSCILLATOR AS A SIMPLIFIED

MODEL FOR PERTURBATIVE QUANTUM FIELD THEORY

by

P.J.M. BONGAARTS
Lorentz Institute, University of Leiden

SUMMARY

Feynman's path integral is at present widely used in quantum field theory,
in particular as a means for generating in a systematic way the formal per-
turbation expansion of matrix elements of the S-operator.

As a mathematical model a quantum field is equivalent to an infinite
system of oscillators. Instead of venturing directly into the full complex-
ities of quantum field theory, one may therefore first study the essential
features of the path integral method in the simple context of a single quan-
tum oscillator.

With this in mind we shall in these lectures discuss the Feynman path
integral for one-dimensional non-relativistic quantum mechanics, first quite
generally, and then specialized to the particular case of an oscillator,
with emphasis on the derivation of the formal series for the transition am-

plitudes under anharmonic perturbation.
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1. INTRODUCTION

Feynman's path integral plays a central rSle in present day quantum field
theory. It has, in particular, shown its value in the development of non-
abelian gauge theories, models that go back to the work of Yang and Mills
in the fifties and that now dominate elementary particle theory.

Mathematically a quantum field can be understood as an infinite system
of quantum oscillators. For a free field this means uncoupled harmonic os-
cillators. The physically more interesting case of a field with interaction
is then a perturbation by non-linear anharmonic coupling terms. The effec-
tiveness of the path integral method in field theory is strongly connected
with this oscillator picture, which may therefore serve as an excellent ve-
hicle for explaining its essential features.

It is with this in mind that we shall give an exposition of Feynman's
path integral for non-relativistic, one dimensional quantum mechanics, more
particularly for a one dimensional harmonic oscillator, free and with vari-
ous perturbations. This will be done in such a way that it can indeed be
used as an introduction to the subject of Feynman's path integral in quan-
tum field theory.

Our discussion will stress aspects of mathematical structure, however,
without much pretence of analytical rigour. This can hardly be otherwise
as most of the path integral method even for non-relativistic quantum me-
chanics exists still only on a heuristic level.

The path integral concept in the traditional version that we shall pre-
sent here applies only to boson theories. An analogue for the fermion case
has been developed. Superficically it looks very similar but it is mathe-
mathically very different. The fermion path integral is not an integral,
not even in a heuristic sense. Although of great interest it will not be

discussed here.



2, THE FORMALISM OF QUANTUM THEORY

The description of a physical system in quantum theory has the following

main features:

1. There is a complex Hilbert space H. The unit vectors ¢ in H repre-

sent possible states of the system (¢ and elaw represent the same state)

2. The self-adjoint or as the physicists say hermitian operators A in #
represent observable quantities of the system. One has momentum operators,
position operators, energy operators, etc. The theory gives predictions
that can be verified by experiments and that are always of statistical na-
ture: If the system is in a state ¢ there is for every quantity A a
probability distribution for the possible outcomes of measurement of A.
The expectation or average value of the distribution is given by the inner
product (Yy,A¥). The complete distribution can in principle be recovered
from the pair ¢ and A. It is roughly speaking such that its higher mo-
ments are equal to (w,Anw). (Note that we use the physicist’s convention

for the inner product (w1,lw2) = K(¢1,¢2)

3. The dynamics i.e. the time evolution of the system is described by a
system of unitary evolution operators U(t1,t0) in H. They have the char-

acteristic properties:

a. U(t,t) =1 Yt € R

b. U(t3,t2)U(t2,t1) = U(t3,t1) Vt1, t2, t3 € R

c. suitable continuity properties for the dependence @))]
on t,, t,

One may use the U(t,to) to make the state vectors time dependent accor-

ding to

TORERCEBITEN @)



The system of operators U(t,to) then contains the general solution of the
ordinary differential equation for the time evolution of state vectors that

can be written as
L) = -Luowm 3)
dt h

with H(t) an in general time dependent operator which is self-adjoint, is

called the Hamiltonian operator and is given ( h is Planck's constant)

One may distinguish two cases:

a. The autonomous or "time independent" case. The operators U(t,t.) de-
pend only on the difference t-to. This is equivalent with the fact
that the Hamiltonian operator H does not depend on t. The evolution
operators form a one-parameter group of unitary operators with as gen-
erator the constant operator H. They can be written as

_ii" (t-to)H
U(t,to) = U(t-ty) = e 4)

b. The general, non-autonomous or '"time dependent" case:

The Hamiltonian operator H(t) depends on t. The operators U(t,t,)
form what could be called a true two-parameter system of unitary opera-
tors. (Not much can be found on such systems in the standard Hilbert
space literature. The properties, in particular the relation between
H(t) and.the solution U(t,t,) are certainly much more complicated
than those of one parameter groups. The complications that may occur
are, however, of no concern to us here). For given H(t) one may also
in this case write down at least a formal expression for the U(t,t.).

If all operators involved would commute one would obtain

=L e

t
[ H(t")at'
%o

U(t,t,) = e (5)



In stead of this in general incorrect expression one has the following for-

mula, very popular in theoretical physics

.t
-5 [ H(thae!

it
)
——
(0]
s
o
——
.
n

U(t,to)

o 1 i nt t
- 1 _(-ﬁ) fooe £t de M) 0 BED) ()
0
with T{H(t1) . H(tn)} the so-called time-ordered product of the opera-

tors H(t1), . H(tn) defined as
T{H(t1) ...H(tn)} = H(td(1)) ...H(tc(n)) n

with for every Eys eees tso the permutation of 1, ..., n such that
t°(1) > to(Z) > i.. > to(n)' For given H(t) with suitable properties this

series converges indeed to U(t,to).

There exist a number of different examples of quantum theories, i.e. models
that each describe a certain area of physical phenomena and that possess the
general features that we have just sketched. Of importance here are two
such examples: Elementary (non-relativistic) quantum mechanics, suitable
for the description of the phenomena of atomic physics, and the more advanced
quantum field theory, necessary for understanding the deeper lying level of
sub-nuclear physics reached by experiments at very high energies.

Quantum mechanics in the simplest case of a single particle in a given
potential V(x,y,z,t) has as Hilbert space H the function space

L2(1R3,dx dydz), the vectors ¢ are called wave functions. The most im-

b2 =h3
portant operators are the momentum operators Px =7’ y i3y °
_h 2o . . _
Pz 192° the position operators Qx’ Qy, Qz which are ogerators of mul

tiplication with x, y, z, and the Hamilton operator H = EE*—V(QX,Qy,QZ,t).



The evolution equation (3) appears as a partial differential equation

9 i hz
Ew = ‘E{_EA"'V(X,Y,Z’t)}w (®)

with m the mass of the particle. This equation is called the Schrddinger
equation.

Quantum field theory is a much more complicated theory. Its Hilbert
space 1s not an elementary function space, but an infinite direct sum of
tensor product spaces. Basic operators are so-called field operators, de-
fined for each point in space. Quantum field theory is also less well
established as a rigorous mathematical theory. As a physical theory it de-
scribes systems of a variable number of particles, with and without mutual
interaction and with the possibility of creation and annihilation such as
occurs in elementary particle physics. In these lectures we restrict our-
selves to quantum mechanics, apart from a few occasional remarks. We dis-
cuss, however, in this relatively simple context the basic features of a

method which at present has it main appliéation in quantum field theory.



3. TFEYNMAN'S PATH INTEGRAL FORMULA

The quantum mechanical model of a single particle can be simplified further
by taking it one-dimensional. By this all formulas will become simpler and
more transparant, while we loose nothing that is essential for our. purpose.

The Hilbert space H 1is LZ(R,dx), with wave functions ¥(x) or y(x,t)

with the time dependence included. There is one moment operator P =1%é%
and one position operator - Q. The Schrddinger equation (8) becomes
. 2 .2
9 =L b s
e ¥t = - { zmax2+V(x,t)}'P(x,t) (€))

Solving this equation means in Hilbert space language finding the evolution
operators U(t,t.). One may assume that the action of these operators can

be written in terms of integration

WU(t,t)¥) () = ¥(x,t) =
400
= [ KRGx,t; x',t)v(x',t)dx’ (10)

—00

Solving the Schrddinger equation then becomes finding the integral kernel
K(x,t; x',t.), or as one says in the theory of linear partial differential
equations, the Green function K(x,t; x',to). Observe that one has rela-
tions for the Green functions corresponding to the first two operator rela-
tions of (1):
lim K(x,t; x',to) = §(x-x") (11)
t+0

+00
K(x3,t3; x1,t1) = J; K(x3,t3; xz,tz)K(xz,tz; x1,t1)dx2 (12)

The last relation is sometimes called the Chapman-Kolmogorov equation, a
name which comes from a similar relation in the theory of stochastic pro-

cesses.



In 1948 R.P. Feynman has given a general expression for the integral kernel
of the evolution operator of a quantum mechanical system. This expression
which is very heuristic gives the general solution of the Schrddinger equa-
tion in terms of the classical, i.e. non-quantum description of the system,
as a kind of infinite dimensional integral over all possible classical
"paths"., For the one-dimensional quantum systems that we consider, this ex-

pression is, for t, > t

b a
. %
£ J L@®,dr),0)de
t
RGxy,tys x5t) = N J e @ Diq(+)] (13)
q(ta)=xa
q(tb)=xb

This is Feynman's path integral. Before we derive it, as far as this is

possible for such a heuristic expression, a few remarks may be made.

a. The expression is an integral over a space of "paths'", i.e. all possible
ways in which a one-dimensional particle starting at time t = t_ in

the point x, can reach a second point X, at a later time ¢t = ty.

A path is therefore a real function g(+) on the interval [ta,tb]

with fixed prescribed values X, and Xy in ta and tb' One may

think of such a function as specified in the limit n - «» by values

xj = q(tj) in n discrete time points t1 < t2 < vee < tn. The inte-

gration measure DI[q(t)] is then a sort of limit for n + » of the or-
dinary Lebesgue measure dx1dx2 een dxn. However, as is well-known
"lim dx1 vee dxn" does not exist in any rigorous mathematical sense.
n->

To compensate for the singular character of the "measure" D[q(+)] an

"infinite normalization factor" N is placed in front.

b. The integrand, a functional of the paths q(+) contains the classical
t

b
action [ L(q(t),q(t),t)dt. 1In classical mechanics one characterizes
ta



the motion of a system of particles by means of the Lagrange function,
which is a function of position coordinates, velocities, and possibly
the time. The equations of motion of the system are then the Euler-

Lagrange equations of a variational problem in which the action inte-
t

2 . .
gral defined as | L(qj(t),ﬁj(t),t)dt must be minimized. For a one- -
t
2
dimensional system-as considered here the Lagrange function is
L(q(t),q(t),t) = imd(t)z-v(q(t),t). The Euler-Lagrange equation is

: 2
ik--g- EL =0 or m—g—- = -3!, which is of course Newton's equa-
9aq dt\3q dt2 aq

tion for the connection between force and acceleration.

- The foregoing can be summarized in a very intuitive manner by saying

that the Feynman path integral gives the function K(xb,tb; Xa’ta) as
a "continuous superposition of phase factors. Every possible classi-
cal path contributes a phase determined by the classical action along

the path.

An intuitively attractive aspect of the path integral which is, however,

~extremely difficult to make rigorous is the following: The path inte-

gral may be seen as an infinite dimensional generalization of a type of
finite dimensional integral in which the integrand is a variable phase
factor and which is therefore not absoldtely convergent, but converges
only as an improper integral, because of interference effects. The con-
tribution to the integral in an area is smaller when the phase factor
varies more rapidly. The action functional in the integrand of the
Feynman path integral is stationary in the path qc£(~), the classical
path that represents the true classical motion, i.e. is the solution of
the equation of motion with prescribed endpoints q(ta) =X q(tb) =%
The main contribution to the integral comes from the neighbourhood of

(¢). One says that K(xb,tb; X ’ta) consists of a "classical part"

qcl a

~with added to that "higher order quantum corrections".
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4. DERIVATION OF THE PATH INTEGRAL FORMULA

The possibility of writing K(xb,tb; x;,ta) as a path integral, at least

in a heuristic sense, is an immediate consequence of property b of (1) for
the evoiution operator U(tb,ta), in the explicit form of the Chapman-
Kolmogorov equation (12). Repeated application of this with intermediate

ti t., t <t , <t, < ... <t <t ives
mes j’> "a 1 2 n-1 b &Y

K(xb,tb; x ’ta) =

a
400 400
= _£ "';i K(Xb’tb; Xn—1’tn—1)K(xn-1’tn-1; xn—Z’tn-Z)
e K(x1,t1; xa,ta)dxn_1 ...dx1 (14)

In the limit n > o the integration dxn_1 oo dx1 over the coordinates

1 s tn—1 goes over

into an integration DI[q(-)] over paths q(+) with fixed endpoints

Kys e X associated with the time points t

q(ta) =X, q(tb) =% . The integrand, a function of Xy oo X becomes
a functional of the paths q(+). The heuristic result of this way of think-

ing can then be written as

KOty xppt) = | KLa(9)0a()] (15)
q(ta)=xa
alty)=x,

This shows that K(xb,tb; xa,ta) can be written as a path integral, but it
does not tell us what the functional K[q(e)] is. That it indeed has the
form

b

1 L@, 0a
KLq(-)1 = Ne 2 (16)

will be the result of a more elaborate argument.
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We consider first the "time-independent" case, i.e. with

i .
Y (tb-ta) (H0+V)

U(tb,ta) =e (17)
p2
If the operators H0 =5 and V = V(Q) would commute, which they definite-

ly do not, U(tb’ta) could be written as

i i
-+ (t. -t )H -=(t, -t )V
Ut ,t) = e ¥ "ao  hTD Ca (18)

The integral kernel of this product operator is not hard to find. One has

i i
—fl— (t 'ta)V —F(tb-ta)v(x)

e® P @y =e b (x) (19)

and with the Fourier transform for the wave functions

i

i) = —— [ e Py (20)
p) = e X X
(21h) ° -
apd its‘inverse one calculates
i
-=(t,-t )H
(e M P a0 -
1 o Epx _Tll_%n—(tb—ta)‘-( ya
= -3 e e y(p)dp =
(2rh) ¢ - '
00 o —i - ¥ _.i_'.R_ -
=+|-+ 1 fl1:.(xx) th(tbta) 1 , .
S | J o7k © dpJ P(x")dx
im (X-X')2
+00 o {4 2n tb—ta
=_c{ (WT) e q)(X')dX (21)

in which we have used the elementary improper integral
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2 2

e -i(a 2+b) } i—g_ _i% {17 } i%a-

[ e y ydy=(l>e de =.—>e (22)

o a \ia
for a>0, b€ R,
Combination of (19) and ‘(21) gives

i i
( K(tb t:a)HO ﬁ-(tb t"a)v
e e

P (x) =

i x-x' \2
—{ém( =, —V(x')}(tb—ta)

e m } h tb a ' '
= (—Zﬂih(tb—ta)) ¢ v(x")dx

(23)
which gives us the integral kernel of the product operator
—% (tb_ta)HO _Yll_ (tb_ta)v
e e . as
2
i {x-x' \ _ ' _
i h{im\_—t s } V(X )}(tb ta)
m b a 24
2ri (¢ -t e (24)
b a
-5 (e =t ) (Hy+0)
Because the product operator is not equal to e this result

is not the desired integral kernel of U(tb,ta). We can use it nevertheless
asymptotically, in the limit for short time intervals. The possibility of

doing this is based on the so-called Lie-Trotter formula for operators

. = =\n .
el(A+B) = 1im( n n ) (25)
n>w

It holds as a strong operator limit, for arbitrary bounded operators A

and B, or for self-adjoint possibly unbounded operators A and B if
only certain conditions on the domain of definitions of A, B and A+B

are met. We shall sketch a proof of this formula in the simplest case at
the end of this section and proceed now to its application. For this we di-
vide the fixed time interval [ta’ tb] in n equal subintervals, by means

of intermediate points tj, j=1,2,...n-1,



tj+1-tj = bn 2 - at. (Call also ta = to, tb = tn, and later
X, =Xy, X = xn), Using (25) we have
_% (tb—ta) (HO+V)
U(tb,ta) =e =
. t -t . t, -t
1, b a i, b a n
1i ( ?1—( n )HO ‘f_l-( n )V) _
= lim |e e =
n>o
-%AtHO -§AtVyn
= lim (e e ) =
n>o
i i i i
. / —'E'AtHO "HAtV ‘HACHO "H'At V) _
= lim \e e R - e =
n->o
i i
-E(tn n—1)H0 K(tn tr1~-1)V

(26)

The integral kernel of the operator on the right-hand side before %ﬂ

is taken, can be obtained by using result (24) for every interval

[tj, tj+1] . If one does not worry about the step from the L2—convergence
in the Lie-Trotter formula to pointwise convergence of integral kernels,

one obtains K(xb,tb; xa,ta) as limit of n-fold integration, in which terms

of the integrand are combined in an obvious way

mn i)
R(x ,tys % ,t)) = lim (—_SZHih(tb'ta)

n->o

@2n
in-—1 X: 7% 2
I {im(—{]—‘_—tl> aACTR IR
:20 17
f _I e SRR dxn_1...dx1

The expression in the exponent of the integrand can be seen as a discrete
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approximation of the classical action integral. This means that the sum

ni1 xj+1—xj 2
{iﬂl(*———:——) - V(x.) M, -t.) (28)
320 tj+1 tj i j+1 3
becomes in the limit n + « in which a discrete sequence Xys Xy Xgs eens X
is supposed to go into a path q(-), and dxn_1 . dx1 into DLq(-)]
an integral
tb /dq 2 tb
f {%nx\az) - V(a(e))}t = [ L(q(t),q4(t))dt (29)
t t
a a

This brings us to the heuristic expression (13), the path integral of
Feynman. Note that the derivation of (27) is rigorous or can be made rigor-
ous for a large class of potentials V(x). This means that the expression
of the kernel K(xb,tb; xa,ta) as a limit of finite dimensional integrals
is a rigorous result, The interpretation of this by means of (29) as an in-
finite dimensional integral is heuristic. No such integral exists in any

precise mathematical sense.

