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PREFACE

These proceedings contain a selection of the lectures given in the seminar
"Mathematical Structures in Field Theories’, held at the University of Ams-
terdam during the last few years.

Chapter 1 by G.M. Tuynman explains the ideas of prequantization and is
intended as a general introduction for the non-specialist.

In the second chapter P.G. Vroegindeweij introduces the space-time algebra,
which is the Clifford algebra associated to Minkowski space. The main goal is
to give a description of the Dirac equation in terms of this space-time algebra.

Chapter 3 by C. Dullemond deals with quark confinement. The author
introduces a classical model with induced metric in order to describe this phe-
nomenon.

The fourth chapter by G.G.A. Baiierle is devoted to the Frenkel-Kac-Segal
mechanism, which provides a way to introduce gauge fields. After a review
of the bosonic string in Minkowski space the author treats a special case of
toroidal compactification, which gives rise to two possible affine Kac-Moody
algebras as spectrum generating algebras.

The next chapter by N. van Eck gives an introduction to the theory of Hopf
algebras. It may serve as first step in the study of quantum groups.

The last chapter by N.P. Landsman deals again with quantization and
presents an introduction to an analytic version of deformation quantization.
The central point is to study degenerate Poisson algebras and their quantiza-
tion by non-simple Jordan-Lie algebras.

We thank CWI again for the technical production of these proceedings.

The editors

E.A. de Kerf
H.G.J. Pijls






What is Prequantization, and what is

Geometric Quantization?

G.M. Tuynman

Faculté des Sciences et Techniques, Université de Lille I, 59655 Villeneuve d’ Ascq, France

This paper is intended for the non-specialist (either mathematician or theoreti-
cal physicist) with a minimum knowledge of differential geometry, classical
mechanics and quantum mechanics. It explains the ideas of prequantization
and geometric quantization with emphasis on prequantization. In short, pre-
quantization shows that the mathematical models of classical mechanics and
quantum mechanics are much more alike than one should expect from the
conventional formation of these theories. Geometric quantization uses these
similarities between classical and quantum mechanics to extend the notion of
canonical quantization to general systems in classical mechanics. To appreci-
ate this, one should know that canonical quantization is only applicable to sys-
tems which are trivial in the mathematical sense, e.g. a phase space R2”".

1985 AMS subject classification: 70A05, 81C999, 58F05, 81D07, 58F06.
Keywords: prequantization, geometric quantization.

1. PHYSICAL SYSTEMS, STATES AND MODELS

Theoretical physics is the science which tries to find rules, called physical laws,
according to which a certain class of natural phenomena behave. Moreover, it
tries to formulate these rules in terms of mathematical models. It is therefore
very important to make a distinction between the natural phenomena, the phy-
sical laws and the mathematical models.

A mathematical model consists usually of several items, e.g. sets (topologi-
cal spaces, vector spaces, differentiable manifolds), special objects related to
these sets (e.g. a metric tensor, a symplectic 2-form), variables denoting ele-
ments of these sets (local coordinates such as position or pressure) and certain
equations in these variables (e.g. ‘PV=RT" (Boyle - Gay Lussac) or
‘F=md?r/dt* (Newton)). I will call these items together the mathematical
ingredients of the model. The interpretation (also called the semantics) of such a
model relates (some of) the mathematical ingredients to the real world, for
instance to the position of the moon in the sky, or to the temperature of the
water for your tea (it should be boiling!). Since all things influence each other,
it follows that if we want to describe a natural phenomenon, we have to
include the whole universe in our description. Clearly this is a task too com-
plex to accomplish, so one has to make some approximations to reality. When
studying a phenomenon (motion of the moon, boiling of water) one idealises
the situation by neglecting those things which are supposed to be unimportant
to the object of study and in fact one neglects as much as possible in order to



retain only the essential features of the phenomenon one is studying. The
result of neglecting all irrelevant items is called the physical system, hence a
physical system is an idealisation of reality. Examples of physical systems are
a single free particle where one imagines a universe containing only one parti-
cle, or two particles with gravitational interaction where one imagines a
universe containing only these two particles (e.g. when studying the motion of
the moon around the earth these two particles represent the earth and the
moon). It is such a physical system, such an idealised situation, which is
described by a mathematical model. Hence in the interpretation of the
mathematical model, i.e. in relating the model to reality, one has to perform
two steps: first of all to relate mathematical concepts to concepts of the ideal-
ised physical system and then relating this ideal situation to reality.

When constructing a mathematical model for a physical system, one usually
includes all possible states of the system under consideration. How a given
state is described depends on the actual model. In some models there is a set
of which the elements correspond bijectively to the possible states of the sys-
tem, e.g. the symplectic model in which the points of the phase space represent
the different states of the system. In some models there is a set of which the
points describe more than one state of the system, e.g. the Newton model in
which figures a set, called the configuration space, of which the elements
denote the positions of the particles of the system, but where one also needs
the velocities of the particles to distinguish between different states. Finally
there exist models in which figures a set of which different elements describe
the same state, e.g. quantum mechanics in which vectors of a Hilbert space
which differ by a complex constant denote the same state.

2. CLASSICAL MECHANICS

This section is devoted to the mathematical models for classical mechanics; a
review is given of the Newton formulation, Lagrange and Hamilton formula-
tion and the symplectic formulation. For the latter three it is indicated how
‘they can be ‘derived’ from the Newton formulation.

2.1. Newton mechanics

One can say that the origin of classical mechanics in its contemporary form is
the theory of Isaac Newton which tries to describe natural phenomena in daily
life (falling apples, the motion of the moon etc.) The main constituent of this
theory is the well known equation of motion (Newton’s second law):

F = ma

which tells us that the second derivative a of the position of an object (where a
is the acceleration of the object) times the mass m of that object is equal to the
applied force F (a vectorial equation). If this equation is not to be a tautology,
the force applied to an object should be known ‘independently’ of the object
itself, otherwise ‘force’ would be a redefinition of ‘acceleration’.

In the above model the mathematical ingredients are the space R,
representing all possible position of r of the object in ‘our 3-dimensional



space’, and a function F:R*—>R?, representing the force F(r) exerted on the
object when it is at the position r. The model is completed by the equations of
motion, which state that the various position r(f) of the object at different
times ¢ satisfy the second order differential equation:

d2
F(r(r) = m;t-;-(o @)

In this way the model can easily be extended to a system of N objects: the
mathematical ingredients are the space R, a function F:R3* >R3" and the
equation of motion (2.1). The interpretation is that a point r=(ry, ...,Iy)
represents the positions of the N objects in our 3-dimensional space, that F(r)
represents the force exerted on the objects when they are at the positions
specified by r and that the positions r(¢) at different times satisfy the equations
of motion (2.1).

Newton himself derived an expression for the gravitational force in a 2-
particle system, stating that the force F}, exerted by an object 1 on an object 2
is proportional to the product of their masses divided by the square of their
distance and directed towards the first object:

mym;

Fp@,r) =G E (r,—r3) (gravitational force)

r2—ry
The position reR® then is specified as r=(r;, r,) with r;cR? the position of
the j-th particle and the force F:R6>R® is given by F(r, r)=F1(r1, r2),
Fy(ry, 1)) with Fy, = —F),; the corresponding equations of motion (2.1) are
mldzrl/dt2= le(l'l,l'z) and mZdzl'z/dt = Flz(l'l, l'z).

2.2. The Lagrange formulation

In the course of history the mathematical model of classical mechanics is
modified to incorporate new ideas from theoretical physics. The first
modification is that one supposes that the force function F can be derived
from a potential V:R** SR by:

F@) = —aV/or

This simplifies the search for a correct model for a given system enormously,
because one now has to find only one function of 3N variables instead of 3N
functions of 3N variables. However, in this model the equations of motion
depend manifestly on the choice of a coordinate system (for a general potential
only orthogonal transformations of r preserve the form of the equations of
motion m d*r/dt?> = —9V/9r). Moreover, an initial position r of the system (of
N objects) does not determine a unique solution of the equations of motion
because the equations of motion are second order differential equations in r.
On the other hand, if the initial position r and the initial velocity v=dr/dt are
known, then the equations of motion can be solved uniquely.

The Lagrange formulation of classical mechanics solves the above mentioned
problems. Its mathematical ingredients are a space R®Y =R*¥ XR*¥ with coor-
dinates (r, v), a function L:R°* >R (called the Lagrangian of the system) and



the so called Euler-Lagrange equations of motion:
dr . _ aL _d 3L
O = V0O SE0,W0) = £ a0, ) @2)

The interpretation is that a point (r, v) represents the positions and the veloci-
ties of the N objects (at a given time) and that the time evolution of the system
(i.e. the positions and the velocities at different times) is given by the Euler -
Lagrange equations of motion. A system described in the Newton formulation
on R¥ by a potential ¥ is described in the Lagrange formulation on RS by a
Lagrangian L(r, v)="5m |v[*— V().

The main advantage of the Lagrange formulation is that it is ‘independent’
of the choice of coordinates. More specific: suppose r’ is another set of coordi-
nates on RV ie. r'=r(r), then we have an associated change of coordinates
(r, »—>(', v) given by:

P=rE) V=V = (%l:—)v. 2.3)

Now if we define the function L’ as the function L expressed in the new coor-
dinates (v, V"), i.e. L(r,v)=L'('(r), v'(r,v)), then solutions of the Euler -
Lagrange equations (2.2) are mapped under the transformation (r, v)—(r’, v') to
solutions of (2.2) in which (r, v) and L are replaced by (r’, v) and L’.

In modern differential geometry one recognises the transformation (2.3) as
the transformation of local coordinates in the tangent bundle of a manifold (in
this case the tangent bundle TR**=R®" of R*"). This suggests a generalisa-
tion of the mathematical ingredients of the model: instead of RS one consid-
ers the tangent bundle 7Q of a manifold Q and the function L becomes a
function L:TQ—R. The independence of the Euler - Lagrange equations (2.2)
under the coordinate transformation (2.3) guarantees that a solution of (2.2) on
a local chart corresponds smoothly to a solution of (2.2) on another (intersect-
ing) local chart.

From the point of view of physics one can ask whether this generalisation of
the mathematical model has any relevance in the description of actual physical
systems. The answer is affirmative if we interpret the manifold Q in the gen-
eralised model as the configuration space of the system, i.e. the space which
describes the possible positions of the system. As an example one can think of
a system of two masses joined by an inflexible, weightless rod of fixed length
p; the possible positions of this system are described by the subsppace Q of R®
defined by the equation |r, —r;|=p, i.e. 0=S? XR>.

2.3. The Hamilton formulation

The Hamilton formulation is another formulation of classical mechanics which
solves the above mentioned problems of the Newton formulation with a poten-
tial function. It has the advantage that its equations of motion are manifestely
first order differential equations. Its mathematical ingredients are a space
RSY=R3V XR3 (which is called the phase space of the system) with coordi-
nates (r, p), a function H:R%¥ >R (the Hamiltonian of the system) and the

4



Hamilton equations of motion:
dr . _ BH dp_ _°H
G ® = 3 0RO T = — 60,00 X

The interpretation of this mathematical model is that a point (r, p) represents
the position r and the associated momentum p (usually p is just mv) of the N
particles, the function H represents the total energy of the system and the time
evolution of the system is governed by the Hamilton equations of motion (2.4).
A physical system described in the Newton formulation with R*" and poten-
tial function ¥ is described in the Hamilton formulation by R and Hamil-
tonian function H(r, p)=|p|>/2m + V(r) (with indeed p=mv=m dr/dt).

The Hamilton equations of motion are first order differential equations and
a well known existence theorem tells us that for all smooth functions H there
exist (locally) solutions for (2.4). Moreover, the Hamilton equations are also
independent of the specific choice of coordinates, i.e. if we replace the coordi-
nates (r, p) by (’, p’) given by:

r=re p=Coy iy @5)

where r(r) is any coordinate transformation on RV, then solutions of the
Hamilton equations in the unprimed coordinates correspond to solutions of
the Hamilton equations in the primed coordinates.

In (2.5) one can recognise the transformation of one set of local coordinates
of a cotangent bundle 7*Q to another set of local coordinates, where r and r’
are local coordinates on Q and where p and p’ are the associated coordinates
in the fibres. As in the Lagrange formulation one now can generalise the
mathematical model to an arbitrary configuration space Q as follows: the
ingredients are the cotangent bundle 7*Q, a function H:T*Q—R and the
Hamilton equations of motion (2.4). The independence of the equations (2.4)
under the coordinate transformation (2.5) guarantees that the solutions of the
Hamilton equations are smooth curves on 7*Q. The same arguments as for the
Lagrange formulation show that this generalisation of the mathematical model
is relevant for the description of real systems.

Since both the Lagrange formulation and the Hamilton formulation can
easily be extended to a general configuration space Q, which yields in the
Lagrange formulation the tangent space 7Q and in the Hamilton formulation
the cotangent space T*Q, one might think that these two formulations are
equivalent. Unfortunately this is not true for a general Lagrangian L on TQ or
a general Hamiltonian H on T*Q. Going from the Lagrange formulation to
the Hamilton formulation one can show that if the mapping (r, v)—(r, p)
defined by p(r, v)=9L(r, v)/dv is invertible, then the system described by the
Lagrangian L on TQ is described in the Hamilton formulation on 7*Q by the
Hamiltonian H given by H(r, p)=p-(r,p) —L(r, v(r, p)). In the other direction
a similar situation holds: if the mapping (r, p)—(r,v) defined by v(r,p)
=0H(r, p)/dp is invertible, then the system described by the Hamiltonian H on
T*Q is described in the Lagrange formulation on TQ by the Lagrangian



L(xr, v)=p(r, v)-v —H(, p(r, v))= p-dH/dp—H.

2.4. A coordinate free Hamilton formulation

Once it is known that the solutions of the Hamilton equations define smooth
curves on the manifold 7*Q, one would like an intrinsic formulation, indepen-
dent of local coordinates. The first remark one can make is that the Hamilton
equations can be interpreted as the local expression for the flow of a vector
field on T*Q and that the invariance of these equations under the coordinate
transformation (2.5) just state that it is a global vector field on T*Q. This vec-
tor field is called Xy since it obviously depends on the Hamilton function H.
We thus have a global vector field Xy on T*Q associated to the global func-
tion H on T*Q, but its definition depends on local coordinates. To define Xy
in a way independent of coordinates one introduces a 2-form w on T*Q; using
local coordinates (;) on Q and associated coordinates (p;) in the fibres of
T*Q, w is expressed as:

which is indeed a global 2-form on T*Q (and which can be defined in an
intrinsic way). Using this 2-form « the vector field Xy is defined by the
intrinsic equation:

iXg)o + dH = 0 Q.7

where i(Y) is the substitution operator of vector fields in forms. In this way
the ingredients of the model become the space 7*Q with the 2-form w, the
(smooth) function H and the equation (2.7). The interpretation of the model is
that a point (r, p) in 7*Q represents the system, i.e. r denotes the position of
the system and p denotes the associated momentum, and the time evolution is
given by the flow ¢, of the vector field X defined by (2.7).

For those who are unfamiliar with modern differential geometry, we give a
translation in more down to earth notations in case of the phase space R°Y. A
vector field X on R® ‘is’ a mapping X:R%¥ >R which assigns to a point of
R a vector (indicating a direction of motion). With the same abuse of nota-
tion, the l1-form dH ‘is’ the vector of all partial derivatives: dH =(9H/dr,
dH/3p)R®, and the 2-form w ‘is’ a 6N X 6N matrix:

0 Isn
w = {_ Iy O ] where I3y denotes the 3N X 3N identity matrix.

With these notations, the equation (2.7) becomes the vector equation
wXy +dH =0, which has a unique solution for Xy since w is invertible:

Xy = (3H /dp, —dH /om).
The flow ¢, of the vector field Xy is a mapping ¢,: R®Y 5R®" satisfying

d

Lo B = Xutp) and 4,60 = 0P
If we now write ¢,(r,p)= (x(¢), p(t)), then (r(¢t), p(t)) is nothing less than a



solution of Hamilton’s equations of motion with (r, p) as initial condition, i.e.
the flow ¢, denotes the time evolution of the system.

2.5. The symplectic formulation and the Poisson algebra

We now want to extract the essential mathematical features of the above
model. Obvious ingredients are a manifold M (=7*Q), a 2-form w on M and a
function H on M. However, not all such triples (M, w,H) are meaningfull. In
the first place the 2-form w has to be non-degenerate to ensure that the equa-
tion (2.7) has a unique solution for the vector field Xy. In the second place the
Poisson algebra (to be defined below) is a useful tool in theoretical physics, so
one likes to have it in the generalised case too.

In the Hamilton formulation of classical mechanics on R®", the Poisson
algebra is the collection of all smooth functions on R®¥ (which is a vector
space under pointwise addition of functions) equipped with the so called Pois-
son bracket of functions {f,g} defined by:

= 9f % 9 3

With these definitions the Poisson bracket is bilinear, antisymmetric and
satisfies the Jacobi identity:

{{f:e1 0} + {{&:h}./} + {{n f).g} =0

hence the set of all (smooth) functions on R®" equipped with this bracket is an
(infinite dimensional) Lie algebra which is called the Poisson algebra.

In the formulation in terms of 7*Q and w the Poisson algebra can be
defined as the set of smooth functions on T*Q equipped with the Poisson
bracket defined by: '

{f, g} = o(Xy, X,) 29
where X, (and likewise X,) are defined by:
iXpo + df =0 (2.10)

which is exactly equation (2.7) with the Hamiltonian H replaced by the arbi-
trary function f. One can verify that this bracket indeed satisfies the Jacobi
identity and reduces to (2.8) in the case Q =R3" (in our down to earth vector
and matrix notations the righthand side of (2.9) is the inner product of the
vector X, with wXj).

In the case of a triple (M, w,H) with w a non-degenerate 2-form (to ensure
that one can define vector fields X by means of (2.10)), the bracket (2.9) on
the set of smooth functions on M does not in general satisfy the Jacobi iden-
tity. One can show that the bracket (2.9) does satisfy the Jacobi identity if and
only if w is closed. A manifold M equipped with a closed non-degenerate 2-
form w is called a symplectic manifold, w its symplectic form and the geometry
of a symplectic manifold is called symplectic geometry.

With these preparations we can generalise the Hamilton formulation to the
symplectic formulation. The ingredients are a symplectic manifold (M, w) and a



real valued function H on M. The interpretation is that the phase space M
represents (uniquely) all different states of the system and that the time evolu-
tion is given by the flow of the vector field X defined by (2.7) or (2.10).

For physicists the important question is whether these mathematical exer-
cises do have any relevance for physics. Again the answer is yes: there exist
systems in physics which can not be described by a cotangent bundle, but
which can be described by a triple (M, w, H). A simple example of such a sys-
tem (described extensively in [Sol]) is the phase space of classical spin which is
described by the space M =S? (the unit sphere) and the 2-form
w=Asin0dd/\d¢ (with A a real parameter); the sphere S? is clearly not a
cotangent bundle because S? is compact and a cotangent bundle is necessarily
non-compact.

2.6. Summary of the symplectic formulation
The symplectic formulation of classical mechanics is given by the following
items.

Mathematical ingredients
A manifold M, a non-degenerate closed 2-form w on M and a function
H:M-R.

Mathematical manipulations
To each function f on M is associated a vector field X, defined by
i(Xpw+df =0 and to two functions f, g on M is associated a function {f,g}
defined by {f,g} =w(Xj; Xp).

Nomenclature
(M, w) is called a symplectic manifold,  its symplectic form; in a physical con-
text M is called the phase space of the system under consideration. H is the
Hamiltonian (total energy) of the system, X, is the Hamiltonian vector field
associated to the function f'and {f, g} is the Poisson bracket of f and g.

Interpretation
The different possible states of the physical system under consideration are in
1-1 correspondence with the points of M. If at a given time ¢ the system is
represented by the point m €M, then at time ¢’ the system is represented by
the point m’=¢,._,(m) where ¢, denotes the flow of the vector field Xy on M.

Usefulness of the Poisson bracket

A function f on M is called a conserved quantity if the function fo¢, is indepen-
dent of the parameter 7, where as before ¢, denotes the flow of the vector field
Xy physically speaking f'is a conserved quantity if the value of the function f
evaluated at a point which represent the system at a given time ¢ does not
depend on ¢, i.e. if fis constant in time. An elementary calculation shows that
fis a conserved quantity if and only if the Poisson bracket {f, H} is the zero
function.



Remark 1
The 2-form w must be non-degenerate to guarantee a unique solution for the
defining equation of X;; w must be closed to insure that the Poisson bracket
{,} satisfies the Jacobi identity.

Remark 2
At each point m €M, after the choice of a local coordinate system around m
the non-degenerate 2-form w can be represented by an anti-symmetric non-
degenerate matrix £, hence the dimension of M is even, dim M =2n. A famous
theorem of Darboux tells us that for each point m €M there exist local coordi-
nates (*1, . ..,75 P15 - - - » Pn) in a neighbourhood of m such that w is given

Remark 3

In our treatment (which is the usual one), the symplectic phase space plays the
role of the set of initial values for the Hamilton equations. However, there
exists another interpretation of the symplectic manifold M (see [Sol]) in which
M is interpreted as the space of movements, i.e. each point of M represents the
whole movement of the system in time (c.f. the Heisenberg picture of quantum
mechanics). In most cases these two interpretations coincide, but not always.
An example in which they do not coincide is the Kepler problem, in which the
phase space is (R*\ {0})XR3, i.e. the cotangent space of R® without its ori-
gin, and in which the space of movements with negative energy can be
identified (after a regularisation) with T,S3, ie. the (co)tangent space of S 3
without the zero section ([So2]).

Example
We can realise the Newton formulation with a potential function ¥ on R% in
the symplectic formulation as follows. The phase space M=R®*"3(r, p), the
symplectic form w is the global form w=2, dp;A\dr; and the Hamiltonian H is
the function on M given by H(r, p)= |p|*/2m + V(r). The Hamiltonian vector
field Xy of the function fis given by:

-9 98 _ 83 _ _ _ B
Xy B, or,  or, p, (3f/9p, —3f/0r) = Xy(r, p) = (p/m, —3V/dr)

whence the flow ¢, of Xy is defined by the equations:
dr/dt=p/m & dp/dt=—3dV/or.

Substitution of the first equation in the second gives us Newton’s law:
mdr/dt? = —3V/or.

3. QUANTUM MECHANICS

In this section we present the usual mathematical model of quantum mechan-
ics. It is shown that the mathematical model for the dynamics in quantum
mechanics can be modified is such a way that the modified model fits the



description of classical mechanics in the symplectic formulation (2.6) with the
one exception that the symplectic manifold is infinite dimensional. For the
sake of simplicity we ignore the fact that self adjoint operators are usually not
defined everywhere; in view of Stone’s theorem this is not a serious omission
because we are ‘only’ interested in the global 1-parameter group generated by
such a self adjoint operator.

3.1. The usual formulation

The mathematical model of quantum mechanics is quite simple. The
ingredients are a complex Hilbert space 3 a self-adjoint operator H on ¥
called the Hamiltonian of the system and the Schrodinger equation on 3C:

—ih%‘f—(z) = Hy() G.1)

where 4 denotes Planck’s constant & divided by 2.
The interpretation of this model is more complicated and consists of two
parts: a dynamical part and a probability part.

Interpretation of dynamics

Each non-zero vector y € represents a state of the physical system under con-
sideration, but two vectors ¢ and ¢/ which differ by a non-zero complex con-
stant A (i.e. ¢'=Ay) represent the same state (and vice versa if ¢ and ¢/
represent the same state then they differ by a non-zero complex constant). If at
time ¢, the system is represented by the vector v, and if Y(¢) is a solution of
the Schrodinger equation (3.1) with the initial condition y(z,)=1vy, then at time
¢ the system is represented by J(?).

The probability interpretation
An observable f, i.e. a measurable quantity, is represented by a self-adjoint
operator f on 3. The result of a measurement is an eigenvalue of the operator

J, but which one is unpredictable. However, a probability distribution is

assigned to the possible results by means of the spectral theorem for self-
adjoint operators. If (at time #) the system is represented by the vector y, then
the expectation value E(f,y) of the result of measuring f when the system is

described by ¢ is given by:
<y, fY>
E(f¥) = T (32

where <y,x> denotes the inner product of the vectors y, x€J(. Since f is a
self adjoint operator the expectation value E(f,y) is real and moreover, it is

independent of the choice of the vector Y representing the state of the system:

E(f)=E(f, M) for A0



In this paper we are only interested in the dynamic part so in the sequel we
will ignore the probability interpretation, although it is the essential part of
quantum mechanics: it is the main distinction between classical mechanics and
quantum mechanics and, as we will see, the only one. In order to be sure that
the interpretation is not contradictory with the mathematical model we have to
make an important remark. The operator H is self-adjoint, hence (by Stone’s
theorem) there exists a 1-parameter group U(7) of unitary transformations of
JC of which iH /A is the infinitesimal generator:

U(7) = exp(iTH/h). 3.3)

It follows that the solutions of the Schrodinger equation (3.1) are given by
Y(1)= U(m)y where ¢ is an arbitrary initial condition. We deduce that if at time
t, the system is represented by y, then at time ¢ it is represented by the vector
Y(¢) given by:

Y(t) = U@ —1,) o = exp(i(t —2,)H/h) Y(t,) = exp(itH/h) Y(0). 349

Since U(T) is a complex linear transformation of J(, it follows that the time
evolution does not contradict the ambiguity in the vector { representing the
state of the physical system, i.e. if  and ' represent the same state at time £,
then U(t —t,)3 and U(t —¢,)} represent the same state, which is the state at
time ¢.

3.2. An unusual formulation of quantum dynamics

If Y9 then, in the above interpretation, all non-zero points of the complex
line Cy={Ay|AeC} represent the same state; in fact each state of the system
is represented uniquely by a complex line in 3. In mathematics the set of all
(complex) lines in a (complex) vector space is called the projective space asso-
ciated to the vector space, so we have found that in quantum mechanics the
states of a physical system are represented uniquely by the elements of the
projective Hilbert space PXC.

We now mention without proof some facts concerning PJC which are not
generally known (the proofs can be found in [Tul]). First of all, each projec-
tive complex Hilbert space PJ( is an (infinite dimensional) complex manifold
which has a canonically defined symplectic structure w. Secondly, since the
Schrodinger equation is compatible with the ambiguity of the vector represent-
ing a state of the system, it follows that there exists a 1-parameter group ¢, of
diffeomorphisms on PJ( such that: '

moU(r) = ¢,om  with U(r) = exp(itH/h) 3.5)

where 7 denotes the projection 7:3C\ {0}—PJI which associates to a vector ¥
the unique complex line Cy containing ¢; in fact equation (3.5) can be
regarded as the definition of the flow ¢,. To complete the preliminaries we
introduce the function E(H):P3—R by:

EM)(m) = EH,9) = 2=
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It now turns out that the flow ¢, is the flow of the Hamiltonian vector field
Xgm) associated to the real function E(H) by the symplectic form w according
to formula (2.10). Finally, since H governs the time evolution of the states in
quantum mechanics, it follows from (3.4) and (3.5) that if the system is
described at time ¢t =0 by m), ePI then it is described at time ¢ by the point
bi(mpo) P

We can summarise these observations by saying that the dynamics of quan-
tum theory is described by the triple (P3( w, E(H)) according to the symplectic
formulation of classical mechanics (if we allow infinite dimensional manifolds):
the states of the system are in 1-1 correspondence with the points of PJC and
the time evolution of a state is described by the flow of the Hamiltonian vector
field associated to E(H). This shows that the mathematical models of classical
mechanics and the dynamical part of quantum mechanics are identical and
that their interpretations are also the same. The differences between classical
and quantum mechanics lies in the choice of the symplectic manifolds: in clas-
sical mechanics one can use ‘all’ finite dimensional symplectic manifolds but in
quantum mechanics one uses only (infinite dimensional complex projective
spaces. We stress that the symplectic model of quantum mechanics describes
only the dynamical part; for the probability part it is essential to know that
the quantum mechanical ‘phase space’ PICis derived from a Hilbert space 3C.

3.3. The unit sphere and phase factors

In the previous section we have seen that in quantum mechanics the elements
of the Hilbert space 3 do not represent the states of the physical system in a
unique way but that the elements of the projective Hilbert space PJ do. One
prefers however to work with JC, because working with PJ( is rather difficult.
An intermediate level between JC and P3( is the unit sphere S in 3C:

S, = {(Ye¥| <y, ¥> = 1}

Each state of the physical system is represented by a non-zero vector Y €X(,
but then it is also represented by the vector ¥/|lJll (i.e. ¢ divided by its norm)
which is an element of the unit sphere. It follows that each state can be
represented by an element of SI(, but there remains an ambiguity: if yeSIC
then eyeSH and ¢ and e’y represent the same state, hence a state is
represented by a circle on the unit sphere SIC. If we restrict the projection
I\ {0}>PIX to the unit sphere we obtain a projection 7:SH—PJIC of which
the inverse images are just the circles representing the states. Two different
points ¢, x on such a circle are related to each other by:

x = e’y
where e is a complex number of modulus 1 usually called a phase factor. The
aim is now to translate the mathematical model of quantum dynamics in the
Hilbert space formulation to the unit sphere. The ultimate goal of this exercise
is to show that the analogy between classical mechanics and quantum mechan-

ics as given in the previous section (3.2) can be extended and that one can
describe within the framework of classical mechanics certain phenomena which

if
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are usually thought of as being purely quantum phenomena, i.e. phenomena
which can be described only within the framework of quantum mechanics.

