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PREFACE 

These proceedings contain a selection of the lectures given in the seminar 
'Mathematical Structures in Field Theories', held at the University of Ams­
terdam during the last few years. 

Chapter 1 by G .M. Tuynman explains the ideas of prequantization and is 
intended as a general introduction for the non-specialist. 

In the second chapter P.G. Vroegindeweij introduces the space-time algebra, 
which is the Clifford algebra associated to Minkowski space. The main goal is 
to give a description of the Dirac equation in terms of this space-time algebra. 

Chapter 3 by C. Dullemond deals with quark confinement. The author 
introduces a classical model with induced metric in order to describe this phe­
nomenon. 

The fourth chapter by G.G.A. Bauerle is devoted to the Frenkel-Kac-Segal 
mechanism, which provides a way to introduce gauge fields. After a review 
of the bosonic string in Minkowski space the author treats a special case of 
toroidal compactification, which gives rise to two possible affine Kac-Moody 
algebras as spectrum generating algebras. 

The next chapter by N. van Eck gives an introduction to the theory of Hopf 
algebras. It may serve as first step in the study of quantum groups. 

The last chapter by N .P. Landsman deals again with quantization and 
presents an introduction to an analytic version of deformation quantization. 
The central point is to study degenerate Poisson algebras and their quantiza­
tion by non-simple Jordan-Lie algebras. 

We thank CWI again for the technical production of these proceedings. 

The editors 

E.A. de Kerf 
H.G.J. Pijls 





What is Prequantization, and what is 

Geometric Quantization? 

G.M. Tuynman 

Faculte des Sciences et Techniques, Universite de Lille I, 59655 Villeneuve d' Ascq, France 

This paper is intended for the non-specialist (either mathematician or theoreti­
cal physicist) with a minimum knowledge of differential geometry, classical 
mechanics and quantum mechanics. It explains the ideas of prequantization 
and geometric quantization with emphasis on prequantization. In short, pre­
quantization shows that the mathematical models of classical mechanics and 
quantum mechanics are much more alike than one should expect from the 
conventional formation of these theories. Geometric quantization uses these 
similarities between classical and quantum mechanics to extend the notion of 
canonical quantization to general systems in classical mechanics. To appreci­
ate this, one should know that canonical quantization is only applicable to sys­
tems which are trivial in the mathematical sense, e.g. a phase space R2n. 

1985 AMS subject classification: 70A05, 81 C999, 58F05, 81007, 58F06. 
Keywords: prequantization, geometric quantization. 

1. PHYSICAL SYSTEMS, STA1ES AND MODELS 

Theoretical physics is the science which tries to find rules, called physical laws, 
according to which a certain class of natural phenomena behave. Moreover, it 
tries to formulate these rules in terms of mathematical models. It is therefore 
very important to make a distinction between the natural phenomena, the phy­
sical laws and the mathematical models. 

A mathematical model consists usually of several items, e.g. sets (topologi­
cal spaces, vector spaces, differentiable manifolds), special objects related to 
these sets (e.g. a metric tensor, a symplectic 2-form), variables denoting ele­
ments of these sets (local coordinates such as position or pressure) and certain 
equations in these variables (e.g. 'PV=RT (Boyle - Gay Lussac) or 
'F=m d2rldt 2' (Newton)). I will call these items together the mathematical 
ingredients of the model. The interpretation (also called the semantics) of such a 
model relates (some of) the mathematical ingredients to the real world, for 
instance to the position of the moon in the sky, or to the temperature of the 
water for your tea (it should be boiling!). Since all things influence each other, 
it follows that if we want to describe a natural phenomenon, we have to 
include the whole universe in our description. Clearly this is a task too com­
plex to accomplish, so one has to make some approximations to reality. When 
studying a phenomenon (motion of the moon, boiling of water) one idealises 
the situation by neglecting those things which are supposed to be unimportant 
to the object of study and in fact one neglects as much as possible in order to 



retain only the essential features of the phenomenon one is studying. The 
result of neglecting all irrelevant items is called the physical system, hence a 
physical system is an idealisation of reality. Examples of physical systems are 
a single free particle where one imagines a universe containing only one parti­
cle, or two particles with gravitational interaction where one imagines a 
universe containing only these two particles (e.g. when studying the motion of 
the moon around the earth these two particles represent the earth and the 
moon). It is such a physical system, such an idealised situation, which is 
described by a mathematical model. Hence in the interpretation of the 
mathematical model, i.e. in relating the model to reality, one has to perform 
two steps: first of all to relate mathematical concepts to concepts of the ideal­
ised physical system and then relating this ideal situation to reality. 

When constructing a mathematical model for a physical system, one usually 
includes all possible states of the system under consideration. How a given 
state is described depends on the actual model. In some models there is a set 
of which the elements correspond bijectively to the possible states of the sys­
tem, e.g. the symplectic model in which the points of the phase space represent 
the different states of the system. In some models there is a set of which the 
points describe more than one state of the system, e.g. the Newton model in 
which figures a set, called the configuration space, of which the elements 
denote the positions of the particles of the system, but where one also needs 
the velocities of the particles to distinguish between different states. Finally 
there exist models in which figures a set of which different elements describe 
the same state, e.g. quantum mechanics in which vectors of a Hilbert space 
which differ by a complex constant denote the same state. 

2. CLAssICAL MECHANICS 

This section is devoted to the mathematical models for classical mechanics; a 
review is given of the Newton formulation, Lagrange and Hamilton formula­
tion and the symplectic formulation. For the latter three it is indicated how 

· they can be 'derived' from the Newton formulation. 

2.1. Newton mechanics 
One can say that the origin of classical mechanics in its contemporary form is 
the theory of Isaac Newton which tries to describe natural phenomena in daily 
life (falling apples, the motion of the moon etc.) The main constituent of this 
theory is the well known equation of motion (Newton's second law): 

F = ma 

which tells us that the second derivative a of the position of an object (where a 
is the acceleration of the object) times the mass m of that object is equal to the 
applied force F (a vectorial equation). If this equation is not to be a tautology, 
the force applied to an object should be known 'independently' of the object 
itself, otherwise 'force' would be a redefinition of 'acceleration'. 

In the above model the mathematical ingredients are the space R3, 

representing all possible position of r of the object in 'our 3-dimensional 
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space', and a function F:R3➔R3, representing the force F(r) exerted on the 
object when it is at the position r. The model is completed by the equations of 
motion, which state that the various position r(t) of the object at different 
times t satisfy the second order differential equation: 

d2r 
F(r(t)) = m dt 2 (t) (2.1) 

In this way the model can easily be extended to a system of N objects: the 
mathematical ingredients are the space R3N, a function F:R3N ➔R3 and the 
equation of motion (2.1). The interpretation is that a point r=(r1, ••• ,rN) 
represents the positions of the N objects in our 3-dimensional space, that F(r) 
represents the force exerted on the objects when they are at the positions 
specified by r and that the positions r(t) at different times satisfy the equations 
of motion (2.1). 

Newton himself derived an expression for the gravitational force in a 2-
particle system, stating that the force F 12 exerted by an object 1 on an object 2 
is proportional to the product of their masses divided by the square of their 
distance and directed towards the first object: 

m1m2 
F12(r1,r2) = G 3 (r1 -r2) (gravitational force) 

lr2-r1I 

The position reR6 then is specified as r=(ri, r2) with rjeR3 the position of 
the j-th particle and the force F:R6➔R6 is given by F(ri, r2)=(F21(ri, r2), 
F 12(ri, r2)) with F21 = -F12 ; the corres~onding equations of motion (2.1) are 
m 1d2r1/dt2= F21(r1, r2) and m2d2r2/dt = F12(r1, r2). 

2.2. The Lagrange formulation 
In the course of history the mathematical model of classical mechanics is 
modified to incorporate new ideas from theoretical physics. The first 
modification is that one supposes that the force function F can be derived 
from a potential V:R 3N ➔R by: 

F(r) = -av1ar 

This simplifies the search for a correct model for a given system enormously, 
because one now has to find only one function of 3N variables instead of 3N 
functions of 3N variables. However, in this model the equations of motion 
depend manifestly on the choice of a coordinate system (for a general potential 
only orthogonal transformations of r preserve the form of the equations of 
motion md2r/dt2=-av1ar). Moreover, an initial position r of the system (of 
N objects) does not determine a unique solution of the equations of motion 
because the equations of motion are second order differential equations in r. 
On the other hand, if the initial position rand the initial velocity v=dr/dt are 
known, then the equations of motion can be solved uniquely. 

The Lagrange formulation of classical mechanics solves the above mentioned 
problems. Its mathematical ingedients are a space R6N =R3NxR3N with coor­
dinates (r, v), a function L :R ➔R (called the Lagrangian of the system) and 
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the so called Euler-Lagrange equations of motion: 

dr aL d aL 
dt (t) = v(t) a;-(r(t), v(t)) = dt ( a;-(r(t), v(t))) (2.2) 

The interpretation is that a point (r, v) represents the positions and the veloci­
ties of the N objects (at a given time) and that the time evolution of the system 
(i.e. the positions and the velocities at different times) is given by the Euler -
Lagr~e equations of motion. A system described in the Newton formulation 
on R3 by a potential Vis described in the Lagrange formulation on R6N by a 
Lagrangian L(r, v) = ; m lvl2 - V(r). 

The main advantage of the Lagrange formulation is that it is 'independent' 
of the choice of coordinates. More specific: suppose r' is another set of coordi­
nates on R3N, i.e. r'=r'(r), then we have an associated change of coordinates 
(r, v)➔(r', v') given by: 

r' = r'(r) v' = v'(r, v) = ( :~ )v. (2.3) 

Now if we define the function L' as the function L expressed in the new coor­
dinates (r', v'), i.e. L(r, v)=L'(r'(r), v'(r, v)), then solutions of the Euler -
Lagrange equations (2.2) are mapped under the transformation (r, v)➔(r', v') to 
solutions of (2.2) in which (r, v) and Lare replaced by (r', v') and L'. 

In modem differential geometry one recognises the transformation (2.3) as 
the transformation of local coordinates in the tan;ent bundle of a manifold (in 
this case the tangent bundle TR 3N ~R6N of R3 ). This suggests a generalisa­
tion of the mathematical ingredients of the model: instead of R6N one consid­
ers the tangent bundle TQ of a manifold Q and the function L becomes a 
function L:TQ➔R. The independence of the Euler - Lagrange equations (2.2) 
under the coordinate transformation (2.3) guarantees that a solution of (2.2) on 
a local chart corresponds smoothly to a solution of (2.2) on another (intersect­
ing) local chart. 

From the point of view of physics one can ask whether this generalisation of 
the mathematical model has any relevance in the description of actual physical 
systems. The answer is affirmative if we interpret the manifold Q in the gen­
eralised model as the configuration space of the system, i.e. the space which 
describes the possible positions of the system. As an example one can think of 
a system of two masses joined by an inflexible, weightless rod of fixed length 
p; the possible positions of this system are described by the subsppace Q of R6 

defined by the equation lr1 -r21 =p, i.e. Q~S2 XR3 • 

2.3. The Hamilton formulation 
The Hamilton formulation is another formulation of classical mechanics which 
solves the above mentioned problems of the Newton formulation with a poten­
tial function. It has the advantage that its equations of motion are manifestely 
first order differential equations. Its mathematical ingredients are a space 
R6N=R3NxR3N (which is called the phase space of the system) with coordi­
nates (r, p), a function H :R6N ➔R (the Hamiltonian of the system) and the 

4 



Hamilton equations of motion: 

!; (t) = ~: (r(t), p(t)) ,(t) = - aa~ (r(t), p(t))) (2.4) 

The interpretation of this mathematical model is that a point (r, p) represents 
the position rand the associated momentum p (usually pis just mv) of the N 
particles, the function H represents the total energy of the system and the time 
evolution of the system is governed by the Hamilton equations of motion (2.4). 
A physical system described in the Newton formulation with R3N and poten­
tial function Vis described in the Hamilton formulation by R6N and Hamil­
tonian function H(r, p)= IPl2 /2m + V(r) (with indeed p=mv=m drldt). 

The Hamilton equations of motion are first order differential equations and 
a well known existence theorem tells us that for all smooth functions H there 
exist (locally) solutions for (2.4). Moreover, the Hamilton equations are also 
independent of the specific choice of coordinates, i.e. if we replace the coordi­
nates (r, p) by (r', p') given by: 

r' = r'(r) (2.5) 

where r'(r) is any coordinate transformation on R3N, then solutions of the 
Hamilton equations in the unprimed coordinates correspond to solutions of 
the Hamilton equations in the primed coordinates. 

In (2.5) one can recognise the transformation of one set of local coordinates 
of a cotangent bundle T"'Q to another set of local coordinates, where rand r' 
are local coordinates on Q and where p and p' are the associated coordinates 
in the fibres. As in the Lagrange formulation one now can generalise the 
mathematical model to an arbitrary configuration space Q as follows: the 
ingredients are the cotangent bundle T"'Q, a function H:T"'Q➔R and the 
Hamilton equations of motion (2.4). The independence of the equations (2.4) 
under the coordinate transformation (2.5) guarantees that the solutions of the 
Hamilton equations are smooth curves on T"'Q. The same arguments as for the 
Lagrange formulation show that this generalisation of the mathematical model 
is relevant for the description of real systems. 

Since both the Lagrange formulation and the Hamilton formulation can 
easily be extended to a general configuration space Q, which yields in the 
Lagrange formulation the tangent space TQ and in the Hamilton formulation 
the cotangent space T"'Q, one might think that these two formulations are 
equivalent. Unfortunately this is not true for a general Lagrangian L on TQ or 
a general Hamiltonian Hon T"'Q. Going from the Lagrange formulation to 
the Hamilton formulation one can show that if the mapping (r, v)➔(r, p) 
defined by p(r, v)=oL(r, v)/ov is invertible, then the system described by the 
Lagrangian Lon TQ is described in the Hamilton formulation on T"'Q by the 
Hamiltonian H given by H(r, p)=p·v(r, p) - L(r, v(r, p)). In the other direction 
a similar situation holds: if the mapping (r, p)➔(r, v) defined by v(r, p) 
= oH(r, p)/op is invertible, then the system described by the Hamiltonian H on 
T"'Q is described in the Lagrange formulation on TQ by the Lagrangian 
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L(r, v)=p(r, v)·v -H(r, p(r, v))= p•aH 1ap-H. 

2. 4. A coordinate free Hamilton formulation 
Once it is known that the solutions of the Hamilton equations define smooth 
curves on the manifold T"'Q, one would like an intrinsic formulation, indepen­
dent of local coordinates. The first remark one can make is that the Hamilton 
equations can be interpreted as the local expression for the flow of a vector 
field on T"'Q and that the invariance of these equations under the coordinate 
transformation (2.5) just state that it is a global vector field on T"'Q. This vec­
tor field is called Xn since it obviously depends on the Hamilton function H. 
We thus have a global vector field Xn on T"'Q associated to the global func­
tion Hon T"'Q, but its definition depends on local coordinates. To define Xn 
in a way independent of coordinates one introduces a 2-form won T"'Q; using 
local coordinates (r;) on Q and associated coordinates (p;) in the fibres of 
T"'Q, w is expressed as: 

w = "i..j dpj I\ drj (2.6) 

which is indeed a global 2-form on T"'Q (and which can be defined in an 
intrinsic way). Using this 2-form w the vector field Xn is defined by the 
intrinsic equation: 

(2.7) 

where i(Y) is the substitution operator of vector fields in forms. In this way 
the ingredients of the model become the space T"'Q with the 2-form w, the 
(smooth) function Hand the equation (2.7). The interpretation of the model is 
that a point (r, p) in T"'Q represents the system, i.e. r denotes the position of 
the system and p denotes the associated momentum, and the time evolution is 
given by the flow <P-r of the vector field Xn defined by (2.7). 

For those who are unfamiliar with modern differential geometry, we give a 
translation in more down to earth notations in case of the phase space R 6N. A 
vector field X on R6N 'is' a mapping X:R6N ➔R6N which assigns to a point of 
R6N a vector (indicating a direction of motion). With the same abuse of nota­
tion, the I-form dH 'is' the vector of all partial derivatives: dH = (aH 1ar, 
dH/ap)eR 6N, and the 2-form w 'is' a 6NX6N matrix: 

_ [ . 0 l3Nl 
W - -J3N 0 where I3N denotes the 3N X 3N identity matrix. 

With these notations, the equation (2.7) becomes the vector equation 
wXn+dH =0, which has a unique solution for Xn since w is invertible: 

Xn = (aH /ap, -aH 1ar). 

The flow <P-r of the vector field Xn is a mapping <P-r: R6N ➔R6N satisfying 

~ 1-r=o(r, p) = Xn(r, p) and cpo(r, p) = (r, p). 

If we now write cp,(r, p)= (r(t), p(t)), then (r(t), p(t)) is nothing less than a 
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solution of Hamilton's equations of motion with (r, p) as initial condition, i.e. 
the flow q,., denotes the time evolution of the system. 

2.5. The symplectic formulation and the Poisson algebra 
We now want to extract the essential mathematical features of the above 
model. Obvious ingredients are a manifold M (= T"'Q), a 2-form won Mand a 
function H on M. However, not all such triples (M, w,H) are meaningfull. In 
the first place the 2-form w has to be non-degenerate to ensure that the equa­
tion (2.7) has a unique solution for the vector field XH. In the second place the 
Poisson algebra (to be defined below) is a useful tool in theoretical physics, so 
one likes to have it in the generalised case too. 

In the Hamilton formulation of classical mechanics on R6N, the Poisson 
algebra is the collection of all smooth functions on R 6N (which is a vector 
space under pointwise addition of functions) equipped with the so called Pois­
son bracket of functions {j,g} defined by: 

- .Ei . .EK - .H. . .EK 
{j, g} - ap ar ar ap. <2-8) 

With these definitions the Poisson bracket is bilinear, antisymmetric and 
satisfies the Jacobi identity: 

{{j,g},h} + {{g, h},/} + {{h,f},g} = 0 

hence the set of all (smooth) functions on R6N equipped with this bracket is an 
(infinite dimensional) Lie algebra which is called the Poisson algebra. 

In the formulation in terms of T"'Q and w the Poisson algebra can be 
defined as the set of smooth functions on T"'Q equipped with the Poisson 
bracket defined by: 

{j, g} = w(Xf, Xg) 

where x1 (and likewise Xg) are defined by: 

i(X1)w + df = 0 

(2.9) 

(2.10) 

which is exactly equation (2.7) with the Hamiltonian H replaced by the arbi­
trary function f. One can verify that this bracket indeed satisfies the Jacobi 
identity and reduces to (2.8) in the case Q = R 3N (in our down to earth vector 
and matrix notations the righthand side of (2.9) is the inner product of the 
vector Xg with wX1)-

In the case of a triple (M,w,H) with w a non-degenerate 2-form (to ensure 
that one can define vector fields x1 by means of (2.10)), the bracket (2.9) on 
the set of smooth functions on M does not in general satisfy the Jacobi iden­
tity. One can show that the bracket (2.9) does satisfy the Jacobi identity if and 
only if w is closed. A manifold M equipped with a closed non-degenerate 2-
form w is called a symplectic manifold, w its symplectic form and the geometry 
of a symplectic manifold is called symplectic geometry. 

With these preparations we can generalise the Hamilton formulation to the 
symplectic formulation. The ingredients are a symplectic manifold (M, w) and a 
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real valued function H on M. The interpretation is that the phase space M 
represents (uniquely) all different states of the system and that the time evolu­
tion is given by the flow of the vector field XH defined by (2.7) or (2.10). 

For physicists the important question is whether these mathematical exer­
cises do have any relevance for physics. Again the answer is yes: there exist 
systems in physics which can not be described by a cotangent bundle, but 
which can be described by a triple (M, "'• H). A simple example of such a sys­
tem ( described extensively in [So 1]) is the phase space of classical spin which is 
described by the space M=S2 (the unit sphere) and the 2-form 
w=>..sinOdO/\dct, (with >.. a real parameter); the sphere S2 is clearly not a 
cotangent bundle because S2 is compact and a cotangent bundle is necessarily 
non-compact. 

2. 6. Summary of the symplectic formulation 
The symplectic formulation of classical mechanics is given by the following 
items. 

Mathematical ingredients 
A manifold M, a non-degenerate closed 2-form c., on M and a function 
H:M➔R. 

Mathematical manipulations 
To each function f on M is associated a vector field x1 defined by 
i(X1)w+df =O and to two functions f, g on Mis associated a function {f,g} 
defined by {f ,g} = w(X1, Xg). 

Nomenclature 
(M, c.,) is called a symplectic manifold, c., its symplectic form; in a physical con­
text M is called the phase space of the system under consideration. H is the 
Hamiltonian (total energy) of the system, x1 is the Hamiltonian vector field 
associated to the function f and {f, g} is the Poisson bracket off and g. 

Interpretation 
The different possible states of the physical system under consideration are in 
1-1 correspondence with the points of M. If at a given time t the system is 
represented by the point m eM, then at time t' the system is represented by 
the point m'=q,,,_,(m) where q,T denotes the flow of the vector field XH on M. 

Usefulness of the Poisson bracket 
A function f on M is called a conserved quantity if the function f 0q,T is indepen­
dent of the parameter T, where as before 'PT denotes the flow of the vector field 
XH; physically speaking f is a conserved quantity if the value of the function f 
evaluated at a point which represent the system at a given time t does not 
depend on t, i.e. if f is constant in time. An elementary calculation shows that 
f is a conserved quantity if and only if the Poisson bracket {f, H} is the zero 
function. 
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Remark 1 
The 2-form c.> must be non-degenerate to guarantee a unique solution for the 
defining equation of X1; "' must be closed to insure that the Poisson bracket 
{,} satisfies the Jacobi identity. 

Remark 2 
At each point m EM, after the choice of a local coordinate system around m 
the non-degenerate 2-form "' can be represented by an anti-symmetric non­
degenerate matrix 0, hence the dimension of M is even, dim M = 2n. A famous 
theorem of Darboux tells us that for each point m EM there exist local coordi­
nates (ri, ... , rn,P 1, ••• , Pn) in a neighbourhood of m such that c.> is given 
by c.>= Ii dp/,dri. 

Remark 3 
In our treatment (which is the usual one), the symplectic phase space plays the 
role of the set of initial values for the Hamilton equations. However, there 
exists another interpretation of the symplectic manifold M (see [So 1]) in which 
M is interpreted as the space of movements, i.e. each point of M represents the 
whole movement of the system in time (c.f. the Heisenberg picture of quantum 
mechanics). In most cases these two interpretations coincide, but not always. 
An example in which they do not coincide is the Kepler problem, in which the 
phase space is (R3 \ {O})XR3, i.e. the cotangent space of R3 without its ori­
gin, and in which the space of movements with negative energy can be 
identified (after a regularisation) with T0 S 3, i.e. the (co)tangent space of S 3 

without the zero section ([So2]). 

Example 
We can realise the Newton formulation with a potential function Von R3N in 
the symplectic formulation as follows. The phase space M = R 6N 3 (r, p), the 
symplectic form "' is the global form "'= Ii dp_1 /\dri and the Hamiltonian H is 
the function on M given by H(r, p) = IPl2 /2m + V(r). The Hamiltonian vector 
field x1 of the function/is given by: 

Xf = ~aa _aa - aaf _aa ~ (ajlap, -ajlar) ~ XH(r, p) = (p/m, -av;ar) 
'Pi ri ri 'Pi 

whence the flow cf,1 of XH is defined by the equations: 

dr!dt=plm & dpldt= -av1ar. 

Substitution of the first equation in the second gives us Newton's law: 

md2r!dt 2 = -av1ar. 

3. QUANTUM MECHANICS 

In this section we present the usual mathematical model of quantum mechan­
ics. It is shown that the mathematical model for the dynamics in quantum 
mechanics can be modified is such a way that the modified model fits the 
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description of classical mechanics in the symplectic formulation (2.6) with the 
one exception that the symplectic manifold is infinite dimensional. For the 
sake of simplicity we ignore the fact that self adjoint operators are usually not 
defined everywhere; in view of Stone's theorem this is not a serious omission 
because we are 'only' interested in the global I-parameter group generated by 
such a self adjoint operator. 

3.1. The usual formulation 
The mathematical model of quantum mechanics is quite simple. The 
ingredients are a complex Hilbert space '.JC, a self-adjoint operator H on :JC 
called the Hamiltonian of the system and the Schrodinger equation on :JC: 

-illi(t) = H,r(t) (3.1) 

where II denotes Planck's constant h divided by 277. 
The interpretation of this model is more complicated and consists of two 

parts: a dynamical part and a probability part. 

Interpretation of dynamics 
Each non-zero vector if! e:JC represents a state of the physical system under con­
sideration, but two vectors if! and 1[/ which differ by a non-zero complex con­
stant "A (i.e. tf!'="Atf!) represent the same state (and vice versa if if! and if!' 
represent the same state then they differ by a non-zero complex constant). If at 
time t0 the system is represented by the vector o/o and if tf!(t) is a solution of 
the Schrodinger equation (3.1) with the initial condition tfl(t0 )=tf;0 then at time 
t the system is represented by tfl(t). 

The probability interpretation 
An observable f, i.e. a measurable quantity, is represented by a self-adjoint 
operator [ on :JC. The result of a measurement is an eigenvalue of the operator 

[, but which one is unpredictable. However, a probability distribution is 

assigned to the possible results by means of the spectral theorem for self­
adjoint operators. If (at time t) the system is represented by the vector if!, then 
the expectation value E([,t/1) of the result of measuring f when the system is 

described by if! is given by: 

<t/1, [t/1> 
E([,t/1) = <t/1,t/l> (3.2) 

where <t/1,x> denotes the inner product of the vectors if!, xe:JC. Since [ is a 

self adjoint operator the expectation value E([,t/1) is real and moreover, it is 

independent of the choice of the vector t/; representing the state of the system: 
E([,f)=E([, "At[;) for "A=t,O. 
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In this paper we are only interested in the dynamic part so in the sequel we 
will ignore the probability interpretation, although it is the essential part of 
quantum mechanics: it is the main distinction between classical mechanics and 
quantum mechanics and, as we will see, the only one. In order to be sure that 
the interpretation is not contradictory with the mathematical model we have to 
make an important remark. The operator H is self-adjoint, hence (by Stone's 
theorem) there exists a I-parameter group U(1) of unitary transformations of 
X of which iH/h is the infinitesimal generator: 

U(,,.) = exp(i'TH/h). (3.3) 

It follows that the solutions of the Schrodinger equation (3.1) are given by 
1/;(7)= U(7)1/; where 1/; is an arbitrary initial condition. We deduce that if at time 
t0 the system is represented by 1/;0 then at time t it is represented by the vector 
1/;(t) given by: 

1/;(t) = U(t-t0 ) 1/;0 = exp(i(t -t0 )Hlh) 1/l(t0 ) = exp(itH/h) 1/;(0). (3.4) 

Since U(7) is a complex linear transformation of X, it follows that the time 
evolution does not contradict the ambiguity in the vector 1/; representing the 
state of the physical system, i.e. if 1/; and 1/;' represent the same state at time t0 , 

then U(t - t0 )1/I and U(t - t0 )1j;' represent the same state, which is the state at 
time t. 

3.2. An unusual formulation of quantum dynamics 
If 1/; EX then, in the above interpretation, all non-zero points of the complex 
line C1j;= {AVJIAEC} represent the same state; in fact each state of the system 
is represented uniquely by a complex line in X. In mathematics the set of all 
(complex) lines in a (complex) vector space is called the projective space asso­
ciated to the vector space, so we have found that in quantum mechanics the 
states of a physical system are represented uniquely by the elements of the 
projective Hilbert space IPX. 

We now mention without proof some facts concerning PX which are not 
generally known (the proofs can be found in [Tull). First of all, each projec­
tive complex Hilbert space PX is an (infinite dimensional) complex manifold 
which has a canonically defined symplectic structure w. Secondly, since the 
Schrodinger equation is compatible with the ambiguity of the vector represent­
ing a state of the system, it follows that there exists a I-parameter group q,T of 
di:ff eomorphisms on PX such that: · 

'1T"U(7) = q,T0'1T with U(7) = exp(i'TH/h) (3.5) 

where '1T denotes the projection '11':X\ {O}➔IPX which associates to a vector 1/; 
the unique complex line C1j; containing 1/;; in fact equation (3.5) can be 
regarded as the definition of the flow q,T. To complete the preliminaries we 
introduce the function E(H):IP:JC➔R by: 

E(H)('TTo/) = E(H, 1/;) = <iJi,HiJi> 
<1/;,1/;> . 
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It now turns out that the fl.ow cf,7 is the fl.ow of the Hamiltonian vector field 
XE(H) associated to the real function E(H) by the symplectic form w according 
to formula (2.10). Finally, since H governs the time evolution of the states in 
quantum mechanics, it follows from (3.4) and (3.5) that if the system is 
described at time t =O by '11'1[10 ePX then it is described at time t by the point 
cf,,('11'1[10 )EPX. 

We can summarise these observations by saying that the dynamics of quan­
tum theory is described by the triple (P~ w, E(H)) according to the symplectic 
formulation of classical mechanics (if we allow infinite dimensional manifolds): 
the states of the system are in 1-1 correspondence with the points of PX and 
the time evolution of a state is described by the fl.ow of the Hamiltonian vector 
field associated to E(H). This shows that the mathematical models of classical 
mechanics and the dynamical part of quantum mechanics are identical and 
that their interpretations are also the same. The differences between classical 
and quantum mechanics lies in the choice of the symplectic manifolds: in clas­
sical mechanics one can use 'all' finite dimensional symplectic manifolds but in 
quantum mechanics one uses only (infinite dimensional complex projective 
spaces. We stress that the symplectic model of quantum mechanics describes 
only the dynamical part; for the probability part it is essential to know that 
the quantum mechanical 'phase space' PX is derived from a Hilbert space X. 

3. 3. The unit sphere and phase factors 
In the previous section we have seen that in quantum mechanics the elements 
of the Hilbert space X do not represent the states of the physical system in a 
unique way but that the elements of the projective Hilbert space PX do. One 
prefers however to work with X, because working with PX is rather difficult. 
An intermediate level between X and PX is the unit sphere SX in X: 

sx = {¥'EX I <if,, if,> = 1} 

Each state of the physical system is represented by a non-zero vector if, eX, 
but then it is also represented by the vector t[l/lltf,11 (i.e. if, divided by its norm) 
which is an element of the unit sphere. It follows that each state can be 
represented by an element of SX, but there remains an ambiguity: if t[leSX 
then e;11t[leSX and if, and e;11tf, represent the same state, hence a state is 
represented by a circle on the unit sphere SX. If we restrict the projection 
X\ {O}➔PX to the unit sphere we obtain a projection '11':S~PX of which 
the inverse images are just the circles representing the states. Two different 
points if,, x on such a circle are related to each other by: 

X = i 11t[I 

where e;11 is a complex number of modulus 1 usually called a phase factor. The 
aim is now to translate the mathematical model of quantum dynamics in the 
Hilbert space formulation to the unit sphere. The ultimate goal of this exercise 
is to show that the analogy between classical mechanics and quantum mechan­
ics as given in the previous section (3.2) can be extended and that one can 
describe within the framework of classical mechanics certain phenomena which 
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are usually thought of as being purely quantum phenomena, i.e. phenomena 
which can be described only within the framework of quantum mechanics. 

To translate the dynamics from X to SX we first observe that the 
Schrodinger equation can be seen as the flow of a vector field. If H is the 
Hamiltonian of the system then we define a vector field V H on X, i.e. a map 
X-+X, by: 

VH(i/1) = (ilh)Hi/1 (3.6) 

and then the Schrodinger equation is equivalent to the equation of the flow of 
VH which is defined as di/Jldt=VH(i/1). Since His a self-adjoint operator, it 
follows that the vector field V H is tangent to the unit sphere SX. Another way 
to see that V H is tangent to SX is to observe that the flow of V H is the uni­
tary I-parameter group U(T)=exp(i'lff/h) which means in particular that the 
norm of a vector is conserved, i.e. U(T) can be seen as a I-parameter group of 
diffeomorphisms of SX. 

The above observations show that we can represent the dynamics of quan­
tum mechanics in a mathematical model consisting of the unit sphere SX and 
the vector field V H, with the interpretation that each state of the system is 
represented by a circle on SX (freedom of phase vectors) and that the time 
evolution is given by the flow of the vector field V H (which is indeed a vector 
field on SX). 

3.4. Summary 
For ordinary quantum mechanics we have given three mathematical models for 
the dynamics of a quantum system. We will now summarise the essential 
features of these models. 

Ingredients of the Hilbert space formulation 
A Hilbert space X, a self adjoint operator H on X and the Schrodinger equa­
tion. 

Interpretation of the Hilbert space formulation 
Each state of the system is represented by a complex line in X and the time 
evolution of the system is given by the solutions of the Schrodinger equation 
(3.1) associated to the self adjoint operator H (N.B. the time evolution maps 
complex lines into complex lines so the time evolution of the states is well 
defined). 

Ingredients of the unit sphere formulation 
The unit sphere SX in X and a vector field V H on SX (associated to H). 

Interpretation of the unit sphere formulation 
Each state of the system is r~resented by a circle on SX (generated by multi­
plication by phase factors ei9) and the time evolution of the system is given by 
the flow of the vector field V H (which indeed maps the circles representing 
states into circles representing states). 
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Ingredients of the projective Hilbert space formulation 
The projective Hilbert space PX, its canonical symplectic form c., and the real 
function E (H):P~R. 

Interpretation of the projective Hilbert space formulation 
There is a 1-1 correspondence between the states of the system and the points 
of the projective Hilbert space PX; the time evolution of the system is given 
by the flow of the Hamiltonian vector field XE(H) on PX defined by the sym­
plectic form c., and the function E(H) according to formula (2.10). 

Remark 
In the Hilbert space formulation of quantum mechanics the arbitrariness in the 
vector representing a state of the system is a non-zero complex number; in the 
unit sphere formulation this arbitrariness is reduced to a phase factor and 
finally in the projective Hilbert space formulation there is no arbitrariness at 
all. In the Hilbert space formulation the time evolution of the system is 
governed by the Schrodinger equation, or (a completely equivalent description) 
by the flow of the vector field V H on X. When we descend to the unit sphere 
by projecting a non-zero vector tf, to the unit vector tf,/lltf,11 we can project the 
vector field V H to a vector field on SX. Since the projected vector field equals 
the restriction of V H to the unit sphere, this vector field will also be called V H. 

For the projective Hilbert space formulation we project a second time, now 
from. SX to PX, ie. we identify points on SX which differ by a phase factor. 
The vector field V H (now seen as a vector field on SX) can be projected to PX 
and the result is the Hamiltonian vector field XE(H) on PX associated to the 
function E(H) which represents the expectation value of the Hamiltonian. 
Since XE(H) is the projection of the vector field V H on X it follows that the 
flow of XE(H) is the projection of the unitary group U(-r)=exp(i'lff/h) which is 
the flow of V H on X. This shows why the Hilbert space formulation is so 
much easier to use than the projective Hilbert space formulation: computing 
exp(iTH I h) is much easier than computing the flow of a vector field on an 
infinite dimensional manifold. On the other hand, the projective Hilbert space 
formulation is better suited for abstract considerations because there is no 
ambiguity between states of the system and the points which represent these 
states. 

Diagram 

'11'1 '11'2 

Space X\{O} sx PX 
dividing our norms dividing out phase facton 

Vector field VH -- 'IT1• --4 VH '11'2• SE(H) 
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Its flow exp(i rl-1 / II) exp(i-rlH I Ii) 
restricted to S'.JC 

4. PREQUANTIZATION 

In the first part of this section the idea of prequantization of a symplectic 
manifold is explained using the example of the symplectic manifold R2n, which 
is the phase space of a particle inn dimensions (or, if n =3N, the phase space 
of N particles in our 3-dimensional space). Although this example does not 
show all essential features of prequantization, it suffices to show the idea; 
afterwards the problems arising in the general case will be pointed out. The 
second part of this section will be devoted to the statement that the analogy 
between classical mechanics and quantum mechanics is more than the simple 
observation that both can be described by the symplectic formalism. 

4.1. Phase factors in classical mechanics 
In §3 we have seen that in quantum mechanics the states of a physical system 
are uniquely represented by points of a projective Hilbert space PX, but that 
it is much easier to work with the Hilbert space :JC. Since self adjoint opera­
tors generate unitary groups according to formula (3.3), we can concentrate 
without loss of generality on the unit sphere S:JC, in which states are 
represented by circles generated by multiplication with phase factors. To sum­
marise: in quantum mechanics states are represented by points of PX and we 
have a projection '11':S~P:JC in which the inverse image of a point is a circle 
U(l) of phase factors. 

Prequantization duplicates this situation in classical mechanics. This was 
first done by L. van Hove [vH] who investigated the canonical quantization 
program of Dirac; lateron the same ideas were developed independently by 
Kostant [Ko] and Souriau [Sol]. Let us start with the example of the phase 
space M =R2n with coordinates (r, p) and its canonical symplectic form 
w = ".i:.j dp/,drj, then we can define a space Y and a projection 'II': Y ➔M by: 

Y = R2n X U(I) and 'II': Y ➔M, (r, p, e;11)➔(r, p) 

In this situation the inverse image of a point in M (representing a state of the 
physical system) is a circle of phase factors. 

As far as phase factors are concerned we now have trivially duplicated the 
situation of quantum mechanics, but what purpose does it have? To facilitate 
the notation we will use the angle O as a coordinate on U{l) (so Y is 
parametrised bl (r, p,O)) and we will denote a vector field X on Mas a map­
ping X:M➔R and a vector field Von Yas a mapping V:Y➔R2n+1. Now if 
f is any real valued function on M (e.g. the Hamiltonian If), then its Hamil­
tonian vector field x1 is defined by equation (2.10) which gives us: 

- .H.. M Xj(r, p) - ( ap (r, p), - ar (r, p)). (4.1) 

We now mention without proof that the mapping J➔X1 from the Poisson 
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algebra to vector fields is a mapping of Lie algebras (where we use for func­
tions the Poisson bracket and for vector fields the commutator of vector fields). 
One easily verifies that the kernel of this map consists of the constant func­
tions on M, so it is not an injective map. We now can use the space Y to con­
struct a map / ➔ v1 from the Poisson algebra to vector fields on Y which is an 
injective Lie algebra morphism and which projects on x1. The fact that Y can 
be used in this way can be seen as a mathematical motivation for its introduc­
tion. Within a certain framework which will be specified later, the map / ➔ v1 
is unique and given by: 

- li _H_ - .li Vj(r, p, 0) - ( ap (r, p), ar (r, p), /(r, p) p ap (r, p)). (4.2) 

From (4.2) one deduces immediately that it is injective: constant functions are 
mapped to vector fields in the direction of the phase factors, and projects to 
X/ omitting the () coordinate in (4.2) gives (4.1). Since the integral curves of 
Xn (with H the Hamiltonian of the system) define the time evolution of the 
system, it is interesting to investigate the integral curves of V H on Y. If 
(r(t), p(t)) denotes an integral curve of Xn, then one easily verifies that the 
integral curves of V H are given by (r(t), p(t), eiO<.t)) with: 

ei 11(t) = /ll(r,)exp(-i f [p(s)· ~H (r(s), p(s))- H(r(s), p(s))]ds). (4.3) 

'· p 
Physicists will recognise the integrand in the exponential as the Lagrangian L 
of the system (see the end of §2.3) and hence they will recognise the integral 
itself as the action and the complete exponential as the phase factor which 
plays the fundamental role in the Feynman path integral. 

We see that the introduction of the sppace Y=MX U(l), in which the 
states of the physical system are described by circles, has two consequences. In 
the first place we now can represent the Poisson algebra (functions on M) 
injectively by vector fields on Y which project on the Hamiltonian vector fields 
on M; in the second place we find that in the time evolution of the phase fac­
tor e;9 is given by the phase factor of the Feynman path integral. 

