


CWI Syllabi 

Managing Editors 

M. Hazewinkel (CWI, Amsterdam) 

J.W. Klop (CWI, Amsterdam) 

J.M. Schumacher (CWI, Amsterdam) 

N.M. Temme (CWI, Amsterdam) 

Executive Editor 

M. Bakker (CWI Amsterdam, e-mail: Miente.Bakker@cwi.nl) 

Editorial Board 

W. Albers (Enschede) 

K.R. Apt (Amsterdam) 

M.S. Keane (Amsterdam) 

P.W.H. Lemmens (Utrecht) 

J.K. Lenstra (Eindhoven) 

M. van der Put (Groningen) 

A.J. van der Schaft (Enschede) 

H.J. Sips (Delft, Amsterdam) 

M.N. Spijker (Leiden) 

H.C. Tijms (Amsterdam) 

CWI 

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands 

Telephone + 31- 20 592 9333 

Telefax+ 31-20 592 4199 

WWW page http://www. cwi. nl/publications...bibl/ 

CWI is the nationally funded Dutch institute for research in Mathematics and Computer Science. 



Proceedings of the Thirty-third 
European Study Group with Industry 

Leiden, The Netherlands, 14 -18 September 1998 



1991 Mathematics Subject Classification: 00B25, 94AXX, 62NXX, 35QXX, 73XX, 78XX, 
68TXX 
ISBN 90 6196 486 5 
NUGl-code: 811 

Copyright @1999, Stichting Mathematisch Centrum, Amsterdam 
Printed in the Netherlands 



33rd European Study Group with Industry 
14 - 18 September 1998 

Wiskunde Toegepast - Mathematics Applied 

To those who look at the world in the right way mathematics is everywhere: the 
sun comes up, a river meanders and takes along grains of sand, an airplane soars 
into the sky. All these events can be brought down to mathematical equations. 
The working of equipment in a factory or even seemingly accidental happenings, 
predictions of the stock market, the weather or traffic jams, nothing escapes 
from mathematical analysis. So it almost goes without saying that mathematics 
is a tool to attack practical problems. It is this idea that lies behind the research 
program Wiskunde Toegepast. 

The focus of Wiskunde Toegepast is on the support of research projects 
in universities, where mathematics is developed inspired by practical prob
lems, problems of factories, of companies, of society. In these research projects 
mathematicians probe new ways to look at practical questions, using exist
ing mathematics or developing new tools. The biggest challenge of work like 
this is to really bridge the gap between theory and practice. But at the same 
time, if this succeeds, it brings enormous satisfaction. Some examples of recent 
successes are a computer program for the calculation of airflow along propeller 
blades, algorithms that help in the determination of the place of an earthquake, 
calculation of the behaviour of light in glass fibres, improvement of the images 
produced by scanning microscopes. 

Most of the research in Wiskunde Toegepast is done in PhD and postdoc 
projects, taking around four years. In a Study Group with Industry however, 
the challenge to cross the bridge to practice is much more explicitly present than 
in a four year project. The person of the problem owner is there on Monday 
and he or she expects some answer by Friday. Past experience shows that 
mathematicians working in multi disciplinary groups can create solutions that 
otherwise take much more time to develop. Practical implementation of the 
solution, generally the most difficult goal, is almost certain. It is for this reason 
that the Program Committee of Wiskunde Toegepast decided to support the 
Study Group with Industry in the Netherlands: we hope to see Mathematics 
Applied. 

Marijke de Jong 
secretary of the program 

NOTE: Wiskunde Toegepast is a joint research program of the Technology Foun
dation STW and the Council for Physical Sciences of the Netherlands Organi
zation for Scientific Research NWO. 
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Consider an unknown distribution with a symmetric unimodal density and the 
induced location-scale family. We study confidence intervals for the location 
parameter based on Student's t-statistic, and we conjecture that the uniform 
distribution is least favorable in that it leads to confidence intervals that are 
largest given their coverage probability. This conjecture is supported by an argu
ment based on second order asymptotics in the sample size and on asymptotics 
in the length of the confidence interval, and by simulation results. Consequently, 
our answer to the question in the title of this paper is: "Yes, provided the 
t-statistic confidence interval is based on the assumption of uniformity of the 
random variables generating the observations." 

1. STUDENT'S t-STATISTIC 

Consider a location-scale family of distributions with the mean as location 
and the standard deviation as scale parameter. We are interested in confidence 
intervals for the location parameter based on observations that will be viewed as 

1 Corresponding author 
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realisations of independent and identically distributed (i.i.d.) random variables 
from this location-scale family. We will adopt the following notation. 

Let X 1 , ... , Xn be i.i.d. random variables with distribution function 

x-µ . 
P(Xi::::; x) = Fµ,,a(x) = F(--), x E IR, z = 1, ... , n. 

CJ" 
(1.1) 

Here µ is the unknown location parameter and u denotes the unknown scale 
parameter. The distribution function F = Fo, 1 is standardized such that 

(1.2) 

i.e. the standard distribution function F has mean 0 and variance 1. Conse
quently, we have 

(1.3) 

The realizations x1, ... , Xn of X1, ... , Xn are called observations. A confi
dence interval forµ is an interval I(x 1 , ... , xn) based on the observations, to 
which the following statement is attached: the value of the location parameter 
is contained in the interval, i.e. 

µ E I(x1, ... , Xn)-

This statement may be true or false. The stochastic version of this statement 
has confidence level 1 - a, if for allµ E IR, u > 0, we have 

(1.4) 

One also phrases (1.4) as "the coverage probability equals at least 1 - a." 
We will denote the sample mean n - l ~i= 1 Xi by X n and the sample variance 

(n - 1)-1~f=1 (Xi - Xn) 2 by S;,, with Sn 2 0. Note that the statistic 

Tn(µ) = y'n(Xn - µ) 
Sn 

(1.5) 

is location and scale invariant, i.e. its distribution under Fµ,,a is the same as 
the distribution of Tn = Tn(0) = /n.Xn/Sn under F. It is called Student's t
statistic. If F equals the standard normal distribution function <I>, then under 
<I>µ,,a(·) = <I>((· - µ)ju) the t-statistic Tn(µ) has a Student t-distribution with 
n - l degrees of freedom. This distribution is called after Student, pseudonym 
of William Sealy Gosset, who was chemist and Brewer-in-Charge of the Exper
imental Brewery of Guinness' Brewery. Gosset determined the density of the 
t-statistic from (1.5) under normality as a function oft E Ras 

r(n/2) ( t2 )-n/2 
l+--

J1r(n - 1) r((n - 1)/2) n - l 
(1.6) 

in Section III of his paper Student (1908). 
Let tn-1(p) denote the p-th quantile of Student's t-distribution with n - l 

degrees of freedom, i.e. 



To t or not to t ? 3 

(1.7) 

Via the equivalence 

- Sn Tn ::; t {=> µ ;:=: Xn - t fo 

we obtain 

Ia= [xn - tn-1(1- ½a) 7,,, Xn - tn-1(½a) 7,,]. (1.8) 

as a confidence interval, based on the t-statistic, for the location parameter µ 
with coverage probability 1 - a, provided the underlying distribution of the 
random variables generating the observations is normal. Since Tn inherits the 
symmetry of the underlying distribution<(> we have tn-i(½a) = tn-1 
(1 - ½a) resulting in the interval 

(1.9) 

with t = tn-1 (1 - ½a). Note that this interval is symmetric around Xn. 
In daily practice, this confidence interval is used extremely frequently. It is 

the classical, standard method for constructing confidence intervals for location 
parameters. The NMi Van Swinden Laboratorium (Nederlands Meetinstituut) 
also uses it routinely, since it is agreed upon as an international standard. 
However, quite often the observations may not be viewed as stemming from 
normal random variables and consequently, one is not sure then about the true 
coverage probability 

PFµ,a (µ E lt(X1, ... , Xn)) = PF (0 E lt(X1, ... 'Xn)) (1.10) 

and one is not even sure if 1 - a is still a valid confidence level, cf. (1.4). 
This possible non-normality of the underlying random variables has been no
ticed also in the practice of the NMi Van Swinden Laboratorium. To the 33rd 
European Study Group with Industry, Leiden, September 14-18, 1998, a nat
urally related question was suggested: "How should t be chosen such that the 
interval lt(X1, ... , Xn) has confidence level 1 - a under F". This question is 
paraphrased by the title of this paper after Shakespeare (1601). We will dis
cuss this question under the simplifying assumption that F be symmetric, i.e. 
F( -x) = 1- F(x ), and under the complicating assumption that the sample size 
n be small. In practice, sample sizes as small as 3 are not rare. Nevertheless, 
we will study asymptotics, as n --------, oo, first. 

2. ASYMPTOTICS 

By the Central Limit Theorem the standardized sample mean converges in 
distribution to a standard normal random variable, i.e. 

(2.1) 

as n --------, oo. By the Law of Large Numbers the sample variance converges in 
probability to o-2 , namely 
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n 

32 = _l_ ~(X - µ)2 - __!l_(X - µ)2 ..!.:._.. (J.2_ 
n n-1 ~ ' n-1 n (2.2) 

i=l 

Combining (2.1) and (2.2) we arrive at 

(2.3) 

as n ---+ oo, whatever the underlying distribution function F (with finite vari
ance). In particular, by the choice F = ii.> this implies that the t-distribution 
converges to the standard normal distribution as the degrees of freedom con
verge to infinity. 

The asymptotic normality (2.3) means that asymptotically the coverage 
probability of It(X1, ... , Xn) equals i!.>(t) - i!.>(-t), or 

lim PF a(µ E It(X1, ... , Xn)) = 2il.>(t) - 1, µ E JR, u > 0, t > 0, (2.4) 
n~oo µ, 

irrespectively of the underlying distribution function F with finite variance. 
Although this result implies that a confidence interval with approximate con
fidence level 1 - a may be constructed by choosing t = ii.>- 1 (1 - a/ 2) in 
It(X1 , •.• , Xn), the confidence level might be quite misleading for finite sample 
sizes n. A better approximate confidence interval might be obtained by ap
plication of Edgeworth expansions for the distribution function of Tn. In fact, 
this yields the following approximation, with rp denoting the standard normal 
density. 

THEOREM 2 .1 Let F be symmetric and non-singular. If F has finite fourth 
moment, then t,,(F) = EpX4 (EpX 2 )-2 -3, the deviation from normal kurtosis, 
is well defined and 

PF,,.a(µ E It(X1, ... ,Xn)) = 2i!.>(t)-1 

+ 5tn {t,,(F)(t2 - 3) - 3t2 - 3}rp(t) + o(;;;) (2.5) 

holds uniformly in t. In other words, if the t-statistic confidence interval 
It(X1, ... , Xn) has coverage probability 

under F, then 

t = il.>- 1 (1- %){1 + l~n[-t,,(F)({i!.>- 1 (1- %)} 2 - 3) 

+3{i!.>- 1 (1- %)} 2 + 3]} + o(¾)-

(2.6) 

(2.7) 

PROOF Straightforward application of the Theorem of Hall (1987) yields (2.5). 
Note that Hall's To equals Jl + l/(n - 1) Tn and hence his y has to be replaced 
by t + (2n)- 1t. Since this expansion (2.5) is uniform int the second statement 
is implied by it. □ 

Let us assume 
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a < 2(1 - cJ?( v'3)) = 0.0832. (2.8) 

Then, the right-hand side of (2.7) is decreasing in r;,(F). Consequently, the 
confidence interval It(X1, ... , Xn) has coverage probability at least 1 - a for 
all F if t satisfies (2.7) with r;,(F) minimal. Under all distributions F, the 
deviation from normal kurtosis r;,(F) equals at least -2, i.e. 

(2.9) 

in view of (EFX2 ) 2 :s; EFX4 . Equality is attained in (2.9) if X 2 is degenerate. 
However, in many applications this is not a natural distribution. Moreover, if n 
is small, n < 1- log a/ log 2, then a bounded confidence interval for µ based on 
Student's t-statistic does not exist for this distribution. In fact, if P(X = 1) = 
P(X = -1) = 1/2 holds, then P(Tn = oo) = P(X1 = · · · = Xn) = 21-n > a. 

In the next Section we will restrict attention to distributions F with uni
modal density and we will determine the (distribution with) minimal value of 
r;,(F) within this class of unimodal distributions. 

3. As n------> oo, THE UNIFORM DISTRIBUTION IS LEAST FAVORABLE 
Our discussion will be based on the following inequality. 

THEOREM 3.1 Let F be a distribution with a symmetric unimodal density. If 
F has finite fourth moment, then the kurtosis of F equals at least 9/5, which 
implies 

r;,(F) ~ -6/5 (3.1) 

with equality iff F is uniform. 

PROOF Let f be the symmetric unimodal density of F. Then f may be written 
as a mixture of symmetric uniform densities. This means that there exists a 
probability distribution G on (0, oo) such that 

(3.2) 

holds. By this representation of f we obtain for k = 1 or 2 

2100 
x2k 100 

2~1(-y,y)(x)dG(y)dx 

1001Y lx2kdxdG(y) = _1_E y2k 
y 2k+l G ' 

0 0 
(3.3) 

and hence 

E X 4 (E X 2)-2 = 'lE Y 4 (E Y 2 )-2 > 'l F F 5 G G -5 (3.4) 
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by Cauchy-Schwarz as in (2.9). Note that equality holds iff Y2 is degenerate, 
i.e. iff X is uniformly distributed. □ 

Together with (2.7) inequality (3.1) shows that asymptotically to second 
order, the uniform distribution is least favorable in the class of symmetric 
unimodal distributions for constructing confidence intervals based on Student's 
t-statistic. In other words, at fixed n and a < 0.0832 such a confidence interval 
is largest if the underlying distribution is uniform. 
At first sight, this might seem surprising since e.g. the normal distribution 
itself has heavier tails than the uniform distribution. However, (2.7) seems 
to imply that in some sense, heavier tails in the underlying distribution of 
the observations result in less heavy tails for the distribution of the t-statistic 
and vice versa. In fact, (2. 7) itself is an asymptotic version of this conjecture. 
For finite sample size, the situation that interests us most, this conjectured 
phenomenon has been formulated precisely and proved fort----+ oo by Van Zwet 
(1964a,b ). We will prove in the next section that the uniform distribution is 
least favorable under the unimodal distributions in that sense too. 

4. As t ----+ oo, THE UNIFORM DISTRIBUTION IS LEAST FAVORABLE 

In this section the relative tailbehavior of Pp(0 (/. It(X1, ... , Xn)) with respect 
to PH(0 (/. It(X1, ... , Xn)) as t----+ oo, will be discussed for H being the uniform 
distribution function. 

THEOREM 4.1 Let F and H be unimodal distributions symmetric about 0. If 
H is unif arm, then 

1. Pp(0 (/. It(X1, ... ,Xn)) 
Ill --'--------'-'- :S: 1 

t---too PH(0 (/. It(X1, ... , Xn)) 
holds. 