To translate the dynamics from I to SI we first observe that the
Schrodinger equation can be seen as the flow of a vector field. If H is the
Hamiltonian of the system then we define a vector field ¥V on X, i.c. a map
H—-I, by:

Vu@) = (/hHyY (3.6)

and then the Schrodinger equation is equivalent to the equation of the flow of
Vi which is defined as dy/dt=Vy(). Since H is a self-adjoint operator, it
follows that the vector field ¥y is tangent to the unit sphere SIC. Another way
to see that Vy is tangent to SIC is to observe that the flow of Vy is the uni-
tary 1-parameter group U(t)=exp(ivH/A) which means in particular that the
norm of a vector is conserved, i.e. U(7) can be seen as a 1-parameter group of
diffeomorphisms of SIC.

The above observations show that we can represent the dynamics of quan-
tum mechanics in a mathematical model consisting of the unit sphere S and
the vector field Vy, with the interpretation that each state of the system is
represented by a circle on SIC (freedom of phase vectors) and that the time
evolution is given by the flow of the vector field V' (which is indeed a vector
field on SI0).

3.4. Summary

For ordinary quantum mechanics we have given three mathematical models for
the dynamics of a quantum system. We will now summarise the essential
features of these models.

Ingredients of the Hilbert space formulation
A Hilbert space ¥, a self adjoint operator H on I and the Schrodinger equa-
tion.

Interpretation of the Hilbert space formulation
Each state of the system is represented by a complex line in I and the time
evolution of the system is given by the solutions of the Schrodinger equation
(3.1) associated to the self adjoint operator H (N.B. the time evolution maps
complex lines into complex lines so the time evolution of the states is well
defined).

Ingredients of the unit sphere formulation
The unit sphere SI in IC and a vector field ¥y on SIC (associated to H).

Interpretation of the unit sphere formulation
Each state of the system is represented by a circle on SIC (generated by multi-
plication by phase factors e’?) and the time evolution of the system is given by
the flow of the vector field ¥y (which indeed maps the circles representing
states into circles representing states).
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Ingredients of the projective Hilbert space formulation
The projective Hilbert space PJ(, its canonical symplectic form w and the real
function E (H):PH—R.

Interpretation of the projective Hilbert space formulation
There is a 1-1 correspondence between the states of the system and the points
of the projective Hilbert space PJ(; the time evolution of the system is given
by the flow of the Hamiltonian vector field Xz on PX defined by the sym-
plectic form « and the function E(H) according to formula (2.10).

Remark

In the Hilbert space formulation of quantum mechanics the arbitrariness in the
vector representing a state of the system is a non-zero complex number; in the
unit sphere formulation this arbitrariness is reduced to a phase factor and
finally in the projective Hilbert space formulation there is no arbitrariness at
all. In the Hilbert space formulation the time evolution of the system is
governed by the Schrédinger equation, or (a completely equivalent description)
by the flow of the vector field ¥y on 3C. When we descend to the unit sphere
by projecting a non-zero vector ¢ to the unit vector /|ly|l we can project the
vector field ¥y to a vector field on SIC. Since the projected vector field equals
the restriction of ¥y to the unit sphere, this vector field will also be called V.
For the projective Hilbert space formulation we project a second time, now
from SI to P, i.e. we identify points on SIC which differ by a phase factor.
The vector field ¥y (now seen as a vector field on S can be projected to PIC
and the result is the Hamiltonian vector field Xgg4) on P associated to the
function E(H) which represents the expectation value of the Hamiltonian.
Since Xz, is the projection of the vector field ¥y on X it follows that the
flow of Xz, is the projection of the unitary group U(7)=exp(iTH/h) which is
the flow of ¥y on (. This shows why the Hilbert space formulation is so
much easier to use than the projective Hilbert space formulation: computing
exp(iTH/h) is much easier than computing the flow of a vector field on an
infinite dimensional manifold. On the other hand, the projective Hilbert space
formulation is better suited for abstract considerations because there is no
ambiguity between states of the system and the points which represent these
states.

Diagram
m P
Space I\ {0} > SXK > PX
dividing our norms dividing out phase factors
Vector field Vi — M > Vu e > S £(H)
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Its flow exp(iTH/h) exp(i TH/#) myexp(tH/Ryr;— 1
restricted to SIC

4. PREQUANTIZATION

In the first part of this section the idea of prequantization of a symplectic
manifold is explained using the example of the symplectic manifold R?", which
is the phase space of a particle in n dimensions (or, if n =3N, the phase space
of N particles in our 3-dimensional space). Although this example does not
show all essential features of prequantization, it suffices to show the idea;
afterwards the problems arising in the general case will be pointed out. The
second part of this section will be devoted to the statement that the analogy
between classical mechanics and quantum mechanics is more than the simple
observation that both can be described by the symplectic formalism.

4.1. Phase factors in classical mechanics

In §3 we have seen that in quantum mechanics the states of a physical system
are uniquely represented by points of a projective Hilbert space PJ(, but that
it is much easier to work with the Hilbert space 3C. Since self adjoint opera-
tors generate unitary groups according to formula (3.3), we can concentrate
without loss of genmerality on the unit sphere SI(, in which states are
represented by circles generated by multiplication with phase factors. To sum-
marise: in quantum mechanics states are represemed by points of PIC and we
have a projection 7:S3(—P3 in which the inverse image of a point is a circle
U(1) of phase factors.

Prequantization duplicates this situation in classical mechanics. This was
first done by L. van Hove [vH] who investigated the canonical quantization
program of Dirac; lateron the same ideas were developed independently by
Kostant [Ko] and Souriau [Sol]. Let us start with the cxample of the phase
space M =R? with coordinates (r,p) and its canonical symplectic form
w=23;dp;/\dr;, then we can define a space Y and a projection m: Y—>M by:

Y = R"XU(Q1) and mY—M, (x,p, e)—(, p)

In this situation the inverse image of a point in M (representing a state of the
physical system) is a circle of phase factors.

As far as phase factors are concerned we now have trivially duplicated the
situation of quantum mechanics, but what purpose does it have? To facilitate
the notation we will use the angle 6 as a coordinate on U(l) (so Y is
parametrised z (r, p,8)) and we will denote a vector field X on M as a map-
ping X:M—-R™ and a vector field ¥ on Y as a mapping V:Y—>R>*!. Now if
f is any real valued function on M (e.g. the Hamiltonian H), then its Hamil-
tonian vector field X, is defined by equation (2.10) which gives us:

X6, = (gL »), — gL ) @

We now mention without proof that the mapping f—X, from the Poisson
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algebra to vector fields is a mapping of Lie algebras (where we use for func-
tions the Poisson bracket and for vector fields the commutator of vector fields).
One easily verifies that the kernel of this map consists of the constant func-
tions on M, so it is not an injective map. We now can use the space Y to con-
struct a map f—V from the Poisson algebra to vector fields on Y which is an
injective Lie algebra morphism and which projects on X;. The fact that Y can
be used in this way can be seen as a mathematical motivation for its introduc-
tion. Within a certain framework which will be specified later, the map f—V;
is unique and given by:

veno = Ghep, e ep-rlem @2

From (4.2) one deduces immediately that it is injective: constant functions are
mapped to vector fields in the direction of the phase factors, and projects to
Xy omitting the @ coordinate in (4.2) gives (4.1). Since the integral curves of
Xy (with H the Hamiltonian of the system) define the time evolution of the
system, it is interesting to investigate the integral curves of ¥y on Y. If
(¥(?), p(t)) denotes an integral curve of Xy, then one easily verifies that the
integral curves of ¥ are given by (r(z), p(t), e®?) with:

() = e™Pexp(—i [ [p(s)-%—f(r(sx P(s)) — H(x(s), p(s))]ds). 43)

Physicists will recognise the integrand in the exponential as the Lagrangian L
of the system (see the end of §2.3) and hence they will recognise the integral
itself as the action and the complete exponential as the phase factor which
plays the fundamental role in the Feynman path integral.

We see that the introduction of the sppace Y =M XU(l), in which the
states of the physical system are described by circles, has two consequences. In
the first place we now can represent the Poisson algebra (functions on M)
injectively by vector fields on Y which project on the Hamiltonian vector fields
on M; in the second place we find that in the time evolution of the phase fac-
tor e is given by the phase factor of the Feynman path integral.

For the moment we stay in the realm of mathematics where two important
questions arise: ‘what are the relevant features of this construction’ and ‘can
we obtain similar results for an arbitrary symplectic manifold’? Prequantiza-
tion (or the prequantization formulation of classical mechanics) is a theory
which gives an affirmative answer to the second question, of course after speci-
fying what the ‘relevant’ features are. In the first place the important feature of
Y is that it carries a 1-form a given by:

a = pdr + df 449

which satisfies da=w and which turns Y into a principal U(1) fibre bundle

over M with connection a and curvature w. According to this point of view the

vector fields V; are the unique vector fields on Y which satisfy the conditions:
Ve = X¢ (i-e. ¥y projects onto Xy)
V) =f } 4.5)
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It turns out that one can find for all symplectic manifolds (M, w) (except for
some nasty cases to be defined below) a principal fibre bundle Y over M with
connection a such that the structure group is the circle and that the curvature
is w. If such a (Y, a) exists, one can construct a unique injective Lie algebra
morphism f—V; from the Poisson algebra to vector fields on Y satisfying (4.5).
Although the introduction of the 1-form a seems quite ad hoc, it should be
mentioned that it appears quite naturally when one looks for injective
representations of the Poisson algebra as vector fields on a bundle over M
which project to the (non-injective) representation by the Hamiltonian vector
fields on M.

Before going on to the next subsection which describes some of the conse-
quences, we have to mention some details concerning the construction of the
bundle Y and its (connection) form a. When the symplectic manifold (M, w) is
given, one can define a subgroup Per(w) of R called the group of periods of
the symplectic form w. There exists a bundle (Y,a) over M with the desired
properties if and only if Per(w) is discrete in R. If Per(w) is discrete, then there
exists a unique non-negative real number p., called the generator of Per(w),
such that Per(w)=p, Z CR. It then follows that there exists a principal fibre
bundle Y over M with structure group R/Per(w)(=R modulo p., = a circle
with radius p,, /27) and a connection form a with da=w. If p,, =0, then the
space Y constructed in this way is not a circle bundle but an R bundle
(R/{0}=R); however, one can wind this real line over any period to obtain a
circle and ‘hence’ a circle bundle with connection a satisfying da=w. Since all
circle groups are isomorphic to U(1), it follows that we have obtained a space
Y and a projection 7: Y—M such that the inverse image of a point meM is a
circle of ‘phase factors’.

In the general case the bundle (Y, a) constructed in this way is not unique; it
is unique if M is simply connected. If (¥, ) is not unique, one can sometimes
use the non-uniqueness to explain effects in physics which can not be under-
stood at the level of the phase space M (e.g. the Bohm-Aharonov experiment,
see [Wo)). If the phase space M is the cotangent bundle of some configuration
space Q, i.e. M =T*Q, with its canonical symplectic form w as defined in (2.6)
then p, =0 and Y =T*Q X U(1) is a possible choice for Y as in the example
of M =R%,; it is the unique choice if Q is simply connected.

Finally one should know that one can always choose a local trivialisation
(local gauge) such that the 1-form a looks locally like (4.4) where (r, p) are
(local) coordinates on M and 6§ a coordinate on the circle R mod p,, (hence
not always modulo 27!). The choice of a different trivialisation corresponds to
a local gauge transformation, which affects the local expression of a and hence
the local expression of V;. However, the changes are such that the Lagrangian
L =p-0H/dp— H in (4.3) is changed by a ‘total time derivative’, i.e. the integral
in (4.3) is changed by a boundary term, which can be interpreted as a change
of the coordinate 6.
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4.2. Analogies between classical and quantum mechanics

This subsection will contain only statements of results; readers unfamiliar with
the notion of principal fibre bundle and connection should always keep in
mind the example of M =R, Y=R* X U(1) (and a=p-dr+df). First of all
some terminology: the bundle Y is called the prequantum bundle over the sym-
plectic manifold M; the reason for this name will become clear in §5. In the
second place we need some facts about the prequantum bundle (Y,a) over
(M, w). It is well known that the flow of a Hamiltonian vector field X; on M
preserves the symplectic form w (which implies Liouville’s theorem stating that
a canonical transformation preserves the so called Liouville measure on the
phase space). From the definition (4.5) of the vector fields ¥, one can deduce
that the flow of a vector field ¥, on Y preserves the 1-form a. With these
preparations we can state the analogies between classical and quantum
mechanics.

Analogy 1
In classical mechanics each state of the system is represented in M by a point
and in Y by a circle; in quantum mechanics a state is represented in PJ by a
point and in S by a circle.

Analogy 2

In quantum mechanics the projective Hilbert space PY is an (infinite dimen-
sional) symplectic manifold. If we construct the prequantum bundle Y over
this symplectic manifold P3(, we obtain the unit sphere SI and in this case
the prequantum bundle is unique. Moreover, the dynamics on PJ( is given by
the Hamiltonian vector field Xz, associated to the Hamiltonian E(H) and the
unique lift Vg, defined by (4.5) to the prequantum bundle Y =S3(is the vec-
tor field ¥y on SU defined in (3.6).

Symmetry transformations
According to Wigner, a symmetry of the quantum description of a physical
system is a bijection of the projective Hilbert space PJ(, i.e. a bijective map-
ping from states to states, which moreover preserves the transition probabili-
ties, i.e. which preserves the form P on PJ( defined by:

PPIXPH—>Rog , P(my,my) = ﬁ}ﬁf— 4.6)
X

where <,> denotes the inner product on I and [ly|I>= <y,y>. Using this
definition of a symmetry Wigner showed that for each symmetry g there exists

either a unitary or an anti unitary operator U(g) on the Hilbert space 3 such
that U(g) induces g, i.e.

m(U(g) = g(m).

Moreover, he showed that if U’(g) is another (anti) unitary operator on
which induces g, then U’(g) differs a phase factor from U(g): U'(g)=e" U(g).
It follows that if G is a connected Lie group of symmetries of the quantum
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system, then each symmetry can be represented by a unitary transformation of
the Hilbert space JC. It does not imply that the group G can be represented as
a group of unitary operators on J(, because we only know that
U(g)U(h)=e"U(gh) for some phase factor e’ depending on g and &, but this
phase factor is in general different from 1.

The best one can do in the general case is to construct a group G’ of unitary
transformations of the Hilbert space I together with a surjective group
homomorphism #’:G’—>G which has the following properties. In the first place
the action of G’ on I induces the action of G on PY(, i.e.

()W) = mg'Y) g'€G’ and yeX\ {0}

and in the second place the kernel ker(#’) of ' is isomorphic to U(1) and
commutes with all elements of G’ (in such a situation one calls G’ a central
extension of G by U(1)). A different way to visualise the group G’ is to say
that G’ consists of all possible choices U(g) for geG (which obviously has a
homomorphism onto G(U(g)—g) whose kernel is isomorphic to U(1) (the
freedom in U(g) is a phase factor). It should be noted that this group G’ is
uniquely determined by the action of the group G on PJ(.

It sometimes happens that G’ equals G X U(1) as product of groups in which
case one obviously can represent G as a group of unitary transformation on 3
by identifying G with the subgroup G X {1} of GXU(1); in the other cases G
can not be represented as a group of unitary transformations on JC. Examples
of these possibilities are abundant in physics: the rotation group SO(3) is a
symmetry group at the level of the projective Hilbert space; if the system con-
sists of particles with half-integer spin, then the central extension G’ is not the
direct product of SO (3) with U(1) so SO (3) can not be represented as a group
of unitary transformations of 3C. If we use the double covering group SU(2) of
SO (3) instead of SO(3) itself, then the extension G’ is the trivial product
SU@2)X U(1) hence SU(2) can be represented as a group of unitary transfor-
mations of JC. Physicists conclude that SO(3) is not the correct symmetry
group of the quantum description, but that SU(2) is the symmetry group of
the quantum description which represents the rotation invariance. Exactly the
same situation occurs for (the connected component of) the Lorentz group L:
for L the central extension G’ is not the trivial product but for its double cov-
ering SL(2,C) the central extension is the trivial product. Again one con-
cludes that SL(2,C) is the correct symmetry group of the quantum description
which represents the Lorentz invariance. In these examples it turns out that if
we replace the symmetry group by its simply connected covering, then we get a
representation of this covering as a group of unitary transformations on ¥.
That this is not the general idea is clear when we study the group R?" of trans-
lations in position and momentum applied to the quantum description of a
particle with classical phase space R?. This group is already simply connected,
but the central extension G’ is not the trivial product but the Heisenberg
group (in physics this group is sometimes called the Weyl-Wigner group). It
turns out that if G is a simply connected and semi simple Lie group, then the
central extension G’ is the trivial product. Hence if these two conditions are
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satisfied, then we know in advance that G can be represented as a group of
unitary transformations on J(.

One final remark before we state the third analogy between classical and
quantum mechanics. At the level of the projective Hilbert space PJ(, a sym-
metry group G is a group of bijections which preserve the form P defined in
(4.6). At the level of the Hilbert space such a symmetry group is represented
by a central U(1) extension G’ of bijections which preserve the inner product
<,> on ¥. Since G’ preserves the inner product, it preserves the unit sphere
SIC, hence we can interpret G’ as a group of bijections of the unit sphere S3C
which preserve the form <,> on §¥.

Analogy 3
A symmetry group of the quantum description of a system is a group G of
bijections of PJC which preserve the form P. One can always find a group G’
of bijections of SI which preserve <<,> such that each symmetry geG is
represented by a circle (of phase factors) in G’ and the action of this circle on
S3C induces the action of g on PI(.

In classical mechanics ‘exactly’ the same situation occurs. A symmetry group
of the classical description of a system is a group G of bijections of the phase
space M which preserve the symplectic form « (Liouville). One can ‘always’
(with the exception of some topologically nasty cases) find a group G’ of bijec-
tions of the prequantum bundle Y which preserve the 1-form a such that each
symmetry geG is represented by a circle (of phase factors) in G’ and the
action of this circle on Y induces the action of g on M.

Moreover, if a physical system is described in both classical mechanics and
quantum mechanics, and if we assume that a group appears as a symmetry
group for both descriptions, then the same extensions appear. If the classical
system described particles of half-integer spin, then the extension of SO(3) is
not trivial; the extension of SU(2) is always trivial because it is a simply con-
nected, semi simple Lie group. If the translations in position and momentum
form a symmetry group, then the associated extension (which acts on the pre-
quantum bundle Y in the prequantization description) is the Heisenberg group.

5. GEOMETRIC QUANTIZATION

3.1. Quantization in general

When physicists speaks about quantization they mean a loosely process which
tells them how to obtain the mathematical ingredients of the quantum descrip-
tion of a physical system (§3) if the mathematical ingredients of the classical
description (§2) are known. The idea that such a procedure should exist can be
traced back to a remark of Dirac who observed that there exists a remarkable
resemblance between the Poisson brackets of functions on the (classical) phase
space and the commutator of the corresponding quantum observables (self
adjoint operators on JC). To be more specific, he observed that if f and g are
(real) functions on the (classical) phase space representing observable quanti-
ties (i.e. f (m) represents the result of measuring f when the system is described
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by the point m of the phase space) and if f and g are the self adjoint opera-

tors on JC representing the same observable quantities in the quantum descrip-
tion, then the self adjoint operator & which represents the (classical) observ-

able h ={f,g}poisson is equal to (i/A)[f, g]. To state this property in a more
formal way we write O(f)for the self adjoint operator f in 3 which

represents the observable f. With this notation the observation of Dirac can be
states as:

[O(f))o(g)] = —ih O(U’g})

When we apply this ‘rule’ to the position and momentum observables p and 7
on the phase space R?> we find the well known canonical commutation rela-
tion:

[0(@),0)] = —inId, 3.1

where we have made the additional assumption that a constant observable (a
function on the phase space which takes a constant value) should be
represented by the same constant times the identity operator on (.

In the physical literature several (different) quantization procedures are
known, e.g. canonical quantization, Weyl-Wigner quantization, quantization by
Feynman-path integrals, stochastic quantization, quantization by *-products
and geometric quantization. Although the starting points of these quantization
procedures are quite different, the first test for these procedures always is to
see whether the canonical commutation relation (5.1) is satisfied if the phase
space is R2. In this aspect canonical quantization is the most drastic: it takes
the canonical commutation relation (5.1) as basic axiom for the quantization.
We now intend to formalise the notion of quantization with the canonical
commutation relations and Diracs remark in mind. It should be a procedure
which has as input the phase space (M, w) of a system in the symplectic formu-
lation and as output a Hilbert space I together with a map O which assigns to
a real valued function f on M a self adjoint operator O (f)=f on I, such that

certain conditions are satisfied. In the first place, the physical contents should
be the same, i.e. M and ¥ describe the same physical system and if the func-
tion f on M represents an observable quantity, then O (f) should represent the
same physical quantity. In the second place the map O should satisfy certain
desirable conditions Q (i)...Q (v) listed below.

2@ O(f +t5) = 0(f) + 0(g) . .
0 (i) OMf) = AO(f) AcR) [ O is R —linear

where f +g is the pointwise addition of functions. I do not know of a physical
motivation for this linearity condition, but it is certainly desirable from the
computational point of view. However, even this linearity condition raises
questions: a priori it is not guaranteed that the domains of O(f) and O(g) are
the same, so in condition Q (i) one has to be careful with the domains of the
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operators. Another desideratum is that the constant observable 1 is represented
by the identity operator:

Q@) O(l) = Idy,

which represents the idea that if a measurement yields always 1 in the classical
description, then it should yield 1 in the quantum description too (see §3.1).
According to Dirac’s remark one also would expect O to be a Lie algebra mor-
phism:

Q@) [0(f), 0@)] = —ihO({f.g})

The final condition to be imposed on a quantization procedure should be that
it yields the well known and well tested Schrodinger quantization in the case
of M=R?, ie. ¥=L?*(R") (the square integrable (complex) functions of
reR”) together with the following assignments for some operators: O (r)=r
(pointwise multiplication) and O (p)= —ikd/0dr (differentiation with respect to
r). In view of a theorem of Stone and Von Neumann this condition can be
reformulated as:

I is irreducible _the action of a
Y complete set of canonical coordinates

(this reformulation by means of Stone-Von Neumann is not quite correct, but
for the sake of simplicity we ignore the technical details). Condition Q(v) has
a clear physical motivation: the (abelian) group of translations in position and
momentum R?" acts transitively on the phase space M =R?, i.e. there exists
no proper submanifold of M which is invariant under the action of the group
of translations R?". Q(v) is a different formulation of the same idea: there
should not exist a proper subspace of JC which is invariant under the action of
the position and momentum operators (because the canonical coordinates are
position and momentum).

Unfortunately, condition Q(v) does not make sense for a general phase
space, i.e. a symplectic manifold, because in general there do not exist global
canonical coordinates (although Darboux’s theorem tells us that locally there
always exist canonical coordinates). With the motivation for Q (v) in mind, we
can reformulate Q(v) in such a way that it makes sense for a larger class of
symplectic manifolds. Suppose G is a symmetry group of the symplectic mani-
fold (M, w), i.e. each diffeomorphism geG of M leaves w invariant (see also
analogy 3, §4.2). If we assume G to be a symmetry group of the quantum
description too, then it follows from §4.2 that a central extension G’ of G acts
as a group of unitary transformations on the Hilbert space 3. If we now sup-
pose that G acts transitively on M, as is the case with M =G =R?", then we
can reformulate Q (v) as Q (v):

, | isan irreducible representation
20) £for (a central extension of) G
In this way Q(v)’ is applicable to a large class of symplectic manifolds (and if
we go to the category of diffeological manifolds as developed by J.-M. Souriau
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[So3], @ (v) is applicable to all symplectic manifolds).

However, Van Hove has shown in [VH] (see also [Ab&Ma])) that even for the
phase space R? the five conditions Q()—Q(v) are incompatible! For
M =R?* there does not exist a map O from all (smooth) functions f on M to
self adjoint operators on any Hilbert space 3 such that the conditions
Q(i)—Q(v) are satisfied. That this could happen was already felt by Dirac
himself because he phrases his remark which led to canonical quantization as:
‘... the quantum-brackets, or at any rate the simpler ones, have the same values
as the corresponding classical Poisson brackets’ [Di, p87]. What physicists usu-
ally do is to weaken condition Q (iv) by requiring that Q (iv) holds only for a
certain subset of all observables (but which one is in general not specified).

5.2. The first step in the geometric quantization procedure

In the previous section we have seen that the quite natural conditions
Q()—Q(v) cannot be used as an axiomatic basic for quantization because
they are contradictory. Geometric quantization is a quantization procedure
which tries to define in an intrinsic way the Hilbert space 3 and the map O
when the symplectic manifold (M,w) is given, such that Q(i)—Q (i) are
always satisfied, such that Q(iv) is satisfied for a (well defined) subset of
observables and such that Q(v)’ holds whenever applicable. Moreover, when
both the classical and the quantum description of a physical system are
known, it tries to obtain the given quantum description from the classical
description. It should be said up to now geometric quantization is not com-
pletely succesful in the realisation of this program (e.g. see [Du]).

To give the reader an idea how the geometric quantization procedure works,
we take the well known phase space M =R?" with its canonical symplectic
form « (formula (2.6)) as an example. The Liouville measure
€L=dp1...ag,,drl...dr,,on M hives us in a canonical way a Hilbert space:
9, =L*(R*, ¢1), i.e. the space of square integrable (complex) functions on M.
Using the Hamiltonian vector field X, associated to (real) functions we can
define (self adjoint) operators O (f) on 3C; by:

0,(f) = —ihX;

One now can verify that the map O, satisfies the conditions Q (i), Q (i) and
Q(iv) (because the map f—X; is a Lie algebra morphism) but it does not
satisfy condition Q (iii) since the Hamiltonian vector field of a constant func-
tion is zero.

To find a Hilbert space and a map O for which Q (iii) is satisfied, we can
use the prequantum bundle (Y,a) with Y=R? X U(1) over the symplectic
manifold (M,w). On Y we also have a canonical measure ey-dp...dp,
dr,...dr,d@ (with e® the element of U(1)), so we can define a Hilbert space
I, =L?*(R* X U(1), €y), i.e. the space of square integrable (complex) functions
on Y. Using the injective representation ¥ of the Poisson algebra (formula
(4.5)) we can define operators O,(f) on IC;, by:

Oz(f) = —ih Vf.
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Again, one easily verify that O, satisfies conditions Q (i), Q (i) and Q (iv), but
as before O, does not satisfy Q (iii). Although the operator O,(1) is not the
zero operator on J(,, neither is it the identity operator (it is —iA[d/06). We
now define 3C; as the subspace of 3, on which O,(1) is the identity operator;
one deduces from the expression of O, (1) that 3(; is given by:

X3 = {feXalft,p, 0) = flr, pe’?}. (5.2)

From the expression of the vector fields ¥, (formula (4.2)) one deduces that
the Hilbert space (5 is invariant under the action of the operators O,(f), so
we can define O3 as the same map as O, (but in this case the operators have
to be seen as operators on 3(3).

Table
3C,; = functions on M O\(f) = —ih X
3C, = functions on Y Ox(f) = —inVy

%32\126%25 02(1)11/ = \l/ 03(/) = OSubZ(f) = —ih Vf

What we gave got now is a Hilbert space 33 and a map O3 which satisfies the
conditions Q (i)— Q(#v); our only worry is condition Q(v). However, before
we investigate whether Q(v)’ is satisfied or not (it is not), we will say a few
words about the case of a general phase space. We have said already that if
(M, ) is any symplectic space, then there exists (nearly always) a prequantum
bundle (Y, a) over (M, w) and an injective representation ¥ of the Poisson alge-
bra as vector fields on Y. In such a case one can always define the analogue of
I, and the map O, (Y has a canonical measure defined by the 1-form «), but
sometimes the subspace 3C; consists of the zero vector only. Whether (3 is
{0} or not depends upon the value of the number p., which is associated to
the symplectic manifold (M, w) (see the end of §4.1): 3354{0} if and only if
Per is an integer multiple of 27A. An ‘explanation’ of this condition can be
found in studying formula (5.2). We know from the discussion at the end of
§4.1 that the coordinate 8 should be taken modulo g, hence §=0 and 0=p,,
indicate the same point, which in turn ‘implies’ that exp(ip.,/#)=1.

This condition on the symplectic manifold (p., an integer multiple of 2wh)
can be thought of as a quantization condition: it restricts the possible phase
spaces for which this method works. To show that this condition has a mean-
ing in physics, we first memorate that if (M, w) is a cotangent bundle with its
canonical symplectic form, then p., is zero, so the quantization condition is
trivially satisfied and a pair (3(;, O3) with the properties Q (i/)—Q (iv) always
exists. Secondly, if (M, w) is the symplectic space which represents in the classi-
cal formalism a particle with spin, ie. M =S? and w=Asindd0A\d¢ (see the
end of §2.5), then p.,=4wA and the quantization conditions becomes the well
known quantization of spin in quantum mechanics A=n#/2 (with n€Z). One
of the conclusions of these observations could be that this procedure, i.c. the
construction of a pair (33, O3) by means of the prequantum bundle Y, gives
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us relevant information on the quantum behaviour of the physical system when
we only know its classical (symplectic) description. This consideration plus the
fact that (33, O3) satisfies Q (i)...Q (iv) explains the names prequantization and
prequantum bundle: (Y, a) and (3C3, O3) can be seen as a first step towards a
quantum description.

Let us now return to condition Q(v) and our example M =R?". Since we
know the dependence of functions in 33 on the coordinate §, we can identify
95 with L?(R?"). Using formulas (4.2) and (5.2) we find that O;(f) can be
expressed by:

- _gpdf. 8 a8 8 . 8
os(f) = zhap o + zhar % + f—p o
from which one deduces that O;(p)= —ihd/dr, which is indeed differentiation
with respect to r and that O5(r)=r+ih9/0p, which is not multiplication by r.
That we do not obtain the usual Schrodinger quantization (see §5.1) is in com-
plete agreement with Van Hove’s result that the conditions Q(i)—Q(v) are
incompatible. In fact Van Hove has indicated in [vH] a proper subspace of J(;
which is invariant under the action of the operators O;(r) and O;(p).