We make now a few remarks on the more general "time dependent'" case. Start-

ing from (1) b one obtains

UCest)) = UCe .t JUCe ot ) ... Ut ,ty) =

lim U(t _,t
n->o n

) ... U(t1,t ) (30)

n-1 0

One then shows that for potentials V(t) that depend in a smooth way on

t Fhe operator U(tj+1’tj) is for tj

i
- (b, ~t.)(H +V(t.))
e 3] 0 3. This gives

H-—tj -+ 0 asymptotically equal to

U(tb,ta) =

i i
-g (e -t )(H+V(t_ .)) - (e =t ) (H +V(t,))
—lime Mm@ w1770 nt?T o TRRTTOT 0T RO (31)

n->e
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The next step is to derive a generalization of the Lie-Trotter formula,

which we shall not discuss here. When applied to (31) one finds

U(tb,ta) =
i i
-=(t -t__)H =(t -t _Jv(t__.)
= 1im e A n n=-1""0 h n-1 n-1 .
n->oo
i i
== (t,~t)H -=(t, -t )V(t,.)
e 170770, a1 0 0 (32)

From this one immediately obtains formula (27) with an extra tj dependence
in V(xj,tj), which can be interpreted heuristically as the path integral
formula (13). To fill in the details of this proof will probably be not
very difficult if one starts from strong smoothness assumptions on the oper-
ator V(t). Contrary to the easier time independent case not much can be

found in the literature on this case.

REMARKS.

1. In the theory of stochastic processes there is a path integral concept,
closely related to that from quantum mechanics, that has a well-defined
meaning in the context of the mathematical theory of measure and integration.
A specific example is Wiener measure and its associated integral, which oc-
curs in the theory of Brownian motion. In the "time independent" case there
is a clear mathematical connection. The one-parameter group of unitary op-

tH .
erators e R can for H > 0 be seen as the (continuous) boundary value

i
. -+zH ..
of an operator valued function U(z) = e D z , holomorphic in the lower
half-plane Imz < 0. For z = -it, T > 0 this gives a so-called contrac-
T
tive semi-group e KT{ Instead of studying the integral kernel of U(t)

one may consider the kernel of the analytic continuation U(-it). For this
one can derive a limit formula like (27), but without the imaginary i in
the exponent. Lebesgue measure dx1 .o dxn_1 has no limit for n + =,

but the measure obtained by putting in front normalized probability densities
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2
pj(x), such as for instance Gaussian densities p(x) = V%? e_ix s
p1(x1) eee pn_1(xn_1)dx1 vee dxn_1, does have a limit. Many authors look

therefore at the quantum path integral exlusively as something obtained by
analytic continuation from a much better defined "imaginary time'" analogon.
This point of view is of particular importance for Yang-Mills quantum fields

in connection with the "instanton' concept.

2. The presentation of the péth integral that we have given deviates con-
siderably from the original one of Feynman himself. InFeynman's formulation
of quantum mechanics there is no mentioning of Hilbert space, only of expli-
cit wave functions and the Schrddinger equation. His aim is to use the path
integral for a formulation of time evolution of wave functions directly
based on the classical description, without using Schrddinger's equation,
but nevertheless leading to the same results. For this he considers first
ordinary probability theory, where formula (12) as Chapman-Kolmogorov equa-
tion holds for conditional probabilities or transition probabilities of
stochastic processes such as Markov processes. He then observes that in
quantum mechanics one also has transition probabilities, for instance the
probability that a particle that was at time t in x, will be found at

1 1

time t2 in Xy These probabilities and the way they have to be combined
differ from what one expects from ordinary probability theory. There is no
additivity because of interference effects typical for quantum theory. The
probabilities are squares of absolute values of complex "probability ampli-
tudes". These are the fundamental objects and for these one should have
relations such as (12). The function K(xb,tb; xa,ta) is for Feynman not
the integral kernel of an evolution operator but a probability amplitude in
the above sense, with IK(xb,tb; xa,ta)l2 the experimental transition prob-
ability. Relation (12) leads via (14) to a path integral (15). Using an

ifLde

earlier suggestion of Dirac he then postulates the form Ne for the
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functional integrand and finally he verifies in a very heuristic manner that
this leads to solutions of the Schrddinger equation. The Lie-Trotter for-
mula (25) which we have used for a partial mathematical justification of

the path integral is a later contribution to the subject due to the mathe-

matician E. Nelson.

3. To avoid conceptual confusion and paradoxical consequences one has to

be careful when speaking of IR (x 3 xa,ta)l2 as a transition probabil-

b* b
ity. According to the general principles of quantum mechanics IW(X)I2 is

the probability density for the position x of the particle, i.e.

b

f lw(x)lzdx is the probability for finding in a measurement the particle

a

between a and b, if the state of the particle is given by the wave func-

tion ¢(x). If the particle is at time ta with probability one in a small

interval [xo,x +el, or equivalent has at t, a wave function which van-

0

ishes outside this interval, then the wave function at a later time t

b
will be
+o
Yx ) = *i Kxy,t,5 Xt )9 (x ,t )dx (33)
which is in an approximation for small ¢
K(xb,tb; XO’ta)CO (34)
with
x0+8
Co = f w(xa,ta)dxa (35)
*o0

The probability density for the position at time t, in this approximation

b

is

2 2

)1 Ic,1 (36)

2
IW(xb,tb)l s |KR(x 0

5> b5 *0° %0
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If the initial distribution is sufficiently sharply peaked, then the final

. . . . . . . 2 .
distribution is approximately proportional with [K(x )17, This

b5 ¥0° %o
justifies calling it a transition probability although it is strictly speak-

ing not a transition probability density in the sense of ordinary stochas-

tic theory.

We finally give a short derivation of the Lie-Trotter formula for the sim-
plest case of bounded self—adjoint operators. This is not sufficient for

the path integral because quantum mechanics involves unbounded operators,

but it gives an idea why such a formula holds.

Let A and B be two bounded self-adjoint operators in the Hilbert
.A .B . A+B
aota Th
space H. Define C = e e , D=e . One has

=c"-c""b+c"p ..+ cp™ oD =
n-1
= 7 cfe-pypk (37)
k=0
Using operator norms we have an estimate
iA B,
I{eme ™) -l -
oot g a-1-ky _ P51 ik n-1-k
=] I c (- I < I lcl®lc-of [l =
k=0 k=0
LA .B  .A+B
A ;B A
= n"C-—D” =n I[e e e T H (38)

(We have used also that C and D are unitary).
Because A and B are bounded the exponential expressions can be written

. . 1
as convergent series in powers of oy
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.A .B . A+B
i= iz i=—
n n n
nle "e “-e | =
2,2 .22
LA 1A .B 1B
ol RS e AT A S e AT i
n n
.2 2
. A+B A+B
- (1+1__:1_+_l§_%2_+._.)" =
n
= n[[-—lffA,B] + higher order terms in %II (39

2n

This goes obviously to zero for n + «, which proves the Lie-Trotter for-

mula (25) for this simple case.
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5. PHYSICAL ASPECTS

The path integral formula as we have discussed it up to this point gives
the integral kernel K(xb,tb; xa,ta) of the time evolution operator of a
one-dimensional quantum mechanical system in the "position representation",
i.e. in the Hilbert space of wave functions y(x), where I‘D(x)l2 has the
physical meaning of a probability density for measurement of the position
variable x. From the kernelv K(xb,ﬁ);xa,ta) one obtains

lK(xb,t a,t:a)lz which is interpreted as the probability that the one-

b’ *
dimensional particle will be at time % at the point Xy

was at x_ = at the earlier time t . (For a precise formulation of this

given that it

one should take into account the observation about the lK(xb,tb; xa,ta)l2
made in section 4.)

In quantum mechanics the position x, or x, y, z in the three-di-
mensional case, is an important variable from a theoretical point of view,
as a starting point in setting up the formalism. Considering the main area
of application of quantum mechanics, atomic physics, the position is not a
variable that is often measured. Of much greater experimental importance
are such quantities as energy, momentum and angular momentum.

To understand what is of interest in actual experiments we make a few
general remarks on the physical aspects of the sort of systems that can be
described by elementary quantum mechanics, and for that matter by elementary
classical mechanics, for the distinction is not very important for the points
that we want to make.

The sort of physical systems that we have in mind can be divided into
two classes. This is a rough division which neglects important special
cases, but we nevertheless adopt it here for the sake of our argument. Each
category contains a basic case which in itself is physically trivial, but

which serves as reference point for the other cases in the same class.
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These then appear as non-trivial deviations or perturbations of the basic
situation.

The first class contains as basic case the situation of a particle on
which no forces act, i.e. with potential V(x) or V(x,y,z) = 0. The typ-
ical time evolution for this case is that such a free particle arrives in
the area of observation, coming from infinity, i.e. a far away area in
space, and then disappears again in the opposite direction in infinity with-
out changing its momentum, velocity or energy. Nothing of physical interest
has happened. The interestiﬁg cases which can be seen as perturbations of
the basic situation are the motions in potentials the action of which in
terms of forces drives the particle away from the origin of the coordinate
system and becomes negligible at large distances of this origin. The typ-
ical time evolution for such a perturbed system is that a particle arrives
at the origin, coming from special infinity, where it was at t =-», a
mathematical idealization, is influenced by the potential in the neighbour-
hood of the origin, is deflected in its motion, moves on, with its momentum
changed and disappears at t =+ to infinity as a free particle. What is
physically interesting in this case is not the precise orbit of the particle,
the positions at various times, but the total effect of the potential on
the motion between t =-o and t = +», This total effect as deviation
from the free motion is the aspect of the system that one measures, at least

in atomic physics.

The second class of systems is described by potentials that drive the par-
ticle back to the origin, with forces that become stronger with increasing
distance from the origin. The particle cannot escape to infinity and will
be most of the time in the neighbourhood of the origin. The simplest exam-
ple which for this class is the basic case is the harmonic oscillator, in

one dimension given by a potential V(x) = inz. The harmonic oscillator
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is both classically and in quantum theory a physical trivial system of which
the equation of motion can be solved completely in an elementary manner. In
the classical version the particle oscillates with fixed frequently v = %%,
w = V/%;, m the mass. The only free parameter in the system is the total
energy which is of course constant in time and which may have a arbitrary
non-negative value. The perturbed cases for which the harmonic oscillator
is the free, "reference" system will have similar potentials, for instance
V(x) = ész-g(t)x, a harmonic oscillator with a spatially homogeneous and
possibly time dependent external force, or V(x) = %szi-g(t)xh, an anhar-
monically perturbed oscillator. These are special examples. We should how-
ever realize that for a potential V(x) with V(0) = 0, which is symmetric
in x and which goes to « for |x| > » an obvious approximation for
small x, the area where the particle is most of the time, is given by the
expansion V(x) = ax2-+bx4‘+ ... . Again one is not so much interested in
the position x of the particle at different times t, but more in the
total change over a large time interval. For an oscillator with time depen-
dent perturbation the total chaﬁge in energy will be of interest. In par-
ticular, if the time-dependence is such that there is only a perturbation

present during a finite time interval, g(t) =0, for |tl| 2 or such

Tg»
that g(t) goes to O fast when |t| = +~, then one is in a similar sit-
uation as described in the first class of systems. For very early times
(t >-») the particle is a free oscillator with frequency w and energy

E then the perturbation sets in, the energy changes until at a very late

1’

time (t=>+«) the particle is again a free oscillator, with the same fre-

quency w but with a different energy E It is of no interest to measure

90
or calculate the properties of the oscillating particle at intermediate

times. The important thing is the total effect of the perturbation. In the

classical case this is the difference E2-E1. In the quantum case it is



24

the probability of going from E1 to E2'

SUMMARIZING. In both type of systems one is interested in a change or tran-
sition between t = -» and t = +, with reference to a trivial or free

system.

In quantum theory there is for this an elegant and quite general formalism.
This will be discussed in the next section as an addition to our remarks on

quantum theory and quantum mechanics in section 2.
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Consider a quantum system in the Hilbert space H with a system of unitary

evolution operators U(tb,ta). We are interested in the total effect of

this time evolution from t = - to t = +®, relative to a free evolution

described by a system UO(tb’ta)’ which has the form

i
g (tb' ta)H

= 0
Uo(tb’ta) = e

(40)

and which is chosen as a reference system. For this purpose one defines a

sort of modified evolution operator system consisting of operators

UI(tb,ta) defined as
U (et ) = U,(0,£ )0t ,t U, (E ,0) =

i i
Eth itaHO

0
e H(tb,ta)e

41

This is usually called the interaction picture. On verifies immediately

that the UI(tb,ta) satisfy the requirements (1) for a system of evolution

operators. Note also that it is a true two-parameter system, even in the

case where not only Uo(tb,ta) but also U(tb,ta) is a one-parameter

group. The operators U(tb’ta) will in general have no limit for ta > =

b

t. > +», In many cases such a limit does exist for the UI(tb,ta). It is

also clear that UI(tb,ta) describe in a way the deviation of U(tb,ta)

from the free Uo(tb,ta). If both are the same then Ul(tb’ta) = 1. When

the limit of the evolution operator in the interaction picture exists as a

unitary operator we call it the S-operator.