PROOF By symmetry, the left-hand side of (4.1) equals 

lim Pp(Tn 2 t) = R,,,(F) = 2nn loo xn-l r(x)dx 
t-+oo PH(Tn 2 t) Rn(H) Jo 

with 

Rn(F) = lim Pp(Tn 2 t) 
t->oo Pif.>(Tn 2 t) 

( 4.1) 

(4.2) 

(4.3) 

introduced and studied by Hotelling (1961); cf. his (3.2) and (3.6). According 
to Theorem 6.2.1 of Van Zwet (1964a) Rn(H) 2 Rn(F) holds for F and H 
symmetric about 0, if p-1 (H(x)) is convex in x E (0, oo). This proves the the
orem, since for H uniform, this convexity of p- 1 (H) is equivalent to convexity 
of p-l ( u) in u E ( ½, 1) which in turn is equivalent to unimodality off. 

An alternative proof may be based on (4.2) and the representation (3.2). 
Indeed, we have 

100 
xn-l r(x)dx = 100 

xn-l {1 00 

2~l(o,y)(x)dG(y)} n dx 

< 100 100 xn- 1 (2y)-nl(o,y)(x)dxdG(y) = rnn- 1 . (4.4) 
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□ 

Consequently, studying the limit behavior of the coverage probability of 
the Student t-interval It(X1 , ... , Xn) as t -+ oo with n fixed, we have seen 
that within the class of symmetric unimodal distributions the uniform is least 
favorable since its confidence is converging to 1 at the smallest possible speed. 
The asymptotics both as n -+ oo for t fixed and as t -+ oo for n fixed, support 
the claim that the uniform distribution is least favorable. The next section 
adds some numerical evidence to this claim. 

5. SIMULATION RESULTS 

Fix the sample size n and the underlying distribution function F of the ob
servations X 1, ... , Xn, Simulate X 1 , ... , Xn and compute the t-statistic. This 
results in the simulation Y of Tn under F. Choose N big and simulate in the 
same way the i.i.d. replicates Y1 , ... , YN of Tn under F. We denote the order 
statistics by Yr i) with Ycl) :S · · · :S YiN). The empirical quantile Yr r pNl) is an 
appropriate estimator of the p-quantile of the distribution of Tn under F. 

The accuracy of this estimator may be estimated too, as described e.g. in 
the contribution of J.E. Walsh in Sarhan and Greenberg (1962). Let Uci) :S 
• • • :S U(N) be the order statistics of N i.i.d. uniform (0, 1) random variables. 
Fix 0 < /3 < 1 and determine the maximum value of r such that P(U(r) > 
p) :S ½/3 and the minimum value of s such that P(U(s) < p) :S ½/3, using the 
beta-distribution of the order statistics of a uniform sample. Since F(Yu)) and 
U(j) have the same distribution, [Yir), Yrs)] is a (1 - /3)-confidence interval for 
the p-quantile of the distribution of Tn under F. In our simulations we have 
used N = 108 and p = 0.9, 0.95, and 0.975, i.e. a = 0.2, 0.1, and 0.05. We 
exploited the symmetry of the distribution by actually determining the p-th 
quantiles with p = 0.8, 0.9 and 0.95 using the absolute values IY:il- The results 
for a given value of n are tabulated in the row indicated by df = n - 1. 

Furthermore, we have chosen /3 = 2(1-1>(1)) ~ 0.32 and in our simulation 
results below we have reported half the length (Yis) - Yir))/2 of the 1>(1) -
1>(-1) ~ 0.68-confidence interval [Yir), Yrs)] as the value between brackets. We 
used this convention in analogy with the usual way of reporting a sample mean 
together with the standard error. The interpretation of the given value between 
brackets as a standard error is justified also by the fact that the point estimates 
Yr r pNl) are approximately in the middle of these confidence intervals as well 
as in the 95% confidence intervals constructed in the same way. Moreover, the 
95% confidence intervals are approximately 1.96 times wider than the (1>(1) -
1>( -1) )-confidence intervals. 

We have estimated the different quantiles of the same Student-t distribu
tion via the same Monte Carlo sample of size N. Therefore the estimators 
in the rows of the following tables are dependent, whereas there should be no 
dependence between the rows. 

These results show that the third digit in our simulated quantiles is very 
reliable. The unimodal distributions used in these simulations, are ordered 
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according to ~(F) as follows 

uniform -6/5 

triangular -3/5 

normal 0 (5.1) 

Laplace 3 

Cauchy 00 

Indeed, these results support our claim that the uniform distribution is least 
favorable in the class of unimodal distributions and that heavier tails (in terms 
of ~( F)) result in smaller quantiles for the t-statistic. 

TABLE l. Uniform distribution, estimated p-th quantiles of the t-statistic. 

df= 1; 
df= 2; 
df= 3; 
df= 4; 
df= 5; 
df=lO; 
df=20; 

p=0.9 p=0.95 p=0.975 
3.9998( .0010) 9.0009( .0030) 18.9982( .0085) 
2.0731(.0004) 3.5881(.0008) 5.7400(.0016) 
1.6707( .0003) 2.6314(.0005) 3.8531(.0009) 
1.5199( .0002) 2.2577( .0004) 3.1465( .0006) 
1.4554( .0002) 2.0737( .0003) 2. 7913( .0005) 
1.3572( .0002) 1.8177( .0002) 2.2724( .0003) 
1.3171( .0002) 1. 7244( .0002) 2.1002( .0003) 

Straightforward computation shows that for n = 2 and p 2: 3/4 we have 

(5.2) 

under the uniform distribution, yielding in Table 1 the exact values 4, 9 and 19, 
respectively, for df=l. An analytic calculation as in Perlo (1933) shows that 
the exact values for df=2 are 2.073664, 3.589439 and 5. 7 41739. 

TABLE 2. Triangular distribution, estimated p-th quantiles of the t-statistic. 

df= 1; 
df= 2; 
df= 3; 
df= 4; 
df= 5; 
df=lO; 
df=20; 

p=0.9 p=0.95 p=0.975 
3.1384( .0007) 6.5498( .0021) 13.2634( .0059) 
1.9043(.0003) 2.9574(.0006) 4.3999(.0011) 
1.6556(.0002) 2.3911(.0004) 3.2321(.0006) 
1.5420( .0002) 2.1670( .0003) 2.8331( .0005) 
1.4780(.0002) 2.0409(.0003) 2.6217(.0004) 
1.3678( .0002) 1.8183( .0002) 2.2492( .0003) 
1.3218( .0002) 1. 7252( .0002) 2.0932( .0002) 
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TABLE 3. Laplace (double exponential) distribution, estimated p---th quantiles 
of the t-statistic. 

df= l; 
df= 2; 
df= 3; 
df= 4; 
df= 5; 
df=lO; 
df=20; 

p=0.9 
2.5011(.0005) 
1.7299(.0002) 
1.5834( .0002) 
1.5135(.0002) 
1.4717(.0002) 
1.3847(.0002) 
1.3371(.0002) 

p=0.95 
5.0027( .0016) 
2.4583(.0004) 
2.1321(.0003) 
1.9981(.0003) 
1.9248(.0002) 
1.7861(.0002) 
1.7180(.0002) 

p=0.975 
10.0066( .0045) 
3.4764(.0008) 
2.7317(.0005) 
2.4902( .0004) 
2.3657(.0003) 
2.1490(.0003) 
2.0529( .0002) 

In Table II on page 337 of Hotelling (1961) t2(0.975) has been computed as 
3.48, in accordance with our simulations. 

TABLE 4. Cauchy distribution, estimated p---th quantiles of the t-statistic. 
p=0.9 p=0.95 p=0.975 

df= 1; 2.0825(.0004) 4.0779(.0012) 8.1157(.0036) 
df= 2; 1.5342(.0002) 2.1265(.0003) 2.9412(.0007) 
df= 3; 1.4241(.0002) 1.8558(.0002) 2.3551(.0004) 
df= 4; 1.3769(.0002) 1.7485(.0002) 2.1475(.0003) 
df= 5; 1.3506( .0001) 1.6908( .0002) 2.0417( .0003) 
df=lO; 1.3018(.0001) 1.5881(.0002) 1.8618(.0002) 
df=20; 1.2793( .0001) 1.5422( .0002) 1. 7849( .0002) 

Hotelling (1961) derived t2(p) for the Cauchy distribution as (cf. his (6.41)) 

t2(P) = (1 - 3tg2(7r(2p - l)/6))- 1!2, p 2 ½ + ¾ arctg½, (5.3) 

which leads to t2(0.975) = 2.9412 in line with our results (note that t2(0.995) = 
6.46 and not 3.69 as in (6.42) and Table II of Hotelling (1961)). 

For the sake of validation of the method we also compiled the next table, 
which might be compared to the last one. 

TABLE 5. Normal distribution, estimated p-th quantiles of the t-statistic. 

df= 1; 
df= 2; 
df= 3; 
df= 4; 
df= 5; 
df=lO; 
df=20; 

p=0.9 p=0.95 p=0.975 
3.0767(.0007) 6.3098(.0020) 12.7031(.0054) 
1.8857( .0003) 2.9202( .0006) 4.3023( .0011) 
1.6378( .0002) 2.3530( .0004) 3.1819( .0006) 
1.5334( .0002) 2.1319( .0003) 2. 7764( .0005) 
1.4757(.0002) 2.0151(.0003) 2.5707(.0004) 
1.3721 ( .0002) 1.8125( .0002) 2.2281( .0003) 
1.3253( .0002) 1. 7246( .0002) 2.0857( .0003) 

TABLE 6. Normal distribution, exact p---th quantiles of the Student t-statistic. 

df= 1: 
df= 2: 
df= 3: 
df= 4: 
df= 5: 
df=lO: 
df=20: 

p=0.9 p=0.95 p=0.975 
3.077684 6.313752 12.7062 
1.885618 2.919986 4.302653 
1.637744 2.353363 3.182446 
1.533206 2.131847 2.776445 
1.475884 2.015048 2.570582 
1.372184 1.812461 2.228139 
1.325341 1.724718 2.085963 

df=oo: 1.281552 1.644854 1.959964 



PC. Boon, H. Hendriks, C.A.J. Klaassen, R. Muij/wijk 

6. CONCLUSION 
Consider the location problem with an unknown symmetric distribution. Confi
dence intervals for the location parameter may be based on Student's t-statistic. 
If the underlying distribution of the observations is known to have a unimodal 
density this can be done in a conservative way by assuming uniformity of the 
underlying distribution, if (2.8) holds. In other words, if the t-value in (1.9) is 
chosen according to the third column of Table 1 then the coverage probabil
ity will be at least 2p - 1 = 1 - a = 0.95, whatever the unknown symmetric 
unimodal distribution of the observations. This claim is supported by the Edge
worth expansion of Section 2 and its consequence of Section 3, by the finite 
sample analysis of the far tails in Section 4, and by the Monte Carlo results of 
Section 5. 

Standard approaches like the bootstrap (i.e. estimating F) and empirical 
Edgeworth expansion (i.e. estimating ""(F) in (2.5)) are based completely on 
asymptotic considerations as n ---, oo. Consequently, for small sample sizes 
these techniques are not reliable whereas for large sample sizes the gain in effi
ciency as compared to our recommendation of using the uniformity assumption, 
is not dramatic; compare Tables 1 and 6 and note that for n = 21 the relative 
difference in interval length is less than 0. 7%. 
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This paper considers the throughput of ADSL (Asymmetric Digital Subscriber 
Line) modems, used for high speed data transmission over relatively unreliable 
connections, e.g., copper telephone wires. The modem technique uses an error 
correcting code and interleaving. The settings include a grouping factor S which 
affects the amount of data per code word, the number of redundant bytes per 
code word (R) and the interleave depth D. The influence of these parameters 
on both the effective data transmission rate and the resulting error rate in the 
received signal are determined for two error situations: random errors and bursts 
of errors. An approximate analysis for the random error case of the throughput 
of a TCP (Transport Control Protocol) connection using an ADSL modem shows 
that maximum throughput is obtained for the highest values of S and R. 

1. INTRODUCTION 

In providing data services, such as Internet access to customers, the voice 
band modems or even ISDN modems with maximum bit rates of 56 kbit/s and 
64 kbit/s, respectively, form a bottle neck in the transmission. The recently 
standardised Asymmetric Digital Subscriber Line or ADSL modems [1] form a 
breakthrough in the access data rate by offering rates of several Mbit/s through 
the copper telephony infrastructure. High bit rate services, such as Video on 
Demand, Video conferencing or fast Internet can now be offered to and from 
a customer location. All these services have in common that the downstream 
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data rate is much larger than in the upstream direction, which is reflected in 
the Asymmetric Digital Subscriber Line described below. 

In this paper we examine the performance of TCP, the widely used Trans
port Control Protocol in the Internet, in case transmission is provided by an 
ADSL modem. In Section 1.2 the essential properties of TCP are described. Its 
performance is assessed by the TCP throughput: the net amount of correctly 
transmitted data per unit of time. TCP throughput in the Internet has been a 
subject of study for many years; its steady state performance has been analysed 
in [2, 3, 4]. The special case we study in this paper concerns the throughput 
of TCP over an ADSL link. Essentially, three specific ADSL aspects are of 
importance in this study: 

l. the raw bit rate of the ADSL link, 
2. the error correction techniques used in ADSL, and 
3. the asymmetry of the data link. 

The last issue will not be treated in this paper. Extensive study of the influence 
of the asymmetry of a data link on TCP throughput is described in [5]. The 
application of error correction techniques is inevitable in an ADSL modem, in 
order to obtain a reliable transmission link. The effective number of transmis
sion errors in the ADSL data link depends on the adjustable settings in the data 
encoder. Section 2 treats the influence of the coding and the adjustable param
eters, leading to an analysis whether and how transmission errors propagate 
to the decoded data stream. The influence of the remaining data transmission 
errors on the TCP throughput is described in Section 3. Finally, numerical 
results of the TCP throughput as a function of some typical ADSL settings are 
presented in Section 4. 

1.1. ADSL 
The Asymmetric Digital Subscriber Line (ADSL) is a modem technique that 
uses the copper telephony infrastructure to offer broadband data connections 
from a central office to subscribers. The asymmetry is due to the fact that 
generally, in high bandwidth applications, the data stream from the central 
office to the users is larger than the data stream in the opposite direction. 
By taking advantage of the asymmetry of the service, a higher downstream 
bandwidth can be achieved than with symmetrical modem techniques. The 
maximum raw bit rate typically is 8 Mbit/s from the Central Office (CO) to 
the customer (downstream direction), and 1 Mbit/s from the customer to the 
CO (upstream direction). The actual achieved bit rates strongly depend on 
the distance bridged by the modem pair and noise induced by other systems. 

There are two different causes for bit errors in the local loop and for each 
of these ADSL takes different protective measures. The first cause of bit errors 
is the noise induced by other systems combined with the length of the copper 
cable. ADSL deals with this problem at start-up: it evaluates the line charac
teristics and estimates the induced noise on the transmission line. The initial 
transmission rate is optimised for the length and noise found. According to the 
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FIGURE 1. Typical protocol stack used in ADSL modems 

ANSI ADSL standard [1], the maximum bit rate is determined such that the 
bit error ratio (BER) is less then 10-7 _ 

The second cause for bit errors is impulse noise. A common cause for 
impulse noise is the on and off switching of electrical equipment. This results 
in a short, but very strong disturbance of the line. Impulse noise can last from 
microseconds to several tens of milliseconds and results in a burst of bit errors. 
An interleaving technique increases the robustness of the ADSL modem for bit 
error bursts. Interleaving introduces an additional delay, typically between 10 
and 60 milliseconds. 