5.3. THE IDEA OF A POLARIZATION AND PAIRING

The main idea to obtain (in an intrinsic way) the Schrodinger quantization
from the constructions described in the previous subsection, the idea which is
the heart of the geometric quantization procedure, is the idea of a polarization.
Since the technicalities of the construction with polarizations are beyond the
scope of this paper, this section will be brief and it will only outline the main
idea and mention the problems which one encounters. The first observation
one should make is that if we restrict 33 to functions which depend only on
the coordinates r and if we integrate these functions only over r, then the opera-
tors O3(r) and O;(p) are the correct operators on L*(R™) for the Schrodinger
quantization. The problem then is that for a general observable f (e.g. the
kinetic energy |p|*/2) the operator O3(f) does not have any meaning on this
‘subspace’ of 3(3; only for functions which are at most linear in p makes O 3(f)
any sense on the space of square integrable functions in r.

Nevertheless, it is this idea which is generalised by a polarization. With
regard to polarizations, the main property of the coordinates ,...r, is that they
constitute a maximal set of independent functions in involution, i.e. the
differentials of them are everywhere linearly independent, the Poisson bracket
of any pair of them is zero and the set is maximal with respect to the previous
two properties. Roughly speaking, a polarization F on a symplectic manifold is
a set of (complex) functions f;...f, which is a maximal set of independent
functions in involution; these functions need not be defined globally, but in
every neighbourhood such a system should exist and they should satisfy com-
patibility conditions on the intersection of two such neighbourhoods. One can
deduce that the number of independent functions in a polarization F is always
half the dimension of the symplectic manifold M and that if the functions are
real there exist functions g,...g, such that the set of functions f...f,, g1..-gn
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constitutes a system of canonical coordinates on the symplectic manifold. One
then constructs a Hilbert space 3o (GQ to indicate Geometric Quantization)
which consists of functions on Y on which O;(1) is the identity operator (i.e.
which depend in a specified way on the coordinate @ in the fibre of the bundle
Y) and which depend only on the ‘coordinates’ f}...f,; the norm of such func-
tions is defined by integrating over the ‘coordinates’ f...f,.

The main technical problem with this approach is the question how to define
‘integrating over the coordinates f)...f," for a general polarization F. The first
solution was the idea of half-densities (something like square roots of meas-
ures), but this did not give the correct quantization of the harmonic oscillator.
The second solution is the idea of half-forms (something like square roots of
volume forms) which gives the correct results for the harmonic oscillator. How-
ever, there remain systems for which even the solution with half-form does not
yield the correct answers (e.g. see [Du]), but it is the best solution till now. The
map Ogg which gives us the operators on Jgp associated to classical observ-
ables is derived from the map O; but, as we have seen in our example, the
domain of Ogg is a rather small set of observables which depends strongly
upon the choice of the polarization F. On this small domain the map Ogg
satisfies the conditions Q (i)—Q (iv). In the case of M =R?" and the polariza-
tion defined by the position coordinates r it also satisfies Q (v); for a certain
class of Lie Groups G one can show that if such a Lie group G acts transitively
on M as diffeomorphisms which conserve the symplectic form w, then the
modified condition Q (v)’ is satisfied (for mathematicians: this is essentially the
Borel-Weil-Bott theorem on irreducible representations of compact simply con-
nected Lie groups).

Let us give some examples of polarizations and the associated Hilbert spaces
for our example M =R?". As already said F,={r,...r,} is a polarization and
the associated Hilbert space I, is the space of square integrable functions of
the coordinates r with respect to the Lebesque measure on R”. Another polari-
zation is given by the momentum coordinates: F,={p;..p,} for which the
associated Hilbert space 3, is the space of square integrable functions of the
coordinates p with respect to the Lebesque measure (physicists will recognise
these two Hilbert spaces as the position and momentum representations of the
Schrédinger quantization). Yet another polarization is given by the complex
functions z; defined by z;=p;+ir;: F,={z,..z,}; in this case the associated
Hilbert space JC, is the space of holomorphic functions in z (i.e. functions
independent of the coordinates z} which are the complex conjugates of the z;)
which are square integrable with respect to the Gaussian measure
exp(—Z;|z;/) on R =C"; this is called the Bargmann representation of the
Schrédinger quantization.

It is known that there exist unitary equivalences between the three Hilbert
spaces described above (between 3(, and I(, it is the Fourier transform and
between J(, and I, it is the Bargmann transform), so the natural question is
whether we can ‘always’ construct in an intrinsic way a unitary equivalence
between the Hilbert spaces associated to different polarizations on the same
symplectic manifold. Up till now the answer is sometimes yes and sometimes
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no. Under certain conditions on two polarizations F; and F, on a given sym-
plectic manifold (M,w) with associated Hilbert spaces 3C; and JC; one can
define a map ¥:3(, X3, —C which is linear in the second coordinate and anti
linear in the first. This map is called the pairing and is defined by means of a
kernel function, the so called BKS-kernel after Blattner, Kostant and Stern-
berg. ¥ is defined by integration of this kernel function over (not always all
coordinates of) M. One hopes that such a pairing defines bijective maps:
A%, -3, and B:3,—IC; such that:

<y, BYr>1 = Y1, ¢2) = <Ay, 2>

where <,>; is the inner product on J(; and moreover, one hopes that 4 and
B are unitary. It turns out that the pairing defined b{ the BKS-kernel applied
to the case of the polarizations F,, F, and F, on R*" defines indeed unitary
maps which are the already mentioned unitary equivalences between 3(,, 3(,
and JC,. Unfortunately no general theorem is known under which cir-
cumstances this pairing defines a unitary equivalence between the Hilbert
spaces associated to different polarizations; there exists an example in which
the pairing defines a dilatation and there exists an example in which the pair-
ing defines bijective maps 4 and B which are neither unitary nor dilatations.
We conclude this section with three remarks.
1) The inner product on a Hilbert space 3 g associated to a polarization F is
defined by the pairing of F with itself, so the BKS-kernel generalise the inner
product.
2) One can use the pairing to extend the domain of the map Ogg but on the
extended domain Ogy does in general no longer satisfy condition Q (iv). The
idea behind this extension is to use the flow ¢, of the Hamiltonian vector field
X; on the phase space M to define a transformed polarization ¢,*F, then to
construct the pairing between F and ¢,*F (if it exists!) and finally to take the
derivative with respect to ¢. This method is sometimes called the method of
infinitesimal pairing; it can be used for the kinetic energy |p|>/2 on the phase
space R with the polarization F, in which case it yields the correct answer
Ogg( |p|2/2)=—h2A,/2 on JC,. The main draw back of this method is that
there is no guarantee that the result is a self adjoint operator; one can not
even tell beforehand whether it is formally symmetric; in each separate case
one has to check whether the obtained operator is a self adjoint one.
3) Suppose we have two different polarizations ', and F, which define two
Hilbert spaces 3C; and JC,, suppose that the BKS-kernel defines a unitary
equivalence 4 :3C;—»3C, between 3(; and 3G and suppose that f is an observ-
able which lies in the extended domains of both Ogg | and Ogg ; as defined in
the previous paragraph. One might hope that Ogg 1(f) and Ogg 5(f) are ‘the
same’, i.e. A°Ogg 1(f) = Ogg,2(f)°A4. Unfortunately, this is not true in gen-
eral: the result of geometric quantization depends on the choice of the polari-
zation, even when the Hilbert spaces are unitarily related (see [Tu2] for an
example of this kind on M =R?"). This ‘negative’ result is intimately related to
the fact that geometric quantization tries to satisfy the incompatible conditions
Q()..Q (v) as far as possible (see [Ab&Ma] for some explicit calculations).
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SPACE-TIME ALGEBRA STA

1.1. Introduction
Let M denote Minkowski space-time, that is R4, endowed with an orthonormal
basis {eg,e),e;,e3} and an indefinite quadratic form

(x,x) = lIxl?=x3 —x}—x3—x3, xeM.

We want to define a multiplication of vectors in M, satisfying the rule
x?=|lx|1*. Using the basis {eq,e;,e,,e3} and writing

X = xgegtxe;txye;+xse;

this requirement can be expressed by

(xpeo+x1€1+x2e5+x3e3)* = x3 —x} —x3 —xi.
This valids for
es =1
el = e3=e3=—1 s

ece e, = 2gy=2diag(l,—1,—1,—1).

REMARKS.

1. Clearly with the multiplication of vectors as introduced above we recovered
the real Clifford algebra of M. This 2*-dimensional algebra is named space-
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time algebra STA. As to be found in e.g. [1], volume 2, page 41, one can
introduce STA in a coordinate free way by means of the tensor algebra of M
and the ideal, generated by expressions of the form x ®x —(x,x)-1.

2. Do not confuse the 16-dimensional (real) Clifford algebra, just introduced,
and the 32-dimensional complex Dirac algebra, as used in relativistic quan-
tum mechanics and isomorphic with the algebra of complex (4 X4)-matrices
C4.

1.2. Matrix representations
Sometimes it is convenient to represent the basis vectors eg,ej,ej,e; by
matrices. We mostly use the (unitary) representation vy,v1,v2,Y3 given by

'12 0 0 — O
Yo = 0 _IZ s Yk = o 0P k=1’2:3

\

where I, = [(1) (1)] and o, are the Pauli matrices given by

0 1 0 —i 1 0
1= lrop %27 |i o %~ |0 —1|

\

Obviously one has

0 Oy
YYo = [ak 0]9 k:1,2,3

0 I,
Yoiv2vs = ¥s=i g

An alternative representation for STA is the algebra H(2) of (2X2)-matrices

over the field of quaternions H. In this case the basis vectors eg,ej,e;,e3
e

respectively correspond to 0 —1 and i of k=123, where i,
k =1,2,3, are the quaternions.
1.3. Some requisites in STA

Having made a choice for the orientation the pseudoscalar es =ege e,e; is an
invariant, just like the determinant in linear spaces. Note that

e2 = —1
and
ese, = —eres, k=0,1,2,3.
Let a and b be vectors in STA, then we can write

ab = —(ab +ba)+5(ab —ba).

The symmetric part %(ab +ba)=a-b is a scalar, because

30



ab+ba = (a+b)>—a’—b%cR.

The antisymmetric part —;—(ab —ba)=anb is called the bivectorial part of ab.

The elements of STA are called multivectors and can be written (with 16
parameters) as

A = a+de,+ e e+ od"™e ee, + Bes,

k<l<mand k,l,m=0,1,2,3.
We shall also write for the multivector A4:

A =Ay+A,+A4,+A45+A4,
where
Ay = ais the scalar part of A,
A, = d¥e is the vectorial part of A4,
A, = d¥eye is the bivectorial part of 4,
A3 = oMeiee,, is the trivectorial part of A and
A4 = Bes is the pseudoscalar part of A.

Next we introduce some special maps of STA — STA.
The inversion or main involution is given by A—A with

A= —esdes=Ag—A,;+A,—A3+A,.
It can also be given by Zk:(— 1)%A4,. The most obvious properties are A=A

and AB=AB.
The even and odd parts of A are defined by

1 - 1
Aeven = —Z(A +A)——_2‘(A —e5Ae5)=A0 +A2+A4

and
1 - 1
Aodd = __Z_(A —A)?Z(A +65A85):A 1 +A4 3.
The reversion or main antiautomorphism is given by ArsA with
12 = A0+A 1 —AZ_A3+A4.

It can also be given by o

3 k(k—1) s
A =1 * A4=(1?*4,

The most obvious _properties are A=4and AB=BA.
Note that 4 —>A reflects the order of the basis vectors eg,e;,e,,e3. Further
we present the map 441 by

AT = 601‘160.
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The most obvious properties of this map are (47)f=4 and ATBT=(BA)'.
Observe that his map corresponds to Hermitean conjugation of matrices.
Finally we introduce the Hodge dual map Ar*A by

*A = —/~165.

REMARKS.

1. Besides the basis {eq,eq,e2,e3} we often use the dual basis {e°e',e?,e®}
given by e®=e¢; and e* = —¢;, k =1,2,3.

2.STA is a special case of the Clifford algebra of R"” with metric form
(ox)=xi+ -+ +x3—(x241+ - -+ +xk). All these Clifford algebras are
isomorghic to matrix algebras over R, C, H or over the direct products
2R,2C,%H. All details can be found in [2] and in [3].

1.3. The Pauli algebra P
Let us introduce ¢;,¢€;,€e3 by
€ = eey, k=123
with properties
€€ = ee,, k¥Fl, ki1=123
and
€663 = egeee3=es.
Obviously €,¢, and €; generate the even subalgebra of STA. Because
€€+, =28, ki1=1,2,3

this even subalgebra is isomorphic to the Clifford algebra of R* with Euclidean
metric, the so-called Pauli algebra P. Note that indeed the Pauli matrices
61,0,,0; are matrix representations of the basis vectors €),¢;,€; and that the
algebra C(2) of complex (2 X2)-matrices is isomorphic to P.

More generally one can write down the chain of even subalgebras:

RCCCHCPCSTAC ---.

1.4. The differential operator d
Finally we introduce the differential operator 0 as

0 = egdp—e 0, —ey0,—e3d3=e"d,
with properties
0=d-9 (Hodge-de Rham operator),
ox = 0-x+0dAX,
9 = 99+9A3=29,
9> = —d8—8d (Laplace-Beltrami operator).
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Although one has the rule d,(ab)=(9,a)b +a(9.b), Leibniz rule for 0 of course
cannot be expressed by d(ab)=(da)b +a (0b).
For more details and rules we refer to [4], Section 4.

2. DIRAC GAUGE THEORY IN STA

2.1. The Dirac equation

The Dirac equation, describing electrons and photons can be given by
@Y*D,—m)¥ =0

with D, =9, —igA, and

\I/] a]'*‘iﬁl
¥2 a+ip, _ ’
¥ =0T lag+ig,| =@ HiBu+ (@ +iBy)uy + (1)
Vs as+iBy
+(az+iB3)uz+(as+iBs)us
1 0 0
i 1 0 0 . . .
withuy = |41, ua=|g|, u3= ||, us= o| s basis vectors in spinor space.

We can also write
(iY'op+qv'4,)¥ = m¥
or in slash-notation
IVitgd ¥ = m¥ D1
with @ =v*9, and 4 =vy"4 .
2.2. The Dirac equation in STA
The main goal of this section is to give descriptions of Diracs equation in

STA-language.
Using the obvious relations

Youy = Uy, U = Y3t
iuy Y2Y141, Uy = Y3Youy,
Us = Y1Yotr,

one finds after substitution in (1)

¥ = (a1t asy1Yo +Bav2Yo T a3vsvo + B2vaY: T aavsvi +B1vavi + B3vs)uy. (2)

The quantity in parentheses appears exactly as the matrix representation of an
even multivector ¢ in STA. We write shortly ¥ =M (y)u; and if no confusion
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is likely we shall identify M (y) and .
Substitution of ¥ =M (Y)u, in the Dirac equation

ivo,¥+gy'4,¥ = m¥
and identifying M(y) and ¢ yields the equation
(F*9.¥vav1vo T qv* A yo —mpu; = 0.

The expression in parentheses is the matrix representation of an even multivec-
tor in STA and although u; does not have an inverse, we can write

Yo Y1 Y0 T 9Y* A v —my = 0

because
Y Y ¥ s
M = ¥ ‘El Vs —;P__3
V2R 7R )
Yo —¥3 Y2 W

is determined by its first column M ()u,.
Changing from matrices to multivectors in STA we find for Dirac’s equation

de,e; +gAy = myeg
or, using e,e; =esejey
Weseseq+ gAYy = mye, D2

with ¢ an even multivector in STA.
Obviously, if one starts with D2, one finds D1 and thence the equivalence of
D1 and D2 is clear.

REMARKS.
1. Note that the scalar part of i corresponds to %trM ({) because all y,y, with

k=l and vy are traceless.

2. In contradistinction to yo, v; and v, the quantities ey, e; and e, in D2 are
no matrices in C(4) but vectors in STA.

3. The quantity i eC in D1 has been replaced by ese;eg=eze; in D2. Indeed
one has (e;e,)>= —1 but the bivector e, e, represents some special direction
in STA. The interpretation of this direction has been amply discussed in [5].

4. As known, other representations of the y-matrices are related to our choice
by the relation ¥,=S~'y,S. One can prove that apart from an (allowed)
Lorentz transformation, equation D2 is independent of the choice of the v,.
All details are discussed by Hestenes in [5].
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2.3. Another description of Dirac’s equation in STA
Multiplication from the right of equation D2 with the factor
%(1 +e)(1+e3ep) and introduction of the multivector

¢=3¥(1+eo)(1+e3e0)
yields after some minor manipulations:
dpes+qAd = mo D3

with the condition ¢eze;=¢. Conversely the equation D3 yields again D2 as
can be proved in the following way:
Substitution of ¢=1, +y,e, with {; and ¥, even in D3 and use of

dpes = Odpezeges =0peye)
gives the equation
dre2e) +se 0+ gAYy +gAYreo=my, +my,e.
After splitting in odd and even parts one finds
dieze; +qdY = myyeg
and
dreeze +qAdyreq = myy.
Multiplication of the second equation on the right by e gives the pair of
equations
dWyeseseo T gAYy, = myzeg
dWaesezeqt gAY, = myeq.
Add both equations and call {; +, =y (J even), thence one finds
deseseq+gAdy = mye. D2

2.4. Remarks

1. It is tempting to conclude that D1 and D3 have more resemblance than
D1 and D2 but that is misleading because the anomaly in D3 is hidden in
the structure of qb=%\p(l +eg)(1+ezep). We return to that question in the

next section.

2. Although the equivalence of D1 and D3 is evident from that of D1 and
D2 and of D2 and D3 we give a straight proof because it affords more
insight in the structure of D3.
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Let

(2 Y1 0 ¢, 0
¥ ¥, 0 4, 0
¥= ¥3 and n = ¥v3 0 ¢3 Of
(21 Y4 0 ¢4 O

As is easy to check one has the relations ny;y, =7 and nys=ni. Con-
versely, if aeC(4) and the relations ay;yp =a and ays =ai hold, then

Y1 04y 0
¥, 0 ¢,
T 0
Ya 0 Yy
Dirac’s Equation D1, given by
iv*D,¥ = m¥ with D,=0,—igAd,

is equivalent with the equation

S O O

iv*D,n = mny
or
YD, nys = mn.

Because nC(4), one can write 1=¢+i¢;; ¢,¢; €STA. By using ni =nys
one finds ¢ = — ¢ys.
Substitution of n=¢+i¢; in v D, nys =mn and use of ¢; = —¢ys yields
the pair of equations

YD, pys = m¢ and Y'D,¢1ys=me,
both equivalent with the sole equation
Y"D[.l(pYS = m¢,

with the condition ¢v3v,=¢ and with D,¢=0,¢—gA ,¢ys. Summarizing
one recognizes the matrix representation of D3. The converse is also true.
The equation of Dirac is related to a number of notions and quantities
such as currents, gauge invariant derivative, Lagrange density and so on.
In the next table we summarize these associated notions for the Equations
D1, D2, D3.
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D1 D2 D3

Dirac BVi+gd¥=mV¥ Wesesegtgdy=myeg Ipes +gd p=m¢
equation ¥eC? yeSTA $eSTA

¥ even dezeg=¢
current J =¥y, ¥ J =vdeoy J = ece,d)
spin -
current Su= ——i‘[’fyoyﬂs\lf s =yesy Sp= ~(¢feoepe5¢es)o
gauge trans- | A .
formation V=ye ia P=ye 20 p=ge
gauge ‘
invariant
derivative D“\I'=8,.‘I'—qA\I'i Dy=8—qgAeseseg D¢=203¢p—qA pes
Lagrangean
density L=¥'y(¢*Dyi —m)¥ | L= eo(Dyeseseq—mpeo)lo | L=(9"eo(Dpes—me)

All derivations can be found in [4].
3. DIRAC THEORY FOR PAIRS OF PARTICLES

3.1. Classical theory
The strong forces between nucleons and the weak forces between leptons are
described, at least in former days, by the pair of Dirac equations:

(v"D,~m)¥ = 0

¥,
with ¥= | , Dy=9,— Jidjm, and 7, =0y, k =1,2,3.

We shall use a description equivalent with this classical one, although, with
the SU(2)-action from the right side on ¥.

Let
Yn (2] Y Y
¥21 V2 Yo ¥
= Y|’ Y= 127} and = Y3 ¥n |’
Va1 Y Ya Yo
then the free Dirac equation for the pair (¥,,¥,)=¥ can be written as
(78, —m)¥ = 0.

Replacing of 3, ¥ by D, ¥=23,¥+¥A, with 4, — ~idj 7, yields
@y'D,—m)¥ = 0.

In the next table we compare some notions, associated with the Dirac
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equation, in the classical description and in our one.

classical here

. 1= . 1 =
current A=y ¥ Jh= Ty )

~ —Liake ~ -—*—Lia"‘r
gauge trans- | y=Uy, U=e * y=yU, U=e
formations | A,=UA,U"'—@,0)U"" | A,=U"'4,U-U"'@,V)
gauge
invariant
derivative D,=d,+4, D, ¥=0,¥+V¥4,
Lagrangian | L,=¥(iy*D,—m)¥ L,=t(¥(v*D,—m)¥)
Field
strength
tensor F,=0,4,-08,4,+[4,,4,] | F,,=0,4,—03,4,—[4,,4,]

The rule [D,,D,]¥=F,,¥ transforms into [D,,D ,|¥ =¥F,,.

3.2. (4X4)-matrices as wave functions
As a prelude to a description of 3.1 in STA-formalism we need the following
conventions, again resulting in the classical theory. Instead of

Y1 Y12 Y ¥
Y21 ¥ Va1 Yn
= Y31 | = V3 and ¥= Va1 ¥n
Va1 Va4 Va1 \1/42‘
we consider the (4 X4)-matrices
Y 0 ¢ 0 0 Y12 0 Y
Y 0 ¢y O 0 ¥ 0 Yn
& = Y31 0 3 O ®; = 0 ¥5n 0 ¢3
Ya1 0 Y4 O ~0 Vg 0 Var |
and
Y Y2 ¥Yn ¥n)
Va1 ¥ Yo ¥
=0+ @, = Va1 ¥ Y3 Yl
Ya Yo Ya Yo

J

The pair of free Dirac equations now can be presented by

(iv*d,—m)® = 0. 3)
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: 0 I,
As is easy to check,® is an eigenfunction of ys =i [ I 0] from the right with

eigenvalue i C, i.e.
D=0 =0y,
Thence we write instead of (3):
¥'0,Pys = m®.
Instead of A,=— Lidj7, we now find A,=— 1AFv,Yoys- (Note that
YiYo =Tk 102102 )
Finally all these conventions lead to the Dirac equation
YD, ®ys = m®, or
Doy, = md
where D =Y"D,,.
Our wave function ® is a 4X4-matrix over the complex field C and hence

belongs to the complex Dirac algebra, which is isomorphic to C(4).
Therefore we can write

® = a+aty,+ oy + oYy, + B,

where a,a*,o*/ o™ and BeC.
Let ¢=re® be the real part of ® then ¢ is the matrix representation of an
element of STA.

Obviously D®y; =m® implies D ¢ys =m¢ but the converse is also true. Viz.
let ®=¢+inthen using ®i=y; one finds n=—¢ys, i.e. P=¢p(1—iys).
Therefore it obviously follows that D ¢ys =m¢ implies D ®ys =m®P.

Now we are ready to translate the equation D¢ys=m¢ into the STA-
formalism.

3.3. Dirac’s equation in STA for pairs of particles
Meanwhile we have reasons enough to investigate the equation
Does = m¢

with $STA, D =e*D,, D,¢=0,6+¢d4,, 4,= — T4 e.eqes and with matrix
representation D ¢ys =md¢. For the associated notions one finds respectively
a) currents:

7t = (dTegetderen)
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b) gauge transformations:

R
7% €465

¢ = ¢U with U=e
A, = U4, U-U'@,U)

¢) Lagrangian:
1 v
L = 2(9'eo(Dges —m¢))o— 5 Fji Fi

It is merely an algebraic excercise to prove the following gauge invariances.

@ eve, o = (@teoe,d)
Db = (DU
w = U"FF,,U

1
2
3.
4 = L.

o Ny

3.4. Ideals in STA

Ideals in an algebra are generated by idempotents, minimal ideals by primitive
idempotents. As is clear from the H(2)-representation STA has two minimal
left ideals J . and J _. (Compare again the complex Dirac algebra =C(4) with
four minimal left ideals.)

For the primitive idempotents we choose -;—(1 +e3ep) and %(1 —e3ep). Hence
we can write

¢ = S¢(1+eze0)+ To(1—eseq)
with

“21‘¢‘(1+€390) = ¢ et
and

-;—¢(1—e3eo) = ¢yt _.

Observe that ¢; =¢,e3ey and thence we recognize the uninterpreted condition
associated with D3 in 2.3. As promised in 2.4 we here return to that question
by mentioning that D3 describes the restriction of Dges=m¢ to the ideal J .
in STA.

This gives rise to the idea to describe the weak interaction between electron
and neutrino by means of the two ideals J . and J _. For a further investiga-
tion we need the following trivial properties:
a. J,nJ_ = {0}
b. ¢e/; iff prezep=¢;

iff ¢1(1—e3e0) =0 iff ¢;(1+eze0)=2¢,
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and
c. ¢et_ iﬂ¢263€0:*¢2
iff ¢2(1 +e3e0)=0 iff ¢2(1 —8380):2%.
Substitution of $=¢; +¢, in the equation e" D ,pes =m¢ yields:

0 = "D, pes—mo=0pes+e'pA es—mop=
= Opjes+eldp A es—moy+0pre5+etpr A 65— m,y,
where
d.A 5 = %A,’f(b,,ekeo a=172.
Some rewriting yields:

0 = (3¢1es5+e'B,,—me,)+(3¢e5s +e'By,p—me,)

where
. 142 143
Bl,y = 2AF¢28180+ 2A,,¢2€2€0+ 2A;,¢]€3€0EJ+
and
14 R 143
BZ.# = 2A‘,¢1e1e0+ ZA“(P1€2€0+ 2A,,¢2€3€0€J_.
Whence
a¢|e5+e“Bl',‘—m¢1 EJ+
and

Opres+etB; , —mepyed
and therefore

Opes+e’By,—mo, =0
and

Opres+e'B, ,—me;, = 0.

Substitution of the expressions for B;, and B,, and again some rewriting
yields in J  :

1 1
e’ (3. pres +‘5A3¢1)+—2€"(A;]‘¢2 +A} des)ereq = mey (a)
and similarly in J _:
e’ (d,de5— %A:%)‘* —;-e"(A;lz(Pl —Aldres)ereq = mo,. ®

Let us now compare (a) and (B8) with the description given in 3.1.
We started from the equation

(YD, —m)¥ = 0
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with
DY =3,¥+¥4,

A, = — JidgT,
and
Yn Yo
Y21 ¥
Va1 ¥ =, ¥a).
Yar Ya
01 0 —i 1 0
Substitution of 7,= 1 ol ™= [i O]’ 3= {0 —l]’ and some rewriting
and splitting yields now:
@Y+ TA )+ AT, + AT = m¥y (@)
V(@ ¥2i — AU+ VALY — A5 ¥i) = m¥,. ®8)

Note that the only genuine difference between o, and o/, is the factor e ;e
in a,8 but that is just the factor that maps ¢, €/ _ onto ¢,e,ep<J 4 and simi-
latly ¢, €J ;. onto ¢p,ejepet _.

Hence our conclusion is that the description of the weak interaction with the
two minimal ideals in STA is wholly equivalent with the usual description by
means of the Lie group SU(2).

4. STRONG INTERACTIONS AND STA

4.1. Classical descriptions

Nowadays descriptions of strong interaction fields make use of the symmetry
group SU(3) instead of SU(2). In this subsection we give a brief summary of
SU(3) gauge fields as can be found in [6] but with the same adjustment as car-
ried out for SU(2) in 3.1. (It turns out that the operator iy*3, —m acts from
the left but that the group SU(3) acts from the right.)

Let us first write down the free Dirac equations for triples of quarks:
@iy, —m)¥ =0

. where
Y Y2 Y13
o1 Y2 Y3
¥ = (‘I’red,\l'bluey‘ygreen): \1,31 4/32 11133 -
Va1 Va2 Va3
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Subsequently we replace the operator d, by D, defined as
D, ¥ =9,¥+¥4,

where
A, = AfT=— Jidf\,.

The (3X3)-matrices A, are the well-known generators of SU(3). The gauge
transformations are given by

= VvU ——l—iukkk
—_ -1 -1
= U4, U-U"3,U

Do W

P

The currents A} are in this case
Y = —]2’(:“‘—1'_7“‘1'}\,‘.
The wave function' ¥=(¥,,¥,,¥;) is associated with the Lagrangian

3 _ —
Ly = 3 ¥,(iv*0, —m)¥,=tr(¥(iy*d, —m)¥).

a=1
As in the SU(2)-case replacing of 9, ¥ by D, ¥=09,¥ + ¥4, yields
L, = u(¥(iy"D,—m)¥).
For the dynamical part Ly of L one has
Ly = —5to(F,,F*)=——F5
with
Fp = 8,4,~3,4,~[A,,4,]= —SiFS ).
Finally we summarize the usual gauge invariances:
1.D,¥ = (D, VU
2.Fy = U'F,U
3.L = L.
The proofs can be found in[6].

4.2. SU(3) gauge theory in STA
In contradistinction to SU(2) CSTA the group SU(3) suffers from the disease

that it is not a subset of STA. Therefore a treatment as in 3.2 is now impossi-
ble.

! From now on we drop the folkloristic notation ¥4 and so on.
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In spite of this defect it is possible to describe the notions and properties of
Section 4.1 in terms of STA. Consider to that end the Lie algebra of bivectors
in STA. We can write any bivector B as

B = (al +e5b1)e|e0+(a2+e5b2)eze0+(a3-l-e5b3)e3eg.