S= 1lim U_(t, ,t )
£ > mw b’ a
a

t, >+
b

In the simplest case in which the evolution operators U(tb,ta)

(42)

are perturb-

ed, i.e., different from UO(tb’ta) only in a finite time interval
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[—To,ro] the existence of the S-operator is trivial: For t, < “Tgo

tb > T, one has U(tb,ta) = U(tb,TO)U(TO,-TO)U(—To,ta) =

= Uo(tb,TO)U(TO,-TO)UO(—TO,ta). Then UI(tb,ta) = UO(O,tb)U(tb,ta)Uo(ta,O)

b? o

UO(O,T )U(To,-TO)UO(—TO,O) = UI(tO,—TO), i.e. independent of t
One can prove that the S-operator also exists in a less trivial manner in
many cases in which the perturbation is not totally absent outside a finite
time interval but goes fast to zero for ta > - tb + +w, This applies

in particular to the two main classes of physical systems describe in sec—
tion 5. In the first class, scattering of a particle by a potential V(x)
or V(x,y,z) the S-operator or scattering operator will exist even in the
time independent case whenever V(x) goes to zero fast enough for [x| »> «,
This seems fairly reasonable from an intuitive physical point of view and

is established rigorously in the abundant mathematical literature on this
subject. For the second type of systems, perturbed oscillators, the S-
operator exist only in time dependent cases. This is not the case in quan-
tum field theory which in a way contains aspects of both types of physical
systems.

In general the S-operator cannot be calculated in closed form, but
only in approximation. This is based on the limit tg > m® t e of
formula (6), applied on the modified or interaction picture time evolution
UI(t,t ). Because of the fundamental importance of this so-called Dyson
series, in particular in quantum field theory we sketch a derivation of this
formula for the S-operator.

Associated with the two-parameter system UI(tb,ta) there is on gen-

eral grounds a "modified" time dependent Schrddinger equation

3 i
3;11»1(:) = -3 Hx(t)“’x(t) (43)

or
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d i
U (E,E)Y (£0) = - B (DU (6,609 (t0) (44)

for every fixed t, and fixed Hilbert space vector wI(tO). This is equi-

0

valent to a differential equation for the operators UI(t,t )
2u(t,e) = -Lu 0V (t,¢) (45)
ot I 7? h1 I'7°°0

with initial condition

U_( ) =1 (46)

I tO’to

These two together are then equivalent to the integral equation.

. t
_ _1
U (t,t) =1 Htf H (e )U (e, t)de, 47
0

(For sufficient smoothness in t and tg such operator-valued integrals

are well-defined). This integral equation can be iterated to a formal

series which in favourable cases converges to the desired solution UI(t,tO)

[ -1 n t t tn-1
U (e,t)) = ) (1;> f de, f dt, ... f de H (€t )H (£) ...
n=0 tO to to

. HI(tn) (48)

In order to write the integrals as n-fold integrals over the simple integra-
tion area to <t.s<t, j=1,2,...,n, one defines the time ordered pro-
duct T{HI(t1) . HI(tn)} as was done in section 2, formula (7). By this
definition one obtains a function that is equal to the product

HI(t1) e HI(tn) on the area t 2> t1 > t2 2 .. 2 tn > to, but which as

a symmetric function in to, ceey tn can be extended to t > tj > tO’
j=1,2,...,n. The integral over the extended area is therefore the same

if a compensating factor E%' is put in front
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© .An € t
B A (-
U (t,t) = ) ( ... tf de, ...de T{H (£)) oo Hi(e )}
0 (49)
This can be written as indicated in section 2 as a symbolic "time ordered"

exponential

. t
1
n J E(epayy

t
UI(t,tO) = T{e .0 } (50)

So far the derivation has been quite general, not restricted in fact to the
interaction picture evolution but valid for an arbitrary two-parameter sys-—
tem of evolution operators satisfying (1) a,b,c. For the specific case of
UI(t,tO) which is our subject of interest here we have to express HI(t)
in the given "true" Hamiltonian operator H(t) and the free Hamiltonian

H We have the two equations

0°

2u(t,t) = ~FEOU(E, )

(51
—E-U(tt)=—iHU(tt)
at 0 ? TP "0 "0
If we call the perturbation part of the true Hamiltonian H(t)-—H0 = V(t)
we obtain
2 U (e,t) = == (U.(0,6)U(t,t )U (£ ,0)) =
3t I°°°°0 at ~ 07 *"0’70""0°
- i -i =
hUo(o,t:)HoU(t,to)uo(to,o) hUO(O,t)H(t)U(t,to)Uo(to,O)
(52)

i =
~g U0, )V(D)U(e,t)U,(t),0) =

L}

-%Uo(O,t)V(t)UO(t,O)UO(O,t)U(t,tO)U(tO,O) - -%Hl(t)UI(t,to)

with therefore

*tH -*tH

S
Ho(t) = U, €0,8)V(e)U4(t,0) = e (53)
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One should observe that the interaction picture Hamiltonian H_ depends al-

I

ways explicitly on t, even in the case V = H-HO does not depend on t.

Taking finally the limits ty > -®, ¥y > +e one arives at the stan-
dard expression for the S-operator on which perturbative calculations are
based

o 1 —i n <+ 400
s= 7 (——> I | dt1 . dtnT{HI(t1) . HI(tn)} (54)

Y
n=0 h

~—00 -0

or in symbolic exponential form
i
-5 _J' B (t)dt

oo

S = T{e } (55)

with

HI(t) =e (56)

In quantum mechanics (54) is for many cases a mathematically rigorous for-
mula, of which the convergence can be proved. (In potential scattering for
time independent potentials one has to sum the series before taking the

limits tg > 7w t > +00)

The S-operator is the basic theoretical concept in quantum field theory
such as this is used in elementary particle physics; the perturbation series
(54) is the point of departure for all calculations of processes. Never-
theless, the whole S-operator concept in quantum field theory abounds with
fundamental mathematical problems that have not yet been solved. The con-
vergence of the series is uncertain, moreover, it is not even clear whether

the separate terms make sense as operators in Hilbert space.

The path integral gives a method of setting up the perturbation scheme for

the S-operator in a heuristic, but very systematic and transparant manner.
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Because of this many people prefer it over more traditional purely Hilbert
space operator methods, especially in quantum field theory. It is the main
purpose of these lectures to demonstrate this method in the context of ele-
mentary quantum mechanics of a single harmonic oscillator, as a prelude to

a possible later study of the method in quantum field theory.
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7. THE ONE-DIMENSIONAL HARMONIC OSCILLATOR
a. The classical oscillator

The classical harmonic oscillator is a particle bound to the origin by a
force proportional to the distance from the origin. (K 1is the constant of
proportionality). Such a particle oscillates around the origin with fre-
quency Vv =~§;uh w = V/% , m the mass of the particle, and with constant
energy E 2 0. We shall put vm =1, and use w = VK. As a mechanical sys-

tem it is characterized by the Lagrangian function
. .2 2 2
Ly(d,4) = 44" - 4u'q (57)

which leads to the Euler-Lagrange equation

2
W, 2 . _d
g+wq=0 {=—7a) (58)
dt
This has the general solution
q(t) = q(0)cos wt + c'1(0)uu—1 sin wt (59)

If there is a external force j(t), constant in x, but time dependent,

the Lagrangian function becomes

L(a,d,t) = 4a% - ho’q” + jq (60)
with Euler-Lagrange equation

g+u’q = j (61)

This equation can be solved by means of a Green function G(t,t') according

to
b
q(t) = [ 6e(t,t")j(e")de’ t,<t<t (62)

t
a

with G(t,t') a solution of
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\;;E-Huz)c(t,t') = §(t-t") (63)

An oscillator with a possibly time dependent anharmonic perturbation of

quartic type has a Lagrangian
L(q,d,t) = 43 - bu’q® + feq” (64)
with g 1is g(t), a given function. The Euler-Lagrange equation is
éi+w2q = g (65)

Explicit solutions can of course not be given for this non-linear equation.
b. The quantum oscillator.

In the standard quantum mechanical theory one usually starts from a clas-
sical description in Hamiltonian form, i.e. with canonical variables ¢
and p = %% and a Hamiltonian function H = pG-L, considered as a func~
tion of q, p and possibly t.

The quantum mechanical description uses the Hilbert space H = LZ(R,dx)
with position operator Q = x, momentum operator P = —ié% (we use from

now on units such that h = 1), and a Hamilton operator which for the three

cases discussed above is

Hy = iPz-fiszz (free oscillator)
H(t) = HO-j(t)Q (oscillator in external force) (66)
H(t) = H0+ig(t)Q4 (anharmonically perturbed oscillator)

The problem of the quantum mechanical free oscillator has a simple and ele-

mentary solution. The self-adjoint operator H_, has a pure discrete non-

0

degenerate spectrum with an orthonormal base of eigenfunctions
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H0¢n = En¢n

En = (n+})w (67)
_ 3 ~bux® -

¢n(x) = Nan(w X)e n=0,1,2,...

with Nn = (%J* (2nrﬂ)_§ and Hn(-) the nth Hermite polynomial.

The quantum mechanical oscillator with external homogeneous force can also
be solved completely. 1i.e. U(tb,ta) and for suitable j(t) also S can
be explicitly determined. This can be done either by operator methods or
by path integral method; we shall give a mixed derivation. The anharmonic
oscillator can be solved only approximatively. Doing this with the path in-

tegral method will be our main goal in the later sectioms.

We finally remark that the solution (67) can be easily obtained by the in-

troduction of so-called creation and annihilation operators.

A = z'*(mﬁqnw'é P)
(68)
A =2t geintey
with inverse relations
Q = 278w A
- (69)
p = -i2tutaa®)
For the operators A, A* one has the fundamental relation
[A, A*] = 1 (70)

which is an immediate consequence of [Q,P] = i. With these new operators

the Hamiltonian HO takes a simple form

Hy = wA*A + ju . 71

With a single simple differential equation, viz. that for ¢O(x) and some
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algebraic manipulations of an elementary sort one obtains the eigenvalues

En and the eigenfunctions ¢n' These are in fact

ol ame

This form is for our purpose more important than that with the explicit

Hermite polynomials. Creation and annihilation operators play also an im-

portant rdle in quantum field theory.
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8. THE S-OPERATOR AND THE TRANSITION AMPLITUDES FOR PERTURBED OSCILLATORS.

INTRODUCTORY REMARKS

The S-operator as it was introduced in section 6 describes the effect of a
perturbation during a certain time interval of a free system. For oscilla-
tors such as discussed in section 7 one is interested in transition ampli-
tudes (¢m,S¢n), with ¢m and ¢n energy eigenstates of the free oscil-
lator. According to generaliprinciples of quantum theory I(¢m,S¢n)l2 is
the probability that the system ends up in a final state with sharp energy
Em = (m+})w if it was initially in a state with sharp energy E = (n+})w.
For fixed n Pm = l(¢m,S¢n)12 is indeed a (discrete) probability distri-
bution for the final energy Em'
We have in our discussion the following systems:
a. The free oscillator with frequency w. The classical Lagrange function
is LO(q,ﬁ) = £d2-+£m2q2, the quantum mechanical Hamiltonian operator
Hy = £P2-+£w2Q2. The properties of this system are completely known
and were reviewed in section 7.

b. The harmonic oscillator in a given external spatially homogeneous force.

The classical Lagrangian is L(q,q,t) Lo(q,d) +j(t)q, the quantum

n

mechanical Hamiltonian operator is H HO-j(t)Q. This system can al-
so be solved exactly. In particular, the S-operator and therefore the
transition amplitudes (¢m,S¢n) can be obtained in closed form. This
can be done either by operator methods or by using the path integral.
We shall employ a mixture of both. We are not interested in the result
for its own sake, but for its value in the approach to the next system,
which is our main concern.

c. The anharmonically perturbed oscillator. The classical Lagrange func-

tion is L(q,q,t) = Lo(q,é)--g(t)q4 and the quantum mechanical Hamil-

tonian H(t) = Hoi-g(t)QA. The function g(t) goes to zero t - too;
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it determines the strength of the perturbation. In quantum field theo-
ry it is usually a constant and is then called the coupling constant.
(Compared to (66) we have absorbed a factor % in g(t). The anharmon-
ic oscillator is not exactly solvable because of non-linearity. The
S-operator and the amplitudes (¢m,S¢n) can be obtained only approxi-
mately, in a perturbation series, which in a certain sense is a power
series in g(t). There are two main methods, the standard operator
method that starts from the Dyson series (54) and calculates the Zth
term by operator manipulations and secondly the path integral method,

which also gives a series in orders of g(t), in fact the same Dyson

series, but differently obtained. Both methods lead to essential the
]
) Ne

2=0
is facilitated by a technique of diagrams, the so-called Feynmandiagrams.

same series for S. Calculation of the zth order in S =

The oscillator systems that we discuss are meant as simple models for

the much more complicated systems of quantum field theory. More specifical-

ly one may think of the following field theoretical situations:

a.

The free scalar field. This is a field ¢(x) satisfying the Klein-
Gordon equation (3u8u+m2)¢ = 0. In the simplest case it is on the
classical level a real function on space-time and at the quantum level
consists of self-adjoint operators defined at all points of space-time.
Such a model describes a system of arbitrary numbers of non-interacting
relativistic particles of mass m. It is completely solvable and may
be considered as an infinite system of free harmonic oscillators with
frequencies o) = (§2+m2)£, k as wave vector running through all
real vector values. The one-dimensional harmonic oscillator is mathema-
tically the free scalar field in one-dimensional space-time, i.e. de-
pending only on t.

The scalar field in an external source. Its field equation is
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(aua“+m2)¢ = j, with Jj(x) a given source function. This equation
can again be solved by Green function methods.
The non-linear so-called ¢4 model with field equation

3 (The Lagrangian function contains a ¢4 term) .

(2 2Mnh6 = -g o
This is the simplest non-trivial model in quantum field theory which is
fully relativistic and describes particles with interaction, i.e. with

scallering, and creation or annihilation. Only approximate calculations

are possible. For this the results from the external source models can

be used as a tool.
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9. THE S-OPERATOR AND ITS MATRIX ELEMENTS FOR AN OSCILLATOR WITH EXTERNAL

FORCE

In this section we shall derive the S-operator and its matrix elements
(¢m,S ¢n) for the external force model discussed in section 8, point b.
The functional dependence of the result on the given force j(t) 1is impor-
tant for later applications, so we shall write explicitly S[jl and
(4>5L3T0.) - |

As a first step we determine the simplest transition amplitude, namely
(¢0,S[j]¢0), the amplitude for remaining in the ground state, in field theo-
ry parlance the vacuum-vacuum amplitude. For this we employ the path inte-

gral associated with

it H -it H

CNEIS BTN > Ouce,,epe 2O

lim (¢,,e
t, > 0’

b

t_ -
a

bo) =

lw(t
lim e
t, >

b

t -
a

b_ta)

(¢0, U(tb’ta)¢0) (73)

To avoid technicalities we assume that the function j(t) 1is sufficiently
smooth and has support inside a finite time interval [—TO, ro] . This means
that the limit (73) exists trivially, as was argued in section 6. From this

point on we assume t < TTes T < tb. Because of this (73) can be writ-

ten as
(¢0’S[j]¢0) =

%w(tb_ta) Ao
=e If ¢O(xb) K(xb,tb; xa’ta)¢0(xa)dxa dxb (74)

with for K(xb,tb; Xa’ta) the path integral
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%
i [ (aP-seiiigar
t
K(xp,t 3 % ,t) =N Jf e & Dlq(+)1  (75)
q(ta)=xa
alt)=x,

We calculate this path integral by a change of variables. For this we

choose a fixed path qcl(.)’ and write for an arbitrary path
a(t) = q,(t) +q_,(t) (76)

The path q1(-) introduced in this manner becomes the new variable in the

integral. For (*) we take the solution of the classical equation of

q
cl
motion acl.+m2qc2 = j, with qcl(t) =0 for t < “Tpy* This solution can

be easily found and is equal to

t
a ,(8) = g;_i sinw(e-t')j(e")dt’ a7

t

We write the action functional 1I[q] = [ L(q,§)dt in the new variable
t

q1(°). For this we substitute (76) in the Lagrangian function

le- £w2q2+jq = I+ II+III

.2 22
I =44, - fo'q]
(78)
.2 2 2 . .
I = iqc!L bo qcz.-qucllkqucl
III = q —w2 + ]
Qepdy 79 Uce T 9y
The term I gives the action of the free oscillator
LIPS
I.0a. 1= [ (4474w q))dt (79)
0 1 ¢ 1 1
a

Term II can be written as
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d . ” 2 . .
58?'(qczqcz) iqcﬂ,(qclﬂu qcl i) +qucl (80)

after integration over the interval and using the properties of 9., as a
solution this gives a contribution

+00
ba (64, () + 4 [ §(Dq  (B)de 81

-—00

which can be calculated by means of (77). Term III can be written as

a, ., , 2.
el 9dey) — 9 @ prwa D) (82)

(t).

which contributes only a boundary term to the action, namely q1(tb)ﬁ
+00

(tb) = B, dcz(t) = Bg', di j(t)qcz(t)dt = o and observe

cl tb

We denote qcz
that the change of variables q(-) q1(-) in the path integral is a trans-

lation. All this together gives us

K(xb’tb; Xa’ta) =

‘b
S FETCIEE
'i’ot lbe "'EBB ta
= e e N e D[q1(-)] =
q1(ta)=xa
q,(t)=x -8
i i .
Fa -=BB' ix B'
_ 2 2 % e
=e e e Ko(xb Boty xa,ta) (83)
There is no need to calculate KO’ the integral kernel of the free oscilla-
—i(e-t )H,
tor, because it is the kernel of the operator e , of which ¢0

is an eigenfunction.

i i i
Fw(t, -t ) Sa-3B8'
(0pSTiTp) =e® P T2 2

ix B!