A typical protocol stack used in ADSL is shown in Figure 1. 

1.2. TCP 
The Transmission Control Protocol (TCP) provides a highly reliable stream 
of packets between transport layers on internet hosts by requiring acknowl
edgements from the receiving transport layer within a specified period of time. 
Furthermore, by providing sequence numbers, packets can be delivered in the 
order that they were sent. Error checking of each packet is provided by a check 
sum transmitted as part of the TCP header. TCP makes no assumption as to 
the reliability of the lower-level protocol. To achieve this level of control and 
reliability, a connection from the transport layer on one host to the other host 
must be set up before data can be transferred. Special handshake messages are 
defined in TCP for establishing and releasing a connection. In this paper, we 
will concentrate on the consequences of the flow control mechanisms in TCP. 
In TCP a so-called sliding window protocol is used. It allows the sender to 
transmit multiple packets before it stops and waits for an acknowledgement 
(ACK); the time until the acknowledgement of the first packet is received is 
called the round trip time (RTT). This leads to faster data transfer, since the 
sender does not have to stop and wait for an acknowledgement each time a 
packet is sent. Using special window update ACK messages, the receiver can 
inform the sender of the offered or advertised window size which depends on 
the receiver buffer filling. The sender can adjust its sending window to the 
minimum of the advertised window and the maximum window size (which is 
a fixed value which depends on the implementation of TCP). The process of 
sending packets and receiving ACKs is visualised in Figure 2. The most com-
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FIGURE 2. Data transfer during one Round Trip Time (RTT): a number of window pack
ets is sent before the ACK of the first packet sent is received; Rx=receiver, Tx=sender. 

mon TCP 'flavour' used in the internet today is TCP Reno. Four mechanisms 
are introduced in this variant in order to control the data transmission: 

- Slow start. This begins by sending one packet and waiting for an acknowl
edgement. For each acknowledgement the sender receives, it injects two 
packets into the network. This leads to an exponential increase in the 
number of packets sent per RTT. The slow start phase ends when the re
ceiver's advertised window is reached. 

- Congestion avoidance. This mechanism is used to probe the network for 
available bandwidth by sending one additional packet for each RTT ( up 
to the receivers advertised window). In the original slow start/ congestion 
avoidance scheme, when the sending TCP detects packet loss (indicating 
congestion), it drops back into slow start until the packet sending rate is 
half the rate at which the loss was detected and then begins congestion 
avoidance. 
Fast retransmit and fast recovery. Fast retransmit reduces the time it takes 
a TCP sender to detect a single dropped packet. Rather than waiting for 
the retransmit timeout (RTO), the TCP sender can retransmit a packet if 
it receives three duplicate ACKs for the packet sent immediately before the 
lost packet. Fast recovery is closely related to fast retransmit: as mentioned 
before, when a sender retransmits a packet, it normally recovers by moving 
into a slow start phase followed by a congestion avoidance phase. If the 
sending TCP detects the packet loss using fast retransmit, however, fast 
recovery is used instead. Fast recovery halves the segment sending rate 
and begins congestion avoidance immediately, whitout falling back to slow 
start. 

In our treatment we assume that the TCP receiver has an infinite processing 
capacity, i.e., the input buffer of the receiver never overflows. In Figure 3 
a typical evolution of the window size as a function of time is shown for a 
typical TCP session. In our approach the slow start phase which is initated at 
connection start up, will not be taken into account. 
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2. ADSL MODEM SPECIFICATION AND ERROR ANALYSIS 
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This section starts with a description of the ADSL modem in terms of its 
functional blocks. Not all of them are relevant to error propagation. In the 
error analysis that concludes this section only the relevant parts have been 
considered. 

2.1. ADSL description 
An ADSL modem can be divided into eight functional blocks (see Figure 4, 
modified from [1]). The first block groups bytes from a continuous byte stream 
(these bytes actually represent ATM cells) into a so-called multiplexer or Mme 
frame. This byte stream is supplied through one of two channels: 

The fast channel: data that is supplied through this channel follows a 
different functional path in the modem, resulting in a relatively short time 
delay of the byte stream. The drawback of this mode is that it has a 
relatively high error rate. 
The interleaved channel: this channel provides a relatively lower error rate, 
at the cost of a larger time delay. 

The Mux-framer also adds a synchronization byte to the data in the Mux 
frame. Before actual transmission several Mux frames are assembled into one 
superframe. The second functional block computes Cyclic Redundancy Check 
( CRC) bits over a collection of frames that is to constitute one superframe. This 
check is used for internal evaluation only. The management system of the ADSL 
modem uses the CRC bits to keep track of the 'severely errored seconds' (SES) 
and 'errored seconds' (ES) statistics. The third functional block scrambles the 
data bytes in the framed byte stream to ensure that the resulting byte signal 
has a random character. In the case of the fast path, the bytes of a single 
Mux frame are coded directly into a so-called ADSL frame (functional block 
4) using a Reed-Solomon coding algorithm. This Forward Error Correction 
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FIGURE 4. Functional blocks in an ADSL modem. 

(FEC) coding ensures that when a small number of bytes in the code word is 
corrupted, the original Mux frame stored in the code word can still be recovered. 
The number of redundancy bytes per code word, added to the original signal 
for Forward Error Correction, can be adjusted and is denoted by R. The 
maximum number of error bytes that can be corrected increases as R increases 
(see Section 2.2). 

When the interleaved buffer is used, multiple Mux frames are coded in a 
single code word and this code word is then interleaved with other code words 
from the interleaved buffer (fifth functional block). The main purpose of this is 
to spread the byte errors of a burst. We come back to this in Section 2.2.2. Af
ter the interleaving process, interleaved code words are partitioned into ADSL 
frames. The number of Mux frames per code word is denoted by S, the inter
leave depth is denoted by D; both these parameters can be adjusted. 
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In the sixth functional block, ADSL frames (which may originate from the 
fast or the interleaved path) are grouped, 68 at a time, into a superframe, and 
the originally computed CRC checksum is stored in the synchronization byte 
of the first ADSL frame of the superframe (functional block 7). Every ADSL 
frame in a superframe is modulated into a Discrete Multitone (DMT) symbol 
(seventh functional block). The total superframe consists of the original 68 
frames plus an additional DMT symbol for synchronization purposes. 

The Digital Analog Converter (last functional block) converts the stream 
into an electrical signal that is sent over the copper telephony infrastructure. 

The question that we address is how the performance of the connection 
(both at ADSL and at TCP level) depends on the 'free' parameters R (number 
of additional FEC bytes per code word), S (number of Mux frames coded into 
a single code word) and D (interleave depth), considering both random and 
burst errors. 

2.2. Error propagation at the ADSL level 
First of all, we simplify the modelling by ignoring the scrambler and the con
version of the byte stream to DMT symbols and the digital-analog conversion. 
Furthermore, in the model we disregard the cyclic redundancy check since it 
is used for internal purposes only and has no influence on the behaviour or 
characteristics of the modem. 

When the interleaved channel is used, S Mux frames are supplemented with 
R redundant bytes in order to create a code word. These code words are then 
interleaved to depth D. From a modelling point of view, we can identify the 
fast and the interleaved channels by assuming that the fast buffer equals the 
interleaved buffer with settings S = 1 and D = 1. 

We shall use µ to denote the bandwidth of the physical link, in bytes per 
second; for computations we use µ = 218 = 262144, which corresponds to 2 
Mbits/s. The baudrate, the number of superframes sent per second is nominally 
4000, but because of the additional (the 69th) synchronization frame in the 
ADSL superframe, the actual baudrate is only ~~ of 4000. This means that it 
takes ~~ • 0.25 ms to send an ADSL frame, and so one obtains for the number 
of bytes in an ADSL frame: 

the fixed factor a is introduced for notational convenience. The length of a 
code word in bytes, denoted by n, is a fundamental quantity in the analysis; 
it equals NS, so in fact n directly depends on the free parameter S. A code 
word contains information equivalent to k = n - R bytes. 

The fraction of actual data in an ADSL frame is determined by the number 
of synchronization bytes and redundant bytes from Forward Error Correction. 
In the case that S Mux frames are used to form a code word containing R 
redundant bytes, the final code word will be split into S ADSL frames, implying 
that the number of error correction bytes per ADSL frame equals Rf S. The 
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number of synchronization bytes in a Mux frame varies between 1 and 3; we 
will denote this unknown number as h and use h = 2 in computations. Thus 
the number of data bytes in an ADSL frame is K = N - h - R/ S. 

So a priori, without any considerations about errors, the efficiency of the 
ADSL modem, i.e., the number of data bytes transmitted divided by the actual 
number of bytes sent, given the parameters R, Sandµ is: 

K h+ E. 
'T/ADSL = - = 1 - __ S. 

N aµ 

Random errors 
In this case we assume that transmitted bytes are corrupted with probability p 
each, independently of the others. Whether interleaving is applied or not, the 
number of corrupted bytes has a Binomial distribution with parameters n and 
p. The probability that i bytes in a code word are corrupted is given by: 

The S Mux frames are encoded by an (n, k, n - k + 1) Reed-Solomon code 
over lF256 , which means that a data word of k bytes is coded as a code word of 
n bytes, such that distinct data words are coded as code words that differ in 
at least n - k + 1 bytes. This implies that the original data word can still be 
recovered from a code word that has at most e = ½ ( n - k) damaged bytes. 

Therefore the probability q, that the Mux frames coded in a Reed-Solomon 
code word cannot be recovered, given a byte error probability p, is given by 

q = P(code word error) = . t ( ~ ) p\1 - pr-i. 
i=e+l 

(1) 

Random errors in the byte stream occurring with probability p result in a 
similar error process at code word level, but with (a smaller) probability q. An 
error in the code word stream, however, implies that all data bytes encoded 
into this code word are corrupted. 

Bursts of errors 
In the following we will analyse the effect of bursts of errors. We assume that 
a burst will lead to a complete corruption of L consecutive bytes in the byte 
stream. Furthermore, for sake of simplicity, we assume for the moment that 
the length L is a multiple of the interleave depth D: L = cD. Our aim is to 
get a relation between the length L of a burst and the ( expected) number of 
lost code words (those that cannot be corrected by the Reed-Solomon code) in 
relation to the modem parameters. In this context, the main point of interest 
will be the interleaving. 

As mentioned, code words are placed on the different layers of the interleaver 
and subsequently the bytes are read in such a way that each Dth byte belongs to 
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the same layer (in Figure 5 the bytes are transmitted by reading columnwise). 
Thus a burst of length L = cD leads to c consecutive corrupted bytes in each 
layer ( see Figure 5). 

w1 ws w9 

w2 w6 w10 

w3 W7 w11 

w4 wS w12 

FIGURE 5. Sketch of a burst 

In order to determine the number of lost code words, we consider the layers 
separately. Although the position of the first corrupted byte within a code 
word differs between the layers, the expected number of corrupted code words 
will be the same for each layer. 

The following lemma analyses the effect of a burst for one layer of the 
interleaver. 

LEMMA 1 Consider a byte stream of code words of length n which are coded 
by a Reed-Solomon code with R = 2e redundant bytes. The expected number of 
corrupted code words for a burst of length c is given by: 

E-{O - 1 + c-~-1 

if C:::; e, 

if c 2: e + l, 

PROOF: In the case c :::; e, each code word has at most e corrupted bytes and, 
thus, each code word can be corrected by the Reed-Solomon code. 

To analyse the case c 2: e + l, consider the position t of the first byte of the 
burst within a code word ( t = k means that the first destroyed byte is the kth 
byte of some code word). Let cw1 denote the code word containing the first 
byte of the burst and let cw2 , cw3 , ... denote the following code words. 

To determine the total number of corrupted code words in dependence of 
t, let b := lc-~- 11. We will show that code words cw2 , ... , cwb are always 
destroyed, the possibility of correcting cw1 and cwb+l depends on t, and that 
the remaining code words all can be corrected. 

Obviously, code word cw1 can not be corrected if and only if t E {1,.,. , n -
e}. 

Furthermore, code words cwi with i 2: 2 can not be corrected if and only if 

t + c - l 2: ( i - 1 )n + e + l. 

So, since 

c-e-l+n-l 
(b - l)n + e + l:::; ------n - n + e + l = c - 1 < t + c - l 

n 

we may conclude that the code words cw2 , ... , cwb can not be corrected. 
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Since 1 < c-e- 1 n-c+e+2 < bn-c+e+2 < c-e-l+n- 1 n-c+e+2 = n - n - - n 
we may conclude that code word cwb+l can not be corrected if and only if 
tE{bn-c+e+2, ... ,n}. 

Finally, since (b + l)n + e + 1 2: c-~- 1 n + n + e + 1 = c + n > c + t - 1, 
code words cwb+2, cwb+3 , ... are all correctable. 

The expected number of corrupted code words now can be obtained by con
sidering all possible values for t. Since t is uniformly distributed on { 1, ... , n} 
we get the following expected number of corrupted code words: 

E n-e + b _ 1 + n-(bn-c+e+2)+1 
n n 

b _ 1 + n(2-b)+c-2e-l = l + c-2e-l 
n n 

□ From the lemma, we get for the interleaver as a whole: 

THEOREM 2 Consider an ADSL modem using interleave depth D and code 
words of length n coded by a Reed-Solomon code with R = 2e redundant bytes. 
A burst of length L = cD ( c E N) will result in an expected number of 

E-{O - D(l + c-~-1) 
if C ~ e, 

if C 2: e + 1, 

not correctable code words. 

So the maximum length of a burst that can be tackled by an interleaver 
with interleave depth D and a Reed-Solomon code with R = 2e redundant 
bytes is eD bytes. 

E 

4-4/N 

~D=4 

2-2/N 

1-1/N 

e e+l 2e 2e+2 4e 4e+4 L 

FIGURE 6. Expected number of corrupted code words for different values of D. 

In Figure 6 we have sketched the expected number of corrupted code words 
in relation to the burst length for some values of D. It is interesting to see that 
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a higher interleave depth, besides the positive effect that longer burst can be 
handled without getting any corrupted code words, also has a negative effect: if 
a burst is too long to disappear completely, the expected number of corrupted 
code words increases with the interleave depth. 