Note that one can consider this space of bivectors as a copy of C3. Next
observe that

BT = (a;—esb))ejeg+(as—esby)eseq+(az—esbsleseg

can be considered as the ‘complex conjugate’ of B.
Further, we find that

€1€p €28p €36
BB = a}+b} +a} +b3 +aj+b3—2a;, a, a;|
by by b3

Therefore (BYB)y=a} +b% +a3 +b3 +a}+b3 and that means that the Lie
algebra of bivectors in STA with square norm [|B||*=(B"B), has SU(3) as
invariance group.

The original ideas can be found in [7]. To develop further details it is neces-
sary to express the generators A, in terms of STA. The procedure is as follows:

Let B be a bivector in STA, define BA, =—12‘(e1e0Be2e0+e2eOBe1e0). Substi-
tution of
B = (a,+esby)eieg+(astesbyereq+(aztesbileseg
yields
B\, = (ay+eshy)e ey +(a)+eshbyesep.

OO =

010
On basis {e eg,e,€p,e3¢5)} one finds indeed A, = [1 0]. Likewise we can
000

calculate the remaining A;:

-

0 —es 0
B\, 2‘!2’(e3eoB—Be3e0) N=les O

0 0 O
where e; plays the role of i.

(1 0 0
BA, :—;(eleoBeleo—ezeoBezeo) A;=|0 -1 0

0 0 0

001
B\, =—12(e1e0Be3e0+e3eoBeleo) AN=1000

100
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BAS = '}z‘(ezeoB-Bezeo)
BAﬁ = _12(828038380 +e3eoBe2e0)
BA—] = '—12'(81808—38180)

-1
BA\y = —— (B +3e4epBe;e
8 2\/5( sepBesey)

Given ¥= (‘I’] ’ ‘I’z, ‘I’3)

Y ay +iby

) Y21 ax +iby
with ¥, = ¥ az +iby
Y41 ay +ibgy

}\5'—:

Sl-

S oo
oo o
|
o © 4
W

-0 O
O - O

S oo
|
[
w

"o oo oo of

and likewise ¥, =ay +iby, 1<k<4, 1<<I<3 one can consider the 4X3-

matrix
Y = (a +esb)y.

The only difference between ¥ and y is that the complex number i has been
replaced by the pseudo-unit es. Introducing the linear space B*, consisting of

quadruples of bivectors i.e.
B,

eB*

Wwe can write
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B,

B, €1€o
¢ = |p,|TV|e260|=
B, €3€9

aneieotbyeseregtaneregtbpeseregtapesegtbizesesen
aneiegt+byeseiegtaneregtbyeseregtazesegtbiesesey
azejegtbiesejegtaypereotbyesereqtasesegt+bizesese|
ageiegtbyiesejegtagperegtbyeseregtagzeseygtbazeseseq
We yet define the 4 X 4-matrices I°,I"',T2, T3 as v%,y!,7%,v%, but where i C (in

y?) is replaced by es.
The free Dirac equations

@i¥*9, —m)¥ = 0,

as mentioned in 4.1 can be replaced by
(esT"3,—m)y = 0.

Obviously this yields the equations
(esT"3,—m)p = 0.

Just like in Section 3 we can replace d,¢ by
D, = 3,0+9¢A4,,

to be interpreted in the following way

B, B,
= A, =
¢}\k B, k B3Ak ’
B, B4\,

the latter as defined above and
¢4, = AfoT, = “'liesAﬁ‘P}\k
whence
D,$ = d,0+¢4,.
In conclusion we find
(esT*D,—m)p = 0
or

D¢es = mo
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with
peB4.

REMARK. Comparing the equation D¢es=m¢ with ¢=STA as dealt with in
Section 3 one observes that in that case D¢es =m¢ obeys Lorentz invariance
because it is manifestly independent of coordinates, but for the equation
Déges=mo with ¢_B* as presented in this section this Lorentz invariance is
not automatically satisfied. This Lorentz invariance can be proved in a similar
way as done in the literature on equation D1.

Compare for instance [8], page 52.

Finally we give the translations into STA of the notions F ,,,,,ab,Lo,L,,LF and
so on, including their invariances. Defining ‘
va = apAvmavAp’_‘[AmAv]
one finds the property
[D,.D,Jp = F,,.
ProOF.
[DpaDv]Bk = Dp(DmBk)—Dv(DyBk) =
=DF(6,,Bk +BkA P)-D,(aka +BkA “):
= al,(a,,Bk +BkA ,,)+ (G,Bk +BkA ”)AI‘ +
- 3,(8“3,( +BkA l‘) _(auBk +BkA P)A y—
=B(0,4,—0,4,+4,A,—A,A,)=B\F,,,
hence we can write

[Dy,D)]¢ = ¢F,

where
B,
B,
b= B, O
B,
Next define ¢U as
B, B, U
B, B,U
B,|Y=\B,U
B, B, U
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and thence

¢ = oU
A,=U'4,U-U"'0Q,U)

This expresses the gauge transformation for SU(3) in STA-formalism.
Let ¢! =(B{, B}, B}, B}) then we can define the currents by its components
. 1
J& = 5@ ToTM*¢Ap)o.

This expression corresponds to

. 1
Jh = Su(Thyy*A,)

where
¥ = 1,¥2,¢3)
which we prove as follows:
¥ €1€p
oTTeT* oA, =(e1e0,e2€0,€3€0) |2 | Tol* W1, ¥2,¥3) €260 [As.
% €3€y

Hence
1 1 3 -
@ TeT* oA = 5 3 Tl d,Ax
a=1
corresponding to

1 3 1 =
5 2 Vo' VA = Sty ' A,
a=1
The Lagrangian L, can be defined by
Lo = (¢'To(e’TH3, —m)d)o
in agreement with

Ly = tr(¥(iy*3, — m)¥).

PROOF.
El €1€p
¢'To(esTH3, —m)d = (e1eq,er¢e0,e3e0) ¥ |TolesTHd, —m)Wi,dn,¥3) |e2e0 |-
E:, €3€g
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Again it is in immediate that
3 _
@'To(’T"8, —m)¢)o = I duTolesTHd, —m)y,
1

a=
corresponding to

3 —
gl‘PlyO(iy“a,,—m)‘Ifa = tr(¥(iy*d, — m)¥). O

L, can be derived from L, by replacing d, by D, in the usual way. For L
one obtains the expression

Ly = —Jt(F,, F*)=—FhF¥
with
F, = -—'lgesF,’j,,)\k.
Observing that
eep eeg
¢ = U=YU |eseq| =¥ e
€3€g €3€g

it is a trivial task to prove the gauge invariances:
1.D,¢ = (D HU

2.F, = U'F,U
3.L =L

FINAL REMARKS

1. Electro-weak forces

In this contribution we did not deal with the Glashow-Weinberg-Salam model
of electro-weak forces and associated symmetry group SU(2)X U(1) because
all the necessary material can be found by combining Section 3 and [7].

2. Gravitational forces

If one takes gravitational forces into account, Dirac’s equation D1 transforms
into the so-called Dirac-Weyl equation as treated by G.G.A. Béuerle in these
proceedings [9]. I hope, translation of this formalism into STA-language can be
given in the near future.
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Quark confinement in a model with induced metric

C. Dullemond
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1 INTRODUCTION

One of the striking features of meson spectroscopy is the close resemblance
between the ‘charmonium’ and ‘beautonium’ spectra. With some imagination
also a ‘strangonium’ spectrum can be discerned. Not only the ratio’s between
the mass-level differences seem to be nearly the same for all ‘quarkonia’ spec-
tra, but also their absolute values (see fig. 1). If mesons are considered as
bound states of quarks and antiquarks one can consider ‘strangonium’ as a
bound state of the strange quark s and its antiquark s, ‘charmonium’ as a
bound state of the charmed quark ¢ and its antiquark c, and ‘beautonium’ as a
bound state of the beauty quark b and its b. A direct comparison can be made
with ‘positronium’, a bound state of an electron e~ and its antiparticle e ", or
‘muonium’, a bound state of a p~ and a p*. A comparison of the latter two
‘atoms’ shows that the discrete spectra are proportional to the mass, but other-
wise equivalent. In the same way as this scaling behaviour can be understood
in terms of properties of the Coulomb potential can one try to understand the
scaling behaviour of the quarkonia spectra in terms of properties of the poten-
tial which binds the quarks together.

Let us assume that the spectra of the different quarkonium atoms can be
obtained by solving a Schrodinger equation (which is a good approximation as
long as the level differences are small compared to the rest masses themselves).
Let

1 d° L?

2m dr*  2mr

5 + V(r,m)|y= Ey, M

where m is the reduced mass of the quarks ¢ and g bound within the
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quarkonium system under consideration, E is the total energy, V(r,m) the
potential in terms of m and the distance r between the quarks an L the angular
momentum (we take Planck’s reduced constant % and the light velocity ¢ both
equal to 1). For simplicity the spin of the quarks is not taken into account.
The question is which equation V' (r,m) must satisfy in order for the spectra
to have the desired scaling property. For that purpose we introduce the param-

eter p:
p= Vmr. @

This transforms eq. (1) into
14>  L* - _

The condition that the spectra be independent of m except for an additional
constant now becomes

Vie,m) = Vi(p) + Va(m). @
Next we find out how V(r,m) itself must depend on m. If the interactions
between the quarks are flavor-independent, then 114 is independent of m (the

ar
forces do not depend on the quark species) and we have
Vir,m)= V() + Va(m), ®)
We can solve the equations (2), (4) and (5) and obtain
V(r,m) = ylor + k(m), (©)

where ¥ >0 is the condition for confinement. This potential is known as the
potential of Quigg and Rosner [1] (see fig. 2 for the spectra). A variant is the
potential of A. Martin [2]:

v =y +k(m), Y

which is nearly logarithmic.

Not only the congruence of the spectra is explained by such a potential, also
the details of the spectra are quite reasonable. The only disadvantage is that it
is impossible to find a fundamental reason why the potential should be loga-
rithmic. Since the discovery of beautonium (also called bottomonium) in 1977
no connection with fundamental field theory has ever been found. Many
authors therefore claim that the resemblance is just an accident.

Maybe a radical rethinking of what flavor independence means might estab-
lish a link between the quarkonia spectra and fundamental field theory. A very
strong candidate for such a theory is Quantum Chromo Dynamics (QCD) in
which quarks are endowed with ‘color’-degrees of freedom and interact with a
non-abelian gauge field, called the ‘gluon’-field. Forces due to gluon exchange
between quarks are independent of the quark mass and are therefore flavor-
independent, at least in first instance, since renormalization causes the
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coupling constant to become a ‘running’ coupling constant which is flavor-
dependent. The latter is a small effect. Nevertheless, let us assume that the
forces which bind the quarks are not independent of the quark masses, but pro-
portional to the quark masses. Then, instead of eq. (5) we have

V(r,m) =mV,(r) + Vy(m). 8)
If we now solve egs (2), (4) and (8), we find:
V(p,m) = Cp* + V3(m)
and ®
V(r,m) = mCr* + I~/2(m)

With C = —:li-wz we find

V(r,m) = —maw*r? + k(m), (10)

1
2
which is the isotropic harmonic oscillator potential with universal frequency w.
Fig. 3 shows the spectra.

Although the harmonic oscillator potential makes a much better chance to
follow from fundamental field theory than the logarithmic potential, one has to
explain why the forces are proportional to the quark masses and why the phy-
sical spectrum deviates from the ‘bare’ harmonic oscillator spectrum.

Note that when forces are proportional to the mass, accelerations are mass
independent. Flavor independence of forces is replaced by flavor independence
of accelerations. To reconcile this with the fact that gluon exchange gives rise
to flavor independent forces, one must separate the forces due to perturbative
QCD from those of nonperturbative QCD. Not much is known of the latter.
In particular, it is not known how nonperturbative QCD can cause permanent
confinement of quarks. Flavor independence of accelerations reminds one of
gravitational forces. Also here the accelerations are more important than
forces. Free particles follow timelike geodesics in a curved space-time and
these geodesics are mass independent. This does not mean that masses are
unimportant, because masses are sources of gravitation. Thus, although the
sun and the planets all follow timelike geodesic trajectories in a curved space,
the sun dominates the solar system because of its mass. We shall therefore try
to give a geometric description of ‘quasi-free’ quark motion which only tem-
porarily subdues the importance of quark masses. The model presented here is
manifestly classical. A consistent formulation in terms of a Lagrangian field
theory can be given and opens the door to quantization. A real scalar dynami-
cal field ¢ is put to work for ‘inducing’ an alternative metric field g,,, called a
quasi or induced metric.
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2 THE HARMONIC OSCILLATOR AND THE ANTI-DE SITTER SPACE

Suppose that the harmonic oscillator spectrum be exact and that wave packets
carry out exact harmonic oscillations with frequency w. The higher the energy,
the larger the amplitude. let u be the displacement from the equilibrium posi-
tion. Then

Umax = Ol may. an
The largest velocity is w times the largest displacement, but since the velocity
can never surpass light velocity we have that u,,, can never surpass _:_,_ All

oscillations take place within a sphere of radius R = -:: An idea of the magni-
tude of R can be obtained by determining the average level spacing AE of all
quarkonia states. Then Rw%m 1 fm = 10 m. The sphere of radius R

can be visualized as a rigid ‘bag’, within which the quarks are confined. The
heavier the quarks, the more they tend to concentrate in the center of the bag.
Nevertheless, all mesons have the same size in our model. One could also think
of the bag as wrapping a gluon cloud which must be nearly identical for all
mesons.

Let us define the following quasi-metric tensor field g,, inside a sphere of
radius R [3]. (The true metric tensor field is still n,, = diag (+1,-1,-1,-1).)

= o 22| =123
8kl = Rz__rz Rz_rz ’ ( e — 1,4, )’
go= g =0, (12)
RZ
8goo = Rz__-rz

where 2 = Z,x*", x* being the position of a point inside the sphere. Fig. 4
gives an artists view of this metric by showing the quasi-unit spheres. Note
that they become singular at the surface of the bag. Also, in the center the
quasi metric tensor is equal to the metric tensor.

The quasi-geodesic equation is, with x° being the time coordinate,

d*x* | e dx” dx®
N 1)
where
= 1
r‘:p = 73"}‘(3,:8» + arg}\p _a)\gvp) (14)

is the quasi affine connection and 7 the quasi proper time. Rewriting eq. (13)
one finds, with x°=
a'zxk _ 1 k

= 75X

s 15
drt? R? (a3
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Harmonic oscillator (w=1) Lie algebra (w=1) of SO(1,2)!

[a.H]=a [a,H]=a
l[af,H]= —a’ [, H]= —a'
[a,a’]=1 [a,a’1=1
One vacuum state |0) with  Two ‘vacuum’ states |0) and |0") with
a|0)=0 and (0|0)=1 1. a|0)=0 and (0|0)=1

H(a’y'|0) = (Eo+n)(a’)"|0)

{0|a"(a")"|0) > 0, provided E(>0
H(@N"|0y=(Eo+n)@’"|0) 2.a’|0’y=0 and <0’|0’)=1
(Ola™(@’)"|0y >0 Ha"|0’y= —(Ey+n)a™|0')

(0’|(a”Y*a™|0’y >0, provided E(>>0.

which is the isotropic harmonic oscillator equation with frequency w= X
Thus, all geodesics (quasi-timelike, -lightlike, or -spacelike) are at least parts of
harmonic oscillations around one and the same space point with universal fre-
quency w, but those oscillations which are confined to the interior of the
sphere are quasi-timelike and can represent particle motion.

The metric (12) has a very high degree of symmetry. It is invariant under
hyperbolic rotations of the group O(3,2) or rather the universal covering of it.
It is called the (universal covering of the) anti-de Sitter group and the metric
space is the anti-de Sitter space. If space reflections and time reversal are omit-
ted one deals with the restricted group SO(3,2)". The subgroup SO(3) ® SO(2)
is important because SO(3) represents the spherical symmetry and SO(2) the
invariance under time translations of the metric.

In order to see that this has something to do with harmonic oscillations we
compare the spectrum generating algebra of the one dimensional harmonic
oscillator with the Lie algebra of the group O(1,2) (see cadre).

In fig. 5 a scetch in made of the harmonic oscillator and O(1,2) spectrum.
Note that the O(1,2) spectrum displays a kind of ‘Dirac sea’ of negative energy
states, which is characteristic of a relativistic model. By increasing ¥, one
approaches more and more the nonrelativistic harmonic oscillator. This can be
seen by making the following substitution

H= Ey+H
a= an (16)
af= EOET

and by subsequently ignoring H in the expression for [E,Ef]. Then the Lie alge-
bra transforms into the spectrum generating algebra of the harmonic oscillator.

There exists also a geometric way to show how a maximally symmetric space
produces a quasi-metric within a sphere. Again we pass to the one-dimensional
harmonic oscillator and consider a line element of length 2R instead of a
sphere. For this we consider fig. 6. In this figure the maximally symmetric
space is represented by a hyperboloid. Geodesics are obtained by intersecting
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this by a plane through the center. Quasi-timelike geodesics correspond to cir-
cles or ellipses. The latter are closed. In order to open them up the hyper-
boloid is replaced by a ‘scroll’ representing the universal covering space. Each
point on the hyperboloid represents points on an infinite number of Riemann
sheets.

In order to represent quasi-free particle motion on the ‘scroll’ by particle
motion in our space we roll up our flat space time (2 dimensional in this case)
into a cylinder and pass this through the neck of the hyperboloid. Next every
point on the scroll is projected sheet by sheet on the cylinder by central pro-
jection. The plane which cuts out the ellipse on the hyperboloid now cuts out
an cllipse on the cylinder. This in turn transforms into a harmonic oscillation
when the cylinder is unrolled again. Since the projection lines cannot have
angles smaller that 45° with the 1-axis, the ellipses on the cylinder are confined
to a strip of width 2R if R is the radius of the cylinder.

3 A ‘SOFT-BAG’ MODEL FOR CONFINEMENT
So far the bag has been considered as a rigid object containing a quasi metric
field which confines quarks. In reality the bag should react to the presence of
the quarks. In what follows a scetch will be given of how this could be
achieved [4].

Suppose in our Minkowski space-time a real scalar field ¢ is present. We can
see this as a solution of an Euler-Lagrange equation following from the
Lagrangian

1
Eo = 58,990 V(9). an
A massive field with ¢* interaction would have
122, A 4
V@) = 1 + e, (18)

but much more complicated forms can be found, even singular ones. We could
use ¢ to construct a quasi metric, for example,

Ew = T + ad,$3,¢. (19

This g,, must satisfy a number of conditions. It must have the same signature
as 7, and particles moving with quasi light velocity may never move faster
that real light. This means that there should be a quasi light cone which always
should be inside the real light cone (see fig. 7). Suppose p* is tangent to the
particle trajectory on the quasi light cone. Then

guwp'p” =0. 20)
Form eq. (19) it then follows that
Nwp"p” + a(p*d,$)* = 0. ¥3))

Thus we see that 7,,p"p” =0 if a<X0.
When d,¢6= 0 we find that g, =7, and there is no difference between the

56



Minkowski metric and the quasi metric. When 9, ¢ is small, the g, and 7,, do
not differ so much, but when 9,¢ is so large that

1+ ad,¢3*¢ =0, 22

then the quasi light cone collapses into a line. If 9,¢ becomes even larger, then
the signature changes such that the light cone disappears. Somehow the system
should prevent 9,4 from passing this point. There are more requirements
which the metric must satisfy. If a collapse of the light cone takes place, it
should be such that quasi free particles are prevented from passing that point.
The ‘bag’, which is the set of space-time points in which collapse takes place,
should act as an effective barrier for such particles (see fig. 8).

Now suppose that there exists another real scalar field { with the following
Lagrangian

B = 5 V880,808 — 3 V=gt @

with g=detg,, and g™ the inverse of g,. Then since the Euler-Lagrange
equation for { is linear in {, so that the superposition principle holds, we have
to do with a free field in some sense. We shall call it quasi free and indeed, if a
wave packet is constructed it will follow more or less a quasi timelike geodesic
trajectory with respect to the metric g,,. Such a wave packet cannot pass the
wall of the bag and is therefore confined.

How can we construct a Poincaré-invariant model? Write

If this is supplemented with the form of V' (¢) and the form of g,, as a func-
tion of n,, and 9,9, then we have in fact a model in which £ is a function of
My (trivial), ¢, 9, ¢, {, and 9,{ and these produce the Euler-Lagrange equations

e _ . o8

=0, =" 25
3 30,9 @
and
oL _ oL
%= %360 (26)
Because £y, contains 0,6, eq. (25) differs from the equation
) _ 5

3 P3@,9)

which is not valid anymore. The latter would lead to a rigid bag, impervious to
the motion of its contents, while eq. (25) reacts to the presence of the field ¢,
which means that we deal with a soft bag. Since £ does not contain { or 9,¢,
the field { listens only to the metric g,,. Thus { helps to shape g,,, but once
g is defined, the dynamics of { are completely subjected to g,,. Note also
that £ never contains second or higher order derivatives of the fields ¢ and ¢
and that is how it should be.
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Note that except for 7, all fields occurring in £ are dynamical fields, e.g. no
a priori defined nontrivial functions of x* are present in the Lagrangian.
Stated differently, the £ is a completely Poincaré invariant expression in terms
of the dynamical fields. This leads to conservation of total energy, momentum
and angular momentum. A stress-energy-momentum tensor density can be
defined as follows. First rewrite £ and £¢);

B = 5 V=m1®8,68,6 — V=n V@), 0= detn,) @7

with indices between brackets meaning symmetrization (in this case only a for-
mal operation), and

1 1
f=5V-¢ £079,88,¢ — SV —gn*e, 28)
and substitute this in the expression for £. Then determine
W =Tm = 9L . (29)
My
The tensor T then satisfies the continuity equation
9, 7" =0. 30)

The factor -2 is chosen to make 7" equal to the stress-energy momentum ten-
sor (density). The symmetry of T# and the validity of the continuity-equation
guarantee conservation of energy, momentum and angular momentum. We can
now write

oL 0gp0 P
T = — =Tt + Tt} 31
|: 8"7;w a,nw agpa @) ‘(‘{) (3D
Ew Ny
where
[
Tf;) =-2 an (32)
w 8 oo

is the stress-energy-momentum tensor of the ¢-sector (the ‘bag’) only, and

0gps 9L _ 9g oo
My 08 po omy,

T = -2 TP (33)

o
is the stress-energy-momentum tensor of the {-sector (the confined field). The
force balance can be written in form

0, T = —9,T(), (34

and keeps track of the flow of energy, momentum and angular momentum
from the confined field towards the bag and vice versa.

The symmetric tensor density TP’ is the quasi stress-energy-momentum ten-
sor density of the confined field. It leads to the notion of quasi energy and
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quasi momentum, which according to eq. (33) may differ substantially from
the real energy and momentum of the { sector. The quasi energy and quasi
momentum are not conserved but locally conserved in the sense that

D,T¥ =0, (35
where D » denotes the quasi covariant derivative, i.e.

D,T" =3,T# + T, 1% + T, ™. (36)
From eqs (17), (32), (33) and (35) it follows that, with [J = d,0".

— ag po N
#¢[0¢ + V()= —0, | ——T"°|. 37
oMy

This will be valid if T? satisfies eq. (35). Thus, the right hand side of eq. (37)
must contain the factor 0*¢ which then can be divided out. The result is

O¢ + V'(¢) = source term. (38)

The source term not only depends on the confined fields, but also on ¢ itself.
This scheme allows the contents of the bag to exert a pressure on the bag wall.
It is interesting to note that point particles can take the place of fields. Let

— T
T = m - OR -2 (1), (39)
u

where X =,(¢) is a given particle world line, g,,u*u” =1, u®>0, m>0 and
u* is tangent to the curve X = X,(¢). Then if ¥;(¢) is a quasi timelike geodesic
trajectory we have

D,T" =o. (40)
Thus there is quasi local conservation of energy and momentum. True energy
and momentum are not conserved but exchanged with the bag proper. A point
source appears in eq. (38).

Let us next elaborate on the shape of V(¢) in order to produce bags. Con-

sider a point particle with equation of motion

M5 + U(x) =0, @1

where U(x) is some smooth potential with a spike at x =0 of finite height AU
(see fig. 8). Suppose a particle is put on top of the spike. Although in unstable
equilibrium, it may stay there forever. It may be there also for all times < ¢
and then rolling off, either to the left or to the right. When it rolls off to the
left it disappears forever. When it rolls off to the right it climbs until it reaches
point P, then it runs back and comes to rest forever on the top of the spike
(fig. 9). It may also periodically leave the top and come back (fig. 10).

As a special case we may consider a linear potential with a spike. Then the
particle trajectory consists of a segment of a parabola in between straight lines
stretching out to infinity, or an infinite number of identical segments of para-
bolas interconnected by straight lines. In all cases we have
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“42)

tity
When U(x)= px+ spike, one finds that the total width AT of each segment is

equal to
aT = /8mU. @3)
p

Next consider the equation

2 2
g%—%‘:——*— V'(¢) =0. 44)
If we are interested in static solutions this reduces to
g—i‘g— - Vi(p)=0. 45)
Thus if
V(¢) = —po + dip of depth AV (46)

(see fig. 11), and if ¢ satisfies the boundary condition
|| <c<oo  for ¢—>*oo, @n

then the solutions are the same as those of figs 9 and 10 with segments of par-
abolas, but now x replaced by ¢ and ¢ by x. By carefully combining two limit-
ing processes (the static limit and the limit of an infinitely thin spike) one finds
solutions consisting of irregularly spaced identical segments of parabolas. In
the case of three space dimensions one similarly finds static spherically sym-
metric solutions of uniform size. These are the ‘bags’ we are looking for.
Inside the bags the field ¢ forms segments of paraboloids, while in the space
between the bags the field ¢ is zero. Note that at the bag surface we have, with
AV being the depth of the dip:

9,00°¢ = —2AV. (48)

Of course, nonstatic solutions of nonsphetical size also exist. They all are
characterized by the existence of singular surfaces and regions where ¢ van-
ishes. At the singular surface 9,40”¢ assumes a fixed value given by eq. (48).

Finally there is the question of the relation between g,,, n,, and ¢. First of
all, we would like g, to become singular on the bag wall. Thus it must
become singular when eq. (48) is satisfied. Then it should have the right signa-
ture, it should not violate causality and it should indeed act as an effective bar-
rier for quasi free particles or fields, massive or massless, when g, is singular.
It may however give rise to a ‘sticky’ bag wall. Particles approaching the wall
get glued to it as if they are falling towards a black hole. Also this must be
prevented. Keeping in mind that second and higher order derivatives of ¢ are
not allowed to occur in g, one finds for the simplest functional form of the
quasi metric tensor the inverse of
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g" = (1+0ad,98°¢) (" +ad¢$3"9), (49)
with
_ 1
a= -—-—-ZAV>O. (50)
For static, spherically symmetric solutions this leads to the form (12) with

3IV2AV

R =
|o|

GD

4 THE QUESTION OF HIGHER DERIVATIVES
Can higher derivatives always be prevented? Suppose we had a vector field 4,
whose Lagrangian in flat space-time were given by

1 1
£=—2(,4,)@4") + 24,4%, (52
then in a curved space-time this should be written as
1 BB = 1 N
= =2 V—gg¥g"(D,Ao)Dpdg) + 5 V—g'g¥Audp  (53)

The 57 introduces second derivatives of ¢ and so this £ is not allowed. How-
ever, if we construct £ in the way it should be done:

R= —dFWF” + 2l AR, Fo=0,4,-0,4,, (54)
then this gives for a curved space-time
1 a 1
== V—gg g " FuFp + 5 V—gg¥Audy, 69

which does not contain second derivatives of ¢ and which is therefore allowed.
However, a quasi-covariant ‘gauge fixing term’ of the form

——;—A(gWB,,A,,)z (56)

is not allowed. This is not fatal, because there exist other gauge fixing possibil-
ities.

Next, the quasi curvature tensor or its contracted forms are forbidden to
enter. They clearly introduce higher derivatives of ¢.

Very special is the role of spinor fields. Here it seems as if the quasi affine
connection is inevitable. We have in flat space-time

B = SF3,9 — @YY — miy. 57

Its form in curved space-time is rather complicated and requires the introduc-
tion of so-called tetrad or vierbein fields. Somehow 9, must be replaced by a
D, which involves these auxiliary fields and the quasi affine connection. By a
unique stroke of luck all second derivatives of ¢ drop out, provided ¢ is the
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only field present in g,, and provided the real curvature tensor does not occur
in g,, in any generalization of 7,, to real curved space if one likes to do so.
Under all circumstances minimal substitution of gauge fields, abelian or non-
abelian, is allowed.

All taken together we see that most field Lagrangians fail to satisfy the cri-
teria. Also it seems that more than one field ¢ is not allowed for constructing
bags. However, scalar fields can be confined. More important, abelian or
non-abelian gauge fields minimally coupled to spinor fields, are all allowed.
Thus, the QCD-Lagrangian can be written in g,, language without causing
trouble. Apparently, quarks and gluons can be confined within bags, and
quarks can be given an electric charge. Moreover, quarks with large quasi rest
masses dominate the scene.

5 THE QUESTION OF STABILITY i

According to Derrick’s ‘Theorem [5], solutions of the kind we have constructed
are solutions which cannot be stable. This is reflected in the fact that V' (0) is
not the lowest value of V(¢). It might mean that unfilled bags cannot exist, but
the question goes deeper. Consider eq. (38). In order to achieve stability one
might introduce sources and simultaneously modify V(¢) such that, at least for
static spherically symmetric solutions, ¢ remains unchanged. If V(¢) can be
modified such that V'(0) is always smaller than V(¢) for ¢%0, then stability is
obtained. So far, no sources have been found which can achieve this. What can
happen though is that the system becomes too stable and returns to the hard
bag model. Thus stability is still a problem. We are however in good company:
also classical electrodynamics is unstable unless point charges are given an
infinite mass. There the problems are reduced to manageable proportions by
quantization, regularization and renormalization. So it must be hoped that
quantization helps to stabilize bags.