4-00
B _ . -
J! ¢02xb§e Ko(xb B,tb,xa,ta)¢0(xa)dxadxb
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i i

F0-5 BB 4o ix 8'
= e _i ¢O(xb) e ¢0(xb—6)dx (84)
} -4 x
With ¢0(x) = (ﬁb e , see (67), this becomes
to-1gg ) +o —5wx2+ix8'-£w(x—8)2

2 2 ' w
e (;9

[ e dx (85)

-0
This is an elementary integral, absolutely convergent, the result of which

is

e ® (86)
Finally, we calculate B, B' and a
1
B = o f sinw(tb-t')j(t')dt’ (87)
Because the end result does not depend on tb as long as tb > T, We may
choose tb in a convenient manner, namely tb = n%g, n sufficiently
large. Then
1
B = —— I sinwt'dt' (88)
w—oo
Similarly
+00
B' = [ coswt'j(t")dt' (89)
Elementary recombination in (86) leads then to the result
_ 5603, 31
(6555LiT0) = e (90)

with GF the bilinear functional
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GF[j1,j2] = l! j1(t')GF(t'—t")jz(t")dt'dt" 1)
in which
GF(t) = ﬁ(e(t)sin wt + i coswt) = —-2:)—i(e(t)e-iwt+6(—t)eiwt)
(92)
e(t) = 0(t)-6(-t); o(t) =1, t>0; 6(t) =0, t <O,

REMARKS. 1. GF(t) is a complex Green function of the oscillator equation.
2. The derivation of (92) which is for suitable j(t) an exact and rigor-
ous result, is a heursitic application of the idea that the path integral is
indeed an integral with the usual properties. It is, however, not clear from
this argument why the final result is such a simple expression and why a
Green function of ii; + w~ appears in it. The following rather vague
reasoning may make gﬁis more plausible: Note first the one-dimensional in-
tegral

o i3 x2+bx) -=— 4w iiy - iiy
2 2 2
[ e dx = e [ e dy = e e (93)

For n variables

o 10T Ay .pjz bij')

[..Je b dx1.. dx_ =
=00
_i -1 i 38
2.22 bA Dby e 2.?1 Ayyy
=e J [..Je J dy, ... dy
o 1 n
i -1
5 L LTCD YN o
- e joa 2mi (94)
det{AjZF
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}-w . i(%(x,AX)i‘(b,X))dx =

i -1 i i -1 n
~ e'i‘(b’A b) +°°e7(y,AY)d _ -7(b:A b) 2ri /2
- y=e det A

-00

(95)

The path integral has as an integrand of a similar type; the action in the

exponent of (75) can be written apart from boundary terms as

2
2 .
-4 [ q(t) (i-z—a-w )g(t)dt + [ () q(t)dt (96)
dt
2
The differential operator —5 tow plays the rdle of A in (95); it has
dt

no inverse in a strict sense, but "one-sided inverses' or Green functions.

The function j(t) takes the place of b =b .y b . The j(+) depen-

12 - n ; i
_‘zl‘(b,A b)

dence of the result has indeed a form that corresponds to e
3. The result (90) is of fundamental importance and moreover very general.
It will appear in the same form in quantum field theory: The function
GF(t) becomes a distribution in space-time in field theory and is then

called Feynman propagator.

The calculation of the general amplitude (¢m,S[j]¢n) may be performed by
means of the path integral method, however, we prefer here a more direct
operator method. Instead of the (¢m,S[j]¢n) it is more convenient to cal-
culate a different set of matrix elements first. We introduce the so-called

coherent states. For every z € ¢ we define the vector wz

© n

z
v, = nEO Vet *n (97)
. v Izl2n 212
This is a well-defined vector in H because z or - e <w, In
n=0

terms of the creation operator A* one has
© n %
_ z 1 * 0 _ _zA

v, = Z AT T A %9 =T 4 (98)
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An important property of the coherent states is that they are eigenvectors

of the annihilation operator A

Ay, =z 99

z

Using the fundamental relation [A,A*] = 1 one finds

z,2

1%2
W_ v ) =e. (100)
)

REMARKS. 1. The coherent state wo coincides with the ground state ¢0.
2. The uncountable family of coherent states can be used as a kind of

"continuous" non-orthonormal base. It has very interesting properties.

The basic ingredient in the determination of (wz ,Swz ) is the commutation
1 2
relation [A,A*] = 1. Define the following operator valued function of t

F(t) = UI(tO,t)A UI(t,tO) (101)

for fixed ty: One has, in agreement with (44)

dr(t) _ .
g =1 UI(to,t)[HI(t),A] UI(to,t) (102)
with
iHOt —iHOt itH —itHO
HI(t) = e v(t) e = -j(t) e Qe =
itH -itH
- te %ty e 0 (103)
Because
itH -itH L2
0 0 _ : (it)
e Ae = A+1t[H0,A] + —2!—[}10, [HO,A]] + ...

(12 :
= A+ itwA +—(—"él—,t—) wlas ... = e T (104)
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formula (103) becomes

-5(0) (20) H (eI a e 10

and with this

[HI(t),A] = (2w)_ij(t)eimt

The differential equation (102) then simplifies to

dFd(tt) - i(2w)-£j (t)eiwt

With the initial condition F(to) = A this has the solution

_5 t ot
F(t) = A+i(20) % [ ™" j(e"de'

to

Going back to the definition (101) and writing Set [i1 =
0

t

. -} oot
= 1i(2w) f e j(t")dt"' one obtains
t
0

UI(t:O,t)A UI(t,t ) = A+ See

0

and from this the commutation relations

A UI(t,t )

*
UI(t,tO)A

UI(t,to)(A+sttOEjJ)

*
(A —stto[J])UI(t,to)

45

(105)

(106)

(107)

(108)

(109)

(110)

(111)

With these commutation relations and the properties (98), (99) and (100)

one finally calculates the matrix elements (wz

v, 8031y, ) = tig W,

1 2 1

t> —~c0

,UI(t,to)wzz)

(112)
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and

*
ZIA

(wz1,UI(t,t0)wzz) = (e ¢0,UI(t,t0)w22) =

2, (Arsge [5D)

<¢0,eEAuI<t,to)¢zz> = (99> U5 (E,tp)e

0 E1A
(¢Os UI(t’tO)e wzz)

L}
(]

z,s,__ [j] 3 5
= e e ! 2(¢0,UI(t,t0)¢0) =

- s R *
) ez1z2e tto[J]z1(¢ - )ezzA o -
0’17’0 0

- *_ .
2122 Stto[J]z1 ZZ(A sttOEJ])
=e e (995 © U Ce,t)eg) =

’ stt0[3]21-stt0[3]zz
=e ' e (65 U (E,£)80) (113)
The limit t0 >~ , t > o can be taken, we know already the vacuum-vacuum

amplitude, so we find

s[i1z, 3037z, L rj, il
(v, ,S[j]d)z)=e12e e 2,2 F (114)
1 2

zZ,2

with s[j]l the linear functional

+oo

s[31 = i(2) ™ [ ™% j(o)at (115)

00

It is obvious that this result will also hold when j(t) tends to zero
sufficiently fast for |[t| > », instead of support (j(t)) in a finite in-

terval.

It is not hard to obtain from the result (114) S as an operator expression.

From (99) one obtains immediately
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=
(2]

—_
N

L . s _ =2
(wz1, A™" A wzz) =z, z,e (116)

For an operator of the form p1(A*)p2(A), with p1(-), p2(-) polynomials,
or suitable limits of polynomials this gives

2,z
(wz1,p1(A*)p2(A)wzz) =e 125 Gp,(2) (117)

In general and apart from technical points that are irrelevant to the spir-
it of our discussion every operator B can be written as an expression in
creation and annihilation operators, in a unique manner in normal ordening,

i.e. with all creation operators in front of all annihilation operators.

B= ) BJLS(A*)lAS (118)
2,s=0

one has

22, o -
W, By, ) =e ) By g 2
2 s=

2
1 %,8=0 !

z; (119)

This means that an operator B is uniquely characterized by a function

B(z1,zz)

B(z1,z2) 1= (wz1,B wzz) (120)

(i.e. holomorphic in Zz,) and

This function is anti-holomorphic in z 1

1

holomorphic in =z It is called the Bargmann kernel of the operator B.

9
The expression (114) is obviously the Bargmann kernel for the operator S.
It is, in normal form,
%GF[j,j] s[j1a* s[3I1A

e

sfil=e e (121)

We derive finally the physically more interesting matrix elements

(¢m,s[j]¢n). For this we observe that from A¢k = V§:¢k_1, k=1,2,...,

1
and A¢y =0 follows that AT¢ = /(—klj—s,— 4> for k-r>0, and



48

from this

4
%% ,8 m!n!
(¢ 5 (AN7A ) = (———5————(01_1 !(n_s)!) (122)
for m-% = n-s 2> 0, and otherwise = 0.

One verifies that the right-hand side, for all values of m, &, n, s can

be written as

_1_¢I(L)‘“(_d_)“< 1% g s)} 123
val vaT \\daz,/) \@z,) \®*  *1*2 2 70, 2,0 (123)

This means that for an arbitrary operator B the matrix elements with re-
spect to the ¢n can be obtained from the Bargmann kernel by differentia-

tion

(6,84 ) = et (S )m = )ns( )} (124)
B o) = T T \\E,) \T,) Pl oL
1 ’

For the S-operator one has in particular

(6_,5Ci%4 ) =
-1_-1_I/_d_)m<_‘i_\n sCil } 125
val T \\az,) \az,) @z /5H30,) 2,20, 2,0 (125

with (¢z ,S[j]wz ) as given by (114). This completes the derivation of
1
the S-operator and its matrix elements for the oscillator in a homogeneous -

force, a result that will be used in the next section.
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10. THE ANHARMONIC OSCILLATOR

In this section we shall discuss the quartic anharmonic oscillator, as a

simple analogon for a non-trivial quantum field theory. In particular, we

shall set up a method for a successive calculation of the terms S(l) in
the Dyson perturbation series for the S-operator
s=§ s®
2=0
+00 +0o
(2 _ 1, .8
s°77 = o7 (-D) _i ',"_o{ de, ... dey T{H () ... B (£))} (126)

In this procedure we shall make full use of the path integral as a heuristic

device.

The anharmonic oscillator was given by the classical Lagrange function
L(q,q,t) = Lo(q,ﬁ) +L1(q,t), with L(q,d) = idz'-iwzqz the Lagrange func-—
tion of the free oscillator, and L1(q,t) an anharmonic perturbation of

the form —g(t)q4. (This fourth power is the most obvious non-trivial exam-
ple; the method to be discussed .is, however, applicable to general polyno-

mial perturbations)

We suppose again for technical reasons that the function g(t) has its sup-

port in a finite time interval. Initial and final times t and t, are

supposed to be taken outside this interval. The limit ta > -, tb > 4
for the S-operator is then trivial

Let ¢y and ¢' be arbitrary vectors in the Hilbert space H. We have

it H -it H

WS = lim (e ©° Cug,t)e 2 %1 =
t »=c
S (127)
it, H -it H
- b O a 0 1 — |
- (w’ e U(tb’ta) e IP ) - (lptb’ U(tb’ta)wta)
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with
-it, H
b =e %
b
(128)
-it_ H
oome 2%
a
By means of the path integral formula for U(tb,ta) (127) becomes
b
- 1tf (LO+L1)dt
—_—— a =
15 v ) [N j e D[q(-)]]wé (x ) dx, dx_ =
-c0 b a
q(ta)=xa
a(t)=x,
%
[ 1tf (L0+L1)dt
= T (alr SV a .
- N | T @EDY (ale)e Dlq(+)]
q(+) arbitrary a
on [ta,th (129)
b
if L,dt
t 1
Expanding e a in this formula in a very naive way one obtains
}b
i L dt
v (i)l [ ——— b oty °
] 4 J @y @) (S L ey e DLq(+)]
=0 - tb b ta a t !
q(*) on [ta,tb] a
(130)
We denote the functionals Ve (q(tb)iwé (q(ta)) as RIql,
t b a
1 t
f Lo(q(t),ﬁ(t))dt as Io[q] and tI1 L1(q(t),t)dt as I1[q], and
t a
0
obtain then
2 e I1[q]
W, 9" =2§0 o R[q1(1,[q])" e DLq(+)] (131)

q(*) on [ta,tb]
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This series can be identified with the Dyson perturbation series; we have

for each term

L I,[q]
w,s®Myny =L rigd@ b e ' Dlq(a)] (132)

a path integral expression for the Rth order term in the Dyson series for
a general matrix element (¢,Sy') of the S-operator. This expression has
to be calculated.

To understand the essence of the method for this we consider for a mo-
ment an analogon in terms of one-dimensional integrals. Let R(x), Io(x),

and I1(x) be functions of a single real variable. Considér the integral

o (I 04T, ()
f R(x)e dx =

-—00

© iz +eo . iIo(x)
= ] = [ R&E,EN" e dx (133)
2! 1
2=0 -0
Define a generating function
+o0 i(Io(x)+ux)
Z(u) = [ R®Ee dx (134)
one has
k +0 i(I, (x)+ux)
—-—de(u) = ik f R(x)xue 0 dx (135)
du -0
and therefore
+00 iI,.(x) k
[ R@xFe O ax = (—i)k(iliz(uﬂ (136)
-0 du u=0

all this of course in a very heuristic sense, with formal power series.

This "moment" formula can be extended to polynomials in x
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+0o iIO(X) / d
| RGOp(x)e dx = \P<'ia;)2(u)) (137)

- u=0

The term (11(x))2 in (132) 1is a polynomial, and this means that we have
a method for calculating the terms in (133) by differentiation of the gener-
ating function in u = 0. It is important to observe that this makes sense
as a practical method only when Z(u) 1is explicitly known and is such that

repeated differentiation is not to difficult.

We apply these ideas now to the path integral expression (132):

a. One defines a generating functional

t
b
i(Io[q] + f u(t)q(t)dt)
t
z[ul := N Rlqle a Dlq()1
q(+) on [t ,t,] (138)

which is a functional on functions u(+¢) on the interval [ta,tb].

b. One observes that in the path integral (132) that has to be calculated
the functional (I1[q])2 is a polynomial. For this to be clear we must
briefly discuss what we mean by polynomials in the case of functionals.

As functional F[ql defined on a linear space of functions V is a
homogeneous polynomial of degree K if F[ql can be written as

Flql = M[q, ..., q], with M a symmetric K linear map from V x ... x V

to R or €. In that case M is uniquely determined by F. A functional

FLq]l 1is a polynomial if it is a finite sum of homogeneous polynomials.