For the moment we stay in the realm of mathematics where two important 
questions arise: 'what are the relevant features of this construction' and 'can 
we obtain similar results for an arbitrary symplectic manifold'? Prequantiza­
tion (or the prequantization formulation of classical mechanics) is a theory 
which gives an affirmative answer to the second question, of course after speci­
fying what the 'relevant' features are. In the first place the important feature of 
Y is that it carries a I-form a given by: 

a = p·dr + d() (4.4) 

which satisfies da=w and which turns Y into a principal U(l) fibre bundle 
over M with connection a and curvature w. According to this point of view the 
vector fields v1 are the unique vector fields on Y which satisfy the conditions: 

'If* VJ = X1 (i.e. VJ projects onto x1)} 
a(Vi) = f (4.5) 
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It turns out that one can find for all symplectic manifolds (M, w) ( except for 
some nasty cases to be defined below) a principal fibre bundle Y over M with 
connection a such that the structure group is the circle and that the curvature 
is w. If such a (Y, a) exists, one can construct a unique injective Lie algebra 
morphismJ-v1 from the Poisson algebra to vector fields on Y satisfying (4.5). 
Although the introduction of the I-form a seems quite ad hoc, it should be 
mentioned that it appears quite naturally when one looks for injective 
representations of the Poisson algebra as vector fields on a bundle over M 
which project to the (non-injective) representation by the Hamiltonian vector 
fields on M. 

Before going on to the next subsection which describes some of the conse­
quences, we have to mention some details concerning the construction of the 
bundle Y and its (connection) form a. When the symplectic manifold (M,w) is 
given, one can define a subgroup Per( w) of R called the group of periods of 
the symplectic form w. There exists a bundle (Y, a) over M with the desired 
properties if and only if Per( w) is discrete in R. If Per( w) is discrete, then there 
exists a unique non-negative real number Per called the generator of Per(w), 
such that Per( w) = Per Z CR. It then follows that there exists a principal fibre 
bundle Y over M with structure group R/Per(w)(:::::R modulo Per::::: a circle 
with radius Per /2'1T) and a connection form a with da=w. If Per =O, then the 
space Y constructed in this way is not a circle bundle but an R bundle 
(R/{O}=R); however, one can wind this real line over any period to obtain a 
circle and 'hence' a circle bundle with connection a satisfying da=w. Since all 
circle groups are isomorphic to U(l), it follows that we have obtained a space 
Y and a projection 'TT: Y -M such that the inverse image of a point m EM is a 
circle of 'phase factors'. 

In the general case the bundle (Y, a) constructed in this way is not unique; it 
is unique if Mis simply connected. If (Y, a) is not unique, one can sometimes 
use the non-uniqueness to explain effects in physics which can not be under­
stood at the level of the phase space M (e.g. the Bohm-Aharonov experiment, 
see [Wo]). If the phase space Mis the cotangent bundle of some configuration 
space Q, i.e. M = T"'Q, with its canonical symplectic form w as defined in (2.6) 
then Per =O and Y = T"'Q X U(l) is a possible choice for Yasin the example 
of M =R211 ; it is the unique choice if Q is simply connected. 

Finally one should know that one can always choose a local trivialisation 
(local gauge) such that the I-form a looks locally like (4.4) where (r, p) are 
(local) coordinates on M and () a coordinate on the circle R mod Per (hence 
not always modulo 2'1T!). The choice of a different trivialisation corresponds to 
a local gauge transformation, which affects the local expression of a and hence 
the local expression of v1. However, the changes are such that the Lagrangian 
L =p·oH lop-Hin (4.3) is changed by a 'total time derivative', i.e. the integral 
in ( 4.3) is changed by a boundary term, which can be interpreted as a change 
of the coordinate 0. 
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4.2. Analogies between classical and quantum mechanics 
This subsection will contain only statements of results; readers unfamiliar with 
the notion of principal fibre bundle and connection should always keep in 
mind the example of M=IRm, Y=IR2,,XU(l) (and a=p·dr+dO). First of all 
some terminology: the bundle Y is called the prequantum bundle over the sym­
plectic manifold M; the reason for this name will become clear in §5. In the 
second place we need some facts about the prequantum bundle (Y, a) over 
(M, w). It is well known that the flow of a Hamiltonian vector field x1 on M 
preserves the symplectic form w (which implies Liouville's theorem stating that 
a canonical transformation preserves the so called Liouville measure on the 
phase space). From the definition (4.5) of the vector fields v1 one can deduce 
that the flow of a vector field v1 on Y preserves the I-form a. With these 
preparations we can state the analogies between classical and quantum 
mechanics. 

Analogy 1 
In classical mechanics each state of the system is represented in M by a point 
and in Y by a circle; in quantum mechanics a state is represented in PX by a 
point and in SX by a circle. 

Analogy 2 
In quantum mechanics the projective Hilbert space PX is an (infinite dimen­
sional) symplectic manifold. If we construct the prequantum bundle Y over 
this symplectic manifold PX, we obtain the unit sphere SX and in this case 
the prequantum bundle is unique. Moreover, the dynamics on PX is given by 
the Hamiltonian vector field XE(H) associated to the Hamiltonian E(H) and the 
unique lift V E(H) defined by ( 4.5) to the prequantum bundle Y = SX is the vec­
tor field V H on SX defined in (3.6). 

Symmetry transformations 
According to Wigner, a symmetry of the quantum description of a physical 
system is a bijection of the projective Hilbert space PX, i.e. a bijective map­
ping from states to states, which moreover preserves the transition probabili­
ties, i.e. which preserves the form P on PX defined by: 

P:PXXP:JC....,,.IR-0 , P(-1• ~,\ - !<'1i,x>i2 (4.6) 
... "'I'• "N - llif!ll 2 llxll2 

where<,> denotes the inner product on :JC and llif!ii2= <i/J,i/J>. Using this 
definition of a symmetry Wigner showed that for each symmetry g there exists 
either a unitary or an anti unitary operator U(g) on the Hilbert space :JC such 
that U (g) induces g, i.e. 

'IT( u (g )if!) = g( 'IT'¥). 
Moreover, he showed that if U'(g) is another (anti) unitary operator on :JC 
which induces g, then U'(g) differs a phase factor from U(g):U'(g)=e;6U(g). 
It follows that if G is a connected Lie group of symmetries of the quantum 
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system, then each symmetry can be represented by a unitary transformation of 
the Hilbert space :JC. It does not imply that the group G can be represented as 
a group of unitary operators on :JC, because we only know that 
U(g)U(h)=ei8U(gh) for some phase factor e;o depending on g and h, but this 
phase factor is in general different from 1. 

The best one can do in the general case is to construct a group G' of unitary 
transformations of the Hilbert space :JC together with a surjective group 
homomorphism 'TT':G'➔G which has the following properties. In the first place 
the action of G' on :JC induces the action of G on P:JC, i.e. 

'TT'(g')('TT(i/!)) = 'TT(g'i/!) g' EG' and t/! E:JC\ {0} 

and in the second place the kernel ker('TT') of 'TT' is isomorphic to U(l) and 
commutes with all elements of G' (in such a situation one calls G' a central 
extension of G by U(l)). A different way to visualise the group G' is to say 
that G' consists of all possible choices U(g) for gEG (which obviously has a 
homomorphism onto G (U(g)➔g) whose kernel is isomorphic to U(l) (the 
freedom in U (g) is a phase factor). It should be noted that this group G' is 
uniquely determined by the action of the group G on P:JC. 

It sometimes happens that G' equals GX U(l) as product of groups in which 
case one obviously can represent Gas a group of unitary transformation on :JC 
by identifying G with the subgroup GX{l} of GX U(l); in the other cases G 
can not be represented as a group of unitary transformations on :JC. Examples 
of these possibilities are abundant in physics: the rotation group SO (3) is a 
symmetry group at the level of the projective Hilbert space; if the system con­
sists of particles with half-integer spin, then the central extension G' is not the 
direct product of SO(3) with U(l) so SO(3) can not be represented as a group 
of unitary transformations of :JC. If we use the double covering group SU(2) of 
SO (3) instead of SO (3) itself, then the extension G' is the trivial product 
SU(2)X U(l) hence SU(2) can be represented as a group of unitary transfor­
mations of :JC. Physicists conclude that SO (3) is not the correct symmetry 
group of the quantum description, but that SU(2) is the symmetry group of 
the quantum description which represents the rotation invariance. Exactly the 
same situation occurs for (the connected component of) the Lorentz group L: 
for L the central extension G' is not the trivial product but for its double cov­
ering SL(2,C) the central extension is the trivial product. Again one con­
cludes that SL (2, C) is the correct symmetry group of the quantum description 
which represents the Lorentz invariance. In these examples it turns out that if 
we replace the symmetry group by its simply connected covering, then we get a 
representation of this covering as a group of unitary transformations on :JC. 
That this is not the general idea is clear when we study the group R 2n of trans­
lations in position and momentum applied to the quantum description of a 
particle with classical phase space R271 • This group is already simply connected, 
but the central extension G' is not the trivial product but the Heisenberg 
group (in physics this group is sometimes called the Weyl-Wigner group). It 
turns out that if G is a simply connected and semi simple Lie group, then the 
central extension G' is the trivial product. Hence if these two conditions are 
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satisfied, then we know in advance that G can be represented as a group of 
unitary transformations on X. 

One final remark before we state the third analogy between classical and 
quantum mechanics. At the level of the projective Hilbert space PX, a sym­
metry group G is a group of bijections which preserve the form P defined in 
(4.6). At the level of the Hilbert space such a symmetry group is represented 
by a central U(l) extension G' of bijections which preserve the inner product 
<, > on X. Since G' preserves the inner product, it preserves the unit sphere 
SX, hence we can interpret G' as a group of bijections of the unit sphere SX 
which preserve the form<,> on SX. 

Analogy 3 
A symmetry group of the quantum description of a system is a group G of 
bijections of PX which preserve the form P. One can always find a group G' 
of bijections of SX which preserve <, > such that each symmetry g E G is 
represented by a circle (of phase factors) in G' and the action of this circle on 
SX induces the action of g on PX. 

In classical mechanics 'exactly' the same situation occurs. A symmetry group 
of the classical description of a system is a group G of bijections of the phase 
space M which preserve the symplectic form w (Liouville). One can 'always' 
(with the exception of some topologically nasty cases) find a group G' of bijec­
tions of the prequantum bundle Y which preserve the I-form a such that each 
symmetry geG is represented by a circle (of phase factors) in G' and the 
action of this circle on Y induces the action of g on M. 

Moreover, if a physical system is described in both classical mechanics and 
quantum mechanics, and if we assume that a group appears as a symmetry 
group for both descriptions, then the same extensions appear. If the classical 
system described particles of half-integer spin, then the extension of SO (3) is 
not trivial; the extension of SU(2) is always trivial because it is a simply con­
nected, semi simple Lie group. If the translations in position and momentum 
form a symmetry group, then the associated extension (which acts on the pre­
quantum bundle Yin the prequantization description) is the Heisenberg group. 

5. GEOMETRIC QUANTIZATION 

5.1. Quantization in general 
When physicists speaks about quantization they mean a loosely process which 
tells them how to obtain the mathematical ingredients of the quantum descrip­
tion of a physical system (§3) if the mathematical ingredients of the classical 
description (§2) are known. The idea that such a procedure should exist can be 
traced back to a remark of Dirac who observed that there exists a remarkable 
resemblance between the Poisson brackets of functions on the ( classical) phase 
space and the commutator of the corresponding quantum observables (self 
adjoint operators on X). To be more specific, he observed that if/ and g are 
(real) functions on the (classical) phase space representing observable quanti­
ties (i.e. f (m) represents the result of measuring/ when the system is described 
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by the point m of the phase space) and if.[ and g are the self adjoint opera­

tors on :JC representing the same observable quantities in the quantum descrip­
tion. then the self adjoint operator ~ which represents the (classical) observ-

able h = {f ,g hoisson is equal to (ii h)[.[, g ]. To state this property in a more 

formal way we write O (/)for the self adjoint operator .[ in :JC which 

represents the observable f With this notation the observation of Dirac can be 
states as: 

[O(J),O(g)] = -ihO({f,g}). 

When we apply this 'rule' to the position and momentum observables p and r 
on the phase space R 2 we .find the well known canonical commutation rela­
tion: 

[O(p),O(r)] = -ih Id, (5.1) 

where we have made the additional assumption that a constant observable (a 
function on the phase space which takes a constant value) should be 
represented by the same constant times the identity operator on :JC. 

In the physical literature several (different) quantization procedures are 
known. e.g. canonical quantization, Weyl-Wigner quantization. quantization by 
Feynman-path integrals, stochastic quantization, quantization by *-products 
and geometric quantization. Although the starting points of these quantization 
procedures are quite different, the first test for these procedures always is to 
see whether the canonical commutation relation (5.1) is satisfied if the phase 
space is R 2 . In this aspect canonical quantization is the most drastic: it takes 
the canonical commutation relation (5.1) as basic axiom for the quantization. 
We now intend to formalise the notion of quantization with the canonical 
commutation relations and Diracs remark in mind. It should be a procedure 
which has as input the phase space (M, w) of a system in the symplectic formu­
lation and as output a Hilbert space :JC together with a map O which assigns to 
a real valued function/on Ma self adjoint operator O<J)-.[ on :JC, such that 

certain conditions are satisfied. In the first place, the physical contents should 
be the same, i.e. M and :JC describe the same physical system and if the func­
tion/ on M represents an observable quantity, then O (J) should represent the 
same physical quantity. In the second place the map O should satisfy certain 
desirable conditions Q(i) ... Q(v) listed below. 

Q(i) O(J +g) = O(J) + O(g)} 
Q(ii) O(A/) = AO(f) (A.ER) ~ 0 is R -linear 

where/ + g is the pointwise addition of functions. I do not know of a physical 
motivation for this linearity condition. but it is certainly desirable from the 
computational point of view. However, even this linearity condition raises 
questions: a priori it is not guaranteed that the domains of O (J) and O (g) are 
the same, so in condition Q (i) one has to be careful with the domains of the 
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operators. Another desideratum is that the constant observable 1 is represented 
by the identity operator: 

Q(iii) 0(1) = Idx, 

which represents the idea that if a measurement yields always 1 in the classical 
description, then it should yield 1 in the quantum description too (see §3.1). 
According to Dirac's remark one also would expect Oto be a Lle algebra mor­
phism: 

Q(iv) [O(f), O(g)] = -ihO({f,g}). 

The final condition to be imposed on a quantization procedure should be that 
it yields the well known and well tested Schrodinger quantization in the case 
of M=R2n, i.e. :JC=L2(Rn) (the square integrable (complex) functions of 
reR") together with the following assignments for some operators: O(r)=r 
(pointwise multiplication) and O(p)= -iholor (differentiation with respect to 
r). In view of a theorem of Stone and Von Neumann this condition can be 
reformulated as: 

{
:JC is irreducible the action of a 

Q(v) complete set of canonical coordinates 

(this reformulation by means of Stone-Von Neumann is not quite correct, but 
for the sake of simplicity we ignore the technical details). Condition Q(v) has 
a clear physical motivation: the (abelian) · group of translations in position and 
momentum R2" acts transitively on the phase space M=R2n, i.e. there exists 
no proper submanifold of M which is invariant under the action of the group 
of translations R2n. Q (v) is a different formulation of the same idea: there 
should not exist a proper subspace of :JC which is invariant under the action of 
the position and momentum operators (because the canonical coordinates are 
position and momentum). 

Unfortunately, condition Q(v) does not make sense for a general phase 
space, i.e. a symplectic manifold, because in general there do not exist global 
canonical coordinates (although Darboux's theorem tells us that locally there 
always exist canonical coordinates). With the motivation for Q(v) in mind, we 
can reformulate Q(v) in such a way that it makes sense for a larger class of 
symplectic manifolds. Suppose G is a symmetry group of the symplectic mani­
fold (M, "'), i.e. each diffeomorphism g e G of M leaves "' invariant (see also 
analogy 3, §4.2). If we assume G to be a symmetry group of the quantum 
description too, then it follows from §4.2 that a central extension G' of G acts 
as a group of unitary transformations on the Hilbert space :JC. If we now sup­
pose that G acts transitively on M, as is the case with M = G = R2", then we 
can reformulate Q(v). as Q(v)': 

~
:JC is an irreducible representation 

Q(v)' for (a central extension of) G 

In this way Q(v)' is pplicable to a large class of symplectic manifolds (and if 
we go to the category of diffeological manifolds as developed by J.-M. Souriau 
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[So3], Q(v)' is applicable to all symplectic manifolds). 
However, Van Hove has shown in [vH] (see also [Ab&Ma]) that even for the 

phase space R2n the five conditions Q(i)-Q(v) are incompatible! For 
M =Rm there does not exist a map O from all (smooth) functions f on M to 
self adjoint operators on any Hilbert space ':JC such that the conditions 
Q(i)-Q(v) are satisfied. That this could happen was already felt by Dirac 
himself because he phrases his remark which led to canonical quantization as: 
' ... the quantum-brackets, or at any rate the simpler ones, have the same values 
as the corresponding classical Poisson brackets' [Di, p87]. What physicists usu­
ally do is to weaken condition Q (iv) by requiring that Q (iv) holds only for a 
certain subset of all observables (but which one is in general not specified). 

5.2. The first step in the geometric quantization procedure 
In the previous section we have seen that the quite natural conditions 
Q(i)-Q(v)' cannot be used as an axiomatic basic for quantization because 
they are contradictory. Geometric quantization is a quantization procedure 
which tries to define in an intrinsic way the Hilbert space ':JC and the map 0 
when the symplectic manifold (M,C.J) is given, such that Q(i)-Q(iii) are 
always satisfied, such that Q(iv) is satisfied for a (well defined) subset of 
observables and such that Q(v)' holds whenever applicable. Moreover, when 
both the classical and the quantum description of a physical system are 
known, it tries to obtain the given quantum description from the classical 
description. It should be said up to now geometric quantization is not com­
pletely succesful in the realisation of this program (e.g. see [Du]). 

To give the reader an idea how the geometric quantization procedure works, 
we take the well known phase space M = IR 2n with its canonical symplectic 
form "' (formula (2.6)) as an example. The Liouville measure 
l-=dp1.,.'!i_,ndr1 ... drnon M hives us in a canonical way a Hilbert space: 
X1 =L2(R n, t:L), i.e. the space of square integrable (complex) functions on M. 
Using the Hamiltonian vector field x1 associated to (real) functions we can 
define (self adjoint) operators O 1 (J) on ':JC I by: 

01(J) = -ihXJ-

One now can verify that the map O 1 satisfies the conditions Q (i), Q (ii) and 
Q(iv) (because the map J➔X1 is a Lie algebra morphism) but it does not 
satisfy condition Q (iii) since the Hamiltonian vector field of a constant func­
tion is zero. 

To find a Hilbert space and a map O for which Q (iii) is satisfied, we can 
use the prequantum bundle (Y, a) with Y=R2n X U(l) over the symplectic 
manifold (M,C.J). On Y we also have a canonical measure t:y=dp ... dpn 
dr1 .. ,drnd() (with e;9 the element of U(l)), so we can define a Hilbert space 
'X2 =L 2(R2n X U(l), t:y), i.e. the space of square integrable (complex) functions 
on Y. Using the injective representation V of the Poisson algebra (formula 
(4.5)) we can define operators 0 2(/) on 'X2 by: 

02(f) = -ih V1. 
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Again, one easily verify that 0 2 satisfies conditions Q (i), Q (ii) and Q (iv), but 
as before 0 2 does not satisfy Q (iii). Although the operator 0 2(1) is not the 
zero operator on '.JC2, neither is it the identity operator (it is - ih[a1a0). We 
now define %3 as the subspace of %2 on which 0 2(1) is the identity operator; 
one deduces from the expression of 0 2(1) that '.JC3 is given by: 

%3 = {[E'.JC21f(r, p, 0) = f(r, p)e;9111 }. (5.2) 

From the expression of the vector fields v1 (formula (4.2)) one deduces that 
the Hilbert space %3 is invariant under the action of the operators 0 2(/), so 
we can define 0 3 as the same map as 0 2 (but in this case the operators have 
to be seen as operators on '.JC3). 

'.JC 1 = functions on M 

'.JC 2 = functions on Y 

Table 

0 1(f) = -ih Xf 

02(/) = -iii VJ 

03(f) = 0sub2(f) = -iii VJ 

What we gave got now is a Hilbert space %3 and a map 0 3 which satisfies the 
conditions Q(i)-Q(iv); our only worry is condition Q(v)'. However, before 
we investigate whether Q(v)' is satisfied or not (it is not), we will say a few 
words about the case of a general phase space. We have said already that if 
(M,w) is any symplectic space, then there exists (nearly always) a prequantum 
bundle (Y, a) over (M, w) and an injective representation V of the Poisson alge­
bra as vector fields on Y. In such a case one can always define the analogue of 
%2 and the map 0 2 (Y has a canonical measure defined by the I-form a), but 
sometimes the subspace %3 consists of the zero vector only. Whether %3 is 
{O} or not depends upon the value of the number Per which is associated to 
the symplectic manifold (M,w) (see the end of §4.1): %3:¥={0} if and only if 
per is an integer multiple of 27Tli. An 'explanation' of this condition can be 
found in studying formula (5.2). We know from the discussion at the end of 
§4.1 that the coordinate 8 should be taken modulo Pen hence 8=0 and 8=per 
indicate the same point, which in turn 'implies' that exp(iper/h)= 1. 

This condition on the symplectic manifold (per an integer multiple of 27Tli) 
can be thought of as a quantization condition: it restricts the possible phase 
spaces for which this method works. To show that this condition has a mean­
ing in physics, we first memorate that if (M, w) is a cotangent bundle with its 
canonical symplectic form, then per is zero, so the quantization condition is 
trivially satisfied and a pair ('.JC3, 0 3) with the properties Q(i)-Q(iv) always 
exists. Secondly, if (M,w) is the symplectic space which represents in the classi­
cal formalism a particle with spin, i.e. M =S 2 and w=hsin8d0/\dq, (see the 
end of §2.5), then per= 47TA and the quantization conditions becomes the well 
known quantization of spin in quantum mechanics h=nli/2 (with n EZ). One 
of the conclusions of these observations could be that this procedure, i.e. the 
construction of a pair (%3, 0 3) by means of the prequantum bundle Y, gives 
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us relevant information on the quantum behaviour of the physical system when 
we only know its classical (symplectic) description. This consideration plus the 
fact that (%3, 0 3) satisfies Q(i) ... Q(iv) explains the names prequantization and 
prequantum bundle: (Y,a) and (%3, 0 3) can be seen as a first step towards a 
quantum description. 

Let us now return to condition Q(v) and our example M=R2n. Since we 
know the dependence of functions in %3 on the coordinate 0, we can identify 
%3 with L 2(R2n). Using formulas (4.2) and (5.2) we find that 0 3(/) can be 
expressed by: 

0 3(/) = - ;;,1L · J__ + ;;,.El. · _E_ + J-p·1[_ ap ar ar ap ap 
from which one deduces that OJ(p)= -ilia1ar, which is indeed differentiation 
with respect tor and that OJ(r)=r+ilia1ap, which is not multiplication by r. 
That we do not obtain the usual Schrodinger quantization (see §5.1) is in com­
plete agreement with Van Hove's result that the conditions Q(i)-Q(v) are 
incompatible. In fact Van Hove has indicated in [vH] a proper subspace of %3 

which is invariant under the action of the operators OJ(r) and 0 3(p). 

5.3. THE IDEA OF A POLARIZATION AND PAIRING 

The main idea to obtain (in an intrinsic way) the Schrodinger quantization 
from the constructions described in the previous subsection, the idea which is 
the heart of the geometric quantization procedure, is the idea of a polarization. 
Since the technicalities of the construction with polarizations are beyond the 
scope of this paper, this section will be brief and it will only outline the main 
idea and mention the problems which one encounters. The first observation 
one should make is that if we restrict %3 to functions which depend only on 
the coordinates r and if we integrate these functions only over r, then the opera­
tors 0 3(r) and 0 3(p) are the correct operators on L2(11P) for the Schrodinger 
quantization. The problem then is that for a general observable f (e.g. the 
kinetic energy IPl2 /2) the operator O 3(J) does not have any meaning on this 
'subspace' of %3 ; only for functions which are at most linear in p makes 0 3(f) 
any sense on the space of square integrable functions in r. 

Nevertheless, it is this idea which is generalised by a polarization. With 
regard to polarizations, the main property of the coordinates r 1 ••• rn is that they 
constitute a maximal set of independent functions in involution, i.e. the 
differentials of them are everywhere linearly independent, the Poisson bracket 
of any pair of them is zero and the set is maximal with respect to the previous 
two properties. Roughly speaking, a polarization F on a symplectic manifold is 
a set of (complex) functions / 1 •• .fn which is a maximal set of independent 
functions in involution; these functions need not be defined globally, but in 
every neighbourhood such a system should exist and they should satisfy com­
patibility conditions on the intersection of two such neighbourhoods. One can 
deduce that the number of independent functions in a polarization F is always 
half the dimension of the symplectic manifold M and that if the functions are 
real there exist functions g 1 .•• gn such that the set of functions /1---fmgl···gn 
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constitutes a system of canonical coordinates on the symplectic manifold. One 
then constructs a Hilbert space '.JCGQ (GQ to indicate Geometric Quantization) 
which consists of functions on Yon which 0 3(1) is the identity operator (i.e. 
which depend in a specified way on the coordinate () in the fibre of the bundle 
Y) and which depend only on the 'coordinates' f 1 ••• fn; the norm of such func­
tions is defined by integrating over the 'coordinates' f 1 ••• fn• 

The main technical problem with this approach is the question how to define 
'integrating over the coordinates f 1 •• .f,,' for a general polarization F. The first 
solution was the idea of half-densities (something like square roots of meas­
ures), but this did not give the correct quantization of the harmonic oscillator. 
The second solution is the idea of half-forms (something like square roots of 
volume forms) which gives the correct results for the harmonic oscillator. How­
ever, there remain systems for which even the solution with half-form does not 
yield the correct answers (e.g. see [Du]), but it is the best solution till now. The 
map OGQ which gives us the operators on '.JCGQ associated to classical observ­
ables is derived from the map O 3 but, as we have seen in our example, the 
domain of OGQ is a rather small set of observables which depends strongly 
upon the choice of the polarization F. On this small domain the map OGQ 
satisfies the conditions Q (i)-Q (iv). In the case of M = R2" and the polariza­
tion defined by the position coordinates r it also satisfies Q(v); for a certain 
class of Lie Groups G one can show that if such a Lie group G acts transitively 
on M as diffeomorphisms which conserve the symplectic form w, then the 
modified condition Q (v)' is satisfied (for mathematicians: this is essentially the 
Borel-Weil-Bott theorem on irreducible representations of compact simply con­
nected Lie groups). 

Let us give some examples of polarizations and the associated Hilbert spaces 
for our example M=R2". As already said Fr={r 1 ••• rn} is a polarization and 
the associated Hilbert space '.JC, is the space of square integrable functions of 
the coordinates r with respect to the Lebesgue measure on R". Another polari­
zation is given by the momentum coordinates: FP = {p I ···Pn} for which the 
associated Hilbert space '.JCP is the space of square integrable functions of the 
coordinates p with respect to the Lebesgue measure (physicists will recognise 
these two Hilbert spaces as the position and momentum representations of the 
Schrodinger quantization). Yet another polarization is given by the complex 
functions z1 defined by z1=p1+ir/ Fz={z 1 ••• zn}; in this case the associated 
Hilbert space '.JCz is the space of holomorphic functions in z (i.e. functions 
independent of the coordinates zJ which are the complex conjugates of the z1) 
which are square integrable with respect to the Gaussian measure 
exp(- ~11z}i2) on R2" =C"; this is called the Bargmann representation of the 
Schrodinger quantization. 

It is known that there exist unitary equivalences between the three Hilbert 
spaces described above (between '.Kr and '.JCP it is the Fourier transform and 
between '.Kr and '.JCz it is the Bargmann transform), so the natural question is 
whether we can 'always' construct in an intrinsic way a unitary equivalence 
between the Hilbert spaces associated to different polarizations on the same 
symplectic manifold. Up till now the answer is sometimes yes and sometimes 
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no. Under certain conditions on two polarizations F 1 and F 2 on a given sym­
plectic manifold (M,w) with associated Hilbert spaces X 1 and X 2 one can 
define a map '1':X 1 XX2➔C which is linear in the second coordinate and anti 
linear in the first. This map is called the pairing and is defined by means of a 
kernel function, the so called BKS-kernel after Blattner, Kostant and Stern­
berg. '1' is defined by integration of this kernel function over (not always all 
coordinates of) M. One hopes that such a pairing defines bijective maps: 
A :X1➔X2 and B :X2➔X 1 such that: 

<i/11, Bi/12>1 = 'Y(i/11, 1/;i) = <Ai/11, 1/!2>2 

where <, > 1 is the inner product on X 1 and moreover, one hopes that A and 
B are unitary. It turns out that the pairing defined bI the BKS-kernel applied 
to the case of the polarizations F,, Fp and Fz on R n defines indeed unitary 
maps which are the already mentioned unitary equivalences between X,, XP 
and Xz. Unfortunately no general theorem is known under which cir­
cumstances this pairing defines a unitary equivalence between the Hilbert 
spaces associated to different polarizations; there exists an example in which 
the pairing defines a dilatation and there exists an example in which the pair­
ing defines bijective maps A and B which are neither unitary nor dilatations. 

We conclude this section with three remarks. 
I) The inner product on a Hilbert space X 6 Q associated to a polarization Fis 
defined by the pairing of F with itself, so the BKS-kernel generalise the inner 
product. 
2) One can use the pairing to extend the domain of the map 0 6 Q but on the 
extended domain 0 6Q does in general no longer satisfy condition Q(iv). The 
idea behind this extension is to use the fl.ow q,1 of the Hamiltonian vector field 
x1 on the phase space M to define a transformed polarization q,1 * F, then to 
construct the pairing between F and q,1 * F (if it exists!) and finally to take the 
derivative with respect to t. This method is sometimes called the method of 
infinitesimal pairing; it can be used for the kinetic energy IPl212 on the phase 
space R2n with the polarization F, in which case it yields the correct answer 
0 6 Q( IPl2 12) = - li2 a,/2 on X ,. The main draw back of this method is that 
there is no guarantee that the result is a self adjoint operator; one can not 
even tell beforehand whether it is formally symmetric; in each separate case 
one has to check whether the obtained operator is a self adjoint one. 
3) Suppose we have two different polarizations F I and F 2 which define two 
Hilbert spaces X 1 and X 2, suppose that the BKS-kernel defines a unitary 
equivalence A :X 1 ➔X2 between X1 and~ and suppose that f is an observ­
able which lies in the extended domains of both OGQ, 1 and OGQ, 2 as defined in 
the previous paragraph. One might hope that OGQ, 1(j) and 0 6 Q, 2(J) are 'the 
same', i.e. A 0 0GQ, 1(j) = OGQ, 2(J)0 A. Unfortunately, this is not true in gen­
eral: the result of geometric quantization depends on the choice of the polari­
zation, even when the Hilbert spaces are unitarily related (see [Tu2] for an 
example of this kind on M = R2n). This 'negative' result is intimately related to 
the fact that geometric quantization tries to satisfy the incompatible conditions 
Q(i) ... Q(v)' as far as possible (see [Ab&Ma] for some explicit calculations). 
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Let M denote Minkowski space-time, that is R4, endowed with an orthonormal 
basis {e 0,e1,e2,e3} and an indefinite quadratic form 

(x,x) = llxll2 =x5-xt-x~-xt XEM. 

We want to define a multiplication of vectors in M, satisfying the rule 
x 2 =11xll2 • Using the basis {eo,e 1,e2,e3} and writing 

x = x 0eo+x 1e 1+x2e2+x3e3 

this requirement can be expressed by 

(xoeo +x1e1 +x2e2 +x3e3)2 = x5 -xt -x~-xi 

This valids for 

{
ee~ - e\ - e2 - - 1 

I - 2- 3-

ekel + e1ek = 0, k=/=l 

or shortly 

REMARKS. 

I. Clearly with the multiplication of vectors as introduced above we recovered 
the real Clifford algebra of M. This 24-dimensional algebra is named space-
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time algebra STA. As to be found in e.g. [I], volume 2, page 41, one can 
introduce ST A in a coordinate free way by means of the tensor algebra of M 
and the ideal, generated by expressions of the form x®x -(x,x)·l. 

2. Do not confuse the 16-dimensional (real) Clifford algebra, just introduced, 
and the 32-dimensional complex Dirac algebra, as used in relativistic quan­
tum mechanics and isomorphic with the algebra of complex (4X4)-matrices 
C(4). 

1.2. Matrix representations 
Sometimes it is convenient to represent the basis vectors e0 ,e1,e2,e3 by 
matrices. We mostly use the (unitary) representation Yo, Y1, y2 , y3 given by 

Yo= [
1
; _

0
12 ], Yk = [: -;kl k=l,2,3 

where / 2 = [6 ~] and ak are the Pauli matrices given by 

Obviously one has 

YkYO = k = 1,2,3 

An alternative representation for STA is the algebra H(2) of (2X2)-matrices 

over the field of quaternions [~. In0lthis case[ bh\ bl asis vectors e O, e 1, e 2, e 3 

respectively correspond to O _ 1 and ik O , k = 1,2,3, where h, 

k = 1,2,3, are the quaternions. 

1.3. Some requisites in STA 
Having made a choice for the orientation the pseudoscalar e 5 =e0e 1e 2e3 is an 
invariant, just like the determinant in linear spaces. Note that 

e~ = -1 

and 

esek = -ekes, k =O, 1,2,3. 

Let a and b be vectors in STA, then we can write 

I I 
ab = 2 (ab +ba)+-i(ab-ba). 

The symmetric part f(ah +ha)= a ·h is a scalar, because 
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ab+ba = (a+b)2-a 2-b2ER. 

The antisymmetric part ½(ab - ba) = a /\b is called the bi vectorial part of ab. 

The elements of STA are called multivectors and can be written (with 16 
parameters) as 

A = a+a'<ek+a.'<1eke1+a.'<1"'eke1em+Pes, 

k<l<m and k,l,m =0,1,2,3. 
We shall also write for the multivector A: 

where 

A= Ao+A1+A2+A3+A4 

A O = a is the scalar part of A, 

A 1 = ak ek is the vectorial part of A, 

A 2 = ak1eke1 is the bivectorial part of A, 

A 3 = a.'<1"'eke1em is the trivectorial part of A and 

A 4 = Pe 5 is the pseudoscalar part of A. 

Next we introduce some special maps of STA ➔ ~A. 
The inversion or main involution is given by A 1-+A with 

A= -e5Ae5 =A 0 -A 1 +A 2-A 3 +A 4. 

It ca~_illso~e given by Ak =(- IiAk. The most obvious properties are A =A 
andAB=AB. 

The even and odd parts of A are defined by 

I - I 
Aeven = 2 (A +A)~(A -e5Ae5)=Ao+A2+A4 

and 

The reversion or main antiautomorphism is given by A 1-+A with 
-

A = A O+ A 1 -A 2 -A 3 + A 4· 

It can also be given by • 
_ k(k-1) [l._] 

Ak=(-1) 2 Ak=(-1) 2 Ak. 

""' The most obvious _properties are A= A and AB= BA. 
Note that A➔A reflects the order of the basis vectors e 0 ,e 1,e2,e 3• Further 

we present the map A 1-+A t by 

At = eo.Aeo. 
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The most obvious properties of this map are (At)t=A and AtBt=(BA)t. 
Observe that his map corresponds to Hermitean conjugation of matrices. 

Finally we introduce the Hodge dual map Ai-+*A by 

REMARKS. 
I. Besides the basis {e0 ,ei,e2,e3} we often use the dual basis {e0,e 1,e2,e 3 } 

given by e0 =e0 and ek = -ek> k = 1,2,3. 
2. STA is a special case of the Clifford algebra of Rn with metric form 

(x,x)=xt + · · · +x;-(x;+1 + · · · +x;). All these Clifford algebras are 
isomo~hic to matrix algebras over R, C, H or over the direct products 
2R,2C, H. All details can be found in [2] and in [3]. 

1.3. The Pauli algebra P 
Let us introduce £1,£2,£3 by 

Ek = ekeo, k= 1,2,3 

with properties 

EkEt = e1ek, k=/=-1, k,l = 1,2,3 

and 

£1£2£3 = eoe1e2e3 =es. 

Obviously £1,£2 and £3 generate the even subalgebra of STA. Because 

fk£1+£1£k=28k1, k,l=l,2,3 

this even subalgebra is isomorphic to the Clifford algebra of R3 with Euclidean 
metric, the so-called Pauli algebra P. Note that indeed the Pauli matrices 
a1,a2,a3 are matrix representations of the basis vectors £1,£2,£3 and that the 
algebra C(2) of complex (2 X 2)-matrices is isomorphic to P. 

More generally one can write down the chain of even subalgebras: 

RCCCHCPCSTAC · · ·. 

1.4. The differential operator a 
Finally we introduce the differential operator a as 

a = eo30-e131 -e232-e333 =e,,a,, 

with properties 

a= d-8 (Hodge-de Rham operator), 

3x = a-x + a Ax, 

a2 = a-a+aAa=a-a, 
a2 = -d8-8d (Laplace-Beltrami operator). 

32 



Although one has the rule ak(ab)=(aka)b +a(akb), Leibniz rule for a of course 
cannot be expressed by a(ab)=(aa)b+a(ab). 

For more details and rules we refer to [4], Section 4. 

2. DIRAC GAUGE THEORY IN STA 

2.1. The Dirac equation 
The Dirac equation, describing electrons and photons can be given by 

(i-yl'D,,_ -m)'Y = 0 

with D,,_ =a,,_-iqA,,_ and 
1¥1 a1 +i/11 

a2 +i/12 o/2 
'Y = 1¥3 a 3 + ;p3 = (a1 + i/11)u 1 + (a2 + i/12)u2 + 

1¥4 a4 +i/34 

1 0 0 0 
0 0 0 

with u 1 = 0, u2= 0, u3= 1 , u 4 = 0 as basis vectors in spinor space. 

0 0 0 

We can also write 

(i-yl'aµ+q·yP-A,,_)i' = mi' 

or in slash-notation 

i 'Yi +qA 'Y = m'Y 

with fl =·yP-a,,_ and A =-yl' A,,.. 

2.2. The Dirac equation in ST A 

(1) 

DI 

The main goal of this section is to give descriptions of Diracs equation in 
STA-language. 

Using the obvious relations 

U2 = Y3Y1U1, 

u3 = y3you1, 

u4 = Y1YoU1, 

one finds after substitution in (1) 

'1r = (a1 +a4Y1Yo+f14Y2Yo+a3y3yo+f12Y3Y2 +a2Y3Y1 +f11Y2Y1 +/33y5)u1. (2) 

The quantity in parentheses appears exactly as the matrix representation of an 
even multivector 1¥ in STA. We write shortly it=M(i/l)u 1 and if no confusion 
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is likely we shall identify M(if;) and if;. 
Substitution of i'=M(if;)u 1 in the Dirac equation 

iy1'3µ'1t+qyl"Aµ'Y = m'Y 

and identifying M(if;) and if; yields the equation 

(y1'3µi/lY2Y1Yo+qyl'Aµt/;Yo-mt/;)u1 = 0. 

The expression in parentheses is the matrix representation of an even multivec­
tor in STA and although u 1 does not have an inverse, we can write 

yl'3µi/lY2Y1Yo+qyl'Aµif;ro-mf = 0 

because 
- -

1"1 -i/12 lp3 lp4 
- -

i/12 i/11 lp4 -if;3 
M(if;) = - -

lp3 lp4 1"1 -f2 
- -

tf,4 -if;3 i/12 i/11 

is determined by its first column M ( if; )u 1 • 

Changing from matrices to multivectors in STA we find for Dirac's equation 

3fe2e1 +qAif; = mif;eo 

or, using e2e 1 =e5e3e0 

3if;e 5e3e0+qAif; = mif;e0, 

with it, an even multivector in STA. 