Quantization might also throw light on the meaning of the field ¢. In this
model it is treated as a fundamental field, like a Higgs field, but it may well be
a condensate of already existing fields. As such it is then a pure quantum
phenomenon.

REFERENCES

[1] C. QuIGG and J.L. ROSNER, Phys. Rep. 56, 167 (1979).

[2] A. MARTIN, Phys. Lett. 93B, 338 (1980).

[3] C. DuLLEMOND and E. VAN BEVEREN, Phys. Rev. D 28, 1028 (1983).

[4] C. DUuLLEMOND, Gen. Rel. Grav. 20, 139 (1988); 20, 989 (1988); 20, 1099
(1988).

[5]1 G.H. DERRICK, J. Math. Phys. 5, 1252 (1964).

62



Mass (GeV) - - -

i TR
il
10 —_— f
8B
9t f
Vector - mesonspectrum (b
8 (1)
T
sl
[144]
5 5
[ ——
e
3t (vd, dd) 1
* (s8) 00
Py =] ‘ XK
— — |
—_—nn
g ‘ 7
y-77773
0

Figure 1: Mass spectrum of neutral vector mesons

L

Vir)=glar« C(m)

Figure 2: Mass spectrum of mesons in the model of Quigg and Rosner
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Figure 3: ‘Bare’ mass spectrum in harmonic oscillator model

Figure 4: Static, spherically symmetric bag model with quasi unit spheres

64



Figure 5: A. One dimensional harmonic oscillator spectrum
B. SO(1,2) spectrum

65



| N —
i // \ \ AN \\ Y
VAR \ - t A
| \ \ il =
| = \
\ — |
‘ —
| ! =
| — / |
! l' — I —
| r}: | j
= / =
pay Yy —

S0(1,2) bag
gJUV= diag(_1,,1,1)
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Figure 8: Particle potential with ‘spike’
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Figure 9: Particle motion for potential of fig. 8: one soliton

Figure 10: particle motion for potential of fig. 8: infinitely many solitons
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1. INTRODUCTION

The Frenkel-Kac—Segal mechanism is interesting both from a mathematical and
a physical point of view. Its mathematical investigation was initiated by Frenkel
and Kac [2] and Segal [11]. It gives there a so-called untwisted vertex operator
realization of the basic representations of the simply-laced affine Kac-Moody
algebras (see e.g. [3]). In physics it made its appearance through Halpern [8]
(see also [6]). Here we will discuss, following [7], how it gives rise to gauge fields
in a bosonic string theory. This is called the Frenkel-Kac—Segal mechanism.
It provides a way to introduce the fundamental interactions of nature as gauge
interactions without assuming the existence of gauge fields from the outset.
Moreover, there are only two possible choices for the gauge group: Eg x Eg or
Spin(32)/Z,.

In section 2 the bosonic string in Minkowski spacetime is reviewed: It is
treated similar to the description of a relativistic particle by means of Hamil-
ton’s action principle. For the action of the classical bosonic string the Nambu-
Goto action and the Polyakov action are discussed. For the Nambu—Goto ac-
tion the bosonic string is quantized via the so-called old-covariant appraoch.
Its state vector space is constructed similar to that of the harmonic oscillator
via creation and annihilation operators. Both the cases of open and closed
strings are considered.

Section 3 deals with the situations where symmetries in a classical theory
are not preserved in the act of quantizing the theory. Such circumstances are
dubbed anomalies. Here their appearance is treated in the setting of Feynman’s
functional integral quantization following Fujikawa (see e.g. [4] and [5]). In
order to retain conformal invariance in the quantized bosonic string theory one
is lead to put the dimension of Minkowski spacetime equal to 26.

Since spacetime appears to be four-dimensional 22 of these dimensions have
to be made unobservable. In section 4 this is effected by toroidal compactifica-
tion. Its discussion is continued in section 5 where a special case of toroidal com-
pactification is considered. This gives rise to two possible affine Kac—-Moody
algebras as spectrum generating algebras.
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2. BOSONIC STRING

In this section we discuss the classical as well as the quantum theory of a
bosonic string in the setting of the special theory of relativity. Spacetime of
special relativity is a four-dimensional Minkowski space. In elementary texts
this space is introduced in a simple (coordinate dependent) way, namely as R*
with a scalar product v - w := v%w? — vw! — v2w? — v3w3 (v,w € RY).

As a stepping stone towards the classical bosonic string we give a discussion
of a particle in Minkowski spacetime. String theory will ultimately include
gravity, and thus spacetime will be curved. It is for the sake of simplicity that
we start with Minkowski spacetime.

Spacetime The primitive concept of the theory of relativity is that of an event.
This arises as follows. Every physical phenomena occurs somewhere in space
and happens in a certain stretch of time. One can imagine this phenomena to be
partitioned as a collection of happenings for which the extensions in space and
durations in time are negligible for an accurate description of this phenomena.
Such an ‘infinitesimal’ happening is called an event. Spacetime M is defined
to be the set of all (possible) events. It is assumed that spacetime can be
equipped with coordinate systems. More precisely, spacetime is assumed to be
a differentiable manifold. In view of later applications the spacetime manifold
is supposed to be n-dimensional, although the immediately observable world
strongly suggests the value n = 4. The successive events in the history of a
particle gives rise to a one-dimensional submanifold of spacetime, the worldline
of the particle.

The spacetime manifold of the theory of special relativity has more struc-
ture, it is assumed to be an n-dimensional Minkowski space M, i.e. an n-
dimensional affine space with a flat metric # with signature (1,-1,...,-1).

The fact that M is an affine space means that M is equipped with a fam-
ily of coordinate systems {(ka, M) | @ € I}, where the coordinate maps
Ko are defined on all of M (I is an index set) and xo(M) = R"™. More-
over, all coordinate transformations xg o k3;1: R™ — R™ are assumed to be
(possibly inhomogeneous) linear transformations. Hence, denoting the co-
ordinates of £ € M with respect to the charts k, and kg respectively by

ka(z) = (2% 2L,...,2"1) = (2#) and kp(z) = (z¥,2',...,2" V) = (a*)
one has
g =LF 2" +a*  (det(L*,) #0) (1)

The coordinate systems (x4, M) are called rectilinear and the coordinate trans-
formations (1) are called affine. In an affine space the concept of a straight line
makes sense. Indeed, a straight line is by definition a curve y: A € R —» M
with linear coordinate expressions £4,07: A+ (VOA+c0, v A+cl, ..., o" 1A+
c" 1) with not all v* equal to zero. The whole point of the assumption that
spacetime M of special relativity is an affine space is that it allows to represent
the worldlines of free particles in this theory by straight lines.
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Since the metric tensor field 7 is taken to be flat in special relativity, the
components of 77 with respect to each rectilinear coordinate system form a
constant symmetric n X n matrix with signature (1,—1,...,—1). By means of
an affine coordinate transformation this matrix can be diagonalized, i.e. there
exists a rectilinear coordinate system (x, M) such that the components of the
metric have the form

Nuw =1 (3,,|p ,0ul,) = diag (1,-1,...,-1) 2)
where the coordinates of a point z € M are denoted by k(z) = (z°,2!,...,2" 1)
= (z*) € R™ and {8,/ :;(1) is the coordinate basis in the tangent space T,(M)

for the rectilinear chart (k,M). Such a coordinate system (x,M) is called a
Lorentz coordinate system or Lorentz chart. Coordinate transformations be-
tween Lorentz coordinate systems are inhomogeneous Lorentz transformations
(Poincaré transformations). The only coordinate systems we will use here on
Minkowski spacetime are Lorentz coordinate systems. Instead of the zeroth
coordinate % we also write ct (c speed of light) and ¢ is called time or time
coordinate of the event £ € M with respect the Lorentz chart (x, M).

The Minkowski scalar product of a pair of vectors v,w € Tp(M) is denoted
by v-w = n(v,w) = v w’ (summation convention) and, in particular,
v? = v-v. We use the notational convention that Greek indices run through the
values 0,1,...,n—1 and that Roman indices run through the values 1,...,n—1.

Free massive particle It is assumed that the successive events in the history of
a point particle form a one-dimensional submanifold £ ¢ M diffeomorphic to
the real numbers R. The whole history of this particle is described by this
submanifold £, the worldline of the particle. Each diffeomorphism between £
and R parametrizes £ and thus gives rise to a curve

T2AERHy(A)ELCM (3)

in spacetime. Reparametrization of the curve (3) by means of a diffeomorphism
f: A€ R X = f()) € R gives a new curve ¥ defined by (}) := v()), i.e.
4 = vo0 f~1. However, this new curve describes the same history of the particle
since it involves the same events. That is, the curves v and ¥ give rise to the
same worldline £. It is to be stressed that the (physical) history of a particle is
independent of the choice of a parametrization of its worldline.

Let (M, k) be a Lorentz chart, then the coordinate expression of the curve
v,i.e. koy: A € R k(y())) € R™, will be denoted by z#* = z#()). A particle
is called massive if all the tangent vectors 4 to its worldline are timelike vectors,
ie.

m v

n(¥,7y) = npu%% >0 (AeR) 4)
A particle is called massless if n(y,4) = 0 for all A € R. A very useful parameter
along the worldline of a massive particle is obtained from the arclength. The
arclength sg) along the curve vy between the points p = vy(\;) and g = y(A2)
on this curve is defined by
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Az AZ
— dz* dzv
st :=/V"I(’Y,’Y)d/\=/ Wuuﬁ-ﬁd)\ (5)
A] Al

Observe that the arclength of a segment of a worldline does not change under
a reparametrization of this worldline. Let py = y(\g) be a fixed point on -,
then the parameter s = s(\) assigned to the point z = () is by definition
the arclength s(\) = s,(,,z)z. For a massive particle we will often use such a
parameter s to parametrize its worldline, and its coordinate expression then
reads z# = z#(s).

We now want to obtain, in a plausible way, the action S of a free massive
particle (for the part of its worldline £ between the events p and g on £).
Let z# = z*(A) be a coordinate expression of a curve representing £ such
that x(p) = (z*(A\1)) and x(g) = (z*(A2)). The action S is a functional of
z#* = z#()) and a function of the parameters A; and A2 of the endpoints p and
q:

S = Sx,x,[z"] (6)

The role of S in classical physics is that it gives, via Hamilton’s action principle,
the equations of motion of the particle. Hamilton’s action principle asserts
the actual trajectory z# = z#(A) of the particle for given endpoints z# =
z#(A1) and z#* = z#()\2) stands out from the collection of all other imaginable
trajectories with the same endpoints by the property that S is stationary at
zH = z#()\y), ie.

d

ZSle e =0 ™)
for all y#* = y#(A) with y#(A;1) = y#(A2) = 0 [all competing trajectories have
the same endpoints!]. Let r be an event on £ between p and g with k(r) =
(z#(A3)) (A1 < Az < A2), then the actions Sy, ,[z*] and Sy, ,[z*] have to
give the same equations of motion for A € [A;, Az]. This can be implemented
by requiring the action to be additive:

Sxixg [.’L‘”] = Saids [:L‘”] + Sxsxs [‘T#] (8)

Taking n intermediate values A3 < Ag < ... < Ap42 between A; and ) instead
of only A3 this leads in the limit n — oo to

Az
Saira ["EF] = LdA (9)
A1
where
dz* d2z*
— p 2
L= L(z*, TRIFTY yers) (10)

From Hamilton’s action principle (7), (9) and (10) follows the Euler-Lagrange
equation
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oL _ oL o
9ot (%) O(FF)

—...=0 (11)

If £ contains second or higher order derivatives then the order of this differential
equation may be of an order higher than two. In order to implement the
common assumption that the proper initial conditions at A = A¢ for a particle
are its ‘position’ z#(\g) and its ‘velocity’ %(Ao) we want (11) to be a second
order differential equation and thus we assume that £ does not contain second

or higher order derivatives:
dx“)

dx

Next we want to find an action for a free particle. For a free particle all points of

spacetime appear to be equivalent. Hence we want the action of a free particle
to be invariant under translations in M:

S[z* + a#] = S[z¥] (13)
This is satisfied if

L= L(z*, (12)

u Az gk
SA1A2[:E ] = ‘C(Tﬁ—)d)‘ (14)

A1

Since all Lorentz coordinate systems are equivalent one assumes that the action

is a scalar under Lorentz transformations. All Lorentz scalars which can be

made out of the tangent vector 4 are functions of 5(¥,%) = nyv%%. Hence

dz* dz¥

A2
1] — _
Sf\l)‘z[m ] N f("’;w dr dh )d)‘ (15)

The choice of the parametrization of the worldline has no physical relevance.
The requirement of invariance under reparametrizations of £ gives, e.g.

Az
dz* dzv
SMM[‘””] = a/ Nuv d\ dx d (16)
A

where a is a constant. Defining the Lagrangian L by
S= / Ldt (17)
where t is the time coordinate, we find

[ dz+ dz¥ [, V2
L=a ﬂqu-F:aC 1—6_2 (18)

where v = (%, %, %) is the velocity of the particle. In the non-relativistic

regime v < c? (18) gives

75



L v 19
—ac—a%+... (19)

In the second term in the right-hand side of (19) we recognize the non-relativistic
kinetic energy %mvz, with the constant m the mass of the particle. Hence we
put @ = mc and the action of a free massive particle (for the part of its worldline
between the events y(A;) and 4()g)) becomes

Az
5 = -me [ Vi (20)
A1

The action S is proportional to the arclength between v()\;) and y()\2). For the
action (20) Hamilton’s action principle gives, via its Euler-Lagrange equations,
rise to

d2z+
ds?

Hence worldlines of free massive particles are straight lines in Minkowski space-
time. This is up to expectations, since a free particle is not subjected to accel-
erations.

The action (20) is not suitable for massless particles (m = 0). There exists
a nice alternative to the action (20). It has the advantage that it does not
contain a square root, and moreover, it can also be used for massless particles.
It requires, however, the introduction of an auxiliary field on the worldline
£. This auxiliary field is taken to be a so-called one-bein field e on the one-
dimensional manifold £.

More generally one defines an n-bein field on an n-dimensional semi-Rie-

(21)

mannian manifold (M, g) [the metric tensor g has signature (1,—1,...,—1)] to
be a set of n contravariant vector fields {e, | @ =0,...,n — 1} on M such that
for all e,(z) € T;(M) one has the orthonormality relations

g(ea(z),e5(2)) =Map (a,b=0,...,n—1) (22)
where 799 = —m11 = —mg2 = ... =1 and 145 = 0 for a # b. The (holonomic)
components eX of an n-bein field e, are introduced as usual by

e, =ehd, ~ (23)

where 0, is a tangent vector to the p-th coordinate curve. From (22) follows
for the components of the e;’s

guuea“(xa)ebu(ma) = Tab (24)
and this implies
v = N""ean(2”)enn (27) = nave) (27 )e; (27) (25)
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where (%) is the inverse matrix of (7,5) (i.e. 7% = 74s), €ap = guveas” and
€%(z%) := n°®ep,(z”). From (25) one sees that the metric tensor is uniquely
determined by the n-bein fields, and so one can use n n-bein fields e, (a =
0,1,...,n — 1) instead of the metric tensor field g. To a given metric g their
correspond, however, several n-bein fields. Indeed, let the linear transformation

A(z): v e To(M) — b= Az)v € To(M) ' (26)

be a Lorentz transformation, i.e. for all v, w € T;(M) one has g(v, w) = g(9, ),
then the vectors {é,(z) | a =0,1,...,n — 1} with é,(z) := A(z)eq(z) form an
n-bein if {e,(z) | a = 0,1,...,n—1} is an n-bein. One has é,(z) = A(z)eq () =
es(z)A(z)", and g(éq(),é(2)) = g(ea(), e5(2)) = nap and consequently

nch(m)caA(x)db = Nab (27)

and we see that (A(z)?,) is a Lorentz matrix. The n-bein fields e,(z) and é,(x)
give rise to the same metric

Juv = ﬂabeau(‘ca)ebV(za) = "abéap(m”)ébr/(za) (28)

For the invariant volume element (/|g|d"z with g := det(g,,) one has
V]9|d"z = ed™z where e := det(e,,). Notice that under a coordinate trans-
formation (z*) — (z*') one has

oz
€ay! = 5;’76“” ‘ (29)

We are now in the position to introduce an alternative action S = S[z*, €] of
a particle in Minkowski spacetime. This new action depends on the worldline
£ of the particle and on an auxiliary field e on £. This action has to be a
Lorentz scalar and independent of its parametrization z* = z#(\) = &*(\)
where A = A()) is considered as a coordinate transformation on £. Since

dz* dAdz*
Ty 30
and [see (29)]
= %e (31)
one has
L, daH dz#
13 =e€ l—dT (32)

The reparametrization invariant volume element of £ is ed\. In view of all this
the alternative action is taken to be

A2 TR oY
I L G U
S = 2[\ (e v % X +m )ed)\ (33)

1
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Clearly this action is does not contain a square root and the constant m can be
taken zero in it. Its Euler-Lagrange equations for z* and e respectively read

d
" "
—ES[:I: + ey ,e]

=0 (34)

e=0
and

=0 (35)

d
m
——deS[:z: ;e + ef] _,

for all y* = y#(\) and f = f(\) vanishing at the endpoints having parameters
A1 and A;. From (35) follows

_cd(etn(¥,7) +m?e)
2 Oe

=0 (36)

For m # 0 insertion of (37) in (33) gives back the original action (20). For
m = 0 (35) gives

n(7,7) =0 (38)

i.e. the tangent vectors to the worldline of a massless particle are lightlike.
From (34) one obtains

d _odz# _

For m # 0 one can choose A = s (the arclength) and then e = m™! and (39)
becomes

e =

For a massless particle (m = 0) one cannot choose A to be equal to the ar-
clength. However A can be chosen such that e = constant and (39) then gives

2

Classical bosonic string Whereas at a fixed time ¢ a particle is represented by
a point (event) in spacetime, a classical bosonic string is (at a fixed time t)
by definition a differentiable curve ay: ¢ € [a,b] C R — a;(€) € EP™!, where
E?™! := {z € M | 2° = ct} is the physical space at time t. For the sake
of convenience we assume that this curve is not selfintersecting. There are
two cases to distinguish. Either this curve has two different endpoints, i.e.
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az(a) # a;(b), and then the string is called open, or the endpoints coincide, i.e.
a¢(a) = o4(b), and then the string is called closed.

The history of the point a:(&o) (éo fixed ) of the string gives rise to a world-
line in £¢, € M. Hence, the evolution of a string in the course of time gives rise
to a subset ¥ := Ugfe C M consisting of a one-parameter family (parameter &)
of worldlines. The subset X is the so-called the worldsheet of the string and it
is the range of the map

(&2) € [a,b] X R (ct,04(€)) €M (42)

We assume that the worldsheet ¥ is a two-dimensional submanifold of M.
For an open string this submanifold has boundaries, formed by the worldlines
£, and £, of the endpoints of the string. The worldsheet of a closed string
has a tubelike form. Similar to the situation prevailing for a particle, the
history of a string is determined by the points of the worldsheet ¥ and its
parametrization is irrelevant in this respect. Consequently we will not restrict
to the parameters (£, t) of (42), but use more general parameters (o, 7) instead.
Let us furthermore assume for the sake of convenience that they coordinatize
the whole worldsheet ¥. The coordinate expression of the worldsheet then
reads

z# =zt(o,7) (p=0,1,...,m—1) (43)

where the real parameters o and 7 are taken to run through the intervals
0 <o <mand —oo < 7 < oo for an open string and they are taken to run
through the intervals 0 < o < 27 and —oco0 < 7 < oo for a closed string.
Furthermore we assume that 7 is a timelike parameter, i.e., the tangent vectors
to the curves on the worldsheet with o = constant, — oo < 7 < 0o are timelike,
ie.
Ox# Oz¥
v or or

and that o is a spacelike parameter, i.e., the tangent vectors to the curves on
the worldsheet with 7 = constant, 0 < o < 7 are spacelike, i.e.

>0 (44)

Oz oz
npvga <0 (45)
For a closed string one has the condition
g#(0,7) = 2#(2m,7)  (-o0 <7 < ) (46)

Instead of requiring 0 < o < 27 it is sometimes more convenient to extend the
range of o to all of R and make thereafter the identification
zt(o,7) =¥ (0 +2m,7) (—00< 0,7 <) 47)

The dynamics of the classical string is also described by means of Hamilton’s
action principle. As its dynamical variables are taken the functions z* =
z#(o,7) [see (43)]. The action S of the string is then a real-valued functional
of these functions z° = z%(a, 7),...,2""! = 2" 1(0, 7):
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S: (2%...,2" )~ S=S[z*| € R (48)

It has the form
Tf am
S = /dT/da,C(w",Bga:",arw") (49)
i 0

where a = 1 for an open string and a = 2 for a closed string. Hamilton’s action
principle states that in the set of all a priori possible histories (worldsheets ¥.)
the action S is stationary for the actually happening history of the string, or
more explicitly:

d
I n
——/\S[a: + Ay¥]

~ 0 (50)
A=0

for all functions y* = y*(o, 7) satisfying
y#(o, 1) =y*(o,75) =0 (0< o0 <anm) (51)

Indeed, one has [see (49)]

d
7 p
dAS[a: + Ay ]

oL oL
/d—r/dc(—-—-——“+au, +6—uy> (52)

A=0
where
u "

B o= %%—, ot o= %% (53)
Hence

d oL 8 oL 8 ac

— QM B _—— — — | y*

ool M) /dT/d” (axu 80 Bz aTari:")y

ac o=aw ac T=Tf
- amply =0 " a?y T=T7; (54)

Hence the action S is stationary if the right-hand side of (54) vanishes. The
last term in the right-hand side of (54) vanishes due to (51), i.e. we determine
the evolution of the string z# = z#(o, 7) for a given initial configuration z* =
z#(o,7;) and a given final configuration z* = z#(o, 7¢). Thus we find

/df/d L_o0L _doLy, o,
dz+ 0o Ozt Ot Dk (')acl"y

Recall that the factor

—0  (55)
o=0
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- 9L

B agm
appearing in (54) is called the conjugate momentum. Here we have introduced
the more elaborate notation 7", since we similarly define

., 0L o
B Bont T 5(Byat) (57)

Tu=T

(56)

For all functions y* = y*(o, 7) with a support contained in 0 < ¢ < a7 and
7; < 7 < 75 one has

T, T

8L 98 oL 8 oc

g _ 2 9% _ 2% Ve =
/ dT/ do (8:1:" 80 Ozt afaa'w)y 0 (58)
Ti 0

since for these functions the last term in the left-hand side of (55) vanishes.
Hence

oL aL aL
— —0, -0, =0
azt T 0(0rzt) 7 8(8sxH)
for 0 < 0 < am and 7; < 7 < 7. The equations (59) are called the Euler-
Lagrange equations of the string. An alternative form of these equations reads
o
OzH
For a closed string the last term in the left-hand side of (55) vanishes due
to y#(0,7) = y*(2m,7) and (46) [supplied with similar conditions for its deriva-
tives with respect to ## and z*'. For an open string (55) gives, using (59),

oL oL

oz O+’

(59)

— 0,7y — 0%, =0 (60)

y¥(m) =0 (61)

o=am

y*(0) —
0

o=

Since y#(0) and y*(7) are independent we arrive for an open string at the
boundary conditions

oL

o —
™ I‘Icr:o - Oxr'

0 ) oL
=Y T plo=n = [
o=0 am" o=

=0 (62)

One candidate for the action S of the string is the so-called Nambu—Goto
action. This action is proportional to the area of the worldsheet of the string
between 7 = 7; and 7 = 7¢. This choice is similar to the action of a particle,
which is taken to be proportional to the arclength between two events of its
worldline. Analogously the area of a surface does not change if this surface
is reparametrized. Recall that the area d.A of an infinitesimal element of the
worldsheet bounded by the four curves 7 = constant, 7 + dr = constant,
o = constant and o + do = constant

dA = /(g - ")? — &2z dodr (63)
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The Nambu—Goto action is taken to be

Tf am
S = —Tc—/d'r/dm/(:b cx')? — 32g'? (64)
T; 0

where the real number T is called the string tension. Observe that #* and
z'* are timelike and spacelike tangent vectors to the worldsheet of the string,
respectively. The Lagrangian density corresponding to (64) reads

L= —5:-\/(:& -x')? — 32g'2 (65)

The Euler-Lagrange equation (59) reads for this Lagrangian density

o ) z'(z-2') — iri? + 8 ) i*(¢-a') —2'M3?

ar /(:z: )2 — 252 oo /(.'I: x')2 — 22

This equation of motion is a non-linear partial differential equation. The first
term in curly brackets in the left hand of (66) is proportional to the conjugate
momentum 7, = 77, = 7,(0,T) [see (56)]. The latter reads for the Nambu-
Goto action

=0 (66)

Tz'u(z-2') - .’ir:l,:z:’2

T, = 67

g ¢ /(:ir:-:z:’)2-—:i:2m'2 (67)
Fﬁrthermore

770;1 — _I -'17”(13 ) (B’) - (B,#dﬁz (68)

€\/(@-z)? — i2z'?

From (67) and (68) one gets the following identities

' 2 T’ 2
.z’ =0, (77)"+ =T = 0 (69)
T2
™ -i=0, (=)+ c—zi-z =0 (70)

For an open string the boundary conditions at the endpoints read [see (62)]

it (- 2') — 2P
7ra-”"a::o = ( ) =0 (71)
(:i: . xl)2 — 242
o=0
i*(z - z') — 2’32
o), = B )P (72)
\ /(x . zl)2 - :1':21:12
o=7



From (70), (71) and (72) follows
#,y=#,_, =0 )

o=0
This means that the endpoints of an open string move with the speed of light.
For a closed string (66) is supplemented by the boundary condition (46) or (47)
a closed string.
By means of a reparametrization

o6 =d(o,7), THT=7(0,T) (74)

one can be simplify the Euler-Lagrange equation (66). A reparametrization
induces also a new coordinate expression &# = ##(o,7) of the worldsheet,
where £#(G,7) := z#(0, 7). Recall that the evolution of the string is completely
described by the events (points) on its worldsheet ¥ and the choice of the
parametrization of the worldsheet has no observable consequences. It can be
shown that the reparametrization can be chosen in such a way that Z satisfies
the constraints

2 +2°=0, &-27=0 (75)
Equivalently one has 2 + 2i -z’ + z'> = 0, or
(@+2')>=0 (76)

where the tilde has been and will be suppressed from now on. A parametrization
of the worldsheet which satisfies (75) or (76) is called the orthonormal gauge.
In this gauge the Euler-Lagrange equation (66) reads

i—z"=0 (77)

This equation has the form of the wave equation in two dimensions. Hence in
the orthonormal gauge the equation of motion (77) turns out to be linear. How-
ever, the constraints (75) [and (76)] on z* are non-linear. In the orthonormal
gauge the conjugate momentum (67) becomes

o= %w (78)

The boundary conditions (71) and (72) for an open string take the simple form
&'*(0,7)|,_, = (0, 7)|,_, =0 (79)

o=T

The general solution of the equation of motion (77) is now given by means of a
Fourier series with respect to the variable o. For an open string this solution,
also satisfying the boundary conditions (79), reads

%m“ (o,7) = Z cb(7) cosno (80)

n=0

where (77) implies that the c#(7)’s satisfy
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c.i,‘,+n2cﬁ=0. (n=0,1,2,...)

(81)

and £ is a real constant, to be fixed later in such a way that it sets, in a
convenient manner, the scale of the integration constants resulting from the

integration of (81). The general solution of (81) reads for n =0
co() =g +pHr
and for the other values of n one has

sinnTt

ch(1) = gl cosnt + ¢4 (n=1,2,..)