Up to now, we have focused on the expected number of corrupted code 
words. Of course, also the distribution is of interest, so we try to say something 
about the range of values that may occur. As a direct consequence of the proof 
of Lemma 1 we can state that a burst of length L = cD leads to b - 1, b, or 
b + 1 corrupted code words per layer, where b = I c-~- 11. Furthermore, it is 
easy to see that this number will be equal to b - 1 or b if ( c mod n) ::; 2e + 1 
and equal to b or b + 1 if ( c mod n) 2: 2e + 2. As an immediate consequence 
we get: 

LEMMA 3 Consider an ADSL modem using interleave depth D and code words 
of length n coded by a Reed-Solomon code with R = 2e redundant bytes. For a 
burst of length L = cD ( c E N) the number F of corrupted code words belongs 
to the set 

{
b-1 

{mD,mD+l, ... ,(m+l)D} withm= b 
if ( c mod n) ::; 2e + 1 

if ( c mod n) 2: 2e + 2. 

By a more detailed analysis of the dependences between the different layers 
of the interleaver, the possible values for F may be reduced further. 

The above considerations are based on the assumption that the burst length 
is a multiple of the interleave depth D. However, the stated results can be 
adapted in a straightforward manner to general burst length L = cD + a with 
c EN and a E {O, ... , D - 1} since such a burst leads to a layers with a burst 
of length c + 1 and D - a layers with a burst of length c. 

3. EFFECT ON TCP THROUGHPUT 

In this part we consider the performance of an ADSL modem link where actual 
data transmission is controlled by a Transport Control Protocol (TCP). We 
first consider the occurrence of errors as seen by TCP. 

The data stream that is transformed and transmitted by the ADSL modem 
in fact is a stream of packets generated by TCP. Let g be the number of bytes 
in a packet. The transmitting modem chops the stream in pieces of k bytes, 
the data words, and, at the other end, the receiver reassembles the TCP packet 
stream from them. We assume that an error in a code word results in the detec
tion of an error by TCP in any and all packets that overlap the corresponding 
data word. Clearly, a code word error may lead to one, two or several packet 
errors, depending on k, g, and whether there is any alignment. We speak of 
alignment when there are (periodic) instances in the byte stream where code 
word and packet boundaries coincide. 

Now consider the loss of a randomly chosen code word. By simple counting 
arguments the following probabilities are easily obtained. If k ::; g and there is 
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no alignment: 

k 
P(one packet lost) = 1 - -, 

g 

if there is aligment: 

k l 
P(one packet lost)= 1 - 9(1 - y;), 

k 
P ( two packets lost) = - ; 

g 

k l 
P(two packets lost)= 9(1 - y;), 

where l = lcm(k,g), the least common multiple of k and g. 
If k > g the number of lost packets is 

r _gkl or r kl I I 9 + 1. 

If there is no alignment, it is always the latter. If there is: 

P (I !l packets lost) = ~, P ( I; l + 1 packets lost) = 1 - ~ . 

From these results it is concluded that random (code word) errors appear as 
(usually small) clusters of errors in the packet stream. 

Now we consider the effect on the throughput using the Reno version of 
TCP in the congestion avoidance phase. It is convenient to consider time in 
a sequence of intervals of length equal to the Round Trip Time (RTT). TCP 
controls transmission by means of its adaptable window size, W: the amount 
of data to be released for transmission in the next RTT interval. The receiving 
TCP sends back acknowledgments for the undamaged reception of packets; 
damaged or lost packets are detected through the ackowledgments. In the 
congestion avoidance phase, if all packets sent in the previous RTT are received 
undamaged, the window size is increased by 1 packet; if not, the window size is 
halved and missing packets are retransmitted. So loss in throughput is caused 
largely by the reduction of the window size. 

Random multiple packet loss and severe error situations result in time-outs, 
which cause TCP to start again with a slow start phase in which the window 
size is set to 1 packet. From the above it is clear, however, that this is an 
important issue, since random (single) code word errors that lead to multiple 
packet losses are by no means exceptional. Unfortunately, no generally valid 
accurate description of how TCP handles this was available, and this could not 
be analysed. 

This also implies that the effect of error bursts on the TCP throughput can 
only be analysed in so far as they lead to single packet losses, though, as is 
clear from previous sections, this is a rare occurrence. Interleaving, however, 
also affects the RTT and, through the RTT, the effective throughput. 

Assume that a single TCP packet is coded into a single code word ( of size 
n) . The round trip time now consists of a fixed part, RTT0 , which consists 
of the time needed to do the coding and decoding and the time to send the 
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acknowledgement, and the time needed to actually transmit the bytes of the 
code word. This is roughly nD / µ seconds. So, 

nD 
RTT = RTTo +-. 

µ 

The maximum number of bytes transmitted in one RTT is therefore 

W,nax = µRTT. 

We assume that this maximum window size is used until an error occurs. Subse
quently, Wmax/2n error-free RTT periods are needed to re-attain the maximum 
window size. During this phase on average an extra Wmax/ 4 bytes per RTT 
could have been transmitted had the error not occurred. So the error results in 
a loss of transmission capacity of W,;,ax/ 8n. Assuming that each error results in 
a loss this size leads to an upper bound on the total loss, as the additional loss 
due to an error during a recovery phase is less than the loss when W = Wmax· 

If q, the probability of a code word error (see also Section 2.2) is sufficiently 
small, then code word errors will be so infrequent that they nearly always occur 
when the window size is completely recovered from the previous error. Then 
we expect, using Wmax = µRTT, for the effective bandwidth: 

( µ 2 RTT2 ) 
µeff = µ 1 - q Sn . 

Of course, we are interested in the number of data bytes we expect to 
transmit per second, in relation to µ. Using the result obtained in Section 2.2 
for the efficiency '/JADSL, we obtain 

µeff ( qµ 2 RTT2
) ( h + i) '/}TCP = -'l]ADSL = 1 - ---- 1 - -- . 

µ 8n aµ 
(2) 

If, for argument's sake, we assume that RTT0 is negligible, then we can simplify 
this expression even further to 

( 1 2)( h+i) '/]TCP = 1 - 8qnD 1 - --;;_-;;- . 

where q depends on n and R, and nonµ and S. 

R=0 2 4 6 8 10 12 14 16 
8=1 0.489 0.984 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
8=2 -0.981 0.874 0.995 1.000 1.000 1.000 1.000 1.000 1.000 
8=4 -6.441 0.075 0.922 0.995 1.000 1.000 1.000 1.000 1.000 
8=8 -25.4 -5.26 -0.037 0.869 0.987 0.999 1.000 1.000 1.000 
8 = 16 -83.1 -35.3 -10.4 -1.8 0.44 0.905 0.986 0.998 1.000 

TABLE 1. µeff / µ for p = 0.001, µ = 262144 bytes/s, D = 1. 
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4. RESULTS AND DISCUSSION 

Using formula (2) for T/TCP, we can calculate the expected utilisation of the 
total available bandwidth during bulk data TCP-transmission over an ADSL 
connection with random errors occurring at some fixed rate p. 

Table 1 shows the values of µeff / µ for various parameter settings. This 
quantity measures the throughput in relation to the throughput that would 
have been attained if the same settings were used over an error-free connection 
(p = 0). The negative values correspond to cases where the word error rate is 
so high that the assumption that word errors occur only if TCP has recovered 
from the previous word error, is too far from the truth. 

We see that higher settings of R and lower settings of S result in an error 
correction that is so good that the probability of byte errors resulting in word 
errors is so small that their effect is smaller than the precision of the table. 
This table would suggest that setting R very high has no negative effect. This 
is misleading, as Table 2 shows. The design of ADSL modems implies that 
the transmission speed of data together with redundancy and overhead is fixed. 
Thus, increasing the redundancy reduces the bandwidth available to data. Note 
the combinations (S, R) = (1, 2), (2, 6) and ( 4, 12), which have about the same 
T/TCP· 

R=0 2 4 6 8 10 12 14 16 
8=1 0.474 0.923 0.907 0.877 0.846 0.815 0.785 0.754 0.723 
8=2 * 0.834 0.933 0.923 0.908 0.892 0.877 0.862 0.846 
8=4 * 0.0717 0.879 0.941 0.938 0.931 0.923 0.915 0.908 
8=8 * * * 0.832 0.941 0.949 0.946 0.942 0.938 
8= 16 * * * * 0.423 0.869 0.945 0.954 0.954 

TABLE 2. 1)TCP for p = 0.001, µ = 262144 bytes/s, D = 1. 

As we see, for S = 16, R = 14, 16, we have the highest value T/TCP = 0.954. 
In fact, calculations to a higher precision yield that for R = 14, T/TCP is strictly 
larger. Thus, for the presented p and µ, (D, S, R) = (1, 16, 14) gives the best 
expected throughput. 

Since we do not consider bursts of errors in this model, interleaving will 
have no positive effect. On the other hand, interleaving does increase RTT and 
thus increases the penalty on a word error. Table 3 shows that this effect can 
be quite dramatic. The value for (D, S, R) = (64, 16, 16) is not realistic; the 
RTT will be so large in this case, that the recovery periods of word errors will 
overlap significantly. 

This discussion shows that the interleaver should only be used if we expect 
a significant reduction of the number of corrupted code words. Since such a 
reduction is only achieved if bursts can be removed completely (otherwise the 
use of the interleaver will even increase the number of corrupted code words 
slightly), the probability that a burst of length smaller than eD (see Corollary 
1) occurs has to be significantly larger than O to get a positive effect of the use 
of the interleaver at depth D. 

The original question was about throughput during a long transmission. 
That means that the penalty on large values for RTT is only felt through 
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the increased recovery time of the window size. In practice there is another 
unfortunate side-effect of large RTTs, namely a lower responsiveness of the 
system. For interactive applications, high responsiveness is generally highly 
desirable. As we saw before, assuming that packets coincide with code words, 

RTT = RTT0 + aSD, 

where a r:::::: 2.46 • 10-4 sec. 
The assumption that RTT0 = 0 is questionable. This off-set value of the 

round trip time is largely determined by the so-called packetizing delay, and 
can be considered fixed in the back-to-back modem pair set-up of this paper. 

As an abstraction, it might be desirable to view the ADSL connection as 
a whole as a byte stream channel. This channel will have a byte error rate 
associated to it, which is exactly q as calculated. Note however, that byte 
errors on this channel will definitely not be uncorrelated, errors will appear in 
groups corresponding to data words. 

R=0 2 4 6 8 10 12 14 16 
8=1 * * * 0.856 0.846 0.815 0.785 0.754 0.723 
8=2 * * * 0.264 0.891 0.892 0.877 0.862 0.846 
8=4 * * * * * 0.888 0.922 0.915 0.908 
8=8 * * * * * * 0.620 0.921 0.937 
8 = 16 * * * * * * * * 0.169 

TABLE 3. T/TCP for p = 0.001, µ = 262144 bytes/s, D = 64. 

A. LIST OF SYMBOLS 
µ Bandwidth in bytes/s: number of bytes per second that are trans-

mitted over the physical link. 
N Number of bytes in an ADSL frame. 
n Number of bytes in a code word. 
K Number of data bytes in an ADSL frame. 
k Number of data bytes in a code word. 
R Number of redundancy bytes added to a code word for error cor

rection. Admissible values for R are (0, 2, 4, 6, 8, 10, 12, 14, 16). 
D Interleave depth. Admissible values for Dare (1, 2, 4, 8, 16, 32, 64). 
S Number of Mux frames to be encoded in one code word. Admis-

sible values for S are (1, 2, 4, 8, 16). 
e Number of errors that can be corrected in a code word 
L Length of a burst of errors in bytes. 
g Number of bytes in a TCP packet. 
1JADSL Number of data bytes divided by the number of transmitted bytes 

through the ADSL modem. 
7]TCP Long time average fraction of data byte rate and the maximum 

byte rate ( using TCP and an ADSL modem ) . 
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1. INTRODUCTION 
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Since the first demonstrations of the ruby laser in 1960, the laser quickly took 
an important place in various domains of industry. This is mainly because of its 
concentrated and contactless energy supply. This has led to many applications 
in the domain of laser materials processing. The most important applications 
in this domain are cutting, welding and marking. Laser drilling, the topic of 
this article, is a niche application. 

Laser percussion drilling ( drilling by multiple shots) is for instance used in 
the process of gas turbine manufacturing, because of the fact that the compo
nents to be drilled are made of superalloys which are very hard to machine by 
conventional techniques. To fix ideas, the typical hole diameter, hole depth and 
pulse length are 0.5 -;- 1.0 mm, 3 -;- 10 mm and 1.0 ms, respectively. Laser per
cussion drilling is favoured over alternative drilling processes like spark erosion 
drilling and laser trepanning drilling because it is by far the fastest process. 
However, it suffers of problems with the quality of the hole. The main quality 
aspects are: 

- Tapering (Decrease of hole diameter with depth) 
Recast layer (Re-solidified material at wall of hole) 

- Bellow shape (Local increase of hole diameter) 

The laser drilling process depends on the material properties and on the laser 
beam characteristics: wavelength and intensity as a function of space and time. 

The main goal of the research being started at the study group is to come 
up with a simulation model based on a mathematical model which includes all 
relevant physical features. This model is needed to get a better understanding 
of the process and to be able to select proper settings of the process parameters. 
Once well validated, this model will be used to define the specification of the 
ideal laser used for drilling. The major problem will be to handle the different 
phases and in particular the modelling of the interaction of the beam with the 
vapour phase. 

The setup of this article is as follows. Sections 2 to 4 are concerned with 
the phase transformations of the material irradiated. In Section 5 the fact 
that drilling velocities are found to be much higher than can be accounted for 
by vaporization only is explained by the so called piston mechanism. Then, 
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I 15" lQll wm-~ 

p 2.70 · 103 kg m-3 

Lv 11723.040 - 103 J kg-1 

L1 355.878 · 103 J kg-1 

k 229.111 W m-1 K- 1 

C 896 J kg-1 K-1 

Tm 931.15 K 
Tv 2543.15 K 
µ 2.66 - 10-3 Pas 

TABLE 1. Physical data for drilling Aluminium. (These data were taken from [4]) 

Section 6 gives a few ideas on how to model the interactions of the incoming 
laser beam with the vapour phase in front of the target. Finally, Section 7 gives 
some conclusions and recommendations. 

2. EVAPORATION-CONTROLLED LIMIT 

The simplest case to consider is the situation in which all the energy supplied 
to the surface goes into vaporizing the material, as in [1]. This evaporation
controlled limit may arise either when the energy is applied to the surface too 
rapidly for the heat to be conducted into the material, or when the beam power 
density is constant and the temperature ahead of the evaporating boundary 
approaches a steady state. By equating the rate of input of energy to the rate 
of absorption of latent heat of vaporization, we find 

I= vpLv (1) 

This gives the velocity of the vaporization boundary as 

I 
V = pLv. (2) 

Table 1 lists the physical constants relevant to the problem for aluminium ( a 
material for which they were readily available). Using these we find v ~ 0.5 
ms- 1 . 

Drilling by pure evaporation is observed in sublimating materials or in met
als at low irradiance. In experiments drilling velocities of more than 1 ms- 1 

are found. Thus, at higher irradiances, drilling velocities are found to be much 
higher (perhaps by factors of 2 + 5) than can be accounted for by evaporation 
alone. It is clear that some of the material must be ejected from the drilled 
hole in the liquid state, probably via the splashing mechanism that relies on 
the evaporation pressure (or recoil pressure), described by Von Allmen [2, 3]. 
Therefore, we now address the question of the size of the melt pool which forms 
during the pre-vaporization "warm up" phase. 