D2 

Obviously, if one starts with D2, one finds DI and thence the equivalence of 
DI and D2 is clear. 

REMARKS. 
1. Note that the scalar part of if; corresponds to -¼tr M(if;) because all Yk y1 with 

k=/=l and y 5 are traceless. 
2. In contradistinction to Yo, y1 and y2 the quantities e0 , e I and e2 in D2 are 

no matrices in C(4) but vectors in STA. 
3. The quantity iEC in DI has been replaced by e 5e3e0 =e 2e 1 in D2. Indeed 

one has (e 2e 1)2 = -1 but the bivector e2e 1 represents some special direction 
in STA. The interpretation of this direction has been amply discussed in [5]. 

4. As known, other representations of the y-matrices are related to our choice 
by the relation Yµ = S - Iyl'S. One can prove that apart from an (allowed) 
Lorentz transformation, equation D2 is independent of the choice of the Yµ· 
All details are discussed by Hestenes in [5]. 
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2.3. Another description of Dirac's equation in ST A 
Multiplication from the right of equation D2 with the factor 
½O +e0)(1 +e3e0) and introduction of the multivector 

cf,=½i[,(l +eo)O +e3eo) 

yields after some minor manipulations: 

a4>e5 +qAcf, = met, D3 

with the condition q,e 3e0 = cf,. Conversely the equation D3 yields again D2 as 
can be proved in the following way: 

Substitution of q,=i[,1 +i[,2e0 with -./11 and -./12 even in D3 and use of 

acpe5 = acpe3eoe5 =act,e2e1 

gives the equation 

ai1i1 e2e 1 +ai[,2e ieo +qA i/i1 +qAi[,2eo =mi/,1 +mi[,2eo. 

After splitting in odd and even parts one finds 

ai[,1e2e 1 +qAi[,1 = m-.f!2e0 

and 

a..J,2eoe2e1 +qA..J,2eo = mi/i1-

Multiplication of the second equation on the right by e0 gives the pair of 
equations 

ai[,1e5e3eo+qA..J,1 = m..Ji2eo 

ai[,2e5e3e0 +qAiJ,,2 = mi[,1 e0• 

Add both equations and call ..J,1 +i[,2 =i[, (i[, even), thence one finds 

ai[,e 5e3e0 +qA..J, = m..J,e0 . 

2.4. Remarks 

D2 

1. It is tempting to conclude that DI and D3 have more resemblance than 
D l and D2 but that is misleading because the anomaly in D3 is hidden in 
the structure of tf>=½-.f!(l +e0)(1 +e3e0). We return to that question in the 

next section. 
2. Although the equivalence of DI and D3 is evident from that of DI and 

D2 and of D2 and D3 we give a straight proof because it affords more 
insight in the structure of D3. 
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Let 

'Pl 'Pl 0 'Pl 0 

"12 "12 0 "12 0 
'IJI = V'3 and 7/ = lf3 o 1/13 o· 

"14 "14 0 V'4 0 

As is easy to check one has the relations 7/'YJ°Yo =,,, and '1/'Y5 ='1/i, Con­
versely, if aEC(4) and the relations ay3y0=a and ay5=ai hold, then 

'Pl O 'Pl 0 

1/12 0 1/12 0 
a = 'f3 0 'f3 0 · 

1/14 o 1/14 o 
Dirac's Equation DI, given by 

iyl"D,.'IJI = m'IJI with D,.=a,.-;qA,. 

is equivalent with the equation 

iyl"D,.'1/ = m'I/ 

or 

'Y"' D,. '1/'Ys = m,,,. 

Because 7/EC(4), one can write '1/=<t>+i<t>1; <f>,<1>1 ESTA. By using '1/i =,,,y5 

one finds <1>1 = -<t>'Ys• 
Substitution of '1/=<t>+i<t>1 in y"D,.,,,y5 =m,,, and use of <[>1 = -<t>y5 yields 
the pair of equations 

y"'D,.<f>'Y5 = m<f> and -tD,.<f>1'Ys=m<1>1 

both equivalent with the sole equation 

y"' D ,.<l>'Ys = m<f>, 

with the condition <f>y3y0=<t> and with D,.<1>=a,.<1>-qA,.<1>y5 • Summarizing 
one recognizes the matrix representation of D3. The converse is also true. 

3. The equation of Dirac is related to a number of notions and quantities 
such as currents, gauge invariant derivative, Lagrange density and so on. 
In the next table we summarize these associated notions for the Equations 
DI, D2, D3. 
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DI D2 D3 

Dirac a iti +q,I. 'lt=mi' atf,e5e3eo+qAtf,=mt{,eo a,pe5+qA,P=m,P 
equation i'eC4 t{,e~A ,peSTA 

t{, even ,pe3eo =,p 

current J,. = ,r,t YoY,. it J =t{,eot{, J,. = (,pt eoe ,.,p)o 

spin 
s,. = -(,pteoe,.es<Pes)o current s,. = -i itt YoY,. Ys ,r, s ==t{,e3t{, 

gauge trans-
if= i'e -la ~=t{,e -ae,e3e0 ;=,pe -ae, fonnation 

gauge 
invariant 
derivative D,. '1'= a,. '1'-qA i'i DI{,= at{,-qA tf,ese3eo D,P = a,p-qA ,pe s 

Lagrangean 
L =,Jtt Yo(r" D,.i -m)'f' L =(t{,t eo(Dtf,ese3eo -mt{,eo))o L = (,pt eo(D<Pes -m,p))o density 

All derivations can be found in [4]. 

3. DIRAC THEORY FOR PAIRS OF PARTICLES 

3.1. Classical theory 
The strong forces between nucleons and the weak forces between leptons are 
described, at least in former days, by the pair of Dirac equations: 

(iyl'D,,_-m)'Y = 0 

with'¥= [:: l, D,,. =a,,. -+iA!'Tk and 'Tk =ak, k = 1,2,3. 

We shall use a description equivalent with this classical one, although, with 
the SU(2)-action from the right side on v. 

Let 

i/111 i/112 i/111 i/112 

i/121 i/122 i/121 i/122 
'¥1 = 

'P31 ' 
'¥2= 

'P32 
and '¥= 

¥'31 'P32 ' 

'P4l 'P42 'P41 'P42 

then the free Dirac equation for the pair (i'i,'¥2)='¥ can be written as 

(iyl'a,,_-m)'Y = 0. 

Replacing of a,,_'¥ by D ,,_'¥=a,,_'¥+ 'YA,,_ with A,,_ - +iA ! .,.k yields 

(iyl'Dµ-m)'Y = 0. 

In the next table we compare some notions, associated with the Dirac 
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equation, in the classical description and in our one. 

classical here 

current )-
}k =2i'y/'Tk qr 

l -
jJt- 2 tr(i'y/'i'Tk) 

I . • I . k 
A - 2 ,a ek A -210: Tk 

gauge trans- i=i/!U, U=e 
formations 

tf:.= Ut/1, U=e 
A = UA u- 1-(a U)u- 1 

p. p. p. A = u- 1A u- u- 1(a U) p. p. p. 

gauge 
invariant 
derivative D,,_=a,,_+A,,_ D,,_ 'l'=a,,_ 'l'+'l'A,,_ 

Lagrangian L 1 = 'l'(iy' D ,,_ -m)'l' L1 =tr(ii"(iyP-D,,_-m)ii") 

Field 
strength 
tensor F /U' =a,,_A.-a.A,,_ +[A,,_,A.] F,,_.=a,,_A.-a.A,,_-[A,,_,A.] 

The rule [D,,_,D,]'1i"=F ,,_,, ii" transforms into [D ,,_,D,]'1'='1i"F ,,_,,. 

3.2. (4X4)-matrices as wave functions 
As a prelude to a description of 3.1 in STA-formalism we need the following 
conventions, again resulting in the classical theory. Instead of 

o/J I 'Pl2 'Pl I 'P12 

1"21 1¥22 1¥21 i/122 
'1'1 = 

'P31 
, '1'2 = 

'P32 
and '1'= 

'¥31 '¥32 

'P41 'P42 '¥41 'P42 

we consider the (4X4)-matrices 
1"11 0 1¥11 0 0 i/112 0 i/112 

i/121 0 i/121 0 0 i/122 0 i/122 
cl>1 

'P31 0 'P31 0 , cI>2 = 0 'P32 0 'P32 

lf'41 0 'P41 0 0 'P42 0 1¥42 

and 

1"11 1"12 1¥11 1"12 

1¥21 1"22 1"21 1¥22 
cJ> = cI>1 + cl>2 = 

'P31 '¥32 'P31 'P32 • 

o/41 lf'42 'P4J o/42 

The pair of free Dirac equations now can be presented by 

(iy'a,,_ - m )cl> = 0. 
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As is easy to check, ii> is an eigenfunction of y5 - ; [ :, 
1
;] from the right with 

eigenvalue i EC, i.e. 

icf> = <I>i = <l>y5. 

Thence we write instead of (3): 

y"a"cf>y5 = mcf>. 

Instead of A = - J_iAk-rk we now find A"= - fA!'Yk'Yo'Ys- (Note that 

mo-Tk [7. 1i].) 2 
e 

Finally all these conventions lead to the Dirac equation 

y"D"cf>y5 = m<I>, or 

Jf) <l>ys = m<I> 

where Jf) =y'D". 

Our wave function cf> is a 4 X 4-matrix over the complex field C and hence 
belongs to the complex Dirac algebra, which is isomorphic to C( 4). 

Therefore we can write 

cf> = a+ ak'Yk + a"1'Yk 'Yi+ a"lm'Yk 'Yt'Ym + P'Ys, 

where a,ak,a."1,aktm and /3EC. 
Let q,=re<I> be the real part of <I> then q, is the matrix representation of an 

element of ST A. 

Obviously Jf)cf>y5 =m<I> implies J/)q,y5 =mcp but the converse is also true. Viz. 
let cf>=q,+i71,then using cl>i =cl>y5 one finds .,,= -cpy5, i.e. cl>=q,(l-iy5). 
Therefore it obviously follows that Jf) q,y5 = mq, implies Jf) ll>y5 = m cl>. 

Now we are ready to translate the equation Jf) cpy5 = mcJ, into the STA­
formalism. 

3.3. Dirac's equation in ST A for pairs of particles 
Meanwhile we have reasons enough to investigate the equation 

Dcpe5 = mq, 

with q,ESTA, D =e,,D,,, D,,cp=a"q,+cJ,Aµ, A"= - fA!eke 0e5 and with matrix 

representation J/)q,y5 =mq,. For the associated notions one finds respectively 
a) currents: 

Jlfc = (q,t eoe"q,ekeo)o 
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c) Lagrangian: 

L = 2(q/e0(D</>es-m</>))o-1F~,Fr 

It is merely an algebraic excercise to prove the following gauge invariances. 

I. 

2. 

3. 

4. 

At A 

(cp eoe µcf>)o = (cf,t eoe µcf>)o 
A A 

Dµcf, = (Dµcf,)U 

Fµ, = u- 1Fµ,u 
A 

L = L. 

3.4. Ideals in STA 
Ideals in an algebra are generated by idempotents, minimal ideals by primitive 
idempotents. As is clear from the IHl(2)-representation STA has two minimal 
left ideals J + and J _. (Compare again the complex Dirac algebra -·C(4) with 
four minimal left ideals.) 

For the primitive idempotents we choose f(I +e3e0) and f(l-e 3e0). Hence 

we can write 

with 

and 

fcf>(l-e3eo) = cf>iEJ -• 

Observe that cf,1 =cf,1e3e0 and thence we recognize the uninterpreted condition 
associated with D3 in 2.3. As promised in 2.4 we here return to that question 
by mentioning that D3 describes the restriction of Dcpe 5 =mcf, to the ideal J + 

in STA. 

This gives rise to the idea to describe the weak interaction between electron 
and neutrino by means of the two ideals J ~- and J _. For a further investiga­
tion we need the following trivial properties: 
a. J + nJ _ = {O} 
b. <[>1 EJ + iff <1>1 e3eo = <[>1 

iff </>1(1-e3eo)=0 iff cf>1(l +e3eo)=2cf,1 
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and 
c. cf>i EJ _ iff cf>ie3eo = -ct>i 

iff cpi(l +e3eo)=O iff cf>2(l -e3e0)=2cf>2. 
Substitution of cp= cp1 + cf>i in the equation e" D µct>e 5 = mcp yields: 

0 = e"Dµcpe 5-mcp=ocpe5 +e"ct>Aµe 5 -mcp= 

= ocp1e5 +e"cp1A µe 5 -mct>1 + ocf>ie 5 +e"cf>iA µe 5 -mcf>i, 

where 

ct>aA,,e5 = fA!ct>aekeo a=l,2. 

Some rewriting yields: 

0 = (oct>1e5 + e" BI,µ -mct>1)+(ocf>ie5 +e" B 2,µ-mcf>i) 

where 

and 

Whence 

and 

ocf>ie5 +e" Bi,µ -mcf>i EJ -

and therefore 

ocp1e5+e"B 1,µ-mcp1 = 0 

and 

ocf>ie5+e"B2,µ-mcf>i = 0. 

Substitution of the expressions for BI,µ and B 2.µ and again some rewriting 
yields in J + : 

1 1 
e"(oµct>1e 5+ 2 Atct>1)+ 2 e"(A!ct>i+A~cf>ie5)e1eo = mct>1 (a) 

and similarly in J _: 

e"(oµcf>ies-fA!ct>i)+ fe"(A!ct>1 -A~ct>1e5)e1eo = mcp2, (/3) 

Let us now compare (a) and (/3) with the description given in 3.1. 
We started from the equation 

(iy"Dµ -m)'Y = 0 
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with 

and 

D,,v = a,,v+vA,, 
A = - J_iAkTk 

/l 2 /l 

o/11 o/12 
o/21 o/22 

'¥ = o/31 o/32 =('¥1,'Yi). 

o/41 o/42 

Substitution of •• ~ [~ ~], •2 ~ [~ -ii, ,, ~ [~ _ ~]. and some rewriting 

and splitting yields now: 

y/l(o,,v,;+ fAtv,)+ f'Y"(A!.-Y2+A;v2i) = m.-Y1 (a') 

yP(a,,v2i- fA!v2)+ f'Y"<A!v,-A;v,i) = m.-Y2. (ft') 

Note that the only genuine difference between a,P and a',P' is the factor e1e0 

in a,p but that is just the factor that maps 4>2 eJ _ onto 4>ie 1e0 eJ + and simi­
larly cf,1 eJ + onto q,1e 1e0 eJ - . 

Hence our conclusion is that the description of the weak interaction with the 
two minimal ideals in ST A is wholly equivalent with the usual description by 
means of the Lie group SU(2). 

4. STRONG INTERACTIONS AND ST A 

4.1. Classical descriptions 
Nowadays descriptions of strong interaction fields make use of the symmetry 
group SU(3) instead of SU(2). In this subsection we give a brief summary of 
SU(3) gauge fields as can be found in [6] but with the same adjustment as car­
ried out for SU(2) in 3.1. (It turns out that the operator iyPoP -m acts fr0m 
the left but that the group SU(3) acts from the right.) 

Let us first write down the free Dirac equations for triples of quarks: 

(iyPa,, -m)'Y = 0 

where 

o/11 o/12 o/13 
o/21 o/22 o/23 

'¥ = ('Yred,'Yblue,'Ygreen)= o/31 o/32 o/33 
o/41 o/42 o/43 
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Subsequently we replace the operator a,. by D ,., defined as 

D,.'Y = a,.-.Y+'YA,, 

where 

A -AkT.- liAk" ,. - ,. k- - T ,.l\k• 

The (3 X 3)-matrices Ak are the well-known generators of SU(3). The gauge 
transformations are given by 

{
i' = 'Yu - .l;a.'>. 

w'th U=e 2 • A = u- 1A u-u- 1a u 1 
,. /.l ,. 

The currents Al are in this case 

I-
'Yl = 2riy"'YAk. 

The wave function1 '¥=('¥1, '¥2, '¥3) is associated with the Lagrangian 
3_ -

Lo = ~ 'Y a.Ci'Y"ai& -m)'Y a.= tr('Y(iyl'a,, -m)'Y). 
a.= I 

As in the SU(2)-case replacing of a,, 'Y by D,. 'Y = a,. 'Y +'YA,. yields 

L 1 = tr('Y(iy" D,. - m )'¥). 

For the dynamical part LF of L one has 

I I 
LF = - 2tr(F ,,,,F"") = - 2 F'/,.Ff 

with 

Finally we summarize the usual gauge invariances: 
A A 

l.D,.'Y = (D,,'Y)U 

2. F,.. = u- 1F,,,,u 
A 

3.L = L. 
The proofs can be found in[6]. 

4.2. SU(3) gauge theory in STA 
In contradistinction to SU(2) c ST A the group SU(3) suffers from the disease 
that it is not a subset of STA. Therefore a treatment as in 3.2 is now impossi­
ble. 

1 From now on we drop the folkloristic notation V red and so on. 
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In spite of this defect it is possible to describe the notions and properties of 
Section 4.1 in terms of ST A. Consider to that end the Lie algebra of bi vectors 
in STA. We can write any bivector Bas 

B = (a 1 +esb1)e1eo +(a2 +esb2)e2eo +(a3 +e5b3)e3eo. 

Note that one can consider this space of bivectors as a copy of C3• Next 
observe that 

Bt = (a1-esb1)e1eo+(a2-esb2)e2eo+(a3-e5b3)e3eo 

can be considered as the 'complex conjugate' of B. 
Further, we find that 

e 1e0 e2e0 e3e0 

BtB = ay +by +ai +bi +ai +bi-2 a1 a2 a3 

b1 b2 b3 

Therefore (B t B)0 = at + by + ai + b~ + ai + bi and that means that the Lie 
algebra of bivectors in STA with square norm IIBll2 =(BfB)0 has SU(3) as 
invariance group. 

The original ideas can be found in [7]. To develop further details it is neces­
sary to express the generators Ak in terms of STA. The procedure is as follows: 

Let B be a bivector in STA, define B">..1 - ~(e 1e0Be2e0 +e2e0Be 1e0). Substi­

tution of 

yields 

BA1 = (a2 +e5h2)e 1c\J +(a 1 +e5b 1)e2e0• 

On basis {e 1e0,e2e0,e3e0} one finds indeed A1 = [~ 6 8]. Likewise we can 
000 

calculate the remaining Ak: 

0 -es 0 

">..2= es 0 0 

0 0 0 

where e5 plays the role of i. 

[1 o ol A3= 0 -1 0 
0 0 0 

[O O I] ">..4 = 0 0 O 
I O 0 
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o/11 0 11 +ib 11 

o/21 021+ib21 
with '111 = 

o/31 o31 +ib31 

o/41 0 41 +ib41 

As=[~ ~ -;5 

e5 0 0 

;\6= [~ ~ ~i 
0 1 0 

0 0 0 
;\7 = 0 0 -es 

0 es 0 

[
1 o o l 
0 1 0 . 
0 0 -2 

and likewise itk1=ok1+ibk,. J:s;;;k:s;;:4, I:s;;;/:s;;:3 one can consider the 4X3-
matrix 

o/k/ = (o +esb)kl· 

The only difference between '1' and i/; is that the complex number i has been 
replaced by the pseudo-unit e5• Introducing the linear space B4, consisting of 
quadruples of bivectors i.e. 

B1 

B2 
q> = EB 4 

B3 

B4 

we can write 
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B1 

B2 
r·••o ct, = B3 =f e2eo 

B4 e3eo 

on e1eo +b 11e5e 1e0 +o 12e2eo + b 12e5e2eo + 013e3eo +b 13e5e3eo 

021 e1 eo + b21 e5e I eo +o 22e2eo + b22e5e2eo + 023e3eo + b23e5e3eo 

031 e1eo +b31 ese1eo +032e2eo + b32e5e2eo +033e3eo + b33e5e3eo 

041 e ieo +b41 e5e1eo +042e2eo +b42e5e2eo +043e3eo +b43e5e3eo 

We yet define the 4X4-matrices r 0,r1,r2,f3 as y°,y1,y2,y3, but where iEC (in 
y2) is replaced by e 5• 

The free Dirac equations 

(iyl'o,_. -m)i' = 0, 

as mentioned in 4.1 can be replaced by 

(e5fl-'o,_. -m)i/1 = 0. 

Obviously this yields the equations 

(e5f1-'o,_. -m)cp = 0. 

Just like in Section 3 we can replace a,_.ci, by 

D,_.cp = o,_.ct,+ct,A,_., 

to be interpreted in the following way 
B1 B 1Ak 

the latter as defined above and 

whence 

D,,_cp = o,,_ct,+ct,A,_.. 

In conclusion we find 

(e 5 fl-'D,_. -m)cp = 0 

or 

Dcpe 5 = met, 
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with 

REMARK. Comparing the equation D,J,es =mq, with ,pESTA as dealt with in 
Section 3 one observes that in that case Dq,e5 =mq, obeys Lorentz invariance 
because it is manifestly independent of coordinates, but for the equation 
Dq,e5 =mq, with ,p~B4 as presented in this section this Lorentz invariance is 
not automatically satisfied. This Lorentz invariance can be proved in a similar 
way as done in the literature on equation DI. 

Compare for instance [8], page 52. 

A 

Finally we give the translations into STA of the notions F ,.,,,,p,L0,L1,LF and 
so on, including their invariances. Defining ' 

Fµ. = ap.A.-a.,Ap.-[Aµ,A.] 

one finds the property 

[Dµ,D.),p = q,F ,.,,. 

PROOF. 

[Dµ,D 11 ]Bk = D,,_(D 11 ,Bk)-D,(DµBk)= 

=Dµ(a.Bk + BkAp.)-D.(ap.Bk + BkAµ)= 

=ap.(a.Bk+BkA,)+(a,Bk+BkA.)Ap. + 
-a.cap.Bk+BkAp.)-(ap.Bk+BkAp.)A,,= 

=Bk(ap.A .-a,Ap. +A.,Ap. -A.Aµ)=BkF p.i,, 

hence we can write 

[Dµ,D,),p = q,FP.• 

where 

'P = 

Next define q,U as 

B1 

Bi 
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and thence 

This expresses the gauge transformation for SU(3) in ST A-formalism. 
Let cpt=(Bt,B!,B!,B!) then we can define the currents by its components 

}k = ~(cptfofkrf>Ak)o. 

This expression corresponds to 

H = -½tr(i't Yoi'i'Xk) 

where 

o/. = (i/11 ,1h,1"3). 

which we prove as follows: 
-
i/11 

cptr 0fk<Mk = (e I eo,e2eo,e3eo) i/12 r ofl'(l/J1,l/J2,l/J3) 

l/J3 

Hence 

corresponding to 

I 3 - 1 -
2 ~ o/.aYo"Y''i'aAk = 2tr'l'ror"i'Xk. 

a=I 

The Lagrangian Lo can be defined by 

L 0 = (cptf0(e5Pa,..-m)cp)0 

in agreement with 

L 0 = tr(i'(iy"a,.. -m)i'). 

PROOF. 

-
i/11 

cptfo(esf"a,.. -m)cp = (e1eo,e2eo,e3eo) i/12 f 0(e5Pa,, -m)(i/11,i/12,i/13) e2e0 . 

i/J3 e3eo 
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Again it is in immediate that 

3 -
(q,tro(e 5fl'o,. -m)ct>)o = ~ o/aI'o(e5P'a,. -m)if,,a 

a=I 

corresponding to 

3 -
~ ,r,Jyo(iy"o,. - m )it a = tr(it(ir"o,. - m )it). □ 

a=I 

L 1 can be derived from L 0 by replacing a,. by D,. in the usual way. For LF 
one obtains the expression 

1 1 
L = --tr(F £1")= --P., £1!" F 2 µ,,, 4 /LP k 

with 

Observing that 

~ = q,U=if,,U [:::: =i [:::: 
e3eo e3eo 

it i~ aAtrivial task to prove the gauge invariances: 
1. D,.q, = (D,.q,)U 

2.F,.,, = u- 1F,.pu 
A 

3.L = L. 

FINAL REMARKS 

1. Electro-weak forces 
In this contribution we did not deal with the Glashow-W einberg-Salam model 
of electro-weak forces and associated symmetry group SU(2)X U{I) because 
all the necessary material can be found by combining Section 3 and [7]. 

2. Gravitational forces 
If one takes gravitational forces into account, Dirac's equation DI transforms 
into the so-called Dirac-Wey] equation as treated by G.G.A. Bauerle in these 
proceedings [9]. I hope, translation of this formalism into STA-language can be 
given in the near future. 
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Quark confinement in a model with induced metric 

C. Dullemond 
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Toernooiveld 1, 6525 ED Nijmegen, The Netherlands 

1 INTRODUCTION 

One of the striking features of meson spectroscopy is the close resemblance 
between the 'charmonium' and 'beautonium' spectra. With some imagination 
also a 'strangonium' spectrum can be discerned. Not only the ratio's between 
the mass-level differences seem to be nearly the same for all 'quarkonia' spec­
tra, but also their absolute values (see fig. 1). If mesons are considered as 
bound states of quarks and antiquarks one can consider 'strangonium' as a 
bound state of the strange quark s and its antiquark s, 'charmonium' as a 
bound state of the charmed quark c and it~ antiquark c, and 'beautonium' as a 
bound state of the beauty quark b and its b. A direct comparison can be made 
with 'positronium', a bound state of an electron e - and its antiparticle e +, or 
'muonium', a bound state of a µ - and a µ + . A comparison of the latter two 
'atoms' shows that the discrete spectra are proportional to the mass, but other­
wise equivalent. In the same way as this scaling behaviour can be understood 
in terms of properties of the Coulomb potential can one try to understand the 
scaling behaviour of the quarkonia spectra in terms of properties of the poten­
tial which binds the quarks together. 

Let us assume that the spectra of the different quarkonium atoms can be 
obtained by solving a Schrodinger equation (which is a good approximation as 
long as the level differences are small compared to the rest masses themselves). 
Let 

[ 1 d2 L 2 l --2 - 2 + --2 + V(r,m) if;= Et/;, 
m dr 2mr 

(1) 

where m is the reduced mass of the quarks q and q bound within the 
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quarkonium system under consideration, E is the total energy, V(r,m) the 
potential in terms of m and the distance r between the quarks an L the angular 
momentum (we take Planck's reduced constant Ii and the light velocity c both 
equal to 1). For simplicity the spin of the quarks is not taken into account. 

The question is which equation V(r,m) must satisfy in order for the spectra 
to have the desired scaling property. For that purpose we introduce the param­
eter p: 

p= Vmr. (2) 

This transforms eq. (1) into 

[- ~ ::2 + ~: + V(p,m)] 1¥ = El¥. (3) 

The condition that the spectra be independent of m except for an additional 
constant now becomes 

- - -
V(p,m) = V1(p) + V2(m). (4) 

Next we find out how V(r,m) itself must depend on m. If the interactions 

between the quarks are ftavor-independent, then ~~ is independent of m (the 

forces do not depend on the quark species) and we have 

V(r,m) = V1(r) + V2(m), (5) 

We can solve the equations (2), (4) and (5) and obtain 

V(r,m) = ylnr + k(m ), (6) 

where y > 0 is the condition for confinement. This potential is known as the 
potential of Quigg and Rosner [I] (see fig. 2 for the spectra). A variant is the 
potential of A. Martin [2]: 

V = yr0·1 + k(m), (7) 

which is nearly logarithmic. 
Not only the congruence of the spectra is explained by such a potential, also 

the details of the spectra are quite reasonable. The only disadvantage is that it 
is impossible to find a fundamental reason why the potential should be loga­
rithmic. Since the discovery of beautonium (also called bottomonium) in 1977 
no connection with fundamental field theory has ever been found. Many 
authors therefore claim that the resemblance is just an accident. 

Maybe a radical rethinking of what flavor independence means might estab­
lish a link between the quarkonia spectra and fundamental field theory. A very 
strong candidate for such a theory is Quantum Chromo Dynamics (QCD) in 
which quarks are endowed with 'color' -degrees of freedom and interact with a 
non-abelian gauge field, called the 'gluon' -field. Forces due to gluon exchange 
between quarks are independent of the quark mass and are therefore flavor­
independent, at least in first instance, since renormalization causes the 
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coupling constant to become a 'running' coupling constant which is fl.avor­
dependent. The latter is a small effect. Nevertheless, let us assume that the 
forces which bind the quarks are not independent of the quark masses, but pro­
portional to the quark masses. Then, instead of eq. (5) we have 

V(r,m) = mV1(r) + V2(m). (8) 

If we now solve eqs (2), (4) and (8), we find: 

V(p,m) = Cp2 + V2(m) } 
and 

V(r,m) = mCr2 + V2(m) 

With C = ; ""2 we find 

1 
V(r,m) = 2m'1J2r 2 + k(m), 

(9) 

(10) 

which is the isotropic harmonic oscillator potential with universal frequency ""· 
Fig. 3 shows the spectra. 

Although the harmonic oscillator potential makes a much better chance to 
follow from fundamental field theory than the logarithmic potential, one has to 
explain why the forces are proportional to the quark masses and why the phy­
sical spectrum deviates from the 'bare' harmonic oscillator spectrum. 

Note that when forces are proportional to the mass, accelerations are mass 
independent. Flavor independence of forces is replaced by flavor independence 
of accelerations. To reconcile this with the fact that gluon exchange gives rise 
to flavor independent forces, one must separate the forces due to perturbative 
QCD from those of nonperturbative QCD. Not much is known of the latter. 
In particular, it is not known how nonperturbative QCD can cause permanent 
confinement of quarks. Flavor independence of accelerations reminds one of 
gravitational forces. Also here the accelerations are more important than 
forces. Free particles follow timelike geodesics in a curved space-time and 
these geodesics are mass independent. This does not mean that masses are 
unimportant, because masses are sources of gravitation. Thus, although the 
sun and the planets all follow timelike geodesic trajectories in a curved space, 
the sun dominates the solar system because of its mass. We shall therefore try 
to give a geometric description of 'quasi-free' quark motion which only tem­
porarily subdues the importance of quark masses. The model presented here is 
manifestly classical. A consistent formulation in terms of a Lagrangian field 
theory can be given and opens the door to quantization. A real scalar dynami­
cal field q, is put to work for 'inducing' an alternative metric field g ""' called a 
quasi or induced metric. 
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2 THE HARMONIC OSCILLATOR AND THE ANTI-DE SITTER SPACE . 

Suppose that the harmonic oscillator spectrum be exact and that wave packets 
carry out exact harmonic oscillations with frequency w. The higher the energy, 
the larger the amplitude. let u be the displacement from the equilibrium posi­
tion. Then 

(11) 

The largest velocity is w times the largest displacement, but since the velocity 

can never surpass light velocity we have that Umax can never surpass 1... All 
"' 

oscillations take place within a sphere of radius R = 1... An idea of the magni-
"' tude of R can be obtained by determining the average level spacing /lE of all 

quarkonia states. Then R ~ ~ ~ 1 fm = 10- 15 m. The sphere of radius R 

can be visualized as a rigid 'bag', within which the quarks are confined. The 
heavier the quarks, the more they tend to concentrate in the center of the bag. 
Nevertheless, all mesons have the same size in our model. One could also think 
of the bag as wrapping a gluon cloud which must be nearly identical for all 
mesons. 

Let us define the following quasi-metric tensor field K,u, inside a sphere of 
radius R [3]. (The true metric tensor field is still 11,.,, = diag ( + 1,-1,-l,-l).) 

Kk1 = R{~,2 [ak' + R~k:_~2 ]· (k,I= 1,2,3), 

Kko = Kok= 0, 
R2 

Koo= 

(12) 

where r 2 = l:kxk2
, xk being the position of a point inside the sphere. Fig. 4 

gives an artists view of this metric by showing the quasi-unit spheres. Note 
that they become singular at the surface of the bag. Also, in the center the 
quasi metric tensor is equal to the metric tensor. 

The quasi-geodesic equation is, with x 0 being the time coordinate, 

(13) 

where 

-,,. - 1 ii>. r,.p - 2K (apK>-• + a .. K>.p-a>-K•P) (14) 

is the quasi affine connection and i the quasi proper time. Rewriting eq. (13) 
one finds, with x 0 = t: 

d 2xk 1 --= - -xk (15) 
dt 2 R 2 ' 
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Harmonic oscillator (w= 1) 
[a,H]= a 

[at,H]= -at 
[a,af]= 1 

One vacuum state 10) with 
aj0) =0 and (010) = 1 

H(attl0) = (Eo +n)(attl0) 
(0lan(attl0) > 0 

Lie algebra (w= 1) of SO(l,2)T 
[a,H]= a 

[at,H]= -at 
[a,at]= 1 

Two 'vacuum' states 10) and 10') with 
I. aj0)=0 and (0j0)=l 
H(attl0> = (Eo+nxattl0> 
(0jan(af)"j0) >0, providedEo>0 

2. atl0')=0 and (0'I0')=l 
Hanj0')= -(Eo+n)anl0') 
(0'l(at)"anj0') > 0, provided Eo>0. 

which is the isotropic harmonic oscillator equation with frequency w = ~ . 
Thus, all geodesics (quasi-timelik.e, -lightlike, or -spacelike) are at least parts of 
harmonic oscillations around one and the same space point with universal fre­
quency w, but those oscillations which are confined to the interior of the 
sphere are quasi-timelik.e and can represent particle motion. 

The metric (12) has a very high degree of symmetry. It is invariant under 
hyperbolic rotations of the group 0(3,2) or rather the universal covering of it. 
It is called the (universal covering of the) anti-de Sitter group and the metric 
space is the anti-de Sitter space. If space reflections and time reversal are omit­
ted one deals with the restricted group SO(3,2)r. The subgroup SO(3) ® SO(2) 
is important because SO(3) represents the spherical symmetry and SO(2) the 
invariance under time translations of the metric. 

In order to see that this has something to do with harmonic oscillations we 
compare the spectrum generating algebra of the one dimensional harmonic 
oscillator with the Lie algebra of the group 0(1,2) (see cadre). 

In fig. 5 a scetch in made of the harmonic oscillator and 0(1,2) spectrum. 
Note that the 0(1,2) spectrum displays a kind of 'Dirac sea' of negative energy 
states, which is characteristic of a relativistic model. By increasing PO one 
approaches more and more the nonrelativistic harmonic oscillator. This can be 
seen by making the following substitution 

H= Eo+H 

a= .../Eoa 
at= .../Eoat 

(16) 

and by subsequently ignoring Hin the expression for [a,a\ Then the Lie alge­
bra transforms into the spectrum generating algebra of the harmonic oscillator. 

There exists also a geometric way to show how a maximally symmetric space 
produces a quasi-metric within a sphere. Again we pass to the one-dimensional 
harmonic oscillator and consider a line element of length 2R instead of a 
sphere. For this we consider fig. 6. In this figure the maximally symmetric 
space is represented by a hyperboloid. Geodesics are obtained by intersecting 
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this by a plane through the center. Quasi-timelike geodesics correspond to cir­
cles or ellipses. The latter are closed. In order to open them up the hyper­
boloid is replaced by a 'scroll' representing the universal covering space. Each 
point on the hyperboloid represents points on an infinite number of Riemann 
sheets. 

In order to represent quasi-free particle motion on the 'scroll' by particle 
motion in our space we roll up our flat space time (2 dimensional in this case) 
into a cylinder and pass this through the neck of the hyperboloid. Next every 
point on the scroll is projected sheet by sheet on the cylinder by central pro­
jection. The plane which cuts out the ellipse on the hyperboloid now cuts out 
an ellipse on the cylinder. This in turn transforms into a harmonic oscillation 
when the cylinder is unrolled again. Since the projection lines cannot have 
angles smaller that 45° with the I-axis, the ellipses on the cylinder are confined 
to a strip of width 2R if R is the radius of the cylinder. 

3 A 'SOFT-BAG' MODEL FOR CONFINEMENT 

So far the bag has been considered as a rigid object containing a quasi metric 
field which confines quarks. In reality the bag should react to the presence of 
the quarks. In what follows a scetch will be given of how this could be 
achieved [4]. 

Suppose in our Minkowski space-time a real scalar field cp is present. We can 
see this as a solution of an Euler-Lagrange equation following from the 
Lagrangian 

1 ~.,,) = 2 a,,.cpa,,.cp- V(cp). (17) 

A massive field with q,4 interaction would have 

V(q,) = ~ µ.2rt,2 + ;! cp4, (18) 

but much more complicated forms can be found, even singular ones. We could 
use rp to construct a quasi metric, for example, 

g,,.. = ri,,.. + aa,,.cpa.cp. (19) 

This g,,.. must satisfy a number of conditions. It must have the same signature 
as ri,,.. and particles moving with quasi light velocity may never move faster 
that real light. This means that there should be a quasi light c-0ne which always 
should be inside the real light cone (see fig. 7). Suppose p/l is tangent to the 
particle trajectory on the quasi light cone. Then 

g,,..pP.p• = 0. 

Form eq. (19) it then follows that 

ri,,..pP.p• + a(pP.o,,.rt,)2 = 0. 

Thus we see that ri,,..pP.p•~o if a.;;;O. 

(20) 

(21) 

When a,,.rt,= 0 we find that g,,.. = ri,,.. and there is no difference between the 
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Minkowski metric and the quasi metric. When a,,.'P is small, the g,,.,, and ri,.. do 
not differ so much, but when a,,.'P is so large that 

I + aa,,_,pa"'q, = 0, (22) 

then the quasi light cone collapses into a line. If a,,.'P becomes even larger, then 
the signature changes such that the light cone disappears. Somehow the system 
should prevent a,,.'P from passing this point. There are more requirements 
which the metric must satisfy. If a collapse of the light cone takes place, it 
should be such that quasi free particles are prevented from passing that point. 
The 'bag', which is the set of space-time points in which collapse takes place, 
should act as an effective barrier for such particles (see fig. 8). 

Now suppose that there exists another real scalar field t with the following 
Lagrangian 

fa-}= ~ v'=-ggpaaptaat- ~ v'=-gµ,2t2, (23) 

with g= detg,,.. and gpa the inverse of gpa. Then since the Euler-Lagrange 
equation for t is linear in t, so that the superposition principle holds, we have 
to do with a free field in some sense. We shall call it quasi free and indeed, if a 
wave packet is constructed it will follow more or less a quasi timelike geodesic 
trajectory with respect to the metric g ,,. •. Such a wa:ve packet cannot pass the 
wall of the bag and is therefore confined. 

How can we construct a Poincare-invariant model? Write 

(24) 

If this is supplemented with the form of V(<f>) and the form of g,,.. as a func­
tion of T/,,_. and ap'P, then we have in fact a model in which e is a function of 
,,,,,.. (trivial),<{>, a,,.<t>, t, and a,,.t and these produce the Euler-Lagrange equations 

~=a~. (25) 
a.p p a(ap<t>) 

and 

ae ae 
af = ap a(apn ' (26) 

Because fen contains Op'P, eq. (25) differs from the equation 

ai;,i,> _ ai;,i,> ---a---, aq, p a(ap'P) 

which is not valid anymore. The latter would lead to a rigid bag, impervious to 
the motion of its contents, while eq. (25) reacts to the presence of the field t, 
which means that we deal with a soft bag. Since fc,i,) does not contain for aPr, 
the field f listens only to the metric g µr Thus f helps to shape g µ•• but once 
g,,.. is defined, the dynamics of f are completely subjected to g,,. •. Note also 
that e never contains second or higher order derivatives of the fields q, and t 
and that is how it should be. 
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Note that except for 'T/µ, all fields occurring in e are dynamical fields, e.g. no 
a priori defined nontrivial functions of xP. are present in the Lagrangian. 
Stated differently, the e is a completely Poincare invariant expression in terms 
of the dynamical fields. This leads to conservation of total energy, momentum 
and angular momentum. A stress-energy-momentum tensor density can be 
defined as follows. First rewrite ~4>) and fen; 

~4>) = ~ Mri(Jl•)a,,_q,a,q, - M V(q,), (ri= det'T/µ,), (27) 

with indices between brackets meaning symmetrization (in this case only a for­
mal operation), and 

e«) = ~ \/-g g(pa>aptaat- ~ \/-gµ,2 f, (28) 

and substitute this in the expression for e. Then determine 

TP.• = T'P. = -2~ · 
a'T/"' 

The tensor TP.• then satisfies the continuity equation 

a,T"' = 0. 