(82)

(83)

where g* = cf(0), p* = éh(0), g¢* = c#(0) and ¢* = ¢*(0) are real integration

constants. Insertion of (82) and (83) in (80) gives

1 = ., sinnT
Z:cl‘(a, T) =g + p*7 + Z {gk cosnt + ¢k -

n=1

} cosno

Introduction of so-called harmonic oscillator variables by
|
o= (@ Eingd)  (n=1,2,..)
permits us to rewrite (84) as

1 ‘ B

zw“(o, T)=gq" +p'r +1i Z Zn e=inT cosng
n

n#0

=gt 4 prr 2 3 Qarin(ria) 4 Ohominr—o)
2 n n
n#0
For future reference we note that (85) gives for the complex conjugate
ap” =al,
From (78) and (86) follows

c .
T = M+ Z ale™" cosno
n#0

=p'+ % Z {aﬁe-—in(f—ko’) + aﬁe—in(-r—a-)}
n#0
Setting
ab =pH

this can be rewritten as
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c 1 «— . .
- - = b —in(t+0) p—in(r—0) 90
Tl‘,r# 2 n;m {ane + aye } ’ ( )
Next we indicate, following section 1.5 of [10], how the constraints (76) can
be expressed in harmonic oscillator variables. From (86) follows, using (89),

o) £ (0, r) = Y e T2 (91)

n=-—o0o

Both these results are related by interchanging o and —o. Hence, if we declare
(86) to hold on the extended interval —m < o < , instead of only on the
interval 0 < ¢ < 7, we can combine the two constraints (76) into one. Namely

{¢(c,7) +2'(0,7)}’ =0, (-xr<o<m) (92)
where [see (91)]
78 (@, + 2#(0,7) = ,,i,o ohe M), (-w<o<m) (%)

From (92) and (93) we get

F @@ +T@N) = Y ek

m,p=—00

oo

= 3 e S anan, (94

n=-—oo m=—0oo
Hence the constraints (76) can be expressed as
L,=0 (n€Z) (95)
where L, is defined by

L, :=l i A Qp—m (96)

Similar to (33) there exists an alternative to the Nambu—Goto action which
depends on z* = z*(0,7) and the two—bein e, [e,(0,T) € T;(X) where z is the
point in the worldsheet ¥ with coordinates (o, 7)]. This action is usually called
the Polyakov action [9] although it can already be found in [1] by L. Brink, P.
Di Vecchia and P. Howe. Let us denote the coordinates in the worldsheet ¥ also

by (£*) = (€°,€!) := (o, 7). Recall [see (22)] that one has the orthonormality
relations

g(ea(a’ T)’ eb(aa T)) = Nab (a7 be {0’ 1}) (97)

where 790 = —m11 = 1 and 791 = 1719 = 0. Consequently
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Gap = nabeaaebﬂ = nabe;e% (aa :6, a, be {05 1}) (98)

where (7?%) is the inverse matrix of (7a3), i.e. 7°® = 7ap and €ga := gapea”
[compare (25)]. From this one sees that the components of the 2-dimensional
metric tensor g are uniquely determined by the 2-bein fields. The invariant vol-
ume element of the worldsheet reads edodr where e := det(eq.”) = det(/—gap)-
A simple reparametrization invariant scalar containing the string variable z#
reads g*P0,z"dpz" Ny = egeff n°0 0, z*9px" Nyy. In view of this the Polyakov
action is taken to be

am

i
T
S = %/dT/da ee;“efn“baax"aﬁ-’ﬂuﬂnu (99)

T; 0

Since g*# = eg‘ebﬂn“"&,m“aﬁw"nﬂu and e = y/—g [g := det(gqg)] this can be
rewritten as

Tf am
-T
S=5 / dT/ do \/=gg*P dazt 8" My (100)
Ti 0
From
d TR -7} 76}
ﬁS[:c ,9%° + Ak*F] =0 (101)
A=0
one finds
1
Oaz" 03T Ny = é-gag(g'“sa,z"agx”) (102)
Setting
hag = 6(,:1:”3'3:1,'"7)“,, (103)
or as matrix equation
&2 i-z
(hap) = (.’l: L g? ) (104)
we get [see (102]
1
hap = 59ap(g7°0ya" B5z") (105)
Hence
1
det(hqp) = Z(g756.,z“65m")2 det(gqap) (106)
or [compare (104)]
. . 1
\/(:1: cx')? — g2 = \/-— det(hag) = 5(9766.yz”35z”)\/—g (107)
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From this consequence of the equation of motion one sees that the Nambu
action (64) and the Polyakov action (99) give rise to the same equation of
motion of the string variable z# = z#(0o, 7). The following obvious remark has
to be made. The equivalence of the Nambu action and the Polyakov action is
here only derived in a classical setting. In a quantum mechanical theory this
has to be reconsidered.

Quantization We shortly recall the elements of quantum mechanics which are
needed here. In quantum theory the fundamental classical dynamical variables
are replaced by linear operators acting on a Hilbert space H. To begin with
these operators are sufficiently characterized by means of (anti)commutation
relations. A state of the system is represented by a non-zero vector in H, called
a state vector. In Dirac’s notation vectors in H are denoted by |¢), |¢),... and
the inner product of the vectors |¢) and |¢) is denoted by (¢|¢). The vectors
[#) # 0 and AJYp) (X € C,) # 0) represent the same state of the system.
Observables (measurable physical quantities) are represented by self-adjoint
operators acting on H. These self-adjoint operators are thought to be con-
structed from the operators representing the fundamental dynamical variables.
The relation between the quantum theoretical description of states and observ-
ables on the one hand and the outcome of experiments on the other hand is
found in the probability interpretation. This can be stated as follows. Let the
state of a system be represented by a non-zero vector |¢)) € H. One measures
the observable A, represented by the self-adjoint operator A, repeatedly. For
everyone of these measurements the system which is prepaired in the same
state |¢). The outcome of a measurement is always a spectral value of the
self-adjoint operator A. The mean value (expectation value) (A) of all these
measurements is given by

 (WlA)
A =

Observe that the left-hand expression contains the quantity which is to be
determined experimentally, and the right-hand expression contains the quantity
which is to be calculated theoretically.

There are several ways to quantize a classical system. For the classical string
theory with the Nambu-Goto action we outline here the so-called old covariant
approach. In this approach, which is similar to the Gupta—Bleuler formalism of
quantumelectrodynamics, the classical canonical variables z# (o, 7) and 7* (o, )
are replaced by linear operators, and the latter will also be denoted by z*(a, 7)
and 7#(0,7). Due to this replacement the classical variables ¢#, p* and o*
in (86) also become linear operators and (86) becomes an operator identity.
The equal-time canonical commutation relations of the operators z*(a,7) and
w# (o, T) read

[z*(o,7),mu (0, 7)) = ihé(0 — o')6" (109)
[z¥(a,7), m”(ala )] =0 (110)

(108)
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and

[x*(0,7),7" (', 7)] =0 ' (111)
Observe that (109) can be rewritten as
(0, 7), 2 (0", 7)] = ih8(r — ") (112)

where n*¥ := 7,,,. These commutation relations lead to commutation relations
for the operators ¢#, p* and a. Choosing

t=1/2 (113)
one obtains

[p*,q"] = in*” (114)

[of, o] = nbm,—nn*” (115)

Equation (86) has to be replaced by
ozﬁ'f =at, (116)
where 1 means hermitian conjugation. From (115) and (116) follows
[a%,afj] = —nbépan*’ (m,n=1,2,...) (117)

The next step will be the construction of the state vector space of the bosonic
string. The theory of the linear harmonic oscillator will serve as a stepping
stone.

Linear harmonic oscillator The operators {a#} are, indeed, with good reason
called harmonic oscillator variables as can be seen from the following results
pertinent to the harmonic oscillator in one dimension. We give here a rather
elaborate discussion of the energy eigenvalue problem of the harmonic oscillator
since we will encounter a similar situation in the treatment of the state vector
space of the bosonic string.
The hamiltonian H of the one-dimensional harmonic oscillator is given by
2
p 1 2 2
H="—+-mw
om " 2 !
hw 2 mwgq?
( P g

2 \mhw h

(118)

where p is the momentum operator and ¢ the position operator of the particle
oscillating with frequency v = w/27. The operators p and q are characterized
by their commutation relation
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'l;"

[p,q] =

Introducmg the dimensionless operators

\/_ , \/m (120)

(119)

one gets

H= % (Q*+P?) (121)
and

o= (122)

Hence, inspired by the identity a +b? = (a —ib)(a +ib) for c-numbers, one can
write for the operators P and Q

Q%+ P*=(Q —iP)(Q+iP) +i[P,Q] =ala+1 (123)
where
=9 ;;P R \;;P (124)
From (121) and (123) follows
H=twla+ %) (125)

Due to (122) and (124) the operators ol and a satisfy the commutation relations

[a,al] =1 (126)
Immediate consequences of (125) and (126) are

[H, at] = hwa! (127)
and

[H,a] = —hwa (128)

From (127) and (128) follows that a and al can be used to produce new
eigenvectors of H from old ones. Indeed, if |¢) is an eigenvector of H with
eigenvalue E, i.e. Hy) = E|¢), then (128) gives via action on |¢) that
H(aly))) — E(a|¢)) = —hw(a|y)) and consequently a|ip) is either an eigen-
vector of H with eigenvalue E — hw or it is the zero vector. Similarly, if |) is
an eigenvector of H with eigenvalue F then aT]'gb) is either an eigenvector of H
with eigenvalue E + Fiw or it is the zero vector. Instead of the hamiltonian H
one can equally well analyze the so-called number operator
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N :=ala (129)
From [see (125) and (129)]

H = ho(N + ) (130)
one sees that H and N have the same set of eigenvectors. Denoting the eigen-
value equation of N by

Nin) = n|n) (131)
where we have labelled an eigenvector by its eigenvalue n € R. The analogues
of (127) and (128) are

[V,al] = o (132)
and

[N,a] = —a (133)

From (133) it follows that N(a|n)) — n(a|¥)) = —(aly)) and consequently a|n)
is either an eigenvector of N with eigenvalue n — 1, i.e. a|n) « |n — 1), or

it is the zero vector. Similarly, it follows from (132) that aT|n) is either an

eigenvector of N with eigenvalue n + 1, i.e. aTln) o |n + 1), or it is the zero
vector. It is assumed that the eigenvalues of N (and for that matter of H) are
non-degenerate. Note that

Hin) = ho(n + 3)in) (134)
Furthermore the eigenvectors are taken to be normalized

(n|n) =1 (135)
The spectrum of N is a subset of the non-negative real numbers since for an
eigenvalue n of N one has

0 < [laln)|]” = (rlataln) = (n|Nin) = n (136)

[see (129) and (131)]. Hence, if n # 0 then a|n) # 0 is an eigenvector of N with
eigenvalue n — 1 or using (135), (136) and choosing a suitable phase factor in
the eigenvectors one has

aln) =+v/nln—-1) (n>0) (137)
We are now ready to conclude that the eigenvalues of N are n = 0,1,2,....
Suppose that |z) (z > 0) is an eigenvector of N with z # 0,1,2,.... Let

p be a natural number and p > =, then aP|z) is an eigenvector of N [see
(137)] with a negative eigenvalue, namely the eigenvalue £ — p < 0. This is
a contradiction and hence it follows that the only possible eigenvalues of N
are given by n = 0,1,2,.... Let |ng) be an eigenvector of N then one gets
by repeated action of a the new eigenvectors a|ng)  |ng — 1),alng — 1)
[no —2),...,a|2) « |1),a|l)  |0). At this point this ladder has to stop, since
otherwise one would get a negative eigenvalue. Thus [compare (136)]
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al0) =0 (138)

Observe in this formula the difference between the unit vector |0) and the zero
vector in its right-hand side. By repeated action of al one obtains the new
eigenvectors aT|n0) x |ng + 1),af|n0 + 1) o |no + 2),.... This part of the
ladder does not stop [compare (136)]. Hence for each n = 0,1,2,... there is an
eigenvector |n) and the action of a on the eigenvectors of this ladder is given
by (137) and (138). The eigenvalue E, of |n) for the hamiltonian H is given
by [see (134)]

Enzhw(n+%) (n=0,1,2,..) (139)

The eigenvector |0) has the lowest energy eigenvalue and the corresponding
state is called the ground state of the harmonic oscillator. Under the action of
a on eigenvectors of H the energy eigenvalue decreases by an ‘energy quantum’
hw and therefore a is called the annihilation operator. From aTIn) x |n+1)
follows by means of (135) and a proper choice of the phase factors in the
normalized eigenvectors

aly=va+ijn+1) (n=0,1,2,..) (140)

Hence, under the action of al on eigenvectors of H the energy eigenvalue in-
creases by an ‘energy quantum’ fiw and therefore a is called the creation oper-
ator. From (140) follows

ny= ol -1y = —L ot 9y =
I = Zzalln = 1) = el —2) = (141)

or

=L (ohy"

In) : m(a ) 10) (142)
In summary, the state vector space H of the linear harmonic oscillator is
spanned by an orthonormal basis {|n) | n = 0,1,2,...} of eigenvectors of N and
H with eigenvalues n and fiw(n + %), respectively. The ground state vector has
the lowest eigenvalue and it is characterized by a|0) = 0 [see (138)]. All other
eigenvectors |n) of N and H are obtained from the ground state vector |0) by
means of the repeated action of the creation operator [see (141)]. The energy
eigenvalues are given by (139). We conclude this section with a comment on
the role played by the following modification in the sign in the right-hand of
(126):

[a,al] = £1 (143)
when we still adhere to a|0) = 0. Let

[¥) := al|0) (144)
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then the scalar product of this vector with itself is given by
(¥1¥) = (0laa'|0) = (OlaTa = 1j0) | (145)
or

(Pl) = £1 (146)

Hence with a minus sign in the right-hand side of (143) the vector space re-
sulting by a repeated action of al on |0) has an indefinite scalar product.

State vector space of the bosonic string Inspired by all this we next turn to
the construction of the state vector space H of the bosonic string. This is the
Hilbert space containing all vectors representing physically realizable states.
The action of the operators ¢#, p* and o has to be defined on a dense domain
in H. Below we will see that the state vector space H is a proper subspace of the
representation space R of the operators ¢#, p* and a¥. Since the observables
z#(o,7) and w#(0o, T) are represented by self-adjoint operators, the operators g*
and p* are self-adjoint operators. The operators a¥ (n = £1,+2,...) are not

self-adjoint. By comparison of (117) and (126) one sees that aﬁt (n=1,2,...)
are creation operators, and that a# (n = 1,2,...) are annihilation operators.
The analogue of the ground state of the harmonic oscillator is here the vector
denoted by |0) € R (same notation as for the harmonic oscillator!), however,
it is now characterized by

abloy=0 (n=1,2,...) (147)

p*|0) =0 (148)
Let v = (v*) € R™ and g = (¢*) = (¢°,...,q""!) then the vector

Iy} 1= e"79)0) (149)
is an eigenvector of the pairwise commuting operators p = (p*) = (p°,...,p"!):

1) = ") (150)
This is an immediate consequence of (148), (114) and

W‘,e_”"’] = yPe 179 (151)
Observe that

() =0 for v#+' (152)

since eigenvectors of a self-adjoint operator with different eigenvalues are or-
thogonal. From the vectors |y) one obtains a basis of R by means of repeated

action of creation operators oz‘,jJr (n =1,2,...) on these vectors. In this way
we get the basis
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| )’ al-‘lTh) al-ll al‘ztl,y)’.“’
aﬁitaﬁgt . .af‘;fh), .. ' (153)

where ny,n2,...,0p,...=—-1,-2,... (p€ Ny).

Next we implement the constra,mts (76) in the quantum mechanical setting.
Replacement of the ay,’s in (96) by there corresponding operators leads to am-
biguous results, since the classical quantities e, and a_, commute, wheras
their corresponding operators do not commute. This is usually remedied by
replacing products of classical quantities by the so-called normal ordered prod-
uct of their corresponding operators. Normal ordering of a product of creation
and/or annihilation operators means that in this product these operators are
put in an ordering where all annihilation operators occur to the left of all cre-
ation operators. Note that all creation operators commute, and likewise, that
all annihilation operators commute. Normal ordering of a product of creation
and/or annihilation operators is indicated by putting colons around this prod-
uct, i.e.

37 = Q307
ar_3: = Qa_gar (154)

Thus the operator corresponding to the classical L,, is defined to be
1 [o o]
L, :== Z 1Qm  Onem: (155)
where a, = (a#). This gives in particular

p2+zan : n=—p +N (156)
n>0

where we introduced

N = ZanT - Qn (157)

n>0

Since the classical constraints L, = 0 cannot be implemented as operator
equations L, = 0 one proceeds as follows. One defines a so-called physical
state |¢) by the conditions

L.J#) =0 (n>0) (158)

and

Loly) =Aly) (A€R) (159)

These states form the subspace of physical states. From (158) follows
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W|Lop=(¥|Lal =0 (n>0) (160)
This [(158)—(160)] gives rise to
(| Lp—bonA | 9) =0 (161)

for all n € Z and physical states | 1). This is the quantum mechanical analogue
of the classical constraints L, = 0. In the subsequent section we will argue that
the dimension of Minkowski spacetime n = 26 and A = 1. Restricted to the
subspace of physical states one has

1

§p2 +N=1 (162)

The momentum of the string is given by

wThp” (163)
c

PH =/ wt(o)do =
0

With the definition of the operator of the square of the mass M? := P? one
gets on the subspace of physical states using (162)

_ 2nhT
T ¢

MZ

(N -1) (164)

Tachyon From (150) and (156) follows

~37h) = =3#°h) = Lol) = ) (165)

Hence the mass—squared of the states (149), i.e. the eigenvalue m? of M2, is
given by

m? =+ = -2 (166)
Hence the momentum P* of these states is spacelike, whereas for particles
with a speed not exceeding the speed of light the momentum P* is timelike or
lightlike. The states (149) describe a particle with a superluminal speed. Such
particles are called tachyons. They are not observed in nature. By introducing
additional fermionic degrees of freedom in the string model the tachyon can be
eliminated from the theory. The resulting string model is called a superstring.
Here we will, however, stick to the bosonic string. Actually we will consider the
closed bosonic string, because it is this string for which we have the Frenkel-
Kac—Segal mechanism.

Closed string The parameter expression of the worldsheet of the closed string is
given by z# = z#(0,7) where 0 < ¢ < 27. Actually one can take —0co < 0 < oo
if one supplements this by

z#(o,7) = z*(0 + 27, T) (167)
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The general solution of the Euler-Lagrange equation in the orthonormal gauge

(77)

z#(o,7) = g*(r + o) + h¥(7 - 07)

(168)

where g and h are arbitrary (twice-differentiable) functions. The solutions
z# (0, T) = g*(7+0) are called left-movers and the solutions z# (o, 7) = h*(T—0)

are called right-movers. We will rewrite (168) as

1 1 (40 1 i(r—0o
53#(o,7) = 593'1‘,(6’( ) + §$'§(e( )

£
Furthermore
aLI‘ .
m’i(z)zq“ +p’£(7‘+0‘)+lz —;:—z—" (z = el(1'+a'))
n#0
and
aftt :
.’l:’;t(z) =g* +ph(r—0o) +i Z %z_" (z:= el(r—a))
n#0

From (167) and (169)—(171) follows
Pr=rR=p
The canonical commutation relations of =’ , zf, 7r";‘ and 7rf lead to

RH

moon | = [on",af] = mém ™

lom

o, a1 =0

i
[¢",9"] = 50", [¢*.¢"]=[p",P"]=0
Defining
1 " 1 u
L .= 3 Z:a,{’waﬁ_m :;, LE:= 3 Z:aﬁ#af_m :
the states |1) of the physical subspace are characterized by
Liw) =0, LEy)=0 (n=1,2,...)

and

(L§ + LHw) = 2¢)

(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)

(177)

(178)

where again the dimension of Minkowski spacetime is taken to be 26. The
generator of translations in o is LX — LE. Since the choice of the origin ¢ = 0

is arbitrary this generator has to be zero:
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Lt=LF (179)

The momentum of the closed string is given by

pr =2, /TR (180)
C

With M? := P2 one finds

M? = 47':‘T (NL + Ng — 21) (181)
where
Ni ::ZaﬁT-aﬁ Np:= Zaft-af (182)
n>0 n>0

From (176), (179) and (182) one obtains
N =Npg (183)

3. ANOMALIES

Field theories occur in two species: a classical version and a quantum theo-
retical version. The quantum theoretical version is mostly obtained from the
classical version by a so-called quantization procedure. Some aspects of the
classical theory have their analogues in the corresponding quantum theory.
In many classical field theories symmetries and conserved quantities give rise
to symmetries and conserved quantities in the corresponding quantum theory.
There are, however, exceptions to this rule. In such a situation one speaks of
anomalies. For the classical version we will consider here a so-called classical
lagrangian field theory.

Classical lagrangian field theory The main ingredients of such a theory are its
fundamental dynamical variables, called fields, its action and its observables
(measurerable quantities). The fields are a finite set of maps

¢pi:z€EM ¢i(z) €C (i=1,...,N) (184)

where M is a differentiable manifold. Usually M is the spacetime manifold
consisting of all possible point-events. An example is provided by the four-
dimensional Minkowski space (M, 7 of special relativity and more generally
the four-dimensional semi-Riemannian manifold (M, g) of general relativity.
Here g is a metric on M with signature (1,—1,—1,—1). An example of a field
on spacetime M is the electromagnetic field strength, which is represented by
a 2-form F on M. However, M may as well be the two-dimensional worldsheet
¥ of string theory. The fundamental dynamical variables are in this case the
maps :

Y- M (185)
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with coordinate expressions z# = z*(og,7). Classical mechanics can also be
considered as a field theory. Then M is the one-dimensional manifold of time
T. In the lagrangian formalism field are then maps

te T (q(t),4(t) € T(Q) (186)

where T'(Q) is the tangent bundle of the configuration space Q.
Fields will collectively be denoted by & = (z!,...,z"). The action S is a
given real functional of the fields, i.e. a map

S: & S[® €R (187)
It is assumed that the action has the form

S= / £(8,8,8,8,0,3,..)d" (188)
Q

where (2 is an open subset of M. For the sake of convenience we have assumed
here that it is contained in the coordinate neighbourhood of a chart (U, k) of
the differentiable manifold M. Denoting the coordinates of z € U by k(z) =
(=!,...,2") we have 9, = '8%7’ d"z := dz'dz?...dz" and p,v = 1,...,n.
The function real function £ = £(®,0,®,9,0,9®,...) is called the lagrangian
(density). The dependence of S on  will be made explicit by the notation
S= SQ.

The equations of motion of the fields are obtained from the action by means
of Hamilton’s action principle. For the particular case of the string this was
already given in (50). Its general form reads

d
=5 Sal@ + Y] =0 (189)

for all fields ¥ which vanish on the boundary 8Q of Q. The Euler-Lagrange
equations corresponding to (189) read for z €

oL oL oL
By + 0B e
o¢t  Ho(Bu¢') " 0(0,0,9%)

In many cases one has a lagrangian £ = £(®,8,®) and then only the first two
terms in the left-hand side appear.

The observables of a classical lagrangian field theory are functions O =
O(41,...,¢") of the fields. Some observables are related via Noether’s theorem
to smooth families of symmetries of the action. A transformation of the fields

& &=G(d) (191)

—..=0 (i=1,...,n) (190)

is called a symmetry transformation if there are functions M* of &,8,9®,...
such that

£($,8,9,...) = £(,0,8,...) + 8.M"(,8,8,...) (192)

This implies, using Gauss’ theorem,
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S[8] = S[3] + /a A(3,0,8,...do, (193)

where do, is a surface element of the boundary 9§ of Q. From (193) and
Hamilton’s action principle [see (189)] follows that ® is a solution of the Euler—
Lagrange equations iff ® is a solution of the Euler-Lagrange equations.

We now state Noether’s theorem. Let

$ =G(,e) = @ +eF(®) + O(e?) (194)
that is
¢ =Gi(®,e) = ¢ +eFi(®)+0(?) (i=1,...,N) (195)

be a smooth one-parameter family of symmetry transformations. Then (192)
takes the form

9 0(8,0,8,..)| = 0.A%2,8,8,...) (196)
de £=0
On the other hand
N
d .~ o = oL _, oL ;
—L(®,0,9,... = —F'+——=0 F‘) 197
de (2,0, ) o ; <3¢1 8(8,4%) * (197)

and using the Euler-Lagrange equations for the first factor in the first term
under the summation sign in the right-hand side of (197) one gets

- (&%‘)F i) (198)

From (196) and (198) we get the following continuity equation (differential
conservation equation):

8uJ* =0 (199)

d - o
ZL(&,0,8,..)

where the so-called Noether current J# is defined by

Y oL
JH = (; 50, ¢i)F’) —A* (200)

We will now indicate how (199) leads to global conservation laws. Firstly (199)
implies

0=/6,,J"d”z=/ JHdo,, (201)
Q on

Secondly, let the boundary 89 consist out of two disjoint connected subsets
31 and X3 and let 8% be the common boundary of the closures of ¥; and ¥,.
Reversing the orientation of e.g. X3 permits us to rewrite (201) as
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/ J"da,‘ =/ J"da,, (202)
>3 2

Defining
Q(T) := / J#da,, (203)
p)

we conclude that Q(X) is the same for all ¥’s with the same boundary.

The meaning of all this becomes clear when we consider in the setting of
special relativity the example of the electromagnetic four-current j#(z¥) =
(cp(ct,x),j(ct,x)) where p is the electric charge density and j = (51, 52,5%) is
the electric current density (c is speed of light). We assume that j* vanishes
sufficiently rapidly at spatial infinity |x| — oo. The charge at time ¢ is defined
by the spatial integral

Q) = L GRS (204)

with 3(t) the hyperplane in Minkowski spacetime consisting of all events with
2% = ct = constant with respect to a given Lorentz coordinate system. Here
we have the pendant of (199):

0=08,j* = o Vj (205)
ot
The independence of the hyperplane X(t) [see (202)] leads in this case to charge
conservation

dQ(t) _
— =0 (206)

Similarly Q(X) from (203) gives rise to a conservation law for a suitable one-
parameter family (parameter 7, e.g. T = t) of hypersurfaces ¥ = X(7). The
following fact is very important: if translations z# — z* + ¢* in Minkowski
spacetime give rise to symmetry transformations then Noether’s theorem leads
to the conservation law of energy and momentum. Indeed, spacetime transla-
tions give rise to the following 4-parameter family of transformations of fields
[compare (195)]

$i(zt) := ¢'(c* +e) = ¢ (a*) +€ 04’ (a*)+O(e?) (i =1,...,N)(207)
If the lagrangian does not depend explicitly on (:1:) then

éizzc(qs"(x“ +€*),8,¢' (z* + €*),...) . =
2 L(#(@), 0, (a),..) = B(8L) (208)
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Hence in this case the transformations (207) are symmetry transformations. Let
us denote the Noether current J* corresponding to the one-parameter family
obtained from (207) by setting ¢* = 0 for p # k by ©,* then

Ok = (Za 2 ¢1 ) —§4L (209)

and one has
0,0," =0 (210)

The conserved current ©," is called the canonical energy—-momentum tensor.
The four conserved charges

= / 0, dx (211)

form the four-momentum of the system. In particular ¢cPy = H is the energy
of the system and

(Z 50d) ao¢'> (212)

is the energy density. Notice that these observables are indeed functions of the
fields.

Feynman quantization There are various quantization procedures for classical
theories. Here we will use Feynman’s quantization procedure although it is in
many instances mathematically ill-founded due to its liberal use and handling
of functional integrals. In this method all kinds of physical quantities are
expressed in terms of functionals. We will restrict ourselves here to the so-
called 7-fuctions (also somewhat misleadingly called Green’s functions). The
T—fuctions contain all the information about the scattering of the particles of
the quantum field theory in question. Scattering of particles is described in
quantum theory by means of scattering amplitudes. Scattering amplitudes
are complex valued functions of the variables which are used to describe the
states of the incoming and the outgoing particles of a scattering process. The
probability that a particular scattering process occurs is obtained from the
square of the absolute value of the corresponding scattering amplitude. So
the description of scattering processes is completely encoded in their scattering
amplitudes. In turn, the scattering amplitudes can be obtained by means of
the reduction formulas of Lehmann, Symanzik and Zimmerman from the above
mentioned T—fuctions. _

We will define 7—fuctions and their expression in terms of Feynman’s func-
tional integrals starting from the classical field theory with one real scalar field
¢ on Minkowski spacetime. The lagrangian is taken to be

£= 30,066~ sm?¢? —V(9) (21
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with e.g.
_1.3 14
V= ﬁ(b + Ziqﬁ (214)
The corresponding hamiltonian density H is obtained by a Legendre transfor-

mation, i.e. let

I

9¢
™= %8 (=3 (215)

be the conjugate momentum then under the assumption that ¢ can be solved
from (215), giving ¢ = f(¢,7), then

H:= (rd—L)|. 216
(w9 )|¢=f(¢,7r) (216)
Observe that

H = 0,° (217)

For the lagrangian (213) one has (setting ¢ = 1)
T = 80¢ (218)
and (216) yields

Hi= on? + 2V Vo + %m2¢2 +V(9) (219)

and integration over a hyperplane X(t) gives the hamiltonian of the classical
theory

H:=/’de

= / {%wz + %Vq& -V + %m%s? + V(¢)} dx (220)
In the quantization procedure the real scalar fields ¢(z) and 7(z) are replaced
by a self-adjoint operator fields denoted by ¢(z) and =x(z). The Hamilton
operator H is obtained from (220) by replacing the classical fields ¢(z) and
m(z) by their corresponding operator fields ¢(z) and x(z) and specifying some
ordering prescription, e.g. normal ordering in the interaction picture (in the
interaction picture the fields are free fields). The spectrum of H is bounded
from below and it is assumed that there has been added such a constant to
the hamiltonian that its lowest eigenvalue is equal to zero. The eigenstate with
the lowest eigenvalue of H is called the ground state or more specifically the
vacuum state. For m? > 0 it can be made easily plausible that the ground state

is non-degenerate and an normalized vector representing this state is denoted
by |0). Hence
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HO)=0 (0j0)=1 (221)

We are now finally in the position that we are able to define the 7—fuctions:

T(Z1,Z2,...,2n) = (0|T(p(z1)9(z2) . . . $(21))|0) (222)
wherein T' denotes the time—ordering instruction defined by

T($(z1)g(z2) .- - d(xn)) := b(i))B(2s;) - - $(i,) (223)
if 2) > ) > ... > z) . Hence the time-ordering instruction puts the op-

erators in an ordering such every operator with an earlier time z° stands to
the right of each operator with a later time. In Feynman’s quantization a 7-
function (like other physical quantities) is expressed in a functional integral.
A functional integral is the (mystifying) modification of an ordinary integral
J f(z)dz obtained by replacing the integration variable by a function (in
our case the scalar fields on Minkowski spacetime M) and the the function
f = f(z) by a complex-valued functional F' = F[¢]. Notationally this has the
following effect

[tz 1)~ [ Dorig) (224)

A rigorous definition of a functional integral exists only for special simple cases.
In the physicist’s approach functional integrals are often introduced by means
of a lattice approximation. Take for instance a cubic lattice in some hypercube
C in Minkowski spacetime M. Let us denote the lattice points by 1, z3,...,ZN.
We assume that there exists some approximation ¢(*) of the classical field ¢
which is completely determined by the values of the field ¢ in the lattice points
Z1,Z2,...,ZTN, more in particular

) (z;) =(z:)=¢: (i=1,...,N) (225)

Herewith a scalar field ¢ is replaced by a finite set of real numbers ¢1,...,¢on.
The value of the functional F[¢] is now approximated by F[#(®)] which only
depends on ¢1,¢z,...,¢én. In this way the functional F[4] is replaced by
the function F(éy,ds,...,¢n) := F[¢(*)]. In a great desire to improve this
approximation one take the limits where the lattice distance approaches zero
and the hypercube C approaches to the whole Minkowski spacetime M. Let us
symbolize both these limits by ‘N — oco’. Then the functional integral in (224)
is introduced by the pseudo—definition

. N
Jerie) = tim [ [ Foroa,...om ] s (226)
N

i=1

Although this is a lot of wishful mathematics, Feynman’s functional integrals
are a powerful tool to obtain quantitative results (sometimes agreeing excel-
lently with experiment) and conceptional insights in quantum field theory.