3. THE MELTING MODEL 

The temperatures in both the liquid and the solid region are governed by the 
heat equation. We concentrate on diffusion of heat in the direction of drilling, 
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neglecting radial diffusion. For typical drilling parameters, this is shown in [1] 
to be a reasonable approximation. 

Thus we have the following one-dimensional model 

EJ2Ti oTi 
ki ox2 = PCi 8t in ni for i = s, l, (3) 

where k, p and c are the thermal conductivity, density and specific heat ca
pacity respectively, and the subscripts s and Z denote the solid and the liquid. 
Furthermore, 01 denotes the liquid region O::::; x < x0 (t) and 0 8 the solid region 
x0 (t) < x < oo where x0 (t) is the position of the solid-liquid interface defined 
by T(x0 (t), t) = Tm. At the the boundary x = 0 the energy is supplied, 

oTz 
kzfu = -I at x = 0. (4) 

At the solid-liquid interface the so called Stefan condition and continuity of 
temperature hold, yielding 

oTi oT. 
kz ox - ks ox = -vnLJP at x = xo(t), (5) 

(6) 

Here, Vn is the velocity of the interface in normal direction, where the normal 
n is the normal pointing into the solid and furthermore, L f is the latent heat 
of fusion. At infinity, the boundary condition 

as x---+ oo (7) 

holds, where To is the ambient temperature of the material. We nondimen
sionalize this by introducing the dimensionless variables x, t and T, defined 
by 

X = x*x 
k(Tv -Tm)_ 

I x, (8) 

t = t*t 
pck(Tv -Tm)2-

J2 t, (9) 

T Tm+ (Tv -Tm)T, (10) 

where we have assumed that k and c take the same values in the solid and liquid 
phases. Using the material data for aluminium gives the length and time scales 
x* ;:::::: 2.5 • 10-5m and t* ;:::::: 6.4 • 10-6s. Writing the equations together with the 
boundary conditions in dimensionless form we obtain the Stefan problem 

02r or 
ox2 ot 

oT 
-=-1 
ox 

T=0· -- [or] 
' ox 

T---+To 

in Oi i = s, l, 

at x = 0, 
(11) 

at x = xo(t), 

as x ---+ oo, 
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where L1 = (T L-T ) is the dimensionless latent heat of fusion, T0 = TTo=~m, 
C V n1 V m 

and x0 (t) is the dimensionless position of the solid/liquid interface. With the 
material properties of aluminium we find L1 ~ 0.25 (in fact L1 is small in 
almost all metals). In this case as a first approximation we can neglect the dis
continuity in the temperature gradient due to the solid-liquid phase transition. 
This leads to the following problem 

B2T BT 
Bx2 Bt 

BT= _1 
Bx 

T-----t To 

with solution [1] 

in x > 0, 

at x = 0, 

as x-----+ oo. 

T(x,t) = 2 (!)½exp (-:;)-xerfc ( 2;½) +To. 

(12) 

(13) 

To determine the time at which the surface starts to vaporize, we note that 

- (I)½ -T(0, t) = 2 ; + To, (14) 

and that vaporization begins when T(0, t) = 1, i.e. I = (1 - T 0 )n/4. The 
dimensionless melt pool depth is given by x0 (t), defined by T(x0 (t), t) = 0, 
giving 

( I ) ½ ( x5) _ ( xo ) -2 - exp ---= - xo erfc -:T = -To. 
n M u• 

(15) 

However, from the small length and time scales it follows that vaporization 
takes place very quickly and the melt pool is very small as vaporization starts. 
Hence if the melt pool splashes out as soon as vaporization begins it must do 
so many times per laser pulse, with a tiny amount of melt ejected each time. 

Let us now consider the contrasting situation in which there is no immediate 
splash, to determine the maximum possible size of the melt pool ahead of the 
evaporating boundary. 

4. EVAPORATION AND MELTING 

Once the material starts to vaporize the (dimensionless) Stefan problem (11) 
needs to be modified to include a Stefan condition and temperature condition 
at the vaporizing boundary. In dimensionless form these are given by 

BT Vv 
Bx = -1 + ~; T = l. (16) 
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where, E = c(TvL-:,Tm) measures the ratio of the thermal energy required to heat 
the material from its melting point to its vaporization point to the latent heat 
of vaporization. In the case of aluminium we have E ~ 0.12, and E is small for 
most metals. Hence it is sensible to consider the limit of small E. However, a 
rescaling is necessary, since the boundary condition implies that the vaporizing 
boundary is stationary on the present length-scales and time-scales. Thus we 
introduce x and i by defining 

x - i x=-, t= 2 . (17) 
E E 

The new length and time scales are then x* /s ~ 10-4m and t* /s2 ~ 1.5 • 10-4s. 
We now have 

fPT aT 
in ni, i = s, l, ax2 ai' 

T= 1; 
aT 

at X = X1(t), E ax = -1 + Vv, (18) 

T=0; aT -
at x = x0(t), - = -L1vz ax ' 

T-+To as x-+ oo, 

where x1 ( t) is the dimensionless position of the vaporizing boundary. The 
previous (pre-vaporization) problem corresponds to the small time behaviour 
of this problem. As L f -+ 0, E -+ 0 the leading order problem is given by 

{ 
a2T aT 
ax = ai 

T = l; 0 = -1 + Vv 

in material, 
(19) 

at the vaporizing boundary. 

Hence Vv = 1 to leading order. This is exactly the evaporation limited solution 
that we found previously, and gives the dimensional speed of the vaporization 
boundary as Vv ~ 0. 7 ms- 1 . The solution for T is [l] 

- - ( 1 C- i) ( ( ½x - i)) 1 ( x ) ) - -T(x, t) = -e- x- erfc _1 + -erfc -----::-r (1 -To)+ To.(20) 
2 t2 2 2t2 

The position of the melt pool boundary x0 (i) is again given by T(x0 (i), i) = 0, 
giving 

-e-(xa-tlerfc 2 "/ + -erfc 1 - - ((!Esl-f\) 1 
2 i½ 2 

(21) 

For large times we find 

- - (1-To) xo ( t) ~ t + log T
O 

• (22) 

Since x1 = i, it follows that the size of the melt pool x0 - x1 approaches (from 
below) the constant value 
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as the vapourization proceeds. This gives the maximum size of the melt pool 
available for ejection through splashing. 

5. THE PISTON MECHANISM 

As we have already noted, at high irradiances drilling velocities in metals are 
often found to be much higher than can be accounted for by evaporation only. 
The reason is that much of the metal extracted leaves the hole as melt rather 
than as vapour. One mode of melt ejection is the piston mechanism as illus
trated in Figure 1, in which the melt is squirted out of the hole by the recoil 
pressure at the evaporating boundary. We could now ask ourselves the question 

d 

Solid 

R 

Recoil 
Pressure 

FIGURE 1. The piston mechanism. 

as to how quickly does the fluid get expelled by the recoil pressure. 
We obtain this velocity by balancing the forces. The work done by the 

recoil pressure, assuming that the total amount of liquid drawn in Figure 1 is 
squirted out, is 

(23) 

If the fluid is expelled quickly (which can be verified a posteriori) the flow will 
be high Reynolds number, and we can neglect viscous dissipation. Then this 
energy will all be converted to kinetic energy, i.e. 

(~pu2 ) x1rR2xa. (24) 

This gives the velocity, 

(25) 
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FIGURE 2. High-speed camera frames of a vapour cloud from an aluminium alloy irra

diated by 5 ms, 1.5MW /cm 2 CO2-laser pulses (incident from above). Blocking of the 

incoming radiation by the plume can be seen. Numbers below the frames give the time 

in ms. 

VON ALLMEN [3] gives an example in which a speed up to 50 ms- 1 is reached. 
Assuming this speed in the case of aluminium would give a Reynolds number 
of 

puL 4 Re= - ~5-10, 
µ 

(26) 

where L is the characteristic length (1 mm). This supports the assumption of 
neglecting viscous dissipation. 

6. THE VAPOUR MODEL 
In the previous sections one of the assumptions used to derive the models 
was the transparency of the vapour. In many cases, especially considering 
irradiations in the intensity regime used to drill, this assumption is not valid, 
as can be seen in Figure 2. In this figure it is easy to see that the vapour 
plume absorbs the incoming radiation by noting that this plume shields the 
target completely (frames 8 to 10). Therefore a model has to be made that 
also takes into account the absorption of incoming energy by the vapour plume 
in front of the target. Possible first steps towards such a model are presented in 
this section. Section 6.1 takes this step by using conservation of both mass and 
momentum, whereas section 6.2 uses the so called Rankine-Hugoniot approach, 
that is, one models the vapour as a shock wave. 
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6.1. Balance Equations 

First we try to model the vapour in one dimension where we define x = 0 to 
be the top of the hole and x = h to be the depth of the hole. Conservation of 
mass and of momentum give us 

ap a - + -(pu) at ax 
8 8 2 op 
-(pu) + -(pu) + -at ax ax 

0, 

0, 

(27) 

(28) 

respectively. Here, u is the speed of the vapour p is its density and p is the 
pressure. Furthermore we assume the mass-flux pu to be given at x = h, and 
the density p and the pressure p to be the ambient density p0 and ambient 
pressure p0 at x = 0, respectively. 

If we assume the vapour to be an ideal gass, a rather crude assumption, we 
are able to solve this system numerically. 

This model has to be extended by including an equation that models the 
absorption of radiation by the vapour and by an equation that models the 
temperature rise of the vapour as a function of the absorbed intensity. With 
this model we can compute the amount of energy that reaches the bottom of 
the hole, and therefore can be used to determine the time at which the target 
is shielded by the vapour. 

6.2. The Rankine-Hugoniot Approach 
Another approach to model the vapour makes use of the idea that the front 
of the vapour plume can be modelled as a density shock wave. Denote the 
conditions in front of the shock wave by the subscript - and the conditions 
after the shock wave by the subscript +. Using the assumption that the vapour 
can be modelled as an ideal gass, the so-called Rankine-Hugoniot relations are 
given by 

[p]s + [pu] 
[pu]s + [pu2 + RTp] 

0, 

0. 

(29) 

(30) 

Here, x = s(t) denotes the position of the shock, and [ • ] denotes the jump 
across the shock. This leads to 

[pu] 
[p] 

[pu2 + RTp] 
[pu] 

Assuming u_ = 0 leads to 

(31) 

(32) 

Knowing the mass flux P+U+ and P- this equation fixes P+ and thereby u+· 
Now we can compute the speed of the shock wave by 

. [pu] 
s = -[pf. (33) 
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7. CONCLUSIONS AND REMARKS 
We have examined various aspects of the laser drilling process. We first ex
amined the simplest case of the evaporating-controlled limit, in which all the 
energy supplied by the laser is used in vaporizing the material. This predicts 
drilling velocities lower than those observed in experiments, which leads to the 
conclusion that some of the material removed from the hole must be ejected in 
a liquid state rather than in a vapour state. 

We therefore turned our attention to the size of the melt pool which is 
formed during the drilling process. We found that in the "warm up" stage 
before vaporization begins the melt pool formed is very small, so that if it is 
splashed out immediately the surface starts to vaporize there must be a high 
frequency of very small splashes. 

We then considered the case in which the melt is not splashed out immedi
ately, but remains for a while as vaporization is taking place. We found that 
the melt pool increases in size considerably up to a maximum value which is 
easily calculated. However, during this vaporization phase most of the energy 
supplied to the surface of the irradiated material goes into vaporization, with 
only a small amount being used to create the melt pool. 

Since it is more efficient to splash out melt than to vaporize it, improved 
control of the melt pool may lead to more efficient drilling. One possibility is to 
try to generate a large melt pool with a minimum of evaporation by applying a 
relative low intensity pulse, followed by a high intensity pulse to generate high 
evaporation producing the recoil pressure to splash out this melt pool. This 
may also help to minimize the recast layer formed by the collapse of the final 
splash when the hole breaks through the material, since the melted region will 
break through before the final splash and the final melt will be ejected through 
the hole rather than back. 

Although the studygroup came to some results for the process of absorption 
of energy in the vapour plume in front of the target, and the two different 
approaches to tackle the absorption presented in this article are promising, this 
topic needs further research and a more sophisticated modelling. Furthermore, 
experimental results have to be obtained to validate the vaporization models. 

REFERENCES 
1. J.G. ANDREWS & D.R. ATTHEY, On the motion of an intensely heated 

evaporating boundary. J. Inst. Maths. Applies. 15, 59-72 (1975). 
2. M. VON ALLMEN, Laser drilling velocity in metals, Journal of Applied 

Physics, 47, no. 12, pp. 5460-5463 (1976). 
3. M. VON ALLMEN & A. BLATTER, Laser-beam interactions with materials, 

Springer-Verlag, Berlin, (1995). 
4. K. RAZNJEVIC, Handbook of thermodynamic tables and charts, McGraw-Hill, 

New York, (1976). 





33rd European Study Group with Industry 
14 - 18 September 1998 

Thermally Pressing Corner Profiles 

Tim Myers 

Sjoerd W. Rienstra 
TU Eindhoven 

Department of Mathematics 

P.O. Box 513 5600 MB Eindhoven, The Netherlands 

with contributions from: 

Jon Chapman, Warrick Cooke, Christian van Enckevort, 

Michael Lee, Chris Stolk, Fons van de Ven. 

1. INTRODUCTION 

pp. 37 - 53 

Trespa International B.V. (Weert, The Netherlands) is a manufacturer of high 
quality panel material for exterior and interior uses, made of polymerized resin, 
reinforced with wood fibres or sulphate paper. Typical applications are office 
desk tops and facade cladding. 

The production process starts with impregnating large sheets of paper with 
resin. Then a pile of sheets of 8-13 mm is pressed together under high pressure 
(90 bar) in a mould until all of the air is squeezed out. In simplistic terms, 
the pressing of a plate occurs in two distinct stages; compression followed by 
heating. This is depicted in Figure 1, where the curves show the product 

120 time (s) 

FIGURE 1. Typical thickness, temperature and loading curves. 

thickness, temperature and applied load over .time. During the first stage of the 
process, which last approximately two minutes, the components are compressed 
to within 10% of the final thickness. During this stage very little heat has 
reached the components. During the second stage the temperature reaches a 
critical value and the resin starts to polymerize, eventually resulting in the 
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solidification of the melt. During polymerization water is formed, which is 
partly dissolved in the polymer and fibers, partly squeezed out sideways, and 
partly evaporated through the upper and lower surfaces. 

FIGURE 2. The corner profile 

The majority of the production involves the manufacture of large rectan
gular flat plates. Here, the process is well controlled, with little failure losses. 
A minority of the production consists of, so-called, corner profiles, where a 
two-dimensional corner (legs of 30 cm, a lateral extension of 4 m) is made by 
heat-pressing a pile of sheets, folded into a corner shaped mould (figure 2). 
The upper and lower surfaces of the legs are not exactly parallel. The angle 
between the legs of the inner mould is 90°, and of the outer mould 91.5°, which 
is a small but critical amount more. In this way the mould slightly diverges, 
such that it closes first in the corner, while the contact area between the sheets 
moves from the corner into the legs. The legs are connected by circular arcs 
of 10 mm (inner) and 20 mm (outer) radius. This shape may be modified if 
necessary. 