Examples:

%y

1. 1,0ql = - J g(0)q* () de (139)

t
a

This is a homogeneous polynomial of degree &4 with

ty

M[q1, ...,q4] = -tj g(t)q1(t) vee qa(t)dt (140)

a
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2. The free action
b
1fal = f 30 2 - g P ae (141)
t

a

is a homogeneous quadratic functional with

t
b
M[q1,q2] = J i(c‘l1(t)c'12(t)—w2q1(t)q2(t))dt (142)
t

a

With a and b we are in a position to develop a procedure for the calcu-
lation of the path integral (132). The generating functional 2[ul is in-
deed known as a simple closed expression. If we write for a moment j(-)
instead of wu(+) in (137), we recognize easily the expression for (v, S[jly) ,
the general matrix element for the oscillator in an external force that we
have determined explicitly in the last section, and that in this manner be-

comes useful here. The generating functional depends on two arbitrarily

chosen vectors ¢ and ¢' which we now take as ¢ = wz , Y' = wz . We
1 2

write then ZZ 2 [j1l for the generating functional and have as explicit

172
result

Z il = (v ,s0ily )=

1% % %2

z,z, sCjlz, =sl3dz, =6 [j, il
e ! 2e 1e 2e2F (143)

This is indeed as functional in j(+) a simple expression, exponential func-
tions containing linear and quadratic functional.

To proceed further we need a suitable definition of functional differ-
entiation. It is not difficult to give such a definition, partly heuristic,
but sufficient for our purpose. We generalize the notion of directional der-
ivative:

Let FL[ql be a functional defined on a linear space V of functions

q(*). One defines (DhF)[q], the derivative of F in ¢q in the direction
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of h as
(0,F)[q] = lim +{F[q + b1 - FLq1} (144)
h A
A0
This definition makes sense certainly for polynomial functionals. For a ho-
mogeneous polynomial of degree n, FI[ql = M[q, ...,ql, with M the asso-

ciated symmetric n-linear functional, this derivative is clearly
(DhF)[q] = nMlh,q, ..., q] (145)

The derivative is again a functional in q and at the same time a linear
functional in h. The usual properties, Leibniz rule, chain rule, etc. hold.
In the physics literature a heuristic "partial" derivative is used.

It fits in the picture that a function q(+) stands for an infinite of vari-
ables {q(t)}tER.' This heuristic functional derivative will also be em-
ployed in our discussion. It can be obtained from (144) by taking for

h(*) the Dirac &-function 6t () = 6(t1-°):
1

§Flql _ ®

6q(t1) : F)[q] (146)

£

$

The right-hand side of this formula is of course very symbolic and non-ri-
gorous although the result may be well-defined, as is clear from the follow-
ing example

t

b
Flql = 1,0q] = - [ g(t)q*(0)at
ta
(0, F)lql = -4 [ g(t)h(t)q (t)dt (147)
ta
§ Flql

3
m = "4g(t1)q (t1)
It is useful to express (DhF)[q] in the heuristic derivative

- 8 Flql
(0, F)[q] jh(c1) Gq(t1)dt1 (148)
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In an analogous manner one defines higher functional derivatives. The sec—

ond derivative is for instance

P | _ ‘
(Dh h F)[ql := lim T{(Dh F)[q-+xh1] (Dh F)[ql} (149)

12 A0 2 2
Applied on polynomials (Dh1h2F)[q] is again a functiomal in q(*) and a
symmetric bilinear functional in h1(-) and h2(-). There is a heuristic
second derivative

2
8" Flql .
Fa(t)sale) - Dy 5 Blal (150)

2 t, t

with the relation

2
= _ 8"Flql
(Dh1h2F)[q] =[] h (£ )h,(t,) SqCe s q(tz)dt1dt2 (151)
EXAMPLE:
t
b 4
Flql = 1,[q] = - [ gt)q (v)dt
ta
tb 2
(Dh n FYLal = -3-4- f g(t)h1(t)h2(t)q (t)dt
172 £,
s
(G F)[ql = -2+3+4 | g(t)h1(t)hz(t)h3(t)q(t)dt
1723 3
GZF[q] 2
TqE sty - resepolemeale)
8% plq] = =2.3+448(t -t.)6(t -t )q(t,) (152)
§a(t )8 ale,)8a(E,) - 170270 T ARy

REMARK. It is of course possible to extend the idea of functional differen-
tiation from polynomials to a wider class of functionals in a mathematical-

ly rigorous manner. The definition (143), essentially a G3teaux derivative

is too weak to have many useful properties. The Fréchét derivative would

be more appropriate, but would involve the introduction of topological proper-
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ties, norms or seminorms in V, continuity of the functionals, etc. All
this is unnecessary for our purpose here, a heuristic method of generating

formal power series.
We apply this concept of functional differentiation on (138)

ty
i(10[q] + [ j(t)q(t)dt
t

z[j1 = N : Rlqle a DLq(+)]
q(*) on [ta,tb] (153)

One differentiates 2z[jl in j(¢) =0

t

b ilo[q]
(DhZ)(O) =N J RLqI(i [ h(t)q(t)dt)e Dlq(+)]
t
q(+) on [ta,tb] a (154)
which gives
iI [q]
( 82057) 11yta
- 5 =N [ R[q] q(t DLlq()1] 155
1(537f%yj=0 J RLq1q(t e q(+) (155)
More generally one has
(y [ 8"2Li] )
CE IR ICEICn)
j=0
ilo[q]
=N Rlq] q(t1) ...q(tk)e DLq(-)1] (156)
q(*) on [ta,tb]
This gives us a formula for (¢ ,S(Z)w )
z z,
(2) _
(¢z1,3 sz) =
L (1.0q]
- LN RIq1(r,LaD e O " 0Lq()] =

q(+) on [ta,tb]
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-i)* ™o 4 4
=N g’) ROq1{ [ ... [ de,...dey gt ). g(e) qe ) ... ale)) )
q . -0 -—00
il [q] s 2 400 +o
e O prq(1 =S w ] de de s gty
i1.[q]
N R[q]q(t1)4...q(t£)4 e 0 7 Drq() 1 (157)

q()

and finally with (156)

W, .
v, 5570, ) =

49

N A ) +o0 ’ Zz z [J]
_ (:;2 [ ... dt,...de, glt) ... g(t)) -)** A = 4
1 6j(t1) ,,,5j(t2) j=0

-00 -—00

(158)

with

- e —T i ..
) z,2, s[J]z1 s[J]z2 'EGF[J,J]
A [j1 =e e e e

2%y

(159)

Our last task will be to carry out the functional differentiation in (158)
in an explicit, but systematic manner. This will be the subject of the next

sections.

REMARK. The result (158) can be written in a very symbolic way as

w ,sWy ) - i (( jb L (=i t)dt)lz [j]) (160)
H = 9 - —‘—-—’
z, z, L € 1 §j(t) z,2, 320
An even more symbolic, but also very compact formulation of the result for

the total matrix element as

t
. P .8
ltf L1("1T(t) , t)dt
a .
(wz S¥, ) = (e zZ, [j] (161)

z
1 %2 "2 )i
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This formula suggests that the heuristic validity of the method is much
more general than the particular L,(q,t) = —g(t)q4 that we have been dis-

cussing.



59

11. EXPLICIT CALCULATIONS OF THE MATRIX ELEMENTS

. . th
To summarize the results of the last section we may say that the ¢ order

term in
v (2)
W .8y )= 1 W_,5 7y ) (162)
A - %
can be calculated as
w, 5™y ) -
1 2
49 .
[ 4% ’ 22122[31
=== [...f g(t,)...g(t,)(-1) dt, ...dt (163)
gt 1 2 RTINS 3
508 T =0
with
- i .. iq=
z,z, =G_[j,jl sCjlz, -sljlz
Z [j1 =e L 2e 2F e 1e 2 (164)
Z1%2

Note that (163) must be compared with the Zth order term in the Dyson

series
& e +oo
1) _ (-1)
(wz1,s wzz) =0 _o{ _o{ (wz1,T{HI(t:1) ...HI(cJL)}u;zz)dc1 coodty
(165)
Differentiating the functional 2Z [j] 1is not particularly difficult.

z,2
172
One uses Leibniz's rule, the chain rule and the derivatives of the simple

functionals GF[j,j] and sl[j]

(DhG)[j, j] ZGF[h, j1
(166)
(Dh1hzc)[j, jl = ZGF[h1, h2]

(higher derivatives = 0)
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(Dhs)[j] = slh] (167)
(higher derivatives = 0)

Using this one obtains
(D, Z Y[31 =
h 2,2,

(iGF[h,j] +s[hjz1-s[h]z2)zz122[j] (168)

In terms of the heuristic "partial" derivatives

8 — ey
m GF[J,_]] = 2 J’ GF(t t')_](t')dt'

2

s o )
m = GF[J,J] = ZGF(t1 tz) (169)
5 s[jl = i(Zw)_ie it
§3(e) °J

The separate steps are all very simple. Nevertheless for higher deriva-

tives of Zz z [j] things will become quite complicated, so what is needed
172
is a systematic approach to the differentiation procedure.

For application of formula (163) we use higher 'partial" derivatives of

Zz 2 [jl takem in j =0

172
§°Z [jl
z,2,
( ) (170)
63(:1)...63(tn) 3=0

This is a function of t1,t2, cee bt with n = 42. It is used for values

t,=t,=¢t, =+t

1 2 3 t. =t t

= = =t etc. i i i
4 5 6 7 8’ c. A way of finding such partial
derivatives of a functional is to write the functional as a power series

around j = 0.

In general a functional FL[j]l can be developed as

FL31 = FLO1 + (DJ.F)[0]+—21—,(DJ.J.F)[0]+ (171)
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If F[jl can be written as

gy L (» .
F[J]—Z - J. jM (t1,...t)_](t) .J(tp)dt1...dtp

-co -00

(172)

with functions M(p)(t1,...,tp) that are symmetric in t .,tp, than

12 -

these functions can be identified with the heuristic partial derivatives

P
M(p)(t1, t ) _ ( §*FLil

\
\§3Ce).. RELC: D s20 (173)

It is very easy to expand the generating functional Zz z by expanding the
172
three exponential factors, that depend on j.

Z [j]
1%2
z.z o k
172 1 (i \W4 T , )2
=e —— e Cj, 37} t{slilz
K, kz’rok'k'r'\z 3, 34y stitzy ) (mstilzy)
(174)
We use temporarily
. -} iwt
a(t) = i(20) ‘e
B(E) = i(2w) Fe It (175)
"(e) = L
G'(t) = ZGF(t)
and write the integrals in (174) in an explicit way
© +oo +o 7z z k
. 1 172 1 2
Z [J] = z — eee f e 2 ——1———r——(z ) 'z
2,2, p=0 p! _ o k kz’r k1 k2 r! 2
k1+k2+2r-
. ' - ' -
a(t1) ...a(tk1)G (tk1+1 tk1+2) . G (tk1+2r—1 tk1+2r)
. B(tk1+2r+1) B(tp)_](t1) J(tp)dt1 dtp (176)

After symmetrization in t .,tp this gives the heuristic partial deri-

12

vatives
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p . k, k
§z £;1 = -y 1 2
Z1%9 \ o2 g (Z) 'z
§3(t)...83(t) = ENET
1 P/j,_o k1’k2,r 1 2

k1+k2+2r=p

ogg 0‘(to(1)) "'a(to(k1)) G'(tc(k1+1)"to(k1+2)) e
P

... G'(t )) B(t .. B(t (176)

0(k1+2r—1)_t0(k1+2r o(t1+2r+1)) * 0(k1+2r+k2))

Such a derivative consists of a finite sum of terms which can be divided in-
to classes, characterized by 3 numbers k1, k2 and r, with

k1+~k24-2r = p. The terms belonging to the same class are obtained from
each other by permutation of the t-variables. (Sp is the group of permu-

tations of the numbers 1, 2, ... p). To avoid terms that are indistinguish-
able one could restrict the permutations by some ordering principle and put

an extra factor k1! k2! r! 2¥ in front for compensation.

In (163) one has derivatives of the special type

sz , [l
2122
( A 4) Q77
6j(t1) e j(tl) 3=0

and these are obtained from (176) by putting the t variables equal in

groups of four. This gives again terms which are equal, and this can again
be taken into account by a further restriction on the permutations together
with a compensating combinatorical factor. We shall not be concerned with
this and concentrate on the classification of the different terms and on a
discussion of their properties. This will entail the introduction of dZa-

gram techniques.
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12. FEYNMAN DIAGRAMS

The ch order term (wz ,S(z)wz ) 1in the series for (wz ,Swz ) consists
1 2

1 2
of finitely many terms that can, in the first instance, be classified accord-

T k2, r with k1

Our final aim is not an approximative calculation of (wz ,Swz ), but
1

ing to numbers k +k2-+2r = 4.

of the transition amplitudes (¢m,S¢n). These are the objects of physical
interest, because I(¢m,S¢n)|2 is the probability to find the system in a

final state ¢m with energy Em when it was initially in a state ¢n with

)

energy En. The matrix elements (¢m,S¢n) and (om,s ¢n) are obtained

from the coherent state expressions (wz ,Swz ) and (wz ,S(Q)wz ) by the
1 2 1 2
general formula (123) which for the Zth order term of S gives

(¢m’5(£)¢n) =
_ 11 {( d )m( d )“( (1) }
= - = Y ,S vo) (178)
VAT VRT\\dz,/ \dz,/ ™z, 22 ) =2,=0
Combining (163) with (176) we see that not all terms in (wz ,S(l)wz )
1 2

(€3]

contribute to the physical matrix element (¢m,S ¢n). We obtain the ex-

plicit expression

P 2
@ ,s®e ) = EE_ i) minn’?

1 1 +00 +o0
= J ... dt ...dt gt )...
koK (k) k) n? Ktk Ts TG 2 BT
0<k1<m,0<k2<n cee g(tl)
k1-k2=m—n
r>0;k1+k2+2r=42

(cgéa(Tc(1)) ...a(tg(k1)) G'(To(k1+1)—Ta(k1+2))"'
P

. G'(Tc(k1+2r-1)-Tg(k1+2r)) B(Tc(k1+2r+1))"'
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... B(1 (179)

)>
o(k, +2r+k,) e o oo o
1 2 11—12—13 14 t1

15=T6=r7=18=t2, etc.

One way to understand this formula is to return to operator language. We

have seen that matrix elements with respect to the coherent states correspond

ky Ky 24z
with normally ordered operators through the relation (21) z, "e S d
k, k
*y 1, 2 . 1 0
<> (A™) 'A °. The energy elgenitates have the form ¢n VaT (A™) ¢O. ihe
k1 factors a(')E1 give (A*) 1, the k2 factors 8(')z2 lead to A 2.

A state LN is a state with n 'quanta" of energy w (or properly speak-

k, k
ing hw). An operator A% 1A 2 takes away from the initial state ¢n

(if possible) k2 quanta, and then adds again k, quanta. In order to

1

end up in ¢m one must clearly have k1-k2 = m-n, one of the restrictions

in the summation in (179). The terms characterized by k,, k2, r which oc-

1

cur in the summation and are permitted by the restriction, correspond to

those parts of the operator S(Q) written in normally ordered form as terms
k, k
proportional to %) 1A 2 that contribute to the matrix element
1)
CRCAE I

EXAMPLES. 1. & = 1. (first order perturbation term)
a. Transition from ground state ¢0 to state ¢1; m=1, n=0. Because

of k -kz =m-n, O0< k1 €m, 0< k2 < n, the only possible pair is

1
k1 =1, kz = 0. The condition k1-+k2-+2r = 4% Dbecomes 2r = 3, so

there is no r. This means that there are no non-zero terms, i.e.

(¢1,S(1)¢0) = 0. (For this q4 theory it is obvious that

k1+-k2 = 4% - 2r 1is even, SO m-n = k1-k2 even: i.e. no transitions

for m-n odd)

b. to ¢2; i.e. m=2, n=0.

%
One possibility: k,6 =2, k, =0, r =1,
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c. ¢

0 to ¢4; i.e. m=4, n=0.