(29) 

(30) 

The factor -2 is chosen to make TP.• equal to the stress-energy momentum ten­
sor (density). The symmetry of T,,.. and the validity of the continuity-equation 
guarantee conservation of energy, momentum and angular momentum. We can 
now write 

where 

is the stress-energy-momentum tensor of the q,-sector (the 'bag') only, and 

Tffi = -2 agpo ~1 = ogpo TPO 
a'T/,,_, ag po a'TI,,.. ,,,.. 

(31) 

(32) 

(33) 

is the stress-energy-momentum tensor of the f-sector (the confined field). The 
force balance can be written in form 

a/Pen = -a. pt;>, (34) 

and keeps track of the flow of energy, momentum and angular momentum 
from the confined field towards the bag and vice versa. 

The symmetric tensor density TP0 is the quasi stress-energy-momentum ten­
sor density of the confined field. It leads to the notion of quasi energy and 
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quasi momentum, which according to eq. (33) may cliff er substantially from 
the real energy and momentum of the t sector. The quasi energy and quasi 
momentum are not conserved but locally conserved in the sense that 

DPT,...,= 0, (35) 

where D, denotes the quasi covariant derivative, i.e. 

D TJ.IP = a TJ.I• + rJ.I TP• + r· TJ.IP (36) 
p p PP pP· 

From eqs (17), (32), (33) and (35) it follows that, with □ = aµaµ. 

i)/.lc/>(Oq, + V'(q,)] = -a, [ !!: TP0 l · (37) 

This will be valid if Tpo satisfies eq. (35). Thus, the right hand side of eq. (37) 
must contain the factor aJ.1,p which then can be divided out. The result is 

□,p + V'(,P) = source term (38) 

The source term not only depends on the confined fields, but also on ,p itself. 
This scheme allows the contents of the bag to exert a pressure on the bag wall. 

It is interesting to note that point particles can take the place of fields. Let 

TF = m uJ.1~• a<3>[x-x0(t)], (39) 
u 

wherex=x0(t) is a given particle world line, gµ,uJ.lu• = 1, u0 >0, m>O and 
uJ.I is tangent to the curve x = x0(t). Then if x0(t) is a quasi timelike geodesic 
trajectory we have 

(40) 

Thus there is quasi local conservation of energy and momentum. True energy 
and momentum are not conserved but exchanged with the bag proper. A point 
source appears in eq. (38). 

Let us next elaborate on the shape of V(,P) in order to produce bags. Con­
sider a point particle with equation of motion 

Mx + U'(x) = 0, (41) 

where U(x) is some smooth potential with a spike at x =0 of finite height llU 
(see fig. 8). Suppose a particle is put on top of the spike. Although in unstable 
equilibrium, it may stay there forever. It may be there also for all times < t 0 

and then rolling off, either to the left or to the right. When it rolls off to the 
left it disappears forever. When it rolls off to the right it climbs until it reaches 
point P, then it runs back and comes to rest forever on the top of the spike 
(fig. 9). It may also periodically leave the top and come back (fig. 10). 

As a special case we may consider a linear potential with a spike. Then the 
particle trajectory consists of a segment of a parabola in between straight lines 
stretching out to infinity, or an infinite number of identical segments of para­
bolas interconnected by straight lines. In all cases we have 
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(42) 

When U(x)= px + spike, one finds that the total width !lT of each segment is 
equal to 

!lT=~. (43) 

Next consider the equation 

a2c1> - ~ + V'(c/>) = o. 
a,2 ax 2 

(44) 

If we are interested in static solutions this reduces to 

~ - V'(c/>) = 0. ax 2 
(45) 

Thus if 

V(cp) = -pq, + dip of depth llV (46) 

(see fig. 11), and if c/> satisfies the boundary condition 

lc/>I < c < oo for <f,➔ +oo, (47) 

then the solutions are the same as those of figs 9 and 10 with segments of par­
abolas, but now x replaced by c/> and t by x. By carefully combining two limit­
ing processes (the static limit and the limit of an infinitely thin spike) one finds 
solutions consisting of irregularly spaced identical segments of parabolas. In 
the case of three space dimensions one similarly finds static spherically sym­
metric solutions of uniform size. These are the 'bags' we are looking for. 
Inside the bags the field c/> forms segments of paraboloids, while in the space 
between the bags the field c/> is zero. Note that at the bag surface we have, with 
LlVbeing the depth of the dip: 

apcp8Pq, = -2/lV. (48) 

Of course, nonstatic solutions of nonspherical size also exist. They all are 
characterized by the existence of singular surfaces and regions where c/> van­
ishes. At the singular surface aPcpaP4> assumes a fixed value given by eq. (48). 

Finally there is the question of the relation between g fl" 1/µ, and q,. First of 
all, we would like g µv to become singular on the bag wall. Thus it must 
become singular when eq. (48) is satisfied. Then it should have the right signa­
ture, it should not violate causality and it should indeed act as an effective bar­
rier for quasi free particles or fields, massive or massless, when g 1-1• is singular. 
It may however give rise to a 'sticky' bag wall. Particles approaching the wall 
get glued to it as if they are falling towards a black hole. Also this must be 
prevented. Keeping in mind that second and higher order derivatives of c/> are 
not allowed to occur in g 1-1• one finds for the simplest functional form of the 
quasi metric tensor the inverse of 
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with 

1 
a= UV>O. 

For static, spherically symmetric solutions this leads to the form (12) with 

R= 3-VUV. 
IPI 

4 THE QUESTION OF HIGHER DERIVATIVES 

(49) 

(50) 

(51) 

Can higher derivatives always be prevented? Suppose we had a vector field A,. 
whose Lagrangian in flat space-time were given by 

e = - ; (a.,A ,.xa· A"> + ; ,...2 A ,.A,., (52) 

then in a curved space-time this should be written as 

1 - r-- -0 .... - - 1 . r-- p f.= - 2 v-gg..,.g"'(DyA 11)(DaAp) + 2 v-g1ig 11 A 11Ap. (53) 

The Dy introduces second derivatives of q, and so this e is not allowed. How­
ever, if we construct e in the way it should be done: 

1 1 
f.= --;;;F ,..F,.. + 2µ.2A,.A"' F,.. = a,.A.-a.A,., (54) 

then this gives for a curved space-time 

f.= - ! Y-ggaflg1"FayFpa + ; Y-ggaflA 11Ap, (55) 

which does not contain second derivatives of q, and which is therefore allowed. 
However, a quasi-covariant 'gauge fixing term' of the form 

1 -- 21,.(gpa D ,,A a>2 (56) 

is not allowed. This is not fatal, because there exist other gauge fixing possibil­
ities. 

Next, the quasi curvature tensor or its contracted forms are forbidden to 
enter. They clearly introduce higher derivatives of q,. 

Very special is the role of spinor fields. Here it seems as if the quasi affine 
connection is inevitable. We have in flat space-ctime 

(57) 

Its form in curved space-time is rather complicated and requires the introduc­
!i_on of so-called tetrad or vierbein fields. Somehow a,. must be replaced by a 
D,. which involves these auxiliary fields and the quasi affine connection. By a 
unique stroke of luck all second derivatives of cp drop out, provided q, is the 
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only field present in g'"' and provided the real curvature tensor does not occur 
in g'"' in any generalization of 11'"' to real curved space if one likes to do so. 
Under all circumstances minimal substitution of gauge fields, abelian or non­
abelian, is allowed. 

All taken together we see that most field Lagrangians fail to satisfy the cri­
teria. Also it seems that more than one field ct, is not allowed for constructing 
bags. However, scalar fields can be confined. More important, abelian or 
non-abelian gauge fields minimally coupled to spinor fields, are all allowed. 
Thus, the QCD-Lagrangian can be written in g"" language without causing 
trouble. Apparently, quarks and gluons can be confined within bags, and 
quarks can be given an electric charge. Moreover, quarks with large quasi rest 
masses dominate the scene. 

5 THE QUESTION OF STABILITY 

According to Derrick's 'lbeorem [5), solutions of the kind we have constructed 
are solutions which cannot be stable. This is reflected in the fact that V(0) is 
not the lowest value of V(cp). It might mean that unfilled bags cannot exist, but 
the question goes deeper. Consider eq. (38). In order to achieve stability one 
might introduce sources and simultaneously modify V(cp) such that, at least for 
static spherically symmetric solutions, ct, remains unchanged. If V(cp) can be 
modified such that V(0) is always smaller than V(cp) for #0, then stability is 
obtained. So far, no sources have been found which can achieve this. What can 
happen though is that the system becomes too stable and returns to the hard 
bag model. Thus stability is still a problem. We are however in good company: 
also classical electrodynamics is unstable unless point charges are given an 
infinite mass. There the problems are reduced to manageable proportions by 
quantization, regularization and renormalization. So it must be hoped that 
quantization helps to stabilize bags. 

Quantization might also throw light on the meaning of the field ct,. In this 
model it is treated as a fundamental field, like a Higgs field, but it may well be 
a condensate of already existing fields. As such it is then a pure quantum 
phenomenon. 
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Figure 1: Mass spectrum of neutral vector mesons 

V(r) = gtnr • C(m) 

Figure 2: Mass spectrum of mesons in the model of Quigg and Rosner 
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V(r): tmw1rZ.C(m) 

Figure 3: 'Bare' mass spectrum in harmonic oscillator model 

Figure 4: Static, spherically symmetric bag model with quasi unit spheres 
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Figure 8: Particle potential with 'spike' 
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Figure 10: particle motion for potential of fig. 8: infinitely many solitons 
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Figure 11 : Linear potential with dip 
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1. INTRODUCTION 

The Frenkel-Kac-Segal mechanism is interesting both from a mathematical and 
a physical point of view. Its mathematical investigation was initiated by Frenkel 
and Kac [2] and Segal [11]. It gives there a so-called untwisted vertex operator 
realization of the basic representations of the simply-laced affine Kac-Moody 
algebras (see e.g. [31). In physics it made its appearance through Halpern [8] 
(see also [61). Here we will discuss, following [7], how it gives rise to gauge fields 
in a bosonic string theory. This is called the Frenkel-Kac-Segal mechanism. 
It provides a way to introduce the fundamental interactions of nature as gauge 
interactions without assuming the existence of gauge fields from the outset. 
Moreover, there are only two possible choices for the gauge group: Es x Es or 
Spin(32) /Z2. 

In section 2 the bosonic string in Minkowski spacetime is reviewed, It is 
treated similar to the description of a relativistic particle by means of Hamil­
ton's action principle. For the action of the classical bosonic string the Nambu­
Goto action and the Polyakov action are discussed. For the Nambu-Goto ac­
tion the bosonic string is quantized via the so-called old-covariant appraoch. 
Its state vector space is constructed similar to that of the harmonic oscillator 
via creation and annihilation operators. Both the cases of open and closed 
strings are considered. 

Section 3 deals with the situations where symmetries in a classical theory 
are not preserved in the act of quantizing the theory. Such circumstances are 
dubbed anomalies. Here their appearance is treated in the setting of Feynman's 
functional integral quantization following Fujikawa (see e.g. [4] and [51). In 
order to retain conformal invariance in the quantized bosonic string theory one 
is lead to put the dimension of Minkowski spacetime equal to 26. 

Since spacetime appears to be four-dimensional 22 of these dimensions have 
to be made unobservable. In section 4 this is effected by toroidal compactifica­
tion. Its discussion is continued in section 5 where a special case of toroidal com­
pactification is considered. This gives rise to two . possible affine Kac-Moody 
algebras as spectrum generating algebras. 
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2. BOSONIC STRING 

In this section we discuss the classical as well as the qua!ltum theory of a 
bosonic string in the setting of the special theory of relativity. Spacetime of 
special relativity is a four-dimensional Minkowski space. In elementary texts 
this space is introduced in a simple (coordinate dependent) way, namely as R 4 

with a scalar product v · w := v 0w0 -v1w1 -v2w2 - v 3w3 (v,w E R 4 ). 

As a stepping stone towards the classical bosonic string we give a discussion 
of a particle in Minkowski spacetime. String theory will ultimately include 
gravity, and thus spacetime will be curved. It is for the sake of simplicity that 
we start with Minkowski spacetime. 

Spacetime The primitive concept of the theory of relativity is that of an event. 
This arises as follows. Every physical phenomena occurs somewhere in space 
and happens in a certain stretch of time. One can imagine this phenomena to be 
partitioned as a collection of happenings for which the extensions in space and 
durations in time are negligible for an accurate description of this phenomena. 
Such an 'infinitesimal' happening is called an event. Spacetime M is defined 
to be the set of all (possible) events. It is assumed that spacetime can be 
equipped with coordinate systems. More precisely, spacetime is assumed to be 
a differentiable manifold. In view of later applications the spacetime manifold 
is supposed to be n-dimensional, although the immediately observable world 
strongly suggests the value n = 4. The successive events in the history of a 
particle gives rise to a one-dimensional submanifold of spacetime, the worldline 
of the particle. 

The spacetime manifold of the theory of special relativity has more struc­
ture, it is assumed to be an n-dimensional Minkowski space M, i.e. an n­

dimensional affine space with a flat metric 'T/ with signature (1, -1, ... , -1). 
The fact that M is an affine space means that M is equipped with a fam­

ily of coordinate systems {(Ka, M) I o: E I}, where the coordinate maps 
Ka are defined on all of M (J is an index set) and Ka(M) = Rn. More­
over, all coordinate transformations Kf3 o K~ 1:Rn -, Rn are assumed to be 
(possibly inhomogeneous) linear transformations. Hence, denoting the co­
ordinates of x E M with respect to the charts Ka and Kf3 respectively by 
Ka(x) = (x°,x1, ... ,xn-l) _ (xµ) and K13(x) = (x01 ,x11 , ••• ,xn-l') = (xµ') 

one has 

(1) 

The coordinate systems (Ka, M) are called rectilinear and the coordinate trans­
formations (1) are called affine. In an affine space the concept of a straight line 
makes sense. Indeed, a straight line is by definition a curve "(: ,\ E R 14 M 
with linear coordinate expressions Kao 'Y: ,\ 14 ( v0 ,\ + c0 , v1 ,\ + c1 , ... , vn-l ,\ + 
cn-l) with not all vµ equal to zero. The whole point of the assumption that 
spacetime M of special relativity is an affine space is that it allows to represent 
the worldlines of free particles in this theory by straight lines. 
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Since the metric tensor field 1/ is taken to be fl.at in special relativity, the 
components of 1/ with respect to each rectilinear coordinate system form a 
constant symmetric n x n matrix with signature (1, -1, ... , ...:...1). By means of 
an affine coordinate transformation this matrix can be diagonalized, i.e. there 
exists a rectilinear coordinate system (11:, M) such that the components of the 
metric have the form 

(2) 

wherethecoordinatesofapointx E Maredenotedby11:(x) = (x0 ,x1, ... ,xn-l) 
= (xµ) E Rn and {8µIP};;;;;~ is the coordinate basis in the tangent space Tp(M) 
for the rectilinear chart (11:, M). Such a coordinate system (11:, M) is called a 
Lorentz coordinate system or Lorentz chart. Coordinate transformations be­
tween Lorentz coordinate systems are inhomogeneous Lorentz transformations 
(Poincare transformations). The only coordinate systems we will use here on 
Minkowski spacetime are Lorentz coordinate systems. Instead of the zeroth 
coordinate x0 we also write ct ( c speed of light) and t is called time or time 
coordinate of the event x EM with respect the Lorentz chart (11:, M). 

The Minkowski scalar product of a pair of vectors v, w E Tp(M) is denoted 
by v · w = 11(v,w) = 1/µvVµWv (summation convention) and, in particular, 
v2 = v·v. We use the notational convention that Greek indices run through the 
values 0, 1, ... , n-1 and that Roman indices run through the values 1, ... , n-1. 

Free massive particle It is assumed that the successive events in the history of 
a point particle form a one-dimensional submanifold £ C M diffeomorphic to 
the real numbers R. The whole history of this particle is described by this 
submanifold £, the worldline of the particle. Each diffeomorphism between £ 
and R parametrizes £ and thus gives rise to a curve 

-y: ..\ E R 1-+ -y(..\) E £ C M (3) 

in spacetime. Reparametrization of the curve (3) by means of a diffeomorphism 
f: ..\ E R 1-+ 5. = J(..\) E R gives a new curve i' defined by i'(>.) := -y(..\), i.e. 
i' ='Yo 1-1 . However, this new curve describes the same history of the particle 
since it involves the same events. That is, the curves 'Y and i' give rise to the 
same worldline £. It is to be stressed that the (physical) history of a particle is 
independent of the choice of a parametrization of its worldline. 

Let (M, 11:) be a Lorentz chart, then the coordinate expression of the curve 
'Y, i.e. 11:0-y: ..\ER 1-+ 11:('Y(..\)) E Rn, will be denoted by xµ = xµ(..\). A particle 
is called massive if all the tangent vectors 7 to its worldline are timelike vectors, 
i.e. 

dxµ dxv 
11(7,7) = 1/µv d..\ d..\ > 0 (..\ER) (4) 

A particle is called massless if 11( /y, 7) = 0 for all ..\ E R. A very useful parameter 
along the worldline of a massive particle is obtained from the arclength. The 
arclength s1~) along the curve 'Y between the points p = -y(..\1 ) and q = -y(..\2 ) 

on this curve is defined by 
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>..2 >..2 

s~~) := / Jr,C:-1,7)d). = f (5) 

Observe that the arclength of a segment of a worldline does not change under 
a reparametrization of this worldline. Let p0 = -y().0 ) be a fixed point on 'Y, 
then the parameter s = s().) assigned to the point x = -y().) is by definition 

the arclength s().) = s~~~- For a massive particle we will often use such a 
parameter s to parametrize its worldline, and its coordinate expression then 
reads xµ = xµ(s ). 

We now want to obtain, in a plausible way, the action S of a free massive 
particle (for the part of its worldline l between the events p and q on l). 
Let xµ = xµ().) be a coordinate expression of a curve representing l such 
that 1,,(p) = (xµ().i)) and 1,,(q) = (xµ(). 2 )). The action S is a functional of 
xµ = xµ().) and a function of the parameters ).1 and ).2 of the endpoints p and 
q: 

(6) 

The role of Sin classical physics is that it gives, via Hamilton's action principle, 
the equations of motion of the particle. Hamilton's action principle asserts 
the actual trajectory xµ = xµ().) of the particle for given endpoints xµ = 
xµ(). 1 ) and xµ = xµ(). 2 ) stands out from the collection of all other imaginable 
trajectories with the same endpoints by the property that S is stationary at 
xµ = xµ().i), i.e. 

~S[xµ + EYµ]I = 0 (7) 
d€ E=O 

for allyµ = yµ().) with yµ(). 1 ) = yµ(). 2 ) = 0 [all competing trajectories have 
the same endpoints!]. Let r be an event on l between p and q with 1,,(r) = 
(xµ().3)) ().1 < A3 < A2), then the actions S>,.1 >,. 2 [xµ] and S>,.1 >,. 3 [xµ] have to 
give the same equations of motion for ). E [).1 , ).3]. This can be implemented 
by requiring the action to be additive: 

(8) 

Taking n intermediate values A3 < A4 < ... < An+2 between A1 and A2 instead 
of only A3 this leads in the limit n -+ oo to 

(9) 

where 

From Hamilton's action principle (7), (9) and (10) follows the Euler-Lagrange 
equation 
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8£ 
axµ. 

8£ 8£ 
( d"'") + (d2"'") - •• · = Q 

8 dA 8 dA2 

(11) 

If£ contains second or higher order derivatives then the order of this differential 
equation may be of an order higher than two. In order to implement the 
common assumption that the proper initial conditions at A = Ao for a particle 
are its 'position' xµ.(Ao) and its 'velocity' ~"'{ (Ao) we want (11) to be a second 
order differential equation and thus we assume that £ does not contain second 
or higher order derivatives: 

dx,,. 
£ = £( x,,.' dA ) (12) 

Next we want to find an action for a free particle. For a free particle all points of 
spacetime appear to be equivalent. Hence we want the action of a free particle 
to be invariant under translations in M: 

(13) 

(14) 

Since all Lorentz coordinate systems are equivalent one assumes that the action 
is a scalar under Lorentz transformations. All Lorentz scalars which can be 
made out of the tangent vector 7 are functions of r,( 7, 7) = T/µ.v d:;{ d,;; . Hence 

1A2 dxµ. dxv 
SA1A2 [x,,.] = f(TJµ.v dA dA )dA 

Al 
(15) 

The choice of the parametrization of the worldline has no physical relevance. 
The requirement of invariance under reparametrizations off gives, e.g. 

A2 

SA1A2 [x,,.] = o: / 

Al 

where o: is a constant. Defining the Lagrangian L by 

S = J Ldt 

where t is the time coordinate, we find 

dx,,.dxv ~ 
L = O: T/µ.vdtdt = o:cy 1-~ 

(16) 

(17) 

(18) 

dld2d3 . 
where v = ( It , It , It ) is the velocity of the particle. In the non-relativistic 
regime v 2 «: c2 (18) gives 
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v2 
L=ae-a-+ ... 

2e 
(19) 

In the second term in the right-hand side of (19) we recognize the non-relativistic 
kinetic energy ½mv2 , with the constant m the mass of the particle. Hence we 
put a = me and the action of a free massive particle (for the part of its worldline 
between the events 1 (.-Xi) and 1 (.X2)) becomes 

.>..2 

S = -me I ✓11et,i')d,\ (20) 

.>..1 

The action Sis proportional to the arclength between 1 (.X1) and 1 (.X2). For the 
action (20) Hamilton's action principle gives, via its Euler-Lagrange equations, 
rise to 

d2 x" 
ds2 = 0 (21) 

Hence worldlines of free massive particles are straight lines in Minkowski space­
time. This is up to expectations, since a free particle is not subjected to accel­
erations. 

The action (20) is not suitable for massless particles (m = 0). There exists 
a nice alternative to the action (20). It has the advantage that it does not 
contain a square root, and moreover, it can also be used for massless particles. 
It requires, however, the introduction of an auxiliary field on the worldline 
l. This auxiliary field is taken to be a so-called one-bein field e on the one­
dimensional manifold l. 

More generally one defines an n-bein field on an n-dimensional semi-Rie­
mannian manifold (M,g) [the metric tensor g has signature (1, -1, ... , -1)] to 
be a set of n contravariant vector fields { ea I a = 0, ... , n - l} on M such that 
for all ea(x) E T.,(M) one has the orthonormality relations 

g(ea(x),eb(x)) = "lab (a,b = 0, ... ,n -1) (22) 

where '1/oo = -1111 = -1122 = ... = 1 and "lab = 0 for a I- b. The (holonomic) 
components e! of an n-bein field ea are introduced as usual by 

(23) 

where 8,. is a tangent vector to the µ-th coordinate curve. From (22) follows 
for the components of the ea 's 

9µvea"(xu)ebv(xu) ="lab 

and this implies 
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where (77ab) is the inverse matrix of (1Jab) (i.e. 1]ab = 1Jab), eaµ := 9µveav and 
e~(x.,.) := 1Jabebµ(x.,.). From (25) one sees that the metric tensor is uniquely 
determined by the n-bein fields, and so one can use n n-bein fields ea (a = 
0, 1, ... , n - l) instead of the metric tensor field g. To a given metric g their 
correspond, however, several n-bein fields. Indeed, let the linear transformation 

A(x): v E T.,(M) - v = A(x)v E T.,(M) (26) 

be a Lorentz transformation, i.e. for all v, w E T.,(M) one has g(v, w) = g(v, w), 
then the vectors {ea(x) I a= 0, l, ... , n - l} with ea(x) := A(x)ea(x) form an 
n-bein if {ea(x) I a= 0, l, ... ,n-1} is an n-bein. One has ea(x) = A(x)ea(x) = 
eb(x)A(x)h a and g(ea(x), eb(x)) = g(ea(x ), eb(x)) = 1Jab and consequently 

(27) 

and we see that (A(x)°b) is a Lorentz matrix. The n-bein fields ea(x) and ea(x) 
give rise to the same metric 

(28) 

For the invariant volume element Jjgfdnx with g := det(gµv) one has 
./jgfdnx = ednx where e := det(eaµ)- Notice that under a coordinate trans­
formation (xi') - (xµ') one has 

8xl' 
eaµ' = 8xl'' eaµ (29) 

We are now in the position to introduce an alternative action S = S[x,., e] of 
a particle in Minkowski spacetime. This new action depends on the worldline 
£ of the particle and on an auxiliary field e on £. This action has to be a 
Lorentz scalar and independent of its parametrization xi' = xl'(A) = xi'(>.) 
where 5. = >.(A) is considered as a coordinate transformation on £. Since 

dx,. dA dx,. 

d>. = d>. d.A 

a~d [see (29)] 

d.A e = --,,-e 
d.A 

one has 

v-l dx,. _1 dx,. 
e d>. = e d.A 

(30) 

(31) 

(32) 

The reparametrization invariant volume element of£ is ed.A. In view of all this 
the alternative action is taken to be 

(33) 
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Clearly this action is does not contain a square root and the constant m can be 
taken zero in it. Its Euler-Lagrange equations for xi-' and e respectively read 

!!.s[x,,.+ey,,.,eil =0 
de f=O 

{34) 

and 

dd S[x,,.,e + ef]I = 0 
€ f=O 

{35) 

for all yl-' = yl-'(,\) and f = J(,\) vanishing at the endpoints having parameters 
.\1 and .\2. From {35) follows 

-~ 8(e-111et,i') + m2e) = 0 {36) 
2 8e 

or 

e = ~ 
m 

{37) 

For m -:f:. 0 insertion of {37) in {33) gives back the original action {20). For 
m = 0 {35) gives 

{38) 

i.e. the tangent vectors to the worldline of a massless particle are lightlike. 
From {34) one obtains 

{39) 

Form -:f:. 0 one can choose,\= s (the arclength) and then e = m-1 and {39) 
becomes 

d2 
-x,,.=0 
ds2 

{40) 

For a massless particle {m = 0) one cannot choose ,\ to be equal to the ar­
clength. However,\ can be chosen such that e = constant and {39) then gives 

d2 
-x,,.=0 
d,\2 

{41) 

Classical bosonic string Whereas at a fixed time t a particle is represented by 
a point {event) in spacetime, a classical bosonic string is {at a fixed time t) 
by definition a differentiable curve at: { E [a, b] C R i-+ at({) E Ef-1 , where 
Ef-1 := {x E M I x 0 = ct} is the physical space at time t. For the sake 
of convenience we assume that this curve is not selfintersecting. There are 
two cases to distinguish. Either this curve has two different endpoints, i.e. 
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at(a) -:f: at(b), and then the string is called open, or the endpoints coincide, i.e. 
at(a) = at(b), and then the string is called closed. 

The history of the point c:rt(!o) (!o fixed ) of the string gives rise to a world­
line in le0 E M. Hence, the evolution of a string in the course of time gives rise 
to a subset E := Uele C M consisting of a one-parameter family (parameter !) 
of worldlines. The subset E is the so-called the worldsheet of the string and it 
is the range of the map 

({, t) E [a, b] x R - (ct, at({)) E M (42) 

We assume that the worldsheet E is a two-dimensional submanifold of M. 
For an open string this submanifold has boundaries, formed by the worldlines 
la and lb of the endpoints of the string. The worldsheet of a closed string 
has a tubelike form. Similar to the situation prevailing for a particle, the 
history of a string is determined by the points of the worldsheet E and its 
parametrization is irrelevant in this respect. Consequently we will not restrict 
to the parameters(!, t) of (42), but use more general parameters (u, r) instead. 
Let us furthermore assume for the sake of convenience that they coordinatize 
the whole worldsheet E. The coordinate expression of the worldsheet then 
reads 

:1;/-'=x"(u,r) (µ=0,1, ... ,n-1) (43) 

where the real parameters u and T are taken to run through the intervals 
0 ~ u ~ 1r and -oo < T < oo for an open string and they are taken to run 
through the intervals O ~ u ~ 21r and -oo < r < oo for a closed string. 
Furthermore we assume that r is a timelike parameter, i.e., the tangent vectors 
to the curves on the worldsheet with u = constant, - oo < T < oo are timelike, 
i.e. 

8x" 8xv 
1/µ.v 8r 8r > O (44) 

and that u is a spacelike parameter, i.e., the tangent vectors to the curves on 
the worldsheet with T = constant, 0 ~ u ~ 1r are spacelike, i.e. 

8x" 8xv 
1/µ.v 8u 8u < 0 ( 45) 

For a closed string one has the condition 

x"(O,r) = x"(21r,r) (-oo < T < oo) (46) 

Instead of requiring O ~ u ~ 21r it is sometimes more convenient to extend the 
range of u to all of R and make thereafter the identification 

x"(u, r) = x"(u + 21r, r) (-oo < u, T < oo) (47) 

The dynamics of the classical string is also described by means of Hamilton's 
action principle. As its dynamical variables are taken the functions x" = 
x"(u,r) [see (43)]. The action S of the string is then a real-valued functional 
of these functions x0 = x0 (u,r), ... ,xn-l = xn-1(u,r): 
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S: (x0 , ••• , xn-l) i--+ S = S[xµ] E R 

It has the form 
TJ a,r 

S = f dT f duC(xµ,8axµ,8-rxµ) 

T; 0 

(48) 

(49) 

where a= 1 for an open string and a= 2 for a closed string. Hamilton's action 
principle states that in the set of all a priori possible histories (worldsheets :E) 
the action S is stationary for the actually happening history of the string, or 
more explicitly: 

!!.s[xµ + AYµ]I = 0 
dA A=O 

for all functions yµ = yµ(u, T) satisfying 

yµ(u, Ti) = yµ(u, TJ) = 0 (0:::; u :::; a1r) 

Indeed, one has [see (49)] 

TJ 011" 

d I I I ( 8£ 8£ , 8£ . ) -S[xµ + AYµ] = dT du -yµ + --yµ + -_-yµ 
dA A=O 8xµ 8xµ' 8xµ 

where 

·µ ·- 8xµ 
X .- OT' 

Hence 

T; 0 A=O 

t OXµ 
xµ ·-­.- 8u 

Tf 0'11" 

d I / / ( 8£ 8 8£ 8 8£ ) -S[xµ +Ayµ] = dT du - - --- - --.- yµ 
dA A=O 8xµ 8u 8xµ' 8T 8xµ 

T; 0 

(50) 

(51) 

(52) 

(53) 

(54) 

Hence the action S is stationary if the right-hand side of (54) vanishes. The 
last term in the right-hand side of (54) vanishes due to (51), i.e. we determine 
the evolution of the string xµ = xµ(u, T) for a given initial configuration xµ = 
xµ(u, Ti) and a given final configuration xµ = xµ(u, TJ ). Thus we find 

TJ 'II" I I ( 8£ 8 8£ 8 8£ ) 8£ 1a=a,r 
dT du --------- yµ+ --yµ =0 

8xµ 8u 8xµ' OT 8xµ 8xµ' tr=O 
T; 0 

Recall that the factor 
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T' 8£ 
1r,,. = 1r ,,. == 8x"' (56) 

appearing in (54) is called the conjugate momentum. Here we have introduced 
the more elaborate notation 7rT',,. since we similarly define 

8£ 8£ 
'KIT •- -- - ---

/J, .- 8x"'' - 8( 81Tx,,.) (57) 

For all functions y"' = y"'(u, T) with a support contained in O < u < a1r and 
Ti< T < TJ one has 

T'/ 11" 

I dT I du ( 8£ - !_ 8£ - !!_ 8£ ) y"' = 0 
8x,,. 8u 8x"'' 8T 8x,,. 

(58) 

T'i 0 

since for these functions the last term in the left-hand side of (55) vanishes. 
Hence 

8£ - 8T' 8£ - 81T 8£ = 0 
8x,,. 8(8T'x"') 8(81Tx"') 

(59) 

for O < u < a1r and Ti < T < TJ· The equations (59) are called the Euler­
Lagrange equations of the string. An alternative form of these equations reads 

8£ ~ T' 8 IT O (60) 8X/J, - UT''Tr /J, - IT'Tr /J, = 
For a closed string the last term in the left-hand side of (55) vanishes due 

to y"'(O, T) = y"'(21r, T) and (46) [supplied with similar conditions for its deriva­
tives with respect to x"' and x"''· For an open string (55) gives, using (59), 

8£ I 8£ I ---,;; y"'(O) - ---,;; y"'(1r) = 0 
8x IT=0 8x 1T=a1r 

(61) 

Since y"'(O) and y"'(1r) are independent we arrive for an open string at the 
boundary conditions 

'KIT ,,.IIT=O = !:, I = o, 'KIT ,,.IIT='II" = !:, I = 0 (62) 
IT=0 1T=1r 

One candidate for the action S of the string is the so-called Nambu-Goto 
action. This action is proportional to the area of the worldsheet of the string 
between T = Ti and T = TJ· This choice is similar to the action of a particle, 
which is taken to be proportional to the arclength between two events of its 
worldline. Analogously the area of a surface does not change if this surface 
is reparametrized. Recall that the area dA of an infinitesimal element of the 
worldsheet bounded by the four curves T = constant, T + dT = constant, 
u = constant and u + du = constant 

dA = J(x · x')2 - x2x'2dudT (63) 
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The Nambu-Goto action is taken to be 
Tf a..-

S = -~ J dr J duJ(x • x')2 - x2x'2 (64) 

Ti 0 

where the real number T is called the string tension. Observe that x" and 
x'" are timelike and spacelike tangent vectors to the worldsheet of the string, 
respectively. The Lagrangian density corresponding to (64) reads 

.c = -~✓(x. x')2 - :i;2xi2 (65) 

The Euler-Lagrange equation (59) reads for this Lagrangian density 

(66) 

This equation of motion is a non-linear partial differential equation. The first 
term in curly brackets in the left hand of (66) is proportional to the conjugate 
momentum 1r,. = 1r-r µ = 1r,.(u,r) [see (56)]. The latter reads for the Nambu­
Goto action 

(67) 

Furthermore 

er T x,.(x · x') - x' ,.x2 
1r µ = ---';::::::::::::=:::::::::::===== 

C J(x • x')2 - :i;2xi2 
(68) 

From (67) and (68) one gets the following identities 

(1r-r)2 + T2 x'2 = 0 
c2 

(69) 

1r(T. :i; = 0, (70) 

For an open string the boundary conditions at the endpoints read [see (62)] 

(71) 

(72) 
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From (70), (71) and (72) follows 

x2I = x2I = o o-=0 o-=1r 
(73) 

This means that the endpoints of an open string move with the speed of light. 
For a closed string (66) is supplemented by the boundary condition (46) or (47) 
a closed string. 

By means of a reparametrization 

u 1-+ ii= ii(u,r), T 1-+ f = f(u,r) (74) 

one can be simplify the Euler-Lagrange equation (66). A reparametrization 
induces also a new coordinate expression fi/J = fi/J(u, r) of the worldsheet, 
where x/J(ii, f) := x/J(u, r). Recall that the evolution of the string is completely 
described by the events (points) on its worldsheet E and the choice of the 
parametrization of the worldsheet has no observable consequences. It can be 
shown that the reparametrization can be chosen in such a way that x satisfies 
the constraints 

x·x' =0 

Equivalently one has x2 ± 2:i; • x' + x'2 = 0, or 

(x ± x')2 = 0 

(75) 

(76) 

where the tilde has been and will be suppressed from now on. A parametrization 
of the worldsheet which satisfies (75) or (76) is called the orthonormal gauge. 
In this gauge the Euler-Lagrange equation {66) reads 

x -x" = 0 (77) 

This equation has the form of the wave equation in two dimensions. Hence in 
the orthonormal gauge the equation of motion (77) turns out to be linear. How­
ever, the constraints (75) [and (76)) on x/J are non-linear. In the orthonormal 
gauge the conjugate momentum (67) becomes 

7r/J = '£.:i;,.. 
C 

(78) 

The boundary conditions (71) and (72) for an open string take the simple form 

x',..(u r)I = x',..(u r)I = 0 (79) 
' o-=0 ' <1=1r 

The general solution of the equation of motion (77) is now given by means of a 
Fourier series with respect to the variable u. For an open string this solution, 
also satisfying the boundary conditions (79), reads 

1 00 

lx,..(u,r) = I:C:(r)cosnu 
n=O 

(80) 

where (77) implies that the c:(r)'s satisfy 
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(81) 

and I, is a real constant, to be fixed later in such a way that it sets, in a 
convenient manner, the scale of the integration constants resulting from the 
integration of {81). The general solution of (81) reads for n = 0 

and for the other values of n one has 

. sinn-r 
c:(r)=q!cosnr+q!-- (n=l,2, ... ) 

n 

(82) 

(83) 

where qP. = c~(O), pl' = c~(O), q:! = c:!(0) and 4:! = c~(O) are real integration 
constants. Insertion of (82) and (83) in (80) gives 

1 00 
• sinn-r 

lx,,(CT, r) = qP. + pl-'r + L {q! cosnr + q:-n-} cosnCT 
n=l 

Introduction of so-called harmonic oscillator variables by 

µ. ·- ! ( •µ. ±. P.) a±n .- 2 qn mqn (n=l,2, ... ) 

permits us to rewrite (84) as 

l L aP. . -xP-( CT, r) = qP. + pl-'r + i _.!!.e-mT cos nCT 
I, n 

n;,60 

For future reference we note that (85) gives for the complex conjugate 

From (78) and (86) follows 

C L . -7!' = ..JJ, + aP.e-mT cosnCT 
Tl ,, " n 

n;,60 

=pl'+ ~ L { a:e-in(T+u) + a:e-in(T-u)} 

n;,60 

Setting 

a~ := pl' 

this can be rewritten as 
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(85) 

(86) 

(87) 

(88) 
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(90) 

Next we indicate, following section 1.5 of [10), how the constraints (76) can 
be expressed in harmonic oscillator variables. From (86) follows, using (89), 

l(:i:"(u,r) ± x"'(u,r)) = f a:e-in(T±a) (91) 
n=-00 

Both these results are related by interchanging u and -u. Hence, if we declare 
(86) to hold on the extended interval -11" $; u $; 1r, instead of only on the 
interval 0 $; u $; 1r, we can combine the two constraints (76) into one. Namely 

{:i:(u,r)+:z:'(u,r)}2 =0, 

where [see (91)) 

00 

l(:i:"(u, r) + x"'(u, r)) = L 
From (92) and (93) we get 

i~ (:i:(u,r) +x'(u,r))2 = 

00 

n=-00 

00 

m,p=-oo 

n=-00 

L OmOn-m 

m=-00 

Hence the constraints (76) can be expressed as 

(nE Z) 

where Ln is defined by 

1 00 

Ln := 2 L OmOn-m 

m=-00 

(92) 

(93) 

(94) 

(95) 

(96) 

Similar to (33) there exists an alternative to the Nambu-Goto action which 
depends on :z:" = x"(u, r) and the two-bein ea [ea(u, r) E T.,(E) where :z: is the 
point in the worldsheet E with coordinates (u, r)]. This action is usually called 
the Polyakov action [9) although it can already be found in [1) by L. Brink, P. 
Di Vecchia and P. Howe. Let us denote the coordinates in the worldsheet E also 
by (!a)= (!0 ,e1) := (u,r). Recall [see (22)] that one has the orthonormality 
relations 

g(ea(u,r),eb(u,r)) = 1/ab (a,b E {0, 1}) (97) 

where 7/oo = -7J11 = 1 and 1/01 = 1/10 = 0. Consequently 
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(98) 

where (77°h) is the inverse matrix of ('Tlab), i.e. 'Tlab = 'Tlab and eaa. := 9a/3ea13 
[compare (25)]. From this one sees that the components of the 2-dimensional 
metric tensor g are uniquely determined by the 2-bein fields. The invariant vol­
ume element of the worldsheet reads edudr where e := <let( e0 f3) = <let(~­
A simple reparametrization invariant scalar containing the string variable xµ 
reads g<>-f38axµ813x"77µ 11 = e~e{11ab8axµ813x"11µv· In view of this the Polyakov 
action is taken to be 

(99) 

Since g<>-/3 = e~e{11°b8axµ813x"77µ 11 and e = F9 [g := det(ga.13)] this can be 
rewritten as 

Tj a,r 

S = ~~ J dr J du J=gg<>-13 8axµ813x"11µv 

Ti 0 

From 

~S[xµ,ga./3 + .Xk<>-13 ]1 = 0 
d.X ,\=O 

one finds 

8 µ8 " - 1 ( 758 µ8 ") a.X f3X 'Tlµv - ?,9o.{3 g -yX 5X 

Setting 

ho./3 := 8axµ 813x" 'Tlµv 

or as matrix equation 

we get [see (102] 

x · x') ,2 
X 

h - I ( -rca µ8 ") o.{3 - 29o.{3 g -yX 5X 

Hence 

1 
det(ha.13) = 4(g75 87xµ80x")2 det(ga.13) 

or [compare (104)] 

J(x • x')2 - x2 x'2 = J- det(ha.13) = ~(g7587xµ80x")FY 
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From this consequence of the equation of motion one sees that the Nambu 
action (64} and the Polyakov action (99) give rise to the same equation of 
motion of the string variable x" = x"(u, r). The following obvious remark has 
to be made. The equivalence of the Nambu action and the Polyakov action is 
here only derived in a classical setting. In a quantum mechanical theory this 
has to be reconsidered. 