The process of pressing a corner profile is less stable than the regular flat 
panel process. Density variations and surface blisters have been observed that 
are supposedly due to captured air and water. 

The question is to explain or clarify, by suitable mathematical modelling, 
the physical processes leading to this adverse behaviour, and to suggest (ways 
to obtain) more favourable mould shapes. 

2. MODELS 

We will adopt the hypothesis here that the reduced structural quality is primar
ily caused by captured air bubbles and not, for example, by chemical changes 
of material. Therefore, the models used will be centered around the mechanical 
side of the processes, where bubbles might play a role. They are described by 
the fluid mechanical (resin) and elasto-mechanical behaviour (polymer) of the 
material. 

It is believed that the bubbles are trapped mainly because, when com
pressed, the material closes in such a way that the induced pressure is not 
conducive to expelling the trapped air. A description of the actual trapping 
of bubbles is evidently very difficult, as it requires a kinematical or even dy
namical model of a non-continuous material. A better approach, feasible but 
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requiring a more in-depth research, would be a mixture model [7]. For the 
moment, however, we will remain, for simplicity, with single component mod
els, probably valid when the trapped air bubbles are small. Therefore, we will 
evaluate below the following two models: one describing the viscous flow part, 
and one describing the elastic solid part. At this moment it is not clear yet 
which description will be most relevant to the original questions. On the one 
hand, the flow of the heated resin and the trapping of bubbles is a process for 
which nothing but a viscous model appears to be appropriate. On the other 
hand, the resin polymerizes, and during the pressing process mainly air ( and 
very little resin) is driven out of the ( open!) sides, which suggests that a solid 
(elastic) model might be in order. 

3. VISCOUS CONSIDERATIONS 

3.1. Introduction 
As previously mentioned, the pressing occurs in two distinct stages, compres
sion followed by curing. The following section is concerned only with the first 
part of the production process, the compressing stage. In particular the vis
cous flow of the resin is investigated. The first model described deals with the 
shearing effect caused by the relative motion of the paper sheets, to determine 
whether this can tear the paper and lead to cracks appearing. The second 
model deals with the viscous squeeze flow. The reason for studying this is 
that it is assumed a considerable part of the densification is due to air bubbles 
being forced out of the resin. This is backed up by experimental observations 
of vapor being ejected, although little resin is seen to be ejected. However, it 
is quite likely that the viscous resin is pushed into the paper and trapped ( or 
at least considerably slowed down). Air bubbles may not take the same path, 
either because their surface tension makes it more difficult to push air through 
the narrow paper pores or that air may simply move more rapidly between the 
paper layers and so be more easily ejected before becoming trapped. 

To remove trapped air bubbles the pressure gradient must be reasonably 
large and acting to push the fluid outwards, to force the bubbles through the 
viscous resin to the edge of the plates. For this reason the pressure profile in 
the resin layer is sought. The complication of the resin being forced into the 
paper is not investigated here, however, an analysis of this situation may be 
found in [l]. 

3.2. Cracking due to shear? 
During compression of a corner piece there must be some relative motion of 
the paper layers as the composite adjusts from a flat shape to a curved one. 
The only significant force opposing this motion is the viscous resistance of the 
resin. In this section an order of magnitude study is carried out to determine 
whether this shear force is sufficient to tear the paper and so produce cracks 
in the finished product. 

Geometrical considerations indicate that the relative distance, L, moved by 
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two adjacent sheets of paper bending to a right angle is 

L ~ ¼1r(r2 - r1), (1) 

where r1 and r2 are the radii of curvature of the paper sheets. In the current 

~
tp press 

paper / 

+resin /// /, .··· .· 

detail 

I 

FIGURE 3. Geometry for pressing a corner piece. 

problem the radius of curvature of the corner is typically 10 mm, the thickness 
of the resin layer is 10 µm. Hence locally the problem can be considered as 
one of Couette flow, see Figure 3. In which case standard viscous flow theory 
indicates that the shear stress in the fluid is constant and given by 

ryU 
r=Ii, (2) 

where 7J is the viscosity and H is the distance between the two surfaces, H ~ 
r2 - r1. The velocity U is given by the length-scale L divided by the time-scale 
for the flow, which is here taken as 10 s. This leads to 

7J 7r. H 'll"'TJ 
r= H4-10 = 40' (3) 

so the shear stress is independent of the layer thickness. A typical value for the 
resin viscosity is 2000cP or 2Pas, so the shear stress is of the order 0.16N/m. 
Trespa quote the breaking stress of the paper used in the pressing process as 
20x106 N/m2 , a sheet of thickness lOOµm therefore requires 2x103 N/m to 
tear it. The analysis therefore shows that the stress caused by the shearing of 
the resin is considerably smaller than that required to tear the paper and it is 
highly unlikely cracks will appear due to this mechanism. 

3.3. Viscous squeezing problem 
As the plates compress the resin/paper composite a viscous squeeze film will 
occur between each pair of paper sheets and the resin will be forced either into 
the sheets or outwards. To understand the compression of the composite, it is 
first necessary to understand the basic component of the system, a fluid being 
squeezed by the normal motion of two solid surfaces. This is the focus of the 
present section. The main aim of the analysis is to determine the pressure 
gradient within a resin layer, since this will act to expel (or retain) air bubbles. 
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FIGURE 4. A viscous fluid squeezed between two plates located at z = 
hr(x, t), z = hs(x). 
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Consider the problem of a viscous fluid being squeezed between two solid 
surfaces, as depicted in Figure 4. Without loss of generality the bottom surface 
can be assumed stationary, whilst the top one moves under a load P, which 
may vary with time. 

In 2-D the standard lubrication approximation reduces the Navier-Stokes 
equations to 

op 
ox 
op 
oz 

0. 

The continuity equation remains unchanged under this approximation: 

op o(pu) o(pw) _ O 
ot+a;;;-+~- · 

Appropriate boundary conditions for the velocities u and w are 

u(hB) = 0, 

w(hr) = ohr o, ot 

(4) 

(5) 

(6) 

(7) 

(8) 

where hr(x, t) and hB(x) are the positions of the top and bottom surfaces. 
Equations (7) and (8) specify no-slip on the solid surfaces. The pressure must 
be ambient at either end of the contact, i.e. p( ±L) = Pa· In the following the 
ambient pressure will be set to zero. The total load P is the integral of the 
pressure over a surface P = J,!:Lp(x) dx. The density is assumed to depend 
only on pressure and so p(±L) = Pa• 

Equation (5) indicates p = p(x, t) and hence p = p(p) = p(x, t). Equation 
( 4) may be integrated immediately to give the velocity 

lop 
u = --(z - hB)(z - hr). 

2ry ox 
(9) 
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Integrating the continuity equation between z = hr and hB leads to 

op 8 [ lhT ] 8hr 
at(hr-hB)+ 0x p hs udz +pfit=0. (10) 

Substituting for the velocity and rearranging provides the governing equation 
for the squeeze flow of a compressible fluid: 

a [ ] a [ P ap 3] - p(hr - hB) = - ---(hr - hB) . 
at ax 1217 ax 

(11) 

For all cases the dependence of the heights on x should be known ( the 
shape of the press) and for simple configurations equation (11) may be solved 
analytically. Three such scenarios are worked through in the following sections. 
However, in general, equation (11) will require solving numerically, this is not 
carried out in the present work. 

Incompressible flow between fiat plates 

To illustrate the method described above, the simplest configuration, that of 
an incompressible squeeze film between two flat plates, will be described in this 
section. In which case the position of the plates is described by 

hr= h(t), 

and equation (11) reduces to 

ah _.!!_(!::_op) 
at - ax 12178x . 

(12) 

(13) 

Since h = h(t) this may be integrated immediately. After applying the sym
metry condition op/ax= 0 at x = 0, this gives an expression for the pressure 
gradient: 

op 1217fx 
ax h3 

(14) 

where f = ah/ at. This shows that the pressure gradient increases linearly away 
from the centre, p ex: x. The consequence for bubble motion through the resin 
is that near the centre there will only be a small force to cause movement and 
this is where bubbles are most likely to be trapped. Away from the centre the 
force increases and so bubbles near the edge of a plate are likely to be removed 
relatively rapidly. 

The pressure in the resin can be determined by integrating (14), subject to 
p(±L) = 0: 

(15) 

This still involves the unknown function.f (t) which must be determined by the 
load condition 

1L 817f 3 
P = p dx = - -h3 L . 

-L 
(16) 
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So the pressure at any time t is given by 

3P 2 2 
p(x, t) = 4£ 3 (L - x ). (17) 

Note that the load P applied to the top plate is a known quantity, which may 
vary with time. The film thickness at time t is determined by integrating f. 
For the case of constant load this leads to the classical expression for the height 
variation of an incompressible squeeze film 

( 1 Pt )-1/ 2 

h(t) = h5 + 4£377 ' (18) 

see [2, 3] for example. With a time-dependent load, as is depicted on Figure 1, 
the film height equation requires solving numerically. 

Another classic example of a squeeze film is the converging/ diverging bear
ing. The diagrams of presses provided by Trespa indicate that this is also a 
relevant situation to study, however since the analysis is similar to that de
scribed above it is not worked through here. The main result of interest is 
that the pressure in a converging bearing is similar to that of equation (17) but 
flattened in the centre and steeper near the edges. Consequently, the central 
pressure gradient is less favourable to removing air bubbles than the flat plate. 
A diverging profile has the opposite effect. 

Quadratic profile plates 

As an approximation to the true shape of the plates when manufacturing a 
corner the relatively simple case of a quadratic profile will be considered in this 
section: 

h(t) + bx2 

ax2 . 

(19) 
(20) 

If the corner sections are thought of as approximately circular, as depicted in 
Figure 3, with radii r1 and r2 then b rv 1/2r1, a ~ 1/2r2. The physical case 
of interest to the present study has r 1 < r 2 , so a < b. Again the fluid will 
be assumed incompressible. To simplify the analysis the z co-ordinate will be 
shifted to ( = z - bx2 , so 

h(t) 

(a-b)x2 =Bx2 . 

(21) 

(22) 

Equation (11) may be integrated, subject to a symmetry condition at x = 0, 
to give the following expression for the pressure gradient: 

op 
OX 

l2ryfx 
(23) 

Due to the symmetrical nature of the problem, the pressure gradient must 
always be zero at the centre and bubbles are likely to be retained here. Away 
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from the centre equation (23) shows that when B > 0 the pressure gradient 
will decrease (since f < 0) monotonically away from the centre. The possible 
singularity, when x = Jh!i3, cannot occur since this implies the surfaces 
have come into contact, which is only possible in infinite time. When B < 0 
the pressure gradient decreases away from the centre to a minimum at x = 
±JH/5IBI after which it increases to an asymptote at 8p/8x = 0. In this case 
the pressure gradient over most of the central region ( except in the vicinity 
of x = 0) is large and should force air out rapidly. However, as the bubbles 
approach the edge of the contact region the pressure gradient becomes small 
and it is possible the bubbles may slow down sufficiently here and not be 
expelled. 

Equation (23) can also be integrated analytically to provide an expression 
for the fluid pressure: 

3rlf [ 1 1 ] 
p(x, t) = -B (h - BL2)2 - (h - Bx2 ) 2 . 

(24) 

As in the previous example this requires integrating to determine f in terms of 
the applied load P, which in this case is assumed constant. This leads to, for 
B<O: 

f = _ PIEi hJhjBT(BL2 + h)2 ( ) 

3TJ arctan(LJIBl/h)(BL2 + h)2 - JhjETL(-IBIL2 + h) ' 25 

and for B > 0: 

f = PB h,/iJJ(BL2 - h) 2 

3TJ arctanh(BL/,/iJJ)(BL2 - h) 2 - ,/iJJL(BL2 + h) 
(26) 

The position of the top plate is determined by numerical integration of 8h/ 8t = 
f, with f given by either (25) or (26). 

Quadratic/linear plates 
As depicted in Figures 2 and 3, a corner profile is closely approximated by an 
approximately circular central region joined to an outer, straight section. This 
may be represented approximately by the form 

hr = h(t) + bx2 lxl :S l 
= h(t) + 2al(lxl - l) + bl2 l :S lxl :SL 

(27) 
hB = ax2 lxl :S l 

= 2al(lxl - l) + al2 l :S lxl :SL. 

As in the previous section b ~ 1/2r1 , a~ 1/2r2 where r 1 , r 2 are the inner and 
outer radii of curvature of the central region. Shifting the z-coordinate such 
that 

( = z - bx2 

= z - 2al(lxl - l) - bl2 
(28) 
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transforms the plate positions to 

hr = h(t) 'c/x 
hB =(a-b)x2 lxl S l (29) 

=(a-b)l2 l S lxl S L . 

The problem is then reduced to a combination of those of the previous two 
sections. 

Setting B = a - b the pressure gradient in the two regions is determined as 

ap 
ax 

12ryfx 
(h - Bx2 ) 3 

12ryfx 
(h - Bl2) 3 

lxl S l 

(30) 

Note, the discontinuity in the gradient of hr and h8 at x = l will be reflected 
in a discontinuity in the gradient of ap/ax. The corresponding pressure is 

(31) 

As l-----+ 0 equations (30, 31) reduce to the results for linear plates, as Z-----+ L the 
quadratic plate results are retrieved. The total load is, for B < 0, 

p _ 3ryf arctan(IBIZ/ JhTBT)(IBIZ2 + h)2 - JhfBTZ(-IBIZ2 + h) 

IBI hJhiBT(IBIZ2 + h)2 (32) 
8ryf (L3 - z3) 

(h + IBIZ2)3' 

for B > 0, 

p 3ryf arctanh(BZ/v1hB)(BZ2 - h)2 - v1hBl(Bl2 + h) 

B hv1hB(Bl2 - h)2 
8ryf (L3 - z3) 

(33) 

(h - Bl2 ) 3 . 

Since f =ah/at these provide the equation for the separation of the two plates 
h(t), which must again be solved numerically. 

3.4. Conclusion and results 
In section §3.2 a simplified model for the shearing of a paper/resin system was 
analysed. Assuming Couette flow, an order of magnitude analysis indicates 
that cracking will not occur due to the shear of the very viscous resin. Since 
the induced stress is so much smaller than the required breaking stress it is 
clear that even if modifications are made to model the flow more accurately 
the changes will never result in a sufficiently large stress to tear the paper. 
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In §3.3 a squeeze film model is investigated in order to calculate the pres
sure within the resin. It is assumed that a sufficiently high pressure gradient 
will act to drive bubbles of trapped gas from the resin, leading to the appro
priate densification. Three examples are worked through in §3.3-3.3. The first 
of these details the classical squeeze film between two flat plates. The prob
lems described in the latter two sections cover quadratic profile plates and a 
combination of quadratic and linear ones. The analysis of the quadratic and 
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FIGURE 5. Variation of height h(t) for first 120 s. 

quadratic/linear profile problems led to an ordinary differential equation for 
the height h(t), which required solving numerically. The pressure and pressure 
gradient may then be determined from equations (23, 24, 30, 31). 