One possibility: k

il
E~d
-
=~
]
o
-
R
1]
o

1
d. ¢2 to ¢2; i.e. m=n-= 2,

Three possibilities: k,6 =0, k, =0, r =2

1 2
ky=1, ky=1, r=1
k =2, ky=2, t=0

2. % =2 (second order perturbation term)

¢2 to ¢2; i.e. m=mn-= 2,

1
o
P

Five possibilities, for example k k, =0, r=4

1 2

k1 = 2, k2 =2, r=2,

®)

Formula (179) tells us which terms from (wz »S wz ) contribute to the
1 2

physical amplitude (¢m,S(2)¢n); the next thing to do is to discuss these

terms themselves in more detail.

We choose a fixed set of integers k k2, r and & such that

1’
k1-+k2-+2r = 44. If we do not bother about the combinatorial and other fac-

tors in front we have to discuss 2#-fold integrals of the form

+00 +0co
[ ... g(t1) ...g(tz) a(e) vooa(*) G'(*y*) +..G"(*,*)

B(e) ... B(*) dt1 oo dt (180)

L

In this integral we have k1 factors a(-), k2 factors B(*) and r

factors G'(+,°). On the k1-+k2-+2r dots there is a distribution of the

%2 wvariables t1,..., tz, in such a manner that every variable tj is used
4 times. The possible different distributions, corresponding with the per-
mutations o in the second summation in (179) give different functions in
the integral (180). These possibilities may be characterized by diagrams

or graphs. Consider £ points, the vertices, denoted by the variables

t st

. (Their relative positions are irrelevant)

TR
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[ ]
[ J
[ ]
i ©2 t
3
o tE
[ ] t[,
. . )
Each vertex possesses 4 Ilines: ::>.<:T,
e
We construct a diagram by the following choices: TN

1. Choose k1 lines that run to the left, and remain loose. (Several

lines starting from the same point t., may be selected).

These are the k1 outgoing lines.

2. Choose k2 lines that run in the same way to the right. These are the

k2 incoming lines (outgoing and incoming lines form together the external
lines).

3. The remaining 42-—k1-k2 loose ends have to be connected. (It is per-
mitted to connect some lines coming from the same point tj). In this way

we obtain r = i(4£—k1-k2) internal lines.

The choices 1, 2, 3 determine a diagram:

(a) >O k=2, k,=0, =1,
(b) >1 k, =4, k=0, =0,

t
t
£
5
&

(c) C:\O k; =0, k, =0, =2,
(d) >< k=2, k=2, r=0.
(e) ___O_ k=1, k, =1, r=1.
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2. % =2,
(a) t1'\\://' £, k, =0, k, =0, r=4
7N
(b) Ce ) k=0, k, =0, =4

() cCO C'O' k, =0, k, =0, r=4,

Note that 2a, b, ¢ are different diagrams associated with the same set of
numbers k1, k2’ 2. Diagram 2c 1is to be considered as a single diagram.

It is called disconnected, and is of course built from lower order diagrams.

(The order of a diagram is the number of vertices £.)

(d) \-Oo< k=2, ky=2, r=2.
A ty
L1
\./
(e) ) k=2, k=2, r=2,
\ — - - -
() //t:\ K, =2, k, =2, r=2.
CQO |
t, (again a disconnected diagram)

Diagrams without external lines, such as 1ec, 2a, 2b, 2c, are called vac-

uum diagrams.

Each diagram determines an integrand in (179) and (180) according to the
following rules:

1. An outgoing line, starting at the vertex tj gives a factor

a(tj) = i(2w)-*e thj.

2. An incoming line, ending at the vertex t gives a factor

B(t) = i(Zw)_i e_iwt.
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3. An internal line from tj to tk gives a ''propagator", i.e. a term

6 (g t,) = %GF(tk-tj) :

Finally there is a factor g(tj) for every vertex tj' (In quantum field
theory the '"coupling function" becomes a coupling constant g; this results
in an overall factor gl in front). To obtain the total contribution to
the matrix element under discussion the appropriate combinatorial factor has

to be supplied.

Although a Feynman graph or Feynman diagram as discussed above is really
only a way of specifying an integral that contributes to the perturbation
series of S-matrix elements, it is very often given a direct rather intu-
itive physical interpretation:

Consider as example diagram 2d. One reads it from right to left:

In the initial state there are two quanta of energy. At time ¢t = t, these

disappear (are annihilated) because of the interaction the strength of which

"

is given by g(tz). At the same moment a new pair of "virtual' quanta is

created, these remain in existence until y =t when they are annihilated

1’
but give at the same time rise to a new pair of non-virtual quanta which

are observed in the final state. (We have supposed that t > t other-

1 2?

wise the interpretation is slightly different.)

In a system of N coupled oscillators, with different frequencies Wy
(and in the operator language described by N pairs of creation and anni-
hilation operators A;, Ak) we have a situation which can be described by
a straightforward generalization of what we have discussed so far. We will
find completely analogous results. There will be the same type of Feynman
diagrams provided with extra indices. In the intuitive physical interpre-
tation of the diagrams one thinks then of different types of quanta, with

different energies E, = ho that can be annihilated and created.

k k’
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Quantum field theory can be seen as an infinite system of oscillators. The
corresponding quanta not only have characteristic energies, but also momenta
and various other possible properties such as for instance spin. These
quanta are in fact the particles as we know them in elementary particle
physics. The power of the formalism as we have explained it for a simple
oscillator lies in the fact that the structure of the Feynman diagrams re-
mains essentially the same in the much more complicated situation of quantum
field theory. The same diagrams will carry more information. The vertices
will signify space-time points (x,y,z,t) instead of time points t, there

will be extra variables and indices, arrows, different types of lines, etc.

\r\/\r\m/ —“‘9‘—‘—"//
e AN

In quantum field theory it is also advantageous to employ instead of space-

time variables a set of fourier-transformed variables with the same diagrams.
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1. INTRODUCTION

We discuss some examples of non-linear models in field theory in 1-time and
D-spatial dimensions. These models have time-independent solutions which
are non-singular, stable and localized in space and which have finite energy.
These solutions are characterized by boundary conditions at infinity, they
are called topological solitons.

The various models we areAgoing to discuss share one feature, the ground-
state is degenerate.

Examples in (1+1) dimensions are the ¢4-mode1 and the sine-Gordon model
for a scalar field ¢(x,t). In (1+4D) dimensions with D > 1 these models
have no time-independent soliton solutions. (Derrick's theorem). A better
insight in the relationship between the number of dimensions and the exis-
tence of soliton solutions is obtained by invoking arguments from homotopy
theory. This gives firstly a general criterium for the existence of topo-
logical solitons, secondly one is lead in a natural way to the introduction
of gauge fields. In section 2 we discuss the ¢4-mode1 and the topological
conservation law. In section 3 we consider briefly Derrick's theorem and a
simple result from homotopy theory. In section 4 we consider and abelian
gauge theory in (1;2) dimensions and the 'topological quantization" of
magnetic flux. Section 5 contains some general remarks.

The reader should be aware of the fact that this contribution to the seminar
contains nothing new. It is meant to be a light-hearted interlude between

the heavy mathematical contributions.
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2. THE ¢4-MODEL (GOLDSTONE STRING) IN (1+1) DIMENSIONS

We consider first the Lagrangian density for the Klein-Gordon field ¢(x,t).

—
|

2 2
Wy Cy o Hy -
= 102 93" =25 = 42 02"4 - V()
3 5 2 2

v _9 = mc
see ) (O = 3er ), U9 = =

]

( u

The equation of motion reads
2 2

(2.1) aua“¢-+5lfl-¢ =0.

This equation has solutions of the form

9 (x,t)

Asin (kx —%-ct+6)

with ( m)2 ( kc)2-+m2c4.

Comparing this with E2 = p2c2-+mzc4, the relation between energy and momen-

2 2
. 2, .
tum, one sees that m is a mass. The term —in‘; ¢~ in L 1is called the
mass term. From now on we will use units for which =1 and c = 1.

Moreover we consider eg. (2.1) as a classical i.e. non-quantummechanical

equation. Eg. (2.1) can be considered as the equation of motion of a string
2.2
¢ .

with potential energy density 5(%%)2-+im The total energy, being the

sum of kinetic energy and potential energy is given by

o

(2.2) H= [ HGe,tdx= [ (362+¢'2+0(6))dx > 0

=00

where ¢(x,t) 1is a solution of (2.1), b = %% and ¢' = %%_
From (2.2) it follows that H =0 only for ¢ = 0, there is no degeneracy
of the ground state.

We now consider the so-called Goldstone string. The Lagrangian reads

(2.3) L= 5au¢a“¢-u(¢)
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with U(¢) given by

2 2.2 2 4
A2 m\T A" 4 22 m
(2.4) u(¢) = —-(¢ -] ==¢ -im ¢ " +—5 20 (m,A>0)
4 A2} 4 2
the equation of motion is
oL aL - 2 (2
— - — -— n = e - —
(2.5) S5 g =0 = bt = ¢@ A2)-

Note that the term £m2¢2 "in (2.4) cannot be interpreted as a mass term,
it has the wrong sign.

For solutions ¢(x,t) of (2.5) the energy is given by

(2.6) H= [ H(x,0)dx = [ (362+3(")%+U($))dx > 0.

=00

The ground state, i.e. the state with lowest energy, is that solution of
the equation of motion for which H is minimal. From (2.5) and (2.6) it
follows that H = 0 for solutions ¢0 with éO = ¢6 =0 and U(¢0) = 0.
This gives ¢0’1 = m/A and ¢0’2 = -m/A. The Goldstone string has two
ground states. Notice that ¢ = 0 has infinite energy.

We denote the collection of ground states by
(2.7) V={vER | U(v) =0} = {%,'—A’“}.

In figures 2.1 and 2.2 we have drawn the term U(Z) for the Klein-Gordon

string and the Goldstone string.

u(e) U(g)

£ -m/ m/A 3
2.1. Klein-Gordon string 2.2, Goldstone string
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For the Goldstone string one can study "small oscillations" around a ground
state. Defining ¢ = ¢-m/A we have ¢ = 0 for ¢ = m/A. In terms of the
shifted field ¢ the Lagrangian (2.3) obtains the form

2

12 va"y - b am)y? - - 4y

(2.8) L

LO * Lint.

""Small oscillations" are given by L0 = ;au¢a“¢-iu2w2, a Lagrangian with
mass parameter u = mv2.
We now come to the real problem.
Does the system with U(¢) given by (2.4) possess non-trivial regular
(i.e. non-singular) solutions with finite energy?

For solutions of the equation of motion the energy is given by expression

(2.6):

B= [ (46246 2+u(4))dx

-0

and H 1is <ndependent of t.
Finiteness of the energy means that (2.6) must be finite for arbitrary but
fixed t. As all terms in (2.6) are nonnegative we obtain as necessary con-
ditions for convergence of the integral
$(x,t) —— 0 vt
Ix|>=

(209) ¢'(X,t) — 0
Ix |-

U(¢) — 0

x|

These conditions imply
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lim ¢(x,t) := ¢(¢=), independent of t
I% |

(2.10)
U(¢(¢=)) = 0, so ¢(2x) €V (see 2.7)

So ¢(x,t) must tend to a zero of the potential U for x >« and x »> -=

for all t.

The possible solutions fall into four disjunct classes which are character-

ized by a "charge" Q.

$(=) | ¢(-=) Q

m/A m/\ 0
-m/\ -m/X 0
-m/ A +m/ A ~2m/X

+m/A | -m/A | +2m/A

A solution in one class cannot be deformed continuously into a solution in
another class.

The charge Q is defined as follows. Consider

v
Ju(x,t) = Euva o(x,t)

€ =€ =0, € = -€ = -1

00 01 10

Ju satisfies the local conservation law

n

(2.11) 3°J = 0.
u

The topological charge Q 1is given by

©

(2.12) Q= | Jo(x,t)dx = | %% (x,t)dx = ¢(») = ¢p(~»).

-0 =00

Q 1is independent of t.
The local conservation law (2.11) has nothing to do with the dynamics of the

system. This contrasts the conservation laws obtained by Noether's theorem.
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We now look for time-independent solutions with finite energy. The

equation of motion reduces to

ay _du
PR

and the expression for the energy is

o

H= f (¢ 5+u(s))dx.

—00

To obtain finite energy we must have ¢(t») € V., We use the Bogolmony de-

composition to rewrite H.

. - b(+)
Hed [ (/M e20WVaax > | [ /W Laxl = [ /Wag
- = b=

For ¢(») # ¢(-=) the energy is bounded from below by

6 (=)
| vy = 2’ a?
¢ (=)

This finite value is realized for solutions of the first order equations

9w or . _mw.
dx dx

The first equation has solutions given by

(2.13) $ 5, ® = /A tanh-‘,}(x—a).

This is a non-singular soliton solution with finite energy. From "Lorentz"

invariance it follows that
= Mg
¢501(X,t) = m/\ tanh yz(x a-Bt)

with B=v/c and vy = (1—82)-i
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is a soliton with velocity v.
The energy density for (2.13) is strongly localized,
m4 1
H(x) =-—2'——4——— .
sol 42" cosh m(x=-a)
2

The soliton solution is '"topological' stable. It isalsoa dynamically stable
solution. An initially small perturbation p(x,t) around ¢Sol(x) remains

small,

A second example in (1+1) dimensions is the sine-Gordon model with
U(¢) = 1-cos b¢.

The degenerate ground states are contained in

27

V=1{veER | U(v) =0} = {v=1rn | nez}.
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3. SCALAR FIELD THEORY IN (1+D) DIMENSIONS. DERRICK'S THEOREM

We start with the Lagrangian

N
with 3 = (2 —ET- —é—) and U(¢) > 0.

For later use we have taken a complex valued function ¢. To obtain the
energy for solutions of the equations of motion we must integrate the energy
density over D-dimensional space.

HLol = [ {1612+ ve*+ve + u(s) 1aPx.

00
We now use Derrick's argument to show that there are no time-independent so-
lutions with finite energy for D 2 2.
For a time-independent solution we have

Hl¢l = V¢*-V¢de-+ f U(¢)de = H1[¢]-¥H2[¢].

—-C0 B—-

Both terms are nonnegative and must be finite. For time-independent solu-
tions H(;) = —L(;) and L[¢] must be an extremum. So HL¢] must be an

extremum. Consider now the function ¢p defined by

¢p<§> = 9(0®), op€R

and calculate H[¢p]. One obtains

S k(%) - Ve dx+ [ (s x

-—00 -00

H[¢p]

pz_DH1[¢] +07%m, g1

For p = 1. H must have an extremum, so
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dilepl
dp B

This gives (2—D)H1[¢] = DH2[¢l from which it follows that H1[¢] = H2[¢] =0
for D > 2. Hence the time-independent solutions must be constants which
are zeros of U. These are the trivial solutions. For D = 2 we must have

H2[¢] =0, i.e. U(¢) = 0. The energy is then given by H, = f V¢*~V¢d2x
where ¢(;) is a zero of ‘U for all x. This leads again to ¢ = constant.

To obtain a better feeling for these results we consider the case D = 2

with U given by

2.2

2
O (i IR
A

The expression for the energy is

o

H= | (3% +7¢*ve+U($))d°x > 0.

00

The ground states are given by ¢(x,y,t) = constant, with l<b|2 = mZ/AZ.

We have now a continuum of ground states,

V=1{vee | U(v) =0} = {%ei" | a€R} = 8.

Introducing polar coordinates r,6 in the x-y plane we have as neces-

sary conditions for finite energy

é(r,e:t) — 0

>0
\%) — 0 .
>
u(¢) — 0
>

These conditions imply (see section 2)
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lim ¢(r,0,t) = ¢(=,0) (independent of t)

>0

$(=,8) € V.