Quantization We shortly recall the elements of quantum mechanics which are 
needed here. In quantum theory the fundamental classical dynamical variables 
are replaced by linear operators acting on a Hilbert space 1i. To begin with 
these operators are sufficiently characterized by means of (anti)commutation 
relations. A state of the system is represented by a non-zero vector in 1i, called 
a state vector. In Dirac's notation vectors in 1i are denoted by 1¢}, It/>}, ... and 
the inner product of the vectors 1¢} and It/>} is denoted by {¢I¢}. The vectors 
1¢} =f: 0 and Al¢} (A E C, A =f: 0) represent the same state of the system. 
Observables (measurable physical quantities} are represented by self-adjoint 
operators acting on 1i. These self-adjoint operators are thought to be con­
structed from the operators representing the fundamental dynamical variables. 
The relation between the quantum theoretical description of states and observ­
ables on the one hand and the outcome of experiments on the other hand is 
found in the probability interpretation. This can be stated as follows. Let the 
state of a system be represented by a non-zero vector 1¢} E 'Ji. One measures 
the observable A, represented by the self-adjoint operator A, repeatedly. For 
everyone of these measurements the system which is prepaired in the same 
state 1¢}. The outcome of a measurement is always a spectral value of the 
self-adjoint operator A. The mean value (expectation value} {A} of all these 
measurements is given by 

{A} = {,t,IAl,t,} 
{¢1¢} 

(108} 

Observe that the left-hand expression contains the quantity which is to be 
determined experimentally, and the right-hand expression contains the quantity 
which is to be calculated theoretically. 

There are several ways to quantize a classical system. For the classical string 
theory with the Nambu-Goto action we outline here the so-called old covariant 
approach. In this approach, which is similar to the Gupta-Bleuler formalism of 
quantumelectrodynamics, the classical canonical variables x" ( u, T) and 1r" ( u, T) 
are replaced by linear operators, and the latter will also be denoted by x"(u, r) 
and 1r" ( u, T). Due to this replacement the classical variables q", '[I' and a: 
in (86) also become linear operators and (86) becomes an operator identity. 
The equal-time canonical commutation relations of the operators x"(u, r) and 
1r"(u, r) read 

[x"(u, r), 7rv(u', r)] = iM(u - u')8! (109) 

[x"(u,r),xv(u',r)] = 0 (110) 
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and 

[1rlL(a,r),1rv(a',r)] = 0 

Observe that (109) can be rewritten as 

[1r1L(a, r), xv (a', r)] = iM(a - a')r,µv 

(111) 

(112) 

where T/µv := T/µv· These commutation relations lead to commutation relations 
for the operators qµ, pl-' and a~. Choosing 

l:= f7X" y;r 
one obtains 

Equation (86) has to be replaced by 

al't ·= aµ 
n · -n 

where t means hermitian conjugation. From (115) and (116) follows 

(a~, a~t] = -nDmnT/µv (m, n = l, 2, ... ) 

(113) 

(114) 

(115) 

(116) 

(117) 

The next step will be the construction of the state vector space of the bosonic 
string. The theory of the linear harmonic oscillator will serve as a stepping 
stone. 

Linear harmonic oscillator The operators { a~} are, indeed, with good reason 
called harmonic oscillator variables as can be seen from the following results 
pertinent to the harmonic oscillator in one dimension. We give here a rather 
elaborate discussion of the energy eigenvalue problem of the harmonic oscillator 
since we will encounter a similar situation in the treatment of the state vector 
space of the bosonic string. 

The hamiltonian H of the one-dimensional harmonic oscillator is given by 

p2 1 
H=-+-mw2q2 

2m 2 

= hw (L + mwq2
) 

2 mfiw 1i 
(118) 

where p is the momentum operator and q the position operator of the particle 
oscillating with frequency v = w /21r. The operators p and q are characterized 
by their commutation relation 
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Introducing the dimensionless operators 

p := r;;r;;p, 
one gets 

fmw 
Q : = V r; q 

1iw 
H = -(Q2+P2) 

2 

and 

1i 
[P,Q] =-:-

1 

(119) 

(120) 

(121) 

(122) 

Hence, inspired by the identity a2 + b2 = ( a - ib )(a+ ib) for c-numbers, one can 
write for the operators P and Q 

Q2 +P2 = (Q-iP)(Q+iP) +i[P,Q] = ata+ 1 

where 

Q+iP 
a:= J2 ' 

t __ Q-iP 
a .- J2 

From (121) and (123) follows 

H = 1iw(ata + !) 
2 

(123) 

(124) 

(125) 

Due to (122) and (124) the operators at and a satisfy the commutation relations 

Immediate consequences of (125) and (126) are 

[H,at] = 1iwat 

and 

[H, a] = -1iwa 

(126) 

(127) 

(128) 

From (127) and (128) follows that a and at can be used to produce new 
eigenvectors of H from old ones. Indeed, if 17P) is an eigenvector of H with 
eigenvalue E, i.e. Hl1P) = El1P), then (128) gives via action on 17P) that 
H(al1P)) - E(al1P)) = -1iw(al7P)) and consequently al"P) is either an eigen­
vector of H with eigenvalue E - 1iw or it is the zero vector. Similarly, if 17P) is 

an eigenvector of H with eigenvalue E then at 17P) is either an eigenvector of H 
with eigenvalue E + 1iw or it is the zero vector. Instead of the hamiltonian H 
one can equally well analyze the so-called number operator 
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N := ata 

From [see (125) and (129)] 

1 
H = Tiw(N + 2) 

(129) 

(130) 

one sees that H and N have the same set of eigenvectors. Denoting the eigen­
value equation of N by 

NJn) = nJn) (131) 

where we have labelled an eigenvector by its eigenvalue n E R. The analogues 
of (127) and (128) are 

[N,at] = at (132) 

and 

[N, a] = -a (133) 

From (133) it follows that N(aJn))-n(aJ1P)) = -(ai1P)) and consequently ain) 
is either an eigenvector of N with eigenvalue n - I, i.e. aJn) ex Jn - 1), or 

it is the zero vector. Similarly, it follows from (132) that atln) is either an 

eigenvector of N with eigenvalue n + I, i.e. atJn) ex In+ 1), or it is the zero 
vector. It is assumed that the eigenvalues of N (and for that matter of H) are 
non-degenerate. Note that 

1 
Hin) = Tiw(n + 2)1n) 

Furthermore the eigenvectors are taken to be normalized 

(nln) = 1 

(134) 

(135) 

The spectrum of N is a subset of the non-negative real numbers since for an 
eigenvalue n of N one has 

0 ~ JJaJn) 11 2 = (nJa t aJn) = (nJNJn) = n (136) 

[see (129) and (131)]. Hence, if n-:/- 0 then aJn) -:/- 0 is an eigenvector of N with 
eigenvalue n - I or using (135), (136) and choosing a suitable phase factor in 
the eigenvectors one has 

aJn) = v'nln - 1) (n > 0) (137) 

We are now ready to conclude that the eigenvalues of N are n = 0, I, 2, .... 
Suppose that Jx) (x > 0) is an eigenvector of N with x -:/- 0, I, 2,.. .. Let 
p be a natural number and p > x, then aPJx) is an eigenvector of N [see 
(137)] with a negative eigenvalue, namely the eigenvalue x - p < 0. This is 
a contradiction and hence it follows that the only possible eigenvalues of N 
are given by n = 0, I, 2, .... Let lno) be an eigenvector of N then one gets 
by repeated action of a the new eigenvectors alno) ex lno - 1),aJno - 1) ex 
Jno - 2), ... , al2) ex II), aJl) ex JO). At this point this ladder has to stop, since 
otherwise one would get a negative eigenvalue. Thus [compare (136)] 
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al0} = 0 {138) 

Observe in this formula the difference between the unit vector I0} and the zero 
vector in its right-hand side. By repeated action of at one obtains the new 
eigenvectors at lno} a: lno + 1}, a tlno + 1} <X lno + 2},.. .. This part of the 
ladder does not stop [compare {136)]. Hence for each n = 0, 1, 2, ... there is an 
eigenvector In} and the action of a on the eigenvectors of this ladder is given 
by {137) and {138). The eigenvalue En of In} for the hamiltonian His given 
by [see {134)] 

{139) 

The eigenvector I0} has the lowest energy eigenvalue and the corresponding 
state is called the ground state of the harmonic oscillator. Under the action of 
a on eigenvectors of H the energy eigenvalue decreases by an 'energy quantum' 
1iw and therefore a is called the annihilation operator. From a tin} <X In+ 1} 
follows by means of {135) and a proper choice of the phase factors in the 
normalized eigenvectors 

atln} = vn+ 1 In+ 1} {n = 0,1,2, ... ) {140) 

Hence, under the action of at on eigenvectors of H the energy eigenvalue in­
creases by an 'energy quantum' 1iw and therefore a is called the creation oper­
ator. From {140) follows 

or 

1 t 1 t2 
In} = ~a In - 1} = --;:::==a In - 2} = ... 

yn Jn(n-1) 

1 t n 
In} := J:"'"i(a ) I0} 

vn! 

{141) 

{142) 

In summary, the state vector space 1i of the linear harmonic oscillator is 
spanned by an orthonormal basis {In} In= 0, 1, 2, ... } of eigenvectors of N and 
H with eigenvalues n and nw(n+ ½), respectively. The ground state vector has 
the lowest eigenvalue and it is characterized by al0} = 0 [see {138)]. All other 
eigenvectors In} of N and H are obtained from the ground state vector I0} by 
means of the repeated action of the creation operator [see (141)]. The energy 
eigenvalues are given by {139). We conclude this section with a comment on 
the role played by the following modification in the sign in the right-hand of 
{126): 

when we still adhere to al0} = 0. Let 

I-rt,} := at I0} 
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then the scalar product of this vector with itself is given by 

(145) 

or 

('¢1'¢) = ±1 (146) 

Hence with a minus sign in the right-hand side of (143) the vector space re­

sulting by a repeated action of at on IO) has an indefinite scalar product. 

State vector space of the bosonic string Inspired by all this we next turn to 
the construction of the state vector space 1{ of the bosonic string. This is the 
Hilbert space containing all vectors representing physically realizable states. 
The action of the operators qµ, pµ and a~ has to be defined on a dense domain 
in 1-f. Below we will see that the state vector space 1{ is a proper subspace of the 
representation space R of the operators qµ, pµ and a~. Since the observables 
xµ(l1', r) and 1rµ(l1', r) are represented by self-adjoint operators, the operators qµ 
and pµ are self-adjoint operators. The operators a~ (n = ±1, ±2, ... ) are not 

self-adjoint. By comparison of (117) and (126) one sees that a~t (n = 1, 2, ... ) 
are creation operators, and that a~ (n = 1, 2, ... ) are annihilation operators. 
The analogue of the ground state of the harmonic oscillator is here the vector 
denoted by IO) E R (same notation as for the harmonic oscillator!), however, 
it is now characterized by 

a~IO) = 0 (n = 1, 2, ... ) 

PµIO) = 0 

Let -y = (-yµ) E Rn and q = (qµ) = (q0 , ••• ,qn-l) then the vector 

1-r) := e-inlo) 

(147) 

(148) 

(149) 

is an eigenvector of the pairwise commuting operators p = (pµ) = (p0 , ••• ,Pn-l ): 

This is an immediate consequence of (148), (114) and 

[pµ, e-h·q] = -yµe-i7-q 

Observe that 

(150) 

(151) 

(152) 

since eigenvectors of a self-adjoint operator with different eigenvalues are or­
thogonal. From the vectors b) one obtains a basis of R by means of repeated 

action of creation operators a~t (n = 1, 2, ... ) on these vectors. In this way 
we get the basis 
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(153) 

wheren1,n2, ... ,np,••·=-l,-2, ... (pEN+)-
Next we implement the constraints (76) in the quantum mechanical setting. 

Replacement of the O:n 's in (96) by there corresponding operators leads to am­
biguous results, since the classical quantities O:n and o:_n commute, wheras 
their corresponding operators do not commute. This is usually remedied by 
replacing products of classical quantities by the so-called normal ordered prod­
uct of their corresponding operators. Normal ordering of a product of creation 
and/or annihilation operators means that in this product these operators are 
put in an ordering where all annihilation operators occur to the left of all cre­
ation operators. Note that all creation operators commute, and likewise, that 
all annihilation operators commute. Normal ordering of a product of creation 
and/or annihilation operators is indicated by putting colons around this prod­
uct, i.e. 

Thus the operator corresponding to the classical Ln is defined to be 

1 00 

Ln := 2 L : O:m • O:n-m: 

m=-oo 

where O:n = (a::). This gives in particular 

where we introduced 

N := L O:n t · O:n 

n>O 

(154) 

(155) 

(156) 

(157) 

Since the classical constraints Ln = 0 cannot be implemented as operator 
equations Ln = 0 one proceeds as follows. One defines a so-called physical 
state l'I/J) by the conditions 

(158) 

and 

(159) 

These states form the subspace of physical states. From (158) follows 
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This [(158)-(160)] gives rise to 

('1/J I Ln - 8onA I '1/J) = 0 

(160) 

(161) 

for all n E Zand physical states I '1/J). This is the quantum mechanical analogue 
of the classical constraints Ln = 0. In the subsequent section we will argue that 
the dimension of Minkowski spacetime n = 26 and ,\ = 1. Restricted to the 
subspace of physical states one has 

1 
2p2 +N = I (162) 

The momentum of the string is given by 

pµ = 11r 71"µ(1T)d1T = ~pµ (163) 

With the definition of the operator of the square of the mass M 2 := P 2 one 
gets on the subspace of physical states using (162) 

M2=271"hT(N-I) 
C 

(164) 

Tachyon From (150) and (156) follows 

1 1 
-rr2h) = - 2P2 h) =Loh)= h) (165) 

Hence the mass-squared of the states (149), i.e. the eigenvalue m 2 of M 2 , is 
given by 

m2 = ,2 = -2 (166) 

Hence the momentum pµ of these states is spacelike, whereas for particles 
with a speed not exceeding the speed of light the momentum pµ is timelike or 
lightlike. The states (149) describe a particle with a superluminal speed. Such 
particles are called tachyons. They are not observed in nature. By introducing 
additional fermionic degrees of freedom in the string model the tachyon can be 
eliminated from the theory. The resulting string model is called a superstring. 
Here we will, however, stick to the bosonic string. Actually we will consider the 
closed bosonic string, because it is this string for which we have the Frenkel­
Kac-Segal mechanism. 

Closed string The parameter expression of the worldsheet of the closed string is 
given by xµ = xµ(IT,T) where O :SIT '.S 271". Actually one can take -oo <IT< oo 
if one supplements this by 

(167) 
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The general solution of the Euler-Lagrange equation in the orthonormal gauge 
(77) 

x"(u,r) = g"(r + u) + h"(r - u) (168) 

where g and h are arbitrary (twice-differentiable) functions. The solutions 
x"(u, r) = g"(r+u) are called left-movers and the solutions x"(u, r) = h"(r-u) 
are called right-movers. We will rewrite (168) as 

½x"(u, r) = ½xi(ei(..-+a-)) + ½x~(ei(..--a-)) 

Furthermore 

and 

From (167) and (169)-(171) follows 

pt=~=P 
The canonical commutation relations of Xi, x~, 1rf; and 1r: lead to 

[ LI' LV] [ RI' RV] ~ µv am , an = am , an = mum,-n11 

Defining 

LL·- 1 ~.,.,,L ,.,,L I'. 
n .- 2 ~- '-'mµ'-'n-m ·, 

m 

LR·- 1 ~.,.,,R ,.,,R I', 
n ·- 2 ~- '-'mµ'-'n-m · 

m 

the states l'P} of the physical subspace are characterized by 

L~l'P} = 0, L!l'P} = 0 (n = 1, 2, ... ) 

and 

(169) 

(170) 

(171) 

(172) 

(173) 

(174) 

(175) 

(176) 

(177) 

(178) 

where again the dimension of Minkowski spacetime is taken to be 26. The 
generator of translations in u is L!;, - L!!. Since the choice of the origin u = 0 
is arbitrary this generator has to be zero: 
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L L-LR 
0 - 0 

The momentum of the closed string is given by 

P,,.=2~p,_. 

With M 2 := P 2 one finds 

M 2 = 41rnT (NL+ NR - 21) 
C 

where 

NL:= I:a~t -a~ NR := I:a~t · a~ 
n>O n>O 

From (176), (179) and (182) one obtains 

NL=NR 

3. ANOMALIES 

(179) 

(180) 

(181) 

(182) 

(183) 

Field theories occur in two species: a classical version and a quantum theo­
retical version. The quantum theoretical version is mostly obtained from the 
classical version by a so-called quantization procedure. Some aspects of the 
classical theory have their analogues in the corresponding quantum theory. 
In many classical field theories symmetries and conserved quantities give rise 
to symmetries and conserved quantities in the corresponding quantum theory. 
There are, however, exceptions to this rule. In such a situation one speaks of 
anomalies. For the classical version we will consider here a so-called classical 
lagrangian field theory. 

Classical lagrangian field theory The main ingredients of such a theory are its 
fundamental dynamical variables, called fields, its action and its observables 
(measurerable quantities). The fields are a finite set of maps 

<fr x EM 1-t <Pi(x) EC (i = 1, ... , N) (184) 

where M is a differentiable manifold. Usually M is the spacetime manifold 
consisting of all possible point-events. An example is provided by the four­
dimensional Minkowski space (M, 7/ of special relativity and more generally 
the four-dimensional semi-Riemannian manifold (M,g) of general relativity. 
Here g is a metric on M with signature (1, -1, -1, -1). An example of a field 
on spacetime M is the electromagnetic field strength, which is represented by 
a 2-form Fon M. However, M may as well be the two-dimensional worldsheet 
~ of string theory. The fundamental dynamical variables are in this case the 
maps 

(185) 
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with coordinate expressions x/J = x/J(u, r). Classical mechanics can also be 
considered as a field theory. Then M is the one-dimensional manifold of time 
T. In the lagrangian formalism field are then maps 

t ET 1-t (q(t), q(t)) E T(Q) (186) 

where T(Q) is the tangent bundle of the configuration space Q. 
Fields will collectively be denoted by • = (x1 , ... , xN). The action S is a 

given real functional of the fields, i.e. a map 

s: • ...... s[•l e R (187) 

It is assumed that the action has the form 

s = L £(•,a,,,.,a,,,a.,., ... )dnx (188) 

where n is an open subset of M. For the sake of convenience we have assumed 
here that it is contained in the coordinate neighbourhood of a chart (U, K-) of 
the differentiable manifold M. Denoting the coordinates of x E U by K-( x) = 
(x1 , •.• ,xn) we have a,,, = a:,.' dnx := dx1dx2 .. • dxn and µ, V = 1, ... ,n. 
The function real function£= £(•,a,,,.,a,,,a.,•, .. . ) is called the lagrangian 
(density). The dependence of S on n will be made explicit by the notation 
S::So,. 

The equations of motion of the fields are obtained from the action by means 
of Hamilton's action principle. For the particular case of the string this was 
already given in (50). Its general form reads 

d~ So[•+ ..X"\li]'~=o = O (189) 

for all fields "\li which vanish on the boundary an of n. The Euler-Lagrange 
equations corresponding to (189) read for x E n 

ac ac ac 
8</)i - a,,, 8(8,,,<j)i) + a,,,a., 8(8,,,8.,<j)i) - ... = 0 (i = 1, ... , n) (190) 

In many cases one has a lagrangian £ = £( •, a,,.•) and then only the first two 
terms in the left-hand side appear. 

The observables of a classical lagrangian field theory are functions O = 
O(</Jl, ... , </Jn) of the fields. Some observables are related via Noether's theorem 
to smooth families of symmetries of the action. A transformation of the fields 

(191) 

is called a symmetry transformation if there are functions M"' of•• a,,.•, ... 
such that 

(192) 

This implies, using Gauss' theorem, 
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S[i]=S[cJ]+ { Alt(cJ,8,.cJ, ... )dult Jan (193) 

where do-It is a surface element of the boundary an of n. From (193) and 
Hamilton's action principle [see (189)] follows that i is a solution of the Euler­
Lagrange equations iff cJ is a solution of the Euler-Lagrange equations. 

We now state Noether's theorem. Let 

(194) 

that is 

(195) 

be a smooth one-parameter family of symmetry transformations. Then (192) 
takes the form 

(196) 

On the other hand 

(197) 

and using the Euler-Lagrange equations for the first factor in the first term 
under the summation sign in the right-hand side of (197) one gets 

d A A I ( 8£ ·) dc:C(cJ,8µcJ, ... ) e=O =8µ 8(8,.¢i)F' (198) 

From (196) and (198) we get the following continuity equation (differential 
conservation equation): 

a,.J" = o (199) 

where the so-called Noether current JI' is defined by 

µ ·- 8£ i µ 
(

N ) 
J .- tt 8(8,.¢i) F - A (200) 

We will now indicate how (199) leads to global conservation laws. Firstly (199) 
implies 

0 = { 8,.J"dnx = { J"du,. ln Jan (201) 

Secondly, let the boundary an consist out of two disjoint connected subsets 
E1 and E2 and let 8E be the common boundary of the closures of E1 and E2. 
Reversing the orientation of e.g. E2 permits us to rewrite (201) as 
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(202) 

Defining 

Q(E) := t. Jl''da,, (203) 

we conclude that Q(E) is the same for all E's with the same boundary. 
The meaning of all this becomes clear when we consider in the setting of 

special relativity the example of the electromagnetic four-current j'-'(x11 ) = 
(cp(ct,x),j(ct,x)) where pis the electric charge density and j = (j1,j2,j3 ) is 
the electric current density (c is speed of light). We assume that j'-' vanishes 
sufficiently rapidly at spatial infinity lxl -t oo. The charge at time t is defined 
by the spatial integral 

Q(t) := f p(ct,x)dx 
j'E(t) 

(204) 

with E(t) the hyperplane in Minkowski spacetime consisting of all events with 
x0 = ct = constant with respect to a given Lorentz coordinate system. Here 
we have the pendant of (199): 

(205) 

The independence of the hyperplane E(t) [see (202)] leads in this case to charge 
conservation 

dQ(t) = O 
dt 

(206) 

Similarly Q(E) from (203) gives rise to a conservation law for a suitable one­
parameter family (parameter T, e.g. T = t) of hypersurfaces E = E(T). The 
following fact is very important: if translations x'-' I-? x'-' + c:'-' in Minkowski 
spacetime give rise to symmetry transformations then Noether's theorem leads 
to the conservation law of energy and momentum. Indeed, spacetime transla­
tions give rise to the following 4-parameter family of transformations of fields 
[compare (195)] 

c[i(x'-') := ¢\x'-'+c:'-') = ¢i(x'-')+c:1t81t¢i(x'-')+O(c:2 ) (i = 1, ... ,N)(207) 

If the lagrangian does not depend explicitly on ( xl then 

a!l<.c(¢i(x'-' + c:'-'),811</Ji(x'-' + c:'-'), .. ·{=0 

0~1< .C.(¢\x'-'), 8v¢i(x'-'), .. . ) = 8,,(8~.C) 
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Hence in this case the transformations (207) are symmetry transformations. Let 
us denote the Noether current J/J corresponding to the one-parameter family 
obtained from (207) by setting cµ = 0 forµ f= K by 0,cµ then 

- ,, - a.c i - ,, 
(

N ) 
0,c - tt 8(8,,</i) 8,ccp 8/C.C (209) 

and one has 

(210) 

The conserved current 0,cµ is called the canonical energy-momentum tensor. 
The four conserved charges 

(211) 

form the four-momentum of the system. In particular cP0 = H is the energy 
of the system and 

_ o _ (~ a.c i) 
0o - {;;;: 8(8ocpi) 80</J - .C (212) 

is the energy density. Notice that these observables are indeed functions of the 
fields. 

Feynman quantization There are various quantization procedures for classical 
theories. Here we will use Feynman's quantization procedure although it is in 
many instances mathematically ill-founded due to its liberal use and handling 
of functional integrals. In this method all kinds of physical quantities are 
expressed in terms of functionals. We will restrict ourselves here to the so­
called r-fuctions (also somewhat misleadingly called Green's functions). The 
r-fuctions contain all the information about the scattering of the particles of 
the quantum field theory in question. Scattering of particles is described in 
quantum theory by means of scattering amplitudes. Scattering amplitudes 
are complex valued functions of the variables which are used to describe the 
states of the incoming and the outgoing particles of a scattering process. The 
probability that a particular scattering process occurs is obtained from the 
square of the absolute value of the corresponding scattering amplitude. So 
the description of scattering processes is completely encoded in their scattering 
amplitudes. In turn, the scattering amplitudes can be obtained by means of 
the reduction formulas of Lehmann, Symanzik and Zimmerman from the above 
mentioned r-fuctions. 

We will define r-fuctions and their expression in terms of Feynman's func­
tional integrals starting from the classical field theory with one real scalar field 
cp on Minkowski spacetime. The lagrangian is taken to be 

(213) 
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with e.g. 

(214) 

The corresponding hamiltonian density 1i is obtained by a Legendre transfor­
mation, i.e. let 

8£ 
1r:=-. 

8¢ 
(215) 

be the conjugate momentum then under the assumption that ¢ can be solved 
from (215), giving¢= /(¢,1r), then 

0 bserve that 

1i:=0o0 

For the lagrangian (213) one has (setting c = 1) 

7r = 80¢ 

and (216) yields 

1 1 1 
1i := 21r2 + 2"¢. \1¢ + 2m2¢2 + V(¢) 

(216) 

(217) 

(218) 

(219) 

and integration over a hyperplane E(t) gives the hamiltonian of the classical 
theory 

H := J rldx 

= j {½1r2 +½\1¢•V¢+½m2¢2 +V(¢)}dx (220) 

In the quantization procedure the real scalar fields ¢(x) and 1r(x) are replaced 
by a self-adjoint operator fields denoted by ¢(x) and zr.(x). The Hamilton 
operator H is obtained from (220) by replacing the classical fields ¢(x) and 
1r(x) by their corresponding operator fields </J(x) and zr.(x) and specifying some 
ordering prescription, e.g. normal ordering in the interaction picture (in the 
interaction picture the fields are free fields). The spectrum of H is bounded 
from below and it is assumed that there has been added such a constant to 
the hamiltonian that its lowest eigenvalue is equal to zero. The eigenstate with 
the lowest eigenvalue of H is called the ground state or more specifically the 
vacuum state. For m2 > 0 it can be made easily plausible that the ground state 
is non-degenerate and an normalized vector representing this state is denoted 
by IO}. Hence 

101 



HIO} = 0 (OIO} = 1 (221) 

We are now finally in the position that we are able to define the -r-fuctions: 

-r(x1, X2, ••• , Xn) := (OIT(t(x1)f(X2) • • -f(Xn))IO) 

wherein T denotes the time-ordering instruction defined by 

T(f(X1)f(X2) · · · f(Xn)} := f(Xii}f(Xi2) • · · f(Xin) 

(222) 

(223) 

if x?1 > x?2 > ... > xt. Hence the time-ordering instruction puts the op­
erators in an ordering such every operator with an earlier time x0 stands to 
the right of each operator with a later time. In Feynman's quantization a -r­
function (like other physical quantities) is expressed in a functional integral. 
A functional integral is the (mystifying) modification of an ordinary integral 
J f(x)dx obtained by replacing the integration variable x by a function (in 
our case the scalar fields on Minkowski spacetime M) and the the function 
f = f(x) by a complex-valued functional F = F[cf,]. Notationally this has the 
following effect 

j dx f(x) _. j Vcf,F[cf,] (224) 

A rigorous definition of a functional integral exists only for special simple cases. 
In the physicist's approach functional integrals are often introduced by means 
of a lattice approximation. Take for instance a cubic lattice in some hypercube 
C in Minkowski spacetime M. Let us denote the lattice points by x1, x2, ... , x N. 
We assume that there exists some approximation cj,(a) of the classical field cf, 
which is completely determined by the values of the field cf, in the lattice points 
x1, x2, ... , x N, more in particular 

(225) 

Herewith a scalar field cf, is replaced by a finite set of real numbers ¢1, ... , cf, N. 

The value of the functional F[cf,] is now approximated by F[cf,(a)] which only 
depends on cf,1, ¢2, ... , c/>N- In this way the functional F[cf,] is replaced by 
the function F'(c/>1,c/>2,•••,¢N) := F[cf,(a)]. In a great desire to improve this 
approximation one take the limits where the lattice distance approaches zero 
and the hypercube C approaches to the whole Minkowski spacetime M. Let us 
symbolize both these limits by 'N _. oo'. Then the functional integral in (224) 
is introduced by the pseudo-definition 

N I Vcf,F[cf,] := Ji_:;ioo / ... / F( c/>1, c/>2, ... , cf, N) n dcf,i (226) 
~ i= 1 

N 

Although this is a lot of wishful mathematics, Feynman's functional integrals 
are a powerful tool to obtain quantitative results (sometimes agreeing excel­
lently with experiment) and conceptional insights in quantum field theory. 

Now the miracle of Feynman quantization. Recall that our classical system 
is characterized by its action functional S = S[cf,] defined by 
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(227) 

This action gives rise to r-functions through 

(0IT(~(x1)~(x2) .. -~(xn))I0) = f 'D</> </>(xi)<f>(x2) ... </>(xn)ekS[cf,] (228) 

Observe that in the right-hand side, apart from h := h/21r (h being Planck's 
constant) only entities from classical field theory occur. Nevertheless, this 
functional integral determines the r-fuctions of the corresponding quantum 
field theory, and therewith for instance all scattering processes for the system 
in question. 

A related result is obtained when one considers a local observable O(x) = 
O(<f>(x),8µ</>(x)) at the point x. In the corresponding quantum theory this is 
represented by the operator O(x) = O(~(x),8µ~(x)) and one has 

More generally, one has for a functional F = F[</>] of the classical field </> 

(0IT(F[~])I0) = f V<f> F[<f>]ek 8 [tf>] 

(229) 

(230) 

Observe that (228) is a particular case of (230) with F[</>] = </>(x1 )</>(x2) ... <f>(xn)-
The pendant of Feynman's functional integrals in the realm of one inte­

gration variable are integrals of the Fresnel type f ~00 f ( x) exp(ix2 )dx. By a 
rotation in the complex plane this can be transform in a Gaussian integral 
J~00 }(x) exp(-x2 )dx for which eventual convergence is much more easily as­
serted. 

In quantum field theory one proceeds in a similar way. One performs the 
following substitution of the time coordinates, called a Wick rotation, 

t-t T := -it 

which entails 

</>(ct,x) -t </>E(cr,x) 

and 

where 

103 

(231) 

(232) 

(233) 

(234) 



Under a Wick rotation the Minkowsi metric changes (up to a sign) into the eu­
clidean metric: (ct)2-x2 -+ -[(cr)2 +x2]. The quantum field theory described 
by (234) is called a euclidean quantum field theory. Euclidean quantum field 
theories play an important role in the quest to put field theory on a mathe­
matically sound foundation ( constructive quantum field theory). 

U A ( 1) symmetry We next consider some ( absence of) symmetry in classical 
and quantum electrodynamics. The lagrangian of classical electrodynamics 
reads 

(236) 

where 'I/; is the 4-component Dirac spinor field, describing after quantization 
e.g. electrons and positrons, and Fµv is the electromagnetic field strenght ten­
sor, describing after quantization photons. The electromagnetic field strenght 
tensor Fµv is obtained from the electromagnetic potentials Aµ via 

(237) 

The "t 's are the four Dirac matrices, defined as unitary 4 x 4 matrices satisfying 

(238) 

Considering 'I/; as a 4- component column vector and t denoting hermitian 
conjugation one defines 

Finally Dµ is the gauge covariant derivative: 

Dµ := 8µ -iAµ 

It is well known, and easily verified, that the transformations 

'I/; -+ ,,j; := ei£'1/; 

entailing 

':if-+ ,,j; = ';fe-ie 

(c ER) 

are symmetry transformations. This gives rise to the Noether current 

jµ := ':if,..t'I/; 

with the continuity equation (local conservation law) 

8µjµ = 0 

This leads to the conservation of electric charge [see (206)]. 

(239) 

(240) 

(241) 

(242) 

(243) 

(244) 

The symmetry transformations (241) form the group U(l) of unitary 1 x 
1 matrices (phase factors). The lagrangian (236) is even invariant under a 
larger group. Namely a group where the phase c depends on the spacetime 
coordinates: c = c(xµ. Indeed, one has 
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under the transformations 

'IP 1--+ 1/J' := eie(z)'IP 

,ii 1--+ ¢ = e-ie(z),ij 

A,. 1--+ A,.' := A,. + 8,.e 

The transformation (246)-(248) is called a gauge transformation. 

(245) 

(246) 

(247) 

(248) 

A first hint that one also has charge conservation in the quantized theory can 
be made plausible as follows. We consider a modification of the transformation 
(246)-(248) where A,. is left unchanged: 

'IP I-+ 'ifJ := eie(z)'IP 

,ii I-+~= e-ie(z),ij 

A,. I-+ A,. := A,. 

(249) 

(250) 

(251) 

Due to the difference of (248) and (251) the transformations (249)-(251) do 
not leave the lagrangian invariant. One has 

£(1/J,°iii,A,.)-+ C('ifi,'ifi,A,.) = £(1/J,°,ij,A,.) -°,ij-y"1/J8,.e 

Changing the names of the integration variables 1/J and ,ii gives 

j V'i/JV°,ijVA,. ek5[1/J,~,A,.] = j V'ifJV~VA,. et8 [~J,A,.] 

= I V'i/JV°,ijVA,. eH S[1J,,~,A,.]-J~-r"1/18,.ed4z} 

Hence 

0 = j V'i/JV°,ijVA,. j d4x",ii(x)'Y"1/J(x)8,.e(x)ek 8[1/J,~,A,.] 

= I d4xe(x) I V'i/JV°,ijVA,. a,.(°iii(xh"'i/J(x))ei-8[1/J,~,A,.] 

and this gives 

0 = I V'i/JV°,ijVA,. a,.(°iii(xh"1/J(x))ek8 

= a,.{0l°iii(xh"'i/J(x)I0) 

(252) 

(253) 

(254) 

(255) 

where the fields in the right-hand side are operator fields. Below we also will 
not explicitly indicate whether we have classical fields or operator fields, since 
this will be clear from the context. Similarly one can show that 
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8~(x)'yµ1j!(x) -
(OIT( axµ .. • 1Pa, (xi) .. · 1Pb; (yj) .. · 1Pb.,,. (Ym) 

(256) 

.. . Aµp(zp) . .. )IO)= 0 

By means of the reduction formulas of Lehmann, Symanzik and Zimmermann 
one can conclude from this the operator relation 

(257) 

representing charge conservation in the quantized theory. It is to be noticed 
that the above derivation hinges on the invariance of the functional integration 
elements under the transformations (249)-(251). Formally one expects 

(258) 

and this can be made plausible even after a more careful consideration of these 
functional integrations. A different state of affairs is encountered for the fol­
lowing transformations. 

We now consider the lagrangian (236) with m = 0, i.e. massless quantum 
electrodynamics. For this we introduce the fifth gamma matrix 

(259) 

This is a hermitian matrix since , 0 is hermitian and 1 1 , , 2 and , 3 are anti­
hermitian. The transformations 

(c ER) (260) 

which entails 

~--+ 1/J = ~e-iE"f5 (261) 

are symmetry transformations in massless quantum electrodynamics. This 
gives rise to the conserved Noether current 

with the continuity equation (local conservation law) 

8µj~ = 0 

This leads to the conservation of the so-called axial charge defined by 

and its conservation law reads 
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The symmetry transformations (260) form a group of symmetry transforma­
tions denoted by UA(l). In order to investigate whether the axial charge is 
conserved we consider the transformations [compare (249) and (250)] 

'1/J(x) 1-+ 'if;(x) := eie(zhs'i/J(x) 

~(x) 1-+ J(x) = e-ie(:i:)~(x) 

A,,(x) 1-+ A,,(x) := A,,(x) 

For these transformations one has 

Changing the names of the integration variables 'i/J and ~ gives 

I V'ljJV~VA,, efs[,i,,';J;,A,.] = I V¢vJvA,, ek 8 [.P,lA,.] 

(266) 

(267) 

(268) 

(269) 

(270) 

However, a careful treatment of the functional integration element gives in this 
case 

where eµvpu is the completely anti-symmetric Levi-Civita symbol e0123 = -1. 
The extra term in the right-hand side is the analogue of a Jacobian for func­
tional intrals. All this leads to [compare (257)] 

8 ·'·( ) ,, ·'·( ) _ i T µvpu F'. F'. 8x/J o/ X 'Y 'Y5 o/ X - l61r2 re µv pu (272) 

Although in classical massless electrodynamics one has U A ( 1) symmetry and 
conservation of the axial charge these features do not appear in the quantized 
theory due to the fact that the right-hand side of (272) is not zero. This is 
called an anomaly. Anomalies in quantum field theory have a long history. 
Their treatment in the setting of functional integrals is due to Fujikawa. 

The purpose of the forgoing discussion of an anomaly for a simple model 
was the fact that they lead us to consider a bosonic string in 26-dimensional 
spacetime only. The lagrangian of the Polyakov string reads 

(273) 

where x/J = x/J(u, r), 9af3 = Ya.13(u, r), g := det(ga.13), T/µv := diag(l, -1, ... , -1), 
(e, e) = (u, r) and 8a = 8: 0 • This Lagrangian has a Weyl symmetry, i.e. it 
is invariant under the transformation 

gaf3(u,r) I-+ eA(u,T)gaf3(u,r) 

x/J(u, r) 1-+ x/J(u, r) 
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It can be shown (see [5]) that the partition function Z of the Polyakov string 
has in the conformally Euclidean gauge g0 13(rr, -r) = p(rr, -r)80 13 the form 

Z = J V,,fpVx,..VfDiJexp 

{! [-~8ax · 813x8°13 + l ,8iJ] drrT + rwz(c/>)} 

(276) 

where 

rwz(c/>) = --- -(8¢)2 + -µ2 (e2"' - 1) 26- n J [1 1 ] 
2471" 2 2 

(277) 

is the Liouville action and x := ,,fpx, iJ := PT/ and n is the dimension of the 
Minkowski spacetime. Due to the Wess-Zumino term rwz we have, in general, 
lost the conformal invariance by quantizing the Polyakov string. However, if 
dimension of the Minkowski spacetime n = 26 the anomaly is absent and the 
quantized theory is conformally invariant as well. If one wants the survival of 
the idea of a string at all in the act of quantization it seems that one has to 
restrict to 26-dimensional spacetime. Since the immediately observable space­
time is four-dimensional 22 of the 26 dimensions have to be made unobservable. 
This can be done in a Kaluza-Klein type of way, by curling these extra dimen­
sions up so that their spacial extensions are to small for observation at present. 
Compared with the original Kaluza-Klein theory a string brings with it a new 
feature, a winding number. The curling up of the extra dimensions is called 
compactification. In the next section there is made a modest start by first curl­
ing up only one of these extra dimensions. Therafter we turn to the question 
of curling up more dimensions by letting them form a torus. 