Figure 5 shows the variation of height h(t) over time for a press with load 
P = lOON, L = 0.5 m, l = 0.25 m and B = 0.1 m-1 for all three cases discussed 
earlier. As expected all the height curves decrease in a nonlinear fashion, with 
an initial rapid decrease followed by a long slow settling period. This is similar 
to the experimental height decrease displayed in Figure 1. Of the three curves 
the one corresponding to the linear plate settles most slowly, the quadratic 
plate settles most rapidly. 

The pressure profiles are shown in Figure 6 at time t = 120 s. The problem 
of squeezing a fluid between two flat plates leads to a parabolic pressure profile, 
with a maximum at x = 0 of approximately 150 Pa. The quadratic plates, in 
this example, give a very high pressure near the centre which decreases rapidly 
to an almost negligible value after x = 0.35 m. Decreasing the magnitude of 
B reduces the height of the central peak and increases the value at larger x, 
until, as B ----+ 0 the linear profile is retrieved. The combination of quadratic 
and linear plates leads to higher pressures than the purely linear case near the 
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centre and lower values further out. 
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FIGURE 6. Pressure profiles during later stages of pressing process. 

The quantity of greatest interest to the present study is the pressure gra
dient, this is depicted for the three cases in Figure 7. The flat plates show a 
linearly decreasing pressure gradient which will act to expel air more rapidly 
the further away it is from the centre. The quadratic plates give a very high 
pressure gradient over the central region (except in the close vicinity of x = 0), 
which will act to expel air very rapidly from this region. However, further out 
the pressure gradient becomes very small indicating the possibility of bubbles 
becoming trapped. Decreasing B will help alleviate this effect. Finally, the 
linear and quadratic combination incorporates the desirable features of the two 
separate cases. The pressure gradient is high near the centre. Following the 
trend of the quadratic plate profile, after reaching a minimum the magnitude 
decreases until the least effective point for removing air is reached where the 
linear profile is adopted. After this point the magnitude of the pressure gra
dient once again increases. With this form of plates there are therefore two 
likely places for bubble entrapment to occur. The first is at the centre where 
8p / 8x = 0, the second is where the different profiles join and the magnitude 
of 8p / 8x reaches a local minimum value. Adjusting the shape of the curve 
defined by B and the join position l this minimum value can be altered and 
so help prevent entrapment in this region. Preliminary calculations indicate 
that decreasing B ( i. e making the corner tighter) or increasing l increases the 
central pressure gradient but reduces the pressure after the join. Increasing B 
or decreasing l has the opposite effect. The optimal choice will be one which 
gives an initial rapid rise in the magnitude of the pressure gradient but does 
not allow the gradient to become too small near the join. 
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FIGURE 7. Pressure gradients during later stages of pressing process. 

The consequences for a press with a converging or diverging form, have 
not been investigated, although the mathematical model has now been set up 
to permit this to be carried out relatively easily. However, work on purely 
converging systems indicates that a converging press will be more likely to 
entrap air. A diverging one will encourage air removal and this is the type 
used in practice by Trespa. 

Equation (11) sets up the problem for a compressible fluid, however only 
incompressible examples have been used in the current study. There are two 
reasons for this, firstly the incompressible problem is considerably simpler, but 
the main reason is that to close the system a pressure density relation is re
quired. At present there is no information on this. However, the incompressible 
flow model should indicate the correct trends for pressure and height variation. 
Further, it is not clear whether the actual fluid is compressed. The current 
study assumed that the compression effect was due to the removal of air from 
the resin, the resin will also permeate into the paper. A compressible model 
would just be imitating this behaviour. 

The motion of the bubbles has also not been discussed, except in a very 
simple manner. Clearly an appropriate pressure gradient will act to move the 
bubbles, but a relation between the bubble velocity and pressure gradient is 
still required. To calculate this properly is beyond the scope of this work, 
however, it is likely that the bubble velocity will be of the same order as the 
resin velocity. The average resin velocity may be calculated from (9) as 

_ op (hr - hB)2 

u = - - -----------ax 1277 
(34) 

From this it may be estimated how long a bubble will take to travel from a 
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specified point to the plate edge. 

4. ANISOTROPIC ELASTIC SOLID MODEL 

Since the compression or normal stress properties, affected by the captured 
air bubbles, are expected to be considerably different from the shear stress 
properties, affected by the layered structure of the paper sheets, the solid phase 
of the material will be modelled anisotropically, i.e. with different Young's 
moduli in crosswise and lateral directions. 

Consider the following geometry (Figure 8). Because of symmetry we only 
have to consider one half of the profile. The planar part ( the leg) occupies the 
region 

0 ~ x ~ L, 0 ~ y ~ a, 

while the circular part (the corner area) is given by 

x =-rsin(0+0i), y=-R+rcos(0+01 ), 

' ' r , 

--~'- :;;;,--..+--------
x 

FIGURE 8. The geometry 

where 01 = ¼'If, and R and a are typically 10 mm. The small variations on 
this geometry (leg angle, etc.), which are supposed to create favourable or 
unfavourable stress distributions, will for the moment be incorporated by ap
propriate boundary conditions. 

We obtain for the stress tensor T (with elements t;j) in the planar config
uration the following constitutional stress-strain relations [8] 

a~ 
txx = EL ox' (35) 

where ~ex + rJey is the displacement vector:, and the Young's moduli in cross 
wise (Ee), lateral (EL) and shear ( G) direction are related by 

2G <Ee« EL, 
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tij is the stress applied at the side with normal ei in direction ej. The Poisson 
contraction factor is assumed to be zero: v = 0. If the material were isotropic, 
we would have 2G = Ee = EL. Boundary conditions will be 

at y 

at y 

0: 

a: 

for X ----+ 00: 

~=7]=0 

~ = f(x), 

~' 'T]----+ 0. 

(no slip), 

77 = -g(x), 

A suitable first choice will be a simple displacement f(x) = g(x) = ½Jv'2. 
In the circular part we have, with uer + vee the displacement vector, 

( 1 av l ) tee = EL - - + -u , 
r 80 r 

(av 1 au l ) 
tre = G - + - - - -v . (36) 

or r 80 r 

Boundary conditions will be 

at r 

at r 

R: u=v=0 (no slip) 

where use is made of the symmetry at 0 = 0. A suitable first choice seems to 
be a simple displacement u = -6 cos 0, v = 6 sin 0. 

The two regimes are connected at x = 0, 0 = -01 by conditions of continu
ity: u = 77, and v = -(. 

Because of equilibrium T must satisfy 

'\7-T=t, 

in both regions. If we introduce the dimensionless, small, parameters 

such that 2,y < E « l, 

and substitute into (37) we find the equations 

and 

~xx+ 'Y(~yy + 'Tlxy) 

'Y(~xy + 'Tlxx) + E'T]yy 

0, 

0, 

where subscripts denote a partial derivative. 
By expanding ~ and 77 in a Fourier series in y 

00 00 

0 

0 

~(x, y) = L Xn(x) sin(ny/a), ry(x,y) = LYn(x)cos(ny/a), 
n=l n=l 

(37) 

(38a) 

(38b) 

(39a) 

(39b) 

(40) 
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we arrive at 

0 

0 

with solutions, decaying for x --+ oo, given by 

2 2 

Xn(r) = LAj eAjx, 
j=l 

Yn(r) = L Bj eAJx 
j=l 

where 

(>-.7 - n21)Aj = 1n>-.jBj 

and >-.1,2 are the two solutions with negative real part of 

')'A4 - (m + 1 2n(n - 1))>-.2 + n3')'2 = 0. 

By expanding u and v in a Fourier series in 0 
00 00 

u(r, 0) = L Un(r) cos(n0), v(r, 0) = L Vn(r) sin(n0), 
n=O n=l 

we arrive at 

11 E: , l ( 2 ) n')' , n ( ) E:Un + -Un - 2 1 + n ')' Un+ -Vn - 2 1 + ')' V,, 
r r r r 

11 1' , 1 ( 2 ) n')' , n ( ) ')' V: + - V: - - n + ')' Vn - -U - - 1 + ')' Un n r n r2 r n r2 

which has the (explicit) solution: 

if n > l 
4 

Un(r) = L CjrAJ, 
j=l 

where 

4 

Vn(r) = LDjrAJ 
j=l 

= (1 + 1' + >-.n)(l - s>-.3) C· 
Dj n(n21-21-l) 2 ' 

q>-.4 - (q + 1' + rn2),>..2 + 1(n2 - 1)2 = O; 

if n = 0 

where >-. = j"f; 

0 

0 
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(41a) 

(41b) 

(42) 

(43) 

(44a) 

(44b) 

(45a) 

(45b) 

( 45c) 
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(1 + -y)(D1 + C1) = --yC2, D2 = -C2, 

-yD3 = c(l + "/ + >.-y)C3, -yD4 = c(l + "/ - >.-y)C4. 

An example of a very simple shape, with just u(Ra) = -J cos0 and v(Ra) = 
J sin 0 such that we have only the n=l-term, is given in figure 9. The parameters 
are not chosen from any measurement, but hopefully not too unrealistically: 
c = 0.03, "( = 0.01, R = 10, Ra = 20, and J = l. 

0.5 

-0.5 

-1 

FIGURE 9. U1(r) and Vi(r) for 10:::; r:::; 20. 

A detail of interest is the following boundary layer behaviour. Since c 
and -y are small, >. is invariably a large parameter. Consider for example the 
n=l -term. Since variable r is always between Rand Ra, the term (r/R)->- is 
practically absent everywhere, except near r = R. The same is true for (r / Ra)>
near r = Ra- This suggests strong gradients in displacement just below the 
surface of the material, which might well be responsible for residual stresses 
and hence an uneven surface, maybe even blister formation or cracks in the 
surface. 

This is evidently the result of the relatively low resistance against shear. 
Any shearing force applied at the surface results into a deformation of the 
material only near the surface. 

Further results are possible only after acquisition of numerical values of the 
various problem parameters, and the programming and numerical evaluation 
of the present solution. 

5. RELEVANT LITERATURE 

The problems described by Trespa have parallels in other industrial processes 
and, while there was no time to investigate all the areas, it is worth pointing 
out the relevant literature. 
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The cracks which appear in the finished product do not occur during the 
viscous stage and so must occur when the material is hot. In which case it is 
possible that the cracks appear due to the residual stress calculated in §4 or 
temperature effects. If temperature variation is the culprit it is well known that 
thermal stress is proportional to temperature gradient and there are numerous 
texts on elasticity which describe this [4, 5]. 

Blistering is a problem frequently encountered in the paint industry and for 
a similar reason as in the present problem. The paint layer forms a skin which 
prevents entrapped gas from escaping and so a bubble or blister forms under 
the skin. A good survey on such problems may be found in [6]. 

Flow through a porous media, such as paper, has been mentioned already 
[1]. This work was related to the production of formica. Further information 
on lubrication flow into a porous media may be found in [2]. 
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One of the possibilities to assist physicians with their diagnostic work 
based on CT-scans would be a tool for automatic detection of 
metastases in human lungs. The present project stems from the 'Dr. 
Daniel den Hoedkliniek' in Rotterdam. The problem was successfully 
tackled during the week and resulted in a highly efficient algorithm to 
detect metastases from CT-data. The algorithm is restricted to 
metastases that are not attached to each other or to the lung edges. A 
first attempt to implement it into a Fortran program yielded successful 
results on artificial data sets. For fine-tuning of parameters the 
algorithm should be applied to real data from the clinic. 

1. INTRODUCTION 

One of the problems presented during the Study Group in Leiden, September 1998, 
concerned the automatic detection of possible metastases - i.e. clusters of tumor 
cells - in human lungs. These metastases are approximately spherical with diameters 
in the range 0.3-2 cm. A computer assisted diagnostic program should be able to 
identify these objects efficiently. 

The lungs often serve as initial 'target organ' for tumors with venous drainage 
primarily to this organ. The entire output of the right side of the heart as well as 
virtually all lymphatic fluids produced by body tissues flows through the pulmonary 
vascular system. Therefore it is not surprising that metastases to the lungs are quite 
common. Patients with tumors that initially arise in the lungs are at high risk of 
developing pulmonary metastases early. If left untreated such metastases may be a 
primary cause of death. 
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In the seventies computers were introduced in X-ray diagnostics. They had an 
enormous impact on the field of rontgenology. New measuring and imaging 
methods became available, which gave the field a new impetus. One of the main 
improvements was the possibility of transaxial scanning of patients. Until then 
tomography produced only longitudinal scans. 

Nowadays the spiral volumetric CT technique has introduced truly contiguous 
scanning which is independent of e.g. breathing. Subsequent serial-section axial 
images are generated by means of filtered back projection after interpolation. 

Earlier research by students of Prof. M. Keane, see [Ber94] and [Sch95], 
showed that the route starting from random lung shapes, edge/contour detection, in 
order to come to detection of metastases was not quite feasible. With the Study 
Group we attempted a direct approach which has the advantage of being very 
efficient since the grid points of a CT-scan are visited only once. 

2. PROBLEM 

At the Study Group Dr.M. Oudkerk of the Dr. Daniel den Hoedkliniek, a medical 
center for cancer treatment in Rotterdam, presented a problem, which - reduced to 
its essence - reads as: 

'When making a diagnosis by using a CT scan, one looks for spherical shapes 
amidst bones and lung tissue. Where the bones show a value of 1000 in an 
appropriate system of units on the CT scan and long tissue are at 0, the spheres 
distinguish themselves at a value of around 150. For the automatic pattern 
recognition one can assume that the spheres are unconnected from each other and 
the lung edges, with unknown diameter and position'. 

The present way of scanning the data makes use of the presentation of the grey 
value pattern in a horizontal slice on a screen. Here 'horizontal' is meant with 
respect to the patient in an upright position. In fact, no 3-D but only 2-D 
representations are used. The sophisticated interface allows the user to scroll 
through adjacent horizontal slices in a fast and convenient way. If a suspicious 2-D 
object is observed in one slice, the inspector may immediately deduce from the 
pictures of the slices directly above and below the slice under consideration whether 
the object is part of a 3-D spherical object or that it is connected to, e.g., a vein 
image. The expert knowledge comprises a lot of experience about the objects that 
can be expected to be present in specific regions of the lung. Although the lungs of 
different people may differ considerably, the human eye is highly capable in 
detecting irregular patterns. 

However, the present detection method of visual inspection is not yet perfect. 
Clinical studies in the use of chest radiographs for the detection of lung metastases 
have demonstrated that even highly skilled and highly motivated radiologists, task 
directed to detect any finding of suspicion for metastases, and working with high 
quality chest radiographs, still fail to detect more than 30% of lung cancers that can 
be detected retrospectively [LLF98]. So, a computer tool pointing out suspicious 
cells or giving a clearance could be an enormous help in saving valuable time to the 
physicians. 