Now the miracle of Feynman quantization. Recall that our classical system
is characterized by its action functional S = S[¢] defined by
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St := [ £6,0u0' (227)

This action gives rise to 7—functions through

(0|T (¢(z1)d(z2) - . - p(24))[0) = / D ¢(z1)P(2) . .. p(za)eF ¥ (228)

Observe that in the right-hand side, apart from % := h/27 (h being Planck’s
constant) only entities from classical field theory occur. Nevertheless, this
functional integral determines the 7—fuctions of the corresponding quantum
field theory, and therewith for instance all scattering processes for the system
in question.

A related result is obtained when one considers a local observable O(z) =
O(¢(x),0,¢(x)) at the point z. In the corresponding quantum theory this is
represented by the operator O(z) = O(é(x),d,¢(x)) and one has

010(=)0) = [ Dg O(a)et ™ (229)
More generally, one has for a functional F' = F[¢] of the classical field ¢

(OIT(Flg])[0) = / D Flglet St (230)

Observe that (228) is a particular case of (230) with F[¢] = ¢(z1)d(z2) ... d(zn).

The pendant of Feynman’s functional integrals in the realm of one inte-
gration variable are integrals of the Fresnel type [*° f(z)exp(iz?)dz. By a
rotation in the complex plane this can be transform in a Gaussian integral
J22, f(z) exp(—2?)dz for which eventual convergence is much more easily as-
serted.

In quantum field theory one proceeds in a similar way. One performs the
following substitution of the time coordinates, called a Wick rotation,

t—7:=—it (231)

which entails

¢(ct,x) = pg(cr,x) (232)

Lo L= [0.05Y + 3905 Von + gmidh + V00| (@9
and

[ Do Figiets — [ g Figple-tossz) (234)
where

SeloE] == / [%(@tﬁE)z + %V¢E -Vog + %m2¢2E + V(¢£)] drdx (235)
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Under a Wick rotation the Minkowsi metric changes (up to a sign) into the eu-
clidean metric: (ct)?—x% — —[(c7)?+x2%]. The quantum field theory described
by (234) is called a euclidean quantum field theory. Euclidean quantum field
theories play an important role in the quest to put field theory on a mathe-
matically sound foundation (constructive quantum field theory).

Up (1) symmetry We next consider some (absence of) symmetry in classical
and quantum electrodynamics. The lagrangian of classical electrodynamics
reads

£08,F, 40) = B Dy = mYp = S Te(Fu F*) (236)

where 1 is the 4-component Dirac spinor field, describing after quantization
e.g. electrons and positrons, and F),, is the electromagnetic field strenght ten-
sor, describing after quantization photons. The electromagnetic field strenght
tensor F),, is obtained from the electromagnetic potentials A, via

F, :=0,A, — 0, A, (237)
The v*’s are the four Dirac matrices, defined as unitary 4 x4 matrices satisfying
Yy + A =2 (238)

Considering 9 as a 4- component column vector and { denoting hermitian
conjugation one defines

%= piqy® (239)
Finally D, is the gauge covariant derivative:

D, =0, —iA, (240)
It is well known, and easily verified, that the transformations

Ypodi=eP (e€R) (241)
entailing

P — = e (242)
are symmetry transformations. This gives rise to the Noether current

j* =Pyt (243)
with the continuity equation (local conservation law)

Ot =0 (244)

This leads to the conservation of electric charge [see (206)].

The symmetry transformations (241) form the group U(1) of unitary 1 x
1 matrices (phase factors). The lagrangian (236) is even invariant under a
larger group. Namely a group where the phase ¢ depends on the spacetime
coordinates: € = e(z*. Indeed, one has
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L&'\ P, AL) = L, D, Ay) (245)

under the transformations

P ! = ey (246)
Py =e @y (247)
Ay~ A=A, +08,¢ (248)

The transformation (246)—(248) is called a gauge transformation.

A first hint that one also has charge conservation in the quantized theory can
be made plausible as follows. We consider a modification of the transformation
(246)—(248) where A, is left unchanged:

P = ele(®)yp (249)
P =e@y (250)
Ay Ay = A, (251)

Due to the difference of (248) and (251) the transformations (249)—(251) do
not leave the lagrangian invariant. One has

L0, B, Ay) = L, P, A) = L, B, Au) — Br* e (252)

Changing the names of the integration variables % and % gives
/ DYyDYDA, i S %A — / D,&DED A, e%S[J,E,A,,]
B / DYDFDA, ot {5:F.4u1= [ Fr*vduedts} (253)

Hence

0= / DYDYDA, / d42P(z)y () D, (z)ek St b rAul

= [ dtac(a) [ DUDIDA, 0,(F(a)r b(a))et 4 (254)
and this gives

0= [ DIDFDA, 0, (Bl b(a))et?

= 8,(0[B(@)7*$(2)|0) (255)

where the fields in the right-hand side are operator fields. Below we also will
not explicitly indicate whether we have classical fields or operator fields, since
this will be clear from the context. Similarly one can show that
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(WN%Z’?—(“’) T (@) e Db, (U)  Db (5m)

A (25)..)|0) =0

By means of the reduction formulas of Lehmann, Symanzik and Zimmermann
one can conclude from this the operator relation

(256)

= (e (z) = 0 (257)

representing charge conservation in the quantized theory. It is to be noticed
that the above derivation hinges on the invariance of the functional integration
elements under the transformations (249)—(251). Formally one expects

DYDY = (@ De=i€@) D = DYDY (258)

and this can be made plausible even after a more careful consideration of these
functional integrations. A different state of affairs is encountered for the fol-
lowing transformations.

We now consider the lagrangian (236) with m = 0, i.e. massless quantum
electrodynamics. For this we introduce the fifth gamma matrix

s := iy y2? (259)

This is a hermitian matrix since 4° is hermitian and 7', 42 and 43 are anti-
hermitian. The transformations

Y- =Ty (c€R) (260)
which entails
P — = peien (261)

are symmetry transformations in massless quantum electrodynamics. This
gives rise to the conserved Noether current

4 = 1Y (262)
with the continuity equation (local conservation law)
Bk =0 (263)

This leads to the conservation of the so-called axial charge defined by

Qui= [rorlvax (264)
and its conservation law reads

diit‘QA =0 (265)
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The symmetry transformations (260) form a group of symmetry transforma-
tions denoted by U,4(1). In order to investigate whether the axial charge is
conserved we consider the transformations [compare (249) and (250)]

P(z) - P(z) = €@ M(z) (266)
B(z) — p(z) = e @ P(2) (267)
Au(z) = Ay(z) == Au(z) (268)

For these transformations one has

£(¢, ;/)-’ AIJ') — E(";’Z’ A[t) = £(¢7 E) A#) - E’Y#’Y5¢ap€ (269)

Changing the names of the integration variables ¥ and ¥ gives
/ DYDYPDA, erSH¥,AL] _ / ’DzZDE'D A, e S.¥,AL] (270)

However, a careful treatment of the functional integration element gives in this
case

i
1672

'DQ/)‘DE — DJJD;/: = DyYDiexp — Tr / e(z)e" P’ FuyFpo (271)

where €#VP° is the completely anti-symmetric Levi-Civita symbol €123 = —1.
The extra term in the right-hand side is the analogue of a Jacobian for func-
tional intrals. All this leads to [compare (257)]

i
167
Although in classical massless electrodynamics one has U4(1) symmetry and
conservation of the axial charge these features do not appear in the quantized
theory due to the fact that the right-hand side of (272) is not zero. This is
called an anomaly. Anomalies in quantum field theory have a long history.
Their treatment in the setting of functional integrals is due to Fujikawa.

The purpose of the forgoing discussion of an anomaly for a simple model

was the fact that they lead us to consider a bosonic string in 26—-dimensional
spacetime only. The lagrangian of the Polyakov string reads

0 —
3 POV 159(@) = T3 Tre?" Fy (272)

1
L= —5\/—‘gg°‘ﬁ3am"6ﬂm"17#,, (273)
where z# = z#(0,7), gap = 9ap(0,7), g := det(gap), Muv = diag(1,-1,...,-1),

(€1,€2) = (o,7) and 8, = -8@,;. This Lagrangian has a Weyl symmetry, i.e. it
is invariant under the transformation

9% (o,7) — Mo goB (g, 1) (274)

2#(0,7) = (0,7 (275)
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It can be shown (see [5]) that the partition function Z of the Polyakov string
has in the conformally Euclidean gauge gog(0,7) = p(0,7)6sp the form

7= / D/pD&# DD exp
L ~ (276)
{/ [—Eaaz - OpE6°P 4 ¢ ,577] dot + FWZ(d’)}

where

Twa(@) = -5 [ [3002 + a2 - 1) (277

24r

is the Liouville action and % := ,/pz, 7} := pn and n is the dimension of the
Minkowski spacetime. Due to the Wess—-Zumino term I'wyz we have, in general,
lost the conformal invariance by quantizing the Polyakov string. However, if
dimension of the Minkowski spacetime n = 26 the anomaly is absent and the
quantized theory is conformally invariant as well. If one wants the survival of
the idea of a string at all in the act of quantization it seems that one has to
restrict to 26—-dimensional spacetime. Since the immediately observable space-
time is four-dimensional 22 of the 26 dimensions have to be made unobservable.
This can be done in a Kaluza—Klein type of way, by curling these extra dimen-
sions up so that their spacial extensions are to small for observation at present.
Compared with the original Kaluza-Klein theory a string brings with it a new
feature, a winding number. The curling up of the extra dimensions is called
compactification. In the next section there is made a modest start by first curl-
ing up only one of these extra dimensions. Therafter we turn to the question
of curling up more dimensions by letting them form a torus.

4. TOROIDAL COMPACTIFICATION

We now turn to the compactification of 26-dimensional Minkowski spacetime
M?26. That is, we will consider string theory in a spacetime M* xC26—* with M*
being k-dimensional Minkowski spacetime and C?®~* a (26 — k)-dimensional
compact riemannian manifold. Actually we will take here C26—F = T26-k 5
(26 — k)—dimensional torus. In order to simplify things we start with the case
k = 25. This is the case where one spatial direction of M?¢, e.g. 2!, is turned
into a circle S* (with radius R) and the spacetime manifold M becomes a
26—-dimensional cylinder

M =M?*/2rRZ = M?® x §! (278)

More explicitly, spacetime M arises by identifying in the 26—dimensional Min-
kowski spacetime the points (z°,z!,z%,...,2%) and (z°, 2! +27Rs, 22,. .., 22%)
(s € Z). Instead of R we will frequently use a defined by R =: fa. A closed
string can wind several times around the cylinder (see figure 1). Hence the
condition that the string is closed reads now
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m =

m =

FIGURE 1. Winding numbers of a string on a cylinder.

z(o + 27,7) = z'(0,7) + 27mR  (m € Z) (279)

where m is called the winding number. The general solution of the equation of
motion of z! is given by

1 1
z'(0,7) = ¢ + 5(pL + PR)T + 5(PL — PR)O

N _12_ % % [aglei,,(m, +a§1ein(,_,)] (280)
This gives with the condition (279)
PL — PR = 2ma (281)
Hence in the Schrédinger representation these operators are given by
p},=§1—i-a—?1-1-+ma p}izéé%-—ma (282)

The operator p! = p} + pk = %% has an eigenfunction exp(ik!q') with
eigenvalue k! € R. Wave functions have to be single-valued, i.e. exp(ik!q')
has to be invariant under z! — z! +27R or ¢* — ¢! +27R/{ = ¢ + 2wa. This
condition gives

Kla=n (neZ) (283)

The eigenvalue equations
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py exp(ik'q') = k} exp(ik'q'),

(284)
phexp(iklql) = k), exp(ik'q') (k},kk € R)
imply [see (282)]
1 n 1 n
_n _n_ 28
ki 5, +ma kg 5 — Ma (285)

: : 1 1 : RT 1
The correspondmg eigenvalues of P~ and Pg  are respectively m=" + n5p
and mRT7r + n-—ﬁ since

1 1
T\ 2 T\ 2
Pl = (%) pt', Pgr'= (%‘) PR (286)

The conditions (279) and (283) have a quite different type of origin: (283)
has a quantum mechanical background, whereas (279), depending on the wind-
ing number, has a classical origin. The tuning of these two effects will be seen
to give rise to the Frenkel-Kac-Segal mechanism.

The mass-squared has to do with the motion in the 25-dimensional Min-
kowski spacetime:

=) PuPt=—3 pup" (287)
p#1 p#1

By restricting to the subspace of the physical states one has

1
(1) + D _prupl | = 5 |(PR)" + ) pruph (288)
p#l p#l

N =

1=

This gives, using (287),

47T 1 1
M? = TN + N+ 5 (k) + 5 0h) ~ 2 (289)

The eigenvalues m? of M? are given by [see (285)
47T 2
m? = T [N + Ny + (5 )+ (ma)* -2 (290)

where N; and Np are eigenvalues of N, and Ng. Let |k, kL, kg) be a state
without excitations, i.e.

Nle,kL,kR) =0, Nglk,kL,kR) =0 (291)
PPlk,kr,kr) = ki|k, kL, kr), Pglk,kr,kr)=kglk kr,kr) (u#1)(292)
P£|k,kL,kR) =kL|kakLakR>a Pllilk’klnkﬁ) = k}%"cvkkaR) (293)

From (290) we see that there massless states for Ny = Np =1,n=m =0. In
general, there are actually two independent state vectors for these states:
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ok B Mk, ke, k) (1) (294)
and

o o Pl k,kr)  (u#1) (295)

This are massless bosons with helicity one. One contends that they are the
particle states of gauge fields.

In passing we note that the two-dimensional vectors (p}, p}i) = (£ +
ma, 5= — ma) form a lattice

1
(2 "2a
A lattice is called even if p? is an even integer for each lattice vector p. Since

(PL,PR)* = (1) — (Pk)* = 2mn € 2Z . (297)
the lattice A is even. The dual basis {e}, €3} of the basis {e1, e2} is defined by
e;-ej = &; (298)

where the dot - indicates the two-dimensional Minkowski scalar product [com-
pare (297)]. This gives

A= {ne; + mez | €1 := ), e := (a,—a), n,m € Z} (296)

1 1

= (a,—a) =e;, e€3:= (-2—;1-, -2—;) =€ (299)
The dual lattice of A is defined by
A* := {ne] + mej | n,m € Z} (300)

A lattice is called selfdual if A* = A. From (299) one sees that the lattice A is
selfdual.

The term (5";)2 + (ma)? in (290) is due to the §! compactification. Recall
that its first term had a quantum mechanical origin (single-valuedness of a
wave function) and its second term a classical orlgin (winding number). The

map a - 5 entails - - a and (£ ) + (ma)?® — (na)® + (%)2 Hence this
boils down to an interchange of m and n. For a = 1/2aq, i.e.
o= 2 orR= /- (301)

V2’ 2T

this map has a fixed point and the mass formula (290) becomes in this case

47T
m? = L[NL+NR+ 5(n? +m?) - 2] (302)

where n and m now play an equivalent role. The choice (301) of a specific
radius of the compactifying circle entails new massless states [see (302)] with
N; = 0,Np = 1,n? + m? —2andNL_1NR-—On +m = 2. From
(285) we now get (k1,kL) = \/—(n + m,n —m). Since n? + m? = 2 we have
n,m = +1 and thus we arrive at (k}, = (£v/2,0) or (0,£+/2). Thus the
four state vectors of the extra massless states are
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of Flk, £v2,0) (p#1) (303)
and
ol #1k,0,£v2) (u#1) (304)

So we end up in this special case with 2+4 = 6 massless helicity-one states. We
will see that this are the particles of the six gauge fields of the 6-dimensional
Lie group SU(2) x SU(2).

5. FRENKEL-KAC-SEGAL MECHANISM
We now turn to the compactification of several dimensions. In particular we
will consider instead of M2¢ a spacetime

M =M /A (305)

where A is a lattice spanning a d—dimensional euclidean (linear) submanifold
of M?6. The replacement M2¢ — M is called toroidal compactification. Hence

M =M?*6-4 x 7 (306)

where T'¢ is a d-dimensional torus. Thus we identify the points (z°,...,z25~9,

2264 . 22%) and (20,...,2%57 4, p26-d £ \26—d 425 4 \25)if (\26-d
A25) € A. For the sake of convenience we consider only the components of
z#t = z#(o,7) for p =26 — d,...,25, i.e. the motion of the string on the torus.
Likewise, we restrict ourselves to the consideration of either left—-movers or
right-movers, however, we will suppress the subscripts L and R. The resulting
d-component operator field will be denoted by [compare (170) and (171)]

ot =gt (z) (u=26—d,...,25 z:=e¢l(™+9) (307)
Defining
N .
z§ =i Z 7"2 (308)
n>0
ot =iy O, (309)
< n
n<0
zh = g" —ip"log 2 (310)
one has
ot = zk +af + 25 (311)

The so-called vertex operator is defined by

U(7, ) := exp(iyua’s) exp(iyuzf) exp(iy,zh) (312)
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Below we need to discuss whether U(, z) is a single-valued function of z. The
potentially dangerous term appears to be the second factor in the right-hand
side of (312) [see (310)]. By means of the operator identity

efeB = eA+Be%[A,B] (313)
which holds if [4, B] = A1 (X € C) we can rewrite this factor as
ei7°70(2) — oiT-ag7Plogzodq? (314)

where a,b* =a-band a® =a-a.
The generators of the Virasoro algebra L,, have the commutation relations

(Lo, L] = (m = n)Lonpn + %m(mz Vb (mn€Z) (315)

where d = dim A. The L,,’s generate conformal transformations. The transfor-
mation of the vertex operator under conformal transformations is given by

[Ln, U(y,2)] = (z" 1;1 nz ——-) U(y,2) (316)
For the tachyon with v2 = —2 this gives
(L, UGy, 2)] = 22 ("U (3, 2) (317)
We now introduce
4= 5m U DT (0P=-2) (318)

where the contour is a closed curve winding once around the origin z = 0 of
the complex plane, e.g. a circle. From (317) one obtain then

[y Ar] = 5z § 2, 2)d (319)

Hence [Ln,A,] = 0 if U(y,2) is single-valued. In order to investigate this
question we look at the action of e7'#2(2) on

[A) == eiq')‘IO) (320)
We find, using (313),

ei’7~mo(z)|/\) — ei7-(g—iplog z)e_iq'—yl)\ +7) = evPlogzt+i[yplog z,—-iq-‘y]l/\ +7)

— e-y.()-}-—y)log z+—log zl/\ + ,),) (321)
or |

&N = 247 4 ) (322
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In order that e!7'#°(?) is single-valued we require
Y-A€EZ (323)

A lattice A in a vector space with a bilinear form, denoted by -, is called integral
if for all 4, A € A one has - X € Z. The requirement that the lattice which is
used for the toroidal compactification is even leads, via the single-valuedness
of U(y, 2), to

[Ln, Ay =0 (v €A®) | (324)

where A% := {y € A | 42 = —2} with A an integral lattice.

An important consequence of (324) is that A, maps physical states to phys-
ical states. Indeed, let |¢) be a physical state, i.e. Ly|¢p) =0 (n = 1,2,...)
and Lo|y) = |[¢) then Ln(A,|9)) =0 (n=1,2,...) and Lo(A,|¥)) = (A4]9)).
Hence A,|t) is a physical state. One can show that

AgAy = (-1 445 =4 B-p it foy=-2 (325)
0 otherwise

[p*, Ay = 1" Ay (326)

[p*,p]=0 (327)

The remaining obstacle on our way towards a Lie algebra which transforms
physical states into physical states is the factor (—1)# in (325). So one intro-
duces operators

EY = A,c, (328)

and one adjusts the operators ¢, in such a way that the undesirable factors
(=1)# in (325) disappear. That this is indeed possible is now explained in a
number of steps. First, one writes

cy = €798, (329)
and defines ¢, by
&) =e(y, Ay + ) (330)

Second, (v, A) is taken to be a function on the lattice A with values +1 such
that

e(v, Ne(y + A, 6) = e(v, A+ 6)e(v, 6) (331)
called a cocycle condition, and
e(1,A) = (-1)P7e(), ) (332)

All this implies
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8ay|A) = £(B,7)ép1~|A) Y + A) (333)
or

e9ey = (8,74 (334)
Using (332) this gives

épéy — (—1)P78,85 = 0 (335)

A cocycle is not unique, since 1,7mxe(7, A) is a cocycle if (v, A) is a cocycle.
This freedom in the choice of a cocycle allows us to require additionally

e(v,—) =€(7,0) =1 (336)

for all v € A.
Finally we find in this way a Lie algebra g, spanned by {E7,p* | v €
A 1< p<dim A} with commutation relations

e(B8,7)EPtY if B-y=-1
[B°,E")=( B-p if B=— (337)
0 otherwise
0", E°] = p*EP (338)
[p*,p*]=0 (339)

Notice that dim gp = #(A(?))4+dim A where #(A(?)) is the number of elements
of A®, the set {p* | 1 < p < dim A} spans a Cartan subalgebra and for all
simple roots one has ||8]| = v/2, i.e. g is a simply-laced Lie algebra.

In some physical models the Virasoro generator Lg is the hamiltonian. Since
the elements of gy commute with Ly and transform physical states into physical
states the Lie algebra gj gives via exponentiation rise to a symmetry group.

This is the first part of the Frenkel-Kac-Segal construction. We now pro-
ceed with the higher moments

1 dz
p._ 1 ndz )
Bl = 5= $U(B2)epz"—  (B€A®, neZ) (340)
b= L }{ PH2) Y (1<u<dimA, neZ) (341)
" 2w z - ’
where
P#(z) := izg?—‘: = i anz" (342)
dz

n=—oo

and the contours in (340) and (341) are e.g. circles around the origin z = 0.
Observe that one has for n =0
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EF=FEFf of=p" (343)

The Lie algebra spanned by {EJ,a# | v € A®,1 < p < dim A} is denoted
by ga. Its commutation relations read

e(B,7)ESRT, if B-y=
[ES,E)] ={ B-amin+mbm n if B=- (344)
0 otherwise
[a*,EP| = B*E5 .. (345)
[a”,0%] = m6* 6y _n (346)

Hence g, is a Kac-Moody algebra.
The commutation relations of the generators of gy with the generators of
the Virasoro algebra are given by

[Lm, Ef] = —nES, (347)

[Lm, o] = —nop, i, (348)
Denoting the generators of gy collectively by X,,, i.e.

Xo = Ej,of, (349)

then for any eigenstate |h) of Ly all non-zero vectors X, |h) are also eigenstates
of Ly. More explicitly Lo|h) = h|h) and [Lo, X,] = —nX, imply —n(X,|h)) =
LoXn|h) — XoLn|h) = LoXn|h) — Xoh|h) or

Lo(Xa|h)) = (h — n)(Xn|h)) (350)

Since ga connects some of the energy eigenstates it is called a partially spectrum
generating algebra.

One can argue that a lattice is suitable for toral compactification if it is
even and self-dual. The dimension of even and self-dual euclidean lattices is
dim A = 8n. This is the number of dimensions which are compactified. Hence
we compactify 8,16,24,... dimensions. Since we start with 26-dimensional
Minkowski spacetime we end up after toral compactification eventually with
a spacetime with 18,10 and 2 dimensions. The case of 10 dimensions is par-
ticularly interesting since a superstring requires a 10-dimensional Minkowski
spacetime.

In this case we are interested in 16-dimensional even self-dual euclidean
lattices. There are only two lattices of this type. They are called I'® @ I'8
and I''6. Here I'® is the root lattice of the Lie algebra E® and I''6 is the root
lattice of the Lie algebra so(32) with one additional point or equivalently the
weight lattice of the Lie algebra of the Lie group Spin(32)/Z;. Thus we finally
arrive at the following result. Toroidal compactification of the bosonic string in
26-dimensional Minkowski spacetime by a suitable 10-dimensional lattice gives
rise to either Eg x Eg or Spin(32)/Z, as symmetry group. The zero mass modes
gives the gauge fields of these groups.
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An Introduction to Hopf Algebras
H.N. van Eck

Department of Mathematics University of Twente
P.O. Box 217, 7500 AE Enschede
The Netherlands

1. DEFINITION

The notion “algebra” can be described as follows.

A linear space A over a field K is an algebra over K or K-algebra if there is a
linear mapping m: A ®kx A — A. This mapping is called multiplication, for «
and y € A one mostly writes zy for m(z ® y).

The algebra A is associative iff the following diagram commutes.

AgApA—"2l4  4o4
Id 4 is the identity map on A.
Idg ®@m m
A®A A

A is commutative iff the next diagram commutes.

AQA T AQA

7 is the socalled twist map;
7 is linear with 7(z ® y) =y @ z.

A Td, A

A has a unit iff the next two diagrams commutes.
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1®Idy

K®A A®A
j is the linear map with
i1®z) ==z
j m 1 is the embedding of K into
A (¢(1) = 1, the units of K
and A are identified).
A Td, >~ A
ARK Id4 ®i A® A
y j' is the linear map with
j m (z®1) ==z
A Td, A

Let B another algebra and f: A — B an application. f is a homomorphism (or
an algebramorphism) iff the following diagram commutes.

aea—I8L . pep

m m! m' is the multiplication of B.

A

7 B

The notion “coalgebra” is the dual of the notion “algebra”. So, a linear space
H over K is called a coalgebra if there is a linear mapping A : H — H Q@ H.
A is named coproduct or diagonalisation. H is said to be coassociative if the
following diagram commutes.

H A -HoH
A Idg @A
HoH HoH®H

AQRIdy

H is said to be cocommutative if the next diagram commutes.
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H Idy H

7 is the already known
A A twistmap.

He®H

- H®H

H has a socalled counit e if the next two diagrams commute.

I Idg I
h is the linear map with
A h h(z) =1®z.
H®H —W K®H
H Idy I
, k' is the linear map with
A h KM(z)=z®1.
H®H —Id—;®—€_> H®K

Let H' be another coalgebra and f : H — H' an application. f is said to be a
coalgebramorphism if the following diagram commutes.

H ! H'

A Al A’ is the coproduct of H'.

H®H—F=HQ®H
® Y ®

A bialgebra H is an associative algebra as well as a coassociative coalgebra in
such a way that both the coproduct A and the counit € (always existing) are
algebramorphisms. If H' is another bialgebra then f : H — H' is a bialge-

bramorphism if f is an algebra- as well as a coalgebramorphism with €' o f =€
where € is the counit of H'.
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REMARK. We just said that A should be a homomorphism in order that H
will be a bialgebra. This means that H ® H must be an algebra with a multi-
plication m' and that there must be a commutative diagram as below.

HoH-2%2 HeHeoHsH
m m'
H - -HeH

Now, if A and B are associative algebras with unit 1 then A®g B is also an as-
sociative algebra with unit 1®1. The multiplication is given by (a®b)(a’'®b') =
(aa’) ® (bb') so that m' = (m ® m) o (Idg @ ® Idy).

REMARK. H ® H is also a coalgebra with coproduct A’ equal to
(Idg ®7Q®Idg)o(A®A). With this definition m becomes a coalgebramorphism.

REMARK. K is a bialgebra with coproduct Agx : K — K ®k K linear for
which Ag(1) = 1® 1 (the inverse of the multiplication). With this in mind
and with help of the definition one sees that a counit of a coalgebra C is a
coalgebramorphism and even a bialgebramorphism if C is a bialgebra.

CONVOLUTION

Let A be an associative algebra with unit 1 and C a coassociative coalgebra
with counit e. If u : C — A and v : C — A are linear then we define u x v
to be the linear map C 2,000 A® A A. In this way we get an
associative multiplication, named “convolution”, in £(C; A). There is a unit
lc,a =i0€ wherei: K — A is the linear map with ¢(1) = 1. This implies
that counits (if existing) of coalgebras are unique (take A = K).

ANTIPODE

Let now C = A = H be a bialgebra. The inverse s of Idy (if existing) with
respect to the convolution is called “antipode” or “inversion”.
We shall state and prove some properties of s.

1. s(zy) = s(y)s(z) for z and y € H. In other words
som=mo(s®s)or. (1)
Proof. We shall prove the following formula.

(som)*m=1lpgugy =mx*x(mo(s®s)or). (2)
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(som)xm:HeH¥ HoHoHoH ™S " HoH B H. (3)

Now Apggy = (Id®@7®Id)o (A®A) and (som)@m = (s@Idy)o(m®m)
moreover the multiplication mygy of H ® H is given by
(m®m)o (Idg ® ® Idy). So (3) can be rewritten as

HoH* HoHoHOH ™ HoH S HeHB H.  (4)

A is a homomorphism so mygn © (A ® A) = A om. (4) can therefore be
transferred to the formula

s®Id

HeHOSHAHeH S HHBH, (5)

and thisto HQ H 5 H ——> H = 1pgn,u because s is an antipode.

mx(mo(s®s)or) : HOH “% HeHoHoH ™™l peg ™ 1.
Now Apgr = (Idg®@T ®Idg) o (A® A) and m® (mo(s®s)oT) =
(m®m)o(Idyg ®Idy ®s® s)o(Idyg ®Idy ®7). So m*(mo(s®s)or) can
be split up into

HoH2  HoHHH Y o He He H 4848
H®HQ®HQ® H and
HRHRHQH"® ' HoHoHH™ Y HQH 5 H.