4. TOROIDAL COMPACTIFICATION 

We now turn to the compactification of 26-dimensional Minkowski spacetime 
M26 . That is, we will consider string theory in a spacetime Mk xC26-k with Mk 
being k-dimensional Minkowski spacetime and C26-k a (26 - k)-dimensional 
compact riemannian manifold. Actually we will take here C26-k == T 26-k, a 
(26 - k)-dimensional torus. In order to simplify things we start with the case 
k = 25. This is the case where one spatial direction of M26 , e.g. x1 , is turned 
into a circle S1 (with radius R) and the spacetime manifold M becomes a 
26-dimensional cylinder 

M = M 26 /21rRZ = M 25 x S1 (278) 

More explicitly, spacetime M arises by identifying in the 26-dimensional Min-
k ki t . h · ( o 1 2 25) d ( o 1 2 R 2 25) ows space 1me t e pomts x , x , x , ... , x an x , x + 1r s, x , ... , x 
(s E Z). Instead of R we will frequently use a defined by R =: £a. A closed 
string can wind several times around the cylinder ( see figure 1). Hence the 
condition that the string is closed reads now 
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m =1 

Qm=O 

m =2 

FIGURE 1. Winding numbers of a string on a cylinder. 

(279) 

where mis called the winding number. The general solution of the equation of 
motion of x1 is given by 

1 111 1 11 1 
x (a, r) = q + 2(PL + PR)r + 2(PL - PR)a 

This gives with the condition (279) 

1 1 2 PL-PR= ma 

Hence in the Schrodinger representation these operators are given by 

1 1 8 
p L = 2i 8ql + ma 

1 1 8 
PR=---ma 

2i 8q1 

(280) 

(281) 

(282) 

The operator p1 = p}, + Ph = t~ has an eigenfunction exp(ik1q1) with 
eigenvalue k1 E R. Wave functions have to be single-valued, i.e. exp(ik1q1 ) 

has to be invariant under x1 -+ x1 + 21r R or q1 -+ q1 + 21r Rf£ = q1 + 21ra. This 
condition gives 

(283) 

The eigenvalue equations 
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Pk exp(ik1q1) = kk exp(ik1q1) (kl, kh E R) 

imply [see (282)] 

1 n 
kL = -+ma 

2a 
1 n 

kR=--ma 
2a 

(284) 

(285) 

The corresponding eigenvalues of PL 1 and PR 1 are respectively m R~1r + n 2~ 

and -m RT1r + n ...!.. since 
c 2R 

1 (1rT)½ 1 
PL = ----z- PL, P 1 (1rT)½ 1 R = - PR 

C 
(286) 

The conditions (279) and (283) have a quite different type of origin: (283) 
has a quantum mechanical background, whereas (279), depending on the wind­
ing number, has a classical origin. The tuning of these two effects will be seen 
to give rise to the Frenkel-Kac-Segal mechanism. 

The mass-squared has to do with the motion in the 25-dimensional Min­
kowski spacetime: 

M2 := L PµPµ = 41rT L PµPµ 
C 

µ#1 µ#1 

By restricting to the subspace of the physical states one has 

This gives, using (287), 

2 41rT [ 1 1 ) 2 1 ( 1 2 M =-c-NL+NR+ 2(PR + 2 PL) -2] 

The eigenvalues m 2 of M 2 are given by [see (285) 

2 41rT [ , , ( n ) 2 ( )2 ] m = -- NL + N R + - + ma - 2 
C 2a 

(287) 

(288) 

(289) 

(290) 

where Nr, and NR are eigenvalues of NL and NR. Let lk, kL, kR) be a state 
without excitations, i.e. 

NLlk, kL, kR) = 0, NRlk, kL, kR) = 0 (291) 

Pflk, kL, kR) = kilk, kL, kR), P~lk, kL, kn) = k~lk, kL, kn) (µ =fa I) (292) 

Pllk, kL, kn) = kilk, kL, kR), P}lk, kL, kR) = kklk, kL, kn) (293) 

From (290) we see that there massless states for Nr, = NR = I, n = m = 0. In 
general, there are actually two independent state vectors for these states: 
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(µ -I 1) (294) 

and 

R 1 L "I a_1 a_1 k, kL, kR} (µ-::/ 1) (295) 

This are massless bosons with helicity one. One contends that they are the 
particle states of gauge fields. 

In passing we note that the two-dimensional vectors (Pl, Ph) = (;.. + 
ma, ;.. - ma) form a lattice 

1 1 
A:= {ne1 +me2 I e1 := (2a, 2a), e2 := (a,-a), n,m E Z} (296) 

A lattice is called even if p2 is an even integer for each lattice vector p. Since 

(p1,pk)2 := (p1)2 - (pk)2 = 2mn E 2Z (297) 

the lattice A is even. The dual basis { ei, e;} of the basis { e1, e2} is defined by 

(298) 

where the dot • indicates the two-dimensional Minkowski scalar product [com­
pare (297)]. This gives 

ei = (a,-a) = e2, e; := (2~, 2~) = e1 (299) 

The dual lattice of A is defined by 

A*:= {nei +me; I n,m E Z} (300) 

A lattice is called selfdual if A* = A. From (299) one sees that the lattice A is 
selfdual. 

The term U:.)2 + (ma)2 in (290) is due to the S1 compactification. Recall 
that its first term had a quantum mechanical origin (single-valuedness of a 
wave function) and its second term a classical origin (winding number). The 

map a 1-+ le entails le 1-+ a and ( 2':.} 2 + ( ma )2 1-+ ( na )2 + ( ~} 2. Hence this 
boils down to an interchange of m and n. For a = 1/2a, i.e. 

a=~' orR= {;§;-, (301) 

this map has a fixed point and the mass formula (290) becomes in this case 

2 41rT 1 
m = -[Ni+ Nn + -(n2 + m2) - 2] (302) 

C 2 
where n and m now play an equivalent role. The choice (301) of a specific 
radius of the compactifying circle entails new massless states [see (302)] with 
Ni = 0,Nn = 1,n2 + m2 = 2 and Ni = 1,Nn = 0,n2 + m2 = 2. From 
(285) we now get (kl, kh) = 1(n + m,n - m). Since n2 + m2 = 2 we have 

n, m = ±1 and thus we arrive at (kl, kh) = (±J2, 0) or (0, ±J2). Thus the 
four state vectors of the extra massless states are 
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(303) 

and 

a~/'lk, 0, ±v'2) (µ -f= 1) (304) 

So we end up in this special case with 2+4 = 6 massless helicity-one states. We 
will see that this are the particles of the six gauge fields of the 6-dimensional 
Lie group SU(2) x SU(2). 

5. FRENKEL-KAC-SEGAL MECHANISM 

We now turn to the compactification of several dimensions. In particular we 
will consider instead of M26 a spacetime 

(305) 

where A is a lattice spanning ad-dimensional euclidean (linear) submanifold 
of M 26 . The replacement M 26 -+ M is called toroidal compactification. Hence 

(306) 

where Td is a d-dimensional torus. Thus we identify the points ( x 0, ... , x25-d, 
x26-d, ... , x25) and (xo, ... , x25-d, x26-d + ).26-d, .. . , x25 + ,>.25) if (>.26-d, .. . , 

>.25 ) E A. For the sake of convenience we consider only the components of 
xµ = xµ ( r,, r) for µ = 26 - d, ... , 25, i.e. the motion of the string on the torus. 
Likewise, we restrict ourselves to the consideration of either left-movers or 
right-movers, however, we will suppress the subscripts Land R. The resulting 
d-component operator field will be denoted by [compare (170) and (171)] 

xµ = xµ(z) (µ = 26 - d, ... , 25, z := ei(r±o-)) 

Defining 

one has 

The so-called vertex operator is defined by 

112 

(307) 

(308) 

(309) 

(310) 

(311) 

(312) 



Below we need to discuss whether U('y, z) is a single-valued function of z. The 
potentially dangerous term appears to be the second factor in the right-hand 
side of (312) [see (310)]. By means of the operator identity 

(313) 

which holds if [A, B] = ..\1 (..\ E C) we can rewrite this factor as 

(314) 

where aµb" = a · b and a2 = a • a. 
The generators of the Virasoro algebra Ln have the commutation relations 

[Lm,Ln] = (m -n)Lm+n + ~m(m2 - l)Dm,-n (m,n E Z) (315) 

where d = dim A. The Ln 's generate conformal transformations. The transfor­
mation of the vertex operator under conformal transformations is given by 

[Ln,U('y,z)] = (zn+i :z -nznr) U('y,z) 

For the tachyon with "/2 = -2 this gives 

d 
[Ln,U('Y,z)] = z1 dz(znu('Y,z)) 

We now introduce 

1 f dz A-y := -2 . U('y, z)-
1r1 Z 

('y2 = -2) 

(316) 

(317) 

(318) 

where the contour is a closed curve winding once around the origin z = 0 of 
the complex plane, e.g. a circle. From (317) one obtain then 

(319) 

Hence [Ln, A-y] = 0 if U('y, z) is single-valued. In order to investigate this 
question we look at the action of ei-y•zo(z) on 

I.\} := eiq•.\10} (320) 

We find, using (313), 

ei-y•zo(z) I.\} = ei"Y•(q-iplog z)e-iq•-yl..\ + 'Y} = e"Y·plog z+½["Y-plog z,-iq•-y] I.\+ 'Y} 

(321) 

or 

(322) 

113 



In order that ei-y•xo(z} is single-valued we require 

(323) 

A lattice A in a vector space with a bilinear form, denoted by•, is called integral 
if for all 1 , A E A one has 1 • A E Z. The requirement that the lattice which is 
used for the toroidal compactification is even leads, via the single-valuedness 
of U(,, z), to 

(324) 

where A2 := {'YE A I 1 2 = -2} with A an integral lattice. 
An important consequence of (324) is that A-y maps physical states to phys­

ical states. Indeed, let 17P) be a physical state, i.e. Lnl"P) = 0 (n = 1, 2, .. . ) 
and Lol1P) = 17P) then Ln(A-yl"P)) = 0 (n = 1,2, ... ) and Lo(A-yl"P)) = (A-yl"P)). 
Hence A-yl"P) is a physical state. One can show that 

{ 
A,a+-y 

A,aA-y - ( -1 ).B·-Y A-yA,a = g · p 

[pµ, A-y] = "t Aµ 

[pµ,pv] = 0 

if /3· 1 =-1 
if !3·1=-2 

otherwise 
(325) 

(326) 

(327) 

The remaining obstacle on our way towards a Lie algebra which transforms 
physical states into physical states is the factor (-1).B·-Y in (325). So one intro­
duces operators 

(328) 

and one adjusts the operators c-y in such a way that the undesirable factors 
(-1).B·-Y in (325) disappear. That this is indeed possible is now explained in a 
number of steps. First, one writes 

C ·- eh·qc• -y•- "Y (329) 

and defines c-y by 

(330) 

Second, c{,, .X) is taken to be a function on the lattice A with values ±1 such 
that 

(331) 

called a cocycle condition, and 

(332) 

All this implies 
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or 

cpc.y = e(/3,-y)cp+.., 

Using {332) this gives 

cpc.., - (-1)P·-rc..,cp = o 

{333) 

{334) 

{335) 

A cocycle is not unique, since 1/-rT/>.e(-y,>.) is a cocycle if e{'Y,>.) is a cocycle. 
This freedom in the choice of a cocycle allows us to require additionally 

e{'Y, --y) = e{'Y,0) = 1 {336) 

for all 'Y E A. 
Finally we find in this way a Lie algebra 9A spanned by { E-r, pl' I 'Y E 

A <2>, 1 $ µ $ dim A} with commutation relations 

{ 
e(/3, 'Y )EP+-r 

[EP,E-r] = g·p 

[p", EP] = /3" EP 

[p" ,PIil = 0 

if /3•-y=-1 
if /3 = --y 

otherwise 
{337) 

{338) 

{339) 

Notice that dimgA = #(A<2>)+dimA where #(A<2>) is the number of elements 
of A <2>, the set {P" I 1 $ µ $ dim A} spans a Cartan subalgebra and for all 
simple roots one has 11/311 = \1'2, i.e. 9A is a simply-laced Lie algebra. 

In some physical models the Virasoro generator Lo is the hamiltonian. Since 
the elements of 9A commute with Lo and transform physical states into physical 
states the Lie algebra 9A gives via exponentiation rise to a symmetry group. 

This is the first part of the Frenkel-Kac-Segal construction. We now pro­
ceed with the higher moments 

p 1 f ndz En:= -2 . U({J,z)cpz -
11'1 Z 

(/3 E A <2>, n E Z) {340) 

1 f dz o." := -. P"(z)zn_ 
n 2m z 

{1$µ$dimA,nEZ) {341) 

where 

dx" 
P"(z) := iz dz = L 

00 

{342) 
n=-oo 

and the contours in {340) and {341) are e.g. circles around the origin z = 0. 
Observe that one has for n = 0 



(343) 

The Lie algebra spanned by { E~, a~ I , E A <2), 1 :S µ '.S dim A} is denoted 
by YA· Its commutation relations read 

(a~, Ee] = {3µ E;;,+n 

[a~, a~] = mtiµ" tim,-n 

Hence YA is a Kac-Moody algebra. 

if (3 · 1 = -l 
if (3 = -, 

otherwise 
(344) 

(345) 

(346) 

The commutation relations of the generators of YA with the generators of 
the Virasoro algebra are given by 

[Lm, Ee] = -nE{;.+n (347) 

(348) 

Denoting the generators of YA collectively by Xn, i.e. 

Xn =Ee,a~ (349) 

then for any eigenstate lh) of Lo all non-zero vectors XnJh) are also eigenstates 
of Lo. More explicitly Lolh) = hlh) and [Lo,Xn] = -nXn imply -n(Xnlh)) = 
LoXnlh) - XoLnlh) = LoXnlh) - XohJh) or 

Lo(Xnlh)) = (h - n)(Xnlh)) (350) 

Since YA connects some of the energy eigenstates it is called a partially spectrum 
generating algebra. 

One can argue that a lattice is suitable for toral compactification if it is 
even and self-dual. The dimension of even and self-dual euclidean lattices is 
dim A= 8n. This is the number of dimensions which are compactified. Hence 
we compactify 8, 16, 24, ... dimensions. Since we start with 26-dimensional 
Minkowski spacetime we end up after toral compactification eventually with 
a spacetime with 18, 10 and 2 dimensions. The case of 10 dimensions is par­
ticularly interesting since a superstring requires a IO-dimensional Minkowski 
spacetime. 

In this case we are interested in 16-dimensional even self-dual euclidean 
lattices. There are only two lattices of this type. They are called r 8 EB r 8 

and r 16 . Here r8 is the root lattice of the Lie algebra E 8 and r 16 is the root 
lattice of the Lie algebra so(32) with one additional point or equivalently the 
weight lattice of the Lie algebra of the Lie group Spin(32) /Z2. Thus we finally 
arrive at the following result. Toroidal compactification of the bosonic string in 
26-dimensional Minkowski spacetime by a suitable IO-dimensional lattice gives 
rise to either Es x Es or Spin(32)/Z2 as symmetry group. The zero mass modes 
gives the gauge fields of these groups. 
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An Introduction to Hopf Algebras 

H.N. van Eck 
Department of Mathematics University of Twente 

P.O. Box 217, 7500 AE Enschede 

The Netherlands 

1. DEFINITION 

The notion "algebra" can be described as follows. 
A linear space A over a field K is an algebra over K or K-algebra if there is a 
linear mapping m: A ©KA-+ A. This mapping is called multiplication, for x 
and y EA one mostly writes xy for m(x © y). 
The algebra A is associative iff the following diagram commutes. 

A© A© A _m_©_ld-"A-"---+- A© A 

ldA is the identity map on A. 
m 

A© A---m---A 

A is commutative iff the next diagram commutes. 

A©A---7---A©A 

m 

A---------+-A 
ldA 

m 
r is the socalled twist map; 
r is linear with r(x © y) = y © x. 

A has a unit iff the next two diagrams commutes. 
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K®A i ®IdA 

j 

A 
ldA 

A®K IdA ®i 

j' 

A 
IdA 

A®A 

m 

A 

A®A 

m 

A 

j is the linear map with 
j(l®x)=x; 
i is the embedding of K into 
A (i(l) = 1, the units of K 
and A are identified). 

j' is the linear map with 
j'(x ® 1) = x. 

Let B another algebra and f: A-+ Ban application. f is a homomorphism(or 
an algebramorphism) iff the following diagram commutes. 

m 

A--------B 
f 

m' m' is the multiplication of B. 

The notion "coalgebra" is the dual of the notion "algebra". So, a linear space 
H over K is called a coalgebra if there is a linear mapping A : H -+ H ® H. 
A is named coproduct or diagonalisation. H · is said to be coassociative if the 
following diagram commutes. 

H ---=6 '----+- H ® H 

His said to be cocommutative if the next diagram commutes. 
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H 
ldH 

H 

T lS the already known 
twistmap. 

H®H T H®H 

H has a socalled counit E if the next two diagrams commute. 

ldH 
H------H 

h 

h' 

h is the linear map with 
h(x) = 1 ® x. 

h' is the linear map with 
h'(x) = x ® 1. 

Let H' be another coalgebra and f : H -+ H' an application. f is said to be a 
coalgebramorphism if the following diagram commutes. 

f H --------+- H' 

H ® H -----... H' ® H' 
f®f 

A' is the coproduct of H'. 

A bialgebra H is an associative algebra as well as a coassociative coalgebra in 
such a way that both the coproduct A and the counit E (always existing) are 
algebramorphisms. If H' is another bialgebra then f : H -+ H' is a bialge­
bramorphism if f is an algebra- as well as a coalgebramorphism with 1:' o f = E 

where E' is the counit of H'. 
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REMARK. We just said that ~ should be a homomorphism in order that H 
will be a bialgebra. This means that H © H must be an algebra with a multi­
plication m' and that there must be a commutative diagram as below. 

m m' 

H ---~---- H © H 

Now, if A and Bare associative algebras with unit 1 then A©K Bis also an as­
sociative algebra with unit 101. The multiplication is given by (a©b)(a' ©b') = 
(aa') © (bb') so that m' = (m 0 m) o (IdH ©r @IdH ). 

REMARK. H ©His also a coalgebra with coproduct ~, equal to 
(IdH ©r©IdH)o(~©~)- With this definition m becomes a coalgebramorphism. 

REMARK. K is a bialgebra with coproduct ~K : K -t K ©K K linear for 
which ~K(l) = 101 (the inverse of the multiplication). With this in mind 
and with help of the definition one sees that a counit of a coalgebra C is a 
coalgebramorphistn and even a bialgebramorphism if C is a bialgebra. 

CONVOLUTION 

Let A be an associative algebra with unit 1 and C a coassociative coalgebra 
with counit 1:. If u : C - A and v : C -t A are linear then we define u * v 
to be the linear map C ~ C © C ~ A © A ~ A. In this way we get an 
associative multiplication, named "convolution", in C(C; A). There is a unit 
1c,A = i o 1: where i : K - A is the linear map with i(l) = 1. This implies 
that counits (if existing) of coalgebras are unique (take A= K). 

ANTIPODE 

Let now C = A = H be a bialgebra. The inverse s of IdH (if existing) with 
respect to the convolution is called "antipode" or "inversion". 
We shall state and prove some properties of s. 

1. s(xy) = s(y)s(x) for x and y EH. In other words 

so m =mo (s © s) or. (1) 

Proof. We shall prove the following formula. 

(2) 
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t:,,,H®H (som)@m m ( ) (som)*m: H©H --t H©H©H©H --t H©H-+ H. 3 

Now !:!:..H@H = (Id©r©Id) o (!:!:..©!:!:..) and (som)©m = (s©ldH) o(m©m) 
moreover the multiplication mH@H of H © H is given by 
(m © m) o (IdH ©r © IdH ). So (3) can be rewritten as 

!:!:.. is a homomorphism so mH@H o (!:!:..©!:!:..)=!:!:..om. (4) can therefore be 
transferred to the formula 

H©H ~ H ~ H@H~ H©H ~ H, (5) 

and this to H © H ~ H ~ H = 1H@H,H because s is an antipode. 

t:,,,H®H m@(mo(s@s)oT) m 
m*(mo(s©s)or): H@H --t H©H©H©H --t H@H -t H. 
Now !:!:..H@H = (IdH ©T © IdH) o (!:!:.. © !:!:..) and m ©(mo (s © s) or) = 
(m ©m) o (IdH © IdH ©s © s) o (IdH © IdH ©r). So m*(m o (s © s) or) can 
be split up into 

H©H~ H©H©H©Hid~Id H©H©H©Hid~@T 

H©H©H©H and 

H © H © H © H Id@~s@s H © H © H © H ~ H © H ~ H. 

To be able to trace the capital aitches we prime one of them. The former 
of these two mappings becomes in this way 

H © H' ~ H © H © H' © H' Id ~Id H © H' © H © H' Id~ @T 
H@H'©H'©H. 

mo(m©m) = H@H'©H'©H Id~Id H©H'©H ~d H©H ~ H. So, 

the mapping H' ~ H'©H' I~ H'©H' ~ H' is hidden in m*(mo(s©s)or) 
and 
H' ~ H' © H' I~ H' © H' ~ H' = 1H, Of m *(mo (s © s) or) there 

remains H ~ H © H I~ H © H ~ H because the images of 1H are 
scalars. Som* (mo (s © s) or) = 1H@H,H• m therefore has a left and a 
right inverse so these inverses must be equal. 

2. The dual of formula (1) is 

!:!:..os=ro(s©s)o!:!:... (6) 
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We shall prove this by showing that A o s is a left and that T o ( s 0 s) o A 
is a right inverse of A. 

(Aos)*A=H~H®H(A~A H@H®H®Hm~H H@H= 

H ~H®H~ H@H~ H®H®H®Hm~H H®H= 
A s®ld H m H A H H H -t H 0 H---+ H 0 -t -t 0 = IH,H®H· 

A* (To (s 0 S) o A) = H ~ H 0 H ~ H 0 H' 0 H' 0 H Id® ~s®s 

H0H'0H'0H 1d~®T H@H'@H®H' ld~ld H0H0H'0H' ~ 
H 0 H' because H 0 H' 0 H 0 H' Id ~Id H 0 H 0 H' 0 H' ~ 
H 0 H' = mH®H. H is coassociative and this gives the following commu­
tative diagram. 

H 

Al A®ld 
H0H--------H0W0H 

Id®A 

A®ld Id®A Id®A®ld 

It is clear that H' 0 H' stems from H' but the two unprimed aitches of 
H 0 H' 0 H' 0 H are derived from H because according to the diagram 

first A is applied and then two times IdH. Therefore H' ~ H' 0 H' 1~ 

H' 0 H' ~ H' is hidden in A* (r o (s 0 s) o A) and what remains is the 
same application but then without primes. The left inverse of A is equal 
to the right inverse. 

The opponent H 0 of H is the bialgebra which is as set equal to H and 
which has the multiplication m 0 =mo rand the coproduct A 0 = r o A. 

The formulae (1) and (6) are equivalent with the commutativity of the next 
two diagrams. 
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H--m'-'-"'--H@H H ---"'~"'--+- H ® H 

s 

mor 
mo 

s®s and s s®s 

3. H we prove that s(l) = 1 and that e o s = e then it follows that s is an 
isomorphism of H onto H 0 • 

(s * IdH )(1) = 1 and = s(l). The second relation is more difficult. If 
f : H -+ V is a linear mapping then 

J=H~H@H~V®K~V. 

This follows from the equality 

H ~ H ® H 1~ H ® K = (h --+ h ® l(h E H)). 

Therefore s = H ~ H ® H ~ H ® K ~ H and this can be written as 

H ~ H ® H !!,! H ® H ~ H. So, 1 o s (where 1 is the unit of £(H)) = 
H~H@H!!.!H@H~H1H= 

H ~H®H !!,! H@H !.!! H@H ~ H= 

H~H®H~ H@H!.!! H®H~H= 

H ~ H ® H ~ H ® H ~ H 1 H = 1 o 1 = 1. It follows that e o s = e. 

4. The last property of s that we prove is sos = IdH. In other words we show 
that s is an involution. 

t:,,. a®(aoa) m 
s*(sos)=H-+H®H -+ H®H-+H= 

H~H®H~H@H 1~ H@H~H= 
H~H~H®H~H@H 1~H®H~H 
because s is a coalgebramorphism. 

So, s *(sos) = H ~ H ~ H ® H ~ H ® H ~ H = 1 o s = 1. 

DEFINITION. A linear space Hover a field K is a Hopf algebra if His 
a bialgebra and possesses an antipode. 

2. EXAMPLES 

1. Group algebras. 
Let G be a group and K a field. The linear space 
H = K(G) consists of finite linear combinations of group elements, i.e. 
x E H means that there is a family (x9 )gEG of K with x9 'I O for at 
most a finite number of g E G and that x = I:gEG x9 e9 where e9 is an 
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alternative notation for g. (e9 ) is the canonical base of the linear space 
H. We define a multiplication m as the linear mapping H ® H -t H 
with m(e9 ® eh) = egh• H is with this m an associative algebra with 
unit e1 (1 is the unit of G). We define the coproduct 6 as the linear 
mapping H -t H ® H with 6(e9 ) = e9 ® e9 • 6 is a homomorphism: 
6(e9eh) = 6(e9h) = e9h ® e9 h = (e9 ® e9 )(eh ® eh)- H has the counit 
e with e( e9 ) = 1 for all g E G. f is a homomorphism too. H is in this 
way a bialgebra. There is an antipode s: a linear endomorphism of H with 
s(e9 ) = ey-1. 

This example has caused the following definition: if H is a Hopf algebra 
with coproduct 6 then x EH is grouplike if 6(x) = x ® x. 

2. Enveloping and symmetric algebras of Lie algebras. 
Let V be a vectorspace over a field K. We can construct the tensoralgebra 
T(V) as follows: T(V) = K E9 V E9 (V ® V) E9 (V ® V ® V) E9 •.• T(V) has 
an N-grading: Tn = V ® ... ® V (n factors), T 0 = K. T(V) has also a N-

n 
filtering: Tn = EB Tm. It follows that To= Kand that Tm® Tn C Tm+n 

m=O 
(the multiplication of T(V) is given by ® itself). 
g is a Lie algebra with underiying space V. The envelope U(g) is the quo­
tient of T(g) and the two-sided ideal J which is generated by elements of 
the shape x ® y - y ® x - [x, y] with x and y E g. Uhas an N-filtering: 
Un is the image of Tn under the canonical mapping T -t U. It follows that 
,Uo = K, that Un c Un+i and that UmUn c Um+n· 

Let Gn = Un/Un-1 if n > O,G0 = Uo =Kand G = EB Gn. Fore E Gm 
n>O 

and T/ E Gn we define the product eTJ = xy + Um+n-~ if e = X + Um-1 
and if TJ = y + Un-1• This product is well defined because if we take 
x' E Um and y' E Un such that x' - x E Um-1 and y' - y E Un-1 then 
(TJ = x'y' + Um+n-1• In this way G becomes an associative algebra with 
the 1 of K as unit. The element x ® y - y ® x has degree 2 and the 
element [x,y] degree 1 whereas their images in U are equal. That means 
that G is commutative and this fact gives rise to the following construction. 

Poisson bracket. 
For X E Um and y E Un, xy - yx E Um+n-1 because eTJ - T/e = 0 
with e = X + Um-1 and T/ = y + Un-1• So, for e and T/ we can define 
{e,TJ} = xy-yx + Um+n-2- This is well defined for if e = x' + Um-1 and 
T/ = y' + Un-1 than 
xy -yx - x'y' + y'x' = (x - x')(y - y') + x'(y -y') + (x - x')y'­
(y - y')(x - x') - y'(x - x') - (y - y')x' = 
(x - x')(y - y') - (y - y')(x - x')+ (i) 
x'(y - y') - (y -y')x'+ (ii) 
(x - x')y' - y'(x - x'). (iii) 
(i), (ii) and (iii) f Um+n-2• 
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G is with this bracket a Lie algebra but { , } has an extra property: 
If a= a+ Up-1 then {a,{11} = 
axy - xya + Um+n+p-2 = (ax - xa)y + x(ay-ya) + Um+n+p-2 = 
{a,e}11+e{a,1J}. So, {,} is a Poisson bracket. 

It follows from the theorem of Poincare, Birkhoff and Witt that the re­
striction of the canonical mapping T -+ U to T 1 = g = V is injective. So 
we can view upon gas embedded in U. Uhas a coproduct A which is a 
homomorphic extension to U of the linear application 
x i-+ x ® 1 + 1 ® x(x E g). 
This homomorphism is possible because A(xy -yx) = 
(xy -yx) ® 1 + 1 ® (xy -yx) while A([x,y]) = [x,y] ® 1 + 1 ® [x,y] and 
these relations are consistent with each other. If U has a counit E then 
there must hold: (E®ldu)oA(x) = h(x) or E(x)®Iu+E(lu)®x = lK®x 
for x E g. It follows that E(x) = 0 and E(lu) = lK. So, E applies every 
element of U to its constant part (i.e. the term which contains no elements 
of g). E is also a homomorphism. If there exists an antipode s then there 
must hold: mo (s ® Idu) o A(x) = lu(x) for all x EU and s(l) = 1. 
For x E git follows that s(x) + x = 0. If we take an element y E g then 
s([x,y]) = -[x,y] must hold. On the other hands must be a homorphism 
of U in U0 so that s(xy-yx) must be equal to (-y)(-x) - (-x)(-y) and 
this = -[x, y) in U. So, s exists. Kostant proved in the 1950's that all 
cocommutative Hopf algebras over a field with characteristic O which have 
an N-filtering as above are envelopes of a Lie algebra the elements of which 
are characterized by the formula A(x) = x ® 1 + 1 ® x. These elements are 
called primitive. 

The underlying space V of g can also be viewed upon as a Lie algebra 
with [x,y] = 0 for all x and y E V. The envelope of this algebra is the 
socalled symmetric algebra S(g). Sis commutative and can be identified to 
K [e~heA where (e~) is a base of V. So the elements of Sare polynomials 
in the variables e~. 
It is relatively easy to construct out of the canonical mappings T -+ U, 
T -+ S and U -+ G a homomorphism of S onto G ( also yielding the 
commutativity of G). Poincare, Birkhoff and Witt proved that this homo­
morphism is also one to one. From now on we identify G and S so that the 
Poisson bracket is defined on S. 
;.From the fact that G = S follows that there is also an isomorphism of S 
into U, not an algebraic one of course but a coalgebraic one. This isomor­
phism is given by the formula 

(7) 
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where <Bn is the permutation group of n elements, X1 ... Xn being elements 
of g. Especially 7J(x) = x for x E g, so, 7J has an interesting impact on { , }: 
7J( { x, y}) = [x, y] = xy - yx for all x and y E g. The formula still holds, 
i.e. 7J( { x, y}) = [7J( x), 7J(Y)], if one of them is element of S and the other of g. 

The case of finite dimensional Lie algebras. 
Let g has the base X1, ... , Xn then S = K [x1, ... , Xn]. With induction 
it follows immediately that {x,yf} = ky7-1{x,yi} for x E Sand Yi E g. 
From this it follows easily that {x,g} = I::=l /t{x,xi} if g ES and that 

{f,g} = I:i; l!;~[xi,x;] if f ES too. 

Let now (q1, ... , Qn,Pl, ... ,Pn) be a base of a commutative Lie algebra g 
and~: g x g--+ K bilinear and alternating with ~(Qi, q;) = ~(Pi,P;) = 0 
and with ~(Qi, Pi) = 6ij then ~ (trivially) satisfies the relation 
-~([x,y],z) + ~([x,z],y)- ~([y,z],x) = 0, in other words~ is a cocycle. 
The linear space ry = g x K is a Lie algebra with 

[(x,a),(y,,B)] = ([x,y],~(x,y)) 

for x and y E g and a and ,BEK. We get ry = (q1, ... ,qn,P1,···,Pn,w) 
with qi= (qi,o), Pi= (Pi,O) and w = (0, 1). ry is a Heisenberg algebra and 
on S(ry) the Poisson bracket is given by 

{f,g}=t(8f ~- 8f 8g)w. 
8q- 8p- 8p, 8q-i=l i i 1 i 

(8) 

It is worthwile to compare this relationship between S and U with section 
23 of the sixth chapter of the book "Quantum Mechanics" by L.I. Schiff. 
This relationship is also probably the code to decipher the cryptic book 
"Operators" by V.P. Maslow. 

3. Compact groups and Hopf algebras. 
Let G be a compact group and C(G) = H the set of continuous functions 
G --+ R. With the multiplication (fg)(x) = f(x)g(x) the space H is a 
commutative algebra with unit 1 (the function x 1--+ l(x E G)). H has the 
norm II II given by llfll = max llf(x)II- His a Banach space, moreover the 

xEG 
inequality ll!911 :'.S 11111 llgll holds. For f and g E H we may identify f 0 g 
with the function (x,y) 1--+ f(x)g(y) (x,y E G) as is well known. According 
to the theorem of WeierstraB and Stone H 0 H is dense in C ( G x G) so that 
this set is the topological tensor product H&;iH. We define a coproduct D. 
as follows: 

Ll(f)(x,y) = f(xy). 
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G is associative so A is coassociative. One can see that by a close look to 
the applications 

H@H 1~ H©H@H and H@H~d H@H@H. 

A is cocommutative if G is commutative. There is a counit E given by 

E(/) = f(e) (e is the unit of G). 

To see that € is a correct counit one could look first at the mappings 

H©H~ R@H=H andH©H 1~ H©R=H. 

With these compositions H becomes a bialgebra. There is also an antipode 
s given by 

We prove this as follows. First we must extend the multiplication to a 
continuous linear mapping m : H@H - H. Let f E H@H then there is 
a sequence (gn © hn) on H © H with converges to /. That means that 
9n(x)hn(Y) converges uniformly in x and y to f(x,y). Now m(gn © hn) is 
the function x 1-+ 9n(x)hn(x) so m(f) is the function x 1-+ f(x, x). 
If/EH and ifs exists then there must hold mo (s © Id) o 6.(/) = lH(/). 
Let the sequence (gn © hn) on H © H converge to 6.(/) then 
lim 9n(x)hn(Y) = f(xy) for all x and y E G. If s(gn) = g~ then 

n-oo 
lim g~(x)hn(Y) exists because sis assumed to be continuous. 

n-oo 
m(g~©hn)(x) = g~(x)hn(x) and this must converge to lH(/)(x) = /(e)l = 
J(e). For g~(x) = 9n(x-1 ) all our demands can be met with. sis deter­
mined because Id can have only one inverse. 

Let M = H' be the topological dual of H. Mis the set of measures on G. 
We shall prove that M is a cocommutative Hopf algebra. 
M is an associative algebra with m' ( ,\ © µ) = ,\ * µ, the already known 
convolution of the elements ,\ and µ E M. In the language of measure 
theory we have the formula 

(,\ * µ)(!) = 1 f(xy)d,\(x)dµ(y). 
GxG 

The counit € of H is the unit of M. 
The norm on Mis given by II.\II = sup 1"w1. The real combinations of the 

#0 
Dirac measures E., form a dense subalgebra (E.,(/) = f(x), Ezy = E., * Ey) 
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which is nothing else than the group algebra R(a). 

m' is the transpose of A: {m'(>. © µ), f} = (>. * µ)(!) = 
m Ro(>.©µ) o A(J) = (>. © µ, A(J)}, m R being the multiplication of R. 

The transpose A' of mis the coproduct of M: 
for f E H@H = C(GxG) we have {A'(>.), J} = (>., m(J)) = fa f(x, x)d>.(x). 
A' is a homomorphism for on the one hand we have 
{A'(>.*µ), J} = fa f(x, x)d(>. * µ)(x) = fax a f(xy, xy)d>.(x)dµ(y) and on 
the other hand 
{A'(>.)*A'(µ), f} = faxaxaxa f((x, x')(y, y'))dA'(>.)(x, x')dA'(µ)(y, y') = 
faxaxaxa f(xy, x'y')dA'(>.)(x, x')dA'(µ)(y, y') == fax a f(xy, xy)d>.(x)dµ(y), 
because fax a f(x, y)dA'(>.)(x, y) = fa f(x, x)d>.(x). 
For>.== e,,, it follows that A'(e..,) == e,,, © e,,, because {A'(e,,,),g@ h} == 
(e..,,m(g © h)} = g(x)h(x) = e,,,(g)(e..,(h) = (e,,, © e..,)(g © h) and because 
H © H is dense in C ( G x G). So, G yields the grouplike elements of M. M 
is cocommutative because H is commutative and because the transpose ,,., 
of r is the application >. © µ 1-+ µ © >.. 

The counit e' is given bye'(>.)==(>., 1) = fa d>.(x). e' is the transpose of i, 
the embedding of R into H. e'(>. * µ) == faxa d>.(x)dµ(y) = e'(>.)e'(µ). 

The antipodes' is given by s'(>.)(J) = fa f(x- 1 )d>.(x), sos' is the trans­
pose of s. The embedding of R into M is the transpose of € and e' is the 
transpose of the embedding of R into H so lM is the transpose of lH. 
It follows that s' satisfies the definition of antipode because all appearing 
mappings are transposes of A, s, Id and m. It goes without saying that all 
applications involved are continuous. 

4. Alternating and Clifford algebras. 
V is again a vectorspace over a field K with characteristic 0. Q is a 
quadratic form on V: Q(ax) = a2 Q(x) for a EK and x EV; 
Q(x + y) - Q(x) - Q(y) is a bilinear form c)(x, y) on V. Q is called degen­
erate if c) is degenerate. C{Q) is the algebra over K equal to the quotient 
of T(V) and the two-sided ideal I(Q) generated by expressions of the form 
x © x - Q(x). Kand V are embedded into C(Q) and in C(Q), x2 equals 
Q{:t) for x EV. C(Q) is associative and possesses a unit 1. C(Q) is called 
Clifford algebra of the quadratic space (V, Q). If Q = 0 for all x E V then 
C{Q) is nothing else than the exterior algebra A(V) of V. C(Q) is charac­
terized by the following property: For any linear mapping f of V into an 
associative algebra A with unit lA with the property that f(x) 2 = Q(x)lA 
there is one and only one homomorphism f: C(Q) - A which is an ex­
tension off. (! is the socalled liftoff). 
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C(Q) has a grading c+ EB c-, the elements of c+ are called even 
(degree 0) and those of c- are called uneven (degree 1). c+ is a subalgebra 
of C(Q) (1 E c+) and c- is a c+-module, moreover c-c- Cc+. 

Let (xi)iEL be a base of V where L is totally ordered. For a finite subset 
H = (h1, ... ,hq) (h1 < ... < hq) of L we write xn for Xh 1 ••• xh•• The 
xn form a base of the linear space C(Q). There are linear isomorphisms 
AQ : C(Q) -+ C(2Q) and µQ : C(Q) -+ A(V) with AQ(xn) = xn and 
µQ(xn) = xn. The inverse of µQ shall be denoted by T/Q· Here C(2Q) 
is the algebra of the quadratic space (V, 2Q). In some cases there is an 
algebraic isomorfphism C(Q)-+ C(2Q). We shall not use this fact. 