In the Dr. Daniel den Hoedkliniek screening of the lungs using computer 
tomography is conducted on a daily basis. This screening serves for the detection of 



Detection of Metastases in Human Lungs from CT-Scans 57 

pulmonary metastases. The head of the radiology section would like to dispose of a 
mathematical model of the lungs and the process of an optimal scanning protocol. 

It was explicitly mentioned to focus the project on spherical metastases that are 
not attached to the lung boundaries or the heart. The metastases may be easily 
distinguished from areas filled with air, water, or bones. More problems are to be 
expected with discriminating metastases from lung and heart tissues and veins. 

3. DATA 

In a CT scan a 6 - 8 mm spiral slice of the patient is made. This raw data is first 
translated into about 60 - 100 horizontal slices, flat and equidistant. The available 

data are 512x512 grid points per horizontal slice (& = /:iy ;::: 0.5mm), 60 - 100 

times (!:iz ;::: 1.5mm). Values, called Hounsfield Units (grey value), range from -
1000 (air) over 0 (water) to 1000 (bone). Lung and heart tissues, veins, and 
metastases have values in the range of about 40 - 150. 

4. APPROACH 
There are many possible approaches to detect discs represented by grid points in 
two dimensions. The important issue is to do this as accurate and as fast as possible. 
In view of the enormous number of points to be considered it is important to visit 
each point preferably only once. 

As a first step we simplify the problem such that to each grid point the value 1 is 
assigned if the Hounsfield filter value of the CT scan is between 40 and 150 (the 
range in which metastases data are known to fall), and the value 0 otherwise. 
Suspicious objects thus correspond to connected areas of neighboring grid points 
labeled with a one. Positions are considered to be neighbors if they are in contact 
horizontally or vertically; diagonal neighbors are not included, although this 
definition could be relaxed easily. The second step is looking for discs in 2-D, and 
eventually for spheres in 3-D. The Study Group only discussed the application of 
sieves for detection of discs in 2-D slices, realizing that extension to 3-D sieves will 
be relatively straightforward. 

In 2-D the problem is to determine whether a set of identified neighboring pixels 
in a rectangular grid is more or less 'disc-like'. The following ideas were proposed 
and discussed: 

1. Spotlight approach. 
Construct predefined discs, Bl' ... , BM , of sets of grid points which are considered to 
represent discs on a rectangular grid. The object S is compared to the predefined 
discs that have nearly the same number of pixels as the still unidentified object. As 
a measure of similarity between the objects the number of grid points that both 
objects have in common, could be taken. This measure could be referred to as the 
'Hamming distance'. A selection criterion then could be 

i= 1, ... , M 
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with d(Sl,S2) the 'Hamming'-distance and N the number of pixels of S. Reliable 
values for the parameters ei should be fitted from analyzing real data sets. 

2. Borderline search. 
From computer graphics it is known that efficient techniques are available to 
determine the borderline of the 2-D object once one point of the object is indicated. 
This borderline should be compared to a circle. An appropriate measure for this 
comparison could be found following the previous idea in 1 . 

3. Paint filling approach. 
From computer graphics efficient techniques are available to find an object 
indicated by neighboring 'ones' in a data file if only one point of the object is 
indicated. The painted area should be compared to a disc. It should be simple to find 
an appropriate measure for this comparison, in the same spirit as for methods 1 and 
2. 

4. Hemker approach. 
We eventually decided to use a method suggested by Hemker. The idea is as 
follows. The data points (containing zeros and ones) are visited in a systematic way: 
the matrix is searched by columns, top down, starting left. The first position 
containing a one is assigned the label 'a'. The next position containing a one is 
initially assigned the label 'b'. However, if this position is neighboring to a position 
with label 'a', the position under consideration gets the label 'a' instead of 'b'. The 
next position containing a one and not being a neighbor of a position with label 'a' 
or 'b' gets the label 'c'. Etcetera. If at some moment in the labeling process it turns 
out that two positions with different labels are neighboring, it is administrated that 
these objects, which until that time have been considered as being separated, are 
part of one and the same object. This is done by identifying the labels accordingly. 
From then on both objects are treated as one object. An example of the labeling and 
identification procedure is as follows: 
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labeling of 'ones' 

0 1 0 0 
b 

1 1 1 0 
a a=b a=h 

1 0 0 0 
a 

0 1 1 0 
C C 

Identification label 

a a 
b ⇒ a 

C C 

d d 

Per object (or label) the following properties are calculated: the total number of grid 

points N and the quantities L,X; , L, Y; , L,X;2 , L, Y;2 , where x, and Y, are the 
i 

2-D coordinates of the grid points. The method has the advantage that each point in 
the data matrix is visited only once. That is because these quantities, being simple 
sums over the members of an object, can be updated as soon as a new point is 
assigned to a label. 

After the matrix has been searched through, the information gathered per object 
allows for the calculation of the inertia tensor I of the 2-D object with N points: 

with 

N 

/ -(I~ 2) -2 
xx - N Li Y; - Y , 

I 

N 

/xy = /yx = .xy-f L,X;Y;, 
I 
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and I,_. defined in an analogous manner. The eigenvalues / 1 and /2 of I are the 
prindpal moments of inertia of the object. For a uniform disc the inertia tensor is 
diagonal and / 1 = I,. 

These moments are to be compared to the principal moments of inertia of a disc 
of nearly the same size. The radius of such a disc can be deduced from the number 
N of grid points per object, since the area per grid point is known. 

Although these ideas are quite simple, inaccuracy comes in via the 
discretization: even a perfect disc is represented in the data by a finite number of 
points and the shape of this collection depends on the relative positions of disc and 
grid points. The smaller the disc, the fewer the number of representing points and 
thus the bigger the inaccuracy will be. This inaccuracy has been estimated as a 
function of disc size. To that end some simulations have been performed. The 
procedure used was as follows: 

• Position a disc of prescribed radius R randomly in the plane. 
• Compute its pixel discretization. 
• Compute N, the number of pixels covered by the disc. 
• Compute / 1 and /2 of the discretized disc; they depend on R, N, and the 

geometry. 
• Compare these moments with the moments of inertia / 1 = /2 = Id of the original 

disc by calculating 

c(R N) = (//R,N)-liR))+(/2(R,N)-liR). 
' l,i(R) 

The results of the simulations are used as follows. Given a 'disc-like' set of N 
pixels, a family of discs exists which all have this set as discretized representation. 
Of this family the smallest and the biggest discs are found with radii Rm;n and Rm,,· 

For these the deviations £- = £ (~in, N) and £+ = £ ( Rmax, N) are calculated. 

For the biggest disc the difference is positive, whereas for the smallest disc it is 

negative. In the table below the averages of £- and £+ are given as functions of 
the number N of pixels in a number of classes. 

N £-(N) c+(N) 

1-2 -1 +1.5 
3-12 -0.4 +0.7 
13-28 -0.2 +0.35 
29-50 -0.15 +0.25 
51-82 -0.12 +0.15 
83-108 -0.06 +0.10 

This table can be used as a sieve to decide whether a detected discretized object of 
N points is likely to represent a disc. 
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5. RESULTS AND CONCLUSIONS 

During the week we developed a computer program for the analysis of 2-D data via 
the Hemker approach. In these data files artificial disc-like objects were added at 
random. The results showed that disc-like objects could be detected without any 
problem. The chance to detect an object depends on its shape. Using ranges in the 
table given above, we could only detect 'nearly-discs'. In CT-Scan practice the 
objects may be quite far from disc-shaped (or spheres in 3-D), so that fine-tuning of 
the parameters in the sieve is necessary. Reliable values of the parameters to be 
used in analyzing real data should be obtained with use of expert experience and 
from analysis of a great number of scans. 

Later the method was extended to 3-D but this is straightforward, since the 
present approach does not contain any element specific for 2-D. Computing times 
appeared to be very short. The search procedures could be implemented even in a 
more efficient way than sketched above. Extension to 3-D data did not cause any 
trouble in this respect, even for real data sets that contain as much as 10 million data 
points per scan. 

It should be emphasised that the approach outlined above is only applicable in 
case of metastases that are not attached to each other, the lung edges or the heart. In 
those cases more sophisticated methods of pattern recognition are necessary. 
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l. THE PROBLEM 

We consider a process of fiber spinning, where a viscous (but not necessarily 
Newtonian) fluid is being pushed through a narrow "spinning hole" and, upon 
exit, is being stretched, the latter step in order to obtain an acceptable align
ment of the (polymeric) molecules in the fluid. This alignment is necessary for 
the final mechanical properties of the fiber. After leaving the spinning hole, the 
fluid passes through a layer of air ( the "air gap") and enters a bath, in which 
it solidifies almost instantaneously. Somewhere inside this bath, the fiber is 
being drawn by a wheel, which delivers the force, necessary for the stretching 
process. 
When the speed of the drawing wheel is set to high, it is impossible to obtain 
a uniform fiber: one clearly observes variations in the fiber diameter. This 
phenomenon is called draw resonance. Experimental evidence suggests that 
the draw ratio, that is, the ratio between the speeds at the wheel and at the 
exit of the spinning hole, is the unique parameter to steer the onset of draw 
resonance, and for Newtonian fluids this is known to be true. The reader is 
referred to [1] and [2]. In the Newtonian case, the onset of draw resonance can 
be shown to be a Hopf bifurcation. 

The question, asked to the Study Group, was to extend the results on Newto
nian fluids to fluids with more general rheologies, with power law fluids as a 
first choice. What came out of the Study Group was not yet a final solution 
to this problem, but rather an attempt to come to an easier formulation of 
the model equations. At the workshop, we thought that we had succeeded, 
but afterwards we found that there was a hidden mistake, which we could not 
easily correct. This mistake in itself is worth _mentioning, because the approach 
we tried may be successful in other cases, and this mistake may easily slip into 
the considerations there. In this note, we restrict ourselves to the Newtonian 
case, because it is easy to describe the mistake in this setting, and the power 
law setting would not add anything. 
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As a final remark, we note that the "power law case" has been solved now, by 
using similar methods as we did in the Newtonian case. A publication is in 
preparation. 

Apart from the authors, during the study group the following persons have 
worked on this problem: Pieter de Groen (Free University, Bruxelles) and 
Sandro Merino (University of Strathclyde, Glasgow). 

2. SUMMARY OF THE PREVIOUS RESULTS 

When the (very thin) fluid jet is considered one dimensional, a nondimension
alized model for the Newtonian case is given by 

PT+ (pv)x = 0 (1) 

Re(pv7 + pvvx) = (pvx)x (2) 

p(O, T) = v(O, T) = 1 (3) 

v(l, T) = s, (4) 

where T, x, p and v are nondimensionalized time, length along the jet, cross
section and speed, respectively. The parameter s is the draw ratio. Re is the 
Reynolds number, defined by Re=~, where Vs, £, p and 7/ are, respectively, 
the speed at the exit of the spinning hole, the length of the air gap, the density 
and the (Trouton) viscosity. Actually, Re is very small, so that we are left with 

V + PxVx - Q xx p -

(Pi) p(O, T) = v(O, T) = 1 

v(l,T) = s 

p(x, 0) = p(x), 

where pis an initial situation. Note that (Pi) has a unique stationary solution, 
given by p(x, t) = p0 (x) = s-x, v(x, t) = v0 (x) = sx, where we have assumed 
that p = Po- We are interested in the stability of this stationary solution. 
Therefore, we linearize around p0 , v0 , as follows: we set 

and we omit all terms that are of order. > 1 in {p, q}. Next, we require that 
the boundary condition are not perturbed: p(O, T) = q(O, T) = q(l, T) = 0. 
The resulting system of equations for {p, q} can be transformed into one single 
equation 
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_ slogs1(s-l)/(slogs){yslogs+l-s} _ 
a(r) - 1 (l 1 )2 a(r y) dy, s - 0 s - y og s 

(5) 

where a( r) is the perturbation in drawing force. The next step is to show 
that the stability question is completely determined by the complex valued 
eigenvalues >-, given by 

slogs1(s-l)/(slogs){yslogs+l-s} _ 
-- 2 e >.y dy = l. 
s-1 0 s(l-ylogs) 

The stationary solutions are unstable when there is an eigenvalue with positive 
real part, and stable when all eigenvalues are in the left half plane. A proof is 
contained in [3, Section I, Th.5.4]. 

3. APPROACH OF THE STUDY GROUP 

The first purpose has been to come to a different problem formulation, which 
we did for the Newtonian case first. We did not a priori assume Re to be small, 
but we have used the letter f in stead of Re. 

We introduce the new coordinates 

1/J(x, r) = lax p(l, r) dl, t(x, r) = r. 

This choice is justified by the fact that 1/Jx = p > 0. Note that 1j; is a stream 
function and that 

1Pr = 1 - pv. 

By abuse of notation, we use the same letters for the dependent variables as 
before. Upon the transformation, the region {O < x < 1} is transformed into 
the region 

o < 1/J < fo 1 
p(l, t) dl = ((t), 

where 

('(t) = 1 - p(((t), t)s. 

Apparently, the coordinate transformation has left us with a free boundary 
problem. Note that, in the stationary case, we have that p(((t), t) = v(((~),t) = 
¼, so that ('(t) = 0, as expected. 

In the new coordinates, the differential equations read 

Pt + P,f; + p2v,f; = 0, 

1 2 
Vt+ V,j; = -(p V,j;),p

f 

(6) 

(7) 
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The equations are valid in the region O < 7/J < ((t), where(' (t) = 1- p(((t), t)s. 
As boundary conditions we have 

p=v=l (7/J=O), 

V=S (7/J=((t)). 

The stationary solution {po, v0 } satisfies 

I 2 I Q Po+ PoVo = , 

r::v' = (v~)' o v2 
0 

By (8), we find from (10) that 

vopo = 1. 

Equation (11) may be integrated, to yield that 

v' 0 €Vo= 2 - C. 
Vo 

From this result we deduce that 

J, s dv - (o 
1 v2(c:v + c) - . 

In order to determine c, we recall that, in the "old" variables, we have 

d'ljJ 1 
-=po=-, 
dx vo 

so that 

1 = fo 1 vo ~~ dx = fo(o Vo d'ljJ. 

From (13) we deduce that d'ljJ = 2 (dv°+ ) , so that 
Vo €Vo C 

J, s dv 

1 v(r::v + c) = 1. 

This relation enables us to determine c and, thus, v0 and PO· 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

So far so good. In order to analyze the stabilty of the steady solution, we 
linearise around (6), (7), writing 

p =Po+ u; v = vo +w. 

Formally, this gives, to first order, 

Ut + u,;., + 2pouvb + p5w,;., = 0, 
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1 ( I 2 ) 
Wt+ W,f; = - 2pouv0 + p0w,p ,f;· 

E: 

But here we made the following mistake. When we perturb p, we implicitly 
perturb our coordinate 'lj;, which must be taken into account in the linearization. 
We did not perceive this during the workshop, and afterwards we found that 
correcting the mistake made the equations rather awful. 
After the workshop and the detection of the mistake, we again tried the "old" 
approach on power law fluids. We seem to have been successful now, and 
another publication is in preparation. 
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