Let us now consider a time-independent configuration ¢(r,0). The energy is

then given by

2%,
or

3

2
) +U(¢)}rdrd6

L 27
(3.2) H= | f
r=0 6=0

{

For r »  the function ¢(r,0) must have a limit ¢(«,0) € V. We must

4
2
r

now consider the 6 dependence of ¢(«,0). For simplicity we assume

¢(r,0) to have the property

lim Eﬁé%zg) = g%-lim ¢(r,0) = £%¢(”,9)-

> >

With this in mind we rewrite the middle term in (3.2)

[

2m
dr
S de<t.

r=0 ©6=0

ole

A2
2 |3
r

Taking R sufficiently large we may, using our assumption, replace Egéifgl
4 6(=,0)
de
4 ¢(=,0) _
de =0.

sidered as a mapping from the circle S;(lin1¢(r,6)) into the set V = §
>
of degenerate ground states. (Recall that ¢(«,0) € V).

in the second term on the right by and we see that the integral

diverges for r - «® wynless The function ¢(»,0) can be con-

1

These mappings can be divided in homotopy classes. All elements in one
class can be transformed into each other by continuous deformations. The
homotopy classes are labelled by an integer n, the winding number. The
winding number tells us how many times we cover the image circle if 6

runs from zero to 2m. A mapping with winding number n can be brought in

the standard form

m _in®
¢n(°°,9) = X e .
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From these considerations we learn that in order to obtain finite energy
the solution ¢(r,06) must for r - » take the limiting value ¢(»,8) with
d ¢(=,0) _ .
I = 0. This means that ¢(r,6) has only one boundary value for all
directions 6. Invoking the results of section 2 where we have seen that
in order to have a soliton solution ¢(x) must have different boundary
value for x » ® and x > -» we conclude that there are no time-indepen-
ent finite energy solutions in this model. We have also discovered that it
9¢

is the tangential derivative i.e. %'55 which causes the trouble.
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4. A GAUGE MODEL IN (1+2) DIMENSIONS. FLUX QUANTIZATION

In this section we show that the coupling of the complex ¢ field to the
electromagnetic field modifies the tangential derivative % %% in such a
way that solitonlike structures may appear. Before doing this we discuss
some interesting properties of the model with U(¢) given by (3.1)

We start again with the Lagrangian

PR N T . (28 3 3
(4.1) L=23¢%"%-0(®; 3, (at,ax, )

3 d
oy

2 2
@2 ue = ae’-a?nd.

As we have seen in the previous section there is a continuum of ground

states given by
(4.3) v={vee lu(v)=0}={§el°‘ | a€R}.

This model is an example of a field theory with spontaneous symmetry break-
ing. The Lagrangian and the equaticns of motion are Znvariant under the

phase transformations
(4.4) $(x) = ¢'(x) = eiw(b(X), w€R

i.e. they are invariant under the unitary group U(1).

Choosing, however, a ground state e.g. ¢ = m/A we obtain a new ground
state ¢' = eiw~m/A. The ground states are not invariant under U(1). This
is called spontaneous symmetry breaking. Related to this is the appearance
of massless bosons (Goldstone bosons). To show this we decompose the com—

plex field in its real and imaginary parts
(4.5) $ = ¢, +1i¢,

Considering now small oscillations around a ground state, say v = m/A, we

have the shifted field
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b= ¢-m/)

with ¢1 = ¢1-m/x and wz = ¢2.

Substituting this in the Lagrangian (4.1) we obtain
(4.6) L=23y Buw -mzwz + 93 Y Buw + higher powers of ¢, and V,.
1 1 1 u2 2 1 2

There is no mass term for the wz fields. Figure 4.1 shows why this is

the case.

o

o
o
s

<" m/\ ¢|
/

¢y fig. 4.1.

The potential U has the shape of the bottom of a bottle. For small oscil-
lations around m/A in the ¢2 direction, in general tangent to the bottom
circle, the force m¢2 is absent.

We now generalize the model to a field theory with gauge potentials

>
Au(x,t). The gauge invariant Lagrangian is

]

(4.7) L(a,d) [(au—ieAu)ds]* (au—ieAu)¢-U(¢)"£Fquw

2 2
3 3 9 2_ 2
= (etrg) v - et
X 99X

The electromagnetic field tensor F =3 A -3 A

The Lagrangian (4.7) is invariant under the local U(1) group, with trans-

formations
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eiem(x)¢

0(x) = ¢'(x) = (x) , (x = (t,x",%x2))

(4.8)

Au(x) — AL(X) Au(x) +3uw(X)-

The energy for solutions of the equations of motion is given by

H = J{0y9) ©y9) + Be)* + Bo) +U() + 4 E+8%) }axax’
(4.9) Bp = (v-ieK)g; Db = (- ieA)o
' ’ 0" ot 0
By =Fopr Ey=TFgp B=TFpy

The ground states are given by

| 0€ER} and A =0.

- -
(4.10) V={v % © y

We will show that there may be time-independent localized configurations with

finite energy. Comparing (4.9) with (3.2) one sees that the gradient terms

3
3

of infinite energy it might be that we obtain finite energy for (4.9). We

-©-

was a source

el Bl
@

are modified. Recalling that the tangential derivative

simplify (4.9) by gauging away the component A For time-independent con-

0"
. . . . > . .
figurations we have in that case ¢ = 0 and E = 0 and the first term in

H 1is no longer present. We get
2 > > % > 1. 2
(4.11) H = [{4B°(x) + (D9) - (D9) +U(¢)}dx dx”.

The condition of finite energy leads again to restrictions on the various

terms in H. Using polar coordinates we have the conditions

$(r,0) — ¢(=,0) €V

>
0 ( 1‘+€> (e>0)
r

0 (r11+e:)

Dol

IB(r,0)|
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[

We now consider the term which contains the derivative

Lol Rl
S5
D

(h.12) Dy = 1200 ie 6(x,0)

9 T

ith A, = A-1
wit 9_ 6 °

Invoking again the assumption that we may interchange the limit r - « and

the derivative with respect to 6 we have

1 d¢(=,0)

(4.13) lim D¢ = lim (r 15

8

>0 >0

: \
- 1eAe(r,9)¢(°°,9)}.

In order that this expression is of order for large r the % beha-

-
1+e

r

viour of the first term must be compensated by the second term. Hence we

must have

1 d¢(«,0)

(4.14) lim ierA (r,0) = 3(=,8)  do

1o
We now see that it is possible that this model has non-trivial configurations
with finite energy. The mapping ¢(«,0): Sl - S1 may have a winding number
n # 0 provided the field equations have solutions K(r,e) and ¢(r,0)

with Ae(r,e) =2 % . We do not know explicit solutions. It is, however,
possible, starting from an appropriate "Ansatz" to show that there are regu-
lar solutions.

Flux quantization.

We define the magnetic flux ¢ as follows
o = f[f Bdx'dx? = [f (rotA) dx'dx’ = § R-ds.

For a field satisfying (4.14) we have

27
©=1lim § Keds=1lin [ A (r,0)rdo
r>~ circle 3o 0
2
S 1 de=,0)
ie 0 ¢(=,0) de :
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Now ¢(»,0) = % elo(e), hence
27
_ 1 do _ 2m
¢ = P g' a6 de = o 0

with n the winding number.
Taking into account the physical dimensions of the various quantities we ob-

tain
(4.15) <I>=n—g, nez

(h is Planck's constant, q an electric charge).

We have here a remarkable result, the magnetic flux is quantized. As the
winding number of a solution cannot change, the flux is a constant. ¢ is
just as the '"charge" Q in section 2 a topological conserved quantity. The
time-independency of Q can also be derived in the following way.

Starting with F*Y we define ku by
(u,v,A=0,1,2).

We then have a“ku = 0, independent of the equations of motion. This local

conservation law yields the conserved flux
¢ = [f kgd’x = ff Ba’x.

We conclude this section by some remarks on gauge transformations. Accord-

ing to (4.10) ¢o(r,e = %, A=0 is a ground state. All ground states

have winding number zero. Performing a gauge transformation we obtain a

different ground state

. >,
o' = e1em(x)¢0
= v .
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2
Taking now w(;) =-%e with tgb = ET we have
X
. >,
o' (r,0) = 2 100
(4.16)
> 1
A'(r,0) = Ve

and it looks as if we have now a ground state with winding number n = 1.

This is, however, not true. The transformation (4.16) is not allowed be-
>

cause 6(x) has to make a jump of 271 e.g. along the negative x1—axis.

See figure 4.2

2

X
Dirac string 6=m vf/lé—ﬁ\\\L
= RL\~<;a”//

fig. 4.2 Discontinuity of 6.

Taking (4.16) and 6 as in figure 4.2 we obtain

t o L4 (oann(e-m)) = —(1-2n5(0-
AS T er de(e 2m H(8-m)) er(1 218(6-m))
and § Aérde = 0.

(H 1is the Heavyside step function).
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5. SOME GENERAL REMARKS

In the preceding sections we have shown that topological solitons occur in
field theory for D = 1. For D = 2 we need gauge fields. In both cases
we need a degeneracy of the ground state to obtain different boundary values
at spatial infinity.

For D =3 and gauge group SO(3,R) one has the well-known 't Hooft-
Polyakov magnetic monopole solution.

In four-dimensional Euclidean space-time and gauge group SU(N) one has

the instanton solutions for the pure Yang-Mills field. A lot more can be
said about the classification of monopole solutions with special symmetry
and about the classification of instantons. This goes far beyond the scope

of this introductory talk.
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1. INTRODUCTION

The standard models for electro-weak and colour interactions are all based
on relativistic quantum field theory. These models provide accurate de-
scriptions of many physical processes that first appear at high energies.
The central quantity in relativistic quantum field theory is the generating
functional for Green's functions. These Green's functions are related to
transition amplitudes for-scattering processes. The generating functional
for Green's functions can be expressed aé a functional integration over
classical fields only. The purpose of this paper is to introduce in a geo-
metrical way the notions necessary to write down such a functional integral.
Therefore we discuss the notions of field and Lagrangian. In particular,

the Dirac field and the Yang-Mills field are put in their proper settings.
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2, JET BUNDLES AND FIELDS

One of the most important concepts in relativistic field theory is the
Lagrangian. We first point out why one needs the jet bundle formalism to
give a geometrical definition of a Lagrangian. Consider as an example the

Lagrangian for a real scalar field ¢(x):
%)) L= au¢a“¢-m2¢2

This Lagrangian L 1is a function of the variables ¢ and Bu¢. We would
like to interpret these variables as coordinates on a manifold. This mani-

fold turns out to be a jet bundle.

Let P and F be differentiable manifolds. Define C(P,F) to be the set

of maps
(2) f: U~>F

where U 1is an arbitrary open subset of P. Two maps f,g &€ C(P,F) are
said to have contact up to order k in x € P if: 1) f£f(x) = g(x);

2) There exist charts (U,¢) on P and (V,y) on F, with x € U and
f(x) € V, such that wofo¢—1 and wogo¢—1 have the same k-th order
Taylor expansion. The notion contact up to order k 1is chart independent
and thus introduces an equivalence relation on C(P,F). The k-jet of f
in x 1is defined to be the equivalence class j:(f) that belongs to

£ € C(P,F).

If JE(P,F) is the set of k-jets in x, then
3) *e,m = v Ke,n
X
x€EP
is called the k-jet bundle. Using coordinates on P and F, the local

coordinates of ji(f) are given by
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(4) Gy (0, 3.y, Ly
i Jpeedy
with wofo¢_1 = y(x). Hence it is possible to provide the k-jet bundle with

a differentiable structure, [1].

Let w: P > M be a principle fibre bundle with structure group G. Let

F be a differentiable manifold.

DEFINITION. A field on P’ is a map

(5) f: P> F.

This rather abstract definition of fields will be clarified in the sequal

when the Dirac field and the Yang-Mills field will be discussed.

REMARK. Fields representing leptons and quarks are called matter field.
Fields mediating the interactions between leptons and quarks are called

gauge fields.
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3. THE LAGRANGIAN

Consider a jet bundle Jk(P,F), where P 1is a principle fibre bundle.
Define Q to be a set of fields f: P > F. Sometimes Q 1is called a con-

figuration space.

DEFINITION. A Lagrangian on Q 1is a map
k
(6) L: J(P,F) >~ R
such that for fields f € Q
.k .k
@) L(j (D) = L(Jug(f))

where u € P, g € G.

This definition implies that L(f) 1is constant along fibres, hence we can

consider L(f) to be a real valued function on the base manifold M.

This property of the Lagrangian is used in the following definition. Let
4 be a volume form on M. Then the action S belonging to the physical

system described by the Lagrangian L is defined to be
(8) S(f) := [ L(f)u

where the integration is over an appropriate subset of M.

A simple example may help to clarify things. Let M ='R4 and G = {el.
Let the configuration space Q be the set of maps f: M > R. Then the

Lagrangian for a real scalar field can be written as
2
9 L(f) = dfedf -m f-f,

where the dot stands for the metric on forms induced by the Minkowski metric

n on M. For the 1-jet of £ in x € M we have

(10) L) = (x, £(0), AEG).
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Hence it is clear that this Lagrangian is nothing but a function on the
1-jet bundle J1(M,R).

REMARK. In (9) the Lagrangian is defined in a coordinate free way. Only
for the 1-jet bundle it is possible to give a coordinate free definition of

the 1-jet as done in (10).
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4. GAUGE TRANSFORMATIONS. GAUGE INVARIANT LAGRANGIANS
Let mw: P > M be a principle fibre bundle with structure group G.

DEFINITION. A gauge transformation is a diffeomorphism y: P - P such

that

1. y(ug) = y(u)g ;

2. Toy =
for all u € P, g € G.
REMARK. Note that gauge transformations leave fibres invariant.

The set of gauge transformations provided with the composition law of map-

pings forms a group: the gauge group Y.

Given a field f € Q and a gauge transformation y € Y the composition
foy 1is clearly also a field. Hence the gauge transformations introduce
an equivalence relation on the configuration space Q. In physics the as-
sumption is made that the gauge equivalent fields f and foy represent
the same physical configuration. Thus the space of physical configurations

is defined to be the quotient space
(11) % := Q/Y.

Moreover in physics only Lagrangians are considered that are constant on
equivalence classes. Hence in the sequel it is assumed that Lagrangians

are gauge invariant:
(12) L(f) = L(foy).

In sections 2,3,4 we have discussed all the basic notions necessary to in-
troduce the generating functional for Green's functions, which will be the

subject of the next section.
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5. THE GENERATING FUNCTIONAL: path integral approach

Let L be a Lagrangian on a configuration space Q, and ¢ the space of
physical configurations. Assume that, up to technicalities, T: Q + ¢ 1is
a principle fibre bundle with structure group Y, where Q, ¢ and Y

are Banach manifolds, [2]. Let I be a section of M: Q »> &:

(13) I: 0> Q, T =id.

In physics such a section is called a gauge fixing condition, or a choice

of gauge. Usually it is formulated in a somewhat different way. To a sec-

tion I belongs a functional H: Q - ¢ defined by

(14) H(f) =0 «— f€Ez

and H 1is used in stead of I.

REMARK. Consider the Maxwell theory of the electromagnetic field. Then the
Lorentz gauge for the 4-potential AM:

(15) aAb =0
u

is an example of a gauge fixing condition given by a functional.

Assume there exists a metric on F, denoted with a dot, and a configuration
space Q, such that f1 -f2 is constant along fibres of P for all fields
f1,f2 € Q. Let u be a volume form on M. Then there exists a metric on

Q defined by
(16) (£,,£,) := f £,-f,u

where the integration is over an appropriate subset of M. Note that this

metric on Q 1is gauge invariant:

(17 (£,,£,)) = (£,°9, £,09)
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where y € Y.

Consider the following functional integration over configurations f € Q:
(18) Z(3) := NJ 6(H(£)) det(Zy) exp{iS(f) +i(£f,j)]IDf

with the "source" j € Q arbitrary but fixed.

The &-distribution in the integrand is meant to take from each equivalence
class of Q only one member. Without the &-distribution the functional
integral would be meaningless from the very beginning, because the contri-
bution from the subset of fields {foY | yEY} would give a factor pro-

portional to the '

'volume'" of the gauge group Y and this is in general in-
finite. Then the so-called Faddeev-Popov jacobian determinant det(Zy)
ensures that under a change of section I - I' the integral is invariant.
The exponent consists of the action S and a source term. The integration
measure Df is assumed to be gauge invariant: Df = D(foy).