Let(¼, Qi)(i = 1, 2) be two quadratic spaces with Clifford algebras C(Qi). 
Let V = Vi EB V2 and define Q on V by putting 
Q(x1 + x2) = Q1(x1) + Q2(x2)(xi E ½) then (V,Q) is a quadratic space 
too and the½ are orthogonal to each other. This means that if il>(x,y) = 
Q(x + y) - Q(x) - Q(y) that then cI>(x, y) = 0 for x E Vi and y E V2. The 
Clifford algebra C(Q) is algebraically isomorphic to the algebra 
C(Q1) ® C(Q2), the isomorphism being given by the lift of x1 + x2 t-t 

x1 ® 1 + 1 ® x2 for Xi E K The multiplication of C(Q1) ® C(Q2) should 
be given by (a1 ® a2)(b1 ® b2) = €(a1bi) ® (a2b2) with ai and bi even or 
uneven elements of C(Q1) and C(Q2) respectively. € = -1 if both a2 and 
b1 are uneven, € = 1 in all other cases. 

The linear mapping x t--t x ® 1 + 1 ® x from V into C ( Q) ® C ( Q) can be lifted 
to a homomorphism j: C(2Q)-+ C(Q) ® C(Q) because (x ® 1 + 1 ® x)2 = 
2Q(x)(l ® 1), so AQ = j o AQ is a linear mapping C(Q) -+ C(Q) ® C(Q). 
If Q = 0 then AQ is a homomorphism because ).0 is the identity mapping. 
We shall show that C(Q) is a coassociative coalgebra with counit EQ and 
with AQ as a coproduct. We use our base (xn) again. AQ(XH) = xn so we 
can act as if AQ is the homomorphism j. It is then sufficient to calculate 
(AQ ® Id) o AQ(x) and (Id®AQ) o AQ(x) for x E V. The result is two 
times x ® 1 ® 1 + 1 ® x ® 1 + 1 ® 1 ® x. So, C(Q) is coassociative. If we 
put EQ(xn) = 0 if Hf 0 and= 1 if H = 0 (1 = xn if H = 0) then EQ is 
the counit according to the definition of a counit. The proof of this is the 
same as that of the coassociativity. 
We shall now show that C(Q) is coanticommutative, i.e. that u o AQ = 
AQ,u being the linear mapping with u(a ® b) = E(b ® a) where a and b 
are even or uneven and € = -1 if both are uneven, = 1 in the other cases. 
Let x1, ... , Xn be elements of the chosen base of V then AQ ( x1 ... Xn) = 
X1 •.. Xn so that 
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n 

I: I: fa(Xa(l) • • • Xa(i)) © (Xa(i+l) • • • Xa(n)), 

i=O aEI(i) 

(9) 

I(i) = {a E 0nla increasing on both intervals [1, i] and [i + 1, nj of N} 
and fa is the sign of the permutation a. The factors Xa(l) ... Xa(i) and 
Xa(i+l) ... Xa(n) are even or uneven because the Xi are elements of V and 
so uneven. It follows that u just interchanges the terms of ~Q(X1 ..• Xn)­
This operation applies to all the x H. 

In particular A(V) .is a coassociative, coanticommutative coalgebra with a 
counit. Moreover, Ao and e0 are homomorphisms, so that A(V) if a bial­
gebra. 

We sha,ll now show that T/Q is a coa.lgebra isomorphism of A(V) onto C(Q). 
If x1, ... , Xn are elements of the chosen base of V then 
T/Q(xi I\ ... I\ Xn) = x1 ... Xn· It follows from (9) that 
(T/Q © "7Q) o AQ(XH) = AQ o r,(xH). One can prove that if (y1, ... ,Yn) is 
any family of elements of V that the following formula holds: 

Although C(Q) is in general not a bialgebra it possesses an automorphism 
that plays the role of antipode. This automorphism a is given by a( x) = -x 
for x E V. a is the identity mapping on c+ and a( u) = -u if u E c-. 
a is also a coalgebra morphism. On A(V), which is a bialgebra, a is an 
antipode, One should keep in mind here that A(V) is equal to its own 
opponent with respect to u. a is called principal automorphism. There 
is also a principal antiautomorphism /3. It is the isomorphism of C(Q) 
onto the opponent of C( Q) with respect to T that extends the mapping 
x H x(x EV). 

Poisson bracket. 
Let Ch be the image of Th under the canonical mapping T(V) -t C(Q) 
then we get an N-filtering on C(Q) with Co= Kand with Ch Ck C Ch+k· 
Let G = EB Gh with Gh = Ch/Ch-1 if h > 0 and with G0 = K. G is an 

h~O 

algebra with the following multiplication: for e E Gh and T/ E Gk we have 
er,= xy+Ch+k-1 if e = x+Ch-1 and T/ = y+Ck-1· One can prove that G 
and A(V) are isomorphic algebras so that we can identify them. It follows 
that er, - (-l)hk11e = 0. In analogy with the Poisson bracket on S(g) we 
define 
{e, 11h = xy - (-l)hkxy + ch+k-3· It is not difficult to prove that 
{ a, er,}£ = { a, eh11 + (-l)ihe{ a, 77}£ for a =a+ Cj-1, that 
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{e,11}. + (-l)hk{11,e}. = 0 and that 
{e, {77, (}.}. = He, 77}<, (}. + (-l)hk{7J, {e, Oe}e("Jacobi"). 
If we transport {,}. to A(V) and if x and y E V then { x, y}. = <I?(x, y). In 
the notation of BOURBAKI: {x,u}. = i!(u) with x EV and u E A(V). 

Let x be the product of h elements of V and y be the product of k elements 
of V then we define in C(Q) and in A(V) the€ - commutator of x and y 
by the relation [x, Y]e = xy - (-l)hkyx resp. = x I\ y - (-l)hky I\ x. It can 
be proved that 77( { x, y}.) = [77( x), 71(y)] e if one of the elements x and y lies 
in V. 

REMARK. The formula 77({x,y}e) = [77(x),77(y)]e and the analogous one 
77( { x, y}) = [77(x ), 71(y )] in the case of Lie algebras are in general not true if 
both x and y are not in V. 

Let V be the space with base ( q1, ... , qn, Pl ... , Pn) again. Let now <I? be 
a symmetric bilinear form on V with <I?(pi,Pi) = <I?(qi, qi)= 0 (Vi,j) and 
with <1?(%Pi) = 6ii· <I? is non degenerate and Q with Q(x) = ½<I?(x,x) is 
a quadratic form with <I? as bilinear form. We get in this way a Clifford 
algebra C(Q) with [pi,pj]e = [qi, q1]e = 0 and with [qi,Pj]e = 6ij· The Pois­
son bracket on A(V) is given by {Pi,Pi }e = { qi, q1 }e = 0 and { qi,Pi}. = 6ij · 

REMARK. We have seen quite a lot of similarities between the symmetric 
and enveloping algebra of a Lie algebra on the one hand and the exterior 
and Clifford algebra on the other hand. There is another similarity: the 
envelope contains a Lie algebra; the Clifford algebra contains ( the spin 
representation of) a orthogonal (with respect to Q) group. 
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These notes present an introduction to an analytic version of deformation quan­
tization. The central point is to study algebras of physical observables and their 
irreducible representations. In classical mechanics one deals with real Poisson 
algebras, whereas in quantum mechanics the observables have the structure of a 
real non-associative Jordan-lie algebra. The non-associativity is proportional to 
/i,2, hence for Ii----+ 0 one recovers a real Poisson algebra. This observation lies at 
the basis of 'strict' deformation quantization, where one deforms a given Poisson 
algebra into a C* -algebra, in such a way that the basic algebraic structures are 

preserved. 

Our main interest lies in degenerate Poisson algebras and their quantization by 
non-simple Jordan-lie algebras. The traditional symplectic manifolds of classical 
mechanics, and their quantum counterparts (Hilbert spaces and operator algebras 
which act irreducibly) emerge from a generalized representation theory. This 
two-step procedure sheds considerable light on the subject. 

We discuss a large class of examples, in which the Poisson algebra canonically 
associated to an (integrable) lie algebroid is deformed into the Jordan-lie algebra 
of the corresponding lie groupoid. A special case of this construction, which 
involves the gauge groupoid of a principal fibre bundle, describes the classical 
and quantum mechanics of a particle moving in an external gravitational and 

Yang-Mills field. 

1. INTRODUCTION 

In quantization theory one tries to establish a correspondence between a clas­
sical mechanical system, and a quantum one. The traditional method, already 
contained in the work of Heisenberg and Dirac, is canonical quantization. At­
tempts to generalize this procedure, and put it on a solid mathematical footing 
have led to geometric quantization [49, 24, 20]. This is a certain algorithm 
which still contains many gaps, and for various reasons cannot be considered 
satisfactory [44]. The same comment applies to path integral quantization, but 

1 Supported by an S.E.R.C. Advanced Research Fellowship 
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we hasten to remark that both techniques have led to many examples, con­
structions, and insights, in physics as well as mathematics, that would have 
been hard to reach otherwise, and still provide the main testing ground for 
alternative methods. 

One such alternative method is deformation quantization. The version that 
we use (and partly propose) employs techniques from algebra, differential ge­
ometry, and functional analysis, and appears to be very interesting from a 
mathematical point of view. One attempts to relate Poisson algebras to C*­
algebras in a way specified below, and as such it is possible to relate to, and 
exploit the phenomenal progress made in both subjects over the last decade. 
This progress has consisted of discovering and understanding general structures 
through specific examples, and in a certain sense a unification of the three math­
ematical disciplines mentioned above has been achieved, under the name of 
non-commutative geometry. On the operator-algebraic side this includes cyclic 
cohomology of operator algebras [14] and operator K-theory (non-commutative 
topology) [42], which have found interesting applications (highly relevant to 
quantization theory!) in foliation theory and generalized index theorems [32]. 
As to Poisson algebras, we mention Poisson cohomology [23] and the theory of 
symplectic groupoids [48]. 

From the point of view of physics we wish to stress that the quantization 
procedure discussed here is very satisfactory in that it places physical notions 
like observables and states at the forefront (inspired by algebraic quantum field 
theory [21]), plays down the (quite unnecessary) use of complex numbers in 
quantum mechanics, and accurately describes a large class of examples relevant 
to Nature. Moreover, it brings classical and quantum mechanics very closely 
together and highlights their common structures. 

We will introduce the relevant mathematical structures step by step, on the 
basis of the familiar Weyl quantization of a particle moving on m_n. This will 
lead us to Poisson algebras, Jordan-Lie algebras, and C*-algebras. We then in­
troduce the appropriate notion of a representation of each of these objects, and 
motivate an irreducibility condition. Lie groups form a rich class of examples 
on which to illustrate the general theory, but since these only describe particles 
with nothing but an internal degree of freedom, we must look elsewhere for 
structures describing genuine physics. A rich structure that is tractable by our 
methods, and at the same time describes real physical systems, is that of a Lie 
groupoid [31, 16]. It has an associated 'infinitesimal' object (a Lie algebroid), 
and, as we will explain, the passage from an algebroid to a groupoid essentially 
amounts to quantization. 

2. CLASSICAL MECHANICS AND POISSON ALGEBRAS 

2.1. · Introductory example: particle on fiat space 
Consider a particle moving on the configuration space Q = m_n. We use canon­
ical co-ordinates (xµ,Pµ) (usually simply written as (x,p)) on the cotangent 
bundle M = T*li.n (µ = 1, ... ,n), so that (x,p) stands for the one-form 
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pµdxµ E r;im.n. In mechanics a key role is played by the Poisson bracket 

8f 8g 8f 8g 
{f,g} = a µ-a - -a aµ' 

X Pµ Pµ X 
(2.1) 

where Ji, h E C 00 (M). Here C00 (M) = Ao stands for the real vector space 
of real-valued smooth functions on M. Its elements are classical observables. 
Apart from the Poisson bracket, there is another bilinear map from Ao ®RAo --+ 

Ao, namely the ordinary (pointwise) multiplication ·. Let us write Jug for 
Jg(= f · g), and fag for {f,g}. The algebraic operations u and a satisfy the 
following properties: 

1. Jug= guf (symmetry); 

2. fag= -gaf (anti-symmetry); 

3. (Jag)ah + (haf)ag + (gah)af = 0 (Jacobi identity); 

4. (fug)ah = fu(gah) + gu(fah) (Leibniz rule); 

5. (Jug)uh = f u(guh) (associativity). 

The meaning of a and u is as follows. To start with the latter, we remark that 
the spectrum spec(!) of a function f E C00 (M) is the set of values it takes 
(that is, the possible values that the observable f may have). If f is concretely 
given (i.e., we know "f(m1 ) = a 1 , f(m2 ) = a2 ••• " then we obviously know the 
spectrum immediately. However, f may be regarded as an abstract element of 
the algebra A0 • The point is now that spec(!) is completely determined by its 
location in Ao, equipped with the product u (forgetting the Poisson bracket). 
Namely, if a E spec(!) then f - al (where 1 is the function on M which 
is identically equal to 1) fails to have an inverse in Ao, whereas, conversely, 
(!- al)-1 is a well-defined element of Ao, satisfying (f - al)-1u(f - al)= 1 
if a ff_ spec(!). Hence we may define spec(!) as the set of real numbers a for 
which f - al fails to have an inverse in Ao. A closely related point is that u 
allows one to define functions of observables (starting from J2 = Ju!); this is 
related to the previous point via the spectral calculus. 

The Poisson bracket a determines the role any observable plays as the 
generator of a flow on the space M of pure states on Ao. To explain this, we 
need to introduce the concept of the state space of an algebra. The state space 
S(A) of a real algebra A may be defined as the space of normalized positive 
functionals on A, i.e., the linear maps w : A --+ 1m. which satisfy w(J2) 2: 0 
for all f E A, and w(l) = 1. If w1 and w2 are states then ,\w1 + (1 - ,\)w2 

is a state if,\ E [O, 1]. A state is defined to be pure if it does not allow such 
a decomposition unless ,\ = 0, 1; otherwise, it is called mixed. The physical 
interpretation of w(f) is that this number equals the expectation value of the 
observable fin the state w. Any point m of M defines a pure state on Ao by 
m(f) = J(m), and these in fact exhaust the set of pure states. This statement 
holds equally well if we had taken Ao to be C':' ( M) or C0 ( M) ( the smooth 

137 



functions with compact support, and those vanishing at infinity, respectively), 
but the pure state space of Cr'(M) (the bounded smooth functions) is the 
so-called Cech-Stone compactification of M. 

Back to the Poisson bracket, each f E Ao defines a so-called Hamiltonian 
vector field XI on M by 

X1g == {g, !}, (2.2) 

and this generates a Hamiltonian flow ¢{ on M (as the solution of the differ­
ential equation dcp{ /dt = X 1(cp{)), cf. [I, 29]. That Xi is indeed a vector field 
(i.e., a derivation of C00 (M)) is a consequence of the Jacobi identity on o:. 

The example M = T*~n has the following feature: any two points of M 
can be connected by a (piecewisely) smooth Hamiltonian fl.ow. This property 
is equivalent to the following: {X1(m)lf E Ao} = TmM for all m E M. That 
is, the Hamiltonian vector fields span the tangent space at any point of M. 

To sum up, observables take values, and one may define functions of them, 
which two properties are determined by the product a; moreover, they generate 
flows of the pure state space, which are determined by the Poisson bracket a. 

2.2. Poisson algebras and their representations 
DEFINITION 1. A Poisson algebra is a vector space A over the real numbers, 
equipped with two bilinear maps a, a : A ®R A -t A which satisfy the five 
conditions in the preceding subsection. 

The examples of Poisson algebras we will consider are of the type A = C 00 ( M) 
for some manifold M, which has a Poisson structure, in the sense that a is 
some Poisson bracket and a is multiplication. In that case, M together with 
the Poisson structure is called a Poisson manifold. If M has the special feature 
discussed after (2.2) that any two points can be joined by a piecewisely smooth 
Hamiltonian curve, then M is called symplectic. If not, we can impose an 
equivalence relation [47] ~ on M, under which x ~ y iff x and y can be joined 
by a piecewisely smooth Hamiltonian curve. The equivalence class Lx of any 
point can be shown to be a manifold, which is embedded in M. If i is the 
embedding map then the relation { i* f, i* g hz = i* {f, g} M defines a Poisson 
structure { , } Lz on Lx, which is obviously symplectic, and we call Lx a 
symplectic leaf of M. More advanced considerations show that any Poisson 
manifold is foliated by its symplectic leaves (29]. 

If M = S is symplectic then the Poisson bracket can be derived from a 
symplectic form on S [I, 29]. The corresponding A= C00 (S) are in some sense 
the 'canonical models' of Poisson algebras. This motivates the following 

DEFINITION 2. A representation of a Poisson algebra A is a map 1r~ : A -t 

C 00 ( S), where S is a symplectic manifold, satisfying the following conditions 
for all f,g EA: 

1. 1rf ( >.J + µg) = hf(!) + µ1rf (g), for all A,µ E ~ (linearity); 
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2. 1rf(Jg) = 1rf(J)1rf(g) (preserves u); 

3. 1rf ({f,g}M) = {1rf(J),1rf(g)}s (preserves a); 

4. The vector field X-rrf(f) is complete if Xi is (self-adjointness). 

The c in 1rf stands for 'classical', and the above defines a 'classical' representa­
tion ( as opposed to a 'quantum' representation of algebraic objects by operators 
on a Hilbert space; as we shall see later, the distinction between classical and 
quantum is actually blurred). A vector field is called complete if its flow exists 
for all times. If f had compact support then its flow is automatically complete 
[1]. Condition 4 excludes situations of the following type. Take M = T*Jm. 
with the usual Poisson structure (2.1), and take S any open set in M. If i is 
the embedding of S into M, with the Poisson structure borrowed from M by 
restriction, then 1rf (J) = i* f satisfies 1-3 but not 4 (unless S = M). 

The following theorem shows that all representations are actually of the 
type 1rf = J*, where J : S -+ M is a Poisson morphism. 

THEOREM 1. Let M be a finite-dimensional Poisson manifold, A = C00 (M) 
the corresponding Poisson algebra, and let 1rf: A-+ C00 (S) be a representation 
of A. Then there exists a map J : S -+ M such that 1rf = J*. 

Proof. For the elementary C* -algebra theory used in the proof, cf. e.g. (33, 
43, 9]. Takes E S, and define a linear functional J(s) on C0 (M) by putting 
< J(s), f >= (1rf (J))(s) for f E C0 (M). By property 2 of a representation, 
J(s) is multiplicative, hence positive and continuous, so it extends to a pure 
state on the commutative C*-algebra Co(M) (which is the complexification 
of the norm-closure of Co'(M)). Hence by the Gel'fand isomorphism J(s) 
corresponds to a point J(s) of M. Hence we have found the required map 
J:S-+M. □ 

For reasons to emerge in subsect. 2.3 below, we will refer to J as the gen­
eralized moment map. Property 3 of a representation implies that J is what 
is called a Poisson morphism. Such maps have been studied extensively in the 
literature [47, 29]. The self-adjointness condition 4 translates into a condition 
on J, which is called completeness by A. Weinstein. Examples suggest that it is 
actually a classical analogue of the condition on representations of real operator 
algebras on Hilbert spaces that these preserve self-adjointness (a special case 
of which is the familiar requirement that group representations be unitary). 
However, this self-adjointness condition is actually a completeness condition, 
too, for it guarantees that the unitary flow on Hilbert space generated by the 
self-adjoint representative of a given operator can be defined for all times ( also 
cf. sect. 3 below). Further conditions on 1rf could be imposed to guarantee 
that J is smooth, but as far as we can see we can develop the theory without 
those. 

The following proposition (which is well known, cf. {47, 29]) is crucial for the 
analysis of irreducible representations (to be defined shortly). Here J. denotes 
the push-forward of J [l]. 
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PROPOSITION 1. Let J : S -+ M be the Poisson morphism corresponding to a 
representation 1rf of the Poisson algebra C 00 (M). Then for any f E C 00 (M) 

(2.3) 

where X 1 is the Hamiltonian vector field defined by f {etc.). Moreover, the 
image of the flow of X1rf(f) under J is the flow of Xi. 

Proof. Take g E C 00 (M) arbitrary. By definition of 1rf and J, we have 

{1r;(f),1rf(g)}s(s) = {f,g}M(J(s)) (2.4) 

Upon use of (2.2), this leads to the identity (J*X1rf(f)Y)(J(s)) = (X1g)(J(s)), 
whence the result. □ 

Since S is symplectic, the symplectic form w provides an isomorphism w : 
T.* S -+ T 8 S for any s E S. This is given by w(df) = X1, or w- 1(X) = ixw 
(evaluated at any points). Now let T8 S denote the subspace of T.S which is 
spanned by Hamiltonian vectors (i.e., of the form X1rf(f), f E C 00 (M), taken 
at s). Then 

(2.5) 

and w is a bijection between T8 S and J*(Tj(s)M), where J* is the pull-back of J 
(to I-forms, in this case). This follows rapidly from the preceding proposition. 

DEFINITION 3. A representation 1rf of a Poisson algebra C 00 (M) is called ir­
reducible if 

(2.6) 

As mentioned before in a different variant, this condition guarantees that any 
two points in S can be joined by a piecewisely smooth curve, whose tangent 
vector field is of the form X1rf(f)· Of course, since S is symplectic any two 
points can be joined by such a curve with tangent vectors X 9 , g E C 00 (S), 
even if 1rf is not irreducible, but one may not be able to take g = 1rf (!). Note, 
that we could have broadened our definition of a representation by allowing 
S to be a Poisson manifold; in that case, however, the irreducibility condition 
would force S to be symplectic anyway. In the literature (47, 29] people appear 
to be mainly interested in the opposite situation, where a Poisson morphism 
J : S-+ M (S symplectic) is called full if (in our language) the corresponding 
representation 1rf = J* is faithful. As the following result shows, this is indeed 
quite opposite to an irreducible representation, which has a large kernel unless 
M is symplectic itself. 

THEOREM 2. If a representation 1rf: C00 (M)-+ C00 (S) of a Poisson algebra 
is irreducible then S is symplectomorphic to a covering space of a symplectic 
leaf of M. 
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Proof. We first show that J : S -+ M is an immersion. Namely, if J.X = 0 for 
some X E T,,S then (J.X, fJ}J(a) = (X, J*(J},, = 0, but by (2.5) and (2.6) any 
9' E T*S may be written as(}'= J*(J for some (J E Tj(,,)M. Hence X = 0, and 
J is an immersion. Since J is a Poisson morphism, it follows that S is locally 
symplectomorphic to J(S) CM. 

Next, J(S) must actually be a symplectic leaf of M. For suppose that there 
is a proper inclusion J(S) C L, where Lis a symplectic leaf of M. It follows 
from the Darboux-Weinstein theorem [1, 29] that any point x in a symplectic 
space has a neighbourhood U"' such that any two points in U may be connected 
by a smooth Hamiltonian curve.If we take x to lie on the boundary of J(S) 
in L, then we find that there exist m 1 E J(S) and J(S) ~ m2 E L which 
can be connected by a smooth curve 'Y with tangent vector field XI, for some 
/ E C00 (M). Let m1 = J(si), and consider the flow i of X1rf(J) starting at 
s1. By the proposition above, Jo 7 = 'Y· However, since m2 ¢ J(S), the flow 
i must suddenly stop, which contradicts the self-adjointness (completeness) 
property 4 of a representation. Hence to avoid a contradiction we must have 
J(S) = L. 

A similar argument shows that J : S -+ J(S) must be a covering projection. 
For J not to be a covering projection, there must exist a point m E M, a 
neighbourhood Vm of m, and a connected component Ji- 1(Vm) of J- 1(Vm), 
so that J(Ji- 1 (Vm)) C Vm is a proper inclusion. But in that case we could 
choose points s1 E J(Ji-1(Vm)) and J(Ji- 1(Vm)) ~ s2 E Vm which can be 
connected by a smooth hamiltonian curve, and arrive at a contradiction to the 
self-adjointness property of 1rf. a 

2.9. The Lie-Kirillov-Kostant-Souriau Poisson structure 
We obtain a basis class of Poisson algebras by taking M = g*, which is the dual 
of the Lie algebra g of some Lie group G. We may regard X E gas an element 
of C00 (g*), by X(fJ) = (9,X), and the Poisson structure of g* is completely 
determined by putting 

{X,Y} = [X,Y] (2.7) 

(cf. [1, 29] for more information). The classical algebra of observables C 00 (g*) 
describes a particle which doesn't move, but only has an internal degree of 
freedom (e.g., spin if G = SU(2)). 

Let 1rf : C00 (g*) -+ C00 (S) be a representation of C00 (M), with S con­
nected. For each XE g we define a function fx on S by 

By definition of a representation 

{fx,!Y}s = f[x,YJ· 

(2.8) 

(2.9) 

If X is the Hamiltonian vector field defined by f x ( so that X g = {g, f x} s) 
then (2.9) and the Jacobi identity imply that [X, Y] = -[X, Y] (where the first 
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bracket is the commutator of vector fields and the second one is the Lie bracket 
on g). By self-adjointness, the fl.ow cpf of X is defined for all t, and this leads 
to an action 1r} of expX E G on S by 1r}(expX)s = cpf (s). HG is simply 
connected this eventually defines a proper symplectic action of G on S. 

Conversely, let G act on a symplectic manifold S so as to preserve the 
symplectic form w. We may then define a vector field X for each XE g by 

- d tX 
(XJ)(s) = d/(e s)it=O, (2.10) 

where we have written the action of z E G on s ES simply as xs. The action 
is called Hamiltonian i.xw = dfx for some fx E C00 (S) (this is guaranteed if 
H 1 (S, Ji) = 0), and strongly Hamiltonian if (2.9) is satisfied on top of that. If 
the former condition is met, one can define a map J : S --+ g" by means of 

(J(s),X} = fx(s), (2.11) 

with pull-back J" : C 00 (g") --+ C 00 (S). In that case we clearly see from (2.8) 
that the map J defined by (2.11) is a special case of the generalized moment 
map constructed in Theorem 1. Indeed, Jin (2.11) is called the moment(um) 
map in the literature [20, 1, 29]. (Note the varying sign conventions. We follow 
[1] in putting i.xw = dfx, X1g = {g,f}, and {fx,!Y}s = f1x,Y], but the 
alternative convention i.xw = -dfx, X1g = {f,g}, and {fx,!Y}s = -fix,Y] 
occurs as well.) 

If the symplectic G-action on S is Hamiltonian but not strongly so, the 
right-hand side of (2.9) acquires an extra term, and this situation may be 
analyzed in terms of Lie algebra cohomology [20, 1, 29]. The result is that the 
Poisson bracket (2. 7) can be modified, so that 1rf = J* defines a representation 
of C00 (g"), equipped with the modified Poisson structure. 

In the strongly Hamiltonian case J* produces a representation 1rf = J" 
of C 00 (g") equipped with the Lie-Kirillov-Kostant-Souriau Poisson structure 
(2.7). The fact that J is a Poisson morphism may be found in [1, 29, 20], 
and it remains to check the self-adjointness condition. We observe that vector 
fields on S of the type Xrr!(f) (f E C00 (g")) are tangent to a G-orbit, so 

that their fl.ow -r7; (f) cannot map a point of S into a different orbit. This 
reduces the situation to the case where G acts transitively on S. In that case, 
the vector fields {XIX E g} span the tangent space of S at any point, so 
that 1rf is irreducible. By Theorem 2, the image of J must be a symplectic 
leaf of g", hence a co-adjoint orbit (this shows, incidentally, that the famous 
Kostant-Souriau theorem which asserts that any symplectic space which allows 
a transitive strongly Hamiltonian action of a Lie group G is symplectomorphic 
to a covering space of a co-adjoint orbit of G [20, 29] is a special case of our 
Theorem 2). Now take f E C 00 (g") with Hamiltonian vector field X 1 and 
fl.ow -y{. Since (by definition) G acts transitively on any co-adjoint orbit in 
g", we may write -y{ (0) = 'll'co(zt)0 for some curve Xt in G (not uniquely 
defined, and dependent on the argument 0 E g"); here 'lrco is the co-adjoint 
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representation of G on g*. We now use Proposition 1 and the equivariance of 

J (that is, Jo x = 11"c0 (x) o J [20, 1, 29]) to derive Jo Xt(s) = Jo ,;~U\s) 
for any s E S; here Xt depends on J(s). Since J is an immersion this implies 

,;~(f)(s) = Xt(s), hence,;~(!) is defined whenever Xt is; in particular, if,{ is 

complete then ,;~<!) is, so that the representation 7rf is self-adjoint. 
In passing, we have observed that the irreducible representations of C00 (g*) 

are given by the co-adjoint orbits in g* (and their covering spaces). 

3. QUANTUM MECHANICS AND JORDAN-LIE ALGEBRAS 

3.1. Weyl quantization on flat space 
To introduce some relevant mathematical structures in a familiar context we 
briefly review the Weyl quantization procedure of a particle moving on Q = im.n, 
with phase space M = T*Jm.n (as in subsect. 2.1). It is convenient to introduce 
a partial Fourier transform off E C00 (M) by 

!.( . ) - J dnp ip:i:f( )· x, x - (27r)n e x,p , (3.1) 

this makes J a function on the tangent bundle Tlm.n, where we use canonical 
co-ordinates (x, x) = xµ8/8xµ E T.,im.n. For (3.1) to make sense we must have 
that f is integrable in the fiber direction (i.e., over p). Let f be such that 
J E C,;"' (Tlm.n); we refer to this class of functions as 2l0 • We then define an 
operator Q1;.(f) on the Hilbert space 1i = £ 2 (:im.n) by 

(3.2) 

with kernel 

- -n • ( X + y X - y) Q1;.(f)(x,y) = Ii f - 2-, -Ii- . (3.3) 

This operator is compact (it is even Hilbert-Schmidt, since the kernel in in 
C,;"' (Jm.n X im.n), and thus it is bounded. (The norm of an operator T on a 
Hilbert space 1i is defined by II T II= sup,t,(T'lj;, T'lj; )112 , where the supremum is 
over all vectors 'lj; of unit length. An operator T is called bounded if this norm 
is finite. An operator is called compact if it may be approximated in norm by 
operators with a finite-dimensional range [36]. Compact operators behave to 
some extent like finite-dimensional matrices). 

A crucial property of Q1;.(f) is that it is self-adjoint (since f is real-valued). 
This means, that Q n may be regarded as a map from 2l0 into 2l = ,q £ 2 (Jm.n) )sa 
(the set of self-adjoint compact operators on 1i = £ 2). As a real subspace of 
B(H), 2l is itself a normed space, which is, in fact, complete (because JC(H) is). 
We can make 2l0 into a real Banach space, too, by equipping it with the norm 

II f llo= sup IJ(m)I, (3.4) 
mEM 
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The completion of 210 under this norm is 210 = l!:0 (9.n, Ji.) (the space of real­
valued continuous functions on M which vanish at infinity). 

We interpret Qh(f) as the quantum observable corresponding to the classi­
cal observable f. Accordingly, we call 21 the (quantum) algebra of observables 
(of a particle on ii.n). As in the classical case, we may identify two algebraic 
operations on 21 (that is, bilinear maps 210JR 21-+ 21). They are 

1 
AahB = ½(AB+ BA); AahB = iii (AB - BA). (3.5) 

The latter depends on Ii, so we will rename 21, equipped with ah and ah, as Ah 
(the norm 1111 does not depend on Ii). One may verify the following properties: 

1. AahB = Bah.A (symmetry); 

2. AahB = -Bah.A (anti-symmetry); 

3. (AahB)ahC + (Co:hA)o:hB + (Bo:hC)o:hA = 0 (Jacobi identity); 

4. (AahB)o:hC = Aah(BahC) + Bah(AahC) (Leibniz rule); 

5. (AahB)ahC - Aah(BahC) = ~2 (AahC)ahB (weak associativity); 

6. 11 AahB 11:SII A 1111 B II (submultiplicativity of the norm); 

7. II A2 11:SII A2 + B 2 II (spectral property of the norm). 

We see that 1-4 are identical to the correpsponding properties of a Poisson 
algebra, and 5 implies that we are now dealing with a deformation of the 
latter in a non-associative direction, in that the symmetric product ah is now 
non-associative. A weak form of associativity does hold, this is the so-called 
associator identity 

(3.6) 

which can be derived from 1-5. The last two properties imply II A2 11=11 A 11 2 

(45], which leads to the usual spectral calculus. 
Before commenting on the general structure we have found, let us find the 

meaning of the products ah and ah (cf. subsect. 2.1). We start with <Th- In 
classical and quantum mechanics alike, the spectrum of a self-adjoint operator 
is identified with the values the corresponding observable may assume. We have 
seen that the spectrum of a classical observable is determined by the symmetric 
product a. In standard Hilbert space theory (which is applicable, as we have 
realized 21 as a set of operators acting on 1{ = L2 ) the spectrum of a self-adjoint 
operator A is defined as the set of values of z for which the resolvent (A- z)-1 

fails to exist as an element of B(H) (36]. More abstractly, the spectrum of 
an element A of a C* -algebra B is defined by replacing B(H) by B in the 
above (43, 9]. In fact, this definition only uses the anti-commutator (rather 
than the associative operator product, which combines the anti-commutator 
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and the commutator), so that we conclude that the symmetric product on the 
algebra of observables determines the spectral content. This observation is 
originally due to Segal [40] (and was undoubtedly known to von Neumann, 
who introduced the anti-commutator), and a quick way to see this is that the 
spetcrum of A is determined by the C*-algebra C*(A) it generates; this is a 
commutative sub-algebra of B (or, K,(1i) in our example above) which clearly 
only sees the anti-commutator ar,,, which coincides with the associative product 
on C*(A) (cf. [22, 3.2]). This argument is closely related to the fact that the 
Jordan product <Tr,, allows one to define functions of an observable, starting with 
A2 = Aar,,A. Conversely, one could start with a squaring operation, and define 
the Jordan product by Aar,,B = 1/2((A + B)2 -A2 - B 2 ), cf. the Introduction 
of [9]. The connection between spectra and functions of observables is provided 
by the spectral calculus. 

Next, we wish to relate the commutator or,, to the role observables play as 
generators of transformations of the space of pure states. As explained prior 
to (2.2), we may introduce states of an algebra of observables as normalized 
positive linear functionals w on !it; positivity here means that w(A2 ) ~ 0 for 
all A E !it (and A2 = Aar,,A as before), and normalized means that II w II= 1 
(which is equivalent to the property w(l) = 1 if !it has a unit 1, which is not the 
case for !it= K,(1i)). The state space of K,(1i) may be shown to be the space of 
all denity matrices on 1i (i.e., the positive trace-class operators [36] with unit 
trace). Pure states are as defined before, and we may consider the weak* -closure 
P(!l) of the set of all pure states of !it. In our example, any unit vector 'ljJ E £ 2 

defines a pure state w,i, by w,i,(A) = (A'ljJ,'ljJ), and, conversely, any pure state 
is obtained in this way. Noting that the space of pure states thus obtained is 
already weakly closed, we find that P(K(1i)) is equal to the projective Hilbert 
space P1i (which by definition is the set of equivalence classes [1P] of vectors 
of unit length, under the equivalence relation 'ljJ1 ~ 'ljJ2 if 'ljJ1 = exp(ia)'ljJ2 for 
some a E JIR.). For example, PfJ = S 2 (the two-sphere) is the pure state space 
of the algebra of hermitian 2 x 2 matrices. More generally, P1i is a Hilbert 
manifold modeled on the orthoplement of an arbitrary vector in 1i. Hence PC" 
is modeled on ci-1 To see this, take an arbitrary vector x E 1i (normalized 
to unity), and define a chart on the open set Ox= {1P E 1il(1P,X) =fi O} by 
putting 'Px : Ox --; xl. equal to 'Px(1P) = ('ljJ/('ljJ, x))- X· (We assume the inner 
product to be linear in the first entry.) 

The fundamental point is that P1i has a Poisson structure [l]. To explain 
this, note first that T,i,1i '.::: 1i, since 1i is a linear space; a vector cp E 1i 
determines a tangent vector 'P,t, E T,i,1i by its action on any f E C 00 (1i) 

d 
(cp,i,f)('l/J) = d/(1/J + tcp)jt=O· (3.7) 

The symplectic form won 1i is then defined by 

w(cp,i,, cp~) = -2/ilm (cp, cp'). (3.8) 

We now regard A E !it not as an operator on 1i, but as a function fA on 1i, 
defined on 1/J =fi O by 
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f- (·'·) = (A'I/;, 1/;) 
A 'I' ('l/;,'1/;) . {3.9) 

{The value at 1/; = 0 is irrelevant). The point is that this definition quotients to 
P'J-l, so that A E 2l defines a function f A on P1-l in the obvious way. Also, the 
symplectic structure quotients down to P1-l {the professional way of seeing this 
[1] is that U{l) acts on 7-l by 1/;-+ exp(ia)'I/;, this action is strongly Hamiltonian 
and leads to a moment map J: 7-l-+ lli given by J('I/;) = (1/;,1/;), and P'J-l is 
the Marsden-Weinstein reduction J-1 (1)/U{l)), and this leads to the Poisson 
bracket 

{3.10) 

with a1; defined in {3.5). An analogous equation determines the Poisson bracket 
on 7-l itself. As explained in {2.2) and below, the function JA {hence A) defines 
a vector field XA on 7-l, whose value at the point 1/; is found to be 

- i 
XA('I/;) = -r,,A'I/;. 

The flow cpf of this vector field is clearly 

cpf('I/;) = e-itA/li'lp. 

{3.11) 

{3.12) 

Since this flow consists of unitary transformations of 7-l, it quotients to a flow 
cpf on P'J-l, which is generated by a vector field XA which is just the projection 
of XA to the quotient space. This, in turn, is the vector field canonically related 
to !A E C00 (P1-l) via the Poisson structure {3.10). 

Parallel to the discussion following (2.2), we remark that that 2l acts on 7-l 
irreducibly, in the sense that any two points in (a dense subset of) 1-l may be 
connected by some flow generated by an element of 2l. By projection, a similar 
statement holds for flows on P{2l) = 1,]37-l. By {3.11), this is equivalent to the 
property that the collection {A'l/;IA E 2l} is dense in 7-l for each fixed 1/;, and 
this, in turn, by {3.11) is exactly the irreducibility condition used in Definition 
3 for Poisson algebras. 

To sum up, we have shown that the product a1; indeed leads to the desired 
connection between observables and flows on the pure state space of A1; (note 
that all the A1; are isomorphic to 2l for Ii -:fa 0), just as in the classical case. 

Remarkably, the Jordan product <T1; has a geometric expression in terms of 
the functions !A on P'J-l, too [11]. Let g be the Kahler metric on 7-l, which is 
defined by {cf. {3.8)) 

g(cp,t,,'P~) = liRe(cp,cp'). {3.13) 

Then a calculation shows that 

{3.14) 

this should be compared with {3.10), which for this purpose may be rewritten 
as 
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(3.15) 

We see that the entire Jordan-Lie algebraic structure of 21 is encoded in the 
Kahler structure of Pr£, which is given by hermitian metric n defined by the 
inner product: 

O(cp,t,, cp~) = li(cp, cp'). (3.16) 

Clearly, n = g - ½iw. 

3.2. Jordan-Lie algebras 
We now generalize some of these considerations. 

DEFINITION 4. A real Banach space 21 equipped with two bilinear maps o-,;,, a,. : 
21 ®R 21-+ 21, which satisfy properties 1-7 in the preceding subsection, is called 
a Jordan-Lie algebra. If Ii -::/ 0 21 is called non-associative, and if Ii = 0 21 
is called associative. In the latter case the operation ao is only required to be 
densely defined. 

The Jordan-Lie structure of von Neumann's choice of B(rl) as the algebra of 
observables in quantum mechanics was emphasized in [17]. We here propose 
that Jordan-Lie algebras are the correct choice to take as algebras of observ­
ables in quantum mechanics; allowing more possibilities than B(rl)sa or /C(rl)sa 
allows the incorporation of superselection rules, and the quantization of sys­
tems on topologically nontrivial phase spaces [26]. The example above already 
illustrates the remarkable fact that conventional quantum mechanics may be 
described without the use of complex numbers. The reader may object that a 
factor i appears in (3.5), but the resulting product a,. maps two self-adjoint 
operators into a self-adjoint operator, and it is the algebraic structure on 21 
(given by u,. and a,.), a real vector space, which determines all physical prop­
erties. Also, the (pure) state space is a real convex space and all observable 
numbers in quantum mechanics are of the form w(A), where w is a state and 
A an observable. 