To be able to trace the capital aitches we prime one of them. The former
of these two mappings becomes in this way

HoH 3 HeoHoH'@H ¥ He H'® Ho H' "4 24%"
HRH ®H' ®H.

mo(m®m)=HoH oH' oH " HoH' o H "2 HoH 5 H. So,
the mapping H' A HeoH' "% H'@H' S H'ishidden in m*(mo(s®s)oT)
and

H A H’®H’ “SHeoH T H =1y. Of m % (m o (s ® s) o) there
remains H 35 H@ H 2% H® H = H because the images of 1y are

scalars. So mx(mo (s® s)o7) = 1ygn,u. m therefore has a left and a
right inverse so these inverses must be equal.

2. The dual of formula (1) is

Aos=T0o(s®s)oA. (6)
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We shall prove this by showing that A o s is a left and that 7o (s ® s) o A
is a right inverse of A.

(Aos)xA=HAHH“ $ HeHOHoH ™ HoH =
HSHoH S HoH 3 HoHQHRH ™% HeH =

HAHoH S HHBHS HQH=11ngn.

A*(T°(8®3)0A):HébH@H%H@H’@H'@HId@&G;’@’
HoH' QH oHY N HoH oHoH' U S  Ho He H'® H' 2%

H@H' because HQH' @ Ho H' ¥ Ho Ho H' @ H' ™2F'
H Q® H' = mggn. H is coassociative and this gives the following commu-
tative diagram.

H
A
HeH Apld H®H ®H
Id®A
ARId| Id®A Id®A ®Id
HOH®H HeldaA HeH H' ® H

It is clear that H' ® H' stems from H' but the two unprimed aitches of
HQ® H' ® H' ® H are derived from H because according to the diagram
first A is applied and then two times Idy. Therefore H' S peoH 4%
H'® H' 55 H' is hidden in A x(7 o (s ® s) 0 A) and what remains is the
same application but then without primes. The left inverse of A is equal
to the right inverse.

The opponent H° of H is the bialgebra which is as set equal to H and
which has the multiplication m°® = m o 7 and the coproduct A° =70 A.

The formulae (1) and (6) are equivalent with the commutativity of the next
two diagrams.
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H+—" _HeH H—2 .HeH

s s®s and 8 s®s
(+] morT (+] (] (o] TOA [+ o
H o H°®@H H TH ®H

3. If we prove that s(1) = 1 and that € o s = € then it follows that s is an
isomorphism of H onto H°.

(s xIdg)(1) = 1 and = s(1). The second relation is more difficult. If
f:H —V is a linear mapping then

f=HAHeHIZVeKDV.
This follows from the equality
HAHOHYS HQK = (h — h®1(h € H)).

Therefore s =H-é> H®H 2% H® K 5 H and this can be written as
H$H®H@$H®H3H. So, 1 0 s (where 1 is the unit of £(H)) =
HAHoH B HeunglH=

HAHeoH B HoH Y HeH B H=
HAHH S HoH S HoH ™ H =

HAHOH S HeH™HL H=101=1. It follows that co s = e.

4. The last property of s that we prove is sos = Idg. In other words we show
that s is an involution.

s*(sos)=HAH@H@(—’»”)H@H-T»H:
HAHOH 2 HeH S HoH S H=
HSHAHoH LS HRH S HoHBH

because s is a coalgebramorphism.
So,sx(s0s)=HSHAHH S HeHB H=10s5=1.

DEFINITION. A linear space H over a field K is a Hopf algebra if H is
a bialgebra and possesses an antipode.

2. EXAMPLES

1. Group algebras.
Let G be a group and K a field. The linear space
H = K@ consists of finite linear combinations of group elements, i.e.
z € H means that there is a family (z4)5c¢ of K with z, # 0 for at
most a finite number of g € G and that z = }  ;z4e, where ¢, is an
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alternative notation for g. (eg) is the canonical base of the linear space
H. We define a multiplication m as the linear mapping H @ H — H
with m(e; ® en) = egn. H is with this m an associative algebra with
unit e; (1 is the unit of G). We define the coproduct A as the linear
mapping H — H @ H with A(ey) = eg ® eg. A is a homomorphism:
Alegen) = Aegn) = egh @ egn = (eg ® €g)(en ® ep). H has the counit
€ with e(ey) = 1 for all g € G. € is a homomorphism too. H is in this
way a bialgebra. There is an antipode s: a linear endomorphism of H with
s(eg) = eg-1.

This example has caused the following definition: if H is a Hopf algebra
with coproduct A then z € H is grouplike if A(z) =z ® z.

. Enveloping and symmetric algebras of Lie algebras.

Let V be a vectorspace over a field K. We can construct the tensoralgebra
T(V)asfollows: T(V)=KoVae(VeV)s(VVeV)®... T(V) has
an N-grading: T =V ®...®V (n factors), T° = K. T(V) has also a IN-

filtering: T,, = @ T™. It follows that Ty = K and that T,, ® Ty, C Ty

m=0

(the multiplication of T'(V') is given by ® itself).

g is a Lie algebra with underlying space V. The envelope U(g) is the quo-
tient of T'(g) and the two-sided ideal J which is generated by elements of
the shape z ® y — y ®  — [z,y] with z and y € g. U has an N-filtering:
U, is the image of T}, under the canonical mapping T' — U. It follows that
Uy = K, that U,, C Up41 and that U, U, C Uppin.

Let G" = Up/Up-1ifn >0,G* =Uy = K and G = @ G™. For £ € G™

n>0

and 7 € G™ we define the product £&n = 2y + Upyn—1 if £ = & + Up_1
and if n = y + U,—1. This product is well defined because if we take
z' € Uy, and y' € U, such that ' —z € U,,; and y' —y € U,_; then
&n = z'y" + Upyn—1. In this way G becomes an associative algebra with
the 1 of K as unit. The element z ® y — y ® # has degree 2 and the
element [x,y] degree 1 whereas their images in U are equal. That means
that G is commutative and this fact gives rise to the following construction.

Poisson bracket.

For x € U, and y € Uy, zy — y& € Upyn-1 because {&n — n¢ = 0
with { = ¢+ Up—1 and 7 = y + U,—1. So, for £ and 1 we can define
{¢,1} = 2y — yz + Upyn—o. This is well defined for if £ = ' + U,,_; and
n=1%y"+ U,_; than

gy —yz—a'y' +y'z' = (z -2 )y -y ) +2'(y—¢) + (z - 2")y' -
-y)z-2)-y(z—2")—(y—y)' =

(z-2)y—9y)—(y—9y)(z—2")+ (i)
'(y—y) - (y—9y)z'+ (ii)
(z—2")y —y'(z—2'). (iit)

(1), (i) and (iii) € Umtn—2-

126



G is with this bracket a Lie algebra but { , } has an extra property:
If a =a+ Uy then {a,&n} =

azy — zya + Uminip—2 = (az — za)y + z(ay — ya) + Uminip—2 =
{a,&}n + &{ea,n}. So, {, } is a Poisson bracket.

It follows from the theorem of Poincaré, Birkhoff and Witt that the re-
striction of the canonical mapping T — U to T! = g = V is injective. So
we can view upon g as embedded in U. U has a coproduct A which is a
homomorphic extension to U of the linear application
z—zQ1+1Qz(z € g).

This homomorphism is possible because A(zy — yz) =

(ay — ) ® 1 + 18 (ay — yo) while A(lz,y]) = [5,5] ® 1+ 18 [z,3] and
these relations are consistent with each other. If U has a counit € then
there must hold: (e®Idy)oA(z) = h(z) or e(z)® 1y +€(ly) @z = 1k @z
for z € g. It follows that e(z) = 0 and €(1y) = 1x. So, € applies every
element of U to its constant part (i.e. the term which contains no elements
of g). €is also a homomorphism. If there exists an antipode s then there
must hold: m o (s ® Idy) o A(z) = 1y(z) for all z € U and s(1) = 1.
For = € g it follows that s(z) + z = 0. If we take an element y € g then
s([z,y]) = —[z,y] must hold. On the other hand s must be a homorphism
of U in U° so that s(zy — yz) must be equal to (—y)(—z) — (—z)(—y) and
this = —[z,y] in U. So, s exists. Kostant proved in the 1950’s that all
cocommutative Hopf algebras over a field with characteristic 0 which have
an IN-filtering as above are envelopes of a Lie algebra the elements of which
are characterized by the formula A(z) = z® 1+ 1® z. These elements are
called primitive.

The underlying space V of g can also be viewed upon as a Lie algebra
with [z,y] = O for all z and y € V. The envelope of this algebra is the
socalled symmetric algebra S(g). S is commutative and can be identified to
K [ex]yep Where (ey) is a base of V. So the elements of S are polynomials
in the variables ey .

It is relatively easy to construct out of the canonical mappings T — U,
T — S and U — G a homomorphism of S onto G (also yielding the
commutativity of G). Poincaré, Birkhoff and Witt proved that this homo-
morphism is also one to one. From now on we identify G and S so that the
Poisson bracket is defined on S.

iFrom the fact that G = S follows that there is also an isomorphism of S
into U, not an algebraic one of course but a coalgebraic one. This isomor-
phism is given by the formula

1
z1...2p) = ] Z To(1) - - - To(n) (N
0'66..
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where &,, is the permutation group of n elements, z; ...z, being elements
of g. Especially n(z) = z for z € g, so, n has an interesting impact on { , }:
n({z,y}) = [z,y] = zy — yz for all z and y € g. The formula still holds,
i.e. n({z,y}) = [n(x),n(y)], if one of them is element of S and the other of g.

The case of finite dimensional Lie algebras.

Let g has the base z1,...,2, then S = K |[z1,...,z,]. With induction
it follows immediately that {z,y5} = kyF~ l{m,y,} forz € Sand y; € g.
From this it follows easily that {z,g} = 31, 2 p-{z,z;} if g € S and that

{f’g} Ei] Bz; 3:!:_-, [mz, :L'J] lf f (S S too.

Let now (q1,...,4n,P1,---,Pn) be a base of a commutative Lie algebra g
and @ : g x g — K bilinear and alternating with ®(g;,q;) = ®(pi,p;) =0
and with ®(g;,p;) = 6i; then & (trivially) satisfies the relation
—®([z,y], 2) + ®([z, 2],y) — ®([y, 2], ) = 0, in other words ® is a cocycle.
The linear space ) = g x K is a Lie algebra with

(2, ), (¥, 8)] = ([z, 9], ¥(=,v))

forrand y€ gand o and B € K. We get h = (g1,-.-,9,,P15--+»Pns W)
with g; = (gi0), P; = (P;,0) and w = (0,1). b is a Heisenberg algebm and
on S(h) the P01sson bracket is given by

0f 6g Of Og
{f’g} Z(aq, op; 311,-3—'1,-) © ®)

It is worthwile to compare this relationship between S and U with section
23 of the sixth chapter of the book “Quantum Mechanics” by L.I. Schiff.
This relationship is also probably the code to decipher the cryptic book
“Operators” by V.P. Maslow.

. Compact groups and Hopf algebras.

Let G be a compact group and C(G) = H the set of continuous functions
G — R. With the multiplication (fg)(z) = f(z)g(z) the space H is a
commautative algebra with unit 1 (the function z — 1(z € G)). H has the
norm || || given by |||l = r:leaé(”f(m)” H is a Banach space, moreover the

inequality ||fg]l < ||f]l llgll holds. For f and g € H we may identify f ® g
with the function (z,y) — f(z)9(y) (z,y € G) as is well known. According
to the theorem of Weierstrafl and Stone H ® H is dense in C(G x G) so that
this set is the topological tensor product HQ®H. We define a coproduct A
as follows:

A(f)(=z,y) = f(zy).
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G is associative so A is coassociative. One can see that by a close look to
the applications

HeH'®} H® H®H and H® H “® H®H @ H.
A is cocommutative if G is commutative. There is a counit € given by
e(f) = f(e) (e is the unit of G).

To see that € is a correct counit one could look first at the mappings

HIH®S ROH=Hand HOH®  H® R=H.

With these compositions H becomes a bialgebra. There is also an antipode
s given by

s(f)(z) = f(=™1).

We prove this as follows. First we must extend the multiplication to a
continuous linear mapping m : HQH — H. Let f € H®H then there is
a sequence (gn ® hyp,) on H @ H with converges to f. That means that
gn(x)hn(y) converges uniformly in = and y to f(z,y). Now m(g, ® h,) is
the function = — g,(z)h,(z) so m(f) is the function z — f(z,z).

If f € H and if s exists then there must hold mo (s ® Id) o A(f) = 1x(f).
Let the sequence (g ® hy,) on H @ H converge to A(f) then

nl_i_r)noo gn(z)hn(y) = f(zy) for all z and y € G. If s(gn) = gl then
nl_i_l)n‘>o 95,(z)hn(y) exists because s is assumed to be continuous.
m(g;,®hy,)(z) = g,,(z)hn(z) and this must converge to 1x(f)(z) = f(e)l =
f(e). For g (z) = gn(z™!) all our demands can be met with. s is deter-
mined because Id can have only one inverse.

Let M = H' be the topological dual of H. M is the set of measures on G.
We shall prove that M is a cocommutative Hopf algebra.

M is an associative algebra with m/'(A ® p) = A % u, the already known
convolution of the elements A and p € M. In the language of measure
theory we have the formula

(en)() = [

Gx

f(zy)dA(z)du(y).
G

The counit € of H is the unit of M.
The norm on M is given by ||A|| = sup 1 f‘f i+~ The real combinations of the
F#0

Dirac measures €, form a dense subalgebra (e;(f) = f(z), €zy = €5 * €)
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which is nothing else than the group algebra R(®),

m' is the transpose of A : (m'(A @ p), f) = (A *p)(f) =
mpo(A®p)oA(f) = (A® u,A(f)), mp being the multiplication of R.

The transpose A’ of m is the coproduct of M:

for f € HOH = C(GXQ) we have (A'(X), f) = (A, m(f)) = [ f(z,z)dA(z).
A’ is a homomorphism for on the one hand we have

(A'Axp), ) = [ f(z,2)d(X * p)(z) =[5y flzy, zy)dA(z)dp(y) and on
the other hand

(DA (), £) = farexane F(@:2)w,3)AA W)z, ')A (1)(5,5) =
foGxGxG f(-’Ey, .’B’y')dA’()\)(fl? :L")dA’( )(y’y fG’xG f(m'ya :I)'y)d/\(-’ll)dp,(y),
because [, o f(z,y)dA'(A)(z,y) = [ f(z,z)d)\(z).

For A = ¢, it follows that A’(e;) = €, ® €, because (A'(e;),g @ h) =
(ez,m(g ® h)) = g(z)h(z) = €x(g)(ez(h) = (€z ® €2)(g ® h) and because
H® H is dense in C(G X G). So, G yields the grouplike elements of M. M
is cocommutative because H is commutative and because the transpose 7'
of 7 is the application A® p+— p® A.

The counit € is given by €'(A) = (A\,1) = [ dA(z). € is the transpose of 4,
the embedding of R into H. €'(A% ) = [, o d\(z)du(y) = € (V)€ (u).

The antipode s’ is given by s'(A)(f) = fG f(z™1)d\(z), so s’ is the trans-
pose of s. The embedding of R into M is the transpose of € and € is the
transpose of the embedding of R into H so 1,4 is the transpose of 1p.
It follows that s' satisfies the definition of antipode because all appearing
mappings are transposes of A, s,Id and m. It goes without saying that all
applications involved are continuous.

. Alternating and Clifford algebras.

V is again a vectorspace over a field K with characteristic 0. @ is a
quadratic form on V: Q(az) = o?Q(z) for a € K and z € V;

Q(z +y) — Q(z) — Q(y) is a bilinear form ®(z,y) on V. Q is called degen-
erate if ® is degenerate. C(Q) is the algebra over K equal to the quotient
of T(V') and the two-sided ideal I(Q) generated by expressions of the form
z®z— Q(z). K and V are embedded into C(Q) and in C(Q), z? equals
Q(z) for z € V. C(Q) is associative and possesses a unit 1. C(Q) is called
Clifford algebra of the quadratic space (V,Q). If @ = 0 for all z € V then
C(Q) is nothing else than the exzterior algebra A(V) of V. C(Q) is charac-
terized by the following property: For any linear mapping f of V into an
associative algebra A with unit 14 with the property that f(z)? = Q(z)14
there is one and only one homomorphism f : C(Q) — A which is an ex-
tension of f. (f is the socalled lift of f).
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C(Q) has a grading C* @ C~, the elements of Ct are called even
(degree 0) and those of C~ are called uneven (degree 1). C* is a subalgebra
of C(Q) (1 € C*) and C~ is a C*-module, moreover C~C~ C C*+.

Let (z;)icr be a base of V where L is totally ordered. For a finite subset
H = (h1,...,hq) (b1 < ... < hy) of L we write zg for x4, ...zp,. The
zy form a base of the linear space C(Q). There are linear isomorphisms
Ag : C(Q) — C(2Q) and pg : C(Q) — A(V) with Ag(zy) = zg and
po(zm) = zu. The inverse of g shall be denoted by 7g. Here C(2Q)
is the algebra of the quadratic space (V,2Q). In some cases there is an
algebraic isomorfphism C(Q) — C(2Q). We shall not use this fact.

Let (V;, Q;)(@ = 1,2) be two quadratic spaces with Clifford algebras C(Q;).
Let V =V; @ V; and define Q on V by putting

Q(z1 + 22) = Q1(z1) + Q2(z2)(z; € V;) then (V,Q) is a quadratic space
too and the V; are orthogonal to each other. This means that if ®(z,y) =
Q(z +v) — Q(z) — Q(y) that then &(z,y) =0 for z € V; and y € V5. The
Clifford algebra C(Q) is algebraically isomorphic to the algebra

C(Q1) ® C(Q2), the isomorphism being given by the lift of z; + z2 —
71 ® 1 +1Q® z5 for z; € V;. The multiplication of C(Q1) ® C(Q2) should
be given by (a1 ® az2)(b1 ® b2) = €(a1b1) ® (azbz2) with a; and b; even or
uneven elements of C(Q,) and C(Q2) respectively. ¢ = —1 if both az and
b, are uneven, € = 1 in all other cases.

The linear mapping z — z®1+1®z from V into C(Q)®C(Q) can be lifted
to a homomorphism j : C(2Q) — C(Q) ® C(Q) because (z®1+1®z)? =
2Q(z)(1® 1), so Ag = j o Ag is a linear mapping C(Q) — C(Q) ® C(Q).
If @ = 0 then Ag is a homomorphism because )¢ is the identity mapping.
We shall show that C(Q) is a coassociative coalgebra with counit eg and
with Ag as a coproduct. We use our base (zy) again. Ag(zg) = zg so we
can act as if Ag is the homomorphism j. It is then sufficient to calculate
(Ag ®1d) o Ag(z) and (Id®AQ) o Ag(z) for z € V. The result is two
times z1®1+1®2®1+18®1®z. So, C(Q) is coassociative. If we
put eg(zg) =0if H #0and =1if H=0 (1 ==zp if H = 0) then ¢g is
the counit according to the definition of a counit. The proof of this is the
same as that of the coassociativity.

We shall now show that C(Q) is coanticommutative, i.e. that 0 0 Ag =
Ag,o being the linear mapping with o(a ® b) = €(b ® a) where a and b
are even or uneven and € = —1 if both are uneven, = 1 in the other cases.
Let z,...,7, be elements of the chosen base of V then Ag(z1...z,) =
Ty...T, so that

AQ(z1...2p) = (219141 71)... (2, ®1+1Qz,) =
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Z > €al@a() - Ta(i)) ® (Ta(it1) - - Ta(n)); (9)

i=0 acl(i)

I(i) = {a € G,|a increasing on both intervals [1,7] and [¢ + 1,n] of N}
and €, is the sign of the permutation @. The factors z,(1)-..Za(;) and
To(i+1) - - - Ta(n) Ar€ €ven or uneven because the z; are elements of V' and
so uneven. It follows that o just interchanges the terms of Ag(xy...zn).
This operation applies to all the zg.

In particular A(V) is a coassociative, coanticommutative coalgebra with a
counit. Moreover, Ag and €y are homomorphisms, so that A(V) if a bial-
gebra.

We shall now show that 7q is a coalgebra isomorphism of A(V') onto C(Q).
If z;,...,z, are elements of the chosen base of V then

nQ(Z1 A...Axy) =x1...T,. It follows from (9) that

(g ®ng) o Ag(zr) = Ag on(zg). One can prove that if (y1,...,¥n) is
any family of elements of V' that the following formula holds:

1
QW1 A AYn) = — Z €cYo(1) - - - Yo(n)- (10)
0667.

Although C(Q) is in general not a bialgebra it possesses an automorphism
that plays the role of antipode. This automorphism « is given by a(z) = —z
for z € V. « is the identity mapping on C* and a(u) = —u ifu € C~.
a is also a coalgebra morphism. On A(V), which is a bialgebra, « is an
antipode, One should keep in mind here that A(V) is equal to its own
opponent with respect to . « is called principal automorphism. There
is also a principal antiautomorphism B. It is the isomorphism of C(Q)
onto the opponent of C(Q) with respect to 7 that extends the mapping
z—z(z V).

Poisson bracket.
Let Cp, be the image of T; under the canonical mapping T(V) — C(Q)
then we get an N-filtering on C(Q) with Co = K and with C,Cy C Ch.

Let G = @ G" with G* = C,/Cp_1 if h > 0 and with G® = K. G is an
E>0

algebra with the following multiplication: for £ € G* and 5 € G* we have
n=zy+Chir-1if € =2+ Cp_1 and n = y+ Ci_1. One can prove that G
and A(V) are isomorphic algebras so that we can identify them. It follows
that én — (—1)"*n¢ = 0. In analogy with the Poisson bracket on S(g) we
define

{¢&,n}e = zy — (—1)** 2y + Chik—3. It is not difficult to prove that
{a7£7’}€ = {a,f}eﬂ + (_I)Jhé{aan}f fora=a+ Cj—17 that
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{€&,m}c + (=1)"*{n, £}c = 0 and that

{&,{n,C}ele = {{&m}ex (e + (1) {n, {¢, (}}(“Tacobi”).
If we transport {, }c to A(V) and if z and y € V then {z,y}. = ®(z,y). In
the notation of BOURBAKIL: {z,u}. = iZ(u) with z € V and u € A(V).

Let z be the product of h elements of V and y be the product of k elements
of V then we define in C(Q) and in A(V') the € — commutator of = and y
by the relation [z,y]e = zy — (—1)"*yz resp. =z Ay — (—1)**y Az. It can
be proved that n({z,y}¢) = [n(z), n(y)]e if one of the elements z and y lies
in V.

REMARK. The formula n({z,y}.) = [n(z),n(y)]c and the analogous one
n({z,y}) = [n(z),n(y)] in the case of Lie algebras are in general not true if
both £ and y are not in V.

Let V be the space with base (g1,-.-,qn,P1--.,Pn) again. Let now @ be
a symmetric bilinear form on V with &(p;,p;) = ®(qi,q;) = 0 (Vi,7) and
with ®(gi,p;) = 6i;. @ is non degenerate and Q with Q(z) = 1®(z,z) is
a quadratic form with @ as bilinear form. We get in this way a Clifford
algebra C(Q) with [p;, p;]e = [4;, gj]e = 0 and with [g;, pj]e = 6ij. The Pois-
son bracket on A(V') is given by {pi,p;}e = {4, g} = 0 and {qi, pj} = 8;;.

REMARK. We have seen quite a lot of similarities between the symmetric
and enveloping algebra of a Lie algebra on the one hand and the exterior
and Clifford algebra on the other hand. There is another similarity: the
envelope contains a Lie algebra; the Clifford algebra contains (the spin
representation of) a orthogonal (with respect to Q) group.
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These notes present an introduction to an analytic version of deformation quan-
tization. The central point is to study algebras of physical observables and their
irreducible representations. In classical mechanics one deals with real Poisson
algebras, whereas in quantum mechanics the observables have the structure of a
real non-associative Jordan-Lie algebra. The non-associativity is proportional to
72, hence for fi — 0 one recovers a real Poisson algebra. This observation lies at
the basis of ‘strict’ deformation quantization, where one deforms a given Poisson
algebra into a C™-algebra, in such a way that the basic algebraic structures are
preserved.

Our main interest lies in degenerate Poisson algebras and their quantization by
non-simple Jordan-Lie algebras. The traditional symplectic manifolds of classical
mechanics, and their quantum counterparts (Hilbert spaces and operator algebras
which act irreducibly) emerge from a generalized representation theory. This
two-step procedure sheds considerable light on the subject.

We discuss a large class of examples, in which the Poisson algebra canonically
associated to an (integrable) Lie algebroid is deformed into the Jordan-Lie algebra
of the corresponding Lie groupoid. A special case of this construction, which
involves the gauge groupoid of a principal fibre bundle, describes the classical
and quantum mechanics of a particle moving in an external gravitational and
Yang-Mills field.

1. INTRODUCTION

In quantization theory one tries to establish a correspondence between a clas-
sical mechanical system, and a quantum one. The traditional method, already
contained in the work of Heisenberg and Dirac, is canonical quantization. At-
tempts to generalize this procedure, and put it on a solid mathematical footing
have led to geometric quantization [49, 24, 20]. This is a certain algorithm
which still contains many gaps, and for various reasons cannot be considered
satisfactory [44]. The same comment applies to path integral quantization, but

1 Supported by an S.E.R.C. Advanced Research Fellowship
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we hasten to remark that both techniques have led to many examples, con-
structions, and insights, in physics as well as mathematics, that would have
been hard to reach otherwise, and still provide the main testing ground for
alternative methods.

One such alternative method is deformation quantization. The version that
we use (and partly propose) employs techniques from algebra, differential ge-
ometry, and functional analysis, and appears to be very interesting from a
mathematical point of view. One attempts to relate Poisson algebras to C*-
algebras in a way specified below, and as such it is possible to relate to, and
exploit the phenomenal progress made in both subjects over the last decade.
This progress has consisted of discovering and understanding general structures
through specific examples, and in a certain sense a unification of the three math-
ematical disciplines mentioned above has been achieved, under the name of
non-commutative geometry. On the operator-algebraic side this includes cyclic
cohomology of operator algebras [14] and operator K-theory (non-commutative
topology) [42], which have found interesting applications (highly relevant to
quantization theory!) in foliation theory and generalized index theorems [32].
As to Poisson algebras, we mention Poisson cohomology [23] and the theory of
symplectic groupoids [48].

From the point of view of physics we wish to stress that the quantization
procedure discussed here is very satisfactory in that it places physical notions
like observables and states at the forefront (inspired by algebraic quantum field
theory [21]), plays down the (quite unnecessary) use of complex numbers in
quantum mechanics, and accurately describes a large class of examples relevant
to Nature. Moreover, it brings classical and quantum mechanics very closely
together and highlights their common structures.

We will introduce the relevant mathematical structures step by step, on the
basis of the familiar Weyl quantization of a particle moving on R™. This will
lead us to Poisson algebras, Jordan-Lie algebras, and C*-algebras. We then in-
troduce the appropriate notion of a representation of each of these objects, and
motivate an irreducibility condition. Lie groups form a rich class of examples
on which to illustrate the general theory, but since these only describe particles
with nothing but an internal degree of freedom, we must look elsewhere for
structures describing genuine physics. A rich structure that is tractable by our
methods, and at the same time describes real physical systems, is that of a Lie
groupoid [31, 16]. It has an associated ‘infinitesimal’ object (a Lie algebroid),
and, as we will explain, the passage from an algebroid to a groupoid essentially
amounts to quantization.

2. CLASSICAL MECHANICS AND POISSON ALGEBRAS

2.1. Imtroductory example: particle on flat space

Consider a particle moving on the configuration space Q) = R"*. We use canon-
ical co-ordinates (z*,p,) (usually simply written as (z,p)) on the cotangent
bundle M = T*R" (x = 1,...,n), so that (z,p) stands for the one-form
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pudz* € TR™. In mechanics a key role is played by the Poisson bracket

{f,9}= o % _Of 09 (2.1)

where fi, f2 € C®(M). Here C®(M) = Ay stands for the real vector space
of real-valued smooth functions on M. Its elements are classical observables.
Apart from the Poisson bracket, there is another bilinear map from Ay ®g Ay —
Ay, namely the ordinary (pointwise) multiplication -. Let us write fog for
fg(= f-g), and fag for {f,g}. The algebraic operations o and «a satisfy the
following properties: '

1. fog = gof (symmetry);

2. fag = —gof (anti-symmetry);

3. (fag)ah + (haf)ag + (gah)af = 0 (Jacobi identity);
4. (fog)ah = fo(gah) + go(fah) (Leibniz rule);

5. (fog)oh = fo(goh) (associativity).

The meaning of a and o is as follows. To start with the latter, we remark that
the spectrum spec(f) of a function f € C*°(M) is the set of values it takes
(that is, the possible values that the observable f may have). If f is concretely
given (i.e., we know “f(m;) = a;, f(mg) = az...” then we obviously know the
spectrum immediately. However, f may be regarded as an abstract element of
the algebra Ag. The point is now that spec(f) is completely determined by its
location in Ay, equipped with the product o (forgetting the Poisson bracket).
Namely, if a € spec(f) then f — al (where 1 is the function on M which
is identically equal to 1) fails to have an inverse in Ag, whereas, conversely,
(f —al)7! is a well-defined element of Ay, satisfying (f —al)~lo(f —al) =1
if a ¢ spec(f). Hence we may define spec(f) as the set of real numbers a for
which f — al fails to have an inverse in Ag. A closely related point is that o
allows one to define functions of observables (starting from f2 = fo f); this is
related to the previous point via the spectral calculus.

The Poisson bracket o determines the role any observable plays as the
generator of a flow on the space M of pure states on Ag. To explain this, we
need to introduce the concept of the state space of an algebra. The state space
S(A) of a real algebra A may be defined as the space of normalized positive
functionals on A, i.e., the linear maps w : A — R which satisfy w(f2) > 0
for all f € A, and w(1) = 1. If w; and w, are states then Aw; + (1 — A)ws
is a state if A € [0,1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>