Finally, the normalisation constant N is such that 2Z(0) = 1.

The map Z: j€Q I Z(j) € @ 1is called the generating functional for

Green's functions.

REMARK. The n-point Green's function is defined as

§"z(3)
;" | j=0

This cursory discussion of the generating functional circumvents at least
two difficulties.

1) A rigorous definition of functional integration is not given. We re-
fer to the literature where functional integrals are also known as path in-
tegrals, [3]. For an interesting discussion of the path integral applied in
quantum mechanics, see Dr. P.M.J. Bongaarts in this volume.

2) In general a choice of gauge, or section I of Q, does not exist glo-

bally. This problem is known as the Gribov ambiguity, [41].
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In spite of these difficulties it is possible to compute the generating
functional in a perturbative way. Key words in such a procedure are
Feynman diagrams and renormalisation theory, [5].

The generating functional is important in quantum field theory, because all
quantities of physical interest can be derived from it. The point is that
once a Lagrangian has been specified the computation of the generating func-
tional goes along more or less known paths. The physicist is thus faced
with the problem to suggest the Lagrangian that describes best his experi-
ments. To achieve this two important building blocks are used: the Dirac
field and the Yang-Mills field.

In what follows these fields and their corresponding Lagrangians will be
discussed. The construction of models for electro-weak and strong interac-

tions based on these Lagrangians can be found in the literature, e.g. [6].
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6. THE DIRAC FIELD: an intermezzo

We briefly review the Dirac equation:
(19) (iy"a -my () = o,
with ¢(x) € 04. The Dirac matrices yu € GL(4,8) satisfy the anti-commu-

tation relations
VooV v
(20) ety = 2t

where nuv := diag(1,~1,-1,-1) 1is the Minkowski metric. A useful realiza-

tion of these Dirac matrices is given by the "chiral" representation:

. i i s .
with o" = (I,06%), where {c'} are the Pauli matrices

o = (0 1 o2 = (0 -i S. 0"
1 0) \i o) 0o -1)°
The raising and lowering of indices is done with respect to n

Hv

Consider the proper orthochronous Lorentz group L:. The covering map

A: SL(2,8) - L: is defined as follows:
U u +
(22) A: A — ACA) b = btr(o onA ).

Note that this homomorphism is such that A(A) = A(-A). We now explain the
meaning of relativistic invariance. Under a Lorentz transformation

A(A): x > % the function ¢(x) transforms as follows:
(23) P(x) > 3R = p(W(x).

If ¢(x) is a solution of the Dirac equation then $(x) = p(A(A))w(A_j(x))

is also a solution. The matrix p(A) € GL(4,8) 1is a reducible representa-
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tion of SL(2,8), which (in the "chiral" representation) reads

A 0
(24) p(a) = -
0 A

. - 2 . . .
with A := czA*o , where the asterix denotes complex conjugation.

The irreducible representations of SL(2,8) are labelled by pairs (s,s')

with s,s' =0, %,1, %,..; . Representations (s,0) and (0,s) with s
half integer are called spinor representations. The representation p is
the direct sum (%,0)-&(0,%). Note that the representations %,0) and

(0,%) are inequivalent.

The covering map A restricted to the subgroup SU(2) 1is a covering map

of S0(3) (as a subgroup of L:). A representation (s,s') of SL(2,Q)
restricted to SU(2) decomposes into a direct sum of irreducible represen-
tations of SU(2), such that 2(s+s') + 1 1is the maximal dimension of the
representation spaces that occur in this sum. The number s+s' determines
the spin of the representation (s,s'). For an interpretation of spin as
intrinsic angular momentum in quantum mechanics, see: [7]. Our purpose is
to give the geometrical setting for the Dirac field. To achieve this we

need the notions of frame bundle and spinor structure.
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7. THE FRAME BUNDLE

Let M be a manifold: dimM = n. A linear frame v in x € M is defined
to be an ordered basis for the tangent space TX(M), with Xi € Tx(M) for

i=1...n:
(25) v = (X1""’Xn)'
If Lx(M) is the set of linear frames in x, then
(26) L(M) := U L_(M
xeM ¥

is called the frame bundle. Using any chart (U,x1...xn) on M, a linear

frame v 1is characterized by the local coordinates:
27 a9

. k k
with Xi = E Aiak and (Ai) € GL(n,R) .

Recall that GL(n,R) has a natural differentiable structure as an open
subset of R" . Hence it is possible to provide the frame bundle with a
differentiable structure. With the projection w: LX(M) + x and the right

action of GL(n,R) on L(M), defined by:
(28 (v,g) b= vg = (]X.g)
i
with g = (g;) € GL(n,R) , the frame bundle is a principle fibre bundle
m: L(M) > M with structure group GL(n,R) , [10].

REMARK. Note that a frame bundle is uniquely determined by its base mani-

fold alone.

The tangent bundle T(M) can be seen as a vector bundle associated to
L(M) with typical fibre IJ‘, because to each linear frame v € L(M)

there corresponds a linear isomorphism v: R® > TX(M) defined through
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(29) vi g b J x.gt

I 1
1

where £ = (El) € R".
A vector field X on M, i.e. a section of T(M), can be identified with
a function f: L(M) > R®  of type id: f(vg) = g_1f(v) for all

g € GL(n,R) , as follows:
(30) X = vi(v).

Note that such a function f 1is a field (in the sense of section 2) on

L(M) with values in Rr".

The orthonormal frame bundle.

Consider a manifold M provided with a metric n of signature (a,b).
Denote the natural metric on R° with signature (a,b) by nij' Define

F(M) to be the set of linear frames u € L(M) such that

(31 n(Xi,XJ.) =Ny

where v = (Xi)' Then F(M) is a principle fibre bundle mw: F(M) > M
with structure group O(a,b). F(M) 1is called the orthonormal frame bun-
dle. The orthonormal frame bundle F(M) 1is a subbundle of the frame bun-

dle L(M).

REMARK, In physics dimM = 4 and the metric n has signature (1,3).
Then the structure group of the orthonormal frame bundle F(M) has struc-
ture group 0(1,3): the full Lorentz group. Moreover, the orthonormal
frame bundle F(M) can be considered in more physical terms as the set of

all local Lorentz frames.
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8. SPINOR STRUCTURES

Consider the frame bundle L(M) over a manifold M. Let dimM = 4, and

n be a metric on M of signature (1,3). A fibre of the orthonormal frame
bundle F(M) is isomorphic to the full Lorentz group O0(1,3) and therefore
consists of four disjunct components. If F(M) also consists of four com-
ponents, a choice of one of these four, denoted by FO(M), is called a time

and space orientation. Clearly m_: FO(M) + M is a principle fibre bundle

Pl

. +
with structure group L+: the proper orthochronous Lorentz group.

Let M be time and space orientable. Let L S(M) > M be a principle

fibre bundle with structure group SL(2,Q).

DEFINITION. A spinor structure is a map A: S(M) -~ FO(M) such that

1. Tp o A ﬂs

2. >\°RA=RA(A)°)\

for all A € SL(2,e).
The covering map A: SL(2,8) - L: is defined in section 6, formula (22).

REMARK. Let M be non-compact. Then a spinor structure on M exists if
and only if FO(M) is trivializable. The proof of this assertion is not
elementary: [8]. If a spinor structure exists it may not be unique: the

number of non-equivalent spinor structures equals dhnH1(M,ZZ): [a9l.
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9. DIRAC FIELD

Let A: S(M) - FO(M) be a spinor structure, with respect to a metric n.
Consider the (%,O) + (0,%) representation p of SL(2,8) on GL(4,8):

p(A) = diag(A,A), which we encountered in section 6.

DEFINITION. A Dirac field is a function f: S(M) ~ ¢4 such that
1. .

(32) £(uA) = p(A Nf(u)

for all u € S(M), A € SL(2,0).

Vierbein fields.

Let o: U > S(M) be a section. Then the spinor structure induces a section

Aoo: U »> FO(M). The vector fields {eu}, u=0...3 defined through
(33) (eu) t= doo(x), X €U
span an orthonormal ordered basis in Tx(M) with respect to n, and are

called vierbein fields.

Define ¢ := o*f: U > GA, then under a change of section o - RAo the func-

tion ¢ transforms as ¢ - p(A_1)w. The vector fields transform as
v
34 e > A(A
(34) L Ve
which is nothing but a local Lorentz transformation. Clearly ¢ has the

transformation character of a Dirac spinor.

To define a Lagrangian for the Dirac field a connection on S(M) is re-
quired. Thereto the spinor structure is used and a connection w on
FO(M). It is not difficult to see from the properties of a spinor structure

that when w 1is a connection on FO(M)

(35) W= A, Vo



107
is a connection on S(M)

Note that the representation p 1s orthogonal with respect to the metric

on 04 defined through:

(36) geg := %Re(ETYOC),

where &,¢C € 64 . Finally, let {eu}, u=20...3 denote the natural ba-
sis of Rﬁ , and let D be the exterior covariant derivative on S(M)
with respect to @W. On functions the exterior covariant reads Df = df +p*ﬁf.

Then the Dirac Lagrangian can be defined.

THEOREM. The map L.: J'(S(W, ¢*) + R defined via

D:

(37) Ly(£) := (iYqu(Eu)—mf) . f

18 a Lagrangian on the set of Dirac fields Q, where Eu 18 an arbitrary

vector from the linear space
-1
(38) ns*(k(u)eu) < T, (s0D)

with x € M, ns(u) =x and m€ R.

PROOF. 1) For L to be constant along fibres it is sufficient to check

D
that
(39) Ve = D(A_1)Yqu(Eu)
where
(40) B! € n;1(>\(uA)eu) < T, (5M)

and A € SL(2,8), because the representation p 1is orthogonal. Note that
Df 1is of type p. Use one of the defining properties of the spinor struc-—

ture A to establish:
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\Y]
(€3)) A(uA)eu = A(A)u )\(u)ev.

Hence it follows that

(42) el = v (A_1)A(A)uva(Ev),

because

(43) R .x(E') = A(A) “E_+ vertical vector.
AV UV .

Finally, use one of the properties of the Dirac matrices:
-1 Y -1, v
(44) Yo DA =0Ty .

2) Invariance under gauge transformations is ensured because Df is of
type op.

REMARK. In high energy physics space-time is taken to be such that:

M= RA, n the Minkowski metric and w the canonical flat connection on
LO(ND = M)(Li. Then there is a natural choice for the spinor structure:
S(M) = MxSL(2,8) and X is defined as A(x,A) = (x,A(A)). Let (U,9)
be a chart on M such that n = n”“auav. Then there exists a section

(unique up to a sign) o: U > S(M) such that JXoo = (Bu). With ¢ := foo

the coordinate expression of the Dirac Lagrangian reads
(45) Ly = Giy"o y-mp) - .

The Dirac Lagrangian is used to describe so-called spin-—% particles. All
elementary constituents of matter, leptons and quarks, are spin-—% parti-

cles.
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10. YANG-MILLS FIELD

Let P(M,G) be a principle fibre bundle. To each element A of the Lie
algebra G' corresponds a fundamental vector field A*¥ on P. Define
F to be the set of linear maps Tu(P) > G' such that A: F— A for all

A € G'. Then the set
(46) F:= U F

can be given a differentiable structure that makes F into a vector bundle
over P with projection et F > P. The representation p of G on F

is defined through
-1
7 p(g)€ = Ad(g DEOR _
g

where g € G, £ €EF and Ad the adjoint representation.

Note that if ¢ € Fu then p(g)€ € Fug'

DEFINITION. A Yang-Mills field is a function f: P > F such that:

1. TTFOf = 1dP

2. f(ug) = p(g DE(W)

for all u € P, g € G.
REMARK. A Yang-Mills field can be regarded as a connection form on P.

Let n be a metric on M and denote the trace on the Lie algebra G'
with tr. Then n and tr induce a metric on the space of horizontal
forms of type Ad: [10]. Denote this metric with a dot. Then the Yang-

Mills Lagrangian can be defined.

THEOREM. The map Lg,: J'(P,F) > R defined through

M

(48) L, (f) := Q-Q
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18 a Lagrangian on the set of Yang-Mills fields Q, where Q is the cur-

vature form:

(49) Q := df +[£Af].

PROOF. The map L is constant along fibres as well as invariant under

Y™

gauge transformations, because £ 1is a horizontal form of type Ad.

REMARK. If u is the volume form associated with the metric n then the

Yang-Mills action can be written as

(50) S= [ fu= [ tr(x0AQ) .

REMARK. Let n be the Minkowski metric, (U,¢) a chart on M such that

v . . .
n = nu auev, and o: U+ P a section. With the notation

0xQ = iFuvdxu/\dxv the coordinate expression of the Yang-Mills Lagrangian
reads

= HV
(1 Loy itr(FWF ).

The Yang-Mills Lagrangian is used to describe the spin-1 particles that
mediate gauge interactions. All interactions encountered in high energy
physics are gauge interactions. In the electro-weak interaction the struc-
ture group G is SU(2) x U(1). The colour interaction has structure

group SU(3).
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11. COMMENTS

With the geometrical description of fields and Lagrangians the use of dif-

ferential geometry in relativistic quantum field theory has not come to an

end.

Non-trivial field configurations that are important in the generating func-
tional can be best understood in geometrical terms: e.g. think of instan-

ton solutions. In addition tﬁe geometrical description gives the physicist
a clue how to define the various fields and Lagrangians when gravitation

is present.
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SELF-DUAL YANG-MILLS EQUATIONS

by
H.G.J. PLJLS

Mathematical Institute
University of Amsterdam

1. THE YANG-MILLS EQUATIONS

(1.1) We consider a 4-dimensional oriented (pseudo)-Riemannian manifold M.
Let w: P > M be a principal G-bundle.
Let C(P) be the space of the connection forms w for which the Yang-Mills

functional (the action)
L(w) := =f tr(QA*Q)

is finite (Q 1is the curvature of w).

The stationary points w of L satisfy the Yang-Mills equation
D(*Q) =0

where D 1is the covariant derivative associated with w. Since DQ =0
(identity of Bianchi) we see that w satisfies the Yang-Mills equations if

Q = +*%Q . The equation
Q = *Q

is called the self-dual Yang-Mi{lls equation.

(1.2) Inphysics one considers the case that M =ZR4 with Euclidean metric

and P 1is the trivial SU(2)-bundle. If s: Rﬁ -+ P is a global section,

then we can write
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3
s*w = z A dxu,
u=0 "

s*Q Y F dx"a dx’.
v

pu<v

The Au are called gauge potentials and the Fuv gauge fields. We have

F =203 A -39 A +[A ,A 1.
Hv uovo v w oy

The Euclidean Yang-Mills equations can be written as
Y3 F +[A,F 1=0,
TRTAY > v
u
where F__ = -F .
HY

Vu

The Euclidean self-dual Yang-Mills equations are

01 = Fag» Fop = Fy3p Foz = Fyye

REMARK. Au(x) and Fuv(x) belong to the Lie algebra of SU(2). If we
write A =iA and F =iF , then A and F are traceless hermi-
H H uv Hv H uv

tian 2x2 -matrices and

T =29 A -3 A +ilA ,A 1.
uv TRV v u’ v

If we apply a gauge transformation g, then the gauge potentials Au are

transformed into gauge potentials Bu = iﬁ; with

-1 -1
B = A g+ ]
,=8 Ag+e d¢
or
T =g Rg-isg o
L =8 Ag g d.8-

(1.3) Given a solution of the Euclidean Yang-Mills equations on Rﬁ which
has finite action, then it can be extended to a solution on some principal

SU(2) -bundle on SA. This fact is a consequence of the following theorem.
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THEOREM (K. Uhlenbeck). Let (Au) be a solution of the Euclidean Yang-
Mills equations on mﬁ with finite action. If (Au) has an isolated sin-
gularity, then this singularity can be removed by applying a gauge transfor-
mation.
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