A first major advantage of starting from Jordan-Lie algebras is that Poisson 
algebras are a special case (in which the symmetric product is associative), ob­
tained by putting Ii = 0 in property 5. Hence classical and quantum mechanics 
are described by the same underlying algebraic structure ( of which the former 
represents a limiting case), a point not at all obvious in the usual description 
in terms of either symplectic manifolds or Hilbert spaces. 

A second comment is that the axioms imply that 21 must the self-adjoint 
part of a C* -algebra, so that we recover a mathematical structure that has 
proved to be exceptionally fruitful in the study of quantum mechanics [40, 26], 
quantum field theory [21], statistical mechanics [10, 21], and pure mathematics 
[14, 13, 32, 42, 43, 33]. Indeed, we may define an associative multiplication on 
21c = 21 ®R C by means of 

(3.17) 
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the associativity follows from the axioms, cf. [17]. The involution in site is 
simply given by the extension of A* = A for A E sit. The norm axioms imply 
that site thus obtained is a C* -algebra. 

The meaning of <Tfi and Ofi is the same as in the example of the compact 
operators. To explain this, it is convenient to use 'Kadison's function represen­
tation' [25] of the self-adjoint part of any C*-algebra (hence of any Jordan-Lie 
algebra). Let K be the state space of sit (equipped with the weak*-topology); 
this space is compact if sit has a unit, which we shall assume (if not, one can 
adjoin one in a canonical way without any loss of information [43, 22]). Then sit 
is isometrically isomorphic with the space A(K) of all affine real-valued contin­
uous functions on K (with norm given by the supremum); since K is a convex 
subspace of the linear space of all continuous linear functionals on sit, convex 
combinations >.(wi) + (1 - >.)w2 (>. E [O, 1]) of states are well-defined, and a 
function f on K is called affine if J(>.(w1) + (1- >.)w2) = >.J(wi) + (1- >.)J(w2) 
for all Wi E K and all >. E [O, 1] ( cf. [43, 111.6] for detailed information on such 
spaces). The isomorphism between A E sit and A E A(K) is simply given by 
A.(w) = w(A). The spectral theory of sit, which, as we have seen in the case 
sit = K(H)sa, is governed by the symmetric product <Tfi (using an argument 
which extends to the general case), translates into a spectral theory for such 
affine functions [4]. Conversely, if one starts from A(K) as the basic structure, 
one may set up a spectral calculus, which exploits the very special properties 
that K has because it is the state space of a C*-algebra (hence, in particular, 
of a Jordan algebra). This spectral cheory may then be used to define <Tfi [4], 
making the intimate connection between the symmetric product and the spec­
tral calculus even clearer than in the realization of sit as operators on a Hilbert 
space. 

By the affine property, an element of A(K) is completely determined by its 
values on the pure state space P(sit) (which is the w*-closure of the extreme 
boundary of K [43, 33]). We can define an equivalence relation ~ on P(sit), 
saying that w1 ~ w2 if both states give rise to unitarily equivalent representa­
tions (via the GNS construction, which provides a connection between states 
and representations [9, 43]). Each equivalence class defines a so-called folium 
of P(sit). Each such folium is a Hilbert manifold, which is diffeomorphic (hence 
affinely isomorphic) to the pure state space P(H) for some Hilbert space 1-l (cf. 
the previous subsection). Therefore, it admits a Poisson structure, which is 
defined exactly as in the case sit= K(H) (the compactness of A and Bin (3.10) 
was not essential). The Poisson structures on the folia can be combined into a 
Poisson structure on P(sit), which is degenerate iff sit (unlike the compact op­
erators) admits more than one equivalence class of irreducible representations. 
This eventually leads us to regard elements of A(K) (hence of sit) as generators 
of transformations of P(sit), and we see that the flow of a given operator cannot 
leave a given folium. This suggests that P(sit) is a Poisson manifold, which is 
foliated by the symplectic leaves P(H), but much remains to be done before 
this statement can be made precise, let alone proved ( the main problems are 
to patch the folia together in the weak*-topology on P(sit), and to deal with 
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the states that are not pure but are weak* limits of pure states. In the uniform 
topology on Kand P(2l) things are easy, because P(2l) splits up as a collection 
of disjoint components, each component being a folium, but this topology is 
not the relevant one). 

Thus the idea is to identify the inequivalent irreducible representations of 2l 
(that is, its superselection sectors [21]) with the symplectic leaves of the pure 
state space P(2l), providing a nice parallel with the classical case. The total 
state space K of 2l may be equipped with a Poisson structure, too, but it is 
clear that the symplectic leaves of this Poisson space cannot be identified with 
inequivalent representations. For already in the simplest case where 2l consists 
of the hermitian n x n matrices the state space is foliated by an uncountable 
number of symplectic leaves, whereas the inequivalent representations are la­
beled by a positive integer. (To see this, note that K can be embedded in the 
dual u(n)* of the Lie algebra of U(n), equipped with the canonical Lie-Poisson 
structure, and this embedding is a Poisson morphism. Hence the symplectic 
leaves of K are simply given by those leaves of u(n)* which lie in K; these 
are generalized flag manifolds, and there are uncountably many even of a given 
orbit type). 

In any case, we see that the role of the antisymmetric product Ofi as the 
agent which relates observables to flows on the pure state space survives un­
scratched for Jordan-Lie algebras. Conversely, we would like to define this 
product in terms of the Poisson structure on P(2l). This can presumably be 
done using a result of Shultz [41], who proved that the commutator on the 
self adjoint part 2l of a C* -algebra 2l is abstractly determined by specifying 
transition probabilities and an orientation on P(2l). These transition probabil­
ities are the usual ones if one passes from states to their GNS representations 
(and are zero for disjoint states, that is, states leading to inequivalent represen­
tations). Specifying l('IP1,1P2)12 plus an orientation is equivalent to specifying 
Im(,,t,1,1P2), so we see from (3.8) that the theorem in [41] can very simply be 
understood by saying that the commutator is given by the Poisson bracket 
(3.10), and that Poisson and Jordan isomorphisms between two state spaces 
are induced by isomorphisms of the corresponding Jordan-Lie algebras. 

We return to the axioms 1-7 on a Jordan-Lie algebra. Especially the norm 
axioms, but also property 5 look rather arbitrary, and it would be nice to re­
formulate them in such a way, that the following question may be answered: 
which physical postulates of quantum mechanics imply its description in terms 
of Jordan-Lie algebras and their state spaces?. A similar question concerned 
with the Hilbert space formulation of conventional quantum mechanics is an­
alyzed in [30, 7]. Since a Jordan-Lie algebra is isomorphic to the self-adjoint 
part of a C* -algebra, we can look at the literature for help. In turns out to 
be fruitful to shift emphasis from the Jordan-Lie algebra 2l to its state space 
K (from which 2l can be recovered as A(K), as we have reviewed above). The 
question above may then be reformulated by asking which properties of a com­
pact convex set K make A(K) isomorphic to a Jordan-Lie algebra, and what 
the physical meaning of these properties is ( as before, we stress the point that 
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by eliminating complex numbers and Hilbert spaces from quantum mechan­
ics through its reformulation in terms of Jordan-Lie algebras and their state 
spaces, we feel that we have come closer to the physical meaning of this theory). 

The latter question has partly been answered in the work of Alfsen and 
Shutz [4, 3, 41], and others (cf. the reviews [2, 45]). As a consequence of these 
papers, the origin of the Jordan structure in quantum mechanics (as well as 
the norm axioms, which only use the Jordan product a-,i) is now quite well 
understood. The key property of K that leads to a Jordan structure and 
the associated spectral calculus is the existence of sufficiently many projective 
faces in K; a projective face plays a role similar to that of a closed subspace 
of a Hilbert space (or the corresponding projector) and is physically a yes­
no question. Projective faces are orthocomplemented, and have other nice 
properties making them suitable as a basic ingredient of quantum logic [7, 12]. 
Other properties of K which are necessary to derive the Jordan structure are 
related to the property that pure states in quantum mechanics can be prepared 
through filtering procedures, and to the symmetry of transition amplitudes 
(which reflects the symmetry between pure states and finest detectors [21]). 

Further properties of the state space K leading to a Lie bracket on 2l := 
2l(J:i) are known [3, 2], but their physical meaning is not so clear. We hope 
to be able to show that these properties are equivalent to P(2l) admitting 
a Poisson structure which foliates the pure state space in a way consistent 
with the representation theory of 2l as a Jordan algebra. A crucial property 
of non-associative Jordan-Lie algebras (i.e., Ii ,f= 0) is that the restriction of 
A(K) to P(2l) does not coincide with the space of all continuous functions 
on P(2l) (unlike the classical case; the essential point is that not nearly every 
function on P(2l) extends to an affine function on K, because non-pure elements 
of K generically have many decompositions as convex sums of pure states 
[9, 43]. This non-uniqueness constrains the allowed functions on the extreme 
boundary P(2l) of K, which do have an affine extension to K, enormously. Such 
constraints do not arise when every mixed state in K has a unique extremal 
decomposition, and this happens precisely when 2l is associative, i.e., in the 
classical case.). Together with the Poisson structure this property should be 
related to the uncertainty principle (at least in its naive textbook formulation). 

3.3. Representation theory of Jordan-Lie algebras 
As we have seen in Definition (2), a representation of a Poisson algebra is a 
map into C 00 (S) for some symplectic space S, which preserves all the algebraic 
structures and in addition satisfies a completeness condition. The motivation 
was that C 00 (S) for symplectic S is a 'canonical' model of a Poisson alge­
bra. More importantly, irreducibility implies that S must be symplectic. Simi­
larly, the canonical model of a Jordan-Lie algebra is the algebra of all bounded 
self-adjoint operators on a complex Hilbert space H. The latter is naturally 
equipped with the Jordan-Lie structure (3.5), and this motivates 
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DEFINITION 5. A representation of a non-associative Jordan-Lie algebra 21 is 
a map 1r"} : 21-+ B(rlx), for some Hilbert space 1-lx, satisfying for all A, B E 21 

1. 1r}(AA + µB) = A1r}(A) + µ1r}(B) (linearity}; 

2. 1r}(Aur,.B) = ½(1r}(A)1r}(B) + 1r}(B)1r}(A)) (preserves Jordan product}; 

3. 1r}(Aar,.B) = ~(1r}(A)1r}(B) - 1r}(B)1r}(A)) (preserves Lie product}; 

4. 1r}(A)* = 1r}(A) (self-adjointness). 

These conditions are, of course, equivalent to the usual ones on representations 
of the C* -algebra 21c ( the self-adjointness condition 4 is the requirement that 
1r} is a* -representation of 2lc), but we have put them in the given form to make 
the analogy with the classical Definition 2 clear. In similar vein, the classical 
irreducibility condition Definition 3 is, as we have seen from the discussion 
following (3.12), essentially the same as the usual definition of irreducibility for 
representations of C* -algebras, which in the present framework reads 

DEFINITION 6. A representation 1r} of a Jordan-Lie algebra 21 on a Hilbert 
space 1-lx is called irreducible iff every vector in 1-lx is cyclic for 1r}(21) (that 
is, the set {A'ljJIA E 21} is dense in 1-lx for each fixed 'Ip E 1-lx}-

All this may be reformulated in terms of the (pure) state space of 1-lx, and the 
Jordan and Lie products on A(K) as discussed in the previous subsection, but 
we leave this to the reader. 

There is a decisive difference between the classical case (Ii = O; Jordan 
product u = u0 associative) and the quantum case as far as irreducibility is 
concerned. Irreducible representations of a Poisson algebra C00 (M) are highly 
reducible as representations of the corresponding Jordan algebra (in which the 
anti-symmetric product a is ignored), whereas irreducible representations of 
this Poisson algebra ( which are just points of M) do not lead to representations 
of C00 (M) at all. In the quantum case, a representation of a non-associative 
Jordan-Lie algebra is irreducible iff it is irreducible as a representation of the 
underlying Jordan algebra. This looks curious, because the irreducibility con­
dition above may be formulated in terms of the vector fields (3.11), which are 
defined using the Lie product (see (3.10)). However, the unitary flow (3.12) is 
completely defined in terms of the Jordan product (which allows the definition 
of functions of an operator). 

The naive quantum analogue of the generalized moment map J ( cf. Theorem 
1) is rather trivial: given a representation 1r}(21), we may define a map J : 
1-lx -+ K (where K is the state space of 21) by specifying the value of the state 
]('ljJ) on arbitrary A E 21 to be 

(3.18) 
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This evidently reduces to a map J : P1-lx -+ K, which is the naive quantum 
analogue of the classical generalized moment map. Namely, for 1r} irreducible, 
the image of J is contained in the pure state space P(!X). Thus we see that the 
quantum moment map just expresses the correspondence between states and 
vectors in a Hilbert space, which is central to the GNS construction [43, 9], 
and lies at the heart of operator algebras. A difference beteween the classcial 
and the naive quantum moment map is that the image of the former is the 
set of pure states, even if the representation is reducible, while the image of 
the latter may well lie among the mixed states (namely if the representation 
is reducible). Also, the Marsden-Weinstein symplectic reduction construction 
[1, 29] canot be 'quantized' in terms of Jin any obvious way. Hence one needs 
a deeper quantum analogue of the classical moment map, and this is given by 
the concept of a Hilbert C*-module, see [28]. 

The quantum counterpart of the classical Theorem 2 has yet to be proved 
(and even properly formulated); this would express that P(!X) is foliated by its 
symplectic leaves, which, as we have seen in the preceding subsection, should 
be identified with folia of states leading to equivalent representations. 

3.4. The group algebra 
For reasons to emerge later, a quantum analogue of the Poisson algebra 0 00 (g*) 
(cf. subsect. 2.3) is the group algebra JL(G) = C*(G)sai it is the quantum 
algebra of observables of a particle whose only degree of freedom is internal. 
Here G is any Lie group with Lie algebra g. For simplicity, we only define 
JL(G) for unimodular G (look up C*(G) in [33] for the general case). The 
starting point is to construct a dense subalgebra of C*(G).This is done by 
defining a product* and involution* on C::O(G) by 

(3.19) 

where dx is a Haar measure on G. The norm is defined in [33]; in the special 
case that G is amenable (this holds, for example, when G is compact) one may 
put II / 11=111rf (/) II, where 1rf is a representation of C::O(G) (regarded as an 
associative *-algebra) on 1-lL = L2 (G), given by 

(1rf(f)'I/J)(x) =lady f(y)(1rL(Y)'I/J)(x),. (3.20) 

with (1rL(y)1/J)(x) = 1/J(y-1x). The closure of C::O(G) in this norm is the group 
algebra C*(G). The corresponding Jordan-Lie algebra JL(G) is its self-adjoint 
part, equipped with the products a-,;, and ali., defined as in (3.5) (with AB 
replaced by f * g, etc.). 

The representation theory of JL(G) coincides with that of C*(G), which 
is well-known [33]: every (non-degenerate) representation 1r} of JL(G) on a 
Hilbert space 1-lx corresponds to a unitary representation 1r x of G on 1-lx, 
the passage from 7r x ( G) to 1r} ( J L( G)) being accomplished by the analogue 
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of (3.20), with L replaced by X· In particular, irreducible representations of 
JL(G) correspond to irreducible unitary representations of G. 

In traditional quantization theory ( applied to this special case) one tried to 
associate a Hilbert space and certain operators to a co-adjoint orbit O C g* and 
the associated Poisson algebra C00 (0) (which we look upon as an irreducible 
representation of C00 (g*)). This was very succesful in special situations, e.g., G 
nilpotent. In that case there is a one-to-one correspondence between co-adjoint 
orbits and unitary representations, given by the Dixmier-Kirillov theory [15]. 
The same strategy was reasonably succesful in some other cases, like G com­
pact and semi-simple, when any irreducible unitary representation of G can be 
brought into correspondence with at least some co-adjoint orbit via the Borel­
Weil theory [24]; on the other hand, most co-adjoint orbits do not correspond 
to any unitary representation of G at all. However, in the general case no cor­
respondence between co-adjoint orbits and irreducible representations exists, 
and modern research in representation theory looks in different directions [46] 
(note that this does not undermine the hard fact that the classical irreducible 
representations of C 00 (g*) are completely classified by the co-adjoint orbits and 
their covering spaces). 

The natural correspondence between classical and quantum mechanics ex­
ists at an algebraic level, namely in their respective Jordan-Lie algebras of 
observables. The irreducible representations of a classical Poisson algebra are 
not necessarily related to those of the corresponding quantum Jordan-Lie alge­
bra, and both should be constructed in their own right. 

4. QUANTIZATION 

4.1. The definition of a quantization 

We now return to the Weyl quantization on m.n reviewed in subsect. 3.1. We 
have seen how we may regard Qn as a map from the dense subspace !it0 of the 
commutative Banach algebra !il0 = <!:0 (':r*llRn) to the space of self-adjoint com­
pact operators Qt = K(.C2 (ra.n) )sa· Here !il0 also has a densely defined Poisson 
structure (which is, in particular, defined on !it0 ), and may be regarded as an 
associative Jordan-Lie algebra, equipped with the products · = a = a0 and 
{ , } = a = a 0 . The space Qt may be dressed up with the products an and 
an, defined in (3.5), and thus a family of non-associative Jordan-Lie algebras 
{An} is defined (the norm in An is borrowed from !it, and is independent of Ii 
for Ii =f 0. The norm on !it0 is defined in (3.4)). We define Qo : !it0 - !il0 as the 
identity map. It may be shown [27] that the following properties hold for all 
f, g E !ilo: 

1. limn ..... o II Qn(f)anQn(g) - Qn(faog) II= O; 

2. limn ..... o II Qn(f)anQn(g) - QnUaog) II= O; 

3. the function Ii -II Qn(f) II is continuous on I= m.. 
Condition 2 is an analytic reformulation of the correspondence between com­
mutators of operators and Poisson brackets of functions first noticed by Dirac. 
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The first condition is based on the correspondence between anti-commutators 
of operators and pointwise products of functions, first noticed by von Neumann. 
The third condition is a precise formulation of ( one form) of the correspondence 
principle due to Bohr. Recalling that fu0g = Jg and faog = {f,g}, note the 
consistency of the above conditions with (3.14) and (3.10). In the context of 
C* -algebras conditions 2 and 3 in their present form were first written down 
by Rieffel [38) (who did not impose either condition 1 or self-adjointness on 
a quantization map). The connection between deformations of algebras and 
quantization theory was analyzed in a different mathematical setting in [8, 6). 

The example of a particle on m.n and the general considerations in sections 
2 and 3 motivate the following 

DEFINITION 7. Let !il0 be a commutative Jordan algebra with a densely defined 
Poisson bracket (making !il0 into an associative Jordan-Lie algebra, cf. Def. 4), 
and let !il0 be a dense subalgebra on which the Poisson bracket is defined. A 
quantization of this structure is a family {A11hE1 of non-associative Jordan­
Lie algebras (Def. 4), and a family { Q11hEI of maps defined on !il0 , such that 
the image of Q11 is in A11, and the above conditions 1-3 are satisfied. 

As we have seen, Weyl quantization satisfies this definition. A generalization of 
Weyl quantization to arbitrary Riemannian manifolds is given in [27]. The ax­
ioms above are not quite satisfied by this generalized quantization prescription, 
in that the range in Ii for which Q11 is defined depends on its argument. This is 
easily remedied, however, by constructing cutoff functions in Ii, cf. the example 
below. The cutoff, on the other hand, upsets the physical interpretation of 
Qt,,(/) as the quantum observable corresponding to the classical observable f 
for all Ii EI, and for that reason in [27] we preferred to leave Q11(/) undefined 
whenever it could no longer by interpreted properly. This complication only 
occurs for manifolds for which the exponential map is not a diffeomorphism 
on the entire tangent space at each point. A further generalization is to admit 
internal degrees of freedom, through which the particle can couple to a gauge 
field. This case is covered in [27], too, and from this general class of examples 
it has become clear that the definition of quantization given above is satisfied 
by a number of realistic physical examples. 

A non-self-adjoint version of the quantization of C0 (g*) by C*(G) (cf. sub­
sects. 2.3 and 3.4) was first given by Rieffel [39), and the physically relevant 
self-adjoint version, i.e., the construction of the maps Q11 : C0 (g*) -+ JL(G) 
is a special case of the theory in [27] if G is compact ( obtained by taking 
P = H =Gin that paper, and exploiting the fact that (T*G)/G ~ g* with the 
usual Poisson structure). We define !il0 C 00 (g*) as the space of those func­
tions f on g* whose Fourier transform J is in C~(g) (since g* ~ m.n we can 
define the Fourier transform as usual, cf. (3.1), omitting the x-dependence). 
The quantization map is given by 

{4.1) 
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which defines the left-hand side as an element of C*(G)sa = JL(G) for those 
values of 1i for which 1i, times the support of j lies in the neighbourhood of O E g 
on which the exponential function is a diffeomorphism from g to G. Since J 
has compact support, the allowed values of 1i will lie in an interval (-lio, lio), 
where li.o depends on f. If the group G is exponential (which is the case if G is 
simply connected and nilpotent (15]) then 1io = oo. In general, one could extend 
the quantization to any value of 'Ii, without violating the conditions required 
by Def. 7, by multiplying Qn(J) by a function h which is 1 in (-.99/io, .99/io) 
(say). 

4.2. Positivity and continuity 
While the Weyl quantization of subsect. 3.1 (as well as its generalization to 
Riemannian manifolds) satisfies Def. 7 of a quantization, there are two serious 
problems with it. The first is lack of positivity; this means that if f ~ 0 in 
Ql.0 = <?:0 ('r*lR.n) then it is not necessarily true that Qn(J) ~ 0 in Qt (see e.g. 
(18, 2.6]). From the equality 

1 dnxdnp 
(Qn(J)D., D.) = (2 )n WJ(x,p)J(x,p), 

T•JRn 7r 
(4.2) 

with the Wigner function 

(4.3) 

we see that the potential non-positivity of Qn(J) is equivalent to the fact that 
the Wigner distribution function (4.3) is not necessarily positive definite. 

The second problem is that Qn (for fixed 1i -:j:. 0) is not continuous as a map 
from Ql.0 to Qt (both equipped with their respective norm topologies). Hence 
it cannot be extended to Ql.0 in any natural way. The problem here is that we 
wish to work in a Banach-algebraic framework; the map Qn is continuous as 
an operator from L2 (T*DRn) to HS(L2 (DRn)) (if both are regarded as Hilbert 
spaces, the latter being the space of Hilbert-Schmidt operators on L2 (Din), 
with the inner product (A, B) = TrAB*), and also as a map from the Schwartz 
space S' (T*]Rn) to the space of continuous linear maps from S(DRn) to S' (Din), 
cf. [18, 19]. 

Both problems may be resolved simultaneously if we construct a positive 
quantization, that is, find a map Q~ : Ql.0 -+ Qt which is positive. For a pos­
itive map between two C*-algebras is automatically continuous (see (43], p. 
194). Let {D.nh>o be a family of normalized vectors in L2 (DRn), which satisfy 
the condition that in the limit 1i, -+ 0 the Wigner function WJ,. is smooth 
in all variables (including n), vanishes rapidly at infinity, and converges to 
(21rt6(x,p) in the distributional topology defined by the test function space 
Ql.0 (defined after (3.1)). An example is 

(4.4) 
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with Wigner function 

W/:,. (x,p) = (2/hte-<z2 +P2 )/fi. (4.5) 

We then define a new quantization map Q~ by 

Q~U) = Qr,,(W/:,. * f), (4.6) 

with Qr,, the Weyl quantization (3.3), W/f,. defined by W/f,. (x,p) = W/:,. (-x, -p), 
and * being the convolution product in :im.2n. It follows from Prop. 1.99 in [18] 
that Q~ is a positive map. Since the uniform operator norm is majorized by 
the Hilbert-Schmidt norm, it follows from the triangle inequality and the first 
continuity property of Qr,, mentioned above that Q~ defines a quantization if 
for all f,g E l.2lo 

£ 2 - lim ({wt * f, wt * g} - W/: * {f,g}) = O; 
r,,-.o " " " 

£2 - lim ((w/f * n. (wJ * g) - wt * u. g)) = o, (4.7) 
fi-.O " " " 

and if the function h-11 Q~(f) II is continuous for all such f. These conditions 
are all satisfied if 011 is as specified prior to (4.4), and thus Q~ is indeed a 
positive definite quantization (note that Q~ is automatically self-adjoint, since 
W/f,. is real-valued). It can be extended to 1.2(0 by continuity, but the extension 
obviously does not satisfy the quantization condition involving the Poisson 
bracket (which is not a continuous map on 1.2(0 in either variable). 

This procedure may be extended to arbitrary manifolds Q; the smearing 
f - W/f,. * f will in general be replaced by the use of Friedrichs mollifiers. 
It is clear that this positive definite quantization procedure is not intrinsic: it 
depends on the choice of the Or,,. It may be argued that the Weyl quantization 
procedure is not intrinsic either, because from a geometric point of view [27] it 
relies on the choice of a diffeomorphism between a tubular neighbourhood of 
Q in TQ, and one of t!:.Q in Q x Q. In any case, one may argue that points in 
space should be stochastic objects, with a probability distribution related to 
Or,,. This point of view is defended, in a quite different context, in [35, 5]. 

5. LIE GROUPOIDS, LIE ALGEBROIDS, AND THEIR JORDAN-LIE ALGEBRAS 

The (generalized [27]) Weyl quantization of G0(T*Q) by /C(L2 (Q))sa and the 
quantization of Co(g*) by JL(G) = C*(G)sa are both special cases of a rather 
general construction involving Lie groupoids, which are a certain generalization 
of Lie groups that are of great physical and mathematical relevance (cf. [31, 
16] for a comprehensive discussion of these structures, illustrated with many 
examples). 

5.1. Basic definitions 
We recall that a category G is a class B of objects together with a collection of 
arrows. Each arrow x leads from object s(x) (the source of the arrow) to the 
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object t(x) (the target). If s(x) = t(y) then the composition xy is defined as 
an arrow from s(y) to t(x), and this partial multiplication on G is associative 
whenever it is defined. Also, each object b EB comes with an arrow i(b), which 
serves as the identity map from s(i(b)) = b to t(i(b)) = b, so that xi(b) = x 
(defined when s(x) = b) and i(b)x = x (defined when t(x) = b). Hence we 
obtain an inclusion i of B into G. A category is called small if B is a set. 

DEFINITION 8. A groupoid is a small category in which each arrow is invertible. 

Hence for each x E G the arrow x-1 is defined, with s(x-1 ) = t(x) and t(x-1 ) = 
s(x), and one has i o s(x) = x-1x and i o t(x) = xx-1 • We may regard Gas a 
fibered space over B, with two projections S: G --t Bandt: G --t B. One may 
pass to topological groupoids by requiring continuity of the relevant structures, 
and to Lie groupoids by demanding smoothness: 

DEFINITION 9. A Lie groupoid is a groupoid in which G and B are smooth 
manifolds (taken to be Hausdorff, paracompact and finite-dimensional), so that 
the inclusion i is a smooth embedding, the projections s and t are smooth surjec­
tive submersions, and the inverse x --t x-1 , as well as the partial multiplication 
(x,y) --t xy are smooth maps. 

Variations on this definition are possible, cf. [31, 16]; for example, in the former 
ref. the assumption is added that G is transitive, in the sense that the map 
s x t : G --t B x B is surjective ( that is, any two points in B can be connected 
by an arrow), but since a corresponding transitivity assumption is not part of 
the definition of a Lie algebroid (see below) in [31], we follow [16] in dropping 
it. 

We see that a Lie group is a special case of a Lie groupoid, namely a case 
in which B consists of one point b (and i(b) = e is the identity of G), so 
that all arrows can be composed. One may generalize the passage from a Lie 
group to a Lie algebra in the present context. First note that each x E G 
defines not only an arrow from s(x) to t(x), but in addition leads to a map 
L,,, : t-1(s(x)) --t r 1 (t(x)), defined by L,,,(y) = xy. Similarly, one has a map 
R,,, : s-1(t(x)) --t s-1(s(x)) given by R,,,(y) = yx. As in the Lie group case, we 
would like to define left- and right invariant vector fields on G. Hence we would 
obtain (say) a left-invariant flow cp.,. on G, satisfying cp.,.(L,,,(y)) = L,,,cp.,.(y) for 
y E r 1(s(x)). The problem is that L,,, is only a partially defined multiplication, 
so that the right-hand side is only defined if t(cp.,.(y)) = s(x), that is, the target 
of cp.,.(y) must not depend on the time -r. Hence (d/d-r)t(cp.,.) = 0, or t.X = 0 if 
X = (d/d-r)(cp.,.)l.,.=O· In conclusion, we may define a left-invariant vector field 
{L by the conditions 

(5.1) 

and a right-invariant vector field {R by the conditions 

(5.2) 
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It is easily shown [31, 16] that the commutator (Lie bracket) of two left (right) 
invariant vector fields is left (right) invariant. Hence we may define 

DEFINITION 10. The Lie algebroid g of a Lie groupoid G is the real vector space 
of all vector fields on G satisfying (5.1}, equipped with the following structures: 
i} a projection pr : g -t B (namely the obvious one, coming from the projections 
TG -t G ~ BJ, which makes g a vector bundle over B; 
ii) a projection q: g -t TB, given by q = s.; 
iii} a Lie bracket on I'(g) (the space of smooth sections of g), which is given 
by the commutator on I'(TG), and which satisfies 

q([el.elD = [q(el),q(eDJ; 

[el, fell= ![el, ell+ q(el)f · el VJ E C 00 (B). 

(5.3) 

(5.4) 

Of course, an equivalent definition is obtained by replacing (5.1) by (5.2), and 
s and s. by t and t., respectively. One may define a Lie algebroid without 
reference to Lie groupoids as vector bundle E over B, together with an addi­
tional projection q : E -t TB satisfying (5.3) (the 'anchor' of E [31]) and a 
Lie bracket on I'(E) satisfying the analogue of (5.4). A Lie algebroid is called 
transitive if q is a surjective; if a Lie groupoid G is transitive then so is its 
algebroid g. A simple example is E = TQ as a vector bundle over Q, with q 
the identity map. 

One may generalize the identification g ~ TeG for a Lie group G as follows. 
Since X = x(x-1x) = L:,;(i O s(x)), every left-invariant vector field eL on G 
is determined by its values at i(B) = Go C G. We have the decomposition 
Ta0 G = Ta0 Go EB ker(t.)fTa0 G (where f means 'restricted to'), so we see 
that g ~ Ta0 G/Ta0 Go, which is just the normal bundle Ni of the embedding 
i : B -t G. Equivalently, if we define TtG as the vector bundle over G consisting 
of elements of TG annihilated by t. (with the canonical projection prt onto G 
borrowed from TG), then g = i*(TtG), the pull-back bundle over B given by 
the map i: B -t G. Conversely, TtG = s*(g) as a pull-back bundle [31]. Note 
that TtG is itself a Lie algebroid over G, with the anchor q: TtG -t TG just 
given by inclusion. 

An interesting property of a Lie algebroid E is that a connection on E allows 
one to define generalized geodesics on E (hence on the base space B). Namely, 
one obtains a vector field eon E, whose value at Y EE is given by the hori­
zontal lift of q(Y) E TB at Y. The flows of this field are the desired generalized 
geodesics (for E = TB equipped with the Levi-Civita connection these are the 
usual geodesics). This leads to the construction of a map exp : g -t G which 
generalizes the one for Lie groups [34]. Na.mely, by the preceding paragraph 
TtG regarded as a vector bundle over G inherits the chosen connection A on 
g (considered a vector bundle over B) as the pull-backs* A, and this implies 
that one has a generalized geodesic flow 'Yr on TtG. Now for XE g, 

(5.5) 
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where on the right-hand side we regard X E g C TtG via the natural embedding 
of g = ker(t.)rTa0 G in TtG. HG is a Lie group then obviously no connection 
needs to be chosen ( all vectors on g are vertical, so the geodesic flow on g is 
the identity map), and the map exp reduces to the usual one. 

5.2. Algebras of observables from Lie algebroids and groupoids 
Generalizing the Poisson algebra C00 (g*) of a Lie algebra g (which is a vector 
bundle over a single point), one may associate a Poisson algebra C00 (E*) to 
any Lie algebroid E (16]; here E* is the dual of E as a vector bundle. The 
Poisson structure is completely determined by specifying the Poisson bracket 
between arbitrary sections fa, e2 of E and functions Ii, h on B. Here any 
e E r(E) defines an element ( E C00 (E*) as follows: if pr is the projection 
in E* then ((9) = {O,e(pr(O))). These functions ( are obviously linear on the 
fibers of E*. Furthermore,/ E C00 (B) defined J E C00 (E*) by pull-back. The 
Poisson brackets are 

(5.6) 

This bracket may subsequently be extended to a dense subset of C00 (E*) 
(in a suitable topology) by imposing the Leibniz rule on pr~ducts of linear 
functions. On E = TQ this procedure is equivalent to imposing the iden-

tities {u(e1),u(6)} = u([fa,6]), {i1,l2} = o, and {ue,J} = eu), where 
u(e) E C00 (T*Q) is the symbol of the vector field eon Q. This leads to the 
canonical Poisson structure on C00 (T*Q). In case that E = g is the Lie alge­
broid of a Lie groupoid, a more intrinsic construction of this Poisson structure 
is given in (16, 11.4.2]. 

In similar spirit, we can construct a non-commutative C* -algebra (hence 
a non-associative Jordan-Lie algebra) from a Lie groupoid G (indeed, from 
almost any topological groupoid (37], but the construction is more canonical 
in the Lie case, where a natural measure class is singled out, see below). To 
do so, we need to chose a measure µb on each fiber r 1(b) of G, in such a way 
that the family of measures thus obtained is left-invariant ( that is, the map 
L,,, : t-1(s(x)) ---+ t-1(t(x)) should be measure-preserving for all x). Since the 
fibers are manifolds, we naturally require that each measure µb is equivalent to 
the Lebesgue measure (on a local chart). The precise choice of the µb does not 
matter very much in that case, as the C* -algebras corresponding to different 
such choices will be isomorphic. In both the Lie and the general case, groupoid 
C* -algebras are of major mathematical interest, as they provdide fascinating 
examples of non-commutative geometry (cyclic cohomology) and topology (K­
homology), cf. [13, 32]. The algebra is constructed starting from Cg"(G), which 
is equipped with a product 

f *U(x) = { dµa(z)(Y)f(xy)g(y- 1 ), Jt- 1 (s(z)) 
(5.7) 

and an involution 
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J*(x) = J(x-1 ), (5.8) 

which are clearly generalizations of (3.19). The construction of the norm is 
described in [37] ( for general groupoids), and the closure of Cr:' ( G) in this norm 
is the groupoid algebra C*(G). Its self-adjoint part, with the multiplications 
ur. and ar, (cf. (3.5)), is the Jordan-Lie algebra JL(G). 

For G a Lie group we thus recover the group algebra, whose representation 
theory is discussed in subsect. 3.4; the opposite case is the so-called coarse 
groupoid G = Q x Q, where Q is a manifold. This has base space B = Q, 
and source and target projections s((x, y)) = y, t((x, y)) = x. The inclusion 
is i(x) = (x,x), the inverse is (x,y)-1 = (y,x), and the composition rule is 
(x1,Y)(y,x2) = (x1,x2)- The measures µb may all be taken to be identical to a 
single measureµ on Q, and one easily finds that C*(Q x Q) = JC(L2(Q; µ)), cf. 
[13). Its self-adjoint subspace JL(Q x Q) is the quantum algebra of observables 
of a particle moving on Q [27], and it will not come as a surprise that the Poisson 
algebra of the Lie algebroid TQ of Q x Q is just C00 (T*Q), the classical algebra 
of observables of the particle. The quantum algebra JL(Q x Q) has only one 
irreducible representation, namely the defining one on L2 ( Q; µ) ( up to unitary 
equivalence). Similarly, the classical algebra C00 (T*Q) has only one classical 
irreducible representation (up to symplectomorphisms), given by S = T*Q. 
These are the quantum as well as classical Jordan-Lie analogues of the well­
known Stone- von Neumann uniqueness theorem on regular representations of 
the canonical commutation relations (see e.g. [10, 18, 15] for this theorem in 
its various settings). 

The situation where G is either a Lie group, or the coarse groupoid of 
some manifold, are both special cases of so-called gauge groupoids [31, 16]. 
A gauge groupoid is equivalent to a principal fibre bundle (P, Q, H), where 
P is the total space, Q is the base space, and H is a Lie group acting on P 
from the right. The corresponding groupoid is denoted by P Xn P. It is a 
quotient of the coarse groupoid P x P, obtained by imposing the equivalence 
relation (x1,x2) ~ (Y1,Y2) iff (x1,x2) = (y1h,y2h) for some h EH; we denote 
the equivalence class of (x,y) by [x,y]. Accordingly, B = Q = P/H, the 
inverse is [x,yJ-1 = [y,x], the projections are s([x,y]) = P1"P-+Q(Y), t([x,y]) = 
P1"P-+Q(x), the inclusion is i(q) = [s(q), s(q)J (for an arbitrary sections of P), 
and multiplication [xi, Y1] · [Y2, x2] is defined iff Y2 = y1h for some h EH, and 
the composition equals [x1 h, x2] in that case. For H = { e} we get the coarse 
groupoid, and for P = H = G we get a Lie group G. It can be shown that any 
transitive groupoidis of the form P xn P [31]. 

If His compact the groupoid C*-algebra is C*(P Xn P) ~ C*(Q x Q) ® 
C*(H) [27], which is the quantum algebra of observables of a particle moving 
on Q with an internal degeree of freedom, namely a charge coupling to a gauge 
field defined on the bundle (P,Q,H). The Lie algebroid of P xn Pis (TP)/H 
(where the action of Hon TP is the push-forward of its action on P). The 
corresponding Poisson algebra C 00 ((T* P) / H) was already known to be the 
classical algebra of observables of a particle coupling to a Yang-Mills field (20], 
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and it is satisfying that the quantum algebra C*(P Xn P)sa can be obtained 
as a deformation of it; the quantization maps Qr,, are given in [27]. 

The irreducible representations of the classical algebra of observables Ao = 
C00 ( (T* P) / H) correspond to the symplectic leaves of (T* P) / H ( and their cov­
ering spaces), which are discussed in [20]. There is a one-to-one correspondence 
between the set of these leaves, and the set of co-adjoint orbits in h* (the dual 
of the Lie algebra of H): each leaf Po is a fiber bundle over T*Q whose char­
acteristic fiber is the co-adjoint orbit 0. Hence locally Po ~ T*Q x 0, and the 
orbit O C h* clearly serves as a classical internal degree of freedom ('charge') of 
the particle. Hence the representation theory of C 00 ((T* P)/ H) is isomorphic 
to that of C 00 (h*) with the Lie etc. Poisson structure discussed in subsect. 2.3. 

An analogous situation prevails in the quantum case Ql = J,C(s:JJ XfJ s:JJ) 
[27]. The representation theory of this algebra is isomorphic to that of JL(H) 
(see subsect. 3.4), hence each irreducible unitary representation ?rx of Hon a 
Hilbert space 1ix induces an irreducible representation 7rX of Ql, and vice versa. 
The Hilbert space 1{X carrying the representation 1rX(Ql) is naturally realized 
as 1{X ~ L 2(Q) ® Hx., so that we see that 1ix acts as an internal degree of 
freedom of the particle (a 'quantum charge'). 

To sum up, we see that classical internal degrees of freedom are co-adjoint 
orbits of a Lie group, whereas the quantum analogue of this is an irreducible 
unitary representation of the same group, compare with the discussion in sub­
sect. 3.4. 

We end in a speculative manner. In [27] one finds a proof of the transitive 
case of the following 

CONJECTURE 1. Let G be a Lie groupoid, and g its Lie algebroid. Then there 
exists a quantization relating the Poisson algebra C00 (g*) canonically associated 
tog to the Jordan-Lie algebra JL(G) = C*(G)sa, in the sense of Definition 7. 
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